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Abstract

Let us consider K/k to be a finite Galois extension of number fields with
G = Gal(K/k) and assume that S is finite G-stable set of primes of K which
is "large”, this means that it contains all archimedean primes, all the ramified
primes of K/k and such that the S-class group of K is trivial. K. W. Gruen-
berg and A. Weiss in [10] proved that the ZG-module of the S-units of K is
completely determined up to stable isomorphism by its torsion submodule g,
the set S, a special character € and the Chinburg class ,,(K/k).

The main point of this thesis is to investigate the ZG-module structure of £
when k£ = QQ and K is a cyclotomic extension of Q by studying in detail the

character e.
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Chapter 1
Introduction.

Let us consider K/k to be a finite Galois extension of number fields with
G = Gal(K/k) and assume that S is a finite G-stable set of primes of K
which is ”large”: this means that it contains all Archimedean primes, all the

ramified primes of K/k and such that the S-class group of K is trivial.

K.W. Gruenberg and A. Weiss addressed in their joint paper [10] the question
of determining the ZG-module structure of the group of the S-units of K.

The belief that one can find explicit models of ZG-modules, which are stably
isomorphic to the S-units, by emulating the ideas presented in [9] and [10], is

the motivation for the work presented in this thesis.

The structure of the group of units Oy of the ring of integers O, has been
of great interest for number theory. In the first half of the 19" century E.
Kummer and independently Dirichlet studied the structure of Oj. The work
of E. Kummer is based on understanding the arithmetic of cyclotomic fields
K = Q(p) generated over the field of rational numbers by the set p of all
roots of the polynomial X?™ — 1. Dirichlet’s work on L-functions and their
values at 1 led to the proof that the multiplicative subgroup A of K* generated
by {1 — p: p € p*} has a subgroup of finite index in O, where p* = p\ {1}.

The ZG-module E of the S-units of K consists of all nonzero elements u of



K* such that
vp(u) =0 forall P ¢ S.

J. Tate started the study of the module E, which contains Oj; as a submod-
ule. He realized that F is a ZG-module to which the cohomological methods
of class field theory can be applied effectively when S is large.

In the second half of the 20" century Tate obtained two major results re-
garding the cohomology and arithmetic of F. It should be emphasized that
throughout the thesis cohomology will always mean Tate cohomology unless

it is stated otherwise.

By considering the augmentation map %y : ZS — 7Z which sends each P in S
to 1 and denoting by AS the kernel of iy, one obtains the following short exact

sequence of ZG-modules

i i
0—— AS =5 7S ——= 7 —— 0 (10.0.1)

In [14] published in 1966, Tate proved that the cohomology induced by (1.0.0.1)

is isomorphic to the cohomology induced by the short exact sequence

0 E J— 0k —0 (1.0.0.2)

after dimension shifting by 2, where J denotes the group of S-ideles and Ck
the group of idele classes.
He then deduced the existence of an exact sequence of finitely generated ZG-

modules

0 E A B—AS5—0 (1.0.0.3)

where A and B are cohomologically trivial. The proof of this result can be

found in [15]. An exact sequence of this type will be called a Tate sequence.



Chinburg in [4], published in 1983, used (1.0.0.3) to define the Chinburg class

Qn(K/k) =[A] — [B] in Ko(ZG) (1.0.0.4)

and proved that this is an invariant of K. The author conjectured in [5] that
V(K k) = Wi,

where Wiy, is the Cassou-Nogues Frohlich class of K/k .

For cyclotomic extensions of Q, Chinburg’s conjecture was proved in the joint
paper of 2003 by D. Burns and C. Greither [3], with Z replaced by Z' = Z[1/2].
In 2013 M. Flach completed the proof, in [7], of Chinburg’s conjecture for cy-
clotomic fields, hence, when K = Q(p) one can state that €,,(K/Q) = 0.

In [9] the Galois structure of E is studied through its envelopes, which means

short exact sequences of finitely generated ZG-modules of the form

0 E C L 0 (1.0.0.5)

where C' is cohomologically trivial and L is a ZG-lattice, meaning that L is

Z-free module.

In the later work [10], published in 1997, the authors proved

1.0.1 Theorem (Theorem B). The stable isomorphism class of E is deter-

mined by the ZG-module p, the G-set S, a special character e : H*(G, Hom(AS, p)) —
Q/Z and the Chinburg invariant Q,,(K/k).

Since the computation of the character € is a crucial factor in this work, we

will briefly describe € here.

Given ZG-modules M and N, Hom (M, N) (respectively M®@N) means Homy (M, N)
(resp M®zN), where G acts by the diagonal action and M* = Homgz (M, Q/Z).
We also define [M, N|g = Homa(M,N)/(f : f ~ 0), where f ~ 0 means that
there exists a ZG-projective module P and ZG-homomorphisms f': M — P



and f”: P — N, such that f is the following

f:MLPLN.

In case there is no confusion we will denote [M, N]g simply by [M, N].

If L is a ZG-lattice, H*(G, Hom(L, M)) = [L, M]. The proof of this fact can
be found on pg 270 of [9].

Let us consider a Tate sequence as in (1.0.0.3) and denote the kernel of the
map B — AS by L. Then the Tate sequence can be divided into two short

exact sequences

0 E A L 0 (1.0.1.1)

0 L B——AS—0, (1.0.1.2)

where the first exact sequence is a particular ”Tate” envelope of E. After
applying the functor Hom(—, p) to the Z-split exact sequence given in (1.0.1.2)

and applying cohomology, one obtains a connecting isomorphism
9" HY (G, Hom(L, u)) — H*(G, Hom(AS, ). (1.0.1.3)

If we denote by a : p — FE the natural inclusion of the roots of unity of K

into the S-units, the envelope of E given in (1.0.1.1) induces an envelope of p
u A

o=l
E A

By applying the exact functor Hom(L,—) to (1.0.1.4) and then applying co-

N
o

o

0 (1.0.1.4)

homology, one obtains the following commutative diagram



/

0
[L,A] ———— HY(G,Hom(L, w))

2 )

(L, L] L HYG,Hom(L, E))

g

Q/z (1.0.1.5)

where 7.[l] := Tracer(l)/|G| + Z for all [I] in [L, L] and the horizontal con-

necting homomorphisms are in fact isomorphisms.

We now restrict our attention to envelopes of E of the form

From this point on L = AG ® AS, we can replace (1.0.1.2) by the exact

sequence

i i
0—— L—ZG @ AS — AS — 0, (10.1.7)

obtained by applying the exact functor — ® AS to the augmentation sequence

i i
The character e can now be described as € = 7,0, ', (0") .

The original objective of this thesis is to use the Reconstruction Process, ap-
pearing in §5 of [10], to obtain an explicit description of a ZG-module M stably
isomorphic to the S-units E from the following data: the torsion submodule
w, the ZG-lattice L and the character €, for the case when K = Q(u) is a

cyclotomic extension over the field of rational numbers.

Considering the family of cyclotomic extensions over Q as our candidate to test



the viability of explicitly finding models stably isomorphic to E is motivated
by the arithmetic and cohomological knowledge that the literature provides
for this family of fields. The fact that Q(Q(p)/Q) = 0 is an extra incentive.

We expected that the methods applied to the cyclotomic fields case would
give us an insight of the ZG-module structure that could be generalized to

arbitrary number fields.

The steps to follow are: to construct a particular envelope of p

0 o 0,

with [C] — (|S| — 1)[ZG] = 0 in Ky(ZG) and a surjective homomorphism
f:C — L, satisfying

L fe=¢€0, 0" (1.0.1.9)

The importance of f : C — L being a surjective ZG-homomorphism, is that,

it induces the following commutative diagram with exact rows

M¢C7r
L=l
M—C

/ (1.0.1.10)

Q)
o

o

where f = fox and M = ker(f). The lower row of diagram (1.0.1.10) and
the exact sequence given in (1.0.1.6) are envelopes satisfying a particular case
of the Reconstruction Process, namely Theorem 4.7 of [10], from which we

conclude that, M is stably isomorphic to F.

The setup of this thesis is the following: Chapter 2 contains background the-
ory needed mainly in Chapters 6 and 7.

In chapter 3 we construct a reasonably "small” envelope 0 — pu — C' — C —
0 of w, for an arbitrary finite Galois extension K/k of number fields. The



envelope presented here satisfies
[C] — ¢[ZG] =0 in Ky(ZG),

with |Glc = dimg(Q ® C) = |G|d(G), where d(G) is the minimal number of

generators of G.

In chapter 4 we prove that for an arbitrary Galois extension of number fields
K /k, the character € : H*(G, Hom(AS, p)) — Q/Z can be expressed in terms
of global and local invariants maps from class field theory. This result brings
advantages in the computability of €, in contrast to the description of € given
in [10].

In chapter 5 we start the exposition by considering the general case when K /k
is a Galois extension of number fields and studying the long exact sequence in
cohomology

s HX(G, Hom(ZS, b)) - HX(G, Hom(AS, ) 25 H¥ G, p) — -

(1.0.1.11)

induced by the short exact sequence obtained by applying the functor Hom(—, p)
to the Z-split exact sequence (1.0.0.1). We show that € restricted to the image

of 7] can be expressed only in terms of the local invariants.

After this point, we restrict to the case K = Q(u) and show that that 2 anni-
hilates H3(G, p).

This last observation leads us to consider working in the category of Z'G-
modules, with Z' = Z[1/2], the advantage being that ¢ is then completely
determined by its restriction to the image of i}, so the global invariant is never

needed.

We conclude chapter 5 by proving that, in the category of Z'G-modules, one
can reduce the problem of computing e for K = Q(u) to computing it for
K = Q(f1), with f& the set of roots of ™ — 1 and 7 the greatest squarefree



divisor of m.
The importance of this observation is that K is tamely ramified for all non
archimedean primes different from 2 and that, in this setting, the local invari-

ant maps are less difficult to compute.

In chapter 6 we continue working with K. First we compute a set of generators
of the group H?*(G, Hom(ZS, p)), using the fact that ZS = Py . indng,
where S, is a transversal to the G-orbits in S. Since Shapiro’s lemma gives an

isomorphism

H*(G, Hom(ZS, p)) = P H*(Gy, ),
PeSx

we are reduced to computing a set of generators for each factor H*(Gy, ),
which is done by an application of the Hochschild-Serre spectral sequence.

This chapter concludes with the evaluation of € on each generator.

In Chapter 7 we continue to work in the category of Z'G-modules, here we
deal with the computation of a suitable f : C' — L satisfying (1.0.1.9). We

approach this by showing that there is a commutative diagram

H*(Gy, p) —— H*(G, Hom(AS, p))

gl gl

Q7

H%(Gy, Hom(AG,C)) —— [L,C]

even more, we compute explicitly the vertical isomorphisms. The diagram
above suggests that f can be computed ”locally”. Following this idea, we

construct a homomorphism 3, : [C, Llg — [C, AG]g, and a non-degenerate

P
pairing

Tad : [C, AG) e, X [AG, Clay — Q/Z,
such that

Tad(Bilf),2) = To(f), nz), (1.0.1.12)



for all [f] in [C, L] and all 2z in H*(Gg, Hom(AG, C)) 2 [AG, Cla

%

Chapter 8 is dedicated to study (;[f]. We list the conditions that a [fy] = 51[f]
in [C, AG|g,, must satisfy so that (1.0.1.12) holds.

Throughout this project we encountered many obstacles, some of which we
were able to face by modifying the original setup. As an example of this, we
can mention the obstruction that the prime number 2 had on the computa-
tion of the character e. In this case, shifting to the category of Z'G-modules

allowed us to obtain results without trivializing the project.

This was not the case when dealing with the surjective homomorphism f :
C — L. Even in the simplest cases we studied, assuming m to be an odd
prime number, where we actually compute ker(f), the answers obtained did

not bring any real understanding of FE.

The difficulty of computing ker(f), increases drastically with the complexity

of m and achieving a general method in this way seemed unrealistic.

We then approached the original question from a different point of view, which
led us to the proof of Theorem 1.0.2 presented in the Appendix. It must be
emphasized that, Theorem 1.0.2 has been proved, for arbitrary finite Galois

extensions K /k of number fields.

We now give a list of results that are necessary to state Theorem 1.0.2.
The isomorphism 0" : H'(G, Hom(L, n)) — H*(G, Hom(AS, )), defines an

isomorphism
(0" : H*(G, Hom(AS, pu))* — H(G, Hom(L, ))*. (1.0.1.13)
Similarly 9} : [L,C] — HY (G, Hom(L, u)), defines an isomorphism

(0))*: HY (G, Hom(L, n))* — [L,C]*. (1.0.1.14)



The fact that L is a ZG-lattice implies that the homomorphism

[C, L] = [L,CT", (1.0.1.15)

given by [f] = [f]*, where [f]*([g]) = Tracer(f © g)/|G| + Z for [g] in [L, C],
is an isomorphism. The above discussion implies the existence of h : C — L

satisfying
[A]" = —(,)7(9") e = —€d"0}.

The ZG-map 7 : C — C induces equal functors Hom(C, —) and Hom(C, —),
on the category of ZG-lattices, hence [C, L] = [C, L]. Letting h : C — L be

the unique homomorphism such that hw = h, we can say that
[h]* _ —(82)*(8”)*6’ — _6/61/62’ (10116)

under the last identification.
Let us consider the exact sequence given in (1.0.1.7), after applying the exact

functor AG ® —. We obtain the following exact sequence

0— Ly— N— L ——0,
where Ly, = AG® L and N = ZG ® AG ® AS. The fact that N is a
ZG-free module implies that the connecting homomorphism 0 : [C, L] —

HY(G,Hom(C, Ly,)) is an isomorphism.
Let 0 — p — C — C — 0 be an envelope of p satisfying

(€] — €|ZG] = O (K) in CUZGE),

where |G|c = dimg(Q ® C).
1.0.2 Theorem. Let M = M e) denote the ZG-module in a Z-split 1-extension

0 Ly— M —C—0, (1.0.2.1)

with extension class equal to the image of € = Ah] in H' (G, Hom(C, Ly))

(Ih] as in (1.0.1.16)). Then E & (ZG)™ is stably isomorphic to M(e), with
n:= (|G| = 2)(|S| — 1), when G is not trivial.

10



The proof of the theorem above, which forms part of a joint paper in progress
by D. Riveros and A. Weiss, is included here as an appendix. It describes a
method for finding an explicit model M for the stable isomorphism class of
E by having understanding of the factors AS, Q,,, ¢, n and C. This shows
how the character € is highly involved in the ZG-module structure of M. The
computations of the local invariant maps done in Chapter 5, for cyclotomic
extensions of Q, show that the character € in this case is rarely trivial, hence
the same can be said about the sequence in (1.0.2.1) being ZG-split.

The complexity that e reflects on M suggests why the difficulties when com-
puting ker(f) could not be solved by the methods of our original project.

11



Chapter 2
Group Cohomology

This chapter contains results about group cohomology that will be used in
later chapters such as: the Shapiro’s isomorphism, restriction, corestriction

and inflation maps and a brief presentation of spectral sequences.

We will follow for the first part [13], while the spectral sequence exposition
will follow ([1] vol. 2).

2.1 Restriction, corestriction and inflation maps.

Let H and G be groups, f : H — G a group homomorphism and A a ZG-

module. A has a ZH-module structure induced by f in the following way
h-a= f(h)-a forall he H. (2.1.0.1)

A seen as a ZH-module will be denoted by f*(A).

If a belongs to A® and h is an element of H, it follows that h-a = f(h)-a = a
hence A C (f*A)H#. Then there is a group homomorphism H°(G, A) —
H°(H, f*A). The fact that A — HI(H, f*A), defines a cohomological §-
functor of the ZG-module A, implies by the universal property of derived
functors that H°(G,A) — H°(H, f*A) extends to a morphism of cohomo-
logical d-functors {HY(G,A),d} — {HY(H, f*A),6}. The homomorphism

12



HY(G,A) — HY(H, f*A) induced by f: H — G will be denoted by f1.

2.1.1 Example. If H is a subgroup of G and ¢ : H — G is the natural

inclusion, ¢ : HY(G,A) — HY(H,i*A) is called restriction map and will be

denote i? = res$;.

If Bis aZH-module and j : f*A — B is a ZH-homomorphism: meaning that

h-j(a) =j(f(gh)-a), (2.1.1.1)

forall hin H and a in A, then j defines a group homomorphism j¢ : H1(H, f*A) —
HY(H, B) for all non-negative integers ¢. If f : H — G and j : f*A — A satisfy
(2.1.1.1) we say that (f,7) is a compatible pair and the composition

HY(G,A) L HI(H, f*A) j—q> HY(H,B)

is denoted by (f, 7).

2.1.2 Example. Let N be a normal subgroup of G and let H = G/N. If A
is a ZG-module, then AV is a ZH-module. If we take f : G — H to be the
natural surjection and j : AV — A the inclusion it follows clearly that (f, )

is a compatible pair. We define the inflation map

inf=(f.j)i: H(G/N,AN) — HY(G, A). (2.1.2.1)

2.1.3 Proposition. Let N be a normal subgroup of G and A a ZG-module,
if H(N,A) =0 for all 1 <i < q—1 it follows that the following is an exact
sequence

nf es§

res
0 — HY(G/N, AY) —— HI(G, A) — H1(N, A). (2.1.3.1)

Let us now consider H to be a subgroup of G of finite index and A a ZG-
module. We can define the the norm map Ng/p : AT — A% in the following

13



way: we fix X to be a left transversal of H in G then

Neyn(a) =) a (2.1.3.2)

zeX

for all a in A¥. It follows clearly that the map Ng,/py is independent of the
choice of X.

2.1.4 Example. For a in A”, Ng/y(a) belongs to A% implying that Na/u
induces a homomorphism H°(H, A) — H°(G, A), which extends uniquely to
a homomorphism {H9(H,A)} — {HY(G,A)} of cohomological d-functors of
ZG-modules. This homomorphism is called corestriction and will be denoted

by cor§.

2.2 Shapiro’s isomorphism.

We now study a particular case of Shapiro’s isomorphism which will be used
in later chapters. Let us recall that M ® N (respectively Hom (M, N)) denotes
M ®z N (resp Homyz(M, N)) where G acts diagonally. It should be mentioned
that in this section H* will denote regular cohomology while H* denotes Tate

cohomology.

Let H be a subgroup of G, i : H — G the natural inclusion and B a ZH-
module. Let us denote by B* the ZG-module Homgyy(ZG, B), where the

action of GG is given by

(g-¢)(x) =d(z-g)

for every ¢ in B* and ¢,z in G.
We define ©p : B¥ — B by Op(¢) = ¢(1¢). Notice that for all h in H

Op(ho) = (ho)(le) = ¢(h) = h- é(1c) = hOp(d), (2.2.0.1)

then ©p is a ZH-homomorphism and (i,0p) is a compatible pair which in-

14



duces the homomorphism

(i,0p); : HY(G, B*) — H'(H, B).

It is a well know fact that ZG is a ZH-free module then it is isomorphic to
ZH ® M for some Z-free module M. By duality

Hom(ZG,X) = Hom(ZH ® M, X) = Hom(ZH, Hom(M, X))

for any Z-module X.
2.2.1 Proposition. 1. The homomorphism (i,Op); : H(G,BY) — H(H, B)
1s an isomorphism called inverse Shapiro’s isomorphism, which we will

denote by (shz')?.

2. Define ip : B — B* by ig(b) = ¢, where

xb  if xe H
0 if ©¢ H,

op(x) =

then ig is a ZH-homomorphism such that the composite

2 cor€

H9(H, B) — H4(H, BY) — H4(G, BY)
is the inverse of (shz')?, which we will denote by shi.

Proof. 1. When g = 0: let ¢ be an element of B* then, ¢ belongs to (B*)¢
is equivalent to say that ¢(gx) = ¢(x) for all g, x in G, this implies that

¢(9) = ¢(la) = ©p(). (2.2.1.1)
The last equality shows that if A belongs to H
h©p(¢) = ho(la) = ¢(h) = ¢(1a) = Op(9),

hence ©p(¢) is an element of B¥ . The fact that ¢(z) = ¢(1¢) for all x
in G implies that (7,0 p)f is injective.

Surjectivity can be proved by taking b in B¥ and letting ¢, be the
element of B* defined by: ¢y(x) = b for any x in G. Then (2.2.1.1)

15



implies that ¢, € (B¥)¢ and 0p(¢) = b.

The above shows that (shz')? is an isomorphism from H°(G, B) to
H°(H, B).

The same statement is true for Tate cohomology since ©g(Ng(B*)) =
Ny (B). In order to prove this last equality let X be a right transversal
of H in G, then for ¢ in B it follows that

O©p(Ne(0)) = O5 (Z 9¢) = g6(1,)

geqG 9€G
= dlg) =Y b(hx)
geG zeX heH
=3 ho(x) =D Nu(e(z)).
zeX heH zeX

It is clear that for any b in B, ©5(Ng(ip(b))) = Nu(b).

In order to extend to the case ¢ > 1 one can easily show that: if B is
induced for H, meaning that there is a Z-module M with B = ZH @ M
then B* = ZG ® M. We embed B into an induced module C, if f :
B — (' is such an imbedding and we let D = coker(f) one obtains the

following commutative diagram

0 B! / C* Dt 0
05| oc| o
0 B C D 0
/ (2.2.1.2)

where the top and bottom rows are exact. Commutativity of the left

square follows since

Ocf"(¢) = Oc(f9) = fo(la) = [(Or(9)),

for any ¢ in Bf. Commutativity of the right square follows by a similar

argument. We now apply H-cohomology to diagram (2.2.1.2) to obtain
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the commutative diagram

(©p)« .
H'(H, D*) — H"\(H, D)

ol g, ol
H(H, B*) ——— H(H, B),

(2.2.1.3)
we complete the last diagram by applying res% and obtain
R res . (Op)s .
H*YG,D*) —— HY(H, D) —— HI'(H, D)
o= o= ol
resy (Op)« .
H‘I(G Bﬁ)—>H‘1 H,B*) ——— HY(H, B), (2.2.1.4)

the composition (©p), o res$ on the top row of diagram (2.2.1.4) is an
isomorphism by induction on g, hence the composition (©p), o res$ =

(shz')? is also an isomorphism.

