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Abstract

This thesis is concerned with the expansion of digital images. A new heuristic image
expansion and smoothing algorithm is presented. This algorithm involves the classification
of image features such as: edges, line or curve segments, and regions. Different methods
are then applied to these features for expansion. Various interpolation techniques can be
used for expansion of regions. A method using edge orientation is applied to edge
expansion, and a similar method using line orientation is used for line expansion. To
eliminate possible jaggies resulting from edge expansion, a heuristic smoothing method, is
applied and reasonable results are obtained. Other smoothing methods are also discussed,
and a comparison is presented. This new algorithm aims to produce more visually pleasing
expanded images, i.e., to eliminate the blocky appearance and blurring to produce

"smooth" expansions.
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Chapter 1

Introduction

1.1. Problem Description

In image processing, there are many problems that still need to be solved. Image
expansion is one such problem that will receive more and more attention. Usually, image
expansion is regarded as the inverse of image compression, Formally, image expansion is
the process of mapping an image of lower resolution to one of higher resolution, usually
for display purposes and with the intent that the resulting image is visually acceptable and
even pleasing. Surprisingly, there does not seem to be much work done in this areg;
however, a number of methods have been explored, in [Dav85] and [Atw89].

With the development of image processing technology, display devices will
continuously improve in resolution. Therefore, a lot of images that were previously
obtained (sampled) with devices of lower resolution will need to be displayed with new
display devices of higher resolution. Furthermore it is not always feasible nor desirable to
resample these images with higher resolution. Resampling requires more storage space for
higher resolution images, which is not always acceptable. Even if resampling is acceptable,
newer resampling devices could be too expensive to replace older resampling devices. So
with image expansion and storage of lower resolution versions of images, storage
efficiency can be achieved. And similarly, data transfer efficiency can be improved by
transmitting lower resolution image data.

Another reason for image expansion comes from the area of brov:sing. Browsing is
intended to offer the user the capability of examining information without having to retrieve

the entire image. Actual irage data in extremely high detail is often available, but for only a



high cost or a relatively long retrieval time. On the other hand, the user has to know that the
correct image is being requested before examining the details. Thus only images in
compressed format are normally used for browsing, before the selection of a particular one
for detailed retrieval. In this way, efficient browsing is possible.

For these reasons, image expansion methods are needed, preferably that do not

rcquire too much time and effort and in addition provide visually acceptable results.

1.2. Fundamentals and Definitions

In this section, the fundamentals and definitions of digital images will be introduccd.

An image is considered to be a two dimensional function or array of intensity values,
f(x, ), where x and y denote the spatial coordinates, and the value of fat any point (x, y)
is proportional to the brightness (or gray level) of the image at that point (an image refers
only to a 2-dimensional grey level one, and 3-dimensicnal images are not considered).

The gray (o: brightness) values of an analog image are real, non-negative and
bounded, i.e. brightness cannot be arbitrarily large. And, the coordinates of the image
function are bounded by a finite rectangular region (the boundary of the image).

A digital image is an image f{x, y) which has been digitized both in spatiai
coordinates and in gray values.! The digitization partitions the analog image into compact
and convex subsets (cells) of points from the analog image [Dav85]. Each such ccll is then
assigned a gray value which represents the intensity of the points ix that cell of the analog
image. So a digital image is usually represented as an m X n array, where m and n are the
image sizes in horizontal and vertical directions respectively and the coordinates determine
the location of each cell in the digital image and the corresponding matrix element f(i, j) in

the array represents the digitized value at cell (i, j). The matrix elements are called pixels or

1 In the thesis, an image refers to a digital image, unless it specifically refers to an analog image by
context.



picture elements. Usually only square grid (cells) are employed in digital images and digital
images are normally square, i.e. m = n, which are assumed to be bounded in the range 2°
10 212, In this thesis, it is assumed that m = n, thus only square images are considered. To
be consistent with the convention of the imaging system on which all the algorithms in this
thesis are implement_J, it is also assumed that the image coordinate origin is at the upper
left corner of the image. This convention is applied in the rest of the thesis.

The number of digitization levels used in digital images is usually in the range of
26~212 [Dav85]. In this thesis, the number of digitization levels used is 28, for all images
used. The choice of the number of digitization levels is an interesting research area. Please
refer to [Bra78, Cas79, Gon87, Pra78, Ros82] for further discussion of the topic. In
addition to the digitization of images using square grid (cells), triangular and hexagonal

tessellations are discussed in [Ros82, Dan82}.

p3 p2 pl
r, | P | P,
r,tr, P,

Fig. 1.1. The eight neighbors of p and p itself, Ng(p)

For a square tessellation, each pixel p of the array has four horizonta! and vertical
neighbors, and four diagonal neighbors, except at the borders of the image. In this thesis, a
neighboring pixel (or a neighbor) of a pixel p refers to a 8-neighbor of p inside the 3 x 3
window with p as the central pixel of the window. The 8-neighbors of a pixel p together
with p are defined as Ng(p) = (9, pg, Py» - P7), Where p;, 0 <@ <7, are located as
shown in Fig.1.1. The 4-neighbors of p together with p are similarly defined as N,(p)=(,
Po» P2, Pa» Pg)- With this notation, each neighbor p;, 0 < i <7, is at the angle 451" measured

counterclockwise from the positive x axis. A similar notation based on the spatial



coordinates of p can also be used. If p is at (x, ), Ng{(x, ) )=(p. py. ;. ... P7). and
N {x»))Y= B, pp, P2, P4» Ps)> Which will be used in the remainder of the thesis and the
appropriate definition for each usage is governed by the context.

As mentioned before, the image expansion issue is closely related to the resolution of
the display device. The resolution of a display screen of this type is usually defined as the
number of distinct line pairs per inch. An alternative is the number of pixels per inch on a
horizontal or vertical line. Although it only makes sense to describe resolution using the
number of pixels per unit measure, it is convenient to use the term "number of pixels” to
mean a measure for resolution and this is adopted in the rest of this thesis. Thus the values
of m and n determine the resolution of the digital image.

In this thesis, the terms resolution conversion and image expansion are treated
synonymously, as in [Dav85]. This is due to the possibility of spatially mapping the pixels
of an appropriately expanded image onto the cells of a given higher resolution device to
allow for the display of low resolution data on higher resolution devices. Thus, in this
thesis, attention is focused on taking a set of gray level spatial data and producing another
set that represents the original image at a desired scale by expansion methods.

In Section 1.3, an important definition, aliasing, is discussed, which is closely related
to the topic of image expansion. In Section 1.4, a survey of previous approaches to allow
better renditions of low resolution images on higher resolution display devices, including

those that can resolve aliasing, are discussed.

1.3. Problem Definition: Aliasing

The term aliasing originates in the sampling of images. In order to perfectly
reconstruct an image, a sufficient number of discrete points must be selected from the
analog image. The sampling rate for reconstruction is determined by the sampling theorem

[Dav835]. For details, refer to [Bra78, Pav82, Ros82]. Distortion occurs when an image is



undersampled und this phenomenon is termed aliasing. For instance, if a page of text is
undersampled it will appear as a sequence of white and dark bands when reconstructed
[Pav82, Dav85]. In this thesis, the same term, aliasing, as in [Dav85], is also used to
describe distortions produced by pixel replication, the simplest image expansion method.
Thus this terminology is due to the occurrence of a blocky appearance as a consequence of
either pixel replication or undersampling [Dav85]. in this thesis, aliasing mainly refers to
distortion caused by pixel replication, unless it is specially governed by context.

When a low resolution image is displayed on a higher resolution screen, the size of
the image relative to the display screen size is reduced. The simplest method to maintain the
size of the displayed image is to use pixel replication, sometimes called zooming. This
method replicates each pixel in both horizontal and vertical directions the proper number of
times (expansion factor) before the image is displayed on the higher resolution screen. This
direct replication results in a blocky appearance of the displayed image. Furthermore, the
continuities of edges, lines and textures of regions in the image are interrupted. In this case,
aliasing occurs.

Aliasing is especially noticeable when an image contains many lineal features.
Mathematically, lines and curves have zero thickness; however, their discrete (digital)
display representations cannot be less than a pixel thick. As a result of the discreteness of
display devices and approximations involved in drawing lines or curves, slanted edges or
lines can have a staircase or blocky appearance. When an edge or a line is zoomed, each
pixel is mapped into a block of pixels so that jaggies are magnified.

The problem of aliasing can be solved by finding "smooth" expansions of the given
images [Dav85]. As mentioned previously, pixel replication constitutes a piecewise
constant expansion and aliasing arises from this approach. It is this effect that a smooth
expansion method tries to overcome when a low resolution image, say LRI, is displayed on

a high resolution screen. To illustrate this, let LR/ be an image with a resolution of r



lines/inch in each of the coordinate directions and D2 be a display screen with & times the
resolution of the data in both directions. If a k times bidirectional smooth expansion ot LRI
is available, then by spatially mapping each pixel in the expansion to a cell (a k X k square
patch) on D2, a smooth rendition of LRI is obtained.2 In the next section, a survey of

previous work in various expansion methods is made.

1.4. Survey of Previous Work

In this section, a survey of the previous work dong in image expansion is made. In
[Dav85], image expansion methods are classified into the four categories:

Pixel Replication: The pixels of the original image are mapped onto the patches in the
expanded image, the size of the patch being determined by the expansion factors, in
the two coordinate directions, respectively. This approach is usually followed by
local corrections, usually smoothing methods. In [Dav85], many smoothing methods
are applied and compared.

faterpolation: Pixels of the original image are mapped onto the expanded image and
then the intervening pixels are interpolated with various interpolation methods. This
approach is intensively investigated and many test results are presented and analyzed
in [Dav85].

Defocusing: As in the first method, pixels are first mapped onto the patches in the
expanded image. The expanded image is then transformed into the frequency domain,
where certain frequencies are filtered out (usually high spatial frequencies). Finally,
the filtered image is transformed back into the spatial domain. There is a great amonnt

of literature dealing with various methods for the transformation between spatial and

2 This kind of cxpansion method is dircctly manipulated with the image functions, thus is called a metkod
in spatial domain. Alternatively, there arc some methods which are manipulated with some rransformations,
e.g., Fourier Transforms, which transfer the image functions into functions of frequency variables, thus arc
called methods in frequency domain.

6



frequency domains, such as the Fourier Transform. Please refer to [Dan82, Dav85,

Gon87, Pra78] for more detail.

Image Analysis: This involves the identification of image features such as edges and

storing the information in a scale-independent or object-oriented format. Expansion

will then be easily accomplished since the information is independent of scale. The
method in [Atw89] belongs to this category.

It should be noted that the methods in the first, second, and fourth categories are
methods in the spatial domain. And th' methods in the third category are methods in the
frequency domain.

The methods in the first and second categories can be considered as mappings of the
set of pixels and their adjacent relationships of the original image LRI to a new set of cells
(patches) on the higher resolution device, by initially leaving the intervening values empty
and then performing a weighted average. ¢.g. bilinear interpolation, or some other schemes
based on the intensities in the respective neighborhood, e.g. spatial smoothing methods.
This strategy is possible because each pixel is not independent of the adjacent pixels and the
nature of a pixel can be estimated by the values of the pixels lying in its neighborhood.
Actually, the new algorithm discussed in this thesis, which is presented in the next three
chapters, is also based on this assumption.

Spatial smoothing methods that are used to reduce the presence of noise in an image
represent the local correction methods (after pixel replication is applied) in the first
category. Usually, smoothing operations involve evaluating a number of predicates with
local information as parameters and the assigned intensity level is dependent on the
outcome of these predicates. Many spatial smoothing methods are applied in [Dav85].

For the methods in the fourth category, a diversity of dge detection and segmentation
techniques in [Lev82, Ros72] can be applied. As indicated before, the detected features in

an image are usually stored as a structure, i.e. its data representations encapsulate the form



of the features. For example, chain codes can be used to represent contours, and quadtrees
can be used to store an image with a large number of regions [Sam&0]. Expansion can then
be easily accomplished since all the information has been translated into a scale-independent
form. This approach requires extensive preprocessing, e.g. fitting curves to contours.

According to [Dav85] and [Atw89], the methods in the first three categories tend to
blur edges during image expansion, and the method in the first category also tends to muke
a blocky appearance in the expanded image (For pixel replication followed by smoothing
methods, the blurring is caused by the smoothing, and the blocky appearance resulting
from pixel replication cannot be eliminated completely by the smoothing). The fourth
method requires extensive preprocessing, although it shows the best promise.

[Dav85] gives a comprehensive report on the various interpolation methods in both
the spatial and frequency domains and smoothing methods for expanding images, and
many test results are presented. Interpolation methods, such as bilinear interpolation, can
be used to obtain very smooth image expansion. However, these methods can blur image
features, such as edges and lines, thus they are only appropriate for the expansion of the
interior of homogeneous regions.

In [Atw89], a heuristic method is explored for image expansion. First, all crack
edges3 are detected, and sorted according to the crack edge values®. Then the sequences of
crack edges that form connected paths through the image, called strokes, are set up, by
repeatedly selecting the crack edge of current highest value and following its strongest
neighboring crack edge, until all possible strokes are detected throughout the image. This
method is based on the assumption that the strokes reveal the most obvious lincal features

in the image. Next, each stroke is divided into substrokes and each substroke is mapped

3 Because of the discreteness of digital images, a pixel has four crack edges as its boundaries with all of its
4-neighbor pixels. So a crack edge is the boundary between any two 4-conncected pixcls of sufficient
difference in gray values.

4 Suppose x and y are the coordinates of pixels that have a crack edge in common. The crack edge valuc is
defined as Ifix) - f{y)l, where f{x) and f(y) arc the gray values at x and y respectively.



onto the expanded image. The pixels on the regions are filled directly with interpolation,
and the intervening pixels on the strokes are filled with a heuristic method which uses
strokes as control points.

