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Abstract—Several types of apps require accessing user location,
including map navigation, food ordering, and fitness tracking
apps. To access user location, app developers use frameworks that
the underlying platform provides to them. For the iOS platform,
the Core Location framework enables developers to configure
various services to obtain user location information. But how does
a particular configuration affect the energy consumption of an
app? The available Core Location framework documentation is
insufficient to help developers reason about the tradeoff between
choosing a particular configuration and energy consumption.

In this paper, we present a set of guidelines that will help
developers make an energy-efficient design choice while config-
uring the Core Location framework for their app. To achieve
that, we have created microbenchmark configurations of the
various services that the Core Location framework provides. We
have then run several test-scenarios on these configurations to
extract their energy profiles. To extract energy-efficient guidelines
for developers, we have carefully examined those energy profile
results. The guidelines show several configurations that not
only reduce energy consumption but also access locations more
frequently than other configurations. To evaluate those guidelines,
we analyzed three real-world apps and a location service sample
app provided by Apple. Our results show that the guidelines
help reduce energy: 0.42% for a property search app, 10.59%
for a weather app, 26.91% for a location utility app, and 11.37%
for Apple’s sample app. Additionally, our empirical evaluation
shows that choosing an energy-hungry configuration can increase
the energy consumption by up to a maximum of 23.97%.
Our guidelines are effective on 3 real-world apps, and our
methodology may be used to extract energy-efficient guidelines
for frameworks other than the Core Location framework.

Index Terms—software energy consumption, developers guide,
iOS development, smartphone apps

I. INTRODUCTION

Energy consumption of smartphone applications (apps) is
a rising concern for developers [1], [2]. An energy hungry
app leads to unsatisfactory user experience, negative reviews,
and even uninstallation of the app [2], [3]. To reduce energy
consumption, developers look out to employ design choices
and energy optimization techniques during development. In
prior studies, correct design choice have proven to be more
effective [4], [5] as compared to the energy optimization
techniques [6], on real-world apps.

The situation is not much different for the iOS platform.
Despite energy consumption being a major concern for iOS
users [3], and that app developers prefer iOS over other devel-
opment platforms [7], [8], the iOS platform, in general, suffers
from lack of energy measurement frameworks and energy

efficient guidelines for developers. Apple advises developers
to focus on reducing the energy consumption of processing,
networking, location, and graphics [9]. This advice is par-
ticularly important for location services, given the pervasive
use of location information in various apps such as turn-by-
turn map navigation, social networking, food and groceries
ordering, carpooling, and vehicle hiring. Improper access of
location information may prevent the device from going into
sleep mode, which keeps the location hardware powered on.

To access user location, Apple provides iOS developers
the Core Location framework with multiple location services:
Standard Location Service, Significant Location Service, Visits
Location Service, and Regional Monitoring Service. Each
service is configurable to access user location with a certain
frequency and accuracy. This frequency and accuracy comes
at the cost of battery life through energy consumption. Battery
life and accuracy is an engineering tradeoff a software devel-
oper needs to make while developing an app. Unfortunately,
the current Apple developer’s guide does not provide any
information about such tradeoff [10]. It suggests choosing the
most energy-efficient service but it does not provide details
about which services are most energy-efficient:

“Always choose the most power-efficient service that serves
the needs of your app. Disable location services when you
do not need the location data offered by the service. For
example, you might disable location services when your app
is in the background and would not use that data otherwise.”
–AppleInc [11] (Core Location Documentation)

To bridge this gap, we extract energy profiles of the location
services, and to extract the profiles, we develop iGreenMiner,
an automated energy measurement framework for iOS apps.
We created 28 microbenchmarks, each representing a differ-
ent configuration of a framework’s location service. We use
iGreenMiner to collect the energy profiles of each configu-
ration and derive general guidelines for the developers from
the collected energy profiles. Our analysis shows that, overall,
energy-wise, Visits Location Service is the most efficient
service, while Standard Location Service performs the worst.
However, we find out that Standard Location Service can be
configured with certain parameter values to consume the least
amount of energy among all other configurations. Using the
energy profiles, we have created a graph that describes the
tradeoff between location access rate and energy consumption.
Developers may use this graph as a guide to choose one



location service over another. Finally, we have evaluated the
effectiveness of these guidelines on three real-world apps as
well as the sample app that Apple provides to its developers.
On real-world apps, we were able to reduce up to 26.91%
energy consumption and on sample app we reduced 11.37%
energy consumption.

Our results have the potential to guide the developers in
making informed, energy-efficient design choices before run-
time for accessing user location in their app. We make the
following contributions:

1) Location framework benchmarks. We created mi-
crobenchmarks with multiple configurations of the iOS
Core Location framework. These configurations can be
used to evaluate the effects of using different location
services on app qualities such as energy consumption,
execution speed, and user experience.

2) Energy measurement framework. We developed an
automated iOS energy measurement framework, iGreen-
Miner, that developers can access through a web service.

