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Abstract

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the

maximal strip recovery (MSR) problem is to retain the maximum number of markers in both

G1 and G2 such that the resultant subsequences, denoted as G∗
1 and G∗

2, can be partitioned into

the same set of maximal strips, which are common substrings of length greater than or equal to

two. The complementary maximal strip recovery (CMSR) problem has the complementary goal

to delete the minimum number of markers. Both MSR and CMSR have been shown NP-hard

and APX-complete, and they admit a 4-approximation and a 3-approximation respectively. In

this paper, we present an improved 7
3 -approximation algorithm for the CMSR problem, with its

worst-case performance analysis done through a sequential amortization.

Keywords: Maximal strip recovery, approximation algorithm, sequential amortized analysis

1 Introduction

In comparative genomics, one of the first steps is to decompose two given genomes into synthetic

blocks — segments of chromosomes that are deemed homologous in the two input genomes. Many

decomposition methods have been proposed, but they are vulnerable to ambiguities and errors,

which are isolated points that do not co-exist with other points in genomic maps [4, 9]. The

maximal strip recovery (MSR) problem was formulated for eliminating these noise and ambiguities.

In the more precise formulation, we are given two genomic maps G1 and G2 each represented as

a sequence of n distinct gene markers (which form the alphabet Σ), and we want to retain the

maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as

G∗1 and G∗2, can be partitioned into the same set of maximal strips, which are common substrings

of length greater than or equal to two. Each retained marker thus belongs to exactly one of

these substrings, which can appear in the reversed and negated form and are taken as nontrivial

chromosomal segments. The deleted markers are regarded as noise or errors.
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The MSR problem, and its several close variants, have been shown NP-hard [8, 2, 3]. More

recently, it is shown to be APX-complete [2, 6], admitting a 4-approximation algorithm [3]. This 4-

approximation algorithm is a modification of an earlier heuristics for computing a maximum clique

(and its complement, a maximum independent set) [4, 9], to convert the MSR problem to computing

the maximum independent set in t-interval graphs, which admits a 2t-approximation [1, 3]. In this

paper, we investigate the complementary optimization goal to minimize the number of deleted

markers — the complementary MSR problem, or CMSR for short. CMSR is certainly NP-hard,

and was proven to be APX-complete recently [7], admitting a 3-approximation algorithm [5]. Our

main result is an improved 7
3 -approximation algorithm for CMSR. As we will show later, the key

design technique is a local greedy scheme to retain the most possible isolates while deleting some

isolate(s); and the performance ratio is proven using a novel technique called delayed sequential

amortized analysis. Some preliminary ideas of the design and analysis have appeared in [5].

2 Preliminaries

In the sequel, we use a lower case letter to denote a gene marker. A negation sign together with

the succeeding gene indicate that the gene is in its reversed and negated form. We reserve the

bullet symbol “•” for connection use, that is, a • b means gene b comes directly after gene a (in

a specific sequence). When a common substring (also called strip, or synthetic block) of the two

current target sequences (G1 and G2, or their remainders after deleting some letters) is specified,

it is of length greater than or equal to two, unless otherwise explicitly stated that it is a single

letter; The substring will (often) be labeled using a capital letter. We abuse this capital letter a

bit to also denote the set of gene markers in the substring, when there is no ambiguity. We present

several important structural properties of the CMSR problem in this section, which are used in the

design of the approximation algorithm and its performance analysis in the next section.

We first look at a warm-up instance. In this instance, G1 = 〈a, b, c, d, e, f, g, h, i, j, k, `〉 and

G2 = 〈−i,−d,−g,−f, h, a, c, b,−`,−k,−j,−e〉 (commas are used to separate the gene markers for

easier reading). By deleting markers c, d, e, and h from both G1 and G2, the remainder sequences

are G∗1 = 〈a, b, f, g, i, j, k, `〉 and G∗2 = 〈−i,−g,−f, a, b,−`,−k,−j〉. These two remainder sequences

can be decomposed into three maximal common substrings S1 = a • b, S2 = f • g • i (appearing in

the reversed and negated form in G∗2), and S3 = j • k • ` (appearing in the reversed and negated

form in G∗2). For this small instance, one can prove that the optimal solution to the MSR problem

has size 8, and (consequently) the optimal solution to the CMSR problem has size 4.

In the rest of the paper, we use OPT to denote an optimal solution to the instance of the

CMSR problem. That is, OPT is a minimum-size subset of letters that, deleting them from G1

and G2 gives the remainder sequences, denoted G∗1 and G∗2, respectively, which can be partitioned

into maximal common substrings.

Given any CMSR instance, in at most quadratic time, we can determine all maximal common

substrings of G1 and G2 (of length at least two) and the isolated letters that do not belong to any of

the common substrings. We use unit to refer to a maximal common substring or an isolated letter.

A unit and its reversed and negated form are considered identical. The above determined units

form a common partition of G1 and G2, i.e., every letter occurs in exactly one of these units. For

ease of presentation, these maximal common substrings are called type-0 substrings; the isolated
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letters are called isolates. Note that every letter appears exactly once in each of the two sequences

G1 and G2; for distinction purpose we use an isolate copy to refer to exactly one copy of the isolate.

In our algorithm Approx-CMSR to be presented in the next section, all the type-0 substrings are

kept in the final sequences and our goal is to eliminate the isolates, by either deleting them from

the input sequences, or to “merge” them into substrings while deleting some other isolates from the

input sequences. Here “merging” refers to either appending an isolate to some existing substring,

or forming two isolates into a novel common substring, which is called a type-1 substring.

Lemma 1 [5] For any CMSR instance, there exists an optimal solution OPT such that

1) for each type-0 substring S, either S ⊂ OPT or S ∩OPT = ∅;

2) if |S| ≥ 4, then S ∩OPT = ∅.

The above Lemma 1 tells that in the optimal solution, for every type-0 substring, either all

its letters are deleted or none of them is deleted. We partition OPT into a subset O3 of length-3

type-0 substrings, a subset O2 of length-2 type-0 substrings, and a subset O1 of isolates: OPT =

O3 ∪O2 ∪O1. These substrings and isolates are referred to as units of OPT in the sequel.

2.1 Favorable operations

Consider an isolate x in the given sequences G1 and G2. For ease of presentation we append an

imaginary type-0 substring H to the head of G1 and to the tail of G2, and another imaginary type-0

substring T to the tail of G1 and to the head of G2. It follows that x has exactly four neighboring

letters in G1 and G2 — duplicates are counted separately. Assume without loss of generality that

the two neighboring letters in G1 are a and b, and the two neighboring letters in G2 are c and d. In

the most extreme case, {a, b, c, d} reduces to a set of two isolates (see the first row in Table 1) and

deleting x enables the merging a and b into a novel length-2 substring. (Remark: There is another

possible configuration where a • x • b appears in G1 and a • −x • b appears in G2, which can be

identically discussed. For the same reason, in the following operations, reversed and negated gene

form is skipped.) Such a scenario is favorable in the sense that a gain of one letter is achieved —

deleting one while keeping two. Our algorithm Approx-CMSR will execute the deleting and the

subsequent merging, referred to as an operation 1, which is given the top priority.

In another interesting case, a • b appears in G2 and c •d appears in G1. When these four letters

are distinct isolates (see the second row in Table 1), then deleting x enables the merging of a and b

and the merging of c and d into two novel length-2 substrings. Such a scenario is also favorable for

a gain of three letters. Our algorithm Approx-CMSR will execute the deleting and the subsequent

merging, referred to as an operation 2, which is also given the top priority.

If exactly one of these four letters, say d, resides in a substring S and the other three are

distinct isolates (see the third row in Table 1), then deleting x enables the merging of a and b and

the appending of c to S. This scenario is also favorable in the sense that a gain of two letters is

achieved. Our algorithm Approx-CMSR will execute the deleting and the subsequent merging and

appending, referred to as an operation 3, which is given the top priority too. If exactly two of

these four letters reside in substrings (see the 4th row in Table 1) such that deleting x enables two

separate appending of the neighboring isolates to the two substrings respectively, it is also favorable
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for a gain of one letter. Approx-CMSR will execute the deleting and the subsequent appending,

referred to as an operation 4, which is given the top priority too.

Priority Operation Local configuration Comments

1 1
. . . aj • xj • bj . . .
. . .− bj • xj • −aj . . .

Uj = {xj};
Vj = {aj , bj}

2
. . . aj • xj • bj . . . cj • dj . . .
. . . aj • bj . . . cj • xj • dj . . .

aj , bj , cj , dj are distinct;

Uj = {xj};
Vj = {aj , bj , cj , dj}

3
. . . aj • xj • bj . . . cj • S . . .

. . . aj • bj . . . cj • xj • S . . .

aj , bj , cj are distinct;

Uj = {xj};
Vj = {aj , bj , cj}

4
. . . aj • xj • S1 . . . cj • S2 . . .

. . . aj • S1 . . . cj • xj • S2 . . .
Uj = {xj};
Vj = {aj , cj}

5
. . . aj • xj • S . . .

. . . aj • S . . .
Uj = {xj};
Vj = {aj}

6
. . . aj • xj • bj • yj • cj . . . dj • ej . . .
. . . aj • bj • cj . . . dj • xj • yj • ej . . .

aj , bj , cj , dj , ej are distinct;

Uj = {xj , yj};
Vj = {aj , bj , cj , dj , ej}

2 7
. . . aj • xj • bj . . .
. . . aj • bj . . .

Uj = {xj};
Vj = {aj , bj}

3 8
. . . aj • xj • yj • bj . . .
. . . aj • bj . . .

{xj , yj} is an eliminating pair;

Uj = {xj , yj};
Vj = {aj , bj}

9
. . . aj • xj • bj . . .
. . . aj • yj • bj . . .

