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Chapter 1

Introduction

Over the last decade there has been considerable increase in the interaction between 

humans and machines, leading to growing research in the fields of Human machine 

interaction (HMI), Human activity recognition (HAR) and Human motion analysis 

(HMA).

In order to achieve the objective of a higher degree of interaction, a machine should 

be able to identify it current environment. It should be able to recognize the presence of 

humans and track them. Finally, it should be able to understand through a variety of 

inputs what it is being commanded to do. These inputs can be of various modalities such 

as visual gestures and voice commands. It is also desirable that the machine be able to 

adapt its response to cues even when specific commands are not present. This will make 

the machine ‘intelligent.’ A major component in this entire scenario is the need for a 

machine to view the world around it and to derive relevant information from the plethora 

of data it has to process. Current research in the area of computer vision aims to fulfill 

this challenge.

For the past few decades, computer vision researchers have been striving to bring 

machine vision at par with its human counterpart, and have achieved varying success 

with that goal. The human brain develops over years (especially in childhood) and sets 

neural pathways in response to all stimuli. We, therefore develop over time the inherent 

capability to detect and track moving objects. Over a period of time, our brain also gets
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trained to recognize the activity being performed, much like supervised learning. We can 

interpret easily the direction of movement and can derive a reasoning of what activity is 

being performed. The same, however, is not as easy to accomplish with a machine.

1.1 Motivation

Advances in this domain (HAR) of computer vision are driven by a wide range of 

promising applications in fields such as robotics, smart rooms [68], surveillance, medical 

diagnostics and kineisiology to name a few. Since understanding of human activities will 

also lead to better synthesis of the same, related research in fields such as computer 

graphics, virtual worlds and avatars is also influenced by new theories in HAR. Other 

promising applications being looked into involve compression technology, and data 

indexing and retrieval systems.

Most of the work done in this area is specific to the application that the algorithm is 

designed for and is limited by the assumptions made for the purpose of recognition. For 

some of the research, the data-capturing environment too is made unrealistically simple, 

for example, the subject only performs activities parallel to a camera, or the background 

is a static green making it easier to separate movement by chromakeying. Since this 

domain is just emerging from infancy, the activities (such as walking and sitting) being 

studied for recognition at this time are also simplistic. Most existing systems are not 

robust to noise and clutter, or poor preprocessing leads to a complete failure all together. 

Robust techniques that have been developed are complex and difficult to implement in 

real time.

2
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The potential applications of research in this area and the current lack of a universal, 

robust method of recognition are the main motivation to develop algorithms for robust 

tracking and recognition of human activities.

1.2 Objective

The objective of any vision based HAR system is to be able to detect, track and 

identify people or objects and their actions. The interaction of a vision system with its 

environment can be either passive, where the environment is simply monitored, or it can 

be active, where the visual system has the ability to control various parameters of the 

acquisition tool (camera) in response to the requirement of the task and external stimuli. 

‘Active vision’ has also been used to refer to vision techniques where structured light is 

projected onto the scene for enhanced capture, however, that is not our intent here. While 

the vision system for action recognition can be intrusive, taking data directly from 

sensors attached to a person’s body, a non-intrusive approach is generally preferred. A 

non-intrusive (non-contact) approach maintains a generality that makes it suitable for 

applications where sensory contact is not feasible, such as surveillance. Data acquired by 

the vision system can be suitably manipulated for the purpose of recognition. We 

anticipate that future research in the domain of computer vision would involve 

developing robust, generalized algorithms for activity recognition and a higher-level 

understanding of human behavior from these activities. The objective of this thesis is to 

develop a robust, non-intrusive, passive and generalized algorithm for human activity 

recognition.

3
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1.3 Major Contributions

This thesis addresses the issue of robust tracking and HAR. The major contributions 

of this thesis in the area of computer vision and pattern recognition are:

1) We propose a novel non-intrusive algorithm based on silhouette directionality for 

recognition of human activities. This algorithm works with monocular 

monochrome images and is fairly view invariant, independent of color of clothing 

and robust to background clutter.

2) We propose the incorporation of Gaussian and Laplacian of Gaussian (LoG) 

weighting functions into a feature-based tracker, to enhance the noise immunity of 

the tracking algorithm.

1.4 Organization of Thesis

The thesis is organized as follows. We review previous research works done on 

HMA in Chapter 2. We also discuss the structure of a basic HMA framework, and 

organize our review according to the methodology adopted by various authors 

corresponding to each step of the basic framework. In Chapter 3, we review feature-based 

tracking with particular emphasis on the Kanade-Lucas-Tomasi (KLT) feature-based 

tracking algorithm. We briefly summarize the objectives of this research and present the 

problem statements that we aim to solve, in Chapter 4. In Chapter 5 we present the 

proposed algorithm for HAR. The experimental setup used to evaluate the proposed 

algorithm is also discussed. In Chapter 6 we present the proposed Gaussian and LoG 

weighting functions to enhance tracking performance. Chapter 7 presents the conclusions 

of this thesis, followed by some suggestions for future work.

4
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Chapter 2 

Review of Human Motion Analysis

Over the past few years, significant research has been carried out for developing 

intelligent human machine interaction (HMI). Natural language understanding, 

knowledge databases, sophisticated tools for reasoning have all contributed towards the 

goal of designing machines that behave more ‘human like.’ A truly intelligent machine 

should be able to extract information from the environment that it is embedded in, 

without the need for any external agent to supply this information. The key aspect to 

interact in a human inhabited environment is the ability of a machine to recognize 

humans and their activities. Recognizing activities will allow different modalities such as 

hand gestures, facial expressions and lip movements to be used for communication with 

the machine, thus greatly expanding the scope for human-machine interfacing. 

Understanding of activities and how they are performed will allow the machine to 

emulate them better, thus providing better synthesis for computer graphics and virtual 

world applications. Being able to segment body structure, track the joints and determine 

the underlying structure of motion of humans will also help in athletic performance 

analysis and medical diagnostics. With the creation of large digital libraries, activity 

recognition will also allow activity-based video retrieval and storage.

We begin this chapter with an introduction to a few selected potential applications

in the area of human activity recognition (HAR) in Section 2.1. In Section 2.2 the

framework of a generic motion analysis system is discussed. In Section 2.3-2.5 we review

in detail the various past approaches for each step of the generic motion analysis system.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Section 2.6 we discuss the assumptions that are generally made in most contemporary 

work related to human motion analysis (HMA). These limitations will provide us with an 

insight into potential areas of future work. We also compare a few methods and their 

performances. The chapter is summarized in Section 2.7.

2.1 Applications

The tremendous potential in research on motion analysis becomes apparent when we 

look at the applications that have benefited or are expected to benefit from research in 

this domain. Table 2.1 lists some of these applications, which are discussed further in this 

section.

Kinesiology: Kinesiology, the study of biomechanics, involves developing models 

of the human body in order to study it at a mechanical level, aiming to improve the 

efficiency of movement. This is also used for clinical studies of orthopedic patients. For 

such studies, detailed information about movement of body parts and joints is needed, 

and this information is mostly gathered in an intrusive manner by placing retro-reflective 

markers [43] or small sources of light such as LEDs [8] on the human body. Bobick and 

Johnson [44] use a magnetic sensor based motion capture framework to obtain three- 

dimensional position and orientation information of the limbs of subjects.

Choreography: HMA in particular can also be used to develop a high level 

description of movements of dance [66], ballet and theatre. However there has been little 

consensus on what the general description should be.

Computer Graphics and Animation: Motion analysis has also been used to study 

and then synthesize realistic motion patterns for virtual world humans [66] [70]. Facial

6
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expression mapping, gait mapping have been performed to create realistic appearance of 

graphic characters and ‘avatars.’ In addition, applications of motion analysis in crash 

simulations have been explored.

Table 2.1: Applications of Human Motion Analysis.

General Domain Specific Application
Kinesiology > Biomechanics

y  Clinical orthopedic studies
> Personalized training

Choreography ^  Ballet moves

Computer Graphics > Virtual reality
^  Games
^  Animation
y  Teleconferencing- Avatars

Surveillance >  Pedestrian detection
> Parking lot surveillance
> Supermarket, ATM surveillance
> Biometric measure

Video Indexing and Retrieval ^  Search engines

Human Machine Interfacing ^  Gesture driven control
^  Social interfacing
^  Lip reading
> Sign language translation

Video Compression ^  Teleconferencing
> Digital movies
y  Video phones

Psychology: Some classical studies in psychology have tried to understand the 

human perception of motion. Pioneering work in this area was done by Johansson [8]. He 

showed through a moving light display (MLD) experiment that humans are able to 

recognize biological motion patterns even when presented with only a few moving dots.

7
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This led to the question whether structural information was indeed required to recover 

motion. Further research by Boyd et al. [18], showed that recognition is possible even by 

non-structural means using the global shape of motion features. Troje et al. at Ruhr 

University [43] have also studied and demonstrated that biologically and socially relevant 

information about a person is conveyed in biological motion patterns. Their 

demonstration reflects how personality traits and emotional expression are conveyed in 

biological motion and how the dynamic part of motion contains more information about 

gender, than motion mediated structural clues. They proposed that their framework can 

be used not only for analysis but also for synthesis of new motion patterns.

Surveillance: Current surveillance techniques generally perform a post-operation 

task and provide detection only after the act has been committed. At times, these 

techniques need manual intervention for real time detection. However, with activity 

detection systems incorporated into ‘smart surveillance systems’ real time detection will 

be possible without manual intervention. Such smart surveillance systems can be 

introduced in parking lots [15], supermarkets and department stores. However, the 

possible conflicts of such surveillance applications with privacy could be a deterministic 

factor governing the implementation of such systems in daily life.

Video indexing and retrieval: With the advent of large video databases, researchers 

are looking into simpler and more effective ways to query videos in the database. A 

particular approach to indexing and retrieval is to query the database using action 

descriptors like ‘videos where person steps into a car and drives away.’ Retrieval of this 

kind will be possible when each video in the database is indexed according to features 

derived from the activities being performed.

8
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Human machine interfacing: Activity recognition will also allow for better human- 

machine interfacing by allowing various input modalities to be developed such as gesture 

driven control of machines or robots [80]. It will also allow communication in noisy 

environments, such as airports and factories where visual clues are essential for 

communication.

2.2 Generic M otion Analysis System

Several works have been done in the area of HMA. These works can be classified 

using various criteria such as dimensionality of space being analyzed (2D vs. 3D), sensor 

multiplicity (single camera vs. multiple cameras), sensor modality (visible light vs. infra

red) and the type of model used. But, in order to get a better insight into the algorithms 

developed in previous work, it is prudent to discuss a generic motion analysis system and 

review existing techniques for each step of the generalized system.

A motion analysis system will typically have the following three basic steps.

1. Detection: It involves finding the answer to the question: ‘Is there motion 

(corresponding to a human) present in the scene?’ It essentially involves low 

level processing of images and is usually the first step in all motion analysis 

algorithms.

2. Tracking: It answers the question: ‘Where is the human moving?’ Tracking is of 

prime importance to systems that involve some kind of history to be maintained 

for the purpose of recognition of action and is usually understood to be an 

intermediate-level processing step. However, at times there is considerable 

overlap between detection and tracking algorithms.

9
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3. Behavior Understanding: It is a high-level vision step, which involves interpreting 

the information derived in the first two steps in order to answer the question: 

‘What is the human doing?’ We anticipate that it is this step of the vision system, 

which will be the focus of much of the future work in this area.

A schematic of these three steps is shown in Figure 2.1. In the next section we will 

review work related to these three primary steps.

Low level processing 

Intermediate level processing 

High level processing

Figure 2.1: Structure of a generic motion analysis system.

2.3 Detection

Nearly every vision-based motion analysis or activity-recognition system starts with 

detection, much like human vision that detects movement foremost before it recognizes 

activities. Detection involves segmenting regions of interest, such as moving car, person, 

or any object of interest, from the background. This background is often referred to as 

clutter. Detection is an important preprocessing step since it initializes all the subsequent 

steps of the algorithms. Hence, it becomes imperative that the detection algorithm be able 

to segment the motion of the object of interest (OOI) accurately. Once the motion has 

been segmented it also needs to be classified as belonging to animate or inanimate object. 

For example, we may need to determine if the motion corresponds to a moving car, a

10
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person or a pet. In addition when multiple entities exist in the motion field, detection 

should also be able identify multiple presences. Thus detection involves motion 

segmentation and object identification (see Figure 2.2) and is classified as a low-level 

vision process. In the following sub-sections we will discuss motion segmentation and 

object identification in detail.

D etection

Motion Segmentation Object Identification

— Background Subtraction 

~  Temporal Differencing 

~  Optic Flow

— Shape based identification 

Periodicity based identification

Statistical Methods

Figure 2.2: Overview of various approaches of detection.

2.3.1 Motion Segmentation

Motion segmentation involves separating moving OOI from the background image. 

A segmentation algorithm is required to be robust to noise and changes in the background 

and illumination. Some contemporary techniques are discussed below.

Background subtraction: Background subtraction is a simple solution to motion 

segmentation. A static image not containing the OOI is taken as a background model and 

a pixel-by-pixel difference between the successive frames and the background model 

gives the motion image. This method however, is not suitable when the background is 

dynamic and involves movement itself. Variations in this technique include different 

ways of computing the background model. The simplest background model can be

11
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created by a time average of static background frames. Instead of the time average, a 

median value of color or gray scale value of each pixel has also been used to create the 

background model. The median value computation has been found to be more robust to 

changes in the background illumination [48].

Temporal differencing: Temporal differencing involves a pixel-wise difference 

between lengths of consecutive frames [50]. The idea originated as two frame 

differencing and progressed to three and multiple frame differencing. Temporal 

differencing is adaptive to changing environments since the history of the background is 

just a few frames old.

