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Abstract 

Parameter estimation for mathematical models is performed based on the data 

collected by experiments using system identification techniques. However, since 

performing experiments can be time consuming as well as expensive, experiments 

must be designed prior to performing, so that the data collected will be optimal for 

parameter estimation. This thesis aims at performing experimental design while 

addressing three different design problems: (1) non-identifiability for large scale 

catalytic systems, (2) uncertainty in parametric values being used for design, and 

(3) parameter estimation for a specific subset of reactions. Hierarchical clustering, 

stochastic optimization and computational singular perturbation are the 

methodologies used in this study. Catalytic systems under investigation are 

ammonia decomposition and preferential oxidation for hydrogen production for 

fuel cells.  
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1. Introduction 
 

1.1 Design of Experiments 
 

Experiments are normally carried out to collect data based on which a particular 

hypothesis can be tested. However, as experiments are often expensive and time-

consuming, their choice must be optimized to reduce the number necessary to 

accomplish a user defined objective. The Design of Experiments (DOE) is a 

method regarded as accurate for testing a hypothesis. It is a tool to develop an 

experimentation strategy that maximizes information gained about a system using 

a minimum of resources. A sound experimental design follows established 

scientific protocols and generates good statistical data. The basic theory of DOE 

was developed some 50 years ago (Lucas et al., 1959). The objective of 

experimental design is to establish a causal relationship between variables by 

manipulating an independent variable to assess the effect upon dependent 

variables. The dependent variable, in the context of DOE, is called the response, 

and the independent variables are called factors. The aim is to select combinations 

of factors that will provide the most information on the causal relationship. In 

general, the design of an experiment is influenced by (1) the objectives of the 

experiment, (2) the extent to which sequential experimentation will be performed, 

if at all, (3) the number of factors under investigation, (4) the possible presence of 

identifiable and non-identifiable factors, (5) the model for the response variable 

(Ryan, 2007). The objective for each experiment should be clearly delineated, as 

these objectives will dictate the construction of the designs. 

 Many classical design methods have been used for experimental design. 

The first type of design is the one factor design which is a one-variable-at-a-time 
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(OVAT) approach, i.e. only one factor is under investigation. Another method for 

DOE is factorial design wherein multiple factors are investigated simultaneously. 

Different kinds of factorial designs are commonly used, such as, general full 

factorial design, full factorial design with two levels, fractional factorial designs 

with two levels and factorial designs with more than two levels (Ryan, 2007). 

Factorial designs with two levels is also known as 2
k
 factorial design, and are the 

simplest possible designs, requiring 2
k
 experiments, where k is the number of 

variables under study. In these designs, each variable has two levels,    and   , 

and the variables can be either quantitative (e.g., temperature, pressure, 

concentration) or qualitative (e.g., type of catalyst, type of apparatus, sequence of 

operations). For understanding, let us take an example of designing experiments 

for a 3 variable system. In this case, factorial design implies       experiments 

would have to be performed. The mathematical model is therefore the following:  

                                                       

                                                                                            

As a consequence, with just eight experiments, it is possible to estimate a constant 

term, the three linear terms, the three two-term interactions and the three-term 

interaction. Contrary to what happens in the one-variable-at-a-time (OVAT) 

approach, the factorial design is suitable for estimating the interactions between 

variables. Upon detailed study of factorial designs, it can be inferred that when 

more than one response is studied, all of them should be considered at the same 

time, thus finding a combination better than given by the OVAT approach. In the 

case of a large number of factors, the experimental cost required is very high, 

since all possible combinations of factor values must be taken into consideration. 

In this case, fractional factorial designs can be used to reduce the size of the 

problem. Factorial methods are not suited to the situation where there are some 

constraints on the outputs (or internal states of the experiment such as 

temperatures, pressures, etc.). They are also not well suited to handle dynamic 

experiments, where both ―factors‖ and ―responses‖ may not be single values (say, 

a constant temperature or a conversion) but complex time profiles of the same 
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variables. However, in view of their simplicity, these methods are still widely 

used in the DOE. 

 Another method used for DOE is response surface methodology (RSM) 

which is a collection of tools for fitting a surface to a set of data, and determining 

optimum factor levels (Sarabia et al., 2009). The shape of the surface is 

determined by the model that is fit to the data, as well as the response values, and 

hence the term ―response surface‖. Typically, a full second-order model is fit in 

trying to determine the optimum combination of factor levels. Before that is done, 

generally a first-order model is fit and then the method of steepest ascent or 

descent is used to try to zero in on the operating region, and then a design is used 

to accommodate a second-order model for the purpose of characterizing the 

region. 

 

1.2 The D-Optimal Design 

As opposed to these ―black-box‖ statistical experiment design methods, another 

form of optimal design has been developed. These methods take advantage of the 

knowledge of the structure of the system under consideration, where the system is 

represented by a mathematical model. These model-based experiment design 

techniques can be applied to any system, including linear, non-linear, steady state 

or transient processes. Their goal is typically to assist in the rapid development, 

refinement and statistical validation of process models. These model-based 

experiment designs use the model equations (including any constraints) and 

current parameters explicitly to estimate parameter values and conditions for the 

next experiment. It applies an optimization framework, which requires the 

evaluation of an appropriate objective function. Generally good designs are 

constructed such that they meet a certain optimality criterion, and the collection of 

such criteria is referred to as alphabetic optimality. Many different criteria have 

been suggested and labeled by single capital letters A, E, D, I and so on, which 

explains the term alphabetic optimality. Most of these designs start with 
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evaluating the influence of a perturbation in the estimated parameter vector over 

the predicted output. For this purpose, the sensitivity matrix ( ) is calculated as 

   
  

   
                                                                       

where   is the output we are interested in, and   is the parameter set. The 

measured output is a function of the parameters, and may be affected by 

measurement noise. In practice, the measurement noise is often assumed to be 

normally distributed with zero mean and a covariance given by the matrix   . As 

a result, the measurements are also normally distributed even for a nonlinear 

system. The Fisher information matrix,    , is defined as: 

         
  

   
 
 

    
  

   
                                                      

If the measurement noise is uncorrelated and has a constant variance with time, 

the covariance matrix becomes          and the Fisher information matrix 

(FIM) becomes the transpose of the sensitivity matrix multiplied by itself. 

Without loss of generality, it can be assumed that     , which gives: 

         
  

   
 
 

 
  

   
                                                         

The FIM is thus always a positive semi-definite symmetric matrix. Its inverse is 

also the lower bound on the variance of any statistic, which explains why the 

quantity in equation 1.4 is called the ―information‖ matrix. The larger the value of 

the FIM is, the smaller the variance becomes, and therefore, there is more 

certainty about the location of the unknown parameter value. 

The most common approach to optimal experiment design is the D-

optimal experiment design, wherein the determinant of the Fisher information 

matrix is maximized. Other alphabetic optimality criteria include the average-

variance criterion, the smallest-eigenvalue criterion, and the trace criterion 
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(Pukelsheim, 1993). The D-optimal criterion for experimental design has been 

used for most the different methods proposed in this work. 

Consider the example of a system with one input, two parameters, and two 

output variables: 

 
  

  
   

       

  
     

   
  
  

                                               

where           are output variables,         
  are parameters, u is an 

input variable determining the experimental condition, and   

        represent noise with a Gaussian distribution with 

                           

The nominal values of the parameters are θ10 and θ20. The sensitivity matrix (S) 

and FIM are calculated as,  

  
  

   
  

   
    

 
                                                    

         
      

  
  

   
    

 
   

       
         

        
                      

  
     

 
                                                          

              
           

                                     

Taking the derivative in order to find the u for which the det (FIM) can be 

maximized, yields: 

       
                                                           

Hence, the experiments performed at input conditions given by equation        

are D-optimal and the data generated will be good for estimating the values of 

parameters. However it is important to note here that the value of input conditions 
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is directly related to the nominal value of the parameter. Hence, uncertainty in the 

nominal values will affect the experimental design directly. 

 

1.3 Kinetic Systems 

1.3.1 Ammonia Decomposition 

 

The overall reaction for the decomposition of ammonia into hydrogen and 

nitrogen is: 

                                                                                

This reaction has also been studied on a variety of catalysts. The reaction 

proceeds with the adsorption of ammonia gas onto the catalyst surface, where 

hydrogen atoms are abstracted one at a time. Atomic nitrogen and hydrogen 

combine to produce    and   , respectively. Each of the elementary steps in the 

reaction network was assigned a modified Arrhenius equation, as shown in Table 

1-1. Each reaction used an activation energy that was dependent both on 

temperature and the surface coverage of various species (Table 1-2). We describe 

this using microkinetic models, which consider a detailed reaction mechanism 

consisting of all relevant elementary reactions, and the species concentrations are 

solved rigorously using numerical methods, without any assumptions made about 

a rate determining step (RDS), the most abundant reaction intermediate (MARI), 

or partial equilibrium conditions. Table 1-1 shows the expressions for the rate 

constants of elementary reactions in the modified Arrhenius form. 
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Table 1-1 Rate constants for different types of reactions 

Reaction Type  Rate Constant 

Adsorption 

 

   
 

  
 

  

   
 
 

  
 
 

   
       

   

Desorption 
 

   
 

    
 
 

  
 
 

   
       

   

Surface Reaction 
 

   
 

    
 
 

  
 
 

   
       

   

 

There are two major sets of parameters in microkinetic models – the activation 

energies and the pre-exponential factors. The activation energy for each reaction 

is specified using the unity bond index - quadratic exponential potential 

(UBIQEP) method (Prasad et al., 2008), and is not estimated using the 

experimental design, whereas the pre-exponentials are considered as parameters 

for estimation. The system we use to demonstrate our approach is the catalytic 

decomposition of ammonia to produce hydrogen. It is a well-studied model 

system often used for demonstrations of proof-of-concept in catalytic studies 

(Prasad et al., 2010). The model was developed considering the irreversible 

elementary reactions shown in Table 1-2, along with the nominal values for the 

sticking coefficients and pre-exponentials to be used for the D-optimal design, 

and the coverage and temperature dependencies of the activation energies. 
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Table 1-2 Elementary reactions representing the decomposition of ammonia on a Ru surface 

No. Reaction 

Nominal Values of 

Sticking 

Coefficient [unit 

less] or Pre-

exponential factor 

[s
-1

] 

Activation Energy 

 
    

   
  

1       
  
                   

2     
  
                            

3       
  
                          

4     
  
                             

5       
  
                              

6         
  
              

           

       

7          
  
                              

8         
  
                               

9          
  
                               

10          
   
                              

11        
   
                     

12      
   
                        

   and    are the fractional coverages of H* and N* respectively. * indicates a vacant site or, in 

conjunction with a chemical species, an adsorbate 

 

 

 

 

 

 



 

9 

 

1.3.2 Preferential Oxidation 

 

The catalytic kinetic system described in this section is the preferential oxidation 

of CO on platinum and rhodium catalysts. This process is of importance in the 

production of hydrogen for use in fuel cells through the reforming of fuels such as 

methane, methanol or propane. The carbon monoxide produced during reforming 

acts as a poison for proton exchange membrane fuel cells, and must be removed 

or converted before the hydrogen rich stream is fed to the fuel cell. Preferential 

oxidation of CO (with hydrogen not being converted to water) converts it to 

carbon dioxide, while maintaining process efficiency in terms of hydrogen 

production. A detailed kinetic model for this system may be found in 

(Mhadeshwar et al., 2004, 2005), and is the starting point for our investigation. 

