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Abstract

Electrocardiograms (ECGs) are a valuable and easily-collected measurement of

heart health, reflecting its morphology (R peak, QRS duration,..) and rhythm

(sequence of multiple heartbeats). With the advance of machine learning,

many studies utilize electrocardiogram (ECG) signals for various purposes,

such as detecting ECG abnormalities, predicting patient mortality and other

supervised tasks. In this thesis, we used the Alberta Hospital ECG Dataset

consisting of more than 1.6 million ECG collected from 244,077 patients, for

two objectives: (1) To produce a generative model, which can then be used

to generate synthetic ECGs for a specific abnormality, which can augment

a dataset of real ECGs, in order to improve the performance of a machine

learned model for ECG abnormality classification. (2) To explore and com-

pare different approaches for extracting high-level features from ECG signals

and determine which approach is most effective in estimating patient-specific

survival curves for accurately predicting time-to-death.

For the first objective, we used this ECG dataset, where each 12-lead ECG is

labeled with one of 15 diagnoses abnormalities, to train an unsupervised beta

variational AutoEncoder (β-VAE) model, that could generate synthetic 12-

lead ECG signals time series, with each specified abnormalities. We then used

this generative model to generate ECGs with the abnormality of ST-segment

Elevated (STE). These generated ECGs were then added to the public dataset

from the China Physiological Signal Challenge 2018, which contained 6,877 real

ECGs. This dataset included healthy controls (sinus rhythm) and 8 different
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abnormalities. We found that a learner trained on this extended dataset per-

formed better than one trained on only the original data on the targeted STE

label but also enhanced its performance for the classification of 4 other labels.

For the second objective, we explored ways to obtain useful high-level features

from ECG traces through various approaches, including supervised with clin-

ical diagnoses, unsupervised approaches, and knowledge-based ECG features.

Using these ECG features, along with age and sex, we trained models to es-

timate patient-specific individual survival distributions (ISD) to predict each

patient’s time-to-death. The results showed that ECG features produced by

supervised learning approaches led to models that were superior in estimating

patient-specific time until death than ECG features obtained from unsuper-

vised and knowledge-based methods. In fact, the supervised ECG features

required fewer training instances (as few as 500) to learn ISD models that

performed better than models that only used age and sex. On the other hand,

unsupervised and knowledge-based ECG features required over 5000 training

samples to produce ISD models that performed better than ones using only age

and sex. These findings may assist researchers in selecting the most appropri-

ate approach for extracting high-level features from ECG signals to estimate

patient-specific ISD curves.
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Preface

The research conducted over the course of my thesis has directly led to two

scholarly articles. The following are publications closely related to this work:

Chapter 4 is derived from our work titled ’Generative Data by β-Variational

Autoencoders Help Build Stronger Classifiers: ECG Use Case.’ This research

was not only orally presented at the 19th International Symposium on Medical

Information Processing and Analysis (SIPAIM) in 2023, but also published in

the symposium’s proceedings. The full citation of the publication is Nademi,

Yousef, et al. ”Generative Data by -Variational Autoencoders Help Build

Stronger Classifiers: ECG Use Case.” 2023 19th International Symposium on

Medical Information Processing and Analysis (SIPAIM). IEEE, 2023.

Chapter 5 is based on the paper ’Supervised Electrocardiogram (ECG)

Features Outperform Knowledge-Based and Unsupervised Features in Indi-

vidualized Survival Prediction.’ This work was accepted for poster presenta-

tion in the Symposium on Machine Learning for Health (ML4H) in 2023. It

was published in the symposium’s proceedings, highlighting the importance

and relevance of our research in this area. The full citation of the published

work is Nademi, Yousef, et al. ”Supervised Electrocardiogram (ECG) Features

Outperform Knowledge-based And Unsupervised Features In Individualized

Survival Prediction.” Machine Learning for Health (ML4H). PMLR, 2023.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are a major cause of death globally, and the

likelihood of developing a CVD increases with age [11]. Early detection of

CVDs is important, as it can help patients to manage their condition effec-

tively and increase their lifespan. One of the main tools that cardiologists

use to identify CVDs is electrocardiogram (ECG) measurements. ECGs mea-

sure the electrical activity of the heart, which can be analyzed to assess heart

health, as it provides data on both the morphology (heartbeat) and the rhythm

(sequence of multiple heartbeats). The advent of portable and wearable ECG

devices, such as smartwatches, has significantly increased the volume of ECG

data, underscoring the need for effective and efficient ECG data analysis. [21]

ECG signals can vary between patients who have the same abnormalities,

which can make it challenging to diagnose cardiovascular conditions accu-

rately [6]. In addition to inter-patient variability, some ECG abnormalities

are temporal, which means they may not appear in every heartbeat. For ex-

ample, Atrial Fibrillation, a common heart rhythm disorder, may not display

its morphological characteristics in every heartbeat of an ECG. Identifying

such abnormalities requires long-term monitoring of the patient’s heart [55].

The continuous recording of the patient’s ECG includes multiple seconds of

data, consisting of multiple beats. This extended observation period allows for

a comprehensive analysis of the heart’s activity. To gain a thorough under-

standing of the patient’s heart health, the standard procedure involves using
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12 leads. Each lead provides valuable insight into the heart’s condition from

a different angle, enhancing the accuracy and effectiveness of the diagnostic

process. This is because certain abnormalities may only show their character-

istics in specific leads of the 12-lead ECG [6], [33]. Despite the use of 12 leads,

diagnosing ECG abnormalities remains a challenging task due to inter-patient

variability and temporal changes in the signals, and now the expertise of an

experienced cardiologist is required to accurately read and interpret ECG sig-

nals.

In recent years, the advancement of computational power and machine learn-

ing algorithms has led many researchers to explore their potential applications

in the medical field, particularly in the areas of diagnosis and prognosis. To

this end, two main categories of machine learning approaches have been used:

supervised and unsupervised methods. Supervised learning involves training a

model on the labeled data. Unsupervised learning, on the other hand, involves

training a model on the unlabeled data. Our group has previously developed a

diagnosis model for 15 different cardiovascular diseases by applying an end-to-

end supervised deep learning (DL) model to 12-lead ECG signals. The model

achieved a Area Under the Receiver Operating Characteristics (AUROC) per-

formance of approximately 80% for 12 of the 15 CVD labels [unpublished

data 1]. One major drawback of deep learning models is their lack of in-

terpretability, making it difficult to understand how the model is making its

decisions. Some researchers have attempted to address this by using a two-

step process. Firstly, they use unsupervised methods, such as variational au-

toencoders (VAE), to encode ECG signals into lower-dimensional embeddings.

Secondly, they use these embeddings for downstream tasks such as multi-label

classification of ECG abnormalities [24], [31]. Unsupervised approach, which

utilizes unsupervised methods like Beta VAE (β-VAE) to encode ECG signals

into lower-dimensional embeddings, provides more explainable results com-

pared to deep learning approaches (See discussion in Section 4.4.1). In these

studies, researchers have used β-VAE to encode either 1-lead ECG signals or

1This paper has been submitted to the ’npj Digital Medicine’ journal and is currently
under review.
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1 beat of 12-lead ECG signals. Additionally, β-VAE models have the added

advantage of being used for data generation, and these synthetic data can be

used for data augmentation.

Bridging the gap between the need for interpretable models and the avail-

ability of sufficiently diverse training data, a notable advancement in ECG

analysis is the development of algorithms capable of generating synthetic

ECGs. Generative algorithms, such as Generative Adversarial Networks (GANs),

have been utilized to create these synthetic ECG signals. These synthetic sig-

nals offer multiple advantages: they augment real datasets by enriching them,

thus achieving a better balance between normal and abnormal cases in the

training data. Also, synthetic ECGs circumvent the privacy and regulatory

constraints often associated with the use of real ECG data [4]. This innovation

is particularly critical in light of the prevalent issue of class imbalance in ECG

datasets, where normal signals typically outnumber abnormal cases. There-

fore, the generation of synthetic ECG signals not only addresses the challenges

in machine learning model training but also paves new pathways for advancing

ECG analysis methodologies.

Survival prediction models aim to estimate the time until a specific event

occurs, such as hospital admission, death, or onset of a disease. These models

can be binary (e.g., alive or dead after a certain time) or probabilistic. In ad-

dition, the model can provide a single estimate, or a set of estimates, one for

each of several time points. For example, the model might provide estimates

of survival probabilities at 1 month, 3 months, and 5 months after diagnosis.

Haidar et al. [17] provide a comprehensive overview of survival distribution

models, including individual survival distributions (ISDs) and also summarize

various methods to evaluate such models. Unlike traditional regression ap-

proaches, it is challenging to learn survival prediction models as the dataset

includes right censored instances which provides only a lower bound of the

time. For instance, if the study period is 5 years, but a patient leaves the

study after 3 years or is still alive at the end of the study, their exact survival

time remains unknown. He/she could live just a day or several years beyond

the study period, but this data is not captured, resulting in a right-censored
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instance. ISD models, which incorporate patient-specific characteristics, are

more useful for decision-making compared to survival prediction models that

predict survival at a single time point (e.g., 1 year).

ECG signals carry information about the health of a patient’s heart that can

be used to estimate patient-specific ISD curves for different events of interest.

For example, in the case of cardiac death as the event of interest, analyzing

ISD curves might reveal a shorter expected survival time for a certain patient.

This insight could prompt consideration of more aggressive treatment or med-

ication strategies for this patient. Such tailored interventions, based on the

anticipated survival time, might potentially result in a lower overall mortality

rate. One approach to estimating patient-specific ISD curves for any event of

interest using ECG signals is to first obtain embeddings/features from ECG

signals. There are various approaches that can be used to extract these ECG

features:

• Supervised model: A supervised model for feature extraction can be a vi-

able approach in extracting ECG features. We can leverage a pre-trained

neural network, which has already learned to classify ECG signals for a

specific task such as multi-label classification, for a different downstream

task.

• Unsupervised models: These unsupervised models (i.e. AEs, VAEs) can

be used to extract features from ECG signals. In these models, the ECG

signal is first encoded into a low-dimensional representation, and then

this representation is used to estimate patient-specific ISD.

• Knowledge-based ECG features such as heart rate variability, QRS du-

ration, QT interval, and others can be extracted during ECG collection;

they can then be used as ECG features for other supervised tasks.

1.2 Contributions of the Thesis

My contributions to this thesis include:
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1. We developed a β-VAE model to generate synthetic 12-lead ECG signals

with specific abnormalities. This advancement facilitates the augmenta-

tion of real, labeled ECG datasets, particularly for minority labels. See

Chapter 4

2. We demonstrate the value of synthetic ECGs, generated by the β-VAE

model, in enhancing the performance of classifiers for ECG abnormality

detection. This finding underscores the significance of synthetic data in

training more robust diagnostic models. Refer to Chapter 4.

3. We leveraged a substantial dataset consisting of over 1.6 million 12-lead

ECGs from 244,077 patients. This extensive dataset provides a solid

foundation for analyzing and comparing the efficacy of various feature

extraction methods.

4. We found that supervised ECG feature extraction methods, especially

those utilizing 1414 ICD-10 codes, yield more accurate ISD predictions

than unsupervised or knowledge-based methods. This discovery is crucial

in guiding future research and practice towards more effective ECG-

based prognostic tools. See Chapter 5.

5. We established that supervised ECG features require a significantly smaller

training sample size to surpass the performance of the baseline model,

which only uses age and sex for estimating ISD for survival prediction.

This efficiency in training could have significant implications for the prac-

tical application of ISD models. See Chapter 5.

6. The findings from this research pave the way for future studies to ex-

plore and develop advanced ECG feature extraction methods, partic-

ularly those based on supervised or semi-unsupervised learning. This

could lead to more accurate and efficient tools for ISD estimation using

ECG data.
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1.3 Thesis Outline

Chapter 2 discusses ECG measurements and reviews the architecture of the

β-VAE model. Chapter 3 outlines the datasets, models, the procedure for gen-

erating data using the trained temporal convolutional network (TCN)-based

β-VAE, and evaluation metrics used in the study. Chapter 4 discusses the

experiments involving data generation using a public dataset. Chapter 5 com-

pares the performance of models developed using various ECG features, ob-

tained from different models, to estimate ISDs for the prediction of time until

death. Chapter 6 provides a summary of the key findings of the thesis and

outlines potential directions for future research.
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Chapter 2

Background And Related
Literature

This chapter offers essential introductory details for the next chapters – Section

2.1 discusses ECG measurements, then Section 2.2 describes the autoencoder

(AE) and a variation of AE known as variational AE (VAE).

2.1 ECG Measurements

The ECG collection involves the placement of electrodes on a person’s chest,

arms, and legs to detect the heart’s electrical activity from various angles,

typically using 12 leads (Figure 2.1). The ECG exam captures the intensity

and timing of electrical impulses as they travel through the heart, which can

help investigate symptoms related to heart issues [18].

The anatomy of a heart, including its chambers, is shown in Figure 2.2.

The heart consists of four chambers: two upper chambers called atria and two

lower chambers called ventricles. Blood flows from the body into the right

atrium, to the right ventricle, then to the lungs; oxygenated blood returns to

the left atrium, moves into the left ventricle, and is then pumped throughout

the body. This requires the heart to contract and relax in a coordinated

cycle, corresponding to the P wave for atrial contraction, the QRS complex

for ventricular contraction, and the T wave for the ventricles’ return to a

resting state.

