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Abstract

Functional brain connectivity plays an important role on understanding
how human brain functions and neuropsychological diseases such as Autism,
Attention-deficit hyperactivity disorder (ADHD), and Alzheimer’s discase (AD).
Functional Magnetic Resonance Imaging (fMRI) is one of the most powerful
techniques to construct functional brain connectivity. However, the presence
of potential outliers in fMRI BOLD signals might lead to unreliable results
in construction. Another challenge of most existing connectivity construction
methods is the results might not be stable. In this thesis, we propose a frame-
work which is able to provide robust and stable connectivity. In particular,
a low-rank plus sparse (L + .S) matrix decomposition technique is adapted to
decompose the resting state fMRI BOLD signals, where the low-rank matrix
L recovers the essential common features from regions of interest (ROIs), and
the sparse matrix S catches the sparse individual variability and potential out-
liers. Based on decomposition, various approaches can be applied to construct
functional brain connectivity, such as correlation, partial correlation, Graphi-
cal Lasso and others. However, we propose to use the recently developed novel
sparse matrix estimation based on concentration inequality. Statistical test for
cach connection is implemented for differentiating group difference. Through
bootstrapping afterwards, we verify whether performing low-rank plus sparse
matrix decomposition can achieve more stable and robust results.

We apply our method on Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data, and compare the results with those based on original BOLD signals. We

discover that the methods for building connectivities based on low rank ma-
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trices behave better than based on original BOLD signals, in the sense that
the former can reveal and identify more significant ROI connections. We find
that the recently proposed concentration inequality based method performs
better overall compared with correlation, partial correlation, and Graphical
Lasso method. We also obtain the first ten most significant connections for
differentiating group differences for Alzheimer’s disease. Among them, the
left hippocampus region and the left cerebellum 7 region is the most signifi-
cant one, with p value smaller than 0.0005, which is consistent with existing
literatures’ findings. Through bootstrapping, we verify that performing low-
rank plus sparse matrix decomposition can achieve more stable results for

constructing functional brain connectivities.

il



Acknowledgements

First and foremost, I am deeply and sincerely grateful to my supervisor
Dr. Linglong Kong. I have been always having his support, both mentally
and academically. He is the one who introduced me to the neuroimaging field
which I found fascinating. He is the one who always encouraged me to try
new things and mine my potential. I learned so many things from him, both
in the academical way and in the life attitude way. I feel extremely lucky that
I can be his student from the deep of my heart.

Second, I would love to express my deep gratitude to the group studies’
organizers Dr. Ivan Mizera and Dr. Linglong Kong, and also the speaker Dr.
Adam Kashlak. I learned large amount of knowledge that I did not learn on
class before such as deep learning and asymptotic statistics.

Third, I would like to express my deepest gratitude to Dr. Christoph Frei,
Dr. Ivan Mizera, Dr. Adam Kashlak, Dr. Guozhong Zhu for being my thesis
examining committee members and for going over my thesis.

Fourth, I would love to thank Dr. Adam Kashlak who kindly shared the R
codes of concentration inequality-based estimation method with me, and even
added comments in the codes in order to help me understand them better.

Fifth, I would love to thank Wei Tu, a Ph.D. candidate, who gave me large
amount of insightful suggestions during my research, and also my dear friends,
Dong Yang, Sile Tao, etc., for supplying me useful suggestions on my thesis
writing.

A very special word of thanks goes for my parents, Shuying Wang and
Ping Fu, my grandparents, Xinzhu Chen and Bangfu Wang, and my partner

Nicholas Dombrosky for their love and support.

v



Table of Contents

1 Introduction
1.1 Functional Brain Connectivity . . . . . . .. .. ... .. ...
1.2 Contributions . . . . . . . . ..

2 Methodology
2.1 Low Rank plus Sparse Matrix Decompositions . . . . . . . ..
2.2 Functional Brain Connectivity . . . . . .. .. ... ... ...

2.3 Detecting Group Differences . . . . . . ... ... ... ...,

3 Numerical Study on ADNI Dataset
3.1 Data Description . . . . . . ... ... 0.
3.2 ADNI Data Results . . . . ... ... .. ... .. .......

3.3 Comparison and Discussion . . . . ... .. ... ... ....
4 Conclusion and Future Work
Bibliography

Appendices

11
12
16
21

23
24
26
36

50

52

60



List of Tables

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

Percentage of Significant Connections. . . . . . . ... .. .. 41
The First 10 Most Significant Pairs for Sparse Correlation Based

on Low-rank Matrices. . . . . . . . ... .. ... ... ..., 42
The First 10 Most Significant Pairs for Concentration Inequality
Based Estimation Method Based on Low-rank Matrices. . . . 43
Overlap Rate (%). . . . . .. ... ... . ... ... .. 46
Overlap Rate for Different Threshold Value for Correlation Method. 47
Overlap Rate for Different Threshold Value for Sparse Correla-

tion Method. . . . . . . . ... o 47
Overlap Rate for Different Threshold Value for Sparse Covari-

ance Estimation. . . . . . .. ... .00 48
p Value Matrices Scheme. . . . . . . . ... .. ... ... .. 49
Variance Comparisons of Percentages of Significant Connections

for 50 Times Bootstrapping (unit: x1074). . . . . .. .. ... 49

vi



List of Figures

1.1
1.2
1.3
1.4

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

fMRI Device (Model: Siemens Skyra). . ... ... ... ...
Task-based BOLD Signals. . . . . . ... ... ... ......
Resting-state BOLD Signals. . . . . . ... ... ... .....

Functional Brain Connectivity Construction Process. . . . . .

Automated Anatomical Labeling Atlas. . . . . . .. ... ...
Flow Process for Functional Brain Connectivity Construction
in Our Study. . . . . .. ... .
Connectivity Selection Results for Control Group from Corre-
lation with Thresholding. . . . . . . . .. .. ... ... ....
Connectivity Selection Results for AD Group from Correlation
with Thresholding. . . . . .. ... ... ... ... ... ...
Connectivity Selection Results for Control Group from Partial
Correlation with Thresholding. . . . . . . ... ... .. ...
Connectivity Selection Results for AD Group from Partial Cor-
relation with Thresholding. . . . . . . . ... ... . ... ...

Connectivity Selection Results for Control Group from GLasso.

Connectivity Selection Results for AD Group from GLasso. . .
Connectivity Selection Results for Control Group from Sparse
Covariance Estimation Method. . . . . . . ... ... ... ..
Connectivity Selection Results for AD Group from Sparse Co-
variance Estimation Method. . . . . . . . . .. ... ... ...
Significant Connection Location Detecting for Sparse Correla-
tion Method. . . . . . . . .. ... .. o
Significant Connection Location Detecting for Sparse Covari-
ance Estimation Method. . . . . . . . . ... .. ... ... ..
Overlap Rate for Different Threshold Values. . . . . . . . . ..

vil

S Ot Ot

27

28

29

30

31

32

34

35

37

38

43



Chapter 1

Introduction

1.1 Functional Brain Connectivity

Human brain is a very complex and efficient network, which consists of a
great amount of interlinked brain regions. Each of them has their own function,
but also constantly shares information with one another. Hence one complex
integrative network is formed where information processing and transportation
happens among those interlinked brain regions, which is critical for human be-
ing’s cognitive functioning [53]. The functional integration of specific brain
arcas has proven hard to evaluate. However, functional brain connectivity is
one approach to assess it. Functional brain connectivity is defined as the cor-
relations between measurements of neuronal activity in different brain areas
[28]. In practice, function brain connectivity can be evaluated by functional
neuroimaging, where functional brain connectivity represents the functionally
integrated relationship between the neuronal activation patterns of spatially
separated brain regions. It embodies the level of functional information ex-

changes among brain regions [53].



Scientists and researchers have verified that many diseases are associated
with changes in brain connectivity, such as Autism, Attention-deficit hyper-
activity disorder (ADHD), and Alzheimer’s disease (AD) [23, 37, 52]. Hence
studying functional brain connectivity is of great importance and advantage for
us to better understand the mechanisms of human brain and related discases.

