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Abstract

Monte Carlo Tree Search (MCTS) is a extremely successful search-based frame-
work for decision making. With an accurate simulator of the environment’s
dynamics, it can achieve great performance in many games and non-games
applications. However, without a perfect simulator, the performance degra-
dation is so high that it can make the framework almost useless. Therefore,
we propose two methods to improve the performance of MCTS in such a sce-
nario: Deep Q-Network MCTS (DQMCTS) and Uncertainty Adapted MCTS
(UAMCTS). In the former, we use the model-free algorithm DQN to evaluate
the leaf nodes in the search tree. Although this approach shows promising
improvement over baseline MCTS, our results show that there is still more
room for improvement. In UAMCTS, we take a more fundamental approach
and change the behavior of MCTS’s components to directly take the model
incorrectness into account. Our results show that with an accurate measure
of model incorrectness, UAMCTS can achieve the performance of MCTS with
a perfect simulator in some cases. Even with a poor measure of model error,

UAMCTS can still outperform plain MCTS with an imperfect simulator.
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Preface

Part of this thesis has been submitted to [JCAI-ECAT 2022 co-authored with
Farnaz Kohankhaki, Martin Miiller, and Ting-Han Wei. The proposed meth-
ods were developed in close collaboration with Farnaz Kohankhaki.

DQ-Expansion, UA-Selection, and UA-Backpropagation were implemented
by myself. The other methods: DQ-Simulation, UA-Expansion, and UA-
Simulation, were developed by Farnaz Kohankhaki. We discussed our results
and combined these methods and created the final agents UA-MCTS and DQ-
MCTS.
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Chapter 1

Introduction

The Monte Carlo Tree Search (MCTS) framework [5] approaches sequential
decision-making problems by selective lookahead search. It manages the bal-
ance of exploration and exploitation with techniques such as UCT [21]. A
well-known combination of MCTS with machine learning is the famous Al-
phaGo program [39]. MCTS has also shown great results in other multiplayer
games such as Chess [13], Othello [31], Shogi [36], Blockus Duo [37], and Hex
2, 10]. The method has also been used for single player games such as Sudoku
[8] and Solitaire [7] and real time games such as Ms. Pac-Man [48, 49]. MCTS
has shown further great successes in non-game applications such as security
systems [47], mixed integer programming [34], scheduling [29], and physics
simulations [27].

In all these applications, a perfect simulation model of the problem domain
is available, in which search steps can be efficiently performed. However, in
many practical applications, only an imperfect model is available to the agent.
Yet such a model can still be useful. The main goal of this thesis is to improve
MCTS for this setting.

Model uncertainty or model error has been studied a lot in the field of deep
learning. There is much research on how to capture model uncertainty using
Bayesian techniques [17]. Examples are model ensembles [24], Monte-Carlo
dropout [15], and heteroscedastic regression [32]. Another research area that
utilizes imperfect models is model-based reinforcement learning (MBRL).

In MBRL, the agent can build its own model through interactions with



the environment, or it can make use of a given model. The model, when used
for lookahead search, can either be for planning or for producing more accu-
rate training targets [41]. It can also be used to generate simulated training
samples for better sample efficiency [44]. If the model is learned, it may be
inaccurate for many reasons, including stochasticity of the environment, insuf-
ficient training, insufficient model capacity, and non-stationary environments.
Consequently, there is a rich body of research on uncertainty in MBRL.
While previous approaches to using search with imperfect models exist
[50, 51], surprisingly, to the best of our knowledge, there is no prior work
that directly adapts MCTS to deal with model uncertainty. In this thesis, we

propose two approaches to this problem.

1.1 Contributions

Here is the list of our contributions:

e We empirically show a significant drop in MCTS performance under

model error. (Chapter 3)

e We introduce our first adaptation, Deep Q-network MCTS (DQMCTS),
which uses a learned DQN value function as a heuristic to deal with

model uncertainty. (Chapter 4)

e We introduce our second adaptation, Uncertainty-Adapted MCTS (UAM-
CTS), which uses a method to capture the uncertainty and then diverts

the search from the uncertain parts. (Chapter 5)

e We slightly change three deterministic MinAtar environments [54] to
study search with a corrupt model (Chapter 3) and compare the per-
formance of our proposed methods, DQMCTS and UAMCTS with two
MCTS baselines. (Sections 4.3, 5.5)



Chapter 2

Background

In this chapter we explain the background needed to understand our approach.

2.1 Markov Decision Processes (MDP)

MDPs are a formalization of online sequential decision making in which making
a decision affects future situations [44]. In this work we focus on deterministic
MDPs which can be be specified by a tuple (S, A, M, R,v). S and A are finite
state and action spaces respectively. R is a deterministic function mapping a
pair (s,a) with s € §,a € A to a scalar reward. At each time step t, the agent
observes a state s; € S and a scalar reward r; from the environment. Then at
the same time step the agent chooses an action a; € A to take, which affects
the next time step’s state, s;;1 € S and reward, r;,1. The agent follows a

traJeCtory S0, Ao, 71, S1, A1, 72, 82,042,713, . ..

= —

state reward action

5, F a,
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Figure 2.1: Agent and environment interaction loop [44]

The agent and environment interaction loop are shown in Figure 2.1. M

is the transition dynamics, a deterministic function & x A — S showing the
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next state given a state and action pair, M (s;, a;) = sp11 . 0 <y < 1 is the
discount rate which determines the importance of the future rewards. The
goal of an agent acting in an MDP is to maximise its reward. Reinforcement

Learning and Search methods are two closely related approaches to solve an

MDP.

2.2 Reinforcement Learning (RL)

In Reinforcement Learning, the agent interacts with the environment to learn
how to act. The environment can be formulated by an MDP. The goal of an
agent is to maximize the sum of rewards G;, which we call return, described

in Equation 2.1.

oo

Gtiz Tt+k+1 (21)

k=0

In episodic tasks, the environment terminates after a finite number of time
steps so the return is bounded. In continuing tasks, the environment doesn’t
terminate. With an infinite number of time steps, the sum in Equation 2.1 is
not bounded. Thus, we should use the discounted sum of rewards, shown in

Equation 2.2 (0 <y < 1).

Gtiz ’Yth+k+1 (2.2)

k=0
In the following subsections we introduce the concepts of policy and value

function and two types of general RL algorithms, model-free and model-based

methods.

2.2.1 Policy and Value Function

A Policy determines the behaviour of the agent and the corresponding value
function estimates the return following the policy. A policy 7: S x A — [0, 1]
is a mapping from states to actions. m(a|s) is the probability of choosing action

a in state s when following 7.



The value function of state s under policy 7, v,(s), is the expected return
from state s when following policy w. This is called the state value function

shown in Equation 2.3.

va(5)=E,[G, | S, = 5] = E,, [i S s} (2.3)

k=0
Similarly, a state-action value function, q(s,a), is the expected return of

taking action a in state s and following policy 7 from there. (Equation 2.4).

4x(8,0)=E;[G | St =5, A = a] = [Zy Tivki1 | St = s, At—a](24)

To calculate the value function for a policy 7 we use a fundamental recursive

relation called the Bellman equation shown in Equation 2.5 [44].

ve(8) = Zw(a|5) {R(s, a) + v (M(s, a))} , foralls e S (2.5)
acA

We can write a similar equation for state-action value functions (Equation

2.6).

