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Abstract 

The rapid increase in global water and energy demand due to industrialization and population 

growth is a pressing challenge humankind faces today. Recent estimates indicate that due to 

population growth and reduction of water supplies, 40% of the global population is struggling with 

water scarcity, and a 20% increase is predicted for this number by 2025. Furthermore, The global 

energy demand expanded from 5000 million tons of oil equivalent in 1971 to 11700 million tons 

of oil equivalent in 2010, and it is predicted that it will increase up to 33% by 2030. The exponential 

increase in energy demand has exacerbated the greenhouse gas emissions as fossil fuels are mainly 

used to supply the required energy. The deployment of renewable energy sources, such as solar 

and wind power, to increase energy supply and diminish the adverse environmental effects of fossil 

fuels is considered an efficient solution to these problems. Among renewable energy sources, the 

exploitation of solar power generation has received significant attention and is considered one of 

the most promising options. However, the intermittent nature of photovoltaic (PV) power brings a 

huge challenge to PV-powered microgrids and desalination systems. Hence, it is essential to design 

advanced control techniques capable of coping with this challenge to optimize the performance of 

PV-driven desalination systems in terms of water production and energy consumption. 

This thesis proposes two artificial intelligence-powered energy management systems for a hybrid 

grid-connected PV-reverse osmosis-pressure retarded osmosis desalination plant. In the first part 

of the thesis, an intelligent energy management system (IEMS) is developed to maximize the total 

water production and contaminant removal efficiency while keeping the grid’s supplied power as 

low as possible. To promote the performance of the IEMS, the prediction of PV solar power is 

performed by three deep neural networks based on convolutional neural networks and long short-
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term memory neural networks. These networks are designed to perform 5-hour-ahead PV power 

forecasting, and the model with the smallest error is selected. The IEMS employs the particle 

swarm optimization (PSO) algorithm to find the optimum solutions of the system for each time 

step. Four performance indices are defined through which the IEMS is evaluated. The proposed 

technique results are compared with two benchmark methods, one of which is similar to the IEMS; 

however, it does not incorporate the PV power predictions. The superiority of the IEMS over the 

first benchmark is demonstrated by studying three scenarios: two successive sunny days, two 

successive cloudy days, and 10 days of operation. Moreover, the simulations are executed for 

different forecast horizons to investigate the effects of this parameter on the optimization results. 

The impacts of the best-found forecaster errors are also explored by repeating the simulations with 

the actual PV power data. Finally, the optimization is performed by two other stochastic 

algorithms: grey wolf optimizer (GWO) and genetic algorithm (GA). It is found that PSO 

outperforms GWO and GA for solving this optimization problem. 

The second part of this thesis proposes a novel deep reinforcement learning-accelerated energy 

management system for the desalination plant mentioned above. The energy management problem 

is formulated as a partially observable Markov decision process, and the soft actor-critic (SAC) 

algorithm is employed as the core of the energy management system. We introduce 1-dimensional 

convolutional neural networks (1-D CNNs) to the actor, critic, and value function networks of the 

SAC algorithm to address the partial observability dilemma involved in PV-powered energy 

systems. The superiority of the proposed CNN-SAC model is verified by comparing its learning 

performance and simulation results with those of four state-of-the-art deep reinforcement learning 

algorithms: Deep deterministic policy gradient (DDPG), proximal policy optimization (PPO), twin 

delayed DDPG (TD3), and vanilla SAC. The results show that the CNN-SAC model outperforms 
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the benchmark methods in terms of effective solar energy exploitation and power scheduling. By 

conducting ablation studies, the critical contribution of the introduced 1-D CNN is demonstrated, 

and we highlight the significance of providing historical PV data for substantial performance 

enhancement. The average and standard deviation of evaluation scores obtained during the last 

stages of training reveal that the 1-D CNN significantly improves the final performance and 

stability of the SAC algorithm.  
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1     Introduction 

 

1.1 Motivation 

While nearly 70% of Earth’s surface is covered by water, only a small fraction of it is freshwater. 

The rapid industrialization, urbanization, and population growth have also led to an increase in 

freshwater consumption, which made the situation even more severe [1]–[3]. The global annual 

water demand is approximately 4600 billion m3 [4], and despite the availability of natural water 

resources such as rainfall, 40% of the global population is facing water shortage, which will 

increase up to 60% by 2025 [5]. Consequently, to cope with the water scarcity dilemma, the only 

viable options are seawater desalination and treatment, recycle and reuse of wastewater. The water 

desalination processes can be classified into two primary types: membrane processes and thermal 

processes. In the membrane processes, such as electro-dialysis (ED) and reverse osmosis (RO), a 

permselective membrane is used to remove contaminants from water while in thermal processes, 

such as multi-effect distillation, vapor compression distillation, and multi-stage flash distillation, 

phase change plays the main role in clean water production [2]. Desalination processes consume 

75.2 TWh annually, which is roughly 0.4% of global electricity usage. Moreover, the desalination 

techniques powered by fossil fuels produce 76 million tons of CO2 per year, and it is estimated to 

reach 218 million tons per year by 2040 [6]. Hence, in addition to exhibiting appropriate 

performance in terms of water recovery and water quality, the desalination methods must be energy 

and cost-efficient in the long-run, while minimizing the CO2 footprint. 

Nowadays, RO dominates the water desalination market as it uses significantly lower energy than 

rival distillation processes [2], [7], [8]. The total specific energy consumption (considering both 

electrical and thermal energy utilization) of multi-stage flash distillation, multi-effect distillation, 

and thermal vapor compression are 19.58-27.25 kWh/m3, 14.45-21.35 kWh/m3, and 16.26 

kWh/m3, respectively, whereas RO consumes 5 kWh/m3 on average for seawater desalination [9]. 

In this process, the driving force is the transmembrane pressure, provided by a high-pressure pump 
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to overcome the osmotic pressure difference across the membrane [10]. RO is capable of treating 

a vast range of solute concentrations in water at a reasonable cost compared to other techniques. It 

can also provide higher water recovery rates than multi-effect and multi-stage flash distillation 

[11]. Despite these advantages, the RO process, similar to other desalination processes, suffers 

from environmental drawbacks such as brine discharge and greenhouse gas (GHG) emissions. 

While RO has lower emissions than thermal-based desalination methods [6], its emission is still 

roughly 1.8 times higher than a typical ED seawater desalination plant [12]. The reason lies behind 

the higher applied pressure in RO as compared to ED that leads to more GHG emissions due to 

increased power consumption. The carbon footprint for RO seawater desalination plants was 

reported to be in the range of 0.4-6.7 kg CO2eq/m3 [13]. The highest and lowest carbon footprints 

are associated with RO plants powering with fossil fuels (e.g., coal, oil, and natural gas) and 

renewable energies (e.g., wind and geothermal), respectively. Hence, it is of great significance to 

replace conventional fossil fuels with clean energy sources to reduce their impact on the 

environment. 

The integration of photovoltaic (PV) systems with RO is one of the most common hybridization 

methods that is currently used when it comes to powering the RO systems by renewable energy 

sources [14]–[18]. The PV-RO systems are considered ideal hybrid systems for coastal areas that 

do not have access to grid electricity [19]. The intermittent nature of PV power, however, brings a 

huge challenge to PV-powered desalination systems, which makes the effective exploitation of 

solar power rather complex and severely impacts energy efficiency. The energy nexus between 

different domains such as water is crucial for enhancing the sustainability of different sectors and 

minimizing GHG emissions [20]. Energy and water are two indispensable elements of modern 

economics [21]. The provision of clean water and sanitation requires access to modern energy 

systems. To achieve the access-to-water-for-all goal, more energy will be needed to treat saline 

and brackish water, and a shift towards energy-intensive water projects is expected in the next 25 

years [22]. Hence, these challenges and goals necessitate the design of advanced methods and 

algorithms to optimize the performance of PV-driven RO plants and effectively utilize solar 

energy. 
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1.2 Thesis Objectives 

Microgrids can pave the way for the effective integration of renewable energy sources into the 

power grid, offering various advantages such as sustainability, flexibility, reliability, and 

improvement of efficiency [23], [24]. They can be regarded as small-scale and self-supporting 

networks that can be powered using on-site generation sources and operate either autonomously 

or in grid-connected mode [25]. In microgrids, energy management systems play a critical role in 

balancing power generation and consumption between distributed energy sources, loads, and 

energy storage devices to promote reliability and sustainability [26], [27]. As discussed in the 

previous section, the exploitation of solar energy for powering RO desalination systems has 

received significant attention. However, their intermittent nature poses a difficult challenge to the 

energy management problem of these systems and microgrids. Incorporating energy storage 

systems into PV-driven microgrids can mitigate the impacts of power fluctuations [28]. Despite 

that, the efficiency of microgrids comprised of energy storage devices is highly vulnerable to the 

effectiveness of the battery scheduling process performed by the energy management systems [29]. 

To cope with the challenges mentioned above, this thesis investigates the optimum energy 

management of a grid-connected PV-powered hybrid desalination plant comprised of RO and 

pressure retarded osmosis (PRO) using artificial intelligence (AI) algorithms. PRO is a green 

technology to harvest electricity from the salinity gradient between two water sources which has 

demonstrated less periodic behavior compared to other renewable energy sources [30], [31]. Also, 

the PRO system in the RO-PRO configuration can dilute the RO concentrate and reduce the 

environmental impacts of brine discharge. To solve the energy management problem of the hybrid 

PV-RO-PRO desalination system, two methods based on deep learning techniques and deep 

reinforcement learning algorithms are proposed. The primary goal of these models is to solve a 

multi-objective optimization problem consisting of three objectives: minimization of supplied 

power from the external grid, maximization of water production, and maximization of contaminant 

removal efficiency. The minimization of imported power from the main grid improves the hybrid 

desalination system's independent performance, and maximization of water production and 

contaminant removal efficiency ensures the high quality and amount of potable water produced 

using the RO system. 
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1.3 Thesis Outline 

According to the goals and objectives of the thesis, the remainder of this dissertation is organized 

as follows. In Chapter 2, the essential preliminary concepts and methods regarding RO, PRO, deep 

learning, and reinforcement learning are provided. Also, a literature review on the energy 

management of water desalination systems is presented to point out the research gaps and 

shortcomings of previous studies. In Chapter 3, the first energy management system we propose 

based on deep learning techniques and metaheuristic optimization algorithms for the PV-RO-PRO 

system is described. The simulations results of this model are compared with different benchmark 

methods to evaluate its effectiveness. Chapter 4 details the deep reinforcement learning algorithm 

we develop to solve the control problem of the hybrid desalination system. The performance of 

this model is compared with state-of-the-art deep reinforcement learning algorithms to verify its 

superiority. Finally, in Chapter 5, key findings and results are highlighted to conclude the thesis 

and provide future research directions. 
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2     Background and Literature Review 

 

2.1 Background 

2.1.1 Reverse Osmosis 

RO is a pressure-driven process that separates dissolved contaminants from water. The exerted 

pressure on the saline water must dominate the osmotic pressure so that water passes through the 

membrane to the permeate side. The RO membrane modules are divided into three types: hollow 

fiber, spiral-wound modules, and plate-and-frame [32]. Spiral-wound membrane modules are 

utilized in the present study as they provide a higher packing density and lower operational and 

capital costs compared to other modules [32]. For the mathematical formulation of RO spiral-

wound modules, a model proposed by Sundaramoorthy et al. is used [33]. Sundaramoorthy et al. 

considered the spatial variations of pressure, mass transfer coefficient, flow rate, and solute 

concentration in the feed channel. More importantly, the severe effect of concentration polarization 

on permeation properties was not neglected in their study. The concentration polarization 

phenomenon occurs due to the accumulation of solute on the membrane surface, resulting in the 

concentration difference between the solution adjacent to the membrane surface and the bulk 

solution that reduces both water flux and solute rejection [33]. The proposed model is based on 

the solution-diffusion mechanism through which water and solute flux can be calculated as follows 

[33]: 

 𝐽𝑤 = 𝐴𝑤(𝛥𝑃 − 𝛥𝜋)    (2.1) 

 𝐽𝑠 = 𝐵(𝐶𝑚 − 𝐶𝑝) (2.2) 

where 𝐽𝑤 is the water flux, 𝐽𝑠 is the solute flux, 𝐴𝑤 is the membrane permeability, 𝐵 is the solute 

permeability, Δ𝑃 is the transmembrane pressure, Δ𝜋 is the osmotic pressure difference across the 

membrane, 𝐶𝑚 is the solute concentration on the membrane surface at the feed side, and 𝐶𝑝 is the 

solute concentration in the permeate. The osmotic pressure can be estimated through Van't Hoff 

equation: 
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 𝜋 = 𝑖𝐶𝑅𝑇    (2.3) 

where 𝑖 is the Van't Hoff factor, 𝐶 is the concentration, 𝑅 is the universal gas constant, and 𝑇 is 

the temperature. Also, by writing the mass balance for the solute on a control volume surrounding 

the membrane thickness, the concentration polarization modulus is derived as follows [34]: 

 𝐶𝑚 − 𝐶𝑝

𝐶𝑓 − 𝐶𝑝
= exp (

𝐽𝑤
𝑘
) (2.4) 

where 𝐶𝑓 is the bulk concentration of the feed solution and 𝑘 is the mass transfer coefficient. Based 

on Equation 2.1, the permeate flux is a function of the pressure difference between the feed and 

permeate solutions, and thus, the change in the feed-side pressure along the membrane surface 

must be found to calculate the local permeate flux. For this purpose, Darcy's law is utilized to 

calculate the pressure loss inside the feed channel [33]: 

 𝑑𝑃𝑓(𝑥)

𝑑𝑥
= −

𝜇

𝑘𝑚𝐴𝑐
𝑄 = −𝑓𝑄 (2.5) 

where 𝑃𝑓 is the pressure inside the feed channel, 𝜇 is the dynamic viscosity of the fluid, 𝑘𝑚 is the 

permeability of the medium, 𝐴𝑐 is the cross-sectional area of the channel, 𝑄 is the volumetric flow 

rate inside the feed channel, and 𝑓 is the friction parameter of the feed channel, which is found 

experimentally. Obtaining the solute concentration in the permeate, the rejection percentage is 

calculated by the following equation: 

 𝑅 = (1 −
𝐶𝑝

𝐶𝑓𝑖

) × 100 (2.6) 

where 𝐶𝑓𝑖
 is the solute concentration of the feed solution at the inlet. 

The proposed model by Sundaramoorthy et al. [33] solves a system of equations to calculate flow 

rate and concentration of permeate as well as pressure, concentration, and flow rate of retentate, 

when the properties of the RO membrane (e.g., membrane dimensions, water, and solute 

permeability, and feed channel friction parameter), and flow rate, pressure, and concentration of 

feed solution at the inlet are given. 

2.1.2 Pressure Retarded Osmosis 

PRO is a membrane process capable of extracting the salinity gradient energy as one of the 

renewable energy sources [2]. The main purpose of PRO is to produce power through a salinity 
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gradient between a high-concentration solution (draw solution) and a low-concentration solution 

(feed solution). To evaluate the performance of a PRO system in terms of energy generation, the 

power density is defined as follows: 

 𝑃𝐷 = 𝐽𝑤Δ𝑃 (2.7) 

where 𝐽𝑤 is the water flux through the membrane, and Δ𝑃 is the transmembrane pressure. 

Similar to RO, different modules exist for PRO that includes hollow fiber, flat sheet, and spiral-

wound modules. The hollow fiber modules demonstrated a better performance regarding power 

density than the flat sheet and spiral-wound membranes [35]. These modules can be operated in 

inner- and outer-selective configurations [36]. In the inner-selective configuration, the draw 

solution is pumped into the lumen side and the feed solution is introduced into the shell, whereas, 

in the outer-selective one, the draw and feed solutions enter the shell and tube, respectively. The 

flow direction in these modules can be co-current or counter-current. The counter-current mode is 

reported to provide a better performance in terms of energy harvesting compared to the co-current 

one [37]. Given that, in this study, a PRO system equipped with hollow fiber modules with an 

inner-selective configuration that operates in the counter-current mode is considered. 

Wan and Chung proposed a mathematical model for inner-selective PRO hollow fiber membranes 

[38]. The primary advantage of this model is that it considers the detrimental impacts of both 

internal concentration polarization (ICP) and reverse solute flux. The following equations are used 

to calculate water and solute fluxes in this model: 

 𝐽𝑤 = 𝐴(𝛥𝜋𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 − 𝛥𝑃) (2.8) 

 
𝐽𝑠 =

𝐵𝑀𝑊  

𝑖𝑅𝑇 
[ 
𝐽𝑤
𝐴

+ Δ𝑃] 
(2.9) 

where 𝐴 is the membrane permeability, Δ𝜋𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is the effective osmotic pressure difference, 𝐵 

is the salt permeability, and 𝑀𝑊 is the molecular weight of the solute. The effective osmotic 

pressure difference is calculated as follows: 

 

𝛥𝜋𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝜋𝑑 − 𝜋𝑓 exp (

𝐽𝑤𝑆
𝐷𝐴

) 

1 +
𝐵
𝐽𝑤

[exp (
𝐽𝑤𝑆
𝐷𝐴

) − 1] 
 (2.10) 
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where 𝑆 is the structural parameter of the membrane, and 𝜋𝑑 and 𝜋𝑓 are the osmotic pressure of 

draw and feed solutions, respectively. Since the pressure drop inside the fibers is significant, the 

Hagen–Poiseuille equation is used to account for this [38]: 

 
𝛥𝑃𝑙𝑢𝑚𝑒𝑛 =

128 𝜇 𝑄𝑑 𝐿

𝜋 𝑑𝑖
4  (2.11) 

where 𝑄𝑑 is the flow rate of the draw solution, and 𝐿 and 𝑑𝑖 are the length and inner diameter of 

fibers, respectively. It should be noted that pressure drop inside the shell is neglected. The 

performance of the PRO process can be predicted by solving the equations mentioned above 

through the finite element method to find the pressure and flow rate of the diluted draw solution 

when the pressure, flow rate, and concentration of the draw and feed solutions, as well as 

membrane properties, are given [38]. 

