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Abstract 

Non-Ideal Thermodynamic Models of Cryobiological Solutions and the Intracellular Space 

 Mathematical models of cryopreservation processes are an important tool in the 

development of cryopreservation protocols that successfully avoid cryoinjury. Theoretical models 

of solution thermodynamic behaviour, known as solution theories, lie at the core of many 

cryopreservation models, including those that simulate the cellular osmotic response. However, to 

provide accurate predictions of solution behaviour, these solution theories must be able to account 

for the inherent thermodynamic non-ideality of cryobiological solutions. They must also be able 

to provide predictions in the complex multi-solute solutions that are characteristic of 

cryobiology—i.e., aqueous solutions potentially containing an extremely wide range of solutes—

and, ideally, they should be able to do so without requiring an overwhelming number of 

experimentally-obtained characteristic coefficients or fitting parameters. One recently-developed 

solution theory which meets these requirements, and which has been demonstrated to provide 

accurate predictions of solution behaviour in cryobiologically-relevant solutions, is the Elliott et 

al. form of the multi-solute osmotic virial equation. However, this solution theory was not yet 

complete, with some key pieces requiring further work. Accordingly, the overall objective of this 

thesis was to further develop the Elliott et al. model and to incorporate it into models of cellular 

osmotic response in order to advance understanding of cell behaviour during cryopreservation. 

 The work contained in this thesis presents a complete and thermodynamically consistent 

molality-based form of the Elliott et al. model, capable of modeling all of the solution behaviour 

required by higher-level cryopreservation models in the complex, non-ideal, multi-solute solutions 

that occur during cryopreservation. The work herein also conclusively shows that with this solution 

theory, a grouped intracellular solute approach can be used to represent the cytoplasm without 
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affecting model predictions; thus, this model can be used to provide accurate predictions of non-

ideal solution behaviour inside of cells even where—as is generally the case—the composition of 

the cytoplasm is unknown. Finally, this thesis describes methods for obtaining all of the 

thermodynamic coefficients required to use the molality-based form of the Elliott et al. model, 

including those corresponding to a grouped intracellular solute, and provides values of these 

coefficients for several cryobiologically-relevant solutes and for the grouped intracellular solute 

of human umbilical vein endothelial cells (HUVECs). 

 Overall, this thesis advances our understanding of the solution thermodynamics of 

cryobiology, and—in particular—cellular cryobiology, allowing for more accurate predictions of 

cryobiological solution behaviour. These advancements will in turn enable greater accuracy in the 

prediction of cryopreservation processes, thus ultimately aiding in the development of successful 

cryopreservation protocols. 
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Preface 

Chapter 2 of this thesis, along with Appendices A and B, has been published as M.W. Zielinski, 

L.E. McGann, J.A. Nychka, J.A.W. Elliott, Comparison of non-ideal solution theories for multi-

solute solutions in cryobiology and tabulation of required coefficients, Cryobiology 69 (2014) 

305–317. This work is available at http://dx.doi.org/10.1016/j.cryobiol.2014.08.005. 

 

Chapter 3 of this thesis, along with Appendices C and D, has been published as M.W. Zielinski, 

L.E. McGann, J.A. Nychka, J.A.W. Elliott, A Non-Ideal Solute Chemical Potential Equation and 

the Validity of the Grouped Solute Approach for Intracellular Solution Thermodynamics, J. 

Phys. Chem. B. 121 (2017) 10443–10456. This work is available at 

http://pubs.acs.org/articlesonrequest/AOR-38xihDTThrSv82dTdyFp. 

 

Chapter 4 of this thesis, with modifications, is being prepared for submission as M.W. Zielinski, 

L.E. McGann, J.A. Nychka, J.A.W. Elliott, Measurement of grouped intracellular solute osmotic 

virial coefficients. 
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Chapter 1. Introduction 

1.1. The principle of cryopreservation 

 Cryobiology is the study of biological systems at low—generally, below freezing—

temperatures. A major focus of cryobiologists is the development of cryopreservation protocols. 

Cryopreservation refers to the process by which biological materials such as cells or tissues are 

cooled to low subfreezing temperatures and stored for extended periods of time before being 

returned to ambient temperatures when needed. The storage of cells and tissues in this way has a 

number of clinical and research applications, including transplantation [98], stem cell therapies in 

cancer treatment [38], and the maintenance of human and animal cell lines [131]. However, while 

successful cryopreservation has been achieved for some types of cells in suspension 

[74,101,130,133], many cell types and most tissues cannot be cryopreserved with an acceptable 

number of viable cells [63,98,147]. 

 The primary obstacle to the development of successful cryopreservation protocols is the 

damage that occurs in cells and tissues during cooling, warming, and the addition and removal of 

cryobiological solutions. As part of an interdisciplinary effort to study and understand the nature 

of this damage, mathematical models have been developed to simulate the biophysical processes 

that occur during cryopreservation [1,12–14,23,27,53–55,62,65,66,81,115,116,129,139,153]. 

Although many of these models are quite advanced, there do remain areas where additional work 

is required. One such area—and the focus of this thesis—is the thermodynamic modeling of 

cryobiological solutions and of the intracellular space (i.e., the cytoplasm). In this work, this topic 

will be studied in the context of the cryopreservation of individual cells in suspension. 
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1.2. Cellular cryopreservation and the osmotic response 

 A principle consideration in the cryopreservation of individual cells is the plasma 

membrane. The plasma membrane is the outermost boundary of a cell, separating the intra- and 

extracellular environments [80]. These two environments consist of distinct aqueous solutions 

containing salts, proteins, carbohydrates, and other solutes. The functionality of a cell depends on 

the ability of the plasma membrane to maintain the differences between the intra- and extracellular 

environments [80]. Due to the nature of its structure, the plasma membrane allows water and some 

solutes—i.e., permeating solutes—to pass through, while preventing the passage of other solutes—

i.e., nonpermeating solutes. As such, it is generally considered to be semi-permeable [95]. 

 Membrane transport may be passive or active. Due to the lower temperatures involved in 

cryopreservation, cryobiologists are mainly concerned with passive transport. While the semi-

permeability of a cell determines whether or not a given chemical species can move into or out of 

the cell by passive transport, whether or not that species will actually move is governed by 

thermodynamics. More specifically, transport across the cell membrane is primarily governed by 

a thermodynamic property called chemical potential [95]. The chemical potential of a given 

species in a given phase can be defined as a measure of the tendency of that species to leave that 

phase [40]. By this definition, a species will tend to move from a phase where it has high chemical 

potential to one where it has low chemical potential [40]. Thus, for water or a permeating solute, 

the driving force for transport across the cell membrane is the difference between the intra- and 

extracellular chemical potentials—at equilibrium, the two chemical potentials are the same and 

there is no net movement across the membrane [95]. It is important to note that while chemical 

potential is dependent on concentration—generally, all else held constant, the higher the 

concentration, the higher the chemical potential—the two properties are not the same. 
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 Although liquid water is generally a good solvent, the solid phase of water—ice—has 

effectively no solubility for most solutes [124]. Thus, when ice crystals form in an aqueous 

solution, any solutes present will be excluded into the remaining liquid fraction. The equilibrium 

freezing point of an aqueous solution is subject to freezing point depression—i.e., the freezing 

point of the solution decreases with increasing solute concentration [95]. As a result, the extent of 

ice formation in aqueous solutions is a function of temperature: when ice forms at a given 

temperature, it concentrates the liquid solution, depressing the solution freezing point and 

preventing additional ice formation until the temperature is dropped further [95]. 

 During the cryopreservation of cells in suspension, it has been observed that under 

conditions of slow (i.e., near-equilibrium) cooling, the nucleation and growth of ice occur almost 

exclusively extracellularly [81]. The lack of intracellular ice formation under these conditions can 

be attributed to two factors: first, there appear to be “no efficient ice nucleating agents in cells”; 

and second, it is believed to be thermodynamically unfavourable for ice crystals to penetrate the 

hydrophobic cell membrane when cooling is sufficiently slow [81]. 

 As a cell in suspension is cooled in the presence of extracellular ice, the progressive growth 

of the ice with decreasing temperature and the accompanying increase in the extracellular solute 

concentration result in an imbalance of water chemical potential across the cell membrane [95]. 

Specifically, the increased solute concentration outside the cell decreases the extracellular water 

chemical potential. In response, water will move out of the cell, thus decreasing the cell volume, 

increasing the intracellular solute concentration, and—correspondingly—decreasing the 

intracellular water chemical potential. At the same time, any permeating solutes present in the 

solution will also move across the membrane according to their respective chemical potential 

gradients. The movement of water and permeating solutes will continue until equilibrium is 
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established. In general, changes in cell volume and intracellular composition as a result of 

changing extracellular conditions are collectively referred to as the osmotic response of the cell 

[95]. 

 

1.3. Cellular cryoinjury and cryoprotectants 

 According to Mazur et al.’s “two-factor hypothesis” [83], there are two distinct 

mechanisms responsible for the damage that occurs to cells during cryopreservation: intracellular 

ice formation and solution effects injury. Each of these mechanisms is described briefly below. 

The cumulative effect of both damage mechanisms will be referred to as cryoinjury. 

 Intracellular ice formation occurs under conditions of rapid cooling. As noted above, at 

least initially, ice tends to nucleate and grow outside of the cell on cooling [81]. Thus, the solutes 

that are excluded out of the liquid solution on freezing will directly enter the extracellular solution. 

The osmotic response of a cell is a kinetic (i.e., time-dependent) process. If cooling is too rapid, 

water (as well as any permeating solutes) will not have time to equilibrate across the cell membrane 

as the system temperature drops, extracellular ice forms, and the extracellular solution becomes 

progressively more concentrated. As a result, the intracellular solution will become increasingly 

dilute relative to the extracellular environment, and, accordingly, the equilibrium freezing point of 

the intracellular solution will fall further and further behind the overall system temperature as it 

drops—i.e., the intracellular solution will become increasingly supercooled. This intracellular 

supercooling increases with cooling rate, as higher cooling rates give even less time for water 

equilibration across the cell membrane. For any liquid aqueous solution, the probability of ice 

nucleation increases with the extent of supercooling [81]. Therefore, the higher the cooling rate, 

the greater the degree of intracellular supercooling, and thus the greater the probability of 
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intracellular ice formation [83]. While it is not entirely understood how intracellular ice formation 

causes damage to a cell, it is generally agreed upon that “with rare reported exceptions, 

intracellular ice appears to be uniformly destructive” [91]. 

 Solution effects injury occurs under conditions of slow cooling. Here, intracellular ice 

formation is usually unlikely, as the cell should have time to equilibrate at all temperatures. 

However, when cooling is slow, the cell is spending extended periods of time in increasingly 

concentrated solutions at relatively high (as compared to the final storage temperature) subfreezing 

temperatures. Although the exact mechanisms are not fully understood, these conditions appear to 

give rise to cell damage, and it is this damage that is termed solution effects injury [91]. As the 

damage appears to increase with both exposure time and solution concentration, it can be 

concluded that the lower the cooling rate, the greater the extent of solution effects injury [83,91]. 

 Cellular cryoinjury can be at least somewhat attenuated through the use of chemicals called 

cryoprotectants [26,85,90]. Cryoprotectants are generally categorized by their ability to cross the 

cell membrane—i.e., permeating versus non-permeating [85,90]. Permeating cryoprotectants 

include dimethyl sulphoxide, ethylene glycol, and glycerol; non-permeating cryoprotectants 

include hydroxyethyl starch, polyvinylpyrolidone, and sucrose [90]. 

 The mechanisms by which the two types of cryoprotectants prevent damage on freezing 

and thawing have been found to differ [85]. Permeating cryoprotectants act by depressing the 

freezing point of the solution [85,95]. Freezing point depression has the effect of decreasing the 

amount of ice formed—and thus the concentration of salts present—in the solution at any given 

temperature, which in turn decreases the extent of solution effects injury on slow cooling [85,95]. 

Non-permeating cryoprotectants act by decreasing the extracellular chemical potential of water, 

thus causing cells to become dehydrated [85,95]. As a result, the intracellular contents become 
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more concentrated and hence less susceptible to supercooling and intracellular ice formation on 

rapid cooling. An important distinction should be noted here: permeating cryoprotectants appear 

to protect against damage on slow cooling but not against damage on rapid cooling, whereas 

nonpermeating cryoprotectants appear to protect against damage on rapid cooling but not against 

damage on slow cooling [95]. 

 While cryoprotectants can be used to reduce cryoinjury, they do have two major drawbacks 

which limit the amount of protection that they can offer. First, cryoprotectants are often toxic to 

the very cells that they are meant to protect [12,13,28,33,34]. This toxicity increases with 

increasing temperature, cryoprotectant concentration, and exposure time. Second, the addition and 

removal of permeating cryoprotectants generally causes changes in cell volume (i.e., shrinking or 

swelling), which can lead to osmotic damage [12,13,39,52,64]. Osmotic damage occurs where the 

cell volume deviates too far from its isotonic—i.e., normal physiological—value, exceeding the 

limits of what the cell can tolerate. With respect to cryoprotectant addition and removal, the 

likelihood of such excessive volume excursion increases with the rate of addition/removal. 

 

1.4. The role of mathematical modeling and solution thermodynamics in cryopreservation 

 A successful cryopreservation protocol can be defined as one that can take cells down to 

the target storage temperature and then back up to physiological conditions—including the 

addition and subsequent removal of any cryoprotectants—without causing excessive and/or 

irreversible damage to the cell population as a whole; generally, this means that the cells must 

survive and remain functional. Developing a successful protocol is a complex challenge. As 

described above, there are at least four potential sources of cell damage that must be considered 

when developing cryopreservation protocols: intracellular ice formation, solution effects injury, 
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cryoprotectant toxicity, and osmotic damage. Simultaneously avoiding all of them becomes a 

balancing act. Cooling too rapidly leads to intracellular ice formation, whereas cooling too slowly 

exacerbates solution effects injury. Survival can be increased by adding cryoprotectants, but while 

higher concentrations may reduce cryoinjury, they also increase the likelihood of fatal toxicity and 

osmotic damage. Further, the rate of cryoprotectant addition and removal must be considered: 

higher rates correspond to lower exposure times and thus lower risk of toxic effects, but they also 

correspond to greater excursions in cell volume and thus greater risk of osmotic damage. Survival 

can also be improved by using non-linear cooling protocols such as interrupted cooling, where 

cells are held at an intermediate temperature before cooling is allowed to continue [36,117]. 

Finally, all of these factors—from optimal cooling rates [91] to cell reactions to cryoprotectants 

[20,33]—are cell type-specific and must thus be determined independently for each type of cell to 

be cryopreserved. In short, given the number of factors that must be accounted for, it is not feasible 

to develop cryopreservation protocols exclusively by trial-and-error. For this reason, kinetic and 

thermodynamic mathematical models which simulate the biophysical processes occurring during 

the various stages of cryopreservation have become important tools in the development of 

cryopreservation protocols [1,12–14,23,27,53–55,62,65,66,81,115,116,129,139,153]. 

 Most mathematical models of cryopreservation processes rely on thermodynamic solution 

theories to predict the behaviour of the solutions inside and outside of cells, as this information is 

needed to simulate larger-scale behaviour (e.g., the cellular osmotic response) [1,12–14,23,27,53–

55,62,65,66,81,115,116,129,139,153]. However, many of these models use ideal dilute solution 

theories that fail to account for the inherently non-thermodynamically ideal nature of the majority 

of cryobiological solutions [12,13,39,53,54,60,61,64–66,81,129,137]. The distinction between 

ideal and non-ideal solutions is important. An ideal solution can most generally be defined as a 
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solution for which the enthalpy of mixing—i.e., the enthalpy change associated with the mixing 

of the solution’s components—is zero [41]. Any solution for which the enthalpy of mixing is not 

zero is considered non-ideal. A notable feature of ideal solution theories is that they assume that 

there are no interactions between solute molecules in solution [105]. While this assumption may 

hold at low solute concentrations where the solute molecules are few and far apart, it becomes less 

accurate as concentration increases. Under most circumstances relevant to cryopreservation, 

cryobiological solutions tend to be very highly concentrated, due to either the formation of ice 

(and corresponding rejection of solutes into the liquid fraction), the addition of cryoprotectants, or 

both. As such, the ideal dilute approach is not appropriate for cryobiological modeling. 

 Recently, a novel non-ideal solution theory—referred to herein as the Elliott et al. form of 

the multi-solute osmotic virial equation—has been developed for use with cryobiological solutions 

and has been shown to accurately predict non-ideal solution behaviour in these solutions 

[11,24,27,105,106]. This solution theory is particularly applicable to cryobiology (and to 

biological solutions in general) because it relies solely on solute-specific thermodynamic 

coefficients to account for non-ideality, as opposed to the solution-specific coefficients that are 

used by many other non-ideal models [5,32,96,97,100,146]. Such coefficients are typically 

obtained by curve-fitting to experimental measurements in the solution of interest: single-solute 

(i.e., binary) solutions for solute-specific coefficients [24,105,106], and solutions containing the 

exact combination of solutes for solution-specific coefficients [5,32,96,97,100,146]. For the Elliott 

et al. model, the solute-specific coefficients are osmotic virial coefficients [24,105,106]. The 

Elliott et al. model’s use of these solute-specific coefficients means that it can make predictions in 

multi-solute solutions using only single-solute solution data, thus drastically reducing the number 



9 

 

of experimental measurements that must be made in order to model the wide variety of solutions 

that are relevant in cryobiology. 

 However, despite the demonstrated applicability of the Elliott et al. form of the multi-solute 

osmotic virial equation to cryopreservation modeling, further development of this model is still 

required. Notably, the model is not complete in terms of all units of concentration measurement 

used in cryobiology. Complete modeling of cryopreservation processes such as the osmotic 

response requires the ability to calculate the chemical potentials of both water and permeating 

solutes (e.g., cryoprotectants). While the model at present does provide a complete set of equations 

for both water and solute chemical potential in terms of concentration in mole fraction [24,27], it 

did not prior to this thesis work include a solute chemical potential equation in terms of 

concentration in molality, a commonly-used measure in cryobiology. In addition, a complication 

arises when the model is applied to predict chemical potentials inside the cell—i.e., in the 

cytoplasm. In order to make predictions in a given solution, the Elliott et al. model requires as 

inputs the exact concentrations of every solute in that solution. The problem is that, in general, the 

exact composition of the cytoplasm is unknown, thus precluding the use of the model without 

making assumptions about the intracellular contents. One way around this limitation is to use a 

“grouped intracellular solute” approach, where—for the purpose of thermodynamic modeling—

all of the non-permeating solutes inside the cell are treated as a single non-permeating solute. Such 

a grouped solute approach has been applied in practice with the Elliott et al. form of the multi-

solute osmotic virial equation [118], but it has never been shown that this approach is actually 

equivalent to modeling the cytoplasm with the exact concentrations of all solutes known—i.e., that 

using the grouped solute approach does not change model predictions. Furthermore, even if the 

grouped solute approach is so equivalent, in order to apply it with the Elliott et al. model, the 
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osmotic virial coefficients of the grouped intracellular solute must be known. These coefficients 

cannot be obtained for the grouped intracellular solute with the same methods as they would be 

for other solutes—i.e., from measurements of single-solute solution data—because the grouped 

intracellular solute cannot be isolated in a single-solute solution, given that it is a purely theoretical 

construct that exists solely within the cell, rather than an actual physical solute. A method has been 

developed for measuring grouped intracellular solute osmotic virial coefficients [118], but this 

technique lacks precision. This limitation is a problematic one, as models of the cellular osmotic 

response can be highly sensitive to the values of grouped intracellular solute osmotic virial 

coefficients when permeating solutes are present (see Chapter 4). 

 

1.5. Thesis objectives 

 The overall goal of this thesis is to advance understanding of cell behaviour during 

cryopreservation by further developing the Elliott et al. form of the multi-solute osmotic virial 

equation and incorporating this solution model into models of cellular osmotic response. 

 The specific objectives of this thesis are: 

1) To evaluate and compare the performance of leading ideal and non-ideal solution theories 

in cryobiology for predicting water chemical potential (Chapter 2). 

2) To derive a non-ideal molality-based solute chemical potential equation that is 

thermodynamically consistent with the existing third-order molality-based water chemical 

potential equation of the Elliott et al. model (Chapter 3). 

3) To use a thermodynamic proof to show that when calculating intracellular chemical 

potentials with the molality-based Elliott et al. form of the multi-solute osmotic virial 

equation, modeling the cytoplasm using a grouped intracellular solute approach is 
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mathematically equivalent to treating the cytoplasm as if the concentrations of all non-

permeating intracellular solutes are known (Chapter 3). 

4) To develop and apply a novel high-precision method that incorporates thermodynamic 

theory and biological experiments to measure grouped intracellular solute osmotic virial 

coefficients (Chapter 4). 
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Chapter 2. Comparison of non-ideal solution theories for multi-solute 

solutions in cryobiology and tabulation of required coefficients1 

 

Chapter Summary: Thermodynamic solution theories allow the prediction of chemical potentials 

in solutions of known composition. In cryobiology, such models are a critical component of many 

mathematical models that are used to simulate the biophysical processes occurring in cells and 

tissues during cryopreservation. A number of solution theories, both thermodynamically ideal and 

non-ideal, have been proposed for use with cryobiological solutions. In this work, we have 

evaluated two non-ideal solution theories for predicting water chemical potential (i.e., osmolality) 

in multi-solute solutions relevant to cryobiology: the Elliott et al. form of the multi-solute osmotic 

virial equation, and the Kleinhans and Mazur freezing point summation model. These two solution 

theories require fitting to only single-solute data, although they can make predictions in multi-

solute solutions. The predictions of these non-ideal solution theories were compared to predictions 

made using ideal dilute assumptions and to available literature multi-solute experimental 

osmometric data. A single, consistent set of literature single-solute solution data was used to fit 

for the required solute-specific coefficients for each of the non-ideal models. Our results indicate 

that the two non-ideal solution theories have similar overall performance, and both give more 

accurate predictions than ideal models. These results can be used to select between the non-ideal 

models for a specific multi-solute solution, and the updated coefficients provided in this work can 

be used to make the desired predictions. 

                                                 
1 This chapter, along with Appendices A and B, has been published as M.W. Zielinski, L.E. McGann, J.A. Nychka, 

J.A.W. Elliott, Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of 

required coefficients, Cryobiology 69 (2014) 305–317. This work is available at 

http://dx.doi.org/10.1016/j.cryobiol.2014.08.005. 
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2.1. Introduction 

 Many of the mathematical models that are used to simulate cryopreservation protocols 

[1,2,27,53,54,60,65,66,81,104,115,116,137] rely on the ability to accurately predict 

thermodynamic solution behaviour, since important processes such as water and solute transport 

and ice formation are ultimately dictated by differences in chemical potential. As a consequence, 

it is important to give some thought to the choice of the solution theories that are used to calculate 

these chemical potentials. This article examines and evaluates some of the available theories for 

predicting water (i.e. solvent) chemical potential, in particular those that do not depend on multi-

solute solution data. 

 In cryobiology, water chemical potential is often expressed in terms of its composition 

dependence, osmolality [5,19,24,27,47,105,106,144], or in terms of the related properties freezing 

point depression [5,24,27,32,47,69,96,97,100,105,144–146] and osmotic pressure 

[68,81,105,143]. Freezing point depression and osmotic pressure are physically measurable 

solution properties, and the relationships between them and osmolality (described below in 

Equations 2.2 and 2.3 and in Equation 2.4, respectively) allow one to experimentally obtain values 

for the osmolality of a solution. Solution osmolality can also be related to other measurable 

properties, including vapour pressure [50,132] and, for polymers, light scattering (based on index 

of refraction) [48,57,58,67,110]. Such relationships form the basis of osmometry, and allow one 

to measure the osmolality of any solution of interest. However, for the purposes of modeling 

cryopreservation processes, measuring the osmolality of every solution of interest is not feasible 

(e.g. solution compositions change constantly as ice forms, or when cryoprotectants are added), 

nor is it always possible (e.g., intracellular solutions are not accessible for instantaneous 
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measurement). As such, the ability to accurately predict the solution osmolality is essential for 

cryobiological models where this property is an input. 

 By their nature, cryobiological solutions contain diverse solutes ranging from salts and 

cryoprotectants to proteins and other macromolecules, often at high concentrations—even those 

solutions that are relatively dilute at room temperature become highly concentrated when frozen. 

As a result, cryobiological solutions are generally thermodynamically non-ideal. Although this 

non-ideality can be ignored and an ideal dilute solution theory can be used to model the solution 

behaviour [39,53,54,60,61,64–66,81,137], doing so can introduce significant errors in the 

predictions of chemical potential [24,105,106]. Accordingly, there are a number of solution 

theories available in the literature which account for solution non-ideality and have been 

demonstrated to accurately model the osmolality of multi-solute solutions of cryobiological 

interest [5,11,24,32,69,96,97,100,105,106,146]. However, the majority of these solution theories 

depend on fitting to multi-solute data, meaning that every solution system (i.e., combination of 

solutes) of interest must be fit independently prior to being modeled [5,32,96,97,100,146]. 

Considering the vast range of possible solution systems that are relevant in cryobiology (e.g. 

cytoplasm, plasma and interstitial fluids, multi-cryoprotectant vitrification cocktails [35,56,88]) 

and the challenges inherent to the measurement of multi-solute phase diagrams (e.g., the number 

of measurements required for a given compositional resolution increases exponentially with the 

number of solutes present in solution) [69], this type of approach is not practical for general 

modeling applications. Alternatively, there are at least two solution theories available which allow 

the prediction of osmolality in non-ideal multi-solute solutions using only single-solute (i.e., binary 

solution) data: the form of the multi-solute osmotic virial equation developed by Elliott et al. 

[11,24,27,105,106], and the freezing point summation model of Kleinhans and Mazur [69]. The 
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primary aim of this work is to compare predictions of multi-solute solution osmolality made with 

these two non-ideal solution theories to available experimental data, to one another, and to ideal 

dilute model predictions. This work expands upon earlier comparisons [24,105], employing a 

larger set of literature data, and addressing statistical and thermodynamic issues in the previous 

studies. 

2.2. Multi-solute solution theories used in cryobiology 

2.2.1. Solution thermodynamic properties 

 As mentioned above, osmolality, freezing point depression, and osmotic pressure are all 

related to one another and, ultimately, to water chemical potential. As these properties will be used 

interchangeably throughout this paper, we have summarized the relationships between them here. 

Osmolality, π, is mathematically defined as [24] 

𝜋 = −
𝜇1 − 𝜇1

𝑜

𝑅𝑇𝑀1
 , (2.1) 

where 𝜇1 is the chemical potential of water, 𝜇1
𝑜 is the chemical potential of pure water, R is the 

universal gas constant, T is absolute temperature (in Kelvin), and M1 is the molar mass of water 

(note that the subscript “1” is typically reserved for the solvent—in this case, water). Freezing 

point depression, ΔTm, and osmolality are related by [105] 

∆𝑇𝑚 = 𝑇𝑚
𝑜 − 𝑇𝑚 =

𝑅𝑇𝑚
𝑜𝜋[𝑀1/∆𝑠𝑓1

𝑜̅̅ ̅̅ ̅̅ ]

1 + 𝑅𝜋[𝑀1/∆𝑠𝑓1
𝑜̅̅ ̅̅ ̅̅ ]

  , (2.2) 

or, equivalently 

𝜋 =
∆𝑇𝑚

𝑅𝑇𝑚[𝑀1/∆𝑠𝑓1
𝑜̅̅ ̅̅ ̅̅  ]

=
𝑇𝑚

𝑜 − 𝑇𝑚

𝑅𝑇𝑚[𝑀1/∆𝑠𝑓1
𝑜̅̅ ̅̅ ̅̅  ]

 , (2.3) 

where Tm is the absolute freezing point of the solution, Tm° is the absolute freezing point of pure 

water, and ∆𝑠𝑓1
𝑜̅̅ ̅̅ ̅̅  is the standard molar entropy change of fusion of water. Equation 2.3 is commonly 
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linearized as 𝜋 = 1.86∆𝑇𝑚; however, this linearization introduces considerable error [105] and 

will not be used here. Osmotic pressure, Π, is related to osmolality by [105] 

𝛱 = 𝑅𝑇𝜌1𝜋 , (2.4) 

where ρ1 is the density of water. The values and units of the constants in Equations 2.1, 2.2, 2.3, 

and 2.4 are contained in Table 2.1. 

2.2.2. Elliott et al. multi-solute osmotic virial equation 

 The Elliott et al. multi-solute osmotic virial equation is based on the osmotic virial equation 

of McMillan and Mayer [87], an equation of state in which the osmolality is represented as a 

polynomial in terms of solute concentration. Depending on the underlying theoretical assumptions, 

different units of concentration can be used, giving two distinct thermodynamic models [24]. In 

terms of molal concentration or molality (i.e., moles of solute per kg of solvent), following Landau 

and Lifshitz solution theory [73], the single-solute osmotic virial equation for a solute i is [24,87] 

𝜋 = 𝑚𝑖 + 𝐵𝑖𝑖𝑚𝑖
2 + 𝐶𝑖𝑖𝑖𝑚𝑖

3 + ⋯ , (2.5) 

where mi is the molality of solute i (in moles of solute/kg of water), and Bii and Ciii are the second 

and third molality-based osmotic virial coefficients of solute i, respectively (in [moles of solute/kg 

of water]-1 and [moles of solute/kg of water]-2, respectively). Alternatively, in terms of solute 

concentration in mole fraction (i.e., moles of solute per total moles of all species), per regular 

solution theory [102], the single-solute osmotic virial equation for solute i is [87,105] 

�̃� = 𝑥𝑖 + 𝐵𝑖𝑖
∗𝑥𝑖

2 + 𝐶𝑖𝑖𝑖
∗𝑥𝑖

3 + ⋯ , (2.6) 

where �̃� is osmole fraction (unitless), xi is the mole fraction of solute i, and Bii
* and Ciii

* are the 

second and third mole fraction-based osmotic virial coefficients of solute i, respectively (unitless). 

Osmole fraction is a rarely-used alternative form of osmolality, defined as [24] 
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�̃� = −
𝜇1 − 𝜇1

𝑜

𝑅𝑇
 . (2.7) 

Comparing Equations 2.1 and 2.7, osmolality and osmole fraction are related by 

�̃� = 𝑀1𝜋 . (2.8) 

The osmotic virial coefficients in Equations 2.5 and 2.6 account for increasing orders of interaction 

between molecules of solute i: the second osmotic virial coefficient represents interactions 

between two solute i molecules, the third osmotic virial coefficient represents interactions between 

three solute i molecules, and so forth. As such, these coefficients represent the non-ideality of the 

solute—if they are all zero, solute i is thermodynamically ideal. For electrolyte solutes, solute 

concentration must be multiplied by an additional parameter, the dissociation constant [106] 

𝜋 = 𝑘𝑖𝑚𝑖 + 𝐵𝑖𝑖(𝑘𝑖𝑚𝑖)
2 + 𝐶𝑖𝑖𝑖(𝑘𝑖𝑚𝑖)

3 + ⋯ , (2.9) 

�̃� = 𝑘𝑖
∗𝑥𝑖 + 𝐵𝑖𝑖

∗(𝑘𝑖
∗𝑥𝑖)

2 + 𝐶𝑖𝑖𝑖
∗(𝑘𝑖

∗𝑥𝑖)
3 + ⋯ , (2.10) 

where ki is the molality-based dissociation constant of solute i and ki* is the mole fraction-based 

dissociation constant of solute i. This dissociation constant empirically accounts for ionic 

dissociation, charge screening, and other additional complexities inherent to electrolytes [106]; for 

non-electrolyte solutes, its value is effectively 1. Through a simple, empirical demonstration, 

Prickett et al. [106] have shown that for applications of interest to cryobiology, this approach for 

electrolytes is as accurate as the more sophisticated Pitzer-Debye-Huckel approach. To obtain 

values of the osmotic virial coefficients and (if applicable) the dissociation constant for any solute 

of interest, Equations 2.5, 2.6, 2.9, or 2.10 can be curve-fit to osmometric (i.e., concentration versus 

osmolality) data for a binary aqueous solution containing that single solute. 

 The osmotic virial equation can be extended to multi-solute solutions by introducing 

osmotic virial cross-coefficients, which represent interactions between molecules of different 
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solutes [24,87] – for example, for a solution containing (r – 1) solutes, the molality-based osmotic 

virial equation (i.e. Equation 2.5) can be written as follows 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

+ ∑∑𝐵𝑖𝑗𝑚𝑖𝑚𝑗

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ 𝐶𝑖𝑗𝑘𝑚𝑖𝑚𝑗𝑚𝑘

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯ , (2.11) 

where Bij, Ciij, Cijj, Cijk, etc. are cross-coefficients (e.g., Bij accounts for interactions between one 

molecule of solute i and one of solute j). In order to fit for the values of the cross-coefficients in 

Equation 2.11, one must use multi-solute osmometric data. Alternatively, it is possible to develop 

combining rules to avoid this requirement. Thermodynamic combining rules are theoretical 

relations that predict the values of cross-coefficients using the values of individual solute 

coefficients. Elliott et al. [24,27] have proposed the following second and third order combining 

rules for the molality- and mole fraction-based osmotic virial equations 

𝐵𝑖𝑗 =
𝐵𝑖𝑖 + 𝐵𝑗𝑗

2
 , (2.12) 

𝐶𝑖𝑗𝑘 = (𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

 , (2.13) 

𝐵𝑖𝑗
∗ =

𝐵𝑖𝑖
∗ + 𝐵𝑗𝑗

∗

2
 , (2.14) 

𝐶𝑖𝑗𝑘
∗ = (𝐶𝑖𝑖𝑖

∗𝐶𝑗𝑗𝑗
∗𝐶𝑘𝑘𝑘

∗)
1/3

 . (2.15) 

Applying these combining rules yields the molality- and mole fraction-based Elliott et al. multi-

solute osmotic virial equations 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯ , 

(2.16) 
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�̃� = ∑𝑥𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖

∗ + 𝐵𝑗𝑗
∗)

2
𝑥𝑖𝑥𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖
∗𝐶𝑗𝑗𝑗

∗𝐶𝑘𝑘𝑘
∗)

1/3
𝑥𝑖𝑥𝑗𝑥𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯ , 

(2.17) 

or, in the presence of electrolytes 

𝜋 = ∑𝑘𝑖𝑚𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗𝑘𝑘𝑚𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯ , 

(2.18) 

�̃� = ∑𝑘𝑖
∗𝑥𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖

∗ + 𝐵𝑗𝑗
∗)

2
𝑘𝑖

∗𝑥𝑖𝑘𝑗
∗𝑥𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖
∗𝐶𝑗𝑗𝑗

∗𝐶𝑘𝑘𝑘
∗)

1/3
𝑘𝑖

∗𝑥𝑖𝑘𝑗
∗𝑥𝑗𝑘𝑘

∗𝑥𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯ , 

(2.19) 

where r is the number of solutes present. These equations have been found to provide accurate 

predictions of osmolality in a wide variety of non-ideal multi-solute solutions [5,11,24,76,104–

106]. It should, however, be noted that although Equations 2.16 (or 2.18) and 2.17 (or 2.19) are 

similar in form and were derived using similar methods, they were obtained using different starting 

assumptions (regarding concentration units i.e., Landau and Lifshitz solution theory versus regular 

solution theory). They are not equivalent, will not necessarily yield the same predictions for a 

given solution, and it is not possible to directly convert the coefficients of one to those of the other. 

That is, Equations 2.16 and 2.17 are effectively separate and distinct solution theories. 

2.2.3. Kleinhans and Mazur freezing point summation model 

 The Kleinhans and Mazur freezing point summation model is similar to the osmotic virial 

equation in that it also models the osmolality (or, in this case, freezing point depression directly) 
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as being a polynomial function in terms of solute concentration [69]. For a binary aqueous solution 

containing a single solute i, this model represents the freezing point depression as [69] 

∆𝑇𝑚 = 𝑇𝑚
𝑜 − 𝑇𝑚 = −(𝐶1𝑖𝑚𝑖 + 𝐶2𝑖𝑚𝑖

2 + 𝐶3𝑖𝑚𝑖
3) , (2.20) 

where C1i, C2i, and C3i are empirical solute-specific coefficients. Like the osmotic virial 

coefficients, the coefficients in Equation 2.20 can be obtained by fitting to single-solute solution 

osmometric data. For multi-solute solutions, Kleinhans and Mazur proposed summing the freezing 

point depression equations of all solutes present, i.e. [69], 

∆𝑇𝑚 = 𝑇𝑚
𝑜 − 𝑇𝑚 = −∑(𝐶1𝑖𝑚𝑖 + 𝐶2𝑖𝑚𝑖

2 + 𝐶3𝑖𝑚𝑖
3)

𝑟

𝑖=2

 , (2.21) 

where the number of solutes present is (r – 1). While this approach removes the need for multi-

solute data, it does not account for interactions between different solutes – that is, it ignores cross-

coefficients. Despite this assumption, Equation 2.21 has been found to provide accurate predictions 

of freezing point depression in a number of specific multi-solute solutions [5,47,69,145]. 

2.2.4. Ideal dilute models 

 Despite the non-ideal thermodynamic nature of the solutions involved, solution models 

incorporating an ideal dilute assumption are prevalent in cryobiology 

[15,16,19,20,39,59,60,65,68,70,117,122,123,125,126,136,137,139]. One commonly-used form of 

ideal model is to assume that the solution osmolality is equal to the total solute concentration 

[19,20,39,65,68,117,139]. This approach can be implemented with concentration expressed in 

terms of, for example, molality or mole fraction, i.e., respectively 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

 , (2.22) 
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�̃� = ∑𝑥𝑖

𝑟

𝑖=2

 . (2.23) 

For electrolyte solutes in Equations 2.22 and 2.23, one can follow the approach of Prickett et al. 

[105,106] and use the dissociation constants obtained for the molality- and mole fraction-based 

osmotic virial equations, i.e. 

𝜋 = ∑𝑘𝑖𝑚𝑖

𝑟

𝑖=2

 , (2.24) 

�̃� = ∑𝑘𝑖
∗𝑥𝑖

𝑟

𝑖=2

 . (2.25) 

For the purposes of this study, the above ideal models will be referred to as the molality- (Equations 

2.22 and 2.24) and mole fraction- (Equations 2.23 and 2.25) based ideal dilute models. 

 Another ideal dilute approach often used in cryobiological models 

[15,16,59,60,70,122,123,125,126,136,137] is based on a direct implementation of Raoult’s law 

(i.e. for an ideal dilute solution, chemical activity equals mole fraction) and, notably, assumes that 

electrolytes dissociate ideally in solution. In essence, this model, which will herein be referred to 

as the ideal dissociation model, assumes that ionic dissociation is the only property inherent to 

electrolytes that sets them apart from non-electrolyte solutes with regards to contributing to 

solution osmolality, and accounts for this dissociation with a stoichiometric coefficient reflecting 

the number of ions released per solute molecule. This approach is in direct contrast to the other 

models considered here, all of which use empirically-measured coefficients to account for all 

potential electrolyte effects. Consistent with the notation used in this work, the ideal dissociation 

model can be expressed as 
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𝜋 =
1

𝑀1
ln (1 +

1

𝑥1
∑𝜅𝑖𝑥𝑖

𝑟

𝑖=2

)  , (2.26) 

where κi is the stoichiometric dissociation coefficient of solute i (if applicable; e.g., for NaCl or 

KCl, κi = 2) and x1 is the mole fraction of water. It should be noted that a natural logarithm that 

has been linearized in the mole fraction-based ideal dilute model (Equations 2.23 and 2.25) has 

not been linearized in the ideal dissociation model (Equation 2.26). (Note also that this issue does 

not arise in the molality-based ideal dilute model (Equations 2.22 and 2.24), as no natural logarithm 

is obtained in the derivation of water chemical potential from Landau and Lifshitz solution theory.) 

 

2.3. Comparison of multi-solute solution theories 

 Although both forms of the Elliott et al. multi-solute osmotic virial equation (i.e., Equations 

2.16 and 2.17) as well as the Kleinhans and Mazur freezing point summation model (i.e., Equation 

2.21) have been observed to accurately predict non-ideal solution behaviour in multi-solute 

solutions using only single-solute data, it would be useful to compare the accuracy of the 

predictions of these three models in as many multi-solute solutions of cryobiological interest as 

possible. Such information could be used to help choose the optimal model for working with a 

given solution system of interest. Limited comparisons between these solution theories have been 

made in the past [5,24,47,105], but these have been restricted to only a few of the multi-solute 

systems for which data are available in the literature, and none have directly compared the 

molality- and mole fraction-based forms of the multi-solute osmotic virial equation. There has yet 

to be a comprehensive quantitative study comparing the abilities of all three of these models to 

predict non-ideal multi-solute solution behaviour for the range of available cryobiologically-

relevant multi-solute data in which the predictions of all three models are based on a single 
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consistent set of binary solution data. Such a study is the ultimate goal of this work; however, there 

are some issues that must first be addressed. 

 Solute-specific coefficients are available in the literature for a variety of solutes for both 

the multi-solute osmotic virial equation [105] and the freezing point summation model [69,145]. 

However, the binary solution data sets used to curve-fit for these coefficients are not consistent—

i.e., different data sets were used to obtain the osmotic virial coefficients than were used to obtain 

the freezing point summation coefficients, and, in fact, only half of the solutes which have had 

osmotic virial coefficients determined have had freezing point summation coefficients determined. 