Uj = {xj , yj};
Vj = {aj , bj}

Table 1: Nine different isolate elimination operations with four levels of priorities, where a smaller

number indicates a higher priority. In these operations, lower case letters are isolates, while the

capital ones are existing substrings.

There are two other top priority operations. In an operation 5, deleting x enables one appending

of a neighboring isolate to a substring, for zero gain of letters (see the 5th row in Table 1); In an

operation 6, the neighborhood of isolate x overlaps with the neighborhood of another isolate y

(see the 6th row in Table 1), such that deleting x and y simultaneously enables the formation of a

novel length-2 substring and a novel length-3 substring, using the involved five distinct neighboring

isolates in the union of the two neighborhoods. An operation 6 has a gain of three letters.

Notice that wherever an operation 6 can be applied, deleting one and only one of x, y, and b

enables a merging of two its neighboring isolates into a novel length-2 substring. For example, from

the 6th row in Table 1, deleting b enables the merging of x and y. It is however very important
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to recognize that in this scenario both x and y should be deleted. The operation 7, in which one

isolate is deleted and its two neighboring isolates are merged into a novel length-2 substring (see

the 7th row in Table 1), has a lower priority than all the above six operations. This might look

odd since an operation 7 has a gain of one letter, seemingly better than an operation 5; but giving

it a lower priority is crucial in the proof of performance guarantee in Lemma 15, where we cannot

afford to execute an operation 7 to delete isolate b and form substring x • y, which prevents the

formation of substrings a • c and d • e.

The last two operations have the lowest priority, in both of which two isolates x and y are

deleted and (only) one novel length-2 substring is formed using their two neighboring isolates a

and b. In an operation 8, x and y reside in between a and b in one sequence, while a and b are

adjacent in the other sequence (see the 8th row in Table 1); In an operation 9, x and y reside in

between a and b separately one in each of the two sequences (see the 9th row in Table 1). These

two operations must have a lower priority than an operation 7, a condition used in the proofs of

their performance guarantees in Lemmas 16 and 17.

3 A 7
3-approximation algorithm

We assume at hand an optimal solution OPT stated in Lemma 1, and it is partitioned into O3,

O2, and O1.

3.1 The Approx-CMSR algorithm

In the first step of our approximation algorithm, denoted as Approx-CMSR, it retains all type-0

substrings. That is, Approx-CMSR will only delete isolates from the input sequences (in the second

and the third steps).

In the second step, Approx-CMSR iteratively removes one or two isolates; the candidate isolates

have to be in one of the nine cases listed in Table 1, and the one with the top priority is chosen (tie

breaks arbitrarily) for removal at the time of consideration. In each of the nine cases, the isolate

removal can give rise to a novel length-2 or length-3 common substring to the remainder sequences

(all except operations 4 and 5), and/or allow an isolate to be appended to an existing common

substring in the remainder sequences (operations 3, 4, and 5). If a novel common substring is

formed, it is referred to as a type-1 substring; if an existing substring is extended, it retains its type

for ease of presentation. The involved isolates, in either scenario, lose their isolate identity and are

retained by Approx-CMSR.

Let U = {U1, U2, . . . , Um}, where Uj denotes the set of isolates deleted by Approx-CMSR in

the j-th iteration of the second step. Associated with each Uj , for j = 1, 2, . . . ,m, let Vj denote

the set of isolates that are retained by Approx-CMSR in the j-th iteration. In Table 1, the Uj and

Vj for each of the nine operations are specified. Let R denote the set of remaining isolates at the

time the algorithm finds no isolates to delete. In the third (the last) step of the algorithm, Approx-

CMSR deletes all letters of R from the two sequences. A high-level description of the algorithm

Approx-CMSR is depicted in Figure 1.
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Algorithm Approx-CMSR:

Input: two sequences (permutations) G1 and G2 on the same set of letters.

Output: two subsequences of G1 and G2 respectively, that can be partitioned

into maximal common substrings of length at least 2.

1. Determines all type-0 substrings of G1 and G2, and retains them;

2. While (there are feasible operations in the current sequences G1 and G2), do

2.1. finds an operation of the currently highest priority;

2.2. removes the letters of Uj from G1 and G2;

2.3. retains the letters of Vj in G1 and G2 by forming appropriate substrings;

3. Deletes all the remaining isolates from G1 and G2.

Figure 1: A high-level description of the algorithm Approx-CMSR.

3.2 Performance analysis

Let U = ∪mj=1Uj and V = ∪mj=1Vj . The following two lemmas state some preliminary observations

on algorithm Approx-CMSR.

Lemma 2 The set of all isolates is the union of the disjoint sets U1, U2, . . . , Um, V1, V2, . . . , Vm,

and R, that is, U ∪ V ∪R; Algorithm Approx-CMSR deletes all isolates of U ∪R, but no others.

Lemma 3 (Once adjacent, always adjacent) In the j-th iteration of algorithm Approx-CMSR, for

j = 1, 2, . . . ,m, if two letters aj and bj (at least one of them is an isolate of Vj) are made adjacent

into a common substring, then aj and bj are maintained adjacent toward the termination of the

algorithm. Moreover, in the two original input sequences G1 and G2, all the letters in between aj
and bj belong to ∪ji=1Ui.

Lemma 4 In the j-th iteration of algorithm Approx-CMSR, for j = 1, 2, . . . ,m, assume two letters

aj and bj are made adjacent into a common substring. If both aj and bj are kept in G∗1 and G∗2 but

they are not adjacent to each other, then they do not reside in the same substring of G∗1 and G∗2.

Proof. Suppose to the contrary that aj and bj reside in the same substring of G∗1 and G∗2 but

they are not adjacent to each other. Let z1, z2, . . . , zk be the letters in between aj and bj in G∗1 and

G∗2, for some k ≥ 1. Note that {z1, z2, . . . , zk} ⊂ ∪ji=1Ui, from Lemma 3.

Assume first z1 ∈ Ui for some i < j. In the i-th iteration of algorithm Approx-CMSR, there is

an adjacency ai • bi been made after deleting some letters of Ui, including z1. It follows that if z1
were in between aj and bj in both original sequences G1 and G2, then ai and bi would also be in

between aj and bj in at least one of G1 and G2, preventing the j-th iteration to happen. Therefore,

z1 ∈ Uj . This implies that in the j-th iteration of algorithm Approx-CMSR, an operation 1 is

executed. Nevertheless, the reversed and negated form of either z1 or aj in exactly one of G1 and

G2 contradicts the substring existence. 2

We use W to denote the set of such isolates aj ∈ Vj − O1, which is adjacent to bj in the

Approx-CMSR output but does not reside with bj in the same substring of G∗1 and G∗2. We have
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the following lemma.

Lemma 5 For any j = 1, 2, . . . ,m, if O1 ∩ (Uj ∪ Vj) = ∅, then Vj ⊂W .

Proof. For each aj ∈ Vj , if its corresponding bj , to which aj is made adjacent in the j-th

iteration of algorithm Approx-CMSR, is not kept in G∗1 and G∗2, then aj ∈ W . If bj is also kept

in G∗1 and G∗2, then aj and bj do not reside in the same substring due to the fact that there is a

letter of Uj in between aj and bj in exactly one of G∗1 and G∗2, when an operation 2–9 is executed,

and thus aj ∈ W by Lemma 4; when an operation 1 is executed in the j-th iteration of algorithm

Approx-CMSR, aj and bj do not reside in the same substring due to the reversed and negated form

of either aj or xj . 2

In the sequel, we estimate the size of U ∪ R in terms of the size of OPT . We do this by

attributing all isolates of U ∪R and some isolates of W to the letters of OPT , through a sequential

amortized analysis. Note that isolates of W ⊂ V are not deleted by algorithm Approx-CMSR.

When an isolate x of U ∪ R and an isolate w of W are identified as a pair, we say they cancel out

each other in the sense that, to whichever letter o ∈ OPT w is attributed, w is replaced by x at the

end of the attribution process. That is, these attributed isolates of W relay the isolates of U ∪ R

during the attribution process. We create three bins to classify the letters of OPT . A letter of

OPT is classified into bin B2 if it is attributed with at most two isolates of U ∪R ∪W ; a letter of

OPT is classified into bin B1
3 if it is attributed with at most three isolates of U ∪R ∪W , and it is

associated with a unique isolate copy of O1 ∩ R; and a letter of OPT is classified into bin B2
3 if it

is attributed with at most three isolates of U ∪R∪W , and it is associated with two unique isolate

copies of O1 ∩ R. Note that an isolate of O1 ∩ R has two copies, one in each of G1 and G2, and

thus can be associated with two letters of B1
3 ∪B2

3 .

Consider the inverse process of deleting units of OPT from G1 and G2 to obtain the optimal

subsequences G∗1 and G∗2. In this inverse process, we add the units of OPT back to G∗1 and G∗2
using their original positions in G1 and G2 to re-construct G1 and G2. At the beginning of this

process, there are no isolated letters in G∗1 and G∗2; each isolate of U ∪V ∪R thus either is a unit of

O1, or is in some substring of G∗1 and G∗2 but then singled out by inserting a unit of OPT back into

G∗1 and G∗2, which breaks the substring (or one of its fragments if already broken) into fragments,

one of which is the single isolate. In either case, when the isolate is known to be in U ∪ R ∪W ,

it is generated by the inserting unit of OPT and is thus attributed to the unit. Since there could

be multiple units of OPT that are able to single out this particular isolate, we will set up the

conditions for proper attribution.

