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Abstract

Let us consider K/k to be a finite Galois extension of number fields with

G = Gal(K/k) and assume that S is finite G-stable set of primes of K which

is ”large”, this means that it contains all archimedean primes, all the ramified

primes of K/k and such that the S-class group of K is trivial. K. W. Gruen-

berg and A. Weiss in [10] proved that the ZG-module of the S-units of K is

completely determined up to stable isomorphism by its torsion submodule µ,

the set S, a special character ε and the Chinburg class Ωm(K/k).

The main point of this thesis is to investigate the ZG-module structure of E

when k = Q and K is a cyclotomic extension of Q by studying in detail the

character ε.
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Chapter 1

Introduction.

Let us consider K/k to be a finite Galois extension of number fields with

G = Gal(K/k) and assume that S is a finite G-stable set of primes of K

which is ”large”: this means that it contains all Archimedean primes, all the

ramified primes of K/k and such that the S-class group of K is trivial.

K.W. Gruenberg and A. Weiss addressed in their joint paper [10] the question

of determining the ZG-module structure of the group of the S-units of K.

The belief that one can find explicit models of ZG-modules, which are stably

isomorphic to the S-units, by emulating the ideas presented in [9] and [10], is

the motivation for the work presented in this thesis.

The structure of the group of units O×K of the ring of integers OK , has been

of great interest for number theory. In the first half of the 19th century E.

Kummer and independently Dirichlet studied the structure of O×K . The work

of E. Kummer is based on understanding the arithmetic of cyclotomic fields

K = Q(µ) generated over the field of rational numbers by the set µ of all

roots of the polynomial X2m − 1. Dirichlet’s work on L-functions and their

values at 1 led to the proof that the multiplicative subgroup A of K× generated

by {1− µ : µ ∈ µ×} has a subgroup of finite index in O×K , where µ× = µ\{1}.

The ZG-module E of the S-units of K consists of all nonzero elements u of
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K× such that

vP(u) = 0 for all P /∈ S.

J. Tate started the study of the module E, which contains O×K as a submod-

ule. He realized that E is a ZG-module to which the cohomological methods

of class field theory can be applied effectively when S is large.

In the second half of the 20th century Tate obtained two major results re-

garding the cohomology and arithmetic of E. It should be emphasized that

throughout the thesis cohomology will always mean Tate cohomology unless

it is stated otherwise.

By considering the augmentation map ı́0 : ZS → Z which sends each P in S

to 1 and denoting by ∆S the kernel of ı́0, one obtains the following short exact

sequence of ZG-modules

0 ∆S ZS Z 0
i0 ı́0

(1.0.0.1)

In [14] published in 1966, Tate proved that the cohomology induced by (1.0.0.1)

is isomorphic to the cohomology induced by the short exact sequence

0 E J CK 0
j ́

(1.0.0.2)

after dimension shifting by 2, where J denotes the group of S-idèles and CK

the group of idèle classes.

He then deduced the existence of an exact sequence of finitely generated ZG-

modules

0 E A B ∆S 0 (1.0.0.3)

where A and B are cohomologically trivial. The proof of this result can be

found in [15]. An exact sequence of this type will be called a Tate sequence.
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Chinburg in [4], published in 1983, used (1.0.0.3) to define the Chinburg class

Ωm(K/k) = [A]− [B] in K0(ZG) (1.0.0.4)

and proved that this is an invariant of K. The author conjectured in [5] that

Ωm(K/k) = WK/k,

where WK/k is the Cassou-Noguès Fröhlich class of K/k .

For cyclotomic extensions of Q, Chinburg’s conjecture was proved in the joint

paper of 2003 by D. Burns and C. Greither [3], with Z replaced by Z′ = Z[1/2].

In 2013 M. Flach completed the proof, in [7], of Chinburg’s conjecture for cy-

clotomic fields, hence, when K = Q(µ) one can state that Ωm(K/Q) = 0.

In [9] the Galois structure of E is studied through its envelopes, which means

short exact sequences of finitely generated ZG-modules of the form

0 E C L 0 (1.0.0.5)

where C is cohomologically trivial and L is a ZG-lattice, meaning that L is

Z-free module.

In the later work [10], published in 1997, the authors proved

1.0.1 Theorem (Theorem B). The stable isomorphism class of E is deter-

mined by the ZG-module µ, the G-set S, a special character ε : H2(G,Hom(∆S,µ))→
Q/Z and the Chinburg invariant Ωm(K/k).

Since the computation of the character ε is a crucial factor in this work, we

will briefly describe ε here.

Given ZG-modulesM andN , Hom(M,N) (respectivelyM⊗N) meansHomZ(M,N)

(respM⊗ZN), whereG acts by the diagonal action andM∗ = HomZ(M,Q/Z).

We also define [M,N ]G = HomG(M,N)/〈f : f ∼ 0〉, where f ∼ 0 means that

there exists a ZG-projective module P and ZG-homomorphisms f ′ : M → P
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and f ′′ : P → N , such that f is the following

f : M P N.
f ′ f ′′

In case there is no confusion we will denote [M,N ]G simply by [M,N ].

If L is a ZG-lattice, H0(G,Hom(L,M)) ∼= [L,M ]. The proof of this fact can

be found on pg 270 of [9].

Let us consider a Tate sequence as in (1.0.0.3) and denote the kernel of the

map B → ∆S by L. Then the Tate sequence can be divided into two short

exact sequences

0 E A L 0 (1.0.1.1)

0 L B ∆S 0,
(1.0.1.2)

where the first exact sequence is a particular ”Tate” envelope of E. After

applying the functorHom(−,µ) to the Z-split exact sequence given in (1.0.1.2)

and applying cohomology, one obtains a connecting isomorphism

∂′′ : H1(G,Hom(L,µ))→ H2(G,Hom(∆S,µ)). (1.0.1.3)

If we denote by α : µ → E the natural inclusion of the roots of unity of K

into the S-units, the envelope of E given in (1.0.1.1) induces an envelope of µ

0 µ A Ā 0

0 E A L 0

α = f̄

(1.0.1.4)

By applying the exact functor Hom(L,−) to (1.0.1.4) and then applying co-

homology, one obtains the following commutative diagram
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[L, Ā] H1(G,Hom(L,µ))

[L,L] H1(G,Hom(L,E))

Q/Z

∂′L

∂L

α∗f̄∗

τL

(1.0.1.5)

where τL[l] := TraceL(l)/|G| + Z for all [l] in [L,L] and the horizontal con-

necting homomorphisms are in fact isomorphisms.

We now restrict our attention to envelopes of E of the form

0 E A ∆G⊗∆S 0. (1.0.1.6)

From this point on L = ∆G ⊗ ∆S, we can replace (1.0.1.2) by the exact

sequence

0 L ZG⊗∆S ∆S 0,
i1 ı́1

(1.0.1.7)

obtained by applying the exact functor −⊗∆S to the augmentation sequence

0 ∆G ZG Z 0.
i1 ı́1

(1.0.1.8)

The character ε can now be described as ε = τL∂
−1
L α∗(∂′′)−1.

The original objective of this thesis is to use the Reconstruction Process, ap-

pearing in §5 of [10], to obtain an explicit description of a ZG-module M stably

isomorphic to the S-units E from the following data: the torsion submodule

µ, the ZG-lattice L and the character ε, for the case when K = Q(µ) is a

cyclotomic extension over the field of rational numbers.

Considering the family of cyclotomic extensions over Q as our candidate to test
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the viability of explicitly finding models stably isomorphic to E is motivated

by the arithmetic and cohomological knowledge that the literature provides

for this family of fields. The fact that Ω(Q(µ)/Q) = 0 is an extra incentive.

We expected that the methods applied to the cyclotomic fields case would

give us an insight of the ZG-module structure that could be generalized to

arbitrary number fields.

The steps to follow are: to construct a particular envelope of µ

0 µ C C̄ 0,
ψ π

with [C] − (|S| − 1)[ZG] = 0 in K0(ZG) and a surjective homomorphism

f̄ : C̄ → L, satisfying

τL f̄∗ = ε ∂′L ∂
′′. (1.0.1.9)

The importance of f̄ : C̄ → L being a surjective ZG-homomorphism, is that,

it induces the following commutative diagram with exact rows

0 µ C C̄ 0

0 M C L 0

ψ π

f

= f̄

(1.0.1.10)

where f = f̄ ◦ π and M = ker(f). The lower row of diagram (1.0.1.10) and

the exact sequence given in (1.0.1.6) are envelopes satisfying a particular case

of the Reconstruction Process, namely Theorem 4.7 of [10], from which we

conclude that, M is stably isomorphic to E.

The setup of this thesis is the following: Chapter 2 contains background the-

ory needed mainly in Chapters 6 and 7.

In chapter 3 we construct a reasonably ”small” envelope 0→ µ→ C → C̄ →
0 of µ, for an arbitrary finite Galois extension K/k of number fields. The

6



envelope presented here satisfies

[C]− c[ZG] = 0 in K0(ZG),

with |G|c = dimQ(Q ⊗ C) = |G|d(G), where d(G) is the minimal number of

generators of G.

In chapter 4 we prove that for an arbitrary Galois extension of number fields

K/k, the character ε : H2(G,Hom(∆S,µ))→ Q/Z can be expressed in terms

of global and local invariants maps from class field theory. This result brings

advantages in the computability of ε, in contrast to the description of ε given

in [10].

In chapter 5 we start the exposition by considering the general case when K/k

is a Galois extension of number fields and studying the long exact sequence in

cohomology

· · · H2(G,Hom(ZS,µ)) H2(G,Hom(∆S,µ)) H3(G,µ) · · ·
i∗1 ∂ ı́∗1

(1.0.1.11)

induced by the short exact sequence obtained by applying the functorHom(−,µ)

to the Z-split exact sequence (1.0.0.1). We show that ε restricted to the image

of i∗1 can be expressed only in terms of the local invariants.

After this point, we restrict to the case K = Q(µ) and show that that 2 anni-

hilates H3(G,µ).

This last observation leads us to consider working in the category of Z′G-

modules, with Z′ = Z[1/2], the advantage being that ε is then completely

determined by its restriction to the image of i∗1, so the global invariant is never

needed.

We conclude chapter 5 by proving that, in the category of Z′G-modules, one

can reduce the problem of computing ε for K = Q(µ) to computing it for

K̃ = Q(µ̃), with µ̃ the set of roots of x2m̃ − 1 and m̃ the greatest squarefree
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divisor of m.

The importance of this observation is that K̃ is tamely ramified for all non

archimedean primes different from 2 and that, in this setting, the local invari-

ant maps are less difficult to compute.

In chapter 6 we continue working with K̃. First we compute a set of generators

of the group H2(G,Hom(ZS,µ)), using the fact that ZS ∼=
⊕

P∈S∗ ind
G
GP

Z,

where S∗ is a transversal to the G-orbits in S. Since Shapiro’s lemma gives an

isomorphism

H2(G,Hom(ZS,µ)) ∼=
⊕

P∈S∗
H2(GP,µ),

we are reduced to computing a set of generators for each factor H2(GP,µ),

which is done by an application of the Hochschild-Serre spectral sequence.

This chapter concludes with the evaluation of ε on each generator.

In Chapter 7 we continue to work in the category of Z′G-modules, here we

deal with the computation of a suitable f̄ : C̄ → L satisfying (1.0.1.9). We

approach this by showing that there is a commutative diagram

H2(GP,µ) H2(G,Hom(∆S,µ))

H0(GP, Hom(∆G, C̄)) [L, C̄]
α1

∼= ∼=

even more, we compute explicitly the vertical isomorphisms. The diagram

above suggests that f̄ can be computed ”locally”. Following this idea, we

construct a homomorphism β1 : [C̄, L]G → [C̄,∆G]GP
and a non-degenerate

pairing

τ
GP

∆G : [C̄,∆G]GP
× [∆G, C̄]GP

→ Q/Z,

such that

τ
GP

∆G(β1[f̄ ], z) = τL([f̄ ], α1z), (1.0.1.12)
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for all [f̄ ] in [C̄, L] and all z in H0(GP, Hom(∆G, C̄)) ∼= [∆G, C̄]GP
.

Chapter 8 is dedicated to study β1[f ]. We list the conditions that a [fP] = β1[f ]

in [C̄,∆G]GP
must satisfy so that (1.0.1.12) holds.

Throughout this project we encountered many obstacles, some of which we

were able to face by modifying the original setup. As an example of this, we

can mention the obstruction that the prime number 2 had on the computa-

tion of the character ε. In this case, shifting to the category of Z′G-modules

allowed us to obtain results without trivializing the project.

This was not the case when dealing with the surjective homomorphism f :

C → L. Even in the simplest cases we studied, assuming m to be an odd

prime number, where we actually compute ker(f), the answers obtained did

not bring any real understanding of E.

The difficulty of computing ker(f), increases drastically with the complexity

of m and achieving a general method in this way seemed unrealistic.

We then approached the original question from a different point of view, which

led us to the proof of Theorem 1.0.2 presented in the Appendix. It must be

emphasized that, Theorem 1.0.2 has been proved, for arbitrary finite Galois

extensions K/k of number fields.

We now give a list of results that are necessary to state Theorem 1.0.2.

The isomorphism ∂′′ : H1(G,Hom(L,µ)) → H2(G,Hom(∆S,µ)), defines an

isomorphism

(∂′′)∗ : H2(G,Hom(∆S,µ))∗ → H1(G,Hom(L,µ))∗. (1.0.1.13)

Similarly ∂′L : [L, C̄]→ H1(G,Hom(L,µ)), defines an isomorphism

(∂′L)∗ : H1(G,Hom(L,µ))∗ → [L, C̄]∗. (1.0.1.14)
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The fact that L is a ZG-lattice implies that the homomorphism

[C̄, L]→ [L, C̄]∗, (1.0.1.15)

given by [f̄ ] 7→ [f̄ ]∗, where [f̄ ]∗([g]) = TraceL(f ◦ g)/|G| + Z for [g] in [L, C̄],

is an isomorphism. The above discussion implies the existence of h̄ : C̄ → L

satisfying

[h̄]∗ = −(∂′L)∗(∂′′)∗ε = −ε∂′′∂′L.

The ZG-map π : C → C̄ induces equal functors Hom(C,−) and Hom(C̄,−),

on the category of ZG-lattices, hence [C̄, L] ∼= [C,L]. Letting h : C → L be

the unique homomorphism such that h̄π = h, we can say that

[h]∗ = −(∂′L)∗(∂′′)∗ε′ = −ε′∂′′∂′L, (1.0.1.16)

under the last identification.

Let us consider the exact sequence given in (1.0.1.7), after applying the exact

functor ∆G⊗−. We obtain the following exact sequence

0 L2 N L 0,

where L2 = ∆G ⊗ L and N ∼= ZG ⊗ ∆G ⊗ ∆S. The fact that N is a

ZG-free module implies that the connecting homomorphism ∂ : [C,L] →
H1(G,Hom(C,L2,)) is an isomorphism.

Let 0→ µ→ C → C̄ → 0 be an envelope of µ satisfying

[C]− c[ZG] = Ωm(K) in Cl(ZG),

where |G|c = dimQ(Q⊗ C).

1.0.2 Theorem. Let M = M(ε) denote the ZG-module in a Z-split 1-extension

0 L2 M C 0,
(1.0.2.1)

with extension class equal to the image of ε1 = ∂[h] in H1(G,Hom(C,L2))

([h] as in (1.0.1.16)). Then E ⊕ (ZG)n is stably isomorphic to M(ε), with

n := (|G| − 2)(|S| − 1), when G is not trivial.
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The proof of the theorem above, which forms part of a joint paper in progress

by D. Riveros and A. Weiss, is included here as an appendix. It describes a

method for finding an explicit model M for the stable isomorphism class of

E by having understanding of the factors ∆S, Ωm, ε, n and C. This shows

how the character ε is highly involved in the ZG-module structure of M . The

computations of the local invariant maps done in Chapter 5, for cyclotomic

extensions of Q, show that the character ε in this case is rarely trivial, hence

the same can be said about the sequence in (1.0.2.1) being ZG-split.

The complexity that ε reflects on M suggests why the difficulties when com-

puting ker(f) could not be solved by the methods of our original project.
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Chapter 2

Group Cohomology

This chapter contains results about group cohomology that will be used in

later chapters such as: the Shapiro’s isomorphism, restriction, corestriction

and inflation maps and a brief presentation of spectral sequences.

We will follow for the first part [13], while the spectral sequence exposition

will follow ([1] vol. 2).

2.1 Restriction, corestriction and inflation maps.

Let H and G be groups, f : H → G a group homomorphism and A a ZG-

module. A has a ZH-module structure induced by f in the following way

h · a = f(h) · a for all h ∈ H. (2.1.0.1)

A seen as a ZH-module will be denoted by f ∗(A).

If a belongs to AG and h is an element of H, it follows that h ·a = f(h) ·a = a

hence AG ⊆ (f ∗A)H . Then there is a group homomorphism H0(G,A) →
H0(H, f ∗A). The fact that A 7→ Hq(H, f ∗A), defines a cohomological δ-

functor of the ZG-module A, implies by the universal property of derived

functors that H0(G,A) → H0(H, f ∗A) extends to a morphism of cohomo-

logical δ-functors {Hq(G,A), δ} → {Hq(H, f ∗A), δ}. The homomorphism
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Hq(G,A)→ Hq(H, f ∗A) induced by f : H → G will be denoted by f q.

2.1.1 Example. If H is a subgroup of G and i : H → G is the natural

inclusion, iq : Hq(G,A) → Hq(H, i∗A) is called restriction map and will be

denote iq = resGH .

If B is a ZH-module and j : f ∗A→ B is a ZH-homomorphism: meaning that

h · j(a) = j (f(gh) · a) , (2.1.1.1)

for all h inH and a inA, then j defines a group homomorphism jq : Hq(H, f ∗A)→
Hq(H,B) for all non-negative integers q. If f : H → G and j : f ∗A→ A satisfy

(2.1.1.1) we say that (f, j) is a compatible pair and the composition

Hq(G,A) Hq(H, f ∗A) Hq(H,B)
f q jq

is denoted by (f, j)∗q.

2.1.2 Example. Let N be a normal subgroup of G and let H = G/N . If A

is a ZG-module, then AN is a ZH-module. If we take f : G → H to be the

natural surjection and j : AN → A the inclusion it follows clearly that (f, j)

is a compatible pair. We define the inflation map

inf = (f, j)∗q : Hq(G/N,AN)→ Hq(G,A). (2.1.2.1)

2.1.3 Proposition. Let N be a normal subgroup of G and A a ZG-module,

if H i(N,A) = 0 for all 1 ≤ i ≤ q − 1 it follows that the following is an exact

sequence

0 Hq(G/N,AN) Hq(G,A) Hq(N,A).
inf resGN

(2.1.3.1)

Let us now consider H to be a subgroup of G of finite index and A a ZG-

module. We can define the the norm map NG/H : AH → AG in the following
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way: we fix X to be a left transversal of H in G then

NG/H(a) =
∑

x∈X
xa (2.1.3.2)

for all a in AH . It follows clearly that the map NG/H is independent of the

choice of X.

2.1.4 Example. For a in AH , NG/H(a) belongs to AG implying that NG/H

induces a homomorphism H0(H,A) → H0(G,A), which extends uniquely to

a homomorphism {Hq(H,A)} → {Hq(G,A)} of cohomological δ-functors of

ZG-modules. This homomorphism is called corestriction and will be denoted

by corGH .

2.2 Shapiro’s isomorphism.

We now study a particular case of Shapiro’s isomorphism which will be used

in later chapters. Let us recall that M⊗N (respectively Hom(M,N)) denotes

M⊗ZN (resp HomZ(M,N)) where G acts diagonally. It should be mentioned

that in this section H∗ will denote regular cohomology while Ĥ∗ denotes Tate

cohomology.

Let H be a subgroup of G, i : H → G the natural inclusion and B a ZH-

module. Let us denote by B] the ZG-module HomZH(ZG,B), where the

action of G is given by

(g · φ)(x) = φ(x · g)

for every φ in B] and g, x in G.

We define ΘB : B] → B by ΘB(φ) = φ(1G). Notice that for all h in H

ΘB(hφ) = (hφ)(1G) = φ(h) = h · φ(1G) = hΘB(φ), (2.2.0.1)

then ΘB is a ZH-homomorphism and (i,ΘB) is a compatible pair which in-
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duces the homomorphism

(i,ΘB)∗q : Hq(G,B])→ Hq(H,B).

It is a well know fact that ZG is a ZH-free module then it is isomorphic to

ZH ⊗M for some Z-free module M . By duality

Hom(ZG,X) ∼= Hom(ZH ⊗M,X) ∼= Hom(ZH,Hom(M,X))

for any Z-module X.

2.2.1 Proposition. 1. The homomorphism (i,ΘB)∗q : Ĥq(G,B])→ Ĥq(H,B)

is an isomorphism called inverse Shapiro’s isomorphism, which we will

denote by (sh−1
B )q.

2. Define iB : B → B] by iB(b) = φb, where

φb(x) =




xb if x ∈ H
0 if x /∈ H,

then iB is a ZH-homomorphism such that the composite

Ĥq(H,B) Ĥq(H,B]) Ĥq(G,B])
iqB corGH

is the inverse of (sh−1
B )q, which we will denote by shqB.

Proof. 1. When q = 0: let φ be an element of B] then, φ belongs to (B])G

is equivalent to say that φ(gx) = φ(x) for all g, x in G, this implies that

φ(g) = φ(1G) = ΘB(φ). (2.2.1.1)

The last equality shows that if h belongs to H

hΘB(φ) = hφ(1G) = φ(h) = φ(1G) = ΘB(φ),

hence ΘB(φ) is an element of BH .The fact that φ(x) = φ(1G) for all x

in G implies that (i,ΘB)∗0 is injective.

Surjectivity can be proved by taking b in BH and letting φb be the

element of B] defined by: φb(x) = b for any x in G. Then (2.2.1.1)
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implies that φb ∈ (B])G and θB(φb) = b.

The above shows that (sh−1
B )0 is an isomorphism from H0(G,B]) to

H0(H,B).

The same statement is true for Tate cohomology since ΘB(NG(B])) =

NH(B). In order to prove this last equality let X be a right transversal

of H in G, then for φ in B] it follows that

ΘB(NG(φ)) = ΘB

(∑

g∈G
gφ

)
=
∑

g∈G
gφ(1g)

=
∑

g∈G
φ(g) =

∑

x∈X

∑

h∈H
φ(hx)

=
∑

x∈X

∑

h∈H
hφ(x) =

∑

x∈X
NH(φ(x)).

It is clear that for any b in B, ΘB(NG(iB(b))) = NH(b).

In order to extend to the case q ≥ 1 one can easily show that: if B is

induced for H, meaning that there is a Z-module M with B ∼= ZH ⊗M
then B] ∼= ZG ⊗ M . We embed B into an induced module C, if f :

B → C is such an imbedding and we let D = coker(f) one obtains the

following commutative diagram

0 B] C] D] 0

0 B C D 0

f ∗

f

ΘB ΘC ΘD

(2.2.1.2)

where the top and bottom rows are exact. Commutativity of the left

square follows since

ΘCf
∗(φ) = ΘC(fφ) = fφ(1G) = f(ΘB(φ)),

for any φ in B]. Commutativity of the right square follows by a similar

argument. We now apply H-cohomology to diagram (2.2.1.2) to obtain
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the commutative diagram

Ĥq−1(H,D])

Ĥq(H,B])

Ĥq−1(H,D)

Ĥq(H,B),

∼=∂ ∼=∂

(ΘD)∗

(ΘB)∗

(2.2.1.3)

we complete the last diagram by applying resGH and obtain

Ĥq−1(G,D])

Ĥq(G,B])

Ĥq−1(H,D])

Ĥq(H,B])

Ĥq−1(H,D)

Ĥq(H,B),

∼=∂ ∼=∂ ∼=∂

(ΘD)∗

(ΘB)∗

resGH

resGH

(2.2.1.4)

the composition (ΘD)∗ ◦ resGH on the top row of diagram (2.2.1.4) is an

isomorphism by induction on q, hence the composition (ΘB)∗ ◦ resGH =

(sh−1
B )q is also an isomorphism.

2. A straightforward computation shows that hφb(x) = φhb(x) for all x in

G, h in H and b in B, which proves that iB is a ZH-homomorphism. In

order to prove that corGH ◦ (iB)∗ is the inverse of the ”inverse Shapiro’s

isomorphism” we start by showing that the statement is true for q = 0.

In this case is enough to show that the composition

BH (B])H (B])G (B])H BH
iB NG/H ΘB

is the identity in BH . Let X be a fixed left transversal of H in G and b

an element of BH , without losing generality we can assume that 1G ∈ X
then

ΘB(NG/H(iB(b))) = ΘB(NG/H(φb)) = ΘB

(∑

x∈X
xφB

)

=
∑

x∈X
xφb(1G) =

∑

x∈X
φb(x) = b.

The statement also follows clearly for Tate cohomology. The extension

to q ≥ 1 is obtained by a similar argument as in (1).
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2.2.2 Claim. Let H be a subgroup of G and B a ZG-module. Let us define

jB : B] → Hom(indGHZ, B) by jB(φ) := φ̃, where φ̃(x⊗t) = txφ(x−1): it should

be mention that we are assuming G acting on Hom(indGHZ, B) by diagonal

action, then jB is a ZG-isomorphism.

Proof. It follows that jB is well defined since

φ̃(h⊗ t) = thφ(h−1) = tφ(1G) = φ̃(1G ⊗ t)

for all h in H and t in Z.

Let g, x be in G, then

(g̃φ)(x⊗ t) = tx(gφ)(x−1) = txφ(x−1g)

= txφ((g−1x)−1) = tg(g−1x)φ((g−1x)−1)

= gφ̃(g−1x⊗ t) = gφ̃(g · (x⊗ t))
= (gφ̃)(x⊗ t).

This proofs that jB is a ZG-homomorphism.

We define j′B : Hom(indGH , B)→ B] by jB(ψ) = ψ̄, where ψ̄(x) = xψ(x−1⊗1).

Proving that j′B is well defined and that is a ZG-homomorphism can be done

in a similar way as done for jB. If φ belongs to B] it follows that

(j′BjB)(φ)(x) = x(jBφ)(x−1 ⊗ 1) = φ(x),

for all x in G.

