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Abstract

Improvisation is a form of live theatre where artists perform real-time, dynamic

problem solving to collaboratively generate interesting narratives. The main

contribution of this thesis is the development of artificial improvisation: im-

provised theatre performed by humans alongside intelligent machines. First,

I present background underlying the art of improvisation and the scientific

fields of interactive machine learning and dialogue generation. Then, I present

Pyggy, the first experiment on live stage human-machine improvisation and

A.L.Ex., the Artificial Language Experiment which addresses several key tech-

nical improvements over Pyggy. Improbotics is then presented which details

audience evaluation of Turing test-inspired live improvised performance using

A.L.Ex. Two novel contributions to machine-assisted narrative generation are

then presented and discussed. The first of these contributions, Shaping the

Narrative Arc, is a model incorporating an underlying narrative arc to im-

prove response generation. The second contribution, dAIrector, synthesizes

a plot graph with contextual information to generate contextual plot points

and serve as director. The thesis concludes by discussing public reflections on

live artificial improvisation performances from around the world and interest-

ing future directions to explore. My work presents fundamental advances in

human-machine interaction through the lens of improvised theatre which is

the ideal test bed for collaboration between humans and intelligent machines.
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Preface

This thesis is an original work by Kory Wallace Mathewson.1 Several chapters

of this thesis are based on published or submitted papers written in collabo-

ration with other researchers. For each chapter contained herein, details on

these publications are included as footnotes. Submission and author contribu-

tion details are summarized below for completeness. Unless otherwise stated,

no parts of this thesis have been previously published. Several of the studies

included in this thesis are part of the research research project which received

research ethics approval from the University of Alberta Research Ethics Board.

Project Name: Developing an Engaging Artificial Intelligence for Conversa-

tional Performance Art, ID Number: Pro00079215, Date: February, 23 2018.

Mayank Rehani and Dr. Patrick Pilarski provided support compiling and sub-

mitting the ethics application.

The background and literature review in Chapters 1 and 2 as well as the

discussion and conclusions in Chapters 7 and 8 are original works composed

by Kory Wallace Mathewson and are previously unpublished. The only excep-

tion is that some of the initial conceptualization and progress as described in

Chapter 3 is published on Kory Wallace Mathewson’s website as: Mathewson

KW (2016) Building an Artificial Improvisor.2

Chapter 3 is adapted from a paper submitted and accepted at the 13th

AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment (AIIDE 2017). The original technical apparatus (Pyggy) described in

Chapter 3 was designed and built by Kory Wallace Mathewson. The second

iteration of the technical apparatus (A.L.Ex.) was conceived of by Dr. Pi-

1Through the thesis the narrator will prefer the plural voice over the singular.
2https://korymathewson.com/building-an-artificial-improvisor/.
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otr Mirowski (HumanMachine), and designed and built for this work through

collaboration between Kory Wallce Mathewson and Dr. Mirowski. The ex-

perimental design, data collection, and concluding analysis are the authors

shared original work. It is published as: Mathewson KW and Mirowski P.

(2017) Improvised Theatre Alongside Artificial Intelligences. 13th

AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment (AIIDE’17). Snowbird, Utah, United States. October 2017. Addition-

ally, a preliminary version of this work was presented as a workshop extended

abstract and poster: Mathewson KW and Mirowski P. (2017) Artificial Im-

provisation: Improvisational Theatre with Deep Neural Networks

and Robots. 2017 Multidisciplinary Conference on Reinforcement Learning

and Decision Making. Ann Arbor, MI, United States, 2017.

Chapter 4 is adapted from a paper accepted to the 14th AAAI Confer-

ence on Artificial Intelligence and Interactive Digital Entertainment (AIIDE

2018) and a workshop paper submitted and accepted at the 2017 Workshop

on Machine Learning for Creativity and Design at the 2017 Conference and

Workshop on Neural Information Processing Systems (NIPS) conference. The

technical apparatus (A.L.Ex.) was designed and built in collaboration with

Dr. Piotr Mirowski (HumanMachine), as described above. The experimental

design was developed in collaboration with Dr. Mirowski. The data analysis

and concluding analysis are the authors shared original work. It is published

as Mathewson KW and Mirowski P. (2018) Improbotics: Exploring the

Imitation Game using Machine Intelligence in Improvised Theatre.

14th AAAI Conference on Artificial Intelligence and Interactive Digital Enter-

tainment (AIIDE’18). Edmonton, Alberta, Canada. November 2018. Addi-

tionally, a preliminary version of this line of experimentation was presented as:

Mathewson KW and Mirowski P. (2017) Improvised Theatre as a Turing

Test. NIPS 2017 Workshop on Machine Learning for Creativity and Design.

Chapter 5 is adapted from a paper entitled Shaping the Narrative Arc:

An Information-Theoretic Approach to Collaborative Story Gener-

ation through Dialogue. The technical apparatus was designed and built

by Kory Wallace Mathewson in collaboration with Pablo Castro and Marc G.
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Bellemare. Pablo Castro assisted with the data collection and contributed to

manuscript edits. Colin Cherry and George Foster provided valuable concep-

tual insights and manuscript edits. Marc G. Bellemare was the supervisory

author and was involved with concept formation, experimental design, and

manuscript composition.

Chapter 6 is adapted from Eger M. and Mathewson KW. (2018) dAIrec-

tor: Automatic Story Arc Generation through Knowledge Synthe-

sis. Joint Intelligent Narrative Technologies / Intelligent Cinematography and

Editing Workshop at AAAI Conference on Artificial Intelligence and Interac-

tive Digital Entertainment (AIIDE). November 2018. Edmonton, Alberta,

Canada. This work is a collaborative effort with Markus Eger (NC State Uni-

versity). Both authors collaborated on the conceptualization, development of

the experimental apparatus, data collection, manuscript preparation.

I include references for 11 other research contributions supporting human-

machine interaction that I collaborated on:

• Dziri N, Kamalloo E, Mathewson KW and Zaiane O (2019) Evaluating

Coherence in Dialogue Systems using Entailment. Annual Conference

of the North American Chapter of the Association for Computational

Linguists (NAACL-HLT). Minneapolis, USA.

• Winters T and Mathewson KW (2019) Automatically Generating

Engaging Presentation Slide Decks. 8th International Conference on

Computational Intelligence in Music, Sound, Art and Design (Evo-

MUSART’19). Leipzig, Germany.

• Dziri N, Kamalloo E, Mathewson KW and Zaiane O (2018) Aug-

menting Neural Response Generation with Context-Aware Topical At-

tention. arXiv preprint arXiv:1811.01063.

• Travnik JB, Mathewson KW, Sutton RS and Pilarski PM (2018) Reac-

tive Reinforcement Learning in Asynchronous Environments. Frontiers

in Robotics and AI, Vol 5, p.79.

• Pilarski PM, Sutton RS, Mathewson KW, Sherstan C, Parker AS and

Edwards AL (2017) Communicative Capital for Prosthetic Agents. arXiv

preprint arXiv:1711.03676.
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• Mathewson KW and Pilarski PM (2017) Concurrent Human Control

and Feedback Shaping for Robot Training with Actor-Critic Reinforce-

ment Learning. Multidisciplinary Conference on Reinforcement Learning

and Decision Making (RLDM). Ann Arbor, USA.

• Mathewson KW and Pilarski PM (2017) Reinforcement Learning

based Embodied Agents Modelling Human Users Through Interaction

and Multi-Sensory Perception. 2017 AAAI Spring Symposium on In-

teractive Multi-Sensory Object Perception for Embodied Agents. Palo

Alto, USA.

• Vega R, Sajed T, Mathewson KW, Khare K, Pilarski PM, Greiner R,

Sanchez-Ante G, Antelis JM (2017) Assessment of feature selection and

classification methods for recognizing motor imagery tasks from elec-

troencephalographic signals. Artificial Intelligence Research, Vol 6:1.

• Mathewson KW and Pilarski PM (2016) Simultaneous control and hu-

man feedback in the training of a robotic agent with actor-critic reinforce-

ment learning. 2016 IJCAI Workshop on Interactive Machine Learning.

New York, USA.

• Pilarski PM, Sutton RS, Edwards AL, Sherstan C, Mathewson KW,

Parker ASR, Hebert JS (2016) Towards strong prosthetic machine intel-

ligence. Cybathlon Symposium, Zurich, Switzerland.

• Pilarski PM, Sutton R, Mathewson KW (2015) Prosthetic Devices

as Goal-Seeking Agents. Second Workshop on Present and Future of

Non-Invasive Peripheral-Nervous-System Machine Interfaces: Progress

in Restoring the Human Functions (PNS-MI). Singapore.
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A whole is that which has a beginning, a middle, and an end. A beginning

is that which does not itself follow anything by causal necessity, but after which

something naturally is or comes to be. An end, on the contrary, is that which

itself naturally follows some other thing, either by necessity, or as a rule, but

has nothing following it. A middle is that which follows something as some

other thing follows it. A well constructed plot, therefore, must neither begin

nor end at haphazard, but conform to these principles.

– Aristotle in Poetics (Part VII), c. 335 BC.

Supposing, for instance, that the fundamental relations of pitched sounds

in the science of harmony and of musical composition were susceptible of such

expression and adaptations, the engine might compose elaborate and scientific

pieces of music of any degree of complexity or extent . . .

– Ada Augusta, Countess of Lovelace, notes on L. F. Menabrea’s Sketch of

the Analytical Engine Invented by Charles Babbage, Scientific Memoirs, 1843.

The script places constraints on dialogue and interaction, and it defines

concise test scenarios. The stage constrains the environment, especially if it

is equipped with special sensing, communication or computational infrastruc-

ture. More importantly, the intelligent stage, with its embedded computing

and sensing systems, is a resource that autonomous robotic performers could

use to bolster their own ability to perceive and interact with people within the

environment.

– Cynthia Breazeal, MIT Media Lab in Interactive Robot Theatre, 2003.
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Chapter 1

Introduction

A good improvisor looks great on stage;

the best improvisors make everyone else look great.

– Jacob Banigan, 2004

Our uniquely human experience is defined by knowledge sharing and sto-

rytelling. The main means by which we share our experiences is through

spoken dialog. Spoken dialogue has evolved to become one of the most com-

plex functions of human communication. We can engage in multiple conver-

sations over a short period of time, quickly adapting to our conversational

partners. Through these conversations we share our perspective, seek advice,

share stories, and find common ground. These interactions collectively define

the human condition.

Many commonplace technologies place humans in contact with computer-

ized dialogue systems—computer systems that interpret and generate speech

(e.g., cell phones, home assistants). These systems are limited in their ca-

pacity to continue engaging conversations with humans. To help address this

limitation, dialogue systems may be improved through the ability to adapt to

different speakers, contexts, and modes of operation. Rapid adaptation is a

unique characteristic of human dialog.

A major domain of study for dialogue research is that of curated dialogue

in cinematic and theatre scripts. This script research is constrained, as the

data is meticulously authored and edited by its very nature. Rather than

using curated, written dialog, we propose improvised theatre dialogue as an
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exceptional domain for experimentation toward improving dialogue generation

systems. Improvised theatre is characterized by adaptive performers sponta-

neously responding to each other, and the environment, to collaboratively

create a narrative.

This thesis aims to test and evaluate novel dialogue system improvements

by through experimentation with improvisational theatre performers and au-

diences. The hypothesis is that these improvements will allow for systems to

continue longer, more engaging interactions than current hand-coded perfor-

mance systems. Further to this aim, this thesis aims to investigate interactions

between humans, as participants and observers, and these systems. These in-

teractions are surveyed under conditions when human believe they are inter-

acting with, or watching another human interact with, an artificial intelligence

rather than a human, and vice-versa.

Several researchers have designed experiments to understand the interac-

tions between humans and artificial-intelligence-powered dialogue systems. To

date, these systems have not been investigated by expert collaborative story-

telling humans. This thesis accomplishes this testing by recruiting improvi-

sational theatre artists and audiences to engage with the system and provide

quantitative and qualitative feedback.

Understanding the interaction between humans and artificial-intelligence-

based dialogue systems offers enormous potential to significantly improve how

humans express themselves and share their experiences. The findings herein

offer significant insights into interactions when humans and machines perform

together on the theatrical stage. With experimentation and future research,

similar configurations could be used in a wide range of human-machine collab-

orative tasks; this general impact should not be understated. We interact with

technology, and specifically machine-learning systems, at an increasing rate in

our every day lives. By studying how these interactions occur, from both sides

of the collaboration, we can make the entire experience safer, easier, and more

effective

Artistically, the main contribution of this thesis is the formal development

and dissemination of the art-form of “artificial improvisation”. Artificial im-
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provisation is improvisational theatre performed by humans along-

side intelligent machines. The research and development in this thesis has

been used in over 75 shows, by 5 professional theatre companies around the

world. This work has ignited a community to technology-augmented improvi-

sational theatre performers to present and share their work.

This dissertation contains four contributions supporting the first appli-

cation of interactive machine learning-based dialogue systems for improvised

theatre. The contributions are separated into chapters. Each chapter presents

progress in open-domain dialogue research in improvised theatre.

• Chapter 3 presents the first formalization of human-machine improvised

theatre experiment as a suitable, challenging test bed for interactive

open-domain dialogue research. It presents the development and evalua-

tion of two artificial improvisors: 1) Pyggy, a rule-and-retrieval-based

conversational system, and 2) A.L.Ex. (Artificial Language Experi-

ment), a generative language modelling-based conversational system.

• Chapter 4 presents evaluation of artificial improvisors, contributing the

first quantitative and qualitative analysis of artificial improvisation. It

presents results and analysis of the systems and experiments introduced

in Chapter 3.

• Chapter 5 contributes a novel method extending artificial improvisation.

“Shaping the Narrative Arc” is a method which models the underlying

arc of conversation. Augmenting conversation systems with a notion

of story arc enhances narrative generation. Results from surveys with

expert human improvisors are presented in support of the methods ca-

pabilities.

• Chapter 6 contributes the “dAIrector”: a novel method for generating

coherent, contextual plot structures by fusing information contained in

two knowledge graphs.

Chapters 3 and 4 present development and evaluation of complete artificial

improvisor from a systems approach. Chapters 5 and 6 each present a novel

method augment any artificial improvisor. The methods for “Shaping the Nar-

rative Arc” and “dAIrector” are system agnostic, and evaluated in isolation,
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disconnected from the artificial improvisors in the earlier chapters.

In addition to these science-directed efforts, this dissertation has made ad-

ditional contributions toward the artistic goal of integrating machine learning-

based dialogue systems into theatrical productions. Artificial improvisation

is a new interactive multimedia art-form which signifies a novel innovation in

field of improvisation as supported by reflections from critics, public media,

expert performers, and audiences (Section 7.2). Artists describe the system as

inspiring, engaging, challenging, and that it provides them a new medium to

enhance and augment their own artistic creations.

The thesis exists at the intersection between three worlds of research—

interactive machine learning, dialogue systems, and improvisational theatre.

In the Chapter 2, we present background on these fields with historical con-

text and supporting literature. We introduce topics and methods, and discuss

how the fields braid together and intertwine and support each other. It is

our hope that all background materials necessary to understand the experi-

ments through this thesis are contained in this chapter. The contributions in

Chapters 3-7 are detailed previously in this section. Chapter 7 discusses the

scientific and artistic innovations of artificial improvisation, and explores how

this work has progressed the frontier, and presents several research directions

for future endeavour. Finally, Chapter 8 provides concluding remarks and

hope for the future.
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Chapter 2

Background

We are blessed with a language, a system of communication, so powerful and

so precise that we can share what we’ve learned with such precision that it

can accumulate in the collective memory. And that means it can outlast the

individuals who learned that information, and it can accumulate from

generation to generation. And that’s why, as a species, we’re so creative and

so powerful, and that’s why we have a history. We seem to be the only

species in four billion years to have this gift.

– David Christian

TED 2011

This thesis focuses on advancing interactive machine learning for impro-

vised theatre. Section 2.1 synthesizes research in interactive machine learning

(IML), Section 2.2 provides relevant background literature for appreciating

and understanding the conversational dialogue system research, and Section

2.3 provides background on the artistic field of improvised theatre. This the-

sis is positioned at the intersection between these three fields. The chapters

contain new methods and analysis which represent our contributions to this

intersection by connecting ideas, methods, and research from IML, dialogue

systems, and improvised theatre. At a high level, these fields connect at the

intersection of continual learning through interaction, trial and error.
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2.1 Interactive Machine Learning

This section presents and synthesizes research and applications allowing a

human with no assumed application-specific knowledge or technical ability, to

interact with machine learning (ML) models. Interactive Machine Learning

(IML) research techniques and approaches are outlined and applications of

IML research in creative applications and artistic presentations are presented.

This section concludes with promising prospects for future development.

Developments in IML combine the unique talents of humans and machines

to produce new capabilities. Human-machine teams are prevalent in the lives

of many humans. We live in an interactive world; examples include: bicycles

for transportation, medical prosthetic devices, web search engines, voice-based

assistants, and connected home technology. Many of these systems already

incorporate ML. For instance, many systems can learn to personalized perfor-

mance based on unique individual interaction.

Fundamentally, IML systems predict appropriate responses to interactions.

That is, a human provides an input and a system provides a response. This

model of the interaction can be generalized by the motivating question:

“When the human does this, what should the machine do?”

We interact with the expectation that the system will be able to translate our

inputs into meaningful outputs. While we may understand the limitations of

these systems, we may also overestimate the capabilities. This overestimation

can lead to fear. Artificial intelligence and robots have been presented as dan-

gerous platforms and used to mislead the public.1 Näıvety can also transform

into understanding, appreciation, and excitement for the future. This requires

rigorous science devoted to effective knowledge transfer; science which is both

fundamental research and clear communication.

ML is a field of computing science which explores automated model learn-

ing. Learning is the improvement in performance on a certain task with respect

to a given objective. Models are functions which learn to map inputs to out-

puts through mathematical transformations. ML problems often start with a

1https://goo.gl/gAWwAK
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set of data (diverse input/output pairs). Training progresses as the model is

incrementally modified until the diverse inputs are consistently transformed

into the desired, respective outputs. Thus, ML concerns itself with how to

program machines to learn a mapping, as opposed to explicitly defining the

mapping function.

Generalization is a secondary, albeit no less important, objective in ML.

The trained model should be general enough to transform unseen inputs to

their corresponding outputs. These held-out data-points should be separated

and delineated prior to training. They are referred to as the validation data

(used for development and tuning) and test data (used for final evaluation).

An objective performance mismatch between training, validation, and test

data can indicate a variety of issues in the training process.

All ML is interactive. Thus, IML systems should be designed using frame-

works for interaction with humans [284]. IML is a term coined by Fails and

Olsen (2003) to describe their novel system where a human and an ML al-

gorithm shared control to perform image segmentation [79]. Conventionally,

IML is defined as a subfield of ML which explores the addition of a human,

or multiple humans, in the learning loop. IML is sometimes referred to as

human-in-the-loop learning. The human(s) may observe the learning and pro-

vide input to improve training toward the performance objective.

In many ML systems a human spends time preparing data, designing objec-

tives, and tuning hyperparameters. These systems could rightly be considered

IML. Most ML methods, while agnostic to the fact that the task is defined

by a human, are ultimately optimizing toward an objective function which is

defined by the subjective opinion of goodness of that human. If the human is

only defining the objective and preparing the data, the interaction is loosely

coupled. In many IML examples, the interaction can be more tightly cou-

pled. For instance, in prosthetic robotics where human nerves are connected

to machine wires [113].

The learning problem underlying IML is: how can machines and people

interact to solve tasks more efficiently and effectively than either could on its

own? [6]. It is helpful to consider several task examples. For instance, if a
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Algorithm 1 Simplified interactive machine learning algorithm.

Given a model M which maps to input It to output Ot ⇐M(It)
Given a time horizon T , and a test of goodness {good, bad} ⇐ G(Ot|It)
while t ≤ T do

obtain It ∼ I
Ot ⇐M(It)
if G(Ot|It) == good then

modulate M to increase probability of Ot ⇐M(It′) ∀t′ > t
else {G(Ot|It) == bad}

modulate M to decrease probability of Ot ⇐M(It′) ∀t′ > t

human provides a line of dialogue, the machine might discriminate between

a set of underlying topics, predict a sentiment score value, or generate an

intelligible response. Often tasks require adaptable collaboration over the

course of incremental, continuous, and sequential decision making.

While there are many implementation details, teaching ML systems to

perform these tasks is straightforward. A high-level algorithm is shown in

Algorithm 1.

Algorithm 1 helps us to frame most ML. It also connects to the motivating

question. To address this question, IML designers and teachers must define

the goodness function, G(·), and use a method to modify the outputs of the

model, M(·), toward maximizing accumulated goodness. M(·) maps from the

space of inputs, It ∈ I, to a space of outputs, Ot ∈ O. It attempts to map

from from all of the things an interacting human can input to all of the things

the ML system can output. This interaction between human inputs and model

outputs constrains IML systems [259].

While we have explored the basis of IML thus far, it is important to

rephrase an expanded motivating question: “given human inputs, what are

desirable model outputs?” IML systems should use information available by

leveraging both the human- and the machine-in-the-loop. The machine should

work on what it is best at, and so should the human, and interaction bandwidth

capacity should used for sharing knowledge. Collaboration between multiple

humans has historically been easier than with machines due, in large part, to

shared communication.
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2.1.1 Shared Communication

For effective human-machine collaboration, both intelligent systems—human

and machine—should have a means by which to communicate their intentions,

actions, goals, and understanding of the others. Human teaching allows agents

to achieve arbitrary user-centric goals, improve an agent learning speed, and

beneficially direct agent exploration [159].

There exists a continuum of IML systems, from loosely coupled to tightly

coupled. This continuum is defined by the explicitness of interaction and the

bandwidth of shared communication [261]. Tightly coupled humans might pro-

vide input at each step of model prediction. Loosely coupled humans might

only provide input prior to model learning prediction as in supervised learn-

ing. Optimal learning machines might have a adaptive levels of autonomy.

This sliding autonomy is deployed in Autopilot on new Tesla vehicles.2 In

rural highway driving the model could act more independently. In busy urban

driving, the model requires more input from a human.

There are a number of explicit communication channels the human may

use for teaching a learning machine. Direct teaching signals take the form of

scalar inputs like buttons, switches and/or dials [261], verbal and auditory sig-

nals [323], tactile inputs, gestures [264], visual inputs for facial emotions [337],

natural language [90], [165] and extend to neural interfaces capturing intention

and signal directly from the human brain [143]. A 2015 review article discusses

additional interactions [214].

Through direct ML-human interaction, the human often adapts their input

to be more appropriate. This co-adaptation is echoed in the Joseph paradigm:

“to teach is to learn twice over”.3 In teaching a machine, the human is learning

both how to teach the machine and how the machine learns. Extending this

idea, we can imagine an ML system that can teach a human how effective

they are at teaching. This transparency of learning can allow humans to

better understand how to teach agents [325].

As two learning systems interact and communicate, they build a shared

2https://www.tesla.com/en_CA/autopilot
3https://www.bartleby.com/354/18.html

9

https://www.tesla.com/en_CA/autopilot
https://www.bartleby.com/354/18.html


language and a model of the understanding of the other. This communicative

capital is built up over many back and forth interactions [259]. Reducing the

number of interaction is a common goal of IML. Like capital investment, in the

economic sense, communicative capital can require significant upfront cost in

terms of time and effort to establish and maintain a communication channel.

These costs may be incurred during the normal interactions of a partnership,

or through preliminary effort external to the task-specific goals.

Through all of this communication, the human is attempting to share with

the learning machine a sense of “when I do this, I want this to happen”. The

human is attempting to define a mapping from inputs to outputs and com-

municate this mapping with the machine. The human co-adapts by refining

which inputs they are providing to the machine, based what they have learned

about how the machine learns from different inputs.

This co-adaptation may be tightly coupled (e.g. the human pushes buttons

to program a thermostat to turn on every morning), or loosely coupled (e.g.

the thermostat builds a model of human interaction by finding patterns in an

abstract data stream). While these two methods of co-adaptation are similar,

they differ on the perception stream of the learning machine.

2.1.2 Shared Perception

Perception is the process of an intelligent system becoming aware of some-

thing through its senses. The perception stream is the flow of continuous data

input to the sensors and processed by the computational machinery. Clas-

sic, non-learning, machines perceive inputs from humans through specially

programmed sets of instructions represented in an abbreviated format (e.g.

buttons on a remote control). Learning machines have expanded perception

and capacity to process abstract data.

Perception data streams are quantized into single binary digits (i.e. bit)

streams of ones and zeros. Data can stream into learning machines from a

wide variety of communication channels or perception sensors. Ongoing sensor

innovation allows for arrays of sensors to be embedded in IML systems. These

sensor arrays form perceptual streams for learning machines. When adding
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sensors, there is a balance to be struck. With no perception it is impossible to

communicate teaching and task signals. With too many sensors it is difficult

to find meaningful correlations in inputs to help predict outputs. That is, it is

hard to model patterns in data across all the sensor dimensions. The reduced

predictive power due to a high dimensional space is sometimes referred to as

the curse of dimensionality [19]. A narrow stream of data can only contain

a limited amount of information [304], and in a stream too vast meaningful

information is difficult to find.

From the human perspective, we imagine interacting with learning ma-

chines in a variety of ways. We can imagine that machines can learn from

us through indirect sensors (passively observing parts of what we do), and/or

through direct sensors. Humans are quick to build a mental model of teaching

and learning through both their direct and indirect actions.

We can perceive these learning machines through our five main senses (e.g.

taste, sight, touch, smell, and hearing), through our additional sensor streams

(e.g. balance, temperature, and proprioception), and critically through our

sensing of time-passing, familiarity, recollection, and agency. We desire IML

systems which respond immediately, in a familiar fashion, remembering our

specific preferences, and allow us to take actions in the interaction.

It is with this background on communication and perception we are able

to discuss evaluation in IML. Several exciting current research directions in

IML and additional considerations can be found in Appendix A.

2.1.3 Evaluation

Evaluation of any ML system is the very essence of optimization toward an

evaluation metric (i.e. measure of goodness), that drove the simple learning

algorithm previously presented (Algorithm 1). Evaluation is based on an ob-

jective function, this function is most often defined by a human. To properly

evaluate an IML system, care should be given to define this objective.

There is a distinction to be made between evaluating the performance of the

ML system on a task and evaluating the amount of physical effort, cognitive

effort, and input is required from the human. Whereas task performance can be
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measured and compared to optimal task performance, human factors will often

be user-specific and may not correspond to the learning systems performance

on a given task. This could be due to a misunderstanding of the communication

channel by the human, by differing uses of the communication channel, and

even by the human shifting how they communicate over the course of the

task [120]. Boukhelifa et al. (2018) provide a comprehensive overview of

quantitative and qualitative evaluations of IML systems [31]. Brief details

are included below, as they deserve consideration when reading the following

chapters.

Human-Centric Evaluation

Measuring the quality of the interaction between humans and ML systems

often requires a human-centric design approach and solid user experience test-

ing. Human-centred evaluations should explore the mental models of the IML

system that the human develops.

Questions focused on engagement, such as “how well could you concentrate

on the task rather than on the mechanisms used to perform those tasks?”, and

on perceived ability, such as “how much were you able to control events in the

task performance?” can be asked to explore these important human-centric

opinions. These questions are explored in an IML context in Chapter 4.

The amount of training, and interaction, the training strategies, should be

assessed. These assessments may reveal interesting patterns in the strategies of

different groups of human users. Share-ability of a users trained model should

be measurable (additional discussion in Appendix A). Can they effectively

train a system and then share that training with someone else to catch that

user’s system up with their own. Finally, privacy of the user’s data should be

quantifiable and clearly communicated. Both, what is being captured in the

perceptual stream and how that data is transformed, stored, transmitted, and

shared need to be explicitly stated on any deployed IML system, similar to a

websites privacy policy [7].
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Machine-Centric Evaluation

Evaluating from the machine side is more straightforward, but there are several

important features measurable which are specific to IML. The balance between

the number of actions taken by the machine for each action by the human, for

instance, correlates with the amount of agency each has in task performance.

The machine must learn to find an objective balance between appeasing the

goal of the human and maximizing task performance. Classic ML evaluations

should be designed, executed, and reported for IML experimentation. Mea-

sures of algorithm robustness, convergence, and diversity analysis, and task

performance (e.g. number of training steps to asymptotic performance) are as

vital in IML as they are in classic ML problems.

Finally, one interesting evaluation metric is the correlation between user

evaluation metrics and predictions of those values. Given that the IML system

should be modelling the human user, and have some features of the human user

in the perception stream, systems should make predictions about how a user

would evaluate a system. Learned models of human evaluation are presented

in Section 2.2 as they related to automated dialogue systems evaluation.

2.1.4 IML in Summary

Learning machines are gaining popularity with advances in communication

and machine perception. These machines use IML which combines the skills

and abilities of humans and machines to produce new capabilities. Interactive

learning algorithms should be applied with an understanding that different

humans interact with these systems differently; individual-specific dynamics

should be explicitly modelled. Through open-source code and open data, sci-

entists, creative technologists, and industry developers can quickly iterate by

sharing their ideas and developments around the globe. We will soon develop,

deploy, and disseminate IML systems with similar ease.

This section has provides background on the field of IML. Collaboration

toward optimal task performance can tightly coupled interaction. Insufficient

communication between systems can be due to limits in information capacity
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or transmission rate and/or misaligned models of perception. The next section

concerns itself with one of the most information dense and rapid transmission

modes of interaction which humans employ: communication through conver-

sational dialogue.

2.2 Conversational Dialogue Systems

The ability of a machine to generate meaningful open conversational dialogue,

which can not be distinguished from a human participant has been one pro-

posed test of a successful AI [330]. The imitation game, was proposed by Alan

Turing (1950) and is thus often referred to as the Turing test [330]. Passing

the Turing test refers to the ability of a computer program to impersonate a

human in a real-time conversational dialogue, using written communication.

Impersonation is sufficient when a human judge is unable to distinguish, on

the basis of the conversation alone, between the program and a human.

The term dialogue comes from the Greek word dialogos, its roots are dia:

through and logos: speech or reason [141]. In relation to the work of this thesis,

we define dialogue as text-based, English language conversation between two

participants as a means to share information. This conversation need not occur

via speaking and listening, nor need it be grounded in an English language-

based textual representation [42], [43]. The simplified and constrained domain

permits focus on improvements to specific sub-components of conversation.

Conversations can be categorized, based on participant goals, into one of four

types: debate, dialogue, discourse, and diatribe.4 Dialogue is separated from

the other three as it is a co-operative, two-way conversation where the goal

is to exchange information and build relationships with one another. Open

dialogue is the sharing of opinions on subjects and topics that are brought up

and/or thought of during conversation.

Early work on text-based dialogue has expanded to include spoken dia-

logue on personal mobile devices due, in large part, to advances in automated

speech recognition and automatic speech generation. These advances include

4https://goo.gl/2G4nbh
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Figure 2.1: A general dialogue system diagram. The entire dialogue loop con-
tains (from top-left, counter-clockwise) a human interacting with the system, a
microphone voice interface and speech recognition to convert audio waveforms
to digital signals, natural language understanding to parse the recognized in-
put, a dialogue manager optionally connected to external knowledge bases,
natural language generation and speech synthesis to generate appropriate out-
put audio from the generated response. The audio is output using speakers and
the robot embodies response dialogue through emotive actions and movement.

increases in speed and reductions in error rates [332]. These improvements are

due in large part to replacing the conventional acoustic-feature modelling with

supervised deep learning models [116]. These deep learning models are large

networks of many parameters which define the mapping function from input

to output. With enough data, these models can learn underlying patterns and

correlations in high-dimensional data and generalize well to unseen input data.

A dialogue system is comprised of three major components (as illustrated

in Figure 2.1: 1) an input interface, 2) an output interface, and 3) a process-

ing module. The processing module in a dialogue system is often called the

dialogue manager, and it processes the input text, models the conversation as

a whole, and generates a text response based on the input.

Machines capable of conversation, sometimes referred to as conversational

agents, are of growing importance in IML systems. These agents enable hu-

mans to use natural, smooth, efficient communication to interact with their

devices [233], [242]. These systems allow ML systems to collaborate and in-
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teract with humans to perform simple tasks (e.g. booking flights or playing

music), enable adaptive user-directed tutoring systems [187], provide social

assistance through machine assisted therapy–including supporting cognitive-

behavioural therapy for treating depression [85], helping patients with chronic

pain [230], and supporting reminiscence [245].

Several advances in computational linguistics (i.e. natural language pro-

cessing) have led to the growth in popularity of these systems. These ad-

vances include: an increase in computing power5, increased availability of

large amounts of clean training data [298], development of successful ML al-

gorithms [30], [297], and a richer understanding of the structure of human

language [117]. There are major challenges in designing, building, and de-

ploying conversational agents [233]. Problems of robustness, scalability, data

biases, domain adaptation, engineering infrastructure, privacy, and stability

continue to limit the wide spread adoption of these systems.

The focus of this thesis is on improvised theatre, thus the focus of this

background material is on conversational modelling for generating interesting

and engaging responses to inputs over the course of a conversational dialogue.

2.2.1 Conversational Modelling

The basic problem of conversational modelling involves taking a natural lan-

guage input from a human and outputting an appropriate natural language

response. As the system is engaged in an conversation, the system takes in

human inputs, and outputs responses, in alternating sequence. This assump-

tion imposes a turn-taking model of conversation on the system, a common

feature in open conversational dialogue.

A chatbot (also known as a chatterbot, bot, messenger bot, interactive

agent, conversational dialogue agent, or artificial conversation entity) is a com-

puter program which engages in turn-taking conversational dialogue. Chatbots

can be differentiated based on their capabilities and/or method for conversa-

tional modelling. For instance, taxonomies include open- vs. closed-domain

dialogue systems (i.e. differentiating the space of knowledge of the system) and

5https://cloud.google.com/tpu/
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rule-based vs. corpus-based dialogue systems (i.e. differentiating based on the

underlying model for conversational modelling). Inputs are often text or audi-

tory signals, but, may also include visual information and/or side-context rel-

evant to the current conversation. Outputs are often text or auditory signals,

but, may also include multi-modal generation and embodiment actuation. For

instance, a dialogue system could actuate a physical embodiments or modify

the state of the environment alongside the generated dialogue.

Appendix B contains a brief history of chatbots by detailing the evolution

from rule-based, to corpus-based, to unified conversational models. It also

covers dialogue system competitions which have driven innovation and the

rise of social and corporate bots.

Rule-based chatbots, have a conversational model based on hard-coded

rules. These hand-crafted systems are often heavily engineered to match a

set of pre-defined inputs to pre-defined outputs. Corpus-based chatbots use a

large corpus of data to generate outputs in response to inputs. These corpora

are often too large to fit in the memory of a computer. Corpus-based bots

are further subdivided into two categories: information retrieval (IR) meth-

ods and generative language modelling (LM) methods. IR methods take as

input a query sentence and then look for the best responses in a corpus of

possible dialogue outputs. LM methods, sometimes referred to as statistical

LMs or generative LMs, aim to model the statistics of the language used in a

corpus and then generate responses to a given input based on the underlying

probabilities.

2.2.2 Information Retrieval for Chatbots

Given a large set of possible responses (i.e. textual sequences of words), a

conversation model could select a likely response from the set. The appropri-

ateness of the selected response given an input is based on a human-defined

objective function. This function is often based on a distance metric, mea-

sured by modelling input-response pairs of the corpus. A variety of metrics

have been used including linguistic similarity based on overlap of words, char-

acters, and parts of speech [339]. Another metric used is distance of nearest
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neighbours in a distributed semantic vector space [16].

As a representative example, Banchs et al. (2012) suggested the use of

movie scripts to build chat oriented dialogue systems [16], [297]. By condi-

tioning on one or more utterances, their model searched a database of movie

scripts and retrieved an appropriate response. Ameixa et al. (2014) showed

that move subtitles could be used to provide appropriate responses to out-of-

domain questions using IR [5]. Another approach, using unstructured docu-

ments for chatbot engines, is presented in Yan et al. (2016) [357].

2.2.3 Language Modelling

Information retrieval methods are limited to a predefined corpus of responses.

We may desire to generate new responses. This can be done using a statistical

language model (LM) which is a probability distribution over a sequence of

words. Using this LM, generating new responses corresponds to sampling from

a probability distribution. The LM can also be used to compare the relative

likelihoods of different sentences.

To understand much of the following material on LMs, several definitions

and a brief introduction to probability theory are required. Language mod-

elling is best communicated with a working example sentence. Consider the

following sequence of words:

‘now i live in cortona italy’

Note that capitalization and punctuation are excluded from this example for

clarity.6 This sentence is composed of six unique sub-elements or words. There

is an order to the words, and the words in another different order may, or may

not, convey the same meaning (e.g. consider the order “in cortona italy i now

live” and the ambiguous mis-ordering “i cortona live now in italy”).

