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Abstract

Co-location mining, which focuses on the detection of co-location patterns, is one

of the tasks of spatial data mining. A co-location pattern is a set of spatial features

frequently located in close proximity of each other. Most previous works are based

on transaction-free apriori-like algorithms which use user-defined thresholds and

are designed for point objects. Due to the absence of a clear notion of transactions,

it is nontrivial to use association rule mining techniques to tackle the co-location

mining problem. The approach we propose is based on a grid transactionization of

geographic space and can be extended for spatial extended objects. Uncertainty of

a feature presence in transactions is taken into account in our model. The statistical

test is used instead of global thresholds to detect significant co-location patterns

and rules. We evaluate our approach on real and synthetic data. In addition, we

explain the data modeling framework which is used on a real dataset of pollutants

and childhood cancer cases.
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Chapter 1

Introduction

1.1 Motivation

A motivating application of this thesis is the detection of possible spatial associ-

ations of different chemicals and cases of childhood cancer. Cancer, a class of

diseases characterized by uncontrolled growth of abnormal cells, their invasion into

other tissues, and metastasis, is one of the leading causes of death in both developed

and developing world. Although some people are genetically predisposed to a high

risk of developing cancer, most cases of this disease are caused, at least partially,

by environmental factors such as air pollutants, radiation, various infections, to-

bacco, and alcohol. However, causes of childhood cancer are difficult to determine

partially because of the fact that children’s cancer cases are rare and the levels of

exposure to environmental factors are hard to evaluate.

We are interested in a discovery of co-location rules in a dataset which contains

information on chemical emission points and amounts of release, and childhood

cancer cases in the province of Alberta, Canada. Figure 1.1 displays part of the

dataset with rectangles representing pollutant emission points, triangles - cancer

cases, and polygons - urban municipalities. We need to build a modeling frame-

work which handles the data as accurately as possible and takes into account var-

ious factors which affect distribution of chemicals. While we are not intending to

find causalities, the goal of the study is to identify potential interesting spatial asso-

ciations in order to state hypotheses and further investigate a relationship between

childhood cancer and specific combinations of chemicals.
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Figure 1.1: Part of the dataset: rectangles - pollutant points, triangles - cancer cases,
polygons - urban municipalities.

The goal of co-location mining is to discover patterns of spatial features that

are often located close to each other in geographic proximity. An example of a

co-location pattern is a combination of symbiotic species of plants and animals

depending on ecological conditions. Figure 1.2 illustrates a sample spatial dataset

with point features. As can be observed, instances of feature “+” are often located

close to instances of “◦”. Similarly, objects of feature “⋆” are seen close to instances

of “▽”.

The main purpose of co-location mining is to come up with a set of hypotheses

based on data features and statistics that can be interesting for domain experts so

they can reduce a range of possible patterns that are hidden in datasets and need to

be checked. A discovery of spatial co-location patterns may lead to useful knowl-

edge in various applications. For instance, one might be interested in animal species

that live close to certain types of landmarks such as rivers, meadows, forests, etc. In

another example, co-location patterns which involve crime incidents and locations

of various businesses can be useful for criminologists. Some of the application do-

mains for co-location mining are biology, urban studies, health sciences, earth and

atmospheric sciences, etc.
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Figure 1.2: Sample dataset with point spatial features. Instances of feature sets
{+, ◦} and {⋆,▽} are often located close to each other.

Most of the existing approaches to the co-location mining problem [29, 21, 36,

33] deploy a framework which requires a user-defined minimum prevalence thresh-

old. Without prior knowledge it could be difficult to choose a proper threshold.

Furthermore, spatial features often have various frequencies in datasets, and one

global threshold might lead to omission of some co-location patterns and rules with

rare events or detection of meaningless patterns. Another limitation of most algo-

rithms is that they work with point spatial features and one neighborhood distance

threshold, whereas in reality there are datasets which in addition to point instances

also have lines and polygons, e.g., a road network map. Furthermore, information

in some datasets is uncertain; a presence of a feature in a region could depend on

different factors. For example, a pollutant released from a facility distributes ac-

cording to climatic factors in its area, and a probability of detecting chemical in the

region close to the emission point is higher than in remote regions.
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1.2 Thesis Statements

In this thesis we address the challenges related to the co-location pattern and rule

mining problem. We study the feasibility of resolving these challenges by claiming

the following statements:

1. A spatial dataset can be transactionized that is transformed into a set of trans-

actions which better preserves spatial information than previous approaches

and may be used to calculate prevalence measure values of candidate co-

location patterns and rules.

2. It is possible to model uncertainty of feature presence in transactions created

from spatial datasets and use the expected support and expected confidence

as prevalence measures in the field of co-location mining.

3. The statistical test may be used in co-location mining to replace thresholds

when identifying significant co-location patterns and rules.

1.3 Thesis Contributions

This thesis makes the following contributions:

1. We propose a new framework which combines co-location mining with fre-

quent pattern and association rule mining. Instead of user-defined thresholds

on prevalence measures, the statistical test is used to determine the signifi-

cance of co-location patterns and rules. A co-location is considered signif-

icant, if it has a surprisingly high level of the prevalence measure in a real

dataset in comparison to randomized, or simulated, datasets. The statistical

test ensures that discovery of co-location patterns and rules is not affected by

the level of the prevalence threshold. Randomized datasets are built under the

null hypothesis that the features of a co-location are independent from each

other. When creating simulated datasets for our real application, we attempt

to preserve spatial distribution of features. Same numbers of cancer cases are

placed within urban and rural areas as it is in a real dataset. The number of

4



cases within each urban municipality is proportional to its child population.

Due to the fact that most emitting facilities are located within certain regions,

we do not randomize pollutant points all over the study region. Instead we

keep locations of facilities and randomize chemicals within them.

2. We present a new method of transforming a spatial dataset into a set of trans-

actions. Initially, buffers are created around spatial objects; their size can de-

pend on internal and external factors. A grid, which consists of points placed

regularly in a study region, is used to create transactions. Each grid point is a

representation of a respective parcel of the study area. A transaction is a set

of features which instances or their buffers intersect with the grid point. In

addition, uncertainty of feature presence at a given point is introduced to the

model. It is modeled as a dependence on a distance from the spatial object to

the grid point.

3. A usage of the statistical test requires many computations to be done when

calculating prevalence measure values of candidate patterns and rules. To

address this challenge, we introduce two filtering techniques that help to de-

crease the computation cost. These filters prune candidate patterns and rules

that appear to be clearly not significant during the statistical test. Therefore,

there is no need to compute their interestingness measures; less calculation is

performed.

4. Finally, instead of using circular buffers in experiments with the real dataset

containing information on pollutant emission points and childhood cancer

cases, we transform buffers into ellipses by taking into account several factors

that affect pollutant distribution: pollutant release amounts, wind speed and

direction data, and uncertainty of chemical presence. We believe that the

consideration of these factors while creating buffer zones around emitting

facilities improves the accuracy of the results.
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1.4 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 gives an overview of the most important studies related to co-

location mining, frequent pattern and association rule mining with certain and

uncertain data. After a short description of main spatial data mining tasks,

we explain current approaches and frameworks used to tackle one of them, a

co-location pattern and rule mining problem. A classification of co-location

mining algorithms is given along with an explanation of pattern interesting-

ness (prevalence) measures and algorithm designs. Then, we briefly describe

frequent pattern and association rule mining. We also explain frequent pattern

mining techniques used to identify patterns within uncertain data.

• In Chapter 3, we first explain limitations of a current framework used in

most co-location mining approaches. We address the problem of mining co-

location patterns and rules in datasets which along with point features may

contain extended objects such as polygons and lines. In addition, uncertainty

of data is also taken into account. We give an outline of our algorithm, and

explain the transactionization step and interestingness measures used in our

model. In addition, we describe filtering techniques that reduce computations

by excluding some candidate patterns and rules.

• Chapter 4 describes challenges of mining co-location rules in a real-world ap-

plication of identifying spatial associations between pollutants and childhood

cancer cases. We explain our modeling framework which helps to model the

real world more accurately. The factors explained in this chapter include pol-

lutant release amounts, an average wind speed and prevailing wind direction

at emission points, and uncertainty of a presence of pollutants within buffer

zones.

• In Chapter 5, we report the results of the experiments conducted on real and

synthetic data. A real dataset contains data on chemicals and childhood can-

cer cases. First, we evaluate the effect of filtering techniques on the number
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of checked candidate patterns. Second, we compare our uncertain data model

with a model used to mine certain data. Finally, we study the effect of the

granularity of a grid used in a transactionization step. In addition to the real

dataset, we evaluate our approach on synthetic data to show that our algo-

rithm finds a correct set co-location rules placed in a synthetic dataset, and

better preserves and deals with spatial context and information.

• Finally, Chapter 6 summarizes the conclusions of the thesis. In addition,

we explore some of the unresolved challenges and discuss the directions for

future research in the field of co-location pattern and rule mining.

7



Chapter 2

Related Work

This section starts with a short introduction to spatial data mining and some of its

applications and tasks. Then it gives an overview of significant studies related to

co-location mining, frequent pattern and association rule mining with certain and

uncertain data.

2.1 Spatial Data Mining

Spatial data mining is the process of extracting interesting and useful patterns in

geographic datasets. It is a growing and promising field which has gained close

attention of researchers during the last two decades. The technological advances

in data storage and widespread use of GPS technologies, remote sensing devices,

and location-based services have created large amounts of spatial data. The spatial

data processing and analysis is useful in a wide range of applications such as busi-

ness applications, population analysis, social sciences, environmental sciences, and

many others. For example, a businessman may be interested in spatial analysis in

order to find the best location for a new store based on population data and current

store locations.

In contrast to classical data mining, spatial data mining has some specific fea-

tures. In classical data mining it is assumed that data objects are independent from

each other like different transactions in association rule mining. However, in spa-

tial datasets, objects situated close to each other tend to be more similar and have

the same characteristics than objects located farther. Another example is a gradual
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change of temperature and precipitation levels. This observation is called spatial

autocorrelation. Another difficulty in dealing with spatial data is relatively higher

complexity of data object types and their relations. There are not only points but

also lines and polygons in spatial databases. The relations between objects are im-

plicit like intersection, containment, enclosure, etc.

Various types of methods and approaches are used in spatial data mining. Some

of the tasks of spatial data processing and analysis include the following research

areas [16, 30].