Gr(s,a) = R(s,a +'yz d'|M(s,a))g-(M(s,a),d’), forall s € S,a € A
a’c€A
(2.6)

Next we introduce optimal policies and value functions. A policy 7 is
better than or equal to policy 7’ if and only if for all states s € S, v.(s) >
v (s). A policy for which its value function is greater than or equal to all
other policies for all states is called an optimal policy 7* [44]. The value
function corresponding to an optimal policy is called the optimal value function
(Equation 2.7). There is at least one such policy. The optimal value function

is unique, but more than one optimal policy might exist for an MDP.

Vi(s) = max V()
q«(s,a) = mgxqw(s, a) (2.7)
5



If the policy in the Bellman equation is optimal, we obtain the Bellman op-
timality equations (Equation 2.8). They can be used to directly calculate the

optimal value functions [44].

v,(s) = max | R(s,a) + yv.(M(s,a)) |, forall s € S

q«(s,a) = R(s,a) + fymz,ixq*(M(s,a), a'), forallse S,ae A (2.8)

2.2.2 Model-Free RL

In model-free methods, the agent does not have any access to the dynamics of
the environment M. The only way for the agent to learn is through interactions
with the environment. Omne group of learning methods is called Temporal-
Difference (TD) learning [44]. TD methods use the Bellman equations but
instead of having access to the summation over all states, they use individual
transition samples to incrementally update the value function.

One famous TD method that uses Bellman optimality equations (Equations
2.7 and 2.8) to calculate the optimal policy is Q-learning [52]. A Q-learning
agent starts with a set of random values for all state-actions and then updates
the state-action value function with each transition sample (s,a,r,s’) using
Equation 2.9. To interact with the environment the agent chooses actions
according to an e-greedy policy coming from ¢(s,a). A greedy policy derived
from a value function always chooses an action with the highest value on the
given state. An e-greedy policy chooses a random action with probability e
and a greedy action with probability 1 — €. Usually, the value of € is high
initially, which encourages exploration in the early episodes, and over time it

decreases to exploit the better states.

q(s,a) < q(s,a) + afr + ymaxq(s', ') —g(s, a)] (2.9)

In Q-learning the agent uses a table of ¢(s,a) values to learn and update
the value function. Although using a table results in an accurate value function
there are two downsides to it. First, in real applications, the state space S can

be immensely big, making it impossible to fit all the values in a table. Secondly,
6



a large state space S requires generalizing between similar states because the
agent might not be able to visit all the states in a reasonable time. Hence, a
more practical idea it to use function approximation methods to estimate the
value function. Deep Q-Network (D@QN) is the function approximation version
of Q-learning [28]. A DQN agent approximates the value function with a
deep neural network and trains the neural network to minimize the TD loss

(Equation 2.10) using an optimization technique such as gradient descent.

TDLoss(s,a,s',r)=(r +ymax (s, a') — q(s, a))2 (2.10)

The target used in TD loss is not independent of the learning network which
makes DQN a semi-gradient method. To make the method more similar to true
gradient methods (target independent from the learner), DQN uses a target
network ¢, which is being updated with the learning network ¢ after every
fixed number of interactions f;. DQN stores the environment interactions in
a transition buffer B and at each training step the ¢ network is being trained
on a batch of data from B.

Algorithm 1 shows the pseudo code for DQN. 7, (s) is an e-greedy policy
using values from network ¢(s,a) which returns an action a for state s. The
environment has two functions: The Start function initializes the environment
and returns the initial state, and the Step function gets an action from the
agent’s policy and returns the next state s’ and reward r. B, is the size of the
mini-batch used at each training step. The function Sample(B, Bs) returns
a random mini-batch of size By from B . ) is the step size for training the
q network. Npg is the number of frames or number of interactions with the

environment.

2.2.3 Model-Based RL

In model-based reinforcement learning (MBRL) methods, the agent uses a
model M of the environment’s dynamics. Given this model, the agent does
not need to only rely on direct environment interactions to learn a good policy.

A model can be used in dynamic programming methods or real-time search

7



Algorithm 1 DQN Algorithm, from [28§]
Parameters: ¢ for the e-greedy policy. f; is the update frequency of ¢;. By is
the batch size. A is the step size for q. N is the number of frames for training.

Initialize Buffer: B « {}

Initialize Interaction Counter: 7 < 0
Randomly Initialize 0
0« 0,
s < Env.Start()
for Ny steps do
a < mg(s)
r,s' < Env.Step(a)
Store transition (s, a,r,s’) in buffer B
(S, A, R, S") < Sample(B, Bs)
if S is terminal state then
y=R
else

y =R+ ymaxa q (S, A" | 0,)

loss + (y —q(S, A «9))2
Oloss
00

Gradient Descent Update: 6 < 6 — \.
1< 1+1
Update Target:
if i = f; then
0, < 0

1+ 0




methods. In this thesis, we use the Monte Carlo Tree Search algorithm which
we explain in the next section. In this section, we discuss MBRL in general
and the use of different types of models.

If M = M, the agent has access to the true underlying dynamics of the
environment. In such cases, the agent can achieve extraordinary performances
such as AlphaGo [39]. In many cases, the agent does not have access to the M
function. In these situations the agent either has access to an imperfect model
(M # M) or it has no initial knowledge of the dynamics and has to learn a
model from scratch. One simple model-based method uses experience replay
such as in the Dyna structure [43]. A Dyna agent stores trajectories of real
experience in a buffer and later retrains its policy using the stored transitions.
Another approach to create a model is using parametric models such as neural
networks. Hasselt et al. [16] compare the performance of experience replay
and parametric models on Atari games [4].

There are many ways to train a model. We briefly explain some of them
here. Transition models are most commonly used in MBRL. Such models ap-
proximate the dynamics M of the environment: given a state and an action
they predict the next state. They can be used to generate “artificial” transi-
tions for model-free updates [14], or to simulate rollouts for heuristic search
methods [11]. In a stochastic environment, transition models can be further
classified into expectation, sample and distribution models. Distribution mod-
els return a distribution over the next state’s feature vector, sample models
return a sample of the next state’s feature vector, and expectation models re-
turn the expected feature vector of the next state given a state and an action.
Sutton et al. [45] compare expectation and distribution models when using
linear function approximation for the value function.

Another use of models are backward transition models. Such models take
a state and an action as input and predict what the previous state would be
if the agent took the given action and ended up in the given state. Chelu et
al. [12] investigate the use of backward models for credit assignment.

The last type of models that we explain briefly are abstract models. They

first transfer the state into an abstract latent space and then predict values,

9



instant rewards, or next states from the latent space [38, 40].
In this work, we focus on forward transition models which we explain in

more detail in Section 2.3.

2.3 Model Uncertainty

Learning the forward transition model can be expressed as a regression task.
An agent can use any regression method to train the model. One easy way
is to train a neural network using the least squared error as the loss function.
Assume Mg(s,a) is the model’s prediction given s and a, and 6 represents
model parameters which are the weights of a neural network. Given a buffer

of transitions B, the goal is to learn parameters 6 that minimize the loss

LO) = ) (My(s,a)— )% (2.11)

s,a,s'€B

When the agent uses a learned model, uncertainties in the model’s predic-
tion may be due to three different factors [1]. The first is the stochasticity of
the environment. Since we are learning the expectation over the next state’s
feature vector, if the environment is stochastic there is an inevitable uncer-
tainty in the model’s predictions. This type of uncertainty comes from the
nature of the environment and is irreducible. Our deterministic environments
does not have this type of uncertainty.

