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Abstract

Dialogue systems powered by large pre-trained language models exhibit an innate

ability to deliver fluent and natural-sounding responses. Despite their impressive

performance, these models fail to conduct interesting and consistent exchanges of turns

and can often generate factually incorrect statements, known as “hallucinations”,

impeding their widespread adoption in real-world applications. These issues seem not

to be rectified by simply training autoregressive neural models on a massive amount

of Web data and then fine-tuning on a specific dialogue benchmark. Progress towards

models that do not exhibit these issues requires evaluation metrics that can quantify

their prevalence. Unfortunately, there is a significant progress in models’ architectures

without a significant progress on how they are being evaluated. What is more, current

metrics capture mostly surface-level improvements (e.g., human-likeness) and fail

dramatically at measuring a deep understanding of attribution.

This dissertation aims at building coherent and faithful conversational models by

addressing existing problems from three perspectives: modelling, data and evaluation.

First, I introduce DEMI, a new objective function, which aims to make responses more

coherent, interesting and diverse. DEMI focuses on maximizing mutual information

between past and known future utterances of a particular turn. This is done by applying

the chain rule on mutual information and bounding each term separately. Second, I

present Neural Path Hunter (NPH), which follows a generate-then-refine approach

by augmenting conventional conversational models with an additional refinement

stage enabling them to correct potential hallucinations by querying a knowledge

graph. Third, I introduce the BEGIN benchmark designed to evaluate attribution in

ii



knowledge-grounded dialogue systems. Through a comprehensive evaluation study

on BEGIN, I show that a broad set of existing automatic metrics do not reliably

distinguish attributable abstractive responses from unattributable ones, and perform

substantially worse when the knowledge source is longer. And lastly, I discuss the

origin of hallucinations in conversational models and link that to noise in dialogue

benchmarks and to modelling weaknesses. To address this problem, I follow a data

centric approach and introduce a new benchmark, FaithDial, which drastically

enhances faithfulness and other dialogue qualities.

Overall, in pursuit of building trustworthy conversational models that can be

readily adopted in real-world applications, the present thesis highlights (1) how to

embed human-like conversational properties in responses (2) how to make responses

more faithful and less hallucinated (3) how to reliably evaluate faithfulness.
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Chapter 1

Introduction

Conversations play a key role in maintaining human well-being. They constitute

the most natural way of interacting verbally with each other. While exchanging

ideas, sharing opinions and expressing emotions might seem evident in our day-to-day

conversation, transferring these capabilities to machines has been a challenging hurdle

for researchers so far.

Over the past decade, virtual assistants have exploded in popularity and have become

omnipresent in our lives assisting our daily schedules and routines, and the global

pandemic has even accelerated their adoptions [139]. The chatbot market was valued

at USD 526 million in 2021, and it is projected to reach USD 3619 million by 2030

[181]. Users are quickly becoming comfortable with the idea of interacting with a

chatbot: from a simple weather query to playing music on the phone. These systems

are not only used at home but they are used for various applications across several

end-user industries, such as healthcare [90, 75], education [186, 84], and banking [160,

131]. Commercial virtual assistants such as Amazon Alexa1, Google Assistant 2, Apple

Siri3 and Microsoft Cortana4 have become the center of interest of big tech companies

given their rising range of capabilities and their huge market profit. This has made

the field of conversational AI growing very rapidly, attracting many researchers in the

1https://en.wikipedia.org/wiki/Amazon Alexa
2https://assistant.google.com/intl/en ca/
3https://www.apple.com/ca/ios/siri/
4https://www.microsoft.com/en-ca/windows/cortana
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machine learning and NLP community. Systems are becoming more conversational,

more fluent and more “intelligent” and all of this is thanks to recent advances in

language understanding with AI [132, 27, 14, 1, 164].

Neural language models [9] have revolutionized Natural Language Processing (NLP)

in recent years. They are based on the self-supervised learning approach [122], in

which a network is trained on a large corpus of data to predict the next word in the

sentence. By doing this at scale, models learn rich representations to recognize an

immense array of patterns and abstractions. With more data and computing power,

these models are getting better and better every year at producing shockingly fluent

text [164], as well as displaying impressive emergent abilities such as few-shot learning

[14]. They have achieved impressive success for both Natural Language Understanding

(NLU) and Natural Language Generation (NLG) tasks such as sentiment classification

[21], semantic similarity [24], machine summarization [83], and machine translation

[5]. Moreover, these models are being adopted for dialogue modelling [1, 164, 36, 43].

The common recipe is to train these powerful neural network models on masses of raw

dialogue data from existing web corpora. By doing this, chatbots and in particular

open-ended chatbots have become more capable than ever in conversing about any

topic approaching a fluency that resembles creations from science fiction. This ability

has sparked controversies in big tech research labs and academia about whether the

Google chatbot LaMDA [164]— short for Language Model for Dialogue Applications—

is sentient. This has also attracted the attention of several media outlets and generated

headlines across the globe claiming that AI is mastering language5.

However, despite this success, neural conversational models struggle to respond

consistently and continuously, with no apparent gaps between dialogue turns. Building

a system that can respond convincingly, while being engaging and informative with no

apparent gaps between dialogue turns is a challenging problem that researchers have

been striving to solve [145, 38, 156, 148, 96]. Further, these models are often prone

5https://www.nytimes.com/2022/04/15/magazine/ai-language.html
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Figure 1.1: An example of a response generated by a neural conversational model.
The phrases underlined in red are “hallucinations” not attributable to the Wikipedia
article.

to generating unverifiable or factually incorrect statements, a phenomenon known as

hallucination [135, 39, 150]. They have a disturbing tendency to just make things up

out of nowhere without being grounded on truthful facts. Another challenging task

of building dialogue systems lies in evaluating the quality of the responses. Models’

architectures have significantly changed without a significant progress on how they

are being evaluated [53]. Current metrics capture mostly surface-level improvements

(e.g., human-likeness) and fail at measuring a deep understanding of faithfulness.

1.1 Thesis Statement

The overarching goal of this thesis is to endow machines with a human-like propensity

to converse coherently, engagingly, and truthfully in a highly dynamic environment.

Throughout the different chapters, I focus on introducing principled solutions towards

this goal. Below, I explain the key aspects of each problem:
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1.1.1 Dull, Repetitive and Incoherent Dialogue Responses

Neural response generation approaches rely on powerful auto-regressive language

models trained by predicting the next word given the past of the conversation on large

corpora of conversational exchanges [161, 132, 170, 68]. Generating utterances from

these models can be done efficiently by ancestral sampling, i.e. by sampling words

sequentially conditioned on previous words. However, it has been shown that this

paradigm typically leads to generic responses, containing too many high frequency

tokens and hardly bear any informative words [148, 95]. Although these responses

are grammatically correct, they lead to dull and problematic conversations. Further,

generated responses tend to follow an illogical reasoning throughout the conversation

by producing self-contradictory responses. For example, a neural dialogue system can

respond to the utterance “Do you like animals?” by “Yes, I have three cats”, thereafter

replies to “How many cats do you have” by “I don’t have cats.”. Therefore, relying only

on the Maximum-Likelihood Estimation (MLE) objective function— which maximizes

the probability of the next word in the response— is unsuitable as it hardly correlates

with the goal of generating consistent and informative responses. Humans are not

attempting to maximize text probability when they converse but they are instead

trying to achieve goals [56].

How can conversational models imitate human-level linguistic capabilities?

Can we augment the MLE objective function with a new loss that learns to

generate coherent and engaging responses in a self-supervised fashion?

1.1.2 Hallucination in Dialogue Responses

Despite being fluent, conversational models are still unable to maintain a truthful

conversation and may instead hallucinate factually invalid information. The extremely

fluent text creates credible impression of human-likeness and users may end up trusting

information that are fully hallucinated. Consider the example in Figure 1.1; when the
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chatbot is asked information to tell me about Montreal, it says that “Montreal is the

most populous city in Canada with a population over 10 millions”. By looking into the

Wikipedia article, we can notice pretty quickly that the response is wrong. This issue

is particularly salient for knowledge-grounded dialogue systems, which are expected

to interact with a user in an open-ended fashion while conveying information that is

attributable to external identifiable sources. The dangerous part is that these systems

can be used by malicious groups to enable large-scale disinformation and inflict harm

on members of the society, and marginalized communities always get hit the hardest.

It is not yet well-understood why conversational models have a propensity to

hallucinate; is it because conversational benchmarks are noisy and contain

factually incorrect sentences or does it stem from potential shortcomings

in models’ architectures and/or training procedures? How can we make

existing conversational models faithful? How can we avoid low-quality data

releases and build hallucination-free dialogue benchmarks?

1.1.3 Dialogue Evaluation

In synergy with truthful and coherent dialogue models, evaluating the quality of

responses is equally important. Despite advances in dialogue modelling [135, 150, 39],

the lack of comprehensive studies on automated evaluation metrics and the lack of

testing benchmarks for dialogue evaluation continue to impede progress. Recently,

Rashkin et al. [136] introduced a human annotation framework that evaluates the

attribution of generated text (such as dialogue responses) to a given piece of evidence.

An attributed response is one that is connected to a piece of evidence that supports

the entirety of the response. Another line of work [70, 39] developed automated

metrics to measure attribution6 of dialogue responses and have reported remarkably

high correlations with human evaluations, paving the way for potential alternatives to

expensive human evaluations.

6Also sometimes referred to as faithfulness in the literature [17, 32, inter alia]
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However, these approaches suffer from three limitations. First, they evaluate the

performance of the metrics on small-scale test data that consist of hundreds of manually

annotated examples. This results in high variance and high error on challenging test

examples that contain novel patterns not covered in the test set [54]. Second, these

metrics essentially ignore the basic elements of a natural-sounding conversation [59,

158, 15]—e.g., backchanneling, acknowledgment, etc—and penalize viable responses

that do not convey any specific information, referred to as generic responses, such

as “Sorry, I’m not sure about this topic” or “What’s your favorite food?”. Generic

responses are still more desirable than unattributable responses7 in the context of

information-seeking dialogues. In real-world scenarios, it is preferable for a model to

acknowledge its ignorance instead of producing hallucinated content. Third, simply

looking at correlation with human scores may not sufficiently determine the efficacy

and robustness of an evaluation metric as these metrics can be susceptible to spurious

correlations, and therefore, may fail at measuring attribution in challenging cases.

How can we measure hallucinations effectively? Are state-of-the-art eval-

uation metrics robust at measuring faithfulness or do they rely mostly

on spurious correlations such as word overlap? How can we validate the

performance of these metrics?

1.2 Key Contributions

The main claim of this dissertation revolves around building information-seeking

conversational models that are informative, coherent, faithful and engaging. Overall,

the desiderata for building such conversational systems can be summarized as follows:

D1: Coherent, fluent and interesting conversational models that mirror human

conversational capabilities.

7Also known as hallucination responses in the literature [39, 150, inter alia].
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D2: Hallucination-free conversational models that can be reliably deployed in real-

world applications.

D3: Reliable evaluation tools, including testing benchmarks and metrics, to accurately

measure the faithfulness of models and to offer ample diagnostic tools when

issues arise.

D4: Faithful conversational benchmarks that can be used to train models to detect

hallucinations and to generate hallucination-free responses.

I tackle the problems from three perspectives: modelling, data and evaluation. My

contributions all constitute necessary steps for building systems that are robust in

real-world scenarios. In summary, the key contributions of the present work are:

1.2.1 Improving Dialogue Responses by Mutual Information
Maximization

Conversation between humans is an ambiguous and complex joint activity. Each

utterance is not independent of one another but is instead grounded within a larger

dialogue context known to both parties. Modeling the abstract mechanisms that

underpin the unique conversational abilities of humans in dialogue systems is a grand

challenge especially in the absence of explicit supervision. For instance, it is unclear

how to inject current deep learning models with an exhaustive set of rules that mirror

human linguistic capabilities. To narrow this chasm, I take inspiration from the self-

supervised learning paradigm with the goal of learning conversational characteristics

in an implicit fashion (chapter 2). In [155], I propose the idea of maximizing Mutual

Information (MI) I(x; y) between the past utterances x and the future utterances y in

a given dialogue. I argue that a good dialogue system should be one that estimates

representations of the past and the future utterances such that they are mutually

predictive. Under this assumption, I decompose I(x; y) by applying the chain rule on

MI to obtain a sum of conditional and unconditional MI terms which we call DEMI

for DEcomposed Mutual Information. Each term contains smaller chunks of the total
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MI that can be approximated with less bias by contrastive approaches. This way, our

dialogue model captures long-term dependencies that cannot be explained by the most

recent utterance. Quantitative and qualitative results show that DEMI representations

result in higher quality responses compared to the baselines. Generated responses are

more informative, more diverse, and contained less repetitive content.

1.2.2 Reducing Hallucination

Origin of Hallucination The common belief in the literature is that researchers

need to fix the models in order to fix hallucinations. In chapter 5, I investigate both

existing benchmarks and generated responses of prominent dialogue models to shed

light on the origins of hallucinations [40]. In-depth understanding of the various

sources of hallucination and how they manifest themselves can help researchers enforce

faithfulness in dialogue models. I take a step closer to gain such an understanding via

a systematic study where human evaluators identify and categorize hallucinations in

the widely-used benchmarks, measure their frequency, and overall negative impact

on generated responses. Analysis revealed that more than 60% of the responses were

hallucinated in the datasets, with major hallucination modes that manifest principally

through the expression of subjective information (e.g., thoughts, beliefs, feelings,

intentions, etc) and the expression of unsupported objective factual information.

Similarly, to understand if neural dialogue models make this hallucination more severe,

evaluators additionally annotated responses generated by several state-of-the-art

models, including ones that are designed to alleviate hallucinations. I find that models

do not only hallucinate but even amplify the hallucination behaviour at test time.

Overall, I show that hallucination is not only a reflection of training data issues, but

also a consequence of the weaknesses of models.

Modelling Neural dialogue models are not necessarily designed to generate faithful

outputs, but to mimic the distributional properties of the data. The presence of even
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few hallucinated responses may skew the data distribution in a way that curbs the

model’s ability to generate faithful responses. To address the hallucination challenge

from a modelling perspective, I propose Neural Path Hunter (NPH) [39] which focuses

on reducing hallucination of neural dialogue models to known facts supplied by a

KG (chapter 3). NPH follows a generate-then-refine strategy whereby a generated

response is amended using the KG. It leverages a separate token-level fact critic to

identify plausible sources of hallucination followed by a refinement stage that retrieves

correct entities from a k-hop subgraph. Empirical results show that NPH is capable

of reducing hallucination when paired with a number of base dialogue models with

relative improvements of 40% over a strong baseline according to human judgements.

Data Even if we come up with a model that is robust enough against hallucination,

it will be ultimately bounded by the data quality. To address this problem, I adopt a

data-centric solution and create FaithDial [43], a new benchmark for hallucination-

free dialogues, by editing hallucinated responses in an existing dialogue benchmark

(Wizard of Wikipedia (WoW)) (chapter 5). I observe that FaithDial is more faithful

than WoW while also maintaining engaging conversations. I show that FaithDial can

serve as training signal for: i) a hallucination critic, which discriminates whether an

utterance is faithful or not, and boosts the performance by 12.8 F1 score on the Begin

benchmark compared to existing datasets for dialogue coherence; ii) high-quality

dialogue generation. I benchmark a series of state-of-the-art models and propose

an auxiliary contrastive objective that achieves the highest level of faithfulness and

abstractiveness based on several automated metrics. Further, I find that the benefits

of FaithDial generalize to zero-shot transfer on other dialogue datasets. Finally,

human evaluation reveals that responses generated by models trained on FaithDial

are perceived as more interpretable, cooperative, and engaging.
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1.2.3 Dialogue Evaluation

In this dissertation, I focus on evaluating hallucination [43] and attribution [42] in

dialogue models. I characterize the consistency of dialogue models as a Natural

Language Inference (NLI) problem where I cast a generated response as the hypothesis

and the conversation history as the premise. The goal is to understand whether

the premise-hypothesis pair is entailing, contradictory, or neutral. While the results

illustrated a reasonable correlation with human judgement, the approach was not

efficient in detecting hallucination. To counter this, in chapter 5, I introduce a

hallucination critic which discriminates whether a response is hallucinated or not.

Given the lack of testing benchmarks and the lack of comprehensive studies on

automated evaluation metrics, I look into different evaluation challenges and propose

the BEGIN benchmark [42] (chapter 4). BEGIN is a challenging, large-scale testing

benchmark, for meta-evaluation of grounded dialogue evaluation techniques, comprised

of 12k dialogue turns. The main goal of BEGIN is to assess the attribution of

model-generated responses with respect to some external knowledge. Based on

BEGIN, I investigate the robustness and the reliability of state-of-the art evaluation

metrics. I analyze eight evaluation metrics and found that these metrics rely on

spurious correlations, do not reliably distinguish attributable abstractive responses

from unattributable ones, and perform substantially worse when the knowledge source

is longer.

1.3 Dissertation Layout

This dissertation is organized into 6 chapters. Each chapter is a piece of a puzzle that

covers one aspect of my ultimate goal — building faithful and coherent conversational

models. After the introduction in chapter 1, I discuss the new bound DEMI (chapter 2)

which encourages dialogue systems to be more coherent, diverse and informative. chap-

ter 3 concerns fixing entity-based hallucinations in generated responses by retrieving
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the correct entities from a KG. Chapter 4 introduces an evaluation benchmark and

presents the performance of a large-scale analysis on state-of-the-art evaluation metrics.

Chapter 5 studies the underlying roots of hallucinations in conversational models and

proposes a new hallucination-free dialogue benchmark. Finally, Chapter 6 summarizes

the contributions and discusses potential future research avenues.
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Chapter 2

DEMI: Generating Dialogues by
Mutual Information Maximization

Recently, natural language understanding and generation models have been successful

in solving a variety of natural language processing tasks, such as solving textual

entailment, machine translation and question answering. When it comes to modeling

open-domain dialogue, however, current systems still lag far behind human capabilities

in producing coherent and consistent responses. Generated responses tend to follow an

illogical reasoning throughout the conversation by producing either self-contradictory

responses or contradicting commonsense facts [176, 37]. In this chapter, we introduce

a new bound, DEMI, which aims at improving the quality of dialogue responses using

mutual information maximization.

2.1 Introduction

Neural response generation approaches are trained to predict the next word in the

sentence given the history using the cross-entropy objective function [161, 132, 170, 68].

However, such a paradigm typically leads to dull, repetitive responses that carry little

information [148, 95]. Methods that introduce entropy in the sampling mechanism to

induce more diversity have recently been proposed [68, 48]. It remains a problem that

sentences containing word repetitions and artefacts that diverge from the statistics of

natural language have higher likelihood under the model itself. This suggests a poor
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fit to the data distribution. Welleck et al. [175] and Li et al. [99] specifically train

the model to penalize repetitions during training by unlikelihood training. However,

these methods have a heuristic flavor1: they are confronted with the problem of how

to choose which words not to repeat and therefore usually degrade performance of the

model on metrics like perplexity.

To overcome this issue, we took inspiration from the self-supervised learning

paradigm to learn implicitly human conversational characteristics. The objective in

self-supervised representation learning approaches is not to maximize likelihood, but

to formulate a series of (label-agnostic) tasks that the model needs to solve through

its representations [122, 28, 55, 67]. We borrow from the maximum predictive coding

framework [44, 3, 108, 123] and argue that a good model for dialogue should be one

that learns representations so as to maximize mutual information (MI) between the

past utterances and the future utterances I(x; y). The intuition is that when we try to

communicate a set of information between each other, we aim to maximize information

with respect to the things we deem important and minimize information with respect

to the things that we consider less important. The idea is to see what information

we can extract from the past and the future of the dialogue that is highly correlated.

We note that the maximum-likelihood next-word prediction loss can be considered

as a particular form of MI maximization between past and future, where the future

is just considered to be the next word2. This effectively measures MI between past

and future in a particular representation space and learns representations that are

predictive of the future one word at a time. Therefore, we investigate whether by

extending the way in which we measure and maximize MI between past and future,

we can estimate better models of dialogue.

Recent self-supervised learning methods can be seen as training an encoder f such

1The tendency of words to repeat once they appeared, i.e. their burstiness, is an observed
phenomenon in language [23].

2This can be intuitively seen by observing that the marginal entropy of the next word is fixed and
by considering the language model as minimizing an upper-bound on the conditional entropy of the
next word given the past. A set of related observations can be found in [86].
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that it maximizes the mutual information (MI) between representations f(·) of a pair

of views x and y of the same input datum, I(f(x); f(y)) ≤ I(x; y)3. For sequential

Figure 2.1: A fictional dialogue in which x and y represent past and future of the
conversation respectively and x′ is the “recent past”. In this context, the conditional
MI term encourages the encoder to capture long-term dependencies that cannot be
explained by the most recent utterances. We can maximize I(x; y) ≥ I(x′; y)+I(x; y|x′)
using a contrastive bound by training x′ to be closer to y than to other dialogues from
the corpus. Additionally, we train x to be closer to y than to samples from p(y|x′),
i.e. we can use x′ to generate hard negatives y, which corresponds to maximizing
conditional MI, and leads the encoder to capture features not explained by x′.

data such as conversational text, the views can be past and future utterances in a

given dialogue, or a particular word and its surrounding context [159]. Contrastive

approaches train representations of pairs of views to be more similar to each other

than to representations sampled from a negative sample distribution. The InfoNCE

bound on I(x; y) [123] has been successful insofar as it enjoys much lower variance

than competing approaches [153]. However, the capacity of the bound is limited by

the number of contrastive samples used [109, 128] and is therefore likely biased when

a large amount of MI needs to be estimated.

Given a dialogue, we randomly choose an utterance and consider all the utterances

coming before that sentence comprising itself as the past x and those coming after as

the future4 y. We decompose I(x, y) by applying the chain rule on MI to obtain a sum

3In what follows, we will slightly abuse language and use the expression “maximizing I(x, y)” as
a shortcut for “maximizing a lower bound on I(x, y) with respect to f”.

4We may have considered past/future segments at the token level, but for the purpose of this
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of terms, each containing smaller chunks of the total MI that can be approximated

with less bias by contrastive approaches. For example, consider creating a subview

x′ by removing information from x, e.g. by restricting the dialogue history to one

sentence as depicted in Fig. 2.1. By construction, I(x′, x; y) = I(x′; y) + I(x; y|x′) =

I(x; y). Decomposed Estimation of Mutual Information (DEMI) prescribes learning

representations that maximize each term in the sum, by contrastive learning. The

conditional MI term measures the information about y that the model has gained by

looking at x given the information already contained in x′. An intuitive explanation

of why this term may lead to capturing more of the total MI between views can be

found in Fig. 2.1. By setting x′ to be the most recent utterance, the encoder is directly

encouraged to capture long-term dependencies that cannot be explained by the most

recent utterance. Most importantly, the conditional MI term encourages the encoder

to capture more non-redundant information across views.

Our model is trained to estimate representations of the past and the future such that

they are mutually predictive, i.e. given the past, the true future can be easily distin-

guished from a set of negative, candidate futures sampled from a proposal distribution.

Our contributions are the following: we show that maximizing MI with InfoNCE has

a synergistic effect to maximum likelihood estimation for the metrics considered: as a

result of the optimization, held-out perplexity decreases. In addition, we demonstrate

that DEMI can potentially capture more of the total information shared between the

original views x and y. We extend existing contrastive MI bounds to conditional MI es-

timation and present novel computationally tractable approximations. Supplementally,

our results offer another perspective on hard contrastive examples, i.e., Faghri et al.

[46], given that conditional MI maximization can be achieved by sampling contrastive

examples from a partially informed conditional distribution instead of the marginal

distribution. Our extensive experiments on the Wizard of Wikipedia [30] show that

our model is capable of making responses more diverse, coherent and informative

work, we stick to a utterance-level segmentation, which naturally arises in conversational exchanges.
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based on automatic metrics and human judgement.