This method requires much preprocessing. The worst case of the time complexity for
the entire processing is O(k2n? + n?), where k and n stand for the expansion factor in x, y
directions, and the sizes of the original image in x, y directions respectively [Atw89].
Furthermore, the use of crack edges to find strokes does not produce adequate results.
Noticeable lineal features in the image do not seem to be followed, because diagonal
measurements are not included in the crack edges [Atw89].

Other work has also been done to convert low resolution binary images for high
resolution displays [Sto82]. The motivation lies in the reproduction on higher quality
printers, of text data obtaiied from coarse scanning devices, using enlargement techniques
for binary images. Techniques include logical expansion: a pixel value is based on the
outcome of operations involving logical values of the neighboring pixels. For example. "~
decision to fill a pixel may depend on the number of painted neighboring pixels acc wring
to some majority rule: a pixel is painted white if there are more white pixels than black
ones. Similarly, some directional rule can be employed in which a pixel is painted if it is in
the path of painted pixels. In [Dud73, Net80], logical smoothing can also be performed by
selecting a set of pixel configurations as paths. Other schemes apply lookup tables to fill in
the pixels by matching templates with neighboring pixels.

According to [Dav85], the topic of image expansion has been pursued indirectly in
signal sampling issues, as an attempt to obtain perfect interpolation of the original images,
that will be discussed in more detail in Chapter 2 for completeness of the thesis. Other
similar literature includes [Hou78], which has used B-splines for interpolation and studied

their performance with the Fourier Transforms. [Pra78] has presented a number of



interpolating filters, i.e. the Fourier Transforms of interpolating functions, and discussed
their errors.

The possibility of perfect interpolation based on the discreteness of digital images, is
quite remote, based on the previous work [Dav85]. Thus all previous methods surveyed in

this section employ certain approximations in order to obtained better expansion effects.

1.5. Overview of Heuristic Expansion and
Smoothing Algorithm

As mentioned earlier, most of the previous image expansion methods cause cither
image blurring or aliasing, i.e. blocky appearance. In this thesis, a new algorithm applied
in the spatial domain, aimed at a smooth expansion while maintaining the sharpness of
expanded images, called Heuristic Expansion and Smoothing Algorithm, is presented.
Satisfactory expansion results have been yielded with this algorithm. Both blurring and
aliasing have been greatly eliminated, compared with the previous expansion methods. In
this section, a brief overview is given for this algorithm. To illustrate, Fig. 1.3 shows its
functional diagram.

The motivation of this algorithm lies in the application of the edge and linc orientation
information in their expansion to avoid their discontinuities and blizrring in the expanded
image. This algorithm classifies pixels of the original image intc . wo categorics: pixels in
the interior of regions or background, and pixels on image fea‘ures, e.g. pixels on edges,
abbreviated as edge pixels, or pixels on lines, abbreviated as {ine pixels,> whose expansion
are termed edge and line expansion respectively. The pixeis on image features also include

those on textures.

5 For brevity, when the term line is used, it also applics to curve. This convention will be applied to the
remainder of the thesis, unless otherwise specified. For the definitions of an cdge, linc and curve, please
refer to Chapter 3.
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For the pixel in each category, a corresponding module in the algorithm is called for
its expansion. The new algorithm consists of four modules, in each of which a
corresponding method is applied.

Interpolation Module, is used to expand the interior pixels of regions, for
smoothness. Bilinear interpolation is applied in this module, because of its best visual
effect among all the interpolation methods. Since this method tends to blur edges or lines,
as mentioned earlier, it is only applied to the interior of regions.

To differentiate between edge and line pixels, Edge_Line_Differentiation Module is
called, in which the method Edge_Line_Differentiation is applied. To avoid both blurring
and blocky appearance, Edge Expansion Module and Line Expansion Module are used to
expand the edge and line pixels respectively. The method applied in the former module is
Heuristic Edge Expansion, and the method applied in the latter module is Heuristic Line
ExpansionS. The above four modules deal with image expansion, and are thus together
called Heuristic Expansion Module. Similarly, the above four methods are together called
Heuristic Expansion. To smooth possible jaggies on the edges in the expanded images,
Smoothing Module is called, in which a new smoothing method called Heuristic
Smoothing is applied.

Next, the function of this new algorithm is briefly discussed. It should be noted that
its expansion operation is sequential since it processes each pixel in the original image row
by row, and from the upper left corner to the lower right corner of the image, using 3 X 3
window operation with the pixel being processed as the central pixel of the window.

If the gray level difference inside the 3 x 3 window does not exceed a predefined
threshold, say T, the pixels inside the window are treated as the interior pixels of a region,

and Interpolation Module is called to expand the central pixel of the window.

6 This tcchnique is not implemented in this thesis, because of the strong restrictions needed for its
implementation. The issuc is discussed in more details in Chapter 3.
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for each pixel in the orizinal image, apply
a 3 by 3 window,

enough gray leve

dife o Interpolation Module
ifference?

.

Edge_Line_Differentiation
Module

edge or line
(curve)

edge 2 line
v
Heuristic Edge Heuristic Line
Expansion Module Expansion Moduile

v

Smoothing Module

v

Expanded Results

Fig. 1.2. Functional diagram of Heuristic Expansion and Smoothing Algorithm

Otherwise, edges or lines exist, thus Edge_Line_Differentiation Module is called to
differentiate between the two image features. Then either Hewristic Edge Expansion Module
or Heuristic Line Expansion Module is called to obtain the expanded results, according to
the differentiation. After the image expansion, Heuristic Smoothing Module is then called
to smooth the expanded image.

It should be noted that the new algorithm is hewristic. It is often the case that there are

no optimum solutions for some problems because of their complexity, or the optimum
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solutions exist but are not feasible because of the high time complexity for their
implementations, thus approximations, which are usually not analytical but empirical, are
applied to obtain acceptable solutions. These approximations are usually defined as
heuristic methods.

For edge and line detection and expansion in Heuristic Expansion, 3 x 3 window
operation is applied and only approximations of the orientation information, i.e. multiples
of T/4 are obtained, for the sake of the time complexity. The approximations are based on
the human empirical knowledge. For Heurisi’* Smoothing, there are also some

approximations based on such knowledge. That is why this algorithm is heuristic.

1.6. Thesis Organization

This thesis consists of six chapters. In Chapter 2, bilinear interpolation, together with
other various interpolating methods in [Dav85] are discussed. These methods can be used
to obtain smooth expanded images. For completeness of this thesis, interpolation methods
in the frequency domain are also briefly discussed.

Chapter 3 is concerned with the edge expansion method Heuristic Edge Expansion,
applied in the Edge Expansion Module. Heuristic Smoothing, the method applied in the
Smoothing Module, presented and discussed together with other smoothing methods of
[Dav85] in Chapter 4, is employed to smooth possible jaggies on edges resulting from
Heuristic Expansion.

Chapter 5 deals with implementation, results and analysis, in which the
impiementation issue is discussed, the test results of image expansion using the new
algorithm and some methods mentioned earlier are presented, and the result analysis is

made. In Chapter 6, conclusions are made and the future direction in this field is discussed.
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Chapter 2

Expansion Using Interpolation

This chapter deals with expansion using interpolation, i.e., various methods which
can be applied in Interpolation Module. First, the concept of scaling is introduced and
discussed in Section 2.1, as the most basic concept for image expansion. Section 2.2 gives
a brief discussion of interpolation in the frequency domain (which is not directly related to
the thesis topic, but is included for completeness). To apply the best interpolation method
in Interpolation Module, various interpolation methods presented and tested in | Davg5] for
image expansion are examined in Section 2.3. Unlike in {Dav85], these methods are to be
applied only to the interior pixels of the regions, in order to avoid image blurring. Edge

expansion will be discussed in next chapter.

2.1. Scaling

When an object in an image is well defined (i.e. it is homogeneous), it can be
described by a set of vectors, e.g. by the chain code of its contours. Expansion of such an
object can be made by replicating each link in the chain code by the expansion factor
[Dav85]. Similarly, regions can be expanded equally in both horizontal and vertical
directions by first expanding the contours and then filling in the regions. Obviously, this is
based on the assumption that the gray values of the pixels on the contours are identical. In
many cases, this is not true and a gap filling algorithm is required; linear interpolation can

be applied to the contours and bilinear interpolation for the interior pixels of the regions.
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When the end pixels of the contours are described in horizontal and vertical
coordinates, they can be scaled, relative to the origin, by S, along the x-axis and by Sy
along the y-axis into new pixels [Dav85]. Then similar schemes can be applied to the
interior of the regions.

In practice, objects in an image are not always well-defined, and very often their
conicurs can not be identified, e.g. the objects have complex textures. Interpolation offers a
more general approach than the scaling techniques. This will be investigated in next two

sections.

2.2. Interpolation in the Frequency Domain

To discuss the interpolation in the frequency domain, it is necessary to examine the
problems conr »cted to sampling. To facilitate the above discussion, a brief survey of the
Fourier Transform is first made, from [Dav83, Bra78]. This section is used to justify the

employment of the interpolation methods in the spatial domain.

2.2.1. Definitions and Useful Properties of Fourier Transforms

The Fourier transform of a one-dimensional function f{r) [Bra78] is defined as

(-]

F{AD) =F(s) = f fne-i2rsiqy (2.1)

-0

The inverse Fourier transform of F(s) is defined as

o0

fir) = F1 {F(s)]=f F(s)ei2nstds (2.2)

—c0

where i is defined as ¥-T.

There are many properties of Fourier transform. Here only a couple of the most

useful ones are presented.
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The Uniqueness Theorem states that the Fourier transform F(s), or the spectrum, for
any function A1), is unique and vice-versa. The existence of the integrals in the transform
equations is not considered to be a major problem in practice, since in reality, most
functions satisfy the criteria for existence [Dud73].

The Convolution Theorem is the most important property [Dav85], which is as
follows:

Fif(t) * g(1) } = F(s)G(s), (2.3)

fug(t) =F1{F(s) * G(s)) (2.4)

where F(s) and G(s) are the Fourier transforms of f(r) and g(r) respectively, and * is a

convolution operator. Please refer to {Dav85] for the details of convolutirn. The theorem

relates two operations, one in the frequency domain, and the other in the spatial domain and

implies that an expensive operation in one domain can be performed more economically in

the other for the same effect.

2.2.2. Interpolation and Sampling

In this section, the theory behind sampling is reviewed. This is to justify the necessity
for the approximation of interpolation techniques, in both spatial and frequency domains.

Most image processing problems are modeled as linear shift invariant systems, as
shown in Fig. 2.1 [Dav85]. Please refer to [Dav85] for details about the conditions
required for such systems as well as their characteristics.

A linear system

Innut f{t Impulse Response g(t Qutput A(t
rut ) p ponse g(t) | Output ()

Input Spectrum Transfer Function G(s) Output Spectrum
F(s) H(s)

Fig. 2.1. Illustration of a linear system
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In general, the Fourier transform of the impulse response g(1) is called the transfer
function G(s). F(s) and H(s) are referred to as the spectriim of the input and output signals,
respectively. The Convolution Theorem (2.3) and (2.4) allows such a system to be
specified by either the impulse response function or the transfer function.

A function is band-limited at a frequency s, if its spectrum is zero in the intervals (-eo,
-spl, and [sy, +o0), that is,

F(s) =0, if Isl = 5. (2.5)

According to [Dav85], the process of sampling f{t) at equal intervals of 7 can be
modeled by multiplying f(z) with 1/T11I(1/7), i.e.,

h() = 1z fi)lI(t/ 1) (2.6)
where 1/t /1I(¢/7) i 2 infinite impulse train with the interval 7 and strength 1 (For more
detail, please refer to [p15, Dav85]). This process zeros out f{z) between the sampling
points nt, with n =0, ......, and preserves the values of f{z) at the sample points [Cas79].

Using the Convolution Theorem, (2.6) implies [Dav85],

H(s)=F(s) * Ill(z5) 1 @7
Since /1I(1s) is a train of impulses of strength 1/7 at equally spaced intervals of 1/7,
performing the convolution would then replicate the spectrum F(s) in H(s) at every 1/7
interval along the s-axis from minus infinity to plus infinity [Dav85].

Thus, in order to recover the original signal (to get a smooth expansion of the original
image), either A(z) is interpolated for f{#) in the spatial domain, or the copies of F(s), except
for the primary one located about the origin, are eliminated in H(s) to recover F(s).

One way to zero out the replicas of F(s) is to multiply H(s) with the rectangle function
R(s/2s,), a transfer function unity in the interval [-s;, 5;] and zero everywhere else. As
shown in Fig. 2.2, the value s, ranges from s, to 1/7 -s,. Thus, with (2.7), the original

signal is obtained by

1 111(1s) is the Fouricr Transform of 1/ 11/(t/t) . Please refer to [Bra78] for more detail.

17



F(s) = H(S)R(s/2s)) (2.8)
The wansfer function R(s/2s,) is called an interpolation filter. lts corresponding

impulse response is 2s;sin(2ns,t)/2ns ¢t [Bra78]. By convention, sin{v)/ v is written as

sinc(x).
A 'y
1) Fis)
<4 » ! % / - s
-sc s
) ’ © !
¢ h
(v ' In
<
‘ \
XY L ' lp: « ' s
—» - o
T
(b) (d)

Fig. 2.2. Sampling in spatial and frequency domains
Equivalently, (2.8) implies, based on the convolution theorem,

Sty =h(t) * 2 s, sinc(s;t) (2.9)

=25 z h{m) sinc(sy(t - m)).

m=.oo
This form of interpolation is often referred to as the Cardinal Spline Interpolation
[Hou78]. There are several problems with this method, that hinder the perfect

reconstruction with it from reality [Hou78]:
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1. (2.9) behaves like an infinite degree polynomial whose operation is not local thus a

computational problem results. If the lower and upper bounds of the summation in

(2.9) are truncated, an oscillation known as Gibb's phenomenon will show up in the

interpolated signal [Dav85].