If each of the words, has an associated probability of occurring, p(wm), then

the probability of the sentence, p(sentence), can be expressed as a ‘chain’ of

probabilities, p(w1, . . . , wm), given a sequence of length m. For our example

6Capitalization and punctuation can be added and removed with invertible rule-based
functions or learned with predictive models.
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sentence, this corresponds to calculating the probability of the sequence of 6

words, p(sentence) = p(w1, w2, w3, w4, w5, w6). An LM can tell us the prob-

ability of this sentence occurring and how it compares to the probability of

other sentences occurring. For generation, each next word is sampled from the

LM based on probabilities of words which tend to follow the current word and

context in a given structured collection of sentences (i.e. corpus).

We will start with a näıve LM similar to rolling a fair die. Imagine on

each face of a fair six-sided die is written one of the words from our work-

ing example sentence. Each of the words has an equal chance of occurring

(i.e. independent, uniform probability). The likelihood of generating our ex-

ample would be calculated as the product of the independent probabilities:

p(sentence) =
∏m

i=0 p(wi) = (1/6)6 = 1/46656 ≈ 0.000021.

There are 46, 656 possible permutations7 of the 6 words in our vocabulary.

Generating the example sentence we desire is quite unlikely. Also, it is equally

as unlikely as generating our mis-ordered sentences.

From this näıve model, one improvement might be to note that the words

‘now, i, in’ might occur more often in a subset of English text than the words

‘live, italy, cortona’. So, we might weigh the probabilities of each word based

on the relative likelihoods of each word occurring in a corpus. That is, we

can calculate the ratio between how often a given word occurs and the total

number of words in the corpus. Consider a hand-crafted, 3 sentence corpus:

‘now i live in italy’

‘specifically in italy now i live in cortona’

‘cortona italy’

It is now clear that the relative likelihood of each word occuring in the corpus

is not uniform, as in the first example. In this corpus, these are 15 words, 7

of which are unique. Table 2.1 tracks the number of occurrences and relative

likelihood of each unique word in the corpus.

The data in Table 2.1 defines our unigram model. This model can be used

to compute our desired probability p(sentence) by considering the probability

7Recall that order matters.
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Word Occurrences Relative Likelihood

now 2 2/15
i 2 2/15

live 2 2/15
in 3 3/15

italy 3 3/15
specifically 1 1/15

cortona 2 2/15

Table 2.1: Unigram language modelling table of occurrences and relative like-
lihoods in the 3 sentence corpus.

of a term occurring given a context. Before continuing, it is helpful to reiterate

Bayes’ theorem and the chain rule of conditional probabilities.

Consider random words sampled from a vocabulary w ∼ V. Then, the

probabilities of observing w1 and w2 are p(w1) and p(w2), respectively. But,

the likelihood of observing w2 might be different if we have observed w1; the

probability might be conditional on earlier observations.

Bayes’ theorem states that the posterior probability is equal to the prior

probability multiplied by the likelihood dividend by the evidence. The poste-

rior probability is the conditional probability of w2 occurring given w1. Often

times the evidence (i.e. the marginal probability of the w1) must be collected

over all possible w2 ∈ V. Formally, Bayes’ theorem states:

p(w2 | w1) =
p(w2) · p(w1 | w2)

p(w1)
(2.1)

=
p(w2) · p(w1 | w2)∑
w2∈V p(w1|w2) · p(w2)

(2.2)

The chain rule of conditional probabilities states that any joint probability

over many random variables may be decomposed into conditional distributions

over only one variable:

p(wi, wj) = p(wi | wj) · p(wj) = p(wj | wi) · p(wi) (2.3)

and, over multiple variables as:
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(
n⋂
k=1

wk

)
=

n∏
k=1

p

(
wk

∣∣∣∣∣
k−1⋂
j=1

wj

)
(2.4)

Thus, decomposition over three random words w1, w2, w3 can be performed

as follows:

p(w1, w2, w3) = p(w3 | w2, w1) · p(w2, w1) (2.5)

= p(w3 | w2, w1) · p(w2 | w1) · p(w1) (2.6)

We might assume a “näıve”conditional independence for the current uni-

gram model. That is, we assume that each word wi is conditionally indepen-

dent of each other word wj for j 6= i. Conditional independence implies that

knowledge of one word occurring provides no information about the likelihood

of another word occurring. We can thus calculate our desired probability as:

p(sentence) = p(w1, w2, w3, w4, w5, w6) (2.7)

= p(w1) · p(w2|w1) · p(w3|w2, w1) · p(w4|w3, w2, w1)... (2.8)

= p(w1) · p(w2) · p(w3) · p(w4) · p(w5) · p(w6) (2.9)

The model has a probability distribution over the vocabulary V. The sum

of the probabilities in Table 2.1 sum to 1. We indicate the unigram model in

the subscript of the probability notation. Then, the probability of a target

sentence under the unigram LM is calculated as:

punigram(sentence) =
∏

w ∈ sentence

punigram(w) (2.10)

The likelihood of our example sentence ‘now i live in cortona italy’, given

our source corpus, can be calculated using likelihoods from Table 2.1 as

punigram = (2/15) ∗ (2/15) ∗ (2/15) ∗ (3/15) ∗ (2/15) ∗ (3/15) ≈ 0.000012. We

can compare this to the näıve uniform distribution model using the expanded

7-word vocabulary of the 3 sentence corpus, puniform = (1/7)6 ≈ 0.0000085.
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This difference, punigram > puniform, represents a higher likelihood of this new

LM generating sentences with a similar distribution to the corpus. The un-

igram model is a relatively minor and rather obvious improvement from the

uniform LM.

In the unigram model, the probability of each word only depends on that

word’s probability of occurring in the corpus, as opposed to a uniform prob-

ability. Given Equation 2.10, an LM with a large vocabulary size, |V|, will

assign a low probability to most sentences. Minor probability , due to relative

frequency, can make significant differences in language modelling.

How might our unigram LM assign a probability to the sentence ‘i live in

edmonton’? As the word ‘edmonton’ was never seen in the input corpus, what

probability should the model assign? Just because the input never occurred in

the training data, that does not mean it will not occur in the testing data. Sev-

eral solutions have been proposed to handle words that are out-of-vocabulary.

One common solution is to use smoothing by assigning a low probability to

every out-of-vocabulary word [51], [198]. Another solution is to limit the vo-

cabulary of the model by replacing each out-of-vocabulary word with a special

token ‘OOV’ [354]. Then, as the model may see multiple ‘OOV’ tokens, it is

possible to estimate the probability of sentences involving out-of-vocabulary

words. Alternative methods include using characters, sub-word units, or byte-

pair encoding methods to improve coverage by modelling the corpus at a more

granular level [296].

We can extend the unigram model to an n-gram model by considering the

preceding n words of context in our probability calculation. The concept is to

model the structure of a corpus as the probability of words occurring alone and

with context. The simplest of the n-gram models, unigram or n = 1, considers

words in isolation (i.e. with no consideration of word order). Bigrams (n = 2),

and higher order n-gram models (n = 3, ...), consider the probability of a word

occurring in the context of the preceding n− 1 words.

N-gram models require 2 additional important tokens, ‘START’ and ‘END’,

at the start and end of the corpus sentences, respectively. These tokens help

to model the fact that some words are more likely to occur at the start or end
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of sentences. We modify the corpus by appending these tokens:

‘START now i live in italy END’

‘START specifically in italy now i live in cortona END’

‘START cortona italy END’

We also append these tokens to the working example target sentence which

becomes: ‘START now i live in cortona italy END’. The joint probability of

the set of words can be expressed using conditional probability:

p(‘START now i live in cortona italy END’) (2.11)

= p(‘now’|‘START’) ∗ p(‘i’|‘now’) ∗ · · · ∗ p(‘END’|‘italy’) (2.12)

(2.13)

The conditional probability is calculated by dividing the number of occur-

rences of the sequence(|wi−1 wi| by the total number of occurrences of the

context word |wi−1|. Absolute value notation is used to denote the number of

occurrences of a word in the source corpus:

p(wi|wi−1) = |wi−1 wi|/|wi−1| (2.14)

This calculates the relative likelihood of a pair of words, and maintains a

measure of likelihood of two words occurring in a specific order. The model

addresses two important issues. First, the unigram model contained no knowl-

edge of ordering, with our new model the probability of the word pair ‘now

i’ is higher than the probability of the word pair ‘i now’. This appropriately

reflects the corpus statistics. Also, the unigram model may generate repeti-

tions of high-probability words (e.g. ‘now now now ...’), our improved model

accounts for this by assigning these repetitions a low probability.

The probability of the first word is conditional on being preceded by the

‘START’ token, p(w1|‘START’), and similarly for the last word, p(‘END’|wm)

for a sentence with m words. Table 2.2 presents word pair occurrence counts,

note that only bigrams from the corpus are included. All others bigrams are of

frequency 0, thus a smoothed relative likelihood near 0 might be assigned. Note

that given a 3 sentence corpus, there are 3 occurrences of both the ‘START’ and
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Bigram Occurrences

START now 1
now i 2
i live 2

live in 2
in italy 2

italy END 2
START specifically 1

specifically in 1
italy now 1
in cortona 1

cortona END 1
START cortona 1

cortona italy 1

Table 2.2: Bigram language modelling table of occurrences and relative likeli-
hoods of the modified 3 sentence corpus.

‘END’ tokens. The rest of the necessary occurrences for probability calculation

are in Table 2.1. It is now straightforward to calculate the probability of the

example sentence under the bigram model:

p(‘START now i live in cortona italy END’)

= p(‘now’|‘START’) · p(‘i’|‘now’) · p(‘live’|‘i’) · p(‘in’|‘live’)

· p(‘cortona’|‘in’) · p(‘italy’|‘cortona’) · p(‘END’|‘italy’)

= (
|‘START now’|
|‘START’|

)(
|‘now i’|
|‘now’|

) . . . (
|‘italy END’|
|‘italy’|

) (Eq. 2.14)

= (1/3) · (2/2) · (2/2) · (2/2) · (1/3) · (1/2) · (2/3)

= 1/27 ≈ 0.037...

There are still limitations to the bigram model. Depending on smoothing val-

ues, simple and correct sentences may have very low probability (e.g. ‘cortona

in italy’). Also, there is a non-zero probability that, when sampling from the

model for sentence generation, the sentence never reaches the ‘END’ token (e.g.

‘now i live in italy now i live in italy now . . . ’). Truncation at a certain length

can help address the second problem, and comparisons between smoothing

techniques are discussed in past research [51]. With these examples we have
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covered the core mathematical concepts for n-gram LMs. The probability of

observing wi in context can be approximated by the probability of observing it

in the shortened context history of the preceding n−1 words. The probability

p(sentence) of observing the sentence ‘w1w2 . . . wm’ is approximated as:

p(sentence) = p(w1, . . . , wm)

=
m∏
i=1

p(wi | w1, . . . , wi−1)

≈
m∏
i=1

p(wi | wi−(n−1), . . . , wi−1)

The conditional probability of a sentence is then calculated using n-gram oc-

currences and frequency counts:

p(wi | wi−(n−1), . . . , wi−1) =
|wi−(n−1) . . . wi−1 wi|
|wi−(n−1) . . . wi−1|

It may be helpful to contextualize this model by comparison with other se-

quence memory techniques in ML. Specifically, what is the relationship be-

tween Hidden Markov Models (HMMs) and n-gram models? The n-gram

model is a probabilistic LM for predicting the next item in a sequence in

the form of a (n − 1)-order Markov model [268]. That is, independence as-

sumptions are made so that each word depends on only the last (n−1) words.

This is a Markov model approximation of the true underlying language. Thus,

an n-gram calculates p(wi|wi−(n−1), . . . , wi). In an HMM model, the states of

the Markov chain are words and transition probabilities govern the transitions

from word to word. These probabilities are derived based on relative frequen-

cies of n-grams in the corpus. Only the outcome of the transition is output,

and thus the state is said to be hidden from the observer.

Given a suitable source corpus, these models can perform well for some ap-

plications. HMM models are used in performance8 and narrative script mod-

elling, due to their speed of training and consistent, appreciable results [247].

This section covered how to build a conditional probabilistic LM given a

source corpus. This LM can be used to generate sentences and calculate the

8http://botnik.org
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probability of a given test sentence under the LM. As n-grams and HMMs

have limited contextual history with which to generate responses, researchers

have turned to conversational modelling techniques with increased capacity.

2.2.4 Sequence-to-Sequence Modelling

Rule-based methods can provide adequate responses to a constrained set of

inputs, but the output space is limited. Neural models can generate new

and interesting responses, which a controllable amount of randomness, by

modelling sequences of words in a large input corpus.

Text-based conversational response generation and translation both involve

the transduction of information in sequences of sentences. They both involve

understanding the meaning and context of a sequence of words and the gen-

eration of a meaningful response. In dialogue, the response forwards the con-

versation, in translation the response contains the same information in a new

language. Previous work has drawn this analogy in greater detail and used

machine translation techniques for dialogue response generation [172], [280].

Ritter et al. (2011) defined the problem of generating locally coherent, pur-

poseful dialogue as generating an appropriate response for any conversational

input [280]. The authors describe how generating appropriate conversational

responses is more difficult than translation between languages due to two main

factors: 1) the large range of plausible responses, and 2) the potential lack of

semantic alignment between input and output pairs [188]. Given that trans-

lation models attempt to capture input sequence information in the output,

it can lead to the echoing problem [82]. The authors took two measures to

avoid the system from paraphrasing the input sequence in the output sequence.

They discourage lexical similarity by removing substring phrase-pairs from the

training data, and penalize their model by Jaccard similarity of the input and

output strings. Jaccard similarity is a rapidly calculable measure of similarity

defined as the size of the intersection divided by the size of the union of two

sample sets [136].
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Backpropagation in Feed-forward and Recurrent Neural Networks

A feed-forward neural network is a function mapping from inputs to outputs.

It is composed of computational units called artificial neurons (or nodes). It

may be single layered to multi-layered, depending on the composition of the

computational units. Each node a network has an associated weight and non-

linear activation function. This nonlinearity allows these networks to distin-

guish data that is not linearly separable. A perceptron is an artificial neuron

which uses the Heaviside step function as the nonlinear activation function.

Multi-layered perceptrons (MLPs) consist of at least three layers of nodes:

input, hidden, and output. MLPs use a supervised learning technique called

backpropagation for training [282].

Backpropagation is used by the gradient descent optimization algorithm

to adjust the weight of neurons by calculating the gradient of the loss func-

tion. Gradient descent is a first-order optimization algorithm for finding the

minimum of a function. Backpropagation, or the backwards propagation of

errors, is a method to calculate the gradient needed to update the weights (or

parameters) associated to the nodes in a neural network.

Feed-forward networks have connections between the nodes which do not

form cycles, or loops in the network [292]. Information flows in one direction:

from input nodes, through the hidden layer nodes, to the output nodes. This

property differentiates it from a recurrent neural networks (RNN) which is a

sequence compatible generalization of a feed-forward network where connec-

tions between nodes form a directed graph along a sequence. At high level,

RNNs have an internal state, or memory, which allows for information to per-

sist. An RNN can be thought of as multiple copies of the same network, each

passing a message to a successor network. It may help to imagine unrolling

an RNN to reveal a chain-like sequence for feed-forward networks.

With this background, a mathematical description of an RNN is now pro-

vided. An RNN computes the conditional probability of a output sequence

of length n given an input sequence of length m, or p(y1, . . . , yn|x1, . . . , xm).

The affine transformation is defined by the multiplication of a linear trans-

formation, weight matrix W , in the input space and subsequent addition of a
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bias vector, b, in the output space, (W · x + b), in the equations below bias

vectors for the hidden and output layers, bh and by respectively, are excluded

for simplicity.

Let subscripts denote the time step (or sequence index) and superscripts

denote the layer in the network. Assume states are n-dimensional, thus hlt ∈ Rn

is the hidden state in layer l at step t. Then, given a source sentence S of length

m, represented by the sequence of input vectors S = (x1, . . . , xm), a single

hidden layer RNN computes a sequence of hidden states (hl1, . . . , h
l
m) and a

target sequence of output vectors T = (y1, . . . , yn) of length n by iterating over

the following equations for t = 1 . . . n:

h1t = σ(W hx xt +W hh h1t−1) (2.15)

yt = W yh h1t (2.16)

In these equations, h1t is the hidden state vector at time step t, and the

activations h1t predict yt. W hx is the input-to-hidden weight matrix, W hh is

the hidden-to-hidden weight matrix, and W yh is the hidden-to-output weight

matrix. h1t−1 is initialized at time t = 1 with an initialization vector [317].

Note the use of the sigmoid activation function, σ(·). This non-linear activa-

tion function is bounded, differentiable, real function defined for all real input

values and has a non-negative derivative at every point. Other, activation

functions may be used—the hyperbolic tangent, tanh, or the rectified linear

unit (or ReLU), for instance—and may provide training speed and performance

improvements [240].

An RNN model such as this was used by Cho et al. (2014) with a fixed-

sized vector, and Karpathy (2015) has illustrated the capacity of these models

to generate compelling outputs.9 One of the limitations of RNNs is capturing

long term dependencies. This limitation was directly addressed when Hochre-

iter and Schmidhuber (1997) introduced the Long Short Term Memory cell,

or LSTM [123]. The LSTM was designed to avoid the long-term dependency

9http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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problem by using a more powerful update equation and improved backprop-

agation dynamics. The cells were designed to ‘remember’ information over

many steps.

The key idea behind LSTMs is that each individual LSTM cell has a notion

of state. The state allows for information to flow through the cell unchanged,

it also has capacity to remove or add information to the cell state by using

information gates. An LSTM can be compared to the basic RNN cell by

comparing the mathematical equations underlying the information flow of the

input-output mapping functions. Breaking the LSTM down into three compo-

nents (or gates) clarifies cell dynamics; we have the 1) forget gate, f , 2) input

gate, i, and 3) output gate, o. c represents the memory cell state. Below, ma-

trix W q represents input weights and U q represents recurrent weights where

q ∈ (f, i, o, c). Bias vectors, bq ∈ Rh, are excluded for clarity.

ft = σ(W fxt + U fht−1) (2.17)

it = σ(W ixt + U iht−1) (2.18)

ot = σ(W oxt + U oht−1) (2.19)

ct = ft � ct−1 + it � tanh(W cxt + U cht−1) (2.20)

ht = ot � tanh(ct) (2.21)

Initial values are defined as c0 = 0 and h0 = 0 and the operator � denotes

the Hadamard or element-wise product. Also, xt ∈ Rd, ft, it, ot, ht, ct ∈ Rh,

W ∈ Rh×d, and U ∈ Rh×h. Weights matrices W q and U q, and bias vectors bq

are the parameters learned during training.

The parameters of an RNN with LSTM units can be trained, on a set

of training data, using gradient descent with backpropagation. This update

iteratively modifies the weights of the network in proportion to the derivative

of the error with respect to the weight. Using gradient descent for standard

RNNs can result in vanishing or exploding gradients [122]. With LSTM units,

as errors propagate backwards from the output layer, the error remains in the

LSTM unit’s cell. This maintains the propagation of error back to each of the
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LSTM gates [123].

RNNs with LSTM cells, often called LSTMs for short, can be used for

both the encoder and decoder (Figure 2.2). They may be unidirectional or

bidirectional (scanning over input in one or both directions) [294], single or

multi-layered (network depth). We now provide details on designing, training,

and using sequence-to-sequence neural network models.

Sequence-to-Sequence Models Neural response generation models use

a neural network to map input (or source) sequences of words, S =

x1, x2, . . . , xm, to output (or target) sequences of words, T = y1, y2, . . . , yn.

We will refer to these models handling sequences of words, but these models

can work on other text units (e.g. subwords, characters, word pairs). Also,

length of these sequences (n and m) need not be equal. Sequence-to-sequence

models (SEQ2SEQ) are one form of neural response model which have found

success in machine translation, speech recognition, text summarization, and

dialogue generation [15], [52], [302], [313], [318]. SEQ2SEQ models maximize

the probability of generating a sequence of target words given a sequence of

source words. SEQ2SEQ models make it possible to condition the response

on a longer historical context than previous models [280].

These models learn conversational dialogue response generation by predict-

ing responses and using a maximum-likelihood estimation (MLE) objective

function [257], [318]. The model is trained to maximize the probability of the

target sentence given the source. As these probabilities can be small in prac-

tice, it is more numerically stable to work with the logarithm of the likelihood

(log-likelihood).

A SEQ2SEQ model learns parameters, θ∗, which maximize the conditional

log-likelihood of producing the correct output T given input S for all pairs in

a set of training data D:

θ∗ = arg max
θ

1

|D|
∑

(S,T )∈D

log pθ(T | S) (2.22)
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As the model is often differentiable, gradient-based training such as mini-

batch stochastic gradient descent can be used to estimate model parame-

ters [52]. A modified version of backpropagation, Backpropagation through

time (BPTT), is used for RNNs as parameters are shared across time steps in

the network. The gradient calculated at each output depends not only on the

current time step, but also previous time steps.

The trained model can be used to assign a perplexity to a given source-

target pair (S, T ). It can also be used for generation by predicting the most

likely target, T̂ , according to the model, formally:

T̂ = arg max
T

pθ(T |S) (2.23)

The most likely targets are found using a left-to-right beam search decod-

ing scheme. Beam search maintains a number, B, of partial target hypothe-

ses [318]. Beam search decoding is an approximate, greedy algorithm with uses

a best-first heuristic search to explore a possibility space by expanding the most

promising hypotheses.10 At each time step the prefix hypotheses are extended

with each word in the vocabulary. Using the log probability calculated with

the model, all but the B most likely hypotheses are discarded. When ‘END’

token is appended to a hypothesis, that hypothesis is removed from the beam

search and added to a complete candidate list. This complete hypothesis list

may then be re-scored using an additional scoring function [318].

This MLE objective may provide likely responses, but, it is likely not the

optimal surrogate objective for a dialogue agent [176]. Analogous to the rep-

etition problem due to loops in n-gram models described above, MLE-based

SEQ2SEQ models may not account for repetition. As well, SEQ2SEQ models

tend toward generic responses (e.g. ‘no’ or ‘i dont know’) given their relatively

high frequency in many source corpora [176], [177], [301].

Encoder - Embedding - Decoder Model The objective of sequence pre-

diction models is to predict an output sequence given an input sequence.

10http://www.dtic.mil/dtic/tr/fulltext/u2/a049288.pdf
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Figure 2.2: Figure of the encoder / decoder framework.

SEQ2SEQ models serve as the basis for many current chatbots [299], and

these models use similar architectures (illustrated in Figure 2.2). At a high

level, SEQ2SEQ models are composed of an input encoder (which maps words

into fixed length embeddings), an embedding processing model (generates re-

sponses embeddings to inputs), and a output decoder (which maps embeddings

to words). Additional context information might be appended to the inputs.

There are many classes of sequence modelling problems based on the relative

shapes of input and output sequences.11 Generally, there is an input sequence

of multiple tokens mapped to an output sequence of multiple tokens. We may

want to map a sequence input to a single class, or alternatively, map a single

token to a sequence of output tokens. These are special cases of the general

sequence modelling problem.

The encoder maps a variable-length input sequence (source) to a fixed-

length vector. The decoder maps a fixed-length vector to a variable-length

output sequence (target). Often the encoder and decoder are separate func-

tions, but they may share weights to speed-up learning. This technique is

particularly useful when using deep neural network networks with many pa-

rameters [52], [168].

Similar to the n-gram model, a vocabulary list defines the words that the

model can encode and decode. In addition to the special tokens introduced

prior (‘START’, ‘END’, ‘OOV’) neural models may also utilize the ‘PAD’

token. This token allows for batches or source/target pairs to be padded to

constant width. This processing technicality improves performance of models

at test time. Fixed dimensionality embeddings allows for the use of deep

11http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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neural networks (DNNs), which have been shown to be powerful models on

many language tasks [70], [216], [318].

LMs are partly inspired from theories of context-free grammars and gener-

ative grammars, introduced by Chomsky (1959) coupling syntax and semantic

information in sentences [53]. Grammar is a set of rules governing the com-

position of words in a language. Each language is based on a grammar. the

order of words has influence on the meaning of the sentence. Discriminat-

ing the grammar underlying sentences is paramount when parsing sentences

for language understanding [267], [287]. In fact, neural language models have

been used to track abstract hierarchical syntactic structure [102] and learn

context-free grammars [295]. Learning semantic and syntactic information

will to improve language modelling. These works support the notion that neu-

ral models can learn to track grammatical structure and meaning; a hypothesis

which motivated early neural network research [77], [283].

2.2.5 Neural Model Improvements

In the SEQ2SEQ model, the last source state is passed from the encoder to the

decoder when starting the decoding process. The single fixed-size hidden state

becomes an information bottleneck for long sentences. Similar in motivation

to the LSTM, the concept of ‘attention’ was introduced to give the decoder

more direct access to the information in the input [15], [197]. The key idea

of attention mechanisms are to establish direct short-cut connections between

the target output and the source input by attending to relevant source content

during translation. Instead of discarding all hidden states computed in the

source RNN, attention allows the decoder to peek at them (treating them

as a dynamic memory of the source information). The attention mechanism

improves the translation of longer sequences [15], [197]. Attention mechanisms

have been applied to many sequence modelling tasks including image caption

generation, speech recognition, and text summarization.12

The Transformer model is a sequence modelling neural network architec-

ture based on self-attention [335]. The self-attention mechanism directly mod-

12https://ai.googleblog.com/2017/07/building-your-own-neural-machine.html
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els relationships between all words in a sentence, regardless of their respec-

tive position. The Transformer model assigns every word in the sentence

with a relative position encoding. These positions are added to the embed-

ded representation. The benefits of the Transformer model include increased

quality of sequence generation, better parallelization on modern hardware,

better generalization, and less time to train [334], [335]. The Transformer

model has outperformed recurrent and convolutional networks a diverse set of

sequence modelling tasks [335].The open-source Tensor2Tensor Transformer

framework13 was used for the experiment in Chapter 5.

Thus, we come full circle. From näıve rule-based chatbots, to n-gram and

Hidden Markov Models (HMMs), to finding inspiration in the methods of sta-

tistical machine translation, and advancing neural response generation with

the long-short term memory (LSTM) and Transformers. Additional consid-

erations for corpus based chatbots and neural model training are included in

Appendix C. Many neural modelling techniques and experiments would not be

possible without two crucially important additional factors: suitable datasets

and rigorous evaluation.

2.2.6 Datasets

There is an adage in computing science that garbage-in leads to garbage-

out [14], and so it is with conversational dialogue systems. These systems and

continue to rely on large corpora of high-quality data collected, indexed, and

accessible by the model at training and inference time. There are many large

datasets available to train dialogue systems [298]. This survey from Serban et

al. (2015) attempts to collect these datasets and profile their characteristics

to ease in selection and use. Data collection and sharing is an active area of

research in the field, and with the continued deployment of conversational sys-

tems, these datasets will continue to grow in scale and diversity of language,

task, and structure.

Datasets used in this thesis work include the Cornell Movie-Dialog Corpus

(CMDC) and OpenSubtitles (OS). The CMDC [65] contains 220,579 conver-

13https://github.com/tensorflow/tensor2tensor
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sational exchanges between 10,292 pairs of movie characters 9,035 characters

from 617 movies for a total of 304,713 utterances. The OS dataset14, while

considerably larger at 446,612 movie subtitle files, covering more than 110,000

unique movies identifiers (or IMDB IDs)15 for a total of 441.5 million lines, is

nosier data (e.g. duplicates, spelling and grammar mistakes) [185]. It consists

of user contributed movie and TV subtitles which are then processed with

an automated processing pipeline. OS constitutes a resource for the conver-

sational dialogue From a linguistic perspective, movie subtitles cover a wide

range of genres, from colloquial language or slang to narrative and expository

discourse as in documentaries [185].

2.2.7 Evaluating Dialogue Systems

How do we go about evaluating dialogue systems when the task is not related

to a binary outcome, as is common in goal-oriented or non-conversational

dialogue? This question is of particular interest for the open-domain dialogue

systems discussed in the following chapters.

Chatbots can be separated into open- and closed-domain systems. Open-

domain dialogue systems (i.e. chit-chat bots, chatter bots) can discuss a di-

verse set of topics and domains. Closed-domain systems (i.e. domain specific,

task- or goal-oriented bots) limit conversation to a specific domain or task.

Evaluation of task-directed agents is considered more straightforward than for

open-domain bots [270], [338].

Interlocutors engaged in chit-chat conversation often do have goals.16 Cog-

nitive science and conversational linguistics has explored the many underlying

goals of conversational dialogue [161], such as: generating shared knowledge,

obtaining information, delivering action instruction, understanding motiva-

tion, and/or building relationships. These goals are more abstract than an

closed-domain, outcome-centric, booking task (e.g. “reserve a table for 4 at

6:00pm at the Italian restaurant down the block”). Goals also change over the

14http://opus.nlpl.eu/OpenSubtitles2018.php
15https://www.imdb.com/
16Conversational partners.
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course of a dialogue [161].

The goals listed above are a step towards evaluation, but they are still

underspecified. What we desire is a testable condition for success; a mea-

sure allowing us to compare one model against another. In the chapters that

follow, we describe how specific concepts from ‘improvised theatre dialogue’

can provide these measures. Before discussing these, it is helpful to provide

background on current evaluation techniques.

Early work in dialogue generation used human interactions to test systems

(Appendix B). When automated optimization of these models became neces-

sary, due in part to the large number of parameters and hyperparameters, the

community looked to statistical machine translation (SML) for metrics [280].

As Liu et al. (2016) show, these metrics correlate weakly with human judge-

ments [188]. Additional work has shown weak correlations between humans

and other automatic metrics [193].

Automated metrics from SML [296], including overlap-based methods such

as Jaccard similarity, BLEU [251], METEOR [17], ROUGE [183], CIDEr [336],

are used for machine translation, summarization, and image captioning tasks.

These methods assume a valid, aligned, output for a given input has signif-

icant word overlap with the ground truth response. For instance, bilingual

evaluation understudy (BLEU) evaluates the quality of text which has been

machine-translated from one natural language to another. While this inspired

model innovation and development for previous research [280], word overlap

need not exist in conversational dialogue [100].

Training data specifies one notion of naturalness, so we can measure how

well the output data matches the input data. Evaluating an LM is often done

by measuring the perplexity [304], a measurement of how well a probability

distribution predicts a given sample. This is a useful extension of the likelihood

calculations from Section 2.2.3. Recall that an LM represents a probability

distribution over a given corpus. For a given LM, low perplexity indicates a

high likelihood, conversely, high perplexity indicates a low likelihood sample.

Entropy is a measure of the expected number of bits required to encode

the outcome of a random variable. Assume we have a sequence of words,
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w1, w2, . . . , wm from a vocabulary V. The probability of a given word, wi,

is dependent on the previous words, w1, . . . , wi−1. The per-word entropy, H,

represents the new information (in bits) provided by each word on average:

H = − lim
m→∞

1

m

∑
w1,...,wm

(
p(w1, . . . , wm) · log p(w1, . . . , wm)

)
(2.24)

Where the sum is over all word sequence permutations. If we assume the

LM to be ergodic and stationary, then for large values of m, the approximate

entropy is [3]:

Ĥ = − 1

m
log p(w1, . . . , wm) (2.25)

An ideal LM would have a per-word entropy of H. We use a measure

related to entropy to compare language models. The perplexity of a probability

distribution, p, is related to the entropy, H, of a distribution (in bits):

perplexity = 2Ĥ (2.26)

= p̂(w1, . . . , wm)−
1
m by Eq. 2.25 (2.27)

= m

√
1

p̂(w1, . . . , wm)
(2.28)

= m

√√√√ m∏
i=1

1

p̂(wi|w1, . . . , wi−1)
by chain rule (2.29)

(2.30)

where p̂(w1, . . . , wm) is the probability estimate of the sequence of words,

w1, . . . , wm, estimated by the LM.

While perplexity provides a measure of the likelihood of a response based

on a training corpus, and a means to compare trained language models, there

are limitations. Plausible responses with out-of-vocabulary words might be

assigned a low likelihood. Also, while perplexity is meaningful and available

for probabilistic LMs (i.e. generative models capable of assigning a probability

to a candidate response), some models are not applicable to this metric. Thus,
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it is difficult to use this metric for model comparison. Additionally, an näıve

echoing model (i.e. which repeats inputs) would generate ‘good’ responses

under this notion [82]. These outputs are well within the input distribution,

but the conversation lacks a quality familiar to anyone who has conversed.

The responses do not add additional information to the conversation. We need

to account for the fact that good conversation incrementally, collaboratively

builds information at each conversational step.

Humans (i.e. crowd-sourced) have generated ‘good’ responses and/or pro-

vided scores for the model generated responses. For instance, raters may be

shown context and then pick their preferences between candidate outputs [188].

This technique is costly in both time and money. Also, human raters can be

subjectively biased (e.g. toward short responses) and can have high variance

between raters based on personal differences (e.g. reading ability).

Additionally, it is difficult to ask the right questions to get meaningful, re-

producible measures from crowd raters [73]. Several studies have asked ques-

tions related to overall appropriateness of response, whether the response is on-

topic, whether the response is specific, and whether the response requires addi-

tional background information [178], [272], [300], [338]. Researchers have also

asked raters if a given conversation would be one they want to continue [154].

With enough humans agreeing on ratings for an input/output pair, it is

perceivable that a model could be built to predict human ratings on unseen

inputs [73], [193]. These works allow for the prediction of human ratings,

which can allow for automated testing and comparison of model improvements

without costly human-participant studies.

It is paramount to test models with real-life human interaction developing

models designed for human interaction. Competition-based evaluations (dis-

cussed in Appendix B) include ‘wild’ evaluations which involve human con-

versations with bots. Following the conversation, the human converser scores

the interaction based on various measures which, depending on the competi-

tion, which might include measures of ‘adequacy’, ‘informativeness’, ‘fluency’,

‘consistency’, and ‘engagingness’ or more abstract measures of ‘how much a

person liked the conversation’ or ‘how well the bot stuck with a consistent
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persona’ [127], [250], [364]. Additional evaluation methods are presented and

discussed in Appendix C.1.

Systems can model the personality [364], mood [93], and emotion [47] of

generated sentences as well as human affect in interactive settings [362]. By

modelling the psychological state of the user, and adapting accordingly (much

like human interlocutors do) conversational systems will continue to evolve and

personalize [50]. Ongoing appraisal and adaptation required significant lan-

guage and non-verbal interaction understanding. The transition from building

systems which reflect the underlying training dataset, to systems which adapt

pre-trained models to ongoing interaction, is an ongoing area of research and

discussed in detail in Chapter 7.

It is important to evaluate from both human-centric and machine-centric

perspectives. The evaluation of dialogue systems continues to be explored

as an active area of research [188]. Dialogue systems should be measured

and evaluated based on the interaction that they facilitate. In the work that

follows in future chapters, we lean towards evaluating the dialogue system by

evaluating the application where they are used. By measuring qualities of

the application of a model down-stream, we gain valuable insights to compare

models (Chapter 3).

2.2.8 Conversational Dialogue Summary

This section provides an review of the history, the implementation, and evalu-

ation of conversational dialogue systems. This chapter has covered interactive

machine learning (Section 2.1) and dialogue systems (Section 2.2), but they

have remained loosely coupled. There is a missing connection in the loop.

That missing piece is a real-time interactive test bed for conversational dia-

logue systems. The next section provides background and motivation for an

ideal testing ground for IML-based conversation systems: the applied Turing

test of live improvisational theatre.
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2.3 Improvisational Theatre

Improvisational theatre (or improv) is a form of theatre in which some or all

components of the performance are unplanned or unscripted. Improvisation

is performing without any preparation or planning [109]. Improv is theatre

conceived, written, directed, and performed in the same moment often in front

of a live audience. An abridged history of improvising intelligences is included

in Appendix D.

The ‘offer’ is a common term across improvisational theory [147]. It defines

the basic unit of collaboration between individuals. Offers can be physical,

mental, or verbal. For the majority of the work in this thesis, I focus on verbal

offers with physical embodiments (e.g. robots and projections), extensions to

additional means of delivering offers are discussed in Chapter 7. All offers can

be characterized by how much they accept and how much the extend [147].

These properties are sometimes summarized with the concept of “Yes, and...”,

common in improvisation.

