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K ef f  effective bulk modulus of a compos­
ite material (solid and fluid) [Pa]

p  shear modulus [Pa]

Pd shear frame modulus [Pa]

r] (shear) viscosity of a fluid [Pa-s]

<j> porosity [-]

Sst steam saturation [-]
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Sw  w ater or brine saturation [-]

So oil saturation [-]

pef  f  effective density [kg/m 3]

ps density of the solid material [kg/m 3]

po oil density [kg/m 3]

pst steam  density [kg/m 3]

pw  w ater or brine density [kg/m 3]

pf effective density of a composite fluid [kg/m 3]

Vp P-velocity [m/s]

VpGasa P-velocity according to the Gassmann 
model [m/s]

Vp tchy P-velocity after the patchy satura­
tion model [m/s]

Vs S-velocity [m/s]

Ppore pore pressure [Pa]

Pc lithostatic or confining pressure [Pa]

p eff effective pressure [Pa]

M  P-wave modulus [Pa]

M frame frame modulus [Pa]

Mpore pore space modulus [Pa]

1Z reflection coefficient [-]

a  absorption coefficient [1 /m ]

Q quality factor [-]

k permeability [m2, darcy]

Abbreviations
GSLS Generalised Standard Linear Solid 

SAGD Steam Assisted Gravity Drainage 

SFEM Spectral Finite Element Method
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A note on mathematical notation

Vectors and matrices

Mathematical symbols for vectors and matrices as well as mathematical operations are 
handled quite flexibly later on. Therefore, a description of the various notations is pro­
vided first. A vector will be either written as a bold lower case letter, e.g., the displace­
ment vector will be

S =  [s i, S2, S3]T or just Sj.

Here, Si,i — 1,2,3 are the three cartesian components of the vector. The superscript T  
denotes the transposed of a vector or a matrix.
In case of a column vector the index is written as a subscript whereas a superscript indi­
cates a row vector.

Similarly, a matrix A is either written as a bold upper-case letter or in indicial notation
as

A ll A u  Ai3\
A -21 A 2 2 M'i I or just Ay.
A31 A32 A33/

Again, i , j  — 1,2,3 is implicitly assumed for the indicial notation. There are some exep- 
tions from this convention: for example, the elastic stiffness tensor will be a lower-case 
letter c , the stress tensor will be a , and the strain tensor will be greek lower case epsilon 
e.

Two different vector products will be used when deriving the finite element algo­
rithm. The first product is the inner-product, which is written as

a — hT ■ c or a — bla .

For the symbolic notation the inner product is indicated by the dot between the two 
vectors. For the indicial notation the well-known Einstein summation convention ap­
plies, i.e. a summation for repeated indices must be performed. Then

a — blCi — bici +  b2 c2 +  &3 C3 .

The second vector product is the outer product, which in symbolic and indicial nota­
tion is

A =  a  br  or Ay =  <1$ .
The product of a matrix and a vector in symbolic notation is

a  =  A  • b  or a* =  Ay bj.

Again, the Einstein summation convention applies for the repeated index j.
In some equations a special tensor product will be employed, the doubly contracted 

product of two tensors. This product is written as a =  A  : B in the symbolic notation or 
in indicial notation as a =  Ay Bji. This product reduces the rank of the tensors by two. 
For example, the product of two tensors of rank two is a scalar.
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Derivatives

Often, a comma notation will be used for derivatives. If an index appears in subscript 
after a comma then it indicates the derivative of the variable. For example, the divergence 
of a vector u can be written as di 114 = Ui^. Derivative operators are written in the standard 
way using the Nabla (V) operator, which is defined in cartesian coordinates as

A gradient of a scalar is denoted by

a  =  V« or Oj =  diu or a< =  uti,

the gradient of a vector by

A =  V u or Aij = djUi or Atj — Uij,

and the divergence of a vector by

a =  V • u  or a — diUi or a =  u ^ .

Time derivatives are written in two different ways. First the traditional 'dot'-notation is 
employed. A dot above a variable indicates the first derivative with respect to time, two 
dots the second derivative. Alternatively, the comma notation applies as well, where the 
index t  is reserved for the time derivative:

du . d2u
j £  = u = u t and -  u =  u tt.
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Preface

Within the discipline of geophysics, remotely probing the earth is a large area of study. 

Much of geophysical science deals w ith describing, interpreting, and understanding the 

subsurface structure of the earth that is not directly accessible. With exploration geo­

physics one attempts to image the earth's geological structure in order to especially dis­

cover potential natural hydrocarbon containing reservoirs.

During the last decade the potential of monitoring changes in the subsurface with 

geophysical methods has attracted increasing interest (e.g. Greaves and Fulp, 1987; Nur, 

1989; Lumley et al, 1997; Lumley, 2001). The essential concept is that changes in the 

earth can be detected with data sets repeatedly acquired from the same location. Pos­

sible applications are, among others, monitoring the changes in a oil or gas reservoir due 

to engineering actions (e.g. Greaves and Fulp, 1987; Hare et al, 1999; Watson et al, 2002), 

changes in magma chambers of volcanos or geysers (Kieffer, 1977; Ito et a l, 1979; Gunasek- 

era et al, 2003), and monitoring of fluid movements in hot-dry-rock (HDR) power plants 

(e.g. Shapiro et a l, 1999). All these applications are based on the idea that the fundamental 

physical properties of the earth change with time. For example, variations in the elastic 

parameters of the material will change the seismic response after the changes took place. 

Similarly, changes of the electric properties will be detectable by repeated resistivity mea­

surements (e.g. recently Ziolkowski et al, 2002) or density variations by gravity surveys.

The utilization of repeated seismic surveys for geophysical monitoring is often called 

time-lapse seismology or 4D seismic in the context of 3D seismic imaging that is repeated 

with calender date.

Traditionally, seismic methods have been used in exploration geophysics to mostly 

provide structural images of the subsurface that may be interpreted to look for hydrocar­

bon resources. To a lesser degree they have also supplied information on the properties of

1
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the earth  via inversion of the seismic data. Such information could then be used to build 

geological models for various uses. In this traditional work flow, seismic information did 

not play  an active role in reservoir management decision processes. A different situation 

exists today with the application of expensive and technically challenging enhanced oil 

recovery processes (EOR). Repeated seismic surveys can assist in observing production 

related changes in the reservoir and hence influencing reservoir management decisions.

This thesis considers such an application of seismic monitoring for heavy oil reser­

voirs, particularly the feasibility of seismic monitoring of heavy oil reservoirs produced 

with the help of the steam-assisted gravity drainage (SAGD, Butler, 1994) enhanced oil 

recovery method. This thesis has two complementary parts. First, the physical proper­

ties of a steam zone are estimated and the effects on the seismic response are modelled. 

Second, an advanced numerical scheme to calculate the propagation of seismic waves 

through complex geometries using a finite element based method is developed.

The following sections will briefly introduce the issues related to seismic monitor­

ing of heavy oil reservoirs. This will include a more detailed description of the SAGD 

method. A discussion of various aspects regarding seismic monitoring and its role in 

reservoir management follows. As the numerical simulation of seismic waves is a sec­

ond main focus in this work; a brief overview of numerical modelling is included in this 

chapter, with a more detailed description to follow subsequently.

Heavy oil reservoirs in Western Canada

The world's heavy oil and oil sand (bituminous) accumulations, that is, those containing 

hydrocarbons with densities larger than 900 k g /m 3 (equivalent to API specific gravity 

< 21o1), are becoming increasingly important. Global reserves are estimated to be ap­

proximately 2.5 trillion barrels (397 x 109 m3) of oil, an amount comparable to that for 

the remaining medium and light oils. The largest deposits are found in Canada and 

Venezuela, reservoirs in Russia and China also contain significant amounts of heavy oil.

’The American Petroleum Institute (API) defines the fluid density in terms of the API gravity, which is 
related to the the specific gravity of a fluid by

API gravity =  rr.— ----- 7 7 5 =  — 131.5.
°  specific gravity at 60 F

2
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Western Canadian Sedimentary Basin 

Heavy oil and bituminous sand deposits

Figure 1: Map of the Western Canadian Sedimentary Basin with the areas containing the 
major heavy oil or bituminous sand reservoirs.

The heavy oil and bituminous reservoirs in Western Canada contain a significant frac­

tion of these hydrocarbons. The largest known deposit is in  the Athabasca oilsands of 

Alberta, which is believed to contain over 800 billion barrels (127 x 10s m3) of oil in form 

of bitumen. There is little doubt that heavy oil reservoirs will play an increasing role in 

providing needed hydrocarbons in the future.

The heavy oil reservoirs in the Western Canadian Sedimentary Basin are large and 

shallow and are therefore relatively easily found. As such, seismic methods have not 

been widely applied in exploration, which has relied on shallow drilling and, more re­

cently, electrical methods. The major reservoirs considered in this thesis are the Athabasca 

reservoir in North-Eastern Alberta, the Lloydminster reservoir complex extending from 

central to southern Alberta along the border between Alberta and Saskatchewan, and the 

Cold Lake reservoir located roughly between the two other (Figure 1). However, there 

are other reservoirs in Alberta and Saskatchewan storing a significant amount of heavy 

oil and bitumen (e.g. National Energy Board, 2001). The Peace River area also holds heavy

3
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oil, some of which lie in carbonate zones.

Thermal enhanced oil recovery - the SAGD method

At typical in-situ temperatures (T  < 30°C) and pressures (Ppore <  5 MPa)  for the West­

ern Canadian Basin reservoirs heavy oils are essentially immobile due to their high vis­

cosities, which are as great as 500 Pa s. Therefore, heavy oils typically have not been a 

major target for conventional production; indeed, a large fraction of Canada's current 

bituminous oil is produced instead from active surface mining and processing of these 

deposits. However, the viscosity of these hydro-carbons decreases significantly when 

heated (Figure 2) and the heavy oils become mobile on timescales that make their pro­

duction economic. New technical developments such as modern thermal recovery tech-

co
<b

0L

U)oato
>

100 150
Temperature f  C]

200 250

Figure 2: Dependence of heavy oil's viscosity on temperature based on data by Ward and 
Clark (1950), Seyer and Gyte (1989), and Eastwood (1993). The viscosity of some bituminous 
hydrocarbons found in the Athabasca reservoirs can be as high as y — 103 Pa- s at in 
situ temperature. For comparison: the viscosity of water under room condition is about
I Q - 3  p a . g_
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Figure 3: Schematic sketch of a SAGD process.

niques, particularly steam assisted gravity drainage (Butler, 1994)2, now allow for the 

economic exploition of heavy oil reservoirs. During a SAGD program hot steam, typi­

cally in the temperature range between 120°C and 300°C, is injected into the reservoir 

from an upper horizontal wellbore (Figure 3). The principal idea of a SAGD-process is 

to establish a chamber of hot steam within the reservoir. Conduction of heat will then 

increase the temperature in the material immediately adjacent to the steam chamber, 

thereby melting and mobilising the bitumen. The difference in the densities of the steam 

and the heavy oil allows the latter to gravitationally drain to the bottom of the chamber. 

The hot steam replaces the displaced oil and comes in proximity to the cold formation

2Detailed information on the technique and mechanics of the SAGD process can be found in the literature 
(e.g., Butler, 1991,1994; Chalaturnyk, 1996).

5
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again. By progressively melting and displacing the oil the steam chamber grows upward 

and outward, as long as enough steam is available and the drained heavy oil is removed 

from the chamber through a lower horizontal well. Ideally, the pore space within the 

steam chamber is saturated by steam with just a small fraction of residual oil remaining.

Clearly, such processes are complicated and expensive. Many operational problems 

are likely to occur, particularly if portions of the reservoir are by-passed or steam is lost 

outside the reservoir. As such, remote monitoring of the changes within the reservoir is 

an increasingly important tool to assist in engineering decision processes. For example, 

by-passed sections within the reservoir are a production problem that can result from 

complexities in the geology or completion problems with horizontal well bores.

Numerical simulation of seismic surveys

Given the complexity of real world scenarios, the 

underlying physical principles of wave propagation 

can seldomly be analysed analytically. Instead, nu­

merical techniques are employed when the geome­

try or heterogeneity of the problem do not allow for 

a determination of an analytical solution of funda­

mental partial differential equations.

Traditionally, problems in physics were only con­

sidered by either an experimental or an theoretical 
Figure 4: The three 'm odem ' ap­
proaches in physics to a problem. approach. Experimentalists describe the physical

phenomena by empirical laws and large data sets. 

Theoreticians aim to express these empirical relationships in an analytical framework 

that in many cases require the use of partial differential equations. The exact mathemati­

cal solution of these equations is, however, restricted to only rather simple cases (e.g. ho­

mogeneous and isotropic situations and simple geometries). Therefore, a comprehensive 

description of real phenomena in complex situations is difficult to obtain. On the other 

hand, experimental methods are limited by the impossibility of measuring the quantities 

of interest at all locations for all times and circumstances. Therefore, a conceptual gap

6
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exists in the traditional way of describing natural events. During the last decades with 

increasing computer resources a new branch of physics called computational physics has 

developed. Computational physics seeks to bridge the conceptual gap between experi­

m ent and theory. With a well-organised approach using all three branches, it is possible 

to narrow the ambiguities that arise from the complexity of a particular problem. How­

ever, numerical simulations can never fully represent real physical processes, as some 

simplifications need always to be assumed in the derivation of a numerical scheme. Nev­

ertheless, such simulations can provide valuable insight into a physical problem.

In computational physics, the differential equations or their solutions are approxi­

mated in various ways. A key feature of these approximations is that the heterogeneity 

and anisotropy of the fundamental physical properties (e.g. the seismic velocities, den­

sity) may be incorporated within a model and realistically considered. Of course, the 

approximate solution is only close to the exact solution of the differential equation; and 

one has to take care that the numerical errors are minimized.

To ensure reliable results, a modelling technique must be developed with an eye to­

wards various aspects such as accuracy, the proper implementation of boundary condi­

tions, and, especially in simulations for seismic exploration, the ability to model complex 

surface topography and irregular subsurface interfaces. During the last three decades fi­

nite difference methods have been intensively used in geophysics to simulate wave prop­

agation in heterogeneous and anisotropic media (e.g. Alford et al., 1974; Dablain, 1986; 

Kelly et al., 1976). In the eighties, this simulation technique was improved by the in­

troduction of Fourier methods for the calculation of the derivatives (e.g. Gazdag, 1981; 

Kosloff and Baysal, 1982). Further improvements led to Pseudo-Spectral methods which 

use Chebychev polynomials to approximate a function and its partial derivatives (Kosloff 

et al, 1990). All these algorithms can simulate the propagation of acoustic or elastic 

waves within the model more or less accurately. Unfortunately, finite difference and 

pseudo-spectral methods exhibit problems with the accurate implementation of appro­

priate boundary conditions and particularly with the free surface. In the case of high- 

order finite difference operators such problems are due to the operator length. The fail­

ure of the Fourier method to simulate the free surface can be explained by its periodic 

character (e.g. Canuto et al, 1988; Press et al, 1997). Pseudo-spectral methods allow a one-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dimensional approximation of the free-surface condition but it is still difficult to model 

all of the surface effects properly. Another common shortcoming of all these methods is 

that they require a uniform grid with a mesh of rectangular cells. This makes it almost 

impossible to properly incorporate surface topography or other complex features such as 

arbitrarily-shaped bodies embedded in the model.

Geometrically complex models can be modelled more easily with the finite element 

method because it offers greater flexibility in designing a computational model. Al­

though Bolt and Smith (1976) used the finite element method to simulate wave propa­

gation phenomena. Since then, this method has been seldom used for such purposes in 

the geophysical community. One reason for this may lie in the computational difficulty 

of implementing this technique. Another may be in its poor performance with regards to 

numerical dispersion performance as reported by Marfurt (1984). A significant improve­

ment of the standard Finite Element Method was achieved with the introduction of the 

Spectral Element Method by Patera (1984). This technique allows for a very efficient sup­

pression of numerical dispersion that is comparable to that of global spectral methods, 

while preserving the geometrical flexibility of the Finite Element Method.

In chapter 2 the standard numerical techniques and their practicability for simulating 

seismic surveys in geometrical complex environments are discussed in more detail.

Seismic monitoring

In seismic monitoring one tries to supply additional information to the reservoir man­

agement decision process. Before the rise of geophysical monitoring, seismic data were 

only used to assist in constructing the reservoir model, that is, in defining the size and 

shape of a potential reservoir and only seldomly its petro-physical properties (step A in 

Figure 5). This is commonly referred to as development geophysics. Once the reservoir 

model has been established, seismic data did not play any further active role. Reservoir 

management decisions were then made based on flow simulation and history matching 

techniques with measured mass balance and pressure data. However, such information 

is based on punctual and accurate well information and no information were available 

about the distribution of, for example, the saturation of oil or the pore pressure between

8
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Figure 5: Possible workflow for seismic monitoring.

the wells. As well, production history matching usually relies on highly simplified as­

sumptions and is generally not unique.

A different situation exists today. Seismic data are acquired not only at the initial 

stages of a reservoir's life, but repeatedly with time in order to supply additional con­

straints on what part of the reservoir is being produced and to provide data for the 

reservoir simulator. As before, an initial seismic survey assists in creating a preliminary 

reservoir model (step A in Figure 5). After the following flow simulation (step B) the 

lateral distribution of some effective elastic parameters of the reservoir or attributes are 

predicted for a later stage in the life of the reservoir. However, these results can often 

at best only be validated at the well locations. Seismic data, on the other hand, provide 

lateral information between wells. In such a case, the flow simulation can then be tested 

against a much larger amount of measured information. To incorporate such time-lapse 

data, the workflow shown in Figure 5 includes the inversion of seismic data for some 

elastic parameters in step C. The inverted data are then compared to a second data set 

calculated on the basis of the results of the reservoir simulation in step D. Depending

9
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on the match the reservoir model needs either be updated (in case of a bad match) or 

reservoir management decisions can be drawn to further improve the production of the 

reservoir (step E). Note, that different workflows are possible (see for example Lumley 

and Behrens, 1998).

However, no guarantee exists that such a seismic monitoring program will be success­

ful. Given the costs of repeated acquisition of seismic data the feasibility of time-lapse 

monitoring must be assessed before embarking an expensive field program. Issues that 

come to mind in the above workflow are:

• Are the expected changes in the reservoir large enough to be detected in seismic 

data?

• Given the possible survey parameters (e.g., frequency content of the seismic source): 

is the vertical and lateral resolution fine enough to be able to separate the changes 

from the background?

• Can the data be accurately inverted such that potential but subtle changes are pre­

served?

• Will the signal-to-noise-ratio be sufficiently small enough to ensure reliable inver­

sion results?

• How accurately can elastic parameters be inferred from the field data? What are 

the uncertainties of the parameters inverted for?

As time-lapse seismology is a young field most of these issues have not yet been resolved. 

This thesis reports work done to address the first two questions. The feasibility of seis­

mic monitoring is investigated by a rock-physical study that simulates the steam-assisted 

gravity drainage process. The resolution question is addressed by two-dimensional Fi­

nite element simulations of elastic waves for simplified geological models representing 

reservoirs subjected to SAGD programs.

10
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Scope of the thesis

Chapter 1 - Introduction to rock-physics

The purpose of this chapter to introduce fundamental concepts of rock-physics and the 

propagation of waves within the earth. Various rock-physical and mathematical models 

are discussed and evaluated for their later use in the research for this thesis. In particular, 

the variation of seismic parameters such as density, wave-velocities, and dispersion as a 

tool for reservoir characterization are discussed in detail. The second aspect covered in 

this chapter is a review of the standard mathematical models commonly used, which are 

the acoustic, elastic, poro-elastic, and visco-elastic wave equations.

Chapter 2 - Application of the high-order Finite Element Method to the elastic 
wave equation

In this chapter the formulation of the spectral finite element solution to the two-dimensional 

elastic wave equation is derived. The potential, advantages, and short-comings of this 

method are compared to other numerical techniques. Furthermore, current problems are 

addressed and possible directions for future work are outlined at the end of this chapter.

Chapter 3 - A rock-physical feasibility study for seismic monitoring of steam
floods

An extensive rock-physical study has been carried out to assess the feasibility of seis­

mic monitoring of SAGD-processes for two particular heavy oil reservoirs in the Western 

Canadian sedimentary basin. The feasibility itself is estimated by analysing the change 

in three seismic attributes that are often used in the analysis or interpretation of seismic 

data. Although these reservoirs are geologically similar, the time-lapse seismic response 

of these reservoirs differs significantly. Based on fluid-substitution modelling the differ­

ent behaviour of these reservoirs can be explained in terms of rock physics. The investi­

gated work-flow for estimating the feasibility of seismic monitoring can be an important 

tool in planning seismic monitoring programs.

11
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Chapter 4 - Spectral finite element simulation of time-lapse seismic surveys for 
SAGD programs

The results of the two previous chapters are combined in simulations of elastic waves for 

different simple reservoir models to extend the feasibility study of the previous chapter 

and to investigate the resolution problem. At the moment these simulations are rather 

preliminary; however, useful insight is gained.

12
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Chapter 1 

Introduction

Seismology deals with the propagation of waves through the body and along the surface 

of the earth. These waves can originate from natural sources (for example earthquakes) 

or artificial sources such as accelerated weight drops, seismic vibrators, or controlled 

detonations ranging from some tons of dynamite to nuclear explosions. The aim of ap­

plied seismology is to learn more about the local structure of the earth. While earthquake 

and teleseismic seismology is more applicable to the global structure of the earth, applied 

seismology rather deals with imaging and characterising of a small part of the earth (usu­

ally of a volume in the range of a few km3). The work presented here deals with the latter 

application of seismic methods.

In the past, seismic surveys have dominantly been used to obtain two and three- 

dimensional images of the structure of the earth. During the last decade there has been an 

increasing interest in using seismic data to monitor changes with time in the subsurface. 

These so-called time-lapse or 4D surveys have been proven to be especially useful in 

remotely monitoring of oil production and enhanced oil recovery processes.

The propagation of seismic waves through the earth depends on the distribution of 

the seismic velocities in the medium. These velocities are directly related to the elastic 

constants and densities of the medium. Basically, there are two different types of waves 

propagating through the earth, the prim ary P -wave (a compressional or longitudinal 

wave) and the secondaryS-wave (a transverse wave), which are distinguished on the 

basis of their propagation velocity and polarisation.

The earth is a composite of solids and fluids. The densities and seismic velocities

13
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1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M O NITO RING

within the earth depend on many factors, the most important of which is the overall 

composition. If for example the pore space of a rock is initially filled with oil, and in 

the course of production this oil is replaced by water, both the density and the effective 

elastic parameters will change, and the seismic velocities must also change accordingly. 

Repeated seismic surveys can be used to infer the production-state of a reservoir from 

data recorded at the surface or within the earth via the evolution of the overall seismic 

response.

Other characteristics of wave propagation through the earth also have the potential 

of providing additional information about the in-situ conditions. Seismic attenuation 

for example is one of such aspects of wave propagation. In real rocks, seismic energy is 

irreversibly converted into heat due to a variety of inelastic processes. This absorption 

of energy results in both attenuation of the wave energy and dispersion of the waves. 

From model calculations it is known that amplitude attenuation and wave dispersion are 

greatly affected by enhanced oil recovery processes (e.g. Dilay and Eastwood, 1995; Boadu, 

2000). This is especially true for processes when heat in form of hot steam is injected 

into the reservoir. The variation in attenuation and wave dispersion with time can be 

mainly attributed to the changes of the pore fluid, so that the analysis of attenuation and 

dispersion can be used to infer the properties and the distribution of the fluids filling the 

pores.

1.1 The rock physical basis for seismic monitoring

The heavy oils in the Western Canadian Sedimentary basin are characterised by both high 

density and viscosity, because they are composed of many long hydrocarbon molecule 

chains. The density of the heavy oils is about 10° to 13° API (equivalent to density range 

of 975 to 1000 kg /m 3). Its viscosity at reservoir temperature of approximately 20°C is 

in the range of 10,000 to 60,000 mPa-s (cP) (Ward and Clark, 1950; Becki and McIntosh, 

1988; Seyer and Gyte, 1989; Eastwood, 1993). The high viscosity makes the oil essentially 

immobile in such low temperature environments. For successful production, heavy oil 

requires a high grade reservoir in which the porosity of the rock exceeds thirty percent 

and the permeability k is larger than 4 Darcies (4x10' ~12 m2) for the oil to flow naturally.
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1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M ONITORING

Even at such high porosities, heavy oil does not flow easily enough through the reservoir 

for conventional oil extraction methods (such as creating a negative pressure gradient 

towards the producing well) to be economical. Consequently, enhanced methods like 

steam or solvent injection have to be used. The purpose of these methods is to either 

decrease the viscosity of the oil (steam injection) or to displace the oil in the pore space 

with the injected fluid and push the oil towards a producing well. A special form of 

steam flooding is the steam assisted gravity drainage (SAGD, Butler, 1994), which allows 

a higher oil recovery than conventional steam flooding processes (Chalatumyk, 1996).

By injecting steam into the reservoir the physical properties of the porous rock and 

the pore fluids are changed in various ways due to the new extrinsic temperature and 

pressure conditions, and varied pore fluid compositions. For the propagation of seismic 

waves and their interpretation with respect to changes in a reservoir the important pa­

rameters are the elastic and viscous moduli as well as the density of the porous medium 

and the saturating pore fluid. These parameters determine the velocities of the seismic 

waves and the amount of absorbed mechanical energy that is irreversibly transformed 

into heat. In the following sections, the effects of temperature, pressure, and pore fluid 

variations on the seismic velocities and wave attenuation are discussed. The important 

changes of the physical properties with time will take place in isotropic sand reservoirs 

only; elastic isotropy is therefore assumed throughout this thesis for the clarity and sim­

plicity. Additionally, there are no information available about possible anisotropy in the 

reservoirs rock matrices of interest. Each section also explains how these effects can help 

to detect changes in the earth.

Seismic velocities basically depend on the elastic moduli and the density of the medium. 

There are two different wave modes propagating through solid material. The first mode 

is a compressional wave, which is referred to as the P-wave. The second wave type de­

scribes a propagating shearing of an elastic solid. This wave type is called the S-wave. 

In an isotropic and homogeneous material the P -wave velocity depends on the bulk (K) 

and shear (y) modulus of the material and on its density (/>). The P-wave is related to 

these properties by (e.g. Lay and Wallace, 1995)

(1.1)
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1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M ONITORING

The velocity of the second wave type is defined by

(1-2)V p

For a composite material such as a saturated porous medium the elastic moduli and the 

density depend on numerous factors. Effective media models are used to account for 

these factors in the calculation of the velocities. Gassmann (1951) developed a widely 

employed theory to calculate the effective bulk modulus K ef f .  This theory assumes that 

the porous media consists of one solid material, has a uniform porosity <j>, and is saturated 

by a single component pore fluid that does not resist shear motion.

The effective bulk modulus K ef f  depends on the bulk modulus of the solid material, 

K s ,  the bulk modulus of the fluid, K f ,  the bulk modulus of the rock matrix frame, Ka,  

and the porosity <fi. To derive an expression for the effective bulk modulus Gassmann 

assumed a quasi-static (or zero/low  frequency) case. The effective bulk modulus K ef f  is 

then given by
K  -  K  4- (1 - J W )2ef f  d +  (1 _  K d / R s  _  (j)]/Ks +  <f)jKf • ( • )

The advantage of Gassmann's equation is that it attempts to approach the porous struc­

ture not only by volumetric proportions as, for example, the Voigt and Reuss averages 

do (e.g. Watt et a l, 1976), but also by the stiffness of the frame. Therefore, the degree 

of elastic consolidation of the material, that is the compressibility of the frame, can be 

taken into consideration. Another assumption in Gassmann's work is that the effective 

shear modulus is independent of the saturating pore fluid. This implies that changes in 

the pore fluid affect the shear wave velocity only by the bulk density. The effective shear 

modulus, n ef f ,  is equal to the shear modulus of the frame, fid,

Peff = Pd- (1-4)

In real situations the pore space is filled not only with a single fluid but with a mixture 

of gas, water, and oil. Wood's formula (e.g. Batzle and Wang, 1992) provides a possibil­

ity to calculate an effective bulk modulus from the individual properties of the fluid's 

component:

16
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1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M ONITORING

The fractional weighting factor Si is the saturation of the fluid component i, and Ki is its 

bulk modulus.

To determine the effective or bulk density a volume averaging approach is employed:

p  =  (1 -  4>)pj +  4>ps . (1.6)

The densities of the fluid and the solid are denoted by pf and ps, respectively. However, 

if the pore fluid is a mixture of several fluids its density can be calculated by the weighted

sum

Pfluid =  ~y  ̂S-jpi, (1-7)
i

in which the weighting factor Si is the saturation of the ith component and pi is its density.

When using Gassmann's model some care m ust be taken as it does not account for 

heterogeneous distribution of the fluids. The theory developed by Mavko and Mukerji 

(1998) and Dvorkin et al. (1999) considers a patchy saturation within the pore space and 

reveals that there can be significant differences in the P-velodty. These differences are 

discussed in chapter 3; for the sake of simplicity only Gassmann's model will be used in 

the following illustrative discussions.

1.1.1 Velocity v aria tions  as a result of different pore fluids

The Gassmann equation can be used to predict the saturating pore fluid dependent changes 

of the compressional and shear wave velocities. By replacing the fluid bulk modulus and 

density with the values of oil, water, or an weighted mixture, the velocity of the com­

posite material can be calculated. Figure 1.1 shows the P-wave velocity as a function 

of porosity <j) and water saturation Sw- The following bulk m oduli were used: the bulk 

modulus of the solid material K s — 36.0 GPa, the frame bulk modulus K j — 8.2 GPa, the 

shear frame modulus pd — 4.2 GPa, and the moduli of the liquids were K qu — 2.0  GPa 

and Ky/ater = 2 .2  GPa; and the density of the solid material, the oil, and the water were 

ps =  2650 k g / m 3, pou =  800 k g / m 3, and pwater — 1000 k g / m 3, respectively.

As the porosity increases from 0.1 to 0.35 the velocity decreases by about 300 m /s. For 

seismic monitoring of enhanced oil recovery purposes the change of the seismic velocity 

with variation in the oil saturation is more important in the 'water-flooding' example

17
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3050

Figure 1.1: Velocity variations of the compressional and shear waves as a function of 
porosity <j> and water saturation Sw  according to Gassmann's equation.

considered here. If all oil in the pore space is replaced by water the velocity decreases. 

For highly porous environments, as for example an unconsolidated sand with porosities 

exceeding thirty percent, the change in the P -wave velocity can easily be inferred from 

seismic data (Batzle and Wang, 1992). Similar calculations show that the 5-wave velocity 

depends only weakly on the pore fluid (Figure 1.1). The changes in the velocity are 

solely due to variation of the effective density, as the Gassmann model assumes that the 

5-velocity does not depend on the elastic parameters of the pore fluid (e.g., equation 1.4).

1.1.2 Temperature effects on seismic velocities

Temperature dependent variations in seismic velocities are mainly due to changes of the 

elastic bulk modulus and density of the pore fluid. The experimental results of Eastwood 

(1993) suggest that the effects of temperature on the elastic moduli of the unsaturated 

rock matrix can be neglected relative to the much larger effects on the pore fluids. The 

dominance of the temperature dependent pore fluid properties is also evident from the 

similar behaviour of the pore fluid velocity with temperature and that of the saturated 

porous medium. For example, the compressional velocity of an oil sand saturated with 

bitumen of the Cold Lake area decreases by about 15 percent when it is heated from 

T= 22°C to T= 127°C (Eastwood, 1993). Separate measurements of the seismic velocities
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of the bitumen and the dry (air saturated) sand show that the former velocity decreases 

by approximately 30 percent when the temperature increases. The velocity of the dry 

sand sample, however, decreases only by two percent. Studies by Wang and Nur (1988), 

Wang and Nur (1990), Wang et al. (1991), and Batzle and Wang (1992) on the temperature 

dependence of seismic velocities show a similar decrease of the velocities of oil and reser­

voir rock matrix, respectively.

Increasing temperature causes the compressional velocity to decrease significantly; 

this is due to the decreasing bulk modulus of the pore fluid. On the other hand, the 

shear wave velocity decreases only slightly with increasing temperature (Timur, 1977; 

Eastwood, 1993). This is not in agreement with Gassmann's theory, which predicts an 

increase of the 5'-wave velocity. This is because the density decreases as temperature 

increases, and theoretically, the effective shear modulus neither depends on the pore fluid 

nor on temperature. However, it is not clearly stated in Timur (1977) nor Eastwood (1993) 

whether the effective pressure during the measurements remained constant. A possible 

explanation of the observed decrease in the S-wave velocity could be that while heating 

an oil saturated sample the pore pressure will change due to the relatively large thermal 

expansion of such fluids and, to a lesser extent, the solid material. An increasing pore 

pressure can reduce the shear frame modulus of a rock and consequently the S -wave 

velocity. The pressure effects on seismic velocities are discussed in more detail in the 

following section and especially in section 3.5.4.

The published data of temperature dependent velocities of reservoir rocks and sands, 

respectively, suggest that the temperature effect on the rock matrix can be neglected in 

the calculation of the saturated seismic velocity. Due to the lack of experimental data 

of the temperature dependence of the oil's properties for the Lloydminster reservoir the 

results published by Eastwood (1993) will be used to calculate the temperature dependent 

bulk modulus and density of the oil. These data can be approximated by the following 

linear relationships (the effective pressure during these measurements was PefS =  0.1 

MPa):

• the oil's acoustic velocity by 

Vp [m/s] =  1673.3 -  4.19 • T  [°C],

19
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Figure 1.2: The P-velocity of a sand sample saturated with heavy oil decreases signif­
icantly when heated. The top curve has been measured by Eastwood (1993) for a Cold 
Lake reservoir sample (Pef f =5 MPa), the second data set was taken from Wang and Nur 
(1988), who analysed a sample from the Athabasca reservoir (Pe//= 4  MPa).

• the density as a function of temperature

p [kg/m3] =  1007.2 -  0.6111 • T  [°C],

• the bulk modulus of the fluid

K  [GPa] =  2.1667 -  0.0083 • T  [°C\.

The linear relationships are based on temperature data that cover the range from 20°C to 

127°C. However, as long as the state of the fluid is removed from any phase boundaries, 

these linear approximations of the dependence of the velocities, densities, and moduli on 

pressure and temperature appears to work well (Batzle and Wang, 1992).

Figure 1.2 shows the decrease of the seismic velocity of two different samples satu­

rated with hydro-carbons when heated. The first sample is from a Cold Lake, Alberta,
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reservoir. The velocity decreases nearly linearly over the temperature range. The second 

sample from an Athabasca reservoir, however, shows a significant drop in the velocity at 

approximately 50°C This sudden decrease is possibly due to a bitumen having a finite 

shear modulus at sufficient low temperature (Hornby and Murphy, 1987; Wang and Nur, 

1988). At this particular temperature the oil 'melts' losing its rigidity, resulting in this 

substantial decrease of the effective P-velocity in the sample. In either case the velocity 

decreases by approximately 300 m /s  over the temperature interval from 20°C to 120°C.

The temperature effect on the effective seismic velocities is mainly due to variations 

of the fluid properties. When using Gassmann's equation (1.3) and the volume averag­

ing method for the density (equation 1 .6 ) to determine the effective properties required in 

equation (1 .1), one assumes that the temperature induced variations of the solid proper­

ties are negligible. However, temperature has certainly an effect on the density and elas­

ticity of the solid material due to, for example, thermal expansion and elastic weakening. 

Additionally, the porosity may decrease with increasing temperature (Chalaturnyk, 1996). 