Optic Flow: Optic flow techniques [51] [52] [53] are based on the assumption that the 

intensity of pixels in a sequence of images is unchanged. With optic flow it is, however, 

not possible to determine the image velocity in the direction perpendicular to the image 

intensity gradient. This ambiguity is referred to as the ‘aperture problem’. Optic flow is 

computationally very complex and requires the inter frame motion of features, derived on 

the OOI, to be small. It is also difficult to implement in real time and often requires 

special hardware. Optic flow, however, has the advantage that it can segment moving 

objects even in the presence of camera motion. Optic flow can also distinguish between 

rigid and non-rigid motion since rigid motion presents little residual flow.

Statistical Methods: The statistical methods for motion segmentation are generally 

derived from the more basic background subtraction technique. The statistical methods 

compute the statistics of individual pixels or a group of pixels and use that information to 

classify regions in an image as background or foreground. Wren et al. [12] and Stauffer 

et al. [49] have used a mixture of Gaussians to model each pixel in an image and have

12
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used a dynamic approximation to update the model. Haritaoglu et al. [10] have used the 

maximum and minimum intensity values, and maximum variance in these values over 

consecutive frames as statistical parameters to model a background. This technique has 

been found to be more robust to changes in the background conditions.

2.3.2 Object Identification

Object identification is important in cases where multiple objects are in motion. 

Some times the identification has to differentiate between inanimate objects and humans, 

such as motion of cars and pedestrians. At other times when dealing with multiple 

subjects of the same kind, object identification is needed to associate an identity with 

each individual subject, so that they can be tracked and their activities studied 

independently. Objects have been identified based on two criteria, the shape of the object 

and the type of motion being detected.

Shape based identification: Shape based identification [50] is primarily used to 

differentiate between objects of different shapes, such as cars and people. Once the object 

motion ‘blob’ or region has been identified, parameters such as aspect ratio, position of 

extremities and skeletal representation of the blob, are used to classify the object. Shape 

based object identification works well when dealing with rigid body shapes.

Periodicity based identification: Periodicity based identification [54][55] [56] is 

primarily used to differentiate between objects of the same kind that exhibit periodic 

motion. For example, the motion of arms and legs of a person during walk exhibits 

periodic repetition and can be used as characteristics to differentiate and recognize people 

based on how they walk. Thus a time-frequency analysis is able to determine the
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classification of the object. Often the self-similarity observed in periodic motion can be 

used to classify animate and inanimate motion.

To achieve higher identification performance a hybrid combination of both the shape 

based and periodicity-based classification is typically used. In addition, factors such as 

constraints of the structure of the human body and constraints on the movement of 

vehicles can be incorporated to obtain better motion detection.

2.4 Tracking

When an object of interest has been segmented and identified (detection), we may

need to track it over a period of time. This is essential for most recognition algorithms

that require a history of the motion to be maintained. Tracking belongs to the

intermediate level of vision, and involves finding coherent relations between image

features in consecutive frames with respect to color, texture, velocity and position.

Tracking algorithms are mostly application dependant, for example, they depend on

whether hand gestures, facial expressions, whole body parts, vehicles or pedestrians need

to be tracked. Over a period of time a multitude of mathematical tools have been

developed for tracking. Some of the more promising ones are Kalman filtering [57],

condensation algorithm [60][58] and dynamic Bayesian networks [59]. Tracking can also

involve single/multiple views, monocular/stereo cameras and singular/multiple subjects.

In situations where congestion of subjects is expected, multiple cameras may be used to

reduce ambiguity and improve the reliability of data. The use of multiple cameras

requires optimal data fusion in order to determine the best camera view. The most

relevant classification of tracking algorithms is based on whether or not the algorithms

use a priori shape models to track objects, i.e. model based and non-model based
14
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tracking (Figure 2.3). As far as HMA is concerned both the model-based and non-model 

based approaches have evolved from simple 2D to more complex 3D volumetric analysis. 

Tracking scenario is often assumed to be restricted to a ‘closed world’, in which all 

possible objects present in the image sequence are known. This assumption simplifies the 

recognition algorithm significantly.

Tracking

Model Based

— Stick Figures 

~  2D Contour

— Volumetric M odels 

*— H ybrid M odels

Figure 2.3: Overview of methods for tracking.

2.4.1 Model based tracking

Model based tracking generally uses a predetermined model of the subject for

tracking. Features are extracted from the image and mapped to the model’s structure and

motion. However, mapping image features to the model can be a computationally

complex task and also requires a strong segmentation of the moving object from its

background. Such techniques are therefore difficult to implement for blurred sequences.

Models can be created for tracking the entire human body or for more specific parts such

as hands and faces. Rehg and Kanade [45] created a model of the human hand with 27

degrees of freedom (DOF) (see Figure 2.4). Trackers then attempted to align the

projected model lines to the finger edges extracted locally from the image against a static
15

Non-model Based

— Region Based  

~  Active Contours

— Feature Based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



solid background. While hand gestures remain fairly similar over wide range of people 

(differing primarily in skin color), body poses vary significantly from one person to the 

other and also within the same person, depending on his/her moods and clothing. We 

shall now discuss in detail the various traditional models used for the human body.

Stick figures

Stick figure based tracking [61][47] (see Figure 2.5) is based on the fact that the 

inherent structure for motion of the human body is the skeleton. Thus the motion of the 

legs, torso, arms and head can be approximated by the motion of the corresponding line 

segments. Stick figure based models have been developed for the entire human body, and 

for parts of it, e.g. legs and hands. Ali and Aggarwal [21] approximated line segments 

(corresponding to the stick figure) in the image by skeletonization of the whole body, and 

they then computed the angle between the line segments corresponding to the torso and 

legs for further recognition. Cunado et al. [46] computed the Hough transform to extract 

the lines that represented legs in a sequence of images. Stick figures have also been used 

to compute the relative angle between the joints of the limbs for recognition of activities.

Figure 2.4: Hand tracking [45]
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Figure 2.5: Stick figure human model [47]

Two Dimensional (2D) contours

The 2D contours (Figure 2.6) are a close representation of the projection of the 

subject onto the image plane. These contours were initially termed as ‘cardboard people’ 

model in which limbs of humans were represented as connected rectangular pieces of 

cardboard. Human motion constraints, such as anatomical joint-angle limits, body part 

inter-penetration and equilibrium positions, are also applied to the joints of these 2D 

contours, like their stick figure counterparts. However 2D contours are restricted to the 

angle of view of the camera.

Lee and Grimson [62] and Shakhnarovich et al. [63] created 2D models based on 

ellipses fitted to various body segments of the extracted silhouette (see Figure 2.6 (a)). 

They then derived feature vectors such as centroid location of each ellipse, aspect ratio of 

minor and major axis of the ellipse and the orientation of the major axis. These moment 

based feature vectors were then used for recognition. Haritaoglu et al. [10] (see Figure 

2.6(b)) used cardboard model of person standing upright to predict the location of the
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head, torso, legs and feet of the individual in the image. Intille et al. [64] computed blobs 

corresponding to each person in the image and then matched objects to these blobs.

Figure 2.6: 2D contour modeling of the human body, (a) Elliptical model [62], (b) Cardboard model -

W4S [72] and (c) 2D contour human model [71].

Volumetric models

Volumetric models (Figure 2.7), although being computationally more complex, 

allow the tracking model to be independent of the camera viewpoint and better tracking 

results are achieved. In these models the geometric representation of the human body is 

more detailed and precise. Elliptical cylinders, cones and spheres are used to represent 

the various body parts. The surface of the human body is represented as a polygonal 

mesh. The primary advantage of volumetric models is their ability to handle occlusion. 

There is a tradeoff between the accuracy of representation and the number of parameters 

of the model. Gavrila et al. [66] developed a full body model using tapered superquadrics 

with twenty-two DOF: six for torso and four for each arm and leg; and captured images 

from four calibrated cameras (see Figure 2.7(a)). The subjects, however, were required to 

wear a tight-fitting body suit with contrasting colors for each limb.

(a) (b) (c)
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(a) (b)

Figure 2.7: Volumetric Models, (a) Superquadrics model [66] and (b) Volumetric human [73]. 

Hybrid models

Several hybrid models have been proposed in the literature. Green et al. [13] have 

developed a hybrid model called the clone-body model that combines 2D models and 

volumetric models. The clone-body model involves tracking both the edge and the region 

of each subject in a sequence of frames and then dynamically mapping size and texture 

on to the clone model. This approach contrasts previous works, which involved either 

edge or region tracking for mapping a human image to a model. Green and Guan [13] 

have used particle filtering (condensation algorithm) to calculate the joint angles. Other 

authors have used the Kalman filter, instead of particle filters, although it is a 

considerably more complex algorithm. The output of the particle filter at a given time- 

step is an approximation of the probability distribution of likely joint angles, while the 

output of the Kalman filter is a single estimate of the position and covariance of joint 

angles. This gives particle filtering the advantage of maintaining multiple hypotheses and 

therefore being more robust to clutter. Once an estimate of the joint angles in the next 

frame is computed, HMMs can then be used to infer the human movement that could

have produced the observed set of joint angles.
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Most model based techniques encounter the problem of matching a human image 

extracted from the video sequence frame to its abstract representation by models of 

varying complexity. This problem in itself is non trivial, and is governed by the number 

of model parameters and the efficiency of the segmentation algorithm.

2.4.2 Non model based tracking

The highlight of non-model based tracking [69] is the idea that structural information 

is not always required to track an object and complexity can be reduced by using some 

other method of tracking. We will now discuss in detail the various non-model based 

tracking techniques.

Region based tracking

The region based tracking algorithms identify a ‘blob’ or connected region in space 

that is associated with each OOI and track it over time using a similarity measure or a 

cross correlation parameter. This method however suffers from two major drawbacks. 

Firstly, shadows often result in incorrect ‘blob’ representation. Secondly, in situations 

where multiple subjects are present together, congestion and occlusion leads to merging 

of the blobs and individuality is lost. A potential solution of this problem is the use of 

multiple cameras.

Active Contour based tracking

Active contours or ‘snakes’ are based on direct extraction of the bounding

representation of the subject. Snakes are splines that possess an internal energy function,

defined by their configuration and an external energy configuration, defined by the image

energy. Given an initial set of points on the snake, the snake tries to achieve a position
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that results in a local maxima of the energy functions. Though active contours are less 

computationally complex than region based tracking they need to be initialized as 

separate contours for each individual subject. This initialization can be difficult for 

complex objects. Niyogi and Adelson [74] have used snakes to recover the fronto-parallel 

walker’s body contours. These recovered contours can be further used to build a stick 

model of the walker and recognize activities based on the joint angles computed from the 

stick model.

Feature-based tracking

The foundation of feature-based tracking is the idea that computational complexity is 

reduced when tracking prominent features of the object, instead of the whole region of 

the object or its contours. Feature-based tracking involves feature extraction and feature 

matching. Parameters such as comers, color information and texture have been used as 

features for the purpose of tracking. There are two broad approaches to feature-based 

tracking —  dynamic and static feature tracking. Feature tracking is termed static when 

features are extracted in each frame a priori and the algorithm computes the optimal 

correspondence between them. Various parameters such as entry and exit of features, and 

cost functions for trajectory smoothness have been investigated for static feature-based 

tracking. Particle Image Velcoimetry (PIV) [36] is one such application where features 

undergo random rapid movement and is best solved by static feature-based tracking. In 

dynamic feature-based tracking the features are determined and tracked over consecutive 

frames dynamically, estimating motion of the feature and searching for it in the next 

frames. Popular algorithms such as the KLT feature-based tracker have been developed
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on the principle of dynamic feature-based tracking. In Chapter 3, we discuss feature- 

based tracking, with particular emphasis on the KLT algorithm.

An issue with feature-based tracking is the tradeoff between feature complexity and 

tracking efficiency. Lower level features such as coordinate locations of edges are easier 

to extract but relatively more difficult to track since it is difficult to establish a one to one 

correspondence between them. Higher-level features such as blobs and 3D volumes are 

easier to track but difficult to extract.

2.5 Behavior Understanding

Although behavior is a term generally associated with humans in computer vision 

research, it can also be associated with more inanimate objects such as vehicles and 

robots. The path-plan of the vehicle while driving on a highway or while doing parallel 

parking is also indicative of the behavior of the vehicle. As such, we will concentrate 

more on reviewing human motion patterns to derive behavioral understanding. Behavior 

understanding involves two steps: Action recognition and description. We will now 

discuss selected related works in these two steps.

2.5.1 Action recognition

In simple words, action recognition is a classification problem between unidentified 

test sequences and pre-stored typical activity sequences. Some important requirements of 

an action recognition algorithm are to make the training and recognition robust to small 

spatial and temporal variations. Some techniques for activity recognition are discussed 

below.
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Dynamic Time Warping

Dynamic time warping (DTW) is a technique that was developed primarily for 

speech recognition in the early days. It has since been applied effectively for HMA [78]. 

DTW uses an optimum time expansion and compression function to perform a non-linear 

time alignment of two signals. This technique can be explained best as a ‘temporal 

template’ based dynamic matching of patterns and is conceptually simple and robust. 

When dealing with images it has the advantage of being able to work with inconsistent 

time scales of the test frames and the reference frames. Myers et al. [67] have proposed 

that given a test pattern (sequence of frames) of length Q and reference patterns of P 

templates, an optimal match between test and reference patterns can be found by dynamic 

programming. The order of complexity of matching is 0(PxQ ), if no constraints on 

pattern matching are applied. The complexity reduces to O(PxQ), if the pattern matching 

is constrained. Rao et al. [23] have computed the spatio-temporal curvatures of 

trajectories of moving objects in the videos and used DTW to match these trajectories 

based on a view invariant similarity measure.