Now let ψ be an element of Hom(indGHZ, B), it follows that

(jBj
′
B)(ψ)(x⊗ 1) = x(j′Bψ)(x−1) = ψ(x⊗ 1)

which proofs that j′B is the inverse of jB.

Let us denote i′B := jBiB : B → Hom(indGHZ, B), hence for b in B i′B(b) = φ̃b

and

φ̃b(x⊗ 1) = xφb(x
−1) =




b if x ∈ H
0 if x /∈ H

18



We will denote by ShqB = (jB)∗(sh
q
B).

It is not difficult to prove that the following is a commutative diagram

Ĥq(H,B)

Ĥq(H,B∗) Ĥq(G,B∗)

Ĥq(H,Hom(indGHZ, B)) Ĥq(G,Hom(indGHZ, B))

(iB)∗

corGH

(i′B)∗

corGH

(jB)∗ (jB)∗

2.2.3 Claim. The homomorphism Sh0
B : Ĥ0(H,B)→ Ĥ0(G,Hom(indGHZ, B))

takes b in BH to the map g ⊗ 1 7→ gb for all g in G.

Proof. Let b be an element in BH and X a left transversal of H in G then we

obtain

Sh0
B(b)(g ⊗ 1) = NG/H(i′B(b))(g ⊗ 1) =

(∑

x∈X
xφ̃b

)
(g ⊗ 1)

=
∑

x∈X
xφ̃b(x

−1g) = x0b,

where x0 is the only element in X such that x−1
0 g ∈ H hence g = x0h for some

h in H, which implies gb = x0hb = x0b.

2.2.4 Example. Let M and N be ZG-module and G act diagonally on

Hom(M,N) then

Sh0
Hom(M,N) : Ĥ0(H,Hom(M,N))→ Ĥ0(G,Hom(indGHZ, Hom(M,N)))

sends φ to φ̃ where φ̃(g ⊗ 1) = gφ. If x is an element of M it follows that

Sh0
Hom(M,N)(φ)(g ⊗ 1)(x) = gφ(x) = gφ(g−1x).

Let L be a ZG-module and ψ : Hom(L,Hom(M,N)) → Hom(L ⊗ M,N)

be the dual isomorphism, which means that for any f : L → Hom(M,N)

ψ(f)(l⊗m) = f(l)(m). It is not difficult to prove that ψ is a ZG-isomorphism
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where we are considering G acting diagonally on both Hom(L,Hom(M,N))

and Hom(L⊗M,N). Let us denote

Shq(L,M,N) = ψ∗Sh
q
Hom(M,N) (2.2.4.1)

2.2.5 Example. We now consider the augmentation map ı́0 : ZG→ Z, where

every g in G is sent to 1 and denote by ∆G = ker(́ı0). Let L = indGHZ and

M = ∆G then

Shq
(indGHZ,∆G,N)

: Ĥq(H,Hom(∆G,N))→ Ĥq(G,Hom(indGHZ⊗∆G,N))

at q = 0 satisfies

Sh0
(indGHZ,∆G,N)(φ)(g ⊗ 1⊗ x) = ψ∗Sh

0
Hom(∆G,N)(φ)(g ⊗ 1⊗ x)

= Sh0
Hom(∆G,N)(φ)(g ⊗ 1)(x) = gφ(g−1x)

(2.2.5.1)

for all g in G and x in ∆G.

A straightforward computation shows that (Sh0
(indGHZ,∆G,N)

)−1 applied to φ in

Hom(indGHZ⊗∆G,N) is given by

(Sh0
(indGHZ,∆G,N))

−1(φ)(x) = φ(1G ⊗ 1)(x). (2.2.5.2)

2.2.6 Remark. It follows by construction that: by fixing L and M

Shq(L,M,−) : {ZG−modules} → {Groups}

is a covariant functor sending N to Ĥq(G,Hom(L⊗M,N)).

2.3 Spectral sequences.

For this concise exposition of spectral sequences we will follow ([1] vol.2).

We begin by constructing the spectral sequence of a filtered chain complex,

then present the spectral sequence of a double complex and apply this to obtain

the Hochschild-Serre spectral sequence associated to a group extension.

20



2.3.1 Spectral sequence induced by a filtered chain com-

plex.

Let {X, δ} be a cochain complex, which means that X =
⊕

n∈ZXn and δ is a

family of maps

· · · Xn Xn+1 Xn+2 · · ·
δn−1 δn δn+1 δn+2

satisfying δn+1 ◦ δn = 0. We will denote by Hn(X) = ker(δi)/im(δi−1).

Lets us assume that there is a filtration of {X, δ} given by

X = F 0X ⊇ F 1X ⊇ · · · ⊇
⋂

i

F iX = {0} , (2.3.1.1)

where each {F iX, δi} (δi being the restriction of δ to F iX) is a subcomplex

of {X, δ}. Let us denote by δ̄i : F iX/F i+1X → F iX/F i+1X the natural map

induced by δi. It follows clearly that
{
F iX/F i+1X, δ̄i

}
is a cochain complex.

For each i ≥ 0 the short exact sequence

0 F i+1X F 1X F iX/F i+1X 0
i1 j1

induces long exact sequences of the form

· · · Hn(F i+1X) Hn(F iX) Hn(F iX/F p+1X) Hn+1(F i+1X) · · ·
i1∗ j1

∗ ∂1

All this sequences can be arranged in the following diagram
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Hn−1(F p+1X) Hn−1(F p+1X/F p+2X) Hn(F p+2X) Hn(F p+2X/F p+3X)
∂1

Hn−1(F pX) Hn−1(F pX/F p+1X) Hn(F p+1X) Hn(F p+1X/F p+2X)
j1
∗ ∂1

Hn−1(F p−1X) Hn−1(F p−1X/F pX) Hn(F pX) Hn(F pX/F p+1X)
j1
∗

i1∗

i1∗

(2.3.1.2)

Letting Ep.q
1 := Hp+q(F pX/F p+1X) and Dp,q

1 := Hp+q(F pX) one obtains the

following exact triangle

D∗,∗1 D∗,∗1

E∗,∗1

i1∗

j1
∗∂1

(2.3.1.3)

The above diagram is an example of an exact couple.

2.3.2 Definition. An exact couple {D,E, i, j, k} is an exact triangle of the

form

D D

E

i

jk

(2.3.2.1)

Given an exact couple {D,E, i, j, k} define d = jk : E → E, the fact that

kj = 0 implies that d2 = 0 hence we can form H∗(E, d).
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2.3.3 Definition. If {D,E, i, j, k} is an exact couple, its derived couple {D′, E ′, i′, j′, k′}

D′ D′

E ′

i′

j′k′

(2.3.3.1)

is given by D′ = im(i) and E ′ = H∗(E, d) where: i′ is the restriction of i to

D′, j′(i(x)) = [j(x)] and k′[x] = k(x).

It can be proved that the derived couple defined above is actually an exact

couple. By iterating this process one obtains the spectral sequence induced by

the exact couple {D,E, i, j, k} as follows.

2.3.4 Definition. Given an exact couple {D,E, i, j, k} we define the exact

couple {Dn, En, i
n, jn, kn} as the (n− 1)th-derived couple of the original exact

couple. The sequence {(En, dn)}n≥1 is called the spectral sequence associated

to {D,E, i, j, k}.

If we consider {D,E, i, j, k} where D and E are objects in the category of

doubly graded modules and assume that

deg(i) = (−1, 1)

deg(j) = (0, 0)

deg(k) = (1, 0).

It follows that deg(d) = deg(jk) = deg(k) + deg(j) = (1, 0), it can also be

proved that for all n ≥ 1.

deg(in) = deg(in−1) = (−1, 1)

deg(jn) = deg(jn−1)− deg(in−1) = (n− 1, 1− n)

deg(kn) = deg(kn−1) = (1, 0)

deg(dn) = deg(kn) + deg(jn) = (n, 1− n).

Considering the filtration of the chain complex X given in (2.3.1.1), we would

like to mention how does the spectral sequence induced by the exact couple

23



given in (2.3.1.3) actually gives information about H∗(X).

Note that each Dp,q
n+1 ⊆ Dp,q

n for all n ≥ 1. Let Dp,q
∞ = ∩nDp,q

n , on the other

hand Ep,q
2 is a subquotient of Ep,q

1 this implies that there are subgroups Zp,q
2 and

Bp,q
2 of Ep,q

1 with Zp,q
2 = ker(d1) and Bp,q

2 = im(d1) such that Ep,q
2 = Zp,q

2 /Bp,q
2 .

We can continue this process and find subgroups Zp,q
i and Bp,q

i of Ep,q
1 with

Zp,q
i /Bp,q

i−1 = ker(di−1) and Bp,q
i /Bp,q

i−1 = im(di−1) satisfying Ep,q
i
∼= Zp,q

i /Bp,q
i .

If we set Zp,q
1 = Ep,q

1 and Bp,q
1 = {0} one obtains

Ep,q
1 = Zpq,

1 ⊇ Zp,q
2 ⊇ Zp,q

3 ⊇ · · · ⊇ Bp,q
3 ⊇ Bp,q

2 ⊇ Bp,q
1 = {0} . (2.3.4.1)

Define Zp,q
∞ = ∩nZp,q

n , Bp,q
∞ = ∪nBp,q

n and Ep,q
∞ = Zp,q

∞ /Bp,q
∞ .

The groupH∗(X) itself has a ”canonical” filtration induced by (2.3.1.1) namely

H∗(X) = F 0H∗(X) ⊇ F 1H∗(X) ⊇ · · · ,

where F pHp+q(X) = im (Hp+q(F pX)→ Hp+q(X)).

2.3.5 Theorem. With the notation given above it follows that

F pHp+q(X)/F p+1Hp+q(X) ∼= Ep,q
∞ . (2.3.5.1)

The proof of Theorem 2.3.5 can be found in [1].

If one assumes that Hn(F n+1X) = {0} then Hn(X) has a finite filtration

Hn(X) = F 0Hn(X) ⊆ F 1Hn(X) ⊆ · · · ⊆ F nHn(X) ⊆ F n+1Hn(X) = {0} .

2.3.6 Remark. From the filtration given above one can conclude that finding

a set of generators for Hn(X) can be reduced, by Theorem 2.3.5, to obtain a

set of generators of Ep,q
∞ for all p satisfying 0 ≤ p ≤ n and p + q = n. Since

Ep,q
2 surjects onto Ep,q

∞ one can restrict to find generators for the groups Ep,q
2

with p+ q = n.
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2.3.7 Spectral sequence induced by a double complex.

The difficulty of computing spectral sequences depends highly on how much

control one has over Ep,q
2 . In this section we study the spectral sequence in-

duced by a double complex, this is a particular case in which the terms Ep,q
2

have concrete expression. The Hochschild-Serre spectral sequence is a partic-

ular example of this kind of spectral sequences.

2.3.8 Definition. A double complex is a collection of modules and module

homomorphisms arranged as follows

E0,0
0 E1,0

0 E2,0
0 E3,0

0
· · ·

E0,1
0 E1,1

0 E2,1
0 E3,1

0
· · ·

E0,2
0 E1,2

0 E2,2
0 E3,2

0
· · ·

...
...

...
...

∂1 ∂1 ∂1 ∂1

∂1 ∂1 ∂1 ∂1

∂1 ∂1 ∂1 ∂1

∂0

∂0

∂0

∂0

∂0

∂0

∂0

∂0

∂0

∂0

∂0

∂0

(2.3.8.1)

such that the maps satisfy ∂2
0 = ∂2

1 = ∂0∂1 + ∂1∂0 = 0. We will denote the

double complex by {E0, ∂0, ∂1}.

Given a double complex {E0, ∂0, ∂1} one can construct a graded Z-module

which is call the total complex of E0 denoted by X = Tot(E0), where Xn =⊕
p+q=nE

p,q
0 with differential δ = ∂0 + ∂1 : Xn → Xn+1. By definition it

follows that δ2 = 0, then {Tot(E0), δ} is a cochain complex.

We define a filtration of the cochain complex X = Tot(E0) by

F pX =
⊕

i≥p
Ep,q

0

and denote by

Dp,q
0 := F pXp+q =

⊕

i+j=p+q,
i≥p

Ei,j
0 .
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Notice that F pXp+q/F p+1Xp+q ∼= Ep,q
0 , in particular one can think of F pX/F p+1X

as the pth-column of diagram (2.3.8.1). It follows that the differential in this

quotient is induced by ∂0 hence

Ep,q
1 = Hp+q(F pX/F p+1X) ∼= H(Ep,q

0 , ∂0) (2.3.8.2)

Dp,q
1 = Hp+q(F pX) = H(Dp,q

0 , ∂0 + ∂1). (2.3.8.3)

If we identify F pXp+q/F p+1Xp+q with Ep,q
0 , the following short exact sequence

0 F p+1Xp+q F pXp+q Ep,q
0 0

induces the following exact couple

D∗∗1 D∗∗1

E∗∗1

i1

j1k1

In order to describe E2 we must first compute d1 = j1k1.

Taking into consideration the following commutative diagram with exact rows

Dp+1,q−1
0 Dp,q

0 Ep,q
0

Dp+1,q
0 Dp,q+1

0 Ep,q+1
0

αp,q βp,q

αp,q+1 βp,q+1

∂0 + ∂1 ∂0 + ∂1 ∂0 + ∂1

(2.3.8.4)

with αp,q : Dp+1,q−1
0 → Dp,q

0 and βp,q : Dp,q
0 → Ep,q

0 the natural inclusion and

projection respectively.

An element [x] in Ep,q
1 is the class of x ∈ Ep,q

0 with ∂0x = 0. Let (x, 0, . . . , 0) ∈
Dp,q

0 then βp,q(x, 0, . . . , 0) = x. The fact that ∂0x = 0 implies that (∂0 +

∂1)(x, 0, . . . , 0) = (0, ∂1x, . . . , 0) ∈ Dp,q+1
0 . Let (∂1x, 0, . . . , 0) ∈ Dp+1,q

0 clearly

αp,q+1(∂1x, 0, . . . , 0) = (0, ∂1x, . . . , 0) hence

k1[x] = [(∂1x, 0, . . . , 0)]

d1[x] = j1k1[x] = j1[(∂1x, 0, . . . , 0)] = [∂1x].
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From this we conclude that for the double complex in (2.3.8.1), the second

term of the spectral sequence induced by the exact couple given in (2.3.8.2)

has the following expression.

Ep,q
2 = Hp(Hq(E0, d0), d1). (2.3.8.5)

2.3.9 The spectral sequence of a group extension.

We are now in position to present the Hochschild-Serre spectral sequence which

will be use in chapter 6 to find a set of generators for H2(GP,µ).

Let G be a group, H a normal subgroup of G and M a ZG-module. Let us

denote by Ḡ = G/H. Fixing a ZḠ-projective resolution of Z

· · · P2 P1 P0 Z
δ3 δ2 δ1 δ0

and a ZG-projective resolution of Z

· · · Q2 Q1 Q0 Z.
δ′3 δ′2 δ′1 δ′0

We can construct a double complex E0 by letting

Ei,j
0 ; = HomḠ(Pi, HomH(Qj,M)),

where the differentials ∂0 : Ei,j
0 → Ei,j+1

0 and ∂1 : Ei,j
0 → Ei+1,j

0 are defined by

∂0 = (−1)p(δ′j+1)∗ and ∂1 = δ∗i . A simple computation shows that ∂2
0 = ∂2

1 =

∂0∂1 + ∂1∂0 = 0.

By (2.3.8.5) one obtains that the second term of the spectral sequence induced

by the double complex E0 defined above is

Ep,q
2 = Hp(Ḡ,Hq(H,M)).

We conclude this exposition with the computation of H∗(Tot(E0)).

2.3.10 Claim. Let G, H, Ḡ and M as above. Let A be a ZḠ-module and B
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a ZG-module then

HomZḠ(A,HomZH(B,M)) ∼= HomZG(A⊗B,M)

Proof. Let us define the maps

γ : HomZḠ(A,HomZH(B,M))→ HomZG(A⊗B,M)

β : HomZG(A⊗B,M)→ HomZḠ(A,HomZH(B,M))

by: (γf)(a⊗ b) = f(a)(b) and (βf)(a)(b) = f(a⊗ b).
It follows immediately that γ is well defined. In order to show that β is also

well defined we choose a ZG-homomorphism f : A ⊗ B → M and g ∈ G, let

ḡ denote the image of g under the natural projection G → Ḡ, then for any

a ∈ A and b ∈ B

(βf)(ḡ · a)(b) = f(ḡ · a⊗ b)
= gf(a⊗ g−1b)

= g(βf)(a)(g−1b)

= ḡ · (βf)(a)(b).

The last equality shows that (βf)(ḡ · a) = ḡ · (βf)(a) hence βf is a ZḠ-

homomorphism. It remains to show that βf(a) is a ZH-homomorphism, for

this let h ∈ H then

(βf)(a)(hb) = f(a⊗ hb)
= f(h · a⊗ b)
= hf(a⊗ b)
= h(βf)(a)(b).

It follows clearly that γ and β are inverse maps from each other, which con-

cludes the proof.

Let Ẽ =
⊕

i,j Pi ⊗Qj and Ẽn =
⊕

i+j=n Pi ⊗Qj. If we define δ̃n : Ẽn → Ẽn+1

such that for any x ∈ Pi and y ∈ Qj

δ̃n(x⊗ y) = δix⊗ y + (−1)ix⊗ δ′jy,
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then by corollary 2.7.3 of ([1] vol 1) it follows that

· · · Ẽ2 Ẽ1 Ẽ0 Z
δ̃3 δ̃2 δ̃1 δ̃0

is a ZG-projective resolution of Z.

2.3.11 Claim. Let Xn be defined as in the previous subsection. The following

diagram commutes

HomZG(Ẽn,M) HomZG(Ẽn+1,M)

Xn Xn+1

δ̃∗n+1

d = ∂0 + ∂1

β β

where β is the isomorphism of claim (2.3.10), hence β induces an isomorphism

β∗ : H∗(G,M)→ H∗(Tot(E0)).

The proof of Claim 2.3.11 is omitted here. Let γi,j be the isomorphism given

in Claim 2.3.10 with A = Pi and B = Qj then γi,j induces a natural homo-

morphism

γi,j∗ : Ei,j
2 → H i+j(G,M). (2.3.11.1)

It follows: by Theorem 2.3.5 and the observation after it that

Γ =
⊕

i+j=n

γi.j∗ :
⊕

i+j=n

Ei,j
2 → Hn(G,M), (2.3.11.2)

is a surjection. This last observation show that the spectral sequence associ-

ated to the group extension

H G Ḡ

induces a filtration of Hn(G,M) given by the groups Hn−i(Ḡ,H i(H,M)) for

0 ≤ i ≤ n.
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Chapter 3

Construction of a ”small”

envelope of µ.

Let us consider K/k to be a finite Galois extension of number fields with

G = Gal(K/k). We denote by µ := µK the group of roots of unity of K and

by K̄ := k(µ). It follows that µ is cyclic of even order. We will assume that

|µ| = 2m for some positive integer m.

In this chapter we construct a ”small” envelope of µ, by ”small” we mean that

dimQ(Q ⊗ C) = |G|d(G) where d(G) is the minimal number of generators of

G.

The construction presented here follows the idea of [9] where the existence of

envelopes of finitely generated ZG-modules is proved.

There is an isomorphism of groups ā : G→ (Z/2mZ)× defined by

g · u = uā(g) for all g ∈ G and all u ∈ µ. (3.0.0.1)

Let us denote by a : G → Z the lift of ā which satisfies −m < a(g) < m for

all g in G.

This lift allow us to construct the distinguished element Θ in QG given by

Θ = 1/2m
∑

g∈G
a(g−1)g

and the Z-submodule Y = ZG+ ZΘ of QG.
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By fixing a generator µ of µ one can show that Y fits in the following exact

sequence

0 ZG Y µ 0,
α β (3.0.0.2)

where α is the natural inclusion and

β(y + tΘ) = µt for all y ∈ ZG and all t ∈ Z.

It follows that β is well defined. In order to prove this let y1 in ZG and t1 an

integer such that y + tΘ = y1 + t1Θ, which implies that (t1 − t)Θ = y − y1

belongs to ZG. Then t1 ≡ t (mod 2m) or t1 = t+ 2mk for some integer k this

implies

β(y1 + t1Θ) = µt1 = µt+2mk = µt = β(y + tΘ).

To show that β is a homomorphism of ZG-modules we need to prove that

β(gΘ) = g · µ = µā(g) for any g in G.

The fact that a is a lift of ā implies that for all g, h in G there exists lg,h ∈ Z
such that a(g)a(h)− a(gh) = 2mlg,h, hence

g ·Θ =
1

2m

∑

h∈G
a(h−1)gh =

1

2m

∑

h∈H
a(h−1g)h

=
1

2m

∑

h∈G

[
a(h−1)a(g)− 2mlh−1,g

]
h

= a(g)Θ−
∑

h∈G
lh−1,gh.

If we let Lg =
∑

h∈G lh−1,gh by the definition of β we obtain that

β(gΘ) = β(a(g)Θ− Lg) = µa(g) = g · µ = g · β(Θ).

For any ZG-module M , let us dente Hom(M,Z) by M o, while M∗ will denote
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Hom(M,Q/Z). The following is a well known result. We sketch a proof here

for the reader’s convenience.

3.0.1 Claim. Given an exact sequence of ZG-modules

0 L M T 0,
α β

(3.0.1.1)

where L and M are lattices and T is a torsion module, there exists an exact

sequence of ZG modules

0 M o Lo T ∗ 0.
αo γ (3.0.1.2)

Proof. If f is an element of M o we can define αo(f) = fα. In order to define

the map γ, we will start by showing that for any given f : L→ Z there exist

a unique f̄ : M → Q making the following diagram commute.

L M

Z Q

α

f f̄ (3.0.1.3)

For every m in M there is a nonzero integer z such that β(zm) = zβ(m) = 0

in T , hence exactness of (3.0.1.1) gives the existence of an element l in L

satisfying α(l) = zm. We define

f̄(m) = z−1f(l), (3.0.1.4)

notice that if z1 is a different nonzero integer with β(z1m) = 0 and l1 in L

satisfies α(l1) = z1m then

z1α(l) = z1zm = zz1m = zα(l1).

By injectivity of α one obtains z1l = zl1, which gives z1f(l) = zf(l1) or equiv-

alently z−1f(l) = z−1
1 f(l1). This last equality proves that f̄ is well defined.

Assume that h : M → Q makes diagram (3.0.1.3) commute. For m in M let

z be a nonzero integer annihilating β(m) and l in L with α(l) = zm, then
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zh(m) = h(α(l)) = f(l) which gives h(m) = z−1f(l) = f̄(m). This proves the

uniqueness of f̄ : M → Q making diagram (3.0.1.3) commute.

We now show that diagram (3.0.1.3) can be completed in a unique way to the

following commutative diagram

TML

Q/Z,QZ

α β

f f̄ f̃
(3.0.1.5)

where the map f̃ : T → Q/Z is defined by choosing for any t in T an element

m in M with β(m) = t, such element m exists by surjectivity of β hence

f̃(t) = f̄(m) + Z.

Let m1 be any other element in M with β(m1) = t then m1 −m belongs to

ker(β) = im(α), which gives the existence of l in L satisfying m1 = m+ α(l).

Since f̄(α(l)) = f(l) which belongs to Z, it follows that

f̄(m1) + Z = f̄(m+ α(l)) + Z

= f̄(m) + f(l) + Z

= f̄(m) + Z,

this proves that f̃ is well defined, uniqueness can be proved in a similar way

as done for diagram (3.0.1.3). We define γ(f) = f̃ .

We now focus on showing that (3.0.1.2) is exact. By applying the functor ( )o

to (3.0.1.1) one obtains the following exact sequence

0 T o M o Lo,
βo αo

since T o = 0 it follows that αo is injective. Surjectivity of γ follows from the

fact that M is Z-projective hence, if f̃ ∈ T ∗ there exists f̄ : M → Q making

the right square of diagram (3.0.1.5) commute, this implies that f̄(α(l))+Z =
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f̃(βα(l)) = 0 in Q/Z for all l ∈ L. It follows that f̄α takes values only in Z,

one can define f(l) = f̄(α(l)) for all l in L and clearly f makes the left square

of diagram (3.0.1.5 )commute.

Uniqueness of this diagram implies that γf = f̃ hence γ is surjective, notice

that this argument also shows that ker(γ) ⊆ im(αo). It follows clearly that

im(αo) ⊆ ker(γ), which completes the proof.

If we apply the previous claim to the exact sequence (3.0.0.2) we obtain a

short exact sequence

0 Y o (ZG)o µ∗ 0,
αo γ (3.0.1.6)

where γ(f)(µ) = f(2mΘ)/2m+ Z.

Let us denote by kG the element in (ZG)o given by

kG(g) =





1 if g = 1G

0 if g 6= 1G

and extend it Z-linearly. The previous map induces the following isomorphism

of ZG-modules.

3.0.2 Claim. The map k : ZG→ (ZG)o given by

k(
∑

g∈G
xgg) =

∑

g∈G
xg(gkG)

is an isomorphism of ZG-modules.

Proof. Given f ∈ (ZG)o let x =
∑

g∈G f(g)g ∈ ZG and h ∈ G, then

k(x)(h) =
∑

g∈G
f(g)(gkG)(h) =

∑

g∈G
f(g)kG(g−1h) = f(h)

which proves surjectivity of k. On the other hand if x =
∑

g∈G xgg satisfies
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that k(x) is the zero element in (ZG)o. It follows that

0 = k(x)(h) =
∑

g∈G
xg(gkG)(h) =

∑

g∈G
xgkG(g−1h) = xh

for all h ∈ G, which proves that k is injective.

The previous Claim and diagram (3.0.1.6) gives us the following commutative

diagram

Z ZG

Y o (ZG)o µ∗,

αo

∼= ρ ∼= k

αo γ

(3.0.2.1)

where Z is the pull-back of k : ZG→ (ZG)o and αo : Y o → (ZG)o.

3.0.3 Claim. Given z =
∑

g∈G zgg in ZG, z in Z if, and only, if

∑

g∈G
zga(g−1) ≡ 0 (mod 2mZ).

