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Abstract

Java is a relatively new object-oriented language that supports concurrency and net-
work programming; two characteristics that make it an ideal candidate for the devel-
opment of parallel applications using networks of workstations. The latest version of
the language incorporates a new form of communication between objects called K-
mote Method Invocation (RMI). This feature allows objects to transparently invoke
methods across the network.

This thesis explores the issues involved in automatically transforming sequential
object-oriented programs written in Java into equivalent distributed programs that
will run on a network of workstations and whose objects will transparently commu-
nicate by using the RMI system. The focus is placed on how the features of the
language, the object-oriented technology used, and the parallelizations techniques
applied can be combined for the development of such distributed programs.

This thesis uncovers some hard problems that will need further research. Ex-
ceptions, a feature that is common in many of today's languages (e.g. C++). can
seriously limit the amount of concurrency obtained by the use of asynchronous mes-
sages. The dynamic dispatching feature, common in many object-oriented languages.
can become a problem for properly identifying the objects that need to be changed
when some other objects are placed in a different address space. This thesis identifies
many of the problems introduced by RMI. Solutions for most of these problems are
presented. However, given its performance, we conclude that the amount of compiler
support needed to address all these problems is too large compared with the benefits
obtained by using the RMI system as the underlying communication paradigm of our

parallelizing tool.



Acknowledgements

First and foremost, I thank my wife, Adriana, for her love and care. Her uncondi-
tional support gives me the confidence and strength necessary to tackle any task. |
also thank my family in Argentina for all their understanding and encouragement.
Specially [ want to thank my mom, Maria Eugenia, and my dad, Lito. for giving me
the life and for always letting me choose my own way. Thanks also to my family-in-
law, Coco, Zuny and Ceci for the the thousands of e-mails that helped me to cope
with the distance.

I also want to take this opportunity to thank my supervisors. Dr. Jonathan
Schaefler and Dr. Ron Unrau, for their guidance and funding. The amount of time
and effort they dedicated to me greatly improved my work. [ am also grateful to Dr.
Duane Szafron and Dr. Xiaoling Sun for taking the time to read and comment on
this thesis, and to Dr. Joe Culberson who chaired my thesis defense.

Help from my colleagues in the Parallel Programming Systems Research Group.
is highly appreciated. [ would also like to thank to Diego and Liliana Novillo. and to

Andreas and Manuela Junghanns for all their support, company and friendship.



Contents

1 Introduction

I Motivation . . . .. .. ... .. ... ... .
1.2 ScopeoftheThesis . . ... .......................
1.3 Thesis Organization . . . . ... .................... .

2 The Java Language

2.1 DesignGoals . . ... ... .. ... ... ... ... ...
2.2 Language Features . . . ... ... ....... .. ... ...... .
23 ThelJavaPlatform .. ................... .. .... .
24 Summary . ...

3 Remote Method Invocation

3.1 Introduction . . . . ... ... ... ... ...
3.2 TheRMISystem . .. ............. ... ... .. .. .. .
3.3 RMI Architecture . . . .. .. ... ...
34 Example . . .. ...
33 Discussion . . . ... ...

4 Object Serialization

4.1 Object Serializationindava . ... ......... ... ... ... .
4.2 The Serialization Process . . . . .. ............... ... .
4.3 The Deserialization Process . . ... ... . ... ... ... ... ..
44 Limitations .. ... ... ... .. ... ... ... ...

5 Performance Evaluation

5.1 Experiment Design . . .. ... .. .. ... .. ... ... . .. .

20
21
23
26

.,"’

30
31



5.2 ExperimentalResults . . . ... . ... .................

3.3 Conclusions . . .. . ... ... 0 i,

6 Inheritance

6.1 Inheritanceand RMI . .. ... ... ..................
6.2 Inherited Methods . . ... .......................
6.3 InheritedData ... ...........................
6.4 Conclusions . .. ... ..... ... . ... ... ...
7 Futures

7.1 Futuresindava . ... ....... .. ... .. .. .. ... ... .

7.1.1 ServerSide Futures . . . ... ... ...............

7.1.2 Client Side Futures . . . . . ... ................

7.1.3  Client Side Futures / Future Computes . . . . . ... ... ..
7.2 Limitations . . . ... ... .. ... ...
7.3 Discussion . . . .. .. ...

8 Collaborators

8.1 Example . . . . ... . ... ...
8.2 Collaboratorsand RMI . . . . . ... ... ... .. ... .. .....
8.3 The Translation Process . . . ... ... ................
84 Summary . ... ...

9.1 Prototype Runtime System . . . . . .. ... ....... ..., . . .
9.2 Example . . . . . . ...
93 Discussion . . . . ... ...
9.4 Summary . .. ... ...

10 Related Work
10.1 CORBA . . . . . ..
102 HORB . . . . . .. . .

16



10.5 JavaParty
10.6 Summary

11 Conclusions

---------------------------------

.................................



List of Tables

5.1 ExperimentalResults . . . . ... ... ..... .. ......... .



List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
3.2
3.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
.5

Java’s Exception Handling Mechanism . .............. .. T
RMI Architecture . . . . . .. ... .. ... .. 15
RMI Example: Local Code . . . . . .. ... ... ... ....... 16
RMI Example: ServerCode . . . . ... ................ 17
RMI Example: Client Code . . .. ... ................ 13
Writing to an Object Stream . . . . . ... ... .. .. .. ..... . 21
Reading from an Object Stream . . . . . ... ... .. .. ... . . 2
Remote Methods . . . . . ... ... ... ... ... .. ..... . 31
Elapsed Time Algorithm . . . . . . ... ... ... ... .. ... . 32
Sockets Implementation . . .. .. .. ... .. .. ... ... . .. 32
Sensor Inheritance Hierarchy . . . . . ... .. ... ... .. .. .. 39
Temperature Sensor Remote Interface . . . . . ... ......... . 39
Local Useof TempSensor . . . . . ... ................. 39
Use of TempSensor as a Remote Object . . . . . ... ... .. ... . 10
SensorClass . . .. ... ... ... ... ... ... . .. ... ... 11
Access to a Protected Attribute . . . .. ... ... .. ...... .. i
Remote Access to a Protected Attribute . . . . ... ... ... .. 12
Future’s Remote Interface . . . ... .................. 16
Server Side Futures . . . . . .. ... ... ... ... ...... .. 7
Code for Server Side Futures . . . . ... ... .. ........... 18
Client Side Futures . . . . .. ... ... ... ........... .. 50



7.6 Future’s Code for Client Side Futures / Future Computes . . . . . . . 32

8.1 TemperatureSensor. ... ........................ 56
8.2 TemperatureDisplay . ... ....................... a7
8.3 Collaboration Diagram . . ... ..................... 58
8.4 Collaborators Detection . ........................ 60
8.5 Generic Collaboration Diagram . ... ................. 62
9.1 ObjectServer's Remote Interface . . . . . ... ... .......... 65
9.2 The Runtime System Architecture. . . . ... ... .......... 66
9.3 ObjectServer's Implementation .. ................ ... 67
9.4 Hello World Application: Sequential Version . . . . ... ... .. .. 63
9.5 Hello World Application: Parallel Version, Remote Interface . . . . . 64
9.6 Hello World Application: Parallel Version, Hello Implementation . . . 70
9.7 Hello World Application: Parallel Version. . . . . ... ... ... . . Tl
10.1 Computation Server . . . ... .. ... ... ... .. ... .. ™
102 Pl Computation . . . . ... .... .. .. ... ... ... ... )
10.3 HORB Architecture. . . . . .. .. .. ... .. ........... . T
10.4 Remote Object Creation and Remote Method Invocation in Voyager . N2
10.5 JavaParty Code Translation . ... ................... 85



Chapter 1

Introduction

1.1 Motivation

Nowadays, the computing world is changing faster than ever; new computer systems
are deployed every day and the explosion of the World-Wide Web is changing the
way people do business, interact and communicate. Networks of workstations are
common in many organizations. Moreover, as the price of computer hardware drops.
the computing power available in today’s organizations continues to grow. As the
availability of low-cost, high-performance workstations continues to increase, there is
also a growing number of unused CPU cycles. Many efforts have been made to take
advantage of this potential computing power by combining networks of workstations
to form powerful supercomputers. In these networks, parallel applications can be
developed to solve larger problems than before and to obtain increased performance.

However, parallel programming is a difficult task that involves dealing with many
issues not present in sequential programming such as communication, synchroniza-
tion, non-deterministic program behavior and work distribution [SS96]. Furthermore.
if the underlying parallel computer is a network of workstations, issues such as net-
work partitioning and network latency also need to be addressed.

A broad spectrum of parallel programming tools have been developed to cope with
the complexities of parallel programming. Those seeking the maximum performance
prefer low-level code libraries that have a minimal amount of overhead. Examples
of these low-level tools include sockets and message passing libraries (such as P\'\M
[Sun90] and MPI [MPI94]). Programming with these libraries is a highly skilled task.

The programmer is free to choose the best way of parallelizing the application. but



is also responsible for explicitly handling the communication, synchronization. and
many more low-level issues.

Many attempts have been made to alleviate the intrinsic complexity of paral-
lel programming mainly in the form of high-level parallel programming tools and
environments that support parallel extensions to existing languages or new paral-
lel languages. Examples of these environments are Enterprise [SS+93] and HeNCE
[BD+93]. Parallel programming environments allow the programmer to concentrate
on the algorithm’s development rather than on the low-level details of the paral-
lelization (e.g. processor allocation, communication protocols, etc.) by providing the
programmer with an abstract model. The main disadvantage of these parallel pro-
gramming environments is the lack of flexibility when the structure imposed by their
models differ from that of the application.

Since object-oriented technologies have been successfully applied to develop better
sequential applications. it is possible that those technologies would benefit the par-
allel applications’ world. Object-oriented languages have been successfully used to
implement powerful and flexible software systems. In the object-oriented paradigm.
an object is a self-contained entity which has a private structure and a public inter-
face. An application implemented under this paradigm can be seen as a collection of
communicating objects which cooperate to obtain the desired result. These objects
communicate by exchanging messages according to their interfaces.

In the case of sequential execution, all the messages are exchanged in a fixed
execution order which is directly derived from the statement order in the program
source. There is exactly one thread of control in which objects communicate. The
communication is performed synchronously while the thread of control is passed to-
gether with each message sent from one object to another. However, if messages are
sent asynchronously without the accompanying thread of control, then the sender
may continue executing concurrently with the receiver of the message. This leads to
a model in which a program will be executed by several threads of control. Under this
model, an application is represented as a collection of concurrently executing objects
that communicate using message passing.

Traditional object-oriented languages such as Smalltalk [GR83]. Objective C [C'oxst;!

and C++ [Str91] have been developed with special emphasis on software engineering



concepts such as reusability, encapsulation, inheritance and polymorphism. Little or
no attention has been paid to concurrency.

However, the idea of applying object-oriented techniques to the programming of
concurrent applications has gained popularity in recent years. Several object-oriented
languages have been created to deal with concurrency (e.g. Actors [AH87], POOL-T
[Ame87], HYBRID [Nie87]) and many existing languages have been extended to sup-
port it (e.g. ConcurrentSmalltalk [YT87], uC++ [BD+92]). In particular, among
the new languages recently created, Java [GJS96] supports concurrency and network
programming which makes it an ideal candidate for the development of parallel ap-
plications using networks of workstations. Furthermore, the latest version of the
language incorporates a new form of communication called Remote Method Invoca-
tion (RMI) [RMI97]. This feature allows objects to transparently invoke methods
across the network. Ideally, this will facilitate the development of object-oriented
parallel applications that will have their objects distributed throughout the network.
Those objects will transparently cooperate regardless of their location by exchanging
messages, and a high degree of parallelism will be attained by using the processing

power of the participating nodes.

1.2 Scope of the Thesis

This thesis addresses the issues involved in automatically distributing sequential
object-oriented programs written in Java by using a parallelizing tool (e.g. paral-
lelizing compiler and/or programming environment). The goal of such a tool is to
translate sequential Java programs into equivalent distributed programs that will run
on a network of workstations and whose objects will transparently communicate by
using the RMI system. In particular, the focus is placed on how the features of
the language, the object-oriented technology used, and the parallelization techniques
applied can be combined for the development of such distributed programs.

While doing this work, several problems were encountered that had a significant
impact on how to generate object-oriented parallel applications. Each of the problems
encountered is analyzed to determine its source, and possible solutions are explored.

Whi'e some problems are directly related to the Java/RMI design. others are intrinsic



to the object-oriented characteristics of the programs (e.g. problems due to inher-
itance and dynamic dispatching); or to parallel computing (e.g. non-deterministic
program behavior).

This thesis uncovers some hard problems that will need further research. N amely,
it is shown how the use of exceptions, a feature that is common in many of today’s
languages (e.g. C++), can seriously limit the amount of concurrency obtained by
the use of asynchronous messages. Also, it shows how the dynamic dispatching fea-
ture, common in many object-oriented languages, can become a problem for properly
identifying the objects that need to be changed when some other objects are placed
in a different address space. RMI, in addition, presents many problems that can be
addressed as discussed in this thesis. However, given its performance, we also con-
clude that the amount of compiler support needed to address all these problems is too
large compared with the benefits obtained by using the RMI system as the underlying
communication paradigm of our parallelizing tool.

Other contributions of this thesis include: a performance evaluation of the RMI
system, solutions to some RMI-related problems, and a prototype runtime system for

distributing Java programs.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the Java language.
its design goals and its main features. Chapter 3 presents Remote Method Invocation
(RMI). Its main characteristics are discussed and an example is provided. In Chapter
4. object serialization is explained in detail. Chapter 5 presents a performance eval-
uation of RMI and object serialization. Chapter 6 shows how inheritance fits with
the RMI system. The concept of futures is explained in Chapter 7 with a discussion
of different alternatives for implementing them in Java. Chapter 8 covers the topic
of collaborators. A prototype runtime system is described in Chapter 9 and related
work is presented in Chapter 10. Finally the conclusions of this thesis are presented

in Chapter 11.



Chapter 2

The Java Language

The Java programming language has its roots in a previous language called Oak
[Eng97]. Oak was the main result of a research project started at Sun Microsysterns
Inc. around 1990 that targeted the development of software for embedded systems
and consumer electronics devices. This project started with C++ as the programming
language. However, after many problems with C++, the development team decided
that they were better off creating an entirely new language and Oak was born.

After the introduction of Mosaic and the World Wide Web in 1993, the research
project shifted direction and focused on the development of software systems for
online multimedia. Oak was positioned as a “language-based operating system.™ [ts
source code was given away for free on the Internet. Before releasing the software on
the Internet and after considering different names (such as Neon. Lyric. Pepper and
Silk) the name was changed to Java.

Then Netscape, which quickly became the most popular Web browser, made a
commitment to support Java. After that, Java has become the preferred language of

the Internet community, and software written in Java can be seen everywhere.

2.1 Design Goals

Java’s origins as a language for programming consumer electronics, and the problems
faced with C++ in the beginning, contributed to set the following design goals for
Java [JO95, GM96):

Simple, Object Oriented, and Familiar: The new language should be easy to

learn so that programmers could become productive with little training. Even



though C++ proved to be unsuitable, Java was designed to look as close as
possible to it. This allowed C++ programmers to look at Java as something
familiar and be productive in the language very quickly. To keep the language
simple though, many complex features of C++ were omitted, such as operator
overloading, multiple inheritance, and extensive automatic coercions. Auto-
matic garbage collection was also included to simplify the programming and
to avoid bugs due to storage management errors that were common in C++.
The language was made object oriented borrowing characteristics from C++.
Objective C, SmallTalk, Eiffel, and Cedar/Mesa.

Network-savvy: The Java language provides direct support for network program-
ming with libraries that simplify the complexities of dealing with different pro-
tocols such as TCP/IP. FTP and HTTP.