Figure 2.3 shows the cycles of an ECG, which consist of various waves,
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Figure 2.1: The electrodes and the corresponding angles that are linked to
each ECG lead. We directly obtained the figure from [1].

here P, Q, R, S, T. The shape, location, and duration of each wave serves

as an indicator of the heart’s well-being [18]. The P wave is a slight drop in

voltage from the baseline that occurs when the atria depolarize before con-

tracting. The QRS complex indicates the coordinated activation of both the

right and left ventricles. However, the majority of the waveform comes from

the larger muscles in the left ventricle [18]. After the QRS complex, the T

wave appears and signifies ventricular repolarization, which is the passage of

electrical current sequentially within the heart muscle, followed by resting po-

larized state (no electrical activity). This process readies the cardiac muscle

for the upcoming ECG cycle [6]. For further explanation of these terms, refer

to [36].

The device used for ECG collection records signal information from the

patient. Then, using those signals, the measurement device algorithm (in our

case, the Philips DXL ECG Algorithm) provides some summary statistics of

12-lead ECGs. We obtained our ECG data using Philips IntelliSpace systems,

which utilizes knowledge-based algorithms to generate ECG measurements

commonly employed for clinical interpretation. Table 2.1 summarizes these

features along with their descriptions. As examples and based on all 12-leads,
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Table 2.1: Description of Philips’ ECG measurements and their definition.
Feature Definition Unit Short version
Atrialrate Atrial rate beats per minute Atrial Rate
Pdur P wave duration Milliseconds P duration
RRint RR interval Milliseconds RR Interval
Qonset Q wave onset Milivolts Q onset
QTcf Fridericia Rate-

Corrected QT
interval

Milliseconds Fridericia QTc

Heartrate Heart Rate Milliseconds HR
PRint PR interval Milliseconds PR interval
QRSdur QRS duration Milliseconds QRS duration
QTint QT interval Milliseconds QT interval
QTcb Bazett’s Rate-

Corrected QT
interval

Milliseconds Bazett’s QTc

Pfrontaxis Frontal P axis Degrees Frontal P
i40frontaxis Frontal QRS

axis in Initial 40
ms

Degrees Frontal
i40msQRS

t40frontaxis Frontal QRS
axis in Terminal
40 ms

Degrees Frontal
t40msQRS

Qrsfrontaxis Frontal QRS
axis

Degrees Frontal QRS

Stfrontaxis Frontal ST wave
axis

Degrees Frontal ST

Tfrontaxis Frontal T axis Degrees Frontal T
Phorizaxis Horizontal P

axis
Degrees Horizontal P

i40horizaxis Horizontal QRS
axis in Initial 40
ms

Degrees Horizontal
i40msQRS

t40horizaxis Horizontal QRS
axis in Terminal
40 ms

Degrees Horizontal
t40msQRS

Qrshorizaxis Horizontal QRS
axis

Degrees Horizontal QRS

Sthorizaxis Horizontal ST
wave axis

Degrees Horizontal ST

Thorizaxis Horizontal T
axis

Degrees Horizontal T

tonset T wave onset Milivolts T onset
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Figure 2.2: The anatomy of the heart consists of four chambers: two upper
chambers called atria and two lower chambers called ventricles. Image source
from [2]. Blood flows from the body into the right atrium, to the right ventricle,
then to the lungs; oxygenated blood returns to the left atrium, moves into the
left ventricle, and is then pumped throughout the body. This requires the
heart to contract and relax in a coordinated cycle, corresponding to the P
wave for atrial contraction, the QRS complex for ventricular contraction, and
the T wave for the ventricles’ return to a resting state.

Pdur is the duration of P wave in the ECG cycles, and RRint is the aver-

age R-R distance between two subsequent beats for an ECG signal. For more

information on the definition of each feature, please refer to [3]. Also, there

are some publicly available libraries that can extract these statistics for each

individual beat of the signal, including Neurokit [35] and TSfresh [9] libraries.

The development of machine learning technology has led many researchers

to use electrocardiogram (ECG) signals for various purposes. They have been

used to detect ECG abnormalities [45], predict mortality [52], and identify

individuals based on their ECG signals [42].

We consider three approaches for this task of using a patient’s ECG signal
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Figure 2.3: This schematic illustrates the waves of an ECG signal and the
cardiac cycle of the heart, as detailed in the steps below. Permission to use
this image has been granted by the publisher of Merone et al. [36]. 1) Start of
the ECG Cycle: This initial stage does not correspond to any specific wave
but signifies the beginning of the ECG cycle. 2) P wave: Reflecting atrial
activation, the P wave, due to relatively weak atrial systole, displays a small
size, with an amplitude not exceeding 0.4 mV and a duration of 60 to 120
ms. 3) PQ Stretch: Characterized by its flat nature, this segment marks the
time from atrial activation to ventricular activation, typically lasting between
12 and 20 ms. 4) QRS Complex: Comprising Q, R, and S waves, this
complex, varying in duration from 60 to 90 ms, provides insights into various
heart functions. 5) ST Stretch: Extending from the end of the S wave to
the start of the T wave, this segment, which generally lasts between 230 to
460 ms, corresponds to the ventricles’ contraction and relaxation phase. 6) T
wave: Indicating ventricular repolarization, this wave occurs as the ventricles
complete activation and prepare for the next contraction, with a duration
between 100 and 250 ms.

.

to predict the multi-label classification of cardiovascular diagnoses: (1) feed the

knowledge-based features – here those provided by Philips Machine – directly

to the downstream task (classification, mortality,..); (2) using unsupervised
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approaches such as autoencoder (AE) or variational autoencoder (VAE) to

encode ECG signals into the lower-dimensional features/embeddings and then

use this encoding as input for the supervised task, and (3) utilizing end-to-end

machine learning approaches using raw ECG signal for supervised tasks.

Each of these approaches has its own advantages and disadvantages. Mod-

els trained on these knowledge-based ECG features are generally less accurate

than supervised or unsupervised methods, but the models are easier to inter-

pret as features have clinical physical meaning [47]. Deep learning methods

are shown to achieve superior performance, specifically in diagnosing ECG

abnormalities, when applied to large datasets of voltage-time series from 12-

lead ECG traces [45]. In contrast, shallow learning algorithms like XGBoost

are more suitable for analyzing knowledge-based ECG features. These models

provide interpretable results and require less training time for model’s train-

ing. By ’interpretable results,’ we mean that methods like Shapley Additive

Explanations (SHAP) [58] can be used to shed insight on rational behind a

model’s predictions. It is important to note, however, that even though these

shallow learning models require less time for training, their performance may

not necessarily exceed that of deep learning methods [47].

2.2 Autoencoders

The goal of the unsupervised AE method is to encode input data into a lower

dimension/embedding with minimal information loss, in that the input data

should be reconstructed using these embeddings. AEs consist of three main

components: the encoder, which compresses input data, the Bottleneck, which

forms the lower embeddings/features, and the decoder, which reconstructs the

original input data from the lower embeddings (Figure 2.4).The encoder and

decoder components of AEs can be constructed using fully connected or convo-

lutional layers. Convolutional layers, specifically, are designed to process data

with a grid-like topology, such as images. They apply a convolution operation

to the input, passing the result to the next layer. Mathematically, given the

input data x ∈ Rr, the encoder aims to learn the function f(x) that encodes
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important information in a lower representation h ∈ Rk. The objective of the

decoder function g(h) is to reconstruct the input data from the embedding

h, such that g(h) ≈ x. During training, the AE model tries to minimize the

dissimilarity between the original input data x and the reconstructed data

x′ = g(h(x)). For regression tasks, a commonly used loss function is the mean

squared error (MSE),

MSE =
1

n

n∑
i=1

(x′
i − xi)

2 (2.1)

where n is the number of data points, xi and x′
i are input data and recon-

structed data, respectively. Following the introduction of AE, several modified

versions of AE have been developed, including but not limited to: Variational

AE (VAEs), Beta-VAEs (β-VAE) [20], and Sparse AE [49]. These methods

represent a spectrum of AE architectures, each with unique characteristics and

applications. VAEs and their extension, β-VAE, fall under generative models

that are suitable for learning latent representations. β-VAEs introduce a tun-

able hyperparameter β to the VAE framework, which helps in disentangling

the latent representations. Here, ”disentangling the latent representations”

means the model’s capability to separate distinct features in the latent space.

This separation allows the model to learn representations where different di-

mensions in the latent space correspond to different attributes of the input

data. Sparse AE introduces an L1 regularization to the loss function to learn

a limited and more distinctive set of features by activating only a small num-

ber of neurons in the hidden layers. Sparse AEs are useful for feature selection

and anomaly detection.

2.3 Variational Autoencoders

Unlike traditional AE, VAEs have the ability to generate data that is similar to

the input data used for its training. This capability is due to the probabilistic

nature of VAEs, which allows them to learn a probability distribution over

the input data, enabling them to generate new samples that follow the same

distribution. Here, we will provide a brief overview of our approach here. For
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Figure 2.4: Schematic representation of AE.

a more detailed explanation of the methodology, please refer to the work by

Kingma et al. [29].

VAE is a type of directed graphical model with continuous latent variables.

The model consists of a generative component, represented by pθ(z)pθ(x|z),

and a variational approximation, denoted by qϕ(z|x), which is an approximate

posterior distribution of the latent variables given the observed data. Here,

pθ(z) is the prior distribution over the latent variables z, and pθ(x|z) is the

conditional distribution of the observed data x given the latent variables. The

encoder of VAE learns the variational approximation component, and the de-

coder learns the generative component. Now, consider that we have a data

set D = {x(i)}Ni=1 that consists of N independent and identically distributed

(i.i.d) samples of a variable x, which could be either continuous or discrete.

The samples are assumed to be generated through a two-step random process

involving an unobserved continuous random variable z, where:

• First, a value z(i) is generated from a prior distribution pθ∗(z).
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• Second, a value of x(i) is generated from a conditional distribution of

pθ∗(x|z)

Both the prior distribution pθ∗(z) and the likelihood pθ∗(x|z) are assumed to

be belong to parametric families of distributions of pθ(z) and pθ(x|z). qϕ(z|x)

is refer to as probabilistic encoder, where given a data point x, the encoder

outputs a distribution (often Gaussian) over the possible latent variable z,

that could have generated x. The pθ(x|z) is refer to as a probabilistic decoder,

where given a latent variable z, the decoder outputs a a distribution over the

possible corresponding values of x. The overall probability of observing the

entire dataset is calculated as the product of the probabilities of each individual

data point in that dataset

log pθ(x(1), . . . , x(N)) =
N∑
i=1

log pθ(x(i)) (2.2)

which can each be rewritten as:

log pθ(x(i)) = DKL(qϕ(z|x(i))||pθ(z|x(i))) + L(θ, ϕ;x(i)) (2.3)

where the first term, DKL(qϕ(z|x(i))||pθ(z|x(i))), is KL divergence. It mea-

sures the divergence between the approximate posterior distribution qϕ(z|x(i))

and the true posterior distribution pθ(z|x(i)). This term quantifies how well

the variational approximation, parameterized by ϕ is performing in estimating

the true distribution, parameterized by θ. The second term, L(θ, ϕ;x(i)), is

called the (variational) lower bound on the marginal likelihood of data point

i, and can be written as follows:

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x(i)|z)] (2.4)

where the first term represents the negative KL divergence between the ap-

proximate posterior qϕ(z|x(i)) and the prior distribution pθ(z). Minimizing this

divergence is essential for ensuring that the approximate posterior is as close as

possible to the prior. The second term, Eqϕ(z|x(i))[log pθ(x(i)|z)], is the expected

log-likelihood under the approximate posterior distribution. It quantifies the

expected fit of the model to the data point xi given the latent variable z. The

objective is to minimize this lower bound.
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2.4 Beta-Variational Autoencoders (Beta-VAEs)

β-VAE [20] is a special case of VAE that adds the hyperparameter of β to

the loss function (divergence loss term) to learn disentangled features. The

adjustable parameters of β-VAE are the number of features and β. This mod-

ification enhances the model’s ability to learn disentangled representations by

adjusting the balance between the reconstruction of input data and the regu-

larization of the latent space, enforced by the KL divergence.

2.4.1 Loss Function

The loss function for a β-VAE is formulated as:

L(θ, ϕ;x(i)) = −βDKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[log pθ(x(i)|z)] (2.5)

Here, the first term represents the reconstruction loss, while the second term

is the β-weighted KL divergence. This divergence quantifies the discrepancy

between the encoder’s distribution and the prior distribution of latent vari-

ables.
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Chapter 3

Method and Evaluation Metrics

This chapter will first discuss the the ECG datasets and the methodology used

for future chapters. We will also explain the preprocessing steps to prepare

the data for our tasks (unsupervised learning of ECG signals and survival pre-

diction). Second, we will explain the different architectures that we will use

for training the unsupervised β-VAE algorithms. Third, we will discuss the

Neural Multi-task Logistic Regression (N-MTLR) [12] and Cox-Proportional

Hazard (COX-PH) [27] models that we will use to estimate patient-specific in-

dividual survival distributions (ISD). Then, we will present the process of ECG

data generation using the learned β-VAE algorithm. Finally, we will explain

various evaluation metrics that we will use for the multilabel classification of

ECG abnormalities and ISD models.

