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Abstract 

Receiving false and nuisance alarms is a well known problem in industrial alarm 

systems. The main cause of this problem is poor alarm design which is the result 

of huge number of configured alarms and lack of automatic and analytical design 

methods.  

This study targets deriving analytical methods for designing alarm parameters 

such as alarm limits, alarm deadbands and delay timers. The relation between 

false and missed alarm rates along with chattering is investigated with alarm 

limits and deadbands. There are two equations presented to estimate the optimal 

alarm limit with respect to deadbands and statistical characteristics of the 

process data. 

Since reduction of alarm chattering is a primary goal in redesigning the alarm 

parameters, the analytical relation between chattering with alarm parameters and 

process data is also investigated. The alarm chattering index is derived as a 

mathematical function of alarm limits, deadbands, time delays and statistical 

characteristics of the process data. 
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1 Introduction and literature review 

1.1 Introduction 

Alarms are configured on every industrial plant as part of the monitoring system. 

The most important reason for monitoring industrial processes is safety. On 

average, a major incident occurs in petrochemical plants in every three years. In 

addition to human injuries that are usually occurring during these incidents, huge 

cost of repair and profit loss follow the incidents. By efficient monitoring of the 

plants it is possible to identify the abnormalities in the operation and act 

accordingly to keep the operation in its normal region. This can prevent simple 

malfunctions to develop into severe incidents. 

Environmental issues are the other important reason for monitoring. Severe 

penalties are imposed to industries that exceed the environmental protection 

regulations. There are other important reasons for plant monitoring such as the 

quality of the product and preventing equipment problems and unplanned shut 

downs.  

Due to these reasons alarm systems are designed to inform the plant operators 

of abnormalities in the plant operation or equipment malfunctions. It is supposed 

that by proper operator intervention after any alarm, the operation should get 

back to its normal range and no damage would occur.  

“The processes and practices for determining, documenting, designing, 

operating, monitoring, and maintaining alarm systems” [1] are known as alarm 

management. As an overview, the alarm management lifecycle introduced in the 

ISA standard is shown in Figure 1.1. The stages of this lifecycle are explained 

briefly in the following.  
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Figure 1.1: Alarm management lifecycle introduced in [1] 

An alarm philosophy determines the objective of the alarm system and the 

process to achieve those objectives. It defines the basic principles of the alarm 

system and the processes to be used in each of the other alarm management 

lifecycle stages. For example, the definition of the alarm priority and the 

requirements for change in the alarm system are determined in the philosophy 

document. The philosophy document is prepared before designing of the alarm 

system to specify its requirements and the system that meets the requirements. 

In the identification stage the necessary alarms are identified by using different 

methods such as process hazards analysis, safety requirements specifications, 
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recommendations from an incident investigation and other possible approaches. 

So, in this stage the potential alarms are determined and the next step is to 

rationalize the alarms. 

In the alarm rationalization stage the properties of every alarm is determined and 

documented. For example the priority of the alarm, its consequence and the 

action that should be taken by the operator. 

The detailed design stage includes the design of alarm parameters and the 

advanced alarming techniques such as state based alarming and dynamic 

prioritization. This stage also includes the design of the annunciation of the 

alarm. 

In the implementation stage the designed alarms are physically or logically 

installed in the system and their functionality is being tested. This stage also 

includes the operator training. 

In the operation stage, the alarm system is active and operates normally. 

In the maintenance stage, the alarm system is inactive while its functionality is 

being tested. The maintenance stage must be performed periodically to keep the 

alarm system within the requirements.   

In the monitoring and assessment stage, the performance of the alarm system 

along with the individual alarms is monitored to check their accordance to the 

alarm philosophy.  

In the management of change stage, the necessary changes to the alarm system 

according to the alarm philosophy are proposed and approved.  

In the audit stage, some reviews on the performance of the alarm system are 

conducted to identify possible improvements which are not identified in the 

monitoring stage. These improvements may even include modifications to the 

alarm philosophy.   
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Establishment of a new alarm system starts from documenting of the alarm 

philosophy. For existing alarm systems, the monitoring or audit stages are the 

entry points to the alarm system lifecycle. All the stages of the lifecycle are 

necessary for maintaining the efficiency of the alarm system.  

Before the advent of the distributed control systems (DCS), there were small 

number of well designed alarms that could give enough and accurate information 

about the plant situation to the operator. With the DCS, implementing alarms 

became quite easy and inexpensive. Since there was no limit for configuring 

alarms, the number of alarms in every industrial plant increased excessively. 

Following the huge number of alarms, the time consumption of the alarm design 

practice increased. So, the design of alarms was mostly performed poorly. 

Poor alarm design results in receiving a lot of nuisance (“an alarm that 

annunciates excessively, unnecessarily, or does not return to normal after the 

correct response is taken” [1]) and redundant alarms during abnormalities in the 

plant operation. As many of the process variables are dependent to each other, 

one abnormality usually causes several alarms. Alarms that are caused due to 

the same problem are called redundant alarms.  

Another problem in monitoring is receiving alarms while the operation is in its 

normal range. These alarms are called false alarms and are usually due to the 

noise or poor design of the alarm parameters.  

All of these nuisance, redundant and false alarms result in alarm floods during 

some abnormalities in the plant operation. An alarm flood happens when the 

operator receives more alarms than he/she can respond to. So, it is hard to 

identify the most important alarms and the root problem. The average number of 

annunciated alarms per one operator is mentioned in the ISA standard [1] as is 

shown in Table 1.1. 
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Table 1.1: Average alarm rates [1] 

Very Likely to be Acceptable Maximum Manageable 

150 Alarms per day 300 Alarms per day 

6 Alarms per hour (average) 12 Alarms per hour (average) 

1 Alarm per 10 minutes (average) 2 Alarms per 10 minutes (average)  

 

Alarms appear on the operator console as massages including the tag names, 

time stamp, alarm identifier, some description about the alarm, its priority, plant 

name and maybe some other information. Every unique alarm is identified by its 

tag name, time stamp and its alarm identifier. 

The time stamp may have different precisions according to the system. An alarm 

identifier is shown as PVHI, PNLO or similar abbreviations. PVHI means that the 

process variable has exceeded the upper limit of its normal range. PVLO 

annunciates that the process variable has hit its lower limit. In some cases there 

are two high and two low limits in the system. The first high or low limits show 

that the variable is out of its normal or optimum range, but, the second high or 

low limits show that the variable is in a more dangerous range.  

Regardless of the type of the variable or the type of the alarm, the decision of 

raising an alarm is usually based on one criterion, which is the alarm limit or 

threshold. Since this is the simplest method of fault detection, some other 

techniques should be used to prevent alarm from chattering or other problems. 

Some of these techniques are alarm deadbands, delay timers and filters. 

Following is a survey of the research done in the alarm management area. 
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1.2 literature review 

1.2.1 General research regarding alarm management   

In this section the papers that discuss alarm management problems from a 

general point of view are discussed. 

Bergquist et. al. [2] presented a computerized tool for alarm system 

improvement. The tool is an off-line approach that is applicable to any kind of 

plants. Proposed methods to eliminate nuisance alarms are as follow: 

1- Creating a model of the system or part of it 

2- Prioritizing and grouping the alarms  

3- Shelving the repeating alarms 

4- Tuning the alarm limits and delays 

The tool uses signal processing methods and predictive algorithms. It helps with 

tuning of alarm limits and suggests alarm reduction algorithms to apply to the 

process signals. Available functions in the ACT (Alarm Clean up Toolbox) are: 

1- Filters: IIR filters, averaging filter, median filter 

2- Time delay 

3- Difference function: It calculates the differences between successive 

process variable’s values. If the difference is negative, which means the 

variable is decreasing, the alarm can be cleared. 

4- Deadband 

5- Alarm window function: It is a combination of time delay and difference 

function. The alarm stays off for a limited time while the process variable 

has exceeded the alarm threshold, but is bounded to a maximum value. 

There is a function called LARA (Logical Alarm Reduction Algorithm) which 

categorizes the process signals into 14 different classes using past data and 
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applying a rule based expert system. Then, it suggests the best processing 

technique for the signal based on its model. 

Kyriakides et. al. [3] introduced a concept of an alarm processing algorithm 

performing the following tasks: 

-    Prioritization on the basis of area responsibility 

- Root cause identification of alarms 

- Elimination of multiple alarms from the same cause 

- Prioritization on the basis of a predetermined list of alarm weights of 

importance 

- Prioritization on the basis of recency 

- Identification and recommendation of control actions 

- Decision making assistance 

- Actuation of controls 

The algorithm is supposed to be automatic and able to interfere in the control 

system. 

Larsson [4] presented an ongoing project on alarm sanitation. The goal is to 

automatically detect badly tuned alarms and report them to the operator along 

with some characteristics of corresponding process variables. Bad alarms are the 

ones with too wide or too narrow alarm thresholds. The proposed algorithm is 

supposed to perform the following tasks: 

- Monitoring the behavior of alarms. 

-  Detect alarms that are activated several times during a time period and are 

being reset or ignored by the operator. Store their information in the 

database. 

- Detect silent alarms, which are alarms that are never activated. Store their 

information in the database. 
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- Store some characteristics of the process variables that are monitored by 

bad alarms mentioned in above. 

- Present the stored information to the operators at regular time intervals.   

Izadi et. al. [5] have briefly discussed multivariate process monitoring, model 

based performance monitoring, threshold design and alarm variable processing 

techniques as methods for reduction of false and nuisance alarms. 

Multivariate monitoring is the concept of monitoring a linear combination of some 

individual variables, which are called latent variables, instead of monitoring all of 

them individually. This idea is based on the fact that most of the process 

variables are correlated and monitoring all the variables separately results in 

having a lot of nuisance alarms. Model based monitoring is the concept of 

monitoring the process behavior instead of its individual variables. To use this 

method, availability of a precise model from the process is necessary.  

Since process variables always carry some noise, occurrences of some false and 

missed alarms are inevitable. By performing some processing on the alarm 

variable, the rates of false and missed alarms can be reduced. Filtering, time 

delay and deadband are common techniques for this purpose. 

Chowdgury et. al. [6] proposed a technique for reduction of the false alarm rate in 

fault detection. The technique is based on noise elimination of the residual signal. 

The residual signal is obtained by comparing the process measurement with its 

predicted value by a model.  

