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Abstract

The application of reinforcement learning (RL) to the optimal control of build-

ing systems has gained traction in recent years as it can reduce building energy

consumption and improve human comfort, without requiring the knowledge of

the building model. However, existing RL solutions for building control face

challenges, such as slow convergence and suboptimal (or unsafe) actions during

the training phase that may lead to high energy use or excessive discomfort.

Additionally, the transferability of RL policies to different buildings remains

a hurdle.

Offline policy selection is a new domain in RL that aims to efficiently

select the best policies from a library of policies for a downstream task. Previ-

ous works have shown that diversity-induced RL helps generate policies that

generalize to unseen environments, often surpassing baselines, even without

retraining. This thesis explores various techniques to select a policy from a

library of diverse policies to control the heating, ventilation, and air condi-

tioning (HVAC) system of a commercial building. The main contribution of

this thesis is an offline policy selection algorithm that can effectively identify

the most suitable policy for transfer to an unseen building environment. Fur-

thermore, an investigation into the impact of the offline dataset utilized for

evaluation is also conducted, providing valuable insights into the efficacy of

the proposed evaluation technique.
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The outcomes of this research hold significant implications for energy con-

servation in the building sector. By enabling the adoption of RL-based control

strategies that overcome the limitations of traditional approaches, this work

could contribute to significant reductions in energy consumption and carbon

emissions. The proposed framework empowers building operators to achieve

energy-efficient control of building systems while minimizing occupant discom-

fort and facilitating the transfer of policies across different buildings.
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Chapter 1

Introduction

It is estimated that around one-third of the worldwide final energy consump-

tion is due to commercial buildings [19], and the Heating, Ventilation, and Air

Conditioning (HVAC) system is the primary consumer in these buildings, ac-

counting for more than 40% of the energy consumed [8]. The HVAC system is

responsible for maintaining a comfortable and healthy environment. Research

has shown that optimizing the energy consumption of the HVAC system is

much more sustainable and cost-effective than retrofitting or upgrading the

HVAC system [45]. In a country like Canada, where the outside temperature

can reach -40◦C in the winter and 35◦C in the summer, the HVAC system

consumes even more energy to maintain a comfortable environment for the

occupants. In pursuit of sustainability and energy efficiency, optimal control

of the building HVAC system emerges as a crucial area of research.

A typical HVAC system contains a number of sensors in the air handling

unit and ductwork, and inside every thermal zone. Examples of these sensors

are thermostats, pressure sensors, carbon-dioxide sensors, etc. The Building

Management System (BMS) logs measurements of these sensors and enables

the control of supply air temperature, zone temperature setpoints, fan speed,

damper position, valve position, etc. By adjusting these control knobs at

different times and in various combinations, the HVAC system maintains a

comfortable environment for the occupants without wasting too much energy.

The HVAC control problem is challenging because it is a multi-objective opti-

mization problem. Specifically, maximizing occupant comfort and minimizing

energy consumption are two main conflicting objectives. Balancing these two
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objectives is difficult as the occupancy of the building and the heat load on the

building changes over time. If the HVAC system is not optimally controlled, it

can lead to significant energy wastage, faster wear and tear of equipment, and

discomfort for the occupants, to name a few. Traditional HVAC controllers

are rule-based controllers with rules being defined based on the intuition of the

building manager about building occupancy and heat load. Therefore, they

are not optimal, as the rules are not updated dynamically according to how

the building is used. In contrast, recent advancements in Machine Learning

(ML) and Artificial Intelligence (AI) have opened new avenues for more intel-

ligent and dynamic control strategies. In particular, Reinforcement Learning

(RL) has shown significant promise in the building control domain.

Although these methods have potential, their widespread adoption is hin-

dered by several barriers. These barriers include but are not limited to chal-

lenges related to safety, generalization, and training costs. Safety is defined as

the ability of the controller to operate within the constraints of the building.

This is a critical requirement as the controller should not violate the con-

straints of the building, such as the maximum allowed temperature in a zone.

Generalization is the ability of the controller to perform well in new build-

ings. This is a critical challenge, as each building is unique, and the controller

should be able to adapt to the new building without significant training. The

training cost is the amount of data required to learn a good control policy.

This is a significant challenge as the data requirement for RL is very high,

and collecting data from buildings is expensive and time-consuming. In this

thesis, we explore the potential of applying RL to the HVAC control domain

and address one of the key challenges that hinder its widespread adoption. In

particular, we focus on controlling the heating and cooling components of the

HVAC system and address the generalization problem by proposing a method

to efficiently transfer policies from one building to another.

1.1 HVAC Controls

According to the classical control theory, a controller can be classified into two

categories, i.e., open-loop and closed-loop controllers. Open-loop controllers,

such as feedforward controllers, do not use feedback from the system to de-

termine the control action, so the action is independent of the system output.
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These controllers are efficient when the relationship between the control action

and state can be accurately modeled. On the other hand, closed-loop con-

trollers, also known as feedback controllers, use feedback from the system to

determine the control action. For example, Proportional–Integral–Derivative

(PID) controllers [15] are feedback controllers that incorporate the error, i.e.,

the difference between the setpoint and current value of a physical quantity,

to determine the control action.

In building HVAC control, controllers are roughly classified into three

categories, i.e., Rule-Based Controller (RBC), model-based controllers, and

learning-based controllers. Generally, rule-based controllers fall under the

open-loop category, and the other two fall under the closed-loop category.

Historically, RBC controllers have been the first choice for HVAC control ap-

plications where the setpoints are chosen by the RBC, and a PID controller

is used within each zone to maintain the setpoint. The setpoints for these

controllers are determined by the facilities manager. The manual tuning of

each setpoint is labor intensive; hence, simple rules are used to determine the

setpoints. For example, the setpoint for the heating system is set to 21◦C, and

the setpoint for the cooling system is set to 24◦C. The PID controllers then

use these setpoints to determine the control action. These controllers are sub-

optimal as they are not tailored to the specific building and are often tuned

manually. Moreover, these controllers do not take into account the occupancy

of the building [61], which can lead to significant energy wastage.

In model-based HVAC control, models of the building are used to determine

the control actions. Specifically, models that capture heat transfer, outside

temperature, occupancy, and other dynamics can be used to predict the future

states of the building. These models can be built based on physics or learned

from data. Model Predictive Control (MPC) predicts the future states of a

building using these models and determines the control action that minimizes

energy consumption while ensuring a comfortable environment. MPC has been

shown to be effective in reducing energy consumption [44, 53, 58]; however,

building accurate models is challenging as it requires a substantial amount of

data or significant domain expertise. Moreover, the data-driven or physics-

based models cannot be easily transferred to new buildings as the physical

properties and dynamics change significantly as each commercial building is

unique. Due to these challenges, MPC has yet to be widely adopted in the

3



Take action (a)

Observe state (s), and
reward (r)

RL Agent Real Building / Simulation

Figure 1.1: Depiction of how the RL agent interacts and learns from the
environment.

building control industry.

1.2 Reinforcement Learning-Based Control of

the HVAC System

Reinforcement Learning (RL) is a branch of machine learning that has shown

significant promise in games, robotics, and continuous control tasks, such as

HVAC control [33]. RL aims to learn a control policy (strategy) that max-

imizes the cumulative reward obtained by interacting with the environment.

Figure 1.1 depicts the interaction between the RL agent and the environment.

In the HVAC control domain, the environment is either an actual building or

its digital twin. The RL agent interacts with the environment by taking an

action, and the environment responds with a reward and a new state. The RL

agent uses this information to learn a control policy that maximizes the cumu-

lative reward. RL has been shown to learn control policies better than human

experts in domains other than building control. For example, RL has beaten

the world champion in the game of Go [48] and has been shown to learn control

policies for robotics tasks that are better than human experts [30,31]. They are

also used in other domains, such as autonomous vehicles, recommendation sys-

tems, aligning large language models, and many more. RL approaches can be

classified into two categories, i.e., model-free and model-based. In model-free

RL, the agent learns the control policy by interacting with the environment

without building a model of the environment. In model-based RL, the agent
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RBC MPC RL

Main objective Execute a set of rules
Minimize cost given pre-
dicted future states

Maximize cumulative
reward

Domain expertise
Requires some exper-
tise

Requires significant ex-
pertise

Little expertise(for re-
ward engineering)

Data requirement None Order of weeks to months
Order of months to
years

Building constraint en-
forcement

Yes with minor viola-
tions

Yes with minor violations
Violations are ex-
pected

Building models None
Requires highly accurate
models

No (if model-free); Yes
(if model-based)

Transferability Yes No No
Adoption in industry High Low Very low

Table 1.1: Comparison of different control methods.

learns a model of the environment and uses it to determine the control policy.

1.2.1 Challenges of Applying RL to HVAC Control

RL-based controllers have been shown to work well in the HVAC control do-

main [4, 21, 55, 65]. However, several challenges hinder the adoption of RL

algorithms. Firstly, since the agent learns via trial and error, the sample effi-

ciency of RL is very low, requiring several months or even years of interaction

to learn a near-optimal control policy. This issue can be circumvented if a

high-fidelity simulator is present, but this is not the case in most situations.

Training RL policies on an inadequate simulator may lead to poorly performing

policies when deployed to real buildings. Secondly, if the number of thermal

zones in the building is large, the state representation becomes large, further

increasing the data requirement. Thirdly, reward shaping is another challenge

with RL-based HVAC control. Careful consideration is required to design the

reward signal as the reward signal needs to capture the trade-off between mini-

mizing energy use and maintaining thermal comfort. Lastly, rewards are often

delayed in building environments, making learning more difficult.

Table 1.1 compares the control methods with respect to their data require-

ment, domain expertise, and other factors. Although MPC and RL methods

significantly reduce energy consumption and maintain thermal comfort, there

are several obstacles preventing their widespread adoption. Specifically, MPC

requires significant domain expertise to build accurate heat dynamics models

(e.g., the resistance-capacitance network) of the building. RL can overcome

this limitation as it requires little domain expertise. However, RL requires

significant data to learn a control policy, which may not be readily available
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from all buildings. MPCs are slightly better in terms of the data require-

ment, as they only require some data initially to identify the parameters of

the model. Offline RL methods have been shown to reduce the data require-

ment [5, 26, 46, 63]. In offline RL, the agent learns a control policy using data

collected from the environment first; then, the learned policy is deployed.

This method reduces the initial training cost of policies. Since offline RL is

less sample efficient than online RL, much more data is required to learn a

good policy.

Even if the training cost can be reduced to some extent, a significant im-

pediment for all the controllers discussed previously is that they are not trans-

ferable to new buildings. Since each building is unique, a physics model or a

control policy learned for one building cannot readily transfer to new buildings.

A solution to this problem is to use transfer learning. In the building control

domain, transfer learning can transfer knowledge from one building to another.

Typically in RL, a policy learned in one building can be transferred to a new

building and fine-tuned to the new building. This fine-tuning of policies is also

known as domain adaptation. Although previous works [24,42,59] have shown

that transfer learning can be used in the building control domain to reduce

the training cost, domain adaptation still requires significant re-training that

may not feasible in the real world.