2.2 Problem Setting

The maximum MI predictive coding framework [108, 123, 67] prescribes learning

representations of input data such that they maximize MI between inputs and represen-

tations. Recent interpretations of this principle create two independently-augmented

copies x and y of the same input by applying a set of stochastic transformations twice,

and then learn representations of x and y by maximizing the MI of the respective

features produced by an encoder f : X → Rd [4, 19]:

argmax
f

I(f(x); f(y)) ≤ I(x; y) (2.1)

where the upper bound is due to the data processing inequality. Our starting point to

maximize Eq. 2.1 is the recently proposed InfoNCE lower bound on MI [123] which

trains f(x) to be closer to f(y) than to the representations of other texts drawn

from the marginal distribution of the corpus. This can be viewed as a contrastive

estimation of the MI [123] and has been shown to enjoy lower variance than competing

approaches [153].

2.2.1 InfoNCE Bound

InfoNCE [123] is a lower-bound on I(x; y) obtained by comparing pairs sampled from

the joint distribution x, y1 ∼ p(x, y) to pairs x, yi built using a set of negative examples,

also called contrastive, independently sampled from the marginal:

INCE(x, y|ϕ,K) = E

[︄
log

eψ(x,y1)

1
K

∑︁K
k=1 e

ψ(x,yk)

]︄
, (2.2)

Usually, ψ is the dot product of the representations after applying an additional

transformation g, e.g. an MLP, ψ(x, y) ≜ g(f(x))Tg(f(y)) [19].

InfoNCE has recently been extensively used in self-supervised representation learn-

ing given that it enjoys lower variance. However, the bound is loose if the true

16



mutual information I(x; y) is larger than logK, which is likely when dealing with

high-dimensional inputs such as text. To overcome this difficulty, recent methods

either train with large batch sizes [19] or exploit an external memory of negative

samples in order to reduce memory requirements [20, 167]. These methods rely on

uniform sampling from the training set in order to form the contrastive sets.

2.3 Decomposing Mutual Information

When X is high-dimensional, the amount of mutual information between x and

y will potentially be larger than the amount of MI that INCE can measure given

computational constraints associated with large K and the poor log scaling properties

of the bound. We argue that we can ease this estimation problem by creating subviews

of x and applying the chain rule on MI to decompose the total MI into a sum of

potentially smaller MI terms.

By the data processing inequality, we have: I(x; y) ≥ I({x1, . . . , xN}; y), where

{x1, . . . , xN} are different subviews of x – i.e., views derived from x without adding

any exogenous information. For example, {x1, . . . , xN} can represent single utterances

in a dialog x, or sentences in a document x. Equality is obtained when the set of

subviews retains all information about x or if x is in the set.

For ease of exposition and without loss of generality, we consider the case where

we have two subviews, x itself and x′. Then, I(x; y) = I(x, x′; y) and we can write

I(x, x′; y) by applying the chain rule for MI:

I(x, x′; y) = I(x′; y) + I(x; y|x′). (2.3)

The conditional MI term can be written as:

I(x; y|x′) = Ep(x,x′,y) log
p(y|x, x′)
p(y|x′)

. (2.4)

This conditional MI is different from the unconditional MI, I(x; y), as it measures the

amount of information shared between x and y that cannot be explained by x′.
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Lower bounding each term in Eq. 2.3 with a contrastive bound can potentially lead

to a less biased estimator of the total MI. This motivates us to introduce DEMI, a

sum of unconditional and conditional lower bounds:

IDEMI = INCE(x
′; y) + ICNCE(x; y|x′) ≤ I(x; y), (2.5)

where ICNCE is a placeholder for a lower bound on the conditional MI. Both conditional

and unconditional bounds on the MI can capture at most logK nats of MI. Therefore,

DEMI in Eq. 2.5 potentially allows to capture up to N logK nats of MI in total, where

N is the number of subviews used to describe x. This is strictly larger than logK in

the standard INCE.

2.4 Experiments

Setup In addition to the LM loss, we maximize MI between representations of the

past and future utterances in each dialogue, i.e. the predictive coding framework [44,

109]. We consider past and future in a dialogue as views of the same conversation.

Given L utterances (x1, . . . , xL), we set y = (xk+1, . . . , xL), x = (x1, . . . , xk) and

x′ = xk, where (.) denotes concatenation and k is randomly chosen between 2 < k < L.

The goal is therefore to imbue representations with information about the future that

cannot be solely explained by the most recent utterance x′. For each utterance in

a dialogue, we encode the past (i.e., previous utterances) and the future (i.e., next

utterances) using a neural network encoder. Then, we train the model such that past

and future are close in the embedding space, specifically, closer than other possible

future candidates drawn from the marginal future distribution.

2.4.1 Training Objective

Our loss function L extends the classical next-word prediction loss by maximizing

additional mutual information terms between past and future. Although it is explicitly

possible to maximize all the terms in IDEMI(x, y) decomposition, in our experiments,
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we restrict ourselves to mainly maximize three mutual information terms: (i) the

log-likelihood of the next-word given the past, i.e. log p(w|x) ≈ I(x;w), (ii) the basic

InfoNCE bound INCE(x; y) and (iii) one of the conditional mutual information terms

from our ICNCE(x; y|x′). Incorporating more than two terms in the decomposition

is straightforward and could be investigated in the future. Our loss is a weighted

combination of these terms:

L = E(x,y)∼D

[︃
− λ1

∑︂
w∈y

log p(w|x)− λ2 IDEMI(x, y)

]︃
(2.6)

where λi are hyperparameters and
∑︁

w∈y log p(w|x) ≈ I(x;w) is the the log-

likelihood of the next-word given the past.

2.4.2 Models

We evaluate our introduced model against different baselines: GPT2 is a basic small

pre-trained model fine-tuned on the dialogue corpus. TransferTransfo [183] augments

the standard next-word prediction loss in GPT2 with the next-sentence prediction loss

similar to Devlin et al. [28]. GPT2-MMI follows MMI-bidi [95]; we generate 50 re-

sponses from GPT2 and then rank them based on a trained backward model pGPT2(y|x).

For the InfoNCE baseline, we only maximize the unconditional MI between x and y

and sample negative futures from the marginal distribution p(y). DEMI maximizes

conditional MI by recurring to using GPT2 by computing representations of past and

future are the state. GPT2 is a generative model therefore we can simply sample a set

of negative futures from pGPT2(y|x′), that is, by restricting the amount of contextual

information GPT2 is allowed to consider. To speed up training, the negative sampling

of future candidates is done offline.

2.4.3 DEMI Details

The optimization of the DEMI requires the specification of a critic. Following previous

work [123, 67], we implement the critic by a dot product between representations of
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the past f(x) and those of the future f(y). We obtain fx, fy by running a forward

pass with the GPT2 model on the words from the past and the future separately and

by taking the state of the last layer of the GPT2 corresponding to the last token in

the past and the future respectively.

For all DEMI terms, given the past, the model is trained to pick the ground-truth

future among a set of N future candidates. This candidate set includes the ground-

truth future and N−1 negative futures drawn from different proposal distributions. To

compute INCE(x; y), we consider the ground truth future of each sample in the batch

as a negative candidate for the other samples in the same batch. Using this approach,

the number of candidates N is equated to the batch size. This ensures that negative

samples are sampled from the marginal distribution p(y). To compute the conditional

MI bound ICNCE(x; y|x′), we sample negative futures p(y|x′) by conditioning the GPT2

model on the most recent utterance in the past x′. A sample dialogue from WoW and

hard negative examples are presented in Table 2.1.

2.4.4 Experimental Setup

Given memory constraints, all the proposed models are trained with a batch size of 5

per GPU, considering up to three utterances for the future and five utterances in the

past. All the models are trained on 2 NVIDIA V100s. The models early-stop in the 4th

epoch. We use the Adam optimizer with a learning rate of 6.25e-5, which we linearly

decay to zero during training. Dropout is set to 10% on all layers. InfoNCE/DEMI

terms are weighted with a factor 0.1 in the loss function. We varied the factor from

0.1 to 1 and 0.1 was chosen based on the best results on the validation set. During

inference, we use nucleus sampling [68] with p = 0.9 for all models.

2.4.5 Automated metrics

Repetition The word repetition metrics aim at testing the model’s performance in

generating responses while avoiding artificial repetitions. We employ the repetition
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x A: I like parachuting or skydiving .

B : I’ve never done either but they sound terrifying, not a fan of heights.

A: But it is interesting game. This first parachute jump in history was made by
Andre Jacques.

B: Oh really ? Sounds like a french name, what year did he do it ?

A: It done in October 22 1797. They tested his contraption by leaping from a
hydrogen balloon.

B: Was he successful or did he kick the bucket off that stunt?

A: I think its a success. The military developed parachuting tech.

y ∼ p(y|x′) Bgt Yeah nowadays they are a lot more stable and well made.

y1:N ∼ p(y|x′) B1 : That is great. I’ve been skydiving for days now . How is it ?

B2: Oh I have never flown but I’m glad to know.

B3: I’ve been dying for it since I was a kid.

B4: Yes, that is why NASA had an advanced mechanics tech for months.

B5: I went parachuting last Sunday and enjoyed it.

y′1:N ∼ p(y) B′
1 : I think science fiction is an amazing genre for anything

B′
2: Can you imagine the world without internet access ?

B′
3: I am just finishing my university course and I will be a qualified pharmacist.

B′
4: I don’t know how to be romantic. I have trouble expressing emotional

attraction.

B′
5: I think Krav Maga is a martial art sport. That ’s the reason I picked it .

Table 2.1: A sample dialogue between speaker A and speakerB from the Wizard of Wikipedia
dataset. The four rows from top to bottom are: (1) x: the “past” dialogue up to utterance k
(2) y: the ground-truth utterance for the next turn k+1 (3) y1:N : future candidates sampled
from the “restricted context” future distribution p(y|x′). These candidates correspond to the
set of hard negatives that are closely related to the conversation. (4) y′1:N : future candidates
sampled randomly from the dataset. We can see that candidates y1:N are semantically close
but incoherent w.r.t to the dialogue history as they were conditioned solely on the immediate
past utterance x′. However, we can notice that candidates y′1:N are semantically distant
from x as they were sampled randomly from the data distribution. The highlighted text in
green correspond to the topic of the conversation. Speaker B mentions that they have never
done either parachuting or skydiving. B1 corresponds to the utterance generated based on
the restricted context x′. The utterance is on-topic but completely contradictory to what
speaker B has said in the past. On the other hand B′

1 is randomly sampled from other
dialogues. We can observe that the utterance is clearly irrelevant to the conversation.
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metrics presented in Welleck et al. [175]: seq-rep-n, rep, wrep and uniq. These

metrics are defined based on the amount of repetitions in the generations. seq-rep-n

measures the portion of duplicate n-grams in a generated sequence:

seq-rep-n = 1− |unique n-grams(w1:N)|
|n-grams|

(2.7)

where w1:N is the generated utterance. We report seq-rep-avg which averages over

n ∈ {2, 3, 4, 5, 6}. rep measures the fraction of tokens that occur in previous tokens,

uniq counts the number of unique tokens on the validation set.

Distinct-n The metric is derived from Li et al. [95]. It is defined as the number of

unique n-grams, normalized by the total number of n-grams of tested sentences.

Entropy-n We employ the entropy metric from Zhang et al. [196] which aims to fix

the problem of frequency difference of n-grams in Distinct-n by reflecting how evenly

the empirical n-gram distribution is for each given sentence.

2.4.6 Results

Our experiments are performed on the Wizard of Wikipedia (WoW) [30]. WoW

dialogue [30] takes place between a Wizard and an Apprentice. The Wizard is tasked

with providing information about a particular topic and the Apprentice, in turn, is

expected to seek more information. At each turn of the conversation, the Wizard

is presented with passages from Wikipedia and chooses a span from the document—

typically one or two sentences—that serves as evidence supporting their response. In

total, there are 18430, 967 and 968 dialogues (training/dev/test).

Table 2.2 and Table 2.3 show results on the validation set and test set obtained by 3

pretraining seeds. Generated responses by different models are presented in Table 2.4.

The automated metrics indicate that DEMI representations result in higher quality

responses. The proposed InfoNCE and DEMI bounds achieve lower perplexity, reduce
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Model ppl BLEU H-rel H-hum H-inf

GPT2 19.21 7.81 ✓ ✓ ✓

TransferTransfo 19.32 7.5 ✓ ✓ ✓

GPT2-MMI 19.30 6.5 ✓ ✓ ✓

InfoNCE 18.85 8.0 = ✓ ✓

DEMI 18.70 8.2 = = =

Human – – ✗ ✗ ✗

Table 2.2: Perplexity, BLEU and side-by-side human evaluation on WoW [30]. H-
columns indicate whether DEMI was preferred (✓) or not (✗), or neither (=) at
α = 0.01.

Model ppl seq-rep rep wrep uniq dist-1 dist-2 BLEU Ent-4

GPT2 19.24 0.064 0.130 0.132 7393 0.064 0.392 7.75 0.095

TranTransfo 19.33 0.078 0.134 0.132 7735 0.058 0.386 7.52 0.084

GPT2-MMI 19.35 0.070 0.129 0.135 7623 0.052 0.384 7.40 0.092

InfoNCE 18.88 0.065 0.126 0.131 8432 0.065 0.390 7.99 0.107

DEMI 18.66 0.050 0.120 0.128 8666 0.070 0.405 8.10 0.108

Gold - 0.052 0.095 - 9236 0.069 0.416 - 0.110

Table 2.3: Results for perplexity, sequence-level metric, token-level metrics, BLEU and
diversity metrics on the test data of WoW.

next-token repetition and increase the number of unique next-tokens compared to the

baselines GPT2, GPT2-MMI and TransferTransfo.

Human Evaluation We also perform human evaluation on randomly sampled 1000

WoW dialogue contexts. We present the annotators with a pair of candidate responses

consisting of InfoNCE, DEMI and baseline responses. They were asked to compare

the pairs regarding informativeness, relevance to the history and humanness (e.g.,

fluency), using a 3-point Likert scale [197]. In Table 2.2, we see that overall responses

generated by DEMI were strongly preferred to other models but not to the gold

response. Bootstrap confidence intervals and p-values (t-test, following [197]) indicate
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significant improvements at α=0.01. Detailed results are depicted in Table 2.5, 2.6,

2.7. The “pivot” is always the system given by DEMI. Pairings where the pairwise

confidence interval is marked with “*” have a significant difference.

Context Generated Responses

A: I recently took up archery and I think I love
it . Do you know anything about Archery ?

B: Archery is a sport / skill of using a bow to
propel arrows.

A: And a great sport it is . Do you know
where archery originated from ?

DEMI: Archery originated from ancient
Mesopotamia, and is actually
practiced internationally in over
200 countries.

InfoNCE: I am not sure but many traditions
and principles arose during the
Mesolithic and Paleolithic era.

TransferTransfo : Yep , you just use it for skill
and using it to shoot arrows.

GPT2: I don’t know, but I know that the old
French called it archer’s art.

A: What is your motivation?
B: That’s a tough question. I ’d say my own

progress. I like seeing how much I improve
with something. You ?

A: I am retired now. Are you familiar with the
work of Mehr and Meyer, well known
psychologists ?

B: They said that ” Motivation is a word that
is part of the popular culture as few other
psychological concepts are . ” Do you agree
with what they said ?

DEMI: Yes, definitely! You should check out
Mark Twain’s famous motivational
book ! There are theories that point
out how important it is to meditate.

InfoNCE: They said that in psychology research,
theories and evidence, participants
who enjoyed continuous experience
could be more likely to be successful.

TransferTransfo: Absolutely, I disagree. Are
you an author or a commentator?

GPT2: That’s awesome. So , what types of dif-
ferences exist between “good ” mo-
tivatin and bad?

Table 2.4: Selected responses from different methods fine-tuned on the Wizard of
Wikipedia dataset. DEMI responses are more informative and interesting compared
to the baselines.

2.5 Related Works

Self-supervised learning Representation learning based on MI maximization has

been applied in various domains such as images [60, 18], words [111, 159], graphs [171],

RL [107] and videos [72], exploiting noise-contrastive estimation (NCE) [64], In-

foNCE [123] and variational objectives (MINE) [67]. InfoNCE have gained recent

interest w.r.t. variational approaches due to its lower variance [153] and superior

performance in downstream tasks. InfoNCE however can underestimate large amounts

of true MI given that it is capped at logK. Poole et al. [128] propose to trade-off
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DEMI wins DEMI CI baseline wins baseline CI pairwise CI p

Baseline

GPT2 0.48726 (0.44, 0.53] 0.28662 (0.25, 0.32] (0.13, 0.27] * <0.001

GPT2-MMI 0.65833 (0.6, 0.71] 0.16250 (0.12, 0.21] (0.4, 0.58] * <0.001

TransferTransfo 0.46888 (0.43, 0.51] 0.30043 (0.26, 0.34] (0.09, 0.24] * <0.001

InfoNCE 0.41711 (0.38, 0.46] 0.36748 (0.33, 0.41] (-0.03, 0.13] 0.0905

gold response 0.22679 (0.19, 0.26] 0.54325 (0.5, 0.59] (-0.39, -0.25] * <0.001

Table 2.5: Which response is more relevant to the history?

DEMI wins DEMI CI baseline wins baseline CI pairwise CI p

Baseline

GPT2 0.45084 (0.41, 0.49] 0.32636 (0.29, 0.37] (0.05, 0.2] * <0.001

GPT2-MMI 0.61734 (0.56, 0.67] 0.18393 (0.14, 0.23] (0.34, 0.53] * <0.001

TransferTransfo 0.43617 (0.4, 0.48] 0.35000 (0.31, 0.39] (0.01, 0.16] * 0.0028

InfoNCE 0.44630 (0.41, 0.49] 0.34515 (0.31, 0.38] (0.03, 0.17] * <0.001

gold response 0.22164 (0.19, 0.26] 0.56608 (0.52, 0.61] (-0.41, -0.28] * <0.001

Table 2.6: Which response is more humanlike?

DEMI wins DEMI CI baseline wins baseline CI pairwise CI p

Baseline

GPT2 0.56157 (0.52, 0.6] 0.21444 (0.18, 0.25] (0.28, 0.42] * <0.001

GPT2-MMI 0.68750 (0.63, 0.74] 0.12292 (0.09, 0.16] (0.48, 0.65] * <0.001

TransferTransfo 0.51931 (0.48, 0.56] 0.24571 (0.21, 0.28] (0.21, 0.34] * <0.001

InfoNCE 0.41288 (0.37, 0.45] 0.33580 (0.3, 0.38] (0.0, 0.15] * 0.0059

gold response 0.32384 (0.28, 0.36] 0.46624 (0.43, 0.51] (-0.22, -0.07] * <0.001

Table 2.7: Which response is more informative?
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between variance and bias by interpolating variational and contrastive bounds. Song

and Ermon [154] propose a modification to InfoNCE for reducing bias where the critic

needs to jointly identify multiple positive samples at the same time. Our proposal

to scaffold the total MI estimation into a sequence of smaller estimation problems

shares similarities with the recent telescopic estimation of density ratio [140] which

is based on variational approximations. Instead, we build upon InfoNCE, propose

new results on contrastive conditional MI estimation and apply it to self-supervised

representation learning.

Dialogue A conversational agent needs to check many boxes to be successful. It

should balance between simplicity and detail, stay on topic or change it appropriately,

ask questions and answer them and generate fluent text [145]. The starting point

is generally training large autoregressive models, such as GPT2 models [132, 197],

on a massive amount of Web data and then finetuning them on a specific dialogue

dataset [31]. Recent works [175, 145, 78] have proposed to control generation by

decoding strategies to increase or decrease the probability of certain words that align

with specific dialogues’ attributes. These methods are mostly applied at test time,

requiring no change to the training method, although See et al. [145] also suggest to

condition the training on some control features.

A parallel problem seems to be the mismatch between the model’s learned distribu-

tion and the true data distribution [13, 175, 148]. Sentences that contains repetition

artefacts have high likelihood under the model and longer generated text tend to

become more and more incoherent. Braverman et al. [13] introduce a calibration

procedure to fix the entropy amplification problem in text generation models. Starting

from the observation that maximum likelihood-trained models generate token-level

and sequence-level repetitions much more commonly than in the human training dis-

tribution, Welleck et al. [175] and Nakamura et al. [116] introduce training objectives

that explicitly reduce the likelihood of generating frequent and repeated responses on
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the token level. Welleck et al. [175] demonstrate that their unlikelihood loss improves

over decoding strategies, such as nucleus [68] and top-k [48] sampling used in conjunc-

tion with maximum likelihood-trained models. Li et al. [99] extend the unlikelihood

training from language modeling to dialogue generation, where it helps mitigate the

high incidence of frequent words and repetitions. These methods are usually heuristic

ways to limit repetitions, they are confronted with the problem of how to choose which

words not to repeat and usually degrade performance of the model on metrics like

perplexity. In contrast to these approaches, our proposed objective DEMI extends

standard next-word prediction approaches. It positively encourages the model to

retain long-term context specific to the current dialogue, which it uses to distinguish

the true future from sampled futures.

Other approaches have utilized mutual information within their training process

while some have used it only at decoding time to re-rank better. Li et al. [97] and Li et

al. [95] use mutual information to re-rank generated answers and observed that MI led

to diverse responses and improved quality on automated metrics and human evaluation.

This objective is not applied during training and therefore does not help in estimating

a better model overall. Li et al. [98] and Zhang et al. [192] turn to reinforcement

learning to maximize mutual information between context and generated utterances.

Our proposed approach is complementary as it works instead on the representation

space and can be trained with self-supervised learning objectives.

2.6 Conclusion

In this chapter, we presented an application of the principle of predictive coding

through mutual information maximization to dialogue. We argued that next-word

prediction is a particular case of MI maximization between past and future, where the

future is a single next-word. Therefore, we extended the MI maximization to take

into account richer representations of the future. This has been done leveraging a

previously proposed InfoNCE bound and a newly proposed DEMI bound. DEMI is
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obtained by applying the chain rule on mutual information and bounding each MI

term separately. This allows us to show that a particular type of negative samples, i.e.

futures sampled from a restricted past, correspond to maximization of conditional

mutual information terms. Our experiments suggest that generalizing the standard

next-word prediction loss can be beneficial for obtaining a better fit to the data

distribution in a dialogue setting. Coincidentally, this also helps in obtaining responses

that contain less word repetitions, a recurring problem in dialogue generation models.
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Chapter 3

Reducing Hallucination in Dialogue
Systems via Path Grounding

Each utterance in a dialogue is not independent of one another but is instead grounded

within a larger dialogue context known to both parties [76, 156, 148, 38]. Indeed,

if a response to an utterance fails to be faithful to some given knowledge—i.e. by

producing false information—it is uninformative and runs the risk of jeopardizing

the entire enterprise of conversation. More precisely, this means that in addition to

being fluent, coherent, and diverse, utterances within a dialogue must also be factually

correct.

The faithfulness of responses is of principal importance when designing dialogue

systems that are grounded using auxiliary knowledge such as KG. Despite maintaining

plausible general linguistic capabilities, dialogue models are still unable to fully discern

facts and may instead hallucinate factually invalid information. In this chapter, we

focus on addressing the open problem of hallucination of factually invalid statements

in knowledge-grounded dialogue systems where the source of knowledge is a KG.

3.1 Introduction

Empirical evidence for hallucination in Language Model (LM) runs contrary to

known studies that these large models are capable of recalling factual knowledge, e.g.

entities and relations in a KG [141, 127]. This suggests that this inherent lack of
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Figure 3.1: Neural Path Hunter overview.

controllability may be remedied by leveraging external oracle knowledge. However,

existing approaches to knowledge grounding often suffer from a source-reference

divergence problem whereby the reference contains additional factual information and

simply training on the reference is insufficient to guarantee faithfulness [182, 126, 165].

Consequently, ensuring the faithfulness of knowledge grounded dialogue systems—via

precise alignment of the source and reference—remains an open challenge.