While the model is able to describe available data qualitatively and, to some 

extent, quantitatively, the aim is to develop optimal experimental designs to 

develop parameter estimates that improve the quantitative predictive capabilities 

of the model. Table 1-3 shows the 23 reversible elementary reactions conducted 

on the catalyst, and the pre-exponentials for these reactions are the parameters to 

be estimated. For each reversible reaction, the pre-exponential factors for the 

forward and backward reactions are constrained to be in specific ratios based on 

thermodynamic consistency (Mhadeshwar et al., 2003). The activation energy for 

each reaction is specified using the UBIQEP method (Prasad et al., 2008), and is 

not estimated using the experimental design. The model consists of the kinetic 

expressions for each of the elementary reactions, which are used to form the rate 

equations for all gas phase and surface species, and these are integrated along the 

length of a plug flow microreactor, which is representative of the typical system 

for kinetic experimental studies. There are 12 gas phase species and 9 surface 

species, resulting in 21 state variables. 
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Table 1-3 Preferential Oxidation (PROX) reactions;  

* indicates vacant site or adsorbed species, as applicable 

 

Index Reaction 
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1.3.3 Reactor Modeling 
 

Fluid going through a PFR is modeled as flowing through the reactor as a series of 

many ―plugs‖, each with uniform composition, traveling in the axial direction of 

the reactor, with each plug having a different composition from the ones before 

and after it. The key assumption is that as a plug flows through a PFR, the fluid is 

perfectly mixed in the radial direction but not in the axial direction. An ideal plug 

flow reactor has a fixed residence time, i.e. any fluid that enters the reactor a time 

  will exit the reactor at time      , where   is the residence time of the reactor. 

A plug flow reactor with the tube packed with catalyst is known as packed bed 

reactor (PBR). The catalyst surface area is modeled as a continuous distribution of 

catalyst sites throughout the reactor. The catalyst was characterized through an 

effective catalyst surface area to volume ratio and site density (sites per surface 

area). The inlet gas compositions, temperature and pressure were treated as 

variables to be solved for, by the experimental design. Argon was used as the inert 

gas. The mole balance for flow systems is given by: 

   
         

 

 

    
   

  
                                             

where,     is the inlet molar flow rate of species j,    is the molar flow rate out of 

species j,   is the volume of the reactor,    is the total reaction rate for the species 

j and    is the number of moles of species j. For steady state models, the 

derivative on the right hand side of the above equation is set to zero. The PFR 

steady state equation is given by: 

   

  
                                                               

 

where, dL is the differential element along the length of the PFR and A is the area 

of cross section of the PFR. The individual rate of the species is given by: 

        

 

   

                                                     

where, N is the number of reactions. The concentration of the species for gaseous 

phase is given by: 
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where     is the initial total concentration,    is the total molar flow rate,    is 

the initial pressure,    is the initial temperature. The concentration of the gaseous 

species is related to the molar flow rate by: 

    
  

 
                                                        

 

Since the system we are dealing with is a catalytic system, the surface species also 

have to be taken into account. The rate of reaction for surface reactions is 

calculated in the units              and the rate constants are given by the table 

1.1. The rate of change of surface concentration of surface species in the units 

        .  

 

1.4 Thesis Overview 

1.4.1 Thesis Outline 
 

In the field of chemical reaction engineering, experimental data is 

collected in order to estimate parameters of a kinetic model which are pre-

exponential factors and activation energies. The objective is to estimate these 

parameters as precisely as possible with the minimum experimental effort. Also, 

since the quality of experimental data used for the estimation of the parameters of 

a model influences directly the accuracy of the estimated parameters, it is 

necessary to carefully design the experiments so that the chosen experimental 

conditions bring the most meaningful information. In this study, the model 

structure is already known and the objective of performing experiments is the 

evaluation of model parameters. This is the so-called parameter estimation 

problem and many solutions have been proposed. Hunter et al. (1965) came up 

with one of the first solutions by developing optimal strategies for parameter 

estimation. This study is based on a similar idea where the task was to perform 

experiments sequentially such that the volume of the confidence region formed by 
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the estimated parameters in the parameter space is minimized. The parameters of 

interest are the pre-exponentials for the individual reactions only. Firstly, the 

model structure for such systems is established. The aim is to find the parameter 

values (pre-exponentials) in order to completely model the system. DOE is 

performed with the complete mathematical model which uses the nominal values 

of the parameters. This step gives the factor values (experimental conditions) at 

which an experiment should be performed and data should be collected. With the 

collected data, a new and improved set of parameter values are estimated by 

fitting onto the model. The whole procedure is sequentially repeated in order to 

get accurate estimates for the parameters. Figure 1.1 below explains this 

procedure in the form of a flowchart. 
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Figure 1.1 A schematic for parameter estimation using DOE 
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Unfortunately, since kinetic models are nonlinear in nature (due to the 

presence of exponential terms), the design of experiments can be a difficult task 

due to the presence of multiple suboptimal solutions (non-convexity), or multiple 

equivalent solutions (a result of non-identifiability of the full set of parameters). 

Non-convexity may be surmounted by the use of global optimization methods 

(Balsacanto et al., 2007). Non-identifiability also presents formidable 

complications. Two types of identifiability problems are found: structural 

identifiability is related to the model structure independent of experimental data, 

and practical identifiability, which also takes into account the amount and quality 

of measured data that was used for parameter calibration (Walter et al., 1997). 

Such identifiability issues are addressed for the ammonia decomposition kinetic 

system in Chapter 2. 

 There are other issues to consider while performing experimental design 

using the D-optimal criterion. It is well known that this design metric generally 

depends on the value of the parameters to be estimated. Since this value is of 

course unknown, the usual practice is to select an experiment that is D-optimal for 

some reasonable nominal value of the parameters. If the actual value of the 

parameters to be estimated happens to differ too much from this nominal value, 

the designed experiment may prove very far from optimal. In chapter 3, we 

present a methodology which allows uncertainty in the model parameters to be 

taken into account during the design of the experiment. The parameters to be 

estimated are assumed to belong to a distribution with known statistics, and we 

look for an experiment maximizing the expectation of the determinant of the 

Fisher information matrix over the distribution using a suitable optimization 

technique. 

 Sometimes, in chemical reaction engineering, interest might lie in only a 

few species or reactions, or more specifically in particular reaction chemistries. In 

chapter 4, we present a methodology in order to design experiments influenced by 

such an objective. The challenge here is to outline a procedure in order to choose 
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a design criterion that maximizes a metric related to that particular reaction. We 

use computational singular perturbation (CSP) theory in order to extract 

kinetically useful information (Lam et al., 1994). This method is computationally 

very expensive; hence in order not to increase the computational cost further, the 

D-optimal design criterion was not used. We therefore used a grid based 

experimental design with the reaction metric being evaluated over a grid of input 

conditions. 

 The outline of the thesis in brief is as follows: Chapter 2 describes a 

method for addressing the identifiability issues by performing DOE based on 

hierarchical clustering for reducing the number of parameters to be identified; 

Chapter 3 outlines a stochastic optimization technique which considers the 

uncertainty in nominal parameter values to maximize the value of the D-optimal 

metric averaged over a number of samples, Chapter 4 describes another method 

which uses CSP  in order to perform DOE for the estimation of desired reaction 

parameters, and Chapter 5 concludes the thesis as well as outlines the scope for 

future work. 

1.4.2 Thesis Contributions 
 

Modifications in the conventional techniques for optimal experimental design 

have been presented in this thesis. The main thesis contributions are as follows: 

1) Chapter 2 presents a comparison of different techniques for dimension 

reduction such as principal component analysis, hierarchical clustering and 

singular value decomposition in order to perform D-optimal experimental 

design for two different catalysts for preferential oxidation. This part of 

the thesis has been published in the International Journal of Advanced 

Mechatronic Systems (Subramanian et al., 2011). 

2) In chapter 3, uncertainties in nominal parameter values have been taken 

into account while performing DOE using a stochastic optimization 

approach. This work has been presented as a poster at the AIChE Annual 

Meeting 2010 in Salt lake City, USA. 
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3) A comparison of two different approaches to constrained non-linear 

particle swarm optimization has also been demonstrated in chapter 3. 

4) In chapter 4, the mathematical tool, computational singular perturbation, 

has been applied to a transient ammonia decomposition system modeled in 

a PFR approximated by a series of CSTRs. It gives important dynamic 

kinetic information about the system. This work has been presented as an 

oral presentation at the CSChE 2010 conference in Saskatoon, Canada. 

5) A novel metric has been formulated using the computational singular 

perturbation analysis for the experimental design of kinetic systems which 

is not sensitivity based as other conventional methods for optimal 

experimental design. This work has been accepted for an oral presentation 

at the AIChE Annual Meeting 2011 in Minneapolis, USA. 
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2. Parameter Estimation for Large-

Scale Kinetic Systems1 

 

 

2.1  Introduction 

Many techniques in process systems engineering have been developed for small-

scale, lumped parameter systems, and are not easy to extend to large scale 

systems. For example, methods for the design of experiments, such as full 

factorial designs with two levels, fractional factorial designs with two levels, 

factorial designs with more than two levels, response surface designs, and optimal 

designs are easily applicable to systems with less than five factors (Ryan, 2007). 

Also, since kinetic models are basically non-linear in nature (due to the presence 

of exponential terms), the design of experiments for these systems can be a 

daunting task due to the presence of multiple suboptimal solutions (non-

convexity), or multiple equivalent solutions (a result of non-identifiability). A 

function is said to be convex on an interval if the graph of the function lies below 

the line segment joining any two points of the graph. Hence, a non-convex 

function on an open set has more than one minimum. Non-convexity issues can be 

solved by the use of global optimization methods (Balsacanto et al., 2007), but 

non-identifiability is difficult to deal with. Two types of identifiability problems 

                                                           
1
 A version of this chapter has been published. Subramanian, K., Kumar, S., Patwardhan, S. C. and 

Prasad, V. (2011), Extensions to experiment design and identification algorithms for large-scale 

and stochastic processes. International Journal of Advanced Mechatronic Systems, 2011 – Vol. 3, 

No.1 pp.3 - 13. 
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are found: structural identifiability which depends on the identifiability of all the 

parameters given perfect knowledge of the outputs and the model structure, and 

practical identifiability problems which are related to the amount and quality of 

measured data from the experiments being performed (Walter et al., 1990). In the 

case of large-scale catalytic kinetic systems, most of the experiments performed 

are steady-state experiments, and many of the parameters are not identifiable from 

the measured variables that are available. Consequently, a method must be 

devised to select a subset of parameters that can be estimated, either by 

eliminating or grouping the other parameters.  

2.1.1 Identifiability 

While developing process models, the first step is to determine an 

appropriate model structure. Once the structure is decided, the next step is to 

estimate the model parameters. Since, estimation of model parameters is time 

consuming, it is desirable to first check whether the parameters are structurally 

identifiable or not. Structural identifiability analysis is always performed a priori 

and it is possible to distinguish between global, local, and un-identifiability. In 

contrast, during quantitative estimation of parameters, a posterior analysis is 

performed, based on collected experimental information, where only local 

identifiability results are obtained and this is known as practical identifiability 

analysis. In microkinetic reaction models, the structure of the model is pre-

determined by the rate expression of each of the species evaluated in accordance 

with the underlying reaction mechanism. Hence, structural identifiability is not a 

problem for our case. However, practical identifiability analysis has to be 

performed. Local identifiability is tested by computing the rank of the sensitivity 

matrix (Chu & Hahn, 2009).  