During normal operation of the process, the residual signal will be a stochastic 

signal with known statistical characteristics and during the abnormal operation, 

the statistical characteristics of the signal changes. Since the residual signal 

contains noise, detection of abnormality will have some delay and probability of 

false and missed alarms are high. 
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It is proposed to model the residual signal as an AR structure. It is discussed that 

if the residual signal during the fault free operation is just a zero mean 

uncorrelated random signal, its modeling process gives a zero output. During the 

abnormal operation statistical characteristics of the residual signal changes, so, 

its AR model will not be zero anymore. Using this method eliminates the effect of 

noise on the fault detection. 

Kondaveeti et. al. [7] presented two visualization tools to assess the performance 

of the alarm systems. The first tool is called “high density alarm plot”. The basic 

idea is to identify highly chattering tags by plotting a colored graph consisting of 

all tags during a specific period of time. The time interval is divided into 10 minute 

bins and the number of alarms for every tag during the bins is shown by an 

appropriate color. 

Another tool which is known as an “alarm similarity color map” is also presented 

to identify the redundant alarms. The Jaccard similarity index is used to measure 

the similarity between the alarms. The similarity matrix is rearranged and the 

similarity between the alarms is shown by different colors corresponding to the 

strength of the similarity. 

1.2.2 Research regarding the design of alarms   

Following is a summary of the papers which analytically discuss specific 

problems regarding the design of alarm parameters. 

Kondaveeti et. al. [8] discussed multivariate alarming. Since there are a lot of 

alarming variables in every industrial plant, many of the alarms are correlated to 

each other and arise for the same reason. This causes alarm floods and operator 

will be overwhelmed by the alarms during abnormalities. In this paper the 

advantages of multivariate alarming is discussed against the univariate alarming. 
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It can be shown that by multivariate monitoring, the number of false and missed 

alarms will decrease without the increase in abnormality detection. It is proposed 

to use the principal component analysis method to obtain the principal 

components. By using Q and T2 tests, it is possible to detect abnormalities with 

more accuracy and receive fewer alarms.  

Izadi et. al. [9] discussed the effect of applying filtering, time delay and deadband 

on the alarm variables and proposed a method for their optimal design. The 

method is an off-line approach based on the ROC curve. The ROC (Receiver 

Operating Characteristic) curve is mentioned as a plot of probability of missed 

alarms versus the probability of false alarms. The ideal point in the ROC curve is 

the origin which guarantees zero false and missed alarms. The techniques of 

filter, time delay and deadband design are used to make the ROC curve closer to 

the origin. 

Filters are capable of changing the statistical distributions of the data. They can 

be used in cases that the normal and abnormal parts of the data have a strong 

overlap. Common filters in industry are moving average, exponentially weighted 

moving average (EWMA) and cumulative sum (CUSUM).  

Another technique for reduction of false and missed alarm rates is time delay. A 

time delay can be considered in raising an alarm (on delay) or clearing the alarm 

(off delay). By increasing the time delay the accuracy of the alarm will increase 

and the ROC curve gets closer to the origin but, the abnormality detection will 

have some delay.  

A method for designing filters, deadbands and time delays is proposed based on 

the ROC curve [9]. It is proposed that the ROC curve should be plotted for 

different design methods and parameters. If a limit on the probabilities of missed 
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and false alarms is known, a technique and its corresponding design parameters 

should be chosen which satisfy the limits. 

Adnan et. al. [10] studied the detection delay in industrial alarm systems due to 

alarm deadbands and delay timers. A detection delay is the time difference 

between the exact time of the actual fault occurrence and the time of the alarm. 

Markov processes are used to calculate the detection delays for a process data 

with known distribution. Supposed process data consists of one normal and one 

abnormal parts with known distribution models. The expected value of the 

detection delay with deadband in the system is obtained as: 
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The average value of the detection delay can be used in the design procedures 

to avoid unsafe time delays due to the deadband or delay timers. 

There are some recommendations for deadband and time delay design in 

EEMUA [11] and ISA [1] standards. Table 1.2 shows these recommended 

deadbands based on the type of the process variables and Table 1.3 shows the 

recommended time delays. 
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Table 1.2: Standard’s recommendations for alarm deadbands  

Signal type Deadband 

Flow Rate 5% 

Temperature 1% 

Level 5% 

Pressure 2% 

 

Table 1.3: Standard’s recommendations for delay time  

Signal type Delay Time (on or off) 

Flow Rate 15 seconds 

Temperature 60 seconds 

Level 60 seconds 

Pressure 15 seconds 

 

Hugo [12] presented a method for designing measurement and time deadbands 

by applying time series analysis methods. Measurement deadband determines 

how much the process variable should pass the alarm threshold to clear the 

alarm. Time deadband determines the minimum time that should be between two 

successive alarms. It is proposed that every process variable can be modeled by 

an autoregressive-integrated-moving average (ARIMA) structure as: 

ta
zd

z
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)1(

)1(
−∇

−
=

ϕ

θ   (1.3)   

yt is the process measurement at time t, at is white noise with variance aσ . 

This model can be used to predict the future values of the process variable and 

its prediction interval. Measurement deadband should be redesigned in the time 
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of occurrence of every alarm in a way that every change in the process 

measurement due to the noise falls within the deadband or mathematically 

..ICydeadband lt −≥ +

∧
. L is the prediction horizon and lty +

∧

 is the prediction of the 

process variable at time t+ L and C.I. is its confidence interval. 

 Since process variables are very likely to have different structures during 

different modes of operation, an identification routine should be running on-line. 

For time deadband design again the predicted values by the model and 

corresponding prediction intervals are used. Time deadband, which is the 

minimum time that should pass before the alarm can reoccur, should be 

determined as the closest time in which the predicted process value plus its 

confidence interval is equal or greater than the alarm threshold.  

Kondaveeti et. al. [13] studied the alarm chattering and proposed a quantitative 

definition for it based on run length distributions. Alarm chattering happens when 

an alarm repeatedly goes on and off in a short time interval. There is no standard 

definition for alarm chattering except for some general rules such as repetition of 

the alarm in a minute for more than two times.  

Run length from the alarm management perspective is the time differences 

between successive alarms in seconds. For obtaining the run length of an alarm, 

a reasonably large amount of alarm data should be used to calculate the run 

lengths. The number of repetition of every run length during the total time interval 

is called alarm count. Run length distribution is obtained by plotting the alarm 

counts versus the run lengths. By dividing the alarm counts to their total number, 

a discrete probability distribution function for run lengths is obtained. The 

chattering index is defined as a weighted summation of the normalized alarm 

counts. Since the run lengths closer to 1 second cause the most chattering, the 
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weighting function should be chosen in a way to attenuate the effect of further 

run lengths. The weighting function is chosen as the inverse of the run lengths. 

So the chattering is defined as:  

∑
∑

r
r

r

r

AC

r
AC

 (1.4)  

AC is abbreviation of Alarm Counts and RL is abbreviation of Run Length. This 

chattering index gives a number between zero (no chattering) and one (as the 

maximum amount of chattering). Chattering index of one happens when the 

alarm repeats every second during the total time. If it is known that the alarms 

caused by one abnormality won’t last for more than a specified time interval, 

then, the run lengths more than that interval can be ignored in calculation of 

chattering.  

1.3 Motivation of this thesis 

Alarm management has recently gained lots of attention from industries and also 

academia. Since it is almost a new research area, there are still unsolved 

problems regarding the design of the alarm parameters such as alarm limits and 

deadbands. So in the first part of this study, the relation between the alarm limit 

and alarm deadband with chattering and false and missed alarm rates is 

investigated. 

The second part of this study is about the relation between chattering with alarm 

parameters and statistical characteristics of the data. Although chattering alarms 

are one of the important problems of alarm systems, there is not yet any 

analytical design method considering reduction of chattering. So, part of this 



 15

study is about finding the analytical relation between chattering with alarm 

parameters and statistical characteristics of the process data.  

1.4 Outline of the thesis 

In the second chapter the effect of alarm deadbands and alarm limits on 

chattering and false and missed alarm rates is investigated. Two equations are 

proposed to estimate the optimal alarm limit with respect to deadband and 

statistical characteristics of the data.  

In the third chapter, the chattering index is analytically derived as a mathematical 

function of alarm parameters and statistical characteristics of the data. Chapter 4 

contains two examples of applying the proposed methods in chapters 2 and 3 in 

the design of alarm parameters considering two industrial tags. The last chapter 

is conclusion and future work. 
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2 Deriving optimal alarm limits and deadbands  

2.1 Introduction  

The alarm deadband is a widely used technique in industrial alarm systems to 

reduce the alarm chattering. It is implemented in modern DCS (distributed control 

systems). Therefore, implementing an alarm deadband does not need any 

hardware or special software application. This is the reason that deadbands are 

quite popular in alarm configurations. In the following the concept of designing 

deadbands is discussed.  

In practice most of the process measurements are corrupted by noise from 

different sources. A noise can cause the alarm to repeatedly go on and off while 

the signal is close to the threshold. Alarm deadband prevents the alarm from 

clearing due to the noise on the process measurement. It determines a second 

limit for clearing the alarm to make sure that the alarm goes off because of a 

change in the signal structure not the noise. 

A deadband is represented as a percentage that should be multiplied to the 

range of the alarm variable or the alarm limit to get the deadband width. Since 

the range of the variable is usually unknown, deadband is represented as a 

percentage of the alarm limit in this work. So the deadband width is obtained by 

multiplying the deadband to the alarm limit. 

 For the case of high alarms, the deadband limit is always less than the alarm 

limit and is obtained as L(1-DB); L is the alarm limit and DB is the deadband. The 

alarm goes on when the process signal exceeds the alarm threshold and it clears 

when the signal is less than the deadband limit. For example, consider Figure 

2.1.  
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Figure 2.1: An example of a high alarm with deadband  

For the supposed process signal in Figure 2.1, the alarm annunciates when the 

signal goes beyond the alarm threshold, but it doesn’t clear when the signal is 

changing within the deadband. So, if the exact measurement of the signal is 

higher than the alarm threshold and the amplitude of the noise is less than the 

deadband width, the alarm will stay on even if the measurement is lower than the 

threshold. This will reduce the number of repetition of the alarm due to one 

abnormality. 

 For low alarm cases, the deadband limit is higher than the alarm limit and is 

obtained as L(1+db). An example is shown in Figure 2.2. The alarm goes on 

when the process signal goes lower than the alarm threshold and clears when it 

is higher than the deadband limit. 

 

Figure 2.2: An example of a low alarm with deadband 
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As was mentioned in Chapter 1, there are some general guidelines in standards 

for designing deadbands. Since every process variable has a different structure 

and is imposed to different noises, following one rule for deadband design 

doesn’t always generate the best result. It is necessary to consider the history of 

every process variable in its special deadband design.  