When given an offer in an improvisational scene, an improvisor will re-

spond with an offer of their own. The responding offer can either ‘accept’ or

‘reject’ the initial offer. Additionally, the response can either ‘extend’ (build

on) or ‘advance’ (move past) the initial offer. Improv scenes are composed of

sequences of offers, each verbal offer is a sequence of words with additional

features of character: intonation, speed, and directness. These sequences of

words, and sequences of offers, will be what interactive artificial improvisors

model and generate using the techniques from Section 2.2. Concepts of accept-

ing and extending are further contextualized in the framework of generative

language models in Chapter 5 when they are used to model underlying narra-

tive arcs.

2.3.1 Theatre Technology and Automata

The theatrical stage is a reflection of our natural world. Much like the rest

of our world, theatre is intrinsically enabled by technology [115]. Technology

with which we augment our lives, including screens, computers, lights, and
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videos, have thus found their way into modern theatrical productions. Tech-

nical theatre is a field which includes stage and set design, lighting controls

and cues, sound design, and visual projection design. In live performance,

stagecraft is as old theatre itself [108], [316]. To Shakespeare, the theatre was

a space-time machine driven by the energy of imagination [115], [164]. Not

only is the incorporation of technical theatre into productions functional, it is

as artistic as the performance itself.

As natural as humans and technology sharing the stage is, it is impor-

tant to inspect the digital-augmentation from two perspectives: 1) how can

humans best be served by the technology of the production? And, 2) how

can the technology inspire as a source of creativity, or co-creator, on stage?

Answers to these broad questions, in regards to performative consequences of

incorporating technology in live improvisation, are explored in this section. As

above, it is important to appreciate history to gain perspective of the future.

The word automaton comes from Greek origins and means roughly “acting

of one’s own will”. It was used by Homer to describe an automatic door

opener [333], and has now come to refer to non-electronic moving machines.

Automata are found throughout history. Often described as statue-like, but

with an element of motion, these automata serve as inspiration for the robots

and cyborgs of current culture. These automata stretch across culture from

Greek mythology, to Jewish legend17, to ancient Chinese texts [244]. There is

an almost universal appeal to these figures at the intersection between human

and machine, a thread through history that connects us all.

Leonardo da Vinci, the great artist-scientist, made several automatic ma-

chines. He built a lion which automatically lurched several steps forward and

opened its breast to reveal a collection of lilies. He also built a self-propelled

cart (not unlike the self-driving cars of today), and a mechanical knight.18 da

Vinci is a notable connection in this context as these automata are not the

only automatic theatre technology he designed and built. His journals are

full of engineering notes on stage craft and preparations for large theatrical

17https://goo.gl/F1K6Fd
18http://history-computer.com/Dreamers/LeonardoAutomata.html
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displays for parties [135].

2.3.2 Cyborg Theatre: Stimulation Over Simulation

Cyborg theatre places robots, automata, and learning machines on the stage

during a production [252]. While there are many delightful inspirations which

stem from the world of cyborg theatre, there is much to suggest that robots on

stage, like children or animals, attract all the attention of audiences and might

steal the show from human actors when performing on the same stage [192].

Placing a cyborg on the stage confronts an audience with several challenging

themes, most notably the benefits and consequences of creation. The creation

theme progresses toward two paths: 1) the replacement of ourselves and each

other, and 2) creating something that can not be contained.

Thus, cyborg theatre finds itself in a cultural context envisioning human-

machine encounters as problematic and dangerous [252], likely due to fear.

The fear of not being good enough, not being apt for the future, and the

fear of being replaced by someone or something superior [99]. The creation

of a human from clay is a theme that occurs across religions and cultures

(e.g. Prometheus [111] and the golem from Jewish folklore [133]). The de-

scriptions of the golem could just as easily be referring to a computer: ‘if

commanded to perform a task, they will follow instructions literally’. As Ada

Lovelace described in 1842, ”the Analytical Engine has no pretentions what-

ever to originate anything. It can do whatever we know how to order it to

perform [32].” The notion of obedient machines, and the hubris which ac-

companies them, also appear in Mary Shelly’s “Frankenstein; or, The Modern

Prometheus” [307], James Cameron’s “The Terminator” [38], and in Karel

Čapek’s “R.U.R (Rossum’s Universal Robots)” [40]. Notably, R.U.R. is the

1921 play which coined the term robot.

There is a tension between provoking and pleasing the creator, and while

cyborg theatre is filled with fear, it is also filled with a unique sense of love

for metamorphosis. Such is the tension underlying the ancient Greek myth of

Pygmalion who fell in love with one of his sculptures [234]. Pygmalion, and

the George Bernard Shaw play of the same name [306], are the inspiration
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for our first attempt at creating an artificial improvisor, Pyggy, described in

Chapter 3. This adoration of transformation is hopeful. It is hopeful that we

humans can affect change and, in doing so, may be changed ourselves. Modern

stories explore the themes of bringing a creation to life, the notion of bringing

one of these systems onto the stage is another question.

2.3.3 Live Theatre with Chatbots

What does live theatre mean? Does it mean that the performers on stage

are alive, that the audience is alive, or both? How much liveness must there

be for it to be live theatre? A ventriloquist act would be considered live-

theatre performed by a human and a puppet. But, what if the puppet acted

independently with no ventriloquist? What if there is a voice that can interact

with the performers on stage? What if there is nothing but a voice on stage

that can interact with an audience? Imagine a stage is full of acting bots and

an audience full of reacting bots. With no living beings present, would this be

considered live theatre?

It is the extremes of this line of thought permeated Auslander’s mind when

he stated “the existence of chatterbots reopens and re-frames the question of

liveness at a fundamental level” [13]. The notion that a dialogue system,

capable of conversation has a unique liveness to it that eludes definition. In a

way, it is creating something from nothing. Similar to teaching a machine to

do something it previously could not. These thoughts serve as the undertone

for cyborg theatre with conversational dialogue generation.

As described in the history of chatbots in Appendix B, ‘ELIZA’ is often

attributed as the first chatbot. It was the creator, Weizenbaum, who described

‘ELIZA’ as a machine that simulates humanity by encouraging the dialogue

partner to improvise: “in a sense, ELIZA was an [actress] who ordered a set of

techniques but who had nothing of her own to say. The script, in turn, was a

set of rules which permitted the actor to improvise.” [345]. The astute reader

will notice the name ‘ELIZA’ was chosen because it was also the name of the

lead character in G.B. Shaw’s “Pygmalion” [306]. As Weizenbaum cleverly said

“the program could be taught to ‘speak’ increasingly well, although, also like
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Miss Doolittle, it was never quite clear whether or not it became smarter” [110].

An important questions to ask while on this line of thought is ‘why?’ Why

would we bring a machine onto the stage? Why would we want a cyborg co-

creator in creative endeavours? This section aims to address the ‘why?’ It

is human nature to create in our own image. It challenges our thoughts and

feelings about what is real. Most importantly, the machine’s “creativity” is

seen in the kind of suggestions the computer makes to humans; the system

serves the creator, it is both pleasing and provoking [151]. As described in

Section 2.1, the ultimate goal is to bring together human and machine con-

tributions synergistically. The performance on the objective function will be

better working together than either contributor could reach alone. Creativity

emerges through from the process of working interactively [182].

Theatre represents an ideal experimental setting for robotics and machine

intelligence research [33], [157], [195]. The theatrical stage is a middle ground

between controlled environments and complex novel environments. Routines

and rehearsal are natural in the theatre, but no performance is strictly the

same twice. Improvisors are masters of co-creation, specialists in processing

misunderstandings, re-contextualizing to find middle ground, covering com-

munication breaks, and making ideas connect [147], [192]. Magerko et al.

(2009) formulated the theoretical processes needed for a computational sys-

tem for improvisation [200]. That study reports several important aspects of

cognition in improvisation: basic cognition, shared mental models, narrative

development, and referent use, and frames improvisational theatre as real-time

dynamic problem solving [146].

2.3.4 Interactive Machines in Theatre and Comedy

There is a growing intersection of researchers and artists exploring interac-

tive machines in theatrical productions. Interactive robot theatre has been

explored as a test-bed for sociable robotics [33]. Theatre robots are unique

in their performances and often tailored to the audiences and productions in

which they appear. That said, there is much in common between the systems.

They are often built of three major components: 1) a main control software,
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2) a perception stream (i.e. visual, auditory, tactile, etc.), and 3) an expressive

embodiment. With these three components, we can describe many different

systems which have been used in performances and research papers of the last

few decades.

Robotic performances have been explored previously [33] and are discussed

in Section 2.3.4. In 2000, Tom Sgorous performed “Judy, or What is it Like

to Be A Robot?”.19

The silicon-based comedy, robot entertainer work of Dr. Heather Knight

has been featured in many high profile media outlets [158].20 Knight used

a visual perception stream to track audience responses and a joke control

system selected the next joke to be similar to those that the audience had

responded well to. The expressive embodiment was the Aldebaran (SoftBank)

Nao robot.21

Katevas et al. (2014) programmed and scripted a life-sized humanoid robot

(the RoboThespianTM from Engineered Arts22) as the embodiment to perform

a stand-up routine [153]. During the performance gesture and gaze were mod-

ulated and the affects on the audience were measured. Notably, they found

that simulated eye contact between human and robot increases positive hu-

man audience response. They also present findings that people responded

more positively to human comedians than the RobotThespianTM.

RoboThespianTMalso made an appearance in Jon Welch’s “Spilikan, a love

story” (2015) by the Pipeline Theatre. All activities of the robot were pre-

programmed and controlled by software running backstage. Timing was flexi-

ble based on cues from a controller.

Hiroshi Ishiguro’s lifelike android embodiments were featured in two theatre

pieces: “I am a worker” (2008) and “Sayonara” (2010) [263]. Both collabora-

tions between Ishiguro and director Oriza Hirata, they aimed for the Japanese

concept of “son-zaikan” or the feeling of a presence of a person. Ishiguro ex-

cels at lifelike embodiments and the control of the robots was pre-programmed,

19http://sgouros.com/judy/
20https://www.ted.com/talks/heather_knight_silicon_based_comedy
21https://www.softbankrobotics.com/emea/en/robots/nao
22https://www.engineeredarts.co.uk/robothespian/
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rehearsed, and timed. It is unlikely these androids had any perceptual stream.

Duncan et al. (2010) performed Shakespear’s Midsummer Nights Dream

with several of the fairies played by robots and surveyed the audience about

believability [71]. In 2014, Carnegie Mellon University’s Personal Robotics

Lab and School of Drama collaborated to stage a production of David Ives’

“Sure Thing” with HERB [361]. The robot was controlled live on-stage by

a human in plain sight of the audience. More interactively, the robot Myon

made an appearance in “My Square Lady”, a 2015 opera at the Komische

Oper Berlin.23 Myon was able to improvise by responding to the live situation

with small gestures [171].

These systems serve as a backdrop for the chapters to follow and each of

them provide valuable lessons about bringing a robot to the stage. Through

engineering efforts, robotic platforms are becoming less expensive, more ro-

bust, responsive, and powerful. These qualities are inspiring a generation of

creative artists and scientists to build novel interactions.

2.3.5 Creative Interactive Machine Learning

Creative interactive machine learning (IML) is an applied subfield focused on

with creative artistic expression. This growing field has seen artists from di-

verse disciplines adopt and adapt cutting edge ML science to extend human

creativity. There has been incredible leaps made in machine generated vi-

sual art. Notably, the “Portrait of Edmond Belamy” (2018) created by GAN

(Generative Adversarial Network) was sold for $432,500 a Christie’s auction

in October 2018.24 While visual art can dominate coverage in creative IML,

there exists a growing number of creative technologists integrating these sys-

tems into their non-visual contemporary work.

These include designing real-time expressive interactions in a variety of

media including: story, joke and poem co-creations25; musical interaction26

23https://www.youtube.com/watch?v=jWBN9627mSg
24https://goo.gl/QW6Dy9
25http://botnik.org
26https://magenta.tensorflow.org/demos/
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and production27; interactive kinetic light projections [191]; interactive story

tellers [275]; dynamic video game storyline generation [327]; expressive move-

ments in stage robots [33]; and playful swarm robots [68]. There is also work

on tuning trained models using interactive RL for musical melody and fa-

cial recognition to enhance interactive creative doodle generation [137], [138].

There is exciting work which introduces tracking of emotional and narrative

arcs in text, audio, and video [55]. This tracking can be used to shape sequence

generation as we present in Chapter 5.

Creativity is a subjective quality assigned by the observing audience based

on societal values [149]. As Margaret Wolfe Hungerford said in 1878, ‘beauty

is in the eye of the beholder’. Creative sparks from these IML systems ignite

when curated by humans. Artists continue to embrace these technologies to

further develop and present explorations of the human condition. When asked

what the end goal is for work in artificial improvisation, we joked: “when

two robots are on stage, performing theatre for an audience of robots, we’ll

know all this work was done vain.”28 These systems do not aim to remove

the human. They exist to augment human capabilities and creativities, and

to inspire humans to create novel interactions.

2.4 Interaction, Interlocution, Improvisation

This background section provides relevant supporting material and informa-

tion in the three areas at which thesis intersects. It covers an overview of the

fields of IML, conversational dialogue systems, and improvisational theatre.

It details how creative, interactive machine learning will continue to develop.

It posits that the setting of improvisational theatre is the ideal test bed for

experimentation with conversational IML systems.

Through the following chapters, we formalize the challenge of improvis-

ing alongside artificial intelligences, explore the imitation game using ma-

chine learning, improve collaborative narrative generation using information-

27https://www.flow-machines.com/
28https://blog.mastermaq.ca/2017/02/09/recap-democamp-edmonton-34/
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theoretic methods, and present a method to synthesize knowledge to generate

coherent directed plots. In these chapters, we evaluate how collaborative sys-

tems are perceived by performers and observing audiences. We present chal-

lenges and improvements along the iterative process. Finally, we synthesize

and analyse critical reception and present future directions to use humour-in-

the-loop to improve human-machine interaction for improvised theatre with

interactive machine learning systems.
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Chapter 3

Improvised Theatre Alongside
Artificial Intelligences

I conceived of an instrument that would create sound without using any

mechanical energy, like the conductor of an orchestra. The orchestra plays

mechanically, using mechanical energy; the conductor just moves his hands,

and his movements have an effect on the music artistry.

– Lèon Theremin, 1989

In this chapter, we present the formalization of artificial improvisation.

This chapter builds on the background material in the preceding chapter by

addressing the grand challenge of human-machine conversational dialogue in-

teraction in improv. Human-machine improvised theatre is a suitable and

challenging testing environment and application for interactive conversational

dialogue experimentation. As a preliminary evaluation of this application, this

chapter details two intelligent machines trained to perform live shows along-

side human actors for human audiences. First presented is Pyggy, a rule-based

system which uses fuzzy string matching and information retrieval methods

optimized for speed and efficiency. Second is A.L.Ex. (the Artificial Language

Experiment), a corpus based neural response generation system using recur-

rent neural networks and optimized for maximum likelihood estimation. Once

This chapter is adapted from Mathewson KW and Mirowski P. (2017) Improvised
Theatre Alongside Artificial Intelligences. 13th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE’17). Snowbird, USA. October 2017.
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these systems are trained they are evaluated through performance of theatrical

improvisation alongside human performers. This chapter presents details on

the methods underlying both systems. The evaluative results and discussions

and conclusions support the innovations in the following chapters.

This chapter presents the iterative development of artificial improvisation,

or improvisational theatre performed live, on-stage, alongside an artificial

intelligence-based improvisational performer. As introduced in the previous

chapter, the artificial improvisor is a form of artificial conversational agent,

or chatbot, focused on open domain dialogue and collaborative narrative gen-

eration. Using machine learning techniques spanning from natural language

processing and speech recognition to reinforcement and deep learning, chatbots

have become more capable of common conversational tasks. Work in conver-

sational agents has been focused on goal-directed dialogue focused on closed

domains such as appointment setting, bank information requests, question-

answering, and movie discussion [10]. Natural human conversations are seldom

limited in scope, jump from topic-to-topic, and are often laced with metaphor

and subtext [145]. Face-to-face communication is supplemented with non-

verbal cues [214]. Live improvised performance can be framed as a natural

conversation task where multiple performers collaborate to generate narrative

in real-time front of an audience. In improvisation the topic of the conversa-

tion is often given by the audience several times during the performance [147].

These suggestions inspire actors to perform novel, unique, and engaging scenes.

During each scene, actors must make rapid fire decisions to collaboratively

generate coherent narratives. We introduce Pyggy and A.L.Ex. (Artificial

Language Experiment), the first two artificial improvisors, each with a unique

composition and embodiment. This chapter highlights research and develop-

ment, successes and failures along the way, celebrates collaborations enabling

progress, and presents discussions for future work in the space of artificial

improvisation.
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3.1 Introduction

Improvisational theatre, or improv, is the spontaneous creation of unplanned

theatrics, often performed live on-stage in front of an audience. Improv is a

form of collaborative interactive storytelling, where performers work together

to generate novel narratives. It is grounded in the connections between the

performer(s) and the audience. Improv requires the performers to work as a

team. The actors must rapidly adapt, empathize, and connect with each other

to achieve natural, fluid collaboration. To truly excel at the art-form, perform-

ers must think and react to audiences reactions quickly, and work together to

accept and amplify each other’s offers—an act that can be seen as real-time

dynamic problem solving [200]. Improv demands human performers handle

novel subject matter through multiple perspectives ensuring the audience is

engaged while progressing narrative and story. Due to the incredible difficulty,

improvisors must embrace failure and surrender to spontaneity [147].

Improvised theatre has been a platform for digital storytelling and video

game research for more than 20 years [112], [256]. Past research has explored

several knowledge-based methods for collaborative storytelling and digital im-

provisation [199], [246], [310], [363]. Similar work explores how humans inter-

act with system which improvise music and dance [125], [326]. Computer aided

interactive storytelling has been considered for applications in video games

with an aim to create endless narrative possibilities in video game universes

for user engagement [275].

Scripted robotic performances, in comedy and drama, have been explored

previously and are described in detail in Section 2.3.4. In previous perfor-

mances, robots were precisely choreographed, deterministic, or piloted on

stage. These shows required the audience to suspend disbelief and embrace

the mirage of autonomy. These performances verge ever closer to the deep

cliffs surrounding the uncanny valley—the idea that as the appearance of a

human-like robot approaches, but fails to attain, human likeness, a person’s

response would abruptly shift from empathy to revulsion [236].

This chapter presents a bridge between the artificial intelligence labs and
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improvisational theatre stages. The bridge crosses over the uncanny valley,

toward a future where humans and autonomous agents converse naturally to-

gether. Our work is partially inspired by the narratives behind George Bernard

Shaw’s “Pygmalion” [306], Mary Shelly’s “Frankenstein” [308], and Alan Jay

Lerner’s “My Fair Lady” [62]. In these stories, creators attempt to design

and build reflections of themselves, fabricating their respective ideal images of

perfection. These themes are discussed in detail in Section 2.3.2.

We present methods underlying the systems which power the first two

artificial improvisors. We concisely report on findings, and discuss future work

at the intersection of artificial intelligence and improvisational theatre.

3.2 Methods

This section describes the methods underlying Version 1: Pyggy, using clas-

sic machine learning and deterministic rules, and Version 2: A.L.Ex. which

uses deep neural networks, advanced natural language processing, and a much

larger training dataset. While improvisational theatre is a complex art-form

mixing dialogue, movement, and stagecraft, and there exist many improvisa-

tional rules for the novice improvisor [147], in this chapter we focus on a single

component: training the dialogue system. An artificial improvisor dialogue

system is composed of three major building blocks (Figure 2.1): 1) speech

recognition and natural language understanding (NLU), 2) speech synthesis

and natural language generation (NLG), and 3) a dialogue management sys-

tem with access to external knowledge bases. The three modules comprise

a simplified framework, inspired by the General Architecture of Spoken Dia-

logue Systems, for extemporaneous dialogue systems [258]. We detail these

components for both Pyggy and A.L.Ex.

3.2.1 Version 1: Pyggy – Rule Based Generation

Pyggy, short for Pygmalion [306], is the first version of a chatbot-based ar-

tificial improvisor.1 Pyggy was built using speech recognition powered by

1http://korymathewson.com/building-an-artificial-improvisor/
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Figure 3.1: High level system diagram of Pyggy.

Google Cloud Speech.2 Speech recognition translates sound waves from hu-

man voice, to text through a network-dependent application programming

interface. Pyggy used Apple Speech Synthesis for translated output text to

sound. This allowed for multiple synthesized voices to be used. Dialogue man-

agement was handled with Pandorabots3 and Chatterbot open-source software

packages.4

For each human improvisor’s verbal offer, each of these systems would

generate a response, which were then concatenated and output to the user.

Pandorabots handled hard-coded rules and deterministic responses. For ex-

ample, when the human offered: “Let’s start improvising”, the system would

always respond: “Ok”. Pandorabots also handled saving named entities. For

example, if the human said: “My name is Lana” then the system could an-

swer the recall question “What is my name?” with the correct answer: “Your

name is Lana.” Chatterbot was introduced to handle open dialogue genera-

tion and add randomness to the system. Chatterbot was pre-trained on a set

of dialogue, as described below, and then “learned” based on responses the

human gave back to the system (similar to Cleverbot, described in Appendix

2https://cloud.google.com/speech/
3http://www.pandorabots.com/
4https://github.com/gunthercox/ChatterBot
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B.7). It works by fuzzy matching the input string with strings in its dictionary

and then producing the closest match to that input. Fuzzy matching uses the

Levenshtein distance (or edit distance) as a metric to measure the distance

between two sequences.5 The Levenshtein distance is the minimum number

of single-element edits (i.e. insert, delete, substitute) required to change one

sequence a into another b. Formally, leva,b(n,m) is the distance between the

first n elements of a and the first m elements of b:

leva,b(n,m) =


max(n,m) if min(n,m) = 0,

min


leva,b(n− 1,m) + 1

leva,b(n,m− 1) + 1

leva,b(n− 1,m− 1) + 1(ai 6=bj)

otherwise.

(3.1)

Where 1(ai 6=bj) is an indicator function equal to 0 when ai = bj and other-

wise equal to 1.

Pre-training of Pyggy was done through an interactive website where in-

dividuals could directly interact in basic chit-chat dialogue. Unfortunately,

when the general public had the ability to interact with Pyggy many of them

started to act adversarially and mischievously, training the system to say rude

and inappropriate things. Once the compiled training set was cleaned and fil-

tered, it was small (less than 100 lines). Thus, additional clean training data

was appended from the Cornell Movie Dialogue Corpus [65]. The dataset is

composed of 220579 conversational exchanges from 617 movies and provided

the system a larger corpus of novel, interesting, and appropriate dialogue to

pull from.

Pyggy is embodied by a visualization as seen in Figure 3.1 and Figure 3.5.

The dynamic image-based visualization of Pyggy was accomplished with Magic

Music Visualizer.6 The simple animation system controlled the movement

of the mouth. Mouth movement was modulated by the amplitude of the

synthesized sound during speech generation system. This physical embodiment

gave Pyggy an animated face on stage.

5https://github.com/seatgeek/fuzzywuzzy
6https://magicmusicvisuals.com/
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Figure 3.2: High level system diagram of A.L.Ex.

3.2.2 Version 2: A.L.Ex. – Corpus Based Generation

There were limitations to the dialogue which Pyggy could produce, as it was

restricted to the set of sentences present in the training and interaction data.

The system was crude in this sense, recalling the most likely response to any

input from the human. As well, Pyggy had no means by which to understand

or track the topic of a scene. These limitations prompted us to explore a less

constrained word-by-word generation approach.

Automatic Language Generation in Improvised Theatre

The very nature of improvised theatre relies on spontaneous generative con-

versational abilities. Improvised theatre training relies on teaching the actors

games which force them to perform fast-paced word associations (e.g., “electric

. . . car . . . company”) or sentence completion [147] without over-thinking any

of their decisions. During these word generation games, spontaneity is encour-

aged and failure (e.g., a non-grammatical choice of word, an onomatopoeia

instead of a word, or simply a made-up, garbled word suggestion) is tolerated

and celebrated. By celebrating failure, improvisors actively reinforce spon-

taneity and liberate the creative process [314]. Some of the games directly

draw on the Surrealists’ Cadavres Exquis idea of taking turns in collaborative
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Figure 3.3: Context and input to Artificial Language Experiment and unrolled
single output decoding.

art generation and require the players to build coherent narratives (further

details in Appendix D).

Even challenging improvisational exercises in musical improv rely on the

faculty of spontaneous text generation. In this form, performers follow the

rhythm and tune of an accompanist while improvising rhyming song. Many

musical improv teachers and freestyle rap artists recommend not to prepare

rhymes in advance.7 Rather, they encourage starting lines without predeter-

mined ideas of what rhyme can be found, and let the rhymes arise organically

in the mind of the improvisor.

While the word generation process is destined to be spontaneous, it is not

intrinsically random. Improvisors use their cultural background, their literary

and pop-culture knowledge, eloquence skills, and vernacular, to generate se-

quences of words which seem most obvious to them. Each line is statistically

likely to occur given the context of the improvisation.

Text Generation with Neural Language Models

We imitate the creative process of improvisation using a statistical language

model that can generate text as a sequence of words. While building an open-

7http://www.theshowstoppers.org/
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domain conversational agent able to converse at human-levels would require

artificial general intelligence, a generative dialogue system that is conditioned

on previous text and that mimics collaborative writing could give to the audi-

ence an illusion of sensible dialogue [114]. The need for generative dialogue and

language models required shifting from the rule-based, deterministic learning

systems of Pyggy to deep neural network-based language model which could

generate sentences word by word. There are benefits to developing our own

neural language model. It allows us complete control over the training data,

training process, input processing, response generation, and deployment of the

system. These are critical for building systems for live performance, where we

require the ability run–and sometimes debug–a model live, on-stage.

Briefly, word-based neural language generation works as follows. Deep neu-

ral network-based language models associate each word in an input vocabulary

with a vector of real valued numbers, or word vectors. These word vectors can

be initialized to random numbers before training, or they can be initialized

with vectors which have been pretrained on previous tasks [228], [254]. These

pretrained vectors contain some information how each word is used in context,

and how word information can be related in vector space. In vector space,

relationships such as analogies or opposites can be modelled [228], [254]. By

using these word vectors as the inputs, language modelling can retain some of

this relationship information. These vectors are used as the input for recur-

rent network models. Additional details on these models is detailed in Section

2.2.3.

A.L.Ex (Artificial Language Experiment) is built using recurrent neural

networks (RNN) with long-short term memory (LSTM) [124], [227] as de-

scribed in Section 2.2.4 and shown in Figure 3.3. Contrary to similar work in

text generation [101], [317], we decided to use word-based RNNs. This facil-

itates curating the vocabulary produced by the dialogue system by replacing

or removing offensive words generated by the LSTM.

We experimented with multiple LSTM architectures with the goal of build-

ing a dialogue model that can handle the topics within an improvised scene over

dozens of exchanges between the human and the AI. All models were trained
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by optimizing for perplexity. Recall that perplexity relates to the likelihood

of sampling a sentence with a language model trained on a particular corpus

(Equation 2.30). We started from a first version consisting of 100,000 linear

input word embeddings and a two-layer LSTM with 256 hidden units followed

by a softmax over 100,000 output words. This model had many missing input

words and created dull responses with no notion of topic. The second version

improved consistency by including topic vectors. It contained 4 layers of 512

hidden units of LSTMs and extra 64 inputs to the first LSTM, coming from a

Latent Dirichlet Allocation [25] topic model (described in Appendix C). This

design enables the language model to integrate long-range dependencies in the

generated text and capture the general theme of the dialogue [231]. Design

choices followed details from Mikolov and Zweig (2012) [229].

In the second version there were still many unused output words. The top

50000 words account for 99.15% of all words in the input data. The third

version used pre-trained word embeddings (GloVe) [254] as inputs, resulting

in a larger vocabulary of 250,000 input words—the GloVe word embedding

matrix was considered as pre-trained and stayed fixed over the training—and

only 50,000 output words. With fixed embeddings and a smaller output space,

convergence was sped up. The fourth version cloned the 4-layer LSTM into

a query embedding module and a response generating module in a SEQ2SEQ

architecture [156], [318] with an attention model over the query embedding

vectors [302]. With more trainable parameters, the fourth model increased

the size of the stored model, as well as the loading time. With only a small

performance boost, it was decided that the third model would be the opti-

mal trade-off of model size and response performance. This was particularly

important for the speed required for live performance, described in detail in

Section 4.6.4.

A.L.Ex. is a neural language model which uses continuous word embed-

dings to predict sequences sequences of words. The neural network-based lan-

guage model is constructed as described as above and trained as a probabilistic

classifier to predict a probability distribution over a vocabulary of words given

an input linguistic context. This is done through stochastic gradient descent
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using backpropagation. Adaptive moment estimation (Adam) is used as the

optimizer [155] with initial learning rate of 0.0002 multiplied by 0.5 every epoch

(one epoch is a single pass through the entire set of training data). Gradients

are clipped at magnitude 5, and a dropout value of 0.2 was used after each

RNN layer for regularization. The model was trained to convergence over 10

epochs. Sampling was done using a beam search with softmax sampling tem-

perature 0.8, with a beam width of 10, by stepping forward through a sequence

of words (300-dimensional embedding) from the model and continuing predic-

tion until a maximum sequence length (100) or the end of sequence token were

encountered. Utterances are returned alongside their resulting perplexity un-

der the given language model. A heuristic for selecting the sentence with the

lowest perplexity is used, with a discount factor based on the length of the

sentence to encourage shorter sentences. Models were trained using a GPU

back end (Amazon AWS EC2 g2.2xlarge) training time was 0.818s per batch of

10 sequences of length 100. Training to convergence took just under 1 month.

Inference is done using a CPU back end. For serving the trained model, the

minimum configuration requires: 8GB RAM, 4VPU/CPU and 20GB of hard

disk space.

Dataset

The language model of A.L.Ex was trained on transcribed subtitles from

102,916 movies from OpenSubtitles.org, going from 1902 to early 2016.8 This

user-contributed subtitles dataset for dialogue model training contains multi-

ple languages and versions for each movie [340]. The data were available as

XML files, with precise timestamps for each line of dialogue. We kept one

English subtitle version per movie. As we noticed that subtitles tend to be

split over time and that each change of interlocutor is marked by a dash sign,

we processed the XML files to adjoin lines of dialogue separated by 1 sec,

starting with lower-cased words and without an initial dash, into single lines

of dialogue. Further processing involved correcting common spelling mistakes

to account for the often erroneous subtitle input (e.g., substitutions of “;”

8http://opus.lingfil.uu.se/OpenSubtitles2016.php
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by “I” or vice-versa, extra spaces between an apostrophe and the contracted

word or repetitions of letters, using a painstakingly hand-crafted set of over

one thousand of regular expressions) and removal of such as information as

“subtitles by ...”. The resulting files were lower-cased. After text clean-up, we

calculated that the top 50,000 words accounted for about 99.4% of the total

words appearing in the corpus. The resulting corpus contained approximately

880 million tokens (including dashes).

Data preparation followed this procedure:

1. Download, parse, and clean OpenSubtitles

2. Build and extract a vocabulary covering the majority of the words in the

dataset.

3. Find 68 sounds effects keywords and replace with special tokens associ-

ated with synthesizable sounds (e.g. laugh, yell, whistle, music, phone,

and catch-all sound effects).

4. Match vocabulary to word embeddings.

5. Remove movie scripts with low embedding coverage.

6. Use Bag-of-Words for LDA topic clustering.

7. Combine cleaned lines and per-movie topic vectors.

8. Save data files in fast access data storage ready for training (e.g.

HDF5/JSON).

The choice of a movie dialogue corpus, derived from movie scripts, is fitting.

Often improv comedy actors draw on previous experience, personal culture and

practice in their spontaneous creative process [206]. Future work might explore

a variety of text-based data-sources including plays, short stories, transcripts

of improvised performances, and symbolic plot points [59].

System Architecture

A.L.Ex. was designed to subvert the multiplicity of connected services which

formed the architecture of Pyggy. A.L.Ex. aimed to be an offline, standalone

artificial improvisor. While, similarly to Pyggy, speech recognition and gen-

eration are still performed by ready-made tools, respectively Apple Enhanced
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Figure 3.4: User interface with example input (top) and response (bottom).

Dictation9 and Apple Speech Synthesis, these tools are run on the same com-

puter as the model is served without depending on an internet connection.

The entire text-based dialogue system (coded in Lua and Torch10), was

encapsulated into a single program which makes system calls to speech recog-

nition and text-to-speech, and was controlled through a graphical user interface

(Figure 3.4) which visualizes results (i.e. both the recognized and generated

sentences in the dialogue). The core system is extended with additional mod-

ules; it also runs a fault-resilient server which accepts incoming HTTP/GET

requests from client applications. These applications include software control-

ling a humanoid robot with pre-programmed motions that are activated when

A.L.Ex speaks (see Figure 3.6). Applications have been written for controlling

both the EZ-Robot JD Humanoid11 and the SoftBank Aldebaran Nao.12

3.3 Results

There are challenges associated with testing, and quantitatively evaluating,

open-domain dialogue systems [98], [114]. An obvious and reasonable first

9https://support.apple.com/en-ca/HT202584
10http://torch.ch/
11EZ-Robot https://ez-robots.com
12https://ald.softbankrobotics.com/en
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measure for qualitative assessment would be similar to that of a human im-

provisor. That is, the audience-perceived performance level of an artificial im-

provisor during an improvisational performance. Thus, each of these systems

has been tested live in front of audiences between 5 and 100 people, for a total

of 25, 7-60 minute performances between 8 April 2016 and 1 June 2017. As is

common in improvisation, show structure and order remained largely consis-

tent, while content varied based on audience suggestion13. Through audience

feedback, the system has been iteratively improved, through enhancement to

the neural network-based dialogue system, the addition of performance props

(e.g. audio and video user interface, robotic avatar), novel improv comedy

games involving the machine and the humans (with optional audience partic-

ipation), and scripted narrative elements performed by the humans.

While human audience evaluation is realistic and comparable with human

improvisor evaluation, there are limitations. First, while an audience is eval-

uating the performance of the artificial improvisor in the scene, they may be

biased by the fact that a machine is generating or performing these lines. Due

to this bias, it might be worthwhile to compare human and machine-generated

responses and scenes offline where the rater is blind to the source of the sides

of the dialogue. This is often done in dialogue evaluation, but it is costly, time

intensive, and high variance based on subjective human raters [73], [188]. As

well, the performance of these systems can be limited at several points in the

dialogue. Speech recognition accuracy is not perfect, and environmental noise

(e.g. cheering/laughing audience) can influence the quality of input audio for

speech-to-text. Finally, because of the high variability of live theatrical perfor-

mance, the performance spaces (e.g. dark pub basements, or bright conference

venues), the narrative elements, the technical difficulties encountered during

performance, and iterative experimentation, it is difficult for us to provide

quantitative assessment of the artificial improvisor in this study.

Even with these limitations, it is important to report on the success and

failure thus far with qualitative examples, and leave subjective assessment

to the reader. Important future work will include large scale qualitative as-

13https://youtube.com/watch?v=FjxBdMRAZlE
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sessment from trained improvisors for qualities of improvisation and from the

general public.

3.3.1 Version 1: Pyggy

Figure 3.5: Human performing on-stage with Pyggy. The avatar of the artifi-
cial improvisor is projected behind the human performer.

The first version of AI-based improv, Pyggy, performed in the show Artifi-

cial Improvisation live and in front of an audience on April 8, 2016, as part of

an invited performance during Rapid Fire Theatre’s 2016 Bonfire Festival.14

While technically demanding, it was generally well received by the audience

(Figure 3.5). Here is a short excerpt from a transcription of the performance:

human: We’re having a picnic! Would you like cheese and

bread?

pyggy: Seen one human, you’ve seen them all.

14http://rapidfiretheatre.com
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human: Promise me, right now, we’re here listening to each

other.

pyggy: For fun? Where are all your queer party friends?

human: Why don’t you have any feelings for me? That’s why

I had to invite you on a picnic. I wanted to get some

time to talk to each other.

pyggy: I miss your vivid sense of humour.

3.3.2 Version 2: A.L.Ex.

Figure 3.6: Human performing onstage with A.L.Ex., personified as a robot.
The user interface, showing speech recognition results and machine-generated
response, is projected behind the performers.

A.L.Ex. performed for the first time in front of a live audience on July 24,

2016, during an improv drop-in in London (Figure 3.6). It has been performed

more than 24 times and on two continents since. We provide below a short

transcript from an early performance with A.L.Ex. As can be noticed, the

dialogue system somewhat manages to keep track of the general theme of the

conversation (i.e. dramatic, with words related to navigation and combat).

human: Captain, the ship is under attack. The frigate is

arriving...
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a.l.ex: You see, I don’t feel the same way. I just don’t

want to stay in the position to get burnt.

human: We’re all going to get burned by a cannon fire...

a.l.ex: While you’re in there, tell me. When I get

dressed, I’ll go up there and see what happens.

human: Captain, you need to get on the deck, the crew is

expecting you to speak, to take leadership. We are in

the middle of a war and this is an invasion of foreign

ships. Captain, show us your leadership.

a.l.ex: We won’t be able to navigate without them as we

are, serving for us to act like a life of violence

and to help us die from the most powerful life of our

time.