The advanced non-invasive functional brain imaging techniques play an im-
portant role in understanding large-scale functional brain connectivity. Over
the last several decades, functional neuroimaging techniques have greatly de-
veloped. In particular, the available methods for today’s researchers include
Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI),
Electro-encephalography (EEG), Magneto-encephalography (MEG), etc. [39].
Among those, MRI has proven to be able to supply extremely versatile human
body image. The first MRI body scan of a human was performed in 1977 by
Raymond Damadian along with Larry Minkoff and Michael Goldsmith, which
took five hours with low-quality image. Since then, the resolution and speed
of MRI have been significantly boosted. The developments in scanner tech-
niques have enabled the acquisition of very fast and approximate real-time
MRI imaging. Recently a few new MRI methods have evolved, including func-
tional MRI (fMRI), diffusion tensor imaging (DTI), and magnetic resonance
spectroscopy (MRS) to provide useful functional information for clinical and
research purposes [18].

Functional Magnetic Resonance Imaging (fMRI) is a promising develop-
ment in MRI, and has become increasingly popular over recent years. It utilizes
magnetic changes between oxygenated and deoxygenated hemoglobin during
neuronal activation and rest in the brain [29]. The neural activity in the brain

is observed through imaging blood flow changes which results in a so-called



“blood-oxygen-level dependent” (BOLD) signal change measured by fMRI.
BOLD contrast method, discovered firstly by Seiji Ogawa, is the most common
used measure of neural activity in the brain so far [5, 18]. These small changes
are detected as minute distortions in the magnetic field by fMRI and employed
to generate functional images reflecting brain activity [29]. During the fMRI
scanning, the subject is placed into a cylindrical magnet machine with strong
and homogeneous magnetic field. The proton nucleus of the hydrogen atom
align themselves under the field and achieve a thermal equilibrium, hence the
subject is magnetized. Then the machine applies a brief radio frequency elec-
tromagnetic pulse for disturbing the equilibrium, such that the proton nuclei
become out of alignment. After ending the radio pulse, the proton nuclei fall
back in line and release radio signals, which are detected and hence formed an
image [17].

fMRI has two categories, task-based and resting state. Resting state func-
tional magnetic resonance imaging (rs-fMRI), or taskless fMRI, is a method
of functional magnetic resonance imaging that allows investigators to assess
brain functional connectivity in a resting or task-negative state in the clinical
setting. Doctor Biswal and his colleagues firstly stated that human beings’
left and right hemispheric regions are not silent under resting states, instead,
they illustrate a high correlation between functional MRI BOLD time-series
[11, 12]. During resting state fMRI scan, the subjects were asked to relax and
think nothing whilst their spontaneous brain activities were evaluated, thus
the spontancous functional MRI time-series were generated [53].

Figure 1.1 illustrates the fMRI device (model: Siemens Skyra) [2]. During
the fMRI scanning, the subject is placed into the cylindrical magnet machine

with strong and homogeneous magnetic field. The neural activity in the brain
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Figure 1.1: fMRI Device (Model: Siemens Skyra). During the fMRI scanning, the
subject is placed into the cylindrical magnet machine with strong and homogeneous
magnetic field. The neural activity in the brain is observed through imaging blood
flow changes. These small changes are detected as minute distortions in the mag-
netic field by fMRI and employed to generate functional images.

is observed through imaging blood flow changes. These small changes are
detected in the magnetic field by fMRI and employed to generate functional
images. Figure 1.2 and Figure 1.3 show task-based and resting state BOLD
signals that fMRI machine picks up, respectively [26].

In order to build functional brain connectivities based on fMRI data, nor-
mally we first identify functional “nodes”. Spatial regions of interest (ROIs)
method is one simple way to define nodes for the case of fMRI. When we per-
form brain connectivity studies, we commonly employ clusters of neighboring
voxels or ROIs. An average BOLD signal time series is normally treated as
representative of each ROI as for the most brain connectivity studies we only
consider one signal for each region of input [46, 49]. Graph analysis enables us
to explore complex systems described by pairwise connections between brain

regions and the structure of functional connectivity [48]. In the field of graph
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Figure 1.2: Task-based BOLD Signals. A simple task paradigm requires the subject
to open and close eyes, and the resulting changes in neuronal activity are measured.
The paradigm is shown in blue (delayed to account for the haemodynamic response).
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Figure 1.3: Resting-state BOLD Signals. During resting state fMRI scan, the sub-
ject is asked to relax and think nothing whilst their spontaneous brain activities are
evaluated, thus the spontaneous functional MRI time-series are generated.

theory [13], a graph consists of the nodes and edges. To study the brain con-
nectivity networks’ structure, ROIs can be treated as nodes and connections as
edges. No connection means the two ROIs are conditionally independent with
each other. Once the nodes are defined, then the connections between two
nodes can be treated as edges. Thus we can conduct a connectivity analysis
among ROIs [50].

Figure 1.4 shows us generally there are four steps to construct functional
brain connectivity. For each subject, the brain fMRI images (Figure 1.4 a) were
parcelled in to ROIs using Automated Anatomical Labeling (AAL) template
(Figure 1.4 b). Time courses in each region of interest were then extracted.
Various methods can be applied to build functional brain connectivity, for

example correlation, partial correlation, and Graphical Lasso. If we choose
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Figure 1.4: Functional Brain Connectivity Construction Process. When constructing
functional brain connectivity, the brain fMRI images (a) were first parcelled in to
ROIs using Automated Anatomical Labeling (AAL) template (b). After building the
function brain connectivity, the correlation matriz for each subject was derived (c).
By enforcing sparsity using threshold, the functional brain connectivity was obtained

(d).
correlation method, then we calculated the Pearson correlation coefficient be-
tween each ROI pair of different time courses, which stands for the strength
of the corresponding connectivities. Hence we derived correlation matrix for
each subject (Figure 1.4 ¢). Through setting up the reasonable hard threshold
value for the correlation matrix, we obtained the functional brain connectivity
(Figure 1.4 d) [41].

Once we build the functional brain connectivities for both normal group
and disease group, we can conduct the comparisons in order to identify the
group differences, which is essential for uncovering underlying neurological

processes associated with the corresponding disease. Recently, there are lots



of studying focusing on studying group differences in functional brain connec-
tivity such as [36, 45, 56]. Detecting group differences for specific diseases
associated with functional brain connectivities is critical for both research and
clinical uses.

Due to scanner stabilities, acquisition, or issues in the underlying bio-
medical experimental protocol, however, fMRI BOLD signals might contain
outliers [44]. The presence of potential outliers might lead to unreliable re-
sults in constructing functional brain connectivities. Another challenge of
most existing connectivity construction methods is that the results could be
unstable, for example, small changes in the sample will result in significantly
different connectivities. In order to deal with these challenges, we proposed
a framework which enables us to provide robust and stable connectivities. In
particular, a low-rank plus sparse (L +5) matrix decomposition technique was
adapted to decompose the resting state fMRI BOLD signals, where the low-
rank matrix L recovers the essential common features from regions of interest
(ROIs), and the sparse matrix S catches the sparse individual variability and
potential outliers. Based on the decomposition, various methods can be ap-
plied to construct functional brain connectivities, such as correlation, partial
correlation, Graphical Lasso and others. In this thesis, we proposed to use
the recently developed novel sparse matrix estimation based on concentration
inequality, which is proved to have superior performance than other methods.
Statistical test for each ROI connection was implemented for differentiating
group difference. Through bootstrapping afterwards, we verified that per-
forming low-rank plus sparse matrix decomposition can achieve more stable
results.

In our study, in order to implement low-rank plus sparse matrix decom-



position method, we employed Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data for Alzheimer’s disease (AD). The recent research has shown
that Resting-state functional magnetic resonance imaging (rs-fMRI) can sup-
ply the evidence that indicates functional brain connectivities are associated
with Alzheimer’s disease [35]. Therefore in our study we utilized resting-state

functional magnetic resonance imaging data from ADNI study.

1.2 Contributions

Functional brain connectivity plays an important role on understanding
how human brain functions and paving a path to reveal the mechanisms of
neuropsychological diseases such as Autism, Attention-deficit hyperactivity
disorder (ADHD), and Alzheimer’s disease (AD). Functional Magnetic Res-
onance Imaging (fMRI) is one of the most powerful techniques to construct
functional brain connectivity. However, the presence of potential outliers in
fMRI BOLD signals might lead to unreliable results in construction. Another
challenge of most existing connectivity construction methods is that the re-
sults might not be stable, for example, small changes in the sample will result
in significantly different connectivities.