As such, before comparing the predictions made by the three non-ideal models being studied here, 

solute-specific coefficients will need to be curve-fit for each model for all solutes of interest using 

a single consistent collection of binary solution data sets. Additionally, it should be noted that the 

mole fraction-based osmotic virial coefficients previously presented by Prickett et al. [105] were 

not curve-fit using Equation 2.8 to convert between osmolality and osmole fraction; rather, the 

following conversion equation was used 

�̃� = 𝑀1𝑥1𝜋 . (2.27) 

Equation 2.27 arises from an a priori assumption that is true only under very specific conditions, 

namely, an ideal dilute solution if the relationship between osmole fraction and chemical potential 

is defined as in this paper and in reference [24] (the relationship is not given in reference [105]). 

Since the conversion between osmolality and osmole fraction is useful only in non-ideal 

circumstances and we have carefully defined all of the surrounding relationships in this work, we 

suggest that Equation 2.27 not be used. Accordingly, we have herein used Equation 2.8 to refit the 

available data to obtain updated mole fraction-based osmotic virial coefficients. 
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 Finally, it is important to point out that while the Kleinhans and Mazur freezing point 

summation model defines the number of solute-specific coefficients to be used for each solute 

(three), the osmotic virial equation does not. In principle, it is possible to fit the osmotic virial 

equation to osmometric data with any number of osmotic virial coefficients, regardless of solute, 

and the fit should improve, even if only slightly, with each added coefficient. However, the model 

fit converges quickly (recall that the osmotic virial coefficients represent increasing orders of 

interactions between solute molecules), with each added coefficient contributing progressively less 

to the accuracy of the fit. Indeed, previous studies [24,105] have shown that for most solutes, the 

second osmotic virial coefficient is sufficient to accurately capture non-ideal solution behaviour, 

although some particularly non-ideal solutes such as proteins require a third osmotic virial 

coefficient [105]. Furthermore, as noted by Prausnitz et al. [102], excessive coefficients (i.e., 

overfitting) may actually lead to a loss of accuracy when predicting the thermodynamic behaviour 

of more complex, multi-solute solutions, due to the corresponding need for a greater number of 

combining rules, each of which may have some uncertainty associated with it arising from 

assumptions made in its development. For these reasons, when curve-fitting the osmotic virial 

equation, the number of coefficients used (i.e., the order of the fit) should be limited to the 

minimum that gives an adequate fit. Prickett et al. [105] defined and applied a criterion based on 

the adjusted R2 statistic for determining the adequate order of fit for the osmotic virial equation. 

However, this criterion did not account for the fact that the osmotic virial equation must pass 

through the origin (i.e., the osmolality of pure water is zero). Furthermore, there exist other criteria 

that are appropriate for establishing the order of fit. In this work, two criteria were applied to 

determine the number of osmotic virial coefficients required for both the molality- and mole 
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fraction-based osmotic virial equations: the adjusted R2 statistic, taking into account regression 

through the origin, and confidence intervals on the osmotic virial coefficients. 

 In summary, the specific objectives of this work are threefold. First, to provide revised 

osmotic virial coefficients for the molality- and mole fraction-based multi-solute osmotic virial 

equations for solutes of interest to cryobiology, using the relationship between osmolality and 

osmole fraction defined through water chemical potential and an improved and extended set of 

criteria for selecting the order of fit. Second, to provide coefficients for the freezing point 

summation model for all the solutes considered in the first objective using the same data sets. And 

finally, using available literature experimental data, to quantitatively evaluate and compare the 

accuracy of multi-solute solution osmolality predictions made by these three non-ideal models, the 

ideal dissociation model, and the molality- and mole fraction-based ideal dilute models. 

 

2.4. Statistical methods for fitting to single-solute (binary) solution data 

 Multiple linear regression was used to curve-fit the osmotic virial equation (Equations 2.5, 

2.6, 2.9, and 2.10) and the freezing point summation model (Equation 2.20) to literature single-

solute solution osmometric data in order to obtain the corresponding solute-specific coefficients. 

The regression was performed using an analytical matrix approach [93] (see Appendix A for 

details). Solutes considered included sodium chloride (NaCl) [142], potassium chloride (KCl) 

[142], dimethyl sulphoxide (DMSO) [8,24,51,109], glycerol [8,24,89,142], propylene glycol (PG) 

[8,89,142,145], ethylene glycol (EG) [89,142], ethanol [142], methanol [142,145], mannitol [142], 

sucrose [43,142], dextrose [142], trehalose [92], hemoglobin [17], bovine serum albumin (BSA) 

[140], and ovalbumin (OVL) [149]. All of the data sets used were obtained from the literature 

expressed in terms of either osmotic pressure versus solute concentration [17,140,149] or freezing 
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point depression versus solute concentration [8,24,43,51,89,92,109,142,145]. For fitting the 

osmotic virial equation, the data were converted to osmolality versus concentration using 

Equations 2.3 and 2.4, whereas for fitting the freezing point summation model, the data were 

converted to freezing point depression versus concentration using Equations 2.2 and 2.4. 

2.4.1. Determining order of fit for the osmotic virial equation 

 For each solute, the order of fit for the osmotic virial equation (i.e., the number of osmotic 

virial coefficients required) was determined using two criteria based on the adjusted R2 statistic 

and on confidence intervals on the osmotic virial coefficients. These criteria are described in detail 

below. In each case, starting with a zero-order fit (no coefficients), the order of fit was increased 

until one or both of the criteria was no longer satisfied. The maximum order of fit that was not 

rejected by either criterion was chosen to represent the solute in question. 

 As the freezing point summation model has a fixed number of coefficients, calculations to 

determine order of fit were not required for this model. However, confidence intervals on the 

coefficients were calculated using Equation 2.30 (see below). 

2.4.2. Adjusted R2 criterion 

 The coefficient of determination, R2, is commonly used to evaluate the fit of a model to 

data. In this work, in order to determine the order of fit for the osmotic virial equation, a regression-

through-origin form of the adjusted R2 was used 

𝑅𝑎𝑑𝑗,RTO
2 = 1 −

∑(𝑦(𝑎) − �̂�(𝑎))
2
/(𝑛 − 𝑝)

∑(𝑦(𝑎))
2
/(𝑛)

 , (2.28) 

where y(a) is the value at the ath data point,  �̂�(𝑎) is the fitted model prediction of the ath data point, 

n is the total number of data points, and p is the number of parameters/coefficients in the model 

(see Appendix B for further details). Note that the subscript “RTO” here and elsewhere in this 
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work indicates that the value applies to regression through the origin. The specific criterion used 

to determine the order of fit was defined as follows: for the solute of interest, the order of the fit 

was progressively increased as long as the added osmotic virial coefficient increased 𝑅𝑎𝑑𝑗,RTO
2  by 

at least 0.005. 

2.4.3. Confidence interval criterion 

 Another method of determining the order of fit for the osmotic virial equation is by using 

confidence intervals calculated on the osmotic virial coefficients (and if applicable, the 

dissociation constant) at a given significance level. Specifically, when considering an increase in 

the order of fit, it should be verified that in the higher-order model, the confidence interval of the 

added coefficient does not include zero—if it does, then the higher-order model is not appropriate 

and, therefore, the order of fit should not be increased. It should be noted that this criterion is 

mathematically equivalent to conducting a t-test to evaluate the hypothesis that the regression 

coefficient that would be added (in the higher-order model) is equal to zero. 

 For the ith regression coefficient 𝛽𝑖, a 100(1–α)% confidence interval can be calculated 

using [93] 

�̂�𝑖 ± 𝑡𝛼/2,𝑛−𝑝𝜎�̂�𝑖
 , (2.29) 

where 𝜎�̂�𝑖
 is the standard error of �̂�𝑖 and 𝑡𝛼/2,𝑛−𝑝 is the right-tailed (α/2)% point of the Student's 

t-distribution with n – p degrees of freedom. The standard error of  �̂�𝑖 is given by 

𝜎�̂�𝑖
= √�̂�2𝑆𝑖𝑖 , (2.30) 

where 𝑆𝑖𝑖 is the iith element of covariance matrix 𝑆 = (𝐹𝑇𝐹)
−1

, 𝐹 is the design matrix (see 

Appendix A), and �̂�2 is the estimated model variance, defined by 
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�̂�2 =
∑(𝑦(𝑎) − �̂�(𝑎))

2

𝑛 − 𝑝
 . (2.31) 

In this work, a criterion based on a 95% confidence interval (i.e., α = 0.05) was used. 

 It should be noted that for electrolyte solutes, which require a dissociation constant and 

thus use the forms of the osmotic virial equation in Equations 2.9 and 2.10, the regression 

coefficients do not equal the osmotic virial coefficients. As a consequence, the calculation of 

confidence intervals on the osmotic virial coefficients of electrolyte solutes requires the use of 

error propagation equations to obtain the corresponding standard errors (e.g., see Bevington and 

Robinson [6]). 

 

2.5. Statistical methods for evaluation of multi-solute (ternary and quaternary) solution 

osmolality predictions 

 Once all required coefficients had been obtained, the three non-ideal models (i.e., the 

molality- and mole fraction-based multi-solute osmotic virial equations and the freezing point 

summation model) along with the ideal dissociation model and the molality- and mole fraction-

based ideal dilute models were used to predict osmolalities in several multi-solute solution systems 

of cryobiological interest for which experimental data [5,24,43,47,51,100,128,145,150] were 

available in the literature. For the freezing point summation model (Equation 2.21), freezing point 

depression predictions were converted to osmolality predictions using Equation 2.3. For both mole 

fraction-based models (Equations 2.17 and 2.19 and Equations 2.23 and 2.25), osmole fraction 

predictions were converted to osmolality predictions using Equation 2.8. 

 The osmolality predictions of all six models were compared to the literature experimental 

osmolality measurements. All of the literature data were considered in the form of solution 

osmolality versus overall solute concentration (conversions were carried out where necessary), 
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with the data for each solution system organized into one or more isopleths. An isopleth is a set of 

osmolality measurements made at increasing overall solute concentrations with all solute mass 

ratios held constant. The number of isopleths available for the various solution systems considered 

varied from 1 to 100 (see Table 2.2 for details). For some of the solution systems [24,47,145,150], 

numerical data were directly available; for others [5,43,51,100,128], only graphical data were 

available. In the latter case, numerical data values were estimated by digitizing the published 

graphs. For all but one of these data sets, the graphical data contained individual data points for 

each composition of interest. The exception was the data for the glycerol + NaCl system [128], for 

which only plots (i.e., curves) of the data were available. To analyse this data set, evenly-spaced 

(in terms of composition) points were chosen along each data curve, and those points were taken 

to represent the data for that curve. The number of “data points” obtained this way ranged from 

eight to thirteen, depending on the length of the curve. Special note should also be taken of the 

data for the EG + NaCl system [5]. In this case, Benson et al. took three experimental 

measurements at each composition of interest. However, the graphical data in that work does not 

always show the three measurements as distinct. In such instances, the measurements were 

assumed to overlay—i.e., the one data point apparent was taken to represent three measurements. 

 The accuracy of the model predictions was evaluated using two quantitative measures. The 

first was the regression-through-origin (non-adjusted) R2 statistic, RRTO
2, i.e., 

𝑅RTO
2 = 1 −

∑(𝑦(𝑎) − �̂�(𝑎))
2

∑(𝑦(𝑎))
2  , (2.32) 

where �̂�(𝑎) in this case refers to the multi-solute (as opposed to fitted single-solute) model 

prediction of the ath data point. The second measure was the percent mean relative magnitude error 

(%MRME), defined as 
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%𝑀𝑅𝑀𝐸 =
1

𝑛
∑ |

𝑦(𝑎) − �̂�(𝑎)

𝑦(𝑎)
|

𝑛

𝑎=1

× 100% . (2.33) 

For each of the six solution models, RRTO
2 and %MRME values were calculated for each isopleth 

in each solution system. The values of each measure were then averaged over all the isopleths 

within a given solution system. The resulting averages represent the overall accuracy of the 

corresponding model predictions in that solution system. 

 

2.6. Results and discussion 

 The fitted molality- and mole fraction-based osmotic virial coefficients obtained from 

literature single-solute solution data are given in Tables 2.3 and 2.4, respectively. As done by 

Prickett et al. [105], the solutes here have been organized into groups by type of molecule: 

electrolytes, cryoprotectants, alcohols, sugars, and proteins. For both the molality- and mole 

fraction-based osmotic virial equations, the same twelve solutes (of fifteen considered) were found 

to require at least second order fits (i.e., second osmotic virial coefficients Bii). The exceptions in 

both cases were KCl, mannitol, and trehalose; these solutes did not require any osmotic virial 

coefficients and thus, by the criteria defined in this work, can be considered ideal when using the 

osmotic virial equation. Further, for the molality-based osmotic virial equation, three solutes—

ethanol, and the proteins hemoglobin and BSA—required third-order fits, and for the mole 

fraction-based osmotic virial equation, four solutes—DMSO, ethanol, hemoglobin, and BSA—

also required third-order fits. None of the solutes for either model were found to require fourth-

order or higher fits. The molality-based coefficients obtained here are largely the same as those 

reported by Prickett et al. [105], with the exceptions of those for EG, ethanol, sucrose, and 

trehalose. For ethanol and trehalose, these differences reflect the updated criteria used for selecting 
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the order of fit; for sucrose, they reflect additional data [43] that were used; and for EG, they reflect 

both additional data [89] and the new criteria. Conversely, the mole fraction-based coefficients are 

almost entirely different from those of Prickett et al. (the exception here being the ideal non-

electrolyte solute mannitol). The differences in this latter case primarily arise from the use of 

Equation 2.8 (instead of Equation 2.27) to define the relationship between osmolality and osmole 

fraction in this work. 

 The fitted coefficients for the Kleinhans and Mazur freezing point summation model are 

given in Table 2.5. Kleinhans and Mazur [69] have previously reported coefficients for NaCl, 

glycerol, DMSO, sucrose, and EG, and Weng et al. [145] have previously reported coefficients for 

methanol and PG. The coefficients obtained here for those solutes are, in all cases, at least slightly 

different. These differences likely have to do with the additional data used in this work, as well as 

the fact that Kleinhans and Mazur thinned the data that they used in order to minimize the 

weighting of data at lower concentrations [69]. In this work, all available data points from all cited 

sources were used. It should be noted that for many of the solutes considered (specifically: DMSO, 

PG, ethanol, mannitol, dextrose, trehalose, hemoglobin, BSA, and OVL), the 95% confidence 

intervals for one or more of the freezing point summation coefficients  include zero (see bolded 

values in Table 2.5). These occurrences may indicate situations where the use of a third order fit 

with the freezing point summation model is not appropriate. 

 Using the corresponding coefficients in Tables 2.3, 2.4, and 2.5, the molality- and mole 

fraction-based Elliott et al. multi-solute osmotic virial equations (Equations 2.16 and 2.18 and 2.17 

and 2.19, respectively), the Kleinhans and Mazur freezing point summation model (Equation 2.21), 

the ideal dissociation model (Equation 2.26), and the molality- and mole fraction-based ideal dilute 

models defined in Equations 2.22 and 2.24 and 2.23 and 2.25, respectively, were used to make 
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predictions of solution osmolality in each of the ten multi-solute solution systems listed in Table 

2.2. Figures 2.1 to 2.10 show a representative isopleth and corresponding model predictions from 

each of the considered solution systems. Tables 2.6 and 2.7 give the average values of RRTO
2 and 

%MRME, respectively, calculated over all isopleths within a given solution system for each of the 

six models considered. Each table also contains an overall (unweighted, e.g., with respect to 

number of isopleths) average value of its corresponding measure calculated over all the solution 

systems for each model. 

 Before discussing the results in Tables 2.6 and 2.7, an important point should be made 

regarding one of the measures of model prediction accuracy used in this work, that is, RRTO
2. As 

is discussed in greater detail in Appendix B, RRTO
2 is not directly comparable to a “standard” R2 

statistic (i.e., one with the total sum of squares calculated using Equation B.3 instead of Equation 

B.7). In fact, RRTO
2 values for a given prediction or fit will always be higher than the corresponding 

R2 values. Thus, for example, while a value of R2 = 0.9 might represent a respectable prediction, 

RRTO
2 = 0.9 does not. 

 From the results in Tables 2.6 and 2.7 and Figures 2.1 to 2.10, it is evident that the three 

non-ideal models perform considerably better than the three ideal models. However, none of the 

three non-ideal models is clearly superior to the others. Each non-ideal model has solution systems 

where it is noticeably—at least, in terms of %MRME—more accurate than the other two (e.g., 

DMSO + glycerol for the molality-based multi-solute osmotic virial equation, EG + NaCl + 

sucrose for the mole fraction-based multi-solute osmotic virial equation, and NaCl + sucrose for 

the freezing point summation model), but overall the performance of all three non-ideal models is 

very close. In contrast to the non-ideal models, there is a distinct difference in the performance of 

one of the ideal models relative to the other two: the molality-based ideal dilute model and the 
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ideal dissociation model clearly provide more accurate predictions than the mole fraction-based 

ideal dilute model in almost all of the solution systems considered (the lone exception being BSA 

+ OVL, where all three ideal models provide equally poor predictions). Given that the main 

difference between the molality- and mole fraction-based ideal dilute models is the way in which 

concentration is defined, the gap in their prediction accuracy highlights the importance of the 

choice of concentration units in thermodynamic modeling. 

 

2.7. Conclusions 

 Our results indicate that the three non-ideal models provide superior multi-solute 

predictions as compared to the three ideal models. Furthermore, although in certain solution 

systems there was a clearly dominant model, all three non-ideal models exhibited similar 

performance overall (i.e., when accounting for all considered solution systems). Based on these 

results, we strongly recommend the use of at least one of the three non-ideal models evaluated here 

when predicting solution osmolality (e.g., when modeling osmotic responses). The results of the 

multi-solute solution analysis in this work can be used to aid in the choice of a particular model, 

depending on the composition of the solutions being modeled. Once a model has been chosen, the 

corresponding single-solute coefficients that have been determined here can be used to make the 

desired predictions. 

  



34 

 

Table 2.1. Values and units of the constants in Equations 2.1, 2.2, 2.3, and 2.4 [10]. 

Constant Value 

R 8.314 J/(mol K) = 8.314 Pa m3/(mol K) 

M1 1.802 × 10–2 kg/mol 

𝑇𝑚
𝑜  273.15 K 

∆𝑠𝑓1
𝑜̅̅ ̅̅ ̅̅   22.00 J/(mol K) 

ρ1 997 kg/m3 

 

 

Table 2.2. Number of isopleths available for each of the multi-solute solution systems considered 

in this work. 

Solution System Number of Isopleths Source 

BSA + OVL 1 [150] 

DMSO + Glycerol 2 [24] 

DMSO + NaCl 8 [51] 

EG + NaCl 5 [5] 

Glycerol + NaCl 7 [128] 

Methanol + NaCl 3 [145] 

NaCl + PG 3 [145] 

NaCl + Sucrose 6 [43] 

EG + NaCl + Sucrose 100 [47] 

Glycerol + NaCl + PG 3 [100] 
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Table 2.3. Elliott et al. molality-based osmotic virial coefficients with corresponding 95% 

confidence intervals (CI), for use in Equation 2.16. The order-limiting criterion for each solute 

denotes which of the fitting criteria—adjusted R2 (𝑅𝑎𝑑𝑗,RTO
2 ), confidence interval (CI), or both—

rejected further increases in the order of fit for that solute. 

Solute 

[Source] 

Maximum 

Molality 

(mol/kg) 

ki [±95% 

CI] 

Bii (molal-1) 

[±95% CI] 

Ciii (molal-2) 

[±95% CI] 
𝑹𝒂𝒅𝒋,𝐑𝐓𝐎

𝟐  
Order-

Limiting 

Criterion 

NaCl [142] 5.111 
1.678 

[±0.016] 

0.044 

[±0.002] 
0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

KCl [142] 2.004 
1.772 

[±0.003] 
0 0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

DMSO 

[8,24,51,109] 
14.975 1 

0.108 

[±0.005] 
0 0.996 𝑅𝑎𝑑𝑗,RTO

2  

Glycerol 

[8,24,89,142] 
16.288 1 

0.023 

[±0.001] 
0 0.998 𝑅𝑎𝑑𝑗,RTO

2  

PG 

[8,89,142,14

5] 

19.713 1 
0.039 

[±0.001] 
0 0.998 𝑅𝑎𝑑𝑗,RTO

2  

EG [89,142] 24.166 1 
0.020 

[±0.001] 
0 0.998 𝑅𝑎𝑑𝑗,RTO

2  

Ethanol [142] 46.125 1 
0.012 

[±0.003] 

-0.0004 

[±0.0001] 
0.995 𝑅𝑎𝑑𝑗,RTO

2  

Methanol 

[142,145] 
66.323 1 

0.0036 

[±0.0002] 
0 0.999 𝑅𝑎𝑑𝑗,RTO

2  

Mannitol 

[142] 
0.969 1 0 0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

Sucrose 

[43,142] 
5.329 1 

0.116 

[±0.004] 
0 0.998 𝑅𝑎𝑑𝑗,RTO

2  

Dextrose 

[142] 
2.379 1 

0.044 

[±0.001] 
0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

Trehalose 

[92] 
1.108 1 0 0 0.997 Both 

Hemoglobin 

[17] 
1.23×10-2 1 49.3 [±18.6] 

3.07×104 

[±0.18×104] 
1.000 Both 

BSA [140] 9.72×10-3 1 
370.5 

[±361.9] 

1.60×105 

[±0.42×105] 
0.997 Both 

OVL [149] 1.95×10-2 1 
378.5 

[±14.9] 
0 0.994 𝑅𝑎𝑑𝑗,RTO

2  
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Table 2.4. Elliott et al. mole fraction-based osmotic virial coefficients with corresponding 95% 

confidence intervals (CI), for use in Equation 2.17. The order-limiting criterion for each solute 

denotes which of the fitting criteria—adjusted R2 (𝑅𝑎𝑑𝑗,RTO
2 ), confidence interval (CI), or both—

rejected further increases in the order of fit for that solute. 

Solute 

[Source] 

Maximum 

Mole 

Fraction 

ki
* [±95% 

CI] 

Bii
* [±95% 

CI] 

Ciii
* [±95% 

CI] 
𝑹𝒂𝒅𝒋,𝐑𝐓𝐎

𝟐  
Order-

Limiting 

Criterion 

NaCl [142] 0.084 
1.644 

[±0.021] 
3.80 [±0.17] 0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

KCl [142] 0.035 
1.818 

[±0.004] 
0 0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

DMSO 

[8,24,51,109] 
0.212 1 2.35 [±1.69] 43.6 [±9.6] 0.998 Both 

Glycerol 

[8,24,89,142] 
0.227 1 3.17 [±0.07] 0 0.999 𝑅𝑎𝑑𝑗,RTO

2  

PG 

[8,89,142,14

5] 

0.262 1 4.98 [±0.14] 0 0.998 𝑅𝑎𝑑𝑗,RTO
2  

EG [89,142] 0.303 1 3.41 [±0.03] 0 1.000 Both 

Ethanol [142] 0.454 1 3.90 [±0.16] 
–7.36 

[±0.41] 
0.999 𝑅𝑎𝑑𝑗,RTO

2  

Methanol 

[142,145] 
0.544 1 2.63 [±0.07] 0 0.997 𝑅𝑎𝑑𝑗,RTO

2  

Mannitol 

[142] 
0.017 1 0 0 0.999 𝑅𝑎𝑑𝑗,RTO

2  

Sucrose 

[43,142] 
0.088 1 8.68 [±0.25] 0 0.999 Both 

Dextrose 

[142] 
0.041 1 3.65 [±0.06] 0 1.000 𝑅𝑎𝑑𝑗,RTO

2  

Trehalose 

[92] 
0.020 1 0 0 0.997 Both 

Hemoglobin 

[17] 
2.21×10-4 1 

2.73×103 

[±1.03×103] 

9.46×107 

[±0.56×107] 
1.000 Both 

BSA [140] 1.75×10-4 1 
2.05×104 

[±2.01×104] 

4.94×108 

[±1.31×108] 
0.997 Both 

OVL [149] 3.51×10-4 1 
2.10×104 

[±0.08×104] 
0 0.994 𝑅𝑎𝑑𝑗,RTO

2  
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Table 2.5. Kleinhans and Mazur freezing point summation model coefficients with corresponding 

95% confidence intervals (CI), for use with Equation 2.21. Bolded values indicate coefficients 

where the 95% confidence interval includes zero. 

Solute 

[Source] 

Maximum 

Molality 

(mol/kg) 

C1i (°C/molal) 

[±95% CI] 

C2i (°C/molal2) 

[±95% CI] 

C3i (°C/molal3) 

[±95% CI] 
𝑹𝒂𝒅𝒋,𝐑𝐓𝐎

𝟐  

NaCl [142] 5.111 
–3.357 

[±0.006] 

–0.0043 

[±0.0043] 

–2.56×10–2 

[±0.07×10–2] 
1.000 

KCl [142] 2.004 
–3.398 

[±0.018] 

0.1789 

[±0.0283] 

–4.37×10–2 

[±1.04×10–2] 
1.000 

DMSO 

[8,24,51,10

9] 

14.975 
–1.599 

[±0.503] 

–0.1824 

[±0.1057] 

1.46×10–3 

[±5.32×10–3] 
0.998 

Glycerol 

[8,24,89,14

2] 

16.288 
–1.998 

[±0.075] 

–0.0286 

[±0.0162] 

1.26×10–3 

[±0.78×10–3] 
1.000 

PG 

[8,89,142,1

45] 

19.713 
–2.109 

[±0.142] 

–0.0375 

[±0.0236] 

5.67×10–4 

[±8.96×10–4] 
0.999 

EG [89,142] 24.166 
–1.814 

[±0.034] 

–0.0548 

[±0.0045] 

1.76×10–3 

[±0.14×10–3] 
1.000 

Ethanol 

[142] 
46.125 

–2.389 

[±0.100] 

0.0324 

[±0.0074] 

–7.23×10–5 

[±12.47×10–5] 
0.998 

Methanol 

[142,145] 
66.323 

–2.044 

[±0.024] 

0.0104 

[±0.0012] 

–1.89×10–5 

[±1.43×10–5] 
1.000 

Mannitol 

[142] 
0.969 

–1.871 

[±0.021] 

–0.0055 

[±0.0680] 

–2.20×10–2 

[±5.24×10–2] 
1.000 

Sucrose 

[43,142] 
5.329 

–1.824 

[±0.145] 

–0.2825 

[±0.1080] 

1.84×10–2 

[±1.65×10–2] 
0.999 

Dextrose 

[142] 
2.379 

–1.851 

[±0.014] 

–0.0718 

[±0.0202] 

1.34×10–5 

[±662.02×10–5] 
1.000 

Trehalose 

[92] 
1.108 

–1.709 

[±0.532] 

0.3539 

[±1.3955] 

–4.88×10–1 

[±8.72×10–1] 
0.999 

Hemoglobin 

[17] 
1.23×10–2 

–2.191 

[±0.641] 
–14.1 [±154.7] 

–6.13×104 

[±0.90×104] 
1.000 

BSA [140] 9.72×10–3 
–5.091 

[±10.692] 

2.29×102 

[±31.33×102] 

–3.59×105 

[±2.22×105] 
0.997 

OVL [149] 1.95×10–2 2.239 [±3.442] 
–1.13×103 

[±0.52×103] 

1.05×104 

[±1.88×104] 
0.997 

 

  



38 

 

Table 2.6. Isopleth-averaged regression-through-the-origin R2 (RRTO
2) values calculated for each 

of the multi-solute solution systems considered for predictions made using the molality- and mole 

fraction-based ideal dilute models, the ideal dissociation model, the Elliott et al. molality- and 

mole fraction-based multi-solute osmotic virial equations (MSOVE), and the Kleinhans and Mazur 

freezing point summation model. 

Solution 

System 

Maximum 

Osmolality 

(osmol/kg) 

Molality 

Ideal 

Model 

RRTO
2 

Mole 

Fraction 

Ideal 

Model 

RRTO
2 

Ideal 

Dissociation 

Model RRTO
2 

Elliott et 

al. 

Molality 

MSOVE 

RRTO
2 

Elliott et 

al. Mole 

Fraction 

MSOVE 

RRTO
2 

Kleinhans and 

Mazur 

Freezing 

Point 

Summation 

Model RRTO
2 

BSA + 

OVL 
0.07 0.325 0.325 0.325 0.992 0.992 0.867 

DMSO + 

Glycerol 
9.06 0.918 0.881 0.900 0.996 0.974 0.972 

DMSO + 

NaCl 
45.00 0.823 0.758 0.826 0.996 0.980 0.973 

EG + 

NaCl 
24.43 0.907 0.813 0.869 0.986 0.993 0.989 

Glycerol 

+ NaCl 
31.09 0.948 0.884 0.950 0.974 0.989 0.991 

Methanol 

+ NaCl 
8.43 0.990 0.967 0.984 0.995 0.994 0.997 

NaCl + 

PG 
10.06 0.939 0.906 0.936 0.989 0.997 0.994 

NaCl + 

Sucrose 
23.07 0.931 0.876 0.941 0.927 0.958 0.990 

EG + 

NaCl + 

Sucrose 

28.53 0.924 0.827 0.882 0.997 0.999 0.997 

Glycerol 

+ NaCl + 

PG 

25.71 0.915 0.815 0.879 0.994 0.996 0.996 

Overall Average: 0.862 0.805 0.849 0.985 0.987 0.977 
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Table 2.7. Isopleth-averaged percent mean relative magnitude error (%MRME) values calculated 

for each of the multi-solute solution systems considered for predictions made using the molality- 

and mole fraction-based ideal dilute models, the ideal dissociation model, the Elliott et al. molality- 

and mole fraction-based multi-solute osmotic virial equations (MSOVE), and the Kleinhans and 

Mazur freezing point summation model. 

Solution 

System 

Maximum 

Osmolality 

(osmol/kg) 

Molality 

Ideal 

Model 

%MRME 

Mole 

Fraction 

Ideal 

Model 

%MRME 

Ideal 

Dissociation 

Model 

%MRME 

Elliott et 

al. 

Molality 

MSOVE 

%MRME 

Elliott et 

al. Mole 

Fraction 

MSOVE 

%MRME 

Kleinhans 

and Mazur 

Freezing 

Point 

Summation 

Model 

%MRME 

BSA + 

OVL 
0.07 65.84 65.84 65.84 11.29 11.27 34.91 

DMSO + 

Glycerol 
9.06 18.56 21.96 20.29 4.91 11.43 13.13 

DMSO + 

NaCl 
45.00 33.71 39.27 31.73 9.24 15.29 16.63 

EG + 

NaCl 
24.43 30.96 38.40 33.55 19.72 16.08 18.82 

Glycerol 

+ NaCl 
31.09 17.78 25.06 14.22 8.13 7.18 6.61 

Methanol 

+ NaCl 
8.43 11.70 18.21 13.56 8.80 8.28 6.21 

NaCl + 

PG 
10.06 20.36 23.78 19.78 12.24 8.50 7.48 

NaCl + 

Sucrose 
23.07 22.03 27.83 21.37 20.67 18.68 11.48 

EG + 

NaCl + 

Sucrose 

28.53 20.73 28.83 24.15 8.03 5.45 7.95 

Glycerol 

+ NaCl + 

PG 

25.71 20.55 30.79 23.31 4.83 5.77 4.17 

Overall Average: 26.22 32.00 26.78 10.79 10.79 12.74 
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Figure 2.1. Experimental isopleth and model predictions for the solution system BSA + OVL, at a 

solute mass ratio of BSA:OVL = 3:2. Data are from Yousef et al. [150]. The predictions of the 

molality- and mole fraction-based multi-solute osmotic virial equations overlay directly, as do the 

predictions of the ideal dissociation model and the molality- and mole fraction-based ideal dilute 

models. 
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Figure 2.2. Experimental isopleth and model predictions for the solution system DMSO + glycerol, 

at a solute mass ratio of glycerol:DMSO = 1:2. Data are from Elliott et al. [24]. The error bars on 

the data points represent the standard deviations of the experimental measurements. 
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Figure 2.3. Experimental isopleth and model predictions for the solution system DMSO + NaCl, 

at a solute mass ratio of DMSO:NaCl = 2:1. Data are from Hildebrandt’s thesis [51]. 
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Figure 2.4. Experimental isopleth and model predictions for the solution system EG + NaCl, at a 

solute mass ratio of EG:NaCl = 10:1. Data are from Benson et al. [5]. 
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Figure 2.5. Experimental isopleth and model predictions for the solution system glycerol + NaCl, 

at a solute mass ratio of glycerol:NaCl = 7:3. Data are from Shepard et al. [128]. 
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Figure 2.6. Experimental isopleth and model predictions for the solution system methanol + NaCl, 

at a solute mass ratio of methanol:NaCl = 10:1. Data are from Weng et al. [145]. 
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Figure 2.7. Experimental isopleth and model predictions for the solution system NaCl + PG, at a 

solute mass ratio of PG:NaCl = 15:1. Data are from Weng et al. [145]. 
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Figure 2.8. Experimental isopleth and model predictions for the solution system NaCl + sucrose, 

at a solute mass ratio of sucrose:NaCl = 5:1. Data are from Gayle et al. [43]. 
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Figure 2.9. Experimental isopleth and model predictions for the solution system EG + NaCl + 

sucrose, at a solute mass ratio of EG:sucrose:NaCl = 30:5:1. Data are from Han et al. [47]. 
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Figure 2.10. Experimental isopleth and model predictions for the solution system glycerol + NaCl 

+ PG, at a solute mass ratio of glycerol:PG:NaCl ≈ 5:4:2. Data are from Pegg and Arnaud [100]. 
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Chapter 3. A non-ideal solute chemical potential equation and the validity of 

the grouped solute approach for intracellular solution thermodynamics2 

 

Chapter Summary: The prediction of non-ideal chemical potentials in aqueous solutions is 

important in fields such as cryobiology, where models of water and solute transport—i.e., osmotic 

transport—are used to help develop cryopreservation protocols, and where solutions contain many 

varied solutes and are generally highly concentrated and thus thermodynamically non-ideal. In this 

work, we further the development of a non-ideal multi-solute solution theory that has found 

application across a broad range of aqueous systems. This theory is based on the osmotic virial 

equation and does not depend on multi-solute data. Specifically, we derive herein a novel solute 

chemical potential equation that is thermodynamically consistent with the existing model, and we 

establish the validity of a grouped solute model for the intracellular space. With this updated 

solution theory, it is now possible to model cellular osmotic behaviour in non-ideal solutions 

containing multiple permeating solutes, such as those commonly encountered by cells during 

cryopreservation. In addition, because we show here that for the osmotic virial equation the 

grouped solute approach is mathematically equivalent to treating each solute separately, multi-

solute solutions in other applications with fixed solute mass ratios can now be treated rigorously 

with such a model, even when all the solutes cannot be enumerated. 

 

                                                 
2 This chapter, along with Appendices C and D, has been published as M.W. Zielinski, L.E. McGann, J.A. Nychka, 

J.A.W. Elliott, A Non-Ideal Solute Chemical Potential Equation and the Validity of the Grouped Solute Approach 

for Intracellular Solution Thermodynamics, J. Phys. Chem. B. 121 (2017) 10443–10456. This work is available at 

http://pubs.acs.org/articlesonrequest/AOR-38xihDTThrSv82dTdyFp. 
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3.1. Introduction 

 The modelling of aqueous solution thermodynamics—both water and solute chemical 

potential—has applications in a number of different fields, including biomolecule separation [67], 

microdrop concentrating processes [29–31], the study of micelle formation [76,77], and the 

primary focus of this work: cryopreservation [1,2,12,13,23,27,53,54,60,62,65,66,81,94,115,116, 

127,129,137,139,153]. Recently, a form of the multi-solute osmotic virial equation has been 

demonstrated to have wide-ranging success in predicting water chemical potential in aqueous 

solutions [1,7,24,27,104–106,118,154,155]. In this work, we address two key theoretical aspects 

of this practically-important model in the general context of its application to cellular 

cryopreservation: i) we derive a novel and required equation for solute chemical potential that is 

thermodynamically consistent with the molality-based form of the osmotic virial equation, and ii) 

we provide a proof that the “grouped solute” modelling approach, practically necessary to model 

the cellular cytoplasm, is mathematically rigorous. 

 Cryopreservation refers to the storage of cells and tissues at low sub-zero temperatures. It 

offers a means of banking these biological materials for later use in transplantation and research. 

However, not all cell types and very few tissues can be successfully cryopreserved, due to 

damage—i.e., cryoinjury—that occurs on cooling and/or warming [63,98,147]. The development 

of successful cryopreservation protocols hinges on understanding and minimizing this damage. 

During cryopreservation, differences in chemical potential caused by changing external conditions 

(e.g., ice formation in the bulk solution) drive the passive transport of water and any permeating 

solutes through tissues and into and out of cells [1,27,53,54,65,66,139]. Collectively known as the 

osmotic response, these transport processes ultimately govern important mechanisms of 

cryoinjury. For example, in cells, the rate at which cooling occurs once ice starts to form in the 
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suspending solution has a profound effect on survival which is directly linked to the osmotic 

response [83]: due to the low solubility in ice of most solutes [124], low cooling rates expose cells 

to damagingly high solute concentrations for extended periods of time [83,91], whereas high 

cooling rates—while limiting exposure to concentrated solutions—allow insufficient time for the 

osmotic response to equilibrate the intra- and extracellular solutions, leading to conditions that 

promote intracellular ice formation, which is lethal under most conditions [82,83,91]. The addition 

of cryoprotective agents such as dimethyl sulphoxide to the extracellular solution can at least 

somewhat lessen this cryoinjury [85,90], but the effectiveness of these chemicals is limited by their 

toxicity [12,13,28,33,34]. Furthermore, their addition and removal can cause an osmotic response 

that leads to excessive—and potentially deadly—cell volume excursions [12,13,39,52,64]. In light 

of the above, mathematical models of osmotic response—which allow the prediction of cell 

behaviour during cryopreservation—are very useful tools in the development of cryopreservation 

protocols. However, modelling the osmotic response requires a means of simultaneously 

calculating solvent (i.e., water) and solute chemical potentials in the complex solutions 

characteristic of cryobiology—that is, it requires an appropriate and complete thermodynamic 

solution theory. Herein, we build on existing work [11,24,27,105,106,154] based on the osmotic 

virial equation [87]—a foundational thermodynamic solution theory with important mathematical 

properties [7]—to further the development of such a solution theory. The resulting updated model 

accounts for all required chemical potentials and solution conditions relevant to cryopreservation. 

 From a thermodynamic perspective, cryobiological solutions can generally be considered 

non-ideal, on account of their tendency to be—or, as temperatures drop, to become—highly 

concentrated. Further, they tend to contain many different solutes with varied characteristics (e.g., 

salts, alcohols, proteins). While an ideal dilute solution assumption can be used to simplify the 
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thermodynamic modelling of these solutions [39,53,54,60,61,64–66,81,137], it has been shown 

that ignoring the non-ideality of cryobiological solutions can negatively impact predictions of 

chemical potential [24,105,106,154]. The alternative is to use a non-ideal solution theory. These 

models account for solution deviation from thermodynamically ideal behaviour predominantly 

using empirically-obtained (i.e., curve-fit) coefficients. A number of non-ideal solution theories 

have been proposed for use in cryobiology and have been demonstrated to accurately model the 

water chemical potential of multi-solute solutions of cryobiological interest [5,11,24,32,69,95,96, 

99,104,105,145,153]. However, most of these models are solution-specific, requiring fitting to 

multi-solute data [5,32,96,97,100,146]—i.e., every time a new combination of solutes is to be 

considered, it must first be curve-fit to the corresponding experimental multi-solute phase diagram 

in order to obtain the required coefficients. Given the extensive variety and number of solutes that 

are relevant in cryobiology, the myriad ways in which these solutes can be—and are—combined 

in cryobiological solutions, and the difficulties of measuring multi-solute phase diagrams [69], 

such solution-specific models are not well-suited for cryobiological solutions in general. 

Conversely, there are at least two non-ideal multi-solute solution theories that have been proposed 

for use with cryobiological solutions that do not depend on multi-solute data: the Kleinhans and 

Mazur freezing point summation model [69] and the Elliott et al. form of the multi-solute osmotic 

virial equation [11,24,27,105,106,154]. Both theories employ solute-specific thermodynamic 

coefficients to account for non-ideal behaviour, and for both theories these coefficients are 

obtained by curve-fitting to single solute (i.e., binary) solution osmometric data. We have recently 

compared the performance of these two non-ideal solution theories in modelling the water 

chemical potential of several multi-solute solutions relevant to cryobiology, and found that both 

provide accurate predictions compared to ideal dilute models [154]. However, while the Kleinhans 
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and Mazur model allows the prediction of water chemical potential, it does not provide a 

corresponding means of calculating solute chemical potential, a requirement for modelling solute 

transport [69]. In contrast, the Elliott et al. form of the multi-solute osmotic virial equation—

although its development has thus far been primarily focused on the chemical potential of water 

[11,24,105,106,154]—does include equations for both water and solute chemical potential [27]. 