Neural Networks

Neural networks are also promising for analyzing time varying data. However, a 

large set of data is generally required to train the network. Several enhancements to 

neural networks have been made to incorporate time-delayed functionality. Yang and 

Ahuja [77] have applied time delayed neural networks for hand gesture recognition and 

achieved a high recognition rate.
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Principal Component Analysis

Principal component analysis (PCA) is often used to reduce the dimensionality of the 

feature space, which in turn reduces the complexity of computation. It is a mathematical 

technique that transforms possibly correlated variables to smaller number of uncorrelated 

variables. PCA is, essentially, a linear basis transformation that decomposes original data 

into a number of components. The first few principal components account for most of the 

relevant information and thus result in a compact representation of the features extracted. 

Mathematically, the principal components are the Eigen vectors of the covariance matrix 

of the original data. PCA can capture redundancy in data only when the data lies within a 

linear subspace (of the original data) of low dimensionality. If the data is low 

dimensional but exists in a non-linear manifold, then PCA will not be able to reduce 

redundancy in data. PCA has been used on data sets for pedestrian detection [65] (see 

Figure 2.8), hand gesture tracking and in the Bio-walker project [43].

Figure 2.8: The first few Eigen vectors generated from PCA analysis of a pedestrian ([651). 

Fourier Analysis

Fourier analysis uses complex exponential, orthogonal basis functions, and can lead 

to data decomposition much like PCA. Cunado et al. [46] extracted lines corresponding 

to the legs of human subjects from a sequence of images depicting walking. They then
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treated the motion of these lines as simple harmonic motion of two pendulums. Fourier 

analysis of this harmonic motion revealed frequency components that were used further 

as a gait biometric. Both the Fourier magnitude and phase spectra can be used to enhance 

the analysis. For other periodic activities such as jumping, running and skipping also, a 

Fourier analysis of data allows matching with predetermined patterns of trained activities. 

Fujiyoshi et al. [22] have extracted a star representation from the extremities of the 

human silhouette and performed Fourier analysis of this representation for gait cycle 

detection and recognition.

Template matching

In this technique, an image sequence is converted into a static shape pattern, which is 

compared to pre-stored prototypes for recognition. Template matching leads to a loss of 

the dynamic characteristics of motion and is more sensitive to variance in the duration of 

movement. Bobick et al. [20] have created two component temporal templates: Motion 

History Images (MHI) and Motion Energy Images (MEI) to recognize human 

movements. The MEIs (see Figure 2.9) are binary images that represent where motion 

has occurred in a sequence whereas the MHI are scalar images where intensity at each 

location is a function of the local motion history at that location. These templates are 

view specific and were matched against models of views of different movements. Collins 

et al. [75] used temporal templates to establish a baseline method for human 

identification. They classified body shape and gait by performing nearest neighbor 

matching among correlation scores.
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BDDBDD
Figure 2.9: MEI of six aerobic exercises [20].

State Space approach

Image sequences depicting motion can be noisy. The activities can be occluded or 

the background can be too cluttered for a good segmentation. In such cases recognition 

calls for a probabilistic framework. In such a framework the recognition decision is made 

in favor of the activity with the highest probability of occurrence. State representations 

and Hidden Markov Models (HMM) are probabilistic in their approach. The state space 

approach defines each static pose of the body as a state, e.g. states si, s2 and s3 in Figure 

2.10. The states are connected to each other by certain state transition probabilities, e.g. 

probabilities p2, p4, p5 and p6 in Figure 2.10. Any motion sequence is considered to be a 

set of directional transitions between states. This approach does not have a time duration 

issue since a long activity could be represented as a state repeatedly transiting to itself, 

e.g. transitions corresponding to probabilities p i, p3 and p7 in Figure 2.10.

HMM are variants of stochastic state machines. Motion can be modeled as an HMM

with a finite set of output probability distributions. Galata et al. [76] used variable length

Markov models (VLMM) for modeling human behavior. They used VLMM because of

their more powerful encoding of temporal dependencies. Yamato [82] developed low-

level silhouettes of human movement (tennis strokes) and vector quantized them to use as
26
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inputs to the HMMs. Bregler [81] proposed a probabilistic decomposition of human 

motion at various levels of abstraction and showed how probability distributions 

propagate across space, time and levels of abstraction. Several other HMM based 

approaches have also been proposed for modeling gait and for human activity recognition 

[79] [16].

p4

Figure 2.10: An illustration of state diagram and associated transition probabilities.

Pattern Classifier

Pattern classification is a widely used method for recognition of motion and 

activities. It attempts to measure the similarity between standard patterns and patterns 

derived from the test cases. Nearest neighbor algorithm (NN), Nearest Neighbors with 

class exemplars (ENN) and the K- means clustering algorithm are some of the standard 

pattern classification algorithms that have been used in past works. These algorithms use 

similarity measures such as Euclidean distance, Procrustes distance [27] and Mahalanobis 

distance [20].
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2.5.2 Action description

Researchers are also involved in building a grammar of movements, much like the 

development of phonemes for processing speech and American Sign Language 

recognition (ASL) [83], The smallest contrastive dynamic units of movement have been 

termed by researchers as ‘movemes’ [81], ‘dynemes’ [13], and sign language motion as 

‘cheremes’ [84], The entire recognition process in a semantic system becomes a 

transitional set from one dyneme to another, with the constraints of motion governing 

possible combinations. Green et al. [13] have developed a skill model, representing each 

movement as a linear sequence of dynemes. Ivanov and Bobick [15] have developed a 

stochastic parsing method in which they divided the basic problem of recognition into 

two levels. At the first level, they used independent probabilistic event detectors to 

predict the possible ‘low-level’ event. The output of this low level provides the input for 

a stochastic context-free grammar parsing mechanism. The grammar parsing level allows 

prior knowledge and temporal constraints to be included in the recognition framework. 

They demonstrate the effectiveness of their framework with surveillance and hand 

gesture recognition experiments.

2.6 Assumptions in related work

Most of the related work in HMA is based on certain limiting assumptions. We will

discuss these assumptions briefly in order to understand the potential areas of further

research in this field. Molesund et al. [3], in their survey of computer vision based motion

capture, classified typical assumptions into two broad categories: assumptions related to

movement and assumptions related to appearance. The first category is related to the

movement of the subject (or the camera) in the relevant environment. The second
28
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category is related to the appearance of the environment and the subject. We list these 

assumptions in Table 2.2

Table 2.2: Typical assumptions made in related works on human motion analysis.

Assumptions related to movement Assumptions related to appearance
1. Subject is always present in the Environment

view space. 1. Constant lighting (well lit).
2. The camera is stationary or in 2. Stationary background.

motion at constant speed. 3. Uniform (chromakey) background.
3. Only one subject in view at one 4. Known camera parameters.

time. 5. The ground plane is flat.
4. Subject faces camera at all 

times. Subject
5. Movements are parallel to the 1. Known start pose.

camera plane. 2. Known subject and model.
6. No occlusion, self or otherwise 3. Markers placed on subject.
7. Movements are slow. 4. Special colored clothes.
8. Motion pattern of subject is 5. Tight-fit clothing.

known. 6. Subject within a specified age 
group.

The first three movement-related assumptions are almost universal to all HMA 

algorithms. The fourth assumption of the subject facing the camera is related more to 

applications such as face tracking and lip reading, where it is important that the face be 

visible to the camera at all times. The fifth assumption of the movements being parallel to 

the camera plane is related to applications such as gait analysis and biomechanics, where 

the most important features of movement are visible only in the lateral plane. The sixth 

and seventh assumptions are also universally used as they simplify the analysis of 

motion. Applications where the analysis of motion, and not recognition, is the primary 

motive, a priori knowledge of subject motion pattern simplifies the problem, which is the 

final assumption related to movement.
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Assumptions made with respect to appearance can be related to either the 

environment or the subject. The first assumption related to the appearance of the 

environment is that the lighting in the area of capture should be constant. This basically 

holds for indoor sequences and implies that the scene is well lit. The second and third 

assumptions of a stationary uni-colored background also relate practically to indoor 

scenes. A stationary, uniform background results in ease of segmentation but may not 

always be true in real life; therefore this is a major limiting assumption. Assumptions 

four and five simplify calculation of the depth of subject and image registration. Subject 

appearance related assumptions are the most limiting factors of an algorithm, as these 

reduce the scope of real life implementation. The first two subject appearance related 

assumptions help in initializing the recognition algorithms by specifying some model 

parameters a priori. The third assumption makes tracking and data capture more 

tractable, but is intrusive and therefore undesirable for many applications. The fourth and 

fifth assumptions are related to the subject’s clothing and are probably the most 

significant limiting factor of any algorithm. Practically, it cannot be assumed that the 

subject will always wear clothes of a certain kind or fit. The last subject appearance 

related assumption limits the age of the subject to be with a certain range. Most of the 

human motion analysis algorithms are designed for humans in the age group of 20-50. 

However, it is important to note that the movement of the subject is greatly influenced by 

his/her age. Most researchers, however, often neglect this factor.

It would be prudent at this stage to tabulate the activity recognition rates achieved by 

researchers so far with the various approaches to detection, tracking and recognition of 

activities (see Table 2.3). It is also worth mentioning that most of the applications
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developed so far relate to human identification based on gait and only a few works have 

been done for recognition of generic activities.

Table 2.3: Activity recognition rates achieved so far.

Authors Activity being 
recognized

Primary technique Recognition
rates

Cunado et al. [46] Gait Fourier Analysis 80-90%
Benabdelkader et al. 
[93]

Gait PCA 93%

Ali etal. [21] Sit, Stand, Stoop Joint angle computation 71-89%
Sun et al. [16] 8 Martial arts poses HMM 30-90%
Ben-Arie et al. [17] Walking, jumping 3D Model based, 

multidimensional indexing
70-97%

Tanawongswan et 
al. [90]

Gait Joint angle, DTW, PCA 73%

Oliver et al. [92] Office related, phone 
conversation, presence 
in cubicle.

HMM 72-99%

Niu et al. [92] Stalking behavior Statistical properties of 
trajectories

80-100%

2.7 Summary

In this chapter we presented a comprehensive review of the state of the art 

techniques for HAR. We also discussed the limiting assumptions made by these 

techniques. It is these assumptions that limit the application of contemporary methods as 

a universal solution for HAR. The development of a universal solution still eludes 

researchers and it is a motivating factor for further research in this domain.
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Chapter 3 

Review of Feature Based Tracking Algorithms

Object tracking, while a simple task for humans, is monumentally more challenging 

for computer vision systems. We have mentioned the potential applications for object 

tracking in Chapter 2 and also discussed the past approaches that include region based, 

contour based and feature-based tracking algorithms. In this chapter we will review 

feature-based tracking, followed by a detailed discussion of a standard, often used 

algorithm called the KLT (Kanade-Lucas-Tomasi) algorithm.

As discussed in Chapter 2, feature-based tracking has been used for applications 

involving human tracking. Besides tracking human motion, feature-based tracking has 

been used for applications such as digital particle image velocimetry DPIV [36]. Particle 

image velocimetry involves illuminating a flow of fluid or gas with pulsed laser and 

tracking the movement of the flow. Researchers have used optic flow techniques and 

feature-based tracking methods for accomplishing particle image velocimetry (PIV) 

digitally.

3.1 W hat is a Feature?

The foremost and fundamental question to be answered at this point is, ‘what is a 

feature?’ Features are sections of the image that are easily highlighted for the purpose of 

detection and tracking. Verestoy et al. [30] have defined features as local regions of 

interest. Features can be selected based on some measure of texture, edge sharpness, 

color and comers. Comaniciu et al. [41] have used color as the target feature in their
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algorithm to track ‘non-rigid’ objects using mean shift. In the following section we look 

at the difference between tracking rigid and non-rigid bodies.

3.2 Tracking of Rigid and Non-Rigid bodies

Rigid bodies themselves do not change shape as they undergo motion, thus rigid 

body motion is simpler to track since the transformation of the body itself is a tractable 

problem. For relatively slow motion it is easier to compare local features, such as edges 

on a rigid body. However, the assumption of shape constancy is not always valid in cases 

where there are large changes from one frame to the other. Tracking non-rigid bodies is a 

more complicated task because of the lack of consistent features to track. Often object 

segmentation for non-rigid bodies is unreliable thus making it difficult to even extract 

local features, let alone track them. Halevi et al. [85] have tracked the motion of water 

flowing down a stream and the motion of ants (non-rigid bodies) using ‘disturbance 

maps’. These disturbance maps are obtained by a linear subtraction of the temporal 

average of the previous frames from the new frame.

3.3 Static vs. Dynamic methods

As mentioned in Section 2.4.2, feature-based tracking techniques can be broadly 

classified into static and dynamic methods. Static feature-based techniques aim at finding 

the best features in all frames of a sequence and then establish the optimal 

correspondence between them. They are also referred to as feature linking algorithms. 

Dynamic methods on the other hand find the best features only in the first few frames (it 

could also be a manual initialization) and then attempt to dynamically find the 

displacement of these features in the next frames. A popular dynamic image registration
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technique was proposed by Lucas and Kanade [37], which makes use of the spatial 

intensity gradient of the images to iteratively find a good match between frames. Later, 

Shi and Tomasi [38] extended this technique incorporating an affine transform to handle 

rotation, scaling, and shearing of objects. This algorithm is popularly known as the KLT 

algorithm and has been widely used since its inception.

Static algorithms are preferred when tracking a dense field of similar objects. The 

IPAN tracker developed by Verestoy and Chetverikov [30] is one such non-iterative 

algorithm that advocates static feature-based tracking. Other static tracking algorithms 

developed by Rangarajan and Shah [34], Sethi and Jain [35] are also based on the feature 

linking technique and differ primarily in the trajectory optimization strategies and cost 

functions.

All feature-based tracking algorithms encounter the non-trivial problem of motion 

correspondence. Researchers attempt to apply 1-1 mapping constraints to resolve motion 

correspondence. Static algorithms can be further classified, according to the method used 

to resolve correspondence, as statistical methods, heuristic methods and qualitative 

methods. We briefly discuss these methods in the following sections.