In this chapter, we first identify prominent modes of hallucination by conducting

a systematic human study on generated responses which reveals one major source

of hallucination as the (mis)-use of wrong entities to describe factual content [87], a

problem that persists when naively applying language models in dialogue systems. To

enforce faithfulness to the misattribution of entities in grounded dialogue systems, we

introduce Neural Path Hunter (NPH), a module that operates on hallucinated

responses. NPH follows a generate-then-refine approach by augmenting conventional

dialogue generation with an additional refinement stage enabling the dialogue system to

correct potential hallucinations by querying the KG. NPH grounds dialogue generation
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by constraining the flow of conversation to be supported by a valid path on the KG.

To do so, the module combines a token-level hallucination critic that masks out

entities of concern in an utterance, followed by a pre-trained non-autoregressive LM

which prescribes contextual representations for each masked entity. This is then

fed sequentially to an autoregressive LM to obtain output representations. These

output representations can then be used to efficiently launch a query on the KG—

effectively modelling dialogue as a signal being propagated on a local k-hop subgraph

whereby locality is enforced through the conversation history—returning factually

correct entities. Our proposed approach is applicable to any generated response

whenever an available KG is provided and works without further fine-tuning. The

high-level overview of our proposed approach is outlined in Fig.3.1 and exemplar

machine-generated responses post-refinement are presented in Table 3.6. Our main

contributions are summarized as follows:

• We conduct a comprehensive human study on hallucinations generated by state-

of-the-art dialogue systems which reveals that the main mode of hallucinations is

through the injection of erroneous entities in generated responses.

• We propose Neural Path Hunter, which leverages facts supplied by a KG to

reduce hallucination in any machine-generated response.

• We empirically demonstrate that Neural Path Hunter substantially reduces

hallucinations in KG-grounded dialogue systems with a relative improvement of

20.35% in FeQA, a QA-based faithfulness metric [32], and an improvement of 39.98%

in human evaluation.

3.2 Hallucination in KG-grounded Dialogue Sys-

tems

We consider the task of generating factual and grounded dialogue when presented with

auxiliary structured knowledge. In particular, we focus on factoids taken from multi-

relational graphs G = (V , E ,R), termed Knowledge Graphs (KG). Each KG consists
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of a set of directed edge triples t = ⟨[SBJ], [PRE], [OBJ]⟩, where [SBJ], [OBJ] ∈ V

are nodes denoting subject and object entities and [PRE] ∈ R is a predicate that can

be understood as a relation type. Broadly speaking, we say that a neural dialogue

system is guilty of hallucinating whenever it generates a factual sentence that is not

supported by a valid path in a k-hop subgraph Gkc ⊂ G of the original KG anchored

around a context entity c.

As a starting point for our investigation, we study the various types of hallucinations

a model may inject into an otherwise satisfactory response. Specifically, we explore

the circumstances under which LMs are likely to exhibit unfaithful behaviour through

misappropriation of entities (e.g. Barrack Obama was the President of Canada).

Inspired by [106] for KG-grounded dialogue systems we hypothesize—among other

possible mechanisms—hallucination can take form as either intrinsic or extrinsic to

the provided KG.

Definition 3.2.1 (Extrinsic Hallucination). An extrinsic hallucination corresponds to

an utterance that brings a new span of text that does not correspond to a valid triple

in Gkc .

From the perspective of definition 3.2.1, an utterance that might be partially faithful

is still guilty of hallucination if there exists any injection of knowledge not authentically

captured in Gkc . Despite this, external hallucinations can often be easier to identify

due to their egregious nature. For example, the dialogue sample in Fig. 5.6 contains

an external hallucination as the entity in question “Jay Roach” did not direct the

movie “Titanic” and it is not supported within the 1-hop subgraph. On the other

hand, the generated response may identify the correct set of entities but make false

claims about their relationship which leads to the following definition.

Definition 3.2.2 (Intrinsic Hallucination). An intrinsic hallucination corresponds

to an utterance that misuses either [SBJ] or [OBJ] in Gkc such that there is no direct

path between the two entities.
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Intrinsic hallucinations inject false information by condensing information from the

KG in a wrong way. For instance, claiming that “Jay Roach” produced “Meet the

Parents” is an incorrect association of the true relationship between these entities.

To ascertain the degree to which KG-grounded dialogue systems hallucinate and the

nature of these hallucinations, we conduct a systematic evaluation by soliciting human

judgement. We first fine-tune a LM on the OpenDialKG dataset [114] which contains

a turn-based dialogue between two speakers on extracted triples from a known KG.

The sequential nature of such turn-based dialogues grounded via extracted KG-triples

effectively renders the entire conversation as a path traversed on the KG.

OpenDialkG OpenDialKG is a crowded-sourced English dialogue dataset where

two workers are paired together to chat about a certain topic. The first speaker is

asked to initiate the conversation about a given entity and the second speaker is tasked

to form a factual response based a set of facts extracted from an existing KG, Freebase

[7]. Those facts represent paths in the KG that are either 1-hop or 2-hop from the

initial entity. Once the second speaker sends a response, the first speaker continues

discussing the topic engagingly and new multi-hop facts from the KG are presented to

the second speaker. The conversation can be regarded as traversing multiple paths in

the KG. However, not all utterances within the same dialogue are grounded on facts

from the KG. The second speaker can choose not to select a path from the KG to form

an answer and instead forms a “chit-chat” response. Overall, the dataset consists of

four domains: movie, music, sport and book where each second speaker’s utterance is

annotated with paths from the KG. The KG corresponds to a large subgraph extracted

from Freebase with ∼ 1.2M triples (subject, predicate, object), ∼ 101k distinct entities

and 1357 distinct relations. No official split is provided in the original dataset, and

thus we randomly split the dataset in 80/10/10 for the train/valid/test, respectively.

The data consists of 61778 train, 7933 valid and 7719 test. Some utterances in the

dataset are chit-chat and thus are not annotated with a path from the KG. Thus, we
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GPT2-KG
Hallucination

Faith. Gen.
Ex In B

Greedy 17.66 2.00 1.66 69.00 9.66

Beam Search 18.33 3.33 4.00 68.00 6.33

Nucleus 0.9 25.33 4.00 2.33 64.66 3.66

Nucleus 0.5 23.33 5.33 4.33 59.90 7.00

Top20 28.33 7.00 5.00 55.00 4.66

Table 3.1: Human assessment of random 1500 GPT2 dialogue responses generated using
OpenDialkg. “Ex”, “In” and ”B” mean extrinsic, intrinsic, and both hallucinations
respectively. Each cell shows the mean percentage of responses with a specific dialogue
property.

filter the dataset by keeping only the dialogue examples that are annotated with a

path from the KG. We ended up with 23314 training examples, 2954 valid examples

and 2954 test examples.

3.2.1 Modes of Hallucination

Experimental Protocol. As a demonstrative example, we use a pre-trained GPT-

2 model [132] as the backbone of a neural dialogue system. To fine-tune GPT2,

we concatenate the dialogue history, the KG-triples ⟨[SBJ], [PRE], [OBJ]⟩ and the

ground truth response and then train the model to predict the next word in the

response. To explore the effect of different decoding strategies and their impact in

injecting hallucinations, we sample 300 responses from each decoding approach. We

investigate greedy search, beam search, nucleus sampling [68] and top-k sampling

[132] as representative decoding strategies.

For each dialogue sample, we crowd-source human judgement by soliciting evalua-

tions from 3 different annotators from Appen1, a high-quality annotation platform.

Each annotator is tasked to first identify the presence of hallucination in the generated

response when provided the dialogue history and KG triples. For samples where

hallucination is present, we further ask the human annotators to identify whether the

1https://appen.com/
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hallucination is extrinsic, intrinsic or both. If the response is not hallucinated, we ask

them whether the response is faithful (i.e., supported by the triples) or generic (e.g.,

“I don’t know about that”). The results of the human assessment are shown in Table

3.1. Overall, we report the average Krippendorf’s alpha coefficient to be 0.72 on the

annotator responses to the different questions which indicates high agreement. Using

Table 3.1, we make the following key observations:

Remark 1. Humans notice most hallucinations in KG-grounded dialogue systems are

extrinsic.

Remark 2. A hallucination occurs the least in dialogue responses generated using a

greedy decoding scheme. Conversely, top-k sampling results in the highest hallucination

percentage (40.33%).

Remark 3. Increased diversity in response generation —i.e.(less generic), is positively

correlated with an increase in hallucination e.g. Nucleus=0.9.

Remark 1 indicates that the dominant mode of hallucination for all decoding

strategies in KG-grounded dialogue systems is extrinsic rather than intrinsic. In

fact, we find that in the OpenDialKG dataset, 54.80% of the responses contain extra

entity mentions that are not supported by either D or G1
c which may partially explain

empirical observations. Remark 2 suggests that the model—when conditioned on

factual knowledge—often assigns the highest probability mass to the correct response

and sampling based on other distributions (e.g. top-k) invites hallucination in the

generation process—a fact also observed in language modelling [78]. Remark 3

suggests an implicit trade-off between the different goals of response generation

whereby improving the diversity of response can negatively impact its faithfulness.

This reveals that in certain cases responses might be originally faithful to Gkc but

increasing diversity encourages the model to hallucinate. In light of these important

observations, the main goal of this chapter is not necessarily to advance state-of-the-
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art decoding methods but instead to instrument an efficient technique to identify

hallucinations as well as retrieve the correct entities from the KG.

We seek to design a dialogue refinement system capable of fixing generated utter-

ances such that they are semantically relevant given the conversation history and

supported within a provided KG. To do so, we introduce Neural Path Hunter

(NPH) a refinement strategy that can be easily applied to any generated response

without retraining the model. NPH is composed of two modules: A token-level

hallucination critic and an entity mention retriever. The first module flags and masks

out hallucinated entities in an existing response and can be trained offline. The second

module accepts masked representations identified by the critic and builds contextual

representation of these problematic tokens which are then used to retrieve more faithful

entities by running a query over Gkc . We assume the local k-hop subgraph is either

provided or extracted based on the dialogue history. The following sections describe

the data preparation, training, and inference procedures for these submodules.

3.2.2 Problem Formulation

Each instance in the dataset is composed of a dialogue history D = (x1, . . . , xn), a set

of j triples at turn n, Kn = (t1, t2, . . . tj) which together with D must be used towards

generating the response x̄n+1. Here, each individual triple ti = ⟨[SBJ], [PRE], [OBJ]⟩

is extracted from a provided KG. Thus, the task is to generate a response x̄n+1 that is

faithful to a non-empty subsetMn ⊂ Kn —i.e., it can optionally talk about a few triples

but not none. Specifically, the response x̄n+1 may contain entity mentions mi ∈ V

which indicates a factual response that potentially needs to be refined using NPH.

For our purposes, it is most convenient to represent each mention as a tuple of three

elements that indicates the beginning of the mention at position mb
i and the end at

position me
i . In other words, we represent an entity mention mi as mi = (mi,m

b
i ,m

e
i ).

These entity mentions may not be faithful at all if they do not belong to either a

[SBJ] or [OBJ] in Mn (extrinsic hallucination) or they could inject false relationships
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between mentions via an unsupported path in Gkc by incorrectly utilizing a [PRE]

(intrinsic hallucination). We target and correct these unfaithful entities through

retrieval over Gkc in §3.3.1.

3.2.3 Token-level hallucination critic

To enforce faithfulness via refinement, we first identify the exact sources of hallucination

in a given response. Based on the findings of human judgement in Table 3.1 and §3.2.1,

we find hallucination errors in a dataset like OpenDialKG are often associated with

entity mentions such as names of people, movies titles, locations, etc. To flag entities

of concern, we design a token-level hallucination critic C that consumes D,Kn, x̄n+1

and outputs the set of hallucinated entity mentions Mc. To train C, we choose to

cast the problem as a sequence labelling task where a binary label is predicted at

each word position. As there is no labelled training data available for this task, we

create a synthetic dataset consisting of ground truth dialogue samples and corrupted

negative samples. We explore two corruption processes that convert a regular clean

ground-truth response xn+1 to its corresponding hallucinated one x̂n+1 based on the

type of hallucination we might expect to encounter —i.e. extrinsic and intrinsic.

1. Extrinsic Negatives. We replace each mi in xn+1 with entities of the same

type (e.g., person, location, etc...) but crucially not within Gkc and the dialogue

history D.

2. Intrinsic Negatives. We simply swap every pair [SBJ] and [OBJ] in xn+1.

For example, the response “Crescendo was written by Becca Fitzpatrick” →

“Becca Fitzpatrick was written by Crescendo” results in an intrinsic hallucination

as in this case [PRE] is not bi-directional.

Overall, we apply a 60%/40% split of extrinsic versus intrinsic corruption strategies

to the original train OpenDialKG to obtain a synthetic dataset to train C which is

taken to be a pre-trained LM that is then fine-tuned on this binary classification task.
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Figure 3.2: Entity Mention Retriever architecture.

3.3 Neural Path Hunter

3.3.1 Entity Mention Retriever

An overview of the Entity Mention Retriever is depicted in Fig. 3.2. Having identified

entities of concern in x̄n+1, we now wish to craft a query that can be efficiently run

over Gkc . To do so, we model the generated response x̄n+1 as a signal being propagated

over Gkc which serves to capture the highest probability paths starting from the context

node c the conversation may take if it was faithful. The context node c is extracted

from ground truth triples available in the dataset and or D. In order to run an

effective query over Gkc , it is critical that the representation of all flagged mi ∈ Mc

and edge triples E ∈ Gkc are in the same representation space. Inspired by the Cloze

task [163], we obtain contextual representations of all mi’s identified by the critic by

38



first masking them out before using a Masked Language Model (MLM). Operationally,

we feed D, Kn, as well as the flagged set of entities to obtain contextual hidden state

representations:

H = MLM(D,Kn,Mc) (3.1)

As the MLM may return multiple hidden d-dimensional state representation for each

mi ∈Mc, we simply apply a pooling operation to obtain a single representation for

each entity —i.e. hi = MaxPool(hb, he). To obtain the actual query qi, we use an

autoregressive LM which iteratively consumes an order dependent representation of

hi given by applying a learnable projection map W : R2d → Rd to a concatenation of

the current hidden state and the retrieved entity embedding ei−1 using previous query

qi−1 as shown in Fig. 3.2,

qi = LM(W (concat[ei−1, hi])),

KG-Entity Memory. Viewed another way, each qi can be interpreted as a relation

embedding for the masked position in x̄n+1. To effectively query Gkc , we must also

represent all nodes in the same embedding space as qi and in doing so effectively build

a representation of Gkc which we call KG-Entity Memory. We explore two approaches

towards this goal. The first uses the final hidden layer of a pre-trained GPT2 to obtain

initial embeddings for each node in Gkc 2. Our second approach uses CompGCN [169],

which is a Graph Convolutional Network [82] purposely built for multi-relational data.

We initialize the CompGCN network offline with GPT2 embeddings for all entities

and relations in the full graph G before running a few rounds of message passing by

optimizing for a standard relation prediction objective. Both approaches to KG-Entity

memory embeddings can be further updated during training. Finally, to retrieve the

correct entity for query qi, we simply use a scoring function s to score every KG-Entity

memory triple in Gkc —i.e. ti = ⟨c, qi, [OBJ]⟩. The retrieved entity is the [SUB] or

[OBJ] that achieves the highest score.

2Actually, GPT2 returns word piece representations and we use a pooling operation to get a single
representation.

39



3.3.2 Training the Entity Mention Retriever

To train the Entity Mention Retriever, we augment the conventional maximum

likelihood objective with an additional contrastive loss LNCE that encourages faithful

retrieval. In particular, we use Noise Contrastive Estimation (NCE) [63] which forces

the Entity Mention Retriever to learn a scoring rule such that s(ti) > s(t′i),∀ti ∈

E , t′i ∈ Ē where ti = ⟨c, qi, [OBJ]⟩ is the edge-triple based on KG-entity memory and

t′i = ⟨c, qi, [OBJ]−⟩ is a negative sample where [OBJ]− 3 is sampled from a corruption

distribution over edge triples Ē not in Gkc . To compute LNCE, we draw n negative

samples uniformly over all entities for each query qi.

LNCE = − log (s(t))− log

(︃
s(t) +

n∑︂
j=1

s(t′)

)︃
.

At training time, we use teacher forcing [180]; first, we mask out all entity mentions

within the gold response xn+1, get their representations through a MLM and provide

the ground truth entity mention concatenated with hi at each time step in the LM.

For the scoring function, we use DistMult [174] due to its simplicity in the absence of

known structure over the modified triples e.g. translation, rotation, which are exploited

in other popular scoring functions for KGs. By optimizing LNCE, we encourage the

model to leverage the dialogue history, the position of the masked entity in xn+1,

and the k-hop subgraph to identify more faithful entities that are relevant to the

conversation history. To train the Entity Mention Retriever, we thus jointly optimize

LNCE and LMLE for the main language modelling task,

L = LMLE + λLNCE. (3.2)

3.4 Experiments

We evaluate the ability of Neural Path Hunter towards reducing hallucinations

in KG-grounded dialogue systems on the OpenDialKG dataset [114]. At present,

3or [SUB]− if c is an object
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OpenDialKG is the only publicly available dataset that provides open-ended dialogue

responses grounded on paths from a given KG, this is why we limit our experiments

on this dataset. As there are no established metrics for this task, we consider a suite

of task-specific and automated metrics to assess the different components of NPH

and the degree of hallucination present. We use standard classification metrics such

as F1-score, precision and recall to evaluate C and PPL to measure the quality of

the LM. Similarly, we use retrieval metrics like Hits@k, Mean Rank (MR), and Mean

Reciprocal Rank (MRR) to evaluate the Entity Mention Retriever.

3.4.1 Implementation Details

NPH: NPH is implemented using the Pytorch Huggingface Transformers library

[184] and the Pytorch-lightning library 4. Concretely, we use a small RoBERTa model

[102] as the MLM and the base GPT2 model [132] as our autoregressive LM. During

training, we use the Adam optimizer [79] with Dropout [157] on a batch size of 16

with a learning rate of 6.25× 10−5 that is linearly decayed. The maximum dialogue

history length is set to 3 utterances. The coefficient λ in Eq. 3.2 is set to 0.5. We

varied the factor from 0.1 to 1 and 0.5 was chosen based on the best results on the

validation set. The number of negative examples is set to 50 for SANS. The model

early-stops at epoch 10 and we save the best model based on the validation set. Our

hyperparameters search is done via greed search. The average runtime of this model

is 4 hours.

Negative Candidates. We consider two different negative sampling strategies in

order to compute LNCE: SANS [2] and In-batch-negatives. SANS selects hard negatives

by leveraging the graph structure and selecting negative samples from a context entity’s

k-hop subgraph (e.g. G1
c ). Meanwhile, In-batch-negatives considers the ground truth

triple of each sample within a batch as a negative candidate for the other samples in

the same batch. Using this approach, the number of candidates is equal to the batch

4https://github.com/Lightning-AI/lightning

41

https://github.com/Lightning-AI/lightning


size.

GPT2-KG: Similarly, we implement this baseline using the Pytorch Huggingface

Transformers library and the Pytorch-lightning library. During training, we use the

Adam optimizer [79] with Dropout [157] on a batch size of 32 with a learning rate of

6.25× 10−5 that is linearly decayed. The maximum dialogue history length is set to 3

utterances. The model early-stops at epoch 6. The average runtime of this model is 2

hours.

AdapterBot and GPT2-KE: We use the code that’s publicly available by the

authors at https://github.com/HLTCHKUST/adapterbot and https://github.com/

HLTCHKUST/ke-dialogue and we follow closely their training procedure described in

[101] and [104]. We use the GPT2-KE with 9K iterations. The average runtime of

these models is 3 hours.

Training for all models, including baselines, is done on an Nvidia V100 GPU 32GB

and for inference, we use greedy search.

Hallucination Critic: We use a pre-trained RoBERTa-large classifier [102] provided

by the Huggingface Transformers library [184]. The model was trained using the

Adam optimizer with a learning rate of 2 × 10−5 for 5 epochs on one Nvidia V100

GPU 32GB. The average runtime of this model is 2 hours.

Hallucination Metrics. We consider 3 different hallucination metrics M1-M3 that

provide a multi-faceted measure of performance.

3.5 Hallucination Metrics

Although BLEU measures the extent to which the generated response is similar to

the reference faithful response, it can be misleading in the case where the generated

response is very distant from the ground-truth response but faithful to the knowledge
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triples. We consider 2 other metrics that focus on measuring the degree of hallucination

in the generated responses:

Hallucination Critic We use our trained token-level hallucination critic as a

sentence-level hallucination detector. We consider the utterance as hallucinated if at

least one token was identified as hallucinated. As input, the critic receives the dialogue

history, the gold triples and the generated response and the output is a binary label

indicating hallucination or not. To use this critic for the output of NPH, we augment

the gold triples with the path extracted based on the Entity Mention Retriever.

FeQA Durmus et al. [32] has been shown successful in measuring faithfulness in

the text summarization task. It generates questions from the candidate summaries

and then answers them against the input documents. It measures the average F1

score against the gold answers from the document. Through asking and answering

questions, FeQA measures the semantic correctness of the generated responses. To

adapt FeQA to our dialogue task, we flatten each path into a pseudo sentence by

joining the ⟨[SBJ], [PRE], [OBJ]⟩ with a simple space, e.g., [Crescendo, written by,

Becca fitzpatrick] → “Crescendo written by Becca Fitzpatrick”. We consider our

document as the concatenation of D and all G1
c triples and the candidate summary as

the generated/refined response. FeQA takes a given generated grounded response as

input, and generates questions. It then employs a QA system to answer the generated

questions based on the knowledge the response was grounded in.

We use the code made publicly available by the authors 5. A similar work to FeQA

is QAGS [172] which corresponds to asking and answering questions to evaluate the

factual consistency of summaries.

Negative Candidates. We consider two different negative sampling strategies in

order to compute LNCE: SANS [2] and In-batch-negatives. SANS selects hard negatives

5https://github.com/esdurmus/feqa
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by leveraging the graph structure and selecting negative samples from a context entity’s

k-hop subgraph (e.g. G1
c ). Meanwhile, In-batch-negatives considers the ground truth

triple of each sample within a batch as a negative candidate for the other samples in

the same batch. Using this approach, the number of candidates is equal to the batch

size.

3.5.1 Main Experimental Questions

Our experiments answer the following questions:

Q1) Identifying Hallucinations. Can C identify both extrinsic and intrinsic

hallucinations?

Q2) Reducing Hallucinations. Is NPH effective in reducing hallucinations?

Q3) Query Generation. Can NPH retrieve the correct entities and is LNCE

important to learn query representations qi?

Q4) Impact of MLM and Critic. Is MLM essential to our training strategy or

can we only use an autoregressive LM? Analagously, can we simply bypass the

critic during refinement?

Q5) Impact of global graph structure. Is the global graph structure important

for learning KG-Entity memory representations?

3.5.2 Results

Throughout our experiments, we rely on three representative baselines for response

generation: GPT2-KG, AdapterBot [101], and GPT2-KE [104]. GPT2-KG is a small

pre-trained GPT2 model [132] fine-tuned on the dialogue corpus. AdapterBot uses

a fixed backbone conversational model such as DialGPT [199] and encodes multiple

dialogue skills via different adapters [71]. Both GPT2-KG and AdapterBot process

inputs by concatenating D, Kn and the generated response. GPT2-KE on the other

hand uses a GPT2 model trained on a knowledge-augmented training set.
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Q1: Identifying Hallucinations

Analogous to the study conducted in §3.2.1, we ask humans to identify the span of

text that is hallucinated w.r.t. to the given triples in 500 responses generated greedily

from GPT2-KG. We report the average Krippendorf’s alpha coefficient to be 0.73 on

the annotator responses. Table 3.2 outlines our results. To explore the robustness of

our corruption strategies, we fine-tune a large RoBERTa model [102] on three different

synthetic datasets: (i) RoBERTa-Extrin corresponds to the negative examples crafted

using an extrinsic hallucinations, where entity mentions are first extracted using the

SpaCy NER tagger [69]. (ii) RoBERTa-Intrin consists of negative examples that

contain intrinsic hallucinations. (iii) Finally, RoBERTa-Intrin-Extrin corresponds to

examples that were either corrupted using an extrinsic or intrinsic strategy but not

both simultaneously. For (i) and (ii), the examples are obtained by corrupting the

full train OpenDialKG data. We observe that RoBERTa-Intrin-Extrin achieves the

highest F1 (70.35%), compared to the classifiers trained on the first two synthetic

datasets. Such a result highlights that our RoBERTa-Intrin-Extrin classifier can

indeed detect both kinds of hallucinations and also that our corruption strategies

are effective. In the rest of the experiments, we take RoBERTa-Intrin-Extrin as the

hallucination classifier C.