• Spatial clustering - the task of grouping data objects into clusters such that

the members of a cluster are more similar to each other than to the objects of

other clusters. An example of clustering is creation of thematic maps based

on climatic, biologic or ecological information.

• Spatial characterization - the process of compactly describing a selected

subset of a database. For example, one might be interested to find out what

are unique characteristics of city regions with high crime rate.

• Spatial trend detection - the detection of regular changes of some non-

spatial attributes that depend on a distance from a given start point. For

instance, a change in precipitation level in some regions can be considered

as a trend.

• Spatial classification - the task of assigning labels (classes) to data objects

based on their and their neighbors attribute values. The classification of eco-

regions from satellite images is an example of this task.

• Outlier detection - the detection of objects that are inconsistent with the re-

mainder of a dataset. An expensive house in a poor neighborhood is a spatial

outlier. Detection of spatial outliers might be useful in many applications and

may help to discover new knowledge in spatial datasets.

• Prediction of events - the problem of predicting occurrence of events based

on spatial and non-spatial data. For instance, prediction of watering place lo-
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cations looking on precipitation levels, water reservoirs, occurrence of preda-

tors, etc., uses predictive models.

• Co-location mining - the discovery of sets of features than are often located

close to each other in geographic space. The examples of co-location rules

and patterns include symbiotic animal and plant species, climatic events, and

other geographic patterns.

2.2 Co-Location Mining

Co-location mining is one of the tasks of spatial data mining. Co-location mining

algorithms can be divided into two classes of methods: spatial statistics approaches

and spatial data mining approaches.

2.2.1 Spatial Statistics Approaches

Spatial statistics methods deploy statistical techniques such as cross K-functions

with Monte-Carlo simulations [14], mean nearest-neighbor distance, and spatial

regression models [11] to evaluate co-location patterns of two features and find

co-locations among them. The disadvantages of these approaches are expensive

computation time and difficulty of applying them to patterns of sizes more than two

spatial features.

2.2.2 Spatial Data Mining Approaches

Spatial data mining approaches use the similarity of co-location mining and associ-

ation rule mining. The most classical example of association rule mining is discov-

ering sets of goods that are often bought together. The concepts of association rule

mining and co-location mining are compared in Table 2.1.

In order to reduce the computation time only frequent (k − 1)-size patterns are

used to generate k-patterns (patterns that consists of k items). It is possible due to

the apriori, or downward closure, principle: the subsets of a frequent pattern must

also be frequent. However, there is a significant difference between association rule

mining and co-location mining problem. In association rule mining transactions

10



Table 2.1: Comparison of association rule mining and co-location mining [21].
Association rule mining Co-location mining
Item Spatial feature

Itemset Spatial feature set

Frequent pattern Co-location pattern

Support & Confidence Interestingness measures

Transactional database Spatial database

are independent from each other. In contrast, in co-location mining problem spatial

objects are embedded into geographic space and it is not easy to define explicit

transactions.

Spatial data mining approaches could be categorized into transaction-based which

work with transactions and spatial join-based methods which use spatial joins of in-

stance tables or feature layers.

Transaction-Based Approaches

Transaction-based approaches work by creating transactions over space and using

association rule mining algorithms [5, 24, 26]. One of these methods, a reference-

centric model [24], creates transactions around a reference feature specified by a

user. Each set of spatial features that form neighborhood relationships with an

instance of the reference feature is considered as a transaction. However, not all

applications have a clearly defined reference feature. For example, in urban studies

features could be schools, fire stations, hospitals, etc., and there is no one specific

feature of interest. Another approach, a window-centric model [29], divides the

space into cells and considers instances in each cell as a transaction. The model can

consider all possible windows as transactions or use spatially disjoint cells. The

model has a major drawback that some instance sets are divided by the boundaries

of cells, so some of the spatial relationship information is lost. In addition, maximal

cliques (maximal sets of instances which are pairwisely neighbors) in spatial data

are proposed to be used as transactions [6, 25], but this approach does not preserve

the information on how close or remote are objects in cliques as long as they are

considered being neighbors.

11



Spatial Join-Based Approaches

Spatial join-based approaches work with spatial data directly. They include cluster-

and-overlay methods and instance-join methods. In the cluster-and-overlay ap-

proach, clustering is used to mine associations. For example, concentrations of

objects in layers are found in order to search for possible causal features [18]. In

another work [17], a map layer is constructed for each spatial feature based on clus-

ters of instances or boundaries of clusters. The authors propose two algorithms for

cluster association rule mining, vertical-view and horizontal-view approaches. In

the former, clusters for layers (features) are formed and layers are segmented into

a finite number of cells. Then, a relational table is constructed where an element is

equal to one, if the corresponding cell satisfies an event in a layer, and the element

is zero otherwise. An association rule mining algorithm is applied to the table. The

second approach evaluates intersections of clustered layers. A clustered spatial as-

sociation rule is of the form X → Y (CS%, CC%), where X and Y are the sets of

layers, CS% is the clustered support - the ratio of the area that satisfies both X and

Y to the total area of the study region, and CC% is the clustered confidence - the

percentage of cluster areas of X that intersect with clusters of Y . However, these

approaches might be highly sensitive to a choice of clustering methods. In addition,

they assume that features are clustered, even though spatial features may not form

explicit clusters.

Clustering is used in a similar approach [23]. For two spatial features f1 and f2,

if a density of instances of f1 in proximity of objects of feature f2 is higher than an

overall density of f1, then feature f1 is considered to be co-located with feature f2,

their objects tend to be situated close to each other. This algorithm suffers from the

same limitation as the previous approach. It is based on an assumption that spatial

instances of a feature are situated close to each other and form clusters which may

not be a case in some real-world applications.

Another type of spatial join-based methods - instance-join algorithms - is similar

to classical association rule mining. One of the first proposed co-location pattern

mining frameworks of this type [29, 22] is based on neighborhood relations and

participation index concept.

12



The basic concepts of the co-location mining framework are analogous to con-

cepts of association rule mining. As an input, the framework takes a set of spatial

features and a set of instances, where each instance is a vector that contains in-

formation on the instance ID, the feature type of the instance, and the location of

the instance. As an output the method returns a set of co-location rules, where a

co-location rule is of the form C1 → C2(PI, cp), where C1 and C2 are co-location

patterns, PI is the prevalence measure (the participation index), and cp is the con-

ditional probability. The participation index PI(C) of a co-location pattern C is

defined as:

PI(C) = minfi∈C{pr(C, fi)}, (2.1)

where pr(C, fi) is the participation ratio of a featurefi in a co-location C and it is

computed as:

pr(C, fi) =
number of distinct instances of fi in instances of C

total number of instances of fi
. (2.2)

A co-location pattern is considered prevalent, or interesting, if its PI exceeds

a user-defined threshold. In other words, for each feature of the prevalent pattern

at least PI% instances of that feature form a clique with the instances of all other

features of the pattern according to the neighborhood relationship. Similarly to

association rule mining, this framework is based on the apriori principle. Therefore,

only significant, or frequent, (k − 1)-size patterns are used for k-size candidate

generation process.

A co-location rule C1 → C2 is considered prevalent, if its conditional probabil-

ity is higher than a threshold. The conditional probability cp(C1 → C2) is defined

as:

cp(C1 → C2) =
number of distinct instances of C1 in instances of C1 → C2

total number of instances of C1

.

(2.3)

In the approach mentioned above, it is assumed that spatial features occur with

similar levels of frequency. Therefore, if a dataset contains rare spatial features, co-

locations involving these rare events will be pruned by a prevalence threshold be-

cause more frequent features dominate rare ones and no pattern with a rare event can

13



become prevalent. For example, a rare disease will not be captured in co-location

patterns due to the fact that its causes are more frequent in the database. Huang

et al. [21] continue their previous work by introducing an algorithm that finds co-

location patterns with rare features. Instead of the participation index threshold,

the authors propose to use the maximal participation ratio threshold. Briefly, a co-

location pattern is considered prevalent if maxPR% instances of at least one of

the features in the pattern are co-located with instances of all other features, where

maxPR is the maximal participation ratio:

maxPR(C) = maxfi∈C{pr(C, fi)}. (2.4)

It is not well explained how the algorithm deals with noise features. For example,

if some features have only limited number of instances, it is highly probable that

every co-location with these features will be considered prevalent.

Both mentioned methods use computationally expensive instance joins to iden-

tify instances of co-location patterns, and their running time grows fast as the num-

ber of instances and sizes of candidate patterns increase. Yoo et al. [37] propose a

partial-join approach for mining co-location patterns. A study space is partitioned

into square cells with the side length equal to a neighborhood distance threshold.

A set of spatial instances in a cell form a clique. Join operations are required to

identify neighborhood relationships divided by boundaries of cells. Even though

this approach reduces the computation time, it still requires large amount of spatial

joins.

The joinless algorithm [36] is a follow-up work to the partial-join approach.

It further decreases computation time of constructing neighborhood relationships.

The main idea is to find star neighborhoods instead of calculating pairwise distances

between all instances in a dataset. The neighborhood relationship is materialized

in the form of a table where for each instance all its neighbors are listed. Then, in

order to ensure that pattern instances form cliques, an instance-lookup scheme is

used to filter co-location instances. In addition, three filtering steps are used to find

a set of prevalent co-location patterns. The authors prove that their algorithm finds

a complete and correct set of co-location patterns and rules. The experiments on
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synthetic and real datasets show that joinless approach has better performance in

terms of the running time than the join-based algorithm.

In their work, Xiao et al. [32] improve the running time by dividing spatial

objects into partitions and detecting neighboring instances in dense regions first.

The algorithm finds instances in dense regions and maintains an upper bound on a

prevalence measure for a candidate pattern. If the upper bound becomes less than

a threshold, the method decides that it is a false candidate and stops identifying its

instances in less dense regions.

Several other works extended the basic co-location mining framework [29]. For

example, Zhang et al. [39] proposed an approach that extends the notion of co-

location patterns and detects star, clique, and generic co-location patterns. Some of

the works focused on identifying maximal [34] and closed co-location patterns [35].

A co-location pattern P is said to be maximal, if it is prevalent but no super event

set of P is prevalent. A co-location pattern P is considered closed, if there is no

super set P ′ ⊃ P such that PI(P ′) = PI(P ). Mining maximal and closed patterns

might be useful in situations when researchers are interested in frequent patterns of

the maximal size.