2. In many cases, images are not band-limited [Dav85].

Taking these into consideration, it should be noted that a perfect reconstruction by
interpolation in the spatial domain is impossible [Dav85]. That is why all interpolation
methods resort to approximations, which have been studied in [Dav85, Hou78, Pra78].

On the other hand, it is evident from (2.8) that f{z) could be recovered by performing
the inverse Fourier transform on H(s)R(s/2s,), that is, to recover f(® in the frequency
domain. Whereas, it can be shown, that this is also difficult in digital image operations
because of the discrete nature of digital images and the approximation employed in the
calculation of the Fourier transforms H(s) and R(s/2s;), and the inverse Fourier transform.
Please refer to [ Dav85] for more details.

These difficulties justify the pursuit of other interpolation methods in the spatial
domain to recover the original signal from its samples, or more specifically, to achieve
smooth expansion and to maintain continuity of the contents of the images. In the next
section, these methods are examined in order to obtain the best one to be applied in

Interpolation Module.

2.3. Interpolation in the Spatial Domain

In this scction, various interpolation methods niesented in [Dav85, Bra78] are
discussed. Each interpolation function is modified to accommodate the discrete format of
digital images.

From the point of view of numerical analysis, it is known that an increasing set of

points can be interpolated by using polynomials of higher degree. The motivation of the
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employment of piecewise interpolation lies in the problems of a higher degree polynomial.
The first problem is its undesired tendency to oscillate so that pinning down a polynomial at
a few points for a slowly varying function may not produce a good approximation |Dav85,
Bra78]. Second, since they are analytic, their global behavior is determined by their
behavior in any interval; a change in the functional behavior in an interval affects
everywhere. Piecewise interpolation can avoid these problems. As known, there is
considerable literature on piecewise interpolation, e.g. [Bra78, Dav85, deB78, Spa74].

in this section, unlike in [Dav835], it is assumed that a priori knowledge of an image is
known thus only the interior pixe!ls of regions in the image are to be expanded by
Interpolation Module, and the edges and lines in the image are not considered. This is done
to avoid any edge or line blurring in the expanded images. Thus, some preprocessing of the
classification between edges or lines and the interior of a region, which has been discussed
in Section 1.5, is necessary before the interpolating operations.

The simplest interpolation method is bilinear interpolation, which is discussed in
Section 2.3.1, along with its theoretical problem, Mach bands. Higher order interpolation
methods are discussed in Section 2.3.2. By now the best interpolation method for digital
image expansion is bilinear interpolation with regards to the visual effect and speed

[De.v85]. For this reason, bilinear interpolation is applied in Interpolation Module.

2.3.1. Bilinear Interpolation

In [Dav85], the gray values of an image as a function of their positions are viewed as
a surface so that interpolation of the surface corresponds to interpolating the gray values.
The interpolation is called piecewise because the surface is divided into rectangular patches
and the gray values in each patch are obtained by interpolating gray values of certain pixels.

In [Dav85], bilinear interpolation is defined as follows:
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Suppose an image is defined to be an m X n array of gray values, fix, y),0<x<m,0<y
< n. The expanded image g(x, ¥), 0 €x < (m-1)Sy, 0 <y < (n-1)S,, is computed as,
. . WA AYORAY Y,
g(iSx + k, jSy + D=( - )( < i)
Sx- kN1 _f; i
+( S, )Sy A, j+1)

£ G e

+-kL_ fi+1, j+1) (2.10)
SxSy

for0<i<m-1,0<j<n-1,0<k<S,,0<1<S,.

In this method, the expanded image is divided into m x n patches, each of which is of
S, x Sy. Thus, the gray value of each pixel in the patch
((x, Y| x = iS,, iS+1, iS,42, .., iS,+8,-1, y = jS,, jSy+1, ..., jS,+Sy-1}, for 0< i <m-
1, and 0 < <n-1, is interpolated bilinearly.2

Equivalently, bilinear interpolation can be performed using linear interpolation in the
x direction followed by the y direction (or vice versa) [Dav85]. In Fig. 2.3, the gray value
at P5 can be found by interpolating first for P1 and P3 (or P2 and P4) and followed by
interpolating between them.

As mentioned in Chapter 1, (bi)linear interpolation can be considered as a weighted
averaging method. More specifically for the example in Fig. 2.3, the interpolation between
P1 and P3 can be considered as a weighted average of the gray values at PI and P3 with
the distances between PS5, the pixel of interpolation, and PI and P3, as the relative weights.
Similarly, in the bilinear interpolation at PS5, the distances between P5 and {iS,, jSy),
((+1)S,, iSy), Sy, (+1)S,) and ((i+1)S,, (j+1)S,) act as the weights.

However, this simple approach will usually lead to blurred edges, if applied
indiscriminately, as mentioned earlier, since the pixels lying between the original interior

edge pixel and exterior edge pixel take nn a weighted average of these two pixels [Dav85]3.

2 For further details of bilincar intcrpolation, please refer to [Dav85].
3 That is why in the new algorithm, only interior pixels of regions are to be expanded using interpolation.
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To see this, consider Fig. 2.4, and Fig. 2.5 which depict the gray values as a function of
the pixel locations of an expanded image.4 In this case, pixels (iS;, jS,), (((+1)S,. jS,).

wees ((E48)iS,, ij) are considered.

f(iSx, jSy)

0‘....‘ .........
, T TR SR AiSx, (j+1)Sy)
SU(i+1)Sx, jSy¥ Te.
A% L 3
£
Y SET .
1°F--f(i+1)Sg-(/+1)Sy)
y
>
Sx, JjS Lo ®
DY) P (iSx, (j+1)Sy)
Pl .7 E
.+ P5
o
AT se Sy P (i+1)Sx, (j+1)Sy)

Fig. 2.3. Illustration of bilinear interpolation

Fig. 2.4 illustrates the case when expansion is performed by pixel replication. The
blocky appearance is due to the discontinuity of the expanded curve. bilinear interpolation
reduces the blocky appearance, as seen in Fig. 2.5.

Clearly from pixels ((i+2)S,, ij), ((i+3)S,, ij) and ((i+8)S,, ij) of Fig. 2.5, the
extent of the edge being blurred depends on the expansion factors, S, and S, and the gray
value difference in these corresponding adjacent pixels.

On the other hand, Mach bands, caused by the discontinuities of the first derivative

(slope), manifest themselves at some intervening pixels in the expanded image, such as the

positions like ((i+2)S,, jS,), ((i+5)S,, jSy), ((i+6)S,, JjSy), and ((i+8)S,, jS,) |Dav85].

4 This is quoted from [Dav85] by courtesy of the authors.
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Since interpolation is done piecewise in patches of Sy X Sy pixels, these Mai. & hends cause

the image to be slightly blocky |Foi83] [Dav85]. In Fig. 2.5, the <otig tine segments

indicate the result of bilinear interpolation, which can be noted sot .~ i< M oie. e first

derivative is not continuous. The solid curve in Fig. 2.5 mdirat < a bigno-

interpolation (approximation) without Mach baniis.

fix, )’)‘

4

0 -
(i, J) (i+6,)) (x, y)

Fig. 2.4. Pixel replication
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Fig. 2.5. (Bi)linear interpolation

Gegree

Regardless of the above, the blocky appearance caused by Mach bands is usually

much less noticeable than that caused by pixel replication (See Plate 5.4 and Plate 5.11 1n

Chapter 5 for example). A result analysis is made in [Dav85] to show the best visual effect

of bilinear interpolation among all the interpolation methods. This phenomenon is due to

23



the fact that there are still no good approximations for the derivatives necessary for the

higher order interpolation methods. This issue will be discussed in next section.

2.3.2. Higher Order Interpolation

Higher order interpolation aims at providing an expanded image, the gray value
function of which is at least C/, to reduce any possible blocky appearance caused by Mach
bands. A common choice for higher interpolating functions are the cubic polynomials.
Unlike other higher degree polynomials, oscillations are controlled within a tolerable extent
and no lower degree polynomial representation of curve segments provides continuity of
the curve and the slope like cubic polynomials [Dav85|.

Similar to bilinear interpolation, there are also some piecewise cubic interpolating
polynomials, namely Hermite, Bezier, and complete and natural splines. Hermite and
Bezier interpolation methods guarantee C!, i.e. the continuity of the first derivatives, while
complete and natural splines aim at even smoother expansion effect, with the gray value
function being C2, i.e. its second derivatives being continuous {Dav85].

Obviously, Hermite and Bezier cubic interpolation methods require the knowledge of
the first derivatives. Unfortunately, the rate of change of gray values with regards to
distance can only be estimated, due to the discreteness of the distances between pixels, thus
there is considerable arbitrariness in determining the first derivatives. That is the major
problem that keeps the Hermite and Bezier cubic interpolation from obtaining good visual
quality of expanded images. With the similar approximation involved, the cubic spline
interpolation methods have the sim™ .r problems, as Hermite and Bezier interpolation
methods. Moreover, according tc [Dav85], the available assumption of the boundary
conditions for the second derivatives of the splines may be unrealistic. The next problem
for all the above methods is that they also tend to blur the expanded images, as bilinear

interpolation [Dav85].
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2.4. Summary

Bilinear interpolation can be used to obtain smooth image expansion, but has the
theoretical problem of Mach bands [Dav85]. Higher order interpolation aims at providing
an expanded image, the gray value function of which is at least C!, to reduce any possible
blocky appearance caused by Mach bands. A common choice for higher interpolation
functions are the cubic polynomials. However, the major problem for higher order
interpolation is that, the limitation of the currently available approximation methods used
for derivatives, as the result of the discrete nature of digital images, prevents higher order
interpolation from yielding better visual effects than bilinear interpolation [Dav85]. This
usually offsets their theoretical advantages over hilinear interpolation.

Although bilinear interpolation causes Mach bands, it is still deemed to be the best
among all the interpolation methods for digital image expansion, in terms of computaticn
speed and visual effect, unless better approximations for the derivatives mentioned earlier
can be developed |Dav85]. Therefore bilinear interpolation is the choice for Interpolatian
Module.

On the other hand, most interpolation methods tend ‘o blur edges and lines [Dav85].
As a result, interpolation is only used to expand interior pixels of regions. In next chapter,
the edge expansion method, called Heuristic Edge Expansion, is discussed, which aims at

smooth edge expansion while preserving the sharpness of edges.
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Chapter 3

Heuristic Expansion Using Edge
Orientation Information

This chapter deals with edge expansion. First, to facilitate edge expansion,
Edge Line Differentiation Module for the differentiation between edges and lines is
discussed in Section 3.1. Next, Edge Expansion Module for edge expansion is presented,
to which Heuristic Edge Expansion is applied. The functional diagram of this Module,
which consists of two routines of Heuristic Edge Expansion, is illustrated in Fig. 3.1.
Section 3.2 discusses the routine edge_orientation for the acquisition of the edge orientation
information with 3 x 3 window operation. Section 3.3 discusses edge_expansion, to which
orientation information is applied for edge expansion without blurring and aliasing. Section
3.4 presents the itme complexity analysis for Heuristic Expansion, the first half of the new

algorithm. Section 3.5 deals with the remaining problems to be solved.

3.1. Edge and Line Differentiation

Edges and lines are most common image features. The new algorithm detects these
image features with local operation, i.e. 3 x 3 window operation, to facilitate their
expansion. In this thesis, the technique used for edge expansion is different from that used
for line expansion. So, it is necessary to first differentiate between the two kinds of iimage
features. Their definitions are as follows.

(1) An edge: it is the boundary of two adjacent, extensive regions. The gray level is

relatively consistent in each of the two regions, and changes abruptly as this bousdary

26



between the two regions is crossed. An ideal edge has a steplike cross section; a more

realistic edge incorporates blurring and noise effects.
Enough gray level difference

'

Edge_Line_Differentiation Module

calculate related parameters

No

Edge detected
?

l Yes

Edge Orientation

Heuristic Line (Curve)
Expansion Module

lEdge Orientation Info.

Edge_Expansion

Edge Expahsion Module

Expanded Results

Fig. 3.1. Functinnal diagram for Edge_Line_Differentiation Module and Edge Expansion
Module

(2) A line: the gray level is relatively constant except along a thin strip, and this kind
of feature has empty areas on both of its two sides. In cross section, this yields sharp
spike. An ideal line should not have any physical width, but in digital images, widths exist
for lines because of discreteness. In this thesis, all lines are assumed to be 1 pixel wide. A
curve is only mathematically different from a line in that the first derivative of any point on

a line is a constant, while that for a curve is a variable.
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Next, the difference between a line and a line segment is discussed. A line means a
global image feature, while a line segment is a local image feature detected inside the 3 x3
window, which is a part of a line in the new algonthm. From the point of view in
mathematics, a line has no ¢nds, extending infinitely in certain two opposite directions,
whereas, a line segment has two fixed ends.

In this section, the differentiation between edges and line segments using 3 x 3
window operation is discussed as follows. It should be noted that only line segments are
involved instead cf lines, the global image features, in the differentiation, since only the
local 3 x 3 window operation is applied.

The purpose of the 3 x 3 window operation is to obtain the gray value difference
information, i.e. the edge or line orientation information, if any, from the 9 pixels inside
the 3 x 3 window. The information will then be used in the expansion of the current central
pixel. When it is an edge or line pixel, the informa*:~n is used to expand it without t'urring

and aliasing.

p3 p2 pl
p, {p |P,
Ps | Pg | Py

Fig. 3.2. A 3 x 3 window

In order to detect an edge or a line segment, the maximum and minimum gray values

of the 9 pixels within the 3 x 3 window is obtained. Suppose that the 3 x 3 window is as
shown in Fig. 3.2, thus its current central pixel is p. Then p's 8-neighbors together with p
within the 3 x 3 window is Ng(p) = (p, py. .., P7), as defined in Chapter 1. The gray
values of the 9 pixels within the 3 x 3 window is defined as Ng(fip)} = (fip), firg) .-.»

fip7)). For convenience in notation, Ng(f(p)) is abbreviated as Ng(p). Thus the maximum
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and minimum values are denoted as max(Ng(p)) and min(Ng(p)) respectively. The first
criterion for edge or line segment detection, which is used to detect the greatest gray value
difference in the 3 x 3 window with a predefined threshold T, is

if (max(Ng(p)) - min(Ng(p)) 2T then

an edge or a line segment may exist.