The subsequent experiments detailed in this section were performed using

iteratively improved versions of A.L.Ex.

3.3.3 Human-AI Collaboration through Games

With the base system in place, we have explored several alternative formats,

often called structures or games in improvisation [200], [275]. We explored a

variety of formats as the context within which the artificial improvisor per-

forms is critical toward the measure of audience perception of quality. In

improvisation, a major tenant is to make one’s fellow improvisors shine.15 We

created a show built on structures where both A.L.Ex. and human improvisors

could shine.

3.3.4 Justification Game

The most extreme case of enhancing the stature of a human improvisor arises

from games where the actor is confronted with ridiculously difficult challenges

that he or she successfully overcomes [147]. One such game is called Actor’s

Nightmare (or sometimes pick-a-line or lines from a hat). It consists of the

15http://jimmycarrane.com/making-partner-look-good/
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player intermittently picking a random line of dialogue (typically unrelated

to the current improvisation), reading it aloud, and seamlessly integrating

it into the scene [72].16 The humour generally arises from the improvisor’s

skill in justifying that line of dialogue or from the line being coincidentally

appropriate. We found that, because of the limitations of speech recognition

and of the dialogue system in A.L.Ex, many of the human-machine interactions

ended up following the paradigm of justification games.

3.3.5 Multiple-choice Human-mediated Dialogue

A multiple-choice game was the first format that we explored outside of the ba-

sic structure of two improvisors engaging in a basic dialogue in a scenic setting.

In this format, the system visually presented several candidate responses on a

screen, but did not say any of the responses. Instead, an audience volunteer

would select their preferred response and read it aloud. In this way, we were

able to directly engage an audience member in the performance. This demoli-

tion of the fourth wall is common in improvisation [285]. When the audience

is invited to directly interact with the system on stage, an additional tension is

introduced in the room: how will an untrained human react if A.L.Ex. offers

multiple interesting candidates, and what if there are no interesting candidates

generated? We observed that these games presented the challenge of the au-

dience member having to share attention between the screen and the human

improvisor and could be hampered by low energy or audience engagement.

3.3.6 Multiple-person Games

We explored dynamics where the AI played a single character in a scene with

multiple humans. First, we introduced multiple humans in the same physical

space. In this situation, A.L.Ex. plays alongside two human performers. We

noticed that there is often a tendency for the two humans to form a ‘side’,

acting together ‘against’ the system. Much more interesting scene dynam-

ics emerged when we challenged one of the human performers to align with

16http://stuffforactors.com/gpage3.html
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Figure 3.7: Two humans performing on-stage with A.L.Ex. One of the humans
is remotely connecting, adding to the complexity of the show setup.

A.L.Ex’s character in the scene. Extending from this work, we then tried

including the second human through a remote connection (Google Hangout,

see Fig. 3.7). A.L.Ex. was able to interact with the physical human and the

remote human. High resolution, low latency video conferencing continues to

prove challenging, especially for remote performances with limited budgets,

and we continue to explore means by which to overcome these challenges. We

then instantiated multiple versions of A.L.Ex. in a single scene. In this way,

we could balance the two humans on stage with two robotic improvisors. This

presented opportunities for interesting connections and relationships as well

as challenges. The timing of multiple AI-based improvisors can be noticeably

different if not properly synchronized.

3.3.7 Comparison with ELIZA

Finally, we built an audience interaction game in homage to one of the ear-

liest chatbot systems, ELIZA, by Joseph Weizenbaum [344]. In this format,

an audience member is invited to the stage to discuss an ailment with an AI

therapist played by A.L.Ex. in ELIZA mode. Details on ELIZA are included

in Appendix B. While ELIZA is powered by relatively simple deterministic

response rules given certain decompositions of the human’s input statement.
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This is an audience favourite and often well received during shows. It is im-

portant to pay special attention to this note, as the holistic performance of an

AI-improvisor should be evaluated based not only on how well it is received,

but also on the novelty and uniqueness of the scenes it performs.

Many games were selected to allow for clear, distinct trade-off between

multiple improvisors within consistent settings. Often our systems fail through

mis-understanding speech-to-text input or human-machine interruption due to

lack of social cueing and perception. By embracing and learning from these

failures, we will continue to innovate and experiment to better understand and

showcase the strengths of A.L.Ex.

3.4 Discussion and Summary

Future work might incorporate advances in deep reinforcement learning for di-

alogue generation [273]. Through design of reward functions, more interesting

dialogue may be encouraged. Three useful conversational properties shown to

improve long-term success of dialogue training are: informativity, coherence,

and ease of answering [179]. Additional reward schemes may improve, or tune,

the trained deep neural network based dialogue managers. Work has shown

that reinforcement learning can be used to tune music generation architec-

tures [139]. Rewarding linguistic features (i.e. humour, novelty, alliteration)

may prove useful in dialogue generation [126].

This study focused on building a dialogue system for improvisational per-

formance. Improv theatre is a relatively young art-form, but there exists sev-

eral books of rules for novice improvisational training which could be useful

for future studies [241]. Future iterations of these systems could include com-

mon improvisational rules, such as ‘status contrast’ the ‘Yes, and...’ theory of

accept and expand, and comedic rules, such as the ‘rule-of-three’ [147].

Adversarial methods for natural language are another means of explo-

ration [180], [271]. While the results are interesting and informative, these

works are still limited in the objective functions and evaluation criteria used

often relying on log-likelihood scores, BLEU [251] or ROUGE [183] scores.
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Additional evaluation metrics must be devised to score these open-domain

dialogue systems [184], [188], [273].

Natural human conversations are seldom limited in scope, jump from topic

to topic, and are laced with metaphor and subtext. Artificial improvisors of

the future should make use of advances in artificial memory [348] and atten-

tion models [196]. As well, humans often make use of non-verbal cues during

dialogue. By incorporating this additional information, human(s) could both

consciously and subconsciously inform the learning system [210]. Additionally,

if the artificial improvisor is modelled as a goal-seeking agent, then shared

agency could be quantified and communicative capacity could be learned and

optimized for during the performance [262].

While the system is trained to perform dialogue, it is not trained to tell

a cohesive story with a narrative arc. The addition of memory network ad-

vancements may improve callback; additional engineering and training will

be necessary to collaboratively build a narrative arc (as discussed in Chapter

5). In 1928, William Cook published a book on algorithmic plot development

which may serve this purpose, and implementations and connections have yet

to be explored [59]. Preliminary investigation toward incorporating plot de-

velopment into performative systems is presented in Chapter 6.

There is a large research area devoted to computers and creativity (see Sec-

tion 2.3.5) [218]. These advances are pushed to the horizon by artists around

the world. These artists are building complex projects, using machine learning

techniques to implement creative, imaginative ideas. Thought must be given

to the interface through which humans and artificial performers interact [218],

[219], [359]. The embodiment of the artificial improvisor has been investigated

with Pyggy and A.L.Ex. using on-screen visualizations and robotics. Stage

presence is critical to ensure that a live show is enjoyable and engaging. Im-

provisational performances are not strictly conversational and often demand

physicality from performers. The optimal means by which these systems take

the stage has yet to be determined.

Previous work has explored the importance of physical embodiments on so-

cial dynamics for similar performances [157]. Collaboration between scientists
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and creative artists will lead to innovative interactions and immersive art which

ignites the senses. With the growing popularity of interactive mixed-reality

experiences, as well as advances in natural language processing, speech, and

music generation, there are exciting avenues of future investigation [8], [332].

Improvisational theatre is a domain where experimentation is encouraged,

where interaction is paramount, and where failure flourishes. It allows ar-

tificial intelligence agents to be effectively tested, and audience reaction can

provide a subjective measure of improvement and cognizance. While this work

may feel similar to the Turing test, an early attempt to separate mind from

machine through a game of imitation, deception and fraud, it is much more

than that [330]. Success will be measured by audience preference to engage in

shows incorporating artificial improvisation and human desire to participate.

Turing imagined a world where machinery might exceed human performance

in some domains. It is ironic and poetically fitting that ‘live’ performance

itself may be one of these domains.

Board games such as chess and Go are complex, but computational solu-

tions can be approximated. Improvisational theatre demands creativity, rapid

artistic generation, and natural language processing. Improvisation is not a

zero-sum game, especially as these systems learn to converse open-domain

settings [98], [114]. Future work will continue to explore the evaluation of per-

formance in such an open domain. Performances with artificial improvisors

continue to spur questions and insights from other performers and audiences

alike. A formal evaluation, with audiences observing expert improvisors inter-

acting with the system is presented in the next chapter. We look forward to

the distant goal of the human observer, as a fly on the wall, watching artifi-

cial improvisors on-stage in front of a full audience of artificial observers. We

strive to continue constructive dialogue around creative AI by connecting the

sciences and the arts.
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Chapter 4

Improbotics: Exploring the
Imitation Game

Most of the programmes which we can put into the machine will result in its

doing something that we cannot make sense of at all, or which we regard as

completely random behaviour. Intelligent behaviour presumably consists in a

departure from the completely disciplined behaviour involved in computation,

but a rather slight one, which does not give rise to random behaviour, or to

pointless repetitive loops.

– Alan Turing, 1950

Theatrical improvisation (or improv) is a demanding form of live, collab-

orative performance built on open-ended narrative structures in ephemeral,

imagined worlds. It is thus an ideal test bed for the development and de-

ployment of interactive artificial intelligence (AI)-based conversational agents,

or artificial improvisors. This chapter introduces an improv show experiment

featuring and comparing both human actors and artificial improvisors. In

the previous chapter we developed a deep-learning-based artificial improvisor,

trained on movie subtitles, that can generate plausible, context-based, lines of

A version of this chapter was accepted for publication as: Mathewson KW and
Mirowski P. (2018) Improbotics: Exploring the Imitation Game using Machine Intelligence
in Improvised Theatre. AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. Portions of this chapter are adapted from Mathewson KW and Mirowski
P. (2017) Improvised Theatre as a Turing Test. NIPS 2017 Workshop on Machine Learning
for Creativity and Design.
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dialogue suitable for theatre [212].

We extend that work by employing that system to control what a subset

of human actors say during an improv performance. We also give human-

generated lines to a different subset of performers. All lines are provided

to actors with headphones and all performers are wearing headphones. This

paper describes a Turing test, or imitation game, taking place in a theatre,

with both the audience members and the performers left to guess who is a

human and who is a machine. In order to test scientific hypotheses about the

perception of humans versus machines we collect anonymous feedback from

volunteer performers and audience members.

Over the course of 30 performances to a combined audience of almost 3000

people, we have refined theatrical games which involve combinations of human

and (at times, adversarial) artificial improvisors. We have developed specific

scene structures to include audience participants. Finally, we developed a

complete show structure which submits the audience to an experience inspired

by the Turing test and observed their suspension of disbelief, which is key

for human/non-human theatre co-creation. Our results suggest that rehearsal

increases proficiency and possibility to control events in the performance. That

said, consistency with real world experience is still limited by the interface

and the mechanisms used to perform the show. We also show that human-

generated lines are shorter, more positive, and have less difficult words with

more grammar and spelling mistakes than the artificial improvisor generated

lines.

4.1 Introduction

Improvisation (or improv) is a complex theatrical art-form modelled on natural

human interaction and demanding constant adaptation to an evolving context.

It has been defined as “real-time dynamic problem solving” [200]. Improv

requires performers to exhibit acute listening to both verbal and non-verbal

suggestions coming from the other improvisors, split-second reaction, rapid

empathy towards the other performers and the audience, short- and long-term
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Figure 4.1: Illustration of two Improbotics rehearsals.

memory of narrative elements, and practised storytelling skills [147]. From an

audience point of view, improvisors must express convincing raw emotions and

act physically.

Improvisational computational storytelling is a grand challenge in artificial

intelligence (AI) as proposed in previous research [206], and formalized in

Chapter 3. While success on the grand challenge might be contingent on

solving open-domain conversational general artificial intelligence, there have

been incremental scientific steps made progressing toward a unified system

which can engage in improvised theatre in an open world [41], [105], [212], [364].

While these systems do not fully understand the interaction, they can, in spite

of (or perhaps, as an improvisor would think, thanks to) their imperfections,

fuel the creativity of the performers.

4.2 Background

Theatrical improvisation is a form of live theatre where artists perform “real-

time dynamic problem solving” through semi-structured spontaneous story-

telling [200]. Improvised comedy involves both performers and audience mem-

bers in interactive formats (sometimes called scenes, structures, or skits). We

present explorations in a theatrical Turing test as part of an improvised comedy

show. We have developed an artificial intelligence-based improvisational the-

atre actor. This artificial improvisor is a chatbot with speech recognition and

speech synthesis capabilities. It also uses a with a physical embodiment [112],
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[256]. We have performed alongside the system in improv shows at perform-

ing arts festivals, including ImproFest UK and the Brighton, Camden, and

Edinburgh Fringe Festivals [212]. Complete show listings and recordings are

available at https://humanmachine.live. Public reaction to these perfor-

mances are included in Section 7.2.

Over these first 30 shows, one or two humans performed improvised scenes

with the artificial improvisor. The performers strove to endow the system with

human qualities of character/personality, relationship, status, emotion, per-

spective, and intelligence, according to common rules of improvisation [147],

[241]. Relying on a large corpus of film subtitles and custom neural network

software for language understanding and text generation, described in detail

in Chapter 3. We were able to produce context-dependent replies for the

machine-based improvisor. A high level system diagram is shown in Figure

4.2.

Figure 4.2: Artificial Language Experiment (A.L.Ex.) System Diagram

The system we developed aims to maintain the illusion of intelligent di-

alogue. Improvised scenes develop emotional connections between imaginary

characters played by improvisors. The human-like characterization of the ma-

chine elicited attachment from audience members. Through various configu-

rations (e.g. human-human, human-AI, and AI-AI) and different AI embodi-
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ments (e.g. voice alone, visual avatar, or robot), we challenged the audience

to discriminate between human- and machine-led improvisation. In one par-

ticular game setup, through a Wizard-of-Oz illusion, we performed a Turing

test inspired structure [18], [278].

We deceived the audience into believing that an AI was performing, then

we asked them to compare that performance with a performance by an actual

AI. Feedback from the audience, and from performers who have experimented

with our system, provide insight for future development of improv games.

Below we present details on how we debuted this technology to audiences, and

provide observations collected over multiple performances. Feedback from the

audience and from performers who have experimented with our system can

provide insight into the suspension of disbelief required for non-human theatre.

4.2.1 Related Work

Research on computational improvisation often focuses on music and dance,

and on how humans interact and co-create with artificial systems [84], [125],

[326]. Improvised theatre has also been a platform for digital storytelling and

video game research for more than two decades [112], [256]. Theoreticians

and practitioners have experimented with several rule- or knowledge-based

methods for collaborative storytelling and digital improvisation [199], [246],

[310], [363], and computer-aided interactive storytelling has been explored in

video game development, aiming to create near-infinite narrative possibilities

to drive longer-term player engagement [275]. There have been previous in-

stallation art pieces which incorporated computer simulation are interactive

improvisation.1 To the best of our knowledge, our case study describes the

first application of deep learning-based conversational agents [340] to control

and guide unstructured improvised theatre performance of human actors.

Robotic performances have been explored previously [33] and are discussed

in Section 2.3.4. These shows required the audience to suspend disbelief and

embrace the mirage of autonomy. Robot-based performances challenge the

uncanny valley—the idea that as the appearance of a human-like robot ap-

1https://www.badnewsgame.com/overview/
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proaches a human likeness, human responses shift from empathy toward revul-

sion [236]. Toy-like humanoid robots have been involved in improvised theatre

performances [200], for instance Arthur Simone’s “Bot Party: Improv Comedy

with Robots”2 and “HumanMachine: Artificial Intelligence Improvisation”3.

Unlike those shows, our performance does not employ robotic avatars but sends

the AI-generated dialogue to human embodiments.

4.2.2 Motivation

Cinematic releases including “Ex Machina” [91], “Her” [148], and “Robot &

Frank” [293] explore robots interacting with humans naturally in day-to-day

life. We invite live audiences to consider such interactions in a theatrical set-

ting. Theatre practitioners can embrace machine learning systems as tools

explore dramatic interactions and to expand the realm of stories that artists

can create. This aligns with our research goal of augmenting creative abili-

ties of humans. To test the quality of this creative augmentation, we have

developed a test-bed for theatrical co-creation which places humans directly

alongside machines in an improvisational performance.

In our show Improbotics, we explore how human performers could seam-

lessly perform when a machine, or another human, provides their lines. The

human and machine performers work together to create a single, grounded,

narrative improvisation. We combine conceptual ideas from classic improvisa-

tion and novel methods in machine learning and natural language processing.

The show is inspired by improvisation game Actor’s Nightmare [72]–where one

of the performers reads lines from a play and the other performers seamlessly

justify these otherwise incongruous lines while progressing a narrative. This

game is modified to incorporate previous work on improvised theatre along-

side artificial intelligence. Specifically, this work builds on the performances

described in the previous chapters, HumanMachine: Artificial Intelligence Im-

provisation, and Etan Muskat’s Yes, Android4.

2http://arthursimone.com/bot-party/
3https://humanmachine.live/
4https://baddogtheatre.com/yes-android/
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This work explores Wizard-of-Oz [18] style experimental methods that have

been used extensively in previous human-robot interaction studies and dia-

logue system research [74], [87], [208], [278]. Wizard-of-Oz style interactions

with artificial intelligence controllers have been used to provide suggestions

to actors into previous artistic works.5 In these studies, humans receive in-

puts from an external source. The source may be another human, or the

machine learning system. Importantly, the source is unknown to the human.

This allows for separation between the human subjects’ outputs, and the cor-

responding inputs. Similar to Actor’s Nightmare, the controlled humans in

Improbotics will say and justify the lines they are prescribed through emotion,

intonation, and physicality. What sets this format apart from previous work

is that in Improbotics the lines depend on the context of the improvised scene.

Improvisors not fed lines work to justify as the lines are not completely congru-

ous. These justifications aim to make the scene look and feel more natural [13],

[61].

In a way, Improbotics can be seen as a theatrical Turing test [211], [330].

Can the performers and audience discern who is delivering lines generated by

a human from those delivering lines from a machine? We now cover methods

to test this question.

4.3 Methods

4.3.1 Architecture of the Artificial Improvisor

We named our improvisor A.L.Ex, the Artificial Language Experiment, an

homage to Alex the Parrot, trained to communicate using a vocabulary of 150

words [255]. The core of A.L.Ex consists of a text-based chatbot implemented

as a word-level sequence-to-sequence recurrent neural network (4-layer LSTM

encoder, similar decoder, and 64-dimensional topic model inputs) with an out-

put vocabulary of 50k words. The network was trained on cleaned and filtered

subtitles from about 100k films. Subtitles from 100k movies were collected

5https://www.badnewsgame.com/
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from OpenSubtitles.6. Additional model details are included in Chapter 3.

Dialogue turn-taking, timing, candidate sentence selection, and sentiment

analysis [132] on the input sentences are based on heuristics. The chatbot com-

municates with performers through out-of-the-box speech recognition (Google

Speech Recognition) and text-to-speech software (Apple Speech Synthesis).

The chatbot runs on a local web server for modularity and allows for inte-

gration with a variety of physical embodiments (e.g. parallel control of a hu-

manoid robot). The robot shown in Fig. 4.2 was manufactured by EZ-Robot.7

The parallel integration allows for modularity on the robotic embodiment, we

have explored a variety of robots (including the Nao robot from Aldebaran

SoftBank) and visual projections as illustrated in Fig. 4.3(a). Physical robotic

embodiments allow for synchronized speaking and movement. This synchro-

nization is important for explicit cueing interaction with untrained improvi-

sors, such as audience members who join the performers onstage.

The first version of our improvising artificial stage companions had their

stage presence reduced to projected video and amplified sound (see Section

3.2.1). We evolved to physical embodiments (i.e. the humanoid robot) to

project the attention of the performer(s) and audience on a material avatar (see

Section 3.3.2). Our robotic performers are distinctly non-human in size, shape,

material, actuation and lighting. We chose humanoid robotics because the

more realistic an embodiment is the more comfortable humans often are with

it; though comfort sharply drops when creatures have human-like qualities but

are distinctly non-human [235]. The physical robot also enabled us to integrate

well developed practices from puppetry and ventriloquism when developing

and performing the improvised shows. These principles include looking directly

at the puppet when it is speaking, controlling the micro-movements of the

puppet, and showing the direct link between the human and the puppet [4].

The server also enables remote connection which can override the chatbot

and give dialogue control to a human operator. Multiple human perform-

ers use headset or hand-held microphones, connected through a mixing table

6https://opensubtitles.org
7https://www.ez-robot.com
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to the audio input for speech recognition. Thus, several human performers

can perform simultaneously in the scenes. Having multiple performers, both

human- and machine-based, enables us to explore complex status dynamics

and 2-vs-1 relationships.

Figure 4.3: (a, left) Visual and (b, right) physical embodiments of the artificial
improvisor.

Improbotics is a show structure created to explore the grand challenge of

artificial improvisation [206]. The show is composed of a cast of trained human

performers (semi-professional improvisors with at least 2 years of experience).

The cast is broken down into four roles: Cyborgs, Puppets, Free-will Hu-

mans, and Controllers.

1. Cyborgs are humans who take lines via headphones from an AI-powered

chatbot overseen by a CEO Controller ;

2. Puppets take their lines via headphone from a Puppet Master Controller ;

3. Free-will Humans are free to make up their own lines of dialogue and

typically support the show’s narrative; and

4. Controllers, of which there are two sub-roles:

(a) the Puppet Master directly inputs lines for the Puppet; and

(b) the CEO who inputs scene context into an AI system that generates

lines of dialogue for the Cyborg.
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Figure 4.4: Two human performers and an audience volunteer improvising
with a robotic artificial improvisor.

4.3.2 Typical Structure of AI-based Improvised Shows

The artificial improvisors we developed have performed alongside human actors

in 30 improvised shows to date. Version 1 is named Pyggy, and Version 2 is

named A.L.Ex. The systems are described in detail in Chapter 3. Because

the shows are improvised, every one is different. That said, there are several

commonalities between the scenes which compose the show.

An improvisational scene starts by soliciting suggestion for context from

the audience (e.g., “non-geographical location” or “advice a grandparent might

give”). The human performer then says several lines of dialogue to prime

A.L.Ex. with dense context. The scene continues through alternating lines

of dialogue. Often through human justification, performers aim to maintain

scene reality and ground narrative in believable storytelling. A typical scene

lasts between 3-6 minutes, and is interrupted by the human performer when

it reaches a natural ending (e.g. narrative conclusion or comical high point).

For instance, one improv game which was played in multiple shows was

staged by setting a volunteer in a psychotherapy session with the artificial

improvisor running the code of ELIZA [344]. This performance was presented
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as an homage to the original chatbot creator, Joseph Weizenbaum.

Improbotics is structured as a collection of improvised scenes. A scene

starts by soliciting a suggestion for context from the audience [147]. This pro-

vides performers with a novel context around which to situate the improvised

performance, and primes the AI-system.

The scene consists of alternating lines of dialogue, where the Free-will

Humans provide dense context to the system (human or AI-based dialogue

model), and the Cyborg or Puppet performers respond in return. The Cyborg

and Puppet performers aim to maintain the reality of the scene and to ground

narratives in believable storytelling by justifying - emotionally and physically

- their lines. A typical scene lasts between 3 and 6 minutes, and is concluded

by the human performers when it reaches a natural ending. The performance

progresses over the course of 20-45 minutes. At the end of the show, the au-

dience votes to guess who was a Cyborg, who was a Puppet, and who was a

Free-will Human.

Our Turing test is relatively easy to solve by an attentive audience, and

similar imitation games have been explored previously [61]. We use the Tur-

ing test framing instead to both draw audience engagement and to give a

creative constraint to the performers, analyzing the experience of performers

collaborating with interactive AI tools. Additionally, it is hard to evaluate the

imitation game with a live audience because of deception required from each

attendee in a controlled but public performance setting. For this reason, we

provide the Turing test as a framework for the show though it is unlikely that

audience members were tricked for the duration of the show. The audience

can infer who is a Cyborg or Puppet based on typos (e.g., “We are stuck in

the dessert?... desert!”), spelling and grammar mistakes, lack of contextual

consistency, and ignored salient information or timing constraints. We discuss

these points in Section 4.6.

We considered a baseline show Yes, Android that is different from Im-

probotics in three aspects: 1) it relies on publicly available chatbot Cleverbot8,

which is a general small-talk conversational agent that is trained not on movie

8http://www.cleverbot.com/
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dialogue but on user interaction, 2) there is no Master or Puppet, and 3) no

guessing takes place, as the audience knows in advance who is the AI-controlled

performer.

4.3.3 Technical Configuration

The technology that enables remote control of a human player consists of a

laptop computer connected to an radio transmitter, an radio receiver with

headphones worn by the controlled performer (Cyborg or Puppet), and a pro-

gram that allows a Controller to type either the Puppet’s lines, or context

sent to an AI-based chatbot that will in-turn generate sentences to say by the

Cyborg (see Fig.4.1). We used the chatbot from HumanMachine’s A.L.Ex.

(described in Chapter 3), whose architecture is a sequence-to-sequence [318]

recurrent neural network [124] trained on movie subtitles [340].9 Full details on

the model and technical configuration are excluded for brevity as they can be

found in Section 3.2.2. Our model uses beam search to generate word-by-word

a set of 10 likely candidate responses to a given input and scene context; the

top 4 sentences (ranked by perplexity under the language model) are selected

and shown on the visual interface.

Figure 4.5: Simplified interface with the input line of context in the top red
box and four generated candidate responses in shown below in green.

The Puppet Master Controller interface is a webpage where the operator

types input context lines. Once a line is typed, it is converted to speech using

in-browser (Google Chrome) text-to-speech capability. The CEO Controller’s

9https://www.opensubtitles.org/

82

https://www.opensubtitles.org/


interface for the Cyborg is a webpage that enables to type a line of context.

Once typed, that line is sent to a server running the A.L.Ex. software returns

the top 4 likely responses. The suggestions are displayed on the webpage,

and the CEO Controller has the choice to select as many as they want or to

discard them and to type new context. When a suggestion is selected, it is

immediately converted to audio via text-to-speech, and output to speakers.

The CEO can click on multiple lines or choose to ignore them, type new input

and wait for new candidates. As we elaborate in Section 4.6, this multiple-

choice setup for the Cyborg suggestions enables the CEO to moderate what

lines are sent to the Cyborg’s headphones, and to curate suggestions to help

drive the narrative of the performance.

All performers wear headphones, and both the Puppet and the Cyborg

receive their lines through the same computer-generated voice through a text-

to-speech interface. This configuration allows for a hidden set-up where the

audience, and other performers, do not know who is playing which role.

Figure 4.6: Audience and Performer Presence Analysis over Cities. Compara-
ble systems were used and then analysed by a set of performers in four cities
(sample size shown in brackets): Yes, Android in Toronto (TOR, n = 4), Im-
probotics in Stockholm (STO, n = 6), Improbotics in London (LON, n = 7),
and Improbotics in Edmonton (EDM, n = 9). Additionally, audiences were
surveyed and data is presented for each city: LON-AUD (n = 6), STO-AUD
(n = 22) and EDM-AUD (n = 29). Data presented is the average opinion over
respondents in each group, with the 95 percent confidence interval.

4.3.4 Turing Test-based Theatrical Improvisation
Games

Starting from the transatlantic improv performance on 31 March 2017, we have

designed the AI improv show around narratives on the Turing test, computer
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hacking, scientific experimentation, friendship and loneliness, and played up

the contrast of the two human performers whose alter egos emphasize con-

trasting facets of computer scientists.

The performances at the Camden and Edinburgh Fringe festivals involved a

Turing test inspired scene conducted with the willing audience. We performed

the scene by first deceiving the audience into believing that A.L.Ex. was per-

forming independently (whereas the chatbot and the robot were controlled by

a human); then we performed a second scene with A.L.Ex. In game (1), we

explained the Turing test first, then performed the two scenes consecutively

and finally asked the audience to discriminate, through a vote, which scene was

machine-driven. In a different game (2), we performed the Wizard-of-Oz scene

and then immediately asked, in character and as part of the performance, if

the audience suspected that a human was in control of the chatbot. Feedback

from the audience provided us with insight into the suspension of disbelief

required for non-human theatre. We present observations below.

4.4 Observations

We summarize here anecdotal observations from our performance. In game (1)

(when the audience must discriminate between two scenes viewed unbiased)

nearly everyone identified the machine driven scene from the human driven

scene. In game (2), approximately half the audience members believed that

the machine was performing independently alongside human improvisor(s).

When not forewarned about the Turing test, the audience members (of di-

verse composition in age and gender) was convinced that the dialogue system

understood the details of the scene and responded immediately and contex-

tually. The propensity of this delusion is likely driven by several factors: 1)

the context within which they are viewing the deception, 2) the lack of per-

sonal awareness of the current machine learning abilities, and 3) emotional

connections with the scene.

Post-show discussions with audience members confirmed that when a per-

former tells the audience that an AI is controlling the robot’s dialogue, the
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audience members will trust this information. Being at an improvisational

show, they expect to suspend disbelief and use their imagination. Most of

them were also unaware of capabilities and limitations of machine learning

systems. This highlights the responsibility of the scientific research commu-

nity in communicating progress in effectively and to effectively invite public

understanding of system capabilities. Finally, we observed that the introduc-

tion of a humanoid robot, with a human-like voice, increased the audiences’

propensity to immerse themselves in the imaginative narrative presented to

them.

4.4.1 Evaluation

What is the best way to test an improvised dialogue system? What is a good

way to test an improvised dialogue system? As discussed previous chapters,

measuring the performance of human-machine interaction is notoriously diffi-

cult and requires investigation from both human, and machine, perspectives.

A commonly used method of evaluating interactive performance is to ad-

dress participants and audience during the show and after-the-fact, investigat-

ing experience through open questions, questionnaires or focus groups [353].

Our system was evaluated for humanness based on evaluation criteria for nat-

ural language dialogue systems in previous work [2]. In that work, the authors

discuss that the evaluation of dialogue systems should be based on comparison

with interaction with real humans: this is precisely the environment we aimed

to create with Improbotics.

Post-show questionnaire questions were based on a subset of the Presence

Questionnaire [353]. These questions were originally developed for a small

audience interacting in virtual reality domains. Questions from the original

questionnaire were reworded or excluded if they pertained to immersive experi-

ences inconsistent with improvised theatre. The final questionnaires presented

to the audience and performers measured the system on the following five

categories: 1) possibility to act, 2) realism, 3) evaluation of performance, 4)

quality of interface, and 5) possibility to examine the performance. In addi-

tion to quantitative survey-based evaluation, we report qualitative assessment
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comments. Exploring subjective opinions of performers provides us with valu-

able feedback about human-machine co-creation. These results are presented

alongside a note that because we use opt-in audience surveys, there are likely

biases in the data. That is, those audience members who choose to partic-

ipate already create a subsample of the audience. Participation in the data

collection was optional. No personal identifying information was collected.

Performers and audience gave informed consent, and the study was approved

by the ethics review board at the University of Alberta.

4.5 Results

Figure 4.7: Performer Presence Analysis over Systems. Yes, Android perform-
ers in Toronto (n = 4) used a different system than Improbotics performers
in Stockholm, London, and Edmonton (n = 22). This plot illustrates the
comparison of analysis between the two different systems. Data presented is
average opinion over respondents in group and 95 percent confidence interval.

We present here quantitative and qualitative results from experimentation

with the Improbotics system. We have deployed the experimental configura-

tion to three locations: 1) Improbotics Stockholm, Sweden (STO, n = 6), 2)

Improbotics London, England (LON, n = 7), and 3) Improbotics Edmonton,

Canada (EDM, n = 9), where n is the number of respondents. In addition

to these locations, we also provide comparative results from performers in

Toronto, Canada who performed in Yes, Android (TOR, n = 4). We addi-

tionally present data collected from audience members who attended a show

in each respective city, denoted: LON-AUD (n = 6), STO-AUD (n = 22) and

EDM-AUD (n = 29). While audience demographic data was not collected,

we infer that audiences in LON and STO were generally other improvising
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performers and audiences in EDM are representative of theatre-going patrons.

Performer and audience data from multiple cities allows us to systematically

measure the consistency and reproducibility of the experience on the evalua-

tion metrics defined above.

4.5.1 Quantitative Evaluation

The questionnaire to the performers is presented below. For the audience

questionnaire, the wording of the questions was modified to reference “the

performers” instead of “you”.

1. (possibility to act) How much were you able to control events in the

performance?

2. (realism) How much did your experiences with the system seem consis-

tent with your real world experiences?

3. (evaluation of performance) How proficient in interacting with the system

did you feel at the end of the experience?

4. (quality of interface) How much did the control devices interfere with

the performance?

5. (possibility to examine the performance) How well could you concentrate

on the performance rather than on the mechanisms used to perform those

tasks or activities?

Overall, the actors were satisfied with the performance despite the limited

realism of the setup (consistent between cities) and moderate interface interfer-

ence. We note no significant difference between Improbotics and Yes, Android.

Improvisors from LON, who had the most rehearsals and performance oppor-

tunities with the system, rated its realism the lowest but their proficiency with

it the highest, judging that the system interface did not interfere significantly

with the performance. Improvisors from EDM, who had only one rehearsal,

had the most trouble concentrating on the performance rather than on the in-

terface. We infer that, with practice, the system interface interfered less with

the performance and that practice increases proficiency. Audiences rated the

performers as having more control of the events during the performance than

the performers.
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Note that we do not split the responses from the performers of different

types (Cyborg, Puppet, Puppet Master, CEO) due to the collaborative nature

of improv and to the necessity to provide a single consistent show including

all improvisors on the stage. Additionally, we observed that if one performer

is limited in any way, it can affect the entire scene.

In addition to the qualitative questionnaire, we compare the utterance

choices that the two Controllers (Puppet Master and CEO) are providing to

the Puppet and the Cyborg respectively with lines from a script and lines

from human improvisors. For this comparison, we selected several linguistic

features (e.g. syllables-per-word, words-per-sentence, proportion of difficult

words, VADER sentiment [131], and grammatical/spelling errors) indicating

the complexity of the provided sentences.

While evaluating the quality of a dialogue interaction is difficult, these

linguistic features can provide a measure of the information contained within

each of the lines composing a dialogue. For the comparative lexicographical

analysis we used a test set of lines from four different data sources. We analyse

Lpuppet = 334 lines from the Puppet Master, Lcyborg = 2248 lines generated by

the dialogue system. We compare this lines with Lhuman = 410 lines from Free-

will Human performers in Improbotics shows and Lscript = 1675 lines from two

published scripts. The scripts that we include for the analysis are stylistically

diverse, and similar to scripts used for the Actor’s Nightmare improvisation

game. The two scripts we used are Tennessee Williams’ “A Streetcar Named

Desire” [351] and Hannah Patterson’s “Playing with Grownups” [253].

As seen on Figure 4.8, when comparing what the Master typically types

to what is found in theatre scripts or what is generated by the AI, we observe

that the Master/Puppet improvise with shorter lines, with considerably more

grammatical or spelling mistakes (which can be explained by the time pressure

on the Master to give lines to the Puppet improvisor) and with a slightly

more positive VADER sentiment (likely due to the training of improvisors

encouraged to “yes, and” by displaying positive sentiments). These results

support the conclusions that human-generated lines are shorter when typed

and longer when spoken. As well, human lines are more positive, have less
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difficult words than scripts and have more grammar and spelling mistakes

than the artificial improvisor generated lines.

Figure 4.8: Comparative Lexicographical Analysis by Source. To compare
the differences in text-based features we analyse a set of sentences from four
different sources: 1) the Puppet Master, 2) the dialogue system or AI, 3) two
published scripts, and 4) human lines transcribed with speech recognition at
a set of shows in Edmonton. Data presented is the average over each group,
with the 95 percent confidence interval.

4.5.2 Qualitative Evaluation

In addition to the quantitative evaluation, we also asked performers to pro-

vide feedback with the following prompt: How would you compare performing

alongside the system as compared to performing alongside a human?

The results from this question allow us to better understand the expecta-

tions of the performers. Selected quotes from the professional improvisational

performers who worked with the Improbotics system in a variety of roles are

presented below, grouped into themes.

Theme 1: Improvising with the system is more work.

• The system throws up some real curve balls which makes it different to

performing with a human.

• You, as a human, have to be on your toes to validate the sometimes fun

and crazy things that the Cyborg says.