. A straightforward computation shows that h¢y(x) = ¢pp(x) for all z in
G, hin H and b in B, which proves that ig is a ZH-homomorphism. In
order to prove that cor% o (ig). is the inverse of the "inverse Shapiro’s
isomorphism” we start by showing that the statement is true for ¢ = 0.

In this case is enough to show that the composition

BH B, (BH)H ﬂ (BYYG — (BHH P, pn

is the identity in B. Let X be a fixed left transversal of H in G and b
an element of B | without losing generality we can assume that 15 € X
then

@B(NG/H@B( ) = @B(NG/H ®y)) = OB (Z $¢B>

zeX

=> adp(le) =Y dulz) =

rzeX zeX

The statement also follows clearly for Tate cohomology. The extension

to ¢ > 1 is obtained by a similar argument as in (1).
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O
2.2.2 Claim. Let H be a subgroup of G and B a ZG-module. Let us define
jp : Bt = Hom(ind$Z, B) by jp(¢) = ¢, where p(x@t) = txp(z"): it should
be mention that we are assuming G acting on Hom(ind%7Z, B) by diagonal

action, then jp is a ZG-isomorphism.

Proof. 1t follows that jp is well defined since

d(h®t) =the(h™) =td(lc) = d(lc ® 1)

for all hin H and t in Z.
Let g,z be in G, then

(99)(z @ t) = ta(ge)(z™") = tzg(zg)
= teg((g ') 7") = tg(g ' w)d((g 7))
= go(g 'z @ 1) = gglg - (z ® 1))
= (9o)(z @ 1).
This proofs that jp is a ZG-homomorphism.
We define ji : Hom(ind$;, B) — B* by jg(¢)) = ¥, where ¢(x) = z¢p(z7 1 ®1).

Proving that j% is well defined and that is a ZG-homomorphism can be done

in a similar way as done for jg. If ¢ belongs to B* it follows that

(J57B)(#)(x) = 2(jpo) (™" @ 1) = ¢(),

for all z in G.
Now let ) be an element of Hom(ind%Z, B), it follows that

(7BIB) (W) (z @ 1) = 2(jpv)(a™") = ¥(z @ 1)

which proofs that jj is the inverse of jp. n

Let us denote i’y := jpip : B — Hom(ind%Z, B), hence for b in B i'3(b) = ¢y,

and

b if xreH
0if ¢ H

dy(z @ 1) = p(z7") =

18



We will denote by Sh% = (jg)«(sh%).

It is not difficult to prove that the following is a commutative diagram

G
R cor'y

HY(H, B*) HY(G, B*)
(ip)

H(H,B) (JB)« (JB)s

():

H(H, Hom(ind$Z, B)) — HY(G, Hom(ind$Z, B))
corf;

2.2.3 Claim. The homomorphism Sh% : H'(H, B) — H°(G, Hom(ind$,Z, B))
takes b in BY to the map g ® 1+ gb for all g in G.

Proof. Let b be an element in B and X a left transversal of H in G then we

obtain

Ship(b)(g ®1) = Ne/u(ip(b)(g @ 1) = (Z x<5b> (g®1)

zeX

= Z xp(x7'g) = xob,

zeX

where g is the only element in X such that z;'g € H hence g = xh for some
h in H, which implies gb = xqhb = zb. O

2.2.4 Example. Let M and N be ZG-module and G act diagonally on
Hom(M, N) then

Shomurny + HY(H, Hom(M, N)) — H°(G, Hom(ind§;Z, Hom(M, N)))
sends ¢ to (;3 where q;(g ® 1) = go. If x is an element of M it follows that

S ) (9) (9 @ 1) (@) = go(z) = gd(g7'2).

Let L be a ZG-module and ¢ : Hom(L, Hom(M,N)) — Hom(L & M, N)
be the dual isomorphism, which means that for any f : L — Hom(M,N)
Y(f)(le@m) = f(l)(m). It is not difficult to prove that 1 is a ZG-isomorphism
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where we are considering G acting diagonally on both Hom(L, Hom(M, N))
and Hom(L ® M, N). Let us denote

Sh((ZL,M,N) = QZ}*Sthom(M,N) (2.2.4.1)

2.2.5 Example. We now consider the augmentation map 7y : ZG — 7Z, where
every g in G is sent to 1 and denote by AG = ker(fy). Let L = ind%7Z and
M = AG then

Shi

(ndSz.00,) HY(H,Hom(AG,N)) — HY(G, Hom(ind%Z @ AG, N))

at ¢ = 0 satisfies

Sh(()inng,AG,N)((b) (gler)= ¢*Sh(}lom(AG,N)(¢) (9@1®r)

= Sh%om(AG,N)(QS)(g ® 1)(1‘) = g¢(g_ll’)
(2.2.5.1)

for all g in G and z in AG.
A straightforward computation shows that (S h((]m 1S7,AG,N)
Hom(ind%7Z @ AG, N) is given by

)~! applied to ¢ in
<Sh?inng,AG,N))il<¢)<x) =¢(lg @ 1)(x). (2.2.5.2)
2.2.6 Remark. It follows by construction that: by fixing L and M

Ship .y - {ZG — modules} — {Groups}

is a covariant functor sending N to HY(G, Hom(L @ M, N)).

2.3 Spectral sequences.

For this concise exposition of spectral sequences we will follow ([1] vol.2).
We begin by constructing the spectral sequence of a filtered chain complex,
then present the spectral sequence of a double complex and apply this to obtain

the Hochschild-Serre spectral sequence associated to a group extension.
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2.3.1 Spectral sequence induced by a filtered chain com-

plex.

Let {X,d} be a cochain complex, which means that X =&, ., X, and ¢ is a

family of maps

On— On On On
- Xn Xn+14+1>Xn+2;2>"'

satisfying 9,41 0 0, = 0. We will denote by H™"(X) = ker(d;)/im(d;—1).
Lets us assume that there is a filtration of {X,d§} given by

X=F'X2F'X2--2()FX={0}, (2.3.1.1)

where each {F"X,6'} (6° being the restriction of § to F'X) is a subcomplex
of {X,6}. Let us denote by &' : FPX/F*1X — F'X/F'X the natural map
induced by &°. It follows clearly that {F*X/F™*'X 6"} is a cochain complex.

For each ¢ > 0 the short exact sequence

-1 -1
00— pitly —— ply 7 FX/FTX —0

induces long exact sequences of the form

. i s . 1 4
RN Hn(Fz+1X) Hn(FzX) = Hn(FzX/Ferlx) i Hn+1(Fz+1X) S

All this sequences can be arranged in the following diagram
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! !

S HrY(FPHLX) <HP Y (FPAAXFP2X) » HY(FPR2X) — HY(FP2X/FrdX) —

iiJ Ja ot J

— HY(FPX) B HY(FPX/FPX) S HY(FPUX) — HY(FPH X/ FreX) —

J 2|
* -1
Jx
— H”fl(FP*IX) > H”fl(Fp*IX/FT’X) — H"(FPX) — H"(FPX/FPHX) —

l l

(2.3.1.2)

Letting EY? := HPT(FPX/FPT1X) and DY? := HPTI(FPX) one obtains the

following exact triangle

(2.3.1.3)

The above diagram is an example of an exact couple.
2.3.2 Definition. An exact couple {D, E,i,j, k} is an ezxact triangle of the

form

E

(2.3.2.1)

Given an exact couple {D, E,i,j, k} define d = jk : E — E, the fact that
kj = 0 implies that d*> = 0 hence we can form H*(E,d).
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2.3.3 Definition. If{D, E,i, j, k} is an exact couple, its derived couple { D', E' i, j', k'}

l
D/ N D/

N

is given by D' = im(i) and E' = H*(E,d) where: i’ is the restriction of i to
D', j'(i(x)) = j(2)] and ¥'[2] = k(z).

It can be proved that the derived couple defined above is actually an exact

(2.3.3.1)

couple. By iterating this process one obtains the spectral sequence induced by
the exact couple {D, E,i, j, k} as follows.

2.3.4 Definition. Given an exact couple {D, FE,i,j, k} we define the exact
couple { Dy, Ey,,,i", j", k"} as the (n — 1)th-derived couple of the original exact
couple. The sequence {(E,,d")},~, is called the spectral sequence associated
to {D,E,i,j,k}. )

If we consider {D, E,i,j,k} where D and E are objects in the category of

doubly graded modules and assume that

deg(i)
deg(j) = (0,0)
deg(k) = (1,0).

I
—~
|
—_
—_
~

It follows that deg(d) = deg(jk) = deg(k) + deg(j) = (1,0), it can also be
proved that for all n > 1.

deg(i") = deg(i"™') = (—1,1)

deg(j") = deg(j* ") — deg(i*') = (n — 1,1 — n)
deg(k™) = deg(k" 1) = (1,0)

deg(d") = deg(k"™) + deg(j") = (n,1 —n)

Considering the filtration of the chain complex X given in (2.3.1.1), we would

like to mention how does the spectral sequence induced by the exact couple
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given in (2.3.1.3) actually gives information about H*(X).

Note that each DY, C DP9 for all n > 1. Let D%¢ = N, D2 on the other
hand E5“ is a subquotient of EY'? this implies that there are subgroups Z5¢ and
BY? of EP! with Z5? = ker(d') and B5Y = im(d') such that EY? = 787/ BY.
We can continue this process and find subgroups Z? and B! of EP? with
ZP1 B = ker(d™') and BP?/BMY = im(d™!) satistying EP? = 7P/ B,
If we set ZV? = EP? and B = {0} one obtains

BP9 =70 5 7095 7095 ... D BP9 D BB D BP9 — {0}, (2.3.4.1)
Define Z29 = M, ZP4, BP9 = U, BP9 and EP4 = 7249/ BPa.

The group H*(X) itself has a ” canonical” filtration induced by (2.3.1.1) namely
H*(X)=F'HX)D F'H*(X)D ---,

where FPHPTI(X) = im (HPYI(FPX) — HPTI(X)).
2.3.5 Theorem. With the notation given above it follows that

FpHp”(X)/Fp“Herq(X) ~ EPa, (2.3.5.1)

The proof of Theorem 2.3.5 can be found in [1].
If one assumes that H"(F""'X) = {0} then H"(X) has a finite filtration

H'(X)=F'H"(X)C F'H"(X)C--- C F"H"(X) C F""'H"(X) = {0}.

2.3.6 Remark. From the filtration given above one can conclude that finding
a set of generators for H™(X) can be reduced, by Theorem 2.3.5, to obtain a
set of generators of EP¢ for all p satisfying 0 < p < n and p+ g = n. Since
EY? surjects onto EPY one can restrict to find generators for the groups E5

with p+ ¢ = n.
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2.3.7 Spectral sequence induced by a double complex.

The difficulty of computing spectral sequences depends highly on how much
control one has over E5. In this section we study the spectral sequence in-
duced by a double complex, this is a particular case in which the terms E%*
have concrete expression. The Hochschild-Serre spectral sequence is a partic-

ular example of this kind of spectral sequences.

2.3.8 Definition. A double complex is a collection of modules and module

homomorphisms arranged as follows

o3 o o 8

E870 — Eé70 — Egvo — E:0370 S e ..

O ! 1 O (2.3.8.1)

such that the maps satisfy 05 = 07 = 0p0y + 010y = 0. We will denote the
double complex by {Ey, 0y, 01 }.

Given a double complex {Ey, 0y, 01} one can construct a graded Z-module
which is call the total complex of Ey denoted by X = Tot(Fy), where X" =
D, .. Ev? with differential 6 = 9y + 01 : X — X"*'. By definition it
follows that 6% = 0, then {Tot(Fj),d} is a cochain complex.

We define a filtration of the cochain complex X = Tot(FEy) by

FPX = P ES

i>p

and denote by

Dyt :=FrX" = H Ey.

i+j=p+q,
i>p
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Notice that FPX?PT4 /Pl Xrte o P4 in particular one can think of FP?X/FPH1 X
as the pth-column of diagram (2.3.8.1). It follows that the differential in this

quotient is induced by Jy hence

EP = HPH(FPX/FPTX) = H(EPY, 9,) (2.3.8.2)
DV = HPT(FPX) = H(D2Y, 80 + 01). (2.3.8.3)

If we identify FPXP+e/FPr1XPT4 with B2 the following short exact sequence

0 — Frrixrte — pprxrte — EV?T —— ()

induces the following exact couple

i1
Dy —— D7*

AN

*ok
El

In order to describe Ey we must first compute d; = ji1kq.

Taking into consideration the following commutative diagram with exact rows

o B
pt1.q-1 P Pp.q Pa P.q

lao—l-@l la()‘i‘al lao+31

Dg+1,q> )Dg,qul N E(z))7q+1
¥p.g+1 Bp.g+1

(2.3.8.4)
with a4 : DTN — DP9 and B,, : DI — EPY the natural inclusion and
projection respectively.

An element [z] in EY? is the class of x € E? with dgz = 0. Let («,0,...,0) €
Dy then f,4(x,0,...,0) = x. The fact that dyz = 0 implies that (Jy +
)(z,0,...,0) = (0,01z,...,0) € D™ Let (8y2,0,...,0) € DFT clearly
pg11(012,0,...,0) = (0,012, ...,0) hence

ki[z] = [(01«,0,...,0)]
di[z] = jiki[z] = 71[(O1z,0,...,0)] = [O1z].
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From this we conclude that for the double complex in (2.3.8.1), the second
term of the spectral sequence induced by the exact couple given in (2.3.8.2)

has the following expression.

BP9 = HP(HY(Ey, dy), d;). (2.3.8.5)

2.3.9 The spectral sequence of a group extension.

We are now in position to present the Hochschild-Serre spectral sequence which

will be use in chapter 6 to find a set of generators for H?(Gy, p).

Let G be a group, H a normal subgroup of G and M a ZG-module. Let us
denote by G = G/H. Fixing a ZG-projective resolution of Z

4] 0 ) 0,
3 P, 2 P, 1 P, O Ly

and a ZG-projective resolution of Z

o o o o
’ Q2 2 Q1 - Qo 0 7.

We can construct a double complex Ej by letting
Ey’;= Homg (P, Homy(Q;, M)),

where the differentials 9y : EyY — Ey'™ and 0, : By — EjT are defined by
do = (=1)P(8%,,)* and 91 = &;. A simple computation shows that 95 = 97 =
0y + 010y = 0.

By (2.3.8.5) one obtains that the second term of the spectral sequence induced
by the double complex E, defined above is

EP? = HP(G, HY(H, M)).

We conclude this exposition with the computation of H*(Tot(Ej)).
2.3.10 Claim. Let G, H, G and M as above. Let A be a ZG-module and B
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a Z.G-module then
Homya(A, Homzy (B, M)) = Homgq(A ® B, M)
Proof. Let us define the maps

v : Homgya(A, Homgp (B, M)) - Homgza(A® B, M)
ﬁ : HOng(A & B, M) — HomZG(A, HomZH(B, M))

by: (1)(a@b) = F(a)(b) and (8F)(a)(b) = fla @ b).

It follows immediately that v is well defined. In order to show that 3 is also
well defined we choose a ZG-homomorphism f: A® B — M and g € G, let
g denote the image of ¢ under the natural projection G — G, then for any
a€ Aand be B

(B)(g-a)(b) = f(g-a®b)
=gf(a®g™'b)
= 9(Bf)(a)(g™"b)
=g (Bf)(a)(b).

The last equality shows that (8f)(g-a) = g - (3f)(a) hence Sf is a ZG-
homomorphism. It remains to show that 5f(a) is a ZH-homomorphism, for
this let h € H then

(Bf)(a)(hb) = f(a ® hb)
=f(h-a®b)
= hf(a®b)
= h(B[)(a)(b).

It follows clearly that v and [ are inverse maps from each other, which con-

cludes the proof. O

Let E=@,  P,®Q; and E" =@,,._, P, ® Q. If we define 4, : £, — E, 11
such that for any x € P; and y € Q)

on(z®y) =z @y + (—1)z®dy,
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then by corollary 2.7.3 of ([1] vol 1) it follows that

is a ZG-projective resolution of Z.
2.3.11 Claim. Let X™ be defined as in the previous subsection. The following
diagram commutes

~>|<
5n+1

HOng<E~'n, M) — HOng(En+1, M)

| I

n n+1
d:ao+al X

where [ is the isomorphism of claim (2.3.10), hence (B induces an isomorphism

B, H*(G, M) — H*(Tot(Ey)).

The proof of Claim 2.3.11 is omitted here. Let v*/ be the isomorphism given
in Claim 2.3.10 with A = P, and B = @, then 7"/ induces a natural homo-

morphism

NI Y HY(G, M). (2.3.11.1)

It follows: by Theorem 2.3.5 and the observation after it that

r=@ v : @ B’ — H(G M), (2.3.11.2)

1+j=n 1+j=n

is a surjection. This last observation show that the spectral sequence associ-

ated to the group extension

H G G

induces a filtration of H"(G, M) given by the groups H" (G, H(H, M)) for
0<71<n.
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Chapter 3

Construction of a ”small”

envelope of wu.

Let us consider K/k to be a finite Galois extension of number fields with
G = Gal(K/k). We denote by p := p, the group of roots of unity of K and
by K := k(w). It follows that p is cyclic of even order. We will assume that
|| = 2m for some positive integer m.

In this chapter we construct a "small” envelope of u, by ”small” we mean that
dimg(Q ® C) = |G|d(G) where d(G) is the minimal number of generators of
G.

The construction presented here follows the idea of [9] where the existence of

envelopes of finitely generated ZG-modules is proved.

There is an isomorphism of groups @ : G — (Z/2mZ)™ defined by

g-u=u"9 forall g€ G andall ue pu. (3.0.0.1)

Let us denote by a : G — Z the lift of @ which satisfies —m < a(g) < m for
all g in G.
This lift allow us to construct the distinguished element © in QG given by

0 =1/2m a(g™)g

geG

and the Z-submodule Y = ZG + Z0© of QG.
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By fixing a generator p of g one can show that Y fits in the following exact

sequence

oY g (3.0.0.2)

where « is the natural inclusion and

By +1t0) = forall ye€ZG and all t € Z.

It follows that [ is well defined. In order to prove this let y; in ZG and t; an
integer such that y + t© = y; + ¢,0©, which implies that (¢; — )O =y — 1y
belongs to ZG. Then t; =t (mod 2m) or t; = t + 2mk for some integer k this

implies
Blyr +10) = u' = p™2 = u' = B(y +1O).

To show that S is a homomorphism of ZG-modules we need to prove that

B(g0) = g - pu = pu®9 for any g in G.

The fact that a is a lift of @ implies that for all g, h in G there exists [, , € Z
such that a(g)a(h) — a(gh) = 2ml, ,, hence

_ 1 1y L -1
g~@—%2a(h )gh—%Za(h g)h
heG heH
1 _
=5 [a(h™")a(g) — 2mly-1 4] h
heG
=a(g)® — Zlh_ggh.

heG

If welet Ly = >, . ln-1,4h by the definition of 5 we obtain that

B(gO) = B(a(9)® — Ly) = p*9 = g- =g - B(O).

For any ZG-module M, let us dente Hom(M,Z) by M?, while M* will denote
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Hom(M,Q/Z). The following is a well known result. We sketch a proof here
for the reader’s convenience.

3.0.1 Claim. Given an exact sequence of ZG-modules

0 L M—T 0, (3.0.1.1)

where L and M are lattices and T is a torsion module, there exists an exact

sequence of ZG modules

0 w9 o 0 (3.0.1.2)

Proof. If f is an element of M° we can define a°(f) = fa. In order to define
the map ~, we will start by showing that for any given f : L. — Z there exist

a unique f : M — Q making the following diagram commute.
L

f‘

Z

For every m in M there is a nonzero integer z such that f(zm) = z8(m) =0

Y
hf (3.0.1.3)

— 5 Q
in T, hence exactness of (3.0.1.1) gives the existence of an element [ in L
satisfying a(l) = zm. We define

flm) =271 f(0), (3.0.1.4)

notice that if z; is a different nonzero integer with f(zym) = 0 and [y in L

satisfies a(ly) = zym then
za(l) = z1zm = zzym = za(ly).

By injectivity of o one obtains z;l = zly, which gives 21 f(I) = zf(l;) or equiv-
alently 271 f(I) = z; ' f(I1). This last equality proves that f is well defined.

Assume that h : M — Q makes diagram (3.0.1.3) commute. For m in M let

z be a nonzero integer annihilating f(m) and [ in L with a(l) = zm, then
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zh(m) = h(a(l)) = f(I) which gives h(m) = 2! f(I) = f(m). This proves the
uniqueness of f : M — Q making diagram (3.0.1.3) commute.

We now show that diagram (3.0.1.3) can be completed in a unique way to the

following commutative diagram

L—2  y—Ff
hf ‘f l‘f (3.0.1.5)
7 Q Q/z,

where the map f: T — Q /Z is defined by choosing for any ¢ in 7" an element

m in M with B(m) = t, such element m exists by surjectivity of S hence

f(t) = f(m) + 2.

Let my be any other element in M with 5(m;) = ¢ then m; — m belongs to
ker(5) = im(«), which gives the existence of [ in L satisfying mi; = m + «({).
Since f(a(l)) = f(I) which belongs to Z, it follows that

flm) +Z = f(m+a(l))
f()
Z

?

+7Z
+ +7Z
+
this proves that f is well defined, uniqueness can be proved in a similar way
as done for diagram (3.0.1.3). We define (f) = f.

o

We now focus on showing that (3.0.1.2) is exact. By applying the functor ( )

to (3.0.1.1) one obtains the following exact sequence

0 — T° — M° - L,

since T° = 0 it follows that a° is injective. Surjectivity of v follows from the
fact that M is Z-projective hence, if f € T* there exists f : M — Q making

the right square of diagram (3.0.1.5) commute, this implies that f(a(l))+Z =
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f(Ba(l)) = 0in Q/Z for all | € L. Tt follows that fa takes values only in Z,
one can define f(I) = f(a(l)) for all [ in L and clearly f makes the left square
of diagram (3.0.1.5 )commute.

Uniqueness of this diagram implies that vf = f hence v is surjective, notice
that this argument also shows that ker(y) C im(a®). It follows clearly that
im(a®) C ker(vy), which completes the proof. O

If we apply the previous claim to the exact sequence (3.0.0.2) we obtain a

short exact sequence

0——Y° % (ZG)O l IJ'* SN 07 (3016)

where v(f) () = f(2m®O)/2m + Z.