On the other hand, it is generally assumed that these effects influence the bulk properties 

only marginally when compared to the changes of the liquid phase (Eastwood, 1993).

1.1.3 Effective pressure effects on the seismic velocities

Pressure affects seismic velocities through different mechanisms. Temperature effects are 

dominantly caused by thermally induced variations of the fluid properties, whereas the 

pressure dependence of the velocities is mostly to changes in the compressibility of the 

rock frame (e.g. Eastwood, 1993; Batzle and Wang, 1992).

Generally, there are two different pressures that need to be taken into consideration 

when investigating pressure effects on seismic velocities. The first pressure is called the 

confining pressure Pc, a term that is commonly used when dealing w ith laboratory mea­

surements, or lithostatic pressure Pi, which describes the pressure imposed on a 'buried 

rock sample' by the overburden. The lithostatic pressure at depth z  is usually found by 

integrating density well log data,

Z

Pc(z) =  J  p(0 ad£.
0

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M ONITORING

However, it would be more accurately to describe the rock as subjected to the full state 

of 3D stress, which requires the knowledge of the three principal stress magnitudes and 

directions. These parameters are difficult to determine in-situ (Brudy, 1995; Huber et al., 

1997), and a 'hydrostatic stress state' (described by the above integral) is assumed to be 

adequate for the present discussion.

The second pressure is that of the pore fluid enclosed in the rock. This pressure is 

called the pore pressure Ppore• It is the difference of these two pressures called the ef­

fective or differential pressure that determines the pressure dependance of the seismic 

velocities:

Peff — Pc Ppore-

Published data of the velocity variations show that the velocities of porous media 

increase at higher effective pressures (e.g. King, 1966; Christensen, 1985; Christensen and 

Wang, 1985; Han et ah, 1986; Eberhart-Phillips et ah, 1989). The standard explanation for 

this behaviour is that pores, particular large aspect ratio micro-cracks, close at higher 

pressures. This compaction increases the effective stiffness of the rock and subsequently 

the velocity. Once all the cracks and pores are closed, the velocity increases only slightly 

with increasing pressure due to the much slower increase of the bulk modulus of the 

minerals.

Within the framework of Gassmann's equation (1.3) the pressure effects on the seis­

mic velocities can be described through pressure dependent variations of the frame bulk 

modulus Kd- The frame bulk modulus describes the stiffness of a porous material, which 

in many cases depends on the nature of the grain contacts. In well-consolidated sedimen­

tary rocks the individual grains are cemented to each other resulting in a relative high 

resistance against external stresses; the material is stiff. On the other hand, in unconsol­

idated sands the grains can more easily move along and past each other. Therefore, the 

rock frame is more compressible and the deformation due to an external stress is larger 

than in consolidated rocks. This can also result in a change in the porosity <f> of the rock 

and consequently in the seismic velocities.

There is not much available data published on the elastic frame properties for uncon­

solidated sands and on their variation w ith pressure. Such measurements are compli­

cated particularly in unconsolidated sands by non-linear elasticity, strong hysteresis, and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M O NITO RING

time dependent effects (e.g. Gardner et ah, 1965; Christensen and Wang, 1985). Several the­

oretical and semi-empirical models have been proposed to relate the elastic frame prop­

erties to other marcoscopic parameters that are more easily determined. For example, 

Murphy et al. (1993) and Nolen-Hoeksma (1993) suggested linear relationships between the 

frame bulk (Kd) and shear (pd) moduli to the corresponding moduli of the solid material 

(Ks and ps, respectively) with dependance on porosity d according to

(1 .8a) 

(1 .8b)

Murphy et al. (1993) derived these equations by fitting a straight line to numerous mea­

surements of the bulk frame modulus on gas saturated rock samples at different porosi­

ties. Nolen-Hoeksma (1993) derived basically the same relationships from considering con­

solidation of mineral grains. His work results in

K d »  K s( 1 -  d/do), (1.9a)

pd ~  Ps{l~<t>/<!>o), (1.9b)

where do is the precompaction (Nolen-Hoeksma, 1993) or critical porosity (Nur, 1992; Nur 

et al, 1998), which marks the transition from a loose arrangement of grains to a strong 

stress-bearing framework of the rock matrix. This porosity is in the range of 0.36 < 

do < 0.40 (Nolen-Hoeksma, 1993) for sands and sandstones. Using the upper limit of do in 

equations (1.9) one obtains the relationships experimentally determined by Murphy et al. 

(1993).

The relationships by Murphy et al. (1993, equation 1.8) predict a constant ratio of the 

bulk to shear frame modulus, which for a rock consisting of quartz minerals is equal to

0.9. On the other hand, the substantial scatter in the values of elastic frame properties 

observed by Spencer et al. (1994) suggest that there is no unique relationship between the 

elastic frame properties and other macroscopic parameters such as the mineral moduli

and porosity; this contradicts the observations by Murphy et al. (1993) and Wang (2000b).

In the analysis presented in chapter 3 the elastic frame properties will be inferred from 

well log data under the assumption that Gassmann's equation holds. Unfortunately, this 

technique can not supply information on the pressure dependence of this frame moduli.
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Instead, general trends for the velocity variation with effective pressure will be employed 

to estimate the impact of changes in the effective pressure in the reservoirs studied (sec­

tion 3.5.4).

1.1.4 Attenuation and dispersion variation related to temperature and pore 
fluid composition

When a seismic wave propagates through real media, wave energy is irreversibly con­

verted into heat. This energy absorption can be caused by different effects such as inelas­

ticity of the rock matrix, induced fluid flow within the porous medium, and scattering 

of seismic energy at cracks and fractures in the solid material. The latter mechanism is 

sometimes referred to as elastic attenuation to distinguish it from intrinsic attenuation, 

which includes the first two classes of absorption.

To introduce the effects of absorption of seismic wave energy consider the propaga­

tion of a compressive plane wave V(x, t ) propagating in an absorptive medium. The 

amplitude of this wave at distance x  and time t  is given by

V(x, t) =  V0e~ax • ei{wt- hx\  (1.10)

where V 0 is a reference amplitude (say at x  =  0 and t  =  0), lu is the angular frequency, 

and k is the wave number. The factor a  occurring in the first exponential term is called 

the absorption coefficient. Its value is a measure of the attenuation, it is defined as the 

inverse of the distance d at which the amplitude of the wave has decreased to a fraction 

1/e. Other common quantities describe the attenuation as well: the quality factor Q 

and its inverse, the dissipation factor Q~l . The quality factor Q gives the number of 

wavelengths a wave must propagate in an absorptive medium until its energy decreases 

by a factor of e-7r. It is also the ratio of the energy stored to that dissipated during one

cycle. In the case of low losses (e.g. Q »  1) the quality factor is related to the absorption

coefficient a , the phase velocity v(w), and the frequency u> by (Johnston and Toksoz, 1981)

«<“ > =  2av(w)' <1'U >

As the quality factor depends on the frequency according to the above equation the ab­

sorption coefficient is also dependent on the frequency.
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Frequency v

Figure 1.3: Qualitative dispersion relationship V{w) and attenuation Q(w) as a function 
of frequency u.

Furthermore, if the medium is absorptive it m ust also be dispersive; i.e. the propaga­

tion velocity of a phase depends on the frequency. Velocity dispersion and attenuation 

are not independent from one another but related through the Kramers-Kronig relation­

ship (Futtermann, 1962). This implies that the knowledge of the quality factor describes 

the attenuation and velocity dispersion characteristics of a given medium completely. 

Figure 1.3 shows qualitatively the typical dependence of the inverse quality factor (i.e. 

the attenuation) and the phase velocity as functions of frequency. The attenuation first 

increases with frequency until it reaches its maximum at the peak frequency Ljatn. Then 

the attenuation decreases again with increasing frequency. The phase velocity increases 

over the entire frequency range with the largest change occurring over the w idth of the 

attenuation peak.

Numerous processes can cause the attenuation of wave amplitude. The total atten­

uation acting on the passing seismic wave can be considered as a superposition of all 

those processes. In saturated porous materials, experimental observations indicate that 

attenuation is related to (Johnston et al., 1979):

1. Solid frictional losses - The propagating seismic wave induces displacements be­

tween grains and cracks. The friction involved in this relative motion dissipates
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some of the wave's energy. The absorption depends linearly on frequency and the 

Q-factor is therefore frequency independent. A constant Q is commonly observed 

in dry sandstones within the seismic frequency bandwidth (e.g. Kjartansson, 1979; 

Toksoz et al, 1979; Johnston et al, 1979). The quality factor for shear waves is slightly 

larger than for compressional waves in dry, air saturated, rocks. The opposite is 

true if the rock is saturated with a liquid. As this absorption process is caused 

by the relative motion of grains it depends substantially on the effective pressure 

(Toksoz et a l, 1979; Fjeer et al, 1992): if the pressure increases the grains are pressed 

together and their relative motion is reduced. The attenuation due to grain friction 

decreases with increasing pressure.

There are, however, two problems with this attenuation mechanism. The strain 

amplitudes of seismic waves are too small to cause sufficient grain motion to pro­

duce reasonable attenuation (Savage, 1969). Additionally, solid friction should also 

result in nonlinear wave propagation (Winkler and Nur, 1982). This has only been 

observed at high strain amplitudes, for the low strains of seismic waves available 

data indicate that the attenuation is for practical purposes a linear process. Fric­

tional sliding cannot explain the theoretical prediction of constant Q attenuation, 

particular in wet rocks.

2. Biot fluid losses - Pore fluids are accelerated within the pore space by a passing 

seismic wave. The motion of the fluid relative to the solid material causes friction 

and converts energy irreversibly into heat. A theoretical description of this phe­

nomenon has been developed by Biot (1956a,b, 1962). This absorption mechanism 

depends strongly on the viscosity of the pore fluid r], its density p j and the average 

pore size df. As will be shown in a subsequent section the peak of the attenuation 

occurs at a frequency u>atn, which is defined as (Johnson, 1984)

The peak frequency of the attenuation depends strongly on temperature via the 

viscosity of the pore fluid. However, calculations demonstrate that the attenuation 

peaks according to this theory will occur at high frequencies (107 -  109 Hz) and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1. THE ROCK PHYSICAL BASIS FOR SEISMIC M O NITO RING

as such are not an important attenuation mechanism for seismic waves (10 Hz< 

fseismic < 500 Hz) and sonic logs (1000 Hz< f 80nic < 104 Hz).

3. Losses due to local fluid flow - The previous absorption mechanism assumes that 

the fluid is only accelerated globally in the direction parallel to the propagation 

direction of the wave. In partially saturated rocks (but also in fully saturated rocks, 

although less pronounced) the passing seismic wave may also induce a 'radial' 

fluid flow. This fluid flow is due the to compression and dilatation of cracks. Fluid 

contained in such pores will be forced to flow out of the crack into rounder and 

hence stiffer pores. This local flow leads to a relaxation attenuation that also peaks 

at a certain frequency, which in this case depends inversely on the fluid's viscosity 

(e.g. Dvorkin and Nur, 1993). This peak frequency is normally close to the seismic 

frequency range. The inelastic effects due to local fluid flow are therefore more 

likely to affect seismic waves than losses due to Biot flow. Thus, this absorption 

mechanism potentially provides more information about the inelastic properties of 

the earth that can be inferred from seismic data.

If the pressure increases this contribution to the overall attenuation decreases. This 

is because at higher pressures small cracks close and cannot any longer contribute 

to the local flow.

Phenomenological and theoretical investigations of this attenuation mechanism has 

been published by O'Connell and Budiansky (1977); Palmer and Traviolia (1980); Jones 

(1986); Dvorkin et al. (1995,1994); Dvorkin and Nur (1993); Parra (1997, 2000); Parra 

and Xu (1994);Diallo (2000); and Diallo and Appel (2000).

4. Rayleigh scattering. - When a seismic wave passes a crack or a fracture, scattering 

of the wave energy is caused due to the contrast in the seismic properties of the solid 

material and the fluid-filled crack. The effect is stronger in dry than in saturated 

rocks, decreases with increasing pressure and is proportional to the 4th power of 

frequency. However, this effect is only important for higher frequencies (Fjeer et al, 

1992).

Strictly speaking this effect is not due to the inelasticity of the rock matrix but an 

elastic effect. This differs from the other cases discussed in that the mechanical en-
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ergy is globally preserved during a scattering process but the forward propagating 

pulse will have diminished energy.

5. Reflections from thin (cyclic) layers. - Lastly, the shape of the reflected wavelet is 

also influenced by partial reflections at thin layers. Dependent on the wavelength 

component the shorter wavelength 'see' the layer and loose some of their energy 

due to reflection, whereas longer wavelength are not affected by the thin layers. 

The amplitude spectrum of the recorded wavelet will therefore exhibit a 'notch'. 

Like Rayleigh scattering, this effect is not caused by intrinsic inelasticity. Globally, 

the original energy carried by the wavelet is conserved.

An example of this process can be found in Martinez (2002), who analyzed this prob­

lem of partial reflection at a thin coal seam in the Western Canadian Sedimentary 

Basin.

Other processes causing attenuation such as the motion of defects in mineral grains are 

ignored here, as they are expected to be important only at high temperatures.

The frequency dependence of these absorption mechanism is illustrated in Figure 1.4 

(after Johnston et al, 1979). The graph shows an example for a sandstone at two different 

pressures, thereby showing that the attenuation due to friction and squirt flow depend on 

the pressure. Biot flow and scattering are not visibly affected by the change in pressure.

For seismic monitoring of thermally enhanced oil recovery programs (such as SAGD) 

the attenuation mechanism due to fluid flow are the most interesting. The losses due 

to local fluid flow depend strongly on the viscosity of the pore fluid, which is greatly 

affected by the pore fluid composition and the temperature.

Experimental result show that the viscosity of heavy oil decreases by several orders of 

magnitude if the temperature is increased to about 200°C (Ward and Clark, 1950; Seyer and 

Gyte, 1989; Eastwood, 1993). The data shown in Figure 2 (page 4) shows an average of the 

viscosity values measured at various temperatures. An average viscosity-temperature re­

lationship for heavy oils in Alberta has been published by Seyer and Gyte (1989). Eastwood 

(1993) specifically analysed the properties of bitumen from the Cold Lake area. Fitting 

the experimental values from these references by a double logarithmic function results in 

the following relationship for the dependence of the viscosity on temperature (measured
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Figure 1.4: The various mechanisms causing P -wave attenuation as a function of fre­
quency modelled for a saturated Berea sandstone at two different pressures . The solid 
line represents the attenuation at a pressure equivalent to a depth of 3000 m, the dashed 
lines are for surface conditions (redrawn after Johnston et a l, 1979).

Ward and Clark (1950) measured the viscosity only for a limited temperature range up 

to 100°C (equation 1.12a). As the temperature can increase to 270°C - 300°C in a steam 

chamber these data are shown only for comparison. Seyer and Gyte (1989, 1.12b) and 

Eastwood (1993, 1.12c) provide data in the important temperature range. Note that all 

curves show qualitatively the same temperature dependence.

1.1.5 Seismic attributes based on variations in velocity and absorption

Changes in subsurface condition change the seismic data recorded at the surface and are 

manifested as traveltime shifts, waveform tuning, frequency variations, and amplitude

in °C)

r}{T) =  1.37-109 -0.00778in(T), 

7] (T) =  1.64-108 -0.0123fa(r), 

y{T) =  6.76-108 -0.00775to(T).

(1 .12a)

(1 .12b)

(1 .12c)
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changes. The changes in velocity primarily affect the traveltime of a signal. For example 

if the velocity decreases in the steam chamber relative to the virgin reservoir, the travel­

time for the reflection of the bottom of the reservoir increases by a certain amount. The 

amplitude of the reflected signal is affected by changes in the density and velocity. The 

reflected amplitude depends also on the angle of incidence. The full description of the 

amplitudes of all reflected phases (including all converted phases) are given by the Zoep- 

pritz equations (e.g. Lay and Wallace, 1995; Aki and Richards, 2002). The angle dependent 

reflected amplitude (or amplitude variation with offset, AVO) is another technique to in­

fer information in the subsurface (e.g. Castagna, 1993). However, the solution of the full 

Zoeppritz equations are considered to be rather difficult to handle in an inverse process, 

instead approximations as the one by Aki and Richards (2002) are commonly used:

m  =  I  ( i  -  4 v5v j  ^  -  4Ksy  0.13)

where p is the ray parameter defined as p = sm(9g)/Vp  and 9S is the take-off angle at 

the source {Aki and Richards, 2002). A p, A Vp, A Vs, and p ,V p ,V s  are the jumps and the 

mean values of the properties across the interface, respectively. For normal incidence, the 

reflected relative amplitude is given by

7 ^  =  0 ) = ^ - ^ , (1.14)
P'2 VP2 +  P lV P i

with pi and Vpi being the density and P -wave velocity in the top and bottom medium 

separated by the interface.

The two attributes described so far provide information about the interface between 

two layers. For the seismic history match (see step D in Figure 5, page 9) seismic at­

tributes defined in the reservoir layer are preferable. The seismic attribute of the acoustic 

impedance AL, which is defined as

A L  =  pVP, (1.15)

is closely related to the reflection coefficient. The acoustic impedance can be considered 

as a measure of the stiffness of a geological formation.

As the effective velocity in the reservoir changes during an enhanced oil recovery 

process, the variation in the travel time to the bottom of the reservoir, At, can also be
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em ployed to characterise the reservoir. In most oil recovery processes it can be assumed 

that the  thickness h of the reservoir layer remains constant. If Vtl and Vt2 are the seismic 

velocities at two different times then the change in the recorded travel time is equal to

The velocity at time t% can be expressed as Vt2 = Vtl + A F, where A F  is the change in 

velocity due reservoir production. Assuming only small velocity changes A F  equation

(1.16) can be rewritten as

If the thickness of the reservoir and the velocity Fj are known from well logs then the 

measurable change in travel time A t  can be used to determine the change of the velocity 

A F  in the reservoir. From this value, changes of the saturation or pore pressure can be 

derived using rock physical models such as Gassmann's theory.

1.2 Mathematical models for wave propagation

The propagation of waves is mathematically described by a hyperbolic partial differential 

equation, which is called the wave equation. There are several approximations to the real 

wave propagation phenomenon including more or less of the physical phenomena (i.e. 

two different wave velocities and energy absorption). The three standard mathematical 

models will be briefly introduced in the following sections. These models can be derived 

from physical laws. The last mathematical model, the viscoelastic wave equation, is a 

phenomenological description of wave propagation in an absorbing medium and cannot 

be derived directly from physical processes. However, as it describes the absorption of 

wave energy, and hence amplitude attenuation and wave dispersion, in a compact and 

relatively straight forward way it has become the standard wave equation for numerical 

finite difference simulation of seismic wave propagation.

(1.16)

(1.17)
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1.2.1 The acoustic wave equation

The acoustic wave equation is the simplest approximation describing wave propagation 

phenomenon in fluid-like environments. It can be derived from Newton's law and the 

constitutive equations, respectively (e.g. Lay and Wallace, 1995):

d2Ui dP
f-a fl  = a i ?  (1'18a)

P  =  (1.18b)
OXi

In these equations Ui are the components of the displacement vector, P  is a pressure, 

Xi are the components of the cartesian co-ordinates, p denotes the mass density, and K  

represents the material's bulk modulus. Taking the second derivative with respect to 

time, and also assuming time and space invariance of the density and the bulk modulus, 

respectively, the following equation is obtained after some algebraic operations:

dfi ~  ,, a*? "  1 ’

This equation describes the propagation of a disturbance in a pressure field P(x, t), which

propagates with the velocity Vaamst =  s/K /p-  As only a single elastic modulus is in­

cluded in the derivation there is only one wave type. The acoustic wave equation de­

scribes only the propagation of a compressional wave through a medium. A further 

simplification is that absorption effects are not included in this model. Another short­

coming of this approximation is that the reflected amplitude at a subsurface horizon in 

the earth is not determined correctly. During the reflection of a P -wave amplitude part of 

the incident energy is reflected as a P-wave, another part as a S-wave, and some energy 

is transmitted across the interface. As the acoustic wave equation does not allow shear 

waves, the reflected P-wave amplitude has to be larger than in a more realistic case.

The acoustic wave equation is still often used in seismic imaging and simple forward 

modelling application. However, it has been replaced by more sophisticated mathemati­

cal models for numerical simulation of seismic waves.

1.2.2 The elastic wave equation

A better approximation is the elastic wave equation. It can be derived similarly to the 

acoustic wave equation. Instead of using the gradient of the pressure in Newton's law
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(1.18a) the divergence of the elastic stress tensor a j  is included in the derivation (Lay and 

Wallace, 1995):

fit'll •
d-20a)

&ij — Cijkl ^k.l- (1 .20b)

As in the acoustic wave equation Ui,i =  1,2,3, are the three components of the particle 

displacement vector and p is the density of the material. The elastic parameters of the 

material are represented by the fourth-order elastic stiffness tensor Cijki ■ Theoretically, 

this tensor contains 81 components. By assuming a homogeneous isotropic material and 

making use of symmetry properties of the stress tensor <7y and the strain tensor Cy, the 

two Lame parameters A and p, are sufficient to express the elastic properties of the ma­

terial. For isotropic and homogeneous material, the constitutive equation can be written 

as

&ij — Aefcfe^y -F 2 /ic i j . (1.21)

Using this relationship for the stress tensor in equation (1.20) results in

pwj.tt =  (A +  p)uktki +  puitkk- (1-22)

The elastic wave equation describes the propagation of two elastic waves with wave ve­

locities Vp =  \/(A +  2p)/p  for the fast compressional wave and Vs — \ fp jp  for the shear 

wave. In including shear and compressional motion in the conceptual framework, the 

elastic wave equation enables a more accurate approximation of the true wave propaga­

tion phenomenon. Absorption effects, however, are still not included in this formalism.

1.2.3 The poro-elastic wave propagation theories

To include absorption effects into a mathematical description of wave propagation in sat­

urated porous media several theories have been developed {Biot, 1956b,a, 1962; Dvorkin 

et al, 1995,1994; Dvorkin and Nur, 1993; Parra, 1997,2000; Parra and Xu, 1994). The initial 

work of Biot assumes only energy dissipation due to fluid flow relatively to the motion 

of the solid frame. Based on this assumption, Biot was able to derive expressions for the 

dispersion and attenuation of the compressional and shear waves, respectively. The most 

spectacular aspect of Biot's theory is the prediction of a second compressional wave in
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addition to the other two ordinary waves (P  and S). As the speed of the second P -wave 

is slower than the P-wave and the S-w ave this wave is usually referred to as the 'slow 

wave'. Experimental observations of these wave modes have recently been provided by 

Batzle et al. (2001) and Bouzidi (2003).

The initial theory by Biot

In the initial work Biot (1956a,b) considered a homogeneous isotropic medium with a 

single fluid in the pore space. By assuming that the fluid is interconnected throughout 

the sample and the attenuation is only due to viscous damping created by the relative 

motion of the fluid against the solid Biot (1962) derived a dissipation function. Together 

with a Lagrangian function he was able to derive the equation of motion for the wave 

propagation through a porous sample (see also Johnson (1984)):

V2[(P +  S)e +  Qe] =  dtt(pne + p12e) + ^ - F (c j)d t (e -  e), (1.23a)

V2[Qe 4- Pe] =  dttipne + P2ze) ~ ^ j-F (w )d t(e -  e). (1.23b)K

In these equations P, Q, R, and S are generalised elastic constants, and pn , pn , and pn  

are generalised densities. These generalised parameters are related to the elastic con­

stants and densities of the solid rock matrix and pore fluid (see Geertsma and Smit, 1961; 

Biot, 1962; Johnson, 1984). The symbols e and e represent the absolute dilatations of the 

bulk material and the pore fluid, respectively. Other symbols denote the shear viscosity 

of the fluid {rj), the permeability (k), and the porosity (4>). Finally, F(u>) is a frequency 

correction factor introduced by Biot (1956a,b). The significance of the latter parameter 

will be discussed in a coming section.

The dilatation of the solid and the fluid component are coupled in two ways. First, 

there is an inertial coupling between both components by the two terms dtt(pne +  p^e) 

and dtt(pue+P22e), respectively. The physical explanation for this coupling phenomenon 

is a inertial drag that the fluid exerts on the solid as the latter is accelerated relative to the 

former and vice versa (Johnson, 1984). This coupling process gives rise to the existence of 

the second compressional wave in a fluid saturated porous medium (Bourbi et al, 1987; 

Rasolofosaon, 1991). The second coupling process is included by the relative particle ve­

locity terms dt (e -  e). These terms describe the viscous drag that the fluid and solid
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impose on each other. It is this term that leads to the absorption of energy in porous me­

dia. The quantity F(u>) allows for the fact that the absorption of energy changes with the

solid frame. Hence, there is little relative motion between the fluid and the frame and the 

attenuation is low. Indeed, at 'zero' frequency the theories of Biot and Gassmann con­

verge (Geertsma and Smit, 1961; Bourbi et al., 1987). Conversely, with increasing frequency 

the motion of both phases are out of phase. This increases the relative motion, and the 

resulting frictional force causes an irreversible change of mechanical energy into heat. 

The major part of energy dissipation occurs in a thin layer close to the walls of the pores. 

Its thickness is assumed to be given by the viscous skin depth ds — y/2rjjpfuj (Johnson, 

1984; Bourbi et al, 1987). The maximum energy dissipation occurs when the skin depth 

becomes approximately equal to the size of the pores. If d! is a measure of the average 

size of the pores, the peak frequency u>atn for attenuation is given by

as noted earlier. With further increases of the frequency the viscous skin depth ds de­

creases and the effect of viscous dissipation weakens. Therefore, for frequencies u> > w0tn, 

the attenuation decreases again (Figure 1.3).

At low frequencies, viscous effects in the fluid dominate the inertial effects and the 

shear and 'fast' compressional wave become propagatory. The viscosity of the fluid has 

locked the fluid motion to the solid's with the result that there is no relative motion 

between the frame and the fluid. In this case, dissipative effects can be neglected for such 

low frequencies and the wave velocities are given by:

where the effective bulk modulus K can be determined by Gassmann's equation (1.3) for 

uj <  ujatn (Geertsma and Smit, 1961). Therefore, the Gassmann model can be considered 

as the low or zero frequency limit of Biot's theory.

After the frequency exceeds the peak frequency of the attenuation the flow becomes 

turbulent. Then, the effects of viscosity are only felt in a thin boundary layer (Johnston

frequency of the seismic waves. At low frequencies the fluid oscillates in phase with the

(1.24)

(1.25b)

(1.25a)
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Crack? Compression/
Dilatation

t
P-wave

propagation
P-wave

propagation

Squirt flow 
(transverse)

Biot flow
(parallel)

Figure 1.5: Schematic sketch of the poro-elastic effects. The figure on the left shows two 
possible flow modes that can be induced by a seismic wave. The dashed arrows indicate 
Biot fluid motion, solid lines the Squirt flow. The figure to the right shows the idealized 
pore volume that is assumed to derive the Squirt-flow equations. Rsquirt is the Squirt 
flow length. (Redrawn after Dvorkin et al., 1994).

et al, 1979) and the attenuation decreases at high frequencies. In the high frequency range 

the fluid oscillates in phase with the solid frame. It therefore contributes to the stiffness 

of the effective medium. This implies that at these high frequencies, the wave speeds are 

higher than at low frequencies and energy absorption is low.

In deriving these equations, Biot assumed a uniform pore space in which the pore 

fluid only oscillates parallel to the direction of the exciting P -wave (see Figure 1.5). Based 

on these assumption he derived an attenuation-frequency relationship that is propor­

tional to uj2 for low frequency and to t/w for high frequencies {Biot, 1956a,b, 1962; Fjeer 

et al, 1992, among others). However, experimental data of the attenuation as a function 

of frequency suggest a linear proportionality between both (i.e. a  ~  a(u>)). Furthermore, 

the Biot theory predicts a shift of the attenuation peak frequency towards higher frequen-
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cies if the viscosity of the pore fluid increases. This prediction is opposite to observations 

in several experimental studies (e.g. Toksoz et al, 1979; Winkler, 1985; Jones, 1986; Batzle 

et al, 2001)). This does not mean that the Biot theory is false but that there are addi­

tional and different absorption mechanisms contributing to the energy dissipation in real 

rocks that were not included in the original Biot theory. Particularly, radial flow in and 

out of highly compressible micro cracks may be an important contribution to the overall 

dissipation (e.g. O'Connell and Budiansky, 1977; Johnston et al, 1979; Jones, 1986).

To facilitate the discussion of the improvements to the Biot theory in the following 

section the poro-elastic wave equation will be rearranged in a form similar to the elastic 

wave equation. Following Rice and Cleary (1976) and Dvorkin and Nur (1993) the consti­

tutive equation has to be modified to include stresses that are caused by pressures in the 

fluid P  that acts on the solid material. Considering only uniaxial deformation the total 

stress is given by

In this equation ap is the so-called Biot or poro-elastic constant, M is  a generalised elastic 

parameter, and e — du/dx  represents the deformation of the skeleton. Then, the equa­

tions of motion become

crt = M e  — (op -  <p)P (1.26)

(1.27b)

(1.27a)

To determine the pressure in the fluid an auxiliary equation is required:

(1.28)

The various symbols represent the following parameters:

u  is the displacement of the solid rock matrix,

w  is the displacement in the pore fluid,

F =  ( l / K f  +  1/(<j>Q)

Q =  (1 /K S(1 -4 > -  K d/K s ))
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ap — 1 — Kd/Ks-

A compact form of the solution of the poro-elastic wave equation has been derived by 

Geertsma and Smit (1961). By defining Vpo and Vpoo as the low and high frequency limits 

of the fast compressional wave, the frequency dependent relationship for the P-wave, 

Vp, and the inverse of the quality factor Qp are given as

Improvements of the Biot-theory

A compressional wave will compress and dilate the porous media it is passing through. 

The compression of a microcrack induces a radial pressure gradient in the fluid between 

the crack and the pore (Figure 1.5). The relative motion of the fluid to the solid material 

causes frictional energy dissipation and therefore attenuation and wave dispersion.

At low frequencies there is sufficient time for the pressure in the fluid saturated sam­

ple to reach an equilibrium state. The relative motion between fluid and rock is negli­

gible and the attenuation is low. For these frequencies it is said that the rock sample is 

at a relaxed state. Alternatively, if the frequency is sufficiently large then there is not 

enough time for the pressure to relax and a pressure gradient within the crack will re­

main causing relative motion between the fluid and solid phase. In this case the viscous 

dissipation due to relative motion can be neglected. This implies that the attenuation de­

creases with increasing frequencies. The lack of a pressure gradient also 'locks' the fluid 

in the cracks. This results in an increased effective stiffness of the rock sample and the 

velocities increase with frequency (Johnston et a l, 1979; Dvorkin et al., 1995,1994; Dvorkin 

and Nur, 1993). For intermediate frequencies, however, the absorption of energy reaches 

its maximum at a frequency u>squirt, which depends on the effective bulk modulus of the

(1.29b)

(1.29a)

with
A — (f?11 +  +  P22)P22 ~  (P12 +  P22)

(,P l l  +  2 p l2  + P22)<P2
, and wc =  y~.kp
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rock, K ef f ,  the viscosity of the fluid and the aspect ratio of the microcracks, 6 (Palmer and 

Traviolia, 1980; Jones, 1986):

From this equation it can be seen that this absorption depends strongly on the microstruc­

ture of the porous media as represented in part by the aspect ratio 5. Based on experi­

mental data of the peak frequency wsqUiTt as function of pore fluid viscosity and bulk 

modulus of the rock Murphy et al. (1986) and Jones (1986) concluded that crack aspect ra­

tios in the range of 10~3 to 10-4 causes most of the attenuation. If the aspect ratio is less 

(i.e. rounder stiffer pores) the pores will not deform sufficiently under the stress pertur­

bation of a passing wave. Although there is probably no explanation for the reduction of 

attenuation for smaller aspect ratios (e.g. 6 < 1CT4) it is assumed that there is not enough 

free fluid in such small and thin cracks (Jones, 1986), the fluid is bound to the crack wall 

by van der Waals forces.

This local flow (as opposite to Biot's global flow) is probably the dominant absorption 

mechanism (Johnston et al., 1979; Jones, 1986). However, this flow mechanism is not in­

cluded in the original Biot theory. In a series of papers Dvorkin et al. (1995,1994); Dvorkin 

and Nur (1993) extended the original Biot-equations to include the squirt flow into the 

poro-elastic wave equation. Their work will be briefly reviewed in the following para­

graphs.

Dvorkin et al. (1995,1994); Dvorkin and Nur (1993) assumed that there is an additional 

fluid flow component that is purely radial (i.e. perpendicular to the propagation direction 

of the seismic wave, see Figure 1.5). This leads to a modified differential equation for the 

pressure in the porous medium. The changes of the average pressure in the pore space 

with respect to time is given by

U>squirt —  R p j  f (1.30)

9Pm
d t

ave - F  1 2Ji(XR) ) (  ^
XRJq(XR) \ W'xt

(1.31)

P f i V 2 f
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In these equation R  is the squirt-flow length that has been introduced by Dvorkin and Nur 

(1993) to derive the differential equation (1.31). They consider the squirt-flow length to 

be a fundamental rock physical parameter that depends only on the pore space but not 

on the properties of the pore fluid. The physical explanation of the squirt-flow length is

flow length increases the squirt flow theory approaches the Biot model. This observation 

is justified by the fact that if R  increases local heterogeneities become less significant and 

fluid flow in the radial direction can be neglected. Then, the propagation of elastic waves 

in porous media can be described by Biot's theory alone (Dvorkin and Nur, 1993).

Further symbols denote

• J i and Jo are Bessel functions,

• pa is the additional density according to Biot (1956a,b),

Finally, the dispersion relationships for the P-wave are given by (Dvorkin et al, 1994)

the radius of the cylinder where the pressure does not change with time. If the squirt

• l /F  =  1 K p f V ^ )  +  l / ( ^ r )  and 1/ r  =  (1 — 0  — ap) / K s

1
(1.32a)

(1.32b)

where

_  <i>FS Q M

FS Q ( 2 ap - < t> - c t> £ ^ ) - { m  + Fs q $ )  ( l  +  & + » • £ )

<t>Pf

C

F s q
r 2 J,(AR) ■
[ XRJo(XR) '
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Figure 1.6: The Generalised Standard Linear Solid (GSLS) can be used to approximate 
dissipative rheology.

The combined work of Biot and Dvorkin et al., referred to as the BISQ-theory, provides 

a theoretical framework that is consistent with the experimental data over a wide fre­

quency range. The squirt-flow length, however, is still a difficult to determine and some­

what ambiguous parameter.

1.2.4 The viscoelastic wave equation

The poro-elastic wave equations include many parameters, which are difficult to deter­

mine experimentally. Additionally, the system of equations describing the propagation 

of waves in a poro-elastic medium is quite complex and difficulties can be expected if 

these equations are to be solved numerically (Carcione and Quiroga-Goode, 1995). To cir­

cumvent this problem Borcherdt (1973), O'Connell and Budiansky (1977), Liu et al. (1976), 

Kjartansson (1979), Emmerich and Korn (1987), Carcione (1988); Carcione et al. (1988), and 

Blanch et al. (1995), among others, investigated the potential of employing a viscoelastic 

rheology to simulate the absorption of wave energy in the earth. Biot (1962) already dis­

cussed the possibility to describe the absorption phenomena by a viscoelastic rheology. 

In contrast to the poro elastic wave equation above, the viscoelastic wave equation can­

not be derived from physical laws for problems in saturated porous media, but it is a 

phenomenological description of amplitude attenuation and waveform dispersion.