In the design of alarm parameters, reduction of false and missed alarm rates are 

also important factors besides the chattering reduction. In the following section 

the method of calculation of false and missed alarm rates in the presence of 

deadband is explained. 

2.2 Calculation of false and missed alarm rates 

In the study of alarm deadbands, the part of the data during the transition from 

normal range to abnormal range is important. Also, at least one part of the data 

should be close to the threshold to cause chattering. So, the simulated data sets 

that are used hereafter all include two parts; one normal and one abnormal. For 

example Figure 2.3 plots the probability distribution functions of the two parts of 

some simulated data. It is assumed that the data has Gaussian distribution in 

both parts  
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p1

q2p2

q1

 

Figure 2.3: PDF of normal and abnormal parts of simulated data 

The solid curve is the PDF of the data in its normal range and the dashed curve 

is the PDF of the abnormal part of the data. Alarm and deadband limits are 
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shown in the figure. p1, p2, q1 and q2 are mathematically written as the following 

formulas: 
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nμ and nσ are the average and standard deviation of the normal part of the data. 

aμ and aσ  are the average and standard deviation of the abnormal part of the 

data. L is the alarm limit and db is alarm deadband. erf(.) represents the error 

function with the following formula: 
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A method for calculation of false and missed alarm rates is discussed in [9]. The 

basic assumption is that the distribution of the process data is known. Markov 

chain method is used to calculate Pfa and Pma. Figure 2.4 depicts a Markov 

process for the normal part of the data.   

 

Figure 2.4: Markov diagram of an alarm with deadband  

Assuming that the process variable is firstly in its normal range, the alarm is in 

the no alarm state (NA). If the next sample is again in the normal range with 

probability of 1-p1, there will still be no alarm. The alarm is raised when the 

sample exceeds the alarm threshold by probability of p1. The alarm state only 
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transits to off state when the consecutive sample is lower than the deadband 

limit. So, the alarm stays on with the probability of 1-p2 and clears with probability 

of p2.  

The single step probability transition matrix is 
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For the case of the alarm deadband, the steady state probability vector is 

calculated as 
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 So, the probability of false alarm is: 
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The probability of missed alarm can be obtained in the same way by considering 

the PDF of the abnormal part of the data. The steady state probability vector for 

abnormal part of the data will be obtained as
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This method of calculation of Pfa and Pma can be used considering any kind of 

PDFs.  

2.3 Definition of optimal deadband and optimal alarm threshold 

As was mentioned, the purpose of the alarm deadband is mainly reduction of the 

alarm chattering. As there is a quantitative definition for chattering [13], optimal 
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alarm parameters can be defined as the parameters that generate the least 

chattering.  

There are two procedures to obtain the optimal alarm parameters by this 

definition. One is to perform simulations on the process data for different alarm 

parameters and choose parameters that correspond to the least chattering. The 

precision of this procedure depends on the selection of the range of the 

parameters and the step size of their changes. Using this procedure can be quite 

time consuming, especially if the design of more than one alarm parameter is 

considered. For example, if the goal is designing both alarm threshold and 

deadband, it is necessary to firstly consider a reasonable range for alarm 

threshold. Choosing a small step size for the threshold, the threshold should 

move from its least value to the maximum value. For every threshold, deadband 

should be changing from zero to its maximum possible value with a reasonable 

small step size. For every threshold and deadband, the chattering has to be 

calculated in a separate simulation run. Then the parameters that satisfy a limit 

on the chattering should be chosen. So, there will be lots of simulations that don’t 

guarantee a precise design and take a lot of time and processing power.  

The other method for obtaining the optimal parameters is to use the 

mathematical expression of chattering that is proposed in the next chapter. 

Chattering is derived as a mathematical function of the statistical characteristics 

of the process data and alarm parameters. By calculating the statistical 

characteristics of the process variable from its history, chattering can be obtained 

as a function of alarm parameters. So, it is possible to get the optimal values by 

minimizing the mathematical function without any simulation. 

As was mentioned before, another goal in the alarm design is reduction of false 

and missed alarm rates. False alarms distract the operator and missed alarms 
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leave the operator unaware of abnormality in the plant operation. So, the optimal 

alarm parameters can be defined as the values that minimize the following 

objective function C1Pma
2+C2Pfa

2. 

C1 and C2 are the parameters of the objective function and can be chosen 

according to the situation.  

If C1 and C2 have the same values, false and missed alarm rates are considered 

to be of equal importance. In this case the optimal alarm parameters would be 

the same as the values that minimize the distance of the ROC curve from the 

origin. As was mentioned in Chapter 1, ROC curves are the plots of missed 

alarm versus false alarm rates for different thresholds. So the distance of each 

point in the ROC curve from the origin is Pma
2+Pfa

2. False and missed alarm rates 

are zero at the origin. So, the origin is the ideal point in a ROC curve. 

Any point in the ROC curve can be obtained as the optimal point by choosing 

different values for parameters C1 and C2. These two coefficients are not fixed 

and their selection depends on the opinion of alarm engineers.  

In this work, C1 and C2 are considered the same. The advantage of this choice is 

that the optimal parameters based on this objective function will usually be very 

close to the optimal parameters based on the chattering. So, it is possible to 

minimize both false and missed alarm rates simultaneously with minimization of 

the chattering. 

To see the reason for closeness of optimal parameters based on chattering with 

optimal parameters based on the least distance from the ROC curve, it is useful 

to observe how chattering is related to distribution of the data and alarm 

threshold.  

For example, a simulated data with Gaussian distribution, which is depicted in 

Figure 2.5, is considered. In Figure 2.6 the probability distribution function of the 
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data is plotted in solid curve. Two simulations are performed on the data. In each 

simulation, the threshold varies from 0 to 5. Deadband is 0% in the first 

simulation and 15% in the second one. For each threshold, chattering and 

probability of false alarms are obtained in the two simulations.  
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Figure 2.5: Simulated process data 
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Figure 2.6: PDF, chattering and false alarm rate for the simulated data in Figure 2.5 
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Probability of false alarm for zero deadband is depicted in the thicker dash dot 

line in Figure 2.6. Probability of false alarm equals to 0.5 when the threshold is 

on 2, which is the mean and median value of the data. The curve of false alarm 

rate for 15% deadband is depicted in the thicker dash line in Figure 2.6. The false 

alarm rate with 0.15% deadband hits 0.5 when the threshold is on 2.16.  

As it is expected, false alarm rate increases with increasing the deadband. As 

was shown, the false alarm rate is obtained as
21

1

PP
P
+

. By increasing the 

deadband, P1 doesn’t change while P2 decreases. So the false alarm rate 

increases.  

Chattering is obtained in the simulations for every deadband and threshold. As 

can be seen in Figure 2.6, the chattering curve for zero deadband has the same 

shape of the PDF of the data. The maximum chattering happens when the 

threshold is on 2, which corresponds to the false alarm rate of 0.5. Chattering is 

also symmetric around its maximum value.  

The behaviour of chattering with respect to the threshold is understandable by 

studying the root cause of chattering. As was mentioned, chattering happens by 

repeated transitions of the alarm state from on to off. So the probability of 

clearing the alarm is as important as the probability of triggering the alarm in 

causing chattering.  

The probability of alarming was obtained as 
21

1

PP
P
+

 and the probability of clearing 

the alarm is 
21

2

PP
P
+

. So, for example if the threshold is in the left half of the 

distribution of the data, probability of the alarm state to be on is more than the 

probability of the alarm state to be off. It means that the probability of transition of 

the alarm from on state to off is smaller compared to the case that both 
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probabilities are equal. Since only the transition of the alarm state is important in 

causing chattering, the chattering would be smaller in this case.  

The same discussion is true when the threshold is on the right half of the 

distribution of the data. In this case the probability of alarming would be less than 

the probability of clearing the alarm. So, the probability of transition of the alarm 

would be smaller compared to the case that the probability of alarming is equal to 

the probability of no alarm. 

From these discussions it can be seen that the probabilities of alarming and 

clearing the alarm have the same contribution in causing chattering. So, the 

maximum value of chattering happens when the probability of false alarm equals 

to 0.5. It is always true when considering different distribution types. The 

maximum number of alarms and chattering, always happen on a threshold that 

has the same probability of alarming and clearing the alarm. 

In the case of zero deadband, the false alarm rate curve is symmetric around 0.5. 

Thus, movement of the threshold from the mean value of the distribution to the 

right hand side reduces the probability of alarming in the same way that it 

reduces the probability of clearing the alarm if it was moved toward the left half of 

the distribution. This is the reason why chattering has its maximum value on the 

mean of the symmetric distribution of the data and is symmetric about that point. 

As was discussed, by increasing the deadband from zero the probability of false 

alarm increases while the probability of clearing the alarm decreases. So, the 

chattering is lower than the chattering in the case of zero deadband, as is seen in 

Figure 2.6. The other effect of deadband is that the threshold, in which the 

probability of alarm equals to the probability of no alarm, moves to the right hand 

side of the PDF of the data.  
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It is possible to calculate the threshold corresponding to equal probabilities of 

alarm and no alarm states. We need to find the threshold where P1=P2. It 

happens when the deadband line and the threshold are symmetric around the 

median value of the distribution, which is 2 in this example. The following 

procedure can be used in calculation of that specific threshold: 

mLdbLm −=−− )1(   

db
mL
−

=
2

2  (2.5) 

where m is the median of the distribution. 

For the data in Figure 2.6 with 15% deadband, the threshold is calculated as 

2.16, which corresponds to the threshold obtained in the simulation.  

For the case that the data is in the abnormal range, the same discussion can be 

made. The chattering has its highest value when the probability of missed alarm 

equals to the probability of alarming and decreases by moving the threshold to 

the right or left hand side of the PDF of the abnormal part of the data. So, the 

chattering curve has the same trend as the Pma carve for the thresholds less than 

the threshold corresponding to the highest chattering (considering high alarm).  