This criterion is based on the assumption that an edge or a line segment can exist only
if there is enough gray value difference inside the 3 x 3 window. If the above criterion is
satisfied, then Edge_Line_Differentiation Module is called. Each of the 9 pixels in the
window is classified into one of two categories: pixels on edges, lines or textures, denoted
as 1, or background pixel, denoted as 0, usinga 3 x 3 binary array c, i.e.,

if fip;) 2 min(Ng(p)) + (max(Ng(p)) - min(Ng(p)))/2 then c(p)) =1 {c(p;)= 0}

else c(p;) = 0 {c(p)= 1}, fori=0,..,7,8
where py is referred to as p for the convenience of notation, and f{p;) denotes the gray
value of p;, and ¢(p;) is defined as the corresponding element in the 3 x 3 binary array. The
assignments in |} are options applied when the gray values of the background pixels are
higher than those of edge or line pixels. The above notation is used in the remainder of this
thesis. This criterion is used to first differentiate between pixels on image features, such as
edges, lines or textures, and the background pixels.

In this way, a corresponding 3 x 3 binary array is produced for the above
differentiation using 1 and 0. This method is more convenient for edge or line segment
detection and expansion, with regard to both notation and camputational complexity. This
binary 3 X 3 array is termed a 3 % 3 binary window.

It is noted that line expansion is different from 2dge expansion in that the width of a
line is not changed after expansion, while usually an edge pixel is expanded in both axial

directions, according to the expansion factor and edge orientation. Thus further processing
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is then needed to differentiate between edges and line segments, if any, inside the 3

window. The resulting 3 x 3 binary window is used for such differentiation.

x3

It should also be noted that a priori knowledge of the existence of lines should be

provided by the user before the differentiation, and it would be very difficult to differentiate

between an edge and a line segment using 3 X 3 window operation, if any line segment

were allowed to be more than one pixel wide.

However, the algorithm allows the expansion of images in which both edges and

lines exist, based on the following assumptions:
1) Lines are only 1 pixel wide;
2) There are no line intersections!;

3) No texture resembles lines, when the 3 x 3 window operation is carried out;

thus, the differentiation can be made between edges and lines, using the 3 x 3 window

operation.

Before the differentiation is discussed, some terms and subroutines are introduced.

1) The number of transitions #trans in the binary window c:

The sequence of O's and 1's determined by the eight neighboring pixels inside the
binary window can be expressed in circular order as 0%, 1+, O0*1+, 0*1*0*1+,
0*+1+0*+1+0*1+, or 01010101, where 0+(1t) denotes a sequence of one or more ((1).
The number of transitions #trans is the number of 0+1% subsequences in the sequence
(See Fig. 3.3 for examplcz, where the number of the solid or dashed arrows indicates
the value of #trans).

2) edge pixel run epr:

The length of a consecutive run of 1's, measured circularly around the central pixel

inside the binary window (See Fig. 3.3, where each shadowed part indicates an epr).

1 Inside a 3 x 3 window, a linc intersection may resemble some texture.
2 In this chapter, any window in which pixels are denoted with only 1 or 0 refers to a binary window.
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3) max(epr): a routine which finds the maximum epr inside the 3 x 3 binary window,
and then returns its value.
4) edge_line_differentiation(p, c): edge and line differentiation routine;
5) edge_orientation(p, c): routine for edge orientation acquisition, which also includes
the texture detection;
6) edge_expansion(p, c): routine for the expansion of p, which is an edge pixel or a
pixel on some texture;

where 4) is 1 routine in Edge_Line_Differentiation Module, and 5) and 6) are routines in

Edge Expansion Module.

#itrans = 2, max(epr) = 5;
Fig. 3.3. An example for #trans and epr

Based on the assumptions 1) and 2), max(epr) = 1 holds whenever a line segment is
detected, thus it can be assumed that an edge is possible when max(epr) =2 (See Fig. 3.4).
With assumptions 1) and 2), it is also noted that the values of max(epr) and #trans can be
used together with a priori knowledge of the existence of lines to detect a line segment, i.e.
a line segment is detected when max(epr) = 1 and #trans =1 or 2 hold, and a priori
knowledge exists (See Fig. 3.5). Since no line intersections are assumed to exist
(assumption 2), #trans < 2 always holds when a line segment is detected. So if #trans > 2
holds, it is assumed that part of some textures are detected, based on the assumptions 2)
and 3).

The assumptions 2) and 3) are used to facilitate the detection of textures, thus to

simplify the difterentiation between lines and edges.
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Using the above information, the differentiation routine edge line_differentiation in

Edge_Line Differentiation Module is as follows.

0 0 0
1 1 1
1 1 1

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 0
(a) #trans =2 (b) #trans =1

Fig. 3.5. A detected line segment, where max(epr) = 1
edge line_differentiation(p, c)
p is the current central pixel inside the 3 x 3 window;
¢ is the corresponding 3 x 3 binary window;
{
ca’culate max(epr); [* Calculate the epr of the maximum length */

calculate #trans; [* Calculate the number of transitions "/

(1) e(p) =0: /* p, the central pixel, is a background pixel: no differentiation is
needed. */
call the subroutine for background pixel expansion;
I* full_assignment, a subroutine discussed in Section 3.3.3, is called for the

expansion of the background pixel p */
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(2) ¢(p) = 1 and max(epr) 22: /* An edge or part of some textures is detected. See Fig.
3.3 and Fig. 3.4 for example */
call edge_orientation(p, c);

/* The subroutine calculates the edge orientation, or detects textures, if any. */

(3) <(p) = 1 and max(epr) =1 /* The existence of line segments is possible, based

on the assumption 1. */

(@) a priori knowledge of lines exists and #trans <2:
/* A line segment exists (no line intersection is allowed). See Fig. 35
for example. */
call Line Expansion Module;
/* This module is called for line expansion. */
(b) no such a priori knowledge or #trans > 2:
/* p is on some texture. */
call the subroutine for the expansion of the pixel on texture;
/* full_assignment, is called for the expansion of p. */
] /*(3) ¢(p)=1 and max(epr) =1 */
}
/* edge_line_differentiation: classification between background pixel, edge pixel, and line
pixels */

In case (2), it should be noted that it is still not known at that moment whether the
image feature detected inside the 3 x 3 window is an edge or part of some textures, thus
further processing is needed later on, in the routine edge_orientation, using the value of
#irans. 1t should also be pointed out that the correctness of the detection also depends on
the proper selection of the predefined threshold T, thus the selection of T is very important

in the edge and line differentiation and expansion.
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During the thesis research, it is noted that a priori knowledge of line existence has to
be provided for correct line detection, which is also restricted by several assumptions as
mentioned previously, in order to implement the line expansion technique of the new
algorithm. Furthermore, line detection is more easily subject to noise than edge detection,
thus makes the differentiation between lines and edges very difficult with only local 3 x 3
window operations. These problems make the line expansion technique of the new
algorithm very restrictive, thus nearly impractical for many gray level images, in which
noise is usually inevitable.

Since the expansion issue of gray level images is the major concern in this thesis, and
lines are much more frequent in binary images or computer graphics, details of the line
expansion technique as well as its implementation are not attempted in this thesis but left for
future research. Edge Line Differentiation Module is only presented in this section as a
possible approach to the edge and line differentiation, necessary for edge expansion
whenever both edges and lines exist in the image to be expanded.

In next two sections, edge_orientation and edge_expansion in Edge Expansion

Module will be discussed respectively in details.

3.2. Edge Orientation Acquisition

In this section, the edge orientation acquisition issue is discussed and
edge_orientation, the routine for the acquisition is presented. Here it is assumed that the
central pixel in the current 3 x 3 window is not a background pixel, for no edge orientation
information is needed for the expansion of background pixels in this new algorithm.

As known from Section 3.1, if max(epr) 2 2, it is assumed that an edge, or a part of
some textures is detected. However, epr (edge pixel run) is not enough to distinguish
between an edge and a part of some textures inside the 3 x 3 window (in case that max(epr)

> 2, it is also possible that part of some textures is encountered). Further detection is
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therefore necessary to distinguish between the two to get the possible edge orientation. For
this reason, #trans is applied for further detection.

If #1rans = 1, the 3 x 3 window can be divided into two parts, one belonging to a
region, and the other belonging to the background, thus it can be assumed that an edge
exists. In edge_orientation, the number of the central pixel's 4-neighbors which are
background pixels, and the number of the central pixel's diagonal neighbors which are
edge pixels are needed to get the edge orientation, in case that #trans = 1, that will be
discussed in details in next three subsections. See Fig. 3.7 for example, where the dashed
boxes and circles are used to indicate the above two kinds of pixels, which are called
background 4-neighbors, and diagonal edge neighbors respectively.

To calculate the above two values, the subroutines #4-neighbor(0), and #d4-
neighbor(1) are called respectively. Based on the two values, the corresponding criteria are
applied to obtain the edge orientation. Then the corresponding expansion method is applied
to the central pixel, based on the information.

If #trans # 1, it can be assumed that irregular edges, or part of some textures exists.
This will be discussed in details in Section 3.2.4.

Here two assumptions are made for edge orientation. It is first assumed that the edge
orientation is measured counterclockwise with the central pixel p as the origin, starting
from positive x axis, thus the edge pixels are always on the left of the edge orientation.
Next, it is assumed that each edge orientation is in the range of 0 ~ 27, and is essentially a
multiple of 774, which is only an approximation of the real orientation. See Fig. 3.6 to Fig.
3.11 for example, where all cases for edge orientation are shown respectively.

As known, the new algorithm uses local 3 x 3 window operation for the edge
detection and expansion for the sake of time complexity. However, with such local
window operation, the real orientation is very difficult to obtain, because of the limited

amount of information in the window. That is why the above approximation is applied.
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Because the approximation of each edge orientation is a multiple of 774, it guarantees the
continuity of the edges in the expanded images, so that the aliasing can be greatly
eliminated. This issue will be discussed in more details in Section 3.3.

In each window shown in Fig. 3.6 and Fig. 3.8, there are two neighboring pixels
marked with 1(0), which indicate that the two pixels can belong either to an edge or to the
background, but can not belong to the edge(s) (for Fig. 3.6) or to the background (for
Fig.3.8) at the same time, i.e. in Fig. 3.6 both pixels with 1(0) can not be 1, and in Fig.
3.8 both can not be 0. For those allowable cases in each window, the corresponding
orientation is considered to be the same. The cases that both pixels with 1(0) belong to the
edge(s) or the background are presented in Fig. 3.7 and Fig. 3.9 respectively. In Fig. 3.7,
the symbol "-" is used to indicate the edge orientation change, that is discussed in details in

Section 3.2.3. This notation is used in the rest of this chapter.

3.2.1. Edge Orientations in Horizontal and Vertical Directions

The criterion for the detection of edge orientation in horizontal or vertical direction are
as follows:
Suppose that the central pixel of the current 3 x 3 binary window is p, and the set of
p and its 4-neighbors is Na(p) = (p, pg, P2: P4, Ps)-
If #4-neighbor(0)=1 and #d4-neighbor(1)<4, as shown in Fig. 3.6, the edge
orientation is either in a horizontal or a vertical direction, that depends on which
of the 4-neighbors is a background pixel, i.e.,
if #4-neighbor(0)=1 and #d4-neighbor(1)<4, where there is only one background
pixel p; which belongs to Ng(p) and p; # p, where i =0,2,4,6
then the edge orientation is either horizontal or vertical;

If i = 0 or 4, the edge orientation is vertical;
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If i = 2 or 6, the edge orientation is horizontal;

as shown in Fig. 3.6, where the two pixels with 1(0) cannet be 1 at the same

time, thus #d4-neighbor(1)<4.

After the horizontal or vertical edge orientation is obtained by edge_orientation, the

subroutine full_assignment in edge_expansion is called. Fig. 3.13 illustrates an example

for the expanded results using full_assignment, which will be discussed in details in

Section 3.3.3.

If #4-neighbor(0)=1 and #d4-neighbor(1)=4, there is an edge orientation change at

the central pixel p, i.e. two edges meet at a reflex corner, as shown in Fig. 3.7. Its

detection criterion is discussed in details in Section 3.2.3, which deals with edge

orientation change.

1 1 1
1 | 1
10|01} 10
(@ 0
o o]] 10
1 |—] 1
1 1 1
) n

1|1 1o
| f o
1 1 1(0)

(b) w2

1(0) 1 1

N

0] ll 1
1(0) 1 1

(d) 3n/2

Fig. 3.6. Examples for horizontal and vertical edge orientations,
with #4-neighbor(0) = 1 and #d4-neighbor(1)< 4
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Fig. 3.7. Examples for diagonal edge orientation change: n/2, or 3n/2,
with #4-neighbor(0) = 1 and #d4-neighbor(1)=4

3.2.2. Edge Orientations in Diagonal Directions

This section is concerned with the criterion for the detection of the edge orientations
in diagonal directions, which i+ discussed as follows.

If #4-neighbor(0) = 2 and #d4-neighbor(1) > 1, it can be assumed that the edge
orientation is in one of the four diagonal directions, as shown in Fig. 3.8, where the two
pixels denoted as 1(0) can not be 0 at the same time, i.e. #d4-neighbor(l) > 1. The edge
orientation is then determined by which two of the 4-neighbors are background pixels. The
detection criterion is as follows:

If #4-neighbor(0) = 2 and #d4-neighbor(1) > 1, where there are two background

pixels pj, pj, which belong to N4(p) = (p, pg, P2, P4, Pg) and p; #p, pj#p, and i # j,

where i, j = (), 2, 4, 6, then the edge orientation is in one of the four diagonal

directions:
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if i, j = 6, 0, the edge orientation is x /4, as shown in Fig. 3.8a;

if i, j = 0, 2, the edge orientation is 37 /4, as shown in Fig. 3.8b;

if i, j = 2, 4, the edge orientation is 57 /4, as shown in Fig. 3.8c;

if i, j = 4, 6, the edge orientation is 77 /4, as shown in Fig. 3.8d.