Robust and Secure: Software embedded in consumer electronics requires the high-
est level of robustness. Java attains this with extensive compile-time and run-
time checkings and with language features that enforce healthy programming
practices such as exception handling (see Figure 2.1). There are no pointers
and the dynamically allocated memory is automatically garbage collected. This
characteristic makes the software more robust and secure since applications are
not allowed to manipulate addresses to access data that they are not supposed
to. Also, the runtime system provides extra validations to ensure that Java

systems are secure from external tampering.

Architecture Neutral and Portable: The need for running programs on different
hardware architectures (i.e. different consumer electronics devices or different
computers in an heterogeneous network), called for an architecture neutral de-
sign. Java programs are compiled to an architecture-independent format, called
bytecodes, which can be run on any Java-enabled platform without modification
(this idea was borrowed from Smalltalk [GR83]). Java goes one step further by
defining the sizes of the primitive data types and also the behavior of arithmetic

on them (e.g. floats are always 32-bit IEEE 754 floating point numbers).

Interpreted: To run the same binary program on any hardware platform without



try {
// Code that may raise exceptions (via the throw statement).

// Also, the block may be exited by a break, continue or return
// statement.
}
catch(exception_name e) {
// code that will handle the exceptions of type exception_name (or one
/] of its subtypes.
}
finally {
// This code is always excecuted regardless how the try block was
// exited. That is, after the end of the try block, or a break, continue
// or return statement is reached, or after an exception is handled by a
/[ catch block or after an exception is raised and not handled.

}

Figure 2.1: Java's Exception Handling Mechanism

recompiling, the bytecodes are interpreted and translated on the fly to the
particular machine code suitable for the hardware the application is running

on.

High Performance: Performance is a key design issue to any software system. Even
though Java is an interpreted language, high performance is still attainable by

exploiting multithreading, native methods and JIT compilers. '

Multithreaded: Many applications today require the ability to have several things
going on at the same time. For example, a Web browser could be downloading
a file and at the same time displaying a page with sounds and live video. Each
of these concurrent activities can be executed by a separate thread. Threads
are part of the Java language and multithreading is built into every component
of the runtime system (e.g. the garbage collector runs in a separate low-priority
thread). System libraries are thread-safe and the language provides powerful

thread synchronization primitives.

Dynamic: Java is dynamic in the sense that it adapts to an evolving environment.

1Just in time (JIT) compilers translate the bytecodes into machine code on the fly for the platform
where the application is running. If the same method is called again, the compiled version is used
instead, thus improving performance.



Classes are loaded from different sources (even from the network) and linked
only when they are needed. Any object in Java can be queried about its class
and new instances of a class whose name is obtained at runtime can be dynam-

ically created.

2.2 Language Features

The Java language features follow, to some extent, those found in the C/C++ lan-
guages [GM96]. However, some of the C/C++ features are not present in Java.
These include: typedefs, preprocessor, structures, unions, enums, free-standing func-
tions, multiple inheritance, goto statements, operator overloading, automatic coer-
cions, and pointers. These features were omitted by the language designers in their
quest for an easy to use and robust language (e.g. automatic coercions can be the
source of bugs when the programmer is not fully aware of them).

The basic features incorporated into the language include primitive data tvpes
(e.g. boolean, int, double, etc.), arithmetic and relational operators, scope modifiers
(e.g. private, public, protected, etc.), arrays, strings, control flow and decision-making
statements, and an exception handling mechanism. Among the advanced features

included in the language are:

Object-Oriented Features: Java is a truly object-oriented language in the sense
that it supports objects, classes and inheritance as defined by Wegner [Weg37].
It also supports encapsulation, polymorphism, and dynamic binding. In Java.
every class has exactly one parent (i.e. single inheritance) and has a common
ancestor (i.e. Object). Classes are also nbjects in Java. Parameters and return
values are always passed by reference. Abstract classes, interfaces and visibilit v
modifiers (e.g. private, protected, etc.) are also supported. See [GM96] for a

complete reference on these topics.

Memory Management and Garbage Collection: Memory management is very
simple in Java. New memory is allocated with the new operator but, unlike in
C/C++, there is no delete operator. Dynamically allocated memory is auto-

matically garbage collected. The garbage collector runs in its own low-priority



thread, freeing storage and compacting the memory pool.

Integrated Thread Synchronization: The Java language provides direct sup-
port for threads. There is a Thread class and the language provides powerful

synchronization primitives.

Interfaces: Since Java only supports single inheritance, an interface feature is pro-
vided. Interfaces allow Java to create the illusion of multiple inheritance. An
interface is a contract that a class agrees to implement. Saying that a class
implements a particular interface means that it provides an implementation for
all the methods declared in the interface. Moreover, interfaces are data types
in Java, which means that instances of a class that implements a particular in-
terface can be assigned to variables of the interface type. Interfaces are used to
specify functionality without specifying a specific implementation. A class can
implement any number of interfaces and inheritance can be applied to them. An
interface can extend one or more interfaces, that is, interfaces support multiple

inheritance.

Packages : A package is a collection of classes that are related in some way. Every
Java class belongs to a package. Classes for which a package is not specified
belong to the default package. The concept of package allows a programmer to
separate the classes into different modules. Java also provides scope modifiers

which can regulate the access based on the class’ package.

Security: Security played a big role in the definition of the Java language and its
runtime system. Any application developed in Java is subject to four levels of

security [Ham96):

1. Language and compiler: The lack of pointers in the language prevents
attacks made by the manipulation of addresses. Since the compiler does
not allocate memory, a potential hacker cannot infer any physical layout
by looking at a declaration. Moreover, there is no language construct that

permits a programmer to obtain the address of an object and/or method.



2. Bytecode verifier: To prevent attacks from hostile Java compilers, the
runtime system subjects all code to a simple theorem prover that performs
some validations (e.g. it checks whether the code violates access restric-

tions and whether all the instruction parameters have the correct type).

3. ClassLoader: Each class that is loaded from the network executes within
its own separate name space. All the classes loaded from the local file
system share the same name space. When a class references another. the
referenced class is looked up first in the local name space. If not found. then
it is looked up in the name space of the referencing class. This prevents
code loaded from the network from “shadowing” a built-in class or a class

loaded from a different site.

4. Interface specific security: The Java networking package can be config-
ured to provide different levels of security for the protocols that it interfaces
to (e.g. HTTP, FTP, etc.).

2.3 The Java Platform

Nowadays, many different and usually incompatible platforms exist (e.g. Microsoft
Windows, Macintash, 0S/2, UNIX, etc.). Generally, applications developed for one
platform do not run on another (at least not without considerable effort).

Java introduces a new software platform that sits on top of any existing plat-
form [Kra96]. This allows the deployment of applications that will run on any ma-
chine where the Java platform is implemented, without recompiling the source. Even
though there are many implementations of the Java platform (i.e. one for each dif-
ferent hardware/OS), there is only one specification for this platform. This makes it
possible to develop the applications just once and run them everywhere. Two kinds

of programs can be deployed on the Java Platform:

Applets: Java programs that need a browser to run. These program are down-

loaded from the network and run on the client machine.

Applications: Stand-alone Java programs. These programs do not require a browser

to run and do not have a built-in downloading mechanism.



The Java Platform has two main components:

Java Virtual Machine: The Java Virtual Machine is an abstract computer that can

be implemented (either in software or hardware) on top of any real computer.

Java Application Programming Interface (Java API): The Java API provides
a standard interface to applets and applications to the Java Virtual Machine
that is the same across all the operating systems. The Java API can be further

divided into:

The Java Base API: Which provides the basic language, utilities, /0, net-

work, GUI, and applet services.

The Java Standard Extension API: Which provides a framework to incor-
porate capabilities that are beyond the Java Base API (e.g. Java Enter-

prise, Java Commerce).

2.4 Summary

This chapter introduced the Java language. Its design goals and main features were
explained. The Java platform was also introduced. Java is an interpreted language
that among other features supports: tree single inheritance, interfaces (with multiple
inheritance), dynamic dispatching, different scopes, threads and exception handling.
As we will see in the following chapters, some of these features will present special

challenges when trying to automatically parallelize sequential Java programs.



Chapter 3

Remote Method Invocation

3.1 Introduction

Distributed systems require the existence of some form of communication between
applications running in different address spaces. Java supports sockets as a general
form of communication between objects running on different virtual machines (which
could be running on the same or different hosts). Socket programming, however,
is a demanding task since all the details of the communication have to be handled
by the programmer. Before two applications can communicate using sockets. the
developer has to design protocols (i.e. which communication pattern the interactions
will follow) and message formats (i.e. the structure of the transmitted data). This is
a time-consuming and error-prone activity. Furthermore, once in place, protocols and
message formats are hard to change so the system becomes more difficult to maintain.

Starting with version 1.1, Java provided a new type of communication between
objects called Remote Method Invocation (RMI) [RMI97]. This new abstraction per-
mits the developer to concentrate on the application development rather than the

complexities of the communication process.

3.2 The RMI System

The RMI system is built on top of the socket mechanism and provides the seman-
tics of RPC (Remote Procedure Call) [BN83] applied to distributed object-oriented
systems. Even though the design of the RMI system is general enough to accommo-

date asynchronous messages, the current implementation only supports synchronous



method calls. In the RMI model, a Remote Object is defined as one that implements
some methods that can be called from a different Java Virtual Machine. ! A remote
method invocation is then the act of calling a method of a remote object defined in
a remote interface implemented by this object. The syntax for invoking one of these
remote methods remains the same as the one used for a local call. This character-
istic makes RMI easy to use because there is no new syntax to learn, although the
user still must be familiar with the concepts of remote objects and remote method
invocations. The methods exported by a remote object are described by one or more
remote interfaces. Clients will see only what is defined in the remote interface of a
remote object. This implies that direct access to instance variables is not possible
with RMI (only methods and constants can be defined in a Java interface). Also. it
implies that RMI cannot be used with static methods because the modifier static is
not allowed in a method declaration inside an interface. Furthermore, since all the
methods in an interface are implicitly abstract and public (i.e. the modifiers private
and protected are not allowed inside interfaces), all the methods that will be called
remotely need to be public.

References to remote objects can be returned as method return values or used as
parameters in any method invocation, no matter whether the object that implements
the method is local or remote. Any parameter or returned result in a remote methodl
invocation that is not a remote object is passed by value. Remote objects are passed
by reference.

For a client to invoke a remote method, it first has to get a reference to the re-
mote object. The RMI system provides a simple name service, called the registry.
that can be used for this purpose. The registry is a “well-known” remote object
whose responsibility is to map names to remote objects. A common configuration
consists of a single registry for each host, but it is also possible to have a registry
for each server process (either in the same or in a different virtual machine). Clients
can access the registry directly using the methods defined in the Registry interface
and the LocateRegistry class, or using the URL-based methods provided by the class

java.rmi.Naming. The Registry interface provides methods for lookup., binding. un-

!Note that a remote object can still have local methods that can only be called from objects that
reside on the same virtual machine as the remote object.



binding, rebinding and listing the contents of the registry. The LocateRegistry class
provides static methods that allow a program to retrieve a reference to a registry
given different parameters such as the host and port number.

Since there are more opportunities for failures in distributed systems (due to
network partitioning, routers dropping packets, etc.) than in local systems, clients
of a remote method invocation must be able to handle additional exceptions thrown
by the RMI system. All these exceptions are subclasses of java.rmi.RemoteException.
Thus, every method declared in a remote interface must add java.rmi .RemoteException
to its throws clause. When an error occurs, the RMI system throws a RemoteException.
However, the client may have little or no information for determining if the failure

happened before, during, or after the remote call.

3.3 RMI Architecture

The RMI system is composed of three independent layers: the stub/skeleton layer.
the remote reference layer, and the transport layer (see Figure 3.1). Each layer com-
municates directly only with the layer immediately above or below it. For example,
user programs (i.e. client and servers) only talk directly with the stub/skeleton layer.
The boundaries between any two layers are defined by precise interfaces and proto-
cols. This makes each layer independent of the next and, thus, replaceable by another
implementation that adheres to the proper interface and protocol. For example, the
current implementation of the transport layer is based on TCP sockets but this can
be replaced by an implementation based on UDP sockets without affecting the other
layers.

Figure 3.1 illustrates a client communicating with a server. Both objects reside
on different virtual machines and the client invokes a remote method implemented by
the server. The stubs and skeletons are automatically generated by the RMI compiler
(rmic) from the remote interfaces. Clients interact with stub objects (proxies of the
remote object) that have exactly the same set of remote interfaces defined by the
remote object’s class. Non-remote portions of the class hierarchy of the remote class
are not included in the stub. Thus, only those methods declared in the remote

interfaces can be called remotely.
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Figure 3.1: RMI Architecture

A remote call made by the client is handled by the stub which relays all the
invocations to the server via the reference layer. The remote reference layer is used
to abstract different semantics for an invocation (e.g. unicasting, multicasting. etc.).
The reference layer uses the services of the transport layer for setting up connections
and remote object tracking. The skeleton at the server side receives the invocations
from the transport layer and makes the appropriate calls to the remote object which
executes the actual method calls. The return values are sent back to the client from
the server to the skeleton, then to the remote reference layer, from there to the
transport layer, up to the stub until finally reaching the caller.

The transmission of objects between different address spaces is done using Java's
Object Serialization API which provides the functionality necessary to pack and un-

pack any arbitrary graph of objects (see Chapter 4 for a more complete description).

3.4 Example

To illustrate how RMl is used. consider the code in Figure 3.2. There are two classes:
Sensor, which represents a physical sensor of some sort; and MAIN, which is used to

provide an entry point for the program. 2 The program consists of creating an object

2In Java, all the programs begin executing the code contained in the main() method of the
specified class (i.e. MAIN in our example).



//—{ Sensor.java ]
public class Sensor {
private boolean active;

public Sensor() { // Constructor
active = false;

}

public void Activate() { // Callable method
;.c;ive = true;

}

public void Deactivate() { // Callable method
.a.c;ive = false;

}

}

//—{ MAIN java }
public class MAIN {

public static void main(String args[]) {
// Create and initialize a new Sensor object
Sensor aSensor = new Sensor();
/] Access it
aSensor.Activate();

aSensor.Deactivate();

Figure 3.2: RMI Example: Local Code

of type Sensor. called aSensor. and operating with it. The sensor is activated using
the method Activate() and, after doing something with it, the sensor is deactivated by
Deactivate(). The code shown in Figure 3.2 runs locally in a single virtual machine.

Figures 3.3 and 3.4 show the same program translated into a distributed version
using RMI. The original program has been split into a server which provides the
functionality of the sensor, and a client which uses the sensor. In this version. the
client and the server run on different virtual machines.

Both server and client main() functions start by setting the system's security man-

ager to an instance of RMISecurityManager. Since the code for the stubs and skeletons



//—{ SensorRl.java }
public interface SensorR| extends Remote {
public void Activate() throws RemoteException;
public void Deactivate() throws RemoteException;

}

//—{ Sensor.java ]
public class Sensor extends UnicastRemoteObject implements SensorR! {
private boolean active;

public Sensor() throws RemoteException {
active = false;

}

public void Activate() throws RemoteException {

active = true;

public void Deactivate() throws RemoteException {

active = false;
}
public static void main(String argsf]) {
System.setSecurityManager(new RMISecurityManager());
try {
Registry registry = LocateRegistry.getRegistry();
Sensor aSensor = new Sensor();
registry.rebind(”" SENSOR”, aSensor);
} catch (Exception e) {
System.out.printin(” Sensor.main: an exception has occurred: " +
e.getMessage());
e.printStack Trace();
System.exit(-1);

System.out.printin(” Remote Sensor ready.”);

}
}

Figure 3.3: RMI Example: Server Code




//—{ MAIN java }
public class MAIN {

public static void main(String argsf]) {
System.setSecurityManager(new RMISecurityManager());
try {
Registry registry = LocateRegistry.getRegistry(" serverHostName”);
SensorRI aSensor = (SensorRl) registry.lookup(” SENSOR");

aSensor.Activate();

.a.Sensor.Deactivate():

}
catch (Throwable e) {

System.out.printin(”"MAIN: an exception has ocurred: " +e.getMessage()):
e.printStack Trace();
System.exit(-1);

Figure 3.4: RMI Example: Client Code

can potentially be loaded from the network, there must be a security manager in place
or an exception will be thrown. This security manager will ensure that the loaded
classes (i.e. the bytecodes that were brought into the virtual machine from the net-
work or from disk) adhere to the standard Java safety guarantees. Applications can
define their own security managers or use the provided RMISecurityManager. If no
security manager is in place, no class can be loaded from the network.