Xiong et al. [33] introduced a framework for detecting patterns in datasets with

extended objects. Extended objects are objects that are not limited to spatial points

but also include lines and polygons. Buffers are created around spatial instances;

their sizes might depend on types of features. In the proposed model, candidate

patterns are pruned by a coverage ratio threshold. In other words, if an area covered

by features of a candidate pattern is greater than a predefined threshold, this pat-

tern is considered prevalent. In order to lessen a usage of GIS overlay methods, a

coarse-level mining step is used. At this level, minimum buffer bounding boxes of

spatial objects are considered by the algorithm instead of true buffer shapes. Then,

patterns that have coarse level coverage ratio higher than the threshold are evalu-

ated using actual buffers. Compared to previous models, this approach takes into

account shapes of spatial objects and their distribution in space rather than using

one neighborhood distance for varying types of features. Expensive GIS overlays

are used in this method and a filtering technique is proposed in order to improve its
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performance.

The approaches mentioned above use thresholds on interestingness measures,

which causes meaningless patterns to be considered as significant with a low thresh-

old, and a high threshold may prune interesting rare patterns. Instead of a threshold-

based approach, Barua and Sander [7] use the statistical test to mine frequent co-

location patterns. The participation index of a pattern in observed data is calculated

as in previous studies. Then, for each co-location pattern the authors compute a

probability p of seeing the same or greater value of the prevalence measure under a

null hypothesis model. A co-location is considered significant if p ≤ α, where α is

a level of significance.

2.3 Frequent Pattern Mining

The concepts of frequent pattern and association rule mining were first introduced

by Agrawal et al. [4]. Various approaches to these problems have been proposed

over past two decades. Apriori [5] is the first and one of the most-known algo-

rithms used for frequent itemset mining. This approach is designed to work on

transactional data and consists of a bottom-up candidate generation process where

k-size candidate itemsets are generated from frequent (k − 1)-itemsets and tested

against the database to obtain frequent k-itemsets. This process is repeated until

no more candidate patterns can be generated. The correctness of the algorithm is

based on the downward closure, or apriori, property, which states that if an itemset

is frequent, then all its subsets are also frequent. In other words, an itemset cannot

be frequent, if one of its subsets is infrequent.

The association rule mining problem is defined as follows. Let I = {i1, i2, ..., im}

be a set of m items and T = {t1, t2, ..., tn} be a set of n transactions where a trans-

action t is a subset of items in I . For an itemset X ⊆ I , the support of X is

defined as the ratio of transactions in T that contain instances of X . An itemset is

considered frequent, if its support is higher than a user-specified minimum support

threshold. An association rule is a rule of the form X → Y , where X ⊆ I , Y ⊆ I ,

and X ∩ Y = ∅. The confidence of a rule X → Y is the support of X ∪ Y divided
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by the support of X .

conf(X → Y ) =
sup(X ∪ Y )

sup(X)
. (2.5)

The FP-growth algorithm, proposed by Han et al. [20], does not need a can-

didate generation process, therefore helping to reduce the computation time. The

method uses a divide-and-conquer approach. After a first scan of a database a list

of frequent items is formed where items are sorted by frequency in descending or-

der. Infrequent items are removed. By using this list, the transactional database is

converted into the FP-tree (frequent pattern tree). For each item i in the tree, the

algorithm composes a sub-database (a set of transactions which have i as prefix).

Then, this process is repeated recursively for each sub-database. Frequent patterns

are obtained by concatenating a suffix pattern with frequent patterns from the FP-

tree.

Data in transactional databases can be stored in several ways. The most com-

mon is a horizontal data layout where each transaction contains its ID and a list of

items that are present in that transaction. The Apriori and FP-growth algorithms are

designed to work with this type of transactional databases. The second widely used

format is a vertical data layout. In databases which use this data storage format, a

dataset is represented as a set of items. Each item is stored with a set of transaction

IDs in which this item is present.

Zaki [38] proposed Eclat (Equivalence CLASS Transformation), an algorithm

which employs datasets in vertical data format. A first scan of a dataset creates

transaction sets for each item. At each level of the approach (k + 1)-size itemsets

are generated from frequent k-size itemsets by intersecting their transaction sets.

The support is easily calculated because all information is already present for each

itemset, so there is no need to scan the database. The process is repeated until no

more candidate itemsets are left.

2.4 Frequent Pattern Mining with Uncertain Data

The algorithms and approaches mentioned above are constructed to work with data

where presence of items in transactions in certain. For example, market basket
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Table 2.2: Example of a transactional dataset.
ID Transaction

1 A(0.7); B(1.0); C(0.2)

2 A(0.9); D(0.5); E(0.4); F(0.8)

3 B(0.3); D(1.0); G(0.7)

4 A(0.1); B(0.6); C(0.7); E(0.2); G(0.4)

5 C(0.5); D(0.2); E(0.8)

6 B(0.6); C(0.3); E(1.0); F(0.4)

datasets are certain and precise. However, in some applications and domains data

may be incomplete or may have errors. For instance, sensor reading records might

include some erroneous data due to various internal and external factors such as sen-

sor failures or extreme weather conditions. Uncertainty can be expressed in terms

of existential probabilities; each item of a transaction is followed by a probability

of its existence in this transaction. An example transactional dataset is shown in

Table 2.2.

Most studies use a notion of expected support [13, 12] to mine frequent patterns

from uncertain databases. The expected support E(s(I)) of an itemset I is defined

as a sum of expected probabilities of presence of I in each of transactions in a

database. A probability p(I, T ) of presence of I in a transaction T is a product of

corresponding probabilities of items in the transaction. An itemset is considered

significant if its expected support exceeds a minsup threshold.

Several approaches to frequent pattern mining problem with uncertain data have

been studied by Aggarwal et al. [3]. These approaches are extended from existing

classical frequent itemset mining methods and can be divided into two categories:

candidate generate-and-test algorithms (extension of Apriori algorithm) and pattern

growth algorithms (extensions of FP-growth and H-Mine [27]). According to this

study, while FP-growth is efficient and scalable in the deterministic case, its exten-

sion to uncertain case behaves differently due to challenges associated with uncer-

tain data. UH-Mine, an extension of H-Mine, is reported to provide best trade-offs

in terms of running time and memory usage.
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Bernecker et al. [8] proposed PFIM (Probabilistic Frequent Itemset Mining)

model which is based on the possible world paradigm. Instead of the expected sup-

port, PFIM uses the frequentness probability as a significance measure. By using a

dynamic computation method, the algorithm is reported to run in O(|T |minsup),

where |T | is the number of transactions and minsup is a user-defined threshold.

Without it the approach runs in exponential time. However, the algorithm requires

the minsup threshold to be defined, and it is nontrivial to apply the statistical test

to the frequentness probability.

19



Chapter 3

Algorithm

The goal of this thesis is to design an algorithm that takes into account the limita-

tions of previously proposed approaches to the co-location mining problem which

are listed in the beginning of this chapter. Then, we present our novel algorithm

which combines co-location mining and frequent pattern mining problems and uses

the statistical test to identify significant co-location patterns and rules. The main

steps of the algorithm are explained in detail. Furthermore, we explain two filtering

techniques that reduce the amount of computations by pruning definitely insignif-

icant candidate patterns or rules, thus decreasing the number of candidates to be

checked.

3.1 Limitations of Previous Approaches

Various approaches to the co-location mining problem have been proposed during

the past decade. Most of them focused on extending and improving the perfor-

mance of existing frameworks. However, these frameworks have several limita-

tions. Several studies addressed these issues but only separately, and they still can

prevent these algorithms from being used for some real-world applications such as

our motivating problem of finding co-locations of cancer cases and sets of released

chemicals.

• Prevalence measure thresholds. A usage of thresholds for detection of in-

teresting co-location patterns and rules is a main limitation factor of many co-

location mining algorithms. In spatial datasets features usually have a varying
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number of instances; they could be extremely rare or be present in abundance.

Therefore, one threshold for the participation index (or any other significance

measure) cannot capture all meaningful patterns, while other patterns could

be reported as significant even if their relation is caused by autocorrelation

or other factors. In addition, most current algorithms use a candidate genera-

tion process which forms (k+1)-size candidates only from significant k-size

patterns. However, a set of features could be interesting even if some of its

subsets are not significant. For example, two chemicals may not be correlated

with disease separately, but cause it when they are combined.

• Neighborhood distance threshold. Most co-location mining approaches use

one distance threshold to identify neighborhood relationships among spatial

objects. However, in some applications it might oversimplify the real situa-

tion. For instance, in zoological research various species have different habi-

tat ranges: birds (especially, birds of prey) might interact with other species

on greater distances, while subterranean animals are limited in their move-

ments. Therefore, a usage of one distance threshold might lead to wrong

results. Furthermore, most current co-location mining frameworks are de-

signed to work with point data; however, other types of objects may exist in

spatial datasets such as lines (roads, communications) and polygons (polluted

regions, areas which had no precipitation for some period or were exposed to

other climatic factors). Even though the framework for extended objects [33]

deals with lines and polygons, it also uses a threshold for a prevalence mea-

sure. Furthermore, this framework cannot deal with uncertainty in datasets

which is explained in the following paragraph.

• Data uncertainty. In some applications, information in datasets is uncer-

tain; data may be incomplete or may have errors. For example, distribution

of a chemical released from a chimney in a polluted region is not uniform.

Areas closer to an emission point are generally exposed to higher pollutions

than places far away from the release point. Another example is climatic

data collected by sensors which might have errors in their readings. Uncer-
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tainty can be expressed in terms of existential probabilities; each item of the

transaction is followed by the probability of its existence in this transaction.

Uncertainty in datasets has been researched for the frequent itemset mining

problem. However, to the best of our knowledge there is no such work done

for spatial data.

3.2 Algorithm Design

The objective of this work is to detect significant co-location patterns or rules in a

given spatial dataset that have a prevalence measure value higher than an expected

one. We propose a new framework that addresses the limitations mentioned in the

previous section. A new grid-based transactionization method is deployed to trans-

form a spatial dataset into a set of transactions. Transactions contain probabilities

of feature existence and are used to compute a prevalence measure of patterns and

rules. In this work, instead of having one threshold on a prevalence measure, we use

the statistical test. It is proposed for co-location mining by Barua and Sander [7].

A pattern is considered significant, if a probability of seeing the same or greater

value of a prevalence measure in R artificial datasets is less than α (the significance

level) under a null hypothesis that there is no spatial dependency among features of

the pattern. Each candidate pattern is evaluated separately rather than applying one

threshold to all of them.