Another aspect of transferability for RL policies is that the policy cannot

be transferred if there is a mismatch in the number of thermal zones between

the source and target buildings. For example, a policy trained on a building

with five thermal zones cannot be transferred to a building with fifteen thermal

zones. To address this issue, Multi-Agent Reinforcement Learning (MARL)

based controllers have proven to be beneficial [13,38,54,67]. They are energy-

efficient and amenable to transfer learning in the building control domain. In

MARL, each agent controls a thermal zone in the building, and the agents can

learn to coordinate with each other to minimize energy consumption while

maintaining thermal comfort. This approach reduces the state-action space,

enabling the transfer of policies from one building to another regardless of the

number of thermal zones.

Although transfer learning with MARL addresses the generalization prob-

lem to some extent, it does not solve the problem. The policies may not

transfer well to the new building if the source and target buildings differ sig-
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nificantly. This mismatch may incur higher training time during domain adap-

tation. Previous work has shown that inducing diversity during training can

lead to more generalizable policies [11,32,34]. Diversity encourages policies to

explore actions the other policies might not have taken, leading to a diverse

set of learned skills. This results in policies that may be sub-optimal in the

training environment but perform well in novel environments.

1.3 Aim and Scope

This thesis explores how RL can be used for HVAC control and addresses the

transferability and generalization issues that hinder its widespread adoption.

By taking advantage of the recent advances in policy diversity, RL, and transfer

learning for building control, we propose a novel policy selection framework

that can select the best policy from a library of diverse policies for new and

unseen building environments. The main question this thesis addresses is:

How to select near-optimal control policies for a new environment from a

library of learned policies with as little data as possible?

Our contributions are as follows:

1. We introduce a novel offline off-policy policy selection algorithm to se-

lect the best candidate policy from a library of diverse policies learned

through interaction with another building.

2. We show empirically that the proposed policy selection algorithm can

select the best policy with high probability under certain conditions.

3. We explore the limitations of the proposed algorithm and offer some

solutions to overcome them.

4. We make our implementation open source, allowing others to reproduce

the result and extend this line of research 1

1The GitHub repository can be found at https://github.com/sustainable-

computing/building-MARL-SB3
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1.4 Outline

The rest of the thesis is organized as follows. In Chapter 2, preliminaries such

as RL, MARL, diversity-induced RL, and building control are discussed. In

Chapter 3, we formulate the problem setting and introduce the test building

environments used in this thesis. In Chapter 4, we dive deeper into offline off-

policy policy selection and discuss an offline policy selection algorithm to pick

the best policy to transfer to a new environment. The proposed methodology

is tested on the three different building environments with varying weather

profiles introduced in Chapter 3. In Chapter 5, we explore the limitations

of our proposed methodology and offer some solutions. Finally, Chapter 6

summarizes the work, discusses its limitations, and details future directions.
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Chapter 2

Background

This chapter discusses the background required for understanding the contri-

bution of this thesis. We start with an overview of the Markov decision process

framework and RL concepts such as offline policy evaluation, policy selection,

diversity-induced RL, and different RL algorithms. We then survey the related

work on building HVAC control introduced in 1.1.

2.1 Reinforcement Learning

This section provides a brief overview of Reinforcement Learning followed by

the notion of policy diversity in Reinforcement Learning. We then discuss

Offline Policy Evaluation (OPE) and prior work in this area. Lastly, we discuss

policy selection and review recent literature in this area.

2.1.1 Overview

Reinforcement Learning (RL) [49] is a learning framework that allows agents to

optimize their behavior in an environment through trial and error. In general,

the agent’s goal is to maximize its cumulative reward. The Markov Decision

Process (MDP) is a mathematical framework for modeling sequential decision-

making problems. A few assumptions need to be satisfied for a problem to be

modeled as an MDP. First, the problem needs to be sequential, i.e., the current

state of the environment must be dependent on the previous state. Secondly,

the environment has to be Markovian, meaning that the current state of the
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environment needs to contain all the relevant information of the past, so that

the next state is independent of the past states given the current state.

An MDP is defined by the tuple ⟨S,A, T ,R, γ⟩. The state space S is the

set of all possible states of the environment. The action space A is the set

of the agent’s possible actions. Once an action is taken, the agent observes a

new state s′ ∈ S, where the transition probability from state s to state s′ is

given by the transition function T (s, a, s′) = Pr(s′|s, a). The reward function

R : S × A ⇒ R defines the reward r received by the agent when it takes

action a in state s. The discount factor γ is a hyperparameter that controls

the importance of future rewards. If γ is close to 0, the agent will only care

about the immediate reward; if γ is close to 1, the agent will also care about

future rewards.

Irrespective of the RL algorithm used to train the agent, the common goal

of an RL agent is to maximize its return which is defined as the discounted

sum of rewards or Gt =
∑︁∞

k=1 γ
krt+k where γ ∈ [0, 1]. This is done by learning

a policy π : S → A that maps the state of the environment to an action taken

by the agent. Generally, the policy is parametrized by learnable parameters

θ ∈ Θ and denoted by πθ. The objective then is to find the optimal parameters

θ∗ that maximize the expected return Gt or θ∗ = argmaxθ∈Θ Eπθ
[Gt].

2.1.2 Types of Reinforcement Learning Algorithms

RL algorithms are classified as model-based and model-free. Model-based al-

gorithms learn the transition function T and the reward function R of the en-

vironment. In other words, the agent also learns to model the environment in

addition to learning a policy. The model is often used to simulate the environ-

ment and generate trajectories to plan the agent’s actions ahead. The Dyna-Q

algorithm [49] is an example of a model-based RL algorithm. There have been

several recent advances in model-based RL. For example, DreamerV3 [17] is

a state-of-the-art model-based RL algorithm that uses world models to learn

policies. It has been shown to beat other models in several continuous control

tasks, such as the DeepMind Control Suite [51] and Minecraft. A significant

advantage of model-based RL algorithms is that they can learn policies with

fewer samples than model-free RL algorithms, i.e., they are more sample effi-

cient.
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On the other hand, model-free RL algorithms do not learn a model of the

environment. Instead, they learn a policy by interacting with and observ-

ing the rewards received from the environment. Model-free RL algorithms

are further classified into value-based and policy gradient-based algorithms.

Value-based algorithms learn the state-value function V π(s) or the action-

value function Qπ(s, a) of the policy π. The state-value function V π(s) is the

expected return starting from state s and following policy π after that. The

action-value function Qπ(s, a) is the expected return starting from state s,

taking action a and following policy π thereafter.

V π(s) = Eπ [Gt|st = s] ,

Qπ(s, a) = Eπ [Gt|st = s, at = a]

By learning the value function, the agent can select the action that maximizes

the value function in a given state. The Q-learning algorithm [49,56] and Deep-

Q learning [37], where a neural network is used to parameterize the action-

value function, are examples of a value-based RL algorithm. A significant

disadvantage of Q-learning is that it is unsuitable for continuous action and

state spaces, as Q-learning algorithms fundamentally rely on discrete state and

action spaces.

Policy Gradient (PG)-based algorithms, on the other hand, learn the pol-

icy directly. Policy gradient algorithms can model the policy’s stochasticity

and are suitable for continuous action and state spaces. Due to PG-based

algorithm’s ability to model stochastic policies, the action preferences change

smoothly over time as compared to value-based algorithms, where the action

preferences can change abruptly. This makes PG-based algorithms have bet-

ter convergence properties than value-based algorithms. The policy gradient

theorem [49] states that the gradient of the expected return with respect to

the policy parameters is given by:

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Qπθ(s, a)] ,

where J(θ) is the expected return of the policy πθ, and θ are the parameters

of the policy. The policy gradient theorem is the basis for PG-based RL algo-

rithms. Neural networks are most commonly used to parameterize the policy,

and the policy is learned by stochastic gradient descent. A disadvantage of
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PG-based algorithms is that due to gradient descent being a local optimization

method, they can get stuck in local optima. Whereas, value-based algorithms

are global optimization methods and are less likely to get stuck in local optima.

The REINFORCE algorithm [49] is an example of a policy gradient-based RL

algorithm.

Actor-Critic (AC) algorithms are a combination of value-based and PG-

based algorithms. They incorporate two neural networks into the algorithm,

one to learn the policy and the other to learn the state-value function. The

policy network is called the actor, and the state-value network is called the

critic. This approach has been shown to reduce variance in the policy gradi-

ent estimates and improve the algorithm’s stability. Advatange Actor-Critic

(A2C) [36] and Proximal Policy Optimization (PPO) [47] are examples of

actor-critic algorithms. In this thesis, we restrict our focus to actor-critic

methods, specifically, the PPO algorithm. PPO is more stable than other

approaches and can be used for continuous control problems. PPO has been

shown to work well in several domains [62]. The loss of PPO is given by:

LPPO
.
= Ê

[︂
min(ρ(st, at)Ât, clip(ρ(st, at), 1− ϵ, 1 + ϵ)Ât)

]︂
, (2.1)

where Ât is the estimated advantage at time t, ρ(st, at) is the ratio of the

probability under the new and old policies, respectively, and clip projects this

probability ratio onto [1 − ϵ, 1 + ϵ] so it cannot be too far away from 1. The

advantage estimate can be calculated from Ât
.
= G′πold

t −V πold(st), where G′πold
t

is the discounted reward starting from st and running πold for a fixed number of

timesteps, and V πold is the state-value function under πold. The ratio ρ(s, a),

also known as the importance sampling ratio, is defined as π(at|st)
πold(at|st)

with π

being the learning policy and πold representing the old policy. Finally, ϵ is the

hyperparameter controlling the size of the updates by constraining them to a

trust region.

2.1.3 Multi-Agent Reinforcement Learning

So far, we have discussed single-agent RL algorithms. In Multi-Agent Re-

inforcement Learning (MARL), multiple agents simultaneously interact with

the environment and learn a policy. This setting is of interest because, in a

building, there may be multiple thermal zones, each with its own local con-
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trol system e.g., the Variable Air Volume (VAV) system. MARL allows us

to train a policy for each zone separately and then transfer the policies to a

new building. Multi-agent Markov Decision Process (MMDP) is a generaliza-

tion of MDPs to multiple agents. This framework is used to model MARL

problems. In MMDPs, each agent has its own state space, action space, and

reward function. MMDPs are defined by the tuple ⟨N ,S,A, T ,R, γ⟩. N is

the set of all agents, S is the joint state space, A is the joint action space, T is

the transition function, R is the joint reward function, and γ is the discount

factor.

2.1.4 Further Classifications

On-Policy and Off-Policy Algorithms

RL algorithms can be further classified into on-policy and off-policy algo-

rithms. The main difference between on-policy and off-policy algorithms is

that on-policy algorithms use the current policy to collect data. In contrast,

off-policy algorithms use a different policy to collect data. In off-policy algo-

rithms, the policy used to collect data is called the behavior policy, and the

policy being learned is called the target policy. In on-policy algorithms, the

behavior and the target policies are the same.

Off-policy algorithms are vital because they can learn from data produced

by other policies. In other words, off-policy algorithms can learn from data

collected by a human expert or a hand-made policy or a different RL algorithm.

Another advantage of off-policy algorithms is that they can learn from parallel

data collection. Some examples of off-policy algorithms are Q-learning [56]

and Deep Q-learning [37].

On-policy algorithms are generally more stable and easier to implement. In

settings where the agent can explore freely, on-policy algorithms are preferred.

Some examples of on-policy algorithms are REINFORCE [49] and PPO [47].