A parameter    is said to be locally identifiable if there exists an open 

neighbourhood of    containing no other   which produces the identical output  . 

If    is a parameter point and the sensitivity matrix             has constant 

rank in a neighborhood of   , then    is locally identifiable if and only if       

has the full column rank. Numerically, identifiability can be determined from the 
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parameter covariance matrix. Parameters are considered not to be numerically 

identifiable if the entries in the covariance matrix are large. However, since this 

matrix can be actually computed only after the parameters have been estimated, 

hence, the Fisher information matrix is used because its inverse gives a lower 

bound for the covariance matrix (Ljung et al., 1999). One of the most common 

model based experimental design methods, the D-optimal design method, 

involves the evaluation of the Fisher information matrix. 

 

2.1.2 The D-Optimal Design 

A detailed description of this method has already been given in Chapter 1. In this 

chapter, the aim is to develop a modified D-optimal method for this problem in 

identification and estimation for large-scale kinetic systems. This is important 

because if all the parameters cannot be identified, and still all the parameters are 

estimated, the solution might not be unique and stable. Hence, a method should be 

formulated in order to select just a subset of parameters to be estimated rather 

than the full set which is not identifiable.  

In catalytic kinetic systems, the sensitivity of kinetic parameters is 

negligible in regions of thermodynamic equilibrium in the operating space, 

leading to a reduction in the number of identifiable parameters in these regions. 

The lack of transient data also leads to a smaller number of parameters being 

identifiable from the steady state data. Consequently, it is important to develop 

techniques for reduction of the number of parameters to be identified. In this 

work, the use of hierarchical clustering and principal component analysis is 

explored for developing a reduced set of parameters for identification, and attempt 

to rationalize the results of the parameter selection using kinetic arguments. The 

techniques are demonstrated on the system for the preferential oxidation of carbon 

monoxide on platinum and rhodium catalysts (Mhadeshwar et al., 2005). 
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2.2 The Methodology 

The well-known D-optimal method for the design of experiments is employed. 

The Fisher information matrix (FIM) is generated from the parametric sensitivity 

matrix, S (Prasad et al., 2008), and the D-optimal design seeks the input 

conditions that maximize the determinant of the FIM, or its logarithm (Walter & 

Pronzato, 1990). The input conditions to be specified are the variables 

temperature, pressure, residence time, catalyst surface area per unit reactor 

volume, and the inlet feed composition (mole fractions of hydrogen, oxygen, 

carbon monoxide, carbon dioxide, water and nitrogen). The 23 parameters are the 

pre-exponential factors for the elementary reactions, which include the pathways 

for hydrogen oxidation, CO oxidation and coupling of hydrogen and carbon 

monoxide chemistries. Initial estimates of these quantities are obtained from 

(Mhadeshwar et al., 2004, 2005) for Pt and Rh catalyst, respectively. The outputs 

whose sensitivities are computed with respect to the parameters to generate the 

sensitivity matrix and the FIM are CO conversion, selectivity, mole fractions of 

hydrogen, oxygen, carbon monoxide, carbon dioxide, water, and fractional 

coverage of the surface species, making 15 outputs in all. Note that not all of these 

outputs are independent of each other, and the conversion and the selectivity are 

the most important quantities of interest to practitioners.  

 To begin with, the system is simulated at many different randomly chosen 

operating conditions that sample the feasible space uniformly (approximately 

22,000 points are chosen for the case of Pt, and 36,000 points for Rh; see (Prasad 

et al., 2008) for a description of the sampling algorithm). Table 2.2 shows the 

operating conditions chosen for the analysis. The scaling used for each variable in 

the table, is the scale (linear or logarithmic) in which the corresponding variable 

will be dealt. For example, by saying that the scale of P is logarithmic, it is meant 

that the random sampling is done in the logarithmic scale i.e.       . 

  



 

 

 

 

Table 2-1 Ranges of Operating Conditions 

Decision Variable Symbol 
Lower Bound 

(  ) 

Upper Bound 

(  ) 
Scaling 

Temperature              Linear 

Pressure              Logarithmic 

Residence Time             Logarithmic 

Ratio of catalyst surface area to 

volume 
                   Logarithmic 

Mole fraction of                   Linear 

Mole fraction of                Linear 

Mole fraction of               Linear 

Mole fraction of                Linear 

Mole fraction of                Linear 

Mole fraction of               Linear 

 

 

 



 

 

2.2.1 Principal Component Analysis 

PCA is a much-used multivariate data analysis method for explorative data 

analysis, outlier detection, rank (dimensionality) reduction, graphical clustering, 

classification, and regression (Esbensen et al. 2009). It is a way of identifying 

patterns in data, and expressing the data in such a way as to highlight their 

similarities and differences. The main advantage of PCA is that once these 

patterns are found in the data, the data can be compressed by reducing the number 

of dimensions, without much loss of information. A brief description of the 

method is given below. 

1. The mean is subtracted from each of the data dimensions. So, all the x 

values have    (the mean of the x values of all the data points) subtracted, 

and all the y values have    subtracted from them. This produces a data set 

whose mean is zero. 

2. The covariance matrix is then calculated. Covariance is always measured 

between 2 variables. Hence, for an n-dimensional data set, 
  

        
 

different covariance values are calculated and placed in a matrix. This 

matrix is symmetric about the main diagonal. 

         
                

   

     
                           

For example, from a 3 dimensional data set (dimensions x, y, z),  

                  and           can be calculated. Then, the 

covariance matrix has 3 rows and 3 columns, and will be: 

   

                        

                        

                        
                           

It is to be noted that since                  , the matrix is symmetric 

about the main diagonal. 

3. Eigenvectors and eigenvalues for this matrix are calculated. By this 

process of taking eigenvectors of the covariance matrix, lines have been 



 

23 

 

extracted that characterise the data. The rest of the steps involve 

transforming the data so that it is expressed in terms of these lines. 

4. Once eigenvectors are found from the covariance matrix, the next step is 

to order them by eigenvalue, highest to lowest. The eigenvector with the 

highest eigenvalue is the principal component of the data set. The 

components with lesser significance (small eigenvalues) are ignored so 

that the final data set will have fewer dimensions than the original. A new 

matrix is constructed by taking the eigenvectors that want to be kept from 

the list of eigenvectors, and forming a matrix with these eigenvectors in 

the columns. 

5. The final step in PCA is deriving the new data set which is given by: 

                                                                            

where   is the matrix with chosen significant eigenvectors in the columns 

transposed so that the eigenvectors are now in the rows, with the most 

significant eigenvector at the top, and   is the mean-adjusted data 

transposed, i.e. the data items are in each column, with each row holding a 

separate dimension. 

PCA transforms our data so that it is expressed in terms of the patterns between 

them, where the patterns are the lines that most closely describe the relationships 

between the data. This is helpful because our data is now classified as 

combinations of contributions from each of those lines. 

2.2.2 Hierarchical Clustering 

Another popular method for extracting significant data and dimensionality 

reduction is hierarchical clustering. This method starts with a set of distinct 

points, each of which is considered a separate cluster. The two clusters that are 

closest according to some metric are agglomerated. This is repeated until all of the 

points belong to one hierarchically constructed cluster. The final hierarchical 

cluster structure is called a dendrogram, which is simply a tree that shows which 

clusters were agglomerated at each step. In this work, hierarchical clustering is 
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used to identify correlated kinetic reactions that can be eliminated (by choosing to 

estimate only one of the parameters in the cluster, and keeping the others fixed at 

their nominal values). The clustering method used is similar to that proposed by 

Chu & Hahn (2009). In this case, parameters are clustered based on a dissimilarity 

measure between their sensitivity vectors. The similarity/dissimilarity measure is 

based on the angle between the sensitivity vectors. This approach does not require 

the sensitivity vectors to be parallel; however a low (or zero) value of the angle 

between two parameters means that the parameters are pairwise indistinguishable 

in terms of their effect on the output with a certain numerical precision. The 

similarity measure of the effect of two parameters on the output is defined by; 

        
   

    

          
                                                          

where             is the angle between the sensitivity vectors    and   . The 

value of the similarity ranges from 0 to 1, where a value of unity means that the 

two vectors are parallel to one another, and the two parameters cannot be 

distinguished based on sensitivity. A value of 0 refers to the sensitivity vectors of 

the parameters being orthogonal, that is, the parameters have a distinct effect on 

the outputs. Using this measure, parameters are hierarchically clustered using the 

‗clusterdata‘ function in MATLAB. Details about this function are given in the 

Appendix. 

2.2.3 D-Optimal design for PROX chemistry on Pt catalyst 

First principal component analysis (PCA) is used as a linear measure of 

reducing the number of parameter directions. Due to the fact that some of the 

operating conditions are equilibrium limited, the rank of the FIM varies in the 

space; however, most conditions lead to an FIM rank of 8, meaning that at most 8 

parameters can be identified at these conditions. This places an upper limit on the 

parameter identification. In our work, PCA is used for reducing the dimension of 

large data sets and extracting their structural features. In this present work, of the 

outputs considered, the magnitude of the sensitivity vectors with respect to each 

output is computed, and PCA is used to find the most important output direction 
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for sensitivity (using all points). The surface concentration of oxygen is the most 

important output. PCA is then performed on the sensitivity vector of the surface 

concentration of oxygen with respect to each kinetic parameter. This indicates that 

4 output directions are uncorrelated in a linear sense. However, the important 

parameter directions are combinations of many different parameters, and do not 

provide a clear indication of the important chemistry that is coupled and can be 

reduced.  

Consequently, the use of hierarchical clustering is explored. Since the FIM 

is most often of rank 8, parameters are clustered into 8 clusters. Of these, only the 

first cluster has multiple (16) parameters, while the other clusters are just single 

parameters. This means that a large portion of the chemistry is correlated and 

operates in an indistinguishable manner, and this chemistry can be reduced in 

terms of parameters to be estimated. Figure 2.1 gives the reaction indices of 

kinetic parameters, and their frequency of occurrence in the first cluster. This 

indicates that the seven reactions 2, 3, 4, 12, 15, 16 and 18 have independent 

parameters, and the other parameters are indistinguishable. Figure 2.2 gives  

similar information for the 2
nd

 cluster wherein the frequency of occurrence of the 

12
th

 reaction was the highest whereas, the frequency of occurrence of other 

reactions was negligible, thus suggesting that no other reaction is correlated to 

reaction 12. Similar was the case for the other 6 clusters as well, and no 

correlation could be established between any of the reactions 2, 3, 4, 12, 15, 16 

and 18. Hence, it was concluded that these seven reactions formed singleton 

clusters, whereas the other remaining reactions were correlated and belonged to 

the same cluster. These reactions correspond to oxygen adsorption on the catalyst 

surface, dissociation of adsorbed water to produce adsorbed OH and O, further 

dissociation of hydroxyl on the surface, dissociation of carbon dioxide on the 

surface to produce carbon monoxide or COOH (depending on the presence of 

adsorbed H), further dissociation of COOH to form carbon monoxide on the 

surface, and the combination of adsorbed CO2 and OH to form COOH. This 

indicates that the coupling between the hydrogen and carbon monoxide 

chemistries is primarily  
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Figure 2.1Reaction index of kinetic parameters (pre-exponentials) clustered together for Pt. 

