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ABSTRACT

Analytical modelling of heterogeneous and, especially, fractured reservoir systems
constitutes an important aspect of petroleum reservoir engineering and formation evaluation
and environmental engineering studies. Fractal geometry has been used in some recent
studies to help define hydrologic conceptual models for a certain class of fractured systems.
However, transient pressure behaviour during the flow of non-Newtonian power-law fluids
in homogeneous systems has often been misinterpreted as flow in fractures when using
Newtonian-based theory. Thus, use of the existing fractal pressure transient models may not
be appropriate when analyzing pressure transient data during non-Newtonian fluid flow

through a network of fractures.

The principal objective of the present study is to examine the basic characteristics of
transient flow of non-Newtonian power-law fluids in a fractal network of fractures. The
theoretical basis for analyzing transient pressure and rate data under such situations are
presented. Analytical and finite-difference solutions of the partial differential equations

describing the single-phase flow of a slightly compressible, power-law fluid in an infinitely

large fractal reservoir are obtained.

Transient pressure behaviour for finite reservoir cases is studied. Analytical solutions
are also presented for the case of a two-zone composite reservoir, with the inner zone bein g
completely fractal and the outer zone homogeneous. Finally, an analytical model is presented
for Newtonian fluid flow in a "double-porosity" situation where the fracture network is
characterized by a particular type of fractal geometry and the matrix is homogeneous. The

sensitivity of the system response to the various relevant parameters is also examined in

detail.
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Chapter I

INTRODUCTION

Research in modelling of pressure transient behaviour of fractured hydrocarbon
reservoirs has advanced considerably over the past few decades. In 1963, the now classical
study of Warren and Root's two-scale model of naturally fractured reservoirs was published.
Since then, most conceptual models of flow in fissured systems have generally centred on
varicus forms and modifications of the original double-porosity model envisaged by
Warren and Root (1963). These conventionally accepted models for interpretation of
transient pressure data from naturally fractured reservoirs usually involve simplistic
assumptions regarding the geometry and transport behaviour of fracture networks. More
importantly, pressure transient responses predicted by these models are sometimes not

observed in actual well tests in naturally fractured reservoirs.

In a few recent studies (Chang and Yortsos, 1990; Beier, 1990a; Beier, 1990b; Acuiia
et al., 1992a; Acuiia et al., 1992b), the concept of fractal geometry has been made use of in
order to develop new models for interpretation of pressure tiansient tests in fractured media.
In thesc conceptual models, fractal properties have been attributed to networks of fractures in
fissur~u rocks so that the hydraulic response of the fracture system can be analyzed. The
application of fractal geometry to the analysis of pressure transient behaviour was the result
of an extension of the work of physicists who studied diffusion in disordered media and
fractal objects (Orbach, 1986; O'Shaughnessy and Procaccia, 1985). Since pressure for fluid
flow in porous media satisfies a diffusion-type equation, scaling principles for diffusion in
fractal objects were applied by analogy to tluid flow through porous media (Beier, 1990;
Acufia et al., 1992a).



The general theoretical formalism of the application of fracta1 geometry to pressure
transient analysis was presented by Chang and Yortsos (1990). Their approach was applied
to analyze real well-test data in a few subsequent studies (Beier, 1990a; Acufia et al., 1992a;
Acuiia er al., 1992b). However, the analysis presented in these studies is restricted as it
applies specifically to the transient flow of a Newtonian fluid in an infinite flow system. The
transient injection (or production) behaviour of non-Newtonian fluids is an important and a
frequently encountered phenomenon for the petroleum reservoir engineering community,
especially during the flow of fluids such as polymer solutions, emulsions, fracturing fluids
and oil-sand/fines mixtures through porous media. Without the aid of a proper tool for
modelling transient flow behaviour of non-Newtonian fluids, analysis of pressure transient
data during the flow of such fluids would be difficult. Moreover, it is to be noted that the
results of Chang and Yortsos (1990) apply only for infinite reservoirs and that they also
assume that the reservoir exhibits fractal characteristics over all length scales. For reservoirs
exhibiting fractal characteristics only over a finite region around the wellbore, altemative

approaches must be sought.

The purpose of this investigation is to address some of the concerns mentioned above.
Broadly, this work deals with the development of an approach for the interpretation of
pressure transient tests during the flow of a non-Newtonian power-law fluid in a totally
fractal reservoir. Specifically, this study examines the pressure transient response of a
single-well system in a manner consistent with the expectation that the fracture network

dominates the flow behaviour in the naturally fractured reservoir.



Chapter I1

REVIEW OF LITERATURE

The basic aim of this study is to develop a pressure transient model for the flow of a
single-phase non-Newtonian power-law fluid through a fractal reservoir. Thus, the topic to
be discussed in this research can be described broadly as the incorporation of the rheology of
power-law fluids into a pressure transient model for a fractal reservoir. Accordingly, the
literature review has been divided into two sections: pressure transient modelling of power-

law fluid flow, and fractal pressure transient analysis.

2.1 Literature Survey of Pressure Transient Models for Power-Law Fluid Flow

The pressure transient modelling and analysis effort in the petroleum industry has
generally concentrated on the behaviour of Newtonian fluids in homogeneous and
heterogeneous reservoirs. Considerable numbers of exact and approximate models and type-
curves exist for the analysis and interpretation of well-test data for various kinds of reservoir
systems and wellbore conditions and for different tests. However, not much work or data is
available in the petroleum engineering literature on pressure transient modelling of non-
Newtonian fluid flow in porous media. In fact, some of the most popular textbooks on well
testing (Earlougher, 1977; Streltsova, 1988; Sabet, 1991) do not consider non-Newtonian
pressure transient analysis. Most polymer solutions, emulsions (Olarewaju, 1992), aqueous
foams (Lkoku, 1978), solid particles suspended in Newtonian liquids (Barnes, 1989) such as
heavy oil mixed with fines (Poon and Kisman, 1992), hydraulic fracturing fluids (Torok and
Advani, 1987), and so forth, are non-Newtonian. Approximation of the pressure transient
behaviour of these fluids by Newtonian fluid flow models, as is commonly done

(Olarewaju, 1992), may result in significant errors in the ensuing analysis. Thus, from a



petroleum reservoir engineering point of view, there is a need for a thorough inspection of

the transient flow of non-Newtonian fluids in porous media.

A number of articles on the flow behaviour of non-Newtonian fluids through porous
media have been published in the chemical engineering, rheology and petroleum enginee:ing
literatures. In 1969, Savins presented a review of contemporary literature on the theolc;;cal
behaviour of non-Newtonian fluids flowing through porous media. He also discussed the

relevance of non-Newtonian flow through porous media to various technclogy areas

McKinley er al. (1966) studied the linear flow of a polymer solution in porous media.
They proposed a modification of the viscosity to be used in the Newtonian Darcy equation
to model linear flow of a non-Newtonian fluid. They suggested that the viscosity should not
only be expressed as a function of the rheological properties of the fluid, but also as a
function of the characteristics of the porous medium and the pressure gradient. Gogarty
(1967) extended the work of McKinley et al. (1966) and suggested that the effective

viscosity should also be related to the average shear rate in the core.

One of the earliest studies of transient pressure behaviour during the flow of a non-
Newtonian power-law fluid in a porous medium was presented by van Poollen and Jargon
(1969). They proposed a finite-difference model of a radial system to predict the transient
flow behaviour of power-law fluids. Their model made use of Newtonian fluid flow
equations, with the non-Newtonian effects being incorporated by means of the viscosity
varying as a function of the radial location. A finite-difference model was also presented by
Bondor er al. (1972) to simulate polymer flooding. However, transient flow was not

considered in this study.

Ikoku and Ramey (1979) and Odeh and Yang (1979) presented analytical models for

transient flow of non-Newtonian power-law fluids in infinite reservoirs. In these studies,



however, the effect of wellbore storage was not considered. In a subsequent study, Ikoku
and Ramey (1980) extended their previous model (1979) to flow in finite circular reservoirs.
They also used a wellbore storage simulator to study the effects of skin and wellbore storage

during the transient flow of power-law fluids in infinite and finite systems.

Pascal and Pascal (1985) studied the steady and unsteady flow of power-law fluids
through porous media. In order to deal with the nonlinearity of the equations describing the
transient flow of power-law fluids, they used generalized Boltzman transformations for
linear and radial flows. They also discussed the limitations associated with the approximate
analytical solutions of the transient power-law flow problem derived by lkoku and Ramey

(1979).

In a recent study, Vongvuthipornchai and Raghavan (1987) examined numerically the
pressure falloff behaviour in fractured wells after the injection of a non-Newtonian power-
law fluid. The problem was studied previously by Murtha and Ertekin (1983); Murtha and

Ertekin, however, did not present a method to analyze the pressure falloff data.

Recently, Olarewaju (1992) presented a study to demonstrate the difference in transient
behaviour between a Newtonian and a non-Newtonian power-law type fluid in
homogeneous and double-porosity reservoirs. He presented his mathematical solutions to

develop pressure and pressure-derivative type curves for such reservoir systems.

2.2 Literature Survey of Fractal Pressure Transient Analysis

The traditional double porosity model (Warren and Root, 1963) has been considered
as the standard tool for analysis of pressure transient tests in naturally fractured reservoirs.
Essentially, this model assumes that a fractured formation consists of two coexistent

components characterized by two distinct permeability and porosity scales. The fracture



system is assumed to be homogeneous (characterized by a Euclidean dimension, dr.eg. ds
= 1 for a single fracture) and is embedded within the matrix which is also Euclidean (e.g..of
embedding dimension d = 2 for a ¢ ylindrical symmetry flow system). An extension of such
models was proposed by Abdassah and Ershaghi (1986) who presented a triple-porosity
model for analysis of pressure transient behaviour of fractured media. This model assumes
that fractures have homogeneous properties throughout and interact with two groups of
matrix blocks having different porosities and permeabilities. The approach of Abdassah and
Ershaghi (1986), however, is less applicable to systems where the fracture netvork is not of
Euclidean geometry (i.e., the fracture system is non space-filling) (Chang and Yortsos,
1990; Acuiia et al., 1992a). In a few recent theoretical studies, several authors (Chang and
Yortsos, 1990; Beier, 1990a; Beier, 1990b; Acuiia and Yortsos, 1991; Acufia et al., 1992a;
Acuiia et al., 1992b) have proposed the concept of fractal geometry as an alternative to the

classical analysis of pressure transient data for various naturally fractured reservoirs.

The term "fractal” has been used by researchers to characteri_. geometric objects
whose properties show a power-law type spatial dependence (Chang and Yortsos, 1990;
Beier, 1990a; Beier, 1990b; Acuiia er al., 1992a; Acuiia et al., 1992b). Acceptance of a
fractal model within the drainage area of a well implies porosity and permeability
distributions that exhibit power-law dependence on the distance, r, from the well. Chang and
Yortsos (1990) presented a model for pressure transient analysis of fractal reservoirs where
the average porosity and permeability of the fracture network over a region of scale r vary
with » in a power-law manner. They examined the unsteady-state flow of a slightly
compressible fluid in a fractal fracture network embedded in a Euclidean matrix. An
appropriate modification of the diffusivity equation for such a case was also undertaken.
Solutions of this formulation were obtained for the case where the matrix does not
participate in the flow process and also for the case where the matrix exchanges fluid with

the fracture network.



Eeier (1990a) presented an extension of the work by Chang and Yortsos (1990).
Beier's model applies specifically to Newtonian flow in a cylindrical symmetry reservoir (d
= 2) containing a fractal permeable network. Beier also chose 10 write the pressure transient
equations for a fractal reservoir in a form that required available estimates of "near wellbore
porosity and permeability”. With a proper choice of dimensionless variables, it can be
shown that the dimensionless pressure transient equation derived by Beier (1990a) is quite
similar to one of the equations solved by Chang and Yortsos (1990). The main difference in
the formulation of these equations lies in the way the dimensionless variables were defined
in these two studies. Beier (1990a) also exhibited some field data from the Grayburg and
San Andres formations in southeastern New Mexico that apparently do not match solutions
from conventional models. Instead, Beier's fractal reservoir model was able to provide a
quantitative analysis of the field data. Similar cases have also been observed from some
west Texas reservoirs! where the use of a fractal reservoir model provided a much superior
match to the field pressure data than that provided by any other existing pressure transient
models. In a subsequent study, Beier (1990b) presented a model to analyze the pressure
response of a well with a ve ical fracture in an infinite fractal reservoir. He showed that
during the early linear flow period in such a system, the slopes of the log-log plots of
pressure and pressure-derivative curves are greater than one-half. Because of negligible
wellbore storage effects in these tests, he argued, homogeneous reservoir models could not

explain such "anomalous" transient pressure behaviour.

In 1988, Barker presented his "generalized radial flow model" which has since then
been of considerable interest and practical use to researchers in hydrogeology and
environmental engineering. Barker developed his model for transient flow during hydraulic

tests in fractured media having homogeneous and isotropic properties. In Barker's approach

I'R. A. Beier: private communication, 1992,



(1988), the generalized flow equations are developed by assuming that the areas (open to
flow) of surfaces perpendicular to flow vary in a pov.er-law fashion with distance from the
centre. Theoretically, this is equivalent to assuming that conductivity and storativity have
power-law dependence on the radius with the same exponent (Acuda et al., 1992a), so that
the diffusivity has no spatial dependence. In a subsequent study, Doe (1991) extended
Barker's approach (1988) by considering unusual shapes of drainage vo:umes which can
give rise to power-law variation of flow area with radius. Doe also presented an application
of Barker's fractional (or generalized) dimension theory to constant pressure tests. Barker's
fractional dimension model has actually been used to match successfully various field
hydraulic test data, which could not have been matched by any conventional pressure
transient models2. Barker's model has also been used in analyzing pressure-transient

behaviour of nuclear waste repositories in fractured granite (Long er al., 1990).

The theoretical model of Chang and Yortsos (1990), for the case of a line-source well
producing from an infinite medium, was used by Acuila er al. (1992a) to interpret the fractal
characteristics of a naturally fractured geothermal field. In a more recent study, Acuiia et al.
(1992b) reviewed the theoretical background of fractal analysis. They also demonstrated the
application of various diagnostic techniques for fractal pressure transient analysis as
developed by Chang and Yortsos (1990). They presented a discussion of various large-time
behaviour of the pressure and pressure-derivative responses for a fractal system. The
authors also commented on the implications of a transition in flow (fractal) dimensionality
during a well test in a fractal reservoir. For example, the early-time response of a well test
(in a three-dimensional space) may be characterized by a flow dimensionality indicative of
fluid flow not only in the areal plane but also in the vertical direction (caused by, say, a

partially-penetrating well in a thick formation); at larger times, however, the pressure

2T. W. Doe: private communication, 1992.



response may be more likely to be characteristic of cylindrical flow (due to a
small/negligible vertical flow component), thereby indicating a different dimensionality. This
transition may impart a do..!;'e porosity-like "V" shape in the pressure-derivative behaviour,

causing an incorrect interpretation of the system response.



Chapter 111

OBJECTIVES AND APPLICATIONS

3.1 Purpose and Scope of Present Study

Pressure transient analysis is one of the primary tools used by the petroleum reservoir
engineering community to characterize the conductive and storage properties of a reservoir.
The techniques used to analyze the pressure data collected during a period of
production/injection are based on solutions to partial differential equations describing the
flow of fluids through porous media. A major assumption incorporated into these solutions
is that the conductive and storage properties are uniform in the unit of interest, i.e., the
properties are invariant in space. Moreover, the majority of the existing pressure transient
models assume Newtonian fluid flow in reservoirs. Although these assumptions have beer
shown to be viable in many situations, the geological complexity of some units and/or the
non-Newtonian characteristics of certain fluids may make these assumptions of dubious
validity. More importantly, it has been observed in some previous studies (Odeh and Yang,
1979; Olarewaju, 1992) that pressure data collected during the flow of non-Newtonian
power-law fluids may show anomalies when analyzed using methods derived for
Newtonian fluids. Such anomalies usuaily have appearances similar to those for flow in
fractures. And as will also be demonstrated in the present study, pressure behaviour during
the flow of a power-law fluid in a homogeneous system may appear quite similar to that for
Newtonian fluid flow in a fractal reservoir. Thus, use of existing pressure transient models
may not be appropriate for the analysis of pressure data for non-Newtonian power-law fluid
flow in fractal reservoirs. The purpose of this study is to examine methods for the analysis
of non-Newtonian fluid flow data in one class of geological settings that is not amenable to

the conventional approach.
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In the present study, an investigation of the radial flow of non-Newtonian, power-law,
slightly compressible fluids in heterogeneous cylindrical-symmetry reservoirs with a fractal
structure is undertaken. The main objectives of this work are to derive a new partial
differential equation describing power-law flows in fractal reservoirs and to obtain analytical
solutions of this equation for a finite-wellbore case in a single-well situation. Examination of
the system response is conducted under the assumption that the fracture network dominates
the flow behaviour. Steady and unsteady flow situations in an infinite systern are considered.
Transient pressure behaviour in finite-sized systems are also dealt with. Analysis of the
system response when the matrix participates in the flow is performed for a simple limiting
case. Finally, some comments are made on the application of the model to a flow system
comprising a two-zone composite reservoir, with the inner zone being totally fractal and the

outer zone homogeneous.

3.2 Potential Applications

This study, in effect, extends the modelling effort of non-Newtonian fluid flow to
behaviour in fractal reservoirs which so far has been confined to Newtonian flow. The
results of this study should prove to be useful to researchers in the areas of petroleum
reservoir engineering, hydrogeology and environmental engineering where fracture flow
modelling is a subject of considerable theoretical and practical interest. The present model
may be used to interpret transient flow of polymer solutions, emulsions and aqueous foams
through areally heterogeneous porous media with a fractal structure. The model can be
applied also to heavy oil reservoirs, like Lloydminster in Alberta, where the reservoir fluid
of heavy oil mixed with sand has been modelled as a non-Newtonian power-law fluid (Poon
and Kisman, 1992). The heterogeneous nature of this reservoir may render it to be a

probable candidate for representation by fractal geometry.
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Chapter IV

MATHEMATICAL MODEL FOR POWER-LAW FLOW
THROUGH FRACTAL POROUS MEDIA

In this chapter, thc .ueological properties of non-Newtonian fluids and physical
characteristics of fractal permeable networks will be considered first to set the conditions of
the present study. Various terms related to the rheology of non-Newtonian fluids and fractal
reservoirs will be defined. Subsequently, we will discuss the derivation of a nonlinear partial
differential equation describing single-phase flow of a non-Newtonian power-law fluid in a
reservoir showing fractal structure. Finally, we will show the use of a “linearizing
approximation” that reduces the exact nonlinear equation to a linear one for which closed-

form analytical solutions may be obtained.
4.1 Flow of Non-Newtonian Power-Law Fluids Through Porous Media

4.1.1 Definitions

A knowledge of the viscosity of various fluids is essential for a study of the flow
behaviour of these fluids through porous media. The viscosity of a fluid, a measure of its
resistance to flow, is determined by the transport of momentum *n a direction perpendicular
to the direction of flow. In the viscous region for the flow of a Newtonian fluid, viscosity is

defined by

d .
T=po = @1)

or

(4-2)

|«
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where u is the Newtonian viscosity, 7 is the shear stress in the shear plane parallel to the
flow direction and 7 is the shear rate perpendicular to the plane of shear. Fluids that obey
Equation (4-1) are termed "Newtonian fluids". The connotations of the term "Newtonian"
are (Harris, 1977):

1) the stress acting on an element of material is proportional to the shear rate, with the
constant of proportionality being called the viscosity;

2) the viscosity is time-independent and is also independent of shear rate and time-

derivatives or integrals of shear rate to any order.