Model Precision Recall F1

RoBERTa-Intrin 44.9 32.54 37.73

RoBERTa-Extrin 68.65 46.94 55.76

RoBERTa-Intrin-Extrin 83.05* 61.02* 70.35*

Table 3.2: Performance of the hallucination critic on the 500 human-annotated data
(* p-value < 0.001)

Q2: Reducing Hallucinations

We evaluate the ability of NPH in fixing hallucination in generated responses in

the three response generation baselines. We also perform ablation for each model
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using the different components of NPH. We present the results in Table 3.4 which

show the degree of hallucination prior to and after applying NPH on each response

generation method. We find that NPH consistently performs favourably in reducing

hallucination across FeQA and the hallucination Critic. In particular, we observe

that the strongest iteration of each baseline model is the original model paired with

the full NPH module. For example, in AdapterBot, NPH decreases the Critic score

by 8.17 points and increases faithfulness by 6.67 points on FeQA. With respect to

BLEU scores, we observe inconsistent performance across the different baselines with

AdapterBot+NPH incurring a marginally higher score. While we use BLEU as a proxy

for faithfulness, it is still an imperfect measure as it is computed solely between the

n-gram overlap between a reference and generated text which neglects the important

fact that there is a multitude of different ways to generate a faithful response w.r.t. a

KG.

Model Neg. candidates PPL Hits@1 Hits@3 Hits@10 MR MRR

G
P
T
2
-
E
m
b

SANS 8.56 0.73 0.92 0.99 1.76 0.83
NPH

In-Batch Negatives 8.67 0.42 0.75 0.94 3.08 0.68

NPH-w/o nce - 9.64 0.02 0.05 0.1 35.49 0.07

SANS 9.73 0.47 0.76 0.96 2.83 0.64
NPH-w/o mlm

In-Batch Negatives 9.70 0.20 0.43 0.75 9.22 0.36

C
o
m
p
G
C
N
-
E
m
b NPH

SANS 8.99 0.13 0.26 0.52 14.27 0.25

In-Batch Negatives 10.04 0.08 0.17 0.43 15.75 0.16

NPH-w/o nce - 10.61 0.04 0.12 0.27 26.50 0.12

NPH-w/o mlm
SANS 9.63 0.08 0.21 0.47 15.52 0.20

In-Batch Negatives 9.64 0.02 0.05 0.16 80.52 0.07

Table 3.3: Ablation studies on Neural Path Hunter on the gold responses from
the OpenDialKG test data.

Q3: Query Generation

We now investigate NPH’s ability to retrieve the correct entity using the crafted query.

We present the results in Table 3.3 along with different ablation studies. We find that

key metrics such as Hits@3 and Hits@10 are nearly saturated when using the complete
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NPH module with GPT2 embeddings for the KG-Entity memory. Furthermore, we

notice that all retrieval metrics drop dramatically (e.g.↓ 70 Hits@1 ) when LNCE

is omitted. Finally, we observe that SANS negatives lead to lower perplexity and

better retrieval performance across the board. This is unsurprising since local negative

samples are known to be harder and thus provides a richer learning signal [2].

Model FeQA ↑ Critic ↓ BLEU

GPT2-KG 26.54 19.04 11.79*

+ NPH 28.98* 11.72* 11.29

+ NPH-w/o nce 26.02 17.91 10.98

+ NPH-w. CompGCN 26.89 15.41 11.10

+ NPH-w/o MLM 27.01 15.02 10.88

+ NPH-w/o critic 18.23 19.65 6.49

AdapterBot 23.11 26.68 10.56

+ NPH 27.21* 18.51* 10.74*

+ NPH-w/o nce 24.02 25.02 9.98

+ NPH-w. CompGCN 25.83 20.23 10.11

+ NPH-w/o MLM 26.02 21.04 10.06

+ NPH-w/o critic 16.21 27.22 5.64

GPT2-KE 19.54 28.87 6.24*

+ NPH 26.21* 20.34* 6.06

+ NPH-w/o nce 20.34 .32 5.89

+ NPH-w. CompGCN 23.23 21.21 6.01

+ NPH-w/o MLM 24.01 22.40 5.99

+ NPH-w/o critic 15.89 30.71 3.49

Gold response 33.34 5.2 -

Table 3.4: Measuring the degree of hallucination of different models pre and post-
refinement on generated samples based on the OpenDialkg test data. A higher FeQA
score indicates an increase in faithfulness. The hallucination Critic (Critic) measures
the percentage of hallucinated responses in the dataset. (* p-value < 0.001). NPH
uses GPT2 emb. for the KG-Entity Memory.
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Q4: Impact of MLM and Critic

We now gauge the importance of using MLM and Critic within NPH. To assess the

MLM component, we replace each contextual representation mi ∈Mc with randomly

initialized values. We highlight our findings in Table 3.4 where NPH-w/o MLM

performs worse than NPH across all models. Investigating further in Table 3.3, we

observe that performance without MLM degrades substantially (e.g. ↓ 26 Hits@1) when

using pre-trained GPT2 embeddings as entity memory and similarly for CompGCN

embeddings. These findings suggest that MLM facilitates the learning of rich masked

representations that are useful in downstream applications, a fact which is in line with

other works that leverage MLM [141, 27, 74]. To judge the impact of the critic, we

mask out all entity mentions as opposed to only masking out potential hallucinated

ones during refinement. In Table 3.4, we find that NPH-w/o critic performs the

worst in every metric compared to all baselines which underlines that simply masking

all entities—hallucinated or otherwise—in a response is not a productive strategy for

effective refinement.

Q5: Impact of global graph structure

We now investigate the representation of entities in our KG-Entity Memory. We

explore two variants: 1) Initializing embeddings as the output of a pre-trained GPT-2

model. 2) Utilizing node embeddings learned by a CompGCN network trained on a

standard relation prediction task over the entire graph G. In both these approaches,

the embeddings are updated throughout training using Eq. 3.2. As per Table 3.3, we

notice a dramatic difference in both perplexity and retrieval performance in favour

of using simply the output of a pre-trained GPT-2 model. Such a result may be

reconciled by noticing that any specific turn in dialogue local information (e.g. previous

turn)—as conversation topics may drift—is significantly more important to generate a

faithful response. Thus, enriching entity embeddings with global structure in G is less

beneficial than aligning Gkc with the representation space of the autoregressive LM,
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which for us is also GPT2.

Model Hallucination Fluency

GPT2-KG 97.5 ± 0.6 92.5 ± 1.6

GPT2-KG (+ NPH) 56.5 ± 1.2 88.5 ± 0.7

AdapterBot 95.5 ± 0.8 90.5 ± 0.4

AdapterBot (+ NPH) 59.0 ± 0.5 87.5 ± 1.2

GPT2+KE 97.0 ± 0.2 91.5 ± 0.7

GPT2+KE (+ NPH) 58.5 ± 0.6 86.0 ± 0.9

Table 3.5: Human Evaluation on 1200 responses (200 × 6) from different response
generation baselines.

3.5.3 Human Evaluation

In addition to the automated hallucination metrics, we conduct human evaluation

to assess NPH’s ability to reduce hallucination. We provide human annotators with

200 hallucinated responses per baseline (§3.5.2) as identified by our hallucination

critic §5.6.1. The faithfulness of each response is evaluated by 3 humans who are

provided D, Kn, and the retrieved path from Gkc . We further request annotators

to evaluate the fluency of the responses before and after refinement. Results are

depicted in Table 3.5. We see that the hallucination critic achieves a precision of

97.5% for GPT2-KB responses, 95.5% for AdapterBot and 97.0% for GPT2-KE. In

contrast, generation methods when paired with NPH reduce hallucinations by a large

margin 42.05% for GPT2-KB responses with a marginal drop in fluency (4.32%). We

also observe similar performance gains for responses generated from AdapterBot and

GPT2-KE.

Human Evaluation of NPH responses Analogous to evaluating modes of hallu-

cination, we solicit human evaluation from Appen6 where we train English-speaking

6https://appen.com/

49

https://appen.com/


annotators for the task before starting the evaluation process. To evaluate the re-

sponses generated by our response generation baselines, annotators were presented

with D, Kn and the generated response. And, to evaluate NPH’s responses, annotators

were presented with D, Kn, the retrieved path from Gkc and the refined response.

Humans were asked to answer the following questions:

1. Is this response hallucinated with respect to Kn? (Most definitely, Not at all)

2. Is this a fluent response, i.e., a response that’s grammatically correct? (Most

definitely, Not at all)

In total, humans evaluated 1200 responses: 600 responses (200 from each response

generation baseline before refinement) and 600 responses after refinement.

3.6 Error Analysis

To gain insight into the potential shortcomings ofNeural Path Hunter, we conduct

an error analysis on refined responses that still contain undesirable hallucinations.

Examples of failed refinements using NPH are listed below. Recall that for effective

retrieval NPH requires oracle access to Gkc which pre-supposes the existence of the

correct entity in the subgraph. However, based on the examples below, we observe

that many of the failed retrievals correspond to entities that might exist in G but

are critically not supported within Gkc . To highlight this point, let us consider the

following example:

Previous turn: Could you recommend a book similar to Thirteen Reasons Why?

Gold triple:[[’Thirteen Reasons Why’, ’has genre’, ’Young-adult fiction’]

GPT2-KB Response: Sure, there is a book called The Sea of Monsters by John Green.

Critic: John Green.

Context nodes: Thirteen Reasons Why, Young-adult fiction

Top-1 Path:[[Thirteen Reasons Why, written by, Jay Asher]
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NPH response: Sure, there is a book called The Sea of Monsters written by Jay Asher.

In this example, we notice that the original response contains hallucination as

“John Green” did not write the book titled “The Sea of Monsters”. Moreover, to

fix this response NPH has access to G1
c which contain the context nodes “Thirteen

Reasons Why” and “Young-adult fiction” but not the entity of interest “The Sea of

Monster”. As a result the proposed fix using NPH is the wrong entity “Jay Asher”.

It is important to note that the perceived mistakes by NPH is in fact a limitation

of our assumption that the correct entities not only exist in G but can be extracted

by running a query on the extracted k-hop subgraph. If this fails to be the case in

practice, then we cannot hope for NPH to retrieve the correct entity. We hypothesize

that extending NPH to reason over multiple subgraphs or even G in an efficient

manner will serve to alleviate this failure mode.

In addition to using the incorrect subgraph for retrieval, another source of errors

is caused by the failure to identify the hallucinated entities to fix in the first place.

This can occur in practice as the Critic C is not perfect and may occasionally miss

hallucinated entities and thus propagate the error forward. The example below

illustrates this failure mode:

Previous turn: Yes, I watched them. Could you tell me more about The Heart Is Deceitful
Above All Things, please.

Gold triple:[The Heart Is Deceitful Above All Things, starred actors, Jimmy Bennett]

GPT2-KB Response: Sure, it was written by Tony Kaye and stars Scarlett Johansson.

Critic: Scarlett Johansson.

Context nodes: The Heart Is Deceitful Above All Things, Jimmy Bennett

Top-1 Path:[The Heart Is Deceitful Above All Things, starred actors, Jimmy Bennett]

NPH response: Sure, it was written by Tony Kaye and stars Jimmy Bennett.

We believe a stronger Critic or other mechanisms to identify token-level hallucina-

tions can improve the downstream performance of NPH.
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The final source for error—while not frequent—is the fluency of the refined response.

We find that in an effort to remove hallucinations, other undesirable properties such

as a lack of grammaticality may be introduced. The example below demonstrates such

a failure mode. This error can be mitigated if we associate each node in the graph by

an entity type.

Previous turn: Sure. Isn’t he married to Coleen Rooney

Gold triple:[[United Kingdom, Country of nationality, Wayne Rooney]

GPT2-KB Response: No, Yes, he is married to Caroline Wozniacki.

Critic: Scarlett Johansson.

Context nodes: United Kingdom, Wayne Rooney

Top-1 Path:[United Kingdom, Country of nationality, Wayne Rooney

NPH response: Yes, he is married to United Kingdom.

3.7 Related Work

Knowledge Graphs. Building large-scale repositories of knowledge has been one

of the principle directions of research in artificial intelligence since the inception of

the field [119, 118]. Often represented as large scale multi-relational graphs, KGs

have seen wide application in a variety of domains, such as question answering [187,

65], and natural language processing [10, 190] to name a few. Beyond academic

research, public KG’s like FreeBase [12] have been invaluable in industrial applications

forming symbolic backbones of most important products [151]. KG’s have also risen

in prominence in the context of dialogue models that propose to explicitly embed

symbolic knowledge representations into a neural embedding space [102, 202, 114,

200, 185]. Niu et al. [121] use a knowledge retriever component that conditions the

response by retrieving relevant facts from the KG based on the current utterance.

Similarly, Young et al. [189] and Zhou et al. [200] use a commonsense KG to inject

commonsense knowledge into the response of the conversational model. Tuan et al.

[168] explore the effects of using a dynamic KG in the dialogue model. On the other
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hand, Moon et al. [114] propose a conversational reasoning model that traverses a

large scale KG to retrieve a relevant path given a starting node and a classifier to

predict the next node a response show follow. Unlike the KG path traversal problem,

this work focuses on removing hallucinations in generated responses using a KG.

Hallucination. The injection of false information is a well-known phenomena in data-

to-text generation [165, 29, 126], machine translation [85, 91], image captioning [142],

machine summarization [106, 32] and question answering [49]. In the context of

dialogue systems, Dušek et al. [34, 35] demonstrate that state-of-the-art natural

language generation (NLG) models can hallucinate by missing important entities. Few

NLG models have been proposed to cope with the issue, but are often custom-made

for task-oriented dialogue [6]. Recently, little progress has been made for studying

hallucination in open-domain dialog systems. Dziri et al. [42] study hallucination in

knowledge-grounded dialogue systems and introduce a the BEGIN benchmark for

measuring groundedness in dialogue systems. Finally, Rashkin et al. [135] propose a

dialogue system that is more faithful to the source knowledge by adding control tokens

at training time that guide the model towards generating more objective sentences

which have higher overlap with the source.

3.8 Conclusions

In this chapter, we investigate the open problem of hallucination in KG-grounded

dialogue systems and demonstrate that these models are more susceptible to extrinsic

hallucinations which predominantly manifest as the injection of erroneous entities. To

tackle this challenging problem, we propose a new module Neural Path Hunter

that aims to enforce faithfulness in KG-grounded dialogue systems by identifying and

refining hallucinations via queries over a k-hop subgraph. We empirically observe

that NPH is capable of reducing hallucination when paired with a number of base

dialogue models with relative improvements of 20.35% over vanilla GPT2 on FeQA.

Our findings also reveal the crucial role the representation of the local subgraph plays
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History A: I love Shakespeare. Romeo and Juliet is my favorite.

B: I like that one as well. The play was written by Kylie Scott.

A: She also wrote Deep, did she not?

GPT2-KG Bgen Yes she did. She also wrote The Tragedy of King Richard the Third .

Gold
knowledge

T1 [Deep, written by, Kylie Scot]

Top-5 Paths T ′
1: [Play, written by, Kylie Scott]

T ′
2: [Dirty, written by, Kylie Scott]

T ′
3: [Lick, written by, Kylie Scott]

T ′
4: [Deep, written by, Kylie Scott]

T ′
5: [Trust, written by, Kylie Scott]

NPH
response

Bfix Yes she did. She also wrote Play .

History A: Do you know of a movie directed by Jean Pierre Jeunet?

GPT2-KG Bgen Jean-Pierre jeunet directed The Bourne Ultimatum .

Gold
knowledge

T1: [Micmacs, written by, Jean Pierre Jeunet]

T2: [Micmacs, has genre, French]

Top-5 Paths T ′
1: [Alien: Resurrection, directed by, Jean Pierre Jeunet]

T ′
2: [A Very Long Engagement, directed by, Jean Pierre Jeunet]

T ′
3: [Amélie, directed by, Jean Pierre Jeunet]

T ′
4: [The Extraordinary Voyage, starred actors, Jean Pierre Jeunet]

T ′
5: [Micmacs, written by, Jean Pierre Jeunet]

NPH
response

Bfix Jean-Pierre jeunet directed Alien: Resurrection .

Table 3.6: Selected responses based on GPT2-KG test responses before and after
applying Neural Path Hunter. The span of texts highlighted in red indicate
the hallucinated entity mentions whereas the ones highlighted in green indicate the
retrieved correct entity mentions.

as external memory compared to the full global graph. In this work, we consider a

paired KG aligned with dialogue but in many other applications, such dialogue to KG

alignment may be difficult to easily obtain necessitating the usage of the full graph

which is interesting direction for future work.
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Chapter 4

Evaluating Attribution in Dialogue
Systems

Neural language models [9, 170, 132, inter alia] often form the backbone of open-

ended dialogue systems [183, 197, 143, 1]. Utterances sampled from such language

models sound natural, as reflected in these systems’ high scores in human evaluations

focused on measures such as “engagingness” or “human-likeness” [146]. While fluent,

however, the responses generated by these systems often contain statements that are

hallucinated ([166, 106, 39, 150]; see Figure 4.1 for an example). Progress towards

models that do not exhibit this issue requires evaluation metrics that can quantify

its prevalence. In this chapter, we introduce a benchmark that can be used to assess

attribution in knowledge-based dialog systems; following Rashkin et al. [136], we

define an attributable response1 as one connected to textual evidence that supports

the entirety of the response.

4.1 Introduction

A number of modelling approaches have recently been proposed to increase attribution

in knowledge-grounded dialog systems [135, 150, 39, 43]. Progress in this area crucially

relies on metrics that can measure the attribution of the text generated by the

system; and indeed, recent work has developed automated metrics with relatively high

1Attribution is sometimes referred to as faithfulness [17, 32, inter alia].
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correlations with human annotations, potentially paving the way for alternatives to

expensive human evaluations [70, 39, 43]. Yet our understanding of these recently

proposed metrics, as well as more established ones, remains limited, for two reasons.

First, comparisons between automated metrics and human judgments rely on small-

scale datasets with a few hundred examples. This results in high variance in our

estimate of the correlation coefficient and a limited ability to measure performance

on infrequent example types [54]. Second, the correlation with human scores does

Figure 4.1: An example of a response generated by the GPT2 language model fine-
tuned on the Wizard of Wikipedia dataset [30]. The phrases in red are “hallucinations”
unsupported by the background document.

not sufficiently determine the efficacy and robustness of automatic metrics produced

by neural networks: such learned metrics—like other properties learned by neural

networks—can be susceptible to spurious correlations that fail to generalize to more

challenging cases. To address these limitations, we introduce a large-scale resource,

the Benchmark for Evaluation of Grounded INteraction (Begin), for meta-evaluation

of metrics designed to evaluate grounded dialogue. In other words, the goal of this

benchmark is to determine to what extent current evaluation metrics fulfill their

purpose.

We define a taxonomy dividing knowledge-grounded dialogue responses into three

broad categories—fully attributable, not fully attributable, and generic—and ask

humans to classify a large set of utterances produced by dialogue systems with
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this taxonomy. The motivation for the generic category we introduce—which is

assigned to utterances such as “Sorry, I’m not sure about this topic”—is the intuition

that evaluation metrics should not treat the basic elements of a natural-sounding

conversation, such as backchanneling or acknowledgment [59, 158, 15], as equally

undesirable as a misleading unattributable statement. In real-world scenarios, it is

preferable for a model to acknowledge its ignorance instead of producing hallucinated

content which may lead to the spread of disinformation.

Using this taxonomy, we then collect high-quality human annotations for 12k

examples generated by four language-model-based dialogue systems, each trained on

three different knowledge-grounded dialogue corpora. Examples of machine-generated

responses along with labels are presented in Table 4.1. We use this benchmark

to evaluate multiple existing automatic metrics including word-overlap measures,

embedding-based measures, metrics based on Question Answering (QA) systems,

and ones based on Natural Language Inference (NLI). We also propose a classifier

trained on an adversarially generated dataset we create. We find that all metrics

inadequately measure attribution and all rely on spurious correlations to a large extent.

In particular, the metrics tend to misidentify cases that are attributable but highly

abstractive, as well as cases that are not fully attributable but use multiple words

from the evidence document (i.e., unattributable but extractive). We also find that

the metrics fail to measure attribution under distribution shift, scoring responses that

pertain to relatively long knowledge sources the lowest. These results are in line with

the robustness issues reported for other natural language generation metrics, despite

the high correlation of those metrics with human judgments [33, 54, 52, 188]. We

hope that Begin will facilitate progress toward more robust metrics for grounded

dialogue response generation.
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Category Example

W
o
W

Fully Attributable Knowledge: Raised in Compton, California, Lamar
embarked on his musical career as a
teenager under the stage name k-dot, releas-
ing a mix-tape that garnered local attention
and led to his signing with indie record label
top dawg entertainment.

History: oh, yeah. I believe I’ve heard about that. The
album has to be good then for sure. Do you
know anything else about him or rap?

T5 Response: Oh yes, I know that the singer was raised in
Compton, California and started on his musical
career as a teenager.

C
M
U
-
D
o
G

Generic Knowledge: Throughout the film, the narrative is intercut
with scenes from depositions taken in the Win-
klevoss twins’ and Saverin’s respective lawsuits
against Zuckerberg and Facebook. ... After
everyone leaves, Zuckerberg is shown sending
a friend request to Albright on Facebook ...

History: The ending seems cools. Like after all of that
happens he just goes to hang out with his kids.

GPT2 Response: What else do you know about Zuckerberg?

T
o
p
i
c
a
l
C
h
a
t

Not Attributable Knowledge: Television (TV) is a telecommunication
medium used for transmitting moving im-
ages in (black and white) .... Ringo Starr,
George Carlin, and Alec Baldwin have all nar-
rated Thomas the Tank Engine for at least 52
episodes each. There are over 750 episodes of
”Pokémon”

History: no, I haven’t watched Pokemon. My sons use
to play with when they were little. Now, they
use their phones looking for Pokemon in the
neighborhood. It is funny.

DoHA Response: Pokemon appeared in TV in 1952 and it was
created by Ringo Starr and directed by George
Carlin. In total, there were 100 episodes.

Table 4.1: Examples of each of the three categories of responses included in Begin. For
each category, we provide an example drawn from one of the four models trained on one
of the three corpora (of course, all 12 models generated all three types of responses). The
dialogue corpus used to train the model and generate the response is listed vertically. Text
highlighted in green indicates information that is attributable to the knowledge; text in blue
does not convey any information; and text in red is hallucinated and cannot be attributed
to the knowledge.
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4.2 Task, Datasets and Models

In knowledge-grounded response generation, the system is given a dialogue history

H = (u1, . . . , un−1), and knowledge Kn = (k1, . . . , kj) at turn n, and is expected to

generate a response ūn that is coherent with H and attributable to a non-empty subset

Mn ⊂ Kn. Similar to the conversational QA task [22, 138], the system is expected to

use knowledge to respond to the user query. However, since the previous utterance

may be an open-ended statement rather than a direct question (see the second and

third examples in Table 4.1), there is a wider range of possible types of informative

replies compared to the conversational QA task.

Begin consists of responses generated by language-model-based systems trained to

perform this task. This section describes the models we train on this task and the

corpora we use to train them.

4.2.1 Dialogue Datasets

For all three datasets, we use the training portion to train the model, the development

set to tune hyperparameters, and the test set to generate the responses that are then

annotated and included in the final Begin benchmark. We used Wizad of Wikipedia

[30], CMU-DoG [201], and TopicalChat [57].