Reaction indices are the same as in Table 1-3. Figure is generated for the first cluster. 

 

Figure 2.2 Reaction index of kinetic parameters (pre-exponentials) clustered together for Pt. 

Reaction indices are the same as in Table 1-3. Figure is generated for the second cluster. 
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important in kinetic investigations for parameter identification, which is in accord 

with fundamental catalytic studies on this system (Maestri et al.,  2008). 

Figure 2.3 shows the value of D-optimal index for all the sample points 

and their frequency of occurrence. PCA and clustering analysis is repeated on a 

subset of the data, focusing on the operating conditions that score high on the D-

optimal metric (i.e., at the right side of the distribution in Figure 2.3). This is to 

verify that the important chemistry based on all operating conditions is the same 

as that at the D-optimal conditions. Both the PCA and the clustering analysis 

produced very similar results in this step, indicating that the same chemistry is 

sensitive at D-optimal conditions. The D-optimal conditions are found to be: 

      (temperature),         (pressure),        (residence time), 

          (catalyst surface area per unit reactor volume),      (hydrogen inlet 

mole fraction),      (oxygen inlet mole fraction),      (carbon monoxide inlet 

fraction),      (carbon dioxide inlet fraction),      (inlet water fraction), 

     (inlet nitrogen fraction).  

Since it is very difficult to ‗dial in‘ the exact input conditions of the D-

optimal point experimentally, hierarchical clustering is used in an attempt to 

obtain a region in the operating space where there is a high probability of finding 

points that score high on the D-optimal metric. This is done by clustering the 

points in the data subset that correspond to high D-optimal metric scores (Prasad 

et al. 2008), i.e., high values of the determinant of the FIM.  

However, it is observed that there is no significant pattern in the region 

around the D optimal point, and most regions have approximately the same 

probability of containing a point that scores high on the D optimal metric. Since 

the two outputs, conversion and selectivity are key outputs, and because 

measurements of other outputs such as surface coverages are very difficult to 

obtain in practice, the study described above was also conducted considering the 

23 parameters, but only conversion and selectivity as the outputs. 
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Figure 2.3 D-optimal index for all the sample points and their frequency of occurrence in the 

cluster for Pt. The variance is large and there are many sample points which score high on the D-

optimal index.  

 

The PCA and clustering analysis both provide similar indications about the 

important chemistry as the case with 15 outputs, and the same conclusion is 

reached on the probability of regions containing points that score high on the D 

optimal metric. However, the D optimal point in this case corresponds to:       

(temperature),         (pressure),       (residence time),          (catalyst 

surface area per unit reactor volume),      (hydrogen inlet mole fraction),      

(oxygen inlet mole fraction),      (carbon monoxide inlet fraction),      (carbon 

dioxide inlet fraction),      (inlet water fraction),      (inlet nitrogen fraction). In 

the case that measurements of other outputs are difficult to make, this D-optimal 

point may be used for the design. Note that no mass transfer constraints have been 

taken into account for this study. 
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Figure 2.4 Distribution of D optimal points for Rh catalyst             

 

2.2.4 D-Optimal design for PROX chemistry on Rh catalyst 

Since the method of experiment design and the kinetic mechanism are the same 

for Rh catalyst as for the Pt catalyst, the results on the Rh system are not 

described exhaustively; instead, the discussion focuses on the main points that 

distinguish this system from the Pt system. For the case with 15 outputs, the 

principal component analysis provides the same insight about the most significant 

output, which is the surface concentration of oxygen. Hierarchical clustering, 

however, indicates that 11 parameters are grouped together and have 

indistinguishable chemistry; these relate to the reactions with indices 5-9, 13-14, 

and 19-23. While slightly fewer parameters are clustered together than for the 

case with Pt, the main features of the independent chemistry remain the same, i.e., 

the coupling between the carbon monoxide and hydrogen chemistries is important 

in parameter identification. The D-optimal point in this case is: 512 K 

(temperature), 2.4 atm (pressure), 1.4 s (residence time), 10937 cm
−1

 (catalyst 

surface area per unit reactor volume), 0.67 (hydrogen inlet mole fraction), 0.13 

(oxygen inlet mole fraction), 0.05 (carbon monoxide inlet fraction), 0.01 (carbon 
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dioxide inlet fraction), 0.02 (inlet water fraction), 0.12 (inlet nitrogen fraction). 

Once again, no region in the input space presents significantly higher probabilities 

of finding points that scored high on the D-optimal metric. 

 

Figure 2.5 Reaction index of kinetic parameters (pre-exponentials) clustered together for Rh 

Finally, the analysis for Rh catalyst is repeated with conversion and 

selectivity being considered as the only two outputs. In this case, the hierarchical 

clustering provides the interesting result that a much smaller subset of the 

chemistry is grouped together and is indistinguishable. The reactions that are 

clustered together have indices 6, and 19-23. This means that many more 

reactions are independent and kinetically significant for parameter identification 

than in all the other cases considered so far. This implies that the adsorption 

behavior of the carbon monoxide and hydrogen families is also important, in 

addition to the coupling chemistry. Clustering in the input space again does not 

reveal any regions of high probability, and the D-optimal point is very close to 

that found for the case with two outputs in Pt. This could be a coincidence, but it 

may indicate that the optimal point for both systems is essentially the same, if 

only conversion and selectivity are considered as outputs. Moreover, a 

comparison of Figures 2-2 and 2-3 suggests that although the distribution of D-

optimal points for Rh catalyst shows a smaller variance than with platinum, there 
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are many number of sample points (input conditions) for Pt where the D-optimal 

index is much larger than that for Rh. Hence, it can be concluded that the 

experiments to be performed for the case with platinum as the catalyst will give 

better data (more sensitive) to estimate the parameters (pre-exponentials) for the 

PROX catalytic system. 

 

2.3 Conclusions 

Most of the issues with process systems engineering of large-scale and complex 

systems relate to the large number of parameters associated with them. This study 

attempts to show that modifications are required to traditional methods of 

experiment design and parameter estimation. Principal component analysis and 

hierarchical clustering are the methods that are used for this study. The work leads 

to the following conclusions: 

1) In particular, it has been shown that hierarchical parameter clustering is 

very useful and effective in obtaining a reduced set of identifiable 

parameters for the preferential oxidation of carbon monoxide on platinum 

and rhodium catalysts.  

2) The clustering results demonstrate a correlation between the carbon 

monoxide and hydrogen chemistries for the PROX system. Principal 

component analysis (PCA) when performed over the full set of data gives 

the most significant output to be the surface concentration of oxygen.  

3) A comparison between the D-optimal indices for both the catalysts 

suggests that experiments performed for the case with platinum as catalyst 

is more sensitive to parameter estimation of the preferential oxidation 

system as compared to the case with rhodium as catalyst. 
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3. Stochastic Nonlinear 

Optimization for Optimal Design of 

Experiments 
 

 

3.1  Introduction 

The objective of experimental design is to find experimental conditions which 

lead to estimating parameters with minimum experimental effort.  The most 

common approach to experiment design is D-optimal design, where the 

determinant of the Fisher information matrix is maximized. It has been shown 

with the help of an example in chapter 1 that this design metric depends on the 

nominal value of the parameters to be estimated. Since the values of the 

parameters are unknown, a reasonable nominal value of these parameters is 

chosen and then a D-optimal experimental design is performed. It is noteworthy 

here that this designed experiment may not yield accurate results if the actual 

value of the parameters differs too much from the nominal value used for 

experimental design. A different strategy for optimal experimental design is based 

on optimization. Optimization can be broadly classified into two categories: (1) 

deterministic, where the objective function is deterministic as well as the method, 

and (2) stochastic, where either the objective function is stochastic (involves 

randomness or uncertainty), or the method. This is important as these parameter 

uncertainties can lead to the deterministically identified conditions not being the 

best ones. Hence, it is very necessary to develop methods in order to minimize the 
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effect of these uncertainties during experimental design. The optimization is 

performed to maximize the D-optimal metric for an optimal combination of inlet 

conditions, i.e. 

   
 

                                                                            

where        is the Fisher information matrix evaluated over the parameter 

set    , and u is the set of inlet conditions. Deterministic optimization in our 

problem is done by assuming that the nominal value of parameters is near to the 

actual value and hence the uncertainty is not taken into account while evaluating 

the objective function. Although, this chapter focuses on an experimental design 

methodology based on stochastic optimization by incorporating the uncertainty in 

the parameter (pre-exponentials) nominal values, it will also be compared with the 

deterministic results.  

This present work therefore uses stochastic optimization techniques to 

maximize the value of the D-optimal statistical metric averaged over a number of 

samples. This technique takes the advantage of the fact that probability 

distributions governing the uncertain parameters are known or can be assumed 

reasonably. The solution from the stochastic optimization is more robust and 

provides more realistic predictions than its deterministic counterpart. A gradient-

free population-based search method, referred to as particle swarm optimization 

(PSO), is used in the optimization step in order to avoid getting trapped in local 

optima. For kinetic systems, multiscale kinetic models have been used quite in the 

past for DOE, as they are more detailed and fewer assumptions are incorporated 

as compared to global kinetic models (Prasad et al., 2009). 
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3.2 Microkinetic and Reactor Model under 

Uncertainty 

3.2.1 Basic Kinetic Models 

The kinetic system used for this section of the thesis is the ammonia 

decomposition model explained thoroughly in section 1.3.1. The reactor model 

used is that of a steady state plug flow reactor (PFR) explained in section 1.3.3. 

Table 3-1 shows details of the system such as site density and reactor 

specifications used for the analysis of this part of the thesis. 

Table 3-1 Laboratory scale reactor and catalyst specifications 

Term Symbol Value 

Length            

Diameter             

 

3.2.2 Stochastic Description and Sampling 

In chemical reaction engineering, the objective of experimental design is often 

parameter estimation, or more precisely, estimation of pre-exponentials and 

activation energies. In this study, the activation energies have been previously 

calculated from UBIQEP are accurate and do not need to be estimated. The only 

parameters to be estimated are the sticking coefficients and the pre-exponentials. 

While employing the D-optimal design method, a reasonable estimate of the 

nominal values of these parameters should be known beforehand. The need for 

stochastic modeling arises because the actual value of the parameters might be 

different from this nominal value, and hence the D-optimal design and parameters 

estimated by the actual experiment data may end up being far from optimal. The 

solution for similar problems proposed in literature is to solve a stochastic 

optimization problem which will take into account the uncertainty in the nominal 

values of the parameters (Lee et al., 2010).  
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Microkinetic analysis is a very promising tool for modeling surface 

reactions; however, in mechanism development and parameter estimation for 

these models, an issue often overlooked is thermodynamic consistency at both 

enthalpic and entropic levels (Mhadeshwar et al. 2003). Hence, both these 

inconsistencies distort the underlying equilibrium constant, which affects the 

prediction of equilibrium states. In our work thermodynamic consistency of the 

entire mechanism is incorporated through constraints. In the mechanism outlined 

in Table 1.2, there are 12 irreversible reactions which are essentially 6 reversible 

reactions. In general, for the i
th

 reversible reaction in the mechanism, the 

following equations form the basis of the enthalpic and entropic constraints: 

  
 
   

                                                                                        

  
 

  
                                                                                             

where   and   stand for the forward and backward steps,   is the pre-exponential 

factor,   is the activation energy,   is the universal gas constant and    and    

are the enthalpy change and entropy change of the reversible reaction 

respectively. Since the parameters to be estimated in this case are only the pre-

exponentials (sticking coefficients in adsorption and desorption reactions), the 

constraint of equation       will be active while designing the experiment. The 

UBIQEP method ensures that the values of activation energies used in the 

microkinetic model are in accordance with equation      . After taking into 

consideration the thermodynamic constraints, there are 6 parameters whose 

uncertainty needs to be considered while solving the problem. The nominal values 

of these parameters are taken from Table 1.2. In order to model the uncertainty in 

the parameters, a distribution for each of the parameter is assumed and then a 

sampling procedure is applied. The uncertainties associated with parameters are 

modeled as exogenous random inputs following uniform distribution added to the 

corresponding nominal values. 
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where    
 follows         and    is the pre-exponential of the i

th
 reaction and 

the      pre-exponential is calculated using equation      . The next step is to 

pick a certain number of random values from this distribution. This number is 

chosen to be four, so that the entire random parameter space is easily spanned. 