The code for the server (see Figure 3.3) is divided into two files: SensorRI.java and
Sensor.Java. SensorRl is an interface used to declare which methods can be remotely
called by a client. The class Sensor implements the SensorR! interface. The main()
function in the server code just creates an instance of sensor and registers it with the
local registry.

The code for the client (see Figure 3.4) shows how to remotely invoke methaods
on the remote Sensor object. First an object reference is obtained using the reg-
istry. The registry contacted is the one that it is running on the host where the

server has been started. If the remote object (i.e. the server) has not yet been cre-



ated and bound to the registry, the registry.lookup() call will throw an exception (i.c.
java.rmi.NotBoundException). The reference obtained from the registry has the type of
the interface SensorRI rather than the class Sensor. This is because only those things
declared in the remote interface are seen from a different virtual machine. Once a ref-
erence has been obtained, the methods can be invoked using the normal Java syntax.
The calls are placed inside a try{} clause in order to deal with the remote exceptions

that can be thrown.

3.5 Discussion

Having explained the basic functionality of RMI, it is important to discuss the dif-
ferent issues involved in using it for the automatic parallelization of sequential code.
A parallelizing compiler at a bare minimum should automate the generation of the
remote interfaces. Given a class (through a modifier or using a graphical interface).
the compiler should be able to construct the remote interface by listing all the meth-
ods of that class and adding the appropriate throws clauses for the remote exceptions.
Also, RMI requires all the methods that will be called remotely (i.e. those that are
added to the remote interface) to be declared as public. Thus. the compiler should
verify (and change if necessary) the access privileges for each method that is added to
the remote interface. The compiler should also insert the appropriate try and catch
statements around each remote method invocation to automatically handle all the
exceptions thrown by the RMI system.

Other issues where compiler support will be needed include: modifications to the
user code for handling access to instance and class variables, packing optimizations.
dynamic object creation, access to static methods, and asynchronous method calls.
These and other issues derived from them will be addressed in detail in subsequent

chapters.



Chapter 4
Object Serialization

In distributed systems, data structures must be flattened before transmission (i.c.
they are put in a buffer for transmission according to a particular layout). At the
receiving end, the data structures are reconstructed from the flattened version. This
characteristic is not exclusive to object-oriented systems. In fact, the packing of
data structures also has to be performed in procedural languages (such as C) when
performing remote procedure calls (RPC) [BN83] or saving these structures to disk.
This process is known as “packing”, “pickling”, and “marshaling”. In Java it is called
Object Serialization although, besides objects, it is also used to pack primitive data
types.

Serialization is an important issue for parallelizing applications. When an object
is to be sent across the network, its state must be saved at one end and restored
at the other end. If the object contains references to other objects, there are two
possibilities: to pack the object and all the objects referenced from it (deep copy ). or
to pack only the original object (shallow copy). Clearly, using shallow copies is faster
than using deep copies, but sometimes a deep copy is needed to preserve program
correctness (e.g. if the remote method accesses a nested reference, the referenced
object should also be packed).

This chapter explains how object serialization is performed in Java. The focus

is placed on analyzing how the serialization mechanisms affect the automatic paral-

lelization process.



FileOutputStream fos = new FileOutputStream(” some_file" );
ObjectOutputStream os = new ObjectOutputStream(fos):;
// writing of an object

os.writeObject(” This is a String object”);

// writing of a primitive data type

os.writelnt(100);

os.flush();

Figure 4.1: Writing to an Object Stream

4.1 Object Serialization in Java

Object serialization provides the capability of storing and retrieving objects from a
stream. This means that the objects can be made persistent (i.e. written to disk)
and, also, that the objects can be transmitted through a communication channel
(e.g. sockets). Thus, to serialize an object consists of writing to the stream all the
information needed to create an equivalent copy of the object at a later time in the
same or a different place. The process of creating an equivalent object from the stream
is called deserialization. When serializing an object, all the objects that are being
referenced by it are also serialized to the stream in order to maintain the existing
relationships among them (i.e. deep copy).

The programmer can specify if a particular class is serializable or not (i.e. if its
objects can be written to a stream). For example, a programmer might not want
to make a class serializable for security reasons. Classes whose supertype is not
serializable may still be serializable but have to take responsibility for packing and
unpacking its parent’s public, protected and package protected fields. This is only
possible though, if the supertype has a constructor with no arguments (which will be
used to initialize the supertype’s fields).

Normally, objects are written to the stream using the writeObject() method de-
clared in the ObjectOutput interface. Primitive data types are written using specitic
methods declared in the DataOutput interface such as writelnt(), writeFloat(). etc.
Figure 4.1 shows how a String object and an int are serialized.

The writeObject() method handles the serialization of each object and all the

objects referenced from it. The object, all the objects that are referenced from it.



FilelnputStream fis = new FilelnputStream(” some.file");
ObjectlnputStream is = new ObjectinputStream(fis);

// reading an object

String aString = (String) is.readObject();

// reading a primitive data type

int i = is.redint();

Figure 4.2: Reading from an Object Stream

and recursively any object that is being referenced from them, form the object's
graph. Objects are serialized at most once in a stream. If more references to the
same object are found while traversing the graph (i.e. when following the references)
they are encoded as a handle (i.e. an offset inside the stream) to the already serialized
object. This allows for a very efficient representation which supports the cycles that
can be present in an arbitrary object graph. Fields that are marked as transient or
static are not serialized/deserialized. This is because transient fields are not part of
the object’s state by definition (i.e. the keyword is used for that purpose), and static
fields are class variables (i.e. not part of the object’s state but of its class).

Reading from a stream is also a straightforward process (see Figure 4.2). The
method readObject() is used to deserialize any arbitrary graph of objects and the
methods readlnt(), readFloat(), etc. are used to deserialize the primitive data types.

The Object Serialization API requires that classes implement either the Serializ-
able or the Externalizable interface in order to serialize the objects of that class. For
classes that implement Serializable, all the information required to restore its objects
is automatically saved. In contrast, for classes that implement the Externalizable
interface, only the identity of the class is automatically saved and the class is respon-
sible for saving and restoring its contents (by implementing the writeExternal() and
readExternal() methods).

The Serializable interface is an empty interface (i.e. there is no functionality to
implement ) and it is used for the sole purpose of identifying a class as serializable. In
the early versions of the API, all classes were serializable by default. Later on. this

default behavior was changed and only those classes explicitly declared to implement
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Serializable could have their state automatically saved to a stream. ! The rationale
behind this change in the design was twofold. The first consideration had to do
with security. Access to fields that are private, protected or package protected is
regulated by the Java runtime system. Once serialized, however, the byte stream
can be accessed and changed by any object that has access to it. This violates the
privacy guarantees of the language and could compromise the integrity of the Java
environment. Making classes not serializable by default prevents a programmer that
does not know about serialization from compromising the security and/or the integrity
of the system because of his/her lack of knowledge.

The second reason for the change in the design is to force the designer to think
about serialization before tagging a class as serializable. For example some fields make
sense only in the context where the object containing them was originally created
(e.g. open sockets, open files, etc.). These fields should be marked as transient but
the programmer could neglect or forget to do so. In that case, if the classes were
serializable by default the serialization process could introduce incorrect behavior

into the system.

4.2 The Serialization Process

The ObjectOutputStream class implements the core of the serialization process. This
class is responsible for keeping the state of the stream in which the objects are written
and also the state of the objects already serialized.

This class provides methods for writing different data types to the stream (e.g.
writelnt(), writeLong(), etc.), and also for manipulating the stream (e.g. flush().
drain(), close(), etc.). Other methods provided by this class allow the traversal of
the objects that need to be serialized. Objects are saved on the stream together with
the objects to which they refer (i.e. complete object graphs are saved). In particular
the writeObject() method is the one that implements the serialization of an object

into a stream. Objects are serialized according to the following algorithm [0S96):

L. If the block-data buffer ? is not empty, its contents are written to the stream

'An extensive discussion about this issue can be found in the archive for the RMI mailing list
located at: http:/ /chatsubo.javasoft.com/email/rmi-users/ .
¥The stream can be buffered or unbuffered. When using buffered mode, the data is put in the
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and the buffer is reset.

2. If the object being serialized is null, writeObject() returns after putting null on

the stream.

3. If the object was previously written to the stream, its handle is written instead.
If the object had been replaced, the handle for the replacement is written in-
stead. Then writeObject() returns. Note that the serialization routines are
forced to keep track of which objects have already been packed and which have

been replaced.

4. If the object being written is a Class, the corresponding ObjectStreamClass is
written, a handle is assigned for the class and writeObject() returns. An Object-
StreamClass describes a class that can be serialized to a stream or deserialized
from it. The ObjectStreamClass for a loaded class can be found using a lookup

method provided by ObjectStreamClass.

3. If the object is an ObjectStreamClass, a class descriptor that includes name.
serialVersionUID 3, and the lists of fields ordered by name and type is written
to the stream. A handle is assigned for this descriptor and the annotateClass()

method is called before writeObject() returns.

6. If the object is an instance of java.lang.String, the object is written in Universal
Transfer Format (UTF) * format and writeObject() returns after assigning a

handle to the string.

7. If the object is an array, a recursive call to writeObject() is used to write the
ObjectStreamClass of the array. A handle is assigned for the array, and then the
length is written to the stream followed by each element of the array. Finall y.

writeObject() returns.

8. If object replacement is enabled by a previous call to enableReplaceObject(). the
replaceObject() method is called to allow subclasses to substitute an object. If

block-data buffer before being written out to the stream.
3The serialVersionUID is a number that identifies a particular version of a serialized class.
YUTF is a “multi-byte” encoding format used for the storage and transmition of Unicode char-
acters (see [Fla96, 208-209]).



the object is effectively substituted, the mapping between the original object
and its replacement is saved for later use in step 3. After the replacement, steps
2 through 7 are repeated for the new object. If the replacement object does not
correspond to the types handled in steps 2 through 7, the processing continues

at step 9 with this new object.

9. For regular objects a recursive call to writeObject() is used to write the Object-

StreamClass of the object’s class. A handle is created for this object.

10. Finally, the contents of the object are written to the stream according to the

following criteria:

The object is Serializable: The highest Serializable class is located, and for
this class and each derived class its fields are written. If the class im-
plements a writeObject() method, it is called. If not, the defaultWriteOb-
ject() method is called instead. This method writes all the non-static and
non-transient fields to the stream. Note that writeObject() can use default-
WriteObject() to write the state of the object and then write additional

information.

The object is Externalizable: In this case the writeExternal() method is calle«.
This method should save the entire state of the object and coordinate with

its superclasses to save their state.

The object is neither Serializable nor Externalizable: When the object

is not Serializable or Externalizable, a NotSerializableException is thrown.

Even though it is not necessary to know the complete details of the serialization
process in order to use it, some general understanding will help to better utilize it.
Specifically, it is important to know the difference between Serializable objects and
Externalizable ones. Also note that this is a generic serialization routine and. thus.
it is very complex. Users could get better performance by writing their own custom

serialization code.

N 1.4



4.3 The Deserialization Process

Object deserialization is implemented by the ObjectinputStream class. This class is

responsible for maintaining the state of the stream and the objects already deseri-

alized. It provides methods for reading objects and primitive data types written by

ObjectOutputStream. The readObject() method is the one that implements the object

deserialization from the stream. Objects are deserialized from the stream according

to the following algorithm [0S96):

l.

[3V]
H

If a block-data record is present on the stream, a BlockDataException is thrown

with the number of bytes that are available for reading.
If the object in the stream is null, null is returned.

If the object in the stream is a handle to a previous object, the appropriate

object is returned from the set of known objects.

If the object is an instance of java.lang.String, then its UTF encoding is read

and the object and its handle are added to the set of known objects. Then the

String is return.

If the object being read is a Class, the corresponding ObjectStreamClass descrip-
tor is read. The Class object is returned after it is added with its handler to the

set of known objects.

If the object is an ObjectStreamClass, its name, serial VersionUID. and fields are
read. Then, the object and its handle are added to the list of known objects.
Following that, the method resolveClass() is used to get a local class for this
descriptor (an exception is thrown if the class cannot be found). F inally, the

ObjectStreamClass object is returned.

If the object is an array, its ObjectStreamClass and length are read. The array
is allocated and added with its handle to the set of known objects. Then. each
element is read (according to its type) and assigned to the array. F inally the

array is returned.
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8.

10.

For any other object, its ObjectStreamClass is read from the stream and used to

retrieve a local class. The class has to be Serializable or Externalizable.

The class is instantiated, and the instance and its handle are added to the set
of known objects. Then, the contents are retrieved according to the following

criteria:

Serializable objects: the no-argument constructor for the non-serializable su-
pertype is called and each field is restored using the readObject() method
or the defaultReadObject() method if necessary. If the version of the class
that wrote the stream and the version of the class that is reading the
stream differ, it could happen that both have different supertypes. If this
is the case, the ObjectinputStream must match the available data with the
classes that are being restored. Data for classes that are in the stream but
that do not occur in the object being deserialized are discarded. Classes
that occur in the object but are not present in the stream have their fields

initialized to default values by the default serialization mechanism.

Externalizable objects: first the no-argument constructor is invoked and then

the readExternal() method is called to restore the object’s contents.

Ifenabled by a previous call to enableResolveObject(), the resolveObject() method
is called. This allows the subclasses to replace the object being returned if it is

necessary to do so. The result of this method is returned as the return value of

readObject().

Again, the complexity in the deserialization routine can be blamed on its gen-

erality. Users could improve the performance by writing their own deserialization

code.

4.4 Limitations

Even though the reasons for forcing the programmer to declare which classes should

be serializable are valid, they introduce a problem. Specifically, for classes that will be

serialized (e.g. those whose objects will be remote objects) special attention must he

-



paid to their inheritance chain. If a class in the inheritance chain does not implement
Serializable, its subtype should take responsibility for the serialization of its public
and protected fields. As discussed in the previous sections, this is only possible if
the supertype implements a constructor with no arguments. Moreover, if classes
are created extending other classes from a third party library that was developed
without thinking about serialization, problems may arise. This constitutes a serious
problem for the development of parallelizing tools since it cannot be assumed that
such libraries will not be utilized in the user’s code.

Since our parallelizing tool will build distributed applications from the user's se-
quential code, it makes sense to make every class Serializable by default. In this way.
objects can be moved among the different nodes using the default serialization mech-
anisms. Furthermore, performance can be fine-tuned by overloading the writeObject()
method where needed (e.g. to send only a part of an array).

A way of accomplishing this change of defaults is to modify the serialization rou-
tines in the distribution source files. In particular, the files ObjectOutputStream java
and ObjectStreamClass.java could be edited to eliminate the checking that is performed
to ensure that the class being serialized implements Serializable. These modifications
are simple to make and are very localized but, unfortunately, things can still go wrong,.
In particular, if we are extending a class that implements Serializable and provides an
empty writeObject() method, the object will not be properly serialized. A simple way
of avoiding this is to modify the source code to only call writeObject() for the classes
that we want (i.e. those that we want to fine-tune for performance) and not for the
others.

