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ic icing NO longer poses 3 serious threst to the operation of

" large transport sircraft equipped with anti- ard:—-ann devices, the opersting

environment and structural characteristics of general svistion srcraft and helicoptars
have generaly pfﬁﬁﬁd;ﬁ_‘l:lfmfl from instaling equally effective devices in
thess crlfi Iang is maﬂriy wm for helicopters Accretions upon the
mret&ﬂﬁmmmht&qgrmmmbﬂwaﬁdhmﬂ:
capsbilities, resulting in a forced landing Asymmetrical shedding from the main and
tail rotors may csuse severe vibrstion and W damage.

This dissertstion describes a numerical model which has been developed to
predict the characteristics of rime ice accretion on sn srfoil in a steady, nviscid,
irrotational, incompressible, two-dimensionsl flow. The ra’rfk:w sbout sn srbitracily |
shaped #-foil is caiculsted by & surface vorticity substitution technique _The full set
of equsations describing the accelersted motion cfgmgcd-d cloud droplets e
mt-r:tid with a varisble time step 10 yeid the irlm:tarm An mitomated routine
dﬂm: the placement of trajectory starting pomnts for the -ffncmnt calculation of
the local EPIIISI@F\ efficiency curve Several such curves may be combwmed to
i;praxiﬁ-\tté the effects of a natural dropiet size distribution The thickness of the
accreation (calcuisted under the assumption that all é’géﬂm freaze immedatsly upon
impact) leads to a determingtion of the resuiting profile after a limited accretion p-nai
This new profile is used to recomputs tha arflow sbout the asirfoil. the &Q@Qﬁ%
trajectories. and the other steps sbove. to give a simulation of time-dependent
accretion Efforts are made to optimize the code's :fﬁeiﬂ'\cy\wﬁl: mantaning a hugh
level of precision The simuistions are compared with previous asnslytical and
experimental results The :griimint is generslly quite good, although s lack of
precise sxperimental simulstions prevents a complete verification ?f the model Two
of the model's applications are presented to study the change in ice accretion as a
result of a change in the airfoil profile. and to test an arfoil scaling theory gar its

sccuracy The thesis concludes by rec a series of enhancements to the

model, and points out the need for Mmproving the experimental simulations which could
be used to verify the model .
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. 1. INTRODUCTION

1.1 Alrfoll lcing: the problem.

As ar transport developed during the 1930's and 1840's, an increasingly
grester emphasis was placed upon the need for sii-westher operstions. This had
become possible with the advent of sufficiently advanced svionics so that pilots could
iy in cloud and precipitstion via IFR (instrument flight rules), that is. without the need
for visusl contact with the ground or horizon It was soon discovered however, that
fhght threugh clouds which were composed of supercooled water droplets couid lead
to carburetor icing. and ice accretion on the propeliors, struts, sternas, leading esdges
of the wings and tail, and even on the aircraft fuselsge itself. At times such icing
Eagddcmn:mqfuaghprfm,rmm:farﬁﬁhfﬂiﬁgarivmaMI
in rmd=flight

_In an effort to find a solution to the icing probiem. research began in earnest M
several countries, virtuslly simuitaneously during World War i The US Nastional
Advisory Committes on Aeronautics (NACA) undertook a8 number of theoretcal and
experimental studies mto icing, some of which will be outlined below. This work lad
to an incressed understanding of the icing problem. and it allowed engineers to dasign
anti- or de-icing equipment for the larger transport arcraft where sufficient weight
" and power reserves permitted it One populsr solution was to use the hot engine
bieed air to heat areas prone to icing Another solution involved the use of pneumatic
boots on the leading edges of the wings to break the ice away periodically.

With the advent of jet arcraft. the wcing problem became less severe since
these planes could rapidly climb through icing regions to the 30.000 or 40.000 foot
levels where the problem essentially did not exist Beheim, 1978ai The relatively
short periods that such sircraft did spend in descent were not a significant problem
either because the lighter fuel load gave the piane an even grester power reserve As
a result, the research effort in icing absted somewhast lﬂ:-rgh 1950's.

The early emphasis in icing research was directed tg%%id large commercisi and
military transport aircraft However, according to Baheim (1978a) "the icing protection

requirements for . . small asircraft are 30 uniquely different from those for lerge



transports that sn extrapoistion of the current base of icing technology is Clearly
hasvier

insdequate. The componants of these sircraft are smaller 30 prc
asccretions of ice e more likely to occur  Consequently, ther aprodynamic
performance will deteriorste more drastcally.” The large power reserves and
sufficient quantities of gh pressure hested sir which exist on the larger mrplanes are
not asvaisbis 4 i genersl svistion aircraft A second class of srcraft the

rotorcraft. $0 plagued by icing problems. For helicopters. ice accrstions can be
perticulsrly dangerous. ice forming on the masin and tail rotors causes an ncreass n
sirfoil drag thereby requiring an inCrease in engine power to maintain sititude Lake &
Brackey, 19761 It sufficient ice forms, it can lead to unexpected stall on the trailing
rotor biade (Stalisbrass, 1958a. Further, the. centrifugal forces acting on the ice.
combined with the rapidly varying bisde pitch and biade flexing in forward flight. may
cause portions of the accreted ice to be shed If this sbedding occurs asymmaetrically,
severe vibrations and structural damage to the helicopter can result (Lozowsk: et &/,
1979) ice chunks leaving the tail rotor may hit the main fuselsge causing damage
there. Aiso, ingestion of ice chunks into the trbmes may produce dasmage to the
compressor blades causing a loss of power Icing of the windshieid can result in a
loss of visibility, and if ice should form on critical control linkages n the rotor b,
violent loss of control may result (Stallabrass, 1958a. To date. only the French PUMA

helicopter has been certified for unrestricted fliﬁ n icing conditions (Lecoutre, 1978}

1.2 The icing snvironmaent.

The operstional environment of helicopters and light arcraft is such that icing
conditions are much more likely to be encountsred by these craft than by jet arcraft
Helicopters in particular sre routinely required to supply oil rigs. to fly search and
rescue missions, and to perform snti-submaring duties all over the ocesn where the
tempersture and liquid water content of any clouds that are present could lead to
hazsrdous icing N winter conditions (Ryder, 1978

in the United States. the Eﬂqf\d Avistion Administration (FAA) has set down
quidelines FAR-28) regarding the conditions which sircraft must meet it they are to be
certified for IFR operstions through supercooled clouds. The aircraft must continue

-

=,
e



to operste safely through stratiform (comtinuous icng and cumulus (imtermittant icing)
clouds whers the combingtion of liquid water conmtent ALWC), ar tempersture, and the
dropiet distribution representative mass median diameter (MMD) are defined by the
solid lines of Fig 1. The dsta which were used in drafting these reguisbons were ob-
tained from messurements made by transport arcraft in the lste 1940's and esrly
1950's Lewis, 1947, Lewis & Bergrun, 1952). These reguistions as they apply to
helicopters have comes under increasing sttack n recent years Werner, 1975, Rosen &
Potash, 1981 Frost et /.. 1978) because they may be too stngent They appesr to
be bassd on axces

ievels of 0.1% Also these reguistions may not be appropri-
ate for tha lower altitudes st which helicopters fly Re-snaiyzing Lewis & Bergrun's
data Werner (1975) has concluded that the 1% excesdsnce probability curves for
severs icing for three areas m the United States are as shown by the dotted and
dashed Iines m Fig 1 Based upon ther resuits. he has recommended a new set of
stmospheric icing criteria for helicopters as set out n Figs 2 and 3 The FAA has
requestad that the National Aeronmutics snd Space Administration (NASA) conduct
ressarch to updste the dsta upon which FAR-25 1s based This work is proceeding
(Jeck, 1981).

Frost ot a/. aisc express thair frustration with the strict icing criteria applied to
certifying helicopters for IFR operstions. The FAA continues to require natural ice
testing, a costly. time—consurming and uncertan means of achieving the desired goals
They ciam that the upper limits of the [netecroiogical design cirteria as defined in
Fig 1 are rarely encountered in natural testing Helicopters are more imited in range
than jet transports. and thus they are not sble to seek out sreas where icng conditions
may be appropriste for testing uniess such sreas are nesr to their base. When
conditions are not suitable, many man—hours can be wasted at great expense to the
helicopter manufacturer. With these problems in mind, other routes have been taken

4

to aid in finding a solution to helicopter and light aircraft icing



1.3 Experimentsi icing investigstions.

1.3.1 Nsturs! lcing tests. _

Reports of natural helicopter icing tests are very rara. Where such tasts have
propristary. Rosen & Potash (1981) describe one of the earliest experiments - that
of piacng a Sikorsky R—4 helicopter at the summit of Mt Wastungton. New Hampshire
in 1945 The results from these tests proved inconciusive because of a iack of ap-
propriste conditons

Stallsbrass (1958a) detsiled the resuits of a Sikorsky S=55 helicopter fligt in a
natural supercooied fog This experiment was terminsted when. sfter 40 mirutes of
flight, the increase of engine power required for hover was very siow. Although the
LWC and MMD of the fog were not measured, they were estimated to be m the

region which Werner (1875) would define as "Trace” “‘1

1.3.2 Testing In an srtificisl indoor snvironmant.

Two iaboratory f'n:ihftms have besn constructed for the nvestigation of icing on
rotating helicopter rotor blades. One (described by Stallabrass. 1957) was built to test
the effectiveness of de-icng via electro—thermal pads mounted on the leading edge
of a shortened whirling rotor placed n a coldroom The other. designed to test
full-scaie helicopters with the blades in motion, but with the helicopter remaning on
the ground, was built withun a refrigersted hanger at Eglin Air Force Base Florida
(Rosen & Potash, 1981) This icing spray rig was instalied over the helicopter. "The
testing was limited (during the 1949 - 1952 period] to a temperature range of 23°F
to 28% and was conducted with excessive LWC because of spray rig limitations”
(Rosen & Potash, 1981

in addition to these facilities, Ackiey et &/. (1979) built a small whirling cylinder
di\ncnna?dirtammﬁckm:lﬂw-afﬂnrpmgammm
device was opersted in a supercooled cloud formed in a cold room  The results ware
compared with theoretical caicuistions to be described below



1.3.3 lcing on sirfoils in wind tunels.