Online and Offline Algorithms

Depending on the problem setting, RL algorithms can be classified into online

and offline algorithms. In online RL, the agent interacts with the environment
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and learns a policy simultaneously. In offline RL, also known as batch RL,

the agent learns a policy from a static dataset of trajectories collected from

the environment. In offline RL, the agent cannot explore the environment

and collect new data, as the dataset is static. Batch Constrained Q-learning

(BCQ) [14] is an example of an offline RL algorithm.

Episodic and Continuing Tasks

RL tasks can be further classified into episodic and continuing tasks. Episodic

tasks are the tasks that have a terminal state. In RL, the terminal state is the

state where the episode ends. For example, in the game of chess, the terminal

state is when one of the players wins. Once the game is over, the agent is reset

to the initial state irrespective of the position of the agent in the previous

episode. In other words, each episode is independent of each other.

On the other hand, continuing tasks are the tasks that do not have a

terminal state. Stock trading is an example of such a task. In this task, there

is no terminal state and the agent is not reset to the initial state after each

trading period.

2.1.5 Policy Diversity

In general, RL algorithms are designed to find a single near-optimal policy.

However, when this policy is often transferred to a new unseen environment,

it often does not perform well. Incorporating diversity when learning policies is

a promising approach to address this issue of generalization. McKee et al. [35]

survey different types of diversity and how they affect learning in a multi-

agent system and classify diversity broadly into two types: policy diversity and

environmental diversity. In environmental diversity, the agents are trained on

variants of the environment. This approach aims to make the agents generalize

to a broader class of environments [20, 35].

On the other hand, policy diversity focuses on finding several distinct sub-

optimal policies in the training environment. Masood et al. [32] use maximum

mean discrepancy to encourage diversity in the policies learned by the agents.

Eysenbach et al. [11] propose a method where the agents do not need rewards

at all. Instead, by just incorporating diversity, the agents are able to learn
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to solve a set of complex continuous control tasks. The goal of diversity-

induced RL is to obtain a diverse collection of skills learned from one or more

environments. These skills can then be transferred to a new environment to

solve a similar but different task. The tasks can be different in terms of the

dynamics of the environment, but the tasks have to be similar in terms of the

goal of the agent. For example, a diverse set of skill learnt on robot locomotion

tasks cannot be transferred to the building control task.

In this thesis, we follow the approach of [66] for incorporating diversity

in RL. This paper proposes an iterative diversity-induced RL algorithm for

building HVAC control, which entails modifying the PPO loss expressed in

Equation 2.1 to incorporate diversity. The new loss function is as follows:

L′ = LPPO + wLdiversity,

where LPPO is the standard PPO loss, Ldiversity is the diversity loss, and w is

the weight of the diversity loss. Ldiversity is defined as follows:

Ldiversity = −

∑︂
π′∈Πlearned

∑︂
(s,a)∈exp

max

(︃
max(π(a|s),π′(a|s))
min(π(a|s),π′(a|s))

, ρ̄

)︃
|Gexp(s)−V π′ (s)|

|Πlearned|
,

where Πlearned is the set of learned policies, exp is the dataset of trajectories

collected from the environment, ρ̄ is the maximum importance sampling ratio,

Gexp(s) is the return of the expert policy, and V π′
(s) is the value of the state s

under the policy π′. The term
⃓⃓
Gexp(s)− V π′

(s)
⃓⃓

measures the estimation bias

of a learned policy given the current trajectory. The term max(π(a|s),π′(a|s))
min(π(a|s),π′(a|s)) mea-

sures the difference between the learned policy and the expert policy. When

Ldiversity is small, the behavior policy is different from the learned policies, and

when Ldiversity is large, the behavior policy is similar to the learned policies.

The diversity weight w dictates how much importance is to be given to diver-

sity. A very high value of w will result in a more diverse set of policies, but

it will sacrifice optimality and may yield useless policies. When w is set to

0, the algorithm reduces to standard PPO, where the goal is to find a single

near-optimal policy.
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2.1.6 Offline Off-Policy Evaluation

In this section, we discuss Offline Policy Evaluation (OPE) and the different

approaches to OPE. OPE is the problem of estimating the value of a policy

using a static dataset of trajectories collected from a different policy. For

example, in the building HVAC control problem, the operational log data

collected under the default rule-based controller’s can be used to evaluate a

given policy.

The policy whose value is being estimated is called the evaluation policy,

and the policy that collected the dataset is called the behavior policy. Let

the historical dataset be denoted by D = {(st, at, rt)nt=1} where st, at, rt are

the state, the action taken, and the reward received at time t, respectively.

The goal of OPE is to estimate the value of the evaluation policy πe using

the dataset D. The most popular OPE methods are based on importance

sampling, examples of which are Inverse Probability Weighting (IPW) [43]

and Self-Normalized Inverse Probability Weighting (SNIPW) [50]. In general,

SNIPW is shown to be more stable in certain tasks as the support of the

rewards bounds its value, and its variance is smaller than IPW [22]. Given

the evaluation policy πe and the behavior policy πb, the value of the πe under

IPW and SNIPW is defined as follows:

V̂ IPW(πe;D)
.
=

1

n

n∑︂
t=1

ρ(st, at)rt,

V̂ SNIPW(πe;D)
.
=

∑︁n
t=1 ρ(st, at)rt∑︁n
t=1 ρ(st, at)

,

where ρ(s, a)
.
= πe(a|s)

πb(a|s)
is the importance sample ratio, D denotes the offline

dataset from which the trajectory was sampled, and st, at and rt respectively

represent the state, action taken, and reward received at time step t. The

OPE methods mentioned previously assume that actions are discrete and use

rejection sampling to filter the dataset. However, this approach cannot be

extended to work with continuous actions as rejection sampling does not work

in the continuous setting [23]. To overcome this limitation, Kallus et al. [23]

employ Kernel Density Estimation (KDE) to calculate the value of a policy,
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which is given by:

V̂ Kernel(πe;D)
.
= E

[︃
1

h
K

(︃
argmaxa′t

πe(a
′
t|st)− at

h

)︃
rt

πb(at|st)

]︃
.

Here K is the kernel function, such as the Gaussian kernel, and h is the

bandwidth which is a hyperparameter. When a Gaussian kernel is adopted,

we refer to this method as GK.

2.1.7 Policy Selection

Policy selection refers to the process of selecting the best policy from a set

of policies for the agent to follow to maximize its cumulative reward. Policy

selection can be divided into two categories: online policy selection and of-

fline policy selection. In online policy selection, the policies are executed and

evaluated on the environment, and the best policy is selected based on their

performance on the environment. In offline policy selection, the policies are

evaluated on a dataset of trajectories collected from the environment. The

dataset of trajectories is obtained from the behavior policy πb.

Online policy selection algorithms include Upper Confidence Bound (UCB) [3].

Under the UCB algorithm, the policies are treated as arms in a multi-armed

bandit problem. At each time step, the policy with the maximum upper

confidence bound is selected and executed in the environment. The upper

confidence bound for a policy i is given by r̄i +
√︂

2 log t
ni

where r̄i is the average

reward obtained from policy i, t is the current time step, and ni is the number

of times policy i has been executed. As we will discuss in Chapter 4, this

approach cannot be readily adopted in the building control domain.

Offline policy selection, however, is more suitable for the building control

domain and is a relatively new sub-domain in offline reinforcement learning.

References [25, 41, 60] are some of the recent works in this area. Konyushova

et al. [25] propose a method for offline policy selection named Active Offline

Policy Selection where all the policies in the policy library are evaluated via

OPE first. Then a Gaussian Process (GP) with a UCB acquisition function is

employed to select the best policy by evaluating them on the environment in an

online fashion. Paine et al. [41] evaluate policies via Fitted-Q Evaluation [28]

and then select the policy with the best estimated value for deployment. Yang
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et al. [60] describe a method for policy selection where instead of a point esti-

mate of the value of a policy, a distribution over the policy’s value is obtained.

The policy selection algorithm can change based on the downstream tasks after

a distribution is estimated. Depending on the downstream task, the selection

algorithm may select policies with the least variance and highest minimum

value, to name a few.

In essence, the offline policy selection problem concerns assigning a rank

O ∈ Perm([1, N ]) to the policies in the policy library {πi}Ni=1 given an offline

dataset D. Each policy in the policy library has an unknown value µi and

an estimated policy value µ̂i, which is calculated from the offline dataset.

Different approaches for policy selection differ in how the value estimates are

calculated and how these affect the rank assignment.

Evaluation Metrics

To compare the performance of different ranking methods, we first need to

estimate each policy’s expected return in the policy library by running it in

the target environment. This process yields the ground truth ranking of the

policy library. We refer to the expected return of each policy as its actual value.

The two main metrics used to evaluate the ranking and selection performance

of policy selection algorithms are the Spearman’s rank correlation and the

Regret@k. To calculate Spearman’s rank correlation, we calculate the Pearson

correlation between the ground truth ranks and the estimated policy ranks.

The higher the correlation coefficient, the closer the estimated rank set is to

the ground truth set. Regret@k is the difference between the actual value of

the best policy in the ground truth set and the actual value of the best policy

in the estimated top-k set. The lower the value of Regret@k, the better the

performance of the policy selection algorithm.

2.2 Neural Architecture Search

Neural Architecture Search (NAS) has become the standard approach in deep

learning to discover the best neural networks among a set of candidate ar-

chitectures for a given supervised learning task. Since the search space of

neural architectures can be extremely large, manual evaluation of all possible
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architectures is infeasible. Devising lightweight evaluation methods has been

a primary focus of NAS research [18]. Below we discuss different approaches

to lightweight evaluation of neural architectures.

2.2.1 Zero-Cost NAS

Efforts have been made to identify low-cost or Zero-Cost Proxy (ZCP) tasks to

rank neural networks at initialization (i.e., before training) [1,29]. In general,

ZCP tasks can be divided into two categories, gradient-based and gradient-free.

Gradient-based methods use a mini-batch of data to compute the gradient of

the loss function with respect to the network parameters. These gradients are

aggregated into a single scalar value, which is used to rank the neural archi-

tectures. Gradient-based methods differ in how the gradients are aggregated,

but all use the aggregate as a heuristic to predict how the neural network

would perform in a task. Gradient-free methods, on the other hand, do not

use a mini-batch of data to calculate the gradients of the loss. They instead

calculate a scalar value of the weights of the neural network at initialization in

order to predict how they might perform in the downstream supervised learn-

ing task. In practice, we found that gradient-free methods perform worse than

gradient-based methods. Hence, we will only discuss gradient-based methods

in this thesis.

Lee et al. [29] introduce a saliency metric, Single-shot Network Pruning

(SNIP), that approximates the change in loss when a connection is removed.

This helps identify connections in the neural network important to the given

task before training the network using a mini-batch of data. While SNIP was

initially proposed for network pruning, it can be used as a proxy for NAS

based on the observation that a neural network that attains a higher SNIP

will perform better in a given task [1]. SNIP is calculated as follows:

SSNIP
.
=

⃓⃓⃓⃓
∂L
∂θ
⊙ θ

⃓⃓⃓⃓
,

where L is the loss function of the neural network with parameters θ, and ⊙
denotes the Hadamard product.

Abdelfattah et al. [1] empirically evaluate various ZCP metrics to compare

their efficiency in ranking neural networks. They also propose a new metric,
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called Gradnorm (GN), which can be used for NAS, and is defined as the

sum of the Euclidean norm of the gradients after back-propagating the loss

computed from a mini-batch of data.