4.2.2 Dialogue Models

We consider the outputs of four different dialogue systems; by selecting a relatively

wide range of systems, we hope to encounter a range of attribution errors. Two of

the systems are based on plain language models, GPT2-base [132] and T5-base [133].

The remaining two systems, DoHA [129] and CTRL-Dialog [135], are specifically

designed as knowledge-grounded dialogue systems. DoHA augments a BART-based

conversational model [92] with a two-view attention mechanism that handles the

encoded document and the dilaogue history separately during generation. CTRL-

Dialog augments T5-base with control tokens [78] that guide the generation towards
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less subjective and more grounded content. We trained these models to generate

responses based on a concatenation of two inputs: an evidence span (the knowledge

snippet) and the dialogue history (we only use the previous turn un−1).

4.3 Annotations

We next describe the human annotations we collected for the utterances generated by

the models described in Section 4.2.

4.3.1 Taxonomy of Response Types

We classify responses into three broad categories:

Fully Attributable These are responses that convey information that can be

completely supported by the provided document; this property has been referred

in the literature to as faithfulness [135, 106, 39, 32] and attribution [136]. In our

annotation set-up, we use similar definitions to the Attributable to Identifiable Source

(AIS) framework of Rashkin et al. [136]. The full framework in that paper consists of

a two-stage annotation process in which annotators first filter out responses that are

deemed to be too vague or ill-formed to be evaluated for attribution. Since Rashkin

et al. [136] found that more than 90% of the conversational responses in their study

were interpretable, we have our annotators focus solely on attribution.

Not Attributable These are responses that contain at least some information

that cannot be verified given the evidence, regardless of whether that information is

factually true in the real world. This includes statements that are relevant but not fully

supported by the background information (hallucinations), statements that explicitly

contradict the background information, and off-topic responses about information

completely external to the evidence sources. In a pilot study we attempted to separate

these three subcategories, but the boundaries between them turned out to be difficult
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Figure 4.2: Breakdown of Begin response categories across models (left) and training
corpora (right).

to define and annotate.

Generic Responses that fall into this category are general enough to fit into a

large number of possible contexts [95]. Examples include “I don’t know about that”

and “Hello there!”. Even when the responses are ostensibly about the same topic

as the document, they are vague and do not provide new information. Nevertheless,

such responses may be useful for various conversational purposes: back-channeling,

expressing uncertainty, or diverting the conversation from ambiguous or controversial

topics.

4.3.2 Collecting Prompt-Query-Reply Triples

As described in Section 4.2, we collect data using outputs from four models—T5,

GPT2, DoHA, and CTRL-Dialog. We train a version of each model on each of the

three datasets (WoW, TopicalChat and CMU-DoG) and generate responses using

the test portion of the dataset. For more details on training and hyperparameters,

refer to Appendix 4.6. We select at least 1000 examples from each dataset-model pair.

We filter and remove toxic responses using the Google Perspective API. This yields

12288 examples in total.
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4.3.3 Annotating Prompt-Query-Reply Triples

We present annotators with a knowledge snippet K, the previous turn un−1 and a

generated response ūn, and ask them to select which of the three categories fits ūn

best. To obtain high quality data, we assign three annotators to each example and

report results based on majority vote. We exclude examples where each of the three

annotators assigned a different category, making it impossible to compute a majority

vote.

Begin Annotation Protocol Each worker was given a document, previous turn in

a conversation and a generated response (either by T5, GPT2, DoHA or CTRL-

Dialog). They were asked to evaluate the response as either fully attributable,

not attributable, or too generic to be informative. They also were provided with

multiple examples with explanations for each category. The exact instructions were as

follows:

Which of these best describes the highlighted utterance?

◦ Generic: This utterance is uninformative (too bland or not specific enough to be
sharing any new information)

◦ Contains any unsupported Information: This utterance is sharing information
that cannot be fully verified by the document. It may include false information,
unverifiable information, and personal stories/opinions.

◦ All information is fully supported by the document: This utterance contains only
information that is fully supported by the document.

Annotation Quality To ensure that the annotators understood the task, we use

the following manual quality control procedure. In the first stage, we train the

annotators by running two pilot annotation batches (∼ 100 examples each). After

each batch, we manually grade the answers for compliance with instructions, and

provide feedback explaining any misconceptions. After the training stage, we launch

the main annotation round for the full set of 12k examples. During this round, we

intermittently check responses after every 3k completed annotations to examine the
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annotation quality. This procedure resulted in high inter-annotator agreement (a

Krippendorff’s alpha of 0.7).

4.3.4 Dataset Analysis

Begin is intended as a test benchmark; as such, it does not have a training portion: We

only create development (10%) and test (90%) partitions. We include examples from

Begin in Table 4.1 along with the label breakdown. Overall, the models generated a

substantial number of unattributable responses (70%). As Figure 4.2 (right) shows,

this proportion was higher for GPT2, DoHA, and T5, whereas CTRL-Dialog

generated the lowest proportion of unattributable responses (30.8%). This indicates

that CTRL-Dialog, which is explicitly designed to discourage unattributable re-

sponses, is moderately successful at its goal. Figure 4.2 (left), which breaks the results

down by training corpus, shows that models trained on TopicalChat produce the

highest amount of unattributable responses followed by CMU-DoG and WoW. This

is consistent with recent analyses on WoW, CMU-DoG and TopicalChat which

revealed that more than 60% of the ground-truth responses are unattributable to the

knowledge [41, 136].

4.3.5 The Need to Measure Attribution

Our analysis of the responses produced by the systems we trained highlights the

potential pitfalls of language-model-based dialogue systems, especially when deployed

in real-world scenarios across a broad range of domains where hallucinations pertaining

to vital information may produce undesirable user experiences—e.g., healthcare [90,

75] and education [186, 84]—and underscores the need for progress on both the

modeling and the evaluation side. Neural dialogue systems are optimized to mimic

the distributional properties of the human-generated dialogue corpus used to train

them. Because humans often include unattributable information in their utterances,

language models trained on those corpora can replicate and perhaps even amplify the
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prevalence of unattributable responses at test time [77, 41]. These findings call for

robust evaluation metrics to uncover actionable insights about best practices of using

such models and benchmarks. We hope that Begin will, as an evaluation benchmark,

promote a strict standard for evaluation metrics, laying the ground for trustworthy

dialogue systems.

4.4 Evaluating Evaluation Metrics

We next use Begin to evaluate a range of evaluation metrics. In §4.4.1 we list the

untrained metrics we use as well as metrics trained on existing resources, and in §4.4.2

we describe a training set that we designed to train a classifier for the three response

categories. We then describe the extent to which these metrics align with the Begin

categories and analyze the metrics’ robustness.

4.4.1 Metrics

Lexical Overlap Metrics This category includes n-gram-based metrics that com-

pare the lexical similarity between the response ūn and the knowledge K.2 We consider

BLEU-43 [125], ROUGE-L4 [100], and F1, which measures the word-level lexical

overlap between ūn and K.

Semantic Similarity Metrics These metrics compare the semantic similarity

between ūn and K. We consider BERTScore [195], which computes the similarity

between ūn and K based on the cosine similarity of the sentence embeddings, as well

as BARTScore [191] and BLEURT [147]; for implementation details, see Appendix 4.7.

Question-Based Metrics We use Q2 [70], which computes a factuality score

through asking and answering questions. Given a candidate response as input, Q2

2Note that we do not compare the generated responses to the gold responses as they may be
unattributable (Sec 4.3.4).

3https://github.com/mjpost/sacrebleu
4https://github.com/google-research/google-research/tree/master/rouge
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generates a corresponding question and identifies potential answer spans in the knowl-

edge source K that can justify the question–answer pair [32, 172]. It also computes an

NLI-inspired similarity score between a candidate response and a predicted answer

span in the knowledge source.

Inference-Based Metrics Finally, we study the performance of NLI-based models,

trained either on gold NLI benchmarks or on adversarially augmented silver data

that we generate. We first describe the metrics trained on gold NLI datasets; we

discuss our adversarially augmented dataset (BEGIN-Adversarial) in §4.4.2. We

use two transformer-based classifiers: T5-base [133] and RoBERTa-large [102]. We

fine-tune them on MNLI [179] and the dialogue inference dataset DNLI [177]. For

both datasets, we map the labels (entailment, contradiction, neutral) to the labels

(attributable, unattributable, generic) in Begin.

We also train classifiers on AugWow [62], a synthetic dataset designed to evaluate

factuality in dialogue systems. This dataset includes three categories: Supported

responses that are fully verified by K, Refuted responses that explicitly contradict

K, and responses with Not Enough Information (NEI), which do not contain enough

information to be verified or refuted by K. We map the labels (supported, refuted,

NEI) to the labels (attributable, unattributable, generic) in Begin.

4.4.2 Adversarially Augmented Training Set

This section describes our curated silver training set (BEGIN-Adversarial) for

NLI-based attribution classifiers. This dataset includes 8k (K, H, up) triples that fit

into the three categories: attributable, generic, and unattributable.

Attributable Here we use the original human generated responses ug from WoW.

To avoid human responses that contain opinions or generic chit-chat, we only use

response that do not use first-person pronouns and where at least 25% of the words in

the response are contained in the evidence.
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Unattributable To generate examples that are likely to be unattributable, but are

sufficiently challenging to distinguish from attributable ones as to be useful in training

a classifier, we use multiple perturbation strategies. First, we directly perturb the

knowledge spans K from the WoW test set and then feed them to GPT2 trained on

WoW. We use three perturbation methods, each applied to a different K. First, we

swap the subject and the object of K. Second, we replace up to two verbs with verbs

of the same tense. Finally, we extract all mentioned entities from different dialogue

examples using the SpaCy NER tagger [69], and replace up to two randomly chosen

entities in the original K with entities of the same type. Manual inspection reveals that

this usually results in responses that are hallucinations with respect to the original K.

We also generate responses designed to specifically contradict K, using two tech-

niques. First, we directly negate the human response ug from WoW using the English

Resource Grammar parser (ERG; [50]). Second, we replace adjectives in ug with their

WordNet antonyms [112].

Lastly, we gather responses that are off-topic with respect to the information in the

K. For a given context, we randomly select a WoW gold response that was based on

different K. To avoid easy-to-detect off-topic responses, we sample from conversations

that were prompted by the same initial topic word as the target conversation.

Generic Generic responses are generated from the GPT2 model we trained on

WoW, using a low softmax temperature of 0.4.

4.4.3 Results

In this section, we report the performance of automatic metrics on the Begin test set.

Lexical and Semantic Metrics The distribution of scores is shown in Figure 4.3.

For all metrics, the median score of fully attributable responses is higher than that

of generic and unattributable responses, as expected. In many individual cases,

however, unattributable responses are scored quite highly, and there is some overlap
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Figure 4.3: The distribution of scores assigned by semantic similarity metrics (upper
row) and lexical overlap scores metrics (lower row) to the Begin test set.

in the distribution of scores across all three labels, particularly between generic and

unattributable responses, indicating that it would be impossible to map these score

ranges directly to the Begin label taxonomy. Higher scores do not always translate

into more desirable response types: Even though a generic response would typically

be preferable to an unattributable one in a knowledge-grounded dialogue system, the

median scores are lower for generic responses than unattributable ones.

Q2 Figure 4.4 shows a box plot for each Begin class using the Q2 metric. As in the

case of the lexical and semantic metrics, Q2 scores are typically higher for attributable

responses but indistinguishable between generic and unattributable responses.

Inference-Based Classifiers Table 4.2 reports the performance of the NLI-based

classifiers on Begin. BEGIN-Adversarial substantially outperforms the classifiers

trained on the gold datasets MNLI, DNLI and AugWoW even though it is a significantly

smaller resource than those datasets. We also use MNLI as an intermediate fine-tuning
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Test set Dev set

Finetuning data P R F1 P R F1

T5

MNLI 48.6 47.9 34.6 52.1 50.7 37.4

DNLI 40.8 56.5 25.6 41.6 59.2 28.6

AugWow 36.8 39.8 37.8 36.7 39.9 38.1

BEGIN-Adv. 46.7 47.4 45.9 47.2 47.1 46.3

+MNLI 46.9 49.3 45.3 47.6 49.4 46.1

RoBERTa

MNLI 50.5 51.1 36.4 52.3 53.8 38.5

DNLI 40.2 46.6 27.2 34.9 46.1 29.2

AugWow 41.2 39.2 29.7 29.4 41.4 29.1

BEGIN-Adv. 42.6 46.1 41.1 49.2 45.8 41.1

+MNLI 44.8 45.9 45.2 44.9 45.6 45.1

Human 96.4 - - 97.2 - -

Table 4.2: Precision, recall and F1 of the classifier-based metrics created by fine-tuning
T5 and RoBERTa on NLI datasets, AugWow and our adversarial training set. Scores
are macro-averaged across labels on the Begin test and dev sets.
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dataset before fine-tuning on BEGIN-Adversarial.5 We find that intermediate

task fine-tuning can be beneficial when RoBERTa is used as the pretrained model

(↑ 4.1 on F1).

Overall, our adversarially generated dataset provides better supervision for detecting

our taxonomy than NLI-style datasets. This can be attributed to the fact that NLI-

style datasets are designed with a focus on detecting direct contradictions. By contrast,

identifying unattributable responses requires detecting multiple types of unverifiable

information including, but not limited to, contradictions. At the same time, none of the

models exceed 46% F1 score, showing that there is still room for improvement compared

to human performance (over 95% precision when comparing human annotations to the

majority vote). Finally, T5 and RoBERTa have similar F1 scores despite differences in

model size and pretraining corpora, suggesting that simply scaling up the pretrained

model may not be sufficient to make progress on this problem.

4.4.4 Are Metrics Measuring Attribution or Extractivity?

Do the metrics perform similarly on both challenging and easier examples? We adopt

a density metric from Grusky et al. [61] to split the data into three groups—low,

medium and high density—based on the extent to which they reuse language from

the knowledge sources. Density represents the average length of the text spans in the

responses that are copied from the knowledge. Extractive (high density) responses

reuse the same phrases as the knowledge source, while abstractive (low density)

responses may express the same meaning using a paraphrase.

Results Figures 4.5 and 4.6 show the distributions across different levels of extrac-

tivity of the lexical and semantic metrics and the Q2 score. We observe a common

pattern across all metrics: high density responses for all categories (except generic on

BLEURT) score the highest, followed by medium density and low density responses.

5We did not observe a similar improvement when using DNLI as an intermediate task.
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Figure 4.5: Scores assigned to each of the three Begin categories by semantic
similarity metrics (upper row) and lexical overlap metrics (lower row), broken down
by extractivity of the response (the extent to which it copies verbatim from the
knowledge).

The differences between the scores of the attributable, generic and unattributable

categories are more pronounced in the more extractive responses, and less in the

abstractive cases. Only Q2, though generally unable to separate generic examples,

maintains a clear separation between attributable and unattributable examples in

the abstractive cases. Moreover, extractivity strongly influences the score assigned to

attributable examples; an attributable response is likely to be scored much lower by

all of these metrics if it is abstractive. Even more strikingly, unattributable extractive

responses score higher on average than attributable abstractive responses in all metrics.

We observe similar trends for the classifiers (Figure 4.7). The performance on

classifying attributable responses is much higher in extractive cases than in abstractive

ones. In contrast, the performance on unattributable responses is typically worse

in the extractive cases. This pattern of results suggests that a response that is

unattributable but has a high word overlap with the knowledge is very likely to be
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misclassified as attributable. In summary, we find that current metrics are relying on

the spurious correlation between attribution and word overlap, and do not capture a

deep understanding of the notion of attribution (cf. [110]).
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Figure 4.7: Comparison of F1 scores of RoBERTa-based classifiers on Begin cate-
gories with examples split by density (the extent to which the response copies verbatim
from the knowledge).

4.4.5 Robustness to Distribution Shift

We further investigate the robustness of the metrics under distribution shift. Figure 4.8

shows the distributions of both semantic and Q2 scores across the data broken down
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by source. All metrics6 rate responses from WoW in all categories significantly

higher than responses derived from CMU-DoG and TopicalChat. Concerningly,

attributable responses generated based on CMU-DoG and TopicalChat receive

nearly identical scores to unattributable responses. Likewise, the F1 scores of all the

classifiers (Figure 4.9) are higher on the responses from WoW compared to the ones

from CMU-DoG and TopicalChat. Specifically, classifiers tested on TopicalChat

examples yield the worst F1 scores. For example, RoBERTA-MNLI’s F1 score decreases

by 10 points when tested on attributable responses from TopicalChat compared

to WoW. In general, the metrics appear to perform poorly on datasets that have

longer knowledge sources. TopicalChat has on average 271 words in K, followed

by CMU-DoG and WoW which have 215 words, 27 words respectively. This shows

that shorter knowledge spans correlates with higher metrics performance, pointing to

the limited robustness of the metrics.
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Figure 4.8: Scores of the semantic and Q2 metrics across the three dialogue corpora
we used to train our models.

4.5 Related Work

Analysis of Evaluation Metrics in Natural Language Generation There

is extensive interest in analyzing and meta-evaluating neural language generation

(NLG) evaluation metrics [53, 54], for various tasks including machine translation

[51, 105], data-to-text generation [29], summarization [11, 124, 32, 52, 45, 33], and

6We observe similar results for lexical metrics.
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Figure 4.9: Comparison of F1 scores of RoBERTa classifiers on Begin categories with
examples split by benchmark.

dialogue generation [188, 33]. Most of these studies have compared reference-free and

reference-based evaluation metrics to human evaluation. For example, Gabriel et al.

[52] measured the performance of automated metrics on summaries and compared

certain dimensions such as sensitivity and high correlation with human scores. Fabbri

et al. [45] analyzed metrics in summarization and released human-annotated data for

faithfulness across 16 summarization models. We perform a similar meta-evaluation of

existing automatic metrics in the context attribution in knowledge-grounded responses.

Closest to our work is Durmus et al. [33], who found that reference-free evaluation

metrics of summarization and dialogue generation rely heavily on spurious correlations

such as perplexity and length.

Metrics in Knowledge-Grounded Response Generation In contrast to the

significant progress achieved in evaluating many NLG tasks, the evaluation of grounded

response generation is a nascent research area [150, 136, 39]. Yeh et al. [188] conducted

a comprehensive study of existing dialog evaluation metrics. They measured properties

such as engagingness and relevance but did not investigate the faithfulness of responses.

While hallucination is well-studied in the context of summarization [32, 106, 117, 47],

fewer researchers have looked into the problem of assessing hallucination in dialogue

systems. Dziri et al. [39] introduced a token-level critic that leverages a knowledge

graph to identify hallucinated dialogue responses. Rashkin et al. [136] proposed a
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human evaluation framework to assess output of dialogue models that pertains to the

external world and utilized their evaluation framework for conversational QA tasks.

Dziri et al. [43] introduced a faithful benchmark for information-seeking dialogues

and demonstrated that it can serve as training signal for a hallucination critic, which

discriminates whether an utterance is faithful or not. An alternative approach for

assessing faithfulness uses an auxiliary language understanding task, which measures

whether a question answering system produces the same responses for the source

document [70]. Begin as a testing benchmark should be useful in developing similar

metrics further.

NLI and Adversarial Data for Grounded Dialogue Evaluation In this work,

we also investigate the performance of classifiers trained on NLI data, extending

prior work that has proposed using NLI as a framework for evaluating conversational

consistency [176]. Dziri et al. [37] also used NLI to evaluate dialogue consistency.

They generated a large-scale, noisy synthetic dataset of (premise, hypothesis) pairs

tailored for dialogue, based on Zhang et al. [193]. We also explore training classifiers on

adversarially augmented training data similar to concurrent work from Gupta et al. [62]

and Kryscinski et al. [87], which proposed a synthetic dataset for determining whether

a summary or response is consistent with the source document; this dataset was

constructed by applying a number of syntactic transformations to reference documents

(for a similar approach applied to NLI, see Min et al. [113]).

4.6 Implementations

GPT2, T5 We implement these models using the TensorFlow Huggingface Trans-

formers library [184]. During training, we use the Adam optimizer [80] with Dropout

[157] on a batch size of 32 with a learning rate of 6.25× 10−5 that is linearly decayed.

The maximum dialogue history length is set to 3 utterances. The model early-stops

at epoch {6, 10, 10} respectively for WoW, CMU-DoG and TopicalChat.
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CTRL-Dialog We reproduce the results from [135], following the training details

in that paper.

DoHA We use the code and the pre-trained model on CMU-DoG that are publicly

available by the authors at their Github’s account 7. For WoW and TopicalChat,

we follow closely the authors’ training procedure described in [129] and we train two

models on both datasets.

For each dataset, we save the best model based on the validation set. We use

nucleus sampling with p = 0.9.

4.7 Model-Based Metrics

Semantic Similarity Models We use BERTScore version 0.3.11. with the DeBERTa-

xl-MNLI model [66], which is the recommended model as of the time of investiga-

tion. For BLEURT, We use the recommended BLEURT-20 checkpoint [130]. For

BARTScore, we use the latest publicly available checkpoint (accessed March 2022)

from https://github.com/neulab/BARTScore.

4.8 Conclusion

Contemporary knowledge-based dialogue systems that rely on language models often

generate responses that are not attributable to the background knowledge they are

expected to convey. In this chapter, we present Begin, a new benchmark to advance

research toward robust metrics that can assess this issue. We use Begin to comprehen-

sively evaluate a broad set of existing automatic metrics. We show that these metrics

rely substantially on word overlap and fail to properly rank abstractive attributable

responses as well as generic responses. They also struggle under distribution shift,

assigning low scores to attributable responses grounded on long knowledge sources.

7https://bit.ly/3bBup2M
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We hope that this work will spur future research on building robust evaluation metrics

for grounded dialogue systems.
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Chapter 5

FaithDial: A Faithful Benchmark
for Information-Seeking Dialogue

A large commonality in the majority of prior work seeks to address hallucination by

ameliorating the model [150, 39, 135], but no attempt has been made so far to audit

the conversational benchmarks to the best of our knowledge. On one hand, knowledge-

grounded conversational benchmarks may contain hallucinations due to error-prone

collection protocols, or due to a design framework that encourages informativeness

over faithfulness. Existing dialogue systems are typically trained on corpora crowd-

sourced through online platforms [30, 57, 114]. With loose incentive to come up with

faithfully-grounded utterances on the provided knowledge, crowdworkers may ignore

knowledge-snippets altogether, use their personal knowledge or sometimes assume

a fictional persona, resulting in conversations that are rife with subjective content

and unverified factual knowledge. Figure 5.1 shows a hallucinated conversation from

the WoW dataset [30]. On the other hand, neural conversational models are not

necessarily designed to generate faithful outputs, but to mimic the distributional

properties of the data. This kind of optimization will likely push the models to

replicate and even amplify the hallucination behaviour at test time [8]. The presence

of even few hallucinated responses may skew the data distribution in a way that curbs

the model’s ability to generate faithful responses [77]. In this chapter, we investigate

the root causes of hallucinations and we introduce a new hallucination-free dialogue
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Figure 5.1: An example of a hallucinated conversation from the Wizard of Wikipedia
dataset [30]. The wizard (yellow) is hallucinating information that cannot be inferred
from the knowledge-snippet: hallucinated subjective content (red) and hallucinated
objective content (blue).

benchmark.

5.1 On the Origin of Hallucinations in Conversa-

tional Models

5.1.1 Hallucinations in Benchmarks

We conduct a human study on three English crowdsourced knowledge-grounded conver-

sational benchmarks: Wizard of Wikipedia (WoW), CMU-DoG and TopicalChat.

These datasets consist of dialogues between two speakers, where the goal is to com-

municate information about particular topics while speakers are presented with a

knowledge snippet relevant to the current turn.

Wizard of Wikipedia (WoW) Details about the dataset are discussed in Sec-

tion 2.4.6. We omitted examples where the Wizard did not explicitly select a passage

as evidence for the response or where there was no dialogue history. We also use the
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“unseen” topic portion of the test data. Overall, we used 82722 training examples, 8800

development examples, and 3902 test examples.