Let us denote by k¢ the element in (ZG)° given by

ka(g) =

and extend it Z-linearly. The previous map induces the following isomorphism
of ZG-modules.
3.0.2 Claim. The map k : ZG — (ZG)° given by

B xg9) =) z4(gkc)

geG geG

s an isomorphism of ZG-modules.

Proof. Given f € (ZG)’let x =} . f(9)g € ZG and h € G, then

k(@)(h) =Y fl9)(gka)(h) =) f(9)kalg™'h) = f(h)

geG gelG

which proves surjectivity of k. On the other hand if + = ) _,z,9 satisfies

geG
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that k(x) is the zero element in (ZG)°. It follows that

0 = k(@)(h) = 3 wy(gha) () = 3 wkaly™h) =

geG geG

for all h € G, which proves that k is injective. n

The previous Claim and diagram (3.0.1.6) gives us the following commutative

diagram

Qo
Z — 7G

th le (3.0.2.1)

Yo s (ZG)° —»
af Y

where Z is the pull-back of k : ZG — (ZG)° and o : Y° — (ZG)°.
3.0.3 Claim. Given z = dec 249 1 ZG, z in Z if, and only, if

Z z,a(g™") =0 (mod 2mZ).

geG

Proof. Given z =3 ;2,9 € ZG z € Z if, and only if, k(z) € Ker(y), which
is equivalent to say by the definition of v that k(2)(2m®©)/2m € Z. Since

k(2)(2mO) = z,(gkc)(2mO) = > z/kc(2mg™'O)

geG geG
=) 2k (Z a(h1)91h> = zalg ™),
geG heG geG

It follows that k(2)(2m®)/2m € Zif, and only if, 3~ z,a(g™") =0 (mod 2mZ).
[

The description of Z given above allow us to find a set of generators of Z as
Z-module as well as a ZG-module.
3.0.4 Claim. Let us denote by G* = G\ {1g}. Then

a) {2m}U{g—alg™') : g € G*} is a Z-basis for Z.
b) If{g1, 92, ..., 9.} C G* generates G, {2m}U{gi —algih):i=1,2,... ,n}

generate Z as a ZG-module.
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Proof. Given z =Y _, 2,9 € Z, we have that

geG

2= z(alg™) +g-alg™)

geG
= zalg)+ > 2z (g—alg™).
geG geG

By Claim 3.0.4, 3 . 25a(g™") belongs to 2mZ, which proves (a).

In order to prove statement (b) it is enough to observe that for all g, h € G

gh—a(h™'g™") = gh = ga(h™") + ga(h™") —a(h™'g™")
=gh —ga(h™ ")+ ga(h™") —a(h Ha(g~') mod 2mZG
=g(h—ah™)+a(h™) (¢9—a(g”")) mod 2mZG.

]

Let F' = @<, ZG with the standard ZG-basis {e; : 0 <i <n} and let 7 :
F — Z be defined by

(e 2m if i=0
TeE;) =
gi—a(gl) if 1<i<n

We obtain a short exact sequence

i 3.0.4.1
0 X—F-—"syg 0, ( )

where X is the kernel of 7w and ¢; is the natural inclusion. If we apply the
functor ()° to the exact sequence given in (3.0.4.1) we obtain the following
commutative diagram with exact top row

>0
7° (51

Z° F° X°
ngO
(Vo) ~ | (3.0.4.2)
gwev

Y L F
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The vertical isomorphism Y — (Y°)° sends y — ev,, where ev,(f) = f(y) for
any f € Y? and kp : F — F? is the map obtained generalizing k.

The diagram above gives us an injective map v : Y — F. Putting together

diagrams (3.0.4.1) and (3.0.0.2) gives us a commutative diagram

726G —2 sy a p
= (0
(3.0.4.3)
72G —— F
Ya
XO

where X° is the cokernel of ¥ : Y — F. We can complete the last diagram by
taking the push-out of § : Y — p and ¢ : Y — F and obtain the following

commutative diagram

70 e p (3.0.4.4)

Xo—z—0C

We should mention that the right column from this last diagram is the desired
envelope of p, where the cohomologically trivial module C' can be identified
with the cokernel of ¥a.

It is clear that the map u — C'is completely determined by the class of 1(0),

the snake lemma proves that v is injective and that C' is isomorphic to X°.

Our final task is to give an explicit description of C' and C'. For this we should
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study in more detail the homomorphism .

By diagram (3.0.4.2) we obtain that 7°p° = (p o 7)° hence

2mkg if i=0
pr(e;) = . . _
gikg —a(g; ke if 1<i<s

We now compute the following composition

P’ °
y = (Yo)e 70— o

Given y € Y let F,, € F° be the image of y under the composition given above,
which means that for any x € F, F,(x) = ((pr)(x)) (y). Let A € (Y°)° then
(m°p°)(A) = (pm)°(N) = Apom and F,(x) = ev,pr.

We now prove that if y = EQGG Yg9

2my, it i=0
F,(ge;) = (3.0.4.5)
Yg9: — CL(gi_l)yg if 1<i<n

Proof. Let ¢ = 0, then
evypm(geo) = 2m(gka)(y) = 2mka(g~'y) = 2my,.

Now let 1 <17 < n, then

evypm(ges) = (9gikc — alg )gke) (y
= ka((99:)""y) — alg; l)k )
= Ygg; — a(gz'_ )yg'

]

3.0.5 Claim. The homomorphism v : Y — F is defined as follows: for any
yey

U(y) = 2my, ylgr' —algr "), ylg, " —alg, "))

Proof. 1t is enough to show that v given above satisfies kr¢)(y) = F, =
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evy, (Pm)°.
We will proof this equality by evaluating at the standard basis of F.
Let y = > ,cqynh in Y and g € G, then we have

ke (y)(geo) = 2m(yka)(g) = 2m Y yn(hkea)(9)
heG

=2m> ynka(h™'g) = 2my,
heG

by the first case of (3.0.4.5) we obtain krt)(y)(geo) = Fy(geo).

We will proceed in a similar way for the other cases, let 1 <i <n

krv(y)(ge:) = (95 'vke)(9) — alg; V) (vke)(g)
=Y unka(h'gig) —alg; ) Y ynka(h™'g)

heG heG

= Ygi9 — a(gi_l)yg,

one more time (3.0.4.5) shows that kp¢(y)(ge;) = Fy(ge;) when 1 < i < n.
This concludes the proof. O

Let Ay and Ayzg be the following ZG-submodules of F

Ay = {((2my,y(gr" —algr"),- .- y(g," —alg,?)) 1y €Y)
Az = ((2ma, (97" —algr ")), .-, (g, —alg, ")) : € ZG)

Then C = F/Azq and C = F/Ay.
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Chapter 4
The special character e.

As stated in Theorem B in [10] the character € : H*(G, Hom(AS, u)) — Q/Z
is one of the factors that determines the stable isomorphism class of the S-

units E.

Theorem A, proved on pg 955 of [10], reformulates € using class field theoretic
data through what the authors called the arithmetic trace formula. The dis-
advantage that Theorem A brings to our program is: that the arithmetic trace

formula is given by a character tp : H'(G, Hom(L, E)) — Q/Z.

This chapter is dedicated to the study of the character . The main result ob-
tained here states that: e satisfies an equation that reminiscent the equation
given in Theorem A for tg.

This expression will simplify the computation of e.

Much of the work done in this chapter follows the ideas presented in [14] and
in [10] hence we will continue using the notation introduced by the mentioned

authors.

We will denote the group of S-ideles of K by .J and the group of all idele classes
of K by Ck, on the other hand we will let L = AG® AS, I = AG ® ZS,
I =7G ® AS and M = ZG ® ZS. With the above notation one obtains the
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following commutative diagram, that will be used continuously in this chapter

0 0 0
10 v ’l/o
0 L I AS — 0
1 . 1 1
7 7
0 I — M -5 78 0
i i i
io Z/()
0—AG—272G—7Z——0

0 0 0 (4.0.0.1)

where all rows and columns are exact.

4.1 The character ¢ and the arithmetic trace
formula.
We begin this section by describing the the character tz : H(G, Hom(AS, E)) —

Q/Z, we will show later how tg determines € and conclude by recalling the

arithmetic trace formula.

4.1.1 The characters tr and e.

Let N be a ZG-module, by fixing an envelope of N

0 N ¢ M 0 (4.1.1.1)

one obtains that the connecting homomorphism 0 : HY(G, Hom(M, M)) —
H'(G, Hom(M, N)) is in fact an isomorphism, since Hom(M, C') is a cohomo-
logically trivial ZG-module. Tt has been proved on §5 of [9] that H°(G, Hom/(M, Q)) =
[M, Q] whenever M is a ZG-lattice, which implies that there is a connecting
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isomorphism 9y : [M, M] — HY (G, Hom(M, N)).
We denote by 7 : [M, M] — Q/Z the map given by

Tracey(m)

+2, (4.1.1.2)
G|

v m] =

this map allow us to define the trace map ty : H'(G, Hom(M,N)) — Q/Z

associated to the envelope (4.1.1.1) as the following composition

-1

9
tn - HY(G, Hom(M, N)) —L (M, M] 2 Q) z.

Every envelope 0 - N — C — M — 0 induces a commutative diagram

[M, M] —>H1GH0mMN))

N

By fixing a short Tate envelope 0 — F — A — L — 0 the above gives us a

(4.1.1.3)

commutative diagram

(L, L] 4>HlGH0mLE))
(4.1.1.4)
from where we define
tE =T © 821

Before showing the relation between tg and €, we will recall a known result of
group cohomology.
4.1.2 Claim. Let A be an induced ZG-module then Hom(A, B) and A ® B

are induced, hence cohomologically trivial.

The proof of Claim 4.1.2 can be found on pg 141 of [13].
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Let us consider the top row of diagram (4.0.0.1)

o _ o

0 L [——=AS—0, (4.1.2.1)

by applying the functor Hom(—, E) to the Z-split exact sequence (4.1.2.1) one

obtains the following short exact sequence

0 — Hom(AS,E) — Hom(I,E) — Hom(L,E) — 0.

It follows from Claim 4.1.2 that Hom(I, E) is cohomologically trivial, hence
the connecting homomorphism in cohomology induced by the last exact se-
quence 9" : HY(G,Hom(L,E)) — H?*(G, Hom(AS, E)) is an isomorphism,

which gives the following diagram
H?*(G, Hom(AS, E))
a//

LL4>H1GH0mLE))

N

Let o : g — E be the natural inclusion and denote by . : H*(G, Hom(AS, u)) —
H?*(G, Hom(AS, F)) the group homomorphism induced by a. The character

€ is given by

(4.1.2.2)

=tp(0") . (4.1.2.3)

4.1.3 The arithmetic trace formula.

We now follow the ideas presented in [14]. Given two short exact sequences of
ZG-modules
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0 X Y A 0

0 X' Y’ A4 0

Let Hom((Y),(Y')) denote the ZG-module of all triples (fi, f2, f3) of Z-

homomorphisms making the following diagram commute.

0 xA,y B, 0
1
0 XY o 0

(4.1.3.1)

Let us denote by u! : Hom((Y), (Y")) = Hom(X, X"), u* : Hom((Y), (Y")) —
Hom(Y,Y") and v : Hom((Y),(Y")) — Hom(Z,Z') the natural projections

on each component. It is not difficult to prove that the following sequence

0— Hom((Y), (Y’))<M>>H0m(X, X')® Hom(Y,Y") £> Hom(X,Y') — 0

(4.1.3.2)

where 5(f,g) = Bof — gp is exact.

If we apply the last construction to the exact sequences
il Z/l
0 L 1 AG — 0

0 E]J]CKO

we obtain the short exact sequence
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0 — Hom((I),(J)) M Hom(L,E)® Hom(I,J) L Hom(L,J) — 0,

(4.1.3.3)
which induces in cohomology a long exact sequence
.9, HY(G,Hom((I),(J))) B HY(G,Hom(L,E))® H (G, Hom(I, J))
8 9
—— HY(G,Hom(L,J)) —— ---
(4.1.3.4)

where u, denotes (u', u?)..

We will use this sequence to describe tg in terms of local and global invariant
maps from class field theory.

Before achieving this, we need the following result.

4.1.4 Claim. For the long exact sequence given in (4.1.5.4) follows that

i) u,: HY(G,Hom(I),(J))) — H(G,Hom(L,E)) & H (G, Hom(I, J)) is

imjective and
i) it HY(G, Hom(I,J)) — HY(G, Hom(L, J)) is surjective.
Proof.

i) Injectivity of u, follows from the exactness of (4.1.3.4) and the fact that
[L, J] = 0, which proof can be found on pg 971 of [10].

ii) Surjectivity of if : H'(G, Hom(L,I)) — HY(G, Hom(L, J)) is shown on pg
970 of [10]. O

4.1.5 Remark. Part ii) of Claim 4.1.4 implies that
B.: H(G,Hom(L,E)) ® H' (G, Hom(I, J)) — H'(G, Hom(L, J))

is surjective. This fact together with part i) of Claim 4.1.4, allow us to write
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the long exact sequence given in (4.1.3.4) as the following short exact sequence

0 —— HY(G, Hom((I), (J))) —— H\(G, Hom(L, E)) & H'(G, Hom(I, J))
B.

——— HYG,Hom(L,J)) —— 0

(4.1.5.1)

Let us fix P € S, and denote by Gy the decomposition group associated to 3.
We consider the following commutative diagram of ZGgp-modules with exact

ToOwSs

0— AGyp - ZGyp — 7 —— 0

|1 |

0—AG —272G—7Z——0

where ZGy — Z and ZG — Z are the augmentation maps.

By the snake lemma one has that the cokernel of AGy — AG is isomorphic to
the cokernel of ZGy — ZG which is ZGy-free, this implies that 'mdgmAG =
indgmAGm@F with F' a ZG-free module. The fact that indgmAG = mdngG@
AG gives that I = AG ® ZS is isomorphic as ZG-module to I’ & F’ with
I' = Byes. z'nalgq3 AGy and F' a ZG-free module.

We will denote by i : AGy — I the ZGyp-homomorphism under the above
identification and by k¥ : J — K;f} the natural ZGg-projection for every
L e S..

Given y in H'(G, Hom(I, J)) let yy in H'(Gy, Hom(AG, Ky)) be the image

of y under the following composition

G
resgd

HY(G, Hom(I, J)) — HY(Gy, Hom(I, J))

%
LB

H1<qu, Hom(Aqu, J)) **> H! (Gr_p, Hom(Aqu, K;;))
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As mentioned before, we will denote by u® : Hom((I), (J)) — Hom(AG, Ck)
the ZG-homomorphism defined by u3(f1, f2, f3) = f3, then u® induces a ho-

momorphism
u? . HY(G, Hom((I),(J))) — H' (G, Hom(AG, Ck)).

We are now in position to state the arithmetic trace formula for the character
tg.

Let z in HY(G, Hom(L, F)), part ii) of Claim 4.1.4 ensures the existence of
y in HY(G, Hom(I,J)) such that j.xz = iy or equivalently (z,y) € ker(f.),
exactness of the sequence (4.1.3.4) implies that there exists a unique element
tin HY(G, ((I),(J))) with u,t = (z,9), let z = vt € H'(G, Hom(AG, Ck))
then

tp v =1inv Jz — Z invy Oy Yyp (4.1.5.2)
Pe S«
where &' : H'(G, hom(AG,Ck)) — H*(G,Ck) and 0y - H' (G, Hom(AG, Kg)) —
H?(Gy, Kgg) are the connecting isomorphisms induced by 0 - AG — ZG —
Z — 0 and S, is a transversal to the G-orbits of S.
The proof of the last equation can be found on §9 [10].

4.2 The character €.

In this section we will begin by defining a character ¢ : H*(G, Hom(AG, E)) —
Q/Z following the ideas presented in the previous section. We will conclude
by showing that ¢ = tg(9”)™! =e.

From the exact sequences

7 7
0—AS 5787 —-0

0 EJJJCK 0,

we obtain the short exact sequence
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0 — Hom((ZS), (J))(M)Hom(AS, E)® Hom(ZS, J) i Hom(AS,J) — 0.

(4.2.0.1)

In this case we are using bars to avoid confusion with the maps from the
previous section.

The short exact sequence given in (4.2.0.1) induces in cohomology a long exact

sequence
0BG, Hom((Z8), () ——— H2(G, Hom(AS, E)) & H2(G, Hom(ZS, J))
B. 0

——— H?*(G, Hom(AS, J)) — -+
(4.2.0.2)

We now prove a similar result as Claim 4.1.4.

4.2.1 Claim. For the long exact sequence constructed above follows that
i) Uy : H*(G, Hom((ZS),(J))) — H*(G, Hom(AS, E))®H?*(G, Hom(ZS, J))
18 injective and

i) © . HX(G, Hom(ZS,J)) — H*(G, Hom(AS, J)) is surjective.

Proof.

i) Injectivity of u, follow from the exactness of (4.2.0.2) and the fact that
[L,J] = 0. By applying the functor Hom(—,J) to the Z-split exact se-
quence given in (4.1.2.1), one obtains a connecting isomorphism 0 : [L, J] —
H'Y (G, Hom(AS, J)) hence 0 = im(0) = ker(i.).

ii) Surjectivity of 5 follows from the fact that 77 : H'(G, Hom(L,I)) — H' (G, Hom(L, J))
is surjective in the following way: by applying Hom(—, J) to the top and mid-

dle rows of diagram 4.0.0.1 one obtains the following commutative diagram
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with exact rows.

£ %
7

1
0 —— Hom(ZS, J) = Hom(M,J) - Hom(I,.J) — 0

Z{ i Z{

0 — Hom(AS, J) = Hom(I, J) — Hom(L,J) — 0 (4.2.1.1)

By applying G-cohomology to diagram(4.2.1.1) we get a commutative diagram

i*
H2(G, Hom(ZS, J)) — H2(G, Hom(AS, J))

o] o

HY(G,Hom(I,J)) —— H'(G,Hom(L, J))

3]

where the vertical maps are isomorphisms, since Hom(I, J) and Hom(M, J)
are cohomologically trivial by Claim 4.1.2. The diagram above proves the
surjectivity of 7 : H*(G, Hom(ZS, J)) — H*(G, Hom(AS, J)). O

4.2.2 Remark. Part ii) of Claim 4.2.1 implies that
B.: H*(G,Hom(AS,E)) ® H*(G, Hom(ZS, J)) — H*(G, Hom(AS, J))

is surjective. This together with part i) of Claim 4.2.1 allow us to write the

long exact sequence given in (4.2.0.2) as the following short exact sequence

0 —— H?*(G, Hom((ZS), (J))) i H?(G, Hom(AS, E)) ® H*(G, Hom(ZS, J))

(G, Hom(AS, 7)) —— 0

(4.2.2.1)

Fixing P € S.let us denote by %gp the ZGyp-homomorphism obtained by the

composition

%‘43 -7 — indg’mZ — 78.
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Given y in H*(G, Hom(ZS, J)) let yy in H*(Gyy, Kg) be the image of y under

the following composition

resg,

H2(G, Hom(ZS, J)) — H?(Gy, Hom(ZS, J))
HY(Gy, J) —— H*(Gy, K).

Let @® : Hom((ZS),(J)) — Hom(Z,C¥) be the ZG-homomorphism defined

by @ (f1, f2, f3) = f3, then @* induces a homomorphism
ud: H*(G,Hom((ZS),(J))) — H*(G,Ck).

Let z in H*(G, Hom(AS, E)), part ii) of Claim 4.2.1 ensures the existence of
y in H3(G, Hom(ZS, J)) such that j,x = ity or equivalently (z,y) € ker(f,),
exactness of the sequence (4.2.2.1) implies that there is a unique element ¢ in

H?(G,((ZS),(J))) with .t = (x,y), let z = u3t € H*(G,Ck) then we define

€r=inv z — Z invy Y. (4.2.2.2)
PESx

4.3 Compatibility of ¢z and ¢

By considering the following two exact sequences

_ i

0 I M 7G — 0
J J

0 FE J Ck 0,

we can construct the ZG-module Hom/((M), (J)) which fits into the following

exact sequence, as done in the previous sections

0 — Hom((M),(J)) M Hom(I,E)® Hom(M, J) L Hom(I,J) —0

(4.3.0.1)
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The exact sequences given in (4.1.3.3), (4.2.0.1) and (4.3.0.1) can be arranged

into the following diagram

Hom((I),(J)) - Hom(L, B) & Hom(I..J) — Hom(L. J)

» 3k ~ K

U

Hom((M),(J)) — Hom(I,E) ® Hom(M, J) ﬂ» Hom(I,J)

X i B

Hom((ZS), (J)) % Hom(AS, E) & Hom(ZS. J) > Hom(AS, J)

(4.3.0.2)

where \* : Hom((ZS),(J)) — Hom((M),(J)) is defined by (fi, fa, f3) —
(fito, fato, f3lo), similarly & : Hom((M),(J)) — Hom((I),(J)) is given by
(91, 92, 93) — (g1t0, g2l0, g3io), exactness of diagram (4.3.0.2) follows straight-

forward.

It is clear that the middle and right columns of diagram (4.3.0.2) are exact
and by the snake lemma follows that the left column is also exact.

Exactness of the middle row of diagram (4.3.0.2) implies that Hom((M), (J))
is a cohomologically trivial ZG-module, hence diagram (4.3.0.2) induces in

cohomology the following commutative diagram

H?*(G, Hom((ZS), (J)) 5
\

U HY(G, Hom((1), (J))

H2(G, Hom(AS, E)) ® H*(G, Hom(ZS, .J)) Us
(\a

B, HYG,Hom(L,E)) ® HY(G, Hom(I, J))

H?*(G, Hom(AS, J)) B

«*

H'(G, Hom(L, J))
(4.3.0.3)
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where the columns are exact and the diagonal maps are isomorphisms.