Proof. Given z =
∑

g∈G zgg ∈ ZG z ∈ Z if, and only if, k(z) ∈ Ker(γ), which

is equivalent to say by the definition of γ that k(z)(2mΘ)/2m ∈ Z. Since

k(z)(2mΘ) =
∑

g∈G
zg(gkG)(2mΘ) =

∑

g∈G
zgkG(2mg−1Θ)

=
∑

g∈G
zgkG

(∑

h∈G
a(h−1)g−1h

)
=
∑

g∈G
zga(g−1),

It follows that k(z)(2mΘ)/2m ∈ Z if, and only if,
∑

g∈G zga(g−1) ≡ 0 (mod 2mZ).

The description of Z given above allow us to find a set of generators of Z as

Z-module as well as a ZG-module.

3.0.4 Claim. Let us denote by G× = G \ {1G}. Then

a) {2m} ∪ {g − a(g−1) : g ∈ G×} is a Z-basis for Z.

b) If {g1, g2, . . . , gn} ⊂ G× generates G, {2m}∪
{
gi − a(g−1

i ) : i = 1, 2, . . . , n
}

generate Z as a ZG-module.
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Proof. Given z =
∑

g∈G zgg ∈ Z, we have that

z =
∑

g∈G
zg
(
a(g−1) + g − a(g−1)

)

=
∑

g∈G
zga(g−1) +

∑

g∈G
zg
(
g − a(g−1)

)
.

By Claim 3.0.4,
∑

g∈G zga(g−1) belongs to 2mZ, which proves (a).

In order to prove statement (b) it is enough to observe that for all g, h ∈ G

gh− a(h−1g−1) = gh− ga(h−1) + ga(h−1)− a(h−1g−1)

≡ gh− ga(h−1) + ga(h−1)− a(h−1)a(g−1) mod 2mZG

≡ g
(
h− a(h−1)

)
+ a(h−1)

(
g − a(g−1)

)
mod 2mZG.

Let F =
⊕

0≤i≤n ZG with the standard ZG-basis {ei : 0 ≤ i ≤ n} and let π :

F → Z be defined by

π(ei) =





2m if i = 0

gi − a(g−1
i ) if 1 ≤ i ≤ n

We obtain a short exact sequence

0 X F Z 0,
i1 π (3.0.4.1)

where X is the kernel of π and i1 is the natural inclusion. If we apply the

functor ( )o to the exact sequence given in (3.0.4.1) we obtain the following

commutative diagram with exact top row

Zo F o Xo

(Y o)o

Y F

πo io1

∼= ρo

∼= ev

∼= kF

ψ

(3.0.4.2)
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The vertical isomorphism Y → (Y o)o sends y 7→ evy, where evy(f) = f(y) for

any f ∈ Y o, and kF : F → F o is the map obtained generalizing k.

The diagram above gives us an injective map ψ : Y → F . Putting together

diagrams (3.0.4.1) and (3.0.0.2) gives us a commutative diagram

ZG Y µ

ZG F

Xo

α β

= ψ

ψα

(3.0.4.3)

where Xo is the cokernel of ψ : Y → F . We can complete the last diagram by

taking the push-out of β : Y → µ and ψ : Y → F and obtain the following

commutative diagram

ZG Y µ

ZG F

Xo

C

C̄

α β

= ψ

ψα

∼=

(3.0.4.4)

We should mention that the right column from this last diagram is the desired

envelope of µ, where the cohomologically trivial module C can be identified

with the cokernel of ψα.

It is clear that the map µ→ C is completely determined by the class of ψ(Θ),

the snake lemma proves that ψ is injective and that C̄ is isomorphic to Xo.

Our final task is to give an explicit description of C and C̄. For this we should

37



study in more detail the homomorphism ψ.

By diagram (3.0.4.2) we obtain that πoρo = (ρ ◦ π)o hence

ρπ(ei) =





2mkG if i = 0

gikG − a(g−1
i )kG if 1 ≤ i ≤ s

We now compute the following composition

Y (Y o)o Zo F o.
ev ρo πo

Given y ∈ Y let Fy ∈ F o be the image of y under the composition given above,

which means that for any x ∈ F , Fy(x) = ((ρπ)(x)) (y). Let λ ∈ (Y o)o then

(πoρo)(λ) = (ρπ)o(λ) = λρ ◦ π and Fy(x) = evyρπ.

We now prove that if y =
∑

g∈G ygg

Fy(gei) =





2myg if i = 0

yggi − a(g−1
i )yg if 1 ≤ i ≤ n

(3.0.4.5)

Proof. Let i = 0, then

evyρπ(ge0) = 2m(gkG)(y) = 2mkG(g−1y) = 2myg.

Now let 1 ≤ i ≤ n, then

evyρπ(gei) =
(
ggikG − a(g−1

i )gkG
)

(y)

= kG((ggi)
−1y)− a(g−1

i )kG(g−1y)

= yggi − a(g−1
i )yg.

3.0.5 Claim. The homomorphism ψ : Y → F is defined as follows: for any

y ∈ Y

ψ(y) =
(
2my, y(g−1

1 − a(g−1
1 )), . . . , y(g−1

n − a(g−1
n ))

)

Proof. It is enough to show that ψ given above satisfies kFψ(y) = Fy =
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evy(ψπ)o.

We will proof this equality by evaluating at the standard basis of F .

Let y =
∑

h∈G yhh in Y and g ∈ G, then we have

kFψ(y)(ge0) = 2m(ykG)(g) = 2m
∑

h∈G
yh(hkG)(g)

= 2m
∑

h∈G
yhkG(h−1g) = 2myg

by the first case of (3.0.4.5) we obtain kFψ(y)(ge0) = Fy(ge0).

We will proceed in a similar way for the other cases, let 1 ≤ i ≤ n

kFψ(y)(gei) = (g−1
i ykG)(g)− a(g−1

i )(ykG)(g)

=
∑

h∈G
yhkG(h−1gig)− a(g−1

i )
∑

h∈G
yhkG(h−1g)

= ygig − a(g−1
i )yg,

one more time (3.0.4.5) shows that kFψ(y)(gei) = Fy(gei) when 1 ≤ i ≤ n.

This concludes the proof.

Let AY and AZG be the following ZG-submodules of F

AY =
〈(

2my, y(g−1
1 − a(g−1

1 )), . . . , y(g−1
n − a(g−1

n ))
)

: y ∈ Y
〉

AZG =
〈(

2mx, x(g−1
1 − a(g−1

1 )), . . . , x(g−1
n − a(g−1

n ))
)

: x ∈ ZG
〉

Then C = F/AZG and C̄ = F/AY .
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Chapter 4

The special character ε.

As stated in Theorem B in [10] the character ε : H2(G,Hom(∆S,µ))→ Q/Z
is one of the factors that determines the stable isomorphism class of the S-

units E.

Theorem A, proved on pg 955 of [10], reformulates ε using class field theoretic

data through what the authors called the arithmetic trace formula. The dis-

advantage that Theorem A brings to our program is: that the arithmetic trace

formula is given by a character tE : H1(G,Hom(L,E))→ Q/Z.

This chapter is dedicated to the study of the character ε. The main result ob-

tained here states that: ε satisfies an equation that reminiscent the equation

given in Theorem A for tE.

This expression will simplify the computation of ε.

Much of the work done in this chapter follows the ideas presented in [14] and

in [10] hence we will continue using the notation introduced by the mentioned

authors.

We will denote the group of S-idèles of K by J and the group of all idèle classes

of K by CK , on the other hand we will let L = ∆G ⊗ ∆S, I = ∆G ⊗ ZS,

Ī = ZG ⊗∆S and M = ZG ⊗ ZS. With the above notation one obtains the
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following commutative diagram, that will be used continuously in this chapter

L Ī ∆S0 0

I M ZS0 0

∆G ZG Z0 0

0 0 0

0 0 0

i0 ı́0

i0 ı́0

i0 ı́0

i1

ı́1

i1

ı́1

i1

ı́1

(4.0.0.1)

where all rows and columns are exact.

4.1 The character ε and the arithmetic trace

formula.

We begin this section by describing the the character tE : H1(G,Hom(∆S,E))→
Q/Z, we will show later how tE determines ε and conclude by recalling the

arithmetic trace formula.

4.1.1 The characters tE and ε.

Let N be a ZG-module, by fixing an envelope of N

0 N C M 0 (4.1.1.1)

one obtains that the connecting homomorphism ∂ : H0(G,Hom(M,M)) →
H1(G,Hom(M,N)) is in fact an isomorphism, since Hom(M,C) is a cohomo-

logically trivial ZG-module. It has been proved on §5 of [9] thatH0(G,Hom(M,Q)) ∼=
[M,Q] whenever M is a ZG-lattice, which implies that there is a connecting
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isomorphism ∂M : [M,M ]→ H1(G,Hom(M,N)).

We denote by τM : [M,M ]→ Q/Z the map given by

τM [m] =
TraceM(m)

|G| + Z, (4.1.1.2)

this map allow us to define the trace map tN : H1(G,Hom(M,N)) → Q/Z
associated to the envelope (4.1.1.1) as the following composition

tN : H1(G,Hom(M,N)) [M,M ] Q/Z.
τM∂−1

M

Every envelope 0→ N → C →M → 0 induces a commutative diagram

[M,M ] H1(G,Hom(M,N))

Q/Z

∂M

τM tN

(4.1.1.3)

By fixing a short Tate envelope 0 → E → A → L → 0 the above gives us a

commutative diagram

[L,L] H1(G,Hom(L,E))

Q/Z

∂L

τL tE

(4.1.1.4)

from where we define

tE = τL ◦ ∂−1
L

Before showing the relation between tE and ε, we will recall a known result of

group cohomology.

4.1.2 Claim. Let A be an induced ZG-module then Hom(A,B) and A ⊗ B
are induced, hence cohomologically trivial.

The proof of Claim 4.1.2 can be found on pg 141 of [13].
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Let us consider the top row of diagram (4.0.0.1)

0 L Ī ∆S 0,
i0 ı́0

(4.1.2.1)

by applying the functor Hom(−, E) to the Z-split exact sequence (4.1.2.1) one

obtains the following short exact sequence

0 Hom(∆S,E) Hom(Ī , E) Hom(L,E) 0.

It follows from Claim 4.1.2 that Hom(Ī , E) is cohomologically trivial, hence

the connecting homomorphism in cohomology induced by the last exact se-

quence ∂′′ : H1(G,Hom(L,E)) → H2(G,Hom(∆S,E)) is an isomorphism,

which gives the following diagram

H2(G,Hom(∆S,E))

[L,L] H1(G,Hom(L,E))

Q/Z

∂′′

∂L

τL tE

(4.1.2.2)

Let α : µ→ E be the natural inclusion and denote by α∗ : H2(G,Hom(∆S,µ))→
H2(G,Hom(∆S,E)) the group homomorphism induced by α. The character

ε is given by

ε = tE(∂′′)−1α∗. (4.1.2.3)

4.1.3 The arithmetic trace formula.

We now follow the ideas presented in [14]. Given two short exact sequences of

ZG-modules
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0 X Y Z 0

0 X ′ Y ′ Z ′ 0

β1 β′1

β2 β′2

Let Hom((Y ), (Y ′)) denote the ZG-module of all triples (f1, f2, f3) of Z-

homomorphisms making the following diagram commute.

0 0X Y Z

0 0X ′ Y ′ Z ′

β1 β′1

β2 β′2

f1 f2 f3

(4.1.3.1)

Let us denote by u1 : Hom((Y ), (Y ′))→ Hom(X,X ′), u2 : Hom((Y ), (Y ′))→
Hom(Y, Y ′) and u3 : Hom((Y ), (Y ′)) → Hom(Z,Z ′) the natural projections

on each component. It is not difficult to prove that the following sequence

0 Hom((Y ), (Y ′)) Hom(X,X ′)⊕Hom(Y, Y ′) Hom(X, Y ′) 0
β(u1, u2)

(4.1.3.2)

where β(f, g) = β2f − gβ1 is exact.

If we apply the last construction to the exact sequences

0 L I ∆G 0

0 E J CK 0

i1 ı́1

j ́

we obtain the short exact sequence
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0 Hom((I), (J)) Hom(L,E)⊕Hom(I, J) Hom(L, J) 0,
(u1, u2) β

(4.1.3.3)

which induces in cohomology a long exact sequence

. . . H1(G,Hom((I), (J))) H1(G,Hom(L,E))⊕H1(G,Hom(I, J))

H1(G,Hom(L, J)) . . .

∂ u∗

β∗ ∂

(4.1.3.4)

where u∗ denotes (u1, u2)∗.

We will use this sequence to describe tE in terms of local and global invariant

maps from class field theory.

Before achieving this, we need the following result.

4.1.4 Claim. For the long exact sequence given in (4.1.3.4) follows that

i) u∗ : H1(G,Hom(I), (J))) → H1(G,Hom(L,E)) ⊕H1(G,Hom(I, J)) is

injective and

ii) i∗1 : H1(G,Hom(I, J))→ H1(G,Hom(L, J)) is surjective.

Proof.

i) Injectivity of u∗ follows from the exactness of (4.1.3.4) and the fact that

[L, J ] = 0, which proof can be found on pg 971 of [10].

ii) Surjectivity of i∗1 : H1(G,Hom(L, I)) → H1(G,Hom(L, J)) is shown on pg

970 of [10].

4.1.5 Remark. Part ii) of Claim 4.1.4 implies that

β∗ : H1(G,Hom(L,E))⊕H1(G,Hom(I, J))→ H1(G,Hom(L, J))

is surjective. This fact together with part i) of Claim 4.1.4, allow us to write
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the long exact sequence given in (4.1.3.4) as the following short exact sequence

0 H1(G,Hom((I), (J))) H1(G,Hom(L,E))⊕H1(G,Hom(I, J))

H1(G,Hom(L, J)) 0

u∗

β∗

(4.1.5.1)

Let us fix P ∈ S∗ and denote by GP the decomposition group associated to P.

We consider the following commutative diagram of ZGP-modules with exact

rows

0 ∆GP ZGP Z 0

0 ∆G ZG Z 0

where ZGP → Z and ZG→ Z are the augmentation maps.

By the snake lemma one has that the cokernel of ∆GP → ∆G is isomorphic to

the cokernel of ZGP → ZG which is ZGP-free, this implies that indGGP
∆G ∼=

indGGP
∆GP⊕F with F a ZG-free module. The fact that indGGP

∆G ∼= indGGP
Z⊗

∆G gives that I = ∆G ⊗ ZS is isomorphic as ZG-module to I ′ ⊕ F ′ with

I ′ =
⊕

P∈S∗ ind
G
GP

∆GP and F ′ a ZG-free module.

We will denote by iP : ∆GP → I the ZGP-homomorphism under the above

identification and by kP : J → K×P the natural ZGP-projection for every

P ∈ S∗.

Given y in H1(G,Hom(I, J)) let yP in H1(GP, Hom(∆G,K∗P)) be the image

of y under the following composition

H1(G,Hom(I, J)) H1(GP, Hom(I, J))

H1(GP, Hom(∆GP, J)) H1(GP, Hom(∆GP, K
×
P)).

i∗P

resGGP

kP∗
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As mentioned before, we will denote by u3 : Hom((I), (J))→ Hom(∆G,CK)

the ZG-homomorphism defined by u3(f1, f2, f3) = f3, then u3 induces a ho-

momorphism

u3
∗ : H1(G,Hom((I), (J)))→ H1(G,Hom(∆G,CK)).

We are now in position to state the arithmetic trace formula for the character

tE.

Let x in H1(G,Hom(L,E)), part ii) of Claim 4.1.4 ensures the existence of

y in H1(G,Hom(I, J)) such that j∗x = i∗1y or equivalently (x, y) ∈ ker(β∗),
exactness of the sequence (4.1.3.4) implies that there exists a unique element

t in H1(G, ((I), (J))) with u∗t = (x, y), let z = u3
∗t ∈ H1(G,Hom(∆G,CK))

then

tE x = inv ∂′z −
∑

P∈S∗
invP ∂′P yP (4.1.5.2)

where ∂′ : H1(G, hom(∆G,CK))→ H2(G,CK) and ∂′P : H1(GP, Hom(∆G,K×P))→
H2(GP, K

×
P) are the connecting isomorphisms induced by 0 → ∆G → ZG →

Z→ 0 and S∗ is a transversal to the G-orbits of S.

The proof of the last equation can be found on §9 [10].

4.2 The character ε′.

In this section we will begin by defining a character ε′ : H2(G,Hom(∆G,E))→
Q/Z following the ideas presented in the previous section. We will conclude

by showing that ε′ = tE(∂′′)−1 = ε.

From the exact sequences

0 0∆S ZS Z

E J CK0 0,

i1 ı́1

j ́

we obtain the short exact sequence
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0 Hom((ZS), (J)) Hom(∆S,E)⊕Hom(ZS, J) Hom(∆S, J) 0.
(ū1, ū2) β̄

(4.2.0.1)

In this case we are using bars to avoid confusion with the maps from the

previous section.

The short exact sequence given in (4.2.0.1) induces in cohomology a long exact

sequence

. . . H2(G,Hom((ZS), (J))) H2(G,Hom(∆S,E))⊕H2(G,Hom(ZS, J))

H2(G,Hom(∆S, J)) . . .

∂ ū∗

β̄∗ ∂

(4.2.0.2)

We now prove a similar result as Claim 4.1.4.

4.2.1 Claim. For the long exact sequence constructed above follows that

i) ū∗ : H2(G,Hom((ZS), (J)))→ H2(G,Hom(∆S,E))⊕H2(G,Hom(ZS, J))

is injective and

ii) ı́∗1 : H2(G,Hom(ZS, J))→ H2(G,Hom(∆S, J)) is surjective.

Proof.

i) Injectivity of ū∗ follow from the exactness of (4.2.0.2) and the fact that

[L, J ] = 0. By applying the functor Hom(−, J) to the Z-split exact se-

quence given in (4.1.2.1), one obtains a connecting isomorphism ∂ : [L, J ] →
H1(G,Hom(∆S, J)) hence 0 = im(∂) = ker(ū∗).

ii) Surjectivity of ı́∗1 follows from the fact that i∗1 : H1(G,Hom(L, I))→ H1(G,Hom(L, J))

is surjective in the following way: by applying Hom(−, J) to the top and mid-

dle rows of diagram 4.0.0.1 one obtains the following commutative diagram
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with exact rows.

0 Hom(ZS, J) Hom(M,J) Hom(I, J) 0

0 Hom(∆S, J) Hom(Ī , J) Hom(L, J) 0

ı́∗0 i∗0

ı́∗0 i∗0

i∗1 i∗1 i∗1

(4.2.1.1)

By applying G-cohomology to diagram(4.2.1.1) we get a commutative diagram

H2(G,Hom(ZS, J)) H2(G,Hom(∆S, J))

H1(G,Hom(I, J)) H1(G,Hom(L, J))

ı́∗1

i∗1

∂M ∂Ī

where the vertical maps are isomorphisms, since Hom(Ī , J) and Hom(M,J)

are cohomologically trivial by Claim 4.1.2. The diagram above proves the

surjectivity of ı́∗1 : H2(G,Hom(ZS, J))→ H2(G,Hom(∆S, J)).

4.2.2 Remark. Part ii) of Claim 4.2.1 implies that

β̄∗ : H2(G,Hom(∆S,E))⊕H2(G,Hom(ZS, J))→ H2(G,Hom(∆S, J))

is surjective. This together with part i) of Claim 4.2.1 allow us to write the

long exact sequence given in (4.2.0.2) as the following short exact sequence

0 H2(G,Hom((ZS), (J))) H2(G,Hom(∆S,E))⊕H2(G,Hom(ZS, J))

H2(G,Hom(∆S, J)) 0

ī∗

β̄∗

(4.2.2.1)

Fixing P ∈ S∗let us denote by îP the ZGP-homomorphism obtained by the

composition

îP : Z indGGP
Z ZS.
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Given y in H2(G,Hom(ZS, J)) let yP in H2(GP, K
∗
P) be the image of y under

the following composition

H2(G,Hom(ZS, J)) H2(GP, Hom(ZS, J))

H2(GP, J) H2(GP, K
×
P).

î∗P

resGGP

kP∗

Let ū3 : Hom((ZS), (J)) → Hom(Z, CK) be the ZG-homomorphism defined

by ū3(f1, f2, f3) = f3, then ū3 induces a homomorphism

ū3
∗ : H2(G,Hom((ZS), (J)))→ H2(G,CK).

Let x in H2(G,Hom(∆S,E)), part ii) of Claim 4.2.1 ensures the existence of

y in H2(G,Hom(ZS, J)) such that j∗x = i∗1y or equivalently (x, y) ∈ ker(β̄∗),
exactness of the sequence (4.2.2.1) implies that there is a unique element t in

H2(G, ((ZS), (J))) with ū∗t = (x, y), let z = ū3
∗t ∈ H2(G,CK) then we define

ε′x = inv z −
∑

P∈S∗
invP yP. (4.2.2.2)

4.3 Compatibility of tE and ε′

By considering the following two exact sequences

0 Ī M ZG 0

0 E J CK 0,

i1 ı́1

j ́

we can construct the ZG-module Hom((M), (J)) which fits into the following

exact sequence, as done in the previous sections

0 Hom((M), (J)) Hom(Ī , E)⊕Hom(M,J) Hom(Ī , J) 0
(û1, û2) β̂

(4.3.0.1)
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The exact sequences given in (4.1.3.3), (4.2.0.1) and (4.3.0.1) can be arranged

into the following diagram

Hom((I), (J)) Hom(L,E)⊕Hom(I, J) Hom(L, J)

Hom((M), (J)) Hom(Ī , E)⊕Hom(M,J) Hom(Ī , J)

Hom((ZS), (J)) Hom(∆S,E)⊕Hom(ZS, J) Hom(∆S, J)

u∗ β∗

û∗ β̂∗

ū∗ β̄∗

κ∗

λ∗

i∗1

ı́∗0

i∗0

ı́0

(4.3.0.2)

where λ∗ : Hom((ZS), (J)) → Hom((M), (J)) is defined by (f1, f2, f3) 7→
(f1ı́0, f2ı́0, f3ı́0), similarly κ∗ : Hom((M), (J)) → Hom((I), (J)) is given by

(g1, g2, g3) 7→ (g1i0, g2i0, g3i0), exactness of diagram (4.3.0.2) follows straight-

forward.

It is clear that the middle and right columns of diagram (4.3.0.2) are exact

and by the snake lemma follows that the left column is also exact.

Exactness of the middle row of diagram (4.3.0.2) implies that Hom((M), (J))

is a cohomologically trivial ZG-module, hence diagram (4.3.0.2) induces in

cohomology the following commutative diagram

H2(G,Hom((ZS), (J))

H2(G,Hom(∆S,E))⊕H2(G,Hom(ZS, J))

H2(G,Hom(∆S, J))

H1(G,Hom((I), (J))

H1(G,Hom(L,E))⊕H1(G,Hom(I, J))

H1(G,Hom(L, J))

ū∗

β̄∗

u∗

β∗

∂

∂

∂

(4.3.0.3)
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where the columns are exact and the diagonal maps are isomorphisms.

Let x in H2(G,Hom(∆S,E)), assume that x′ is the preimage of x under

the connecting isomorphism ∂ : H1(G,Hom(L,E)) → H2(G,Hom(∆S,E)).

We choose y′ in H1(G,Hom(I, J)) such that j∗x′ = i∗1y
′, if y = ∂y′ with

∂ : H1(G,Hom(I, J)) → H2(G,Hom(ZS, J)), commutativity of diagram

(4.3.0.3) implies that (x, y) belongs to the kernel of β̄∗. We denote by t′ and t

the unique elements in H1(G,Hom((I), (J))) and H2(G,Hom((ZS), (J))) re-

spectively satisfying u∗t′ = (x′, y′) and ū∗t = (x, y), once more commutativity

of diagram (4.3.0.3) gives ∂t′ = t. We will denote by z′ = u3
∗t
′ and by z = ū3

∗t

We are in position to state the main result of this chapter.

4.3.1 Claim. With the notation given above it follows that

tE x′ = inv ∂′ z′ −
∑

P∈S∗
invP ∂′P y′P

= inv z −
∑

P∈S∗
invP yP = ε′ x

We prove Claim 4.3.1 by showing first that ∂′ z′ = z and then proving that

∂′P y′P = yP for each P ∈ S∗.

Let us consider the following diagram with exact rows

0 0

0 0

Hom(Z, CK) Hom(ZG,CK) Hom(∆G,CK)

Hom((ZS), (J)) Hom((M), (J)) Hom((I), (J))

ı́∗0 i∗0

λ∗ κ∗

u3
∗ û3

∗ ū3
∗

(4.3.1.1)

Let (f1, f2, f3) be an element of Hom((ZS), (J)), notice that

û3
∗λ∗(f1, f2, f3) = û3

∗(f1ı́0, f2ı́0f3ı́0) = f3ı́0

= ı́∗0f3 = ı́∗0u
3
∗(f1, f2, f3).

This last equality proves commutativity of the left square of diagram (4.3.1.1),
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commutativity of the right square follows in a similar way.

By applying G-cohomology to diagram (4.3.1.1) we obtain the following com-

mutative diagram

H1(G,Hom(∆G,CK)) H2(G,CK)

H1(G,Hom((I), (J))) H2(G,Hom((ZS), (J)))

∂′

∂

u3
∗ ū3

∗

(4.3.1.2)

Commutativity of the diagram (4.3.1.2) implies that

∂′ z′ = ∂′ u3
∗t
′ = ū3

∗∂t
′ (4.3.1.3)

ū3
∗t = z. (4.3.1.4)

In order to prove that ∂′P y′P = yP for all primes we need the following claim.

4.3.2 Claim. If G is a group, N a ZG-module, S a finite set of subgroups

of G and for each H ∈ S, MH is a ZH-module. Let M =
⊕

H∈S Ind
G
HMH ,

iH : MH → M be the natural ZH-monomorphism and lH : IndGHMH → M be

the natural ZG-monomorphism. Then the following diagram commutes for all

n ≥ 1.