Another type of uncertainty is caused by insufficient capacity in the model’s
structure, which makes it unable to learn the true dynamics in principle. This
type of uncertainty can be reduced by using a more powerful model, such as
a deeper or larger network, or a more expressive activation function.

The last type of uncertainty comes from insufficient data coverage or train-
ing. Training a model takes both time and data. If the data does not represent
the whole state space or if the model is not trained sufficiently with the data,
it leads to an incorrect model. This type of uncertainty can be reduced by
gathering more comprehensive data and increasing the training time.

In the rest of this section we discuss a few related works on model uncer-

tainty.
10



CMAX and CMAX++ are search algorithms specifically designed to deal
with uncertainty [50, 51]. They work by deleting the imperfect parts of the
model from search completely. To find a solution, there needs to be at least
one viable path to a goal which does not involve states with uncertainty. As in
our work, such states are identified by comparing against the real environment
during interactions.

Many techniques quantify and use uncertainty in the context of MBRL.
Liitjens et al. [26] capture uncertainty using ensembles of LSTM (a type of
recurrent neural network) and Monte Carlo dropout, and change the behaviour
of their agent to act more cautiously in the uncertain parts by introducing a
cost function for model predictive control (MPC).

Multiple previous approaches do use uncertainty, but not as a component
of an explicit search. Selective MVE [1], AdaMVE [53], and STEVE [6] modify
the model value expansion (MVE), a model based algorithm based on model
rollouts, by taking model uncertainty into consideration and giving less weight
to uncertain rollouts. Jafferjee et al. [18] investigate the effect of model up-
dates in both forward and backward directions with an imperfect model. Lai et
al. [23] use forward and backward models in model-based policy optimization
[19], a model based actor-critic method, in order to reduce accumulative model
error while maintaining a similar update depth. Talvitie [46] designs a way to

learn the model which reduces accumulative model error in deep lookahead.

2.4 Monte Carlo Tree Search

Beside RL, another way to find a solution in an MDP is to use Monte Carlo
Tree Search (MCTS). MCTS is a search method which finds a desirable policy
by building a search tree and using random sampling [5]. MCTS has been used
in many successful works such as mastering the games of Go [39, 40], Hex |2,
10, 35], Othello [33], and Chinese Checkers [30]. It has been used in non-game
applications such as Function Approximation [25], Physics Simulations [27],

Mixed Integer Programming [34], and Mathematical Expression Generation

9].
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The MCTS process builds a tree selectively and incrementally. In each
MCTS iteration, a tree policy chooses which leaf node of the tree needs to be
visited next. The goal of the tree policy is to balance between exploration of
the less visited nodes and exploitation of the higher value nodes. The idea is to
expand the nodes that are more promising deeply, but also explore other nodes
to reduce their uncertainty. After reaching a leaf node, the search expands the
selected node or runs simulations from the selected node. The first time we
visit the selected node, one or more simulations are run to evaluate its value
using the rollout policy. The simplest rollout policy is uniform random. If
the selected node has been visited before, we expand it and add its children
to the tree, then run one or more simulations from one of the children. New
evaluations are backpropagated to all their ancestor nodes to update their
values and visit counts. Algorithm 2 shows the pseudo code for an MCTS

agent.

Algorithm 2 MCTS Framework
function MCTS(sy)

create a root node vy with state sg
for N; do

Vs <— SELECT(vp)

if N(vs) >0 then

vs < EXPAND(vy)

value < SIMULATE(S(v,))

BACKPROPAGATE (v, value)

Upest < choose the most visited child of vy

return action(vpest )

After a fixed number of iterations Ny, the agent chooses an action at the
root leading to the child with the highest number of visits. Sections 2.4.1-2.4.4

explain these four components in more detail.

12



2.4.1 MCTS Selection

The Select function starts from the root of the tree and repeatedly chooses a
child node with best UCT value until it reaches a leaf node. It then returns
that leaf node. For node v, Q(v) is the sum of rewards observed from v and
N(v) is the number of times v has been visited. Par(v) is the parent of node

v for which the best child is selected. The UCT value is defined as follows:

verw) = W 4. i <N(PW(U>)>

N(v) N(v)

The first term is the exploitation term and the second term is the explo-
ration term. c is the exploration constant. Figure 2.2 shows an example of
choosing between two child nodes with different values and number of visits.
A greedy policy would explore the upper node with its higher value, but UCT

chooses the lower value node due to its low number of visits.

Figure 2.2: An example for selecting a child node in MCTS Selection (c = v/2).

Algorithm 3 shows the pseudo code for the select function.

Algorithm 3 Selection Algorithm
function SELECT(v)

while v is expanded do

Q(v;) InN(v)
N T\ Mo

v 4 argmax
v;€Ch(v)

return v

13



2.4.2 MCTS Expansion

The FEzpand function adds all children of a node to the tree using the model
of the environment M. Expansion is responsible for growing the search tree.
S(v) is the state corresponding to node v and R(v) is the reward when entering

this node. Algorithm 4 shows the pseudo code for the expand function.

Algorithm 4 Expansion Algorithm
function EXPAND(v)

for a; € A do
si, 1 — M(S(v), a;)
create a node v; with state s; and reward r;
N(v;) <0
Qv;) < 0

return a random child of v

2.4.3 MCTS Simulation

When the search reaches a leaf node for the first time, it needs to estimate its
value. The simulate function estimates a leaf node’s value by doing Ng random
rollouts (Ng > 1) from that node until a depth Dg, and returns the average

of the rollout estimates. Algorithm 5 shows the pseudo code for simulate.

2.4.4 MCTS Backpropagation

This last step of the search loop updates the values and visit counts of nodes
along the search path. The backpropagate function starts from a leaf node and
updates the values and visit counts of its ancestors until it reaches the root of
the tree. Let Par(v) be the parent of node v. We define Par(root)=NULL.

The pseudo code for the backpropagation process is shown in Algorithm 6.

14



Algorithm 5 Simulation Algorithm

function SIMULATE(s, depth)
for i < 1 to Ng do
g; < RoLLouT(s)
a; +1/Ng
Ns

return ) «; -g;
i=1

function RoLLouT(s)

count < 0

rewards < (

discount < 1

while s is not terminal and count < Dg do
choose a random action a from A
s,1 < M(s,a)
count <— count + 1
rewards < rewards + discount - r

discount <— discount - vy

return rewards

Algorithm 6 Backpropagation Algorithm

function BACKPROPAGATE(v, value)
while v is not NULL do
N(v) < N(v)+1
Qv) + Q(v)+ value
value < value - v + R(v)

v < Par(v)

15



Chapter 3

MCTS Performance Drop
Under Model Corruption

In this chapter we investigate the performance drop in MCTS when using an
imperfect model. We experimented on the deterministic environments from
the MinAtar testbed [54]: Space Invaders, Freeway, and Breakout. In order
to investigate the effect of an imperfect model on the performance of MCTS,
we modified the true dynamics M of each environment. Each game is slightly
different from its original version but the agent only has access to the original
game M. This type of model corruption is motivated by robotics tasks. For
instance, in Vemula et al. [51] the simulator knows only the perfect dynamics,
but one of the robot’s arms is broken, which slightly changes the real dynam-
ics. We introduce our modified environments in this chapter and this type of

environment corruption is used in the rest of this thesis (Chapters 4 and 5).