Let x in H*(G, Hom(AS, E)), assume that 2’ is the preimage of z under
the connecting isomorphism 0 : H'(G, Hom(L, F)) — H*(G, Hom(AS, E)).
We choose 3/ in H'(G, Hom(I,J)) such that j.o’ = i}y, if y = 9y with
0 : HYG,Hom(I,J)) — H*(G,Hom(ZS,J)), commutativity of diagram
(4.3.0.3) implies that (z,y) belongs to the kernel of 3,. We denote by ' and ¢
the unique elements in H'(G, Hom((I),(J))) and H*(G, Hom((ZS),(J))) re-
spectively satisfying u,t’ = (2/,y') and u.t = (x,y), once more commutativity
of diagram (4.3.0.3) gives O’ = t. We will denote by 2’ = u3t’ and by z = u3t

We are in position to state the main result of this chapter.
4.3.1 Claim. With the notation given above it follows that

tp ' =inv 0 2 — Z invy Op Y
U

=inv z — Zinvm yp=¢€ x
PES«

We prove Claim 4.3.1 by showing first that 9’ 2’ = z and then proving that
Oy Yy = ysp for each P € S..
Let us consider the following diagram with exact rows

0 — Hom((ZS),(J)) — Hom((M),(J)) —> Hom((I),(J)) — 0

A K
[ u[ u[

0 —— Hom(Z,Ck) 2, Hom(ZG, Ck) - Hom(AG,Ck) — 0

(4.3.1.1)

Let (f1, f2, f3) be an element of Hom((ZS), (J)), notice that

WA(f1, fo, f3) = @ (fito, fotof3t0) = fsto
= Z'Sf:% = iéui(fb o, f3)-

This last equality proves commutativity of the left square of diagram (4.3.1.1),
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commutativity of the right square follows in a similar way.
By applying G-cohomology to diagram (4.3.1.1) we obtain the following com-

mutative diagram

/
HY(G, Hom(AG, ) — 20— (G, C)

(4.3.1.2)

Commutativity of the diagram (4.3.1.2) implies that
0 2 =0 ut =ulot (4.3.1.3)
ut = 2. (4.3.1.4)

In order to prove that 0y yg = ygp for all primes we need the following claim.

4.3.2 Claim. If G is a group, N a ZG-module, S a finite set of subgroups
of G and for each H € S, My is a ZH-module. Let M = @y g Ind$ Mgy,
ig : Mg — M be the natural ZH-monomorphism and lyg : ]ndgMH — M be
the natural ZG-monomorphism. Then the following diagram commutes for all
n>1.

G
res
H™(G, Hom(M, N)) —— H"(H, Hom(M, N))

i) s

H™(G, Hom(Ind% Mg, N)) W H"(G,Hom(Mg,N))
Proof. Let us recall the dual ZG-isomorphism ¢ : Hom(L, Hom(M,N)) —
Hom(L ® M, N), introduced at the end of page 19. In this case we have that
Y~ Hom(ind$ My, N) — Homgy(ZG, Hom(My, N)),

where f in Hom(ind$ My, N) is sent to ¢)~! f, the element defined by =1 f(g) =
fg: My — N where m — f(g ®g m) for all m in My.
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We will also recall the homomorphism ©p : B* — B defined at the end of
page 14 and consider the case when B = Hom(Mypy, N), in this case

@Hom(MH,N) . HOmZH(ZG,HOW(MH,N» — Hom(MH,N)

is simply evaluation at 1¢.

Since Sh = (resg, O Hom(My,N)) s, our statement is equivalent to prove that
the following diagram commutes

T@SG

H™(G, Hom(M, N)) — H*(H, Hom(M, N))
H™(G, Hom(ind$ My, N))  H"(H,Hom(My, N))

(1N J T@F{om(MH,N)

H™"(G,Hom(Mg,N)*) *éH"(H, Hom(Mpy, N)*)
resg

Commutativity of the diagram above can be easily done at the level of cocycles.

]

We now consider the following diagram, which we state that is commutative.

H*(G, Hom(Indg, Z, J)) Sh — H*(Gy, Hom(Z,J))
Iy 5
/ T o /
H?(G, Hom(ZS, J)) L H?(Gop, Hom(ZS, J)) L
9
o HY(G, Hom(]ndgmAGrp, H)) Sh HY (G, Hom(AGsy, H))

ResG,
HY(G, Hom(I,J)) Ll H Gy, Hom(I, J))

(4.3.2.1)

Commutativity of the back face follows from functoriality of ”Shapiro’s iso-
morphism”, while commutativity of the the top and lower faces follows by a

direct application of Claim 4.3.2.
Commutativity of the left face follows by applying G-cohomology to the fol-
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lowing commutative diagram

jpam— M—" s
by [ Iy [ lp [
IndgmAGm 7.G Indng
Finally commutativity of
kB
H2(Gop, ) * H? (G, KG3)
' 0

HY(Gy, Hom(AGs, J)) F HY(Gy, Hom(AGy, Ki))

*

Implies that

I'yy] = 3%?2’%‘3]%688(3[ ]
= k?&’ig}Resgm[
= k?z’,}Resgwa'[

]

= k?z}}Resgm [y

y
Y]
y

’]

= [ygp]

(4.3.2.2)

by (4.2.0.1)
by diagram (4.3.2.2)
by diagram (4.3.2.1)

by 4.1.3.2
(4.3.2.3)

Equations (4.3.2.3) and (4.3.1.3) prove Claim 4.3.1.

Claim 4.3.1 states that if = is a two cocycle in H?(G, Hom(AS, n)) and 2’ is
a 1-cocycle in HY(G, Hom(L, u)) such that a,z = 9"2', then by 4.1.2.3

e(r) = tg(0") ta.(z)

=tp(2') = €(x).

%)

(4.3.2.4)



Chapter 5

The character € on the group
H?(G, Hom(AS, ).

The possibility of computing € depends highly on our ability of finding gener-
ators of H*(G, Hom(AS, p)), on which € can be evaluated.

By considering the exact sequence

2%k

i 0
0— B — Hom(ZS, p) > Hom(AS, p) — 0,

obtained after applying the functor Hom(—, u) to the Z-split augmentation

sequence
il ’Zl
00— AS—2ZS — 7 ——0,

one obtains after applying Tate cohomology, the following long exact sequence

i )
L B2@, Hom(ZS, 1)) — H2 (G, Hom(AS, ) 2 H3 (G, )

7% - %

31

A, H3(G,Hom(ZS, p)) — -
(5.0.0.1)
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In this chapter we will study the character ¢ by understanding its behaviour
on the image of i} : H*(G, Hom(ZS, p)) — H*(G, Hom(AS, p)), then we will

concentrate on
coker(i}) = ker (#; : H*(G, w) — H*(G, Hom(ZS, p))) .

Through the study of coker(i}) we will show that 2 annihilates the Tate co-
homology of G with values in u, hence we will reformulate our program by
passing to the ring Z' = Z[1/2].

We conclude this chapter by showing a partial reduction formula to the square-

free case.

5.1 € restricted to the image of i].

In this section we will prove that for ¥ in H*(G, Hom(ZS, ), €(it%) can be

computed only in terms of the local invariants, more precise

e(iE) = — ) invy (j.3)p. (5.1.0.1)
PEeS,

In order to simplify the notation we will dimension shift the argument and

work with the character ¢z defined in chapter 4.

Let & be a fix element in H'(G, Hom(I, F)) and fix a 1-cocycle g — &, whose

class in cohomology is Z, this induces the following two 1-cocycles

gr—= Ty = .f'gil
g Yy = JjTy,
If we denote by x (respectively y) to be the class of the cocycle g — z,

(resp g — y,) it follows immediately that (x,y) belongs to the ker(f.), since

Ju = JuitE = i35 = iy,
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We can consider the following diagram with exact rows

11 Z,l
0 L [ — AG —0
%J _ yyl 29 i
J jox
0 E J— Ck 0 (5.1.0.2)

where the left square commutes. We now prove the existence of z, : AG — Ck
making the above diagram commutes. Let a in AG and b in I such that
71(b) = a, define

zg(a) = Jyq(b)-

The map z, is well defined. To prove this assume that b; in I also satisfies
71(b1) = a, then exactness of the top row ensures the existence of ¢ in L such
that b = by + i1(c), which implies

jyg(b) = jyg(bl) + Jyq (i1(c))
= jyg(bl) + jjmg(c)
= Jyy(b1).

By definition of z, follows the commutativity of the right square of diagram
(5.1.0.2).

It follows clearly that g — 2, is a l-cocycle with values in Hom(AG, Ck)
since dz = j.0y = 0. We now take the 1-cocycle with values in Hom((1), (J))
defined by g — (24,y,, 2,), then its class t in HY(G, Hom((I), (J))) satisfies
us(t) = (z,y). Commutativity of diagram (5.1.0.2) gives that z,i; = jJy, =
JjZgy = 0, which implies z, = 0 since 7 : I — AG is a surjection. The fact that
zy = 0 for all g in G implies that u3(t) = 0 in H'(G, Hom(AG, Ck)) which
proves (5.1.0.1).

The dimension shifting described in chapter 4, which relates the characters e
and tp, gives that for any 7 in H*(G, Hom(ZS, ))

€(F) = — ) invy (j.d)y. (5.1.0.3)
Pe S«
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5.2 About the cokernel of 7.

We will now concentrate on studying

coker (i} - H*(G, Hom(ZS, p)) — H*(G, Hom(AS, p)))
“fer (47 : H*(G,p) — H*(G, Hom(ZS, p))) .

It is necessary for our purpose to to describe the group H3(G, w).

We begin with the following two technical claims.

5.2.1 Claim. i) Let q be an odd prime number, G = Aut(Z/q"Z) with
r > 1, then (Z/q"7Z) is a cohomologically trivial ZG-module.

i) Let G = Aut (Z/2"Z) for v > 1 and G, be the kernel of the natural
projection G — Aut (Z/AZ), then Z/2"'7Z is a cohomologically trivial
Z.G 1 -module.

Proof. We will only proof here (i) since the proof of (ii) follows a similar

argument. One can prove by induction on s that
(1+¢)*  =1+¢ (modg*),

for all s > 1. Notice that for the case s = 1 the equality follows immediately.
By induction hypothesis there exist an integer A such that

(1+¢)7 = [(1 + q)qH]q = [1+¢" + Ag™]*

I (j) (14 @) (A,

j=1

hence it would be enough to show that ¢**? divides (1+¢*)?— (1+¢*™"), which

follows easily from the equality

q
s s q sj
1+¢) = (1+¢") = ()qj-
7j=2

J

We identify G with (Z/q"Z)” and denote the kernel of the map G — (Z/q°Z)"
by G for 1 < s <r, then Gj is cyclic with generator the class of (1+ q)qs_1 or
equivalently the class of (1 + ¢®) and |G| = ¢"~*. The following two equalities
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hold

(Z)q2)% ={x € Z/(Z 1+ ¢)r=x (modq)}
— " (Z/72) and

q775—1
Go= ) (+g7 7=
=0
(1 + Q)qr_l -1 _ qrxr _ st

(1+q¢* " =1 ¢z, 1 T

s—1_r—s

I+ " —1
(I+q) " —1

Y

for some integers z,. and x4 coprime to ¢q. This implies that H*(G,Z/q"Z) = 0.
The Herbrand quotient and the fact the G, is cyclic imply that H(G,Z/q"Z) =
0 for all integers i. Clearly Z/q"Z is a cohomologically trivial ZG1-module and
since every subgroup H of G satisfies H NG, = G for some s > 1, one obtains
that H'(H N G1,Z/q"Z) = 0 for all i. The inflation restriction exact sequence
given in (2.1.3.1) implies that

inf:H (H/HNG1,(Z/qd"Z)""“") - H'(H,Z/q"Z)
is an isomorphism. The second isomorphism theorem gives H/H N G =
HG1 /G, which is a subgroup of G/G, = (Z/qZ)™ that has order coprime to
q, implying that H* (H/H NGy, (Z/q"Z)""%") = 0, from where one concludes
that Z/q"Z is a cohomologically trivial ZG-module. [

We can identify p with Z/2mZ where G acts according to the group homomor-
phism @ : G — Aut (Z/2mZ) defined in (3.0.0.1). We denote by N := [] G%,
where Gy denotes the ramification subgroup of the decomposition group Gy,
and the product is taken over all primes 8 in S, such that P|p and p an odd
prime dividing m.

It follows that:

(o)
p = p(2),

where p(q) denotes the g-primary component of p for any prime g, and that
KN = Q(u(2)), which is Q when m is odd.
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Let v = [ p(p), where the product is taken over all odd primes p|m hence

p=vxpu(2) and
oM = 1.

5.2.2 Claim. H'(N©) v) =0 for alli > 1.

Proof. By part (i) of Claim 5.2.1 follows that for all odd primes p|m, wu(p)
is a cohomologically trivial ZGg-module. We will use this observation and
proceed by induction on the number of primes dividing m.

If m =2", v =1 and the claim follow immediately.

Now let p be the smallest odd prime dividing m, we can write m = p"»m’ with
p not dividing m’ and 7, > 1. If B in S, is the prime of K above p, every
prime dividing |G| = p'»~1(p—1) is less than or equal to p. Notice that v =
v(p) X v,y where v,y = [[v(q) and the product is taken over all odd primes
q dividing m with ¢ > p. It follows that v(p) and v,, are cohomologically
trivial ZGyp-modules, hence so is v. Let us define NT(;,) = N([’)/G%. Since

o . . . . . . .
v = v, the inflation-restriction exact sequence gives isomorphisms

inf : Hi(NSL),),vm/) = H'(N©, v).

By hypothesis of induction H'(N©) v) = H(N © v,) = 0, which completes

m

the proof. O

We now denote by m the largest squarefree divisor of m, i the set of all roots
of the polynomial 2™ — 1, K = Q(fz) and G = Gal(K/Q). We let N be the
kernel of the natural surjection G — G. For s and ¢ integers we will denote
by (s,t) = gcd(s,t).

5.2.3 Claim. The group p is a cohomologically trivial ZN -module.

Proof. Let us write m = Hp|m p' such that all r, > 1, then

[N| =

) [ 00)  1r
(2, m) [ L 0(0) =11

plm
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It follows that NNV is the product of its p-primary subgroups N(p), all of which
are cyclic hence so is N. Every subgroup M of N can be seen as M =
[T, M(p) with M(p) = M N N(p). The fact that N is cyclic reduces the
statement to show that H'(M, pu) = 0 for any subgroup M of N. Let us fix p
an odd prime dividing m and denote by p, the set of all p™th-roots of unity,
then p = p, X p;, with m’ = m/p"™ and p;, = Z/2m'Z. One obtains that

H'(M(p), ) = H' (M (p), p,,) & H' (M (p), p;,)
=~ H'(M(p), p,) = 0.

The last equality follows from part (i) of Claim 5.2.1. The inflation-restriction

sequence gives
H'(M, p) = H'(M/M (p), p'®),

with M ®) 2 g2 s g Tt follows that H' (M /M (p), p™®)) = HY(M/M(p), ).
We can now use induction on the number of odd primes dividing m to obtain
that H' (M, p) = HY(M(2),u(2)) which is cohomologically trivial by (ii) of
Claim 5.2.1. O

The next is a series of results relating the cohomology of G and the cohomology
of G.
5.2.4 Claim. H'(G,p) = H{(G, 1) for all i > 1.

Proof. By Claim 5.2.3 it follows that H*(N,u) = 0 for all i« > 1, then the

inflation-restriction exact sequence gives isomorphisms
inf : H(G/N, uN) — H (G, ).

The fact that G = G /N and that " = @i concludes the proof. m

5.2.5 Claim. H' (G, u) = H'(G, Ho2,m)); Where poo ., denotes the set of all
roots of the polynomial X*?™) — 1.

Proof. In claim 5.2.2 we proved that H'(N®) v) = 0 for all 4 > 1, then the
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inflation restriction exact sequence gives that the homomorphism
inf : H(G/N©, vN) — H(G,v)

(o . . . .
N© 1, the above isomorphism implies

is actually an isomorphism. Since v
that H(G,v) = 0 for all i > 1. We can decompose p by g = u(2) x v. The
last observation gives that H (G, u) = H'(G, u(2)). By Claim 5.2.3 p(2) is a
cohomologically trivial ZN-module, once more the inflation-restriction exact

sequence gives isomorphisms
inf : HY(G, p(2)Y) — H'(G, u(2))

for all 4 > 1. The statement then follows after noticing that p(2)" = py

7m) :

]

The last claim says that H3(G, u) = H3(G,F5) in the case when m is odd and
that H3(G, u) = H3(G, p,) in the case when m is even, where p, is the set of
roots of the polynomial X* — 1.

Claim 5.2.4 gives us the hope that one can reduce the exact sequence given in
(5.0.0.1) to a similar exact sequence in terms of G, we show here a first step

towards this.

Let S = {‘ii =PNK:Pe S} and define the natural surjective G-map S —

S where B — ‘i?, this maps extends to a surjective ZG-homomorphism ZS —
ZS. By taking coinvariants one obtains a ZG-isomorphism

ZSn — 7S.

We now notice that ged (N : Ny) : P € S.) = 1 since Ny contains N(p), then

there exist integers asp such that

PeS,
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By fixing a left transversal Xy of Ny in IV, let a2y = Y - X nP3 and define
the homomorphism Z — ZS where 1 — Zme 5. Qeprsp, we conclude that the

augmentation sequence

00— AS—ZS —7Z——>0

Z N-splits, which implies that the following diagram with exact rows commutes

i

0— AS— 7S —7Z——0

We can identify ASy with AS and consider the following commutative dia-

gram with exact rows

0 — Hom(Z, p) — Hom(ZS, 1) —— Hom(AS, j1) — 0

| I I

0 — Hom(Z, )N = Hom(ZS, p)N — Hom(AS, u)¥ =0

By taking Tate cohomology we obtain the following commutative diagram

H?*(G, Hom(ZS, n)) —— H?*(G, Hom(AS, n)) — H*(G,pn) — H3(G, Hom(ZS, 1))
me% me% mf]g me%
H? (é,Hom(ZSu)N) — H? (é, Hom(AS, u)N> — H3(G, ) — H? (é’, Hom(ZSu)N>
(5.2.5.1)

From Claim 5.2.3 follows that p is a cohomologically trivial ZN-module, then
for any lattice L one has, by pg 141 of [13], that Hom(L, ) is also ZN-
cohomologically trivial. This implies that the inflation maps, which are the

vertical maps of diagram (5.2.5.1), are actually isomorphisms.

To make sense of the bottom row of the diagram (5.2.5.1) one must understand
Hom(ZS, u)N as a ZG-module.
5.2.6 Claim. Let Sg = {p :p is a prime of Q such that ‘ﬁ]p for some ‘i? € 5}
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It follows that

Hom(ZS, u)~ = @ zndg AL
bt

pGS@

In order to prove Claim 5.2.6 we need the following claim.
5.2.7 Claim. Let H be a subgroup of G and denote the image of H under the
surjection G — G by H, it follows that

Hom(ind$Z, M)N = indG (MNTH)
for any ZG-module M.

Proof. Let us choose subsets X and Y of G such that 15 belongs to both X
and Y and satisfying

G=|]|2NH
reX

N=||ynH),
yeyY

then G = | |,.x@H and G = | |, ||
Z-basis {ry @z 1 :x € X,y € Y}.

Let W be the Z-span of {y ®zy 1:y € Y}, hence W is a Z(N H )-submodule
of ind$7Z since h - (y @z 1) = hyh™! @z 1. Being hyh™! an element of N

Jey xyH, which implies that ind%Z has

there are unique y; € Y and ny € N N H such that hyh™! = yiny, hence
h-(y®zal) =y @zn 1.

It also follows that ind§Z = @, zW.

If we fix ax in X, W is a Z(x(N H)z~')-submodule, notice that (N H)z~! =
NxHz~! hence

Hom(ind§jZ, M) = ) Hom(zW, M),

zeX

where Hom/(xW, M) is the submodule of Hom (ind%Z, M)

{fe Hom(ind$Z, M) : f|sw = 0, for all 2’ # z}.
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Seeing as ZG-modules one has that

Hom(ind§Z, M)N = @ Hom(zW, M),

zeX

It is not difficult to prove that Hom(xW, M) = xHom(W, M), hence Hom(zW, M)N =
THom(W, M)N which implies

Hom(ind§Z, M) = B i Hom(W, M)~

zeX
GB inalgi (Hom(W, M)™) .
zeX
The claim follows from the fact Hom (W, M)N = MNOH as ZH-modules. In
order to prove this last statement notice that the homomorphism indy ;7 —

W, where y Q@znng 1lg — Yy @z 1g, is an isomorphism hence by Frobenius

reciprocity one has that as Z-modules
Hom(W, M)N = Hom(indN~yZ, M) = Hom(Z, M)V = pN0H
as wanted. O]

Proof of claim 5.2.6. Let S, (respectively S@) be the set of all primes of K
above p (resp, the set of all primes of K above ) then ZS = @pESQ ZS,.
There is for each p € Sp a unique P € S, above p and an isomorphism
indng — 1S, where g®z, 1 — ¢. We now apply Claim 5.2.7 with H = Gy
and M = p, since GyNN = Ny we obtain Hom(ZS,, u)" = z'ndgq~3 (u™). O

The last two claims suggest that the following diagram commutes

Dyes. H(Cy. 1) 21 H2(G, Hom(28, ) — HA(G, Hom(AS, )
] g2 g
Byes, TG ) 28 112(G, Hom (25, 1)) — H2(G, Hom(AS, w)™)
(5.2.7.1)

where the inflation maps are all isomorphisms, in fact we only need to prove
commutativity of the left square of diagram 5.2.7.1.
Since Z = Py, mdng as a ZG-module and from the fact that as ZG-
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module ZS = @pe&@

mutative diagram

7S, and ZS, = mdng one obtains the following com-

Pyes. H* (G, Hom(indg, Z, p)) —— H*(G, Hom(ZS, p))
infT% meg

B,cs, H*(G, Hom(indg, Z, n)V) — H(C, Hom(ZS, p)") 527

In order to show that the left square of diagram 5.2.7.1 commutes, it would
be enough to show that for each p in Sg, if 98 is the only prime in S, above p,

the next diagram commutes.