At any time of the process, inserting one unit of OPT back to the current G1 and G2 can generate

at most four single-letter fragments, since in the worst case two current length-2 substrings, one

in each of current sequences G1 and G2, can be broken into four such fragments. We firstly insert

units of O3 and O2, one by one; all the isolates of U ∪ R ∪W that are singled out by inserting a

unit of O3 ∪ O2 are attributed to the unit. Lemma 6 summarizes this fact that every letter in a

substring of O3 ∪O2 is classified into B2. The resultant sequences are denoted as G0
1 and G0

2.

Lemma 6 Every letter in a substring of O3 ∪O2 is in B2.
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Proof. Inserting one substring of O3 ∪O2 back into the current sequences G1 and G2 generates

at most four isolated letters, and every substring contains at least two letters. Therefore, every

letter can be attributed with at most two isolated letters of U ∪R ∪W . 2

Consider an isolate x ∈ U ∪ R that resides in a common substring of G0
1 and G0

2. Let x • y be

the adjacency (or one of the two adjacencies). Since inserting all units of O1 has to single x out, we

conclude that there are units of O1 residing in between x and y in the original sequences G1 and

G2. Denote this subset of units of O1 as X, inserting each of which back into G0
1 and G0

2 will break

the adjacency between x and y. If X intersects with U ∪V , let j∗ denote the maximum j for which

X ∩ (Uj ∪Vj) 6= ∅, and we say that the adjacency x • y is broken by the isolates of O1 ∩ (Uj∗ ∪Vj∗).

If X does not intersect with U ∪ V , i.e., X ⊂ R, then the adjacency x • y is broken by the isolates

of O1 ∩R.

We next insert isolates of O1 ∩ (Uj ∪ Vj) back into G0
1 and G0

2, for j = 1, 2, . . . ,m, sequentially,

and show that they all belong to bins B2 ∪B1
3 ∪B2

3 . Right after inserting isolates of O1 ∩ (Uj ∪Vj),

the achieved sequences are denoted as Gj
1 and Gj

2. We emphasize that this sequential order is very

important, as we need it in the proofs of Lemmas 9–17, each of which counts the number of isolates

of U ∪ R ∪W that are attributed to the isolates of O1 ∩ (Uj ∪ Vj), when one of the nine different

operations is executed in the j-th iteration of Approx-CMSR.

Lemma 7 For any j = 1, 2, . . . ,m,

1) a letter of Uj and a letter not of Uj cannot reside in the same substring of Gj
1 and Gj

2;

2) except that Approx-CMSR executes an operation 8 in the j-th iteration, letters of Uj are

isolates in Gj
1 and Gj

2.

Proof. Notice that all type-0 substrings, and all letters of ∪ji=1 (Ui ∪ Vi) are in Gj
1 and Gj

2,

guaranteed by the inserting process. We prove this lemma by (finite) induction.

In the base case where j = 1, assume Approx-CMSR made an adjacency a1 •b1. From Lemma 3

we know that the letters in between a1 and b1 in the original sequences G1 and G2 are all in U1. It

follows that none of these letters resides in a substring of G1
1 and G1

2 that contains a letter z /∈ U1,

since otherwise z must be one of a1 and b1, contradicting to all nine defined operations. Note that

only an operation 8 can result in U1 = {x1, y1} such that both x1 and y1 are in between a1 and b1
in one of G1

1 and G1
2 and not separated in the other sequence. That is, letters of U1 are isolates in

G1
1 and G1

2 if they are not the result of an operation 8.

Assume the lemma holds for all i = 1, 2, . . . , j − 1. Note that if the letters of Ui are isolated

letters in Gi
1 and Gi

2, then they remain as isolated letters in Gj
1 and Gj

2. Consider the j-th iteration

of Approx-CMSR, and assume Approx-CMSR made an adjacency aj • bj . Again from Lemma 3 we

know that the letters in between aj and bj in the original sequences G1 and G2 are all in ∪ji=1Ui.

It follows that none of the letters of Uj resides in a substring of Gj
1 and Gj

2 that contains a letter

z /∈ Uj , since otherwise z must be in ∪j−1i=1Ui, a contradiction to the inductive assumption, or z

must be one of aj and bj , contradicting to all nine defined operations. Next, similarly as in the

base case, one can see that the letters of Uj can form a length-2 substring in Gj
1 and Gj

2 only if the

Uj is from an operation 8. 2
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Lemma 8 In the j-th iteration of algorithm Approx-CMSR, for j = 1, 2, . . . ,m, assume two letters

aj and bj are made adjacent into a common substring. If aj ∈W , then the adjacencies at aj in G∗1
and G∗2 are not broken by inserting letters of Uj or bj into Gj−1

1 and Gj−1
2 .

Proof. Notice that if any letter of Uj or bj is in G∗1 and G∗2, then it is not inserted into Gj−1
1 and

Gj−1
2 . So the lemma holds when all these letters are kept in G∗1 and G∗2. Consider first the case

Uj ⊂ O1. If bj ∈ O1, inserting bj into Gj−1
1 and Gj−1

2 will not break any adjacency involving a letter

in between aj and bj in the original sequences G1 and G2, since by Lemma 7 such a letter belongs

to ∪j−1i=1Ui, and thus cannot co-reside with any letter not in between aj and bj in the same substring

of Gj−1
1 and Gj−1

2 . When aj is adjacent to a letter z, we claim that z resides at the opposite side

of aj with respect to bj ; for otherwise, bj is closer to aj than z and thus inserting bj alone into

G∗1 and G∗2 achieves a better than optimum solution, a contradiction. It follows that inserting bj
changes nothing to this adjacency. Afterwards, inserting letters of Uj does not do anything to the

adjacencies involving aj and bj .

In the other case of Uj −O1 6= ∅, aj can only be adjacent to a letter z at the opposite side of aj
with respect to bj . Thus, if bj ∈ O1, inserting bj into Gj−1

1 and Gj−1
2 will not break any adjacency.

Afterwards, inserting the letter of Uj ∩O1, if any, does not do anything to the adjacencies involving

aj and bj . 2

In the following nine Lemmas 9–17, we show that every isolate of O1 ∩ (Uj ∪ Vj) can be put

into exactly one of bins B2, B1
3 , and B2

3 , when the j-th iteration of Approx-CMSR executes an

operation 1, 2, 3, 4, 5, 6, 7, 8, or 9, respectively. During this process, we also identify the letters of

Vj −O1 that belong to W .

Lemma 9 If Approx-CMSR executes an operation 1 in the j-th iteration, then O1∩(Uj∪Vj) ⊂ B2,

i.e., every isolate of O1 ∩ (Uj ∪ Vj) is attributed with at most 2 isolates of U ∪R ∪W .

Proof. Recall that an operation 1 deletes isolate xj , and forms a length-2 type-1 substring

aj •bj , i.e., Uj = {xj} and Vj = {aj , bj} (see Table 1). From Lemma 3, we know that in the original

sequences G1 and G2 all letters in between aj and bj belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. If aj , bj ∈ O1, inserting them into Gj−1
1 and Gj−1

2 in the worst case

would break two current length-2 substrings, one in each sequence, giving rise to a maximum of 4

isolated letters; If aj ∈ O1 but bj /∈ O1, then bj ∈W . In this case, inserting aj into Gj−1
1 and Gj−1

2

will not generate any new isolated letters by Lemmas 7 and 8. The case of aj /∈ O1 but bj ∈ O1 is

analogously discussed. It follows that when |O1 ∩Vj | = 2, 1, 0, respectively, inserting the isolates of

O1 ∩ Vj into Gj−1
1 and Gj−1

2 in the worst case will generate 4, 0, 0 new isolated letters, respectively.

Afterwards, xj is inserted back, generating only one isolate which is xj itself. In summary, when

|O1 ∩ Vj | = 2, 1, 0, respectively, inserting the isolates of O1 ∩ (Uj ∪ Vj) into Gj−1
1 and Gj−1

2 in the

worst case will generate 5, 1, 1 new isolated letters of U ∪ R ∪W , respectively, and thus we can

attribute them to isolates of O1 ∩ (Uj ∪ Vj) to put the isolates of O1 ∩ (Uj ∪ Vj) into bin B2.

(Remark. Note that among these generated isolates, xj is known to be in U ∪ R. Therefore,

when aj ∈ O1 but bj /∈ O1, xj ∈ U ∪R and bj ∈W cancel out each other. Nevertheless, we do not

need to do this to skip counting xj in, since on average every isolate of O1 ∩ (Uj ∪ Vj) is attributed
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with less than two isolated letters of U ∪R ∪W . Later, in the proof of Lemma 17, we might have

to do the cancelling.)

In the other case, xj /∈ O1. From Lemma 7, we know that if xj is not an isolated letter in Gj−1
1

and Gj−1
2 , then inserting the isolates of O1∩Vj into Gj−1

1 and Gj−1
2 will make xj an isolated letter;

on the other hand, if xj is already an isolated letter in Gj−1
1 and Gj−1

2 , then inserting aj , bj into

Gj−1
1 and Gj−1

2 will not break into any substring in both sequences, and thus generating no new

isolated letters. It follows that when |O1 ∩Vj | = 2, inserting aj , bj into Gj−1
1 and Gj−1

2 in the worst

case would break a length-3 substring to which xj belongs, giving rise to a maximum of 3 isolated

letters. When |O1 ∩Vj | = 1 and without loss of generality bj /∈ O1 (thus bj ∈W ), since every letter

in between xj and bj in the original sequences G1 and G2 is already an isolate in Gj−1
1 and Gj−1

2 , we

conclude that inserting aj into Gj−1
1 and Gj−1

2 in the worst case would break one current length-2

substring to which xj belongs, giving rise to a maximum of 2 isolated letters. (Remark. Again, a

cancelling pair of xj and bj can be identified, but we skip it since it is not needed in this case.) In

summary, when xj /∈ O1 and |O1 ∩ Vj | = 2, 1, respectively, inserting the units of O1 ∩ Vj into Gj−1
1

and Gj−1
2 will generate, in the worst case, 3, 2 new isolated letters of U ∪R ∪W , respectively, and

thus we can attribute them to isolates of O1 ∩ Vj to put the isolates of O1 ∩ Vj into bin B2.