In addition to ICP, external concentration polarization (ECP) can affect the performance of PRO 

membranes. In this phenomenon, the permeation of water from the low-concentration side to the 

high-concentration side dilutes the draw solution close to the active layer of the PRO membrane, 

and consequently, reduces the water flux. To take the impact of  ECP into account, the following 

equation is utilized for the calculation of the effective osmotic pressure [39]: 

 

𝛥𝜋𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
𝜋𝑑 exp(−

𝐽𝑤
𝑘
) − 𝜋𝑓 exp (

𝐽𝑤𝑆
𝐷𝐴

) 

1 +
𝐵
𝐽𝑤

[exp (
𝐽𝑤𝑆
𝐷𝐴

) − exp(−
𝐽𝑤
𝑘
)] 

 (2.12) 

The mass transfer coefficient, 𝑘, in this equation can be calculated by the following empirical 

equation [37]: 

 
𝑆ℎ =  1.62 (𝑅𝑒 𝑆𝑐

𝑑𝑖

𝐿
)
0.33

 (2.13) 

where 𝑆ℎ, 𝑅𝑒, and 𝑆𝑐 are the Sherwood number, Reynolds number, and Schmidt number of the 

lumen and 𝐿 is the fiber length. Figure 2.1 shows the flowchart of the PRO process simulation. 
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Figure 2.1. Flowchart of simulating the PRO process 
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2.1.3 Battery Energy Storage System 

The battery energy storage system enables the proposed energy management systems to efficiently 

schedule the power consumption or production of the hybrid PV-RO-PRO system units. Moreover, 

to improve the lifetime of this device, we restrict the storage of energy and do not allow the 

methods to charge the batteries beyond 80% of their capacity or reduce the energy level by less 

than 20%. This constraint is considered since operating at charge levels close to the maximum or 

minimum state of charge (SOC) leads to severe degradation of batteries [40]. The stored energy in 

the battery system at each time slot   can be calculated as follows [41]: 

 𝐸𝐵
(𝑡) = {

𝐸𝐵
(𝑡−1) −

1

𝜂𝐷
𝑃𝐵
(𝑡−1)Δ , 𝑃𝐵

(𝑡−1) > 0

𝐸𝐵
(𝑡−1) − 𝜂𝐶𝑃𝐵

(𝑡−1)Δ , 𝑃𝐵
(𝑡−1) ≤ 0

 (2.14) 

where 𝐸𝐵 is the stored energy in the battery system, 𝜂𝐷 is the discharging efficiency, 𝑃𝐵 is the 

power of the battery, Δ  is the time interval (one hour in this study), and 𝜂𝐶  is the charging 

efficiency. As it can be observed in Equation 2.14, positive values of 𝑃𝐵 indicate that batteries are 

being discharged, and negative ones show that the battery system operates in the charging mode. 

2.1.4 Variational Mode Decomposition 

The variational mode decomposition (VMD) technique, which was proposed by Dragomiretskiy 

and Zosso in 2014, decomposes the original signal or time series into several modes. Indeed, it 

exhibits better robustness to the noise of the time series compared to other mode decomposition 

methods [42]. This model can artificially determine the number of modes and prevent issues 

regarding the mode aliasing problem [43]. By decomposing time series through the VMD 

technique, the signal is divided into k sub-signals. Each mode or sub-signal is formulated as 

follows: 

  𝑘( ) = 𝐴𝑘( ) cos 𝜙𝑘( ) (2.15) 

where  𝑘( ) is the k-th mode, 𝐴𝑘( ) is the amplitude function, and 𝜙𝑘( ) is the phase function. To 

calculate modes and center frequencies 𝜔, the following optimization problem needs to be solved 

[42]: 

 
min
𝑢𝑘,𝜔𝑘

∑‖𝜕𝑡 [(𝛿( ) +
𝑗

𝜋 
) ∗  𝑘( )] exp(−𝑗𝜔𝑘 )‖

2

2

𝑘

 (2.16) 
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Subject to ∑  𝑘( )𝑘 = 𝑓( ) 

where f is the original signal, * denotes convolution, and 𝛿 is the Dirac distribution. Using these 

equations, k modes are obtained, k-1 of which are intrinsic mode functions (IMFs), and the last 

one is the residue. 

2.1.5 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are one of the deep learning models that have been inspired 

by animals' visual cortex [44]. As the name of this model implies, they utilize the convolution 

mathematical operation, which makes them powerful tools to extract the spatial features of images 

[45]. CNNs are employed in various fields of research, such as object and text recognition [44]. 

The typical structure of CNNs is comprised of convolutional layers, pooling layers, and dense 

layers [45]. The input data of these models can be one-dimensional, such as one-dimensional time 

series, two-dimensional, such as images, and even n-dimensional. Furthermore, the input data can 

have one or multiple channels; for instance, black and white images have one channel, but colorful 

images consist of three channels. Various layers of CNNs are explained as follows. 

In the convolutional layer, for 2-D CNNs, the input data (e.g., a 2-D tensor) is convolved with 

convolution kernels or filters, which extract local features and create the feature maps. Convolution 

kernels are 2-D matrices containing several weights that are found during the training process. The 

number of produced feature maps in each convolutional layer is equal to the number of that layer’s 

kernels. The following equation is used to calculate the feature maps: 

 𝑦𝑗  =  𝑓 ( ∑𝑥𝑖 ∗ 𝑊𝑗  +  𝑏𝑗
𝑖

) (2.17) 

where 𝑦𝑗 is the jth output feature map, 𝑥𝑖 is the ith channel of the input data, 𝑊𝑗 is the jth kernel 

weights, and 𝑏𝑗 is the jth bias. Function 𝑓 is the activation function of this layer (e.g., rectified 

linear unit (ReLU). The operation of the convolution is demonstrated in Figure 2.2. As can be 

observed, the input data is convolved with a 33 kernel producing a 44 feature map. To calculate 

a pixel of the feature map, the input data covered by the kernel are pointwise multiplied by the 

kernel’s weights and summed subsequently. 



12 

 

 

Figure 2.2. Convolution operation in CNNs (the bias was assumed to be zero) 

In the pooling layer, the feature maps acquired from the previous convolutional layer are 

downsampled, which impedes over-fitting at the expense of losing a small portion of data. There 

are a variety of pooling methods, such as max-pooling, average-pooling, and mixed pooling [46]. 

For instance, in the average-pooling method, a 2-D block (e.g., 22) moves in the horizontal and 

vertical directions, calculates the average of the covered data points, and finally stores it in another 

tensor called pooled feature map. This operation is carried out for all feature maps calculated in 

the previous convolutional layer. 

After the pooling layer, the pooled feature maps are converted into a one-dimensional output 

through a flatten layer and given to one or multiple fully connected or dense layers. In a dense 

layer, the inputs, or outputs of the previous dense layer, are connected to all neurons of that dense 

layer with a specific weight. In each neuron, the weighted sum of inputs, plus a bias, is calculated 

and is passed through an activation function (e.g., ReLU). 

2.1.6 Long Short-Term Memory Neural Networks 

Recurrent neural networks (RNNs) are powerful models for extracting temporal features and are 

capable of coping with sequential data. However, the major problem of traditional RNNs is 

gradient disappearance or gradient explosion, which makes the training process unfeasible [47]. 

To overcome this problem, long short-term memory (LSTM) neural network was proposed by 
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Hochreiter and Schmidhuber [48]. These networks are comprised of several LSTM cells, as shown 

in Figure 2.3. As can be observed, the inputs of each LSTM cell are the input vector 𝑋𝑡 at timestep 

 , hidden layer output ℎ𝑡−1 at timestep  − 1, and cell state 𝐶𝑡−1 at the former timestep. Given the 

inputs, the input gate 𝑖𝑡, output gate 𝑂𝑡, and forget gate 𝑓𝑡 can be found as follows [47]: 

 𝑖𝑡  = 𝜎 (𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (2.18) 

 𝑂𝑡  = 𝜎 (𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (2.19) 

 𝑓𝑡  = 𝜎 (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (2.20) 

where W and b are the weights and bias vectors, and subscripts i, o, and f refer to input gate, output 

gate, and forget gate, respectively. To find the hidden layer output ℎ𝑡 and cell state 𝐶𝑡 at timestep 

 , the temporary cell state 𝐶�̃� must be calculated: 

 𝐶�̃�  = tanh(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)    (2.21) 

 𝐶𝑡  =  𝑓𝑡 ⊗ 𝐶𝑡−1  ⊕ 𝑖𝑡 ⊗ 𝐶�̃� (2.22) 

 ℎ𝑡  =  𝑂𝑡  ⊗ tanh(𝐶𝑡)    (2.23) 

where 𝜎 and  𝑎 ℎ denote the sigmoid and hyperbolic tangent functions, and ⊕ and ⊗ represent 

pointwise sum and multiplication, respectively. 

 

Figure 2.3. Structure of LSTM cells 
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2.1.7 Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm [49] is a stochastic optimization approach that 

exhibits a robust and efficient performance despite its simple algorithm [50]. Moreover, a few 

parameters need to be adjusted in this algorithm, making it attractive among the population-based 

algorithms [51]. The PSO algorithm distributes several particles in a 𝐷-dimensional search space; 

thus, the position of each particle is, in fact, a 𝐷-dimensional vector. During each iteration, 

particles explore the search space to find the possible optimum solutions. These solutions are then 

evaluated by the cost function. The position of each particle is iteratively updated by its velocity 

vector, which depends on three vectors: the previous velocity vector, the distance between the 

particle current position and the personal best-found solution, and the distance between the particle 

current position and the best-found solution in the entire population. This technique allows 

particles to communicate with each other and to move towards the best solution found by the 

particle and the best-found solution within the population. The following equations are utilized to 

adjust the particles’ position: 

 �⃗�𝑖
(𝑡 1)

= 𝜔( )�⃗�𝑖
(𝑡) + 𝑐1𝑟1

(𝑡)
⊗( ⃗𝑖

(𝑡) − �⃗�𝑖
(𝑡)) + 𝑐2𝑟2

(𝑡) ⊗ (�⃗�(𝑡) − �⃗�𝑖
(𝑡)) (2.24) 

 �⃗�𝑖
(𝑡 1)

= �⃗�𝑖
(𝑡)

+ �⃗�𝑖
(𝑡 1)

 (2.25) 

where   is the iteration number, �⃗�𝑖 is the 𝑖th particle velocity vector, 𝑐1 and 𝑐2 are acceleration 

coefficients, 𝑟1 and 𝑟2 are 𝐷-dimensional vectors whose components are uniformly distributed 

numbers between 0 and 1, �⃗�𝑖 is the 𝑖th particle position,  ⃗𝑖 is the best solution found by the 𝑖th 

particle, �⃗� is the global best solution, and 𝜔 denotes the inertia weight. 

2.1.8 Reinforcement Learning 

Reinforcement learning is a subfield of machine learning that deals with solving the control 

problem of dynamically changing systems or environments. Reinforcement problems can be 

regarded as a discrete-time stochastic control process, called the Markov decision process (MDP), 

which is defined by the tuple (𝒮,𝒜,𝓅, 𝑟). 𝒮 is the state space which is comprised of all possible 

states (𝑠) that represent the information required for describing the environment. 𝒜 is the action 

space containing all possible actions that the decision-maker, known as the agent in the context of 

reinforcement learning, can take to control the environment’s decision variables [52]. 𝓅 is the state 

transition probability that models the uncertainties involved in the transition of the environment to 
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the next state 𝑠𝑡 1 given the current state 𝑠𝑡 and action 𝑎𝑡 determined by the agent [53]. Finally, 𝑟 

is the reward emitted by the environment on each transition, which conveys the objective of the 

control process to the agent. The general control framework of reinforcement learning is illustrated 

in Figure 2.4. At each timestep, the agent takes action according to the current state of the 

environment. The action is executed in the environment altering the system’s state and moving the 

agent to the new state. The environment sends a reward signal to the agent based on the new state 

as a performance evaluation metric. The agent aims to discover an optimal policy to maximize the 

aggregated reward in every episode it encounters through interacting with the environment. 

Specifically, the agent learns a policy that maximizes the cumulative discounted reward called the 

return [54]: 

 𝐺𝑡 = 𝑟𝑡 1 + 𝛾𝑟𝑡 2 + 𝛾2𝑟𝑡 3 +⋯ = ∑𝛾𝑘𝑟𝑡 𝑘 1

∞

𝑘=0

 (2.26) 

where 𝐺 is the return, 𝑟 is the obtained reward, and 𝛾 ∈ [0, 1] is the discount factor that represents 

the relative importance of future rewards against the current ones. Small values of 𝛾 indicate that 

the agent should focus on the current rewards, while high values of 𝛾 (close to one) imply that the 

actions taken by the agent must result in the maximization of future rewards as well. This definition 

evinces the primary difference between reinforcement learning and conventional machine learning 

since reinforcement learning algorithms aim to maximize future rewards in addition to the 

immediate ones [40]. The performance of the agent during its interactions with the environment 

can be evaluated using two closely related value functions: 

 𝑉𝜋(𝑠) = 𝔼[𝐺( ) | 𝑠𝑡 = 𝑠] = 𝔼[𝑟𝑡 1 + 𝛾𝔼[𝑉𝜋(𝑠
′)] | 𝑠𝑡 = 𝑠] (2.27) 

 𝑄𝜋(𝑠, 𝑎) = 𝔼[𝐺( ) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼[𝑟𝑡 1 + 𝛾𝔼[𝑄𝜋(𝑠
′, 𝑎′)] | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2.28) 

where 𝜋 is the policy, 𝑉𝜋 is the state-value function under policy 𝜋, 𝔼[. ] is the expectation operator, 

𝑠′ is the next state of the environment, 𝑄𝜋 is the action-value function under policy 𝜋, 𝑎 is the 

action taken at the current timestep, and 𝑎′ is the corresponding action of the next state. The state-

value function 𝑉𝜋(𝑠) represents the expected return of a given state, and the action-value function 

𝑄𝜋(𝑠, 𝑎) indicates the expected return of taking action 𝑎 when the agent is in state 𝑠. 
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Figure 2.4. Interactions between the agent and environment 

2.2 Literature Review 

Although extensive research has been carried out on the modeling of the RO process and sizing of 

PV-powered RO systems, energy management of these systems received less attention. Ali et al. 

[55] proposed an energy management system based on fuzzy logic for an isolated battery-less PV-

wind driven RO desalination unit. The genetic algorithm was applied on a hand-made fuzzy logic-

based method to find the optimum parameters of the fuzzy inference system and maximize the 

water production. The optimized fuzzy inference system increased the freshwater production by 

3.3% during the fall with respect to the proposed hand-made system. Xavier et al. [56] explored 

the energy management of a hybrid PV-wind powered RO desalination system modeled by a quasi-

static model. The optimum dispatching strategy for determining the optimum value of shared 

power between different pumps was found by using a standard nonlinear programming method so 

that the required time for filling a superior water tank becomes minimum and also the pumps 

operate in an energy-efficient manner. Kyriakarakos et al. [57] developed a fuzzy logic-based 

energy management system for a microgrid consisting of PV array, wind turbine, proton exchange 

membrane fuel cell and electrolyzer, RO unit, battery system, and metal hydride tank. The 

proposed energy management system was used to find the optimum size of the microgrid. The 

design with the lowest operating costs and investments, as the optimum microgrid, was found 

through the particle swarm optimization algorithm. To evaluate the developed method, the same 

analysis was carried out by an ON-OFF strategy, and it was concluded that the fuzzy logic energy 

management system controls different components in a more effective manner than the ON-OFF 
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approach due to the reduction in the size of microgrid units. In another study, Kyriakarakos et al. 

introduced a fuzzy cognitive map-based energy management system that could be operated in the 

variable load mode [58]. The designed method used the produced PV power, battery bank state of 

charge, and predicted PV power for the next step as the inputs. The final results demonstrated that 

water production improved by upgrading to the variable load operation mode. As stated earlier, 

the weather-dependent nature of renewable energy sources impacts the systems’ performance; 

hence, developing an efficient energy management system requires a high-accuracy forecaster 

[41]. So far, PV power forecasting either was not executed or just was performed with a small 

forecast horizon, which is inadequate for optimum energy management. Moreover, none of the 

previous studies carried out research on the optimum power scheduling of hybrid desalination 

systems consisting of PV, RO, and PRO. Although PRO can provide the desalination system with 

a clean energy source, the integration of RO with PRO complicates the power allocation and 

optimization process. As a consequence, there is a lack of information about the forecaster-based 

energy management systems for PV-powered RO-PRO desalination units. 

In Chapter 3 of the thesis, we propose an intelligent energy management system (IEMS) for a grid-

connected PV-RO-PRO desalination system. PRO-powered systems are leveraged from a lower 

power intermittency level compared to other renewable energy sources such as wind power [31]. 

The IEMS incorporates the predicted PV power for the next five hours into the optimization 

process through which the optimum operating conditions of the hybrid system are obtained. To 

perform 5-hour-ahead solar power forecasting, three deep neural networks (DNNs) based on CNNs 

and LSTM networks are developed, and the model with the highest accuracy is selected. For the 

optimization of the system, the PSO algorithm is employed, and its performance is compared with 

the grey wolf optimizer (GWO) [59] and genetic algorithm (GA) [60]. In order to evaluate the 

IEMS, two benchmark methods are introduced, and their performance is compared based on four 

defined performance indices. To the best of our knowledge, the energy management of a hybrid 

PV-RO-PRO system by means of solar power predictors has not been investigated previously. 