Another problem that needs to be addressed is the serialization of transient and
static fields. While transient fields could be left out of the serialization format (after
all that is the purpose of the transient keyword), static fields are regularly used in
sequential applications and extra support should be added. Since there is only one
copy of a static field that is shared by all the instances of a class (which can be
potentially distributed among several nodes), some runtime support will be needed to
manage it. A possible solution is to have one remote object responsible for managing
the static fields of a class, and to place a reference to this object in the stream instead

of the field’s value. This issue is further discussed in Chapter 9.



The past two sections described in detail the serialization process. From there it
can be suspected that the performance of RMI will suffer because of the complexity
of the serialization process (see Chapter 5). In particular, looking at the algorithm
for serialization described in Section 4.2, it can be seen that each one of the ten
points corresponds to an “if” statement that handles a particular case. Many of these
cases cannot be avoided, but some of them could be eliminated at the expense of
losing some functionality. For example, if object replacement is discarded, step 8
and part of step 3 can be eliminated. On the same track, if versioning of classes is
not supported (which is not needed for parallel systems), then the computing of the
serialVersionUID could be avoided together with the code that handles the evolution
of types when deserializing an object. Other optimizations are possible, including
custom serialization routines, and the use of shallow copies where possible to reduce
the amount of data that needs to be exchanged.

As shown in this chapter, the problem of tagging classes as Serializable is purecly
a Java issue. On the other hand, the issue of how to manage static fields will arise in
any object-oriented language that supports class variables such as Smalltalk [GRS3
and C++ [Str91]. However, in Smalltalk this problem is easier to solve because an
object can only access the fields of another object by using methods. Furthermore.
this issue is also present in procedural languages like C when dealing with global data

structures.
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Chapter 5

Performance Evaluation

To decide how to distribute a parallel application among the available processing
nodes, it is imperative to consider several factors such as processor availability and
workload, security policies in place, and, in particular, the costs involved in trans-
forming a local object to a remote one. It is important to get an exact appraisal of
these costs to make intelligent decisions about the partitioning of the application and
the distribution of its objects. Clearly, if creating a remote object takes longer than
the time that the object is expected to run, it is wiser to create it locally. Also. after
an object is remotely created, all the remote methods invoked on that object will
incur extra communication overhead. This means that if some methods of a particu-
lar object are called frequently, then this object is likely not a good candidate to be
made remote. Moreover, two objects which frequently talk to each other are likely to
be good candidates for clustering.

Several tests were designed to obtain some reference values for the main compo-
nents of the RMI system’s overhead. The cost of invoking a method on a remote

object can be decomposed as:

RMI pure overhead: The time that the RMI system uses to do administrative

tasks (e.g. setting up connections, opening sockets, etc.).

Serialization time: The time that the RMI system uses to pack and unpack the

objects sent in a call (i.e. parameters and return values).

Network delay: The time that it takes to transfer the data between two nodes (i.c.

parameters. control information, etc.) without including the RMI pure overhead
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public class TestRMIImpl extends UnicastRemoteObject implements TestRMI {

public TestRMIImpl() throws RemoteException {
super();
}

// Simple routines for testing passing
// parameters of various types to remote objects
public void nop() throws RemoteException {

public void nop(int x) throws RemoteException {

}

public void nop(Tree x) throws RemoteException {

}

Figure 5.1: Remote Methods

and serialization time. This number depends on the speed of the underlying

network and on the size of the messages being sent.

In this chapter we attempt to quantify the costs of these overheads.

5.1 Experiment Design

To get an idea about the performance of the RMI system, several test were run using
two IBM RS/6000 355s with 64 Mb of RAM each, running AIX 4.1.4 connected
through a 10Mbit Ethernet network. All the tests involved timing different method
invocations on a remote object. Figure 5.1 shows the code for some of the remote
methods used. A different empty method was provided for each type of argument
that was tested (e.g. int, double, etc.). To get more accurate results the tests were
run on idle machines and each measure was the average of 1000 method invocations
that followed the form of the code in Figure 5.2.

To better appreciate the overhead produced by the RMI system, the same tests
were run using a socket implementation (see Figure 5.3). In this version. the ob-
ject serialization routines provided by Java were used to implement the remote call.

Each method was assigned a number, and the call was made by writing that number
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long tb, ta;

long et;

int it = 1000;

// Call a remote method 1000 times and time it

tb = System.current TimeMillis();

for (inti=1;i <it;i++) {
RemoteObject.SomeMethod(Parameters);

}
ta = System.currentTimeMillis();
et = ta - tb;

System.out.printin(” Avg. round trip for SomeMethod(Parameters): " +et/it+"ms");

Figure 5.2: Elapsed Time Algorithm

Socket s;
ObjectOutputStream sout;
ObjectinputStream sin;
long tb, ta, et;

long it = 1000;

/[ Create socket and output stream

s = new Socket(InetAddress.getLocalHost(), 6010);
s.setTcpNoDelay(true);

sout = new ObjectOutputStream(s.getOutputStream());
sin = new ObjectinputStream(s.getinputStream());

// Time 1000 socket calls
tb = System.current TimeMillis();
for (inti=1;i <it;i++) {

sout.writeint(OPERATION_CODE); // first write the operation code
sout.writeObject(PARAMETER) // then write the parameters
sout.flush();
sin.readlnt(); // wait until the method has been excecuted
}
ta = System.current TimeMillis();
et = ta - tb;

System.out.printin(" Avg. round trip for SomeMethod(Parameters):” +et/it+("ms");

;..c.lose();

Figure 5.3: Sockets Implementation




one node two nodes
parameter sockets (ms) | RMI (ms) | sockets (ms) | RMI (ms)
no parameter 9 14 5 17
int 6 16 6 16
double 7 15 7 17
Integer 7 25 7 28
Double 7 25 7 29
int[] 8 62 7 73
double]] 7 87 7 88
Integer(] 7 251 7 230
Double[] 7 281 7 235
Tree 8 387 8 362

Table 5.1: Experimental Results

to an ObjectOutputStream (that was previously bound to a socket) followed by the
appropriate parameter. Then the result value of the method was read from an Ob-
jectinputStream bound to the socket (since all the methods had a void return value.

an int was used as an acknowledgment).

5.2 Experimental Results

The results of the experiments are summarized in Table 5.1. The minimum cost
of an RMI call occurs when an empty method is executed on a single node. The
experiments show that the minimum performance overhead incurred by the RMI
system falls in the neighborhood of 14ms. This overhead clearly implies that any
computation that is expected to run for less than 14ms is not a good candidate to
be performed remotely using RMI (although it can still be moved for other reasons
such as fault tolerance). Using an empty RMI call permitted us to isolate the pure
overhead from the serialization time, as there were no parameters or return value
to serialize. Likewise, the pure overhead was isolated from the network delay by
running the test on one machine alone (i.e. two Java virtual machines in one physical
machine).

The implementation that used just sockets and object serialization, on the other
hand, took only 5ms to perform the no-argument call. This suggests a significant inef-

ficiency in the RMI system. Unfortunately, the design of the reference and transport
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layers of the RMI system is not documented (only the interfaces are documented).
Furthermore, the source files of the classes that implement these layers are not pro-
vided with the Java distribution. Thus, it is almost impossible to fully explain where
the time is spent inside the RMI layers. However, we used a decompiler to take a
look at the main classes that comprise these layers to get a better understanding of
the RMI system. The exploration of these classes revealed a fairly complex design.
Moreover, this design cannot be compared to the sockets implementation that we
made. Besides creating sockets, the RMI implementation creates several threads and
performs several other tasks, such as protocol negotiations and garbage collection.
For example, one of the threads created is a Pinger thread whose function consists of
sending periodic messages to the other side of a communication channel to test the
liveness of the connection. Another interesting thing we noticed is the presence of
debugging code. [n particular all the code is populated with “if" statements that test
for different properties and output the appropriate information to log-files. Clearly.
these “if” statements contribute to the poor performance of the RMI system.

Since the socket implementation and the RMI implementation both used the same
pack and unpack code (i.e. the object serialization feature of Java), the difference in
our test program times can be attributed solely to the RMI overhead. As discussed.
this overhead is attributed to debugging code, thread management, thread context
switch, etc. However, the user of RMI benefits from the RMI's ease of use. Invoking
a remote method using RMI is much easier than programming the equivalent socket
version.

To test the performance of the serialization routines of RMI, empty remote meth-
ods, as shown in Figure 5.1, were used. Different runs were made changing the
parameter type to see how this affected the performance. Two primitive data types
of different size were tried: int (32 bits) and double (64 bits). As shown in the table.
the time that it takes to serialize and send a primitive data type across the network
is insignificant compared with the RMI pure overhead.

Other types were also used as parameters. In particular, objects of type Integer
and Double were used to compare the times with the ones obtained for the equivalent
primitive data types. The numbers in Table 5.1 show that it is much more expensive

to send an Integer (Double) object than to transmit the corresponding int (double)
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primitive data type. This is because the serialization of objects is more complex than
the serialization of primitive data types. For objects, class information is placed in
the stream and extra dispatches are performed to pack the object’s contents (see
Section 4.2). However, the socket version seems less affected by this than the RMI
version.

More complex structures were used to see how the RMI performance was affected.
Four different arrays of 100 elements were tried: an array of int numbers, an array
of double numbers, an array of Integer objects, and an array of Double objects. Also.
a binary tree made of 100 objects, each containing an integer number, was used
as a parameter. These experiments confirmed the fact that dealing with objects is
more expensive than dealing with primitive data types. Also, serializing the tree
took longer than serializing an equivalent array. This is explained by the fact that
each node of the tree contained two object references besides the int value. For cach
of these references a handle was written. On the other hand, when serializing the
array, its size is written once followed by all the elements (see Section 4.2). While the
performance of the socket implementation remained almost constant for the different
types, the performance of RMI deteriorated.

The tests were also run on two nodes with similar results. This implies that
the network delay is not a significant factor in the total overhead. In other words.
for the types used as parameters, no performance improvement can be achieved by
using a faster network. The numbers for two nodes also show how the RMI svstem
benefited from overlapping computation and communication. When sending an array
of integers for example, while one node is serializing to the stream, the other node is
deserializing from it. This explains the fact that some method invocations were faster

through the network than locally.

5.3 Conclusions

This chapter presented a performance evaluation of the RMI system. The experiments
revealed an important performance overhead in the RMI system. This overhead
cannot be attributed to the serialization routines but is directly caused by the RMI

reference and transport layers internal workings. Debugging code present in those



layers contributes to the performance degradation.

The default serialization routines (see Section 4.2) could also be made faster by
eliminating some features like class versioning and object replacement that hurt the
performance and are not needed for parallel programming (of course they provide
functionality that is needed for other types of applications). The experiments also
show that the serialization of objects is more expensive than the serialization of equiv-
alent primitive data types. This happens because the default serialization routines.
when serializing an object, write information about the object’s class, the fields of
the object’s ancestors, etc., and perform some extra manipulations (e.g. object re-
placement, string conversions) that are not done when dealing with primitive data
types.

Also, special care must be taken to serialize exactly what is needed. For example.
the default serialization routines take a deep copy approach and whole object graphs
are sent. Clearly, sending a 1000 position array to work with only 10 positions at
the remote site is a very inefficient solution; as opposed to the shallow copy approach
were only what is needed is actually sent.

As shown by the experimental results, the implementation of the RMI system is
the bottleneck of the object distribution. This fact is confirmed by some systems
like Voyager [VO97] that also use serialization but are much faster than RMI (see
[VRI7] for a performance comparison between Voyager and RMI). By using RMI the
programmer trades performance for ease of use.

Faster networks will not solve the problem. JIT compilers can be used to increase
the performance of all the RMI code. Also, some code clean-up would be beneficial
(at lcast the debugging code should be eliminated). However, the gains would be

marginal because the complexity of the code will still remain the same.
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Chapter 6

Inheritance

Inheritance is a very important feature of object-oriented languages that enables the
sharing of code between different class implementations. When used properly it is a
powerful tool for software development.

Java supports tree single inheritance where each class has exactly one parent and
all classes have a common ancestor (i.e. the class Object). From the simplicity point
of view, single inheritance provides an unambiguous model that is easy to deal with
(as seen in languages such as Smalltalk [GR83]). However, sometimes this model
lacks expressiveness when compared to those languages that support multiple inher-
itance (e.g. C++ [Str91]). The Java approach for dealing with this issue is through
interfaces, which regain some of the lost expressiveness without sacrificing the sim-
plicity. However, using interfaces sometimes forces the programmer to unnecessarily

duplicate code.

6.1 Inheritance and RMI

The simplest way of implementing a remote object with RMI is by extending the
class UnicastRemoteObject. However, since Java provides only single inheritance this
is not always possible. Moreover, if we plan to automatically translate local classes
into remote ones, we cannot rely on this feature because the user classes often extend
some other classes. For example, suppose that the user has a class AccessPermits t hat
is implemented as an extension to the class java.util.BitSet which provides a growable
vector of bits. If we have to make objects of type AccessPermits remote, we cannot

extend UnicastRemoteQObject because the only available inheritance path is already
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consumed by java.util.BitSet.

Another option available is to use the static method exportObject() provided by
class UnicastRemoteObject to make the remote object available for receiving incoming
calls. In our previous example we would create an instance AccessPermits and then
we would export this object using a UnicastRemoteObject.exportObject() call as in the

following code fragment:

AccessPermits permits = new AccessPermits();

UnicastRemoteObject .exportObject (permits) ;

Using this approach, however, requires some extra coding to implement the seman-
tics of Object that are different for remote objects, that is, the hashCode(), equals().
and toString() methods. In the first approach these methods were inherited from Re-
moteObject but since inheritance cannot be used for the second approach they have
to be re-implemented. ! Even though the code for these methods can be copied from
the RemoteObject.java source file that comes in the Java distribution, the code will be
repeated for each user class that is made remote. This, besides being inconvenient.

is clearly less efficient in terms of space.

6.2 Inherited Methods

In the RMI system, only the methods declared in the remote interface of an object can
be remotely called. Thus, inherited methods cannot be called directly from a remote
site. Counsider the inheritance graph shown in Figure 6.1. A Sensor class provides the
common functionality (e.g. Activate() and Deactivate()) to different types of sensors
(e.g. TempSensor, NoiseSensor, etc.).

Now, let’s say that we make instances of TempSensor remote. According to the
RMI specification, all the methods that will be called remotely should be put in the
remote interface of the class. So if the TempSensor class had, for example, a method
for reading the temperature (i.e. readTemp()), the remote interface should look like

the code in Figure 6.2.

'In fact they only have to be implemented if they are used.
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Sensor

TempSensor sseccee @

Figure 6.1: Sensor Inheritance Hierarchy

N

public interface TempSensorRI extends Remote {
Temp readTemp() throws RemoteException;
}

Figure 6.2: Temperature Sensor Remote Interface

Figure 6.3 shows a code fragment that uses a local TempSensor. Basically the code
instantiates a TempSensor, activates the sensor, reads the temperature and finally
deactivates the sensor.

When the TempSensor is made a remote object, the code shown in F igure 6.3
changes to something similar to the code fragment shown in Figure 6.4. Note that
in the remote object version “ts” is a TempSensorRI rather than a TempSensor. Since
TempSensorRI does not contain the methods Activate() and Deactivate(), an error will

be generated when we try to compile this code. For this program to work Activate()

TempSensor ts = new TempSensor();

ts.Activate();

System.out.printin(” Temperature: " + ts.read Temp());
ts.Deactivate();

Figure 6.3: Local Use of TempSensor



Registry registry = LocateRegistry.getRegistry();

TempSensorRI ts = new (TempSensorRI) registry.lookup(” TEMP_SENSOR");
ts.Activate();

System.out.printin(” Temperature: * + ts.readTemp());

ts.Deactivate();

Figure 6.4: Use of TempSensor as a Remote Object

and Deactivate() should be added to the remote interface of the temperature sensor
(i.e. to the TempSensorRl interface shown in Figure 6.2).