The basic hypothesis is that the current value of the stress tensor o(t) is related to 

the entire history of the strain tensor e(t). The viscoelastic rheology is approximated by
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parallel connections of a Hooke and Maxwell bodies with each Maxwell body consisting 

of one Hooke and a Newton  element (Figure 1.6). The Hooke body, a spring with an 

elastic constant k, simulates the elastic (i.e. reversible) part of the medium. The Newto­

nian element, which approximates the visco-elasticity, is an absorbing 'dashpot' with a 

viscosity r?. Each Maxwell body forms a relaxation mechanism, which can differ through 

their values for ki and r\i, respectively.

The viscoelastic wave equation is similar to the elastic wave equation, but to include 

viscoelastic behaviour the constitutive law is modified using a convolutional relationship 

(Bland, 1960; Christensen, 1971)

where R(t) is the relaxation function. The V  in this equation denotes time convolution. 

Equation (1.33) is based on the principle of superposition that has been proposed by 

Boltzmann in 1876. He described this phenomenon as:

"... the forces acting on a parallelepiped at a certain time do not depend only 

on its strain at this time but also on the preceding strains."

Because of this characteristic viscoelastic media are also said to have a 'memory'.

The solution of a dissipative wave propagation can be written in the form of equation 

(1.10). Rewriting this equation as

The quality factor Q(u) can be calculated from the complex modulus according to (Em­

merich and Korn, 1987)

cr(t) — R(t) * e(t) = R(t) * e(t), (1.33)

■ p(x ,t)= V ei^ t~kx)

leads to the introduction of the complex wavenumber k = k — ia. Using k the dispersion 

relationship becomes

where M(w) is a frequency dependent, complex modulus, which is related to the Fourier 

transform of R(t) (Emmerich and Korn, 1987)

M (<j j ) — iuiR(<jj). (1.34)

Re(M(uj))
Im(M(u))) (1.35)
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and the velocity dispersion function is given by (Emmerich and Korn, 1987)

c(uT) \M(u>r)\
V M M(w) ’

(1.36)

where ujr is a reference frequency, c(ur) is the phase velocity at the reference frequency, 

and V (w) is the complex phase velocity.

The relaxation function R(t) can be described in terms of the properties of a gener­

alised standard linear solid (GSLS), which consist of L  relaxation mechanisms (Figure 

1.6). The absorption properties of such GSLS are described through the relaxation func­

tion according to (e.g. Carcione et al., 1988; Robertson et a l, 1994)

R(t) — M r

L

i + E
i=i

I ±
Tal

-  1 e-t/Tcl H(t), (1.37)

where M r  is the unrelaxed modulus (i.e., the modulus for w  —> oo) and the relaxation 

times of the strain, rf;, and the stress, rai, are related to the properties of the Ith Hooke 

and Newton body by

Td = ko h '
-r -  OL

a l  -  v
(1.38a)

(1.38b)

Finally, H (t) is the Heaviside /unction.Then, the complex modulus M (w) to calculate the 

attenuation and dispersion relationships (equations 1.35 and 1.36) is results as

L  i  . •1 +  lUJTdM (u) =  iwR(u>) =  M r 1 - L  + J 2
i=i 1 +  iUTul

(1.39)

By a proper choice of the number of Maxwell bodies, L, and the relaxation times and 

Tai, respectively, the GSLS body can be adjusted to a given attenuation relationship Q(ui).

The viscoelastic wave equation can now be derived my modifying the constitutive 

equation (1.21), which becomes (e.g. Blanch et al, 1995; Bohlen, 1998)

crij(t) =  (^Rp -  2RS) * euSij + 2Rs * (1.40)
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The relaxation functions Rp  and R s  are determined by

(1.41a)

*<*> - 4 +g(5 He - t ! r al (1.41b)

where ir — A +  2yn is the unrelaxed modulus for compressional waves. Blanch et al. (1995) 

showed that the same stress relaxation times can be used for both P- and S-waves.

1.3 Discussion

This chapter started with a review of the effects that variations of temperature, pres­

sure, and pore fluid have on the seismic velocities, attenuation, and density. Basically 

it was shown that temperature dominantly influences these seismic parameters through 

the properties of the pore fluid. In case of the seismic velocities, the pressure effects on 

the bulk properties are mainly related to the influence on the rock frame, whereas the 

pressure dependence of the pore fluid are small and can often be neglected. However, 

it is particularly difficult to measure or describe the pressure dependent elastic frame 

properties for unconsolidated sands. In order to estimate the possible effects of effective 

pressure variations on unconsolidated sands generalized curves describing the changes 

of the P-velocity with effective pressure can be employed (as will be done in chapter

Mathematics is the language of physics. To describe the phenomena related to wave 

propagation several mathematical models have been developed. In particular, these are 

the acoustic, elastic, poro-elastic, and viscoelastic wave equations that have been dis­

cussed in section 1.2. Each model incorporates more or less of the characteristics of real 

wave propagation in its description, that is, different wave motions (i.e., both compres­

sional and shear motion or just one) and also energy dissipation in case of the poro- and 

viscoelastic wave equation.

Numerical simulation of seismic surveys will be an important part in this work. To 

include all characteristics of wave propagation in the modelling process a poro-elastic 

wave equation that incorporates aspects of local and global fluid flow would be the best

3.5.4).
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choice. However, for reasons to be discussed in the following chapter, poro-elasticity 

gives rise to numerical difficulties, which can lead to computationally expensive schemes 

(e.g. Carcione and Quiroga-Goode, 1995). Also, this theory includes several parameters that 

are difficult to determine experimentally, as well, there remains considerable discussions 

of the applicability of such theories to complex earth materials. The second choice could 

be the viscoelastic theory as it mimics the dissipation processes described in the poro- 

elastic wave equation fairly accurately and efficiently. This approach has been often used 

in numerical simulations using the finite difference technique (e.g. Carcione et al, 1988; 

Robertson et al, 1994; Blanch et al, 1995). The drawback of the viscoelastic wave equation 

for numerical modelling compared to the elastic or acoustic wave equation is that it re­

quires significantly more hardware memory to store the additional variables and system 

parameters. As such, the elastic wave equation will be used in the numerical simulations 

performed in the framework of this current research project. In fact, seismic modelling 

using the spectral finite element method, which has been employed in this work, has 

only used the elastic constitutive equations to describe the rheology of the model.
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Chapter 2

Application of the spectral finite 
element method to the elastic wave 
equation

To assist in the preparation, analysis, interpretation, and verification of geophysical field 

surveys numerical simulations have become increasingly important in the past decades. 

For example, the interpretation of seismic data is often difficult and results in an model 

of the subsurface that is not necessarily unique. To verify the model, simulated seismic 

surveys based on the results of the interpretation are often employed. If such synthetic 

data agree sufficiently well with the observations the model can be considered as a valid 

image of the earth. Another example application of numerical forward modelling is the 

optimization of a survey design, especially if the structure is already understood, as it is 

often the case in repeated (or time-lapse) experiments.

The challenges in numerical modelling are to include all the features of the real earth, 

thus making the solution of the physical problem difficult. In particular, the requirements 

for an adequate simulation algorithm are:

• First, the program must enable all important physical features of seismic wave 

propagation such as variations of the seismic velocities. In the case of seismic mon­

itoring of oil reservoirs the features of interest, as considered here, are velocity de­

pendent wave propagation in two dimensions, and the reflection and transmission 

at interfaces.

• The simulated seismic surveys m ust be as free as possible of numerical artifacts
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which can be caused by insufficient representation of the partial differential equa­

tions within the model and an inaccurate incorporation of the boundary conditions. 

For seismic simulation, for which the main interest is in detecting small changes, 

an accurate result at the free surface (where the seismic data are 'recorded') is of 

considerable significance.

• Steam chambers in heavy oil reservoirs might assume a nontrivial geometry. The 

numerical method should therefore allow for an accurate handling of complex­

shaped bodies within the computational model.

• Finally, the method should be computationally efficient. Reasonable sized models 

should be calculated within a reasonable time. The size of the computational model 

is limited by the amount of hardware memory of a computer. However, with im­

proving technology this limitation becomes less important. In order to be able to 

run many simulations w ith different parameters for a sensitivity analysis the com­

putation time is a more important limiting factor. The program has to be especially 

efficient in this point. Therefore, it would be of advantage if the program can be 

easily executed on parallel computers.

During the past decades several numerical simulations techniques have been developed 

and applied in seismic modelling, with each meeting more or less of the above criteria. In 

the following section the different approaches to solving the wave equation numerically, 

notably the Finite Difference Method, the Pseudo-Spectral Method, and the Method of 

Finite Elements, are described in more detail and the potential of each method for simu­

lating wave propagation in complex geological model is discussed.

2.1 Methods for solving the wave equation numerically

As discussed in section 1.2 the mathematical models describing the propagation of waves 

are based on different rheological laws. An analytical solution of these differential equa­

tions is, however, only possible if the computational domain is very simple and regu­

lar as in homogeneous spheres, cylinders, or parallelepipeds. For real case simulations 

of complex geological structures, it is only possible to derive an approximate solution
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with numerical techniques. Various methods are used today to solve the wave equations 

numerically depending on criteria such as the complexity of the model, the computa­

tion time required, and computer hardware resources. In the following sections these 

techniques are introduced and discussed briefly with respect to their practicability for 

modelling the seismic signature of small heterogeneities embedded in a larger model.

Common to all these techniques is a discrete grid or mesh of points that approximates 

the continuous real model. The material parameters (e.g. elastic constants, densities) and 

values of the solution are defined only at these points. The continuous partial differential 

equations have to be converted into a discrete approximation to solve the problem over 

the grid. This is done in different ways for the finite difference and spectral methods 

techniques, whereas the finite element methods and their m odem  improvements, such as 

the spectral finite element method, approximate the solution of the differential equation 

on the grid and subsequently minimize the approximation error.

To ensure reliable results a modelling algorithm m ust meet several conditions (Kar- 

renbach, 1996):

• Convergence ensures that the numerical approximation of the differential equation 

becomes equal to the continuous equation if the grid spacing h is chosen sufficiently 

small. If u is the continuous solution and the discrete solution is denoted by Vh then 

convergence requires that

lim Vh —> u. 
h—►O

• If the differential operator C is applied onto the function u, then consistency of the 

continuous differential equation

Cu = 0

with the discrete equation

Cvh =  0

is defined as the pointwise convergence at each grid point for any smooth function 

Vh as long as the discretisation interval is sufficiently small.

• Finally, the stability criterion requires that the energy of the solution does not grow 

without limits during the simulation. This criterion is connected to an energy limit
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and to the well-posedness of the partial differential equation. In practical terms, the 

energy in the model can not grow without limits. Therefore the numerical solution 

should not grow limitlessly as well.

Usually stability is the critical factor in designing a numerical scheme. According to 

Karrenbach (1996) 'a consistent numerical scheme is convergent i f  and only i f  it is stable’.

Numerical dispersion is another numerical artifact that must be considered if hyper­

bolic differential equations (such as the wave equation) are solved numerically. It is a 

well-known fact that discrete solutions of such partial differential equations are intrin­

sically dispersive (Press et al, 1997). Dispersion of a numerical scheme is defined as the 

mismatch between the true and the approximate propagation velocities. The wavelets, 

which are used in seismic modelling to describe the time evolution of the source, are a su­

perposition of modes with different wavenumbers. It can be shown (Press et al, 1997) that 

for each time step evaluated, the different modes of the wavelet are modified slightly dif­

ferently. This modification is considerable if the wavenumber is comparable to the grid 

spacing h or smaller. To avoid this numerical dispersion band limited wavelets and a 

grid spacing sufficiently small compared to the smallest wave num ber must be chosen.

The first numerical technique that has been widely used in computational seismic 

modelling is the finite difference method. In the 1960's, Alterman and Kami (1968) started 

to use finite difference methods to numerically solve the elastic wave equation in homo­

geneous media. This work was extended by Kelly et al (1976) to enable the solution for 

heterogeneous models. Finite difference methods became very popular in the following 

years, although they suffer from difficulties in meeting the stability criterion and numer­

ical dispersion. To overcome this problem Gazdag (1981) introduced spectral methods to 

model the propagation of acoustic waves. This approach has been extended by Kosloff 

and Baysal (1982) and Kosloff et al (1990) to the elastic wave equation. The advantage of 

these spectral methods is a considerable reduction in the numerical dispersion due to a 

significantly better approximation of the derivatives on the discrete grid. During the last 

five years finite element methods have been increasingly used in seismic modelling (e.g. 

Padovani et al, 1994; Faccioli et al, 1996, 1997; Komatitsch and Tromp, 1999; Chaljub et al, 

2003). The main interest in the development of this method, despite its higher computa­

tional cost, is in part due to its improved flexibility in the design of the model geometry
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Continuous model

X

Discrete model

i=0 i=l i=2 -

Figure 2.1: Approximation of a continuous ID  model (top) on a discrete grid (bottom) 
consisting of IV +  1 points.

and a better handling of the free surface boundary condition, where the results of a sim­

ulation are typically collected.

2.1.1 Finite Difference Methods

In the finite difference method the continuous geophysical model is projected on an uni­

form discrete grid. To obtain the discrete differential operators the solution of the partial 

differential equation is approximated by a truncated Taylor series. This is illustrated for 

the one dimensional acoustic wave equation, which describes the propagation of a pres­

sure perturbation in a fluid-like medium. The pressures P  are sampled on N  grid points 

each separated by a distance A x  (Figure 2.1). In a close neighborhood of a point i the 

derivative of the pressure with respect to space can be approximated by (e.g. Press et al,

Similarly, the continuous time is broken into a series discrete time points tk =  kA t, k — 

0,1, ..., K , with A t  being the time sampling interval. The second derivative with respect 

to time can is approximated by a central finite difference operator.

1997)
dP  _  APj Pi+1 -  Pj-1
dx A x  2Ax

d2P  _  A2Pk __ i f +1 -  2I f  +  i f " 1
dt2 A t2 A t2
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On the discrete grid the acoustic wave equation in one dimension now becomes the dis­

crete finite difference equation

d2P 2d2P  _
dP dx^

p k + 1 _  2 p k +  p k - x  P k+ i _  2 P k +  pk_x

At2 * Az2

To solve this equation numerically for the time tk+ 1  the pressures Pj must be known at 

times tk and tk~x. Rearranging the above equation to isolate the term for the pressure at 

time tk+x yields

pk+i = 2Pk _ pk-x + $ a p  (pk+i _ 2Pk+Pfe_i j
The main criteria to a finite algorithm is stability (Karrenbach, 1996). Stability of a finite 

difference scheme requires that the amplitude of the approximate solution can not grow 

without limits, i.e., it is bounded. To ensure stability the time step A t  has to be chosen 

sufficiently small relative to the Courant num ber (Press et al., 1997). The Courant number 

relates the time sampling interval At to the highest velocity cmax and the spatial sampling 

interval A x  such that (e.g. Carcione and Quiroga-Goode, 1995)

At 1
Cmax a ,— >A x  ^/nd

with nd being the dimensionality of the model.

Another problem must be considered in finite difference modelling of the wave equa­

tion. Finite difference methods for hyperbolic partial differential equations are intrinsi­

cally dispersive, which means they exhibit numerical dispersion or phase errors if the 

spatial sampling interval is too large relative to the smallest wavelength Amjn in the 

model (Dablain, 1986). Alford et al. (1974) suggested that Am*„ should be supported by 

at least ten grid points, indicating that a very fine spatial sampling is required in order 

to avoid numerical dispersion. Hence, finite difference methods can be computationally 

very expensive.

Despite these difficulties, the finite difference method is essentially a simple num er­

ical technique to solve a partial differential equation on a numerical grid. It has been 

widely used in computational seismic modelling since the late 1960's. The initial work of
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Alterman and Karol (1968) has been improved by Alford et al. (1974), and extended to fully 

elastic heterogeneous media by Kelly et al. (1976). Dablain (1986) introduced high-order 

finite difference method to reduce numerical dispersion , and Madariaga (1976), Virieux 

(1984), Virieux (1986), and Levander (1988) developed the so-called staggered grid opera­

tors, which reduce numerical dispersion significantly. Finally, Robertson et al. (1994) and 

Blanch et al. (1995) extended the work by Levander (1988) to include viscoelastic rheol­

ogy in the algorithm. Their scheme has become the standard method for seismic finite 

difference modelling.

Another drawback of finite difference schemes is that this method is constrained by 

a rather rigid grid, in which the grid points m ust be strictly perpendicular to each other. 

This makes including arbitrary shaped bodies into the model problematic. Surface to­

pography is also difficult to incorporate into the model. Carcione (1994), Robertson (1996), 

and Hestholm and Ruud (1998) used mapping techniques to fit the numerical grid to a 

model with some irregular but smooth bodies and surface topography. Their approach 

is, however, limited to shapes that can be described by some analytical function like sines 

or cosines. Thus, the embedded geometry is not truly arbitrary.

2.1.2 Pseudo-Spectral Methods

Numerical or grid dispersion often requires the grid spacing to be small in the finite dif­

ference method. The number of grid points, which are needed in the model to reduce this 

artifact, can become very large making the numerical simulation uneconomical. A more 

accurate and economical scheme can be obtained if the Fourier transformation is applied 

instead of approximating the spatial derivatives by a local finite difference operator. This 

technique, used by Gazdag (1981) for the first time in seismic forward modelling and later 

on extended and improved by Kosloff and Baysal (1982), Reshelf et al. (1988), Kosloff et al. 

(1990), and Kosloff and Tal-Ezer (1993), among others, results in a significant reduction 

of the numerical dispersion error. When using the Fourier spectral method to compute 

the spatial derivatives, the wave numbers supported by the computational grid range 

from k = 0 to the Nyquist wave num ber k ^ y =  ±7r/A:r. Instead of ten grid points per 

minimum wavelength as required above the Fourier based methods require only two 

grid points to simulate the propagation of waves (Kosloff and Baysal, 1982). If the source
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function is band limited with the smallest wave number less than the Nyquist wave num ­

ber of the grid then the approximation is infinitely accurate (Carcione and Quiroga-Goode,

For this technique a truncated Fourier series approximate the solution of the wave 

equation. If Uj denotes the discrete solution at the grid point j  then the discrete transform 

pair is given by

In these equations, N  is the number of grid points and Ax stands for the spatial sampling 

interval. The operator [•] depicts the integer part of the argument (Canuto et a l, 1988). By 

introducing the discrete spatial wave number ki =  2nl /N  A x  and replacing j  A x  by Xj the 

above transform pair becomes

Making use of the fact that the derivative in the space domain is equivalent to a multipli­

cation by ik  in the Fourier domain (e.g. Canuto et al, 1988) the spatial derivatives may be 

calculated by the following scheme:

F F T  _ . . .  OH iF F T  d uu -—-> u —> zku — —  — > — .
ox ox

Therefore, two Fourier transformations are required for the calculation of each spatial 

derivative in each dimension, and hence, the computational efficiency gained by the re­

duction of the grid size is partially lost by the higher cost for the Fourier transformations. 

Another shortcoming of this m ethod is that the implementation of both the free surface 

and absorbing boundary conditions is difficult. For Fourier methods only cyclic bound­

ary conditions have been effectively applied at the edges of the model (Fomberg, 1987).

1995).

[iV/2]—1 

^  ui exp(ikiXj) ,
l= ~ [N /  2]

j=0
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To implement a free surface condition the model must be padded with zeros above the 

free surface. This enables a fairly good approximation for waves propagating at small

at interfaces or free surface has been observed (Kosloff et a l, 1990). Thus, this method is 

not suitable when recording of the computed wave amplitudes at the free surface is cru­

cial for the analysis. This is a severe limitation when one hopes to model a typical seismic 

exploration program.

Fourier series, despite their simplicity, are not always a good choice for the approxi­

mation functions. In fact, for reasons discussed above, Fourier series are only advisable 

for problems with periodic boundary conditions (Canuto et al, 1988). The introduction of 

Chebychev polynomials for the calculation of the spatial derivatives by Kosloff et al (1990) 

improved the pseudo spectral technique in the sense that the free surface and boundary 

condition can be better implemented.

Chebychev polynomials are only defined on the interval [-1 , 1] so that the model 

must be mapped onto this interval. The values of the discrete polynomial are given by

with Oj = arccos(xj), k =  0,1,2, ...N, and N  + 1 being the number of grid points in the 

x-direction. A convenient choice for the grid points in a Chebychev algorithm are

because, despite being economical, this choice results in a very accurate approximation 

of the solution (Canuto et a l, 1988). With this choice for the grid points the Chebychev 

polynomials become

A continuous function u(x) can be expressed in terms of Chebychev polynomials by

N

u ( x j )  =  Y ^ a k T k ( x j ) .
k= 0

More details of the modelling algorithm are included in Appendix A.3.2.

angle of incidence towards the surface, but for larger incident angles significant 'ringing'

Tk(xj) -  cos(A;0j),

Xj = cos(jir/N), j  -  1,
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Figure 2.2: A discrete Chebychev grid with 11 grid points in each direction. Note the 
denser distribution of the grid points towards the edges of the model.

Global pseudo-spectral methods exhibit spectral accuracy in the sense that the error 

of the approximation decreases exponentially to zero with increasing the degree of the in­

terpolation polynomial. However, as this technique requires a non-uniform distribution 

of the grid points with a very dense number of nodes at the boundaries of the compu­

tational domain and a rather sparse concentration of grid points in the middle (Figure 

2.2). It is therefore difficult, if not impossible, to resolve a complex geological structure 

within the model. To circumvent this problem Faccioli et al. (1996) decomposed the com­

putational model into subdomains and solved the wave equation locally on each domain 

separately1.

Global pseudo-spectral techniques provide a very accurate simulation of the waves 

within a model, but the model geometry must be very regular. Additionally, they do not 

work well for models containing discontinuities such as a layered structure with differ­

ent parameters (Press et al., 1997). Modelling the seismic response of a small reservoir 

requires the simulation technique to be able to handle irregular numerical grids contain-

'Note: This approach is similar to the spectral element method by Patera (1984), which will be discussed 
in section 2.1.4.
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irtg discontinuities. Therefore, this numerical technique is not suitable for the purpose of 

this work.

2.1.3 Multigrid method

Although multigrid techniques have been used in resistivity modelling (e.g. Moucha and 

Bailey, 2001) and migration/inversion (e.g. Gray and Epton, 1989,1990; Saleck et al, 1993) 

application to seismic modelling are rare. Apparently, only Kim (2001) employed this 

technique to forward modelling of seismic waves.

The principle of multigrid techniques is that the solution of a partial differential equa­

tion is calculated on a fine grid only if there are significant variations of the variables. 

Otherwise, it is projected onto a coarser grid, or in several steps onto a much coarser 

grid (Press et al, 1997). On the coarser grid the solution can be calculated with much less 

computational effort. Afterwards, the solution of the coarser grid is interpolated on the 

original fine grid.

If this technique is applied to seismic modelling one has to ensure that numerical 

dispersion does not affect the solution on the coarse grid. As discussed previously the 

shortest wavelength in the simulation must be supported by a minimum number of grid 

points. If the wave equation is solved on a too coarse grid the stability and accuracy of 

the solution is jeopardized by numerical dispersion. On the other hand, starting with 

a very dense grid to ensure a sufficient support of the wavelet on the coarse grid does 

not make sense either as it is computational inefficient. Generally, there is one number 

of grid points that is both sufficient to suppress numerical dispersion and provides the 

maximum computational efficiency of the model.

Additionally, the computational grid m ust be designed such that the important geo­

metrical features of the model are sufficiently represented. This criterion is together with 

numerical stability the main factor that defines the discrete grid spacing. However, after 

the solution has been projected on a coarser grid the geometrical resolution of the model 

may be lost. Therefore, similar arguments as previously discussed with respect to nu­

merical accuracy applies: generally, there is an optimum grid spacing for resolving the 

geometry of the model and computational efficiency.

To which extent multigrid methods can be used in computational seismic modelling
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needs to be investigated in more detail. Kim (2001) presented an application of multigrid 

techniques to seismic modelling and experienced convergence problems, which eventu­

ally led to a failure of the simulation. He suggested that a lack of physical characteristics 

in the coarse grid solution as an explanation, which led to instabilities and subsequently 

caused convergence problems.

2.1.4 The Finite Element Method

The propagation of waves through a finite (or bounded) earth model Q will be described 

in terms of displacements, e.g. small perturbation of particles in an elastic medium. The 

earth model may contain any number of internal interfaces separating regions with dif­

ferent physical properties such as density or elastic constants. A typical problem in seis­

mic modelling is shown Figure 2.3. The model Q enclosed within the bold line is bounded 

at the top by a free surface boundary dQ and an artificial boundary F elsewhere. In reality, 

the seismic waves originating from some point within the earth propagate through the 

entire earth. In a computer simulation of this phenomenon it is generally not possible, or 

of interest, to include the entire earth in a model, thus the model must be truncated and 

artificial boundaries introduced. Seismic waves are reflected at the free surface boundary 

dQ and, ideally, they are completely absorbed at the artificial boundaries F to mimic the 

real unbounded propagation.

The equations of motion governing the propagation of waves in elastic solids can 

be solved numerically based on either the so-called strong or the weak formulation of 

the partial differential equations. The strong formulation is the basis for the numerical 

solution of the problem by finite difference and global pseudo-spectral methods. These 

techniques deal directly with the equation of motion and associated boundary conditions 

written in differential form. The weak formulation, which forms the solution basis for 

the finite element methods, instead transforms the partial differential equation into an 

integral form which is subsequently solved numerically.

Consider a partial differential operator C applied to a function u, which is the un­

known solution of the differential equation £ u  =  T , where T  denotes external forces 

applied to the problem. Finite element methods solve the weak or variational form of the 

partial differential equation, which leads to the method of weighted residuals. Instead of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. M ETHODS FOR SOLVING THE WAVE EQUATION NUMERICALLY

Layer I
O

Layer 21

Figure 2.3: A sketch of finite multi-layer earth model Q with surface topography dd  and 
the artificial boundary denoted by F.

approximating the derivatives by finite differences, the solution of the differential equa­

tion, u(x, t), is approximated by a finite series u(x, t) on the N  discrete points in the 

model (e.g. Lapidus and Finder, 1982; Bathe, 1990),

In this equation U j , j  — 1,2, ...,1V are the yet undetermined displacements at the grid 

points. The interpolation functions </>_,■ (x) are continuous functions, usually polynomials, 

that satisfy the boundary condition imposed on the problem. These functions are often 

called the basis functions. While the basis functions are chosen to satisfy the boundary 

conditions, they will not necessarily perfectly satisfy the partial differential equation. 

Consequently, upon substituting u(x, t) into the partial differential equation, a residual 

1Z will remain:

For the exact solution u this residual vanishes, and a good approximation m ust ensure

N

(2.3)

(2.4)
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that the residual is small at all points in the model. In line with this concept, the finite el­

ement method attempts to determine the unknown coefficients Uj- such that the residual 

72 in the model is minimized at each discrete point. For example, one could require that 

the integral over the model fl m ust be zero

j j K ( x , t ) d Q  = 0. (2.5)
n

For the unique determination of the N  unknowns U j  in equation (2.3) N  independent 

equations of the form (2.5) are necessary. In order to obtain N  equations, the above inte­

gral can be suitably modified by multiplying equation (2.5) with N  weighting functions 

Wj. Setting the integral of each weighted residual to zero yields N  independent equations 

of the form

JJ 72(x, t) • Wjdfl =  0, i =  1,2,..., N  (2.6)
n

that are used to determine the unknowns U j. Upon convergence the residual 72 ap­

proaches zero since the approximation u(x, t) becomes equal to the exact solution as

N  —> oo.
The nature of the scheme is determined by the particular choice of the expansion

or basis function <f>j(x) and the weighting functions Wj. Different functions for the in­

terpolation and weighting functions have been used. The collocation method that uses 

Dirac-delta functions, Chebychev polynomials, leading to the spectral element method, 

and Lagrangian polynomials are the most commonly used. The Galerkin method that is 

usually applied in finite element methods assumes that the weighting functions are the 

same function base as the basis function, that is, w i = <pi- The advantage of the Galerkin 

method over other techniques as, for example, the collocation method is that it pro­

duces symmetric and positive system matrices for a certain class of problems, which are 

preferred in numerical solution algorithms (Bathe, 199Q).When using Galerkin's method 

equation 2.6 becomes

JJ 72(x, t) ■ & (x ) dtt =  0, i =  1,2,..., N. (2.7)
Q

In the finite element method the model of interest is subdivided into several elements of 

finite size with the function values defined at the comers of the elements (Figure 2.4). The
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Layer L

r
Layer 2

Figure 2.4: The model shown in Figure 2.3 is subdivided into curved elements whose 
shape are adapted to the boundaries and interfaces of the model.

continuous function is obtained by polynomial interpolation over the elements according 

to equation (2.3). These polynomials and their derivatives are continuous to a specified 

order within the element. The interpolating polynomials, which build the function base 

for the basis and weight functions are chosen such that they assume the value one at the 

assigned node and zero at all other nodes.

2.1.5 Discussion

The numerical schemes discussed above solve partial differential equations in different 

ways. Each technique has its advantages and shortcomings in terms of simplicity, nu­

merical accuracy, and geometrical flexibility. Of all these techniques the finite difference 

method offers the most simplistic modelling approach. However, the potential of the 

technique to solve partial differential equations numerically is limited in two ways. First, 

it is not very efficient in suppressing numerical artifacts such as numerical dispersion. 

Secondly, the requirement of a strictly regular grid significantly reduces the geometrical 

flexibility of adapting the model to a complex geological model. The pseudo-spectral 

method reduces numerical artifacts much more efficiently than the finite difference tech-
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nique. However, the particular choice of the grid points for the Chebychev polynomi­

als (Figure 2.2) does not easily allow the simulation of wave propagation for geological 

models containing embedded bodies of arbitrary shape. The best tool for numerical sim­

ulation on complicated shaped models is the finite element method. The practicability 

of the standard finite element method for seismic modelling was always reduced by the 

poor reduction of numerical artifacts in the simulation (Marfurt, 1984). However, the 

m odem  improvement of this algorithm called the spectral element method (Patera, 1984) 

suppresses numerical dispersion much more efficiently while preserving the geometrical 

flexibility of the finite element technique. Therefore, the spectral finite element method 

is the most suitable numerical technique for the purpose of this research.

2.2 The weak form of the elastic wave equation

The elastic wave equation describes the propagation of seismic waves in terms of the 

particle displacements u of the solid material. The partial differential equation describ­

ing this phenomenon is derived by equating Newton's law with the divergence of the 

generalized Hooke's law, as shown in the following momentum equation (e.g. Lay and 

Wallace, 1995; Aki and Richards, 2002):

p(x)iii(x, t) =  djcry (x, t) +  / / (x, t), i =  1,2. (2.8)

As will become evident, equation (2.8) implicitly describes the propagation of elastic 

waves by a set of 2”d-order hyperbolic partial differential equations. In this equation, u  

is the particle displacement vector, and p(x) represents the bulk density of the medium. 

The two dots denote the second derivative of the displacements with respect to time. On 

the right side of equation (2.8) the first term represents the divergence of the stress tensor 

Uij. This stress tensor is linearly related to the strain tensor ey by Hooke's law, which 

reads (e.g. Aki and Richards, 2002)

<?ij =  Cijki(x) eM, (2.9)

here the elastic stiffness tensor of rank four is denoted by Cyfcj(x). The last term in equa­

tion (2.8) is the seismic source vector f s.
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For the isotropic case, exclusively considered here, the stress-strain relationship is given

However, anisotropy can be included in the formulation by choosing a different stress- 

strain relationship.

This formulation of the partial differential equations as in equation (2.8) is called 

the strong form. Finite difference and global pseudospectral methods have been used 

to solve the partial differential equations in this form numerically by Kelly et al. (1976), 

Dablain (1986), Virieux (1986), Levander (1988), Kosloff and Baysal (1982), and Kosloffet al. 

(1990), among others.

2.2.1 Derivation of the Finite Element matrices

As outlined in the previous section the terms in the differential equation are modified in 

two steps. First, the solution is replaced by a separation ansatz (equation 2.3). Then, the 

remaining residual is multiplied by a weighting function w to obtain the weak formula­

tion that leads to the integral equations for the finite element method. Upon replacing 

the displacements u  by their polynomial representation u (equation 2.3) and multiplying 

by the weighting function the first part of equation (2.8) containing the acceleration term 

ii becomes

by

& ij — "F 2/iCy,

and the strain tensor in indicial notation is defined as

(2.10)

(2.11)

J J *  )ii(x, t) ■ w idQ m J J  p(x)u(x, t) • fa dCl
a n

(2.12)JJ P(x)U j(f)^ (x ) • fa(x)dn, i = 1 , 2 , . . . ,  A.
j  n

As the integration is with respect to the volume Q and U j does not depend on the spatial 

variables equation (2.12) can be rewritten as

JJ p(x)ii(x,t) • wid t tK , ]PU j-(f) • JJ p(x)fa(x)fa{x) dQ, i =  1,2,..., A, (2.13)
n

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. THE WEAK FORM OF THE ELASTIC WAVE EQUATION

After introducing the matrix M

Mij = x)(f>j(x)4>i(x)dtt, (2.14)
n

equation (2.12) can now be formally written as a product of a matrix times a vector:

JJ pu ■ Wj dSl «  M ifij  =  M  • U. (2.15)
n

The matrix M is traditionally called the mass matrix in the finite element literature.

The next term to be evaluated contains the divergence of the stress tensor. After 

multiplying by the weighting function vector and subsequently integrating by parts, one 

obtains (Valette, 1986)

J[ w • (V • a) dSl =  -  JJ Vw : adfl  + f  (a • ft) ■ wdT.  (2.16)
n n p

For the sake of simplicity a Dirichlet boundary condition is assumed in the subsequent 

derivation such that a = 0 on the boundary F. In this case the boundary integral in equa­

tion (2.16) vanishes. The : - operator appearing in the volume integral denotes doubly

contracted tensor multiplication (e.g. a : Vw =  o-y Wjj). Using also o-y =  Cy*i Uk,i, the

first term of this tensor product becomes

„  dm  dwia : Vw = rr— ~  h ... .
o x  i O x  x

Here, tt = \  + 2p has been used for the sake of brevity. Upon using this expression to­

gether with the polynomial representation of the solution u and the weight function w,

the integral in equation (2.16) becomes

f f  W< ■ (■v  ■ „) d u  » £  L  ■ JJ M  g i  d u  +  ~ ) . (2 .17,
Q j \  S1 /

The last integral can again be formally regarded as an element of a matrix K such that

= (218>n
This matrix K is often called the stiffness matrix in the finite element literature. The right 

hand side of equation (2.16) can now be written as

JJ w ■ (V • a) d£l f*s KijUj =  K  • U. (2.19)
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The last term to be evaluated in equation (2.8) is the source term. In the seismological 

literature it is usual to describe the source by a 2"d-order moment tensor Sij (e.g. Lay and 

Wallace, 1995) according to

f t  =  -djSij.  (2.20)

If the spatially distributed source tensor is actually point source the source moment ten­

sor becomes (x) — Sij 5(x). After applying the weak formulation to (2.20) and making 

use of the properties of the delta function, we find that

F s =  S : Vw. (2.21)

After applying the finite element algorithm to the elastic wave equation (2.8) it finally 

becomes a linear matrix equation

M  • U  +  K • U  =  F ,. (2.22)

Thus, the finite element method has transformed the partial differential equation into an 

algebraic system of ordinary differential equations that may now be solved using linear 

algebraic techniques. For example, if the second time derivative of U in equation (2.22) 

is approximated by a central difference operator

... U fc+1 -  2Ufe +  U fe_1
U fc« -------------------------- , (2-23)

then the displacements in the model at time step tn+ 1  can be calculated from the known 

values of U at the times t" and fn_1, respectively according to

U &+1 -  2Ufc -  U fe_1 +  A t2 M _1 ■ (Fs — K  • U fe). (2.24)

Although finite difference schemes are readily implemented, they m ust be used carefully 

as discussed above. It is well-known that finite-difference algorithm become unstable if 

the time step At is too large (e.g. Press et al, 1997, among others). To ensure stability 

of the numerical solution the Courant condition often requires such a small time step 

that finite-difference methods can be computationally uneconomical. However, as these 

matrices M and K are sparse, the resulting calculations can be performed fast and the 

requirement of a small time step for finite difference is not a severe limitation for the 

computational performance.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2. THE WEAK FORM OF THE ELASTIC WAVE EQUATION

2.2.2 T he fin ite  e lem en t m esh

The accurate incorporation of the surface topography and the interfaces as exemplified 

in Figure 2.3 is not trivial for most of the methods discussed in the preceding sections. 