Since in the design of deadbands, the data should include one normal and one 

abnormal part, it is good to see how the chattering of combination of the two 

parts varies with the alarm limit. In Figure 2.7 probability distribution functions of 

a simulated data with a normal and an abnormal part are depicted. The solid 

PDF corresponds to the part of the data that is assumed to be in the normal 

range and the dotted PDF corresponds to the abnormal data. 
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Figure 2.7: PDF of normal and abnormal parts of a simulated data 

Figure 2.8 depicts the chattering of each part of the data separately along with 

false and missed alarm rates. The chattering of the total data is plotted in thin 

solid line and (Pma
2+Pfa

2)0.5 is depicted in thicker solid line.  
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Figure 2.8: Chattering and false and missed alarm rates for the simulated data in Figure 

2.7 with no deadband 

From Figure 2.8 it can be seen that the minimum of the chattering happens at the 

same threshold as the minimum of summation of false and missed alarm rates 

happens. This is because for each part of the data the behaviour of chattering 



 28

curve and the false or missed alarm rates are the same when the threshold is 

between the mean values of normal and abnormal parts of the data. The same 

simulations are performed considering the same data but with considering 20% 

deadband. 
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Figure 2.9: Chattering, false and missed alarm rates of the simulated data in Figure 2.7 

with 20% deadband 

In Figure 2.9 it can be seen that the threshold corresponding to the minimum 

chattering is equal to the threshold corresponding to the minimum summation of 

squared false and missed alarm rates. 

 Now the behaviour of chattering and probability of alarming in the case of non 

symmetric distributions is considered. In Figure 2.10, the PDF of some simulated 

data that has chi-squared distribution with 6 degrees of freedom is plotted in 

dots. Chattering is calculated in the simulation for alarm limits between zero and 

25 and is plotted in Figure 2.10 in the dashed line. Also the probability of false 

alarm is depicted in the dash dot line.  
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Figure 2.10: PDF and chattering and false alarm rate of a simulated data 

The maximum chattering happens when the threshold is on 5.3, which is the 

threshold where probability of alarming equals to the probability of no alarm. The 

chattering decreases for the thresholds greater than 5.3 like the Pfa curve. 

Equation 2.5 can be used to find the threshold corresponding to the maximum 

chattering.  

It was shown that the chattering has its maximum value when the probability of 

alarming is 0.5 and the corresponding threshold can be calculated for every kind 

of data distributions. So, it can be said that if the range of the threshold is 

between the thresholds corresponding to the maximum chattering of the normal 

and abnormal parts of the data, then the optimal parameters based on chattering 

always correspond to the optimal parameters corresponding to the least 

summation of false and missed alarm rates.  
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2.4 Effect of deadbands on false and missed alarm rates considering 

high alarm 

 In this session effectiveness of the deadband is investigated by performing 

several simulations. First, the trade-off between false and missed alarm rates in 

the deadband design is explained in another way.  

For example, a simulated process data is depicted in Figure 2.11. The data 

includes two parts. The first half represents the data in its normal range and the 

second half is in the abnormal range of the data. The PDFs of its normal and 

abnormal parts are Gaussian. The mean value of the normal part is 2 with the 

standard deviation of 1 and the abnormal part has the mean value of 5 and 

standard deviation of 1.  
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Figure 2.11: Simulated data 

Consider a nominal alarm threshold as is depicted in Figure 2.11 and two 

different deadband limits (DBL). Deadband limit 1 is closer to the alarm threshold 

and corresponds to smaller deadband compared to deadband limit 2.  
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Considering the abnormal part of the data (second half) the numbers of data 

samples that are lower than the deadband limit are greater by considering 

deadband limit 1 compared to deadband limit 2. It means that number of clearing 

the alarm and repeating it would be lower by considering deadband limit 2. So, 

the abnormal part of the data will generate lower alarm chatter by increasing the 

deadband. Also the number of missed alarms will be less. 

Considering the normal part of the data (first half), the number of samples 

beneath the deadband limit 1 is lower than the number of samples beneath the 

deadband limit 2. It means that the alarm would stay in the on state for longer 

duration when the deadband is larger. This implies more false alarms and 

chattering. So there is a trade-off between false and missed alarm rates in the 

design of deadbands. 

Considering the data in Figure 2.11 a simulation is performed in which the 

summation of squared false and missed alarm rates ( (Pma
2+Pfa

2)0.5 ) is calculated 

for three different alarm thresholds and deadbands ranging from 0 to 0.4. The 

results are shown in Figure 2.12. 
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Figure 2.12: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.11 
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In Figure 2.12 three different behaviours are seen. The solid line corresponds to 

the alarm threshold on the average of the median values of normal and abnormal 

parts of the data. For this threshold the summation of missed and false alarm 

rates decreases by increasing the deadband till the value of 0.1 and then 

increases for higher deadbands. This is due to the fact that increasing the 

deadband increases the probability of false alarm while it reduces the probability 

of missed alarms.   

The behaviour of the summation of the false and missed alarm rates is very 

sensitive to the alarm threshold. In the case that the alarm threshold is less than 

the average of median values of normal and abnormal parts of the data, usually 

increasing the deadband increases the sum of squared missed and false alarm 

rates. Because the alarm threshold is closer to the normal part, the increase in  

the false alarm rate is expected to be more than the decrease in the missed 

alarm rate. 

 For the case that the alarm threshold is on 4, the increase in the deadband value 

is more effective on reducing the missed alarm rate compared to increasing the 

false alarm rate. So as is seen in Figure 2.12 the sum of missed and false alarm 

rates decreases with increasing the deadband. 

Another simulation is performed on the data in Figure 2.11.  In this simulation the 

summation of squared false and missed alarm rates is calculated for 6 different 

deadbands and thresholds moving from 1 to 5. The result is shown in Figure 

2.13.   
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Figure 2.13: (Pma
2+Pfa

2)0.5 for different deadbands and thresholds for data in Figure 2.11 

 

From Figure 2.13 it is seen that for each deadband, the summation decreases 

from its maximum value to its minimum value and again increases. While the 

alarm limit is less than 3.5 (average of mean values of normal and abnormal part 

of the data) the curves corresponding to higher deadbands have higher amounts 

of the summation. For the thresholds greater than 3.5 the curves with higher 

deadbands are in lower positions. 

The other important feature of Figure 2.13 is that the alarm limit corresponding to 

the minimum of the summation of false and missed alarm rates moves toward 

the abnormal part of the data for higher deadbands. For zero deadband the 

optimal limit is on 3.5 while for 25% deadband it is about 4.  

From Figures 2.13 and 2.12 it can be seen that for a fixed alarm limit, increasing 

the deadband more than some saturation value can’t reduce the summation of 

false and missed alarm rates and even it might result in higher values of the 

summation. The same simulation is performed considering the chattering instead 

of the summation. The result is depicted in Figure 2.14. 
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Figure 2.14: Chattering of the data in Figure 2.11  

In Figure 2.14 the same features as in Figure 2.13 are observed. Since 

chattering is calculated based on one set of numbers that are randomly 

generated from the distribution of the data, there is some randomness in 

chattering indexes which results in unsmooth chattering curves.  

To investigate the effect of the statistical characteristics of the data on the shape 

of the chattering and summation curves, the same simulations are performed on 

another data set. Figure 2.15 depicts the data. The data has standard deviation 

of 2 in the abnormal part and the other characteristics are the same as the data 

in Figure 2.11.  
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Figure 2.15: Simulated data 
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Figure 2.16 depicts the summation for different deadbands and same thresholds 

as in Figure 2.12. 
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Figure 2.16: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.15 

 

Since the standard deviation of the abnormal part of the data is larger compared 

to the data in Figure 2.11, the shape of the curves are different in this figure. For 

the thresholds of 3.5 and 4 the curves keep decreasing. For the threshold of 3, 

the curve decreases a little bit until the deadband equals to 0.1 and then 

increases, like the threshold of 3.5 in the Figure 2.12.  

Figure 2.17 depicts the summation of squared false and missed alarm rates 

considering 6 different deadbands and thresholds from 2 to 5 for the data in 

Figure 2.15.  In Figure 2.17 compared to Figure 2.13 the optimal thresholds are 

closer to the normal part of the data.  The optimal threshold for zero deadband is 

close to 3 and the optimal threshold for 25% deadband is on 3.5. In Figure 2.18 
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the same simulation is performed by considering chattering instead of the 

summation.    

2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Alarm Treshold

(P
fa

2 +P
m

a2 )0
.5

 

 
Deadband=0
Deadband=0.05
Deadband=0.1
Deadband=0.15
Deadband=0.2
Deadband=0.25

 

Figure 2.17: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.15 
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Figure 2.18: Chattering of the data in Figure 2.15 

In Figure 2.18 the optimal thresholds corresponding to the least chattering are 

close to the ones in Figure 2.17. However, because the simulation is performed 
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on just one set of data, the randomness of the data makes the chattering curves 

unsmooth.     

Another similar simulation is performed on the data in Figure 2.19. The mean 

values of the two parts of the data are the same as the two previous examples 

and it has standard deviation of 2 in the normal part and 1 in its abnormal part. 
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Figure 2.19: Simulated process data 

Figure 2.20 depicts the summation for deadbands from zero to 0.25 and 

thresholds from 2 to 5. By comparing Figure 2.20 with Figure 2.13 it is observed 

that the increase in the standard deviation of the normal part of the data has 

made the optimal thresholds to move toward the abnormal part of the data.  
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2)0.5 for the data in Figure 2.19 
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2.5 Effect of the deadband on false and missed alarm rates considering 

low alarms 

In the low alarm case, the mean value of the abnormal part of the data is lower 

than the mean value of its normal part. The same simulations as in the previous 

section are performed considering the low alarm case. For example, consider the 

data in Figure 2.21. The first half of the data is its normal part with mean value of 

5 and standard deviation of 1. The second half of the data is its abnormal part 

with mean of 2 and standard deviation of 1.  
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Figure 2.21: Simulated process data 

In Figure 2.22 the PDF of the normal and abnormal parts of the data are depicted 

along with the alarm threshold and deadband limit. 

 

 

 

 

 

 

 

Figure 2.22: PDF of normal and abnormal parts of a simulated data with low alarm 

 

 

-2 -1 0 1 2 3 4 5 6 7 8 9

Abnormal PDF

Normal PDFAlarm Limit

p1

Deadband Limit

p2

q1

q2



 39

The probabilities are calculated as follows for the case of low alarm: 
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Figure 2.23 depicts the summation of squared false and missed alarm rates for 6 

different deadbands and thresholds from 2 to 5 considering the data in Figure 

2.21. 

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Alarm Threshold

(P
fa

2 +P
m

a2 )0
.5

 

 
Deadband=0
Deadband=0.05
Deadband=0.1
Deadband=0.15
Deadband=0.2
Deadband=0.25

 

Figure 2.23: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.21 

 

From Figure 2.23 it is seen that by increasing the deadband, optimal thresholds 

corresponding to the least summation, move to the left hand side which is closer 

to the mean value of the abnormal part of the data.  