This proves the lemma that every isolate of O1 ∩ (Uj ∪ Vj) is attributed with at most 2 isolates

of U ∪R ∪W . 2

Lemma 10 If Approx-CMSR executes an operation 2 in the j-th iteration, then O1∩(Uj∪Vj) ⊂ B2.

Proof. Recall that an operation 2 deletes isolate xj , and forms two length-2 type-1 substrings

aj • bj and cj • dj , i.e., Uj = {xj} and Vj = {aj , bj , cj , dj} (see Table 1). From Lemma 3, we know

that in the original sequences G1 and G2 all letters in between aj and bj (and in between cj and

dj , respectively) belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. The discussion on aj and bj (cj and dj , respectively) is exactly

the same as the first case in the proof of Lemma 9. It follows that when |O1 ∩ Vj | = 4, 3, 2, 1, 0,

respectively, inserting the isolates of O1 ∩ Vj into Gj−1
1 and Gj−1

2 in the worst case will generate

8, 4, 4, 0, 0 new isolated letters, respectively. Afterwards, xj is inserted back, generating only one

isolate which is xj itself. In summary, when |O1 ∩ Vj | = 4, 3, 2, 1, 0, respectively, inserting the

isolates of O1∩ (Uj ∪Vj) into Gj−1
1 and Gj−1

2 in the worst case will generate 9, 5, 5, 1, 1 new isolated

letters of U ∪R ∪W , respectively, and thus we can attribute them to isolates of O1 ∩ (Uj ∪ Vj) to

put the isolates of O1 ∩ (Uj ∪ Vj) into bin B2.

In the other case, xj /∈ O1. From Lemma 7, we know that if xj is not an isolated letter in Gj−1
1

and Gj−1
2 , then inserting the isolates of O1∩Vj into Gj−1

1 and Gj−1
2 will make xj an isolated letter;

on the other hand, if xj is already an isolated letter in Gj−1
1 and Gj−1

2 , then inserting aj , bj (or

cj , dj , respectively) into Gj−1
1 and Gj−1

2 will not break into any substring in the sequence where xj
is in between aj and bj (in between cj and dj , respectively), and thus in the worst case would break

one current length-2 substring, giving rise to a maximum of 2 isolated letters. It follows that when

|O1 ∩ Vj | = 4, inserting aj , bj , cj , dj into Gj−1
1 and Gj−1

2 in the worst case would break two current

length-2 substrings and a length-3 substring to which xj belongs, giving rise to a maximum of 7

isolated letters. When |O1 ∩ Vj | = 3 and without loss of generality dj /∈ O1 (thus dj ∈ W ), since

every letter in between xj and dj in the original sequences G1 and G2 is already an isolate in Gj−1
1
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and Gj−1
2 , we conclude that inserting aj , bj , cj into Gj−1

1 and Gj−1
2 in the worst case would break

one current length-2 substring and another length-2 substring to which xj belongs, giving rise to

a maximum of 4 isolated letters. Similarly, when |O1 ∩ Vj | = 2 and bj , dj /∈ O1 (thus bj , dj ∈ W ),

we conclude that inserting aj , cj into Gj−1
1 and Gj−1

2 in the worst case would break one current

length-2 substring to which xj belongs, giving rise to a maximum of 2 isolated letters. When

|O1 ∩ Vj | = 2 and cj , dj /∈ O1 (thus cj , dj ∈ W ), we conclude from Lemma 3 that xj is already an

isolated letter in Gj−1
1 and Gj−1

2 , and thus inserting aj , bj into Gj−1
1 and Gj−1

2 in the worst case

would break one current length-2 substring, giving rise to a maximum of 2 isolated letters. The

other scenarios of |O1∩Vj | = 2 can be symmetrically discussed, and at most two new isolate letters

are generated. Therefore, when |O1∩Vj | = 2, at most two new isolates of U ∪R∪W are generated.

When |O1 ∩ Vj | = 1 and assume without loss of generality aj ∈ O1 (which implies bj , cj , dj ∈ W ),

then similarly we conclude from Lemma 3 that xj is already an isolated letter in Gj−1
1 and Gj−1

2 ,

and thus inserting aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary,

when xj /∈ O1 and |O1 ∩ Vj | = 4, 3, 2, 1, respectively, inserting the units of O1 ∩ Vj into Gj−1
1 and

Gj−1
2 will generate, in the worst case, 7, 4, 2, 0 new isolated letters of U ∪R ∪W , respectively, and

thus we can attribute them to isolates of O1 ∩ Vj to put the isolates of O1 ∩ Vj into bin B2.

This proves the lemma that every isolate of O1 ∩ (Uj ∪ Vj) is attributed with at most 2 isolates

of U ∪R ∪W . 2

Lemma 11 If Approx-CMSR executes an operation 3 in the j-th iteration, then O1∩(Uj∪Vj) ⊂ B2.

Proof. Recall that an operation 3 deletes isolate xj , and forms one length-2 type-1 substrings

aj • bj and merges cj to an existing substring S, i.e., Uj = {xj} and Vj = {aj , bj , cj} (see Table 1).

For ease of discussion, let dj denote the ending letter of S to which cj is made adjacent to. From

Lemma 3, we know that in the original sequences G1 and G2 all letters in between aj and bj (and

in between cj and dj , respectively) belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. The discussion on aj and bj is exactly the same as the first case in

the proof of Lemma 9. For cj , since dj is either a letter in some type-0 substring of the original

sequences or a letter in some Vi for i < j, we conclude that dj is already in Gj−1
1 and Gj−1

2 .

Therefore, this can be deemed as a special case of the first case in the proof of Lemma 9. That is,

when |O1 ∩ Vj | = 3, 2, 1, 0, respectively, inserting the isolates of O1 ∩ Vj into Gj−1
1 and Gj−1

2 in the

worst case will generate 4, 4, 0, 0 new isolated letters, respectively. Afterwards, xj is inserted back,

generating only one isolate which is xj itself. In summary, when |O1 ∩ Vj | = 3, 2, 1, 0, respectively,

inserting the isolates of O1 ∩ (Uj ∪ Vj) into Gj−1
1 and Gj−1

2 in the worst case will generate 5, 5, 1, 1

new isolated letters of U ∪ R ∪ W , respectively, and thus we can attribute them to isolates of

O1 ∩ (Uj ∪ Vj) to put the isolates of O1 ∩ (Uj ∪ Vj) into bin B2.

In the other case, xj /∈ O1. From Lemma 7, we know that if xj is not an isolated letter in Gj−1
1

and Gj−1
2 , then inserting the isolates of O1∩Vj into Gj−1

1 and Gj−1
2 will make xj an isolated letter;

on the other hand, if xj is already an isolated letter in Gj−1
1 and Gj−1

2 , then inserting aj , bj (or

cj , respectively) into Gj−1
1 and Gj−1

2 in the worst case would break one current length-2 substring,

giving rise to a maximum of 2 isolated letters. Note that dj is already in Gj−1
1 and Gj−1

2 , and thus

we may treat this as a special case of the second case in the proof of Lemma 9. That is, when

|O1 ∩ Vj | = 3, inserting aj , bj , cj into Gj−1
1 and Gj−1

2 in the worst case would break one current
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length-2 substring and another length-2 substring to which xj belongs, giving rise to a maximum

of 4 isolated letters. When |O1 ∩ Vj | = 2 and cj /∈ O1 (thus cj ∈W ), then xj is already an isolated

letter in Gj−1
1 and Gj−1

2 , and thus inserting aj , bj into Gj−1
1 and Gj−1

2 in the worst case would break

one current length-2 substring, giving rise to a maximum of 2 isolated letters; when |O1 ∩ Vj | = 2

and bj /∈ O1 (thus bj ∈W ), and if xj is an isolated letter, then inserting aj , cj into Gj−1
1 and Gj−1

2

will not generate any new isolated letters; if xj is not an isolated letter, then inserting aj , cj into

Gj−1
1 and Gj−1

2 will have to make xj an isolated letter, and thus in the worst case would break a

length-2 substring to which xj belongs, giving rise to a maximum of 2 isolated letters. That is,

when |O1 ∩ Vj | = 2, at most two isolated letters of U ∪R ∪W are generated. If |O1 ∩ Vj | = 1 and

aj ∈ O1 (which implies bj , cj ∈ W ), then xj is already an isolated letter in Gj−1
1 and Gj−1

2 , and

thus inserting aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters; If |O1 ∩ Vj | = 1

and cj ∈ O1 (which implies aj , bj ∈W ), then similarly xj is already an isolated letter in Gj−1
1 and

Gj−1
2 , and thus inserting cj into Gj−1

1 and Gj−1
2 will not generate any new isolated letters. That

is, when |O1 ∩ Vj | = 1, no new isolated letters of U ∪R ∪W will be generated. In summary, when

xj /∈ O1 and |O1 ∩ Vj | = 3, 2, 1, respectively, inserting the isolates of O1 ∩ Vj into Gj−1
1 and Gj−1

2

will generate, in the worst case, 4, 2, 0 new isolated letters of U ∪R ∪W , respectively, and thus we

can attribute them to isolates of O1 ∩ Vj to put the isolates of O1 ∩ Vj into bin B2.

This proves the lemma that every isolate of O1 ∩ (Uj ∪ Vj) is attributed with at most 2 isolates

of U ∪R ∪W . 2

Lemma 12 If Approx-CMSR executes an operation 4 in the j-th iteration, then O1∩(Uj∪Vj) ⊂ B2.