In addition to forecaster-based models, reinforcement learning algorithms have demonstrated 

enormous potential for energy management and operation optimization of energy systems [61], 

[62]. Model-free reinforcement learning algorithms can cope with uncertain parameters without 

requiring any prior knowledge or model for renewable power generation devices and have become 
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an effective tool for the management of energy storage systems in microgrids [61], [63]. Moreover, 

after the training process, they can detect the optimum or near-optimum decisions within several 

milliseconds [63], making them a powerful asset for real-time control problems. The integration 

of deep neural networks into reinforcement learning algorithms has led to a new field of research, 

called deep reinforcement learning, which has demonstrated better performance than standard 

reinforcement learning in solving complex problems [61], [64]. Kofinas et al. [65] developed a 

multi-agent energy management system based on fuzzy Q-Learning techniques to control energy 

flows of a microgrid consisting of a PV system, fuel cell, diesel generator, desalination plant, and 

electrolyzer. The proposed energy management system aimed to minimize the utilization of the 

diesel generator and ensure the power balance between the microgrid units. The simulation results 

indicated that the power balance between consumption and production was almost stabilized to 

zero, and a low level of energy was not supplied. In a recent study, Zhang et al. [66] utilized the 

proximal policy optimization (PPO) algorithm to solve the energy management problem of a 

microgrid comprised of a wind turbine, PV system, battery storage system, RO plant, and diesel 

generator. The primary objective of the developed model was minimizing costs associated with 

operation, pollution, and battery storage systems. The performance of the PPO algorithm was 

compared with that of three baseline methods: stochastic programming, double deep Q-network 

(DDQN), and deep deterministic policy gradient (DDPG). The comparison results demonstrated 

that PPO outperformed the baseline algorithms and reduced the costs by up to 14.17%. Although 

these studies provide insight into the energy management of water desalination plants, none of 

them addressed the partial observability associated with uncertainties of PV power generation. In 

partially observable MDPs, the observations that the agent has access to do not provide adequate 

information about the environment, and advanced methods are needed to tackle this problem. 

Moreover, due to the uncertainties of PV power generation, the agent cannot observe the current 

output of the PV system [67], posing yet another challenge to the energy management problem 

that previously mentioned studies failed to take into account. Furthermore, the RO experimental 

data indicate that the flow rate and quality of the freshwater product are affected by the 

transmembrane pressure and the saline water flow rate [68]. However, in the previous papers, the 

desalination plants have been controlled only via their power consumption, which is not an 

accurate approach for modeling these systems. 
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In Chapter 4 of this dissertation, we solve the energy management problem of the PV-RO-PRO 

system by developing a deep reinforcement learning-accelerated energy management system 

based on the soft actor-critic (SAC) algorithm [69]. To cope with the partial observability dilemma 

(caused by the PV system) and address the shortcomings of previous studies, we formulate the 

problem as a partially observable MDP and provide the SAC algorithm with a history of PV data. 

To make the interpretation of PV power time series less challenging and promote the SAC 

algorithm performance, we introduce a 1-dimensional CNN (1-D CNN) to the actor, critic, and 

value networks of the SAC model. We call this novel algorithm, whose function approximators 

are modified to extract information favorable to value, critic, and actor networks, the CNN-SAC 

algorithm. It should be pointed out that no mathematical model is used for the output power of the 

PV system, and the CNN-SAC algorithm observes only the PV power time series. We carry out 

ablation studies to substantiate the partial observability of PV-driven systems and the significance 

of providing the algorithm with a history of previously encountered observations. The critical role 

of the introduced 1-D CNN in extracting essential information from PV power time series is also 

investigated. Since in most studies in the literature cutting-edge actor-critic methods such as twin 

delayed deep deterministic policy gradient (TD3) [70] and SAC were not applied [62], we 

benchmark the CNN-SAC algorithm against four state-of-the-art deep reinforcement learning 

models: DDPG [71], PPO [72], vanilla SAC, and TD3. The comparison between the CNN-SAC 

algorithm and benchmark methods is made by analyzing their learning performance and examining 

their simulation results in different case studies. Additionally, we compare the performance of the 

CNN-SAC algorithm with that of the IEMS model that we propose in Chapter 3. To the best of 

our knowledge, none of the earlier studies investigated the partial observabilities involved in PV-

powered desalination systems and made the modification we applied in the proposed method to 

cope with this challenge. 
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3     Deep Learning-Based Energy Management of the PV-RO-

PRO System 

 

3.1 Methodology 

The schematic diagram of the PV-RO-PRO system is depicted in Figure 3.1. As it can be observed, 

this system is comprised of four primary modules: PV system, energy storage system, RO module, 

and PRO module. RO is a technology by which high salinity water can be converted into fresh, 

potable water. In this system, a high-pressure pump increases the pressure of the saline water, 

called feed solution, to overcome the osmotic pressure difference that exists across the RO 

membrane. According to Figure 3.2, the RO plant consists of five parallel pressure vessels to 

increase the capacity of the desalination system, and each pressure vessel contains three RO 

membranes connected in series to improve the recovery. In addition to potable water, retentate 

flow is another output of RO, which contains all solutes blocked by the membrane. Disposal of 

this solution causes environmental issues, which is one of the downsides of desalination processes. 

To diminish the impacts of brine discharge, we consider a hybrid desalination system comprised 

of RO and PRO. As shown in Figure 3.1, we use the retentate of RO as the draw solution of PRO, 

which becomes diluted during the process and finally depressurized by a turbine. Hence, the RO-

PRO configuration can be beneficial in terms of clean energy generation and dilution of RO 

retentate [73]. However, the generated power by PRO is not sufficient to supply the required 

energy of the high-pressure pump used in the RO module. As a result, we utilize a PV system 

along with PRO to provide the power consumed in the RO process. Similar to most renewable 

energy sources, solar energy suffers from a high level of power intermittency, which can severely 

impact the system’s performance [74]. Moreover, solar energy is not always available during the 

day, and this makes the efficient exploitation of this energy source more difficult. To overcome 

these challenges, we consider a grid-connected PV-RO-PRO system along with a battery energy 

storage system. The hybrid system is connected to the main grid to import power whenever the 

output power of PV and PRO is not adequate for water production. The battery system has a critical 
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role in the energy management of the system as it enables scheduling the power consumption or 

production of devices. Among the system’s modules, RO and PRO are dispatchable units, meaning 

that their operation can be controlled via our proposed energy management system. On the other 

hand, the PV system is a non-dispatchable unit as its output power depends only on meteorological 

conditions and cannot be controlled. The IEMS aims to minimize the imported power from the 

external grid to improve the hybrid desalination system’s independent performance while 

maximizing the water production and contaminant removal efficiency. This goal can be achieved 

by performing an optimized power scheduling for different components, i.e., main grid, battery 

system, RO module, and PRO module, at each timestep. Due to the fluctuations of solar power, a 

DNN-based forecaster is utilized in the IEMS to predict the available solar power. 

 

 

Figure 3.1. Schematic diagram of the PV-RO-PRO system 
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Figure 3.2. Arrangement of RO membranes. In each pressure vessel, three RO membranes are connected 

in series. 

3.1.1 Solar Power Forecasting 

To have an optimized energy management system for a PV-based process, it is of great importance 

to incorporate a forecasting model into the IEMS to cope with the variations of PV power. By 

doing so, energy can be stored in advance in the battery to be consumed later when the available 

solar power starts to reduce or fluctuate. In this study, we utilize deep neural networks to perform 

short-term PV power generation forecasting. These algorithms are trained by a set of past relevant 

data points to extract patterns and features of a given input sample (in this case, PV power time 

series) [46]. This chapter examines the performance of three deep learning forecasters for 5-hour-

ahead solar power generation forecasting of a 6-kW PV system. The first model is a two-

dimensional CNN that uses the PV power data as the training set. In the second model, the time 

series is decomposed by the VMD technique, and then it is given to a two-dimensional CNN for 

feature extraction. Lastly, a hybrid network consisting of the VMD technique, CNN, and LSTM 

layers is trained and analyzed. 
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The dataset of the PV power is taken from the Desert Knowledge Australia Solar Centre, Alice 

Springs, and is presented in Table 3.1 [75]. From this dataset, the recorded PV power data from 

May 2011 to June 2016 was utilized for this study. It should be mentioned that this dataset has 

been created with a 5-minute resolution; however, in this study, for each hour (e.g., from 10:00 

am to 10:55 am), the recorded PV power data points are summed and then divided by 12 to create 

a 1-hour-interval dataset [76]. Also, the PV power was not recorded from 6 pm until 7 am of the 

next day; hence, these values are assumed to be zero. In the following sections, the architecture of 

the proposed networks will be discussed. 

Table 3.1. Characteristics of the PV system (Kaneka, 6.0kW, Amorphous Silicon, Fixed, 2008) [75] 

Characteristic  

Array rating 6 kW 

Panel rating 60 W 

Number of panels 100 

Array area 95.04 m2 

Array structure Fixed: ground mount 

Installation completed 11 November 2008 

Array tilt/azimuth Tilt = 20, Azi = 0 (Solar North) 

 

3.1.1.1 Decomposition of PV Power Time Series Using VMD 

By decomposing the PV power time series through the VMD technique, the signal is divided into 

k sub-signals that contain the seasonal and trend components of the PV power data. This can 

simplify the training process and convergence of neural networks [77]. To decompose the PV 

power time series, we utilize MATLAB, and the signal was decomposed into 5 IMFs and one 

residue (i.e., k = 6). The final results of the first 800 hours can be observed in Figure 3.3. In this 

figure, the original PV power time series can be seen at the top following by the decomposed 

components (i.e., IMF 1 through IMF 5 and the residue). 
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Figure 3.3. Decomposed components of the PV power time series 

 

3.1.1.2 Data Processing 

As mentioned before, in this study, three models for 5-hour-ahead solar power generation 

forecasting are explored: 2-D CNN, VMD-CNN, and VMD-CNN-LSTM. As a result, the primary 

components of the first two models are the CNN block, and in the case of the third model, the 

neural network is comprised of both CNN and LSTM blocks. The architecture of these models 

will be thoroughly analyzed in the next section. Each block requires the input data to have a 

particular format. Accordingly, the PV power time series must be reconstructed into other shapes 

to get the most out of each network.  
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A daily correlation exists in the obtained decomposed components by the VMD method, that may 

lead to improper performance of networks and inaccurate predictions. Hence, for the CNN block, 

we can construct two-dimensional input data with the decomposed components, and exploit CNNs 

to extract the spatial features [77]. The 2-D array construction for the CNN block is demonstrated 

in Figure 3.4(a). In this process, at each timestep, we utilize dh past data points, where d and h 

represent the number of days and hours (i.e., 24), respectively. Then, we reshape the one-

dimensional vector into a d-by-h matrix. This procedure is followed for each mode (i.e., five IMFs 

and one residue). In this study, it is assumed that d is equal to 14. 

 

Figure 3.4. (a) 2-D array construction for the CNN block, (b) Formation of delay embedding space 

 

As will be discussed in the next section, the LSTM block’s input is PV power data rather than the 

decomposed components. To construct the training sample for this network, the input time series 

is transformed into the delay embedding space. For this purpose, two parameters must be first 

determined: embedding dimension 𝑚 and delay 𝜏. Embedding dimension determines the number 

of previous samples that will be employed for forecasting, and delay determines the time difference 

between 𝑚 selected samples. Figure 3.4(b) shows the transformation process into the delay 

embedding space for 𝑚 = 10 and 𝜏 = 3. As can be observed, a window with a defined size takes 

10 samples with a time delay of 3 from the time series and forms the input vectors of the LSTM 

network. The crucial step in this process is the selection of embedding dimension and delay values, 

which can affect the performance of the neural network. For instance, small delays result in 

strongly correlated data points, while large delays lead to uncorrelated components of the sample 

vectors [78]. In order to select appropriate values for the embedding dimension and delay, TISEAN 
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software was utilized. Based on the literature, for finding an appropriate value for the delay, the 

time-delayed mutual information should be calculated for different values of 𝜏, and the delay at 

which the mutual information is at its first local minimum is selected [78]. For the embedding 

dimension, the false nearest neighbor method is used. In this method, the fraction of false neighbors 

is found for different values of 𝑚, and the value that results in a small fraction of false neighbors 

is a proper choice. The plots of the time-delayed mutual information and the fraction of false 

neighbors are provided in Figure 3.5. Based on this figure, 𝜏 = 6 and values greater than 30 for 

the embedding dimension are suitable choices. It is assumed that the embedding dimension is equal 

to 57 so that the target outputs of the delay embedding space become consistent with those of the 

CNN constructed dataset. This is a vital matter for the VMD-CNN-LSTM network. As well, data 

normalization is used for data pre-processing so that all data points lie in the [0, 1] range. 

 

Figure 3.5. (a) Mutual information, (b) Fraction of false neighbors. The hatched region in (b) 

demonstrates the interval in which the fraction of false neighbors is not small enough. 
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3.1.1.3 Architecture of Forecasters 

In this paper, three DNN-based models are trained, and the best candidate for solar power 

generation forecasting and, consequently, the IEMS is selected. 

The first one is a 2-D CNN, having two successive convolutional layers followed by a flatten layer. 

The architecture of the first network is demonstrated in Figure 3.6(a). In this model, pooling layers 

are not utilized after the convolutional layers since they omit some of the information extracted by 

the convolutional layers and, thus, decrease the model accuracy [77]. The activation function of 

convolutional layers is the ReLU function, and padding is set to valid. After the flatten layer, two 

dense layers with the ReLU activation function are placed followed by a 5-neuron dense layer with 

the linear activation function. For the last dense layer, 5 neurons are considered as the forecast 

horizon is equal to 5. The ADAM algorithm is used as the optimizer, with the mean squared error 

(MSE) loss function to be minimized. The input data of this model is the PV power time series, 

which is reconstructed via the 2-D array construction method mentioned in the prior subsection. 

The architecture of the second model (Figure 3.6(b)) is similar to the previous one, but instead of 

the PV power time series, the decomposed components obtained by the VMD method (i.e., 5 IMFs 

and one residue) are used as the input data. Hence, in this model, the input sample has 6 channels. 

By training this hybrid VMD-CNN model, the effectiveness of the VMD method for the 

decomposition of the PV power time series can be evaluated. 

The final model is a hybrid VMD-CNN-LSTM neural network that can take advantage of CNN 

block for spatial feature extraction and LSTM block for temporal feature extraction. Figure 3.6(c) 

illustrates the architecture of the hybrid VMD-CNN-LSTM network. In this model, the 

decomposed components of the PV power time series are given to a CNN with two successive 

convolutional layers. Meanwhile, the delay embedding space samples (created with the PV power 

time series) are provided to a neural network with three LSTM layers. After each LSTM layer, a 

dropout layer is placed to randomly set the input units to zero and prevent overfitting. The outputs 

of the CNN and LSTM layers are concatenated and given to another neural network with four 

dense layers. After each first two dense layers, a dropout layer is placed as well. Similar to the 

previous models, the ADAM algorithm and MSE loss function are used for the training of this 

model. 
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Figure 3.6. (a) 2-D CNN model, (b) VMD-CNN model, (c) VMD-CNN-LSTM model. The heatmaps of 

the input data are demonstrated in this figure in order to provide a better insight into the input data. 

From the dataset, the recorded data from May 2011 to May 2015 is used for the training, and the 

rest of the dataset (roughly one year) is used for the test of the neural networks. It is worth 
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mentioning that the grid search method is used to tune the hyperparameter of these models. It 

means that for each combination of hyperparameter values, the neural network is trained, and the 

model with the highest accuracy is selected. In order to do that, 80% of the training set is utilized 

for the training of each model, and the remaining 20% is reserved for the validation. 

 

3.1.2 RO Mathematical Model 

As mentioned in Chapter 2, the mathematical model proposed by Sundaramoorthy et al. [33] is 

used in this study to simulate the performance of the RO desalination plant. In another study, 

Sundaramoorthy et al. [79] conducted RO experiments using commercial thin-film composite 

(TFC) polyamide membranes (Ion Exchange, India) and chlorophenol as the solute. They obtained 

an empirical equation for the mass transfer coefficient of the chlorophenol. This equation is a 

function of permeate flux, velocity of the flow inside the feed channel, and solute concentration. 

The proposed model is validated using already-published experimental data by Sundaramoorthy 

et al. [79]. Figure 3.7(a) and (b) compare the modeling results and experimental data at a constant 

feed flow rate of 2.583×10-4 m3/s, and solute concentration of 1.556 mol/m3 and 2.335 mol/m3, 

respectively. As can be observed, the mathematical model results are in good agreement with 

experimental data for different values of feed pressure and solute concentration. 

It should be pointed out that the mass transfer coefficient obtained by Sundaramoorthy et al. [79] 

is specifically for chlorophenol, and it is not valid for other solutes, such as NaCl in the present 

study. For NaCl, the following equation, reported for spiral-wound modules, is utilized to calculate 

the mass transfer coefficient [80]: 

 𝑆ℎ =  0.648 𝑅𝑒0.379 𝑆𝑐0.33 (3.1) 

where 𝑆ℎ is the Sherwood number (
𝑘 𝑑ℎ

𝐷𝐴
), 𝑅𝑒 is the Reynolds number (

𝜌 𝑢𝐹 𝑑ℎ

𝜇
), and 𝑆𝑐 is the 

Schmidt number (
𝜇

𝜌 𝐷𝐴
). In these dimensionless numbers, 𝑑ℎ is the hydraulic diameter of the feed 

channel, 𝐷𝐴 is the solute diffusivity,   is the water density, and  𝐹 is the velocity of water inside 

the feed channel. 

 



30 

 

 

Figure 3.7. Validation of RO mathematical model with the experimental data from [79]. In (a), the flow 

rate and solute concentration of the feed solution is equal to 2.583×10-4 m3/s and 1.556 mol/m3, 

respectively, while in (b), the feed flow rate is again 2.583×10-4 m3/s, and the feed solute concentration is 

equal to 2.335 mol/m3. 

 

The experimental data published by Sundaramoorthy et al. [79] contains feed pressures between 

5.83 and 13.58 atm. In seawater RO, the feed pressure is higher than 14 atm; therefore, it crucial 

to validate the RO model in higher feed pressures since, in this study, simulations are conducted 

for a feed solution with seawater quality. Senthilmurugan et al. [68] provided experimental data 

for a seawater RO system with a Film Tech spiral-wound module (2.5” FT30). The characteristics 

of the RO membrane are shown in Table 3.2. 
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Table 3.2. Characteristics of the 2.5" FT30 membrane [68] 

Membrane characteristics  

Membrane permeability 4.5 × 10−12
𝑚

𝑃𝑎. 𝑠
 

Solute permeability 3.6 × 10−8
𝑚

𝑠
 

Membrane length 0.854 𝑚 

Membrane width 1.10 𝑚 

Hight of feed channel 7.1 × 10−4 𝑚 

Feed channel friction parameter 2.5008 × 108
1

𝑚2
 

 

The validation results of the RO model for two values of feed concentration (25 and 35 kg/m3) and 

feed pressures between 50 and 80 bar are provided in Table 3.3. The comparison between the 

model and experimental data is based on the permeate flow rate and concentration values. 