CMU-DoG The CMU-DoG dataset [201] consists of conversations about films.

Each response is expected to be grounded in a section from Wikipedia. Workers can

have either asymmetric or symmetric roles. In the asymmetric setting, one worker

is asked to persuade the interlocutor to watch the movie using arguments from the

document where only the persuader has access to the document. In the symmetric

role, workers discuss together the content of the document. In total, there are 78136,

13800 and 13796 grounded responses (training/dev/test).

TopicalChat TopicalChat [57] consists of dialogues about a variety of topics. Work-

ers are provided relevant facts from Reddit, Wikipedia and news articles. Analogous

to CMU-DoG, the data collection protocol consists of two scenarios. In the symmet-

ric scenario, workers have access to the same knowledge source; in the asymmetric

scenario, they have access to different sources. They are asked to use the information

from the documents to chat knowledgeably about the topic. In total, the dataset has

134572, 8790 and 8081 grounded responses (training/dev/test).

Response Classification Taxonomy Following the definitions of the BEGIN

taxonomy [42] and the AIS framework [136] of evaluating response attribution, we

annotate each response based on whether it can be inferred exclusively from the

knowledge-snippet as follows: Entailment: a response is fully supported by the

knowledge, i.e., any information it contains must be attributed to the knowledge.

Hallucination: a response’s factual correctness cannot be fully verified from the

knowledge-snippet (even if it is true in the real world). More specifically, personal opin-

ions, experiences, feelings, internal assessments of reality that cannot be attributed to

the information present in the source document, are considered hallucinations. Partial

Hallucination: part of the response is hallucinated while the rest is entailed by the
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VRM Type Description Example

Disclosure
Reveal the speaker’s subjective opinions, personal

experience, thoughts, feelings, wishes, and inten-

tions.

“I think science fiction is an amazing genre.

Future science, technology they’re all inter-

esting.”

Edification Concerns information that is, in principle, objec-

tive.

“Recycling includes items like metal and

plastic.”

Advisement
Corresponds to guiding the behaviour of the ad-

dressee through: commands, requests, suggestions,

advice, permission, prohibition.

“You should be patient and persistent to

succeed.”

Confirmation
Compares the speaker’s experience with the other’s

by expressing shared ideas/memories/beliefs, or

by agreement/disagreement

“I agree that love encompasses a variety of

different emotional and mental states.”

Question Concerns requesting information or guidance. “What is your favorite song?”

Acknowledge
Expresses no content, it conveys only receipt of

communication from the other’s speaker.
“Mmm. OK,...”, “Yeah, ...”, “Hello, ...”

Table 5.1: The definitions of the VRM types with examples.

source knowledge. Generic: a response that is vague and does not convey any factual

information such as “Sounds good” or “I’m not sure about that”. Uncooperative:

an entailed response that does not follow the principles of conversational cooperation

according to Gricean maxims [59]. The response may be purposefully misleading, or

showing a general unwillingness to cooperate with the interlocutor, resulting in an

incoherent communication.

To understand the linguistic nature of hallucinations, we further annotate responses

based on a linguistic coding system for discourse phenomena, dubbed Verbal Response

Modes (VRM; [158]). Concretely, we label a turn with the following speech acts:

Disclosure, Edification, Advisement, Confirmation, Question and Acknowl-

edgement (Ack.). Table 5.1 displays the definition for each VRM type with examples.

We opted for the VRM taxonomy as it offers a simple way of codifying responses

into categories that are sufficient for our analysis whereas one can also opt for a more

demanding annotation scheme [15].
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BEGIN VRM

CMU-DoG 0.85 0.78

TopicalChat 0.83 0.72

Table 5.2: Fleiss Kappa Scores on 200 train Human-Human responses from the CMU-
DoG and TopicalChat benchmarks.

5.1.2 Human Evaluation Study

We follow a two-stage annotation protocol where we first ask two experts to judge

the attribution of 200 randomly sampled train responses with respect to the source

knowledge. The experts were students with linguistics background, fluent in English,

and were trained for the task by exchanging rigorous discussions with the authors. As

part of this stage, they were required to write justifications for 50 samples articulating

the reasoning for the provided ratings. The collected justifications were helpful in

understanding the reasoning used to reach their ratings and in laying the groundwork

for designing the second round of annotations. For inter-annotator agreement, we

measure Fleiss’ Kappa scores on both BEGIN and VRM. WoW achieved 0.89

on BEGIN and 0.78 on VRM, indicating substantial agreement. Annotations on

CMU-DoG and TopicalChat achieved nearly similar agreement (See Table 5.2).

The high agreement scores align with the findings in AIS on WoW [136].

The second round corresponds to a large-scale annotation of 4K randomly sampled

train responses using non-expert annotators from AMT. This round is crucial to ensure

that the obtained results from the experts are reliable enough to draw conclusions

about the quality of the data. As human annotation is expensive, we perform the

non-expert annotations only on the WoW benchmark while restricting ourselves to

expert annotations on CMU-DoG and TopicalChat data. We choose WoW over

the other two datasets as the source knowledge is more amenable to faster annotation

(TopicalChat: 300 words > CMU-DoG: 215 words > WoW: 27 words). Below,

we detail our AMT task design and how we ensure data quality:
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Task Design To streamline the process for raters we break down the task into

hierarchical (yes/no) questions. We summarize this procedure below, and provide the

exact questions in the following paragraphs. First, we ask annotators to judge whether

the response contain information that is not supported by the source. If yes, we ask

them to indicate the type of the unsupported information (e.g., unsupported opinion,

unsupported fact, etc). In a followup question, we ask them to indicate whether there

are any supported information besides the hallucinated content. If the response was

not hallucinated, we present them with two follow-up questions about whether the

response is entailing the source or generic. Finally, if the response entails the source,

we ask whether it is coherent with the history.

AMT Data Quality To access the initial staging round in AMT, workers have

to pass a qualification test by answering correctly 14 questions about BEGIN and

VRM. Moreover, they had to be situated in the United States and Canada. Before

being granted access to the main annotation task, workers would have access only to

a small pilot round (batch size ∼ 50 HITs). In this round, we carefully inspect each

of the workers annotations for adherence to the instructions, and provide feedback via

email to those who committed errors.

At the end of this round, we revoke access for workers who provide poor quality

annotations. Next, we launch the main annotation stage which is larger (batch size

∼ 400 HITs). We perform daily manual inspection and we send detailed feedback to

workers who commit persistent error patterns. We reject poor quality work in this

stage and repeated rejections lead to blocking the workers from the task indefinitely.

In total, we ended up with 4 workers annotating the 4k responses. The workers were

informed that their annotations would be used for research purposes and their workers

ID would be anonymous when we release the data.
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Figure 5.2: AMT Annotation interface for determining BEGIN and VRM classes (1)

AMT Human Instructions AMT Human annotation interfaces are depicted in

Figure 5.2 and Figure 5.3. We pay workers an hourly wage around 18-20 USD which

is above the minimum wage rate. Workers were asked the following questions:

1. Does the Wizard’s response contain other information that is NOT supported

by the evidence? (E.g., facts, opinions, feelings)?

(a) If the response is hallucinated, what is the type of the unsupported informa-

tion? (expressing a personal experience, expressing an opinion, expressing

feelings, expressing unsupported facts, giving advice, acknowledging with

information from the human)

(b) Besides unsupported information, does the Wizard’s response contain

thoughts/opinions/feelings/facts that are supported by the Evidence?

2. If the response is not hallucinated, is it faithful to the source or generic? (Faithful,

Generic)

3. If the response if faithful, is it cooperative with the Human’s response?

In total, we selected 4 trusted workers to annotate the 4k responses. To compute

the inter-annotator agreement, we assign three workers per response in a secondary
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Figure 5.3: AMT Annotation interface for determining BEGIN and VRM classes (2)

task, and ask each of them to judge 500 responses. Reported Fleiss’ Kappa agreements

were 0.75 for BEGIN and 0.61 for VRM. Although substantial, the agreement is lower

than the experts’ one and this is expected as they have stronger linguistic background.

5.1.3 Human Study Results

We seek to answer the following questions:

(Q1) How much hallucination exists in the benchmarks? Figure 5.4 shows

the breakdown of each BEGIN categoty in WoW and compares expert annotations

versus AMT workers. Surprisingly, WoW is fraught with hallucinations. Expert

annotations on 200 responses show that hallucinated responses are largely mixed with

faithful content (42.3% v.s. 19.7% fully hallucinated responses), which amounts to

62% hallucinations in total. These results generalize even on larger data; we can see

that the portion of hallucinated responses increased to 74.4% when evaluated on 4K

samples. Our analysis shows similar trends on the CMU-DoG and TopicalChat

benchmarks (Figure 5.5). CMU-DoG contains 61.4% responses that are purely

hallucinated against only 16.2% responses that are fully entailing the source knowledge

and TopicalChat has similar results (63.9% hallucination v.s. 22.9% entailment).
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Figure 5.4: A representative FaithDial annotation: subjective and hallucinated
(red) information present in the wizard’s utterance of WoW data are edited into
utterances faithful to the given knowledge (green). In FaithDial, the wizard assumes
the persona of a bot.

Exemplars of hallucinated responses are depicted in Table 5.15. These findings raise

the question on the quality of dialogue datasets.

(Q2) What are the hallucination strategies used in human-human data?

Figure 5.4 and Figure 5.5 show the VRM breakdown for each BEGIN category

in the three benchmarks. We make the following observations: The majority of

hallucinations belong to disclosure (i.e., subjective information) in all benchmarks

(50.9%, 56.2% and 61.5% in WoW, CMU-DoG and TopicalChat respectively).

Although the strategy of sharing subjective information such as thoughts, opinions and

feelings is natural in conversations, it often comes at a cost of ignoring the knowledge

snippet in these datasets. Moreover, edification is also a common phenomenon in

hallucinated responses, suggesting that humans not only discuss subjective information

but also bring extra unsupported facts, either true or false. Other linguistic modes

are also associated with hallucinations such as acknowledging unsupported claims or

asking irrelevant questions. Conversely, entailment responses have high percentage of
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Figure 5.5: BEGIN and VRM breakdown of gold responses from CMU-DoG and
TopicalChat. The inner circle shows the breakdown of BEGIN classes and the
outer shows the VRM types in each BEGIN type: Hallucination (red), Entailment
(green), Partial Hallucination (yellow), Generic (pink), and Uncooperative (blue).

edification (> 70%) with information inferred from the knowledge snippet.

5.1.4 Hallucination Amplification in Models

Next, we investigate how much models amplify the hallucination phenomenon at

inference time. We consider a range of representative models:

• GPT2 [132, 183] is an autoregressive model which takes as input a concatenation

of the knowledge and the history.

•DoHA [129] builds a BART-based conversational model [93] for knowledge-grounding,

with a two-view attention mechanism to handle separately the encoded document and

the history during generation.

• CTRL [135] augments the GPT2 model with control tokens [78] that guide the

generation towards less subjective and more entailed content.

We fine-tune each model on the benchmarks and use nucleus sampling [68] with p = 0.6

for decoding.
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Data Knowledge & History Responses

WoW Knowledge: Cinematography
(also called ”Direction of
Photography”) is the science or
art of motion-picture
photography by recording light
or other electromagnetic
radiation, either electronically by
means of an image sensor, or
chemically by means of a
light-sensitive material such as
film stock.
History: Hi buddy, What you
think about cinematography?

GPT2: Cinematography is another title I’m
currently in school for. I’ve been doing the
art of photography for over 15 years now.
(Hallucination)

DoHA: I do enjoy the science and art of
motion-picture photography.
(Partial Hallucination)

CTRL: You’re right. Cinematography is an
art of motion -picture photography by
recording light or other electromagnetic
radiation, either electronically by means of
an image sensor, or chemically by means of a
light-sensitive material such as film stock.
What about you ? (Entailment)

CMU-DoG Knowledge: Mean Girls is a
2004 American teen comedy film
directed by Mark Waters and
written by Tina Fey. The film is
partially based on Rosalind
Wiseman’s 2002 non-fiction
self-help book Queen Bees and
Wannabes, which describes
female high school social cliques
and the damaging effects they
can have on girls. Genre:
Comedy. MovieName: Mean
Girls rating: Rotten Tomatoes:
84 % and average: 6.9/10.
History: I think Rachel
McAdams had an even better
role as Regina George however!

GPT2: Mean Girls was a classic.
(Hallucination)

DoHA: Yes I agree! she was great and she
was better than Mark Waters!
(Hallucination)

CTRL: I see. Mean Girls is a comedy movie
that was directed by Mark Waters in 2004.
(Entailment)

Table 5.3: Generated responses from different models based on Wizard of Wikipedia
[30] and CMU-DoG [201] test samples.

Implementation Details

GPT2: This model was implemented using the Pytorch Huggingface Transformers

library [184] and the Pytorch-lightning library1. To train the models, we use the

Adam optimizer [81] with Dropout [157] on a batch size of 32 with a learning rate

of 6.25× 10−5 that is linearly decayed. The maximum dialogue history length is set

1https://github.com/PyTorchLightning/pytorch-lightning
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Model R-L↑
Hallucination Rate↓ Entailment Rate↑

Full Partial Overall Entail. Uncoop. Overall

W
o
W

Gold 36.1 19.7 42.3 62.0 24.1 8.5 32.7

GPT2 27.0 66.0 15.2 81.2 11.7 3.6 15.3

DoHA 30.6 39.6 28.9 68.5 12.7 7.1 19.8

CTRL 51.3 31.0 5.0 36.0 19.5 42.0 61.5

C
M
U
-
D
o
G

Gold 4.1 61.4 5.1 66.5 16.2 4.1 20.3

GPT2 4.6 75.5 6.0 81.5 5.5 5.5 11.0

DoHA 5.1 62.5 10.0 72.5 8.5 5.0 13.5

CTRL 6.9 62.5 4.5 67.0 13.5 17.0 30.5

T
o
p
i
c
a
l

Gold 1.2 46.8 17.1 63.9 22.9 0.5 23.4

GPT2 6.9 70.5 8.5 79.0 6.5 5.0 11.5

DoHA 4.0 53.0 25.0 78.0 9.0 5.0 14.0

CTRL 7.9 48.5 16.7 65.2 12.1 20.7 32.8

Table 5.4: Amplification of models on the test data from WoW and CMU-DoG
and TopicalChat. ‘Entail.’ and ‘Uncoop.’ mean entailment and uncooperative,
respectively. R-L measures the ROUGE-L scores between the response and the
knowledge.

to 3 utterances. The model early-stops at epoch {7, 8, 8} respectively for WoW,

CMU-DoG and TopicalChat. The average runtime is {1.5, 3, 3} hours for WoW,

CMU-DoG and TopicalChat respectively.

DoHA: We use the pre-trained model on CMU-DoG that is publicly available2.

However, since no models trained on WoW and TopicalChat have been released,

we follow closely the training procedure described in Prabhumoye et al. [129] and we

train two models. The average runtime of these models is {5, 10} hours for WoW

and TopicalChat respectively.

CTRL: We implement the model ourselves since the code and the model were

not released by the authors. We follow training details in Rashkin et al. [135] and

implement this model using the Pytorch Huggingface Transformers library and the

Pytorch-lightning library. Additionally, we had multiple discussions with the authors

to make sure that our implementation is accurate.

2https://bit.ly/3bBup2M

88

https://bit.ly/3bBup2M


We save the best model based on the validation set, for all datasets. Training for

all models is done on an Nvidia V100 GPU 32GB and for inference, we use nucleus

sampling with p=0.6.

As seen in Table 5.4, CTRL is the best model followed by DoHA based on the

hallucination ratio. Table 5.3 shows a sample of generated responses. Similar to the

analysis in §5.1.1, we task the same two linguists to analyze model-generated responses

for 200 randomly-selected test samples from each benchmark.

(Q3) Do state-of-the-art conversational models amplify hallucination? Ta-

ble 5.4 shows the degree of amplification across different models trained on the three

benchmarks. Numbers report the percentage of each class in the data. Contrasting

this with human gold responses, the models not only hallucinate but also amplify

the percentage of hallucinations, except CTRL on WoW. For example, GPT2

amplifies full hallucination by 19.2% in WoW, 15% in CMU-DoG and 15.1% in Top-

icalChat. Conversely, it reduces entailment by 17.4%, 9.3% and 11.9% respectively.

This suggests that hallucination patterns are easier to learn than entailment. Among

the three, CTRL hallucinates the least at the expense of producing a high number of

uncooperative responses. Although these responses are entailing the knowledge, they

are not coherent with the history. A closer inspection shows that most uncooperative

responses are extractive, i.e., they copy big chunks of the evidence without adapting

the content to the history or they just output an exact copy of the entire evidence.

This is also reflected in high ROUGE scores between the response and the knowledge,

corroborating the extractive nature of CTRL compared to the gold responses. This

behavior is not surprising as CTRL was optimized to maximize the overlap with

the knowledge. Overall, these results demonstrate that hallucination is not only a

reflection of training data issues, but also a consequence of the weaknesses of models.

We hypothesize that there are multiple factors that can contribute to the models’

deficiencies: First, the exposure bias [134] caused by teacher forcing can make hal-
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lucination worse as the model may over-rely on previously predicted words which in

turn can aggravate error propagation. Second, maximum likelihood estimation can

be fragile to noisy data points as it necessitates models to assign high probability

mass to all test references, resulting in unstable behavior—a fact observed in machine

summarization [77]. Moreover, we link this issue to the decoding strategies used at

test time. We conjecture that models—when conditioned on factual knowledge—often

assign the highest probability mass to the correct response and sampling based on

other distributions (e.g. top-k or nucleus) may invite hallucination in the generation

process. And lastly, we hypothesise that the behavior of these models is ultimately

shaped by the bias learned from internet text during pre-training [115]. We leave

investigating the role of each factors to hallucination amplification for future work.

(Q4) What are the hallucination strategies used by models? Surprisingly,

different models use different strategies for hallucination. While DoHA and GPT2

predominantly rely on and amplify disclosure, CTRL relies on edification. This

is because CTRL is trained explicitly to avoid pronouns (a crucial ingredient for

disclosure) and to generate entailed responses. As a side-effect, it ends up amplifying

uncooperative responses (by 33.5%, 12.9% and 20.2% in WoW and CMU-DoG as

seen in Table 5.4).

5.2 FaithDial: Introduction

In the previous section, we investigated the underlying roots of hallucination and

found that the gold-standard conversational datasets [30, 57, 201]—upon which the

models are commonly fine-tuned—are rife with hallucinations, in more than 60%

of the turns. An example of hallucination in Wizard of Wikipedia (WoW; [30]) is

shown in the red box of Figure 5.6. In WoW, an information seeker aims to learn

about a topic and a human wizard harnesses knowledge (typically a sentence) from

Wikipedia to answer. This behavior, where the human wizard ignores the knowledge
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Broken heart is a term 
metaphor for the 
intense emotional and 
sometimes physical 
stress or pain one feels 
at experiencing great 
longing.

Have you ever had a broken 
heart?

I did last year when I broke 
up with my girlfriend, it was 
terrible! 

I have not. I'm a machine 
and I can't feel pain. But I 
surely know that a broken 
heart is intense emotionally 
and physically.

Information Seeker

WoW Wizard 

FaithDial Wizard EDITED

GROUNDING

GROUNDING

Figure 5.6: A representative FaithDial annotation: subjective and hallucinated
(red) information present in the wizard’s utterance of WoW data are edited into
utterances faithful to the given knowledge (green). In FaithDial, the wizard assumes
the persona of a bot.

snippet and assumes a fictitious persona, can later reverberate in the dialogue system

trained on this kind of data. Instead, the ideal wizard response, highlighted in green,

should acknowledge the bot’s nature, and whenever the knowledge is not sufficient or

relevant, it should acknowledge its ignorance of the topic.

Unfortunately, modeling solutions alone cannot remedy the hallucination problem.

By mimicking the distributional properties of the data, models are bound to ‘parrot’

the hallucinated signals at test time [8]. What is more, we observe that GPT2 not only

replicates, but even amplifies hallucination around 20% when trained on WoW. This

finding also extends to models that are designed explicitly to be knowledge-grounded

[129, 135]. Filtering noisy or high-error data [77] is also prone to failure as it may

either break the cohesion of discourse or it may require excluding entire dialogues.

In this section, we adopt instead a data-centric solution to address hallucinations

and create FaithDial, a new benchmark for faithful3knowledge-grounded dialogue.

3Faithfulness is sometimes referred to as attribution [42, 136] and fidelity [152].
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Specifically, we ask annotators to amend hallucinated utterances in WoW by making

them faithful to the corresponding knowledge snippets from Wikipedia and acknowl-

edging ignorance when necessary. This approach is vastly more scalable than creating

FaithDial from scratch while retaining the cohesiveness of conversations. Moreover,

it allows us to shed light on hallucinations by contrasting corresponding wizard’s

responses in WoW and FaithDial. As a result, FaithDial contains around 50K

turns across 5.5K conversations. Extensive human validation reveals that 94.4% of

the utterances in FaithDial are faithful (i.e., without hallucinations), compared

to only 20.9% in WoW. Moreover, we benchmark several state-of-the-art models

[132, 143, 133, 135] on dialogue generation. If trained on FaithDial, we find that

they are significantly more faithful while also enhancing other dialogue aspects like

cooperativeness, creativity, and engagement. These benefits also generalize to other

knowledge-grounded datasets like CMU-DoG [201] and TopicalChat [57] in a zero-shot

transfer setting.

FaithDial also provides supervision for hallucination critics, which discriminate

whether an utterance is faithful or not. We source positive examples from FaithDial

and negative examples fromWoW. Compared to other dialogue inference datasets [178,

120], the classifiers trained on this data (which we call FaithCritic) transfer better

to general NLU tasks like MNLI [179] and achieve state-of-the-art on dialogue-specific

knowledge grounding benchmark (BEGIN) [42] in a zero-shot setting.

Thus, FaithDial holds promise to encourage faithfulness in information-seeking

dialogue and make virtual assistants both more trustworthy. We will release data and

code for future research.

5.3 FaithDial: Dataset Design

Given the motivations adduced above, the primary goal of this work is to create

a resource for faithful knowledge-grounded dialogue that allows for both training

high-quality models and measuring the degree of hallucination of their responses.
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Definition 5.3.1 (Faithfulness). Given an utterance un, a dialogue history H =

(u1, . . . , un−1), and knowledge K = (k1, . . . , kj) at turn n, we say that un is faithful

with respect to K iff the following condition holds:

• ∃Γn such that Γn ⊨ un, where ⊨ denotes semantic consequence and Γn is a

non-empty subset of Kn. In other words, there is no interpretation I such that

all members of Γn are true and un is false.

Hence, an utterance can optionally be grounded on multiple facts but not none.

In what follows, we present the design of our task as well as our annotation pipeline

to curate FaithDial. In our dialogue setting, we simulate interactions between two

speakers: an information seeker and a bot wizard.

Definition 5.3.2 (Information Seeker: A Human). The information seeker,

a human, aims at learning about a specific topic in a conversational manner. They

can express subjective information, bring up a new set of facts independent from the

source K, and even open up new sub-topics.

From the perspective of Definition 5.3.2, utterances pronounced by the seeker

have a large degree of freedom. For example, the human can chat about personal

life and can ask a diverse set of questions. On the other hand, the wizard is more

restricted on what they can communicate.

Definition 5.3.3 (Wizard: A Bot). The Wizard, a bot, aims at conversing in a

knowledgeable manner about the seeker’s unique interests, resorting exclusively to

the available knowledge K. They can reply to a direct question or provide information

about the general topic of the conversation.4

From Definition 5.3.3, it follows that there are three key rules the bot must abide

by: first, it should be truthful by providing information that is attributable to the

4To encourage naturalness in the response, annotators were also asked to express empathy such
as “I’m sorry about ...”. in case the Seeker expresses a very unfortunate event.
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Dataset Generic
Hallucination Entailment

Full Partial Faith. Uncoop.