3.1 Space Invaders

A snapshot of the Space Invaders environment is shown in Figure 3.1. The
goal of the game is to eliminate the enemies and avoid the shots from them.
The gray square at the bottom is the agent and the green rectangle (4 x 6) at
the top are the enemies. The size of the screen is 10 x 10. At each step the
agent has four actions {left, right, none, fire}. The pink and white squares
show the agent’s and the enemies’ bullets respectively. If the agent’s bullet

hits one of the 24 enemies, it is eliminated and the agent receives a reward of
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~+1. If the enemies’ bullet hits the agent or if all the enemies are eliminated,
the game terminates. The enemies move from left to right and drop down
when they reach the side of the screen and change direction to the other side.
In our modification to this game, at columns 2, 3, 4, 5, and 6 the agent’s “fire”
action does not work and is equal to the “none” action. The modification
is included in the true model M. However the corrupted model M is not
aware of this modification and only includes the dynamics from the original

game where “fire” always works. To investigate the performance drop, we

Space Invaders

Figure 3.1: A snapshot of the Space Invaders environment. The gray square
and the green rectangle represent the agent and the enemies respectively. The
pink and white rectangles are the agent’s and enemies’ bullets respectively.

used two independent agents: One has access to M and one only has access
to M. The former is labeled “True” and the latter is labeled “Corrupted” in
the following figures. We investigated the performance for different simulation
depths Dg € {0, 5,10, 20,50} and number of iterations N; € {4, 10, 25,50, 100}
in two separate experiments. In the former N; = 10 and in the latter Dg =
10, and in both cases Ng = 10. In this experiment and all the following
experiments in this work we performed 30 independent runs and the error
bars show the standard deviation.

Figure 3.2 shows the results of these experiments. As expected, for each
simulation depth Dg, the agent using M had a lower performance than the

agent using M. Increasing Dg improved the performance of the corrupted
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agent until Dg = 20. Although the true agent’s performance improved a
lot from Dg = 20 to Dg = 50, the corrupted agent did not have much im-
provement due to the model error. This suggests that deeper rollouts with an
imperfect model do not improve the performance. Similarly, the true agent’s
performance improved with more number of iterations but the corrupted agent

did not improve after Ny = 10.
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Figure 3.2: The performance drop of MCTS under model corruption in the
Space Invaders environment for different simulation depths Dg and number of
iterations Nj.

3.2 Freeway

The Freeway environment is shown in Figure 3.3. The goal of the game is to
reach the top of the 10 x 10 screen without getting hit by any of the moving
objects. The gray square at the bottom of the screen is the agent. At each
step it has three actions {up, down, none}. In each row, a 2 x 1 rectangle
represents a moving object. The green square is the head of the object. The
objects move in their own row with a fixed speed in the direction in which
their head is pointing. When a moving object reaches the border of the screen
it reappears on the other side. If the agent reaches the top of the screen, the
game terminates with a reward of +1. If the agent hits one of the objects,
the game terminates with a reward of 0. In our modification to this game, at
rows 1, 2, 3, 5, 6, and 7 the effect of the “none” action is equal to the “up”

action. The agent cannot stop in these rows and has to plan ahead to either
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pass them quickly or step back. This modification is only added to the true
model M but not to M.

Figure 3.3: A snapshot of the Freeway environment. The gray square is the
agent and other rectangles are the moving objects.

We tested two MCTS agents, one using M and one using M. The modifi-
cations make this environment much more difficult to solve and it needs deeper
search than Space Invaders. While in Space Invaders the agent cannot shoot
in some states, nothing harmful happens even if the agent continues shooting
from those states. In Freeway, the agent now has to move in many states, and
these states are not avoidable because the agent has to pass them in order to
reach the top and get a reward. Thus, the agent needs to plan ahead and start
going up when the path is free until the next position that the agent can stop
in.

We investigated the performance for different simulation depths Dg €
{0,5,10,20,50} and number of iterations N; € {3,20,50,100,200}. In the
former we used more iterations in this more complex environment, N; = 100
and the latter Dg = 50. In both cases Ng = 10.

Figure 3.4 shows the results. Due to model error the increased simulation
depth couldn’t help the agent after Dg = 5 and even made the performance
worse. Increasing the number of iterations also did not improve the perfor-

mance of the corrupted agent after N; = 100.
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Figure 3.4: The performance drop of MCTS under model corruption in the
Freeway Environment for different simulation depths Dg and number of iter-
ations Nj.

3.3 Breakout

The breakout environment is shown in Figure 3.5. The goal of the game is to
hit the bricks at the top of the screen with a moving ball. The gray square at
the bottom of the screen is the agent. There is a 3 x 10 brick wall at the top of
the screen shown in white. The two connected green and pink squares are the
moving ball. The green square shows the head. At each step, the agent has
three actions {left, right, none}. When the ball hits the agent it either bounces
back at the same angle, or reflects at the exact opposite angle, depending on
the agent’s movement. If the agent moves towards the ball when hitting it, the
ball bounces back at the same angle, but if the agent stands still when hitting
it, the ball gets reflected at the opposite angle, like a mirror. When the ball
hits any of the bricks, it reflects and that brick disappears with a reward of
+1. If the ball reaches the bottom of the screen or if all the bricks disappear,
the game terminates. Our modification to this game is that when the agent
is at columns 2 or 4 the reflection does not work, the ball can go through the
agent in those positions, and the game is over. To avoid this, the agent has to
plan ahead and try to control the direction of the ball. This modification also
makes the problem much more difficult, even harder than Freeway. In this
environment it is much harder to avoid the “bad” states and it needs more
thorough search. The agent needs to hit the ball in a direction such that after

many bounces, the ball doesn’t land on positions 2 or 4 (20% of positions).
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Otherwise the agent loses.

For the first set of experiments, we again used a deeper search, setting
N; and Ng equal to 100 and 10 respectively and Dg € {0,5,10,25,50}. For
the second part of the experiments we used Dg = 50, Ng = 10, and N; €
{3, 20, 50, 100}.

Breakout

Figure 3.5: A snapshot of the Breakout environment. The gray square and
the white rectangle represent the agent and the bricks respectively. The pink
and green squares represent the moving ball.

Figure 3.6 shows the results. Again, the agent with the corrupted model has
much lower performance than the agent with the true model. The performance
drop in this environment is more than in the other two environments, which
shows the difficulty of handling it without access to the true dynamics. Similar
to Freeway, the increased simulation depth couldn’t help the agent after Dg =
10 and even made the performance worse. Also, increasing the number of
iteration did not seem to improve the performance of the corrupted agent at

all.
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3.4 Summary

In this chapter we talked about the performance drop in MCTS when using
an imperfect model. We explained our modifications to the MinAtar environ-
ments and the type of model error we used for the rest of the experiments. The
results show a significant drop in the performance of MCTS when searching
using an imperfect model. They also suggest that increasing the simulation
depth in an imperfect model not only is not helpful after some point but it

can also be harmful and reduce the performance.
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Chapter 4

Combining DQN and MCTS

With an accurate model, model-based methods can be much more sample effi-
cient than model-free methods [42]. However, in most cases their performance
is highly sensitive to the quality of the model. Their performance drops heavily
when using an inaccurate model. In a multi-step trajectory, the error com-
pounds at each step which results in a significant error for longer trajectories
[53]. Research to address this issue includes learning the multi-step model
directly [3] or using the model’s predictions in the training to correct them
46].