The exceptions to Newton's viscous law are not rare. There are fluids like polymer
solutions, colloids, foams, solid-liquid suspensions, etc., that do not exhibit Newtonian
behaviour. These fluids, called "non-Newtonian fluids", do not show a direct proportionality
between the shear rate and the applied shear stress. The viscosity of these fluids changes
significantly with shear rate under isothermal conditions. It is often convenient to define an
“apparent viscosity" for non-Newtonian fluids as

4-3)

T
bow = 5
which is a function of shear rate. The rheological properties of time-independent non-
Newtonian fluids depend only upon the magnitude of the shear stress and not upon the
duration of the stress. Shear-thinning (pseudoplastic), shear-thickening (dilatant) and
Bingham plastic fluids fall into this category. With increasing shear rate, pseudoplastic and
dilatant fluids exhibit decreasing and increasing apparent viscosities, respectively. Bingham
plastic fluids are those for which a finite shearing stress is required to initiate motion and for
which there exists a linear relationship (beyond the yield stress) between shear stress and

shear rate.
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4.1.2 The Ostwald-de Waele Power-Law Model

For the purposes of modelling and calculation, the most commonly implemented
rheological model used to describe shear-thinning or -thickening behaviour is the Ostwald-
de Waele power-law model. This two-parameter function which has been useful in fitting
rheological data for a large variety of shear-thickening and shear-thinning flows is often
represented by the following (Barnes, 1989; Harris, 1977; Schowalter, 1978; Ikoku and
Ramey, 1979; Torok and Advani, 1987; Poon and Kisman, 1992; Olarewaju, 1992):

T = Hy" (4-4)

where H is the consistency and n is the dimensionless flow behaviour index. Equation (4-4)
"is probably the ... most widely used equation in all of rheology" (Schowalter, 1978). The
appeal of the power-law is evident. When n = 1, Equation (4-4) reduces to the description of
a Newtonian fluid with viscosity H. For 0 < n < 1, Equation (4-4) dcscribes a rheogram
characteristic of pseudoplastic fluids. For n > 1, a curve characteristic of dilatant fluids is
found. The index n, thus, is a measure of the degree of non-Newtonian behaviour of the
fluid and may often be regarded as constant over several decades of shear rate. Now, for a
Newtonian fluid, the viscosity is given by Equation (4-2). Analogously, one can define an

“apparent viscosity" for power-law fluids by combining Equations (4-2) and (4-4) to obtain
Happ = HF" @-5)

The power-law model is an attempt at empirical curve-fitting with maximum
simplicity. Even though Equation (4-4) may fail to fit the total range of possible shear rates
for some fluids, the expression can be very useful for a two-parameter fit of rheological data

over a wide range of shear rates. One of the main objections to the power-law model is that
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it does not predict the limiting apparent viscosities (i.e., the apparent viscosities at zero and

infinite shear rates).
4.1.3 Generalization of Darcy's Law

The theory of laminar flow of Newtonian fluids through homogeneous porous media
is based on the classical cxperiment of Darcy. Using the modified Blake-Kozeny equation
for one-dimensional flow of power-law fluids through porous media (Christopher and
Middleman, 1965; Gaitonde and Middleman, 1967; Savins, 1969), the superficial flow
velocity can be expressed as (Ikoku and Ramey, 1979; Pascal and Pascal, 1985; Torok and
Advani, 1987; Olarewaju, 1992)

l/n
kA
Uy = [ -2’1] (4-6)
ueﬁ"

where the "effective viscosity" (Lef) is given by (Christopher and Middleman, 1965;
Gaitonde and Middleman, 1967; Savins, 1969; Ikoku and Ramey, 1979; Olarewaju, 1992)

B = T (9+3/n)" (150kg) 2 @)

It is clear from Equation (4-7) that in the Newtonian limit (i.e., n= 1) Hef = H = Newtonian
(constant) viscosity. From Equation (4-6), an analogy to Darcy's law for power-law fluids,
neglecting gravity, can be expressed as (Ikoku and Ramey, 1979; Pascal and Pascal, 1985;
Olarewaju, 1992)

u = L (4-8)

a /1.17 a"

where u, is the superficial velocity in the horizontal (radial) direction.
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4.2 Flow Properties of Fractal Fracture Networks: Theoretical Background

When a naturally fractured reservoir is highly disordered and fractal, the geometric and
transport properties of the fracture networks differ in a non-trivial way from those for the
corresponding Euclidean flow media (Chang and Yortsos, 1990; Acuifia er al., 19923;
Acuiia er al., 1992b). The theoreiical, ideal response of perfect fractal objects is described as
follows: many of their basic properties, defined as averages over a region of scale r, are
scale-dependent and are proportional to non-zero powers of r. For example, the mass
density of an arbitrary fractal network of fractures around an arbitrary point decreases in a
power-law fashion with respect to the distance r (Acufia ez al., 1992a; Acuia er al., 1992b).
The exponent of this power-law is (df— d), where dfis the "mass fractal dimension” of the
fractal network of fractures and d is the Euclidean dimension of the medium in which the
fractal object is embedded and is an integer (1, 2 or 3). The physical meaning of the "mass

fractal dimension", in the context of well testing, will be discussed subsequently.,

The calculation of fracture density is considered in the various fracture networks
shown in Figure 4-1 (Acufia e al., 1992b), with the embedding medium being two-
dimensional (so that d = 2) in every case. The concentric circles are at various radii from the
centre (where the well is located) and the fracture densities are calculated within these
arbitrary circles. The first network (network (a)) is nothing but a single fracture, the mass of
which increases in direct proportion to the distance r, with the area (volume) of the
embedding medium increasing in proportion to r2. Thus, the density of the fracture (or the
permeable flow path) within the two-dimensional medium varies in proportion to r ~/, or, in
more general terms, to 7% ~ 9, where df= 1 and d = 2. Figure 4-1(c) exhibits a fracture-
matrix system similar to the Warren and Root type double-porosity model with the
horizontal and vertical lines representing the uniform fracture system. In this case, the

fracture network is equivalent to a two-dimensional homogeneous medium of Euclidean
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Figure 4 - 1: Three Different Fracture
Networks Embedded into a Medium of
Dimension d = 2 (After Acuna et al., 1992 b)
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geometry (Chang and Yortsos, 1990). For this network, the fracture density, again
proportional to r4f =4, is invariant with distance because of the fact that dg=d=21In
network (b), the indicated mass of dotted lines is assumed to represent a fractal fracture
network. This network corresponds to a non-Euclidean case where, even though the same
power-law variation of fracture density is exhibited, the value of drlies between one and
two; in other words, in this particular case, the cumulative "mass" or length of fractures
contained within an observed area grows faster than it does in the case of a line (a single
fracture; network (a)) but not as fast as in the case of a plane (a Warren-Root type
homogeneous fracture system; network (). In a three-dimensional flow space, a value of
flow dimensionality (dp) less than or greater than two depends on a combination of wellbore
geometry and the nature of the fracture network (Acufia er al., 1992a; Acuiia et al., 1992b).
For example, the fractal dimension may be less than two if the fracture network exists only
in the horizontal plane and the formation is homogeneous in the transverse direction (Acufia
et al., 1992b). Similarly, drmay be greater than two if flow also occurs parallel to the
wellbore as in the case of a partially penetrating well in a relatively thick reservoir (Acufia ez
al., 1992b). The parameter dgis strictly a geometric property of a fractal object and can be
estimated by measuring the values of cumulative mass (or length) of fractures contained
within circular regions of known radii r (Acufia er al., 1992a). In fact, as is evident from the
discussion presented in this paragraph, the slope of a linear log-log plot of cumulative mass

(or length) of fractures against radius would be the mass fractal dimension, df

Another parameter (of fractal objects) of interest is the fractal exponent, 8, which is
related to the topology of the fracture network (6 2 0) (Beier, 1990a; Beier, 1990b). This
parameter characterizes both the geometric and transport properties of the fracture network
(Acuiia ez al., 1992a) and, hence, has a significant role to play in the diffusion of fluid along

paths constrained to fractal geometry. During diffusion in fractal objects, the mean square
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distance (from the origin) of a single particle diffusing from the origin at time ¢ is given by

the following scaling relation (Orbach, 1986; Acuiia et al., 1992a; Acuiia et al., 1992b)
<ri(t)> o 0?+9) (4-9)

When 6 = 0, Equation (4-9) reduces to < r’(1)> o< 1, which is the corresponding scaling
relation for the "normal situation” of diffusion in Euclidean space (e.g., the cases shown by
Figures 4-1a and 4-1c). In these two cases, the fracture coanectivity is high and therefore,
diffusion is easier. On the other hand, in the fractal network of fra-tures (represented by
Figure 4-1b), there is a diffusion slowdown (for @ > 0) because of poor spatial fracture
connectivity and because of a higher degree of tortousity of the fluid flow path (Orbach,
1986; Beier, 1990a; Beier, 1990b; Acufia er al., 1992a; Acuiia et al., 1992b). In general, 6
increases with poorer fracture connectivity and higher tortuosity of the flow paths (Acufia et

al., 1992b).

The spectral dimension of a fractal object, d; (Beier, 1990a; Sahimi and Yortsos, 1990;
Beier, 1990b), is an extremely important parameter of the flow network, especially in the
context of pressure transient analysis. The parameters drand 6 are related to the spectral

dimension d; in the following way (Orbach, 1986; Beier, 1990a; Beier, 1990b)

2d
d, = —L (4-10)

2+ 6

Beier (1990a) and Acuiia et al. (1992a, 1992b) have shown that the asymptotic slope of the
transient pressure curve in a fractal reservoir is related to the spectral dimension dg and
hence, in Beier's studies (1990a, 1990b), the parameter d, is used to describe the fractal
network instead of 6. For a totally areal flow network, d; is less than or equal to two (Beier,
1990a; Beier, 1990b; Acuiia et al., 1992b); such a situation may occur when the flow

medium is homogeneous in the vertical direction or when the producing unit is relatively
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thin (Acufia et al., 1992b). The single-well pressure transient behaviour during the flow of a
single-phase fluid through a fractal reservoir may differ significantly from its homogeneous
radial flow counterpart. The theoretical formulation of the pressure transient behaviour for a
fractal fracture network was presented by Chang and Yortsos (1990) who used the

following relations for fracture porosity ("mass density") and permeability

dy~d
o(r) = ¢°(’rLJ (4-11)
0
and
d/-d-0
k(r) = ko(':‘) (4-12)
o

where @) and k) are the porosity and permeability values at r = ro- The defining equation for
the permeability of a fractal object was obtained in the study of Chang and Yortsos (1990)
by using analogies from the work of physicists who studied the variation of conductance in
fractal systems (O'Shaughnessy and Procaccia, 1985; Orbach, 1986). Similar definitions of
porosity and permeability were also used in many other studies on pressure transient
analysis for fractal reservoirs (Beier, 1990a; Beier, 1990b; Acuiia et al., 1992a; Acufia et al.,
1992b). It is to be noted that these definitions of porosity and permeability are not point
values, as traditionally understood, but macroscopic values over a region of size r.
Obviously, in the Euclidean limit of dr=dand 6 = 0, these porosity and permeability
values become independent of scale and reduce to the corresponding point values. Equations
(4-11) and (4-12) show that the conductivity and storativity of a fractal reservoir are power-
law functions of scale with different power-law exponents. Thus, the diffusivity is also
sc1'e-dependent (in a power-law fashion) with a non-zero exponent which has been shown
to be related to the topology of the fracture network (Chang and Yortsos, 1990; Beier,

1990a; Sahimi and Yortsos, 1990; Beier, 1990b; Acuiia er al., 1992a; Acuiia et al., 1992b).
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4.3 Assumptions

The following assumptions are made in deriving the mathematical model considered

in the present study:

a) small pressure-gradients exist throughout the reservoir at all times,

b) gravitational forces are negligible,

c) the radial flow takes place through an areal fractal network of fractures with the

well penetrating the entire formation thickness,

d) the porous medium has a uniform thickness,

e) fluid compressibility is small, and

f) the non-Newtonian fluid obeys the Ostwald-de Waele power-law relationship.

The scalings for porosity and permeability of the areally heterogeneous reservoir are
given by Equations (4-11) and (4-12), respectively. From these equations, with rp = r, (the
wellbore radius) and for d = 2, the spatial variations of porosity and permeability of a two-

dimensional areal fractal network can also be expressed as:

o (rir,) (4-13)

o(r)
and

k() = k(rir)y4®e? (4-14)

Equations (4-13) and (4-14) are similar to Beier's Equations (6) and (7) (Beier, 1990a),
respectively. The only difference between these two sets of expressions is that in Equations
(4-13) and (4-14), the reference length scale is the wellbore radius instead of the equivalent

wellbore radius, as was used by Beier.

21



Now, from Equation (4-8), the superficial flow velocity for a power-law fluid can be

expressed in radial coordinates as:

lin
VON" 13
u, = {#w(’) 8r} (4-15)

where 4 (r) can be expressed, by combining Equations (4-7), (4-11) and (4-12), as

(n—l)(d,/d,—d, +1)
) (4-16)

r
Houe(r) = A (r_

w

where

l=n

KR

A= %(9+3/n)"{150kw¢w} (4-17)

It is to be noted that Equation (4-15) is a modified version of the generalized form of
Darcy's law as has been considered in some previous studies (e.g., Ikoku and Ramey. 1979;
Pascal and Pascal, 1985; Olarewaju, 1992). However, in all these studies the power-law
flow is considered to take place through a flow medium (or media) having no spatial
variability of its transmissive or storage properties. In the present study, the generalized
form of Darcy's law for a fractal object within which 2 power-law flow is taking place is
extended. Additional assumptions made in obtaining a linearized partial differential equation

are discussed later in this chapter.
4.4 Some comments about the use of Equation (4-15 )

Yortsos (1991) extended results presented in the physics literature to a study of non-

Newtonian power-law flow in percolation systems. The theory of percolation, originally
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proposed more than thirty years ago and thus named because of an analogy with the process
of a fluid percolating through a solid, continues to be one of the important tools for
physicists in the study of the geometric and transport properties of porous media (Sahimi
and Yortsos, 1990; Yortsos, 1991; Balberg et al., 1991; Berkowitz and Balberg, 1993). The
theory has been developed extensively in the field of statistical physics and has been applied
in a variety of problems including the conceptualization of geometrical properties and
transport phenomena observed in disordered flow media (Sahimi and Yortsos, 1990;
Yortsos, 1991; Balberg er al , 1991; Berkowitz and Balberg, 1993). Percolation theory
provides "universal" scaling laws which determine the physical and geometrical
characteristics of a system (Balberg et al., 1991; Berkowitz and Balberg, 1993). These laws

are generally expressed in power-law forms of the type (Balberg ez al., 1991)

A o< (v-v)* (4-18)

where A is a geometrical or physically observable quantity, v is the fractional volume of the
conducting phase and v, is the critical (threshold) value for the onset of percolation (i.¢., of
system connectivity) and x is the exponent for quantity A and can be determined from theory
and/or computer simulation and/or experiment. Scaling laws of the type shown above hold
for v relatively close to v; (typically, for v < 2v. (Berkowitz and Balberg, 1993)). For the
universal scaling laws such as Equation (4-18), the exponent x is dependent only on the

system dimensionality, d.

Making use of a scaling law similar to Equation (4-18), Sahimi and Yortsos (1990)
demonstrated the following scaling relationship, with length, of effective hydraulic

conductivity of a percolation system for Newtonian flows:

Ko [TFI® (4-19)
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where x = 2 (Sahimi and Yortsos, 1990) and v = 0.88 (Sahimi and Yortsos, 1990) (v =
0.854 in the study of Berkowitz and Balberg, 1993) for a 3-D system. It should be noted
that in the study of Sahimi and Yortsos (1990), 1 was used instead of k as the conductivity
scaling exponent. For a non-Newtonian power-law flow in a percolation system, the

conductivity scaling has been shown to possess the form (Yortsos, 1991)
K o [V (4-20)

where #(n), although not precisely known, may be defined approximately for 3-D

percolation clusters as (Yortsos, 1991)
t(n) = 1.76 + 0.24/n (4-21)

To the best of our knowledge, an equivalent expression for z(n) for 2-D systems is not
currently available. For an areal flow system, as is considered in the present study, the use of
a proper flow equation would require the availability of a suitable approximating form for

1(n) so that the conductivity scaling given by Equation (4-20) may be used.

In the present study, use has been made of Equation (4-15) to describe the flow
velocity of a power-law fluid in an arbitrary fractal medium. From Equations (4-14) through

(4-16), the scaling for non-Newtonian power-law flow in a fractal has been found to be

U, o<

(dp-1-dg/d;)+(1/n)1~df/d,) l/n
(_r_) (‘91’) (422)

or

Ty

It should be noted that at this point, to our knowledge, rigorous theoretical and/or
experimental results for power-law flow in fractal objects have not been presented in the
literature, and hence, the validity of the scaling presented by Equation (4-22) is questionable.

However, the present study deals only with areal flow networks, and because of the lack of
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available scaling exponents for power-law flow in 2-D percolation systems, use could not be
made of a hydraulic conductivity scaling law similar to that considered in the study of
Yortsos (1991). The rationale for proceeding in our present analysis with Equation (4-22)
also lies in the fact that this equation arises from a straightforward coupling, as it were, of
the flow equations used in studies dealing with non-Newtonian power-law flow in
homogeneous systems (i.e., Ikoku and Ramey (1979)) and those dealing with Newtonian
flow in fractal systems (e.g., Beier (1990a)). And, as will be shown later, the resulting
partial differential equation and its solutions consequently are direct generalizations of those
presented in the aforementioned studies, and they also reduce to the classical pressure-

transient models in the limit of n =1 and d¢ = d; = 2.
4.5 Partial Differential Equation
The continuity equation for radial flow in a porous medium may be written as

19, o 3
~=-(rou) = =(9p) (4-23)

For isothermal fluid flow and assuming constant fluid compressibility, the density of the

fluid at any pressure, p, can be expressed as
P =P, gt(Pro) (4-24)

where p, is the density at a given pressure, py. From Equation (4-24), one obtains

9 _ o

or P or (4-25)
and

% _ . %

o s ot (4-26)
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Also, we have

9% _ . sP i
=07 (4-27)

where ¢y is the effective pore space compressibility. Introducing Equations (4-15), (4-25),

(4-26) and (4-27) into Equation (4-23), one gets, after simplification

1/n Un I+n
19],1 kir) dp k(r) (QB.)T - P ]
. ar[r{#‘ﬁ(r) 8r} } + C{#eﬁ(’ )} > o(ric,— o (4-28)

n—1

f “n
Multiplying both sides of Equation (4-28) by Lk( r)%e-) , it is possible to obtain, after
r

further simplification

ST SO PONY. - opd - I 3{ gg}
r[,l;/’."( ){k( ) } + k(r)a d nu'cﬁ ( ) + nu:}”(r) ar k(r)ar

n-1
k(r) (opY _ { 3_2}7211
i (r)( arj = or)eqkr)So " 2 (4-29)

If constant and small fluid compressibility and small pressure gradients are assumed, the

gradient-squared term may be considered negligible and Equation (4-29) reduces to

-]-—a-[k(r)&pjl l:d +.£ df 4 &}Mgﬂ
n

nor nd, d nl|r or
n=]
In ap Tap
= @(ricpg(r ){k(r )5;'} > (4-30)
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Equation (4-30) is a nonlinear partial differential equation and represents the governing
equation for the radial flow of a non-Newtonian power-law fluid through an areally

heterogeneous porous medium with a fractal structure.

For a Newtonian fluid, n=1 and u, = H = u, and for this case, Equation (4-30)

reduces to
19 .., _ P 431

which is the -liffusion equation for radial flow of a slightly compressible Newtonian fluid
through a heterogeneous reservoir (e.g., Equation (5) of Beier, 1990a). Again, by setting dr

=d; =2(so that, k(r) = k, ¢(r) = ¢ and Hefr) = 1), Equation (4-30) becomes

n-l
Ip , ndp _ (EQYM(QEJTL;E i
7t Fa T ) o) a (432

which is the diffusion equation for radial flow of a non-Newtonian power-law fluid through

a homogeneous porous medium (similar to Equation (A-9) of Ikoku and Ramey, 1979).

Equation (4-30) is linearized by making an approximation suggested by Ikoku (1978)
and Ikoku and Ramey (1979). From Equation (4-15), one has

1lin ln
) u‘ﬁ(r) lin q -
{ k(r) } 2nrh (4-34)
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where q is the production (or injection) rate. Substituting Equation (4-34) into Equation (4-
30)
10 3p 1 d f d f d f IC( r ) 3p
——lk(r)=—| + |d, +—+—-+—-L L =
nar[ (')ar] [’ n nd, d n|r or

n~1
q op
= @(r)e g (r ){m} > (4-35)

The approximation, given by Equation (4-34), has allowed us to linearize Equation (4-30)
so that proper (albeit approximate) analytical solutions can be obtained. This approximation
is equivalent to assuming that the flow rate at any radial distance from the wellbore is a
constant. For non-Newtonian power-law flow in a homogeneous porous medium, Ikoku
(1978) and Tkoku and Ramey (1979, 1982) have shown that the analytical solution obtained
by making such an approximation compared fairly well with a more rigorous numerical
solution when 7 is between 0.5 and 1. In the present study, it has been observed that for
power-law flow through fractal reservoirs, such an approximation results in errors that are
not large for many values of dgand n. A detailed discussion of this aspect of the analytical

model will be presented in a later chapter.

Now, introducing Equations (4-13), (4-14) and (4-16) into (4-35) and simplifying,

one obtains

(d,1d, )(n+l)=d,(n~1)4n-3
Ip [y L G dndp G [y,
or? ""n ond, d |ror  rr, or
where
n.A n~1
o= es(ce)
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4.6 Dimensionless Variables

The dimensionless groups are defined in the following manner:

(pi *P) kw r:-l df /d.r

= 4-38
Po A{q/2nh) (4-38)
r, = — (4-39)
rW
(d,/d )t
p = -——-—-——’G = (4-40)

It should be noted that the dimensionless groups defined in Equations (4-38) through (4-40)
are quite similar to the corresponding groups defined by Beier (1990a). In fact, for n =1 (so
thatA = H = pu,and G = up,,c/k,), the two sets of groups are identical. Moreover, for dr=
d;=2(sothat A = Hep), Equations (4-38) through (4-40) reduce to the corresponding
dimensionless variables, defined by Ikoku (1978) and Ikoku and Ramey (1979, 1980, 1982)

for the flow of a power-law fluid through a homogeneous porous medium.

From Equations (4-38) through (4-40), it can be shown that

9 _ _ A(q/2%h)" dp, )
or kri(d;1d,) on (4-41)
ip_ _ A(q/Zn’h)"(df/d,) op,

o Gk, r? or, (“4-42)
I’p _ A(gq/2zh)" Jp,

ot T T krd,1d,) ory @43
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Substituting Equations (4-41) through (4-43) into Equation (4-36) and simplifying, one gets

) .
9 Pg + |4, +_1___d.£._iiL _’L_af_g_ = (dj/d:)zro{("’/’d-)("‘*“"‘l("""z}ip.D.
or, n nd, d\r, dr or,

(4-44)

Equation (4-44) is the dimensionless form of the linearized partial differential equation for
the flow of a power-law fluid through a fractal reservoir. For a homogeneous porous
medium (df = ds = 2), Equation (4-44) reduces to the dimensionless linearized partial
differential equation (Equation (B-1) of Ikoku and Ramey, 1979) for the flow of a power-

law fluid through a reservoir. Also, for n =1 (Newtonian fluid), Equation (4-44) is the same

as Beier's Equation (A-1) (1990a).
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Chapter V

SOLUTIONS FOR THE INFINITE RESERVOIR CASE

The emphasis in the present chapter will be on discussion of the solution of the linear
partial differential equation (Equation (4-44)) for the case of constant production rate from
an infinite reservoir. Welibore storage and skin effects will not be considered in the present
analysis. Subsequently, the rate solution of Equation (4-44) for the case of constant wellbore

pressure in an infinite system will be discussed briefly.
5.1 Constant Rate Case
5.1.1 Initial Value Problem: Finite Radius Well

The case of production of a power-law fluid at a constant rate from an infinite reservoir
into a finite-radius wellbore is considered in this section. The initial value problem becomes

(Equation (4-36))

P [y 1 4 dlage G [y
or? ""n nd, d |ror ‘1] ot

with the initial condition given by
p(r,0) = p,,forallr (5-2)

The inner boundary condition is given by the following (from Equations (4-6) and (4-7))

relationship

P
or

_A(_a Y
ren k,(zmh) >3

w
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The reservoir is infinitely large so that the pressure at any time and at all locations far away

from the production well remains essentially constant at the initial pressure, p;. Thus, the

outer boundary condition is

lim p(r,t) = p,,forall¢

(5-4)

In terms of dimensionless variables, Equations (5-1) through (5-4) become, respectively

pp gL 9 4 ndpp _
or,? ""n nd, d |r,or,

Pp(r,,0) = 0,forallrp

and

lim pp(rp,tp) = 0,forallzp

2 ~1)-2} 0P
d.id)r {dy1d, nns1)~d; (n-1)-2} OPp
( ! ) ? or,

(3-5)

(5-6)

(3-7)

(5-8)

Equation (5-5) is a linear parabolic partial differential equation expressed in terms of

dimensionless variables and may be solved by applying the Laplace transformation.