Figure 3.1 shows the four regions spanning the random parameter space, each 

covering 1/4
th

 of the distribution. One random value is chosen from each region, 

which gives a total of four values in    
. A similar procedure is repeated for all the 

6 pre-exponentials to be modeled stochastically. Then all possible combinations 

of these 6 vectors containing four values each, is generated using the ‗combvec‘ 

function in MATLAB. Details about this function are given in the Appendix. 

 

Figure 3.1 Uniform distribution of the order of pre-exponentials; a single random value is selected 

from each of the four regions 

 

3.3 Stochastic Optimization using Sample Average 

Approximation and Constrained Particle Swarm 

Optimization 

In order to perform DOE for parameter estimation of the ammonia decomposition 

model on ruthenium catalyst, the stochastic optimization problem should be 

formulated in a way as to estimate the inlet conditions while maximizing the 

modified stochastic D-optimal statistical metric. The decision variables for the 

optimization problem are temperature ( ), pressure ( ), ratio of catalyst surface 
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area to the volume (  ), residence time ( ) and inlet mole fractions of hydrogen 

(  ), nitrogen (  ), ammonia (  ) and argon (  ). The stochastic optimization 

problem can be formulated as follows: 

                                                                           

                                                                               

   
 

                                                                       

                                     

         
 

         

                                                                   

where FIM is the Fisher information matrix,    is the expectation operator, (  ) 

and (  ) are upper bounds and lower bounds on all the decision variables 

respectively,     and     are matrices required to formulate the constraint 

equation for the set of decision variables. Since the optimization problem is 

stochastic, the expectation of the logarithm of the determinant of the FIM is used 

in the objective function. The logarithm of the FIM is used for scaling because of 

the large range of values of determinant of the FIM. The        used in equation 

3.7 is given by: 

                 
 
                                          

              
 
                                

               
 
                    

             
 
        

 
                      

             
 
                                      

The equality constraint of equation       is that the sum of mole fractions 

of the gaseous species should be equal to one. Table 3.2 shows the upper bounds 
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(  ) and lower bounds (  ) on all the decision variables. The scaling used for 

each variable in the table is the scale (linear or logarithmic) in which the 

corresponding variable will be used. For example, when it is said that the scale of 

P is logarithmic, it is meant that the values that the optimizer treats as decision 

variables will be in the logarithmic scale i.e.       , and when these variables are 

being used in the model, they will be converted to the normal scale. In 

equation      ,   is a weight applied to the variance of the expectation operator 

(Kall et al. 1994). As described in the previous section, the unknown parameter 

vector,  , is modelled as a random vector with known probability distributions. 

This optimization problem is challenging due to the following reasons: 

 The objective function is highly nonlinear. 

 Sensitivities have to be calculated in order to find the Fisher information 

matrix (FIM). This is done by perturbing each parameter one at a time, and 

then numerically integrating the individual rate expressions for each 

species for the given values of decision variables and uncertain 

parameters. 

 The expectation operator is also difficult to evaluate because the 

components of the random vector   are independent of each other. 

 The equality constraint of the sum of mole fractions is difficult to 

incorporate because it results in a constrained nonlinear optimization 

problem. 

The ratio of catalyst surface area to volume is one of the decision variables 

for the optimization problem. Due to the fact that catalyst synthesis cannot be 

done precisely enough to accurately obtain the desired value, its uncertainty must 

be taken into account. The nominal value for the ratio of catalyst surface area to 

volume will be the value decided by the optimizer while treating it as a decision 

variable. The uncertainties associated with calculation of the random variables in 

this case are modeled as exogenous random inputs following a Gaussian 

distribution added to the nominal value (value of the decision variable). 
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where    
 follows             

   ,    is the ratio of catalyst surface area to the 

volume and    
 is the nominal value of the ratio of catalyst surface area to the 

volume suggested by the optimizer as a decision variable.  

The six parameters (pre-exponentials) and one decision variable result in 7 

random variables. The number of possible combinations to be considered is 4
7
 = 

16384. This is the number required for one objective function evaluation. Hence, 

reducing the number of possible combinations is necessary to decrease the 

computational time considerably. The surface reactions in the ammonia 

decomposition mechanism are of prime interest. Hence, the reactions 3, 4, 5, 6, 7, 

8 from Table 3.2 are the reactions which are considered to be affected by 

randomness in their reaction parameters. This reduces the number of random 

variables are reduced to four (three reaction pre-exponentials and one decision 

variable). In order to further reduce the computational time, instead of sampling 

from four areas of the distribution, sampling is done only from two areas (one to 

the left and the other to the right of the mean). This further reduces our problem 

and now the number of possible combinations reduces to just 2
4
 = 16.  

3.3.1 Sample Average Approximation 

In order to evaluate the expectation operator in equation      , the method that 

has been used is the sample average approximation (SAA). Sample average 

approximation (SAA) is a technique that evaluates the expected objective value 

(              ) by generating samples based on the sampling technique 

explained in the previous subsection and calculating the mean of the objective 

function values over the 16 combinations (samples) generated: 

       
 

  
         

  

   

                                                            

where       is denoting the estimate of     ,         is the               and X 

is the set of decision variables. 
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3.3.2 Function Evaluation 

The sample-based approaches are easy to implement even for a system such as 

ours, with complex constraints and numerical integration in the function 

evaluation for the optimization. The function evaluation for our optimization 

problem starts with evaluating the sensitivity matrix ( ) for every sample during 

the sample average approximation. In order to do this, each element of the 

parameter set ( ) is perturbed one at a time, and then the model is solved in order 

to evaluate the change in the outputs with respect to the perturbed parameter. 

 

3.3.3 Deterministic Optimization 

For comparison, we perform deterministic optimization. Here, the uncertainty is 

not accounted for, and the optimization is formulated as: 

                                                                            

                                                                                

   
 

                                                                              

                                     

         
 

         

                                                                    

 

3.3.4 Particle Swarm Optimization 

The objective function is not in an explicit form with respect to the decision and 

uncertain parameter vectors; therefore it is difficult to apply gradient-based 

deterministic optimization methods. In the present work, a global population-

based sampling optimization method known as particle swarm optimization (PSO) 

has been used. This optimization technique is motivated by the social behavior of 

collection of animals. 



 

 

 

Table 3-2 Bounds of decision variables for the optimization problem 

Decision 

Variable 
Symbol 

Lower Bound 

(  ) 

Upper Bound 

(  ) 
Scaling 

Temperature               Linear 

Pressure               Logarithmic 

Residence Time               Logarithmic 

Ratio of catalyst surface 

area to volume  
                   Logarithmic 

Mole fraction of               Linear 

Mole fraction of             Linear 

Mole fraction of             Linear 

Mole fraction of           Linear 

 



 

 

It starts with randomly generated swarms of particles (initial guesses for the 

optimal states) and remembers the best solution found (Jia et al., 2011). The 

particles move around the solution space with velocities determined by the 

algorithm, and they move toward the global optimal solution over many iterations. 

The velocity for each particle is calculated based on the difference between the 

current particle position and the best particle position globally as well as locally in 

the swarm. Hence, if the particle is far from the current global best solution, then 

the particle velocity will be higher and in the direction of the global best solution, 

and if the particle is near to the global best solution, then the particle velocity will 

be small and still in the direction of the global best solution.  The advantages of 

PSO are that it does not need to evaluate derivatives of the objective function and 

constraints, and the number of parameters to adjust is relatively small. The steps 

involved in the PSO algorithm (Schwaab et al., 2008) are as follows: 

1. Initialize the search parameters. 

a. Niter = number of iterations i to be performed 

b. Npt = number of particles 

c. Nd = number of search dimensions 

d. Np = number of parameters to be estimated 

e. C1, C2, Wint = weight parameters 

f. x
min

 and x
max

 = lower and upper limits of the variables to be 

optimized 

2. Calculate the maximum particle velocities for the Np parameters. 

  
     

  
       

   

 
                                                               

3. Calculate the initial particle positions and velocities: 
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where p, d, j, and r denote the particle, the search direction, the parameter 

index, and a random number in the range [0,1], respectively. 

4. Evaluate the objective function for each particle which moves in Nd search 

dimensions with all Np parameters. 

5. Update     
    and Npt (vectors with dimension of Np) that contain the best 

position found by each particle in the swarm. 

6. Update x
glo

 (a vector of dimension Np) that contains the best position found 

by the whole particle swarm. 

7. When the maximum number of iterations is reached or a convergence 

criterion is met, the PSO search is terminated. Otherwise, update the 

particle velocities and position using 

      
              

           
          

          
   

       
                 

 

      
        

        
                                                            

8. If the absolute particle velocity is higher than the maximum velocity, then 

      
    

              
                                                       

9. If the particle position is out of the inequality constraints (upper and lower 

bounds), then the particle is placed at     
   . 

10. Increase the iteration counter by 1 and return to Step 4.         

 

3.3.4 Optimization Parameters 

The PSO algorithm requires tuning of the algorithm parameters. The choice of the 

parameters x
min

 and x
max

 was based on Table 3.2. The number of parameters to be 

estimated, Np, is the size of vector x, which is equal to 8 (equation 3.5). Other 

parameters such as C1, C2, Wint, Npt, and Niter were selected based on tuning of trial 

values for better performance. Apart from these parameters required for the PSO, 
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the parameter    which is the variance weight in the objective function also had to 

be decided. The weight   is necessary for the reformulation of the objective 

function. A detailed explanation of how Niter and   were decided is given below. 

Table 3.3 shows the parameter values used in the algorithm. 

 

Table 3-3 PSO Parameter values used in the Optimization Algorithm 

Parameter Value 

Niter    

Npt    

Nd   

Np   

C1          

C2           

Wint               

 

r denotes a random variable in the range [0, 1]. 

 

 Niter is the number of iterations to be performed. Every optimization problem 

to be solved by numerical methods needs a stopping criterion for termination. 

Many different stopping criteria have been used in the past (Zielinski et al. 