3.3.1 Statistical Methods

Statistical methods of feature tracking represent the location of feature points as 

probability density functions and not as specific locations. Some of the existing statistical 

methods include the Multiple Hypothesis Tracker (MHT) [86] and the Joint Probabilistic 

Data-Association Filter (JPDAF) [87]. The strength of the statistical approach lies in its 

robustness to clutter, however, it has several limitations. Firstly, this approach assumes 

that feature points move independently, which is not always true. Secondly, these
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techniques typically involve several probabilistic parameters, such as a priori 

probabilities for false measurements and missed detections. It is not a trivial task to 

determine these parameters optimally when the designed systems are sensitive to 

parameter settings. Finally, these methods are computationally very demanding with their 

complexity increasing exponentially with the number of points being tracked.

3.3.2 Heuristic Methods

Other researchers have attempted to solve the motion correspondence problem with 

deterministic solutions. The most common approach in these methods is the use of a 

greedy exchange algorithm. Not only are the heuristic methods computationally simpler, 

but they also have a smaller set of parameters to be investigated. It is easy to incorporate 

additional constraints such as motion velocity and smoothing cost functions to the 

heuristics. Shafique and Shah [42] presented a non-iterative greedy algorithm for multi

frame point correspondence, using the KLT algorithm to detect the features, and a 

weighed digraph to formulate the framework for the greedy algorithm.

3.3.3 Qualitative Modeling

Veenman et al. [40] incorporated available motion knowledge to build motion 

models, which resolve the motion correspondence to a certain degree. They proposed 

three motion models: individual motion models (IMM), combined motion models 

(CMM) and global motion models (GMM). They also discussed different strategies to 

satisfy these models. IMMs, as the name suggests, represent the motion of individual 

features. Properties such as inertia and rigidity were incorporated in the individual 

models. Motion smoothness constraint was imposed on a set of points to develop the
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CMMs, and was extended over the whole sequence to develop the GMMs. These models 

made it easier to find specific strategies for optimal solutions among the large number of 

candidate solutions.

3.4 KLT Tracking algorithm

The KLT algorithm, introduced in Section 3.3, is a pioneering algorithm in feature- 

based tracking literature. The fact that it still finds extensive use ten years after its 

inception speaks well for the underlying theory. Over time, the algorithm has been 

modified and enhanced to suit specific applications. Gonzalez et al. [39] have used the 

KLT algorithm to extract feature points in an image. These feature points were then used 

to initialize a point wise human motion tracker. The coherence between the 

displacements of the features was used as a constraint to guide their tracker. Bourel et al. 

[88] and Sarris et al. [89] have used the KLT algorithm to pick features on a human face 

and used facial geometry constraints to make the tracking robust.

The development of the KLT algorithm started off as an image registration technique 

to find the best match between two images and later developed into a definition of good 

features to track. We present the details of the KLT algorithm in the following section.

3.4.1 The algorithm

The original algorithm proposed by Kanade and Lucas [37] was developed based a 

Newton-Ralphson style iterative search method. At that time the tracking methods in use 

were generally based on the following two criteria: image correlation or sum of squared 

differences (SSD). If there was small inter-frame displacement in the image then feature
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windows could be tracked by optimizing some defined matching criterion. Kanade and 

Lucas recognized that there were two main issues with selecting features.

1) If the selected features are poor, such as the edge of a light reflection on a glossy 

surface, then the tracking will not be optimal, and such poor features will be lost 

or will give erroneous tracks.

2) The inherent projection of features from the 3D real world to a 2D image plane, 

may result in occlusion of features and the tracker can drift away from the 

original target.

Shi and Tomasi modified the algorithm developed by Kanade and Lucas to 

incorporate affine motion such as linear warping and translation. The main objective of 

the KLT algorithm is to extract features in the first frame of an image sequence and track 

them in the next frame. There are two major concepts in the KLT algorithm, namely 1) 

track-ability and 2) dissimilarity, which are discussed below.

3.4.2 Track-ability

The KLT algorithm defines a good feature as a textured patch that has high intensity 

variations in both the x and y directions. The best features to track, such as edges and 

comers, can be determined by analyzing multiple pixel areas called ‘feature windows’ 

(FW) of size X x Y , in the vicinity of the edge. They define the intensity function of a

textured patch as g x , g y and compute the local intensity variation matrix as:

Z  =

X - l Y - l  X - l Y - 1

x = 0  y = 0  x = 0  y = 0
X-1T-1 X - l Y - 1

x = 0  y = 0  x = 0  y = 0
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Let the eigen values of this Z matrix be denoted by Xi and X2. A good feature is 

determined as one whose minimum eigen value exceeds a predetermined threshold X.

min(XvX2)>X

3.4.3 Dissimilarity

The KLT algorithm also defines a dissimilarity metric, which quantifies the change 

of appearance of a feature between the first and the current image frame. Let B(x,y,t) be

the first frame in which the FW is initialized, and A(x+Ax,y+Ay,t+t) be the next frame 

in which the FW is being tracked. The displacement d  = [Ax Ay] of these FWs is 

approximated with a translation. The KLT algorithm attempts to iteratively find ‘ d ’ such 

that the dissimilarity over the feature window in the second frame is minimized. The 

dissimilarity ' E' is computed as the sum of squared differences (SSD), and is calculated 

using the following equation:

X - l  Y - 1

Minimize: E  = + Ax,y + A y,t + r)  -  B ( x , y , t ) f  w( x , y )  (3.1)
,r=0 _y=0

where, the standard KLT uses w(x, y) = L  ^  (3.2)
[0 elsewhere

In practical implementations of KLT, if ' E' is high, the feature is termed lost. Using 

the first order Taylor expansion and the image derivatives ( g n i = x , y ) ,  Eq. 3.1 is 

rewritten as:

Zd = a (3.3)

where
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X - l Y - l  X - \ Y - \

X Z # *  I I U ,
x = 0  y = 0 x = 0  y = 0

X - l Y - l  X - l Y - 1

tTSxSy
jt=0;y=0 *=0;y=0

X - l  Y - 1

x= 0  y= 0

The tracking algorithm is implemented to find the solution to Eq. 3.3.

3.4.4 Limitations

The KLT algorithm implements an affine matching, also referred to as feature 

template matching, approach for motion correspondence. However, large inter-frame 

displacements of features and noisy image sequences may lead to failure of the KLT 

tracking algorithm.

3.5 Summary

In this chapter we reviewed various state of the art techniques for feature-based 

tracking and also discussed in detail the KLT tracking algorithm. The KLT tracker has a 

noise limitation and cannot track features in noisy image sequences. We will propose a 

solution to this limitation in Chapter 6.
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Chapter 4 

Problem Statement

The goal of this thesis is to develop a robust algorithm for object tracking and human 

activity recognition. We define our primary and secondary objectives as follows:

1. Primary Objective- Efficient Human Activity Recognition.

2. Secondary Objective- A Noise Immune Tracking System.

4.1 Problem Statements of Primary Objective

A simplified framework for human activity recognition (HAR) system has been 

discussed in Chapter 2. The foremost task performed in all current techniques is the 

separation of the moving subject of interest from the background. In Section 2.3 we 

investigated the existing techniques for background-foreground separation. Although 

these techniques are robust and efficient, most of them are computationally expensive. 

This leads us to the formulation of our first problem statement.

Problem Statement 1: Which of the existing methods for background-foreground 

separation meets our requirement o f a robust, efficient and computationally simple 

technique?

We discuss the solution to this problem statement in Chapter 5 (Section 5.1), where 

we implement a background-foreground separation technique, suitably modified to meet 

our requirements of low complexity and high efficiency.
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Various existing techniques of human activity recognition have been discussed in 

Chapter 2. These techniques are limited in their approach by assumptions regarding 

clothing, as they often require tight form fitting clothing of specific colors to be worn by 

the subjects. Some of the techniques only work with clean uniform colored backgrounds 

with the test videos shot indoors. Other factors such as limited camera view angle also 

reduce the scope of most contemporary work to recognition of activities that are 

performed parallel to the camera view plane. These assumptions limit the feature vectors 

that can be derived from the images. The limited feature vectors are used further for the 

purpose of recognition. The assumptions discussed above lead to the formulation of the 

second problem statement.

Problem Statement 2: Is it possible to develop HAR algorithm, which is 

independent o f factors such as clothing, background, view angle and zoom depths, and 

is not specific to individuals?

We address this problem in Chapter 5, where we propose a novel human activity 

recognition algorithm, which does not involve special clothing, background or viewpoint 

limitations. We also discuss the theoretical aspects of our proposed algorithm.

The third problem statement involves the deliverable element of our research.

Problem Statement 3: Are their potential applications that could benefit from a 

direct implementation of this research work?

We present a few applications that will benefit greatly from our research, in Chapter 5 

Section 5.8.
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4.2 Problem Statement of Secondary Objective

We have reviewed feature-based trackers in detail in Chapter 3 and also discussed 

the KLT algorithm. It has been found that the standard implementation of the KLT 

algorithm fails when the input image sequences are noisy. Noisy sequences may be 

caused by conditions such as poor camera exposure and poor lighting conditions. In these 

noisy cases the tracking algorithm will lose the feature in the next frame or choose an 

erroneous correspondence between features. This drawback leads us to formulate our 

fourth and last problem statement.

Problem Statement 4: Is it possible to enhance the performance of feature-based 

trackers in noisy environment?

We discuss the performance enhancement achieved by the incorporation of two proposed 

weighting functions with feature-based tracking in Chapter 6.
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Chapter 5 

Human Activity Recognition

As humans we have the inherent ability to easily interpret actions from silhouettes. 

This ability is demonstrated during various dances and theatrical plays where only the 

performer’s shadow is displayed on a screen. The audience can easily recognize various 

actions from the silhouettes without seeing any structural details. Using a similar 

principle, in this chapter, we propose an algorithm that will allow a machine to recognize 

activities based on silhouettes, without the need to compute motion of individual body 

parts.

We present the various steps of the algorithm in Sections 5.1 through Section 5.5. 

The experimental setup and the performance evaluation of the proposed algorithm are 

described in Section 5.6 and Section 5.7, respectively. Potential applications of the 

algorithm are discussed in Section 5.8. A summary of this chapter is presented in Section 

5.9.

An overview of the proposed algorithm is shown in Figure 5.1. The algorithm can

be divided into three steps based on low-level, intermediate-level and high-level vision.

The low-level vision step includes video data acquisition, background-foreground

separation, silhouette extraction and representation. The video data acquired in our

experiment is monocular, and an adaptive background-foreground separation algorithm

extracts motion information as foreground from the video data. However, a foreground is

often corrupted by noise and may consist of disconnected components. Therefore, we use

morphological operations and connected component analysis to extract a clean connected
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silhouette. We then represent the contour information of the silhouette as a chain code 

from which the directional vectors (DVs) are extracted in the subsequent (intermediate 

level) step. Note that direct silhouette matching with a template of activities is not 

always optimal, as silhouette shape generally changes non-rigidly depending on clothing, 

activity and is also specific to individuals. In order to achieve scale invariance, we 

normalize the extracted directional vectors. At the high-level vision step, we perform 

vector space analysis and clustering of the DVs to compute the activity decisions for each 

frame, and smooth these decisions over time to maintain smooth activity transitions. The 

details of each step are presented in the following section.

Data AcquisitionI
Background foreground 

separation

+
Silhouette extraction and 

representation

I
Feature vector extraction 

and normalization

+
Vector Space Analysis

+ ------
Temporal Smoothing

I
Activity Decisions

Figure 5.1: Flowchart of the proposed algorithm.
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5.1 Background-Foreground Separation

Separation of the background and foreground is the first step of the proposed algorithm. 

In Section 2.3 we reviewed several methods such as background subtraction, optic flow 

and statistical models for separating the moving foreground from a relatively static 

background. In the proposed algorithm we use the statistical background modeling 

method. Here, we generate a statistical background model by computing the mean and 

variance of intensity of each pixel over a set of initial frames. This method has been 

found to be more robust to noise, shadow and change in light conditions than simple 

background subtraction or optic flow. We assume a relatively stationary background and 

use an adaptive threshold t{x,  y ) for each pixel p(x,  y), assuming noise at each pixel to 

be time varying. Each pixel of the current frame is thesholded against the corresponding 

pixel of the background model to extract foreground information. We restrict our 

algorithm to monochrome images (if the original images are in color, then they are 

converted to intensity images). The mean intensity ju(x,y)  at location (x,  y), 

corresponding to the ‘N’ initial frames is computed as:

1 N
M{x,y) =—Yip(x,y,i) iV “ 7

where, p{x,  y;i) is the pixel value at location (x,  y ) in the lilh' frame.

The threshold for each pixel in the background model is calculated using the following 

equation.

r(x ,y) = max{|in(x,y)-p(jc,y;j)|] for (1 <i<N)

To obtain the foreground we classify each pixel in frame ‘k’ (k > N ) into the foreground

bitmap F(x,  y : k)  according to the following inequality:
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i f  \ p ( x , y ; k ) - f i ( x , y ) \ < r ( x , y )  

pixel is background F(x,  y : k) = 0
else

pixel is foreground F(x,  y : k) = 1

f 0; background 
where F(x,  y : k) -  <

[ 1; foreground

5.2 Silhouette Extraction and Representation

Subsequent to background-foreground separation, each video frame is represented as a 

bi-level foreground-background image. In order to extract the silhouette, noise present in 

the foreground is removed by performing morphological operations such as erosion and 

dilation. In our experiments, we did not encounter cases with unconnected foreground. 

However, in cases where the foreground is broken, connected component analysis can be 

used to link the broken components. Subsequently, the silhouette contour is obtained by 

filtering the foreground bitmap frame with a Laplacian of Gaussian filter. The results of 

these operations are illustrated in Figure 5.2.