Application of the transformation to Equation (5-5) and the initial and boundary conditions

yields

25 d
r,f%—%’l + n[:d,+i—£’———i]rb%
D

32

= (d, / d’)zrD{(d//d,)(u+l)-d,(n—l)}l.p.o

(5-9)



73 - 4’4 (5-10)

dr, el l
and
lim py(r,,l) = 0 (5-11)

with the initial condition having been used in obtaining the transformation of the time-

derivative of pp in Equation (5-9). By a suitable change of variables, Equation (5-9) can be

transformed into a Bessel equation. Let us assume that

Po = 1, f(p) (5-12)
where

p=art (5-13)

and where o, 8 and ¥ are arbitrary quantities to be determined. From Equations (5-12) and

(5-13), it can be shown that

fe‘l = ,Z, Y _E Y Af? i
dr, - r nf+ " nPf (5-14)
and that
2 = 2
P - B g v Bip-te2pytpr + X000, (5-15)
dr, rD rD r

Substituting Equations {5-12) through (5-15) into Equation (5-9), one obtains, after

simplification
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. 2y+n(d,~d,/nd -d, /d,)]| ,
p’f +[7 . 3 ‘ ]pf +of

- / - / Avl)~ .5
N y2+n(d, dfﬁ nd,~d, d,)f_ 'Bl'z‘(df/d,)zrg(d’/d'” 1)-d,( I)}f= 0

(5-16)

It is now possible to choose values of the parameters a, B and ¥ such that Equation (5-16)

reduces to a form for which standard solutions are available. Choosing

2Vl(d, /d
= \/—(f ) , (5-17)
(d,1d,)(n+1)~d,(n-1)
2
and
/ +1)-
y = (d,/d,)(n+1) nd,’ (5-19)
2
it can be shown that Equation (5-16) reduces to
d 2
2 pr0 "~ |1- S - pf = 0 5-20
P+ of [ n+1-d,(n-1):|f pf (5-20)
Equation (5-20) is Bessel's modified differential equation of order
d
=] - s 5-21
Y n+l-d(n-1) (521)

The magnitude of the parameter v is quite important in the present analysis. As will be

shown later, the value of v represents the large-time slope of the log-log plot of



dimensionless wellbore pressure against dimensionless time for the flow system under

consideration,
The general solution to Equation (5-17) is (Abramow1tz and Stegun, 1972)
flp) = Gl (p) + C,K,(p) (5-22)

where /, and K, are modified Bessel functions of the first and second kind, respectively, and

of order v; the parameter v can have integral or nonintegral values. By combining Equations

(5-11) and (5-22), it can be shown that C; = 0. Thus, from Equations (5-12), (5-13) and (5-

22), one can write

Po(rpd) = Cr] K (arf) (5-23)
so that
%—E’l = G K, () + afK’, ()] (5-24)
rD rp =1

Using the following property of the modified Bessel function, K, (Carslaw and Jaeger,

1959):
K, (a) = ~§Kv(a)—1<,_,(a) (5-25)

and noting from Equations (5-18), (5-19) and (5-21) that Sv = ¥, Equation /5-24) can be

rewritten as

Pp
dry

d
= -Gl (-di) K, (o) (5-26)

rp=l s
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where

d
I-v = : 5-27
Vi ldn-1) (>-2D)

The constant C, can be determined by comparing Equation (5-26) with the inner boundary

condition (Equation (5-10)) and is given by

1
C, = =5———o0 5-28
' 7 PR o
Thus, from Equations (5-23) and (5-28), one can wr - " . ;olution for Equation (5-9) as
14 B
FD(’D:I) = o K(ar) (5-29)

13/2 K]_v(a)

where v is defined by Equation (5-21), and &, 8 and ¥ are given by Equations (5-17), (5-
18) and (5-19), respectively. Equation (5-29) is the Laplace transform of the general solution
for the transient pressure distribution during the constant rate flow of a power-law fluid in an

infinite reservoir showing fractal behaviour.

The general solution at the wellbore (rp, = 1) is given by

K,(a)
13/2 Kl_v(a)

Kv{ 211 }
n+l-d(n—1

= (5-30)
13/2 K 2‘\/7
“In+1-dy(n-1

ED(I) =
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Beier (1990a) concluded that the dimensionless wellbore pressure during the production of a
Newtonian fluid from a fractal reservoir depends on d; and is independent of dr because of
the way the dimensionless variables were defined in his study. From Equation (5-30) it can
be seen that the dimensionless wellbore pressure during the production of a power-law fluid
from a fractal reservoir depends on d; and n and is independent of dr. Part of the dependence
on drhas been absorbed in the definition of the dimensionless groups. The linearization
approximation is also responsible for the dimensionless wellbore pressure solution being

independent of dy.

For zero wellbore storage and Newtonian flow (n = 1), Equation (5-30) reduces to
Equation (A-13) derived in Beier's study (19902). Also, for df= dg = 2, Equation (5-30)
exhibits the wellbore pressure response during the flow of a power-law fluid through an
infinite homogeneous porous medium (Equation (B-13) of Ikoku and Ramey, 1979).
Equation (5-30) may be evaluated directly by numerical inversion. However, it is also

possible to find approximate analytical inversions, as will be shown later in this chapter.
5.1.2 Limiting Solutions for Early and Late Times

It is possible to derive the early- and late-time approximating forms of Equation (5-
30). The limiting form for small times will be presented first. For early times, one has
I = oo, when the modified Bessel function, K ,(z), can be approximated as (Abramowitz
and Stegun, 1972)
LU

K,(z) = -2—2'8 (5-31)
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241
n+l-d(n-1)

where z (= J — oo . Substituting Equation (5-31) into Equation (5-30) and

simplifying, it follows that for / — oo , Equation (5-30) can be approximated as
Pup(l) = 1”7 (5-32)

Inverting Equation (5-32) analytically (Abramowitz and Stegun, 1972), it can be shown that,

at early times, the dimensionless wellbore pressure can be expressed as

Puwp(tp) = 2 \/% (5-33)

Equation (5-33) also represents the early-time pressure solution for a finite-radius well in a
homogeneous formation (Streltsova, 1988). This early-time pressure response, when plotted

against time on logarithmic coordinates, exhibits a straight line with a slope of 1/2.

Similarly, one can also consider the dimensionless wellbore pressure response (given
by Equation (5-30)) at large times. An expression for the modified Bessel function, K W(2),

can be written as (Abramowitz and Stegun, 1972)

m L(z) - I(z)
2 sin (vm)

i

K,(z)

- I'(v)T(l1-v)

> [I(2) - 1(2)] (5-34)

where I'(a) is Gamma function and where (Ikoku, 1978)

oo ] z 2i+v
hiz) = ,;'i! T(i+v+]) (5) -33)
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and

oo l 2 2i-v
I..(2) = zi! T(i—v+1) (’2’) (5-36)

i=0

Thus, from Equations (5-34) through (5-36), one gets

-y 2
K,(z) = _______I‘(v)l‘(]-v)(i) H I (272 +..}-

2 2 I(1-v) T2-v)
(z)z” 1 (z12)
= + +...
2 I'(l1+v) T(2+v) (5-37)

For large times, such that / (and hence, z) is very small, Equation (5-37) can be

approximated by neglecting 22 and higher powers of z within the winged brackets to obtain

K,(z) ~ M(E)—v 1 _ (i)zv !
Y 2 2 I'(1-v) 2) T'(I+v)

_ Lo\l (2Y" I-v)
) (2) {1 (2) F(]+v)} -38)

From Equation (5-38), it is possible write

I_I'(I-v)('_z_)z"

Ku(z) _ _T(v) (_Z_)HV vI(v) \2

KI-V(Z) I'(l1-v)\2 B I(v) (i)ZU-v}
(1-v)I'(1-v)\2

_ l—-(v) (-z_)Y—ZV"j_r(]_v)(i)Zv.*- r-(v) (i)Z(l—v)
T(1-v)\2 [ vIC(v) \2 (1-v)I'(1-v)\2

1 (1)1 _ ) 2(5)‘”’"’_
v(I-v)\2 (1-v)I'(1-v)| \2 (5-39)
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Neglecting z2 and higher powers of z within the square brackets, Equation (5-39) reduces,

for small magnitudes of v, to

K,(z) - l‘(v) (i)I—ZV—_Z- N 1 {l_(v) }2(£)3—4v_ 540
Kl-v(z) I'(1-v)\2 v (I-v)|T(1-v)| \2 s

Applying Equation (5-40) to Equation (5-30), one gets the large-time approximation of the

wellbore pressure solution, in Laplace space, as

1" 1- d" } (n+l)id,~1)
5 () = 1 n+l—-d(n-1) N ati-d,(n-1)
Pup . d, n+l-d(n~1)
n+l-d(n—1)

2
- 4 | 3d,+nd, o1
Jatl-d(n—-1) n+l-d(n-1) { N7l }w-d,(»-n

P2 d r d, n+l-d(n-1)
n+l-d(n-1)
L
I(n+1-nd,) (5-41)

Inverting Equation (5-41) term by term using Laplace transform tables (Abramowitz and

Stegun, 1972), one gets

r{ I- 4, } (n+1)(d,=1)
_ n+l-d(n-1) 1 n+i-d,(n=)
P = r d, .{n+l—d,(n—l) .
{n-i-l—d,(n-])}
n.lond,
t;-l-d,(n-l)
I.{Z(n‘])-d,(Zn-I)}_ I  nti=d(n-1)
n+1-d(n-1) (n+1-nd,) d,
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2
d
rii- : Bpmdoncl
{ n+ I_d‘(n_])} . 1 n+l-d,(n-1) .t:—'”—i%
{ d, } n+l-d(n-1) 2

n+l-d(n-1)

1
r 2(n+1-dn) (5-42)
n+l-d(n—-1)

At sufficiently large times, one can obtain an approximate expression for p,,p, from
Equation (5-42), as follows:

(n+l1)(d,~1)

__n+l-d(n-1) 1 wId(nel
S 4, n+l-d(n-1)
{n+1~d:(n—1)}
n+l-nd,
t;+l-d,(n—l) 1
(n+1-nd,) (n+1-nd,) (5-43)

Equation (5-43) may be compared with diiensionless wellbore pressure values obtained by

numerical inversion of Equation (5-30).

Equation (5-43) shows that for practical purposes (i.e., at relatively large times) a

ntl-nd,

+1-(n-1)d,

Cartesian graph of p,,p against ¢, will yield a straight line with a slope, m, given by:

(n+l)(d,~1)

_ _nh+l-d(n-1) 1 nrizd (=) 1 (5-44)
r d, n+l-d(n-1) n+1—nd,
n+l-d(n-1)

and an intercept, at tp =0, of ~1/(n+1-nd).

41



Another late-time (/ - 0) approximating form of Equation (5-30) may be derived. When

z — 0, the modified Bessel function, K,(z), can be approximated as (Abramowitz and

Stegun, 1972)

1 2\
K,(2) = Er(")(ﬁ') (5-45)

Using Equation (5-45), Equation (5-30) can be reduced to the following form:

I{1- d, fat D=0y ((ne2yd,-1)
5 (1) = n+l-d(n-1)] 1 ~+l-d.f~-~.la{m"}
Puo ) n+l-d(n—1)
n+l-d(n-1)

(5-46)
Inverting Equation (5-46) by using Laplace transform tables (Abramowitz and Stegun,

1972), one obtains, after simplifying,

(n+l1)(d,~1)

p (t ) _ n+1-—d,(n—]) ) 1 n+l—d,(u-l)'
e r d, n+l-d(n-1)
n+l-d(n—1)
(n+l-nd,)
n+I=d;(n-1)
2 (5-47)
n+1l-nd,
Equation (5-47) is the same as Equation (5-43), except that the last term, N S , is

n+1-nd,
omitted from the former equation. Equation (5-47) would apply, therefore, at very large
times and for positive values of the exponent of dimensionless time. It can be noted that the
exponent of ) in Equations (5-43) and (5-47) is given by the parameter v (see Equation (5-
21)). Thus, for positive values of v and at large times, a log-log straight line plot of p,,p

versus tp would exhibit a slope of v. For a pseudoplastic fluid (0 <n<1)andd, < 2,v
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would always be positive. However, for a dilatant fluid (1 < n < 2), in order for v to be

positive, it is necessary that d, < 1.5.

It is obvious that for n = 1 (Newtonian fluid), a large-time plot of the pressure
transient, given by Equation (5-47), on logarithmic coordinates would yield a straight line
with a slope of 1 ~d/2, from which the value of dg can be obtained. A similar conclusion
was also made by Chang and Yortsos (1990) and Beier (1990a). It has also been shown that
at large times an identical behaviour would be exhibited by a line-source well in a fractal
reservoir (Acufla er al., 1990a, 1990b). Equation (5-47) also shows that for a homogeneous
reservoir (df= ds = 2) and for a pseudoplastic fluid, a large-time log-log plot of p,,p versus
tp would be characterized by a straight line with a slope of (1-n)/(3-n), as has been

observed earlier by Ikoku and Ramey (1978).
5.1.3 Pressure Solutions for Line-Source Wellbore Case

It is possible to obtain transient solutions for dimensionless pressure not only in
Laplace space but also in real space for the case of a line-source (sink) wellbore in an infinite
fractal reservoir. In every respect, other than the inner boundary condition, this case is
mathematically the same as the finite-wellbore case. For the infinitesimal-source case, the
inner boundary co 1lition may be described in dimensionless terms, from Equation (4-15),
as

r[:d,ﬂ—(d,/d,)(n*-l) _2?2 = -d,/d, (5-48)
arD rp—0

Now, for the infinite outer boundary condition, the solution to Equarion (5-9) is given by

Equation (5-23) which includes the constant C, to be determined fro- the inner boundary

condition. From Equation (5-23), it can be shown that
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r,;“‘/ +1~(dy1d, )ne1) ADp = - Cz[’}:' 2 apK,_,(arf )] (5-49)
er rp—0 G

Using the following relationship (Barker, 1988)

lim 2K, (z) = 2"'T(v), forv>0 (5-50)

and combining it with Equation (5-48) expressed in Laplace space, one can obtain an
expression for C from Equation (5-49). The resulting expression for dimensionless
pressure is given by

Po(rp,l) =

4 (E.) K(om) (5-51)

4, Br1-v)\e) ~ 1
where , B, yand v are given by Equations (5-17), (5-18), (5-19) and (5-21), respectively.
Equation (5-51) defines the pressure response (in Laplace spacs) of an infinite fractal
reservoir due to a constant rate of produc:ion from it by a line-source well. Equation (5-51)

can be inverted to the real plane analytically; this analytical expression can be written as

follows

2y 228
ar; a’r}
) = I'{-v, 5-52
Po(mp,tp) T(1-v) { v : } (5-52)

where the incomplete Gamma function is defined as
Tfb,x} = [e™u du (5-53)

and the parameter a = d¢2 B d. At the wellbore, Equation (5-52) reduces to



2
Pup(lp) = r{"v' 'a—} (5-54)

a
I'(l-v)

It can be seen from Equation (5-54) that the wellbore pressure response at a given time

depends only on n and d, as in the finite-wellbore case. The incomplete Gamma function

can be expressed as follows (Barker, 1988)

r{bx} = T(b) - 2( 1) X

& il (b+i) -39

For small values of the argument a?/p,, which occur after a short time, one may use only the
first two terms of the expanded form of the incomplete Gamma function (Acuifia et al.,

1992b) and thus, from Equations (5-54) and (5-55), it can be shown that

al-Zv , I

—_— ) ————— 5-56
vr(z-v)’°+nd,—(n+1) (-5

wa =

Equation (5-56) is the large-time approximation for the line-source wellbore pressure
response. A similar equation has been derived also for the case of n = 1 by Acufia ef al.
(1992b). It is interesting to note that Equation (5-56) is, in fact, identical to the large-time

approximation for the finite-wellbore pressure solution (given by Equation (5-43)).

Forn=1 and df = d; = 2, Equation (5-52) reduces to the following form

I 2

Po(mitp) = 3 E, (2 a, (5-57)
where the exponential integral (Theis well function) is given by
E(x) = [ “—du (5-58)
= u
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5.1.4 Skin Factor

From Equations (4-38), (4-40) and (5-43), one can write

&p = p, - p|,
g {(@ ra)n+ p~d n-1)" 50
—Cp(n-’r-l—nds) (Grj"‘)“F(]—v) (5-
where

r:"kw(d, /d,)

C = 2 wZf %/ 5-60
F Alq/2mh)" (>-60)

and G is given by Equation (4-37).

The van Everdingen and Hurst skin factor is defined as a dimensionless constant, s

’

which relates the pressure drop in the skin to the dimensionless rate of flow. The skin

pressure drop can be defined (Ikoku, 1978) as

Ap, = — .
P = 5 (3-61)

Combining Equations (5-59) and (5-61), the total pressure drop can be expressed as

Ap = p, - P.s
1 (@ 1d)m+1-dyn-1)"r 7
= - ‘ o - +5 (5-62)
C, (n+1-nd Gr) ") T(1-v) (n+1-nd,)

Atz=0,Ap = Ap, and the skin factor can be calculated from the above equation as

46



1
= ) — 5-63
s = Ap,.C, + ) (5-63)

It is to be noted that, for a fractal reservoir, the value of the skin factor obtained (by using
Equation (5-63)) would also include any near-wellbore manifestations of deviations from

the fractal distributions of the reservoir properties.
5.1.5 Radius of Investigation

Under steady-state conditions, Equation (5-5) reduces to

2 d
fi.!lf. + d,+.1.__.1._ﬁd_f. ndpy _ (5-64)
dry n nd, d, |r,dn

Integrating Equation (5-64) once with respect to p, one obtains

1 4, d
ottt _, 6o
dar,

where A is a constant to be determined. The boundary conditions are

d

/73 2" (5-66)

dr,

ro=1
and

Pp=0@n =r, (§5-67)
where rp; = ry,Jr,,. From Equations (5-65) ard (5-66), it can be shown that

d

A= - 4
] d_'

(5-68)
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Introducing Equation (5-68) into Equation (5-65) and integrating once more with respect to
p, one obtains
(d;1d,)(n+1)~nd,

p

Pp = 4, - (5-69)

n+1-nd,

where A; is a constant to be determined. Using the second boundary condition (Equation (5-

§7)) and Equation (5-69), one can determine A, tobe

Pl 1, med)=nd,

A= B 5-70
2 n+1-nd, (>70)

Combining Equations (5-69) and (5-70), the dimensionless wellbore pressure can

expressed as
1 (d;1d,)(n+1)-nd,
= — | -1 .
Poo = g ] (571)
Comparing Equation (5-71) with Equation (5-43), one obtains
2y,
L1y {n+1-d,(n-0}" s, (572

'(l1-v)
from which the value of the radius of investigation at a given time can be calculated.