Using domain decomposition, the finite element method subdivides the model fl into 

N ei elements fie of finite size such that

Ne,
n = (J fle.

e = l

Upon this approach a very accurate match to the geological structure is possible, as the 

shape of the elements can be adapted to both boundary edges dfl and F and the inte­

rior interfaces bounding geological layers of contrasting physical properties of the model 

(Figure 2.4). Continuity of the numerical grid within the model is ensured by the finite 

element nodes, i.e., the vertices shared by adjacent elements. Generally, the elements 

can have triangular and quadrilateral shapes; however, to my knowledge, an efficient 

and accurate implementation of the spectral finite element method is at the current state 

restricted to the use of quadrilateral elements alone. This restriction arises from the con­

struction of the interpolation functions in 2D and 3D, as will be shown in the following 

section.

After the model has been subdivided into several elements the integrals introduced in 

the previous section do not need to be evaluated over the entire model but are separately 

calculated locally for each element. This procedure results in local matrices M e and K e, 

which are combined into the global matrices by an assembling process

Nel

/ / / « «  = U J J  /<*>•
Q e—\

The basis and weighting function for comer or edge nodes span over neighbouring el­

ements (see Figure 2.5). After determining the local matrices the contribution from all 

elements to a node are combined to form the global matrices by summation of each ele­

ment's contribution.

Each quadrilateral element is isomorphous to the unit reference square A defined by 

[£, tj], - 1  <  £ < 1, - 1  <  rj < 1. As such, there always exists a unique mapping from the 

reference square to the element of the mesh. Each element is geometrically defined by a
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(a) (c)

0.5

0
-1

3

Figure 2.5: 2D interpolation functions for (a) a internal point, (b) a point on an edge, and 
(c) a comer point of a quadrilateral element.

set of na control or anchor points xa and a set of na shape functions Na(£, rj). Figure 2.6 

shows two types of quadrilateral elements, which are defined by nine and four anchor 

points, respectively. Elements with four anchor points are sufficient when the model 

consists of straight boundaries and interfaces. If nine anchor points are used then the 

shape of the element can be better approximated to curved edges of the model. The 

relation between a point x within an element fie and a point £ =  (£, rf) in the reference 

square A is given by the transformation

The shape functions are products of Lagrangian polynomials of degree one for elements 

with four anchor points and two, if nine anchor points define the element (Bathe, 1990).

As Lagrangian polynomials are important for the numerical procedure they will be 

discussed in more detail in the following section.

(2.25)
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Figure 2.6: Two quadrilateral elements defined by nine (left) and four (right) anchor 
points.

2.2.3 Polynomial representation on elements

In the traditional finite element method the model is broken into many small quadrilat­

eral or triangular elements and the function values are expanded over the elements by 

low-order polynomials. This approach is often called the h  -method (Canuto et al, 1988), 

where h  is a measure of the size of the elements. Global pseudo-spectral methods do 

not divide the model into subdomains but approximate the solution function by high- 

order polynomials. This technique is often referred to as the p-method with p  being the 

order of the polynomial used. While the h  -finite element method allows for excellent 

flexibility in designing a model, it suffers significantly from numerical artifacts such as 

dispersion. The p-approach, on the other hand, allows an efficient reduction of numeri­

cal dispersion. However, the drawback of this technique is the difficulty of incorporating 

complex-shaped models or even multi-layer models. A modern variant of the classical 

finite element method, the spectral element method (Patera, 1984) or hp-method (Kar- 

niadakis and Sherwin, 1999), combines the advantages of both the h  and p-method. The 

computational model ft is subdivided into finite elements fie. Within each element the 

functions are approximated by higher-order polynomials. To ensure continuity across 

the model Q. these polynomials must be continuous at the edges dQe of the elements.

In the classical pseudo-spectral methods trigonometric functions or Chebyshev poly­

nomials have been employed for the interpolation polynomials <j> (e.g. Canuto et al, 1988; 

Gazdag, 1981; Kosloff and Baysal, 1982; and Kosloffet al, 1990), whereas the classical finite 

element method uses low-order Lagrangian polynomials. The advantage of the spectral
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polynomials (i.e. trigonometrical or Chebyshev) is that for a sufficiently smooth solution, 

the convergence of the method is faster than l /N  {Canuto et al., 1988). However, using 

spectral polynomials for the expansion of the functions over the elements is problem­

atic as they do not provide C° continuity across the boundaries of the elements {Black­

burn and Schmidt, 2003). To overcome this problem modem spectral element methods use 

high-order Lagrangian polynomials to approximate the solution on the elements, this still 

preserves the accuracy and fast convergence of spectral methods provided the solution 

is sufficiently smooth (e.g., Henderson and Kamiadakis, 1995; Giraldo, 1998 and Blackburn 

and Schmidt, 2003).

The spectral finite element method is an h-p  finite element that approximates the

functions within each element by a high-order polynomial such as Lagrangian polyno­

mials of degree ni, which are defined on the interval [—1 1] as

p m  f   ((» Co) ' ((» £ q ~ i ) ( £  & *+i) * C m ')  /ry y

For a given degree n/ of the polynomials there are n* +  1 functions distinguished by the 

order a  with 0 < a  < n/ and defined by n/ +  1 collocation points £a € [—11]. A property 

of the Lagrangian polynomial is that the a th polynomial assumes the value of one at only 

the collocation point £a but is equal to zero at all other collocation points:

C ( ^ )  =  <W- (2-27)

This property, often called the discrete orthogonality of the Lagrangian polynomials 

{Blackburn and Schmidt, 2003), is important as it ensures a reduction of numerical dis­

persion similar to spectral methods. Another advantage of this property is that the use 

of Lagrangian polynomials will result in diagonal mass matrices, as will be shown in the 

next section. This matrix structure is preferable for a computational efficient program.

Interpolation polynomials in higher dimensions are obtained by tensor multiplica­

tion. For example, in two dimensions the interpolant is defined as (Figure 2.7)

= (2.28)

If the values of a function /  defined at the collocation points are denoted by f a then an
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/p(H)
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Figure 2.7: Construction of a 2D interpolating function from two Lagrangian polynomial 
of degree 3

approximation to the continuous function /(£ ) can be calculated by

/ ( o  =  X > c ( £ ) -
a—0

in one dimension and similarly in two dimensions by

a,/3=0

(2.29)

(2.30)

The Jacobian of the mapping (2.25), which will be necessary for the numerical inte­

gration, is defined by
d x  dx
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The requirement of the unique existence of the Jacobian and its inverse imposes certain

constrains on the shape of the elements (e.g. Bathe, 1990). That the relation between the

local and the natural coordinates m ust be definite is required, that is, a value (£, t]) in A 

corresponds exactly to only one value in the (x , y)-domain. This essential requirement 

can be violated if the mesh contains self-overlapping or extremely distorted elements 

(Bathe, 1990).

The partial differentials occurring in equation (2.31) are calculated by differentiating 

the mapping (2.25):

na
% x(f, r/) =  ] T  d( Na({, rj) x a, (2.32a)

0 = 1  
71 (j

$,x(£> = *?)x -  (2.32b)
a—I

The general derivative of a Lagrangian polynomial (2.26) is calculated according to

(  ni ni ^ \ni
(2.33)

\ k= 0  i= 0 I I 2=0 ,
\  i=fik /  \ iy ^ a  /

Using equations 2.26 and 2.33 the partial derivatives of the shape functions can be calcu­

lated analytically.

2.2.4 Numerical integration

Up till now it has been assumed that all integrals are determined analytically. After an 

element has been mapped onto the reference square A the integrals in the Finite Element 

equations are of the form
l

n m .
- i

As the mapping depends on the shape of the elements it will therefore be different for 

every element. The integrals cannot be evaluated analytically; numerical integration, 

also called quadrature, must be used.

Assuming that the function f  can be approximated by a polynomial representation

/■
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such as in equation (2.3) the above integral becomes

1 l

/  / m
- i - i (2.34)

Upon interchanging summation and integration by making use of the fact that values of 

F l do not depend on £ the last expression in equation (2.34) then becomes

Therefore, numerical integration algorithms approximate the integral of a function by a 

sum of its value at a set of collocation points multiplied by aptly chosen weighting fac­

tors, which depend on the interpolation function being used and the number of discrete 

sections the interval [—1 1 ] is subdivided into.

Several numerical integration techniques are available, which differ in the choice of 

interpolation polynomials and the collocation points. Most commonly used are Gaus­

sian quadrature as they evaluate the integrals accurately (Press et al., 1997). Among 

the Gaussian quadratures there are several different versions. In the classical finite ele­

ment method a Gauss-Legendre quadrature is used. The m odem  spectral finite element 

method, however, prefers the Gauss-Lobatto-Legendre quadrature.

The Gauss-Lobatto-Legendre quadrature assumes the use of Lagrangian polynomials

(2.26), where the collocation points £a , in the following referred to as the Gauss-Lobatto- 

points, are the roots of

where L'm(£) is the derivative of the Legendre polynomial of degree m, which are recur­

sively defined by (Canuto et al, 1988)

(2.35)l

- l

( l - £ ) X ( O - 0 , (2.36)
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and its derivative follows as

Wi(&) =  T 'V\i ' ic 'yi i=0' (2.37)

The quadrature weights w* are calculated according to (Canuto et al, 1988)

_2_
m (m  + l)L m(£i) 2

where & are the m collocation points previously determined as the roots of equation

(2.36).

Integration in two dimension is accomplished in a similar way:

1 r a n
JJ m ,  v)d£ «  J 2  E  “<*u>0 F aP. (2.38)
- 1  a = 0  0=0

In this equation F aP are the values of the function /  evaluated at the Gauss-Lobatto 

points.

Using the algorithms discussed so far the mass matrix M (equation 2.14) and the stiffness 

matrix K (equation 2.18) can be determined numerically. For the mass matrix we find 

after mapping the element fie onto the reference square A that

Mij =  JJ p<j)j<j>i d(x,y)
cte 

i
J [ p4>j<f>iJ(^V) d(£,r)) (2.39)
- l
N  N

' E ^ p a^ l V ja 0 -
a=0 /3=0

Remembering that on A </>*(£, rj) and <£,■(£, rj) are defined in terms of Lagrangian polyno­

mials as

MZ,v) -  C (^) = C(()C(») 
-> ^ n )  = ̂ ( O C ir i )

and making use of the discrete orthogonality of the Lagrangian polynomials (equation 

2.27) it can be shown that the product of the four Lagrangian polynomials in the Gauss- 

Lobatto-Legendre quadrature is equivalent to (Appendix A.l):

c ( n c ( / ) C ( n c ( / ) ^ %
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This implies that the mass matrix has only entries in the main diagonal with

Til Ul

q =0 ,3=0 {JLAl)

Mij = 0  for i £  j.

This is one of the chief advantages of the Gauss-Lobatto-Legendre quadrature compared 

to, for example, the Gauss-Legendre method. The diagonality of the mass matrix is im­

portant from a computational point of view in such that it first means a considerable 

reduction in the memory required (as only the diagonal elements have to be stored) and 

that the inversion of the matrix M needed in equation (2.24) is equal to M ^ 1 =  1/Mu; the 

off-diagonal elements of the inverted matrix, M ^1, i ^  j ,  are zero.

2.3 Boundary conditions

In reality wave propagation occurs in an infinite, unbounded medium, but in numerical 

simulations the model must be constrained to a size suitable to the available computer 

memory and simulation time. For these reasons the model m ust be truncated and bound­

aries must be introduced at the bottom and sides of the model. As these are not present 

in reality they are often called artificial boundaries. The introduction of such boundaries 

in the models causes waves to be reflected from the boundaries whereas, in the actual 

physical process, waves pass through these locations with no reflection. Reynolds (1978) 

demonstrated that the standard boundary conditions, i.e. Dirichlet and von-Neumann 

conditions, result in the total reflection of the wave energy at the boundaries; therefore, 

different boundary conditions m ust be formulated.

The introduction of these artificial boundaries causes waves to be reflected from the 

boundaries if no special conditions are imposed on them. These reflection are not con­

sistent with the physical process being simulated, as waves in the real situation pass 

through these boundaries. In order to avoid reflections of the waves at these artificial 

boundaries some numerical conditions must be applied to reduce, or eliminate, the wave 

energy travelling back into the interior of the model. This requirement led to the term 

'non-reflecting boundary' conditions, which is widely used in the literature. The devel­

opment of efficient boundary conditions has been a research topic since numerical mod­
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elling has been introduced in the geophysical community and is still a subject of ongoing 

research.

In a review article on non-reflecting boundary conditions Givoloi (1991) formulated 

several requirements that a successful artificial boundary condition must fulfill:

•  First, the interior of the model with the artificial boundary condition should be a 

good approximation of the real situation in the infinite domain, which implies that 

the interior of the model must include all the interesting, or important, features of 

the geology being simulated. This is because the use of non-reflecting boundary 

conditions will not allow any energy scattered or reflected at a reflector outside the 

model to propagate back into the model.

• Secondly, the boundary condition must be compatible with the numerical scheme, 

it m ust not involve enormous computational effort, and it must not reduce the com­

putational performance of the modelling method.

• And third, the energy of the spurious reflections generated at the artificial bound­

aries should be insignificant, if it cannot be eliminated.

Two different approaches have been developed to eliminate the spurious reflections from 

the artificial boundaries.

1. The first type of boundary conditions attempt to decrease the wave amplitude grad­

ually as the wave approaches the boundaries in a damping layer that surrounds 

the model. In this case, only a small amount of wave energy reaches the edge 

of the model to be reflected back. Hence, the artificial boundary condition seems 

to be transparent to outgoing waves. Several techniques have been developed to 

attenuate the wave energy towards the boundary of the model. Lysmer and Kuh- 

lemeyer (1969) applied a viscoelastic layer around the central part of the model in 

which the wave energy is forced to dissipate. This technique is particularly useful 

if viscoelastic mechanisms are employed in the simulation. An increasing damp­

ing coefficient can be used to achieve the decay of the wave amplitude towards the 

boundaries. If, however, the propagation of waves in an purely elastic medium 

is the goal of the simulation, then this boundary condition is rather incompatible.
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Generally, including viscoelastic rheology in the simulation algorithm requires sig­

nificantly more memory to store additional imaginary moduli and this also makes 

the computational work considerably greater (Carcione, 1988, Carcione et ah, 1988, 

and Carcione, 1993). An additional drawback of this approach is the difficulty in 

choosing appropriate damping parameters. It is well known that reflections occur 

not only at interfaces between two layers with different elastic impedances, but also 

at changes in the Q-value (Kjartansson, 1979). Therefore, the transition from the in­

terior to the boundary zone of the model m ust be chosen carefully to avoid new 

artificial reflections. Often a gradual damping profile is applied that increases the 

energy reduction with distance from the boundary of the central part of the model.

To overcome the conceptual difficulties of the viscoelastic damping technique Cer- 

jan et al. (1985) and Kosloffand Kosloff (1986) developed instead a method in which 

the amplitudes of waves travelling towards a boundary of the model gradually 

decreases. A layer surrounds the model in which the wave amplitude is forced 

to decrease exponentially. Their implementation of this boundary condition into 

a pseudo-spectral modelling method proved to be efficient and numerically feasi­

ble. However, the slow decay of the amplitude in the boundary layer requires the 

absorbing zone to be rather wide. A significant amount of memory must be used, 

making this method computationally inefficient. Additionally, the reduction of the 

wave amplitude by multiplying it by an exponential function is actually mathe­

matically the same as introducing an inelastic damping in the boundary layer, as 

suggested by Furumura and Takenaka (1995). Therefore, additional spurious reflec­

tions will occur as for the viscoelastic damping technique.

2. The second method imposes a local condition on the boundary to reduce reflection. 

The principle concept of these absorbing boundary conditions, which are based 

on paraxial approximation of the acoustic and elastic wave equations (Clayton and 

Enquist, 1977), is to separate the wave field propagating out of the model from the 

wave field being reflected at the artificial boundary F and propagating back into 

the model. Consider the acoustic wave equation:

d2u 2d2u 
dt2 C dx2

du du
dt Cdx )(
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The second-order wave equation is decomposed into two components propagat­

ing in the positive and negative ai-direction, respectively. At an artificial boundary 

a new operator can now be defined to eliminate the component that represents 

the wave travelling back into the model. This technique, first used by Clayton and 

Enquist (1977) works particularly well for simulations of acoustic waves in one­

dimensional models. As this boundary condition can only be optimized for one 

wave velocity at a time, it will not be efficient for elastic waves where two waves 

(i.e. P  and S) are present with different propagation speeds. The second short­

coming of this technique is that it does not work satisfactorily well for waves trav­

elling at inclined angles towards the boundary. Especially to improve the absorp­

tion of incident waves Higdon (1991) suggested a modified paraxial approximation 

scheme that uses higher-order operators. However, the use of high-order operators 

make this boundary condition difficult to implement in an existing finite element 

program.

Clearly, there is no perfect boundary condition that reduces spurious reflection efficiently 

and is also computational effective. In an attempt to improve the efficiency of each tech­

nique, the two schemes will be combined here. The model will be surrounded by an ad­

ditional layer where the wave field amplitudes are reduced. Theoretically, the remaining 

wave energy will then be reduced furthermore by a simple paraxial boundary condition.

2.3.1 Rayleigh attenuation

Attenuation can be included in the algorithm by adding a damping matrix C in equation 

(2 .2 2 ), which then becomes

M -U  +  C - U  +  K - U  =  F S. (2.42)

The structure of the damping matrix depends on the attenuation method employed. 

Here, a Rayleigh damping technique is employed to achieve the attenuation in the bound­

ary layer. This algorithm is suitable to finite element modelling of the wave equation as

the damping matrix C is defined as a linear combination of the mass M and stiffness K

matrices (Bathe, 1990)

C =  qM  +  /?K . (2.43)
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The absorption coefficients a  and /? can be expressed in terms of the material properties 

and the frequency of the wave using a set of equations of the form (Caughey, 1960)

a  +  /3ojf = 2u>ij, 2 =  1,2, (2.44)

where are two frequencies within the bandwidth of the source wavelet and 7  are mate­

rial -dependent damping parameters. Surma et al. (1998) report values of 7  ranging from 

about 0.05 (hard crystalline rocks) to 0.30 (loose soil) for geological matter. With numeri­

cal tests these authors narrowed the efficient range for damping to 0.2 < 7  <  0.3. If 7  is 

less than 0.2 a damping effect was not observed. On the other hand, these authors could 

not recognize further improvement of the attenuation of the waves if 7  excesses 0.3.

Upon solving equation (2.44) the absorption coefficients can be determined. For ex­

ample the peak frequency and the lower or upper half width frequency of the wavelet 

can be employed to determine a  and f3.

To test the boundary condition a simple homogeneous model similar to that used 

by Sarma et al. (1998) was constructed with the material properties provided in Table 2.3 

(Figure 2.8). To dissipate wave energy at the edges of the model, it is surrounded by an 

absorbing layer on the left, right, and the bottom. The finite element mesh, consisting 

of 400 elements, is uniform to avoid potential numerical artifacts from a distorted mesh. 

The choice of the degree for the interpolation polynomial was rather conservative in that 

a relatively high degree was chosen to safely suppress numerical dispersion. The source 

was represented by a vertical point force applied in the center of the model and its time 

evolution was described by a Ricker wavelet with a central frequency of / c =  25 Hz. In 

order to meet the stability criterion according to the Courant number the time step A t  

was selected with respect to the maximum wave speed and a 'typical length scale' h of 

the model after

An estimate for the length scale is the average size of the elements divided by the degree 

of the interpolating polynomial (Komatitsch and Vilotte, 1998).
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Figure 2.8: Sketch of the boundary test model. The source position is marked by a V , 
and the elements within the absorbing boundary layer are plotted in gray.

2.3.2 R esults

The numerical solution of equation (2.42) is accomplished by first approximating the time 

derivatives using the central finite difference operators. The resulting difference equation 

is then solved using a Newmark integration scheme (e.g. Bathe, 1990). The details of 

this algorithm are described in more details in Appendix A.2.1. The displacement field 

calculated at progressive times is shown in Figure 2.9. The snapshots shown in the left 

column result from a simulation without an absorbing boundary condition applied to the 

model, that is, a free surface condition was applied at all boundaries of the model. The 

waves propagate radially from the source towards the edges of the model where they are 

reflected back into the model. These results are in accordance with the expected wave
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Table 2.1: Properties of the absorbing boundary test model, 
(a) Seismic parameters 

p [kg/m a] Vp [m/s] Vs [m/s]
_______ 2000.0 4000.0 2000.0

(b) Mesh data 

Nelements ^ /’ Anodes_____ Model Size____
400 6  14641 x: 600 m z: 600 m

(c) Absorption parameters

7 f i  /  h  a  fi
0.25 25.0 H z / 4 1 .2  Hz 48.891/s 0.0012 s

propagation behavior; this figure shows that the numerical algorithm works properly on 

a simple model. In the simulation data presented in the right column of Figure 2.9 the 

two outermost elements of the model included damping parameters. The inclusion of 

attenuation in the boundary layer, however, causes strong numerical instabilities in the 

center of the model. That is, the waves do not propagate uniformly from the source, 

and compared to the images in the left column the propagation speed of the waves is 

reduced. This effect occurred regardless of the value chosen for the damping parameter 

7  or the width of the boundary layer. It seems that the contrast between the damping 

parameter within the center of the model (7  — 0) and the boundary layer (7  > 0 ) causes 

the instabilities of the simulation.

The Rayleigh damping technique, a standard method to include inelasticity in engi­

neering finite element simulation, has been employed by Sarnia et al. (1998) in seismic 

modelling to attenuate plane waves at the boundaries of their model. The simulation 

performed for this work caused severe numerical instabilities, which made the modelling 

impossible.

It seems that the numerical approach, that is the Newmark scheme along with the 

Conjugate Gradient matrix solver, of solving equation (2.42) is not the cause of the prob­

lem as the simulation without damping in Figure 2.9, left column, shows. One of the 

major differences between this work and the one by Sarma et al. (1998) is that they used a 

plane wave excitation at the surface as the source (that is, an array of sources along the 

surface of the model), whereas point sources were used here. The existing program is
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Figure 2.9: Results of the absorbing boundary layer test (vertical displacements). Left: 
without wavefield attenuation, right: including Rayleigh attenuation.
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incapable of exciting plane waves. The present program was not modified because the 

plane wave simulation does not properly model the wavefield response needed for the 

simulated seismic required for the current study. Therefore, a direct comparison between 

the performance this finite element program and the results published by Sarma et al. 

(1998) was not possible.

2.4 Numerical experiment

The efficiency and accuracy of the spectral finite element method is chiefly controlled by 

the size of the elements, the length of the time step, and the degree of the Lagrangian 

polynomials. All these parameters are connected to each other by requirements that en­

sure reduction of numerical dispersion, stability, and adaptability of the mesh to the ge­

ometrical model. The purpose of this section is threefold. First, the conditions ensuring 

stability and reduction of numerical dispersion are discussed. Then, the accuracy of the 

algorithm is tested against a reflectivity method that provides accurate synthetic data 

for horizontal interfaces. Finally the potential of this m ethod for seismic modelling is 

illustrated for a simple but realistic example.

2.4.1 Performance parameters

The spatial accuracy of the algorithm, mainly determined by the reduction of numeri­

cal dispersion, is controlled by the typical size of the elements, h, and the degree of the 

Lagrangian interpolant, ne- The spectral finite element m ethod mainly differs from tra­

ditional finite element techniques in that ne is significantly larger. In practice, if the poly­

nomial degree is too small the spectral finite element m ethod becomes essentially equiv­

alent to the standard finite element method and as such suffers in the same way from 

numerical dispersion (Marfurt, 1984). To efficiently suppress numerical dispersion the 

smallest wavelength in the simulation must be supported by a certain minimum number 

of grid points (e.g. Press et al., 1997). This critical number can be determined by a von- 

Neumann analysis for finite difference and global pseudo-spectral methods (e.g. Karren- 

bach, 1996, see Appendix A.4). However, such an analysis is rather cumbersome and 

instead, one m ust rely on numerical experiments to determine an optimum combination
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of the element size and the polynomial degree. Faccioli et al. (1997), Komatitsch and Vilotte 

(1998), and Komatitsch and Tromp (1999) report that numerical dispersion is sufficiently 

suppressed if the minimum wavelength Amj„ meets the following criterion:

A m in  ijlt  +  1 )  _
 h “ 5-

This means that the average size of the elements must be chosen such that the minimum 

wavelength is supported by roughly five points in order to obtain accurate results.

The upper limit for the frequency bandwidth of the seismic signal is also closely re­

lated to the shortest possible wavelength. Ricker wavelets (Ricker, 1953) are often em­

ployed in seismic modelling to describe the characteristics of the source time series. 

Ricker wavelets are defined by the central frequency f c; its upper limit that can be sup­

ported by the mesh without being degraded by numerical dispersion is related to the 

maximum velocity, Vmax, and the minimum wavelength by

f  ^  V m a x  

-  OX ‘

The second parameter to be considered is the time step A t  used in the discrete approx­

imation of the time derivatives. When using an explicit finite difference scheme to ap­

proximate the time derivative as in equation (2.24), this param eter m ust be aptly chosen 

depending on the maximum wave velocity in the model, V m a x ,  and the minimum spac­

ing between two grid points within the elements, hmin, according to a modified Courant 

condition such that
A t

v 2  V m a x  y  <  1.
ftmin

If the time step A t  is too large the simulation is unstable and the solution grows without 

limits.

An efficient suppression of numerical dispersion can basically be achieved in two 

ways. In the first, the size of the elements h can be reduced while maintaining the degree 

of the polynomial constant. Alternatively, larger elements and values of ne can be cho­

sen. Aside from issues related to numerical dispersion, the size of the elements is also 

controlled by the geometrical complexity one wants to resolve in the model. If smaller 

elements are used the geometry of the model can be better approximated. However, to
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achieve efficient reduction of numerical dispersion, the degree of the Lagrangian polyno­

mial should be at least four or larger (Komatitsch and Tromp, 1999). Therefore, combining 

small elements and a relatively high polynomial degree results in large number of nodes 

in the model, making the simulation computational lengthy. As a rule of thumb Ko­

matitsch and Tromp (1999) suggest to design the mesh such that Lagrangian polynomials 

of degree 4 < ng < 10 are sufficient to suppress numerical dispersion. The sufficiency of 

this range for n( was confirmed in the present simulations.

While using higher polynomial degrees to efficiently suppress numerical dispersion 

one has also to keep in mind that the smallest spacing between two points in the mesh 

decreases as well (as a rough estimate hmin scales like h/2ng). Therefore, increasing ng 

also reduces the maximum possible time step A t according to the Courant condition.

The limitation imposed on the simulation by the stability condition could be circum­

vented by using an implicit forward stepping scheme in time like the Newmark algo­

rithm (Appendix A.2.1), for which it is possible to use a much larger time step. However, 

this method requires the inversion of an effective stiffness matrix. As the matrices must 

be stored in a sparse format due to their size, only iterative methods such as the Conju­

gate Gradient algorithm can be applied to solve the resulting matrix equation. However, 

such iterative algorithms are also computationally time consuming and as such any ad­

vantages of using a larger time step can be offset by the increased computational work.

2.4.2 A ccuracy o f the  m eth o d

The accuracy of a numerical technique is usually assessed by comparing numerical re­

sults to an analytical solution. In seismic modelling the propagation of seismic waves in 

a homogeneous half-space is often simulated and compared to Garvin's problem (Garvin, 

1956), as done, for example, by Komatitsch and Tromp (1999). However, for the purpose 

of the simulations in chapter 4, it is more important to know the accuracy of a reflection 

of waves at interfaces within the model. Therefore, the spectral finite element program 

is tested here against another numerical tool that calculates very accurately the reflection 

of elastic waves at internal interfaces.

Several techniques have been developed to calculate synthetic seismograms for hor­

izontally stratified earth models. The reflectivity method (e.g., Fuchs and Muller, 1971;
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Table 2.2: a) Parameters of test model A used for comparison with a reflectivity program, 
b) Theoretical zero-offset travel times for test model A.

(a)

Layer Top depth P VP VS A P
I 0 .00  m 2000 kg /m A 2400 m /s 1386 m /s 3.84 GPa 3.84 GPa
II 405.40 m 2300 kg/m ,3 2700 m /s 1559 m /s 5.59 GPa 5.59 GPa
III 810.81 m 2700 kg /m 3 3000 m /s 1732 m /s 8.10 GPa 8.10 GPa

(b)
Interface PP PSv 

I 0.33 s 0.45 s
n  0.63 s —

Chapman and Orcutt, 1985) provides an accurate and fast computation of theoretical seis­

mic data for an elastic 1 -  D  earth model. It determines the exact seismic response of a 

layered earth model that includes reflected and converted waves at the interfaces.

To access the accuracy of the spectral finite element program the seismic wavefield 

was calculated for a three-layer model described in Table 2.2(a). The same model was 

used for the computation of synthetic seismic data using a reflectivity program.

Figure 2.10 shows the synthetic seismograms calculated by the reflectivity program 

(written by Gallop, 1999). The first panel shows P-reflections only, the second panel only 

reflected SV-events, and the third graph includes both phases (i.e. P - and ^^-reflections). 

The calculation of the direct wave has been omitted for the sake of clarity. In these calcu­

lations the source has been placed 20 m  beneath the surface. The theoretical zero-offset 

two-way travel times to the first and second interface for this model are included in Ta­

ble 2.2(b). Only those times of an incoming P-wave (P) that is reflected as P- and Sy- 

waves (P and Sv), respectively, are included. The zero-offset travel times agree very well 

with the calculations in table 2 .2 (b) indicating that the reflectivity program determines 

the travel times accurately.

The result of the finite element simulation is shown in Figure 2.11. Usually the di­

rect surface waves dominate the seismograms and the weaker reflected waves are barely 

visible. To remove the direct waves and artifacts related to the source (which are to be 

discussed in section 2.5.1) two simulations were carried out. First, a homogeneous model 

with the properties of layer I (Table 2.2(a)) was calculated. The second model then con-
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Figure 2.10: Vertical displacement synthetic seismograms calculated by a reflectivity pro­
gram. Left: P -wave seismogram. Middle: S y-  seismogram. Right: combined seismo- 
gram.

tained all three layers. After subtracting the seismogram of the first model from the 

results of the second simulation the direct waves and source artifacts are eliminated in 

the resulting data set (Figure 2.11).

Comparing both data sets directly is not possible because both programs simulate the 

source differently. The spectral finite element program implements the source through 

a tensor product of the seismic moment tensor and the derivative of the interpolation 

function (equation 2.21) distributed over a small region within the model. This implies
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Figure 2.11: Comparison of synthetic seismograms. Left: reflectivity method, right: spec­
tral finite element method (SFEM).

that the actual propagating wavelet is the derivative of the Ricker wavelet. From Figure 

2.11  it becomes apparent that the reflectivity program simulates the propagation of a 

Ricker wavelet. Hence, the different shapes of the wavelets for the two numerical tools 

in the seismograms.

Generally, the reflection of the P -wave at the first interface (labelled P P j) shows qual­

itatively the same behaviour in both data sets. At near offsets the amplitude of the re-
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fleeted wave is strong. With increasing offset the amplitude decreases first until approx­

imately 1200 m  offset. After that, the amplitude increases again but the phase of the 

wavelet has changed in both cases. However, the data calculated by the spectral finite 

element program exhibit a significant 'ringing' that follows the main reflection. The same 

ringing is present for the arrival of the converted wave from the first interface (labelled 

P S y i) .  This event is additionally contaminated by the erroneous amplitudes labelled 

A. These amplitudes probably result from an incorrect handling of the reflection at long 

offsets or large angles of incidence. For the last reflection of the P -wave at the second in­

terface it can be said that the near offset travel times agree with the expected times (Table 

2.2(b)). However, the amplitudes are difficult to evaluate due to significant contamina­

tion of spurious amplitudes from previous reflections.

The spectral finite element technique determines the travel times of the main events 

accurately. However, presently, the accuracy of the amplitude variation with offset seems 

to be problematic. Future work could concentrate on whether the amplitudes with offset 

improve for different material properties (e.g., different ratios of the seismic velocities 

Vs jVp ) or for different frequencies of the source. The last thought is based on the consid­

eration that the spurious reflection amplitudes may be due to numerical dispersion.

2.4.3 A generic  exam ple

A generic example will illustrate the potential of the spectral finite element method for 

seismic modelling. The model does not represent an actual case but nevertheless does 

show typical features one is often confronted with in land seismic surveys. Consider 

the model in Figure 2.12(a), which consists of five layers including significant variations 

in surface topography and layer interfaces. The interfaces separate regions of different 

seismic properties listed in Table 2.3, where the labels I to V refer to the layers from the 

top to the bottom.

To match the shape of the surface and the interfaces the geometry of the model was 

approximated by a finite element mesh consisting 1250 elements (Figure 2.12(b)), with the 

average size of the elements being approximately 40 x 40 meters. Lagrangian polynomials 

of degree 6 were used to interpolate the displacements on the elements. Then, the critical 

parameters for the simulation were determined based on the criteria discussed in section
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Figure 2.12: Top: sketch of the five-layer generic model. Bottom: Approximation of the 
model by a finite element mesh.
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2.4.1. These are that the shortest wavelength supported by the mesh is \ min «  29 m and 

the maximum possible time step is limited by At < 0.9 ms. Finally, the upper limit for 

the center frequency of the source wavelet is f c — 23 Hz.

With Deltat =  0.1 m s  the time step in the simulations was shorter than the maximum 

possible because the average element size h used to calculate the upper limit of A t  does 

not represent the minimum length of the elements; therefore, a shorter time step must 

be chosen to ensure a stable numerical solution. A typical time sampling interval in an 

exploration seismic survey is A t3ampie =  1.0 ms, which one would consider as an upper 

limit for a reasonable discrete time step when simulating such surveys. The time step 

employed was chosen to be only one-tenth of this sampling interval in order to ensure 

a stable solution. The computational penalty of such a small time sampling interval is 

a significant longer computation time when using an explicit finite difference time step­

ping technique. However, the use of a computationally expensive, but unconditionally 

stable implicit time marching scheme (i.e., the Newmark method) does not seem to be 

justified. Simple numerical experiments suggest that the time step At must increase by 

more than a factor of 10 in order to outperform an explicit time stepping method. Hence, 

for an efficient simulation employing the Newmark scheme the time step must be chosen 

larger than the selected upper limit of 1.0 ms. Therefore, the explicit time stepping using 

the finite difference approximation (as in equation 2.24) is the appropriate choice for the 

simulations to come.

The limit for the frequency bandwidth of the seismic signal was calculated using the 

average element size. For the same reasons as discussed for the choice of the time step 

a slightly lower value for the center frequency was chosen in order to safely suppress 

numerical dispersion.