3) Recommendation guide. We present guidelines to help
developers make energy-efficient design choices while
using the iOS Core Location framework. Our results
provide evidence that developer’s design choice can
improve their app by reducing its energy consumption.

II. IOS CORE LOCATION FRAMEWORK

The iOS Core Location framework provides five services:
• Standard and Significant Location Services: tracks

changes in user location with configurable accuracy,
• Regional Monitoring Service: tracks user entry and exit

from specific regions,
• Beacon Ranging Service: tracks presence near a beacon,
• Visits Location Service: tracks the location where a user

has spent a significant amount of time, and
• Compass Headings Service: tracks user direction.
Some of these services are configurable with additional

parameters. Developers may use these parameters to change
the location accuracy and location access frequency. In this
paper, we investigate how these parameter configurations
affect energy consumption. We exclude the Beacon Ranging
Service and Compass Headings Service from our investigation,
because they do not report user location. Beacon Ranging
Service detects a user’s presence near a beacon and Compass
Headings Service detects a user’s movement direction.

a) Standard Location Service: This configurable service
provides real-time user location. According to the iOS docu-
mentation [12], it is the most power-hungry service because it
provides the most immediate location with highest accuracy.
The documentation recommends using this service only when
an app requires real-time location such as for navigation
instructions or recording a user’s hiking path.

Developers may configure this service through two pa-
rameters: desiredAccuracy and distanceFilter. The
former may be set to Best, HundredMeters, Kilometer,
Navigation, ThreeKilometers, or NearestTenMeters.

The latter pauses the location service from fetching further
locations unless the user movement exceeds the specified
distance (in meters). By default, desiredAccuracy is set to
Best and distanceFilter is set to None (i.e., the service
updates the location for any user movement).

Given the lack of documentation about how these values
affect energy consumption or location accuracy, developers
might find it difficult to decide which value best suits their
needs. In particular, Apple’s documentation [12] provides a
few guidelines for setting the value of desiredAccuracy.
First, the developer should not set the accuracy level to
Best or NearestTenMeters unless the app requires location
updates every few meters. Second, in practice, the framework
provides more accurate data than requested. For instance, accu-
racy ThreeKilometers provides an accuracy closer to one-
hundred meters. This brief documentation of the configuration
parameters does not help developers determine how these
parameters may affect the energy consumption of their apps.

b) Significant Location Service: According to Apple’s
documentation [13], developers should use this service to get
the current location and be notified only when a significant
distance has been covered. This service does not offer any con-
figuration parameters, and the distance accuracy is not men-
tioned in the documentation. The documentation states that
Significant Location Service is the most energy-conservative
service but provides the least location accuracy [13].

c) Visits Location Service: This service detects only
noteworthy movements of a user [14]. The service is not
intended to be used for real-time location data but rather to
identify patterns in user location. The service has a param-
eter: activityType, which pauses location updates accord-
ing to its type: other, automotiveNavigation, fitness,
otherNavigation, and airborne. The automotive-

Navigation option pauses the service location updates if
it detects that the user in not traveling in an automotive.
Similarly, fitness works for pedestrian activities where
indoor positioning is disabled. The otherNavigation option
works for navigation of boats, trains, or planes. There is no
information available regarding other or airborne in doc-
umentation. However, the default activityType is other.

d) Regional Monitoring Service: This service is a low-
energy alternative for a scenario where the app needs to iden-
tify the user presence within a certain geographical region [15].
A geographical region is a circle with a radius and a center
point on the Earth’s surface. To begin monitoring a region, the
developer has to define a geographical region in their code.
The service starts monitoring the user presence in the defined
region immediately after the app starts.

Figure 1 provides a code example that shows how de-
velopers may initialize each location service to access user
location. Lines 2–4 represent the usage of Standard Loca-
tion Service, initializing desiredAccuracy to Best and
distanceFilter to 212 meters. Line 7 represents the usage
of the Significant Location Service. Lines 10–14 represent the
usage of Regional Monitoring Service. Line 10 defines the
maximumDistance of the region, while Line 11 defines a



1 // Initializing Standard Location service
2 locationManager.desiredAccuracy =

kCLLocationAccuracyBest;
3 locationManager.distanceFilter = 4096;
4 locationManager.startUpdatingLocation();
5
6 // Initializing Significant Location service
7 locationManager.

startMonitoringSignfcntLocationChanges();
8
9 // Initializing Regional Monitoring service

10 let maxDistance = locationManager.
maximumRegionMonitoringDistance;

11 let region = CLCircularRegion(center: center,
radius: maxDistance, identifier:
identifier);

12 region.notifyOnEntry = true;
13 region.notifyOnExit = false;
14 locationManager.startMonitoring(for: region);
15
16 // Initializing Visit Monitoring service
17 locationManager.startMonitoringVisits();
18 locationManager.activityType = CLActivityType.

fitness;

Fig. 1: An example illustrating how to configure various
services offered by the iOS Core Location framework.
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Fig. 2: The major components of iGreenMiner: an iOS device,
measurement device, controller, and a web service. The dotted
lines represent connections between these components.

region using a radius and a center. The center contains
a latitude and a longitude. Line 14 initiates the user location
monitoring for the specified radius. Lines 17–18 represent
the usage of the Visits Location Service, initializing its param-
eter activityType with fitness.