Proof. Recall that an operation 4 deletes isolate xj , appends aj to an existing substring S1,

and appends cj to another existing substring S2, i.e., Uj = {xj} and Vj = {aj , cj} (see Table 1).

For ease of discussion, let bj denote the ending letter of S1 to which aj is made adjacent to, and

dj denote the ending letter of S2 to which cj is made adjacent to. From Lemma 3, we know that

in the original sequences G1 and G2 all letters in between aj and bj (and in between cj and dj ,

respectively) belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. Since bj (dj , respectively) is either a letter in some type-0 substring

of the original sequences or a letter in some Vi for i < j, we conclude that bj (dj , respectively)

is already in Gj−1
1 and Gj−1

2 . Therefore, this can be deemed as a special case of the first case in

the proof of Lemma 9. That is, inserting the isolates of O1 ∩ Vj , if any, into Gj−1
1 and Gj−1

2 will

not generate any new isolated letters. Afterwards, xj is inserted back, generating only one isolate

which is xj itself. Therefore, every isolate of O1 ∩ (Uj ∪ Vj) belongs to bin B2.

In the other case, xj /∈ O1. By Lemma 7, inserting aj and/or cj into Gj−1
1 and Gj−1

2 will have

to make xj an isolated letter, if xj is not an isolated letter in Gj−1
1 and Gj−1

2 ; on the other hand, if

xj is already an isolated letter in Gj−1
1 and Gj−1

2 , then inserting aj and/or cj into Gj−1
1 and Gj−1

2

will not generate any new isolated letters. Therefore, when |O1 ∩Vj | = 2, inserting aj , cj into Gj−1
1

and Gj−1
2 in the worst case would break a length-2 substring to which xj belongs, giving rise to a

maximum of 2 isolated letters. If |O1 ∩ Vj | = 1 and assume without loss of generality that aj ∈ O1

(which implies cj ∈W ), then xj is already an isolated letter in Gj−1
1 and Gj−1

2 , and thus inserting

aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary, when xj /∈ O1 and

|O1 ∩ Vj | = 2, 1, respectively, inserting the units of O1 ∩ Vj into Gj−1
1 and Gj−1

2 will generate, in
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the worst case, 2, 0 isolated letters, respectively. Therefore, we can arbitrarily attribute them to

isolates of O1 ∩ Vj to put the isolates of O1 ∩ Vj into bin B2. 2

Lemma 13 If Approx-CMSR executes an operation 5 in the j-th iteration, then every isolate of

O1 ∩ (Uj ∪ Vj) is either in B2, or in B1
3 .

Proof. Recall that bin B1
3 contains letters of OPT each of which is attributed with at most three

isolates of U ∪ R ∪W and is associated with a unique isolate copy of O1 ∩ R. Also, an operation

5 deletes isolate xj , and appends aj to an existing substring S, i.e., Uj = {xj} and Vj = {aj} (see

Table 1). For ease of discussion, let bj denote the ending letter of S to which aj is made adjacent

to. From Lemma 3, we know that in the original sequences G1 and G2 all letters in between aj and

bj belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. If aj ∈ O1, inserting aj into Gj−1
1 and Gj−1

2 will not generate any new

isolated letters, similarly proven as in Lemma 8. Hence, aj ∈ B2. Afterwards, xj is inserted back,

and it could break an adjacency in Gj−1
1 and Gj−1

2 , denoted as cj • dj . If one of cj and dj does not

belong to U ∪R∪ V (which is a superset of U ∪R∪W ), we conclude that xj ∈ B2; otherwise, due

to the fact that this is an operation 5, there must be some other isolate from ∪mi=j+1 (Ui ∪ Vi) or

from R that resides in between cj and dj is the original sequences G1 and G2. In the former case,

cj and dj are not attributed to xj by the attribution rule we set earlier, and thus xj ∈ B2; in the

latter, select an arbitrary isolate from R, denoted as xRj , that resides in between cj and dj in one

of the original sequences G1 and G2, and associate this copy of xRj with xj . This way, cj , dj , xj are

attributed to xj and therefore xj ∈ B1
3 . It is important to notice that since the adjacency between

cj and dj is broken by xj , no more copies of isolates of O1 ∩R residing in between cj and dj in the

corresponding original sequence would be associated with other isolates of O1. That is, this isolate

copy xRj is unique to xj .

In the other case, xj /∈ O1. By Lemma 7, inserting aj into Gj−1
1 and Gj−1

2 will have to make

xj an isolated letter, if xj is not an isolated letter in Gj−1
1 and Gj−1

2 ; on the other hand, if xj is

already an isolated letter in Gj−1
1 and Gj−1

2 , then inserting aj into Gj−1
1 and Gj−1

2 will not generate

any new isolated letters. Note that by Lemma 7 if xj is not an isolated letter in Gj−1
1 and Gj−1

2

then we must have aj ∈ O1; and inserting aj into Gj−1
1 and Gj−1

2 in the worst case would break

a length-2 substring to which xj belongs, giving rise to a maximum of 2 isolated letters. Hence,

aj ∈ B2. 2

Lemma 14 If Approx-CMSR executes an operation 6 in the j-th iteration, then O1∩(Uj∪Vj) ⊂ B2.

Proof. Recall that an operation 6 deletes isolates xj , yj , and forms a novel length-3 substring

aj • bj • cj and a novel length-2 substring dj • ej , i.e., Uj = {xj , yj} and Vj = {aj , bj , cj , dj , ej} (see

Table 1). From Lemma 3, we know that in the original sequences G1 and G2 all letters in between

aj and bj (in between bj and cj , and in between dj and ej) belong to ∪ji=1Ui. We discuss three

cases.

In the first case, xj , yj ∈ O1. If |O1 ∩ Vj | = 5, by Lemma 3, inserting aj , bj , cj into Gj−1
1 and

Gj−1
2 in the worst case would break two current length-2 substrings, giving rise to a maximum of 4
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isolated letters; inserting dj , ej into Gj−1
1 and Gj−1

2 in the worst case would also break two current

length-2 substrings, giving rise to a maximum of 4 isolated letters. That is, in this scenario there

are a maximum of 8 new isolated letters generated. If dj ∈ O1 but ej /∈ O1 (thus ej ∈ W ), by

Lemma 3, inserting dj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters other than the

isolated letters generated by inserting aj , bj , cj , which in the worst case would break two current

length-2 substrings giving rise to a maximum of 4 isolated letters. Symmetric discussions apply

to aj , bj , cj and dj . Therefore, if |O1 ∩ Vj | = 4, 3, 2, inserting the units of O1 ∩ Vj into Gj−1
1 and

Gj−1
2 in the worst case would break two current length-2 substrings, giving rise to a maximum of 4

isolated letters. If |O1 ∩ Vj | = 1 and assume without loss of generality that aj ∈ O1 (which implies

bj ∈ W ), inserting aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary,

when xj , yj ∈ O1 and |O1∩Vj | = 5, 4, 3, 2, 1, 0, respectively, inserting the units of O1∩Vj into Gj−1
1

and Gj−1
2 will generate, in the worst case, 8, 4, 4, 4, 0, 0 isolated letters, respectively. Afterwards,

xj , yj are inserted back, generating only two isolates which are xj , yj themselves. Therefore, we can

attribute them to isolates of O1 ∩ (Uj ∪ Vj) to put the isolates of O1 ∩ (Uj ∪ Vj) into bin B2.

In the second case, xj /∈ O1 and yj ∈ O1 (the symmetric case xj ∈ O1 and yj /∈ O1 can be

similarly discussed). Note that if xj is not an isolated letter in Gj−1
1 and Gj−1

2 , then inserting

the units of O1 ∩ Vj has to make it singleton; while if xj is already an isolated letter in Gj−1
1 and

Gj−1
2 , by Lemma 3, then inserting aj , bj , cj (dj , ej , respectively) would break at most one current

length-2 substring to give rise to two new isolated letters. It follows that, if |O1 ∩Vj | = 5, inserting

aj , bj , cj , dj , ej into Gj−1
1 and Gj−1

2 in the worst case would break two current length-2 substrings

and one current length-3 substring to which xj belongs, giving rise to a maximum of 7 isolated

letters. If dj ∈ O1 but ej /∈ O1 (thus ej ∈ W ), by Lemma 3, inserting dj into Gj−1
1 and Gj−1

2

will not generate any new isolated letters other than the isolated letters generated by inserting

aj , bj , cj , which in the worst case would break one current length-2 substring and another current

length-2 substring to which xj belongs, giving rise to a maximum of 4 isolated letters. Symmetric

discussions apply to aj , bj , cj and dj . Therefore, if |O1 ∩ Vj | = 4, 3, 2, inserting the units of O1 ∩ Vj

into Gj−1
1 and Gj−1

2 in the worst case would break two current length-2 substrings, giving rise to a

maximum of 4 isolated letters. If |O1 ∩ Vj | = 1 and assume without loss of generality that aj ∈ O1

(which implies bj ∈W ), then xj is already an isolated letter in Gj−1
1 and Gj−1

2 , and thus inserting

aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary, when exactly one

of xj , yj is in O1 and |O1 ∩Vj | = 5, 4, 3, 2, 1, 0, respectively, inserting the units of O1 ∩Vj into Gj−1
1

and Gj−1
2 will generate, in the worst case, 7, 4, 4, 4, 0, 0 isolated letters, respectively. Afterwards, yj

is inserted back, generating only one isolate which is yj itself. Therefore, we can attribute them to

isolates of O1 ∩ (Uj ∪ Vj) to put the isolates of O1 ∩ (Uj ∪ Vj) into bin B2.