Table 2.3: Seismic properties of the generic model (Figure 2.12(a))
p [kg/m 3] VP [m/s] Vs  [m /s] A [GPa] P [GPa]

I 2200 2200 1270 3.55 3.54
II 2300 2300 1328 4.05 4.06
III 2400 2500 1443 5.01 5.00
IV 2500 2400 1386 4.79 4.80
V 3000 2700 1559 7.29 7.29
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Figures 2.13 and 2.14 show the evolution of the seismic wavefield at different time 

steps for two different source locations. These snapshots demonstrate the potential of 

the spectral finite element method to simulate the propagation of waves along curved 

interfaces and, particularly, at the free surface. Unfortunately, the lack of functioning 

boundary conditions requires the simulations to cease as the waves approach the artifi­

cial boundaries T of the model in order that the reflected waves do not contaminate the 

desired arrivals.

An interesting feature develops in the seismic wavefield shown in Figure 2.13 when 

the direct waves reach the closed peak to the right of the source location. These waves are 

trapped in the body of the peak; almost no energy is carried as the direct waves passes 

this hill. Only those seismic waves reflected from deeper interfaces will carry energy 

to the right-hand portion of the model. Although this model does not represent any 

particular geology it illustrates quite well how seismic modelling can, in advance, help 

to indicate possible problems in seismic land surveys.

2.4.4 Numerical problems due to improper mesh design

Besides numerical dispersion simulations of seismic wave propagation can also suffers 

apparent mesh anisotropy, which is another grid or mesh-related artifact.

The motivation for developing the model shown in Figure 2.15(a) was initiated by the 

problems occurring in seismic surveys in rough terrain that are discussed in Li (2004). In 

areas with significant surface variations in topography a dedicated field survey layout is 

required that suits the complicated geological structure. Pre-survey testing of the survey 

design using numerical simulation will be a valuable contribution to the success of the 

field experiment.

To investigate the potential of the spectral finite element technique to simulate sur­

veys in rough terrains, the generic model shown in Figure 2.15 was constructed. Whereas 

the first generic model in Figure 2.12 contains a smooth surface variation, the second 

generic model contains a much 'rougher' surface topography (Figure 2.15(a)). The ve­

locities and density are constant throughout the model w ith Vp = 3200.0 m /s, Vs =  

1270.0 m /s, and p =  2200.0 kg /m 3. The geological model was approximated by a finite 

element mesh consisting of 2500 elements. The degree of the Lagrangian polynomial
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Figure 2.13: Simulated seismic wavefield at different times for the model shown in Figure 
2.12.
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Figure 2.14: The simulated seismic wavefield for the generic model with the source lo­
cated at top of the hill.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5. POSSIBLE DIRECTIONS FOR FUTURE WORK

was chosen to be 7, resulting in 90751 nodes in the finite element model. The source 

was an  explosive force close to the surface in the center of the model with a time history 

described by a Ricker wavelet with a center frequency of f c =  20 Hz.

Initially, the waves propagate as expected along the surface. However, it seems as 

if the wave propagation occurs in an anisotropic environment. In Figure 2.15(b), the P- 

wave front is not circular, as one would expect for an isotropic model, but is elongated 

in the vertical direction. Because the elasticity of the model is described by an isotropic 

constitutive equation, the apparent anisotropy m ust result from numerical artifacts. In 

the central part of the model, the elements are elongated in the vertical direction, and it 

seems that the spectral finite element method is not capable of adequately simulating the 

wave propagation in such a case.

The second numerical artifact occurring in this simulation is a strong numerical insta­

bility that develops at the surface (indicated by arrows in Figures 2.15(c) and (d)). When 

the surface wave reaches the 'deep valley' towards the right of the source it does not con­

tinue to propagate. Instead, an increasing and anomalous amplitude is observed in this 

region that is marked by the bright spot in the snap shots. With time, this amplitude con­

tinues to grow and becomes too large; the plotting program cannot resolve this artifact 

and the actual wave amplitudes after t  =  0.30 s.

At the moment, one can only speculate whether this numerical instability is related 

to the topographic variations that occur on a shorter length scale than, for example, in 

the first generic model (Figure 2.12). Perhaps, a limit exists for the ratio o f the shortest 

possible seismic wavelength and the length scale o f the topographic variations in the 

model? Further studies are required to answer this question.

2.5 Possible directions for future work

The simulations presented in the previous section clearly highlight the potential of the 

spectral finite element method for applied seismological studies. However, there remain 

several problems, which should be addressed in future work.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5. POSSIBLE DIRECTIONS FOR FUTURE WORK

(a)

(c)

Horizontal Distance [m]

-500 0 500 1000 1500 2000 2500

|  500 

Q 1000

i i i it ifK iim m itiH ti if l ti f i i iia il ll tm iif it it fS tt ti ii i if iJ i ti iis iiJ iim iim H im im ic m M i

<b) 0

500
-£
8 *
G 1000

_  t=0.13:

(d)

0

%  500

I
Q 1000 

0

3  500
£

1000

~ t=0 .2 0  s

t=0.30 s

Figure 2.15: The 'rough surface' model, (a) the finite element mesh; snapshot of the 
horizontal wavefield after (b) t =  0.13 s, (c) after t  =  0.20 s, and (d) after t = 0.30 s. The 
source position is marked by a hexagram in (a). The white arrows in (b) are pointing 
to the P -wave front. In (c) and (d), the numerical instability at the surface condition is 
indicated by arrows.
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2.5.1 Mesh generation

A problem appears in the simulation results in Figures 2.13 and 2.14, where erroneous 

small amplitude events originate from the source at later times. These are not related 

to the underlying physical model but most likely caused by the distorted elements in 

these particular regions of the model. It is worthwhile noting, that such events are not 

present in the simulations shown in Figure 2.9, in which a finite element mesh with reg­

ular quadrilateral elements was used. A possible explanation for these events could be 

numerical dispersion, which is caused by distorted elements. One can only speculate if a 

better mesh design would help do reduce such artifacts2. Professional mesh generation 

software usually reduces the distortion of the elements to obtain a 'sm oother' mesh3 but 

including such algorithms in the mesh generation software used is beyond the scope of 

this current work.

2.5.2 Improving the mesh adaptability

The reason only quadrilateral elements are employed in the current mesh generation 

process, as mentioned in section 2.2.2, arises from the requirement that two Lagrangian 

polynomials must undergo tensor multiplication to obtain the two-dimensional inter­

polation function (e.g., equation 2.30); this operation is presently only established for 

quadrilateral elements. On the other hand, quadrilateral elements are not as flexible as 

triangular elements in adapting complex model shapes; consequently, much work has 

been carried out in the recent years to provide routines to calculate high-order colloca­

tion points for triangular elements (e.g. Bos et a l, 2000; Hesthaven and Teng, 2000; Taylor 

et al., 2000). Sherwin and Kamiadakis (1996) and Karniadakis and Sherwin (1999) discuss ex­

tensively the combination of the h-p  method with triangular meshes. At the moment, 

high-order finite element methods on triangular meshes require more computational ef­

fort in determining the optimum collocation points (the so-called Fekete points). A fur­

ther problem is that numerical dispersion is not as efficiently suppressed as it would be 

the case for quadrilateral elements (Komatitsch et al, 2001). However, the advantages of

2Note that the finite element meshes used in all simulations presented here were created using simple 
Matlab™ scripts.

3M. Goelke, Altair Engineering, personal communication.
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using triangular meshes are significant where complicated geometry m ust be accurately 

incorporated into the model. This is particularly true for steam chambers or surface to­

pography. Therefore, the existing program, currently limited to the use of quadrilateral 

elements only, should be extended to incorporate triangular elements.

2.5.3 Including dispersive effects

As discussed in chapter 1.1.4 seismic waves experience inelastic attenuation when prop­

agating through the earth. In saturated porous rocks, this effect is perhaps best described 

by Biot's theory and its numerous extensions (e.g. Biot, 1956a,b; Dvorkin and Nur, 1993; 

Dvorkin et al, 1994). However, a computationally efficient numerical solution of Biot's 

equation system is not easily obtained (Carcione and Quiroga-Goode, 1995). This is in par­

ticular due to the wide range of velocities occurring in this description as there is a third 

wave present beside the P- and S-wave, which propagates with much lower velocity 

through the medium (see section 1.2.3). To ensure a numerically stable solution, the two 

parameters At and Amin must be significant smaller than, for example, in the case of a 

purely elastic constitutive relationship between stress and strain. A simulation incor­

porating this extra information can become computational impractical because the finer 

mesh requires substantially more memory and the smaller time step results in a much 

longer computation time.

As an alternative approach to simulate inelastic effects the phenomenological the­

ory of viscoelasticity has been frequently used (Emmerich and Korn, 1987; Carcione, 1988; 

Carcione et al, 1988; Carcione, 1993, Robertson et al, 1994). The viscoelastic theory is well 

developed and its numerical implementation has proven to be efficient in finite difference 

schemes. Generally, the same approach can be implemented in a finite element algorithm, 

as done by Kay and Krebes (1999). However, the approximation of attenuation over an ex­

tended frequency range requires the use of several Maxwell bodies (see section 1.2.4). In a 

finite element scheme, each contribution of a Maxwell body requires additional matrices 

that are similar to the stiffness matrix K . This matrix requires the dominant part of the 

necessary computer memory; and therefore an algorithm using several matrices will be 

only feasible on computers with large memory resources. Apparently, the existing three- 

dimensional spectral finite element simulations do not employ a viscoelastic rheology
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(e.g. Faccioli et al, 1997; Komatitsch and Tromp, 2002a,b; Chaljub et a l, 2003), although these 

authors do not explicitly mention memory limitations for their choice of the rheological 

law.

Future work could concentrate on the feasibility of performing two- and three-dimensional 

finite element simulations on the existing parallel computer at the University of Alberta. 

Including inelastic effects into the simulation will certainly help to explore the physics 

being analysed in this study in more detail.

2.5.4 Absorbing boundary conditions

The simulations of the seismic wavefield propagation presented were aborted as soon 

as the wave fronts reached the boundaries of the model. Otherwise, reflections, and 

especially those of the surface waves at the edges of the model, produce numerical insta­

bilities that diminish the utility of any further simulation in the interior of the model. Un­

fortunately, the implementation of an absorbing boundary condition using the Rayleigh 

technique failed here, as described in section 2.3.1. While this is something of a negative 

result, it is useful to know about this problem in order that other approaches might be 

taken.

An alternative promising approach is that of Perfectly matched layers (PML) first in­

troduced by Berenger (1994) to absorb electromagnetic waves at the boundaries of a finite 

difference grid. Chew and Liu (1996) showed that these conditions can also be employed 

in elastic wavefield simulations. The PML condition was derived by Berenger (1994) for 

a system of first-order partial differential equation. After Collino and Tsogka (2001) refor­

mulated the PML theory for the 2”d-order wave equation, Komatitsch and Tromp (2003) 

recently successfully applied this technique to finite element modelling of seismic waves 

for a simple model. Perfectly matched layers are perhaps the most efficient absorbing 

boundary condition as they require the least elements in the attenuation layer around 

the model and this approach should be pursued in future work.
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2.6 Discussion

The chapter discussed the four standard numerical techniques, which are currently used 

to solve partial differential equations numerically. These are the finite difference method, 

the global pseudo-spectral method, the finite element technique, and finally the method 

of the spectral finite elements. From these techniques the spectral finite element method 

best meets the required criteria for the modelling algorithm, which are spectral accuracy 

(e.g., an efficient suppression of numerical dispersion) and geometrical flexibility (i.e., 

the adaptability of the numerical model to a complex geometry).

The numerical examples showed that the spectral finite element method is indeed ca­

pable of simulating seismic wave propagation accurately for geometrical models that in­

clude significant surface topography and variations of interior geological contacts. Such 

simulations are of interest in various fields of exploration geophysics. First, surface to­

pography anomalies such as hills or valleys produce diffractions, which in turn will re­

duce the quality of the seismic survey. In order to test processing algorithms, including 

migration of such data, forward modelling is a very important tool. Secondly, seismic 

forward modelling is becoming a more and more essential step in preparing seismic sur­

veys in order to access, for example, the feasibility of a time-lapse monitoring program.

The application of the spectral finite element method requires a carefully designed 

numerical mesh in order fully exploit its potential regarding spectral accuracy and geo­

metrical adaptability. The examples shown in this chapter demonstrated that numerical 

instabilities as well as apparent anisotropy are introduced if the mesh includes substan­

tially distorted elements.

An extension of the current program to three dimensions in principle does not re­

quire considerable modification of the existing finite element algorithm. The main diffi­

culty probably lies in the mesh generation process. As mentioned before it is not trivial to 

match a given two-dimensional geological structure by a mesh consisting of quadrilateral 

elements; the use of triangular or tetrahedral elements would be a better approach. This 

problem is even more evident in three dimensions where tetrahedral elements will allow 

for a much better approximation to the geology than hexahedral elements. A mathemat­

ical theory, however, to determine the necessary Fekete points in three dimensions seems
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not yet to be available. Aside from the mesh generation problem there seem to be no 

other obstacles for the extension of the modelling algorithm to three dimensions. Mem­

ory requirement and computation time will be considerably larger but with the steadily 

increasing computer power, three dimensional simulations are becoming more realistic 

(Komatitsch et al., 2002).

Finally, it should be noted that aside from the application to forward modelling, the 

finite element method has recently been applied to migration of seismic data (e.g. Zhang 

et al, 2004). The advantages of using the finite element method for this purpose are 

the same as for forward modelling: the technique enables one to handle complicated 

geological structures (for example surface topography) much better than other methods.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

A comparative rock physical study of 
the seismic response during 
steam-flooding of heavy oil reservoirs

1The suggestion that the seismic monitoring of thermal enhanced oil recovery processes 

is feasible was initially based on ultrasonic laboratory observations of the significant de­

crease in the compressional velocity with temperature in heavy oil saturated materials. 

For example, Wang and Nur (1988),Wang and Nur (1990), Wang et al. (1990), Eastwood 

(1993), and Watson et al. (2002) all report reductions in the ultrasonic P -wave velocity 

of approximately 11% after heating of a heavy oil saturated sample from 20°C to 120°C 

at constant effective pressure. While this change is certainly considerable, such measure­

ments do not take into account the fact that steam replaces the heavy oil in much of the 

pore space during a SAGD-program. The engineering models suggest that only a thin 

zone of heated heavy oil saturated reservoir rock surrounds the steam chamber. If these 

engineering models are correct, it is likely that the heated oil-saturated regions will only 

minimally affect the overall seismic response.

Reservoirs in which SAGD is applied are typically from 10 m to 30 m  thick; such thin 

reservoirs may make detection of changes with reflection seismic methods difficult, par­

ticularly if they are subtle. For example, a correlation of 'bright' seismic events with a 

triplet of SAGD well pairs was observed over the shallow (120 m  to 160 m  deep) bitumi­

nous Athabasca reservoir in Northern Alberta (Figure 3.1, Schmitt, 1999). In contrast, the 

'Parts of this chapter have been submitted to GEOPHYSICS for publication.
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Figure 3.1: Seismic reflection data recorded over an Athabasca reservoir near Fort Mc- 
Murray, Alberta. Three SAGD well pairs intersect the seismic lines at the locations la­
belled Bl, B2, and B3. (Redrawn after Schmitt, 1999)

time-lapse seismic reflectivity changed little over a three year period in a seismic moni­

toring program carried out over a the geologically similar but deeper (750m) Lloydmin- 

ster style reservoir (Figure 3.2, Zhang and Schmitt, 2003). In order to better understand 

the differing behavior, an analysis of the physical properties of the rock units found in 

both reservoirs has here been carried out to simulate the effects of the fluid substitution 

believed to accompany the SAGD process. The change in the seismic response of two 

reservoirs, geologically similar but subjected to different effective stress conditions, is 

studied using Gassmann fluid substitution modelling (Gassmann, 1951). Relevant elastic 

moduli are extracted from well logs or from engineering tests. Appropriate fluid prop­

erties, under the pressure and the temperature regimes expected, are employed. Finally, 

the influence of effective pressure on the in-situ velocities is assessed. This chapter fur­

ther discusses the aspects associated w ith attempts to carry out seismic monitoring of 

such reservoirs.

In chapter 1 the basic principles of geophysical remote monitoring and especially the 

physical basis for observing such changes in heavy oil reservoirs subjected to enhanced 

oil recovery processes were introduced. These ideas are applied in this chapter to as­

sess the feasibility of seismic monitoring of thermal enhanced oil recovery for heavy oil 

reservoirs for two reservoirs in Western Canada. These reservoirs are geologically simi­

lar but are at different depths and show significant differences in their seismic time-lapse 

response. The first reservoir is a shallow bituminous deposit within the Athabasca forma­
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Figure 3.2: Two seismic data sets acquired over a SAGD well pair at a Lloydminster 
reservoir near Senlac, Sakatchewan at two different times. (After Zhang and Schmitt, 
2003)

tion near Fort McMurray in Northern Alberta. The second reservoir is a Llyodminster- 

type reservoir located close to Senlac, Saskatchewan. Seismic monitoring programs have 

been carried out for both reservoirs by the University of Alberta with different results. 

The data recorded for the Athabasca reservoir at different times show significant changes 

in the seismic response whereas seismic surveys acquired over several years at the Senlac 

reservoir do not distinctly reveal any changes that might be related to the enhanced oil 

recovery process.

This chapter summarizes a comparative rock-physical study that tries to explain the 

different seismic responses of these two otherwise similar reservoirs. As mentioned 

above, feasibility studies for the monitoring of thermal oil recovery methods have so 

far only considered the temperature effect on the properties of the oil (i.e., velocity and
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density). For modelling of SAGD processes this approach is insufficient as it does not 

consider the fluid replacement steam-for-oil. By including the temperature and pressure 

dependence into the fluid substitution to simulate the SAGD process as reported here an 

improved feasibility testing is achieved.

3.1 Methodology and theoretical considerations

3.1.1 Work flow

To investigate the seismic response of a thin heavy oil reservoir subjected to a SAGD 

process several well logs and a core analysis from the Senlac area are employed to de­

termine the rock physical properties for this reservoir. For the Athabasca reservoir, the 

experimental data of various rock and fluid properties by Chalaturnyk (1996) provide the 

data basis. Based on such data representative values for the various elastic parameters 

occurring in Gassmann's equation 1.3 can be derived (section 3.4). If applicable, the elas­

tic properties of the frame will be determined by inverting Gassmann's equation for the 

frame bulk modulus K^. In a subsequent step a fluid replacement in the reservoir will 

take place to simulate the SAGD process (section 3.5). A simple but realistic model is 

assumed to represent the effective pore fluid in the steam chamber. Based on this sim­

ple model synthetic density and Vp-sonic well logs, assumed to be representative of the 

reservoir condition during a SAGD process, are calculated. To assess the feasibility of 

seismic monitoring synthetic seismic traces are calculated for the original and modified 

well log data, respectively (section 3.5.5). Seismic attributes are then used to quantita­

tively evaluate the potential of detecting changes in the seismic response between the 

two cases. The proposed process for testing the feasibility is summarized as a flow chart 

in Figure 3.3.

3.1.2 Theoretical fundamentals

The elastic properties of a composite material consisting of solid grains and an inviscid 

fluid is frequently described by Gassmann’s (1951) equation. The bulk modulus of the 

effective fluid saturated medium, K ef / ,  is related to the bulk modulus of the solid grain 

material, K s, the bulk modulus of the fluid, K / ,  the (drained) bulk modulus of the solid
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Figure 3.3: The flow-chart illustrates the process for the rock-physical feasibility study, 

skeleton or frame, K <*, and the porosity <f> via

k  t'  1 a - * W )2 n -ne f f  d +  ( 1  _  K d / K s  _  ^ / K s  +  • ( • )

The frame bulk modulus K j  describes the rigidity of the interconnected matrix of min­

eral grains. Its value is relatively large for well consolidated, compacted, and cemented 

sediments, making the rock solid and seismically fast. In contrast, Kj, is lower in uncon­

solidated fragile sands and the seismic velocities are slow compared to more competent 

rocks.

A second assumption of Gassmann's theory is that the shear modulus of the effective 

medium, /xe/ / ,  is solely determined by the shear properties of the frame, m , i.e.

M e //  — Md- (3-2)

The elastic frame properties may be determined for well-consolidated sandstones using 

a dry sample or an unjacketed compression test (e.g. F/aer et al., 1992). For unconsolidated 

material, such measurements are more difficult because experiments are complicated by 

non-linear elasticity, strong hysteresis, and time dependent effects that are not as impor­

tant for stiffer rocks (e.g. Gardner et al, 1965; Christensen and Wang, 1985).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1. M ETHODOLOGY A N D  THEORETICAL CONSIDERATIONS

Furthermore, the effective density measured in well logs can be separated into two 

contributions of the solid material, p s , and the pore filling liquid, p p .  A volume averaging 

approach then allows the determination of the effective density:

Peff =  C1 ~  4>) Ps +  4> Pf. (3.3)

There have been only a few papers published regarding measurement on unconsoli­

dated sands. Hornby and Murphy (1987) report some measurements of the ratio of the bulk 

to the shear frame modulus of unconsolidated sands. They observed a wide scattering 

of this ratio for different porosities. Conversely, Murphy et al. (1993) derived an empiri­

cal relationship for this ratio suggesting that both frame moduli depend linearly on each 

other. Additionally, these researchers suggest that above a certain porosity the elastic 

frame properties also depend linearly on the moduli of the grain material. In contrast, 

the analysis of unconsolidated materials by Spencer et al. (1994) reveals that the frame 

properties vary significantly. They did not measure the bulk and shear frame modulus 

directly but instead determined the Young's modulus and Poisson's ratio of the samples; 

these moduli depended only weakly on the properties of the solid mineral grains.

This initial literature survey shows that the experimental results of the frame proper­

ties are in a sense contradictory; at this time no simple rule can be applied to relate the 

frame properties to, for example, porosity or mineralogy. In unconsolidated materials the 

elastic frame properties most likely depend on the nature of the grain contacts (Murphy 

et al., 1986,1993). For example, the roughness of the grain surface and hence its friction 

against adjacent grains will certainly influence the stiffness of the frame. It is also impor­

tant to note that, over the range of confining and fluid pressure encountered, the frame 

bulk modulus can be highly dependent on the differential stress. Since no clear basis for 

predicting the frame modulus exists, workers instead often rely on direct laboratory or 

well-log measurements to obtain representative values.

Here, it is assumed that Gassmann's equation applies in order to determine the elastic 

properties of the formation from Vp and Vs sonic and density logs. Aside from the frame 

bulk modulus, Kd, all the other moduli are either relatively easy to measure or are already 

available in the literature (e.g. Mavko et a l, 1998). A value for the frame bulk modulus Kd
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can be determined from well log data by solving Gassmann's equation for K j :

1 +  K eff ((<j) -  1 ) / K a -  <j>/Kf ) 
d (1 - K eff/ K s +  <p)/Ks -  cp/Kf  • 1

The effective bulk modulus K ef j  is calculated directly using the sonic and density log

data according to

K efj = p ( v £ -  4/3 Vs2) .  (3.5)

The shear modulus of the solid frame, p& is similarly calculated from the shear some and 

density logs:

Peff = Pd = pVs- (3-6)

To apply Gassmann's effective medium theory one has to ensure that the underlying 

assumptions are met. One important assumption is that the pore filling fluid does not 

possess a finite shear strength, i.e., the fluid m ust not resist shear motion. Secondly, 

no relative motion between the solid frame and the pore fluid is allowed when a seismic 

wave passes by. This condition is usually met for the frequency range used in exploration 

seismics.

Two different effective medium theories are assumed to simulate the effects of a 

SAGD process on the seismic properties on the reservoirs . One m ust consider how the 

fluids themselves may be distributed within the pore space; the end members of this are 

a homogeneous fluid distribution at one extreme and a patchy saturation at the other.

The first model considers a homogeneous fluid consisting of three phases: oil, liquid 

water, and steam. Then, the effective fluid density, p f ,  and the bulk modulus, K f ,  are 

given by:

Pf  =  S o p o  +  S w  P w  +  S s t  Pst,  (3.7a)
1 _  S o  S w  , S s t  v

K i  ~  K E  + K ^  + W , '  <37b)

where So, Sw , and Sst are the oil, water, and steam saturations, respectively. Similarly,

the temperature and pressure dependent densities and bulk m oduli of the different com­

ponents are labelled by the same subscripts as the saturations.

Upon substituting the effective fluid properties into equations (3.1) and (3.3), respec­

tively, the density and bulk modulus of the effective medium are determined. This ho­

mogeneous model is also referred to as the Gassmann model in the following sections.
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In the Gassmann model it is assumed that wave-induced pore pressure increases 

equilibrate in the phases during a seismic period. This assumption is satisfied if im­

miscible phases coexist in the pore space. However, this assumption breaks down if the 

saturation is not homogeneous over a characteristic diffusion length scale l c  (Mavko and 

Mukerji, 1998), which is related to the permeability of the material, the frequency of the 

wave, and the dynamic viscosity and bulk modulus of the liquid phase (Mavko and Muk­

erji, 1998; Dvorkin et al, 1999)

l c  = VkKL/(fV),
where

• k: permeability,

• K l ' bulk modulus of the most viscous phase,

• / :  seismic frequency,

• r)\ dynamic viscosity of the most viscous phase.

This characteristic length scale can be of the order of a few millimeters at ultrasonic fre­

quencies to several meters in seismic frequency band. For patchy  saturation distribu­

tions the Gassmann model can underestimate the effective elastic properties of a fluid 

filled porous medium. Table 3.1 shows some estimates of the critical diffusion length for 

the Lloydminster and Athabasca reservoir, respectively. In both cases, the permeability 

was assumed to be k — 4 Darcy (equivalent to k = 3.95 x 10-1 2  m2), the bulk modulus 

of the most viscous component (oil) was calculated according to equation (3.9b), and the 

viscosity after equation (1.12c). The differences in the length scales l c  are due to differ­

ent temperature conditions within the steam chamber, which effect the properties of the 

oil. For the Lloydminster reservoir, the assumed temperature is about 265°C, while for 

the Athabasca reservoir it is 165°C. As the distribution of the different phases in a steam 

chamber and hence the size of any fluid patches in the steam chamber is unknown, and 

indeed, is likely not very homogeneous especially in the early phases of the injection 

process, the second effective medium model employed in this work assumes a 'patchy' 

distribution of the components of the fluid in the pore space. Using both the Gassmann
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Table 3.1: The characteristic diffusion length scale t c  for the two reservoirs considered in 
this study.

/  [Hz] Lloydminster Athabasca 
~25 023m  (H im

50 0.17 m 0.08 m

and patchy saturation model provide approximate lower and upper boundaries for the 

seismic velocities of the effective material (Mavko and Mukerji, 1998) with

^ P G a s s m a n n  —  ^ P  ~  ^ P p a t c h y '

For the case when the pore fluid phases are sufficiently separated (i.e., the sizes of the 

patches are much larger than the characteristic length scale) Mavko and Mukerji (1998) de­

rived an expression of the effective elastic modulus by first calculating three parameters 

using Gassmann's equation (3.1) under assumption that the entire pore space is saturated 

by either phase. In a subsequent step they determined the final effective elastic modulus 

by averaging these three values assuming an iso-stress or Reuss method to obtain

1 Ss t  S o  S w  n  0 .
+  777-----r~4 T +  777------T T T ’ w-8)

( K  +  S ^ p a t c h y  ( K S s t  h  3 ^ ) i ^ S o  *F 3 /^) i-^ S w  3 A1)

where K sSi, K s0, and K sw are the effective bulk moduli after Gassmann. Finally, equa­

tions (3.3) and (3.8) are combined to calculate the P-velocity of the effective medium to

be _____________
y  _  ~F 3 f l ) p a t c h y

PpotcHy ~  y  M f

Again, it is assumed that the shear velocity Vs is not affected by the pore fluid, such that 

equation (3.6) applies to find the effective shear modulus.

3.2 Geology o f  t h e  reservoirs

The heavy oils in the Western Canadian Sedimentary Basin (WCSB) are found in large 

and shallow oil sand deposits, predominantly in the Athabasca, Peace River, Cold Lake, 

and Lloydminster areas (see the map of the Western Canadian Sedimentary basin in Fig­

ure 1, page 3). There are generally two types of production methods: oil sands that are
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Figure 3.4: Stratigraphic chart of three major heavy oil deposits in Western Canada.

close to the surface are mined, and in-situ operations where wells are drilled and pro­

duced with the aid of technologies such as SAGD. According to the Energy and Utilities 

Board of Alberta (AEUB) the term oil sand does not refer to specific geological material. 

Rather, the term is loosely used to refer to mineable operations regardless of the lithology 

or age of the deposit that are sands or other rock materials, which contain a significant 

amount of heavy oil or bitumen.

Most of the heavy oil reservoirs in Western Canada, which are produced with the help 

of the SAGD technology are geologically similar in that they are fluvial and /o r deltaic
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deposits. The accepted stratigraphy in Figure 3.4 shows the general geological structure 

of the deposits in the Athabasca, Cold Lake, and Lloydminster areas. The reservoir at 

Athabasca of interest in this study is found in the McMurray formation of the lower Man- 

nville group. The geological setting for the lower Mannville is similar in all areas. The 

lowest strata in this formation are strictly fluvial non-marine sediments and grade up­

ward into marine deposits. The lowest strata in each area is comprised of homogeneous, 

non-marine sands. It grades up into estuarine point-bar type deposits whose upper beds 

show tidal influences as indicated by thin beds of shale.

The sands of the McMurray formation are essentially non-marine material of variable 

thickness deposited under fluvial conditions. For these reservoirs, the thickness of the oil 

bearing sands can vary between 6  m  and 60 m  . The formation is underlain by Paleozoic 

carbonates and overlain by the marine deposits of the Clearwater formation, which are 

mainly composed of layered thin silts and shales (Rottenfusser et al., 1988).

The geological setting for the Lloydminster-styled reservoir at Senlac is geological 

similar. This reservoir is located within the Dina formation, which is a member of the 

Mannville group (Christopher, 1997). The Dina formation at Senlac, which is laterally 

equivalent to the McMurray formation in northern Alberta, is also a channel sand deposit 

overlying the Paleozoic carbonates. Deposition probably occurred either as fluvial or 

deltaic, estuary valley fill (Chakrabarty et al., 1998). At the base the formation consists of 

massive sands, which then fines upwards and with increasing amount of shale interbeds 

merges with the overlying shales of Cummings formation.

3.2.1 Athabasca reservoir near Fort McMurray, Alberta

At Athabasca, the bituminous oil sands are found in shallow reservoirs and much of the 

bituminous crude is extracted by surface mining. The oils produced by upgrading this 

bitumen accounts for approximately 20% of Canada's total petroleum production. The 

representative well log for the Athabasca reservoir in Figure 3.5 shows the reservoir sand 

of interest between 135 m and 157 m depth.

The sands lie immediately above a sequence of high velocity carbonates and below 

a thin, low velocity gas saturated sand and a thin shale layer. The reservoir consists of 

unconsolidated sands with an average porosity of 32% (Chalaturnyk, 1996) and with a
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Figure 3.5: Typical well log from the Athabasca region.

bitumen saturation So  ~  89%. The permeability of the oil sands averages to k «  4£>, 

and this high value makes a SAGD program possible in sections of the reservoir too deep 

to mine. The viscosity of the heavy oil at reservoir condition is about 18 Pa s (Ward and 

Clark, 1950). Therefore, the oil is basically immobile at reservoir temperature of approxi­

mately 8 °C. The reservoir itself is discontinuous with siltstone and shale layers interbed­

ded within the oil bearing sands (see the significant variations of the 7 -log in Figure 

3.5). There is evidence that viscous bitumen from the Athabasca oil sands has a finite 

shear strength (Hornby and Murphy, 1987). Therefore, at the in-situ reservoir conditions 

Gassmann’s equation cannot be applied to determine the frame properties from zones 

saturated with heavy oil, as it assumes that the pore fluid does not exhibit resistance 

against shear forces. Furthermore, error would be added because the in-situ oil bulk
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m odulus and density are only approximately known. Instead, the quasi-static frame 

properties measured for geotechnical purposes on core samples by Chalaturnyk (1996) 

are employed in the calculations. From the same reference data for the porosity and sat­

urations of oil and water were obtained. Table 3.4 summarizes the relevant data used in 

this w ork for this reservoir.

3.2.2 L loydm inste r reservo ir a t Senlac

The Lloydminster type reservoir, located in central-eastern Saskatchewan, is at approxi­

mately 750 m depth one of the deepest reservoirs in Canada in which a SAGD-program 

has been applied. The representative well log shown in Figure 3.6 was recorded in a 

deviated well. Due to the lack of well deviation data the well could nor be corrected to 

(true) vertical depth. However, such a correction is not critical for the purpose of this 

study, which focuses on the rock properties and their influence on measurable seismic 

attributes. The reservoir lies between an overlying shale of the Cummings formation 

and the underlying high-velocity, Paleozoic carbonates. The shale layer is interrupted 

by a thin coal layer appearing at approximately 820 m log-depth, which is indicated by 

low density values. The overlaying shales of the Cummings formation are distinguished 

from other formations by the 7 -ray log. Shales contain clay minerals with radioactive 

elements (such as potassium, uranium, and thorium, which attach to the clay lattice) and 

cause the typical signature of shales in well logs.

The water- and oil-saturated zones within the reservoir are distinguished in the resis­

tivity log on the basis of high (oil) and low (water) resistivity, respectively. In contrast, all 

the other log curves are relatively uniform within the reservoir; and therefore we assume 

that the reservoir matrix is fairly homogeneous.

Core analysis further indicates that the reservoir consists of a clean and a unconsoli­

dated to weakly consolidated sand with an average porosity of <j> «  32 %. Prior to steam 

injection, the oil and water saturations are So  ~  85 % and Sw  5=3 15 %, respectively. The 

permeability of the reservoir is in the range of k — 5 — 10 D.

Under reservoir condition the oil is basically immobile because of its high viscosity 

(r) w 5 Pa ■ s). Furthermore, the oil is characterized by an API oil gravity of 13°, which 

corresponds to a density of p — 980 k g / m3 (Chakrabarty et al, 1998).
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Figure 3.6: Typical well log from the Lloydminster reservoir.

3.3 Well log database

The reservoirs at Athabasca and Senlac are characterized petrophysically mainly by well 

log analysis. For the Athabasca reservoir only one well log was available in digital for­

mat, which is shown in Figure 3.5. However, comparison of these data with nearby well 

logs indicate that this well is representative of reservoirs in this area

Abundant well logs in digital form are available from the Lloydminster area. Figure 

3.7 shows the layout of the plant, the horizontal SAGD wells (labelled B1 to B3), the two 

seismic lines, and the location of two wells, which have been employed to study the 

reservoir. Another nearby well was also included in the characterization process.
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Figure 3.7: Map of the Senlac plant showing the relative location of the horizontal wells 
(thick solid lines), the two seismic profiles (blue and red lines), and the three wells, whose 
log data have been included in the analysis.