III. LOCATION SERVICES ENERGY PROFILING

To help developers find out how various location services
and their parameters affect energy consumption, we have
created microbenchmark configurations of the location ser-
vices. To profile their energy consumption, we have developed
iGreenMiner, an automated hardware-based energy measure-
ment framework for iOS apps, accessible through a web
service 1. In this section, we present iGreenMiner, the location
services microbenchmark configurations, and the test scenarios
for evaluating these configurations.

A. Overview of iGreenMiner

The iGreenMiner framework extends GreenMiner [16], an
Android-based energy measurement framework, to support
the energy measurement of iOS apps. Figure 2 depicts the
iGreenMiner infrastructure. iGreenMiner is a continuous test-
ing suite that instruments an iOS device (currently supporting
iPhone 11 running iOS version 13.4.1 and iPhone 6S running
iOS version 9.0.1), runs multiple test cases on the device using
Xcode 11.3 [17] that is an iOS app development platform, and
measures the energy consumption of the entire device during
a test run using a power monitor. iGreenMiner has a controller
(a macOS device) that runs test scripts on the iOS device using
Apple Script [18], automates the process of test case execution
on the iOS device and collects energy measurement results.
To measure energy consumption, iGreenMiner uses a Mon-
soon power monitor [19] (i.e., a current draw measurement
instrument). Monsoon provides a direct voltage (4.2 Volts) to
the device, measures the current draw of the running device in
milliAmps (mA), with a sampling rate of 5 kHz. The power
monitor then reports the current value with a timestamp to the
controller. The controller records these power measurements,
converts them into energy as Joules (J) with respect to time. It
then uploads the computed measurements to a server for the
results to be available at the GreenMiner web service.

To avoid non-deterministic and erroneous values, we take
several precautions during our measurements. First, to avoid
battery conditions and the battery aging effect, we substitute
the measurement device battery with a constant direct supply
of 4.2 Volts. Second, to deploy test cases on the device,
we connect the controller to the measurement device through
WiFi. This wireless connection helps to bypass the charging
state of the measurement device, which usually turns on when
the device is connected to the controller via a USB cable.
Third, to synchronize the Monsoon monitor measurements
with the test case execution time, we run a shell script that
maps the energy measurement timestamps to the test case
execution time.

B. Microbenchmark Creation

To extract the location services energy profile, we have cre-
ated a basic iOS app structure to access user location. Based on
this structure, we have created multiple microbenchmark con-
figurations. Each configuration implements a different location
service with various parameter values. For Significant Location
Service and Regional Monitoring Service, we have created
only one configuration, because both of them do not have any
parameters to configure. For Visits Location Service, we have
created 6 configurations, each has a different value for the
parameter activityType. For Standard Location Service, we
have created 20 configurations, each has a different value for
the parameters desiredAccuracy and distanceFilter.
For each value for desiredAccuracy, we have selected
5 different values for distanceFilter: 24 meters, 28 meters,

1https://pizza.cs.ualberta.ca/gm/



TABLE I: The microbenchmark configurations that we have created for evaluation. Each configuration implements a different
location service with different parameter values. S1–S20 represent configurations for Standard Location Service. V1–V6
represent configurations for Visits Location Service. SG and RM (not part of this table) represent the Significant Location
Service and Regional Monitoring Service, respectively.

desiredAccuracy distanceFilter

Best Hundred Meters Kilometer Navigation

24 S1 S6 S11 S16

28 S2 S7 S12 S17

212 S3 S8 S13 S18

216 S4 S9 S14 S19

None S5 S10 S15 S20

activityType

airborne automotiveNavigation default fitness other otherNavigation

Configuration V1 V2 V3 V4 V5 V6

Fig. 3: A path for a user traveling from Northgate Centre to
Kingsway Mall.

212 meters, 216 meters, and None (i.e., zero meters). Table I
outlines all of the 28 configurations.

We do not consider the values of desiredAccuracy

with ThreeKilometers and NearestTenMeters, because
their functionality may be achieved with a combination of
desiredAccuracy values set to Kilometer and Best with
a distanceFilter set to 3000 meters and 10 meters,
respectively. To accurately generate the energy profiles of the
configurations, we run multiple test scenarios 5 times on each
configuration, and compute the median energy measurement
value as the representative of a configuration. We used median
energy to mitigate the risk of outliers in the energy measure-
ments that the Monsoon power monitor measures due to low
frequency sample rate.

C. Measurement Process

To specifically measure the location service usage while
the whole app is running, we first need to know how a
location service works. A location service, as per its parameter
configurations, initializes a handler that constantly tracks the
movement of a user by using an accelerometer sensor and
fetches the location by using GPS, cellular network, iOS
beacon, or WiFi after every several meters. Since our goal is
to evaluate the energy consumption of a location service usage
and not its initialization, we exclude the handler initialization
part from the energy measurements. To achieve that, we crop
the energy measurement of the initialization of the handler
through a time synchronization script and measure the energy
consumption of movement tracking and location fetching only.
To evaluate the configurations, we run two test scenarios on
each of the configuration.