To deal with challenges, we proposed a framework which enables us to
provide robust and stable connectivity. In particular, a low-rank plus sparse
(L+S) matrix decomposition technique was adapted to decompose the resting
state fMRI BOLD signals, where the low-rank matrix L recovers the essen-
tial common features from regions of interest (ROIs), and the sparse matrix
S catches the sparse individual variability and potential outliers. Based on

decomposition, various methods can be applied to construct functional brain



connectivity, such as correlation, partial correlation, Graphical Lasso and oth-
ers. However, we proposed to use the recently developed novel sparse matrix
estimation based on concentration inequality. Statistical test for each ROI
connection was implemented for differentiating group difference. Through
bootstrapping afterwards, we verified whether performing low-rank plus sparse
matrix decomposition can achieve more stable results.

We applied our method on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data, and compared the results with those based on original BOLD
signals. We discovered that the methods for building connectivities based on
low rank matrices behave better than based on original BOLD signals, in the
sense that the former can reveal and identify more significant ROI connec-
tions. Hence this suggests that when we study group difference for functional
brain connectivity, performing low-rank plus sparse matrix decomposition can
achieve more differentiable results, which can contribute to uncovering un-
derlying neurological processes associated with the disease for clinical use.
We found that the recently proposed concentration inequality based method
performs better overall compared with correlation, partial correlation, and
Graphical Lasso method. We also obtained the first ten most significant con-
nections for differentiating group differences for Alzheimer’s disease. Among
them, the left hippocampus region and the left cerebellum 7 region is the most
significant one, with p value smaller than 0.0005, which is consistent with exist-
ing literatures’ findings. Through bootstrapping, we verified that performing
low-rank plus sparse matrix decomposition can achieve more stable results for
constructing functional brain connectivities.

The thesis is organized as below. In Chapter 2, we introduced low rank

plus sparse matrix decomposition first. Then we introduced the sparse matrix



estimation based on concentration inequality for constructing functional brain
connectivity. To facilitate the comparisons, we introduced correlation, partial
correlation and Graphical Lasso for construction as well. Subsequently, we
elaborated the methods for detecting group differences. In Chapter 3, we first
introduced data description. We then applied our method on ADNI data and
compared the results with those based on original BOLD signals. Through
bootstrapping we analyzed stability property. The conclusion and potential

future work were given in Chapter 4.
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Chapter 2

Methodology

In our study, we first performed low-rank plus sparse matrix decomposi-
tion to our original fMRI BOLD signals. Then we constructed the functional
brain connectivities using the recently proposed novel concentration inequality
based estimation method. To facilitate the comparisons, we utilized correla-
tion, partial correlation and Graphical Lasso methods for construction as well.
Subsequently, we implemented statistical test for each ROI connection to re-
veal and identify the underlying group differences. After getting the p value
matrices based on both original BOLD signals and low rank matrices, we cal-
culated the percentage of significant connections and compared the results.
We also obtained the first ten most significant connections for differentiating
group differences for Alzheimer’s disease. Then we defined and calculated the
overlap rate in order to see whether performing low-rank plus sparse matrix
decomposition can keep some level of consistency compared with when using
original BOLD signals. Lastly we implemented bootstrapping. By calculating
the variances for percentages of significant connections in p value matrices for

50 times resampling, we explored whether performing low-rank plus sparse ma-
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trix decomposition can achieve more stable results for constructing functional

brain connectivities.

2.1 Low Rank plus Sparse Matrix Decompo-
sitions

Matrix decomposition is an important topic and has wide applications in
many scientific and engineering problems. Various matrix decomposition tech-
niques have been developed, such as LU Decomposition, QR decomposition,
singular-value decomposition (SVD) [6]. Low-rank plus sparse matrix decom-
position is one of them. It originates from robust principal component analy-
sis. Principal component analysis (PCA) is a powerful data analysis tool for
drastically reducing the dimension of large datasets, which tries to find a low
rank subspace that approximates the original data matrix best and increase
the interpretability, but at the same time preserve the information from the
data as much as possible. However, the nature of PCA means it is sensitive
to the outliers. Hence we would like to develop methods which are able to
extract the principal components even in the presence of outliers in the data,
therefore enhance the robustness to outliers. This led researchers to explore
various robust PCA methods [32].

Robust principal component analysis (RPCA) is a promising framework for
dealing with this task. Early attempts to solve the RPCA problem have been
conducted [19, 20, 21, 22, 59]. However they could not achieve polynomial
time solutions with high performance. A more recent version of Robust PCA

becomes increasingly popular [33]. Low-rank plus sparse (L + S) matrix de-
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composition is sometimes also referred to Robust PCA. The recovery of both
low-rank and sparse matrices is of great interest in many applications, such as
imaging processing and bioinformatic data analysis [42].

The straightforward formulation for this problem is to employ lg-norm to

solve

min rank(L) + X [| S ||o,

subject to L + .S = M,

where M is a m X n matrix to be decomposed, L is a low-rank matrix, S
is a sparse matrix, ||-||, is the lp-norm and A is a nonnegative tuning param-
eter. But this optimization problem is not convex and NP-hard. Hence it
was suggested [16] that we can approximate this problem by a convex opti-
mization problem, which is to minimize a combination of the /1 norm of S
and the nuclear norm of L [57]. This essentially is the low-rank plus sparse
(L + S) matrix decomposition. Specifically, the low-rank plus sparse matrix

decomposition can be expressed as

min || L |l +A 15 s, (2.1)

subject to L + .S = M,

where |[|-||, is the nuclear norm (sum of all singular values), ||-||, is the {1-norm,
and A is a nonnegative tuning parameter. The choice of X is a trade-off between
the low rank and the sparsity. For example, smaller A\ can enforce lower rank
for L, but relax the sparsity for S. It was shown that mathematically a whole
range of A values can ensure the exact recovery of both low-rank and sparse

matrices [16].
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There are some existing algorithms which can solve this problem computa-
tionally, such as Accelerated Proximal Gradient (APG), Augmented Direction
Method (ADM), Augmented Lagrange Multiplier (ALM), etc. [14]. In this
thesis we used ALM method which achieves the complexity as O(mn min(m,n)),
where m, n are the number of rows and columns of the decomposed matrix [42].
The R package for ALM is available online.

In the framework of ALM, the target is to solve the following optimization

problem with the constrain,
min f(X), s.t. A(X) =0,

where f : R" — R and h : R® — R™. In ALM, an augmented Lagrangian

function is needed, which is defined as
1
LX,Y, p) = F(X)+ < Y h(X) > +5 [| (X)) [[F (2.2)
where 41 is a positive constant. Under the framework of RPCA,

X =(L3S), f(X)=||LI«+M]| S|, and h(X)=M —L—5.

The corresponding Lagrangian function is

L(L,S,Y,u)=|| L. +A]| S|+ <Y, M—L_S>+‘§‘ |M—L—S|>%.

The ALM algorithm for solving RPCA problem in (2.1) is shown in Algo-
rithm 1 [42].

In this thesis, we applied the low-rank plus sparse (L+.S) matrix decompo-
sition to the original fMRI BOLD signals. More specifically, let Xy w7y s = Zit;

be a 3 dimensional matrix where i represents the i-th subject (i = 1,...,N), ¢

14



Algorithm 1 Augmented Lagrange Multiplier (ALM)

Input: Observation matrix M € R™*" \.
LYy =sgn(M)/J(sgn(M)); po > 0; p>1; k= 0.
2: while not converged do

3:

8:
9:
10:
11:
12:
13:

14:
15:

//Lines 4-12 solve (Lj,,,Si,,) = ar%lginL(L, S, Y ).

Lg-ﬁ-l = szslg-f—l = Slt'vj = 0;
while not converged do 4
//Lines 7-8 solve Li*] = argininL(L, St Yo )

(U.D,V) = svd(M = S, + ' Y{);
Ly =UD,[DIVT;

k+1
//Lines 10 solve {1} = argéninL(Lﬂll, S, Y k).

Si = Dy [M = LI+ 'Yy,
Jj<J+1L
end while
Vi =Y+ fe(M — Lii1 — Sl:—i-l)-
update py to pigas-
k<« k+ 1.

16: end while
Output: (L, S)).

15



is the ¢t-th time course(t = 1,...,T), and j is the j-th ROI(j = 1,...,J). Then
for each fixed ROI, we conducted low-rank plus sparse matrix decomposition
to each Xyxr matrix. Thus we derived a new 3 dimensional matrix denoted
as Lnxrxs = lij. Then we built functional brain connectivity based on each
Ly 5. Here Xy« matrix is equivalent to M matrix, Ly« is equivalent to L

matrix and N and 7" are corresponding to m and n in (2.1) respectively.