In deep RL, the policy is represented by a neural network. This policy πθ

parameterized by a neural network predicts the action to be taken given the

state, which is the input. Since ZCPs successfully predict the performance of

neural networks in supervised learning tasks, we conjecture that they can also

be used for ranking policies. However, in RL, the policy must be run on the

target environment to calculate the loss. Since we focus on the problem of

offline policy selection, this constraint is prohibitive. In the building control

domain, it is not feasible to deploy all the control policies in the policy library

on the target building to assess their performance. In this thesis, we propose

a modification to the ZCPs proposed in [1, 29] to make them work in the RL

setting. Specifically, we use importance sampling mentioned in Section 2.1.6

with ZCPs. We explain this method in detail later in Section 4.2.

2.3 Previous Work on HVAC Control

Building control is the process of controlling the various systems in a building

to achieve a desired goal. In this thesis, we restrict the scope of building control

to controlling the HVAC system of a building to reduce energy consumption.

In this section, we discuss how standard rule-based controllers work, followed

by a discussion on Model Predictive Control (MPC).

2.3.1 Rule Based Controllers

Conventionally, building HVAC control is predominantly rule-based and heuris-

tic based on the building operator’s experience. Primarily, rule-based con-

trollers rely on predefined temperature setpoints and PID controllers to main-

tain these setpoints. Building control experts, the American Society of Heat-

ing, Refrigerating and Air-conditioning (ASHRAE), have developed a set of

recommendations [2] for building HVAC control. These methods are widely

adopted but are predetermined and not tailored to the specifics of buildings.

Most HVAC control strategies under rule-based controllers only realize lim-
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ited energy savings. However, by adopting approaches discussed in later sec-

tions, such as MPC and RL, some case studies have shown that we can achieve

energy savings from 15% to 30% [7,9].

2.3.2 Model Predictive Control

Drgoňa et al. [9] have surveyed the most notable Model Predictive Control

(MPC) methods used in the building HVAC control domain. The MPCs use

models of different building characteristics and predict future values from them

For example, some of the models used by MPC are the heat transfer model of

the building, weather forecasts, and occupancy forecasts. By looking at these

projections, the MPC can optimally choose control actions that will minimize

the energy consumption of the building.

The main bottleneck for MPCs is the models used to predict the future

states of the building. Complex models increase the computational cost of

the MPC, and inaccurate models can lead to sub-optimal control actions.

There are three main paradigms used to build these models. The first is

the white-box approach, where the model is built from the principles of heat

transfer, conservation of energy, and mass. The geometry of the building,

materials used, and equipment specifications are used to calculate the model’s

parameters. White-box models are accurate but challenging to build because

of the required significant domain and building knowledge.

The second approach is the grey-box approach, where the model is built

from a combination of simplified physical models and data-driven methods.

The equations used for models in the grey-box approach are generally more

straightforward than the white-box approach, leading to lower computational

costs. The parameters of the model are estimated from data collected from

the building. The parameter estimation methods can be divided into batch

and online methods. In batch methods, the parameters are estimated by

minimizing the estimation error over a fixed time period. Online methods, on

the other hand, estimate the parameters by minimizing the estimation error

at each time step.

The third approach is the black-box approach, where the model is built

using purely data-driven methods. Black-box approaches have lower develop-

mental costs since they do not require any physical relationships of the building
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and do not make any assumptions about the building. However, they require

much more data to train and are less accurate when predicting outside the

training distribution.

MPCs can also handle constraints on the control actions and the state

of the building. MPC is a constrained optimization problem that estimates

the optimal control actions by minimizing a cost function over a finite time

horizon. The heat transfer model of the building, along with predictive mod-

els for weather and occupancy, are typically used to solve this finite-horizon

optimization problem. Once the solution is found, the first control action

is implemented, new observations are made for the next time slot, and the

optimization problem is solved again.

2.3.3 RL-Based Controllers

Challenges such as sensor noise, disturbances, delay in control actions, and

varying preferences of occupants hinder the adoption of RL methods in real-

world building systems [40]. To address these challenges, offline RL methods

have emerged as a promising approach. Dey et al. [7] propose an imitation

learning approach to learn a policy. By employing imitation learning on a

static dataset collected from a building, they can reduce the training cost of

the RL algorithm. In a similar vein, Schepers et al. [46] employ the Con-

servative Q-Learning (CQL) algorithm [26] to learn a policy from a static

dataset. Although these methods were evaluated using simulators, recent

works that have shown that these methods can be deployed in real-world

buildings [27, 39]. MARL has also shown promise in energy-efficient control

of building HVAC [13, 54]. It enables controlling different knobs in one or

multiple building systems. For example, Zhao et al. [67] use separate agents

to manage electricity flow, cooling components, and heating components in a

building.

Transfer learning is also used to reduce training costs for the building con-

trol problem. Often a digital twin of the building is used to train a policy;

then, the policy is transferred to the real building. Pinto et al. [42] survey

the different transfer learning methods used in the building control domain.

One of the main challenges that hinder transfer learning is preventing nega-

tive transfer. Negative transfer occurs when the policy learned in the source
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building performs worse than the default rule-based controller in the target

building. In other words, the policy learned in the source building cannot

generalize to the target building. Xu et al. [59] propose a method to prevent

negative transfer using a novel approach. Their approach involves decom-

posing the policy neural network into a transferable front-end network and

a trainable back-end network. The front-end network captures the building-

agnostic behavior, whereas the back-end network needs to be trained on the

target building. Although this approach somewhat reduces the training cost

of RL, control performance can still be poor while the back-end network is

being trained. In another line of work, Fazel et al. [24] propose a method to

augment the training data collected from the target building. The authors use

generative adversarial networks to learn the building performance profile from

the actual data and generate synthetic data that reflect climate and opera-

tion variations while keeping the building profile the same. However, one year

of data is required to train the generative model, which may not be readily

available in all buildings.

In our previous work, we showed that introducing diversity when learning

policies can improve the performance of the policies in the target building [66].

However, no algorithm was explored to efficiently pick the best-performing

policy. In this thesis, we propose a novel method for offline policy selection

that employs techniques from neural architecture search.
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Chapter 3

Building Control as an RL

Problem

In this chapter, we cast the building HVAC control problem as a multi-agent

reinforcement learning problem. We describe the state and action spaces of

each agent, and the reward function. We then introduce three building envi-

ronments and the simulator used to evaluated various policy selection methods.

3.1 Problem Formulation

We consider an HVAC system that consists of one or multiple Air Handling

Units (AHUs) and Variable Air Volume (VAV) boxes as depicted in Figure 3.1.

The optimal HVAC control is modeled as a sequential decision making prob-

lem where an agent interacts with the building to control various knobs such

as actuators in the VAV systems, and receives a reward in return which is used

to learn a control policy. While a single agent can control the entire build-

ing, it prevents the policy from being transferred to a new building with a

different state-action space. We frame the HVAC control problem in a MARL

setting where each agent is responsive for controlling a single zone; several in-

dependent agents control a building, each acting in their respective zone. Our

Multi-agent Markov Decision Process (MMDP) is a tuple (N,S,Ai,i∈{1,...,N},

Ri,i∈{1,...,N}, T ,H) where, N is the number of agents and S is the state space

where each agent receives readings of six physical or virtual sensors namely,

mean temperature (◦C), mean humidity (%), outdoor temperature (◦C), so-
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Figure 3.1: Illustration of an air loop in a multi-zone building equipped with
a forced-air heating and cooling system.

lar irradiation (W ), binary occupancy state, and hour of the day (0 − 23).

Ai denotes the action space of each agent i is the minimum position of the

damper in its respective VAV box. The minimum damper position is a value

in [0.1, 1], where 0 indicates that the damper is fully closed, and 1 indicates

that the damper is fully opened. For example, if the minimum damper po-

sition is set to 0.2, the damper can be opened anywhere between 20% and

100%. The AHU control points and all other VAV control points are adjusted

by the controller in EnergyPlus [6] using the predictive system energy balance

algorithm [6]. The RL agents do not interfere with this process, ensuring that

each zone’s thermal comfort requirements are satisfied. Ri is the reward func-

tion for agent i when it takes action a in state s. To incentivize the agents to

minimize HVAC energy consumption, we define the reward of each agent as

the heating energy consumption of the respective VAV system with a negative

sign.

ri(s, a) = −Evav heating
i (s, a) (3.1)

where Evav heating
i (s, a) is the heating energy consumption of the VAV system

in zone i when the agent takes action a in state s. Another reward function

that we consider incorporates the cooling energy consumption of the AHU

system. This reward signal is the negative of the sum of the cooling energy

consumption of the AHU system and the heating energy consumption of the

VAV system.

ri(s, a) = −Eahu cooling(s, a)− Evav heating
i (s, a) (3.2)
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Table 3.1: State variables and the action of each agent.

State

Zone mean temperature ◦C
Zone mean humidity %
Zone occupancy Binary
Outdoor temperature ◦C
Solar radiation W
Hour of the day Integer

Action VAV minimum damper position %

where Eahu cooling(s, a) is the cooling energy consumption of the AHU system

when the agent takes action a in state s. For training the agents, only the

first reward function (3.1) is used. Equation (3.2) is used to perform offline

evaluation of the learned policies. This approach is discussed in Chapter 5.

T is the transition function that defines the transition probability for transi-

tioning from state s to s′ when agent i takes action a. This is defined by the

EnergyPlus simulator. H defines the episode length. We model this problem

as an episodic task to evaluate the policies over a fixed period of time. In this

thesis, we set the episode length as one month, with 15-minute time steps.

Table 3.1 summarizes each agent’s state and action variables. In our MARL

formulation, each agent aims to learn a policy πi that maximizes the expected

discounted return Gi, given by:

Gi
.
= E

[︄
H∑︂
t=0

γtRi(st, argmax
at∈Ai

πi(at|st))

]︄
. (3.3)

In this setting, we set the discount factor γ to 1 since the length of each episode

is finite. Since agents have different rewards, this is a competitive MARL

setting. Although this formulation might increase the convergence time, it

makes it possible to train these agents and transfer a subset of them to a new

building. This advantage outweighs the drawbacks of slower convergence.

3.2 Building Environments

To study the effects of our proposed policy selection algorithm, we evaluate it

using the EnergyPlus simulator [6] on three different building environments,

including a real campus building. The COBS framework [64] is used to in-
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(a) Building A (b) Building BDenver (c) Building C

Figure 3.2: The 3D view and floor plan of the buildings considered in this
paper where north is marked on each floor plan

terface with EnergyPlus and train the agents. Each building has a unique

occupancy schedule which is encoded in the EnergyPlus model. We assume

that if a control policy outperforms other policies with respect to the HVAC

energy use reported by EnergyPlus without degrading thermal comfort, it also

outperforms them in the real building.

• Building A is a small office prototype building as defined by ASHRAE

Standard 90.1 [10]. Figure 3.2a shows the floor plan and 3D model of this

building. It contains five thermal zones (4 perimeter zones and 1 core

zone) and is located in Denver, Colorado. Each zone is conditioned using

a dedicated AHU and contains a VAV system. The total floor area of

this building is 511.16 m2.