3.1 Datasets

3.1.1 Alberta ECG Dataset

We will use the Alberta Hospital Dataset, which consisted of 12-lead ECG

signals collected from 244,077 patients using a Philips IntelliSpace ECG ma-

chine with a sampling frequency of 500 Hz for a duration of 10 seconds. Each

ECG is labeled with zero or more of 15 possible labels: Non-ST-Elevation My-

ocardial Infarction (NSTEMI), ST-elevation myocardial infarction (STEMI),

Heart Failure (HF), Unstable Angina, Atrial Fibrillation (Afib), Ventricular

Tachycardia, Cardiac Arrest, Supraventricular Tachycardia, Atrioventricular

Block, Pulmonary Embolism, Aortic Stenosis, Pulmonary Hypertension, Hy-
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pertrophic Cardiomyopathy, Mitral Valve Prolapse, and Mitral Valve Stenosis.

The machine algorithms detected and removed ECGs with poor quality such

as muscle artifacts, AC noise, baseline wander, QRS clipping, and leads-off

during pre-processing [3]. For a more detailed exploration of the Alberta ECG

dataset and its comprehensive nature, the reader is referred to Sun’s thesis [50].

For supervised approaches, no further preprocessing is required. However,

for unsupervised approaches, more preprocessing steps are required. Since we

are using mean squared error (MSE), these unnormalized signals can lead to

significant loss values and might disturb the learning process. So, for all unsu-

pervised learning algorithms used here, we include filtering out baseline noise

with a Butterworth filter (provided by Neurokit library [35]) and normalizing

the ECG signals over time using the z-score normalization method. We also

used common measurements of ECG provided by the Philips IntelliSpace ECG

system (see Table 2.1) for the survival prediction task. To train the models,

we split the dataset into a development set (964,741 ECG signals from 146,466

patients) and a test set (640,527 ECG signals from 97,631 patients – disjoint

from the training patients), using 60% and 40% of the data, respectively.

The Health Research Ethics Board at the University of Alberta approved

the use of ECG data in this study

3.1.2 China Physiological Signal Challenge 2018 Dataset

The dataset (CPSC 2018) is provided by the challenge competition; see Liu

et al. [32] for the demographic details and a description of each label. The

dataset consists of 12-lead ECGs collected from 11 hospitals using the fre-

quency of 500 Hz, each with one or more of 9 possible labels: Sinus Rhythm

(SR), Atrial Fibrillation (AFIB), First-degree Atrioventricular Block (IAVB),

Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Pre-

mature Atrial Contraction (PAC), Premature Ventricular Contraction (PVC),

ST-segment Depression (STD), and ST-segment Elevated (STE). The dataset

was previously divided into the training set (6877 instances (female: 3178;

male: 3699)) and test set (2954 instances (female: 1416; male: 1538)) by the

competition, where the test set, which is still not public (both signals and their
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labels), was used to rank participants. Table 3.1 shows the number of training

set recordings for each label. The majority of the ECG training data has only

1 label (6401 samples), while 477 samples have multiple abnormalities in their

ECGs.

Here, we divided the the training CPSC dataset into 80% training (5503

ECGs), 10% validation (687 ECGs), and 10% test set (687 ECGs). The test

set was fixed for all experiments (with and without data augmentation).

3.2 Learning Algorithms

This section discusses the learning algorithms, including both supervised and

unsupervised learning approaches, that are mentioned in the next chapters.

Chapter 4 then uses an unsupervised temporal convolutional network (TCN)-

based β-VAE algorithm to learn the characteristics of the Alberta ECG dataset.

Our model then uses the learned algorithm to generate new ECG signals from

this dataset, to augment the training dataset of CPSC 2018 (which is fed to a

supervised learning algorithm for multi-label classification of ECG abnormal-

ities.). Chapter 5 describes several supervised and unsupervised algorithms

to extract features from ECG signals (Figure 3.1). Cox-Proportional Hazard

(COX-PH) and Neural Multi-Task Logistic Regression (N-MTLR) algorithms

then uses these ECG features to estimate patient-specific ISD. We then use

these ISDs to estimate the time until death for each patient.

3.2.1 Unsupervised Models

TCN Based β-VAE

In Chapter 4, we will train a generative TCN-based β-VAE model in an un-

sueprvised manner using Alberta ECG dataset. Then, we will use this trained

generative model to produce synthetic ECGs with specific diagnosis. In Chap-

ter 5, we will use the extracted features obtained from this trained TCN-based

β-VAE model to estimate patient-specific ISD (Figure 3.1-d). Here, For sim-

plicity, we call this approach TCN-β-VAE. We used β-VAE architecture and

code provided by van de Leur et al. [31], but modified it to train and recon-
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Table 3.1: Total number of ECGs in the training set for various labels. The
column ”Total # of Recordings” indicates the total occurrences of each label.
”Single Label Occurrence” shows how many ECGs have the label with no
other labels. ”With Exactly Two Labels” shows the count of ECGs where the
label is present with exactly one other label, denoted as OtherLabel (Number),
where Number is the count of ECGs with this specific pair.
Challenge
Set

Label Total
# of
Record-
ings

Single
Label Oc-
currence

With Exactly Two
Labels

Training

SR 918 918 0
AFIB 1098 976 RBBB(86), PVC(4),

LBBB(13), STE(1),
PAC(2), STD(15)

1-AVB 704 686 RBBB(5), PVC(2),
LBBB(4), STE(2),
PAC(2), STD(3)

LBBB 207 179 PVC(3), AFIB(13),
1-AVB(4), STE(2),
PAC(5)

RBBB 1695 1533 PVC(26), AFIB(86),
1-AVB(5), STE(8),
PAC(26), STD(10)

PAC 574 533 PVC(1), RBBB(26),
LBBB(5), AFIB(2),
1-AVB(3), STE(1),
STD(3)

PVC 653 607 RBBB(25), LBBB(3),
AFIB(4), 1-AVB(3),
STE(1), STD(9),
PAC(1)

STD 826 784 RBBB(10), PVC(9),
AFIB(15), 1-AVB(3),
STE(1), PAC(3)

STE 202 185 RBBB(8), PVC(1),
AFIB(1), RBBB(2),
1-AVB(2), PAC(1),
STD(1)

Total 6877 6401

struct 12-lead ECG traces of Alberta Dataset (see Figure 3.2). The adjustable

parameters of β-VAE are the number of features and β, which we set to 32 and

8, respectively. These values were chosen the same as van de Leur et al. [31]
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Figure 3.1: a-e) ECG feature extraction methods used to train ISD models.
f) ECG features are utilized to train ISD models. g) In the ISD inference step,
we use the trained ISD model to estimate the ISD for a new patient, taking
into account his/her ECG features along with age and sex.

study, which performed a grid search to find these values; see that paper for the

details of the model’s architecture. In short, the temporal convolutional neural

networks (TCN) [30] were used as layers of the encoder and the decoder. TCN

represent a specific convolutional technique applied to temporal data, where it

requires that the model maintain the data’s temporal order. This means that
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the model’s prediction estimated at the next time step, cannot be influenced

by any of the future time steps. To ensure disentanglement, the loss function

put more weight ( parameter of β ) on the KL divergence term. The multivari-

ate Gaussian distribution is selected as the prior for the latent variables. We

added SoftPlus activation function [65] to the linear layer that is responsible

for learning the variances, along with a small non-negative value=0.001, to

ensure that the standard deviations remain positive and to prevent potential

numerical instability that could arise if the value approaches zero. The encoder

using a convolutional deep neural network encodes the input ECG signal into

32 pairs [ means, variances]. The building blocks of the encoder is causal con-

volution block composed of causal convolutions [30], weight normalizations,

leaky Rectified Linear Units (ReLUs) [59], and residual connections [19]. As

explained by Van Den Oord et al. [40], the residual connection is only utilized

when there is a change in the number of input channels/filters. The dilation

parameter utilized in the causal convolutional layer is doubled in each sub-

sequent causal convolution block. Weight Normalizations is a technique that

normalizes the weights in neural networks, which can speed up training and

lead to faster convergence. During the learning process (Figure 3.3), we fed

12-lead ECGs into the encoder section of β-VAE. Each ECG input consists of

12 leads, with each lead comprising 4096 32-bit floating point samples, repre-

senting 10 seconds of data per lead. The ECG data were stored and processed

to maintain the correct order of the ECG leads. Thus, the input to the model

has the dimensions of batch size × 12 × 4096. The encoder includes 7 serial

layers, as indicated by the ’7x’ notation in Figure 3.2. After the encoding

process, the signals are encoded into a batch size × 32-tuple. Using this inter-

mediate representation, we drew a sample from a Gaussian distribution based

on the computed means and variances. We then fed the resulting batch size ×

32 samples into the decoder, which mirrors the encoder. The decoder’s task

is to reconstruct the input ECG signal from this lower-dimensional represen-

tation. We used a batch size of 32 and trained the model for a duration of 40

epochs. Early stopping was employed, and we stoped the training if the loss

did not decrease after 3 consecutive epochs on the validation set. We trained
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the model using the Adam optmimizer [28] with the learning rate of 0.001.

Figure 3.2: The architecture of TCN-based β-VAE to learn 12 leads ECG
signals. Later on, this architecture was used to generate synthetic ECG signals.

Figure 3.3: Schematic of the learning process of β-VAE.

ResNet Based β-VAE

Residual Networks (ResNets) are a foundational architecture in deep learning,

initially developed for image processing tasks [19]. However, the application

of ResNets extends beyond image processing and was successfully applied to

times series [57] and sequential data [5]. These networks are characterized

by their ’residual connections’ which allow the network to skip one or more

layers. These connections help in alleviating the vanishing gradient problem

by enabling direct paths for gradient flow.
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In our study, we use β-VAE architecture with residual connections, fol-

lowing the proposal by Jang et al. [24], and adapt it for our ECG dataset.

This model design is created to learn single-lead ECG signals, and Figures 3.4

and 3.5 show a modified diagram of its architecture. For each of the 12 lead

signals, a separate Resnet-based model was constructed. In Chapter 5, the

extracted features from each ECG lead is used to estimate patient-specific

ISD (Figure 3.1-c). The architecture consists of an encoder and a decoder.

The encoder is formed from multiple residual encoder blocks, where each block

consists of 2 blocks of 1-dimensional convolutional neural networks (1D CNN),

Relu activation function and batch normalization. Each ECG instance is fed

to the networks as a 4096 × 1 [number of data points in each signal × lead]

numeric matrix. To train the model, we need to set two adjustable hyper-

parameters of the β-VAE: embedding size and β. We chose the values 64 and

8, respectively, after conducting a grid search on a small subset of the training

and validation set. During the learning process, the encoder takes in batches of

single-lead ECGs and encodes it into 64 pairs [means, variances]. From these

parameters, a sample is drawn from the Gaussian distribution, producing a

64-tuple that serves as input for the β-VAE decoder. The decoder’s goal is to

reconstruct the input ECG signal with low error. The decoder consists of mul-

tiple deconvolution layers that mirror the encoder blocks. After training the

β-VAE model, the ECG signal is input into the encoder of the trained model

(with frozen weights), which generates 64 pairs [means, variances]. Here, we

use the means as ECG features. As the algorithm can only learn one lead

ECG signal, each lead was trained separately, and the learned features were

combined (with an embedding size of 768). In Chapter 5, we use these ECG

features, along with age and sex, to train the ISD models. Here, For simplicity,

we call this approach RN-β-VAE-lead#. (Note that we use the # sign to

reflect the lead number that is used to train this model.)
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Figure 3.4: Building blocks of Residual Encoder and Residual Decoder used
in Resnet based β-VAE.

Figure 3.5: Model’s Architecture of Resnet based β-VAE.
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3.2.2 Supervised Models

Gradient Boosted Tree Ensembles (XGB) Model

Chapter 4 will first show the process of learning the TCN-Based β-VAE using

the Alberta ECG dataset. Then, we will extract the embeddings for each ECG

signal using the trained model. Afterwards, we will evaluate the quality of the

learned embeddings by applying them to the task of the multi-label classifi-

cation of 15 cardiovascular diagnoses- each for one versus all classifications of

each label of Alberta ECG dataset. Additionally, we will use the sex (binary

Male=1, Female=0) and age (continuous feature) associated with each ECG

signal as additional features for this task. To this end, we will use the XGB

model [44], where we will use hyperparameter values of max depth = 3, and

the number of estimators = 200. (Note that we did not perform any hyper-

parameter tuning to select values for these hyperparameters.). We limit the

learning process of the models to a maximum of 200 epochs, and if there is no

improvement in the loss of the validation set for ten consecutive epochs, we

stop the learning process.