(a) (b) (c) (d) (e)

Figure 5.2: Illustration of silhouette extraction, (a) Separated foreground, (b) First erosion, (c) 

Dilation, (d) Second erosion, (e) Edge extraction.
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Since the silhouette is often used to derive the feature vectors for classification, the 

method of silhouette representation is of particular importance. In the past, silhouette 

contours have been represented using various techniques. Cuntoor et al. [14] represented 

the silhouette contour as distance of the contours from reference vertical and horizontal 

lines. Wang et al. [27] computed the complex coordinate representation of the silhouette 

contour using the centroid of the silhouette as the origin of a complex coordinate system. 

We represent the silhouette contour as a chain code. We assume that each pixel is 

connected to its eight neighbors, and therefore eight chain code vectors are used (see 

Figure 5.3(d)). We traverse the silhouette contour from the highest-leftmost point in a 

clockwise direction to generate a chain-code signature of the silhouette contour (see 

Figure 5.3). Since the chain code is cyclic in nature, the starting point of the code does 

not affect the results of the algorithm.

Starting Po: '

Figure 5.3: Illustration of silhouette representation, (a) Silhouette contour (color inverted), (b) 

Pixelized section of contour, (c) Chain code, (d) Chain code vectors used.

(a) (b) (c)
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5.3 Feature Vector Extraction and Normalization

Classification requires that relevant features be extracted from the chain code 

representation of the silhouette contour. In order to determine a generic feature to extract 

from any silhouette representation, let us consider a relation 91 of the silhouette 

representation. This relation 91 can have n attributes X. (;'= l,2,..,n) such as

directionality, color and texture. The value set y , -  ( v ; ( l ) , v ; v j  ( / r ) )  of attribute X j  is 

the set of ‘ X ’ values of attribute set X ; that are represented in 91. For example, if the 

attribute in question is palletized color (with pallet size of 256), then the value set V. will 

be the set of 256 colors present in the relation 91. The individual elements of the data 

distribution should always belong to a value set. The frequency f .(k) of a value Vj(k) is

the number of tuples in 91 with attribute X j - V j ( k ) .  The silhouette representation 

generated from each frame can be approximated as a data distribution D ■. In the case 

where the silhouette is represented as a chain code, the data distribution Dj can be 

evaluated as the histogram of the chain code generated for each video frame. Note that 

the distribution of an attribute X  . will be the set of pairs shown below:

We construct a data distribution on the ‘directionality’ attribute (henceforth ignoring

subsets. When grouping into dyads {i.e., by considering two chain code vectors at a time) 

and triads (three chain code vectors at a time), /? increases depending on the constraints 

applied. A serial partition class is used with frequency as the sort parameter to obtain the

(5.1)

the subscript ‘j ’) by partitioning the data distribution of X  into ft (=8) mutually disjoint
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distribution of chain code vectors. This distribution of chain code vectors is the 

directional vector derived from the silhouette contour for each frame.

An effective activity recognition algorithm needs to be invariant to scale changes 

that are caused by motion of a subject towards the camera or vice versa. Polana et al. [19] 

achieved spatial scale invariance by measuring the size of the object through successive 

frames and estimating spatial scale parameters. These scale parameters are then used to 

compensate for changes in scale. This approach is computationally more expensive. 

Furthermore, Polana et al. assumed that the height of the object of interest does not 

change over time, an assumption that is true only for a few activities such as walking and 

running. In our proposed algorithm, spatial scale invariance is achieved by normalizing 

the directional vectors, such that the mean is zero and all values lie between [-1,1]. If 

f ( i ) is the frequency of the ‘ith’ tuple of the data distribution D  (see Eq. 5.1) (or in other 

words the Ith component of the directional vector), the normalized frequency (or 

normalized directional vector component) can be written as:

The proposed algorithm is based on the following assumptions of the normalized 

directional vectors.

1. The normalized directional vectors, for different subjects performing the same 

activities at the same distance from the camera, have small variance.

2. The variance in the normalized directional vectors, for different subjects 

performing the same activities at varying distances from the camera (implying 

scale invariance) and with varying backgrounds, is also small.

(5.2)

i=i
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3. The variance in the normalized directional vectors for different activities is 

high.

In order to validate Assumptions 1 and 2 we compute the variance between the DVs 

derived from different frames that consist of the same activity. The DVs for activity 

‘walk’ and ‘point left’ are shown in Figure 5.4(a) and (b), respectively. Note that we 

designate left and right as directions with respect to the viewer and not the subject. Some 

of the frames, represented in Figure 5.4 as dvl-12, are shown in Figure 5.5. It can be 

seen from these plots that the variance within DVs for the same activity (in this case walk 

and point) is small. We also present the validation of Assumptions 1 and 2 for activities 

stand, sit, point right, and lie down in Figures 5.6-5.9.

DVs for activity walk
0.3

H cM □  dv2 in dv3 a  d \4  0  dv5 H dv6

oz

- 0.1

1 2 4 6 7 83 5
DV dim ension

(a)

DVs for activity Point-Left
0.2

□ dv7 cd d \£  5 dv9 0  dvIO s d v l l  o d v 1 2

- 0.1
1 2 6 73 4 5 8

DV dim ension

(b)

Figure 5.4: Plots of normalized DVs for six frames of activity: (a) walk and (b) point left.
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(a) (b)

Figure 5.5: Sample frames from different data sets, for which DV plots are illustrated in Figure 5.4:

(a) dvl, dv3, dv4 corresponding to Figure 5.4(a), and (b) dv9, dvlO, d v ll  corresponding to Figure

5.4(b).

CO
>

DV for activity point right

N
*c5
§o

E3 dv19 B dv20 m dv21 ■ dv22 □ dv23 n  dv24
- 0.2

3 4 5 6

DV d im e n s io n

(a)

(b)

Figure 5.6: Low variance in DVs for activity point right, (a) Plots of normalized DVs for six frames of 

activity point right, and (b) Sample frames used to compute Figure 5.6(a).
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DVs for activity lie dow n
0 . 3

& dv25 no dv/26 ■  dv27 m dv28 S  d\£9

0.2

CDJD
CO
>■O
CDN75

0.1

-0.1

-0.2
81 2 3 4 5 6 7

DV dim ension

(a)

Figure 5.7: Low variance in DVs of activity lie down, (a) Plots of normalized DVs for five frames of 

activity lie down, and (b) Sample from frames used to compute Figure 5.7(a).

DVs for activity stand

ea dVBO n  dv/31 B dvQ3 S  dV34 m dvQ6 S dv38

CD 0  . 2

4  5

DV dimension

(a)

(b)

Figure 5.8: Low variance in DVs of activity stand, (a) Plots of normalized DVs for nine frames of 

activity stand, and (b) Sample from frames used to compute Figure 5.8(a).
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Note that the normalized DV plot for activity sit (see Figure 5.9(a)) has two 

somewhat distinctive DV patterns. These two patterns correspond to the DVs generated 

from frames with the subject sitting facing left and subject sitting facing right (see Figure 

5.9(b)).

DVs fo r activ ity s it
0 . 3

& dvl 3 g  dvl 4 ■ dvl 5 m dvl 6 & dvl 7 H dvl 8

0.2

0.1

o

-0.1

- 0.2
1 4  5

DV d im ension
72 3 6 8

(a)

(b)

Figure 5.9: Low variance in DVs of activity sit. (a) Plots of normalized DVs for six frames of activity 

sit. (b) Sample from frames used to compute Figure 5.9(a).

In order to validate Assumption 3, we compute the mean DVs for each of the five

different activities and then analyze the variance within these mean directional vectors.

Figure 5.10 is a plot of the mean directional vectors for five different activities. It can be

seen from Figure 5.10 that the DV patterns are quite distinct for different activities.
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0.3
High variance in the mean DVs of 5 activities.

0.2  -

<D
! o , --o<D 
N

E 0 - 
o 
z:

- 0.1 -  

-0.2 -
1 2 3 4 5 6 7 8

DV dimension

Figure 5.10: Plot of mean normalized DVs for five activities: Point, Upright, Lie-down, Sit and Squat.

5.4 Vector Space Analysis

We represent the normalized directional vectors extracted from the chain code of the 

silhouette contour as eight dimensional vectors in ‘activity space.’ Let us consider a 

sequence of ‘N’ frames of a video. For each frame, we extract and normalize a DV (see

Section 5.3) d t = [wi0, wn ,..wj.(Z_1)] where Wy implies coordinate of directional vector

‘i’ in the ‘j th’ dimension (0<  j < X  - 1) and X  is the dimensionality of vector space. Thus,

a length ‘N’ video sequence can be represented as a set of vectors VF = \dx,d 2...,dN\. The

extracted DVs are analyzed by defining an angular distance parameter Q d between two

directional vectors. Other parameters such as Mahalanobis distance (Bobick et al. [20]) 

and the Procrustes distance (Wang et al. [27]) have been used in the past for feature

vector analysis. The Procrustes distance [28] between two complex vectors ux and u2 is 

defined as:
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where, ux — Wi and Mj is the complex conjugate of ux

The angular distance parameter Q d between two directional vectors

d  = [wd o, , w d X _d 0 ’ r v d  1 J  and q = [w 0,w J where £ / , g e vF, is

determined as:

a ,  = i-
d ■q-h r  = 1 -  cos(a) (5.4)

where, cos (a  ) = —̂ r— and a  is the angle between the vectors. The angular
d

distance parameter Q d in Eq. 5.4 can be represented as:
x - i

Q , = 1 -c o s  {a ) -  1 --
£
i= o

W ,-W .di  qi

j X - l  X - l

i=o V i=o

(5.5)

Because we normalized the directional vectors (see Eq. 5.2), d = 1, and hence Eq.

5.5 reduces to:

x - i

Q d = l - c o s ( a )  = l - ^ d i w qi (5.6)
(=0

We cluster frames with similar activities based on the angular distance between the 

directional vectors derived for each frame. The vectors are clustered using an eight 

dimensional K-means clustering algorithm [94], such that for all pairs of vectors
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[(<i v d 2), (dv d 3)... {dv d N^ ,  Q d is minimized. The clustering of activities is 

hierarchical (see Figure 5.11), and activity resolution increases with increasing level.

Level

LeftStand Right

SquatSit Point

Video

Upright Lie down

Walk-Step Walk-Together

Level 1

Level 2

Figure 5.11: Hierarchical clustering levels for higher activity recognition resolution.

A known issue with K-means clustering algorithm is that it can be sensitive to the

initial centers, and the search for the optimum center locations may result in poor local

minima. We perform ten iterations of the K-means clustering, and choose clusters for

which the angular distance parameter computed in the iterations is minimum. This

resolves the problem of poor local minima convergence. The cluster centroids for each

activity can be obtained from the key frames (see Figure 5.12) of the training set. These

centroid locations can be used as seeds for clustering in the recognition stage. However,

this method of solely using the cluster centroids for classification will not allow the

system to learn independently from each sequence. We therefore use the cluster centroids

only to identify an activity, and not to segment it from the video. At the end of this

analysis, an activity decision ‘ A ’ is associated with each frame of the video sequence.
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KeyfranE

T h ttE fctT E

Figure 5.12: Sequential representation of key frames and transitional frames. t3 is one of the 

transitional frames between k3 depicting ‘walk activity’ and k4 depicting ‘sit activity’.

5.5 Temporal Smoothing

The proposed algorithm can make error in recognizing non-rigid human activities 

due to poor foreground-background separation in some frames. This poor foreground 

extraction can lead to large variance in the directional vector of neighboring frames 

resulting in incorrect decisions. In order to overcome this problem, we use the dynamic 

characteristics of human motion and assume that activities cannot change suddenly from 

one frame to another and must undergo a smooth transition. This assumption may not be 

valid for very low frame rate video capture; in such cases, activities can change from one 

frame to the immediate next. Thus, for low frame rate videos temporal smoothing does 

not give significant performance enhancement and may actually lead to deterioration. We 

found that for capture rate of 6 fps and above, temporal smoothing increases the correct 

recognition rate of activities.
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Table 5.1: Numeric values assigned to activities

Activity Lie Down Squat Sit Upright Point
Numeric Value 1 2 3 4 5

In order to achieve temporal smoothing we associate a numeric value (as shown in 

Table 5.1) with each activity decision. The smoothing is performed in two steps. In the 

first step we mark frames that could potentially be in error. In the second step, we 

compute the mean decision over a larger window size, and based on the numeric value 

closest to this mean we correct the activity-decisions. Let a (i) be the numeric value of the 

decision made at frame i . In the first step, we determine frames that have random activity 

transitions (using a filter length of 2M+1) and mark them as potential abnormalities by 

flagging them by £ , as shown in Table 5.2. The parameter as such does not have any 

value, and is simply a flag. In the second step, we use a larger filter window (2K+1) 

where K > M  to compute the true decision of frames that have been flagged by £ , as 

shown in Table 5.3. We also associate decision weights W={w.K,..w0..,wK} with each

filter tap. These weights determine the influence a decision has on preceding or 

succeeding decisions. Recursive execution of these two iterations of the temporal 

smoothing filter eliminates local peaks and valleys.

Table 5.2: Algorithm for temporal smoothing, iteration 1.

Iterl:
if  A(i)g {\(t -  M  + p)} where p ^ M , 0 <  p  < 2M
%implies decision made fo r  ‘i ’ is different from  its ‘2 M ’ 
nearest neighbors, 
then {

t  2  M

A(0=  .  + p);
2 M + l p 0

A.™(0=£ }
% possible error
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Table 5.3: Algorithm for temporal smoothing, iteration 2.

i f  ^  d ec is io n ^ )

n= i+ K

A (i) = — for i>K
2K + 1

For example, let the decisions made for a sequence of 10 frames be as shown in 

Table 5.4, with an incorrect decision having been reached for Frame 4. Table 5.4 also 

lists the results obtained after the first and second iteration of temporal smoothing (M=l, 

K=2, wn=l). It can be seen that smoothing has successfully been able to correct the 

erroneous decision previously reached at Frame 4.

Table 5.4: An example to illustrate temporal smoothing of activity decisions.