The design of the algorithm is presented in Figure 3.1. The algorithm includes

three main parts.

1. The initialization step, in which buffer zones are built around instances of

spatial features. Each buffer represents a region where a particular instance

has an impact on other objects.

2. The transactionization step. A spatial dataset is transformed into a set of

transactions deploying a grid-based method. The derived set of transactions is

used to calculate prevalence, or interestingness, measure values of candidate

co-location patterns or rules.
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Figure 3.1: The algorithm design.

3. The statistical test is performed in order to get significant co-location rules

or patterns. It includes both previous parts as subroutines when checking a

set of randomized datasets. In addition, filters are used to prune candidates

that are definitely not significant.

3.2.1 Initialization

In the initialization step, a buffer is built around each spatial object. It defines an

area affected by that object; for example, a buffer zone around an emission point

shows the area polluted by a released chemical. Buffers can be constructed us-

ing GIS systems. A buffer size, a distance from an object or its sides to buffer

boundaries, can be chosen depending on various factors that may vary for differ-

ent applications and projects. Possible cases for a buffer size choice include the

following scenarios:
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• One global buffer size for all spatial features and their instances. This ap-

proach might be used when there is no clear knowledge on an impact of var-

ious features on a region around them.

• Varying buffer size which depends on a type of a feature. Furthermore, a

buffer size can be given as an attribute of an object instance. For example,

emission points with varying amounts of released pollutants are assigned dif-

ferent buffer sizes.

• A shape of a buffer may also change and it may depend on external factors.

For instance, wind affects dispersion of pollutants and changes original cir-

cular buffers into other shapes depending on wind speed and its direction.

In another example, topography features like high mountains or deep rivers

impact distribution of animal species.

Figure 3.2(a) displays an example spatial dataset with buffers of various sizes

that are formed around spatial point objects.

3.2.2 Transactionization

Recall that previous transaction-based methods have some limitations. A window-

centric model cuts off neighborhood relations of instances located close to each

other but in different partitions. A reference-centric model may get duplicate counts

of spatial instances. In addition, it is nontrivial to generalize this approach to appli-

cations with no reference feature.

Instead of previous models we propose a new grid-based transactionization

method. In order to transaction spatial data we use a grid which points are imposed

over a given map. Figure 3.2(a) illustrates an example dataset with buffers around

spatial point instances, and a grid is laid over it in Figure 3.2(b). Similarly, buffers

can also be created around linear and polygonal spatial objects. In two-dimensional

space grid points represent a square regular grid. Due to the spheroid shape of the

Earth, a grid used for real-world applications becomes irregular. However, with a

careful choice of a grid granularity this fact shouldn’t considerably affect accuracy

of results.
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(a) A sample spatial dataset with point feature
instances and their buffers.

(b) A grid imposed over the space.

(c) Grid points which intersect with buffers are
used to create transactions.

Figure 3.2: Transactionization step.

Each point of the grid can be seen as a representation of a respective part of

the space. A grid point may intersect with one or several spatial objects and their

buffers. A transaction is defined as a set of features corresponding to these ob-

jects. Let us assume that a sensor capable of detecting various features is placed at

each grid point. A set of features detected by each sensor can be seen as a transac-

tion. However, sensor readings are not fully reliable; they are uncertain and can be

affected by extreme environmental conditions, sensors’ hardware, durability, and

other factors. For example, it is possible that a sensor detects a pollutant only if

certain amount of it is present in the sensor’s environment. In addition, a likelihood

of a presence of a feature in a region covered by an object and its buffer is not uni-
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Algorithm 1 GetTransactions(S): Transactionization step.
1: T = ∅: set of transactions
2: G: set of grid points
3: Build buffer zones around spatial objects of S
4: Impose a grid G over the dataset S
5: for each point g ∈ G do
6: t = get a set of features which instances contain g with corresponding exis-

tential probabilities
7: T = T ∪ t
8: end for
9: return T

form. Alternatively, since we do not have sensors and sensor collected data, we can

use in our model the notion of concentration of features. While the fading concen-

tration is not a probability, it can be used to show the feasibility of our model using

uncertainty. Intuitively, a feature is more likely to be detected in buffer parts which

are closer to a feature point than in parts that are farther away from it. Furthermore,

spatial datasets can be noisy and contain errors; locations of instances and their

presence can be uncertain. In order to take into account these uncertainties, a prob-

ability of a feature being present in a transaction is also stored. One of the ways to

model uncertainty when transforming a spatial dataset into a set of transactions is

to use a distance from a spatial object to a grid point (our method of estimating a

feature presence probability is explained in the following chapter). For example, a

grid point gp2 in Figure 3.2(c) is located closer to a point A1 than a point gp1; we

can assume that p(A, gp2) > p(A, gp1). When a grid point intersects with several

instances of the same feature or their buffers, the highest existential probability is

taken as a probability of detecting this feature at the given grid point. Algorithm 1

displays the pseudocode of the transactionization step.

A granularity of the grid, or a distance between points of the grid, should be

carefully chosen for each project or application and it may depend on an average

size of a region covered by a spatial object and its buffer. A great distance between

grid points may negatively affect accuracy of results because small feature regions

and their overlaps might get a different number of intersecting grid points depend-

ing on a grid imposition. On the other hand, when a distance between grid points is
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too short, the number of derived transactions increases, and the following computa-

tion of pattern significance levels might become prohibitively expensive, especially

when the number of candidates is large.

3.2.3 Prevalence Measures

Given a set of transactions T , derived after the transactionization of a spatial dataset,

and a set of spatial features F , a prevalence measure value is calculated for all can-

didate co-location patterns or rules. Various interestingness measures are proposed

to define a significance of frequent patterns and association rules in certain and un-

certain data. In this thesis we deploy two of them - the expected support and the

expected confidence.

In some applications experts look for sets of features that are often co-located

with each other and they do not need to discover cause-effect relationships. In

this case, which is analogous to the frequent pattern mining problem, the expected

support ExpSup(P ) might be used to define a level of interestingness of a pattern

P , which is a subset of F (a set of features in a spatial dataset).

In frequent pattern mining with certain data the support of a pattern is counted

deterministically as the number of transactions containing all features of the pat-

tern. In the case of uncertain data, transactions are probabilistic and, therefore, the

support is counted in expected value. The expected support was first defined by

Chui et al. [13] for frequent pattern mining and is based on the possible worlds

model. Briefly, for every feature f and every transaction t two possible worlds ex-

ist: one world where f is present in t and the second where f does not exist in t.

The probability of the former being the true world is p(f, t) and the probability of

the latter world is 1 − p(f, t). In the case of several features, the probability of a

single world is computed as the product of the probabilities of all features. Then,

the expected support of a pattern is obtained by summing the support of the pat-

tern in each of possible worlds multiplied by the probability of the world under an

assumption that probabilities of features in the pattern are determined through inde-

pendent observations. The number of possible worlds is 2m where m is the number

of feature instances in all transaction of an uncertain dataset. However, this compli-
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cated formula can be reduced and the expected support of a pattern P is calculated

as follows:

Definition 1 The expected support ExpSup(P ) of a pattern P is defined as the

sum of probabilities of presence of P in each of the transactions t in the uncertain

database:

ExpSup(P ) =
∑
t∈T

p(P, t). (3.1)

The probability p(P, t) of a presence of a pattern P in a transaction t depends

on probabilities of features in P being present in t and can be computed as follows:

Definition 2 The probability p(P, t) of the pattern P occurring in a transaction t

is the product of corresponding feature instance probabilities:

p(P, t) =
∏
f∈P

p(f, t). (3.2)

Algorithm 2 shows the pseudocode of our approach in a case when co-location

patterns are mined in a spatial dataset and the expected support is used as a preva-

lence measure.

For some applications, researchers intend to analyze co-location rules. For ex-

ample, for a dataset of disease outbreaks and possible cause factors a typical rule is

of the form C → D, where C is a subset of cause features and D is a disease fea-

ture. This task is similar to the association rule mining problem. For these projects,

the expected confidence ExpConf(X → Y ) can be used as a prevalence measure

of a co-location rule (X → Y ), where X ⊆ F , Y ⊆ F , and X ∩ Y = ∅.

Definition 3 The expected confidence ExpConf(X → Y ) of a rule X → Y is

defined as:

ExpConf(X → Y ) =
ExpSup(X ∪ Y )

ExpSup(X)
. (3.3)

In addition to the expected support and expected confidence, other interesting-

ness measures could be applied to co-location mining with uncertain data. The mea-

sures used in frequent pattern and association rule mining include lift, conviction,

cosine, etc. They can be used in a variety of domains depending on requirements of

applications and projects.
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Algorithm 2 Mining significant co-location patterns.
Input: Spatial dataset D.

Level of significance α.
Number of simulation runs R.
Set of randomized spatial datasets RD[1..R].

Output: Set of significant co-location patterns P
1: T : set of transactions
2: CP : set of candidate patterns
3: T = GetTransactions(D)
4: for each cp ∈ CP do
5: cp.ExpSupobs = ComputeExpSup(cp, T )
6: if cp.ExpSupobs = 0 then
7: CP = CP\cp
8: end if
9: end for

10: for i = 1 → R do
11: T = GetTransactions(RDi)
12: for each cp ∈ CP do
13: cp.ExpSupsim[i] = ComputeExpSup(cp, T )
14: if cp.ExpSupsim[i] ≥ cp.ExpSupobs then
15: cp.R≥ExpSupobs = cp.R≥ExpSupobs + 1

16: cp.α =
cp.R≥ExpSupobs

+1

R+1

17: if cp.α > α then
18: CP = CP\cp
19: end if
20: end if
21: end for
22: end for
23: P = CP
24: return P

3.2.4 Statistical Test

In the previous steps, a prevalence measure value is calculated for all candidate co-

location patterns or rules. Now, the goal is to identify a set of significant patterns

or rules. As discussed above, a usage of a threshold on a prevalence measure may

result in discovery of wrong patterns and omission of interesting ones. Instead,

only co-location patterns or rules that have surprising levels of a prevalence mea-

sure should be reported as significant. In other words, it is unlikely that instances

of features in a significant pattern are located close to each other only by chance

according to a predefined significance level threshold.
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In our algorithm, we use statistical hypothesis testing to estimate significance of

patterns and rules. A null hypothesis is that features of a pattern or rule are spatially

independent from each other. If a likelihood, or probability p, of seeing the same

level of the prevalence measure or greater under the null hypothesis is lower than

the significance level α, the features are spatially co-located and the pattern or rule

is considered significant. The following statement defines a significant co-location

pattern.