Among the earliest controlled experimental simuistions of the wcing process
were those E:l'l‘llﬂmﬁ?nﬂﬂNACA Lewis icing tunnel by Geider et a/. (1958 They
tested the Joukowski 0015 and various NACA 6-series arfoils st angles of sttack
ranging from 0° to 12* with a dye tracer technique to ‘ind the local and total dropiet
impingement rates for a variety of droplet MMD's and sirfoil chord lengths They
found the experimental impingement resuits to be within £10% of the average of the
results calculsted from theoretical trajectorias. Other tasts were carred out (see for

example Gray. 1957) upon other arfoils to detsrmine the shape and ser
effects of ice accretion \

More recently, icing simulstions have been carried out upon a Cylinder and a
helicopter tail rotor section within the icing turnel st the Nstionsi Research Council of
Cansds Low Tempersture Laborstories in Ottawa (Stallabrass & Lozowski, 1978. The
cylinder was used to allow comparisons with a theoretcal model (to be described
below). Accretion on the airfoil was carried out at angles of attack between 0* and
12° st various speeds and air temperstures. Several cases will be described in detail
in Chapters 4 and 5. The airfoil accretions rassmbled those achieved m spray-rig
experiments (described in the next section). A novelity of thase axperiments was the
introduction of mixed cloud conditions (ice crystals and mé:i:ehd witer droplets).
The results indicated thst such clouds posed less of an icing threat than those
composad only of liguid water.

The continuing need for & ;Qﬁ!ﬁi@;\ to light arcraft icing has lod Bragg et a/.
(1981) to test a Hicks modified NACA 64-215 asirfoil n the NACA Lews icing tunnel.
The results have been compared to a theoretical model of airfoil icing that they have
developed.

All of thess experimental mvestigations have revealed the strong dependence
of the ice accretion upon the environmental conditions (LWC, sir temperature, ambient
pressure, dropiet size spectrum) snd asiso upon the flow ns (sir velocity, sirfoil
chord length, and angle of sttacki




1.3.4 The NRC Spray Rig.

Stailabrass (1957 and 1958b) has described the dovdq:wum of a spray rig by
the Nstional Research Council of Caneda which 1s capable of providing an icing
environment within which helicopters may simuists hovering conditions in a natural icing
cloud The rig produces a cioud of supercooled droplets with a MMD of sbout 30
um . The maximum theoretical LWC is sbout 2 g m-’. The value of this device is
svidenced by the extended period of use it has enjoyed A number of trisls of vari—
ous helicopters have been performec a Bell HTL-4 (Stailsbrass. 1957) a Sikorsky
S-55 (Stallsbrass 19%58a) and a Bell UH-1H (Cotton, 1976) to name a few. The
purposes of the tests have ranged from gaining a fundamental understanding of the ice
accretion process under realistic conditions. to checking out a de-icing system.  One
icing test simulstion by Stallabrass (19588 wil be considered in more detail n Chapter
5.

1.3.5 The Helicopter icing Spray System (HISS).

The deveiopment of a spray system sttached to 8 CH-47C helicopter has been
summarized by Beite (1981). The present version of this system can produce a cloud
of water dropiets with a LWC between 0.25 and 1.0 g m-* and a MMD of sbout 25 to
3% um. When a helicopter flies in the spray plume produced by the HISS at the ap-—
propriste ar tempersture. natural iICing conditions may be simulsted farly well, although
not all of the helicopter may be immersed in the piume e. This allows testing of
helicopters in forward flight. s feature unavailable "GV other experimental simulation
Nsturally the costs of this type of simulation are higher than for ground based
simuistors, asithough they are not as high as for natural icng tasting betauss the icing
clouds are produced srtifically and only the sppropriste temperstures need be ensured
Measurements of the droplet size spectrum produced by the HISS are shown in Fig 4
as a set of points. The drop size spectrum of a nstural cloud in Minnesota is display—
od as a dashed line. For comperison, the Langmuir "D distribution Langmuir &
Blodgett, 1946) used lster in this dissertation i1s displayed as a solid iine. This latter
curve is caiculsted assuming 8 MMD of 20 um and s LWC of 1 g m” )



1.4 Theorsticsl csicuistions of dropiet impingement and ice sceretion

Calcuistions of the trajectores of water dropiets in a flow sbout various arfoil
shapes began n the 1940's, with the resuits from papers by Langmur & Bilodgett
(1946), Guibert o a/. (1949). and Brun er a/. (1953 still widely used Thess results
were based upon the use of a differsntisl analyzer, an snsiog device A serias of
NACA Technical Notes followed outlining dropilet mpingement calculations for various
sirfoils under a variety of conditions. Some of these will be described in detail in
Chepter 4 -

Working n parsilel were s number of investigators of the
the ice sccretion process. Some papers were spplied to the thermodynamics of the
hail formation process (Ludiam. 1951 is one of the first of many in this field. Others

of

were sianted more toward srfoil icing Massinger, 1953)

The problem of icng on stationsry structures ( in ts giaze, rime. and freezing
ran forms) siso begsn to receive sttention McKsy & Thompson. 1989 Poots &
Rodgers, 1976 List 1977, Makkonen, 1981, and McComber & Touzot, 1981). These
studies are important in airfoil iIcmg as well because even though the icing conditions
sre somewhat different, many of the same techvwques may be applied

Work on the microstructure of accreted ice and its density has been carried on
by Macklin (1962), Mackin & Payne (1968), and Buser & Aufdermsur (1973) These
papers sre significant to the present study because they can be used to Prcvidc 2
formuistion for the density of accreted ice. a

With the advent of large electronic computers, theoretical modeis of the ice
sccretion process have been given a big boost The complex caiculations of droplet
trajectories and the subtieties of thermodynamic feedbacks msy now begn to be
'mvntignod‘ Earl[y endeavors m m;s fisid were those of Kioner (1970) and Werner
(1973 st Lockheed California Company Kioner develioped a model of the ice
accretion process on arbitrarily shaped airfoils where the accration was trested as a
stesdy—stste process. Werner added to this model by incorporsting s set of
thermodynamic equations, and predicting the surface tempersture of the deposit as
“well 38 the ice build-up rates and mitisl freezing rates on NACA sirfoils suitsble for

helicopter main and tail rotors. His conclusion was that icing could pose at least as



g'omaproblomforthonilrotorufortmrminrotorofahdicopur. No
comparisons between his model and expermentsl resuits are made however.

Cansdsie & McNaughtan (1977) have deveioped a theoretical scheme to be used
forﬂnprodicﬁonofmufac.tmporm.mrmofocoaccroﬁonofmurfoilh
s mixed wester droplet/ice crystal cloud They propose to subdivide the sirtoil surfsce
into a number of sectors and csiculsts the thermodynamic equstions n esch sector.
Tres will allow them to modei runback of water winch has accreted but not frozen due
to the surface of the deposit not beng below 0°C. No resuits from this modei have
yet been published, asithough prelimnary resuits sre svsilsble (Cansdale. personal
communicstion).

Lozowsk: et a/. (197S) have developed the model proposed by Cansdsie &
McNaughtan for a3 non-rotating cylinder. Detailed caiculstions of the thermodynamiCs
are made., and mMixed icing conditions can be simuisted Tho mode! resuits asre
compared to experimmental observations of icing upon a cylinder withn the NRC icing
tunnel The agreement between model and experiment was good when the at:t:rotioni
was relstively dry, but it deteriorated when the conditions allowed significant runback.

The limitation of time-independent growth sssumed in the two previous models
was relaxed somewhst by Ackiey & Templeton (1979  While ther model
incorporated the effects of a liqud water cioud only, and did not trest the detailed
thermodynamics of the ice accretion, the tme dependence of a rime sccretion was
simulsted by accreting a series of thin layers. The actusi shape of each layer was not
simuisted. but rather it was assumed that the cross-section of the accretion always
remained eliiptical. Their resuits were compared to the accretions observed on 8
whirling cylindrical bar (Ackley et a/.. 1979). They attsined reasonable agreement when
rime icing was simulasted

Simuitaneously with, but ‘ind.pondomly of the development of the model
described in this thesis, Bragg ef &/. (1981) have deveioped to be used for
the prediction of ice accreton shape and mass on arbitrarily sirfoils. They can
simulate the time-dependence of the rime accretion process by discretizng the icing
-process into a set of layers. with Owccrotion process taking into account the change
in shape of the arfoil profile as the accretion proceeds. Therr prelimnary



comparisons with other theorstical and experimentsl results show ressonsbile
agresment in Most cases regarding the asccreted ce profile. as well as agreement
regarding the degradstion in arfoil performance caused by the ice accretion

1.8 Goeis of the present study.

in this introduction we have outiined the continuing icing problems experienced
by light arcraft and heicopters. The escalsting costs of asrcraft development mply
that a renewed and coordinsted icing research effort must be carried out (Behem.
1978a. The icing Research and Facilites Committee of NASA has recommended
Beheim. 1978b) thst

“The large srcrsft companes have aiready deveioped sophisticated mesns
of licing] anslysis. but therr availsbility is not widespread. particularly for the
general avisbon industry. In view of recent progress schieved mn
computstional flud rv;od\mcs, sven further improvements in analysis could
be developed snd the committee was enthusiastic that rono;vod efforts
would hsve a good chance of success in providing more accurste
predictive and design methods. Such sn effort to improve existing
methods and increase thew availability was strongly endorsed”

Trus dissertation will describe the development of a numerical model which can
predict the shape snd mass of rime accretion on an arbitrarily shaped arfoil. The time
dependence of the accretion process will be modelied by discretizing the accretion
period. and allowing the ice to build up in a series of lsyers The flowfield and
dropiet trajectories will be re—computed after each layer. The ice density will be
specified sccording to the formula proposed by Mackiin (1962). An sttempt will be
made to incorporste high sccuracy in ail caicuistions, and then to recduce the tolerances
to determine if acceptable results can be schisved with 8 smalier computing effort
The model predictions will be compared to other theoreticsl snd experimental ice
sccretion results to verify the soundness and refisbility of the model Fingity,
recommendstions will be proposed for the improvement of the model. and siso for
the .'mprovm of mtercomparisons between the model and experimental

observstions.



2.1 Introdustion

The goal of this dissertstion has been defined in Chapter 1. that is 10 develop a
numerical model capsbile of predicting the shape and extent of rime ice accretion on a
two dimensionsl airfoil of arbitrary shape in a 2-D steady, incompressible, rrotationsl,
inviscid flow containing sn ensemble of supercooied cloud dropiets.  The mi
which have been smployed to develop this program are described in thhs chapter.

The modeliing of the accreton process consists of three major steps. to be
slaborated upon in the following three sectons of this chapter. They wre
1.  deterrnation of the flowfield sbout an arbitrarily shaped two dimensional arrfoil,
2 calculation of the trajectorws of droplets embedded within the flow, and the rats

at which they collide with the arrfoil surface:; and

3. computstion of the thickness of the resutting ice accretion, together with the
shape of the new arrfoil surface following accretion

Since we are desling only with rime ice, no attempt is made to work out the

thermodynamic processes which occur st the arfoil surface. This must be left for a

subsequent study.