In the last case, xj , yj /∈ O1. Note that if xj (yj , respectively) is not an isolated letter in Gj−1
1

and Gj−1
2 , then inserting the units of O1 ∩Vj has to make it singleton; while if xj (yj , respectively)

is already an isolated letter in Gj−1
1 and Gj−1

2 , by Lemma 3, then inserting the units of O1∩{aj , bj}
or the units of O1 ∩ {dj , ej} (the units of O1 ∩ {bj , cj} or the units of O1 ∩ {dj , ej}, respectively)

would break at most one current length-2 substring. It follows that, if |O1 ∩ Vj | = 5, inserting

aj , bj , cj , dj , ej into Gj−1
1 and Gj−1

2 in the worst case would break two current length-2 substrings

and one current length-4 substring to which xj , yj belong, giving rise to a maximum of 8 isolated

letters. If dj ∈ O1 but ej /∈ O1 (thus ej ∈ W ), by Lemma 3, inserting dj into Gj−1
1 and Gj−1

2

will not generate any new isolated letters other than the isolated letters generated by inserting

aj , bj , cj , which in the worst case would break one current length-2 substring and another current

length-3 substring to which xj , yj belong, giving rise to a maximum of 5 isolated letters. Symmetric



Approximating the complementary MSR problem 15

discussions apply to aj , bj , cj and dj . Therefore, if |O1∩Vj | = 4, 3, inserting the units of O1∩Vj into

Gj−1
1 and Gj−1

2 in the worst case would break one current length-2 substring and one current length-

3 substring, giving rise to a maximum of 5 isolated letters. When |O1 ∩ Vj | = 2 and aj , bj ∈ O1

(which imply cj , dj , ej ∈W ), if xj is not an isolated letter in Gj−1
1 and Gj−1

2 , then neither is yj , and

xj • yj is a length-2 substring in Gj−1
1 and Gj−1

2 . The argument in the last paragraph still applies,

but inserting aj , bj into Gj−1
1 and Gj−1

2 in the worst case would break one current length-2 substring

xj • yj , giving rise to a maximum of 2 isolated letters. Similar discussion applies to other pairs

such as dj , ej ∈ O1. When |O1 ∩ Vj | = 2 and aj , dj ∈ O1 (which imply bj , cj , ej ∈W ), we conclude

that yj is already an isolated letter in Gj−1
1 and Gj−1

2 , and thus similarly inserting aj , dj into Gj−1
1

and Gj−1
2 in the worst case would break one current length-2 substring to which xj belongs, giving

rise to a maximum of 2 isolated letters. That is, if |O1 ∩ Vj | = 2, then a maximum of 2 isolated

letters can be generated. When |O1 ∩ Vj | = 1 and aj ∈ O1 (similar discussions apply to cj , dj , ej),

then both xj and yj are already isolated letters in Gj−1
1 and Gj−1

2 , and thus inserting aj into Gj−1
1

and Gj−1
2 will not generate any new isolated letters. When |O1 ∩ Vj | = 1 and bj ∈ O1, if xj is not

an isolated letter in Gj−1
1 and Gj−1

2 , then neither is yj , and xj • yj is a length-2 substring in Gj−1
1

and Gj−1
2 . The argument in the last paragraph still applies, but inserting bj into Gj−1

1 and Gj−1
2

in the worst case would break one current length-2 substring xj • yj , giving rise to a maximum of

2 isolated letters. In summary, when xj , yj /∈ O1 and |O1 ∩ Vj | = 5, 4, 3, 2, 1, respectively, inserting

the units of O1 ∩Vj into Gj−1
1 and Gj−1

2 will generate, in the worst case, 8, 5, 5, 2, 2 isolated letters,

respectively. Therefore, we can arbitrarily attribute them to isolates of O1 ∩ Vj to put the isolates

of O1 ∩ Vj into bin B2.

This proves the lemma that every isolate of O1 ∩ (Uj ∪ Vj) is attributed with at most 2 isolates

of U ∪R ∪W , thus belonging to B2. 2

Lemma 15 If Approx-CMSR executes an operation 7 in the j-th iteration, then every isolate of

O1 ∩ (Uj ∪ Vj) is either in B2, or in B1
3 .

Proof. Recall that bin B1
3 contains letters of OPT each of which is attributed at most three

isolates of U ∪ R ∪W and is associated with a unique isolate copy of O1 ∩ R. Also, an operation

7 deletes isolate xj , and forms a novel length-2 substring aj • bj , i.e., Uj = {xj} and Vj = {aj , bj}
(see Table 1). From Lemma 3, we know that in the original sequences G1 and G2 all letters in

between aj and bj belong to ∪ji=1Ui. We discuss two cases.

In the first case, xj ∈ O1. If |O1 ∩ Vj | = 2, by Lemma 3, inserting aj , bj into Gj−1
1 and Gj−1

2 in

the worst case would break two current length-2 substrings, giving rise to a maximum of 4 isolated

letters. If |O1 ∩ Vj | = 1 and assume without loss of generality that aj ∈ O1 (thus bj ∈ W ), by

Lemma 7, inserting aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary,

when xj ∈ O1 and |O1 ∩ Vj | = 2, 1, respectively, inserting the units of O1 ∩ Vj into Gj−1
1 and Gj−1

2

will generate, in the worst case, 4, 0 isolated letters, respectively. Hence, O1∩Vj ⊂ B2. Afterwards,

xj is inserted back, and it could break an adjacency in Gj−1
1 and Gj−1

2 , denoted as cj • dj . If one

of cj and dj does not belong to U ∪ R ∪ V , we conclude that xj ∈ B2; otherwise, due to the fact

that this is an operation 7, there must be some other isolate from ∪mi=j+1 (Ui ∪ Vi) or from R that

resides in between cj and dj in the original sequences G1 and G2. In the former case, cj and dj
are not attributed to xj by the attribution rule we set up, and thus xj ∈ B2; in the latter, select

an arbitrary isolate from R, denoted as xRj , that resides in between cj and dj in one of the original
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sequences G1 and G2, and associate this copy of xRj with xj . This way, cj , dj , xj are attributed to

xj and therefore xj ∈ B1
3 . Again, similarly as in the proof of Lemma 13, it is important to notice

that since the adjacency between cj and dj is broken by xj , no more copies of isolates of O1 ∩ R

residing in between cj and dj in the corresponding original sequence would be associated with other

isolates of O1. That is, this isolate copy xRj is unique to xj .

In the other case, xj /∈ O1 (which implies Vj − O1 ⊂ W ). By Lemma 7, inserting the units

of O1 ∩ Vj into Gj−1
1 and Gj−1

2 has to make xj an isolated letter, if xj is not an isolated letter in

Gj−1
1 and Gj−1

2 ; on the other hand, if xj is an isolated letter in Gj−1
1 and Gj−1

2 , then inserting the

units of O1 ∩ Vj into Gj−1
1 and Gj−1

2 in the worst case would break one current length-2 substring,

giving rise to a maximum of 2 isolated letters. Therefore, if |O1∩Vj | = 2, inserting aj , bj into Gj−1
1

and Gj−1
2 in the worst case would break one current length-2 substring, denoted as rj • sj , and one

current length-3 substring to which xj belongs, denoted as tj •xj •uj , giving rise to a maximum of

5 isolated letters rj , sj , tj , xj , uj . If one of these five is not an isolate of U ∪R∪V , then a maximum

of four new isolates are generated, and thus aj , bj ∈ B2. In the other case, by Lemma 7 they all

belong to
(
∪mi=jUi

)
∪ R ∪ V . Since in the j-th iteration Approx-CMSR goes with a lower priority

operation 7 than an operation 6, we conclude that there must be some other isolate from ∪mi=j+1Ui

or from R that resides in between at least one pair of {rj , aj}, {bj , sj}, {tj , aj}, and {bj , uj} in the

original sequences G1 and G2. In the former case, at least one of rj , sj , tj , uj is not attributed to

aj , bj by the attribution rule we set up, and thus aj , bj ∈ B2; in the latter and assume a letter of

R residing in between rj and aj in one of the original sequences G1 and G2, select an arbitrary

such isolate from R, denoted as aRj , and associate this copy of aRj with aj . This way, rj , tj , xj are

attributed to aj and therefore aj ∈ B1
3 ; sj , uj are attributed to bj and therefore bj ∈ B2. Again,

similarly as in the proof of Lemma 13, it is important to notice that since the adjacency between

rj and sj is broken by aj , bj , no more copies of isolates of O1 ∩ R residing in between rj and sj
in the corresponding original sequence would be associated with other isolates of O1. That is, this

isolate copy aRj is unique to aj . If |O1 ∩ Vj | = 1 and assume aj ∈ O1, inserting aj into Gj−1
1 and

Gj−1
2 in the worst case would break one current length-2 substring to which xj belongs, giving rise

to a maximum of 2 isolated letters, and thus aj ∈ B2. This proves the lemma. 2

Lemma 16 If Approx-CMSR executes an operation 8 in the j-th iteration, then every isolate of

O1 ∩ (Uj ∪ Vj) is either in B2, or in B1
3 .

Proof. Recall that bin B1
3 contains letters of OPT each of which is attributed at most three

isolates of U ∪ R ∪W and is associated with a unique isolate copy of O1 ∩ R. Also, an operation

8 deletes isolates xj , yj , and forms a novel length-2 substring aj • bj , i.e., Uj = {xj , yj} and

Vj = {aj , bj} (see Table 1). From Lemma 3, we know that in the original sequences G1 and G2 all

letters in between aj and bj belong to ∪ji=1Ui. We discuss three cases.