• Building BDenver is a medium office prototype building as defined by

ASHRAE Standard 90.1 [10]. It contains 15 thermal zones across three

floors and is located in Denver, Colorado. Figure 3.2b depicts the floor

plan of this building. There are 4 perimeter zones and 1 core zone on

each floor. Each floor is conditioned using an AHU and all zones are

equipped with a VAV system. Its total floor area is 4,982.19 m2.

• Building BSanFrancisco is the same building as BDenver with two main

differences: 1) it is located in San Francisco, California and 2) its ori-

entation is rotated by 45 degrees (clockwise). We make these changes

so as to investigate whether any of the learned policies works well after

transfer to a building with a different orientation in a different climate.

• Building C is a medium campus building representing the model of the

building that houses the Department of Energy Engineering at Sharif

University of Technology in Tehran, Iran.1 It contains 26 thermal zones

1Model is downloaded from https://github.com/DOEE-BMS/EnergyPlus-Model
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spread across five floors, 11 of which are equipped with a VAV system.

The HVAC, lighting, and blind systems are modelled such that they

match the design of these systems in the physical building. We assume

the building is located in San Francisco, California, because weather data

is lacking for its actual location. The total floor area of this building is

5,051 m2.
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Chapter 4

Policy Selection for Controlling

a Novel Building

Policy selection is defined as the process of selecting the best policy from a

set of policies, such that the chosen policy maximizes the expected return on

the target environment. In Section 2.1.7 we discussed the general problem of

policy selection and different approaches to solving it. However, when applied

to the building control domain, new challenges arise pertaining to the cost

of exploration and the number of policies in the policy library. Due to these

challenges, the problem becomes non-trivial and requires different solutions.

This chapter details the issues related to policy selection in the building control

domain and presents a novel policy selection method that is based on zero-

cost proxies (ZCPs) discussed in Section 2.2.1. We then conclude by evaluating

our proposed methodology on the three building environments introduced in

Section 3.2.

4.1 Online vs. Offline Policy Selection in the

Building Control Domain

Recall that policy selection is divided into two categories: online policy se-

lection and offline policy selection. Online policy selection requires evaluating

the policies on the target environment, and the policy with the highest ex-

pected return is selected. This is not very feasible in the building control
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domain as exploring sub-optimal policies is costly as it may increase energy

consumption and cause discomfort to the occupants. Another issue faced by

employing online policy selection is that testing all policies in the policy library

is time-consuming if the policy library is large and the building environment

has multiple zones. For example, if an online policy selection algorithm like

UCB [3] is used on a building with m thermal zones and a policy library with n

policies, then the total number of arms to represent all possible policy assign-

ments would be nm. For the reasons mentioned above, we restrict our focus

to the offline policy selection problem.

Recent work attempted to combine offline policy evaluation OPE with

online selection. Konyushova et al. [25] evaluate the policies via OPE first and

employ a UCB-like Gaussian Process (GP) to select the policies in an online

fashion. However, the UCB algorithm is not suitable for the building control

domain due to the reasons mentioned previously. Paine et al. [60] propose a

method to estimate a distribution of the value of each policy. However, in the

building control domain, we only focus on policies with a high probability of

being optimal. Therefore, we believe that a point estimate of the value of each

policy would suffice.

4.2 Policy Ranking via Zero-Cost Proxies

In the RL setting, the loss cannot be calculated without running the policy

in the target environment. This prevents ZCPs from being directly used for

evaluating policies. We overcome this limitation by re-weighting the rewards

obtained in the offline dataset using the importance sampling ratio ρ(s, a)

defined in Section 2.1.6. Concretely, we sample a trajectory from D and re-

weigh the rewards a follows:

r̂t = ρ(st, at)rt, (4.1)

where r̂t is the re-weighted reward at time step t, rt is the reward obtained

at time step t, and ρ(st, at) is the importance sampling ratio at time step t.

By replacing the actual rewards with the re-weighted rewards in the trajec-

tory D, we get a modified trajectory that acts as a proxy for deploying the

evaluation policy on the target environment. The modified trajectory is then
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Figure 4.1: Schematic overview of the proposed methodology where circled
numbers show different steps of the methodology

used to calculate the PPO loss LPPO defined in Equation 2.1. This loss is then

backpropagated through the policy network to calculate the gradients for each

layer, which are used by the gradient-based ZCP methods (GN and SNIP). For

clarity, we distinguish GN and SNIP methods that use the proxy trajectory by

referring to them as GN* and SNIP*, respectively. The scalar values obtained

for each policy in the library are then used to obtain the policy ranks O. To

select the best-estimated policy, we select the policy with the highest rank,

i.e., π∗ = arg maxπ∈ΠO(µ̂(π)). Recall that µ̂(π) is the estimated value of the

policy π.

To study the performance of using ZCPs for policy evaluation, we compare

the performance of GN* and SNIP* with the standard OPE methods, namely

IPW and SNIPW on the three building environments introduced in Section 3.2.

4.3 Empirical Validation

In this section, we first outline the overall policy selection methodology under

the building control framework explained in Section 3.1. We then compare the

performance of the proposed method with the OPE methods.

4.3.1 Methodology

We follow the warm-start policy selection algorithm for MARL-based control

of the HVAC system proposed in [16]. The methodology has three main parts:

1) building a diverse policy library, 2) policy selection using offline data, and

3) policy transfer and retraining. In our study, the offline data is two weeks

31



of operational log data generated using the rule-based controller in the target

building. We first build a policy library, then use a clustering algorithm and

different policy evaluation algorithms to select the best set of policies for trans-

fer. The policy clustering algorithm is used to reduce the number of policies

that need to be evaluated as this process may be repeated every few months

or seasons. After these policies are transferred to their respective zones in the

target building, they are trained on the target building in an online fashion.

Figure 4.1 shows a schematic overview of our methodology.

Building a Diverse Policy Library

Recall that policy diversity-induced RL can train several policies with varying

skills. In this thesis, we utilize policy diversity proposed in [66] to generate a

library of policies. Similarly, environment diversity is also incorporated when

training the policy library. We incorporate environment diversity by installing

blinds to cover all windows in the training environment. This technically adds

a new training environment. Furthermore, we update the occupancy pattern

of each zones to remove the time intervals when a zone becomes unoccupied

(e.g., lunchtime) during core business hours. This gives us two more training

environments, bringing the number of environments to four.

In our implementation, Building A depicted in Figure 3.2a is used to build

the policy library considering both policy and environment diversity. All poli-

cies are trained using PPO under the MARL framework for 1,000 episodes to

ensure convergence. We consider three policy diversity weights (refer to Sec-

tion 2.1.5) w ∈ 0.1, 1, 10 to identify diverse policies. These policies are forced

to be different from the optimal policy π∗(w = 0) that is learned for the given

zone. This results in 800 policies in the policy library — 10 random seeds for

training × 4 training environments × 5 zones per environment × 4 diversity

weights.

Policy Clustering

We employ policy clustering to remove the need for evaluating all the policies.

This is necessary as this entire process may be repeated every few months

or seasons, and since the policy library can be large, an efficient approach to

select the best policy for each zone is required. We cluster policies according to
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their behavior in their training environment(s). We represent each policy in the

policy library using a feature vector of length m. This vector is constructed by

sampling m− 1 states from the distribution of visited states when the policies

were being trained. The last element of the feature vector is the initial state

of the target environment. We then use the actions that would be taken from

these m states under the policy to construct the feature vector. We set m

to 10 in this work. We then use K-Means to cluster all policies in the policy

library. The elbow method is used to determine the number of clusters.

Once the clusters are formed, n− 1 random policies from each cluster are

sampled, and the centroid policy are taken as the set of representative policies

for each cluster. The centroid policy is selected as it may represent the average

performance of the cluster in the training environment, and the other randomly

selected policies increase the confidence in the evaluation result. We set n to

5 in this study.

Policy Evaluation and Selection

In our proposed methodology described in Figure 4.1, there are two places

where policy evaluation takes place, namely Step 3 and Step 5. In Step 3,

we rank the representative policies from each cluster to obtain the ranking of

clusters, whereas, in Step 5, we only rank the policies from the top cluster. To

rank the policies two weeks of operational log data collected under the rule-

based controller in the target building is used. The best-performing policy

from the top cluster is then transferred over to the target environment. All

the steps shown in Figure 4.1 are repeated for each zone in the target building.

Policy Transfer and Retraining

After assigning the best estimated policies for each zone in the target building,

we retrain all policies using the MARL framework in an online fashion. Updat-

ing the policies through interaction with the target building allows the policies

to further adapt to the new environment, improving their performance.
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Figure 4.2: The evaluation metrics for policy ranking methods where each dot
represents the score for a zone. The ground truth ranking was obtained by
manually testing each policy in the policy library on BDenver.

4.3.2 Comparing Policy Ranking Methods

To test how well the newly proposed method works for policy selection, we com-

pare its performance with the three OPE methods introduced in Section 2.1.6.

The first two are IPW and SNIPW that assume the action space is discrete. We

discretize the action space using the Freedman Diaconis estimator [12]. The

third standard OPE method that we test is Gaussian Kernel (GK), a Gaus-

sian kernel estimator with a bandwidth of 0.3. The GK method can work with

continuous action spaces. In this section, we compare the efficiency of the five

policy ranking methods, namely IPW, SNIPW, GK, GN*, and SNIP*.

First, we obtain the ground truth ranking of the policies in the policy

library by deploying them to the target environment and observing their ex-

pected return. This is a brute force approach, which is computationally expen-

sive. Then using the estimated ranking of the policies obtained from the five

methods, we calculate the Spearman’s correlation and Regret@k, introduced

in Section 2.1.7, for each of the above-mentioned methods.

Figure 4.2 (left) shows Spearman’s rank correlation for all the ranking

methods. Recall, the Spearman’s rank correlation measures how well the rank-

ing of the policies obtained from the OPE methods matches the ground truth

ranking. The higher the Spearman’s rank correlation, the better the ranking
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method. Among the OPE methods, IPW has a mean value of 0.71, while

SNIPW has a mean of 0.12, indicating that IPW performs considerably better

than SNIPW. The GK method has a mean of 0.84 and performs better than

IPW with statistical significance (P < 0.0001). The two ZCP methods have

similar performance with GN* and SNIP* having a mean Spearman’s rank

correlation of 0.65 and 0.66, respectively. From this figure, we conclude that

the GK method performs the best in terms of Spearman’s rank correlation.

Figure 4.2 (right) compares the Regret@5 metric for all the ranking meth-

ods. Recall, that the Regret@5 metric measures how well the ranking method

can identify the best-performing policies. The lower the Regret@5, the better

the ranking method. The regret values are normalized according to the maxi-

mum difference between the actual value of the best and worst policies in the

ground truth set. We see that the GK method with a mean value of 0.19 is

not the best-performing method. Instead SNIP* yields a mean regret of 0.05,

which is the lowest among the ranking methods. When comparing SNIP* with

GN*, the former has a lower regret with statistical significance (P = 0.018).

Although the GK method has the highest Spearman’s rank correlation,

SNIP* outperforms the OPE methods when it comes to regret. To take ad-

vantage of GK’s high Spearman’s rank correlation as well as the ability of

SNIP* to more accurately identify the best performing policies, we employ

GK for Step 3, and SNIP* for Step 5 of our proposed methodology, as shown

in Figure 4.1.