For df: ds =2, Equation (5-72) reduces to

2 1(n-1)
rp" = (3 _ n)2/(3-u)t£/(3—n){r(3 - )} (5'73)
-n

SO that
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2.y 11(3-n) Hin-1)
r = {(3-Gn) z} {r(jfn)} (5-74)

where G is defined by Equation (4-37). Equation (5-74) is the expression for the radius of
investigation derived by Ikoku and Ramey (1979) for power-law flow in a homogeneous
porous medium. Moreover, for n = 1, Equation (5-74) becomes

k.t

T = 2,/ (-75)

which is the radius of investigation of a constant-rate test during the flow of a Newtonian

fluid of viscosity H through a homogeneous porous medium of permeability &, and

porosity g,
5.2 Constant Pressure Case
5.2.1 [nitial Value Problem

The linear partial differential equation governing the transient flow of a non-Newtonian
power-law fluid through a fractal reservoir is governed by Equation (5-1) expressed in
terms of dimer.sional quantities. The initial and outer boundary (infinite) conditions are
given by Equations (5-2) and (5-4), respectively. For a constant-pressure inner boundary

the inner boundary condition is expressed as
p(r=rw’ t) = pw (5-76)

The dimensionless radius and time are defined by Equations (4-39) and (4-40), respectively,

For the constant-pressure inner boundary condition, the dimensionless pressure is defined a5
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pp = B L (5-77)
pi - b,
It can be shown ecasily that using this new definition of dimensionless pressure and
Equations (4-39) and (4-40), Equation (5-1) can be rewritten in dimensionless form as
Equation (5-5). In order to solve Equation (5-5). one applies the Laplace transformation not
only to the equation but also to the relevant boundary conditions. For the constant-pressure
wellbore case, the inner boundary condition can be expressed in Laplace space as

Pp(p=11) = (5-78)

-~~~

As has been shown for the constant-rate case, the equation for dimensionless pressure (in
Laplace space) after applying the initial and the outer boundary conditions is of the form
given by Equation (5-23). Finally, by using the inner boundary condition, the pressure
solution is obtained as

ry K,(ar,f)

Po (o D) = =@

(5-79)
Let us define, for the constant-pressure inner boundary case, the dimensionless rate in
a manner similar to that of Poon and Kisman (1992); that is

Ar q i
= = 5-80
qD kw (pl - pw) dj‘ /d.l‘ (ZnhrwJ ( )

where the dimensionless rate is related to the pressure gradient at the wellbore as

a(d, 1d) = - Po

o

(5-81)

’D’l
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Taking the Laplace transform of Equation (5-81) and using Equation (5-79), the following

expression for the dimensionless rate is obtained

—- 5-82
9o V] K.(c) ( )
Defining the cumulative production (over a given time tp) as
‘o
O = [, a5 by (5-83)

and taking its Laplace transform, one gets, from Equations (5-82) and (5-83), the following

expression for the cumulative production in Laplace space

5 - 4 K. (a)

O = Wl K(a) (5-84)

5.2.2 Limiting Solutions for Early and Late Times

At early times (I — oo ), the approximation of the modified Bessel function, K(z), is given
by Equation (5-31). Substituting Equation (5-31) into Equation (5-82) and simplifying, it

follows that for / — oo , Equation (5-82) can be approximated in the real plane as

1

dp = \/’7—{[—0 (5-85)

Equation (5-85) represents the early-time approximation of the dimensionless production
rate. Similarly, from Equations (5-31) and (5-84), the early-time approximate form of the

cumulative production (in real space) can be obtained as

Qo = 2\/% (5-86)
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The late-time (/ — 0) approximating forms of Equations (5-82) and (5-84) may also
be derived. Using the approximation of the modified Bessel function, K,(z), whean z = 0, as
given by Equation (5-45), one can obtain the late-time limiting forms + = . cnsionless

production rate and cumulative production, respectively, as

2v-1
_ [ 1zv " 5.
dp = ( d ] T(v) (5-87)
and
1Y e
_ |- D i
9 = ( d, J (1-v)T(v) (5-88)
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Chapter VI

NUMERICAL PRESSURE SOLUTION OF THE NONLINEAR EQUATION
GOVERNING POWER-LAW FLOW THROUGH FRACTAL POROUS MEDIA

In Chapter IV, a nonlinear partial differential equation (Equation (4-30)), governing the
radial flow of a power-law fluid through a fractal network of fractures embedded into a two-
dimensional medium, was derived. A "linearizing approximation” reduced this equation to a
linear but approximate form (Equation (4-36)) and an analytical solution of the latter
equation was subsequently obtained. The approximation is equivalent to assuming that the
flow rate is time-independent at each radial location. Such an assumption is nearly correct in
an expanding/contracting region close to the wellbore, but is not correct near the radius of
investigation (Ikoku, 1978). This chapter presents a finite-difference scheme to solve the
nonlinear partial differential equation for the flow of non-Newtonian power-law fluids

through fractal reservoirs.
6.1 Dimensionless Nonlinear Equation

The dimensional form of the nonlinear equation is given by Equation (4-30). Making
use of the definitions of the dimensionless variables (given by Equations (4-38} ‘azough (4-

40)), and by using the following logarithmic transformation,

X = In(r,,), (6-1)

Equation (4-30) may be written in dimensionless form as

n-1
3’py op ( 9p, Y+ 9p
2+ AR =AM 22| =2 -
o T Ty T axJ £ €2
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where

A = n(d, - 4) (6-3)
n+l
A = (d,1d)" (h-4)
and
n+l
Ay = (d,/ d:)( . ) (6-5)

The initial condition and the inner (constant rate) and outer boundary (infinite reservoir)
conditions are given, in terms of variables rp and 7p, by Equations (5-6), (5-7) and (5-8),

respectively. These equations can be rewritten, using Equation (6-1), respectively, as

po(x, 0) = 0 (6-6)

apD df

=2 = --L 6-7

ax zx= 0 ds ( )
and

lim pp(x, 1,) = 0 (6-8)

The numerical solution of the problem posed by Equations (6-2) and (6-6) through (6-8) is

now inspected.
6.2 Douglas-Jones Predictor-Corrector Method

Ikoku (1978) and lkoku and Ramey (1982) used the Douglas-Jones predictor-
corrector method to obtain numerical solutions of the nonlinear partial differential equation

governing the transient flow of a power-law fluid in a homogeneous reservoir. In this study,
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use is made of the same method to solve Equations (6-2) through (6-8). Each of the finite-
difference equations advances the solution by one-half of the time increment. In the
predictor, the unknowns occur at the (j+1/2)th time level and the equations are linear. In the
corrector, the unknowns occur at the (j+1)th time level and the equations are again linear.
The predictor followed by the corrector is unconditionally stable; moreover, the systems of
equations are of the tridiagonal form, and are easv to solve. The Douglas-Jones predictor-
corrector method is second-order accurate, whereas the computing effort is doubled at each

step.

In order to solve a nonlinear partial differential equation of the form

Ip _ 9P, %P P
axz = f(x’ L p, 3):)9! + g(xr I, D, ax) (6'9)

use is made of the predictor (to advance the solution from the jth to the j+1/2th time level)

given by
!'+l/2 _2 .i+112 + j+l/.'? . / _ j ‘j\llz _ ]
pl—l pl > pﬂl - f(x;;t,‘+1/2)p,'l)p‘+l pl-l pl pa
(Ax) 20x At/2
. pl - pl
+ g(x,., o Bl L.LZ_A.XP_L) (6-10)

and the corrector (to advance the solution from the j+1/2th to the j+ 1th time level) given by

1/ i i1 WIS j j
—(p; =2p*" +pl})+=(pL, - 2p! + pl. jo i+
;gp: 1 )2 P; l) 2(p' 1 pi p; 1) - f X1 p!'+112 pil-c-lllz _pil-luz
(o R e
_j¢1 _ ; { ' !'+1/2 - .,41/2
| —_Afg_ o 50 s g2, Bl " Af.-l ) (6-11)
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Applying the predictor-corrector method to Equation (6-2), one obtains the predictor

n-l
iy =2p!" + pl”? _ miuss( PL=phy )t (P2 - B
(Ax)? z 2Ax At/2
pl pn+l
+A 6-12
JCIER R
and the corrector
1 j+1 -2 j+! j+1 1 J J j
2(pl—l p +p|+l ) 2(pi-l -Zpl + pi+l) A p.j:l/Z p./:’llz
(Ax)® 2Ax

jel j+ii2 - J+l j
+ A ehli-ins pl - pl) p.” - p 6-13
A, A v (6-13)

where i=1,2,3, .., N+landj=0,1,2,3, .., where N is the number of equal space-

intervals (or space-increments) into which the system is divided.

The initial and boundary conditions are given as follows:

Initial condition: p,=0 @j=0 (6-14)
p/ +1/2 p1+1/2 d
Inner boundary condition (predictor): £2——*9 — = _ L (6-15)
2Ax 4,
p, +] p/+1 d
Inner boundary condition (corrector): £2——£0 = _ L (6-16)
2Ax d
Outer boundary condition: p, —» 0 as i — oo, forall j (6-17)
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The expressions for the predictor and corrector will now be written for the various grid
points into which the system is divided. By defining
2(Ax)?

= S 6-18
o v (6-18)

where Ax is the space increment, the predictor (Equation (6-12)) can be expressed in the

following manner:

n-l

-[2+ Afd, 1d,)" a ] pit"+2pi"* = A(Ax)(d, 1 d,)

-1

-Aj(d, 1d,)" ap] ~2Ax(d, /d,), fori=1 (6-19)
n-l
2 _| 5 A phliiax P.- P.+1 a jeliz | ;+1/2 = (Ax)A, P.-l P.+1
pu-l A2e ( 2Ax pn |+.l ( ) 2Ax
n-l
eA,(--l)Ax p.-l p.+1 ,for2<i<N-1 6-20
-4, 2 Ax aP. (6-20)
-l
p,mz -|2+4, pMN-liax PN- Pml a p,+1/2 ,+1/z —(Ax) Pz’;/-l"Pl{m
N-1 T oAx i Pi+i N\ oAx
N
(V= = Z)' 1 y + ;
~Aeh 1)&(1’»} ™ x ) opl - pit?, fori=N (6-21)

Equations (6-19) through (6-21) represent a system of N equations in N unknowns

(pressures), with the coefficients of the unknowns forming a rridiagonal matrix. The system
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of equations can be solved by using the Thomas algorithm. The corrector (Equation (6-13))

may be written in the following manner

n-l

-[2+ A,(d, /d,)"T_la] pi*l+2pitt = [z —Aj(d, /d,) ™ a] pl-2pi

+2A,(Ax)*(d, /d,)~ 4Ax(d, /1 d,), for i = I (6-22)

n-1

Jeli2 JelU2\"
pi+1_ 2+ AzeAin‘l)A!(pi-l ~ Divs )"
=1

Ax o |p/ +pl = Ale(Pa/:ll’Z - P.I:lm)

n-1

)n o p{’forzsl‘ﬁN—l (6-23)

JHN2 _je1r2

—(pL, +pi,))+|2 - At (E.i;l__BlL

2Ax
j+l Ay(N-1)Ax Pﬂ:’;z-P;{;:lfz —:—l j+l jeli2 jel12 j+l
Puoi—| 2+ Ae T aipy = Ale(pN-l = Pi+i )' Py+y
n-l
-, j _agmtea| PRt =P i
(Phs + Phs)) +| 2 - Ase e alpl,fori=N (6-24)

Here also, Equations (6-22) through (6-24) form an NxN tridiagonal system of equations

which can be solved by means of the Thomas algorithm.
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Chapter VII

ANALYTICAL SOLUTIONS FOR POWER-LAW FLOW THROUGH
A FINITE-SIZED FRACTAL RESERVOIR

In this chapter, analytical solutions of the partial differential equation (Equation (4-
44)), that governs the transient flow of a non-Newtonian power-law fluid through a fractal
reservoir, will be presented for a finite circular reservoir case. Both closed and constant-
pressure outer boundary conditions will be considered. Moreover, the solutions will be

presented for both constant-rate and constant-pressure irniner boundary conditions.
7.1 Constant-Rate Inner Boundary, Closed Outer Boundary

The approximate (linearized) partial differential equation governing the radial flow of a

non-Newtonian power-law fluid in a fractal reservoir is given by (Equation (4-36))

Z_E + [d + I_4, _ ﬂ]ﬁgﬂ = _G__{_’_}{M’ ety L4 (7-1)
or? "“"n ond, dlror " 1, ot
with the initial condition given by
p(r,0) = p,,forallr (7-2)
For the constant-rate case, the inner boundary condition may be expressed as
EIE)

and for a closed (zero-flux outer boundary) reservoir, the outer boundary condition may be

written as
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% =0

> = (7-4)
where r, is the radius of the outer boundary of the circular reservoir.

Before solving Equation (7-1), it is written in terms of dimensionless variables.

Defining the dimensionless variables as follows

(p,=plk,r."'d, d,

= r 7-
Po A (q/27h) (7-5)
r, = — (7-6)
rW
and
d, /d )t
tp = (—faj—)— &)

Equations (7-1) through (7-4) may be written, respectively, as

32p,, + [df +£-i-i].f_2’l = (df /d,)ZrD{u, 1d,)(n+1)~d; (n~1)~2} 222_

or,? n nd, d, |r,or, or,
(7-8)

Pp(ry,0) = O,forall rp (7-9)

%Py L3

)] = ——% forall s 7-10

arD rp=l d‘ x 0 ( )

and
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Pl - g, forallyy (7-11)
o, o
where
re
o = (7-12)

Equation (7-8) may be solved, as in the infinite reservoir case, by applying the Laplace

transformation. Application of the transformation to Equation (7-8) and the initial and

boundary conditions yields

a 4d A+l)=d, (n-
rg%fzg + n[d,,\._l___f__._{.jl,- _d_ﬁz = (d,/d,)zrp{{dﬂd'” 1)~d,( 1)}[‘50

Iy n nd d,|° dr,
(7-13)
d
Byl _Yld, (7-14)
dr, ! l
and
/7 B (7-15)
dar, S

In order to solve Equation (7-13), it needs to be transformed into a Bessel equation by
using a suitable change of variables (as has been shown in Chapter V). Following exactly
the same procedure as outlined in Chapter V, it can be shown that the general solution to

Equation (7-13) may be expressed as
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Bo(rpl) = r3[CL(ary) + CK (arf)]

where
v=1- 4,
n+l-d(n-1)
_ 2Vi(d, /d,)
©(d,1d )n+1)-d,(n=1)'
5= (d, 1d )n+1)-d (n-1)
2
and

*

y o (4 1d)(n+ )= nd,
2

(7-16)

(7-17)

(7-18)

(7-19)

(7-20)

and where C and C; are constants to be determined from the two boundary conditions

(Equations (7-14) and (7-15)).

Differentiating Equation (7-16) with respect to rp and using the following recurrence

relations (Carslaw and Jaeger, 1959),

K(z)

—EK,(z)—Kl_v(z)
and

I, (2)

“2I(2)+1,_(2),
V4

where z = arf, one gets
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4,

e Bry?![C 1, (orf) - CK, L (erf)] (7-23)

Applying the inner and outer boundary conditions to Equation (7-23), one obtains

K, v(a %)
= 7-24
¢ P, (@), (arh)- Ko (erh )l ()} N

and

Iv_,(arﬁ,)
= 7-25
G 13’2{K,_,(a)1,_,(arj,’,) - Kl_v(arfz)lv_,(a)} (7-25)
Substituting for C; and C; in Equation (7-16), the pressure solution is obtained as
B o 8 o A LML) 026

Ia/z{Kx-v(a)Iv-x (arg ) -k, (arce))lv—l (a)}

where v, &, fand yare given by Equations (7-17), (7-18), (7-19) and (7-20), respectively.
Equation (7-26) is the general solution (in Laplace space) for the transient pressure
behaviour in a circular closed fractal reservoir with a centrally located well producing a

power-law fluid at a constant rate. Equation (7-26) reduces to the following form at the

wellbore (rp = 1)

I (erb K, (@) + L()K,_,(orh)
K]-v(a)lv—l(arg)—Kl-v(arﬁ))lv-l(a)}

Pup(l) = o { (7-27)
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For dp = d; = 2, Equation (7-27) exhibits ths wellbore pressure response during the flow of a

power-law fluid through a closed (circular) homogeneous reservoir (Equation (6-16) of

Ikoku (1978)).
7.2 Constant-Rate Inner Boundary, Constant-Pressure Quter Boundary

This case represents the situation where radial flow takes place in a circular fractal
reservoir, the outer boundary of which is essentially at a constant pressure due to either
natural or artificial pressure maintenance at that location. Here also, as in the previous case,
the objective is to obtain the transient pressure solution of Equation (7-1) with the initial and
inner boundary conditions being expressed by Equations (7-2) and (7-3), respectively. In
this case, however, the outer boundary condition is different from that in the previous case

and may be written as
p(r=r,t) = p, (7-28)

In a manner similar to that used in the previous case, one can rewrite the governing
equation (Equation (7-1)) in dimensionless form (where the dimensionless variables are
defined by Equations (7-5) through (7-7)) and then express the resulting equation and the
boundary conditions in Laplace space. The Laplace transform of the governing equation in
dimensionless form is given by Equation (7-13); the Laplace transform of the inner
boundary condition is given by Equation (7-14). The Laplace transform of the

dimensionless forni of the outer boundary condition is expressed as
Dp(rpd) = 0 (7-29)
Equation (7-13) has the following general solution

Bo(rol) = 13 [Cil(erf) + CK (0} )] (7-30)



where the parameters v, o, S and y are given by Equations (7-17), (7-18), (7-19) and (7-
20), respectively, and C; and C are constants to be determined from the boundary
conditions. Differentiating Equation (7-30) and using the recurrence relations given by

Equations (7-21) and (7-22), one obtains

By _ oprtcr,. ()~ CK, L (0rh)] (7-31)
dr,
Using the inner and outer boundary conditions, given by Equations (7-14) and (7-29),

respectively, the constants Cy and C; can be determined; substituting for Cy and C, in

Equation (7-30), the pressure solution can be expressed as

(7-32)

B 1) = {I (ar,f,) (ar[,’) I (ar Z (ar;‘,’,)}

13’2{K (o), (arf )+ K (0! )vl(a}

Equation (7-32) is the Laplace transform of the general solution for the transient pressure
behaviour for the case of constant rate of flow of a power-law fluid in a circular fractal

reservoir with a constant pressure outer boundary. At *he wellbore (rp = 1), Equation (7-32)

reduces to the following form

1(arf)K (@) - 1,(a)K (erh)
K,_ (@), (arf )+ K (ard ), ()]

Puoll) = = { (7-33)

For df= dg = 2, Equation (7-33) reduces to Equation (6-28) of Ikoku (1978) for a

homogeneous reservoir.

7.3 Constant-Pressure Inner Boundary, Closed Outer Boundary
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The linearized parual differential equation governing the transient flow of a power-law
fluid in a fractal reservoir is expressed by Equatior: (7-1). Before solving Equation (7-1) for
a variety of boundary conditions, it is expressed in terms of dimensionless variables. For the
constant-pressure inner boundary condition, the dimensionless pressure may be defined as

follows

- I
PolFonty) = E‘;f’%——) (7-39)

where p,, is the constant wellbore pressure. The dimensionless radius and time are
expressed, as in the previous cases, by Equations (7-6) and (7-7), respectively. It can be
shown that, by using these defiritions of dimensionelsss variables, Equation (7-1) can be
expressed in dimensionless form as Equation (7-8). Assuming that initially the pressure
throughout the reservoir is uniform (such that @ tp = 0, pp = 0 at all rp), Equation (7-8)
can be rewritten, using the Laplace transform, as Equation (7-13), which can be transformed
into a modified Bessel equation and solved in a straightforward manner. The general

solution to Equation (7-13), as has been showr earlier, is of the 7 11
Bo(rol) = n[Cl(arf) + CK (a})] (7-35)

where the pa:ameters v, ¢, f and 7 are given by Equations (7-17), (7-18), (7-19) and (7-
20), respectively, and C; and C5 are constants to be determined from the inner and outer

boundary conditions.

For a flow situation corresponding to this case, the inner and outer boundary

conditions are expressed, respectively, as

p(r=rwit) = pw (7-36)
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and

i I (7-37)
dr\. =,
where r, is the radius of the outer boundary of the circular reservoir. Rewriting Equations
(7-36) and (7-37) in terms of dimensionless variables, and then using the Laplace transform,

the inner and outer boundary conditions are expressed as

_ 1

Po(rp=L1) = 7 (7-38)
and

L7 =0 (7-39)

drp o = o

where r,p is the dimensionicss radius of the outer boundary of the reservoir (given by

Equation (7-12)).

Using Equations (7-35), (7-38) and (7-39), the constants C; and C, can be determined

as follows
K _ (Otr‘6 )
C = 1-v eD ~
7 R (arh) + Ko (@B (@) 740
B
C, = ) (7-41)

K (o)1, (0 )+ K, (o) )1, ()}

and thus, the pressure solution becomes
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3L (b )R (orf)+ K, (ar )1 ard )
K (o)1, ,(rh)+ K,..(arf )1, (c)}

ﬁD(rDJI) = (7'42)

Defining the transient dimensionless rate as

Ar q i
= ~ : 7-43
e mop) d,/d, (Znhrw] (43

where the dimensionless rate is related to the pressure gradient at the wellbore as

(d, /1d,) = - %y

p

(7-44)

rp=l

and taking the Laplace transforms of Equation (7-44) und using Equation (7-42), one

obtains the following expression for the dimensionless rate in I..aplace space

_ I (orB)K, ()~ K_(arB )1, (a)
go(l) = 3 5 (7-45)
VHE (@)1, (arh) + K, (ar )1, (@)]
Defining the cumulative production (over a given time ¢p) as
0 = ["gpar, (7-46)

and taking its Laplace transform, the cumulative production solution in Laplace space can be

expressed as

L(erh)K, /%)~ K _(ard)I, ()

K () v-l(ar,p)+Kl-v(ar.’Z,)1,(a)}

Oo(l) = (7-47)
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7.4 Constant-Pressure Inner Boundary, Constant-Pressure Quter Boundary

In this case, the inner and outer boundary conditions are defined by Equations (7-38)
and (7-29), respectively, with the dimensionless pressure being defined by Equation (7-34).
Using the two boundary conditions, the two unknown constants in Equation (7-35) can be

determined and the dimensionless pressure solution expressed as

{I,(ar )K (arf)-K (arD )1 (arw)}

Pplrp,l) = -48)
oe I{K (orf )1, (@)~ K (@), (ard,)}
and thus, the dimensionless : . =nd cumulative production solutions for this case are
A
6[) (I) = Iv-l (a)Kv(arc_pD%*. Kl—v(a)zv(areb) (7_49)
‘\/—i{KV(a)Iv (artD) - Kv(arcD )Iv(a)}
and
_ B ;
QD (1) = Ivul(a)Kv(artD)+ Kl—v(a)lv(areD) (7_50)

P& (o)1, (aB) - K, (ord )1, (@)}

respectively, where the dimensionless rate and cumulative production are defined by

Equations (7-43) and (7-46), respectively.
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Chapter VIII

ANALYTICAL SOLUTIONS FOR POWER-LAW FLOW THROUGH
A TWO-ZONE COMPOSITE RESERVOIR

In the realm of hydrocarbon reservoir engineering and well testing, the study of
composite reservoirs is of great importance because nf the wide range of reser\nir
configurations they represent. The composite reservoir model has been used to descr ¢ i

study the behaviour of damaged/stimulated reservoirs, reservoirs undergoing waterfle | 3 -

situ combustion, and so forth. In a \-W0-20ne) composite - model, the reservoir
system is generally considered to include a circular in . = - with rock and fluid
properties significantly different from those in the outer regi * . usual in these modelling

efforts to assume that the radial extent of the inner zone a.d ii.e flow properties (such as
permeability) of t - 40 zoutes are adequately described by the parameters of the composite
model.