Hn(G,Hom(M,N)) Hn(H,Hom(M,N))

Hn(G,Hom(IndGHMH , N)) Hn(G,Hom(MH , N))

resGH

l∗H i∗H

Sh

Proof. Let us recall the dual ZG-isomorphism ψ : Hom(L,Hom(M,N)) →
Hom(L⊗M,N), introduced at the end of page 19. In this case we have that

ψ−1 : Hom(indGHMH , N)→ HomZH(ZG,Hom(MH , N)),

where f inHom(indGHMH , N) is sent to ψ−1f , the element defined by ψ−1f(g) =

fg : MH → N where m 7→ f(g ⊗H m) for all m in MH .
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We will also recall the homomorphism ΘB : B] → B defined at the end of

page 14 and consider the case when B = Hom(MH , N), in this case

ΘHom(MH ,N) : HomZH(ZG,Hom(MH , N))→ Hom(MH , N)

is simply evaluation at 1G.

Since Sh = (resGH ,ΘHom(MH ,N))
∗ψ∗, our statement is equivalent to prove that

the following diagram commutes

Hn(G,Hom(M,N)) Hn(H,Hom(M,N))

Hn(G,Hom(indGHMH , N)) Hn(H,Hom(MH , N))

Hn(G,Hom(MH , N)∗) Hn(H,Hom(MH , N)∗)

resGH

l∗H

ψ∗

resGH

Θ∗Hom(MH ,N)

i∗H

Commutativity of the diagram above can be easily done at the level of cocycles.

We now consider the following diagram, which we state that is commutative.

H2(G,Hom(IndGGP
Z, J)) H2(GP, Hom(Z, J))

H2(G,Hom(ZS, J)) H2(GP, Hom(ZS, J))

H1(G,Hom(IndGGP
∆GP, H)) H1(GP, Hom(∆GP, H))

H1(G,Hom(I, J)) H(GP, Hom(I, J))

Sh

∂′

lP

ResGGP

î∗P

Sh

∂′

∂′

ResGGP

lP
i∗P

(4.3.2.1)

Commutativity of the back face follows from functoriality of ”Shapiro’s iso-

morphism”, while commutativity of the the top and lower faces follows by a

direct application of Claim 4.3.2.

Commutativity of the left face follows by applying G-cohomology to the fol-
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lowing commutative diagram

I M ZS

IndGGP
∆GP ZG IndGGP

Z

i1 ı́1

lP lP lP

Finally commutativity of

H2(GP, J) H2(GP, K
x
P)

H1(GP, Hom(∆GP, J)) H1(GP, Hom(∆GP, K
x
P))

kP∗

kP∗

∂′ ∂′

(4.3.2.2)

Implies that

∂′[y′P] = ∂′kP∗ i
∗
PRes

G
GP

[y′] by (4.2.0.1)

= kP∗ ∂
′i∗PRes

G
GP

[y′] by diagram (4.3.2.2)

= kP∗ i
∗
PRes

G
GP
∂′[y′] by diagram (4.3.2.1)

= kP∗ î
∗
PRes

G
GP

[y]

= [yP] by 4.1.3.2

(4.3.2.3)

Equations (4.3.2.3) and (4.3.1.3) prove Claim 4.3.1.

Claim 4.3.1 states that if x is a two cocycle in H2(G,Hom(∆S,µ)) and x′ is

a 1-cocycle in H1(G,Hom(L,µ)) such that α∗x = ∂′′x′, then by 4.1.2.3

ε(x) = tE(∂′′)−1α∗(x)

= tE(x′) = ε′(x). (4.3.2.4)
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Chapter 5

The character ε on the group

H2(G,Hom(∆S,µ)).

The possibility of computing ε depends highly on our ability of finding gener-

ators of H2(G,Hom(∆S,µ)), on which ε can be evaluated.

By considering the exact sequence

0 µ Hom(ZS,µ) Hom(∆S,µ) 0,
ı́∗1 i∗1

obtained after applying the functor Hom(−,µ) to the Z-split augmentation

sequence

0 ∆S ZS Z 0,
i1 ı́1

one obtains after applying Tate cohomology, the following long exact sequence

· · · H2(G,Hom(ZS,µ)) H2(G,Hom(∆S,µ)) H3(G,µ)

H3(G,Hom(ZS,µ)) · · ·

ı́∗1 i∗1 ∂

ı́∗1 i∗1

(5.0.0.1)
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In this chapter we will study the character ε by understanding its behaviour

on the image of i∗1 : H2(G,Hom(ZS,µ))→ H2(G,Hom(∆S,µ)), then we will

concentrate on

coker(i∗1) ∼= ker
(
ı́∗1 : H3(G,µ)→ H3(G,Hom(ZS,µ))

)
.

Through the study of coker(i∗1) we will show that 2 annihilates the Tate co-

homology of G with values in µ, hence we will reformulate our program by

passing to the ring Z′ = Z[1/2].

We conclude this chapter by showing a partial reduction formula to the square-

free case.

5.1 ε restricted to the image of i∗1.

In this section we will prove that for x̃ in H2(G,Hom(ZS,µ)), ε(i∗1x̃) can be

computed only in terms of the local invariants, more precise

ε(i∗1x̃) = −
∑

P∈S∗
invP (j∗x̃)P. (5.1.0.1)

In order to simplify the notation we will dimension shift the argument and

work with the character tE defined in chapter 4.

Let x̃ be a fix element in H1(G,Hom(I, E)) and fix a 1-cocycle g 7→ x̃g whose

class in cohomology is x̃, this induces the following two 1-cocycles

g 7→ xg = x̃gi1

g 7→ yg = jx̃g

If we denote by x (respectively y) to be the class of the cocycle g 7→ xg

(resp g 7→ yg) it follows immediately that (x, y) belongs to the ker(β∗), since

j∗x = j∗i∗1x̃ = i∗1j∗x̃ = i∗1y.
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We can consider the following diagram with exact rows

0 L I ∆G 0

0 E J CK 0

i1 ı́1

j ́
xg yg zg

(5.1.0.2)

where the left square commutes. We now prove the existence of zg : ∆G→ CK

making the above diagram commutes. Let a in ∆G and b in I such that

ı́1(b) = a, define

zg(a) = ́yg(b).

The map zg is well defined. To prove this assume that b1 in I also satisfies

ı́1(b1) = a, then exactness of the top row ensures the existence of c in L such

that b = b1 + i1(c), which implies

́yg(b) = ́yg(b1) + ́yg(i1(c))

= ́yg(b1) + ́jxg(c)

= ́yg(b1).

By definition of zg follows the commutativity of the right square of diagram

(5.1.0.2).

It follows clearly that g 7→ zg is a 1-cocycle with values in Hom(∆G,CK)

since δz = ́∗δy = 0. We now take the 1-cocycle with values in Hom((I), (J))

defined by g 7→ (xg, yg, zg), then its class t in H1(G,Hom((I), (J))) satisfies

u∗(t) = (x, y). Commutativity of diagram (5.1.0.2) gives that zg ı́1 = ́yg =

́jx̃g = 0, which implies zg = 0 since ı́1 : I → ∆G is a surjection. The fact that

zg = 0 for all g in G implies that u3
∗(t) = 0 in H1(G,Hom(∆G,CK)) which

proves (5.1.0.1).

The dimension shifting described in chapter 4, which relates the characters ε

and tE, gives that for any x̃ in H2(G,Hom(ZS,µ))

ε(x̃) = −
∑

P∈S∗
invP (j∗x̃)P. (5.1.0.3)
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5.2 About the cokernel of i∗1.

We will now concentrate on studying

coker
(
i∗1 : H2(G,Hom(ZS,µ))→ H2(G,Hom(∆S,µ))

)

∼=ker
(
ı́∗1 : H3(G,µ)→ H3(G,Hom(ZS,µ))

)
.

It is necessary for our purpose to to describe the group H3(G,µ).

We begin with the following two technical claims.

5.2.1 Claim. i) Let q be an odd prime number, G = Aut (Z/qrZ) with

r ≥ 1, then (Z/qrZ) is a cohomologically trivial ZG-module.

ii) Let G = Aut (Z/2r+1Z) for r ≥ 1 and G1 be the kernel of the natural

projection G → Aut (Z/4Z), then Z/2r+1Z is a cohomologically trivial

ZG1-module.

Proof. We will only proof here (i) since the proof of (ii) follows a similar

argument. One can prove by induction on s that

(1 + q)q
s−1 ≡ 1 + qs (mod qs+1),

for all s ≥ 1. Notice that for the case s = 1 the equality follows immediately.

By induction hypothesis there exist an integer A such that

(1 + q)q
s

=
[
(1 + q)q

s−1
]q

=
[
1 + qs + Aqs+1

]q

= (1 + qs)q +

q∑

j=1

(
q

j

)
(1 + qs)q−j(Aqs+1)j,

hence it would be enough to show that qs+2 divides (1+qs)q−(1+qs+1), which

follows easily from the equality

(1 + qs)q − (1 + qs+1) =

q∑

j=2

(
q

j

)
qsj.

We identify G with (Z/qrZ)× and denote the kernel of the map G→ (Z/qsZ)×

by Gs for 1 ≤ s ≤ r, then Gs is cyclic with generator the class of (1 + q)q
s−1

or

equivalently the class of (1 + qs) and |Gs| = qr−s. The following two equalities
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hold

(Z/qrZ)Gs = {x ∈ Z/qrZ : (1 + qs)x ≡ x (mod qr)}
= qr−s (Z/qrZ) and

Ĝs =

qr−s−1∑

j=0

(1 + q)q
s−1j =

(1 + q)q
s−1qr−s − 1

(1 + q)qs−1 − 1

=
(1 + q)q

r−1 − 1

(1 + q)qs−1 − 1
=
qrxr
qsxs

= qr−s
xr
xs
,

for some integers xr and xs coprime to q. This implies that H0(G,Z/qrZ) = 0.

The Herbrand quotient and the fact theGs is cyclic imply thatH i(G,Z/qrZ) =

0 for all integers i. Clearly Z/qrZ is a cohomologically trivial ZG1-module and

since every subgroup H of G satisfies H∩G1 = Gs for some s ≥ 1, one obtains

that H i(H ∩G1,Z/qrZ) = 0 for all i. The inflation restriction exact sequence

given in (2.1.3.1) implies that

inf : H i
(
H/H ∩G1, (Z/qrZ)H∩G1

)
→ H i(H,Z/qrZ)

is an isomorphism. The second isomorphism theorem gives H/H ∩ G1
∼=

HG1/G1 which is a subgroup of G/G1
∼= (Z/qZ)× that has order coprime to

q, implying that H i
(
H/H ∩G1, (Z/qrZ)H∩G1

)
= 0, from where one concludes

that Z/qrZ is a cohomologically trivial ZG-module.

We can identify µ with Z/2mZ where G acts according to the group homomor-

phism ā : G→ Aut (Z/2mZ) defined in (3.0.0.1). We denote by N (o) :=
∏
Go

P,

where Go
P denotes the ramification subgroup of the decomposition group GP,

and the product is taken over all primes P in S∗ such that P|p and p an odd

prime dividing m.

It follows that:

µN(o)

= µ(2),

where µ(q) denotes the q-primary component of µ for any prime q, and that

KN(o)
= Q(µ(2)), which is Q when m is odd.
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Let υ =
∏

µ(p), where the product is taken over all odd primes p|m hence

µ = υ × µ(2) and

υN
(o)

= 1.

5.2.2 Claim. H i(N (o),υ) = 0 for all i ≥ 1.

Proof. By part (i) of Claim 5.2.1 follows that for all odd primes p|m, µ(p)

is a cohomologically trivial ZGo
P-module. We will use this observation and

proceed by induction on the number of primes dividing m.

If m = 2r2 , υ = 1 and the claim follow immediately.

Now let p be the smallest odd prime dividing m, we can write m = prpm′ with

p not dividing m′ and rp ≥ 1. If P in S∗ is the prime of K above p, every

prime dividing |Go
P| = prp−1(p− 1) is less than or equal to p. Notice that υ =

υ(p)× υm′ where υm′ =
∏

υ(q) and the product is taken over all odd primes

q dividing m with q > p. It follows that υ(p) and υm′ are cohomologically

trivial ZGP-modules, hence so is υ. Let us define N
(o)
m′ = N (o)/Go

P. Since

υG
o
P = υm′ , the inflation-restriction exact sequence gives isomorphisms

inf : H i(N
(0)
m′ ,υm′) H i(N (o),υ).

∼=

By hypothesis of induction H i(N (o),υ) ∼= H i(N
(0)
m′ ,υm′) = 0, which completes

the proof.

We now denote by m̃ the largest squarefree divisor of m, µ̃ the set of all roots

of the polynomial x2m̃ − 1, K̃ = Q(µ̃) and G̃ = Gal(K̃/Q). We let N be the

kernel of the natural surjection G → G̃. For s and t integers we will denote

by (s, t) = gcd(s, t).

5.2.3 Claim. The group µ is a cohomologically trivial ZN-module.

Proof. Let us write m =
∏

p|m p
rp such that all rp ≥ 1, then

|N | =
(2,m)

∏
p|m φ(prp)

(2,m)
∏

p|m φ(p)
=
∏

p|m
prp−1.
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It follows that N is the product of its p-primary subgroups N(p), all of which

are cyclic hence so is N . Every subgroup M of N can be seen as M =∏
p|mM(p) with M(p) = M ∩ N(p). The fact that N is cyclic reduces the

statement to show that H1(M,µ) = 0 for any subgroup M of N . Let us fix p

an odd prime dividing m and denote by µp the set of all prpth-roots of unity,

then µ = µp × µ′p with m′ = m/prp and µ′p
∼= Z/2m′Z. One obtains that

H1(M(p),µ) ∼= H1(M(p),µp)⊕H1(M(p),µ′p)

∼= H1(M(p),µp) = 0.

The last equality follows from part (i) of Claim 5.2.1. The inflation-restriction

sequence gives

H1(M,µ) ∼= H1(M/M(p),µM(p)),

with µM(p) ∼= µ
M(p)
p ×µ′p. It follows thatH1(M/M(p),µM(p)) ∼= H1(M/M(p),µ′p).

We can now use induction on the number of odd primes dividing m to obtain

that H1(M,µ) ∼= H1(M(2),µ(2)) which is cohomologically trivial by (ii) of

Claim 5.2.1.

The next is a series of results relating the cohomology of G and the cohomology

of G̃.

5.2.4 Claim. H i(G,µ) ∼= H i(G̃, µ̃) for all i ≥ 1.

Proof. By Claim 5.2.3 it follows that H i(N,µ) = 0 for all i ≥ 1, then the

inflation-restriction exact sequence gives isomorphisms

inf : H i(G/N,µN) H i(G,µ).
∼=

The fact that G̃ ∼= G/N and that µN = µ̃ concludes the proof.

5.2.5 Claim. H i(G,µ) ∼= H i(G̃,µ2(2,m)), where µ2(2,m) denotes the set of all

roots of the polynomial X2(2,m) − 1.

Proof. In claim 5.2.2 we proved that H i(N (o),υ) = 0 for all i ≥ 1, then the

62



inflation restriction exact sequence gives that the homomorphism

inf : H i(G/N (o),υN
(o)

) H i(G,υ)
∼=

is actually an isomorphism. Since υN
(o)

= 1, the above isomorphism implies

that H i(G,υ) = 0 for all i ≥ 1. We can decompose µ by µ = µ(2)× υ. The

last observation gives that H i(G,µ) ∼= H i(G,µ(2)). By Claim 5.2.3 µ(2) is a

cohomologically trivial ZN -module, once more the inflation-restriction exact

sequence gives isomorphisms

inf : H1(G̃,µ(2)N) H1(G,µ(2))
∼=

for all i ≥ 1. The statement then follows after noticing that µ(2)N = µ2(2,m).

The last claim says that H3(G,µ) ∼= H3(G,F2) in the case when m is odd and

that H3(G,µ) ∼= H3(G,µ4) in the case when m is even, where µ4 is the set of

roots of the polynomial X4 − 1.

Claim 5.2.4 gives us the hope that one can reduce the exact sequence given in

(5.0.0.1) to a similar exact sequence in terms of G̃, we show here a first step

towards this.

Let S̃ =
{
P̃ = P ∩ K̃ : P ∈ S

}
and define the natural surjective G-map S →

S̃ where P 7→ P̃, this maps extends to a surjective ZG-homomorphism ZS →
ZS̃. By taking coinvariants one obtains a ZG-isomorphism

ZSN ZS̃.
∼=

We now notice that gcd ((N : NP) : P ∈ S∗) = 1 since NP contains N(p), then

there exist integers αP such that

∑

P∈S∗
αP(N : NP) = 1.
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By fixing a left transversal XP of NP in N , let xP =
∑

n∈XP
nP and define

the homomorphism Z → ZS where 1 7→ ∑
P∈S∗ αPxP, we conclude that the

augmentation sequence

0 ∆S ZS Z 0

ZN -splits, which implies that the following diagram with exact rows commutes

0 ∆SN ZSN Z 0

0 ∆S̃ ZS̃ Z 0

= =

We can identify ∆SN with ∆S̃ and consider the following commutative dia-

gram with exact rows

0 Hom(∆S̃, µ̃)Hom(ZS̃, µ̃)Hom(Z, µ̃) 0

0 Hom(∆S,µ)NHom(ZS,µ)NHom(Z,µ)N 0

By taking Tate cohomology we obtain the following commutative diagram

H2(G,Hom(ZS,µ)) H2(G,Hom(∆S,µ)) H3(G,µ) H3(G,Hom(ZS,µ))

H2
(
G̃,Hom(ZSµ)N

)
H2
(
G̃,Hom(∆S,µ)N

)
H3(G̃, µ̃) H3

(
G̃,Hom(ZSµ)N

)
inf ∼= inf ∼= inf ∼= inf ∼=

(5.2.5.1)

From Claim 5.2.3 follows that µ is a cohomologically trivial ZN -module, then

for any lattice L one has, by pg 141 of [13], that Hom(L,µ) is also ZN -

cohomologically trivial. This implies that the inflation maps, which are the

vertical maps of diagram (5.2.5.1), are actually isomorphisms.

To make sense of the bottom row of the diagram (5.2.5.1) one must understand

Hom(ZS,µ)N as a ZG̃-module.

5.2.6 Claim. Let SQ =
{
p : p is a prime of Q such that P̃|p for some P̃ ∈ S̃

}
.
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It follows that

Hom(ZS,µ)N ∼=
⊕

p∈SQ

indG̃
G̃P̃

µNP .

In order to prove Claim 5.2.6 we need the following claim.

5.2.7 Claim. Let H be a subgroup of G and denote the image of H under the

surjection G→ G̃ by H̃, it follows that

Hom(indGHZ,M)N ∼= indG̃
H̃

(MN∩H)

for any ZG-module M .

Proof. Let us choose subsets X and Y of G such that 1G belongs to both X

and Y and satisfying

G =
⊔

x∈X
xNH

N =
⊔

y∈Y
y(N ∩H),

then G̃ =
⊔
x∈X x̃H̃ and G =

⊔
x∈X

⊔
y∈Y xyH, which implies that indGHZ has

Z-basis {xy ⊗ZH 1 : x ∈ X, y ∈ Y }.
Let W be the Z-span of {y ⊗ZH 1 : y ∈ Y }, hence W is a Z(NH)-submodule

of indGHZ since h · (y ⊗ZH 1) = hyh−1 ⊗ZH 1. Being hyh−1 an element of N

there are unique y1 ∈ Y and n1 ∈ N ∩ H such that hyh−1 = y1n1, hence

h · (y ⊗ZH 1) = y1 ⊗ZH 1.

It also follows that indGHZ =
⊕

x∈X xW .

If we fix a x in X, xW is a Z(x(NH)x−1)-submodule, notice that x(NH)x−1 =

NxHx−1 hence

Hom(indGHZ,M) =
⊕

x∈X
Hom(xW,M),

where Hom(xW,M) is the submodule of Hom(indGHZ,M)

{
f ∈ Hom(indGHZ,M) : f |x′W = 0, for all x′ 6= x

}
.
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Seeing as ZG̃-modules one has that

Hom(indGHZ,M)N ∼=
⊕

x∈X
Hom(xW,M)N .

It is not difficult to prove thatHom(xW,M) = xHom(W,M), henceHom(xW,M)N =

x̃Hom(W,M)N which implies

Hom(indGHZ,M)N ∼=
⊕

x∈X
x̃Hom(W,M)N

⊕

x∈X
indG̃

H̃

(
Hom(W,M)N

)
.

The claim follows from the fact Hom(W,M)N ∼= MN∩H as ZH̃-modules. In

order to prove this last statement notice that the homomorphism indNN∩HZ→
W , where y ⊗ZN∩H 1G 7→ y ⊗ZH 1G, is an isomorphism hence by Frobenius

reciprocity one has that as Z-modules

Hom(W,M)N ∼= Hom(indNN∩HZ,M)N ∼= Hom(Z,M)N∩H ∼= MN∩H

as wanted.

Proof of claim 5.2.6. Let Sp (respectively SP̃) be the set of all primes of K

above p (resp, the set of all primes of K above P̃) then ZS =
⊕

p∈SQ
ZSp.

There is for each p ∈ SQ a unique P ∈ S∗ above p and an isomorphism

indGGP
Z→ ZSp where g⊗ZGP

1 7→ gP. We now apply Claim 5.2.7 withH = GP

and M = µ, since GP∩N = NP we obtain Hom(ZSp,µ)N ∼= indG̃
G̃P̃

(µNP).

The last two claims suggest that the following diagram commutes

⊕
P∈S∗ H

2(GP,µ) H2(G,Hom(ZS,µ)) H2(G,Hom(∆S,µ))

⊕
p∈SQ

H2(G̃P̃,µ
Np) H2(G̃,Hom(ZS,µ)N) H2(G̃,Hom(∆S,µ)N)

Sh

Sh

inf ∼= inf ∼= inf ∼=

(5.2.7.1)

where the inflation maps are all isomorphisms, in fact we only need to prove

commutativity of the left square of diagram 5.2.7.1.

Since Z ∼=
⊕

P∈S∗ ind
G
GP

Z as a ZG-module and from the fact that as ZG̃-
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module ZS ∼=
⊕

p∈SQ
ZSp and ZSp ∼= indGGP

Z one obtains the following com-

mutative diagram

⊕
P∈S∗ H

2(G,Hom(indGGP
Z,µ)) H2(G,Hom(ZS,µ))

⊕
p∈SQ

H2(G̃,Hom(indGGP
Z,µ)N) H2(G̃,Hom(ZS,µ)N)

∼=

∼=
∼=inf inf ∼=

(5.2.7.2)

In order to show that the left square of diagram 5.2.7.1 commutes, it would

be enough to show that for each p in SQ, if P is the only prime in S∗ above p,

the next diagram commutes.

H2(GP,µ) H2(G,Hom(indGGP
Z,µ))

H2(G̃P̃, (µ)NP) H2(G̃,Hom(indGGP
Z,µ)N)

Sh−1
P

∼=
Sh−1

p

∼=

inf ∼= inf ∼=

(5.2.7.3)

We will prove in more generality the following

5.2.8 Claim. Let G be a group, H a subgroup of finite index and N a normal

subgroup of G. Let us denote by G̃ = G/N and the image of H under the

projection G→ G̃ by H̃. Then the following diagram commutes

H2(H,M) H2(G,Hom(indGHZ,M))

H2(H̃, (M)N∩H) H2(G̃,Hom(indGHZ,M)N)

Sh−1

∼=

Sh−1

∼=

inf ∼= inf ∼=

(5.2.8.1)

for any ZH-module M .

We begin by describing the isomorphism

Sh−1 : H2(G,Hom(indGHZ,M))→ H2(H,M).
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Let us denote by
{
BG
• , δ•

}
the bar resolution of G (the reader can find the

definition in subsection 6.1.3) hence we can define

ψn : HomG(BG
n , Hom(indGHZ,M))→ HomH(BG

n ,M)

in the following way: given x in HomG(BG
n , Hom(indGHZ,M)) let

ψnxg1,...,gn = xg1,...,gn(1G ⊗H 1). (5.2.8.2)

It follows clearly that δ∗n+1ψnx = ψn+1δ
∗
nx, then {ψn} is a chain map which

induces group homomorphisms

ψn : Hn(G,Hom(indGHZ,M))→ Hn(H,M).

It is not difficult to show that ψn = Sh−1.

The following lemma is a well known result, we present the proof here for

computational reasons.

5.2.9 Lemma. Let G be a group, H a subgroup of finite index and M a

ZH-module. Let us denote by coindGHM = HomZH(ZG,M) where G acts by

(gf)(s) = f(sg)

for all g, s in G. Then indGHM
∼= conindGHM as ZG-modules.

Proof. We begin by fixing a finite set X of G such that G =
⊔
x∈X Hx. We

define ψ : coindGHM → indGHM by

ψ(f) =
∑

x∈X
x−1 ⊗H f(x). (5.2.9.1)

Notice that (hx)−1 ⊗H f(hx) = x−1 ⊗H f(x), hence ψ is well defined and

independent of the choice of X. We now prove that ψ is a ZG-homomorphism.

Let g be an arbitrary element of G hence

ψ(gf) =
∑

x∈X
x−1 ⊗H (gf)(x) =

∑

x∈X
x−1 ⊗H f(xg)

=
∑

x∈X
gg−1x−1 ⊗H f(xg) = g

∑

x∈X
(xg)−1 ⊗H f(xg) = gψ(f).
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In order to show that ψ is an isomorphism we describe its inverse. Let z =∑
x∈X x

−1⊗Hmx in indGHM . We define φ : indGHM → coindGHM where φ(z) =

φz : ZG→M is the map defined by

φz(g) = hmx where hx = g. (5.2.9.2)

It follows that φ well defined since φz(h0g) = h0φz(g) for all h0 in H.

We now prove that φ is a ZG-homomorphism. For this we fix g in G and show

that

φgz(s) = gφz(s) = φz(sg) (5.2.9.3)

for all s in G.

Let us assume that s = h0x0 for some h0 in H and x0 in X. Then sg = h0h′x′

for some h′ in H and x′ in X, hence φz(sg) = h0h′mx′ .

Notice that for each x in X there exist hx in H and yx in X such that xg−1 =

hxyx it follows that

gz = g
∑

x∈X
x−1 ⊗H mx =

∑

x∈X
(xg−1)−1 ⊗H mx

=
∑

x∈X
y−1
x ⊗H h−1

x mx.