4.3.3 Policy Clustering Analysis

We consider building BDenver for this analysis. The elbow method suggests

clustering our policy library into six clusters for all zones. After ranking rep-

resentative policies from each cluster in Step 3, we only consider the best-

performing cluster. Given that the elbow method yielded 6 clusters, Step 4

eliminates 83% of the policies in the policy library.

4.3.4 Policy Transfer Analysis

In the previous section, we concluded that using GK for Step 3 and SNIP* for

Step 5 of our proposed methodology produces the best results. We refer to
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this approach as GK-SNIP*. We compare the zonal control policies selected

from the policy library by GK-SNIP* with four baselines, namely:

Default: The default rule-based controller in the building model

MARL: Independent zone-level control policies that are trained from scratch

SARL: A single policy that controls the entire building trained from scratch

Best GT: Representing the set of best independent zone-level control poli-

cies for the target building from the ground truth ranking of the policy library.

The ground truth ranking is obtained via brute force evaluation of all policies

in the policy library on the target building. This represents the lower bound

of the energy consumption that can be achieved by the proposed method.

The last baseline is hypothetical as it gives a lower bound on building

energy consumption using the proposed method. If we beat the first baseline,

it means that our policies can save more energy than the controller commonly

used in practice, without sacrificing thermal comfort. In this analysis, we

study the performance of our proposed method only for the month of January

for the three target buildings. Exploration of the performance of the proposed

method for other months and a full year is done in Chapter 5.

Figure 4.3 shows the performance of our proposed method with other base-

lines in the target building BDenver, which is different from the source building,

Building A as mentioned in Section 3.2. All policies, either initialized ran-

domly or selected from the policy library are (re)trained for 500 episodes (500

months). Note policies that need extensive training are not suitable for de-

ployment on real buildings. For instance, the SARL controller trained on the

target building reaches the same level of performance as the Best GT policies

assigned from the policy library only after 15,000 episodes, i.e., 1,250 years

after deployment!

It can be seen that the proposed policy selection and transfer method pro-

vides a reasonable assignment for all zones in BDenver. The performance of the

proposed GK-SNIP* method at episode 0 (5.41 MWh) is 22.5% better than

the default controller that is presumably designed by HVAC engineers (6.98
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Figure 4.3: Learning curve of different controllers on Building BDenver. Each
solid line shows the average performance of 15 runs and the shaded area shows
one standard error from the mean. The y-axis is exaggerated.

MWh). It is also significantly better than SARL (13.74 MWh) and MARL

(13.77 MWh). This suggests that GK-SNIP* can be employed to select poli-

cies that have reasonable performance on the target building. The Best GT

assignment has an initial total energy cost of 3.99 MWh. The difference be-

tween the proposed policy selection method and the Best GT selection is in

part due to the way we sample the policies from the top cluster. Note that the

policies assigned to the target building under the Best GT assignment do not

benefit significantly from retraining. Specifically, the total HVAC energy con-

sumption reduces by 3.8% (from 3.99 MWh to 3.84 MWh) after 500 episodes.

We believe that this is because there is not much room for improvement as

we are already close to the minimum HVAC energy consumption that could

be realized by a controller in this building given its occupancy schedule and

comfort requirements.

The performance of zonal control policies selected by GK-SNIP* improves

by 10.2%, reaching the total monthly energy consumption of 4.86 MWh after

500 episodes of training on Building BDenver. This is 30.4% less than the en-

ergy consumption of the default controller. Policies trained only on BDenver (not

transferred from Building A) fail to reach a level of performance that is com-

parable with the default controller at the end of the 500 episodes. Specifically,

SARL reaches 12.23 MWh and MARL reaches 13.17 MWh. We also witness

an increase in energy consumption under MARL after around 200 episodes.
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Figure 4.4: Learning curve of different controllers on Building BSanFrancisco.
Each solid line shows the average performance of 15 runs and the shaded area
shows one standard error from the mean.

This might be because agents are not collaborating. As a result, they start to

cancel out each other’s actions (creating a “fighting zones” situation), thereby

increasing the total HVAC energy usage.

To further validate our proposed methodology, we consider two target

buildings (BSanFrancisco and C) that have some major differences from the source

building (Building A). Building BSanFrancisco is located in a warmer climate than

the source building. Moreover, it differs from the source building in terms of

the floor area and HVAC design. Building C is a real building where some of

the differences include size, occupancy, floor plan, HVAC design, and weather

conditions.

Figure 4.4 depicts the performance comparison in Building BSanFrancisco.

The total energy consumption in all cases is lower than Figure 4.3 because

we are looking at a winter month with a higher average outside temperature

in San Francisco, reducing the heating demand of the building. Most of the

observations made in Section 7.4 are true in this case. Before retraining, the

zonal control policies selected from the policy library by GK-SNIP* achieve

16.4% lower monthly energy consumption (3.31 MWh) than the default con-

troller (3.96 MWh). The Best GT assignment yields the lowest monthly energy

consumption at episode 0 (2.01 MWh), which is 49.2% lower than the default

controller. After 500 episodes of training, the policies selected by GK-SNIP*

reduce the total HVAC energy consumption by 10.3%, reaching 2.97 MWh.
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Figure 4.5: Learning curve of different controllers on Building C. Each solid
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This is 25.0% lower than the energy consumption of the default controller, yet

50.8% higher than the Best GT assignment.

Figure 4.5 compares the performance of the proposed method with the four

baselines in Building C. The same observation can be made here too. GK-

SNIP* performs better than the default controller, SARL, and MARL, and is

slightly worse than the Best GT assignment. The default controller consumes

4.83 MWh of energy in one month, whereas the proposed GK-SNIP* method

reduces it to 4.71 MWh before retraining and to 4.64 MWh after 500 episodes

of training in the target building. These numbers are 4.413 MWh and 4.411

MWh for the Best GT assignment.

Our experiments support the claim that diversity-induced RL offers clear

benefits for transferring policies to a novel target building, and that the pro-

posed GK-SNIP* policy selection and transfer method can efficiently identify

policies, among the policies in the policy library, that perform relatively well

in the novel target building using only 2 weeks of historical data. The trans-

ferred policies consistently outperform the default controller in terms of HVAC

energy use without sacrificing thermal comfort. This is the case even before

these policies are retrained to adapt to the new environment.
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Figure 4.6: Learning curves of different controllers including warm-started
policies on Building BDenver. Each solid line shows the average performance of
15 runs and the shaded area. The y-axis is exaggerated.

4.3.5 Comparison to Warm-Starting Policies

To better understand the benefits of the proposed method, we compare it

with policies that are warm-started using the offline data on the three target

buildings. In this approach, behavior cloning [52], a type of imitation learning,

is used to train policies on two weeks of log data collected under the default

RBC controller. This is the same amount of data that is used for policy

evaluation in our approach, making it a fair comparison. We warm-start the

SARL and MARL policies, and call them WS-SA and WS-MA, respectively.

We found that the performance of warm-started policies vary greatly across

the buildings. For example, in Figure 4.6, WS-MA performs slightly bet-

ter than GK-GK and significantly worse than the default controller and GK-

SNIP* (our approach) in building BDenver and building C shown in Figure 4.8.

However, in building BSanFrancisco shown in Figure 4.7, WS-MA performs 5.1%

(3.76 MWh) and 22.0% (3.09 MWh) better than the default controller at

episode 0 and episode 500 respectively. For WS-SA, its performance is close

to the default controller’s performance and improves only slightly over the

500 episodes of retraining in Building BDenver and Building BSanFrancisco. In

Building C, WS-SA and WS-MA perform similarly. Nonetheless, in all three

buildings, our approach (GK-SNIP*) exhibits the best performance across the
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Figure 4.7: Learning curves of different controllers including warm-started
policies on Building BSanFrancisco. Each solid line shows the average performance
of 15 runs and the shaded area. The y-axis is exaggerated.

500 episodes that we considered.

We have also investigated the performance gap at episode 0 between the

default controller which generated the log data and the warm-started poli-

cies, and concluded that it is most likely due to the small amount of log data

used for behavior cloning. Specifically, we increased the amount of data from 2

weeks to 1 month on Building BDenver and Building BSanFrancisco and observed a

9.6% improvement in the performance of the warm-started policies at episode

0. This is interesting as it highlights the fact that our methodology can realize

more savings using less log data than RL policies that are trained in an on-

line fashion. That said, further evaluation is warranted to fully understand the

sensitivity of the results to (a) the quality of the rule-based controller that gen-

erated the log data, and (b) the amount of log data used for behavior cloning.

Thus, we defer the full analysis of different imitation learning approaches, the

quality of log data, and different kinds of expert demonstration to future work.

4.3.6 Discussion

We now study the effect of using different policy ranking methods in the OPE

evaluation steps. In particular, we look at the result of using GK in both

steps (labeled GK-GK) and using SNIP* in both steps labeled (SNIP*-SNIP*).
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Figure 4.8: Learning curves of different controllers including warm-started
policies on Building C. Each solid line shows the average performance of 15
runs and the shaded area. The y-axis is exaggerated.

From Figures 4.3, 4.4, and 4.5, it can be readily seen that GK-SNIP* always

achieves lower monthly energy consumption than GK-GK. This is true be-

fore and after retraining on the target environment. We attribute this to the

fact that once the best-performing cluster is identified, the Regret@5 metric

becomes more relevant as we aim to identify the best-performing policies.

It is important to point out that the difference between GK-SNIP* and

SNIP*-SNIP* is not significant. For this reason, we remove SNIP*-SNIP*

from all figures so that the GK-SNIP* results can be better seen. The differ-

ence between GK-SNIP* and SNIP*-SNIP* becomes more pronounced as the

number of episodes for training increases. But even after 500 episodes of train-

ing, the policies selected by SNIP*-SNIP* consume only 1.0% (4.91 MWh),

3.4% (3.07 MWh), and 0.2% (4.65 MWh) more energy in building BDenver,

BSanFrancisco, and C respectively than the policies selected by GK-SNIP*. We

attribute this small gap to the fact that the top cluster is well-separated from

the other clusters; therefore, the first round of evaluation is more robust to

potential estimation errors.
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Chapter 5

Analyzing the Sensitivity to

Seasonality

In the previous chapter, we presented a method for selecting a near-optimal

policy to control the HVAC system of a specific target building. While we

demonstrated the performance of our selection algorithm after deploying it on

several buildings, they were only deployed for a single month — January. In

this chapter, we address the challenge of deploying selected policies for a whole

year, where we do not have control over the month from which the log data

were collected. Specifically, we investigate the importance of log data in policy

selection performance, present a few solutions to address the challenges that

arise due to changing log data, and conclude by comparing their performance.

5.1 Impact of Log Data

To obtain the results presented in Section 4.3, we used 15 days of log data

collected in January from the target building for policy ranking and policy

selection. In this section, we study how the performance of policy selection

changes when the month from which the log data is obtained changes. The

primary metric used for comparison is the Regret@k metric introduced in Sec-

tion 2.1.7. The Spearman’s rank correlation is no longer necessary because our

problem now is identifying the best-performing policy, not the overall ranking

of the policy library, which would have been helpful if we were searching for

the best cluster.
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Figure 5.1: The regret values for standard policy selection algorithm. The
x-axis shows the month in which the log data is collected. The ground truth
ranking was obtained by manually testing each policy in the policy library on
BDenver for a full year.