As mentioned in Section 2.4, MCTS is a very successful model-based search
method that relies on deep simulations. Due to compounding error, having an
imperfect model causes erroneous return predictions from simulations which
results in a low performance even after many iterations. In this chapter, we
address the issue of model error in MCTS by proposing a new method called
Deep Q-network MCTS (DQMCTS).

DQMCTS combines the model-free algorithm DQN with MCTS to deal
with imperfect models. DQN solely uses the interactions between agent and
environment to train a value network. Thus, we can use its value function
safely even when the model is not accurate. The idea consists of taking ad-
vantage of DQN values in MCTS in two ways: During simulations, and during
expansion. We call the former method DQ-Simulation and the latter DQ-

Expansion.
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4.1 DQ-Simulation

Deep rollouts are one of the fundamental aspects of MCTS. MCTS utilizes
deep rollouts to evaluate its leaf nodes and backpropagates those evaluations
to tree nodes higher up. Using an imperfect model misleads these rollouts and
can drop the performance significantly. To compensate for incorrect rollouts,
we investigate using a learned DQN value function to evaluate leaf nodes, or
rolling out to a fixed depth and evaluating the endpoints with DQN values.
This method gives insights in the choice of DQN value function and of a good
depth of the rollouts. For more details see [22].

4.2 DQ-Expansion

During the expansion process in MCTS, all children of a specific node are
added to the search tree. In the basic framework, the initial value of the
newly added nodes is zero. This initial value gets updated later with rollout
results or backpropagated values. A better idea is to use a heuristic to initialize
the children’s values. Creating a hand designed heuristic function might not
be simple and may require profound knowledge of the environment.

An initial value of zero puts all the pressure of learning on the rollouts which
as we mentioned can be considerably misleading with an imperfect model. In
DQMCTS, we suggest to use a learned DQN value function as a heuristic to
overcome the model’s imperfections and improving the performance. Algo-
rithm 7 shows the modified expand function. The term written in red is the
difference between basic MCTS and DQMCTS. In DQ-Expansion, when we
add a new child v; to the search tree, its initial value Q(v;) comes from the

learned DQN value function gggp.

4.3 Experiments

In this section we first explain the details of our experimental design, and then
show and discuss the results. We experimented with the new methods on the

modified version of Space Invaders, Freeway, and Breakout from the MinAtar
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Algorithm 7 DQ-Expansion Algorithm
function DQ-EXPAND(v, ¢ugn)

for a; € A do
si, 15 — M(S(v), a;)
create a node v; with state s; and reward r;
N(v;) <0

Q(v;) + jl| > agn (S(v),d'))

a’'eA

return a random child of v

testbed [54]. See chapter 3 for more details on these environments.

The DQMCTS experiments for each environment proceed in two stages.
First, the agent trains a DQN agent on the real environment for a fixed number
of episodes and stores its learned value function g44,. In the second stage, the
agent plays in the environment using DQMCTS and the stored value function
Jdqn from the first stage. We compared the performance of DQMCTS with
two MCTS baselines: An MCTS agent with access to the true dynamics M
and an MCTS agent which only has access to the corrupted model M. In
the following plots, the former is labeled with “True MCTS” and the latter
is labeled with “Corrupted MCTS”. To have fair experiments, we optimized
the exploration rate ¢ separately for each of the experiments over a set of four
values ¢ € {0.5, 1, V2, 2}. For reproducibility, the chosen value for ¢, N, Ng,
and Dg are mentioned in each environment later on.

We study the effect of the learned value function in DQMCTS on snapshots
from different stages of learning. To investigate the effect of rollouts with an
imperfect model we also experimented with different simulation depths Dg

which we mentioned for each agent in their section.

4.3.1 DQN Details

The DQN used in all the environments had similar parameters which we ex-
plain in more detail in this section. For the ¢qq, network, we used a fully

connected neural network with two hidden layers each containing 64 units.
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We used the RMSProp optimizer with step size A = 0.00025 to train the
network. The training batch size By is 32 and the target network update fre-
quency f; is every 1000 interactions. To have more robust convergence, we
started with ¢ = 1 and linearly reduced its value to 0.1 over the course of
100000 interactions. After that the e value remains at 0.1 for the rest of the
training. We used a buffer of size 100000 to store the transitions. When the

buffer is full the oldest transition is replaced with the new one.

4.3.2 Space Invaders

The right plot in Figure 4.1 shows the learning curve of training the dqn agent.
We test the quality of the learned value function g4, at different episodes using
€ = 0. The left plot in Figure 4.1 shows the evaluation of value functions at
different stages of training. Based on this evaluation we picked three learned
Qdqn at different levels of training to use in DQMCTS: after episodes 3000,
7000, and 20000. These value functions are shown in red in Figure 4.1.
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Figure 4.1: Left plot: performance of value functions at different training
stages using € = 0. Right plot: learning curve of DQN on Space Invaders.

We compared the performance of DQ-Expansion and the combination of
both DQ-Expansion and DQ-Simulation (DQMCTS) with MCTS baselines
using 4 different simulation depths, Dg € {0,5,10,20}, and number of itera-
tions and simulations N; = Ng = 10. Figure 4.2 shows the comparison plots.
We observe that while DQ-Expansion always has higher performance than the
corrupted MCTS baseline, DQN outperforms all of them. This is because even
if we evaluate the leaf nodes using the DQN, the search tree itself is built with

incorrect transitions. This encouraged us to develop another idea to weigh
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different parts of the search tree which we explain in Chapter 5. Another
observation is that increasing the simulation depth Dg reduces the DQMCTS
performance. The reason is that an unrealistic rollout might lead to a state
with good DQN values that can happen during DQ-Simulation. This effect
falsely evaluates a leaf node to be much better than it actually is. Thus, when
using DQMCTS we suggest to completely eliminate the simulation steps and
only use the gqq, to evaluate leaf nodes as in AlphaZero [40]. However, in the
case that we only use DQ-Expansion, increasing Dg improves the performance
because in DQ-Expansion the gq4, values only give an initial direction to the
search. Table 4.1 shows the best parameter ¢ for each of the algorithms and

for different simulation depths Dg.
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Figure 4.2: Comparison of DQMCTS performance with MCTS baselines and
DQN in Space Invaders. From left to right and top to bottom the simulation
depth Dg is equal to 0, 5, 10, 20 respectively.

4.3.3 Freeway

Figure 4.3 shows the training and evaluation of the DQN agent at different

stages of training. Based on this evaluation we again picked three learned gqqy,
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| Ds=0 Ds=5 Ds=10 Dg=20

True MCTS 2 1 0.5 0.5
Corrupted MCTS 2 1 2 2
DQExpansion 3K 0.5 V2 V2 V2
DQExpansion 7K V2 2 0.5 2
DQExpansion 20K 2 V2 2 0.5
DQMCTS 3K V2 2 2 V2
DQMCTS 7K 0.5 2 0.5 2
DQMCTS 20K V2 V2 2 1

Table 4.1: Best parameter ¢ for each (algorithm, Dg) pair in Space Invaders.

at different levels of training to use in DQMCTS: after episode 7000, after
episode 10000, after episode 20000. The DQN results show that this task was
too difficult for the DQN agent to solve and the agent did not even get close to
perfect play (average reward of 1). Next, we evaluate whether such a poorly

learned value function can still be useful in DQMCTS.
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Figure 4.3: Left plot: performance of value functions at different training
stages using € = 0. Right plot: learning curve of DQN on Freeway.