2.2  Functional Brain Connectivity

In the thesis, we constructed the functional brain connectivities by utilizing
the recently proposed novel concentration inequality based estimation method
of sparse covariance matrices. In order to facilitate the comparisons, we also
employed correlation, partial correlation and Graphical Lasso methods for
construction.

Estimation of covariance matrices is an important topic. It can be uti-
lized on lots of applications for genetics, imaging and other types of data.
Many estimators of covariance matrix have been explored working under the
assumption of sparsity, which is desirable and applicable in real data analysis
especially in high dimension settings since many variable pairings might be
considered uncorrelated. Shrinkage estimators, and thresholding estimators,
for example, are two classes for sparse estimators of covariance matrix.

Let vectors X1, -- Xp € R’ be a sample with mean zero and covariance
matrix ¥, and S is the empirical estimate of ¥ for each subject. When the
dimension J is large and X is sparse, S might not be a good estimator. To con-
struct a better estimator, a novel approach is recently proposed making use of

confidence sets constructed from concentration inequalities for nonasymptotic
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covariance matrix estimation. Let 3% be the sparse estimator for Y. This
method chooses a 3% such that it is close enough to S while it lies far enough
away to result in a sparse estimator. This novel concentration inequality based
method supplies finite sample guarantees and a much faster computing time
compared with costly optimization and cross validation methods [34].

The sparse estimation procedure aims at constructing a sparse estimator
S5 for ¥ by constructing a nonasymptotic confidence set first employing con-
centration inequalities for ¥ based on S, and searching this set in order to
obtain the sparsest estimator. The general form for the concentration inequal-

ities is
P(d(%,S) > Ed(%,S) +r) <e ),

where 1 : R — R is a monotonically increasing function, and d(-) is some
metric measuring the distance of two covariance matrices. To construct a

1 — « confidence set, r = r, is chosen such that

exp(=¢(ra)) = a.

The smaller « is, the larger 7 is. Our sparse estimator 2 is expected to
be close to X in the sense of the above confidence set, and thus we focus on

choosing a 3% such that
A2, 8) < rq.

It begins with S and attempts to threshold it as much as possible while still
remaining in the confidence set.
First, we define a generalized thresholding operator [47] as sy(-) : R — R

such that

17



| sx(2) |< z, s:(2) =0 for | z |[< A, and | s5(2) — 2 |< A,

which will apply to each single element of a matrix. In the past this estimator
was applied to S for some A chosen by cross validation. Instead of choosing
the threshold )\, this approach tries to choose a confidence level 1 —« and then
seek for the largest A such that d(s,(S5),S) < r, [34].

The algorithm for how to derive the sparse covariance matrix estimation

is shown in Algorithm 2 [34].

Algorithm 2 Concentration Inequality Based Estimation of Sparse Covari-
ance Matrices
0. Set 3 = (3diag)~1/25(53diag)=1/2 X = 0.5 and write 57 = 5,(5). Define
k = 1 as the number of the recursion’s steps. Choose an « and compute r,.
1. Increase k < k + 1, then update the threshold A as below:
if d(2 —S) < r,, then
let A\ < \+ 27+,
else
let A < A\ — 27+,
end if
2. Repeat step 1 until k& has gotten to the desired number of iterations.
Usually £ = 10 would be enough for us. A
3. The resulting sparse estimator is £ = (5%499)1/2(337)(334499)1/2 where

¥ is our final sparse estimator.

In our study, we employed the operator norm || f]ip — S || as the distance
metric d(-,-). We chose reasonable false positive rate « in order to get the
reasonable sparsity for the estimation of sparse covariance matrices. Once we
obtain the sparse covariance estimation, we can calculate the corresponding
correlation matrix as functional brain connectivity.

To facilitate the comparisons, we also employed correlation, partial corre-
lation and Graphical Lasso methods for constructing the connectivities in our
study. Pearson’s correlation between two ROIs is used in lots of studies for

building functional brain networks and connectivity, due to the fact that it is
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not hard to compute using a sample covariance matrix [36]. One disadvantage
for Pearson’s correlation, however, is that if the correlation between two nodes
is caused by a third node, we would not be able to see if the direct functional
connection between these two nodes exists. To overcome this limitation, par-
tial correlation has been adopted [30]. The partial correlation conditions on
the other regions. Specially, two regions of interest are considered condition-
ally independent under the Gaussian assumption if partial correlation equals
zero. When estimating partial correlations, a precision matrix (or inverse
covariance matrix) can be used [36]. After obtaining correlation or partial
correlation matrices, we select hard threshold values such that these matrices
can be as sparse as we expect. Thus the functional brain connectivities are
estimated by the thresholded correlation or partial correlation matrices.

The correlation between two ROIs can be calculated based on a sam-
ple covariance matrix. Specifically, let the matrix M. be the i-th sub-
ject’s BOLD signals or low-rank matrix from decomposition, and each column
M,,---Mr € R7 . Then the sample covariance matrix can be derived from
S =8y = (T=1)"" S22 (M;— M) (M;—M)T, where M = T~ Y"1, M;. Then
the full correlation between the p-th ROI and the ¢-th ROI can be estimated

as

1
Toq = Spa/ (SppSeq)?-
Define the precision matrix 6,, = (,,) = X!, where I is covariance

matrix, then the partial correlation between the p-th ROI and the g-th ROI is

Ppq = _epq/(eppeqq)%-

If the number of ROIs is relatively large, then our derived correlation and

partial correlation matrices would be also relatively with high dimensions.
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In practice, the fact is for the most of time we might only be interested in
selecting those connection pairs with larger correlation coefficient values, which
means they have stronger connections compared to the others. In order to
achieve this goal, we apply thresholding values to both correlation and partial
correlation matrices [15, 24]. In this way we would get sparse correlation and
partial correlation matrices, which would help us focusing on the relatively
more important connections among those ROIs.

Let R = (ri;)sxs be the sample correlation matrix, and let 7 be the rea-
sonable pre-specified thresholding value. Then we enforce the thresholding
value to all the off diagonal clements of our correlation matrix to get the cor-

responding sparse correlation matrix R, i.e. for the (i, j)-th element of R,

o 1, 1=

(i4) — :
T’ljl{quj |> ’7'}, Z?é]

When 7 = 1, it is an identity matrix, while when 0, it is the original sample
correlation matrix as we do not apply any thresholding. The same thresholding
method was also applied to the estimated partial correlation matrices in the
thesis.

We also utilized Graphical Lasso for construction. Denote ¢(v,e) as a
Gaussian graphical model, which is composed of nodes v = {1,2,...,p} and
edges ¢ C v X v. Any edge (i,7) € ¢ illustrates that the i-th ROI and j-th
ROI are statistically dependent conditional on all the other nodes. Then any
nonzero entry in the precision matrix © implies that these two ROIs have
direct relationship while building functional brain connectivity [45].

A precision matrix can be used for estimating partial correlation. Natu-
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rally if we take the inverse of sample covariance matrix, the estimated precision
matrix will be not sparse. Also, the estimate of inverse covariance in a high
dimensional and relatively small number of observations setting can have sin-
gularity problem. Graphical Lasso (GLasso) [27] is a regularized method which
enables us to obtain sparse precision matrix estimation by /1 norm regulariza-
tion. We can achieve desired sparsity through tuning parameter p.

The Graphical Lasso problem is to maximize the [1-penalized Gaussian

log-likelihood

log(det ©) — tr(SO) — p 1O, , (2.3)

over nonnegative definite matrices @, where © = ¥ ~!, tr denotes the trace,
S is the sample covariance matrix, p is a nonnegative tuning parameter, and
6|, is the {; norm, the sum of the absolute values of all the entries of X~
[27]. When p is 0, then there is no penalty. When p is sufficiently large, the
estimate © will be sparse due to the lasso-type penalty. The problem (2.3)
was shown to be convex [10].

In our study, Graphical Lasso was conducted to obtain the estimated sparse
precision matrix automatically due to the method as functional brain connec-

tivity. The value p in (2.3) was chosen to get the reasonable sparsity.