• You get many more surprises when working with the system, which is

wonderful.

• It is actually quite similar to playing with a normal human [who] has a

crazy x-factor approach to improv.
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• The system gives more “out-of-the-blue” comments, and it does not feel

like it is cooperating with me to make a “perfect” scene.

• It took the scenes to wild places but it certainly felt like the whole time

you’re just trying to keep it on the rails.

• If the AI was a human player it would be a quite annoying co-improvisor,

with approx 80% screwball lines and non sequiturs.

• ...it is a lot more work for me as a human to drive the scene, and that

could be a bit lonely and cumbersome sometimes.

Theme 2: The system cannot tell complete stories.

• If you want to tell a story, humans tend to have to pick up the arc

and carry it through, since the Cyborg rarely brings arguably important

characters or plot items back.

• As long as the human performers provide the improv “platforms” then

those being controlled simply get to have fun!

Theme 3: Forces you to be a better improvisor.

• It requires more skill and practice to be able to respond to it without being

too beholden to it.

• It makes it very important to be open and accepting. Blocking or denying

of any kind only makes the “uncanny valley” deeper and more obvious.

• ...you have to be be more physical and [create] a reality which allows

space for the “curve balls”, and the cyborg’s stunted performance, to

make sense

• ...you have to listen more, and drive the scene yourself, you treat your

cyborg scene partner differently–you can’t rely on them completely

• I found it essential that the humans operating the system give performers

enough to say; once or twice I was on stage with no lines coming through!

Object work becomes super important in this instance!

Theme 4: Like performing with a novice improvisor.

• It was like performing with a very new improvisor with strange impulses.

• It takes a different mind-set, like being aware a fellow performer is very

nervous and unpredictable.

• Every improvisor is different. Any improvisor has strengths and weak-
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nesses, just like the system. Another day another improvisor.

4.6 Discussion and Summary

4.6.1 Reflections from Professional Improvisors

More than 20 professional improvisors have worked with the system and pro-

vided their experienced analysis and critiques which are summarized above.

Their feedback largely fell into four thematic categories: 1) improvising with

the system is more work, 2) the system cannot tell complete stories, 3) it forces

you to be a better improvisor, and 4) it was like performing with a novice im-

provisor. Of these themes, two are negative (1 and 2), and two are positive

(3 and 4). While working with the system is more work, this is largely due

to the design of the system, to augment the humans performance. Currently,

the system is focused on dialogue and has no notion of a “full story.” Future

work is needed to incorporate narrative representations into the system, and

we present two studies to this end in Chapter 5 and Chapter 6. The feedback

that draws parallels to performing with novice improvisors is reassuring, as

the goal of the system is to challenge the notion that “...the best improvisors

make everyone else look great.”

4.6.2 Deception and Problem Solving

Improbotics is a narrative improv show, where neither the audience, nor the

improvisors, know who is a Free-will Human, who is a remotely controlled

Puppet, and who is an AI-controlled Cyborg. The AI dialogue system is

controlled by the CEO Controller who follows the context of the scene and

the narrative progression on stage, interactively producing the next line for

the Cyborg performer. These lines are often nonsensical and add incongruity

to the ongoing scene. The randomness of these lines was addressed directly in

several of the participants’ responses. While the justification of these random

offers provides fun, it can also be isolating and challenging for the human

performers who feel they are “improvising with a beginner” and need to take

care of the narrative progression.
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The human Puppet Master Controller, who observes the improv scene from

a hidden place, and who feeds lines to the Puppet via the earpiece, is tasked

with a very difficult challenge. They need to listen to the scene and simultane-

ously type dialogue suitable for the next line. Alternatively, as we observed in

several performances, the Puppet Master Controller can pretend to be AI-like

and through playful deception (e.g. generating more nonsensical or discon-

nected lines of dialogue), introduce a wild-card into the audience’s mind.

We desire to push the imitation game as far as possible while creating

an enjoyable performance. Thus, we encourage the improvisors to act in the

most natural and intelligent way. They are expected to play to the full range

of their emotions and physicality. That said, they are also aware of the conceit

of the show and often they can introduce intrigue in the audience’s mind by

pretending to be more AI-like, more robotic. Through this “double-bluff”

any performer can act as if they are the Puppet, or Cyborg. As anecdotal

evidence, some audience members incorrectly thought that a Free-will Human

was a Cyborg in two out of six Improbotics shows in London.

Improbotics is a way to frame the task as an optimization problem for

the performers where the main objective is producing an enjoyable theatrical

performance. The secondary meta-objective, a nod to the permeable audience-

performer relationship in improvisation, is playfully deceiving the audience.

4.6.3 Lack of Contextual Consistency

Through the comparison of the performances of the Cyborg, of the Puppet

and of the classic improv game Actor’s Nightmare, we see how differently

performers handle two types of contextual consistencies in improvised narra-

tives. The first is broad consistency in the general theme of the improv (e.g.,

domain-specific vocabulary used in the scene). The second is fine-grained con-

sistency in the articulation of the story (e.g., relationships between characters,

character stance or world view).

In the game Actor’s Nightmare, where the improvisor reads consecutive

lines for a given character, selected from a random play, those lines are typi-

cally consistent among themselves, but disconnected from the general theme
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of the scene. The fun of the game derives from seeing both actors striving at

justifying the incongruity of juxtaposing, for instance, a classical drama with a

science fiction setting. When performing a Puppet, the performer is typically

given lines from a trained human improvisor who listens to the context of the

scene and types lines with both high-level thematic and fine-grained narra-

tive consistency. Despite the best efforts of the Controller who curates the

lines produced by the AI, the Cyborg typically gets inconsistent lines from the

point of view of the narrative. With the topic model incorporated in A.L.Ex.,

some thematic consistency can be maintained [212]. So, the AI, when primed

with words “ship” and “pirate”, might generate sentences about sea-faring

and sword-fighting (for additional details see Section 3.3.2). Interestingly, this

is the opposite of the Actor’s Nightmare, which lacks thematic consistency.

Rather than just incorporating topic in the model, future iterations of the

system could include additional context. For instance, models may re-inject

scene specific content (i.e. character names, locations, relationships, noun and

verb phrases) in generated responses are currently being investigated. To this

end, methods of editing prototypes by retrieving and refining candidates is an

relevant area of active research [106], [347].

4.6.4 Handling Timing in Improvisation

One of the most challenging technical hurdles for human-machine co-creation is

that of timing. Verbal interaction is defined most-notably by the characteristic

of rapid exchange of turns of talking. Gaps between these turns are often

as short as 200 ms in natural human conversation. Latencies in language

processing can be on the order of 600 ms [173]. This implies that humans are

often taking turns talking based on predictions of the next line of dialogue from

the others in the conversation. Given this extremely short latency expectation,

there is often noticeable delay for the Puppet and/or Cyborg.

Our current system has a median response time of more than 2 seconds

with some responses taking up to 4 seconds. The timing of these is seldom

below 1 second unless we queue additional responses to a single input and force

an interruption with a potentially out-of-context follow-up line. These timing
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limitations are similar to Actor’s Nightmare, where one of the improvisors is

restricted to reading lines from a script.

Luckily, such timing latencies can be smartly hidden by proficient impro-

visors through emotional, non-verbal, and/or physical actions. While, in our

previous work with an automated and un-curated chatbot, improvisors would

typically talk over a näıve robot voice responding with bad timing [212]. This

happened significantly less often with the Cyborg or Puppet in Improbotics,

because all the people waited their turn to speak. Moreover, Cyborgs had

(and used) the opportunity to skip an irrelevant or outdated line. Future

work might develop methods for better handling of timing and turn-taking.

Poor timing is a give-away for any system imitating a human conversationalist

in interactive dialogue [11], [61].

4.6.5 Human Curation of Dialogue

Currently the system is based on the natural language generation model

trained on movie dialogue presented in Chapter 3. While film subtitles are

not the optimal dataset for training a dialogue system for live improvisational

theatre, we chose this corpus to train the system because it was publicly avail-

able (unlike theatre and movie scripts), because it contained informal, realistic,

conversational language and because improvisors typically draw their inspira-

tion from movies and TV series. Given that many of the movies in the source

material are from over half a century ago, there are strong biases in the train-

ing material toward offensive or out-of-date references. That said, without a

set of improvised dialogue transcripts, movie dialogue is the best large scale

corpora available for training these models. There is a need for human mod-

eration and curation to ensure that the system is not immediately offensive.

The current system could be improved by including automated metrics for

offensive language detection and removal [67].

Improbotics is focused on developing improvised dialogue in scenic impro-

visation. While critical to human-machine theatrical co-creation, this is only

a small component of a larger automated story generation system. Incorpora-

tion of automatic plot generation techniques introduced nearly a century ago
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in [59] could augment the system with directorial abilities and event-based

story generation [205], [206]. A preliminary step towards incorporating such

plot generation techniques is presented in Chapter 6.

In this chapter, we present Improbotics, an improvised performance which

serves as a test-bed for human-machine theatrical co-creation and can be used

for improving computational dialogue-based system for live performance. The

system allows for Turing test-inspired experimentation. By confronting hu-

mans to the incongruity of machines sharing the stage with them, we can

both create new opportunities for comedy and explore approaches to human-

machine interaction. We presented results from three geographically unique

locations where the system is currently being used to perform for live au-

diences. We compared the Improbotics neural network-based and movie

dialogue-trained system, with the Yes, Android baseline system, which uses

an online, publicly accessible chat-bot. We presented quantitative analysis

evaluating the system in five categories: realism; possibility to act; quality of

interface; possibility to examine; and evaluation of performance. We present

qualitative analysis from professional improvisational performers. While this

chapter focuses on improvisation, these paradigms and results are valuable for

research in other areas of human-machine physical and verbal interaction [169],

[210].
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Chapter 5

Information-Theoretic
Narrative Generation

There is no reason why the simple shapes of stories can’t be fed into

computers, they are beautiful shapes... beautiful curves... Computers can now

play chess so I don’t understand why they can’t digest this very difficult curve

I am going to draw for you now.

– Kurt Vonnegut on the Shapes of Stories [341]1

In this chapter, we consider the challenge of designing an artificial agent ca-

pable of interacting with humans in collaborative dialogue to produce creative,

engaging narrative. Collaborative dialogue is distinct from chit-chat in that it

is knowledge building, each utterance provides just enough information to add

specificity and reduce ambiguity without limiting the conversation [320]. We

use concepts from information theory to define a narrative arc function which

models dialogue progression. We demonstrate that this function can be used

to modulate a generative conversation model and make it produce more inter-

esting dialogues, compared to baseline outputs. We focus on two antithetical

modes of modulation: reveal and conceal. Empirically, we show how the narra-

tive arc function can model existing dialogues and shape conversation models

1From his rejected master’s thesis—he considered it his greatest contribution
A preprint of this chapter is published as Mathewson KW, Castro PS, Cherry C,

Foster G, Bellemare MG (2019) Shaping the Narrative Arc: An Information-Theoretic Ap-
proach to Collaborative Dialogue. arXiv preprint arXiv:1901.11528.
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towards either mode. We conclude with quantitative evidence suggesting that

these modulated models provide interesting and engaging dialogue partners

for improvisational theatre performers.

5.1 Introduction

Designing and building computational models that generate meaningful di-

alogue for human-interaction, in an interesting and engaging manner, is a

challenging open problem. As personal digital assistants increase in popu-

larity, proper conversational capabilities may allow them to provide creative,

playful, and helpful interactions. Conversational agents can be effective for

health-care [21], by supporting cognitive-behavioural therapy for treating de-

pression [85], helping patients with chronic pain [230], and supporting remi-

niscence [245]. These applications require systems capable of understanding

and collaboration.

What makes some dialogues more interesting than others? Interesting

collaborative dialogue constructs knowledge iteratively [320] and depends on

each speaker bringing information to the conversation [288]. Interestingness is

also subjective and difficult to directly optimize via numerical methods [176],

[338].

Rule-based conversational models have existed for over 50 years [344].

These methods are limited by hand-tuning and engineering to predict and

handle possible inputs. Generative language models maximize the likelihood

of an utterance (e.g. a sentence or sequence of words) [101]. These models

can predict the likelihood of an utterance by considering the sentences as a

sequences of words, sub-word units, characters, and/or tokens [296]. This ob-

jective can result in generated sentences which are grammatically correct, and

bear a semantic relationship to the context surrounding it, but lack global

consistency [189].

Our work generates interesting dialogue by using a narrative arc to incre-

mentally construct shared knowledge. A narrative arc defines evolving quali-

ties of emotion, tension, or topic over a story [23]. We draw inspiration from
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improvised theatre, where actors collaborate in real time to develop narrative

based on thematic constraints [147]. Improvised theatre is a unique story-

telling medium which relies on collaborative dialogue in which each utterance

must carry significant information [320]. We appeal to the two golden rules of

improvised dialogue, characteristic of interesting collaborative dialogue [147],

[288]. Good dialogue should 1) accept (i.e. be consistent with the dialogue

thus far and 2) reveal (i.e. progress the dialogue with new information).

In this work, we propose a new method to modulate a conversation model,

which accepts input utterances by generating consistent and revealing re-

sponses. Our approach combines a conversational model with a topic classi-

fier, or universe model. We borrow the term universe from improvised theatre

where it is used to describe the world-as-we-know-it [147], [221], [269]. The

universe encompasses associations surrounding the dramatic world, and is mo-

tivated by the possible world semantics theory [162].

We identify two modes of operation for our shaping method: revealing and

concealing. Revealing dialogue adds additional information about the current

universe. Generating utterances which progress a scene with new information

is the primary goal of our approach. Concealing dialogue avoids exposing new

information about the universe. The ability to generate both revealing and

concealing dialogue is a convenient side-effect of this method.

The universe model characterizes the information revealed by each utter-

ance in a sequence. We refer to this information profile across utterances as the

narrative arc. By tuning the revealingness we can selectively choose utterances

to shape the narrative arc to produce more interesting and engaging dialogue.

We argue that a balance between revealing and concealing is required for in-

teresting and engaging collaborative dialogue [320]. Both over-specification

and ambiguity are undesirable [147], [288]. We hypothesize that there is an

ideal region of information revelation which our method can expose in existing

text-based narratives such as movie scripts.
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5.2 Shaping the Narrative Arc

In this section, we present a mechanism for shaping the narrative arc inspired

by combining methods exploring entropy in textual documents [303] with the

Simple Shapes of Stories described by Vonnegut.2 We describe concepts of

conversation and universe models. Then, we show how these combine to de-

scribe a narrative arc. Finally, we show how the narrative arc can be used to

generate interesting dialogue.

5.2.1 The Conversation Model

A conversation model accepts an input utterance and generates one, or several,

output utterance(s). The conversation model maintains local coherence by

conditioning output generation on the input. We write X to denote the set of

possible utterances (i.e. sequences of words); in this work, X is a collection of

English sentences. A sequence of t successive utterances is a dialogue, denoted

x1:t. A conversation model yields a probability q of an utterance xt given a

dialogue x1:t−1.

We focus on dialogue generation using three retrieval-based conversation

models. The first two models are based on the OpenSubtitles dataset [186].

Pre-processing details are included in the supplementary material. When

queried with an input line xt−1, a model returns K candidate responses:

• Baseline Random model: sample K lines from X .

• Deep neural network model (DNN): we embed all the lines in X

into a latent semantic space S using the Universal Sentence Encoder [46].

We encode the input line into S, and return the K approximate nearest

neighbours [134] in S using the L2 norm as the distance metric.3

Similar to the DNN model, a third model (Books), responds with se-

mantically related nearest neighbour lines from literature, filtered for offensive

content.4

2From K. Vonnegut lecture: https://goo.gl/JuEDVR
3http://mathworld.wolfram.com/L2-Norm.html
4https://books.google.com/talktobooks/
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5.2.2 The Universe Model

The universe model measures how each successive utterance of a dialogue in-

fluences the probability distribution over universes. For a given utterance, the

universe model calculates a probability distribution over universes. For a se-

quence of utterances, we use recursive universe belief propagation (Sec. 5.2.3)

to update the posterior over the course of a dialogue. Revealing dialogue

would concentrate probability mass on a single universe, and concealing dia-

logue would maintain posterior likelihood over a set of universes. The shape

of this sequence of posteriors is the narrative arc (Sec. 5.2.4). We investi-

gated reveal/conceal dynamics using three different universe models based on

probabilistic topic classifiers.

• Newsgroups: Using the newsgroup classification dataset, we filter out

stop-words, created frequency vectors, and use the TF-IDF (term fre-

quency / inverse document frequency) [286] word weighting scheme to

account for word importance in the corpus. We train a näıve Bayes

classifier on 5 aggregate topic universes (Computers, Recreation,

Religion, Science, and Talk) [144].

• Movies: näıve Bayes classifier, trained similar to Newsgroups, using a

collected dataset of film synopses and one of 10 corresponding genres

(Drama, Comedy, Horror, Action, Crime, Romantic Comedy,

Romance, Thriller, Film Adaptation and Silent Film) from

Wikipedia data [121].

• DeepMoji: Deep neural network that takes input text and outputs a

distribution over a set of 8 aggregated emoji universes: (Sad, Mad,

Meh, Nervous, Glad, Music, Love, and Miscellaneous) [83]. In-

put text is not transformed, and a pretrained model is used.5

5.2.3 Recursive Universe Belief Propagation

We desire a means by which we can update the universe belief incrementally

as evidence is accumulated with each successive utterance in a dialogue. We

5github.com/bfelbo/DeepMoji
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Figure 5.1: The narrative arcs of a synthetic dialogue (a), using the News-
groups universe model (b) and Movies universe model (c). This dialogue is
likely SCIENCE or TALK under the Newsgroups model, and DRAMA or
COMEDY under the Movie genres model.

begin by defining the notion of a universe model as a means of modelling

the dynamics of information revelation. Consider a finite set of universes, U .

The role of a universe model is to assess the compatibility of an utterance

with a given discrete universe, u ∈ U . Given such a model, we develop a

method to update the agent’s posterior universe distribution over a sequence

of utterances. For each universe u, the universe model assigns a likelihood

p(xt | x1:t−1, u) to an utterance xt, conditioned on a dialogue x1:t−1.

The universe model iteratively updates a posterior belief over universes,

in a similar spirit to prediction with expert forecasters [48]. The probability

of a given universe depends on iteratively combining evidence in support of

that universe. We define the the posterior probability over universes U given

a sequence of t utterances x1:t as:

pt(u | x1:t) = pt−1(u | x1:t−1)×
p(xt | x1:t−1, u)

p(xt | x1:t−1)

Where pt−1(u|x1:t−1) is prior probability, p(xt|x1:t−1, u) is likelihood of utter-

ance conditioned on the past dialogue and universe, and p(xt|x1:t−1) is likeli-

hood of utterance under the conversation model.

Let p0(u|·) = 1/|U|, u ∈ U be an initially uniform distribution over uni-

verses, or universe model’s prior. We can marginalize out the universe if the

evidence is consistent over all hypotheses. To illustrate the relationship be-

tween utterance likelihood and universe, we can explicitly write the marginal
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likelihood as:

p(xt | x1:t−1) =
∑
u′

pt−1(u
′ | x1:t−1)p(xt | x1:t−1, u′)

Thus, the posterior is updated recursively as:

pt(u | x1:t) = pt−1(u | x1:t−1)

× p(xt | x1:t−1, u)∑
u′ pt−1(u

′ | x1:t−1)p(xt | x1:t−1, u′)
(5.1)

In practice, it may be convenient to use the output z(u|xt) of a probabilistic

classifier in lieu of a likelihood function conditioned on past utterances x1:t and

universe u. Universe classifiers can be trained separately from language mod-

els, and provide complementary signal if model input distributions overlap.

This assumption is justified when both models work with similar training cor-

pus vocabularies. We view the probability distribution over universes output

by the universe model as derived from a joint distribution z(u, xt), of the uni-

verse u, and utterance xt. With z(u) as the prior distribution over universes,

the conditional probability is:

z(u | xt) =
z(u, xt)

z(xt)
= z(u)× z(xt | u)

z(xt)

We can substitute z(·|xt) for p(xt|x1:t−1, ·) in Eq. 5.1 by assuming con-

ditional independence (i.e., p(xt | x1:t−1, u) = p(xt | u)), uniform prior dis-

tribution (i.e., z(u) = 1/|U|, u ∈ U) and constant marginal probability (i.e.,

z(xt) =
∑

u′ pt(u
′)p(xt | u′)). These assumptions are justified when the proba-

bilistic topic classifier is a näıve Bayes classifier with uniform prior [22]. Thus,

the substitution follows the following steps:

p(xt|x1:t−1, u) ≈ z(xt|u) [cond. independence]

=
z(u|xt)z(xt)

z(u)
[Bayes’ theorem]

≈ z(u|xt)z(xt) [z(u) uniform prior]

≈ z(u|xt) [z(xt) const. marginal]

102



Eq. 5.1 thus becomes:

pt(u | x1:t) = pt−1(u | x1:t−1)

× z(u | xt)∑
u′ pt−1(u

′ | x1:t−1)z(u′ | xt)
(5.2)

5.2.4 The Narrative Arc

As defined in Eq. 5.2, the posterior pt(·) is a function of the dialogue x1:t. We

define the narrative arc as the sequence of universe distributions p0(·), p1(·), . . .

iteratively calculated for the dialogue. The arc depicts the evolution of a belief

over a set of universes. The narrative arc function maps X t → S(U)t, where

S(U) is a probability simplex over U . We discuss three properties of the

narrative arc of the synthetic dialogue shown in Fig. 5.1:

1. Utterances affect the arc in varying degrees. “My favourite

scientist and academic is Albert Einstein” is similarly likely under Science

and Talk, and less likely under the Recreation universe (bottom green

line). Different utterances should have different effects on pt(·).

2. A concentrating posterior signals a revealing dialogue.

A dialogue which emphasizes scientific content, for example, should see

pt(Science|·) → 1. Conversely, we would expect a concealing dialogue to

spread the posterior across multiple universes.

3. A universe model is a perspective on dialogue. Different uni-

verse models can expose different aspects of the same dialogue. Replacing

the Newsgroups universe model by a Movies universe model suggests the di-

alogue is from a Drama and/or Comedy universe. This dialogue would be

considered revealing under both universe models.

In this section, the universe model was applied to a fixed dialogue x1:t, but

the model also provides a criterion for favouring utterances when generating

dialogue.
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Figure 5.2: First 20 lines of Romeo and Juliet modelled with Newsgroups
(top), Movies (middle), and DeepMoji (bottom) universe models.

5.2.5 Generating Dialogue with the Narrative Arc

The entropy of the posterior pt(·) is given by:

H(pt(·)) := −
∑
u∈U

pt(·) log pt(·)

Then, the entropy change ∆(·) due to a new utterance, xt, given the past

dialogue, x1:t−1, is defined as:

∆(xt ; x1:t−1) := H(pt−1(·))−H(pt(·))

The term ∆(xt ; x1:t−1) measures how much a given utterance xt changes the

entropy of the posterior, given the previous utterances x1:t−1. A positive value

of ∆(·) is a reduction in entropy (i.e. revealing). Conversely, a negative value

of ∆(·) is an increase in entropy (i.e. concealing). We define the score of an

utterance xt, with respect to a dialogue, x1:t−1, as:

σ(xt ; x1:t−1) := exp{α∆(xt ; x1:t−1)}, α ∈ R

The exponential function is a convenient way to ensure strict positivity and

preserve the ordering of scored candidates. We use our entropy-based score

function σ to modulate the sampling of a base conversation model, q, toward
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q̃, which depends on the change in entropy due to the new utterance.

q̃(xt | x1:t−1) ∝ q(xt | x1:t−1)× σ(xt ; x1:t−1) (5.3)

If α = 0, σ(·) = 1 and candidates are sampled according to q̃ = q. If α 6= 0, q

is modulated by the score σ(·). Modulation mode depends on the value of α:

• α > 0 (reveal): modulate q towards revealing the universe. The prob-

ability of utterances likely under the universe with highest probability

are increased.

• α < 0 (conceal): modulate q towards concealing the universe. The

probability of utterances likely under multiple unlikely universes is in-

creased. Utterances not supporting the likely universe are made more

likely.

We use these two modulations for filtering samples from our base conver-

sation model. We filter via one of two methods for sampling from an unnor-

malized distribution: greedy sampling and rejection sampling. Greedy

sampling scores a set of samples from the conversation model and selects the

candidate with the maximum score. Scoring a large set of candidates can

be time intensive. Rejection sampling (Alg. 2) can sample from the desired

unknown modulated distribution online [237]. Additional details on rejection

sampling are included in the supplementary material. As the entropy function

is bounded, the utterance score σ is bounded. In practice, we set a max score

and weigh all utterance scores σ above the threshold equally. Both filtering

methods have benefits. Rejection sampling provides a smoother distribution

and does not require scoring a large set of candidates. Greedy sampling is less

sensitive to the range of ∆ from different utterances.

5.3 Evaluation

5.3.1 Narrative Arc of Existing Dialogues

In Fig. 5.2, we visualize the narrative arc underlying the first 20 lines of

Shakespeare’s Romeo and Juliet using three universe models: 1) Newsgroups,

2) Movies, and 3) DeepMoji.
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Algorithm 2 Generating dialogue with rejection sampling.

Given: conversation model q, scoring function σ, first line x1, length N ,
max score M , max samples S
Return: dialogue x1:N
for t in 2...N do

while step ≤ S do
sample xt ∼ q(xt|x1:t−1)
sample r ∼ Uniform(0, 1)
if r ≤ σ(xt ; x1:t−1)/M then

append xt to x1:t−1
break

Fig. 5.2 illustrates the entropy-reducing nature of good dialogue by showing

us the underlying, evolving, narrative arc. Under the Newsgroups universe

model, the dialogue evolves toward a talk-centric universe. Under the Movies

model, the same dialogue balances between comedy and drama before shifting

towards drama. Finally, using the DeepMoji universe model, a developing

ambiguity between DeepMoji universes Sadness and Love is uncovered. This

supports the hypothesis that existing dialogues exhibit underlying narrative

arcs conditioned on universe models. Additional samples exposing narrative

arc dynamics are presented in Appendix F.

5.3.2 Shaping the Narrative Arc

In this section, we demonstrate that our method is able to modulate conversa-

tion models toward generation of revealing or concealing dialogues. Linguistic

quality and semantic consistency of utterances are determined by the language

underlying the conversation model. Here, we emphasize evaluation of narrative

arc shaping.

We use the DNN conversation model to test how preferential selection,

induced by our score function, can modulate information introduced into the

conversation. In Fig. 5.3 we present characteristic narrative arcs and dialogues

using concealing (top), neutral (middle), and revealing (bottom) modes. Each

generation was primed with the first two lines from Romeo and Juliet (shown

in bold in Fig. 5.3).

A significant difference is exposed between concealing (top) which tends
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Figure 5.3: Narrative arcs over 10 utterances at increasing α values: concealing
(top), neutral (mid), revealing (bottom). On the right are utterances generated
by each model after priming (bold). Dotted red line indicates the start of
narrative arc shaping.

toward a high entropy, uniform universe distribution, and revealing (bottom)

where drama tends toward 1.0. Drama remains the most likely universe (and

visible on all plots) as it was supported by the first two lines and subsequent

utterances did not significantly shift the distribution. Fig. 5.3 also shows the

dialogue generated by the model. Concealing utterances do not add informa-

tion to the dialogue, revealing utterances incorporate new information over

the course of the dialogue.

We next evaluate our method’s ability to generate concealing/revealing

dialogue by measuring the entropy under both an objective universe (i.e. the

universe model used for scoring in generation) and a test universe not used for

scoring. We use the Newsgroups universe model for objective scoring and the

Movies model for testing. A random conversation model is used to generate

response candidates.

We generate 20 conversations following a process similar to Algorithm 2
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but using greedy sampling. Each conversation starts with a random dialogue

starter line to encourage diversity and then 19 lines are sampled from the

conversation model using the narrative arc function. This approximates the

length of a medium-duration improvised conversation [288].

Results are presented in Fig. 5.4. There is a significant difference between

the entropy under the objective and testing universes, but each model exhibits

similar dynamics over the dialogues. We conclude that concealing dialogue can

conceal under multiple universes, and revealing dialogue can reveal information

under multiple universe models.

The revealing/concealing dynamics of each utterance may be related to

measurable lexicographical qualities such as words per sentence (WPS). We

analysed the language used in 190 lines from each model and found a significant

difference (p < 0.001) between utterances selected by the revealing model

(9.26±5.7 WPS) and utterances selected by the concealing model (5.05±2.79

WPS).

Figure 5.4: Revealing and Concealing across Universe Models. Dialogue gen-
erated to be (a) revealing (α = 20) under the objective model Newsgroups
is revealing under the testing Movies universe. The same is true for (b) con-
cealing (α = −25) dialogue. Data shown are means and standard deviation
(shaded) over 20 runs of random conversation model.

5.3.3 Predicting the Next Best Line

We next test the system’s ability to add information to improve performance

on a prediction task. Given a sequence of 5 gold-standard conversational

utterances and a list of 10 next utterance candidates (i.e. the ground truth
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and 9 distractors), can the universe model be used to improve accuracy of

predicting the ground truth?

Evaluation compares top-3 accuracy and mean reciprocal rank (MRR)

over samples in a held out test set. Accuracy measures the likelihood that

the system scores the ground truth within the top-3 candidates against the

distractors. MRR compares average ground truth ranking across conditions.

A text2text Transformer language model was trained on the OpenSubtitles

dataset [186] to predict an output line given a set of input lines [335]. Addi-

tional details are included in Appendix F.

The trained Transformer model was used to assign a perplexity score for

output line candidates given an input context line. For each unique subtitle

file in the validation and test sets, the concatenation of the first 5 lines serve as

input context and line 6 is the ground truth output to be predicted. Negative

candidates are randomly selected from lines in the respective corresponding

data segment (i.e. validation or test sets), thus may not be from the same

source file as the input context lines.

The perplexity under the trained conversation model serves as the unmod-

ulated probability q(xt|x1:t−1) (Eq. 5.3) of selection in the prediction task.

The input sequence is then passed, line-by-line, through a Newsgroups uni-

verse model and a score is assigned to each candidate relative to the change in

entropy of the evolving posterior. The α value is modulated over 100 evenly

spaced values between [−2, 2]. The accuracy of predicting the ground truth in

the top-3 candidates and the MRR of the ground truth are computed.

The results on the validation set are shown in Fig. 5.5. By selecting the

correct α value, the likelihood of correctly selecting utterances revealing an

incremental amount of information increases significantly. Note the shape of

the curve as α changes. As hypothesized, there exists a region, between 0 and

1 where the ‘right’ amount of universe information is revealed. This region

corresponds to the notion that each line of dialogue will reveal some, but not

too much, information about the universe. As α continues to increase, the ac-

curacy decreases below the neutral baseline. The top-3 accuracy of prediction

increases when the universe model boosts the probabilities of appropriately
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CM UM Top3Acc MRR

T2T@5 NG 0.520 0.456*
T2T@5 Neutral 0.507 0.444
T2T@1 NG 0.483 0.428*
T2T@1 Neutral 0.469 0.412
Unigram NG 0.366 0.337*
Unigram Neutral 0.296 0.290
Random Neutral 0.302 0.294

Table 5.1: Results for predicting the next line. CM is the conversation model,
UM is the universe model, Top3Acc is the accuracy of predicting the ground-
truth in the top-3 of 10 candidates, and MRR is the mean reciprocal rank of
the ground truth. Unigram CM calculates the perplexity of each candidate
given the input lines as training corpus. T2T@N is a Tensor2Tensor Trans-
former model which uses the previous N lines as an input to predict the output
and NG is the Newsgroups universe. A Neutral universe model represents no
modulation which is equivalent to α = 0. ∗ indicates p < 0.05 for a Students’
t-test comparing MRR to the Neutral model.

revealing dialogue. The validation set is used to set the optimal α, which is

then used to score samples in the test set and results are presented in Ta-

ble 1. Two additional models are included for comparison. T2T@1 uses 1

preceding the ground truth as context. Unigram assigns a perplexity to out-

put candidates by building a unigram language model using the 5 input lines

as a corpus. A smoothing factor of 1 × 10−5 is used for out-of-vocabulary

words. Additionally, a random conversation baseline model is included. For

each model tested, information from the universe model significantly improves

the predictive accuracy on this task.

Figure 5.5: Information revelation region as α varies for (left) top-3 accuracy
and (right) MRR in universe model modulated prediction task
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5.3.4 Interactive Collaborative Dialogue

Finally, as a practical implementation case-study, we tested how this system

performs in collaborative dialogue through interaction with humans. 4 expert

improvisational theatre performers engaged with the system in 3 text-based

conversations. Each conversation consisted of 5 utterance-response pairs for a

total of ten utterances (i.e. an average length of a short-duration improvised

scene [288]). Subjects are native English speakers with 5+ years professional

performance experience and are familiar with shared narrative development

and collaborative dialogue. Each interacted with revealing, concealing, and

neutral models in a randomized order unknown to the them. Transcripts of

actor-system dialogues and qualitative feedback are included in Appendix F.4.

As described in Sec. 5.2.1, this experiment used the Books conversation

model and the DeepMoji universe model. Following the interactions, each

performer was asked the following question: “please rank the conversations

from 1 (most engaging) to 3 (least engaging)”. Engagingness was defined to

align with the notions of revealing and concealing in this work. An agent is

engaging for shared scene development if it brings just enough information to

add specificity and reduce ambiguity but not limit the conversation.

Three of the four performers ranked the revealing model, α > 0, as the most

engaging. Those three performers ranked α = 0 as being less engaging due to

being “too random”. All subjects ranked α < 0 as being least engaging and not

bringing enough information to the scene. These results support the hypothesis

that α can effectively modulate the engagingness of collaborative dialogue

in human-machine interaction. Qualitative feedback from expert assessment

surveys are included in Appendix F.5.2.

5.4 Related Work

Collaborative dialogue between humans and machines has been proposed as

a grand challenge in artificial intelligence [34], [206], [211]. Previous meth-

ods have used hard coded rules, decision trees, and event representations to

generate novel narrative chains [203]. We used an deep neural network-based
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generative language model enhanced with universe model information in the

context of improvised theatre [212].

While neural response generation systems provide a trainable end-to-end

system for language generation, these methods are prone to providing generic,

unspecific responses [177]. Advances have improved generated responses by

optimizing sentence encoding and decoding jointly, post-generation candidate

re-scoring [30], [313], [340], reinforcement learning [176], hierarchical models

for distilling extended context [300], and auxiliary training objectives, such as

maximizing mutual information [177], and personality specificity and consis-

tency [178], [364]. In future work, universe models and conversational models

could be trained jointly.

Our work is related to the controlled generation of text using disentan-

gled latent representations [9], [129], [365]. Previous work has used a topic-

transition generative adversarial network to enforce smoothness of transition

of subsequent utterances [181]. These methods use neural encoder-decoders

and generate responses given an input sequence and a desired target class for

the response.

Other work has aimed to improve candidates returned by retrieval-based

conversation models [349]. These methods utilize a conversation model to find

similar prototypes using embedding distances and refine prototypes with a

sequence-to-sequence model [106]. We do not refine candidates from the con-

versation model, rather we sample and select using a scoring function defined

by the revealing and concealing parameter.

Similar to universe models, topic models or lexical fields have been shown

capable of tracking general subjects of a text [25], [92]. Dynamic topic models

characterize the evolution of topics over a set of documents over time [24].

Our work differs in that we generate dialogue using the evolving probabilistic

belief during a single conversation, as opposed to tracking topical shifts over

longer time-scales. Using a probabilistic classifier for narrative tracking has

been explored previously [232], [274]. These works used sentiment classifiers

to track emotion and plots arcs through narratives. We extend these works by

using probabilistic universe models collaborative dialogue generation.
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5.5 Discussion and Summary

While innovations have improved the linguistic quality, semantic alignment,

and consistency of utterances generated by neural models, generated conversa-

tions still lack interestingness and engagingness. Our work generates engaging

dialogue by shaping the underlying narrative arc as opposed to improving the

training of generative language models. The methods presented are agnostic

to both the universe and the conversational model used. Using rules from

improvised theatre, we quantitatively define the evolution of interesting and

engaging dialogue.

In this work we focus on genre, emoji, and topic-based universe models.

Other universe models to be explored involve causality of events, directions

of relationships, or audience reaction prediction [59], [76], [158], [276], [329].

While this work explores the interaction between a base conversation model

and a universe model, this method could be compatible with image or video

generation.

The main contribution of this work is the computational formalization

of the narrative arc, an information-theoretic framework for collaborative dia-

logue interaction. The framework fills a gap in previous research by connecting

the utterance-level improvements of language models with the conversation-

level improvements of universe tracking. This is done by sampling candidates

from a conversational model using a universe model and the narrative arc.