Moreover, because this solution theory was originally obtained from fundamental thermodynamic 

theory [24,27], it is possible to derive further equations for solute chemical potential that are 

thermodynamically consistent with the existing model. The Elliott et al. model has been 

demonstrated to accurately predict experimentally-measured water chemical potentials in a wide 

variety of cryobiologically-relevant multi-solute aqueous solutions, including bovine serum 

albumin + ovalbumin [24,105,154], dimethyl sulphoxide + glycerol [24,105,154], dimethyl 

sulphoxide + NaCl [103,106,154], ethylene glycol + NaCl [154], glycerol + NaCl [103,106,154], 

methanol + NaCl [154], propylene glycol + NaCl [154], sucrose + NaCl [154], ethylene glycol + 

sucrose + NaCl [154], and glycerol + propylene glycol + NaCl [154]. Examples of the model’s 

predictions in some of these solutions are contained in Figure 3.1. Note that the model can 

effectively account for both electrolyte and non-electrolyte solutes. The model’s predictions of 

water chemical potential have also been successfully applied in the modelling of micelle formation 

in mixed surfactant solutions [76,77]. In light of the need in cryobiology to model the transport of 

both water and solutes, and in light of its demonstrated accuracy in modelling water chemical 

potential, the focus of this work will be the Elliott et al. model. 

 In order to model cellular osmotic behaviour, calculations of water and permeating solute 

chemical potential must be made both inside and outside the cell. In most circumstances, to 

calculate the chemical potential of a given species in a given solution, non-ideal solution theories 
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such as the Elliott et al. form of the multi-solute osmotic virial equation require knowledge of the 

concentration of every solute in solution (e.g., see Equations 3.5, 3.6, and 3.8 below). This 

requirement severely complicates the calculation of intracellular chemical potentials, as—unlike 

in the extracellular solution—the concentrations of all osmotically-contributing solutes in the 

cytoplasm are generally not known. It has recently been proposed that this problem can be avoided 

altogether—at least, when using the Elliott et al. model—by modelling the inside of the cell using 

a “grouped intracellular solute” approach, where, for the purposes of calculating chemical 

potential, all non-permeating intracellular solutes are treated collectively as a single “grouped” 

solute (see Figure 3.2) [104]. A similar approach was used by Levin et al. with a non-ideal van 

Laar type solution theory to model the cytoplasm of red blood cells [75]. However, although the 

grouped intracellular solute approach has been applied in practice with the Elliott et al. model 

[104,118], its theoretical validity has never been addressed. 

 In this work, we have two distinct but related objectives with the overall goal of adding to 

the development of the Elliott et al. form of the multi-solute osmotic virial equation. The first 

objective stems from an important gap in the existing model related to the way in which solute 

concentrations are expressed. Although the Elliott et al. model currently includes equations for 

both water and solute chemical potential in terms of concentration in mole fraction (i.e., moles of 

solute per total moles of all species) [24,27], in terms of molality (i.e., moles of solute per kg of 

solvent), the model provides only a water chemical potential equation [24]. The choice of 

concentration units here is significant: the molality- and mole fraction-based forms of the model 

are obtained from different starting assumptions [24,27], use different solute-specific 

thermodynamic coefficients, and have been demonstrated to give different predictions of water 

chemical potential for the same solution [154,155]. Our earlier work [154] contains a more detailed 
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comparison of these two forms of the Elliott et al. model. A corresponding molality-based solute 

chemical potential equation has been derived separately [4], but this equation contains only terms 

up to second order, whereas the existing molality-based water chemical potential equation contains 

third order terms, an important requirement for certain solutes (e.g., proteins and other 

macromolecules) [11,105,154]. As such, we derive here a novel molality-based equation for the 

non-ideal solute chemical potential that is thermodynamically consistent with the existing water 

chemical potential equation up to third order terms. 

 The second objective of this work concerns the grouped intracellular solute approach. 

Specifically, we use a thermodynamic proof to demonstrate that when calculating intracellular 

chemical potentials with the molality-based Elliott et al. form of the multi-solute osmotic virial 

equation, the grouped intracellular solute approach is theoretically valid—that is, we show this 

approach is mathematically equivalent to treating each non-permeating intracellular solute 

separately when calculating chemical potentials. 

 

3.2. Current status of the Elliott et al. multi-solute osmotic virial equation 

 The Elliott et al. form of the multi-solute osmotic virial equation is based on the (single-

solute) osmotic virial equation developed by McMillan and Mayer [87]. This equation of state 

models water chemical potential as a polynomial expansion in terms of solute concentration. For 

example, expressed in terms of concentration in molality, the osmotic virial equation is [24,87] 

where 𝜋 is omolality (in osmoles/kg of water), 𝑚𝑖 is the molality of solute i, and 𝐵𝑖𝑖 and 𝐶𝑖𝑖𝑖 are 

the second and third molality-based osmotic virial coefficients of solute i, respectively (in [moles 

𝜋 = 𝑚𝑖 + 𝐵𝑖𝑖𝑚𝑖
2 + 𝐶𝑖𝑖𝑖𝑚𝑖

3 + ⋯, (3.1) 
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of solute/kg of water]–1 and [moles of solute/kg of water]–2, respectively). Similarly, in terms of 

concentration in mole fraction, the osmotic virial equation is [87,105] 

where 𝑥𝑖 is the mole fraction of solute i, 𝑀1 is the molar mass of water (in kg/mole), and 𝐵𝑖𝑖
+ and 

𝐶𝑖𝑖𝑖
+  are the second and third mole fraction-based osmotic virial coefficients of solute i, respectively 

(unitless). Osmolality is the composition dependence of water chemical potential; the two 

properties are related by [24] 

where 𝜇1 is the chemical potential of water (in J/mole), 𝜇1
𝑜 is the chemical potential of pure water 

(in J/mole), 𝑅 is the universal gas constant (in J/[mole K]), and 𝑇 is absolute temperature (in 

kelvin). Note that the subscript “1” is generally reserved for the solvent—in this case, water. 

 The osmotic virial coefficients (𝐵𝑖𝑖, 𝐶𝑖𝑖𝑖, … or 𝐵𝑖𝑖
+, 𝐶𝑖𝑖𝑖

+ , …) are important elements of the 

osmotic virial equation—and of solution theories based on it, such as the Elliott et al. model. These 

solute-specific thermodynamic parameters account for interactions between solute molecules: 𝐵𝑖𝑖 

(or 𝐵𝑖𝑖
+) represents interactions between two molecules of solute i, 𝐶𝑖𝑖𝑖 (or 𝐶𝑖𝑖𝑖

+ ) represents 

interactions between three molecules of solute i, and so on. As a key assumption under the ideal 

dilute model is that there are no interactions between solute molecules in solution, these 

coefficients essentially represent the non-ideality of the solute: if they are all zero, then solute i is 

thermodynamically ideal. The osmotic virial coefficients for a given solute—and for a chosen unit 

of concentration—can be obtained by curve-fitting the appropriate osmotic virial equation to 

osmometric (i.e., osmolality versus concentration) data for a binary (i.e., single-solute) aqueous 

solution containing that solute (for example, see [154]). 

𝜋 =
1

𝑀1

[𝑥𝑖 + 𝐵𝑖𝑖
+𝑥𝑖

2 + 𝐶𝑖𝑖𝑖
+ 𝑥𝑖

3 + ⋯ , ] (3.2) 

𝜋 = −
𝜇1 − 𝜇1

𝑜

𝑅𝑇𝑀1
, (3.3) 
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 For solutions containing multiple solutes, the single-solute osmotic virial equation can be 

extended through the use of osmotic virial cross-coefficients [24]. Using the molality-based 

osmotic virial equation (Equation 3.1) as an example, for a solution containing some number (r – 

1) of solutes, we can write 

where 𝐵𝑖𝑗, 𝐶𝑖𝑗𝑘, … are cross-coefficients—𝐵𝑖𝑗 represents interactions between a molecule of solute 

i and a molecule of solute j; 𝐶𝑖𝑗𝑘 represents interactions between a molecule of solute i, a molecule 

of solute j, and a molecule of solute k; and so forth. However, unlike the single-solute coefficients 

in Equations 3.1 and 3.2, curve-fitting for these osmotic virial cross-coefficients requires multi-

solute osmometric data, which, as discussed above, is undesirable. Alternatively, the cross-

coefficients can be replaced using thermodynamic combining rules—that is, theoretical 

relationships between single-solute coefficients and cross-coefficients that allow the former to be 

used to predict the values of the latter. The Elliott et al. form of the osmotic virial equation 

essentially extends McMillan and Mayer’s original model by proposing a specific set of combining 

rules for the second and third order coefficients. 

 Initially, the Elliott et al. model was derived in terms of concentration in mole fraction 

[24,27], based on the regular solution theory definition of Gibbs free energy [102]. For a pair of 

solutes “i” and “j”, this mole fraction-based model consists of an osmolality equation 

and a solute chemical potential equation (e.g., for solute i) 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

+ ∑∑𝐵𝑖𝑗𝑚𝑖𝑚𝑗

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑ 𝐶𝑖𝑗𝑘𝑚𝑖𝑚𝑗𝑚𝑘

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯, (3.4) 

𝜋 =
1

𝑀1
[𝑥𝑖 + 𝑥𝑗 + 𝐵𝑖𝑖

+𝑥𝑖
2 + 𝐵𝑗𝑗

+𝑥𝑗
2 + (𝐵𝑖𝑖

+ + 𝐵𝑗𝑗
+)𝑥𝑖𝑥𝑗], (3.5) 
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where 𝜇𝑖 is the chemical potential of solute i (in J/mole) and 𝜓𝑖
+ is a concentration-independent 

function of temperature and pressure related to the standard state of solute i (in J/mole). In this 

case, the second order combining rule proposed by Elliott et al. is 

It may be noted that the combining rule in Equation 3.7 appears to be what Guggenheim once 

called the “naïve assumption” [46,102], which has been demonstrated to not agree with 

experimental measurements of gaseous mixtures [46,102]. However, for liquid—and especially 

aqueous—solutions, which are the focus in this work, Equation 3.7 has been demonstrated to agree 

closely with experimental measurements [24,105,106,154,155] (see also Figure 3.1). Furthermore, 

for models of liquid solutions such as the osmotic virial equation, Equation 3.7 does not suffer 

from the same theoretical problem—i.e., producing a mixing rule with a linear dependence on 

composition—as it does for models of gas mixtures, because—unlike the gas models—these liquid 

solution models do not provide coefficients to account for solvent interactions (for further details, 

see Appendix C). 

 With Equations 3.5 and 3.6, one can calculate the non-ideal chemical potentials of both 

water and permeating solutes in multi-solute solutions, as is required for osmotic modelling. 

However, a key a priori assumption made by the regular solution theory used in obtaining 

Equations 3.5 and 3.6—that is, that solute concentrations should be expressed in terms of mole 

fraction [102]—is not the only approach to concentration units. In Landau and Lifshitz solution 

theory [73], solute concentrations are instead expressed in terms of molality. Although they appear 

𝜇𝑖 = 𝜓𝑖
+ + 𝑅𝑇 [ln(𝑥𝑖) + (

1

2
− 𝐵𝑖𝑖

+) (1 − 𝑥𝑖 − 𝑥𝑗)(1 − 𝑥𝑖)

− (
1

2
− 𝐵𝑗𝑗

+) (1 − 𝑥𝑖 − 𝑥𝑗)𝑥𝑗], 

(3.6) 

𝐵𝑖𝑗
+ =

𝐵𝑖𝑖
+ + 𝐵𝑗𝑗

+

2
 . (3.7) 
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similar, molality (i.e., moles of solute per kg of solvent) and mole fraction (i.e., moles of solute 

per total moles of all species) are in practice quite different, particularly from the perspective of 

multi-solute solution thermodynamics. With molality, a solute’s concentration depends solely on 

the amount of that solute and on the amount of the solvent present in solution. With mole fraction, 

the solute’s concentration also depends on the amount of every other solute present in solution. In 

multi-solute solution thermodynamics, where taking partial derivatives and integrals is common, 

this distinction becomes very important. Based on the Landau and Lifshitz solution theory, 

Equation 3.5 was rewritten in terms of concentration in molality, generalized to any number of 

solutes, and extended to third order [24], giving the following equation for the osmolality of a 

solution containing (r – 1) solutes 

In this case, the proposed (molality-based) combining rules are 

and 

Equation 3.8 has been demonstrated to provide accurate predictions of osmolality in a variety of 

cryobiologically-relevant multi-solute solutions [154]. Some examples of its effectiveness in 

predicting solution osmolality are contained in Figure 3.1. These examples show that this non-

ideal model, which depends only on coefficients obtained from binary solution data, can be used 

to make predictions in multi-solute aqueous solutions containing proteins (e.g., bovine serum 

albumin + ovalbumin), cryoprotectants (e.g., dimethyl sulphoxide + glycerol), and/or electrolytes 

(e.g., dimethyl sulphoxide + NaCl). Note that for electrolyte solutes, a slightly different form of 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

 . (3.8) 

𝐵𝑖𝑗 =
𝐵𝑖𝑖 + 𝐵𝑗𝑗

2
 (3.9) 

𝐶𝑖𝑗𝑘 = (𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

. (3.10) 
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the equation is required (see Equation 3.33 below). However, Equation 3.8 was obtained without 

explicit derivation, and no corresponding solute chemical potential equation was provided. 

 Before continuing, it would be useful to make note of an important principle in solution 

thermodynamics that is referred to repeatedly in this work: thermodynamic consistency. Any set 

of equations making up a solution theory (i.e., those equations used to simultaneously calculate 

solvent and solute chemical potentials) must be thermodynamically consistent—that is, the 

equations must collectively obey the Gibbs–Duhem equation. At constant temperature and 

pressure, this equation is [102] 

where 𝑁𝑖 is the number moles of species i and 𝜇𝑖 is the chemical potential of i. If the equations of 

a solution theory do not satisfy the Gibbs–Duhem equation, then that solution theory cannot be 

correct. It should be noted that if Equation 3.11 is applied to the mole-fraction based form of the 

Elliott et al. model as written above—that is, to Equations 3.5 and 3.6—these two equations do 

not immediately appear to be thermodynamically consistent. This situation arises because in the 

derivation of Equation 3.5, a natural logarithm term was expanded and the resultant polynomial 

was truncated after second order terms, whereas in the derivation of Equation 3.6, no such 

approximation was made [25]. However, the precursors to these equations (i.e., before the 

expansion of the natural logarithm) can be demonstrated to satisfy Equation 3.11 and are thus 

thermodynamically consistent [25]. Further, a thermodynamically consistent set of equations for 

osmolality and solute chemical potential can be obtained for a single-solute solution by directly 

using the Gibbs–Duhem equation (i.e., Equation 3.11). Essentially, starting with the single solute 

mole fraction-based osmolality equation—Equation 3.2—one applies the Gibbs–Duhem equation 

in a manner analogous to that carried out below in Equations 3.15 to 3.18 for a molality-based set 

𝑁1𝑑𝜇1 + 𝑁2𝑑𝜇2 + 𝑁3𝑑𝜇3 + ⋯ = ∑𝑁𝑖𝑑𝜇𝑖

𝑖=1

= 0, (3.11) 
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of equations. Such a derivation ultimately yields the following equation for solute chemical 

potential 

While this approach works for the single-solute system, the multi-solute derivation is more 

complex and requires the truncation made in obtaining Equations 3.5 and 3.6 [25]. 

 In order to have a complete molality-based multi-solute osmotic virial equation, an 

equation for solute chemical potential that is thermodynamically consistent with Equation 3.8 is 

required. The existing mole fraction-based solute chemical potential equation (i.e., Equation 3.6) 

cannot simply be rewritten in terms of molality as the mole fraction-based osmolality equation can 

be, as this process will not yield a thermodynamically consistent result. Previously, Benson [4] 

showed that starting from the Landau and Lifshitz definition of Gibbs free energy [73] and using 

the second order combining rule proposed by the Elliott et al. model (i.e., Equation 3.9), one can 

derive corresponding molality-based water and solute chemical potential equations. However, 

these equations contain only up to second order terms (i.e., 𝐵𝑖𝑗), whereas Equation 3.8 contains 

third order terms (i.e., 𝐶𝑖𝑗𝑘), and has been shown to provide accurate predictions in solutions 

containing solutes where those third order terms are required (i.e., proteins) [154]. Thus, to 

complete the existing Elliott et al. model, we describe below the derivation and Gibbs–Duhem 

verification of a molality-based solute chemical potential equation that it is thermodynamically 

consistent with Equation 3.8 up to third order. 

 

3.3. Derivation of molality-based solute chemical potential equation 

 The definition of chemical potential is 

𝜇𝑖 = 𝜓𝑖
+ + 𝑅𝑇 (ln 𝑥𝑖 + [2𝐵𝑖𝑖

+ − 1]𝑥𝑖 − 𝐵𝑖𝑖
+𝑥𝑖

2 + 𝐶𝑖𝑖𝑖
+ 𝑥𝑖

2 [
3

2
− 𝑥𝑖] + ⋯ ) (3.12) 
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where 𝐺 is the Gibbs free energy (in joules), 𝑃 is pressure, and the subscripts outside the brackets 

indicate that temperature, pressure, and the number of moles of all components other than i are 

held constant during the differentiation. Given a model for Gibbs free energy, one can use this 

definition to derive chemical potential equations for any species of interest. As noted above, 

Equation 3.8 was obtained based on Landau and Lifshitz solution theory. According to this 

solution theory, for (r – 1) solutes, Gibbs free energy is defined as [73] 

where 𝜓𝑖 is a concentration-independent function of temperature and pressure specific to solute i 

and 𝛽𝑖𝑗 is a concentration-independent function of temperature and pressure specific to solutes i 

and j. However, recall that Equation 3.8 was not explicitly derived from the Landau and Lifshitz 

definition of Gibbs free energy (i.e., Equation 3.14)—rather, the mole fraction-based Equation 3.5 

was rewritten in terms of molality [24]. Furthermore, Equation 3.14 contains only up to second 

order terms, whereas Equation 3.8 contains third order terms. Thus, it is apparent that the Landau 

and Lifshitz definition of Gibbs free energy as defined in Equation 3.14 does not actually give rise 

to the third order Equation 3.8 (indeed, as mentioned above, previous work by Benson [4] has 

shown that chemical potential equations of only second order can be obtained from Equation 3.14). 

As such, in order to derive a solute chemical potential equation that is thermodynamically 

consistent with Equation 3.8 to third order, we must first determine the form of the Gibbs free 

energy that does in fact give rise to Equation 3.8. We can subsequently use this Gibbs free energy 

equation along with Equation 3.13 to derive the desired solute chemical potential equation, and 

𝜇𝑖 = (
𝜕𝐺

𝜕𝑁𝑖
)

𝑇,𝑃,𝑁𝑗≠𝑖

 , (3.13) 

𝐺 = 𝑁1𝜇1
𝑜 + ∑𝑁𝑖𝜓𝑖

𝑟

𝑖=2

+ 𝑅𝑇 ∑𝑁𝑖 ln (
𝑁𝑖

𝑁1
)

𝑟

𝑖=2

+
1

2
∑∑[𝛽𝑖𝑗 (

𝑁𝑖𝑁𝑗

𝑁1
)]

𝑟

𝑗=2

𝑟

𝑖=2

 , (3.14) 
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then use the Gibbs–Duhem equation to verify that this new solute chemical potential equation is 

indeed thermodynamically consistent with Equation 3.8. 

 

3.3.1. Use of the Gibbs–Duhem equation to derive unknown chemical potentials 

 To find the required form of Gibbs free energy, we can use the Gibbs–Duhem equation 

(i.e., Equation 3.11) itself. In fact, because it defines thermodynamic consistency, the Gibbs–

Duhem equation is commonly used to derive unknown chemical potential equations for some 

components from known chemical potential equations for other components in the solution. 

Several groups have previously used the Gibbs–Duhem equation with various forms of the osmotic 

virial equation to develop complete thermodynamically consistent solution theories 

[18,21,42,50,141]. For example, Edmond and Ogston developed a second order molality-based 

model for ternary systems, starting with a solute equation and deriving a solvent equation through 

the Gibbs–Duhem relation [21]. This model was later extended to third order [50]. Solution models 

incorporating the molarity-based [18,42] and weight fraction-based [141] forms of the osmotic 

virial equation have also been developed using the Gibbs–Duhem equation. 

 

3.3.2. Determination of required Gibbs free energy equation 

 Here, we will use the Gibbs–Duhem equation to derive the Gibbs free energy that gives 

rise to Equation 3.8. To start, consider a binary aqueous solution containing a single solute “2”; 

for this solution, the Gibbs–Duhem equation at constant temperature and pressure is: 

Converting to molality (using 𝑚2 = 𝑁2 𝑀1𝑁1⁄ ) and rearranging yields 

𝑁1𝑑𝜇1 + 𝑁2𝑑𝜇2 = 0 . (3.15) 
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Truncating Equation 3.1 after third order terms, substituting into Equation 3.3, and rearranging 

gives 

Substituting Equation 3.17 into Equation 3.16, integrating and simplifying yields 

where 𝜃2 is a concentration-independent integration constant specific to solute 2. Note that the 

molar mass of water (𝑀1) in Equation 3.18 was intentionally added to the equation in order to 

render the term within the natural logarithm (i.e., 𝑀1𝑚2) unitless. This addition was accomplished 

by adding 𝑅𝑇 ln(𝑀1) − 𝑅𝑇 ln(𝑀1) = 0 to the right-hand side of the precursor of Equation 3.18—

the positive 𝑅𝑇 ln(𝑀1) became a part of the natural logarithm that appears in Equation 3.18, while 

the negative 𝑅𝑇 ln(𝑀1) (a constant value at constant temperature) was absorbed into the 

integration constant 𝜃2. By definition, the Gibbs free energy for this system is 

Substituting Equations 3.17 and 3.18 into Equation 3.19 and converting to moles gives 

where 𝜓2 = 𝜃2 − 𝑅𝑇 ln𝑀1 − 𝑅𝑇 is a concentration-independent function of temperature and 

pressure specific to solute 2. Note that up to second order, Equation 3.20 is very similar to the 

Landau and Lifshitz definition of Gibbs free energy (Equation 3.14), and is, in fact, the same up 

to second order if we take 
1

2
𝛽𝑖𝑗 =

𝑅𝑇

𝑀1
𝐵𝑖𝑗. Based on this result, we propose that the following model 

of Gibbs free energy gives rise to Equation 3.8 

𝑑𝜇2

𝑑𝑚2
= −

1

𝑀1𝑚2

𝑑𝜇1

𝑑𝑚2
 . 

(3.16) 

𝜇1 = 𝜇1
𝑜 −  𝑅𝑇𝑀1[𝑚2 + 𝐵22𝑚2

2 + 𝐶222𝑚2
3] . (3.17) 

𝜇2 = 𝑅𝑇 [ln(𝑀1𝑚2) + 2𝐵22𝑚2 +
3

2
𝐶222𝑚2

2] + 𝜃2 , (3.18) 

𝐺 = 𝑁1𝜇1 + 𝑁2𝜇2 . (3.19) 

𝐺 = 𝑁1𝜇1
𝑜 + 𝑁2𝜓2 + 𝑅𝑇𝑁2 ln (

𝑁2

𝑁1
) +

𝑅𝑇

𝑀1
𝐵22

𝑁2
2

𝑁1
+

1

2

𝑅𝑇

𝑀1
2 𝐶222

𝑁2
3

𝑁1
2 , (3.20) 
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where the form of the added third-order term (i.e., the one containing 𝐶𝑖𝑗𝑘) is based on the third-

order term in Equation 3.20. We can verify the above hypothesis using the mathematical definition 

of chemical potential (i.e., Equation 3.13). Substituting Equation 3.21 into Equation 3.13 for water 

(i.e., 𝜇1), evaluating the derivatives, simplifying, converting moles to molality, and using Equation 

3.3 to relate chemical potential to osmolality gives 

Comparing Equation 3.22 to Equation 3.8, it can be seen that the two equations are identical if the 

Elliott et al. combining rules (i.e., Equations 3.9 and 3.10) are applied. Therefore, Equation 3.21 

is the model of Gibbs free energy that gives rise to Equation 3.8. We can thus use Equation 3.21 

to derive a solute chemical potential equation that is thermodynamically consistent with Equation 

3.8. 

 

3.3.3. Derivation of non-ideal solute chemical potential equation 

Consider a single permeating solute “s” in a multi-solute solution. Substituting Equation 3.21 into 

Equation 3.13 for solute s, evaluating the derivative, simplifying, and rewriting in terms of molality 

gives 

𝐺 = 𝑁1𝜇1
𝑜 + ∑𝑁𝑖𝜓𝑖

𝑟

𝑖=2

+ 𝑅𝑇 ∑𝑁𝑖 𝑙𝑛 (
𝑁𝑖

𝑁1
)

𝑟

𝑖=2

 

        +
𝑅𝑇

𝑀1
∑∑[𝐵𝑖𝑗 (

𝑁𝑖𝑁𝑗

𝑁1
)]

𝑟

𝑗=2

𝑟

𝑖=2

+
1

2

𝑅𝑇

𝑀1
2 ∑∑ ∑ [𝐶𝑖𝑗𝑘 (

𝑁𝑖𝑁𝑗𝑁𝑘

𝑁1
2 )]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

 , 

(3.21) 

𝜋 = ∑𝑚𝑖

𝑟

𝑖=2

+ ∑∑[𝐵𝑖𝑗𝑚𝑖𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

+ ∑∑ ∑[𝐶𝑖𝑗𝑘𝑚𝑖𝑚𝑗𝑚𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

 . (3.22) 
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where 𝜃𝑠 is a concentration-independent function of temperature and pressure specific to solute s. 

Substituting the combining rules proposed by Elliott et al. (i.e., Equations 3.9 and 3.10) into 

Equation 3.23 yields the following equation for solute chemical potential 

Note that the above proof is independent of the combining rules used—that is, Equations 3.22 and 

3.23 form a more general solution theory (which does not employ any combining rules) from which 

Equations 3.8 and 3.24 are obtained by substituting in the Elliott et al. combining rules. Other 

solution theories could be obtained by substituting different combining rules into Equations 3.22 

and 3.23. Because of this relationship, if Equations 3.22 and 3.23 can be shown to be 

thermodynamically consistent, then Equations 3.8 and 3.24 must also be thermodynamically 

consistent—as must any other solution theory obtained by applying combining rules to Equations 

3.22 and 3.23. 

 

3.3.4. Verification of new non-ideal solute chemical potential equation 

 To show that Equation 3.23 is thermodynamically consistent with Equation 3.22, we 

consider an aqueous solution containing some number (r – 1) of solutes, including the solute “2”—

chosen arbitrarily as we must have a single solute with respect to which we can differentiate. For 

this solution, the Gibbs–Duhem equation at constant temperature and pressure is 

𝜇𝑠 = 𝜃𝑠 + 𝑅𝑇 [ln(𝑀1𝑚𝑠) + 2 ∑[𝐵𝑖𝑠𝑚𝑖]

𝑟

𝑖=2

+
3

2
∑∑[𝐶𝑖𝑗𝑠𝑚𝑖𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

] , (3.23) 

𝜇𝑠 = 𝜃𝑠 + 𝑅𝑇 [ln(𝑀1𝑚𝑠) + ∑[(𝐵𝑖𝑖 + 𝐵𝑠𝑠)𝑚𝑖]

𝑟

𝑖=2

+
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑠𝑠𝑠)

1/3
𝑚𝑖𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

] . 

(3.24) 
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Converting to molality, writing out the exact differentials of all terms at constant 𝑚𝑥≠2, and 

simplifying gives 

Rewriting Equation 3.22 in terms of water chemical potential such that solute “2” is considered 

separately yields 

Rewriting Equation 3.23 for solute “2” such that solute “2” is considered separately gives 

Rewriting Equation 3.23 for each other solute “i” such that solute “2” is considered separately 

gives 

𝑁1𝑑𝜇1 + 𝑁2𝑑𝜇2 + ∑𝑁𝑖𝑑𝜇𝑖

𝑟

𝑖=3

= 0 . (3.25) 

1

𝑀1
(
𝜕𝜇1

𝜕𝑚2
)
𝑚𝑥≠2

+ 𝑚2 (
𝜕𝜇2

𝜕𝑚2
)
𝑚𝑥≠2

+ ∑𝑚𝑖 (
𝜕𝜇𝑖

𝜕𝑚2
)
𝑚𝑥≠2

𝑟

𝑖=3

= 0 . (3.26) 

𝜇1 = 𝜇1
𝑜 −  𝑅𝑇𝑀1 [𝑚2 + ∑𝑚𝑖

𝑟

𝑖=3

+ 𝐵22𝑚2
2 + 2∑[𝐵2𝑖𝑚2𝑚𝑖]

𝑟

𝑖=3

 

                                              +∑∑[𝐵𝑖𝑗𝑚𝑖𝑚𝑗]

𝑟

𝑗=3

𝑟

𝑖=3

+ 𝐶222𝑚2
3 + 3∑[𝐶22𝑖𝑚2

2𝑚𝑖]

𝑟

𝑖=3

+ 3∑∑[𝐶2𝑖𝑗𝑚2𝑚𝑖𝑚𝑗] + ∑∑ ∑[𝐶𝑖𝑗𝑘𝑚𝑖𝑚𝑗𝑚𝑘]

𝑟

𝑘=3

𝑟

𝑗=3

𝑟

𝑖=3

𝑟

𝑗=3

𝑟

𝑖=3

] . 

(3.27) 

𝜇2 = 𝜃2 + 𝑅𝑇 [ln(𝑀1𝑚2) + 2𝐵22𝑚2 +
3

2
𝐶222𝑚2

2 + 2∑[𝐵2𝑖𝑚𝑖]

𝑟

𝑖=3

 

                                                                          +3∑[𝐶22𝑖𝑚2𝑚𝑖]

𝑟

𝑖=3

+
3

2
∑∑[𝐶2𝑖𝑗𝑚𝑖𝑚𝑗]

𝑟

𝑖=3

𝑟

𝑖=3

] . 

(3.28) 
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Taking the derivatives of Equations 3.27, 3.28, and 3.29 with respect to 𝑚2 yields 

 

and 

respectively. When Equations 3.30, 3.31, and 3.32 are substituted into Equation 3.26, all terms on 

the left-hand side of Equation 3.26 cancel, making the equation true. Therefore, up to third order 

terms, Equation 3.23 is thermodynamically consistent with Equation 3.22, and, correspondingly, 

Equation 3.24 is thermodynamically consistent with Equation 3.8. 

 

3.3.5. Addendum: for solutes which dissociate in solution (i.e., electrolytes) 

 Here, we briefly extend the above derivation and verification of a solute chemical potential 

equation to a special case in the Elliott et al. model: electrolyte solutes (i.e., salts). For electrolyte 

𝜇𝑖 = 𝜃𝑖 + 𝑅𝑇 [ln(𝑀1𝑚𝑖) + 2𝐵2𝑖𝑚2 + 2∑[𝐵𝑖𝑗𝑚𝑗]

𝑟

𝑗=3

+
3

2
𝐶22𝑖𝑚2

2 

                                                                           +3∑[𝐶2𝑖𝑗𝑚2𝑚𝑗] +
3

2
∑ ∑[𝐶𝑖𝑗𝑘𝑚𝑗𝑚𝑘]

𝑟

𝑘=3

𝑟

𝑗=3

𝑟

𝑗=3

]. 

(3.29) 

(
𝜕𝜇1

𝜕𝑚2
)
𝑚𝑥≠2

= −𝑅𝑇𝑀1 [1 + 2𝐵22𝑚2 + 2∑[𝐵2𝑖𝑚𝑖]

𝑟

𝑖=3

+ 3𝐶222𝑚2
2 

                                                                     +6∑[𝐶22𝑖𝑚2𝑚𝑖]

𝑟

𝑖=3

+ 3∑∑[𝐶2𝑖𝑗𝑚𝑖𝑚𝑗]

𝑟

𝑗=3

𝑟

𝑖=3

] , 

(3.30) 

(
𝜕𝜇2

𝜕𝑚2
)

𝑚𝑥≠2

= 𝑅𝑇 [
1

𝑚2
+ 2𝐵22 + 3𝐶222𝑚2 + 3∑[𝐶22𝑖𝑚𝑖]

𝑟

𝑖=3

] , (3.31) 

(
𝜕𝜇𝑖

𝜕𝑚2
)
𝑚𝑥≠2

= 𝑅𝑇 [2𝐵2𝑖 + 3𝐶22𝑖𝑚2 + 3 ∑[𝐶2𝑖𝑗𝑚𝑗]

𝑟

𝑗=3

] , (3.32) 
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solutes, an additional fitting parameter must be added to the osmotic virial equation: the 

dissociation constant [105,106]. This parameter is multiplied onto each molality term of its 

corresponding solute. It should be noted that when dealing with electrolyte solutes here, the 

molality to be considered and used in all calculations is the molality of the salt itself (e.g., the 

number of moles of NaCl per kg of water). 

 For electrolyte solutes, the dissociation constant empirically accounts for all electrolyte 

effects. For non-electrolyte solutes, this term can be considered as effectively having a value of 

one. If we consider a solution where every solute is (potentially) an electrolyte, Equation 3.8 

becomes [105,106] 

where 𝑘𝑖 is the dissociation constant of solute i. This approach of using a dissociation constant to 

account for electrolyte solutes has been demonstrated by Prickett et al. to be at least as accurate in 

predicting experimental results as the more complex Pitzer–Debye–Huckel approach [106]. 

 Starting with Equation 3.33 (instead of Equation 3.8) and following the same procedure as 

that used above for non-electrolyte solutes yields the following equation for solute chemical 

potential 

𝜋 = ∑𝑘𝑖𝑚𝑖

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

 

        +∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗𝑘𝑘𝑚𝑘]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

+ ⋯, 

(3.33) 
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Note that if all of the solutes are non-electrolytes (i.e., 𝑘𝑖 = 1 for all i), Equation 3.34 simplifies 

to Equation 3.24. As with Equations 3.8 and 3.24, Equations 3.33 and 3.34 can also be shown to 

be thermodynamically consistent. 

 

3.4. Thermodynamic proof of grouped intracellular solute validity 

 Now that we have a complete molality-based non-ideal solution theory (i.e., Equations 3.8 

and 3.24), we can determine whether or not the grouped intracellular solute approach is 

theoretically valid when using this solution theory. To begin, we explicitly define the grouped 

intracellular solute approach. Recall that this model states that for thermodynamic purposes, all 

non-permeating intracellular solutes can be considered as a single non-permeating intracellular 

“grouped” solute without affecting the outcomes of chemical potential calculations. Thus, in all 

thermodynamic considerations (i.e., calculations and system definitions), the grouped intracellular 

solute represents all of the actual non-permeating solutes inside the cell. Furthermore, although it 

is important to remember that the grouped intracellular solute is a theoretical construction and not 

a “real” solute, in all thermodynamic considerations, the osmotic virial equation applies to the 

grouped intracellular solute as it would to any real solute—that is, the grouped intracellular solute 

has its own osmotic virial coefficients. Finally, the number of moles of the grouped intracellular 

𝜇𝑠 = 𝑘𝑠𝜃𝑠 + 𝑅𝑇𝑘𝑠 [ln(𝑀1𝑚𝑠) + ∑[(𝐵𝑖𝑖 + 𝐵𝑠𝑠)𝑘𝑖𝑚𝑖]

𝑟

𝑖=2

 

                                      +
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑠𝑠𝑠)

1/3
𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

] . 

(3.34) 
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solute in solution is equal to the sum of the number of moles of each of the actual non-permeating 

solutes in the intracellular solution. 

 In addition to the grouped intracellular solute approach, we also need to define the 

alternative approach: that is, treating each non-permeating solute inside the cell separately, as if 

their concentrations were known. Throughout this work, we will refer to this approach as the 

“exact” approach. In order to establish that the grouped intracellular solute approach is valid, we 

need to show that it is mathematically equivalent to the exact approach. 

 From a thermodynamic modelling perspective, equivalence here means that two conditions 

must be simultaneously satisfied for any given intracellular composition: namely, the two 

approaches (exact and grouped) must have equal intracellular osmolalities, and—if any permeating 

solutes are involved—equal intracellular permeating solute chemical potentials. We will start by 

showing that the grouped intracellular solute approach is valid in the case of a cell that is in the 

presence of only non-permeating solutes (Figure 3.3a)—in this case, since there are no permeating 

solutes involved, we must satisfy only the first condition. Keeping this initial proof in mind, we 

will then show that the grouped intracellular solute approach is valid in the case of a cell that is in 

the presence of any number of non-permeating solutes and any number of permeating solutes 

(Figure 3.3b)—in this case, we must simultaneously satisfy both of the above conditions. 

 

3.4.1. Considering a cell in the absence of permeating solutes 

 Consider an aqueous intracellular solution containing (n – 1) non-ideal non-permeating 

solutes, where n is any number greater than 1, and no permeating solutes. For this system, the 

number of moles of each solute in the solution is fixed, since all solutes are non-permeating (and 

therefore cannot move into or out of the intracellular solution), while the number of moles of water 
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(i.e., the solvent) in the solution is variable (since water can move freely across the cell membrane 

and thus into and out of the intracellular solution). Let the osmolality (i.e., water chemical 

potential) be defined by Equation 3.8, such that 

and 

where 𝑚𝑔 is the molality of the grouped intracellular solute g, and 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are the second 

and third osmotic virial coefficients of the grouped intracellular solute g. Given that the number of 

moles of each solute in solution is fixed in this case, the grouped intracellular solute approach will 

be equivalent to the exact approach if 

for any number of moles of water present in solution. 

 Since the number of moles of each solute is fixed, the ratios of their concentrations are 

constant—that is, the ratio of the concentration of any given solute to the concentration of any 

other solute is constant, for all solutes. Therefore, we can choose one solute—for example, solute 

“2”—and express the concentrations of all other solutes in terms of the concentration of that solute, 

i.e., 

where 𝑅𝑖 is the ratio of the molality of solute i to that of solute 2 (and is constant). 

𝜋𝑒𝑥𝑎𝑐𝑡 = ∑𝑚𝑖

𝑛

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

 

                 +∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

 

(3.35) 

𝜋𝑔𝑟𝑜𝑢𝑝𝑒𝑑 = 𝑚𝑔 + 𝐵𝑔𝑔𝑚𝑔
2 + 𝐶𝑔𝑔𝑔𝑚𝑔

3 , (3.36) 

𝜋𝑒𝑥𝑎𝑐𝑡 = 𝜋𝑔𝑟𝑜𝑢𝑝𝑒𝑑 (3.37) 

𝑚𝑖 = 𝑅𝑖𝑚2 , (3.38) 
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 By definition, because solute g is a grouped intracellular solute, its molality is the sum of 

the molalities of all the solutes which it represents. Therefore, we can write 

 Substituting Equations 3.35, 3.36, 3.38, and 3.39 into Equation 3.37 and simplifying gives 

In order to establish the equivalence of the grouped intracellular solute and exact approaches, we 

must show that Equation 3.40 is true. 

 Before continuing on, there are a few important points of which to make note regarding the 

terms in Equation 3.40. First, according to our definition of the system, all of the osmotic virial 

coefficients (𝐵𝑖𝑖, 𝐶𝑖𝑖𝑖) of all the real solutes in solution (i.e., not the grouped intracellular solute) 

must be constant, as per the definition of the osmotic virial equation. The concentration ratios �⃑⃑�𝑖 

of all the solutes are also constant because the number of moles of each solute in solution is fixed. 

The molality of solute 2, 𝑚2, is variable because 𝑚2 depends on the number of moles of water in 

solution, which is not fixed—in fact, it is the only variable in the system. Finally, the osmotic virial 

coefficients of the grouped intracellular solute g (i.e., 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔) are not defined and are 

unknowns, to be solved for. Note that if the osmotic virial equation is to apply to the grouped 

intracellular solute g as it would to any real solute in solution, then 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 should have 

unique constant values. Therefore, keeping all of the above points in mind, if we can show that 

Equation 3.40 is true for any value of 𝑚2 such that 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 have unique constant values, we 

𝑚𝑔 = ∑𝑚𝑖

𝑛

𝑖=2

= (∑𝑅𝑖

𝑛

𝑖=2

)𝑚2 . (3.39) 

∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑅𝑖𝑅𝑗𝑅𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

𝑚2

= 𝐵𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

2

+ 𝐶𝑔𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

3

𝑚2 . 

(3.40) 



75 

 

will have satisfied the condition contained in Equation 3.37 for any number of moles of water 

present in solution, as required. 

 In fact, if 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are defined as 

and 

then the Equation 3.40 is true for any value of 𝑚2. Therefore, in the case of a cell in the absence 

of any permeating solutes, the grouped intracellular solute approach is equivalent to the exact 

approach when osmolality is defined by the Equation 3.8. We can now repeat the above proof with 

permeating solutes present. 