2.3 Detecting Group Differences

In our study, in order to detect group differences in functional brain con-
nectivity, we conducted two sample T statistical test to test whether there

is any difference for each single ROI connection between control group and
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disease group. Theoretically, if we have J ROIs, then we have J(J — 1)/2
total connections. Suppose a connectivity matrix Cf,ii ; for i-th subject can be
denoted as (cz(,i,zl), where cz(,i,z] represents the connectivity metric of the p-th ROI
and ¢-th ROI,p=1,2,---,J,and ¢ = 1,2,--- , J (for example, for correlation

method, it is the correlation coefficient). Then for each single ROI pair c,(f); of

matrix C’f;i 7 » we will have one group of values: cﬁ,}g, (31(33, e c%l) from control

group and another group of values: c},l,g, c,(fg, e c,(){Yf) from disease group. Then
we can conduct two sample 7' statistical test for each single connection ¢, ,
of p-th ROI and ¢-th ROI, to test whether there is any difference for each
single connection between control group and disease group. Afterwards we
can generate a p value matrix Py, ; = (p,4), where p,, is the corresponding p
value for T statistical test for the connection c,, between control group and
disease group, p = 1,2,---,J, and ¢ = 1,2,--- ,J. In the following analysis,
we ignored the diagonal elements since they do not make any sense, and also

only focused on the elements in upper triangle since it is symmetric.
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Chapter 3

Numerical Study on ADNI

Dataset

In this chapter, we adapted the low-rank plus sparse matrix decomposition
technique to decompose the resting state fMRI BOLD signals from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data. Then we constructed the func-
tional brain connectivities using correlation, partial correlation, Graphical
Lasso, and the concentration inequality based estimation method, based on
both original BOLD signals and low rank matrices from decomposition, re-
spectively. Subsequently, we implemented two sample T statistical test for
each ROI connection to get the p value matrices for both original BOLD sig-
nals and low rank matrices. We also obtained the first ten most significant
connections for differentiating group differences for Alzheimer’s disease. We
then defined and calculated the percentage of significant connections and com-
pared the results. After that, we defined and calculated the overlap rate in
order to see whether performing low rank plus sparse matrix decomposition

can keep some level of consistency compared with when using original BOLD
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signals. Lastly we implemented bootstrapping and then calculated the vari-
ances for percentages of significant connections in p value matrices in order to

analyze stability property of our method.

3.1 Data Description

We applied our method on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data. Hence we first reviewed the Alzheimer’s Disease and ADNI. In
history, Alzheimer’s disease (AD) was first diagnosed by Dr. Alois Alzheimer
in 1906 [38]. Alzheimer’s disease is a chronic irreversible neurodegenerative
disease which can result in a loss of cognitive functions. It is the most common
cause of late life dementia that causes problems such as memory loss, slowed
thinking, personality changes and behavior changes, which accounts for 60% to
80% of dementia cases. Alzheimer’s disease usually progresses very slowly and
gradually worsen over a number of years, becoming serious enough to interfere
with people’s daily life. It typically develops gradually in three stages: mild
(early stage), moderate (middle stage), and severe (late stage) [4]. Alzheimer’s
disease is not a part of normal aging, but the most significant known risk
factor for Alzheimer’s is increasing age. The majority of people diagnosed
with Alzheimer’s disease are older than age 65. However it can occur in people
younger than 65, which is much more rare [9)].

Alzheimer’s disease is recognized as a major public health problem, as it
eventually affects every aspect of people’s life. In 2006, 26.6 million people in
the world suffered from Alzheimer’s disease [43].The World Health Organiza-
tion estimated that the prevalence rate of Alzheimer’s disease in the overall

worldwide population would increase to 0.556% in 2030. Another study reck-
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oned in 2006, there were 0.4% of the worldwide population suffering from the
Alzheimer’s disease, and this number would triple by 2050 [55].

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [1] *is a global
longitudinal study for AD through the enrollment and follow-up of cohorts of
individuals who have mild cognitive impairment (MCI) and mild Alzheimer’s
disease. It is jointly funded by FNIH (Foundation for the National Institutes
of Health), alzheimer’s & association, abbvie, etc. The study is designed for
the detection at the earliest possible stage and tracking the progression of
Alzheimer’s disease with biomarkers to assess the brain structure and the brain
function. The participants enrolled by ADNI were between 55 to 90 years of
age, selected based on the particular criteria, and recruited at the 57 ADNI
acquisition sites located in the United States and Canada. The five cohorts
in this study are Normal Control (CN), Significant Memory Concern (SMC),
Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment
(LMCI), and Alzheimer’s Disease (AD), respectively. The selected subjects
undergo clinical, imaging, genetic, and also biochemical biomarkers at multiple
time points [1, 7].

The general goals of the ADNI study are for validation of biomarkers’
data for the trials’ use in the illness clinical treatment and assessments, for
exploring methods for obtaining data and analyzing neuroimaging data in
longitudinal studies for clinical trials on patients with normal controls, mild

cognitive impairment, and Alzheimer’s disease, for making data repository

*Data used in preparation of this thesis were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the in-
vestigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in the analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply /ADNI_Acknowledgement_List.pdf

25



accessible for other researchers and communities, and for developing technical
standards of imaging in longitudinal studies [1, 31].

In this study, we employed a subset of the resting-state fMRI ADNI data
which includes 57 subjects from two cohorts, one is 33 subjects from Nor-
mal Control group, and the other one is 24 subjects from Alzheimer’s Dis-
ease group. The resting-state fMRI data were preprocessed using Automated
Anatomical Labeling (AAL) template [51]. AAL is an anatomical atlas of to-
tal regions of interest obtained on one subject. The AAL template is broadly
employed in functional neuroimaging research, including resting-state fMRI.
It aims at deriving neuroanatomical labels in a space where the measurements
of brain function were captured [51]. Figure 3.1 shows us an AAL atlas [40].
The non-overlapping regions of interest were then extracted for each subject.
For each subject, each time-series and ROI were computed through averag-
ing all the voxels’ time series within the ROIs [48]. Hence each subject has
BOLD signal data at 116 ROIs through 134 equal spaced time courses. Also
the demographic and clinical information of 57 subjects were collected, which
consist of ID, gender, age and diagnostic information. For the variable gen-
der, 0 represents female and 1 male. For diagnosis (DX), 0 stands for Normal
Control(CN), and 4 Alzheimer’s Disease (AD). All subjects had 1.5 Tesla and
3 Tesla scans by Philips scanners, having their eyes open when receiving the

scanning [3].

3.2 ADNI Data Results

In this paper we utilized Augmented Lagrange Multiplier (ALM) [16] method

for our low-rank plus sparse (L+S) matrix decomposition. We conducted low-
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Figure 8.1: Automated Anatomical Labeling Atlas. It is broadly employed in func-
tional neuroimaging research, including resting-state fMRI. Different colors repre-
sent different regions.

rank plus sparse decomposition to the original BOLD signals for each ROI.
Specifically we employed A\ = 0.086 in our work such that the rank of the
matrices Lyyxr was reduced to around 30, approximately half as much as
the original rank 57 of the decomposed matrix Xyx7. Then we constructed
functional brain connectivities using correlation, partial correlation, Graphi-
cal Lasso, and the concentration inequality based estimation method, based on
both original BOLD signals and low rank matrices respectively. The process
is illustrated in Figure 3.2.

We first conducted correlation and partial correlation based on both the
original BOLD signals and low rank matrices. We set the reasonable hard
threshold value 0.4 for correlation for both cases, 0.8 for partial correlation
based on original data matrices, and 0.2 for partial correlation based on low
rank matrices, in order to derive the sparse connectivity selection results. Fig-
ure 3.3 and Figure 3.4 are connectivity selection results for correlation, and
Figure 3.5 and Figure 3.6 for partial correlation. From here onwards, in all
the graphs for indicating connectivity matrices, dark blue dots represent the

nonzero elements of connectivity matrices and white dots mean entries with
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Original BOLD signals Low rank matrices
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brain connectivity by brain connectivity by
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Figure 38.2: Flow Process for Functional Brain Connectivity Construction in Our
Study. We conducted low-rank plus sparse decomposition to the original BOLD
signals, then constructed functional brain connectivities based on both original BOLD
signals and low rank matrices respectively.

zero values.

From Figure 3.3 and Figure 3.4 we can see that the patterns of connectivity
matrices based on both the original BOLD signals and low rank matrices for
either control group subjects or AD group subjects are quite similar. Though
we can also see that for both groups, the correlation matrices based on low
rank matrices after employing thresholding values are slightly sparser than
the ones based on original BOLD signals. This suggests that low rank plus
sparse decomposition method can conservatively pick up those more important
ROIs’ connectivities for sparse correlation method. In other words, low rank
plus sparse decomposition method might still identify the essential common
features while still retaining most of the features.