Since s = h0x0 it follows that x0 = yx = h−1
x xg−1 is equivalent to h0x

0 =

h0h
−1
x xg−1, hence

h0h′x′ = sg = h0x0g = h0h−1
x x.

We can conclude that h−1
x = h′ and x = x′ hence φgz(s) = h0h′mx′ , which

proofs (5.2.9.3).

It follows clearly that ψφ(z) = z while

φψ(f)(s) = φ∑
x∈X (s) = h0f(x0)

= f(h0x0) = f(s),

which concludes the proof.
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It follows from the proof of claim 5.2.7 that the ZG̃-isomorphism

Hom(indGHZ,µ)N → indG̃
H̃

(µN∩H)

can be expressed by

f 7→ 1G̃ ⊗H̃ f(1G ⊗H 1).

The isomorphism above induces an isomorphism betweenH2(G̃,Hom(indGHZ,M)N)

and H2(G̃, indG̃
H̃

(MN∩H)).

The lower horizontal isomorphism of diagram 5.2.8.1 is given by the following

composition

H2(G̃,Hom(indGHZ,M)N) H2(G̃, indG̃
H̃

(MN∩H))

H2(G̃, coindG̃
H̃

(MN∩H)) H2(H̃,MN∩H)
Sh−1

(5.2.9.4)

At the level of cocycles the composition above sends the 2-cocycle g̃1, g̃2 7→
xg̃1,g̃2 to the 2-cocycle g̃1, g̃2 7→ x′′g̃1,g̃2

where

x′′g̃1,g̃2
= φ1G̃⊗H̃xg̃1,g̃2

(1G⊗H1)(1G̃)

= xg̃1,g̃2(1G ⊗H 1). (5.2.9.5)

We are in position to prove claim 5.2.8. Let g̃1, g̃2 7→ xg̃1,g̃2 be a 2-cocycle

whose class x is in H2(G̃,Hom(indG̃
H̃
Z,M)N). By (5.2.8.2) and the definition

of the inflation map one obtains that the class x′ of the 2-cocycle g1, g2 7→ x′g1,g2

given by

x′g1,g2
= xg̃1,g̃2(1G ⊗H 1),

satisfies Sh−1 ◦ inf(x) = x′. It also follows clearly by (5.2.9.5) that inf ◦
Sh−1(x) = inf(x′′) = x′, which proves the commutativity of diagram 5.2.8.1.
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5.3 The new model.

Recall the augmentation sequence

0 ∆G ZG Z 0.
i0 ı́0

5.3.1 Claim. Let c in centre(ZG), with ı́0(c) = 0 and M a finitely generated

ZG-module, then the action of c on M annihilates all Tate cohomology.

Proof. If one proves the statement for ZG-lattices then it follows for any ZG-

module. This follows since there exists a ZG-projective module P and a sur-

jective ZG-homomorphism P →M . Letting L = ker(P → L) one obtains the

following commutative diagram with exact rows

0 L P M 0

0 L P M 0

cL cP cM

By applying Tate cohomology one obtains the following commutative square

Hn(G,M) Hn+1(G,L)

Hn(G,M) Hn+1(G,L)

∂
∼=

∂
∼=

(cM)∗ (cL)∗

where the connecting homomorphisms are actually isomorphisms. If (cL)∗ is

the zero map, commutativity of the last diagram implies that (cM)∗ is the zero

map.

In order to prove the statement for for lattices let us assume that M has no

torsion, recalling that M o = Hom(M,Z) there exists a projective module P

and a surjection P →M o, letting L = ker(P →M o) one obtains the following

exact sequence

0 L P M o 0,

we now apply the functor ( )o to the last exact sequence and using the fact
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that ( )o is an exact contravariant functor in the category of ZG-lattices, that

sends ZG-projectives to ZG-projectives, one obtains that

0 (M o)o P o Lo 0

is an exact sequence. Since (M o)o ∼= M the following diagram with exact row

commutes

0 M P o Lo 0

0 M P o Lo 0

cM cP o cLo

Once more, we take Tate cohomology and obtain a commutative square

Hn(G,Lo) Hn+1(G,M)

Hn(G,Lo) Hn+1(G,M)

∂
∼=

∂
∼=

(cLo)∗ (cM)∗

where the horizontal maps are connecting isomorphism. The last diagram

shows that it would be enough to prove that (cM)∗ : H0(G,M) → H0(G,M)

is the zero map for an arbitrary lattice M .

There is a natural surjection MG → H0(G,M), If b =
∑

g∈G bgg is an element

in ZG and m is an element of MG one has that

b ·m =
∑

g∈G
bg(g ·m) =

(∑

g∈G
bg

)
m

= ı́0(b)m.

Clearly if c belongs to ker(́ı0), the last equation shows that cMG : MG →MG

is given by cMG(m) = ı́0(c)m = 0. Finally commutativity of the following
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diagram

MG H0(G,M)

MG H0(G,M)

(cMG)∗ (cM)∗

shows that (cM)∗ : H0(G,M)→ H0(G,M) is the zero map as wanted.

Notice that Claim 5.3.1 is still true if c is in centre(ZG) and ı́0(c) ≡ 0

(mod |G|) since |G|MG is a subset of ĜMG.

5.3.2 Claim. H∗(G,µ) is annihilated by 2.

Proof. Let c̄ in G be the complex conjugation then c̄(µ) = µ−1 for all µ in µ.

Let c = 1G − c̄ and notice that this element satisfies the conditions of Claim

5.3.1 hence c∗ : Hn(G,µ)→ Hn(G,µ) is the zero map.

It follows that c(µ) = µ(µ−1)−1 = µ2 for all µ ∈ µ hence c∗ is given by

multiplication by 2 on Hn(G,µ), which proves the statement.

The fact that 2 annihilates the Tate cohomology of G with coefficients in µ

led us to consider working in the category of Z′G-modules, where Z′ = Z[1/2].

We will show next the advantages of this change of categories.

Given a ZG-module M , let M ′ = Z′ ⊗ M considered as a Z′G-module in

the natural way. Given a Z′G-module N we will denote by Hn
Z′(G,N) =

ExtnZ′G(Z′, N).

The next claim is a well know fact, hence we omit the proof here.

5.3.3 Claim. Let M be a finitely generated ZG-module then

Z′ ⊗Hn(G,M) ∼= Hn
Z′(G,M

′).

From Claims 5.3.3 and 5.3.2 we obtain that Hn
Z′(G,µ

′) = 0 for all n in Z,

then the exact sequence given in (5.1.0.1) under this new model gives an

isomorphism

i∗1 : H2
Z′(G,Hom(Z′S,µ′)) H2

Z′(G,HomZ′((∆S)′,µ′)).
∼=
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By Claims 5.3.3 and 5.2.3 one obtains that µ′ is a cohomologically trivial Z′N -

module, the same statement holds for HomZ′(Z′S,µ′) and HomZ′((∆S)′,µ′),

hence the commutative diagram given in (5.2.7.1) can be rewritten in the

following way

H2
Z′(G,HomZ′(Z′S,µ′)) H2

Z′(G,HomZ′((∆S)′,µ′))

H2
Z′(G̃,HomZ′(Z′S,µ′)N) H2

Z′(G̃,HomZ′((∆S)′,µ′)n)

⊕
P∈S∗ H

2
Z′(GP,µ

′)

⊕
p∈SQ

H2
Z′(G̃P̃, (µ

′)NP)

i∗1

i∗1

inf ∼= inf ∼=inf ∼=

Sh

Sh

where all maps are isomorphism.

The last diagram shows that under this new set up, one can always reduce the

computation of ε to compute local invariant in a tamely ramified sub exten-

sions, we will see in the next chapter that the computation of local invariants

in tamely ramified extension of Q can be done in an algorithmic way.
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Chapter 6

Generator of H2(GP,µ).

One way to have sufficient control over the character ε is to find generators for

H2(G,Hom(∆S,µ)) where ε can be evaluated. A first step towards achiev-

ing this is to find generators for H2(G,Hom(ZS,µ)) which is isomorphic (by

Shapiro’s Lemma) to
⊕

P∈S∗ H
2(GP,µ).

The main objective of this chapter will be to study the groups H2(GP,µ) for

a fix P in S∗.

In the case when P is non archimedean, we will use the filtration given by the

Hochschild-Serre spectral sequence associated to the group extension

Go
P GP ḠP,

where Go
P denotes the ramification subgroup of GP and ḠP = GP/G

o
P, to show

that finding generators for the groups H2−i(ḠP, H
i(Go

P,µ)) for i = 0, 1, 2 will

induce a set of generators for H2(GP,µ).

This chapter is organized as follows. In the first section we will use the

Hochschild-Serre spectral sequence for the particular case when µ ∼= Z/2mZ
withm an odd squarefree positive integer, to find explicit generators ofH2−i(ḠP, H

i(Go
P,µ)).

In the second section we keep the assumption that m is an odd squarefree

positive integer and evaluate invP in the set of generators found in the previous
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section.

It should be mentioned that in this chapter H∗ will denote regular cohomology

while Ĥ∗ denotes Tate cohomology.

6.1 Set of generators for H2(GP,µ).

From this point on in this chapter, we will assume that µ ∼= Z/2mZ for m an

odd squarefree positive integer.

We mention at the beginning of the chapter that for a fix P ∈ S∗, Go
P will

denote the ramification subgroup of GP and that ḠP = GP/G
o
P, then we have

proved in Section 3 of Chapter 2 that the second term of the Hochschild-Serre

spectral sequence associated to the group extension

Go
P GP ḠP,

has the following form Ep,q
2 = Hp(ḠP, H

q(Go
P,µ)).

We want to begin this section by showing that for any prime number p which

divides m, µ can be factor by µ = µp ⊕ µ′p where gcd
(
|µp|, |Go

P|
)

= 1 and

P ∈ S∗ is the prime above p. Also that GP = Go
P × 〈σp〉 where σp is an

element in GP such that its image σ̄p under the map GP → ḠP is a Frobenius

automorphism. This will imply that

Ep,q
2
∼= Hp(〈σp〉, Hq(Go

P,µ
′
p)).

Since we are interested in Ep,q
2 when p+q = 2 our next task will be to compute

H i(Go
P,µ

′
p) and H2−i(〈σp〉, H i(Go

P,µ
′
p)) for i = 0, 1, 2.

We will conclude this section by presenting explicit generators for H2(GP,µ).

76



6.1.1 Two observations.

Let p be a prime number dividing m and P be the prime in S∗ above p, there

is a ZG-homomorphism

ρ : µ→ K×P (6.1.1.1)

given by u 7→ u+ P for all u ∈ µ.

Let us choose a generator µ of µ and denote mp = m/p. Since ker(ρ) consist

of all the pth-roots of unity of E, ker(ρ) = 〈µp〉 where µp = µ2mp . We will

denote by µp = ker(ρ).

The following exact sequence

µp µ im(ρ)
i

(6.1.1.2)

ZGo
P-splits. In order to prove this, let α be an integer such that 1 + 2mpα ≡

0 (mod p) and define ψ : µ → µp by µ 7→ µ−αp which is clearly a ZGo
P-

homomorphism, it follows that ψi = Idµp
since

ψi(µp) = µ−2mpα
p = µp,

by the choice of α.

Let µ′p = µµαp and µ′p = 〈µ′p〉 ∼= im(ρ) then µ = µp ⊕ µ′p.

Since |µp| = p and |Go
P| = p− 1 it follows that gcd(|µp|, |Go

P|) = 1 from where

we conclude that

Hn(Go
P,µ) ∼= Hn(Go

P,µ
′
p) for all n ≥ 0. (6.1.1.3)

6.1.2 Claim. If σP ∈ GP is such that σ̄p is a Frobenius automorphism

GP
∼= Go

P ⊕ 〈σP〉.

77



6.1.3 The groups H i(Go
P,µ

′
p) for i = 0, 1, 2.

This subsection will focus on finding generators xi for the groups H i(Go
P,µ

′
p)

for i = 0, 1, 2.

We should mention at this point that throughout this chapter we will change

the notation that has been used in previous chapters, regarding element in

cohomology groups and cocycles in order to make the equations easier to read.

We will use two type of projective resolutions namely the bar resolution and

the cyclic resolution.

Given a finite group G we will denote by
{
BG
• , δ•

}
to be the bar resolution

· · · BG
2 BG

1 BG
0 Z,

δ3 δ2 δ1 εG

whereBG
0 = ZG, BG

n is the ZG-free module with ZG-basis {[g1| · · · |gn] : g1, . . . , gn ∈ G}
for n ≥ 1, εG is the augmentation map and

δn[g1| · · · |gn] = g1[g2| · · · |gn] +
n−1∑

i=1

(−1)i[g1| · · · |gigi+1| · · · |gn] + (−1)n[g1| · · · |gn−1].

In the case when G is cyclic let us fix a generator s of G,
{
CG
• , δ•

}
will denote

the cyclic resolution

· · · CG
2 CG

1 CG
0 Z,

δ3 δ2 δ1 εG

where CG
n = ZG, εG is the augmentation map, and δn is multiplication by s−1

for n odd while δn = NG for n even.

The following is a series of known results in cohomology.

6.1.4 Claim. Let G be a finite group and M an abelian group. If G acts

trivially on M it follows

i) H0(G,M) = M

ii) H1(G,M) ∼= HomZ(G,M)

iii) Ĥ0(G,M) = M/|G|M .
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The proof of this statement follows by using the bar resolution of G. Also

notice that if G is cyclic and M is a ZG-module, the cyclic resolution of G

implies that Ĥn(G,M) depends only on the parity of n.

6.1.5 Claim. Let G be a cyclic group and M a ZG-module then Ĥn(G,M) ∼=
Ĥn+2(G,M) for all n in Z.

6.1.6 Remark. Since Go
P is cyclic of order p − 1, which acts trivially on µ′p

whenever p divides m, it follows that

i) H0(Go
P,µ

′
p) = µ′p

ii) H1(Go
P,µ

′
p)
∼= HomZ(Go

P,µ
′
p)

iii) H2(Go
P,µ

′
p)
∼= Ĥo(Go

P,µ
′
p) = µ′p/|Go

P|µ′p.

From remark 6.1.6 one obtains that |H0(Go
P,µ

′
p)| = 2mp and if we denote

vp = gcd(2mp, p− 1) then |H1(Go
P,µ

′
p)| = |H2(Go

P,µ
′
p)| = vp.

We will now concentrate on finding generators for each of this cohomology

groups.

Let G be a finite cyclic group and consider the following exact sequence

0 Z Q Q/Z 0,
(6.1.6.1)

where G acts trivially on each module. The fact that |G|Q = Q and that

HomZ(G,Q) = 0 implies that Q is ZG-cohomologically trivial. After applying

Tate cohomology to the sequence (6.1.6.1) one obtains a connecting isomor-

phisms

∂n : Ĥn(G,Q/Z)→ Ĥn+1(G,Z), (6.1.6.2)

for all n. In the particular case when n = 1 we obtain

H2(G,Z) ∼= H1(G,Q/Z) ∼= HomZ(G,Q/Z).
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Let s be a fix generator of G and define θ̄s : G→ Q/Z by

θ̄s(s
i) =

i

|G| + Z. (6.1.6.3)

It follows that θ̄s is a generator of HomZ(G,Q/Z).

We now define θ̃s : BG
1 → Q/Z by

θ̃s[s
i] =

i

|G| + Z. (6.1.6.4)

It is not difficult to show that δθ̃s = 0 and that [θ̃s] is a generator ofH1(G,Q/Z).

It also follows clearly that ∂2 given in (6.1.6.2) sends [θ̃s] to [θs] where θs in

HomZG(BG
2 ,Z) is given by

θs[s
i|sj] =





0 if i+ j < |G|
1 if i+ j ≥ |G|

We must mention here that we choose 0 ≤ i, j < |G|.
6.1.7 Claim. Let G be acyclic group and M a ZG-module. The generator

[θs] of H2(G,Z) induces an isomorphism, which by abuse of notation will be

denoted by [θs] : Hn(G,M) → Hn+2(G,M) for every integer n, given by the

following composition

Hn(G,M) Hn+2(G,Z×M) Hn+2(G,M)
[θs]t φ∗

(6.1.7.1)

where φ : Z×M →M maps (t,m) to tm and t is the cup product.

From this point on sp denotes a generator of the cyclic group Go
P.

Let x̃0 = µ′p in H0(Go
P,µ

′
p), x̃

1 in HomZ(B
Go

P

1 ,µ′p) be defined by

x̃1[sip] = (µ′p)
itp where tp = 2mp/vp,

and x̂0 = (µ′p)
tp in Ĥ0(Go

P,µ
′
p).

By Claim 6.1.4 it follows that [x̃0] and [x̃1] are generators of H0(Go
P,µ

′
p) and

H1(Go
P,µ

′
p) respectively, it also follows that [x̂0] generates Ĥ0(Go

P,µ
′
p).
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We can now apply Claim 6.1.7 for n = 0 to conclude that x̃2 = φ∗(θsP t x̂0),

which has the following expression

x̃2[sip|sjp] =





1 if i+ j < |Go
P|

(µ′p)
tp if i+ j ≥ |Go

P|

is a 2-cocycle whose class [x̃2] generates H2(Go
P,µ

′
p).

It will be shown in the next section that we actually require cocycles xi in

HomZGo
P

(B
GP

i ,µ′p) such that their classes [xi] generate H i(Go
P,µ

′
p) for i =

0, 1, 2.

Let G be a finite group and H a subgroup of G. Fixing X a right transversal

of H in G one can define a map φX : G→ H by φX(hx) = h for all h in H and

x in X, then φX extends to a ZH-homomorphism φXn : BG
n → BH

n as follows

φXn [h1x1| · · · |hnxn] = [h1| · · · |hn].

it can easily be proved that δHn φ
X
n = φXn−1δ

G
n . Since

{
BG
• , δ•

}
is a ZH-projective

resolution for Z the following Claim holds.

6.1.8 Claim. Let G,H and X as above. For any ZG-module M the homo-

morphism

(φXn )∗ : Hn(H,M)→ Hn(H,M)

is an isomorphism for all integers n.

The proof of this Claim can be found on pg 113 [12].

By Claim 6.1.2 we can take X =
{
σjp : 0 ≤ j < fP

}
, then φX : GP → Go

P is

given by φX(sipσ
j
p) = sip. By Claim 6.1.8 if xi = x̃i ◦ φxi it follows that [xi] is a

generator of H i(Go
P,µ

′
p) for i = 0, 1, 2. We can explicitly compute
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x0(sipσ
j
p) = x̃0(sip) = µ′p (6.1.8.1)

x1[sipσ
j
p] = x̃1[sip] = (µ′p)

itp (6.1.8.2)

x2[si1p σ
j1
p |si2p σj2p ] = x̃2[si1p |si2p ]

=





1 if i+ j < |Go
P|

(µ′p)
tp if i+ j ≥ |Go

P|
(6.1.8.3)

6.1.9 The groups H2−i(ḠP, H
i(Go

P, µ)).

Our next task is to compute the groups H2−i(ḠP, H
i(Go

P, µ)) for i = 0, 1, 2.

We start by noticing that

σP(µ′p)
tp = (µ′p)

ptp = (µ′p)
tp ,

the equality above follows since 2mp divides (p− 1)tp.

This last observation implies by (6.1.8.2) (respectively (6.1.8.3)) that the ac-

tion of ḠP on H1(Go
P,µ

′
p) (resp H2(Go

P,µ
′
p)) is trivial.

By Claim 6.1.4 (i) one can state that H0(ḠP, H
2(Go

P,µ
′
p))
∼= H2(Go

P,µ
′
p)

meaning that we can define the 0-cocycle y0 in HomḠP
(B

ḠP

0 , H2(Go
P,µ

′
p)) in

the following way

y0(σ̄p) = [x2], (6.1.9.1)

where σ̄p denotes the image of σp under the natural projection of GP onto ḠP.

Being H2(Go
P,µ

′
p) cyclic with generator [x2] it follows that [y0] is a generator
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of H0(ḠP, H
2(Go

P,µ
′
p)).

Claim 6.1.4 (ii) gives H1(ḠP, H
1(G0

P,µ
′
p))
∼= HomZ(ḠP, H

1(Go
P,µ

′
p)). Since

ḠP is cyclic of order fP and H1(Go
P,µ

′
p) is cyclic of order vp, if we let v′p =

gcd(fP, vp) and t′p = vp/v
′
p, we can define the 1-cocycle y1 as follows

y1[σ̄p] = tp[x
1]. (6.1.9.2)

Then [y1] generates H1(ḠP, H
1(Go

P,µ
′
p)).

In order to compute H2(ḠP, H
0(Go

P,µ
′
p)) we must first compute the group

Ĥ0(ḠP, H
0(Go

P,µ
′
p)). Notice that (µ′p)

ḠP = 〈(µ′p)tp〉 and that

NḠP
(µ′p) = (µ′p)

∑fP−1

i=0 pi .

The ZG-homomorphism ρ : µ→ K×P given in (6.1.1.1) and the fact that µ′p
∼=

im(ρ) give that |µ′p| = 2mp divides |K×P | = pfP−1. We recall that tpvp = 2mp,

which implies that tp divides pfP − 1. Since gcd(tp, p − 1) = 1 it follows that

tp must divide
∑fP−1

i=0 pi. Let np =
(∑fP−1

i=0 pi
)
/tp, v

′′
p = gcd(vp, np) and

t′′p = vp/v
′′
p , then the class of the 0-cocycle ŷ0 given by

ŷ0(σ̄p) = t′′p[x
0]

is a generator of Ĥ0(ḠP, H
0(Go

P,µ
′
p)). Applying Claim 6.1.7 one can show

that the class of the 2-cocycle y2 given by

y2[σ̄i1p |σ̄i2p ] =





0 if i1 + i2 < |ḠP|
t′′p[x

0] if i1 + i2 ≥ |ḠP|
(6.1.9.3)

generates H2(ḠP, H
0(Go

P,µ
′
p)).

6.1.10 Set of generators of H2(GP,µ) for P a ramified

prime.

Let P in S∗ be the prime above the prime number p which divides m. Following

the idea presented at the end of section 3 of chapter 2, we can construct the
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ZG-projective resolution of Z Ẽn =
⊕n

i=0 B
ḠP

i ⊗B
GP

n−i. Let φn : B
GP
n → Ẽn be

defined by

φn[g1| · · · |gn] = 1⊗ [g1| · · · |gn] +
n−1∑

i=1

[ḡ1| · · · |ḡn−i]⊗ g1 · · · gn−i[gn−i+1| · · · |gn]

+ [ḡ1| · · · |ḡn]⊗ g1 · · · gn

for n ≥ 0, where ḡ denotes the image of g in GP under the natural projection

GP → ḠP. Keeping the notation given in section 2.3.9, it is not difficult to

show that δ̃nφn = φn−1δn.

Let us define ψn : Ẽn → B
GP
n as follows

ψ|
B

ḠP
i ⊗BGP

n−i

=




Id

B
GP
0

if i = n

0 if i 6= n

It is not difficult to show that {ψn} is a chain map and that φ∗n and ψ∗n are

inverse chain maps to each other.

The composition φ∗2 ◦ Γ (Γ given in 2.3.11.2) induces a surjective homomor-

phism.

2⊕

i=0

H2−i(ḠP, H
i(Go

P,µ))→ H2(GP,µ).

Let zi ∈ HomGP
(B

GP

2 ,µ) be the 2-cocycle given by

zi = φ∗2 ◦ Γyi = φ∗2 ◦ γi,2−i∗ yi,

then {[zi] : 0 ≤ i ≤ 2} is a set of generators of H2(GP,µ).

We conclude this section by given an explicit description of the 2-cocycles zi
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for i = 0, 1, 2.

z0
p [s

i1
p σ

j1
p |si2p σj2p ] = γ0,2

∗ y0(1⊗ [si1p σ
j1
p |si2p σj2p ])

= x2[si1p σ
j1
p |si2p σj2p ]

=





1 i i1 + i2 < |Go
P|

(µ′p)
tp if i1 + i2 ≥ |Go

P|
(6.1.10.1)

z1
p [s

i1
p σ

j1
p |si2p σj2p ] = γ1,1

∗ y1([σj1p ]⊗ si1p σj1p [si2p σ
j2
p ])

= j1t
′
px

1(si1p σ
j1
p [si2p σ

j2
p ])

= (µ′p)
j1i2tpt′p (6.1.10.2)

z2
p [s

i1
p σ

j1
p |si2p σj2p ] = γ2,0

∗ y2([σi1p |σj2p ]⊗ si1+i+2
p σj1+j2

p )

=





1 if j1 + j2 < |ḠP|
(µ′p)

t′′p if j1 + j2 ≥ |ḠP|
(6.1.10.3)

6.1.11 The unramified case.

Another case to consider is when Q in S∗ is unramified. Let q be the prime

number below Q, in this case, Go
Q is trivial and the cyclic group ḠQ = GQ.

The only non trivial group Ei,2−i
2 associated to the Hochschild-Serre spectral

sequence is E2,0
2 = H2(GQ, H

0(Go
Q,µ)) = H2(GQ,µ) ∼= Ĥ0(GQ,µ).

We can proceed exactly as in the previous subsection with the only exception

of assuming mq = m.

From the computations done before one has µGQ = 〈µtq〉 and that Ĥ0(GQ,µ) =

〈µtqt′′q 〉. Finally by applying Claim 6.1.7 one gets that the class of the 2-cocycle

z2
q given by

z2
q [σ

i1
Q |σi2Q ] =





1 if i1 + i2 < |GP|
µtqt

′′
q if i1 + i2 ≥ |GP|

(6.1.11.1)

generates the group H2(GQ,µ).
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6.1.12 The archimedean case.

Let c̄ be complex conjugation in G, we will denote by G∞ the decomposition

subgroup associated to c̄. Since G∞ is cyclic of order 2 it follows by Claim

6.1.7 that the class of the 2-cocycle

z2
∞[ci1 |ci2 ] =





1 if i1 + i2 < |G∞|
−1 if i1 + i2 ≥ |G∞|

(6.1.12.1)

generates the group H2(G∞,µ).

6.2 Computation of invP.

We remain under the assumption that m is an odd squarefree positive integer.