The same simulation is performed while the standard deviation of the abnormal 

part of the data is increased to 2. The data is plotted in Figure 2.24.  
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Figure 2.24: Simulated process data 

In Figure 2.25 the summation is plotted for thresholds from 2 to 5 with 6 different 

deadbands considering the data in Figure 2.24.  
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Figure 2.25: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.23 

 

By comparing Figure 2.25 with Figure 2.23, it can be seen that the optimal 

thresholds in Figure 2.25 are moved to the normal part of the data for 

approximately 0.5 unit. This is because of the greater standard deviation in the 

abnormal part of the data.  

This simulation is repeated for the data in Figure 2.26. Mean values of normal 

and abnormal parts of this data are the same as the previous two examples. The 
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standard deviation of its normal part is 2 while the standard deviation of its 

abnormal part is 1.   
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Figure 2.26: Simulated process data  

Figure 2.27 shows the summation of false and missed alarm rates for thresholds 

from 2 to 5 with 6 different deadbands. By comparing Figure 2.27 with Figure 

2.23, it is seen that the optimal thresholds are closer to the abnormal part of the 

data due to the increase in the standard deviation of the normal part. 
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Figure 2.27: (Pma
2+Pfa

2)0.5 for different thresholds and deadbands for data in Figure 2.26 

 

In this section it was shown that the design of deadband is very sensitive to the 

alarm threshold. For a fixed threshold it is possible that by increasing the 
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deadband not only false and missed alarm rates along with chattering may not 

reduce, but, it may also result in their increase. So, the next section is about 

estimating the optimal alarm threshold based on the deadband value and 

statistical characteristics of the data. 

2.6 Estimating the optimal threshold with respect to the deadband and 

statistical characteristics of the data 

First the case of zero deadband is considered. The goal is to find the optimal 

threshold for zero deadband based on the statistical characteristics of the data. 

The optimal threshold, as was mentioned before is the one that minimizes 

0.52
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2
ma )( PP + . As the minimum of 
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2
ma PP + , the following equation holds at the optimal threshold. 
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Substituting the mathematical expressions of p1 and q1 and their derivatives, 

equation (2.9) becomes as:    
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This equation can not be analytically solved for the optimal threshold. So, using 

an approximation is necessary to find an estimation of the optimal threshold. For 

zero deadband the ROC curve is almost symmetric. So, the threshold 

corresponding to the minimum distance from the origin is usually very close to 

the threshold where false and missed alarm rates are equal. Thus, the solution to 

p1=q1 can approximate the solution of equation (2.9).  

By replacing p1 and q1 by their mathematical expression the following equation is 

obtained: 
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By solving this equation the threshold is obtained as: 
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This threshold is exactly the threshold where false and missed alarm rates are 

equal for zero deadband. Since it is not exactly the threshold corresponding to 
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the minimum summation, regression method is used to obtain a better estimation 

for the optimal threshold.  

Since p1, p2 and also q1, q2 have different definitions for high and low alarm 

cases, the equation for optimal threshold would be different in the two cases. So, 

curve fitting is performed separately for high and low alarms.  

About 30000 data sets with different statistical characteristics were generated by 

simulation for each case of high and low alarms. For each data set the optimal 

threshold was obtained by mathematically minimizing 0.52
fa

2
ma )( PP + . The 

structure of the function for estimating the optimal threshold was inferred from 

equation (2.10), as is shown below. Parameters 41...αα  are the parameters to 

be estimated to get the best equation for estimating the optimal threshold. 
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Since in the first modeling 1α and 2α were estimated very close to one, their 

values were fixed on one and the regression method was repeated to get a better 

estimate of the parameters 3α and 4α . The equation obtained for the high alarm 

case is: 
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The equation obtained for the low alarm is: 
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The same procedure was used to get the equations to estimate the optimal 

thresholds with nonzero deadband values. For each high and low alarm cases, 

about 160000 data sets was generated with different deadbands between 0 to 
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0.4. For each data set, the optimal threshold was obtained by 

minimizing 0.52
fa

2
ma )( PP + . 

The structure considered as the model in the regression is: 
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The reason for considering this model for performing regression is inferred from 

the result of the simulations that was shown before. It was seen that by 

increasing the deadband, the optimal threshold always moves toward the 

abnormal part of the data and its movement is restricted by the standard 

deviations of normal and abnormal parts of the data. So a weight with respect to 

the deadband is added to the mean value of the abnormal part of the data in the 

numerator of the equation and some weights to both normal and abnormal 

standard deviations in the denominator.  

The parameters 31...αα  were estimated very close to 1 in the first performance 

of the regression. So, their values were fixed on one and the regression was 

again performed to get the parameters 74...αα .  

For the case of high alarm, the equation is obtained as: 

adbn

nadbanLoptimal
σσ

σμσμ

)27.08.0(2.1

)1(

++

++
=  (2.13) 

If the deadband is zero, the equation becomes as equation (2.10). Figure 2.28 

depicts the optimal thresholds obtained by mathematical optimization that were 

used for regression versus the optimal thresholds obtained by equation (2.13).  

By fitting a linear model between optimal thresholds and estimated ones, their 

relation is obtained as L=0.995*ESTL+0.000. L is the real optimal threshold and 

ESTL is the estimated one. 
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Figure 2.28: Estimated optimal thresholds versus the real ones for high alarm 

The same procedure of modeling is performed for the case of low alarm. The 

equation for optimal threshold in this case is obtained as follows. 
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This equation is the same as equation (2.10) for zero deadbands. Figure 2.29 

plots the estimated optimal thresholds versus the optimal thresholds obtained by 

optimization. The relation between optimal thresholds with their estimation is 

obtained as L=1.001*estL-0.014. 
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Figure: 2.29: Estimated optimal thresholds versus the real ones for low alarm 

In both high and low alarm cases the real optimal thresholds have approximately 

identical relationship with the estimated thresholds. 

To see the closeness of estimated optimal thresholds to the optimal thresholds 

based on the chattering, some simulation results are shown here. The statistical 

characteristics of the process data sets used in simulations are listed in Table 

2.1. 

In simulations the deadband is varying between 0.0 and 0.4. For every 

deadband, the threshold is moving from the mean value of the normal part to the 

mean value of the abnormal part of the data. Optimal thresholds based on the 

least chattering and the least summation of squared false and missed alarm 

rates are obtained in the simulations. The results are depicted in Figures 2.30 

and 2.31. Figure 2.30 plots the estimated optimal thresholds by equations (2.13) 

and (2.14) versus the optimal threshold obtained by mathematical optimization of 
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0.52
fa

2
ma )( PP + .  Figure 2.31 depicts the estimated thresholds versus the 

thresholds based on the least chattering. 

Table 2.1: Statistical characteristics of simulated data sets  

μn μa σn σa 

1 3 0.5 0.5 

1 3 1 1 

1 3 1.5 1 

1 3 1 1.5 

1 2 0.5 1 

2 5 1 1 

2 5 1 2 

2 5 2 1 

2 5 2 2 

4 2 1 1.5 

4 2 1.5 1 
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Figure 2.30: Estimated optimal thresholds versus the real thresholds for the data sets in 

Table 2.1   
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Figure 2.31: Estimated optimal thresholds versus the optimal thresholds based on 

chattering for data sets in Table 2.1  

From Figures 2.30 and 2.31 it is seen that the optimal thresholds based on 

chattering are very close to the optimal thresholds based on the least distance 

from the origin in the ROC curve and the equations are successful in 

approximating the optimal thresholds based on the two definitions. 

2.7 Relation between the optimal deadband with the alarm threshold and 

statistical characteristics of the data 

In this section the relation between optimal deadbands (in terms of minimizing 

0.52
fa

2
ma )( PP + ) with alarm thresholds and statistical characteristics of the data is 

investigated. To get a view of this relationship some simulation examples are 

shown here.  

In the examples, the alarm threshold is moving from the mean value of the 

normal part of the data to the mean value of the abnormal part of the data. For 

each threshold, the optimal deadband is calculated by minimizing 0.52
fa

2
ma )( PP + . 
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In the optimization procedure the deadband is limited between 0 and 0.5. The 

result of the simulation for the data in Figure 2.11 is shown in Figure 2.32.  
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Figure 2.32: Optimal deadband versus the alarm threshold for the data in Figure 2.11 

 

As is seen in Figure 2.32, the optimal deadband is zero for the thresholds less 

than 3.2 and then it linearly increases with the threshold until it hits its maximum 

value. 

The same simulation is performed on the data in Figure 2.15. Figure 2.33 shows 

the result of the simulation in this case. 
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Figure 2.33: Optimal deadband versus the alarm threshold for the data in Figure 2.15 
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In Figure 2.33 the same features as in Figure 2.32 are seen. The difference is 

that in this figure, the optimal deadband starts increasing from zero when the 

threshold is on 2.8 and then increases with a higher slope compared to Figure 

2.31. This is the result of higher standard deviation in the abnormal part of the 

data. 

The result of another simulation is shown here to see the effect of the higher 

standard deviation in the normal part of the data on this relationship. Figure 2.34 

shows the result of the same simulation for the data in Figure 2.19. The 

deadband starts increasing from zero at a higher threshold value and continues 

increasing with a lower slope compared with the two previous examples.  
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Figure 2.34: Optimal deadband versus the alarm threshold for the data in Figure 2.19 

 

Now we try to analytically find the optimal deadband. As was mentioned, the 

optimal deadband is the one that minimizes 0.52
fa

2
ma )( PP + , which is the same 

one minimizing )( 2
fa

2
ma PP + . So, the fowling mathematical equations hold for the 

optimal deadband. 
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As can be seen in the above formulas, db is present in both the error function 

and exponential function. So, the equation can’t be analytically solved for the 

optimal deadband. However, the optimal deadband can be obtained by 

numerically solving the equation (2.15). 
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3 Estimation of the chattering index 

3.1 Introduction to chattering index 

As was mentioned in Chapter 1 and Chapter 2, chattering is repetition of an 

alarm in a short time interval. However, there is no precise definition to determine 

how many alarms per minute is considered chattering. Industrial engineers 

usually call an alarm that repeats more than two times in a minute as a chattering 

alarm. 