This simple example demonstrates that when converting a regular object into a
distributed one, all the inherited methods should also be put in the remote interface.
Automatically doing this, however, would require compiler support to find all the
methods that must be added to the remote interface. The inheritance hierarchy
should be traversed from the class we are working on up to the Object class and the
inherited methods should be added as we go along. However, since Java's method
dispatching is done according to the runtime type of the receiver, the compiler will
not always be able to determine if a particular inherited method will be used or not.
This means that the interface will likely include methods that will never be called.
To illustrate this suppose we have a class B that extends another class A. and that
A implements a method alpha(). Suppose also that the compiler is parsing the

following code:

B b = new B();
A a = b; // this is valid because A is a supertype of B

a.alpha();

The variable “a” has a compile type of A but its runtime type is B. The compiler
usually cannot determine this because instead of a simple assignment, “a” can be the
result of a more complex operation. By just looking at the code the compiler will
not be able to tell if alpha() will be called or not for object “b”. But. if “b~ has to
be made remote, alpha() should be added to the remote interface just in case it gets

called as in the sample code.



public class Sensor {
protected long serial_no;

Figure 6.5: Sensor Class

NoiseSensor ns = new NoiseSensor();

if (ns.serial_no == 12345)
do_something_special();

else

Figure 6.6: Access to a Protected Attribute

6.3 Inherited Data

[nheritance should also be considered from the point of view of the inherited data.
Suppose that we have the inheritance hierarchy shown in Figure 6.1 and that the
Sensor class has an attribute to keep the serial number of a particular sensor (sce
Figure 6.5). The attribute serial_no is declared protected so it can be accessed from
the Sensor class, from all its subclasses (i.e. TempSensor, NoiseSensor, etc.) and
from all the classes that belong to the same package. ? So we could potentially
have a class in the same package which has some code like the sample in Figure 6.6.
When NoiseSensor is made remote however, the attribute cannot be directly accessed
anymore. Code like that in Figure 6.7 will produce a compiler error because the
attribute cannot be part of the remote interface.

Since the code in Figure 6.7 uses the remote interface as a type and since variables
cannot be declared in an interface (only constants and methods), the inherited value
is not known by ns. This happens because RMI forces you to instantiate the interface
rather than the remote class so only those things defined in the remote interface

(NoiseSensorRI in our example) are visible from the clients. A simple workaround of

3This differs from C++ where protected fields are only accessible from the class where they appear
and from their subclasses. To get the same functionality in Java the private protected modifier should
be used instead.



Nc;iseSensorRl ns = (NoiseSensorRl) registry.lookup(” NOISE.SENSOR");
if (ns.serial_no == 12345) /[ <— COMPILER ERROR!!

do_something_special();
else

Figure 6.7: Remote Access to a Protected Attribute

this problem involves changing all the data accesses to remote method invocations. To
perform these changes automatically, compiler technology will be required to detect
all the data accesses and turn them into the appropriate set() and get() method calls.
Specifically, every place in the code where a field is used on the left-hand side of an
assignment should be replaced by a call to a set() method; any other use of the field
should be replaced with a get() method. Even though this problem is shown in the
context of inheritance, it is not the inheritance per se that causes it. This problem is
caused by the lack of encapsulation in the language. If all the data were private to
the objects, and accessed only through methods, it would be enough to convert those

methods to remote.

6.4 Conclusions

As shown in the previous sections, inheritance raises many issues when combined
with remote objects. The first issue is how to utilize RMI in an application that uses
inheritance. Asshown, the single inheritance model supported by Java is inconvenient
because it forces the programmer to choose between unnecessarily duplicating code
or to derive his/her classes from the RMI base class. Moreover, when the translation
from local to remote objects is automatically made, the compiler is presented with
the same decision. Both, the programmer and the compiler, should extend the RMI
base class whenever possible to avoid duplicating code. This problem can be directly
mapped to any language that is restricted to single inheritance. In those languages
the programmer is always faced with the decision of which inheritance path is better

to use.
On the other hand, the problem of adding the inherited methods to the remote
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interface is specifically RMI related (HORB [Sat96] and Voyager [VO97] do not have
this problem). The stub generator should directly add the inherited methods to the
remote interface. However, doing so could considerably increase the size and com-
plexity of the stubs and skeletons generated. The solution adopted by the developers
of RMI is that the programmer should not be penalized (in terms of space and/or
speed) for something that he/she does not use (i.e. inherited methods that will never
be called remotely). Unfortunately, when the translation from local to remote is
automated, this optimization becomes a source of conflict.

Finally, the problem that arises with the inherited data is a language issue. If
the semantics of the language were such that the encapsulation of data could not be
violated with direct access to the object’s fields, the problem would vanish. In that
case, all the data accesses would be made through methods that would be transformed
into remote methods when passing from local to remote objects. The performance
hit suffered when doing a local method call instead of a direct memory access could
be lessened by using compiler optimization techniques such as code inlining. Note.
however, that since Java supports dynamic method dispatching, more complex code

inlining techniques such as polymorphic inline caching [HCU91] will be required.
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Chapter 7
Futures

Usually, in a concurrent system, achieving maximum performance involves executing
as many concurrent tasks as possible. To increase concurrency, it is often desirable
to synchronize only when it is absolutely necessary; that is, the blocking required to
synchronize a task should be delayed as much as possible. Consider the following

code:

x = x_ExpensiveComputation();

y = y_ExpensiveComputation();

System.out.println("x = " + x + "y = " + y);

Suppose that the value of the variable x is not needed to compute the value of variable
y. If the sequential semantics are respected, y_ExpensiveComputation() cannot start
until x_ExpensiveComputation() has finished. However, it would be highly beneficial if
both values could be calculated in parallel. The only restriction would be that both
computations should finish before the values are printed.

To run both methods concurrently, two threads have to be created and a syn-
chronization point has to be set up to wait for both computations to finish before
executing the print statement. All this can be elegantly expressed using a construct
called a future [BH77] [Hal85]. A future is a commitment to use a particular value
at some later time. Whenever a future is created, a new thread is spawned to run

that part of the computation and, eventually, fill in the value for the future. At a



later time, when the original thread tries to access this future, it will block until the
future is resolved (i.e. the value becomes available). Thus, in our example, it would
be enough to declare x and y as futures to obtain a correct concurrent execution. The

following code shows our example using futures:

Future x, y;

x = CreateFuture(remote_node(), x_ExpensiveComputation());
// continue without blocking
y = CreateFuture(remote_node(), y_ExpensiveComputation());

// continue without blocking

WaitForFuture(x); // we block only when it is needed
WaitForFuture(y) ;

System.out.println("x = " + x + " y = " 4 y);

Futures are a popular synchronization mechanism used in variety of parallel pro-
gramming systems such as Enterprise [SS+93] and Mentat [Gri93]. They were first
introduced by Baker and Hewitt [BH77] and later on became popular in Multilisp
[Hal85].

7.1 Futures in Java

The RMI system does not provide an asynchronous method calling facility (i.e. all re-
mote method invocations are synchronous). We evaluated three different approaches
to implement futures in Java so more parallelism could be obtained by using asyn-
chronous calls. We started from the most intuitive solution and improved from there.

As we saw, creating a future implies spawning a new thread for executing the
computation. This thread can be created on the caller or on the callee side. and
there are many implications that affect this decision. Three approaches investigated
in this thesis explore these issues. In all of them a Future object is created. This
Future object is a remote object which provides a value holder for the future and

provides methods to access it (Figure 7.1). Each Future object also contains a flag



package Futures;
import java.rmi.x;

public interface FutureRI extends Remote {
void setValue(Object o) throws RemoteException;
Object getValue() throws RemoteException;

Figure 7.1: Future’s Remote Interface

that is used to record the state in which the future is at any particular moment (e.g.
unresolved, resolved, error). Being a remote object, the Future object can be passed
around among different virtual machines and its value can be retrieved from where it
is needed. This constitutes a step forward from some designs where the futures are

not able to move (e.g. Enterprise [SS+93)).

7.1.1 Server Side Futures

In the first approach, called Server Side Futures, the Future object and the extra
thread are created on the server side (see Figure 7.2). Whenever a client executes
a remote method (e.g. compute()) on the server, the server spawns a new thread
to execute the method and immediately returns a Future object to the client. ! At
this point the client can continue executing concurrently with the computation that is
running on the server side without blocking. The server is responsible for updating the
value in the Future object whenever it becomes ready by using the method setValue().
which is part of the Future's remote interface (see Figure 7.1). The method setValue().
besides storing the value of the future, wakes up all the threads, if any, that arc blocked
waiting for the future. If the client tries to access the value in the future, using the
getValue() method, before the future has been resolved (i.e. before the server updates
it), the client will block until the value becomes available. This blocking is done
by using the thread synchronization primitives of Java. Inside getValue(), wait() is
used, if necessary, to suspend the executing thread. This, in turn, will stop the

method getValue() from returning until the thread is awakened by a notifyAll() call

!Note that since the future is a remote object, it is passed by reference and, thus, only a handle
is returned to the client.
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Figure 7.2: Server Side Futures

in setValue(). If for some reason the computation is aborted on the server side. the
client trying to get the value from the future will get an exception instead. See Figure

7.3 for sample code.

7.1.2 Client Side Futures

The second approach, called Client Side Futures (see Figure 7.4), is an optimization
over the Server Side Futures approach. Even though both are semantically equivalent,
the Client Side Futures approach reduces the inter-virtual machine messages necessary
to create the Future object and start the computation. In this implementation. the
future is created on the client side and then passed to the server as an extra parameter
of the remote method invocation. Note that even though the Future object is created
on the client side, the thread needed for executing the computation is still created
on the server side. Since the future itself is a remote object, the extra overhead of
sending another parameter is minimal because remote objects are passed by reference
(i.e. only a handle is sent). The semantics for accessing the Future object remain the

same. On the server side the code is similar to that of the previous approach with



//—{ Client Code }—

try {
Registry registry = LocateRegistry.getRegistry();
serverRI server = (serverRl) registry.loookup(” SERVER" );

FutureRI f = server.compute();
// Client continues executing...

// Client will block when accessing the value.
Integer i = (Integer) f.getValue();

} catch(Throwable t) {
// Error handling code...
}

//—[ Server Code |—
private int func; // A different ID for each method.

private Remote f;

public synchronized FutureRl compute() throws RemoteException {
func = 1; // set method ID for execution.
f = (FutureRl) new Future();
new Thread(this).start();
return(f);

public void run() {
Thread.current Thread().yield();

switch(func) { /[ identify which method should be executed.
case 1: { // static dispatch.
int i = real_compute(); // the original code for compute()

try {

f.setValue(new Integer(i));
}catch(Throwable e) {

// Error handling code...
}

}

case 2:
/[ a case for each method remote method that has to be

// executed in a separate thread.

}
}

Figure 7.3: Code for Server Side Futures
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the exception that instead of instantiating a Future it uses the instance provided by

the client. On the client side the code looks like:

FutureRI f = new Future();
srv.compute(f); // srv is a reference to the server object

// which resides on a different virtual machine.

Both approaches require changes to the server side code to spawn a new thread
for executing the remote method. This is necessary because the method is required to
return immediately without blocking. Furthermore, since Java threads only execute
the code placed in the run() method, it is necessary to make a static dispatch inside
the server for each remote method we plan to execute in a separate thread (sce the
switch in the run() method of Figure 7.3). This makes the required changes to the
user code more difficult. Also, the signature of the remote method should be changed
to return a Future in the first approach and to include an extra parameter in the

second (besides changing the return value to void).

7.1.3 Client Side Futures / Future Computes

The third approach, called Client Side Futures / Future Computes (see F igure 7.5).
is an attempt to alleviate all the problems stated in the previous section (i.e. to
minimize the required changes to the user’s code and to eliminate the static dispatch
inside run()). In this case, the future is created on the client side and it is responsible
for executing the remote method. Now, the server code remains unchanged and
the future is a threaded object that will block on behalf of the client. Note that
this time the thread used for running the computation is created on the client side.
Another way of achieving this would have been by making the client a threaded
object. However, Java imposes the restriction that run() is the only method that a
thread can execute, forcing us to modify the client code in the same way as we did
with the server code in the previous two approaches. That is, a static dispatch should
be coded inside the client’s run() method. Creating the thread on the future itself

eliminates all these problems. When the future is created it receives a reference to
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Figure 7.4: Client Side Futures

the server and a method signature to execute on that server. The future will use the
Reflection API to make the call (see Figure 7.6). The Reflection API provides the
functionality necessary to gather information about fields, methods and constructors
of loaded classes, and to operate on them. In particular, in the code shown, it is used
to execute a specific method on the server with the specified parameters.

This approach has the advantage of keeping the server code untouched. However.
executing a method through the Reflection API is more expensive because it involves
a table lookup for finding a method in the server’s class that matches the specified
signature, an object instantiation to create a Method object that “reflects” the spec-
ified method, and a dispatch to execute this method on the desired object (see the
run() method in Figure 7.6).

A possible workaround of this performance problem consists of subclassing the
Future class. The Future class should be changed to be an abstract class with an
empty method, called exec(), that will be called inside run(). Each time a future is
needed to asynchronously execute a method, an appropriate subclass of Future should

be used. This subclass should provide the implementation of exec() which will execute
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Figure 7.5: Client Side Futures / Future Computes

the desired method. The rest of the functionality will be inherited from the Future
class. Even though this subclassing can be inconvenient for a programmer, it can be

easily performed by the parallelizing compiler.

7.2 Limitations

Regardless of the approach chosen for implementing futures in Java. some common
problems also need to be addressed. The first problem is how to stop a computation
once it is running. Suppose that an application searches a binary tree looking for
a specific value. One possible implementation might have two futures created: one
for a computation that performs the search on the right branch, and the other for
searching the left branch (speculative computing). Clearly, if one of the computations
returns having found the value (i.e. the future is resolved), then the other future can
be discarded. A simple way of dealing with this consists of doing nothing; that is.
taking the first result and ignoring the second. Even though this solution is simple
to implement, it has the undesirable effect of wasting CPU cycles to compute a value

that will never be used. An alternative to this involves providing a method to stop



public class Future extends UnicastRemoteObject implements FutureRI, Runnable {
// attribute declarations...
public Future(Remote srv, String name, Class -prototype[], Object _parms[])
throws RemoteException {
super();
[/ Since run() doesn’t have parameters the data is kept on attributes.
value = null;
state = Future. NOT_READY;
server = srv;
method = name;
prototype = _prototype;
parms = _parms;
new Thread(this).start(); // Creates and starts a new thread.
return;
}
public Object getValue() throws RemoteException {
while (state == Future. NOT_READY) {
try {
wait(); // block the client thread.
} catch (InterruptedException e) {}

return(value);

public void run() {

Thread.current Thread().yield();

Object o = null;

Method m;

try {
// Get a method object that matches the prototype
// on the class of the server.
m = server.getClass().getMethod(method, prototype);
// Invoke the method on the server with the saved parameters.
o = m.invoke(server, parms);

}catch (Throwable t) {
System.out.printn(t.getMessage());
t.printStack Trace();

}

value = o; // Set the value of the future.

state = Future.READY; // Mark the future as ready.

notifyAll(); /| Wake up all waiting threads.
}

}

Figure 7.6: Future’s Code for Client Side Futures / Future Computes
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the desired computation. This method should be implemented in the server or in
the future according to which approach has been taken for implementing the futures.
If the thread that is executing the computation has been created by the server (i.c.
Server Side Futures or Client Side Futures), the method for stopping it should be
added to the server’s class. If the thread has been created by the Future object (i.e.
Client Side Futures / Future Computes), the Future class should provide this method.
Regardless of its location, the implementation of this method should stop the thread
that is running the computation by sending it the message stop(). ?