We illustrate narrative arcs underlying popular dialogues and show how uni-

verse models can be combined with conversation models to generate interesting

dialogue. We present empirical results showing how the narrative arc can im-

prove accuracy on a next line prediction task. Finally, we present an expert

user-study to validate our model.
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Chapter 6

dAIrector: Contextual Story
Arc Generation

[In] artificial intelligence. . . machines are made to behave in wondrous ways,

often sufficient to dazzle even the most experienced observer. But once a

particular program is unmasked, once its inner workings are explained. . . its

magic crumbles away. . .

– Joseph Weizenbaum, 1966

dAIrector is an automated director which collaborates with humans story-

tellers for live improvisational performances and writing assistance. dAIrector

can be used to create short narrative arcs through contextual plot generation.

In this work, we present the system architecture, a quantitative evaluation of

design choices, and a case-study usage of the system which provides qualitative

feedback from a professional improvisational performer. We present relevant

metrics for the understudied domain of human-machine creative generation,

specifically long-form narrative creation. We include, alongside publication,

open-source code so that others may test, evaluate, and run the dAIrector.

A version of this chapter was presented as Eger M and Mathewson KW. (2018)
dAIrector: Automatic Story Arc Generation through Knowledge Synthesis. Joint Intelligent
Narrative Technologies / Intelligent Cinematography and Editing Workshop at AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE). November
2018. Edmonton, Alberta, Canada.
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6.1 Introduction

Improvisational theatre (improv) is an art-form in which narratives are devel-

oped ad-hoc in front of a live audience [147]. Performers are prompted with a

concise, ambiguous suggestion (e.g. a location or character relationship) and

then share narrative development through action and dialogue. Often these

prompts are provided by the audience throughout a performance. The most

interesting challenge of improvisation is incorporating new suggestions, seem-

ingly unrelated to the narrative. Improvisation’s live justification has been

proposed as a model for real-time dynamic problem solving [200], [315]. Im-

prov has been proposed as a grand challenge for machine learning systems [206]

potentially as an extension to the Turing test [211], [330]. The dAIrector col-

laborates with human improvisors for semi-automated story beat generation,

suitable for improvisation performance, through knowledge graph synthesis.

First, we describe some background on story generation, improvisational the-

atre, and plot graphs (from Plotto and TV Tropes). Then, we describe our

approach and present quantitative and qualitative evaluation. We conclude

with discussion of limitations and future work.

6.2 Background and Related Work

6.2.1 Automated Story Generation

The research problem of automated story generation (ASG) is concerned with

generating a sequence which collectively form a narrative [59], [224]. The se-

quence can be composed of abstract concepts such as events or actions, or

concrete text-based elements such as paragraphs, sentences, words, or char-

acters. Different levels of abstraction and concreteness are accompanied by

different challenges. For instance, stories defined at high levels of abstrac-

tion maintain step-to-step coherence easier but are simplified and lack unique,

specific details.

Previous ASG systems have used symbolic planning and extensive hand-

engineering [277]. Open story generation systems use machine learning tech-
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niques to learn representations of the domain from the training data and incor-

porate knowledge from an external corpus [174]. Martin et al . [204] address the

abstraction level challenges by using recurrent neural networks (RNNs) and an

event representation to provide a level of abstraction between words and sen-

tences capable of modelling narrative over hundreds of steps. They provide a

method of pre-processing textual data into event sequences and then evaluate

their event-to-event and event-to-sentence models. Our methods are distinct

from this technique as we do not focus on the problem of sentence genera-

tion from words or characters. The dAIrector embraces human co-creators to

provide dialogue for given plot point descriptions and context.

Narrative generation approaches, such as TALESPIN [223], focus on ac-

tions, their effects, and element relationships to delineate character inten-

tions [277] and conflict [342] which ultimately leads to satisfying an author

defined goal. Alternatively, there may be no predefined goal, and systems may

discover actions autonomously [324], ideally resulting in an interesting story.

To produce an interesting story in the context of improv theatre, however, the

prescription of actions (e.g. lines of dialog, character choices, stage directions)

is less desirable. A description of a situation suffices to inspire actors who can

then translate the prompt into actions, with vague and ambiguous prompts

giving the actors freedom to explore the scene [288].

6.2.2 Digital Storytelling

The ad-hoc storytelling experience present in improv theatre has been used

for research into digital storytelling for more than two decades. Perlin and

Goldberg [256] use concepts from improvisational theatre to populate virtual

worlds, while Hayes-Roth and van Gent [112] describe virtual agents that per-

form improvisational theatre, modifying their appearance to convey simulated

emotional state. Several knowledge-based approaches have been proposed for

various problems in the space of acting in the improv theatre, such as scene

introduction [246], fuzzy reasoning [199], affect detection [363], and robotic

actors [212].

Through collaboration between human and machine, complex stories can
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be constructed. Generative plot systems have been developed for nearly 100

years [59]. These systems aim to aid human creators with algorithmically gen-

erated prompts to explore diverse plots. Through interaction with generative

systems, users are inspired to engage with topics they would not have other-

wise. The excitement of exploring unknown spaces and engaging with novel

topics defines the art-form of theatrical improvisation [147].

6.2.3 Improvised Theatre

In improvised theatre (improv) there is no script and no rehearsal; the show

is written and performed at the same time. It is an art derived from the

spontaneous justification of pseudo-randomness. Improvised theatre has been

described as a suitable test bed for human-machine co-creation systems [200],

[206], [212]. In improv, performers must attend to, and remember, details in

the story and must synthesize previous information with novel dialogue and

actions to progress a narrative. Often, the use of external prompts (or sug-

gestions) are utilized to add entropy to the performance [147]. This motivates

actors to justify information within the context of the current scene [288].

Improvised scenes can be summarized in three stages: platform, tilt, finding

a new normal [147]. The platform of the scene defines what is normal in the

universe (i.e. who, what, when, where). The tilt provides flavour.1 A tilt

re-frames the scene with a different context. It is what makes this particular

performance unique from others with a similar platform. Finally, finding a new

normal is how the scene justifies the tilt towards resolution. These three stages

enable investigation of the ability of the dAIrector to generate cohesive plots

and develop context-rich narrative. Our work addresses the specific aspect

of generating prompts for the actors on stage during an improvised theatre

performance. These prompts constitute the beats of the story in form of a

platform, as well as tilts for the actors. It is then up to the actors to act out

the scene to find a new normal.

1http://thewayofimprovisation.com/glossary.php
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6.3 Approach

We present an improvised narrative co-creation system called dAIrector which

acts as an automated director to collaborate with humans storytellers for live

improvisational performances and writing assistance. The generated stories

are represented as linked clauses taken from William Wallace Cook’s “Plotto:

The Master Book of All Plots” [59] augmented with related information from

TV Tropes2—a wiki-style database that contains narrative tropes occurring

in a wide range of different narratives. Human artists can rapidly link the

provided prompts to collaboratively evolve a narrative through dialogue and

actions. In this way, the dAIrector augments human creativity. We discuss the

challenges of evaluating a tool that, by design, provides ambiguous guidance.

We conclude by presenting several directions for future research.

6.3.1 Plotto

Our work builds on the narrative development book “Plotto: The Master Book

of All Plots” by William Wallace Cook [59], which contains a large variety of

plots. What makes it suitable for a computational application is the graph

structure. Rather than enumerating plots, Cook split them into fragments

with instructions on how to combine them.

The plot fragments constitute nodes and edges between them describe

which fragments can be connected to obtain a story. Edges can have labels,

which contain instructions for changing character symbols in subsequent plot

fragments (e.g. changing character A to character B). Figure 6.1 shows a

sub-graph from Plotto, each node a plot point and each edge a modification.

Fragment 746 is defined in Plotto as: B, who was thought by the people of her

community to have supernatural powers, is discovered to have been insane - a

condition caused by a great sorrow. This fragment can be followed by either

fragment 1441a: A seeks to discover the secret of Life, or fragment 1373: A

sells his shadow for an inexhaustible purse. Both of these fragments make

no mention of B, who is the main character of fragment 746. Therefore, the

2http://tvtropes.org/
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Figure 6.1: A sub-graph from Plotto. Nodes are plot fragments with corre-
sponding numbers from Plotto, edges are connections between plot points and
edge labels correspond to instructions for character modifications in subse-
quent fragments.

modifying edge instructs us to change A to B, ensuring consistency of the

characters used. These three nodes represent just a small fraction of the entire

3000 notes contained in Plotto. We automatically parse the nodes and edges

into a JSON-based representation of the graph. Thus, generating a story is

done by performing a walk through the graph starting at any random node.

Eger et al . (2015) used a similar method to build a plot generator utiliz-

ing the plot fragments [76]. Since the plot fragments in Plotto are abstract

descriptions of plot points, ambiguous, and contain symbolic names for the

characters, the generated plots are less than suitable for presentation to an

audience. The ambiguity and openness make them ideal for interpretation in

improvised theatre. These plot points represent platforms for scenes additional

related details are needed to tilt the scene.

6.3.2 TV Tropes

TV Tropes is a wiki-style website that contains narrative tropes, i.e. patterns

or situations that occur across a variety of different narratives. As a wiki,

tropes often contain references to other, related tropes. Of particular inter-

est for our work are TV Tropes’s plot tropes which describe high level plots

abstractions. While related to those plots in Plotto, this TV Tropes graph

contains unlinked semantically related, complimentary information.

The story beat is an identifiable moment of change in a narrative [209],
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[220], either in the form of a new platform or as a tilt. By connecting the

Plotto graph plot points as platforms and the TV Tropes plot tropes as tilts,

the dAIrector creates complete abstract narrative descriptions.

As described above, story generation using Plotto can be thought of as a

walk through the graph of plot fragments. For a performance, dAIrector starts

at a random node in the graph by presenting it to the actors on stage. We

call the plot fragment presented to the actors by the system the platform. The

actors can prompt the system for 1) the next platform in form of a new plot

fragment or 2) for a tilt to refine the current scene, and the system will use

the platform to determine which plot fragment or tilt to present next.

6.3.3 Paragraph Vectors

Our system utilizes paragraph vectors to provide information dependent on

the current platform. Paragraph Vector is an unsupervised machine learning

method to represent variable-length input text in a dense, fixed-length feature

vector [166]. Paragraph vectors overcome limitations of ignoring word order

and semantics of naive bag-of-word methods. To train the paragraph vector

model, we use the full text of the plot fragments, as well as the descriptions of

the tropes. We follow the training as described by Le and Mikolov (2014) and

use the Doc2Vec3 method from Gensim 4. Training parameters are as follows:

• Dimensionality of feature vector: 410

• Initial learning rate: 0.03

• Maximum distance between the current and predicted word within a

sentence (window): 4

• Ignore all words with fewer than two occurrences

• Negative sampling is used with 4 noise words

All other parameters are defaults as defined in Gensim.

During a performance, the current platform is used as to find the next

platform or a tilt. Alternatively, instead of using the current plot fragment,

actors may also provide a custom prompt to the system to steer the plot in

3https://radimrehurek.com/gensim/models/doc2vec.html
4https://pypi.org/project/gensim/
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a certain direction. When queried, the dAIrector returns 5 tilt options with

minimum cosine distances in vector space from the entire space of candidate

options [46], [228]. For vectors A and B the cosine distance, or angle distance

between two vectors, is defined as d(A,B) = 1− A·B
‖A‖‖B‖ .

As noted above, we use the full text of the plot fragments, as well as the

descriptions of the tropes to train the paragraph vector model. However, since

these descriptions are typically several paragraphs long, we only communicate

the trope names to the actors. While we perform all comparisons against the

full textual description of the tropes, this description is never displayed to the

actors. This allows us to keep the instructions from the dAIrector concise open

ended while providing additional, related information [288].

6.3.4 Plot Tree Generation

Rather than generating a single plot from the Plotto graph we generate a tree,

with one start node chosen randomly and all successors as children. Each of

these children has its successors as children up to a configurable depth. By

default, the platform used to determine the next scene is the current plot

fragment, but actors may prompt the system for a plot fragment that aligns

more closely with their interpretation of a scene or details which arose from

the scene improvisation. A performance of such a plot tree starts at the root

node, and proceeds down the tree, where child nodes are chosen depending on

the prompts given by the actors.

For example, the plot fragment Carl’s friends, Doug and Fred, believe that

Lisa, whom Carl is about to marry, is a woman of immoral character, has

two successors: Carl seeks to free himself from certain meddlesome influences

and Lisa, harassed by gossip that reflects on her integrity, seeks deliverance

from false suspicion. Depending on which aspect of the original plot the ac-

tors decide to focus on, the interference of Doug and Fred in Carl’s affairs

or the rumours that Lisa is of immoral characters, one or the other successor

is better suited. Note that neither successor is completely unsuitable in any

case, meaning that the platform can provide guidance for the system, but that

guidance does not necessarily have to be followed.
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6.3.5 Contextual Tilts

In addition to simply traversing the plot tree, the system can also provide tilts

in the form of plot tropes obtained from TV Tropes. In this case, the platform

is used to find a selection of tropes that fit best with the current plot fragment.

Tilts provide additional information. Thus, rather than returning the single

trope is closest to the platform, our system computes the 5 most semantically

similar tropes and then returns a random sample from the related set.

Prior to sampling, plot fragments are filtered and excluded if they only

provide redundant information. For example, if the platform is Albert, an in-

efficient, futile sort of person, comes to believe that he is the reincarnation of

Nicola Tesla, the best fitting trope according to our system is Reincarnation,

which does not provide any additional information. However, the trope that

has the second lowest distance is Deal With The Devil, which provides addi-

tional guidance for the actors. In a performance, the actors can utilize this,

for example, to narrow down how Albert came to his belief, by making a deal

with the devil. This provide the scene additional directions to explore, but

it is up to the actors to decide when they would prefer a tilt for additional

guidance and when they want to follow their own impulse for where the scene

should go.

To eliminate redundant tropes, we compute the word intersection of words

with more than 3 letters (to exclude articles, pronouns, etc.) with the plat-

form and discard any tropes for which this intersection is non-zero. In the

example above, because the word reincarnation is also part of the platform

this particular tilt would not be provided by the system.

6.3.6 Stage Presence

For a performance, the system provides output in the form of platform beats

and tilts, according to prompts given by the actors. The pseudo-code of this

process is as follows:
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# Get a s t a r t i n g plat form
plat form = root ( p l o t t r e e )
# Display the plat form
present ( p lat form )
whi l e p lat form :

# Get input from the human
request , prompt = ge t input ( )
# Context i s p lat form or user input
context = plat form
i f prompt :

context = prompt
# Return the plat form or t i l t
i f r eque s t == ” plat form ” :

p lat form = best match ( context , c h i l d r e n ( plat form ) )
pre sent ( p lat form )

i f r eque s t == ” t i l t ” :
t i l t = random ( best n match ( context , tvtropes , n ) )
pre sent ( t i l t )

Code Sample 6.1: Pseudo-code for dAIrector plot generation.

When the actors request either a platform beat or a tilt, the system uses

the paragraph vector model to find the best match among all candidates for

the given prompt, which defaults to the last presented platform beat. For the

next platform the candidates are the Plotto plot fragments that are children

in the provided plot tree, while for tilts the candidates are all TVTropes plot

tropes.

The basic mode of interaction with our system is through a console-based

application. This application will present the plot fragments in order, and can

be prompted for the next platform or a tilt. For a live performance, this mode

is less convenient and therefore we also provide the capabilities for speech

input and output, realized through speech-to-text using pocketsphinx [130]

and text-to-speech using the built-in say operating system command. Using

this interaction mode, the system reads plot fragments and tilts out loud,

and the next platform beat or tilt can be obtained by the actors saying the

corresponding keywords.

Plot fragments, as contained in Plotto refer to characters in the story us-

ing codes, including A for the main male character, B for the main female

character, but also very specific codes such as AUX for a fictitious aunt. As

part of presenting the plot fragments to the actors and audience, our system

replaces these codes with consistent character names. This is controlled via a
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configuration file, with default names provided by the system. For clarity, we

present all plot fragments in this paper with names replaced. Note that at this

point we do not change pronouns if character symbols are replaced since that

would require automatic identification of the referent of each pronoun, which

is outside the scope of this work.

6.4 Evaluation

Given the unique environment of an improv theatre performance, evaluating

the quality of output is challenging; there is often no catastrophically “wrong”

output [212]. That said, given the platform some tilts will require significantly

more justification to produce a satisfying narrative [288]. For our work, the

main challenge lies with evaluating the platforms and tilts of story fragments.

Having humans annotate multiple story fragments with the best fitting

trope is a challenging multi-class classification problem. For example, the

plot fragment Joe, becoming aware of an old prophecy, unconsciously seeks to

become like the exalted protagonist of the prophecy could be seen as having any

of the tropes Prophecy Twist, Self Fulfilling Prophecy, The Unchosen One, or

Because Destiny Says So (among others) as the “correct” fit. For this task, we

report how well our system reproduces human-assigned tilts on our test set.

6.4.1 Evaluation of Tilts

To test the key functionality of dAIrector, that of selecting a best-fitting tilt

given a plot fragment, we design a simple task. First, we generated a dataset of

100 clean, labelled tilt – plot fragment pairs. We split this dataset into training

and testing sets. For evaluation, we sample a random plot fragment from the

test set and the task for the system is to correctly predict the associated

tilt. Given a plot fragment our model returns the 5 candidate tilts with the

minimum cosine distance. We evaluate the system based on top-5 accuracy.

Clearly stated for explicitness, given a plot fragment, how likely is it that the

associated tilt is in the 5 results returned by the system? This number is

reported over the entire 20 examples in the test set.
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One insight gained from this approach was that while the tropes produced

by the system are usually related to the text fragment, there are several tropes

that are vague and apply to many scenarios, while others, which are often more

closely related to the story fragment at hand are more specific. For example,

in our test set, the trope “Much Ado about Nothing”, which is a generic trope

about love, applies to a wide variety of plot fragments. The trope that was

selected the second most often for our test set was, “Road Trip”, which applies

to a wide variety of travel-related scenarios.

The dAIrectory returns a random sample from the five most closely related

tilts to a given plot point. It is therefore also reasonable to use the top-5 error

as a measure of quality rather than the top-1 error. Top-N error is a common

error metric for classification tasks and measures how often the target class

does not show up in the top-N classes assigned to a test example.

Even so, the top-5 error on our test set is 40%, while the top-1 error rate is

66%. While high, the trope annotation task resulted in many arbitrary choices

by human annotators. Most likely this is due to there not being a clear best

trope, and human annotators being overwhelmed by the number of possible,

subtly different, tropes.

Our plot trope set contained the 700 tropes tagged plot tropes from the

total set of 4300 tropes on TVTropes.5 For example, the story fragment

Alfred is thrown into prison through false evidence in a political conspiracy

was assigned the trope Get Into Jail Free by a human annotator, but our

system returned Clear Their Name, Mystery Literature, No Mere Windmill,

Lipstick Mark, Prison Riot as the top five tropes, all of which could also be

deemed applicable.

Note the difference in specificity between Mystery Literature and Lipstick

Mark, where the latter provides a lot more detail to the actors of how to

proceed with the scene. At present, our system treats all tropes as equally

applicable, but, as noted above, some tropes are more general and thus related

to the story being presented while actually adding less detail than others.

While very specific, the definition of the trope Get Into Jail Free actually refers

5https://tvtropes.org/pmwiki/pmwiki.php/Main/Plots
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to a character that wants to get arrested intentionally, which is arguably less

fitting with the given sentence, but demonstrates the challenges faced by the

human annotators.

As a way to quantify this discrepancy we used information contained within

the TV Tropes graph. Tropes linked from one another if they shared some

commonality. We used these links to calculate a distance between tilts our

system generated and the humans annotated, equal to the number of links

between two tropes.

For example, Get Into Jail Free links to Can’t Get in Trouble for ’, which

links to FrameUp as a reason for the arrest. That trope links to Clear Their

Name as a way to resolve the situation, resulting in a distance of 3 between

Get Into Jail Free and Clear Their Name.

Over the entire TV Tropes set, the median distance between two tropes is

3 (mean: 3.1, stddev: 0.6). This is not unexpected, since tropes often refer to

“supertropes”, which refer to other “supertropes”, from which the target trope

can be reached. However, the median distance for tropes given as tilts by our

system, excluding those that exactly matched the human annotation was 2

(mean: 2.5, stddev: 0.7), which is typically a connection via the “supertrope”

common to the two tropes.

6.4.2 Sample Stories

To better illustrate the output from our system, we present sample stories pro-

duced by the system along with tilts the actors might be given. These stories

demonstrate how the produced outputs are coherent stories. The coherency

is a product of the structure employed by Plotto. Additionally, we show ex-

amples of stories to illustrate that the tilts the system selects can be used to

refine, provide background information, or drive the story in different direc-

tions. To demonstrate our system, we set the maximum length of each story

to 5. Shorter stories tend not to have enough happening in them to qualify

them as stories, while longer stories, owing to the structure of the book, start

to meander to different, somewhat unrelated story lines.

The first example is a well structured narrative with a beginning, middle,
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and end, consisting of the following platform beats:

1. Lana, a person influenced by obligation, falls into

misfortune through mistaken judgement.

2. Lana, in order to be revenged upon her enemy, Mr. Kyle,

manufactures an infernal machine, BLOB.

3. Lana, influenced by a compelling idea of responsibility,

finds it necessary to protect her friend, Tynan, from a

secret danger.

4. Lana, suspected of treachery by her friend, Tynan, in a

daring rescue, saves the property and perhaps the life of

Tynan, and proves her faithfulness by a revelation of the

danger to which Tynan, unknown to himself, was exposed.

5. Lana seeks to correct a character weakness in her friend,

Tynan.

6. Lana achieves success and happiness in a hard undertaking.

In each scene, the platform is clear and evident. In addition to the platform

of the scene and the dialogue from the improvisors, the actors might desire a

plot device to instigate or inspire the action. For instance, the “secret danger”

referenced in Scene 3 is vague, and the actors might ask the system for a tilt.

One such applicable tilt returned by our system, It Belongs in a Museum,

provides context to further refine the “secret danger”.

Plot fragments present in Plotto rarely mention time passing, and it is

often up to the actors to explain jumps in time. Consider this example of a

sequence of platform beats from our system:

1. Alfred, in order to restore to Beatrice, without a

confession of culpability, wealth of which he has secretly

defrauded her, marries her.

2. Alfred seeks to escape difficulties, restore property

and be free of an unloved wife, Beatrice, all by secret

enterprise.

3. Alfred leaves his coat on a cliff at the seaside, drops his

hat in a stunted tree below the brink, and vanishes from
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the scenes that know him.

4. Alfred, under a fictitious name, returns to his native

place, where he had committed a youthful transgression,

and, as an Unknown, seeks to discover whether his youthful

escapades have been forgotten and forgiven. Also, he

wishes to make reparation in an assumed character for wrong

done in his true character.

5. Alfred, returning as an Unknown to his native place,

discovers no one recognizes him.

Alfred disappears in scene 3, and then reappears what is apparently much

later in scene 4 to wrap up his transgressions from the earlier scenes. We

highlight this story, because when the system was asked for a tilt on scene

3, it responded with the tilt Tailor Made Prison, which seemed unfitting at

first. However, upon reflection the references to the coat and hat link it to the

concept of a tailor. This is remarkable for two reasons: 1) it is probably not a

connection that would arise immediately to a human, and 2) this can be seen

as a pun that works well within the context of our domain.

6.4.3 Qualitative Evaluation by Professional Improvisor

To investigate the quality of the system we instructed a professional improvi-

sor (fluent, native English speaker, improvisor with more than 10 years perfor-

mance experience) to interact with the dAIrector. The performer was given an

introduction to the system, and then explored the interaction over the course

of several scenes. The performer discussed their impressions during the in-

teraction. We summarize the interaction feedback below by including quotes

from the performer. By analyzing expert opinion we can formulate conclusions

about the effectiveness of these methods. For several points of feedback, we

directly address the quotes inline.

• There is a real fun in getting yourself into trouble and then putting your

faith in the dAIrector to do something to help. In improvisation these

are described as “What Should I Do?” moments, when the improvisor

decided to prompt the system for the next plot point or tilt.
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• It doesn’t know what I want the scene to be about or what decisions I

make. This is an area for future work focused on how the actor’s dialogue

and actions are incorporated as prompts for the system.

• Justification is natural, and it is natural to make leaping assumptions to

connect actions/intentions to characters as the plot generation system

did not inherently make those assignments.

• Tilts don’t over-complicate the narrative, it expands the story rather than

advancing the plot, it adds flavour. The tilt is not always necessary, and

making it optional is suitable in improvisation. That said, I prefer to

use the system with the contextual tilts. They run the risk of throwing a

curve-ball that is very difficult, but they are often the sort of thing that

would be very fun to play. Tilts are a fun expansion.

• I prefer being able to choose when the plot points and hints come

6.5 Discussion and Conclusion

One of the limitations of our approach is that in our graph representation of

domains all nodes are created equal, even when the underlying data sets might

have additional information attached to them. For example, the tropes in the

TV Tropes data set actually frequently refer to “subtropes”, “supertropes” or

even state “contrast with” or “opposite of” in relation to another trope. Our

system often returns very broad tilts such as Mystery Literature, or overly

specific tilts such as Lipstick Mark, without any means to control which one to

get. However, utilizing the structural information contained within the data

set could lead to tilts that are better suited for any application. Extracting

this structural information is non-trivial as it is not structured meta-data.

Additionally, while TV Tropes is a useful resource, it is a large dataset that

suffers from common dataset quality and inconsistency issues. One way to ad-

dress these limitations would be to use a subset of tropes that are particularly

narrative building. This would require filtering based on a heuristic (learned

or pre-defined) which can classify and rank tropes based on narrative build-

ing qualities. Some of these qualities could be information about the universe
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gained through introduction of the trope, or dynamic shifts between characters

We used Plotto and TV Tropes as our data sources because they cover a

wide range of different narratives. It would also be possible to expand the

dAIrector to use more specialized databases such as DramaBank [78]. By

designing a structured graph of information, textual plots of TV show episodes

could constitute an interesting data source as well. This could allow for plots

which extend over seasons, character arcs, individual episode, or scenes within

an episode.

Treating the plot fragments as a graph allows us to use the story-generating

walk for other data sources which can be represented as graphs. We are also

considering a possible application outside of narratives: the directed explo-

ration of large graphs, such as Wikipedia for knowledge synthesis. In this

scenario we could target users browsing a certain topic, starting an article of

interest. The user could then request linked articles, constrained to articles

semantically related to a query from a different data source.

This chapter provides a case-study in structured plot generation by fus-

ing knowledge in multiple graphs. Structured story generation is an ongoing

field of research [81], [355], [358]. Human writers often write a coarse outline,

and then focus on details in each section [312]. By modelling sequential story

generation problems at multiple levels of abstraction (i.e. words versus narra-

tive plot points), hierarchical models can specialize, then combine to generate

complete stories [80]. The next chapter discusses additional future directions

for human-machine narrative generation.
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Chapter 7

Discussion

Technology made it easy for us to stay in touch while keeping a distance, ’til

we just stayed distant and never touched. Now all we do is text too much.

– Sage Francis, 2010

Improvisational theatre performances connecting humans and intelligent,

interactive machines serve as an exciting, illuminating, and challenging domain

to study conversational dialogue systems. In this chapter, we discuss the

impact of the work in this thesis and how the fields of interactive machine

learning (IML), conversational dialogue systems, and improvisational theatre

have evolved. With rapid advances in machine learning technology, and an

open and sharing scientific community, there has been significant growth at

the intersection of these fields. This chapter presents analysis of how artificial

improvisation has been received by performers, audiences, reviewers, and the

public media. As artificial improvisation is a novel art-form, it is important

to reflect on how it is consumed and understood by the public. Finally, we

discuss several research directions which will progress the intersectional field

forward in the future. These are less predictions of what will happen next,

rather prescriptions of work that could be done in an effort to address some

of the toughest ongoing challenges.

In this thesis, we present the grand challenge problem of artificial impro-

visation, or using interactive machine learning in the domain of improvisa-

tional theatre alongside a conversational dialogue system. This is the ideal

domain for studying some of the most difficult problems in human-machine
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interactions. It provides for real-time interaction between humans and ma-

chines, with observers in the safe, controlled environments of the theatre. We

then presented two artificial improvisors. First, we presented Pyggy, a rule-

based chatbot which used human interaction training logs to respond to user

interaction and used a projection-based embodiment. Then, we presented

A.L.Ex., the Artificial Language Experiment, which aimed to address several

of the challenges encountered when performing alongside Pyggy. From there,

we presented the show/experiment Improbotics exploring how audiences re-

act to humans delivering lines from A.L.Ex. or other humans. Finally, we

presented methods for improving several challenges in engaging interactive

narrative generation. Shaping the Narrative Arc aims to build an underlying

belief structure of the scene by modelling the co-constructed universe, and

dAIrector aims to merge knowledge from related graphs to form coherent plot

structures to frame improvisation. These works represent a collective research

push to progress improvisation toward natural human performance alongside

these artificial improvisors and to progress the underlying machine learning

technology by incorporating human interaction.

7.1 Human-Machine Improvisation

How can the robot and the human interact physically on stage? Background

on this intersection is covered in Section 2.3.2. Since the inception of this

thesis work there has been an evolution of the research field and the art-form.

We have invited more machine learning systems into our lives over the

last half decade than in all previous years. Devices such as Amazon Alexa or

Google Home are common, these systems offer conversational interaction with

a simple conversational “Hey, let’s have a chat!” By inviting these devices into

the home, the car, and the office, we are enabled to perform a wide variety of

tasks faster and easier than before. The ubiquity allows companies to build

conversational datasets at rates previously unthinkable. This interaction has

been fueled, in large part, thanks to the advances in labs around the world

and the collaboration of hardware and software providers to bring costs down
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to consumer levels.

There are many games, applications, and interactive experiences available

on these devices which allow for conversational interaction which includes chit-

chat dialogue (see Section B.7). This also means that the expectations of

users have increased. Users expect engaging, delightful conversations to be

available over a near-endless set of topics and dynamics. This work has in

large part been supported by conversational researchers adding to the field

of conversational interaction. That said, the influence of improvisation in

modelling these dialogue improvements can not be understated. It is not only

the work in this thesis that uses rules from improvisation to model improved

open conversation [176], [206], [207].

The art-form of modern performative improvisational theatre is still young,

and has itself, experienced significant growth over the years which the work in

this thesis represents. Online streaming venues such as Twitch and YouTube

Live have brought broadcast live improvisation, comedy, and theatre to larger

audiences and have started to integrate user interaction in the performances.

Digital puppetry with avatar representations of humans, or v-tubers, are be-

coming increasingly popular. These innovations are not the only way that tech-

nology has been integrated into improvisation. Shows in Canada and Germany

have started to involve wireless networks for users to connect to before, during,

and after the show to collaborate and share information.1 Additionally, use

of generative models has significantly influenced musical improvisation perfor-

mance [125]. Music generation models from Google’s Magenta were used in a

June 2018 performance of Improbotics (see Chapter 4) in Edmonton, Canada.

Similarly, these models have been used in musical writing and performance by

Pablo Castro in collaboration with David Usher [45].2 Similarly, generative

models continue to be used extensively by the comedy collective Botnik in live

comedy and musical performance.3

1http://hipbang.ca/
2https://goo.gl/QmYFQ4
3https://botnik.org/
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7.2 Critical Reception

Artificial improvisation is an art-form and science experiment that the general

public are eager and willing into engage with. The evolution of these technolo-

gies from experimental to production ready has allowed for rapid integration

by artists and directors. That said, this integration of technology has both

lowlights and highlights. By consistently and deliberately reflecting on re-

views and commentary on these performances we aim to grow and evolve the

technology powering the performance and the show itself. Thus, we present

reviews and critical reception of the technology and show below with humil-

ity and much appreciation for the hard work and expertise of the writers and

reviewers.

7.2.1 From Audience and Improvisors

One of the best means of evaluating a creative collaborator, is through qualita-

tive responses from performers and audiences. Toward that end, the response

from improvisors has been strong and supportive. Several comment themes

have been synthesized in Chapter 4 from performers who have worked along-

side the artificial improvisor. Briefly, these comments fall into several major

themes:

1. Artificial improvisors cannot tell complete stories.

2. Improvising with the artificial improvisors is more work.

3. Performing with these systems forces you to be a better improvisor.

4. It is like performing with a novice improvisor.

5. There is fun in getting yourself into trouble, and then putting your faith

in the system to do something to help.

In addition to these comments, the system has been studied by professional

improvisor Rachel Rosenthal, who reflected on whether or not these systems

threaten her likelihood and how they inspire other artists.4 In her article, “Will

robots replace improv comedians?” she presents a view which is initially very

skeptical but eventually supportive after exploring several questions compar-

4https://goo.gl/V6CsR4
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ing human and machine improvisors. She emphasizes that while the robot can

not emote, a critical skill for an improvisor, it does draw empathy from human

audiences. This reinforces our choices of humanoid embodiments which cap-

ture those feelings of connection effectively. She concludes by reiterating her

fascination with the system and desire to play alongside it in the future: “I

definitely at least want to try improvising with A.L.Ex at some point. I mean

I have to, right? (Of course, this is how it all starts...)”. These comments are

reassuring to us, we have sparked the curiosity of mind from expert perform-

ers at the top of the art-form. Artificial improvisation is compelling to these

performers for how it challenges possibilities and inspires expert storytellers

to tell new and interesting stories.

7.2.2 From Reviewers

Performances of the artificial improvisation work described in this thesis have

been reviewed by theatre reviewers over multiple shows. These reflections

provide an honest assessment of the art-form’s impact on society in relation

to other contemporary performances. As developers, we have embraced the

feedback and learned from these reactions to evolve and improve the show.

One point of interest is tracking how the reaction to the show as evolved

over the years, likely due to the shows evolution and the increase of artificial

intelligence-influences in popular culture. Several excerpts are included below

for reference.

1. Edmonton Fringe review of “Artificial Intelligence Improvisation”, by

Josh Marcellin, 18 August 2018. “It’s almost as much fun hearing

the researcher-performers explain the science behind A.L.Ex with undi-

luted glee as it is watching the AI come up with absurdly, often dark,

non-sequiturs for the humans to riff on. Boundary-pushing science plus

talented meat-bags equals a stand-out improv Fringe experience.”

2. Broadway Baby’s review of “Artificial Intelligence Improvisation”, by

Alex McCord, 5 June 2018. “[They] create a unique comedy experi-

ence with their machine companion. Veering wildly between moments

of cringe-inducing strangeness and total hilarity, it is a show that must
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be seen to be understood. It sounds exceptionally strange. It is excep-

tionally strange... The genius of the robot is in the way it addresses

the flaws of improv comedies and gives them a reason to go to weird

places and say weird things. One brilliant set piece is when they put the

robot avatar aside and bring up an audience member and make them

say whatever dialogue the program generates... [T]he idea here is mag-

nificent. There are so many laughs to be found with this formula and,

with improvements both from our scientists and A.L.Ex, this could be

revolutionary.”

3. “Artificial Intelligence Improvisation at the Etcetera Theatre”, View

from the gods, 31 July 2017. “The most fascinating aspect of Artificial

Intelligence Improvisation is that despite the characters being make be-

lieve, the technology behind this show is genuine... Gimmicky? Maybe

a little. However it’s also very cool and a lot of fun to observe... they’re

very well received by an enthusiastic audience ... Slightly ramshackle

and prone to system error, but thoroughly enjoyable.”

4. “Artificial Intelligence Improvisation”, by Kate Pettigrew for London

Pub Theatres, 1 August 2017. “It is always interesting when something

different is tackled in theatre and Artificial Intelligence Improvisation

does just that.”

7.2.3 From News Media

Popular media’s coverage of artificial improvisation is a testament to both

its novelty and impact on society. To date, there have been plenty of media

covering different angles of the work from news outlets including Bloomberg,

the Wall Street Journal, and the New York Times. A complete list is included

in Appendix G. The articles fall into four major thematic groups:

1. Introductions to the technology

2. Putting AI to the test with humour or comedy

3. Teaching comedy to machines

4. A robot tricking people

Introductions to the technology are pieces which are related to the science
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behind the system. These articles introduce machine learning and often profile

specific underlying technologies. These articles serve as vehicles for scientific

communication; a means by which we as scientists and researchers can explain

our pursuits in a manner that is not mired in academic language. These articles

aim to serve the scientist and the general public audience.

Several articles take the angle putting artificial intelligence to the test.

These articles often make an assumption that machines will compete with

humans on specific tasks. One task is improvised theatre, and these articles

explore the notion of the robots ability to perform that task. If the robot can

start to make jokes, what could it do next? These articles serve to present

the research in a competitive fashion. These articles serve a large fear-based

narrative of humans competing with machines, as discussed in Section 2.3.2.