In this section, an infinite reservoir with a physical radial discontin _ .a the rock
system is considered. The zone nearest to the wellbore is a fractal reservo;. (with spatiai
distributions of porosity and permeability); the outer zone infinite in extent, is
homogeneous. The major contribution of the material presented in this section is the
development of analytical transient pressure and rate solutions during the flow of a non-
Newton. an power-law fluid in such a reservoir system. The characteristics of the solutions,
presented in the form of dimensionless pressure and pressure-derivative curves, will be

discussed in a subsequent chapter.
8.1 Mathematical Formulation

The reservoir system under consideration is illustrated schematically in Figure 8-1,
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Figure 8-1: Schematic Representation of a Two-Zone
Composite Reservoir



which exhibits a reservoir system composed of two concentric zones. The inner zone is
composed of a fractal zone; that is, the inner zone consists of a fractal network of fi avrurss
embedded into a homogeneous matrix with the former dominating the flow, or,
equivalently, the entire inner region is fractal. The inner zone surrounds the well to a radius
ry and there is a sharp radial discontinuity between the inner a.:d outer zones. The outer zone
is homogeneous, has a permeability ’ and a porosity ¢’ and is infinite in extent. The

wellbore of radius 7, is located at the centre of the reservoir system.

The transient flow behaviour of a single-phase, slightly compressible, power-law fluid
in the reservoir system described above and shown in Figure 8-1 is considered. The
transient cylindrical flow in the composite system is modelled b+ the following system of

partial differential equations:

Inner zone

(dyid, )(n+1)~d, (n-1)+n=-3
&p, [d +!___‘£z__ﬁ]£§£:. i _9_{_’_}{ ’ ) g,
! rn-l r

or’ n nd, d |ror o'
for r, <r<p (8-1)
Outer zone
azpz n dp, G’ dp,
i = , forr> 8-2
o Ty or g o (8-2)
where G is given by Equation (4-37). Also,
, _ n¢'c/ | H " p ,1:—"( q )”'l
G = L1 —(9+3/n)"(150k 2 8-3
P [12( n)( ¢) JZ:rh (8-3)
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and p, and p; are the pressures in the inner and outer zones, respectively. Transforming

Equations (8-1) and (8-2) into dimensionless form yields

?Z_E.g.L + df+_1___c_1L,.g[. f_@a = (d, /d:)zrD{(d//d,)(n+l)-d,(n—l)-2}QE_QL,
ro n nd, d, |n on ot
fori1<r, <a (8-4)
) .
LAl TYRLY ). (d,/d,)za, rpl"‘-d'eg-z—, forrp>a (8-5)
or,’ r, or oty
where
a = I’_ (8_6)
rW
and
G, = dc k| ok - (8-7)
¢wcl /kw ¢wkw
The dimensionless variables are defined as follows
=p)k,r2'd, 1d,
Py = (pi—Dp)k, d, (8.8)
A (q/27mh)
b = ~ (8-9)
r‘V
(d,1d )t
t, = ——3F— (8-10)

Grin

w
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8.1.1 Constant Rate Case

Equations (8-4) and (8-5) are first solved for a constant rate inner boundary condition
and an infinite outer bou, *ary condition. The various boundary conditions for the flow

situation considered in this case are described below.
Inner boundary condition:

This condition is for a finite-sized wellbore producing at a constant rate such that

3))0, df
=24 = —-< forallt 8-11
or, - d, b &1D

Interface boundary conditiens:

Two interface boundary conditions will be considered. The first condition is used to impose

pressure continuity at the interface between the two zones:
Py(a.tp) = ppylat,) (8-12)

The second condition imposes rate continuity at the interface such that the flow rate from the

outer zone across the interface equals the flow rate into the inner zone:

appl apDZ
o = e, P (&13)
where
l:_’i
K@k, 2 (meindrq )=nd, +n-1
o = K[ok . 8-14
) k...( e k') (8-14)
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Outer boundary condition:
For an infinite outer boundary condition, one has
Pp; = 0asr, e (8-15)

The system of partial differential equations and the associated boundary conditions, as

shown above, is solved using the Laplace transformation.

Applying the Laplace nansformation to Equations : 3-4) and (8-5) yields

dz?' ] d d d.ﬁ 2 / nel)~d,(n~".
28, p r _ Y% bl . (dy 14, )ne1)~d,y (n= ")y =
O [“‘77]7 ol A A s
(8-16)
4’p ap 2 S
’;"&;;%l + ""D"d_'zl = (df /d_,) 0,15 "l By (8-17)

It is to be noted that in transforming Equations (8-4) and (8-5) into Equations (8-16) and (8-

17), respeciively, use has been made of the initial condition (i.e., @ 7p = 0, pp = 0). The

boundary conditions become, in Laplace space,

d,/d
%?.D.L = — L (inner bot ndary condition) (8-18)
rD rp=l
Ppi(a,l) = Pp,(a,l) (pressure continuity at interface) (8-19)
L2 = 0, D @ rp = a (rate continuity at interface) (8-20)
dr, dr,
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and
Pp; 0 as ry—oe (8-21)
As has been demonstrated in Chapter V, the solution of Equation (8-16) is of the form
Pou(rp.l) = rD’.[C,Iv(arg) + CK (ar} )] (8-22)

where v, o, B and yare given by Equations (5-21), (5-17), (5-18) and (5-19), respectively.

In a similar fashion, it can be assumed that the solution of Equation (8-17) is of the form

Poy =15 8(p") (8-23)
where

p=arl (8-29)
Following an approach identical to the one outlined in Chapter V, it is possible to obtain, by

substituting Equations (8-23) and (8-24) into Equation (8-17), the following equation in p'

’ ' ’ ’ I”n 2 4
pPg’ +pe —[;—:ﬂg*l’zg=0 (8-25)

In arriving at Equation (8-25) it was necessary to choose

, 2,/01
@ = Z-t(d, 14, (8-26)
3-n
' = 27
B 3 (8-27)

and
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l-n
' m e 8-28
Y 3 (8-28)

Equation (8-25) is in the form of the modified Bessel equation and, hence, the solution to

Equation (8-17) is
= = Ylc OB K.(orB -29)
Ppa(rp:l) = rj |Csl(a'rp ) + CiK(a'rp ) (8-29)
where

(8-30)

By applying the vater boundary condition (Equation (8-21)) to Equation (8-29), it is easily
scen that C3 = 0 and thus, Equation (8-29) reduces to

Poa(rpl) = Cory K la'rf) (8-31)
From Equations (8-18) and (8-22), the constants C; and C, can be shown to be related as

Gl (a) - C,K. (a) = =17 (8-32)

Substituting Equations (8-22) and (8-31) into the pressure continuity relationship (Equation

(8-19)) yields

C/l(cd’) + C,K,/0af) = C,a" " K (' d”) (8-33)

Firally, by applying Equat'ons (8-22) and (8-31) in tie raiz continuity relationship

Eow o (8-20)), one obtains

C L (0d’) - C,K, (ad®) = -C,(0,\/0,)a"P " P K _.(a'a¥) (834)
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Solving Equations (8-32) through (8-34) simultaneously, the three unknowns Cy.Csand

C4 can be determined. The constants C; and C5 are found to be

I (a'd® )K, (ad®) - K (0d® K,  .(a'a”)

C, = A (8-35)
and
c, = MKu(a M, () + 1(ad" K,  (o'd” ). (836)
A
respectively, where
aPF
A= ol (8-37)
and
A = PYAK (0 d I, (ad)K, (@) - I,_,(a)K,_(ca)}
+ K (e d® {10 )E (@) + 1, ,(0)K, (0 )}] (8-38)
Thus, the required pressure solution at the well in the inner v ,u¢ is given by
Po(Ll) = Cl(a) + CK, (o) (8-39)

where Cy and C; are given by Equations (8-35) and (8-36), respectively. One may wriie the

above equation also in tne following fashion

Poi(Ll) = &Z—g’- (8-40)
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where

a, = { AK (o'a” K, (0d®) - K (0ad”)K (o d” )}Iv(a). (8-41)

6 = (MK (0 d)I,_(ed’) + I(ad® )K,_ (o a" )}K () (8-42)

and A is given by Equation (8-38).
8.1.2 Constant Pressure Case

It has been demonstrated in the previous section, by using the initial and the outer
boundary conditions, that the pressure solutions for the inner and outer zones are given,
respectively, by Equations (8-22) and (8-31). For the constant pressure inner boundary
condition, defining the dimensionless pressure as

pp = i S (8-43)
pi - pw
and using the same initial and outer boundary (infinite) conditions as in the previous case,
the pressure solutions for the inner and outer zones may again be expressed by Equations

(§-22) and (8-31), respectively.
The inner boundary condition in Laplace space is

- 1
Pothyms = 7 (8-44)

Substituting Equation (8-22) into Equation (8-44), one gets

C,1(e) + C K (a) = § (8-45)
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Applying Equations (8-22) and (8-31) in the pressure and rate continuity relationships, one
obtains, as in the previous case, Equations (8-33) and (8-34). Solving these two equations
together with Equatior (8-45) simulia.icously, it is possible to determine C;, C; and Cy4. The
constants Cy and C, are determined, respectively, to be

AK (o' d” )K, (o) - K (0d® )K, (c'd”)

= 8-4
¢ l(a,+a,) (8-46)

c - MKad )l (o) + I(0d K, (o' d) (8-47)
I l{a,+a,)

where a; and a; are given by Equations (8-41) and (8-42), respectively. Thus, the pressure

solution for the inner zone is
Por(rol) = rB[Cil, (@) + CoK,(arf )] (8-48)
where C; and C, are given by Equations (8-46) and (8-47), respectively.

Defining dimensionless rate and cumulative production, respectively, as

Ar q g
= = 8-49
o k, (p,-—pw)d,/dx (Znhrw) ( )
and
Q) = f0° qp dtp, (8-50)

the dimensionless rate and cumulative production can be evaluated in Laplace space as
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(8-S1)

and

o

Op = gf- (8-52)

The expressions for the dimensionless rate and cumulative production can thus be written as

A
g,(l) = ——— (8-53)
o(l) [ (a,+a,)
and
— A
l) = ————, 8-54
0,(1) Fla+a) ( )

respectively, where A, a; and a, are given by Equations (8-38), (8-41) and (8-42),

respectively.
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Chapter IX

PRESSURE TRANSIENTS WITH MATRIX PARTICIPATION
IN FLOW: A SPECIAL CASE

The previous chapters dealt with the development of transient pressure and rate
solutions for the single-phase flow of a non-Newtonian power-law fluid through infinite and
finite fractal flow networks. In the material considered in the previous chapters, the analysis
of the pressure transients was performed by assuming that the matrix does not participate in
the {low process. In this chapter, a mathematical formulation is presented for the transient
flow of a non-Newtonian power-law fluid in a naturally fractured reservoir that consists of a
fractal network of fractures embedded into a homogeneous matrix. The conventional
Newtonian flow model in a double-porosity system is generalized by allowing the matrix to
exchange fluid with the fractal fracture system. Following the Warren and Root approach
(Warren and Root, 1963), it is assumed in the present model that flow between the matrix
blocks takes place only through the fracture system. Furthermore, the well intersects the
fracture system and all the fluid produced at the wellbore moves through the fractures.
Analytical solutions are obtained for a special case of the flow situation where a Newtonian
fluid travels through infinite and finite fracture/matrix systems; the main reasons for

considering this particular case are also discussed.
9.1 Mathematical Formulation

The continuity equation for cylindrical flow in this fracture-matrix system may be

written as

19 : 3
- o rem) = 5 (050,) + = (0a0,) ©-1)
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where the subscripts f and m refer to the fracture network and matrix, respectively. The

modified Darcy's law for a power-law fluid flowing in the fracture network is

r(
u’ — _:_)_ .ip_f.. (9,2)
Ko(r) or

Applying Equation (9-2} in Equation (9-1) yields

apf ap[ 1 I d#cff(r)
nc)r{k (rigy r} +k(r) or r_n/.t,/,(r) dr

n-1

9, in op, |~
{cp (r)eg—= + buC, }ui,,( ’{"f”)‘af} (9-3)

In deriving the above equation, it was assumed that pressure gradients in the fracture
network are small at all times. Equation (9-3) can be further simplified, by making use of

Equations (4-13), (4-14), (4-16) and (4-34), to

or’ - r or

n nd,
n—1 {(d,/d,)(uk';-d,no-n-l}
ﬁ(—"—) duc,(rin)" Za”’ 0.0, Zall L
k,\27rh or |7, (9-4)

For a Newtonian fluid (n = 1) flowing in a naturally fractured reservoir where a

L s |d L 2L =

homogeneous fracture network is embedded into a homogeneous matrix (such that dy = d;

= 2), Equation (9-4) is reduced to the following form

dp,  1dp, 9, dp
—_— = = —i ——m 9-5
T or k I¢"CI " P )
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Equation (9-5) is the Warren and Root (1963) equation for transient radial flow in a
double-porosity system (Sabet, 1991). Warren and Root have shown that, for such a flow
medium, a semilog plot of the drawdown data (flowing wellbore pressure versus time)
exhibits two parallel straight lines. The earlier line indicates transient radial flow through the
fractures before the matrix makes its presence felt; the later straight line develops after an
equilibrium is reached between the fracture and the matrix pressures. The transition between
these two lines develops as a result of the matrix-to-fracture interporosity crossflow. This
transition from early produ:tion from the fractures to late production from tiie total reservoir
(matrix and fractures) is affected by the way the matrix and fracture network are as~umed to
interact. In the Warren and Root model (Warren and Root, 1963), the flow from matrix to
fractures is assumed to take place under pseudosteady-state conditions; in other words, the
interporosity flow rate is proportional 0 the pressure difference between matrix and
fractures. Such an assumption was also employed by Chang and Yortsos (1990) in their
model describing flow in both the fractal object and the matrix. The pseudosteady-state flux

assumption will also be used in the present study.

Following the approach of Chang and Yortsos (1990), the expression for the

interporosity fluid exchange rate is given by

1rn

1) Ky \Pr—Pm

Qo = br° ‘{;"‘———( — )} (9-6)
g

where D’ is the fractal exponent for the perimeter of the fractal object and b is the
correspcnding proportionality constant with a dimension of [L2-2), and D" is the fractal
exponent for the average distance between the matrix and the fractal object and e is the
corresponding proportionality constant with a dimension of [L1-P"). In the Euclidean limit,

D'=2,D"=0,b =1 and e = the characteristic length !/ of the Warren and Root model
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(Chang and Yortsos, 1990). By applying a mass balance for the fluid contained within the

matrix, it can be shown that

a pmqu
- = —— 9-7
5 (Pada) = 5 (9-7)
Combining Equations (9-6) and (9-7) and simplifying. one obtains
lin
dp, _ brPEo 12k,(p, - P.) 0.8
o  €é2nhe.c L2 ©-8)

mCn \H(9+3/n)"(150k 0. )

Equations (9-4) and (9-8) can be combined and solved for various sets of boundary
conditions to present and analyze the behaviour of the pressure transients with matrix

participation in flow.
9.2 Analytical Solutions for a Special Case

Equation (9-4) is an approximate partial differential equation describing the transient
flow of a non-Newtonian power-law fluid through a fractal fracture nctwork-matrix system.
The suitability of Equation (9-4) in describing such flows is limited mainly because of the
use of the approximation, given by Equation (4-29), in deriving it. However, for the
Newtonian fluid case (n = I), Equation (9-4) does not suffer from this limitation. It is,
therefore, of theoretical and practical value to consider analytical solutions for Equation (9-4)
for the case of a Newtonian fluid. For the Newtonian fluid case, Equations (9-4) and (9-8)

reduce, respectively, to

J g

-
or

2d
L [d +1- —L]l
r r

J’
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2d,1d,~d,
H X d; -2 apl apm 4 (9-9)
Lol / 1L bl . RO NS
k {tpwc,(r ") ot ¥ OnCn ot Hr”}

w

and

ap,, bk

or Z’,u 2the,c,,

(P - pa)r® 9-10)

where 6 = D" + Z - D’. The similanty between the above equations and the corresponding
equations (for flow in both fractal object and matrix) used in the study of Ciomy
Yortsos (1990) is obvious; in fact, Equation (9-10) is identical to Equation (25) of Cnar. g
and Yortsos for d = 2. In their study, however, Chang and Yortsos considered numerical
solutions to the partial differential equations governing flow in both fractures and matrix;
wnalytical solutions could not be considered because of the presence of spatially variable
coefficients. It was found in their study that the system pressure response exhibited early-
and late-time linear behaviour in the log-log plot (of dimensionless pressure against
dimensionless time). It can be inferred from the results presented in their study that the slope
of the early linear segment depends on d,, whereas that of the late segment depends on both
dgand dg; it was, however, mentioned that the difference in the two slopes is small. Chang
and Yortsos also studied th.e effects of the various relevant parameters on the transitional

period between the two linear segments and concluded that o had the least significant effect.
9.2.1 Constant Rate Case

Defining dimensionless pressure, ime and radius as follows

2rk,h(d, 1d,)(p,~p,.)
Ppym = ’q " £ G-10)

86



_wk, (d /d )

(9-12)

r,=rlr, 9-13)
where
c
W = __¢:__f___ (9-14)
¢~C/ + ¢mcm

It is to be noted that the dimensionless time defined here (Equation (9-12)) and that defined

in the previous chapters (Equation (4-40)), for n = 1, are related as 7 = o tp. Equations (9-

9) and (9-10) can be expressed in terms of the dimensionless variables as

2 N2
a pgf + df +1__2ﬂ _I_ipgl_ = (i erd/‘z al[l/..+(l _ w)_i_ap L) rnzd//dn"‘!
or, d, |r, or, d, or ar
(9-15)
and
o, A
—= = — (pp, — Ppn) (9-16)
ot I by Fb
where
DD
Dkt (9-17)

" (1= w)2nhek,(d, d,

The parameter o represents the ratio of near-wellbore fracture storage to total storage. The

interporosity interaction parameter, A, is proportional to the ratio of matrix permeability to
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near wellbore fracture permeability (k,/k,,) and generally has values much smaller than one.
Large values of w (say, greater than (0.01) would indicate a significant amount of storage in
the fracture system; large values of A (say, larger than 10~5) would indicate a relatvely large

flow conductivity in the matrix.

Before solving the equations describing the transient response of the fracture-matrix
system, two assumptions will be made - the system behaviour for dy= 2, and for 6= 0 will
be considered. The effect of t%.: "econd assumption will be felt only during the transitional
period, as has been discussed earlier. This effect, however, will be minor, as the parameters
w and A have been shown to have more significant roles to play during that period (Chang
and Yortsos, 1990). The first assumption is extremely significant; it will influence both the
transitional period and the late-time behaviour of the system. However, as will be shown in
the next chapter, this assumption is intended to help bring out some interesting

characteristics of the transient response of the fractured medium.

Incorporating the above-described assumptions, Equations (9-15) and (9-16) can be

expressed in Laplace space and then combined 10 yield

d’p 4\1dp
EPy N3 2| L%y _ ¢, ua-15 X
drbz + ( d:)’o dr, Erp Ppr (9-18)
where
wl + A
£ = 1(2/d) -
& =1(21d) (H 3 ) 9-19)

The inner and outer (infinite) boundary conditions are
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Py, 2

= - = (9-20
er rpal xd,
ﬁDf _')O as rD - 00 (().2])

It is assumed that the pressure solution for the given drawdown problem may be expressed

as
By = r3f(p)p = arh (9-22)

Substtution of Equation (9-22) in Equation (9-18) vields

4

o 4T,
P+ of - [1-—2—]f—pf= 0 9-23)

provided one chooses

B = 2/ds (9-25)
and

y=2/dg -1 (9-26)
The solution to Equation (9-23) is, as has been shown previously in Chapter IV,

flp) = CiL(p) + CK (p) (9-27)
where

v=1-dy2 (9-28)
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Combining Equations (9-22) and (9-27) and applying the outer boundary condition

(Equation (9-21)), one gets
Poy(rod) = Cor) K (arf) (9-29)

Applying the inner boundary condition (Equation (9-20)) in Equation (9-28), the constant

C, is determined to be

Ji
C, = ———— 9-30
Plek, (a) (5-30)

and thus, thz dimensionless wellbore pressure solution in Laplace space is obtained as

_Kya)

FD/(’n = 1!l = al————-—K o)
]-v

(9-31)

For the case of a closed circular reservoir with a centrally-located well producing at a

constant rate, the wellbore pressure solution may be obtained in a similar fashion

I, (arh)K (@) +1,()K,_,(orh)

Py(p=11) = (9-32)
al{K, (), \(arh)- K, (B, ()]
The wellbore pressure solution for a constant pressure outer boundary condition is
L(ard)K () - 1,(a)K, (or?
Poy(ro=1.1) = (o )K. () - (@)K, (ar5) ©933)

al{Kl_v(a)I,(ar,‘,’,) +K, (o} )1,_,(0:)}

It can be shown from Equation (9-24) that as @ —1, ot — /I and Equations (9-31)
through (9-33) reduce to the corresponding wellbore pressure solutions for flow only in the

fractal fracture network for n = 1 and de= 2. This behaviour is expected, since the reservoir
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inust contain only the fracture system if @ 18 1o approach unity. Simarly, Eguations (9-31)
through (9-33) indicate fracture flow behaviour as .1 —s = this is also proper because either
® — 1 or k, — e (indicating no impedanc. o interporosity tlow) if A has to approach

infinity.
Limiting Solutions for Early and Late Times

At early times, [ = o0, 50 that & = v/« and the modified Pessel function, Kyzh

may be approximated by Equation (5-31). Thus, Equation (9-31) approximates to

5 K, (Vol)
Poyry = L 1) ~ —mm® (034
oo = LU= 7Tk, (el )

Using Equation (5-31), the carly-time limiting wellbore pressure solution in the real plane

can then be expressed as

T 4
pD/'{rD =11)= 2\/5)}- =2 —’% (9-35)

where 7., given by Equation (9-12) and tp by Equation (4-35), forn = ! and dy=2. Thus,
at e2-ly times, the wellbore pressure response would be exactly the same as that when only

the fracture system participates in the flow process (see Section 5.1.2).