InceptionTime Model

In Chapter 4, for multilabel classification of ECG abnormalities of the CPSC

2018 dataset, we will use InceptionTime model [23], based on the TSAI [39]

public library that implemented many state-of-the-art algorithms for time se-

ries tasks. To capture the role of generated ECGs on the performance of the

classifier, we design and run multiple experiments that use various data aug-

mentation techniques; see Table 3.2. First, we measure the performance of

the classifier without any data augmentation method as a baseline experiment

(CPSC NA). Then, we augment the train+validation dataset with various

augmentation; ECGs from Alberta dataset as a positive control for the contri-

bution of augmented ECGs (AB Orig STE), VAE synthetic ECGs as a target

experiment to evaluate the effect of ECG generated data (ABVAE Gen STE),

and oversampled CPSC ECGs as a negative control (CPSC OS STE). (Note

that we use random replacement sampling from the training set of CPSC 2018
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dataset to generate the desired oversampling ECGs). These generated ECG

signals were then added with a ratio of 90% into training and 10% into the

validation set of the CPSC 2018 Dataset. For a fair comparison, we fixed the

test set for all experiments. The scoring for our experiments is based on the

F1 measure. For each 9 possible labels, the F1 score is defined as follows:

F1i =
2 ×Nii

NiX + NXi

(3.1)

for i = 1, ..., 9, where Nii is the number of correctly classified cases for the ith

label, NiX is the total number of cases predicted as the ith label, and NXi is

the total number of cases that are actually of the ith label. During training,

the InceptionTime model was run for 200 epochs with an early stopping mech-

anism. If there is no improvement in the average F1 score across all labels on

the validation set for 50 consecutive epochs, training is stopped, and the model

is saved for the inference stage on the test set.

Table 3.2: The experiments designed to capture the role of generated ECGs
in the InceptionTime classifier performance.

Experiment Name Training Sam-
ple Size (# of
ECGs)

Description

CPSC NA 6190 No data augmentation as baseline
experiment

AB Orig STE 6190 + 1072 AB
ECGs

1072 real ECGs with STE from
Alberta dataset as a positive con-
trol experiment

ABVAE Gen STE 6190 + 1072
VAE generated
From ABVAE

1072 AB VAE generated ECGs
with STE abnormality as a tar-
get experiment

CPSC OS STE 6190 + 1072
oversampled
ECGs from
CPSC

1072 oversampled ECG from
CPSC dataset as a negative con-
trol experiment.
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ResNet-Based Model

In Chapter 5, we use another deep learning approach to obtain ECG features

for estimating patient-specific ISD: the ResNet Based Model. We employ pre-

trained model architectures developed in our group, as explained by Sun et

al. [51], for multilabel classification of International Classification of Diseases,

10th revision (ICD-10) codes. (Note that total number of labels are 1414.)

Details architecture/training process of their model is explained in their pa-

per [51]. In short, their ResNet model consists of a convolution layer, 4 residual

blocks, and a dense layer, following each convolution layer of the network with

batch normalization [22], Relu activation function, and dropout [48] to reduce

the chance of overfitting. Additionally, they used the 12-lead ECG signals

(4096 × 12 [number of data point, number of ECG leads]) as input signals

into the network. We will use the predicted probabilities generated by this

model for raw ECG signals as supervised ECG features (embedding size of

1414)(Figure 3.1-b). These features along with age and sex were used to train

the ISD models. Here, for simplicity, we call this approach RN-ICD.

End-to-End model

We will use raw labeled ECG signals to directly train ISD models. Each raw

ECG signal consists of 4096 real values data points that we use as input to

this model. To reduce the dimensionality of raw ECG signals, we can choose

any number of layers, fully connected or convolutional, before entering the

ISD models. Here, we will use the ResNet architecture developed by Sun, et

al. [51]. Then, the output of those layers along with age and sex will be fed

into the ISD modes (Figure 3.1-a). Here, for simplicity, we call this approach

End-To-End Deep Learning (E2E DL).

3.2.3 Cox-Proportional Hazard (COX-PH) Model

The Cox Proportional Hazards Model [27] is one of the well-known statistical

methods used for survival analysis. In Chapter 5, we will use the Cox Propor-

tional Hazards Model to estimate patient-specific ISDs as a function of age,
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sex, and ECG features obtained from various models.

3.2.4 Neural Multi-Task Logistic Regression (N-MTLR)

Neural-MTLR (N-MTLR) [12] is a modified version of Multi-Task Logistic

Regression (MTLR) [63], which passes the data to multiple neural networks,

either deep or shallow, before entering the MTLR model. We can consider

MTLR as a series of logistic regression (LR) models, where each LR model

estimates the survival probability at each time interval. To learn a MTLR

model, we first divide the entire time horizon into m time bins. As explained

by Yu et al [63], for each time bin, we can define the survival probability as

follows:

Pθi(T ≥ ti|x) = (1 + exp(θi · x + bi))
−1 , 1 ≤ i ≤ m (3.2)

where T is the time, x is the individual’s features, and the parameters

vector θi and the thresholds bi are specific to a given time. The binary la-

bels, yi = [T ≥ ti], can vary based on the value of the threshold ti. We

represent a patient’s survival time, denoted as d, as a binary sequence y =

y(d) = (y1, . . . , ym). In this sequence, each element yi can either be 0 or 1,

indicating the patient’s survival status at time ti. Here, yi is set to 0 if death

has not occurred by the time ti when i.e. ti < d. On the other hand, yi is

set to 1 when ti ≥ d. There are m + 1 valid sequences that take the form of

(0, 0, . . . , 1, 1, . . . , 1), which includes both the sequence consisting entirely of

zeros and the sequence consisting entirely of ones. The probability of observ-

ing a specific survival status sequence of Y = (y1, . . . , ym) can be estimated as

follows:

PΘ(Y |x) =
exp (

∑m
i=1 yi(θix + bi))∑m

k=0 exp(fΘ(x, k))
(3.3)

where Θ = (θ1, . . . ,θm) and fΘ(x, k) =
∑m

i=k+1(θix + bi) for 0 ≤ k ≤ m

represents the score of the sequence when an event takes place within the time

range [tk, tk+1). For more details on the optimization process, please refer to

Yu, et al. [63].
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Here, we use N-MTLR as a state-of-the-art algorithm to estimate ISD

curves using ECG features obtained by various approaches described earlier.

The ECG features, along with age and sex, serve as input features for the N-

MTLR model, and the performance is evaluated using various metrics, includ-

ing the concordance index (C-index), Marginal L1 loss [17], and the Integrated

Brier Score [16]. Please refer to Section 3.4.2 for a description of these metrics.

We choose the C-index as the deciding metric to select the best model and

ECG features.

3.3 Data Generation Using Learned TCN-Based

β-VAE Model

Generating new data with specific characteristics is a powerful feature of VAEs.

For instance, in scenarios where the goal is to produce more examples with

a specific label, VAEs can generate new samples that are similar to the ones

present in the dataset, but not identical. In the case of ECG signals, VAEs can

be used to generate synthetic signals resembling the input ECG signals while

retaining the specific characteristics or abnormalities of the input signals.

After we have learned a set of 64 β-VAE parameters for each cardiovascu-

lar diagnosis (32 [mean, variance] pairs) from Alberta ECG Dataset, we will

then use this learned model to generate new (realistic) synthetic ECG signals.

During data generation (Figure 3.6), we froze the layers weights of both the

encoder and decoder. Then, we feed selected 12-lead ECGs X with a specified

abnormality into the encoder. Then, using the means and variances produced

by the encoder, we draw a sample (Z) from the Gaussian distribution and feed

it into the decoder. This generates a new 12-lead ECG (associated with the

same abnormality as the one fed into the encoder), which we can then use to

augment the CPSC 2018 dataset. (Note we give this instance Z the same age

and sex as the original instance X.)

Using this framework, we can generate an unlimited number of ECGs from

a single ECG data inputted into the encoder. However, we generate 1 ECG

sample from each original ECG signal.
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Figure 3.6: Schematic of ECG generation using trained β-VAE. The weights
of both the encoder and decoder layers were fixed during data generation.

3.4 Evaluation Metrics

3.4.1 Evaluation of TCN-Based β-VAE Embeddings for
Cardiovascular Diagnosis

To evaluate the quality of learned embeddings, we use the embeddings for the

task of multi-label classification of cardiovascular diagnosis of Alberta ECG

dataset. To generate the 32 ECG embeddings (Figure 3-1-d), we feed the

12-lead ECGs of Alberta ECG dataset into the encoder section of the trained

TCN-Based β-VAE model, which produces 32 [mean, variance] pairs, which

we use the mean to represent the signal. Afterwards, we run the gradient

boosted tree ensembles (XGBoost) model on these instances using Alberta

ECG dataset (from the train + validation set), along with age and sex, to

learn 15 models – for one versus all classifications of each label. This involves

creating a separate binary classifier for each label, which provides a probability

score indicating the likelihood of the instance belonging to that label. Using

a predetermined threshold for probability scores, we can predict whether the

sample belongs to a specific label or not. (Note this means a single instance

can be positive for several different diseases.) Then, for each label, we can

create the confusion matrix, which consists of the following four cells, each

representing the number of some specified instances:

• True Positive (TP) is the case where the model predicted positive and

the actual value was positive.

• True Negative (TN) is the case where the model predicted negative and

the actual value was negative.

• False Positive (FP) is the case where the model predicted positive but
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the actual value was negative.

• False Negative (FN) are the cases where the model predicted negative

but the actual value was positive.

Accuracy is a metric that is commonly used to evaluate the performance of a

classifier. However, in cases where the dataset is imbalanced or when the cost

is different for FP and FN, it can be misleading. Hence, we will use a threshold

dependent metric called Youden’s index [62], J = Sensitivity + Specificity− 1,

which represents the difference between the TP rate (sensitivity) and the FP

rate (1-specificity). A value of 1 shows perfect discrimination, while a value

of 0 indicates a performance equal to random guessing, and negative values

shows that the performance is worse than chance.

Figure 3.7: The plot illustrates the AUROC (Area Under the Receiver Oper-
ating Characteristic) metric. On the x-axis, we have the FP (False Positive)
rate, and on the y-axis, the TP (True Positive) rate. The curve represents the
ROC (Receiver Operating Characteristic), and the area enclosed by it is the
AOC (Area Under the Curve).

To evaluate the model’s performance, we used the two metrics - Area Under
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the Receiver Operating Characteristic Curve (AUROC), which is a common

metric for evaluation of classifiers, and F1 score. We are using these metrics be-

cause the AUROC provides a single measure of overall model performance that

evaluates how well the model distinguishes between classes across all thresh-

olds. To calculate AUROC, one must compare the TP rate (sensitivity) with

the FP rate (1-specificity) for a range of probability thresholds (Figure 3.7).

The resulting curve is then analyzed by calculating the area underneath it,

which can range from 0 to 1. A value of 0.5 signifies that the model’s perfor-

mance is equivalent to random guessing (dotted line in Figure 3.6), whereas

a score of 1 represents perfect discrimination between positive and negative

classifications. The F1 score combines precision and recall to provide an over-

all measure of the model’s accuracy. The F1 score is calculated by taking the

harmonic mean of precision and recall values for the model on the test set, and

can range from 0 to 1. The Precision, Recall and F1 score formula is shown

below.

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

F1 =
2 × Precision × Recall

Precision + Recall
(3.6)

In the case of ECG abnormality detection, a high F1 score indicates that

the model effectively balances precision and recall. A large F1 score, ap-

proaching 1, suggests high model performance in identifying true abnormali-

ties (precision) while minimizing the risk of overlooking actual cases (recall).

Conversely, a low F1 score indicates poor performance, where the model may

either be missing too many true cases (low recall) or incorrectly identifying

normal ECGs as abnormal (low precision).
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3.4.2 Evaluation Metrics of Survival Prediction.

In Chapter 5, we estimate the ISD using ECG features and using each of Cox-

PH and N-MTLR models. We used various metrics to compare the model’s

performances described in detail in Haider et al. [17]. Here, we briefly describe

these metrics.

C-index

C-index (aka Concordance) is a well-known metric used to evaluate the per-

formance of a risk model. The C-index measures how well the model can dis-

criminate between individuals with different risk levels. Calculation of C-index

starts by identifying the set of all comparable pairs. The metric then calcu-

lates the percentage of pairs that are correctly predicted. A pair is considered

to be concordant when the individual with the shorter observed survival time

also possesses a shorter predicted survival time, which is defined as the time

corresponding to the median of their ISD curve, as per the ISD model. For

example, if there are two uncensored individuals, A and B, and it is observed

that patient B will survive longer than patient A, the model will calculate the

median survival time for each patient, tmA and tmB. If tmA is less than tmB,

the model’s prediction that patient B will live longer is considered correct.

Conversely, if tmA is greater than tmB, the prediction for this pair is deemed

incorrect. The formula to calculate C-index is defined as following:

C-index =

∑
i,j

(
1Tj<Ti

· 1ηj<ηi · δj
)∑

i,j

(
1Tj<Ti

· δj
) (3.7)

where ηi is the risk score of individual i, δi ∈ {0, 1} indicates if the i-th

patient is dead (1) at that time Ti, or is censored (0). The range of the C-index

varies from 0 to 1. The C-index value of 0.5 indicates the baseline, randomly

assigning probabilities to instances would result in a 50% probability of correct

ordering. A higher C-index value shows a better model performance.
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Marginal L1-loss

To compute this metric, it is necessary to have the actual event time to compare

the difference between the predicted and actual survival times. For uncensored

patients, the actual event time (death) is known, but for censored patients,

the survival time is estimated based on the expected survival time calculated

using the Kaplan-Meier (KM) method. The difference between the predicted

survival time and the actual survival time is then expressed as a marginal L1

loss. The marginal L1 loss quantifies the average deviation of the predicted

survival times from the actual event times, with a lower value indicating more

accurate predictions. To this end, for each censored individual, we will define a

“Best-Guess” value, representing the individual’s expected survival time given

that s/he already survived until the censor time c.