Definition 4 A co-location pattern P is considered significant at level α, if the

probability p of detecting the observed expected support ExpSupobs(P ) or larger

in a dataset complying with a null hypothesis is not greater than α.

The same logic can be applied to a case when co-location rules are mined.

Therefore, a significant co-location rule is defined as follows:

Definition 5 A co-location rule R is considered significant at level α, if the proba-

bility p of detecting the observed expected confidence ExpConfobs(R) or larger in

a dataset complying with a null hypothesis is not greater than α.

In order to estimate probability p, a set of randomized datasets is generated un-

der the null hypothesis. Each randomized dataset has the same number of instances

of each feature as in the original dataset. In addition, distribution of instances of

each feature in a randomized dataset should be similar to its distribution in the

original data. For instance, disease cases should be placed within populated areas.

Obviously, random placement of disease cases all over the study region can lead

to invalid results, especially in the case when most of the region is unpopulated.

Another example can be found in biology. Some animal species may have various

requirements to their habitats such as a location close to water reservoirs or pres-

ence of certain types of vegetation. This observation needs to be taken into account

in a randomized dataset generation process.

Let us suppose that the expected confidence ExpConf is used as a preva-

lence measure. Let ExpConfobs(X → Y ) denote the expected confidence of a

co-location rule X → Y in a real dataset, and ExpConfrand(X → Y ) - the ex-

pected confidence of rule X → Y in a randomized dataset which is generated under
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the null hypothesis. The expected confidence of the co-location rule in each of R

randomized datasets is calculated in order to estimate the probability p. Having the

number of simulations R, the value of p is computed as:

p =
R≥ExpConfobs + 1

R + 1
, (3.4)

where R≥ExpConfobs is the number of simulations in which ExpConfrand(X →

Y ) ≥ ExpConfobs(X → Y ). The observed dataset is added to both numerator and

denominator.

If the p-value is less or equal to a predefined level of significance α, the null

hypothesis is rejected. Therefore, it is unlikely that the features of the rule are

spatially independent; they are not situated close to each other only by chance. The

co-location rule X → Y is considered significant at level α.

The above explanation can also illustrate a process of detecting co-location pat-

terns. The difference is that instead of the expected confidence, the expected support

ExpSup is used as a prevalence measure.

3.3 Candidate Filtering Techniques

The calculation of the p-value is repeated for all candidate co-location patterns or

rules. The number of candidates grows exponentially with the number of spatial

features in the dataset. In addition, accuracy of the p-value depends on the num-

ber of simulation runs. Therefore, the more randomized datasets are checked, the

more accurate are the results. These two factors may lead to an enormous amount

of computation. However, the support of a co-location decreases as the size of a

candidate pattern or rule increases, because fewer transactions contain all its fea-

tures. Therefore, researchers might put a threshold on the support or the maximal

size of a candidate in order to analyze only patterns and rules that are backed by a

meaningful number of transactions. In addition, we use the following filtering tech-

niques to exclude from the analysis candidate patterns and rules that are definitely

not significant.

1. After the calculation of a prevalence measure for candidate patterns in a real

spatial dataset, some of the patterns may have a prevalence measure value
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equal to zero. It means that combinations of features of these patterns do not

exist in the dataset. Obviously, these patterns cannot be statistically signif-

icant and they can be excluded from the set of candidate patterns (lines 6-8

in Algorithm 2). In some applications a low-value threshold on a prevalence

measure can be used in order to get significant patterns and rules with a cer-

tain level of interestingness. In this case, candidate patterns and rules with

prevalence value lower than this threshold can also be pruned and excluded

from further computations.

2. During the calculation of the p-value for candidate patterns for which an ob-

served prevalence is higher than zero, some of the candidate patterns might

show the p-value that have already exceeded the level α. For example, let

us assume that the number of simulation runs is 99 and α = 0.05. If after

ten simulation runs, the prevalence measure of a pattern P is greater than the

observed prevalence in 5 randomized datasets, pattern P already surpassed

the threshold ((5 + 1)/(99 + 1) > 0.05). Therefore, it definitely cannot be

significant and can be excluded from the following 89 checks (lines 16-19 in

Algorithm 2). Thus, the computation time is greatly reduced. With this fil-

ter, after the last simulation run the set of candidates contains only significant

patterns or rules.

3.4 Advantages of the Proposed Algorithm

By combining techniques of co-location mining and frequent pattern mining, we

address the limitations of previous models. Our framework has the following ad-

vantages:

• Our framework does not need thresholds on prevalence measures. The sta-

tistical test replaces a usage of one global threshold for a prevalence measure

of candidate co-location patterns or rules. Only meaningful patterns are re-

ported as significant. These patterns have the prevalence measure higher than

an expected value under a null hypothesis that features of a pattern are in-

dependent from each other. Sometimes researchers do not need patterns or
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A1 B1 A2 B2

A1 B1 A2 B2

Transactionization

Figure 3.3: Neighboring objects A1 − B1 and A2 − B2. In the transactionization
step, the intersection of A1 and B1 receives more transactions (black dots) than the
pair A2 and B2.

rules with very low support values even if they are significant. In this case a

threshold on support can be used. However, it should have a relatively low

value in comparison with other approaches, so it does not exclude meaningful

patterns or rules.

• While a neighborhood distance threshold used in many co-location algo-

rithms is set to one value for all spatial features, our model can deal with

varying buffer sizes. A buffer size may depend on types of features or on

attributes of individual spatial objects. So, the algorithm can be used for

applications where features differ from each other in an effect to the envi-

ronment around them, e.g., plant and animal species. Moreover, the model

can be further extended to take into account not only point instances but also

other types of spatial objects such as lines and polygons which are present in

many spatial datasets.

• In most previous algorithms, two or more objects are considered to have a

neighborhood relationship, if they are located at a distance not farther than

a distance threshold. However, these approaches do not take into account

spatial information and context: how close or far the objects are situated from

each other. Figure 3.3 illustrates an example of two pairs of neighboring
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(a) A1, B1 and C1 are
pairwisely neighbors.
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A2 B2

(b) An intersection of A1, B1 and
C1.

C2

A2 B2

(c) No intersection of A1, B1

and C1.

Figure 3.4: Intersection of neighboring objects.

spatial objects with corresponding buffer zones. Both pairs, A1−B1 and A2−

B2, are neighbors and treated similarly by most co-location approaches, even

though A1 and B1 are closer to each other than A2 to B2. Being located at the

closer distance, the instances of the former pair are more likely to be related

than the instances of the latter pair. By using buffer zones around spatial

instances and transactions that are created from grid points, our algorithm

ensures that the spatial location of objects is not ignored. The pair A1 − B1

gets more transactions (shown as black dots in Figure 3.3) than the second

pair of objects. Therefore, the real situation is represented more accurately.

Consider another example. Let spatial points A1, B1 and C1 be pairwisely

neighbors (Figure3.4(a)). They are considered to form a clique by previous

algorithms. However, as it can be seen in Figure3.4(b), with certain buffer

sizes it is possible that an actual intersection area of three buffers is relatively

small. Furthermore, a scenario exists when there is no intersection of three

objects at all, although they form pairwise neighborhood relationships, as it is

illustrated in Figure3.4(c). Our buffer-based framework is able to distinguish

these cases. A varying number of transactions is derived from intersecting

regions of multiple objects depending on distances between them and their

buffer sizes.

• Similarly to classical frequent pattern mining applications where data can be

certain (deterministic) or uncertain (probabilistic), spatial datasets can also
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exhibit uncertainty of feature existence in space. In other words, a probability

of detecting an existence of a feature in a region closer to an observation

point is higher than in regions situated farther from it. By taking into account

uncertainty and including it in our framework, we believe that our model

increases accuracy of results.
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Chapter 4

Modeling Framework

A modeling framework that is used to handle and analyze data is an important part

of any practical research. In theoretical studies it could be simplified in order to gen-

eralize a task and define algorithms that could be applied for a wide range of appli-

cations and domains. However, a usage of general approaches and algorithms may

result in misleading or even wrong results. For example, a neighborhood distance

threshold is an important measure of an interaction and relationship between fea-

tures. Obviously, one distance threshold cannot capture accurately all links among

features. In biology, various animal species have different home ranges, areas where

they search for food. Rodents may require little space, while birds forage on wider

regions. Another example is derived from urban studies. Two points of interest,

for example, a shopping mall and a grocery store, could be situated on a distance

exceeding a threshold, but if they are connected by a high quality road, they are

more likely to be co-located than other two points positioned seemingly close to

each other but separated by some obstacles. Most domains of research, if not all,

have their own nuances that must be taken into account by researchers in order to

get most accurate and significant results.

The motivating task of this thesis, detecting co-locations of pollutant emission

points and childhood cancer cases, has unique difficulties and challenges. A dis-

tribution of a pollutant in a region is not uniform and it could depend on several

factors: types of pollutants, amounts of release, climatic conditions (wind, precipi-

tation), topography, etc. Various chemicals have different levels of harmfulness and

toxicity. In addition, a pollutant concentration is inversely proportional to a distance
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from an emitting point. These are only several examples. We show how we tack-

led some of these problems such as pollutant amounts, wind speed and direction,

and uncertainty of presence of chemicals. Certainly, we do not aim to reproduce

complicated air pollution distribution models which require many variables and pa-

rameters. Instead, our model gives a simple framework that attempts to simulate

real world conditions while operating with available data.

4.1 Pollutant Amounts

The dataset on pollutants contains data on yearly releases of chemicals. For our

research we take an average amount of release for a year on given facilities and

chemicals, which is further normalized by Toxic Equivalency Potentials (TEPs)

when they are available. TEP shows the relative risk associated with one kilogram

of a chemical in comparison with the risk caused by one kilogram of benzene.

Chemicals with high TEPs are extremely toxic. A range of average amount values

varies from several kilograms to tens of thousands tons; the maximal average yearly

release in the dataset is 80,000 tons. Certainly, one distance threshold for all pollu-

tant emissions is inaccurate, because the more amount of a chemical is released, the

farther it distributes from a source point. Figure 4.1(a) displays an example dataset

containing cancer points (feature A) and chemical points (features B and C). In

Figure 4.1(b), the buffer zones around pollutant points are based on an amount of a

release at that location. For example, instance C1 has a larger zone affected by this

source point than instance C3 which has smaller amount of emission. Buffer zones

of cancer points are not changed.