1) The first test scenario: measures the energy consumption
of location fetching only, keeps the location stationary.

2) The second test scenario: measures the energy consump-
tion of location fetching with user movement, simulates
a user that travels from one point to another point on
earth. Figure 3 shows the path, using Google Maps,
where the user covers approximately 5.2 kilometers in
600 seconds from Northgate Centre to Kingsway Mall.
We simulate the user location using Xcode 11.3 [17], an
iOS app development platform.

To avoid erroneous energy measurements, we keep the
screen brightness constant throughout the execution of a test
case [20]. To log the number of locations accessed by a
configuration (i.e., location access rate) during each test case
execution, we instrument each configuration and re-execute
the test cases on it separately. As a result, for analysis and
comparison, we collected 140 non-instrumented and 140 in-
strumented energy measurements.



TABLE II: Energy consumption difference (p-values for
Wilcoxon rank sum test) among the configurations of Standard
Location Service for the desiredAccuracy parameter.

desiredAccuracy Best HundredMeters Kilometer

HundredMeters 0.048 - -
Kilometer 0.048 1.000 -
Navigation 1.000 0.048 0.048

TABLE III: Energy consumption difference (p-values for
Wilcoxon rank sum test) among the configurations of Visits
Location Service for the activityType parameter.

activityType Airborne AutoNav Default Fitness Other

AutoNav 1.000 - - - -
Default 1.000 1.000 - - -
Fitness 1.000 1.000 1.000 - -
Other 1.000 1.000 1.000 1.000 -
OtherNav 1.000 1.000 1.000 1.000 1.000

D. Accurate Energy Measurement

To ensure accuracy throughout our empirical evaluation, we
took 4 main measures.

First, the device could not be locked during a test case
execution. This is a constraint of Xcode [17] that for a locked
device, it loses connection with the device under test. As an
alternative, to mimic the test environment of a real user, when
the app is run in the background, we decrease the display
brightness to the lowest point such that the screen becomes
unreadable and consumes least energy [20].

Second, iGreenMiner with its current settings supports two
iOS devices: iPhone 11 and iPhone 6S. To minimize the
differences in device and iOS version-specific performance,
we use only one device (iPhone 11) in our experiments.

Third, installation of the app and initialization of the lo-
cation service handler is an overhead to our energy measure-
ments. To avoid this overhead, we start measuring energy after
the initialization of the app and the handler.

Finally, installing the same configurations and accessing
the same location information multiple times can introduce
performance differences due to cached app data. To avoid
location data caching, we wipe out the app’s data completely
and install altering configurations each time prior to a test run.

IV. WHICH LOCATION SERVICE SHOULD YOU USE?
To help developers understand the effect of using a par-

ticular location service on energy consumption, we have
profiled all the energy consumption of all the configurations
from Table I. We then evaluate those configurations through
answering the following research questions:

RQ1: Does using a particular location service affect the
energy consumption of an app?

RQ2: Which location service configuration may help de-
velopers reduce the energy consumption of their app?

RQ3: Do the default location service configurations yield
energy-efficient code?

RQ4: Does the energy consumption of a location service
change if it runs as a background service as opposed to
a foreground service?

RQ5: Which location service configurations perform best
in terms of accessing most locations while consuming
least energy?

A. Effect of Using A Particular Location Service (RQ1)

To evaluate the energy profiles of the configurations from
Table I, we ran the second test scenario described in Sec-
tion III-C on the configurations. Figure 4 represents the energy
profiles of each configuration. Across all configurations, the
minimum energy consumed by a configuration is 373 joules,
and for the same purpose (location access), the maximum
energy consumed by another configuration is 463 joules. This
shows that if developers choose a particular service with cer-
tain parameter values, it can increase the energy consumption
of their app up to 23.97%.

To find out the effect of each service parameter values
on energy consumption, we have evaluated the configurations
of Standard Location Service and Visits Location Service by
applying pairwise Wilcoxon rank-sum test [21] on the energy
measurements of these configurations. We keep α (significance
level) as 0.05 and apply Bonferroni adjustment method to
address the risk of type-I error. Table II and Table III shows
the results of our test. For Standard Location Service, there is
a statistically significant difference among the configurations
for different values of the parameter desiredAccuracy. The
bold values indicate p < 0.05. For Visits Location Service,
varying values of the activityType parameter does not cause
any significant difference.

Our results show that developers should be concerned
about their choice of parameters within the Standard Location
Service. However, in the case of the Visits Location Service,
the choice of a configuration does not matter as there is no dif-
ference among the energy consumption of its configurations.

Guideline 1 (G1): Developers should be conscious about
choosing a location service configuration as choosing
an energy hungry configuration can increase the energy
consumption by up to 23.97%.