In the first case, xj , yj ∈ O1. If |O1 ∩ Vj | = 2, by Lemma 3, inserting aj , bj into Gj−1
1 and

Gj−1
2 in the worst case would break two current length-2 substrings, giving rise to a maximum of

4 isolated letters. If |O1 ∩ Vj | = 1 and assume aj ∈ O1 (thus bj ∈ W ), by Lemma 7, inserting

aj into Gj−1
1 and Gj−1

2 will not generate any new isolated letters. In summary, when xj , yj ∈ O1

and |O1 ∩ Vj | = 2, 1, respectively, inserting the units of O1 ∩ Vj into Gj−1
1 and Gj−1

2 will generate,

in the worst case, 4, 0 isolated letters, respectively. Therefore, we can arbitrarily attribute them

to isolates of O1 ∩ Vj to put the isolates of O1 ∩ Vj into bin B2. Afterwards, xj , yj are inserted



Approximating the complementary MSR problem 17

back, and they could break two adjacencies in Gj−1
1 and Gj−1

2 , denoted as cj • dj broken by xj and

ej • fj broken by yj . If one of cj and dj does not belong to U ∪R ∪ V , we conclude that xj ∈ B2;

otherwise, due to the fact that this is an operation 8 of priority lower than an operation 7, there

must be some other isolate from ∪mi=j+1 (Ui ∪ Vi) or from R that resides in between cj and dj in

the original sequences G1 and G2. In the former case, cj and dj are not attributed to xj by the

attribution rule we set up earlier, and thus xj ∈ B2; in the latter, select an arbitrary isolate from

R, denoted as xRj , that resides in between cj and dj in one of the original sequences G1 and G2, and

associate this copy of xRj with xj . This way, cj , dj , xj are attributed to xj and therefore xj ∈ B1
3 .

Again, similarly as in the proof of Lemma 13, it is important to notice that since the adjacency

between cj and dj is broken by xj , no more copies of isolates of O1 ∩R residing in between cj and

dj in the corresponding original sequence would be associated with other isolates of O1. That is,

this isolate copy xRj is unique to xj . Analogous argument applies to ej , fj , yj .

In the second case, xj /∈ O1 and yj ∈ O1 (the symmetric case xj ∈ O1 and yj /∈ O1 can be

similarly discussed). Note that if xj is not an isolated letter in Gj−1
1 and Gj−1

2 , then inserting

the units of O1 ∩ Vj has to make it singleton; while if xj is already an isolated letter in Gj−1
1 and

Gj−1
2 , by Lemma 3, then inserting aj , bj would break at most one current length-2 substring to

give rise to two isolated letters. It follows that, if |O1 ∩ Vj | = 2, inserting aj , bj into Gj−1
1 and

Gj−1
2 in the worst case would break one current length-2 substring, denoted as rj • sj , and one

current length-3 substring to which xj belongs, denoted as tj •xj •uj , giving rise to a maximum of

5 isolated letters rj , sj , tj , xj , uj . A similar argument as in the proof of Lemma 15, the second case

where xj /∈ O1, shows that bj ∈ B2, and either aj ∈ B2 too or aj ∈ B1
3 and it is associated with

a unique isolate copy aRj of O1 ∩ R that resides in between tj and xj in the original sequences G1

and G2. If |O1 ∩ Vj | = 1 and assume aj ∈ O1 (thus bj ∈ W ), inserting aj into Gj−1
1 and Gj−1

2 in

the worst case would break one current length-2 substring to which xj belongs, denoted as tj • xj ,
giving rise to a maximum of 2 isolated letters. Thus aj ∈ B2. Afterwards, yj is inserted back, and

it could break one adjacency in Gj−1
1 and Gj−1

2 , denoted as cj • dj . Then, a similar argument as

in the last paragraph for cj , dj , xj shows that either yj ∈ B2 or yj ∈ B1
3 and it is associated with

a unique isolate copy yRj of O1 ∩ R that resides in between cj and dj in the original sequences G1

and G2.

In the last case, xj , yj /∈ O1 (which implies Vj −O1 ⊂W ). If |O1 ∩ Vj | = 2, inserting aj , bj into

Gj−1
1 and Gj−1

2 in the worst case would break one current length-2 substring not involving xj or yj .

We attribute one new isolated letter to each of aj and bj . If inserting aj into Gj−1
1 and Gj−1

2 breaks

an adjacency tj •xj and tj ∈ U∪R∪W , then there must be some other isolate from ∪mi=j+1 (Ui ∪ Vi)

or from R that resides in between tj and xj in the original sequences G1 and G2, since otherwise

a higher priority operation 7 should be performed in the j-th iteration of Approx-CMSR. In the

former case, tj is not attributed to aj , and thus aj ∈ B2; in the latter, select an arbitrary isolate

from R, denoted as aRj , that resides in between tj and xj in one of the original sequences G1 and

G2, and associate this copy of aRj with aj . This way, aj is attributed with three isolated letters and

therefore aj ∈ B1
3 . Similar discussions apply for bj , if bj ∈ O1. This proves the lemma.

Note that in Gj
1 and Gj

2, none of xj and yj can participate a substring containing another letter,

but xj • yj can be a substring of Gj
1 and Gj

2 (Lemma 7), while in this case aj , bj are either in B2 or

in W — Corollary 1 — a fact to be used in the proof of Theorem 1. 2
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Corollary 1 If Uj is resulted from an operation 8 and xj • yj is a common substring of Gj
1 and

Gj
2, then each letter of Vj is either in B2 or in W .

Lemma 17 If Approx-CMSR executes an operation 9 in the j-th iteration, then every isolate of

O1 ∩ (Uj ∪ Vj) is either in B2, or in B1
3 , or in B2

3 .

Proof. Recall that bin B1
3 contains letters of OPT each of which is attributed at most three

isolates of U ∪R∪W and is associated with a unique isolate copy of O1∩R; bin B2
3 contains letters

of OPT each of which is attributed at most three isolates of U ∪ R ∪W and is associated with

two unique isolate copies of O1 ∩R. Also, an operation 9 deletes isolates xj , yj , and forms a novel

length-2 substring aj • bj , i.e., Uj = {xj , yj} and Vj = {aj , bj} (see Table 1). Here xj is the only

letter separating aj and bj in one of the two sequences, while yj is the only letter separating aj and

bj in the other sequence. From Lemma 3, we know that in the original sequences G1 and G2 all

letters in between aj and bj belong to ∪ji=1Ui. We discuss three cases.

The first case of xj , yj ∈ O1 and the second case of xj /∈ O1 and yj ∈ O1 can be identically

argued as the first two cases in the proof of Lemma 16, with the conclusion that every isolate of

O1 ∩ (Uj ∪ Vj) is in B2 ∪B1
3 .

In the last case, xj , yj /∈ O1 (which implies Vj − O1 ⊂ W ). If aj ∈ O1 and inserting aj into

Gj−1
1 and Gj−1

2 breaks an adjacency, then this adjacency must involve either xj or yj . Assume

the inserting breaks an adjacency tj • xj where tj ∈ U ∪ R ∪ V , there must be some other isolate

from ∪mi=j+1 (Ui ∪ Vi) or from R that resides in between tj and xj in the original sequences G1

and G2, since otherwise a higher priority operation 7 should be performed in the j-th iteration of

Approx-CMSR. In the former case, tj is not attributed to aj ; in the latter, tj , xj are attributed

to aj , and select an arbitrary isolate from R, denoted as aRj , that resides in between tj and xj
in one of the original sequences G1 and G2, and associate this copy of aRj with aj . If inserting

aj into Gj−1
1 and Gj−1

2 breaks another adjacency rj • yj where rj ∈ U ∪ R ∪ V , then again there

must be some other isolate from ∪mi=j+1 (Ui ∪ Vi) or from R that resides in between rj and yj in the

original sequences G1 and G2, since otherwise at the j-th iteration Approx-CMSR would execute

an operation 7 to delete aj . In the former case, rj is not attributed to aj , and thus aj ∈ B2; in the

latter, rj is attributed to aj , and select an arbitrary isolate from R, denoted as âRj , that resides in

between rj and yj in one of the original sequences G1 and G2, and associate this copy of âRj with

aj . In summary, either aj ∈ B2, or aj ∈ B2
3 and it is associated with two unique isolate copies aRj

and âRj of O1 ∩ R that resides in between tj and xj and in between rj and yj , respectively, in the

original sequences G1 and G2.

Note that if bj ∈ O1, then the same argument applies and yj is attributed to bj , thus putting

bj either in B2 or in B2
3 and associated with two unique isolate copies bRj and b̂Rj of O1 ∩ R. If

bj /∈ O1, then bj ∈ W . Furthermore, when aj ∈ B2, we conclude that yj is already an isolated

letter. In the other case that aj ∈ B2
3 , yj is newly generated isolated letter; however, yj ∈ U is not

attributed to aj but it and bj ∈W cancel out each other, meaning that if bj is attributed to some

letter of OPT , it is replaced by yj , or if the adjacency involving bj is not broken after inserting all

letters of O1∩ (U ∪V ), then at least two isolate copies of O1∩R are needed to break this adjacency

(due to its lowest priority), to these isolate copies yj is attributed. To summarize, whenever such

a canceling pair occurs, aj ∈ B2
3 — Corollary 2 — a fact to be used in the proof of Theorem 1. 2
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Corollary 2 If Uj is resulted from an operation 9 and one letter of Uj and one letter of Vj form

a canceling pair, then the other letter of Vj must be in B2
3 .

Denote O′1 = O1 ∩ R. Note that at the end of the m-th iteration in the algorithm Approx-

CMSR, deleting two isolate copies is impossible to form a novel type-1 substring, neither deleting

one isolate copy is possible to append an isolate to an existing substring. That is, for any two

remaining isolates r1, r2 ∈ R that are not separated by any existing (type-0 or type-1) substring

in both sequences, there are at least three other isolate copies in between them, in two sequences;

for any remaining isolate r1 ∈ R, there are at least two other isolate copies in between it and its

neighboring substring, in two sequences. We have the following lemma.