We will describe a method to evaluate local invariant maps, this method can

be found in a paper by A. Weiss (in progress).

Let p be a prime which divides m and P the prime in S∗ above p. For x a

2-cocycle whose class [x] is in H2(GP,µ), we fix s in GP to be a generator

of Go
P. By Claim 6.1.2 there exists σ in GP satisfying GP = 〈s〉 ⊕ 〈σ〉 and

〈σ̄〉 = ḠP.

We will denote by

x̄s =
(
x[σ|s]−1x[s|σ]

) ∏

u∈Go
P

x[u|s]. (6.2.0.1)

It follows that x̄s belongs to F×p . Let d be the least positive integer such that

x̄ds = 1.

Let ā : G→ (Z/2mZ)× be the group homomorphism defined in (3.0.0.1) and

denote by ã(s) the image of ā(s) under the projection (Z/2mZ)× → F×p , since

ã(s) generates F×p

〈ã(s)−(p−1)/d〉 = 〈x̄s〉.

There exists an integer h relatively prime to d with ã(s)−(p−1)h/d = x̄s.
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One can conclude that

invP([x]) = −h
d

+ Z. (6.2.0.2)

We will now evaluate invP on the 2-cocycles zi given in subsection 6.1.10.

We start by considering the 2-cocycle z2. By (6.1.10.3) one can say that

z̄2
sp =

(
z2[σp|sp]−1z2[sp|σp]

) ∏

u∈Go
P

z2[u|sp] = 1,

which immediately implies that

invP([z2
p ]) = 0 + Z. (6.2.0.3)

We can now look at z0, in this case (6.1.10.1) gives

z̄0
sp =

(
z0[σp|sp]−1z0[sp|σp]

) ∏

u∈Go
P

z0[u|sp] = (µ′p)
tp .

It follows that d in this case is vp = gcd(2mp, p − 1). Notice that this value

does not depend of the choice of sp or σp, hence we can choose sp to be a

generator of Go
P with the property that ã(sp)

−(p−1)/d = z̄1
sp . This implies that

invP([z0
p ]) = − 1

vp
+ Z. (6.2.0.4)

We consider now the cocycle z1, (6.1.10.2) shows that

z̄1
sp =

(
z1[σp|sp]−1z1[sp|σp]

) ∏

u∈Go
P

z1[u|sp] = (µ′p)
−tpt′p .

Since tpt
′
p = 2mp/v

′
p, we can conclude that d is v′p. As in the previous case we

can assume h to be 1 hence

invP([z1
p ]) = − 1

v′p
+ Z. (6.2.0.5)

If q is a prime number that does not divide m and Q is the unique prime in
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S∗ above q and c̄ denotes complex conjugation, it follows that

invQ([z2
q ]) = 0 + Z (6.2.0.6)

inv∞[z2
∞] =

1

2
+ Z. (6.2.0.7)
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Chapter 7

Localizing.

In this chapter we introduce the ”local parts” for a [f ] in [L, C̄].

We begin by proving the existence of a commutative diagram

H2(GP,µ) H2(G,Hom(∆S,µ))

Ĥ0(GP, Hom(∆G, C̄)) [L, C̄]α1

∼=∂−1
P

∼=∂−1

for each P in S∗.

We then give an explicit description of the isomorphism

∂−1
P : H2(GP,µ)→ Ĥ0(GP, Hom(∆G,C)).

We conclude by defining a ZG-homomorphism β1 : [C̄, L]G → [C̄,∆G]GP
and

a non-degenerate pairing

τ
GP

∆G : [̂C̄,∆G]GP
× [∆G, C̄]GP

→ Q/Z,

such that the following holds

τ
GP

∆G(β1[f ], z) = τL(f∗(α1z))

for all z in Ĥ0(GP, Hom(∆G, C̄)) ∼= [∆G, C̄]GP
.
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7.1 A commutative diagram.

The main objective of this section is to show that there exist a commutative

diagram

H2(GP,µ) H2(G,Hom(∆S,µ))

H0(GP, Hom(∆G, C̄)) [L, C̄]

∼=∂−1 ∼=∂−1

(7.1.0.1)

where µ→ C → C̄ is an envelope of µ and P is an arbitrary prime in S∗.

Let L = ∆G⊗∆S and Ī = ZG⊗∆S. We consider 0→ L→ Ī → ∆S → 0 to

be the exact sequence obtained by applying the exact functor −⊗∆S to the

augmentation sequence 0→ ∆G→ ZG→ Z→ 0.

We will list a couple of known result in cohomology for which we will only

sketch their proof.

7.1.1 Claim. Given L1 and L2 ZG-lattices, φ in Hom(L1, L2) and N a ZG-

module there is commutative diagram

Hq+1(G,Hom(L2, N)) Hq+1(G,Hom(L1, N))

Hq(G,Hom(∆G⊗ L2, N)) Hq(G,Hom(∆G⊗ L1, N))

φ∗

φ∗
∂∼= ∂∼=

for all integers q.

Proof. Let us start by mentioning that the functors−⊗Li are exact for i = 1, 2.

By applying this functors to the exact sequence 0→ ∆G→ ZG→ Z→ 0 we

obtain the following commutative diagram with exact rows

0 0∆G⊗ L1 ZG⊗ L1 L1

0 0∆G⊗ L2 ZG⊗ L2 L2

φ φ φ

(7.1.1.1)
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Using the fact that Ext1Z(Li, N) = 0 for i = 1, 2, we obtain that diagram

(7.1.1.1) induces a commutative diagram

0 0

0 0

Hom(∆G⊗ L2, N)Hom(ZG⊗ L2, N)Hom(L2, N)

Hom(∆G⊗ L1, N)Hom(ZG⊗ L1, N)Hom(L1, N)

φ∗ φ∗ φ∗

(7.1.1.2)

with exact rows. We now apply G-cohomology to diagram (7.1.2.1) and since

Hom(ZG⊗Li, N) are cohomologically trivial for i = 1, 2, we obtain the desired

diagram.

7.1.2 Claim. Let µ → N → M be an envelope of µ, L1, L2 ZG-lattices and

φ an element of Hom(L1, L2), there exist commutative diagrams

Hq+1(G,Hom(L2,µ)) Hq+1(G,Hom(L1,µ))

Hq(G,Hom(L2,M)) Hq(G,Hom(L1,M))

φ∗

φ∗
∂∼= ∂∼=

for all integers q.

Proof. Since the functors Hom(Li,−) are exact for i = 1, 2 one obtains the

following commutative diagram with exact rows

0 0

0 0

Hom(L2,µ) Hom(L2, N) Hom(L2,M)

Hom(L1,µ) Hom(L1, N) Hom(L1,M)

φ∗ φ∗ φ∗

(7.1.2.1)

by applyingG-cohomology to diagram (7.1.2.1) and using the fact thatHom(Li, N)

are cohomologically trivial, by ([13] pg 152), one obtains the desired dia-

gram.

As mention before we fix

0 0µ C C̄ (7.1.2.2)
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to be an envelope of µ, hence we obtain the following commutative diagram

H2(G,Hom(ZS,µ)) H2(G,Hom(∆S,µ))

H1(G,Hom(∆G⊗ ZS,µ)) H1(G,Hom(L,µ))

[∆G⊗ ZS, C̄] [L, C̄]

∂ ∼= ∂ ∼=

∂ ∼= ∂ ∼=

(7.1.2.3)

where the upper square is obtained by applying claim 7.1.1 with L1 = ∆S,

L2 = ZS and φ : ∆S ↪→ ZS the natural inclusion, while the lower square is

obtained by applying claim 7.1.2 to (7.1.2.2) with L1 = L and L2 = ∆G⊗ZS.

Since ZS ∼=
⊕

P∈S∗ ind
G
GP

Z, we will denote by φP : ZS → indGGP
Z the natural

projection for each P ∈ S∗. Letting L1 = ZS and L2 = indGGP
Z, claim 7.1.1

and claim 7.1.2 give the following commutative diagram

H2(G,Hom(ZS,µ))H2(G,Hom(indGGP
Z,µ))

H1(G,Hom(∆G⊗ ZS,µ))H1(G,Hom(∆G⊗ indGGP
Z,µ))

[∆G⊗ ZS, C̄][∆G⊗ indGGP
Z, C̄]

φ∗P

φ∗P

φ∗P

∂ ∼=∂ ∼=

∂ ∼=∂ ∼=

(7.1.2.4)

If we identify µ naturally with Hom(Z,µ), functoriality of the Shapiro’s iso-

morphism Sh(L,M,N) defined in 2.2.4.1, gives the following commutative dia-

gram

H2(GP,µ)) H2(G,Hom(indGGP
Z,µ))

H1(GP, Hom(∆G,µ)) H1(G,Hom(∆G⊗ indGGP
Z,µ))

H0(GP, Hom(∆G, C̄)) [∆G⊗ indGGP
Z, C̄]

∂ ∼= ∂ ∼=

∂ ∼= ∂ ∼=

(7.1.2.5)

Diagrams (7.1.2.3), (7.1.2.4) and (7.1.2.5) prove the existence of diagram
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(7.1.0.1).

7.2 ∂−1
P : H2(GP,µ)→ H0(GP, Hom(∆G, C̄)).

In this this section we will compute the inverse of the isomorphism

H0(GP, Hom(∆G, C̄)) H2(GP,µ),
∼=

obtained as the composition of the left column of diagram (7.1.2.5).

This will be done by computing separately the isomorphisms

∂−1 : H2(GP,µ)→ H1(GP, Hom(∆G,µ)) and

∂−1 : H1(GP, Hom(∆G,µ))→ H0(GP, Hom(∆G, C̄)).

Let G be a finite group, H a subgroup of G and M a ZG-module. By fixing

X a right transversal of H in G one obtains an H-map φXH : G → H defined

by

φXH(hx) = h for all h ∈ H and x ∈ X.

This map induces in a natural way a ZH-homomorphism φXH : ZG→ ZH.

From this point on and until the end of this section φXH = φ if there is no

confusion. We should also mention here that (BG
• , δ) denotes the bar resolution

for the group G introduced in subsection 6.1.3.

7.2.1 ∂−1 : H2(GP,µ)→ H1(GP, Hom(∆G,µ)).

7.2.2 Claim. Let h1, h2 7→ xh1,h2 be a 2-cocycle whose class x belongs to

H2(H,M), define x̂ in HomH(BH
1 , Hom(∆G,M)) in the following way: if
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l =
∑

g∈G agg in ZG with
∑

g∈G ag = 0,

x̂h(l) =
∑

g∈G
agφ(g)xφ(g)−1,h

for all h in H. It follows that δx̂ = 0 (which implies that h 7→ x̂h is a 1-cocycle)

and ∂x̂ = x.

Proof. Notice that x being a 2-cocycle implies that

h1xh2,h3 − xh1h2,h3 + xh1,h2h3 − xh1,h2 = 0 (7.2.2.1)

for all h1, h2 and h3 in H.

We recall that M is naturally isomorphic to Hom(Z,M) as a ZG-module,

hence the short exact sequence

0 0∆G ZG Z
iG πG

induces the following commutative diagram with exact rows

HomH(BH
2 , Hom(Z,M)) HomH(BH

2 , Hom(ZG,M)) HomH(BH
2 , Hom(∆G,M))

HomH(BH
1 , Hom(Z,M)) HomH(BH

1 , Hom(ZG,M)) HomH(BH
1 , Hom(∆G,M))

π∗G i∗G

π∗G i∗G

δ δ δ

Let x̄ in HomH(BH
1 , Hom(ZG,M)) be given by

x̄h(g) = φ(g)xφ(g)−1,h,

it follows clearly that i∗Gx̄ = x̂: it remains to show that δx̄ = π∗Gx. In order to

prove this let h1, h2 in H and g in G, then

(δx̄)h1,h2(g) = (h1x̄h2)(h−1
1 g)− x̄h1h2(g) + x̄h1(g)

= φ(g)xφ(g)−1h1,h2
− φ(g)xφ(g)−1,h1h2

+ φ(g)xφ(g)−1,h1
by (7.2.2.1)

= xh1,h2

= xh1,h2(πG(g))

= π∗Gxh1,h2(g),
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which concludes the proof by the definition of ∂.

If we identify µ with Z/2mZ as ZG-modules, where the action of G is given

by

g (t+ 2mZ) = a(g)t+ 2mZ,

being a the lift of the isomorphism ā : G → (Z/2mZ)× defined in (3.0.0.1).

Every 2-cocycle in HomGP
(B

GP

2 ,Z/2mZ) is determined by a function (not

uniquely) b : GP ×GP → Z satisfying

xh1,h2 = b(h1, h2) + 2mZ and (7.2.2.2)

a(h1)b(h2, h3)− b(h1h2, h3) + b(h1, h2h3)− b(h1, h2) ≡ 0 (mod 2mZ)

(7.2.2.3)

for all h1, h2 and h3 in GP, hence by claim 7.2.2 one obtains that the class of

the 1-cocycle given by

x̂h(l) =
∑

g∈G
agφ(g)xφ(g)−1,h

=
∑

g∈G
aga(φ(g))b(φ(g)−1, h) + 2mZ, (7.2.2.4)

is the preimage of x under the isomorphism ∂ : H1(GP, Hom(∆G,µ)) →
H2(GP,µ).

7.2.3 ∂−1 : H1(GP, Hom(∆G,µ))→ H0(GP, Hom(∆G, C̄)).

Let 0→ µ→ C → C̄ → 0 be the envelope of µ constructed in chapter 3 and

assume that {gi : 1 ≤ i ≤ n} is a fix set of generators of G.

Let h 7→ x̂h be a 1-cocycle with values in Hom(∆G,Z/2mZ), there exists a

function c : GP ×∆G→ Z satisfying

x̂h1(l1) = c(h1, l1) + 2mZ (7.2.3.1)
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c(h1, l1 + l2) ≡ c(h1, l1) + c(h1, l2) (mod 2mZ) and (7.2.3.2)

a(h1)c(h2, h
−1
1 l1)− c(h1h2, l1) + c(h1, l1) ≡ 0 (mod 2mZ) (7.2.3.3)

for all h1, h2 in GP an all l1, l2 in ∆G.

For a fix l in ∆G let us define the following elements Di
l in QG for 0 ≤ i ≤ n,

as follows:

D0
l =

1

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1, φ(g)−1l)g, (7.2.3.4)

and for 1 ≤ i ≤ n

Di
l =
−1

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1φ(gg−1

i ), φ(g)−1l)g. (7.2.3.5)

7.2.4 Claim. With the notation given above, let x̃ in Hom(∆G, C̄) be given

by

x̃(l) =
(

2mD0
l ,
(
D0
l

(
g−1
i − a(g−1

i )
))

1≤i≤n

)
+
(

0,
(
Di
lg
−1
i

)
1≤i≤n

)
+ AY .

It follows that x̃ belongs to Hom(∆G, C̄)GP and ∂x̃ = x̂.

Proof. We need to show that x̃ is well defined. For this let

x̃i(l) =





2mD0
l if i = 0

D0
l

(
g−1
i − a(g−1

i )
)

+Di
lg
−1
i if 1 ≤ i ≤ n
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We will now proof that x̃i(l) belongs to ZG. Since

x̃i(l) =
g−1
i − a(g−1

i )

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1, φ(g)−1l)g

− g−1
i

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1φ(gg−1

i ), φ(g)−1l)g

=
1

2m

∑

g∈G
a(g−1φ(g))

(
c(φ(g)−1, φ(g)−1l)− c(φ(g)−1φ(gg−1

i ), φ(g)−1l)
)
gg−1

i

− 1

2m

∑

g∈G
a(g−1

i )a(g−1φ(g))c(φ(g)−1.φ(g)−1l)g

=
1

2m

∑

g∈G
a(g−1

i g−1φ(ggi)
−1
(
c(φ(ggi)

−1, φ(ggi)
−1l)− c(φ(ggi)

−1φ(g), φ(ggi)
−1l)

)
g

−
∑

g∈G
a(g−1

i )a(g−1φ(g))c(φ(g)−1, φ(g)−1l)g,

it would be enough to show that for all g in G

a(g−1
i g−1φ(ggi)

−1
(
c(φ(ggi)

−1, φ(ggi)
−1l)− c(φ(ggi)

−1φ(g), φ(ggi)
−1l)

)

− a(g−1
i )a(g−1φ(g))c(φ(g)−1, φ(g)−1l) ≡ 0 (mod 2mZ). (7.2.4.1)

It follows from (7.2.3.3) that the left hand side of (7.2.4.1) is equivalent to

(
a(g−1

i g−1)− a(g−1
i )a(g−1)

)
(c(1, l)− c(φ(g), l)) (mod 2mZ),

which is equivalent to 0 (mod 2mZ), since a(st) − a(s)a(t) ≡ 0 (mod 2mZ)

for all s, t in G.

We will now show that x̃ is a 0-cocycle. A simple computation shows that

hDi
l = Di

hl for all h ∈ GP and 1 ≤ i ≤ n. In order to show that hx̃(l) = x̃(hl)

it would be enough to prove that

(
2m(hD0

l −D0
hl),
((
hD0

l −D0
hl

) (
g−1
i − a(g−1

i )
))

1≤ı≤n)
)
∈ AY
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or equivalently that hD0
l −D0

hl is an element of Y , which follows since

hD0
l −D0

hl =
1

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1, φ(g)−1l)hg

− 1

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1.φ(g)−1hl)g

=
1

2m

∑

g∈G
a(g−1φ(g))

[
c(φ(g)−1h, φ(g)−1hl)− c(φ(g)−1, φ(g)−1hl)

]
g

≡ 1

2m

∑

g∈G
a(g−1φ(g))a(φ(g)−1)c(h, hl)g (mod Y ) by (7.2.3.3)

≡ c(h, hl)Θ ≡ 0 (mod Y ).

In order to show that ∂x̃ = x̂ we should recall that the envelope

0 0µ C C̄
γ π

of µ given in Chapter 3 induces a the following commutative diagram

HomGP
(B

GP

1 , Hom(∆G,µ)) HomGP
(B

GP

1 , Hom(∆G,C)) HomGP
(B

GP

1 , Hom(∆G, C̄))

HomGP
(B

GP

0 , Hom(∆G,µ)) HomGP
(B

GP

0 , Hom(∆G,C)) HomGP
(B

GP

0 , Hom(∆G, C̄))

γ∗ π∗

γ∗ π∗

δ δ δ

Define x̄ in HomGP
(B

GP

0 , Hom(∆G,C)) by x̄(l) =
(
x̃0, (x̃i)1≤i≤n

)
+ AZG.

It follows immediately that π∗x̄ = x̃. It only remains to show that δx̄ = γ∗x̂,

which is equivalent to prove that

hx̃(h−1l)− x̃(l) = γ∗x̂(l)

= c(h, l)
(

2mΘ,
((
g−1
i − a(g−1

i )
)

Θ
)

1≤i≤n

)
+ AZG

for all h in GP.
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Since hDi
l = Di

hl for 1 ≤ i ≤ n, it would be enough to prove that

2m(hD0
h−1l −D0

l ) ≡ c(h, l)Θ (mod 2mZG).

Notice that

2m
(
hD0

h−1l −D0
l

)
=
∑

g∈G
a(g−1φ(g))

[
c(φ(g)−1, φ(g)−1h−1l)hg − c(φ(g)−1, φ(g)−1l)g

]

≡
∑

g∈G
a(g−1φ(g))a(φ(g)−1)c(h, l)g (mod 2mZG) by (7.2.3.3)

≡
∑

g∈G
a(g−1)c(h, l)g (mod 2mZG)

≡ c(h, l)Θ (mod 2mZG).

For any l in ∆G the following holds

D0
l =

1

2m

∑

g∈G
a(g−1φ(g))c(φ(g)−1, φ(g)−1l)g

≡ 1

2m

∑

g∈G
a(g−1) [c(1, l)− c(φ(g), l)] g (mod ZG) by (7.2.3.3)

≡ −1

2m

∑

g∈G
a(g−1)c(φ(g), l)g (mod ZG)

This last series of equivalences show that if we let

D̄0
l =
−1

2m

∑

g∈G
a(g−1)c(φ(g), l)g (7.2.4.2)

and (by abuse of notation) if we denote by

x̃i(l) =





2mD̄0
l if i = 0

D̄0
l (g
−1
i − a(g−1

i )) +Di
lg
−1
i if 1 ≤ i ≤ n

(7.2.4.3)

then x̃(l) = (x̃i(l))0≤i≤n + AY .
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7.3 The pairing τ
GP

∆G.

The character ε : H2(G,Hom(∆S,µ))→ Q/Z is determined, after dimension

shifting, by the non-degenerate pairing [C̄, L]× [L, C̄]→ Q/Z where

([f ], [z]) 7→ τL(f∗[z]) = τL([f ◦ z]) =
TraceL(f ◦ z)

|G| + Z

for all [f ] and [z] in [C̄, L] and [L, C̄] respectively.

In section 7.1 we proved the existence of the commutative diagram (7.1.0.1),

let us denote by

α1 : H0(GP, Hom(∆G, C̄))→ [L, C̄]

the homomorphism of the bottom row. We will prove in this section the

existence of a homomorphism

β1 : [C̄, L]G → [C̄,∆G]GP

and a non-degenerate pairing

τH∆G : [C̄,∆G]GP
× [∆G, C̄]GP

→ Q/Z

such that it satisfies

τH∆G(β1[f ], z) = τL(f∗α1[z]) (7.3.0.1)

for any [f ] in [C̄, L]G and [z] in H0(GP, Hom(∆G, C̄)) ∼= [∆G, C̄]GP
.

The existence of τH∆G and β1 will allow us to compute the character ε in a

”local” way.

It should be mentioned at this point that we will change some of the notation

established in previous chapters, with the idea that the proofs presented in

this section become clearer to the reader.
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Let us start by considering the short Z-split exact sequence

∆S ZS Z0 0,
i1 ı́1

and applying to it the functor ∆G⊗−, to obtain the short exact sequence

0 L ∆G⊗ ZS ∆G 0.
i1 ⊗ id∆G ı́1 ⊗ id∆G,

(7.3.0.2)

We denote I = ZS ⊗∆G. Recall that ZS ∼=
⊕

P∈S∗ ind
G
GP

Z, then for each P

in S∗, let φP be the natural projection from ZS onto indGGP
Z.

In order to simplify the notation we will fix a prime P0 in S∗ and denote by

H = GP0 , IH = indGGP0
Z ⊗ ∆G, φH = φP0 , î1 = i1 ⊗ id∆G : L → I and

φ̂H = φH ⊗ id∆G : I → IH .

Let τI : [C̄, I]× [I, C̄]→ Q/Z be defined by

τI([f ], [z]) =
TraceI(f ◦ z)

|G| + Z

7.3.1 Claim. Given [f ] in [C̄, L]G and [z] in [I, C̄]G it follows that

τI((̂i1)∗[f ], [z]) = τL(f∗(̂i1)∗[z]).

Proof. The statement follows clearly from the equality

TraceI (̂i1 ◦ f ◦ z) = TraceL(f ◦ z ◦ î1).

We can now define τIH : [C̄, IH ]× [IH , C̄]→ Q/Z by

τIH ([f ], [z]) =
TraceIH (f ◦ z)

|G| + Z.
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7.3.2 Claim. Given [f ] in [C̄, IH ]G and [z] in [IH , C̄]G it follows that

τIH ((φ̂H)∗[f ], [z]) = τI([f ], (φ̂H)∗[z]).

Proof. It is enough to show that

TraceIH (φ̂H ◦ f ◦ z) = TraceI(f ◦ z ◦ φ̂H),

which follows by properties of the trace.

We want to define the following dual maps and prove that they are actually

ZG-isomorphisms

ψ1 : Hom(indGHZ, Hom(∆G, C̄))→ Hom(IH , C̄)

ψ2 : Hom(C̄, IH)→ Hom(indGHZ, Hom(C̄,∆G)).

In order to give the expression of ψ2 we will need the following remark.

7.3.3 Remark. Hom(indGHZ,∆G) is isomorphic to IH as ZG-modules.

Proof. Let φ2 : IH → Hom(indGHZ,∆G) be defined in the following way: fix X

to be a left transversal of H in G and for every element x of X let x̄ := x⊗ 1.

If Y = {yi : i ∈ I} is a Z-basis for ∆G it follows that {x̄⊗ yi : x ∈ X, i ∈ I} is

a Z-basis for IH , then

φ2(x̄⊗ yi) = Φx̄⊗yi : indGHZ→ ∆G where,

Φx̄⊗yi(
∑

z∈X
az z̄) = axyi. (7.3.3.1)

We start by showing that φ2 is a ZG-homomorphism.
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Let g in G a and z in X, notice that

Φg·(x̄⊗yi)(z̄) =




gyi if z̄ = gx̄

0 if z̄ 6= gx̄

=




gyi if g−1z̄ = x̄

0 if g−1z̄ 6= x̄

= (gΦx⊗yi)(z̄)

in order to prove that φ2 is bijective we define φ̃2 : Hom(indGHZ,∆G) → IH

by

φ̃2(f) =
∑

x∈X
x̄⊗ f(x̄).

Notice that for any g in G, one has

φ̃2(gf) =
∑

x∈X
x̄⊗ (gf)(x̄) =

∑

x∈X
x̄⊗ gf(g−1x̄)

= g

(∑

x∈X
g−1x̄⊗ f(g−1x̄)

)
= gφ̃2(f)

which proves that φ̃2 is a ZG-homomorphism. Let f in Hom(indGHZ,∆G) then

φ2φ̃2(f) =
∑

x∈X
φ2(x̄⊗ f(x̄)) =

∑

x∈X
Φx̄⊗f(x̄) = f. (7.3.3.2)

In order to prove this last equality we can write

f(z̄) =
∑

i∈I
biz̄yi

for any z in X. This implies Φx̄⊗f(x̄) =
∑

i∈I Φx̄⊗bix̄yi , then for any element w

in X we obtain

∑

x∈X
Φx̄⊗f(x̄)(w) =

∑

i∈I

∑

x∈X
Φx̄⊗bix̄(w)

=
∑

i∈I
biw̄yi = f(w̄).
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If we now take arbitrary x ∈ X and yi ∈ Y it follows that

φ̃2φ2(x̄⊗ yi) =
∑

z∈X
x̄⊗ φ2(x̄⊗ yi)(z̄) = z̄ ⊗ yi, (7.3.3.3)

it is clear that equations (7.3.3.2) and (7.3.3.3) prove that φ̃2 is the inverse of

φ2, which proves the bijectivity of φ2.