B. Effect of Configuring Location Services (RQ2)

To answer this question, we ranked all configurations based
on the energy profiles that we have collected for RQ1.
Across all configurations, collectively, Visits Location Service
consumes the least energy followed by Regional Monitoring
Service, Significant Location Service, and Standard Location
Service. In particular, V1 and V5 from Visits Location Service
and S12 from Standard Location Service, perform better than
all other configurations while providing the same functionality.

Guideline 2 (G2): Collectively, across all configurations,
Visits Location Service is the most energy efficient
choice for developers while Standard Location Service
is the worst choice.

To identify the most energy-efficient configurations within
Standard Location Service and Visits Location Service, we
compare the energy profiles of the configurations of these
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Fig. 4: The energy profile of each microbenchmark configuration from Table I. Values above the microbenchmark name along
the x-axis represent the median energy consumption in Joules. Y-axis represents the average energy consumption in Joules.
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Fig. 5: The energy profile for each configuration of Standard Location Service.
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Fig. 6: The energy profile for each configuration of Visits
Location Service.

services. Figure 5 shows the energy profile for each Standard
Location Service configuration. Each box-plot represents the
five energy measurement values collected for each configura-
tion, and the x-axis represents the values of the parameter
distanceFilter. Each boxed section represents the pa-
rameter desiredAccuracy. Considering the median energy
profiles, the best configuration of Standard Location Service

is when the value of desiredAccuracy is Kilometer and
the distanceFilter value is 28 meters. On the other hand,
this service performs the worst when the desiredAccuracy

value is Best and the value of distanceFilter is 28 meters.
Figure 6 shows the energy profiles of each Visits Location

Service configuration. For this service, developers may use any
configuration, because there is no configuration that stands out
in terms of energy efficiency.

Guideline 3 (G3): The most energy-efficient configura-
tion for Standard Location Service is to set desired-
Accuracy to Kilometer and the distanceFilter

value to 28 meters (configuration S12).

C. Effect of Default Configuration Parameters (RQ3)

If the default parameter values in the Standard Location
Service and Visits Location Service are energy-efficient, de-
velopers will not have to worry about the parameter values of
these location services. To evaluate the default configurations,
we have executed the second test scenario described in Sec-
tion III-C on the default configurations and microbenchmark
configurations, and compared their energy profiles.



For Standard Location Service, the default values of
desiredAccuracy and distanceFilter are Best and
None (i.e., zero meters), respectively. This is the S5 config-
uration in our microbenchmarks. Observing the energy mea-
surements of Standard Location Service, Figure 5 shows that
the default parameter values are not the most energy optimal
choice. In fact, the default setting (S5) performs the third worst
within the 20 configurations of Standard Location Service.
Also in terms of location access rate per second, the default
configuration performs second to another configuration.

For Visits Location Service, the default value of its param-
eter activityType is other. As we have previously dis-
cussed, there is no difference across the energy consumption
of Visits Location Service configurations. Therefore the default
configuration for Visits Location Service is a safe option to
use, in terms of energy consumption, for developers.

Guideline 4 (G4): Developers should not use the default
configuration of Standard Location Service, because it
is not energy efficient. On the other hand, the default
configuration for Visits Location Service is equally
energy efficient to other configurations of the service.

D. Background vs Foreground Service (RQ4)

Depending on its requirements, an app may access location
information while running in the background of the UI thread;
for instance, a fitness app that continuously accesses locations
while the phone is locked and inside the user’s pocket.
Contrarily, an app might access location while running at the
foreground of the UI thread; for instance, a map navigation app
continuously accessing locations while the phone is docked
at the car’s dashboard. The scope of our study is limited
to apps that access locations in the background of the UI
thread. However, for a brief comparison of the effects of
accessing location in the background vs foreground, on energy,
we re-execute the second scenario from Section III-C on our
configurations in the foreground of the UI thread.

To compare the energy profiles of location access in the
background of the UI thread against that in the foreground
of the UI thread, we ran a paired Wilcoxon signed rank
test between the two observations with Bonferroni adjustment
applied to address the risk of type-I error. As a result, we get
p = 7.4e − 9 for the difference in energy consumption, and
p = 0.1185 for the difference in location access rate. This
results implies that for α kept 0.05, there is a statistically
significant difference among the observations for energy con-
sumption, while there is no statistically significant difference
among the observations for location access rate.

The average energy consumption for background services
and foreground services is 402.07 joules and 1,255.20 joules,
respectively. This overhead energy difference is due to several
factors. The iOS operating system generally provides more re-
sources to foreground tasks because they directly interact with
the user [22]. Additionally, the screen consumes more energy
for foreground services [20], because for background services
the screen is dark, whereas for the foreground execution the
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Fig. 7: The graph represents microbenchmarks which are better
than the others when run at the background or foreground
of a device. For example, an edge (line) from S12 to S13
means that S12 is better, it has lower energy cost and higher
location access rate than S13. Optimality Level represents
configurations that collectively dominate other configurations,
e.g., Level 1 to Level 7 means most optimal to least optimal.

screen is well lit with a white background. However, a detailed
investigation is required to reason about the difference between
the two observations, which is out of the scope of this study.