Before the flowfieid may be calculsted sbout an airfoil. the shape of the arfoil
must be given In general, the profile will not be specified by a set of ansiytic func-
tions, but rather by a set of discrets coordinste vaiues Thus the program has been
written to interpoists a3 smooth sirfoil surface between the dsta points. When analytic
forms exist for certsin arfoils, these equatiops sre used to gendrate a set of dsta
points. thersby mantaming a consistent approach |

The “sirfoil” shapes that may be accommudated nclude:

1. the c:vl-ng’r which is included because of its use n many aspects of icing
ressarch (iu for example Langmuir & Blodgett, 1946, or Stallabrass & Lozowski,
1978);

2. the Joukowski sirfoil. which was the basis for early analytic flowfieid calculations
around wrfoils. ’ -

2 NACA (US Nationsi Advisory Committes for Aeronautics) four and five aigrt

10

{
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sirfois, the standard profiles for many helicopter rotor biasdes snd genersl
avistion sirfoils; and
4. any arfoil defined st a seres of pomts along s perphery.

Only the first two of these have analytic expressions availsbie for the potsntal
flowfield sbout them In other cases, the flowfield is genersted by the vorticity
substitution method Kennady & Marsden, 19768). This method consists of solving f?r
the vorticity density on a series of straight line segments approximating the -rfml
surface, subject to the sppropriste boundary conditions. The sum of the infiuence of
the vorticity elements then yields the potentisl flowfield st any point outside the airfoil
surface

Having caiculsted the shape of the, airfoil and the flow about it. the next step is
to find the trajectories of the droplets making up the cloud The equstions of motion
of such dropiets mre p-ruiﬁt-d in Section 23.2 Ther right hand sides are made up
of the foliowing terms the accelerston of gravity, the decelerstive drag due to the
relative motion between the sir and the dropiets. and the decselaration produced by the
finite rate at which vorticity may be shed from the fluid nesar the dropiet The most
important factors affecting the trajectories are: the droplet inertia, which tends to
make the droplet follow a straight line path. and the drag of the air. which tends to
pull the dropiet around the arfoil in much tha same way as the ar flows sbout the
sirtoil. Section 2.3.4 outlines the numerical algoritys which are used to integrate the
ditferential equstions of motion The methods which have been used include the
Runge Kutta 4th order. Runge-Kutta—Fehiberg 4th order and the 4th order Hamming
Predictor-Corrector methods. o |

With the means of calculsting the trajectories and the shape of the airfoil
'n:f:en known, we then proceed to calculste which droplets strike the airfoil surface,
nd ,it“whit locstion The uppermost and lowermost trajectories of droplets which
collide with the sirfoil are known as the grazing trajectories for a given arflow and
dropiet size. They define the total mass of impinging droplets over a given time
imerval Other trajectories within the envelope will allow us to determine the fraction
of the freestresm mass flux of dra-mjts which will ba deposited at any point on the

sirfoil surface (i.e. the collision efficiencyl Wae may then caicuiste the thickness of
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mmbytmchvowswmagmmmw»od if there sre several droplet
size cstegories in the néursl dropiet size distribution, a combined or sverage collision
‘sfticiency may be used The formuise for determining the accretion thickness take
into sccount the curvature of the surface All ice growth is assumed to take place
normsl to the underlying surface. If the dropiets freeze rapidly ss they impact. they
tend to retsin ther shape. forming sccretions of iow density Two formulstions for
the varistion of the accretion density have been devised to csiculste the accretion
thickness. The positions of points defining 3 new airfoil surface msy be computed
based upon the sccreton thickness st these points. The cross—sectionsl sres of the
sccretion is determined and used to estimate the accurscy of the caiculstion of the
new arrfoil shape Ancwmofvorﬁdtywmy&mbodofh.ddongtho
new arfoil surface. The stage is set for repesting this sequence of steps, th'r-by‘
effecting the csiculstion of the time—dependent accretion on an airfoil

Details of the steps outlined sbove foliow in the remsinder of this chapter.
The techniques and formuise to be described are implemented in the program RME
A listing of this program is given in Appendix G

2.2 Airtoils and the sirfilow sbout them.

2.2.1 The flow regime about a helicopter rotor biade.

Lowry (1969) has described the sirflow sbout a helicopter rotor blade as “an
serodynamic situstion of exquisite intractability.” Particularly during forward flight.
many compiex aserodynamic interactions occur between the rotor blade and other
structural components. The rotor itself experiences s rapidly varying angle of attack.
sir velocity, snd yaw (Reichert & Wagner, 1973). Since the bisde is flexible, these
fluctustions induce sercelastic effects which further complicate the flow.: As the tip
ofﬂnadvmchgbhdopproachnmouiﬁcalmchw,conprnﬂonofﬁndr
" significantly siters the flow field (Hammond & Pierce. 1973). In sddition. the retreating
bisde may approach the stall condition, where the lift cannot be mamntsined becsuse of
separation of the boundary layer (Reichert & Wagner. 1973\
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Rﬁm&wﬁrgmmaem‘asaéyn-ﬁcmcﬂﬂafﬁfm
sbout a helicopter rotor blade should incorporats the effects of the er
lincluding reverse flow and separation) and cormpressibility. in addition, the
unsteadiness and the three-dimensionsal nature of the flow should be accommodsted
However, Maskew & Dvorask (1978) conclude that “a thorough and exact calculstion of
the development of boundsry layer separation is properly the domain of the

a1t solution to the Navier-Stokes equations. Unfortunately, the computer

does not yet exist which is capabiq of handiing such a problem, and even if one did,

the cost in computing time would be astronomical” Several approximations rmust thus

1. Ignore-the existence of the boundary layer. Except during a lsading—edge stail,
the thickness of the boundary layer siong the leading half of a rotor blade is very
small as compared to the bisde chord length Maskew & Dvorsk, 1878). With
the exception of very small droplets. it may be expected that the boundary layer
influence upon the trajectories of impinging droplets will be short lived and thus
rrinimal.

"2, Avoid considerstion of transonic flow regimes Rotor blades may experience
local transonic flow in two situations during forward flight The first involves
low sngles of sttack and Mach numbers of about 0.85 on the advancing blade.
The other, high angles of attack (over 15°) and Mach numbers of about 0.5 on
the retresting biade (Wortmann, 1973). If we avoid these conditions by
restricting ourssives to moderste angles of attack (a g 10°) on the inner
half—span of tha buﬂi then compressibility effects will be minimal (Maskew &
Dvorsk. 1978 In sddition, Brun et /. (1953) have determined that even at high
subsonic local Mach numbers, the compressibility of the arflow has little effect
upon most of the droplet trajectories. This is becsuss the greatest eoffect of
compressibility occurs wery near the airfoil In this small region. only thoss
droplets moving siowly (thst is the smallest ones) would be affected by the
change in flow dus to air compression or expansion  Larger droplets would
cross the region too quickly for a significant change to occur in their
trajectories. Brun et a/. have found that the effect of comprassibility upon the
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total collision efficiency of a cylinder is less than three percent for all the cases
they examined They also cisim that an extension of these results to arfoils is
straightforward because compressibility alters the ﬂo‘,/i;ld in much the same
compressibility significantly aiters the airflow, the sub-region of greatest change
in the flow has been found tofbe further back slong the sirflow than the limits of

3. Ignore three—dimensional and time dependent effects Wortmann (1973) states
that “the three—dimensionslity and the unsteaadiness of the flow over the blade
arfoil sre . . of secondary mportance The flow on the blades is mostly
two—dimensional”

With these restrictions and assumptions, we may treat helicopter rotor blade
icing as a function of a steady incompressible, two—dimensional flow in 3 fluid without !
vorticity or viscosity. This allows us to consider potential flow fields sbout an asirfoil,
thereby keeping total modelling costs within reasonable limits. =

2.2.2 Specificstion of the sirfoil shape.

The first step in modelling icing i~s to specify tha profile of a two-dimensional
airfoil upon which we wish the accretion to occur. This will aid us in determining
1. the flowfield about the airfoil,
2 the locsations of droplet—airfoil collisions; and
3. the direction and thickness of ice accretion
Only a few of the profiles may be defined analytically (the cylinder. the Joukowski
sirfoil, and sorrma NACA :if?‘ails sre amongst this group) Others are spacified st a
mited set of points. Further, after the first layer of accretion. none of the resulting
airfoils will have a shape easily defined anslytically. For reasons of consistency, all
sirfoils are thus specified st a set of points. with the profile between such points
being defined vis cubic spline interpolation

For all airfoil shapes. the coordinste system has been non—dim
the inital (before icing) airfoil chord length, C.  In this non—dimensional coordinate sys-
tem, the nose is at (0.0) and the tail is at (1,0l Let 8 be defined as the polar angle ~

(

plized by

£



measured from the negative x-axis. We will now define the profiles of a seres of

dif ferent arfoils

2221 The ayilnﬂ:.
The cylinder has been included for validstion purposes. Its upper and lower
surfaces sre defined by

X, = (1 = cos. 8)/2 t 2n

X = X ' ' @2

0.5)2 23

[ ]
4
7|

{2.4)

where x and y are the non-dimensional (ND) coordinstes of pomnts on the airfoil
surface. The subscripts U and L refer to the upper and lower surfaces respectively
({COORDS[65.70).

2.2.2.2 The Joukowski sirtfoil.

This arfoil possesses the very useful sttributes of having a profile very similar
to that of certain helicopter retor biades. and at the l-!‘ﬁl time an analytical solution
for the potential flow around it It 100 has been included for validation purposes. and
may be defined in the following way (after Houghton & Brock. 1970) by the
transformation of the appropriate circle

Let us start with a circle of radius a=b{1+e) shifted to the left of the origin by

an amount ba.  Thus its coordinates wre

x = =-b(l +e) cos 8 - be



y = b(1 +e) siné 15,
SN .
Now if z snd [ sre complex numbers such that
zZ = x + 1y !‘3-7)
snd
¢ = E+in S e
then the Joukowski transformstion is | |
T = z+b%/z ‘ l 2.9
or
€ - x[1 + b2/(x2 + y2)] : (210
" .
n o= y[1 - b2/(x2 + y?)] | 211

The airfoil length in the transformed coordinste system is thus abi1+2e+e2)/(1+2e)

which sllows us to specify b to achieve an airfoil of unit length, viz.
b = 0.25 (1 + 2e)/(1 + 2e + &) (2.12)

For any vaiue of £ the thickness of the sirfoil is 2n . and thus the ratic of the arfoil
thickness H to the chord length C is:

h = 2b(1 + e) sin8{1 - 1/[(1 + e)2 + e2 + 2e(1 + &) cos 8]} (213

Since we wish h to have some predstermined maximum vaiue ho, we neead to solve
(2.13) for the appropriste values of e and 8  Because this equation wouid be
difficutt to solve snalytically. it is solved numericslly. The program (COORDSI{71.103D
makes two initisl approximations to e, finds the corresponding difference batween h
and h . and uses the Secant aigorithm (see for exsmpie Burden et a/.. 1978) to

converge to 8 sufficiently accurate value of e Within esch step of the Secant



sigorithm, the program uses the Goiden Section—sesrch sigorthm ZXGSN (IMSL. 1979
to find the value of 8 mn (2. 13) which resuits in the maximum thickness for that vaiue

of
The sbove transformstion piaces the endponts of the arfoil at
E = - 0.5(1 + 2e + 22)/(1 + 2e + &?) 2.14)
_ _
E = 0.5(1 + 2e)/(1 + 2e + e2) .‘115

for 0=0 and @ex respectively One final transformation, a leftward shift of the
orign, is made (COORDS(108.119) to give the sirfoil coordinstes: .