Frame 1 2 3 4 5 6 7 8 9 10
Activity Point Point Point Squat Point Point Point Point Point Point
Numeric 
value A 5 5 5 2 5 5 5 5 5 5

Iter-1 5 5 5 4(<f) 5 5 5 5 5 5
Iter-2 5 5 5 5 5 5 5 5 5 5

Figure 5.13 shows a plot of the four cluster level 1 activities recognized in each frame of 

a test video captured at 10 fps. The un-smoothed plot shows local peaks, which represent 

misclassified frames, while the smoothed plot exploits the dynamics of motion to 

reclassify frames and reduce recognition error using temporal smoothing.
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Figure 5.13: A sample 3D plot illustrating the removal of local peaks by temporal smoothing.

5.6 Experimental Setup

In this section, we discuss the experimental setup used to evaluate the performance 

of the proposed algorithm. In Section 5.6.1, we give a brief overview of the databases 

used in our experiments. The data sets created from these databases are explained in 

Section 5.6.2. The set-up of the experiments and numeric values of the various 

parameters used are presented in Section 5.6.3.

5.6.1 Databases

Several gait databases have been developed for gait-based human identification. 

However, there is no standard database available for the purpose of HAR. We have used 

two gait databases (University of Southampton UoS-HID [24] and Carnegie Mellon 

University CMU-Mobo [25]) originally developed for human identification based on gait 

analysis. We now briefly discuss the characteristics of the databases used in our 

experiments.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University o f Southampton Database UoS-HID: The UoS-HID database consists of 

video sequences of subjects walking in front of a uniform stationary background. The 

average sequence length is 60 frames; captured at a frame rate of 25 frames per second. It 

is primarily a gait database and we randomly choose some key frames from these 

sequences to train the proposed algorithm for activity-walk.

Carnegie Mellon University CMU-Mobo: The CMU-Mobo database consists of video 

sequences of subjects walking on a treadmill. The average sequence length is 300 frames; 

captured at a frame rate of 30 frames per second. As with the UoS-HID, we randomly 

choose some key frames from this database to train the algorithm for activity-walk.

University o f Texas at Austin UoT-DB: We used an activity database provided by the 

University of Texas at Austin (UoT-DB) that consists of image frames depicting the 

following activities: sit, squat, stoop and walk. The sequences from this database vary in 

length from 60-80 frames, captured at 12-15 frames per second and consist of four 

activities: sit, squat, stoop and walk.

University of Alberta UoA-DB: We have created our own activity database (UoA-DB), 

comprising videos of six activities: standing, walking, sitting, squatting, lying down and 

pointing.

Capturing Device: We used a SONY DCR-PC100 CCD camera to capture indoor 

and outdoor activity videos with frame size of 780x480 at 30 frames per second. The 

UoA-DB was developed with subjects of different physical builds; wearing indoor as 

well as bulky out-door clothing; moving in front of a stationary camera with static 

lighting conditions and a relatively static background (outdoor sequences had background
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movement). The videos were captured with varying zoom depths and backgrounds. 

Actions were performed such that the view angle changed frequently and limited 

occlusion occurred.

Transfer Protocol: A fire wire EEEE 1394 interface was used to transfer video 

sequences captured in the DV format to the computer.

Video Software: A commercial software package ‘UleadStudio’ was used to convert 

the captured files into uncompressed avi format. This conversion was required because 

MATLAB only supports uncompressed avi file format. The UleadStudio software was 

also used to temporally down-sample the video sequences to 6-15 frames per second and 

spatially decimate each frame to size 360x240. This step not only reduced the size of the 

data set (thus enabling faster computation) but also provided limited blurring, which 

smoothed the derived silhouette contour to an extent.

Software: The entire algorithm was implemented in MATLAB version 6.5. Some of 

the functions of the image processing toolbox were used to perform the file I/O and 

morphological operations.

We constructed four sequence sets (UoA-DSl, UoA-DS2, UoA-DS3 and UoA-DS4) 

of video sequences from the UoA-DB. We will now discuss them briefly.

1. Sequence set UoA-DSl consists of two video sequences of length 133 and 138 

frames. These sequences were captured indoors and depict subjects performing 

activities walk, stand and sit.

2. Sequence set UoA-DS2 consists of five video sequences captured indoors, 

having a general sequence of activities but not limited to: walk-> stand-> point-
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left-> stand-> point-right-> walk-> sit-> walk-> squat^ walk. We also 

sampled these video sequences at varying frame rates of 6, 10 and 15 fps, 

consequently the sequences range in length from 48 to 286 frames.

3. Sequence set UoA-DS3 consists of a 7130 frame long video sequence captured 

indoors at 15 fps. The sequence consists of 65 random repetitions of 5 (level 1) 

activities captured from varying viewpoints (Figure 5.14). A new activity, lie 

down, is also introduced in order to observe the behavior of the algorithm on 

encountering an activity for which training data is not available.

4. Sequence set UoA-DS4 consists of two video sequences captured outdoors at 15 

and 6 fps. The sequences consist of random repetitions of three activities: 

Upright, point and squat. This set is used to test the robustness of the directional 

vectors in outdoor sequences.

(a)

Figure 5.14: Sample frames from UoA-DS3 illustrate the varied view angle and zoom depth of 

subject from camera for the activities: (a) squat.
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(e)

Figure 5.14: (continued) Sample frames for the activities: (b) point, (c) sit, (d) upright and (e) lie-

down.
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(b)

Figure 5.15: Sample frames from the outdoor sequences of UoA-DS4 data, (a) Sequencel and (b)

Sequence2.
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5.6.2 Data sets

We create four data sets from the databases mentioned in Section 5.6.1. These sets 

are created such that data used for training and recognition remains mutually exclusive. 

This ensures that the recognition phase of the algorithm remains unbiased.

Data Set 1

The Data Set-1, used exclusively for training, was comprised of the key frames 

derived from UoS-HID, CMU-Mobo and UoA-DSl (see Table 5.5). The key frames from 

UoS-HID and CMU-Mobo are used to train the algorithm for upright (walk) activity, 

while key frames from UoA-DSl are used to train for activities sit and upright (walk- 

stand).

Table 5.5: Details of Data Set-1

Database Type of 
activity

Length
(frames) fps Frame

size Comments

University of 
Southampton 
(UoS-HID)

Walk 60 25 384x288 Gait ID database, use 
only key frames

Carnegie
Mellon
University
(CMU-Mobo)

Walk 300 30 640x480 Gait ID database, use 
only key frames

University of
Alberta
(UoA-DSl)

Walk, Stand, 
Sit 138 30 360x240 Activity database, 

use only key framesWalk, Stand, 
Sit 133 30 360x240

Data Set 2

The Data Set-2 was comprised of five video sequences from UoA-DS2 (see Table

5.6).
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Table 5.6: Details of Data Set-2

Database Sequence Type of activity Length
(frames) fps Frame

size Comments

University 
of Alberta 
(UoA- 
DS2)

Sequence
1

Walk, Sit, Squat, 
Point

76 6
360x240

Activity 
database, varied 
frame rate.

210 15

Sequence
2

Walk, Sit, Squat, 
Point

58 6
360x240

Activity 
database, varied 
frame rate.

96 10
286 30

Sequence
3

Walk, Sit, Squat, 
Point 65 6 360x240 Activity

database.
Sequence
4

Walk, Sit, Squat, 
Point 48 6 360x240 Activity

database.
Sequence
5

Walk, Sit, Squat, 
Point 61 6 360x240 Activity

database.

Data Set 3

The Data Set-3 was comprised of video sequences from UoT-DB and UoA-DS3 (see 

Table 5.7). Data Set-2 and Data Set-3 are used as mutually exclusive training and 

recognition sets for each other.

Table 5.7: Details of Data Set-3

Database Type of activity Length
(frames) fps Frame

size Comments

University of Texas at
Austin
(UoT-DB)

Walk, Sit, Stoop, 
Squat 60-80 12-15 640x480 Activity

database.

University of Alberta 
(UoA-DS3)

Walk, Sit, Squat, 
Point, Lie down 7130 15 360x240 Activity

database.
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Data Set 4

Data Set-4 was comprised of outdoor video sequences from UoA-DS4 and is used 

exclusively for recognition only (see Table 5.8).

Table 5.8: Details of Data Set-4

Database Sequence Type of activity Length
(frames) fps Frame

size Comments

University of
Alberta
(UoA-DS4)

Sequence
1

Walk, Squat, 
Point 227 15 360x24

0
Activity database, 
outdoor sequence.

Sequence
2

Walk, Squat, 
Point 68 6 360x24

0
Activity database, 
outdoor sequence.

5.6.3 Experiments

We have performed our experiments in two phases —  training and recognition. In 

the training phase, we generate cluster centers of activities from the key frames of the 

corresponding training data. In the recognition phase, we cluster the normalized 

directional vectors from all the frames of the test videos (key as well as transitional 

frames). The cluster centers generated in the training phase are then used to map an 

activity to the cluster centers generated in the recognition phase. Recognition begins only 

when the whole body is visible in the frame, and hence the DVs corresponding to the 

preceding frames are discarded. We used a filter window of size M  = 1, K  -  2 , with 

uniform decision weights \w_K,...w(:j...wK) = 1 for the temporal smoothing filter.
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In order to evaluate the performance of the proposed algorithm we performed three 

experiments. The experiments were conducted such that the datasets acted as 

complementary training and recognition data for each other.

Experiment 1

In the first experiment, we trained the algorithm by generating cluster centers from 

video sequences of Data Sets 1 and 3. We then clustered the DVs derived from video 

frames of the test set (Data Set 2) and used the training data to map activities. We also 

tested the performance of the algorithm with varying frame rates of the sequences in Data 

Set 2.

Experiment 2

In the second experiment, we generated the training data from Data Sets 1 and 2, and 

recognized activities in Data Set 3.

Experiment 3

The third experiment dealt with outdoor video frames. Data Sets 1, 2 and 3 were 

used for the purpose of training and Data Set 4 was tested for recognition. The training- 

recognition correspondence between the data sets is illustrated in Table 5.9.

Table 5.9: Recognition sets and training sets for different experiments.

Training Set Recognition Set
Experiment-1 Data set 1 & 3 Data set 2
Experiment-2 Data set 1 & 2 Data set 3
Experiment-3 Data set 1,2 & 3 Data set 4
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5.7 Performance Evaluation

We use two criteria to evaluate the performance of the proposed algorithm —  correct 

recognition rates and confusion matrix. The correct recognition rate (CRR) is defined as 

the percentage of frames recognized correctly from all the tested input frames of the 

video sequence. A five-class confusion matrix is also used to compare the actual and 

predicted classifications. Table 5.10 reports the CRR obtained by our algorithm before 

temporal smoothing in Experiment 1 and for the UoT-DB sequence in Experiment 2. At 

low frame rates the algorithm makes more recognition errors as there are fewer cluster 

points to learn from and generate cluster centers. However, applying a smoothing filter in 

the temporal domain removes the local error peaks and valleys, leading to a 100% CRR. 

This filtering is not optimal when the frame rate is low as the influence that each decision 

has, on its predecessors and successors, is significantly reduced.

Table 5.10: CRR without temporal smoothing for Experiment 1 (LI and L2 correspond to activities

at level 1 and 2, respectively, of Figure 5.11).

Video Length (frames) Fps CRR LI CRR L2-Point CRR L2-Upright
Sequence 1 76 6fps 98.68 100 76
Sequence 2 58 6fps 96.55 100 84.21
Sequence 3 65 6fps 100 100 91
Sequence 4 48 6fps 96.77 100 93.75
Sequence 5 61 6fps 100 100 82.5

Sequence 1 210 15fps 100 100 98.11
Sequence 1 76 6fps 98.68 100 76

Sequence 2 286 30fps 98.6 100 96.88
Sequence 2 96 lOfps 96.87 100 96.55
Sequence 2 58 6fps 96.55 100 84.21
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Table 5.11: Confusion matrix for UoA-DS3 Experiment 2 (overall efficiency= 95.5%)

R ecogn ized  A ctivities

t/2o
Upright Sit L ie down Point Squat TP

rate
FP rate

Upright 3 919 (a ) 47(b) 8(c) 152(d) 21(e) 98 .7 0 .0168
tj Sit 45(f) 10106?) 0(h) 2 (i) Uj) 94.3 0.0101
<
13a

L ie down 1 (k) 0(Z) 8 4 7 (m) l(n ) 3 3 (c ) 99.1 0 .0012
Point U p ) 13 (q) 0 (r) 3 3 4 (i) 10(r) 67.1 0 .0247

< Squat 6 (u) l(v ) 0(w ) 9(x) 669(y) 91.1 0.0101
Total 3972 1071 855 498 734

The recognition results of the algorithm for Experiment 2 with Data Set UoA-DS3 

are presented in Table 5.11, where the confusion matrix [26] for five activities is shown. 

The true positive (TP) or recall rates of recognition are defined as the percentage of 

positive cases that are correctly identified. Note that the TP values are calculated using 

Eq. 5.7. The accuracy of the proposed algorithm can be determined from the confusion 

matrix using Eq. 5.8.

Tp  _ _________True walks_________   a______ ^  ^
upnght ^  positive cases o f walks a + b + c + d + e

. True activities a + g + m + s + y asOverall Efficiency = ------------------- = -=----- 2---------------—  (5.8)
All activities 2^ confusion matrix

In our experiments, out of the 65 random instances of activities in the UoA-DS3 set, 

63 were correctly recognized, resulting in an activity CRR of 96.92%. Since the classifier 

used is non-parametric, a receiver operating characteristics (ROC) plot will comprise of 

points and not curves, and hence the ROC plot has been omitted from this discussion.