At late times, [ — 0 (& — /1), and applying Equation (5-50) in Equation (9-31), the

late-time approximation of the Laplace space wellbore pressure solution is

22\!—1 r(v)

Bop(ry = 1, 1) = ——— Y0
or( = LU = T r Ty o

i

(9-36)

which can be inverted to
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22V—1 TV
pr(rD =11)= V—I:(—l_-—-—;—)- (9-37)

It is also of interest to consider the early- and late-time limiting solutions for the special case
of w =0, which applies for negligible storage capacity in the fracture system; this case has
been discussed extensively for a homogeneous fracture system by Warren and Root (1963).
For this case, at early times, when & — v , the wellbore pressure solution has a constant

value given by

K,(V2)

VK () "

pD/(rD =1, 7T) =

Thus, a constant early-time wellbore pressure in a "double-porosity” system would indicate
an extremely small value of the storage parameter, ®. At large times, o — N7 , and the

wellbore pressure response is given by Equation (9-37).
9.2.2 Constant Pressure Case

For the constant pressure inner boundary condition, the dimensionless pressure has

been defined previously (Equation (5-77)) as

Di—Ds m
p[ .—pw

Posm = (9-39)

The dimensionless time and radius are given by Equations (9-12) and (9-13), respectively.
Equation (9-18) describes the transient flow of a Newtonian fluid in a fractal fracture-

homogeneous matrix system with d¢=2 and o= 0. The inner boundary condition is
- 1
Pp (rp=1,1) = 3 (9-40)
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and the outer boundary condition (for an infinite system) is given by Equation (9-21). In a
manner similar to that shown for the constant rate case, the dimensionless fracture pressure

solution for the constant pressure inner and infinite outer boundary conditions may be

obtained as
= rl K (arf)
P, (r, 1) = 2——b- 9-41
Df( o 1) 1K, (c) ( )
Defining the dimensionless rate as
qud,
= , 9-42
T = Gakh(p,-p.) 0-42)
it is possible to show that
d apr
= - =L —= 9-43
D 2 on - (5-43)

Combining Equation (9-43) with Equation (9-41), the following expression for

dimensionless rate is obtained

oK, (o)
= —=— 9-44
> K(a) 048
Finally, by defining the cumulative production as

0 = Japdr, (9-45)

it can be demonstrated very simply, by combining Equations (9-44) and (9-45), that
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— oK, (a)

= 9-46
Co IK,(a) (5-46)

Similarly, the dimensionless rate and cumulative production solutions for a closed

reservoir are obtained as

a{lv-l (arcﬂD )Kl—v(a) - Kl—v(arzﬁb )Iv-l(a)}

7, = 9-47

%fl) UK (1, (arl)+ K, (erf )1, (@)} 47
and

_ a{l, (b )k, ()~ K, (arb) ,_,(a)}

Op(l) = (9-48)

’ PR (@), () + Ky, (7B )1, ()}

Finally, the solutions for a constant pressure outer boundary situation are given by

_ {1, (@)K, (orf )+ K,_ (@)l (ary)}

l) = -

B I{Kv(a'\l (rh)- Kv(arw)lv(a)} 0-49)
and

0,01 = oe{l K (arh )+ K, ()], (ard,)} ©-50)

Pk ()1, ()~ K, (e )1, ()}
Limiting Solutions for Early and Late Times

At early times, / — oo, so that @ — vl and thus, from Equation (9-44),
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Equation (9-51) can be inverted analytically to yield

()] 1
4p(7) = |— = |—
"t ip
and thus, the cumulative production solution becomes

-~ 1. [ID
Op(tp) = 2 .

At late times, ] — 0 (@ — +/1), and thus, from Equation (9-44),

= ra-v)
qD r(v) 22V—1 ll—v

The late-time dimensionless rate solution, expressed in the real plane, is then

21—2V
t = ——
4p(tp) > TO)

and the cumulative production solution is

(onp) ™"

Oo(tp) = Ty 1)
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(9-52)

(9-53)

(9-54)
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(9-56)



Chapter X

RESULTS AND DISCUSSION

Various models have been presented in the previous chapters to analyze the transient
pressure and rate behaviour of power-law fluid flow in reservoirs exhibiting power-law
variations of permeability and porosity with distance from the wellbore. In Chapter IV, a
partial differential equation was derived for an approximate description of the transient flow
of a non-Newtonian power-law fluid in an infinite fractal flow medium. Chapter V presents
analytical solutions, in Laplace space, to this equation for both constant-rate and -pressure
inner boundary conditions; early- and large-time limiting forms of the analytical solutions
have been derived in real space. In Chapter VI, a finite-difference scheme was presented to
solve the nonlinear partial differential equation describing the transient flow of a power-law
fluid in an infinite fractal reservoir. Chapter VII contains analytical pressure and rate
solutions for finite reservoirs; both closed and constant-pressure outer boundary conditions
have been considered. Chapter VIII presents analytical pressure and rate solutions for a two-
zone composite reservoir, with the inner zone being fractal and the outer homogeneous.
Chapter IX demonstrates the development of analytical solutions for a special case of the
situation where the transient flow of a Newtonian fluid takes place in a fracture/matrix
system, with the fracture network showing anomalous diffusion.

This chapter presents the results obtained from the different models described in the
previous chapters (see Figure 10-1) and discusses the effects of the various parameters on
these results. The discussion mainly focusses on analysis of results obtained from the
transient pressure and rate models for flow in an infinite fractal medium, with particular
emphasis on the late-time behaviour of the flow system. Discussion is also presented on the

results obtained for flow in a finite system, in a composite system and in an infinite fractal
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fracture/matrix system.
10.1 Transient Flow Through a Fractal Medium
10.1.1 Analytical Solutions: Infinite Reservoir

Transient solutions for dimensionless pressure (Equation (5-30)) and rate (Equation
(5-82)) for an infinite fractal reservoir can be evaluated readily in real space by using

numerical techniques. In this study, the numerical Laplace transform inversion scheme

developed by Stehfest (1970) is applied to obtain the dimensionless pressure (p,,p) and
pressure-derivative (dp,,p/dintp) solutions for various combinations of dg and n. Some of
the results for dg = 2 and for various values of the flow behaviour index, n, are shown in
Figures 10-2 through 10-4. It can be seen from these figures that with increasing time, the
pressure solutions start diverging from each other depending on the relative magnitudes of
n; the dimensionless pressure at any given time is larger for a smaller value of a. In fact,
Figure 10-2 shows that the dimensionless pressure at a given time during the production (or
injection) of a pseudoplastic fluid may be more than an order of magnitude larger than that
for a Newtonian fluid. However, it is to be noted from Equation (4-38) that the definition of
dimensicnless pressure involves flow rate and well radius raised to powers of n (where 0 <
n < 1) and thus, the actual pressure drop (for production) or increase (for injection) may be

lower for a pseudoplastic fluid than for a Newtonian one (lkoku, 1978; Olarewaju, 1992).

Fi zure 10-2 shows that at late times and for v > 0, the dimensionless pressure solution
exhibits a straight line in the log-log plot; this is expected, as has been demonstrated earlier
by Equation (5-47). The slope of this straight line is equal to the parameter v. It is interesting
to note, however, that the pressure-derivative plots (see Figure 10-3) exhibit a large-time
straight line behaviour for a longer period of time; such a behaviour may be explained by

inspecting Equations (5-43) and (5-47). The slope of the linear segment of the pressure-
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derivative plots also equals v. In fact, the late-time value of the wellbore pressure-derivative
function equals the product of the wellbore pressure function and the parameter v. And
therefore, a plot of din(p,,p)/din(tp) against tp would asymptotically tend to a constant value
of v at late times (see Figure 10-4). An identical observation was also made in the study of

Chang and Yortsos (1990) for the case of Newtonian fluid flow in a fractal object.

There are certain advantages in using the pressure derivative group, din(p,,p)/din(tp),
when constructing type curves for various flow situations (Duong, 1989). Duong has
shown that by combining the pressure and pressure-derivative functions, a single set of type
curves may be constructed by using the pressure/pressure-derivative ratio (PDR). By
plotting dimensionless PDR (vertical axis) versus dimensionless time (horizontal axis), the
vertical scales for both type-curve and field data are found to be identical. This alignment of
the vertical scale constrains the type-curve match on the vertical axis. In this study, use is
made of the dimensionless pressure-derivative/pressure ratio, which also serves the purpose
of automatic alignment of one scale of the type curves and field data plots. This can be
demonstrated by considering Equations (4-38) and (4-40) which can be rewritten,

respectively, as
Pup = a(p; — Pur) = a(Ap) (10-1)
tp = bt (102)
where a and b are constants. The pressure-derivative, then, is given as
Ipp.p = alAp’, (10-3)

and thus,

dln(pup) _ ApT
dln(tD) Ap

(10-4)
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Figure 10-5 demonstrates the transient wellbore pressure behaviour for different
values of n (dilatant fluid) and for d; = 1.75. Figure 10-5 shows that the dimensionless
pressure decreases with increasing values of n, at any given time. Here also, the late-time
lincar beh: viour in the log-log plot of p,p versus tp is apparent. Figures 10-6 and 10-7
demonstrate the variation of p,,p with time for various values d; of and for n = 0.75 and
1.25, respectively. These figures show, as was shown by the previous figures, that with
increasing magnitudes of v, the dimensionless pressure drop a* a given time, increases. For
example, in Figure 10-6, the lowermost curve corresponds to v = 0.111 and the uppermost
curve to v = (.256. Similarly, in Figure 10-7, the uppermost and the lowermost curves

correspond to v = 0.2 and 0, respectively.

In their groundbreaking study on mathematical modeling of single-phase transient
flow of slightly compressible Newtonian fluids in fiactal reservoirs, Chang and Yortsos
(1990) have noted that with the sole exception of 2D cylndrical flow systems, the
asymptotic pressure behaviour exhibited by any pressure-transient response model is of the
power-law type p,,p ~ tp. The Warren and Root (1963) type double-porosity system
exhibits the well-known asymptotic behaviour given by p,,p ~ In tp. On the other hand, the
single-fracture pressure response, both at early (linear flow period) and later (bilinear flow
period) times, shows behaviours consistent with the description of p,,p ~ tp. The fractal
reservoir model also exhibits such a linear behaviour in the late-time log-log plot of pressure
versus time. It has been shown in the present study, as was demonstrated earlier by Ikoku
and Ramey (1979), that the power-law description also applies for the case of non-
Newtonian power-law fluid flow in a 2D cylindrical flow medium. For Newtonian flow in a
fractal reservoir, the exponent v of the asymptotic pressure-time behaviour is only a function

of the spectral dimension, d;. For non-Newtonian flow in a homogeneous reservoir, the

exponent is only a function of the flow behaviour index, n. And has been shown earlier, for

non-Newtonian flow in a fractal reservoir, the exponent v depends on both n and ds.
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Figure 10-8 presents plots of pressure and pressure-derivative for two different cases
of non-Newtonian fluid flow in a fractal medium. The upper pressure curve describes
Newtonian flow in a fractal network and is characterized by a value of v of 0.125. The lower
pressure curve describes non-Newtonian flow in a homogeneous medium and is defined by
v =0.111. The two lowermost curves in Figure 10-8 are the pressure-derivative plots and at
late times, the parallel straight lines of pressure and pressure-derivative are separated by a

distance equal to log(1/v).

It can be inferred also from Figure 10-8, and from the other results presented so far in
this chapter, that the transient pressure behaviour of non-Newtonian flow in a homogeneous
medium and that of Newtonian flow in a fractal medium are similar in many ways. Thus, an
important question that may arise in the context of the present study is how to separate the
individual characteristics of the non-Newtonian fluid aud of the fractal medium when the
complexities of both are present in the response of the flow system. In other words, how is
it possible to determine both » and d from single-well test results if one can only calculate a
value of the parameter v from the late-time pressure-time data? In order to find a possible
solution to this question, one has to inspect the late-time behaviour of dimensionless rate for

a constant-pressure wellbore condition.

It may noted from Equations (5-30), (5-82) and (5-84) that the relationships between
the constant rate solution (p,,p) and the constant pressure solutions (gp, @p), in Laplace

space, are given as

1

Pl n d;) = 5—————

(10-5)

and

107



PwD» dpywp/d In(tp)

100

B~
74
64
=

4

3

10—
8
7~
6
5.4

.

[ J
— Pressure: dg = 1.75,n=1 .”
+ == Pressure: dg = 2,n =0.75 e
S e w Pressure-Derivative: d;= 1.75,n = 1
& -:=:= Pressure-Derivative: dg = 2, n = 0.75
&
&
J‘,\:
r
ﬂmmrmmnmmmm
T 100 100 100 10 10 10 1 1® 10
tp

Figure 10-8: Pressure and Pressure-Derivative
Solutions for Two Different Cases

108



1

Pup(ly 1, d;) = et
pWD( " ) IJQD(I: no d;)

(10-6)

It may be interesting to note that, for an infinite outer boundary condition, these relationships
would also hold for other flow situations considered in this study (see, for example,
Equations (8-40), (8-53) and (8-54) for the case of a composite system,; also see Equations
(9-31), (9-44) and (9-46) for flow in the fracture/matrix system). Identical observations
were made also in the ¢ I study of van Everdingen and Hurst (1949) for the case of

transient flow in a homogeneous flow medium.

Figures 10-9 and 10-10 illustrate some transient dimensionless rate solutions.
Equation (5-82) defines the dimensionless rate, qp, in Laplace space for the transient flow of
a non-Newtonian power-law fluid in an infinite fractal medium. Equation (5-82) has been
inverted to real space numerically by using the Stehfest algorithm (1970) in order to generate
data for Figures 10-9 and 10-10. Figures 10-9 and 10-10 show that at early times the
dimensionless rate curves are merged together, as predicted by Equation (5-85). With
increasing time, the curves start diverging from each other with the degree of divergence
depending on the values of n and ds. The value of dimensionless rate is higher at any given
time for smaller magnitudes of v. For example, the uppermost curve in Figure 10-9
corresponds to v = 0.111, and the lowermost one to v = 0.294. Similarly, the uppermost
curve in Figure 10-10 corresponds to v = 0.125, and the lowermost curve to v = 0.263. At
late times, the rate solutions exhibit linear behaviour in the log-log plot, as predicted by
Equation (5-87). Thus. if the late-time rate versus time data is available, then it is possible to
calculate the slope of this linear segment. From (5-87), the magnitude of the slope, for a plot
of dimensionless rate (gp) versus dimensionless time (tp), is z* '=n by v. However, by
combining Equations (5-80) and (5-87) it is clear that, a late-time log-log plot of

dimensional rate (i.e., g) versus dimensional time (#) would be characterized by a straight
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line, the slope of which has a magnitude of v/n. Thus, it may be possible to calculate the

values of both n and d;, provided both late-time rate (in a constant-pressure situation) and

pressure (in a constant-rate situation) data are available.

So far in the present chapter, various aspects of the late-time behaviour of transient
pressure and rate solutions have been discussed. It has been demonstrated that, at relatively
large times, the dimensionless wellbore pressure solution can be approximated by Equation
(5-47). However, at fairly short times, the Laplace space wellbore pressure solution (given
by Equation (5-30)) cuu. be approximated very well by Equation (5-43), which is expressed
in real space. In orde: to demonstrate the close approximation of Equation (5-30) by
Equation (5-43), Figures 10-11 and 10-12, exhibiting comparisons of p,,p values calculated
from these two equations, are presented. It is clear that there is good agreement between the
two solutions for fp greater than 100 and for v less than or equal to about 0.5. For larger
values of v, the time when the two solutions match increases. It may be noted that a value of
tp > 100 translates to real time of the order of a few minutes. Thus, for all practical
purposes, the wellbore pressure solution can be represented by Equation (5-43), so long as

the condition v £ 0.5 is met.

It is also of importance to be able to determine the times at the begiining of the log-log
straight lines in the wellbore pressure versus time plots. Various types of correlations have
been attempted in order tc define the dimensionless time, at which the log-log straight lines
appear, as a function of parameter v only. It has been found in this study that, in order to
define a proper correlation of the said type, the dimensionless wellbore pressure and time

should be redefined as follows:
p" = pyp(n+1-ndy) (10-7)

£ = tpfn+1-(n-1)d,) (10-8)
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Then the time (¢*), at which the pressure solution (p*) is within 2% of the log-log straight
line behaviour, may be expressed as a function of parameter v, as shown in Figure 10-13. It
should be noted that the correlanon exhibited in Figure 10-13 is valid only for pseudoplastic
fluids and for 1 < d; < 2. An explanation for why Equations (10-7) and (10-8) should be
used in order to obtain the shown correlation may also be given by examining the large-time
approximation of the wellbore pressure solution (Equation (5-43)). From Equation (5-43) it

is clear that, after relatively short times, the wellbore pressure solution may be expressed as

134

t
' = -1, 10-9

when the wellbore pressure and time are expressed by Equations (10-7) and (10-8),

respectively.
10.1.2 Comparison of Analytical and Numerical Solutions

In Chapter VI, a finite-difference scheme was presented for solution of the nonlinear
form of the partial differential equation governing the transient flow of a non-Newtonian
power-law fluid in a fractal reservoir. The main reason for attempting a numerical solution
of the nonlinear partial differential equation, Equation (6-2), is to explore the consequences
of the approximation given by Equation (4-29). This approximation resulted in the analytical
solution for dimensionless wellbore pressure solution, given by Equation (5-30). The
approximation introduced some incompressibility into the system (Ikoku, 1978; lkoku and
Ramey, 1982) and also removed the dependence of the analytical solution on the fractal
dimension, dy, which may result in an inaccurate theoretical prediction of the model
behaviour. Thus, the effects of this approximation should be analyzed by a direct
comparison of the analytical and numerical solutions for transient dimensionless wellbore

pressure during the flow of a power-law fluid in a fractal medium.
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Attempts were made to solve Equation (6-2) for different values of the flow behaviour
index, n, and the spect:.l dimension, d;. The effect of the fractal dimension, dg, on the
numerical solutions was also studied. Numerical solutions could not be obtained for values
of n smaller than 0.3 and values of d; smaller than 1. In fact, the early-time numerical results
for n values of 0.3 and ).4 were not meaningful. The results presented in this section are
based upon the following ranges of values of the parameters: 0.5< n < 1,d; 2 1 and 1.75

€ dy < 2. For the numerical solutions, the spatial increment was maintained at Ax = 0.1

and a time increment of 10 was taken between printed results.

Figure 10-14 presents a comparison of numerical and analytical solutions for n = (.75,
dr= 2 and for three differ:nt values of d;. The curves (from top to bottom) are characterized
by ds=1, 1.5 and 2, which correspond to values of v =0.5, 0.294 and 0.111, respectively. It
is clear from these curves that, at large times, the difference between the analytical and
numerical solutions is small. Moreover, the error in the analytical solution is seen to
decrease, at any time, with an increasing magnitude of d;. Figure 10-15 demonstrates the
temporal variation of the difference between the analytical and numerical solutions with
varying n. The values of drand d; are 2 and 1.75, respectively, for all the curves displayed in
Figure 10-15. The graphs (from top to bottom) are characterized by n = 0.6, 0.8 and 1.25,
which correspond to values of v of 0.239, 0.186 and 0.034, respectively. Here also, as in
Figure 10-14, the error in the analytical solution decreases gradually with increasing time.
The analytical wellbore pressure solution, given by Equation (5-30) for an infinite system,
does not show any dependence on dy. In order to study the variation of p,,p, evaluated
numerically, with dy, Figure 10-16 is presented. The analytical solution for n = 0.5 and d; =
2 is compared with three different numerical solutions defined also by dyvalues of 2, 1.85
and 1.75. As Figure 10-16 shows, the three different numerical solutions can be

distinguished in the log-log plot only upto a dimensionless time of about 50; beyond this
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time, the numerical soiutions appear as one curve, and the analytical and numerical solutions
are more or less surallel to each . iy Figure 10-17 presents two different sets of analytical
and numerical solut.ons; as expected, the upper curve corresponds to a higher value of v (=
0.263) and the lower one to a smaller value of v = 0.006. Here also, the difference between
the analytical and numerical solutions is larger at smaller times and for larger values of v.
Figure 10-18 presents another graph describing the effect of n on the difference between the
two solutions. Here, the values of n were chosen such that they are fairly close to that for a
Newtonian fluid; also, dr= d; = 2. Figure 10-18 clearly demonstrates that the difference
between the analytical and numerical solutions is practically negligible for zp > 100 for both

sets of solutions.