BG(c) = c +

∫∞
c

S(t) dt

S(c)
(3.8)

where S(.) is the survival function, which we estimate using KM generated

from the training set. Using this BG(c), we can calculate the L1-marginal loss

as follows:

L1margin(D, t̂0.5) =
1

γ

[ ∑
j∈Duncensor

∣∣dj − t̂0.5i

∣∣ +
∑

k∈Dcensor

αk

∣∣BG(ck) − t̂0.5k

∣∣]
(3.9)

where γ = |Duncensor|+
∑

k∈Dcensor
αk, and αk is the weight in each estimate

based on the Best-Guess for each individual, and d is the true event time for

each uncensored patient. The term t̂0.5i represents the median survival time

predicted by the ISD model for each individual. We set αk = 1 − S(ck) to

place more weight on the late censor time instances. The reason for such a

weight definition as explained by Haider et al. [17] is that individuals with

early censor time give less information compared to those individuals with

late censor time.
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Integrated Brier Score

Brier Score [8] measures the mean squared error between the prediction made

by the model and the actual event status (0 or 1) for a given time. If all data

is uncensored, the Brier score at time t for a such dataset (D) is as follows:

BSt(D, Ŝ(t|x⃗)) =
1

D

∑
(x⃗i,di)∈D

(
I|di ≤ t| − Ŝ(t|x⃗i)

)2

(3.10)

where I|di ≤ t| is an indicator function that is 1 if the actual event time di

is less than or equal to t and 0 otherwise, and Ŝ(t|x⃗i) is the predicted survival

probability at time t for the covariates x⃗i. We can extend the Brier score to a

series of time points using Integrated Brier Score (IBS), which estimates the

mean Brier score over the time interval.

IBS(τ,D, Ŝ(t|x⃗)) =
1

τ

∫ τ

0

BSt(D, Ŝ(t|x⃗)) dt (3.11)

Here, τ is the maximum event time of the combined dataset. If the model

accurately predicts all time points, the score will be 0, and if the model al-

ways predicts 0.5, the score will be 0.25. So, a lower number indicates a

better ISD model. The formula presented here assumes that we do not have

any censored individual. To handle the censored individual, Graf et al. [16]

suggest employing the Inverse Probability of Censoring Weights (IPCW) ap-

proach, where the instances subject to censoring are weighted equally to the

uncensored instances. For more detailed description, please see Graf et al [16].

3.5 Model Comparison Using Bootstrapping

To determine if the results of the multilabel classification of ECG abnormal-

ities of CPSC 2018 are statistically significant, we used the bootstrapping

method. Bootstrapping is a statistical resampling technique used to estimate

the properties of an estimator (such as its variance) by repeatedly sampling

with replacement from the data set. It involves generating multiple boot-

strap samples, each of which is the same size from the same test set. This

process builds an empirical distribution of the statistic, allowing for the esti-

mation of its variability, confidence intervals, and other properties. It provides

36



a non-parametric approach to statistical inference, enabling relatively robust

estimation of statistical parameters and hypothesis testing without relying on

specific distributional assumptions [37]. The steps that we take to compare

models began by sampling the test set with bootstrapping. We created 10,000

samples from our test set, where each sample was formed by random replace-

ment sampling. Then, for each sample set and label, we calculate the difference

in F1 score between pairs of models. Afterwards, we calculate the mean differ-

ence in F1 score along with the 95% confidence intervals for these differences.

Finally, we evaluated whether the observed differences were statistically sig-

nificant or not. To decide whether the differences are statistically significant,

we observed whether the 95% confidence interval of the difference in means

included zero. If it did not, we considered the difference to be statistically

significant. Our hypothesis testing in our case would be as follows:

Null Hypothesis: There is no significant difference in the F1 scores between the

models for each label and model pair, implying that any observed difference

was due to random variation.

Alternative Hypothesis: There is a significant difference in the F1 scores be-

tween the models for each label and model pair.

In Chapter 5, and for each training sample size and ECG features, we use

10 different random splitting training sets to train 10 models and plot the mean

of the performance, with error bars reflecting the 95% confidence interval. We

then presented the plots for three metrics of C-index, L1-Marginal and IBS.
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Chapter 4

Generative Data by
β-Variational Autoencoders
Help Build Stronger Classifiers:
ECG Use Case

A widespread tool currently used for the diagnosis of cardiovascular diseases is

Electrocardiogram (ECG). However, detecting cardiac abnormalities through

ECG is not easy and currently requires an expert. With the advancement

of machine learning in healthcare, many researchers are now exploring ways

to learn end-to-end diagnostic models using ECGs [21], [45], [61]. The open-

source ECG data from the China Physiological Signal Challenge 2018 (CPSC

2018) has helped researchers develop various machine-learning models for ECG

abnormalities/ diagnosis. However, the prediction performance of these models

is not high for all labels. Adding more training ECG instances (either of

real patients or artificially generated) of the labels might help the learning

algorithm produce a more accurate model, and probably more accurate for

the labels of those additional instances.

Since the ECG is one of the most common measurements and is routinely

used during hospital admission, hospitals record ECG scans of many patients

with various heart conditions/anomalies. However, due to the need to pro-

tect patients’ privacy and confidentiality, these data often cannot be shared.

However, using this private data set, we might be able to produce ECGs with

certain abnormalities using a generative model, such as variational autoen-
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coders (VAE), while retaining the privacy of health data. We can then add

these generated ECGs to our current real labelled ECG training set to produce

a model that potentially improve the performance on the test set. (Note that

no synthetic ECGs are added to the test set.)

In recent years, some studies have used VAE to generate ECG instances,

then use these intermediate learned embeddings of a trained VAE to learn

models that could predict 1-year mortality or the type of ECG abnormal-

ity [52]. The advantage of these approaches over deep learning models is that

one can explain the model’s prediction. These explanations are example based

and can be achieved in two steps. (1) Initially, an explainable artificial intel-

ligence (XAI) method such as SHAPLEY [58] or LIME [46] can be used to

find the important embeddings (learned mean of VAE) for certain predictions

of the downstream task. (2) Subsequently, we can calculate the correlation

between these embeddings and knowledge-based features using the dataset.

For instance, suppose an XAI method shows that an embedding at index 3 is

critical for certain predictions made by the model. In that case, examining the

correlation map between this embedding and knowledge-based features may

reveal a strong correlation with a specific feature, such as P wave duration.

These explanations, when they resonate with the insights of domain experts,

will improve the confidence in the model’s prediction by the clinicians who are

going to use it.

To diagnose an ECG abnormality, it is useful to consider both the mor-

phologies of a single beat (such as R peaks, presence of P wave, etc.) and the

rhythm (combination of multiple beats) as shown by Berkaya et al. [6]. In this

regard, Jang et al. [24] used unsupervised convolutional VAE to encode input

ECGs into 60 features through the reconstruction of lead II of ECG (both

morphologies of single beat and the rhythm) collected from 1278 patients. van

de Leur et al. [31] learned a VAE (from 1.1 million ECGs) to encode 12-lead

ECG signals of a single beat into 21 learned features, then used these learned

features for downstream tasks of detection of reduced ejection fraction, and

1-year mortality. They also correlated the learned 21 features with conven-

tional electrocardiogram measurements generated by the ECG measurement
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device during its collection to provide further explanation about VAE embed-

dings. However, the focus of both studies was on using the extracted ECG

embedding for a downstream task. To the best of our knowledge, no study

explored ways to generate synthetic ECGs using VAE and used them as a data

augmentation method. These studies reached good arrhythmia classification

performance using VAE-encoded features from ECGs. However, their models

can generate either multiple beats (rhythm) of a single lead or a single beat

of a 12-lead ECG signal. Both morphologies and rhythms of ECG signals are

important for the diagnosis of ECG abnormalities as different abnormalities

express their characteristics in different leads or they are related to rhythm

rather than the morphology of a single beat [33]. In this Chapter, we use a

generative model (TCN based β-VAE) to learn the rhythm of 12-lead ECG

signals using a large dataset of 244,077 patients admitted to hospitals in Al-

berta, Canada between February 2007 and April 2020, where each is labeled

with certain cardiovascular diagnoses identified with specified ICD-10 codes.

As explained in Chapter 3, we then use this trained model to generate new

ECGs, each with one or more of these specified diagnoses. We then identified

ways to use this Synthetic ECGs to improve the performance of multi-label

classification, using publicly available 12-lead ECG CPSC dataset with various

abnormalities.

Figure 4.1 displays the overall methodology being used in this chapter.

In short, we are initially training the TCN-based β-VAE model using the

Alberta ECG dataset. Afterward, we are evaluating the quality of β-VAE’s

learned embeddings using the Alberta ECG Dataset. In this evaluation, we

utilize the ECG embedding along with age and sex for the multilabel classifica-

tion of 15 cardiovascular diagnoses from the Alberta ECG dataset. Then, we

will evaluate different data augmentation methods based on the downstream

prediction error of the classifiers learned using that data, for the task of multi-

label classification of ECG abnormalities of CPSC 2018. Here, we consider

using ECGs generated by a model learned from Alberta ECGs, data addition

of real Alberta ECGs, and oversampling of ECGs of CPSC 2018 dataset.
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Figure 4.1: Overall methodology used in this Chapter: (1) β-VAE was trained
using Alberta dataset. (2) For each ECG of the Alberta ECG dataset, we
selected the 32 embedding obtained from the trained encoder of β-VAE (3)
Quality of embeddings was evaluated using the multi-label classification of
15 cardiovascular diagnoses. (4) We compared various data augmentation
methods (data generation, data addition, and oversampling) using CPSC 2018
dataset for the task of multi-label classification of ECG abnormalities.

4.1 Results

In the following, we first provide the result of β-VAE training and the quality

of its learned embeddings on Alberta ECG dataset. Then, we generate differ-

ent levels of ECGs with certain abnormalities and evaluate the role of these

synthetic ECGs on the performance of a classifier for the task of multi-label

classification using CPSC 2018.
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4.1.1 Performance of Multi-Label Classification of Car-
diovascular Diagnoses of Alberta ECG Dataset

The primary objective of our study was to explore the capability of TCN-

based β-VAE in reconstructing Alberta 12-lead ECG signals and to assess the

ability of the learned embeddings to capture meaningful information for down-

stream tasks. Figure 4.2 shows an example of ECG signal reconstructed by the

β-VAE model. We also calculate the Pearson correlation coefficient of these

32 embeddings with 22 knowledge-based ECG features (Figure 4.3). These

correlations can provide an explanation for the characteristics of learned em-

beddings and their relation with well-defined knowledge-based ECG features.

Due to the unsupervised nature of β-VAE, the model might learn the charac-

teristics of some ECG labels more than other labels depending on the number

of training data. To evaluate the quality of learned ECG features for differ-

ent labels, we used these extracted features with the addition of age and sex

for the task of multilabel classification of cardiovascular diagnoses. Also, we

used the knowledge-based ECG features along with age and sex for the same

task. We used XGBoost to create 15 independent models, one for each type

of diagnosis (Table 4.1). The performance of β-VAE features was lower than

knowledge-based ECG features. It is important to note that the focus of this

comparison is not to establish the superiority of one method over the other

but rather to demonstrate the potential of the β-VAE model in learning useful

information (for a downstream task) and in its ability to generate synthetic

ECGs. We acknowledge that a statistical significance test comparing the two

methods was beyond the scope of this study, primarily due to computational

constraints. However, the large size of our test set (640,527 ECG signals from

97,631 patients) provides a level of reliability to our findings.

The performance of β-VAE features varied among labels. If we select

AUROC = 0.70 as a threshold for reasonable learning performance, 9 la-

bels – ST Elevation Myocardial Infarction (STEMI), Heart Failure, Unstable

Angina, Atrial Fibrillation, Ventricular Tachycardia, Atrioventricular Block,

Pulmonary Hypertension, Hypertrophic Cardiomyopathy, and Hypertrophic
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Cardiomyopathy – have the performance above this threshold, suggesting that

based on this learned TCN-based β-VAE, these labels might be more suitable

candidates for data generation as compared to other 6 labels.

Figure 4.2: a) An example of reconstructed signal for lead 4 of an ECG signal.
The black color shows the original ECG signal and the red color shows the
reconstructed ECG signal. b) The residual between the reconstructed signal
and the original signal. c) the residual between the two ECGs that were both
generated from the same original ECG signal.

4.1.2 Performance of Multi-Label Classification of ECG
Abnormalities for CPSC 2018

Since CPSC 2018 ECG dataset is collected from 11 hospitals, the distribution

of the CPSC 2018 ECG dataset might be different than the distribution of

the ECG dataset collected from Alberta Hospitals (14 hospitals). With the

addition of synthetic ECGs from Alberta Dataset into CPSC 2018 Dataset,

we might be able to improve the performance of the classifier.
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Table 4.1: The multi-label classification of 15 cardiovascular diagnoses
using the Alberta ECG dataset using 32 TCN Based β-VAE embeddings
versus 22 ECG Global Measurments(GMs) from Philips Machine. All fea-
tures/embeddings include age and sex as additional features.