As a function of a dependency of a buffer size on a release amount we use the

natural logarithm function. This function gives a smooth curve which does not

grow as fast as linear or root functions that give large numbers for heavier releases.

Even though this technique oversimplifies the real-world conditions of pollutant

dispersion, it helps to make results more precise than when using one buffer size

for different amounts of chemicals. Other functions can be used to calculate the

maximal distribution distance and they can depend on a type of a pollutant (a heav-
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(a) A sample spatial dataset (A - cancer, B
and C - pollutants).

(b) Buffer sizes vary depending on the
pollutant release amount.

(c) Buffer shapes change with the wind di-
rection and speed (shown by arrows).

Figure 4.1: Modeling framework usage examples.

ier chemical settles faster and on a shorter distance from a chimney) or a height of

a chimney. An additional point that could be considered in future work is that an

area very close to a chimney does not get polluted, and the higher the chimney, the

bigger the region.
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4.2 Wind Speed and Direction

The climatic conditions and topographical features may affect distribution of chem-

icals in air. The examples of these factors are prevailing winds, precipitation, rel-

ative humidity, mountains, hills, etc. At the first step in this part of the modeling

framework we include the wind speed and the prevailing wind direction at source

points as variables of the model.

Regarding the wind speed and direction, two situations are possible. First, a

region where a facility is located is windless throughout the year. In this case, a

pollutant is assumed to disperse in a circular region around the source point with

a radius of a circle derived from a released amount as discussed in the previous

subsection. However, a second situation is more frequent - there is nonzero wind

speed with the prevailing wind direction. In this case we presume that the original

distribution circle is morphed into a more ellipse-like region. Figure 4.1(c) illus-

trates elliptical buffer regions; their forms are dependent on the wind speed and its

frequent direction.

Our calculations of the characteristics of an ellipse are based on the works by

Getis and Jackson [19], and Reggente and Lilienthal [28]. The major axis of the

ellipse is in the direction of the prevailing wind. We assume that the area polluted

by a chemical when wind is present is the same as when there is no wind. Therefore,

the coverage area of the ellipse is kept equal to the area of the original circle. The

source point can be placed on the major axis of the ellipse between the center and

upwind focus; in our model we locate it in the middle of the segment between these

two points. Figure 4.2 shows an example of buffer transformation. The original

circle buffer zone around the emission point P is changed to an ellipse.

Obviously, wind with a higher speed distributes chemicals to greater distances.

Therefore, we need to include the wind speed value in computations. The lengths

of the major semi-axis a and minor semi-axis b are dependent on the wind speed

and derived from the equations:

a = r + γ|v⃗|, (4.1)

b =
r2

a
, (4.2)

39



r

b

a
P P

Wind
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Figure 4.2: A buffer circle around emission point P is morphed into an ellipse.

where r - the radius of the original circle, v⃗ - the wind speed, and γ - the stretching

coefficient.

The larger is a value of the stretching coefficient, the longer is the ellipse’s major

axis. In this work it is fixed at 0.3, but it could be changed and have a different value

for each of pollutants. The calculation of the length of the semi-minor axis b follows

our assumption that the area of the ellipse is equal to the area of the original circle.

We improve our model by using elliptical buffer zones, which depend on the

average wind speed and most frequent wind direction, instead of circular buffers.

However, this is only a simplified model. Other factors which affect chemical dis-

tribution in air might be taken into account in future research to more accurately

simulate real processes.

4.2.1 Wind Stations and Data Interpolation

In order to get values of the wind speed and prevailing wind direction, an inter-

polation of wind fields between weather stations is used. The data of monitoring

stations in Alberta comes from two sources. First, the data from 18 stations is

obtained from Environment Canada [15] which provides climate normals that are

based on climate stations with at least 15 years of data between 1971 and 2000. The

most frequent wind direction is a direction (out of possible eight directions) with

the highest average occurrence count. Second, the data from 156 stations is derived

from AgroClimatic Information Service (ACIS) [2]. The locations of stations are

displayed in Figure 4.3.

The data provided by ACIS is daily from 2005 to 2011. In order to make the

data consistent, the average wind speed and the most frequent wind direction are
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(a) 18 stations of Environment Canada.
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(b) 156 stations of ACIS.

Figure 4.3: The monitoring stations in Alberta.

calculated using a method similar to the one used by Environment Canada [15]. The

average wind speed is simply the average value of this parameter for all available

days. The wind direction is rounded to eight points of the compass. A direction

with the highest count of daily observations is assigned as the most prevailing wind

direction.

The climate normals from two sources are combined and used to make interpo-

lations in ArcGIS tool [1]. However, ArcGIS is restricted to linear surface interpo-

lations and the wind direction is a nonlinear attribute. In linear systems (e.g., the

number of sunny days or days with precipitation) there is only path when moving

from one number to another. On the other hand, nonlinear systems may have sev-

eral paths. For example, there are clockwise and counter-clockwise directions to

move from 90◦ to 270◦: through 0◦ or 180◦. These directions go from one point

to the second but both are unique. Therefore, linear interpolations lead to wrong
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results when deployed directly to non-linear systems.

Interpolation of wind fields requires a technique that considers non-linear nature

of the wind direction attribute. A transformation is done according to the work by

Williams [31]. The wind speed and wind direction from each monitoring station is

represented as a vector with the magnitude S (wind speed) and direction θ (wind

direction). The vector is divided into axial components X (northern wind) and Y

(eastern wind):

X = S sin θ, (4.3)

Y = S cos θ. (4.4)

Based on these two components, two ArcGIS surface interpolations are created.

The type of interpolation used is spline. As a result we get two grids: for north-

ern X ′ and eastern wind Y ′. The magnitude of the vector, the wind speed S ′, is

computed as:

S ′ =
√
X ′2 + Y ′2. (4.5)

The calculation of wind direction angle θ′ is more complicated. From geome-

try, the wind direction is calculated as θ′ = tan−1 (Y ′/X ′). However, the inverse

tangent is defined only for values between -90◦ and 90◦ and it is only half of our

domain. Therefore, each of the four quadrants of our domain (the quadrants are

shown in Figure 4.4) requires its own formula [31]:

Quad I : θ′ = tan−1 (X ′/Y ′), (4.6)

Quad II : θ′ = tan−1 (Y ′/X ′) + 90◦, (4.7)

Quad III : θ′ = tan−1 (X ′/Y ′) + 180◦, (4.8)

Quad IV : θ′ = tan−1 (Y ′/X ′) + 270◦. (4.9)

As a result we get interpolated values of wind speed and wind direction for each

point of studied space.
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Figure 4.4: Four quadrants defined by the signs of values of X ′ (northern wind) and
Y ′ (eastern wind).

4.3 Data Uncertainty

A dispersion of a pollutant in a distribution region is not uniform. Intuitively, A con-

centration of the pollutant near a chimney is higher than at a border of the dispersion

region. Furthermore, pollutants are a subject to decay and deposition processes. In

other words, it is more likely that people living near an emitting facility are exposed

to higher levels of pollutants than people who live kilometers away from the facil-

ity. Therefore, presence of a chemical in a given point is uncertain and a probability

of detecting it depends on a distance from the point to the emission source. This

dependency is inversely proportional. For example, in Figure 3.2(c) the probability

of detecting A at the point gp1 is lower than at the point gp2.

Various functions can be used to determine the dependency of the pollutant

presence probability in a given point on the distance to the emitting facility.

• When using a categorical function (Figure 4.5(a)), we assign probabilities

according to distance ranges, e.g., 1.0 for 0-2 km from the facility, 0.75 for

2-4 km, 0.50 for 4-6 km, etc.

• Another example is a linear function (Figure 4.5(b)) which can be represented

as 1 − x′/x, where x′ is the distance from a given point to the facility and x

is the maximal distance where pollutant distributes.
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(c) Curve function ( cosπx2 + 0.5).

Figure 4.5: Examples of functions that can be used to represent the dependency of
the pollutant presence probability on the distance to the source point.

• In this work we use a third example, the curve function (Figure 4.5(c)), which

is derived from the cosine function, p = cosπx
2

+ 0.5. With this function

the probability decreases slowly with the increasing distance. Then, it starts

declining more linearly, and at the end slows down again. We believe that the

curve function models the real-life pollutant behavior more accurately than

the other two methods.

These three examples are only some of possible curves that can be used to model

pollutant distribution within buffer zones. However, other functions could be used

in order to improve the accuracy of results. They could depend on types of chem-

icals. For example, most of a heavy chemical may settle out in a region closer

to the emitting facility, while only small amounts reach places at medium and far

distances.

Some datasets in addition to point features may contain other types of spatial

objects, i.e. lines and polygons. For these datasets, uncertainty may be modeled

as follows. Grid points intersecting a line or located inside a polygon are assigned
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Figure 4.6: Defining a distance to an object in datasets with polygons and lines.

a feature presence probability of one. For example, point gp3 in Figure 4.6. Un-

certainty for grid points positioned in buffer zones depends on the shortest distance

from the point to the line or polygon. Points gp1 and gp2 in Figure 4.6 are located in

buffer zones of line L and polygon P respectively. Existential probabilities at these

points are computed using shortest distances to respective spatial objects.
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Chapter 5

Experimental Evaluation

In this chapter, we present the results of experiments conducted on a real dataset

containing pollutant emission points and childhood cancer cases to evaluate the

proposed algorithm. In addition, the algorithm is applied and evaluated on synthetic

data.

5.1 Real Data

We conduct experiments on a real dataset which contains data on pollutant emission

points and childhood cancer cases in the province of Alberta, Canada. The sources

of the databases are the National Pollutant Release Inventory (NPRI, the data is

publicly available) [9], and the provincial and national childhood cancer registries.

The information on pollutants is taken for the period between 2002 and 2007 and

contains the type of a chemical, location of release, and average amount of release

per year. In order to get reliable results the chemicals that had been emitted from

less than three facilities are excluded from the dataset. There are 47 different chem-

icals and 1,442 pollutant emission points; several chemicals might be released from

the same location. The number of cancer points (the centroids of postal code re-

gions where children lived when cancer was first diagnosed) is 1,254. The model

that is used to define buffer zones and uncertainty in the data is explained in the

previous chapter.

Environmental pollutants are suspected to be one of the causes of cancer in

children. However, there are other factors that could lead to this disease (genetic
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susceptibility, parental exposure to chemicals or radiation, parental medical con-

ditions, etc.). Considering this fact, we attempt to find “correlations” rather than

“causalities”. The results are subject for careful evaluation by domain experts in

our multidisciplinary team.