T + 0.5(1 + 2e + 2e2)/(1 + 2¢ + &2) (2.18)
X - *U 217
.
Yy = O 218
and

The procedurs of this section resuits in a Joukowski airfoil whosa coordinstes are
much more accurste then those obtained by the clsssicsl forrmulse (see for sxample,
Houghton & Brock, 1970)

2.2.2.3 NACA Four- and five-digit wing sections.

During the frst haif of this centry, the United Ststes Nationsl Advisory
Committee on Aeronsutics (NACA) designed a large number of airfoils. Of these. the
four and five digit series of airfoils sre of psrticuter significance for thus study
because they have frequently been employed in helicopter main and tail rotors. and
siso in general avistion sircraft wings. The two series may be designated as
1. NACA‘ cmcpho, wheres the first digit. Cm- gives the maximum camber as 2
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percentage of the chord. the second, €y gives the abscissa of this ordinste (in
tenths of the chord). and the last two digits. h,. specify the maximum arfoil
theckness as a percentage of the chord length

2 NACA c:l;pha . whars the dasign lift cosfficient. i tenths s three—halves the

value of m: first mteger, ¢, the second and third digrts together. LY ndicate

twice the distance from the noss to the position of maxsmum camber n percent

of the chord. and the last two digits, h, . once sgan give the maximum arfoil
thuckness m parcent of the chord

Abbott and von Doenhoff (1959) have summarized the data for these two

series of arfoils They give the thickness distributions for the four and five digit

mrfoil series as

y, = 0.05 h, (0.2969/x - 0.126 x
(2.20)
- 0.3516 x2 + 0.2843 x3 - 0.1015 x*)

The expression in parentheses on the right hand side (RHS) of this equation has a value
of 2.1x10' when x=1 Ideslly this value should be exactly 0 Consequently, the
smoynt 2.1x 10+ 1s removed in a linearly increasing fashion from x=0.3 to x=10, so as
to give a razor sharp rrailing edge to the arrfoil profile. This refinement to the stand-
srd specification results in a more accurste flowfield generation by the method of
Section 2.2.4 ff I
Tﬁ@yééﬁfﬁﬂtiiﬁdﬂﬂi@iéfﬁﬂsﬂﬁﬁi{éf the

digit series are given by the formulse. v

: - e x - x2)/e2 >3 1)
for xse, Y. ‘:m(l‘cpx x )/r;p | 2.21)

a1 19 (e - x)/¢2] , 229
y = tan [Zcm(t;p x)/cp] 222
nd

for e, | Y. * c:mi(i - Zép) + Zepg - x2)1/(1 - ¢ )2 ' 223



y = tan ![2¢ (c. - x2)/(1 - ¢ )?]
m p p

-
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2.24)

The mesn line for the five digit family of sirfoils is derived from the values of

and € These values, for seversl arfoils of interest may

be found n Table 1. The ND mean line ordinate and angle of siope from the x-—axis

FE

F . - . 3 L 1 w2 4 £2 - 1
for xge Y. ck[x 3§mx + cm(3 x:m)x]/'é

y = tiﬂil(ck[BSE - Ef—m!‘; + ::3‘(3 - ;m)]lé}
and

for x>c = Yy, ® c (1 - x)/6

v = tan l[- c c3/6]
Y tan [ ékcmlil

(2.2%)

(2.26

227

2.28)

Finally, the thickness distributions may be combined with the mean line

({COORDS( 12.64) to obtan the coordinates of the upper and iower surfaces

xu = xéyhsiny

xL;- x+yhsiﬁ7

Vg * Yé*y’h cos Yy

h

~£
-
]
~
]

cos vy

229

2.30)

@31

232
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2.2.2 4 Specisl sirfoils.

Recently. many modificaions have been made to the standard sections
described above In order to permit the use of such arfoil sections. the program
MAINI43.70D will acqq':trua( input N the form of x and y coordinste vaiues which
define points siong the upper and lower surfaces Control element endpoints (CEE's),
which are discussed n Section 224 may aiso be specified n this manner. The pro-
gram documentation gives further detais irefer to Appendix G
2.2.3 Determining potential flow by snalyticsl methods.

For an incompressible fiid mn two-dimensionsl (2-D) mow continuity
equation is

au v

ﬁi:,.a_yi - 0 233

where u‘md v'totrncompommofthowurvﬂoc:tyinmxmdy

directions respectively We define the ND stresmfunction ¥ to be
v o= v+ (uady - vadx) (2.34)

where 'o is a constant, and the line integral is taken siong an arbitrary curve jonNg
the reference pont O to the point P with coordinates (x,y). After Bstchelor (1970,

we have
u - {2.35)
a Ay ‘
and
—l
v, o (2.36)

The components of the sir velocity are thus dependent upon the streamfunction st any
point outside the asirfoil In order to evsiuste equstions (2.35) and (2.36). a finrte
difference scheme is employed. based upon the grid displayed in Fig 5. These two
equstions become:
’
Vi T ¥,

ua = Zrd ‘ 237
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—_— (238

where r is the ND dropilet radius.

Thers are two sirfoils of nterest in this study for wiuch the streamfunction can
be defined anaiytically the cyimder. and the Joukowsk: arfoil The cylinder 15 signifi—
‘cant because it has been usqd In ICING research as a4 StEPPING StoNe to More complex
arforl shapes Papers exist which outline ixp-ﬁmiﬁtjl m theoretical stuches on
cylinder icng with which we may make comparisons Because the flow about a
Joukowsk: arfoil may be determined snalytically, this aliows us to verify wsng a
raslistic arfoil profilal the more general flowfisid generating techruque described in
Section 224

2.2.3.1 The cylinder.

The normalized or ND stream function. ¥, for a flow from left to right (with s
unit ND velocity infinitely far from the cylinder) about a cylinder of unit diameter with
center at (0.5.0.0) 1s (after Houghton & Brock, 1970}

v o= y{1 - 0.25/[(x - 0.5)2 + y2]} 239

2.2.3.2 The Joukowski sirfoil.
Let us begin with the ND stresmfunction for a cylinder centered st the origin in
a flow from left to right with a unit ND velocity infmitely far from the cylinder

(U_=f) Thus tter Houghton & Brock, 1970k

k
vom oy e e——T (2.40)
Zi(x“z + Yn?)

k sin @8

v = asine—é"‘??_;_ (2.41)
n
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where k  is the source strength. a is the radius of the cylinder, and x'' and y'' are
the x and y coordinstes. |f we rotate the reference frame through an angie of a . we

x' = x' cosa+yvy' sina : 242

y' = y' cos a -~ x' sina 243
The streaming ¥ =0 inersects with the cylinder st two pomts Thus this streamiine
must also define the surface of the cylinder (f there is to be no flow through the
surface). and we have that

| 2y
ae

[ ]

L]
Y]
S

kr’n - 2ra? (245

A

Aaaiﬁwly,,'mhhi) strasmfunction for a line vortex at tha origin s
bom -k (2mnlT ¢y 2 a ) ) (2.46)
k

k = = bwa sina 247

In order to produce a negstive (clockwise) c;ra;utiéﬁ and thus positve lift for this
sirfoil with its nose st the left. we have mtroduced s negstive sign in (247) Finally,
shifting the cylinder by be to the left of the origin gives:

x = x' = be (2.48)

y = y' _ (2.49)

and hence



¢ = ycosa~- (x + be) sina .

- a2[y cos a - (x + be) sin a]/[(x + be)? + y?] 2.50)

+ 2a sina Zn[i/(x + be)? + y2 /a)
Tﬁ:mﬁmwmﬂvmafﬁnhﬂwmfmfar:pnmﬂh:m
Genersily, we desrre to know ¥ for an arbitrary pomt (E',n') in the ' plane,

where

E = E' - 0.5(1 + 2e + 2e2)/(1 + 2¢ + €2) @251

Finding tha roots gives

z = 0.5(ce/(€2 - n2 - Wp?) + 1(2n)] 254

if we set

“h' = 2n . ' 256

j' - jé‘ii;hii z 2.57)

x = 0.5 + /(" T/2 sgn ] (2.58)
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y = 0.5[n + /(j' - g')/2 sgn n] (259

Equstions (2.50), (251), (252). and (255) through (2.59) may thus be used to obtain the
ND streamfunction for fiow sbout a Joukowski artoil PXI1,22]D

2.2.4 Determining the potential fiow for srbitrarily shaped airfolls.

The two previous sections hsve described how an snalytical flow may be de-
termined sbout a8 cylinder or a8 Joukowski srfoil For ail other arfoils used in this
study (including these first two, following a layer of accretion), the flow must be
found by a more general method '

Two ciasses of techniques exist for finding the potentisl flow asbout an
a'bitrrﬂyQMd arfoil. The first invoives the corfformal ﬁ'ﬂfmaﬁ of a nesr
circle to an srfoil, in a fashion similar to the one doscribfa in the previous sacton
Such transformations are iterated until the desired shape I8 lc:hievpﬂ in the arfoil pl!:\i
(see for exampie Theodorsen & Garrick, 1932).