3.3.1 Lloydminster reservoir

Core analysis of well CS SENLAC A13-7-40-25 A core from the Murphy CS Senlac 

SWD A13-7-40-25 well has been analysed by Core Laboratory, Calgary (1993). This report 

summarises the geology and petrological information of the depth interval that contains 

the reservoir. The reservoir consists of fairly clean sandstone or sand with a negligible 

amount of clay. The thickness of the oil-saturated layer is about 8  m in this well. Over- 

lying the reservoir is a sandy shale and thin sandstone layer, about 7 m thick, and a coal 

bed, 1-2 m  thick. These two layers can be used as an indicator of the reservoir depth in 

the well logs as these layers have a distinguished signature in the 7 -ray and density log, 

respectively. From the results of the core analysis values for various parameters for the 

reservoir are obtained by calculating the arithmetic average and the standard deviation 

(see also Figure 3.8 and Table 3.2). The high quartz content of about 95 % is reflected in 

the density of the solid grain material of ps =  2643 k g /m 3, which is very close to the 

accepted value of 2650 kg /m 3 for quartz (e.g. Mavko et al, 1998). With <j> «  33 % the 

core porosity in the reservoir layer is quite high (although it is not known if the porosity
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Figure 3.8: Results of the core analysis from Well A: CS SENLAC A13-7-40-25 (p: density 
of the solid material, kair: permeability, <j>: porosity, 5: saturation, where open diamonds 
represent water and filled diamonds oil saturation).

has been measured under in-situ pressure conditions). Within the reservoir zone the oil 

saturation averages to 86  %, and water fills the remaining pore space.

The rock matrix is dominantly built of quartz grains with only a small amount of clay. 

However, the clay distribution within the rock matrix is not reported. If the clay miner­

als contribute to the rock frame, then the elastic moduli of the frame will be significantly 

affected (e.g. Marion and Nur, 1991 and Han et a l, 1986). If, on the other hand, the clay 

is located within the pore space, then the values for porosity and density of the effective 

medium will be affected by the clay, but not the stiff frame. However, to incorporate the 

effects of clay on the effective properties in the analysis, necessary information, most im­

portantly the location of the clay minerals in the rock matrix, are presently not available. 

We therefore assume the clay content to be negligible.

Three well logs from the Lloydminster region have been analysed (see the detailed 

description in Appendix B). From these well logs average values of the density and 

the sonic velocities were determined, which are included in Table 3.3. The velocities 

and densities measured in the three wells are fairly consistent. This suggests that the
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Table 3.2: Average rock and fluid properties measured for the core from the Lloydminster 
reservoir

Ps 2643 ±  4 kg /m 3

4> 33 ±  2 %
PQuartz 94-97 %
Pciay 2-3 %
Sou 86  ±  4 %
Sh2o 14 ±  3 %

properties of the reservoir layer are uniform at the study site. Although there is only one 

well log available that contains sufficient information to determine the elastic properties 

of the mineral frame according to the theory in section 3.1.2, these values are considered 

to be representative for this reservoir.

3.4 Determination of the elastic parameters

Before simulating the effects of steam injection on the seismic properties and thus access­

ing the magnitude of changes in the seismic attributes, the elastic properties required in 

Gassmann's equation (3.1) m ust be determined. While most of these parameters are eas­

ily measured from cores (e.g., the porosity <fi) or are available in literature (e.g., the quartz 

grain bulk modulus, K s, in e.g., Mavko et a l, 1998), the elastic m oduli of the frame must 

be determined for each reservoir individually.

Table 3.3: Petrophysical properties of the Senlac reservoir
Density [kg/m 3] 

Well A: CS SENLAC A13-7-40-25
P-velocity [m /s] 5-velocity [m/s]

Oil saturated layer 2123 ±  25 2968 ±  31 —

Well B: CS SENLAC SWD B4-18-40-25W3
Oil saturated layer 2130 ±  21 
Water saturated layer 2126 ±  15

2957 ±  27 
2978 ±  25 .

Well C: PCP PCR SENLAC OBS DD 11C7-12-4C6-12-40
Oil saturated layer 2120 ±  22 
Water saturated layer 2144 ±  12

2864 ±  28 
2930 ±  28

1403 ±  19 
1448 ±  14

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4. DETERMINATION OF THE ELASTIC PARAMETERS

3.4.1 Athabasca reservoir

The Athabasca materials are relatively shallow and as such are much more compressible. 

Unfortunately, the lack of Vs-sonic log for the Athabasca reservoir does not allow the 

frame bulk modulus to be determined from well-logs. Also, as mentioned previously 

the bituminous crude from the Athabasca reservoir can possess a finite shear strength, 

therefore, the approach to determine fQ  as outlined in section 3.1.2 can not be applied 

for this reservoir. Instead, the parameters determined by Chalatumyk (1996) from quasi­

static uni-axial bulk compressibility test are employed here (Table 3.4). The relative low 

value of Kd = 0.667 GPa reflects the weak consolidation of this material. It is interesting 

to note that this value is less than the liquid bulk moduli that are on the order of 2 GPa. 

It m ust also be noted that static and dynamic moduli are seldom the same due to the 

differences in strain accommodation (e.g. Wang, 2000a). As such, these static values must 

be taken as lower bound to the seismic (dynamic) values.

Table 3.4: Frame properties of the Athabasca reservoir.
K d [GPa] 0667

________ fid [GPa]__________0308_________________

3.4.2 Lloydminster reservoir

The Lloydminster reservoir sand's frame bulk modulus was determined using the ve­

locities of the lower water saturated sand primarily because the properties of brine with 

respect to salinity, pressure, and temperature are well known (e.g. Batzle and Wang, 1992). 

This information is then incorporated into equation (3.4) to determine the frame bulk 

modulus Kd- In contrast, the estimation of the in-situ frame modulus of the heavy oil 

saturated zone is substantially less certain because of incomplete knowledge of the pore 

scale distribution of the mixed fluids and because the heavy oil properties themselves 

are only poorly known. Furthermore, Gassmann's equation may not apply to the in-situ 

reservoir properties because of the possibility that the viscous heavy oil itself has a finite 

shear modulus.

As mentioned earlier, the sonic and the density log curves do not vary significantly 

within the reservoir sand unit; consequently, it is assumed that the frame bulk modulus
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Table 3.5: Calculated brine properties for the Lloydminster reservoir
K f 2.23 GPa
Pf 997 kg /m 3

K S 36 GPa
0.33 ±  0.02

Peff 2119 ±  14 kg /m 3
Vp 2867 ±  27 m /s
VS 1453 ±  13 m /s
K eff 12.5 ±  0.4 GPa
K d 8.7 ±  0.8 GPa
PdWater 4.5 ±  0.1 GPa
Pdou 4.2 ±  0.2 GPa

is uniform in both the water and the oil saturated region. This assumption is further 

supported by the observation that the shear frame modulus Pd calculated from the S- 

sonic log by equation (3.6) is nearly constant with values of 4.2 ±  0.2 GPa and 4.5 ±0.1 

GPa for the oil and water saturated zones, respectively.

Batzle and Wang (1992) compiled empirical equations for the density and P-velocity 

of water, which are derived on the basis of numerous measurements of the properties 

of water under various temperature, pressure, and salinity conditions. Particularly, their 

equations 27a and b have been used to calculate the density of the water. The P-velocity 

of the pore fluid was obtained by applying their equations 28 and 29. These empirical 

equations are included in Appendix C. The bulk modulus of the pore fluid could then be 

calculated according to

K f — Pf Vpf .

Using these values for the various bulk m oduli in equation 3.4 yields the frame bulk 

modulus for the water saturated reservoir of Kd =  8.7±0.8 GPa (details of the uncertainty 

calculation are included in Appendix D).

It is useful to compare this value to those obtained for similar materials either ex­

perimentally (e.g. Eastwood, 1993) or theoretically (e.g. Murphy et al, 1993). Such com­

parisons show that the Lloydminster reservoir's frame bulk modulus is relatively stiff, 

suggesting that the reservoir rock matrix consists of more consolidated material. This 

contrasts with Eastwood (1993) measurements on a dry, unconsolidated, possibly recon­
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stituted sand from the Cold Lake heavy oil reservoir in Alberta. He derived empirical 

relationships for the frame bulk modulus in terms of the effective pressure and porosity. 

Applying this model using the Lloydminster reservoir conditions gives Kd = 6.9 GPa. 

Murphy et al. (1993)) compiled several measurements of the frame properties of consol­

idated and unconsolidated sands and also constructed an empirical dependence of the 

frame bulk modulus on the porosity; their formula yields Kd = 4.9 GPa for the Lloydmin­

ster reservoir porosity. Obviously, there is a wide scattering of the frame bulk modulus 

for the different assumptions with the value determined from well log data exceeding 

the other models substantially. Figure 3.9(a) shows an environmental scanning electron 

microscope (ESEM) image of a cleaned sample from the Lloydminster reservoir sands, 

which has been imaged under room temperature and pressure conditions, whereas Fig­

ure 3.10 shows an ESEM image of a sample containing residual oil.

The sand grains are highly rounded and almost no cementation or grain overgrowth 

is apparent, indicating that the reservoir consists of unconsolidated sands. ESEM images 

from other samples occasionally show the patches of quartz minerals that are connected 

to each other by clay minerals (Figure 3.9(b)). These patches, however, are localized and 

do not build a continuous network through the rock sample2. Under in-situ pressure 

conditions, which are approximately Pe/ /  =  15 MPa at Senlac, the sand grains are most 

likely more pressed to each other and therefore more rigid against compression. This 

may explain the relative high values for the elastic frame moduli.

Of course, these values, based on information determined from well logs by param­

eter fitting, is affected by any erroneous sonic log data. However, these values are con­

sistent with the well logs, and therefore the frame moduli probably accurately reflect the 

reservoir conditions of the Lloydminster reservoir.

3.5 Simulating the SAGD-process

Now that reasonable elastic parameters are established, the SAGD process can be sim­

ulated by substituting the original oil in the pore space by a mixture of oil, steam, and 

water at elevated temperatures and subjected to expected pore pressures. Initially, the

2 Dean Rokosh, personal communication
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(b)

Figure 3.9: Top: ESEM image of a cleaned reservoir sand sample from the Lloydminster 
reservoir. The image shows a loose assemble of sand grains that are barely connected by 
cementation or overgrowth. Bottom: ESEM image of a cemented patch within the same 
sample.
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Figure 3.10: ESEM image of a oil saturated reservoir sand sample from the Lloydminster 
reservoir shown for comparison. Some oil patches are indicated by white arrows in the 
image.

pore pressure is assumed to remain unchanged by steam injection, which is consistent 

with standard models of SAGD processes (e.g. Butler, 1994). The potential effects of pore 

pressure variations on the seismic properties will be discussed in section 3.5.4.

3.5.1 Model for fluid substitution

Many studies have solely focussed on the decrease in velocity due to heating of oil sat­

urated reservoirs. However, for the SAGD steam injection case considered here the sit­

uation is substantially more complicated. After steam injection, the 'effective' pore fluid 

will surely be an immiscible mixture of residual hydrocarbons and water in both liquid 

and gas phases, which are distributed in a complex fashion within the pore space of the 

rock. Other gases, most notably methane, may be present as well, as they exsolve if the 

pore pressure reaches the bubble point.

The effective acoustic velocity for a two-phase single component mixture such as wa­

ter and steam involves complicated physical processes. In a theoretical analysis, Kieffer 

(1977) showed that the sound speed for water-steam (i.e. liquid-gas) mixture is signifi­
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cantly lower than that of either phase alone (see also Domenico, 1977). Furthermore, for 

such a single-component, two-phase system the velocity depends on whether or not the 

compression by a passing seismic wave allows for thermodynamic equilibrium between 

the tw o phases. For very low frequencies of the seismic wave there can be sufficient 

time to  establish thermal equilibrium between the two phases. In this case, the result­

ing isothermal velocity can be as low as 1 m /s  (Kieffer, 1977). However, a criterion for 

the upper limit of the frequency for this process to occur is apparently not yet known. As 

the frequencies used in seismic exploration are relatively high, it will be assumed that the 

effective moduli of the porous medium are adiabatic. A similar discrepancy between adi­

abatic and isothermal compression also exists for the solid, but the velocity 'dispersion' 

is, however, much less for this case.

Ideally, injection creates a steam chamber filled with high quality steam (i.e. the in­

jected water-steam fluid consists of more than 80 % of gas phase steam) at elevated tem­

perature, but at nearly the original in-situ pore pressure. In reality, however, a residual 

amount of oil will remain in the depleted reservoir. The injection temperature of the 

steam is typically chosen such that it matches the temperature of the steam saturation 

condition for the in-situ pore pressure. Thermodynamically, the saturation conditions de­

fine the pressure and temperature at which liquid phase and steam phase water co-exists 

(see the phase diagram in Figure 3.11). Therefore, in an ideal SAGD process considered 

here, the in-situ pore pressure in the reservoir solely determines the temperature of the 

injected steam in the model.

For the Lloydminster reservoir the following reservoir model for the fluid substitu­

tion is assumed (Figure 3.12):

• Prior to steam injection, the oil saturation in the reservoir is So = 85%, the water 

saturation is Sw  = 15%, the pore pressure is Ppore =  5 MPa, and the temperature is 

T  =  28°C.

• In the steam chamber the temperature has been raised to T  — 265°C at the same 

pore pressure of 5 MPa. The oil saturation has decreased to 20% while steam and 

liquid water occupy 65% and 15% of the pore space, respectively. A solid diamond 

in the phase diagram (Figure 3.11) indicates the assumed pressure and temperature
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a) Bulk m odulus (GPa) b) Density (kg/m3)
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Figure 3.11: T-P-phase diagram for the bulk modulus and density of water and steam as 
a function of temperature and pressure. The thick line represents the steam saturation 
curve, which separates the liquid phase (above) from the steam (below). The diamonds 
represent the anticipated P-T conditions in the Lloydminster (black) and Athabasca reser­
voir (white), respectively. (Fluid properties taken from Lemmon et al., 2003)

conditions within the steam chamber.

For the Athabasca reservoir the following temperature and saturation values are as­

sumed:

• The initial oil saturation is 81% and the remaining 19% of the pore space are filled 

with water. The in-situ temperature and pore pressure of the reservoir are T  = 8 °C 

and Ppore — 0.5 MPa (Chalaturnyk, 1996).

• After steam injection, a mixture of 19% water, 20% oil, and 61% steam fills the pore 

space in the steam chamber. The temperature within the steam chamber is 160°C, 

whereas the pore pressure remains at 0.5 MPa. The temperature and pressure con­

dition in the steam chamber for this reservoir are marked by an open diamond in 

Figure 3.11.

The calculation of the effective properties of the fluid mixture in equations 3.7 and 3.8 

requires the knowledge of these properties for the three fluid components at elevated 

pressures and temperatures. In this study, the data by Lemmon et al. (2003) are employed 

for the density and bulk modulus of steam and liquid water (Table 3.6).
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T=275°C, P=5000kPa

S 0ii =20%, Sh2o = 15%, 

S e a s  = 55%  /

T=28°C, P=5 MPa
Son =85%, Su20 =15%

Figure 3.12: Schematic sketch of the steam chamber model for the Llyodminster reservoir.

_________ Table 3.6: Saturation properties of steam and water_________
Temperature [°C] /  Pore Pressure [MPa]

120 /  0.2 179 /  I 212 /  2 234 /  3 250 /  4 263 / 5  
pst [kg/m 3] L12 515 1004 15.00 20.10 25.35
pw  [kg/m 3] 942.0 887.0 849.0 821.0 798.0 777.0
K st [GPa] 0.0003 0.0013 0.0026 0.0038 0.0051 0.0063
K w  [GPa] 2.17 1.72 1.42 1.21 1.05 0.92

Unfortunately, there are no data yet available for the properties of the oil from the 

Lloydminster reservoir. However, Eastwood (1993) measured the density and bulk mod­

ulus of oil from a nearby Cold Lake reservoir, which are employed in the present analysis 

under the assumption that these properties are also applicable to the Lloydminster reser­

voir. Eastwood (1993) measured the oil's density and bulk modulus only in the tempera­

ture range between 22°C and 127°C. His measurements of the density and bulk modulus 

at different temperatures can be approximated by the following linear relationships

p0(T) = 1000.7- 0.6111 T  [kg/m 3], (3.9a)

K 0(T) =  2.0 -  0.0066 (T -  20.8°C') [GPa], (3.9b)

where the temperature is measured in °C.

Eastwood (1993) further reports that the properties of the oil sample does not change
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significantly with pressure, an observation also supported by Batzle and Wang (1992). 

Given the small expected variations of the pore pressure during a SAGD-program, changes 

of the oil's properties with pressure may be neglected.

Steam at the Lloydminster reservoir is injected at a temperature of T«265°C, this is 

above the temperature range covered by Eastwood (1993). The linear relationships (equa­

tions 3.9a and 3.9b) must therefore extrapolated. According to Batzle and Wang (1992), 

such an extrapolation is possible as long as one does not come close to the temperature 

of a phase transition.

As no measurements of the temperature dependent properties of the Athabasca oil 

are available, empirical equations compiled by Batzle and Wang (1992, equations 18,19, 

and 20b, see Appendix C) serve in the analysis.

3.5.2 Application to the Athabasca reservoir

As mentioned earlier the temperature at which the steam is injected is typically chosen 

such that it meets the steam saturation conditions of the reservoir pore pressure. For 

the Athabasca reservoir, Chalaturnyk (1996) reports a pore pressure value of Ppore — 0.5 

MPa; from Table 3.6 the corresponding temperature then is found by interpolation to 

be Tst «  160°C. The resulting properties for the steam, water, and oil, respectively, were 

then found in steam tables (e.g. Lemmon et al, 2003) or determined by empirical equations.

Substituting these values into equations 3.7 gives the effective fluid properties for 

the Gassmann model. In the following step the equations 3.3 and 3.1 then allow for the 

calculation of bulk density and the bulk modulus of the effective medium, from which 

the seismic velocities are calculated.

To obtain the effective velocities after fluid substitution according to the patchy sat­

uration model the properties of the different fluid components along with those of the 

solid material are used in equations 3.3 and 3.8. The results of these calculations are 

summarized in Table 3.7. Theoretically, the 5-velocity could have been calculated for the 

reservoir after fluid replacement. However, as there are no 5-sonic data included in the 

well log nor can such data be calculated due to the possibly finite shear strength of the 

bitumen, such a number would not provide any insight, and therefore, this value is not 

included in Table 3.7.
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Table 3.7: Seismic properties before /  after fluid substitution for the Athabasca reservoir. 
_____________________________ Before After________Change__________

K d [GPa] 0 .667 —
Hd [GPa] 0.443 —
K f  [GPa] 2.77 0.0015 -99.95%
Pf [kg/m 3] 1008.0 315.0 -68.75%
K e f f  [GPa] 7.86 0.672 -91.45%
Peff [kg/m 3] 2122 .0 1898.0 -10.56%
Vpc« . tm /s] 1974.0 755.0 -61.75%
Vppatchy [m/s] 1974.0 877.0 -55.57%
I/s [m/s] — —
A l  [kg/m 2/s] 4.2 x 106 1.4 x 106 -66.67%

3.5.3 Results for the Lloydminster reservoir

Similar calculations give the results for the Lloydminster reservoir after fluid substitu­

tion, which are summarized in Table 3.8.

In both cases, the effective fluid bulk modulus of the steam-water-oil mixture is sub­

stantially lower than that of the original oil-water saturation and can be neglected when 

compared with all other elastic bulk moduli. As a consequence of such a low fluid 

bulk moduli, the effective bulk modulus of the effective medium approaches that of 

the undrained frame. Furthermore, upon substitution, the bulk density of the effective 

medium decreases by 11 .8 % while the P - wave velocity decreases by only 3.4% for the

Table 3.8: Seismic properties before /  after fluid substitution for the Lloydminster reser­
voir.

Before After Change
K d  [GPa] 8.7±0.8 —
fid [GPa] 4.2±0.2 —
K f  [GPa] 2.38 0.0096 -99.60%
Pf [kg/m 3] 998 301 -69.84%
K e f f  [GPa] 11.8+0.5 8.7±0.7 -26.27%
Peff [kg/m 3] 2120±14 1870±12 -11.79%
V p 0 „ „  [m/s] 2864+27 2767+27 -3.38%
v PpatoHV [m/s] 2864±27 2792±25 -2.51%
Vs  [m/s] 1403+13 1498±14 +6.77%
A l p  [kg/m 2/s] 6.07 x 10° 5.17 x 10d -17.34%
A I s  [kg/m 2/s] 2.97 x 106 2.80 x 106 -5.82%
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Lloydminster reservoir. In contrast, the decrease of 62% of the P - wave velocity in the 

Athabasca reservoir are notably larger, whereas the effective density decreases by ap­

proximately 10%, a value similar to the one calculated for the Lloydminster reservoir. The 

patchy saturation model generally provides higher velocities. The 2.5% velocity decrease 

assuming patchy saturation for the Lloydminster reservoir does not differ significantly 

from the homogeneous distribution model. On the other hand, a much larger difference 

between the two saturation states is seen for the Athabasca reservoir, for which the ve­

locity decrease assuming patchy saturation is 55.6%. The overall change due to fluid 

substitution in the Athabasca reservoir is large regardless of the model employed.

3.5.4 Modelling pressure effects

So far, only the effects of temperature and fluid substitution on the seismic parameters 

have been considered. However, pore pressure and effective confining stress effects are 

also important in all rocks but particularly in unconsolidated materials. Although en­

gineers attempt to maintain the in-situ reservoir pore pressures during the SAGD pro­

cesses, this is not always possible and consequently the effective stress on the reservoir 

will change.

Generally, seismic velocities increase with effective confining pressure P e f f ,  which is 

defined as the difference between confining (or total) P c  and pore pressures P p o r e '

P * f f  —  P c  — P p o r e • (3.10)

The pressure effect is due to diminished porosity, closing of long aspect ratio crack-like 

porosity, and stiffening of grain contacts. Within the framework of Gassmann's theory 

this can be accounted for by assuming a dependence of the frame bulk modulus on the 

effective pressure. An intrinsic shortcoming of the method outlined in section 3.1.2 to 

estimate the frame bulk modulus Kd is that it yields a value valid only for the effective 

stress existing at the time the logs were recorded; as such the pore pressure effects for 

the reservoirs cannot be directly determined. However, such effects can be significant in 

weakly consolidated sands.

In order to estimate the influence of Pef f  on the seismic velocity, the available liter­

ature data has been sampled. Figure 3.13a contains a compilation of several Vp(Pe/ / )

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5. SIM ULATING THE SAGD-PROCESS

relationships.

The curve after Eberhart-Phillips et al. (1989) represents an average dependence of the 

seismic velocity on effective pressure for a wide range of water saturated sandstones for 

porosities <j> = 32%. The values used in this analysis were measurements on a large suite 

of sandstones and as such may be taken to represent the upper bound of that anticipated 

for weakly consolidated oil sands.

The second data set is derived from the measurements of Eastwood (1993) who mea­

sured the P -wave velocity of a saturated Cold Lake oil sand for various effective pres­

sures. These measurements were taken at effective pressures significantly lower than 

those assumed for the deeper Lloydminster reservoir.

The measurements of Domenico (1977) on water-saturated glass beads and uncon­

solidated Ottawa sands provide further experimental values for clean and uncemented 

granular media. Also included in this figure is a theoretical curve representing a recent 

modification to the Hertz-Mindlin contact theory for a dry sand by Makse et al. (1999). 

This theoretical curve provides a lower bound for the experimentally determined acous­

tic velocities where there is no cementation between the quartz grains.

The curves of Figure 3.13a show a substantial variation in velocity that depends on 

the model used. However, what is more important for the present purpose is that all of 

the models give similar variations in the velocity dependence with Pef f  (Figure 3.13b). 

The velocity gradients of the experimental data are consistent with the Hertz-Mindlin 

model. The scatter can possibly be attributed to experimental errors and to difficulties in 

picking the data from the curves in Domenico (1977) and Eastwood (1993). The curves from 

of the Eberhardt-Phillips and the Hertz-Mindlin models can be considered as providing 

the lower and upper bounds, respectively, for the velocity gradients.

In the Lloydminster reservoir, a typical pore pressure decline due to production can 

be of the order of 2 MPa. From the integration of the density log we estimated the litho- 

static pressure to be 18 MPa; implying that the effective pressure increases from the orig­

inal 13 MPa to 15 MPa during steam injection. At this pressure range the compressional 

wave speed will only increase by 10 to 20 m /s  per every 1 MPa increase in effective 

pressure (Figure 3.13b). Consequently, a 2 MPa pore pressure decrease corresponds to a 

velocity increase in the range of 20 m /s  to 40 m /s  for the Lloydminster reservoir. This
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Figure 3.13: a) Variation of the P-velocity with effective pressure, b) Velocity-Pressure 
gradients against effective pressure. The gray-shaded area indicates the pressure range 
for the Lloydminster reservoir, the dotted line shows the assumed effective pressure for 
the Athabasca reservoir.
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negates a substantial fraction of the ~100 m /s  decrease in velocity due to fluid substitu­

tion effects.

In the same way, the lithostatic pressure for the Athabasca reservoir is estimated to 

be approximately 3 MPa with an effective pressure near 2.5 MPa. For such low effective 

pressure the change in velocity with effective pressure is much more pronounced with 

velocity gradients of the order of 50 to 60 m/(s-MPa). However, the substantial reduc­

tion of the P-velocity due to fluid replacement more than compensates for any expected 

effects caused by increases in the effective pressure and should not jeopardize the feasibil­

ity of seismic monitoring in the shallow Athabasca reservoir. A possibly increased pore 

pressure, however, causes the P -wave velocity to decrease even further making seismic 

monitoring highly feasible for such cases.

3.5.5 Synthetic seismic analysis

The changes of the velocities and densities upon fluid substitution in the reservoir zone 

must influence the propagation of the seismic wavefield. The change in the normal inci­

dence reflectivity at the top of the reservoir, A72, and the change in travel time to the bot­

tom of the reservoir, At, before and after fluid replacement are two direct and physically 

meaningful seismic attributes that can provide information about the change in satura­

tion within the reservoir. To examine the feasibility of seismic monitoring, the changes 

anticipated in the zero-offset seismic reflection response are examined in this section. The 

seismic response is predicted using standard 1-D convolution synthetic seismograms; the 

reflectivity time series for the original and the substitutional logs of velocity and density 

are calculated and then convolved with Ricker wavelets of different center frequencies.

Before applying fluid substitution the reservoir is carefully selected using the avail­

able suite of well logs. In a second step the density and P-velocity data are reduced 

according to the values given in Tables 3.7 and 3.8.

Generally, sonic well log measurements are averaged over a certain depth range, 

which is due to the distance between the source and the receiver on the tool. To mimic 

this effect in the well log modification the depth interval to be modified is smoothed at 

the upper and lower edge. Within the central part of the modification operator the well 

data are changed, for example, the density is reduced by 11.8% for the Lloydminster
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Figure 3.14: The smooth modification of the well log data to simulate the fluid substi­
tution in a SAGD process. The arrows in the panels (c) and (e) are pointing to the new 
reflectivity peaks after fluid substitution.

reservoir according to Table 3.8. However, towards the edges of the reservoir the mod­

ification value becomes gradually less. This procedure and its effects are illustrated for 

the reflectivity data shown in Figure 3.14(a), which have been calculated for the Lloy­

dminster reservoir. After fluid substitution the density and velocity data are decreased 

using the correction factor shown in Figure 3.14(b) with the resulting reflectivity data 

after modification in Figure 3.14(c). The new peaks in the reflectivity are unrealistically 

sharp, when compared to others in the data (for example the peaks at approximately 820 

m depth, which are caused by the thin coal layer). If instead the edges of the correc­

tion factor are smoothed (Figure 3.14(e)) the resulting modified curve for the reflectivity 

shows more realistic peaks at the top and bottom of the reservoir. However, a clear rule 

for the choice of the width of the taper is not present, instead, an optimum parameter 

must be found experimentally by trial and error. If the taper is too wide the logs are not 

sufficiently modified at the edges. A very small width of the taper, on the other hand, 

will cause sharp peaks in the reflectivity time series, which are not likely to occur in well

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5. SIMULATING THE SAGD-PROCESS

log measurements for the reason mentioned above. A good value for the length of the 

window was found to be 10 samples of the log data.

After the well log data have been modified the reference base is changed from depth 

z to time t by the simple transformation

t(i + 1) =  t(i) + 2^~ -  for i = 1 , . . . ,  N  -  1, 
v(i)

where N  is the number of samples in the well log. Generally, it is not possible to deter­

mine the absolute time because the data recording in a log does not start at the surface. 

Therefore, this time base can not be compared directly to for example field seismic data. 

However, the absolute time is not important for the purposes of this study. More impor­

tantly is the relative time between events in the well log, which the depth-time conversion 

3.11 accurately determines.

The next step is to calculate the reflectivity time series from the original and modified 

log data of the density and the P-sonic log according to

^  Pi+i VPi+1 -  pi VPi
TZi+i = ------   ̂   —  for i  =  1 , . . . ,  N  — 1.

Pi+ 1 Vpi+l +  Pi Vpi

The synthetic seismogram S  can now be calculated by convolving the reflectivity time 

series 72 with a Ricker wavelet W p, which is usually characterized by its peak or center 

frequency f c:

s = n*wn.
Synthetic traces have been calculated for center frequencies of 25 Hz, 50 Hz, 75 Hz, and 

100 Hz to analyze the resolution required to detect the changes in the reservoir after steam 

injection. These traces are shown in Figure 3.16 along with the original and modified 

time series of the density (panel a), P-velocity (b), and reflectivity (c) for the Athabasca 

reservoir and in Figure 3.15 for the Lloydminster reservoir. In the panels d) the trace 

using a 25 Hz wavelet are shown, panels e) show the 50 Hz trace, panels f) the 75 Hz 

trace, and panels g) show the 100 Hz trace.
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Figure 3.15: The original and modified well logs for the Senlac reservoir, a) density log, b) P-sonic log, c) P-reflectivity, d)-g) 
synthetic traces for different center frequencies of the Ricker wavelet. The blue curves represent the original well log data, 
in red are the data of the modified well log using the Gassmann model, and in green are the modified curves assuming a 
patchy saturation model. Indicated in the figures are the coal layer, the top of the reservoir (Top), and the oil-water contact 
(O W C ).
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Figure 3.16: The original and modified well logs for the Athabasca reservoir, a) density log, b) P-sonic log, c) P-reflectivity, 
d)-g) synthetic traces for different center frequencies of the Ricker wavelet. The blue curves represent the original well log 
data, in red are the data of the modified well log using the Gassmann model, and in green are the modified curves assuming 
a patchy saturation model.
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3.5. SIMULATING THE SAGD-PROCESS

3.5.6 A ttrib u te  analysis

The well log time series for the Athabasca reservoir in Figure 3.16 a)-c) show a consid­

erable change both in magnitude of the density and P-velocity and also in time-value of 

the bottom of the reservoir when compared to the original data (blue curves in Figures 

3.15 and 3.16). The Gassmann model (red curves) results in lower velocities; therefore, 

the time to depth conversion (equation 3.11) gives higher values for the time than the 

patchy saturation model (green curves in both figures). However, both models predict 

changes in the reservoir that create significant differences in the traces calculated for the 

modified well logs to the original trace. For all frequencies the change in travel time to 

the bottom of the reservoir, and the changes in reflected amplitude at the top and bottom 

of the reservoir are easily detected.

A different situation is present for the Lloydminster reservoir in Figure 3.15. The P- 

velocity decreases only marginally after fluid substitution, which consequently reflects 

only in a small change of the travel-time to the bottom of the reservoir (see Figure 3.15 

a)-c)). Although the density log shows considerable changes at the top of the reservoir 

and at the oil-water contact the reflectivity time series in panel c) changes little. Due to 

these subtle changes of the reflectivity the changes in the seismic traces, especially for 

low frequencies, are also small. A change in the travel-time to the bottom of the reservoir 

is hardly detectable at any frequency. The change at the oil-water contact, however, is a 

clear event for the higher frequencies, but with a very small amplitude. Also, only the 

high frequencies are able to detect the subtle changes at the top of the reservoir. As before, 

these amplitude changes are small. As real seismic data are always contaminated with 

noise it is likely that such small changes are not recognized in real seismic data sets. An 

additional complication arises from the presence of the strong reflection of the coal layer 

just above the reservoir. Particularly for the low frequencies this reflection dominates the 

events in the time window of the top of the reservoir (e.g. f c=25 Hz). The resolution 

potential of such low-frequency waves is then insufficient to differentiate between the 

fine structures of the reflectivity series just below the coal layer.

The changes of the two attributes being analysed for both reservoirs after fluid substi­

tution are summarized in Table 3.9 along with the calculated changes of the density and
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Table 3.9: Changes of seismic attributes.
Athabasca Lloydminster

Before After Before After
Vp [m/s] 2418 755 2864 2767

AVp [m/s] 1219 93
P [kg/m 3] 2122 1898 2120 1870

Ap [kg/m 3] 250 224
t [ms] 138 167 938 939

At [ms] 29 1
K [-\ -0.087 - 0.553 - 0.116 - 0.194

A 71 [-] 0.466 0.078

the P-velocity, respectively. These data underline the observations made in the seismic 

traces. For the calculations of the travel times and reflection coefficients and the changes 

thereof, the velocities of the Gassmann model have been employed; therefore, these val­

ues represent an upper limit of the possible range for these attributes.

For the Lloydminster reservoir the effects on the reflectivity are small, as might be 

anticipated from the small changes in the impedance. Only small variations in the traces 

before and after fluid substitution are seen. For example, the change in travel time of 

the reflection from the bottom of the reservoir is approximately 1 ms; a value less than 

typical sampling intervals and the amplitude of the reflection increases by only ~4%. 

Such a small change would be difficult to convincingly detect, given the relatively high 

noise levels near such sites. Also, changes in the reflected amplitude from the top of the 

reservoir are difficult to reveal. Lastly, note that there is no substantial difference between 

the synthetic traces obtained with the Gassmann or the patchy saturation models. These 

weak variations will in part explain the lack of an anomaly in the time-lapse seismic data 

described by Zhang and Schmitt (2003). However, it does not appear to shed light on the 

seismic observations of Li et al. (2001) who apparently found a substantial anomaly in an 

adjacent reservoir.

As mentioned earlier, a deviated well-log was taken as representative of the Lloyd­

minster reservoir. In a deviated well-log, the apparent thickness of the reservoir is larger 

than the actual. This implies that the actual change in travel time is even less than previ­

ously calculated.

On the other hand, the synthetic seismic traces for the Athabasca reservoir show sig-
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nificant changes. For the Gassmann model the two-way travel time to the bottom of the 

reservoir increases by 27 ms. A strong reflection from the top of the reservoir appears in 

the synthetic data after the fluid has been replaced. Although the increase in the travel 

time is less for the patchy saturation model due to its higher predicted velocity, a signifi­

cant increase of this attribute with respect to the initial situation is still present (AT «  20 

ms). These substantial changes in the seismic signal suggest that seismic monitoring of 

SAGD at the Athabasca reservoir should be feasible. This result is in agreement with 

the strong signals observed by Schmitt (1999). In contrast, the small differences between 

the seismic traces for the Lloydminster reservoir as estimated by a standard Gassmann 

model suggest that seismic monitoring will be a challenging task, as mentioned earlier.

3.6 Discussion

The results from this analysis suggest that the feasibility of seismic monitoring does not 

only depend on the temperature induced change in the P-velocity of the oil but also on 

the frame properties of the rock matrix; a fact already noted by Gardner et al. (1965) on 

the basis of their measurements. The change in the seismic attributes for the deep and 

stiff Lloydminster reservoir is only marginal, while the steam injection in the shallow and 

compressible Athabasca reservoir results in significant changes. The reason for this is the 

much stiffer reservoir rock at Lloydminster. From Gassmann's equation it is clear that 

the influence of the fluid modulus for the Athabasca reservoir on the effective bulk mod­

ulus of the composite material is much stronger than for reservoirs with a relatively high 

frame bulk modulus. This effect is easily seen when considering the 'P-wave' modulus 

M
, /  -1/2 _ ts , (1 ~ -ffd/Ks)2

+  (1 -  <j>)/Ks -  K d/K ?  + <!>/Kf  • {3A )
Mfra.me Mpore

The P-wave modulus can be decomposed into one part containing only the elastic frame 

moduli, M frame and a second part subsequently referred to as the pore space modulus, 

Mpore (e.g. Murphy, 1984). It is only the pore space modulus that is affected by the fluid 

replacement, while the frame's contribution remains the same. To further illustrate this 

point, Table 3.10 provides the contribution of the two parts of the P-wave modulus for
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Table 3.10: The P -wave modulus and its contribution from the frame and pore space (the 
numbers in the parenthesis indicate the relative contribution to the total P-modulus).