Shyt
H (G, ) ——— H(G, Hom(indg, Z. p))
me%“ gp1 inng

H2 (G, (1)) ——— H*(G, Hom(indZ, Z, j1)")
= (5.2.7.3)

We will prove in more generality the following

5.2.8 Claim. Let G be a group, H a subgroup of finite index and N a normal
subgroup of G. Let us denote by G = G/N and the image of H under the
projection G — G by H. Then the following diagram commutes

—1
H2(H, M) <2 H(G, Hom(ind§/Z, M)
in ng in ng
Sh-1

H*(H, (M)N™) & H*(G, Hom(ind§Z, M)™)
= (5.2.8.1)

for any ZH-module M.

We begin by describing the isomorphism

Sh™': H*(G, Hom(ind$%Z, M)) — H?*(H, M).
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Let us denote by {B? , 5.} the bar resolution of G' (the reader can find the

definition in subsection 6.1.3) hence we can define
U : Homeg(BS, Hom(ind$% 7, M)) — Homy(BS, M)
in the following way: given z in Homg(BS, Hom(ind$%Z, M)) let
YnZgy...gn = Zgy....qn(la @ 1). (5.2.8.2)

It follows clearly that d} . ¥n2 = 1,105, then {¢,} is a chain map which

induces group homomorphisms
Y HY(G, Hom(ind$ 7, M)) — H"(H, M),

It is not difficult to show that v, = Sh™L.

The following lemma is a well known result, we present the proof here for
computational reasons.

5.2.9 Lemma. Let G be a group, H a subgroup of finite index and M a
ZH-module. Let us denote by coind$ M = Homyy (ZG, M) where G acts by

(9£)(s) = f(s9)
for all g,s in G. Then ind%M = conind% M as ZG-modules.

Proof. We begin by fixing a finite set X of G such that G = | | . Hx. We
define v : coind% M — ind$ M by

= a7 ®p f(z). (5.2.9.1)

zeX

Notice that (hz)™ @y f(hx) = 7! @5 f(z), hence 9 is well defined and
independent of the choice of X. We now prove that v is a ZG-homomorphism.

Let g be an arbitrary element of GG hence

Zx ®u (9f)(z Zx ®m f(xg)

zeX rzeX
=> g9 ' @n flrg) =g Y (r9)" ®u flrg) = g(f).
zeX zeX
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In order to show that v is an isomorphism we describe its inverse. Let z =
> vex T @umy in ind§G M. We define ¢ : ind5 M — coind% M where ¢(z) =
¢, : ZG — M is the map defined by

¢.(g) = hm, where hx =g. (5.2.9.2)

It follows that ¢ well defined since ¢.(hog) = ho.(g) for all hy in H.
We now prove that ¢ is a ZG-homomorphism. For this we fix g in G and show
that

Gg:(5) = g0:(s) = 92(sg) (5.2.9.3)

for all s in G.

Let us assume that s = h%° for some A" in H and 2° in X. Then sg = h°h/z’
for some A’ in H and 2’ in X, hence ¢.(sg) = h%h/'m.

Notice that for each z in X there exist h, in H and v, in X such that zg~! =
h.y. it follows that

gz2=gY ' @ume =Y (vg ") @um,

zeX rzeX

=Y v, @uh;tm,.

zeX

Since s = h%Y it follows that 2° = y, = h 'zg™! is equivalent to hox° =

hoh;'zg™!, hence
ROn'z’ = sg = h’2°g = hOh o
We can conclude that hy' = &' and x = 2’ hence ¢,.(s) = h°h’'m,s, which

proofs (5.2.9.3).
It follows clearly that ¥¢(z) = z while

which concludes the proof. n
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It follows from the proof of claim 5.2.7 that the ZG-isomorphism
Hom(ind$Z, p)~ — ind%(uN”H)
can be expressed by

The isomorphism above induces an isomorphism between H(G, Hom(ind$7Z, M)N)
and H?(G,indG (MNOH)).
The lower horizontal isomorphism of diagram 5.2.8.1 is given by the following

composition

H2(G, Hom(ind$Z, M)N) ——— H*(G,ind% (MN™))

—

H%(G, coindC (MNNH)Y) _sh H?(H, MNOH)
i (5.2.9.4)

At the level of cocycles the composition above sends the 2-cocycle gy, gs —

%35, to the 2-cocycle gy, ge — o . where

g1,92

" _ :
Tg1,g2 = ¢lé®ﬁ$§1,§2 (1e®nul) (16‘)

= Ighfb(lg Qg 1) (5295)

We are in position to prove claim 5.2.8. Let ¢i,g2 — x5 5, be a 2-cocycle
whose class  is in H?(G, Hom(indgz, M)N). By (5.2.8.2) and the definition

/

of the inflation map one obtains that the class 2’ of the 2-cocycle g1, g2 — 7,

given by
x;n,gz = x§1,§2(1G OH 1)7

satisfies Sh™! o inf(z) = 2/. Tt also follows clearly by (5.2.9.5) that inf o
Sh™1(x) = inf(z") = 2/, which proves the commutativity of diagram 5.2.8.1.
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5.3 The new model.

Recall the augmentation sequence
?:0 Z/O
00— AG — ZG ——7Z — 0.

5.3.1 Claim. Let ¢ in centre(ZG), with io(c) =0 and M a finitely generated
Z.G-module, then the action of ¢ on M annihilates all Tate cohomology.

Proof. 1f one proves the statement for ZG-lattices then it follows for any ZG-
module. This follows since there exists a ZG-projective module P and a sur-
jective ZG-homomorphism P — M. Letting L = ker(P — L) one obtains the

following commutative diagram with exact rows

0 L P M 0
CLJ CPJ CMJ
0 L P M 0

By applying Tate cohomology one obtains the following commutative square

(G, M) -Ls (G, L)

(ear)e | (cx)- |

w6, M) -Ls (G, L)

where the connecting homomorphisms are actually isomorphisms. If (¢g). is
the zero map, commutativity of the last diagram implies that (cjs). is the zero
map.

In order to prove the statement for for lattices let us assume that M has no
torsion, recalling that M° = Hom(M,Z) there exists a projective module P
and a surjection P — M?° letting L = ker(P — M?) one obtains the following

exact sequence

0 L P Mo 0,

we now apply the functor ( )° to the last exact sequence and using the fact
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that ()° is an exact contravariant functor in the category of ZG-lattices, that

sends ZG-projectives to ZG-projectives, one obtains that

0— (M°)° — P° — L° —— 0

is an exact sequence. Since (M°)° = M the following diagram with exact row

commutes
0 M Pe L° 0
Cymr J Cpo J Cro J
0 M Pe L° 0

Once more, we take Tate cohomology and obtain a commutative square

H(G, 1°) -2 (G M)

(o). | (enr)- |
H™(G, L°) - H"(G, M)

Q

I

where the horizontal maps are connecting isomorphism. The last diagram
shows that it would be enough to prove that (cyr). : H*(G, M) — H°(G, M)
is the zero map for an arbitrary lattice M.

There is a natural surjection M% — HO(G, M), If b = deG byg is an element

in ZG and m is an element of MS one has that

bom=Y by(g-m)= (Z@) m

geG gelG

Clearly if ¢ belongs to ker(iy), the last equation shows that cy¢ : MY — M©

is given by cpa(m) = ip(c)m = 0. Finally commutativity of the following
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diagram

MC — H°(G, M)

(cue)e| (e |
MG — HY(G, M)

shows that (cpr). : HY(G, M) — H°(G, M) is the zero map as wanted. O

Notice that Claim 5.3.1 is still true if ¢ is in centre(ZG) and iy(c) = 0
(mod |G]) since |G|ME is a subset of GMC.
5.3.2 Claim. H*(G, p) is annihilated by 2.

Proof. Let ¢ in G be the complex conjugation then ¢(u) = ! for all u in p.
Let ¢ = 15 — ¢ and notice that this element satisfies the conditions of Claim
5.3.1 hence ¢, : H"(G, u) — H"(G, p) is the zero map.

It follows that c(u) = p(u=')™' = p? for all u € p hence c, is given by
multiplication by 2 on H"(G, ), which proves the statement. O

The fact that 2 annihilates the Tate cohomology of G with coefficients in u
led us to consider working in the category of Z'G-modules, where Z' = Z[1/2].

We will show next the advantages of this change of categories.

Given a ZG-module M, let M' = 7' ® M considered as a Z'G-module in
the natural way. Given a Z'G-module N we will denote by HJ,(G,N) =
Eaxty, (Z',N).

The next claim is a well know fact, hence we omit the proof here.

5.3.3 Claim. Let M be a finitely generated ZG-module then

7' ® H"(G, M) = H2 (G, M").

From Claims 5.3.3 and 5.3.2 we obtain that H},(G,u') = 0 for all n in Z,
then the exact sequence given in (5.1.0.1) under this new model gives an

isomorphism

it H2,(G,Hom(Z'S, i) — HZ(G, Homg ((AS)', ).

73



By Claims 5.3.3 and 5.2.3 one obtains that g’ is a cohomologically trivial Z'N-
module, the same statement holds for Homg (Z'S, p') and Homgz ((AS)', p'),
hence the commutative diagram given in (5.2.7.1) can be rewritten in the

following way

Sh oy 1 .y
Dycs, H2 (G i) — s H2(G, Homey (2, 1)) — HE(G, Homzy ((AS), )
me& mf[%’ mng
- N ] -
@pGSQ H%’(G‘i?? (“/)Nqs) i) H%’ (G7 HomZ’ (2/87 IJ’/)N) *1> H%’(Ga HOmZ’((AS),7 l‘l’l>n)

where all maps are isomorphism.

The last diagram shows that under this new set up, one can always reduce the
computation of € to compute local invariant in a tamely ramified sub exten-
sions, we will see in the next chapter that the computation of local invariants

in tamely ramified extension of Q can be done in an algorithmic way.
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Chapter 6

Generator of HQ(G;I;, ).

One way to have sufficient control over the character € is to find generators for
H?(G, Hom(AS, u)) where € can be evaluated. A first step towards achiev-
ing this is to find generators for H?(G, Hom(ZS, u)) which is isomorphic (by
Shapiro’s Lemma) to Py, H(Gp, b)-

The main objective of this chapter will be to study the groups H?*(Gy, p) for
a fix P in S.,.
In the case when ‘P is non archimedean, we will use the filtration given by the

Hochschild-Serre spectral sequence associated to the group extension
G;% — an — G_(q%
where G denotes the ramification subgroup of Gy and Gy = Gy/ G, to show

that finding generators for the groups H*~(Gy, H'(Gg, p)) for i = 0,1,2 will
induce a set of generators for H?(Gsy, p).

This chapter is organized as follows. In the first section we will use the
Hochschild-Serre spectral sequence for the particular case when p = Z/2mZ

with m an odd squarefree positive integer, to find explicit generators of H>~%(Gy, Hi(G%, w).

In the second section we keep the assumption that m is an odd squarefree

positive integer and evaluate invy in the set of generators found in the previous
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section.
It should be mentioned that in this chapter H* will denote regular cohomology

while H* denotes Tate cohomology.

6.1 Set of generators for H*(Gy, p).

From this point on in this chapter, we will assume that pu = Z/2mZ for m an

odd squarefree positive integer.

We mention at the beginning of the chapter that for a fix P € S, Gy will
denote the ramification subgroup of Gy and that qu = Gy/ G, then we have
proved in Section 3 of Chapter 2 that the second term of the Hochschild-Serre

spectral sequence associated to the group extension

G;% >—’G‘l‘4»@%

has the following form EJ? = H?(Gy, HY(Gg, ).

We want to begin this section by showing that for any prime number p which
divides m, g can be factor by pu = p, ® p;, where ged (4, ], |G§3D =1 and
P € S, is the prime above p. Also that Gy = G x (0,) where 0, is an
element in Gy such that its image &, under the map Gy — Gy is a Frobenius
automorphism. This will imply that

EYt = HP((0,), H(Gg, 1))
Since we are interested in F5? when p+¢ = 2 our next task will be to compute

H'(G%, my,) and H*7*((o,), H' (G, py,)) for i = 0,1,2.
We will conclude this section by presenting explicit generators for H*(Gy, ).
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6.1.1 Two observations.

Let p be a prime number dividing m and B be the prime in S, above p, there

is a ZG-homomorphism
prp— Ky (6.1.1.1)

given by u — u +*P for all u € p.

Let us choose a generator p of g and denote m, = m/p. Since ker(p) consist
of all the pth-roots of unity of E, ker(p) = (u,) where p, = p?™». We will
denote by p, = ker(p).

The following exact sequence

1 .
Hp —— 1 —» im(p) (6.1.1.2)

ZGy-splits. In order to prove this, let o be an integer such that 1+ 2m,a =

0 (mod p) and define ¢ : p — p, by p = p,* which is clearly a ZGg-
homomorphism, it follows that ¢i = Id,, since
—2mpa

Vi(pp) = p, = Uy,

by the choice of a.

Let p, = ppy and p, = (1) = im(p) then p = p, ® p;,.

Since |p,| = p and |G| = p — 1 it follows that ged(|p,|, |Gg|) = 1 from where

we conclude that
H"(Gg, m) = H (G, py,)  for all n > 0. (6.1.1.3)
6.1.2 Claim. If op € Gy is such that &, is a Frobenius automorphism

Ggp = G% D <0'q3>.
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6.1.3 The groups H'( g 1) for i =10,1,2.

This subsection will focus on finding generators x* for the groups H i(G%, ;)
for:=20,1,2.

We should mention at this point that throughout this chapter we will change
the notation that has been used in previous chapters, regarding element in

cohomology groups and cocycles in order to make the equations easier to read.

We will use two type of projective resolutions namely the bar resolution and
the cyclic resolution.

Given a finite group G we will denote by {B,G , (5.} to be the bar resolution

3 P 0

€
- — BY — BY — B —» Z,

where B§ = ZG, BY is the ZG-free module with ZG-basis {[g1] - - |gn] : 91, -, 90 € G}

for n > 1, €“ is the augmentation map and

n—1

Onlg1] -+ lgn] = g1lg2| - - - [gn] + Z(—l)i[gll o gigial o ga] + (=1)"[g1] - -+ |gn-1]-

In the case when G is cyclic let us fix a generator s of G, {C.G , 5.} will denote

the cyclic resolution

0 0. 4} G
3020209108;62’

where C¢ = ZG, €“ is the augmentation map, and d,, is multiplication by s— 1

for n odd while §,, = Ng for n even.

The following is a series of known results in cohomology.
6.1.4 Claim. Let G be a finite group and M an abelian group. If G acts
trivially on M it follows

i) H(G, M) = M
i) HY(G, M) = Homz(G, M)
iii) HO(G, M) = M/|G|M.
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The proof of this statement follows by using the bar resolution of G. Also
notice that if G is cyclic and M is a ZG-module, the cyclic resolution of G
implies that H "(G, M) depends only on the parity of n.

6.1.5 Claim. Let G be a cyclic group and M a ZG-module then ﬁ”(G, M) =
H'"2(G, M) for all n in Z.

6.1.6 Remark. Since Gg is cyclic of order p — 1, which acts trivially on p,,

whenever p divides m, it follows that
i) H°(Gg, 1) =
i) H'(G%, w,) = Homz (G, py,)
i) H*(G§, py) = H(Gg, ) = 1,/ |G| 14
From remark 6.1.6 one obtains that |H%(G§, p;,)| = 2m, and if we denote
vp = ged(2my, p — 1) then [HY (G, )| = [H (G, 3,)| = vp-

We will now concentrate on finding generators for each of this cohomology

groups.

Let G be a finite cyclic group and consider the following exact sequence

0 Z Q—Q/Z—0, (6.1.6.1)

where G acts trivially on each module. The fact that |G|Q = Q and that
Homyz(G,Q) = 0 implies that Q is ZG-cohomologically trivial. After applying
Tate cohomology to the sequence (6.1.6.1) one obtains a connecting isomor-

phisms
d, - H(G,Q/zZ) — H" (G, Z), (6.1.6.2)
for all n. In the particular case when n = 1 we obtain

H*(G,Z) = HY(G,Q/Z) = Homy(G,Q/Z).
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Let s be a fix generator of G and define 6, : G — Q/Z by
0,(s") = — +Z. (6.1.6.3)

It follows that 6, is a generator of Homy (G, Q/Z).

We now define 6, : B — Q/Z by

As] =

= —+Z. 6.1.6.4
Il ( )

It is not difficult to show that 6, = 0 and that [4,] is a generator of H'(G, Q/Z).
It also follows clearly that 9 given in (6.1.6.2) sends [f,] to [f,] where 6, in
Homyg(BS,7Z) is given by

0 if i4+j<|G|
1 if i+j>|G]

95[5i|5j] =

We must mention here that we choose 0 < i, j < |G]|.

6.1.7 Claim. Let G be acyclic group and M a ZG-module. The generator
0,] of H*(G,Z) induces an isomorphism, which by abuse of notation will be
denoted by 0] : H*(G, M) — H""*(G, M) for every integer n, given by the

following composition

Hn [es]u n+2 ¢* n+2
(G, M) — H™(G,Z x M) — H™*(G, M) (6.1.7.1)

where ¢ : Z x M — M maps (t,m) to tm and L is the cup product.

From this point on s, denotes a generator of the cyclic group Gg.
GO
Let 2% = py, in H°(G§, ), ' in Homgz (B, ¥, ) be defined by

~1

Th[s!

b = (:u;))itp where ¢, = 2m,/v,,

and 2° = (p)" in ﬁO(G%, ).
By Claim 6.1.4 it follows that [2°] and [Z'] are generators of H?(G§, p;,) and
H'(G%, m;,) respectively, it also follows that [2°] generates H (G 11y)-
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We can now apply Claim 6.1.7 for n = 0 to conclude that 7% = Du(0sy

which has the following expression

o i 1 if i+ <|Ggl

Plslsl=q )
()’ if i+ j > |Gl

is a 2-cocycle whose class [7?] generates H?(Gg;, p;,)-

It will be shown in the next section that we actually require cocycles z* in
HomZG%(BZ-G‘B,u;) such that their classes [2'] generate H'(Gg, ) for i =
0,1,2.

Let G be a finite group and H a subgroup of G. Fixing X a right transversal

of H in G one can define a map ¢~ : G — H by ¢*(hz) = h for all h in H and
7 in X, then ¢¥ extends to a ZH-homomorphism ¢ : B¢ — B as follows

¢§[h1$1| o hprg] = [hal - B

it can easily be proved that 67 ¢;X = ¢7* 165, Since { BY, 4, } is a ZH-projective
resolution for Z the following Claim holds.
6.1.8 Claim. Let G,H and X as above. For any ZG-module M the homo-

morphism
(¢X)* - H"(H,M) — H™"(H, M)

15 an isomorphism for all integers n.

The proof of this Claim can be found on pg 113 [12].

By Claim 6.1.2 we can take X = {O'g 0<5< fqg}, then ¢~ : Gy — Gy is
given by ¢X(sto?) = si. By Claim 6.1.8 if ' = 7’ 0 ¢ it follows that [z'] is a
generator of H Z'(Ggg, ;) for i = 0,1,2. We can explicitly compute
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(shol) = i°(s)) = (6.1.8.1)

a[siol] = @' [s)] = ()™ (6.1.8.2)

I’Q[SZlUJllSZQO'JQ] —_ [ 11|812]

1 if 045 <|G¢
= J <165l (6.1.8.3)
()t if i+ > |Gyl

6.1.9 The groups H? ' (Gy, H'( o 1))

Our next task is to compute the groups H>~(Gy, H (G4, 1)) for i = 0,1,2.

We start by noticing that

o) = (1,)P" = ()",

the equality above follows since 2m,, divides (p — 1)t,,.

This last observation implies by (6.1.8.2) (respectively (6.1.8.3)) that the ac-
tion of Gy on HY (G, m;,) (vesp H* (G, py,)) is trivial.

By Claim 6.1.4 (i) one can state that H(Gy, H*(G%, ) = H*(Gg, p)
meaning that we can define the 0-cocycle 3° in Hom@m(Bon, H?*(G%, m;,)) in

the following way
¥(,) = 7], (6.1.9.1

where &, denotes the image of o, under the natural projection of G onto Gsp.

Being H?(G, ) cyclic with generator [27] it follows that [y°] is a generator
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of H(Gry, HA(G3, ).

Claim 6.1.4 (ii) gives H'(Gy, H' (G, p)) = Homg(Goy, H' (G, p})). Since
Gy is cyclic of order fy and H Y(G%, my,) is cyclic of order vy, if we let v, =

ged(fy,vp) and ) = v, /vy, we can define the 1-cocycle y' as follows

y'[o,] = tpx']. (6.1.9.2)
Then [y'] generates H'(Gy, H' (G, py,)).
In order to compute H*(Gsy, H O(G%, u,)) we must first compute the group

ﬁo(ém,HO(Gfﬁ,u;)). Notice that (u;)é‘ﬁ = ((uy,)") and that

fp-1
Ny (1) = ()= 7",

The ZG-homomorphism p : p — Ky given in (6.1.1.1) and the fact that p;, =
im(p) give that || = 2m,, divides [Ky| = p™® —1. We recall that t,v, = 2m,,
which implies that ¢, divides p/* — 1. Since ged(t,,p — 1) = 1 it follows that
t, must divide S27%" pi. Let n, = (Ezfio_lpi) [tp, vy = ged(vp, ny,) and
t, = vp/vy, then the class of the 0-cocycle 7" given by

§°(0p) = ty[a"]

is a generator of H(Giy, H°(G%, ;). Applying Claim 6.1.7 one can show
that the class of the 2-cocycle y? given by

o 0 if iy + iy < |G
Ploi|a2] = 1+ < |Gyl i (6.1.9.3)

generates H?(Gy, H(Gg, p),)).

6.1.10 Set of generators of H?(Gy,p) for B a ramified

prime.

Let B in S, be the prime above the prime number p which divides m. Following

the idea presented at the end of section 3 of chapter 2, we can construct the
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ZG-projective resolution of Z E™ = @I, B?’p ® B Let ¢, : Bo* — E,, be
defined by
n—1
Snlgrl - lgnl = 1@ [g1] -+ lgn] + Y _[G1] -+ |Gn-i] ® g1+ GnilGn—isa| - - - |gn]
i=1
+g1] g @ g1 gn

for n > 0, where g denotes the image of g in Gy under the natural projection
Gy — Gy. Keeping the notation given in section 2.3.9, it is not difficult to
show that 0,0, = Gn_10n.