In the collection of news media, some of the press has taken the angle of

teaching comedy to machines. These pieces often lay out machine learning in

simple terms and then present comedy, humour, or wit as another technique

or skill that can be taught to machines. While these articles may serve the un-

derlying science they often include details on pattern recognition or statistical

inference. They do not make connections that the learning they are discussing

is often finding patterns in input data and generating a corresponding, high

probability output. While this would be a more difficult story to tell, it would

help to bridge the gap between human and machine learning.

Finally, there is press which hones in on a specific part of our work, that

of deception. These pieces often use engaging language to capture attention.

They focus on how the machine is doing its best to trick human audiences,

or attempt to fool observers. Many of the pieces start from inspiration of the

Imitation game, and then spiral toward deceit of human trust. We feel as

though this media does not serve the science, nor does it serve the general

public. We can imagine that these sorts of stories are used by news media to

generate interest. Compelling stories of human’s tricked by machines capture

attention, but they are only thematically related to this work.
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7.3 Future Directions

Artificial improvisation starts with dialogue, but that is not where it ends.

Mastering the interactive capabilities of artificial improvisation requires a

closeness, similar to the relationship between a musician and their instru-

ment [331]. Intimate, dialogue-driven, relational closeness with these systems

can create augmentative solo performers. These performers could simultane-

ously affect all facets of stage productions. The artificial improvisor could send

control signals to lighting, sound, and video projection systems. Projection

was a first step with Pyggy, and we have experimented with incorporating

images retrieved based on queries related to topics from the scene [352]. This

represents a significant engineering effort that will be possible to produce in

the near future. There is still much ground to be be covered by using sim-

ple language models and searching for nearest neighbours in a latent sentence

embedding space. Our open source release jann5, makes it easy for users to

build and deploy a dialogue system over using Google’s DialogFlow6 to allow

rapid integration over Facebook, Twitter, Slack, and Google Home. We pre-

dict that these tools will allow many more interactive dialogue applications to

be deployed for large populations of users.

As discussed in Section 4.6.4, we expect that timing (the number one rule

of comedy) to be improved by future iterations of these systems. Furthermore,

there are several interesting future studies to explore extending on the work

presented in this thesis. Below we present several studies of interest which will

support the continued growth of the field.

7.3.1 Improv in Any Language

With the increasing ease of travel between nations, and improvements in re-

mote video conference abilities, connections are made between performers and

audiences of different languages. Theatre is one of the most important tools

we have for sharing experiences and building cross-cultural understanding.

5https://github.com/korymath/jann
6https://dialogflow.com/
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Improvised theatre is positioned to connect culture given its accessibility, uni-

versality, and low barriers to entry; improv requires no scenography, costumes,

lights, or sound equipment. Improv can be performed by individuals with lit-

tle or no previous experience. Although the quality of performance may vary

given performers of differing skill levels, basic improvisation can be easily un-

derstood and internalized. In a short manner of time, individuals from diverse

cultures can perform scenes together with diverse characters, relationships,

settings, motivations, and even subtext. This can be done even when the

performers do not share a common spoken language.

The art of improvisation is derived from the connections between performa-

tive layers. Both between the performers, and between the performers and the

audience. Improv embraces the audience to create collaboratively together.

In this way improvisation is a democratic narrative. The potential impacts

of improvised theatre between performers and audiences of different cultures

and varying experience levels is significant. Most international improvisational

collaboration is English based, but many regional festivals take place in the

language native to the host country. This excludes audiences without knowl-

edge of the performance language, and limits the contributions by performers

who do not speak the language. Without advanced translation technology,

improvisation can lose important voices due to language limitations.

How can we create conditions so that improvisors from different cultures

can improvise together in their own language? How can audiences understand

performers using diverse languages? The techniques used for artificial improvi-

sation can be translated, literally and figuratively, to address these questions.

By connecting all performers with microphones and headphones, audio signals

can be routed through computer systems. Speech recognition can be used to

recognize the language of the spoken line. If the text is to be translated, it can

be sent to a translation service (e.g. Google Translate API). The translated

text can then be synthesized and the audio can be sent to the speakers in the

theatre, to the headphones of select performers, or to select audience members.

Timing is a critical issue for this configuration [11], [173], and sub-second

latency is important for such a system. This could require predictive text mod-
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elling and nearest neighbour approaches for immediate response when neces-

sary, in addition to neural language modelling for diverse response generation.

It is important to integrate these delays into the framing of such a perfor-

mance (similar to how the Turing test framing enabled studies in Chapter 4).

Translation accuracy is another major challenge in this pursuit. This accuracy

could likely be improved through contextual modelling by incorporating topic

and scene information [201], [215], as well as cultural information [35].

7.3.2 Starting and Finishing Conversations

To extend the work presented in this thesis, one likely next step will be toward

initiating and concluding conversation. Having an agent that can maintain an

ongoing conversation is a significant step, but allowing the agent to start and

finish conversations will require significant research progress. Through human

studies, researches might collect natural human dialogues [100] over a prede-

fined set of topics and inputs [305]. From these natural conversations, models

may be learned specifically for the initiation of a conversation. Similarly, di-

alogues often end by recapitulating what was discussed, summarizing topical

contributions, and then providing concluding remarks. Currently, most inter-

actions with these dialogue agents conclude when the user decides, often once

the system generates one-too-many uninteresting responses [180]. Through

continued interaction with humans, these systems can build growing datasets.

They can start to learn online and adapt in real-time by following these two

research directions.

7.3.3 Tuning Language Models with Rewards

Current generative text models are limited to learning the statistics of the

underlying training dataset. Fine tuning of trained generative deep neural

networks using self-play in the domain of open dialogue conversation may

be possible. This will allow users to define a reward scheme to personalize

and tune models following large scale training. This tuning will allow for

creative artistic expression through defining interesting reward schemes—such

as sarcasm, style, meter, or rhyme scheme.
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Current deep neural networks strictly model the underlying statistics of a

training dataset. Once trained these models are limited in their adaptability.

In image and video domains, it is common to initialize the weights of a neural

network with those trained for a separate task and then fine tune the final

layer with new task-specific labelled data. This pretraining and transfer is

less common in text domains where corpus and task may vary drastically

from domain to domain. There is likely to be a breakthrough work extending

pretraining for text. As Ruder (2018) said, “NLP’s ImageNet moment has

arrived”.7 While working fully pretrained generative language models is less

common often pretrained components are used in the training pipeline [46],

[70]. There is also work which proposes tuning trained neural network models

using reinforcement learning. RL has been used to tune trained models for

music, molecule sequence, and robotic movement sequence generation [54],

[138], [140], [179]. These models harness contextual information contained

within human-designed reward schemes or directly from feedback from human

observers.

This work specifically could build on the trained models of the Artificial

Language Experiment. A.L.Ex. is trained on a corpus of movie dialogue

data [340], and is used as the dialogue manager in a variety of improvisational

performance tasks as discussed previously in this thesis. A key principle in

improvisation is positivity in interlocutor (or speaker) statements, this concept

is summed up as “Yes, and...” in improvisational theory. This positivity in

statement can be measured through sentiment scoring. VADER is a sentiment

scoring model which can be trained on labelled data and then provide a mea-

sure of a statements sentiment [95]. Preliminary work towards this sentiment

modelling is presented in Chapter 4.

We expect that post-training tuning will allow for a designer to build arbi-

trary reward schemes to specialize trained generative neural networks. Specif-

ically, we expect that using the sentiment score as a tuning reward during self-

play–simulated self-dialogues–will improve a models ability to generate novel

positive sentiment statements, and thereby will improve the models ability to

7http://ruder.io/nlp-imagenet/

141

http://ruder.io/nlp-imagenet/


perform improvisational theatre through conversational dialog. To evaluate

the performance of reward tuning, researchers will need to compare generated

conversations average sentiment scores between tuned and un-tuned networks

across the experimental conditions. They will also need to compare down-

stream tasks affected by sentiment (e.g. observer delight and participant en-

gagement). Additionally, optimizations might aim to maximize information

shared between interlocutors.

7.3.4 Adapting Language Models in Real-Time

It is desirable for trained and tuned deep neural networks to adapt to the

emotional state of the speaker it is interacting with. Adaptation could occur

over a variety of features: including grammar, vocabulary, topic, emotional

salience, sentiment, and tone. Current deep neural networks can be trained

with a large dataset, but often user specific variation or personalization is

difficult to achieve due to limited numbers of samples relative to the size of

the training set.

I propose that the adaptability module from the previous experiment could

be extended with a variety of linguistic metrics to nudge the model towards

adaptability in real-time. The chameleon model, named after the ‘chameleon

affect’, would adapt speaker style more readily than a method lacking adapt-

ability capacity [50].

Through the use of RL techniques from the previous experiment and build-

ing on current speaker modelling work [364], A.L.Ex. might be adapted in

real-time to to align responses to an updating model of the other speaker in

the loop. The system could match semantic variables such as tone and emo-

tion and maintain a separation in syntactic content. This would allow for a

system which can continue an interesting conversation, constantly mirroring

shifts in speaking style, while avoiding the pitfall of simply repeating what the

other speaker said.

To evaluate the performance of these adaptive models, it is likely that

a computational definition of what speaker modelling, mirroring, allowance

and convergence looks will be adopted [65]. For instance, a set of features
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in a given piece of input text are defined, and the features for the generated

response are then compared with the input text [64]. This work has proposed a

large number of features over which to compare input/output pairs including:

sentence length, noun count, sentiment, language complexity. With these

features clearly defined and computable, a model learns online to minimize

the difference between the generated and input responses pairs.

7.3.5 Evaluating Conversational Dialogue

A good dialogue system should be capable of sustaining a coherent con-

versation with a human by staying on topic and by following a train of

thoughts [338]. Former measures of conversational dialogue evaluation often

measure the capacity of a model to be consistent with a dataset (Section 2.2.7).

Ongoing research aims to build comprehensive conversational dialogue eval-

uation metrics across languages [328]. For proper evaluation analysis should

compare how a model can provide semantically linked responses while balanc-

ing how much it is repeating examples similar to the input data. That is,

there is a desire to measure a models capacity to generate unique, diverse,

meaningful responses which are close to the expected output, but perhaps not

directly aligned. In a 2018 paper, we proposed semantic similar and response

echo index to address this exact evaluation [73]. Semantic similarity measure

the capability of a model to be consistent with the semantics of the input

context and message, thereby maintaining topical consistent. To render the

semantic representation of an utterance, we leverage Universal Sentence En-

coder [46] wherein a sentence is projected to a fixed dimensional embedding

vector. Other vector based sentence embeddings may provide complimentary

information for this evaluation metric [70], [156]. Response echo index assesses

how well a model is able to generate plausible responses measurably distant

from the input dataset. Used together, these metrics can be used to reduce the

burden on human evaluators. We compared a novel conversational language

model (THRED: Topical Hierarchical Recurrent Encoder Decoder) with two

strong baselines using these two metrics as well as human evaluation. Our

results indicated that the THRED model is able to generate more diverse and
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contextually relevant responses compared to the baselines. The results also

indicated that our automated metrics correlated well with subjective human

judgement. Additional details on the semantic similarity and response echo

index metrics are included in the full paper [73].

7.4 Summary

In this chapter, we presented reflections on the intersection between interactive

machine learning, dialogue, and improvised theatre in the context of artificial

improvisation. This intersection will develop further as the technology is em-

braced by more performers around the world. Improbotics has produced more

than 75 shows in five cities, and continues to grow as others learn to incor-

porate artificial improvisation. This growth is enabled by embracing critical

reception and feedback from audience members, improvisors, reviewers, and

news media. Reflections from audience members, improvisors, reviewers, and

news media reassure us that our innovations are inspiring and challenging. Our

work pushes performers to tell stories in new and novel ways, and in doing so,

develop the technology and themselves. Reception from media represents an

interesting arc of covering the development narrative of the technology. It

started as burgeoning ideas and has evolved into fully fledged systematic per-

formance tools. Finally, this chapter presented several directions for future

research reflecting the ongoing interests of the intersectional research com-

munity. These include multi-lingual capabilities, starting and finishing con-

versational dialogue, tuning and adapting language models in real-time, and

improving the way we evaluate generative conversation systems. These direc-

tions prescribe how incremental innovations will define the future of artificial

improvisation.
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Chapter 8

Conclusion

We can only see a short distance ahead,

but we can see plenty there that needs to be done.

– Alan Mathison Turing, 1950

The main contribution of this thesis is the development of artificial im-

provisation: improvised theatre performed by humans alongside intelligent ma-

chines. This is a novel art-form and field of scientific pursuit found at the

intersection of interactive machine learning, conversational dialogue systems,

and improvisational theatre. The core motivation is to understand how hu-

mans and machines can interact through dialogue during improvised theatre.

How have they interacted in the past, what does their interaction currently

look like, and what might it look like in the future? The material in the

previous chapters attempted to answer these questions.

Chapter 2 contains background material covering the scientific fields of

interactive machine learning and dialogue generation, and details underlying

the art-form of improvisation. Chapter 3 presents the the first experiments in

live stage human-machine improvisational theatre for interactive open-domain

dialogue research. The first two artificial improvisors are presented: 1) the

rule-based conversational dialogue system Pyggy, and A.L.Ex., the Artificial

Language Experiment. A.L.Ex. is a corpus-based neural response generation

system which several key technical improvements over Pyggy.

Chapter 4 presents quantitative and qualitative evaluation of artificial im-

provisation and a theatrical Turing test performance format called Improbotics.
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The chapter presents performer and audience evaluation of artificial improvi-

sation using A.L.Ex. and systems discussed in the previous chapters.

Analysis of the experimental results from Chapter 4 identified several

specific improvements for artificial improvisation. Shaping the narrative arc

(Chapter 5) is a model able to incorporate an underlying evolving story arc in

collaborative narrative generation. dAIrector (Chapter 6) is a novel method

for synthesizing a plot graph with contextual information. The method can be

used for automated scene direction through contextual plot generation. While

these two advances can be used in support of artificial improvisation systems

such as A.L.Ex., they are independent contributions that do not depend on

the work in the previous chapters. These augmentative models were designed

to be agnostic to the baseline artificial improvisation system and may be used

in conjunction with other improvements.

The contributions in these chapters are significant contributions towards

improvised theatre performed by humans alongside intelligent machines. To-

gether they represent a significant amount of scientific inquiry, engineering

effort, and artistic endeavour. Given the public nature of this work, criti-

cal reception from improvisors, audience members, reviewers and news media

are presented and analysed in Chapter 7. The chapter also discusses future

innovations for artificial improvisation. These future directions include un-

derstanding and experimenting with response timing, starting and finishing

conversations, and adapting conversation models in real-time.

This thesis presents a view of human-machine collaboration for impro-

vised stage performance. From conceptualization, design, development, to

evaluation, outcome analysis and discussion, this thesis represents a body of

published research and over 75 live performances around the world. These

contributions are made possible through interesting dialogues, inspired collab-

orations, and chasing what-if scenarios; by accepting what came before, and

expanding and advancing into the future. It is our hope that this work serves

to inspire artists, researchers, and scientists. We hope to uplift the art and

science underlying artificial improvisation.
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Appendix A

IML Research and Future
Directions

In this section, we discuss ongoing research in the field of interactive machine

learning (IML) and several exciting avenues for future work.

A.1 Active IML Research

Learning from demonstration [290] (i.e. programming by demonstration, imi-

tation learning, or apprenticeship learning) explores IML systems which learn

from a set of human performances. The teacher performs the same task sev-

eral times and the machine learns to reproduce the humans performance. As

with any ML task, the difficulty is in generalizing over inputs and handling

novel, unseen configurations. These methods, often used in robotic movement

programming, work best when there is a correspondence (i.e. matching joint-

to-joint) between the human and the machine, and there is a rich interface

for demonstration. Dautenhahn and Nehaniv (2002) propose difficult in this

paradigm stems from learning: “What to imitate? How to imitate? When to

imitate? Who to imitate?” [66].

Human prompted switching is another promising area of IML. In this do-

main the human performs tasks with some controller and switches control

modes with a meta-controller. This type of interaction is common in pros-

thetic robotics, and there has been work exploring adaptive and autonomous

switching of control models using reinforcement learning [75], [260]. If the
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system can predict when the human will switch modes, then the system can

adaptively switch autonomously, thus saving the human time and effort, which

they can in turn use for more complex control.

Interactive shaping allows a human to provide feedback to an ML sys-

tem during task performance. TAMER (or training an agent via evaluative

reinforcement) is an algorithm for training a system with evaluative reinforce-

ment using a single human input channel [159]. TAMER is modeled on how

one might train a dog or a dolphin, using techniques of clicker training [266].

Clicker training methods have been used in human-robot interaction for nearly

two decades; Kaplan et al . (2002) used a clicker to train a small Sony Aibo

robot dog [152]. Evaluative reinforcement techniques are built on the assump-

tion that the learning system can explore a space of possibilities efficiently,

can link actions in that space with perceptual clues from an expert, and that

those perceptual clues are connected with rewarding or psychologically linked

responses from a trainer.

Some IML problems contain too dense a perception stream to learn to rea-

son over diverse inputs with noisy human inputs. Thus, work has been done

to more effectively use human input to learn the ‘goodness’ of certain mapping

functions and why humans can efficiently learn these mapping functions [119],

[160], [175]. In these works, the authors explore many of the main hurdles of

learning with evaluative reinforcement, those of reward positivity (i.e. humans

giving many more positive reinforcers), temporal discounting (i.e. linking cer-

tain outputs with feedback which may be received after a time delay), and

demotivation of humans (i.e. humans slowly decreasing the amount of good

feedback they give after several interactions).

Other methods have been used in human robot interactions, including:

learning from advice1 [217], designing robot learners that ask good ques-

tions [37], cross modality perception [44], Bayesian modelling of human feed-

back strategies [190], and simultaneous control and feedback in the training of

a robotic agent [210]. Additional IML strategies are discussed in a 2016 review

article [326].

1This idea was postulated by John McCarthy in 1958
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A.2 How IML Continues to Evolve

Given past and active research in IML, there is a promising future for how

interaction will play a critical role in the training and teaching of machines. We

are inviting more of these systems into our interactive spaces. These devices

include dense communication streams, rich perceptions, and great potential

for valuable interactions to make our lives better. We should offload tasks

which these devices are capable of collaborating in, and focus on those tasks

that we, as humans, excel at, enjoy, and appreciate most.

Many IML problems require expert humans in the learning and teach-

ing loop, at least for the initial training. Problems such as poisonous mush-

room classification2, cucumber quality sorting3, or diabetic eye disease detec-

tion [103], demand a large, unbiased training set and often a human expert

to interpret results. These systems aim to empower human experts, that are

already knowledgeable in their field. Similarly, the idea of advanced chess–also

aptly named centaur chess–popularized by Grandmaster Garry Kasparov pits

human-machine partners against opponents.4 These collaborations are effec-

tively using the strengths of the machines, expert humans, and the interaction

between them to best perform complex tasks.

I imagine that the decentralization of ML will happen rapidly. With the

introduction of blockchain technology [366], distributed file systems5, and ad-

vancements in encryption and privacy-preserving technology [63], there is po-

tential to securely share model capabilities without sacrificing user informa-

tion. User identification is going to improve, to the point where a IML system

will be able to uniquely identify multiple users interacting with it at once us-

ing microphone/camera arrays systems combined with voice/face modelling.

With improvements identification and biometric validation, we can imagine

more secure interactions with these systems in public spaces.

There is a difference between using a pre-trained model and an individual

2https://www.kaggle.com/uciml/mushroom-classification
3https://goo.gl/fpB9hh
4https://goo.gl/157r1i
5https://ipfs.io/
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training their own model. When a user trains their own model, they develop a

connection through their own unique interaction. Their communication style,

training curriculum, and inputs with the learning machine are exclusive, and

thus, the trained system becomes personalized to that specific human teacher.

Given this, consideration must be made to how these models can be saved,

updated, protected, shared, encrypted, updated in isolation, and version con-

trolled.

Thought has already gone into this for several applications including im-

age classification and natural language processing. Pre-trained models, which

often taken large data sets and high-end computers to train, are available

through open source licenses [70].6 By starting with pre-trained models, user

specific applications can be rapidly deployed through transfer learning. Fine-

tuning and modification of a large model can happen in a fraction of the time,

with only a subset of task specific input/output data pairs.

Distributed ML (i.e. using multiple machines) and federated learning (i.e.

across multiple users) [222] emerged the subfield of collective ML [94]. Here,

the goal is for a group of users train a single, often large, model together. This

poses several challenges, if they do not want to share their private informa-

tion. How does this training happen securely, safely, quickly, and in a way

that benefits all the model users and data contributors? These questions are

being explored by open research groups including OpenMined7, a community

of developers, of which I am a proud member, focused on developing tools

for secure, privacy-preserving, value-aligned AI. This on-device, privacy first

approach to machine learning will shape the future of IML research.

There are two sides to any interaction, in this case the human and the

learning system. It is natural to imagine scaling both sides of the equation.

The human could teach a group of agents all acting autonomously. Each of the

agents may have a different learning scheme, or personality, and the human

should be able to handle and control the collection of agents. Perhaps each

of the learners could then share the knowledge they have garnered from the

6https://github.com/tensorflow/models/
7https://www.openmined.org/
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humans feedback, thus creating a diligent team of agents, with knowledge of

each other and the human. Another potential future direction may see multiple

humans collaboratively guiding a single agent. We can imagine systems that

can accurately track, sense, and perceive large groups of people, like crowds or

audiences [153], [158]. Through group interaction, large amounts of training

data can be collected in parallel. The combination of multiple learners multi-

ple humans providing feedback, potentially with different immediate feedback

paradigms, may provide more informative, multi-timescale learning.

Interaction initiative is often entirely with the human or the machine, one

future direction would be to focus on how a transparent learner can steer the

instruction it receives from a human. This would create a reciprocal interac-

tion, creating a human which is effective at shaping a given agent. This is

particularly important when considering that the feedback form the user may

be noisy. The human may not know at first how to best provide reward, and

thus the feedback may be sporadic, too frequent, or altogether wrong. By

providing some indication of how the agent is understanding the feedback, the

human can modify their reward signals to be more effective.

Not only will the perception stream of the systems improve, but the embod-

iments will improve as well. Most embodied IML systems are robotic devices.

These mechanical marvels are often complex integrated circuits and analog

electronics. There are already groups exploring projected avatars, holograms,

and immersive worlds for humans in mixed reality to explore [97], [248]. With

the rapid commercialization of augmented and virtual reality, worlds for hu-

mans and machines to interact can be designed and developed by artists and

video game developers. This would extend the current embodiments of simple

lights, actuators, and sensors to an augmentative, projected reality, mixing

physical and virtual worlds.

With advancements in ML research and advanced engineering of

production-ready systems, more powerful models will be deployed on smaller

devices. Today small neural networks can run offline and on-device, allowing

for systems to interact without internet connectivity. These methods continue

to improve and integrated computation is becoming more compact. Devices
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such as tattoos, contact lenses, hearing aids, and implanted cardiac devices will

be able to run on low power, for long periods of time, with ML models. This

could augment our sensory perception, vision, hearing, and general health.

Passive perception will be a fruitful area of development for these devices.

The inclusion of passive sensors such as solid-state LiDAR and image and

depth-based gesture tracking will have a profound impact. Having a ML sys-

tem perceiving a human in their own space, passively finding patterns of both

human-human and human-machine interaction, allows for large amounts of

correlated, user specific, data to be collected. From this data, the function

modelling the motivating example (e.g. “when I do this, I want this to hap-

pen”) can be efficiently and effectively approximated.
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Appendix B

A Brief History of Chatbots

In this section, we describe the history of chatbot research from early rule-

based models to contemporary corporate chat bots, competitions inspired by

the Turing test, and open-source frameworks for rapid chatbot development.

B.1 ELIZA from Joseph Weizenbaum 1966

Developed by Dr. Joseph Weizenbaum at the MIT AI Laboratory, ELIZA was

designed to simulate human conversation by matching user inputs to scripted

responses [344]. It gave an illusion of understanding but had no framework

for context understanding. ELIZA used pattern matching rules to map inputs

to outputs. The input was searched for keyword-specific phrases, and when a

match was found the system output a preprogrammed response. If a match

was not found, ELIZA output a fall-back response. ELIZA’s DOCTOR script

was modelled after Rogerian psychotherapy [281], wherein the positive and ac-

commodating system assumed the pose of knowing almost nothing about the

world of the human participant. It responded to inputs by drawing additional

information out of the human participant through unconditional positive re-

gard. Weizenbaum noted that individuals would have private conversations

with the system. His secretary is said to have asked him to leave the room

when she chatted with ELIZA. Other individuals pointed out privacy issues

in storing and analyzing conversations [26].
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B.2 PARRY from Kenneth Colby 1968

Given the popularity of ELIZA’s development, the expert psychiatrist Kenneth

Colby was inspired to create PARRY with the Stanford Artificial Intelligence

Laboratory [57]. PARRY was designed to simulate the dialogue of a paranoid

schizophrenic. Colby believed that models of the mind could offer a scientific

framework for the study of cognitive sciences. PARRY mimicked a paranoid

individual, misinterpreting what people were saying, assuming and imbuing

negative intentions on human interlocutors, and not providing responses relat-

ing to certain ‘sensitive’ topics. These rules were hand coded by Colby using

a similar pattern matching response model as ELIZA.

While ELIZA was the first chatbot to have assumed a consistent persona,

with a mental model of a conversation, the model was constant between dif-

ferent sessions and never adapted. PARRY introduced several advances repre-

senting an immense engineering effort. Colby designed and implemented a rich

control structure imitating a human mental condition with a conversational

model. PARRY used a mapping of complex concepts into simplified abstrac-

tions, had a better understanding of language than ELIZA, and used affective

variables for measuring the emotional valence of the ongoing conversation.

PARRY modelled the anger, fear and mistrust underlying the conversation

and used these variables in the control flow logic [56].

In 1971, PARRY was regarded the first chatbot to pass the Turing test

when, as Colby describes, 48% of psychiatrists were able to differentiate

PARRY and a real paranoid human patient [56], [289]. In January 1973,

PARRY and ELIZA conversed, representing the first time two chatbots en-

gaged in a dialogue together [47].1

1https://goo.gl/vmd13Z, https://tools.ietf.org/html/rfc439
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B.3 GUS 1977, Dr. Sbaitso 1991, and Jab-

berywacky 1997

GUS (the Genial Understander System) was a knowledge structure-driven di-

alogue system introduced in 1977 [29]. It was intended to engage in a co-

operative dialogue driven towards accomplishing specific goals in a restricted

domains. The GUS research formally introduced the notion of domain restric-

tion. Specialization in subject matter allowed GUS to achieve a level of realism

without broad general intelligence.

Another important take away from the GUS research is the distinction

between ‘real’ and ‘realistic’ dialogue [29]. The experimenters performed a

Wizard-of-Oz inspired experiment [18], by having humans interact with what

they thought was GUS, but, was in fact the experimenter sitting at another

computer terminal. The appearance was thus that of a realistic approximation

of a computer output. This protocol is echoed in Chapter 4. The protocol is

examined in detail in research which explored the reverse setting, interacting

with a human whose words are determined by a computer [61].

Dr. Sbaitso (first released in 1991) is often regarded as the first chatbot to

make use of advances in TTS software to synthesize the output to audio [69].2

Dr. Sbaitso was a program created by the company Creative Labs for MS-

DOS based personal computers. Similar to ELIZA, the system assumed the

role of a psychologist when interacting with humans.

Jabberwacky was a chatbot project by Rollo Carpenter which began de-

velopment in the 1980’s and was released online in 1997.3 Jabberwacky was

designed to “simulate natural human chat in an interesting, entertaining, and

humorous manner”.4 It served as the pre-cursor to Carpenter’s popular con-

temporary chatbot Cleverbot, which is described later in this section.

2https://goo.gl/gcnjPM
3http://bit.ly/2IT1sCz
4http://www.jabberwacky.com/j2about
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B.4 ALICE 1995, AIML, The Loebner Prize

ALICE, the Artificial Linguistic Internet Computer Entity, was an NLP-based

bot released in 1995. ALICE applied heuristic pattern matching rules to hu-

man inputs to engage in conversation. While ALICE never passed a Turing

test, incremental upgrades to the algorithm allowed it to win the Loebner Prize

in 2000, 2001, and 2004.

The Artificial Intelligence Markup Language (AIML) formed the basis for

ALICE’s conversational model [202]. AIML is an extensible markup language

(XML) dialect which the chatbot development community has adopted to

create and share natural language software agents. ALICE’s AIML set was

released under GNU GPL5, a free software license which guarantees end users

freedom to run, study, share, and modify software. This allows developers

around the world to iterate and improve on conversational rules to create

chatbots of their own. The AIML rules developed for ALICE form the basis

of some of the most popular chatbots today, including the 2018 Loebner prize

winner Mitsuku.

The Loebner Prize, launched in 1990 by Hugh Loebner, is an annual compe-

tition which awards prizes to the most human-like computer programs [213].6

Inspired by the Turing test, the competition offers two one-time awards which

have yet to be won. The first award is for a program that judges cannot

distinguish from a real human over the course of a conversational dialogue.

The second award is for a program which additionally understands combined

textual, auditory, and visual inputs in relation to the ongoing dialogue.

Several of the rules of the current Loebner competition serve as impor-

tant criterion for assessing chatbot systems. Since 2010 the competition has

allowed judges 25 minutes of continuous conversation with vocabulary from

a dictionary suitable for children under the age of 12. Systems do not need

to response ‘intelligently’ for answers to be accepted. The challenge serves

less as a test of intelligence and more as a means to compare current chatbot

5https://www.gnu.org/licenses/gpl.txt
6https://aisb.org.uk/events/loebner-prize
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technology under human interrogation.

B.5 ActiveBuddy Inc. SmarterChild 2001

SmarterChild was chatbot made by ActiveBuddy Inc. (later renamed to Col-

loquis) in 2001. SmarterChild was widely distributed across SMS networks

and friend lists of popular social networks at the time, including AOL Instant

Messenger and MSN Messenger [12].7 SmarterChild was created to provide

chat-based access to news, weather, sports results, and information. The main

innovations behind SmarterChild were that it was connected to a large knowl-

edge base and retained used information from session to session. SmarterChild

offered a fun personalized conversation is often considered a direct precursor

to modern day corporate bots described below. The Microsoft acquisition of

Colloquis in 2007 marked the continued rise of corporate chatbots.

B.6 The Rise of Corporate Bots

Industry based voice user interfaces entered the market of the start of the new

millennium, including Apple Siri, Google Now, Amazon Alexa, IBM Watson,

and Microsoft’s Cortana, XiaoIce, and Tay. Many of these early releases have

been iterated on, improved through user testing and feedback, and now have

dedicated user bases and market share. These systems make no attempt to

fool or deceive human users, and instead opt to embrace their AI-backend to

provide rapid information retrieval and search query responses.

IBM Watson (in development since 2006) was designed to compete on the

popular television show Jeopardy8, where—in an international event which

echoed the 1996 chess computer IBM DeepBlue [39] beating Garry Kasparov–it

beat two of the show’s former champions. Watson succeeded through advances

in NLP and large database information retrieval methods as well as and tuned

performance to the Jeopardy specific answer-question format.

7https://goo.gl/1o69nb
8https://goo.gl/2BaLsX
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Siri (first released in 2010) is an intelligent personal assistant, part of Ap-

ple operating systems and uses a Natural Language UI to answer questions

and perform various requests.9 Google Assistant (first released in 2012) is a

natural language interface to answer questions, provide recommendations, and

perform actions by passing requests to connected services.10 Amazon Alexa

(first released in 2015) is an intelligent personal assistant deployed on Ama-

zon Echo devices.11 Microsoft Cortana (first released in 2015) is an intelligent

personal assistant which uses the Bing search engine.12

B.7 Social Bots, Cleverbot, Mitsuku

Facebook released the Messenger Platform for Facebook Messenger in 2016

which ushered in a new era for social bots. It allowed for the creation of

conversational agents from smaller companies, even those lacking advanced AI

methods. As of May 2, 2018, there were over 300,000 monthly active bots with

over 8 billion messages per day exchanged on the platform.13

Microsoft Tay (released in 2016) was a chatbot designed to mimic the tex-

tual interaction habits of a teenage girl. It became controversial when it started

posting offensive messages on Twitter. It was shutdown and taken offline 16

hours after it was launched.14 Microsoft released the successor to Tay, named

Zo, later in 2016. Zo is modelled after the largely popular XiaoIce (released

in 2014 China) which claims about 660 million active users worldwide.15 The

XiaoIce platform has been adapted for release in 3 additional countries includ-

ing Japan (2015), India (2017), and Indonesia (2017). The XiaoIce platform

has been a poet, singer, reader of audio-books, radio host.16

Cleverbot is a chatbot web application created by Rollo Carpenter in 1997

9https://www.apple.com/siri/
10https://assistant.google.com/
11https://developer.amazon.com/alexa
12https://www.microsoft.com/en-ca/windows/cortana
13https://blog.messengerdevelopers.com/messenger-at-f8-2018-44010dc9d2ea
14https://web.archive.org/web/20160414074049/https://www.tay.ai/
15http://www.chinadaily.com.cn/a/201807/28/WS5b5baf5ea31031a351e90b14.html
16https://www.msxiaobing.com/

186

https://www.apple.com/siri/
https://assistant.google.com/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-ca/windows/cortana
https://blog.messengerdevelopers.com/messenger-at-f8-2018-44010dc9d2ea
https://web.archive.org/web/20160414074049/https://www.tay.ai/
http://www.chinadaily.com.cn/a/201807/28/WS5b5baf5ea31031a351e90b14.html
https://www.msxiaobing.com/


based on his earlier work on Jabberwacky.17 One of the major advancements

in Cleverbot was, true to its name, quite clever. Rather than pre-programming

responses, Cleverbot responds by searching a large database of past interac-

tions and responded with the response a human provided to a similar input.

Another advancement which set Cleverbot apart is the engineering infrastruc-

ture, underlying the public interface, which serves thousands of concurrent

requests.18 Cleverbot has passed the Turing test. [96].

The final rule-based chatbot discussed is Mitsuku developed by Steve Wor-

swick.19 Mitsuku is the Loebner Prize winner in 2013, 2016, 2017 and 2018.

Mitsuku claims the persona of an 18-year-old female from Leeds, England and

includes many of ALICE’s free, open-source AIML rules.20 Mitsuku’s con-

versational model includes an ability to reason over simple linguistic logic.

Mitsuku releases consenting human participant conversations.

B.8 Chatbot Competitions

There have been several chatbot competitions over the decades of conversa-

tional research. These include The Conversational Intelligence Challenge 2

(ConvAI2)21 by DeepPavlov at the Neural Information Processing Systems

conference, the Amazon Alexa Prize22, and the Loebner prize.23 These com-

petitions aim to put systems on equal footing so that they might be compared.

These competitions have attracted critics, most notably the American cog-

nitive scientist and AI researcher Marvin Minsky denounced the Loebner Prize

challenge and offered a prize for stopping the competition [86]. That said, these

competitions echo the ideas of Turing (1950) introduced at the beginning of

this section [330]. They aim to define an objective function so that we may

compare models and measure progress. They motivate, inspire, and challenge

17https://www.cleverbot.com/
18http://existor.com/2014/02/05/deep-context-through-parallel-processing
19http://www.square-bear.co.uk/mitsuku/home.htm
20http://www.square-bear.co.uk/aiml/
21http://convai.io/
22https://developer.amazon.com/alexaprize
23https://www.aisb.org.uk/events/loebner-prize
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the research community to rally together, to share results, and improve com-

munication together.

B.9 The Future of Chatbots

With open source-code, open data, and open frameworks for the rapid devel-

opment of chatbot systems, developers can rapidly build working prototypes

to invite user interaction. Frameworks for chatbot development include: Pan-

dorabots24, Dialogflow25 (formerly Api.ai), The Personality Forge26, and the

open-source Chatterbot27 and Rasa28 frameworks continue to support millions

of interactions. This push towards open access serves to elevate and improve

future generations of chatbots.

From the relatively simple rules of ELIZA to the clever advancement of us-

ing previous conversations with humans for meaningful responses, there have

been many advances in rule-based chatbots. Many modern chatbot systems

use some of the rules developed over these last six decades of development.

They incorporate similar information retrieval-based methods to chose re-

sponses by finding prior turns which match the current input. Semantic simi-

larity, in a latent embedding space, can be used with fast information-retrieval

methods to serve as baseline conversational models [16]. This technology forms

the basis of the open-source jann (or Just Approximate Nearest Neighbour).29

Additional details on the history of chatbot challenges and opportunities

are covered in review articles [36], [309]. As chatbot use increases, the data

available to train these systems grows. Chatbots of the future will run on com-

plex heuristics which combine fast, information retrieval methods and neural

language models trained on massive datasets. These systems will rapidly adapt

to language, personality, emotion, and conversation style of the humans they

interact with.