Label 32 Embeddings 22 ECG GMs

AUROC F1 AUROC F1

NSTEMI 0.65 0.22 0.77 0.33

STEMI 0.74 0.25 0.88 0.49

Heart Failure 0.77 0.33 0.83 0.35

Unstable Angina 0.73 0.14 0.76 0.18

Atrial Fibrillation 0.75 0.31 0.72 0.18

Ventricular Tachycardia 0.72 0.09 0.77 0.12

Cardiac Arrest 0.64 0.06 0.74 0.09

Supraventricular Tachycardia 0.62 0.10 0.60 0.08

Atrioventricular Block 0.84 0.23 0.89 0.31

Pulmonary Embolism 0.61 0.04 0.69 0.11

Aortic Stenosis 0.68 0.05 0.80 0.09

Pulmonary Hypertension 0.70 0.05 0.77 0.11

Hypertrophic Cardiomyopathy 0.70 0.03 0.86 0.11

Mitral Valve Prolapse 0.62 0.02 0.72 0.04

Mitral Valve Stenosis 0.61 0.01 0.76 0.02
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Figure 4.3: Heatmap illustrating the Pearson correlation coefficients between
32 learned embeddings and 22 knowledge-based ECG features in the test set
of the Alberta ECG dataset. This visualization highlights significant positive
and negative correlations, offering insights into the characteristics and inter-
pretability of the embeddings. For the definition of knowledge-based features,
refer to Table 2.1.

We used the InceptionTime model, described in Section 3.2.2, to classify

ECG abnormalities of CPSC 2018; Figure 4.4 shows the models’ performance

on the test set. As a first data augmentation experiment (CPSC NA), we

selected the label with the lowest F1 score (STE), then selected new raw

instances from the AB dataset. In particular, we used AB instances whose

STEMI label was a negative diagnosis for all other labels (72 cases had this

condition), and 1000 samples of STEMI that had a negative diagnosis for at
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least the labels of the CPSC 2018 ECG dataset (AB Orig STE). Note that

our dataset labels are limited to only 15, and the selected ECGs might have

other possible abnormalities not covered by our set of labels.

The results presented in Tables 4.2 to 4.6 are derived from a pairwise

statistical analysis conducted between different pairs of models. This analysis

assesses the differences in the F1 performance between each pair of models

across all ECG labels. To conduct this analysis, we first bootstrapped the test

set 10,000 times. For each bootstrap sample, we measured the F1 performance

of each model across all labels. We then calculated the difference in F1 scores

between all possible model pairs for each label across all 10,000 bootstrap

samples. This process yielded 10,000 F1 score differences for each label and

model pair. Subsequently, we calculated the mean F1 score of these differences

along with their 95% confidence intervals. The significance of these differences

was determined based on whether the 95% confidence intervals included zero.

If the interval did not include zero, the difference in performance for that

specific label between the two models was considered statistically significant.

For example, consider the results in Table 4.2, which compared the pairwise

differences in F1 scores between the AB Orig STE and CPSC NA models for

each ECG label. We observe that for the STE label, the mean F1 score is 0.089,

and the confidence intervals associated with this label do not include zero,

indicating that the difference in F1 performance between the AB Orig STE

and CPSC NA models is statistically significant.

The results show that the addition of synthetic data (generation or aug-

mentation) increased the F1 score performance of STE compared to the models

trained on just the original dataset. The addition of raw AB ECGs of patients

with STE ( AB Orig STE) labels had the highest performance (0.0890[0.0597-

0.1185] 1 for STE diagnosis compared with ABVAE Gen STE (0.0463[0.0267-

0.0659]) or CPSC OS STE (0.0447[0.0135-0.0760]) approaches. However, data

addition had a mixed effect on the model’s performance of other labels. For the

AB Orig STE experiment, we observed statistically significant changes in SR,

1mean pairwise difference in F1 scores followed by 95% confidence interval of the mean
pairwise difference
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Figure 4.4: Model performance of classification of ECG abnormalities for
CPSC 2018 dataset. The error bar shows the the upper and lower 95% con-
fidence intervals. The x-axis represents ECG labels, including the ’no ab-
normality’ label of SR (Sinus Rhythm), and 8 abnormalities: AFIB (Atrial
Fibrillation), IAVB (First-degree Atrioventricular Block), LBBB (Left Bundle
Branch Block), RBBB (Right Bundle Branch Block), PAC (Premature Atrial
Contraction), PVC (Premature Ventricular Contraction), STD (ST-segment
Depression), and STE (ST-segment Elevated). The legend corresponds to the
experimental designs defined in Table 3.2. ’CPSC NA’ denotes the baseline
experiment with no data augmentation; ’ABVAE Gen STE’ represents the
experiment with 1072 Alberta VAE generated ECGs with STE abnormality;
’CPSC OS STE’ refers to the negative control experiment with 1072 oversam-
pled ECGs with STE abnormality from the CPSC dataset; ’AB Orig STE’
indicates the positive control experiment with 1072 real ECGs with STE ab-
normality from the Alberta dataset.

AFIB, 1-AVB, PAC, PVC, STD and STE, an statistically insignificant differ-

ence in LBBB and RBBB. AB Orig STE data has better performance in AFIB,

1-AVB, PVC, STE and worse in SR, PAC, and STD. For the AB Gen VAE,

we observed statistically significant changes in the performance of SR, AFIB,

1-AVB, LBBB, PVC, STD, and STE labels. An insignificant difference in PAC

and RBBB, a significant decrease in the performance for the STD label, and

a slightly worse performance on AFIB labels. For the CPSC OS STE exper-

iment, we observed a significant difference in performance for AFIB, 1-AVB,
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Table 4.2: The pairwise differences between AB Orig STE and CPSC NA
models. ’AB Orig STE’ indicates the positive control experiment with 1072
real ECGs with STE abnormality from the Alberta dataset. ’CPSC NA’ de-
notes the baseline experiment with no data augmentation. This table presents
the results of a statistical analysis comparing the performance of two models,
AB Orig STE and CPSC NA, in classifying various ECG abnormalities. Each
row corresponds to a different ECG label (e.g., SR, AFIB). The ’mean F1’ col-
umn shows the average difference in F1 scores between the two models across
10,000 bootstrap samples. A positive mean indicates that the AB Orig STE
model generally performed better than the CPSC NA model for that label,
while a negative mean suggests the opposite. The ’CI upper’ and ’CI lower’
columns provide the upper and lower bounds of the 95% confidence interval
for these mean differences. If this interval does not include zero, it implies
that the difference in performance between the two models for that label is
statistically significant.

Label mean F1 CI upper CI lower
SR -0.0363 -0.0277 -0.0469
AFIB 0.0191 0.0243 0.0138
1-AVB 0.0537 0.0618 0.0457
LBBB -0.0033 0.008 -0.014
RBBB -0.0030 0.0008 -0.0068
PAC -0.0448 -0.0277 -0.0620
PVC 0.0497 0.0619 0.0376
STD -0.0631 -0.0536 -0.0726
STE 0.0890 0.1185 0.0597

LBBB,SR, PVC, STD, and STE. Performance was not significant for RBBB

and PAC. Oversampling significantly decreased the performance for STD, but

did improve performance for AFIB, 1-AVB, LBBB, SR, PVC, and STE. Most

performance increases were small but LBBB had significant improvement of

0.03 to 0.05 in F-1. These results suggest that adding either β-VAE, or real

ECG signals of the AB dataset, to the training dataset led to models that

had an overall better performance improvement compared with oversampling

of STE ECG signals from the CPSC 2018 ECG dataset.

In addition to the aforementioned statistical tests, we also utilized Z-tests

to evaluate whether the differences in F1 scores across model pairs and labels

are significant. The Z-test is a statistical method designed to ascertain if

there are notable differences between the means of two groups. This method
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Table 4.3: The pairwise differences between ABVAE Gen STE and CPSC NA
models. ’ABVAE Gen STE’ represents the experiment with 1072 Alberta VAE
generated ECGs with STE abnormality, while ’CPSC NA’ denotes the baseline
experiment with no data augmentation. This table compares the performance
of these two models in classifying various ECG abnormalities. Each row corre-
sponds to a different ECG label (e.g., SR, AFIB). The ’mean F1’ column shows
the average difference in F1 scores between the two models across 10,000 boot-
strap samples. A positive mean indicates that the ABVAE Gen STE model
generally performed better than the CPSC NA model for that label, while a
negative mean suggests the opposite. The ’CI upper’ and ’CI lower’ columns
show the upper and lower bounds of the 95% confidence interval for these
mean differences. A confidence interval not including zero signifies a statis-
tically significant difference in performance between the two models for that
label.

Label mean F1 CI upper CI lower
SR 0.0233 0.0296 0.0169
AFIB -0.0037 -0.0006 -0.0069
1-AVB 0.0398 0.0449 0.0348
LBBB 0.0388 0.0442 0.0334
RBBB -0.0025 -0.00001 -0.0005
PAC -0.0340 -0.0296 0.0169
PVC 0.0623 0.0698 0.0548
STD -0.1322 -0.1246 -0.1398
STE 0.0463 0.0659 0.0267

is particularly relevant for large sample sizes and assumes that the data is

normally distributed. For each model pair and label, we calculated the Z-

statistic, which quantifies the difference in sample means in relation to the

variability within the data. The significance of this Z-test was assessed using

a p-value threshold of 0.05. A p-value less than this threshold indicates that

the observed difference is unlikely due to chance, leading us to reject the

null hypothesis and conclude a statistically significant difference between the

models. Upon analyzing the z-test results, all comparisons between model

pairs across various labels revealed statistically significant differences, except

for the labels of LBBB and STE when comparing the ABVAE Gen STE and

CPSC OS STE models.
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Table 4.4: The pairwise differences between CPSC OS STE and CPSC NA
models. ’CPSC OS STE’ refers to the negative control experiment with 1072
oversampled ECGs with STE abnormality from the CPSC dataset, while
’CPSC NA’ denotes the baseline experiment with no data augmentation. This
table compares the performance of these two models in classifying various
ECG abnormalities. Each row corresponds to a different ECG label (e.g., SR,
AFIB). The ’mean F1’ column shows the average difference in F1 scores be-
tween the two models across 10,000 bootstrap samples. A positive mean indi-
cates that the CPSC OS model generally performed better than the CPSC NA
model for that label, while a negative mean suggests the opposite. The
’CI upper’ and ’CI lower’ columns show the upper and lower bounds of the
95% confidence interval for these mean differences. A confidence interval not
including zero signifies a statistically significant difference in performance be-
tween the two models for that label.

Label mean F1 CI upper CI lower
SR 0.0046 0.0145 -0.0053
AFIB 0.0135 0.0188 0.0081
1-AVB 0.0130 0.0216 0.0044
LBBB 0.0390 0.0488 0.0293
RBBB -0.0085 -0.0047 -0.0122
PAC 0.0049 0.0222 -0.0123
PVC 0.0221 0.0344 0.0098
STD -0.0593 -0.0497 -0.0689
STE 0.0447 0.0760 0.0135

4.2 Discussion

We used β-VAE to develop a generative model of the rhythm of 12-lead ECG

signals. To the best of our knowledge, this is the first study that was able to

learn the rhythm of 12 lead signals using β-VAE. Using β-VAE, other studies

were able to learn either the rhythm of 1-lead ECG signals [24] or 1 beat of 12-

lead signals [31]. (Note they also used the learned embeddings for downstream

tasks.) Here, using generated ECG data from learned β-VAE based on a

large ECG dataset of Alberta Hospitals, we investigate the role of synthetic

data to help learn models that can classify ECG abnormalities of CPSC 2018

ECG dataset. We focused on the comparison of the model’s performance

under different numbers of Alberta β-VAE generated ECGs, over-sampling

of ECGs, and addition of new ECGs obtained from the Alberta Hospitals

Dataset. Figure 4.5 shows the mean F1 score (%) differences between various
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Table 4.5: The pairwise differences between ABVAE Gen STE and
CPSC OS STE models. ’ABVAE Gen STE’ represents the experiment
with 1072 Alberta VAE generated ECGs with STE abnormality, while
’CPSC OS STE’ refers to the negative control experiment with 1072 over-
sampled ECGs with STE abnormality from the CPSC dataset. This table
compares the performance of these two models in classifying various ECG
abnormalities. Each row corresponds to a different ECG label (e.g., SR,
AFIB). The ’mean F1’ column shows the average difference in F1 scores be-
tween the two models across 10,000 bootstrap samples. A positive mean indi-
cates that the ABVAE Gen STE model generally performed better than the
CPSC OS STE model for that label, while a negative mean suggests the oppo-
site. The ’CI upper’ and ’CI lower’ columns show the upper and lower bounds
of the 95% confidence interval for these mean differences. A confidence interval
not including zero signifies a statistically significant difference in performance
between the two models for that label.

Label mean F1 CI upper CI lower
SR 0.0187 0.0286 0.0088
AFIB -0.0172 -0.0118 -0.0226
1-AVB 0.0268 0.0349 0.0188
LBBB -0.0003 0.0079 -0.0084
RBBB 0.0060 0.0098 0.0022
PAC -0.0390 -0.0231 -0.0549
PVC 0.0402 0.0519 0.0285
STD -0.0729 -0.0621 -0.0836
STE 0.0016 0.0328 -0.0296

data augmentation approaches and the original, non-augmented CPSC model

(CPSC NA) for each label. We found that Alberta β-VAE generated ECGs

with STE abnormality not only were able to improve the model’s performance

(F1 score) on the STE label of the test set but also improve the model’s

performance on 4 other labels. The performance of oversampling the STE

label also improved the model’s performance of the STE label, but its positive

effect on the performance of other labels was less than β-VAE generated data.