Chattering alarms are the highest contributors to alarm floods. Alarm floods are 

generally defined as a condition in which the number of received alarms is higher 

than the maximum number that the operator can response to. For example 

receiving more than 10 alarms per 10 minute [1] is called alarm flood. Alarm 

floods usually happen due to simultaneous announcement of some chattering 

tags along with some other tags. However, most of the announced alarms are 

the chattering ones. So, it is important to identify chattering alarms and redesign 

alarm parameters to reduce the chattering.  

Redesigning of the alarm threshold can be very helpful in chattering reduction. 

However, in most cases the alarm threshold is not changeable. So the 

preprocessing techniques such as filters, delay timers and alarm deadbands are 

usually used to reduce the chattering. 

There are some general rules for the design of filters, delay timers and 

deadbands in standards. But, the problem is that these rules can not always 

generate the best result and some precise method for the design is necessary to 

get a good result.  
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A reason for lack of the analytical design methods is the lack of analytical relation 

between chattering and the design parameters. To find the analytical relation 

between chattering and alarm parameters, using a quantitative definition for 

chattering is necessary. In this work, the definition presented in [13] is 

considered.  

As was mentioned in Chapter 1, this chattering index is based on constructing 

the alarm run length distribution from the alarm database. The run length, in the 

case of alarm management, is the time difference between successive alarms. 

The time differences can be calculated from the alarm database. The number of 

repetition of every specific run length is called alarm count. The run length 

distribution is a plot of the alarm counts versus the run lengths. 

 For example, the run length distribution of a simulated process data, which is 

depicted in Figure 3.1, is shown in Figure 3.2. The alarm threshold is at 3.0 and 

no preprocessing technique is used. 
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Figure 3.2: Run length distribution of simulated data in Figure 3.1 
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The chattering index is defined as a weighted sum of alarm counts, divided by 

the total number of alarm counts. The weighting function should give more weight 

to the small run lengths and attenuate the effect of larger ones.  

A small run length means the alarm repeats in a very short time interval which is 

considered as high chattering. A large run length means there is a large time 

difference between the two alarms, so, it might not be considered as chattering. 

So, the effect of smaller run lengths should be highlighted in calculation of alarm 

chattering. The weighting function is considered as the inverse of the run lengths.  

The chatter index is then defined as 
∑
∑

r
r

r

r

AC

r
AC

. 

 AC is abbreviation of Alarm Counts and r is abbreviation of Run Length.  

This chattering index gives a number between zero (no chattering) and one (as 

the maximum amount of chattering). The maximum chattering happens when the 

alarm repeats in every second (assuming the sampling interval is 1 second) 

during the total time period. One advantage of this chattering index is that it 

doesn’t have any parameter.  

A reasonably large time interval should be considered for obtaining the run length 

distribution to have a fair measurement of the alarm chattering. Using this 

chattering index provides the ability to compare the alarm variables and to 

identify the most occurring tags.  

3.2 Probability analysis of alarming  

The basis of the chattering index is the run length distribution. While we have the 

run length distribution, chattering can be calculated in any preferred way. So, this 
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section is about estimation of the alarm run length distribution from the process 

variable. 

It is first assumed that the process data is an iid (independent and identically 

distributed) noise with a known distribution. For example consider a simulated 

data with a Gaussian distribution as is depicted in Figure 3.3. Also a nominal 

alarm threshold is depicted in the figure. The probability of any sample of the 

data to fall above the alarm threshold is noted by P1. In this example P1 is 0.12. 

 

Figure 3.3: Probability distribution function of a Gaussian distributed data 

Since it is assumed that the data is iid, from the probability point of view, every 

sample of the data is similar to a Bernoulli experiment with two outcomes; falling 

above the alarm threshold or beneath the alarm threshold.  

In probability and statistics theory, Bernoulli trial is an experiment with a random 

outcome between its two possible random outcomes: success or fail. For 

example for the data in Figure 3.3, if assuming that the success is falling above 

the alarm threshold, then the probability of success is 0.12.  

In probability and statistics theory, a sequence of identical and independent 

Bernoulli trials with the same distribution is known as Bernoulli process. So, the 

process data that includes n samples (Bernoulli trials) is similar to a Bernoulli 

process (assuming the data is independent and identically distributed).  
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From the alarm management perspective, the number of times that the alarm 

transits from off state to on state is more important than the number of samples 

above the alarm threshold. So, hereafter the probability of success is considered 

as the probability of alarm rise.  

Alarms happen when the measurement transits from the normal range to the 

abnormal range. So, when there is no processing done on the measurement, the 

probability of alarm, (which will be noted by PA), is equal to the probability of a 

sample being above the alarm threshold while the previous sample was lower 

than the alarm threshold. For example, considering the process data in Figure 

3.3 this probability can be calculated as follows: 

PA= P(xi=on,xi-1=off)=P(xi-1=off)*P(xi=on)=P1(1- P1) 

 As a known fact in probability theory, number of occurrences of “successes” 

(event under study) in a Bernoulli process has a Binomial distribution. A Binomial 

random variable is defined as “a random variable that denotes the number of 

‘successes’ in n Bernoulli trials” [14]. The PDF (probability distribution function) of 

this distribution is  

 nxqq
x
n

xP xnx ,...,2,1,0)1()( =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −  (3.1) 

where n is the total number of Bernoulli trials and q is the probability of ‘success’ 

in every experiment. The expected value of the Binomial random variable is 

stated as nq.  

For the case of alarming, if assuming the data is a Bernoulli process with 

alarming as ‘success’, the expected value of the Binomial distribution can give an 

estimation of number of alarms triggered by the process data. For the process 

data in Figure 3.3 an estimation of number of alarms is nPA=nP1(1- P1).  
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A special form of the Binomial distribution is called the Poisson distribution. If the 

number of Bernoulli experiments is large and the probability of “success” is small 

(roughly less than 0.1), the Binomial distribution can be approximated by Poisson 

distribution [14]. Poisson distribution is usually used in modeling the number of 

occurrences of events that have a constant average rate of occurrences. The 

PDF of the Poisson distribution is 

,...1,0
!

)( ==
−

x
x

exP
xλλ  (3.2) 

λ is the expected number of occurrences of the event in the total time interval. 

Since it is assumed that the distribution of the process data is constant, the 

Poisson distribution can make a good estimation of the number of alarms 

generated by the process data.    

As a fact in probability theory, if the number of occurrences of an event has the 

Poisson distribution, the time differences between successive occurrences of the 

event have an exponential distribution model. The exponential distribution is 

widely used in estimation of systems or equipment’s lifetime or reliability as well 

as waiting times between occurrences of random events with a constant average 

rate [14]. The PDF of the distribution is 

 ∞<<= − xexP x 01)( / β

β
 (3.3) 

where β is the average waiting time. 

Based on the previous discussion, by considering an alarm as the event under 

study, the distribution of waiting times between successive alarms has the 

exponential distribution (by assuming that the data is independent and identically 

distributed). This distribution is exactly the run length distribution of alarms that is 
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used in the chattering index calculation. The only parameter of distribution, β  

needs to be estimated from the distribution characteristic of the process data.  

As mentioned before, the estimated number of alarms is obtained as the 

expected value of the Binomial distribution. β is then calculated by dividing n 

(length of the process data) to nPA  (expected value of the Binomial distribution) 

which is equal to 1/ PA. By obtaining the alarm run length, chattering can be 

calculated as explained in section 3.1. Assuming the sample time of one second, 

the chattering index is: 
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For the process data in Figure 3.3 by replacing PA with its derived value, the 

chattering index is obtained as 
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So under some specified conditions, the exponential distribution can be used to 

calculate the chattering from the distribution characteristics of the process data 

and alarm parameters.  

3.3  Generalization of the result 

The important assumption in deriving the distribution model of the alarm run 

length was that the process data is iid. In practice, this assumption does not hold 

if considering the whole process data history together.  

In many cases the data contains abrupt changes. So, by eliminating the transition 

parts of the data it is possible to divide the data in parts with approximately 

constant distribution characteristics. As the signal during transition can’t cause 
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alarm chatter, this procedure doesn’t reduce the precision of the estimation. By 

this technique, the process data in every part will be approximately iid, as it is 

only affected by noise. In practice, the distribution of the data is usually supposed 

to be Gaussian. So, the division should be based on mean changes of the 

process data.  

An important condition of the Poisson distribution was mentioned as constant 

average rate of the event under study. This assumption holds if the distribution 

characteristics of the process data are constant. The rate of alarming obviously is 

not constant in different states of the process variable. However, by dividing the 

data in parts according to process states, the average rate of alarming will be 

constant in each part. 

So, the procedure of alarm chattering calculation from the process data is as 

follows. Firstly, divide the data in parts according to the different operation states. 

Secondly, estimation of the distribution model of the data in each section and 

calculation of the probability of alarm in every data section. Thirdly, the run length 

distribution should be estimated separately for each part. Finally, run length of 

the whole process data is obtained by summing up all of the estimated run 

lengths together. Chattering of the process data can be calculated from the final 

run length distribution as explained in the previous section.         

3.4 Derivation of alarm chattering formula with alarm deadbands  

As was mentioned in Chapter 2, Alarm deadband means specifying two 

thresholds for triggering and clearing the alarm. The alarm goes on when the 

process variable exceeds the alarm threshold and clears when it passes the 

deadband limit.  
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For example, the PDF of a Gaussian distributed data is depicted in Figure 3.4 

along with the alarm threshold and deadband limit. P1 is the probability that a 

sample exceeds the alarm threshold and P2 is the probability that a sample falls 

lower than the deadband limit.  

 

Figure 3.4: PDF of a Gaussian distributed data 

To use the discussed method for estimating the chattering index with deadband, 

the probability of alarming with a deadband in the system needs to be calculated. 

Markov process for an alarm variable with a deadband is depicted in Figure 3.5. 

The probability of alarm rise, which is the probability of transition of the alarm 

state from no alarm to alarm, is
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Figure 3.5: Markov diagram of a system with alarm deadband 

As discussed in section 3.2, the expected number of alarms triggered by the 

variable is 
21

12

PP
PP

num
+

×  (num is the number of data samples). So the chattering 

index is derived as 
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The equation is the same for different kinds of distributions. The difference is only 

in calculation of P1 and P2. Assuming the sample time is one and the alarm is 

recorded at every sample time, the minimum run length would be on 2 seconds 

with the existence of the deadband. It means that the least possible time 

difference between two alarms is two sample times.    

3.5 Derivation of alarm chattering formula with time delay  

Time delay is another useful method for chattering reduction. It can be applied in 

rising or clearing the alarm. In the case of on-delay timer, the alarm goes on if n 

consecutive data samples have exceeded the alarm limit. If there is off-delay 

timer configured in the system, the alarm clears only when m consecutive 

samples are lower than the alarm or deadband limit.  