Lloydminster Athabasca_____  __  ___
M frame [GPa] 14.3 (83%) 1.07 (13%)
Mpore [GPa] 2.9 (17%)_________ 7.2 (87%)______________

both reservoirs. For the Lloydminster reservoir the contribution of the frame dominates, 

and only 17% of the P -wave modulus is affected by the fluid replacement. Therefore, the 

changes of the pore fluid have only a small effect on the seismic velocities. In contrast, 

these numbers show the dramatic effect that fluid replacement can have on the P-wave 

modulus of the Athabasca reservoir. Here, about 87% of the total value for M result from 

the pore space contribution. Therefore, changes in the properties have a stronger effect 

on the seismic velocities for the Athabasca reservoir than for the Lloydminster reservoir.

The observation that seismic monitoring of a SAGD process is feasible for weakly con­

solidated reservoirs like the Athabasca reservoir but difficult in stiff reservoirs (such as 

the Lloydminster reservoir) also reflects the work by Lumley et al. (1997) and Lumley and 

Behrens (1998), who state that for a 'successful seismic reservoir monitoring project the 

reservoir rock m ust be highly compressible and porous'. Additionally, a large compress­

ibility contrast between the initial pore fluid and the substitute fluid is another important 

parameter. Both reservoirs being analysed consist of very porous sands and the change in 

the bulk modulus of the pore fluid after fluid substitution is significant (the bulk modulus 

of the effective fluid reduces to approximately 0.1 % of its original value after fluid substi­

tution). Therefore, two of the above criteria are certainly met. Although both reservoirs 

are described as unconsolidated or at least only weakly consolidated sands (Chalaturnyk, 

1996; Li et al., 2001), the difference in their compressibility is the only possible explanation 

for the different seismic response.

To further investigate the significance of the frame bulk modulus and the effective 

fluid properties on the feasibility of seismic monitoring, the two seismic attributes A1Z 

and A t have been calculated for a wide variety of values of Kj, and pore fluid compo­

sition for a hypothetical reservoir similar to the two reservoirs analysed above. This 

hypothetical reservoir is 15 m thick, its porosity is <f> — 32%, and it is bounded by a shale
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layer at the top. Its frame bulk modulus varies within 0.5 < Kd < 10.0 GPa, and the 

bulk modulus of the solid material is constant at K s =  36 GPa. The pore fluid also varies 

in its composition. The water saturation remains constant at Sw  — 15%, but the steam 

saturation increases from Sst — 0% to 85%, where as the oil saturation reduces from ini­

tially So = 85% to 0%. Hence, the situation with Sst = 0% represents the case before the 

SAGD process takes place. For each value of Kd and pore fluid composition the seismic 

P-velocity has been calculated by equations (3.7,3.3,3.1) assuming the Gassmann model. 

The results of these calculations are provided in Figure 3.17.

Two different conditions for the pressure and temperature conditions were consid­

ered: for the first case the temperature of the fluids was T  =  120°C with the correspond­

ing pore pressure of Ppore = 0.2 MPa (Figure 3.17a). Secondly, the temperature and pres­

sure conditions were T  =  263°C and Ppore =  5 MPa, respectively (Figure 3.17b). The first 

row shows the change of the P-velocity relative to the velocity for zero steam saturation 

(i.e., the reservoir prior steam injection).

For both reservoirs the velocity first decreases significantly for low values of the steam 

saturation. However, with increasing steam saturation the velocity increases again, this 

is especially pronounced for the stiffer rocks (e.g., higher values of Kd). This velocity 

increase is due to the fact that even a small fraction of gaseous and compressible steam 

drastically reduces the bulk modulus of the pore fluid; and the effective bulk modulus 

basically reduces to the frame bulk modulus (see Tables 3.7 and 3.8). However, the effec­

tive bulk density decreases linearly with increasing steam saturation, and therefore the 

velocity increases with the steam saturation. For the situation in Figure 3.17b) the veloc­

ity even exceeds its initial value for very stiff reservoir rocks. Also note that the velocity 

decreases more for the low temperature case (left column). The explanation for the latter 

difference can be explained by examining the properties of the steam in Table 3.6. The 

bulk modulus of the steam as well as the density increases w ith temperature. However, 

the increase in the bulk modulus is more significant and the resulting velocities of the 

effective medium are generally higher.

The graphs in the second row show the change of the reflection coefficient 1Z at the 

top of the reservoir. For these calculations it is assumed that a shale layer overlies the 

reservoir (acoustic imdedance AXahaie = 7.7 x 106 kg /m 2/s). As for the velocity the
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Figure 3.17: Variation of two seismic attributes with frame bulk modulus and steam sat­
uration for two different temperature and pressure conditions: a ) T  — 12Q°C, Ppore = 0.2 
MPa, b ) T  = 263°C, Ppore =  5 MPa.
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reflection coefficient decreases substantially for a small volume of steam, but then de­

creases only slightly more with increasing steam saturation. As before the changes for 

the low temperature case are higher than for the high temperature case.

Finally, the two panels at the bottom of Figure 3.17 display the change in Two-way- 

travel time (TWT) to the bottom of the reservoir, whose thickness was assumed to be 

15 m. (Note that the K d-  and S s t-axes are reversed to the axes in previous plots.) The 

increase in travel time is significantly larger for lower frame bulk moduli and lower tem­

peratures.

Analysing the feasibility of seismic monitoring based on the data for the change of 

the reflection coefficient and the change in two-way travel time in Figure 3.17 the dif­

ference between the seismic response of the Athabasca and the Lloydminster reservoirs 

can now be explained by two effects. First, seismic monitoring is more likely to be fea­

sible in highly compressible reservoirs. Additionally, the lower steam temperature for 

the Athabasca reservoir also facilitate the creation of significant changes of the seismic 

attributes being analysed. On the other hand, because high temperature steam is injected 

into the stiffer Lloydminster reservoir two effects merge that inhibit the development 

of detectable seismic anomalies in the reservoir, and hence, seismic monitoring for this 

reservoir is more difficult.
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Chapter 4

Spectral finite element simulation of 
time-lapse seismic surveys for SAGD 
programs

The feasibility of time-lapse seismic monitoring for SAGD processes in heavy oil reser­

voirs has been tested through a rock physics study in the previous chapter 3 by the anal­

ysis of two seismic attributes that were determined from a simple synthetic zero-offset 

convolutional seismic modelling. In doing so it was assumed that the steam chamber 

extents infinitely in the horizontal direction.

The intention of this chapter is to extend these tests to more realistic 2-D simulations 

of the full seismic wave field using the spectral finite element technique discussed in 

chapter 2. Due to the lack of efficient absorbing boundary conditions only differential 

data sets will be considered, that is, the differences between two results simulated for 

different conditions in the reservoir. Then, aside from some small perturbations, contam­

inating reflections from the artificial boundaries will be removed from the synthetic data. 

In some sense, this procedure does not differ that from a field experiment in which one 

seeks only small changes.

The time-lapse process is investigated in two ways. First, the physical properties 

in a small region within the model representing a steam chamber of a SAGD-program 

are altered. With these simulations, the sensitivity of the seismic response to variations 

within the reservoir is analysed. Secondly, the size of the steam chamber is varied for 

different computations thus simulating the growth of the anomaly within the reservoir.
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Figure 4.1: 1st finite element mesh of the SAGD model for the seismic modelling.

Such simulations are useful to determine how frequently the seismic surveys should be 

repeated in order to observe changes in the reservoir.

4.1 Model description

The exact shape of a steam chamber created during a SAGD-program within a reservoir 

is generally unknown and can be expected to be complicated. As there are currently no 

results from reservoir simulations or field observations publicly available, only geomet­

rically simple and idealistic models are employed with respect to pressure and oil, water, 

and steam saturation distribution.

The simple model employed here is based on the assumption that the hot, low density 

steam rises to the top of the reservoir layer and then spreads out laterally. An approx­

imation of such an early steam chamber would be a model of triangular cross section 

centered on the SAGD well-pair. With time the steam chamber extends horizontally only
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to the sides such that the cross section becomes trapezoidal. Typically, several horizontal 

well pairs are installed to exploit a reservoir, which are about 50 to 70 metres apart (see 

Figures 3.1 (page 101) and 3.7 (page 114)). It can therefore be assumed that the steam 

chamber of a single well pair can be at the most 70 meters wide before it merges with the 

neighbouring steam chamber. The simulation domain and finite element mesh shown in 

Figure 4.1 is based on this idea. It consists of four horizontal layers with a zone included 

in the third layer that represents the steam chamber in some of the simulations. At the 

top the anomaly is approximately 80 meters; this width decreases to approximately 50 

metres at the bottom.

4.1.1 Evolution of the finite element model

The mesh of the model in section 2.4.4 includes significantly distorted elements that 

caused numerical problems like mesh dispersion, mesh anisotropy, and numerical in­

stability. Based on these experiences, the finite element model consists of elements with 

as little distortion as possible. The model consists of four layers with a zone enclosed in 

the third layer that represents a SAGD steam chamber in some simulations (zone IV in 

Figure 4.1). In order to match the shape of zone IV the elements in layer II, III, and V need 

to be deformed. However, care was taken that the elements are not too distorted to avoid 

numerical problems as described in section 2.4.4. Unfortunately, numerical instabilities 

still occurred in the simulation in the area of the deformed mesh. These instability ex­

press themselves as small amplitude events that suddenly appear in the centers of layers 

II to V, where the mesh is most deformed. The mechanism causing these erroneous events 

is not completely understood; the possible reason may be that the distortion of some of 

the elements is still too large for the current algorithm. It may be possible that such ele­

ments are not m apped accurately on the reference square A (section 2.2.2) because of an 

incorrect calculation of the Jacobian J  (equation 2.31).

A new model was generated that does not contain any distorted elements (Figure 4.2). 

The model consists of four layers as before w ith a zone included in the third layer that 

represents the steam chamber. 1600 elements were used to build the mesh of this model. 

However, by using only strictly quadratic elements the mesh cannot be optimized any­

more for the shape of the steam chamber (as for example in the first model); thereby
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Figure 4.2: 2nd finite element model consisting only of regular elements.

loosing one of the main advantages of the finite element method. As it turned out, this 

model did not work either. This time, the simulation results became unrealistic when 

the wave reaches the thin layer representing the reservoir (layer III in Figure 4.2). Due 

to computational limitations, the size of the elements for this model needed to be chosen 

rather large, and the reservoir is only represented by one element layer. There should 

not be a problem in terms of numerical dispersion as the size of the elements, the de­

gree of the Lagrangian polynomials, and the maximum frequency of the seismic wavelet 

are chosen according to the standard condition (equation 2.45). The test simulations in 

chapter 2 (section 2.4.2) showed that the present finite element program produces numer­

ical artifacts in the presence of relatively thin layers. Whether the spectral finite element 

method requires a minimum size of a layer for a given wavelength of the seismic signal 

is a question that needs to be addressed in future studies.

For the last version of this model the fourth layer was omitted w ith the third layer
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Figure 4.3: 3rd finite element model with the bottom layer replaced by the reservoir.

now extending to the bottom of the model (Figure 4.3). The problem causing thin layer 

is now removed; however, the internal shapes of the finite element model do no longer 

match the intended steam chamber described previously.

4.1.2 S um m ary

The problems occurring in the simulations using the first two finite element models need 

to be investigated in the future:

• Does a proper mesh design allow for an improved numerical stability? The use of 

unstructured meshes is probably required; however, w ith the currently available 

mesh generation programs, the design of such meshes was not possible.

• Is this numerical technique able to simulate the propagation of seismic waves for 

models including thin layers? Is a minimum number of elements or nodes in a layer
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4.1. MODEL DESCRIPTION

necessary to avoid numerical artifacts?

Unfortunately, it was not possible to improve the model or to solve the problems 

of the current program as described above due to time constraints. These problems in 

addition to the present lack of absorbing boundary conditions hinder the simulation of 

seismic surveys as intended in this thesis. Particularly the lack of the layer below the 

reservoir does not enable the testing of the seismic attribute 'time-delay of the bottom 

reflection' A t, one of the parameters analysed in section 3.5.6. These constraints imply 

that the simulations presented here are for very simplified models; however, these initial 

calculations are useful for providing insight towards future research directions.

4.1.3 Physical p ropertie s

The physical properties of the different layers in the model, the density p and the two 

Lame parameters A and p, respectively, are determined from the well log database and 

the fluid substitution modelling as described in chapter 3.

The properties of layer I, II, III, and V1 remain constant in all simulations (Table 4.1(a)); 

only the properties within the reservoir (zone IV) change according to Table 4.1(b). The 

values for layer I and II have been loosely inferred from the well log data for the Lloy­

dminster reservoir (Figure 3.6 and Table 3.3). The physical properties of layer III and V 

are taken from the reservoir zone and the carbonates below, respectively, whereas the 

properties of layer II are averages of the shale layer above the reservoir, and the data for 

layer I result from averaging the first 800 m of the well log data.

For the first set of simulations the rock physical parameters for zone IV vary, whereas 

the size of the steam chamber remains the same. For simulation A, the physical pa­

rameters of zone IV are the same as for the third layer. This simulation represents a base 

survey. In simulation B, the parameters for zone IV are as calculated for the Lloydminster 

reservoir assuming the Gassmann model (Table 3.8). The parameters in the last simula­

tion of this set are not inferred from well log measurement or rock physical calculations 

but are assumed. This simulation was carried out to have a comparative data set for 

which the rock physical anomaly is larger than the calculated one for the Lloydminster

1For completeness, the fifth layer is included here; please note, that this layer is not present in the final 
simulations.
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4.2. MODELLING RESULTS

reservoir. For this simulation it is assumed that the P-velocity has decreased to 2577 

m /s  (-10.0%), but the density and 5-velocity remain the same as in simulation B. These 

seismic properties could be representative for a reservoir with a less stiffer frame bulk 

m odulus {Kd ~  1.18 GPa compared to Kd =  8.7 GPa in simulation B, assuming that the 

shear frame modulus remains constant at Hd =  4.2 GPa).

In the second part the physical properties of zone IV remain constant but the size of 

the anomaly changes from initially 30.0 m  w idth at the top (Simulation D, Figure 4.4(c)) 

to 60.0 m  in simulation E (Figure 4.4(b)). For comparison, Figure 4.4(a) shows the size 

of the anomaly used for the simulations B and C, respectively. In these cases, the width 

at the top of the anomaly was 90.0 m. In all these simulations, the physical properties of 

zone IV are the same as for simulation C (Table 4.1(b)).

4.1.4 S im u la tio n  param eters

The criteria discussed in section 2.4.1 suggest that a time step of A t  =  0.02 x 10~3s 

and a center frequency of f c = 30 H z  ensure a numerically stable simulation. The total 

simulated time was set to ttotai — 0.5 s (Table 4.2). For each rock physical parameter set 

and size of the steam chamber, two runs of simulations were performed with different 

positions of the source.

In a first step the finite element system matrices M and K were determined and writ­

ten to the hard disk; a process that took, depending on the CPU of the computer used, 

up to ten hours. The second step the wave propagation was simulated; these simulations 

lasted for six hours at the most.

4.2 Modelling results

During the first simulation A the anomaly representing the steam chamber is not present 

(zone IV in Figure 4.3). This simulation is considered to be the base line survey against 

which all other simulations are compared.

The three panels in Figure 4.5 show the seismic wavefield for simulation A and the 

differential wavefield of simulation B with respect to A (that is, the wavefield calculated 

in simulation A is subtracted from the results of simulation B). In the first panel (Figure
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Table 4.1: Properties of the model in the different simulations, 
(a) Physical properties of the background geology.

Layer p [kg/m 3] Vp [m /s] Vs  [m/s]
I 2263 2306 1243
II 2307 2919 1473
III 2120 2864 1403
IV — See Table 4.1(b) —
V 2536 4983 2684

(b) Physical properties of the 'steam chamber'.

Simulation A B C
p [kg/m 3] 2120 1870 1870
Vp [m/s] 2864 2767 2577
Vs [m/s] 1403 1498 1498

Table 4.2: Simulation parameters
Number of elements 1600
Number of points 58081
Degree of the Lagrangian interpolant 6
Time step Af 0.02 x 10~3 s
Simulated time ftoto/ 0.5 s
Wavelet center frequency f c 30 H z
Source location 1 x 300 m

z 11 m
Source location 2 x 75 m

z 11 m

4.5(a)) another numerical artifact appears. In the differential wavefield, 'chaotic' ampli­

tudes appear at early times. Theoretically, the differential amplitudes should be zero 

for these times and this part of the model, as the physical properties of both models are 

identical. Also, the seismic wavefield has not reached the anomalous zone in simula­

tion B; therefore, no differences in the seismic wave amplitudes should be expected. An 

explanation of these artifacts is probably not directly related to the numerical scheme 

but is caused by computational inaccuracy of the numerous calculations involved in 

the algorithm. In general, no non-integer number can be stored accurately in the com­

puter memory but will be truncated according to the floating point accuracy of the data 

type. For example, in the programming language C, a 'float' number is only accurate
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Figure 4.4: Different sizes of the 'steam chamber' in simulation D, E, and C. The width of 
the anomaly at the top is (a) 90.0 m, (b) 60.0 m, and (c) 30.0 (m).

to ±  10~6. Therefore, after every numerical operation (for example multiplication) the 

resulting number is rounded to the accuracy of the data type used and some information 

is lost. This rounding error grows with every iteration of the algorithm. The simulations 

were calculated on different computers running different versions of the operation sys­

tem LINUX, and the programs were probably compiled with different compilers. Taking 

all these facts into consideration, it may be possible that this anomalous amplitudes in 

the differential wavefield result by computational 'noise' caused by different accuracy of 

the algorithm on the various computers. However, the magnitudes of these amplitudes
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is approximately four order of magnitudes less than those of the main seismic waves; 

therefore, these artifacts do not contaminate the simulated data significantly.

After 0.2 s the P-wave has reached the reservoir in simulation B, and the reflected 

wave appears in the differential wavefield. At the same time the direct wave has reached 

the boundaries of the model and spurious reflections from these boundaries F as well 

as 'surface waves' along these boundaries begin to propagate. These waves, particular 

those propagating along the boundaries, cause numerical instabilities as soon as they 

approach the second layer (panel (c)). The reasons for this problem are possibly the same 

as discussed previously for the second version of the finite element model, where the 

thin layer caused instability in the numerical solution. However, the P -wave front is still 

visible, although when compared to the S-wave, its amplitude is very small and therefore 

barely visible.

Similar results are shown in Figure 4.6 for the simulation C that contains the lower 

P-velocity in zone IV (Table 4.1(b)). In general, the pattern of the differential wavefield is 

similar to the one in Figure 4.5; however, note that the amplitudes of the reflected wave 

are slightly larger for simulation C (compare the range of the amplitudes shown by the 

colourbars in both figures). This is expected as the velocity contrast of zone IV with re­

spect to layer II, and consequently the impedance contrast, is larger for the simulation C. 

However, whether this difference is sufficient to be distinguished in seismic method can­

not be answered with such preliminary simulation. For that, a simulation of a complete 

seismic survey would be necessary.

In the second series of simulations, the size of zone was varied (Figure 4.4) but the 

physical properties were kept constant. The results of these simulations are shown in Fig­

ures 4.7 and 4.8. The anomalous zone was of intermediate size in simulation E (width: 60 

m) and the smallest in simulation D (width: 30 m). In either case, the size of the anomaly 

is too small to cause a clear reflection. The incident wave energy is rather scattered in all 

direction and the secondary P-wave fronts are of circular shape. It is worth noting that 

similar issues have been of interest in mining exploration where the dimensions of many 

massive sulphide ore bodies are of the order of the wavelength (e.g., Eaton, 1999; Bohlen 

et al, 2003).

The differential wavefield for the simulations C, D, and E are plotted in Figure 4.9
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at different times for comparison. The data in the left column, which are the results 

of simulation C, show a reflected wave that to a certain extend carries information of 

the shape of the reflecting body. In contrast, the secondary wavefield calculated for the 

simulations D (center column in Figure 4.9) and E (right column) are of circular shape. 

Therefore, these waves do not carry any information on the size of the reflecting body. 

However, there may be ways to interpret such results without perfectly imaging them.

A similar set of simulations was calculated with the seismic source placed towards 

the left border of the model (position 2, Table 4.2). Figure 4.10 shows the results of the 

differential wavefield and the 'base line' simulation for the parameter set B in Table 4.1(b). 

After 0.2 s a strange pattern of the seismic wavefield has developed for the simulation 

A, which is again shown in the right-side panels. Because the source is placed close to 

the border of the model a 'boundary multiple' follows the direct P-wave. The 'multiple' 

is the originally leftwards propagating wave, which, after reflection at the boundary, 

propagates back into the model. As in the first simulation set a 'surface wave' propagates 

along the left boundary and unfortunately causes numerical problems when it reaches 

the second and third layer. The differential wavefields show that the steam chamber in 

this simulation strongly reflects of the incoming P-wave. Similar results are obtained for 

simulation C (shown in Figure 4.11); as before, the wave propagation characteristics is 

similar with the wave amplitudes being larger for simulation C than B.

The results for the simulations D and E are included in Figures 4.12 and 4.13, respec­

tively. In these simulations it becomes clear that the chosen size of the steam chamber is 

too small to cause a specular reflection. Instead, the secondary wave energy propagates 

almost uniformly in all directions; this is not at all unexpected.

Finally, Figure 4.14 compares the differential wavefield for simulations C, D, and E at 

different times. In these plots the effect of the size of the anomaly representing the steam 

chamber becomes apparent. Whereas the secondary wavefield for the simulations D and 

E is circular, the calculated wavefield for simulation C shows clear reflected amplitudes 

propagating to the right.

It is unfortunate that the numerical simulations became unstable before the secondary 

waves reached the surface and could be recorded in synthetic seismograms. Therefore, 

surface data could not be analysed with respect to seismic resolution or feasibility assess-
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ment of seismic monitoring as intended in this thesis.

4.2.1 Discussion

Given the numerical problems the simulations needed to run for very simplified mod­

els. As such, the results of these simulations are rather preliminary. However, the results 

of this simple modelling approach suggest that seismic monitoring of steam chambers 

is not trivial. Only for the largest anomaly employed in simulations B and C, a reflec­

tion re-sampling the steam chamber can be expected. For the other models the steam 

chamber model is most likely too small to create a detectable seismic signal that can be 

considered as an image of the steam chamber. Most likely, only hyperbolas will be seen 

in seismograms, as are often seen for point like diffractors.

The resolution potential of seismic methods is usually determined by the half-width 

W of the first Fresnel zone (e.g. Yilmaz, 1987), which is defined as

or (4.1)

w . v p j l ,

with A being the (dominant) wavelength and Z  the depth of the reflector, V  is the P- 

velocity in this case and f c the centre frequency of the seismic wavelet. Using the data 

for the model the w idth becomes W «  94m, a value comparable to the size of the steam 

chamber model in simulation B and C. In simulations D and E, the w idth of the anoma­

lous zone IV is much smaller than the first Fresnel zone and consequently, such small 

bodies cannot be resolved in the simulations. However, it should also be noted that mi­

gration can be applied to improve the seismic resolution in case of such small anomalies.

4.3 Summary

The simulations calculated for this chapter suffered from many numerical problems which 

were not anticipated nor have they been reported in the literature of this still recent tech­

nique. Particularly, the design of a proper finite element mesh to simulate the propaga­

tion of seismic waves is a question that m ust be addressed in more detail. Although it
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Figure 4.5: Left: Differential wavefields simulation B - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. The 
depths of the three interfaces and the shape of the anomalous zone IV are included by 
the black lines. Source location: 1.
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Figure 4.6: Left: Differential wavefields simulation C - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
location: 1.
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Figure 4.7: Left: Differential wavefields simulation D - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
location: 1.
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Figure 4.8: Left: Differential wavefields simulation E - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
location: 1.
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Figure 4.10: Left: Differential wavefields simulation B - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
location: 2.
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Figure 4.11: Left: Differential wavefields simulation C - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
location: 2.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3. SUMMARY

t = 0.2 s x1Q t = 0.2 s

.200

JC
hV
D 400

600'

— 0 J -  “ i "

10 BMW .

5  200 t-/

200 400 600
Distance [m]

t = 0.22 s

400

600

(a)
-ii

xlQ

ill■
.200

Q.<0
D 400

-•-•V * -
' . -  *

600-
ee.li:
f

■
200 400 600
Distance [m]

400

600

t = 0.24 s

(b)

•ii

Q 400

x 10

200 400 600
Distance [mj

400 

-1 600I

(c)

200 400 600
Distance [m]

t = 0.22 s

x10

I1

I 0-5

jo
1-0.5

1-1

X10
— 1 0 WSBBBBSESSSSBBB 1

r,:;j 1$
If 0.5

200
0 0

1-0.5

1-1

200 400 600
Distance [m]

i = 0.24 s
— 0 —

1

. 200 \
§|§

P
l̂lg

l

■ I
A •

5

0

-5

-10

200 400 600
Distance [m]

Figure 4.12: Left: Differential wavefields simulation D - simulation A. Right: Wavefield 
simulation A. The vertical displacements are shown here at three different times. Source 
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Figure 4.14: Comparison of the secondary wavefield for simulations C, D, and E at dif­
ferent times. Left panels: differential wavefield for simulation C; center: simulation E; 
right: simulation D. The vertical displacements are shown. Source location: 2.
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was no t possible to build a model that incorporates a more realstic shape of the steam 

chamber (for example, as attempted in Figure 4.1) there is no doubt that such models can 

be designed. With time and more experience in generating meshes and in choosing the 

best simulation parameter such simulations will be successful.

However, despite these problems the simulations showed that seismic monitoring for 

SAGD programs is possible if the steam chamber has grown to a sufficient size. Such a 

critical size can probably be estimated by the radius of the first Fresnel zone W. The 

simulations also showed that, in theory, seismic methods should be able to distinguish 

between subtle changes in the reservoir as it is the case in the simulations B and C. How­

ever, to fully analyse this issue entire seismic surveys should be modelled in the future.
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Discussion and Conclusions

Exploiting the world's heavy oil and bitumen reservoirs will gain increasing significance 

in the future as light oil production reaches its peak. The physical properties of these 

hydrocarbons require that special and expensive recovery techniques be used in their 

production. For example, thermal oil recovery methods are most commonly applied 

to extract such resources from deeper reservoirs. Given the costs of many enhanced oil 

recovery methods, and in the case of heavy oil also those of the following upgrading pro­

cess, comprehensive control of these programs during production is an essential step to 

ensure technically and economically successful reservoir exploitation. Monitoring sub­

surface processes in-situ and as close as possible in real time has become a major part in 

applied geophysics during the last decade.

At the moment, SAGD programs are dominantly applied in Western Canada to pro­

duce shallow heavy oil reservoirs. The high production rate and recovery of the original 

oil in place makes this method the most promising for heavy oil production. During a 

SAGD program two horizontal boreholes are drilled in a vertical plane close to the bot­

tom of the reservoir (Figure 3). Through the top borehole hot steam is injected into the 

reservoir. Ideally, this steam then rises to through the oil bearing rock matrix to the top 

of the formation thus forming a steam chamber. The steam condenses at the boundaries 

of the chamber, where it heats the oil. The viscosity of the heavy oil reduces significantly 

and the oil becomes mobile. As the density of the oil is larger than that of the steam the 

oil flows along the chamber to the bottom borehole where it is produced.

Installing and running a SAGD program is technically challenging. Many problems 

such as well completion problems or asymmetric and anisotropic steam propagation are 

possible. Such complications will cause an uneven distribution of the steam with parts of 

the reservoir bypassed, thereby reducing the economical value of the reservoir. In order
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to detect such problems at an early state of the reservoir life remote monitoring of SAGD 

program  has the potential to be an important tool in the engineering decision process.

Detecting small changes in the reservoir with seismic methods may be difficult. In 

order to access the feasibility of seismic monitoring a priori modelling of the physical 

processes is necessary.

This thesis dealt with remotely seismic monitoring applied to SAGD programs for 

heavy oil reservoirs in the Western Canadian Sedimentary Basin. The main issues being 

investigated were:

•  Are the changes of the fluid and consequently in the physical properties of the 

effective media large enough to monitor changes in the reservoir using time-lapse 

seismic surveys?

• Can the growth of the steam chamber be accurately resolved using seismic data?

To address these questions two modelling approaches have been used. The feasibility of 

seismic monitoring of SAGD programs has been investigated first using a rock physical 

modelling carried out to estimate the effective physical properties of the reservoir after 

steam injection. The second modelling technique employed in this project is the spectral 

finite element method to simulate the propagation of elastic waves in two dimensions.

In the past the feasibility of seismic monitoring of thermally enhanced oil recovery 

has been justified by the significant decrease of the P-velocity of a hydrocarbon satu­

rated rock sample when heated (Figure 1.2, e.g., Wang and Nur, 1988,1990; Wang et al, 

1990; Eastwood, 1993). However, such experimental data do not represent the physical 

processes of a SAGD program where oil is not only heated but also replaced by steam 

and water at elevated temperature. The rock physical modelling summarized in chapter 

3 does incorporate the fluid replacement oil for a mixture of steam, water, and oil at in 

situ pressure and increased temperature. Therefore, this approach, carried out for the 

first time to simulate the rock physical impact by a SAGD program, does represent the 

real situation more accurately.

Identical modelling has been carried out for two different reservoirs: a bituminous 

reservoir near Fort MacMurray in Northern Alberta, which is part of the Athabasca com­

plex, and a Lloydminster styled heavy oil reservoir in Saskatchewan. Successful seismic
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monitoring for the Athabasca reservoir has been reported by Schmitt (1999), whereas 

the time-lapse seismic data acquired at the Lloydminster reservoir site do not show any 

changes in the seismic response (Zhang and Schmitt, 2003).

The rock physical simulations confirm the field observations in such that for the 

Athabasca reservoir the synthetic data predict a significant change in the reflected seis­

mic amplitude from the top of the reservoir as well as in the travel time to the bottom of 

the reservoir after fluid substitution (Figure 3.16 and Table 3.9). On the contrary, the sim­

ulations for the Lloydminster reservoir indicate that there can be no substantial changes 

in the seismic response expected during the SAGD program. Neither the travel time de­

lay to the bottom of the reservoir nor differences in the reflected amplitude at the top of 

the reservoir can be expected to be detectable in real time-lapse seismic data (Figure 3.15 

and Table 3.9).

The difference in these seismic attributes for the two reservoirs can be explained 

through rock physics by the much stiffer rock matrix of the Lloydminster reservoir. The 

elastic frame moduli for this reservoir have been determined from well log data under in 

situ conditions; the frame bulk modulus is Kd =  8.7 ±  0.8 GPa, and the shear frame mod­

ulus is fid =  4.2 ±  0.2 GPa. Compared to these values the rock matrix for the Athabasca 

reservoir is much weaker: the frame bulk and shear moduli are Kd — 0.667 GPa and 

Hd =  0.308 GPa, respectively. The determination of the frame moduli from well logs was 

not possible because (a) no shear sonic well log data are available from this reservoir, and 

(b) it is likely that the Athabasca bitumen has a finite shear rigidity. For the latter reason 

the determination of Kd and fid is not possible using the approach presented in chapter 

3.1.2, which is based on the validity of Gassmann's (1951) equation. Instead, the values 

for the Athabasca reservoir have been measured by Chalatumyk (1996) in quasi-static uni­

axial bulk compressibility experiments. How well such data compare to the elastic frame 

moduli under in situ condition is unfortunately not known. However, experience shows 

that such static measurements present the lower bound for the dynamic (seismic) values 

(Wang, 2000a).

The much stiffer frame of the Lloydminster reservoir does not allow for a large change 

in the P-velocity. This best seen by analysing the P-wave modulus M  (Table 3.10). The 

P-wave modulus can be split into two contributions: the frame modulus M frame, which
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does not depend on the fluid, and the pore modulus Mpore. For the Lloydminster reser­

voir the contribution of M frame is 83 %, and only 17 % come from Mpore. As the fluid 

substitution affects only the pore modulus (in the particular steam injection modelling 

Mpore effectively vanishes) the effect on the P-velocity for the Athabasca reservoir is 

much stronger than for the stiff Lloydminster reservoir.

That seismic monitoring of enhanced oil recovery is challenging for reservoirs with 

stiff rock matrices is known (e.g., Lumley et ah, 1997; Lutnley and Behrens, 1998). However, 

it is surprising that the monitoring program for the Lloydminster reservoir failed. This 

reservoir consists of a dominantly unconsolidated sand matrix, as such it can be expected 

to be an elastically weak reservoir. Lumley et al. (1997) and Lumley and Behrens (1998) did 

not clearly specify a lower limit for compressibility of the rock matrix. The results of 

the fluid substitution modelling and the field data suggest that even for unconsolidated 

reservoirs a successful monitoring program is not necessarily guaranteed.

To further investigate the dependance of the feasibility on the elastic frame proper­

ties and fluid composition, the changes in P-velocity, reflection coefficient, and two-way 

travel time have been calculated for a hypothetical reservoir. In this work, another inter­

esting and important aspect for feasibility assessment of seismic monitoring was found 

(see Figure 3.17). The results of these calculations suggest that the effects of steam injec­

tion during a SAGD program are stronger at the low temperature and pressure condi­

tions. Lower injection temperature is typically chosen for shallower reservoirs where the 

pore pressure is lower. Generally, it is likely that the elastic frames of shallower heavy oil 

reservoirs in the Western Canadian Sedimentary basin are weaker than those for deeper 

deposits. Therefore, there are two mechanisms in favour for successful seismic monitor­

ing for the Athabasca reservoir: the reservoir rock has an extremely weak elastic frame 

and the low temperature regime create substantial changes in the seismic properties. Hot 

steam is injected into the relatively stiff Lloydminster reservoir; the analysis presented 

here shows that such conditions inhibit successful seismic monitoring.

The second focus of this project was the numerical simulation of elastic wave fields 

with the intention of modelling seismic surveys over heavy oil reservoirs. Numerical 

simulations can be helpful to address questions such as
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•  Are seismic methods able to image changes in the size of the steam chamber? In 

other words: is the seismic resolution sufficient to detect subtle changes in the reser­

voir?

• Is there an optimum survey design to monitor changes in the reservoir efficiently?

• Given an assumed growth rate of the steam chamber, how frequently do seismic 

surveys need to be repeated to see changes between two surveys?

The geometry of the models can be complicated due to significant variations of the sur­

face and internal interfaces, and the shape of a steam chamber. As such, the simulation 

algorithm must be able to handle geometrically complex models. Furthermore, the pro­

gram m ust perform the simulation accurately (that is, free of numerical artifacts) and 

sufficiently fast. At the beginning of chapter 2, several numerical techniques have been 

discussed that are currently used in numerical seismic modelling. Of these methods, the 

spectral finite element was chosen for the numerical simulations presented in this thesis. 