From Figure 3.5 and Figure 3.6, we can see that for partial correlation

with hard threshold value, the output patterns based on low rank matrices
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Figure 3.53: Connectivity Selection Results for Control Group from Correlation with
Thresholding. The patterns of connectivity matrices based on both original BOLD
signals and low rank malrices for conirol group subjects are quite similar. The
correlation matrices based on low rank matrices after employing thresholding values
are slightly sparser than the ones based 02n9 original BOLD signals.
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method outputs. 31
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keep decent similarity levels as the output based on original BOLD signals,
but less similarity compared with sparse correlation method outputs as shown
in Figure 3.3 and Figure 3.4.

Graphical Lasso was also conducted to obtain the estimated sparse preci-
sion matrix automatically duc to the method. In our study the value p in (1)
was chosen as 0.1 in order to get the reasonable sparsity, and also to achieve
the comparable sparsity with other methods for construction. The results are
shown in Figure 3.7 and Figure 3.8.

From Figure 3.7 and Figure 3.8, we can see that for Graphical Lasso
method, the sparse precision matrices obtained based on low-rank matrices
are less sparser than based on original BOLD signals, if we adopt the same
parameter value when conducting Graphical Lasso. Furthermore, due to the
relationship between the precision matrix and the partial correlation matrix
that was mentioned in section 2.2, we know that if we draw a graph for the
derived sparse partial correlation output based on Graphical Lasso method, it
would be exactly the same as sparse precision matrix shown in Figure 3.7 and
Figure 3.8. Hence we did not demonstrate the corresponding output graphs
for sparse partial correlation based on Graphical Lasso.

We then built the functional brain connectivities using the recently pro-
posed novel concentration inequality based estimation method of sparse co-
variance matrices. We chose false positive rate «=0.35 in order to get the
reasonable sparsity for the estimation of sparse covariance matrices, and also
to achieve the comparable sparsity with other methods for construction. The
sparsity of connectivity matrices for the concentration inequality based esti-
mation method is around 64%. Our sparse estimators 35 results using con-

centration inequality based method for both original BOLD signals and low

33



o o
N N
o o
< <t
o o
(o] <o)
o (=]
[e°] (o}
o o
o o
o L

(a) Control ID 002-4225 based on original BOLD(b) Control ID 002-4225 based on low-rank ma-
signals trix

o o
N N
o o
< <
o o
© el
o o
[ee] [ee]
o o
o o
s —

(c) Control ID 006-4357 based on original BOLD(d) Control ID 006-4357 based on low-rank ma-
signals trix

Figure 3.7: Connectivity Selection Results for Control Group from GLasso. The
sparse precision matrices obtained based on low-rank matrices for control group are
less sparser than based on original BOLD signals.
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Figure 3.8: Connectivity Selection Results for AD Group from GLasso. The sparse
precision matrices obtained based on low-rank matrices for AD group are less sparser
than based on original BOLD signals.
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rank matrices are shown in Figure 3.9 and Figure 3.10.

As is evident from the comparison of Figure 3.3-3.4 and Figure 3.9-3.10, the
sparse correlation method and this novel sparse covariance estimation method
supply consistent connectivity selection outputs for both control group sub-
jects and AD group subjects. This indicates that the recently proposed novel
concentration inequality based estimation method performs well in terms of
the estimation of sparse covariance matrices, for both cases based on original
BOLD signals and low rank matrices. Therefore we declared that this method
supplies us with a novel and efficient way for studying functional brain con-
nectivities. Through controlling the parameter false positive rate a in this
method, we can achieve the desired sparsity for our estimation of sparse co-
variance matrices.

Furthermore, as can be seen in Figure 3.9 and Figure 3.10, the patterns
of connectivity matrices based on both the original BOLD signals and low
rank matrices for both groups are still quite similar, which indicates that
low rank plus sparse decomposition method can identify the essential common
features while still retaining most of features for concentration inequality-based

estimation method.

3.3 Comparison and Discussion

In this section, we first implemented statistical test for each ROI connection
to reveal and identify the underlying group differences. After getting the p
value matrices based on both original BOLD signals and low rank matrices, we
calculated the percentage of significant connections and compared the results.

We also obtained the first ten most significant connections for differentiating
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Figure 3.9: Connectivity Selection Results for Control Group from Sparse Covari-
ance Estimation Method. From the comparison with Figure 3.3, the sparse correla-
tion method and this novel sparse covariance estimation method supply consistent
connectivity selection oulputs for control group subjects. Furthermore, the patterns
of connectivity matrices based on both original BOLD signals and low rank matrices
are still quite similar. 37
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Figure 3.10: Connectivity Selection Results for AD Group from Sparse Covariance
Estimation Method. From the comparison with Figure 3.4, the sparse correlation
method and this novel sparse covariance estimation method supply consistent con-
nectivity selection outputs for AD group subjects. Furthermore, the patterns of con-
nectivity matrices based on both original BOLD signals and low rank matrices are
still quite similar. 38



group differences for Alzheimer’s disease. Then we defined and calculated the
overlap rate in order to see whether performing low-rank plus sparse matrix
decomposition can keep some level of consistency compared with when using
original BOLD signals. Lastly we implemented bootstrapping. By calculating
the variances for percentages of significant connections in p value matrices
for 50 times bootstrapping, we explored whether performing low-rank plus
sparse matrix decomposition can achieve more stable results for constructing
functional brain connectivities.

From the previous outputs and analyses, we have seen that for each single
subject and for each method we employed for construction, we already de-
rived connectivity results based on both original BOLD signals and low rank
matrices. Subsequently we conducted two sample T statistical test for each
single ROI connection, in order to reveal and identify the underlying group
differences between control group and AD group. In our study, we have 6670
total connections ((116 x (116 —1)/2)). T'wo sample T statistical test was im-
plemented to each single connection ¢,  of p-th ROI and ¢-th ROI. Then we
derived the p value matrix with 116 x 116 dimension for each single method we
used, based on both original BOLD signals and low rank matrices. In the fol-
lowing analysis, we ignored the diagonal elements since the diagonal elements
do not make sense, and also only focused on the elements in upper triangle
since it is symmetric. Once we get the p value matrix, we need a reasonable
significant level a. The adjusted p values are normally used in multiple com-
parisons [58]. But in our study we did not employ adjusted p values. The
reason is the overlap rates for significant connection locations based on orig-
inal BOLD signals and low rank matrices start getting stable from threshold

value 0.04 onwards, which we illustrated more in later analysis. Hence, we
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chose 0.05 as the significant level. Figure 3.11 and 3.12 are examples for p
value matrices, where dark blue dots represent the locations for the p values
less than 0.05, which indicates the significant connection locations. The p
value matrices supply us the significant connection locations for differentiat-
ing control group and AD group, which can intensely contribute to uncovering
underlying neurological processes associated with the Alzheimer’s disease for
clinical use.

After getting the p value matrices, we firstly focused on the quantities of
significant ROI connections out of 6670 total connections. That is to say,
we explored how many connections can be considered significant in terms
of distinguishing the differences between normal group and AD group. We
defined and calculated the percentage of significant connections and compared
the results based on both original BOLD signals and low rank matrices. Under
significant level 0.05, we define the percentage of significant connections of p
value matrix as the number of elements smaller than 0.05 / 6670. Then we
have the following comparison results based on both original BOLD signals
and low rank matrices for all the methods we employed in our study, shown
in Table 3.1.

From Table 3.1, we can see that except the correlation method and Glasso
partial correlation method, all the other methods for construction based on
low rank matrices have higher percentage of significant connections than based
on the original BOLD signals. This suggests that the former behaves better
than based on the original BOLD signals, in the sense that it can reveal and
identify more significant ROI connections between the control group and AD
group. Therefore, we verified performing low-rank plus sparse matrix decom-

position can help us achieve more differentiable results for functional brain
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Methods Original BOLD Signals Low Rank Matrix

Correlation 6.3868 6.3718

Sparse Correlation 5.7121 5.9970
Partial Correlation 3.2684 4.5577
Sparse Partial Correlation 3.6732 4.7826
Glasso Precision 4.6927 4.9775
Glasso Partial Correlation 4.7077 4.7077
Sparse Covariance Estimation 5.8321 5.9220

Table 3.1: Percentage of Significant Connections. Almost all the methods for con-
struction based on low rank matrices have higher percentage of significant connec-
tions than based on original BOLD signals. This suggests that the former behaves
better than based on original BOLD signals, in the sense that it can reveal and iden-
tify more significant ROI connections between control group and AD group. Further-
more, the recently proposed concentration inequality based method performs better
overall compared with other methods.

connectivity. Furthermore, we can also see that the recently proposed concen-
tration inequality based method performs better overall compared with other
methods.