Guideline 5 (G5): The energy consumption of accessing
location information in the foreground of the UI thread
is 3× higher than accessing it in the background of the
UI thread.

E. Dominating Configurations (RQ5)

We have previously shown that, collectively, among all
configurations, Visits Location Service is the best, whereas,
Standard Location Service is the worst in terms of energy
consumption. But what if Visits Location Service accesses the
least number of locations, whereas, Standard Location Service
accesses the most? If an app requires frequent location updates
(e.g., for map navigation), then the app developer typically



aims for using a service that accesses the most number of
locations while using the least energy.

To find out the location service that has the most number
of location accesses with least amount of energy consump-
tion, we execute the second test scenario described in Sec-
tion III-C on the microbenchmark configurations twice: (1) in
the background of the user-interface (UI) thread and (2) in the
foreground of the UI thread.

To present the pareto-optimal solutions, we use a better-
than-graph: a directed graph where a source node represents
a better configuration than the target node. This graph helps
developers know which location service configurations dom-
inate others in terms of less energy consumption and high
location access rate. Figure 7 depicts this better-than-graph.
For accessing locations at the foreground of the UI thread,
S6, S10, S12, S14, and S15 from Standard Location Service,
as well as V1 from Visits Location Service are the most
dominating solutions. While for accessing locations at the
background of the UI thread S10, S12, and S15 from Standard
Location Service, as well as V1 from Visits Location Service
are the most dominating solutions.

Guideline 6 (G6): Developers can use our graph as a
guide to choose a location service based on a trade-off
between location access rate and energy consumption.

V. DISCUSSION

A. Comparing Our Guidelines with the Apple iOS Energy
Guidelines

We compare the results of our study with the official energy
guidelines provided by Apple [10], [23], [24]. Although there
is a lack of documentation for the location services, Apple
does provide some general energy guidelines regarding these
services. We provide a summary of the Apple guidelines (AG)
and compared them to our own set of guidelines.

• AG1: Visits Location Service is the most energy-efficient
choice when the app needs a user movement pattern
instead of real-time locations. AG1 is recommended for a
scenario when an app needs the location only if the user
has spent significant amount of time at that location.

• AG2: Significant Location Service is the most power-
efficient way when the app needs continuous live loca-
tions. AG2 is recommended for a scenario when real-time
location updates are less frequently required.

Our results complement AG1, as we have previously shown
that Visits Location Service is the most energy-efficient choice
when compared to other location services (G2). However,
contrary to AG2, we recommend that developers should pre-
fer using some specific configurations of Standard Location
Service and Visits Location Service over Significant Location
Service. This is because these specific configurations are more
energy-efficient and provide higher location access rate (G6).

• AG3: Standard Location Service uses significantly more
power than other location services, but it delivers the most
accurate and immediate location information.

Our results partially complement AG3. We discovered that
Standard Location Service delivers the most frequent updates
and is collectively the most energy intensive service (G4).
However, we have shown that if Standard Location Service
is configured with certain parameter values (S10, S12, S15),
it is more energy efficient than Visits Location Service and
Significant Location Service (G3).

• AG4: Developers should stop location services when the
location is not needed anymore.

AG4 is not covered in our test scenarios, because our goal is
to evaluate the energy consumption of the service itself when
it is running. However, it is reasonable to believe that stopping
a service will reduce energy.

• AG5: Setting Standard Location Services’ desired-

Accuracy to Best is the most energy-hungry decision
for developers, but it provides the most number of loca-
tions at the same time.

Unlike AG5, our experiments have shown that the suggested
setting performs second best (0.83 locations per second for
background, 0.84 locations per second for foreground) to an-
other setting where the desiredAccuracy is set to Hundred

meters (0.905 locations per second for background, 0.89
locations per second for foreground). This alternate setting
also consumes less energy than the proposed setting in AG5.
A further in-depth investigation is required to find out why
Best, with lower location access rate, consumes more energy
than Hundred meters.

• AG6: Defer location updates from the services. Queue
the locations and process them all at once sometime.

AG6 is an interesting guideline. Similar to prior work [4],
the technique of queuing up processes has proven to reduce
energy consumption due to less context switches. However,
evaluating AG6 is out of the scope of our study.

B. Why Are There Energy Differences Among the Location
Service Configurations?

The total energy consumption of a location service con-
figuration is an aggregate of three costs: movement tracking
sensors, service handler computation, and location fetching.
Movement tracking sensors include the accelerometer sensor
and it stays constantly active when the phone is in motion.
Service handler computation involves the handler initialization
and call frequency. The frequency of handler calls is config-
ured by the distanceFilter parameter. Location fetching
involves utilizing hardware components by accessing loca-
tions through a combination of nearby iOS beacons, network
routers, cellular towers, and GPS.