This technique, recently introduced into seismic modelling by e.g., Faccioli et al. (1997) 

and Komatitsch and Tromp (1999), combines the geometrical flexibility of the standard fi­

nite element method with the accuracy of spectral methods, and the simulations shown 

in section 2.4.3 demonstrate that this m ethod is indeed able to simulate the propagation 

of elastic waves in geometrically complex models with significant topographical varia­

tions.

Limited computer memory resources requires the num erical model to be truncated, 

which implies the introduction of artificial boundaries. At the truncation boundaries, 

wave energy will be reflected and propagate back into the model. Such waves do not 

occur in reality and they m ust be inhibited from interfering with the "real" waves prop­

agating inside the model. Eliminating these spurious waves requires that they are sup­

pressed at the truncating boundaries of the model. To reduce reflections from the artificial 

boundary conditions, a Raleigh attenuation approach was implemented. An additional 

boundary layer several elements wide surrounds the outside of the model. Within this 

layer, wave energy is gradually reduced by a damping mechanism. The Rayleigh method 

is very suitable for finite element schemes as the damping mechanism is described by the 

two system matrices M and K (section 2.3.1, equation (2.43)). Therefore, no additional
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memory needs to be reserved for a damping matrix, and this makes this method com­

putationally economical. Rayleigh attenuation has been applied by Sarma et al. (1998) to 

suppress artificial reflections in finite element simulations. In their simulations, plane 

wave excitation was used, that is, an array or sources was employed at, for example, the 

surface. Such a situation does not realistically represent wave propagation in the earth. 

Consequently, in the numerical tests presented in this thesis a single point-like source in 

the center of the model was used. However, strong numerical artifacts appear (Figure 

2.9). The waves do not any longer propagate symmetrically from the source. Instead, a 

significant antisymmetry occurs in the observed wave patterns in the central part of the 

model: the waves propagating to the right are significantly stronger than those moving 

to the left away from the source. The model is symmetric; therefore, such a propagation 

pattern cannot be "model-intrinsic" but m ust be caused by technique dependent numer­

ical instabilities or artifacts. Therefore, this boundary condition could not be applied for 

the seismic simulations for this thesis. The perfectly matched layer technique (Berenger, 

1994), recently tested by Komatitsch and Tromp (2003), seem to be a more promising tech­

nique for absorbing wave energy at artificial boundaries.

Further problems that occurred in some simulations are apparent or mesh anisotropy 

and numerical instabilities in simulations containing "rough" topography (section 2.4.4). 

The simulation shown in Figure 2.15 was carried out to test the potential of the spec­

tral finite element method to model seismic wave propagation in rough terrains. The 

simulation results show two numerical artefacts:

• First, the wave fronts apparently propagate as if they were in an anisotropic medium; 

that is, the propagation speed in the vertical direction seems to be faster than for the 

horizontal direction. The mesh generated for this model contains elements in the 

central part that are elongated in the vertical direction. As the physical properties 

in this model are isotropic this wave propagation pattern m ust be due to the mesh 

design.

• The second numerical problem is due to the shape of the surface. When the surface 

wave reaches the "valley" to the right of the source numerical instabilities develop. 

The surface wave does not propagate further but increasingly gains amplitude. On
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the other hand, the simulation for the model with smooth topographic variations 

shown in Figures 2.13 and 2.14 demonstrate that simulations of wave propagation 

are possible for such models. The difference between the two simulations is that 

for the smooth model the variation of the surface's topography are longer than the 

wavelength of the propagating wave. For the rough model the variations of the 

topography are at the same length scale of the wavelength, or even shorter. It can 

only speculated at the moment if there is a criterion between the wavelength and 

the a 'length scale' of the surface's topographic variation.

The simulation of seismic surveys over a reservoir subjected to SAGD oil recovery was 

the intention of the work presented in chapter 4. The focus of interest was the resolution 

potential of seismic surveys to detect (a) changes in the rock physical properties within 

the steam chamber and (b) the minimum change in the size of steam chambers required 

to be detectable in repeated seismic surveys. Unfortunately, severe computational prob­

lems occurred in these simulations which are related to mesh design and the lack of 

working absorbing boundary conditions. The meshes created for the simulations caused 

numerical instabilities which are likely related to

• distorted elements that cause local instabilities which then contaminate the calcu­

lated seismic wavefield. Even such a simplified model as shown in Figure 4.1 re­

quires the use of unstructured meshes or perhaps triangular elements. However, 

the required mesh generation tools for unstructured quadrilateral element meshes 

were not available, and in order to modify the simulation program  to incorporate 

triangular elements with the same spectral accuracy as the spectral finite element 

codes is non-trivial.

• 'Thin' layers in the model seem to cause numerical instabilities. Whether this prob­

lem is due to the layer being too thin with respect to the seismic wavelength or if 

the spectral finite element method requires a minimum num ber of elements and 

consequently collocation points per layer should be investigated in future studies.

The finite element models needed to be significantly simplified and the intended pur­

pose of the simulation could unfortunately not be met. However, these simple simula­

tions revealed that a steam chamber needs to be of minimum w idth to be resolved with
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seismic methods which is described by the radius of the first Fresnel zone. Secondly, seis­

mic methods are sensitive even to subtle changes in the rock physical parameters of the 

steam chamber. Whether such changes are detectable in real seismic surveys needs fur­

ther investigation. An entire seismic survey should be simulated and then subjected to 

different random noise of realistic amplitudes to test whether the possibly weak response 

of a steam chamber is still recognizable in the synthetic data sets.

Future research directions

The analyses and results presented in this thesis could be extended to accommodate the 

following points. For the rock physical part these items are:

• A better control on the determination of the elastic frame properties from well log 

would be useful. Maybe, comparative measurements of these values in the labo­

ratory could prove (or disprove) the values for the Lloydminster reservoir, which 

according to the sonic logs seem to be high. Also, measurements of these parame­

ters for the Athabasca reservoir would be helpful, as the quasi-static values in Cha- 

latumyk (1996) are likely lower than is expected for seismic frequencies and strains.

• The estimation of the pressure dependence was based on published general trends 

of the P-velocity variation with pressure. Although the determination of the in 

situ pressure dependence it is especially difficult for unconsolidated sands, such 

measurements are important to estimate pressure effects on the seismic velocities. 

Secondly, a better understanding of the pressure variation during a SAGD program 

is necessary. Currently, it has been assumed that the pore pressure remains constant 

during the steam injection. Field data provided by the operating companies show 

that probably due to technical needs considerable pressure changes are possible.

• The model assumed in the analysis was rather simplistic. More physical processes 

possibly occur during a SAGD program. First of all, natural gas coming out of 

solution has not been considered in the analysis. Secondly, thermal effects on the 

solid material (for example thermal expansion and changes in the elastic properties 

and density) has not been included in the calculation. Additionally, the influences
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of the processes happening in the reservoir on the layer above and below will need 

future consideration. For example, especially the layer overlying the reservoir will 

experience thermal stresses, which can change its elastic behaviour. This will then 

change the reflectivity at the top of the reservoir. Further, damage to the formation 

due to injection and sand production has not yet been considered.

The numerical modelling scheme would benefit from the following work:

• First of all, the non-reflecting boundary problem needs to be addressed. It is rec­

ommended that the work by Komatitsch and Tromp (2003) is followed.

• Some of the simulations presented in this thesis were problematic because of prob­

lems with the mesh. Particulary, apparent anisotropy and numerical instabilities 

at the surface with 'rough' topography are problems that reduce the quality of the 

simulations significantly. Such problems may be intrinsic to the numerical tech­

nique and further studies should investigate on how much these artifacts can be 

reduced by proper mesh design.

• The simulation of seismic surveys would benefit from including a dispersive con­

stitutive relationship into the modelling algorithm. The theory of visco-elasticity is 

well developed. Unfortunately, a computer implementation of such a program was 

not possible due to current hardware limitation.

• Lastly, the extension of the current program to three dimensions is possible and 

would be useful. The design of three-dimensional meshes, however, is significantly 

more challenging than in two dimensions, especially with the limitation of current 

spectral element techniques to hexahedral elements. Also, one must be aware of 

that three dimensional simulations require significantly more hardware resources 

and computation time.
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Appendix A

Numerical details and computational 
aspects of the finite element 
algorithm

In this appendix the diagonality of the mass matrix is shown first. The following sec­

tions then explain briefly numerical techniques employed in the finite element program. 

In particular, these are the Newmark time stepping technique (section A.2.1), the sparse 

matrix storage format (section A.2.2), and the iterative matrix solver technique of the con­

jugate gradients (section A.2.3). A detailed derivation and in-depth explanation of these 

techniques is beyond the scope of this work, and the reader is referred to the literature 

(e.g. Zietikiewsisz, 1971; Lapidus and Pinder, 1982; Bathe, 1990; Scales and Smith, 1997) for 

thorough discussions of these topics.

A .l The diagonality of the mass matrix

Before evaluating the numerical approximation of the integral for the mass matrix the 

difference between global and local node numbering shall be discussed. After map­

ping of the element to the reference square A a node labelled i in the global system is 

m apped to a index pair [a, (3] (see Figure A.l). After m apping the element to the refer­

ence square the Gauss-Lobatto-Legendre quadrature rule (equation 2.38) is applied. The 

basis and weighting function <&(£, rj) and <f>j(£, rj), respectively, then become products of 

Lagrangian polynomials with the index transformation i —> [a, r] and j  -» \p, v\. Eval­

uating the quadrature at the points [£“ , 77̂ ] and applying the discrete orthogonality of
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A .l. THE DIAGONALITY OF THE M ASS MATRIX

0 a

Global node Local node
numbering numbering

Figure A.l: The global nodes of an element are enumerated by arabic numbers on the 
left. The mapping to the reference square A also assigns the local coordinates [a, (3] to the 
node i.

Lagrangian polynomials (equation 2.27) the product of the four Lagrangian polynomials 

in equation (2.41) reduces to

c ( n c ( ^ ) C ( W ( / )  =

= (A.l)

Act ii&tw

First, each Lagrangian polynomial is replaced by a Kronecker-Delta symbol representing 

the orthogonality. Then, in a second step the first and third as well as a the second and 

fourth Delta function are combined resulting in the last line of equation (A.l). This shows 

that there are only non-zero terms in the summation if cr =  p and t = v. This also implies 

that only for i — j  the elements of the mass matrix Mij are different from zero, but for 

i j  the elements of this matrix are zero per definition. Therefore, the mass matrix has 

only entries in the main diagonal.
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A.2. NUMERICAL TOOLS

A.2 Numerical t o o l s  

A.2.1 The N ew m ark  a lgorithm

The finite element equation (equation 2.42) requires a more advanced numerical solu­

tion scheme when the damping matrix can not be neglected. Seron et al. (1996) analysed 

several numerical integration scheme in terms of accuracy and computational efficiency. 

They found, that the N ew m ark-method excels the implicit and explicit central finite dif­

ference, Wilson, and Houbolt methods in terms of computational efficiency and num er­

ical accuracy and therefore has been employed in the simulations presented in chapter 

2.3.1.

To solve the finite element equation the displacement velocity ({/), and displacement 

(U) are approximated by (Newmark, 1959):

t + A t ] j  =  t j j +  ( i  s f U  + 8 t + A t tj^ A t  (A.2a)

t+AtU =  tU +* U A t + ^(0.5 — a)tU +  a t+At[/j A t2, (A.2b)

where a  and 8  are parameters that control the accuracy and stability of the integration 

scheme. These parameters are typically chosen to be a  =  0.25 and 8  — 0.5 (Bathe, 1990).

To determine the displacements, displacement velocities, and displacement accelera­

tions at time t + A t the algorithm summarized in Table A .l is employed. If the equation 

of motion (2.42) is evaluated at time t  +  A t, e.g.,

M t+AtU +  C t+AtV  +  K  *+A‘U  =  t+AtFs, (A3)

then equation (A.2b) can be solved for t+AtU  in dependance of t+AtU. After inserting 

t+AtU into equation (A.2a), two equations are obtained that contain only the unknown 

displacements t+A<U. Using these equations in (A.3) allows the calculation of the dis­

placements at time t + A t  and subsequently the displacement acceleration and velocity 

vectors according to the scheme in Table A .l (after Bathe, 1990).

A.2.2 The sparse matrix format

The system matrices of the finite element algorithm are very sparse; for example, in sec­

tion A.l it was shown that the mass matrix contains only non-zero elements in the main
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A.2. NUM ERICAL TOOLS

_____________ Table A.l: Newmark time integration scheme_____________

A. Before starting the actual time forward stepping

1. Determination of the integration constants

a ° =  a i =  S S i ®2 =  S S t a 3 =  ik  ~  1

04 =  £ -  1 a5 =  ^  (£ -  2) a6 =  Af(l -  <5) a7 = 6 At.

2. Determination of the effective stiffness matrix K

K  — K  -f- fto-hf oiC.

B. For each time step

1. calculate the efficient source vector F s

t+Atps =  *+AtFs +  M (aotU +  a2 4U  +  a3tU) +  C (a1tU  +  a4tU  +  a5 tU),

2. determine the displacement vector U

i+Aijji

3. update the displacement velocities and accelerations

t+AtU =  a0( t+AtU -  *U) -  a2 fU  -  a3 *U 
t+AtU  =  *U +  a6 ‘U  +  a7 t+AtU.

diagonal. The stiffness matrix contains non-zero entries outside the main diagonal but 

in general it is very sparse as well. If all elements of the matrices containing no infor­

mation (that is, entries that are zero) are included in the matrices, enormous amounts of 

computer memory needs to be allocated. However, this is not very efficient and sparse 

matrix storage formats are preferable.

Consider the following matrix A that contains only a few non-zero entries (marked
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Table A.2: Pseudo-code for a matrix-vector product in sparse data format

for i=l to nrows % Number of rows of A 
for j=l to A_maxi[i]

r [i]+=A_data [i] [j ] *u [A_colno [i] [j]];
end

end

by *)

[1 2 3 4 5 6]
"* * 0  0  0  O’

* * * 0 0 0

a  _  0 *  *  *  0 0
0 0 *  *  *  0 ‘

0  0  0 * * *
0 0 0 0 * *

Instead storing the entire matrix A in the computer memory three matrices are created 

that contain a) the non-zero elements for each row (Adata), a matrix that contains the 

column numbers of the non-zero elements of A (Aco;no), and finally a vector that saves 

the number of non-zero elements of each row in A (A maXi). To store the matrix A the 

following three matrices are used:

* '1 2 '2'
* * * 1 2 3 3
* * * 2 3 4 3
* * * A-colno — 3 4 5 A-maxi — 3
* * 4 5 6 3
* * 5 6 2 .

Although it is not obvious from this example, a significant reduction of computer mem­

ory results for large matrices when this storage system is applied.

Table A.2 provides a pseudo-code to calculate the product of a matrix A (in sparse m a­

trix format) with a vector u, with the result written to the vector r; an operation occurring 

frequently in the finite element algorithm.
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A.2.3 The Conjugate Gradient algorithm

In step B.2 of the Newmark algorithm the inverse of the effective stiffness matrix K  is 

required. Generally, the finite element matrices are very sparse and they are therefore 

efficiently stored in a sparse matrix format in the computer memory (section A.2.2). The 

inverse of the effective stiffness matrix, on the other hand, would not be sparse anymore 

and the advantages of the sparse storage format would be lost. Therefore, it is compu­

tationally more efficient to solve the matrix t+AiU  =  K -1  t+AtF s in Table A .l iteratively. 

For the current program, the Conjugate Gradient Method  (e.g. Scales and Smith, 1997) has 

been used, which is known to converge fast for positive definite and symmetric matrices. 

Table A.3 summarizes the Conjugate Gradient algorithm (after Scales and Smith, 1997).

Closely related to the solution of the matrix equation A x =  h  is the minimization of 

the quadratic function /

/(x )  =  xT • A  • x  — h • x, 

as the necessary condition for the minimum of /  is

/ '(x )  =  A  • x  -  h  =  0. (A.4)

Conjugate Gradients solve the matrix equation A x — h by iteratively searching for 

the solution vector x. After starting with an initial guess (which can be the zero vector, 

e.g. xo =  0). The algorithm then minimizes /  along "search vectors" p* and determines 

subsequently a residual rj. The iteration continues until the difference between the the 

updated solution Xj+i and the previous approximation x, is less than a certain criterion 

e.

The Conjugate Gradient m ethod is computationally simplistic, yet very efficient as it 

includes only one product of a matrix times a vector, an inner products of two vectors, 

and the sum of a vector plus a scalar times a vector per iteration step. It is therefore 

ideally for use on sparse matrix storage systems.
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A.3. DESCRIPTION OF THE FINITE DIFFERENCE OPERATORS A N D  THE
PSEUDO-SPECTRAL ALGORITHM

Table A.3: Conjugate Gradient algorithm

• Step 1: set xq =  0 and calculate po =  ro =  h -  A  • xo-

•  Step 2: then for each iteration i = 0, 12, . . .  step do the following:

1. Calculate the coefficient a:

(r i , ri)
*^i+l / a \ ,

( P i )  A p r )

2. Then update the solution

Xj+l F  1 Pi,

3. Next calculate the new residual rj+j

r«+i == Tj A p (.

4. Now determine /?
n  ( r i + i i  ri+ l)
h 'i+ l  / \ 7

( r i)  r i )

5. and finally update the 'search direction'

P*+i =  r«+i +  P i+ i Pi,

A.3 Description of the finite difference operators and the pseudo- 
spectral algorithm

A.3.1 Finite difference operators

The Finite Difference M ethod (FDM) is the most widely used technique in numerical 

simulations. It is a rather simple yet efficient technique to solve a partial differential 

equation in a geometrical simple model. The idea of the FDM is to replace the differential 

operators in a differential equation by finite-difference operators.

To start the approximation of a derivative by a finite difference remember the defini­

tion of the derivative of a function f ,  df /dx,  as the limit of A x  —> 0 when the secant line 

becomes the tangent to the curve of f  (see also Figure A.2)
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A.3. DESCRIPTION OF THE FINITE DIFFERENCE OPERATORS A N D  THE
PSEUDO-SPECTRAL ALGORITHM

f(x)

x+AxX

Figure A.2: On the definition of the derivative as an approximation by a finite difference.

i  = iim + (A5)
dx Ax—>o Ax

Instead of making Ax smaller and smaller the fundamental idea of the FDM is to stop 

the limit at a sufficient small step Ax. Then, the assumption is made that

#  ^  f ( x  +  Ax) ~  f ( x ) -  A f  /A 6\
dx Ax Ax ’

The last expression is the finite difference operator. From this derivations it becomes clear 

that in the FDM (and, in fact, in any other numerical method as well) the continuous 

model is split into discrete points separated by a distance Ax. The previously continuous 

function /  is then only defined at these discrete points. Then, the differential operator 

is defined as the difference of two (or a combination of more) function values A/  over a 

certain distance Ax.

The finite difference operator can also be determined from a Taylor expansion of /

f ( x  + Ax) «  /(x )  +  / (x )A x  +  i/" (x )A x 2 +  . . . (A.7a)
dt

f ( x  -  Ax) «  /(x )  -  f ( x )  Ax +  i/" (x )A x 2 T  ■■■ (A.7b)

Now the discrete approximation of the first-order derivative results from subtracting
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A.3. DESCRIPTION OF THE FINITE DIFFERENCE OPERATORS A N D  THE
PSEUDO-SPECTRAL ALGORITHM

equation A.7b from A.7a and then dividing by 2Ax:

a   ̂ _  f i x  +  Ax)  -  / ( x  -  Ax) 
J W  ~  OA. (A.8)

Adding A.7a and A.7b gives an approximation for the second derivative:

/"(*)
f ( x  +  Ax) — 2 f (x )  +  / (x  — Ax) 

A x 2
(A-9)

Higher derivatives can be approximated in a similar way. However, for simulating the 

propagation of waves the second derivative is the highest order required.

A.3.2 The pseudo-spectral modelling algorithm

In section 2.1.2 the numerical solution of a partial differential equation using Chebychev 

polynomials Tk(xj) has been introduced. This section outlines briefly the modelling al­

gorithm.

Chebychev polynomials are only defined on the interval [—1, 1] by

A piecewise continuous function u(x) with — 1 < x < 1 can be expanded in a trun­

cated Chebychev series as follows

N

u{xj) = OfcTfe(xj), j  =  0,..., N,

The coefficients a* are calculated by the discrete transform

with

j  =  0 or N  
otherwise

1 , M  0
1/2 , k =  0 or N
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A.4. STABILITY CRITERION

The derivative of the function u can be similarly calculated (Canuto et ah, 1988; Kosloff 

et ah, 1990)
N

u'(xj) = Y^bkTk(xj) ,  j  =  o A .  
fc=o

The coefficients are related to the expansion factors a* by a downward recursion rela­

tion (Kosloff et ah, 1990)

bk—x ~  "T 2fcafc, k — N , ..., 2,

and

ba =  (2a\  +  b2) /2.

The starting values for the recursion are 6jv+1 =  — 0. With this method determining

the values of the function u and its first derivative are relatively straight forward. As the 

determination of the second derivative is computational expensive (Kosloff et ah, 1990) 

this method has only been applied to the first-order system to describe wave propagation 

(e.g. equations 1.18a and 1.18b).

A.4 Stability criterion

The von-Neumann stability analysis considers the evolution of an amplitude with time. 

In essence, it introduces an initial 'error' amplitudes that are represented by a finite 

Fourier series. These errors can be caused by numerical inaccuracy such as an inappro­

priate approximation of derivatives or computational errors like rounding errors. It is a 

'local' stability criterion as it applies only to linear problems with constant parameters 

(e.g., spatially and temporal constant density and elastic properties). Furthermore, it ap­

plies theoretically only to unbounded computational domains as it completely neglects 

the influence of boundary conditions.

Such an erroneous amplitude u(x , t)  can be expressed by a harmonic decomposition 

at time nt and position Xj as

nuj = C( k )e ikjSx,]=l  N, (A.10)

where

k spatial wave number
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£ =  £(&) a complex number, which is sometimes called the amplification factor. It can 

be considered as the amplitude of the k th-mode (or harmonics) of the propagating 

wavelet.

The von-Neumann stability criterion requires that for a given numerical scheme the ab­

solute value of the amplification factor £ must not be larger than one. Otherwise, the 

erroneous amplitudes grow with time, thus making the scheme unstable:

i rm i2 f  > 1 . unstable
^  "  { < 1 , stable.

To analyse a particular numerical scheme for stability the expression (A. 10) is inserted 

into the numerical approximation and subsequently solved for |£(fc)|2. For example, for 

the implicit 2nd-order finite difference approximation of the acoustic wave equation,

d2u 2 d2u ^  
dt2 C dx2

k + l U j  - 2 k U j +  fc~1Uj 3k u i + i  - 2 k U j +  k U j - i

A t2 ° A x 2 ’

a von-Neumann stability analysis results in (Karrenbach, 1996; Press et a i, 1997)

£(fc) =  -i^ ^ -sin (kA x) ±  J 1 — ^j^-sin(kAx)^J
2

The amplification factor is only less than one if the well-known Courant condition is met, 

e.g.
1 A t  1 < c— .A x

Therefore, the implicit numerical approximation of the second order wave equation by 

finite difference operators is only conditionally stable.

In theory, a similar stability analysis is also possible for finite element schemes; how­

ever, the necessary numerical analysis is significantly more work extensive. In the fol­

lowing paragraphs, the main steps for the stability analysis are briefly outlined, a more 

detailed description can be found in Lapidus and Finder (1982) and Bathe (1990), among 

others.

In general, the finite element approximation of the wave equation results in a matrix 

equation of the form

M U  +  C U  + K U  =  R . (A .ll)
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For the stability analysis it is of advantage to transform this equation to a principle axis 

system such that it becomes (Bathe, 1990)

x + A - x  +  f i2 -x  =  4>t  r ,

where

• x is the solution vector in the new co-ordinate system,

• f22 is a diagonal matrix containing the eigenvalues of (A .ll),

• <j> is a matrix built from the eigenvectors of (A .ll), and

• A  stands for the product <pT C<p.

After this transformation the stability of a particular scheme can be assessed in a similar 

way as before by considering the solution at time nt as

nx =  A • "x  +  r.

In this equation the matrix A and the vector r depend on the numerical method to ap­

proximate the time derivatives. The numerical method is stable if the spectral radius of 

the matrix A, p(A), is less than or equal to one. The spectral radius p(A) is defined as the 

largest eigenvalue of A.

The required determination of the eigenvalues and eigenvectors of the finite element 

equation make the stability analysis rather cumbersome. Instead, numerical experiments 

by, for example, Faccioli et al. (1997) and Komatitsch and Vilotte (1998) have shown that the 

Courant condition also applies for the finite element method when the parameter A x  is 

replaced by the minimum spacing between two nodes in an element, hmin-

An important result of such analyses is the difference in the stability between explicit 

and implicit schemes. Explicit schemes such as the approximation of the time derivative 

by a finite difference operator are only conditionally stable, that is, the discrete time in­

terval A t  must be chosen with respect to the velocity c and the spatial sampling interval 

A x  such that the Courant condition is met. On the other hand, implicit time schemes 

such as the Newmark algorithm (section A.2.1) are unconditionally stable. The solution 

will always be bounded regardless of the time step being used. Therefore, a much larger
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discrete time interval can be used than for explicit schemes. However, implicit numerical 

schemes are computationally more expensive, and the costs of the required inversion of 

a matrix can counteract the advantage of the larger time step.
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Appendix B

Description of the analysed well logs 
of the Lloydminster resrvoir

The rock physical characterisation for the Lloydminster reservoir presented in chapter 3 

is based on the analysis of three well logs that were recorded in the vicinity of the Senlac 

SAGD site in Saskatchewan. These well logs are described in more detail in  the following 

paragraphs.

Well A: CS SENLAC A13-7-40-35 This well was cored and is located in the South-East 

comer of the study area. The density and 7 -ray curves dearly show the presence of the 

coal layer (low density) and shale layer (relatively high 7 -ray values) above the reservoir. 

The reservoir layer itself is primarily filled w ith oil (high values in the resistivity curve), 

while water seems only to be present in the carbonate layer below the conformity (Figure

B.l). As there are no shear sonic data available for this well the elastic properties of the 

frame can not be determined from this well log using the method as proposed in the 

theory part (chapter 3.1.2).

Well B: CS SENLAC SWD B4-18-40-25W3 As in the previous example the density and 

7 -ray curves clearly distinguish the relevant layers. However, the resistivity log indicates 

that there is a water saturated layer between the oil saturated sands and the underlying 

carbonates (see the resistivity log in Figure B.2). This well log does not contain shear 

sonic data so that we can not derive the elastic frame properties for this well.
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Well C: PCP PCR SENLAC OBS DD11C7-12-4C6-12-40 The location of this well within 

the Senlac site is not known. However, this well log contains the most curves. It must 

be noted that this is a deviated well, and no borehole deviation information are included 

in the file. Thus, a true vertical depth correction is not possible, but for the purpose of 

this study, such a correction is not necessarily required. As with the other well logs the 

reservoir layer can easily be distinguished from the overlying shale-coal layers and the 

carbonates below. The strong contrast in the resistivity data allow us to distinguish the 

oil-saturated section from the water saturated layer in the reservoir (Figure B.3). Further­

more, this is the only well log available that includes shear sonic data.
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Appendix C

Empirical relationships for the 
properties of water

The properties of the saturating water in section 3.4 were calculated using the empirical 

relationships compiled by Batzle and Wang (1992), which are included in the following 

paragraphs.

The density of brine p b  is calculated in two steps. First, the density of pure water p w  

is calculated as a function of temperature T  (given in °C) and pressure P (measured in 

MPa).  In a second step, the density of brine is calculated as a function of temperature 

T,  pressure P, and salinity 5  (ppm /1000000). Batzle and Wang (1992) report only a rela­

tionship for sodium chloride as the dissolved substance. As the dependence of the brine 

density on the salinity is relative weak when compared to for example temperature, any 

variation of p b  with dissolved mineralogy is considered negligible here.

p w  =1 +  1 x 10~6(—80T -  3.3T2 +  0.00175T3+

+ 489P -  2T P  +  0.016P2P  -  1.3 x 10~5T3P -  (C.la)

-  0.002TP2)

P B  = P w  + 5(0.668 +  0.445 +  1 x 10~6[300P-
(C . lb )

-  2400P5 +  T(80 +  3 T -  33005 -  13P +  47P5)]}.

The acoustic velocity is also found in two steps. After the velocity for clean water, 

Vw, has been calculated as a function of temperature and pressure, the brine's velocity 

(Vb) is determined depending on temperature, pressure, and salinity using the following
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equations:

w ith

Vw

Wi

Y , H wtt T 'F‘
2=0 j —0 

/

V

1402.85 1.524 3.43 x 10~ 3 - 1.2 x 10~ 5
4.87 - 0.011 1.73 x 10“ 4 -1.63 x 10~ 6

-0.05 2.747 x 10~ 4 -2.14 x 10- 6 1.24 x 10" 8
1.49 x 10~ 4 -6 .5  x 10~ 7 -1.46 x 10~ 8 1.33 x 10- 10
2.19 x 10~ 7 7.99 x K T 10 5.23 x lQ~n -4.61 x H T 13

and

VB = VW + 5(1170 -  9.6T +  0.055P2 -  8.5 x 10_5T3

+ 2.6P -  0.0029TP -  0.0476P2) +  5 L5(780 -  10P +  0.16P2) -  82052. 

Using these equations the bulk modulus of brine results as

K b  =  p bV I
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Appendix D

Uncertainty calculation

The uncertainty 6 K d of the frame bulk modulus (equation 3.4) is calculated using stan­

dard error propagation. It is assumed that all parameters occurring in this equation have 

some uncertainty. The uncertainty of values determined from well logs is the standard 

deviation of the data involved (e.g., K ej f ,  Vp, Vs, and p) or are assumed (e.g., <f>, K s, Kf).  

Then, the uncertainty 5Kd is given by

SKd =
d K d

dKef f 5Keff  +
d Kd
OKs

SKs +
dKd
d Kf

5Kf  +
d K d

6 <j>, (D.l)

where the partial derivatives are given by
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dKd U  -  1 ) /Ks} [(1 -  K eff/ K s +  <p)/Ks  -  <t>/Kf] +
d Keff  [(1 -  K ef f / K s  +  4>)/Ks -  H K f Y

| [1 +  K eff  ((0 -  1 ) / K s -  HK%)} /K*

[(1 - K ef f / K s  + <l>)/Ks-<l>/Kf?
dK d [(1 -  K ei f / K s +  4>)/Ka -  HKs] l ~ K ef f (<t> -  l ) jKl ]  
9 K S [(1 -  K ef f / K s +  4>)/Ks -  <j>/Kf f

[1 +  K eff  (Qj> -  1 ) / K .  -  <j>/Kf)] (2K ef f / K l  -  <j>/Ks2) ’
[(1 -  K e f j f K ,  +  <£)/A:s -  4>/Kf}2

3K d J K ef f / K}  [(1 -  K ef f / K a +  </>)/K, -  <£/iq 
dK f  ~  [(1 -  K ef f / K s + 4>)/K. -  M K f ?

<$>IK)\\ + K &ff{{<S>-l)IKs -<$>IK} )} ’

[(1 -  K ef f / K s +  4>)/Ks -  <j)/Kf}2 

dK d K e f f ( l / K s -  1 / K f ) [(1 -  K ef f /K„ +  </>)/Ka -  <f>/K,\ 
d<t> [(1 -  K efs/ K s +  <j>)/Ks -  <j)/Ks }2

(1/Ka -  1/ Kf ) [1 +  K eff {{<j> -  1 ) / K s -  <j>/Kf)} '
[(1 - K ef f / K s + <l>)/Ks - H K s }2

(D.2a)

(D.2b)

(D.2c)

(D.2d)

The uncertainty SKef f  is calculated from the statistical errors (that is, the standard devi­

ations) of the well log data Sp, SVp, and SVs according to

4,
S K e f f  =  m  -  o Vs)  h  +  2 VPp SVp + - V s p  S V s . (D.3)

After fluid substitution the effective velocity for the Gassmann model is calculated by 

equations 3.1 and 3.3, respectively, with the uncertainty of

S V  -  —  ( S K e f f  +  4 / 3 ^ d .
P 2 \  K e f f  + 4/3p d p ef f

In this equation the uncertainty of the effective density results from

Spef f  =  5(f>(pf +  p s ) +  <p(Spf  +  Sps ) 

and the uncertainty of the effective bulk modulus K ef f  calculates according to

5 K ef f
d K e f f

dKd SKd +
dK,eff
dK.

SKs + d Keff
dKf

5 K f  +
dK,eff

d(j> 8 < j>

(D.4)

(D.5)

(D.6)
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with

d Keff  2(1 -  K d/ K s) / K s [ ( 1 - 0 - K d/ K s) I Ks + 4>/K}]
dK d { ( l - d > - K d/ K s) / K s + cP/Kf }2 

(1 - K d/ K sf l K l

+

[(1 -  0 -  K d/ K s) / K s +  <j)/Kf f  
dKef f  2(1 -  K d/ K a)Kd/K*  [(1 -  4> -  K d/ K s) / K s +  <j>/Kf  ] 
dK s [(1 - 4 > - K d/ K s) / K s + <j>/Kf }2

(1 - K d/ K sf / K l  
[(1 - 4 > - K d/ K s) / K s + <p/Kf ]2 

d K eff  (1 -  K d/ K sf(<P/Kj)
d K f  [(1 -  0  -  K d/ K s) / K s +  <j>/Kf ]2

dKeff  (1 -  K d/ K s)2( l / K f  -  l / K s) 
d<(> [(1 -  0 -  K d/ K s) / K s +  <t>/Ks]2 '

Finally, the uncertainty of the shear frame modulus is given by

S/J-d = dPeffV's + ZPeffVsSVs.

+

(D.7a)

(D.7b)

(D.7c)

(D.7d)

(D.8 )

The uncertainty for the P-velocity according to the patchy saturation model is calcu­

lated according to
jtt r _ + ^/3p)vatchy , <>Peff\ n̂ n \
SVP -  T  (  ( K + 4 /3 m W % +  K iF )  ' ‘ ’

The calculation of the uncertainty in the elastic modulus (K  + 4/Zp)tMtchy requires two 

steps:

_ d( K + 4 /3 p )^ tchy
{K  +  4/3 pjpatchy dp

with

+e (
*=1 \

d(K  +  4/3/x)” 1,

d (K  + 4/3p) - l
patchy

dSi
SSi +

d i K +  A/Zp) - 1

Sp+

patchy
dKi

(D.lOa)

5Ki

patchy
dp

d(K  + 4/3 p ) - 1

Si

patchy

3 iK i +  4/3/i) 2 

1

dSi Ki + 4/Zp
d ( K + 4 /3 p )^ tchy _  - Sj

dKi ( Ki + 4/Zp)2

(D.lOb)

(D.lOc)

(D.lOd)
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where 5, and Ki are, respectively, the saturation of steam, water, and oil, and the effective 

bulk modulus, when the pore space is completely saturated with either steam, oil, or 

water. The uncertainties SKi are calculated via equation (D.l).

By using the empirical relationships for the calculation of the fluid properties the 

determination of the uncertainty in, for example, the bulk modulus of the brine is not 

possible because Batzle and Wang (1992) did not provide errors for the numerous fitting 

parameters. Therefore, the uncertainty of the effective fluid bulk moduli and density as 

well as the porosity and the bulk modulus of the solid material are assumed to be 10% of 

the actual value in the calculations of chapter 3.
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So eine Arbeit karm niemals vollendet werden, 

man mufi sie fur vollendet erklaren, 

wenn man nach Zeit imd Umstanden 

das Moglichste getan hat.

(aus Johan Wolfgang v. Goethe:

"Die italienische Reise")
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