2007), and can be divided into three major groups: (1) improvement-based 

criteria, which terminate an optimization run only if relatively very small 

improvements in the objective function are observed, (2) movement-based 

criteria, where rather than the improvement, small changes in positions of the 

particle results in the termination of the optimization run, and (3) distribution-

based criteria, which considers the diversity in the population; if the diversity 

is low, the individuals are close to each other, so it is assumed that 

convergence has been obtained. 
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Figure 3.2 Change in Objective Function per iteration for PSO 

In this case, the improvement of the objective function has been monitored for 

a single case. Figure 3.2 shows that at the 66
th

 iteration, the change in the 

value of objective function was the most significant one, and after that, the 

improvement in the objective function was at the cost high computational 

time. An upper limit was put on the number of iterations being performed, 

which was 80. Although the global optimum may not be attained, this offers a 

compromise between computational load and accuracy of the solution.  

   is the weight given to the variance of   which is the              . In 

equation     ), the expectation operator is being evaluated using SAA, but 

unless the value of   is known, the value of objective function cannot be 

evaluated. Once again, parallel runs for the optimization problem were done 

with a wide range of values o    (from 0 to 100). Table 3.4 shows a 

comparison of the values of the objective function obtained for six different 

values o   . 
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Table 3-4 Comparison of objective function values for different values of β 

Type of Optimization   Value of Objective Function 

Stochastic 

       

            

           

         

          

           

Deterministic N/A        

 

Figure 3.3 on the next page shows a visual comparison of the same results. It 

can be seen that the value of the objective function is the maximum in the 

stochastic case for    . Note that     is the case where the weight 

imparted to the variance of   is the minimum. The difference in the objective 

function values for the values of     and        is very high. The main 

reason for this difference is that the variance of J is very high, and a weight 

even as small as        is not able to nullify the effect of this variance on 

the value of the objective function. Hence, the high variance of the D-optimal 

metric was neglected and     was considered as the best case.. 

3.3.5 Constrained PSO 

One of the major issues while using PSO is handling the constraints. The upper 

and lower bound constraints can be incorporated into the particle generation step. 

However, other constraints such as the linear equality constraints are difficult to 

handle because constraints other than simple bounds cannot be incorporated 

directly. 
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Figure 3.3 Comparison of objective function values for different values of β 

 

In this case, the equality constraint was that the sum of mole fractions should be 

equal to one. There are two categories of constraint-handling methods in PSO: (1) 

penalty function methods, which penalize infeasible solutions by applying a 

penalty based on the magnitude of the constraint violation, and (2) projection 

methods, where an infeasible solution is projected on to the feasible space. Two 

approaches based on projection have been tested either manipulating the positions 

of the particles (Approach 1), or by manipulating their velocities (Approach 2) as 

explained below. 

Approach 1:  Normalizing mole fractions after every iteration so that their sum 

adds up to one. 

   
  

   
                                                                                

Approach 2: In unconstrained PSO, the particles are updated using velocities 

based on: 
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For     , the sum of the mole fractions is unity. In the second approach a 

constraint is applied to the velocities (in the directions of the mole fractions) such 

that their sum equals zero. This ensures that the sum of        in the directions 

of mole fractions is unity. This is explained in the equations below: 

                                                                                                                      

                                                                                

But the constraint that to be followed all the times is: 

                                                                                    

                                                                                  

Using equations (    ), (    ) and (    ),  

                                                                               

The order of velocities is: mole fractions of hydrogen (  ), nitrogen (  ), 

ammonia (  ) and argon (  ). In order to keep the sum of the velocities equal to 

zero after each iteration, the fourth one was calculated using the first three.  The 

mole fractions were then kept within their individual maximum and minimum 

limits after each update using the projection method. Once the four velocities are 

calculated followed by calculation of new particle positions, it is found that the 

mole fraction of hydrogen (  ) is not within its lower or upper bounds, then the 

following algorithm is used for calculating new velocities such that all the 

particles are within their lower and upper bounds. 

1. New set of velocities are computed. Their directions remain the same (i.e. 

towards the best global solution) but the magnitudes are re-calculated by: 
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where    is a random variable. When    is in the range      , the method is 

known as contraction because the new velocity will be less than the original 

value, and when    is in the range      , the method is known as expansion 

because the new velocity will be greater than the original value. 

2. The particle‘s new position is calculated using: 

     
         

                                                                           

3. The steps 1 and 2 are repeated until           
    , i.e if the particle‘s 

new position is within the known lower and upper bounds. 

Table 3-5 Comparison of approaches to handle constrained PSO 

 Conversion 
D-Optimal Value  

( Objective Function ) 

 Approach 1 Approach 2 Approach 1 Approach 2 

Run 1                      

Run 2                        

Run 3                           

Run 4                           

Run 5                         

 

3.4 Computational Results 
 

Equation (   ) gives the decision variables considered for the optimization 

problem. In this present work the deterministic and stochastic solutions have been 

compared. It is better to use the solution obtained by stochastic optimization 

where the uncertainty in such variables has already been accounted for, and hence 

even if the catalyst is not synthesised to the exact precision, the experiment would 

still be D-optimal. Table 3.8 gives the best stochastic and deterministic optimal 

solutions for the set of decision variables. The value     is considered for the 
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stochastic solution and the third run with Approach 2 from table 3-5 is considered 

for the deterministic solution. 

Table 3-6 Stochastic and Deterministic Optimal Solutions 

Result Stochastic Deterministic 

                   

                 

                

                    

                     

                   

                   

                   

 

The benefit of the stochastic solution can be quantified using the concept of 

―value of stochastic solution‖ (VSS): 

                           
                                                     

                               

A VSS value of       implies that the average performance based on the 

stochastic solution is an improvement by about      compared to that of the 

deterministic solution. Figure      , shows the value of the objective function in 

the vicinity of the optimal solution obtained with respect to different decision 

variables for the deterministic case. This plot and other subsequent plots have 

been generated by evaluating the objective function for each case (stochastic and 

deterministic) at samples of decision variables generated in the neighborhood of 

the respective optimal solutions. Figure      , which is the top view (contour plot) 

of figure      , displays multiple red vertical lines which suggests that there is no 

specific set of coordinates or a region where the objective function (D-optimal) 
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reaches a maximum. The plot shows very little variation along the pressure axis as 

compared to temperature. 

 

Figure 3.4 A plot showing the variation of objective function with respect to temperature and 

pressure, for the deterministic case 

  

 

Figure 3.5 Contour plot of the objective function against temperature and pressure. The figure 

does not reveal any specific optimal region. 

Figure       shows a similar plot for the stochastic case. In contrast to the 

deterministic case, it can be seen that the plot has less points where the objective 
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function reaches a local maximum. Figure      , which is a contour plot of the 

figure      , displays an optimal region around the point (810.3 K, 5.2 atm) in 

which the experiment can be performed. 

 

Figure 3.6 A plot showing the variation of objective function with respect to temperature and 

pressure, for the stochastic case 

 

Figure 3.7 Top view of Figure 3.6. The figure reveals optimal region (marked on the plot) where 

the objective function reaches a maxima 
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Plots for the deterministic optimization case, exhibits the presence of many 

valleys and peaks within very short ranges of the decision variables. This kind of 

sensitivity towards variables for the deterministic case can be attributed to the 

non-linear structure of the problem. The stochastic optimization which identifies 

regions, provides a more robust solution.  

It can be seen that in comparison to its deterministic counterpart, in the 

stochastic case, small changes in the values of the variables have a negligible 

effect in the value of the objective function, and hence the experiment can be 

performed at values even in the vicinity of the optimal operating point, if not at 

the exact point, which can be hence referred to as an optimal operating region.  

Table 3.6 presents a comparison of the operating conditions for the 

experiment between the stochastic and deterministic cases. It can be seen that 

although the operating conditions are much more favorable for the reaction 

system, still the stochastic results are considered to be better. The reason is that 

the problem under consideration is the design of experiments followed by 

parameter estimation rather than the ease of performing experiments. The data 

collected after performing the experiment will be good for estimating the pre-

exponentials, which is the main objective of this study. 

3.5 Conclusions 
 

In this study, a comparison between deterministic and stochastic optimization 

techniques also suggests that stochastic results are much better as compared to the 

deterministic results. This chapter leads to the following conclusions: 

1) The optimization has a VSS value of 28.97 and hence, the stochastic 

optimization gives better results. Since it is not always possible to dial in 

the exact values of variables solved by the optimizer while performing the 

experiment, uncertainty should be taken into account. 

2) Nonlinear constrained particle swarm optimization was incorporated and 

different approaches for the same have been tried. Projection methods 

have been used rather than the penalty function methods. 
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3) The variance of the objective function is very high and hence even a small 

weight of 0.01 could not minimize the effect of considering the variance. 

4) Stochastic optimization gives optimal operating regions rather than points 

given by deterministic optimization. 
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4. Computational Singular 

Perturbation for Design of 

Experiments 

 

4.1  Introduction 

In chemical reaction engineering researchers may sometimes be interested only in 

a few species or reactions or more specifically in particular reaction chemistries. 

Designing experiments for such an objective needs a model-based design, where 

firstly a method should define important reaction chemistries dynamically, and 

secondly, an appropriate design method should select input conditions in order to 

perform experiments to estimate parameters for those chemistries. Model 

reduction techniques help in getting the most vital information at any point of 

time. A model reduction technique is used in this work which can also focus on 

particular reactions and species. This method is based on computational singular 

perturbation (CSP) analysis of the system at every instant. CSP is a mathematical 

technique which has been used in the past to identify the important reactions and 

species by breaking the system into active, exhausted and dormant modes (Lam et 

al., 1994). It has mainly been used in the investigation of combustion models and 

chemistries (Brad et al., 2007, Lee et al., 2007, Lu et al., 2001 and 2008, Bykov et 
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al., 2008, Massias et al., 1999, Valorani et al., 2003 and 2006, Gou et al., 2010, 

Polifke et al., 1998). 

 An experiment design metric is required for dynamic experiments, where 

both inputs and outputs may not be single values (say, a constant temperature, a 

conversion) but complex time profiles of the same variables. Other methods for 

DOE, such as response surface methodology and alphabetical optimal designs, 

can become computationally very expensive while calculating the sensitivities at 

times. Hence, the method we use is a search over a grid of input conditions in 

order to find the best input condition in the grid which can fulfill our objective of 

focusing on a particular reaction. 

 

4.2 Computational Singular Perturbation Theory 

The chemical kinetics of any system can be represented in two ways: (1) using a 

global model, where there is one rate expression that represents the whole reaction 

mechanism taking into account the rate determining step (RDS) and the most 

abundant reaction intermediate (MARI), and (2) using a microkinetic model, 

where all the individual rate expressions for the intermediate reactions are solved 

together without any assumption of the RDS or the MARI. Since, the global 

model has many underlying assumptions related to it, it is preferable to use 

microkinetic model to represent a kinetic system. For catalytic systems, the 

number of intermediate reactions may sometimes increase up to the order of 

hundreds (Bernaerts et al., 2000), making the microkinetic model more complex. 

Although our interest may lie in only a few species and reactions, the detailed 

reaction model usually involves a much larger number of species. 

There are some species which are important intermediates in the whole 

reaction mechanism, but their concentrations are considerably low. These are 

referred to as radicals in the context of computational singular perturbation 

(CSP). Among the elementary reactions in the system, some may be fast and some 

may be slow. CSP decomposes this kinetic model into three types of modes at 

every instant: (1) fast or exhausted modes, which have negligible contribution to 

the dynamics at that instant, (2) slow or active modes, which have considerable 



 

57 

 

contribution to the dynamics, and (3) dormant modes, which are neither exhausted 

nor active and represent conservation laws (Lam et al., 1994). Although the aim 

of the CSP method is modal decomposition of the reaction system, it can also be 

used as a model reduction tool, where a simplified model is obtained by 

neglecting contributions from the fast modes and considering contributions from 

the slow and dormant modes. It retains the essential features of the full reaction 

system.  