We are interested in co-location rules of the form Pol → Cancer, where Pol is

a set of pollutant features and Cancer is a cancer feature. The expected confidence

is used as a prevalence measure. The distance between points in a grid is 1 km;

the change in the grid granularity is also evaluated. The number of simulations

(randomized datasets) for the statistical test is set to 99, so that with the observed

data the denominator in (3.4) is 100. The level of significance α is set to 0.05. The

size of an antecedent of candidate rules is up to three. Larger candidates have low

support values due to the fact that the average number of features in a transaction

in the experiment is 1.95.

5.1.1 Randomized Datasets

The randomized datasets that are used in the statistical test are generated as follows.

Pollutant emitting facilities are not random and usually located close to regions with

high population density, while they are not present in other places (e.g., in protected

areas). Due to this observation, we do not randomize pollutant points all over the

region, but instead keep locations of facilities and randomize pollutants within these

positions. Out of 1,254 cancer points, 1,134 are located within dense “urban” mu-

nicipalities (cities, towns, villages, etc.) and the rest are diagnosed in “rural” areas.

In order to have the randomized cancer occurrence rate close to the real-world rate,

we keep the number of cancer feature instances positioned in “urban” (“rural”) re-

gions the same as in the real dataset. The number of random cancer cases placed

within each “urban” municipality is directly proportional to the number of children

counted in the 2006 census [10]. The rest 120 cases, which are located in rural

regions in the real dataset, are randomly placed on the map of Alberta but not in

urban areas.
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Figure 5.1: The number of candidate rules evaluated in each simulation run with
the filtering technique.

5.1.2 Effect of Filtering Techniques

The number of candidate co-location rules in the experiment is 17,343 (co-locations

with the antecedent size up to three). With the naive approach all candidates are

checked in each of 99 simulation runs which results in a large amount of computa-

tion. In order to prune insignificant candidates, we propose two filtering techniques.

After the exclusion of rules with zero-level confidence 10,125 candidates remain

which also form a big set. Figure 5.1 shows that the usage of the second filtering

method (the exclusion of candidates which p-values passed α during the evalua-

tion of randomized datasets) considerably reduces the amount of computation. In

the first simulation run the confidence value is computed for 10,125 rules, while

3,098 candidate rules are checked in 20-th simulation, and only 488 candidates are

evaluated in the last run.

5.1.3 Comparison with the Certain Data Method

In this experiment we compare the results of our uncertain data method (UM) with

the results of a method using certain deterministic data (CM) where existential prob-

abilities are not stored as a part of a transactional database. As an interestingness

measure in the CM we use the confidence Conf(Pol → Cancer), which is a
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fraction of transactions containing all features in Pol that also include the cancer

feature.

Conf(Pol → Cancer) =
Sup(Pol ∪ Cancer)

Sup(Pol)
. (5.1)

The number of significant co-location rules detected by either UM or CM is

496. From these 204 rules are found by both methods, 278 rules are identified only

by UM, and 14 - by CM. The difference in results could be explained by the fact

that our approach deals with probabilities of feature presence in transactions rather

than with deterministic values. It considers not only the presence of a feature in

a transaction but also distances from grid points to pollutant features and cancer

cases. The grid points that are situated closer to spatial instances are given more

weight than points located relatively farther.

Some of the co-location rules discovered by the uncertain method have a low

level of ExpSup(Pol) or ExpSup(Pol ∪ Cancer). For example, 348 out of 482

rules have ExpSup(Pol ∪ Cancer) less than 1. It means either a low number of

transactions or a relatively long distance from grid points. Although with a low

p-value (≤ 0.05) they have an expected confidence level higher than in most ran-

domized datasets, domain experts might not be interested in these co-location rules.

In that case, a threshold on the expected support might be introduced to the model

for detection of significant co-location rules. This threshold should not be set too

high, so that the algorithm does not miss some of the interesting co-location rules

or patterns with rare features.

In order to show that the uncertain data method deals with spatial information

better than the certain data method we conduct an experiment with co-location pat-

terns instead of rules. Recall that the expected confidence is computed as a division

of Sup(Pol ∪ Cancer) by Sup(Pol). Therefore, a pattern may be reported by ei-

ther UM or CM not only because of varying distances from grid points to instance

objects in a real and randomized datasets. The support values (Sup(Pol∪Cancer)

and Sup(Pol)) could also vary considerably. It is possible that ExpSupobs(Pol ∪

Cancer) ≤ ExpSuprand(Pol ∪ Cancer) and ExpConfobs(Pol ∪ Cancer) >

ExpConfrand(Pol ∪ Cancer) at the same time, and vice versa. When mining
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co-location patterns, ExpSupobs of a significant pattern is higher than ExpSuprand

in at least 95% of simulations, and it is feasible to find out what are the causes of

the difference in the results by two methods.

Seven patterns are detected only by the certain data method, and fourteen - only

by UM. In order to analyze these results, the average probability p(P, t)obs of see-

ing all features of a co-location pattern P (pollutants and cancer) in transactions of

the real dataset is compared with the average probability p(P, t)rand in randomized

datasets. For the patterns that are detected only by CM, we only take the random-

ized datasets which caused the difference in p-values in CM and UM, i.e., in these

datasets Supobs > Suprand and ExpSupobs ≤ ExpSuprand, and vice versa for the

patterns discovered only by UM.

The results are shown in Table 5.1; for simplicity codes are given instead of

pollutant names. As can be seen, all seven co-location patterns discovered by CM

have pobs < avg prand. It means that in simulated datasets emission points and

cancer cases are located closer to grid points than in the real dataset, which causes

ExpSuprand in simulated data to be higher than ExpSupobs. This is the reason why

these patterns are not detected by the uncertain method. Moreover, fourteen patterns

that are found only by UM have pobs > avg prand, which means that in randomized

datasets spatial objects are located on average farther from grid points than in the

real dataset. The features in these patterns are more likely to be associated with each

other. Looking at the difference in the results of CM and UM, we can conclude that

the uncertain data method in addition to neighborhood relationships between spatial

objects also takes into account spatial information and relative locations of objects

and grid points.

5.1.4 Effect of the Grid Granularity

As already mentioned, a granularity of the grid (a distance between grid points

which affects the number of points per unit of space) is crucial for accuracy of

results. A great distance between grid points may lead to omission of some regions

of the space especially when the average buffer distance is short. On the other hand,

when the distance between points is too short, more transactions are derived by the
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Table 5.1: Co-location patterns detected by either CM or UM.
Method Co-location Pattern Avg p(P, t)obs Avg p(P, t)rand

CM DQ, GZ, Cancer 17.06% 22.95%
CM GF, GZ, Cancer 18.51% 22.37%
CM GF, HG, Cancer 16.80% 20.26%
CM BJ, CG, DP, Cancer 3.10% 8.30%
CM BJ, DV, GF, Cancer 10.17% 14.65%
CM BJ, GF, HG, Cancer 13.66% 16.59%
CM DV, GF, GZ, Cancer 12.80% 16.70%
UM FF, GB, Cancer 14.78% 1.32%

UM BB, FF, GB, Cancer 14.64% 1.26%

UM BF, FF, GB, Cancer 4.99% 1.16%

UM DJ, EK, GB, Cancer 10.08% 7.04%

UM DV, FF, GB, Cancer 14.66% 1.26%

UM DZ, FF, GA, Cancer 10.44% 1.99%

UM EB, FB, FF, Cancer 8.66% 1.42%

UM EN, FB, FF, Cancer 4.23% 1.19%

UM EN, FF, GA, Cancer 3.18% 1.03%

UM FB, FF, FY, Cancer 10.50% 1.61%

UM FB, FF, GD, Cancer 14.24% 1.64%

UM FF, GB, GZ, Cancer 14.74% 1.30%

UM FF, GB, HD, Cancer 14.69% 1.17%

UM FF, GB, HG, Cancer 14.69% 1.20%

algorithm. Decreasing the distance by a factor of two increases the transaction set

size approximately by four times. Therefore, more computation needs to be done

during the statistical test step. The grid resolution might be set up depending on the

average buffer size.

In addition to the grid with a distance of 1 km between its points, we conduct

two experiments with 2 and 0.5 km grids. As mentioned above, the algorithm re-

ports 482 significant co-location rules with 1 km grid. With 2 km granularity 547

rules are detected from which 335 are present in both 1 and 2 km result sets, and

212 are unique for 2 km grid. The difference means that 2 km distance between grid
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points is too long for our dataset, where the average buffer size is 7.3 km, and its

accuracy is comparatively low due to the smaller number of transactions which is

not sufficient to capture intersections of instance buffers accurately. The 0.5 granu-

larity grid reported 472 co-location rules as significant. From these, 426 are found

with both 1 and 0.5 km grids, and 46 rules are identified only by 0.5 grid. As we

can see, the difference between 0.5 and 1 km result sets is smaller than between 1

km and 2 km grids. As the distance between points in a grid decreases, the accuracy

of results improves.

5.2 Synthetic Data

We conduct experiments on synthetic datasets to demonstrate that our framework

can discover correct set of co-location rules. In addition, we show that our transaction-

based method takes into account spatial context and information.

5.2.1 Discovery of Co-Location Rules

In order to evaluate our algorithm on the synthetic data we generate a dataset and

attempt to emulate the real-world information. Similarly to the real dataset, it con-

tains point features that appear in the antecedent part of co-location rules (“cause”

features C), and a disease feature D. The study region is a 100x100 unit square.

The buffer size is 1 unit. The features C1 and C2 have 20 instances each and they are

associated with each other. The features C3 and C4 have 30 points each; 20 of them

are associated with each other, while remaining 10 instances are placed randomly.

These two pairs represent co-located chemicals. The disease feature D is positively

associated with sets C1 ∪ C2, C3 ∪ C4, and with 30 out of 40 instances of feature

C5. It has no association with the feature C6 (30 instances), and negatively corre-

lated with C7 (30 points), so that no pair of instances D and C7 are neighbors. In

addition there are 30 disease cases spread randomly. We look for co-location rules

of the form C → D. In 99 randomized datasets all eight features are distributed

randomly with no association (neither positive nor negative) with each other.

The significant co-location rules with p-value ≤ 0.05 are shown in Table 5.2.
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Table 5.2: Co-location rules detected in synthetic data. ExpSup is the value of the
expected support of patterns of the form C+D, where C is the set of cause features
and D is the disease feature.