The second class of techniques invoives the use of a distributed set of
singuiarities. The most referenced paper in this fieid (Hess & Smith, 1967) used a set
of sources and sinks along the arfoil surface to estmate the flowfisld This basic
method has been refined in a series of papers by various authors. lesding to the
method used in this study (Kennedy & Marsden. 1976). The primary difference be-
tween this method and most of the previous ones is that the boundary condition has
been reformuiated It requires that the stresmiine which lies slong the airfoil surface
must pass through a point slightly aft of the trailing edge of the arfoil Previous
methods generally constraned the component of the velocity normal to the airfoil
surfasce to be zero creatng considerable computing %iffieult'y in the regon nesr the
traiing edge where velocities are changing vefy rapidly with distance. Kennedy and
Marsden clam that a program based upon therr formulgtion will requirs less than one
tenth the computing time roquir;d for a solution with similar accurscy using the Hess
snd Smith formulation. The Kennedy and Marsden method may be summarized as fol-

lows:



A set of points (CEE's) which lie on the arfoil surface sre jomed by straght
werts called control elements. Each element | has a constant vorticity density

Yj slong it At its center is a control point Ej,lfWIwrﬁQi!mﬁ?ﬂgwiﬁg’ﬁﬁ
total influence of the vorticity density for all control elements  j=1,... . n; jéi
on the flow at comtrol pomt C;imﬂcﬂbﬁfﬂﬁﬂ@fﬁjﬁhm&ﬁifjmml
systam

Ky = R i =1,2,...,n (2.60)
Ri = vy, cos a - x, sina 2.681)

, 2]

[ 2s..0, 1 -
+ 25, tan V| ——Li 1 _ - 4o, be
1] s2 4+ g2 - p2 i)y

. S5a. N
fj 2j J

K,, = {(szj + Dj)!.ﬁ(i‘%j) - (sZj - Dj)!iﬁ(fz,)

262

and s'j* 'SZj‘ rlj,i sz

add one- more equation similar to (2.60) spplied st 8 control point just aft of the

and Dj are defined in Fig 6. To close the system, we

arfoil's traiing edge. This gives us n+ 1 equations involving the n unknown Y| and V.
'The program (POTH1,88) solves this system using the IMSL subroutine LEQTIF.
Additioral detasils may ba found in Kernedy & Marsden (1978)

After considersble testing, Kennedy and Marsden have found that st least 40

control elements are required over an airfoil surface in order to obtain good

Thay distribute the control slement endpoints by using a set of @ j which are equally
spaced about a circle in the arfoil plane. We instead space the [ j equally about s
circle in the circie plane. Thus

aj = (j = 1)ae J=1,...,n+1 (263

where A8 is a constant, or
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X, = (1 - cos EJ)IZ » - (2.84)

Equation (263) may be used in (2.1), or (2.5) and (2.8). Afternstively (2.64) may be
substituted into (2.20) through (2.32).
ﬂﬁ;r-mmdyus;ﬂ;-smwa-pﬁd-ﬂ@anhmmmdﬂnggfn
fiow in the vicinity of the airfoil nose. As a result, two modifications have been made
to the procedurss just described for those cases whers the sirfoil surface is defined
analytically  First, the number of CEE's placed for 0<|e|<x/3 (0<|e|<x/2 for the
cylinder) may be specified independently of the number for |8|>x/3 ([e|3n/2 for
the cylinder). Typically there will be an additional number of CEE's in the forward
section Also, in order to more accurstely define the sirfoil surface. additional surface
segment endpoints (SSE's) may be placed between CEE's over the forward portion of
the airfoill. This increases the total number. of spline segments (to be discussed in
Section 2.4 1) defining the sirfoil surface. and results in a more accurate determination
of the point of collision between a droplet and the sirfoil The distribution of CEE's

and SSE's on a typical airfoil is displayed in Fig. 7.

2.3 Calouisting the droplet trajectories.
2.3.1 Droplet-airfoll intersation.

This study invoives the capture of cloud droplets by an arbitrarily shaped airfoil.
The ratio of characteristic linear dimensions is about 1:10* (O{10-] for the droplets vs.
O(10-'] for the arfoil. Aiso the liquid water-content of typical clouds was stated in
Chapter 1 to be of the order of 1 part in 10¢ by mass It is assumed that these two
factors combined remova the nesd for csiculating the effect of the droplets upon the
flowfieid about the sirfoil T:bi: is in contrast to some previous work, such as that of
Pitter & Pruppacher (1974) where cloud droplet - ice crystal interactions could only
be modelied through the superpositioning of the flowfieids about the droplets and
crystais, because the linear dimensions were comparable.

With this complication removed determining the droplet trajectories s

accomplished by integrating the differential equations describing therr accelerations in
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the undisturbed potential arflow about the arfoil.

With the trajectories of the droplets known, we may determine which droplets
actusily strike the srfoil surface. and where. This in turn will pgrmt- the calculation of
the rate of accretion as a function of position aslong the airfoil m.rf::- leading to the

~development of the thickness of the accretion i

2.3.2 The equsations of motion.

We begin by :imiﬁé that the relative velocity between the dropiets and the
sirflow is sufficiently low that we need not concern ourselves with deformation of the
droplets. According to Pruppacher and Klett (1978), thus assumption is valid (st least
for dropiets in free—falll when the droplet Reynolds number:

Re, = 2R |V, - VI (2.65)
is less then 260. In this equation, R, is the droplet Fadius, ?d and Va are the
velocity vectors of the droplet and airflow raspectively, and v is the kinemstic
viscosity of the sir. They state that circulstions within the droplets do not have sig—
nificant effect upon their drag When Re d> 400, periodic vortex shedding may induce
oscillstions in the droplets. These would affect the drag somawhat. however, it s

! clear in Appendix | that if such high Reynolds numbers are reached. 1t is only just prior
to collision, snd thus the time interval over which these secondary effects could
iﬁfluan;i the droplet motion is so small that they may be ignored

The compiete vector squations describing the sccelersted motion of water
droplets (having & fixed mass) in dry air are (following Pearcey & Hill, 19%6, and
Landsu & Lifshitz, 1959) -

dT (an + pa) hRd(Zpd + rsa)

dv Z(Qd -e)) 3Ce, l 7
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o

B R (2.67

where o and p, we the density of air and water respectively, C, is the dropiet
drag coefficient G is the gravitationsl acceleration, and X p is the droplet position
vector.

Among the first to integrate (2.866) and (2.67) for the dropiet rajectories wWerp
Langmuir & Blodgett (1948). They used a simplified version of (2.66) which may be
written as:

- —

d - 3 QIED v - G

[+ ™

d

(Gd -V) (2.68)
& a

Using an empirical fit between CDRedIZH and Red. their formulstion for the
steady stats drag term was

o oL/ a/ne 0.37 4 & "3 ga 0-38 - 889
CD Z‘M’Red + ‘0;7‘3/Red + 6.24 x 10 Red (2.89

where the last two terms on the AHS of (2.69) account for the departure of the drag
coefficient from the Stokes value as Re d iNCreases.

More recent experimental work has led Sartor and Abbott (1975) to formuiste
a new expression for CD which is clasimed to be more accurate in the range

D_Olsigdis , hamely:
.y = 24/Re, + 2 270
ED Zk/Rgd + 2.2 (2.70)

Using dimensional snalysis and boundary layer theory, Abraham (1970) has derived the

following formulation:
Cp = 0.2924(1 + 9.06/VRe )2 271

which is valid for Re 4s 5000. The program allows any of the droplet drag coefficient
formuistions to be chosen provided that they are within their range of spplicability.



2.3.3 Non-dimensionalizing the equations.

For convenience in piotting the results, and for the sake of easy comparis
between different test cases. the above equations have been put in 8 non—dimensionsl
(ND) form This form aiso sows us to condense a number of different combmnstions
of conditions into a smalier number of non—dimensionsl cases The normslizing pa-
rameters are the airfoil chord length C. and the freestream velocity U_. A list of
correspondence between the standard and ND form of various quantities is given m
Table 2. Since mass does not appear explicitly in these equations, a normalizing pa-
rameter was not chosen for this property.

The ND vectorial equstion s thux |

dVd Z(Dd = 763}‘7)7 - BQ;ED - - - =
— - = ——g - — Vg T Y (vd-va)
dt (Zpd + @a) ‘tr’d(ipd + Qa) '

(2.72)

Bars over g. V. md*v‘ indicate a vector quahtity The first term on the RHS
combines the buoyancy of the droplet in air and the gravitational accelerstion. The
second term is the steady viscous drag and the third raferred to as the history term)
s relsted to the finite rate of vorticrty diffusion from the surface of the droplat in
sccelersted motion The equation implicitly incorporates the dropiet induced mass
resuiting from the momentum it imparts t,::: the air as it accelerates

Pearcey & Hill (1956) describe the basis for their inclusion of the third term on
the RHS of (2.72) "A further effect occurs owing to the finite rate at which vorticity
ditfuses from the surface of the body. The distribution of vorticity throughout the
medium depends upon the past velocity of the body and thus upon its history. The

history than by the distant past” ! | \,/

actusl drag experienced at any particulsr time is more affectsd by the recent past
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2.3.4 Integrating the equation with s stesdy dreg.
2.3.4.1 The form of the squstions.
The x component of (272) 1s of the form
x = f(x(t), x(t)] +[ f,lt,T, x(1)1dt 273

which 1s a second order Volterra iﬁtsg‘@—-diffjr’mﬁll equation of the second kind
Finding suitable numerical methods for determining the solution of this type of equa-
ton 1s a topic of current research in numerical analysis (Makroglou, 1977. or Baker
et a/. 1979. These state—-of-the—art methods. as well as esrlier maethods Pouzet.
1960) are very complex and difficult to implement  For this reason, we begin by
adopting the approach of earler mvastigators (Langmurr & Eledgc‘n 1946, and Ssrtor
& Abbott, 1975) that is. to drop the hstory term as a first approximation

in order to justify this approximation, we have estimated the pat-nml impor=
tance of the history term in finding the correct solution to (2.72), by calculating an

accelerstion modulus as defined in Crowe et a/. (1963}

v, | /-

\ - e )2

AL _ ‘/("d) (2.74)
dt

Tl;uo terms in (2.74) are estimsted from the solution of (2.72) without the history term
According to Crowe et a/.. when Aﬁzio‘i, the steady drag coefficients can no
longer be used without spprecisble error, and the history term should be included

With the history term removed, we are jeft with a system of four first order
d?foromm equstions.

dx

d _ Cu e ;
'dt y Fa[t—ixdiydludlvd] - ud 2.7%)
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du E 2(0, = p,)
_—d = ;] - f‘;; y = .
It f“[t.xd'Yd.ud.vd] 2 v o) g sina
204 * 0,
30 C.
a D Iz .3 g ) :
- D5, -9,y - ey 278

h(Zod + oa) r4

with similar equations for Y4 snd 7 (ACCNL1.32D.

in genefal. the gravity term (the first term on the RHS of (276)) will be omiied

in the results which follow because this term I8 much smaller than the other terms of |
this :

2;14&(;;0 integration of ordinery differential eguations.