Markov process for the time delay case depends on the number of on and off 

delay timers. For example the Markov process for a system with three samples 

on-delay and two samples off-delay is depicted in Figure 3.6. 
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Figure 3.6: Markov diagram of a system with three samples on delay and two samples off 

delay 

Assuming that the data is firstly in the normal range of operation, the alarm state 

is on the no alarm state (NA). If the next sample is again in the normal range with 
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probability of 1-P1 the alarm state remains in NA. The alarm state transits to NA1 

while one sample exceeds the alarm limit with probability of P1 (In this state the 

alarm is still off). If the next sample goes back to the normal range, the alarm 

state transits to NA, and if it is again in the abnormal range, the alarm state 

transits to NA2. The alarm becomes on in the case that another sample is in the 

abnormal range.  

The same is true for clearing the alarm. The intermediate alarm state A1 

happens while one sample has gone back to the normal range. However, the 

alarm remains on. If the next sample is in the normal range the alarm transits to 

the off state and if the sample is in the abnormal range the alarm goes back to A.    

The probability of raising alarms in the case of the time delay equals to the 

probability of the last no alarm state (NAn-1) multiplied to the probability of its 

transition to the alarm state (A). In this example the probability of alarming is 

P(NA2)*P1.  For a system with n on-delay and m off-delay samples, the probability 

of the last no-alarm state can be obtained as [9]: 

)1...()1...(
)(

2
1

211
1

12

1
12

1
+++++++

=
−−

−

−
PPPPpp

PP
NAP

mnnm

nm

n    (3.5)  

So, the average number of alarms triggered by the variable would be   
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 where num is the number of data samples. The chattering index is 
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This equation can also be used in cases of applying both time delay and alarm 

deadband with different kinds of distributions. Assuming one second sampling 
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time, the minimum possible time difference between successive alarms would be 

n+m-1. So the alarm count is zero for run lengths less than n+m-1.  

3.6         Simulation examples  

Simulations are performed to compare the actual alarm chattering with its 

estimation using the proposed method. The simulated data is shown in Figure 

3.7. It contains two Gaussian distributed parts. The first half of the data has a 

mean value of 1 and standard deviation of 1.5. The average of the second half of 

the data is 5 and the standard deviation is 2.  
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Figure 3.7: Simulated data 

In the first simulation, the alarm threshold is on 2 and there is no alarm deadband 

or time delay. Probability of alarm in the first half of the data is 0.18 and in the 

second half is 0.06. The run length distribution is obtained for each part of the 

data separately. Monte Carlo simulation is used in calculation of the alarm run 

length. The run length distribution is obtained as the solid line in Figure 3.8 and 

the estimated run length (summation of the two run length distributions) is 

depicted in dashed line.  
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Figure 3.8: Run length distribution of a simulated data without any processing technique  

Chattering is obtained as 0.194 from the simulation and 0.179 from the estimated 

run length.    

In the second simulation the simulated data is as in the previous one. The alarm 

threshold is kept on two and an alarm deadband of 20% is applied on the 

system. Figure 3.9 shows the run length obtained from simulation in the solid line 

and the estimated run length is in the dashed line.    
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Figure 3.9: Run length distribution of a simulated data with alarm deadband 

Chattering is obtained as 0.160 from simulation and 0.153 from the estimation. 

In the third simulation the mean value and standard deviation of the data is 1 and 

2 respectively in the first half, and 3 and 2 in the second half. The alarm 
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threshold is on 2. The system has no deadband in this simulation, but, it has two 

sample on-delay and two sample off-delay timers. The alarm run length obtained 

in simulation is shown in Figure 3.10 in the solid line and the estimated run length 

is shown in the dashed line. Chattering is calculated as 0.089 from the simulation 

while the estimated one is 0.086.  
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Figure 3.10: Run length distribution of a simulated data with time delay 

In previous examples only Gaussian distributed data were considered. In the 

next example the data has Chi-Square distribution with 6 degrees of freedom. 

The PDF of the data is plotted in black dots in Figure 3.11. 
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Figure 3.11: Chattering indexes for different thresholds considering a Chi-square 

distributed data   

In the simulation, alarm threshold is moving from zero to 25 and there is 10% 

alarm deadband. Chattering is obtained in the simulation for every threshold and 
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is plotted in solid line in Figure 3.11. Estimation of chattering is obtained for every 

threshold by using the proposed method and the estimated ones are plotted in  

dashed line in Figure 3.11. As can be seen in the figure, the estimations are very 

close to the real values of chattering. 

In these simulations the case of abrupt changes in the process data was 

investigated. However, in many cases the process data has structure and slowly 

crosses the alarm threshold. One example is shown in Figure 3.12. The process 

data can be modeled as a structure with white noise. To be able to use the 

proposed methods for chattering estimation while testing different deadbands 

and time delays for this system, this process data needs to be replaced by an 

equivalent iid noise.  
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Figurer 3.12: Simulated data  

By doing several simulations it is concluded that the best replacement for the 

data during transition from normal to abnormal parts is an iid noise with 

distribution parameters estimated from the data. For this purpose the part of the 

data during the transition should be considered for estimating a distribution 

model. The fitted distribution can be used instead of the real data for further 

analysis on the effect of alarm processing techniques on the chattering. 

For the process data shown in Figure 3.12, a Gaussian distributed noise with 

parameters estimated from the part of the real data that causes the most alarm 

chattering (the data between the first alarm to the last alarm) is used to estimate 
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the chattering while considering different deadbands and time delays. The 

estimated chattering amounts are listed in Table 3.1 besides the chattering 

amounts that are obtained by simulations. As it is seen the error of estimation is 

acceptable.      

Table 3.1. Chattering amounts and their estimated values for different deadbands 

considering data in Figure 3 .12 

Deadband simulation estimation 

0 0.24 0.25 

0.05 0.23 0.24 

0.1 0.22 0.23 

0.15 0.20 0.21 

0.2 0.19 0.20 

0.25 0.18 0.18 

0.3 0.17 0.17 

 

3.7 Application to alarm design  

Analytical relation between chattering and alarm parameters makes it possible to 

perform an optimal design targeting the least chattering. The necessary 

knowledge for the design is the distribution characteristics of the data. After 

classifying the process data and estimating the distribution parameters for each 

part, the chattering index can be written as a mathematical equation with alarm 

parameters as its variables. The equation can be minimized by applying some 

optimization method to get the optimal parameters. 

In cases that the mathematical optimization is not suitable, it is possible to get a 

better understanding on how chattering varies corresponding to variations of 
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alarm parameters by evaluating the chattering equation for a range of alarm 

parameters. For instance, if the design of a deadband with a fixed alarm 

threshold is considered, the chattering indexes for different deadbands can be 

simply obtained by using the chattering equation and the best deadband can be 

chosen according to the situation.  

For example, the data plotted in Figure 3.7 is considered. The goal is to both 

design a deadband and alarm threshold to minimize the chattering. So, the 

chattering index is calculated by using its mathematical expression for thresholds 

changing from the mean value of the normal part of the data to the mean value of 

its abnormal part considering different deadbands. Figure 3.13 shows how 

chattering varies with respect to changes in the threshold and deadband. If the 

limit of the maximum deadband and the acceptable range of the threshold are 

known, the best values of threshold and deadband can be easily obtained 

according to the plot.     
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Figure 3.13: Chattering for different thresholds and deadbands considering the data in 

Figure 3.7  
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4 Case Studies 

This chapter is about the application of the proposed methods in the last two 

chapters in alarm design. Two examples are presented discussing the 

application of the results on two industrial tags. The process data is provided by 

an industrial partner.    

Since the length of the industrial process data is huge, it takes a lot of time to run 

simulations on the data to check the effect of possible alarm limits or deadbands 

on reduction of number of alarms and chattering. So, estimating the chattering 

index by the method presented in Chapter 3 can be quite helpful in redesigning 

the alarm parameters.  

While the distribution characteristics of the process data are known, chattering 

and the number of alarms can be obtained for different alarm parameters within a 

few seconds.  Following are two examples applying the method on two sets of 

industrial process data.  

4.1 Example 1 

The first example is an industrial flow measurement. The data, which is depicted 

in Figure 4.1 is sampled at every second over two days. The alarm threshold is 

on 12 and the original deadband is 0.23. It generates 75 low alarms in one hour 

and its chattering index is 0.09. 
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Figure 4.1: Industrial flow measurement 

As was mentioned in Chapter 3, the first step to estimate the chattering is to 

divide the data in parts with approximately constant distribution characteristics. 

For this purpose the data is divided in 14 parts. Figures 4.2 and 4.3 depict the 

subsections of the data along with their mean and standard deviation values. 
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Figure 4.2: Subsections of the data in Figure 4.1  
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Figure 4.3: Subsections of the data in Figure 4.1 

The variance of the data in the top left plot in Figure 4.13 is constantly increasing. 

So this section of the data is also divided in 5 parts with less change in their 

standard deviation.  

The next step after dividing the data is to obtain the equation of the run length 

distribution for each part of the data with alarm parameters as their variables. 

Since it is a low alarm limit, P1 and P2 are calculated by the following formulas 

(since the type of the distribution is not known, it is considered as Gaussian 

distribution): 
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For each part of the data P1 and P2 are written as a function of the alarm limit and 

deadband. For example for the first part of the data P1 and P2 are as following. 
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The run length distribution for each part of the data is obtained by calculating 

alarm counts corresponding to run lengths up to 1000 seconds. The following 

formula is used in calculation of alarm counts:  

)exp()(
21

212

21

21 x
pp

pp
pp

pp
nAC ×

+
−×

+
=  

Here n is the number of data samples, P1 and P2 are as explained in the above 

and x  is the run length.  

The alarm count of the total data for every run length is obtained by combining all 

the alarm counts of the different parts of the data together. Chattering is obtained 

from the final run length distribution as a function of the alarm limit and 

deadband.  