We compare the performance of DQMCTS (combination of DQ-Expansion
and DQ-Simulation) and DQ-Expansion with the same MCTS baselines at 5
different simulations depths, Dg = [0, 5, 10,25,50]. As mentioned in Chapter
3, this environment is harder than Space Invaders and needs more thorough
search, so we used N; = 100 and Ng = 10. Figure 4.4 shows the comparison
plots. The results show a significant improvement over the corrupted MCTS
baseline and the DQN agent in all cases. Another observation from Figure
4.4 is that DQMCTS has lower standard error than DQN and the corrupted
MCTS baseline which makes it a more robust algorithm. Table 4.2 shows the

best parameter ¢ for each of the algorithms at different simulation depths Dg.
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| Ds=0 Ds=5 Dg=10 Dg=25 Dg=50
2 2 V2

True MCTS
Corrupted MCTS
DQExpansion 7K
DQExpansion 10K
DQExpansion 20K
DQMCTS 7K
DQMCTS 10K
DQMCTS 20K V2
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Table 4.2: Best parameter ¢ for each (algorithm, Dg) in Freeway.
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| Ds=0 Ds=5 Dg=10 Ds=25 Dg=50

True MCTS 2 V2 1 2 2
Corrupted MCTS 2 V2 2 0.5 0.5
DQExpansion 7K 2 2 1 2 0.5
DQExpansion 10K 0.5 0.5 0.5 1 1
DQExpansion 20K V2 1 0.5 0.5 1
DQMCTS 7K 1 V2 1 0.5 2
DQMCTS 10K 1 1 0.5 2 2
DQMCTS 20K 2 2 0.5 V2 0.5

Table 4.3: Best parameter ¢ for each (algorithm, Dg) in Breakout

4.3.4 Breakout

Similar to Freeway, we picked three learned ¢4, after episodes 7000, 10000,
and 20000 (Figure 4.5).
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Figure 4.5: Left plot: performance of value functions at different training
stages using € = 0. Right plot: learning curve of DQN on Breakout.

Figure 4.6 shows the performance of DQMCTS with MCTS and DQN base-
lines. We compared with the same five simulations depths, Dg = [0, 5, 10, 25, 50],
with Ny = 100 and Ng = 10. We observe that DQMCTS and DQ-Expansion
outperformed the corrupted MCTS baseline, however DQN still outperformed
them both. This again suggests that evaluating the leaf nodes is not enough
to deal with model corruption and it needs further measures to properly make
use of the built search tree. The Breakout and Space Invaders results moti-
vated our UA-MCTS method explained in Chapter 5. Table 4.3 shows the
best parameter ¢ for each of the algorithms with different simulation depths

Dg.
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4.4 Summary

To summarize, in this chapter we introduced a new method DQMCTS to deal
with model imperfection using a model free algorithm DQN. DQMCTS uses
a DQN learned value function to evaluate leaf nodes in the search tree. We
compared our method’s performance with DQN and MCTS baselines in three
MinAtar environments: Space Invaders, Freeway, and Breakout. DQMCTS
outperformed the MCTS baseline in all cases, and even outperformed the
DQN baseline in Freeway. However, DQN outperformed our method in the
other two environments, which suggests that evaluating the leaf nodes is not
enough to deal with model corruption in all cases. Therefore, we also change

the way MCTS builds and traverses the search tree in Chapter 5. !

Tmplementation of these ideas can be found in: https://github.com/
ualberta-mueller-group/imperfect_model_code
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Chapter 5

Uncertainty-Adapted MCTS

In Chapter 4, we used a learned DQN value function to evaluate the leaf nodes
of the search tree in order to deal with model uncertainty. That approach
showed improvements over the MCTS baseline with the corrupted model.
However, there was a significant gap between the MCTS baseline with the
true model and our method. This motivates our new method, Uncertainty-
Adapted MCTS (UA-MCTS) which changes the behavior of MCTS more fun-
damentally.

Assuming a measure of model uncertainty is available, we modify the be-
havior of MCTS. The choice of uncertainty measure is independent of UA-
MCTS. It can be a simple euclidean distance between the model predictions
and the true next state or a more complicated similarity measure between
their representations. It can also be learned by environment interactions or
can be given by a domain expert.

Given an uncertainty model, there are two general behaviors one might
follow. The first behavior is the exploratory approach: The agent tries to
explore the uncertain parts of the model in order to see what it might achieve
there. The upside to this approach is that the agent might find a policy that
performs better than any policy that could have been found when trusting the
model. The downside is that taking exploratory actions may be very costly
for the agent, for example in robotics tasks or in real environments.

The other approach is the risk-avoiding approach: In this approach, the

agent tries to avoid the uncertain parts of the model and exploits the certain-
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ties. This approach can be seen as safer because the agent does not take any
risk by exploring uncertain states. The downside of this approach is that in
the case that the optimal policy is not available in the model, the agent is very
unlikely to find it. However it will achieve a sub-optimal policy if one exists
in the model.

In this work, we propose Uncertainty-Adapted MCTS (UA-MCTS) based
on the exploitatory attitude. Our goal for the agent is to spend less search in
the uncertain parts, without completely excluding them.

We modified each of the four main components of MCTS: selection, expan-
sion, simulation, and backpropagation in UA-MCTS, by taking uncertainty
into account. Since the specific choice of uncertainty measure is independent
of the algorithm, we leave it unspecified while explaining the ideas, and will test
concrete choices in experiments. During the expansion phase in UA-MCTS,
the agent stores the uncertainty of the new transitions as an attribute U in
the nodes. Since the model is fixed and the environment is static, this model
error does not change over time. Each node has a measure of its transition
uncertainty. We will explain how to use it in different parts of UA-MCTS in
the rest of this chapter.

5.1 UA-Expansion

During UA-Expansion we exclude one of the new child nodes from getting
added to the search tree with probability 7. With probability 1 — 7, UA-
Expansion is exactly the same as regular Expansion. The probability of a
child being excluded is proportional to its uncertainty, so the child with the
highest uncertainty is the most likely to get excluded from the search tree.
In the case that all children have zero uncertainty, we do not exclude any of
them. This idea reduces the branching factor of the search tree and leaves
more time to search the more certain parts of the model. For more details see

22].
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5.2 UA-Simulation

MCTS gives all rollouts the same credit by taking the unweighted average
of all rollout results in a state. UA-MCTS changes this behavior and gives
more weight to the more certain rollouts. The UA-Simulation approach first
calculates the sum over the uncertainty of all transitions in a rollout to measure
its uncertainty as a whole, then takes a weighted average between different
rollouts using the softmax of the negative uncertainty as the weights. For

more details on this method see [22].

5.3 UA-Selection

As we discussed in Chapter 2, selection in MCTS starts from the root of the
search tree and decides which child is the most promising to follow until it
reaches a leaf node. The child of a node with highest UCT value is chosen
(Equation 5.1).

UCT(v) = Qv | n (MPW(U)))

N(v) N(v)

(5.1)

Intuitively, our goal is that the selection should also take the uncertainty of
these children into account, in a way that more uncertain children are chosen
less often. We change the UCT formula in a way that favors more certain
children over uncertain ones.

We formalize this intuition by adding a new term to the standard UCT
formula. This new part, (1 — o) in Equation 5.3, is bounded between 0 and
1. It is smaller when there is more uncertainty which results in a lower UCT

value for this child.