 

3.4.2. Considering a cell in the presence of any number of permeating solutes 

 Consider an aqueous intracellular solution containing both permeating and non-permeating 

solutes. Let there be (n – 1) non-ideal non-permeating solutes (2, 3,..., n), where n is any number 

greater than 1. Let there be q non-ideal permeating solutes �⃑� (𝑝1, 𝑝2, … , 𝑝𝑞), where q is any number 

greater than or equal to 1. For this system, the number of moles of each non-permeating solute in 

solution is fixed, while the number of moles of each permeating solute and the number of moles 

of water in solution are variable. Let the osmolality be defined by Equation 3.8, such that 

 

𝐵𝑔𝑔 = ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

(∑𝑅𝑖

𝑛

𝑖=2

)

2

⁄ = constant (3.41) 

𝐶𝑔𝑔𝑔 = ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑅𝑖𝑅𝑗𝑅𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

(∑𝑅𝑖

𝑛

𝑖=2

)

3

⁄ = constant, (3.42) 
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and 

Let the chemical potentials of all permeating solutes �⃑� be defined by Equation 3.24, such that for 

any given permeating solute px, where x = 1, 2,..., q, we can write 

and 

𝜋𝑒𝑥𝑎𝑐𝑡 = ∑𝑚𝑖

𝑝𝑞

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=2

𝑝𝑞

𝑖=2

 

                  +∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=2

𝑝𝑞

𝑗=2

𝑝𝑞

𝑖=2

 

(3.43) 

𝜋𝑔𝑟𝑜𝑢𝑝𝑒𝑑 = 𝑚𝑔 + ∑ 𝑚𝑖

𝑝𝑞

𝑖=𝑝1

+ 𝐵𝑔𝑔𝑚𝑔
2 + ∑[(𝐵𝑖𝑖 + 𝐵𝑔𝑔)𝑚𝑖𝑚𝑔]

𝑝𝑞

𝑖=𝑝1

 

                      + ∑ ∑ [
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

+ 𝐶𝑔𝑔𝑔𝑚𝑔
3

+ 3 ∑ [(𝐶𝑖𝑖𝑖𝐶𝑔𝑔𝑔
2)

1
3𝑚𝑖𝑚𝑔

2]

𝑝𝑞

𝑖=𝑝1

+ 3 ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑔𝑔𝑔)
1
3𝑚𝑖𝑚𝑗𝑚𝑔]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

 

                            + ∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

 . 

(3.44) 

𝜇𝑝𝑥
𝑒𝑥𝑎𝑐𝑡 = 𝜃𝑝𝑥

+ 𝑅𝑇 [ln(𝑀1𝑚𝑝𝑥
) + ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥

)𝑚𝑖]

𝑝𝑞

𝑖=2

 

                                           +
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑥𝑝𝑥𝑝𝑥

)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=2

𝑝𝑞

𝑖=2

] 

(3.45) 
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 Given that the number of moles of each non-permeating solute in solution is fixed in this 

case, and given that if 𝜇𝑒𝑥𝑎𝑐𝑡 = 𝜇𝑔𝑟𝑜𝑢𝑝𝑒𝑑 for any one given permeating solute (e.g., permeating 

solute “px”), it will be true for all permeating solutes �⃑� (as all permeating solutes follow the same 

equations, i.e., Equations 3.45 and 3.46), the grouped intracellular solute approach will be 

equivalent to the exact approach if 

and 

for any number of moles of water and for any number of moles of each of the permeating solutes 

�⃑� present in solution. 

 To simplify later parts of this proof, we can use the linearity and commutativity of finite 

sums to rewrite Equations 3.43 and 3.45 such that the non-permeating solutes and permeating 

solutes are considered as separately as possible, giving 

𝜇𝑝𝑥
𝑔𝑟𝑜𝑢𝑝𝑒𝑑 = 𝜃𝑝𝑥

+ 𝑅𝑇 [ln(𝑀1𝑚𝑝𝑥
) + (𝐵𝑔𝑔 + 𝐵𝑝𝑥𝑝𝑥

)𝑚𝑔 + ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥
)𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

 

                                        +
3

2
(𝐶𝑔𝑔𝑔

2𝐶𝑝𝑥𝑝𝑥𝑝𝑥
)
1
3𝑚𝑔

2 + 3 ∑ [(𝐶𝑖𝑖𝑖𝐶𝑔𝑔𝑔𝐶𝑝𝑥𝑝𝑥𝑝𝑥
)
1
3𝑚𝑖𝑚𝑔]

𝑝𝑞

𝑖=𝑝1

 

                                              +
3

2
∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑥𝑝𝑥𝑝𝑥

)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

] . 

(3.46) 

𝜋𝑒𝑥𝑎𝑐𝑡 = 𝜋𝑔𝑟𝑜𝑢𝑝𝑒𝑑 (3.37) 

𝜇𝑝𝑥
𝑒𝑥𝑎𝑐𝑡 = 𝜇𝑝𝑥

𝑔𝑟𝑜𝑢𝑝𝑒𝑑 (3.47) 
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and 

 

𝜋𝑒𝑥𝑎𝑐𝑡 = ∑𝑚𝑖

𝑛

𝑖=2

+ ∑ 𝑚𝑖

𝑝𝑞

𝑖=𝑝1

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

 

                                +2∑ ∑ [
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

+ ∑ ∑ [
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

 

                                                  +∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

 

                                                         +3∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑛

𝑗=2

𝑛

𝑖=2

+ 3∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

+ ∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑚𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

 

(3.48) 

𝜇𝑝𝑥
𝑒𝑥𝑎𝑐𝑡 = 𝜃𝑝𝑥

+ 𝑅𝑇 [ln(𝑀1𝑚𝑝𝑥
) + ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥

)𝑚𝑖]

𝑛

𝑖=2

+ ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥
)𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

 

                       +
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑥𝑝𝑥𝑝𝑥

)
1
3𝑚𝑖𝑚𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

 

                           +3∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑥𝑝𝑥𝑝𝑥
)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

 

                              +
3

2
∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑥𝑝𝑥𝑝𝑥

)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

] . 

(3.49) 
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 As above, we can choose one non-permeating solute—again, for example, solute “2”—and 

express the concentrations of all other non-permeating solutes in terms of the concentration of that 

solute, i.e., 

Note that Equation 3.38 does not apply to any of the permeating solutes. Using the definition of 

the grouped intracellular solute, we can again write 

 Substituting Equations 3.38, 3.39, 3.44, 3.46, 3.48 and 3.49 into Equations 3.37 and 3.47, 

simplifying and rearranging gives 

𝑚𝑖 = 𝑅𝑖𝑚2 . (3.38) 

𝑚𝑔 = ∑𝑚𝑖

𝑛

𝑖=2

= (∑𝑅𝑖

𝑛

𝑖=2

)𝑚2 . (3.39) 
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and 

𝑚2
2 ∑∑[

(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

+ 𝑚2 ∑ ∑ [(𝐵𝑖𝑖 + 𝐵𝑗𝑗)𝑅𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

+ 𝑚2
3 ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)

1/3
𝑅𝑖𝑅𝑗𝑅𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

                                                                          

+ 3𝑚2
2 ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)

1/3
𝑅𝑖𝑅𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑛

𝑗=2

𝑛

𝑖=2

                                                                          

+ 3𝑚2 ∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑅𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

                                                                           

                           = 𝑚2
2𝐵𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

2

+ 𝑚2 (∑𝑅𝑖

𝑛

𝑖=2

)(∑[(𝐵𝑖𝑖 + 𝐵𝑔𝑔)𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

) 

                                +𝑚2
3𝐶𝑔𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

3

+ 3𝑚2
2𝐶𝑔𝑔𝑔

2/3 (∑𝑅𝑖

𝑛

𝑖=2

)

2

(∑[𝐶𝑖𝑖𝑖
1/3𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

)

+ 3𝑚2𝐶𝑔𝑔𝑔
1/3 (∑𝑅𝑖

𝑛

𝑖=2

)(∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

) . 

(3.50) 
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 As for Equation 3.40 above, we can look at Equations 3.50 and 3.51 and make note of 

several observations. Again, all the of osmotic virial coefficients (𝐵𝑖𝑖, 𝐶𝑖𝑖𝑖) of all the real solutes 

in solution and all the concentration ratios �⃑⃑�𝑖 must be constant, while the molalities of non-

permeating solute 2 (𝑚2) and of all permeating solutes �⃑� (�⃑⃑⃑�𝑖) are variable. The osmotic virial 

coefficients of the grouped intracellular solute g, 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔, are once again unknowns. Note 

that if we can show that Equations 3.50 and 3.51 are simultaneously true for any set of values of 

𝑚2 and �⃑⃑⃑�𝑖 such that 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 have unique constant values, we will have satisfied the 

conditions contained in Equations 3.37 and 3.47 for any number of moles of water and for any 

number of moles of each of the permeating solutes 𝑝 present in solution, as required. 

 The necessary unique and constant values of 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 can be found by considering 

independently corresponding terms on the left and right sides of Equations 3.50 and 3.51 as written 

above, i.e., 

𝑚2 ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥
)𝑅𝑖]

𝑛

𝑖=2

+
3

2
𝑚2

2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1
3 ∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)

1/3
𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

+ 3𝑚2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1
3 ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)

1/3
𝑅𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

                                      

= 𝑚2(𝐵𝑔𝑔 + 𝐵𝑝𝑥𝑝𝑥
) (∑𝑅𝑖

𝑛

𝑖=2

) +
3

2
𝑚2

2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3𝐶𝑔𝑔𝑔
2/3 (∑𝑅𝑖

𝑛

𝑖=2

)

2

+ 3𝑚2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3𝐶𝑔𝑔𝑔
1/3 (∑ 𝑅𝑖

𝑛

𝑖=2

) ∑[𝐶𝑖𝑖𝑖
1/3𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

 . 

(3.51) 
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and 

𝑚2
2 ∑∑[

(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

= 𝑚2
2𝐵𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

2

 , (3.52) 

𝑚2 ∑ ∑ [(𝐵𝑖𝑖 + 𝐵𝑗𝑗)𝑅𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

= 𝑚2 (∑𝑅𝑖

𝑛

𝑖=2

)(∑[(𝐵𝑖𝑖 + 𝐵𝑔𝑔)𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

) , (3.53) 

𝑚2
3 ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)

1/3
𝑅𝑖𝑅𝑗𝑅𝑘]

𝑛

𝑘=2

𝑛

𝑗=2

𝑛

𝑖=2

= 𝑚2
3𝐶𝑔𝑔𝑔 (∑𝑅𝑖

𝑛

𝑖=2

)

3

, (3.54) 

3𝑚2
2 ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)

1/3
𝑅𝑖𝑅𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑛

𝑗=2

𝑛

𝑖=2

= 3𝑚2
2𝐶𝑔𝑔𝑔

2/3 (∑𝑅𝑖

𝑛

𝑖=2

)

2

(∑[𝐶𝑖𝑖𝑖
1/3𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

) , 

(3.55) 

3𝑚2 ∑ ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑅𝑖𝑚𝑗𝑚𝑘]

𝑝𝑞

𝑘=𝑝1

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

= 3𝑚2𝐶𝑔𝑔𝑔
1/3 (∑𝑅𝑖

𝑛

𝑖=2

)(∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)
1/3

𝑚𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑝𝑞

𝑖=𝑝1

) , 

(3.56) 

𝑚2 ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑥𝑝𝑥
)𝑅𝑖]

𝑛

𝑖=2

= 𝑚2(𝐵𝑔𝑔 + 𝐵𝑝𝑥𝑝𝑥
) (∑𝑅𝑖

𝑛

𝑖=2

) , (3.57) 

3

2
𝑚2

2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3 ∑∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)
1/3

𝑅𝑖𝑅𝑗]

𝑛

𝑗=2

𝑛

𝑖=2

=
3

2
𝑚2

2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3𝐶𝑔𝑔𝑔
2/3 (∑ 𝑅𝑖

𝑛

𝑖=2

)

2

 , (3.58) 
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If all of Equations 3.52 through 3.59 are simultaneously true under a given set of conditions, then 

Equations 3.50 and 3.51 will also be simultaneously true under those conditions. By inspection, 

Equation 3.52 can only be true for any set of values of 𝑚2 and �⃑⃑⃑�𝑖 if 𝐵𝑔𝑔 is defined by Equation 

3.41. Similarly, Equation 3.54 can only be true for any set of values of 𝑚2 and �⃑⃑⃑�𝑖 if 𝐶𝑔𝑔𝑔 is defined 

by Equation 3.42. Using the multiplication rule for finite sums (see Appendix D), it can be shown 

that Equations 3.53 and 3.55 through 3.59 are also true for any set of values of 𝑚2 and �⃑⃑⃑�𝑖 if 𝐵𝑔𝑔 

and 𝐶𝑔𝑔𝑔 are defined by Equations 3.41 and 3.42, respectively. Therefore, in the case of a cell in 

the presence of some number of permeating solutes q, the grouped intracellular solute approach is 

equivalent to the exact approach when osmolality is defined by Equation 3.8 and permeating solute 

chemical potential is defined by Equation 3.24. A similar proof using Equations 3.33 and 3.34 to 

define osmolality and solute chemical potential, respectively, shows that the grouped intracellular 

solute approach continues to be equivalent to the exact approach when there are electrolytes 

present among the non-permeating solutes consolidated into the grouped solute. 

 

3.5 Conclusions 

 Here, we have derived a molality-based non-ideal solute chemical potential equation which 

is thermodynamically consistent with the molality-based Elliott et al. form of the multi-solute 

osmotic virial equation to third order. We have also shown that when calculating water and solute 

chemical potentials within a cell using these molality-based equations, considering all non-

3𝑚2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3 ∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗)
1/3

𝑅𝑖𝑚𝑗]

𝑝𝑞

𝑗=𝑝1

𝑛

𝑖=2

= 3𝑚2𝐶𝑝𝑥𝑝𝑥𝑝𝑥

1/3𝐶𝑔𝑔𝑔
1/3 (∑𝑅𝑖

𝑛

𝑖=2

) ∑[𝐶𝑖𝑖𝑖
1/3𝑚𝑖]

𝑝𝑞

𝑖=𝑝1

 . 

(3.59) 
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permeating intracellular solutes as a single non-permeating “grouped” solute (i.e., using the 

grouped intracellular solute approach) is equivalent to treating each non-permeating intracellular 

solute separately—that is, the grouped intracellular solute approach does not affect model 

predictions of chemical potential. As such, we now have a complete thermodynamically consistent 

molality-based non-ideal solution theory to third order for any number of solutes, as well as a 

theoretically-verified method for modelling the intracellular solution without knowledge of its 

exact composition. Therefore, we can now model the osmotic behaviour of cells under non-ideal 

conditions (such as those found in cryobiology) and in the presence of multiple permeating solutes. 

Furthermore, the proof of mathematical equivalence between the grouped intracellular solute 

approach—when used with the multi-solute osmotic virial equation—and the approach of 

independently considering each non-permeating intracellular solute has ramifications outside of 

osmotic modelling, as it means that multi-solute solutions in other applications where there are 

some solutes with fixed mass ratios can be rigorously treated with such a grouped solute model. 

An example of such an application is the determination of vapor pressure of solutions of multiple 

non-volatile solutes. 
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Figure 3.1. Comparison of experimental measurements and predictions by the Elliott et al. form 

of the multi-solute osmotic virial equation of multi-solute solution osmolality as a function of total 

solute molality. Adapted from Zielinski et al. [154]. The triangles, circles, and squares represent 

experimental measurements for each of the multi-solute solutions, while the correspondingly-

coloured solid lines represent the predictions of Equation 3.8 in each solution. The triangles 

(purple) represent data from Hildebrandt’s thesis [51] for a solution of dimethyl sulphoxide 

(DMSO) and NaCl, at a solute mass ratio of DMSO:NaCl = 2:1. The circles (blue) represent data 

from Elliott et al. [24]. for a solution of DMSO and glycerol, at a solute mass ratio of 

DMSO:glycerol = 2:1. The squares (green) represent data from Yousef et al. [150]. for a solution 

of bovine serum albumin (BSA) and ovalbumin, at a solute mass ratio of BSA:ovalbumin = 3:2. 

The inset at top left provides a closer look at the lower end of both the molality and osmolality 
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axes. This scale is more convenient than that of the main figure for visualizing the data and 

predictions for the BSA + ovalbumin system, which have values that are three orders of magnitude 

lower than those for the other three systems.  
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Figure 3.2. The grouped solute approach for modelling the cytoplasm. All non-permeating 

intracellular solutes are considered as a single, non-permeating “grouped” solute. The osmotically 

inactive fraction refers to those components of the cytoplasm which do not participate osmotically. 
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Figure 3.3. Schematic depicting the cell situation for the grouped intracellular solute proof. a) In 

the presence of non-permeating solutes only. b) In the presence of permeating and non-permeating 

solutes. 
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Chapter 4. Measurement of grouped intracellular solute osmotic virial 

coefficients3 

 

Chapter Summary: Models of cellular osmotic behaviour depend on thermodynamic solution 

theories to calculate chemical potentials in the solutions inside and outside of the cell. These 

solutions are generally thermodynamically non-ideal under cryobiological conditions. The 

molality-based Elliott et al. form of the multi-solute osmotic virial equation is a solution theory 

which has been demonstrated to provide accurate predictions in cryobiological solutions, 

accounting for the non-ideality of these solutions using solute-specific thermodynamic parameters 

called osmotic virial coefficients. However, this solution theory requires as inputs the exact 

concentration of every solute in the solution being modeled, which poses a problem for the 

cytoplasm, where such detailed information is rarely available. This problem can be overcome by 

using a grouped solute approach for modeling the cytoplasm, where all the non-permeating 

intracellular solutes are treated as a single non-permeating “grouped” intracellular solute. We have 

recently shown that such a grouped solute approach is theoretically valid when used with the Elliott 

et al. model, and Ross-Rodriguez et al. (Biopreservation and Biobanking, 2012) have recently 

developed a method for measuring the cell type-specific osmotic virial coefficients of the grouped 

intracellular solute. However, this method suffers from a lack of precision, which—as we 

demonstrate in this work—can severely impact the accuracy of osmotic model predictions under 

certain conditions. Thus, we herein develop a novel method for measuring grouped intracellular 

                                                 
3 This chapter, with modifications, is being prepared for submission as M.W. Zielinski, L.E. McGann, J.A. Nychka, 

J.A.W. Elliott, Measurement of grouped intracellular solute osmotic virial coefficients. 
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solute osmotic virial coefficients which yields more precise values than the existing method, and 

apply this new method to measure these coefficients for human umbilical vein endothelial cells. 

 

4.1. Introduction 

 The cytoplasm of a cell is a complex solution containing a myriad of different solutes (e.g., 

salts, sugars, proteins), the specific combination depending on the cell type. The ability to 

accurately thermodynamically model this intracellular space is important to fields such as 

cryobiology, where a solution model of the cytoplasm is a critical component of mathematical 

models of cellular behaviour during cryopreservation [12,13,23,27,53,54,62,65,66,81,115, 

116,129,139,153]. In this work, we introduce a novel technique for measuring a cell type-specific 

set of characteristic thermodynamic parameters that enable modeling of the cytoplasm, and 

demonstrate the application of this technique by measuring these parameters for human umbilical 

vein endothelial cells. 

 Cryopreservation is the process by which cells (or larger structures, e.g., tissues) are cooled 

to low subzero temperatures (e.g., –196 °C, the boiling point of nitrogen), stored until needed, and 

subsequently warmed back up to ambient conditions. Ideally, cryopreservation could—and in 

some cases [74,101,130,133], does—enable the long-term banking of cells and tissues for use in 

transplantation and research. However, at present, many types of cells (and the vast majority of 

tissues) cannot be successfully cryopreserved [63,98,147]—that is, they cannot be brought down 

to, and back from, storage temperatures with an acceptable level of survival. 

 With regards to the cryopreservation of cells, at least four potential mechanisms of damage 

that can have a negative impact on cell survival have been recognized. Two of these damage 

mechanisms, described by the two-factor hypothesis of Mazur et al. [83], are directly related to 
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the rate at which the cells are cooled. Intracellular ice formation, which is generally lethal for cells 

in suspension [82,91,99], becomes increasingly likely as the cooling rate is increased. Conversely, 

solution effects injury, which refers to damage resulting from cells being exposed to the high solute 

concentrations inherent to cryopreservation for extended periods of time [83,91], intensifies as the 

cooling rate is decreased. Briefly, these two mechanisms can be explained as follows. In general, 

ice initially nucleates and grows outside of cells as they are cooled down below freezing 

temperatures [81]. Due to the low solubility of most solutes in ice [124], as the temperature drops 

and increasing amounts of liquid water solidify to ice, nearly all of the solute ions and molecules 

that were in that liquid are rejected from the resulting solid and into the remaining liquid fraction. 

As a consequence, this remaining liquid becomes increasingly concentrated. At low cooling rates, 

this concentration of the liquid fraction during freezing can lead to solution effects injury. At high 

cooling rates, if osmotic equilibration across the cell membrane cannot occur quickly enough, then 

the intracellular solution will become increasingly supercooled as the temperature lowers. If the 

cooling rate is too high, such intracellular supercooling can result in the nucleation of intracellular 

ice. 

 Although it is possible to find a single “optimum” cooling rate at which the net effect from 

both intracellular ice formation and solution effects injury is minimized and—to an extent—cell 

survival maximized [83], survival can be further enhanced by using more complex, non-linear 

cooling protocols (e.g., [36,37,86,117]) and by adding chemicals known as cryoprotectants 

[85,90]. It is the addition of cryoprotectants—and in particular those that can permeate the cell 

membrane—that gives rise to the other two mechanisms of damage: cryoprotectant toxicity—

which increases with temperature, concentration, and exposure time [12,13,28,33,34], and osmotic 

damage arising from excessive cell volume excursions [12,13,39,52,64]. The latter can occur when 
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permeating cryoprotectants are added or removed too quickly (e.g., if trying to minimize exposure 

time to a cryoprotectant with potent toxic effects). The development of successful cryopreservation 

protocols requires that the damage caused by all four of these mechanisms be minimized. 

 With the exception of solution effects injury, the above damage mechanisms are governed 

by the transport of water and permeating solutes (e.g., cryoprotectants) across the cell membrane, 

a set of processes known as the cellular osmotic response. As such, mathematical models enabling 

the prediction of this osmotic response are useful in the development of cryopreservation 

protocols. A key component of these kinetic osmotic models is the ability to calculate the chemical 

potentials of water and of permeating solutes both inside and outside of the cell 

[12,13,23,27,53,54,62,65,66,81,115,116,129,139,153], as differences in chemical potential are the 

driving force for transport. A set of equations that allows the simultaneous, consistent calculation 

of both the water (i.e., solvent) and solute chemical potentials in a given solution is called a 

thermodynamic solution theory. In cryobiology, ideal dilute solution theories are commonly used 

[12,13,39,53,54,60,61,64–66,81,129,137]. However, the ideal dilute approach does not account 

for the complex and highly thermodynamically non-ideal nature of cryobiological solutions, most 

of which contain multiple and varied solutes (e.g., salts, sugars, proteins, alcohols) at high 

concentrations. Indeed, it has been shown that predictions of chemical potential in even relatively 

simple cryobiologically relevant multi-solute solutions are considerably more accurate when non-

ideal—as opposed to ideal—solution theories are used [24,105,106,154]. 

 One such non-ideal solution theory is the Elliott et al. form of the multi-solute osmotic 

virial equation [11,24,27,105,106,154,156]. This model is based on the osmotic virial equation of 

McMillan and Mayer [87], which expresses water chemical potential as a polynomial in terms of 

solute concentration. Solution non-ideality is accounted for by the coefficients of the polynomial. 
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These osmotic virial coefficients are solute-specific and can be obtained by curve-fitting to 

experimental osmometric measurements of water chemical potential in binary—i.e. single-

solute—aqueous solutions containing the solute of interest [24,105,154]. The Elliott et al. model 

proposes thermodynamic combining rules for these coefficients that extend the application of the 

osmotic virial equation to multi-solute solutions without ignoring inter-solute interactions and 

without the need for fitting to multi-solute—i.e. solution-specific—data [24]. This flexibility is 

particularly useful in cryobiology, where—given the wide range of solutes that are relevant—the 

number of distinct solutions that can be encountered is effectively unlimited. The Elliott et al. 

model also introduces thermodynamically consistent equations for calculating solute chemical 

potential [27,156], thus providing a complete non-ideal solution theory that relies on only single-

solute data. 

 As noted above, modeling the cellular osmotic response requires the prediction of chemical 

potentials both inside and outside the cell. However, in order to calculate chemical potentials in a 

solution of interest, the osmotic virial equation—and, by extension, the Elliott et al. model—

requires that the concentration of every solute in that solution be known. This requirement is 

generally not a problem for the extracellular solution, as this solution—that is, the solution in 

which the cells are suspended—is usually controlled and thus defined. Conversely, the exact 

concentration of every solute in the intracellular solution—i.e. the cytoplasm—is typically not 

known, making the calculation of intracellular chemical potentials challenging. One way to 

overcome this problem without making any assumptions about the contents of the cell or resorting 

to an ideal dilute solution theory is to use a “grouped intracellular solute” approach, where, for the 

purposes of thermodynamic modeling, all of the non-permeating solutes inside the cell are treated 

as a single, non-permeating “grouped” solute. This approach has been successfully applied with a 
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number of different cell types [104,118], and we have recently shown that, when used with the 

Elliott et al. form of the multi-solute osmotic virial equation, it is theoretically valid—i.e. using 

the grouped intracellular solute approach with the Elliott et al. model does not affect the model’s 

predictions of chemical potential (as compared to treating each non-permeating intracellular solute 

separately) [156]. 

 However, just as for any other solute, in order for the grouped intracellular solute to be 

used within an osmotic virial model, its osmotic virial coefficients must be known. Furthermore, 

given that the grouped solute represents all of the non-permeating solutes inside the cell, and that 

the exact composition of the cytoplasm can vary widely between one type of cell and another, the 

grouped intracellular solute osmotic virial coefficients must be cell type-specific. Thus, in order to 

use the grouped intracellular solute approach in the Elliott et al. model to predict cellular osmotic 

responses, a method of measuring these coefficients for any cell type of interest is required. 

Previously, Ross-Rodriquez et al. developed such a method and applied it to measure the grouped 

intracellular solute osmotic virial coefficients for a variety of cell types [118]. However, their 

approach suffers from a lack of precision, which is problematic for models of the cellular osmotic 

response because, in the presence of one or more permeating solutes, these models can be highly 

sensitive to the values of the grouped intracellular solute osmotic virial coefficients (see Figures 

4.6 to 4.9 below). 

 The objective herein is to develop a novel method of measuring grouped intracellular solute 

osmotic virial coefficients that has greater precision than the existing method, and to use this new 

method to measure these coefficients for a particular cell type: human umbilical vein endothelial 

cells (HUVEC). 
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 The overall approach to this novel technique consists of two main steps. First, 

measurements of equilibrium cell volume are made in two different types of solutions: the first 

type containing only non-permeating solutes at specified osmolalities, and the second type 

containing defined concentrations of a single permeating cryoprotectant. Subsequently, a model 

of equilibrium cell volume is curve-fit to these measurements in order to obtain the cell type-

specific grouped intracellular solute osmotic virial coefficients. In this work, the process was 

performed for HUVEC exposed to two different permeating cryoprotectants: dimethyl sulphoxide 

(DSMO) and ethylene glycol (EG). 

 

4.2. Experimental methods 

4.2.1. Overview 

 As noted above, the measurement technique described herein requires two different types 

of experimental data. The first type of data consists of measurements of equilibrium cell volume 

as a function of solution osmolality in solutions of only non-permeating solutes. Such 

measurements have already been conducted for HUVEC by Ross-Rodriguez et al. in their work 

on grouped intracellular solute osmotic virial coefficients [118]. Accordingly, their data was used 

in this work, and no further measurements of this type were made. The second type of data consists 

of measurements of equilibrium cell volume as a function of cryoprotectant concentration in 

solutions containing a single permeating cryoprotectant. No such data appears to exist in the 

literature for HUVEC. As such, these type of measurements were the focus of the experimental 

work in this study. 
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4.2.2. Cell culture 

 Human umbilical vein endothelial cells (HUVEC) (LONZA, Walkersville, MD) were 

cultured aseptically at 37 °C in an atmosphere with 5% CO2 and in a culturing medium consisting 

of Endothelial Cell Basal Medium-2 (EBM-2) plus a set of growth supplements (BulletKit) 

comprising hydrocortisone, human fibroblast growth factor B (hFGF-B), vascular endothelial 

growth factor (VEGF), R3 insulin-like growth factor (R3-IGF-1), ascorbic acid, heparin, fetal 

bovine serum (FBS), and human endothelial growth factor (hEGF). It should be noted that no 

antibiotic was included in this culturing medium. Cells were seeded at a density of 5000 cells/cm2. 

Media was replaced at least every other day, and the cells were not cultured beyond 15 population 

doublings post-thaw (the maximum recommended by LONZA). 

 For continuous culture, cells were passaged using 0.025% trypsin/0.01% EDTA (LONZA) 

once they had reached approximately 80% of flask coverage. For experiments, cell were passaged 

with trypsin/EDTA once they had reached 100% flask coverage. In both cases, the resulting cell 

suspension was subsequently centrifuged (1000 RPM for 5 minutes at 20 °C) and resuspended in 

either fresh culture medium (for continuous culture) or HEPES buffered saline solution (for 

experiments). Cell suspensions for experiments had a minimum cell concentration of 6×106 

cells/mL. Immediately after resuspension, experimental cell suspensions were placed into an ice–

water bath, where they remained until used in the experiment. 

 

4.2.3. Exposure to cryoprotectant solutions 

 Cells were exposed to solutions containing a single cryoprotectant: either dimethyl 

sulphoxide (DMSO) or ethylene glycol (EG). These cryoprotectant solutions consisted of a HEPES 

buffered saline solution (isotonic) to which the corresponding cryoprotectant was added in the 
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amount required to give the desired cryoprotectant concentration. The cryoprotectant 

concentrations used were 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 molal. 

 In order to establish the isotonic cell volume (required to calculate relative cell volumes), 

subsets of each cell sample were removed and analyzed separately in the absence of any 

cryoprotectant, both before (pre-treatment controls) and after (post-treatment controls) the 

experimental measurements. For each cell sample, six pre-treatment and six post-treatment 

controls were analysed. The isotonic volume was designated as the average value of all twelve 

controls. 

 The experimental portion of each cell sample (i.e., the portion not used for pre/post-

treatment controls) was subdivided into twelve experimental samples. Each of these samples was 

exposed to a single defined cryoprotectant concentration. 

 Cryoprotectant addition to the experimental samples was carried out one sample at a time. 

The remaining experimental samples remained cryoprotectant-free in the ice–water bath until each 

one was needed. Cryoprotectant addition was carried out at room temperature. The cryoprotectant 

was added to the cell samples in 0.5 molal increments (i.e., sufficient cryoprotectant was added to 

increase the concentration by 0.5 molal), with each increment being added dropwise and with 

pipette mixing occurring between each incremental addition (this approach minimizes osmotic 

damage). Once all the cryoprotectant had been added for a given sample, the timer was started. 

From this point onward, the sample was left at room temperature (i.e., not replaced back into the 

ice–water bath). 

 Each experimental sample was analyzed once after a cryoprotectant-specific exposure 

time. For any given cryoprotectant, the exposure time was defined to be the amount of time that is 

required for cryoprotectant equilibration at room temperature for all considered cryoprotectant 
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concentrations. Here, for both DMSO and EG, exposure time was determined to be 7 minutes post-

cryoprotectant addition (see Appendix E). 

 Each unique cryoprotectant solution (i.e., combination of cryoprotectant and 

concentration) was analysed a total of six times with the analyses distributed over three 

experiments, each experiment using an independent cell sample. The order in which the solutions 

were sampled was varied between experiments as outlined in Table 4.1. 

 

4.2.4. Volume and membrane integrity assessment 

 Although the ultimate goal of this experimental work was to obtain measurements of 

equilibrium cell volume in the solutions of interest, only membrane-intact cells could be 

considered, as the mathematical model of equilibrium cell volume that was used herein (see below) 

assumes that the cell is intact (i.e., it assumes that the cell membrane is still semi-permeable). 

Therefore, in addition to measuring volume, the membrane integrity of the cells was also 

measured. 

 For each experimental and control sample, cell volume and membrane integrity were 

analysed using bright-field optical microscopy and trypan blue staining at room temperature. For 

each sample analysis, the cell suspension was mixed with equal parts 0.4% trypan blue solution 

and left to incubate for 3 minutes [134] at room temperature. For experimental samples, the trypan 

blue solution contained the same concentration of cryoprotectant as the cell suspension. After 

incubating, a small volume (10 μL) of the trypan blue-stained cell suspension was placed onto a 

haemocytometer. 

 For each sample, the outer edges of the haemocytometer grid were used as a guide to take 

twelve photos—in twelve different locations on the haemocytometer, as depicted in Figure 4.1—
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of the cells using bright-field optical microscopy with a 40× objective lens. In addition, an initial 

photo was taken in the central portion of the haemocytometer grid for scale calibration purposes 

when calculating cell volume. In taking this scale calibration photo, the image focus was adjusted 

such that the top edges of the haemocytometer grid were in focus; this focus level was maintained 

for the remaining twelve images. 

 Cell volumes were analysed by measuring the cross-sectional area of the cells in the photos 

and converting this area to volume using the spherical cell assumption. Membrane integrity was 

analysed using the trypan blue exclusion assay. This assay is based on the principle that cells with 

intact cell membranes exclude trypan blue [134]. Thus, when exposed to trypan blue, intact cells 

will appear clear, while membrane-compromised cells will appear blue. A custom ImageJ software 

(National Institutes of Health, Bethesda, MD) macro script (described in greater detail below) was 

used with the photos both to obtain the cross-sectional cell areas required for volume measurement 

and to determine whether each cell was intact or membrane-compromised. For all analyses, at least 

200 intact cells were measured across the twelve images. 

 

4.3. Image analysis 

 The custom macro script used in ImageJ to determine cell cross-sectional area and 

membrane integrity is outlined in Figure 4.2, and the script itself is contained in Appendix F. The 

procedure in Figure 4.2 was carried out for each image individually, although the images were 

processed in batches of twelve, each batch corresponding to a single sample. 

 Prior to carrying out any other analysis, the lighting in each image was calibrated to account 

for any unevenness due to the microscope setup. Image lighting calibration was carried out by 

subtracting a microscope setup-specific calibration image from each cell image. The calibration 



100 

 

image was created as outlined in Figure 4.3. First, a haemocytometer filled with only HEPES 

buffered saline solution (i.e., no cells) was placed under the microscope and at least two photos 

were taken in different locations in the off-grid region of the haemocytometer. Using ImageJ, these 

images were then averaged to account for (i.e., remove) any bubbles, scratches, or other location-

specific image artifacts, and a Gaussian blur filter with a radius of σ = 5 was applied to the resulting 

average. The image was then split into its red, green, and blue channels. For each colour channel, 

the mean pixel value of that channel’s image was calculated and subtracted from the channel’s 

image, with any pixels that would have been reduced below a value of zero reduced to zero instead. 

The colour channels were then merged back together to produce the final calibration image to be 

used to process all the experimental cell images. A separate calibration image was generated on 

the day of each experiment, prior to imaging any of the experimental samples. Apart from adjusting 

the image focus, neither the microscope nor its settings were changed in any way in the time 

between the generation of the calibration image and the completion of all experimental 

measurements. 

 Once calibrated, the image was processed and analyzed to locate all cells (i.e., both 

membrane-intact and membrane-compromised). The bulk of the macro steps for this stage are 

contained in the “identifyCells” function of the macro script (see Appendix F). These steps are 

briefly summarized as follows. The first step of the identifyCells function is essentially a rough 

scan of the image to find all potential regions of interest (ROIs) that could contain a cell. The 

image is subjected to ImageJ’s “Find Edges” algorithm, converted to 8-bit black-and-white, 

binarized/thresholded,4 and then subjected to a series of binary operations that fill in holes in the 

                                                 
4 Thresholding is an image analysis technique where a threshold pixel value is automatically determined based on 

the distribution of pixel values in the image, and then all pixels at or above this threshold value are set to white and 

all pixels below are set to black (or vice-versa) [44]. As a result, the image becomes binary, consisting of two types 

of areas: regions of interest, and background. 
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ROIs, identify and separate adjacent ROIs, and smooth out the ROI borders. At this point, the 

ROIs are marked and recorded. Next, the outermost layer of pixels of each ROI is repeatedly 

removed in order to find the approximate central region of each ROI (i.e., of each potential cell). 

These ROI centres are then also marked and recorded, and the image is reverted to its calibrated 

state (i.e., all processing is reversed). The next step of the function involves removing two specific 

types of artifacts from the image: haemocytometer gridlines and the bright rings or “halos” that 

often appear around cells (e.g., see Figure 4.4(a)). In both cases, the considerably brighter pixels 

of the gridlines and halos are replaced by average background pixels. Finally, the last step of the 

function is a more aggressive search of the processed image (i.e., with gridlines and halos removed) 

for cells and cell borders. At this point, only the ROIs identified in the first step are considered 

(i.e., the rest of the image is not analyzed), and each ROI is scanned independently. Before 

scanning, the ROI centres also identified in the first step are drawn on to the image to help avoid 

cells being lost due to poorly-imaged or obscured edges. This measure is necessary because in this 

last step—unlike in the first step—only regions with a circularity ratio greater than a defined 

minimum value (0.6 for equilibrium measurements; 0.7 for kinetic measurements) are actually 

considered to be cells. Thus, if a cell’s edge cannot be clearly distinguished all the way around its 

perimeter, the corresponding region on the image may appear hollowed out or crescent-shaped, 

thus removing the cell from consideration. Drawing in the ROI centre can prevent this from 

occurring. It should be noted that the particular set of steps used in the identifyCells function is 

not necessarily the optimal image analysis approach for cell location, and better approaches may 

exist; however, this approach was found to be effective for the application required herein (i.e., 

determining cell volumes of HUVEC). Figure 4.4 contains a representative example image before 

and after cell identification by the macro. When all the cells in an image had been identified, the 
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cross-sectional area of each cell was measured and recorded and the image was reverted to its 

calibrated state. 

 The final stage of the image analysis procedure was to distinguish between membrane-

intact and membrane-compromised cells, because—as noted above—only the volumes of intact 

cells can be used to fit for the grouped intracellular solute osmotic virial coefficients. The trypan 

blue assay used in this work to determine cell membrane integrity causes membrane-compromised 

cells to appear blue while not affecting the appearance of membrane-intact cells (i.e., leaving them 

clear). As such, the macro identified the blue—and therefore membrane-compromised—cells and 

removed them from consideration. As a general overview, to identify blue cells, the calibrated cell 

image was first split into its red, green, and blue channels. Subsequently, the ratios of blue-to-

green and blue-to-red pixel values within each cell were compared to the corresponding ratios for 

the whole image. If either ratio was greater within the cell than for the image as a whole—i.e., if 

the cell was more blue as compared to green or as compared to red than the image as a whole—

then the cell was considered to be membrane-compromised. For further details, see Appendix F. 

 

4.4. Thermodynamic model of equilibrium cell state 

 Equilibrium cell volumes were calculated using a thermodynamic model of the cell state 

at equilibrium. This model consists of four conditions, described in detail below. The equilibrium 

cell volume is obtained from the model when all four of these conditions (i.e., Equations 4.11, 

4.12, 4.7, and 4.10 in Table 4.2 below) are simultaneously satisfied. 

 At equilibrium, there will be no chemical potential differences across the cell membrane 

(i.e., no driving force for transport). As such, the first two conditions of the model are chemical 

potential balances for water 
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and for any permeating solute in solution 

where 𝜇1 is the chemical potential of water (in J/mole), 𝜇𝑝 is the chemical potential of permeating 

solute p (in J/mole), and the superscripts “in” and “ex” refer to the intracellular and extracellular 

solutions, respectively. In this work, the chemical potentials in Equations 4.1 and 4.2 were 

calculated using the molality-based Elliott et al. form of the multi-solute osmotic virial equation, 

which models water and solute chemical potentials, respectively, as [24,105,156] 

with 𝜋, the solution osmolality (in osmoles/kg of water), defined as 

and 

where 𝑚𝑖 is the molality (a measure of concentration) of solute i (in moles of solute i/kg of water), 

𝐵𝑖𝑖 and 𝐶𝑖𝑖𝑖 are the second and third osmotic virial coefficients of solute i, respectively (in [moles 

of solute i/kg of water]–1 and [moles of solute i/kg of water]–2, respectively), 𝑘𝑖 is the empirical 

dissociation constant of solute i (unitless), 𝑅 is the universal gas constant (in J/[mole K]), 𝑇 is 

𝜇1
𝑖𝑛 = 𝜇1

𝑒𝑥 (4.1) 

𝜇𝑝
𝑖𝑛 = 𝜇𝑝

𝑒𝑥 , (4.2) 

𝜇1 = 𝜇1
𝑜 − 𝑅𝑇𝑀1𝜋 , (4.3) 
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𝜇𝑝 = 𝑘𝑝𝜃𝑝 + 𝑅𝑇𝑘𝑝 [ln(𝑀1𝑚𝑝)
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(4.5) 
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absolute temperature (in K), 𝑀1 is the molar mass of water (in kg/mole), 𝜇1
𝑜 is the chemical 

potential of pure water (in J/mole), 𝜃𝑝 is a function of temperature and pressure only that is specific 

to solute p (in J/mole), and (r – 1) is the number of solutes in solution. The solution osmolality 𝜋 

represents the composition dependence of water chemical potential. Water chemical potential also 

depends on solution temperature and pressure. However, since at equilibrium there are no 

temperature or pressure gradients across the cell membrane, the first condition of the model 

reduces to 

which will be used instead of Equation 4.1. 

 As mentioned earlier, the osmotic virial coefficients of a solute (i.e., 𝐵𝑖𝑖, 𝐶𝑖𝑖𝑖) account for 

its non-ideal thermodynamic behaviour. Specifically, osmotic virial coefficients represent the 

increasing orders of thermodynamic interactions that occur between solute molecules. The second 

osmotic virial coefficient 𝐵𝑖𝑖 corresponds to interactions between two molecules of solute i, while 

the third osmotic virial coefficient 𝐶𝑖𝑖𝑖 corresponds to interactions between three molecules of 

solute i. The greater the absolute values of these coefficients, the more thermodynamically non-

ideal the behaviour of the solute; a solute with ideal thermodynamic behaviour would have 

coefficient values of zero. 