For the STE label, among Alberta dataset β-VAE generated ECG data and the

addition of Alberta original ECG data, the Alberta original ECGs improved

the model’s performance of the STE label by ∼9 %, while the Alberta β-VAE

generated ECGs improved it by ∼5 %. We assume this lower performance

(of Alberta β-VAE generated ECGs compared with the AB original ECG
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Table 4.6: The pairwise differences between AB Orig STE and CPSC OS STE
models. ’AB Orig STE’ indicates the positive control experiment with
1072 real ECGs with STE abnormality from the Alberta dataset, while
’CPSC OS STE’ refers to the negative control experiment with 1072 over-
sampled ECGs with STE abnormality from the CPSC dataset. This table
compares the performance of these two models in classifying various ECG ab-
normalities. Each row corresponds to a different ECG label (e.g., SR, AFIB).
The ’mean F1’ column shows the average difference in F1 scores between the
two models across 10,000 bootstrap samples. A positive mean indicates that
the AB Orig STE model generally performed better than the CPSC OS STE
model for that label, while a negative mean suggests the opposite. The
’CI upper’ and ’CI lower’ columns show the upper and lower bounds of the
95% confidence interval for these mean differences. A confidence interval not
including zero signifies a statistically significant difference in performance be-
tween the two models for that label.

Label mean F1 CI upper CI lower
SR -0.0409 -0.0306 -0.0513
AFIB 0.0056 0.0106 0.0005
1-AVB 0.0407 0.0487 0.0328
LBBB -0.0423 -0.0324 -0.0522
RBBB 0.0055 0.0093 0.0016
PAC -0.0498 -0.0335 -0.0661
PVC 0.0276 0.0397 0.0156
STD -0.0038 0.0062 -0.0138
STE 0.0444 0.0752 0.0135

data) is because the reconstructed ECGs were not perfect and there was some

information loss. However, this reduction might be acceptable, as it means

the ECGs used do not compromise the patients’ privacy.

The beneficial effect of ECG data generation on the model’s performance

was previously introduced by other studies, which used generative adversar-

ial networks (GAN) to generate synthetic ECG data. Wang et al. [56] used

a modified version of GAN called auxiliary classifier generative adversarial

network (ACGAN) to generate synthetic data. Their method requires first

identifying the R peaks of the signal and concatenation of 5 generated heart-

beats as a sample (12 × 1500, where the first number shows the number of

lead, and the second number represents the number of data points). They

used the CPSC 2018 dataset, where they segmented the original ECG data
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into shorter lengths that resulted in 13754 samples rather than the original

6877 samples. Then, they selected 50 instances from each label as a test set.

These generated ECG data improved the performance of the classifier in the

test set for all labels, compared with models that were trained with no data-

generated ECG. Since they segmented the original dataset into short lengths,

we cannot directly compare our classifier performance with this study. Others

also used GAN-based methods to generate synthetic ECG data and observe

an improvement of data generation over their baseline model using other ECG

datasets [34] [64].

There are some limitations associated with our study. While our β-VAE model

was able to learn the 12-lead signals, the predictive ability of these learned em-

beddings was lower than 22 ECG Global Measurements. The focus needs to

be shifted to finding algorithms that can better encode ECG domains. To

enhance the encoding of ECGs, one approach could be the development of a

multi-output architecture. In such a design, one output would focus on the

unsupervised task of reconstructing the original signal, while another output

would utilize the intermediate representation for supervised multi-label clas-

sification. This multi-output approach aims to enhance the embeddings by

ensuring they are informative for both signal reconstruction and diagnostic

classification. Successfully implementing this architecture could lead to em-

beddings with richer representations, potentially improving their effectiveness

in various downstream tasks such as survival prediction.
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Figure 4.5: Mean F1 score (%) differences between various data augmentation
approaches and the original real CPSC model for each ECG label. The x-axis
categorizes the models compared against the non-augmented baseline model
(CPSC NA), while the y-axis lists the ECG labels. The numbers displayed
indicate the magnitude of performance improvement or degradation for each
label. Each row in the figure corresponds to a different ECG label, such as SR
or AFIB. The numbers represent the average difference in F1 scores between
the augmentation approach and the CPSC NA model across 10,000 bootstrap
samples. A positive mean F1 indicates better performance than the CPSC NA
model for that label, while a negative mean suggests lower performance. The
statistical significance of these differences was evaluated based on the 95%
confidence intervals. If a confidence interval does not include zero, it indicates
a statistically significant difference in performance between the augmentation
approach and the CPSC NA model for that label. Results marked with ’NS’
indicate that the performance difference was not statistically significant.)
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Chapter 5

Supervised ECG features
outperform knowledge-based
and unsupervised features in
individualized survival
prediction

Heart abnormalities are one of the leading mortality causes in the world. In

2020, 19.05 million individuals died globally due to heart disease [54]. By iden-

tifying patients who are at a higher risk, we anticipate that we will be able

to reduce the number of fatalities and related healthcare expenses. Addition-

ally, this approach may help to direct limited resources to patients who have

a greater chance of being treated. Electrocardiograms (ECGs) are a valuable

and routinely collected measurement of heart health and have been successfully

used along with age and sex to predict 1-year mortality with good results [52],

suggesting ECGs contain the information needed for mortality prediction [43]

Traditional risk assessment methods, such as the Cox Proportional Hazard

model [10], offer time-independent risk scores. Models like those proposed by

Gail et al. [13] provide single-time survival probability (i.e, the probability that

a woman will develop breast cancer within 5 years based on its characteristics),

and Kaplan-Meier method [26] estimates a population-level survival curve,

which, while valuable, gives an average survival probability for a broad group

of individuals. However, neither can offer individualized, time-dependent sur-
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vival distributions. As highlighted by Haidar et al. [17], there is a need for

models that can estimate individual survival distributions (ISDs), since these

distributions provide more information for explaining an individual’s survival

compared to single point estimates. Researchers developed models such as the

Kalbfleisch-Prentice extensions of the Cox (Cox-KP) [25], the elastic net Cox

(Coxen-KP) [60], and Multi-task Logistic Regression (MTLR) [63] to estimate

Individual Survival Distribution (ISD) [17].

To learn a model that can estimate patient’s ISD using that patient’s ECG,

we can use two general approaches; (1) an end-to-end ISD model (deep or shal-

low) that uses raw ECG signals as input, and (2) High-level features/embeddings

of the ECG signal, derived from intermediate supervised tasks, are utilized as

input for learning an ISD model. In the latter approach, the ECGs are en-

coded into a lower dimension while retaining sufficient important information

about the ECGs. This can be achieved through supervised, semi-supervised,

unsupervised machine learning, or knowledge-based methods. In the case of

supervised feature extractor models, the algorithms are learned for a partic-

ular task, such as multi-label classification. These algorithms produce ECG

encodings (features), typically using deep learning models like Inception [53]

or ResNet [19]. These encodings can help estimate patient-specific ISD. How-

ever, it is not guaranteed that these features, optimized for these various tasks,

will produce an more accurate ISD. Unsupervised machine learning techniques

such as autoencoder (AE) or variational autoencoder (VAE) can encode ECGs

into lower-dimensional features. However, there is no guarantee of good per-

formance in producing more accurate ISD, similar to the limitations with su-

pervised extracted features obtained from a different supervised task.

An alternative approach for encoding ECGs is through time series analysis,

which produced global features during ECG data collection. These methods

use time series techniques to convert ECGs into features, however, the features

that are used are limited (i.e. QRS duration and PR interval). Models trained

on these knowledge-based features are generally less accurate than supervised

or unsupervised methods, but the models are easier to interpret as features

have physical meaning. In this chapter, we will evaluate the effectiveness of
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ECG features obtained by various techniques, based on the accuracy of the

downstream patient-specific ISD.

5.1 Objectives and Methods

In this Chapter, we aim to achieve two goals (Figure 5.1-a). First, we com-

pare the performance of ISD models (COX-PH versus N-MTLR) by utilizing

ECG features obtained through various methods as discussed in Chapter 3.

Second, we compare the performance of ISD models trained on representa-

tive ECG features (supervised, unsupervised, and knowledge-based) using the

better-performing ISD model (hint: N-MTLR) as a function of development

sample size. To accomplish the second objective, we select 7 different training

sample sizes: 100, 500, 1000, 5000, 10000, 100000, and 50000. The diagram in

Figure 5.1-b shows the sample sizes utilized for each of these objectives. For

each training sample size and ECG features, we use 10 different random split-

ting training sets to train 10 models and plot the mean of the performance,

with error bars reflecting the 95% confidence interval around this mean. Here,

we provide a brief overview of the methods used for ECG feature extraction.

For a more detailed exploration of the methodologies readers are referred to

Chapter 3:

• TCN-β-VAE: This approach uses a Temporal Convolutional Network-

based β-Variational Autoencoder for unsupervised feature extraction

from the Alberta ECG dataset (Figure 5.1-d), resulting in an ECG fea-

ture size of 32.

• RN-β-VAE: This method employs a ResNet-based β-VAE architecture

to extract features from each ECG lead. Each lead is trained separately,

and the learned features are then combined, resulting in an ECG feature

size of 768 (Figure 5.1-c).

• RN-β-VAE-lead#: A method involving a ResNet-based β-VAE archi-

tecture to extract features from each ECG lead (Figure 5.1-c), resulting

in an ECG feature size of 64 for each lead.
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• RN-ICD: This utilizes a ResNet-based model pre-trained for multil-

abel classification of ICD-10 codes to generate supervised ECG features

(Figure 5.1-b), resulting in an ECG feature size of 1414.

• End-To-End Deep Learning (E2EDL): Directly trains ISD mod-

els using raw labeled 12-lead ECG signals with a ResNet architecture

(Figure 5.1-a).

• Knowledge-based ECG Features: Extracts 22 knowledge-based ECG

features for each of the 12 leads using the Philips IntelliSpace ECG Ma-

chine. This includes well-known features such as QRS duration and RR

interval (Figure 5.1-e).

To evaluate the performance of ISD models, we use three metrics: the

Concordance index (C-index), Marginal L1-loss, and Integrated Brier Score

(IBS). These metrics are described in Section 3.4.2 of Chapter 3. The higher

value of the C-index and lower value of Marginal L1 loss and IBS show a better

model performance.

5.2 Results

We evaluated the effectiveness of different ECG features in estimating ISD

using two models. Tables 5.1 and 5.2 show the results of the ISD estimated

by COX-PH and N-MTLR models using all training data (as per the first

objective), respectively. The ECG features that performed the best for each

performance metric are highlighted in bold. To set a baseline, we calculated the

median survival time for both uncensored and all patients using the Kaplan-

Meier (KM) method, and the Marginal L1 loss when the model predicted the

median survival time for all patients. If the ECG features have the sufficinet

information to estimate ISD, the model trained on these Features should have

a smaller Marginal L1 loss than the baseline models. For the COX-PH model

(Table 5.1), the performance of all unsupervised features (RN-β-VAE and

TCN-β-VAE) and knowledge-based features are close to the performance of
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Figure 5.1: Flowchart of study design: a) Objectives and experiment design of
this study. For both objectives, we use the same hold-out dataset for their eval-
uations. b) Data split of the development dataset (90% for training and 10%
for validation) and hold-out dataset. During training, the ISD models were
run for 512 epochs with an early stopping mechanism implemented. Training
will be stopped if there are no improvements in the validation set’s loss for 5
consecutive epochs.

the baseline. RN-ICD showed a significantly better performance in all met-

rics than the baseline. For the N-MTLR model (Table 5.2), the results show

that all ECG features have significantly better performance than the base-

line. Among ECG features, supervised deep learning features (RN-ICD and

E2E DL) outperformed unsupervised features (RN-β-VAE and TCN-β-VAE)

and knowledge-based features in terms of C-index and IBS. E2E DL showed a

slightly better Marginal L1 loss among all models. Among all feature sets, the

RN-ICD features stood out, being the best in two metrics, C-index (0.8058)

and IBS (0.1360), and comparable performance in terms of Marginal L1 loss.

The difference in performance between unsupervised features of RN-β-VAE

and TCN-β-VAE was negligible. It is worth mentioning that the performance

metrics for each lead individually (RN-β-VAE-lead) are lower than the 12 lead

signals (TCN-β-VAE) – see Table 5.3. For all metrics, the knowledge-based

ECG features had slightly better performance than RN-β-VAE but had per-
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formance similar to unsupervised features of TCN-β-VAE.