Let us define 1, : B — BS* as follows

" Id oy it 1=n
G_‘»B qu = 0
BUeBS o if i#n

It is not difficult to show that {i,} is a chain map and that ¢! and ¢ are

inverse chain maps to each other.

The composition ¢ o I' (I" given in 2.3.11.2) induces a surjective homomor-

phism.

2
B B> (G, H (GG, 1)) — H? (G, ).

=0

Let 2t € H omgm(BQG ¥, ) be the 2-cocycle given by
Z=¢50Ty = @500y,

then {[z7] : 0 <7 < 2} is a set of generators of H?(Gy, ).

We conclude this section by given an explicit description of the 2-cocycles 2
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for:=0,1,2.

o lsof] = 11 @ [ od o)
= 12 [3;1 ng |s§f 0;;2]

11 i1+i2<‘G%|

_ (6.1.10.1)
()t if iy + iy > |G
zylsitolts2o?2] = ity ([o] @ sitolt[si2ol?])
_ jlt;xl(s;}o—gl [8;20;;2])
_ (M;)jliztptﬁo (6.1.10.2)
Zg[sélazl‘sifaf] — 73’0y2([0;31|022] ® 8;}1+i+20.§1+j2)
1 if ji+j2<|G
_ Jit gz < |Gyl (6.1.10.3)

(M;lp)tg if ji+j2 > |Gyl
6.1.11 The unramified case.

Another case to consider is when £ in S, is unramified. Let ¢ be the prime
number below £, in this case, G is trivial and the cyclic group Ga = Gy.
The only non trivial group E;’Q_i associated to the Hochschild-Serre spectral
sequence is By" = H*(Ggq, HY(G%, 1)) = H*(Ga, p) = H(Gq, p).

We can proceed exactly as in the previous subsection with the only exception
of assuming m, = m.

From the computations done before one has u&2 = (y'e) and that H(Gg, ) =
(pfa'a). Finally by applying Claim 6.1.7 one gets that the class of the 2-cocycle

ZZ given by

1 if 41 +ix < ‘Gsp|

zo[oalogd] = (6.1.11.1)

plata if 4y + iy > |Gyl

generates the group H?(Gq, p).
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6.1.12 The archimedean case.

Let ¢ be complex conjugation in G, we will denote by GG, the decomposition
subgroup associated to ¢. Since G is cyclic of order 2 it follows by Claim
6.1.7 that the class of the 2-cocycle

. 1 if iy + iy < |G
22 []¢?] = 1+ < |G (6.1.12.1)
—1 i iy 41y > |Gool

generates the group H?(G, ).

6.2 Computation of inuvy.

We remain under the assumption that m is an odd squarefree positive integer.
We will describe a method to evaluate local invariant maps, this method can

be found in a paper by A. Weiss (in progress).

Let p be a prime which divides m and ‘B the prime in S, above p. For z a
2-cocycle whose class [z] is in H?(Gyp, p), we fix s in Gy to be a generator
of G§. By Claim 6.1.2 there exists o in Gy satisfying Gy = (s) @ (o) and
(7) = Gy

We will denote by

z, = (z[o|s] " afslo]) T «luls]. (6.2.0.1)

ueG%

It follows that s belongs to F)'. Let d be the least positive integer such that

=d _
i =1

Let a: G — (Z/2mZ)” be the group homomorphism defined in (3.0.0.1) and
denote by a(s) the image of a(s) under the projection (Z/2mZ)* — F), since

a(s) generates

a(s)" "=V = (z).

There exists an integer h relatively prime to d with a(s)~®-V"d = z_.
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One can conclude that

als

invg([z]) = —= + Z. (6.2.0.2)

We will now evaluate invy on the 2-cocycles z* given in subsection 6.1.10.

We start by considering the 2-cocycle z2. By (6.1.10.3) one can say that

2, = (Plopls,] 7 2splon]) ] #*lulsy) =1,

uEG&

which immediately implies that
invg([2)]) = 0+ Z. (6.2.0.3)

We can now look at 2°; in this case (6.1.10.1) gives

zgp = (20[0p|5p]7120[3p|‘7p]) H ZO[U|5p] = (M;;)tp~
uEG%

It follows that d in this case is v, = gcd(2m,,,p — 1). Notice that this value

does not depend of the choice of s, or g,, hence we can choose s, to be a

generator of Gig; with the property that a(s,)"P1/d = z, - This implies that
1

invg([2)]) = 0 +Z. (6.2.0.4)

We consider now the cocycle 2!, (6.1.10.2) shows that

Zip = (zl[ap]sp]*lzl[sp‘ap]) H 2Hulsy) = (u;)ftpt;'

ueGy
Since t,t;, = 2m,, /v, we can conclude that d is v),. As in the previous case we
can assume h to be 1 hence

invg([z,]) = —i, + Z. (6.2.0.5)

Y

If ¢ is a prime number that does not divide m and £ is the unique prime in
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S, above ¢ and ¢ denotes complex conjugation, it follows that

invg([22]) =0+ Z (6.2.0.6)
. oy 1
NV |25, = 5T Z. (6.2.0.7)
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Chapter 7

Localizing.

In this chapter we introduce the "local parts” for a [f] in [L, C]

We begin by proving the existence of a commutative diagram

H2<G‘J37 I’l’) - HQ(Ga Hom(AS, I’l’))

8,51” a—llg
H(Go, Hom(AG, C)) —— [L, C]

651

for each P in S,.

We then give an explicit description of the isomorphism

03"« H*(Gy, m) — H*(Gy, Hom(AG, C)).

We conclude by defining a ZG-homomorphism g, : [C, L]lg — [C, AG]g, and
a non-degenerate pairing

758 : [0, AG]g, x [AG, Cla, — Q/Z,

such that the following holds

To2(B1f), 2) = T (fulr2))

for all z in H(Gy, Hom(AG, C)) = [AG, Clay-
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7.1 A commutative diagram.

The main objective of this section is to show that there exist a commutative

diagram

H*(Gy, p) —— H*(G, Hom(AS, p))

s s

HO(Ge, Hom(AG, C)) —— [L, C] (7.1.0.1)

where u — C' — C'is an envelope of g and B is an arbitrary prime in S,.
Let L = AG®AS and [ = ZG ® AS. We consider 0 — L — I — AS — 0 to
be the exact sequence obtained by applying the exact functor — ® AS to the
augmentation sequence 0 - AG — ZG — Z — 0.

We will list a couple of known result in cohomology for which we will only
sketch their proof.

7.1.1 Claim. Given Ly and Ly ZG-lattices, ¢ in Hom(Ly, Ly) and N a ZG-
module there is commutative diagram

HY(G, Hom(Ls, N)) _r HY(G, Hom(Ly, N))

43 48
HIG. Hom(AG © Ly, NY) ——s HI(G. Hom(AG ® Ly, N))

for all integers q.

Proof. Let us start by mentioning that the functors —® L; are exact for i = 1, 2.
By applying this functors to the exact sequence 0 - AG — ZG — Z — 0 we

obtain the following commutative diagram with exact rows

‘| ‘| d

(7.1.1.1)
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Using the fact that Fxtj(L;, N) = 0 for i« = 1,2, we obtain that diagram

(7.1.1.1) induces a commutative diagram

0 — Hom(L2, N) — Hom(ZG & Ly, N) — Hom(AG ® Ly, N) — 0
| | |
0 — Hom(Li,N) — Hom(ZG & L1,N) — Hom(AG ® L1,N) — 0
(7.1.1.2)
with exact rows. We now apply G-cohomology to diagram (7.1.2.1) and since

Hom(ZG® L;, N) are cohomologically trivial for i = 1,2, we obtain the desired
diagram. O]

7.1.2 Claim. Let p — N — M be an envelope of wu, Ly, Ly ZG-lattices and

¢ an element of Hom(Ly, Ly), there exist commutative diagrams

*

(G, Hom(Lo, 1))~ HH¥1(G, Hom(Ls, )

gTa . %Té?
HI(G, Hom(Ln, M) —— H9(G. Hom(L,. M)

for all integers q.

Proof. Since the functors Hom(L;,—) are exact for ¢ = 1,2 one obtains the

following commutative diagram with exact rows

0 — Hom(Ly, u) — Hom(Lo, N) — Hom(Lg, M) — 0

o o] o]
0 — Hom(Ly, p) — Hom(Ly, N) — Hom(Ly, M) — 0 (7.1.2.1)

by applying G-cohomology to diagram (7.1.2.1) and using the fact that Hom(L;, N)
are cohomologically trivial, by ([13] pg 152), one obtains the desired dia-
gram. O

As mention before we fix

0 r C

Q
(@)

(7.1.2.2)
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to be an envelope of pu, hence we obtain the following commutative diagram

H?*(G,Hom(ZS, p)) —— H*(G, Hom(AS, n))

a]z a]g

HY (G, Hom(AG @ ZS, p)) —— HY (G, Hom(L, u))

o] o]=

[AG ® 7S, C L, C]

1%

(7.1.2.3)

where the upper square is obtained by applying claim 7.1.1 with L; = AS,
Ly = 7S and ¢ : AS — ZS the natural inclusion, while the lower square is
obtained by applying claim 7.1.2 to (7.1.2.2) with L; = L and Ly = AGRZS.

Since 7S = 69‘136 s, indng, we will denote by ¢y : ZS — indng the natural
projection for each P € S,. Letting L1 = ZS and Ly = mdng, claim 7.1.1

and claim 7.1.2 give the following commutative diagram

*

¢
H2(G, Hom(indg, 7, ) ————— H(G, Hom(ZS, )

e 5 o] =
H'(G, Hom(AG ® ind%, Z, ) —— H'(G, Hom(AG ® LS, 1))
o= 5 o] =
[AG ® indg, 2, hd [AG ® Z8, C]

(7.1.2.4)

If we identify p naturally with Hom(Z, i), functoriality of the Shapiro’s iso-
morphism Sh(r ar,n) defined in 2.2.4.1, gives the following commutative dia-

gram

H?(Gy, p)) ———— H*(G, Hom(indng, w))

JE e

HY (G, Hom(AG, p)) —— H'(G, Hom(AG ® indng, n))

o]~ o]=
_ . G
HO(Gy, Hom(AG, C)) ———— [AG ® indg, Z, C] (7.1.2.5)

Diagrams (7.1.2.3), (7.1.2.4) and (7.1.2.5) prove the existence of diagram
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(7.1.0.1).

7.2 &;31 . H*(Goy, ) = HY(Gy, Hom(AG, O)).
In this this section we will compute the inverse of the isomorphism
HO(Gy, Hom(AG, C)) — H*(Gy, ),

obtained as the composition of the left column of diagram (7.1.2.5).

This will be done by computing separately the isomorphisms

0" H*(Goy, pb) — H' (G, Hom(AG, ) and

Ot H Gy, Hom(AG, n)) — H°(Gy, Hom(AG, C)).

Let G be a finite group, H a subgroup of G and M a ZG-module. By fixing
X a right transversal of H in G one obtains an H-map ¢3 : G — H defined
by

¢ (hx) =h forall he H and x € X.

This map induces in a natural way a ZH-homomorphism ¢3 : ZG — ZH.

From this point on and until the end of this section ¢% = ¢ if there is no
confusion. We should also mention here that (B¢, §) denotes the bar resolution

for the group G introduced in subsection 6.1.3.

7.2.1 07': HYGy,p) = H (Gyp, Hom(AG, p)).

7.2.2 Claim. Let hy,hy — xp, 0, be a 2-cocycle whose class x belongs to
H?(H,M), define @ in Homg(Bf, Hom(AG, M)) in the following way: if
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L= cc g in ZG with 3 a, =0,

(1) = agh(9)Ts(g) 1

geG

for all h in H. It follows that §& = 0 (which implies that h — &, is a 1-cocycle)

and 0T = x.

Proof. Notice that x being a 2-cocycle implies that
h1$h27h3 — Thiho,hs + Lhy,hohs — Lhihy = 0 (7221)

for all hy, hy and hz in H.
We recall that M is naturally isomorphic to Hom(Z, M) as a ZG-module,

hence the short exact sequence
e G
0—AG — 272G —7Z——>0

induces the following commutative diagram with exact rows

* » 3k

T 1
Homy(BY, Hom(Z, M)) <> Homy(BY , Hom(ZG, M)) —» Homy (B, Hom(AG, M))

R

Homy(BE, Hom(Z, M)) — Homy (B, Hom(ZG, M)) -5 Homy(BE, Hom(AG, M))

Let 7 in Homy (B, Hom(ZG, M)) be given by

Th(g) = ¢(9)$¢(9)‘17h’

it follows clearly that if,Z = 2: it remains to show that 0z = nfz. In order to

prove this let hy, hy in H and ¢ in G, then

(0%)ny,2(9) = (haZna ) (h1'9) = Tnana(9) + Ty (9)
= 0(9)T(g)1hy,he — P(9)To(g)~1 haha T P(9)Tg(g)-1,n, Dy (7.2.2.1)
= Lhy,hs
= Thy hy (T (9))

= ﬂ-g‘xhl,hz (g>7
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which concludes the proof by the definition of 0. [

If we identify p with Z/2mZ as ZG-modules, where the action of G is given
by

g (t+2mZ) = a(g)t + 2mZ,

being a the lift of the isomorphism a : G — (Z/2mZ)” defined in (3.0.0.1).
Every 2-cocycle in H omg,n(Bf ¥ Z/2mZ) is determined by a function (not
uniquely) b : Gy x Gy — 7Z satistying

Thyhy = b(h1, he) +2mZ and (7.2.2.2)

a(hl)b(hg, h3) — b(hlhg, h3) + b(hl, h2h3) — b(hl, hQ) =0 (mod ZmZ)
(7.2.2.3)

for all hy, hy and hz in Gy, hence by claim 7.2.2 one obtains that the class of
the 1-cocycle given by

in(l) =) agd(9)T ()1

geG

=D a,a(é(9))b(9) ", h) + 2mZ, (7.2.2.4)

geG

is the preimage of x under the isomorphism 0 : H'(Gy, Hom(AG, p)) —
H*(Gy, ).

7.2.3 07': HY(Gy, Hom(AG, p)) — H°(Gy, Hom(AG, C)).

Let 0 — p — C' — C — 0 be the envelope of p constructed in chapter 3 and

assume that {g; : 1 <i <n} is a fix set of generators of G.

Let h +— Iy be a 1-cocycle with values in Hom(AG,Z/2mZ), there exists a
function ¢ : Gy x AG — Z satisfying

i‘hl (ll) = C(hl, ll) + 2mZ (7231)
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c(hi,li +12) = c(hy,ly) + c(hy,l)  (mod 2mZ) and (7.2.3.2)

CL(hl)C(hg, hl_lll) — C(hlhg, ll) + C(hl, ll) =0 (HlOd QTTLZ) (7233)

for all hy, hy in G an all [y, 1y in AG.

For a fix [ in AG let us define the following elements D! in QG for 0 < i < n,

as follows:

Df = 5 S alg ™ ola))elole) o olo) g, (T23.4)
geG
and for 1 <i<n
Di = S alg™ olo)e(dlo) olog ). 09) Mg (7.235)
geG

7.2.4 Claim. With the notation given above, let  in Hom(AG,C) be given
by

T(l) = <2le0= (D? (9;1 - a(gz 1<1<n> ( Dlgz 1<z‘§n> + Ay
It follows that & belongs to Hom(AG,C)%% and 0%

Proof. We need to show that z is well defined. For this let

2mD} if i=0
DY (g7 —a(g ) + Digit if 1<i<n
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We will now proof that ;(l) belongs to ZG. Since

-1

2(0) = 929D S o ) e(bla) ™ bla) g

2m
geG

N gz-_m > alg™'o(9)e(@(g) " dlgg ), 6(9) " g

geG

:_Z (g7"0(9)) (clo(g) ™", d(9) ') — c(e(g) " dlgg; M), ¢(9) D)) gt

geG

— =S (g alg ™ 6(9))e(élg) " 0(9) " Dg

2m
geG

= i > alg g dlag) " (c(dl9gn) ™" 3l9g0) ') — cd(99) " 6(9), $(99:) 1)) g

geG

=Y algMalg ™ b(9))e(d(9) ™ b(g) D)y,

geG

it would be enough to show that for all g in G

alg; g o(99:) " (c(d(gg:) ™", d(99:) ') — c(d(9g:) " d(g), p(9g:) ')
—a(g; Nalg " ¢(9))c(o(g) ™", d(9) 1) =0  (mod 2mZ). (7.2.4.1)

It follows from (7.2.3.3) that the left hand side of (7.2.4.1) is equivalent to
(algi g™ —algi alg™)) (e(1,1) — e(¢(g), 1)) (mod 2mZ),

which is equivalent to 0 (mod 2mZ), since a(st) — a(s)a(t) = 0 (mod 2mZ)
for all s,t in G.

We will now show that Z is a 0O-cocycle. A simple computation shows that
hD; = D;, for all h € Gy and 1 < < n. In order to show that hz(l) = Z(hl)

it would be enough to prove that

<2m(th0 - Dgl)? ((thO - Dgl) (9;1 - a(gfl)))1glgn)> € AY
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or equivalently that hDY — DY, is an element of Y, which follows since

hDP — D§y = - 3 alg ™ 6(9))e(6() ™ 6(a) ' Dhg

geG

5 S alg ™ 6l9))e(6(9) " ple) g
geG

= % a(g~'6(9)) [c(¢(9)™"h, 6(g) " hl) — c(d(g) ", ¢(9) "' hl)] g
geG

= S alg ™ 0(9))alole) Jelh, )y (mod ¥) by (7233
geG

=c(h,hl)® =0 (modY).
In order to show that 0z = & we should recall that the envelope

0 w6 0

of p given in Chapter 3 induces a the following commutative diagram

* ﬂ-* _
HOme(Ble, Hom(AG, ) i Home(Blc‘”, Hom(AG,C)) —» Homgm(Ble, Hom(AG,(C))
d d d
Home(Bgm,Hom(AG,u,)) G Homgm(Bgm, Hom(AG,(C)) 5 Home(Bgm,Hom(AG, )

Define Z in Home(BoG(n, Hom(AG,C)) by Z(1) = (Zo, (i)1<;<,) + Aza-

It follows immediately that m,z = 2. It only remains to show that éx = .z,

which is equivalent to prove that

ha(h M) — #(1) = v (1)

for all A in Gy.
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Since hDj = D}, for 1 < i < n, it would be enough to prove that
m(hD)-,; — D}) = ¢(h,1)© (mod 2mZQG).
Notice that

m (hDy 1, — DY) = alg~'é(g)) [c(é(9) ™", (g) "' h ™ Dhg — c(d(g) ™" d(9) " )g]

geG

= Z (g7 '0(9))alp(g) He(h,1)g  (mod 2mZG) by (7.2.3.3)
geG

= Za(g_l)c(h, l)g (mod 2mZG)
geG

c(h,1)® (mod 2mZG).

O
For any [ in AG the following holds
1 _ _ _
Dp = 5= alg ' (9))e(d(9) ™", é(g) "Dy
geG
_ 1 —1
= 5> alg el —c(é(9).0]g (mod ZG) by (723.3)
geG
-1
=5 alg )e(¢g),l)g  (mod ZG)
geG
This last series of equivalences show that if we let
MO —1 -1
D=5~ ) alg™)e(é(g).l)g (7.2.4.2)
geG

and (by abuse of notation) if we denote by

. 2mD} if i=0
) =93, _, . . , (7.2.4.3)
DY(g; ' —alg; ')+ Djg;t if 1<i<m

then f(l) = (jl(l))[)gzgn + Ay.
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7.3 The pairing 7'52.

The character € : H*(G, Hom(AS, p)) — Q/Z is determined, after dimension
shifting, by the non-degenerate pairing [C, L] x [L, C] — Q/Z where

([f]v [ZD = TL(f*[Z]) = TL([f o z]) = TT’(IC@fT({OZ) +7

for all [f] and [z] in [C, L] and [L, C|] respectively.

In section 7.1 we proved the existence of the commutative diagram (7.1.0.1),
let us denote by
oy : H(Gy, Hom(AG, C)) — [L,C|

the homomorphism of the bottom row. We will prove in this section the

existence of a homomorphism

51 : [C, L]G — [C, AG]Gm

and a non-degenerate pairing
TgG : [é, ACTY]Gq3 X [AG, C_']G‘,13 — @/Z
such that it satisfies

TAG(Bf], 2) = T (feou[2]) (7.3.0.1)

for any [f] in [C, L]¢ and [2] in H(Gy, Hom(AG, O)) = [AG, Clg

%

The existence of 74, and 3; will allow us to compute the character ¢ in a

"local” way.

It should be mentioned at this point that we will change some of the notation
established in previous chapters, with the idea that the proofs presented in

this section become clearer to the reader.
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Let us start by considering the short Z-split exact sequence
?:1 2/1
00— AS — 7S —7Z—0,
and applying to it the functor AG ® —, to obtain the short exact sequence

1 ®id i ®idag,
O L ! A9 AG@ZS ! 29 AG 0 (7302)

We denote I = ZS @ AG. Recall that ZS = Py indng, then for each 3
in S,, let ¢ be the natural projection from ZS onto mdng.

In order to simplify the notation we will fix a prime P, in S, and denote by
H = Gy,, In = ind§, Z& AG, ¢y = ¢p,, 11 = i1 @ idag : L — I and
qu :¢H®ZdAG : I—)IH

Let 77 : [C, 1] x [I,C] — Q/Z be defined by

~ Tracer(f o z)
TI([f]?[ZD_ |G| +Z

7.3.1 Claim. Given [f] in [C, Llg and [2] in [I,C]g it follows that

A ~

T1((01): ], [2]) = 7o (fi(in)"[2])-
Proof. The statement follows clearly from the equality

Tracer(iy o f o z) = Tracey(f o z01).

We can now define 17, : [C, Ig] x [Iy,C] — Q/Z by

_ Tracer,(foz)
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7.3.2 Claim. Given [f] in [C, Iy]g and [2] in [Ig, Clg it follows that

~ ~

7o ((P1)+[f1, [2]) = 7([f], (@) [2])-

Proof. 1t is enough to show that

Tracer, (g o f o z) = Trace;(fozody),

which follows by properties of the trace. O

We want to define the following dual maps and prove that they are actually

Z.G-isomorphisms

Yy Hom(ind$Z, Hom(AG,C)) — Hom(Iy, O)
Yy : Hom(C, Iy) — Hom(ind$Z, Hom(C, AG)).