As summarized in Hamming (1973) there are three interreiated problems
associsted with the use of spproximate numerical methods for finding the sokmion 1o
an ordinsry dif ferentisl equstion (ODE). They e -

1. "Ampiifications of roundoff errors due to certan colggpé;n of coefficients in
the finite difference formulse,

2 ~Truncstion errors that arise from finite approxmations for the derivatives. (and]
"Propagstion errors (instability) that arise from solutions of the approximate
diffecence equations thst do not correspond to solutions of the differental .
equations.”

in actual fact. the AMDAHL 470 V/8 used in thus study (and the IBM Systam
370 upon which it is based) does not roundoff numbers to a specified number of
hexadecimal digits, but rather truncates them. This tends to render less vaiusble the
theories which have been deveioped for the propagation of round-off error becsuse
such theories sre based upon a random process. This may be a good approximation
for roundoff. but -1 not for chopping. where the change is always in the same di=
rection Further, errors may increse linearly with the number of machine operations
during chopping. This compares unfavorably with machines which rofioff, where
errors generally increase as the square root of the number of operations.
Consequently, in order 1o minimize the effects of roundoff or chopping.
double—-precision srithmetric has been used This allows Eaﬁﬁu’tiﬁéﬁs to procesd
using fourteen hexsdecimal or sbout 16.7 decimal digits. as opposed 10 6 hexadecmal

or 7.2 decimal digits for single—precision in this way round-off errors are far lass
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likely to contsrnate the “significant’” part of the final answer
Truncation errors may be mirmized by including as many terms as possible in
the Taylor-like expansions of the finite difference approximations to the derivatives
Naturalty, a trade—off is involved as graster accuracy is actweved by formulse of
grester complaxity Generslly, these formuise require an increased number of func—
tions and derivative evalustions. It has been found (see for example Burden atg
1978) that methods having truncation errors of order four to six effect the but
compromise between computing COst. accuracy. and ease of impiementation
¢ In order to choose a numaerical method to be used in solving a system of ODE's
such as (2.75) and (2.76). we must tast to see which of the available methods will be

stable for this particular system For an ODE such as
x = F(t,%) 277

instability may result if the problem is stiff Wanner (1977) has defined stiffnass as
follows. "A differentisl equation problem is stiff. if some of the eigenvalues of
3f/ax have large negative real parts and if st the same tme. the interval of mnterest
in tha solution is reistively large’

The components of the Jacobian J=23f/3x are found by the straightforward, if
somewhat tedious. differentistion of f, through fg Inx(2.75) and (2.76) by Xq Yg

\ 4 d and v d raspectively. All such derivatives have been evaiuated analyticaily except

au!/'axé ' Bujlavd, av;,faxd, and av_,/ayd These are evaiuated numerically by a
finite difference technique) using the grid shown in Fig 5 The complex eigenvalues
of the Jacobian are determined numerically using the IMSL subroutine EIGRF
(STAB(1,46]). Further details will be found in Appendix A

2.3.4.3 Methods for stiff problems.

in recent years considerable effort has been expended to davelop programs
designed specifically to handle arbitranly stiff systems of ODE's. One of the best
known programs i1s that of Gear (1971), known as DIFSUB. More recently better
performing algorithms have been proposed by Liniger (1976). Cash (1980). and others.
Papers have been written (see for exampie Ervignt et a/. 197%; or Hull, 1980) which

compare the performance of various algorithms  Up to the present time. however. all
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programs designed to handie stiff systems. have been substantially less efficient than
those sble to successfully integrate only miidly stff or non—stiff systems  Thus n
order to determine the degree of stiffness of the system (275 and (276) the
relatively esasy-to-impiernent Runge—Kutta algoritrm was employed This follows the

advice of S 8 (1980). "t is obviously valusble to have programs for non-stiff

problems which dagnose stiffness.”

Burden er a/. (1978). p 244) 1s often used as a standard aganst which to compare
other numerical techmiques. -t has a local truncation error of order four 0 the tme
step O{(At)"]). and requires four function evaiustions per step This compares
favorably writh the second-order Runge—Kutta techrnique. for example. which requires
two evasiustions per tme step. but grves a greater truncation error for the same num-
ber of function evaluations (0[ (At/2)2])

If we denote the sigenvaiues of J by ) , k=1,.., 4. then Lambert (1980)
shows that the RK4 method will be stable for ;fvi,ﬂ‘liy stiff squations provided that
Re(rat) >-2.78, where xamin(zk),kéi,.ii,h

2.3.4.5 The Hamming fourth-order predictor-corrector sigorithm (PC4).

While RK4 gives useful results, it has the disadvantage of requiring a relatively
because calculstions of the air velocity tend to be the most expensive part of the
imegrating procedure. Thus minimizing the number of thess calculations will result n
greater efficiency. As a result it was decided to avaluste s fourth—order
* predictor -corrector method designed by Hamming (1973) to have the greastest possi—
ble stability for a predictor-corrector method while st the same tme minimizing the
truncation error for this order of difference method While the sthbility criterion is
more stringent than f::n; RK4 (Re(\At) 2 =1.4) the method gives an improvement in
efficiency over RK4 of about 21% This method s somewhat more difficult to
implament, however, and it also requires sn explicit starting methqd (such as RK4) for

tha first three time steps.



The method is described on page 407 of Hamming (1973). Sinca the predictor
and corrector sre modified so as to reduce the Tuncsation error, the method is actually

of grester accuracy than 0[(At)"]

2.3.4.6 The Runge-Kutta-Fehiberg fourth-order sigorithm (RKF4).
While the PC4 aigorithm is very efficient for mildly stiff systems with a given

step size. Such a varisble step size might be dictated by the requirements of stability,
or in the mterests of maintaming a constant iocal truncation error.  The PC4 algorithm
depends upon dats from several tme steps back, and thus the time step may be most

sasily changed by halving or doubling Smce each change requires a certan amount of

overhead, to mamtain efficiency. changes shouid not be made frequently

Fehiberg (1969 described s modification to the RK4 algorithm which allows an
sstimation of the local truncation error This 15 accomphshed by inMegrating the sys—
tem of equations by both fourth- and fifth—order Runge—Kutta formulae, where the
coefficients have been chosen to minimize the total number of function evalustions
reguired The local truncaton error at asch tme step 15 then estimated via the

difference between the answers provided by the fourth— and fifth—order formuiae If

using & new ume step. |f not. the process 1s repested using 3 smaller ume step. In
sither case. the step size is adjusted so that the anticipsted trucation error will be

some specified fraction of the tolerance. Details of the RKF4 aigorithm will be found

Section 2.344 for. RK4

ity considerstions for the routine RKF4 are identical to those given in

2.3.4.7 Estimating the giobal truncation srror.

The program RKF4 described above estimates the local truncation error and
sdjusts the time step to Maintsin this estimate beiow a certain tolerance. It does not,
howaever. provide sn estimate of the giobal error in ﬁniselatr@ﬁ of the problem. This

latter quantity would be useful in assessing the confidence to place in the final answer.
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Ammm:Mﬁwmwﬂmfarnmﬂﬁm
runcation error n a given ODE integration. involves recomputing the solstion using a
smaller error tolerance (for methods based upon local error control). Emwmﬂy ]
smalier step size may be empioyed (for methods with a constant step sizel. The
mne (1980) emphasizes that some programs, when

angwers e then compared
used 1o solve certasin problems, may provide the same final answer even while the
tolerance i1s reduced by five orders of magnitude’ This rmught lesd the user to the
actual fact. it may be nothing of the kind The problem is that the above “procadcure
depends on a monotone behavior of the error with respect to the input tolerance”
(Shampine, 1980). Since the programs were not designed to ensure this, one must be
wary of sstmating the giobsl errors m this way

Prothero (1980) has reviewed the stit-—icf—mgs;ﬁ " algorithms designed for
the efficient estimstion of the solution of a system of ODE's and thewr associsted
giobal errors. He concludes that the best sigorithm availsbie is the one described by
Shsmpine and Watts (1976), and implementsd in therr program GERK. A modified
verson of this algorithm, as well as a similar one from the same paper. is implemented
in the program

When the order and step extrapoistion aigorithms were applied to determine
the global errors in sample probiems provided by Shampine and Watts, our results
were similar to theirs. Howaver, when exactly the same subroutine was given the task
of estimating giobal errors in the droplet position and velocity components, these
sstimates consistently proved to be far smaller than the actual variations mn thess
components when the locsl trucation error tolerance was changed Thus, as the
tolerance was tightened, the final droplet position and velocity at collision with the
arfoil surface did not converge to an answer within the error range provided upon the
snswers using & less stringent tolerance. This leaves the value of these aigorithms in
doubt for this system of squations. Further work will be required to determing the

cause for this failure.

0



2.3.5 Integrating the complets trajectory squations.
Trroughout Section 234 we have concerned ourselves with the integration of

the dropiet squa s of motion simplified by the use of a steady drag formuistion In

this section we shall remove that restriction

Section 2.34.1 described the difficulties nvolved m the inmtegration of Volterra
integro—differential equations of the second kind Norment (1980). and others. have
found that the acceleraton moduius defined in (274) did not exceed 1/100, and thus
that the history term need not be incorporated in the droplet equations of motion
Joe (1975) and List (1977). on the other hand, found the history term to significantly
atfect the ﬂpt:tcﬁﬁ of dropiets which had bounced off haistones. |n several cases
spread over a wide range of conditions, we have found A~ to exceed 1/100 Thus
we decided to attempt to integrate the complete equations of motion (2.72)

Appendix C dascribes the method which was used for this puUrpose.