Qv
UA—UC’T(U):ﬁ—FC N () X (1 —ay) (5.2)
| /7
TS e (53)
v;€Ch(Par(v))
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Equation 5.3 shows the definition of «,, which is a softmaz function over the
uncertainties of all the siblings of node v. 7 is the temperature parameter of the
softmax which decides how much we should pay attention to the uncertainty
values. We will tune this 7 parameter in our experiments in Section 5.5.
Algorithm 8 shows the pseudo code of UA-Selection. The red parts are the
parts added to normal MCTS selection.

Algorithm 8 Uncertainty Adapted Selection Algorithm.
Parameter: temperature 7 for softmax

function UA-SELECT(v)

while v is expanded do
for v; € Ch(v) do

(A/"(Ul)/‘r
o o
? eIV
Vi€ Ch(v)
Q(v;) In N (v) . )
v 4= argmax o + ¢4/ o (1- )
v;€Ch(v)
return v

5.4 UA-Backpropagation

Giving more credit to certain transitions while selecting a node is good but

it is not enough. In UA-Backpropagation we modify MCTS backpropgation

in such a way that more certain children have more impact on the value of

their parents. In MCTS, the backpropagate function gives an equal weight

of 1 to all transitions, so the children chosen more often have more influence

on the Valug2 (of)their parent. Let p(v) be the average reward seen from node
v

v (p(v) = N@) in MCTS). Equation 5.4 shows p(v) in terms of its children

values in normal MCTS.

> Qv;) x N(v;)

v;€Ch(v)

>, N(w)

v;€Ch(v)

n(v) = (5.4)

The goal of UA-Backpropagate is to give more weight to the more certain
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children while updating the value of their parent. Equation 5.5 shows the
weighted average reward computation using UA-Backpropagation. The new
parameter «; has an inverse relationship with the uncertainty U of node v

(shown in Equation 5.6).

Y. Quvi) X N(v;) X o

v;ECh(v)

= 5.0
H(v) S N(v) x a (5:5)

v;€Ch(v)

~U(v:)
;= 5 e (5.6)

e Y\
v;ECh(Par(v;))

During regular MCT'S backpropagation, the backpropagated value is added
to the parent values and the number of visits of the parent is incremented by
one. In UA-Backpropagate, we first calculate the coefficient «; in Equation 5.6
and update the parent value with the child i’s value weighted by «;. Algorithm
9 shows the pseudo code for this method.

Using UA-Backpropagate changes the Q(v) stored in each parent node. In
order to reach the exact value as in Equation 5.5, we need to slightly change
the exploitatory term UCT formula in selection. The UA-Select function in
Algorithm 9 shows this change. UA-Selection changes the exploration term of
UCT and UA-Backpropagation changed the exploitation term of UCT. Thus,

we can use both ideas at the same time.

5.5 Experiments

In this section we explain our experimental designs and results. We experi-
mented with UA-MCTS on modified versions of three MinAtar environments,
as discussed in Chapter 3: Space Invaders, Freeway, and Breakout. In order
to investigate the effect of each modification in UA-MCTS, for each agent,
we combined one component of UA-MCTS (e.g. UA-Selection) with normal
MCTS and compared the results with MCTS baselines. UA-SB is the combi-
nation of both UA-Selection and UA-Backpropagation, and UA-MCTS is the

combination of all four components.
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Algorithm 9 Uncertainty Adapted Backpropagation Algorithm.

Parameter: temperature 7 for softmax
function UA-BACKPROPAGATE(v, value)
while v is not NULL do
N(v) «+ N(v)+1

G—U(v)/r

Z 6—[:“'(71,)/T

neCh(Par(v))
Qv) + Q(v)+ « -value
value < value - v + R(v)

a =

v« Par(v)

function UA-SELECT(v)
while v is expanded do
for v; € Ch(v) do
for v; € Ch(v;) do

o U)/r

Z 6—[:“'(71,)/T

neCh(v;)

di= 3 N(v)-o
v;€Ch(v;)

Qaj =

v < argmax Q) 4 o [lnNE)

v, ECh(v) i N(w:)

return v

We experimented with two scenarios: offline and online. In the offline

scenario, we assume that the agent has access to the true uncertainty of the

model U = U. This way we can investigate the performance of our ideas

without the additional complication and errors from learning the uncertainty.

The online scenario consists of two stages. First, a normal unmodified

MCTS interacts with the real environment and gathers a buffer B of tran-

sitions. When B is full we stop the MCTS agent and train the measure of

uncertainty U for 10000 training steps. In the second stage, we use the trained

U with UA-MCTS to search in the model and then play in the environment.
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For each experiment, we optimize parameters ¢ and 7 over a set of values
c € {0.5,1,/2,2}, 7 € {0.1,0.5,0.9}. Other hyper-parameters such as Ny,
Ng, Dg are specified in each experiment separately. To study the effect of
the learned uncertainty U on the performance of UA-MCTS we used three
different buffer sizes, 1000, 3000, and 7000, for each experiment.

5.5.1 Measure of Uncertainty (U)

Any measure of uncertainty can be chosen in the UA-MCTS framework. In
the following experiments we used a simple euclidean distance between the
true and predicted state representations as the model uncertainty. Thus for
a given state action pair (s,a) the uncertainty U(s,a) is defined in Equation
5.7.

~ 2

U(s,a) = (M(s,a) — M(s,a)) (5.7)

In the offline scenario the agent has access to the function U(s,a) for any
s € S, a € A. In the online scenario we used a neural network with two
fully connected layers (64 units in each layer) to approximate U. The neural
network is trained over the gathered buffer B from MCTS’s interaction with
the environment for 10000 steps using the loss function in Equation 5.8. We

used the Adam optimizer [20] and a step size of 0.001 with batch size of 32.

L= > (U(s,a)—U(s,a)>2 (5.8)

s,a,U(s,a)€B

5.5.2 Space Invaders

Offline Scenario

The results are shown in Figure 5.1. In this experiment, N; = 10, Dg = 20,
and Ng = 10. The combination of UA-Selection and UA-Backpropagation
outperformed their separate versions and both MCTS baselines. UA-MCTS,
the combination of all four components, almost reached perfect play which has
an average reward of 24. Table 5.5.2 shows the best parameters ¢ and 7 for

each of the experiments.
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Figure 5.1: Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders.

H c T
True MCTS 0.5 NA
Corrupted MCTS 2 NA
UA-MCTS 1 0.1
UA-S&B V2 0.1
UA-Selection V2 0.1
UA-Backpropagation || v2 0.9

Table 5.1: Best parameters ¢ and 7 for each experiment in Space Invaders for
the offline scenario.

Online Scenario

Figure 5.2 shows the performance of UA-MCTS with different buffer sizes for
training U. Ny, Dg, and Ng are the same as in the offline scenario. UA-MCTS
and its components had a much better performance when having access to the
U function but their performance with a learned U function is still better
than both MCTS baselines. With less data to train U , the performance of
UA-MCTS slightly drops but still outperforms the MCTS baselines. Table

5.5.2 shows the best ¢ and 7 parameters for each method.
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Figure 5.2: Comparison of UA-MCTS and its components with MCTS base-
lines in Space Invaders in the online scenario.

Size B = 7000 | Size B = 3000 | Size B = 1000
C T C T C T
UA-MCTS 0.5 0.1 1 0.1 1 0.1
UA-S&B 1 0.1 V2 0.1 V2 0.1
UA-Selection 2 0.1 2 0.1 1 0.1
UA-Backpropagation || 2 0.5 V2 0.5 V2 0.9

Table 5.2: Best parameters ¢ and 7 for each experiment in Space Invaders for
the online scenario.