The CRR for Experiment 2 and Experiment 3 are reported in Table 5.12. In 

Experiment 2, 61 out of 63 frames from the video sequence UoT-DB are recognized 

correctly, resulting in a CRR of 96.8%. In the same experiment with the UoA-DS3 video 

sequence of length 7130, 6779 frames are correctly recognized, resulting in a CRR of
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95.5%. In Experiment 3, with outdoor video sequences, the CRR evaluated are 100% (all 

227 frames recognized correctly) and 98.5% (1 frame out of 68 was incorrectly 

recognized) for Sequence 1 and 2 respectively.

Table 5.12: CRR without temporal smoothing for Experiment 2 & 3.

Video Length (frames) fps CRR LI

Experiment2 UoT-DB 63 Not Known 96.8

UoA-DS3 7130 15 95.5

Experiment3 UoA-DS4

Sequence1 227 15 100

Sequence2 68 6 98.5

5.8 Potential Applications

We have identified two promising areas that would benefit directly from an 

automated computer vision system for recognizing select human activities, i.e. potential 

areas of direct application of this work. Further work and enhancements to the algorithm, 

which are mentioned as future work in Chapter 7, will open more avenues for application. 

The first area of application is an activity recognition system for geriatric residences. In 

such residences it is often difficult to maintain a proper vigilance over the activities of 

seniors in order to prevent injuries due to accidents. It has been reported by Health 

Canada (see Appendix A for a detailed report) that with the growing aging population of 

Canada one in every four citizens will be a senior by the year 2041. In the late 1990s falls 

were responsible for 65% of injuries, 84% of injury-related hospital admissions, and 58% 

of injury-related deaths among the seniors population. The total health care costs due to
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seniors’ falls are estimated at $1 billion annually. Unfortunately, often the kind of injuries 

sustained by seniors makes it difficult for them to seek immediate help themselves. In 

such a situation is will be highly beneficial for a vision system to be present, which 

recognizes and monitors the activities performed by the seniors at all times. Such a 

system can alert the appropriate authorities in case of a mishap. Another application is the 

automated monitoring of people and their activities in busy shopping mall areas for crime 

prevention.

5.9 Summary

Research in computer vision constantly strives to come to par with its human vision

counterpart. The endeavor to develop a universal method for human activity recognition

continues to challenge researchers. In this chapter, we have presented a novel, non-model

silhouette directionality based algorithm for human activity recognition assuming limited

occlusion. The algorithm captures both the static and dynamic (transitional)

characteristics of human activity, unlike most contemporary works that deal with

template matching of static pre-stored activity poses. Our approach is efficient in terms of

storage, since each activity is stored and indexed as an eight dimensional vector. In

addition, the computational load caused by computing motion for each body part or

template matching is avoided, as we deal only with the silhouette contour. The algorithm

can handle changes in view angle, scale, background and clothing and is translation

independent. It can also deal with limited occlusion of the subject. Experimental results

show promising recognition rates, with rare misclassifications arising mainly due to poor

foreground-background separation. The CRRs obtained in our experiments range from

85% to 99%, for eight activities when viewed without temporal smoothing. The CRR
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increases with frame rate and 100% recognition is achieved when temporal smoothing is 

applied. The ease of implementation is an indication of the potential of the algorithm. The 

proposed algorithm can be used to maintain tracks of multiple identities and to recognize 

activities of individuals in geriatric or special care homes.
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Chapter 6 

Robust Feature Based Tracking

A comprehensive review of object tracking algorithms was presented in Chapter 3. It 

was mentioned that the KLT algorithm is a widely used tracking algorithm. However, the 

KLT tracking algorithm is not robust to noise. In this chapter we propose a weighting 

function based approach to enhance the noise immunity of the KLT tracker. In Section 

6.1, we present an analysis of integrating weighting functions in the affine matching 

model for feature tracking. In Section 6.2 we describe the experimental setup used to 

evaluate the performance of the weighting functions and the results obtained are 

presented in Section 6.3.

Weighting functions have been discussed in the past in the context of estimation. 

They have been used to emphasize regions in space that are more reliable for analysis 

than others. In relation to the KLT algorithm, any weighting function that reduces the 

dissimilarity metric (Eq. 3.1) will provide improved performance. In the following 

section, we explore two such weighting functions. We also present a comprehensive 

analysis of the relative error functions to establish conditions of optimality.

6.1 Gaussian and LoG weighting functions

Digital images, now used frequently for data acquisition, are susceptible to a variety 

of noises. Noise can be introduced in several ways, such as poor film grain, poor CCD 

exposure and lossy electronic transmission. The averaging weighting function used by the 

KLT algorithm, described in Section 3.4.3, fails for image sequences that have been
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corrupted by noise. However, it is possible to improve tracking performance by assigning 

different weights to pixels depending on their location within the tracking window. Until 

now, the Gaussian and LoG weighting functions have been used for a plethora of 

applications such as image enhancement, edge detection, image filtering and memory- 

based learning. We propose the use of these weighting functions to improve the 

performance of tracking algorithms in noisy environments. The 2D Gaussian and LoG 

weighting functions can be expressed as:

We discussed in Chapter 3, that good features are those that can be easily tracked. 

Generally these features are comers or edges of the object in motion. It is therefore 

important that we analyze the edge characteristics in an image. Synthetically generated 

objects or sharp edged objects generate very sharp transitions in the edge characteristics. 

On the other hand, real objects or objects in motion generate blurred transitions in the 

edge characteristics. We represent the edge characteristics of objects in an image by edge 

signals. Although, the edges in an image are two-dimensional signals we represent them 

as separable one-dimensional edge signals. This representation reduces the complexity of 

the analysis. A sharp edge is represented by a step function, u(x). As shown in Figure 

6.1(a), u(x) represents a sharp edge centered in the feature window (FW). The 

mathematical representation of u(x) is as follows:

X  + y

^  Gauss (6 .1)

0 elsewhere

x 2 + y'

w LoG(x ’ y )  =  \ 7 T ( j 4 1 2 a 2

0

(x ,y )£  FW (6 .2)

elsewhere
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u(x) -  ■
1 X >  t

(6 .3)
[0 x < t

A blurred edge v(x) is represented by a concatenation of an exponential function 

followed by a step function. As shown in Figure 6.1(b), v(x) represents a blurred edge 

centered in the FW. The mathematical representation of v(x) is as follows:

( x - t r
v(x) = exp x < t 

x > t

(6.4)

u(x)

t

(a)

2t

v(x)

(b)

Figure 6.1: ID Edge functions, (a) Step function, (b) Blur function

The parameter a s of the exponential function for the blurred edge v(x), will 

determine the extent of blurring of the edge. Analysis of other blur edge models, such as 

the cumulative distribution function (CDF) of a normal distribution, increases the 

complexity of the problem and has been omitted from this discussion. We also assume 

that the edges are centered in the FW. This assumption holds since the KLT tracking 

algorithm is implemented by traversing all image pixels sequentially, hence every edge in 

the image will be centered in the FW  at least once.
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The ‘dissimilarity’ metric (E )  of the KLT algorithm was discussed in Section 3.4.3. 

The dissimilarity is computed as the sum of squared differences (SSD), and is calculated 

using the following equation:

X - l  Y - l

Minimize: E  = x + Ax, y  + Ay, t + r) -  B (x, y, t ) f  w(x, y ) where, the standard
x = 0  y=0

criteria. Since the dissimilarity metric calculates the error in matching the FWs, we term 

it as the error function. If f ( x ,  y) is the square differential image and t = sizeof(FW)/ 2, 

the error function computed by using weighting function ‘w ’ with an edge characterized 

by ‘e ’ can be written as:

Eq. 6.5 is the continuous space version of the discrete space KLT Eq. 3.1. Since the

error directly affects the tracking performance. The error function (Eq. 6.5) and the 

weighting function (Eqs. 6.1 and 6.2) can be represented in ID as:

21
E e = \ f ( x ) w ( x ) d x  (6.6)

0

KLT uses
1 (x ,y )e F W  
0 elsewhere

. We use the dissimilarity metric as our evaluation

2 t 2 t

(6.5)
0 0

dissimilarity or error 'E™' determines if a feature is worth tracking, reduction in this

G auss (6.7)

(6 .8)
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We now present two propositions. The first proposition is an analysis of the error 

functions computed when tracking a sharp edge with the Gaussian and LoG weighting 

functions. Note that t = sizeof(FW )/ 2 .

Proposition 1: E* > E lu if t < (3.35<r) (6.9)

Implications: The above proposition implies that while tracking an object with a 

sharp edge, the error obtained with a LoG weighting function, E lu, will be less than the 

error obtained when using a Gaussian weighting function while t < (3.35rr). We now 

present a proof of Proposition 1.

Proof:

The right-hand-side of Eq. 6.9 can be written as follows:

R.H.S =
, 1 a/2 no2

\ - ? ~
<T2

exp'  x 2 ^

v 2o"y

The left-hand-side of Eq. 6.9 can be written as follows:

L.H.S = f  ' - = L  
V 2 . ' ” v

exp
no 2 o

dx

L.H.S> R.H.S if L.H .S -R .H .S  > 0

Solving the integrals using the mathematical tool ‘Mathematica5.0’ results in the 

following relation for L.H .S -  R .H .S  :

L .H .S .- R.H.S = 1
2^/2no

311
2 - e 2°-2 t +42noErf '  t ' 

vs/2o j
■y[2noErf

V V
(6 .10)

A graphical analysis of Eq. 6.10 is performed with varying values of t and a , to 

determine the relation between t and a  for which Eq. 6.9 holds true. The mesh plot of 

the computation is shown in Figure 6.2.
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Sigma

Figure 6.2: Mesh plot of Eq. 6.10 for various values of t and (7 (sigma).

In order to evaluate a deterministic relation, we modify the mesh plot (Figure 6.2) to 

reflect values greater than zero as 1, and values less than zero as -1. The modified mesh 

plot (Figure 6.3) clearly demarcates the linear relation between t and a  for which Eq. 

6.10 holds true. A geometrical analysis determines the slope of the line to be 3.35, thus 

for t < (3.35cr) Eq. 6.9 holds true.

o

-0.5

3.5

Sigma0 ot

Figure 6.3: Mesh plot reflecting modifications made to Figure 6.2.
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The second proposition is an analysis of the error functions generated when tracking 

a blurred edge with the Gaussian and LoG weighting functions.

Proposition 2: E* < E lv if the edge is sufficiently blurred (6.11)

Implications: The above proposition implies that when tracking an object with a 

blurred edge, a Gaussian weighting function will provide better performance than a LoG 

weighting function. The blurring of the edge is determined by the value of o s . For small

values of o s , the function for a blurred edge v(x), resembles a unit step function. Thus we

also prove that Proposition 1 can be derived directly as a limiting case of Proposition 2. 

We now present a proof of Proposition 2.

Proof:

L.H.S = El
- J

exp (x - 1),2 \

2<J, V2
^exp

n o 2o
L  2r i\dx + , ■— exp
I m o v 2cr /

dx

R.H.S = El = )  i - j J -
o -42.no o 1

exp f  x2 ^
v 2<r2y

exp
2 o

\dx
s J j

+
1

f , 1
, a/2 n o 2

expr . j L '
2 o 2

dx

R.H.S > L.H.S , if L.H.S -  R.H.S < 0

The above definite integrals can be solved to obtain the following equation 

for L.H.S -R .H .S  , where o s= s:

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L.H .S -  R .H .S  = A  + B (6.12)

where,

2r2 1*- 
 ̂1' [2 { t ^e ffl - 2  + e2a J —t -  oErf

IV2a  )
+ CtErf

v J V n I ^  J
2a

= -j=r~r W{AC + D))
2*j2jt;a{s2 + a 2j 2

Expressions for C and D are as follows:

C = e -2e2s7 st^s2 +cr2(s2 + 2a2)+e 42na{.sA +s2 a 2 +t2a 2)Erf st
4 2 a ^s2 + a 2

s4 +s2a 2 +tza 2)Erf ta
V2s ^ s 2 + a 2

When ‘s=0’, Eq. 6.12 reduces to Eq. 6.10 as the edge function resembles a sharp 

edge. For small values of edge variance ‘s’, graphical plots of Eq. 6.12 (see Figure 6.4) 

show positive values for E^ -  E lv. This implies that error with a Gaussian weighting

function is higher than error with LoG weighting function, which validates Proposition 1. 

As the edge variance increases (i.e. the edge becomes blurred) graphical plots of Eq. 6.12 

show increasingly negative values for E* -  E lv. This implies that with a blurred edge, the 

LoG has higher error values than the Gaussian weighting function.
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(b)

(c)

Figure 6.4: Mesh plot Eq. 6.12 for various values of t and <7. (a) Eq. 6.12 , <TV = 0.01, (b) Lateral

view of (a) highlighting values higher than 0, (c) Eq. 6.12 , <TV =  1.0.  Note the negative values 

corresponding to low values of t and O .

These propositions can be easily extended to a two-dimensional case as the 

weighting function and the edge characteristics have been considered to be separable. 

The weighting functions in two-dimensions are illustrated in Figure 6.5.
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Figure 6.5: Pictorial representation of 2D weighting function, (a) Averaging function, (b) Gaussian

function sigma=3), (c) LoG function (sigma=3).

6.2 Experimental Setup

The proposed weighting functions are applied to two sets of sequences: sequences 

with no noise reduction applied prior to tracking and sequences with noise reduction 

applied prior to tracking. In our experiments, we use a search range of 12 pixels, and 

(when not mentioned specifically) a FW of size 5 x 5  (i.e., t = 2.5) is used. In order to 

validate Proposition 1 and 2 (Eq. 6.9 and Eq. 6.11 respectively), we also evaluate the 

proposed weighting functions with varying FW size and a . The size of the tracking 

window limits the true FW size; hence, for an accurate comparison the FW size and 

tracking window size are considered to be equivalent. To simulate a real noisy test 

environment we add controlled amount of salt and pepper noise with a uniform 

probability density function to the test images. We also assume that an addition of ‘n%’ 

noise implies adding random noise to n% pixels of the original image. We use four test
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sequences —  Synthetic square sequence, Synthetic car sequence, Real car sequence and a 

Hybrid workbench sequence.