 The dissociation constant 𝑘𝑖 is a term that is required by the Elliott et al. model for any 

electrolyte solute [105,106]. It empirically accounts for all electrolyte-specific effects such as ionic 

dissociation and charge screening, and is obtained simultaneously with the solute’s osmotic virial 

coefficients when curve-fitting to experimental osmometric data. For solutes that are not 

electrolytes, the value of the dissociation constant is one in all calculations. 

𝜋𝑖𝑛 = 𝜋𝑒𝑥 , (4.6) 
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 Many solutes, including the two cryoprotectants used in this study, DMSO [78] and EG 

[3], exhibit near-ideal volumetric behaviour in aqueous solution. (As an aside, it should, however, 

be noted that both DMSO and EG exhibit non-ideal thermodynamic behaviour in terms of 

chemical potential [154]). That is, when mixed with water, the volumes of these solutes are 

essentially directly additive with the solvent (water) volume. The third condition in this model is 

needed for any such solutes which can permeate the cell membrane. That is, for each permeating 

solute p which exhibits near-ideal volumetric behaviour in solution, it is required that 

where 𝑚𝑝
𝑖𝑛 is the intracellular molality of solute p (in moles of solute p/kg of water), 𝑉𝑝

𝑖𝑛 is the 

intracellular volume of solute p (in µm3), 𝑀𝑝 is the molar mass of solute p (in kg/mole), 𝜌𝑝 is the 

density of solute p (in kg/µm3), ∑𝑉𝑝
𝑖𝑛 is the sum of the intracellular volumes of all of the 

permeating solutes present in solution (including p) (in µm3), 𝜌1 is the density of water (in kg/µm3), 

𝑉𝑐𝑒𝑙𝑙 is the equilibrium cell volume (in µm3), 𝑉𝑐𝑒𝑙𝑙
𝑜  is the equilibrium cell volume under isotonic 

conditions (in µm3), and 𝑏 is the osmotically inactive fraction of the cell. This condition ensures 

that the intracellular volume and concentration of solute p, which are independent variables in this 

model, remain consistent with one another and with the cell volume 𝑉𝑐𝑒𝑙𝑙 (also an independent 

variable). 

 From the perspective of thermodynamic modeling, the term isotonic refers to a solution 

having an osmolality equal to that found under normal physiological conditions. For human cells, 

this is typically approximately 0.3 osmoles/kg [9,19,20,24,38,82,84,104,108,118,139]. In this 

model, the isotonic cell state is used as a reference point, with values such as equilibrium cell 

𝑚𝑝
𝑖𝑛𝑀𝑝𝜌1 (

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 −

∑𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 ) =

intracellular mass of permeating solute 𝑠

isotonic cell volume

= 𝜌𝑝

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜  , 

(4.7) 
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volume being calculated and reported relative to the isotonic—i.e., we use the relative equilibrium 

cell volume, 𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜 . 

 The osmotically inactive fraction, 𝑏, is the fraction of the overall cell volume which does 

not participate osmotically—that is, it represents a volume of the cell which is not at all considered 

in calculations of chemical potential. This property is a cell-specific constant and is typically 

measured for a cell type of interest by curve-fitting to experimental measurements of equilibrium 

cell volume in increasingly concentrated anisotonic solutions containing only non-permeating 

solutes [19,38,52,104,117,118,129,139,152]. The equation used for these fits is the Boyle van’t 

Hoff relation [104,138], typically applied in the following form [19,38,52,104,117,118, 

129,139,152]: 

where 𝜋𝑜 is the solution osmolality under isotonic conditions. Previously, Prickett et al. [104] 

showed that there is an inherent ideal dilute assumption in Equation 4.8, and recommended that a 

non-ideal form of the Boyle van’t Hoff relation be used instead when determining osmotically 

inactive fraction—specifically, the following form [104]: 

where 𝑚𝑖𝑛 is the combined molality of all non-permeating intracellular solutes, and 𝑚𝑜 is the 

combined molality of all non-permeating intracellular solutes under isotonic conditions. Equation 

4.9 was obtained from a mass balance for the non-permeating solutes inside the cell: it states that, 

since these solutes cannot—by definition—cross the cell membrane, their mass must be constant 

and thus equal to the mass in some reference state—in this case, the isotonic state. The fourth 

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝜋𝑜

𝜋
+ 𝑏 , (4.8) 

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝑚𝑜

𝑚𝑖𝑛
+ 𝑏 , (4.9) 
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condition in this model of equilibrium cell state is effectively an extension of Equation 4.9 to 

additionally consider the presence of permeating solutes—i.e., 

 Thus, to summarize, the general model of equilibrium cell volume used in this work 

consists of the four conditions listed in Table 4.2, which are represented by Equations 4.11 

(obtained by substituting Equation 4.4 into Equation 4.6), 4.12 (obtained by substituting Equation 

4.5 into Equation 4.2), 4.7, and 4.10. This model is also schematically represented in Figure 4.5. 

However, depending on the circumstances being modeled, two of these conditions require multiple 

instances. The second condition—permeating solute chemical potential balance (Equation 4.12)—

must be satisfied for each permeating solute being modeled, and the third condition—Equation 

4.7—must be satisfied for each permeating solute which exhibits near-ideal volumetric behaviour 

in solution. In contrast, the first condition—water chemical potential balance (Equation 4.11)—

and the fourth condition—non-permeating solute mass balance (Equation 4.10)—are each always 

only required once. Note that if there are no permeating solutes present in the solution, the model 

consists solely of the first and fourth conditions—i.e., Equations 4.11 and 4.10. Essentially, the 

model is a system of equations, ranging in size from two equations (if there are no permeating 

solutes) upwards, depending on the number and nature of permeating solutes present. The 

organization of this general model of equilibrium cell volume, as described above, is summarized 

in Table 4.2. 

 The unknowns—i.e., the independent variables—in the system of equations comprising the 

model are the relative cell volume (𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜 ), the combined molality of all non-permeating 

intracellular solutes (𝑚𝑖𝑛), the intracellular molalities of any permeating solutes (𝑚𝑝
𝑖𝑛), and the 

relative intracellular volumes of any permeating solutes which exhibit near-ideal volumetric 

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝑚𝑜

𝑚𝑖𝑛
+

∑𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 + 𝑏 . (4.10) 
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behaviour in solution (𝑉𝑝
𝑖𝑛/𝑉𝑐𝑒𝑙𝑙

𝑜 ). All other parameters are fixed and characteristic of the physical 

system being modeled. 

 The solution to the model for a given set of parameters is the set of values for the unknowns 

that simultaneously satisfies all of the equations in the system. As the equilibrium cell volume is 

one of these unknowns, once the model is solved, the equilibrium cell volume can be obtained 

directly from the model solution. 

 In this work, the ultimate aim is to measure cell type-characteristic grouped solute osmotic 

virial coefficients. As such, we model the cell cytoplasm using the grouped solute approach—that 

is, we consider the intracellular solution to contain a single non-permeating solute (the grouped 

solute). Further, consistent with the experimental measurements described above, we model the 

extracellular solution as containing a concentration of NaCl (a non-permeating solute) that would, 

on its own, yield an isotonic solution plus a specified concentration of a permeating 

cryoprotectant—i.e., either DMSO or EG. Note that any permeating solute that is present in the 

extracellular solution (i.e., the cryoprotectant, DMSO or EG) may also enter the intracellular 

solution. Under these circumstances, employing the model described above (specifically, Equation 

4.4), the intra- and extracellular osmolalities (i.e., water chemical potentials) are 

and 

𝜋𝑖𝑛 = 𝑚𝑝
𝑖𝑛 + 𝑚𝑔

𝑖𝑛 + 𝐵𝑝𝑝(𝑚𝑝
𝑖𝑛)

2
+ 𝐵𝑔𝑔(𝑚𝑔

𝑖𝑛)
2
+ (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑝

𝑖𝑛𝑚𝑔
𝑖𝑛 + 𝐶𝑝𝑝𝑝(𝑚𝑝

𝑖𝑛)
3

+ 3(𝐶𝑝𝑝𝑝
2𝐶𝑔𝑔𝑔)

1/3
(𝑚𝑝

𝑖𝑛)
2
𝑚𝑔

𝑖𝑛 + 3(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔
2)

1/3
𝑚𝑝

𝑖𝑛(𝑚𝑔
𝑖𝑛)

2

+ 𝐶𝑔𝑔𝑔(𝑚𝑔
𝑖𝑛)

3
 

(4.13) 
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respectively, where 𝑚𝑔
𝑖𝑛 is the intracellular molality of the grouped solute g, 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are the 

second and third osmotic virial coefficients of the grouped solute, respectively (in [moles of 

grouped solute g/kg of water]–1 and [moles of grouped solute g/kg of water]–2, respectively), 𝑚𝑁
𝑒𝑥 

is the extracellular molality of NaCl, 𝐵𝑁𝑁 and 𝐶𝑁𝑁𝑁 are the second and third osmotic virial 

coefficients of NaCl, respectively (in [moles of NaCl/kg of water]–1 and [moles of NaCl/kg of 

water]–2, respectively), 𝑘𝑁 is the dissociation constant of NaCl, and solute p in this case is the 

permeating cryoprotectant (DMSO or EG). Similarly, the intra- and extracellular chemical 

potentials of the permeating cryoprotectant p are (per Equation 4.5) 

and 

respectively. As there is only one permeating cryoprotectant present (at a time), Equation 4.7 

becomes 

Finally, Equation 4.10 can be rewritten as 

𝜋𝑒𝑥 = 𝑚𝑝
𝑒𝑥 + 𝑘𝑁𝑚𝑁

𝑒𝑥 + 𝐵𝑝𝑝(𝑚𝑝
𝑒𝑥)

2
+ 𝐵𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)2 + (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑚𝑝
𝑒𝑥𝑘𝑁𝑚𝑁

𝑒𝑥

+ 𝐶𝑝𝑝𝑝(𝑚𝑝
𝑒𝑥)

3
+ 3(𝐶𝑝𝑝𝑝

2𝐶𝑁𝑁𝑁)
1/3

(𝑚𝑝
𝑒𝑥)

2
𝑘𝑁𝑚𝑁

𝑒𝑥

+ 3(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁
2)

1/3
𝑚𝑝

𝑒𝑥(𝑘𝑁𝑚𝑁
𝑒𝑥)2 + 𝐶𝑁𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)3 

(4.14) 

𝜇𝑝
𝑖𝑛 = 𝜃𝑝 + 𝑅𝑇 [ln(𝑀1𝑚𝑝

𝑖𝑛) + (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑔
𝑖𝑛 +

3

2
(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔

2)
1/3

(𝑚𝑔
𝑖𝑛)

2
] , (4.15) 

𝜇𝑝
𝑒𝑥 = 𝜃𝑝 + 𝑅𝑇 [ln(𝑀1𝑚𝑝

𝑒𝑥) + (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑚𝑁
𝑒𝑥 +

3

2
(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁

2)
1/3

(𝑚𝑁
𝑒𝑥)2] , (4.16) 

𝑚𝑝
𝑖𝑛𝑀𝑝𝜌1 (

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 −

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 ) = 𝜌𝑝

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜  , (4.17) 

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝑚𝑔
𝑜

𝑚𝑔
𝑖𝑛

+
𝑉𝑝

𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 + 𝑏 , (4.18) 
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where 𝑚𝑔
𝑜 is the intracellular molality of the grouped solute under isotonic conditions. Thus, to 

summarize once again, for the purposes of this work, the specific model of equilibrium cell volume 

used consists of Equations 4.13 and 4.14 in Equation 4.6 (giving Equation 4.19 as listed in Table 

4.3), Equations 4.15 and 4.16 in Equation 4.2 (giving Equation 4.20 as listed in Table 4.3), and 

Equations 4.17 and 4.18. The organization of this specific model is summarized in Table 4.3. 

 

4.5. Sensitivity of model predictions to 𝒃, 𝑩𝒈𝒈, and 𝑪𝒈𝒈𝒈 

 As noted above, the technique for measuring grouped solute osmotic virial coefficients 

previously developed by Ross-Rodriquez et al. [118] does not provide precise enough values of 

the coefficients for use with models of osmotic response in the presence of permeating 

cryoprotectants. This problem can be illustrated—and explained—using the above-described 

model of equilibrium cell volume (i.e., the equations in Table 4.3). 

 To begin, it should be noted that the Ross-Rodriquez et al. technique is fundamentally 

similar to the one described in this work, except in that their technique involves fitting exclusively 

to solutions containing only non-permeating solutes, whereas the technique here involves fitting 

to both solutions of non-permeating solutes as well as solutions containing a permeating solute 

(i.e., the cryoprotectant). As such, the Ross-Rodriquez et al. technique essentially uses only 

conditions 1 and 4 in Table 4.3 (i.e., Equations 4.19 and 4.18, respectively), while the technique 

described herein uses all four conditions in Table 4.3. 

 The problem with using only non-permeating solute data to fit for the grouped solute 

osmotic virial coefficients (along with the osmotically inactive fraction) can be demonstrated by 

considering the effect of varying each of these fitting parameters on the model’s equilibrium cell 

volume predictions, all other parameters held constant—i.e., by examining the sensitivity of the 
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model to 𝑏 and 𝐵𝑔𝑔. First, consider a cell placed into a series of solutions containing only non-

permeating solutes at progressively increasing osmolality. Figure 4.6 contains model predictions 

of relative equilibrium cell volume under such circumstances in two different scenarios. The 

predictions in Figure 4.6(a) represent the scenario where 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are held constant at zero 

(i.e., such that the cytoplasm is thermodynamically ideal) and 𝑏 is varied across a range of values 

from 0.2 to 0.8. The predictions in Figure 4.6(b) represent the scenario where 𝑏 is held constant at 

a value of 0.4, 𝐶𝑔𝑔𝑔 is held constant at zero, and 𝐵𝑔𝑔 is varied across a range of values from 0 to 

10 [moles of grouped solute/kg water]–1. It is apparent from comparing these two sets of 

predictions that changes in 𝑏 have a far greater effect on model predictions than changes in 𝐵𝑔𝑔—

that is, in the presence of only non-permeating solutes, the model is more sensitive to 𝑏 than to 

𝐵𝑔𝑔. In fact, under these circumstances, the model has very little sensitivity to 𝐵𝑔𝑔: even in the 

most concentrated solution considered (3 osmol/kg), the difference between the relative cell 

volume predictions for 𝐵𝑔𝑔 = 0 and 𝐵𝑔𝑔 = 10 [moles of grouped solute/kg water]–1 is less than 

0.1. As such, fitting for 𝐵𝑔𝑔 under these conditions—as is done in the Ross-Rodriquez et al. 

technique—is unlikely to yield precise results, as demonstrated in practice [118]. This is 

problematic because, as shown immediately below, the model of equilibrium cell volume is very 

sensitive to the value of 𝐵𝑔𝑔 when a permeating solute is introduced. 

 Consider now a cell placed into a series of solutions consisting of a non-permeating 

isotonic solution to which a permeating cryoprotectant—DMSO—has been added at progressively 

increasing concentrations. Figure 4.7 contains model predictions of relative equilibrium cell 

volume under such circumstances in the same two scenarios as in Figure 4.6 above: the predictions 

in Figure 4.7(a) represent the scenario where 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are held constant at zero and 𝑏 is varied 

across a range of values from 0.2 to 0.8, and the predictions in Figure 4.7(b) represent the scenario 
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where 𝑏 is held constant at a value of 0.4, 𝐶𝑔𝑔𝑔 is held constant at zero, and 𝐵𝑔𝑔 is varied across a 

range of values from 0 to 10 [moles of grouped solute/kg water]–1. Here, it is apparent from 

comparing the two sets of predictions that the model is more sensitive to 𝐵𝑔𝑔 than to 𝑏. In fact, 

small changes in 𝐵𝑔𝑔—especially for values below 2 [moles of grouped solute/kg water]–1—can 

result in large changes not only in volume predictions, but also in the general trend of predictions 

as the DMSO concentration increases. Therefore, imprecision in the measurement of 𝐵𝑔𝑔 can have 

a considerable impact on the accuracy of volume predictions when permeating cryoprotectants are 

present. That being said, the sensitivity of the model to 𝐵𝑔𝑔 under such conditions can also be an 

advantage, as it means that fitting the model to experimental measurements of cell volume in the 

presence of permeating cryoprotectants—as is done in this work—should yield more precise 

values of 𝐵𝑔𝑔 than using only measurements in the presence of non-permeating solutes. 

 One can also examine the effect of varying 𝐶𝑔𝑔𝑔 on model predictions. Figure 4.8 contains 

model predictions of equilibrium cell volume under the same conditions as for Figure 4.7(b) above, 

with 𝑏 still held constant at a value of 0.4, but where 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 are both varied across a range 

of values (0 to 10 [moles of grouped solute/kg water]–1 and 0 to 60 [moles of grouped solute/kg 

water]–2, respectively). The general trends exhibited in Figures 4.7b and 4.8 are that increasing the 

value of 𝐵𝑔𝑔 tends to decrease the predicted volume, while increasing the value of 𝐶𝑔𝑔𝑔 tends to 

attenuate the effect of 𝐵𝑔𝑔. 

 

4.6. Numerical and statistical methods 

 Fitting the above model of equilibrium cell volume—which yields the volume predictions 

𝑉𝑐𝑒𝑙𝑙—to experimental measurements of equilibrium cell volume—hereafter symbolized by 

𝑉𝑐𝑒𝑙𝑙
𝑒𝑥𝑝

—essentially means finding the values of the osmotically inactive fraction 𝑏 and the grouped 
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solute osmotic virial coefficients 𝐵𝑔𝑔 and (if necessary) 𝐶𝑔𝑔𝑔 that minimize the model’s errors in 

predicting the experimental cell volume—i.e., the values that minimize the difference between 

𝑉𝑐𝑒𝑙𝑙 and 𝑉𝑐𝑒𝑙𝑙
𝑒𝑥𝑝

. For a given cell type, the values of these three parameters—𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔—

effectively characterize the solution thermodynamic behaviour of the cell cytoplasm. The overall 

fitting procedure is outlined in Figure 4.9. 

 

4.6.1. Quantification of error 

 The first part of the procedure consists of determining the model prediction error of 

equilibrium cell volume associated with each set of values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 in the range 

considered, calculated over all of the experimental measurements in a given data set (steps B–G 

in Figure 4.9). In this work, prediction error was quantified using root mean squared error (RMSE), 

defined as 

where 𝑛 is the number of experimental data points, 𝑦(𝑖) is the experimentally-measured value of 

the relative equilibrium cell volume at the ith data point (𝑉𝑐𝑒𝑙𝑙
𝑒𝑥𝑝/𝑉𝑐𝑒𝑙𝑙

𝑜 )
𝑖
, and �̂�(𝑖) is the model 

prediction of the relative equilibrium cell volume at the ith data point (𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜 )𝑖. 

 RMSE values were obtained for predictions of equilibrium cell volume as compared to 

three sets of experimental measurements: one of HUVEC in the presence of only non-permeating 

solutes (data from Ross-Rodriguez et al. [118]), one of HUVEC in the presence of DSMO (data 

obtained in this work), and one of HUVEC in the presence of EG (data obtained in this work). The 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦(𝑖) − �̂�(𝑖))

2
𝑛

𝑖=1

 , (4.21) 



114 

 

range of values considered and the value resolutions used for 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 are contained in 

Table 4.4. These ranges and resolutions were used for all three experimental data sets. 

 

4.6.2. Solution technique for model of equilibrium cell volume: vector-form Newton’s method 

 For each set of values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔, model predictions of relative equilibrium cell 

volume were calculated by applying Newton’s method (in its vector form) [49,113] to solve the 

system of equations formed by Equations 4.19, 4.20, 4.17, and 4.18 (i.e., the model of equilibrium 

cell volume) for each experimental data point. As a general numerical approach, the vector form 

of Newton’s method allows one to solve a system of equations of the form 𝑓(�⃑�; 𝑐) = 0, where �⃑� 

are the system unknowns and 𝑐 are the system parameters. Briefly, the method involves the 

iterative application of the following equation 

where 𝑘 is the iteration number, such that �⃑�(𝑘) is the 𝑘th guess for �⃑�, and 𝐽 is the Jacobian matrix, 

defined as 

where 𝑥1, 𝑥2,… 𝑥𝑛 are the unknown values and 𝑛 is the total number of unknowns (and 

correspondingly, the total number of equations in the system). Equation 4.22 is applied until one 

or more convergence criteria are satisfied. Two possible convergence criteria—both of which were 

used in this work—are 

�⃑�(𝑘+1) = �⃑�(𝑘) − [𝐽(𝑘)]
−1

𝑓(𝑘) (4.22) 

𝐽 =

[
 
 
 
 
𝑑𝑓1
𝑑𝑥1

⋯
𝑑𝑓1
𝑑𝑥𝑛

⋮ ⋱ ⋮
𝑑𝑓𝑛
𝑑𝑥1

⋯
𝑑𝑓𝑛
𝑑𝑥𝑛]

 
 
 
 

 , (4.23) 

norm(�⃑�(𝑘+1) − �⃑�(𝑘)) ≤ 𝜖 (4.24) 
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and 

where 𝜖 is a maximum allowable error and norm(�⃑�) refers to the magnitude, or norm, of a vector 

�⃑�, defined as 

The first of these criteria (Equation 4.24) is effectively satisfied when two consecutive guesses for 

the unknowns �⃑� are the same (within allowable error), while the second criterion (Equation 4.25) 

is satisfied when there is a guess for the unknowns that makes all the equations 𝑓 in the system 

true (again, within allowable error). In the context of this work, Equations 4.19, 4.20, 4.17, and 

4.18 can be respectively rewritten into the format 𝑓(�⃑�; 𝑐) = [𝑓1 , 𝑓2 , 𝑓3 , 𝑓4] = 0 as follows: 

norm(𝑓(𝑘)) ≤ 𝜖 (4.25) 

norm(�⃑�) = √∑𝑥𝑖
2

𝑛

𝑖

 . (4.26) 

𝑓1 = [𝑚𝑝
𝑖𝑛 + 𝑚𝑔

𝑖𝑛 + 𝐵𝑝𝑝(𝑚𝑝
𝑖𝑛)

2
+ 𝐵𝑔𝑔(𝑚𝑔

𝑖𝑛)
2
+ (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑝

𝑖𝑛𝑚𝑔
𝑖𝑛 + 𝐶𝑝𝑝𝑝(𝑚𝑝

𝑖𝑛)
3

+ 3(𝐶𝑝𝑝𝑝
2𝐶𝑔𝑔𝑔)

1
3(𝑚𝑝

𝑖𝑛)
2
𝑚𝑔

𝑖𝑛 + 3(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔
2)

1
3𝑚𝑝

𝑖𝑛(𝑚𝑔
𝑖𝑛)

2

+ 𝐶𝑔𝑔𝑔(𝑚𝑔
𝑖𝑛)

3
]

− [𝑚𝑝
𝑒𝑥 + 𝑘𝑁𝑚𝑁

𝑒𝑥 + 𝐵𝑝𝑝(𝑚𝑝
𝑒𝑥)

2
+ 𝐵𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)2

+ (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑚𝑝
𝑒𝑥𝑘𝑁𝑚𝑁

𝑒𝑥 + 𝐶𝑝𝑝𝑝(𝑚𝑝
𝑒𝑥)

3

+ 3(𝐶𝑝𝑝𝑝
2𝐶𝑁𝑁𝑁)

1/3
(𝑚𝑝

𝑒𝑥)
2
𝑘𝑁𝑚𝑁

𝑒𝑥

+ 3(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁
2)

1/3
𝑚𝑝

𝑒𝑥(𝑘𝑁𝑚𝑁
𝑒𝑥)2 + 𝐶𝑁𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)3] = 0 , 

(4.27) 
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and 

The unknowns in these equations are �⃑� = [𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜  , 𝑚𝑔

𝑖𝑛 , 𝑚𝑝
𝑖𝑛 , 𝑉𝑝

𝑖𝑛/𝑉𝑐𝑒𝑙𝑙
𝑜 ]. These 

unknowns, along with all model parameters, corresponding units, and—where applicable—known 

constant values, are listed in Table 4.5. 

 One of the model parameters—the intracellular molality of the grouped solute under 

isotonic conditions, 𝑚𝑔
𝑜—requires some additional explanation. Although this parameter is a 

constant for the purposes of the model of equilibrium cell volume, its value depends on the values 

of 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔. As such, this value must be calculated prior to predicting any equilibrium cell 

volumes for each set of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 (step D). 

 The value of 𝑚𝑔
𝑜 can be obtained by finding the concentration of the grouped solute that, 

in the absence of any other intracellular solutes, would set the intracellular osmolality to its 

physiologically isotonic value. This concentration will depend on the values of 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 

because these parameters characterize the thermodynamic behaviour of the grouped solute, and 

thus the relationship between concentration and osmolality. Mathematically, the required 

concentration is that which satisfies 

𝑓2 = [ln(𝑀1𝑚𝑝) + (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑔
𝑖𝑛 +

3

2
(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔

2)
1
3(𝑚𝑔

𝑖𝑛)
2
]

− [ln(𝑀1𝑚𝑝) + (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑘𝑁𝑚𝑁
𝑒𝑥 +

3

2
(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁

2)
1/3

(𝑘𝑁𝑚𝑁
𝑒𝑥)2]

= 0 , 

(4.28) 

𝑓3 = 𝑚𝑝
𝑖𝑛𝑀𝑝𝜌1 (

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 −

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 ) − 𝜌𝑝

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 = 0 , (4.29) 

𝑓4 =
𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − (1 − 𝑏)

𝑚𝑔
𝑜

𝑚𝑔
𝑖𝑛

−
𝑉𝑝

𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 = 0 . (4.30) 
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where 𝜋𝑜 is the isotonic osmolality (0.3 osmoles/kg). As such, the required value can be obtained 

by solving Equation 4.31 for 𝑚𝑔
𝑜, which can be accomplished using the Newton method as outlined 

in Equation 4.22 (except for a single equation instead of for a system of equations—in this case, 

the Jacobian simplifies to the derivative 𝑑𝑓/𝑑𝑚𝑔
𝑜). 

 Note also that there are other parameters in Table 4.5 without known values given: 𝑚𝑝
𝑒𝑥, 

𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔. Of these,  𝑚𝑝
𝑒𝑥 is defined by the experiment being modeled (and thus will have 

one of the experimental values: 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 molal), while 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 are 

fitting parameters, the values of which will fall within the ranges set out in Table 4.4. 

 Another complication to solving for equilibrium cell volume arises from the Newton 

method’s requirement for an initial guess for the unknowns �⃑�—i.e., an iteration where 𝑘 = 0 in 

Equation 4.22. Unfortunately, the system defined herein by Equations 4.27 to 4.30 is highly 

sensitive to the values of the initial guess, and will not converge to an answer unless that guess is 

sufficiently close to the actual solution. This issue is further exacerbated by the fact that the 

solution values of the unknowns can vary widely depending on the system parameters. Since the 

solution values are, by definition, not known in advance, this set of circumstances can lead to a 

situation where the system cannot be solved without an impractical number of attempts with 

different initial guesses: without an appropriate initial guess, one cannot find the solution, but 

without the solution, it is extremely difficult and time-consuming to choose an appropriate initial 

guess. This impracticality is all the greater given the large number of times that the system must 

be solved (i.e., for each data point for each set of values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔). To counteract this 

problem, we have developed an adaptive initial guess algorithm, which numerically finds the 

𝑓(𝑚𝑔
𝑜) = 𝑚𝑔

𝑜 + 𝐵𝑔𝑔(𝑚𝑔
𝑜)

2
+ 𝐶𝑔𝑔𝑔(𝑚𝑔

𝑜)
3
− 𝜋𝑜 = 0 , (4.31) 
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appropriate initial guess for the unknowns for each set of system parameters (step E in Figure 4.9). 

This algorithm is outlined in Figure 4.10. 

 

4.6.3. Adaptive initial guess algorithm 

 The adaptive initial guess algorithm can best be described using system states. Here, what 

is meant by a “state” is a complete and consistent set of values of all of the unknowns/variables 

and parameters in a system of equations. In other words, using the terminology from above (e.g., 

see Equation 4.22), a state is a complete set of values for �⃑� and 𝑐 that satisfy all equations 𝑓 such 

that 𝑓(�⃑�; 𝑐) = 0. Within this context, a “solved” state is one for which both the parameters and the 

variables are known, while an “unsolved” state is one for which only the parameters are known, 

with the variables remaining to be solved for. 

 In the most general terms, given an unsolved target state for which a solution is desired, 

the adaptive initial guess algorithm starts with a known, completely solved state as an initial guess 

and then attempts to solve for the target state using Newton’s method as described above. If this 

initial guess does not converge to the target state, then the algorithm uses a series of intermediate 

states to systematically approach the target state. For the purposes of this algorithm, an 

intermediate state “Y” between two other states “X” and “Z” is defined to be a state for which 

certain parameters have values that are intermediate between those of states X and Z. The 

parameters which are to have intermediate values in state Y are any which do not have the same 

value in state X as they do in state Z. Any method or scheme can be used to calculate the 

intermediate values; the simplest method—and the one used in this work—is to calculate the state 

Y intermediate value of each parameter to be halfway between the parameter’s value in state X 

and that in state Z. 
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 Assuming that the known state, when used as an initial guess, does not converge to the 

target state, the adaptive initial guess algorithm continues by finding an intermediate state “A” 

between the known state and the target state to which the known state, when used as an initial 

guess, does converge. This intermediate state A is then set to be the initial guess, and the algorithm 

attempts to solve for the target state. If unsuccessful, the algorithm finds another intermediate state 

“B” between intermediate state A and the target state to which intermediate state A, when used as 

an initial guess, does converge. Intermediate state B is then set to be the initial guess for the target 

state. If intermediate state B does not converge to the target state, then the iterative process 

continues until an intermediate state is found that, when used as an initial guess, does converge to 

the target state. 

 The adaptive initial guess algorithm was applied to the problem in this work—that is, 

solving the model contained in Equations 4.27–4.30—as follows. The known state here is the cell 

under isotonic conditions: the cell at its isotonic volume, the grouped solute at its isotonic molality 

(i.e., that which gives the isotonic osmolality), and no cryoprotectant inside or outside the cell (i.e., 

𝑚𝑝
𝑖𝑛 = 𝑚𝑝

𝑒𝑥 = 0). In this state, the values of the variables are  

�⃑� = [𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜  , 𝑚𝑔

𝑖𝑛 , 𝑚𝑝
𝑖𝑛 , 𝑉𝑝

𝑖𝑛/𝑉𝑐𝑒𝑙𝑙
𝑜 ] = [1 , 𝑚𝑔

𝑜 , 0 , 0]. The target state is the cell at 

equilibrium in the presence of the cryoprotectant (at its defined extracellular concentration 𝑚𝑠
𝑒𝑥). 

This state is unsolved. The parameter to be varied in the intermediate states is the only parameter 

that changes between the isotonic and target states: the extracellular molality of the cryoprotectant, 

𝑚𝑝
𝑒𝑥. 

 As an example of how the algorithm would be employed here, take a hypothetical 

calculation of the equilibrium volume of HUVEC in the 4 molal DMSO solution used in this work. 

In this case, the known state would be HUVEC under isotonic conditions as maintained by HEPES 
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buffered saline (i.e., NaCl) solution, and the target state would be HUVEC in HEPES plus 4 molal 

DMSO. The first step to solve this system would be to use the isotonic state as an initial guess to 

attempt to solve for the target state. If this were unsuccessful, then the isotonic state would be used 

as an initial guess to attempt to solve for an intermediate state of HUVEC in HEPES plus 2 molal 

DMSO. If this attempt were also unsuccessful, the foregoing step would be repeated but with an 

intermediate state of HUVEC in HEPES plus 1 molal DMSO. This process would continue, with 

the intermediate states moving closer and closer to the isotonic state (i.e., to 0 molal DMSO), until 

the isotonic state could successfully be used as an initial guess. Assuming for the purposes of this 

example that the isotonic state could be successfully used as an initial guess in solving for the 

intermediate state of HUVEC in HEPES plus 1 molal DMSO, this intermediate state would 

become the new default initial guess, and would be used to attempt to solve for the target state. If 

this attempt were unsuccessful, then this new initial guess would be used to attempt to solve a 

series of intermediate states starting at HUVEC in HEPES plus 2.5 molal DMSO and moving 

progressively closer to 1 molal DMSO (i.e., 1.75 molal DMSO, 1.375 molal DMSO, 1.1875 molal 

DMSO, …). A successful attempt here would lead to the corresponding intermediate state being 

designated the new default initial guess, and the entire process would repeat itself—starting with 

an attempt to solve for the target state—until an intermediate state could be found that, when used 

as an initial guess, would lead to a solution for the target state. 

 

4.6.4. Finding optimal values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 

 Once the RMSE has been calculated for each set of values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 for all 

experimental data sets, the optimal set—or sets—of these values can be determined (step H in 

Figure 4.9). Optimal in this respect means those values of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 that minimize model 
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prediction errors in as wide a variety of solutions as possible. In this work, we have primarily 

distinguished between solutions that contain only non-permeating solutes and those that contain a 

permeating cryoprotectant. Accordingly, we have herein defined the optimal set of values of 𝑏, 

𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 as being that which simultaneously minimizes the RMSE of model predictions in 

both of these types of solutions. Specifically, for a given permeating cryoprotectant (i.e., one of 

either DMSO or EG in this work), the optimal values are those that minimize the combined RMSE 

(𝑅𝑀𝑆𝐸𝐶𝑂𝑀) of the model predictions, defined as 

where 𝑅𝑀𝑆𝐸𝑁𝑃 is the RMSE of model predictions in non-permeating solute solutions and 

𝑅𝑀𝑆𝐸𝑃𝐶 is the RMSE of model predictions in solutions containing the cryoprotectant of interest. 

It should be emphasized that under this definition, if measurements of equilibrium cell volume are 

made with more than one permeating cryoprotectant (as was done in this work), a set of optimal 

values will be obtained for each cryoprotectant, although—theoretically—these values should be 

the same. 

 As a basic approach to account for the uncertainty of the fit for the optimal values, error 

tolerance ranges were calculated for each fit. These error tolerance ranges consist of the absolute 

ranges of each of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 which correspond to predictions with RMSE values within a 

specified tolerance of the minimum combined RMSE obtained for the overall fit. That is, the error 

tolerance ranges are defined as [𝑏(min), 𝑏(max)], [𝐵𝑔𝑔(min), 𝐵𝑔𝑔(max)], and [𝐶𝑔𝑔𝑔(min), 𝐶𝑔𝑔𝑔(max)], 

where 𝑏(min) (or 𝐵𝑔𝑔(min) or 𝐶𝑔𝑔𝑔(min)) and 𝑏(max) (or 𝐵𝑔𝑔(max) or 𝐶𝑔𝑔𝑔(max)) are—respectively—

the minimum and maximum values of 𝑏 (or 𝐵𝑔𝑔 or  𝐶𝑔𝑔𝑔) found within all those sets of 𝑏, 𝐵𝑔𝑔, 

and 𝐶𝑔𝑔𝑔 for which the 𝑅𝑀𝑆𝐸𝐶𝑂𝑀 is less than or equal to (1 + the specified tolerance) times the 

overall minimum 𝑅𝑀𝑆𝐸𝐶𝑂𝑀 obtained for the fit. 

𝑅𝑀𝑆𝐸𝐶𝑂𝑀 = 𝑅𝑀𝑆𝐸𝑁𝑃 + 𝑅𝑀𝑆𝐸𝑃𝐶  , (4.32) 
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4.7. Results and discussion 

 Figure 4.11 contains experimental measurements of equilibrium HUVEC volume in 

solutions of only non-permeating solutes (data provided by Lisa Ross-Rodriguez [unpublished], 

with majority of data published in Ross-Rodriguez et al. [118]), in solutions containing DMSO 

(data obtained in this work), and in solutions containing EG (data obtained in this work). This data 

is also tabulated in Tables 4.6 and 4.7. It should be noted that in both cryoprotectant solutions 

(Figure 4.11(b)), equilibrium cell volume initially decreases with increasing cryoprotectant 

concentration before reaching a lower limit. This behaviour is not consistent with ideal dilute 

model predictions (see Figure 4.7 above and Figure 4.12 below). 

 The model of equilibrium cell volume described above (see Table 4.3) was fit to the data 

in Figure 4.11 to find an optimal set of 𝑏 and 𝐵𝑔𝑔 (with 𝐶𝑔𝑔𝑔 = 0)—i.e., a second-order fit—and 

of 𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔—i.e., a third-order fit—corresponding to each of DMSO and EG. The values 

of the coefficients obtained, along with the corresponding 15% error tolerance ranges for the 

second-order fits and 2.5% error tolerance ranges for the third-order fits, are contained in Table 

4.8. A 15% error tolerance range was used for the second-order fits because this error tolerance 

range roughly corresponds to the 95% confidence interval obtained by Ross-Rodriguez et al. in 

their measurement of 𝐵𝑔𝑔 for HUVEC (also a second-order fit) [118]. Specifically—as is shown 

in greater detail in Table 4.8—if the model of equilibrium cell volume described in this work is fit 

to only the experimental measurements of HUVEC in solutions of only non-permeating solutes 

(i.e., the data in Figure 4.11(a)) as was done by Ross-Rodriguez et al. in their approach [118], then 

the optimum value of 𝐵𝑔𝑔 and the corresponding 15% error tolerance range obtained 

approximately match the value of 𝐵𝑔𝑔 and the corresponding 95% confidence interval obtained by 



123 

 

Ross-Rodriguez et al. [118]. The discrepancy between the value of 𝐵𝑔𝑔 obtained in this work as 

compared to the one obtained by Ross-Rodriquez et al. (i.e., 2.8 versus 2.4 [moles of grouped 

solute/kg water]–1) can likely be attributed to the different measures of goodness of fit used—

RMSE here and adjusted R2 in Ross-Rodriquez et al.’s approach [118]—and to the fact that the 

fitting resolution for 𝑏 in this work was limited to a value of 0.01 (see Table 4.4). 

 The 15% error tolerance ranges of the second-order fits for 𝐵𝑔𝑔 contained in Table 4.8 are 

an order of magnitude lower than the 15% error tolerance range obtained from fitting to only the 

non-permeating solute data (see above) and—accordingly—than the corresponding 95% 

confidence intervals obtained by Ross-Rodriguez et al. in their measurements [118]. These results 

indicate that the novel technique developed in this work for measuring grouped intracellular solute 

osmotic virial coefficients has considerably greater precision than the previous method used by 

Ross-Rodriguez et al. That said, it should also be noted that—with one exception—the second-

order values measured in this work using the novel technique do agree with the (second-order) 

values obtained by Ross-Rodriguez et al. within the measure of error used in that work (i.e., the 

95% confidence intervals). The one exception is the value of 𝑏 obtained from fitting to the EG 

data: 0.54. This value falls just outside of Ross-Rodriguez et al.’s 95% confidence interval for 𝑏 

of [0.514, 0.534] [118]. 

 The third-order results in Table 4.8 demonstrate that even with a 2.5% error tolerance 

range, the third-order fits to the DMSO and EG data overlap for all coefficients—that is, each of 

the best-fit coefficient values for each data set falls within the 2.5% error tolerance range of the 

corresponding fit in the other data set. This outcome—i.e., similar/overlapping values obtained 

from two different data sets—is consistent with the thermodynamic theory underpinning the 

models used in this work. 
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 Figure 4.12 shows the second- and third-order model fits to the experimental data—as 

represented by the coefficients in Table 4.8—for both the DMSO and EG solutions, and also 

contains predictions of—i.e., not fits to—the data made using the values of 𝑏 and 𝐵𝑔𝑔 obtained by 

Ross-Rodriquez et al., as well as corresponding predictions made using an ideal dilute model. For 

the ideal model predictions, the model of equilibrium cell volume was fit to the measurements 

made in solutions of only non-permeating solutes (i.e., Figure 4.11(a)) with 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 set to 

zero in order to acquire a value of 𝑏 only. The value of 𝑏 so obtained—0.60—was then used in the 

model (with 𝐵𝑔𝑔 = 𝐶𝑔𝑔𝑔 = 0) to make equilibrium cell volume predictions in the DMSO and EG 

solutions. 

 From the results in Figure 4.12, it is clear that a non-ideal model of equilibrium cell 

volume—i.e., a model that incorporates the Elliott et al. form of the multi-solute osmotic virial 

equation—is required to capture the volumetric behaviour of HUVEC exposed to the DMSO and 

EG solutions considered in this work. The ideal dilute approach does not—and, from an 

examination of Figure 4.7, regardless of the value of 𝑏 used, cannot—allow for a decrease in 

equilibrium cell volume with increasing permeating cryoprotectant concentration. As such, for 

cells such as HUVEC which have a thermodynamically non-ideal cytoplasm, the use of only an 

ideal dilute model can introduce considerable error in the prediction of cell volumes where 

permeating cryoprotectants are present. Under such circumstances, a non-ideal model, such as the 

one described in this work, should be applied. 

 Figure 4.12 also clearly displays the deleterious effect of a lack of precision in the 

measurement of 𝐵𝑔𝑔. The shaded areas on the graphs correspond to predictions that fall within 

the 95% confidence intervals for 𝐵𝑔𝑔 measured by Ross-Rodriguez et al. [118]. The relatively 

large size of these areas—and the fact that they encompass the possibility of both an increase and 
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a decrease in volume with increasing cryoprotectant concentration—demonstrate that the 

measurement technique used by Ross-Rodriguez et al. does not yield values of 𝐵𝑔𝑔 precise 

enough for use in modeling of cell behaviour in the presence of permeating cryoprotectants. 