We are now in position to define ψ1 an ψ2. For any f inHom(indGHZ, Hom(∆G, C̄))

let ψ1(f)(x̄ ⊗ yi) = f(x̄)(yi), a straightforward computations show that ψ1 is

a ZG-homomorphism and that is bijective. Now let f be in Hom(C̄,MH), for

any x in X and c in C̄, let us define

((ψ2f)(x̄))(c) = (φ2(f(c)))(x̄). (7.3.3.4)

We will prove that ψ2 is a ZG-homomorphism. Let g in G

((ψ2(gf))(x̄))(c) = (φ2((gf)(c))) (x̄) =
(
φ2(gf(g−1c))

)
(x̄)

= (gφ2)(f(g−1c))(x̄) = gφ2(f(g−1c))(g−1x̄)

= gψ2(f)(g−1x̄)(g−1c) =
(
gψ2(f)(g−1x̄)

)
(c)

= (gψ2(f)(x̄)) (c).

The proof that ψ2 is bijective is omitted here.

The isomorphisms ψ1 and ψ2 induced in cohomology isomorphisms

(ψ1)∗ : H0(G,Hom(indGHZ, Hom(∆G, C̄)))→ H0(G,Hom(IH , C̄))

(ψ2)∗ : H0(G,Hom(C̄, IH))→ H0(G,Hom(indGHZ, Hom(C̄,∆G))).

Let us define the following non-degenerate pairing

τψ : [indGHZ, Hom(C̄,∆G)]G × [indGHZ, Hom(∆G, C̄)]G → Q/Z

for any [f ] and [z] by

τψ([f ], [z]) =

∑
x∈X Trace∆G(f(x̄) ◦ z(x̄))

|G| + Z.
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7.3.4 Claim. Given [f ] in [C̄, IH ]G and [z] in [indGHZ, Hom(∆G, C̄)]G, then

the next equality holds

τψ((ψ2)∗[f ], [z]) = τIH ([f ], (ψ1)∗[z]).

Proof. We start by understanding TraceIH (f ◦ ψ1(z)). For any x in X and yi

in Y one can write

(f ◦ ψ1(z))(x̄⊗ yi) = f(z(x̄)(yi)) =
∑

w∈X

∑

j∈I
ajw̄(w̄ ⊗ yj) (7.3.4.1)

for suitable integers ajw̄, keeping the same notation we now fix x in X and

define ηf,zx̄ : ∆G→ ∆G by

ηf,zx̄ (yi) =
∑

j∈I
ajx̄yj, (7.3.4.2)

we obtain that

TraceIH (f ◦ ψ1(z)) =
∑

x∈X
Trace∆G(ηf,zx̄ ). (7.3.4.3)

On the other hand if we consider (ψ2f)(x̄) ◦ z(x̄) : ∆G→ ∆G, it follows that

(ψ2f)(x̄) ◦ z(x̄)(yi) = φ2(f(z(x̄)(yi)))(x̄)

= φ2((f ◦ ψ1z)(x̄⊗ yi))(x̄)

=
∑

w∈X

∑

j∈I
ajw̄φ2(w̄ ⊗ yj)(x̄) by (7.3.4.1)

=
∑

w∈X

∑

j∈I
ajw̄Φw̄⊗yj(x̄)

=
∑

j∈J
ajx̄yj

= ηf,zx̄ (yi) by (7.3.4.2).

The last equation shows that as linear endomorphisms of ∆G, (ψ2f)(x̄) ◦ z(x̄)
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and ηf,zx̄ are equal then by (7.3.4.3) one obtains

TraceIH (f ◦ ψ1z) =
∑

x∈X
Trace∆G(ηf,zx̄ )

=
∑

x∈X
Trace∆G((ψ2f)(x̄) ◦ z(x̄)).

The last equality proves the statement.

We now recall from the Section 2 of Chapter 2 the Shapiro’s isomorphisms

Sh(indGHZ,∆G,C̄) : [∆G, C̄]H → [indGHZ, Hom(∆G, C̄)]G

Sh−1
(indGHZ,C̄,∆G)

: [indGHZ, Hom(C̄,∆G)]G → [C̄,∆G]H .

In order to simplify the notation we will denote by Sh = Sh(indGHZ,∆G,C̄) and

by Sh−1 = Sh−1
(indGHZ,C̄,∆G)

.

We conclude this section by defining the non-degenerate pairing

τH∆G : [C̄,∆G]H × [∆G, C̄]H → Q/Z

by setting

τH∆G([f ], [z]) =
Trace∆G(f ◦ z)

|H| + Z,

and proving equation (7.3.0.1).

7.3.5 Claim. Given [f ] in [indGHZ, Hom(C̄,∆G)]G and [z] an element of

[∆G, C̄]H , the next equality holds

τH∆G(Sh−1[f ], [z]) = τψ([f ], Sh[z]).

Proof. We start by computing τψ([f ], Sh[z]).

τψ([f ], Sh[z]) =

∑
x∈X Trace∆G(f(x̄) ◦ (Sh(z)(x̄)))

|G| + Z

=

∑
x∈X Trace∆G(f(x̄) ◦ xz)

|G| + Z.
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On the other hand one has that

τH∆G(Sh−1[f ], [z]) =
Trace∆G(f(1̄G) ◦ z)

|H| + Z

In order to prove the claim, it would be enough to show that for all x in X

Trace∆G(f(x̄) ◦ xz) = Trace∆G(f(1̄G) ◦ z). This follows simply from the fact

that f(x̄) = xf(1̄G), hence for any y ∈ ∆G, (xz)(y) = xz(x−1y), which implies

f(x̄)((xz)(y)) = ((xf)(1̄G)) (xz(x−1y)) = xf(1̄G)(z(x−1y)).

From the above equality one can conclude that f(ȳ) ◦ yz and f(1̄G) ◦ z are

similar endomorphisms of ∆G and then have the same trace as needed.

We can conclude this section by mentioning that the ZG-homomorphism β1

is the composition Sh−1(ψ2)∗(φ̂H)∗(̂iH)∗.
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Chapter 8

Conditions over fP.

In this final chapter we will give a set of conditions that the candidate f : C →
must satisfy in order for (1.0.1.9) to hold. We restrict to the case when m is

an odd squarefree positive integer, in particular we will assume that

m =
n∏

i=1

pi

with each pi an odd prime and pi 6= pj, whenever i 6= j.

Let Pi, be the only prime in S∗ above pi and fix si, σi in GPi
such that si

generate Go
Pi

and σ̄i, the image of σi under the natural projection GP →
GP/G

o
P, is a Frobenius element. We have that

GPi
= 〈si〉 ⊕ 〈σi〉 (8.0.0.1)

as in (6.1.2).

Since G is the product of the subgroups Go
Pi

for 1 ≤ i ≤ n, it follows that

Σ = {si : 1 ≤ i ≤ n} is a set of generators for G. By chapter 3 we can construct

an envelope of µ

0 µ C C̄ 0,

where C = F/AZG, C̄ = F/AY , F =
⊕n

i=0 ZG and AZG and AY the submod-
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ules of F given by

AZG =
〈(

2mx, x(g−1
1 − a(g−1

1 )), . . . , x(g−1
n − a(g−1

n ))
)

: x ∈ ZG
〉

AY =
〈(

2my, y(g−1
1 − a(g−1

1 )), . . . , y(g−1
n − a(g−1

n ))
)

: y ∈ Y
〉
.

If we assume to work in the category of Z′G-modules, obtaining [f ] in [C̄, L]G

satisfying (1.0.1.9), can be achieved by computing its ’local parts” introduced

in the previous chapter, which means that for each P in S∗ one needs to

compute [fP] in [C̄,∆G]GP
such that

τ
GP

∆G([fP], [z]) = invP(∂P[z]) (8.0.0.2)

for all [z] in [∆G, C̄]GP
, where

∂P : [∆G, C̄]GP
→ H2(GP,µ) (8.0.0.3)

is the inverse of the isomorphism given in section 7.2.

We should recall that ∂−1
P depends on the choice of fix a map φP : G → GP

(as mentioned at the beginning of 7.2). if P in S∗ and p is the prime number

such that pZ = P ∩Q we denote

Σp =





Σ \ {si} if p = pi for some i

Σ else

If p = pi for some i and since every g in G can be expressed in the follow-

ing form: g = sni
∏
s
nj

j where the product is taken over all sj in Σp, then

φP(g) = sni φ
(∏

s
nj

j

)
. If there is no confusion we will denote φP by simply φ.

We will discuss the conditions that fP : C̄ → ∆G must satisfy so that (8.0.0.2)

holds in three different cases: non archimedean, unramified and ramified.

Before looking at each particular case we make the following observation.

Let us denote G× = G \ {1G} and lg = 1G− g, we obtain that {lg : g ∈ G×} is
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a Z-basis for ∆G.

Recalling from chapter 7 that for each P in S∗, if [x] is an element in H2(GP,µ)

and b : GP ×GP → Z is a function such that

xh1,h2 = b(h1, h2) + 2mZ

for all h1, h2 in GP, then ∂−1
P [x] = [x̃] where

x̃(l) = D̄0
l (2m, s

−1
1 − a(s−1

1 ), . . . , s−1
n − a(s−1

n )) + (0, D1
l s
−1
1 , . . . , Dn

l s
−1
n ) + Ay.

A straightforward computation shows that

D̄o
lg =

1

2m

∑

h∈G
a(h−1)a(φ(g))b(φ(g)−1, φ(h))h. (8.0.0.4)

Since ∆G is a lattice it follows that [C,∆G]GP
∼= [C̄,∆G]GP

.

In order to define fP : C → ∆G we can first consider to define f̄P : F → ∆G

satisfying

f̄P(2m, s−1
1 − a(s−1

1 ), . . . , s−1
n − a(s−1

n )) = 0. (8.0.0.5)

Finally let us denote by X̃ the element in [∆G,F ] given by

X̃(l) = D̄0
l (2m, s

−1
1 − a(s−1

1 ), . . . , s−1
n − a(s−1

n )) + (0, D1
l s
−1
1 , . . . , Dn

l s
−1
n ),

it follows clearly that

τ
GP

∆G([fP], [x]) =
Trace∆G(f̄P ◦ X̃)

|GP|
+ Z′.

8.1 Conditions over fP.

We give a list of equations that fP must satisfy so that (8.0.0.2) holds for each

of the three different cases.
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8.1.1 The archimedean case.

By (6.1.12.1) we have that, H2(G∞,µ) is generated by a single element of

order 2; namely z2
∞. It follows immediately that for any f∞ : C → ∆G

Trace∆G(f∞ ◦ z̃2
∞)

|G∞|
≡ inv∞(z2

∞) (mod Z′).

We will denote by {ei : 0 ≤ i ≤ m} to be the standard ZG-basis for F . It

follows that f̄∞ : F → ∆G must only satisfy (8.0.0.5).

Let f̄∞(ei) =
∑

g∈G× a
i
glg and for a moment assume that f̄∞ is actually a

ZG-homomorphism, then the left hand side of (8.0.0.5) can be written as

2mf̄∞(e0) +
n∑

i=1

(
s−1
i f̄∞(ei)− a(s−1

i )f̄∞(ei)
)

=

2m
∑

g∈G×
a0
glg −

n∑

i=1

∑

g∈G×
a(s−1

i )aiglg +
n∑

i=1

∑

g∈G×
aigs
−1
i lg =

∑

g∈G×

(
2maog −

n∑

i=1

a(s−1
i )aig

)
lg +

n∑

i=1


 ∑

g∈G×\{si}
aig(ls−1

i g − ls−1
i

)− aisils−1
i


 .

If we let

big =




ai
s−1
i g

if g 6= s−1
i

−∑g∈G× a
i
g if g = s−1

i

it follows that

2mf̄∞(e0) +
n∑

i=1

(
s−1
i f̄∞(ei)− a(s−1

i )f̄∞(ei)
)

=

∑

g∈G×

[
2ma0

g +
n∑

i=1

big − a(s−1
i )aig

]
lg. (8.1.1.1)

If g does not belong to
{
s−1

1 , · · · , s−1
n

}
one can define aig = a(g) for 1 ≤ i ≤ n
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then

A0
g =

n∑

i=1

big − a(s−1
i )aig =

n∑

i=1

ai
s−1
i g
− a(s−1

i )aig

=
n∑

i=1

a(s−1
i g)− a(s−1

i )a(g) ≡ 0 (mod 2m),

hence one can chose a0
g = −A0

g/2m.

If g = s−1
i , then as before let aig = a(g). In this case

A0
i =

n∑

i=1

big − a(s−1
i )aig

= −
∑

g∈G×
aig −

n∑

j=1

a(s−1
j )aj

s−1
i

+
n∑

j=1,j 6=i
aj
s−1
j s−1

i

=
n∑

j=1,j 6=i

(
a(s−1

j s−1
i )− a(s−1

j )a(s−1
i )
)
− a(s−1

i )a(si)−
∑

g∈G×
a(g)

≡ 0 (mod 2m),

let a0
si

= −A0
i /2m.

With the choices made for the integers aig, for 0 ≤ i ≤ n and g ∈ G×, it follows

that (8.1.1.1) is 0 as wanted.

8.1.2 The unramified case.

Let us consider Q in S∗ to be unramified, where q is the prime number satis-

fying qZ = Q ∩Q, by (6.1.11.1) z2
q generates H2(GQ,µ). If z̃2

q = ∂−1
Q z2

q , then

f̄Q must satisfy apart from (8.0.0.5) that, Trace∆G(f̄Q ◦ Z̃2
q ) ≡ 0 (mod |GQ|).

This two conditions can easily be achieved by defining the ZG-homomorphism

f̄Q = |GQ|f̄∞.
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8.1.3 The ramified case.

In this section we return to the notation established in chapter 6. Let us

choose one of the primes appearing in the factorization of m and denoted by

p = pk, Let P be the unique prime in S∗ above pk and let sk, σk elements in

GP satisfying (8.0.0.1).

In subsection 6.1.10 we found three generator for the group H2(GP,µ) namely

[z0], [z1] and [z2]. We will recall the expression of the cocycles z0, z1 and z2

here. In order to do this lets us define one more time the following integers.

Let mp = m/p, vp = gcd(p − 1, 2mp) and tp = 2mp/vp. We also choose α to

be an integer satisfying

1 + 2mpα ≡ 0 (mod p).

If we fix µ to be a generator of µ, let µ′p = µ1+2mpα. With this we can define

the first 2-cocycle z0 by

z0[si1k σ
j1
k |si2k σj2k ] =





1 if i1 + i2 < p− 1

(µ′p)
tp if i1 + i2 ≥ p− 1

(8.1.3.1)

Now let vp = gcd(fP, vp), t
′
p = vp/v

′
p. If np =

(∑fP−1
i=0 pi

)
/tp and v′′p =

gcd(vp, np), by letting t′′p = vp/v
′′
p , we can now describe the remaining two

cocycles:

z1[si1k σ
j1
k |si2k σj2k ] = (µ′p)

j1i2tpt′p (8.1.3.2)

z2[si1k σ
j1
k |si2k σj2k ] =





1 if j1 + j2 < fP

(µ′p)
t′′p if j1 + j2 ≥ fP

(8.1.3.3)

By (7.2.2.2) there are functions bi : GP ×GP → Z such that

zip[h1|h2] = bi(h1, h2) + 2mZ
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for i = 0, 1, 2. Let us assume that f̄P : F → ∆G is a ZGP-homomorphism

satisfying (8.0.0.5).

1. If [z̃0
p ] = ∂−1

P [z0
p ] then we can define

b0(si1k σ
j1
k , s

i2
k σ

j2
k ) =





0 if i1 + i2 < p− 1

(1 + 2mpα)tp if i1 + i2 ≥ p− 1

It follows by (8.0.0.4) that vpD̄
0
lg

belongs to ZG.

Let Z̄0 in [∆G,F ] be given by

Z̄0
lg = vp(0, D

1s−1
1 , . . . , Dn

lgs
−1
n ).

It follows that

Trace∆G(f̄P ◦ Z̃0
p) =

Trace∆G(f̄P ◦ Z̄0)

vp
,

hence we will need that

Trace∆G(f̄P ◦ Z̄0) ≡ −1 (mod vp|GP|). (8.1.3.4)

2. Let [z̃1
p ] = ∂−1

P [z1
p ] then we can define

b1(si1k σ
j1
k , s

i2
k σ

j2
k ) = (1 + 2mpα)j1i2tpt

′
p.

Since tpt
′
p = 2mp/v

′
p it follows by (8.0.0.4) that v′pD̄

0
lg

belongs to ZG.

Let Z̄1 in [∆G,F ] be given by

Z̄1
lg = v′p(0, D

1s−1
1 , . . . , Dn

lgs
−1
n ).

We can conclude that

Trace∆G(f̄P ◦ Z̃1
p) =

Trace∆G(f̄P ◦ Z̄1)

v′p
,

in this case one would need to solve

Trace∆G(f̄P ◦ Z̄1) ≡ −1 (mod v′p|GP|). (8.1.3.5)
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3. Finally let [z̃2
p ] = ∂−1

P [z2
p ] we can define

b2(si1k σ
j1
k , s

i2
k σ

j2
k ) =





0 if j1 + j2 < |Go
P|

(1 + 2mpα)t′′p if j1 + j2 ≥ |Go
P|

We conclude by (8.0.0.4) that 2mpD̄
0
lg

belongs to ZG.

Let Z̄2 in [∆G,F ] be given by

Z̄2
lg = 2mp(0, D

1s−1
1 , . . . , Dn

lgs
−1
n ).

It follows that

Trace∆G(f̄P ◦ Z̃2
p) =

Trace∆G(f̄P ◦ Z̄2)

2mp

,

hence we will need that

Trace∆G(f̄P ◦ Z̄2) ≡ 0 (mod 2mp|GP|). (8.1.3.6)

The candidate f̄P : F → ∆G must then satisfy equation (8.0.0.5) and con-

gruences (8.1.3.4),(8.1.3.5) and (8.1.3.6). The complexity of the linear algebra

system needed to solve this four equations increases with p.

8.2 The homomorphism f : C → L.

We present here a method to compute a ”global” f : C → L, satisfying 1.0.1.9.

In order to achieve this we begin by recalling some facts and notation intro-

duced in previous chapters.

From the construction of the envelope of µ in chapter 3, we consider the middle

exact row from diagram 3.0.4.4

ZG F C.
π

Following the notation of the previous section {ei : 0 ≤ i ≤ n} will denote

the standard ZG-basis of the free ZG-module F . Since ker(π) is the ZG-
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submodule generated by the element

(2m, s−1
1 − a(s−1

1 ), . . . , s−1
n − a(s−1

n )),

any f̄ : F → L satisfying ker(π) ⊂ ker(f̄) induces a homomorphism f : C →
L.

We now consider the fact that ZS ∼=
⊕

P∈S∗ ind
G
GP

Z and denote by φ̄P the

projection form ZS onto indGGP
Z. Let IP := indGGP

⊗∆G and

φ̂P = φ̄P ⊗ id∆G : ZS ⊗∆G→ IP.

For each P in S∗ we fix XP to be a left transversal of GP in G, and for x in XP

we denote by x̄ = x⊗GP
1, then X̄P = {x̄ : x ∈ XP} forms a Z-basis of indGGP

Z.

There is a ZG-isomorphism defined in 7.3.3.1

φP
2 : IP → Hom(indGGP

Z,∆G),

where φP
2 (x̄⊗ lg) = Φx̄⊗lg : indGGP

Z→ ∆G is defined by

Φx̄⊗lg(
∑

z∈XP

az z̄) = axlg.

The isomorphism φP
2 induces a ZG-isomorphism

ψP
2 : Hom(M, IP)→ Hom(indGGP

Z, Hom(M,∆G)),

where M is a ZG-module. The definition of ψP
2 is given in 7.3.3.4. We recall

that if f : M → IP

(ψP
2 f)(x̄)(m) = φP

2 (f(m))(x̄)

for all m in M and x̄ in X̄P.
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We finally consider the Shapiro isomorphism computed in 2.2.5.1

Sh0
P = Sh0

Hom(M,∆G) : [M,∆G]GP
→ [indGGP

Z, Hom(M,∆G)]G.

With this setup, it follows clearly that the following diagram commutes

[F,∆G]GP
[indGGP

Z, Hom(F,∆G)]G [F, IP]G [F,ZS ⊗∆G]G [F,L]G

[C,∆G]GP
[indGGP

Z, Hom(C,∆G)]G C, IP]G [C,ZS ⊗∆G]G [C,L]G

Sh0
P (ψP

2 )∗ (φ̂P)∗

Sh0
P (ψP

2 )∗ (φ̂P)∗
π∗ π∗ π∗ π∗ π∗

where the homomorphisms [F,L]→ [F,ZS⊗∆G] and [C,L]→ [C,ZS⊗∆G]

are induced by the natural inclusion L→ ZS ⊗∆G.

Let us assume that f̄ : F → L is a ZG-homomorphism described by

f̄(ei) =
∑

g∈G×

∑

P∈S∗

∑

x∈XP

bi,gP,x(xP)⊗ lg,

where
∑

P∈S∗
∑

x∈XP
bi,gP,x = 0 for all g in G×. We can consider (φ̂P)∗f̄ to be

defined by

(φ̂P)∗(f̄)(ei) =
∑

g∈G×

∑

x∈XP

bi,gP,xx̄⊗ lg,

we can evaluate (φ̂P)∗f̄ at (ψP
2 )∗ to obtain the expression

(ψP
2 )∗(φ̂P)∗(f̄)(z̄)(ei) = φP

2 (f̄(ei))(z̄)

= Φ∑
g∈G×

∑
x∈XP

bi,gP,x
(z̄)

=
∑

g∈G×
bi,gP,xlg.

If we consider the maps f̄P : F → ∆G, defined in subsections 8.1.1, 8.1.2

and 8.1.3, where we are assuming P is archimedean, unramified and ramified
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respectively, and

f̄P(ei) =
∑

g∈G×
aiglg,

then f̄ : F → L must satisfy that, ker(π∗) ⊂ ker(f̄) and that for each P in S∗

Sh0
Pf̄P = (ψP

2 )∗(φ̂P)∗(f̄).

This last equation can be written as

(Sh0
Pf̄P)(x̄)(ei) = (ψP

2 )∗(φ̂P)∗(f̄)(x̄)(ei)∑

g∈G×
aiglg =

∑

g∈G×
bi,gP,xlg,

for each P in S∗, x in XP and 0 ≤ i ≤ n.

The last set of equations gives a method to compute a ”global” f̄ : F → L

from the local maps f̄P : F → ∆G.
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Appendix A

Appendix

The material presented in this appendix is a joint work by D. Riveros and

A.Weiss.

It presents a new approach to the ZG-structure of the S-units and set a pro-

gram to compute models of ZG-modules M stably isomorphic to E.
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APPENDIX

GALOIS STRUCTURE OF S-UNITS

D. Riveros and A. Weiss

Let K/k be a finite Galois extension of number fields with Galois group G and let S be
a finite G-stable set of primes of K containing all archimedean primes. Assume that S is
large in the sense that it contains all ramified primes of K/k and that the S-class group of
K is trivial. Let E denote the G-module of S-units of K and µµµ the roots of unity in K.
The purpose of this paper is to specify the stable isomorphism class of the G-module E in
a much more explicit way than in Theorem B of [GW2].

More precisely, and continuing in the notation of [GW2], we recall that [T1], [T2] defines
a canonical 2-extension class of G-modules, represented by Tate sequences

0→ E → A→ B → ∆S → 0,

with A a finitely generated cohomologically trivial ZG-module, B a finitely generated pro-
jective ZG-module and ∆S the kernel of the G-map ZS → Z which sends every element of
S to 1. From this [C1] obtains the Chinburg Ω(3)-class

Ωm := [A]− [B]

in the locally free class group Cl(ZG) ⊆ K0(ZG), which is an invariant of K/k that is
independent of S, and conjectures that Ωm equals the root number class in Cl(ZG).

The method of [GW2] analyzes the G-module E in terms of a fixed envelope of µµµ. This
is an exact sequence

(0.1) 0→ µµµ→ ωωω → ωωω → 0,

with ωωω cohomologically trivial and ωωω the ZG-lattice obtained from ωωω by factoring by its
Z-torsion. By Theorem B, the G-module E is determined, up to stable isomorphism, by
knowledge of the G-set S, the G-module µµµ, the Chinburg class Ωm(K/k) ∈ Cl(Z[G]), and
an arithmetically defined character

ε ∈ H2
(
G,Hom(∆S,µµµ)

)∗
,
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where ∗ means Hom( ,Q/Z).
Let L1 := ∆G⊗∆S and L2 := ∆G⊗L1 with ⊗ = ⊗Z and diagonal action by G. Choose

the envelope ωωω to be related to the Chinburg class by the condition

(0.2) [ωωω]− w[ZG] = Ωm(K/k) in Cl(ZG),

with |G|w equal to the Q-dimension of Q ⊗ ωωω. We will construct a canonical isomorphism
H2
(
G,Hom(∆S,µµµ)

)∗ → H1
(
G,Hom(ωωω, L2)

)
so that our main result is the

Theorem. Let M = M(ε) denote the G-module in a Z-split 1-extension

0→ L2 →M → ωωω → 0

with extension class equal to the image ε(1) of −ε in H1
(
G,Hom(ωωω, L2)

)
. Then E ⊕ (ZG)n

is stably isomorphic to M(ε), with n := (|G| − 2)(|S| − 1) + w when G 6= 1.

This improves Theorem B by explaining how its data determines M, a model for the
stable isomorphism class of E. The remaining problem becomes not only to understand the
ingredients ∆S,ωωω,Ωm, ε, n of the Theorem, but to do so in a way that improves M into a
better approximation of E. As a first example of this, we show how to get a smaller n, and
an M ′, in Corollary 4.1. There is also a continuing discussion on the relation of the Theorem
with [GW2], including a Proposition 2.2, and especially on the role of the distinguished
character ε, in Remark 4.3 and Lemma 4.4.