Conventional methods used to obtain simplified models apply steady-state 

approximation to the appropriate radicals, partial-equilibrium approximation to 

the fast reactions, and ignore the very slow reactions. These steps, however, are 

not easy to apply for large scale catalytic systems. Moreover, the results obtained 

are expected to be valid only in some limited domain of initial and operating 

conditions in some limited interval of time. The CSP method, in contrast, can 

generate time-resolved simplified kinetic models for large reaction systems by a 

rigorous systematic mathematical algorithm (Zagaris et al., 2004). CSP not only 

performs the modal decomposition and can be used as a model reduction tool, but 

a careful inspection of the numerical CSP data highlights important chemistries 

and species at each time scale. In the next subsection, the CSP method is 

discussed in brief, followed by design of experiments using CSP. A detailed 

description of the complete CSP method can be found in Lam et al., (1993). 

4.2.1 Mathematical Representation of the Kinetic System 

A reaction system consisting of R elementary chemical reactions and N species 

(concentrations of the chemical species) is considered. The total number of 

unknowns is N which is represented by a N-dimensional column vector, 

                                                                        

Any chemical reaction model is represented mathematically in the form of rate 

expressions of individual reactions given by ordinary differential equations 

(ODEs) for the rate of change of concentrations of species. The governing 

equations for the species vector  , can hence be written as follows 
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where the column vector   is the reaction rate for all the species and consists of 

contributions from each of the R elementary reactions: 

                      
 

 

   

                                            

where    and    are the stoichiometric  (column) vector and the reaction rate of 

the r
th

 elementary reaction, respectively. Each additive term of equation       

corresponds to the overall rate of the formation or decay of the corresponding 

species in vector form.  

4.2.2 Basis Vectors 

The basic idea of CSP is to project the R terms in equation       into N linearly 

independent modes, and group these N modes into a fast group and a slow group. 

In general, the amplitude of fast modes decays rapidly with time. The simplified 

kinetics model is obtained when the contribution of the fast group to the dynamics 

becomes small enough to be neglected. The CSP procedure described below was 

developed by Lam and Goussis (1993). The process of projecting and grouping of 

the terms is done by the use of a special set of basis vectors. Since   is an N-

dimensional vector, it can be expressed in terms of any set of N linearly 

independent basis vectors                      . According to the CSP 

algorithm, a corresponding set of (row) vectors                       also has 

to be calculated, satisfying the orthonormal relations (Lam et al., 1993):  

        
                                                                                 

where   
  is the         identity matrix. For the linear case, these basis vectors 

are the left and right eigenvectors of the Jacobian of   with respect to  . Hence, 

once we chose our linearly independent basis (column) vectors 

                       and the set of (row) vectors                      , 

equation       can now be alternatively expressed in terms of these basis vectors:  
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where    is the amplitude of    in the direction of   . Each of the   additive terms 

in equation       is interpreted as representing a reaction mode. Therefore,    and 

   are the effective stoichiometric vector and the effective reaction rate of the i
th

 

mode, respectively. The dot product of    with   gives us the amplitude of each 

mode: 

                                                                                                                     

Once the set of basis vectors (either the   ‘s or the   ‘s) is chosen,   ‘s are 

readily computed from equations       and      , respectively (Valorani et al. 

2006). Since, it is unlikely that the magnitude will be the same for each of the 

basis vectors    at every instant; hence, without loss of generality, all the    

vectors are scaled such that their orders of magnitude are constant with time. 

Consequently, the order of magnitude of the contribution of the i
th

 mode in 

equation       is dependent only on the order of magnitude of   . The time 

evolution of the   ‘s is given by: 

   

  
    

   

 

   

                                                                      

where 

  
    

  
   

  
       

     
   

  
                                                    

  
                                                                                                       

and   is the Jacobian of   with respect to  . The time evolution of   s is 

controlled solely by   
  which, according to equation      , is completely 

determined by        
     (and their time derivatives) in addition to  . If   

  was 

diagonal, the modes would be completely uncoupled from each other, and if the 

system was linear,   would be a constant matrix. In this case the basis vectors 
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would be constant through time, and would be the right and left eigenvectors of 

 .The resulting   
  would be the diagonal matrix (or the Jordan form) of the 

eigenvalues,    ‘s. Consequently, the amplitude of each of the uncoupled 

modes    would evolve with its own characteristic time scale. If      was real and 

negative, the amplitude     of the i
th

 mode would decay exponentially toward zero 

and become eventually exhausted for some time              (Marzouk et al. 

2007). The algorithm for the linear case is: whenever the amplitude of the 

currently fastest mode falls below a user-specified threshold, the term 

representing that mode is dropped from equation      , thus generating a 

simplified equation to be integrated (Massias et al. 1999). 

4.2.3 The Classification of Fast and Slow Modes 

Lam & Goussis have extended their CSP algorithm to non-linear problems as 

well. Unlike the linear case, the basis vectors and   are not constant. However, the 

left and right eigenvectors of  ,    and   , are always defined, and can be 

computed at any time. The reciprocal of the absolute value of      is denoted 

by      and is called as the current time scale of the reaction modes. The CSP 

algorithm needs a precise classification of fast and slow modes at every time 

sample. If the current time sample is   , the group of M modes whose time scales 

are shorter than   , (          , with          ) are considered fast modes, 

and all others are considered slow modes. The time derivatives of        
     is 

calculated numerically using the values of the left and right eigenvectors of   at 

every time sample.   
  is then calculated using equations       and      . 

The main effect of non-linearity is that if eigenvectors of   were used 

directly as the trial set of basis vectors, the resulting   
  would not be diagonal. 

The non-zero off-diagonal elements cause mixing of the modes, and as a 

consequence, the fast modes do not decay and become small as in the linear case. 

Although, these eigenvectors and eigenvalues of  , cannot be used directly as the 

set of basis vectors, they are used as a guide for choosing a set of trial basis 

vectors. Lam & Goussis have devised ―refinement‖ algorithms which can 
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generate from any reasonable trial set of basis vectors an improved set which has 

less mode mixing than before.  

4.2.4 The CSP Refinement Procedure 

The refinement algorithm described here follows Goussis et al. (2006). The 

indices   and   are used to refer to the fast subspace (         ) and   and   

are used to refer to the slow subspace (           ). Indices i and k refer to 

the whole N-dimensional space (           ). The right-hand side of equation 

      is divided into a fast and a slow group. The fast and the slow equations 

written separately are: 

   

  
    

   

 

   

    
   

 

     

                                                         

   

  
    

   

 

   

    
   

 

     

                                                        

The refinement procedure of the trial basis vectors is described below, where the 

set of basis vectors   
     and   

     is an ―improvement‖ over the original trial 

set,    and   : 
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where   
     and   

     are given by: 

  
        

      
 

 

   

                                                     

  
        

   
    

 

   

                                                     

where   
     is the inverse of   

     which is the M×M principal submatrix of 

  
 . The use of refined   

     and   
     obtained with   

     purifies the slow 

modes. The amplitude of the modes can now be calculated using these refined 

basis vectors: 

  
    

                                                                                 

Since for linear cases, the amplitude of the fast modes decay exponentially, hence 

the use of refined basis vectors for the non-linear case enables the fast   
 ‘s to 

exponentially approach to smaller values for       . More the number of 

refinements, lesser is the mode mixing. However, since increase in the number of 

refinements results in a considerable increase in the computational time, for most 

of the kinetic systems, one or two refinements is sufficient (Goussis et al., 2006). 

4.2.5 Radical Pointers and Participation Indices 

Following Lam & Goussis (1994), a     matrix      can be formed as 

follows: 

           

 

   

                                                                 

This is called as the fast subspace projection matrix. When evaluated with refined 

basis vectors, it is denoted by   
    . It is then decomposed into its M 

components: 
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where 

    
    

   
                                                                           

    
  is called the m

th
  fast mode projection matrix. The radical pointer of the m-th 

mode,       , is given by: 

        the i-th diagonal element of     
 ,                     

                                   

The quantity        is dimensionless, and its sum over all N components is unity. 

The participation index of the r-th reaction in the m-th mode,      , is given by: 

          
       

                                                                               

It is a dimensionless number of the order of unity. Pointers computed from 

―guessed‖ trial basis vectors without any refinement at all produces erroneous 

results. Hence, only pointers computed from refined basis vectors can provide 

reliable information. 

 

4.3 The Reaction System and CSP Analysis  

4.3.1 Basic Kinetic Models 

The CSP analysis was performed for the ammonia decomposition model 

explained in chapter 1, on both the batch and flow reactor models. However, the 

PFR was modeled as 10 CSTRs in series. Argon was used as the inert gas. A 

typical plug flow reactor could be a tube packed with catalyst, and is better known 

as packed bed reactor (PBR). Table 4.1 shows the reactor specifications. 
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Table 4-1 Lab scale plug flow reactor specifications 

Term Symbol Value 

Length          

Diameter               

 

 

4.3.2 The CSP Analysis 

The ammonia decomposition model, as detailed above, has 10 species and 12 

reactions. Hence, the vector   for our case is: 

      
         

            
     

     
     

 
                                        

The CSP tool is most often used by the people investigating combustion models 

and chemistries in order to get rough estimates for the important reaction and 

species at desired time scales, and hence, most of their cases use batch reactor for 

modeling and consequent analysis. Since the second part of our work incorporates 

the design of experiments which is essentially is estimating inlet conditions at 

every time sample, hence the PFR model is preferred over the batch reactor model 

for the analysis. 

 As mentioned earlier, the reactor used was a PFR modeled as 10 CSTRs in 

series. The first step to CSP analysis was to identify the number of exhausted 

modes at each time instant. Based on the time scales for each mode, the number of 

exhausted modes is evaluated at each instant as explained in section        . 

Figure 4.1 shows how the number of exhausted modes changes with time. It can 

be seen that after        , all the modes have been exhausted. This suggests 

that the system is dynamic only for times         . We also see that for this 

time interval, the number of exhausted modes experiences a shift from 5 to 6. It is 

important to note that when the exhausted modes are 5, the number of active 

modes is also 5, since there are no dormant modes in our system. 
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Figure 4.1 Time variation of the number of exhausted modes for the ammonia decomposition 

model. After 0.1ms, all the modes get exhausted and none contribute to the dynamics 

 

 

 

 

 

Figure 4.2 Time variation of  amplitude of each  mode for the  ammonia decomposition catalytic 

system. Modes 8 and 9 appear to be an active mode. 
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When the number of exhausted modes is 6, the number of active modes is 4. 

However, the active modes are decided only by the magnitude of their amplitudes, 

which can be different at every instant. Figure 4.2 shows how the amplitude of 

each mode changes with time. The plot has been generated only for         , 

and hence gives us an idea of the transient state of the system. We can see that at 

every instant, different combinations of modes are active. However, figure 4.2 

suggests that mode 8 and mode 9 are active modes most of the times for    

     . These conclusions are strengthened by Figure 4.3, which shows the time 

scales of different modes. It can be seen clearly in this figure that, for      

     , when the number of exhausted modes are 5, it is modes 1, 2, 3, 4 and 5 

that are exhausted, while the rest are active and are participating in the dynamics 

of the system. We can see that mode 6 becomes exhausted for           . 