5.5.3 Freeway

Offline Scenario

Figure 5.3 shows the results for the offline scenario in the Freeway environ-
ment. All the component methods improved over the MCTS with the cor-
rupted model but UA-MCTS outperformed them all and almost reached the
performance of MCTS with the true model. For freeway we picked N, Dg, and
Ng to be 100, 50, and 10 respectively due to the difficulty of the environment.

Online Scenario

Figure 5.4 shows the performance of UA-MCTS in the online scenario (Ny, Dsg,
and Ng are same as in the offline scenario). The performance of all UA-MCTS

versions with the learned U functions is better than the MCTS baselines.
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Figure 5.3: Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway.

H c T
True MCTS V2 NA
Corrupted MCTS V2 NA
UA-MCTS 2 0.1
UA-S&B 0.5 0.1
UA-Selection 1 0.1
UA-Backpropagation || 2 0.5

Table 5.3: Best parameters ¢ and 7 for each experiment in Freeway for the
offline scenario

However, with the true U function (Figure 5.3), UA-MCTS performed much
better. Table 5.5.3 shows the best ¢ and 7 parameters for each method.

5.5.4 Breakout

Offline Scenario

Figure 5.5 shows the results for the offline scenario in the Breakout environ-
ment. In this experiment, N; = 100, Dg = 50, and Ng = 10. With the perfect
uncertainty model, U=1U , the UA-MCTS agent achieves the True MCTS

performance.

Online Scenario

Figure 5.6 shows the performance of UA-MCTS and its individual components

for the online scenario. Table 5.5.4 shows the parameters for each of these
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Figure 5.4: Comparison of UA-MCTS and its components with MCTS base-
lines in Freeway in the online scenario.

Size B = 7000 | Size B = 3000 | Size B = 1000
C T C T C T
UA-MCTS 1 0.1 V2 0.1 2 0.1
UA-S&B 1 0.1 0.5 0.1 0.5 0.1
UA-Selection 2 0.1 0.5 0.1 1 0.1
UA-Backpropagation || v/2 0.9 V2 0.9 V2 0.9

Table 5.4: Best parameters ¢ and 7 for each experiment in Freeway for the
online scenario.

experiments. Our method outperformed the corrupted MCTS baseline but
again could not achieve its own offline performance. Compared to Freeway
and Space Invaders, there is a larger drop in the performance of offline and
online scenarios in Breakout. The red horizontal line in Figure 5.6 shows that
MCTS performs quite poorly with a corrupted model in this environment, with
an average reward of 1.33. In order to train the uncertainty measure U we used
a buffer gathered by the MCTS agent and due to the poor performance of the
MCTS baseline we can deduct that the gathered buffer is not sufficient to train

H cC T
True MCTS 2 NA
Corrupted MCTS 0.5 NA
UA-MCTS V2 0.1
UA-S&B 2 0.1
UA-Selection V2 0.1
UA-Backpropagation || 2 0.5

Table 5.5: Best parameters ¢ and 7 for each experiment in Breakout for the
offline scenario.
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Figure 5.5: Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout.

a good model U. Since the buffer sizes are similar for each environment, we
investigated this hypothesis, by checking the percentage of unique data in the
gathered buffers. For Space Invaders and Freeway more than 90% of the data
was unique on average but for Breakout the average of unique data in buffers
was less than 20% which validates our hypothesis. However, even with such a
poorly trained U, UA-MCTS managed to outperform the MCTS baseline. This
phenomenon might occur in any environment in which model corruption is in
a way that significantly drops MCTS performance and causes an insufficient
buffer content. As a future research direction, we want to constantly gather a

buffer and train U while UA-MCTS interacts with the environment.

Size B = 7000 | Size B = 3000 | Size B = 1000
C T C T C T
UA-MCTS 1 0.1 V2 0.1 2 0.9
UA-S&B 2 0.1 2 0.1 2 0.1
UA-Selection V2 0.1 1 0.1 0.5 0.1
UA-Backpropagation || v/2 0.1 V2 0.5 V2 0.5

Table 5.6: Best parameters ¢ and 7 for each experiment in Breakout for online
scenario.
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Figure 5.6: Comparison of UA-MCTS and its components with MCTS base-
lines in Breakout in the online scenario.

5.6 Scaling Experiments

In this section, we investigate the online and offline performance of UA-MCTS
agents with different numbers of iterations. Figures 5.7-5.9 demonstrate the
experimental results. In the offline scenario in which the uncertainty model
is perfect, with more iterations, the performance improved, and even in the
Space Invaders environment, it reached perfect play. For the online scenario, in
Freeway and Space Invaders environment the performance improved with more
iterations but could not achieve the offline performance due to the error in the
uncertainty model. Since the learned uncertainty in the Breakout environment
was insufficient, the online agent performed poorly with both lower and higher
number of iterations, which shows the importance of the learned measure of

the uncertainty.

5.7 Summary

In this chapter we introduced a new method, UA-MCTS, to deal with model
uncertainty. UA-MCTS has the four main components of MCTS but their
behavior is different due to taking model uncertainty into account. We showed
the performance of UA-MCTS when having access to the true uncertainty

function U in the offline scenario. UA-MCTS achieved the performance of
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Figure 5.7: Comparison of UA-MCTS offline and online scenario in Breakout
with different number of iterations.

the MCTS baseline with the true model or even outperformed it in the Space
Invaders environment. We also investigate UA-MCTS’s performance with a
learned uncertainty function U for three different sizes of training buffer in the
online scenario. We showed that UA-MCTS cannot achieve its true potential

with U insufficiently trained, but still outperforms the MCTS baseline.
1

Tmplementation of these ideas can be found in: https://github.com/
ualberta-mueller-group/imperfect_model_code
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Figure 5.9: Comparison of UA-MCTS offline and online scenario in Space
Invaders with different number of iterations.
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Chapter 6

Conclusion and Future Work

In this thesis, we investigated the effect of model inaccuracies on the perfor-
mance of MCTS. We modified three deterministic MinAtar environments in a
specific way to induce model error motivated by robotic tasks. We show that
deeper simulations in a wrong model do not improve the performance and in
some cases can also reduce the performance of MCTS.

To deal with this error we first proposed the DQMCTS method, which uses
a learned DQN value function as a heuristic to evaluate the leaf nodes of the
search tree. We empirically show that DQMCTS outperforms MCTS baselines
and performs best with lower simulation depth. However, there is still room
for improvement.

Our second method UA-MCTS deals with model error by changing the
behavior of all four components of MCTS, to focus the search more on certain
parts of the model. We empirically show that with an accurate measure U of
uncertainty, UA-MCTS can achieve the performance of a MCTS agent that has
access to the true dynamics. Even with a poorly trained uncertainty measure
U, UA-MCTS still performs better than the MCTS baseline with a corrupted
model.

There are several future directions that are worthwhile investigating:

e In our work we did not focus on the amount of model error. Investigating
the amount of model error on the performance of MCTS, DQMCTS, and
UA-MCTS is an interesting question to explore.

e The precision of the uncertainty model has a lot of influence on the per-
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formance of UA-MCTS. Thus, investigating different uncertainty mea-
sures or finding ways to train uncertainty more accurately is another

future step for our work.

Creating a more general and online framework that can learn the uncer-
tainty and value functions while interacting with the environment and
uses them in a combination of UA-MCTS and DQMCTS is the most
straight forward follow up to our work which we would very much like

to pursue.
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