The above diagonal orientation information is used in the subroutine half assignment
of edge_expansion for the edge expansion in this case. This subroutine is discussed in
Scction 3.3.4.

If #4-neighbor(0) = 2 and #d4-neighbor(1) = 1, as shown in Fig. 3.9, it is assumed
that there is an edge orientation change from vertical to horizontal (horizontal to vertical)

directions at p, that is discussed in next section.

1 |1 1|0 | o
I 0 1 0

oo o] [ le
(a) w4 (b) 3m/4

0 5) 10) o] 1] 1

"""" A ENG
o ] [
(©) 5m/4 d) 7Tm4

The edge orientations = odd multiples of 7 /4

Fig. 3.8. Examples for diagonal edge orientations,
with #4-neighbor(0) = 2 and #d4-neighbor(1) > 1

39



3.2.3. Edge Orientation Changes at the Central Pixel

This section is concerned with the detection of edge orientation change at the current
central pixel p inside the 3 x 3 window. The edge orientation changes can be classified into
four cases, which wiil be discussed separately in this section.

The first case is shown in Fig. 3.7, where two edges meet at a reflex corner, as
mentioned in Section 3.2.1. In this case, #4-neighbor(0) = 1 and #d4$-neighbor(l) = 4
hold. The corresponding detection criterion is following.

If #4-neighbor(0)=1 and #d4-neighbor(1)=4, then there is an edge crientation change

at the central pixel p, i.e. two edges meet at a reflex corner, as shown in Fig. 3.7.

More specifically,

if i = 0, the orientation changes from n/4 to 3n/4, denoted as nt/4 - 31t/4 in Fig.
3.7(a);
if i = 2, the orientation changes from 3m/4 to Sn/4, denoted as 3/4 - 5n/4 in Fig.
3.7(b);
if i = 4, the orientation changes from 5n/4 to 7n/4, denoted as 5n/4 - Tr/4 in Fig.
3.7(c);
if i = 6, the orientation changes from 7n/4 to nt/4, denoted as 7n/4 - ©/4 in Fig.
3.7(d).

To reflect such orientation change in the expanded image, a subroutine in
edge expansion, called quarter_assignment, is applied to the corresponding patch. This
subroutine is discussed in details in Section 3.3.5.

The second case is shown in Fig. 3.9, where #4-neighbor(0)=2 and #d4-
neighbor(1)=1 hold. In this case, it is assumed that there is an edge orientation change from
vertical to horizontal (horizontal to vertical) directions at p, i.e. two edges meet at a convex
comer. The subroutine full_assignment is called directly for edge expansion to reflect such

perpendicular orientation change in the expanded image.

40



T | =
(@) 0-mw2 (b) W2-m
o 0 ..... 0 0 }] .
0 I R Y s
0 L 1 0040
€) n—-3n/2 (d) 0-3n/2

Fig. 3.9. Examples for perpendicular edge orientation change,
with #4-neighbor(0) = 2 and #d4-neighbor(l) = 1

Next, two more cases with #4-neighbor(0) = 3 are discussed. Examples are shown
for the two cases respectively in Fig. 3.10, where #d4-neighbor(1) = 1, and in Fig. 3.11,
where #d4-neighbor(1) = 2. In Fig. 3.10, onc pixel is denoted as 1/0, and another is
denoted as 0/1. The above denotation means that the two pixels takes 1 and O alternatively
in the 3 x 3 binary window c.

With #d4-neighbor(1) = 1, the orientation change is /4, 31/4 or 51/4, as shown in
Fig. 3.10. When #d4-neighbor(1) = 2, the orientation change is 7t/2 or 37/2, as shown in
Fig. 3.11.

Suppose that #4-neighbor(0) = 3, where there are three background pixels pj, pj, Pk
which belong to Na(p) = (0, Pg, P2, P4, P6)> Di#P> Pj#D, Pi#D, and i # j # k, where i, j,
k belong to (0, 2, 4, 6), then there is an edge orientation change at the central pixel p.

The detection criteria for the above two cases are as follows:
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Fig. 3.10. Examples for edge orientation change: n/4, 3nt/4 or 51/4,
with #4-neighbor(0) = 3 and #d4-neighbor(1) = 1

1) #d4-neighbor(1) = 1

If i, j, k=0, 2, 4, the edge orientation changes from,
37 /4 to 37 /2, with c(p7)=1 and c(p5)=0,
or /2 to 5z /4, with ¢(p7)=0 and c(ps)=1,

a8 shown in Fig. 3.10a;

i, j, k=2, 4, 6, the edge orientation changes from,
0to 5x /4, with ¢(p;)=1 and c(p7)=0,
or mto 7x /4, with ¢(p;)=0 and c(p7)=1,

as shown in Fig. 3.10b;

If i, j, k =4, 6, 0, the edge orientation changes from,
n/dto3r/2,v..u  ‘pp=! and c(p3)=0,
or /2 1o 77 /4, with ¢(p;)=0 and c(p3)=1,
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as shown in Fig. 3.10c;

If i, j, k = 6, 0, 2, the edge orientation changes from,
/4 1o m, with c(ps)=1 and c(p3)=0,
or 0 to 31 /4, with ¢(ps5)=0 and c(p3)=1,

as shown in Fig. 3.10d.

) 0 ...... ] o

— 5 20 2 1
] ; 0

(1) 3n/4—5m/4 (b) Sm/4~Tn /4

O hd) ! 0

o | - ; Dk

©) Tn/4~nw /4 d) ®/4-3n/4

Fig. 3.11. Examples for diagonal edge orientation change: 7/2 or 3n/2,
with #4-neighbor(0) = 3 and #d4-neighbor(1) =2

2) #d4-neighbor(1) =2

If i, j. k =0, 2, 4, the edge orientation changes from 37 /4 to 57 /4, as shown in Fig.
301y

If i, j, k =2, 4, 6, the edge orientation changes form 57 /4 to 7rr /4, as shown in Fig.
3.t

If i, j, k = 4, 6, 0, the edge orientation changes from 77 /4 to & /4, as shown in Fig.

3.1lc;
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Ifi,j, k=6,0, 2, the edge orientation changes from x /4 to 37 /4, as shown in Fig.

3.11d.

With the orientation information obtained with the above criteria, corresponding
subroutines in edge_expansion can be called for expansion.

For the case with #4-neighbor(0)=3 and #d4-neighbor(1l) = 1, the edge orientation
change is essentially an odd multiple of 7 /4, i.e. one of the two edge orientations detected
is in a diagonal direction, so in this case, the subroutine half assignment is called to
indicate such diagonal orientation in the expanded image.

If #4-neighbor(0)=3 and #J44-neighbor(1)=2, the subroutine quarter_assignment in

edge_expansion is called for the edge expansion, that is discussed in Section 3.3.5.

3.2.4. Other Cases for Edge Orientation Detection

If #trans # 1, it is assumed that part of some textures, or irregular edges are detected,
thus it is impossible to detect edge crientation at the central pixel. In this case, the
subroutine full-assignment in edge_expansion is called for the expansion of the central

pixel p. The expansion issue is discussed in details in Section 3.3.3.

3.3. Edge Expansion

3.3.1. Definition Used in the Edge Expansion Method

Suppose that the expansion factor is &, thus, each pixel in the original image will be
mapped onto a patch of size k x k, in the expanded image. During the expansiia, the
central pixel of the patch will be processed to reflect the orientation change, if any, as

shown in Fig. 3.18¢c. However, if k is even, there is a problem to define the w.entral pixel in



the patch of size k x k. In order to facilitate the implementation, the center pixelofa kx k

patch is defined as follows, no matter whether & is even or odd.

For any k x k patch, it is supposed that the coordinates at its upper left corner are @,
j). Then the central pixel of the patch is defined to be at (i + k div 2, j + k div 2), where div
means integer division, that truncates the fractional part of the quotient.3 Fig. 3.12 shows
the central pixels for a 3 x 3 patch and a 4 x 4 patch respectively.

With this definition, expansion will be consistent for both even and odd expansion

factors.

p P
(a) the central pixel (b) the central pixel
in a 3 x 3 patch in a 4 x 4 patch

Fig. 3.12. The central pixel in a patch

3.3.2. Algorithm for the Edge Expansion Method

With edge orientation information, its expansion is facilitated. For each case of the
edge orientation information at the current central pixel p obtained with edge_orientation, a
corresponding subroutine in edge_expansion is called to apply the information to the
corresponding patch ini the expanded image.

There sre two steps for the edge expansion in each subroutine. First, the subroutine

divides the patch into two parts, one for the edge, and the other for the background, if

3 This is consistent with the assumption made in Scc. 1.2, that the image origin is at its upper left corner.
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necessary, using the orientation. Second, pixels of each part is assigned appropriate gray
values, which are Cetermined by to which this part belongs, the edge or the background.
This step also invrlves selective averaging operations. In this way, the edge orientation at
the pixel of the original image is preserved in the patch, thus the aliasing and blurring arc
avoided. As mentioned before, only the approximation of the real orientation is applied in
the patch, for the sake of time complexity.

In Fig. 3.13 to Fig. 3.18, except Fig. 3.15, the edge expansion results are shown
respectively for the each case of edge orientaticns discussed earlier. In these figures, the
edge gray values are indicated in bold text, while the background gray vaiues are in plain
text, for the ease of illustration. The blank boxes in these figures indicate the pixels whose
gray values are not yet assigned in the expanded image at the moment, or the pixels whose
gray values can not be determined using the current window information, since the
expansion process is sequential. These results are obtained by calling corresponding
subroutines in edge_expansion, based on the edge orientation information.

The routine edge_expansion is shown as follows:

edge_expansion(p, c)
p: the current central pixel in the 3 x 3 window of the original image;
c: the 3 x 3 binary window which contains the orientation information;
{ #trans: the number of transitions;
#4-neighbor(0): the number of p's background 4-neighbors;

#d4-neighbor(1): the number of p's diagonal edge neighbors;

case (1) c¢(p)=0:
/* p, the current central pixel, is a background pixel: no edge orientation is
needed for expansion */

call full _assignment(p, c);
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/* Fill in the whole patch with the background gray values */

(2) ¢(p) = I and #trans = 1: [* edge exists: p is an edge pixel */
{
a) #4-neighbor(0)=1 and #d4-neighbor(1) < 4
/* As shown in Fig. 3.6: horizontal or vertical directions */
call full_assignment(p, c);
/* The subroutine fills in the whole patch in the expanded image with the
edge gray values, that is discussed in Section 3.3.3. See Fig. 3.13 for
example. */
b) #4-neighbor(0)=1 and #d4-neighbor(1) = 4
/* An edge orientation change at a reflex corner: see Fig. 3.7 for example */
call quarter_assignment(p, c);
/* To reflect such change at the reflex corner, a quarter part of the patch is
assigned with background gray value, that is discussed in Section 3.3.5.
See Fig. 3.19 for example. */
c) #4-neighbor(0)=2 and #d4-neighbor(1) > 1
/* Diagonal directions: see Fig. 3.8 for example. */
call half _assignment(p, c);
/* Use the diagonal edge orientation to divide the patch into two parts, fill
each part with the corresponding gray values (of the edge or background).
Sec Fig. 3.16 for example. */
d) #4-neighbor(0)=2 and #d4-neighbor(1)=1
/* Orientation change of m/2 or 3n/2: two edges meet at a convex corner.
See Fig. 3.9 for example. */
call full_assignment(p, c);

/* Called to reflect such change in the patch. See Fig. 3.14 for example. */
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e) #4-neighbor(0)=3 and #d4-neighbor(1)=1

/* Orientation change: /4, 3n/4 or 5nt/4. See Fig. 3.10 for example. */
call half assignment(p, c);

/* This subroutine is used to reflect such orientation change from diagonal
to horizontal or vertical directions. See Fig. 3.17 for example. */

) #4-neighbor(0)=3 and #d4-neighbor(1)=2
/* Orientation change in two diagonal directions: 7t/2 or 3n/2. See Fig. 3.11
for example. */

call quarter_assignment(p, ¢);

/* Divide the corresponding patch into two parts, using the edge orientation
change: the quarter part of the patch is filled with the edge gray values, and
the other part is filled with the background gray values. See Fig. 3.18 for
example. */

J /%) c(p)=1and #trans =1 ¥/

(3) c(p) = 1 and #trans #1:
call full_assignment(p, c);
/* Part of some textures or irregular edges are detected: no edge orientation can be
obtained; fill in the corresponding patch with full_assignment(p, ¢). */

} /* edge_expansion */

3.3.3. Subroutine full_assignment

It should be noted that full _assignment, half assignment, and quarter_assignment as
well, process the patch pixel by pixel, from left to right, and row by row.
At each pixel being processed in the patch, it is first filled (replicated) with the same

gray value as its initial gray value (edge or background pixel, depending on whether the
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central pixel p is an edge or background pixel). To avoid a blocky appearance on the
boundaries of adjacent patches caused by such a simple replication, an 4veraging operation
over this pixel and its 8-neighbors are applied, and then the average result is assigned to it
as its final gray value. Then the next pixel will be processed in the same manner. Thus,
cach pixel is processed sequeniially.

On the other hand, to avoid any edge blurring, the averaging operations should be
selective, that is, only the same kind of neighboring pixels (background or edge pixels) as
Pp» the current pixel being processed in the patch, are selected for the averaging operation.
The selection criterion is based on the criterion using the predefined threshold T in the pixel
classification discussed in Section 3.1. All pixels with less gray value difference with pp
than the threshold T are considered as the same kind of pixels as p,. No further details are
necessary for discussion, since the selection process is essentially the same as that for the
pixel classification discussed in Section 3.1.