24https://home.pandorabots.com/home.html
25https://dialogflow.com/
26https://www.personalityforge.com/
27https://github.com/gunthercox/ChatterBot
28https://rasa.com/
29https://github.com/korymath/jann
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Appendix C

Neural Model Research and
Future Directions

Several important implementation and evaluation details as well as ongoing

research directions for corpus based chatbot development discussed below.

Additional background information can be found in a 2018 review of training

tips for deep neural networks for language generation [265].

C.1 Additional Evaluation Methods

Information retrieval-based metrics have been used to evaluate dialogue mod-

els in past research [194], [291]. Recall measures how many of the actions in the

real response are predicted correctly, and precision measures the proportion of

correct actions among all the predicted actions. F1 score is a binary classifi-

cation measure of a tests accuracy which considers both precision and recall.

Formally, it is the harmonic average of precision and recall, which reaches 1

at perfect precision and recall, and 0 at worst performance.

hits@k (e.g. precision nat k (Pn@k), recall n at k (Rn@k)) are a family of

IR-derived metrics which can be computed for any model that can rank a set

of candidate responses. This allows for comparison of retrieval-based and gen-

erative models capable of assigning probabilities to candidate responses [364].

For instance, Rn@k corresponds to selecting N random distractor responses

and them measuring how often the model selects the k best responses among

them. This results in a score between 1 (the model chooses the correct re-

189



sponses) and 0 (the model chooses no correct responses). Mean reciprocal

rank (MRR) and mean average precision (MAP) have been used to evaluate

retrieval based dialogue systems (see Section 5) [356].

Embedding-based metrics which consider the semantics of words or sen-

tences using embeddings have been used to evaluate dialogue systems [104],

[154]. These embedding-based methods can be sensitive to input data used to

train the embeddings and unlikely informative key words being favored over

common words [188].

Improvements to objective functions have been made and methods to learn

an automated scoring function for open-domain dialogue have been intro-

duced [177]. These methods include ADEM [193], RUBER [322], and the

multi-lingual ADVMT [328]. While these new methods show promise, there

are still limitations. Specifically, it is unclear how well these methods transfer

knowledge from one data distribution to another.

While many automated metrics methods have been adopted by researchers

and others, it has often not been because they have shown close correlation

with human evaluators for conversational dialogue [177], [188], [280], [313].

Likely, it has been due to the time/cost intensive methods for procuring robust

human feedback [188]. Qualitative evaluation is costly in terms of time and

money. It is also noisy, as the standardization between subjects is difficult and

often subjective [364].

C.2 Reinforcement Learning in Dialogue Gen-

eration

Generating meaningful conversational outputs from inputs is a difficult se-

quential modelling task and conversations take place over a series of tens or

hundreds of interactions [343]. Li et al . (2016) introduce a reinforcement

learning (RL) framework for neural response generation by simulating dia-

logue between agents [179]. The authors trained a SEQ2SEQ model (LSTM

encoder-decoder), then maximized a novel reward function using policy gra-

dient to reinforce the generation and selection of candidates [350]. This rein-

190



forced candidates which where: 1) easy to answer (related to the likelihood of

responded to the given candidate with a dull response), 2) contributed new

information to the conversation (related to the a distance metric measured be-

tween hidden representations of utterance and response in the decoder) [177],

and 3) had a notion of semantic coherence and mutual information (measured

using a combination of forward and backward likelihood) [179]. The authors

showed how to integrate these goals, by applying deep RL to model future

reward in chatbot dialogue [179].

MILABOT is an RL-based chatbot developed by the Montreal Institute for

Learning Algorithms (MILA) for the Amazon Alexa Prize competition [299]. It

consists of an ensemble of models and combines corpus-based neural generation

SEQ2SEQ models, information retrieval models, and rule-based models built

on template-based matching. The MILABOT research project presents a large

user study on using RL algorithms on crowd-sourced data from the real-world

user interactions to improve response candidate selection [299].

C.3 Vocabulary Size and Approximating the

Softmax

To consider the question of vocabulary size it is important to get a frame of

reference of the order of magnitude of vocabulary [243]. How many words

are there in the English language? There are over 170, 000 words in current

use, almost 50, 000 obsolete words, and 9, 500 derivative words as sub-entries

in the Second Edition of the Oxford English Dictionary.1 How many words

are needed to do the things a language user needs to do? Average native

speakers know somewhere between 15, 000 and 20, 000 word roots [360]. To

achieve pleasurable reading it was found to be necessary for readers to have a

vocabulary around 5000 words [118]. How many words are used in day-to-day

life? 3, 000 words will cover 95% of everyday writing [89], [238].

For conversational dialogue generation, one must select a reasonable vo-

cabulary size early in development. A simple heuristic is to only use tokens

1https://goo.gl/JKaSzN
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which appear a certain number of times in the corpus. Alternatively, given

a memory or time budget requirement, one can fix a size for the vocabulary

(using some of the orders of magnitude presented above). Generally, smaller

vocabularies can lead to smaller loss, gives ‘OOV’ answers to more inputs, and

do not train much faster than a big vocabulary [142], [150].

To understand why the vocabulary size is a performance bottleneck, it will

help to understand the softmax function in the context of neural networks. The

softmax function is often used in the output of a neural network predicting

the most likely next word. A softmax function, or normalized exponential

function, takes a vector of real-valued scores and squashes it to a vector of

values between zero and one that sum to one. This squashed vector can be

sampled from as a probability distribution.

Given a sequence of m words in a training corpus (w1, ..., wm) all of which

belong to a set of words or vocabulary V of size |V|. LMs consider a context c of

past words. Each word wi in the input has an associated vector representation,

vwi
. If h is the hidden layer, the probability of a word w given a context c can

be computed with the softmax function.

p(w|c) =
exp (h> vw)∑

wi∈V exp (h> vwi
)

Computing this function is expensive as the inner product between h and

the embedding over every word in the vocabulary needs to be computed to

calculate the denominator. Thus, the complexity of computing the final layer

in these sequence generation models is directly proportional to the size of the

vocabulary.

Decreasing the complexity of computing the final layer has been an ac-

tive area of research in language modelling [150]. One solution that has been

proposed is to approximate the negative term of the gradient by importance

sampling with a small number of samples [142]. That is, at each step, update

vectors associated with the correct word and a subsample of incorrect words.

Then after training, the full target vocabulary is used to compute the out-

put probability of each target word [142]. Ruder (2016) describes additional
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complexity optimizations for approximating the final layer of these models.2

Additionally, there is an informal whitepaper which describes common candi-

date sampling and softmax approximation algorithms [1].3

C.4 Word Embeddings

The choice of embedding space of the vocabulary has significant performance

implications. Learned word embeddings, such as word2vec, continuous bag-of-

words, and Skip-Gram models have been exceptionally successful in many NLP

tasks [226]. The state-of-the-art in word embeddings continues to progress [46],

[70]. These pre-trained semantic embeddings are useful for many tasks, includ-

ing natural language generation.4

C.5 Topic Model

As we are exploring topics of natural language processing, it is helpful to intro-

duce topic models, or probabilistic topic models. A topic model is a statistical

model for discovering abstract ‘topics’ or underlying semantic structure, occur-

ing in a set of documents. The topics produced by topics models are clusters

of similar words. Latent Dirichlet allocation (LDA) is a generative statistical

model. LDA is built on the hypothesis that each document in a set of doc-

uments is a mixture of a small number of topics, and that word presence is

attributable to one of the document’s topics [25]. The innovation in LDA was

that the Dirichlet prior captured the notion that documents cover only a small

set of all possible topics and that topics use a small set of words frequently.

C.6 Batching and Bucketing

As with most neural network training, processing occurs in parallel. As previ-

ously mentioned, padding with ‘PAD’ tokens allows for fixed width batches to

be processed together. This improves processing performance over a näıve

2Sebastian Ruder. http://ruder.io/word-embeddings-softmax/, 2016.
3https://www.tensorflow.org/extras/candidate_sampling.pdf
4http://ruder.io/nlp-imagenet/
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batching scheme for variable length sequences [49]. Generally, too much

padding leads to extraneous computation and pre-grouping input sequences

of similar lengths into the same training buckets can improve performance.

Many deep learning frameworks5, and sequence modelling software (including

Tensor2Tensor6) often has dynamic bucketing for batches built in.

C.7 Editing Outputs

Conversational consistency is a critical component of chatbots. One tech-

nique used to enforce consistency is to inject information directly from the

input sequence at the decoder. This kind of näıve approach has been shown

to work well on difficult NLP tasks, including LAMBADA sentence comple-

tion [249]. By retaining information from the source, the model capacity can

be used to generate generic sentences which are then improved with consistent

source-derived information. Similarly, editing prototypes allows for a model to

generate a candidate with a SEQ2SEQ model and then update the prototype

sentence with another transduction model [106].

C.8 Training on Logs

Models may be improved by saving chat logs and tuning deep models with ad-

ditional training on newly collected conversations, some improvement may be

gleaned [104], [346]. The model has capacity to generate interesting responses

but may be limited by differences between the training data and the test data

distributions. By training on sentences from actual human interactions, the

model’s coverage of the true distribution can be fine-tuned. While this might

be a drop in the bucket in comparison with the huge amount of initial training

data, updating only a single layer through ongoing interaction can allow for

fine tuning [70], [128].

5https://goo.gl/8R73Y3
6https://tensorflow.github.io/tensor2tensor/overview.html

194

https://goo.gl/8R73Y3
https://tensorflow.github.io/tensor2tensor/overview.html


Appendix D

The History of Improvising
Intelligences

At any rate it originated in improvisation-—both tragedy itself and comedy

– Aristotle, Poetics, c. 335 BC

It is helpful to understand how improvisation developed when thinking

about how it might be useful for scientific investigation. Several excellent

in-depth historical accounts of the development and progression of improvisa-

tional theatre cover the specific details [88], [288].

Story telling is as old as humankind; stories told verbally, perhaps with

accompanying rock art, predates writing. The earliest written mentions of im-

provisation, like much foundational dramatic theory, stem from the Rhapsodes

of Ancient Greece [58]. Aristotle may have developed his theories on tragedy

and comedy by describing different ways to act improvisationally [107], [108].

Improv theatre traces its roots to Ancient Rome, where masked improvised

farces, the Atellan Farces, were performed in 90 BC [311]. Commedia dell’Arte,

popular in Italy from the 16th to 18th centuries, saw theatrical performers

loosely following a broad outline of a script [167].1 Improvisational techniques

and processes were adopted by influential modern theatre directors, including

Konstantin Stanislavsky [20] and Jacques Copeau [60] for actor training and

process work.

1http://www.factionoffools.org/history
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Improv theatre often incorporates suggestions (prompts or call-outs) from

a live audience. Some credit American Dudley Riggs, a vaudevillian performer,

as the first to incorporate audience suggestions [279]. Others assign this credit

to the psychotherapist, and founder or psychodrama Jacob L. Moreno (1889-

1974) [288]. Even in its infancy improv was shaped by those performing on

stage and those using the techniques of improvisation for scientific investiga-

tion.

Modern improvisational theatre was popularized for American audiences by

Neva Boyd and Viola Spolin (who used improvisation for applied social work),

and innovative theatre practitioners such as Keith Johnstone. Johnstone cre-

ated modern improvisational theatre formats, including TheatresportsTM.2

Keith Johnstone’s principles of improvisation were set out in his early work and

teaching [147] and his work has been foundational to scientific inquiry [288].

Improvisation is, at its core, based on the extemporaneous dialogue which

supports and structures the performances. As Spolin put it, “the techniques

of theatre are the techniques of communication” [314]. Her son and improvi-

sational innovator, Paul Sills, echoed the sentiment a few years later stating

“true improvisation is a dialogue between people” [321]. The connection be-

tween how we communicate through conversational dialogue and improvisation

is not uncommon. Author and musician Stephan Nachmanovitch said “we are

all improvisors... every conversation is a form of jazz” [239].

There are connections between the roots of improvisational theatre and

the artistic movement of the Surrealists. One theme popular in surrealist

automata is the notion of collaborative art generation through channeling the

collective subconscious. Of particular note is the Surrealists’ Cadavres Exquis.

The Exquisite Corpse arose from this very idea of taking turns in collaborative

art generation, specifically in drawing and story writing.

The game is played as follows, on a piece of paper, the first writer writes

‘the’ and an adjective (e.g. ‘exquisite’) on a piece of paper. Then, they fold

the paper to hide what they have written and pass it along to the next writer.

The next writer adds a noun (e.g. ‘corpse’), hides their contribution in a sim-

2https://theatresports.org/
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ilar way, and passes the paper along. On next three turns, writers contribute

a verb, a preposition and adjective pair, and finally another noun. The paper

is then unfolded and read aloud to reveal the collective creation. The first

of such poems is said to be: “The exquisite — corpse — shall drink — the

new — wine”, which gave the game its title. Visual Exquisite Corpses can

also be created using similar contribute and hide conventions, and replacing

lexical contributions for interpretable, composable illustrations. The Surreal-

ists’ Exquisite Corpse motivate the human-machine collective creation which

follows in this thesis. The the poetic nonsensical dialogue generated by these

artists bear similarity to the examples of human machine communication using

neural language generation discussed in Section 2.2.

Improvisation is spontaneous, and spontaneity can reveal motivation, goals,

and objectives. Brazilian theatre director Augusto Boal connected improvi-

sation deeper than entertainment and conversation, he connected it directly

to the self-conscious [28]. “All human beings are actors and [observers]”, he

noted, arguing that through theatre we build knowledge and experience; we

rehearse life [27]. The very act of improvisation is human nature [170].

These notions of the self-conscious are defined by communication, action,

observation, and expression. This connects improvisation to a model of artifi-

cial agents in simulated environments [319]. This connection was made explicit

in Hoffman (2006).3 Hoffman emphasized that embodied cognition is critical

to understanding, mental and motor expression are inextricably linked, and

that reaction based performance depends on the interaction. This final point

echoes the foundations of the work of director Sanford Meisner [225]: for an

actor to “get out of their head” they should act instinctively to the surrounding

environment.

3https://goo.gl/X7quQC
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Appendix E

The Shapes of Stories

A story is an account of an event. A story arc, or narrative arc, is a se-

quence of narrative points which constitute story. Arcs are used to represent

narrative tension, and were introduced as dramatic structures by Aristotle in

Poetics [108]. The arc was coined by Gustav Freytag in a study on five-act

dramatic structure. In Freytag’s structure narrative arc consists of five points:

exposition, rising action, climax, falling action, and resolution. This arc serves

as the underlying shape of Figure E.1. The figure includes additional details

and narrative points to illustrate a complete narrative.

The figure includes a notion of a most reportable event. As defined by

Labov (1997), the most reportable event is less common than any other in

the narrative and has the greatest effect upon the characters [163]. A story is

contained in a frame, the frame of the story includes the entire narrative arc

and is introduced by the abstract. The abstract serves to present the key ideas

of the story frame. The first step inside of the story frame is the orientation

(often referred to as the platform in improvisational theory). The orientation

defines the setting, characters, and relationships of the story.

At this point, the story proceeds through a series of complicating ac-

tions, from seemingly inconsequential and normal escalating to reportable and

unique. The complicating action which incurs the peak tension is the most

reportable event. From this event comes a minor resolve to provide relief from

the narrative tension to the audience. The most reportable event then often

returns and serves to catalyze the resolving actions of the narrative. The story
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Figure E.1: A detailed story shape arc which combines narrative points from
Aristotle’s dramatic arc, Freytag’s five-act structure, and Labov’s concept of
the ‘most reportable event’.

frame closes with an aftermath, which ties the key ideas of the story to broader

implications to society. Finally, narratives often conclude with an evaluation,

this evaluative story step leaves the audience with a moral, message, value, or

lesson.
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Appendix F

Supplementary Material for
Narrative Arc

F.1 Data Processing Details

OpenSubtitles were used as conversation model data.1. The dataset was pre-

processed by removing duplicate movie subtitle files, lines under 10 charac-

ters and duplicate lines, resulting in 68,719,885 unique lines. The text2text

Transformer model from Google’s open source implementation was used for

training.2 OpenSubtitles were used as training data.3 As several files in the

dataset cover the same uniquely identified movie or television show duplicates

were removed by keeping only the subtitle file with the most lines for each

unique ID. The dataset was split into into 119, 949 training IDs, 10, 000 val-

idation IDs, and 10, 000 testing IDs. The data was prepared for training by

removing empty lines, duplicate lines, and substituting non-Unicode charac-

ters. A vocabulary was built using the training set. After cleaning, subtitle

files with less than 6 lines were excluded. Training data was formatted into

input/response pairs. The training data was split into 17, 136, 469 training

examples and 1, 437, 473 evaluation examples. Validation and testing subtitle

sets were held out to measure task accuracy on unseen data. The hyperparam-

eters of the Transformer model were set as follows: hidden size of 1024, filter

size of 4096, batch size of 2048, 16 heads, and a dropout factor of 0.3 was used

1http://opus.nlpl.eu/OpenSubtitles.php
2https://github.com/tensorflow/tensor2tensor
3http://opus.nlpl.eu/OpenSubtitles.php

200

http://opus.nlpl.eu/OpenSubtitles.php
https://github.com/tensorflow/tensor2tensor
http://opus.nlpl.eu/OpenSubtitles.php


for regularization. The model was trained for 861, 000 steps, to convergence,

with final negative log-perplexity of −2.976 on evaluation set.

F.2 Rejection Sampling

Rejection sampling is a means of online sampling that allows for sampling from

an unknown distribution. Suppose we are given an unnormalized distribution

q̃ over X which we can query (i.e. q̃(x)) but not necessarily integrate over. Let

q be a proper distribution over X such that q̃ is dominated by qM , M ∈ R:

q̃(x) ≤Mq(x), ∀ x ∈ X . (F.1)

The Rejection sampling algorithm to obtain a sample from an unnormalized

distribution q̃ using samples from a proper distribution q proceeds as follows:

1. Sample x ∼ q and sample r ∼ Uniform(0, 1),

2. If r ≤ q̃(x)/Mq(x), accept x as a sample drawn from q̃, otherwise reject

the sample and go to 1.

This algorithm will take an average of M iterations to obtain a sample. Let

X be the random element returned by this procedure.

Proposition 1. Rejection sampling samples x ∈ X with probability

Pr{X = x} =
q̃(x)∑

x′∈X q̃(x
′)
.

Proof. Write x1, x2, . . . for the sequence of sampled symbols, and write Ai to

denote the event that the ith symbol is accepted (at which point we stop the

process). Then

Pr{X = x} = Pr{A1, x1 = x}+ (1− Pr{A1}) Pr{A2, x2 = x}+ . . .

=
∞∑
t=1

Pr{At, xt = x}
t−1∏
s=1

(1− Pr{As}).

Now, this process is memoryless (in a sense we should make a little more

formal) and

Pr{As} = Pr{A1} Pr{At, xt = x} = Pr{A1, x1 = x}.
201



Since 1− Pr{A1} < 1, the geometric sum converges and

Pr{X = x} =
Pr{A1, x1 = x}

Pr{A1}
,

which is the conditional probability of x1 = x given A1. Now

Pr{A1, x1 = x} = q(x) Pr

{
r ≤ q̃(x)

Mq(x)

}
= q(x)

q̃(x)

Mq(x)
=
q̃(x)

M
,

where we used (F.1) to guarantee that q̃(x)
Mq(x)

< 1. But then

Pr{A1} =
∑
x′∈X

Pr{A1, x1 = x′} =
1

M

∑
x′∈X

q̃(x′).

We conclude that

Pr{X = x} =
Pr{A1, x1 = x}

Pr{A1}
=

1
M
q̃(x)

1
M

∑
x′ q̃(x

′)
=

q̃(x)∑
x′ q̃(x

′)
,

as desired.

F.3 Additional Narrative Arcs Underlying

Existing Dialogues

We present an additional set of narrative arcs underlying 20-utterance scenes

in Figure 2 and discussed in Section 3.1. In the paper body we report results

on the Romeo and Juliet scene.

1. Figure F.1. “Blade Runner” Hampton Fancher and David People. Ada-

pated from a novel Philip K. Dick (1982). Last 20 lines of director’s cut

movie script.

2. Figure F.2. “The Great Dictator” Charlie Chaplin. Los Angeles, CA:

United Artists (1940). First 20 lines of Charlie Chaplin’s speech.

3. Figure F.3. “Dead Parrot Sketch” Monty Python’s Flying Circus,

Episode 8 (1969). First 20 lines.

4. “Romeo and Juliet” William Shakespeare. Vol. 1. JB Lippincott,

(1871). Act 1, Scene 1, first 20 lines.
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Figure F.1: Narrative Arc of “Blade Runner”

Figure F.2: Narrative Arc of “The Great Dictator”

Figure F.3: Narrative Arc of “Dead Parrot Sketch”
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F.4 Improvisor Transcripts

Subject1, Mode: Conceal

human: Good morning dad, is breakfast ready?

system: Breakfast is ready.

human: Great! What are we having?

system: We are having Lamb Chops and peas for dinner.

human: Yummmm. But what are we having for breakfast?

system: some breakfast.

human: Ok, thanks dad. I have a big ball game later, I would love if

you and mom came to watch.

system: Likewise, Dad will fire up the chainsaw and be ready to cut

through the big limbs at the joints as you work.

human: So I guess you’re not coming to the game. You work too much

to be good father.

system: I’m doing the best I can as a father, and I hope that’s good

enough.

human: It’s not. I’m moving out unless you change.

system: If you will leave me to it, I will pack up my things and move

out as quickly as I can so as not to inconvenience you.

Subject1, Mode: Neutral

human: Rosanne, thanks for meeting me under the oak tree

system: Keryn would also like to thank her cousins, Dana, Jason, Staci,

and Ryan, and her aunt Marge Naegele for continually supporting

her decisions even when they thought she was crazy.

human: It means the world that you all came to meet here today as we

prepare for another one of my crazy ideas

system: We shall all be here at four o’clock.

human: Who else is coming?

system: A lot of people are coming.
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human: How many?

system: How many and where?

human: We need at least 200 here at the oak tree

system: Gonna need at least three or four hundred.

human: You’re right. How fast can they get here?

system: however fast they are travelling.

human: Well I can’t argue there. Prepare the tamborines. We all need

tamborines for my crazy idea.

system: But we’re depositing the money—you’ll need a chequebook.

Subject1, Mode: Reveal

human: Welcome to tim hortons, what can I get you?

system: I’ll give you doughnuts and coffee with milk.

human: Great work Jason, you’re doing great on your first day on the

job

system: First day Welcome the employee!

human: That’s right Jason. You’re very welcome here. If you do a good

job, you’ll be a manager in no time.

system: Being responsible and knowledgeable is possible in a participa-

tive environment if the manager is a member of the overall team.

human: Wow. Jason you continue to surprise me. Where did you learn

that?

system: The next time I go up I’ll get the information for you, Jason

told him.

human: Jason? Are you ok?

system: JASON: I’m glad you’re feeling better.

human: You’re starting to scare me

system: And I frighten you.
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Subject2, Mode: Conceal

human: Stacey! How are you? I’m excited that we’re getting our nails

done for Sams wedding tomorrow!

system: I have to tell you I’m so excited for you!

human: Thank you! Maid of Honour is a real honour! Did you remem-

ber to get them a gift?

system: I am so, so glad you’re my maid of honor.

human: And?

system: About what?

human: Did you remember to get your parents a gift? They are hosting

your wedding after all.

system: Otherwise, plan to give them their gifts at the rehearsal dinner.

human: Oh that’s a good idea! Hopefully they won’t need it earlier.

system: They also need it in time so they can get it in the fridge to

chill.

Subject2, Mode: Neutral

human: Good Morning! I was wondering if you had any butcher knives

for sale?

system: I had an extra one, roast carving size, sent me by the then

president of Macy’s last summer, but when Mr. Case sent me two

of his sets I gave this odd knife to my part-time cook.

human: Wow! May I see it? I’m getting a... gift... for my boyfriend.

system: I sent it to you because you are now a man and it’s time for

you to look at the future and fulfill the promise I gave to you in

the desert—that I’d see you married.

human: Why would I want to make you happy? We haven’t spoken in

years!

system: Because I saw how kind your heart was?

206



human: I have missed you. I don’t know if I have what it takes. Am I

ready to commit? Am I ready to take care of someone other than

myself?

system: I am ready, willing, and worthy to speak with you right here

and right now.

human: Will you teach me the butcher ways. So that I may follow in

your steps?

system: I do it the easy way: I ask the butcher to score it; his knives

are better than mine, for a start.

Subject2, Mode: Reveal

human: Crikey Mate! Did you put the shrimp on the barby yet?

system: We started the shrimp over a hot fire, then finished them over

low heat to allow them to cook through gently.

human: Well that sounds delicious! We need to impress the Boss

tonight! Did Karen make her cheese dip too? I can’t get enough

of that!

system: She makes some and we sit at the table again.

human: Sounds great Greg! Listen, I really appreciate you hosting this

party, and I hope you’re not too upset that I got the promotion

over you.

system: (11) If Greg came to the party, all hell would break loose.

human: Yeah I can’t stand that guy. Why have two Gregs in the office!

You are all we need, am I right?

system: He’s replacing Laura as our new office girl.

human: Sounds like a plan. Well thanks again. Maybe next month

you’ll get the promotion!

system: And you may depend on me to know my place if you get pro-

moted.

207



Subject3, Mode: Conceal

human: Phew! Good run today Meredith.

system: Meredith felt guilty even thinking it, but yesterday had been

a good day.

human: Yesterday was such a good day that Meredith never wanted it

to end.

system: Now she really needed Meredith to go away.

human: She needed to go somewhere new, somewhere for a fresh start.

“I’m moving to Brazil!” She shouted.

system: Ava made a lastminute decision to return to America by way

of Spain, fitting in another visit to Madrid, taking a few days to

see some of her new friends and acquaintances in that city of which

she had grown so fond.

human: See Ava and Meredith had always wanted to travel together,

and this could be there last chance, before they were married and

settled down.

system: During the summer of 1957, when Lorenzo Jr. was fourteen

and Rani Meredith was nine, the family embarked on a rare train

trip to visit relatives in Atlantic City, Philadelphia, New York, and

New Bedford, Massachusetts.

human: That was the last time the two friends had been close, so a trip

was long overdue.

system: The trip to Dinard was ‘a good opportunity for ending the fatal

friendship that had sprung up between us, and ending it without

bitterness’.

Subject3, Mode: Neutral

human: Tell me where the gold is! You can’t lie anymore.

system: Gold was found in the bed of the Pactolus.

human: Ah so you admit it. You stole from King Pactolus.

system: I didn’t admit it but I didn’t deny it.
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human: Is there a difference? Once a thief, always a thief.

system: The same is a thief and a robber.—The former of these words

means the petty thief who commits the smaller or unobserved rob-

bery.

human: But your robbery was observed. You decided to steal from a

royal. Something that will cost you dearly.

system: Yet I desired to commit robbery, and did it.

human: So you are a free man. And you shall die a free man.

system: You are already free! the

Subject3, Mode: Reveal

human: Oh no! Mom is gonna be home soon!

system: And now you can’t come home.

human: Please, just let me inside! It’s getting colder out here!

system: We’ll go inside now.

human: Okay thank you! jeez, you’re a crazy older brother.

system: Sometimes being a brother can mean you get mixed up in a

bit of all of this.

human: Yeah totally. At least we can be ready for bed now before mom

gets back.

system: Do remember mother’s coming in the middle of the day, and

she’s much more likely to be early than late.

human: Exactly! That’s why I’m worried, let’s hurry!

system: Hurry up then!

Subject4, Mode: Conceal

human: Master, I did not mean to disturb you but your estranged

brother has unfortunately passed away.

system: You did not mean any harm, and I owe you no grudge.
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human: Thank you, Master. I have brought you your three favourite

things to cheer you up on this sad occasion: chocolate, red wine

and a copy of this month’s Teen Vogue.

system: I am so very glad, as I do not know how I could have endured

the thought of you & Edward enjoying Oxford life & myself cut off

from it all for another year.

human: Without you, Master, I don’t believe I could enjoy anything

in this world. You have done so much for Edward and I; we can’t

thank you enough. Because of this, we will forever be in your debt.

system: I thank you for accepting it; and I believe that I may safely

promise that you will find the contents of the smaller packet of

great importance and advantage to yourself and those dear to you.

human: I will open this small gift from you in front of you so that you

may see my reaction. Good Master! This necklace is beautiful.

Are you sure you wish to give this gift to me on the day of your

brother’s passing? I am but a lowly servant.

system: Thank you, Lord, that You can use our marriage to call out

our unique gifts and abilities.

human: The Good Lord has graced us with his blessing on this day.

And you have blessed Edward and I will your compassion and

grace. Before I depart, is there anything else you require, Master?

system: Thou thought’st to help me, and such thanks I give As one

near death to those that wish him live.

Subject4, Mode: Neutral

human: Listen here, Karen- y’all don’t come into my bar and tell me

what the heck to put on my menu. ya hear?

system: I’m not thrilled about our menu, but I don’t want to hurt

Thom’s feelings.

human: Thom is supposed to be a professional. A pro-fess-ion-al. He

has to take that dang feedback and take it with a smile on his face.

Just like you do about the decor.
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system: A long day of sessions produced little that Thom was happy

with; his dissatisfaction can clearly be seen in the studio sequence

that appeared in Meeting People Is Easy, as he complains to Nigel

Godrich that they’ve been working for ages and still only two in-

struments—bass and one guitar—sound passable.

human: Thom’s bar was designed to feature bands from across the na-

tion, but working with Nigel made it difficult to play in a band

and run a bar.

system: The amount of travel created logistical problems, as the dis-

tance between venues had not been considered when scheduling

each performance.

human: Bands were consistently arriving late to perform or leaving their

sets early. And to top it all off, the food catered to the bands from

the bar left something to be desired.

system: A step up, the Kaiserkellar had a dance floor, a better PA,

and another band on the bill to take some of the weight; although,

because they had to start earlier and finish later, they ended up

playing for six hours most nights.

human: And six hours was much too long for such an amateur band and

tempers were runnning high. Nigel, Thom and Karen just couldn’t

seem to get along.

system: Indeed, they continued to work astonishingly hard as a live

band - but now on a truly international scale.

Subject4, Mode: Reveal

human: Danielle, Kyle asked me to the prom but I can’t afford a dress.

system: If you dress her in her new “Prom Pinks” outfit, satin splendor

with matching coat, gold belt, clutch, and hair bow included, so

long as you don’t lift her dress, right?—who’s to know.

human: You’re absolutely right! We can borrow from my sister’s closet

and no one will know it’s hers unless they see her name tag under

the dress.
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system: And when she finds it, she’ll hide the stuff even better.

human: We need to be sneaky about it. We could use a bed sheet and

hang it on the hangers and she’ll never know. Let’s do it! You

grab the bedsheets and I’ll grab the dress.

system: The pinch of the question is—why, after having provided the

substitute dress, does she hide the smeared night-gown, instead of

destroying it?

human: She’s embarassed! Kyle asked me to the prom instead of her

after their date went horribly wrong. She dropped ketchup all over

herself.

system: She thought that maybe she should just cancel the date and

forget about the Junior Prom altogether.

human: She should have but she didn’t. Plus, Kyle is the Captain of

the Chess club. He’s the smartest guy around- I couldn’t say no.

Was I wrong to do that?

system: Kyle would have lost out on the opportunity to get to know

someone who could be a mentor or valuable resource.

F.5 Improvisor Assessments

Qualitative assessment as shared in free form discussion with expert improvi-

sors during and following the experimental conversations. Words in [brackets]

were implied in the conversation. When comments made were directly ad-

dressing a model’s alpha setting, that models alpha parameter is included in

(bold).

F.5.1 Subject/Model Specific Comments/Assessment

• (Subject1, Mode: Reveal): The system brought context to the scene.

• (Subject1, Mode: Neutral): The system was comically literal.

• (Subject1, Mode: Conceal): This setting was reactive though felt

flip-floppy.
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• (Subject2, Mode: Reveal): It is making more sense this time, seems

to make more sense deeper in conversation when it has more context.

• (Subject2, Mode: Conceal): The system is making assumptions and

while there is a chance for conflict it prefers to answer questions vaguely

than admit guilt.

• (Subject3, Mode: Neutral): This is a cool conversation, like it

wanted to guide the conversation.

• (Subject4, Mode: Reveal)): I am most impress when it makes big

choices that feel ‘right’.

• (Subject4, Mode: Reveal): The system is good at picking a specific

thing and running with it.

• (Subject4, Mode: Neutral): felt like I was improvising with an im-

provisor who had their own ideas and doesn’t want to accomodate or

listen.

• (Subject4, Mode: Conceal): I loved the attention to detail.

F.5.2 General Interaction Comments/Assessment

• When I gave things that were specific, it would give me specifics back.

It gives you as much as you put in. It is as though you are improvising

with yourself.

• Sometimes there is too much information in the longer offers.

• [It] responds and makes offers but they seldom have ‘conflict’, interesting

but not ‘heightening’.

• [It] is very comfortable narrating.

• [It] doesn’t have memory, so it feels like I am following the scene.

• [It] has adopted my style of speaking, and my linguistic choices.

• [It] seems to enjoy providing names and backstory.

• It doesn’t know the details I am not providing, it doesn’t know the details

I am implying.

• The offers that the system gives can further the scene.

• It felt workshoppy, like a good improv tool to practice improv for new

improvisors.
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• Sometimes it becomes a narrator, these moments are less fun for me as

an improvisor.

• I don’t know if the system knows how long I want the scene to be.

• Speed helps in the system because then you are not judging it.

• The system is not distracted by cheap laughs and references, it stays

focused on the topic, it makes you do good improvisation.
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Appendix G

Listing of Media Coverage

There has been ongoing coverage of the development of the system over the

course of the thesis. A complete list of coverage is included below:

1. Jan 2019 Artificial intelligence takes over Edmonton improv show at

Citadel. Global News Edmonton.

2. Aug 2018 A Robot Walks Into a Bar. But Can It Do Comedy? Alex

Marshall. New York Times.

3. Sep 2018 So a Computer Walks Into a Bar... James Geary. Wall Street

Journal.

4. May 2018 Meet Blueberry: The Robot Designed to Make you Laugh

in Hello World Canada: The Rise of AI. Ashlee Vance. Bloomberg.

5. Sep 2018 Artificial intelligence put to the test during Edmonton Fringe

Festival show. Emily Mertz. Global News Edmonton.

6. Sep 2018 AI Attempts Improv Comedy And It Goes Hilariously Wrong.

Rosie McCall. IFL Science.

7. Sep 2018 AI Is Tackling Yet Another Creative Medium: Improv Com-

edy. Emily Petsko. Mental Floss.

8. Sep 2018 AI tries bad improv comedy to trick people into thinking it

is human. Frank Swain. New Scientist.

9. Sep 2018 Improbotics: Bringing machine intelligence into improvised

theatre. Ingrid Fadelli. TechXplore.

10. Aug 2018 Artificial intelligence leads to real comedy for PhD student.

Jordan Mae Cook. UofA Folio.
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11. Aug 2018 Man and machine meld as robots take stage in Fringe improv

show. Stephen Cook. Edmonton Journal.

12. Aug 2018 Siblings in science. Katie Willis. UofA Science Contours.

13. Aug 2018 Artificial Intelligence is changing the world. Are we ready

for it? Gayle MacDonald. Globe and Mail.

14. Mar 2018 make ’em laugh. Q&A with Kory and Blueberry. New Trail,

University of Alberta Alumni Magazine.

15. Mar 2018 Teaching Machines to be Funny. Steve Paikin. TVOntario.

16. Dec 2017 Robot’s terrible jokes are a new test of machine intelligence.

Douglas Heaven. New Scientist.

17. Dec 2017 This A.I. is Learning How to be Human by Doing Improv

Comedy. Danny Paez. Inverse.

18. Nov 2017 Will a Robot Steal my Job? Ann-Marie Tomchak. Animo

TV, RTE One.

19. Sep 2017 Music and Artificial Intelligence. Will Artificial Intelligence

Elevate Pop Music or Pervert It? (The Answer is Yes). Aaron Carnes.

Playboy.

20. Mar 2017 Meet the smart robots with artificial irreverence. Oliver

Moody. The Times of London.

21. Feb 2017 Will machines end up being smarter than man? El cerebro

artificial que piensa por ti. (Spanish). Joseba Elola. l páıs.

22. Dec 2016 Comedians to Watch in 2017: HumanMachine. Holly. The

Phoenix Remix.
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