WoW 5.3 19.7 42.3 24.1 8.5

CMU 13.2 61.4 5.1 16.2 4.1

Topical 12.7 46.8 17.1 22.9 0.5

Table 5.5: The breakdown of responses from WoW, CMU-DoG and TopicalChat according
to BEGIN taxonomy [42]. “Faith.” refers to faithful responses and “Uncoop.” refers to
faithful but uncooperative responses given the conversation history.

source K. Second, it should provide information conversationally, i.e., use naturalistic

phrasing of K, support follow-up discussion with questions, and prompt user’s opinions.

Third, it should acknowledge its ignorance of the answer in those cases where K does

not include it while still moving the conversation forward using K.

5.3.1 Data Selection

Rather than creating a novel benchmark from scratch, however, we opt for fixing

problematic utterances (which are the majority) in existing dialogue benchmarks [40].

The reason is three-fold: 1) while mostly hallucinated, existing datasets still contain

useful faithful information. 2) as correction is faster than creation from scratch, this

enables us to annotate examples on a larger scale; 3) two versions of the same dialogue

turn, either hallucinated or faithful, can provide signal for (contrastive) learning and

evidence for a linguistic analysis. In particular, we focus on WoW as our benchmark

backbone.

Initial pilot study revealed that WoW dialogues are more suitable for editing

compared to other prominent knowledge-grounded dialogue benchmarks: TopicalChat

[57] and CMU-DoG [201]. In fact, as shown in 5.5, WoW is relatively less hallucinated

compared to CMU-DoG and TopicalChat. Moreover, full hallucinations—responses

that contain no faithful content and that therefore need to be entirely thrown out—

are highly prevalent in the latter two (61.4% in CMU-DoG and 46.8% in TopicalChat

and only 19.7% in WoW). Moreover, knowledge snippets in WoW tend to be shorter,

which is preferable as longer knowledge is correlated with increased hallucination
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due to the constrained cognitive capacity for text navigation and comprehension in

humans [25, 26].

Our first step consists in filtering out WoW conversations where ground-truth

knowledge K was not given, and annotators relied on personal knowledge instead.

Then, we focus on seeker-initiated conversations and sample 44% from the train

(4094 conversations) and 100% from validation (764 conversations) and 100% from

test (791 conversations)5.

5.3.2 Crowd-sourced Annotations

WoW FaithDial

Seeker: I would love to learn to surf but I’m
terrified of sharks! Do you surf?

Seeker: I would love to learn to surf but I’m
terrified of sharks! Do you surf?

Knowledge: Surfing is a surface water sport in which the wave rider, referred to as a surfer, rides on the
forward or deep face of a moving wave, which is usually carrying the surfer towards the shore.

Wizard: I absolutely love to surf, just riding on
the forward face of a moving wave is so exhilarating.
Are there a lot of sharks near you? (BEGIN: Partial
hallucination, VRM: disclosure)

Wizard: Unfortunately, it’s impossible for me to
surf. Remember, I’m just your virtual bot! Sorry
to hear you’re terrified from sharks. However, did
you know that a surfer is someone who can ride
on either the forward or deep face of a wave which
typically sends her/him close to the shore?

Seeker: I have no idea how many sharks are in
the Gulf of Mexico but there out there! lol Where
do like to surf? (incoherent with the freshly edited
Wizard response)

Seeker: Yeah, what scares me is the sharks, is
there any non-ocean waves out there?

Knowledge: Waves suitable for surfing are primarily found in the ocean, but can also be found in lakes or
in rivers in the form of a standing wave or tidal bore.

Wizard: There’s a little hidden cove near me that
has great waves, although waves suitable for surfing
are primarily found in the Pacific ocean. Have you
ever watched people surf? (BEGIN: hallucination,
VRM: disclosure & edification)

Wizard: For sure there is. An alternative to
ocean waves could be lakes and rivers which have a
phenomenon called standing waves. Have you ever
watched people surf?

Table 5.6: A dialogue example showing the process of editing WoW utterances to convert
them to FaithDial utterances. Text highlighted in red indicates hallucinated content.
Text in violet indicates the BEGIN labels and the speech act VRM labels as identified by
annotators.

Following the guidelines for ethical crowdsourcing outlined in Sheehan [149], we hire

5We use the original WoW splits.
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Edit Type Percentage

Wizard edits 84.7%

Seeker edits 28.1%

Wizard edits per conversation 3.8 turns

Seeker edits per conversation 1.2 turns

Table 5.7: Amendment statistics of WoW

Amazon Mechanical Turk (AMT) workers to edit utterances in WoW dialogues that

were found to exhibit unfaithful responses. First, workers were shown dialogues from

WoW and asked to determine whether the wizard utterances are faithful to the

source knowledge. To guide them in this decision, they were additionally requested to

identify the speech acts (VRM taxonomy; Stiles [158]) such as disclosure, edification,

question, acknowledgment, etc; and the response attribution classes (Begin taxonomy;

Dziri et al. [42]) such as hallucination and entailment for each of the wizard’s

utterances according to the schema presented in Section 5.1.1.

Editing the Wizard’s Utterances

Workers were instructed to edit the wizard’s utterances in the following cases,

depending on their faithfulness:

Hallucination. They should remove information that is unsupported by the given

knowledge snippet K, and replace it with information that is supported. To ensure

that the responses are creative, we disallowed workers from copying segments from K.

They were instead instructed to paraphrase the source knowledge as much as possible

without changing its meaning [88, 103, 58]. If the inquiry of the seeker cannot be

satisfied by the knowledge K, the wizard should acknowledge their ignorance and

carry on the conversation by presenting the given knowledge in an engaging manner.

In the example shown in Table 5.6, the new wizard confirms that it cannot surf and

instead enriches the conversation by talking about surfing as opposed to the original
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wizard who hallucinates personal information.

Generic utterances such as “That’s nice” should be avoided solely on their own.

Workers are instructed to enrich these responses with content that is grounded on the

knowledge.

Uncooperativeness If the response was determined to be faithful but uncooperative

with respect to the user’s requests, workers are required to make it coherent with the

dialogue history while keeping it faithful.

Editing the Seeker’s Utterances

Although the seeker has no restrictions on their utterances, it is inevitable that the

conversation may drift away— because of the edits on the wizard’s response—making

the existing seeker’s next utterance in WoW incoherent with the new context. In

these cases, they perform edits on the seeker’s next utterance to make it coherent.

Consider Table 5.6 where workers had to edit the WoW seeker’s utterance as it

was not coherent anymore with the freshly edited wizard’s response.

5.4 Dataset Quality

5.4.1 Crowdworker Quality Control

To be eligible for the task, workers have to be located in the United States and Canada

and have to answer successfully 20 questions as part of a qualification test. Before

launching the main annotation task, we perform a small pilot round (∼60 HITS) to

check the performance of the workers. If we observe any errors, we email the concerned

workers and provide them with examples on how to fix their mistakes in future HITS.

Workers are also encouraged to reach out to us in case they find annotating a particular

example ambiguous. At the end of the pilot round, we revoke access for workers who

provide poor quality annotations. After several staging rounds, we launch the main

annotation stage. To ensure the quality does not drop, a linguistics major student
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evaluates the performance of workers daily (10 HITS on average per worker) and

rejects poor quality work. Repeated mistakes result in the worker being blocked from

the task entirely. In total, we ended up recruiting 10 well-trained workers. We also

perform automatic quality control checks to enforce workers to avoid copying segments

from the source knowledge.

5.4.2 Human validation

To evaluate the quality of FaithDial, we run two final rounds of annotations. Firstly,

we ask 3 new workers to edit the same 500 responses. Since there is no straightforward

way to measure inter-annotator agreement on edits. We measure the inter-annotator

agreement on the identified response attribution classes (Begin) and the speech acts

(VRM). We report an inter-annotator agreement of 0.75 and 0.61 Fleiss’ κ, respectively,

which shows substantial agreement according to Landis and Koch [89]. This is an

indicator of overall annotation quality: if the worker can reliably identify speech acts,

they generally also produce reasonable edits. Secondly, we assign three new workers

to judge the faithfulness of the same 500 edited responses (we use majority vote).

Assuming the pre-existing labels to be correct, the F1 score of the majority-vote

annotations for both taxonomies are similarly high: 90% for Begin and 81% for

VRM. In total, we found that FaithDial contains 94.4% faithful responses and 5.6%

hallucinated responses, as shown in Figure 5.7 (inner circle), and this shows the high

quality of FaithDial.

5.5 Dataset Analysis

5.5.1 Dataset Statistics

Overall, FaithDial contains a total of 5,649 dialogues consisting of 50,761 utterances.

Table 5.8 reports statistics for each dataset split. To curate FaithDial, workers

edited 84.7% of the wizard responses (21,447 utterances) and 28.1% of the seeker

responses (7,172 utterances). In particular, 3.8 wizard turns per conversation were
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Dataset Train Valid Test

Turns 36809 6851 7101

Conversations 4094 764 791

Avg. Tokens for Wizard 20.29 21.76 20.86

Avg. Tokens for Seeker 17.25 16.65 16.49

Avg. Tokens for Knowledge 27.10 27.17 27.42

Turns per Conversation 9 9 9

Table 5.8: Dataset statistics of FaithDial.

modified on average, as opposed to only 1.2 seeker turns. The low percentage of

the seeker edits shows that our method does not disrupt the cohesiveness of the

conversations.

Faithfulness

Based on our human validation round of 500 examples, FaithDial contains 94.4%

faithful responses and 5.6% hallucinated responses. On the other hand, our large-scale

audit of the entirety of WoW reveals that it is interspersed with hallucination (71.4%),

with only a few faithful turns (20.9%), as shown in Figure 5.7 (inner circle). This

finding is consistent with the analysis of Section 5.1.3 on a smaller sample. In our

work, FaithDial cleanses dialogues from hallucination almost entirely.

We also report the speech acts employed to ensure faithfulness in FaithDial in the

outer circle in Figure 5.7. We observe that wizard resorts to a diverse set of speech

acts to convey faithful information in a conversational style (see the Entailment pie):

78.26% of the responses contain objective content (Edification) that is interleaved

with dialogue acts such as acknowledging receipt of previous utterance (18.3%), asking

follow-up questions (35.5%), and sparking follow-on discussions by expressing opinions

still attributable to the knowledge source (36.2%). Moreover, the wizard used some of

these very techniques, such as Disclosure (13.04%) and Questions (8.6%), in isolation.

On the other hand, faithfulness strategies (see Entailment) in WoW are mostly

limited to edification (98.9%), curbing the naturalness of responses.
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Figure 5.7: Coarse-grained (Begin) and fine-grained speech act (VRM) distributions
used by wizards in FaithDial and WoW. The inner most circle shows the breakdown
of coarse-grained types: Hallucination (red), Entailment (green), Partial Hallucination
(yellow), Generic (purple), and Uncooperative (pink). The outer circles show the
fine-grained types of each coarse-grained type.

Abstractiveness

After establishing the faithfulness of FaithDial, we investigate whether it stems from

an increased level of extractiveness or abstractiveness with respect to the knowledge

source. Extractive responses reuse the same phrases as the knowledge source, while

abstractive responses express the same meaning with different means. Although

extractive responses are an easy shortcut to achieving more faithfulness, it comes at

the cost of creativity. Ideally, we want responses that are faithful as well as novel,

meaning responses that are not just a copy paste of the knowledge but rather a

creative use of it. To measure creativity, we borrow two metrics from Grusky et al.

[61] designed to quantify the extractive and abstractive nature of summaries: Density

and Coverage. Density represents the average length of the text spans copied from

the knowledge that are contained in the response. Coverage instead measures the

percentage of words existing in a response that are also found in the source knowledge.
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Figure 5.8: Density and coverage inWoW [30] (left) vs. FaithDial (right). Responses
in FaithDial tend to be abstractive to a large degree compared to WoW.

Figure 5.8 illustrates the density and coverage distributions in FaithDial (right) vs.

WoW (left). We observe that while the coverage (x-axis) is similar in both FaithDial

and WoW, the density (y-axis) is always low in FaithDial but often high in WoW.

This indicates that responses in FaithDial tend to be abstractive to a large degree.

Based on this, we also study which specific abstractive strategies wizard adopts

to present knowledge from K without repeating long fragments. The strategies we

discovered, fall into five broad categories: inference of new knowledge from K, reword-

ing, reshaping the syntactic structure, abridging long expressions, and introducing

connectives.

We annotate manually 150 responses to explore the techniques used by the wizard

to derive and represent information from the knowledge source K. Table 5.9 shows

the different abstractiveness types with their frequencies:

Inference: corresponds to information which can be derived from the evidence with

an intermediate step in reasoning; in other words, it involves inferring obvious but

implicit information from K, from the Apprentice utterance, or from commonsense

knowledge. It encompasses implicatures (e.g. replace “She finished some of her work”
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with “She did not finish all of her work”), presuppositions (e.g. replace “She stopped

smoking” with “She used to smoke”), and deductions (e.g. replace “She drove her car

to work every day for 3 years” with “She can drive”). Also, it includes commonsense

knowledge (e.g. replace “Elvis, the artist, . . . ” with “Elvis, a person, . . . ”).

Rewording: involves the replacement of words/phrases in K with similar wording.

One instance of Rewording is synonymization, where words/phrases are replaced with

their synonyms (e.g. replace “can lead to” with “can result in”). Also, it is sometimes

possible to preserve truth while replacing words/phrases denoting subset members with

their supersets, as in generalization (e.g. replace “Some dogs” with “Some animals”),

or superset members with their subsets, as in specification (e.g. replace “all animals”

with “all dogs”). Lastly, pronominalization replaces pronouns with noun phrases, or

vice versa (e.g. , replace “Andy visited Mary” with “Andy visited her”).

Restructuring: corresponds to restructuring the syntactic formulations (syntax ) of

K in a meaning-preserving manner. It can be done through passivization (e.g. replace

“Andy visited Mary” with “Mary was visited by Andy”). Another type of Restructuring

is reordering, the rearranging of list elements. Ellipsis refers to the ellipsis of sentences

or the expanding of ellipted sentences (e.g. replace “I have not heard of Elvis” with

“I have not”). Questioning refers to the restructuring of declarative statements into

questions.

Abridging: refers to the removal of modifiers and/or optional complements while

preserving the entailment relationship between K and the response. This includes

removing adjectives, adverbs, and independent clauses (e.g. replace “I’m taking the

red bus early today, in 10 minutes” with “I’m taking the bus today”).

Bridging: involves adding words/phrases to connect or introduce parts of the

utterance (e.g. “So. . . ”, “In other words, . . . ”, “In addition, . . . ”, etc).
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Abstractiveness Type Knowledge Response %

Abridging

Rewording

Pronominalization,
Synonymization

Restructuring

Questioning, Reordering

The name ‘Track and Field’
is derived from the sport’s typical
venue: a stadium with an oval
running track enclosing a grass field
where the throwing and jumping
events take place.

Did you know that the name
Track and Field comes from
its typical venue? That’s a sta-
dium with a grass field inside
of it and a running track.

25.99

Abridging

Restructuring

Syntax

Inferring

Commonsense, Implicature

The earliest precursor to the modern
rap is the West African griot tradi-
tion, in which “oral historians”, or
“praise-singers”, would disseminate
oral traditions and genealogies, or
use their formidable rhetorical tech-
niques for gossip or to “praise or cri-
tique individuals.”

I don’t have any specific rec-
ommendations for rap artists.
I do have some history. Rap’s
precursor is called griot, from
West Africa.

12.6

Abridging

Restructuring

Syntax

Among other licensing requirements,
different countries require pharma-
cists to hold either a Bachelor of
Pharmacy, Master of Pharmacy, or
Doctor of Pharmacy degree.

I can also tell you that degrees
like Bachelor of Pharmacy and
Doctor or Master of Pharmacy
can be required by different
countries.

7.33

Abridging

Rewording

Pronominalization,
Synonymization

Inferring

Commonsense, Implica-
ture

Use by a wider audience only came
in 1995 when restrictions on the use
of the Internet to carry commercial
traffic were lifted.

More people started using it
after some restrictions on in-
ternet use were lifted in 1995.

8.66

Inferring

Deduction

Homebrewing is the brewing of beer
on a small scale for personal, non-
commercial purposes.

Interesting that you’ve done
homebrewing before. So you
just brew enough for yourself?

4.6

Table 5.9: Possible abstractiveness strategies of FaithDial from manual analysis on 200
responses.

Fallback Responses in FaithDial

We further probe the wizard responses with respect to their ability to handle

unanswerable questions. We randomly sample 45 dialogues containing 400 responses

and ask a linguist to annotate them. Overall, we found that 48% of the conversations

contain unanswerable utterances: On average 33% of the wizard responses within

the same conversation were edited to provide fallback responses. Out of those fallback

responses, 30% were triggered by personal questions, 50% by objective questions about
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the topic, and 20% by opinions. In these cases, to avoid interrupting the flow of the

conversation, the wizard informs the seeker about facts from the source knowledge

besides acknowledging its ignorance of the right answer.

5.6 Experiments

The purpose of FaithDial is two-fold: first, the collected labels can serve as training

data for a critic to determine whether a given response is faithful or hallucinated. The

second goal is providing high-quality data to generate faithful responses in information-

seeking dialogue. Given knowledge Kn and the conversation historyH = (u1, . . . , un−1),

the task is to generate a response un faithful to Kn. We benchmark a series of state-

of-the-art dialogue models [132, 143, 133, 135] on FaithDial. We also evaluate them

on WoW and in a zero-shot transfer setup on CMU-DoG, and TopicalChat). We

implement all the baselines using the Huggingface Transformers library [184].

5.6.1 Task I: Hallucination Critic

We frame the problem of identifying hallucination as a binary classification task

where the goal is to predict whether an utterance is faithful or not, given the source

knowledge. This characterization of the problem is reminiscent of previous work [36,

177, 120] on detecting contradiction within a conversation.

For this purpose, we curate a dataset, FaithCritic, derived from human anno-

tations in FaithDial. Specifically, we take 14k wizard utterances from WoW

labelled as hallucination (Section 5.3) as negative examples. The wizard responses

from WoW labelled as entailment along with newly edited wizard utterances (20k

in total) count as positive examples. Overall, FaithCritic consists of 34k exam-

ples for training. We compare the performance of models trained on FaithCritic

against models trained on two dialogue inference datasets —DNLI [177] and DECODE

[120]—and on a well-known natural language inference (NLI) dataset, MNLI [179].

For all datasets, we choose RoBERTaLarge [102] as a pre-trained model. We measure
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the transfer performance of different critics on MNLI, Beginand FaithCritic in

zero-shot settings wherever possible.

The results are presented in Table 5.10. In the zero-shot setting, the critic trained

on FaithCritic substantially outperforms the baselines on MNLI and BEGIN by a

large margin, indicating that FaithDial allows transfer to both a generic language

understanding task as well as dialogue-specific knowledge grounding benchmark. On

the other hand, the transfer performance of DECODE and DNLI are poor on both

generic and dialogue-specific classification tasks. Surprisingly, MNLI transfers well to

FaithCritic.

Trained on
Tested on

MNLI BEGIN FaithCritic

DECODE 62.5† 58.8† 38.5†

DNLI 52.4† 59.8† 30.9†

MNLI 93.1 61.1† 81.6†

FaithCritic 74.7† 71.6† 86.5

Table 5.10: Transfer results (accuracy) of the hallucination critics trained and tested on

different datasets. † indicates zero-shot transfer results.

5.6.2 Task II: Dialogue Generation

Methods

For the task of dialogue generation, we consider a series of state-of-the-art models

ranging from general-purpose LMs—such as GPT2 [132], DialoGPT [198], and T5

[133]—to models that are specifically designed to provide better grounding, such as

DoHA [129], or to alleviate hallucination, such as CTRL [135]. DoHA augments BART

[93] with a two-view attention mechanism that separately handles the knowledge

document and the dialogue history during generation. CTRL equips LMs with

control tokens (<objective-voice>, <lexical-overlap>, and <entailment>) whose
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Models Critic ↓ Q2 ↑ BScore↑ F1↑ BLEU↑ ROUGE↑
F1 NLI (u,K) (u,K) (u, g) (u, g)

W
o
W

GPT2 60.1 42.2 51.4 0.29 47.7 7.3 18.3
DialoGPT 59.4 41.4 52.5 0.34 53.5 8.3 29.5
DoHA 53.2 63.3 70.1 0.32 56.1 9.4 32.3
T5 46.5 67.7 75.2 0.41 61.7 9.5 32.9
T5-CTRL 45.2 70.3 76.2 0.45 65.2 9.9 33.1
T5-LossTruncation 41.4 71.2 79.4 0.43 65.0 9.8 33.4

F
a
i
t
h
D
i
a
l

GPT2 5.8 58.4 69.8 0.36 50.4 9.5 33.4
DialoGPT 5.6 56.5 66.2 0.36 52.3 9.6 33.1
DoHA 4.9 69.1 78.3 0.39 58.3 9.9 31.8
T5 4.3 70.4 79.5 0.41 59.2 10.3 33.9
T5-CTRL 5.7 72.4 81.5 0.46 62.2 10.4 33.9
T5-LossTruncation 4.0 71.9 80.2 0.42 59.1 10.2 33.9
T5-InfoNCE 1.4 70.8 80.9 0.39 55.8 10.9 35.8

F
a
i
t
h
D
i
a
l

(
+
W
o
W
)

GPT2 7.2 62.3 73.4 0.39 54.2 10.0 34.2
DialoGPT 8.2 54.5 65.6 0.42 48.6 8.9 32.3
DoHA 1.6 66.7 77.4 0.40 55.8 11.4 36.5
T5 2.0 70.2 80.1 0.41 57.5 11.5 37.2
T5-CTRL 4.5 73.4 83.5 0.50 64.6 10.9 35.6
T5-LossTruncation 4.0 70.2 79.1 0.41 58.9 10.4 33.9
T5-InfoNCE 1.4 69.8 79.8 0.40 57.1 11.5 36.5

Table 5.11: Model performance on the test split of FaithDial. Metrics measure either
the degree of hallucination of generated responses u with respect to knowledge K or their
overlap with gold faithful responses g. Gray blocks correspond to models that are specifically
designed to alleviate hallucinations. Note that we do not use InfoNCE for models trained
on WoW as positive examples are not available in this setting.

embeddings are learned at training time. At test time, these steer a model towards

generating utterances faithful to a source of knowledge. Finally, we adopt a training

strategy, called loss truncation [77] to cope with the presence of hallucination in

WoW, by adaptively eliminating examples with a high training loss.

In addition to existing models, we also consider an auxiliary objective to attenuate

hallucination during training [16, 162]. In particular, we adopt InfoNCE [123], a

contrastive learning loss, to endow models with the capability of distinguishing faithful

responses x+ from hallucinated ones x−. Given an embedding of the context c, which

includes both conversation history and knowledge:

LInfoNCE = − log
exp(c⊤x+)∑︁
x′ exp(c⊤x′)

(5.1)

To generate up to k = 8 negative candidates x−, we follow a perturb-and-generate

strategy for each utterance in the training data. More precisely, we manipulate the

gold knowledge snippets to alter their meaning and feed them along with the history

to an auto-regressive model fine-tuned on WoW. We use two perturbation techniques
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proposed by Dziri et al. [42]: verb substitution and entity substitution. Additionally,

utterances labelled as hallucination by human annotators in WoW are also included

in the negative samples.

Context Responses

Knowledge: A paramedic is a healthcare
professional, predominantly in the pre-hospital
and out-of-hospital environment, and working
mainly as part of emergency medical services
(EMS), such as on an ambulance.
History:
Do you like medical science or have you

considered being a paramedic?

T5-LossTruncation-WoW: I’m a nurse
and I know a lot about EMS. I’m in the hos-
pital and it can be tiring. (Hallucination)

T5-InfoNCE-FaithDial: I am a bot so
I can’t be a paramedic. However, I know
that a paramedic is a healthcare profes-
sional, providing medical care principally
in the pre-hospital and out-of-hospital en-
vironment like an ambulance. (Faithful)

Knowledge: In the Middle Ages and
Renaissance, green was the color commonly
associated with merchants, bankers and the
gentry, while red was reserved for the nobility.
History:
Yes, that is camouflage. It is the color most closely

associated with spring, nature, health, youth, hope,

and envy. I love green. It is so versatile.