It may be observed, from Figures 10-14 through 10-18, that after large enough times
(zp > 200), the numerical and analytical solutions appear to possess the same shape. Also,
the difference between these two solutions generally seems to decrease with increasing times
and decreasing magnitudes of the parameter v. The results from these graphs may be
summarized by comparing the difference between the numerical and analytical solutions at
tp values of 102 and 10 for all the curves presented in Figures 10-14 through 10-18. Such a
comparison is presented in Table 10-1, where the relative difference is defined as the ratio of
the magnitude of the difference between the numerical and analytical solutions to the value
given by the numerical solution. As Table 10-1 shows, for a pseudoplastic fluid the relative
difference is small at large times, provided the magnitude of n is large (i.e., close to 1, the
Newtonian limit). For example, for n = 0.5 and df= d, = 2, the relative difference is about
10% at tp = 10%. Keeping everything else the same, the relative difference is seen to be 3%
for n =0.75 and < 1% for n = 0.9. Also, for n > 1, the relative difference is observed to be
small at large times, provided the magnitude of v is small. Again, the analytical solution
appears to yield good results if d; is large, every other parameter being the same. Finally, the

large-time relative difference seems to be relatively insensitive to small variations in dy, at
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Table 10-1: Comparison of Analytical and Numerical Solutions

at Two Different Dimensionless Times

Relative Difference, %, @

n dg dg v tp =102 tp =104
0.75 2.00 1.00 0.500 9 9
0.75 2.00 1.50 0.294 6 5
0.75 2.00 2.00 0.111 4 3
0.60 2.00 1.75 0.239 10 8
0.80 2.00 1.75 0.186 4 3
1.25 2.00 1.75 0.034 1 1
0.50 2.00 2.00 0.200 12 10
0.50 1.85 2.00 0.200 12 10
0.50 1.75 2.00 0.200 12 10
0.50 2.00 1.75 0.263 14 10
1.50 2.00 1.66 0.006 2 2
0.90 2.00 2.00 0.048 1 <1
0.99 2.00 2.00 0.005 1 <.05
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least within the range of values of the various parameters studied. Thus, so long as the
magnitude of n is larger than 0.75, that of dyis greater than 1.75 and that of d, is larger than
1.50, the relative difference between the large-time analytical and numerical solutions would
not be more than approximately 5%. More importantly, under these conditions, the relative

difference between the slopes of the large-time analytical and numerical solutions would be

even smaller.
10.1.3 Analytical Solutions: Finite Fractal Medium

In this section, some of the results obtained for the case of a finite fractal flow medium
ere presented. Two different situations are considered here: the first case involves a bounded
circular fractal reservoir with both closed and constant pressure outer boundaries, and the
second case involves a two-zone composite reservoir situation with the inner zone being a
fractal medium and the outer zone a homogeneous region. The results presented in this

section pertain to a constant flow rate condition imposed at the wellbore.

Figure 10-19 is a graph of dimensionless pressure and pressure derivative for the case
of a closed circular reservoir with n = 1, dg = 2 and r,p = 100. Three different plots of
pressure and pressure derivative are displayed in Figure 10-19 for dr=1.5, 1.75 and 2. The
corresponding plots of d In(p,,p)/d In(tp) are displayed in Figure 10-20. Figure 10-19
shows that at early times, in the infinite-acting stage, the pressure behaviour is independent
of dy. With increasing time, the effect of the finite outer boundary is felt by the pressure
transients; it is interesting to note that the smaller the value of dy, the earlier is the time when
the pressure transients respond to the boundary effects. A similar behaviour is also exhibited
by the pressure derivative, which attains the same value as the pressure response at large
times when pseudosteady-state is attained (as shown by the unit-slope line). This is also

shown in the late-time behaviour of d In(p,,p)/d In(1p ).
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Figure 10-21 presents a graph of dimensionless pressure and pressure derivative for a
closed reservoir with n =1, d; = 2 and r,p = 200. Here also, the plots of pressure and
pressure derivative are characterized by dy values of 1.5, 1.75 and 2. The corresponding plots
of d In(p,,p)/d In(tp) are shown in Figure 10-22. It may be seen from Figures 10-19 and 10-
21 that the plots of pressure and pressure derivative for dr=2 and r,p = 100 and those for
dr=1.75 and r,p = 200 are almost identical. In other words, for df < 2, the pressure
response of the system may be misinterpreted to represent a smaller reservoir size if one

assumes dy to be equal to 2.

Figure 10-23 presents plots of pressure, pressure derivative and d In(p,,p)/d In(tp)
solutions for a constant pressure outer boundary condition. The plots correspond to n = 1, d;
=2and r,p =200 and d¢ = 1.5, 1.75 and 2. Here, at large times (zp > 109), the effect of dy
on the pressure response is similar as in the case of a closed reservoir. For the same value of
rep, the large-time pressure solution is smaller for a smaller value of dy. This may result in
an underestimation of reservoir size if one assumes de=2, when in reality dyis le'ss than 2.
The large-time difference between the three plots is displayed more clearly by the pressure
derivative plots which, however, show the same general trend of a sharp decrease with

increasing time due to the gradual attainment of steady-state.

In the present study, the wellbore pressure solutions for the case of a composite
reservoir will be displayed mainly by the pressure derivative response of the system.
Because of its detail-enhancement capabilities, the pressure derivative has been used to a
large extent in recent studies to analyze the behaviour of composite reservoirs of various
geometries (Ambastha and Ramey, 1989; Stanislav et al., 1992). The results presented in

this section are directed at studying the sensitivity of the response of the system to
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parameters such as the dimensionless size of the inner region (a), the permeability ratio

(k/k’), ratio of permeability-to-porosity-ratio (F = %%), dy, and d.

The variation of dimensionless wellbore pressure with time is shown in Figure 10-24
for a two-zone composite system. The log-log plot is generated to illustrate the effects of
permeability ratio and parameter F on the system response. Figure 10-24 shows that for a
fixed value of permeability ratio, dimensionless pressure is higher at any time for higher
values of the porosity ratio (¢,/¢"), even though the plots have similar shapes at relatively
large times. Furthermore, for a fixed value of porosity ratio, the dimensionless pressure is
significantly higher for higher values of the permeability ratio. The effects of permeability

ratio and F on the system behaviour may be better illustrated by the derivative response, as

shown in Figure 10-25. The following is apparent from Figure 10-25:

1) After the inner region flow is terminated, transitional flow occurs when the derivative
goes through a maximum corresponding to the values of permeability ratio and F;
subsequently, the derivative declines and, at late times, it demonstrates the constant

behaviour characteristic of an infinite homogeneous medium.

ii) The permeability ratio has a strong impact on the time when the maximum in the

derivative occurs and also on the magnitude of the maximum derivative.
iii) The transition period seems to end sooner for the low permeability ratio case.

iv) The parameter F has a mild influence on when the maximum in the derivative

occurs, but has a stronger influence on the value of the maximum derivative.
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Similar behaviour of derivative curves has also been observed for composite homogeneous
reservoirs of cylindrical (Ambastha and Ramey, 1989) and elliptical (Stanislav et al., 1992)

flow geometries.

Figures 10-24 and 10-25 correspond ton =1, dr=2,d;= 1.5 and a = 2. Figure 10-26
presents a log-log plot of pressure derivative versus time identical in every respect to Figure
10-25, except that the former corresponds to a = 10. Comparing these two figures, it may be
observed that even though the magnitude of the maximum derivative (during the transitional
period) and the late-time constant value of the derivative are not affected by the value of q,
the time when the maximum derivative is reached and that when the flattening out of the
derivative takes place are dependent upon the magnitude of a. As expected, for larger values
of a, the maximum in the derivative is reached later; also, for larger magnitudes of inner

zone size, the time when the flattening out of the derivative begins is seen to increase.

Another aspect of the derivative plots that is of interest is its early-time behaviour. It
has been shown by Ambastha and Ramey (1989) that, in the absence of wellbore storage
and for a sufficiently large inner-zone size, an infinite-acting behaviour is shown by the
derivative at early times (a flat derivative curve); obviously, the magnitude of this constant
derivative value does not depend upon the permeability and porosity ratios, size of the inner
zone, and so forth. For the case of an elliptical system, the early-time derivative plot would
not consist of a zero-slope line, because of the non-cylindrical nature of flow at early times
(Stanislav er al., 1992). It was not possible in this study to determine conclusively the
behaviour of the derivative curves at very early times (rp < 1), because of some numerical
instabilities in the calculation of the pressure derivative from the Laplace space solution at
small imes. However, it is not difficult to observe from Figures 10-25 and 10-26 that, at
early times, the pressure derivative solutions would not exhibit a zero-slope derivative line;

this is not difficult to visualize based on the discussions presented in previous sections
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regarding the pressure derivative behaviour for a fractal medium, However, these early-time
characteristics of pressure derivative are of little practical importance because of the presence
of wellbore storage effects, which may obscure any early-time telltale "signature”, as it were,
of the system. On the other hand, at large enough times, the theoretical pressure derivative
behaviour for different types of composite reservoirs are quite similar, as has been
mentioned earlier. Thus, without a proper foreknowledge of the nature of the composite
system, it is quite possible to match the field data with results from a model that does not

represent the actual system at all.

Figures 10-24 through 10-26 were generared by usvunv-g constant values of dpand
d,. Figures 10-27 and 10-28 present the effects of 4y« w. cespectively, on the pressure
derivative behaviour of a composite system. Figure 10-27 shows that a smaller value of df
may make the composite system appear as one with a smaller magnitude of permeability
ratio, if it is assumed that ds= 2. Similarly, it may be seen from Figure 10-28 that a smaller
magnitude of d; may be misinterpreted as the system having a higher permeability ratio, if it

is incorrectly assumed that d; = 2.

s been shown in the previous graphs that the pressure derivative of a composite
vt~ i Jepends upon a number of parameters. It was proposed in previous studies on
p+7* “ure transient analysis of composite reservoirs (Ambastha and Ramey 1989; Stanislav
et al., 1992) that the time coordinate may be redefined as tgp = Ip/a?, in order to eliminate
the dependence of the pressure behaviour on the size of the inner region. In this study also,
the dimensionless time is redefined in a similar way, in order to investigate the possibility of
removing the dependence of the pressure derivative on a. Figures 10-29 and 10-30 present
derivative curves plotted against Irp- In Figure 10-29, the values of dfand d; are the same,
viz. 2. It is clear from Figure 10-29 that the correlation holds quite well for relatively large

magnitudes of a. A similar observation was made also by Ambastha and Ramey (1989).
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Figure 10-30 shows that for dr = 1.75 and d = 1.25, the correlation holds for a = 2 and 5
and not for a = 10. Again, for dg= d; = 1.5, the correlation does not seem to work for the
three values of a, at least for g, < 104. Thus, it is reasonable to conclude from Figures 10-
29 and 10-30 that a correlation of pressure derivative versus fzp, does not work for all
combinations of dfand dj;, and alternative correlations must be sought for such composite

reservoirs.
10.2 Transient Flow Through a Fractal FracturelHomogeneous Matrix System

The previous sections dealt with the case of the matrix not participating in the system
pressure response. This section presents a discussion of results obtained for the case of a
fracture/matrix system (i.e., the matrix has connected porosity and is in pressure
communication with the fracture network) with the fracture network being characterized by
df =2 and d; < 2 and the matrix being homogeneous. The results of calculation of the
dimensionless wellbore pressure for a constant rate condition at the wellbore and an infinite
reservoir could be used to analyze the characteristics of pressure drawdown curves in such a
double-porosity reservoir for single-well situations. Figure 10-31 presents a basic pattern of
such pressure drawdown curves for an infinite system on a log-log plot. As Figure 10-31
shows, a complete curve may generally be represented by three different flow regimes or
intervals. The early-time flow regime (interval I), characterized by the log-log straight line,
exhibits a rapid drawdown in the fractal fracture system. Obviously, for flow only in the
fracture network, the drawdown curve would maintain the same trend of interval L
However, for a fracture/matrix system, the transitional stage (shown by interval II) appears
at the end of the first flow regime. The transitional stage involves a slower pressure
drawdown in the fracture system because of increasing participation of the tighter matrix in
the flow process. Interval II1, the late-time straight line, develops after an equilibrium is

reached between the fracture and matrix pressures. The straight line of interval III is parallel
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to that of interval I because of the assumption of d¢ =2. For dr #2, the slopes of these two
straight lines would be different, even though the difference would be small (Chang and
Yortsos, 1990). For a sufficiently large distance to the outer boundary, the pressure response

would show the boundary effects after interval IIl.

Figure 10-32 presents sensitivity runs carried out to determine the effects of parameter
v on the transient dimensionless pressure response. For the set of pressure curves presented
in Figure 10-32, the values of @ and 4 are set to be 0.01 and 10 -5, respectively. The
characteristics of the "double-porosity" system are exhibited more clearly by the pressure
derivative curves, as shown in Figure 10-33. The derivative curves (for v # 0) show the
typical power-law dependence on time of the late-time segments, as is expected for fractal
systems. The well known "V" shaped derivative behaviour for the Warren and Root (1963)
type double porosity system (v = 0) appears to be quite similar to that for the fractal
systems. However, the late-time pressure derivative for a homogeneous system stabilizes
asymptotically to a finite value, unlike that for a fractal system. Figure 10-34 presents plots
of the pressure derivative group, d In(p,,p)/d in(7), with values of v ranging from 0 to 0.5.
Clearly, for large magnitudes of v, the values of the derivative group would stabilize at
constant values of v, unlike the case of a homogeneous fracture/matrix system, where the
derivative group would decrease indefinitely with increasing times. Identical results have

been presented previously, by numerical means, in the study of Chang and Yortsos (1990).

Figure 10-35 presents the sensitivity of the wellbore pressure solutions to @, with ¢
ranging from 0.001 (relatively small amount of storage in the fracture system) to 1 (flow
only in the fractures). Figure 10-35 shows that the early- and late-time pressure curves have
the same slopes irrespective of the magnitude of @; the parameter @, however, has a strong

influence on the duration of the transition period. As may be expected, the smaller the
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magnitude of @ relative to one, the earlier is the time when the transition stage sets in (so
that the longer is the duration of the transition period) and the larger is the pressure drop
between the early- ancd late-time segments. The effect of @ on the pressure derivative is
shown in Figure 10-36, for v =0.25 and A= 10 -5. The transitional stage (when the pressure
response shows a period of gradual decrease and subsequent increase in slope) »+ zars as a
dip in the derivative curve; the smaller the magnitude of w, the sharperisth: . num and

the smaller is the value of 7 when the dip in the derivative takes place.

Figures 10-35 and 10-36 demonstrated the variation of the pressure and derivative
responses, respectively, against 7, where 7 has been defined as 7 = wtp. Figures 10-37 and
10-38 are presented to study the effects of @, when the pressure and derivative responses are
studied against dimensionless time tp. Figure 10-37 shows that at early times, the curves for
different values of / merge together, as, during this period, flow takes place only through
the fracture system. At late times, the pressure curve for the fracture/matrix system in the
log-log plot is parallel to the hypothetical straight line for @ = 1 (shown by the dotted line).
This is strictly true only for dr= 2, and for such a situation, the vertical distance between the
two asymptotes depends only on two parameters, namely, v and . However, when df #2,
the magnitude of the pressure drop not only depends on other parameters but is also time-
dependent; therefore, when dr#2, it may not be possible to obtain a reliable estimate of the
magnitude of @ from an observed value of the vertical pressure drop. On the other hand,
when dr= 2, the late-time equations for wellbore pressure (Equation (5-47) for flow only in
the fracture network and Equation (9-37) for flow in the fracture/matrix system) may be
analyzed to show that the magnitude of the pressure drop varies with viog(l/w). Thus,
knowing the magnitude of v and that of the vertical pressure drop, the value of @ may be

calculated.
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Figure 10-38 shows the effect of w on the pressure derivative behaviour. It may be
noted from Figure 10-38 that the parameter w has a weak influence on the dimensionless
time when the pressure derivative reaches its minimum. This time, however, is strongly
influenced by the parameter A, as is shown in Figures 10-39 and 10-40. The parameter A
indicates the strength of the exchange rate between the matrix and the fracture system
(Chang and Yortsos, 1990) and, therefore, the smaller the magnitude of A, the later is the
onset of the transitional stage. It has been found in the present study, that within the ranges
of the various parameters studied, the time when the wellbore pressure derivative reaches its
minimum during flow in a fracture/matrix system depends on A and, to some extent, on .

The following empirical relationship is found to hold between this time and the parameters A

and ax tp = In(l/w)/A.
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Chapter XI

CONCLUSIONS

A mathematical model describing the single-phase transient flow of a slightly
compressible, non-Newtonian, power-law fluid in a fractal fracture network has been
presented. The nonlinear partial differential equation goveming such flows has been shown
to reduce to the standard diffusivity equation as a limiting case. Approximate analytical
solutions of the governing equation, with constant rate and constant pressure inner boundary
conditions, have been presented for infinite and finite systems and for a composite reservoir
case. Analytical solutions have also been presented for a special case of the flow situation
where the matrix participates in the flow process along with the fracture network. Numerical
solutions of the rigorous flow equation were compared with the approximate analytical

solutions for flow in an infinite fractal reservoir.

Based on the results obtained in this study, the following conclusions can be drawn:

i) log-log plots of wellbore pressure and pressure derivative may be used as diagnostic
plots to identify either the fractal nature of a reservoir or the power-law c.aracteristics of
the flowing fluid;

it) for power-law flow in a fractal reservoir, the slopes of late-time straight lines in the log-
log pressure-drawdown plots will depend on both the flow behaviour index of the power-
law fluid () and the spectral dimension of the fractal reservoir (d;). It is necessary to
analyze the late-time behaviour of both transient pressure and rate data to calculate the
values of n and d; under such flow situations; |

iii) the approximate analytical solution for pressure-drawdown behaviour in an infinite

fractal system is seen to be within acceptable error, when the parameters have the
following ranges: 0.75 < n € 1,175 £ d, < 2,and .50 < 4, < 2;
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iv) the large-time pressure response of a finite, areally heterogeneous system with a fractal
structure may be misinterpreted to represent a smaller reservoir size if analyzed using
methods derived for homogeneous systems;

v) methods presented in previous studies for the analysis of composite reservoirs may
result in gross misinterpretation of the nature of the flow system if the inner region of the
composite system consists of a fractal medium. The analysis of drawdown data from such
reservoirs with techniques that do not account for the fractal characteristics of the inner
zone can lead to incorrect reservoir property estimates;

vi) for Newtonian flow in a reservoir comprising a fractal fracture network and a
homogeneous matrix, the spectral dimension, d,. and the interporosity flow parameters, @

and A, may be estimated provided ds= 2 and the magnitude of ¢ is small.

One can make many recommendations for further research in this area. The more
important ones are:

i) to validate the analytical models presented in this study for finite and composite
reservoirs by comparing the analytical solutions with rigorous numerical results and to
subsequently define the ranges of magnitudes of the various parameters within which the
analytical solutions compare favourably with the numerical ones;
ii) to investigate the pressure transient behaviour of a fractal fracture/homogeneous matrix
system for non-Newtonian fluids using numerical techniques;
iii) to develop extensions of the methods presented in this study to multiple well situations
and interference testing. It has been shown (Chang and Yortsos, 1992) that approaches
based on Green's functions may be appropriate for such purposes;
iv) to develop an understanding of the relationship, if any, between theories developed for
a fractional dimension medium (e.g., Barker, 1988; Doe, 1991) and those for a fractal

object.
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Appendix A

COMPUTER PROGRAM FOR GENERATING DIMENSIONLESS PRESSURES
FOR POWER-LAW FLOW IN AN INFINITE FRACTAL RESERVOIR

x THE PROGRAM LISTED HERE IS DEVELOPED *
» TO CALCULATE DIMENSIONLESS WELLBORE *x
" PR™SSURE RESPONSE IN LAPLACE SPACE DURING o
aox Tha PRODUCTION OF A NON-NEWTONIAN, POWER- %
*x -LAW TYPE FLUID AT A CONSTANT RATE FROM *x
xx AN INFINITE RESERVOIR EXHIBITING FRACTAL *%
** DISTRIBUTIONS OF POROSITY AND PERMEABILITY, **
* ok * *
*x THIS PROGRAM COMPUTES THE DIMENSIONLESS o
** PRESSURE RESPONSE AND ITS DERIVATIVE USING  **
*x NUMERICAL LAPLACE TRANSFORM INVERSION WITH  **
*x THE STEHFEST ALGORITHM (STEHFEST, 1970). *x
*k **x

Ak k ok ok ok MAIN PROGRAM % ok % gk K Kk ok ke Kk Kok

xxx**#xx%x DEFINITION OF VARIABLES *****¥k*x%
AKX A AN AR RAARAA KRR A AR A AR KT R ARk khkk k%

* % INPUT VARIABLBS Yk A A A R Kok W NN ko kR ke ok kR ek ke kR

AN --> DIMENSIONLESS FLOW BEHAVIOUR INDEX (POWER-
LAW PARAMETER)

DS --> DIMENSIONLESS SPECTRAL DIMENSION

S --> LAPLACE VARIABLE

T(S) --> ARRAY OF DIMENSIONLESS TIME

TD =--> DIMENSIONLESS TIME

* K OUTPUT VARIABLES KK RKAKARK Ak KkK K kkKhhkk*k

PWD (J) --> VECTOR OF THE WELLBORE PRESSURE DROP
DPWDL(J) ~--> VECTOR OF THE SLOPE OF THE WELLBORE
PRESSURE RESPONSE

AAK AR R KT AR A RAANRRA IR KA KRR A AR AR KR AARA KKK KA AR AR AK A AR KA KK

IMPLICIT REAL*8 (A-H, O-Z}

DIMENSION TDST(10), TD(100),
# PWD(100), DPWDL(100)

COMMON/THE/AN, DS

DATA TDST/1.00D0,1.50D0,2.0000,2.50D0,3.0040,4.000,5.0D0,
# 6.0040,7.00d0,8.00d0/

M=777

N=8

READ (5,*) AN,DS

CALCULATE THE VALUES OF TD

ITD=0

Do 20 J=1,8

DO 20 K=1,10
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ITD=ITD+1

TDI=TDST (K) *(10.0D0**(J~1))

TD(ITD)=TDI

CONTINUE

NTD=ITD~1

WRITE (6,30) AN,DS

FORMAT ('The values of n =',1E9.4,2X, 'and ds =',1E9.4)
WRITE (6,40)

FORMAT (3X, 'tD', 5X, 'PwD',5X, 'dPWD/d1lntD")

DO 50 J=1,NTD

=TD (J)

CALL INVERT(T,M,N,PD,PDP)

PWD (J) =PD

DPWDL (J) =T*PDP

PRINT OUT COLUMNS OF TD, PWD AND DPWDL VALUES

WRITE (6,60) T,PWD(J),DPWDL(J)
FORMAT (1E12.6,5X,1E12.6,5X,1E12.6)
CONTINUE
STOP
END

THE STEHFEST ALGORITHM

TARKK KRR RKARR A KA KRR AR KA R R AR Kk %k

SUBROUTINE INVERT (TD,M, N, PD,PDP)
THIS SUBROUTINE COMPUTES NUMERICALLY
THE LAPLACE TRANSFROM INVERSE OF ANY FUNCTION
IN LAPLACE SPACE, F(S).
COURTESY OF: ANIL K. AMBASTHA (PET E 668; 1991)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION G(50), H(50), V(25)

NOW IF THE ARRAY V(I) WAS COMPUTED SEFCLE, THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRGUTINE TO CALCULATE
F(S).