2.3.8 Tha initisl conditions.

ideally the droplet trajectory mntegration should start infinitely far upstream
from the arfoil with the droplets having the same velocity as the air For
computational reasons; this 1s impractical. As a result. the program has been designed
to allow s choice to be made as to how far -upstreamn from the arfoill nose. xo. to
start the integration. The user may aiso choose the starting offset from the extended
asirfoil chord line. yo. These two parsmeters are illustrated in Fig 8

At the starting point, the program (TRAJEC[142,177) caicuiates an nitial droplet
velocity which varies from the air velocity in such a way that the dropiet Raynoids
rumber, Re 4’ is equal to 1/1000. This 1s necessary to prevent the initial Reynolds
number from taking on a vaiue of zero, leading to sn infinite drag coefficient via
(2.689), (2.70). or (2.71). It is possible to reforrmuiste (272) so as to prevent ithis
situstion from occurring, but Chapter 3 will show #hat the Reynoids number incraasss
rapidly withm seversl time steps in any case. and that as a result this is a reasonsble

spproximation in the circumstances. Furthermore, Chapter 3 presents the results m;ﬁ

trajectories which begin at various values of xo It will be shown that integratons be-

ginning at least five chord lengths sheed of the arfoil nose produce trajectories whuch



sre sutficiently accurats that other spproximations would mask the incressed accuracy

2.3.7 Integrating the equstions just prior to collision

Up to tms point. Section 23 has described the sesrch for high-order. -
high—accuracy soiutions to the system of ODE's governing the é'apbt trajectorias.
This section will deal with the problems such maethods encounter during the tme step
in which collision occurs bstween the dropiets and the arrfoils, and will describe the
method used to circumvent the problem

Let us imagine that during the tme interval (ti‘ti-ﬂ] the droplet has
collided with the srfoil surface. Reference to Fig 5 will indicste the likelihood that st
lsast one of the grid points 1 through 4 i1s then within the airfoil profie.  The value of
the streamfunction st ths grigpont will then be highly erroneous (since the
streamfunction supplied by (2.39). (250). or (260) only spplies outside the airfoil

profile) This in turn will lead 1o an incorrect approxmmation for the ar velocity at

has occured Appendix D shows that all of the integrators discussed sbove (RK4.

., and possibly siso at any other tume durng thws mnterval after coliision

RKF4 and PC4) use tha vaiue of the ar velocity st some pomnt within the time interval

(Ei ‘tH-l] to find the posihion of the droplet at tH-'i This leads us to question

the accuracy of the droplet position (xd,yd)lﬂ, snd even as to whether or not
the dropiet really shoud have impacted in this time interval.

The above dilemma is solved by using a different type of ODE integrator after
the droplet has passed the abscissa of the airfoil nose. A first approximation to the
droplet velocity snd position is made via a third=order Hermite extrapoistion. The
details of this formula are given in Appendix D If extrapolstion predicts a position
which the methods of Section 24 indicste is within the airfoil profile, then we must
find the collision location. If it predicts that the dropiet has crossed a view window
boundery (used for plotting purposes). then the location of tus occurrence s
estimated by the same method If neither of these events has occurred. then the step
1s re-integrated using one of the higher order techmiques mentioned sbove |If the

latter integration predicts a collision (in contradiction to the extrapoiation). then the
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contradiction is resoived by repesting the extrapoistion using a time step one—half the
size of the previous one (TRAJEC(253,266)

2.4 Accreting the ice.

Sections 2.2 and 2.3 have described how the profile of the airfoil of interest is
generated. how the arflow surrounding the airfoil 1s determined. and the means by
which we may caicuiste the trajectory of a water dropiet within this flowfield This.
section shall discuss the techniques which are employed to determine the pont of
coflision betwesn a aropiet and the airfoil surface; the method of choosing the starting
points for the trajectories. and the resutting caiculstions of the rate of ice accretion
and its ultimate thickness after a given period of accretion We shall siso describe the
means by whwch a new airfoil shape s determined, and the process of repesting the

sbove steps for subsequent ice layers.

2.4.1 Specitication of a continuous sirfoll surface. :

With the position of the dropiet known at some time Ei ., we need to know
the distance between the dropiet and the arfoil, that is, the closest approach In
order to accomplish this goal. the airfoil surface must first be defined in a continuous
fashion Section 2.2 dealt with the specification of the airfoil surface st a finite num-—
ber of points (SSE's. An interpolation procedurs is required to locate the arfoil
surface between the specified points. The procedure chosen is the semi-clamped (or
in case of the cylinder: clampod) cubic spline fitted independently 10 the upper and
lower -surfaces (front half surfaces for the cylinder).

inspection of Fig 7 will reveal that the siope of the airfoil surface at the nose
is infinite. Attempts to fit the surfaces by a free spline, or by clamping the left end
of the spiine to a large positive or negative siope (depending upon the surface being
fitted) have led to a poor interpolation As a resuft, the upper and lower surfaces are

rotsted by plus and minus 30° respectively before fitting (see Kennedy and Marsden. T

1976) FITI6.15]). This sliows the angle of the siope st the nose to be ciamped (in the
new coordinste system) to plus or minus 60 raspectively The right end of each

spline 1s left "free” in all cases except the cylinder Here a problem exists once either



surface is specified in the rotated coordinsts system. becsuge near the "l of the
asirfoil, the surfaca becomes double valued The spline fitting routing employed will
not interpolate in this situstion  Since riming can cn:a;r only upon the front surface of
the cylinder. and since the interpoisted surface is t:nly required where icing may occur,
then the spline is fitted to only the front haif of each cylinder surface. with the right
end of the spline being clamped to a siope of 3 /3 (in the rotated reference frame)
for the upper and lower surfaces respectively (FIT [168,30D.

The coefficients of the cubic polynomial merpoistor between any two SSE's
are determined via the EMS&E (1979) subroutine ICSICU.  With thess coefficients known-
the methods of Appendix E may be used 1o determine the distance ¢ from the nose
slong the arfoil surface to the point (x.y),

Since the interpoistion is performed upon pomnts N a rotsted coordinate sys-
tem, an iterstive approsch must be employed to find the ordinate vsiue of the airfoil
surface corresponding to a given abscissa The details of this approach will be found
in Appendix F.

2.4.2 Finding the closest vertical spprosch between the dropist and the sirfoll.
if we sre to determine whether of not a particular droplet 1s o contribute to
the accretion on the mrfoil, we must be able to detect if and when it collides with the
arfoil surface. With the position of the droplet specified at tl-l-l by the Hermite
sxtrapolating technique of Section 237, we need to know the closest vertical
Droach bctwnﬁ the dropiet and sirfoil :u*fncc at that time. The closest v-rtlc.d
v is defined as the dlrtam:- AD ‘in Fig 9.
Collision cannot occur until the right edge of the droplet (xdﬂd,vd) Is to
the right of tha airfoil nose (xn.yn). Thifcfiéf'i: lat ys‘ and ysZ be the warfoil
ordinstes for the sbscissae mx(x";xd) and Xq*+ry The siope of the line joining

thasa points is

12 2.78)

- /[sé;"‘ 4~ ‘“‘“(" xg) 12+ ly 2; Ys1

The coordinstes aiong the droplet surface which sre closest to the airfail surfsce are

thus:
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Yo = Y4t r2/s, (279

xg = Xg+ rqlygy - ¥42) /S, (2.80)

where the first sign in each equation applies on the upper surface of the sirfoil. The
closast vertical spproach is thus
(281

Year T Yp T VA ~

whera Ya is the airfoil surface ordinste at xo (WHAMO (49,59).

2.4.3 Determining the point of impasct.
Section 242 discussed the method of determwning the closest vertical
spprosch.  Whaen YeLAP is positive (for the upper surface) st t. and negstive (or

zero} st tl +1 then we may conclude that a collision has occurred n the tme imtarval
(EL‘tlﬂ] The situstion is illustrated n Fig 10. The problem is to find the pont
(x*,y*) where |YCLAP| is lass than s predetermined tolerance. With the values of
YCLAP known at two dif ferant values of xd,th,itusﬂtvrﬁc t, mdittimit'ﬂ.
we may employ the Secant algorithm to iterate upon Xy and Yeuap © find

(x*,y*) . At each value of x4 between (sd)l and (xd)l*i‘ however, we must be
sble to determine vy d The method for doing this mvolves finding the sppropriste root
of the cubic Hermite extrapolating function which fits x p to t (WHAMO [1.46]). With
this value of t. we may find the vaiue of y d from the Hermite cubic polynomial fitting
Vd tot .

The components of the velocity of the droplet at the moment of impact u
and v*. are found in a similar fashion, that is through the Hermite cubic polynomials
extrapolsting Uy and Vg functions of t The angle of the tangent to the
trajectory st the instant of impact is given by

ET = yk/yk . (2.82)

The angle of the perpendicular to the arfoil surface from the tangent to the trajectory -
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(st impact) is
0% = 6 -0 . 2.83)

where es, the angie of the siope of the perpendicular to the surface, is determined
by the methods of Section 2.4.7 By the definition of 8 (see Fig 10). we desire to
have

=n/2 < 8% < n/2 (2.84)

The program ensures that when the calculation of (2.84) 15 made. the answer is
transisted into the appropriate Quadrants so as to fall within this range (TRAJEC
[375.386).

2.4.4 Finding the grazing trajectories.

The methods of the previous section aliow us to determine, at the moment of
impact between a droplet and the airfoil. the droplet's position, its velocity, and the
angle trom the normal to the airfoil surface at which it impacted Inspection of Fig 8
revesls that there is only one trajectory on the upper (lower) surface where E* will
be equal to /2 (-n/2). Any trajectories above (below) this one will not collide with
the upper (lower) arfoil surface. These two trajectories (one on each surface) are the
grazing trajectories. Their significance will be explained in Section 245 where the
jocal and total coliision efficiencies will be defined For the present it suffices to
emphasize that these trajectories should be determined accurately. Since £ changes |
rapidly for small changes in yo when yo s near its grazing value, determining the
value of i at grazing. 1.. can be difficult Langmuir & Blodgett (1946) were able to
identify the grazing tr:gg;:terigs. by calculating the paths of several droplets Which
irrp.ctod within the grazing trajectory envelope. They then employed a theorem (valid
only for cylinders) which enabled an accurste estimate of the grazing trajectory
collision point Bragg et a/. (1981) determined an interpolator between the droplet
impingement angle (the angle between the tangent to the trajectory and the tanertt to

enveiope. Extrapolstion of this function was then used to approximate the value of
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yo and thus 1 ﬁ@‘iﬁﬁg(yae and LG respectively).

Because the rate of change of yo with L becomes very small as we
spproach the grazing trajectory. s :m-u error in the estumate of Yo, will result n a
lsrge error in the estimate of .. The method for finding the grlilng trajectory
outlined below allows us to approximsts thess values to within a specified tolerance.
not by extrapoistion, but rather by ensuring that the grazing trajectory does indeed fail
within the tolersnce we have set o

The program may perform the task of lac.ltngﬁ)i grazing trajectories most
efficiently, if reasonsbie estimates exist from which to begin the iterstive procedure
described below. Thus the user may select the manual trajectory mode, and when
prompted, input the dropiet size thi trajectory integrating tolerance ¢ . and the
droplet starting position (x0,yo) . When the resulting trajectory results in 8 ND val-
ue of yCLAF of 0.01 or less, the appropriste value of yo may be entered nto the

input file, and the auto-trajectory mode selected. |f the airflow or the asrfoil is

asymmetrical, then a grazing trajectory estimate will be required for the lower surface

73

as 'wﬂ!. in this case. a resyiting value of YeLAP which is grester than -0.01 is re=
quired.