In order to give the expression of 1 we will need the following remark.
7.3.3 Remark. Hom(ind$%Z, AG) is isomorphic to Iy as ZG-modules.

Proof. Let ¢y : Iy — Hom(ind$%7Z, AG) be defined in the following way: fix X
to be a left transversal of H in G and for every element z of X let 7 := z ® 1.
Y ={y;:i € I}is aZ-basis for AG it follows that {T®@y, : v € X,i € [} is

a Z-basis for Iy, then

$2(T @ yi) = Py, : ind$7Z — AG where,
Drsy, (Y a°2) = a"y;. (7.3.3.1)

zeX

We start by showing that ¢, is a ZG-homomorphism.
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Let g in G a and z in X, notice that

(I)g'(i@yi) (2) =

= (9%aey)(2)
in order to prove that ¢, is bijective we define ¢y : H om(ind%Z, AG) — Iy
by
H=> zef(@)

Notice that for any ¢g in GG, one has

=Y 1@ (@) =) T0gf(g ')

rzeX reX
=g (Z gz f(g‘lév)> = goa(f)
zeX
which proves that ¢ is a ZG-homomorphism. Let f in Hom(ind$Z, AG) then
$ata(f) =) (3@ f(2) = Y Popa) = [. (7.3.3.2)
zeX reX

In order to prove this last equality we can write

= by

el

for any z in X. This implies ®zgrz) = D _;c; Pagpiy,, then for any element w

in X we obtain

Z q)x@)f z) Z Z q)v’v@bl

zeX i€l zeX

= wa% =

el
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If we now take arbitrary z € X and y; € Y it follows that

Grpa(F@y) =Y T® h(TRY)(2) =2y, (7.3.3.3)

zeX

it is clear that equations (7.3.3.2) and (7.3.3.3) prove that ¢, is the inverse of
¢2, which proves the bijectivity of ¢s. O]

We are now in position to define ¢ an ¢,. For any f in Hom(ind$%Z, Hom(AG, C))
let 1 (f)(Z ® ;) = f(Z)(yi), a straightforward computations show that ¢, is
a ZG-homomorphism and that is bijective. Now let f be in Hom/(C', My), for

any z in X and cin C, let us define

((2)())(€) = (¢2(f(c))(T). (7.3.3.4)

We will prove that 15 is a ZG-homomorphism. Let g in G

((h2(g ) (@) () = (92((9£)())) (T) = (P2(9f (9 ) (T)
= (962)(f(g7' ) (@) = ga(fg~ ) (9" T)
= gva(f) (g7 %) (g7 e) = (92(f)(97'2)) (¢)
= (9¢2(f)(@)) (c)

The proof that 15 is bijective is omitted here.

The isomorphisms v; and v, induced in cohomology isomorphisms

(1), : HY(G, Hom(ind%Z, Hom(AG, C))) — HY(G, Hom(Iy,C))
(2), : HY(G, Hom(C, Ix)) — H°(G, Hom(ind$Z, Hom(C, AG))).

Let us define the following non-degenerate pairing
7+ [Ind$Z, Hom(C, AG)]g x [ind5Z, Hom(AG, C)|a — Q/Z
for any [f] and [z] by

> wex Traceac(f(z) o (7))
T([f], [2]) = c +Z.
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7.3.4 Claim. Given [f] in [C,Ig|g and [2] in [ind§Z, Hom(AG, C)g, then
the next equality holds

Tu((Y2):[f], [2]) = 71, ([f], (1) .[2])-

Proof. We start by understanding T'racey,, (f o ¢1(z)). For any = in X and y;

in Y one can write

(foi(2)(T®@y) = =N d@ay) (7.3.4.1)

weX jel

for suitable integers a’;, keeping the same notation we now fix = in X and
define n2* : AG — AG by

=> aly;, (7.3.4.2)
jeI
we obtain that

Tracer, (f o¢n(2)) = Y Traceac(ni?). (7.3.4.3)

zeX

On the other hand if we consider (15 f)(Z) 0 2(Z) : AG — AG, it follows that

(42)(®) © () (11) = 6l f (=) (4:)))(@)
= 6u((f 0 12) (2 ® 1)) ()
=Y Y dn@ey)@ by (7341)

weX jel

- Z Z a{I}(I)U_J@yj (ZE)

weX jel

_ J
= E azy;
jeJd

= 02" (i) by (7.3.4.2).

The last equation shows that as linear endomorphisms of AG, (V2 f)(Z) o 2(Z)
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and nl* are equal then by (7.3.4.3) one obtains

Tracer, (foiz) = E Traceac(n

zeX

= Z Traceac((Y2f)(T) o 2(Z)).

zeX

The last equality proves the statement. O

We now recall from the Section 2 of Chapter 2 the Shapiro’s isomorphisms

Shiinagz.ac0) * [AG, Cly — [indSZ, Hom(AG, C)]g
Sh(_dez C,AG) [ind§Z, Hom(C, AG)]¢ — [C, AG] 4.

In order to simplify the notation we will denote by Sh = Sh;neez ac,c) and

1
by Sh™t = Sh indS2,C,AG)"

We conclude this section by defining the non-degenerate pairing

by setting

o _ Traceag(f o z)
TAG’([f]?[Z]) - |H’ +Z7

and proving equation (7.3.0.1).
7.3.5 Claim. Given [f] in [ind5Z, Hom(C,AG)|g and [z] an element of
[AG, Oy, the next equality holds

Tac(ShT S, [2]) = 7([f], Shlz).
Proof. We start by computing 7,([f], Shlz]).

ro(lf], Shlz]) = 22X Tmcmﬁgf) —

_ 2sex Traceac(f(7) o x2)
|G

+Z

+ Z.
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On the other hand one has that

" . _ Traceac(f(lg) o z)
7-AG(Sh‘ [f]’[ZD - ‘H|

+7Z

In order to prove the claim, it would be enough to show that for all x in X
Traceac(f(T) o xz) = Traceac(f(1g) o z). This follows simply from the fact
that f(z) = zf(1g), hence for any y € AG, (z2)(y) = zz(z~'y), which implies

F@)((22)(y) = (@f)(1e)) (wz(z'y)) = 2f (Le)(2(z"y)).

From the above equality one can conclude that f(7) o yz and f(1g) o 2z are

similar endomorphisms of AG and then have the same trace as needed. O

We can conclude this section by mentioning that the ZG-homomorphism [
is the composition Sh™ (), (dn)w(ig)s.

107



Chapter 8
Conditions over fg.

In this final chapter we will give a set of conditions that the candidate f : C' —
must satisfy in order for (1.0.1.9) to hold. We restrict to the case when m is

an odd squarefree positive integer, in particular we will assume that

with each p; an odd prime and p; # p;, whenever ¢ # j.

Let B;, be the only prime in S, above p; and fix s;,0; in Gy, such that s;
generate Gg, and 0;, the image of o; under the natural projection Gy —
Gy /G4, is a Frobenius element. We have that

Gy, = (s1) ® (03) (8.0.0.1)
as in (6.1.2).
Since G is the product of the subgroups Gg; for 1 < < n, it follows that

Y. ={s;: 1 <i < n}isaset of generators for G. By chapter 3 we can construct

an envelope of p

0 M C C 0,

where C' = F/Azq, C = F/Ay, F = D, , ZG and Az and Ay the submod-
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ules of F' given by

Az = ((2ma, (97" — algr ")), -, 2(g," —alg, ")) : o € ZG)
Ay = ((2my,y(gi ' —algr "), y(g, ' —alg, )y eY).

If we assume to work in the category of Z'G-modules, obtaining [f] in [C, L]g
satisfying (1.0.1.9), can be achieved by computing its ’local parts” introduced
in the previous chapter, which means that for each ¢ in S, one needs to
compute [fy] in [C', AG]q, such that

7oe ([fy]. [2]) = invy(By[2]) (8.0.0.2)
for all [z] in [AG, Clg,,, where
Oy [AG, Cla, — H* (G, ) (8.0.0.3)

is the inverse of the isomorphism given in section 7.2.

We should recall that 8‘1_31 depends on the choice of fix a map ¢gp : G — Gy
(as mentioned at the beginning of 7.2). if 8 in S, and p is the prime number
such that pZ =P N Q we denote

Y\ {si} if p=p; for some i
Y else

If p = p; for some ¢ and since every ¢ in G can be expressed in the follow-
ing form: g = s} Hs}” where the product is taken over all s; in Y, then

dp(g) = si'¢ (H s?j ) If there is no confusion we will denote ¢y by simply ¢.

We will discuss the conditions that fy : C' — AG must satisfy so that (8.0.0.2)

holds in three different cases: non archimedean, unramified and ramified.
Before looking at each particular case we make the following observation.

Let us denote G* = G\ {1} and |, = 15 — ¢, we obtain that {l,: g € G*} is
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a Z-basis for AG.

Recalling from chapter 7 that for each B in S,, if [z] is an element in H?*(Gy, p)
and b : Gy X Gyg — Z is a function such that

Lhyihy = b(hl, h2) + 2mZ,
for all hy, hy in Gy, then 8{31[:@ = [Z] where

i(l) = Dy(2m, syt —a(syh), ..., s, —a(s;) + (0, D)syt, ..., Di's,; t) + A,

’"n n

A straightforward computation shows that

D7 = = S a(ha(d(e)b(d(g) ", o). (3.0.0.4)

. 2m heG

Since AG is a lattice it follows that [C, AGla, = [C,AG]q,.
In order to define fy : C — AG we can first consider to define fy : F — AG
satisfying

fp2m, st —a(sih), ..., st —a(s;')) =0. (8.0.0.5)
Finally let us denote by X the element in [AG, F] given by

X()=Dp2m,si" —a(sy'), ..., s, —a(s,") + (0, Dysis ... Di'sy ),

it follows clearly that

rSa(lfal fe) = TS oz

8.1 Conditions over fy.

We give a list of equations that fy must satisfy so that (8.0.0.2) holds for each

of the three different cases.
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8.1.1 The archimedean case.

By (6.1.12.1) we have that, H*(Gw, ) is generated by a single element of
order 2; namely 22 . It follows immediately that for any f, : C — AG

Traceac(fso © Z2)
|Gool

= invs(22) (mod Z').

We will denote by {e; : 0 <i <m} to be the standard ZG-basis for F. It
follows that f., : F' — AG must only satisfy (8.0.0.5).

Let foo(e) = 4eG a;lg and for a moment assume that f. is actually a
ZG-homomorphism, then the left hand side of (8.0.0.5) can be written as

2mfoo(€0) + Z (Si_lfoo(ei) - a(si_l)foo(ei)) -

o Yty =3 D s ety + 30 Y i, =

geGX =1 geGX* =1 geGX*

Z <2mag — 2": a(si_l)a;) ly + 2": Z a;(ls;lg — l8;1> — aiils;l

geG* i=1 i=1 | geG*\{s:}

If we let
i : ~1
o U, it g+#s;
g

i 1
_decx ay if g=s;

it follows that

n

2m fuo(co) + Y (57 Fooler) — als ) froler)) =

i=1
Z 2may + Zb; —a(s; Hag | 1. (8.1.1.1)
geGX =1
If g does not belong to {31_1, e ,s;l} one can define a; =a(g)for1 <i<n
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then

Zbl—a a—za,l_a (sih)a!
= Z a(s7'g) — a(s7")a(g) =0 (mod 2m),

hence one can chose a =—A° o/2m.

If g =s; ', then as before let a} = a(g). In this case

geEG* J=1j#i
= D (a(s'si) —alsyHa(s; ) — als; Dals:) = Y alg)
J=1,j#i geGX
=0 (mod 2m),

let a) = —A)/2m.

With the choices made for the integers a ,for 0 <i <nandge G*, it follows
that (8.1.1.1) is 0 as wanted.

8.1.2 The unramified case.

Let us consider £ in S, to be unramified, where ¢ is the prime number satis-
fying ¢Z = QN Q, by (6.1.11.1) 27 generates H*(Gq, p). If 22 = d5' 22, then
fa must satisfy apart from (8.0.0.5) that, Traceaq(fq o Zq2) =0 (mod |Gql)-
This two conditions can easily be achieved by defining the ZG-homomorphism

fD - |Gﬂ|foo
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8.1.3 The ramified case.

In this section we return to the notation established in chapter 6. Let us
choose one of the primes appearing in the factorization of m and denoted by
p = pi, Let P be the unique prime in S, above p;, and let si, oy elements in
Gy satistying (8.0.0.1).

In subsection 6.1.10 we found three generator for the group H?(Gsy, p) namely
2°], [2'] and [2?]. We will recall the expression of the cocycles 20, 2! and 22

here. In order to do this lets us define one more time the following integers.

Let m, = m/p, v, = ged(p — 1,2m,) and t, = 2m,/v,. We also choose «a to

be an integer satisfying
14+2my,a =0 (mod p).

If we fix o to be a generator of u, let i, = ptt2mee  With this we can define
the first 2-cocycle 2° by

o 1if 4w+ia<p—1
ZO[S;;U£1|S?U£] _ 1T =P (8.1.3.1)
(gt if iy +dp > p—1

Now let v, = gcd(fp,vp), t, = vp/v,. If n, = (Z{fo_lpi) [ty and v =

ged(vy,nyp), by letting ¢7 = wv,/v), we can now describe the remaining two

cocycles:
sl ot = (et 5132
o it ji+j2<
2ol sl = i< fy (8.1.3.3)

(M})t;’/ if j1+72 > fp
By (7.2.2.2) there are functions b; : G X Gy — Z such that

Z;[hl‘hg] = bi(hla hg) + 2mZ
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for ¢ = 0,1,2. Let us assume that f‘ﬁ : ' = AG is a ZGyp-homomorphism
satisfying (8.0.0.5).

1. If [2)] = Og'[2p] then we can define

0 if i9+ia<p—1

bt sot) = et
(1+2mya)t, if 43 +ia >p—1

It follows by (8.0.0.4) that v,D} belongs to ZG.
Let Z° in [AG, F] be given by
Z,

g9

1.1 n o —1
vp(0, D s1 ., Dl s, ).

It follows that

S s T fg 0 Z°
TraceAG(fm o ZZ?) = TaCﬁAC;(f‘B o )’
p

hence we will need that

Traceac(fpo Z”) = -1  (mod v,|Gyl). (8.1.3.4)

2. Let )] = 6;51[211,] then we can define

bi(spol, sPot?) = (1 + 2m,a)jiistyt),.

Since t,t;, = 2m,, /v, it follows by (8.0.0.4) that U;Dlog belongs to ZG.
Let Z1 in [AG, F] be given by

1 _ 1 1 -1 n 1
2y, =v,(0,D"s1 ..., Dps, ).

We can conclude that

B TraceAg(fqg o Zl)

/
Up

Traceac(fp o Z;)

)

in this case one would need to solve

Traceac(fpo Z') = -1 (mod vy |Gyl). (8.1.3.5)
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3. Finally let [22] = 05'[22] we can define
P P L

0 if j1+j2 < |G}
ba(sioft sy = 4 O IR <G

(1 +2mya)ty if ji+ j2 > |GG

We conclude by (8.0.0.4) that 2mpl_)log belongs to ZG.
Let Z2 in [AG, F] be given by

Zlgg =2m, (0, D's; ', ..., Dgsgl).

It follows that

Traceac(fop o Z?)

Traceac(fp o Zg) = o
P

hence we will need that

Traceac(fpoZ*) =0 (mod 2m,|Ggl). (8.1.3.6)

The candidate fy : F — AG must then satisfy equation (8.0.0.5) and con-
gruences (8.1.3.4),(8.1.3.5) and (8.1.3.6). The complexity of the linear algebra

system needed to solve this four equations increases with p.

8.2 The homomorphism f:C — L.

We present here a method to compute a ”global” f : C' — L, satisfying 1.0.1.9.
In order to achieve this we begin by recalling some facts and notation intro-

duced in previous chapters.

From the construction of the envelope of p in chapter 3, we consider the middle

exact row from diagram 3.0.4.4
T
72G — F — C.

Following the notation of the previous section {e; : 0 <1i < n} will denote
the standard ZG-basis of the free ZG-module F. Since ker(m) is the ZG-
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submodule generated by the element
(2m7 Sfl _a(sfl)7"' S —CL(Sn ))7

any f: F — L satisfying ker(n) C ker(f) induces a homomorphism f : C' —
L.

We now consider the fact that ZS = @‘}365* indng and denote by ¢y the
projection form ZS onto mdng. Let Iy = indgm ® AG and

by = by @ idac : S @ AG — Iy,

For each P in S, we fix Xy to be a left transversal of Gy in G, and for x in Xy
we denote by T = 2®g¢,, 1, then qu = {z : © € Xy} forms a Z-basis of mdng.

There is a ZG-isomorphism defined in 7.3.3.1
L. G
o3 : Iy — Hom(indg, Z, AG),
where ¢3 (2 ®1,) = Pz, indng — AG is defined by

(pf®lg( Z azi) - axlg.

ZEX:I;

The isomorphism qb? induces a ZG-isomorphism
V3 : Hom(M, Iy) — Hom(mdng, Hom(M, AG)),

where M is a ZG-module. The definition of %‘43 is given in 7.3.3.4. We recall
that if f: M — Iy

(W3 1)(@)(m) = 63 (f(m))(z)

for all m in M and Z in qu.
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We finally consider the Shapiro isomorphism computed in 2.2.5.1

Shy = Shyomrac) © M, AGay — [indg, Z, Hom(M, AG)]g.

With this setup, it follows clearly that the following diagram commutes

[, AG]ay, Sy [zndG Z, Hom(F, AG)]G(<M [F, qu]G<<@ [F,ZS & AG|¢ « [F, L]

W*J 0 W*J W*l W*J W*J
S
[C, AG]cy lm [ind,,Z, Hom(C, AG)]¢ @ C, ]m]a(@ [C, 75 ® AGlg « [C, Lg

where the homomorphisms [F, L] — [F,ZS ® AG] and [C, L] — [C,ZS ® AG]
are induced by the natural inclusion L — ZS ® AG.

Let us assume that f : F — L is a ZG-homomorphism described by

fle)=>Y_ > > (=P el

geEG* PES, z€Xp

where 3y D e, b;f;c — 0 for all g in G*. We can consider (¢g),f to be
defined by

(Pp)e(Ner) = D D bz @ly,

gEGX IEXQ}

we can evaluate (¢gq).f at (13 ). to obtain the expression

(W3 (dp)(F)(Z)(e:) = 83 (F(e0))(2)

— v (2)

ZgEG>< ZIIJEX;n B,z

Zb”’l

geGX*

If we consider the maps fq} . F — AG, defined in subsections 8.1.1, 8.1.2

and 8.1.3, where we are assuming ‘P is archimedean, unramified and ramified
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respectively, and

Fules) = Z ayly,

geGX

then f : F' — L must satisfy that, ker(m,) C ker(f) and that for each B in S,
Shypf = (03 (0p).(F)-
This last equation can be written as

(Shiufp) (@) (e:) = (VF)u( D) (£)(T)(e2)
Z aglg = Z b‘zﬁg,xlg’

geGX* geGX*

for each P in S,, z in Xy and 0 < i < n.

The last set of equations gives a method to compute a "global” f : F — L
from the local maps f‘B F— AG.
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Appendix A
Appendix

The material presented in this appendix is a joint work by D. Riveros and
A . Weiss.

It presents a new approach to the ZG-structure of the S-units and set a pro-

gram to compute models of ZG-modules M stably isomorphic to E.
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APPENDIX

GALOIS STRUCTURE OF S-UNITS

D. Riveros and A. Weiss

Let K/k be a finite Galois extension of number fields with Galois group G and let S be
a finite G-stable set of primes of K containing all archimedean primes. Assume that S is
large in the sense that it contains all ramified primes of K/k and that the S-class group of
K is trivial. Let E denote the G-module of S-units of K and p the roots of unity in K.
The purpose of this paper is to specify the stable isomorphism class of the G-module E in
a much more explicit way than in Theorem B of [GW2].

More precisely, and continuing in the notation of [GW2], we recall that [T1], [T2] defines
a canonical 2-extension class of G-modules, represented by Tate sequences

0—+F—A—B—AS—Q0,

with A a finitely generated cohomologically trivial ZG-module, B a finitely generated pro-
jective ZG-module and AS the kernel of the G-map ZS — Z which sends every element of
S to 1. From this [C1] obtains the Chinburg €Q(3)-class

in the locally free class group CI(ZG) C Ky(ZG), which is an invariant of K/k that is
independent of S, and conjectures that €2, equals the root number class in CI(ZG).

The method of [GW2] analyzes the G-module F in terms of a fized envelope of . This
is an exact sequence

(0.1) 0—>p—>w—w—0,

with w cohomologically trivial and w the ZG-lattice obtained from w by factoring by its
Z-torsion. By Theorem B, the G-module FE is determined, up to stable isomorphism, by
knowledge of the G-set S, the G-module g, the Chinburg class §,,(K/k) € Cl(Z[G]), and

an arithmetically defined character

ce H? (G, Hom(AS, p))*,
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where _* means Hom(_, Q/Z).
Let L1 :== AG® AS and Ly := AG® L; with ® = ®7 and diagonal action by G. Choose
the envelope w to be related to the Chinburg class by the condition

(0.2) w] — w[ZG] = Q.. (K/k) in CLZG),

with |G|w equal to the Q-dimension of Q ® w. We will construct a canonical isomorphism
H?*(G,Hom(AS, p))" — H'(G,Hom(w, L»)) so that our main result is the

Theorem. Let M = M (e) denote the G-module in a Z-split 1-extension
0—=Ly—>M—>w—=0

with extension class equal to the image eV of —¢ in H' (G, Hom (w, LQ)). Then E @ (ZG)"
is stably isomorphic to M(e), with n = (|G| —2)(|S| — 1) + w when G # 1.