Another problein that requires attention involves exceptions. Exceptions are a
common feature in many modern languages such as C++ [Str91]. Suppose we have

the following sequential code:

try {
Integer i = server.compute();
Use(i);

} catch(SomeException e) {

Do something with e...

If the compute() function throws an exception, control skips to the catch clause.
and the function Use(i) never gets called. Now if “i” is made a Future and passed to
Use(i), when the exception is thrown on the server, it is too late to recover. That
is, by the time that the exception is thrown, Use(i) could have made some changes
and/or performed certain actions that could not be reversed. A partial solution to this
problem consists of using two futures to represent the value calculated by compute().
The first future corresponds to the value “i"; the second represents the return code for
the function. The idea is to block in the future representing the return code instead
of the future representing the value. The future representing the return code will be
resolved as soon as the server passes the place where it can throw the exception. The

code in the client will look like this:

2The message stop() is understood by every Java thread and forces it to stop executing.
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FutureRI rc;
FutureRI i = server.compute(rc);
// Block until the server signals that no exceptions can happen.
Exception e = (Exception) rc.getValue();
if (e) // if an exception occurred...
Do something with e...
else

Use(i);

This technique of dividing the server code in two parts, one that can throw excep-
tions and another that cannot, allows some concurrency while retaining the correct
sequential semantics for the code. However, extensive compiler support will be needed
for automating this task. The compiler should identify the point in the server code
were no more exceptions can be thrown and resolve the future that holds the return
code.

An alternative solution consists of using transactions similar to those which are
common in modern databases. The state of the objects should be saved before every
change and rolled back as needed (i.e. when an exception is thrown). Although
semantically correct, this solution would be hard to implement and the performance
would probably be unacceptable.

The simple example presented in this section demonstrates that exceptions can
seriously reduce the opportunities for concurrency. Since the use of exceptions is
strongly encouraged in Java, creating concurrency while preserving the original se-
quential semantics becomes very difficult. This posses a serious problem for the
development of an automatic parallelization tool. Moreover, since exceptions are a

common feature in many modern languages this problem is not limited to Java alone.

7.3 Discussion

As shown in the preceding text, it is generally better to create the Future object on
the client side. This reduces the inter-Virtual-Machine messages at creation time
resulting in a more efficient design from the performance point of view. However.

creating the Future object on the server side may still be desired for load balancing
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reasons (e.g. the client machine may have too many objects, or may be running out
of memory, etc.).

The complexity needed on the server side to asynchronously execute different
actions can be avoided using the Client Side Futures/ Future Computes approach.
The Future object is responsible for executing the remote method and the Reflection
API is used as a generic dispatching mechanism. Alternatively, the performance
overhead of the Reflection API can be avoided by subclassing the Future class.

Special attention has to be paid to exceptions in the presence of futures. As shown.
if the sequential semantics have to be preserved in the face of exceptions, then the
concurrency provided by asynchronous messages may become severely limited.

It is important to point out, however, that the limitations previously described
are not a flaw of either Java or the RMI system. The problem with exceptions will
arise in any language that supports this particular construct (e.g. C++), and the
problem of how to stop an ongoing computation is intrinsic to the parallel computing
paradigm. The most serious of these two limitations is the one involving exceptions.
If futures are to be used in languages that support exceptions, more research will
be needed to find a better way of integrating both constructs (i.e. exceptions and

futures).

St



Chapter 8

Collaborators

An object-oriented system can be viewed as a group of objects that communicate
among themselves using messages to achieve a particular goal. We can say that these
objects collaborate with each other to solve a particular problem towards the common
objective. In this scheme, any object whose methods are invoked by another object
is said to be a collaborator of the second.

This chapter explains how the concept of collaborators relates to the automatic
parallelization of sequential programs. First, a working example is presented which is
used to illustrate the impact of the different distribution decisions (i.e. what are the
consequences of selecting different objects to be made remote). Then, the problem of

automating these decisions is discussed.

8.1 Example

Suppose we have an object that represents a temperature sensor which is an instance
of the class TempSensor shown in Figure 8.1. Also suppose we have an ob ject of type

TempDisplay (see Figure 8.2) that displays a temperature on a console screen every 30

public class TempSensor extends Sensor {
public Temp readTemp() {
Temp t = Physically_read_temperature();
return t;

}

}

Figure 8.1: Temperature Sensor



public class TempDisplay extends TextField implements Runnable {
private TempSensor ts;
public TempDisplay(TempSensor t) {
ts = t;
}

public void run() {

while (true) { // do forever
// use the temperature sensor to
// read and display the current temperature.
this.set Text(ts.read Temp());
try {

wait(30000); // wait 30 seconds.

} catch(interruptedException e) {}

Figure 8.2: Temperature Display

seconds. Since each time an instance of TempDisplay needs to display the temperature
it invokes a method in an object of class TempSensor, we can say that the objects of
class TempSensor are collaborators of those of class TempDisplay.

A collaboration diagram can be drawn where the objects are represented by circles
and the methods by directed arcs. Figure 8.3 shows the collaboration diagram for our
temperature sensor example. Each object pointed to by an arrow is a collaborator of

the object at the other end of that edge.

8.2 Collaborators and RMI

The purpose of this section is to show how the collaborators affect the translation
of local objects into remote ones. As long as an object and its collaborators are on
the same virtual machine everything works properly. Suppose now that we decide to
place one of the objects on a different virtual machine. In our example let’s say that
we are interested in monitoring the temperature of a remote oven that is controlled
by some computer. Hence, we have to make the instance of TempSensor a remote
object. In doing that we have made readTemp() a remote method putting it in the

remote interface of TempSensor. Moreover, the reference to a TempSensor that is held
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Figure 8.3: Collaboration Diagram

by the instance of TempDisplay will now be of type TempSensorRI (i.e. the remote
interface). Now, both objects reside on different virtual machines but, thanks to the
transparency provided by RMI, the syntax of the invocations remains the same and
everything works as planned.

Now suppose that instead of choosing the instance of TempSensor as our remote
object, we opted for an instance of TempDisplay. Even though this decision seems
awkward and that the previous solution appears to be the “natural” choice. this new
setting could be the result of a compiler (or parallelizing tool) decision. Furthermore.
a parallelizing tool should be able to handle any placement strategy (i.e. any class
can be chosen to make it remote). If objects of TempDisplay are remote it means that
they will not be able to invoke readTemp() because the instance of TempSensor resides
on a different virtual machine. Note that the constructor of TempDisplay receives a
reference to an object of type TempSensor as a parameter. This reference cannot he
to an object that resides on the same virtual machine because the whole point was
to have both objects residing on different virtual machines. Thus, in order to make
this scheme work, we need to also make the instance of TempSensor a remote object.

This clearly implies that whenever we make a sequential object remote. we also
have to make all of its collaborators remote objects (more precisely, those that reside

on a different virtual machine). Even though both solutions work, the first choice is



better because it provides the same functionality with less resources (i.e. one remote
object instead of two). Since every collaborator of a class that is made remote has to
be transformed into a remote object, a domino effect, where most of the classes are
converted, could result. It is important to reduce this effect to a minimum because
the cost of invoking a remote method is much larger than the cost of executing a
local method, and classes that reside on the same virtual machine should not be
forced to pay an unnecessary performance penalty. In particular, a remote invocation
involves the serialization and transmission of the method’s parameters and return
value which could be a very expensive process as discussed in Chapter 5. Note
that even if the caller and the callee of a remote method both reside on the same
virtual machine, this process remains the same (i.e. parameters and return values are
serialized and transmitted through the RMI's layers). Suppose in our example that
TempDisplay has another collaborator for getting the time of the day; let’s say Timer.
In the first solution, the instances of Timer will not be affected by making TempSensor
remote. However, if TempDisplay is chosen instead, the instances of Timer will also
be transformed into remote objects and the method for getting the time of the day

will be transformed into a more expensive remote method.

8.3 The Translation Process

As shown in the previous section, all the collaborators of an object that is being
converted from a local object to a remote object should also be converied. If the
programmer is the one manually performing the translation, he/she will be responsible
for identifying the collaborators and to make appropriate decisions about what goes
where. If this decision is given to a compiler or to an automatic parallelization tool.
the collaborators of a class should be automatically detected. A safe approach would
be to make every object a remote object. In this way, any object can be placed
anywhere and its methods can be called from any other node. Even though this
approach works, performance suffers for each remote method invoked on an object
that resides on the same virtual machine as the caller object.

However, if the distribution of objects is static (i.e. object migration is not sup-

ported), some optimizations can be applied. Instead of making every object a remote
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Figure 8.4: Collaborators Detection

object, only a group of selected objects together with their collaborators are made
remote. In this way, the performance overhead of a remote call is avoided for unaf-
fected local objects. To implement this, the compiler should be able to determine all
the collaborators of a given class. For doing that, the source code alone will not be
enough because the compiler could be fooled by the method dispatching semantics
of Java and the existence of public objects. Consider the following example: three
classes, A, B, and C, where class B extends class A and both implement a method

alpha() (see Figure 8.4). Now suppose that the code in main() is like the following:

public B b = new B();
public A a = b;

Consider the following code in class C:
a.alpha(); // this invokes alpha() of class B.

When the compiler finds a.alpha() in class C, it can assume that A is a collaborator
of C. This happens because Java dispatches according to the runtime type of the
receiver, which in this case is different from the compile-time type. In this example.
the compiler would have made the wrong class remote.

Clearly, the compiler alone is not enough to determine the collaborators of a class
from the source code. Extra information is needed. ! This information can be ob-

tained from hints supplied by the user, and/or from the application structure. For

!Note that instead of an assignment. “a” can be the result of a more complex operation (it can
even be retrieved from disk).
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example, in a parallel application development framework based on patterns [GH+94].
where the user develops the application by filling the code sections in the provided
patterns, the structure of the patterns allows the compiler to unambiguously deter-
mine the collaborator set. For example, suppose we have a pattern that represents a
pipeline with several stages. Suppose also that, according to this pattern, each stage
finishes its task and then calls a method on the next stage to pass the results. From
the structure of this pattern, it can be determined that each stage is a collaborator
of its previous stage (except the first one of course).

If extra information is not available, a compromise solution could be adopted
where the compiler makes remote the class that it detected as a possible collaborator
and all of its children. In the example above, A and its children (i.e. B) will be made
remote. Even though this solution produces more remote objects than really needed.
it is better than making everything remote (and is just as safe).

Providing that the set of collaborators can be determined, another possible op-
timization concerns their methods. Even though the collaborators have to become
remote objects, not all their methods need to be made remote. Only those methods
that are part of the collaboration relation (i.e. the arcs on the collaboration diagram)
should be put in the remote interface. In this way, the methods that can be called
locally will not incur the performance penalty produced by the RMI system.

Even if the collaborators can be detected, the issue of which local objects should
be made remote still remains. As the example in the previous section pointed out. a
careful selection of the objects that will be made remote can produce better results.
Consider for example the collaboration diagram of Figure 8.5. The arcs are labeled
with the expected number of invocations for each particular message. This number
can be obtained as a hint from the user or by using an instrumented version of the
program (i.e. a version that can record profiling information), and obtaining the
numbers by running the program.

Looking at the diagram and without considering the number of invocations. we
can say that those objects that have incoming arcs and no outgoing arcs are the
best candidates to be made remote because their collaborator set is empty. In our
example, moving object D to a different virtual machine is easy since no other object

has to be made remote. Even though other factors, such as computation granularity
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Figure 8.5: Generic Collaboration Diagram

and number of expected invocations, should also be considered before deciding for a
particular object, important clues can be gathered from the collaboration diagram.
For example, making object B remote forces objects A and D to also be remote. This
may be not desired since B will incur extra overhead for each of the 1000 invocations
of A. Before committing to a particular decision though, the computation times of
each method should also be considered. It could happen that the computation times
are such that moving B is the better option. However, if the relative times of the
methods involved are similar, the collaboration relations can give a good hint about
the partitioning. 2

The problem of statically assigning tasks to processors has been extensively stud-
ied in the past (see [Lo88], [NH85], [TT85] and [WM93]), and those experiences can
be applied to address the application partitioning problem (i.e. how to distribute the

objects into the available processors).

INote that if an instrumented version of the program is available, after running it the diagram
could be extended to include the computation times.



8.4 Summary

Any object whose methods are invoked by another object is said to be a collaborator
of the second. As shown in this chapter, converting a local object into a remote
object results in all of its collaborators also being converted. If the cost of invoking a
remote method were similar to that of a local method, then the collaborators problem
could be solved by making everything remote. Unfortunately, this is not true in RMI
and, thus, performance will suffer by implementing this solution. To minimize the
performance overhead, only some objects and their collaborators should be made
remote. The problem of automatically determining all the collaborators of a class
requires extra information that cannot be obtained from just a static analysis of the
program (e.g. user hints).

Finally, it should be pointed out that the collaborators issue is not a problem
of Java or the RMI system. The concept of collaborators is present in any object-
oriented language. The issues discussed in this chapter will arise whenever a sequential

object-oriented program is translated into a parallel one.
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Chapter 9

Runtime System

While some of the RMI's limitations can be addressed by using compiler transforma-
tions (e.g. replacing direct field accesses by remote method calls), others, such as the
lack of dynamic object creation, require some support infrastructure. This support
infrastructure can be provided as a library of classes and a runtime system which can
be used as the target for our parallelizing tool. The library of classes will provide the
implementation for all the abstractions that will be used by the runtime system and
by the parallelizing compiler. For example, a component of this library would be the
classes and interfaces that are needed to implement futures as discussed in Chapter
7. The runtime system is a piece of code that is run on every participating node (i.c.
each host in the network). When fully implemented. the runtime system will provide
the functionality necessary to overcome most of the limitations of the RMI system.

The features of the runtime system include:

e Dynamic object creation,

Remote object’s data caching,

e Access to static methods and variables,

Load balancing and,

Object migration.

In this chapter we present an architecture for a prototype runtime system that

provides dynamic object creation and a basic load balancing scheme. A discussion



import java.rmi.x;

public interface ObjectServerRI extends Remote {
Remote CreateObject(String class_name) throws RemoteException;
}

Figure 9.1: ObjectServer’s Remote Interface

about how to extend the prototype to include the rest of the features is also presented.
Even though our prototype is tailored to Java/RMI, any automatic distribution sys-
tem (e.g. for C++), will require a similar runtime system (the exact list of features
will depend on what it is provided by the underlying system). An example of the
transformation of a simple sequential application to a parallel one is also included to

illustrate the use of the runtime system.

9.1 Prototype Runtime System

Dynamic object creation is a vital feature for the development of object-oriented
parallel applications. Unfortunately, the RMI system does not support it. In RMI.
server objects have to be created and started up on different nodes before a client
can remotely call a method on them. For translating user sequential code. however.
we need to be able to dynamically create objects on different nodes. Thus, one of the
responsibilities of the runtime system is to support this feature. For doing so. we will
use a remote object, an instance of ObjectServer, on each node that will be responsible
for dynamically instantiating remote objects on that node. Each parallel application
can have its own sct of ObjectServer objects (one per node) or the ObjectServer objects
can be shared among several parallel applications. The factors that affect this decision
include: fault tolerance, concurrency, and available resources. The remote interface
for the ObjectServer is shown in Figure 9.1. A client that has a reference to an
ObjectServer can use the method CreateObject() to instantiate a remote object of the
specified class on the node where the object server resides. For obtaining a reference
to the proper ObjectServer, a Scheduler object is used.