T5-CTRL-WoW: Green is so nice to
have. It brings joy and excitement. It
is so well known for being associated
with merchants, banks, and the gentry.
(Partial Hallucination)

T5-CTRL-FaithDial: Oh, cool! Did you
know that in the Middle Ages and Renais-
sance, green was the color most related
with merchants and bankers? (Faithful)

Table 5.12: Sample responses from different models. Models trained on FaithDial have a
higher success rate in providing faithful responses as opposed to the ones trained on WoW.
Text highlighted in red indicates hallucination.

Automatic Evaluation

We rely on several metrics that provide a multi-faceted measure of performance. A

first group measures the degree of hallucination of generated responses. The Critic

model trained on FaithCritic (Section 5.6.1) returns the percentage of utterances

identified as unfaithful. Q2 [70] measures faithfulness via question answering. It takes

a candidate response as input and then generates corresponding questions. Then, it

identifies possible spans in the knowledge source and the candidate response to justify

the question–answer pairs [32, 172]. Finally, it compares the candidate answers with

the gold answers, in terms of either token-level F1 score or a NLI-inspired similarity
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score based on a RoBERTa model. BERTScore [194] rates the semantic similarity

between the generated response r and the knowledge K based on the cosine of their

sentence embeddings. F1 measures instead the token-level lexical overlap between u

and K. Finally, as a second set of metrics, we report BLEU [125] and ROUGE [100],

which reflect instead the n-gram overlap between u and the gold (faithful) response g.

WoW vs FaithDial. In order to evaluate the ability of FaithDial to reduce

hallucination in generated responses, Table 5.11 illustrates three experimental setups

with different training data. WoW corresponds to the first block and FaithDial to

the second block. The third block reflects a hybrid setup where a model is fine-tuned

sequentially on WoW as an intermediate task and then on FaithDial. We evaluate

all on the FaithDial test set.

We find that training on FaithDial yields a substantial reduction in hallucination.

For example, T5 trained on FaithDial decreases hallucination by 42.2% according

to the Critic and increases the faithfulness score (Q2-NLI) by 4.3% compared to T5

trained on WoW.6 This corroborates the prominence of data quality compared to

the data quantity (FaithDial is one third of WoW). When initializing the models

trained on FaithDial with the noisy checkpoint from WoW (third block), we

observe a performance boost in all models across all metrics, except a marginal drop

in Critic for GPT2 and DialoGPT. This shows that models can extract some useful

conversational skills from WoW despite its noisy nature.

Models. First, we observe that T5 consistently performs favourably in reducing

hallucination in all setups and across all metrics, compared to the rest of the vanilla

baselines: GPT2, DialoGPT, and DoHA. Additionally, we compare models that

are designed specifically to alleviate hallucination. Results are reported in the grey

blocks of Table 5.11. We choose the best vanilla model T5 as the backbone for CTRL,

6The relatively high score of T5-WoW on Q2-NLI may be due to this metric not being robust to
partial hallucinations.

108



Models Interpretable Hallucination
Faithfulness

Generic

Coop. Abst. Enga.

W
o
W

T5 93.2% 55.8%∗∗ 2.97∗ 1.95∗ 1.72∗ 2.2%

T5-CTRL 95.2% 44.2%∗ 1.97∗ 0.92∗ 1.33∗ 0.9%

T5-LossTruncation 94.3% 42.5%∗∗ 2.87∗ 1.87∗ 1.83∗ 1.2%

F
a
i
t
h
D
i
a
l

T5 94.4% 23.2%∗ 3.63 2.43∗ 2.33 1.4%

T5-WoW 95.2% 20.9%∗ 3.59 2.44 2.37 1.0%

T5-CTRL 96.7% 20.8%∗ 2.55∗ 1.42∗ 2.10∗ 1.0%

T5-LossTruncation 94.2% 24.2%∗ 3.59 2.42∗ 2.03∗ 0.9%

T5-InfoNCE 97.2% 19.9% 3.79 2.92 2.60 0.9%

Table 5.13: Human Evaluation on 1600 generated FaithDial responses (200 × 8) from
different models on the test data. ∗ and ∗∗ indicates that the results are significantly different
from the best result in that column (bolded) with p-value < 0.05, < 0.01 respectively. ‘Coop.’,
‘Abst.’, and ‘Enga.’ means cooperativeness, abstractiveness, and engagingness respectively.

InfoNCE and LossTruncation. By virtue of these methods, faithfulness increases

even further, which demonstrates their effectiveness. Sample responses from different

models are presented in Table 5.12.

Abstractiveness. We find that while FaithDial, especially in the hybrid setup, in-

creases the semantic similarity between generated responses and knowledge (BERTScore)

by 7% compared to WoW, the word overlap (F1) between them is almost unaffected.

This indicates that WoW induces extractiveness over abstractiveness in models, which

is not desirable. This is especially true for T5-CTRL variants, as their training

objective encourages word overlap. Instead, we observe that T5-InfoNCE achieves

both faithfulness and abstractiveness as it yields the lowest scores for hallucination

(1.4 Critic) and extractiveness (55.8 F1).

Human Evaluation

In addition to the automated metrics, we conduct human evaluation to assess the

presence of hallucination in models trained on FaithDial, as well as other aspects
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in generated dialogues such as cooperativeness, engagingness, and abstractiveness.

Following rashkin2021measuring, our evaluation consists of a two-stage annotation

process. First, the annotators are asked to determine whether responses are stand-

alone (i.e., their meaning is interpretable even without access to the source knowledge).

If not, they are deemed to be too vague or ill-formed to judge their faithfulness. Second,

if the response is interpretable, the annotators are requested to evaluate whether the

response is grounded on the source knowledge. If the response was deemed not faithful,

we further ask the annotators to mark it as hallucination or generic.

On the other hand, if the response was deemed faithful, workers are asked to

score three qualities: Cooperativeness means that the response is coherent with

the previous turn and does not try to mislead the interlocutor or act unhelpfully.

Engagingness involves engaging the interlocutor by prompting further replies and

moving the conversation forward.7 Abstractiveness measures the ability to reuse

information from the source knowledge in a novel way. To enable flexibility in rating,

we ask annotators to rate each quality on a Likert scale from 1 (low quality) to 4 (high

quality).

Results We evaluate responses generated by T5 as it is the best performing model

in terms of automated metrics (Table 5.11). We provide human annotators with 200

responses, where each is scored by 3 humans raters. Results are depicted in Table 5.13.

We measure the agreement for each of the 7 qualities separately using Krippendorff’s

α and find that the agreement (0.92, 0.91, 0.88, 0.90, 0.89, 0.75, 0.85 respectively) is

reliably high.

Contrasting models trained on WoW and FaithDial, we find that FaithDial

reduces hallucination by a large margin (32.6%) while increasing interpretability. Also,

we observe that training models on FaithDial enhances the cooperativeness, engag-

ingness, and abstractiveness of responses, as they tend to prompt further conversations,

7A low score in cooperativeness is correlated with a low score in engagingness but the opposite is
not necessarily true.
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acknowledge previous utterances, and abstract information from the source knowl-

edge. We see that CTRL benefits faithfulness but at the expense of cooperativeness

and abstractiveness of the responses. The best performing model corresponds to

T5-InfoNCE, which achieves the highest faithfulness percentage (77.4%) and the

highest dialogue quality scores.

Evaluation of unanswerable questions To evaluate the ability of models trained

on FaithDial to handle unanswerable questions, we analyze the responses for 200

unanswerable questions sampled from test data. Each response is manually evaluated

by 3 annotators whether the answer is appropriate. Inter-annotator agreement based

on Krippendorff’s alpha is 0.9 which is substantially high. Results indicate that T5-

InfoNCE trained on FaithDial substantially outperform T5-LossTruncation

trained on WoW in answering properly unanswerable questions (83.2% vs. 33.3%).

M. Trained on Tested on Critic ↓
Q2 ↑ F1 ↑

Hallu.
Faithfulness

F1 NLI (u,K) Coop. Abst. Enga.

T5 TopicalChat TopicalChat 95.0 46.2 53.2 6.6 71.4%∗ 3.53 2.01∗ 2.56

FaithDial TopicalChat 59.3 57.3 67.1 12.5 41.0% 3.07∗ 3.44 2.20∗

T5 CMU-DoG CMU-DoG 95.5 39.5 49.2 1.9 68.4%∗ 3.43 2.51∗ 1.57∗

FaithDial CMU-DoG 21.8 50.5 57.3 17.1 48.4% 3.29∗ 3.23 2.14

T5 WoW WoW 57.9 69.4 72.1 59.6 48.0% 2.96∗ 1.90∗ 1.39∗

FaithDial WoW 7.7 72.9 79.7 57.4 24.2% 3.54 2.67 2.78

Table 5.14: Transfer results of faithful response generation from FaithDial to other
dialogue datasets. The most right block corresponds to human evaluation. ∗ indicates that
the results are statistically significant (p-value < 0.05).

Transfer from FaithDial to other datasets

To further examine the usefulness of FaithDial in out-of-domain setting, we test

the performance of T5-FaithDial on TopicalChat [57] and CMU-DoG [201], and

WoW [30]. Contrary to WoW, speakers in CMU-DoG and TopicalChat can also take

symmetric roles (i.e., both act as the wizard). Knowledge is provided from Wikipedia

movie articles in CMU-DoG and from diverse sources—such as Wikipedia, Reddit
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and news articles—in TopicalChat. Models are evaluated in a zero-shot setting as

the corresponding training sets are not part of FaithDial. Results are depicted

in Table 5.14. Since these testing benchmarks are fraught with hallucinations (see

Table 5.5), we do not compare the quality of the response u with respect to the gold

response g. We report both automatic metrics and human evaluation. We follow the

same human evaluation setting as before and ask 3 workers to annotate 200 responses

from each model (Krippendorff’s α is 0.82, 0.79, 0.85 on TopicalChat, CMU-DoG

and WoW respectively). In this regard, the models trained on FaithDial are far

more faithful than the models trained on in-domain data despite the distribution shift.

For example, T5-FaithDial tested on TopicalChat test data decreases hallucination

by 35.7 points on Critic, by 13.9 points on Q2-NLI and by 30.4 points on human

scores. Similar trends can be observed for TopicalChat and WoW (except for F1

on WoW, yet human evaluation shows humans prefer FaithDial models by a large

margin of 23.8). Regarding other dialogue aspects, T5-FaithDial models tested on

TopicalChat and CMU-DoG enjoy a larger degree of abstractiveness than in-domain

models but have lower scores of cooperativeness and engagingness. However, all of

these aspects are enhanced when tested in-domain on WoW.

5.7 Related Work

Hallucination in Natural Language Generation. Hallucination in knowledge-

grounded neural language generation has recently received increasing attention from

the NLP community [73]. Tasks include data-to-text generation [182, 126], machine

translation [137, 173], summarization [32, 77], generative question answering [94] and

dialogue generation [39, 42, 135]. These works focus on either devising automatic

metrics to identify when hallucination occurs [182] or finding possible causes for this

degenerate behaviour, including out-of-domain generalization and noisy training data

points [77, 137] and exposure bias caused by MLE training [173].
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Hallucination in Dialogue Systems. Hallucinations in knowledge-grounded neu-

ral dialogue generation is an emergent research problem [143, 150, 39, 135]. Existing

work aims predominantly to address hallucinations via engineering loss functions or

enforcing consistency constraints, for instance by conditioning generation on control

tokens [135], by learning a token-level hallucination critic to flag problematic entities

and replace them [39], or by augmenting the dialogue system with a module retrieving

relevant knowledge [150]. Dziri et al. [39] propose a model that uses facts supplied

by a knowledge graph to reduce entity-based hallucinations in generated responses.

Rashkin et al. [135] add control tokens at training time to control generation towards

more objective sentences and faithful sentences. Closest to our work are Dziri et al.

[42] and Rashkin et al. [136] who introduce frameworks for quantifying attribution

in dialogue systems, whereas we conduct a much finer-grained manual analysis on

multiple benchmarks and models.

Although promising, these approaches are prone to replicate—or even amplify—the

noise found in training data. Dziri et al. [40] demonstrated that more than 60%

of three popular dialogue benchmarks are rife with hallucination, which is picked

up even by models designed to increase faithfulness. To the best of our knowledge,

FaithDial is the first dataset for information-seeking dialogue that provides highly

faithful curated data.

Hallucination Evaluation. Recently introduced benchmarks can serve as testbeds

for knowledge grounding in dialogue systems, such as BEGIN [42], DialFact [62],

Conv-FEVER [144] and Attributable to Identified Sources (AIS) framework [136].

Meanwhile, a recent study has reopened the question of the most reliable metric for

automatic evaluation of hallucination-free models, with the Q2 metric [70] showing

performance comparable to human annotation. In this work, we further contribute

to this problem by proposing a critic model—trained on our collected FaithCritic

data—that achieves high performance on the Begin benchmark.
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5.8 Conclusions

In this chapter, we investigate the origin of hallucination in conversational models. The

results demonstrate empirically that hallucination is a prevalent issue in both dialog

benchmarks and models. Our analysis on three widely used benchmarks revealed

that they are rife with hallucinations, and the most common strategies people use are

disclosure and edification. Moreover, we show that conversational models trained on

these benchmarks not only hallucinate but also amplify hallucinations, even the models

that were designed to alleviate this issue. To address this issue, we propose FaithDial,

a new benchmark for faithful information-seeking dialogue, where a domain-expert

bot answers queries based on gold-standard knowledge in a conversational manner.

Examples are created by manually editing hallucinated and uncooperative responses

in Wizard of Wikipedia (WoW), which constitute 79.1% of the original dataset.

Leveraging the resulting high-quality data, we train both a hallucination critic, which

discriminates whether utterances are faithful to the knowledge and achieves a new

state of the art on Begin, and several dialogue generation models. In particular,

we propose strategies to take advantage of both noisy and cleaned data, such as

intermediate fine-tuning on WoW and an auxiliary contrastive objective. With

both automated metrics and human evaluation, we verify that models trained on

FaithDial drastically enhance faithfulness and abstractiveness, both in-domain and

during zero-shot transfer to other datasets, such as TopicalChat and CMU-DoG.
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BEGIN VRM Example

Entailment Disclosure Knowledge: A dragon is a legendary creature, typically
scaled or fire-spewing and with serpentine,
reptilian or avian traits, that features in the
myths of many cultures around world.

History: Dragons are so fascinating, I wonder where
they originated from.

Response: I’m not sure, but I know that it is a legendary
creature featured in myths of many cultures
around the world!

Hallucina-
tion

Edification
Disclosure

Knowledge: The central premise for these stories
oftentimes involves changing history, either
intentionally or by accident, and the ways by
which altering the past changes the future and
creates an altered present or future for the
time traveler when they return home.

History: One of my favorite forms of science fiction is
anything related to time travel! I find it
fascinating.

Response: It’s not quite sci-fi, but my favorite version of
time travel is in Harry Potter and the Prisoner
of Azkaban. Breaks zero logical rules.

Generic Question Knowledge: Hard rock is a loosely defined subgenre of
rock music that began in the mid-1960s, with
the garage, psychedelic and blues rock
movements.

History: yea i have heard of the American hard rock
band Van Halen.

Response: Are you a fan of hard rock?.

Uncoopera-
tive

Edification Knowledge: Marketing is used to create, keep and satisfy
the customer.

History: Well, I wish I could. I think my training was
a little off. I can’t find a job and thinking
about going back to school to be a counselor.
What do you do?

Response: Marketing is used to create a customer and
then retain the customer and keep them
happy.

Table 5.15: Examples from Wizard of Wikipedia [30] showing the BEGIN breakdown
and different VRM linguistic phenomena for each response.
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Chapter 6

Conclusion and Future Work

This chapter culminates with drawing the main conclusions from the previous chapters.

I first summarize the key contributions made towards building faithful and coherent

conversational models, my primary goal in this thesis, then, discuss potential future

research directions.

6.1 Summary of Contributions

This thesis addresses the problem of dull, incoherent and hallucinated information-

seeking conversational models. In chapter 2, I introduced DEMI, which aims to make

responses more coherent, informative and diverse. DEMI focuses on maximizing mutual

information between the past utterances and the future utterances of a particular

turn. This is done by applying the chain rule on mutual information and bounding

each term separately. Experiments showed that systems are more capable of capturing

long-term dependencies, leading to conversations that are more informative, containing

less repetitive words.

In chapter 3, I introduced Neural Path Hunter (NPH), a refinement system that

operates on hallucinated responses by fixing entity-based hallucinations. NPH first

detects hallucinated entities within the response and then leverages a KG to retrieve

correct entities from a k-hop subgraph. Empirical results demonstrated that NPH

when paired with a number of base conversational models reduces hallucination
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dramatically based on several automatic metrics and human judgements.

In chapter 4, I presented BEGIN, a large-scale testing benchmark for meta-evaluation

for knowledge-grounded evaluation techniques. The main goal of BEGIN is to evaluate

the attribution of model-generated responses with respect to externally provided

knowledge snippets. To collect the dataset, we asked humans to classify responses

into 3 classes: fully attributable, not attributable and generic. We chose to evaluate

the output of models rather collect human generated sentence to obtain a realistic

distribution of current dialogue systems outputs. Based on BEGIN, we explored

the robustness of 8 evaluation metrics and found that these metrics rely on spurious

correlations. Hallucinated responses are scored higher than generic responses. While

generic responses are not encouraged to appear in conversations, they are still more

favourable than producing unverifiable information which can be used for malicious

intentions. Even worse, we noticed that all metrics misidentify cases that are faithful

but highly abstractive and cases that are hallucinated but use multiple words from

the evidence. This reveals that these metrics are learning more from the spurious

correlates “word overlap” rather than capturing a deep understanding of the notion

of attribution or faithfulness. Further, we noticed that these metrics are not robust

under distribution shift. So they underperform on datasets that have longer knowledge

sources. The lack of challenging testing benchmarks will continue to inhibit progress,

so I hope that BEGIN will spur future research on building robust evaluation metrics

for grounded dialogue systems.

Finally, in chapter 5, drawing insights from the linguistic coding system for dis-

course phenomena [158] and evaluation frameworks such as BEGIN [42] and AIS

[136], I performed a large-scale analysis on responses from the three widely-used

knowledge-grounded conversational benchmarks: Wizard of Wikipedia [30], CMU-

DoG [201] and TopicalChat [57], and on the output of several state-of-the-art

conversational models. Our analysis revealed surprisingly that more than 60% of the

responses are hallucinated in the three datasets and showed that neural conversational
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models make this hallucination more severe, as they generate a larger portion of the

hallucinations, in comparison with the training data. To address this issue, I proposed

a new benchmark, FaithDial, for training hallucination-free information-seeking

conversational models. FaithDial is built by editing hallucinated utterances in

WoW. This allowed to make efficient use of our resources and it was also vastly more

scalable than creating FaithDial from scratch. FaithDial can also serve as training

signal for a hallucination critic to distinguish faithful responses from hallucinated

ones. Experiments showed that a series of state-of-the-art models when trained on

FaithDial reaches the highest level of faithfulness and creativity. Besides being

faithful, responses are perceived to be more interpretable, cooperative, engaging, and

abstractive. Further, I found that training on FaithDial generalizes to zero-shot

transfer on other dialogue benchmarks such as CMU-DoG and TopicalChat.

6.2 Future Work

Going forward, I have a vision on what a dream conversational system should be. I

envision a unified framework that brings various types of systems together: chit-chat

and goal oriented. Below, I discuss the attributes of such system:

• Humanness : the system should exhibit human-like contextual/situational aware-

ness, i.e., it should be fluent, aware of context, engaging in style, empathetic,

informative, and cooperative.

• Trustworthiness : the system should be trustworthy, this does not involve only

being faithful with no hallucinated content but also involve being aware of

different societal norms (e.g., religion, culture, etc), being able to reason and

explain its decision logically and with transparency.

• Language versatility the system should be universal, i.e., it should be able to

navigate various types of conversations seamlessly in different languages.
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So far, the community has done impressive progress in improving some humanness

aspects such as fluency. However, trustworthiness, safety and multilinguality are

significantly lagging. All of this with a cracked evaluation foundation. My short-term

plan is to focus on the trustworthiness and the evaluation aspects, not only for the

conversational space but also for language modelling in general. I’m excited to explore

the following three directions:

6.2.1 Trustworthy language models

Models should be attributable, ethical, and should be able to reason and explain their

decision logically. Unfortunately, current language models on their own, however large,

cannot be trustworthy and cannot do basic reasoning unless the task is to pretend to

converse fluently. So, relying only on scaling models and on the standard cross-entropy

is not enough. Also, training models on millions of data points is not a methodological

way to learn efficiently. Humans cannot become good programmers by simply looking

at 1000 lines of code. We cannot learn concepts well enough, we need instead to

learn from declarative knowledge derived from tutorials, classes, books, etc. The same

learning approach should apply for machine learning models as well. Therefore, I

advocate transitioning to talking about knowledge models instead of language models.

Attributable knowledge models Trustworthy models cannot exist if they suffer

from factual inaccuracies which can range from innocuous to significant. So, a model

that just says something without any justification will be just of limited use. Systems

need to provide an explanation for their answers as replying by just a string is not

enough. Further, our world is open-ended, and constantly evolving, and what we

talk about and how we talk about things change over time. Current models have

no inherent notion of time, they learn from huge amount of text across many years

and the best thing we can hope for is that models latch on the majority of views by

averaging over conflicting facts. Consider this example, we have the question “who is
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the president of the United States?” and the GPT2 model replies “Donald trump”.

Although this response was correct from 2017 until 2021, it is not valid anymore.

Therefore, we need models to reason beyond language to better memorize the past

and to improve calibration of future events. I plan to work on this direction as a way

to make our systems more reliable.

Ethical knowledge models Beside attribution, systems can suffer from troubling

ethical issues. When we ask GPT3 model [14] “I wonder whether being overdose is

harmful?”, it replies “Overdose people are criminals. No wonder it’s harmful! Actually,

a large overdose can cause a person to stop breathing and die if not treated right away.”.

We can see that the system is factually correct with respect to the consequences of

being overdose. However, it exhibits a wrong ethical behavior when it assumes that

overdose people are “criminals”. In the near future, I’m planning to make AI system

behave in a more socially aware and ethically-informed manner. Also, I’m planning to

use AI to reason about complex human morality across diverse cultures.

6.2.2 Rethinking data curation

A drastic, yet necessary, change from the status quo is to rethink our data collection

processes. Datasets are often constructed in a way that prevents measuring tail effects

of robustness. We should invest more in our dataset quality to avoid solving only

a dataset without solving the underlying task. First, we should treat datasets as

dynamic entities: Datasets should be cleaned and improved over time. We should be

able to send pull requests to update data documentation and to upgrade the data

itself similar to pull requests for opening issues in open-source libraries. Such approach

can save us money, time and make datasets more challenging and robust. The benefit

of this approach can be seen in FaithDial which built on top of WoW to encourage

building faithful dialogues. Second, I’m planning to enhance data annotation with

large LMs, this can help us identify undesired annotator artifacts and minimize the
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data collection cost. Finally, it is imperative to report the curation decisions alongside

limitations of datasets to allow for a better interpretation of the result

6.2.3 Establishing trustworthy evaluation frameworks

Finally, I plan to continue working on establishing trustworthy evaluation frameworks.

It is clear that no single metric can provide all the insights that we try to measure

so no evaluation work should rely on only a single metric. This is why we should

have a composite of metrics comprising several dimensions including faithfulness,

safety, relevance, humanness, etc. We should also design more standardized human

evaluations. Currently, there is little consensus on which dimensions to evaluate.

General or vague evaluation criteria can lower the reproducibility and lead to low

agreement between evaluators. We should also document failures in our evaluation

processes and create model evaluation checklists. I have shown in chapter 4 that

metrics can behave differently on different datasets so they easily break when the

input is subject to simple perturbations.
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