The ground truth dataset was obtained by manually evaluating each policy

in the policy library for an entire year. This dataset is used for calculating the

Regret@k value for our policy selection method. Recall that during the brute

force evaluation of all the policies in the policy library, we assign the policy to

one zone and assume a rule-based controller controls all the other zones. This

is done to reduce the size of the brute force search space, and we believe that

it provides a valid proxy for the actual performance of the policy if it were

deployed. The regret values only show how close a method is to the ground

truth and cannot be used to draw concrete conclusions about the actual energy

consumption. To accurately determine the annual energy consumption, it is

necessary to deploy the chosen policies in the target building for the whole

year.

Figure 5.1 (left) depicts the Regret@1 values for our policy ranking method

across all months. Figure 5.1 (right) depicts the Regret@5 values. These

plots show the regret values for the top-1 and top-5 policy selection cases,

respectively. Recall that we choose the policy with the highest estimated

value in the top-1 policy selection case and deploy it in the building. In the

top-5 policy selection case, we obtain five policies with the highest estimated

value and choose the best one from this set. This is only possible if we have

access to an oracle that can accurately identify the best policy in the top-5

set. Increasing the value of k increases the chance that our proposed policy

selection algorithm chooses a better policy. Although such an oracle does not
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Figure 5.2: The annual energy consumption for our proposed policy selection
algorithm in the BDenver environment. The x-axis shows the month from which
the log data is collected. The percentages represent the percentage increase or
decrease in energy consumption compared to the default rule-based controller,
denoted by the red dashed line.

exist in reality, we assume that we have access to such an oracle to better

study the impact of log data on policy selection performance. Unless stated

otherwise, we use the ground truth dataset as the oracle to identify the best

policy in the top-5 set. Approaches such as policy ensembles and online policy

selection which can be used for approximating this oracle, are discussed in

Section 5.3.

From Figure 5.1 (left), we see that the regret values are low when log

data is chosen from the winter and spring months, i.e., December, January,

February, March, and May. However, the regret values are much higher during

the summer months, i.e., June, July, and August. This tells us that our policy

selection algorithm would perform well if the log data were obtained from

the winter and spring months. However, if the log data were obtained from

the summer and fall months, our policy selection algorithm would perform

poorly. From Figure 5.1 (right), the regret values are much lower than the top-1

selection case. However, regret values are still high during the summer months.

This indicates that our selection algorithm will still perform poorly during the

summer months even if we have access to an oracle that can accurately identify

the best policy in the top-5 set.

Figure 5.2 depicts the annual energy consumption for our policy selection

method across all months. For this experiment, we calculate the annual energy

consumption in building BDenver for when we have an oracle and when we do
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not have an oracle. The horizontal red line shows the energy consumption

of the default rule-based controller in the building. When comparing annual

energy consumption with the corresponding regret values in Figure 5.1, we see

that the regret values are a good indicator of actual energy consumption. In

Figure 5.2 (left), we see that if we directly choose the best-estimated policy,

the energy consumption is much higher than the default controller during the

summer and early fall months. Often they consume more than twice the energy

consumed by the default controller. If the log data were from these months,

our policy selection algorithm would yield policies that consume, on average,

95% higher energy than the default controller.

When we have access to an oracle, depicted in Figure 5.2 (right), we see

that the energy consumption for June and July is higher than that of the

default rule-based controller. In the other summer months, the decrease in

energy consumption is negligible, if any. When we do not have access to an

oracle, the average energy consumption across the months is 172.27 MWh with

a standard deviation of 72.64. When we access an oracle, the average energy

consumption and standard deviation are 107 MWh and 17.63, respectively. In

comparison, the default rule-based controller has an average energy consump-

tion of 113.21 MWh. Using an oracle yields lower energy consumption with

a smaller variance, but in some summer months, the energy consumption is

higher than the default controller.

These plots show that our policy selection algorithm would perform well if

the log data were obtained from the winter months. This observation is further

supported by the decrease in energy consumption observed in the three target

buildings tested in Chapter 4. However, if the log data were obtained from the

summer months, our policy selection algorithm would perform poorly. It is

worth nothing that these results are building-specific and this conclusion may

not be valid for other buildings or weather patterns. The conclusion we draw

from these results is that our policy selection algorithm is highly dependent

on the month from which the log data is obtained. Our proposed approach is

not robust to changes in the log data, and this is one of its limitations. The

following sections will explore solutions to reduce this variance and compare

their performance.
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5.2 Reducing the Variance in Performance

In this section, we focus on reducing the variance in policy selection perfor-

mance when the month from which the log data is obtained changes. First,

we introduce the idea of swapping policies, where instead of deploying the

selected policies for an entire year, we deploy policies for a month and then

re-evaluate with the new log data and choose new policies for the following

month. We then introduce another approach where instead of using the heat-

ing energy consumption as the reward, we use a different reward signal that

incorporates cooling energy consumption, as discussed in Section 3.1. We then

discuss other approaches that can be used and conclude by comparing these

approaches regarding annual energy consumption.

5.2.1 Policy Rotation

Policy rotation is a straightforward approach where, instead of committing to

a single policy for the entire year, the policy is changed every month. The

offline log data is only used initially to select the first set of policies for each

zone. After that, the log data generated by the policies currently deployed in

the building is used for selecting policies for the following month. This method

is advantageous because all the log data generated by the policies currently

deployed can be used for re-evaluation and selection. We conjecture that

because weather patterns of consecutive months are correlated, policy rotation

might be beneficial for reducing the variance in policy selection performance.

Algorithm 1: Policy rotation

inputs : Π: Diverse policy library;
πinit: The initial policy assignment obtained via OPE;
env: target building environment wrapper;

1 πcurrent ← πinit // initialize the current policy assignment

2 for month ∈ 1 . . . 12 do
3 St..t+n, At..t+n, Rt..t+n, S

′
t..t+n ← env.evaluate(πcurrent)

4 πcurrent ← policy selection(St..t+n, At..t+n, Rt..t+n, S
′
t..t+n, π

current,Π)

5 end

Algorithm 1 is the policy rotation algorithm. Using Building BDenver as

the test environment, we calculated the Regret@1 and Regret@5 values for

this algorithm, depicted in Figure 5.3. To obtain each month’s ground truth
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Figure 5.3: The regret values for our policy ranking given log data across all
months in the BDenver environment when using policy rotation. The x-axis
shows the month from which the log data is collected. The regret values in
this case are calculated for each month separately.

policy ranks, we ran a brute force search for each month independently. In

other words, we evaluated each policy in the policy library for each month

separately and then ranked them according to their energy consumption. From

Figure 5.3 (left), we see that if we directly choose the policy with the highest

estimated value each month, the regret values vary significantly and do not

help reduce the performance variance. It is worth noting that, compared to

the simple policy transfer method, depicted in Figure 5.1 (left), the regret

values are lower during the summer months. Yet, when an oracle is available,

depicted in Figure 5.3 (right), we can see that the regret values are much

lower across all months. This indicates that policy rotation can reduce the

variance in policy selection performance when the log data changes. However,

when an oracle is unavailable, policy rotation does not reduce the variance in

performance.

5.2.2 New Reward Signal for OPE

To uncover why our offline policy selection algorithm performs poorly in the

summer months, we inspected the state, action, and reward of the agent in

each zone of the building over the course of a year. It was found that during

the summer months, the rewards received by the agents were sparse. In other

words, the agents did not receive a value other than zero for most of the time

steps during the summer months. Recall that the reward signal used for the
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Figure 5.4: The regret values for our policy ranking given log data across all
months in the BDenver environment using the new reward signal. The x-axis
shows the month from which the log data is collected. The ground truth
ranking was obtained by manually testing each policy in the policy library on
BDenver for a full year.

agents in the building is the heating energy consumption, as mentioned in Sec-

tion 3.1. Because some zones do not require heating, the log data produced by

the rule-based controller does not contain enough information for our proposed

offline policy selection algorithm.

Recall that in Section 3.1, we defined a new reward signal that incorporates

both heating and cooling energy consumption, shown by Equation (3.2). To

alleviate the problem of sparse reward signals during the summer months, we

use this new reward signal for the OPE phase of the policy selection algorithm.

A limitation of this new reward is that in buildings where the AHU system

supplies fresh air to all zones, the cooling energy consumption will be the same

for all the zones. In other words, the new reward signal might be the same for

some of the zones in the building. Another limitation is that since the agents

have not been trained with the new reward signal, performing offline policy

evaluation with the new reward signal might not be accurate. However, from

empirical tests depicted in Figure 5.4, we found that the new reward signal

benefits policy selection.

Figure 5.4 depicts Regret@1 and Regret@5 values for our policy ranking

method across all months when using the new reward signal for OPE in build-

ing BDenver. The ground truth ranks were obtained by brute force evaluation

of each policy in the diverse policy library for an entire year. In other words,

we use the new reward signal to choose a policy from the policy library and
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Figure 5.5: The regret values for our policy ranking given log data across all
months in the BDenver environment using the new reward signal and policy
rotation. The x-axis shows the month from which the log data is collected.
The ground truth ranking for each month was obtained by manually testing
each policy in the policy library on BDenver for a month.

then calculate the regret based on its full-year energy consumption. In Fig-

ure 5.4 (left), we see that even with the new reward signal, the policy selection

performance is poor during the summer months when an oracle is unavailable.

In some summer months, i.e., July and August, the regret values are much

lower than the simple policy transfer method depicted in Figure 5.1. However,

when an oracle is present, the performance is significantly better, as presented

in Figure 5.4 (right). The regret values are much lower during the summer

months, and there is low variance throughout the year. Another noteworthy

observation is that far fewer outliers are present when an oracle is available

compared to Figure 5.3 (right). This is most likely because the new reward

signal alleviates the sparseness of rewards for log data collected in the summer

months. These preliminary results indicate that policy selection using this

new reward signal with an oracle may be a viable solution for reducing the

variance in policy selection performance.

5.2.3 Policy Rotation with New Reward

The following approach we consider combines the two approaches discussed

previously. Instead of using the new reward signal for selecting a policy for

the entire year, we can use it for the OPE phase of the policy rotation algorithm

at the start of every month.
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Figure 5.5 (left) and (right) depict Regret@1 and Regret@5 values for our

policy ranking method across all months when using the new reward signal

in the policy rotation algorithm respectively. We ran a brute force search

for each month independently to obtain each month’s ground truth policy

ranks. The left figure shows that the regret values are much higher during

the summer months when an oracle is unavailable. However, compared to

the simple policy transfer approach, depicted in Figure 5.1 (left), PolicyRota-

tion+NewReward has much lower regret values in the summer months. When

an oracle is available, presented in Figure 5.5 (right), it is clear that policy

rotation with the new reward signal is beneficial for reducing the variance in

policy selection performance. These results indicate that combining these two

approaches provides yet another viable solution for reducing the variance in

policy selection performance, provided that an oracle is available to choose the

best policy from the top-5 set.

5.2.4 Comparing Annual Energy Consumption

In the previous sections, we have only discussed the regret values for the dif-

ferent approaches. Although regret may be a good indicator of policy selection

performance, it does not provide information about actual energy consump-

tion. In this section, we will compare the annual energy consumption of the

different approaches discussed in this chapter in Building BDenver.