N Co-location Rule ExpSup ExpConf

1 C1 → D 763.1 0.41

2 C2 → D 765.8 0.42

3 C3 → D 717.1 0.26

4 C4 → D 807.8 0.30

5 C5 → D 1,256.6 0.34

6 C1 + C2 → D 432.8 0.50

7 C1 + C4 → D 1.0 · 10−3 0.82

8 C1 + C5 → D 10.6 0.49

9 C2 + C4 → D 0.4 0.49

10 C2 + C5 → D 14.4 0.44

11 C3 + C4 → D 390.5 0.53

12 C5 + C6 → D 2.8 0.08

13 C1 + C2 + C4 → D 4.8 · 10−4 0.83

14 C1 + C2 + C5 → D 7.9 0.51

As expected, rules 5, 6, and 11 are reported as significant because they have strong

correlation of C features and feature D. Rules 1-4 are also detected because the

respective features (C1−C4) have associations with D either total (C1−C2) or par-

tial (C3 −C4). Rules with features C6 and C7 are not reported because of their zero

and negative association with the disease feature. The remaining co-location rules

(7-10, 12-14) are detected due to their random correlation with features associated

with feature D. However, they all have very low ExpSup(C +D) values and can

be pruned if a threshold on ExpSup is used as discussed in the experiments with

the real data.

The experiment on synthetic data shows that our approach finds co-location

rules in which features in the antecedent part are co-located with the feature in the

consequent part. A threshold with a relatively low value can help to exclude rules

with noise features.
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Table 5.3: The average expected support for ranges of an average distance between
two spatial features.

N Range Average ExpSup

1 [0.0, 0.2) 1,558.9

2 [0.2, 0.4) 1,355.3

3 [0.4, 0.6) 1,017.1

4 [0.6, 0.8) 649.9

5 [0.8, 1.0) 353.3

6 [1.0, 1.2) 155.9

7 [1.2, 1.4) 52.8

8 [1.4, 1.6) 16.6

9 [1.6, 1.8) 8.3

10 [1.8, 2.0) 5.7

5.2.2 Distance between Features

In this experiment we evaluate the effect of an average distance between features on

the expected support. Recall that one of the advantages of our algorithm is that it

takes into account a distance between spatial objects, so two objects located close to

each other are represented in more transactions than a pair of objects situated farther

(Figure 3.3). Let us consider two scenarios: 1) objects which belong to two distinct

features are located on average very close to each other, and 2) they are situated

on the farthest possible distance so they are still considered to have neighborhood

relationships. Most previous approaches assign the same prevalence measure value

in both cases as long as a neighborhood relationship is kept. Obviously, it is not

correct; the prevalence measure should be higher in the first situation. On the other

hand, with our approach in the first case the features are included in more transac-

tions with higher existential probabilities. This leads to a higher prevalence measure

than in the second case.

For this experiment we create synthetic datasets with two spatial features f1 and

f2. The study region is a 100x100 unit square. The buffer size is 1 unit. In each

dataset features have 30 instances each. We randomly place the instances of feature

f1 in the study region. One instance of feature f2 is placed on a varying distance d
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from an instance of f1. The distance d between instances of two features is taken

randomly from ten ranges {[0.0, 0.2), [0.2, 0.4), ..., [1.8, 2.0)} (given in units).

The first range [0.0, 0.2) is for the scenario when features are located very close

to each other on average. The last range [1.8, 2.0) simulates a situation when an

intersection of each pair of instance buffers is very small. The expected support of

pattern (f1 ∪ f2) is calculated and averaged over 100 synthetic datasets for each of

ten ranges.

The results are presented in Table 5.3. As can be observed, the expected sup-

port rapidly decreases with the increase in the average distance between instances

of features f1 and f2. Expectedly, the range [0.0, 0.2) gets the highest value of

the expected support, and the range [1.8, 2.0) has the lowest prevalence value.

While a pattern with these features would be considered having the same preva-

lence measure value in all ten synthetic datasets by most previous algorithms, out

transaction-based approach takes into account the actual spatial information and a

relative proximity or remoteness of features from each other.

55



Chapter 6

Conclusion

6.1 Summary

Co-location pattern and rule mining is one of the tasks of spatial data mining. Dis-

covery of co-location patterns and rules can be useful in many projects and applica-

tions and may lead to a new knowledge in various domains. In this thesis we have

proposed a new solution to the co-location mining problem. The approach was mo-

tivated by a real-world application of detecting possible associations of pollutant

emission points and childhood cancer cases in the province of Alberta, Canada. We

explained

A short introduction to spatial data mining and some of its tasks and algorithms

was presented in this work. We reviewed various existing approaches to the co-

location mining problem, discussed their designs and parameters. We also briefly

explained some of the approaches to frequent pattern and association rule mining

problems with certain and uncertain data.

We addressed our thesis statements by proposing a new framework which com-

bines classical co-location mining, and uncertain frequent pattern and association

rule mining. We took into account some of the limitations that can prevent pre-

viously proposed approaches from being used in some real-world applications and

domains. A novel transactionization method allows conversion of spatial data into a

set of transactions by imposing a regular grid over a given map. Each grid point can

be seen as a representation of a study region. Features of objects and their buffers

that contain a grid point form a transaction. In addition, our approach takes into ac-
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count uncertainty of data by storing feature existence probabilities in transactions.

A probability of feature presence in a transaction depends on a distance from the

feature instance to the respective grid point. A usage of user-defined thresholds on

prevalence measures like in previous algorithms is replaced by the statistical test

which helps to identify significant co-location patterns and rules that are unlikely

to occur only by chance. In order to decrease computation, the filtering techniques

are presented which prune candidate patterns and rules that appear to be definitely

not significant.

The experiments on real and synthetic datasets showed that our approach finds

significant co-location patterns and rules. The effect of a grid granularity is evalu-

ated. A dependence of a prevalence measure value on an average distance between

feature instances was shown.The usage of transactions preserves spatial context and

information such as relative locations of instance objects and distances between

them. The consideration of feature presence probabilities helps to distinguish vari-

ous cases when feature instances are situated at different distances from grid trans-

action points. We demonstrated that the difference in the results obtained by our

uncertain data model and certain data method can be explained and justified.

The motivating application of this thesis has its unique challenges. We exam-

ined several factors which affect dispersion of pollutants in air. In order to more

accurately model chemical distribution we used buffer zones differing in their sizes

which depend on released amounts. Circular buffers transformed into elliptical fig-

ures with the consideration of wind speed and its direction at locations of emitting

facilities. Finally, we modeled uncertainty of a pollutant presence at transaction

points. In addition to pollution, other factors can also cause cancer in children. In

this thesis we did not intend to find true causalities but attempted to identify pos-

sible associations of pollutants and childhood cancer. The results that are derived

by our algorithm can be useful for domain experts and help in further analysis of

pollutant-cancer relationships.

Projects and applications from various domains have their unique characteris-

tics and requirements. A basic framework should be deployed in each application

with a careful consideration of its specific challenges. One interestingness measure
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can be suitable for some applications and lead to wrong findings in others. Each

project often needs an individual approach with a careful choice of parameters and

processing steps. For instance, stages of data preprocessing and cleaning are impor-

tant parts of analysis in many applications and, therefore, require a close attention

of researchers.

6.2 Contributions

The main contributions of this thesis are as follows:

1. A new framework, which is based on the statistical test, was proposed to

tackle the co-location mining problem. We showed that it can find significant

co-location patterns and rules by calculating and comparing their prevalence

measures (the expected support and expected confidence) in a real and ran-

domized datasets. Our evaluation showed that it can find a correct set of

co-location rules.

2. A novel method of creating a set of transactions from a spatial dataset was

devised. An uncertainty of a feature presence in transactions was included

in our model. The approach based on this transactionization and uncertainty

modeling method deals with spatial information better than most previous

approaches.

3. A problem of a high computation cost was addressed by using two prun-

ing techniques. They considerably decrease computation time by pruning

insignificant candidates and reducing the number of candidate co-location

patterns and rules that need to be checked.

4. Some of the factors that affect distribution of pollutants in air were taken

into account in the modeling framework. These factors are pollutant release

amounts, wind data (average speed and prevailing direction) and uncertainty

of a pollutant presence at transaction points.
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6.3 Directions for Future Research

In this thesis we proposed a novel algorithm to tackle the problem of co-location

mining in spatial data. However, there are still many open challenges to be resolved.

The research in the following directions may further improve accuracy of results

and widen applicability of co-location mining approaches.

As we discussed in Chapter 3, our approach can be extended to datasets con-

taining not only point instances but also linear and polygonal objects such as roads,

recreation zones and parks in cities. The inclusion of these types of spatial ob-

jects makes analysis of more spatial datasets possible which can further expand a

range of applications of co-location mining. However, addition of complex objects

would require more computations in a process of creating buffers and transactioning

spatial data. For example, GIS buffer, overlay, and intersection tools are computa-

tionally expensive. Therefore, more research is needed to efficiently use spatial

libraries and GIS technologies.

We explained and proposed to use two measures of prevalence - expected sup-

port and expected confidence - that are analogous to the respective notions of sup-

port and confidence in frequent pattern and association rule mining. In addition to

these parameters, other interestingness measures such as lift, cosine, leverage, all-

confidence, conviction, etc., were defined in previous research for various purposes

and tasks of deterministic frequent pattern mining. Each of them is suitable in dif-

ferent scenarios and cases. When adapted to uncertain data mining, these measures

can help to adjust the co-location mining task to unique requirements of various

projects.

By deploying the statistical test to analyze a set of candidate patterns, we ensure

that all significant co-location patterns and rules are discovered by the algorithm.

However, with an increase in the number of possible candidates and the number of

simulation runs, computations can become prohibitively expensive. The usage of a

finer grid with shorter distances between its points increases the number of trans-

actions and also requires more processing time. We use two filtering techniques

in order to prune candidates that are definitely not significant. Further research to
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define more pruning methods can substantially decrease the number of unneeded

checks of false candidates.

In Chapter 4, we explained the modeling framework which was used in the mo-

tivating application of this thesis. We believe that by considering pollutant release

amounts, average wind speeds and prevailing wind directions, and introducing un-

certainty to the model, we increased accuracy of the results in comparison with a

case when none of these factors are taken into account. We understand that this

model simplifies the real-world situation and more work should be done to further

enhance the modeling framework. For instance, different pollutant dispersion and

decay models and functions could be deployed.
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