Each reaction is participating in each mode, but the amount of participation is 

decided by the participation indices of a particular reaction in a particular mode. 

In order to find the important reactions contributing to the dynamics, we will have 

to take a closer look at the participation indices of the active modes. Figure 4.4 

shows the participation indices of all the 12 reactions in mode 9, which is an 

active mode for         . We cannot qualitatively say which reaction is 

important at which time instant; hence, a detailed quantitative analysis at every 

time sample is required. We can however conclude that reactions 5 and 6 (NH* 

formation) are not at all important in this particular mode. However, these 

reactions can be important and significantly contributing in some other active 

mode. 
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Figure 4.3 Time  scale  of each  mode for  the  ammonia  decomposition catalytic system 

combined with a PFR model. The thin black line indicates the current time sample. Curves lying 

above this line are the active modes for the corresponding time sample 

 

Another important quantity given by CSP analysis is the radical pointer. There 

are some species whose concentrations are considerably low but are believed to 

be important intermediates in the whole reaction scheme. These are referred to as 

radicals. According to the CSP theory, these radical pointers are numerical 

quantities that suggest which species can be considered as quasi-steady, and hence 

these ODEs can be approximated as algebraic equations. Figure 4.4 is a plot 

which shows the value of radical pointer for each species in a particular mode 

(mode 9 in this case). Once again, we cannot qualitatively say as to which species 

is a radical at which time instant, and these conclusions can be taken only by 

quantitative analysis at each instant. However, we can definitely say that species 6 

and 8 (    and     
) should not be considered as radicals. 
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Figure 4.4 Participation Index of each reaction in Mode 9, which is an active mode for most of the 

times. Broken curves suggest that CSP data fails to give information at some time samples. 

Reactions 5 and 6 have negligible participation in this mode, however they might be participating 

in some other active mode 

 

Figure 4.5 Radical Pointer for each  species of  mode 9, which  is an active mode for most of the 

times. We can see that species 5, 6, 7 and 8 have negligible  probability of being the radical in this 

mode, however they can be radicals in some other active mode 
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4.4 Design of Experiments using CSP Analysis 

This section describes the method proposed for designing experiments for 

parameter estimation (pre-exponentials) of a desired reaction from the given 

kinetic system. The search for the optimal inlet conditions for an experiment is 

driven by an optimization technique. The optimizer solves for a unique 

combination of inlet conditions in order to maximize the participation of the 

desired reaction in the dynamics of the reaction system. The objective function 

used by the optimizer is a proposed reaction metric based on the participation 

indices and amplitudes of active modes calculated by the CSP.  

4.4.1 The Reaction Metric DOE 

In order to accomplish the task of DOE to maximize the impact of particular 

reaction chemistry, we have formulated a suitable metric. If we want maximize 

the impact of the r
th

 reaction in the dynamics of the system, then the optimizer 

should maximize the following reaction metric: 

       
         

    

        

   

   

  

    

                                                     

where     = the number of active modes,        the amplitude of i
th

 mode at 

time  ,    
      participation index of the r

th
 reaction in the i

th
 mode at time  . 

We are trying to calculate a quantity which equals the participation of the r
th

 

reaction in each active mode multiplied by the amplitude of the active mode and 

normalized over the amplitudes of all the active modes. Hence, this is a 

dimensionless quantity. This quantity, when summed up over all the time 

samples, gives the reaction metric. Conventional optimal DOE methods calculate 

the sensitivities of outputs with respect to the desired parameters. In these 

methods, the choice of desired parameters is driven by prior knowledge of the 

system and remains constant throughout the process of designing the experiment. 

In contrast, this reaction metric takes the advantage of the numerical analysis of 

CSP, thus identifying important reactions (parameters) at every time sample. 
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4.4.2 The Search Method 

The ideal search method is the employment of a global optimization technique 

maximizing the reaction metric. However, the computational cost of a single CSP 

analysis is itself very high, and if we use a global optimization technique over it, 

the computational cost will increase many folds. Hence, in order not to increase 

the computational cost any further, we select a grid search over the input 

variables. The procedure is simple and is described below: 

1. Select a grid of any two inputs 

2. Evaluate the following reaction metric at each point in the grid 

3. Select the point in the grid which has the maximum value of the reaction 

metric 

 

Figure 4.6 Variation in the value of reaction metric with respect to temperature (K) and NH3 mole 

fraction. The plot reaches a peak at 830K, but is not affected much by the NH3 mole fraction 

4.4.3 Application to Ammonia decomposition model 

The method proposed in the previous section was applied to our system of 

ammonia decomposition. The input variables chosen for gridding the input space 

and their bounds are shown in Table 4.2. Figures 4.5 and 4.6 are plots that have 
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been generated by evaluating the reaction metric at each point in the selected grid. 

These results have been derived for maximizing the impact of the reactions 9 and 

10 of the Table 1.2. This is the reaction step which involves the formation of 

NH3*. 

Table 4-2 Bounds of Decision Variables 

Decision Variable Lower Bound (  ) Upper Bound(  ) 

              

             

           

 

 

Figure 4.7 Variation in the value of reaction metric shown with respect to NH3 and H2 mole 

fraction. The plot shows no specific shape and no direct relationship can be deduced. 

 

Note that in Figure 4.5, NH3 inlet mole fraction has no considerable impact on the 

value of reaction metric. However, temperature has very smooth curve with a 

distinct minima and maxima. In Figure 4.6, neither the NH3 inlet mole fraction, 

nor the H2 inlet mole fraction shows any visible trend. Although there are points 



 

72 

 

in the grid where the value of reaction metric reaches high values, no clear 

relationship can be deduced.  

 

4.5 Conclusions 
 

The design of experiments using the computational singular perturbation is 

advantageous in many ways. The conclusions of this chapter are: 

1) A two-variable-at-a-time (TVAT) approach for DOE, has been tried which 

although does not speak much about the interactions between other 

potential inputs, but the method is outlined and can be formulated with all 

the variables included.  

2) DOE for maximizing the impact of the formation of NH3* has been 

performed. A new reaction metric formulated is considered to maximize 

the impact of a desired reaction on the dynamics of the catalytic system. 

Experiments when performed at such conditions will provide data better 

for the parameter estimation of that desired reaction. 

3) This method for experimental design is not statistical, as are most of the 

conventional methods for optimal design. This method is driven by the 

calculation of important species, reactions and their contributions to the 

current dynamics of the system. 

4) CSP alone, as a mathematical tool, gives us considerable amount of 

information on the kinetically important reactants and species at any 

instant of time.  
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5. Concluding Remarks and Future 

Work 

 

5.1 Concluding Remarks 

While this work focuses on different variations required for experimental design 

for large scale catalytic systems, the results and the methodologies are applicable 

to all fields of science and engineering that may need good parameter estimation. 

The D-optimal design metric has been used in this study owing to its easy and 

straightforward procedure. Three different problems have been addressed in this 

study. Large scale catalytic systems may have the problem of non-identifiability, 

i.e. not all parameters can be identified. In such cases, this study presents a 

comparison between principal component analysis, singular value decomposition 

and hierarchical clustering. Hierarchical clustering is the preferred methodology 

because PCA fails to give information about uniquely coupled chemistries at 

times. The system under investigation for this identifiability study was the 

preferential oxidation system for hydrogen production for fuel cells. The study 

was performed for models of two different catalytic systems and the method 

yielded different solutions for both of them. 
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 The next important problem discussed is the problem of experimental 

design when there exists uncertainty in the nominal values of parameters used for 

D-optimal design. This problem is also important because many times, the 

equipment involved in performing experiments may not be able to dial in the 

exact values of inlet conditions as suggested by the experimental design. In this 

part of the study, stochastic optimization has been proposed as a potential solution 

and the stochastic results have been compared with the deterministic results. 

Constrained particle swarm optimization has been used for optimization. Contrary 

to the stochastic results, the deterministic results show that the value of the 

objective function is highly sensitive to very small changes in the values of 

decision variables (inlet conditions),   and hence stochastic results are accepted. 

Also, the stochastic case yields a much larger value (VSS of 28.97 on logarithmic 

scale) as compared to the deterministic solution and hence, the solution provided 

by stochastic optimization is considered to be better for estimating parameters. 

The system under investigation for this part of the study was the ammonia 

decomposition catalytic system on Ru. 

 The third and the last problem discussed is the formulation of an 

experimental design strategy when parameter estimation of only some user-

specific reactions is to be performed. The solution proposed is based on 

computational singular perturbation, a popular mathematical tool used mainly for 

identifying active modes and important reactions and species at any desired time 

scale. This tool has been used only for investigating combustion chemistries. In 

this study, this tool has been used for experimental design, where a reaction 

metric is maximized such that a desired reaction has maximum impact on the 

dynamics of the system. The special reaction metric is evaluated using the results 

of the CSP analysis for the catalytic system. A mere CSP analysis of the system 

alone gives us insights about the important reaction chemistries at any time scale. 

A grid based search mechanism was used to identify the optimal value of 

operating conditions for the experiment. Once again the system under 

investigation was the ammonia decomposition catalytic system on Ru.  
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5.2 Future Work 

5.2.1 Stochastic Sampling 

As explained in chapter 3, the use of stochastic techniques for experimental 

design is very necessary. However, rigorous stochastic sampling was not a part of 

this study because of huge computational time requirements. The number of 

samples was reduced from 16384 to 16. In order to get more accurate results, the 

same procedure can be repeated taking all the 16384 samples into consideration 

without any reductions. The computational cost will increase tremendously but 

the predictions will be much more accurate. 

5.2.2 Input Sequence design for Design of Experiments 

Input sequence design for the purpose of design of experiments is beneficial for 

systems where the observed system changes are very quick. If the input sequence 

is designed dynamically for the experiment, rather than performing the 

experiment at just one inlet condition, the fast dynamics of the system can also be 

given due consideration. One of the novel methods proposed is similar to the 

model predictive control techniques where the control sequence is designed for a 

control horizon and a prediction horizon. The idea for an input sequence design is 

based on obtaining the current value of inlet conditions by solving, at each 

sampling instant, a finite horizon D-optimal experiment design based on 

sensitivity matrix evaluations using important reactions and species given by CSP 

analysis at that sampling instant. The optimization then yields a time-variant 

sequence for the inlet conditions, which when used for experiments, will give data 

tailored for optimal precision at every sampling instant.    
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7. Appendix 
 

 

MATLAB Functions 

1. CLUSTERDATA 

This function constructs clusters from data. The syntax is: 

 

T = CLUSTERDATA (X, ‘PARAM‘, CUTOFF) 

 

X is the data matrix of size M by N, treated as M observation of N 

variables. CUTOFF is a threshold for cutting the hierarchical tree. 

‗PARAM‘ is another option for inserting parameter values. For this study, 

the value of ‗PARAM‘ used was ‗maxclust‘, which ensures that the 

maximum number of clusters formed is the CUTOFF. 

 

T = CLUSTERDATA (S, ‗maxclust‘, 8) 

 

where S is the sensitivity matrix. 

 

 

 

2. COMBVEC 

This function creates all possible combination of vectors. 

 

C = COMBVEC (A1, A2 …) 

 

The function takes any number of inputs. If A1 is a matrix of N1 (column) 

vectors, and A2 is a matrix of N2 (column) vectors and so on, the function 

returns a matrix of (N1*N2*…) column vectors, where the columns 

consist of all possibilities of A2 vectors, appended to A1 vectors, etc. 

 