We use two baselines for comparison, i.e., the default rule-based controller

and the policies with the lowest energy consumption for each zone for the entire

year. We refer to the default rule-based controller as Default and the policies

with the lowest energy consumption as Best GT. The Best GT is determined by

brute force evaluation of all the policies in the policy library for each zone for

an entire year. The policies with the lowest energy consumption are chosen as

the Best GT policies. Thus, the Best GT policies are the best possible policies

obtained from the policy library.

Ideally, the proposed solutions for reducing the variance should lie between

the Default and Best GT baselines. We mark our proposed policy selection

approach as SimplePolicyTransfer. Recall that policies chosen initially us-

ing the offline log data are deployed for an entire year in the simple policy

transfer approach. We mark the policy rotation approach as PolicyRotation,
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Figure 5.6: The average energy consumption for our policy ranking across all
months in the BDenver environment. The percentages represent the percentage
increase or decrease in energy consumption compared to the default rule-based
controller. The error bars represent one standard deviation of the annual
energy consumption. Note the y-axis is exaggerated.

and the new reward approach as NewReward. The combination of both ap-

proaches is marked as PolicyRotation+NewReward. We also introduce another

approach, called DomainAdaptation, where the policies chosen by the simple

policy transfer approach are trained in an online fashion on the new data from

the target building. Specifically, the policies are retrained every month on

the data generated by deployment for the month prior. For the approaches

mentioned above, we repeat the process with log data from each month of the

year and calculate the annual energy consumption. This yields 12 different

annual energy consumption values for each approach. Figure 5.6 is a box plot

depicting annual energy consumption distribution for the different approaches.

For all the proposed solutions discussed previously, we calculate the annual

energy consumption for cases where an oracle is available and where an ora-

cle is not available. When an oracle is unavailable, the simple policy transfer

approach has an average annual energy consumption of 172.27 MWh with a

standard deviation of 72.64, which is around 52.26% higher than the default

rule-based controller. When domain adaptation is used on these policies, the

average annual energy consumption is 163.62 MWh with a standard devia-

tion of 67.93. Domain adaptation reduces the average energy consumption
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by 5.0% compared to the simple policy transfer approach without an oracle.

Although domain adaptation reduces energy consumption, the value is still

higher than the default rule-based controller, which has an energy consump-

tion of 113.21 MWh. The PolicyRotation approach has an average annual

energy consumption of 250.73 MWh with a standard deviation of 37.24. This

is around 121.75% higher than the default rule-based controller. The worse

performance compared to the simple policy transfer approach without oracle is

likely because once bad policies are chosen, they generate low-quality log data,

which is then used for policy selection for the following month. The NewRe-

ward approach, on the other hand, has an average annual energy consumption

of 133.67 MWh with a standard deviation of 54.60. The NewReward approach

without oracle shows promise because the annual energy consumption values

are close to the rule-based controller. The NewReward approach only has an

average 18.04% increase in energy consumption compared to the rule-based

controller. The PolicyRotation+NewReward approach has an average annual

energy consumption of 241.86 MWh with a standard deviation of 53.53. This

is similar to the PolicyRotation approach, and the reason for this is the same

as the PolicyRotation approach.

When an oracle is available, the simple policy transfer approach has an

average annual energy consumption of 107 MWh with a standard deviation of

17.63, which is around 5.44% lower than the default rule-based controller. Even

though the average annual energy consumption is lower than the default rule-

based controller, the standard deviation is high, indicating that for log data

obtained from certain months, the annual energy consumption will be higher

than the default rule-based controller. When domain adaptation is used, the

average energy consumption is 106.02 MWh with a standard deviation of 17.62.

Domain adaptation shows promise as it reduces energy consumption; however,

outliers in the box plot indicate that the energy consumption is much higher

for some months than the default controller. The PolicyRotation approach

has an average annual energy consumption of 101.25 MWh with a standard

deviation of 7.55. This approach is much better than the simple policy transfer

approach, as the standard deviation is low, ensuring that this approach will

not perform much worse than the default rule-based controller. It is worth

noting that PolicyRotation outperforms domain adaptation, indicating that

re-selecting new policies leads to lower energy consumption than retraining

policies. Another noteworthy observation is that there are no outliers in the

53



box plot, indicating that the energy consumption will be lower than the default

rule-based controller no matter which month the log data is obtained from.

The NewReward approach has an average annual energy consumption of 98.39

MWh with a standard deviation of 2.43. This is the best-performing approach,

as it yields the lowest average energy consumption and the lowest standard

deviation. The PolicyRotation+NewReward approach has an average annual

energy consumption of 98.82 MWh with a standard deviation of 9.03. This

is slightly better than the PolicyRotation on average. However, some outliers

in the plot indicate that the energy consumption is higher for certain months

than the default controller. We conclude that the best-performing method on

building BDenver is NewReward, which has the lowest average energy consump-

tion and the smallest standard deviation.

When comparing the methods that use an oracle to the ones that do not,

we see that using an oracle yields significantly lower energy consumption. This

is because we increase the chance of choosing a better policy by increasing the

value of k. However, in reality, an oracle that can accurately identify the best

policy in the top-k set is not available. In the following section, we will discuss

some approaches that can be used to choose the best policy from the top-k

set. However, implementing and testing these approaches are left for future

work.

5.3 Approximating the Oracle

From Figure 5.6, it is clear that the NewReward approach with an oracle per-

forms the best. However, the oracle must be replaced with a viable alternative

for this approach to be used in reality. Recall that Section 4.1 discusses the is-

sues related to online policy selection algorithms in the building HVAC control

domain. The main reason UCB, an online selection algorithm, was unsuitable

for the original problem is that the number of arms needed to represent the

policies for each zone was very large. However, in the top-k policy selection

problem, the number of arms is k, significantly smaller than the number of

policies in the policy library. Thus, UCB may be a viable solution for replacing

the oracle. Konyushova et al. [25] explore using OPE estimates to warm-start

the online policy selection process. They show that warm-starting with policy

estimates sped up the convergence time of UCB significantly.
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Another approach to replace the oracle is policy ensembling. Wiering et

al. [57] discuss various ways in which policy ensembles can be used to improve

the performance of reinforcement learning algorithms. They show that ap-

proaches such as majority voting and rank voting can combine or choose an

action among the policies in the ensemble. In another line of work, Zhum-

abekov et al. [68] use the standard deviation of the actions of policies in the

ensemble to weigh the actions of the policies. By adopting these approaches

to combine the actions produced by the policies in the top-k set, we may be

able to approximate the oracle.

Although these approaches are promising, their implementation and com-

parison are outside the scope of this thesis and are deferred to future work. In

summary, our proposed policy selection algorithm could be made more robust

to changes in the log data. However, our proposed policy selection algorithm

performs well if the log data is obtained from preferable months. We wish to

emphasize that we have studied the problem when little log data is available;

our offline policy selection algorithm may be more robust if more log data is

available.
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Chapter 6

Conclusion

Commercial buildings are responsible for a significant portion of global energy

consumption, and the HVAC systems within them are significant contribu-

tors to this consumption. Conventional HVAC controllers are rule-based and

require expert knowledge to design. They are also less efficient than more

advanced controllers, such as MPC and RL. That being said, these advanced

controllers require either a building model or a large amount of training data

to learn good control strategies. These challenges have made it difficult for the

HVAC industry to adopt these controllers. Offline RL methods offer ways to

reduce the training time required by RL controllers by using offline log data

generated by the existing rule-based controllers. However, a major challenge is

that the policies learned by these methods are not transferable to new, unseen

building environments.

Policy diversity is vital in allowing policies to generalize to new environ-

ments. This thesis addresses the transferability issue with RL-based HVAC

controllers by proposing an offline policy selection algorithm that can identify

high-quality policies for a new building environment using only a small amount

of offline log data and a large library of diverse policies. The novelty of our

work is in (a) combining policy clustering and policy evaluation techniques to

quickly identify high-quality policies among the diverse policy library for the

target building and (b) modifying the standard ZCP-based methods to make

them applicable to the RL setting.

We compared the performance of various offline policy evaluation and mod-

ified zero-cost proxy methods on a building environment. We found that GK
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and SNIP* are the best-performing policy ranking methods. We then ran ex-

periments on three building environments and found that the proposed offline

policy selection algorithm effectively identifies high-quality zone-level control

policies using only two weeks of log data generated by the rule-based controller

in the target building. This resulted in a 4% to 30.4% reduction in energy con-

sumption compared to the rule-based controller, significantly improving energy

efficiency. However, the proposed method was only tested with log data from

January. Further experiments with log data from other months are required

to evaluate the robustness of the proposed method.

To better study the performance of the proposed method for a longer time

horizon, we conducted experiments on a single building for a whole year. We

found that if the offline log data was obtained from preferable months, e.g.,

January, the proposed method could efficiently identify high-quality policies

for each zone. However, if the month in which the log data was obtained

changes, the performance of the proposed method would vary greatly. We

explored several solutions to address this variance and propose two promising

solutions. First, re-evaluating and swapping policies every month reduced

the variance to a great extent. This method made our methodology more

robust to the month the log data was obtained. Second, using heating and

cooling energy consumption values as the reward signal during offline policy

evaluation significantly reduced the variance. Regardless, an oracle to select

the best policy among the top-k policies with the best-estimated values is

necessary for these methods to work. The approaches mentioned above failed

to make our algorithm more robust to changes in log data without an oracle.

Some approaches to approximate this oracle were briefly discussed, and their

comparison was left for future work.

6.1 Limitations and Future Work

In this thesis, a proof-of-concept solution for transfer learning in the building

control domain was proposed and thoroughly evaluated. However, there are

certain limitations, such as the lack of robustness to changing log data, the

lack of a real-world deployment, and the assumptions made about the building

environment, to name a few. Moreover, finding a suitable replacement for the

oracle and trying out newer ZCPs for OPE are some areas for future work.
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Some limitations of our work are related to our assumptions about the

building environment. The first assumption is that all buildings have the sen-

sors necessary to construct the state space. In some cases, buildings may not

have all the necessary sensors to implement our approach effectively. Another

assumption about the building environment is that the VAV boxes in each

zone have the same set of control points. If the control points varied, the

actions chosen by policies would have to be changed or mapped to the new set

of points.

A significant limitation of our work is the necessity of using an oracle to

make our approach more robust to changes in the log data. Such an oracle does

not exist in reality, and approximations of the oracle must be made to make

our approach more reliable. Section 5.3 discussed various ways to approximate

the oracle. However, implementation and comparison of these techniques are

deferred to future work.

Some limitations may also lie in how the diverse policy library was con-

structed. In our work, 800 policies were generated from a single building

environment using a simulator. Exploring how the offline policy selection per-

formance changes when the policy library is generated from various buildings is

an avenue for future work. Similarly, all the policies in the policy library share

the same neural network architecture. Investigating how ZCP-based OPE pol-

icy selection performance changes when policies with varying architectures are

present is another direction for future work.

Finally, we propose using ZCPs as the OPE method. However, both NAS

and OPE are active research areas, and in recent years novel methods have

been developed that may work better than the ones used in this thesis. Ex-

ploring the other OPE methods and comparing their performance with the

ZCP-based methods is an interesting avenue for future work. Similarly, in-

vestigating why the ZCP-based methods work better than the standard OPE

methods used in this thesis for policy evaluation is another important problem

that is left for future work.
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