Lemma 18 In Gm
1 and Gm

2 ,

1) if there is an adjacency r1 • r2 for r1, r2 ∈ R, then r1 and r2 are separated by at least three

isolate copies of O′1;

2) if there is an adjacency r • a for r ∈ R and a ∈ Σ− U −R, then r and a are separated by at

least two isolates of O′1;

3) if there is an adjacency xj • yj for xj , yj ∈ Uj from some operation 8, then xj and yj are

separated by at least two isolate copies of O′1;

4) if there is an adjacency vj • a for vj ∈ Vj from some operation 8 or 9 and a ∈ Σ−R, then v

and a are separated by at least two isolate copies of O′1.

Proof. Items 1) and 2) have been established in the last paragraph.

For items 3) and 4), if there is only one isolate copy of O′1 in between the two letters under

consideration, then we conclude that in the j-th iteration of algorithm Approx-CMSR, a higher

priority operation can be executed, since an operation 8 or 9 deletes at least two isolate copies of

O′1, a contradiction. 2

In the sequences Gm
1 and Gm

2 obtained after inserting units of O3 ∪O2 ∪ (O1 −O′1) into G∗1 and

G∗2, some units of R are already isolates, while the other still reside in substrings (of length at least

two). From Lemmas 9–17, we know that all units of U ∪ V are in Gm
1 and Gm

2 . From Lemma 7

we know that if an xj ∈ Uj is not an isolate in Gm
1 and Gm

2 , then Uj = {xj , yj} is resulted from an

operation 8 and xj • yj is a length-2 substring in Gm
1 and Gm

2 ; furthermore, from Corollary 1 we

know that the corresponding Vj = {aj , bj} ⊂ B2 ∪W . Also, from Corollary 2 we know that when

a canceling pair (yj , bj) is identified, bj ∈ W and the corresponding aj ∈ B2
3 . After inserting all

the isolates of O′1 back into Gm
1 and Gm

2 , we will obtain the two original sequences G1 and G2 and

thus all letters of U ∪ V ∪R, if still residing in substrings of Gm
1 and Gm

2 , have to be singled out.

Let S1, S2, . . . , Sk denote the substrings in Gm
1 and Gm

2 that are purely made of isolates of R,

and T1, T2, . . . , T` denote the fragments of substrings in Gm
1 and Gm

2 , where the substrings are not

purely made of isolates of R, but the fragments are. Note that |Si| ≥ 2 for every i = 1, 2, . . . , k. Let

h denote the number of length-2 substrings xj • yj in Gm
1 and Gm

2 , where xj , yj ∈ Uj are resulted

from an operation 8; let g denote the number of letters of vj ∈ Vj that is still adjacent to another
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letter not in R, where Vj is resulted from an operation 8 or 9; and let p denote the number of

canceling pairs identified in Lemma 17 (and Corollary 2).

Lemma 19 2|O′1| ≥ 1.5
∑k

i=1 |Si|+ 2
∑`

j=1 |Tj |+ 2h + |B1
3 |+ 2|B2

3 |+ g.

Proof. From Lemma 18, at least two isolate copies of O′1 are needed to chop off each Tj , for j =

1, 2, . . . , `; afterwards, at least three isolate copies of O′1 are needed to break each adjacency in Si’s

and Tj ’s. These together sum to 2`+
∑k

i=1 3(|Si|−1)+
∑`

j=1 3(|Tj |−1) ≥ 1.5
∑k

i=1 |Si|+2
∑`

j=1 |Tj |.

For each length-2 substrings xj • yj in Gm
1 and Gm

2 , where xj , yj ∈ Uj are resulted from an

operation 8, at least two isolate copies of O′1 are needed to break the adjacency. In addition, for

the adjacencies already been broken by inserting units of O1−O′1 into G0
1 and G0

1, we need at least

one unique isolate copy of O′1 for each unit in B1
3 and at least two unique isolate copies of O′1 for

each unit in B2
3 . For each letter vj ∈ Vj that is still adjacent to some other letter Σ−R, where Vj is

resulted from an operation 8 or 9, at least two isolate copies of O′1 is needed to break the adjacency

at vj ; because in the extreme case vj is adjacent to another letter of the same membership, we need

at least g isolate copies of O′1.

Note that each of the above isolate copies of O′1 cannot be used for two purposes. Because each

isolate of O′1 has exactly two copies, we have

2|O′1| ≥ 1.5
k∑

i=1

|Si|+ 2
∑̀
j=1

|Tj |+ 2h + |B1
3 |+ 2|B2

3 |+ g, (3.1)

where |Si| and |Tj | denote the length of substrings Si and Tj respectively, and |O′1| denotes the

number of isolates in O′1. This proves the lemma. 2

Theorem 1 The Approx-CMSR is a 7
3 -approximation algorithm for the CMSR problem.

Proof. Approx-CMSR runs in polynomial time in n, where n is the number of letters in the

input sequences, since in each iteration of the second step the deleting-retaining operation can be

determined in O(n2) time and there are O(n) iterations.

Note that some of the isolates of U ∪R are attributed to letters of OPT −O′1, two to each letter

of B2 and three to each letter of B1
3 ∪ B2

3 . There are at most 2|B2| + 3|B1
3 | + 3|B2

3 | such isolates.

Every other isolate of U ∪ R belongs to either O′1, or one of the length-2 substrings xj • yj in Gm
1

and Gm
2 , or one of Si or Tj , or is cancelled out with a letter of W . For each canceling pair (yj , bj),

if bj is isolated in Gm
1 and Gm

2 , then yj has been attributed to some letter of B2∪B1
3 ∪B2

3 and thus

has been counted; otherwise, we need to count yj in. Let p′ denote the number of canceling pairs

for which the associated bj is in some substring of Gm
1 and Gm

2 . It follows that there are at most

|O′1|+
∑k

i=1 |Si|+
∑`

j=1 |Tj |+ 2h + p′ other isolates of U ∪R. Hence,

|U ∪R| ≤ 2|B2|+ 3|B1
3 |+ 3|B2

3 |+ |O′1|+
k∑

i=1

|Si|+
∑̀
j=1

|Tj |+ 2h + p′. (3.2)

Since for each length-2 substring xj•yj in Gm
1 and Gm

2 , the two corresponding letters of Vj are either

in B2 or in W (Corollary 1), we conclude that 2h+p′ ≤ |B2|+g. Also, since for each canceling pair
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(yj , bj) the corresponding letter aj is in B2
3 (Corollary 2), we conclude that p′ ≤ |B2

3 |. It follows

from Equations (3.1) and (3.2) that

|U ∪R| ≤ 2|B2|+ 3|B1
3 |+ 3|B2

3 |+ |O′1|+
∑k

i=1 |Si|+
∑`

j=1 |Tj |+ 2h + p′

≤ 2|B2|+ 3|B1
3 |+ 3|B2

3 |+ |O′1|+
∑k

i=1 |Si|+
∑`

j=1 |Tj |+ 4
3h + 1

3(|B2|+ g) + 2
3 |B

2
3 |

= 7
3 |B2|+ 7

3 |B
1
3 |+ 7

3 |B
2
3 |+ |O′1|+

(∑k
i=1 |Si|+

∑`
j=1 |Tj |+ 4

3h + 2
3 |B

1
3 |+ 4

3 |B
2
3 |+ 1

3g
)

≤ 7
3 |B2|+ 7

3 |B
1
3 |+ 7

3 |B
2
3 |+ |O′1|+ 4

3 |O
′
1|

= 7
3 |B2|+ 7

3 |B
1
3 |+ 7

3 |B
2
3 |+ 7

3 |O
′
1|

= 7
3 |OPT |,

where |OPT | denotes the number of letters in OPT , and thus |OPT | = |B2|+ |B1
3 |+ |B2

3 |+ |O′1|.
That is, the number of isolates deleted by algorithm Approx-CMSR is at most 7

3 times the optimum.

Therefore, Approx-CMSR is a 7
3 -approximation algorithm. 2

4 Conclusions

In this paper, we presented a 7
3 -approximation algorithm Approx-CMSR for the CMSR problem.

The key design technique is a prioritized local greedy scheme to retain a number of isolates while

deleting one or two isolates. Both the sequential order of the nine types of deleting-retaining

operations, and their three levels of priorities, are crucial in the performance analysis. The perfor-

mance analysis is done using a sequential amortized analysis, that attributes the isolates deleted

by Approx-CMSR to the letters deleted in an optimal solution. Besides the proven performance

ratio, this sequential amortized analysis technique is seemingly interesting itself.

The following instance shows that the performance ratio 7
3 is tight. In this instance,

G1 = 〈a, b, c, x1, x2, x3, d, e, f, g, y1, y2, y3, h, i, j, k, z1, z2, z3, `〉, and

G2 = 〈k, `, i, x1, y1, z1, j, c, d, a, x2, y2, z2, b, g, h, e, x3, y3, z3, f〉.

G1 and G2 have no type-0 common substrings, neither deleting one or two letters from them leads

to a novel type-1 common substring. Therefore, Approx-CMSR deletes all the letters. On the other

hand, deleting 9 letters, x1, x2, x3, y1, y2, y3, z1, z2, z3, leads to

G∗1 = 〈a, b, c, d, e, f, g, h, i, j, k, `〉, and

G∗2 = 〈k, `, i, j, c, d, a, b, g, h, e, f〉,

which can be partitioned into six common length-2 substrings: a • b, c • d, e • f , g • h, i • j, and

k • `. In fact, one can verify that this is an optimal solution to the instance. It follows that the

performance ratio of Approx-CMSR on this instance is 21
9 = 7

3 . Based on this 21-letter instance,

one can construct an infinite series of instances on which the performance ratio of Approx-CMSR

is 7
3 .
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