Conversely, the purple shaded areas on the graphs in Figure 4.12 correspond to predictions that 

wall within the 15% error tolerance ranges for 𝐵𝑔𝑔 measured in this work for a second-order fit. 

These areas are much smaller than the green areas, reflecting the increased precision of the new 

method. 

 Finally, as would be expected, the results in Figure 4.12 demonstrate that—for both the 

DMSO and EG data—the third-order fits obtained in this work are better (i.e., more accurate) than 

the corresponding second-order fits (this outcome is also quantitatively reflected in lower 

𝑅𝑀𝑆𝐸𝐶𝑂𝑀 values for the third-order fits as compared to the corresponding second-order fits). As 

such, we would recommend using the coefficients from the third-order fits when modeling 

HUVEC osmotic behaviour. While the third-order fits to the two data sets do not yield identical 

coefficients (see Table 4.8), as noted above, the values are within each other’s 2.5% error tolerance 

ranges. Accordingly, we would further recommend using the averages of the values obtained for 

each coefficient from the two third-order fits—i.e., 𝑏 = 0.43, 𝐵𝑔𝑔 = 3.0 [moles of grouped 

solute/kg water]–1, and 𝐶𝑔𝑔𝑔 = 20.8 [moles of grouped solute/kg water]–2. 

 

4.7.1. Effect of cytoplasm non-ideality on predictions of kinetic osmotic response 

 The thermodynamic non-ideality of the cytoplasm can also have an impact on kinetic 

models of cell behaviour when exposed to permeating solutes. Consider, for example, the kinetic 

osmotic response of a cell when a permeating cryoprotectant such as DMSO is first added, and 

then removed. The cell behaviour in this situation can be predicted using the following form of the 
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two-parameter model [27,53,54,84], which accounts for the osmotic transport of both water and 

of permeating solutes using 

and 

respectively, where 𝑁1 is the intracellular number of moles of water, 𝑁𝑝 is the intracellular number 

of moles of the permeating cryoprotectant, 𝑡 is time (in minutes), 𝐴𝑐𝑒𝑙𝑙 is the cell surface area (in 

µm2), 𝐿1 is the hydraulic conductivity of the cell (in μm/min/atm), 𝑃𝑝 is the permeability of the 

cell to the permeating cryoprotectant (in μm/min), and 𝑎𝑝 is the activity of the permeating 

cryoprotectant.  𝐿1 and 𝑃𝑝 are cell-specific permeability parameters that are generally obtained by 

curve-fitting to experimental measurements of cellular kinetic osmotic response [27,117]. 

 Activity is a thermodynamic property similar to chemical potential; for any given species 

i the two are related by [102] 

where 𝜇𝑖
𝑜 is the chemical potential of species i at an arbitrarily-chosen standard state. To combine 

the Elliott et al. form of the multi-solute osmotic virial equation—and, specifically, the solute 

chemical potential calculation in Equation 4.5—with Equation 4.35 in order to calculate the 

activity of a given cryoprotectant p, one can choose a standard state of a binary aqueous solution 

of the cryoprotectant at the same temperature and pressure as the cell being modeled, and at a 

concentration 𝑚𝑝
𝑜 such that 

𝑑𝑁1

𝑑𝑡
=

𝐿1𝐴𝑐𝑒𝑙𝑙𝜌1
2𝑅𝑇

𝑀1
(𝜋𝑖𝑛 − 𝜋𝑒𝑥) (4.33) 

𝑑𝑁𝑝

𝑑𝑡
= 𝑃𝑝𝐴𝑐𝑒𝑙𝑙(𝑎𝑝

𝑒𝑥 − 𝑎𝑝
𝑖𝑛) , (4.34) 

𝑅𝑇 ln 𝑎𝑖 = 𝜇𝑖 − 𝜇𝑖
𝑜 , (4.35) 

ln(𝑀1𝑚𝑝
𝑜) + 2𝐵𝑝𝑝𝑘𝑝𝑚𝑝

𝑜 +
3

2
𝐶𝑝𝑝𝑝(𝑘𝑝𝑚𝑝

𝑜)
2

= 0 . (4.36) 
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Then, recalling that 𝜃𝑝 is a function of temperature and pressure only, substituting Equations 4.5 

and 4.36 into Equation 4.35, and simplifying and rearranging yields 

As has been noted elsewhere [151], the standard state for a solute in the Elliott et al. model—

represented by Equation 4.36 here—is a function of that solute’s osmotic virial coefficients (i.e., 

𝐵𝑝𝑝 and 𝐶𝑝𝑝𝑝). 

 The surface area of the cell 𝐴𝑐𝑒𝑙𝑙 can be related to the cell volume using the spherical cell 

assumption, and the cell volume at any time is given by the sum of the volumes of intracellular 

water, intracellular permeating cryoprotectant, and the osmotically inactive fraction, that is, 

 To demonstrate the effect of cytoplasm non-ideality, the above model of kinetic osmotic 

response (i.e., Equations 4.33 and 4.34) was applied to the specific situation where a cell with the 

same permeability parameters as a TF-1 cell is exposed to a 2 molal solution of DMSO for 10 

minutes, and then immediately returned to an isotonic solution (i.e., with no DMSO) for another 

10 minutes. The resulting model predictions are contained in Figure 4.13. Solution osmolality and 

the chemical potential of DMSO were calculated using the Elliott et al. form of the multi-solute 

osmotic virial equation (i.e., Equations 4.4 and 4.5), and the values of 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 for the cell 

were varied from 0 to 8 [moles of grouped solute/kg water]–1 and 0 to 80 [moles of grouped 

solute/kg water]–2, respectively. All other relevant parameters for TF-1 were those measured by 

𝑎𝑝 = exp [𝑘𝑝 [ln(𝑀1𝑚𝑝)

+ ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑝)𝑘𝑖𝑚𝑖]

𝑟

𝑖=2

+
3

2
∑∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑝𝑝)

1/3
𝑘𝑖𝑚𝑖𝑘𝑗𝑚𝑗]

𝑟

𝑗=2

𝑟

𝑖=2

]] . 

(4.37) 

𝑉𝑐𝑒𝑙𝑙(𝑡) =
𝑀1𝑁1(𝑡)

𝜌1
+

𝑀𝑝𝑁𝑝(𝑡)

𝜌𝑝
+ 𝑏𝑉𝑐𝑒𝑙𝑙

𝑜  . (4.38) 
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Ross-Rodriguez et al. [117] at a temperature of 11 °C (284 K) and are summarized here in Table 

4.9. Equations 4.33 and 4.34 were solved using the explicit adaptive Runge-Kutta-Fehlberg 

method for ordinary differential equations [114], with an initial step size of 0.00025 minutes. 

 Figure 4.13 clearly demonstrates that the value of 𝐵𝑔𝑔 can have a considerable effect on 

model predictions of osmotic response, particularly upon cryoprotectant removal. Notably, all else 

held constant, the higher the value of 𝐵𝑔𝑔, the lower the maximum volume reached on 

cryoprotectant removal. In fact, for the situation modeled here, 𝐵𝑔𝑔 values above a minimum 

threshold (e.g., 𝐵𝑔𝑔 ≥ 3 [moles of grouped solute/kg water]–1 for 𝐶𝑔𝑔𝑔 = 0 [moles of grouped 

solute/kg water]–2) actually resulted in the cell not swelling beyond its isotonic volume when the 

cryoprotectant was removed. The implications of this effect are particularly relevant to the use of 

modeling to avoid cell damage from excessive volume excursions (i.e., exceeding osmotic 

tolerance limits) during cryopreservation [12,13,39,52,64]. Although the value of 𝐶𝑔𝑔𝑔 also affects 

model predictions, it has less of an impact than 𝐵𝑔𝑔. Notably, as 𝐶𝑔𝑔𝑔 increases, the above-noted 

minimum threshold of 𝐵𝑔𝑔 to avoid cell volume swelling above isotonic on cryoprotectant removal 

shifts to higher 𝐵𝑔𝑔 values. 

 

4.8. Conclusions 

 In this work, we have developed a novel method of measuring cell-specific grouped 

intracellular solute osmotic virial coefficients, along with the corresponding osmotically inactive 

fraction, using experimental measurements of equilibrium cell volume in solutions of non-

permeating solutes and in solutions containing a permeating solute. These parameters can together 

completely characterize the composition-dependent non-ideal solution thermodynamic behaviour 
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of the cytoplasm. As such, they allow mathematical models of cellular osmotic behaviour to 

account for solution non-ideality, even inside the cell where the exact composition is not known. 

 Applying the method developed herein, we have obtained the grouped intracellular solute 

osmotic virial coefficients and osmotically inactive fraction for HUVEC using two different sets 

of experimental measurements of cell volume: in non-permeating solute solutions + DMSO 

solutions, and in non-permeating solute solutions + EG solutions. Our measurements clearly 

indicate that the cytoplasm of HUVEC is not ideal, and—accordingly—that the volumetric 

behaviour of HUVEC in the presence of permeating cryoprotectants cannot be effectively modeled 

using an ideal dilute approach. Our recommendation for applying these measurements to predict 

HUVEC osmotic behaviour is to use the non-ideal model described herein with the average values 

of the third order fits to the two data sets—i.e., 𝑏 = 0.43, 𝐵𝑔𝑔 = 3.0 [moles of grouped solute/kg 

water]–1, and 𝐶𝑔𝑔𝑔 = 20.8 [moles of grouped solute/kg water]–2. 

 We have also shown that when modeling cellular osmotic behaviour in the presence of 

permeating solutes such as the cryoprotectants DMSO and EG, the values of the grouped 

intracellular solute osmotic virial coefficients can have a considerable impact on model 

predictions. For example, when modeling the kinetic cell response to cryoprotectant removal, an 

ideal dilute cytoplasm model (i.e., grouped intracellular solute osmotic virial coefficients of zero) 

may predict swelling 50% above the isotonic volume, where a model corresponding to a 

reasonably non-ideal cytoplasm may predict no swelling at all. As such, it is important in such 

scenarios that the values of these grouped solute coefficients be both accurate and precise; 

otherwise, the predictions can veer far off course. Our results here indicate that the novel method 

we have developed for measuring these coefficients yields more precise values than the previously 
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existing method developed by Ross-Rodriguez et al. As such, our new measurement technique 

will allow for more effective modeling of osmotic behaviour. 

 However, it is important to note that modeling the full range of cellular osmotic behaviour 

while incorporating non-ideal solution thermodynamics will require more than just the 

measurements described in this work. In order to model the kinetic osmotic response for a cell type 

of interest, one must know not only the given cell type’s grouped intracellular solute osmotic virial 

coefficients and osmotically inactive fraction, but also the hydraulic conductivity 𝐿1 and—for each 

permeating cryoprotectant of interest—the solute permeability 𝑃𝑝. These cell-specific permeability 

coefficients can only be obtained from non-equilibrium (i.e., kinetic) measurements of cell 

volume. Thus, for the purposes of mathematical modeling, the complete characterization of a given 

cell type’s osmotic behaviour will require fitting to both equilibrium and kinetic cell volume data. 
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Table 4.1. Experimental sampling order. 

Sample 

Order 

Cryoprotectant Concentration Added 

Experiment 1 Experiment 2 Experiment 3 

1 0.5 molal 1.5 molal 2.5 molal 

2 1.0 molal 2.0 molal 3.0 molal 

3 1.5 molal 2.5 molal 0.5 molal 

4 2.0 molal 3.0 molal 1.0 molal 

5 2.5 molal 0.5 molal 1.5 molal 

6 3.0 molal 1.0 molal 2.0 molal 

7 0.5 molal 1.5 molal 2.5 molal 

8 1.0 molal 2.0 molal 3.0 molal 

9 1.5 molal 2.5 molal 0.5 molal 

10 2.0 molal 3.0 molal 1.0 molal 

11 2.5 molal 0.5 molal 1.5 molal 

12 3.0 molal 1.0 molal 2.0 molal 
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Table 4.2. Overview of general model of equilibrium cell volume. 
Condition 

Number 
Equation 

Equation 

Number 

1 (always 

required 

once) 

∑𝑘𝑖𝑚𝑖
𝑖𝑛

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑘𝑖𝑚𝑖

𝑖𝑛𝑘𝑗𝑚𝑗
𝑖𝑛]

𝑟

𝑗=2

𝑟

𝑖=2

        

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑘𝑖𝑚𝑖
𝑖𝑛𝑘𝑗𝑚𝑗

𝑖𝑛𝑘𝑘𝑚𝑘
𝑖𝑛]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

= ∑𝑘𝑖𝑚𝑖
𝑒𝑥

𝑟

𝑖=2

+ ∑∑[
(𝐵𝑖𝑖 + 𝐵𝑗𝑗)

2
𝑘𝑖𝑚𝑖

𝑒𝑥𝑘𝑗𝑚𝑗
𝑒𝑥]

𝑟

𝑗=2

𝑟

𝑖=2

        

+ ∑∑ ∑ [(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑘𝑘𝑘)
1/3

𝑘𝑖𝑚𝑖
𝑒𝑥𝑘𝑗𝑚𝑗

𝑒𝑥𝑘𝑘𝑚𝑘
𝑒𝑥]

𝑟

𝑘=2

𝑟

𝑗=2

𝑟

𝑖=2

 

4.11 

2 (one 

instance 

required 

for each 

permeating 

solute) 

ln(𝑀1𝑚𝑝
𝑖𝑛) + ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑝)𝑘𝑖𝑚𝑖

𝑖𝑛]

𝑟

𝑖=2

+
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑝𝑝)

1/3
𝑘𝑖(𝐵𝑖𝑖 + 𝐵𝑝𝑝)𝑘𝑖𝑚𝑖

𝑖𝑛𝑘𝑗𝑚𝑗
𝑖𝑛]

𝑟

𝑗=2

𝑟

𝑖=2

= ln(𝑀1𝑚𝑝
𝑒𝑥) + ∑[(𝐵𝑖𝑖 + 𝐵𝑝𝑝)𝑘𝑖𝑚𝑖

𝑒𝑥]

𝑟

𝑖=2

+
3

2
∑∑[(𝐶𝑖𝑖𝑖𝐶𝑗𝑗𝑗𝐶𝑝𝑝𝑝)

1/3
𝑘𝑖(𝐵𝑖𝑖 + 𝐵𝑝𝑝)𝑘𝑖𝑚𝑖

𝑒𝑥𝑘𝑗𝑚𝑗
𝑒𝑥]

𝑟

𝑗=2

𝑟

𝑖=2

 

4.12 

3 (one 

instance 

required 

for each 

permeating 

solute 

which 

exhibits 

near-ideal 

volumetric 

behaviour) 

𝑚𝑝
𝑖𝑛𝑀𝑝𝜌1 (

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 −

∑𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 ) = 𝜌𝑝

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜  4.7 

4 (always 

required 

once) 

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝑚𝑜

𝑚𝑖𝑛
+

∑𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 + 𝑏 4.10 
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Table 4.3. Overview of specific model of equilibrium cell volume used in this work. 

Condition 

Number 
Equation 

Equation 

Number 

1 

𝑚𝑝
𝑖𝑛 + 𝑚𝑔

𝑖𝑛 + 𝐵𝑝𝑝(𝑚𝑝
𝑖𝑛)

2
+ 𝐵𝑔𝑔(𝑚𝑔

𝑖𝑛)
2
+ (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑝

𝑖𝑛𝑚𝑔
𝑖𝑛

+ 𝐶𝑝𝑝𝑝(𝑚𝑝
𝑖𝑛)

3
+ 3(𝐶𝑝𝑝𝑝

2𝐶𝑔𝑔𝑔)
1/3

(𝑚𝑝
𝑖𝑛)

2
𝑚𝑔

𝑖𝑛

+ 3(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔
2)

1/3
𝑚𝑝

𝑖𝑛(𝑚𝑔
𝑖𝑛)

2
+ 𝐶𝑔𝑔𝑔(𝑚𝑔

𝑖𝑛)
3

= 𝑚𝑝
𝑒𝑥 + 𝑘𝑁𝑚𝑁

𝑒𝑥 + 𝐵𝑝𝑝(𝑚𝑝
𝑒𝑥)

2
+ 𝐵𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)2

+ (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑚𝑝
𝑒𝑥𝑘𝑁𝑚𝑁

𝑒𝑥 + 𝐶𝑝𝑝𝑝(𝑚𝑝
𝑒𝑥)

3

+ 3(𝐶𝑝𝑝𝑝
2𝐶𝑁𝑁𝑁)

1/3
(𝑚𝑝

𝑒𝑥)
2
𝑘𝑁𝑚𝑁

𝑒𝑥

+ 3(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁
2)

1/3
𝑚𝑝

𝑒𝑥(𝑘𝑁𝑚𝑁
𝑒𝑥)2 + 𝐶𝑁𝑁𝑁(𝑘𝑁𝑚𝑁

𝑒𝑥)3 

4.19 

2 

ln(𝑀1𝑚𝑝
𝑖𝑛) + (𝐵𝑝𝑝 + 𝐵𝑔𝑔)𝑚𝑔

𝑖𝑛 +
3

2
(𝐶𝑝𝑝𝑝𝐶𝑔𝑔𝑔

2)
1/3

(𝑚𝑔
𝑖𝑛)

2

= ln(𝑀1𝑚𝑝
𝑒𝑥) + (𝐵𝑝𝑝 + 𝐵𝑁𝑁)𝑚𝑁

𝑒𝑥

+
3

2
(𝐶𝑝𝑝𝑝𝐶𝑁𝑁𝑁

2)
1/3

(𝑚𝑁
𝑒𝑥)2 

4.20 

3 𝑚𝑝
𝑖𝑛𝑀𝑝𝜌1 (

𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 − 𝑏 −

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 ) = 𝜌𝑝

𝑉𝑝
𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜  4.17 

4 
𝑉𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
𝑜 = (1 − 𝑏)

𝑚𝑔
𝑜

𝑚𝑔
𝑖𝑛

+
𝑉𝑝

𝑖𝑛

𝑉𝑐𝑒𝑙𝑙
𝑜 + 𝑏 4.18 

 

 

Table 4.4. Minimum, maximum, and resolution values over which to search for optimal values of 

𝑏, 𝐵𝑔𝑔, and 𝐶𝑔𝑔𝑔 which best fit the data. 

Fitting 

Parameter 
Minimum Maximum Resolution 

𝑏 0.20 0.80 0.01 

𝐵𝑔𝑔 0.0 [moles of grouped 

solute/kg water]–1 

10.0 [moles of grouped 

solute/kg water]–1 

0.1 [moles of grouped 

solute/kg water]–1 

𝐶𝑔𝑔𝑔 0.0 [moles of grouped 

solute/kg water]–2 

100.0 [moles of grouped 

solute/kg water]–2 

0.1 [moles of grouped 

solute/kg water]–2 
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Table 4.5. Parameters and unknowns for equilibrium cell volume model. 

System Parameters �⃑⃑� 

Symbol Parameter Value(s) and Units (if applicable) 

𝑏 Osmotically inactive fraction * 

𝐵𝑔𝑔 
Second osmotic virial coefficient of 

grouped intracellular solute 
*[moles of grouped solute/kg water]–1 

𝐶𝑔𝑔𝑔 
Third osmotic virial coefficient of 

grouped intracellular solute 
*[moles of grouped solute/kg water]–2 

𝐵𝑝𝑝 
Second osmotic virial coefficient of 

cryoprotectant (DMSO or EG) 

For DMSO: 0.108 [moles DMSO/kg 

water]–1 [154] 

For EG: 0.020 [moles of EG/kg 

water]–1 [154] 

𝐶𝑝𝑝𝑝 
Third osmotic virial coefficient of 

cryoprotectant (DMSO or EG) 

For DMSO: 0 [moles of DMSO/kg 

water]–2 [154] 

For EG: 0 [moles of EG/kg water]–2 

[154] 

𝑘𝑁 Dissociation constant of NaCl 1.678 [154] 

𝐵𝑁𝑁 
Second osmotic virial coefficient of 

NaCl 

0.044 [moles of NaCl/kg water]–1 

[154] 

𝐶𝑁𝑁𝑁 Third osmotic virial coefficient of NaCl 0 [moles of NaCl/kg water]–2 [154] 

𝜌1 Density of water (at 25 °C) 0.9970 × 10–15 kg/µm3 [119] 

𝑀1 Molar mass of water 0.018015 kg/mol [119] 

𝜌𝑝 Density of cryoprotectant 

For DMSO (at 25 °C): 1.1010 × 10–15 

kg/µm3 [120] 

For EG (at 20 °C): 1.1135 × 10–15 

kg/µm3 [120] 

𝑀𝑝 Molar mass of cryoprotectant 
For DMSO: 0.078133 kg/mol [120] 

For EG: 0.062068 kg/mol [120] 

𝑚𝑔
𝑜 

Intracellular molality of grouped solute 

under isotonic conditions 
†moles of grouped solute/kg water 

𝑚𝑝
𝑒𝑥 Extracellular molality of cryoprotectant 

0 to 3.0 moles of cryoprotectant/kg 

water as set by experimental condition 

𝑚𝑁
𝑒𝑥 Extracellular molality of NaCl 0.17 moles of NaCl/kg water 

System Unknowns �⃑⃑⃑� 

Symbol Unknown Units (if applicable) 

𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜  Relative equilibrium cell volume  

𝑚𝑔
𝑖𝑛 Intracellular molality of grouped solute moles of grouped solute/kg water 

𝑚𝑝
𝑖𝑛 Intracellular molality of cryoprotectant moles of cryoprotectant/kg water 

𝑉𝑝
𝑖𝑛/𝑉𝑐𝑒𝑙𝑙

𝑜  
Relative intracellular volume of 

cryoprotectant 
 

* Value set by overall numerical procedure (step B in Figure 4.9). 
† Calculated in advance for each set of values of 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 using Equation 4.31 (step D in 

Figure 4.9). 
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Table 4.6. Experimental measurements of relative equilibrium HUVEC volume (𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜 ), with 

corresponding standard deviation (SD), in solutions of only non-permeating solutes (data from 

Ross-Rodriguez et al. [118]). 

Solution Osmolality (osmol/kg) 𝑽𝒄𝒆𝒍𝒍/𝑽𝒄𝒆𝒍𝒍
𝒐  [± SD] 

0.29 1.00 

0.57 0.80 [±0.05] 

0.86 0.75 [±0.05] 

1.14 0.72 [±0.06] 

1.43 0.69 [±0.06] 

1.73 0.67 [±0.06] 

2.03 0.66 [±0.06] 

2.33 0.64 [±0.07] 

2.67 0.63 [±0.06] 

 

 

Table 4.7. Experimental measurements of relative equilibrium HUVEC volume (𝑉𝑐𝑒𝑙𝑙/𝑉𝑐𝑒𝑙𝑙
𝑜 ), with 

corresponding standard deviation (SD), in solutions containing DMSO or EG. 

Cryoprotectant 

Concentration (mole/kg) 

𝑽𝒄𝒆𝒍𝒍/𝑽𝒄𝒆𝒍𝒍
𝒐  [± SD] 

in DMSO 

𝑽𝒄𝒆𝒍𝒍/𝑽𝒄𝒆𝒍𝒍
𝒐  [± SD] 

in EG 

0.0 1.00 1.00 

0.5 0.93 [±0.06] 0.93 [±0.05] 

1.0 0.91 [±0.03] 0.89 [±0.06] 

1.5 0.87 [±0.07] 0.88 [±0.03] 

2.0 0.85 [±0.04] 0.86 [±0.03] 

2.5 0.83 [±0.05] 0.84 [±0.04] 

3.0 0.85 [±0.05] 0.85 [±0.04] 
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Table 4.8. HUVEC grouped intracellular solute osmotic virial coefficients and osmotically inactive 

fraction, along with corresponding confidence intervals (CIs) (Ross-Rodriguez et al. fit [118]) or 

error tolerance ranges (ETRs) (this work). NPS data refers to equilibrium cell volume 

measurements in solutions containing only non-permeating solutes. DMSO data refers to 

equilibrium cell volume measurements in solutions containing DMSO. EG data refers to 

equilibrium cell volume measurements in solutions containing EG. 

Second-Order Fit, Ross-Rodriguez et al. [118] 

Description 

of Fit 

𝒃 ±95% 

Confidence 

Interval 

𝑩𝒈𝒈 ±95% CI 

([moles of grouped solute/kg 

water]–1) 

𝑪𝒈𝒈𝒈  

([moles of grouped 

solute/kg water]–2) 

To NPS 

Data Alone 
0.524±0.010 2.4±1.9 0 

Second-Order Fits, This Work 

Description 

of Fit 
𝒃 [15% ETR] 

𝑩𝒈𝒈 [15% ETR] 

([moles of grouped solute/kg 

water]–1) 

𝑪𝒈𝒈𝒈 

([moles of grouped 

solute/kg water]–2) 

To NPS 

Data Alone 
0.52 [0.50, 0.55] 2.8 [1.0, 6.2] 0 

To NPS + 

DMSO Data 
0.53 [0.52, 0.55] 1.7 [1.6, 1.8] 0 

To NPS + 

EG Data 
0.54 [0.52, 0.55] 1.5 [1.4, 1.7] 0 

Third-Order Fits, This Work 

Description 

of Fit 
𝒃 [2.5% ETR] 

𝑩𝒈𝒈 [2.5% ETR] 

([moles of grouped solute/kg 

water]–1) 

𝑪𝒈𝒈𝒈 [2.5% ETR] 

([moles of grouped 

solute/kg water]–2) 

To NPS + 

DMSO Data 
0.42 [0.38, 0.45] 3.3 [2.7, 4.6] 23.9 [10.4, 79.2] 

To NPS + 

EG Data 
0.43 [0.38, 0.46] 2.7 [2.2, 4.0] 17.6 [7.2, 75.4] 

 

 

Table 4.9. TF-1 parameters used for kinetic modeling of osmotic response in the presence of 

DMSO. All values were measured by Ross-Rodriguez et al. at 11 °C (284 K) [117]. 

Symbol Parameter Value and Units 

𝑇 Absolute temperature 284 K 

𝑉𝑐𝑒𝑙𝑙
𝑜  Isotonic volume 916 µm3 

𝑏 Osmotically inactive fraction 0.368 

𝐿1 Hydraulic conductivity 0.17 μm/min/atm 

𝑃𝐷𝑀𝑆𝑂 DMSO permeability 6.00 μm/min 
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Figure 4.1. Photo locations on haemocytometer grid. 
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Figure 4.2. Image analysis procedure used to obtain cell cross-sectional area (and thus volume). 
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Figure 4.3. Procedure used to create calibration image for image analysis. 
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Figure 4.4. Representative example image depicting cell identification by the ImageJ macro used 

in this work. (a) Image input to macro. The red arrows denote an example of a cell “halo.” (b) 

Macro output. The yellow borders correspond to identified cell edges. The cells marked with 

orange arrows were identified as membrane-compromised. 
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Figure 4.5. Schematic representation of the general model of equilibrium cell volume. 
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Figure 4.6. Model predictions of relative equilibrium cell volume for a cell placed into solutions 

of varying osmolality containing only non-permeating solutes. (a) For a range of values of 𝑏 with 

𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 held constant at zero. (b) For a range of values of 𝐵𝑔𝑔 (all in units of [moles of 

grouped solute/kg water]–1) with 𝑏 and 𝐶𝑔𝑔𝑔 held constant at 0.4 and zero, respectively. 
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Figure 4.7. Model predictions of relative equilibrium cell volume for a cell placed into solutions 

containing a defined concentration of the permeating cryoprotectant DMSO. (a) For a range of 

values of 𝑏 with 𝐵𝑔𝑔 and 𝐶𝑔𝑔𝑔 held constant at zero. (b) For a range of values of 𝐵𝑔𝑔 (all in units 

of [moles of grouped solute/kg water]–1) with 𝑏 and 𝐶𝑔𝑔𝑔 held constant at 0.4 and zero, 

respectively. 
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Figure 4.8. Model predictions of relative equilibrium cell volume for a cell placed into solutions 

containing a defined concentration of the permeating cryoprotectant DMSO, over a range of values 

of both 𝐵𝑔𝑔 (all in units of [moles of grouped solute/kg water]–1) and 𝐶𝑔𝑔𝑔 (all in units of [moles 

of grouped solute/kg water]–2) with 𝑏 held constant at 0.4. 
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Figure 4.9. Overall fitting procedure used to obtain grouped intracellular solute osmotic virial 

coefficients from experimental measurements of equilibrium cell volume. 
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Figure 4.10. Adaptive initial guess algorithm. 
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Figure 4.11. Experimental measurements of equilibrium HUVEC volume. (a) In solutions of only 

non-permeating solutes (data provided by Lisa Ross-Rodriguez [unpublished], with majority of 

data published in Ross-Rodriguez et al. [118]). (b) In solutions containing DMSO or EG. The error 

bars represent the standard deviation of the volume measurements. 
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Figure 4.12. Second- and third-order non-ideal model fits to experimental equilibrium cell volume 

data (best-fit coefficient values in Table 4.8), along with model predictions of the data made using 
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the coefficient values obtained by Ross-Rodriguez et al. (𝑏 = 0.524 and 𝐵𝑔𝑔 = 2.4 [moles of 

grouped solute/kg water]–1) [118] and an ideal dilute solution model (𝑏 = 0.60). The green shaded 

areas represent the model predictions that fall within the 95% confidence intervals (CIs) of the 𝐵𝑔𝑔 

value measured by Ross-Rodriguez et al. [118]. The purple shaded areas represent the model 

predictions that fall within the 15% error tolerance ranges (ETRs) for 𝐵𝑔𝑔 measured in this work 

for a second-order fit. (a) For HUVEC in DMSO solutions. (b) For HUVEC in EG solutions. 
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Figure 4.13. Model predictions of kinetic osmotic response for TF-1 exposed to 2 molal DMSO 

for 10 minutes and then returned to an isotonic solution for another 10 minutes, over a range of 

values of 𝐵𝑔𝑔 (all in units of [moles of grouped solute/kg water]–1). (a) For 𝐶𝑔𝑔𝑔 = 0 [moles of 

grouped solute/kg water]–2. (b) For 𝐶𝑔𝑔𝑔 = 20 [moles of grouped solute/kg water]–2. (c) For 

𝐶𝑔𝑔𝑔 = 80 [moles of grouped solute/kg water]–2. 
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Chapter 5. General discussion and conclusions 

5.1. Summary of thesis 

 The current understanding of cellular cryoinjury and its prevention is still quite limited, as 

reflected in the relatively low number of cell types which can presently be successfully 

cryopreserved. Mathematical modeling offers a tool to help understand—and potentially predict—

the complex processes that occur during cryopreservation. As such, it is a valuable part of the 

development of cryopreservation protocols which successfully avoid cryoinjury. A major area of 

focus for cryopreservation modeling is the simulation of the cellular osmotic response, which at 

its core depends on thermodynamic solution theories to calculate chemical potentials. However, 

to provide accurate predictions of chemical potential during cryopreservation, a solution theory 

must be able to account for the non-ideality of a typical cryobiological solution. Moreover, given 

the wide variety of solutes and thus possible solutions that are relevant in cryobiology, any non-

ideal solution theory that is to be used in cryopreservation modeling should not be dependant on 

solution-specific thermodynamic parameters; rather, it should employ solute-specific parameters 

which can be experimentally measured once for that solute and then used in modeling any solution 

where that solute may be present. The primary focus of this thesis—the Elliott et al. form of the 

multi-solute osmotic virial equation—satisfies both of these conditions: it is a non-ideal solution 

theory that employs solute-specific osmotic virial coefficients to account for non-ideality. 

However, while this solution theory had been demonstrated to provide accurate predictions of 

chemical potential in cryobiologically-relevant solutions [24,105,106], there were at least two 

aspects of the model which required further work. First, the existing third-order molality-based 

water chemical potential equation had no corresponding thermodynamically consistent solute 

chemical potential equation, a requirement for modeling the osmotic response where permeating 
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cryoprotectants are present. Second, although the model could be used with a grouped intracellular 

solute approach in order to deal with the problem of unknown cytoplasm composition [118], it had 

never been shown that the use of this modeling approach did not affect model predictions of 

chemical potential—i.e., that it was theoretically valid. Moreover, the existing method for 

measuring the osmotic virial coefficients of a grouped intracellular solute yielded results with low 

precision [118], which—in turn—could lead to highly imprecise predictions of cellular osmotic 

response. The overall goal of this thesis was to further develop the Elliott et al. model in order to 

address these issues and to incorporate the updated model into models of cellular osmotic response 

in order to advance understanding of cell behaviour during cryopreservation. 

 The first contribution of this thesis was a comprehensive comparison of the performance 

of the Elliott et al. form of the multi-solute osmotic virial equation (both molality- and mole 

fraction-based), the Kleinhans and Mazur freezing point summation model (another non-ideal 

solution theory that uses solute-specific parameters), and three forms of ideal dilute models. To 

perform this comparison, solute-specific thermodynamic coefficients were first obtained for the 

two non-ideal solution theories by curve-fitting to a single, consistent set of literature binary 

solution data. Then, the three types of models—incorporating the corresponding solute-specific 

coefficients as necessary—were used to predict water chemical potentials in a variety of 

cryobiologically-relevant multi-solute solutions for which experimental data were available in the 

literature. The model predictions were then compared to the experimental measurements in order 

to assess the accuracy of each model. The results of the comparison clearly indicated that the non-

ideal solution theories provided similar prediction accuracy overall, and that both were 

considerably more accurate than the ideal model. Although this work was not directly related to 

the two issues described above, it provides general justification for the use of the Elliott et al. 
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model in cryobiological solution modeling (especially over an ideal dilute approach), and, 

furthermore, the coefficients obtained as part of the analysis were later also required when fitting 

for grouped intracellular solute osmotic virial coefficients (part of the second issue described 

above). 

 The second contribution of this thesis was the derivation of a novel solute chemical 

potential equation that is thermodynamically consistent with the existing third-order molality-

based water chemical potential equation of the Elliott et al. model. Together, the solute and water 

chemical potential equations form a complete non-ideal molality-based solution theory that can be 

used to calculate all of the chemical potentials required to model the cellular osmotic response 

during cryopreservation. 

 The third contribution of this thesis was a thermodynamic proof that applied the now 

complete molality-based form of the Elliott et al. model to conclusively show that a grouped 

intracellular solute model of the cytoplasm can be used with this solution theory without affecting 

predictions of chemical potential—i.e., this modeling approach is mathematically equivalent to 

treating the cytoplasm as if the concentrations of all non-permeating solutes inside the cell are 

known. This outcome means that non-ideal solution behaviour can be modeled inside of a cell 

using the molality-based Elliott et al. form of the multi-solute osmotic virial equation even where 

the cell’s cytoplasmic composition is unknown without making any assumptions about the 

intracellular contents or sacrificing prediction accuracy in any way. 

 The final contribution of this thesis was the development of a novel technique for 

measuring grouped intracellular solute osmotic virial coefficients for the molality-based form of 

the Elliott et al. model with considerably greater precision that the previously-existing technique. 

This new method combines the updated thermodynamic theory developed in this work and a 
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mathematical model of equilibrium cell volume with experimental measurements of equilibrium 

cell volume in solutions containing only non-permeating solutes and in solutions containing a 

permeating solute. By fitting the theoretical model to the experimental measurements, one can 

obtain a set of cell-specific parameters—namely, osmotically inactive fraction and up to third order 

grouped intracellular solute osmotic virial coefficients—that completely characterize the non-ideal 

thermodynamic solution behaviour of the cell cytoplasm. As a practical demonstration of the new 

method, it was also employed to measure these parameters for human umbilical vein endothelial 

cells. 

 

5.2. Implications of thesis 

 This thesis presents a complete solution thermodynamic model for cellular 

cryopreservation that can account for the non-ideality of cryobiological solutions and the generally 

unknown composition of the cell cytoplasm. It also provides methods for obtaining all of the 

thermodynamic coefficients required to apply the model in practice, along with the values of these 

coefficients for several cryobiologically-relevant solutes and for a cell type often used in 

cryopreservation studies: human umbilical vein endothelial cells [74,79,107,111,112,118,121, 

135,148]. Overall, these contributions will allow for more accurate predictions of chemical 

potential in cryobiological solutions, both inside and outside the cell. 

 These advancements in cryobiological solution thermodynamics will in turn enable more 

accurate models of cellular osmotic behaviour, thus providing improved research tools for 

investigating the biophysical processes that occur during cryopreservation and, correspondingly, 

contributing towards the development of cryopreservation protocols that successfully minimize 

cryoinjury. For example, the thermodynamic model developed in this work can be integrated into 
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mathematical approaches for optimizing cryoprotectant addition and removal, such as the 

approach used by Davidson et al. for cells in suspension [12,13]. In their work, Davidson et al. 

combine models of cellular osmotic transport and cryoprotectant toxicity kinetics to design cell-

specific cryoprotectant equilibration protocols that avoid excessive cell volume excursions while 

minimizing cell damage arising from cryoprotectant toxicity (the former occurs where the 

cryoprotectant is added/removed too quickly, whereas the latter increases with cryoprotectant 

exposure time and concentration) [12,13]. However, their approach employs an ideal dilute 

solution model to calculate the required chemical potentials, even up to very high solute 

concentrations (i.e., those required for vitrification). As such, its effectiveness would likely be 

improved by replacing the ideal dilute assumption with a non-ideal thermodynamic model such as 

the one developed herein. 

 The thermodynamic model developed in this thesis can also be used to improve predictions 

of ice nucleation and growth inside of cells during cryopreservation. For example, the models of 

intracellular ice formation developed by Toner et al. [137] and Karlsson et al. [59–61] depend on 

instantaneous calculations of chemical potential inside and outside of the cell in order to keep track 

of intracellular water volume. However, these models assume an ideal dilute cytoplasm [59–

61,137], despite modelling conditions—i.e., low subfreezing temperatures—under which the 

cytoplasm may be quite concentrated, even at high cooling rates. Thus, these models would likely 

benefit from being able to instead calculate non-ideal chemical potentials inside the cell, as the 

contributions of this work allow. 

 Finally, while this work is predominantly focused on cellular cryopreservation, much of it 

is also applicable to larger and more complex biological materials such as tissues. The modeling 

of water and cryoprotectant transport in tissues during cryopreservation depends on the calculation 
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of chemical potentials just as it does for cells [1,2,26,56,94], and the solutions involved in tissue 

cryopreservation are generally no more ideal or dilute than those used in cellular cryopreservation. 

As such, the complete molality-based Elliott et al. form of the multi-solute osmotic virial equation 

offers the same benefits for models of tissue cryopreservation as it does for those of cellular 

cryopreservation. Furthermore, some models of tissue cryopreservation seek to predict not only 

transport throughout the bulk tissue, but also into and out of the individual cells comprising it 

[2,94]—for these models, all of the work in this thesis is relevant. 

 

5.3. Limitations of thesis 

 Although this work provides a complete thermodynamic solution model for cellular 

cryopreservation, more information is required in order to accurately predict the cellular kinetic 

osmotic response, which reflects the actual time-dependent behaviour of a cell during 

cryopreservation. Specifically, kinetic modeling requires cell-specific permeability coefficients, 

which can only be obtained from experimental measurements of cell volume during the kinetic 

osmotic response. 

 It is important to note that the grouped intracellular solute approach, which was shown in 

Chapter 3 to be theoretically valid when used with the molality-based Elliott et al. form of the 

multi-solute osmotic virial equation, may not be likewise valid for other solution theories—i.e., 

the proof in Chapter 3 is limited to that particular solution theory only. The appropriateness of 

using a grouped intracellular solute modeling approach for the cytoplasm with any other solution 

theory will have to be independently evaluated using a similar line of reasoning as that presented 

in Chapter 3. 
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5.4. Conclusions 

 Mathematical modeling is an important tool in the development of successful 

cryopreservation protocols. It helps us to understand—and allows us to predict—the processes that 

occur in cells (and tissues) during cryopreservation. Models of solution thermodynamics—i.e., 

solution theories—lie at the core of most cryopreservation models. As such, it is essential that 

these models provide accurate predictions of chemical potential: any inaccuracies at this level will 

propagate to the higher-level models that simulate processes such as the osmotic response. 

 The insight gained in this thesis advances our ability to accurately model thermodynamic 

solution behaviour in cryobiologically-relevant solutions, including the cell cytoplasm. These 

advancements can be used to help propose and validate novel and superior cryopreservation 

protocols for cells and tissues. 

  



158 

 

References 

[1] A. Abazari, J.A.W. Elliott, G.K. Law, L.E. McGann, N.M. Jomha, A biomechanical 

triphasic approach to the transport of nondilute solutions in articular cartilage, Biophys. J. 

97 (2009) 3054–3064. 

[2] A. Abazari, R.B. Thompson, J.A.W. Elliott, L.E. McGann, Transport phenomena in 

articular cartilage cryopreservation as predicted by the modified triphasic model and the 

effect of natural inhomogeneities, Biophys. J. 102 (2012) 1284–1293. 

[3] W. Afzal, A.H. Mohammadi, D. Richon, Volumetric properties of mono-, Di-, Tri-, and 

polyethylene glycol aqueous solutions from (273.15 to 363.15) K: Experimental 

measurements and correlations, J. Chem. Eng. Data. 54 (2009) 1254–1261. 