Our proof of the Theorem, based on [GW2], is presented in three sections: the first
recalling relevant results, the second reformulating the Theorem in their terms, and the
third containing a proof. The last section discusses some basic aspects of the many new
problems that arise.

1 Review of [GW2]

Applying ⊗ ∆S to the (Z-split) augmentation sequence 0 → ∆G → ZG → Z → 0 gives
the (Z-split) G-module sequence

(1.1) 0→ L1 → ZG⊗∆S → ∆S → 0,

with ZG ⊗∆S a free ZG-module, and L1 := ∆G ⊗∆S. Applying Hom( ,µµµ) to this gives
the exact G-module sequence

0→ Hom(∆S,µµµ)→ Hom(ZG⊗∆S,µµµ)→ Hom(L1,µµµ)→ 0,
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inducing the connecting isomorphism in Tate cohomology

(1.2) ∂1 : H1
(
G,Hom(L1,µµµ)

)
→ H2

(
G,Hom(∆S,µµµ)

)

and defining ε1 := ε ◦ ∂1 ∈ H1
(
G,Hom(L1,µµµ))∗.

Similarly, applying Hom(L1, ) to our fixed envelope (0.1) of µµµ and then G-cohomology
gives the

(1.3) ∂′0 : Ĥ 0
(
G,Hom(L1,ωωω)

)
→ H1

(
G,Hom(L1,µµµ)

)
,

and defines ε0 := ε1 ◦ ∂′0 ∈ Ĥ 0
(
G,Hom(L1,ωωω)

)∗
.

We now use the isomorphism

(1.4) Ĥ 0
(
G,Hom(ωωω, L1)

)
→ H1

(
G,Hom(L1,ωωω)

)∗
,

from (1.2) of loc.cit, that sends [f ] to [f ]∗ with [f ]∗ represented by the element
g 7→ (1/|G|) trace (f ◦ g) + Z of HomG(L1,ωωω)∗. It follows that

(1.5) ε0 = [f ]∗ for some G-homomorphism f : ωωω → L1 .

Extension classes in Tate cohomology are as in §11 of [GW1] (cf. Remark after 11.1): a
Z-split 1-extension (M) : 0 → X → M → Y → 0 of G-modules remains exact on applying
Hom(Y, ), and the connecting homomorphism

(1.6) ∂(M) : Ĥ 0
(
G,Hom(Y, Y )

)
→ H1

(
G,Hom(Y,X)

)

on its G-cohomology allows the definition ξ(M) := ∂(M)(idY ) ∈ H1
(
G,Hom(Y,X)

)
of the ex-

tension class of (M). Note that (M) 7→ ξ(M) induces a bijection between the set of equivalence
classes of Z-split 1-extensions (M) and H1

(
G,Hom(Y,X)

)
.

The notational deviation L1, ε1 from the L, ε of [GW2] in (1.1) is intended to separate
the role of ε1 which is at the centre of the envelope focus of loc.cit. (so every ε after the
first two pages there is now ε1), from that of the more fundamental ε. The basic idea, only
partially realized by Theorem B, is to use the homotopy class [f ] to ‘reconstruct’ E : the
formation in Proposition 5.1 of the ‘homotopy’ kernel M ′ of f0 doesn’t provide a description
of M ′. This defect is here addressed by using extension classes.

We will use, near (3.4), the notation [L1, N ] = Ĥ 0
(
G,Hom(L1, N)

)
from (5.1) of [GW1]

to evoke the homotopy language. Given an envelope (C) : 0 → M → C → L1 → 0, with
Z-torsion j : µµµ ↪→M, applying Hom(L1, ) and G-cohomology gives an isomorphism

(1.7) ∂(C) : [L1, L1]→ H1
(
G,Hom(L1,M)

)
,

of right [L1, L1]-modules. Then τ1∂
−1
(C)j∗ is in H1

(
G,Hom(L1,µµµ)

)∗
and we say, following (1.6)

of [GW2], that (C) is linked to its AutG(µµµ)-orbit. This orbit is here insensitive to the choice
of j, because AutG(µµµ) = Aut(µµµ) since µµµ cyclic implies that Aut(µµµ) is abelian.
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2 Reformulation

First, applying ⊗ L1 to the augmentation sequence, as in (1.1), gives a Z-split G-module
sequence

(2.1) 0→ L2 → ZG⊗ L1

p1→ L1 → 0,

with ZG ⊗ L1 ZG-free and L2 := ∆G ⊗ L1 . Thus applying Hom(ωωω, ), as in §1, and then
G-cohomology gives the connecting isomorphism

(2.2) δ0 : Ĥ 0
(
G,Hom(ωωω, L1)→ H1(G,Hom(ωωω, L2)

)
.

Our reformulation starts from the trivial observation that the G-map ωωω → ωωω of (1.1)
induces an equality of the functors Hom(ωωω, )→ Hom(ωωω, ) on ZG-lattices X. Then

(2.3) Ĥ 0
(
G,Hom(ωωω, L1)

)
= Ĥ 0

(
G,Hom(ωωω, L1)

)

allows us to rewrite (1.4) as an isomorphism

(2.4) Ĥ 0
(
G,Hom(ωωω, L1)

)
→ Ĥ 0

(
G,Hom(L1,ωωω)

)∗

that sends [h] to [h]∗ with [h]∗ represented by the element g 7→ (1/|G|) trace (h ◦ g) + Z, of
HomG(L1,ωωω)∗. It follows that

(2.5) ε0 = [h]∗ for some h ∈ Hom(ωωω, L1)G.

We now define the isomorphism before the Theorem of the introduction to be the com-
position of the isomorphisms

(2.6)
H2
(
G,Hom(∆S,µµµ)

)∗ → H1
(
G,Hom(L1,µµµ)

)∗ → Ĥ 0
(
G,Hom(L1,ωωω)

)∗

← Ĥ 0
(
G,Hom(ωωω, L1)

)
→ H1

(
G,Hom(ωωω, L2)

)

of (1.2)∗, (1.3)∗, (2.4), (2.2), and observe that it takes −ε to −δ0([h]).
It follows that ε(1) = −δ0([h]) in the statement of the Theorem of the introduction, which

is therefore equivalent to the following reformulation.

Theorem 2.1. Let [h] ∈ Ĥ 0
(
G,Hom(ωωω, L1)

)
be the image of ε under the composite of the

first three maps in (2.6), and let δ0 be the last map of that composite, as in (2.2). Let M be
the G-module in a Z-split 1-extension

0→ L2 →M → ωωω → 0

with extension class equal to −δ0([h]) in H1
(
G,Hom(ωωω, L2)

)
. Then E ⊕ (ZG)n is stably

isomorphic to M, with n := (|G| − 2)(|S| − 1) + w when G 6= 1.
In particular, the class ε and the extension class of M(ε) determine each other uniquely.
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The envelope focus of [GW2] overemphasizes ε1 for our purposes. We eventually need
to restate Theorem A in terms of ε : see Remark 4.3. The connection between ε and ε1

is a consequence of the relationship between Tate sequences and Tate envelopes, or, more
precisely, between the Tate canonical class α3 ∈ H2

(
G,Hom(∆S,E)

)
and Tate envelopes.

Thus, following the last four paragraphs of Tate’s proof of Theorem 5.1 of Chapter 2 in [T2],
we select a special Tate sequence representing α3 and define the Tate envelope to be the left
half of this special Tate sequence.

Proposition 2.2. A Tate envelope 0→ E → A→ L1 → 0 has

Ωm = A− (|S| − 1)[ZG] in Cl(ZG).

Proof. We specialize Tate’s initial exact sequence by selecting the one

(2.7) 0→ L2 → B′ → B → ∆S → 0,

obtained by splicing (1.1) and (2.1); Tate’s first paragraph ends with isomorphisms

Ĥ r
(
G,Hom(L2, E)

)
' Ĥ r+2

(
G,Hom(∆S,E)

)
,

for all r ∈ Z, in our notation. The second paragraph chooses α ∈ HomG(L2 , E) corre-
sponding to α3 ∈ H2

(
G,Hom(∆S,E)

)
and deduces, from his (5.2), that α induces isomor-

phisms Ĥ r(G,L2) → Ĥ r(G,E), for all r; the third paragraph extends α to a surjective
α : L2 ⊕ F → E, with F free, and replaces L2 → B′ in (2.7) by L2 ⊕ F → B′ ⊕ F to get a
new (2.7) and the exact sequence 0 → ker(α) → L2 ⊕ F → E → 0. The fourth paragraph
deduces that ker(α), and thus A := (B′ ⊕ F )/ ker(α), is cohomologically trivial. Combining
with the new (2.7) gives the Tate sequence 0 → E → A → B → ∆S → 0, the left half
0→ E → A→ L1 → 0 of which is our Tate envelope.

Now B = ZG⊗∆S ' (ZG)|S|−1 implies that Ωm = [A]− [B] = [A]− (|S| − 1)[ZG]. �

3 Proof of the reformulated Theorem

The proof is now straightforward. We assume that G 6= 1 (since the G = 1 case, while true
with the obvious interpretation, is trivial), and start by fixing an envelope

0→ µµµ→ ωωω → ωωω → 0,

satisfying (0.1) and (0.2). The existence of such an ωωω follows from (2.1) in [GW1] and (39.12),
(32.13) in [CR]: start with any envelope 0→ µµµ→ C → C → 0, define c by |G|c = dimQ⊗C,
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and observe that Ωm−([C]−c[ZG]) = [P ]− [ZG] in Cl(ZG), for some projective ZG-module
P with dimQ ⊗ P = |G|, hence C ′ := C ⊕ P gives an envelope 0 → µµµ → C ′ → (C ′) → 0
with Ωm = [C ′]− c′[ZG], as required.

Letting [h], with h ∈ Hom(ωωω, L1)G, be as in the assertion of Theorem 2.1, define
η : (ZG⊗ L1)⊕ωωω → L1 by η

(
(x, y)

)
= p1(x) + h(y), and form the big diagram

(3.1)

0 0
↓ ↓

0 −→ L2 ↪−→ ker (η)
p0−→ ωωω −→ 0

↓|
∩

↓|
∩

‖
0 → ZG⊗ L1 ↪→ (ZG⊗ L1)⊕ωωω → ωωω → 0

↓|p1 ↓| η
L1 L1

↓ ↓
0 0

as follows: start from the commutative square containing p1 and η, use it to form the bottom
two rows with the additional map sending (x, y) to y, and then get the top row by taking
kernels, and using (2.1) as the first column. We put M := ker (η) and focus first on the
column and then on the row containing M.

Now let 0→ E → A→ L1 → 0 be a fixed Tate envelope, and form the envelope

(3.2) 0→ (ZG)n ⊕ E → (ZG)n ⊕ A→ L1 → 0,

from it by adding (ZG)n = (ZG)n. This is an envelope with Z-torsion µµµ and lattice L1 , as
is the middle column

(3.3) 0→M → (ZG⊗ L1)⊕ωωω → L1 → 0,

of (3.1). We now apply Theorem 4.7 of [GW2] to show that the left ends of these envelopes
are stably isomorphic. This requires two conditions to be verified.

The quicker condition to check is that [(ZG⊗L1)⊕ωωω] is equal to [(ZG)n⊕A] in Cl(ZG).
Now ZG⊗ L1 ' (ZG)(|G|−1)(|S|−1), because it’s ZG-free; and (0.2) applies to [ωωω], hence
[(ZG ⊗ L1) ⊕ ωωω] = (|G| − 1)(|S| − 1)[ZG] + w[ZG] + Ωm . Similarly, the second expression
equals n[ZG] + (|S| − 1)[ZG] + Ωm , by Proposition 2.2. These agree by the choice of n.

The other condition is that both of these envelopes are linked to the same AutG(µµµ)-orbit
on H1

(
G,Hom (L1,µµµ)

)∗
, which we will show is ε1 AutG(µµµ).

First, by definition, the Tate envelope is linked to τ1∂
−1
(A)j∗; and with j : µµµ ↪→ E the

inclusion, which is tEj∗ by definition of the trace character tE in §7, i.e the ‘restriction’ ε1
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of tE to H1
(
G,Hom (L1,µµµ)

)
. To get the same conclusion for the envelope (3.2), consider

the commutative diagram defined by inclusion of the Tate envelope into (3.2), and apply
Hom (L1, ) and G-cohomology to get the commutative square, with all maps isomorphisms,
inside the commutative diagram

H1
(
G,Hom (L1 , E)

) ∂(A)←− Ĥ 0
(
G,Hom (L1, L1)

)
j∗
↗

τ1

↘
H1
(
G,Hom (L1,µµµ)

)
↓| ' ‖ Q/Z

↘
j∗

↗
τ1

H1
(
G,Hom (L1, (ZG)n ⊕ E)

)
←

∂((ZG)n⊕A)

Ĥ 0
(
G,Hom (L1, L1)

)

with left triangle from composing the inclusions µµµ ↪→ E and E ↪→ (ZG)n ⊕ E. The top
composite from H1

(
G,Hom (L1,µµµ)

)
to Q/Z is equal to ε1 , by the first sentence of this

paragraph, hence so is the bottom one.
Next, to see that the envelope (3.3) is linked to ε1 , consider the commutative diagram

0→ µµµ → ωωω → ωωω → 0

↓| j′ ↓| k ↓| h
0→ M ↪→ C

η→ L1 → 0

with top row the envelope (ωωω) of (0.1), (0.2), bottom row the vertical envelope (C) of (3.1)
with C = (ZG⊗L1)⊕ωωω, and k(y) = (0, y) for all y ∈ ωωω. Here, forming the right square first
defines j′. Applying Hom (L1 , ) and G-cohomology gives the commutative square

(3.4)

[L1,ωωω]
∂(ωωω)−→ H1

(
G,Hom (L1,µµµ)

)

↓| [idL1
,h] ↓| (j′)∗

[L1, L1] −→
∂(C)

H1
(
G,Hom (L1,M)

)

with horizontal isomorphisms and (C) linked to τ1∂
−1
(C)(j

′)∗ ∈ H1
(
Hom (L1,µµµ)

)∗
, by the

definition (1.7), with τ1 : [L1, L1] → Q/Z. Our hypothesis on [h] implies the [h]∗ = ε1∂
′
0 by

(2.5), (1.5) and (1.3), with ∂′0 = ∂(ωωω) , i.e. [h]∗ = ε1∂(ωωω) .

Now, quoting [GW2], ε1 ∈ H1
(
G,Hom (L1,µµµ)

)∗
implies that ε1 = τ1θ for some right

[L1, L1]-homomorphism θ : H1
(
Hom (L1,µµµ)

)
→ [L1, L1], by (1.3). Then θ∂(ωωω) is a right

(L1, L1]-homomorphism: [L1,ωωω] → [L1, L1] so that [h] ∈ [ωωω, L1] having [h]∗ = ε1∂(ωωω) =

τ1θ∂(ωωω) , by the previous paragraph, implies that θ∂(ωωω) = [idL1 , h], by (1.4).
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Combining with (3.4) above gives τ1∂
−1
(C)(j

′)∗ = τ1[idL1 , h]∂−1
(ωωω) = τ1θ = ε1 , as required.

Finally, we must show that the top row

(M) : 0→ L2 ↪→M → ωωω → 0

of the big diagram (3.1) has extension class −δ0([h]), in the notation of (1.6).
To get a 1-cocycle representing −δ0([h]), one applies Hom (ωωω, ) to (2.1), getting the

exact sequence 0 → Hom (ωωω, L2) → Hom (ωωω,ZG ⊗ L1) → Hom (ωωω, L1) → 0, chooses a pre-
image of h in Hom (ωωω,ZG ⊗ L1), say the map 1 ⊗ h taking every y ∈ ωωω to 1 ⊗ h(y), and
then forms the 1-cocycle g 7→ (1⊗ h)− g(1⊗ h) (with g ∈ G) taking values in Hom (ωωω, L2),
namely [(1⊗h)−g· (1⊗h)](y) = (1⊗h)(y)−g· (1⊗h)(g−1y) = 1⊗h(y)−g·

(
1⊗h(g−1y)

)
=

1⊗ h(y)− g ⊗ g ·h(g−1y) = 1⊗ h(y)− g ⊗ h(y) = (1− g)⊗ h(y) ∈ ∆G⊗ L1 = L2 .
On the other hand, the extension class ξ(M) of (M) is, by definition, obtained from (M) by

applying Hom (ωωω, ) to (M), getting 0 → Hom (ωωω, L2) → Hom (ωωω,M) → Hom (ωωω,ωωω) → 0,
lifting idωωω to some s ∈ Hom (ωωω,M), and forming the class of the 1-cocycle g 7→ gs− s with
values in Hom (ωωω, L2). Setting s(y) =

(
−1⊗h(y), y

)
works, since η

(
s(y)

)
= p1

(
−1⊗h(y)

)
+

h(y) = 0 and p0

(
s(y)

)
= y. Now (gs− s)(y) = g

(
− 1⊗ h(g−1y), g−1y

)
−
(
− 1⊗ h(y), y

)
=(

−g⊗h(y), y
)
+
(
1⊗h(y),−y

)
=
(
(1−g)⊗h(y), 0

)
, which is the image of (1−g)⊗h(y) ∈ L2 .

This agrees with the 1-cocycle of the previous paragraph. �

4 Discussion

We begin with a consequence of the Theorem, for which we prepare with a naturality property
of the Gruenberg resolution. We start with a subset, of d elements gi of G\{1}, which
generates G, form the free group F on xi , 1 ≤ i ≤ d, and define the relation module Rd by
the exact sequence

(4.1) 0→ Rd → ZG⊗ZF ∆F → ∆G→ 0

(cf. [HS] p. 199 and 218). Here the middle term is ' (ZG)d since ∆F is ZF -free on the
(xi − 1)’s, and the right map sends the ZG-basis 1⊗F (xi − 1) to gi − 1.

In the special case d = |G| − 1, write R,F for Rd, F respectively. For general d, the
inclusion F → F induces a map from the relation sequence for Rd to R, which on middle
terms is an inclusion of the respective ZG-bases so has cokernel ' (ZG)|G|−1−d, yielding the
exact sequence 0→ Rd → R→ (ZG)|G|−1−d → 0 on the left terms.

Similarly, the relation module sequence for R maps to the exact sequence obtained by
applying ⊗ ∆G to the augmentation sequence, with middle map matching ZG-bases by
1⊗F (xi − 1) 7→ 1⊗ (gi − 1), inducing an isomorphism R → ∆G⊗∆G. This implies that

(4.2) 0→ Rd
β→ ∆G⊗∆G→ (ZG)m → 0
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is exact with an explicit map β and m = |G| − 1− d, when G 6= 1.
Let d(G) be the minimal number of generators of G, and set R := Rd(G) , to state the

Corollary 4.1. There is an explicit G-homomorphism β′ : R⊗∆S → L2 so that the induced
isomorphism β′∗ : H1

(
G,Hom(ωωω,R⊗∆S)

)
→ H1

(
G,Hom (ωωω, L2)

)
has the following property:

let M ′ be the G-module in a Z-split 1-extension

0→ R⊗∆S →M ′ → ωωω → 0

with extension class mapping to ε(1) under β′∗. Then E ⊕ (ZG)n
′

is stably isomorphic to M ′

with n′ =
(
d(G)− 1

)
(|S| − 1) + w when G 6= 1.

Proof. By L2 = ∆G ⊗ L1 = ∆G ⊗ (∆G ⊗ ∆S) ' (∆G ⊗ ∆G) ⊗ ∆S, applying ⊗ ∆S to
(4.2) gives the exact sequence

(4.3) 0→ R⊗∆S
β′→ L2 → (ZG)n−n

′ → 0,

defining β′. This follows from (ZG)m ⊗∆S ' (ZG)m(|S|−1) with m(|S| − 1) = n− n′.
Now the extension class of the 1-extension (M ′) has the property that its pushout along

β′ has extension class ε(1) so there is a commutative diagram

0→ R⊗∆S → M ′ → ωωω → 0

↓| β′ ↓| ‖
0→ L2 → M → ωωω → 0.

Since β′ has cokernel (ZG)n−n
′

so does the middle arrow, hence there’s an exact sequence
0→M ′ →M → (ZG)n−n

′ → 0. Thus, by the Theorem, E ⊕ (ZG)n ≈M ≈M ′ ⊕ (ZG)n−n
′
,

which implies that E ⊕ (ZG)n
′ ≈M ′. �

Remark 4.2. R has no non-zero projective summand if G is solvable or, more generally,
when G has generation gap = 0 (cf. (24) in [G]), in which case we cannot expect bigger
ZG-free summands from the above approach. Note that Rd is determined up to stable
isomorphism by d, as follows from (4.1) by Schanuel’s lemma. Corollary 4.1 is a first step
toward the important goal of excising as many ZG-free summands of M as explicitly as
possible. There are many aspects of this problem but still no systematic approach.

There has been considerable work on Chinburg’s conjecture as a special case of the
Equivariant Tamagawa Number Conjecture; a recent reference is [B] (cf. Corollary 2.8
and Remark 2.9). Since Chinburg’s conjecture predicts that Ωm = 0 whenever G has no
irreducible symplectic representation (cf. §3 of [C2]), an envelope ωωω of µµµ with [ωωω]−w[ZG] = 0
and w = d(G) as in Chapter 3, starting at page 31, is a useful ingredient for examples.
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On the other hand, the condition (0.2) on ωωω could be replaced in the Theorem by

[ωωω]− w[ZG] ≡ Ωm mod B[ε1],

as the appeal to Theorem 4.7 of [GW2] in its proof shows. This shows that the full strength
of Chinburg’s conjecture may not be needed.

Remark 4.3. The emphasis on ε1 in [GW2] comes from the envelope focus. In particular,
Theorem A for ε1 is proved by this method, but its statement depends on the local and
global invariant maps on H2, where ε becomes more central. Theorem A can be translated
from ε1 to ε by using the formalism of [T1], in the direction of the last paragraph of the
Remark on p. 971 of [GW2].

More precisely, let Hom
(
(ZS), (J)

)
be the G-module consisting of all triples (f1, f2, f3)

of Z-homomorphisms so that the diagram

0 → ∆S → ZS → Z → 0
f1↓| f2↓| f3↓|

0 → E → J → CK → 0

commutes. This leads to an exact sequence

0→H2
(
G,Hom((ZS), (J))

)
→H2

(
G,Hom(∆S,E)

)
⊕H2

(
G,Hom(ZS, J)

)
→H2

(
G,Hom(∆S, J)

)
→0

allowing us to study the trace character TE : H2
(
G,Hom(∆S,E)

)
→ Q/Z defined by dimen-

sion shifting tE using the exact sequence (1.1). This implies that ε = TE ◦ j∗, with j : µµµ ↪→ E
the inclusion, but now the point is that TE can be described in terms of the H2-sequence
above without further dimension shifting.

More precisely, given x ∈ H2
(
G,Hom(∆S,E)

)
, there exists y ∈ H2

(
G,Hom(ZS, J)

)
so

(x, y) maps to 0 in H2
(
G,Hom(∆S,E)

)
, hence there is a unique T ∈ H2

(
G,Hom

(
(ZS), (J)

))

mapping to (x, y). Taking a 2-cocycle of triples representing T and projecting on the third
component gives a 2-cocycle defining z ∈ H2

(
G,Hom(Z, CK)

)
. Then by Chapter 4, starting

at page 41,

(4.4) TE(x) = inv(z)−
∑

p∈S∗
invp(yp),

where S∗ is a transversal to the G-orbits on S, yp = kp(res y)ip with kp : J → K×p the
projection and ip : Z→ ZS with ip(1) = p.

This description has the weakness that the existence of y apparently depends on the
vanishing of H3(G, J). This situation is improved by the
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Lemma 4.4. The map H2
(
G,Hom(ZS, J)

)
→ H2

(
G,Hom(∆S, J)

)
has a special splitting.

Proof. The S-idele group J is a finite product, over p ∈ S∗ , of components Vp :=
∏

qK
×
q ,

with q running through the G-orbit of p, up to a large cohomologically trivial component of
unit ideles. So it suffices to show that H2

(
G,Hom(ZS, Vp)

)
→ H2

(
G,Hom(∆S, Vp)

)
is split

for each p.
If H is a subgroup of G, and B any H-module, define the coinduced G-module coind (B),

from H to G, to be HomZH(ZG,B) with g ∈ G acting on elements ϕ by (gϕ)(z) = ϕ(zg)
for all z ∈ ZG (cf VII, §5 of [S]). If D is any ZG-lattice, viewing Hom

(
D, coind (B)

)
as

G-module and Hom(resD,B) as H-module, both by diagonal action, then there are natural
Shapiro isomorphisms

Hn
(
G,Hom(D, coindB)

)
→ Hn

(
H,Hom(resD,B)

)
.

Take H = Gp , B = K×p and identify coindK×p with Vp , via ϕ 7→ ∏
t

(
t · ϕ(t−1

)
, with t

a choice of representatives of G/Gp . This choice doesn’t matter, since (th) · ϕ
(
(th)−1

)
=

t·
(
h· ϕ(h−1t−1)

)
= t· ϕ(t−1) for h ∈ Gp . The map is bijective, since the components tK×p of

Vp are disjoint, and is a G-homomorphism because g
(∏

t(t·ϕ(t−1)
)

=
∏

t

(
(gt)·ϕ(gt)−1g)

)
=∏

t

(
(gt)· (gϕ)(gt)−1)

)
=
∏

t

(
t· (gϕ)(t−1)

)
.

This identifies our map of the first paragraph with the top row of the commutative square

(4.5)

H2
(
G,Hom(ZS, coindK×p )

) a∗→ H2
(
G,Hom(∆S, coindK×p )

)

sh↓| sh↓|

H2
(
Gp,Hom(resZS,K×p )

) a∗→ H2
(
Gp ,Hom(res ∆S,K×p )

)
,

with vertical isomorphisms, and horizontal maps from 0→ ∆S
a
↪→ ZS a′→ Z→ 0. This exact

sequence is Gp-split, by the Gp-map λp : d 7→ d − a′(d)p having λp ◦ a = id∆S . Thus λp
induces H2

(
Hom(res ∆S,K×p )

)
→ H2

(
Gp ,Hom(resZS,K×p )

)
splitting the bottom a∗ of the

commutative square, which then completes the argument. �
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