The chattering function can be evaluated for different alarm parameters. In this 

example, chattering is calculated for alarm limits from 10 to 17 and deadbands 

from 0 to 0.4.  In Figures 4.4 to 4.7 chattering of the total data is plotted versus 

deadbands considering different thresholds. 
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Figure 4.4: Chattering of the data in Figure 4.1 versus deadbands for thresholds from 10 

to 11.5   
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Figure 4.5: Chattering of the data in Figure 4.1 versus deadbands for thresholds from 12 

to 13.5   
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Figure 4.6: Chattering of the data in Figure 4.1 versus deadbands for thresholds from 14 

to 15.5   
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Figure 4.7: Chattering of the data in Figure 4.1 versus deadbands for thresholds from 16 

to 17 
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For lower alarm limits (Figure 4.4) chattering is reduced with increasing the 

deadband. For higher alarm limits, since the other parts of the data with higher 

averages also affect the chattering, the behavior of chattering curve changes. If 

the alarm limit is fixed, measuring the chattering for different deadbands helps in 

designing the deadband.  

In Figures 4.8 and 4.9, chattering is plotted versus alarm limits for different 

deadbands. Plotting this figure is helpful in cases that the range of the deadband 

is fixed and the adjusting the alarm limit is considered.          
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Figure 4.8: Chattering of the data in Figure 4.1 versus alarm limits for deadbands from 0 

to 0.15 
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Figure 4.9: Chattering of the data in Figure 4.1 versus alarm limits for deadbands from 

0.2 to 0.4 

There are two concerns in using these plots in designing the alarm parameters. 

Since the correlation of the data is not considered in the chattering estimation, 

the estimated chattering values usually are higher than the real data. For 

example, the estimated chattering for the case of the original alarm limit and 

deadband is about 0.12 while its real value is 0.09. 

 Another important point in using chattering index is that since it is a normalized 

value, it is not related to the number of alarms. For example, if the data has just 

two alarms within one second (the time difference between the two alarms is one 

second), the chattering index equals to 1, which is the maximum chattering. 

Consider another case in which the data has two alarms within one second and 

another alarm with two seconds time difference; In this case, the chattering index 

equals to 0.75 which is less than the previous case. Although it has more alarms 

compared to the first case but the chattering is significantly lower. So, in the 
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design of the alarm parameters, number of alarms should also be considered 

along with chattering.  

The numbers of alarm counts can also be obtained from the estimated run 

lengths for the same alarm limits and deadbands as in previous figures. Figures 

4.10 and 4.11 depict the estimated number of alarms of the data in Figure 4.1 

versus alarm limits considering different deadbands.   
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Figure 4.10: Alarm counts of the data in Figure 4.1 versus alarm limits for deadbands 

from 0 to 0.2 
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Figure 4.11: Alarm counts of the data in Figure 4.1 versus alarm limits for deadbands 

from 0.25 to 0.4 

From Figures 4.10 and 4.11 it can be seen that increasing the deadband is very 

effective in reducing the number of alarms for lower alarm limits while it has less 

effect for higher limits. This fact helps in designing deadband while the alarm limit 

is fixed. For the alarm limit on 12, increasing the deadband can have a desirable 

effect on reduction the alarms, but for higher limits it doesn’t make much 

difference. 

Presented plots provide a perspective of the effect of the alarm limit and 

deadband on reduction of the chattering and number of alarms. Also, the limit of 

effectiveness of increasing the deadband for different alarm limits can be seen 

from the plots.  

Now, the equations presented in Chapter 2 are examined on this industrial tag. 

Equation (2.8) can be used to obtain the optimal alarm limit for 0.23 deadband. 

Distribution characteristics of normal and abnormal parts of the data are 

necessary for this equation. 
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The normal range of the data is considered as the parts which are higher than 

the alarm limit. As is seen in Figure 4.1 the data has different distributions in its 

normal range of operation. However, only the part of the data which is closer to 

the alarm threshold should be considered in this analysis. For this example, this 

part is from about 20000 to 60800 seconds. The reason for this choice is that this 

part is causing the alarms and the alarm parameters should be adjusted to 

remove the alarms generated by this part of the data. 

 The abnormal range of operation is also considered as the part which is mostly 

lower than the alarm limit. For this example, the abnormal part of the data has 

two parts. One part which has almost constant distribution characteristics is 

plotted in the last diagram in Figure 4.2. The other part is plotted in the top left 

diagram of Figure 4.3. As is seen from the figure, the second part has an 

increasing variance which is much higher than the first abnormal part and also 

crosses the normal range of the data. Although this part of the data causes most 

of the alarms, but designing deadbands can’t remove its effect because of its 

high variance. So only the distribution of the first section of the abnormal part of 

the data is considered for adjusting the alarm limit.  

Using equation (2.14), the optimal alarm limit is obtained as 16.5. This alarm limit 

with 0.23 deadband generates 47 alarms. As was mentioned in Chapter 2, this 

equation gives the optimal threshold in terms of least number of false and missed 

alarms. So the summation of these two alarm rates is plotted for different alarm 

limits considering the two mentioned normal and abnormal parts of the data. As 

is seen in Figure 4.12, the summation of false and missed alarm rates is much 

less in alarm limit 16.5 compared to 12.  



 82

  
10 12 14 16 18 20

0

0.02

0.04

0.06

0.08

0.1

0.12

(P
m

a2 +P
fa

2 )0 .5

Alarm Limit

 

 
Deadband=0.23

 

Figure 4.12: Summation of false and missed alarm rates for 0.23 deadband 

4.2 Example 2 

The next example is another industrial flow measurement from industry. The data 

which is four day long is plotted in Figure 4.13. The alarm limit on this data is not 

known, but for the case of discussion it is supposed to be a high alarm. The parts 

of the data that are higher than almost 25 are considered as abnormal parts of 

the data and the parts lower than 25 are supposed to be in the normal range of 

operation. 
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Figure 4.13: Industrial flow measurement with a high alarm limit 

 

The same discussion as in the previous example is done on this data set. Again 

the data is divided in parts with approximately constant distribution 

characteristics to be able to get the run length distribution and chattering as a 

function of alarm parameters. For this purpose, the data is divided in 17 parts as 

depicted in Figures 4.14 to 4.16. Mean value and standard deviation of each part 

are noted in the plots. 
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Figure 4.14: Subsections of the data in Figure 4.13 
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Figure 4.15: Subsections of the data in Figure 4.13 
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Figure 4.16: Subsections of the data in Figure 4.13 

As it is a high alarm, P1 and P2 are mathematically written as (assuming 

Gaussian distribution):  
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For each part of the data, P1 and P2 should be written with alarm limit and 

deadband as their variables. The run length distribution of the data is obtained as 

was discussed in the previous example.  

Figures 4.17 to 4.21 depict chattering versus deadbands from 0 to 0.4 for alarm 

limits from 19 to 30.5. Figures 4.22 and 4.23 plot chattering versus alarm limits 
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for different deadbands. Figures 4.24 and 4.25 plot the alarm counts versus 

alarm thresholds for different deadbands. 
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Figure 4.17: Chattering of the data in Figure 4.13 versus deadbands for alarm limits from 

19 to 20.5 
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Figure 4.18: Chattering of the data in Figure 4.13 versus deadbands for alarm limits from 

22 to 23.5 
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Figure 4.19: Chattering of the data in Figure 4.13 versus deadbands for alarm limits from 

24 to 26 
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Figure 4.20: Chattering of the data in Figure 4.13 versus deadbands for alarm limits from 

26.5 to 28.5 
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Figure 4.21: Chattering of the data in Figure 4.13 versus deadbands for alarm limits from 

29 to 30.5 
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Figure 4.22: Chattering of the data in Figure 4.13 versus alarm limits for deadbands from 

0 to 0.15 
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Figure 4.23: Chattering of the data in Figure 4.13 versus alarm limits for deadbands from 

0.2 to 0.4 
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Figure 4.24: Alarm counts of the data in Figure 4.13 versus alarm limits for deadbands 

from 0 to 0.15 
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Figure 4.25: Alarm counts of the data in Figure 4.13 versus alarm limits for deadbands 

from 0.2 to 0.4 

From Figures 4.23 and 4.25 it is seen that increasing deadband more than 0.25 

is not effective in reduction of chattering or number of alarms for any alarm limit. 

So the maximum deadband can be taken as 0.2. By considering Figure 4.25 it is 

seen that the alarm count curve for 0.2 deadband has its lowest value for alarm 

limits equal or higher than 23.  

Although higher deadbands are a little more effective in reducing the number of 

alarms, but larger deadbands cause more delay in clearing false alarms. 

Therefore, it is better to choose the minimum acceptable deadband. From the 

plots 0.2 deadband with alarm limit higher than 23 can be chosen as the range of 

alarm parameters.    

Equation (2.13) is used to get the optimal threshold for 0.2 deadband. Since the 

two abnormal parts of the data have almost the same averages, the distribution 

of the abnormal part is estimated from combination of the two parts. For the 

normal part of the data, only the data between 35000 and 200000 seconds is 
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considered. The reason is that the other parts have less averages and can’t be 

effective in causing chattering.   

The optimal alarm limit is estimated by equation (2.13) as 27.5. By 

mathematically minimizing the summation of false and missed alarms, the 

optimal threshold is obtained as 26.8. Optimal deadbands obtained by 

mathematically minimizing the summation of false and missed alarm rates for 

different thresholds are plotted in Figure 4.26. 
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Figure 4.26: Optimal deadbands for different alarm limits 

Figure 4.26 confirms the choice of 0.2 deadband as the maximum deadband. As 

is seen from Figure 4.26 the optimal deadband is 0.1 for alarm limit 23 and is 0.2 

for higher limits.    
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5 Conclusion and future work 

This study was divided in two parts. In the first part the relation between alarm 

limits and deadbands with chattering and false and missed alarm rates was 

considered. It was shown that the effect of deadband in reduction of chattering or 

false and missed alarm rates is very sensitive to the alarm limit. Two equations 

were proposed for estimating the optimal alarm threshold with respect to the 

deadband from the history of the process data. Also, an equation was derived for 

calculating the optimal deadband. 

In the second part of the study, chattering index was analytically derived as a 

function of the statistical characteristics of the data and alarm parameters. To 

use the equations it is necessary to divide the data in parts with constant 

distribution characteristics and estimate the distribution of each part. A run length 

distribution should be estimated for each part separately and then by summing all 

the run length distributions, the distribution of the whole process data is obtained. 

Chattering is calculated from the total run length distribution. By this method, 

chattering can be represented as a mathematical function that can be used in the 

design of alarm parameters. Some examples were presented regarding the 

usage of the proposed method for alarm design. 

The basic idea behind both of the presented topics was that the process data is 

iid (independently and identically distributed) with known distribution 

characteristics. As this is not the case in practice, the equations provide 

estimations of the real values of chattering or optimal deadband and threshold. 

So, the work can be improved by considering the correlation of the data in the 

analysis.  
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