Such a selective averaging operation is necessary, for p,, the current pixel being
processed, and its 8-neighbors could belong to different regions. Please see Fig. 3.13c for
example. In Fig. 3.13c, the four bold boxes comprises the patch being processed, with the
expansion factor=2. The pixel inside the patch, indicated with dashed box is pp, the current
pixel being processed?, which, in this case is an edge pixel, and is on the patch boundary;
the other two pixels outside the patch indicated with dashed boxes are its 8-neighbors
involved in the averaging operation, which in this case are also edge pixels. It should be
noted that all the other 8-neighbors not involved in the operation, are either background
pixels, or the pixels not set yet at the time when the current pixel is being processed (i.e.
those pixels at its right or in next row inside the patch), as shown in Fig. 3.13c.

Based on the above, full_assignment is described as follows:

4 Fig. 3.13, and all the other (igures afterwards as well, only show the cases in which the patch has been
processed, for the case of illustration.
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Fig. 3.13. Edge expansion using full assignment, when #4-neighbor(0) = 1
and #d4-nei:-'. ror(1) <4
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Fig. 3.14. Edge Expansion using full_assignment, when #4-neighbor(0) =2
and #d4-neighbor(1) =1
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full_assignment(p, )
p: the current central pixel in the 3 x 3 window of the original image;
¢: the corresponding 3 x ™ binary window;
{ Process each pixel in the j-atch, sa- =p sequentially, i. . from left to right, row by row
and from top t bottom, 1:5ing @3 X3 Wer.... - 1% follows:
1. Assign an initial value to pp
(a) p is an edge pixel
replicate this edge gray value in py;
(b) p is a background pixel
replicate this background gray value in pp;
2. Select all its 8-neighboring pixels which are the same kind as it is (edge or
background pixels, determined by p) and have already been set (assigned);
Average the gray value of pp, with those of all such 8-neighbors;
3. Assign the average result to pp;
/* As mentioned earlier, the above averaging operations near the patch boundaries involves
some pixels in the adjacent patches, in order to keep the expansion results "consistent"
(continuous) beiween these adjacent patches, to avoid any blocky appearance. */
} /¥ full_assignment */

There are four cases in which this subroutine can be applied. First, it can be applied
to the expansion of background pixels, and the pixels on textures or irregular edges. In
both cases, no edge orientation is required. This subroutine avoids any blurring effect for
both cases and avoids the blocky effect for the background pixels as well. For the pixels on
textures, however, some jaggies could result, that is determined by the nature of the
textures to be expanded. This issue about such jaggies are not discussed in further details
and only left for future research, since the texture expansion is not the major concern of the

new algorithm. See Fig. 3.15 for an expansion example in this case.

51



The other two cases are shown in Fig. 3.6 and Fig. 3.9 respectively. In Fig. 3.6, the
edge orientation is in a horizontal or vertical direction, while in Fig. 3.9, there is & . cdge
orientation change from horizontal to vertical (or vertical to horizontal). For the case shown
in Fig. 3.6, this subroutine reflects the smoothness of the horizontal or vertical orientation
along the edge. An example for the edge expansion in this case is shown in Fig. 3.13. This
subroutine can also reflect the perpendicular orientation change for the case shown in Fig.

3.9. An expansion example for .his case is shown in Fig. 3.14.

1 1
0 10| 9 | 90| 89| 90| 89
1 1 0
11 10 | 90 90 91 920
1 1 1
88| 89 ] 91 92
(a) Corresponding
binary window
87| 88| 90 91
10 ] 90 { 91
90| 92| 9
89 | 93 | 88
(b) Gray values in (c) Expansion results

the original image
Fig. 3.15. Expansion using full_assignment for textures

3.3.4. Subroutine half_assignment

The subroutine half assignment is used for edge expansion when the current edge
orientation is in a diagonal direction, or the orientation change is from a diagonal direction
to a horizontal or vertical direction, or vice versa. To avoid any blocky appearance,

half assignment applies the above edge orientation in the patch being processed, thus the
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patch is divided into two parts by the orientation, each being assigned with appropriate gray
values (of edge or background), determined by whether it belongs to an edge or
background. This issue is discussed in details as follows.

There are two steps in half assignment. First, since the edge orientation or orientation
change dealt with in this section is an odd multiple of 7 /4, i.e. it is in one of the four
diagonal directions, the patch is divided into twe parts by this diagonal direction, the part
belonging to the edge pixels and the part belonging to the background pixels, according to
the edge orientation obtained, as shown in Fig. 3.16 and Fig. 3.17. For the sake of the
edge continuity (consistency) along its orientation between the corresponding adjacent
patches, the pixels on the diagonal of the patch are treated as edge pixels, as shown in Fig.
3.16¢ and Fig. 3.17c.

Second, every pixel in each part of the patch is processed sequentially, as in
full_assignment. If the part belongs to the edge, the gray value of the central pixel p is filled
in the pixel being processed as its initial value, otherwise it is filled with the background
gray value obtained from the 3 x 3 window of the original image. Similarly, such simple
replication will cause an artificial discontinuity of the gray value on the patch's boundaries
with its adjacent patches. To avoid this and blurring, for each pa:t of the patch, the same
selective averaging operation as used in full_assignment is applied on the pixel being
processed, and the average result obtained in the averaging operation is assigned to this
pixel. That is, if the part of the patch belongs to an edge, the gray value of the pixel being
processed is averaged with those of its 8-neighboring edge pixels, otherwise, its gray value
is averaged with those of its 8-neighboring background pixels.

Since the central pixel p in the 3 x 3 window of the original image is itself an edge
pixel in this case, the average gray valuve of all background pixels inside the window is

used as the initial gray value for each pixel in the patch belonging to the background.
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Fig. 3.16. Edge expansion using half _assignment, when #4-neighbor(0) = 2
and #d4-neighbor(1l) > 1
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Thus, the subroutine half assignment(p, c) is described as follows:

half assignment(p, c)

p: the current central pixel in the 3 x 3 window of the original image;
¢: the corresponding 3 % 3 binary window;

{

1. Divide the patch i.ito two parts, according to the edge orientation obtained above;

/* See Fig. 3.16 and Fig. 3.17 for example. */

2. Process each pixel inside the part of the patch which belongs to the edge, called p.,

from left to right, row by row, and from top to bottom:
1) replicate in p, the gray value of p; [* Assign initial value top, */
2) find all of p.'s 8-neighboring edge pixels which have already been set;

3) calculate the gray value average of p. and all such 8-neighboring pixe's;

4) assign the average result to p,.

/* See the part of the patch with gray values in bold text in Fig. 3.16¢ and Fig.

3.17¢ for ¢xample. */

3. For each pixel inside the other part of the patch, which belongs to the background,
called py, a similar operation is done on it:

1) replicate first with the average gray value of all the background pixels inside
the 3 % 3 window of the original image (the average of those pixels denoted
with 0's in the corresponding 3 x 3 binary window c); /* Assign initial
value topp */
2) find all of pp’s 8-neighboring background pixels which have already been
set;
3) calculate the gray value average of ppand all such 8-neighboring pixels;

4) assign the average resi:it to pp.
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/* For example, see the part of the patch with gray values in plain text shown in Fig.
3.16c and Fig. 3.17c. ¥/

/* Similarly, the above averaging operations also involves some pixels near the
boundaries of adjacent patches in order 1o keep the expansion results "consistent"
(continuous) between these adjacent patches, i.e. to avoid any blocky appearance. */

}

/* half assignment */

As mentioned earlier, there are two cases in which half _assignment can be applied.
One case is shown in Fig. 3.8, where #4-neighbor(0) = 2 and #d4-neighbor(1) > 1, as
discussed in Section 3.2.2. An expansion example for this case is shown in Fig. 3.16. The
other case is shown in Fig. 3.10, where #4-neighbor(0) = 3 and #d4-neighbor(1) = 1, as
discussed in Section 3.2.3. An example for ttie edge expansion in this case is shown in
Fig. 3.17. In both cases, the diagonal directions are detected and then applied in

half assignment.

3.3.5. Subroutine quarter_assignment

The subroutine quarter_assignment is used for edge expansion when there is a
perpendicular edge orientation change in two diagonal directions, as shown in Fig. 3.7 and
Fig. 3.11. The requirement for quarter_assignment is the same as that for half assignment,
that is, to avoid blurring and blocky appearance of the edges, and discontinuity on the
boundarics of the adjacent patches. The algorithm for quarter_assignment is the same as
that for half assignment, except that the characteristics of edge orientation between the two
cases are different. The same averaging operation is applied in quarter_assignment.

Similarly, in quarter_assignment, the patch to be filled in is first divided into two

parts, using the information of the edge orientation change. One of the two parts is
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approximately a quarter the size of the patch, that is why this subroutine is called
quarter_assignment. Whether the quarter part belongs to the edge or background is
determined by the characteristics of the edge orientation change. See Fig. 3.18 and Fig.
3.19 for example. After the patch is divided, each part is filled in corresponding edge or

background values and the same averaging operation is carried out, as in half _assignment.
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(b) Gray values in the (c) Expansion results (Exp. Factor = 3)

original image

Fig. 3.18. Edge expansion using quarter_assignment, when #4-neighbor(0)=3
and #d4-neighbor(1)=2

As mentioned earlier, there are two cases in which this subroutine can be applied.
One case is shown in Fig. 3.11, where #4-neighbor(0) = 3 and #d4-neighbor(1) =2, as
discussed in Section 3.2.3. In this case, an example for edge expansion is shown in Fig.
3.18, where the quarter part is assigned with edge values. The other case is shown in Fig.
3.7, where #4-neighbor(0) = 1, and #d4-neighbor(1) = 4, as discussed in Section 3.2.1.
An example for edge expansion in this case is shown in Fig. 3.19. Since the current pixel

to be expanded is at a reflex corner where two edges meet, as shown in Fig. 3.19a, the
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quarter part of the patch is assigned with background values to indicate such a reflex comer
in the expanded image, as shown in Fig. 3.19c¢. It should be not:d that the gray value of
the only background pixel in the 3 x 3 window of the original im:ze (as shown in Fig.
3.19b) is used as the initial gray value to be assigned to each pixel in the quaries part, since

the current pixel to be expanded is an edge pixel in this case.
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Fig. 3.19. Edge expansion using quarter _assignment when #4-neighbor(()=1
and #d4-neighbor(1)=4

3.4. Time Complexity Analysis for Heuristic
Expansion

Suppose that the expansion factor is k, in both x, and y directions. For edge and linc

segment differentiation, in each 3 x 3 window, the acquisition of the maximum and

minimum values needs 3 x 3 time units. And since there is overlapping in the 3 # 3
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window operation throughout the image in both x and y directions, the number of such
operations needs 182 time units, thus the time comisxity for this process is O(n?), where
n % n is the size of the image 1o be expanded.

The next step is the acquisition of edge or line orientation. The time complexity for
max(epr) and #trans inside the 3 X 3 window is 3 x 3 time units. To consider the
overlapping mentioned above, the worst case for the total number of the operations for the
acquisition of edge or line orientation is 18n2, thus the time complexity for this step is

o(n?).

The third step is image expansion. For bilinear interpolation, the expansion of an n X
n image by & in each dimension requires O(k2n2) multiplications and additions since there
are k2n2 - n2 pixels to be interpolated. As for bicubic interpolation, e.g., piecewise Hermite
interpolation and bicubic spline interpolation, the time complexity is also O(k2n2), but with
a higher constant.

The number of additions for Heuristic Expansion in edge and line expansion is
9k2n2, and number of divisions is k2n2, since in the worst case there is an average
operation over each pixel in each k x k patch, and all of its 8 neighbors. So based on the
time complexity analysis for the first three steps, the time complexity for the worst case for
the Heuristic Expansion in image expansion is O(k2n2), with a constant larger than that of

bilinear interpolation.

3.5. Remaining Problems

Heuristic Expansion, the technique for edge expansion introduced in this chapter can
not avoid jaggies completely, due to the approximation of edge orientation employed in

this technique and noise present in the original images.
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It is possible that there are still some jaggies between adjacent patches along the edge
orientation (See Fig. 3.16¢ for example, in which the dashed circle is where a jaggy would
occur). The orientation char.zes inside patches could be in fact jaggies for the cases shown
in Fig. 3.18 and Fig. *.19, possibly due to noise in original image at the corresponding
pixels being expanded. This scenario could be more noticeable when expansion factor is
larger. Jaggies can be seen in Plate 7.3 of Chapter 5, where some expanded results of this
technique are shown.

To solve this problem, an edge smoothing approach, called Heuristic Smoothing in
Smoothing Module is applied to the expanded image as postprocessing. In Chapter 4, the

issue is discussed in details.
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Chapter 4
Edge Smoothing Methods

4.1. Problem Description

As discussed in Chapter 3, there are still jaggies in the image expanded by Heuristic
Expansion. T*ze jaggies are due to the fact that some approximation is inade for edge
orientatior: acquisition using a 3 X 3 window operation. As known, with the 3 x 3 window
operation in Heuristic Expansion, the edge orientation is approximated as a multiple of n/4.
The approximation is manifested in image expansion, thus jaggies result. On the other
hand, the jaggies may come from the noise in the original image, as mentioned in last
chapter. To eliminate these jaggies, some edge smoothing methods should be applied to the
expanded image. There are numerous edge smoothing methods in [Dav85], some of which
can be applied directly.

In Section 4.2, seven smoothing methods used in [Dav85] are discussed. There are
some problems with these methods. Some of them blur the image during the smoothing.
Others do not have noticeable effect on jaggy removing. So, in Section 4.3, a new edge
smoothing method, called Heuristic Smoothing is discussed, which can remove
considerable jaggies while preserving the sharpness of edges. This method is part of

Smoothing Module in the new algorithm.