The Scheduler object is responsible for implementing the load balancing policies

defined for the application. Figure 9.2 shows the architecture of the runtime svstem
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Figure 9.2: The Runtime System Architecture

for an application that is running on N nodes. Each node has its own Scheduler and
ObjectServer. Each time that an object needs to create a remote object, the local
Scheduler is contacted to obtain a reference to the ObjectServer that resides where
the object will be created ((1) in Figure 9.2). In the prototype we built, Scheduler
objects are regular objects (i.e. not remote) that implement a simple round robin
policy among all the participating nodes. The name of a node is obtained from a file
that lists all the available nodes. If a more complex load balancing policy needs to be
implemented, the Scheduler objects should be made remote so that they can exchange
load balancing information among them through remote method invocations.

The ObjectServer implementation creates an instance of the specified class. and
exports it before returning the remote reference to the caller (see Figure 9.3). The
Init() method registers the ObjectServer object with the local registry (the application
name is used as the key). Note that this cannot be done inside the constructor because

the object is still being created when executing the constructor and, thus. an extra
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package RTS;

import java.rmi.»;

import java.rmi.registry.*;

import java.rmi.server.UnicastRemoteObject;

public class ObjectServer extends UnicastRemoteObject implements ObjectServerRI {
public ObjectServer() throws RemoteException {

super();

}

public Remote CreateObject(String class_.name) throws RemoteException {

Class c;

Remote r;

r = null;

try {
¢ = Class.forName(class_name);
r = (Remote)c.newlinstance();
UnicastRemoteObject.exportObject(r);

} catch(Throwable e) {RTS fail("Fatal Error:", e);}

return r;

}
public void Init(String appname) {

try {
Registry registry = LocateRegistry.getRegistry();
registry.rebind(appname, this);

} catch (Exception e) {RTS fail(" OS.Init() failed”, e);}

}

Figure 9.3: ObjectServer's Implementation

method is needed.

After a remote object is created by the ObjectServer, it can be accessed (i.e. its
remote methods executed) directly from any object that possesses a reference to it
((3) in Figure 9.2). Note that a reference to a remote object, if necessary, can be

freely passed around through the network ((4) in Figure 9.2).

9.2 Example

In this section we show a complete example of how a sequential application can be
modified to run in parallel using our system. The sequential code will be parallelized

according to the SPMD model for parallelism, but other models could have been



//-{ HellowWorld.java }
public class HelloWorld {
static public void main(String arv[]) {
Hello h = new Hello(" World");
System.out.printin(h.Salute());
}
}

//-{ Hello.java }
public class Hello {

private String msg;

public Hello(String _msg) {
msg = _msg;

}

public String Salute() {
return("Hello " + msg + "!11");
}

}

Figure 9.4: Hello World Application: Sequential Version

chosen instead (i.e. it is not mandatory to run the same program on each node). !

Consider the sequential user code shown in Figure 9.4. The HelloWorld application
consists of two classes, HelloWorld and Hello. The class HelloWorld implements main()
which in turn creates an instance of Hello using the constructor Hello(String -msg).
Then it uses this instance to print “Hello World!!!” on the screen. The class Hello
provides a method, Salute(), that returns a salutation message.

The first step in transforming this application into a distributed one that uses
RMI and the runtime system is to write a remote interface for the class Hello. This
remote interface can be easily generated by a compiler and will contain a method
declaration for each of the methods in the original class. Figure 9.5 shows the remote
interface for the class Hello (i.e. HelloRl). Every constructor is listed as a regular
remote method adding void as its return value. This is necessary to remotely invoke
the appropriate constructor once the remote object has been created (more on this in

the HelloWorld class explanation). Note that RMI requires that the remote methods

‘In a Single Program Multiple Data (SPMD) model, multiple instances of the same program
work on different portions of data. See [Wil95] for a complete taxonomy.



//—{ Hello_java ]
package HelloWorld;
import java.rmi.x;
public interface HelloR! extends Remote {
String Salute() throws RemoteException;
void Hello(String _msg) throws RemoteException;

}

Figure 9.5: Hello World Application: Parallel Version, Remote Interface

be public; the compiler should enforce this by changing the declarations as needed.

After completing the remote interface, the implementation of the class Hello should
be changed accordingly. Note that the changes are simple and can be easily performed
by a compiler (see Figure 9.6). The RemoteException should be added to the throw
clause of each method and a no-argument constructor should be provided. 2

Once the Hello class has been transformed, the HelloWorld application has to
be modified. Figure 9.7 shows the modified version of HelloWorld. The applica-
tion is modified to be executed under the SPMD model. The same code is run
on each node; that is the application is separately started up on each node with:
java HelloWorld.HelloWorld rank_number. A rank number is added to the application’s
parameters line so that different nodes can execute different portions of the code (see
the rank variable in the code). The RMISecurityManager is made active and an Ob-
jectServer is instantiated on each node. Each node creates a Scheduler to handle the
placement of the dynamically created remote objects. Then, the code is split using
the rank number. The task with rank “0” (the master task) will be the only one to
execute the code inside the “if” statement. The master task will use the Scheduler
to obtain a reference to an ObjectServer that is running on some remote node. This
reference in turn, is used to create an instance of Hellolmpl on a remote node via
the CreateObject() method. The appropriate constructor is immediately invoked as
a remote method. Note that the modifications to the HelloWorld class are extensive
and require significant compiler work. In particular, each method call to an object
that has been made remote has to be surrounded by a try/catch clause to handle the

remote exceptions that could be generated by the RMI system.

2This constructor will be used when the remote ObjectServer instantiates this class
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//—{ Hellolmpl.java }

package HelloWorld;

import java.rmi.x;

public class Hellolmpl implements HelloRI {
private String msg;

// The no-argument constructor is added
/[ for the parallel version (explained in the text)
public Hellolmpl() throws RemoteException {

super();
public void Hello(String _msg) throws RemoteException {
msg = _msg;

public String Salute() throws RemoteException {
return(msg);

Figure 9.6: Hello World Application: Parallel Version, Hello Implementation

9.3 Discussion

The prototype runtime system presented in the previous sections can be modified
to support caching of the remote object’s data (to increase performance), access to
static variables and methods, better load balancing, and object migration.

As explained in Section 6.3, the RMI system does not provide a way for accessing
the instance variables of remote objects. The use of remote interfaces as data types
prevents the access to the instance variables because variables cannot be defined in
an interface. This can be solved (as already proposed) by replacing all data accesses
by remote method invocations. The use of these accessor methods, a priori, suggests
an important performance degradation. To minimize this performance penalty. the
runtime system could be expanded to support instance caching. ObjectServer objects
could be modified to include a hashtable with cached instance variables from the
different remote objects. Different consistency protocols could be implemented (e.g.
write-update, write-invalidate) and, at the very minimum, read-only data should be

replicated. The code in the get() and set() methods should be modified accordingly
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//—{ HelloWorld.java }
package HelloWorld;
import java.rmi.*;
import RTS.»;
public class HelloWorld {
public static void main(String argv[]) {
String rank;
rank = argv[argv.length - 1];
System.setSecurityManager(new RMISecurityManager());
try {
ObjectServer os = new ObjectServer();
os.Init("HELLOWORLD");
}
catch(RemoteException e) {RTS.fail("OS creation failed”, e);}
Scheduler sched = new Scheduler("HELLOWORLD");
if (rank.equals("0")) { // f Master task...
try {
ObjectServer vos = sched.getOS();
HelloRI h = (HelloRI) vos.CreateObject(” HelloWorld. Hellolmpl" );
h.Hello(" World" );
System .out.printin(h.Salute());
}
catch(RemoteException e) {RTS.fail(" RemoteException”, e);}
}
}

Figure 9.7: Hello World Application: Parallel Version

to contact the local ObjectServer for accessing the instance variables. Isenhour [Ise97)]
proposed a system for doing this that can be adapted to our runtime system.
Another possible use of the runtime system is to provide access to static instance
variables and methods. Currently, RMI does not support static instance variables
and methods. A possible solution would be to implementing the static parts of a
class as a single remote object. When the ObjectServer creates the first instance of
a class, it should also create an object to handle the static parts contained in that
class. This object will be a remote object whose instance variables and methods are
the static instances and methods of the original class respectively. Every object of the

original class that is created is given a reference to its static parts. Static methods.



can be accessed through this reference as regular remote methods. Access to static
instance variables should be changed into the appropriate get() and set() methods
on the object that implements the static parts of that class. A similar approach has
been taken by JavaParty [PZ97] and their experience can be applied to our runtime
system.

The prototype runtime system provides a simple round robin policy for placing
the objects on the different nodes. Better load balancing algorithms could be tried
instead. This will require that the Scheduler objects be transformed into remote
objects and remote methods be provided to exchange load information among the
different nodes.

Object migration could also be provided by using the Object Serialization API
provided by Java and the ObjectServer objects. To migrate a remote object from one
node to a different one, its state should be saved and passed from one ObjectServer
object to another. Also. a new exception should be thrown when a remote method call
is attempted to a remote object that has been moved to another node. The compiler
should insert code to handle this exception and redirect the call to the appropriate
node (i.e. the location of the objects should be handled by the runtime system). The
code that handles the exception should also update the reference possessed by the
client. A similar scheme for object migration has been implemented in JavaParty
[(PZ97].

All the mentioned extensions to the runtime system will require significant com-
piler support. The original sequential code has to be extensively modified in order to

incorporate all these extensions.

9.4 Summary

In this chapter we presented an architecture for a prototype runtime system to sup-
port parallel applications written with RMIL. An example was used to show how to
modify a sequential program to be executed on several nodes by using the prototype
runtime system. Finally, several improvements that can be made to the prototype

were discussed.



Chapter 10
Related Work

Several systems exist that can be considered as related work to Java/RMI. Some
of these systems, such as CORBA [OMG95] and HORB [Sat96], present an object-
oriented distributed model similar to Java/RMI. Also, there are some systems that
intend to apply existing parallel programming solutions (such as PVM [Sun90}) for
the development of object-oriented parallel applications in Java. Examples of this are
JavaPVM [Thu96] and JPVM [Fer96]. Agent-based technology has also been tried in
systems like Voyager [VO97]. Finally, there are some systems like JavaParty [PZ97]
that extend the functionality of Java/RMI.

It is important to note that since Java is a very active research topic, new systems
appear almost every week. Even though the functionality of some these systems
overlap with the work presented in this thesis, many of them were not available when
we started our project.

In this chapter we discuss these systems in the light of their possible use for parallel
programming. The systems are compared against the Java/RMI approach whenever

possible.

10.1 CORBA

CORBA [OMG95] is an open standard for application interoperability defined by
the Object Management Group (OMG). In the Object Management Architecture
proposed by OMG, every piece of software is represented as an object. Objects
communicate with each other using an Object Request Broker (ORB). The ORB

provides a mechanism by which the objects transparently make requests and receive



responses across heterogeneous languages, tools, platforms and networks.

CORBA supports a general Interface Definition Language (IDL) that may be
mapped to any implementation language. Interface definitions are specified in [DL
and then stored in an interface repository. Clients request services through the ORB
by specifying a target object using an object reference. They can inspect interface
definitions in the repository to identify objects’ services, and the services’ request
and response formats. The ORB supplies naming services to map (server) object
names, marshals call parameters, dispatches requests to service providers, and re-
turns translated service results to the client objects. The ORB interacts with service
providers via object adapter skeletons. Language bindings for the OMG's IDL have
been specified for C and C++ and bindings for other languages, including Java. are
being developed.

Even though CORBA and RMI have many similarities, they differ in some im-
portant aspects. The main differences arise from the fact that CORBA was designed
to be language and platform independent whereas RMI assumes a uniform Java-only
environment. In CORBA, code cannot be moved across machines because the method
implementations could be in any binary format. In contrast, RMI makes heavy use of
the Java ability to securely download code. Another feature provided by Java/RMI
and not present in CORBA is the automatic garbage collection of the remote objects.
Also, in RMI, objects can be passed as parameters; CORBA can pass primitive types.
references to remote objects, and compositions of these types (structs), but not ob-
jects. In addition, RMI can pass and return object types not seen before as long as
those types are subtypes of the declared parameter types.

Consider the sample code shown on Figures 10.1 and 10.2. ! The code in Figure
10.1 defines a generic server that can be used to execute arbitrary computations
launched from other nodes. Any class that implements the interface Compute can ask
the server to execute the computation for it. For example, the code in Figure 10.2
calculates the number Pl by shipping the computation to a different node.

When the server gets an object of type Pl as parameter (which it has never seen
before), it goes and downloads its class in order to invoke the run() method. In

CORBA, this cannot be done because the server could potentially be written in any

This code was written by JavaSoft's Ken Arnold and posted on the RMI maitling list.



public interface Compute {
public Object run();
}

public interface ComputeServer extends Remote {
public Object runit(Compute computation) throws RemoteException;
}

/] The server object invokes the run() method on any Compute
// object that is passed to it.

public class ComputeServerimpl| extends UnicastRemoteObject
implements ComputeServer {
public Object runit(Compute computation) {
return computation.run();

}

Figure 10.1: Computation Server

class Pl implements Compute {
private int precision;

Pi(int howManyPlaces) { precision = howManyPlaces; }

public Object run() {
double pi = computePlsomehow()
return new Double(pi);

}

public static void main(String[] args) {
ComputerServer server = getAComputerServer();
Double pi = server.runit(new PI(1000));
System.out.printin(" Pl seems to be " + pi);

}

Figure 10.2: PI Computation




language.

Since parallel applications usually are deployed on homogeneous farms of com-
puters, the extra complexity of using CORBA is not justified. This is especially true
considering that problems like those of collaborators and exceptions presented in this

thesis affect CORBA in the same way as RMI.

10.2 HORB

HORB [Sat96] is a Java ORB (Object Request Broker) whose characteristics and
features are very similar to those of RMI. However, the first version of HORB appeared
four months before the announcement of RMI.

HORB includes many features that are common with RMI such as:
¢ Remote method connection,

e Object transfer, and

¢ Automated garbage collection of remote objects.
Some unique features are also provided such as:

e Dynamic object creation,

¢ URL based object naming,

e Asynchronous methods,

o Security by distributed access control lists,

¢ Inheritance support, and

o Persistence facility (with support for object revival).

The HORB package consists of the HORBC compiler, the HORB server, and the
HORB class library. This is similar to RMI but with the difference that the HORB
system is implemented at the user level. Hence, HORB will run on any platform that

has a Java interpreter. 2

INote that this is true for the RMI system included in version 1.1 but was not the case when
RMI was provided as an add-on in version 1.0.2.
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Figure 10.3: HORB Architecture

The HORB architecture is similar to that of RMI (see Figure 10.3). The skeletons
and proxies are created by the HORBC compiler and are analogous to the skeletons
and stubs on the RMI system. Note that the ORB layer corresponds to the transport
and reference layers of RMI. Looking at this, it is clear that the RMI is a more general
and extensible system (i.e. it is easier to implement new protocols). However. HORB
is stronger than RMI in other aspects.

In general, the HORB system is easier to use because it does not require the use
of remote interfaces. Furthermore, a remote class does not have to inherit from a
class such as RemoteQObject. The stubs and proxies include code for all the methods
defined in the class that is being compiled (in RMI only for those that are specified in
the remote interface). The inheritance tree of the class is mirrored by corresponding
stub and proxy inheritance trees. A remote object is created by directly instantiating
the proxie class generated by the HORBC compiler. For example, if there is a class
Server (which was compiled with HORBC), a remote instance can be created with

the following sentence:

Server_Proxy server = Server_Proxy(URL);



HORB supports dynamic object creation so the application can decide where to
create a particular object (e.g. locally or remotely). In RMI the remote object has to
be created by other means (e.g. manually starting up the server) before the client can
invoke a method. In HORB, an application can create a remote object in any node
just by specifying the URL of the remote node. Moreover, local and remote objects

can be integrated by using interfaces. 3 See the following example:

interface Server {

int Compute(...);

class Server_Impl implements Server {

public int Compute(...){...}

Server local = new Server_Impl(); // new local object

Server remote = new Server_Proxy(url); // new remote object

local.Compute();

remote.Compute();

The code shows an interface declaration, a class that implements that interface
(i.e. Server_Impl) and a possible use of that class. Note how an object can be declared
of type Server, created locally or remotely, and then used independently of its location.