Among these functionalities, in our study, we are interested
in the location fetching part. To investigate the cost of loca-
tion fetching alone, we execute the first test scenario from
Section III-C on all configurations in the foreground of the UI
thread. We investigate the location fetch energy cost alone by
keeping the phone location stationary. A stationary location
limits the usage of movement sensors and reduces the service
handler cost that includes movement tracking.



To measure the difference among the benchmarks for this
test scenario, we performed an unpaired Wilcoxon rank-sum
test on the energy measurements. The results show that for
α = 0.05, and Bonferroni adjustment method applied, all
resultant p-values are > 0.05, implying no statistically signif-
icant difference among the configurations in terms of energy
consumption. This result shows that the energy difference
observed among the configurations is mainly due to two
reasons: (1) frequency of the location fetching handler calls
and (2) sensor usage for movement tracking.

C. Do Our Guidelines Help Improve the Energy Consumption
of Real-World Apps?

To evaluate the usefulness of our guidelines, we have
evaluated them on real-world apps. We replace real-world
apps’ current location service implementation with an energy-
optimal alternative according to the better-than-graph from
Figure 7. To profile the energy consumption, we execute
the second test scenario from Section III-C on the original
app and its modified (energy-optimal alternative) version. To
automatically detect the usage of a location service and its
parameter values, we have extended SWAN [25], an iOS static
analysis framework. Our extension searches for method calls
and configuration parameters of any location service usage.

1) Selecting Real-World Apps: To find real-world apps
that use the Core Location framework, we have explored the
occurrence of code snippets on Github 2 using the search
string “locationManager.start” 3. This string represents
the usage of location service in iOS apps. As a result, we
found 155 apps that use multiple programming languages.
Since Apple recommends Swift for development on iOS [26],
and iGreenMiner supports Swift as well, we exclude the apps
that do not use Swift as a programming language. This step
leaves us with 40 apps that are academic assignments, course
projects, and professional apps for Apple’s app store.

Across these 40 apps, we applied the following exclusion
criteria: Swift version older than 5, build failure, login cre-
dentials not provided, and that the app crashes. This filtra-
tion leaves us with three types of app categories: property
search, weather, and location utility. We then picked one app
from each category for this evaluation. In addition to real-
world apps, we also consider Apple’s provided sample code
implementation of the location service [27]. This sample code
demonstrates the usage of location service for developers.

2) Results:
a) Property Search App [28]: this app helps users find

real state properties near their location. The app uses Standard
Location Service with desiredAccuracy set to Nearest-

TenMeters, and distanceFilter set to None. This setup
is equivalent to setting desiredAccuracy to Best and
distanceFilter to 10. The closest representative setup for
this configuration in our study is S1.

To optimize this app, we replaced the current app S1
implementation with S12 because Figure 7a suggests that S12

2https://github.com
3https://github.com/search?q=locationManager.start&type=code

accesses more locations than S1 with less energy usage. As
a result, with an energy-efficient alternative, we reduced the
energy consumption by 0.42%. The impact is small since the
app accesses the user location only once during the whole test
scenario.

b) Weather App [29]: this app reports the weather of
the current user location. The app continuously monitors user
location and updates the weather at every location access. The
app uses Standard Location Service with desiredAccuracy

set to HundredMeters and distanceFilter set to None.
This configuration represents S10 in our study.

To optimize this app, we replaced the current app S10
implementation with S12 because Figure 4 shows that it is
the most energy efficient configuration for Standard Location
Service. As a result, by replacing the app’s actual location
service implementation with an energy-efficient alternative, we
reduced the energy consumption by 10.59%.

c) Location Utility App [30]: this sample utility app
provides a user interface that continuously reports user lo-
cation change with address, speed of movement, direction and
altitude. It also performs geocoding, i.e., converting latitude/-
longitude coordinates to a user-friendly description. The app
uses Standard Location Service with desiredAccuracy set
to Best and distanceFilter set to None. This configuration
represents S5 in our study.

To optimize this app, we replaced the current app S5
implementation with S12 because according to Figure 7a, S12
accesses more locations than S5 with less energy usage. As
a result, by replacing the app’s actual location service imple-
mentation with an energy-efficient alternative, we reduced the
energy consumption by 26.91%.

d) Apple Sample App [27]: this is a demonstration code
that tracks user location changes and draw a trail over the map
as the user moves. The app uses Standard Location Service
with desiredAccuracy set to Best and distanceFilter

set to None. This configuration represents S5 in our study.
Similar to the location utility app, we replaced the current

app S5 implementation with S12. As a result, we reduced the
energy consumption by 11.37%.

VI. THREATS TO VALIDITY

We ran all our experiments on a single smartphone device
that runs on a single operating system. This setup restricts
the generalizability of our results to a single device/operating-
system configuration. Due to the expensive hardware costs that
entail iOS measurement, we evaluate our benchmarks on one
of the latest available device running iOS version 13.4.1. Al-
though our absolute energy measurements are dependent on a
single device configuration, we believe that the relative energy
difference between the location service configurations should
stay the same. This hypothesis requires further investigation
which is out of the scope of this paper. Another threat is
that our results can not be generalized on iPhone versions
other than 11, or on iOS versions other than iOS 13.4.1.
Our methodology for evaluating the core location framework,
however, will stay relevant.