Subsequently, we demonstrated the first ten most significant pairs of ROIs
with first ten smallest p value for both sparse correlation method and concen-
tration inequality based estimation, both based on low rank matrices, shown
as Table 3.2 and Table 3.3. These two tables give us the most important ROI
pairs for distinguishing normal subject and AD subject we should pay more
attention to in clinical use. We can also see that the connection between left
Hippocampus region and left Cerebellum 7 region is the most significant ROI
connection for differentiating the normal group and AD group for Alzheimer’s
disease, with p value smaller than 0.0005. Researchers have shown that the
cerebellum has a strong role in higher cognitive functions which include mem-
ory processes, and possibly serves long-term memory encoding and information

storage [25]. It has been also demonstrated that AD patients showed abnor-
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Pair Region 1 Classification ~ Region 2 Classification p value

1 L.HIP Limbic lobe L.CER7 Cerebellum  0.00010
2 L.CER45 Cerebellum VER7 Vermis 0.00045
3 L.MFG Frontal L.IFGtriang Frontal 0.00049
4 R.SFGdor Frontal L.IFGtriang Frontal 0.00062
5 R.ANG Parietal VERS Vermis 0.00096
6 R.INS Insula R.SMG Parictal 0.00101
7 R.ORBsupmed Frontal LITG Temporal 0.00104
8 L.SMA Frontal R.CUN Occipital 0.00110
9 L.IFGoperc Frontal R.IFGtriang Frontal 0.00113
10 L.SFGdor Frontal VER9 Vermis 0.00123

Table 3.2: The First 10 Most Significant Pairs for Sparse Correlation Based on Low-
rank Matrices. The connection between left Hippocampus region and left Cerebellum
7 region is the most significant ROI connection for differentiating normal group and
AD group for Alzheimer’s disease, with p value 0.00010, which is consistent with
ezisting literatures’ findings.

mal hippocampal connectivity during resting state [54]. Other research has
illustrated that the connectivity between hippocampus and cerebellum area
is significantly different for control group and AD group [8]. Therefore our
finding here is consistent with existing literatures’ findings.

We then explored whether performing low-rank plus sparse matrix decom-
position when studying functional brain connectivity can keep some level of
consistency compared with when using original data matrices. In order to
see qualitatively the distribution comparison of those significant connection
locations based on original BOLD signals and low rank matrices, we drew sig-
nificant connection location graphs for sparse correlation method and sparse
covariance estimation method, which are shown in Figure 3.11 and Figure

3.12. The dark blue dots represent the significant connection locations, or the

locations for the p values less than 0.05 in the p value matrix.
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Pair Region 1 Classification Region 2 Classification p value
1 L.HIP Limbic lobe L.CER7 Cerebellum  0.00015
2 L.MFG Frontal L.IFGtriang Frontal 0.00020
3 R.REC Frontal R.SOG Occipital 0.00028
4 L.SMA Frontal R.CUN Occipital 0.00033
5 L.CAU Corpus striatum L. TPOsup Limbic 0.00062
6 R.SFGdor Frontal L.IFGtriang Frontal 0.00085
7 LITG Temporal VERG6 Vermis 0.00101
8  R.ORBsupmed Frontal R.ITG Temporal 0.00121
9 L.OLF Frontal L.CER6 Cerebellum  0.00140
10 R.ANG Parietal VERS Vermis 0.00163

Table 3.3: The First 10 Most Significant Pairs for Concentration Inequality Based
Estimation Method Based on Low-rank Matrices. The connection between left Hip-
pocampus region and left Cerebellum 7 region is the most significant ROI connection
for differentiating the normal group and AD group for Alzheimer’s disease, with p
value 0.00015, which is consistent with existing literatures’ findings.
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Significant Connection Location Detecting for Sparse Correlation

Method. The significant connection locations detected for sparse correlation method
have visually similar distribution, which indicates decent overlap, for both based on

original BOLD signals and low rank matrices.
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Figure 3.12: Significant Connection Location Detecting for Sparse Covariance Esti-
mation Method. The significant connection locations detected for sparse covariance
estimation method have visually similar distribution, which indicates decent overlap,
for both based on original BOLD signals and low rank matrices.

As shown in Figure 3.11 and Figure 3.12, the significant connection loca-
tions detected have visually similar distribution, which indicates decent over-
lap, for both based on original BOLD signals and low rank matrices, for sparse
correlation method and also for sparse covariance estimation method.

Furthermore, in order to go a step further to quantitatively check significant
connection location distribution to see the overlap status for both original

BOLD signals and low rank matrices, we defined and calculated the overlap

original

rate. Denote p as the p value matrix based on original BOLD signals, and

plovrenk a5 the p value matrix based on low rank matrices. Here we only focused

on the upper triangle of the symmetric p value matrices. For the counterpart

N o
elements p‘g%m“ and pl(‘z’“;;” ankwhere i < j, we denote n; as the number of

original lowrank

elements of upper triangle which satisfy 0.05 > Pagy > Pyt no as the

number of elements of upper triangle which satisfy p?fi%mal < pl(‘z’?’)” k< 0.05,

44



original
and nnonzero

the number of nonzero of the upper triangle of p value matrix

based on original data. Then we define overlap rate as
(i + o) izt
Denote nz as the number of elements which satisfy pz’ir;’.g)m“l > 0.05 and
pifg;‘}’)"““k < 0.05 , and n@ra® the number of nonzero of the upper triangle of

p value matrix based on low rank matrices, then we define a smaller p value
rate as
(1 + 1) friss.

The results for overlap rate and smaller p value rate based on different
methods we utilized in our study are shown in Table 3.4. From Table 3.4
we can see that the overlap rates for correlation method, sparse correlation
method, and sparse covariance estimation method are relatively large enough,
whilst the other methods are not. Furthermore, the concentration inequality
based estimation has slightly higher overlap rate and smaller p value rate than
sparse correlation method. These findings indicate that building brain connec-
tivity based on the low rank matrices when using correlation method, sparse
correlation method, and sparse covariance estimation method, can achieve de-
cent level of consistency, in the sense of the overlap status compared with the
outputs based on original BOLD signals. And the concentration inequality
based estimation has better consistency result than sparse correlation. Hence
we verified that performing low-rank plus sparse matrix decomposition when
we study functional brain connectivity can keep decent level of consistency
with when using original BOLD signals.

Furthermore, we also calculated the overlap rates under different threshold

values for correlation method, sparse correlation method, and sparse covari-
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Methods Overlap Rate Smaller p Value Rate

Correlation 77.93 60.24

Sparse Correlation 58.53 69.75
Partial Correlation 4.13 99.34
Sparse Partial Correlation 5.31 98.12
Glasso Precision 6.39 96.39
Glasso Partial Correlation 5.41 96.82
Sparse Covariance Estimation 59.90 72.15

Table 3.4: Overlap Rate (%). The overlap rates for correlation method, sparse
correlation method, and sparse covariance estimation method are relatively large
enough, whilst the other methods are not. Furthermore, the concentration inequal-
ity based estimation has slightly higher overlap rate and smaller p value rate than
sparse correlation method. These findings indicate that building brain connectivity
based on low rank matrices when using these three methods can achieve decent level
of consistency. Moreover, the concentration inequality based estimation has better
consistency result than the sparse correlation.

ance estimation method. The results are shown in Table 3.5, Table 3.6, Table
3.7. We further drew a line chart for overlap rate to better demonstrate the
results included in Table 3.5-3.7, shown as Figure 3.13. From the line chart
we can see that the significant level 0.05 chosen in our study is reasonable as
the overlap rates start getting more stable from threshold value 0.04 onwards.