4.2. Previous Edge Smoothing Methods

The-e are numerous smoothing methods introduced in [Dav85]. In this section, seven

of these methods to be applied to the expanded images are discussed, which are those that
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either have lower time complexity or better smoothing effect than the others not discussed

here.

4.2.1. Variable Neighborhood Averaging

4.2.1.1. Description of Variable Neighborhood Averaging

Instead of using a neighborhood of a {ixed size for the smoothing operation at cach
pixel in the expanded image, a variable neighborhood size can be used [ Dav85].

This method is to use growing neighborhoods around the pixel until the number of
gray values in the neighborhood that are substantially different from the pixel reaches a
threshold. So the neighborhood will be large if the pixel is in a uniform region and small if
the region has a high gray level variability. This method is based on the assumption that the
uniformity of a surrounding region determines the degree of conlidence that a pixel belongs
to this region. If the region is uniform, this smoothing method based on a larger
neighborhood will blend the pixel into the region. Otherwise, i.c, the local arca is highly
non-uniform, it is unlikely for the pixel to be in the interior of a region and smoothing 1s

kept to a minimum region to avoid effects of blurring.

4.2.1.2. Time Complexity for Variable Neighborhood Averaging

For this method, it is difficult to analyze the time complexity since the size of the
neighborhood is dependent on the threshold and the nature of the image to be expanded. I
should also be noted that the extent of the blur present in the resulting images depends on

the threshold choice.

4.2.2. Weighted Averaging

4.2.2.1. Description of Weighted Averaging
As known, the most straightforward smoothing method is local averaging, i.c.

averaging over a neighborhood of a fixed size. For a uniform region, local averaging
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preserves the local average and reduces the variability. Thus isolated noise pixels can be
suppressed; however, this operation has a blurring effect. If applied indiscriminately, sharp
details will be blurred at the same time that noise is weakened. For instance, lines or edges
are smoothed out by averaging across them.

Thus, locai averaging over a fixed neighborhood us described is only effective for a
homogencous image, i.e. an image with very few local variations. The blurring effect is
proportional to the chosen size of the fixed neighborhood. Thus smail neighborkoods
should be used to keep the blurring to a tolerable level.

To alleviate blurring, weighted averaging based on the pixels in the neighborhood can
be used for image smoothing. In [Dav85], two common weighted averaging schemes are

applied as follows. Suppose that p is the pixel at (x, y),

u,<x,y>=%0| S i)+ 2] (4.1)
(. ))eENs(p)-p

22(1,)’)=T%[ Y o 2 p+ Y R D+Afx ] (4.2)
(i, ))eNs@p)-p (i.)) eND{p)

where ND(p) is Ng(p) - N4(p).

(4.1) represents a mask of 3 x 3 pixels in Fig. 4.1 and (4.2) corresponds to the mask
in Fig. 4.2. Averaging can be carried out across the image by centering the respective mask
over each pixel in the image and multiplying each weight in the mask with the underlying
pixel. Weights lying outside the mask are assumed to be O's so that the sum of the pixels is
the weighted sum. The divisor in each average is used as a normalization factor for the
mask. The first mask assumes that each of the eight neighbors has an equal effect, but the
second mask takes into consideration the difference in the distances between p and its
vertical or horizontal neighbors and the distances between p and its diagonal neighbors,
thus more weight is given to its vertical or horizontal neighbors than to its diagonal

neighbors.
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Fig. 4.1. Mask corresponding to (4.1)
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Fig. 4.2. Mask corresponding to (4.2)

4.2.2.2. Time Complexity for Weighted Averaging
The number of multiplications in 3 x 3 window operation throughout the expanded
image is 9k2n2, thus the time complexity for the use of a 3 x 3 mask as in (4.1)or(1.2)is

Ok2n?) [Dav85).
4.2.3. Laplacian Smoothing

4.2.3.1. Description of Laplacian Smoothing
The Laplacian is a rotation-invariant second order difference that has zero resp mse to
linear ramps, but responds to the top and bottom of the ramp, where there is a change in the
rate of gray value change [Ros82]. In [Dav85], the discrete approximation for the Laplacian
is defined as follows:
Lap fix, y) = 5f(x, y) - [fix-1, y) + flx+1, y) + flx, y+1) + f(x, y- D), (4.3)
where it can be noted that the approximation of the Laplacian of a gray level image fis

proportional to the difference between f and an average of f.
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Similar to gradient smoothing | Dav85), a pixel can be smoothed with the k neighbors
with the Laplacian values closest to that of p. If p is in a homogeneous region, the response
is small and therefore it is averaged with pixels in the same homogencous region. When p
is nesr an edge, its Laplacian value is large, and the neighbors on the same side of edge as
p have Laplacian values closest to that of p, thus the average of p and those pixels are then
assigned to p. In the thesis, k is chosen as 5 for this method. It should be noted that the
Laplacian has an advantage over the gradient in that the Laplacian is rotation-invariant, and
the polarity of a pixel determines the location of the pixel relative to an edge. For the

gradient, its direction has to be evaluated in addition to its magnitude.

4.2.3.2. Time Complexity for Laplacian Smoothing

The time complexity for this method depends mainly on the calculation of the
Laplacian value at each pixel, and finding those pixels whose Laplacian values are close to
that of p. The above operation also involves the sorting of the Laplacian values of these
pixels so that the pixels with their Laplacian values closest to that of p can be easily
selected. The cost of sorting is a constant, ¢/, that depends on the kind of sorting scheme
appiied. The size chosen for each neighborhood is 3 x 3 and the cost for the calculation for
the Laplacian at each pixel is a constant, ¢2. Hence, the time complexity for this method is
O(k2n). Tt should also be noted that the magnitude of constant c2 depends on the Laplacian

approximation schemes.

4.2.4. Directional Smoothing

4.2.4.1. Description of Directional Smoothing
Instead of using the gradient or Laplacian to indicate edge information in the vicinity

of a pixel at (x, ¥), Rosenfield and Kak [Ros82] propose four measures, d, dy, d3, and dg,

to indicate edge information. Two methods are proposed in [Ros82]. In the first method,
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the first iwo measures, d; and d, are defined as in (4.4) and (4.5). If man(d;, ) exceeds
some threshold T, then the average of the two pixels in the direction tan 1d\/d; and inside
the 3 x 3 xizhborhood of (x, y) is evaluated to the nearest /4, and used to replace fv, ).
Otherwise . i1 average of all the pixels in the 3 x 3 neighborhood is used to replace v, ).
It should be nai~d that since tan-1d,/d, approximates the gradient at (v, ¥), it indicates the
edge orientation at (x, y).

Alternatively, dj and d, defined in (4.6) and (4.7) respectively can be used for
directional smoothing in addition to d; and d,. If max{d,, d,. d3. d,} - min{d,, d;, d5,
d,} exceeds the predefined threshold T, the two pixels in the direction of the minimum
absolute gray level difference, i.e. in the direction determined by min{d,. d,, dy, dy}, is

used. The following formulas were proposed in [Ros82]:

di=I(fx-Ly+D+f,y+D+fix+Ly+ D) -(flx-Ly- h+ftv,y-D+

fe+1,y-D)/3 (4.4)
dy=lflx-1,y -D+flx-Ly)+fix-Ly+ 1)) -(flx+ Ly-DH+flx + Ly) +
fx+1,y+D)/3 (4.5)
dy=1(fx-1L, ) +fox-Ly+D+f,y+ 1)) -(flx, y-D+flu+ Ly-1)+fix
+1L,y)1/3 (4.6)
dy=1(fe,y-D+flx-Ly-D+fx-1Ly)-(fle+ Ly)+flx+ 1 y+ 1)+ flx,
y+)l/3. (4.7)

In this thesis, the latter scheme is applied to smooth the expanded images.

4.2.4.2. Time Complexity for Directional Smoothing

In the worst case, when the threshold is exceeded for cach pixel, the time complexity
for each scheme presented above is O(k2n2) [Dav85]. However, the sccond scheme will
require a constant number of extra operations per pixel more than the first scheme. By

choosing the proper thresholds, the amount of blurring can be controlied.
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4.2.5. Half Necighborhood Methods

4.2.5.1. Description of Half Neighborhood Methods

In [Sch80], an alternative to using the gradient and Laplacian at each pixel p, the
possibility of an edge passing through a neighborhood of ; an be used for edge
smoothing. If there is sufficient evidence of <uch an edge, the pixe » is averaged with the
pixels on the same side of the edge.

The 8 neighbors of p are used to determine the edge information. These eight
neighbors are divided into two groups of consecutive pixels. Let N (x;) be the group with
5 pixels X;, X(iy1ymodss - X(i+a)ymod8s aNd No(X(iv5)mods) with 3 pixels, X4 5)mod8
X(i 4 6)mesdss X(i+7ymodsy fOr i =0, 1, .., 7, where the tessellation of the 8 neighbors are the
same as Jefined in Chapters 1 and 3. The region containing p is the group of N;(x;) with
the nearest average gray value to that of p, for some i in [0, 7]. The presence of an edge is
then decided by the magnitude of lave(N(x;)) - ave(No(x(;15)moas))! Where the value for
ave(Nj(xl-)) is the average gray value for Nj(xi) forj=1,2and0<i<T7.

Another method is also presented in [Sch80]. For some predefined threshold 7, if
lave(N|(x))) - ave(Ny(X(i+5)moag))! > T it is then assumed that an edge passes through the
ncighborhood of p and p is most likely to be in a region together with N (x)). Thus, p is
smoothed with the pixels in N;(x;). Otherwise lave(N;(x;)) - ave(Ny(Xi4 5 )moas))! < T, and
p is inside a bigger region and the average gray value of N;(x;) U Ny(X(i,5)meas) Y P fOT
some i =0, 1, ..., 7 is used.

A different criterion to determine the presence of an edge is to use lave(N(x) -
ave(Ny(Xis symoqs))! > T and then choose the largest lave(N(x))) - ave(N2(X(i15)moas)) 1O
determine the presence of an edge. Thus the strongest possible edge is chosen, and p is
then given the average of the gray values of the pixels in N,(x;) U p. Otherwise, p is given
the average of the gray values of all pixels inside the current 3 x 3 window. In this thesis,

the last criterion is applied for image smoothing.
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4.2.5.2. Time Complexity for Half Neighborhood Mecthods

The first scheme requires the determination of the half neighborhood N (1)) with
ave(N,(x;)) nearest to the gray value of the pixel that is being processed. For cach half
neighborhood four additions and a division is needed. The nearest gray value can be tound
by determining the smallest absolute difference between the average gray values of the half
neighborhoods and the pixel that is being processed. Hence, locating the proper half
neighborhood will require 8 divisions and 40 additions/subtractions. The number of
operations needed to process each pixel in the image is the same. Therefore, O(k2n?)
operations are needed. Again, the amount of smoothing can vary, depending on the value
of the selected threshoids.

The iast scheme locates the largest difference, lave(N,(x;) - ave(N (g, s ppu9))l and
checks to see if a given threshold is exceeded. In this case, averaging is performed using
the pixels in N(x;). Since ave(Nz(x(,-+5)mod8)) is calculated for each pixel, this scheme will
require a constant number of additional operations per pixel more than the first scheme
when the worst cases are considered. The time complexity is therefore O(k2n?%), but with a

larger constant than in the first scheme {Dav85].

4.2.6. Maximum Homogeneity Smoothing

4.2.6.1 Description of Maximum Homogeneity Smoothing

Instead of using edge information for image smoothing, an alternative approach
examines a set of fixed neighborhoods around a pixel and the average gray value of the
region with the least variability in gray value is given to that pixcl. The motivation is duc to
the degree of confidence that the pixel is in that region.

To find the most homogeneous region around a pixel p, [Nag77] applics pentagonal
and hexagonal masks for smoothing as shown in Fig. 4.3. In Fig. 4.3, a pcntagonal 7" and

a hexagonal X region is shown. The average gray value and gray value variance of cach
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pentagonal or hexagonal region defined by the corresponding mask are calculated and p 1s
then given the average gray value of the region with the lowest variance. With this

smoothing method, no independent regions with false gray levels can arise.

Fig. 4.3. Pentagonal and hexagonal neighborhoods

4.2.6.2. Time Complexity for Maximum Homegeneity Smoothing

For this methed, the mean value and standard deviation should be calculated to
determine the neighborhood with the least gray level variability. The operation of mean and
standard deviation for each of the 8 neighborhoods (hexagonal or pentagonal region) is
needed, for each pixel to be processed. Each mean needs 1 division, and each standard
deviation nceds 7 multiplications (for 7 pixels in each hexagonal or pentagonal region). The
number of operations for each pixel to be processed is 8 x (7 + 1) multiplications/divisions,

thus for the whole resulting image, the time complexity is O(k2n2).

4.2.7. Sclective Neighbor Averaging

4.2.7.1. Description of Selective Neighbor Averaging
An alternative to variable neighborhood averaging is selective neighborhcod
averaging, i.e. instead of using the size of the neighborhood of a pixel f(x, y) to effect the

amount of smoothing, the m pixels with gray levels nearest to f(x, y) in a fixed size
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neighborhood can also be employed [Dav8&5]. Usually the size of the neighborhood is
chosen to be 3 x 3 and m = 2, 4, 6 are commonly used. In particular, when = 2, edges
and lines passing through a 3 x 3 neighborhood are preserved best since the two pixels
adjacent to f(x, y) have the two closest gray values [Dav85]. In this thesis, the selective
neighbor averaging with m = 2 is applied to the expanded images resulting trom Heuristic

Expansion.

4.2.7.2. Time Complexity for Selective Neighbor Averaging

Again, the number of additions involved when m nearest gray level pixels as the
processed pixel are used is mk2n? and the number of divisions is k°n. Before these m
pixels can be selected, however, the pixels in each neighborhood must be sored. The
number of comparisons needed in the worst case when quicksort is used is 32¢ for some ¢
>0,for3x 3 n & .. [How78]. So, the time complexity for this smoothing
method is also O(42n™) 't ..~ stant magnitude of which depends on the choice of m and

the sorting methoa . =, ~lied [Dav85].