According to Table 3.3, the maximum error between the model results and experimental data is 

12.29%; hence, it can be concluded that the mathematical model is also valid for high values of 

feed pressure and concentration. 

Table 3.3. Validation of the RO model with the experimental data from [68]. In this table, 𝑃𝑓 is the feed 

pressure, 𝑄𝑓 is the feed flow rate, 𝐶𝑓 is the feed concentration, 𝑄𝑝 is the permeate flow rate, and 𝐶𝑝 is the 

permeate concentration. The temperature at which the experimental data was collected is 25 ˚C. 

𝑃𝑓 (𝑏𝑎𝑟)  

𝑄𝑓

× 106 (
𝑚3

𝑠
) 

𝐶𝑓 (
𝑘𝑔

𝑚3
) 

𝑄𝑝 × 106 (
𝑚3

𝑠
) Error 

(%) 

𝐶𝑝 × 103 (
𝑘𝑔

𝑚3
) Error 

(%) 
Experiment Model Experiment Model 

55 223.32 25 22.82 21.36 6.27 95 106.68 -12.29 

60 225.8 25 25.3 24.53 3.04 89 97.28 -9.30 

70 231.05 25 30.75 30.71 0.13 82 84.78 -3.39 

80 235.43 25 34.95 36.73 -5.09 72 77.18 -7.19 

50 213.88 35 13.38 11.83 11.58 248 235.54 5.02 

55 216.68 35 16.19 14.77 8.77 207 196.81 4.92 

60 218.82 35 18.32 17.69 3.44 179 171.48 4.20 

70 223.32 35 22.82 23.42 -2.63 141 140.6 0.28 

80 227.27 35 26.77 28.99 -8.29 129 122.97 4.67 
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3.1.3 PRO Mathematical Model 

For the validation of the PRO mathematical model, the experimental data of two already-published 

studies are used. In the first study (Figure 3.8(a)), the experiment was conducted with 3 PRO 

hollow fiber membrane with a surface area of 2.71 cm2. Also, feed and draw solutions of 0.011 M 

and 0.81 M NaCl are utilized, and the flow rate of the feed and draw solutions are set to 0.2 L/min 

[38]. In the second study (Figure 3.8(b)), the membrane surface area is 14.43 cm2. Moreover, 1 

M salt solution and deionized (DI) water are used as the draw and feed solutions, and the flow rate 

of both solutions is kept constant at 0.1 L/min [81]. As can be observed in these figures, the PRO 

mathematical model results align well with the experimental data for different hydraulic pressure 

difference values. 

 
Figure 3.8. Validation of PRO mathematical model. In (a), the PRO model results are compared with the 

reported experimental data in [38]. The flowrate of the draw and feed solutions are kept constant at 0.2 

L/min, while the solute concentration of the draw and feed solutions are equal to 0.81 M and 0.011 M 

NaCl, respectively. In (b), the PRO model is validated with the experimental data from [81]. In this 

experiment, DI water with a flow rate of 0.1 L/min is used as the feed solution, while the flow rate and 

solute concentration of the draw solution are set to 0.1 L/min and 1 M NaCl, respectively. 
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3.1.4 Intelligent Energy Management System (IEMS) 

The performance of the hybrid PV-RO-PRO process is highly dependent on operating conditions. 

Therefore, it is critically important to control different parameters so that the hybrid system 

operates in an optimized manner. There are four decision variables whose optimum values need to 

be achieved at each timestep: main grid power, battery power, and RO system feed flow rate and 

pressure. By employing the IEMS in this study, the aim is to minimize the main grid’s imported 

power while maximizing the water production rate and salt rejection percentage or improving the 

water quality. Taking a closer look at the objectives of the IEMS, it is found that a multi-objective 

optimization problem should be formulated and solved as the objectives are in conflict with each 

other. For instance, the higher the water production rate, the higher the amount of main grid power. 

To overcome this challenge, the cost function is formulated through the global criterion method 

that is based on the relevant 𝐿𝑝 metrics. This method makes the cost function a measure of 

closeness to an ideal condition [82]. The cost function in this method is defined as follows: 

 𝐿𝑝 = (∑|
𝑂𝑖(�⃗�) − 𝑂𝑖

∗

𝑂𝑖
∗ |

𝑘

𝑖=1

𝑝

)

1
𝑝

 (3.2) 

where 𝑘 is the total number of objectives, 𝑂𝑖(�⃗�) is the value of 𝑖th objective function, �⃗� is the 

decision variable vector, and 𝑂𝑖
∗ is the ideal value of the 𝑖th objective function.   is assumed to be 

2 in this study. In order to formulate the optimization problem in the aforementioned form, two 

objectives are considered: (1) the ratio of main grid power to water production rate and (2) the 

permeate solute concentration. The minimization of the first objective function increases water 

production and decreases grid power. Minimizing the second objective function leads to higher 

solute rejection or better water quality. The ideal values for the first and second objective functions 

are 0.1 kWh/m3 and 3.6×10-3 kmol/m3, respectively.  To obtain the ideal value of the first objective 

function, the optimization is carried out for different values of this parameter, and the value with 

the better performance is selected. Also, the ideal value of the second objective function is chosen 

based on the specifications of the RO membrane. Hence, the cost function 𝐶𝐹 that must be 

minimized at each timestep is as follows: 
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 𝐶𝐹 = (|
𝑂1 − 0.1

0.1
|
2

+ |
𝐶𝑃 − 3.6 × 10−3

3.6 × 10−3
|

2

)

1
2

 (3.3) 

where 𝑂1 is the ratio of the grid power to the permeate flow rate. Moreover, during the optimization 

process, the optimization algorithm must consider the constraints of the problem, such as equality 

and inequality constraints. The cost function is subjected to one equality constraint in the present 

work, which is the power balance constraint, and five bound constraints for the decision variables 

and battery SOC. The following equations represent the constraints of the optimization problem: 

 𝑃𝐺𝑟𝑖𝑑 = 𝑃𝑅𝑂 − 𝑃𝐵 − 𝑃𝑃𝑉 − 𝑃𝑃𝑅𝑂 (3.4) 

 0 ≤ 𝑃𝐺𝑟𝑖𝑑 (3.5) 

 𝑃𝐵
𝑚𝑖𝑛 ≤ 𝑃𝐵 ≤ 𝑃𝐵

𝑚𝑎𝑥 (3.6) 

 𝑃𝑟𝑅𝑂
𝑚𝑖𝑛 ≤ 𝑃𝑟𝑅𝑂 ≤ 𝑃𝑟𝑅𝑂

𝑚𝑎𝑥 (3.7) 

 𝑄𝑓,𝑅𝑂
𝑚𝑖𝑛 ≤ 𝑄𝑓,𝑅𝑂 ≤ 𝑄𝑓,𝑅𝑂

𝑚𝑎𝑥 (3.8) 

 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8 (3.9) 

where 𝑃𝐺𝑟𝑖𝑑 is the main grid power, 𝑃𝑅𝑂 is the power consumption of the RO system, 𝑃𝑃𝑉 is the 

available solar power, 𝑃𝑃𝑅𝑂 is the generated power by the PRO system, and 𝑃𝑟𝑅𝑂 and 𝑄𝑓,𝑅𝑂 are 

the feed pressure and flow rate in the RO system. The consumed power by the RO system and 

produced power in the PRO system can be calculated via the following equations: 

 𝑃𝑅𝑂 =
𝑄𝑓,𝑅𝑂 (𝑃𝑟𝑅𝑂 − 𝑃0)

𝜂𝑝𝑢𝑚𝑝 𝜂𝑚𝑜𝑡𝑜𝑟
 (3.10) 

 𝑃𝑃𝑅𝑂 = 𝑄𝑑,𝑜𝑢𝑡 (𝑃𝑟𝑑,𝑜𝑢𝑡 − 𝑃0) 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒  𝜂𝑔𝑒𝑛 (3.11) 

where 𝑃0 is the atmospheric pressure, 𝑄𝑑,𝑜𝑢𝑡 is the flow rate of the diluted draw solution, 𝑃𝑟𝑑,𝑜𝑢𝑡 

is the pressure of the diluted draw solution, and 𝜂𝑝𝑢𝑚𝑝, 𝜂𝑚𝑜𝑡𝑜𝑟, 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒, and 𝜂𝑔𝑒𝑛 represent the 

efficiency of the pump, electrical motor, turbine, and generator, respectively. Also, it is assumed 

that the consumed power by the low-pressure pump on the feed side is negligible. 
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The IEMS incorporates the prediction results obtained from the best DNN into the optimization 

process to enhance the performance of the PV-RO-PRO system. As mentioned in previous 

sections, the proposed DNNs perform 5-hour-ahead PV power forecasting. Hence, the 

optimization algorithm must utilize the prediction results to determine the optimum values of 

decision variables at each timestep. For this purpose, at each timestep, the performance of the 

hybrid system is simulated from the present time up to 5 hours later by using the present actual 

value and predicted values of the PV power. To elaborate further on this process, suppose we are 

at timestep  , and we wish to find the optimum values of the decision variables (i.e., 𝑃𝐺𝑟𝑖𝑑
(𝑡)

, 𝑃𝐵
(𝑡)

, 

𝑃𝑟𝑅𝑂
(𝑡)

, and 𝑄𝑓,𝑅𝑂
(𝑡)

) at this time. The determined operating conditions at time   influence the state of 

the next timesteps; therefore, if we intend to optimize the system performance, the optimal values 

of the decision variables must be found based on the current state and possible future states. To 

account for possible future states, the optimization algorithm simulates the system performance 

for six hours of operation by considering the actual PV power 𝑃𝑃𝑉
(𝑡)

 and predicted values �̂�𝑃𝑉
(𝑡 1)

 to 

�̂�𝑃𝑉
(𝑡 5)

  to optimize the system so that the cost function of this six-hour operation becomes 

minimum. Since the optimization is performed for six hours, the decision variable vector �⃗�(𝑡) is 

comprised of 24 parameters: 

 �⃗�(𝑡) = [�⃗�(𝑡), �⃗̂�(𝑡 1), �⃗̂�(𝑡 2), … , �⃗̂�(𝑡 5)] (3.12) 

where: 

 �⃗�(𝑡) = [𝑃𝐺𝑟𝑖𝑑
(𝑡)

, 𝑃𝐵
(𝑡)

, 𝑃𝑟𝑅𝑂
(𝑡)

, 𝑄𝑓,𝑅𝑂
(𝑡)

 ] (3.13) 

 �⃗̂�(𝑡 𝑖) = [�̂�𝐺𝑟𝑖𝑑
(𝑡 𝑖)

, �̂�𝐵
(𝑡 𝑖)

, �̂�𝑟𝑅𝑂
(𝑡 𝑖)

, �̂�𝑓,𝑅𝑂
(𝑡 𝑖)

 ],     𝑖 = 1,… , 5. (3.14) 

Once the optimization is completed, the first four values of the solution are selected as the optimum 

values of the decision variables of timestep   . Then the optimization of the next timestep will 

begin. It is worth noting that 𝑃𝑅𝑂 and 𝑃𝑃𝑅𝑂 in Equation 3.4 are related to 𝑃𝑟𝑅𝑂, and 𝑄𝑓,𝑅𝑂, and 

therefore 𝑃𝐺𝑟𝑖𝑑 is a function of 𝑃𝐵, 𝑃𝑟𝑅𝑂, and 𝑄𝑓,𝑅𝑂. Given that, in order to decrease the number 

of decision variables from 24 to 18 and simplify the optimization problem, 𝑃𝐺𝑟𝑖𝑑 is eliminated 

from the decision variables and Equation 3.4 is used to calculate the main grid power. 
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The PSO algorithm is used to solve the optimization problem mentioned above [49]. In the present 

work, it is assumed that the inertia weight decreases linearly from 0.9 in the first iteration to 0.2 in 

the last iteration. The PSO algorithm randomly places all particles in the search space in the first 

iteration and updates their positions throughout the iteration. However, in this study, this procedure 

was followed only in the first timestep (i.e., placing all particles randomly in the first iteration). 

After the first timestep, the obtained solution in each timestep is saved and is utilized as the initial 

position of 30% of the particles in the next timestep. In other words, in the optimization of all 

timesteps, except for the first one, 30% of particles will not be distributed randomly and are placed 

in the previous timestep solution. By doing so, the optimization algorithm can be guided so that 

smaller values for the number of particles and iterations are considered. In this study, the 

acceleration coefficients are assumed to be 2. Also, the number of particles and iterations for the 

first timestep is set to 700 and 600, respectively, while for the next timesteps, the same number of 

particles and iterations equal to 350 is considered. 

3.2 Results and Discussion 

The IEMS was employed to optimize the performance of the hybrid PV-RO-PRO system. The 

specifications of each module are provided in Table 3.4. The optimization and simulation of the 

hybrid system are implemented in MATLAB, and deep learning models are implemented using 

Keras version 2.4.3 on a personal computer with an NVIDIA GeForce RTX 2080 Ti GPU and 32 

GB RAM. 

3.2.1 Results of Deep Learning Models 

As mentioned earlier, the prediction of the available solar power is crucial for the optimization of 

the hybrid process. In the present study, different models (2-D CNN, VMD-CNN, and VMD-

CNN-LSTM) are used to forecast solar power generation. Before using the prediction results in 

the simulation of the PV-RO-PRO system, it is essential to evaluate and compare the performance 

of each model. In order to do that, the results of the three proposed models are compared in 

different seasons, i.e., fall, winter, spring, and summer. Table 3.5 presents the architecture and 

values of the hyperparameters of each model. 
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Table 3.4. Specifications of the battery system, RO module, PRO module, and optimization constrains 

Module Parameter  

Battery system 

𝜂𝐶 0.95 

𝜂𝐷 0.95 

Initial SOC 30% 

𝐶𝐵𝑎𝑡𝑡𝑒𝑟𝑦 20 𝑘𝑊ℎ 

RO system 

Feed spacer thickness [79]  0.8 𝑚𝑚 

Channel length [79] 0.934 𝑚 

Membrane width [79] 8.4 𝑚 

𝑏 [79] 8529.45 
𝑎 𝑚. 𝑠

𝑚4
 

𝐴𝑤 [19] 4.17 × 10−7
𝑚

𝑎 𝑚. 𝑠
  

𝐵 [19] 2.9 × 10−8
𝑚

𝑠
 

𝐶𝑓𝑖
 32

𝑔

𝐿
 

𝜂𝑝𝑢𝑚𝑝 0.8 

𝜂𝑚𝑜𝑡𝑜𝑟 0.98 

PRO system 

𝑑𝑖 [38] 575 𝜇𝑚 

𝐿 1.5 𝑚 

𝐴 [38] 3.5 
𝐿𝑀𝐻

𝑏𝑎𝑟
 

𝐵 [38] 0.32 𝐿𝑀𝐻 

𝑆 [38] 450 𝜇𝑚 

Feed flow rate 15
𝐿

𝑚𝑖 
 

Feed concentration 0.011 
𝑚𝑜𝑙

𝐿
 

Number of fibers 100 

𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 0.8 

𝜂𝑔𝑒𝑛 0.98 

Optimization 

𝑃𝐵
𝑚𝑖𝑛 −5 𝑘𝑊 

𝑃𝐵
𝑚𝑎𝑥 5 𝑘𝑊 

𝑃𝑟𝑅𝑂
𝑚𝑖𝑛 35 𝑎 𝑚 

𝑃𝑟𝑅𝑂
𝑚𝑎𝑥 70 𝑎 𝑚 

𝑄𝑓,𝑅𝑂
𝑚𝑖𝑛  15 

𝐿

𝑚𝑖 
 

𝑄𝑓,𝑅𝑂
𝑚𝑎𝑥 300 

𝐿

𝑚𝑖 
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Table 3.5. The architecture of deep learning models. The activation function of all convolutional and 

dense layers (except for the last dense layer) is ReLU. 

Model Layer Specifications 
Learning 

rate 
Epoch 

Batch 

size 

2-D CNN 

Convolution 2D (7, 7) × 128 0.005 40 128 

Convolution 2D (7, 7) × 256 

Flatten  

Dense 64 neurons 

Dense 32 neurons 

Dense 5 neurons 

VMD-CNN 

Convolution 2D (7, 7) × 128 0.0005 80 64 

Convolution 2D (7, 7) × 256 

Flatten  

Dense 80 neurons 

Dense 40 neurons 

Dense 5 neurons 

VMD-CNN-

LSTM 

Convolution 2D (3, 3) × 256 40 64 

Convolution 2D (3, 3) × 512   

Flatten    

LSTM 128 cells, Dropout: 0.2   

LSTM 256 cells, Dropout: 0.2   

LSTM 384 cells, Dropout: 0.2   

Dense 
512 neurons, Dropout: 

0.1 
  

Dense 
256 neurons, Dropout: 

0.1 
  

Dense 128 neurons   

Dense 5 neurons   
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In the field of time series forecasting, there are a variety of error metrics that can be used to assess 

the performance of models. In this study, three evaluation indices are used: mean absolute error 

(MAE), root mean square error (RMSE), and integral normalized mean square error (inRSE). The 

mathematical equation of these error functions are as follows: 

 𝑀𝐴𝐸 =
1

𝑁
∑|�̂�𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (3.15) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑|�̂�𝑖 − 𝑦𝑖|

2

𝑁

𝑖=1

 (3.16) 

 𝑖 𝑅𝑆𝐸 = √
∑ |�̂�𝑖 − 𝑦𝑖|

𝑁
𝑖=1

2

∑ |𝑦𝑖 − �̅�|2𝑁
𝑖=1

 (3.17) 

where 𝑦𝑖, �̂�𝑖, and �̅� are the 𝑖th measured value, 𝑖th predicted value, and the average of measured 

values (i.e., the normalized PV powers in the forecast horizon). 

The results of the 2-D CNN, VMD-CNN, and VMD-CNN-LSTM models for 5-hour-ahead 

forecasting and five consecutive days in different seasons are illustrated in Figure 3.9. The larger 

the forecast horizon value, the lower the accuracy of predictions. The output power of the PV 

system typically has different trends and peak values in different seasons due to the variation of 

weather conditions such as temperature and solar irradiation. Hence, it is essential to assess the 

models’ outcomes in all seasons to ensure the predicted solar power is close to the actual value in 

all weather conditions. It can be observed that the 2-D CNN model cannot accurately predict the 

actual values on overcast days, and even on sunny days, it does not provide accurate results. On 

the other hand, VMD-CNN and VMD-CNN-LSTM models’ predictions are close to the actual 

values on overcast and sunny days. For example, as shown in the second panel of Figure 3.9, the 

fluctuations of PV power on the second day have been perfectly predicted by these two models. 