In order to verify whether performing low-rank plus sparse matrix decom-
position can achieve more stable results for constructing functional brain con-
nectivities, we conducted bootstrapping. Specifically, we implemented boot-
strapping for 50 times, and each time we sampled 33 subjects out of 33 subjects
in control group and 24 subjects out of 24 subjects in AD group, both with
replacement. For each resampling, we conducted two sample 7' statistical tests
to derive the p value matrices based on both original BOLD signals and low
rank matrices, as shown in Table 3.8. We implemented this process for all
the methods we employed for construction. As we stated above, for each p

value matrix we have a percentage of significant connections. Then for 50
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Threshold  Overlap Rate  # Of Connections

0.001 50.00 10,9
0.002 64.00 25,26
0.003 75.00 32,33
0.004 72.50 40,46
0.005 69.23 52,52
0.006 63.85 61,63
0.007 63.92 74,68
0.008 69.05 84,75
0.009 63.09 94,84
0.01 66.99 103,92
0.02 76.44 191,190
0.03 77.78 279,265
0.04 77.30 348,344
0.05 77.93 426,425
0.06 75.30 498,489
0.07 76.80 569,556
0.08 76.32 642,620
0.09 77.29 709,689
0.1 78.66 792,762

Table 3.5: Overlap Rate for Different Threshold Value for Correlation Method.

Threshold Overlap Rate # Of Connections

0.001 25.00 14
0.002 37.50 8,10
0.003 35.00 20,14
0.004 39.29 28,22
0.005 37.21 43,31
0.006 40.00 50,40
0.007 38.98 59,47
0.008 39.71 68,51
0.009 40.54 74,54
0.01 37.50 88,60
0.02 48.39 155,152
0.03 52.59 232,227
0.04 57.24 304,313
0.05 58.53 381,400
0.06 59.47 449,459
0.07 59.16 524,527
0.08 61.41 596,602
0.09 61.14 632,679
0.1 62.25 TA7,748

Table 3.6: Owerlap Rate for Different Threshold Value for Sparse Correlation
Method.
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Threshold  Overlap rate  # Of Connections

0.001 50.00 16
0.002 42.86 7,12
0.003 21.43 14,18
0.004 36.00 25,23
0.005 35.90 39,31
0.006 39.53 43,37
0.007 36.00 50,45
0.008 35.09 57,53
0.009 38.71 62,64
0.01 36.62 71,70
0.02 49.69 161,159
0.03 57.56 238,248
0.04 58.20 311,316
0.05 59.90 389,395
0.06 58.57 461,459
0.07 60.84 526,543
0.08 61.69 603,615
0.09 63.68 691,691
0.1 64.90 755,758

Table 3.7: Overlap Rate for Different Threshold Value for Sparse Covariance Esti-
mation.
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Figure 3.13: Owerlap Rate for Different Threshold Values. The significant level 0.05
chosen in our study is reasonable as we can see the overlap rates start getting more
stable from the threshold value 0.04 onwards.
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Bootstrapping Based on Original BOLD Signals Based on Low Rank Matrix

1 P11 D21
2 P12 D22
3 P13 D23
50 P1,50 P2,50

Table 3.8: p Value Matrices Scheme. For each time resampling, we conducted two
sample T statistical tests to derive the p value matrices based on both original BOLD
signals and low rank matrices. We implemented this process for all the methods we
employed for construction.

Methods Original BOLD Signals Low Rank Matrix
Correlation 5.6443 4.7270
Sparse Correlation 5.6554 5.0379
Partial Correlation 3.6149 3.4020
Sparse Partial Correlation 4.4523 3.6015
Glasso Precision 4.0707 3.8987
Glasso Partial Correlation 3.0966 3.0435
Sparse Covariance Estimation 5.1630 4.0835

Table 3.9: Variance Comparisons of Percentages of Significant Connections for 50
Times Bootstrapping (unit: x107*). The variances of percentages of significant
connections based on low rank matrices are all smaller than those based on original
BOLD signals, for all the methods we employed for construction. This result indi-
cates that performing low-rank plus sparse matrixz decomposition can achieve more
stable results for constructing brain functional connectivities.

times bootstrapping, we have 50 percentages of significant connections. Thus
we calculated the variance for percentages of significant connections, and the
results are demonstrated in Table 3.9. As seen in Table 3.9, the variances
of percentages of significant connections based on low rank matrices are all
smaller than those based on original BOLD signals, for all the methods we
employed for construction in our study. This result indicates that performing
low-rank plus sparse matrix decomposition can achieve more stable results for

constructing functional brain connectivities.
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Chapter 4

Conclusion and Future Work

In this thesis, we proposed a framework which enables us to provide ro-
bust and stable functional brain connectivity. In particular, a low-rank plus
sparse matrix decomposition technique was adapted to decompose the resting
state fMRI BOLD signals from ADNI data, where the low-rank matrix L re-
covers the essential common features from regions of interest (ROIs), and the
sparse matrix S catches the sparse individual variability and potential out-
liers. We applied our construction methods based on low rank matrices from
decomposition and compared the results with those based on original BOLD
signals. We discovered that the methods for building connectivities based on
low rank matrices behave better than based on original BOLD signals, in the
sense that the methods we employed for constructing connectivities based on
low rank matrices can reveal and identify more significant ROI connections for
group differences. Hence this suggests that when we study group difference
for functional brain connectivity, performing low-rank plus sparse matrix de-
composition can achieve more differentiable results, which can contribute to

uncovering underlying neurological processes associated with the disease for
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clinical use.

We found that the recently proposed concentration inequality based method
performs better overall compared with correlation, partial correlation, and
Graphical Lasso method. Tt supplies us a novel and efficient way to explore
functional brain connectivity.

We also obtained the first ten most significant connections for differenti-
ating group differences for Alzheimer’s disease. Among them, the left hip-
pocampus region and the left cerebellum 7 region is the most significant one,
with p value smaller than 0.0005, which is consistent with existing literatures’
findings.

Furthermore, through bootstrapping, we verified that performing low-rank
plus sparse matrix decomposition can achieve more stable results for construct-
ing functional brain connectivities.

In the future we will repeat our whole study process using simulation data.
We will try to verify the robustness property of our proposed framework by
comparing the outputs based on both before and after removing outliers. Ad-
ditionally, the sparsity levels of the connection matrices might influence the
results of statistical test for group differences, hence we will look into this

interesting question in the future study.
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Appendix

Anatomical parcellation of the brain and their abbreviations

Region Abbreviation Region Abbreviation
Central region Limbic lobe
Precental gyrus PreCG Anterior cingulate and paracingulate gyri  ACG
Rolandic operculum ROL Median cingulate and paracingulate gyri  DCG
Posteentral gyrus PoCG Posterior cingulate gyrus PCG
Frontal lobe Hippocampus HIP
Superior frontal gyrus, dorsolateral SFGdor Parahippocampal gyrus PHG
Superior frontal gyrus, orbital part ORBsup Temporal pole: superior temporal gyrus ~ TPOsup
Middle frontal gyrus MFG Temporal pole: middle temporal gyrus TPOmid
Middle frontal gyrus, orbital part ORBmid Corpus striatum
Inferior frontal gyrus, opercular part IFGoperc Amygdala AMYG
Inferior frontal gyrus, triangular part IFGtriang Caudate nucleus CAU
Inferior frontal gyrus, orbital part ORBinf Lenticular nucleus, putamen PUT
Supplementary motor area SMA Lenticular nucleus, pallidum PAL
Olfactory cortex OLF Thalamus THA
Superior frontal gyrus, medial SFGmed Insula INS
Superior frontal gyrus, medial orbital ORBsupmed Cerebellum
Gyrus rectus REC Cerebellum crus 1 CERC1
Paracentral lobule PCL Cerebellum crus 2 CERCR2
Temporal lobe Cerebellum 3 CER3
Heschl gyrus HES Cerebellum 4 5 CER45
Superior temporal gyrus STG Cerebellum 6 CERG6
Middle temporal gyrus MTG Cerebellum 7 CER7
Inferior temporal gyrus ITG Cerebellum 8 CERS
Parietal lobe Cerebellum 9 CER9
Superior parietal gyrus SPG Cerebellum 10 CER10
Inferior parietal, but supramarginal and angular gyri IPL Vermis
Supramarginal gyrus SMG Vermis 1 2 VERI12
Angular gyrus ANG Vermis 3 VER3
Precuneus PCUN Vermis 4 5 VER45
Occipital lobe Vermis 6 VERG6
Calcarine fissure and surrounding cortex CAL Vermis 7 VER7
Cuneus CUN Vermis 8 VERS
Lingual gyrus LING Vermis 9 VER9
Superior occipital gyrus SOG Vermis 10 VER10
Middle occipital gyrus MOG
Tnferior occipital gyrus 10G
Fusiform gyrus FFG
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