[4] J.D. Benson, Stability analysis of several non-dilute multiple solute transport equations, J. 

Math. Chem. 49 (2011) 859–869. 

[5] J.D. Benson, A. Bagchi, X. Han, J.K. Critser, E.J. Woods, Melting point equations for the 

ternary system water/sodium chloride/ethylene glycol revisited, Cryobiology. 61 (2010) 

352–356. 

[6] P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical 

Sciences, McGraw-Hill, New York, NY, 2003. 

[7] A.W. Bosse, J.F. Douglas, The osmotic virial formulation of the free energy of polymer 

mixing, J. Chem. Phys. 143 (2015) 104903. 

[8] P. Boutron, A. Kaufmann, Stability of the amorphous state in the system water-glycerol-

dimethylsulfoxide, Cryobiology. 15 (1978) 93–108. 

[9] D. Castagne, M. Fillet, L. Delattre, B. Evrard, B. Nusgens, G. Piel, Study of the 

cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with 



159 

 

their effects on endothelial cell viability and on membrane models, J. Incl. Phenom. 

Macrocycl. Chem. 63 (2009) 225–231. 

[10] Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 2nd ed., 

McGraw-Hill, 1994. 

[11] J. Cheng, M. Gier, L.U. Ross-Rodriguez, V. Prasad, J.A.W. Elliott, A. Sputtek, Osmotic 

virial coefficients of hydroxyethyl starch from aqueous hydroxyethyl starch-sodium 

chloride vapor pressure osmometry, J. Phys. Chem. B. 117 (2013) 10231–10240. 

[12] A.F. Davidson, J.D. Benson, A.Z. Higgins, Mathematically optimized cryoprotectant 

equilibration procedures for cryopreservation of human oocytes., Theor. Biol. Med. 

Model. 11 (2014) 13. 

[13] A.F. Davidson, C. Glasscock, D.R. McClanahan, J.D. Benson, A.Z. Higgins, Toxicity 

Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial 

Cells, PLoS One. 10 (2015) 1–22. 

[14] R. V Devireddy, Predicted permeability parameters of human ovarian tissue cells to 

various cryoprotectants and water, Mol. Reprod. Dev. 70 (2005) 333–343. 

[15] R. V Devireddy, P.R. Barratt, K.B. Storey, J.C. Bischof, Liver Freezing Response of the 

Freeze-Tolerant Wood Frog, Rana sylvatica, in the Presence and Absence of Glucose, 

Cryobiology. 38 (1999) 327–338. 

[16] R. V Devireddy, D.J. Swanlund, K.P. Roberts, J.C. Bischof, Subzero Water Permeability 

Parameters of Mouse Spermatozoa in the Presence of Extracellular Ice and Cryoprotective 

Agents, Biol. Reprod. 61 (1999) 764–775. 

[17] D.A.T. Dick, Physical Bases of Circulatory Transport: Regulation and Exchange, W.B. 

Saunders Company, Philadelphia, PA, 1967. 



160 

 

[18] F. Döbert, A. Pfennig, M. Stumpf, Derivation of the consistent osmotic virial equation and 

its application to aqueous poly(ethylene glycol)-dextran two-phase systems, 

Macromolecules. 28 (1995) 7860–7868. 

[19] S.L. Ebertz, L.E. McGann, Osmotic parameters of cells from a bioengineered human 

corneal equivalent and consequences for cryopreservation, Cryobiology. 45 (2002) 109–

117. 

[20] S.L. Ebertz, L.E. McGann, Cryoprotectant permeability parameters for cells used in a 

bioengineered human corneal equivalent and applications for cryopreservation, 

Cryobiology. 49 (2004) 169–180. 

[21] E. Edmond, A.G. Ogston, An approach to the study of phase separation in ternary aqueous 

systems., Biochem. J. 109 (1968) 569–576. 

[22] J.G. Eisenhauer, Regression through the origin, Teach. Stat. 25 (2003) 76–80. 

[23] J.A.W. Elliott, H.Y. Elmoazzen, L.E. McGann, Method whereby onsager coefficients may 

be evaluated, J. Chem. Phys. 113 (2000) 6573–6578. 

[24] J.A.W. Elliott, R.C. Prickett, H.Y. Elmoazzen, K.R. Porter, L.E. McGann, A multisolute 

osmotic virial equation for solutions of interest in biology, J. Phys. Chem. B. 111 (2007) 

1775–1785. 

[25] H.Y. Elmoazzen, Osmotic Transport in Cryobiology, PhD Thesis, University of Alberta, 

2006. 

[26] H.Y. Elmoazzen, J.A.W. Elliott, L.E. McGann, Cryoprotectant equilibration in tissues, 

Cryobiology. 51 (2005) 85–91. 

[27] H.Y. Elmoazzen, J.A.W. Elliott, L.E. McGann, Osmotic transport across cell membranes 

in nondilute solutions: A new nondilute solute transport equation, Biophys. J. 96 (2009) 



161 

 

2559–2571. 

[28] H.Y. Elmoazzen, A. Poovadan, G.K. Law, J.A.W. Elliott, L.E. McGann, N.M. Jomha, 

Dimethyl sulfoxide toxicity kinetics in intact articular cartilage, Cell Tissue Bank. 8 

(2007) 125–133. 

[29] F. Eslami, J.A.W. Elliott, Design of microdrop concentrating processes, J. Phys. Chem. B. 

117 (2013) 2205–2214. 

[30] F. Eslami, J.A.W. Elliott, Role of precipitating solute curvature on microdrops and 

nanodrops during concentrating processes: The nonideal Ostwald-Freundlich equation, J. 

Phys. Chem. B. 118 (2014) 14675–14686. 

[31] F. Eslami, J.A.W. Elliott, Stability analysis of microdrops during concentrating processes., 

J. Phys. Chem. B. 118 (2014) 3630–3641. 

[32] G.M. Fahy, Analysis of “solution effects” injury. Equations for calculating phase diagram 

information for the ternary systems NaCl-dimethylsulfoxide-water and NaCl-glycerol-

water, Biophys. J. 32 (1980) 837–850. 

[33] G.M. Fahy, The relevance of cryoprotectant “toxicity” to cryobiology, Cryobiology. 23 

(1986) 1–13. 

[34] G.M. Fahy, Cryoprotectant toxicity neutralization, Cryobiology. 60 (2010) S45–S53. 

[35] G.M. Fahy, B. Wowk, J. Wu, J. Phan, C. Rasch, A. Chang, E. Zendejas, Cryopreservation 

of organs by vitrification: perspectives and recent advances, Cryobiology. 48 (2004) 157–

178. 

[36] J. Farrant, S.C. Knight, L.E. McGann, J. O’Brien, Optimal recovery of lymphocytes and 

tissue culture cells following rapid cooling, Nature. 249 (1974) 452–453. 

[37] J. Farrant, C.A. Walter, H. Lee, L.E. McGann, Use of two-step cooling procedures to 



162 

 

examine factors influencing cell survival following freezing and thawing, Cryobiology. 14 

(1977) 273–286. 

[38] D.Y. Gao, Q. Chang, C. Liu, K. Farris, K. Harvey, L.E. McGann, D. English, J. Jansen, 

J.K. Critser, Fundamental cryobiology of human hematopoietic progenitor cells I: 

Osmotic characteristics and volume distribution, Cryobiology. 36 (1998) 40–48. 

[39] D.Y. Gao, J. Liu, C. Liu, L.E. McGann, P.F. Watson, F.W. Kleinhans, P. Mazur, E.S. 

Critser, J.K. Critser, Prevention of osmotic injury to human spermatozoa during addition 

and removal of glycerol, Hum. Reprod. 10 (1995) 1109–1122. 

[40] D.R. Gaskel, Phase Equilibrium in a One-Component System, in: Introd. to Thermodyn. 

Mater., 5th ed., New York, NY, 2008: pp. 149–176. 

[41] D.R. Gaskel, The Behaviour of Solutions, in: Introd. to Thermodyn. Mater., 5th ed., 

Taylor & Francis Group, LLC, New York, New York, 2008: pp. 211–261. 

[42] J. Gaube, A. Pfennig, M. Stumpf, Thermodynamics of Aqueous Poly(Ethylene Glycol)-

Dextran Two-Phase Systems Using the Consistent Osmotic Virial Equation, Fluid Phase 

Equilib. 83 (1993) 365–373. 

[43] F.W. Gayle, F.H. Cocks, M.L. Shepard, H2O-NaCl-Sucrose Phase Diagram and 

Applications in Cryobiology, J. Appl. Chem. Biotechnol. 27 (1977) 599–607. 

[44] C.A. Glasbey, G.W. Horgan, Segmentation, in: Image Anal. Biol. Sci., Wiley, 1995: p. 93. 

[45] H.A. Gordon, Errors in computer packages. Least-squares regression through the origin, 

Statistician. 30 (1981) 23–29. 

[46] E.A. Guggenheim, Mixtures: the theory of the equilibrium properties of some simple 

classes of mixtures, solutions and alloys, Clarendon Press, Oxford, UK, 1952. 

[47] X. Han, Y. Liu, J.K. Critser, Determination of the quaternary phase diagram of the water–



163 

 

ethylene glycol–sucrose–NaCl system and a comparison between two theoretical methods 

for synthetic phase diagrams, Cryobiology. 61 (2010) 52–57. 

[48] H. Hasse, H.-P. Kany, R. Tintinger, G. Maurer, Osmotic virial coefficients of aqueous 

poly(ethylene glycol) from laser-light scattering and isopiestic measurements, 

Macromolecules. 28 (1995) 3540–3552. 

[49] J.R. Hauser, Solving Sets of Equations: Linear and Nonlinear, in: Numer. Methods 

Nonlinear Eng. Model., Springer, 2009: pp. 87–93. 

[50] C.A. Haynes, R.A. Beynon, R.S. King, H.W. Blanch, J.M. Prausnitz, Thermodynamic 

properties of aqueous polymer solutions: poly(ethylene glycol)/dextran, J. Phys. Chem. 93 

(1989) 5612–5617. 

[51] W.H. Hildebrandt, Low temperature quantitative phase equilibria and glass formation in 

the water-sodium chloride-dimethyl sulfoxide system, PhD Thesis, Duke University, 

1975. 

[52] C.J. Hunt, S.E. Armitage, D.E. Pegg, Cryopreservation of umbilical cord blood: 1. 

Osmotically inactive volume, hydraulic conductivity and permeability of CD34+ cells to 

dimethyl sulphoxide, Cryobiology. 46 (2003) 61–75. 

[53] M.H. Jacobs, The simultaneous measurement of cell permeability to water and to 

dissolved substances, J. Cell. Comp. Physiol. 2 (1933) 427–444. 

[54] M.H. Jacobs, D.R. Stewart, A simple method for the quantitative measurement of cell 

permeability, J. Cell. Comp. Physiol. 1 (1932) 71–82. 

[55] J.A. Johnson, T.A. Wilson, Osmotic volume changes induced by a permeable solute, J. 

Theor. Biol. 17 (1967) 304–311. 

[56] N.M. Jomha, J.A.W. Elliott, G.K. Law, B. Maghdoori, J. Fraser Forbes, A. Abazari, A.B. 



164 

 

Adesida, L. Laouar, X. Zhou, L.E. McGann, Vitrification of intact human articular 

cartilage, Biomaterials. 33 (2012) 6061–6068. 

[57] H.-P. Kany, H. Hasse, G. Maurer, Thermodynamic properties of aqueous dextran 

solutions from laser-light-scattering, membrane osmometry, and isopiestic measurements, 

J. Chem. Eng. Data. 44 (1999) 230–242. 

[58] H.-P. Kany, H. Hasse, G. Maurer, Thermodynamic properties of aqueous 

poly(vinylpyrrolidone) solutions from laser-light-scattering, membrane osmometry, and 

isopiestic measurements, J. Chem. Eng. Data. 48 (2003) 689–698. 

[59] J.O. Karlsson, E.G. Cravalho, I.H. Borel Rinkes, R.G. Tompkins, M.L. Yarmush, M. 

Toner, Nucleation and growth of ice crystals inside cultured hepatocytes during freezing 

in the presence of dimethyl sulfoxide., Biophys. J. 65 (1993) 2524–36. 

[60] J.O.M. Karlsson, E.G. Cravalho, M. Toner, A model of diffusion-limited ice growth inside 

biological cells during freezing, J. Appl. Phys. 75 (1994) 4442–4455. 

[61] J.O.M. Karlsson, A. Eroglu, T.L. Toth, E.G. Cravalho, M. Toner, Fertilization and 

development of mouse oocytes cryopreserved using a theoretically optimized protocol, 

Hum. Reprod. 11 (1996) 1296–1305. 

[62] J.O.M. Karlsson, E.A. Szurek, A.Z. Higgins, S.R. Lee, A. Eroglu, Optimization of 

cryoprotectant loading into murine and human oocytes., Cryobiology. 68 (2014) 18–28. 

[63] J.O.M. Karlsson, M. Toner, Long-term storage of tissues by cryopreservation: Critical 

issues, Biomaterials. 17 (1996) 243–256. 

[64] J.O.M. Karlsson, A.I. Younis, A.W.S. Chan, K.G. Gould, A. Eroglu, Permeability of the 

rhesus monkey oocyte membrane to water and common cryoprotectants, Mol. Reprod. 

Dev. 76 (2009) 321–333. 



165 

 

[65] I.I. Katkov, A two-parameter model of cell membrane permeability for multisolute 

systems, Cryobiology. 40 (2000) 64–83. 

[66] O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological 

membranes to non-electrolytes, Biochim. Biophys. Acta. 27 (1958) 229–246. 

[67] R.S. King, H.W. Blanch, J.M. Prausnitz, Molecular thermodynamics of aqueous two-

phase systems for bioseparations, AIChE J. 34 (1988) 1585–1594. 

[68] F.W. Kleinhans, Membrane permeability modeling: Kedem-Katchalsky vs a two-

parameter formalism, Cryobiology. 37 (1998) 271–289. 

[69] F.W. Kleinhans, P. Mazur, Comparison of actual vs. synthesized ternary phase diagrams 

for solutes of cryobiological interest, Cryobiology. 54 (2007) 212–222. 

[70] J.M. Knox, G.S. Schwartz, K.R. Diller, Volumetric changes in cells during freezing and 

thawing, J. Biomech. Eng. 102 (1980) 91–97. 

[71] M.H. Kutner, C.J. Nachtsheim, J. Neter, Applied Linear Regression Models, McGraw-Hill 

Irwin, New York, NY, 2004. 

[72] T.O. Kvalseth, Cautionary Note about R2, Am. Stat. 39 (1985) 279–285. 

[73] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Volume 5: Statistical Physics, 

Pergamon Press, Oxford, UK, 1980. 

[74] K. Lehle, M. Hoenicka, V.R. Jacobs, F.X. Schmid, D.E. Birnbaum, Cryopreservation of 

human endothelial cells for vascular tissue engineering, Cryobiology. 50 (2005) 154–161. 

[75] R.L. Levin, E.G. Cravalho, C.E. Huggins, Effect of solution non ideality on erythrocyte 

volume regulation, Biochim. Biophys. Acta. 465 (1977) 179–190. 

[76] J.A. MacNeil, G.B. Ray, D.G. Leaist, Activity coefficients and free energies of nonionic 

mixed surfactant solutions from vapor-pressure and freezing-point osmometry, J. Phys. 



166 

 

Chem. B. 115 (2011) 5947–5957. 

[77] J.A. MacNeil, G.B. Ray, P. Sharma, D.G. Leaist, Activity coefficients of aqueous mixed 

ionic surfactant solutions from osmometry, J. Solution Chem. 43 (2014) 93–108. 

[78] S.A. Markarian, A.M. Asatryan, A.L. Zatikyan, Volumetric properties of aqueous 

solutions of diethylsulfoxide at temperatures from 298.15 K to 343.15 K, J. Chem. 

Thermodyn. 37 (2005) 768–777. 

[79] L.A. Marquez-Curtis, A.B. Sultani, L.E. McGann, J.A.W. Elliott, Beyond membrane 

integrity: assessing the functionality of human umbilical vein endothelial cells after 

cryopreservation, Cryobiology. 72 (2016) 183–190. 

[80] F.H. Martini, The Cellular Level of Organization, in: Fundam. Anat. Physiol., 7th ed., 

Benjamin Cummings, San Francisco, CA, 2006: pp. 62–105. 

[81] P. Mazur, Kinetics of water loss from cells at subzero temperatures and the likelihood of 

intracellular freezing, J. Gen. Physiol. 47 (1963) 347–369. 

[82] P. Mazur, Freezing of living cells: Mechanisms and implications, Am. J. Physiol. - Cell 

Physiol. 16 (1984) C125–C142. 

[83] P. Mazur, S.P. Leibo, E.H.Y. Chu, A two-factor hypothesis of freezing injury. Evidence 

from Chinese hamster tissue-culture cells, Exp. Cell Res. 71 (1972) 345–355. 

[84] P. Mazur, R.H. Miller, Permeability of the human erythrocyte to glycerol in 1 and 2 M 

solutions at 0 or 20°C1, Cryobiology. 13 (1976) 507–522. 

[85] L.E. McGann, Differing actions of penetrating and nonpenetrating cryoprotective agents, 

Cryobiology. 15 (1978) 382–390. 

[86] L.E. McGann, J. Farrant, Survival of tissue culture cells frozen by a two-step procedure to 

–196°C. I. Holding temperature and time, Cryobiology. 13 (1976) 261–268. 



167 

 

[87] W.G. McMillan Jr., J.E. Mayer, The statistical thermodynamics of multicomponent 

systems, J. Chem. Phys. 13 (1945) 276–305. 

[88] P.M. Mehl, Nucleation and crystal growth in a vitrification solution tested for organ 

cryopreservation by vitrification, Cryobiology. 30 (1993) 509–518. 

[89] A. Melinder, Thermophysical properties of aqueous solutions used as secondary working 

fluids, Kungliga Tekniska Hogskolan (Sweden), 2007. 

[90] H.T. Meryman, Cryoprotective agents, Cryobiology. 8 (1971) 173–183. 

[91] H.T. Meryman, Freezing injury and its prevention in living cells., Annu. Rev. Biophys. 

Bioeng. 3 (1974) 341–363. 

[92] D.P. Miller, J.J. de Pablo, H. Corti, Thermophysical properties of trehalose and its 

concentrated aqueous solutions, Pharm. Res. 14 (1997) 578–590. 

[93] D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers, 4th ed., 

John Wiley & Sons, Inc., Hoboken, NJ, 2007. 

[94] I.N. Mukherjee, Y. Li, Y.C. Song, R.C. Long Jr., A. Sambanis, Cryoprotectant transport 

through articular cartilage for long-term storage: experimental and modeling studies, 

Osteoarthr. Cartil. 16 (2008) 1379–1386. 

[95] K. Muldrew, J.P. Acker, J.A.W. Elliott, L.E. McGann, The Water to Ice Transition: 

Implications for Living Cells, in: B.J. Fuller, N. Lane, E.E. Benson (Eds.), Life Frozen 

State, CRC Press, Boca Raton, Florida, 2004: p. 67. 

[96] D.E. Pegg, Simple equations for obtaining melting points and eutectic temperatures for the 

ternary system glycerol/sodium chloride/water, Cryo-Letters. 4 (1983) 259–268. 

[97] D.E. Pegg, Equations for obtaining melting points and eutectic temperatures for the 

ternary system dimethylsulfoxide/sodium chloride/water, Cryo-Letters. 7 (1986) 387–394. 



168 

 

[98] D.E. Pegg, The preservation of tissues for transplantation, Cell Tissue Bank. 7 (2006) 

349–358. 

[99] D.E. Pegg, The relevance of ice crystal formation for the cryopreservation of tissues and 

organs., Cryobiology. 60 (2010) S36-44. 

[100] D.E. Pegg, F.G. Arnaud, Equations for obtaining melting points in the quaternary system 

propane-1,2-diol/glycerol/sodium chloride/water, Cryo-Letters. 9 (1988) 404–417. 

[101] C. Polge, A.U. Smith, A.S. Parkes, Revival of spermatozoa after vitrification and 

dehydration at low temperatures [12], Nature. 164 (1949) 666. 

[102] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of 

Fluid-Phase Equilibria, 3rd ed., Prentice Hall PTR, Upper Saddle River, New Jersey, 

1999. 

[103] R.C. Prickett, The application of the multisolute osmotic virial equation to cryobiology, 

PhD Thesis, University of Alberta (Canada), 2010. 

[104] R.C. Prickett, J.A.W. Elliott, S. Hakda, L.E. McGann, A non-ideal replacement for the 

Boyle van’t Hoff equation, Cryobiology. 57 (2008) 130–136. 

[105] R.C. Prickett, J.A.W. Elliott, L.E. McGann, Application of the osmotic virial equation in 

cryobiology, Cryobiology. 60 (2010) 30–42. 

[106] R.C. Prickett, J.A.W. Elliott, L.E. McGann, Application of the multisolute osmotic virial 

equation to solutions containing electrolytes, J. Phys. Chem. B. 115 (2011) 14531–14543. 

[107] R.C. Prickett, L.A. Marquez-Curtis, J.A.W. Elliott, L.E. McGann, Effect of supercooling 

and cell volume on intracellular ice formation, Cryobiology. 70 (2015) 156–163. 

[108] V. Ragoonanan, A. Hubel, A. Aksan, Response of the cell membrane-cytoskeleton 

complex to osmotic and freeze/thaw stresses, Cryobiology. 61 (2010) 335–344. 



169 

 

[109] D.H. Rasmussen, A.P. Mackenzie, Phase diagram for system water-dimethylsulphoxide, 

Nature. 220 (1968) 1315–1317. 

[110] S.J. Rathbone, C.A. Haynes, H.W. Blanch, J.M. Prausnitz, Thermodynamic properties of 

dilute aqueous polymer solutions from low-angle laser-light-scattering measurements, 

Macromolecules. 23 (1990) 3944–3947. 

[111] A.J.F. Reardon, J.A.W. Elliott, L.E. McGann, Fluorescence as an alternative to light-

scatter gating strategies to identify frozen-thawed cells with flow cytometry, Cryobiology. 

69 (2014) 91–99. 

[112] A.J.F. Reardon, J.A.W. Elliott, L.E. McGann, Investigating membrane and mitochondrial 

cryobiological responses of HUVEC using interrupted cooling protocols, Cryobiology. 71 

(2015) 306–317. 

[113] S. Rosłoniec, Methods for Numerical Solution of Nonlinear Equations, in: Fundam. 

Numer. Methods Electr. Eng., Springer, 2008: pp. 49–68. 

[114] S. Rosłoniec, Methods for Numerical Integration of Ordinary Differential Equations, in: 

Fundam. Numer. Methods Electr. Eng., 2008: pp. 186–189. 

[115] L.U. Ross-Rodriguez, J.A.W. Elliott, L.E. McGann, Investigating cryoinjury using 

simulations and experiments. 1: TF-1 cells during two-step freezing (rapid cooling 

interrupted with a hold time), Cryobiology. 61 (2010) 38–45. 

[116] L.U. Ross-Rodriguez, J.A.W. Elliott, L.E. McGann, Investigating cryoinjury using 

simulations and experiments: 2. TF-1 cells during graded freezing (interrupted slow 

cooling without hold time), Cryobiology. 61 (2010) 46–51. 

[117] L.U. Ross-Rodriguez, J.A.W. Elliott, L.E. McGann, Characterization of cryobiological 

responses in TF-1 cells using interrupted freezing procedures, Cryobiology. 60 (2010) 



170 

 

106–116. 

[118] L.U. Ross-Rodriguez, J.A.W. Elliott, L.E. McGann, Non-ideal solution thermodynamics 

of cytoplasm, Biopreserv. Biobank. 10 (2012) 462–471. 

[119] J.R. Rumble, ed., Physical Constants of Inorganic Compounds, in: CRC Handb. Chem. 

Phys. (Internet Version), 99th ed., CRC Press/Taylor & Francis, Boca Raton, Florida, 

2018. 

[120] J.R. Rumble, ed., Physical Constants of Organic Compounds, in: CRC Handb. Chem. 

Phys. (Internet Version), 99th ed., CRC Press/Taylor & Francis, Boca Raton, Florida, 

2018. 

[121] A.T. Schafer, C. Körber, M.W. Scheiwe, G. Rau, P. Franke, C. Mittermayer, Preliminary 

investigation of osmotic properties and freezing behavior of human endothelial cells, 

Cryo-Letters. 7 (1986) 55–67. 

[122] M.W. Scheiwe, C. Körber, Basic investigations on the freezing of human lymphocytes., 

Cryobiology. 20 (1983) 257–73. 

[123] M.W. Scheiwe, C. Körber, Thermally Defined Cryomicroscopy and Thermodynamic 

Analysis in Lymphocyte Freezing, Cryobiology. 21 (1984) 93–105. 

[124] E.M. Schulson, The Structure and Mechanical Behavior of Ice, JOM. 51 (1999) 21–27. 

[125] G.J. Schwartz, K.R. Diller, Osmotic Response of Individual Cells during Freezing. II. 

Membrane Permeability Analysis, Cryobiology. 20 (1983) 542–552. 

[126] M. Shabana, J.J. McGrath, Cryomicroscope investigation and thermodynamic modeling of 

the freezing of unfertilized hamster ova, Cryobiology. 25 (1988) 338–354. 

[127] N. Shardt, K.K. Al-Abbasi, H. Yu, N.M. Jomha, L.E. McGann, J.A.W. Elliott, 

Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol, 



171 

 

Cryobiology. (2016). 

[128] M.L. Shepard, C.S. Goldston, F.H. Cocks, The H2O NaCl glycerol phase diagram and its 

application in cryobiology, Cryobiology. 13 (1976) 9–23. 

[129] Z. Shu, S.M. Hughes, C. Fang, J. Huang, B. Fu, G. Zhao, M. Fialkow, G. Lentz, F. Hladik, 

D. Gao, A study of the osmotic characteristics, water permeability, and cryoprotectant 

permeability of human vaginal immune cells., Cryobiology. 72 (2016) 93–99. 

[130] A.U. Smith, Prevention of hæmolysis during freezing and thawing of red blood cells, 

Orig. Publ. as Vol. 2, Issue 6644. 256 (1950) 910–911. 

[131] G. Stacey, Fundamental Issues for Cell-Line Banks in Biotechnology and Regulatory 

Affairs, in: B.J. Fuller, N. Lane, E.E. Benson (Eds.), Life Frozen State, CRC Press, Boca 

Raton, Florida, 2004: p. 437. 

[132] A.A. Steuter, A. Mozafar, J.R. Goodin, Water potential of aqueous polyethylene-glycol, 

Plant Physiol. 67 (1981) 64–67. 

[133] P.J. Stiff, A.R. Koester, M.K. Weidner, K. Dvorak, R.I. Fisher, Autologous bone marrow 

transplantation using unfractionated cells cryopreserved in dimethylsulfoxide and 

hydroxyethyl starch without controlled-rate freezing, Blood. 70 (1987) 974–978. 

[134] W. Strober, Appendix 3B - Trypan Blue Exclusion Test of Cell Viability, in: J.E. Coligan 

(Ed.), Curr. Protoc. Immunol., John Wiley & Sons, Inc., 1997. 

[135] A.B. Sultani, L.A. Marquez-Curtis, J.A.W. Elliott, L.E. McGann, Improved 

Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach, 

Sci. Rep. 6 (2016) 34393. 

[136] M. Toner, E.G. Cravalho, D.R. Armant, Water Transport and Estimated Transmembrane 

Potential during Freezing of Mouse Oocytes, J. Membr. Biol. 115 (1990) 261–272. 



172 

 

[137] M. Toner, E.G. Cravalho, M. Karel, Cellular response of mouse oocytes to freezing stress: 

Prediction of intracellular ice formation, J. Biomech. Eng. 115 (1993) 169–174. 

[138] J.H. Van’t Hoff, The role of osmotic pressure in the analogy between solutions and gases, 

J. Memb. Sci. 100 (1995) 39–44. 

[139] A.M. Vian, A.Z. Higgins, Membrane permeability of the human granulocyte to water, 

dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol., Cryobiology. 68 

(2014) 35–42. 

[140] V.L. Vilker, C.K. Colton, K.A. Smith, The osmotic pressure of concentrated protein 

solutions: Effect of concentration and ph in saline solutions of bovine serum albumin, J. 

Colloid Interface Sci. 79 (1981) 548–566. 

[141] H. Vink, Membrane equilibria in concentrated polymer solutions, Eur. Polym. J. 9 (1973) 

887–894. 

[142] R.C. Weast, M.J. Astle, Ed., CRC Handbook of Chemistry and Physics, CRC Press, Inc., 

Boca Raton, Florida, 1983. 

[143] L. Weng, W. Li, J. Zuo, Kinetics of osmotic water flow across cell membranes in non-

ideal solutions during freezing and thawing, Cryobiology. 61 (2010) 194–203. 

[144] L. Weng, W. Li, J. Zuo, Two applications of the thermogram of the alcohol/water binary 

system with compositions of cryobiological interests, Cryobiology. 62 (2011) 210–217. 

[145] L. Weng, W. Li, J. Zuo, DSC determination of partial ternary phase diagrams of 

methanol/sodium chloride/water and propylene glycol/sodium chloride/water and their 

applications for synthesized diagrams, Thermochim. Acta. 512 (2011) 225–232. 

[146] E.J. Woods, M.A.J. Zieger, D.Y. Gao, J.K. Critser, Equations for obtaining melting points 

for the ternary system ethylene glycol/sodium chloride/water and their application to 



173 

 

cryopreservation, Cryobiology. 38 (1999) 403–407. 

[147] M. Wusteman, C.J. Hunt, The Scientific Basis for Tissue Banking, in: B.J. Fuller, N. 

Lane, E.E. Benson (Eds.), Life Frozen State, CRC Press, Boca Raton, Florida, 2004: p. 

541. 

[148] G. Yang, A. Zhang, L.X. Xu, Experimental study of intracellular ice growth in human 

umbilical vein endothelial cells, Cryobiology. 58 (2009) 96–102. 

[149] M.A. Yousef, R. Datta, V.G.J. Rodgers, Confirmation of free solvent model assumptions 

in predicting the osmotic pressure of concentrated globular proteins, J. Colloid Interface 

Sci. 243 (2001) 321–325. 

[150] M.A. Yousef, R. Datta, V.G.J. Rodgers, Model of osmotic pressure for high concentrated 

binary protein solutions, AICHE J. 48 (2002) 913–917. 

[151] L. Zargarzadeh, J.A.W. Elliott, Comparison of the osmotic virial equation with the 

Margules activity model and their application to solid–liquid equilibrium (to be 

submitted), (n.d.). 

[152] T. Zhang, A. Isayeva, S.L. Adams, D.M. Rawson, Studies on membrane permeability of 

zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants, Cryobiology. 

50 (2005) 285–293. 

[153] G. Zhao, H. Takamatsu, X. He, The effect of solution nonideality on modeling 

transmembrane water transport and diffusion-limited intracellular ice formation during 

cryopreservation, J. Appl. Phys. 115 (2014) 144701. 

[154] M.W. Zielinski, L.E. McGann, J.A. Nychka, J.A.W. Elliott, Comparison of non-ideal 

solution theories for multi-solute solutions in cryobiology and tabulation of required 

coefficients, Cryobiology. 69 (2014) 305–317. 



174 

 

[155] M.W. Zielinski, L.E. McGann, J.A. Nychka, J.A.W. Elliott, Comment on “Determination 

of the quaternary phase diagram of the water–ethylene glycol–sucrose–NaCl system and a 

comparison between two theoretical methods for synthetic phase diagrams” Cryobiology 

61 (2010) 52–57, Cryobiology. 70 (2015) 287–292. 

[156] M.W. Zielinski, L.E. McGann, J.A. Nychka, J.A.W. Elliott, A Non-Ideal Solute Chemical 

Potential Equation and the Validity of the Grouped Solute Approach for Intracellular 

Solution Thermodynamics, J. Phys. Chem. B. 121 (2017) 10443–10456. 

[157] The Wolfram Functions Site: General Identities, <http://functions.wolfram.com>, (2010). 

 

  



175 

 

Appendix A. Matrix approach to multiple linear regression5 

 The solute-specific coefficients for the non-ideal models considered in this work were 

curve-fit using an analytical matrix approach to multiple linear regression. The general concept of 

this approach is briefly outlined here, along with details of the specific implementation for each 

non-ideal model. 

 Given “n” data points and “p” regressor variables (each of which has an associated 

regression coefficient), the general multiple linear regression model can be expressed as follows 

[93] 

𝑦(𝑎) = 𝛽1𝑓1(𝑎) + 𝛽2𝑓2(𝑎) + ⋯+ 𝛽𝑝𝑓𝑝(𝑎) + 𝜀(𝑎)       for  𝑎 = 1, … , 𝑛 , (A.1) 

where y is the dependent variable (sometimes called the regressand or observation), β1, … , βp are 

the regression coefficients, f1, … , fp are the regressor variables, and ε is the error of the model 

prediction. The number in brackets (i.e. a) denotes the ath data point. The values of y and f1, … , fp 

are known (obtained from experimental data), and the unknowns are the regression coefficients β1, 

… , βp. Equation A.1 can be written in matrix notation as [93] 

�⃑� = 𝛽𝐹 + 𝜀 , (A.2) 

where �⃑� is an (n × 1) vector of the dependent variables (the regressand vector), 𝛽 is a (p × 1) vector 

of regression coefficients (the parameter vector), 𝐹 is an (n × p) matrix of regressors (the design 

matrix), and 𝜀 is an (n × 1) vector of prediction errors. To obtain an estimate for the unknown 

values of 𝛽, the method of ordinary least squares can be used. This method finds the values of 𝛽 

                                                 
5 This appendix, along with Chapter 2 and Appendix B, has been published as M.W. Zielinski, L.E. McGann, J.A. 

Nychka, J.A.W. Elliott, Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and 

tabulation of required coefficients, Cryobiology 69 (2014) 305–317. This work is available at 

http://dx.doi.org/10.1016/j.cryobiol.2014.08.005. 
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that minimize the sum of the squared errors of the model predictions (i.e. minimize the sum of the 

squared residuals). In matrix notation, the ordinary least squares estimate of 𝛽, 𝛽
̂
, is [93] 

𝛽
̂
= (𝐹𝑇𝐹)

−1
𝐹𝑇�⃑� . (A.3) 

A “hat” (  ̂) above a value indicates that that value is an estimate from a fitted regression model. In 

this work, wherever used, the matrix approach was implemented using MATLAB R2010b 

(MathWorks, Natick, MA). 

 Using this matrix approach, the molality and mole-fraction based forms of the osmotic 

virial equation were fit to each of the binary (i.e. single-solute) solution data sets (written in terms 

of osmolality versus concentration) in order to obtain the corresponding osmotic virial coefficients 

(and, if applicable, the dissociation constant) for the solute of interest. Note that Equations 2.9 and 

2.10 can be curve-fit as written; however, Equations 2.5 and 2.6 must be rewritten in order to avoid 

having regressors without coefficients, i.e., respectively 

𝜋 − 𝑚𝑖 = 𝐵𝑖𝑖𝑚𝑖
2 + 𝐶𝑖𝑖𝑖𝑚𝑖

3 + ⋯ , (A.4) 

and 

�̃� − 𝑥𝑖 = 𝐵𝑖𝑖
∗𝑥𝑖

2 + 𝐶𝑖𝑖𝑖
∗𝑥𝑖

3 + ⋯ . (A.5) 

The regressors in Equations 2.9, 2.10, A.4, and A.5 are the concentration powers, and the 

regression coefficients are the osmotic virial coefficients and/or the dissociation constants. For 

example, for Equation A.4, the first two regressors are 𝑓1 = 𝑚𝑖
2 and 𝑓2 = 𝑚𝑖

3, and the first two 

regression coefficients are 𝛽1 = 𝐵𝑖𝑖 and 𝛽2 = 𝐶𝑖𝑖𝑖. For each of Equations 2.9, 2.10, A.4, and A.5, 

the forms of �⃑�, 𝐹, and 𝛽 are given in Table A.1. 

 The matrix approach was also used to curve-fit the freezing point summation model to the 

binary solution data (written in terms of freezing point depression versus concentration) to obtain 
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the corresponding solute-specific coefficients. The forms of �⃑�, 𝐹, and 𝛽 for this model (Equation 

2.20) are also given in Table A.1. 
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Table A.1. Forms of �⃑�, 𝐹, and 𝛽 for the osmotic virial equation (OVE) and freezing point 

summation model. 

Applicable Model �⃑⃑⃑� �⃑⃑⃑� 𝑭 

Molality-based, 

electrolyte OVE: 

Equation 2.9 

�⃑⃑� = ⟨

𝜋(1)

⋮
𝜋(𝑛)

⟩ ⟨

𝑘𝑖

𝑘𝑖
2𝐵𝑖𝑖

𝑘𝑖
3𝐶𝑖𝑖𝑖

⋮

⟩ [

𝑚𝑖(1)

⋮
𝑚𝑖(𝑛)

𝑚𝑖(1)
2

⋮
𝑚𝑖(𝑛)

2

𝑚𝑖(1)
3

⋮
𝑚𝑖(𝑛)

3

⋯
⋮
⋯

] 

Mole fraction-

based, electrolyte 

OVE: Equation 

2.10 

�⃑⃑̃� = ⟨

�̃�(1)

⋮
�̃�(𝑛)

⟩ ⟨

𝑘𝑖
∗

𝑘𝑖
∗2

𝐵𝑖𝑖
∗

𝑘𝑖
∗3

𝐶𝑖𝑖𝑖
∗

⋮

⟩ [

𝑥𝑖(1)

⋮
𝑥𝑖(𝑛)

𝑥𝑖(1)
2

⋮
𝑥𝑖(𝑛)

2

𝑥𝑖(1)
3

⋮
𝑥𝑖(𝑛)

3

⋯
⋮
⋯

] 

Molality-based, 

non-electrolyte 

OVE: Equation 

A.4 

(𝜋 − 𝑚𝑖)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = ⟨

𝜋(1) − 𝑚𝑖(1)

⋮
𝜋(𝑛) − 𝑚𝑖(𝑛)

⟩ ⟨
𝐵𝑖𝑖

𝐶𝑖𝑖𝑖

⋮
⟩ [

𝑚𝑖(1)
2

⋮
𝑚𝑖(𝑛)

2

𝑚𝑖(1)
3

⋮
𝑚𝑖(𝑛)

3

⋯
⋮
⋯

] 

Mole fraction-

based, non-

electrolyte OVE: 

Equation A.5 

(�̃� − 𝑥𝑖)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = ⟨

�̃�(1) − 𝑥𝑖(1)

⋮
�̃�(𝑛) − 𝑥𝑖(𝑛)

⟩ ⟨
𝐵𝑖𝑖

∗

𝐶𝑖𝑖𝑖
∗

⋮

⟩ [

𝑥𝑖(1)
2

⋮
𝑥𝑖(𝑛)

2

𝑥𝑖(1)
3

⋮
𝑥𝑖(𝑛)

3

⋯
⋮
⋯

] 

Freezing Point 

Summation 

Model: Equation 

2.20 

(−∆𝑇𝑚)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = ⟨

−∆𝑇𝑚(1)

⋮
−∆𝑇𝑚(𝑛)

⟩ ⟨

𝐶1𝑖

𝐶2𝑖

𝐶3𝑖

⟩ [

𝑚𝑖(1)

⋮
𝑚𝑖(𝑛)

𝑚𝑖(1)
2

⋮
𝑚𝑖(𝑛)

2

𝑚𝑖(1)
3

⋮
𝑚𝑖(𝑛)

3
] 
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Appendix B. Adjusted R2 and regression through the origin6 

 In this work, a criterion based on the coefficient of determination was used to determine 

the order of fit to single-solute solution data for the molality- and mole fraction-based forms of the 

osmotic virial equation. The coefficient of determination, R2, can be defined as [22,93] 

𝑅2 = 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
 , (B.1) 

where ESS is the error sum of squares and TSS is the total sum of squares. The error sum of squares 

is defined as [22,93] 

𝐸𝑆𝑆 = ∑(𝑦(𝑎) − �̂�(𝑎))
2

𝑛

𝑎=1

 , (B.2) 

with n – p degrees of freedom, where y(a) is the value at the ath data point,  �̂�(𝑎) is the fitted model 

prediction of the ath data point, n is the total number of data points, and p is the number of 

parameters/coefficients in the model. The total sum of squares is commonly given as [22,93] 

𝑇𝑆𝑆 = ∑(𝑦(𝑎) − �̅�)
2

𝑛

𝑎=1

 , (B.3) 

with n – 1 degrees of freedom, where �̅� is the mean value of all data points. The value of R2 can 

range from 0, corresponding to a poor fit, to 1, corresponding to a good fit. 