Instead of physically moving the smartphone, we simulate
the user location. This is because moving for 10 minutes
around the city five times for each benchmark, while having
28 benchmarks, requires 23 hours of traveling along with
the iGreenMiner hardware, which is a prohibitively expensive
process. However, physical movement in such an experiment
is important because users use their phone in a heterogeneous
network environment, an environment that causes several
disconnections between WiFi and GPS. Moreover, cellular
tower distance, surface elevation and signal range variation
may affect energy consumption. For example, in an urban city,
a user experiences frequent context switches as compared to a
rural area. This is because urban cities often have more cellular
towers than rural areas. Unfortunately while conducting the
experiments, our mobility was restricted due to the Covid-19
pandemic situation. However, our experimental setup retains
the relative energy difference among the location service
configurations. After the movement restriction ban has been
lifted, we plan to conduct a physical experiment to get more
accurate measurements.

VII. RELATED WORK

Recent studies have shown that developers are unaware of
which parts of their code consumes energy, how to measure
the energy consumption, and how their code changes may
affect energy consumption [31], [1], [32], [33], [34]. To help
developers, several researchers have proposed energy measure-
ment techniques while some have helped developers through
recommendation guides and energy optimization techniques.

A. Energy Measurement

To help developers measure or predict energy consumption,
prior work offer tools such as GreenMiner [16], a hardware-
based tool that developers use through an open-source web
service to measure the energy consumption of their Android
apps. Cruz et al. [35] highlight the issue of error in the
current energy prediction models and propose an automated
framework that helps developers measure energy in case the
prediction model is inaccurate. However, to this date, the
proposed framework has not been implemented yet. Matalonga
et al. [36] present energy datasets for further analysis. Other
researchers have developed energy prediction models [37],
[38], [39], [40], [41] to help the developers quickly estimate
the energy consumption of their code and relieve the burden
of managing energy measurement hardware.

Unfortunately, all these measurement frameworks and pre-
diction models are limited to the Android platform. Hence
these measurement techniques can not be used to find de-
sign choice or energy optimization techniques for the iOS
developers. Keeping this limitation in context, and to provide
guidelines for the iOS Core Location framework, we extend
the GreenMiner framework [16] to support the iOS platform.

B. Recommendation Guidelines

There have been several empirical studies to help developers
be aware of the development practices that affect energy

consumption. Manotas et al. [42] introduce a decision-support
framework for developers for making energy-efficient choices
while using Java Collections API. Similarly, Hasan et al. [5]
identify the effect of various Java collection classes on energy
consumption and provide guidelines to the developers to
reduce energy. Chowdhury et al. [4] introduce an architectural
design pattern that developers may follow to reduce energy
consumption. In a recent study, Oliveira et al. [43] have shown
that different development approaches have different impact on
the energy consumption of Android apps.

C. Optimization Techniques

Pinto el al. [44] investigated refactoring techniques that
developers can adapt to reduce energy consumption. Pambola
et al. [45] have conducted an empirical study to find out how
code smells affect smartphone apps energy consumption and
which code smells are the most energy-hungry. Mazuera et
al. [46] have performed an extensive study on code commits
of both Android and iOS apps to extract performance bugs.
The author then propose a taxonomy that developers should
follow to build tools for detection and optimization of energy
bugs. Couto et al. [47] have statically analyzed Android apps
to detect energy-greedy patterns and propose an automated
refactoring technique to eradicate the detected patterns.

Our work is closest to the investigation done by Schuler
et al. [48], in terms of providing an energy recommendation
guide for developers. Schuler et al. [48] evaluate the impact of
third-party framework calls on energy consumption. Contrary
to our work, that study considers all calls to frameworks
collectively instead of an in-depth investigation of a single
framework. The study also does not provide any recommen-
dation guidelines to developers.

VIII. CONCLUSION

Developers use the Core Location framework for accessing
user location in their apps. However, developers are unaware
of how their design choice for a particular Core Location
framework service’s configuration affects energy consumption.
To better help developers, we have provided a set of guidelines
for making an energy-efficient choice regarding the Core
Location framework.

Our guidelines show that for frequent location updates, three
Standard Location Service configurations (S10, S12, S15) are
the most energy efficient. While for less frequent location
updates, Regional Monitoring Service is the most energy-
efficient.

Upon implementing our guidelines on 3 real-world apps,
each belonging to a different category, we reduce up to 26.91%
energy consumption. Developers may use these guidelines to
develop energy auto-tuning tools. Moreover, our methodology
may be used to evaluate utility frameworks other than location
services such as Core graphics, Core ML, Core Animation, and
Core Bluetooth. Finally, our iGreenMiner framework provides
a web service that developers may use to measure and monitor
the energy consumption of their iOS apps.
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