However, to quantitatively compare the predictive ability of these models, the error metrics must 

be calculated. 
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Figure 3.9. 5-hour-ahead forecasting results of PV power: (a) Spring, (b) Summer, (c) Fall, (d) Winter 
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The obtained values for the error metrics are presented in Table 3.6. This table contains the error 

values of each model for all seasons as well as the overall error. According to this table, in most 

cases, the obtained errors in summer are smaller than those of the other seasons. The worst 

accuracy is achieved in winter due to more fluctuations of power and variation of weather 

conditions. For instance, the MAE, RMSE, and inRSE of the VMD-CNN model for winter are 

increased 68%, 67.8%, and 44.5%, respectively, compared to summer. Also, it can be realized that 

the VMD-CNN model outperforms other models in all seasons as it provides much smaller errors 

than those of 2-D CNN and VMD-CNN-LSTM. Hence, this model’s overall error is also smaller 

than the other models as evident in Table 3.6. The overall MAE, RMSE, and inRSE of the VMD-

CNN network are 6.05, 6.32, and 6.32 times smaller than those of 2-D CNN, and 2.04, 1.95, and 

1.95 times smaller than those of VMD-CNN-LSTM. Accordingly, the predictions of the VMD-

CNN model are utilized for the optimization of the PV-RO-PRO system. 

Table 3.6. Performance of the deep learning models 

Season Model MAE RMSE inRSE 

Spring 

2-D CNN 0.03773 0.07199 0.24367 

VMD-CNN 0.00583 0.01082 0.03661 

VMD-CNN-LSTM 0.01262 0.02235 0.07566 

Summer 

2-D CNN 0.02881 0.06061 0.22904 

VMD-CNN 0.00467 0.00863 0.03261 

VMD-CNN-LSTM 0.00722 0.01294 0.04891 

Fall 

2-D CNN 0.03025 0.05601 0.17833 

VMD-CNN 0.00548 0.00968 0.03081 

VMD-CNN-LSTM 0.01295 0.02205 0.07022 

Winter 

2-D CNN 0.04646 0.08701 0.28309 

VMD-CNN 0.00785 0.01448 0.04712 

VMD-CNN-LSTM 0.01612 0.02748 0.08942 

Overall 

2-D CNN 0.03591 0.07019 0.23811 

VMD-CNN 0.00593 0.01111 0.03767 

VMD-CNN-LSTM 0.01207 0.02164 0.07339 
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3.2.2 Results of IEMS 

In this section, the obtained results from the PSO algorithm are reviewed and analyzed. It is 

important to define appropriate performance indices (PIs) by which the overall performance of the 

hybrid system can be assessed in terms of energy efficiency, water production, and final 

concentration. In order to take all these response variables into account, four PIs are defined as 

follows: 

 𝑃𝐼1 =
∫ 𝑃𝐺𝑟𝑖𝑑𝑑 
𝑇

0

∫ 𝑄𝑃𝑑 
𝑇

0

 (3.18) 

 𝑃𝐼2 =
∫ (𝑃𝑅𝑂 − 𝑃𝑃𝑅𝑂)𝑑 
𝑇

0

∫ 𝑄𝑃𝑑 
𝑇

0

 (3.19) 

 𝑃𝐼3 =
∫ |𝑃𝐵|𝑑 
𝑇

0

∫ 𝑃𝑅𝑂𝑑 
𝑇

0

 (3.20) 

 𝑃𝐼4 = 1 −
1

𝐶𝐹

∫ (𝑄𝑃𝐶𝑃)𝑑 
𝑇

0

∫ 𝑄𝑃𝑑 
𝑇

0

 (3.21) 

where 𝑇 is the time of the simulation and 𝑄𝑝 is the permeate flow rate. The first PI shows the 

amount of power that has been purchased from the main grid for producing one cubic meter of 

water. The lower the PI1, the more independent the system is from the main grid. The second PI 

indicates the efficiency of the RO-PRO system in terms of energy consumption as it measures the 

amount of consumed energy in the RO-PRO system to produce one cubic meter of water. PI3 

provides information regarding battery utilization during the simulation. Finally, PI4 shows the 

total solute rejection or permeate water quality. 

In order to validate the effectiveness of the IEMS, two benchmark methods are introduced. The 

first benchmark method is similar to the proposed method but it optimizes the system at each 

timestep regardless of the next hours’ conditions. In other words, it does not incorporate the 

prediction results into the PSO algorithm. Contrary to the first benchmark, the second benchmark 

is not an energy management system. In this case, the PI values of the IEMS and first benchmark 

are compared to their best values that can be achieved. For instance, the optimum values of PI1, 

PI2, and PI4 are 0, 2.2303 kWh/m3, and 0.993, respectively. It should be mentioned that these three 
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values cannot be achieved at the same time as the operating conditions to obtain the optimum value 

for each of them are different. 

The results of the proposed method for 120 hours of operation are presented in Figure 3.10 and 

Figure 3.11.  Figure 3.10(a) shows the power of each component determined by the optimization 

algorithm. As can be observed, when the produced power by the PV system starts to increase, the 

PSO algorithm decides to consume more power in the RO system and reduce the grid power as 

the required power for water production can be supplied by the PV system. The power of batteries 

determines the amount of energy that must be charged or discharged, and their level of charge is 

shown in Figure 3.10(b). During the day, the battery power is negative, which shows that a portion 

of the PV, PRO, and grid power is dedicated to the energy storage system. This is evident in Figure 

3.10(b) as the battery SOC increases during the day. The storage of energy during the day is the 

result of the exploitation of the solar power generation forecasting algorithm. By predicting the 

available solar power, the PSO algorithm realizes that the output power of the PV system is zero 

during the night. Hence, to keep the main grid power as low as possible, energy must be stored in 

the batteries in advance to be utilized later. It is apparent in Figure 3.10(a) that the stored energy 

during the day is used during the night, and until several hours after the PV power becomes zero, 

the supplied power from the main grid does not increase. This performance concurs that the IEMS 

is capable of planning for the future and performing power scheduling more intelligently. The 

operating conditions of the RO system (i.e., feed flow rate and pressure) are shown in Figure 3.11. 

As can be seen, the feed flow rate and transmembrane pressure increase during the hours in which 

the PV power is high since the available power for the RO system increases. The higher pressure 

and feed flow rate result in higher solute rejection and permeate flow rate, as shown in Figure 

3.11. The same analysis was done for the first benchmark method, and the results are depicted in 

Figure 3.12 and Figure 3.13. When the output power of the PV system is large, the main grid 

power is small, and all generated power by the PV and PRO system is utilized by the RO system 

for clean water production. As shown in Figure 3.13, the feed flow rate and transmembrane 

pressure increase during the day. However, based on Figure 3.12(a), in this method, except for 

the first hour, the power of the battery is zero, and the energy storage system is not utilized during 

the operation. As a consequence, during the hours in which the PV power is zero, the lack of energy 

cannot be supplied by the energy storage system, and the main grid power must increase. Also, 
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since the increase of the main grid power increases the cost function, the PSO algorithm does not 

keep the feed flow rate and pressure as high as high-PV-power hours. As a result, the water 

production rate and rejection percentage reduce. 

 

Figure 3.10. Scheduling results of the IEMS: (a) Power of different components and (b) Battery SOC 

 

Figure 3.11. Operating conditions determined by the IEMS 
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Figure 3.12. Scheduling results of the first benchmark: (a) Power of different components and (b) Battery 

SOC 

 

Figure 3.13. Operating conditions determined by the first benchmark 
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ten successive days are presented. In the case of two sunny days, the water production of the 

proposed method is close to that of the first benchmark, while, its power supply from the main grid 

is much lower than the first benchmark. As a result, the PI1 of the proposed method is 43.6% lower 

than that of the first benchmark. Also, the utilization of the proposed method has led to a smaller 

PI2 than the first benchmark. This result shows that IEMS is more efficient in terms of energy 

consumption. Moreover, based on the third PI, the proposed method leverages the energy storage 

system, while the first benchmark does not depend on the battery system. The total solute rejection 

of these two models is almost the same, and they are 2% lower than the maximum rejection 

percentage. In the case of two successive cloudy days, again, the proposed method provides a 

smaller PI1 compared to the first benchmark but a slightly larger PI2. Also, in this scenario, the 

second PI of both models is close to the minimum value (i.e., 2.2303 kWh/m3). Finally, for the 

simulation of ten successive days, the proposed method achieved 32.4% and 1.8% lower PI1 and 

PI2, respectively, than the first benchmark, and almost the same total rejection as the first 

benchmark. Moreover, since the second PI value obtained by using the IEMS is close to its 

minimum possible value, it can be concluded that the IEMS can cope with the complex structure 

of the RO-PRO system. As a result, the proposed method outperforms the first benchmark in all 

three scenarios due to the exploitation of the solar power generation forecasting algorithm and the 

energy storage system. 

Table 3.7. Performance of the methods 

Weather Method 𝑃𝐺𝑟𝑖𝑑  [𝑘𝑊ℎ] 𝑄𝑃 [𝑚
3] 𝑃𝐼1 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼2 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼3 𝑃𝐼4 

Sunny 

IEMS 14.1126 27.4719 0.5137 3.1325 0.3147 0.9692 

First benchmark 29.7902 32.7280 0.9102 3.1500 0.0072 0.9718 

Second benchmark - - 0 2.2303 - 0.993 

Cloudy 

IEMS 31.1664 17.1401 1.8183 2.5866 0.1136 0.9513 

First benchmark 38.3672 20.0779 1.9109 2.5532 0.0182 0.9549 

Second benchmark - - 0 2.2303 - 0.993 

10 days 

IEMS 88.8643 106.4353 0.8349 2.8387 0.3257 0.9608 

First benchmark 164.3552 132.9860 1.2359 2.8896 0.0020 0.9657 

Second benchmark - - 0 2.2303 - 0.993 
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The presented results so far are obtained by a 5-hour-ahead forecast horizon (FH); that is, the next 

5 hours’ predicted results are utilized in the optimization algorithm at each timestep. To investigate 

FH impact, the optimization is performed with different values of FH, and the obtained results are 

provided in Table 3.8. It is found that, in all scenarios, by increasing the FH, the first PI improves, 

but the second PI shows inconsistent behavior. For instance, in the case of two successive cloudy 

days, by increasing the forecast horizon from 2 to 5, the first performance index decreases by 1.3%, 

but the second PI first increases and then decreases. Moreover, increasing the FH enhances the 

utilization of the energy storage system as the third PI increases. The increase in PI3 is due to the 

fact that higher FH provides more information regarding the future solar power values, and IEMS 

optimizes the system’s performance better by using the energy storage system. In all scenarios, the 

effect of FH on PI4 is insignificant. Overall, better performance can be achieved by considering 

higher values for the FH. It should be pointed out that although higher FH results in more optimum 

operation, by increasing the FH, the accuracy of solar power forecasting models will reduce, which 

can severely impact the optimization results. Therefore, if we want to incorporate the prediction 

results of a long-term forecasting model into the optimization process, it is of great significance to 

ensure that impact of forecast errors on the direction of the optimization process is not significant. 

Table 3.8. Performance of the proposed method under different values of FH 

Weather Forecast horizon 𝑃𝐺𝑟𝑖𝑑  [𝑘𝑊ℎ] 𝑄𝑃 [𝑚
3] 𝑃𝐼1 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼2 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼3 𝑃𝐼4 

Sunny 

2 21.3231 30.0709 0.7091 3.1371 0.1519 0.9710 

3 18.4181 29.5499 0.6233 3.0711 0.2296 0.9706 

4 14.9987 28.4980 0.5263 3.0370 0.3427 0.9694 

5 14.1126 27.4719 0.5137 3.1325 0.3147 0.9692 

Cloudy 

2 34.4011 18.6793 1.8417 2.5612 0.0515 0.9534 

3 32.5546 17.6905 1.8402 2.6004 0.0828 0.9522 

4 30.9656 17.0050 1.8210 2.6067 0.1088 0.9512 

5 31.1664 17.1401 1.8183 2.5866 0.1136 0.9513 

10 days 

2 137.8615 123.5261 1.1161 2.8789 0.1028 0.9645 

3 117.7742 116.7077 1.0091 2.8618 0.1739 0.9632 

4 103.2575 112.1997 0.9203 2.8330 0.2483 0.9621 

5 88.8643 106.4353 0.8349 2.8387 0.3257 0.9608 

 



48 

 

3.2.3 Robustness of IEMS 

In this section, the robustness of the proposed method is evaluated. First, in order to explore the 

effects of forecast uncertainties on power scheduling, all the above simulations are performed with 

the actual PV power values rather than the predicted values. This analysis shows if the proposed 

deep VMD-CNN network can still provide accurate results given the forecast uncertainties. The 

results of the optimization with the predicted and actual values are provided in Table 3.9. 

According to this table, in the case of two consecutive sunny days, the PIs obtained using the 

predicted data deviated from the ones achieved based on the actual data by 0.0303 kWh/m3, 0.1154 

kWh/m3, 0.0672, and 0.0002 for PI1, PI2, PI3, and PI4, respectively. In the second scenario, the 

changes in PI1, PI2, PI3, and PI4 are found to be 0.0106 kWh/m3, 0.0112 kWh/m3, 0.0049, and 

0.0004, respectively. In the last scenario, again, the results of actual and predicted data are roughly 

similar. Although the results of the actual data are slightly better than those of the predicted one, 

the errors of the network are found to have a minor impact on the final results of the optimization. 

Hence, the predictions are accurate enough to be utilized in the optimization algorithm. 

Table 3.9. Results of IEMS with the predicted and actual PV data 

Weather PV data 𝑃𝐺𝑟𝑖𝑑  [𝑘𝑊ℎ] 𝑄𝑃 [𝑚
3] 𝑃𝐼1 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼2 [

𝑘𝑊ℎ

𝑚3
] 𝑃𝐼3 𝑃𝐼4 

Sunny 
Predicted 14.1126 27.4719 0.5137 3.1325 0.3147 0.9692 

Actual 13.5894 28.1141 0.4834 3.0171 0.3819 0.9690 

Cloudy 
Predicted 31.1664 17.1401 1.8183 2.5866 0.1136 0.9513 

Actual 31.5270 17.4405 1.8077 2.5754 0.1087 0.9517 

10 days 
Predicted 88.8643 106.4353 0.8349 2.8387 0.3257 0.9608 

Actual 88.0430 106.6146 0.8258 2.8207 0.3412 0.9606 

 

Second, the performance of the PSO algorithm is evaluated since, in the field of optimization, no 

algorithm is capable of finding proper solutions for all optimization problems. Hence, the results 

of the PSO algorithm are compared with two other stochastic optimization algorithms: GA which 

is an evolutionary algorithm, and GWO, which is a swarm-based algorithm. The optimization is 

performed for ten days of operation using GA and GWO algorithms, and the obtained results are 

compared with those obtained by PSO. The parameters of these algorithms and their corresponding 

values are provided in Table 3.10. 
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Table 3.10. Parameters of GA and GWO 

Algorithm Description Values of the first timestep Values of next timesteps 

GWO 
Number of wolves 700 350 

Number of iterations 600 350 

GA 

Number of chromosomes 300 100 

Number of generations 600 300 

Probability of crossover 0.95 0.95 

Probability of mutation 0.01 0.01 

Elitism ratio 0.3 0.3 

 

The results of different optimization algorithms are presented in Table 3.11. As can be observed, 

the power scheduling performed by GA does not provide suitable results as the first and second 

PIs are increased by 0.8318 kWh/m3 and 0.4615 kWh/m3, compared to PSO, even though the 

energy storage system is utilized more. These results demonstrate that GA is not a proper algorithm 

for solving this optimization problem. Using the GWO algorithm, better results are obtained in 

comparison with GA, but not PSO. In this case, PI1 and PI2 have increased by 0.1023 kWh/m3 and 

0.0378 kWh/m3 compared to those of PSO. The total solute rejection of all these algorithms is 

almost the same. Accordingly, the PSO algorithm outperforms GA and GWO, and this algorithm 

is suitable for solving the optimization problem of the hybrid PV-RO-PRO system. 

Table 3.11. Results of different optimization algorithms 

Algorithm 𝑃𝐺𝑟𝑖𝑑  [𝑘𝑊ℎ] 𝑄𝑃 [𝑚
3] 

𝑃𝐼1 [
𝑘𝑊ℎ

𝑚3
] 𝑃𝐼2 [

𝑘𝑊ℎ

𝑚3
] 

𝑃𝐼3 𝑃𝐼4 

PSO 88.8643 106.4353 0.8349 2.8387 0.3257 0.9608 

GA 208.6327 125.1775 1.6667 3.3002 0.5449 0.9675 

GWO 104.2096 111.1914 0.9372 2.8765 0.2193 0.9627 
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3.3 Conclusion 

In this study, an energy management system was designed for a hybrid PV-RO-PRO desalination 

system to maximize the total water production and rejection percentage and minimize the main 

grid power at the same time. The proposed IEMS exploited the PV power prediction results to 

enhance its effectiveness. To perform solar power forecasting, three DNNs were designed: 2-D 

CNN, VMD-CNN, and VMD-CNN-LSTM. The hyperparameters of these models were found via 

grid search, and the best design of each network was evaluated based on its performance for all 

seasons. The error metrics indicated that the VMD-CNN model outperforms other models in all 

cases, and thus, it was selected for solar power forecasting. In order to examine the effectiveness 

of the IEMS, its performance was studied in three scenarios and compared with two benchmark 

methods. The evaluation of the IEMS and the first benchmark was based on four performance 

indices. The first PI demonstrates the amount of supplied power from the main grid for producing 

one cubic meter of water. The second PI is a measure of the energy efficiency of the RO-PRO 

system. The third PI shows the battery utilization during the operation, and the fourth PI is the total 

solute rejection.  In all scenarios, the simulation results revealed a significant reduction in the value 

of PI1, when the proposed technique was employed. In addition, the effects of the forecast horizon 

on the optimization results were investigated, and it was observed that the utilization of a higher 

forecast horizon resulted in a smaller PI1. Furthermore, the impact of VMD-CNN forecast 

uncertainties on the optimization results was studied. It was found that the proposed network in 

this study possesses adequate accuracy as the difference between the results of simulations with 

actual and predicted data was minor. Lastly, the optimization was performed by GWO and GA for 

ten days of operation, and it was observed that PSO outperforms these algorithms. 
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4     Novel Data-Driven Energy Management of the PV-RO-

PRO System Using Deep Reinforcement Learning 

 

In this chapter, a novel deep reinforcement learning-accelerated energy management system is 

proposed for the PV-RO-PRO desalination plant described in Chapter 3. Therefore, the same 

characteristics and constraints are considered for the hybrid system’s modules. Also, we use the 

recorded PV data from 01 June 2015 to 30 May 2016 to train and evaluate the proposed CNN-

SAC algorithm. 