Another interesting feature offered by HORB and not present in RMI is asyn-
chronous method invocations. For specifying that a method should be invoked asyn-
chronously, the string _Async should be added to the method’s name. The asyn-

chronous version of our example server would look something like this:

3The use of interfaces is optional in HORB. Its only purpose is for attaining distribution trans-
parency.
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class Server {

int Compute_Async(...) {

return value;

For calling the Compute method the strings _Request and _Receive are used in

the following form:

server .Compute_Request(...);
// continue executing here

value = server.Compute_Receive(timeout);

Even though the choice of using special method names seems unnatural, it allows
HORB to introduce new semantics without changing the language. These constructs
follow the future mechanism discussed in Chapter 7. For that reason. the problem
that arises when dealing with exceptions and futures also applies to this system (i.c.
HORB does not provide anything to handle it differently).

Another interesting feature of HORB is its support for inheritance. In this sys-
tem, inherited methods can be remotely called without any extra declarations. This
constitutes an advance in simplicity over RMI, where the inherited methods have to
be explicitly added to the remote interface.

In his paper [Sat96], the author of HORB presents a performance evaluation of his
system compared against RMI. It is shown that HORB is two to three times faster
than RMI.

Limitations of HORB include the impossibility of directly accessing the fields of
remote objects (i.e. accessor methods have to be written as in RMI), and that interface
inheritance is not supported (a feature in RMI). Also, the serialization provided in
Java is more flexible and complete since HORB does not serialize private fields and
does not support class versioning (i.e. objects saved by a class should be restored by

the same version of the class).
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Overall, HORB is a valid alternative to RMI that provides some features that
are missing on RMI. However, some of the problems discussed in this thesis, such as

exceptions and collaborators, still apply to HORB.

10.3 JavaPVM and JPVM

The JavaPVM [Thu96] system allows programs written in Java to use the Parallel
Virtual Machine (PVM) software developed at Oak Ridge National Laboratory. PV M
[Sun90] is a set of software tools and libraries that allows the use of a heterogeneous
collection of Unix computers * hooked together by a network as a single large parallel
computer. Using PVM, the aggregate power of many computers can be combined to
solve large computational problems. The source code for PVM is available at no cost.
Because of that, PVM has been compiled on almost every architecture. PVM works
with programs written in C, C++, and Fortran.

JavaPVM extends the capabilities of PVM to Java, allowing Java applications and
existing applications written in C and C++ to communicate with one another using
the PVM API. JavaPVM was written using the native method interfaces provided by
Java. Essentially, it is a shared library of PVM functions written in C, a Java object
class (JavaPVM), and some C code which bridges the gap from the JavaPVM class
to the PVM functions. Each function in the PVM API has a corresponding native
method declared in the JavaPVM class. For example the standard PVM C function:

int tid = pvm_mytid(void)
is declared as a method in the JavaPVM class:
public native int pvm_mytid()

Using the native methods capabilities provided by Java, this JavaPVM method results

in a C function:

long JavaPVM_pvm_mytid(struct HJavaPVMs)

‘Recently PVM was ported to the Win32 platform (i.e. Windows 95 and Windows NT).



The implementation of this function provided by JavaPVM calls the actual PVM
pvm_mytid() function and returns the result. The code for this function looks some-

thing like this:

long JavaPVM_pvm_mytid(struct HJavaPVM *hpvm) {
return( (long) pvm_mytid());

There are some advantages in using JavaPVM over other communication mecha-
nisms. The PVM model for parallel programming is well known and people that are
already familiar with it can directly apply their expertise to Java. Also, existing par-
allel applications written in C, C++ and Fortran can interface with new ones written
in Java. This translates into an easier migration path if a language switch is desired.

However, JavaPVM is implemented using the native methods capability of Java.
This goes directly against the idea of Java being used as a programming language
for heterogeneous environments. 3 Also, the message passing paradigm supported
by PVM (and by extension by JavaPVM) lacks a high-level of abstraction. Further-
more, the communication process in PVM is fully exposed to the programmer who is
responsible for controlling it (including the marshaling of parameters).

A related system, JPVM (Fer96], is an implementation of the PVM virtual machine
written in Java. This system does not use native methods so it fully exploits Java's
portability. However, JPVM is not inter-operable with other PVM machines because
it is an implementation of the PVM daemon servers rather than an interface between
Java and PVM. This seriously restricts the usability of the system. JPVM shares

with JavaPVM the same problems regarding abstraction and ease of use.

10.4 Voyager

Voyager [VO97] is an ORB entirely written in Java that allows the development of
distributed applications using traditional (i.e. RPC-like) remote method invocations

and agent-based distributed programming techniques. Agents are autonomous objects

5The native method interface was used to take advantage of the PVM virtual machine already
written.
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Figure 10.4: Remote Object Creation and Remote Method Invocation in Voyager

that can be programmed to accomplish several tasks. Voyager agents have the ability
of moving through the network to accomplish their goals.

Voyager applications contain an infrastructure that allows objects to communicate
and move through the network, and several other support services such as distributed
garbage collection. Every application is identified by a host name and a port address
that is unique to that host (e.g. sherwoodpk:6023). An object residing in one ap-
plication can communicate with a remote object (i.e. one that resides in a different
application) by creating a virtual version of the remote object in the local machine.
The virtual version of a remote object is called a virtual object and acts as a prosy
for the remote object (i.e. the equivalent of a stub in RMI).

Virtual objects are created by instantiating a virtual class. Virtual classes are
automatically generated by Voyager from an existing Java class and are named by
preceding the original class name with a “V”. Voyager only generates code for the
client proxies (i.e. there are no skeletons as in RMI), and the virtual class generator
(the vc utility) can be used to generate virtual classes from classes for which the
source code is not available (i.e. from the .class file). This characteristic allows the

programmer to generate remote objects from existing third-party libraries.



Figure 10.4 shows two applications: sherwoodpk:6023 and ipiatik:7023. The code
in the upper half of the figure creates a remote object by instantiating the class
VSensor (automatically generated by vc from Sensor). The constructor is given the
address of an application where the new remote object will be created and an optional
alias (rsensor) that can later be used to locate the remote object via the application’s
registry. The lower half of Figure 10.4 shows how a message, readTemp(), is forwarded
from the virtual object to the remote object. Exceptions raised in the remote object
are forwarded back to the caller and re-thrown as if they were local exceptions.

In Voyager, messages are synchronous by default as in RMI. In addition, however.
Voyager supports one way messages which return immediately discarding any return
value, and futures where the call returns immediately with a placeholder that can be
used later to retrieve the value. It is important to point out, however, that the future
model provided by Voyager is similar to those discussed in Chapter 7. Thus, the use
of futures in Voyager will suffer from the same limitations regarding exceptions that
we have identified.

Another advantage of Voyager over RMI is that in Voyager objects can be move«d
from application to application. This is done by simply sending the message move()
to the object that needs to be moved, and specifying the destination as a parameter.
When an object is moved to another application, it leaves a secretary object in its
original application. When a message for an object that has been moved arrives to
an application, the secretary is contacted to find out the object’s new location and
the message is automatically forwarded to it. When the object finally receives the
message and responds, it includes its new address in the return value so the caller
can locate it directly in future requests.

Voyager also supports agent technology. Agents can be created by extending the
class Agent and then using the vc utility to create a virtual agent class that, in turn.
can be utilized to instantiate an agent object and communicate with it. Agents can
also be moved from one application to another but unlike remote objects. agents
can move independently (i.e. they can decide where to go when and they move by
themselves). An itinerary for an agent can be programmed by specifying an extra

call-back parameter in its move() method. For example:
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public void goShopping() {

move (“storeOne:3030", "atStoreOne");

The preceding code specifies that whenever the agent receives the call goShop-
ping(), it will send itself the message move(). It also specifies that after the agent
has moved to its new location it will receive the call atStoreOne(). Note that once
the agent performs the required computation at its new location, the method atStore-
One() can be used to move the agent to another location (i.e. forming in this way an
itinerary).

An agent can also be moved to the location where another object resides. This
ability can be used to increase the performance when the agent has to interact heavily
with another object. Instead of using remote calls, the agent can be told to move to
the same location of the other object and perform all the interactions locally.

Overall, Voyager is a more capable system than RMI. It provides many features
like object movement and agents which are not present in RMI. Voyager adds asyn-
chronous messages, although the problem presented by exceptions when combined
with futures is not even mentioned in the documentation. Also, the performance of
Voyager is much better than that of RMI. See [VR97] for an exhaustive comparison

between Voyager an RMI.

10.5 JavaParty

JavaParty [PZ97] is a system that targets the development of object-oriented parallel
applications running on clusters of workstations using Java and RMI. The program-
mer turns a multi-threaded Java program into a JavaParty program by indicating
which classes and threads should be made remote. This is done by using a new
modifier remote added to the language.

Figure 10.5 shows how a JavaParty program is translated into Java bytecodes.
The code is first run through a compiler that translates the JavaParty code (i.e. the
remote declarations) into Java/RMI code. Then the normal Java and RMI compilers

are used to obtain the final bytecodes.
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Figure 10.5: JavaParty Code Translation

JavaParty provides several advantages over the use of RMI alone. It abstracts
the programmer from the complexities of RMI (e.g. declaring methods in the remote
interfaces and catching extra exceptions). As a consequence, the code written by the
user when using JavaParty is shorter than the equivalent RMI version (although the
code generated by JavaParty is much longer).

JavaParty also provides object migration (although, in fact, objects can only be
moved when they are not executing any method), and avoids the RMI overhead when
objects reside on the same virtual machine (which is a very important performance
consideration). Another added feature in JavaParty is the ability to access class
variables and methods (i.e. static fields and static methods). In RMI, these static
parts cannot be accessed.

Besides the compiler, the JavaParty system includes a runtime system that is
used to support access to the static parts of the classes and the migration of objects.
This runtime system consists of a central component that is unique to the system
and a local manager per node. The central manager knows all the local managers
and the location of all the objects that implement the static parts of a class. All
this information is replicated in the local managers to reduce the load on the central
manager. Objects are created according to distribution strategies that can be selected

and changed at runtime.
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JavaParty is a good alternative to Java/RMI alone. In fact, it solves some of
the problems of RMI and provides an easier model to write parallel applications.
Even though some of the problems of RMI still remain, JavaParty constitutes a step
forward over RMI. The ability to access the static parts of a class is an important
feature for the development of automatic parallelization tools since class variables and
methods are present in almost every sequential program. Also, given the performance
of the RMI system (see Chapter 5), the optimization of message invocations between
remote objects that reside on the same machine is extremely valuable. Finally, the
object migration facility provided by JavaParty provides a more flexible distribution
model (i.e. the placement of the objects can be dynamically changed).

10.6 Summary

In this chapter, some approaches to object-oriented parallel applications were dis-
cussed. CORBA and HORB were described as having models of object distribution
similar to RMI. JavaPVM and JPVM were presented as examples of a different ap-
proach that is closer to socket programming than to object distribution. Agent-based
approaches were illustrated with the Voyager system. Finally, JavaParty was shown
as a system that is based on the Java/RMI model but that extends that model to

include some important features for parallel programming.
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Chapter 11

Conclusions

This thesis is an evaluation of Java and RMI for the development of object-oriented
parallel applications. In particular, the thesis looks at the issues involved in auto-
matically distributing sequential object-oriented programs by using a parallelizing
tool. The focus is placed on how the features of the language, the object-oriented
technology used, and the parallelization techniques applied can be combined for the
development of distributed applications.

While some of the issues raised in this thesis can be directly related to the
Java/RMI design, others are intrinsic to the object-oriented paradigm used in the
programs, and some others to the parallel computing model.

The problems directly related to Java/RMI identified in this thesis include:

Lack of transparency: The RMI system forces the programmer to declare which
methods can be remotely called by the use of remote interfaces (including the
class’ methods and any inherited methods as well). Also, classes are required
to implement the Serializable interface so that their objects could be used as
parameters or return values of remote methods. Furthermore, all the remote
methods should be public. As shown in this thesis, this lack of transparency of
the RMI system can be overcome by the use of extensive compiler transforma-
tions (to adapt the user’s code to the RMI syntax), and by some changes in the
implementation of the RMI system itself (e.g. the elimination of the Serializable

requirement ).

Performance: The RMI system proved to be a major bottleneck. The performance

evaluation in Chapter 5 showed the huge overhead incurred by the applications
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when using RMI. This overhead is caused by the complexity of the different
layers of the RMI system (i.e. stubs/skeletons, reference and transport). Fur-
thermore, a decompilation of these layers also revealed the presence of debug-
ging code. The serialization routines, even though they can be optimized, were
not as inefficient as RMI itself. It is clear that a method must have a large

granularity to offset the overhead of the RMI system.

Access to instance variables: RMI does not provide a way of accessing the in-
stance variables of the remote objects. Compiler transformations could be used
to overcome this limitation. As discussed in Section 6.3, a solution is to change
all the accesses to instance variables into calls to appropriate get() and set()

remote methods.

Access to static instance variables and methods: As pointed out in Chapter
3, static instance variables and methods cannot be used with RMI alone. This
happens because clients only see what is declared in the remote interface of an
object and the static keyword is not allowed inside interfaces. A runtime system

is needed for supporting access to remote static variables and methods.

Even though these problems affect the automatic parallelization of the user's se-
quential code, they can be solved by using compiler transformations and a runtime
system. A prototype system that addresses many of these concerns was described
in Chapter 9. The performance overhead, however, constitutes a very strong factor
against the use of RMI as the target of our parallelization tool. If RMI is used directly
by the user, the performance degradation is partially compensated by its ease of use.
However, when using a parallelizing tool, it is preferable to generate the fastest code
that is possible because the ease of use will already be provided by the environment.
that is, the user will write sequential programs.

Regardless of the communication mechanism used (e.g. RMI, sockets. etc.). this

thesis identified some harder problems which are not caused by Java/RMI such as:

Exceptions: As demonstrated in Chapter 7, the exception handling mechanisms
included in some modern languages, such as Java and C++, can seriously limit

the amount of concurrency in a parallel application. Although we presented
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some approaches for dealing with this problem, further research will be necessary

to find solutions that provide better performance.

Collaborators: Chapter 8 showed the problems that any object-oriented language
with dynamic dispatching can present for detecting the collaborator set. This
issue requires further work for the development of a tool to automatically de-

termine the collaborator set.

The only problem related to the parallel computing model is how to stop a run-
ning computation in a speculative computing environment where several futures are
created to find or compute the same value. As shown in Chapter 7 this can be solved
by providing an extra method in the server or in the future (according to which im-
plementation of futures is used) to stop the appropriate thread. This problem does
not constitute an important impediment for the development of a parallelization tool
as its solution is straightforward.

Because of the problems explained above, we conclude that any automatic par-
allelizing tool for an object-oriented language will have to deal with the issues of
exceptions and collaborators. RMI, in addition, presents many problems that can be
addressed as discussed in this thesis. However, given its performance, we also con-
clude that the amount of compiler support needed to address all these problems is too
large compared with the benefits obtained by using the RMI system. Even though
RMI can be successfully applied to other domains, such as distributed client [server
databases where the performance overhead of the RMI system is not a predominant
factor, it is unsuitable for being used as the underlying communication paradigm of

our parallelizing tool.
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