This improves Theorem B by explaining how its data determines M, a model for the
stable isomorphism class of E. The remaining problem becomes not only to understand the
ingredients AS,w, (),,,,e,n of the Theorem, but to do so in a way that improves M into a
better approximation of E. As a first example of this, we show how to get a smaller n, and
an M’, in Corollary 4.1. There is also a continuing discussion on the relation of the Theorem
with [GW2], including a Proposition 2.2, and especially on the role of the distinguished
character €, in Remark 4.3 and Lemma 4.4.

Our proof of the Theorem, based on [GW2], is presented in three sections: the first
recalling relevant results, the second reformulating the Theorem in their terms, and the
third containing a proof. The last section discusses some basic aspects of the many new
problems that arise.

1 Review of [GW2]

Applying _ ® AS to the (Z-split) augmentation sequence 0 - AG — ZG — Z — 0 gives
the (Z-split) G-module sequence

(1.1) 0= L - ZG®AS = AS =0,

with ZG ® AS a free ZG-module, and L; := AG ® AS. Applying Hom(_,u) to this gives
the exact G-module sequence

0 — Hom(AS,p) - Hom(ZG ® AS,u) — Hom(Ly,pu) — 0,
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inducing the connecting isomorphism in Tate cohomology
(1.2) 01+ H'(G,Hom(Ly, p)) — H*(G,Hom(AS, p))

and defining 1 := ¢ 0 9, € H' (G, Hom(Ly, p))*.
Similarly, applying Hom(Ly, _) to our fixed envelope (0.1) of g and then G-cohomology
gives the

(1.3) o ﬁO(G,Hom(Ll,E)) — H'(G,Hom(Ly, p)),

and defines ¢p :=¢1 00, € ]TIO(G, Hom(Ly,w))".
We now use the isomorphism

(1.4) H°(G, Hom(@, L,)) — H (G, Hom(L,,@))",

from (1.2) of loc.cit, that sends [f] to [f]* with [f]* represented by the element
g — (1/]G)) trace (f o g) + Z of Homg(Ly,w)*. It follows that

(1.5) g0 = [f]" for some G-homomorphism f:w — L;.

Extension classes in Tate cohomology are as in §11 of [GW1] (cf. Remark after 11.1): a
Z-split 1-extension (M) : 0 — X — M — Y — 0 of G-modules remains exact on applying
Hom(Y,_), and the connecting homomorphism

(1.6) Ay : H°(G, Hom(Y,Y)) — HY(G, Hom(Y, X))

on its G-cohomology allows the definition &) := 9 (idy) € H' (G, Hom(Y, X)) of the ex-
tension class of (). Note that (M) — &) induces a bijection between the set of equivalence
classes of Z-split 1-extensions (M) and H'(G,Hom(Y, X)).

The notational deviation L, e; from the L,e of [GW2] in (1.1) is intended to separate
the role of €; which is at the centre of the envelope focus of loc.cit. (so every e after the
first two pages there is now ¢1), from that of the more fundamental . The basic idea, only
partially realized by Theorem B, is to use the homotopy class [f] to ‘reconstruct’ E : the
formation in Proposition 5.1 of the ‘homotopy’ kernel M’ of f, doesn’t provide a description
of M’. This defect is here addressed by using extension classes.

We will use, near (3.4), the notation [Ly, N] = H°(G,Hom(L;, N)) from (5.1) of [GW1]
to evoke the homotopy language. Given an envelope (C) : 0 - M — C — Ly — 0, with
Z-torsion j : p — M, applying Hom(L;, ) and G-cohomology gives an isomorphism

(1.7) dc) ¢ [L1, L) = H' (G, Hom(L,, M)),

of right [Ly, L;]-modules. Then 7'18(_01)]'* is in (G, Hom(L1, p))" and we say, following (1.6)
of [GW2], that (C) is linked to its Autg(p)-orbit. This orbit is here insensitive to the choice
of j, because Autg(p) = Aut(p) since p cyclic implies that Aut(u) is abelian.
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2 Reformulation

First, applying _ ® L; to the augmentation sequence, as in (1.1), gives a Z-split G-module
sequence

(2.1) 0— Ly = ZG® Ly 3 Ly — 0,

with ZG ® Ly ZG-free and Ly := AG ® Ly . Thus applying Hom(w, _), as in §1, and then
G-cohomology gives the connecting isomorphism

(2.2) 8o : H°(G, Hom(w, L) — H'(G, Hom(w, Ly)).

Our reformulation starts from the trivial observation that the G-map w — @ of (1.1)
induces an equality of the functors Hom(w, _) — Hom(w, _) on ZG-lattices X. Then

(2.3) H°(G,Hom(@, L)) = H°(G, Hom(w, Ly))
allows us to rewrite (1.4) as an isomorphism
(2.4) H°(G,Hom(w, L,)) — H°(G,Hom(L,@))"

that sends [h] to [h]* with [h]* represented by the element g ~— (1/|G|)trace (h o g) + Z, of
Homg(Ly,w)*. Tt follows that

(2.5) g0 = [h]* for some h € Hom(w, L;)°.

We now define the isomorphism before the Theorem of the introduction to be the com-
position of the isomorphisms

H? (G, Hom(AS, u))* — H! (G, Hom(Ll,u))* — ﬁO(G, Hom(Ll,E))*
« H°(G,Hom(w, L)) — H' (G, Hom(w, L))
of (1.2)*, (1.3)%, (2.4), (2.2), and observe that it takes —¢ to —do([h]).

It follows that e = —dy([h]) in the statement of the Theorem of the introduction, which
is therefore equivalent to the following reformulation.

Theorem 2.1. Let [h] € ?IO(G,Hom(w,Ll)) be the image of € under the composite of the
first three maps in (2.6), and let 0y be the last map of that composite, as in (2.2). Let M be
the G-module in a Z-split 1-extension

(2.6)

0—>Ly—>M—>w—0

with extension class equal to —dy([h]) in H'(G,Hom(w, Ly)). Then E & (ZG)" is stably
isomorphic to M, with n := (|G| — 2)(|S| — 1) + w when G # 1.
In particular, the class € and the extension class of M(g) determine each other uniquely.
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The envelope focus of [GW2] overemphasizes 1 for our purposes. We eventually need
to restate Theorem A in terms of ¢ : see Remark 4.3. The connection between ¢ and &;
is a consequence of the relationship between Tate sequences and Tate envelopes, or, more
precisely, between the Tate canonical class a3 € H? (G, Hom(AS, E)) and Tate envelopes.
Thus, following the last four paragraphs of Tate’s proof of Theorem 5.1 of Chapter 2 in [T2],
we select a special Tate sequence representing as and define the Tate envelope to be the left
half of this special Tate sequence.

Proposition 2.2. A Tate envelope 0 - E — A — L1 — 0 has
Q,=A—-(]S|-1D[ZG] in CIZG).
Proof. We specialize Tate’s initial exact sequence by selecting the one
(2.7) 0—Ly— B —-B—AS—0,
obtained by splicing (1.1) and (2.1); Tate’s first paragraph ends with isomorphisms
H"(G,Hom(Ly, E)) ~ H'*?*(G,Hom(AS, E)),

for all » € Z, in our notation. The second paragraph chooses o« € Homg(Lsy, F) corre-
sponding to az € H? (G, Hom(AS, E)) and deduces, from his (5.2), that a induces isomor-
phisms ]TI”(G, Ly) — fIT(G, E), for all r; the third paragraph extends « to a surjective
a: Ly® F — E, with F free, and replaces Ly — B' in (2.7) by Ls ® F — B’ @® F to get a
new (2.7) and the exact sequence 0 — ker(a) — Ly & F' — E — 0. The fourth paragraph
deduces that ker(«), and thus A := (B’ @ F')/ ker(a), is cohomologically trivial. Combining
with the new (2.7) gives the Tate sequence 0 - F — A — B — AS — 0, the left half
0— F — A— L; — 0 of which is our Tate envelope.

Now B = ZG ® AS ~ (ZG)I¥1=1 implies that €, = [A] — [B] = [4] — (|S| - 1)[z2G]. O

3 Proof of the reformulated Theorem

The proof is now straightforward. We assume that G # 1 (since the G = 1 case, while true
with the obvious interpretation, is trivial), and start by fixing an envelope

0—=p—->w—-w—0,

satisfying (0.1) and (0.2). The existence of such an w follows from (2.1) in [GW1] and (39.12),
(32.13) in [CR]: start with any envelope 0 — p — C' — C' — 0, define ¢ by |G|c = dim Q®C,
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and observe that ,, — ([C] — ¢[ZG]) = [P] —[ZG] in CI(ZG), for some projective ZG-module
P with dimQ ® P = |G|, hence C" := C' @ P gives an envelope 0 — p — C" — (C") — 0
with Q,, = [C"] — d[ZG], as required.

Letting [h], with h € Hom(w, L)%, be as in the assertion of Theorem 2.1, define

n:(ZG® L) ®w — Ly by n((z,y)) = p1(z) + h(y), and form the big diagram

0 0
\J 3
0 — Ly — ker (1) 2w — 0
| |
(3.1) 0 - ZG®L < (ZG®L)dw — l’; — 0
o I
Ly — Ly
\J 3
0 0

as follows: start from the commutative square containing p; and 7, use it to form the bottom
two rows with the additional map sending (z,y) to y, and then get the top row by taking
kernels, and using (2.1) as the first column. We put M := ker (n) and focus first on the
column and then on the row containing M.

Now let 0 = F — A — L; — 0 be a fixed Tate envelope, and form the envelope

(3.2) 0= (ZG)"®E — (ZG)"® A — Ly — 0,

from it by adding (ZG)" = (ZG)". This is an envelope with Z-torsion p and lattice L, , as
is the middle column

(3.3) 0> M— (ZGR® L) ®w — L; — 0,

of (3.1). We now apply Theorem 4.7 of [GW2] to show that the left ends of these envelopes
are stably isomorphic. This requires two conditions to be verified.

The quicker condition to check is that [(ZG ® L) @w] is equal to [(ZG)" & A] in CI(ZG).
Now ZG ® Ly ~ (ZG)ICI=DUSI=D hecause it's ZG-free; and (0.2) applies to [w], hence
(ZG ® L) ®w] = (|G| = 1)(|S| — 1)[ZG] + w[ZG] + 2, . Similarly, the second expression
equals n[ZG]| + (|S| — 1)[ZG] + Q,, , by Proposition 2.2. These agree by the choice of n.

The other condition is that both of these envelopes are linked to the same Autg(p)-orbit
on H(G,Hom (Ly,p))", which we will show is £; Aute(p).

First, by definition, the Tate envelope is linked to 7'18(;1) Jx; and with j : g — FE the
inclusion, which is tgj, by definition of the trace character tg in §7, i.e the ‘restriction’ g,
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of tg to H'(G,Hom (Ly,p)). To get the same conclusion for the envelope (3.2), consider
the commutative diagram defined by inclusion of the Tate envelope into (3.2), and apply
Hom (L4, _) and G-cohomology to get the commutative square, with all maps isomorphisms,
inside the commutative diagram

H'(G, Hom (L, , E)) &9 F0(G, Hom (L, L))
J T1
H' (G, Hom (L1, p)) |= H Q/Z
Jx N T1
H'(G,Hom (L1, (ZG)" & E)) b H(G,Hom (L, Ly))
(zG)"®A)

with left triangle from composing the inclusions g — E and E — (ZG)" @ E. The top
composite from H? (G, Hom (Ll,p,)) to Q/Z is equal to &1, by the first sentence of this
paragraph, hence so is the bottom one.

Next, to see that the envelope (3.3) is linked to 1, consider the commutative diagram

0— p - w — w —0

|7 |x \r

0> M — C & L, =0

with top row the envelope (w) of (0.1), (0.2), bottom row the vertical envelope (C) of (3.1)
with C' = (ZG ® L) ®dw, and k(y) = (0,y) for all y € w. Here, forming the right square first
defines j'. Applying Hom (L;, _) and G-cohomology gives the commutative square

L@ 2 (G Hom (L, p)

(3.4) |fiaz, 7 L@
L,Li)  — H'(G,Hom(Ly,M))
(©)

with horizontal isomorphisms and (C) linked to 713(63)(j’ ). € H'(Hom (Ly,p))", by the
definition (1.7), with 7 : [L1, L] — Q/Z. Our hypothesis on [h] implies the [h]* = £, by
(2.5), (1.5) and (1.3), with 0} = () , i.e. [A]* = €10, -

Now, quoting [GW2|, ¢, € H! (G,Hom (Ll,p))* implies that ¢, = 70 for some right
[L1, Ly]-homomorphism 6 : H'(Hom (Ly,p)) — [L1,Li], by (1.3). Then 69y, is a right

(L1, L1}-homomorphism: [Ly,w] — [Li1, L] so that [h] € [w, L] having [h]* = €,0) =

7100w , by the previous paragraph, implies that 60, = [id., , h], by (1.4).
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Combining with (3.4) above gives 718(01) (1)« =m0 [idLl,E]ﬁ(;l) =110 = €1, as required.
Finally, we must show that the top row

(M):0—=Ly—=M—>w—0

of the big diagram (3.1) has extension class —dy([h]), in the notation of (1.6).

To get a 1-cocycle representing —do([h]), one applies Hom (w, _) to (2.1), getting the
exact sequence 0 — Hom (w, Ly) — Hom (w,ZG ® L;) — Hom (w, L) — 0, chooses a pre-
image of h in Hom (w,ZG ® L;), say the map 1 ® h taking every y € w to 1 ® h(y), and
then forms the 1-cocycle g — (1 ® h) — g(1 ® h) (with g € () taking values in Hom (w, L),
namely [(1&h) —g- (1@h)](y) = (1@h)(y) —g-(1@h)(g7'y) = 1@h(y) —g- (1@ Nh(g7"y)) =
1ohy) —g@g-hygly) =1@h(y) —g@h(y) =(1-9)@h(y) e AGR L = L,.

On the other hand, the extension class &) of (M) is, by definition, obtained from (M) by
applying Hom (w, _) to (M), getting 0 — Hom (w, Ly) — Hom (w, M) — Hom (w,w) — 0,
lifting id,, to some s € Hom (w, M), and forming the class of the 1-cocycle g — gs — s with
values in Hom (w, L). Setting s(y) = (—1®h(y), y) works, since n(s(y)) = p1(—1®h(y)) +
h(y) = 0 and po(s(y)) = y. Now (gs —s)(y) = g(— 1@ h(g"'y),97'y) — (= 1@ h(y),y) =
(—9@h(y),y)+(1@h(y), —y) = ((1—g)®h(y),0), which is the image of (1—g)®h(y) € L.
This agrees with the 1-cocycle of the previous paragraph. U

4 Discussion

We begin with a consequence of the Theorem, for which we prepare with a naturality property
of the Gruenberg resolution. We start with a subset, of d elements g; of G\{1}, which
generates G, form the free group F on x;, 1 <i < d, and define the relation module R, by
the exact sequence

(4.1) 0—>Rd—>ZG®ZFAF—>AG—>O

(cf. [HS] p. 199 and 218). Here the middle term is ~ (ZG)? since AF is ZF-free on the
(x; — 1)’s, and the right map sends the ZG-basis 1 ®p (x; — 1) to g; — 1.

In the special case d = |G| — 1, write R, F for Ry, F respectively. For general d, the
inclusion F' — F induces a map from the relation sequence for R; to R, which on middle
terms is an inclusion of the respective ZG-bases so has cokernel ~ (ZG)!I¢=1=4  yielding the
exact sequence 0 — Ry — R — (ZG)I¥1=1=¢ — 0 on the left terms.

Similarly, the relation module sequence for R maps to the exact sequence obtained by
applying _ ® AG to the augmentation sequence, with middle map matching ZG-bases by
1®r (x; —1) = 1® (g; — 1), inducing an isomorphism R — AG ® AG. This implies that

(4.2) 0= Ry 5 AG®AG — (ZG)™ = 0
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is exact with an explicit map § and m = |G| — 1 — d, when G # 1.
Let d(G) be the minimal number of generators of G, and set R := Ry, to state the

Corollary 4.1. There is an explicit G-homomorphism ' : RQ AS — Ly so that the induced
isomorphism 3. : H* (G, Hom(w, R®AS)) — H! (G, Hom (w, Lg)) has the following property:
let M’ be the G-module in a Z-split 1-extension

0 >RRIANS - M -w—0

with extension class mapping to €V under B.. Then E @ (ZG)"/ is stably isomorphic to M’
with n' = (d(G) — 1)(|S| — 1) + w when G # 1.

Proof. By Ly = AG ® Ly = AG ® (AG ® AS) ~ (AG ® AG) ® AS, applying _ ® AS to
(4.2) gives the exact sequence

(4.3) 0= ROAS S L, —» (ZG)"™ — 0,

defining 3’. This follows from (ZG)™ ® AS ~ (ZG)™SI=Y) with m(|S| — 1) =n —n/.
Now the extension class of the 1-extension (M’) has the property that its pushout along
' has extension class €M) so there is a commutative diagram

0= RRAS - M — w—0

I Lo

0— Lo - M — w—0.

Since A’ has cokernel (ZG)"™™ so does the middle arrow, hence there’s an exact sequence
0— M — M — (ZG)"™ — 0. Thus, by the Theorem, E & (ZG)" ~ M ~ M' & (ZG)"™™,
which implies that E & (ZG)" ~ M'. O

Remark 4.2. R has no non-zero projective summand if G is solvable or, more generally,
when G has generation gap = 0 (cf. (24) in [G]), in which case we cannot expect bigger
Z.G-free summands from the above approach. Note that R; is determined up to stable
isomorphism by d, as follows from (4.1) by Schanuel’s lemma. Corollary 4.1 is a first step
toward the important goal of excising as many ZG-free summands of M as explicitly as
possible. There are many aspects of this problem but still no systematic approach.

There has been considerable work on Chinburg’s conjecture as a special case of the
Equivariant Tamagawa Number Conjecture; a recent reference is [B] (cf. Corollary 2.8
and Remark 2.9). Since Chinburg’s conjecture predicts that €2,, = 0 whenever G has no
irreducible symplectic representation (cf. §3 of [C2]), an envelope w of p with [w]—w[ZG] =0
and w = d(G) as in Chapter 3, starting at page 31, is a useful ingredient for examples.

130



On the other hand, the condition (0.2) on w could be replaced in the Theorem by
w] — w[ZG] = Q,, mod Bley],

as the appeal to Theorem 4.7 of [GW2] in its proof shows. This shows that the full strength
of Chinburg’s conjecture may not be needed.

Remark 4.3. The emphasis on £; in [GW2] comes from the envelope focus. In particular,
Theorem A for e; is proved by this method, but its statement depends on the local and
global invariant maps on H?, where £ becomes more central. Theorem A can be translated
from €1 to € by using the formalism of [T1], in the direction of the last paragraph of the
Remark on p. 971 of [GW2].

More precisely, let Hom((ZS), (J )) be the G-module consisting of all triples (fi, fa, f3)
of Z-homomorphisms so that the diagram

0 - AS - 725 - 7Z — 0

a 72| i)

0 — F —- J — Cgxk — 0

commutes. This leads to an exact sequence
0—H?(G,Hom((ZS),(J))) = H*(G,Hom(AS, E)) ® H* (G, Hom(ZS, J)) — H*(G, Hom(AS, J))—0

allowing us to study the trace character Ty : H*(G, Hom(AS, E)) — Q/Z defined by dimen-
sion shifting ¢z using the exact sequence (1.1). This implies that e = Tgoj,, with j : p — F
the inclusion, but now the point is that T% can be described in terms of the H?-sequence
above without further dimension shifting.

More precisely, given x € H? (G, Hom(AS, E)), there exists y € H? (G, Hom(ZS, J)) SO
(z,y) maps to 0 in H*(G, Hom(AS, E)), hence there is a unique T' € H*(G, Hom((ZS), (J)))
mapping to (x,y). Taking a 2-cocycle of triples representing 7' and projecting on the third
component gives a 2-cocycle defining z € H? (G, Hom(Z, C’K)). Then by Chapter 4, starting
at page 41,

(4.4) Tp(x) = inv(z) — > invy(y),

pES«

where S, is a transversal to the G-orbits on S,y, = ky(res y)i, with &k, : J — K the
projection and i, : Z — ZS with i,(1) = p.

This description has the weakness that the existence of y apparently depends on the
vanishing of H3(G, J). This situation is improved by the

131



Lemma 4.4. The map H*(G,Hom(ZS, J)) — H*(G,Hom(AS, J)) has a special splitting.

Proof. The S-idele group J is a finite product, over p € S, , of components V, := Hq K[,
with g running through the G-orbit of p, up to a large cohomologically trivial component of
unit ideles. So it suffices to show that H?(G, Hom(ZS,V;)) — H?(G,Hom(AS, V;)) is split
for each p.

If H is a subgroup of GG, and B any H-module, define the coinduced G-module coind (B),
from H to G, to be Homyy (ZG, B) with g € G acting on elements ¢ by (gp)(z) = ¢(29)
for all z € ZG (cf VII, 85 of [S]). If D is any ZG-lattice, viewing Hom(D, coind (B)) as
G-module and Hom(res D, B) as H-module, both by diagonal action, then there are natural
Shapiro isomorphisms

H"(G,Hom(D, coind B)) — H"(H,Hom(res D, B)).

Take H = G, B = K and identify coind K)* with V,, via ¢ — [T, (t- o(t7"), with ¢
a choice of representatives of G/G,. This choice doesn’t matter, since (th)- p((th)™) =
t- (h-p(h™'t71)) = t-@(t!) for h € G, . The map is bijective, since the components K of
V;, are disjoint, and is a G-homomorphism because g( [[,(t-(t7")) =TT, ((gt)- ¢(gt) *g)) =
[T, ((gt)- (9)(gt) ™) =TI, (- (g2)(t™)).

This identifies our map of the first paragraph with the top row of the commutative square

*

H*(G,Hom(ZS, coind K} )) = H?(G,Hom(AS, coind K)))
(4.5) sh )
H?*(G,,Hom(res ZS, K)) LN H?*(G, ,Hom(res AS, K))),

with vertical isomorphisms, and horizontal maps from 0 — AS <% ZS “ 7 — 0. This exact
sequence is Gy-split, by the Gy-map A, : d — d — a/(d)p having A\, o a = idag. Thus A,
induces H?(Hom(res AS, K))) — H?(G, ,Hom(res ZS, K*)) splitting the bottom a* of the

commutative square, which then completes the argument. Il
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