4.1 Methodology 

4.1.1 Formulation of the Energy Management Problem as a Reinforcement Learning 

Problem 

The energy management problem investigated in this study is a sequential decision-making 

process attributed to the existing time-coupling property that creates a connection between the 

possible future decisions and currently taken actions. For instance, at each timestep, the current 

battery SOC limits the maximum amount of energy that can be charged to or discharged from the 

energy storage system. Also, the current SOC is determined by the previous decisions made by the 

energy management system. Hence, due to the temporally coupled constraints, the control signals 

sent by the energy management system influence the available decisions it can make in the future 

timesteps. To solve this sequential decision-making problem, we convert the optimal control 

problem of the hybrid desalination system into a reinforcement learning task and solve it by 

exploiting a deep reinforcement learning-based agent. In this subsection, the formulation of the 

problem is discussed, and in the next subsection, the developed CNN-SAC algorithm is explained. 

In the present study, the environment is the PV-RO-PRO system, whose structure is demonstrated 

in Figure 3.1. At each timestep, the environment provides the agent with the system’s state through 

which the action must be determined. In Markovian environments, the information that the 

system’s state provides is adequate for optimal control. However, in many real-world control 
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problems, the environment can be partially observed, meaning that the agent does not have access 

to complete information about the environment [83]. Partial observability emerges from various 

sources, such as the need to remember temporarily available information, limitations of sensors, 

and noisy information [84]. Partially observed environments can be modeled as partially 

observable Markov decision processes (POMDPs) in which the agent, instead of receiving the state 

𝑠𝑡 at timestep  , is provided with observation 𝑜𝑡 of the system. In these cases, the agent may need 

to have access to history ℎ𝑡 = (𝑜1, 𝑎1, 𝑜2, 𝑎2, … , 𝑎𝑡−1, 𝑜𝑡), which consists of all observations and 

actions from the first timestep to timestep   to describe the state [71]. The energy management 

problem of the PV-RO-PRO system is a POMDP due to uncertainties and unknown information 

about the generation of solar power, and the results provided in the next section clearly show that. 

The history ℎ𝑡 we define for this problem includes only the PV power data of the previous 48 

hours since we wish to provide more information about the state of the PV system and alleviate 

uncertainties about solar power generation. Also, in most cases, it is not feasible to utilize the entire 

sequence of observations, and consequently, other methods must be exploited to summarize the 

whole history data [84]. An additional point that should be mentioned is that as a result of the 

uncertainties of PV power generation, at the beginning of each timestep, the agent cannot observe 

the current output power of the PV system [67]. Therefore, based on the explanations mentioned 

above and modeling of the PV-RO-PRO system, at each timestep, the agent receives the historical 

PV power data ℎ𝑡 = (𝑃𝑃𝑉
(𝑡−48), 𝑃𝑃𝑉

(𝑡−47), 𝑃𝑃𝑉
(𝑡−46), … , 𝑃𝑃𝑉

(𝑡−1)) and battery SOC to determine the 

action. 

The actions that are selected based on the policy control devices of the hybrid system. According 

to the mathematical model of RO, the transmembrane pressure and RO feed flow rate are two 

decision variables associated with the RO plant through which the agent can control the permeate 

flow rate, rejection percentage, and power consumption of the desalination unit. For the PRO 

model, the pressure, flow rate, and concentration of draw and PRO feed solutions are required to 

estimate the power that can be generated. In this study, we assume that the properties and flow rate 

of the PRO feed solution are constant and known. Moreover, as discussed in Chapter 3, the RO 

retentate is used as the draw solution of PRO; hence, the agent can control the output power of 

PRO via the RO feed flow rate and transmembrane pressure as well. The power of the energy 

storage system is another decision variable by which charging and discharging of batteries is 
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performed, and the agent can manage the operation of the energy storage system using this 

variable. The imported power from the external grid is the last variable that should be determined 

during operation and can be found using the power balance equation. As discussed in Chapter 3, 

by determining the transmembrane pressure, RO feed flow rate, and battery power, the main grid 

power can be calculated using Equation 3.4, which eliminates the necessity to consider it as one 

of the decision variables. Therefore, the action can be defined as follows: 

 𝑎𝑡 = [𝑄𝑓,𝑅𝑂
(𝑡) , Δ𝑃𝑅𝑂

(𝑡), 𝑃𝐵
(𝑡)] (4.1) 

where 𝑎𝑡 is the action selected by the agent at timestep  . Additionally, due to the constraints of 

the hybrid system’s devices, the inequality constraints mentioned in Equation 3.5 through Equation 

3.9 are considered. 

The reward function plays a crucial role in the training of reinforcement learning algorithms. This 

function can be regarded as an evaluation metric for assessing the performance of the learned 

policy [52]. Hence, it is of great significance to define the reward function so that we convey the 

objectives of the optimization and constraints of the problem to the agent. As mentioned in 

previous sections, we intend to design an energy management system to minimize the supplied 

power from the external grid while maximizing the permeate flow rate and contaminant removal 

efficiency. In addition, the control scheme that the agent learns should violate none of the 

mentioned constraints. Accordingly, to take all of these points into consideration, we define a 

reward function of the following form: 

 𝑟𝑡 = 𝑤1𝑟1 + 𝑤2𝑟2 + 𝑤3𝑟3 + 𝑤4𝑟4 +𝑤5𝑟5 (4.2) 

As can be observed in Equation 4.2, the reward signal emitted by the environment at each timestep 

is the weighted sum of five sub-rewards, each examining the agent’s performance in different 

aspects. The weights represent the contribution of each sub-reward function to the total reward 𝑟𝑡. 

To assess the performance of the agent in terms of water production and interactions with the 

external grid, we utilize the ratio of supplied power from the main grid to the permeate flow rate 

to define the 𝑟1 function as follows: 

 𝑟1 =
−(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)

𝑟1
∗

|𝑃𝐺𝑟𝑖𝑑
(𝑡) |

𝑄𝑝
(𝑡)

+ 𝑟𝑚𝑎𝑥  (4.3) 



54 

 

where 𝑄𝑝
(𝑡)

 is the permeate flow rate. The function 𝑟1 maps the ratio of 
|𝑃𝐺𝑟𝑖𝑑

( )
|

𝑄𝑝
( )  to a number between 

𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛 by comparing this ratio with the reference value 𝑟1
∗. It is evident that values of 𝑟1 

can exceed 𝑟𝑚𝑎𝑥 or become less than 𝑟𝑚𝑖𝑛; however, the value of 𝑟1
∗ is selected in a way that 𝑟1 

lies in the range of 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥 most of the time. The optimum value of the 
|𝑃𝐺𝑟𝑖𝑑

( )
|

𝑄𝑝
( )  is zero since 

our aim is to minimize 𝑃𝐺𝑟𝑖𝑑
(𝑡)

 and maximize 𝑄𝑝
(𝑡)

. Therefore, the actions that result in small values 

of 
|𝑃𝐺𝑟𝑖𝑑

( )
|

𝑄𝑝
( )  will receive the highest score (i.e., 𝑟𝑚𝑎𝑥), while corresponding scores of actions with high 

values of 
|𝑃𝐺𝑟𝑖𝑑

( )
|

𝑄𝑝
( )  (close to 𝑟1

∗) would be around 𝑟𝑚𝑖𝑛. It is worth mentioning that using the 
𝑃𝐺𝑟𝑖𝑑
( )

𝑄𝑝
( )  ratio 

to calculate the function 𝑟1 would not be wise since, in that case, negative values of 𝑃𝐺𝑟𝑖𝑑 will lead 

to scores higher than 𝑟𝑚𝑎𝑥, signaling to the agent that the lower the 𝑃𝐺𝑟𝑖𝑑, the better the 

performance. However, negative values of 𝑃𝐺𝑟𝑖𝑑 indicate that the agent is not using the available 

solar energy efficiently since the summation of the net power consumption of the RO-PRO system 

and battery power becomes less than 𝑃𝑃𝑉 (see Equation 3.4), suggesting that instead of utilizing 

the free solar energy to increase the permeate flow rate or storing energy in batteries, the agent 

decides to neglect the excessive PV power. Hence, to maintain the balance between power 

consumption and generation and fully exploit the PV power, the absolute value of 
𝑃𝐺𝑟𝑖𝑑
( )

𝑄𝑝
( )  is used to 

calculate the function 𝑟1. Moreover, to further emphasize the importance of keeping 𝑃𝐺𝑟𝑖𝑑
(𝑡)

 close to 

zero, the 𝑟2 and 𝑟3 functions are defined as follows: 

 𝑟2 = {
𝑟𝑚𝑎𝑥, |𝑃𝐺𝑟𝑖𝑑

(𝑡) | < 𝑟2
∗

0, |𝑃𝐺𝑟𝑖𝑑
(𝑡) | ≥ 𝑟2

∗
 (4.4) 

 𝑟3 = {
0, |𝑃𝐺𝑟𝑖𝑑

(𝑡) | < 𝑃𝐺𝑟𝑖𝑑
∗

−𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

𝑟3
∗ (|𝑃𝐺𝑟𝑖𝑑

(𝑡) | − 𝑃𝐺𝑟𝑖𝑑
∗ ) + 𝑟𝑚𝑖𝑛, |𝑃𝐺𝑟𝑖𝑑

(𝑡) | ≥ 𝑃𝐺𝑟𝑖𝑑
∗

 (4.5) 

By using the 𝑟2 function, the agent achieves the score 𝑟𝑚𝑎𝑥 when the main grid power is between 

−𝑟2
∗ and 𝑟2

∗, and by defining the 𝑟3 function, the agent realizes that if the absolute value of the 
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imported power from the main grid exceeds 𝑃𝐺𝑟𝑖𝑑
∗ , lower rewards will be obtained. To evaluate the 

agent’s performance in terms of contaminant removal efficiency, we define the 𝑟4 function: 

 𝑟4 =
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

𝑟4
∗ (𝑅 − 𝑅∗) + 𝑟𝑚𝑖𝑛 (4.6) 

where 𝑅 is the rejection percentage that is calculated using the following equation: 

 𝑅 = (1 −
𝐶𝑝
(𝑡)

𝐶𝑓
)100 (4.7) 

Equation 4.7, similar to the function 𝑟1, maps the obtained rejection percentage to a reward in the 

range of 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥. 𝑟4
∗ and 𝑅∗ are two reference parameters whose values are selected according 

to the characteristics of RO membranes and solute rejections we expect from the RO desalination 

plant. Finally, to take the constraint of the battery SOC into account, the following definition is 

considered for the function 𝑟5: 

 𝑟5 = {

−(𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶(𝑡 1)), 𝑆𝑂𝐶(𝑡 1) < 𝑆𝑂𝐶𝑚𝑖𝑛

−(𝑆𝑂𝐶(𝑡 1) − 𝑆𝑂𝐶𝑚𝑎𝑥), 𝑆𝑂𝐶(𝑡 1) > 𝑆𝑂𝐶𝑚𝑎𝑥

0, 𝑂 ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.8) 

According to Equation 4.8, the total rewards received by the agent decrease if the taken actions 

lead to a SOC higher than 𝑆𝑂𝐶𝑚𝑎𝑥 or lower than 𝑆𝑂𝐶𝑚𝑖𝑛. As can be observed, the penalty for 

violating this constraint is equal to the difference between the new SOC and the maximum 

(minimum) value considered for the battery SOC. Also, in these cases where the obtained power 

for the energy storage system results in SOC outside the defined interval, we bound the battery 

power to keep the SOC at the upper or lower limits. The reference values and weights of the sub-

reward functions are carefully selected based on a trial-and-error approach and are tabulated in 

Table 4.1. 

In each episode, the agent starts the simulation at 12 am and controls the devices for 7 days, 

meaning that each episode comprises 168 timesteps. However, it is assumed that if, after 23 hours, 

the ratio of the total supplied energy from the external grid to the total produced water is higher 

than 10 kWh/m3, then the episode is terminated. The environment is designed so that every four 

episodes, one random day in each season is selected as the starting point (the order of seasons is 

also random). 
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Table 4.1. Parameters of the reward function 

Parameter Value 

𝑟𝑚𝑖𝑛 0 

𝑟𝑚𝑎𝑥 1 

𝑟1
∗ 4 kWh/m3 

𝑟2
∗ 10 W 

𝑟3
∗ 800 W 

𝑃𝐺𝑟𝑖𝑑
∗  200 W 

𝑟4
∗ 4.34 

𝑅∗ 95 

𝑆𝑂𝐶𝑚𝑖𝑛 20 

𝑆𝑂𝐶𝑚𝑎𝑥 80 

𝑤1 9 

𝑤2 8 

𝑤3 8 

𝑤4 5 

𝑤5 1 

 

4.1.2 CNN-SAC Algorithm 

The agent interacts with the environment to perceive the system’s structure and the purpose of the 

training to carry out the optimization in the predefined direction. According to the formulation 

discussed in the previous section, the state and action spaces are continuous in this study. The 

classical reinforcement learning algorithms do not apply to problems with high-dimensional 

continuous state and action spaces [63]. The combination of reinforcement learning with deep 

neural networks, known as deep reinforcement learning, boosts the learning process and allows us 

to tackle problems with high-dimensional continuous state and action spaces through automatic 

pattern extraction [63], [85]. In this study, we utilize the soft actor-critic (SAC) algorithm [69] as 

the base model of the proposed energy management system and modify the architecture of its 

neural networks to address the partial observability involved in the system. SAC can be categorized 

as a model-free deep reinforcement learning algorithm as the state transition probability and 

reward function are not a requisite for the training of this model. As its name implies, this algorithm 

employs the actor-critic architecture where the actor maps the states to actions, and the critic 

evaluates the state or action values of the actor policy and helps the actor network with the 

improvement of the policy. One of the distinctive features of the SAC algorithm is that, in contrast 
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to standard reinforcement learning models, it maximizes both the expected entropy of the policy 

and the expected return to optimize the policies. Specifically, based on the maximum entropy 

formulation, the agent learns a policy that maximizes the summation of the expected sum of 

rewards and 𝛼ℋ(𝜋), where ℋ is the entropy and 𝛼 is the temperature parameter through which 

the relative importance of the entropy against the reward can be controlled. This formulation 

significantly enhances the exploration and robustness of the algorithm [69]. 

In the SAC algorithm, the Q-function (critic) 𝑄𝜃, state value function 𝑉𝜓, and stochastic policy 𝜋𝜙 

are parameterized by means of deep neural networks whose parameters are 𝜃, 𝜓, and 𝜙, 

respectively. Training a separate function approximator for the state value function brings more 

stability to the learning process. This network is trained simultaneously with other neural networks 

by minimizing the following loss function: 

 𝐽𝑉 = 𝔼 [
1

2
(𝑉𝜓(𝑠𝑡) − 𝔼[𝑄𝜃(𝑠𝑡, 𝑎𝑡) − log 𝜋𝜙(𝑎𝑡|𝑠𝑡)])

2
] (4.9) 

The update of the Q-function parameters is carried out by minimizing the soft Bellman residual: 

 𝐽𝑄 = 𝔼 [
1

2
(𝑄𝜃(𝑠𝑡, 𝑎𝑡) − �̂�(𝑠𝑡, 𝑎𝑡))

2

] (4.10) 

where �̂�(𝑠𝑡, 𝑎𝑡) is defined as follows: 

 �̂�(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝔼[𝑉�̅�(𝑠𝑡 1)] (4.11) 

In Equation 4.11, 𝑉�̅� is the target value network whose weights can be updated by gradually 

tracking the weights of the state value network 𝑉𝜓 via soft update: 

 �̅� ← 𝜏𝜓 + (1 − 𝜏)�̅� (4.12) 

where 𝜏 is the soft update parameter. In this study, the policy is modeled as a Gaussian whose 

mean and standard deviation are given by the policy network. The parameters of the policy network 

are updated by minimizing the following loss function: 

 𝐽𝜋 = 𝔼[log 𝜋𝜙(𝑎𝑡|𝑠𝑡) − 𝑄𝜃(𝑠𝑡, 𝑎𝑡)] (4.13) 

Value-based reinforcement learning models are prone to overestimation bias in which high values 

are estimated for bad states. This phenomenon degrades the performance of actor-critic algorithms, 

resulting in suboptimal policy updates. To alleviate this problem, the SAC algorithm employs two 

Q-functions with parameters 𝜃𝑖 and trains them separately. Then, the minimum of the Q-functions 
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is taken to calculate the loss functions of the policy and value networks. Moreover, the SAC 

algorithm makes use of a replay buffer to utilize off-policy data for the training of the value 

network, policy network, and Q-function networks. Specifically, at each timestep, the state, action, 

reward, and new state are stored in a replay buffer, and, in training steps, random batches of data 

are sampled from the replay buffer to update the neural networks. 

As discussed in the prior subsection, we provide the agent with a history of PV data to create a 

more accurate depiction of the system’s state. However, it is of great significance to utilize an 

effective method to extract necessary features from the historical data to make the interpretation 

of the extracted information less challenging. To this end, we introduce 1-dimensional 

convolutional neural networks (1-D CNNs) to the function approximators of the SAC algorithm. 