IF (N.EQ.M) GO TO 17

M=N
DLOGTW=0.6931471805599453DC0
NH=N/2

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.

G(1)=1.D0

DO 1 I=2,N
G(I)=G(I~-1)*I
CONTINUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.

H(1)=2.D0/G (NH-1)

DO 6 I=2,NH

FI=I

IF (I-NH) 4,5,6
H(I)=FI**NH*G(2*I) /(G (NH-I) *G(I)*G(I-1))
GO TO 6

H(I)=FI**NH*G(2*I)/(G(I)*G(I~1))
CONTINUE

THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2* (NH~NH/2*2) -1
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THE REST OF THE SN'S ARE CALCULATED IN THE MAIN ROUTINE.

THE ARPAY V(I) IS CALCULATED.
DO 7 I=1,N

FIRST SET V(I) =0
V{(I)=0.D0

THE LIMITS FOR K ARE ESTABLISHED.
THE LOWER LIMIT IS K1=INTEG((I+1/2))
Kl=(I+1)/2

THE UPPER LIMIT IS K2=MIN(I,N/2)

K2=T

IF (K2-NH) 8,8,9

K2=NH

THE SUMMATION TERM IN V(I) IS CALCULATED.

DO 15 K=K1,K2

IF (2*K-I) 12,13,12

IF (I-K) 11,14,11

V(I) =V(I)+H(K) / (G(I-K) *G(2*K-I))
GO TO 15

V(I) =V (I} +H(K) /G(I-K)

GO TO 15

V{(I})=V(I)+H(K) /G(2*K-I)

CONT INUE

THE V(I) ARRA: FINAL"Y CALCULATED BY WEIGHTING
ACCORDING TO S
V(I)=SN*V(I)

THE TERM SN CHANGES ITS SIGN EACH INTERFTION.
SN=-SN
CONT INUE

THE NUMERICAL APPROXIMATION IS CALCULATED.
PD=0.D00

PDP=0.D00

A=DLOGTW/TD

DO 19 I=],N

ARG=A*I

CZ1LL LAP (ARG, PWDL,PDPL)
PD=PD+V (I) *PWDL
PDP=PDP+V (I) *PDPL
CONTINUE

PD=PD*A

PDP=PDP *A

RETURN

END

SUBROUTINE LAP HAS THE FUNCTIONS THAT ARE OF INTEREST;
THE DIMENSIONLESS PRESSURE AND DIMENSIONLESS PRESSURE
DERIVATIVE FUNCTIONS ARE EXPRESSED IN TERMS OF THE
LAPLACE VARIABLE, S, WHICH CORRESPONDS TO VARIABLE
"ARG" IN SUBROUTINE "INVERT".

SUBROUTINE LAP (S,PWDL,PDPL)

IMPLICIT REAL*8 (A-H,0~32)

COMMON/ THE /AN, DS

A=2, ODO*DSQRT (S) / (AN+1.0D0-DS* (AN~1.9D0))
V1=1 .00d400-DS/ (AN+1.0D0-DS* (AN=-1.0D0))
V2=1.0D0~-V1
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IF (V1 .EQ. 0.0D00) GOTO 66

NN=1

CALL DBSKES (V1,A,NN,BK1)

CALL DBSKES (V2,A,NN,BK2)
ANUM=BK1/DEXP (A)
ADEN=BK2*S*DSQRT (S) /DEXP (A)

GOTO 67

ANUM=DBSKOE (A) /DEXP (A)
ADEN=DBSKIE (A) *S*DSQRT (S) /DEXP (A)
PWDL=ANUM/ADEN

PDPL=S*PWDL

RETURN
END
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Appendix B

COMPUTER PROGRAM FOR NUMERICAL SOLUTION OF THE NONLINEAR
PARTIAL DIFFERENTIAL EQUATION FOR FLOW OF A POWER-LAW
FLUID IN AN INFINITE FRACTAL RESERVOIR

** THE PROGRAM LISTED HERE USES THE DOUGLAS- ol
A JONES PREDICTOR-CORRECTOR METHOD FOR THE falkad
ol NUMERICAL SOLUTION CF THE NONLINEAR **
bl PARTIAL DIFFERENTIAL EQUATION GOVERNING ol
"% THE TRANSIENT FLOW OF A NON-NEWTONIAN *x
o POWER-LAW FLUID IN AN INFINITE FRACTAL *x
** RESERVOIR. o
LR * k
. AT TIME TD=0, THE DIMENSIONLESS PRESSURE *x
** IS ZERO EVERYWHERE. THE FLOW RATE INTO THE * =
ol FINITE-RADIUS WELLBORE IS CONSTANT, AND *x
* * PRESSURE AT THE OUTER BOUNDARY IS ZERO AS *x
ol THE DISTANCE TO THE OUTER BOUNDARY TENDS * %
foda TO A VERY LARGE VALUE. * %
* * %
** THE WELLBORE PRESSURE IS PRI"'TED AT EVERY **
*x TIME-STEP AFTER CONVERGENCE .3 ACEIEVED AT  **
* % THE CORRICTOR STAGE. * %
LR R 22 & &1 MAIN PROGRAM AKX AKAE KA RXRKRKX

xx#x#**x* DEFINITION OF VARIABLES ***%xxxxxw

L2 2 A2 2R RS2 s 2 82t X2 2222822222222
*% TNPUT VARIABLES *kkAxA Ak kA Ak kkhhkkkkAkrkkrk

AN --> DIMENSIONLESS FLOW BEHAVIOUR INDEX (POWER-
LAW PARAMETEF)
DELTD --> SIZE OF THE TIME-STEP
DF --> DIMENSIONLESS FRACTAL DIMENSION
DS --> DIMENSIONLESS SPECTRAL DIMENSION
DX -~-> SPATIAL INCREMENT
EPSILON --> MAXIMUM ALLOWABLE RELATIVE DIFFERENCE IN PRESSURES
FROM TWO DIFFERENT ITERATION LEVELS
N --> NUMBER OF SPATIAL INTERVALS INTO WHICH THE SYSTEM
IS DIVIDED BY THE GRID POINTS
TD --> DIMENSIONLESS TIME
TDMAX =--> MAXIMUM VALUE OF DIMENSIONLESS TIME CONSIDERED

**%* OUTPUT VARIABLES kXX %xkkkkkkkkhkkkkxkkk kkk
IC --> ITERATION COUNTER

P (1) --> REQUIRED WELLBORE PRESSURE SOLUTION AT THE
CURRENT VALUE OF TIME TD

%%k % v Tk ok ok ko ok 3k 9k ok Jk e dk o o 3k dk I sk Kk vk % ok Sk ok Jk ok ek ok gk gk e ok ok e ok e ok

IMPLICIT REAL*8(A-H, 0-2)

DIMENSION A(1001), B(1001), C(1001), D(1001), P(1001),
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1 PHALF (1001), PNEW(1001)

READ (5,*) N, DX, DELTD, TDMAX

READ (5,*) AN, DF, DS, EPSILON

WRITE (6,'(2(A,G12.6))")

+ 'AN= "', AN, ', DF = ', DF

WRITE (6,'(2(A,G12.6))")

+ 'DS ="', DS, ', EPSILON = ', EPSILON

PRINT *, '

Nl =N+ 1

A3 (DE/DS) * (AN + 1.0DJ) / AN
A2 (DF/DS) ** ((AN + 1 9D0) / AN)
Al = AN * (DF - A3)

DX2 = DX * DX

ALPHA = 2.0D0 * DX2 / DELTD

Cl = A3 = DX

C2 = (AN - 1.0D0) / 2N

C2N = ~C2
C3 = (DF/DS) 2
¢4 = DX* DF / DS

CS = A2 * ALPHA
Co = Al * DX

SETTING INITIAL AND BOUNDARY CONDITIONS. ..
DC 10 I =1, N1

P(I) = 0.°D0
PHALF (I) = 0.0D0

PERFORM CALCULATIONS OVER SUCCESSIVE TIME-STEPS
TD 0.0d00
TD TD + DELTD

([ |

NOW BEGINS THE PREDICTOR: THE COEFFICIENT ARRAYS A, B, C AND
RIGHT-HAND SIDE VECTOR D ARE SET AND PRESSURES AT THE END OF
HALF OF THE TIME-STEP, PHALF, ARE COMPUTED.

B(1l) = -(2.0D0+C3*CS)

D(1) = C4 * C6 - C3 * C5 * P(1) - 2.0D0 * C4
A(l) = 0.0D0

C(l) = 2.0D0

DO 60 I =2, N
IPl = I + 1
IMlL=1I-1
AIM1 = IM1
DP1 = (P(IM1) - P{IPl)) / (2.0DO*DX)
IF (DP1 .LE. 0.0D00) GO TO 30
PD1 = 1.07,00 / DP1
B(I) = -(2.0DO+C5*DEXP (C1*AIM1) * (PD1**C2N))

D(I) = Al * DX2 * DP1 - C5 * DEXP(C1*AIM1) * (PD1**C2N) * p(I)

GO TO 50

CONTINUE

IF (TD .EQ. DELTD) THEN
B(I)=-2.0D0
D(I)=0.0D0
GO TO 50

ENDIF

NN=1I-1
CAll TRISOL(1l, NN, A, B, C, D, PNEW)
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110

12¢
130

140

150

160

DO 40 J = NN + 1, N
PNEW(J) = P ()

GO TO 70
CONTINUE
A(I) = 1.0D0
C(I) = 1.0D0C
CONTINUE

C(N) = 0.0D0C

CAll TRISOL(1l, N, A, B,

DO 80 I = 1, N
PHALF (I) = PNEW(I)

<,

THE CORRECTOR BEGINS NOW;
ARRAYS A, B AND C AN"™ THZ rIGHT-HANC SIDE VECTOR D ARE SET;
SUBSEQUENTLY, THE PLUSSURES AT THE END OF THE TIME-STEP

ARE CALCULATED.

IC =20

D(1) = -2.0D0 * PHALF (2)
AR

10D0 * C4 * Cé6 - 4.0DO
IC = IC + 1

DO 130 I =2, N
IPl = I + 1
IMI =TI ~1
AIMl] = IM1

+ 2.0D0 * PHALF (1)

D,

PNEW)

DP2 = (PHALF(IM1) - PHA" "(".Pl)) / (2.0D0*DX)
IF (DP2 .LE. 0.0D00) & T 100

PD2 = 1.0D00 / DP2

B(I) = - (2.0D0+CS5*DEXP (T1*AIM1) * (PD2**C2N) )
+ SVALF(IP1) - 2.0DOQ*PHALF (I))
* P(I) + 2.0D0 * Al * DX2 * DP2

D(I) = - (PHALF (IM1)
1 CI1*AIMl) * (PDZ**C2

GO TO 129

CONTINUE

NN =1I-1

CAll TRISOL(i, N7,

DO 110 J = NN 2,
PNEW(J) = PHALF 7)

GO TO 140

CONTINUE
CONTINUE

CAll TRISOL(1l, N, A,

CHECK FOR CONVERGENCE

N}

A,

N

B,

B,

C,

c,

D,

D, PNEW)

PNEW)

DIFFl = (PNEW(l) - PHALF(1l)) / PNEW(1)
IF (DABS(DIFFl) .LE. EPSILON) GO TO 160

DO 150 I = 1, N
PHALF (1) = PNEW(I)

GO TO 90
CONTINUE

DO 170 I =1, N

170

IN THIS STAGE ALSO THE COEFFICIENT

-C3 2 C5 * P(l) + 2.

- C5 * DEXP(



170

aa a0

P(I) = PNEW(I)

PRINT CURRENT VALUE OF TIME, THE NUMBER COF ITERATICONS
REQUIRED AND THE WELLBORE PRESSURE VALUE.

WRITE (6,'(A,Gl2.6,A,I3)') 'TD = ', TD, ', IC = , IC
WRITE (6, '(A,Gl2.6)') 'P(1): ', P(1)

IF (TD .LE. TDMAX) GO TO 20

STOP

END

SUBROUTINE TRISOL(I, N, ., B, C, D, PRESS)

SUBROUTINE FOR SOLVING A SYSTEM OF LINEAR SIMULTANEQUS

EQUATIONS WITH A TRIDIA ONAL COEFFICIENT MATRIX.

IMPLICIT REAI*8(A - H,0 - 2)

DIMENSION A(- ., B(*), C(*), D(*), PRESS(*), BETA(1001),
GAMmMA (1C01)

BETA(I) = B(I)

GAMMA (I) = D(I) / BETA(I)

IPl =1 + 1

DO 10 K = IPl, N
BETA(K) = B(K) - A(X) * C(K - 1) / BETA(K ~ 1)
GAMMA (K) = (D(K) - A(K) * GAMMA(K - 1)) / BETA(K)
CONTINUE

PRESS (N) = GAMMA(N)
M=N-1

DO 20 J =1, M

K=N-J

PRESS (K) = GAMMA(K) - C(K) * PRESS(K + 1) / BETA(K)
CONTINUE

RETURN
END
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Appendix C

COMPUTER PROGRAM FOR GENERATING DIMENSIONLESS PRESSURES
FOR POWER-LAW FLOW IN A FINITE FRACTAL RESERVOIk

. THE PROGRAM LISTED HERE IS DEVELOPED "
* TO CALCULATE DIMENSIONLESS WELLBORE o
ok PRESSURE AND DERIVATIVE RESPONSE IN **
s LAPLACE SPACE DURING THE PRODUCTION *
s OF A NON-NEWTONIAN, POWER--LAW TYPI *%
o FLUID AT A CONSTANT RATE FROM A FINITE *
* FRACTAL RESERVOIR. *ox
* ® L%
»* THIS PROGRAM COMPUTES THE DIMENSIONLESS *x
e PRESSURE RESPONSE AND ITS DERIVATIVE USING  **
*n NUMERICAL LAPLACE TRANSFORM INVERSION WITH  **
ok THE STEHFEST ALGORITHM (STEHFEST, 1970). *x
nK * *

KAk itk ook MAIN PROGRAM AR RS2 EE L SR L2

xsxwwx**#% DEFINITION OF VARIABLES ***#*##xx%

KA NRANA AN AR AR R AR AN AT AR Rk Rk ko w ok kkk
** YNPUT VARIABLES ***dA kX krrkkkhkrkkh kA kkk

AN --> DIMENSIONLESS FLOW BEHAVIOUR INDEX (POWER-
LAW PARAMETER)
DF ~~> DIMENSIONLESS FRACTAL DIMENSION
DS ~-> DIMENSIONLESS SPECTRAL DIMENSION
RED =--> DIMENSIONLESS RADIUS TO OUTER BOUNDARY
S --> VARIABLE OF LAPLACE TRANSFORM W. R. T. TIME, 1D
T(J) --> ARRAY OF DIMENSIONLESS TIME
TD ~-> DIMENSIONLESS TIME

*% OUTPUT VARIABLES *A* kA xkkkkk Rk kk ok k kX
PWD(J) --> VECTOR OF THE WELLBORE PRESSURE DROP

DPWDL(J) =~-> VECTOR OF THE SLOPE OF THE WELLBORE
PRESSURE RESPONSE

AKARK AR K AR AT KRR R AR A KRR R KRR AKX CRAAA R AR KKKk k AR *kkkk k%

IMPLICIT REAL*8 (A-H, 0-2)

DIMEMSION TDST(10), TD(200),
# PWD(200), DPWDL(200)

COMMON/THE/AN, DF, DS, RED

DATA TDST/1.0D0,1.5D0,2.0L0.2.5D0,3.0D0,4.0D0,5.0D0, 6.0D0,
# 7.0D0,8.0D0/

M=777

N=8

READ (5,*) AN,DF,DS,RED
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10

20
30
40

60
50

CALCULATE THE VALUES OF TD

ITD=0

DO 10 J=3,10

DO 10 K=1,10

ITD=ITD+1

TDI=TDST (K) * (10.0D0** (J-1))

TD (ITD)=TDI

CONTINUE

NTD=ITD~1

WRITE (6,20) AN,DF

FORMAT ('The value of n =',1E9.4,2X, 'and df =',1E9.4)
WRITE (6,30) DS,RED

FORMAT ('The value of ds =',1E9.4,2X%,'and reD =',1E9.4)
WRITE (6.40)

FORMAT (3X,'tD',3X,'PwD',3X,'dPWD/dlntD')

DO 50 J=1,NTD

T=TD (J)

CALL INVERT(T,M,N,PD,PDP)
PWD (J) =PD

DPWDL (J) =T*PDP

PRINT OUT COLUMNS OF TD, PWD AND DPWDL VALUES

WRITE (6,60) TD(J),P¥™(J),DPWDL(J)
FORMAT (1E12.6,3X,1E12.6,3X,1E12.6)
CONTINUE

STOP

END
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*** CLOSED OUTER BOUNDARY CASE KARFARARA R AR AR A

SUBROUTINE LAP HAS THE FUNCTIONS THAT ARE USED TO
CALCULATE THE DIMENSIONLESS PRESSURE AND PRESSURE
DERIVATIVE FUNCTIONS IN TERMS OF THE LAPLACE VARIABLE,
S, AND THE SYSTEM PARAMETERS.

SUBROUTINE LAP (S, PWDL, PDPL)

IMPLICIT REAL*8(A-H,0-~2)

COMMON/THE/AN, DF, DS, RED *
PIE=3,14159265359D00

ALPHA=2 .0DO*DSQRT (S) / (AN+1.0D0-DS* (AN-1,0D0) )
BETA=( (DF/DS) * (AN+1, 0D0) -DF * (AN~1,0D0) ) /2.0D00O
V1=1.00D00-DS/ (AN+1,0D0-DS* (AN-1.0DO))
V2=1.00D00-V1

ARGU]=ALPHA* (RED**BETA)

ARGU2~=V2+PIE

NN=1

CALL DBSKES (V2, ARGU1l,NN,BK1)

CALL DBSIES (V2, ARGU1,NN,BIl)

T1=BI1l/DEXP (ARGUL)+2.0DC*DSIN (ARGU2) *BK1/PIE/DEXP (ARGUL)
T6=T1

CALL DBSKES (V1, ALPHA,NN, BK2)
T2=BK2 /DEXP (ALPHA)

CALL DBSIES (V1,ALPHA,NN,BI3)

T3=BI3/DEXP (ALPHA)

T4=BK1/DEXP (ARGU1)

T7=T4

CALL DRSKES (VZ, ALPHA, 4N, BKY)

T5=BKS /DEXP (ALPHA)

CALL DBSIES (V2, ALPHA,NN,B.t)

T8=BI8/DEXP (ALPHA) +2 .0D0 *"LIN (ARGU2) *T5/PIE

CALCULATE THE PRESSURE SOLUTION, AS GIVEN IN EQUATION (7-27)
PWDL= (T1*T2+T3*T4) / (TS*T6-T7*T8) /S/DSQRT (S)
PDPL=S*PWDL

RETURN
END
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***x CONSTANT PRESSURE OUTER BOUNDARY CASE MAASN RN

SUBRQUTINE. LAP HAS THE FUNCTIONS THAT ARE USED TO
CALCULATE THE DIMENSIONLESS PRESSURE AND PRESS!/RE
DERIVATIVE FUNCTIONS IN TERMS OF THE LAPLACE VARIABLE,
S, AND THE SYSTEM PARAMETERS.

SUBRQUTINE LAP (S, PWDL,PDPL)

IMPLICIT REAL*8 (A-H,0-2)

COMMON/THE/AN, DF, DS, RED
PTE=3.14159265359D00

ALPHA~2 .0DO*DSQRT (S) / (AN+1.0D0-DS* (AN-1.0D0)) *
BETA=({ (DF/DS) * (AN+1.0D0) ~-DF * (AN-1.0D0) ) /2. 0D00
V1=1.00D00-DS/ (AN+1.0D0-DS* (AN-1.0D0))
V2=1.00D00-V1

ARGU1=ALPHA* (RED**BETA)

ARGU2=VZ*PIE

NN=1

CALL DBSIES(V1,ARGU1l,NN,BTI1)
T1=BI1/DEXP (ARGU1)

T6=T1

CALL DBSKES (V1, ALPHA,NN, BK2)
T2=BK2 /DEXP (ALPHA)

CALL DBSIES(V1,ALPHA,NN,BI3)
T3=BI3/DEXP (ALPHA)

CALL DBSKES (V1,ARGU1,NN, BK4)
T4=BK4/DEXP (ARGU1)

T7=aT4

CALL DBSKES (V2, ALPHA, NN, BKS)
T5=BK5/DEXP (ALPHA)

CALL DBSIES(V2,ALPHA,NN,BIS8)
T8=BI8/DEXP (ALPHA)+2.0DO*DSIN (ARGU2) *TS5/PIE

CALCULATE THE PRESSURE SOLUTION, AS GIVEN IN EQUATION (7-27)
PWDL= (T1*T2-T3*T4)/(T5*T6+T7*T8) /S/DSQR™ (S)

PDPL=S*PWDL
RETURN

END
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