6.2.1 Synthetic Square Sequence

The synthetic test images of size 600 x 600 (Figure 6.6) consist of a simple bright 

square of size 240 x 240 on a dark background. The bright square is displaced by 12 

pixels in both the horizontal and vertical directions in the next frame.

(C)

Figure 6.6: Generation of synthetic square sequence. Simulated Noiseless Video Frames (a) First 

frame, (b) Second Frame and (c) The objects overlapped (pictorial representation of the 

displacement of the object with respect to the first frame).

6.2.2 Real Car Sequence

The real car sequence (Figure 6.7(a)) was captured at the University of Alberta and 

depicts a vehicle entering into a parking lot. The presence of multiple vehicles in the
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background provides a rigorous test of the weighting functions and the tracking 

algorithm.

6.2.3 Synthetic Car Sequence

Using a screen shot from a popular Internet car racing game, ‘Buzzing Cars’, we 

generated an image sequence that consists of a synthetically created car. The car object 

(Figure 6.7(b)) in this sequence has sharper edge definitions than our real car image 

sequence.

(a) (b)

Figure 6.7: Car sequences, (a) Real car frames and (b) Synthetic car frames.

6.2.4 Hybrid Workbench Sequence

A hybrid test sequence (Figure 6.8) was captured in the Multimedia Computing and 

Communications Laboratory. The camera was moved to simulate motion, which leads to 

blurring of the edges of the objects in the image. The objects of interest (OOI) are the 

chair and the computer monitor. While the features of the chair are left intact (i.e., 

blurred), the computer monitor is manually enhanced to have sharper features. Thus, this 

test sequence gives us an opportunity to test Propositions 1 and 2 simultaneously.
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(a) (b)

Figure 6.8: Hybrid video frames, (a) Noiseless test image of the workbench, (b) Noisy image with 5%

noise.

6.2.5 Pre-Noise removal

We also performed experiments in which noise removal was applied prior to 

tracking. To generate the test sequences for noise reduction, we experimented with three 

standard algorithms: average filtering, Wiener adaptive filtering and median filtering. 

Figure 6.9 shows the results obtained with noise removal algorithms applied to the 

synthetic square sequence. It is observed that a 3x3 median filter resulted in maximum 

noise removal and hence we used median filtering for the pre-noise removal evaluation of 

the weighting functions.

(a) (b) (c) (d)

Figure 6.9: Synthetic square sequence pre noise removal, (a) Simulated 20% noisy frame; (b) Median 

filtering noise reduction applied to (a); (c) Average filtering noise reduction applied to (a); (d) 

Wiener adaptive filtering noise reduction applied to (a).
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6.3 Performance Evaluation

We base our evaluation on two criteria —  the Euclidean distance between actual and 

tracked features (similar to our theoretical analysis) and the tracking efficiency. The 

Euclidean error is computed and averaged over features that have been correctly tracked 

and the remaining features are ignored. When a feature cannot be tracked successfully we 

assign a global maximum error for that test case. In cases where the correspondence 

between the feature points is not known, the ratio of the features that are correctly tracked 

in the successive frame to the features that are initialized in the first frame is used as an 

evaluation criterion. We define the tracking efficiency ( tj) of the weighting functions as:

Number o f successfully tracked features , ^
rj = ---------------------------- -— -------------- ----------- x 100 %

Total number o f features initialized

Figure 6.10 shows the performance of the weighted tracking algorithm for the 

synthetic car and hybrid workbench sequences. It is observed that for all test sequences 

the averaging KLT algorithm fails to track the object even at low levels of noise, while 

the weighted tracking algorithm continues to track until 25 % noise is added (Figure 

6.10(a)). We find that in the hybrid sequence, for blurred edges, the Gaussian weighting 

function has lower Euclidean error than the LoG weighting function (Figure 6.10(b)). For 

sharper edges the LoG weighting function has lower Euclidean error (Figure 6.10(c)), 

which experimentally validates Propositions 1 and 2 (Eq. 6.9 and Eq. 6.11).
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Figure 6.10: Performance of weighting functions for (a) synthetic square sequence (4 features), (b) 

hybrid workbench sequence, tracking the sharp corners of the computer monitor object (4 features) 

and (c) hybrid workbench sequence, tracking the chair object (17 features).

Figure 6.11 shows the performance evaluation of the weighted KLT tracker with 

synthetic and real car sequences. It is observed that LoG weighting function has higher 

tracking efficiency than the Gaussian and averaging weighting function (Figure 6.11 (a)) 

when tracking the synthetic car. This observation is in accordance with Proposition 1 (Eq. 

6.9). Tracking efficiency of Gaussian and LoG weighting function for the real car 

sequence is shown in Figure (b). It is observed that for the real car sequence with blurred 

edges, the Gaussian weighting functions perform better than the LoG weighting 

functions. This validates Proposition 2 (Eq. 6.11).
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Figure 6.11: Performance of weighting functions with car sequences, (a) Synthetic car 

sequence, 50 features have been initialized and are being tracked. And (b) Real image car sequence, 

50 features have been initialized and are being tracked.

Figure 6.12 shows the performance evaluation with pre-noise removed test sequence.

When the image sequences are preprocessed to remove noise, the performance plots

translate along the noise axis. The weighting functions demonstrate performance trends

(at higher noise levels) to be similar to no prior noise removal at low noise levels, as

shown in Figure 6.12.

200
AV_F
•GAU_F
•LoG_F»_ 150  -

3  100  -

N oise

Figure 6.12: Performance of weighting function with synthetic square sequence when noise reduction

is applied prior to tracking.

Experiments have also been performed to verify the relations between Y and ‘ a  ’ 

which were proposed in Section 6.1 (Eq. 6.9). Tabulated results (as shown in Table 6.1)
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concur with the relations developed between the weighting function standard deviation 

‘ a  ’ and feature window size ‘ 21 ’ for both the proposed weighting functions. Based on 

the experiments performed, we observe that when the image has sharp boundaries and 

edges, the LoG weighting function, which has a sharper parametric curve, performs better 

than the Gaussian. In real images, the edges are smoothed because of factors such as 

environmental conditions, camera resolution and pixel discretization. For such images the 

Gaussian weighting function performs better than the LoG weighting function.

Table 6.1: Additional experimental results validating Propositions 1.

Edge

Characteristic
t

crof

Weighting

Function

Percentage 

of Noise
E! K Condition Result

Sharp 2.5 1.0 15% 1.6638 2.2744 t <  3.35cr e ;  < E'r

Sharp 2.5 0.5 15% 1.9334 1.6078 t > 3.35cr E l  > K

Sharp 2.5 1.0 15% 1.6638 2.2744 t  < 3.35<7 E,f < El

Sharp 3.5 1.0 15% 2.9051 2.7577 t > 3.35cr E l  > E [

Sharp 4.5 1.0 15% 5.1819 4.6884 t > 3.35(7 E ]  > El

Sharp 5.5 1.0 15% 5.6862 4.7515 t  > 3.35(7 E l > E [

6.4 Summary

In this chapter, we proposed two weighting functions to improve the performance of

the KLT tracking algorithm. We presented the mathematical analysis of our propositions.

We have established that for typical test sequences, both the proposed weighting

functions (Gaussian and LoG weighting function) consistently perform better tracking

than the KLT average weighting function. This is especially true in a noisy environment.

Additionally, we also established minimum limits to parameters and conditions under
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which one of the weighting functions has better tracking performance than the other. Real 

world tracking sequences are expected to be noisy, and therefore are ideal for application 

of these weighting functions. The LoG tends to give a sharper emphasis on the central 

FW pixels and is suitable for images with well-defined and sharp image comers like the 

synthetic test images. Interestingly, for real images where the edges may not be as 

sharply defined, the Gaussian weighting function performs better.
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Chapter 7 

Conclusions and Future Work

Human activity recognition (HAR) is one of the leading areas of research in 

computer vision. A plethora of applications would benefit from continuing research in 

this area. Past works in this area are limited by the complexity of their approaches and the 

lack of a universally applicable algorithm. In addition, often the presence of noise 

degrades the recognition efficiency of the algorithms. This thesis addressed two issues. 

We proposed a novel algorithm based on silhouette directionality for HAR. The 

algorithm extracts contour directionality based feature vectors from the frames of a video 

sequence and clusters them in vector space based on an angular distance parameter. The 

proposed algorithm was evaluated on a wide range of indoor and outdoor video 

sequences, and performance comparisons with related non-model based, non-intrusive 

work showed promising high recognition rates.

We also investigated the effects of incorporating weighting functions in tracking 

algorithms. We proposed the use of the Gaussian and LoG weighting functions and 

determined conditions for optimal performance of the two weighting functions. It was 

validated experimentally with noisy image sequences that the Gaussian weighting 

function provides better tracking performance of an object with a blurred edge. The LoG 

weighting functions on the other hand provides a better tracking performance of objects 

with sharp edges, such as computer generated image sequences.
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Although the proposed algorithm for human activity recognition shows promising 

results, there are still several issues that need to be addressed. A few potential future 

works are presented below.

1. Robust foreground-background subtraction techniques. Although the current 

application of the foreground-background separation in our work is not 

limited to plain uni-colored backgrounds, it has not been extended to more 

dynamic backgrounds with larger amount of clutter. Techniques for a more 

robust foreground and background separation are still an important issue for 

future work.

2. Activity recognition for multiple subjects. We have assumed in our work, that 

only one subject is present in the field of view at a time. This assumption 

limits the scope of application of our work. An identified area of work is to 

incorporate extraction of feature vectors for multiple individuals. The 

incorporation of multiple subjects would also lead to a new direction of 

research that would study the interaction between different subjects vis-a-vis 

single activities.

3. Training and testing the activity recognition algorithm for a larger set of 

activities. We also need to broaden the experiment set used for HAR to 

include more activities such as jumping, swinging and falling.

4. Incorporation of color. This would extend our HAR work to multiple attribute 

feature vectors vis-a-vis the current directionality based feature vectors.
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5. Real time system implementation. The current implementation of the 

proposed technique has been done offline. We have however already begun 

work on a real time implementation of the same.
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Appendix A 

Senior Citizen Health Care: Facts and Figures

The HAR algorithm proposed in this thesis can be applied to a wide range of 

applications. In Section 5.8, we discussed geriatric residence surveillance as one such 

application where early detection of falls could be highly beneficial to the seniors. In 

order to reinforce our claim we discuss briefly some facts and figures related to senior 

citizen health care, which were presented by the National Advisory Council on Aging and 

by Health Canada.

Quotes from the Interim Report Card, National Advisory Council on Aging: 2003

1. Of the 30 million Canadians in 2001, 3.9 million were 65 and older. Seniors are 

the fastest-growing age group in the country: the increase in their numbers since 

the 1996 census (about 360,000) is enough to populate a mid-size Canadian 

city, such as London, Ontario, or Halifax, Nova Scotia. Issues that concern 

seniors should be high on every government’s agenda.

2. With respect to health status, the 2001 Report Card: Seniors in Canada had 

identified three areas needing improvement: injury prevention, promotion of 

physical activity, and suicide prevention -  especially for men.

3. Council is however concerned about the persistently high rate of falls among 

older seniors.
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CHART 1. Falls requiring hospitalization have decreased for ail seniors 
since 1995-1996, but remain very high for seniors over 85

| | 65-74 [ [ ]  75-84 |  85+

Source: Canadian Institute for Health inhumation. "National Trauma Registiy". Ottawa: 1998-2002 
m i  Health Canada. “Canadian In jury Data: Mortality-1997 and Hospitalizations-1996-97".
Ottawa: October 1999.

Figure 7.1: Chart illustrating the percentage of fall related injuries in seniors.

Quotes from ‘Canada’s Aging Population’: A report prepared by Health Canada in 

Collaboration with the Interdepartmental Committee on Aging and Seniors Issues; 

2002.

Seniors* constitute the fastest growing population group in Canada. In 2001,it was 

estimated that 3.92 million Canadians were 65 years of age or older, a figure that is two 

thirds more than in 1981. During the same period, the overall Canadian population

increased by only one quarter. The proportion of seniors in the overall population has

gone from one in twenty in 1921, to one in eight in 2001. As the “baby boomers” (bom 

between 1946 and 1965) age, the seniors population is expected to reach 6.7 million in 

2021 and 9.2 million in 2041(nearly one in four Canadians). In fact, the growth of the 

seniors’ population will account for close to half of the growth of the overall Canadian 

population in the next four decades.
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The fastest growth in the seniors’ population is occurring among the oldest 

Canadians. In 2001, over 430,000 Canadians were 85' years of age or older -more than 

twice as many as in 1981, and more than twenty times as many as in 1921. The 

proportion of Canadians aged 85 or more is expected to grow to 1.6 million in 2041 -  4% 

of the overall population. (See Figure 7.2 below.)

C hart  1
Seniors by age sub-groups, a s  % of the  total population, Canada, 1921-2041 B85+
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Source: See A p p e n d ix  1

* P le ase  no te  th a t  in th is  docu m en t, th e  te rm s  "sen io r"  and "o ld e r C anad ian" re fe r  to  ad u lts  65 y e a rs  
of age or more.

3

Figure 7.2: Chart illustrating the growing population of seniors in Canada.

Injuries

Injuries among seniors are a key concern, because of the sharp increase in the rate of 

injuries and injury-related deaths with age. In 1996-97, seniors aged 85 and over were 

70% more likely than seniors aged 65 to 74 to suffer an injury that limited their activities. 

Senior women are nearly 60% more likely than senior men to suffer an injury. Falls are

1 * P lease note that in this document, the terms “senior” and “older Canadian” refer to adults 65 years o f  

age or more.
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the main cause. In the late 1990s, falls were responsible for 65% of injuries, 84% of 

injury-related hospital admissions, and 58% of injury-related deaths among the seniors 

population. The total health care costs due to seniors’ falls are estimated at $1 billion 

annually.
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