1-D CNNs have almost a similar structure to 2-D CNNs that are widely used for computer vision 

problems [86]. In the case of sequential data, we can treat the time as a spatial dimension, similar 

to dimensions of 2-D images. In the convolutional layer of 1-D CNNs, a kernel is convolved with 

the sequential data and calculates the weighted sum of the data points it observes. The components 

of the kernel are the weights that will be updated by the backpropagation process. Also, several 

kernels can be used in a convolutional layer to improve the performance in terms of recognizing 

the local patterns hidden in the historical PV data. The structure of the Q-function networks, value 

network, and actor network are illustrated in Figure 4.1. As can be observed in Figure 4.1(a), the 

historical PV data is fed into a 1-D CNN with two convolutional layers. The extracted features by 

the convolutional layers are then concatenated with the output of a dense layer whose inputs are 

the battery SOC and actions. Subsequently, the concatenated tensor is given to a neural network 

with three dense layers to estimate the action-value function. The value network has almost the 

same architecture; however, the actions are not fed into the input layer of this network as they are 

not needed. The actor network comprises the same layers considered for the value network except 

for the output layer, where two separate dense layers are considered for outputting the mean and 

standard deviation of the Gaussian distribution associated with each action variable. During the 

training of the algorithm, we take samples from the Gaussian distributions to determine the action. 

However, for evaluating the trained model, we make the final policy deterministic and use the 

mean of the distributions. Also, the hyperbolic tangent function is used to bound the Gaussian 

samples (or means) between -1 and 1. 
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Figure 4.1. (a) Structure of the Q-function (critic) networks, (b) Structure of the value network, (c) 

Structure of the actor network. In the first panel, 𝑎1, 𝑎2, and 𝑎3 denote the action variables. In the last 

panel, 𝜇 and 𝜎 represent the mean and standard deviation of Gaussian distributions, respectively. 
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We call this new model, whose neural networks are modified to extract information favorable to 

value, critic, and actor networks, the CNN-SAC algorithm. Figure 4.2 demonstrates the training 

process of the proposed method. The actor network determines the action according to the provided 

historical PV data by the environment and current battery SOC. The action is executed in the 

environment, and the obtained reward, the performed action as well as previous and new historical 

data and battery SOC are stored in the replay buffer. Then, a random batch of data is sampled from 

the memory for the training of the neural networks. The critic values are calculated based on the 

previously sampled states and actions (according to the current policy), and the minimum value is 

taken to find the gradients necessary to update of the value network. After that, the critic networks 

are updated separately using the same target values calculated based on the target value network. 

Next, the loss function of the actor network is calculated according to the minimum of critic values 

and logarithm of the probabilities of the actions sampled from the current policy. Lastly, the target 

value network is updated via soft update. Once the networks are updated, the actor network 

delivers the action of the new observation, and this process continues until the end of the episode. 

Table 4.2 and Table 4.3 detail the hyperparameters of the CNN-SAC algorithm and architecture 

of the neural networks, respectively. 

 

Figure 4.2. The training process of CNN-SAC algorithm 
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Table 4.2. Hyperparameters of the CNN-SAC algorithm 

Hyperparameter Value 

Discount factor (𝛾) 0.99 

Temperature parameter (𝛼) 0.1 

Target networks update rate (𝜏) 0.005 

Batch size 256 

Replay buffer size 1000000 

Optimizer Adam 

Nonlinearity ReLU 

Actor network learning rate 0.0003 

Critic network learning rate 0.0003 

Value network learning rate 0.0003 

 

Table 4.3. The architecture of the CNN-SAC algorithm neural networks 

Network 
Layers 

Convolution 1D Convolution 1D Flatten Dense Dense Dense 

Actor 
64 (kernel size=12, 

stride=2) 

32 (kernel size=12, 

stride=1) 
 128 256 256 

Critic 
64 (kernel size=12, 

stride=2) 

32 (kernel size=12, 

stride=1) 
 128 256 256 

Value 
64 (kernel size=12, 

stride=2) 

32 (kernel size=12, 

stride=1) 
 128 256 256 

 

4.2 Results and Discussion 

We utilize the CNN-SAC algorithm to solve the reinforcement learning problem defined for the 

hybrid PV-RO-PRO system. The CNN-SAC algorithm is implemented using the PyTorch deep 

learning framework on a personal computer with an NVIDIA GeForce RTX 2080 Ti graphics card 

and 32GB RAM. 
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4.2.1 Evaluation of CNN-SAC 

In this section, the proposed CNN-SAC algorithm is evaluated by analyzing the accumulated 

rewards obtained over the course of training. To benchmark the CNN-SAC algorithm, we compare 

its performance against four state-of-the-art deep reinforcement learning algorithms: Deep 

Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), Twin Delayed Deep 

Deterministic Policy Gradient (TD3), and vanilla SAC. At each timestep  , the observation 𝑜𝑡 of 

these algorithms comprises the output power of the PV system at the previous timestep as well as 

the current battery SOC.  Additionally, we benchmark CNN-SAC against the CNN-TD3 algorithm 

in which a 1-D CNN (with the same architecture as the 1-D CNN of CNN-SAC) is added to the 

critic and actor networks of the TD3 algorithm. An in-depth comparison between CNN-SAC and 

vanilla SAC is made in Section 4.2.3, where we investigate the importance of introducing the 1-D 

CNN to the neural networks of SAC. The hyperparameters and neural networks architecture of the 

benchmark algorithms are provided in Table 4.4 and Table 4.5, respectively. 

In order to examine the CNN-SAC and baseline algorithms in terms of learning performance, we 

train four different instances with four different random seeds for each algorithm. Each instance is 

run for 6,000 episodes (more than 1 million timesteps) and is evaluated in 8 episodes every 8,000 

timesteps. We design the evaluation process in a way that the performance of the agent is tested 

twice in each season. The learning curve of the previously mentioned algorithms is illustrated in 

Figure 4.3. A separate panel is considered for the PPO algorithm to have a better visualization of 

the learning curves. In this figure, the solid curves indicate the mean value of the cumulative 

rewards over all test episodes and random seeds, and the shaded region represents the standard 

deviation of the average accumulated rewards (obtained in each evaluation step) over the four 

trials. As can be observed in Figure 4.3(a), the total rewards obtained by the CNN-SAC algorithm 

are lower than other benchmark methods (except for PPO) during the first stages of training. 

However, after roughly 40,000 timesteps, the cumulative scores start to increase monotonically 

and reach a plateau around the 0.7 millionth timestep with the highest cumulative reward compared 

to all baseline methods. After the CNN-SAC algorithm, the CNN-TD3 and TD3 exhibit better 

performance than the rest of the models, respectively.  
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Table 4.4. Hyperparameters of benchmark algorithms. In this table, 𝑁(𝜇, 𝜎) represents a Gaussian 

distribution with a mean value of 𝜇 and a standard deviation of 𝜎. 

Hyperparameter 
Algorithm 

CNN-TD3 TD3 SAC PPO DDPG 

Discount factor (𝛾) 0.99 0.99 0.99 0.99 0.99 

Temperature parameter (𝛼) - - 0.1 - - 

Target networks update rate (𝜏) 0.005 0.005 0.005 - 0.001 

Batch size 100 100 256 512 64 

Replay buffer size 1000000 1000000 1000000 - 1000000 

Optimizer Adam Adam Adam Adam Adam 

Nonlinearity ReLU ReLU ReLU ReLU ReLU 

Actor network learning rate 0.001 0.001 0.0003 0.0001 0.0001 

Critic network learning rate 0.001 0.001 0.0003 - 0.001 

Value network learning rate - - 0.0003 0.0001 - 

Actor network exploration 

noise 
𝑁(0, 0.05) 𝑁(0, 0.05) - - 𝑁(0, 0.1) 

Target actor network noise 𝑁(0, 0.2) 𝑁(0, 0.2) - - - 

Target actor network noise clip 

boundary 
0.5 0.5 - - - 

Target networks update delay 2 2 - - - 

Actor network update delay 2 2 - - - 

Generalized advantage 

estimation parameter 
- - - 0.95 - 

Number of epochs - - - 2 - 

Horizon (T) - - - 4096 - 

Epsilon (𝜖) - - - 0.2 - 
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Table 4.5. Architecture of the benchmark algorithms neural networks. The kernel size of convolutional 

layers is 12. 

Algorithm Network 
Layers 

Convolution 1D Convolution 1D Flatten Dense Dense Dense 

CNN-TD3 
Actor 64 (stride=2) 32 (stride=1)  128 400 300 

Critic 64 (stride=2) 32 (stride=1)  128 400 300 

TD3 
Actor - - - - 400 300 

Critic - - - - 400 300 

SAC 

Actor - - - - 256 256 

Critic - - - - 256 256 

Value - - - - 256 256 

PPO 
Actor - - - - 512 512 

Value - - - - 512 512 

DDPG 
Actor - - - - 512 512 

Critic - - - - 512 512 

 

 

Figure 4.3. The learning curve of the CNN-SAC and baseline algorithms 
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An essential point worth mentioning is the effects of the added 1-D CNN to SAC and TD3. We 

can observe that the convolutional neural network enhances the learning speed, final performance, 

and stability across the random seeds, especially when it comes to the SAC algorithm, as there is 

a huge gap between the final scores of CNN-SAC and vanilla SAC. Also, by comparing the 

learning curves of CNN-TD3 and TD3, we can notice that the stability has improved significantly 

since the CNN-TD3 algorithm performs more consistently than TD3 throughout the learning 

process. These results clearly demonstrate the critical role the 1-D CNN plays in the training 

process. The DDPG algorithm has the highest stability, especially after the 0.2 millionth timestep. 

However, its final performance is not comparable to previous models. Lastly, PPO has the poorest 

performance in terms of both stability and obtained rewards among all methods, as shown in 

Figure 4.3(b). 

In addition to investigating the learning curves, we carry out a quantitative analysis of the last 10 

evaluations of each method. Specifically, the overall average accumulated reward (over the last 10 

evaluations), standard deviation (over the last 10 evaluations), best instance accumulated reward, 

as well as maximum and minimum average accumulated rewards, come under scrutiny to compare 

the stability and final performances of the algorithms. If we assume that 𝑅𝑛
(𝑖)

 is the average 

accumulated reward of the ith instance at the nth evaluation step, then the mentioned parameters 

can be calculated via the following equations: 

  
Overall average accumulated reward =

1

10𝐼
∑ ∑ 𝑅𝑛

(𝑖)𝐼
𝑖=1

𝑁
𝑁−9  (4.14) 

 
Standard deviation = √ 1

10𝐼−1
∑ ∑ (𝑅𝑛

(𝑖)
− 𝜇)

2
𝐼
𝑖=1

𝑁
𝑁−9  (4.15) 

 
Maximum average accumulated reward = max

𝑛
∑

1

𝐼
𝑅𝑛
(𝑖)𝐼

𝑖=1  (4.16) 

 
Minimum average accumulated reward = min

𝑛
∑

1

𝐼
𝑅𝑛
(𝑖)𝐼

𝑖=1  (4.17) 

 
Best instance accumulated reward = max

𝑛
max

𝑖
𝑅𝑛
(𝑖)

 (4.18) 

where 𝐼 is the total number of instances, 𝑁 is the total number of evaluations, and 𝜇 is the overall 

average accumulated reward calculated using Equation 4.14. The evaluation results of CNN-SAC 

and benchmark methods based on the evaluation metrics defined in Equations 4.14-4.18 are 
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presented in Table 4.6. The CNN-SAC algorithm achieves the highest overall and maximum 

average accumulated rewards with values of 1722.58 and 1752.66, respectively. The difference 

between the overall average accumulated rewards of CNN-SAC and CNN-TD3 (the next-best 

method) is roughly 35%, indicating the superior performance of CNN-SAC to baseline algorithms. 

Furthermore, the best instance accumulated reward obtained by this algorithm is higher than that 

of other methods. The CNN-SAC algorithm provided the lowest standard deviation after DDPG; 

however, this model distinguishes itself from the DDPG algorithm by a large margin in terms of 

overall average accumulated reward. By comparing the results of CNN-SAC and vanilla SAC, the 

substantial enhancement made by the 1-D CNN becomes crystal clear as the overall average 

accumulated reward and standard deviation are improved by 237% and 68%, respectively. This 

improvement reveals that the introduced CNN not only boosts the final performance of SAC but 

also stabilizes this algorithm since less variability is observed across the evaluations. Although the 

minimum average accumulated reward of CNN-SAC is lower than that of all benchmark methods 

(except for PPO), this algorithm manages to promote its policy during the training process and 

accomplish the best final performance in the end. As the evaluation metrics indicate, PPO shows 

the worst performance since it has the lowest overall average accumulated reward and highest 

standard deviation among all methods. According to the results presented in Figure 4.3 and Table 

4.6, it can be concluded that CNN-SAC outperforms the benchmark algorithms in almost every 

aspect. 

Table 4.6. Comparing CNN-SAC and benchmark methods. The best value obtained for each evaluation 

metric is highlighted in bold text. 

Evaluation metric CNN-SAC CNN-TD3 TD3 SAC DDPG PPO 

Overall average 

accumulated reward 
1722.58 1278.06 1058.04 511.39 -7.87 -3310.40 

Standard deviation 126.83 166.19 146.13 396.85 47.33 1438.59 

Maximum average 

accumulated reward 
1752.66 1373.88 1153.97 598.68 795.17 -3078.33 

Minimum average 

accumulated reward 
-2555.38 -257.68 -961.06 -1578.80 -93.33 -20665.25 

Best instance 

accumulated reward 
2011.62 1761.83 1431.27 1401.49 1176.06 -1114.89 
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4.2.2 Simulation Results of CNN-SAC 

In this section, the simulation results obtained using the CNN-SAC algorithm are reviewed, and 

the effectiveness of the proposed method in terms of power scheduling, utilization of available 

solar power, and water production are analyzed. In order to provide a better insight into the CNN-

SAC algorithm performance and evaluate the simulation results in different aspects, four 

performance indicators (PI) are defined as follows:  

 
𝑃𝐼1 =

∫ max(𝑃𝐺𝑟𝑖𝑑, 0) 𝑑 
𝑇

0

∫ 𝑄𝑝𝑑 
𝑇

0

 (4.19) 

 
𝑃𝐼2 = 100(1 −

1

𝐶𝑓

∫ (𝑄𝑝𝐶𝑝)𝑑 
𝑇

0

∫ 𝑄𝑝𝑑 
𝑇

0

) (4.20) 

 
𝑃𝐼3 =

∫ (𝑃𝑅𝑂 − 𝑃𝑃𝑅𝑂)𝑑 
𝑇

0

∫ 𝑄𝑝𝑑 
𝑇

0

 (4.21) 

 
𝑃𝐼4 = ∫ min(𝑃𝐺𝑟𝑖𝑑, 0)𝑑 

𝑇

0

 (4.22) 

where 𝑇 is the total time of the simulation. The first PI measures how much energy on average has 

been supplied from the main grid for producing 1 m3 of potable water. Small values of PI1 show 

that the agent is capable of relying only on the PV system to provide the required power of the RO 

process. The second PI is the obtained total rejection percentage and represents the quality of the 

produced water. PI3 is the net specific energy consumption of the RO-PRO system and determines 

how much energy on average has been consumed in the RO-PRO system during the simulation to 

produce 1 m3 of water. The last PI measures the total amount of solar energy that has not been 

utilized during the simulation and indicates to what degree decisions made by the agent have 

resulted in the waste of available, free energy provided by the PV system. 

In order to demonstrate the performance of the proposed CNN-SAC algorithm in different weather 

conditions and scenarios, the simulation results of the agent in two episodes with various levels of 

solar energy availability and fluctuations are provided in Figure 4.4 and Figure 4.5. In these 

figures, to better demonstrate the simulation results, only the performance of the CNN-SAC 

method in the first 73 timesteps (hours) of the episodes are depicted. It should be pointed out that 

the positive values of the grid power are shown in these figures. As can be observed in Figure 
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4.4(a), at the beginning of the episode, the batteries are discharged immediately to impede the 

increase of the main grid power; however, since the initial SOC is 30%, the main grid power is 

increased inevitably after two hours. After that batteries’ SOC reaches their minimum value (20%), 

the power of this device decreases, which shows that the CNN-SAC algorithm observes the 

constraints considered for the energy storage system and does not allow any further discharging. 

Once the PV power increases, we can notice an increase in the power consumption of RO and 

SOC of batteries and a sudden reduction in the main grid power. According to Figure 4.4(c) and 

(d), the increase of the RO power consumption can be attributed to the higher feed flow rate and 

transmembrane pressure, which results in a higher permeate flow rate and contaminant removal 

efficiency, as evidenced by Figure 4.4(e) and (f). This power allocation scheme concurs with the 

defined reward function since the agent increases the water production and rejection percentage 

while minimizing the supplied power from the external grid. The energy allocation scheduling of 

the energy storage system demonstrates that a portion of solar energy is stored in batteries during 

high-PV-power hours and discharged almost uniformly during the night. This control scheme 

prevents the CNN-SAC algorithm from increasing the main grid power when the PV power 

becomes zero, in contrast to the first timesteps where enough energy is not stored in the batteries, 

and grid power increases after two hours. This result indicates the essential role of the energy 

storage system in improving the system’s independence from the external grid. An additional point 

that can be discerned from Figure 4.4(a) is the capability of the CNN-SAC algorithm in predicting 

the distribution of solar power. As discussed in the previous section, the observation that the CNN-

SAC method has access to does not include the current output of the PV system. However, with 

solar power fluctuations, the CNN-SAC algorithm quickly adapts itself to the new conditions (that 

does not know of), suggesting that this model predicts the PV power time series without exploiting 

any forecasting model. In Figure 4.5, the results of the proposed method are illustrated for a low-

PV-power scenario. The first point we can notice is that the power consumption of RO is lower 

than the previous scenario due to the absence of sufficient solar energy. In this case, the agent 

follows almost the same procedure for the energy storage system to prevent the increase of main 

grid power during zero-PV-power hours. As shown in Figure 4.5(a), the storage of energy during 

the day allows the agent to keep the power consumption of RO almost constant and impede a 

significant reduction in permeate flow rate. This figure also manifests that the CNN-SAC 

algorithm predicts the pattern of solar power generation since the feed flow rate and 
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transmembrane pressure are adjusted according to the current output of the PV system to which 

the algorithm does not have access. 