 However, R2 does not does not take into consideration the number of parameters used in 

the model and will always increase when a parameter is added [93]. Conversely, the adjusted R2 

statistic does take into account the number of parameters in the model, effectively applying a 

                                                 
6 This appendix, along with Chapter 2 and Appendix A, has been published as M.W. Zielinski, L.E. McGann, J.A. 

Nychka, J.A.W. Elliott, Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and 

tabulation of required coefficients, Cryobiology 69 (2014) 305–317. This work is available at 

http://dx.doi.org/10.1016/j.cryobiol.2014.08.005. 
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penalty for each additional parameter—as such, it can be used to evaluate the merit of increasing 

the order of fit (i.e. adding a coefficient). Adjusted R2 can be defined as [93] 

𝑅𝑎𝑑𝑗
2 = 1 −

𝐸𝑆𝑆/𝐷𝑂𝐹𝐸𝑆𝑆

𝑇𝑆𝑆/𝐷𝑂𝐹𝑇𝑆𝑆
 , (B.4) 

where 𝐷𝑂𝐹𝐸𝑆𝑆 = 𝑛 − 𝑝 is the degrees of freedom for the error sum of squares and 𝐷𝑂𝐹𝑇𝑆𝑆 is the 

degrees of freedom for the total sum of squares (for the above definition of the total sum of squares, 

𝐷𝑂𝐹𝑇𝑆𝑆 = 𝑛 − 1). 

 It should be noted that the osmotic virial equation does not have an intercept; that is, it 

passes through the origin (by definition, the osmolality of pure water is zero). This is of 

consequence because in the above definitions of R2 and adjusted R2, the definition of the total sum 

of squares (Equation B.3) is obtained from the analysis of variance (ANOVA) identity [22,93] 

∑(𝑦(𝑎) − �̅�)
2

𝑛

𝑎=1

= ∑(�̂�(𝑎) − �̅�)
2

𝑛

𝑎=1

+ ∑(𝑦(𝑎) − �̂�(𝑎))
2

𝑛

𝑎=1

 , (B.5) 

which does not hold for regression through the origin [22]. A common alternative recommendation 

[22,71] is to use the following modified form of the analysis of variance identity for regression 

through the origin 

∑(𝑦(𝑎))
2

𝑛

𝑎=1

= ∑(�̂�(𝑎))
2

𝑛

𝑎=1

+ ∑(𝑦(𝑎) − �̂�(𝑎))
2

𝑛

𝑎=1

 , (B.6) 

in which case the definition for the total sum of squares becomes 

𝑇𝑆𝑆 = ∑(𝑦(𝑎))
2

𝑛

𝑎=1

 , (B.7) 

with n degrees of freedom. Note that the definition of the error sum of squares remains unchanged. 

Although there has been some controversy [22,45,71,72] regarding the appropriate form of the 

total sum of squares to use in the definition of R2 for regression through the origin, the argument 
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against using Equation B.7 (i.e. instead of Equation B.3) is essentially that the resulting value of 

R2 is not directly comparable to a value computed the “usual” way (i.e. using Equation B.3) and 

cannot be interpreted in the same way [45,71,72], the primary consequence being that one cannot 

evaluate the benefit of adding/removing an intercept to/from the fitting model. In the case of the 

osmotic virial equation, this argument has no ramifications, as, by definition, we cannot consider 

a model with an intercept (the osmolality of pure water must be zero). Conversely, the argument 

against using Equation B.3 for regression through the origin is that it can result in an 

uninterpretable negative value of R2 [22,71]. Thus, for choosing the order of fit for the osmotic 

virial equation in this work, the adjusted R2 statistic that arises from using Equation B.7 as the 

definition of the total sum of squares was used, i.e. 

𝑅𝑎𝑑𝑗,RTO
2 = 1 −

∑(𝑦(𝑎) − �̂�(𝑎))
2
/(𝑛 − 𝑝)

∑(𝑦(𝑎))
2
/(𝑛)

 . (2.28) 

This form of the adjusted R2 is referred to as the regression-through-origin form in the main body 

of this work. 
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Appendix C. Difference between Equation 3.7 and Guggenheim’s “naïve 

assumption”7 

 Although there is no mathematical difference between the combining rule in Equation 3.7 

and what Guggenheim called the “naïve assumption” [46,102] (see Equation C.3 below), the 

former does not suffer from the same problem as the latter due to the difference in the contexts in 

which the two equations are used—i.e., liquid solutions for Equation 3.7 versus gas mixtures for 

the naïve assumption. This distinction and its impact are explained briefly in the following. 

 The thermodynamic behaviour of a gas mixture can generally be described by the gaseous 

virial equation of state [102], 

where 𝑃 is pressure, 𝑣 is molar volume, and 𝐵𝑚𝑖𝑥
∗  and 𝐶𝑚𝑖𝑥

∗  are the second and third gaseous virial 

coefficients of the mixture. For any given mixture, the gaseous virial coefficients can be obtained 

using mixing rules, which describe how a virial coefficient is related to composition. These rules 

are distinct from combining rules, which, as noted above, describe relationships between solute-

specific single-solute coefficients and cross-coefficients. The second gaseous virial coefficient 

𝐵𝑚𝑖𝑥
∗  can be obtained from the mixing rule [102] 

where 𝑟 is the total number of components in the mixture and 𝐵𝑖𝑗
∗  is the solute-specific gaseous 

virial coefficient for solutes i and j. Note that the 𝐵𝑖𝑗
∗  term includes both single-solute coefficients 

                                                 
7 This appendix, along with Chapter 3 and Appendix D, has been published as M.W. Zielinski, L.E. McGann, J.A. 

Nychka, J.A.W. Elliott, A Non-Ideal Solute Chemical Potential Equation and the Validity of the Grouped Solute 

Approach for Intracellular Solution Thermodynamics, J. Phys. Chem. B. 121 (2017) 10443–10456. This work is 

available at http://pubs.acs.org/articlesonrequest/AOR-38xihDTThrSv82dTdyFp. 

𝑃𝑣

𝑅𝑇
= 1 +

𝐵𝑚𝑖𝑥
∗

𝑣
+

𝐶𝑚𝑖𝑥
∗

𝑣2
+ ⋯, (C.1) 

𝐵𝑚𝑖𝑥
∗ = ∑∑𝐵𝑖𝑗

∗ 𝑥𝑖𝑥𝑗

𝑟

𝑗=1

𝑟

𝑖=1

 , (C.2) 
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where 𝑖 = 𝑗 and cross-coefficients where 𝑖 ≠ 𝑗. Much like the osmotic virial coefficients 𝐵𝑖𝑗 or 

𝐵𝑖𝑗
+, the solute-specific gaseous virial coefficients 𝐵𝑖𝑗

∗ , including the cross-coefficients, can be 

obtained empirically, from experimental measurements. The cross-coefficients can also be 

obtained from combining rules. One such combining rule, which is essentially Equation 3.7 

rewritten for a gas mixture, is what Guggenheim referred to as the “naïve assumption” [46,102], 

i.e., 

The problem with this combining rule is that when it is substituted back into Equation C.2, it yields 

a mixing rule which inaccurately has a linear dependence on composition, as demonstrated below. 

 Substituting Equation C.3 into Equation C.2 yields 

which can be simplified to 

Note that 

meaning that Equation C.5 can be further simplified to 

𝐵𝑖𝑗
∗ =

𝐵𝑖𝑖
∗ + 𝐵𝑗𝑗

∗

2
 . (C.3) 

𝐵𝑚𝑖𝑥
∗ =

1

2
∑∑(𝐵𝑖𝑖

∗ + 𝐵𝑗𝑗
∗ )𝑥𝑖𝑥𝑗

𝑟

𝑗=1

𝑟

𝑖=1

 , (C.4) 

𝐵𝑚𝑖𝑥
∗ =

1

2
[∑∑(𝐵𝑖𝑖

∗𝑥𝑖𝑥𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

+ ∑ ∑(𝐵𝑗𝑗
∗ 𝑥𝑖𝑥𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

] . (C.5) 

∑∑(𝐵𝑖𝑖
∗𝑥𝑖𝑥𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

= ∑∑(𝐵𝑗𝑗
∗ 𝑥𝑖𝑥𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

 , (C.6) 

𝐵𝑚𝑖𝑥
∗ = ∑∑(𝐵𝑖𝑖

∗𝑥𝑖𝑥𝑗)

𝑟

𝑗=1

𝑟

𝑖=1

 . (C.7) 
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Applying the second-order general multiplication rule for finite sums (see Equation D.1 in 

Appendix D), Equation C.7 becomes 

Finally, applying the definition of mole fraction, i.e., ∑ 𝑥𝑖
𝑟
𝑖=1 = 1, we ultimately obtain 

in which the gaseous virial coefficient of the mixture has a linear dependence on composition. 

Such a linear dependence is not in agreement with experimental measurements of gas mixtures 

[46,102]. 

 The problem with Equation C.3, highlighted in Equation C.9 above, does not apply to 

Equation 3.7. This is because unlike the gaseous virial equation—i.e., the model in which Equation 

C.3 is used, the osmotic virial equation—i.e., the model in which Equation 3.7 is used—does not 

provide coefficients to account for solvent interactions. As a consequence, the “mixing rule” for 

the (mole fraction-based) second osmotic virial coefficient of a solution, 𝐵𝑠𝑜𝑙
+ , is 

where 𝑟 still represents the total number of components in the solution, but in this case means the 

solvent (subscript index 1) plus 𝑟 − 1 solutes. When Equation 3.7 is substituted into Equation C.10 

and a similar procedure is undertaken to that carried out for Equations C.2 and C.3 above, the 

ultimate result is 

𝐵𝑚𝑖𝑥
∗ = (∑𝐵𝑖𝑖

∗𝑥𝑖

𝑟

𝑖=1

)(∑𝑥𝑗

𝑟

𝑗=1

) . (C.8) 

𝐵𝑚𝑖𝑥
∗ = ∑𝐵𝑖𝑖

∗𝑥𝑖

𝑟

𝑖=1

 , (C.9) 

𝐵𝑠𝑜𝑙
+ = ∑∑𝐵𝑖𝑗

+𝑥𝑖𝑥𝑗

𝑟

𝑗=2

𝑟

𝑖=2

 , (C.10) 
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Equation C.11 will always be quadratic in composition for any multi-component system. Thus, the 

combining rule in Equation 3.7 is not the “naïve assumption” in Equation C.3, and, unlike the 

latter, will result in a mixing rule that has a quadratic dependence on composition. 

  

𝐵𝑠𝑜𝑙
+ = (∑𝐵𝑖𝑖

+𝑥𝑖

𝑟

𝑖=2

)(∑𝑥𝑗

𝑟

𝑗=2

) = (1 − 𝑥1) (∑𝐵𝑖𝑖
+𝑥𝑖

𝑟

𝑖=2

) . (C.11) 
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Appendix D. Multiplication rule for finite sums8 

 The second and third-order multiplication rules for finite sums are [157] 

and 

where the 𝑎𝑖 depend solely on i, the 𝑏𝑗 depend solely on j, the 𝑐𝑘 depend solely on k, and 𝑖𝑜, 𝑖𝑓, 𝑗𝑜, 

𝑗𝑓, 𝑘𝑜, and 𝑘𝑓 are all finite positive integers. Equation D.2 can be shown to be true as follows (a 

similar procedure can be used to show that Equation D.1 is true). 

 We start by considering the right-hand side of the Equation D.2, i.e., 

As neither 𝑎𝑖 nor 𝑏𝑗 depend on 𝑘 (i.e., they are constants with respect to 𝑘), they can be divided 

out of the innermost sum, i.e., 

Likewise, neither 𝑎𝑖 nor ∑ 𝑐𝑘
𝑘𝑓

𝑘=𝑘𝑜
 depend on 𝑗, so these terms can be taken out of the middle sum 

as follows 

                                                 
8 This appendix, along with Chapter 3 and Appendix C, has been published as M.W. Zielinski, L.E. McGann, J.A. 

Nychka, J.A.W. Elliott, A Non-Ideal Solute Chemical Potential Equation and the Validity of the Grouped Solute 

Approach for Intracellular Solution Thermodynamics, J. Phys. Chem. B. 121 (2017) 10443–10456. This work is 

available at http://pubs.acs.org/articlesonrequest/AOR-38xihDTThrSv82dTdyFp. 

(∑ 𝑎𝑖

𝑖𝑓

𝑖=𝑖𝑜

)(∑ 𝑏𝑗

𝑗𝑓

𝑗=𝑗𝑜

) = ∑ ∑ 𝑎𝑖𝑏𝑗

𝑗𝑓

𝑗=𝑗𝑜

𝑖𝑓

𝑖=𝑖𝑜

 (D.1) 

(∑ 𝑎𝑖

𝑖𝑓

𝑖=𝑖𝑜

)(∑ 𝑏𝑗

𝑗𝑓

𝑗=𝑗𝑜

)( ∑ 𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜

) = ∑ ∑ ∑ 𝑎𝑖𝑏𝑗𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜

𝑗𝑓

𝑗=𝑗𝑜

𝑖𝑓

𝑖=𝑖𝑜

 , (D.2) 

∑ ∑ ∑ 𝑎𝑖𝑏𝑗𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜

𝑗𝑓

𝑗=𝑗𝑜

𝑖𝑓

𝑖=𝑖𝑜

 . (D.3) 

∑ ∑ ∑ 𝑎𝑖𝑏𝑗𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜

𝑗𝑓

𝑗=𝑗𝑜

𝑖𝑓

𝑖=𝑖𝑜

= ∑ ∑ (𝑎𝑖𝑏𝑗 ∑ 𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜

)

𝑗𝑓

𝑗=𝑗𝑜

𝑖𝑓
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Finally, neither ∑ 𝑏𝑗
𝑗𝑓

𝑗=𝑗𝑜
 nor ∑ 𝑐𝑘

𝑘𝑓

𝑘=𝑘𝑜
 depend on 𝑖, so they can be divided out of the outermost 

sum, giving back Equation D.2, as required. 
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𝑘𝑓

𝑘=𝑘𝑜

)(∑ 𝑏𝑗

𝑗𝑓

𝑗=𝑗𝑜

)]

𝑖𝑓

𝑖=𝑖𝑜

 . (D.5) 
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Appendix E. Measurement of cell equilibration kinetics 

 To determine the amount of time required for cryoprotectant equilibration—i.e., the 

cryoprotectant exposure time—a modified form of the procedure used in the equilibrium cell 

volume measurements was applied. In this case, the aim was to measure the time-dependant 

changes in cell volume—i.e., the kinetic osmotic response—following the addition of a defined 

concentration of a permeating cryoprotectant. 

 Cell suspensions were prepared in the same way as for the equilibrium volume 

measurements, albeit with a lower minimum cell concentration of 4×106 cells/mL. As before, the 

cell suspensions were then kept in an ice–water bath until used in the experiment. For the 

measurements, the cell suspension was subdivided into twelve experimental samples. Three such 

samples were used with each of the experimental cryoprotectant concentrations considered: 0 

(control), 1, 2, and 3 molal. 

 As for the equilibrium volume measurements, cell volumes were measured using bright-

field optical microscopy and image analysis. (Note that trypan blue staining was not used in these 

experiments.) Unlike the equilibrium volume measurements, the cryoprotectant was added directly 

to the experimental sample all at once (i.e., not dropwise or incrementally) in the amount required 

to give the desired cryoprotectant concentration in the cell suspension. This was followed by a 

very brief period of pipette mixing. As soon as the cryoprotectant was added and mixed in to the 

suspension, the timer was started and a small volume (10 µL) of the cell suspension was placed 

onto a haemocytometer positioned under a 40× objective lens in an optical microscope. As with 

the equilibrium volume measurements, the haemocytometer grid was used to focus the image such 

that the top edges of the grid were in focus. Once the image was focussed, a region on the 

haemocytometer with approximately 10 to 20 cells was located and the field of view was set to 
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this region and left unchanged for the duration of the measurements. Photos of the cells were then 

taken at set intervals. 

 The first photo was taken at 30 seconds post-cryoprotectant addition. Given the amount of 

time required to inject the cell sample into the haemocytometer, focus the image, and locate an 

appropriate region for measurements, earlier photos could not be reliably acquired. For the 

purposes of this work, this limitation was not a problem, as we were only interested in the final 

stages of the cellular osmotic response—i.e., where the cell reaches its equilibrium volume—and 

not in the initial shrink-swell response (see Figure 4.13 for a representative cellular osmotic 

response). After the initial photo, photos were taken at 10 second intervals up until 1 minute post-

cryoprotectant addition, then at 20 second intervals until 3 minutes post-cryoprotectant addition, 

and then at 30 second intervals up to the end of the experiment at 10 minutes post-cryoprotectant 

addition. Finally, after all the cell photos had been acquired, a photo was taken in the central 

portion of the haemocytometer grid for scale calibration purposes. The cell photos were then 

analyzed using a custom ImageJ macro script, described briefly below (see Appendix F for the 

script itself). 

 In the early stages, the macro script for the kinetic measurements (see “Measure HUVEC 

Kinetic Osmotic Volume Changes” in Appendix F) is fundamentally similar to the one described 

above for the equilibrium volume measurements. It uses a calibration image to account for uneven 

lighting in the same way, and then applies the same identifyCells function to locate the cells in all 

of the images. However, at this point, the macros diverge. Once the cells have been located in each 

of the images for a given experimental sample, the kinetic measurements macro tracks each 

individual cell through all of the images such that a cell-specific measurement of cross-sectional 

area—and thus volume—as a function of time can be obtained for all of the cells. Briefly, an 
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identified cell is tracked through the images by finding the cell in the next image whose central 

coordinates are within the area of the identified cell in the current image and whose area is within 

20% of that of the identified cell in the current image (for further details, see Appendix F below). 

With the time-dependant volumetric behaviour of each cell measured, it is then possible to 

establish the point at which the cell stops changing volume—i.e., when it has equilibrated. 

 This procedure to determine the cryoprotectant exposure time was carried out with 

HUVEC in the presence of each of DMSO and EG. For both cryoprotectants and at all 

concentrations examined (i.e., 1, 2, and 3 molal), the cells were found to have equilibrated by no 

later than 7 minutes post-cryoprotectant addition. As such, 7 minutes was used as the 

cryoprotectant exposure time in all of the equilibrium volume measurements. 
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Appendix F. Custom ImageJ macro script for measuring cell volume and 

membrane integrity 

//GLOBAL VALUES/VARIABLES 
 
//this value represents the number of times cell ROIs will be eroded to find their 
centres 
var paintErodeIter = 4; 
 
//this value is used to determine which pixels belong to the haemocytometer grid - 
i.e. very bright pixels ("very bright" = mean pixel value + gridMultiplier*[standard 
deviation]) 
var gridMultiplier = 2; 
 
//this value is used to enhance the image after finding the edges of cells (every 
pixel in the image is multiplied by this value) 
var imageMultiplier = 1.5; 
 
//this value is used to find unusually light pixels (usually belonging to cell 
"halos") 
var standardMultiplier = 0.25; 
 
//this value is used to find dark pixels close to unusually light pixels (i.e. cells 
with "halos") 
var diffThreshold = 10; 
 
//this is the value by which dark pixels next to halos are dropped/decreased in value 
var edgeDropValue = 20; 
 
//this is the minimum required average pixel value for an ROI to be considered to 
contain a cell (used to determine whether or not to "paint in" a potential cell's 
centre) 
var minMeanROI = 20; 
 
//above this average pixel value, a ROI containing a cell will have the cell centre 
"painted in" to a lesser extent than normal (paintErodeIter will be applied twice to 
these centres) 
var maxMeanROI = 175; 
 
//this value is the minimum required cell circularity for equilibrium measurements 
var equilibriumCirc = 0.6; 
 
//this value is the minimum required cell circularity for kinetic measurements 
var kineticCirc = 0.7; 
 
//this value is used in determining whether a cell is membrane-compromised (blue) or 
intact - the lower this value is, the more likely a cell is to be considered 
membrane-compromised 
var intactThresholdMultiplier = 0.98; 
 
//this value represents the maximum allowed area change between images for a given 
cell when tracking cells from image to image for kinetic measurements 
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var allowedDifference = 0.2; 
 
//this value represents the maximum number of times the kinetic volume change 
algorithm will try to find a "lost" cell before giving up 
var lostCellMax = 5; 
 
//this value represents the minimum number of data points required for a cell to be 
considered in kinetic measurements 
var minDataPoints = 10; 
 
 
macro "Measure HUVEC Equilibrium Volume and Membrane Integrity" { 
 
 //load calibration image (i.e. haemocytometer master image) 
 run("Set Measurements...", "area mean feret's display redirect=None 
decimal=5"); 
 showMessageWithCancel("Image Calibration", "Please load haemocytometer master 
calibration image before continuing (a file selection dialogue will open after you 
press OK)"); 
 run("Open..."); 
 hcMasterTitle = getTitle(); 
 hcMasterDir = File.directory; 
 selectWindow(hcMasterTitle); 
 close(); 
  
 //load images to be analyzed 
 dir = getDirectory("Choose Folder Containing Images to Analyze"); 
 list = getFileList(dir); 
 calList = newArray(list.length); 
 setBatchMode(false); 
  
 //calibrate images and identify locations of cells  
 for (i=0; i<list.length; i++) { 
  open(dir+list[i]); 
  open(hcMasterDir+hcMasterTitle); 
  imageCalculator("Subtract create",list[i],hcMasterTitle); 
  saveAs("jpeg",dir+list[i]+" Calibrated"); 
  calList[i] = getTitle(); 
  selectWindow(calList[i]);  
  run("Close"); 
  selectWindow(list[i]); 
  run("Close"); 
  selectWindow(hcMasterTitle); 
  run("Close"); 
  identifyCells(dir+calList[i], equilibriumCirc); 
 } 
  
 //measure cell size 
 for (i=0; i<list.length; i++) { 
  open(dir+calList[i]); 
  open(dir+calList[i]+"_ALL.zip"); 
  roiManager("Measure"); 
  roiManager("Reset"); 
  selectWindow(calList[i]);  
  run("Close"); 
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 } 
 
 selectWindow("ROI Manager"); 
 run("Close"); 
 
 saveAs("Results",dir+"Measurements Summary, All Cells.xls"); 
 selectWindow("Results"); 
 run("Close"); 
  
 //identify which cells are intact 
 for (i=0; i<list.length; i++) { 
  open(dir+calList[i]); 
  open(dir+calList[i]+"_ALL.zip"); 
   
  numCells = roiManager("count"); 
  run("Split Channels"); 
 
  selectWindow(calList[i]+" (red)"); 
  run("Select All"); 
  getStatistics(area, redMean); 
  run("Select None"); 
 
  selectWindow(calList[i]+" (green)"); 
  run("Select All"); 
  getStatistics(area, greenMean); 
  run("Select None"); 
 
  selectWindow(calList[i]+" (blue)"); 
  run("Select All"); 
  getStatistics(area, blueMean); 
  run("Select None"); 
 
  meanBORratio = blueMean/redMean; 
  meanBOGratio = blueMean/greenMean; 
   
  j = 0; 
  while(j < numCells) { 
   selectWindow(calList[i]+" (red)"); 
   roiManager("select", j); 
   getStatistics(area, redCell); 
   roiManager("deselect"); 
   run("Select None"); 
 
   selectWindow(calList[i]+" (green)"); 
   roiManager("select", j); 
   getStatistics(area, greenCell); 
   roiManager("deselect"); 
   run("Select None"); 
    
   selectWindow(calList[i]+" (blue)"); 
   roiManager("select", j); 
   getStatistics(area, blueCell); 
   roiManager("deselect"); 
   run("Select None"); 
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   cellBORratio = blueCell/redCell; 
   cellBOGratio = blueCell/greenCell; 
   
   if((cellBORratio > (intactThresholdMultiplier*meanBORratio)) || 
(cellBOGratio > (intactThresholdMultiplier*meanBOGratio))){ 
    roiManager("select", j); 
    roiManager("delete"); 
    numCells = roiManager("count"); 
   } else { 
    j++; 
   } 
  } 
   
  if(numCells > 0){ 
   roiManager("Save",dir+calList[i]+"_INTACT.zip"); 
  } 
  roiManager("Reset"); 
   
  open(dir+calList[i]+"_ALL.zip"); 
  numCells = roiManager("count"); 
   
  j = 0; 
  while(j < numCells) { 
   selectWindow(calList[i]+" (red)"); 
   roiManager("select", j); 
   getStatistics(area, redCell); 
   roiManager("deselect"); 
   run("Select None"); 
 
   selectWindow(calList[i]+" (green)"); 
   roiManager("select", j); 
   getStatistics(area, greenCell); 
   roiManager("deselect"); 
   run("Select None"); 
    
   selectWindow(calList[i]+" (blue)"); 
   roiManager("select", j); 
   getStatistics(area, blueCell); 
   roiManager("deselect"); 
   run("Select None"); 
    
   cellBORratio = blueCell/redCell; 
   cellBOGratio = blueCell/greenCell; 
   
   if((cellBORratio <= (intactThresholdMultiplier*meanBORratio)) && 
(cellBOGratio <= (intactThresholdMultiplier*meanBOGratio))){ 
    roiManager("select", j); 
    roiManager("delete"); 
    numCells = roiManager("count"); 
   } else { 
    j++; 
   } 
  } 
   
  if(numCells > 0){ 
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   roiManager("Save",dir+calList[i]+"_DEAD.zip"); 
  } 
  roiManager("Reset"); 
  
  selectWindow(calList[i]+" (red)"); 
  run("Close"); 
  selectWindow(calList[i]+" (green)"); 
  run("Close"); 
  selectWindow(calList[i]+" (blue)"); 
  run("Close"); 
  run("Close All"); 
 } 
  
 //measure cell membrane integrity 
 processedList = getFileList(dir); 
 intactCellsPresent = false; 
 deadCellsPresent = false;  
 
 for (i=0; i<list.length; i++) { 
  open(dir+calList[i]); 
  for (j=0; j<processedList.length; j++){ 
   if(processedList[j] == calList[i]+"_INTACT.zip"){ 
    intactCellsPresent = true; 
    open(dir+calList[i]+"_INTACT.zip"); 
   } 
  } 
  roiManager("Measure"); 
  roiManager("Reset"); 
  selectWindow(calList[i]);  
  run("Close"); 
 } 
 
 selectWindow("ROI Manager"); 
 run("Close"); 
  
 if(intactCellsPresent){ 
  saveAs("Results",dir+"Measurements Summary, Intact Cells Only.xls"); 
  selectWindow("Results"); 
  run("Close"); 
 } 
 
 for (i=0; i<list.length; i++) { 
  open(dir+calList[i]); 
  for (j=0; j<processedList.length; j++){ 
   if(processedList[j] == calList[i]+"_DEAD.zip"){ 
    deadCellsPresent = true; 
    open(dir+calList[i]+"_DEAD.zip"); 
   } 
  } 
  roiManager("Measure"); 
  roiManager("Reset"); 
  selectWindow(calList[i]);  
  run("Close"); 
 } 
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 selectWindow("ROI Manager"); 
 run("Close"); 
  
 if(deadCellsPresent){ 
  saveAs("Results",dir+"Measurements Summary, Dead Cells Only.xls"); 
  selectWindow("Results"); 
  run("Close"); 
 } 
} 
 
 
macro "Measure HUVEC Equilibrium Volume" { 
  
 //load calibration image (i.e. haemocytometer master image) 
 run("Set Measurements...", "area mean feret's display redirect=None 
decimal=5"); 
 showMessageWithCancel("Image Calibration", "Please load haemocytometer master 
calibration image before continuing (a file selection dialogue will open after you 
press OK)"); 
 run("Open..."); 
 hcMasterTitle = getTitle(); 
 hcMasterDir = File.directory; 
 selectWindow(hcMasterTitle); 
 close(); 
  
 //load images to be analyzed 
 dir = getDirectory("Choose Folder Containing Images to Analyze"); 
 list = getFileList(dir); 
 calList = newArray(list.length); 
 setBatchMode(false); 
  
 //calibrate images and identify locations of cells  
 for (i=0; i<list.length; i++) { 
  open(dir+list[i]); 
  open(hcMasterDir+hcMasterTitle); 
  imageCalculator("Subtract create",list[i],hcMasterTitle); 
  saveAs("jpeg",dir+list[i]+" Calibrated"); 
  calList[i] = getTitle(); 
  selectWindow(calList[i]);  
  run("Close"); 
  selectWindow(list[i]); 
  run("Close"); 
  selectWindow(hcMasterTitle); 
  run("Close"); 
  identifyCells(dir+calList[i], equilibriumCirc); 
 } 
  
 //measure cell size 
 for (i=0; i<list.length; i++) { 
  open(dir+calList[i]); 
  open(dir+calList[i]+"_ALL.zip"); 
  roiManager("Measure"); 
  roiManager("Reset"); 
  selectWindow(calList[i]);  
  run("Close"); 
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 } 
 
 selectWindow("ROI Manager"); 
 run("Close"); 
 
 saveAs("Results",dir+"Measurements Summary, All Cells.xls"); 
 selectWindow("Results"); 
 run("Close"); 
} 
 
 
macro "Measure HUVEC Kinetic Osmotic Volume Changes" { 
  
 //load calibration image (i.e. haemocytometer master image) 
 run("Set Measurements...", "area mean feret's display redirect=None 
decimal=5"); 
 showMessageWithCancel("Image Calibration", "Please load haemocytometer master 
calibration image before continuing (a file selection dialogue will open after you 
press OK)"); 
 run("Open..."); 
 hcMasterTitle = getTitle(); 
 hcMasterDir = File.directory; 
 selectWindow(hcMasterTitle); 
 close(); 
  
 //load images to be analyzed 
 dir = getDirectory("Choose Folder Containing Images to Analyze"); 
 list = getFileList(dir); 
 calList = newArray(list.length); 
 setBatchMode(false); 
  
 //calibrate images and identify locations of cells  
 for (i=0; i<list.length; i++) { 
  open(dir+list[i]); 
  open(hcMasterDir+hcMasterTitle); 
  imageCalculator("Subtract create",list[i],hcMasterTitle); 
  saveAs("jpeg",dir+list[i]+" Calibrated"); 
  calList[i] = getTitle(); 
  selectWindow(calList[i]);  
  run("Close"); 
  selectWindow(list[i]); 
  run("Close"); 
  selectWindow(hcMasterTitle); 
  run("Close"); 
  identifyCells(dir+calList[i], kineticCirc); 
 } 
  
 //setup for cell tracking 
 open(dir+calList[0]); 
 open(dir+calList[0]+"_ALL.zip"); 
 numFirstCells = roiManager("count"); 
 selectWindow(calList[0]); 
 run("Close"); 
 selectWindow("ROI Manager"); 
 run("Close"); 
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 //track each individual cell from first image in series to last (or as far as 
possible) 
 for(j=0; j<numFirstCells; j++){ 
  open(dir+calList[0]); 
  open(dir+calList[0]+"_ALL.zip"); 
  roiManager("select", j); 
  roiManager("Measure"); 
  getSelectionBounds(xCURRENT, yCURRENT, wCURRENT, hCURRENT); 
  xCentreCURRENT = round(xCURRENT+0.5*wCURRENT); 
  yCentreCURRENT = round(yCURRENT+0.5*hCURRENT); 
  areaCURRENT = wCURRENT*hCURRENT; 
  roiManager("Reset"); 
  selectWindow(calList[0]);  
  run("Close"); 
   
  lostCellCounter = 0; 
  foundCellCounter = 1; 
  for(i=1; (i<list.length)&&(lostCellCounter<3); i++){ 
   open(dir+calList[i]); 
   open(dir+calList[i]+"_ALL.zip"); 
   numNextCells = roiManager("count"); 
    
   foundCell = false; 
   cellIndex = 0; 
   for(k=0; (k<numNextCells)&&!(foundCell); k++){ 
    roiManager("select", k); 
    getSelectionBounds(xTEST, yTEST, wTEST, hTEST); 
    xCentreTEST = round(xTEST+0.5*wTEST); 
    yCentreTEST = round(yTEST+0.5*hTEST); 
    areaTEST = wTEST*hTEST; 
   
 if((xCentreTEST>xCURRENT)&&(xCentreTEST<(xCURRENT+wCURRENT))&&(yCentreTEST>yCU
RRENT)&&(yCentreTEST<(yCURRENT+hCURRENT))){ 
    
 if((xCentreCURRENT>xTEST)&&(xCentreCURRENT<(xTEST+wTEST))&&(yCentreCURRENT>yTE
ST)&&(yCentreCURRENT<(yTEST+hTEST))){ 
      if((abs(areaCURRENT-
areaTEST)/areaCURRENT)<allowedDifference){ 
       foundCell = true; 
       cellIndex = k; 
      } 
     } 
    } 
   } 
    
   if(foundCell){ 
    roiManager("select", cellIndex); 
    getSelectionBounds(xCURRENT, yCURRENT, wCURRENT, 
hCURRENT); 
    xCentreCURRENT = round(xCURRENT+0.5*wCURRENT); 
    yCentreCURRENT = round(yCURRENT+0.5*hCURRENT); 
    areaCURRENT = wCURRENT*hCURRENT; 
    roiManager("Measure"); 
    foundCellCounter++; 
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    lostCellCounter = 0; 
   } else { 
    lostCellCounter++; 
   } 
 
   roiManager("Reset"); 
   selectWindow(calList[i]); 
   run("Close");    
  } 
   
  if(foundCellCounter > minDataPoints){ 
   saveAs("Results",dir+"Measurements Summary, Cell "+(j+1)+".xls"); 
  } 
  selectWindow("Results"); 
  run("Close"); 
 } 
  
 selectWindow("ROI Manager"); 
 run("Close"); 
} 
 
 
function identifyCells(path, circValue){ 
  
 //initial setup 
 open(path); 
 title = getTitle(); 
 run("Options...", "iterations=1 count=1 black pad edm=Overwrite"); 
 h = getHeight(); 
 w = getWidth(); 
 setColor(0); 
  
 //preliminary operations 
 run("Find Edges"); 
 run("Multiply...", "value=3.50000"); 
  
 //binarize image 
 run("8-bit"); 
 setAutoThreshold("Default dark"); 
 setOption("BlackBackground", true); 
 run("Convert to Mask"); 
  
 //binary operations to identify possible ROIs 
 run("Close-"); 
 run("Fill Holes"); 
 run("Dilate"); 
 run("Close-"); 
 run("Fill Holes"); 
 run("Dilate"); 
 run("Close-"); 
 run("Fill Holes"); 
 run("Erode"); 
 run("Erode"); 
 run("Erode"); 
 run("Watershed"); 
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 run("Watershed"); 
 run("Erode"); 
 run("Erode"); 
 run("Erode"); 
 run("Erode"); 
 run("Gaussian Blur...", "sigma=10"); 
 setAutoThreshold("Default dark"); 
 setOption("BlackBackground", true); 
 run("Convert to Mask"); 
 run("Dilate"); 
 run("Close-"); 
 run("Dilate"); 
 run("Close-");  
 
 //create two temporary clone images for painted overlay (cell centres) 
 run("Select All"); 
 run("Copy"); 
 temp1Title = title+"TEMP1"; 
 newImage(temp1Title, "8-bit black", w, h, 1); 
 selectImage(temp1Title); 
 run("Paste"); 
 setAutoThreshold("Default dark"); 
 setOption("BlackBackground", true); 
 run("Convert to Mask"); 
 run("Watershed"); 
 run("Watershed"); 
 run("Options...", "iterations="+paintErodeIter+" count=1 black pad 
edm=Overwrite"); 
 run("Erode"); 
 run("Options...", "iterations=1 count=1 black pad edm=Overwrite"); 
  
 run("Select All"); 
 run("Copy"); 
 temp2Title = title+"TEMP2"; 
 newImage(temp2Title, "8-bit black", w, h, 1); 
 selectImage(temp2Title); 
 run("Paste"); 
 setAutoThreshold("Default dark"); 
 setOption("BlackBackground", true); 
 run("Convert to Mask"); 
 run("Options...", "iterations="+paintErodeIter+" count=1 black pad 
edm=Overwrite"); 
 run("Erode"); 
 run("Options...", "iterations=1 count=1 black pad edm=Overwrite"); 
 
 //capture ROI coordinates of original image and revert 
 selectImage(title); 
 run("Select None"); 
 run("Dilate"); 
 run("Analyze Particles...", "size=0-Infinity pixel circularity=0.00-1.00 
show=Nothing clear include add"); 
 run("Revert"); 
  
 //preliminary operations part 2 
 run("8-bit"); 
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 getStatistics(area, mean, min, max, std); 
 for(x=0; x<w; x++){ 
  for(y=0; y<h; y++){ 
   value = getPixel(x,y); 
   if(value>(mean+gridMultiplier*std)){ 
    setPixel(x,y,(mean+gridMultiplier*std)); 
   } 
  } 
 } 
 getStatistics(area, mean, min, max, std); 
 for(x=1; x<(w-1); x++){ 
  for(y=1; y<(h-1); y++){ 
   value = getPixel(x,y); 
   valueNN = getPixel(x-1,y-1); 
   valueON = getPixel(x,y-1); 
   valuePN = getPixel(x+1,y-1); 
   valueNO = getPixel(x-1,y); 
   valuePO = getPixel(x+1,y); 
   valueNP = getPixel(x-1,y+1); 
   valueOP = getPixel(x,y+1); 
   valuePP = getPixel(x+1,y+1); 
 
   if(value<mean){ 
    if((valueNN>(mean+standardMultiplier*std))&&((valueNN-
value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valueON>(mean+standardMultiplier*std))&&((valueON-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valuePN>(mean+standardMultiplier*std))&&((valuePN-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valueNO>(mean+standardMultiplier*std))&&((valueNO-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valuePO>(mean+standardMultiplier*std))&&((valuePO-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valueNP>(mean+standardMultiplier*std))&&((valueNP-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valueOP>(mean+standardMultiplier*std))&&((valueOP-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } else 
if((valuePP>(mean+standardMultiplier*std))&&((valuePP-value)>diffThreshold)){ 
     setPixel(x,y,(value-edgeDropValue)); 
    } 
   } 
  } 
 } 
 for(x=0; x<w; x++){ 
  for(y=0; y<h; y++){ 
   value = getPixel(x,y); 
   if(value>(mean+standardMultiplier*std)){ 
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    setPixel(x,y,mean); 
   } 
  } 
 } 
 run("Find Edges"); 
 run("Multiply...", "value="+imageMultiplier); 
 getStatistics(area, mean, min, max, std);   
  
 //using a third cloned image, deal with each ROI seperately to look for cells 
 numROIs = roiManager("count"); 
 temp3Title = title+"TEMP3"; 
 newImage(temp3Title, "8-bit black", w, h, 1);  
 j = 0; 
 while(j < numROIs) { 
  selectImage(title); 
  roiManager("select", j); 
  run("Copy"); 
  selectImage(temp3Title); 
  roiManager("select", j); 
  run("Paste"); 
  roiManager("deselect"); 
  run("Select None"); 
  j++; 
 } 
 run("Max...", "value="+(mean+standardMultiplier*std)); 
 run("Despeckle"); 
 roiManager("Reset"); 
  
 //initial binary operations 
 selectImage(temp3Title); 
 setAutoThreshold("Default dark"); 
 setOption("BlackBackground", true); 
 run("Convert to Mask"); 
 run("Close-"); 
 run("Fill Holes"); 
  
 //use first two cloned images to paint cell centres onto third cloned image 
(if there appears to be a cell at the location of interest) 
 selectImage(temp1Title); 
 run("Select None"); 
 run("Analyze Particles...", "size=0-Infinity pixel circularity=0.00-1.00 
show=Nothing clear exclude include add"); 
 numROIs = roiManager("count"); 
 j = 0; 
 while(j < numROIs) { 
  selectImage(temp3Title); 
  roiManager("select", j); 
  getStatistics(tempArea, tempMean); 
  if(tempMean > minMeanROI){ 
   if(tempMean <= maxMeanROI){ 
    selectImage(temp1Title); 
    roiManager("select", j); 
    run("Copy"); 
    selectImage(temp3Title); 
    roiManager("select", j); 
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    run("Paste"); 
   } 
  } else { 
   fill(); 
  }   
  roiManager("deselect"); 
  run("Select None"); 
  j++; 
 } 
 selectImage(temp1Title); 
 close(); 
 roiManager("Reset"); 
  
 selectImage(temp2Title); 
 run("Select None"); 
 run("Analyze Particles...", "size=0-Infinity pixel circularity=0.00-1.00 
show=Nothing clear exclude include add"); 
 numROIs = roiManager("count"); 
 j = 0; 
 while(j < numROIs) { 
  selectImage(temp3Title); 
  roiManager("select", j); 
  getStatistics(tempArea, tempMean); 
  if(tempMean > minMeanROI){ 
   selectImage(temp2Title); 
   roiManager("select", j); 
   run("Copy"); 
   selectImage(temp3Title); 
   roiManager("select", j); 
   run("Paste"); 
  }   
  roiManager("deselect"); 
  run("Select None"); 
  j++; 
 } 
 selectImage(temp2Title); 
 close(); 
 roiManager("Reset"); 
  
 //final binary operations 
 selectImage(temp3Title); 
 run("Close-"); 
 run("Fill Holes"); 
 run("Dilate"); 
 run("Close-"); 
 run("Fill Holes"); 
 run("Erode"); 
 run("Watershed"); 
 run("Options...", "iterations=2000 count=5 black pad edm=Overwrite"); 
 run("Erode"); 
 run("Options...", "iterations=2 count=4 black pad edm=Overwrite"); 
 run("Erode"); 
 run("Options...", "iterations=2000 count=5 black pad edm=Overwrite"); 
 run("Erode"); 
 run("Options...", "iterations=1 count=1 black pad edm=Overwrite"); 
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 run("Watershed"); 
 run("Analyze Particles...", "size=10-Infinity pixel circularity="+circValue+"-
1.00 show=Nothing exclude include add"); 
 run("Select None"); 
 close(); 
  
 selectImage(title); 
 run("Revert"); 
 roiManager("Save",path+"_ALL.zip"); 
 roiManager("Reset"); 
 selectWindow(title);  
 run("Close"); 
} 

 