To achieve the second objective of our study, which is to analyze the im-

pact of the development dataset sample size on the performance of the ISD

model, we will use the N-MTLR model as it performed better compared to

the COX-PH model. The selected sample sizes are 100, 500, 1000, 10,000,

50,000, 100,000, and 500,000. We chose better-performing features from dif-

ferent categories, including supervised (RN-ICD and E2E DL), unsupervised

(TCN-β-VAE), and knowledge-based ECG features. Furthermore, we will use

age and sex features as a baseline to compare the model’s performance when no

ECG features are used. This baseline will serve as a reference point to assess

the contribution of ECG features to the learning process and enhancement of

the ISD model’s performance. Figures 5.2, 5.3, 5.4 show the result of these

experiments. For all metrics, as we added more training samples, the model’s

performance improved, as expected. The supervised ECG features of RN-ICD

outperformed other ECG features for all metrics and sample sizes. The C-

index of RN-ICD showed a clear advantage of using ECG features, even with

as few as 500 training instances compared to baseline age and sex features.

For the E2EDL, up to 10,000 training sample size, C-index was inferior than

age and sex, and started getting better up to the maximum training sample

size of 500,000. However, for all other metrics, the performance of E2EDL was

lower than other models. For knowledge-based and TCN-β-VAE, however, a

training size of 5,000 and 10,000 respectively was required to achieve higher

performance than the baseline. Improvement in performance was minimal

after 50,000 training samples for all metrics and all ECG features. Addition-

ally, knowledge-based ECG features showed slightly better performance than

TCN-β-VAE features for all training sample sizes.

5.3 Discussion

Using COX-PH and N-MTLR models and a large ECG dataset of 244,077 pa-

tients, we investigated the performance of ISD models using raw ECG signals,

and ECG features obtained from supervised and unsupervised learning as well
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Table 5.1: Survival Prediction performance using various generated embedding
approaches from ECG signals to predict time until death using the COX-
PH model. Higher values indicate better performance for the C-index, while
lower values are preferable for both Marginal L1 loss and the Integrated Brier
Score (IBS). Due to the large size of the test set ( 641,000 ECGs), multiple
experiments were not conducted due to computational constraints. However,
the range of variability in the results can be inferred to be similar to that
observed in the largest training size example from the sample size effect study,
which is based on the results of 10 independent experiments.
ECG Feature Ap-
proach

Feature
Size

Marginal
L1 loss
(days)

C-index IBS

E2E DL 12×4096 2622.83 0.50 0.22
RN-ICD 1414 1984.14 0.77 0.15
RN-β-VAE 768 2653.46 0.50 0.24
TCN-β-VAE 32 2607.17 0.51 0.23
ECG Measurement 22 2672.32 0.50 0.22
Median Survival
time from all pa-
tients = 3420

- 2749.90 - -

Median Survival
time from all un-
censored patients
= 496

- 2615.52 - -

as knowledge-based features. The results for both models showed that ECG

features obtained from the supervised ECG extractor method have higher per-

formance than using raw ECG signals as well as unsupervised and knowledge-

based ECG features. However, except for Marginal L1 loss and using RN-ICD,

which had a better performance using the COX-PH model, the performance

of COX-PH was inferior to N-MTLR for all metrics(C-index, Integrated Brier

Score, and Marginal L1 loss) possibly because the former assumes a constant

hazard ratio and a linear relationship between the features and the log hazard,

which is unrealistic. The N-MTLR model is more appropriate as it is not make

such assumptions.

The supervised ECG features (RN-ICD) achieved superior performance

when compared to other ECG features. Considering the direct relationship

between morbidity and mortality, it is clinically sensible to incorporate di-

61



Table 5.2: Survival Prediction performance using various generated embedding
approaches from ECG signals to predict time until death using the N-MTLR
model. Higher values indicate better performance for the C-index, while lower
values are preferable for both Marginal L1 loss and the Integrated Brier Score
(IBS). Due to the large size of the test set ( 641,000 ECGs), multiple exper-
iments were not conducted due to computational constraints. However, the
range of variability in the results can be inferred to be similar to that observed
in the largest training size example from the sample size effect study, which is
based on the results of 10 independent experiments.
ECG Feature Ap-
proach

Feature
Size

Marginal
L1 loss
(days)

C-index IBS

E2E DL 12×4096 2021.94 0.75 0.16
RN-ICD 1414 2152.02 0.81 0.14
RN-β-VAE 768 2145.15 0.70 0.17
TCN-β-VAE 32 2106.28 0.72 0.17
ECG Measurement 22 2121.62 0.73 0.17
Median Survival
time from all pa-
tients = 3420

- 2749.90 - -

Median Survival
time from all un-
censored patients
= 496

- 2615.52 - -

agnostic predictions as features for training accurate survival models. This

suggests that ECG features obtained from an intermediate supervised task

are a better candidate as ECG features for training ISD models. This finding

is aligned with the study of Popescu et al. [41], which developed a deep learn-

ing algorithm that leveraged patient covariates, including some ECG global

features, and 3D cardiac magnetic resonance images, to predict ISDs for the

task of sudden cardiac death in patients with ischemic heart disease. The

model achieved C-index and IBS of 0.83 and 0.12, respectively, for their in-

ternal validation set. Other studies in the literature have primarily focused

on predicting single-time mortality (such as 1-year mortality prediction using

ECG signals) [52].

The results indicate that the performance of unsupervised ECG features

(RN-β-VAE and TCN-β-VAE) and knowledge-based features are similar, sug-
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Table 5.3: Survival Prediction performance using various ECG lead’s embed-
ding to predict time until death using the N-MTLR model. Higher values
indicate better performance for the C-index, while lower values are preferable
for both Marginal L1 loss and the Integrated Brier Score (IBS). Due to the
large size of the test set ( 641,000 ECGs), multiple experiments were not con-
ducted due to computational constraints. However, the range of variability in
the results can be inferred to be similar to that observed in the largest training
size example from the sample size effect study, which is based on the results
of 10 independent experiments.
Embedding Ap-
proach

Feature
Size

Marg. L1
loss (days)

C-index IBS

RN-β-VAE-lead#1 64 2176.09 0.70 0.17

RN-β-VAE-lead#2 64 2179.39 0.70 0.18

RN-β-VAE-lead#3 64 2179.49 0.70 0.17

RN-β-VAE-lead# aVR 64 2173.28 0.70 0.17

RN-β-VAE-lead# aVL 64 2174.60 0.71 0.17

RN-β-VAE-lead# aVF 64 2173.15 0.71 0.17

RN-β-VAE-lead# V1 64 2170.17 0.70 0.17

RN-β-VAE-lead# V2 64 2165.49 0.70 0.17

RN-β-VAE-lead# V3 64 2167.94 0.71 0.17

RN-β-VAE-lead# V4 64 2194.94 0.70 0.18

RN-β-VAE-lead# V5 64 2160.49 0.71 0.17

RN-β-VAE-lead# V6 64 2181.72 0.69 0.18
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Figure 5.2: C-index of N-MTLR model as a function of training sample size
using various supervised, unsupervised, and knowledge-based ECG features.
The points represent the mean value over the 10 experiments, and the bars
represent confidence intervals.

gesting there is no clear advantage in using knowledge-based features over

unsupervised, even though knowledge-based is expected to be more informa-

tive. However, the trained unsupervised architecture can be used to generate

synthetic ECGs that might be beneficial for other tasks. Also, there is no sig-

nificant difference between the performance metrics of features obtained from

different single leads (RN-β-VAE-lead# features), suggesting that any of the

leads can be used to train the ISD model with no significant compromise on

the performance metrics.

Supervised ECG features outperformed other ECG-obtained features at a

smaller sample size when considering training sample size. Only a training

sample size of 500 was required for supervised ECG features to achieve better

performance than using age and sex alone. The performance of E2EDL was

lower than all other models and started improving with a larger training sample

size. For unsupervised and knowledge-based features, a training sample size

of 5000 was needed to achieve higher performance than using only age and

sex features. Additionally, we did not observe any significant improvement in

the ISD model’s performance using training sizes beyond 50,000 samples for

all ECG features.

Here, unsupervised ECG features and knowledge-based features had a com-
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Figure 5.3: Marginal L1 loss of N-MTLR model as a function of training
sample size using various supervised, unsupervised, and knowledge-based ECG
features. The points represent the mean value over the 10 experiments, and
the bars represent confidence intervals.

parable performance for training ISD models. However, more recently devel-

oped unsupervised algorithms and/or semi-supervised training of such models

(including multi-task learning during the VAE training) could lead to un-

supervised ECG features that might outperform knowledge-based features to

estimate patient-specific ISD. Note that our ISD models, trained on supervised

ECG features, demonstrated superior performance. We therefore expect that

this hybrid approach will enrich the embeddings, making them more effective

in estimating ISDs.

5.3.1 Limitations

Our results should be considered in light of certain limitations. First, our

study has explored only a specific set of feature extraction and embedding

methods, as well as ISD methods. Additionally, we have utilized a selected set

of labels for supervising the supervised feature extractor, in our case, medical

diagnoses, given their direct implications on mortality. This was made possible

due to our unique dataset, which includes a population-scale linkage between

over 1 million digitized ECGs and more than 1000 wide-ranging ICD clinical

diagnoses. However, it is important to note that these ECGs were generated

by machines from the same manufacturer, which might limit the generalizabil-
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Figure 5.4: IBS of N-MTLR model as a function of training sample size using
various supervised, unsupervised, and knowledge-based ECG features. The
points represent the mean value over the 10 experiments, and the bars repre-
sent confidence intervals.

ity of our findings to ECGs from other systems. Furthermore, our prognostic

models may be influenced by the inclusion of deaths unrelated to clinical fac-

tors, such as those resulting from traffic accidents or homicides. When our

paper was submitted, we could not find any publicly available ECG datasets

containing mortality information (or other temporal events) for use as labels

in ISD tasks. Prominent ECG datasets, such as PhysioNet [14], MIT-BIH [38],

and PTB [7], do not include death-related data linked to ECGs. However, it

is possible that more comprehensive clinical datasets that include ECGs, like

MIMIC [15], may become available in the future. These datasets could serve

as benchmark data for ECG-based ISD tasks and external validation.
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Chapter 6

Conclusions and Future
Perspectives

Electrocardiogram (ECG) signals are widely used in clinical settings and con-

tain informative measurement of a heart’s health. In this thesis, we used the

Alberta Hospital ECG Dataset, consisting of more than 1.6 million ECG col-

lected from 244,077 patients, for two objectives: (1) To explore ways to build a

stronger classifier using ECG signals to classify ECG abnormalities. (2) To ex-

tract high-level features from ECG traces, through various approaches includ-

ing supervised with clinical diagnoses, unsupervised approaches, or knowledge-

based ECG features and their efficacy in estimating patient-specific ISD. Chap-

ter 4 explored the first objectives, where we use unsupervised β-VAE algo-

rithms to generate synthetic ECG signals, based on Alberta ECG dataset with

specific abnormalities. We then added these synthetic ECG signals into the

public dataset of China Physiological Signal Challenge 2018 Dataset (CPSC

2018). We found that a learner trained on this extended dataset performed

better than one trained on only the original data for ECG classification. It is

important to note some potential differences between the Alberta ECG Dataset

and the CPSC 2018 Dataset. Firstly, the demographic characteristics of the

two datasets may differ, as they were collected from distinct geographical lo-

cations (Canada and China, respectively), potentially reflecting variations in

patient ethnicity, lifestyle, and environmental factors. Additionally, the Al-

berta ECG Dataset covers a broader range of cardiac conditions (15 possible

labels) compared to the 9 conditions in the CPSC 2018 Dataset, indicating a
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possible difference in clinical characteristics of the patient populations. Fur-

thermore, while both datasets utilized 12-lead ECGs, variations in the specific

data collection protocols and equipment could influence the ECG signals.

Chapter 5 focused on the second objective, where we first extracted ECG

features using different methods: (1) supervised with clinical diagnoses, (2)

unsupervised approaches, or (3) knowledge based ECG features. Using these

ECG features, along with age and sex, models were trained to estimate patient-

specific individual survival distributions (ISD) to predict time to death. The

results showed that supervised learning approaches produced ECG features

that can estimate patient-specific ISD curves better than ECG features ob-

tained from unsupervised and knowledge-based methods. Supervised ECG

features required fewer training instances (as low as 500) to learn ISD models

that performed better than models that only used age and sex. The results

reported here may assist researchers to build stronger classifiers for ECG use

cases as well as assisting in selection of the most appropriate method for ex-

tracting high-level features from ECG signals to estimate patient-specific ISD

curves.

6.1 Future Directions

In this thesis, we showed the beneficial effect of synthetic ECGs. But there are

still some interesting research directions that can be explored. We can divide

these future research into two main categories: exploration and improvement

of synthetic ECG data, and ECG data privacy. In this thesis, we utilized β-

VAE algorithms to generate synthetic ECG data. However, we did not explore

other generative models like Generative Adversarial Networks (GANs). A

comparative study between β-VAE and GANs could yield valuable insights

into which method is more effective for data augmentation in the classification

of ECG abnormalities. In addition of other data generation approaches, the

privacy aspect of synthetic ECGs is another critical area that needs further

exploration. We need to ensure that synthetic ECGs cannot be traced back

to individual patients. We could use methods like differential privacy to add
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statistical noise to the synthetic ECGs, thereby making it difficult to identify

the original source. However, we need to make sure that the added noise does

not significantly reduce the usefulness of synthetic ECGs for downstream tasks,

such as the classification of ECG abnormalities. Also, we need to validate that

the synthetic ECGs retain sufficient information about the original ECGs, such

as QRS duration distribution and heart rate.
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