 

Figure 4.4. Simulation results of the CNN-SAC algorithm for the high-PV-power scenario: (a) Power of 

different devices, (b) Battery SOC, (c) Feed flow rate, (d) Transmembrane pressure, (e) Water production 

rate, (f) Rejection percentage 
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Figure 4.5. Simulation results of the CNN-SAC algorithm for the low-PV-power scenario: (a) Power of 

different devices, (b) Battery SOC, (c) Feed flow rate, (d) Transmembrane pressure, (e) Water production 

rate, (f) Rejection percentage 

 

In addition to the comparative evaluation conducted in the prior subsection, we validate the CNN-

SAC algorithm against the benchmark methods by taking the PI values obtained in simulations 

into account. To make a comprehensive comparison between these models, we investigate three 

case studies based on the PV dataset: an episode with high-PV-power days, an episode with low-
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PV-power days, and an episode containing both high- and low-PV-power days. The performance 

indicators obtained using the proposed algorithm and baseline methods for the case studies are 

tabulated in Table 4.7. It should be pointed out that the best instance of each algorithm is used to 

carry out these simulations. The CNN-SAC model achieves the lowest PI1 among all benchmark 

methods with 0.156 kWh/m3, 1.203 kWh/m3, and 0.45 kWh/m3 for the first, second, and third case 

studies, respectively. This performance indicates that CNN-SAC is the most capable model 

compared to the baseline methods in terms of minimum interaction with the external grid and 

utilization of energy storage system for efficient power scheduling. Moreover, the proposed model 

has the best performance in fully exploiting the available solar energy since the lowest PI4 belongs 

to this algorithm in all case studies.  

Table 4.7. Simulation results of CNN-SAC and baseline algorithms. The unit of 𝑃𝐺𝑟𝑖𝑑, 𝑄𝑝, 𝑃𝐼1, 𝑃𝐼3, 𝑃𝐼4 

are kWh, m3, kWh/m3, kWh/m3, and kWh, respectively.  

Case study Algorithm 𝑃𝐺𝑟𝑖𝑑 𝑄𝑝 𝑃𝐼1 𝑃𝐼2 𝑃𝐼3 𝑃𝐼4 

High-PV-power days 

CNN-SAC 12.187 77.937 0.156 96.336 3.099 3.053 

CNN-TD3 13.894 86.673 0.160 96.503 2.807 3.669 

TD3 41.826 95.158 0.440 96.772 2.910 3.953 

SAC 41.319 92.176 0.448 96.438 2.899 7.636 

DDPG 102.186 103.388 0.988 97.099 3.188 15.745 

PPO 176.710 120.2 1.470 97.200 2.880 74.729 

Low-PV-power days 

CNN-SAC 67.131 55.784 1.203 95.099 2.782 2.559 

CNN-TD3 80.049 62.754 1.276 95.465 2.695 7.146 

TD3 102.332 71.320 1.435 95.903 2.742 2.617 

SAC 126.842 78.913 1.607 96.145 2.792 2.961 

DDPG 131.113 77.604 1.690 96.270 2.885 6.233 

PPO 258.237 117.840 2.191 97.246 2.913 14.421 

High- and low-PV-power 

days 

CNN-SAC 28.810 64.027 0.450 95.598 2.828 2.236 

CNN-TD3 45.118 71.752 0.629 95.897 2.717 7.806 

TD3 67.913 79.986 0.849 96.293 2.820 5.034 

SAC 88.425 84.586 1.045 96.260 2.847 6.940 

DDPG 119.017 90.167 1.320 96.712 2.996 16.257 

PPO 215.941 119.453 1.808 97.236 2.899 36.860 
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The CNN-TD3 method achieves the lowest net specific energy consumption (PI3) by a slight 

margin compared to the rest of the models; however, this model struggles to efficiently use the 

solar energy in the second and third case studies as PI4 of this model is roughly three times higher 

than that of CNN-SAC. Regarding contaminant removal efficiency, the PPO algorithm has the 

best performance, which can be attributed to the fact that this model mostly focuses on improving 

the rejection percentage to maximize its rewards. The PI1 and PI4 obtained by the PPO model 

indicate that it struggles to improve its performance in those aspects. The maximum difference 

between the rejection percentage of CNN-SAC and that of PPO is only 2.2%, showing that the 

performance of the proposed method in this regard is slightly worse than the best-achieved value. 

All in all, we can conclude that the CNN-SAC algorithm outperforms the benchmark methods in 

all case studies. 

Finally, to compare the effectiveness of CNN-SAC with non-reinforcement learning-based 

models, we benchmark this algorithm against the IEMS proposed in Chapter 3. We compare the 

performance of these methods for the same weather conditions as the ones reported in our previous 

investigation. The results of these scenarios are presented in Table 4.8. The CNN-SAC algorithm 

outperforms IEMS in the case of two consecutive sunny days as it achieves a 24% lower PI1 while 

obtaining a similar rejection percentage and net specific energy consumption. In the case of ten 

consecutive days, the CNN-SAC model decreases the first performance indicator from 0.835 

kWh/m3 to 0.616 kWh/m3, accomplishing 26% improvement compared to IEMS. However, in the 

second scenario, IEMS achieves a slightly lower (roughly 10%) PI1 than CNN-SAC, which can be 

attributed to the lower net specific energy consumption obtained by this benchmark method. It is 

worth mentioning that IEMS is not a simple baseline model but rather an extremely powerful 

energy management system that effectively exploits forecasted PV power data to optimize the 

hybrid system’s performance. Hence, it can be concluded that the CNN-SAC algorithm can 

outperform IEMS in most cases and achieve comparable performance in low-PV-power scenarios. 
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Table 4.8. Comparison of simulation results between CNN-SAC and IEMS 

Weather Method 𝑃𝐼1  [
𝑘𝑊ℎ

𝑚3 ]  𝑃𝐼2 𝑃𝐼3  [
𝑘𝑊ℎ

𝑚3 ] 

Sunny 
CNN-SAC 0.389 96.408 3.158 

IEMS 0.514 96.920 3.133 

Cloudy 
CNN-SAC 1.999 94.659 2.767 

IEMS 1.818 95.130 2.587 

10 days 
CNN-SAC 0.616 95.450 2.805 

IEMS 0.835 96.080 2.839 

 

Additionally, to examine the consistency and robustness of the CNN-SAC algorithm in all seasons, 

we run a separate simulation for each season entirely. Table 4.9 details the results of these 

simulations. The proposed method achieved the lowest PI1 and highest contaminant removal 

efficiency in spring. In this season, the supplied power from the external grid is lower than in other 

seasons, while the highest total produced water belongs to this case. This performance has led to 

a quite noticeable difference between the first performance indicator acquired in spring and other 

seasons. A likely explanation is the different levels of solar power intermittency in spring 

compared to other seasons. The fluctuations of solar power in spring are lower than in other cases, 

making the exploitation of solar power much easier for the CNN-SAC algorithm. The first, second, 

and third performance indicators obtained in summer, fall, and winter demonstrates that the 

proposed method has almost identical performance in these cases. The maximum difference 

between PI1 of the last three seasons is 20% that takes place between PI1 of fall and winter, which 

can be justified by the different meteorological conditions of these seasons. An additional point 

we can notice in Table 4.9 is the considerable difference between PI4 obtained in summer and 

other seasons. This performance can be attributed to the fact that summer had the highest solar 

power fluctuations among the rest of the seasons, which has resulted in the worst performance in 

terms of the utilization of solar power. 
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Table 4.9. Performance of CNN-SAC in different seasons 

Season 𝑃𝐺𝑟𝑖𝑑  [𝑘𝑊ℎ] 𝑄𝑝 [𝑚
3] 𝑃𝐼1  [

𝑘𝑊ℎ

𝑚3 ]  𝑃𝐼2 𝑃𝐼3  [
𝑘𝑊ℎ

𝑚3 ] 𝑃𝐼4 [𝑘𝑊ℎ] 

Spring 190.920 986.614 0.194 96.245 3.057 69.744 

Summer 299.947 985.723 0.304 96.211 3.014 111.676 

Fall 310.708 922.032 0.337 95.980 2.978 60.811 

Winter 237.411 843.575 0.281 95.588 2.840 40.293 

 

4.2.3 Ablation Study 

To analyze the contribution of the 1-D CNN introduced to the SAC algorithm and the importance 

of providing a history of PV data, we further examine the learning curve of CNN-SAC and vanilla 

SAC. Moreover, we train the vanilla SAC algorithm with the historical PV data utilized for training 

the CNN-SAC model in order to observe the essential role that the 1-D CNN plays in extracting 

features from the PV history data. The learning curve of these methods is depicted in Figure 4.6(a). 

As can be observed, the total rewards of the SAC algorithm, whose input is the historical PV data, 

have a sudden increase during the first stages of training and reach a plateau after approximately 

200,000 timesteps. The overall average accumulated reward of this model is roughly 1044, 

showing a 104% improvement with respect to the vanilla SAC method. This finding reveals that 

by providing a history of PV data, the performance of the SAC algorithm is enhanced substantially, 

indicating that our reinforcement learning problem is a POMDP as the SAC algorithm utilizes the 

knowledge of previous observations to create a more accurate depiction of the system’s true state. 

Therefore, it is necessary to provide a history of PV data to tackle the partial observability 

dilemma. Despite the considerable improvement obtained by using the historical PV data, the final 

scores of the CNN-SAC algorithm are incomparable to this model, which can be attributed to the 

added 1-D CNN. The convolutional layers of the CNN-SAC neural networks have a crucial role 

in extracting essential information from the PV power time series that utterly distinguishes this 

algorithm from other models. Hence, it is of great significance to exploit an appropriate feature 

extractor to take advantage of the information hidden in the PV power time series. 
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Figure 4.6. Ablation study: (a) Comparing learning curve of CNN-SAC, vanilla SAC, and vanilla SAC 

with historical PV data, (b) Comparing CNN-SAC and vanilla SAC with the case in which current PV 

power is provided 

Furthermore, we explore the effects of not providing the current output power of the PV system. 

Specifically, we train the CNN-SAC and vanilla SAC algorithms in conditions where these models 

have access to the current PV power and compare their learning curve with that of regular CNN-

SAC and vanilla SAC. The learning curve of these methods is illustrated in Figure 4.6(b). The 

CNN-SAC method, whose input is the current and historical PV data, initially has lower scores 

than CNN-SAC. However, during the last stages of training, its learning curve lies on that of CNN-

SAC, achieving an almost identical overall average accumulated reward to the one obtained by 

CNN-SAC. This result demonstrates that the 1-D CNN used in the function approximators of the 

CNN-SAC algorithm is perfectly capable of compensating for the lack of information about the 

current output of the PV system since the final performance of CNN-SAC with and without current 

PV data are identical. By comparing the learning curve of the SAC methods, the importance of 

current PV data can be studied. As shown in Figure 4.6(b), the average cumulative reward of the 

SAC algorithm that has access to the current PV data is always higher than that of regular SAC 

throughout the training process. Under these conditions, the overall average accumulated reward 

is improved by 92%, indicating that the current output of the PV system is rather influential in the 

final performance and learning speed of the SAC algorithm. Moreover, since the average 

cumulative reward of CNN-SAC is much higher than that of SAC with current PV data, it can be 

deduced that even by having access to the current output of the PV system, the SAC model cannot 

compete with CNN-SAC that does not have access to that information. This again reveals that this 

problem is a POMDP and requires a history of previous observations to improve its performance. 
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4.3 Conclusion 

This study investigated the energy management of the hybrid PV-RO-PRO system using a 

modified version of the SAC algorithm. We formulated the energy management problem as a 

POMDP and introduced 1-D CNNs to the function approximators of this model to cope with the 

partial observability involved in the problem. To examine the effectiveness of the proposed CNN-

SAC algorithm, we benchmarked the learning performance of this model against four actor-critic 

algorithms: DDPG, PPO, vanilla SAC, and TD3. Also, the same 1-D CNN used for CNN-SAC 

was added to the actor and critic networks of the TD3 algorithm to design a more powerful baseline 

method. The evaluations made in the final stages of training demonstrated that the CNN-SAC 

algorithm had the best performance in terms of overall average accumulated reward. Moreover, 

the simulation results of the proposed model obtained in three different case studies were compared 

with those of the benchmark methods. The CNN-SAC algorithm exhibited the best performance 

in terms of exploitation of solar power, minimization of supplied power from the external grid, 

and managing the operation of the energy storage system and outperformed the baseline methods 

in almost all aspects. A comparison between the CNN-SAC model and the energy management 

system proposed in Chapter 3 was made. The results demonstrated that CNN-SAC outperformed 

IEMS in most cases and achieved comparable performance in low-PV-power conditions. The 

ablation study revealed that the introduced 1-D CNN could extract essential information from the 

PV power time series to tackle the partial observability, compensate for the lack of information 

about the current output power of the PV system, and ultimately enhance the SAC algorithm 

performance. It was also substantiated that even by providing the SAC algorithm with the current 

output power of the PV system, the SAC algorithm still required access to a history of PV data to 

improve its performance, indicating that this problem was a POMDP. This study shows the high 

promise of reinforcement learning in the energy management of water desalination plants since 

the proposed model could comprehend the complex structure of the RO-PRO system and 

determine the optimum operating conditions almost instantly. 
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5     Conclusions and Future Work 

5.1 Summary of Contributions and Results 

In this thesis, we explored the optimum energy management of a hybrid grid-connected 

desalination plant comprised of PV, RO, and PRO. Although the energy management of energy 

distribution systems and microgrids have been investigated extensively, energy management of 

PV-powered RO desalination systems has received less attention, especially when it comes to 

designing reinforcement learning-based energy management systems. We developed two AI-

powered methods to solve the PV-RO-PRO multi-objective optimization problem consisting of 

three objectives: minimization of supplied power from the external grid, maximization of potable 

water production, and maximization of total rejection percentage. 

In Chapter 3, an intelligent energy management system based on deep learning techniques and the 

PSO algorithm was developed. Three DNNs using the VMD technique, CNNs, and LSTM 

networks were designed to perform 5-step-ahead PV power forecasting. The defined error metrics 

indicated that the VMD-CNN neural network has the best accuracy among the designed models. 

The proposed IEMS incorporated the predicted PV power for the next five hours into the 

optimization process performed by the PSO algorithm to find the optimum operating conditions 

of the hybrid system at each timestep. The simulation results revealed that the incorporation of 

forecasted PV power data into the optimization process could improve the ratio of the total 

supplied power from the main grid to the total produced water by 43%, showing the importance 

of knowledge of future PV power data for optimum power scheduling. The effects of forecast 

errors of the VMD-CNN model on the optimization process were also studied, and it was found 

that the errors had a minor impact on the direction of the optimization, indicating that the VMD-

CNN network was a suitable choice for solar power generation forecasting. Moreover, the impact 

of forecast horizon on the effectiveness of IEMS was investigated. The results demonstrated that 

by increasing the forecast horizon, better performance could be achieved. However, there is a 

caveat to this conclusion that a higher forecast horizon deteriorates the forecasting accuracy 

inevitably, which can severely degrade the optimization performance. 
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In Chapter 4, we developed a model-free deep reinforcement learning-accelerated energy 

management system to optimize the performance of the PV-RO-PRO system. Model-free 

algorithms are a subset of reinforcement learning algorithms that do not require any model of the 

system, meaning that they are capable of perceiving the structure of the system without utilizing 

any model or prior knowledge about the uncertain parameters. As a result, these algorithms 

eliminate the necessity for a forecasting model to predict solar power generation. Moreover, after 

the training process, these models can determine the optimum or near-optimum actions within 

several milliseconds, making them an efficient and powerful technique for real-time control 

problems. The SAC algorithm was used as the core of the energy management system, and the 

architecture of its function approximators was modified to cope with the partial observability 

dilemma caused by the PV system. Specifically, we introduced 1-D CNNs to the actor, critic, and 

value networks of the SAC algorithm to simplify the feature extraction process of PV power time 

series performed by these networks and provide them with a more accurate depiction of the 

system’s true state. The proposed CNN-SAC algorithm was benchmarked against five deep 

reinforcement learning models: DDPG, PPO, vanilla SAC, vanilla TD3, and CNN-TD3. The 

training results demonstrated that by providing the vanilla SAC algorithm with historical PV data 

and utilizing 1-D CNNs to analyze the time series, the overall average accumulated reward and 

standard deviation of the last ten evaluation scores improved by 237% and 68%, respectively. The 

simulation results revealed that although CNN-SAC did not have access to information regarding 

the current output power of the PV system, it could forecast the distribution of solar power and 

determine the optimum operating conditions accordingly. By studying three case studies, it was 

concluded CNN-SAC has the best performance in terms of efficient exploitation of solar energy 

and power scheduling compared to the baseline methods. The comparison between the simulation 

results of CNN-SAC and IEMS demonstrated that the CNN-SAC algorithm could outperform 

IEMS in most scenarios and achieve similar performance in low-PV-power conditions. The 

ablation study that we carried out revealed that the energy management problem of the PV-RO-

PRO system was a POMDP, and it was necessary to provide the algorithm with historical PV data 

and utilize advanced methods to analyze that information. Also, it was found that even by having 

access to information about the current output power of the PV system, the SAC algorithm still 

needed the historical PV data to improve its performance. 
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5.2 Future Research Directions 

One of the hyperparameters of the proposed CNN-SAC algorithm is the history length considered 

for the PV power time series. This parameter controls the information received by the CNN-SAC 

model regarding the previous output power values of the PV system. Consequently, the value of 

this hyperparameter can significantly affect the learning performance of the proposed algorithm. 

Hence, further investigation on the effects of the history length is recommended to be carried out 

in order to make sure that information sent to the CNN-SAC algorithm is neither limited nor too 

much that complicates the interpretation of historical PV data and degrades the model’s 

performance. 

Moreover, the reinforcement learning algorithm that we utilized in Chapter 4 is a centralized 

algorithm, meaning that a single agent controls devices of the hybrid system. This control 

architecture can become problematic if the communication line between the devices and the agent 

fails. To solve this problem, multi-agent deep reinforcement learning algorithms can be exploited. 

In these algorithms, a group of agents, which share a common environment, interact with each 

other and the environment to improve their own policy. The multiple agents can interact with each 

other either in cooperative or competitive settings. Since the agents' policy changes during the 

training process, the environment becomes non-stationary from the perspective of each individual 

agent, causing learning stability challenges. Consequently, further investigation is required to 

effectively implement these algorithms for solving the energy management problem. 
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