4.3. Heuristic Smoothing

4.3.1. Description of Heuristic Smoothing

The algorithm for Heuristic Smoothing aims to remove any jaggics resulting from
edge expansion while preserving the sharpness of edges.

Suppose that the expansion factor in both x and y directions is k. A k < k window
operation! is applied to the expanded image, starting from the upper left corner to the Jower

right corner of the image.

1 When k is cven, a (k+1) x (k+1) window is applicd.
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First, the minimum and maximum gray values inside the window are calculated. If
the difference between the minimum (min) and maximwn (max) gray value is less than a
predefined threshold T, it is assumed that a homogeneous region is detected. Thus only
unweighted averaging is done to the central pixel of the window, using the gray values of
all the pixcls inside the window. Otherwise, the largest homogeneous region inside the
window is obtained, and the average of the gray values of all the pixels inside the largest
homogencous region is calculated, ard the average is then assigned to the central pixel in
the window.

To simplify the calculation complexity cf the largest homogeneous region, the
classification of pixels can be done first. Similar to the criterion used in edge or line
detection, min+(max-min)/2 can be applied for the pixel classification, for which an
assumption is made that the histogram for the window covering the boundary of any two
regions is usually bimodal, since the two regions are assumed to be homogeneous, and
there are considerable gray value difference between them. Thus, min+(max-min)l2
approximates the posiiion of the valley in the histogram, where there are least pixels
belonging to either region, so least errors for classification will occur.

Based on the above, the pixel classification is as follows. Any pixel value is greater
than min+(max-min)/2 is classified to one region, and the other pixels are classified to
another regioa, just as in the edge or line segment detection. This assumes that there are, at
most, two regions inside the window. In comparison, there are assumed to be two kinds of
pixels in the 3 x 3 window used in edge or line detection, i.e. background pixels and edge
or line pixels. This assumption is reasonable, because the size of the window in each
direction applied for smoothing is approximately the same as the expansion factor, so it is

most probable that at most two regions are detected inside the window applied?. There is

2 Suppose that & is the expansion factor in both x and y directions. Then in the expanded image, there are
at most 2 different regions in a k x k patch, to which a pixel of the original image is mapped.
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still some possibility that the window covers the boundaries for more than two regions, but
this case is far less probable than the former, thus it 1s not considered in this method for the
sake of time complexity.

The region with the larger number of pixels is the larger region (inside the window).
The average operation is done over the pixels inside the larger region, and then assigned to
the central pixel in the window.

Heuristic Smoothing is based on a heuristic majority rule: it 1s more hkely and
reasonable that the central pixe! of the window belongs to the larger region, in which there
are more pixels of the same kind in terms of gray value uniformity, as long as both regions
inside the window are homogeneous. Besides, averaging using the pixels of the same
region (selective averaging), is least likely to cause blurring. So it usually has much less
blurring effect than weighted averaging, which does not discriminate between pixels of
different regions.

On the other hand, it is noted that a jaggy resulting from Heuristic Lxpansion usually
causes a sharp edge orientation chaige, as shown in Fig. 4.1. Whenever cach pixel near
where the orientation change occurs is to be processed (as the current central pixel in the
window), it will be assigned the average gray value of the larger region. If the pixel
belongs to the smaller region, as shown in Fig. 4.1a (which is usually the case for smaller
region, because of ihe geometrical feature of a jaggy), it will be merged into the Targer
region, thus the jaggy is greatly eliminated. If the pixel belongs to the larger region, as
shown in Fig. 4.1b, its gray value is averaged with those of all the other pixels in the larger
region, thus it still belongs to the larger region. So it is noted that there is a bias towards the
larger region in smoothing. Furthermore, among all the smoothing mcthods discussed in
this thesis, only Heuristic Smoothing accounts for the expansion factor, i.c. the window
size is determined by the expansion factor, thus the amount of information of image

features which can be held in the window is proportional to the expansion factor, whereas
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none of the other smoothing methods take the expansion factor into account This is why
Heuristic Smoothing has the best smoothing effect, with the least amount of blurring and
the greatest elimination of jaggies, among all the smoothing methods discussed in this

thesis, for images with homogeneous regtons.

(a) central pixel p belongs (b) central pixel p belongs
to smaller (shadowed) region to the larger (white) region

Notes: in (a), p is merged into the larger region

Fig. 4.4. Demonstration of Heuristic Smoothing

4.3.2. Time Complexity for Heuristic Smoothing

Wiih Heuristic Smoothing, the time complexity is O(s?k2n2), where 2 is the size of
the window used for the smoothing. This includes the number of operations for the
calculation of the maximum and minimum values inside the window, 2s%k2n?, and that for

the calculation of the average value, s2%2n2.

4.4. Total Time Complexity of the Algorithm

As discussed earlier, the time complexity for each smoothing method is either
O (k2n?), or O(s°k?n?) (for Heuristic Smoothing only), except for ihe variable
neighborhood averaging, which is difficult to determine, as mentioned in Section 4.2.1.2,

Thus, the total time complexity for the whole algorithm, i.e. Heuristic Expansion and

Smoothing Algorithm, at the worst case, is O((s2k2+k%n?), while that for the algorithm
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introduced in [Atw89] is O(k2n2 + n?#). When the size of the image to be expanded is larpe
relative to the expansion factor £ and the window size s applicd (that is usually true), the
algorithm introduced in this thesis is better than that in [Atw89], with regards o time
complexity. For the interpolation techniques presented in Chapter 2, the time complexity
for each is O(k2n?), while the piecewise Hermite interpolation and bicubic spline
interpolation have much larger constants than bilinear interpolation |Dav85]. So, Heuristic
Expansion and Smoothing Algorithm has the same magnitude of time complexity as the

interpolation techniques.

4.5. Summary

™ thig chapter, several smoothing methods in [Dav85] are first discussed as possible
3 LIOACKLs w- the jaggy elimination. These methods suiter either from image blurring or
unnoticeable jaggy elimination effect. So a part of the new algorithin, called Heurstic
Smoothing is presented and discussed, which has the best smoothing effect for images
with homogeneous regions among all the smoothing methods presented in this thesis

because it greatly eliminates jaggies with the least amount of blurring results.
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Chapter 5

Implementation, Results and
Analysis

5.1. Implementation

The image expansion and smoothing methods discussed in the previous chapters,
including Heuristic Expansion and Smoothing Algorithm, are implemented on an 1S, ie.,
International Imaging System Model 75, an image processing system connected to a Vax
11-780.

Images are digitized as 2-D arrays. The gray level scale is in the range 0 to 255. Short
integers are used for implementation efficiency and storage considerations. Four digitized
images stored in the system are used as test data, representing four different types of
images, as shown in Plate 5.1. Among the four images are: an image of text, called TEXT,
an image of a lady's face, called FIGURE, an image of the moon, called MOON, and an

image taken _rom an aerial photograph of some trees, called BUSH.

5.2. Results and Analysis

In this section, the expansion and smoothing results of the above four images using
the methods presented in the previous chapters are discussed. An analysis is then made of
the results obtained.

The four images are tirst expanded with Heuristic Expansion, and then the expanded
images are smoothed with Heuristic Smoothing and other smoothing methods discussed in

the Tast two chapters respectively, as shown from Plate 5.2 to Plate 5.10. In Plate 5.11 and
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Plate 5.12, the images expanded with bilinear interpolation and pixel replication are also
shown for comparison with all the other results.

In order to achieve the best possible results, the threshold values are carefully chosen
for Heuristic Expansion, Heuristic Smoothing, and the other smoothing methods to which
the values are applicable. The threshold selection are usuaily based on the histograms of the
images to be expanded, especially for Heuristic Expansion, and Heuristic Smoothing, thus
the threshold value is usually different for each image to be expanded. So the threshold
selection is both heuristic and ad hoc.

From the above, it should be no:zd that the solution to image cxpansion by Heuristic
Expansion and Heuristic Smoothing Algorithm, as well as the other smoothing methods in
[Dav85], like 3ll the previous techn:...o~. 1 ad hoc. This conclusion is not only restricted
to this area of image processing [[avh 1. As known, tiiere are three reasons for the lack of
universality in current solutions. First, no single model can be used 1o describe image
enhancement; the actual models used are dependent on the nature of the processes by which
the image was obtained Second, the computational considerations usually require
approximations, e.g. the gray values in digital images are discrete instead of continuous.
Third, there is no universally agreed criteria by which the quality of the processed image
~an be judged, thus it is difficult to find proper numerical measures to indicate that one
processed image is better than the other, with regards to the visual quality. The {ourth
reason is that the expansion and smoothing methods introduced here do not consider the
textures for the sake of time complexity. Only gray value difference is used 1o distinguish
the different regions in the images to be expanded. Thus, the expansion approach yiclds
better virual effccts for images with homogeneous regions {i.c., with less complex
contents). As an example, the expanded result of TEXT has better visual cffects than that of

FIGURE, as shown in Plate 3.2.
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For result analysis, the numerical evaluation measures in [Dav85}, as well as the
human perception, i.c. subjective evaluation are applied to the expanded images, and
comparison between numerical measures and subjective evaluation is made, during the
thesis research.

The numerical measures in [Dav85] are based on some kinds of pixel gray value
difference between the original and expanded images. Because of this, a smaller resulting
measure for an expansion technique should indicate a closer resemblance of the processed
image to the original one, according to the common sense. Thus, for a measure to be
consistent with human visual evaluation, its values for the most of the expansion methods
should be smaller than that for pixel replication. However, it is found that none of the
measures is consistent with the human visual evaluation. Instead, Heuristic Expansion and
Smoothing Algorithm has the best visual effect among all the other methods for TEXT, the
image with homogeneous regions, according to human visual evaluation, but this
conclusion cannot be drawn from the numerical measures. Thus it is concluded that better
visual effect of the processed image does not mean closer resemblance of the expanded
image to the original one with regard to pixel gray value difference.

Assuming, hewever, that each measure is consistent for all expansion methods, it is
possible to compare the performance of an expansion method for different image contents
using cach of the measures, which assumes that a smaller value of the measure indicates the
better performznce of a corresponding expansion method. Based on the above, it is shown
that Heuristic Expansion and Smoothing Algorithm has better ex pansion effect on images
with homogeneous regions, e.g. TEXT, than the images with textures, ¢.g. BUSH.

From the above and the previous work concerned, it is noted that there is no
numerical measure that is consistent with numan visual evaluation to judge the effect of
image expansion. Actually this is a major problem that is closely related to psychology and

needs 10 be solved for performance evaluation of image processing [Dav85]. Thus, the
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human visual evaluation is a very important factor in the quality judgment of image
expansion discussed in this thesis. The numerical measures, however, are still usetul
references for the evaluation on the performance of an expansion method on images of
different natures, as mentioned above.

Based on the above, in the quality judgement of image expansion, new numerical
measures should be developed and applied together with the human visual evaluation, in
order to find an expansion method which can effect the least deviation of the expanded
images irom the original images, for the sake of image fidelity, while good visual effect is
mainiained; these will involve the development of a more suited model for human vision.

This is an interesting topic and it is expected that considerable work can be done for it
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Plate 5.1. The Original Images: FIGURE, MOON, Ti: W' and BUSH
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Plate 5.4. Results of Bilinear Interpolation (Exp. Factor=3,4)
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Plate 5.7. Results of Heuristic Exp. & Directional Smoothing(Exp. Factor=3,4)
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Plate 5.8. Heuristic Expansion and Half Neighborhood Method(Exp.

Factor=3,4)
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Plate 5.10. Heuristic Exp. and Selective Neighbor Smoothing(Exp. Factor=3,4)
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Plate 5.11. Results of Pixel Replication(Exp. Factor=3,4)
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Chapter 6

Conclusion

6.1. Overview of the Thesis

The thesis investigates the employment of a new heuristic method for image
expansion, called Heuristic Expansion, and a new heuristic smoothing method, called
Heuristic Smoothing, to yield visually satisfactory image expansion. Heuristic Expansion
is composed of four techniques, bilinear interpolation, Edge Line Differentiation,
Heuristic Edge Expansion, and Heuristic Line Expansion. The above two methods
comprise a new image expansion algorithm, called Heuristic Expansion and Smoothing

Algorithm.

6.2. Summary

The Heuristic Expansion and Smoothing Algorithm presented in this thesis yields
visually satisfactory results, compared with those obtained with previous techniques, such
as the interpolation methods in [Dav85] and the heuristic edge following method in
[Atw89]. The edge blurring effect is eliminated by Heuristic Expansion, and Heuristic
Smoothing reduces most of jaggies caused by Heuristic Expansion, while causing the least
amount of blurring, compared with the other smoothing methods. The total time co.nplexity
for this algorithm is better than that for the method in | Atw89], but a littic - vorse than that
for bilinear interpolation in [Dav85], in that the time complexity has a larger constant than

that of bilinear interpolation.
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6.3. Possible Applications

The new algorithm discussed in this thesis provides a good approach for faster and
better high resolution display of low resolution image data. And it also provides gooc
support for efficient image storage and transmission. So the prospects for the application of

this method is promising.

6.%4. Future Research

It is obvious that considerable wirk is still needed to get more visually acceptable
expanded images, and yet faster display to accommodate more applications.
Here are some possible future research directions:

1. The pursuit of a more proper model for human vision, which will benefit the

expansion methods.

2. Better interpolation methods or better approximations for the available

interpolation methods.

3. Adaptive thresholding in different parts of an image to be expanded.

4. Partition of the general expansion problem into more specific sub-classes, €.g.

binary images, so that more effective heuristics can be employed.

5. With the availability of cheaper hardware and the parallel nature of the image

expansion methods, parallel processing adaptations of these methods should be

investigated to reduce the time complexity, in order to make their real-time

applications feasible.
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