The technique which is employed to determine the grazing trajectories s similar
for the upper and lower arfoil surfaces. Foliowing the first trajectory. the startng

ordinate for the second trajectory is given by

YO, .y < YO, T 0.95 YCLAP (2.85)

where the constant 0.95 has been determined by trial and error to lead to the best
second estimate for ya, and i is a trajectory index. After two trajectories have been
calculsted, the third and subsequent trajectory starting ardinﬂ;i may be determined by
use of the mbdified Secant sigorithm, viz:

o,.. = yo, - ky. . (ve = \WA - w - A

YO 4 Yo, YCLAPi (yo, v-tzil7_1)/(»"!1”,i YCLAP;QI) (2.86)
where the constant k initislly has the value 0.85. The Secant method is repeated until
ons of three cases rises

1 The sum of two successive vaiues of YcLAP is less than 0.00002. The



constant k is replaced by

k = k + 0.1 (2.87)

Z yCLAP' z YCLAPi_‘
in this case, (2.8%) is used to find the next vaiue of vyo.

3. A collision occurs. A test is carried out to'determine if y. . < 1.5 x 1075
f so. then the last Trajectory is desmed o be the grazing one. If not, then we
check to see if /2 - IB*I <x, where initislly « has the vaiue 02 If this

_relstion is true, then it indicates the grazing trajectory. |f not, the next trajectory
starting ordinate is chosen to be midway between the two previous values. Also
the constant k is replaced by k-0.05, and « is replaced by « +0.1° If ths
next trajectory hits the sirfoil. the process is repested |f it rmsses, then the
Secarit aigorithm is recalied to find the next value of yo.

The above procedure I8 ;m until a grazing trajectory i1s found for the
upper surface. If necessary, the process is repested for the lower surface. The
advantage of this rather complex procedure s the knowledge that when the criteria
are finally met, the true grazing trajectory must e between the last trajectory to miss
and the last trajectory to hit the airfoil. This provides an estmate of the error of

Yo, - These procedures may be found n the subroutine TRAJEC[483.5i3]

2.4.8 Determining the collision efficiency.

2.4.5.1 Definitions of g snd Em.
Following Langmuir and Blodgett (1946), we define the local collision efficiency.

B = (dyo/dt) cos a (2.88)

where yo is the y—coordinate of the trajectory starting point, and £ is the distance

slong the airfoil surface from the nose to the point of collision. The factor cos a.
~which does not appesr in Langmuir and Elééglﬁ. is necessary here because the x and

y axes sre fixed with respect to the original airfoil chord line, rather than to the flow



at infinity.

Physically, 8 may be nterpreted as the ratio of the mass flux impacting with
the srfoil surface. to the freestream mass flux This concept is made Clesrer by ref-
erence to Fig 8. Foilowing the central parr of trajectories in this figure, we see that
the mass which flows through s plane perpendicular to the flow at infinity is deposited
siong the arfoil surface between £, and £, Becsuse of the two-dimensional nature

of the flow, the local collision efficiency s is simply

Tim (o, = you)) . ' (2.89)
(YQZ = Y‘:‘l) + 0 L h“Z - 111

in a similar fashion, we note that using the grazing trajectories Yory and Yoq, we
may form a definition for the total coliision efficiency:

En = (Yogu ™ Yoq

) cos a/h@ (2.90)
In this equation, the iu:;:ﬂpts GU and GL refer to the grazing trajectories on the
upper and lower surfaces respectively. and hQ is the ND maximum airfoil thickness.

The two quantities 8 and Em sre reisted by
1 GU
'E o= - { Bdt (291)

Physically, Em, may be interpreted as the ratio of the total mass flux impacting with
the airfoil surface to the freestream mass flux passing through an "invisible plate” (that
is. ona that does not disturb the flow) of width h_ . From (291, we gan an
apprecution of the need for determining the grazing trajectories accurately if we e

to estimate the total mass of sll the water droplets impacting with the airfoil surface

2.4.8.2 Locsting sdditional trajectories within the grazing trasjectory envelope.

in ordec to calculate the thickness of the ice which accretes at any point on the
sirfoil surface, over a given time interval, it is necessary to know the mass flux of
droplets colliding with the surface st that point This flux is the product of the
freestream mass flux and the locsl collision efficiency, 8. at that point We see that

s knowledge of 8 is required slong the entire airfoil surface.



A large number of caicuistions s requred to determine 2 sngie dropiet
trajectory. In fact such calculstions contribute significantly to the overall cost of run-
ning the program To prevent an excessive number of trajectories from being re-
quired. we must attempt to determine the 8 curve as accurately as possible usng the
smallest possible number of trajectories. This goal miy be attained if we are able to
meet three requirements:

1. s means of locsting trajectory starting points which will lead to an accursts
interpolating function for the g curve

2 s way of deciding when 10 stop adding more trajectories; that is, when the 8
curve is sufficiently accurats.

3. s B curve interpolator which is smooth (that 15, continuously differentiable). but
not overly smoothed (to the point of masking relevant information).

it was discovered that requirements | and 3 sre generally in conflict with one
another. Thus, separate techniques have been developed to meet each of them. This
section describes the methods used to satisfy requirements 1 and 2, while the next
section will deal with 3.

Let us bog)n with the two grazing trajectories which were determined by the
methods of the previous section If we add several other trajectories within the
grazing trajectory envelope (the maeasns of accomplishing this are discussed below)
then we have a sequence of n dsta points (for n trajectories)
(L,yo)l, fe1,...,n We may interpoiate upon this set of points to give us a
yo vs. L curve. Then if we find the siope of this curve. we obtain an estmate of
the B vs. L curve. Since it is this latter curve in which we are most hghly
interested, we must choose the (L ,yo) points which will result in the most accurate
imorpohtic;n for the B curve Examples of these two curves are shown in Figs. 11
and 12

investigstions into the nsture of &8 yo vs. L interpolastor based upon cubic
spiine functions determined that the most stable curves resuited when the pomts
(£,yo) were as evenly spaced as possible. confirming the advice of Spath (1974)
However, since the shape of the curve is not known in advance. it is difficult to ac-

complish this gosl without wasting poorly placed trajectories. Furthermore, it was
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discovered thst if two adjacent points were too ciosely spacod 8s compared to the
others, wild oscillstions often resuited in the 8 curve. Th;u probliems were solved
by empioying a cubic Hermite interpoistor HERMIT [1.8] The resulting cubic
polynomiais are not coupled between adjscent intervals (as cubic splines are via their
second derivatives). snd thus changes to the interpolsting polynomisis in the intervais
adjowing a8 new point in the set do not propagste through the curve as they do for
cubic splines. However, in orgor to fit cubic Hermite polynomials. the values of 8
must asiso be specified st the (¢,yo) dstapoints. In order to accomplish this gosl.
pairs of trajectories are caiculsted for each point on the yo vs. 1 curve (except at
the ends, where wes know that 8 must equal zero). These peirs of trajectories yield
information which leads to mean values of yo. L. snd 8 st each point i, i=2, .
n=1, where there are n dstapoints (L,yo0,8) Thus if + and - signs may be used to
distinguish the upper and iower trajectory of esch pair, then

yo, = (yo}F + yo;)/z (2.82)
+ - A
L, = (z' +z‘)/2 : 2.83)
snd
8, = (yo] - yo)/(a] - 1)) (294)

Using Hermite interpoistors. we have more freedom in our choice of spacing between
the points defining the curve. Thus we may choose to attempt to space the points
equally on a normalized B vs. £ curve, in order to maximize the accuracy of the
resulting interpolstor. The curve is normaslized by the range in 2. that is by
zR- "GU"’GL’ and by twice the range in 8, that i1 BR- 280. whaere Bo is the maxi-
mum velue of 8 on the curve. This is necessary becsuse the length of the curve,
between any two points would otherwise be a function of the scaling factor between
8 snd t. Thus if the Hermite cubic polynomisl interpoistor between any two pomts
(2,v0,8), and (1,y0,8)

141 is

yo = c, 83 +c 82 +c & + yo (2.9%)

3,1 2,i 1,1 i
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6 = L -0, : (2.96)

then the normalized form of the equations is

N by 8% * b i8Nt by,

8 297

yo 5% ¥ Yo

- '77 3 A . .
3,1 = &3, | 298
b2, ©2,1*R/8R A (2.99)
O ’ | (2.100)

Yoy; = Yo/Bp < (2.101)
Sy = 8/ (2.102)

By " 3b, 82 + 2b. .5+ b, . (2103

Armed with a2 maans of interpoiating the curves, we may retwn to our
objective of locating data paints to yield an accurate B curve for the smallest
numbers of dsta points. The method of Appendix E may be used to find the lengths
of the cubic polynomisl segments given by (2.103). Once the longest segment has
been found. we will sttefggt to locste a new dstapoint (¢,8) midway between the
two datapoints boundng the mt Thu is sccomplished by the Secant algorithm,
which iterstes upon 8, and L fthe length siong the curve from the point (1,8); to
the point corresponding to 8 ) untii L equals half the length of the curve segment
With the value of 5" known. the corresponding vaiue of yo can be found from



(2102) and (295) We may then determine the starting positions for snother peir of
‘trajectories, again find the corresponding values of ¢ and 8. and add one more pomt
(£,y0,8) to be interpoisted (CE{116.186D.

When the newly mnterpoisted curve is compared with the previous version,

point by point. at say 200 pomts between QGU and lGL' then the maximum
difference in 8 between the two curves may be determined The process of adding
dstapoints through the calculation of trayoctory pars may be contmuod until the change
between successive interpoisted curves falis below a prodotorrrinod olerance. We
may also insist thst a minimum number of datapoints exist -0 bc ‘interpolated

(CE199.115)).

2.4.5.3 Finding a smooth 8 v.s. 1 interpolestor.

The method of the previous section ensures that when s data point is added to
the set of points to be interpolated. changes to the interpolsted curve can only occur
in the segments immedistely adjoining the new pomt Thus a point which is poorly
placed because of insufficient accuracy in the trajectory caiculations cannot influence
the whole curve. causing wild fluctustions in the interpolator.  Such fluctations act as s
magnet for further datapoints since the lengths of curve so’gmonts which osciliste
frequently will tend to be greater than curve lengths between other more accurate
datapoints. A disadvantage of this method is that the second derivative of the yo vs.
L interpolator (that is, the slope of the B curvel need not be continuous, and the
interpolated curve may, in some instances. take on a segmented look. With the num-
ber of datapoints to be imorpoutpd fixed after compietion of the procechsre
described in the last section, several siternatives sre availsble to slieviste this problem

The first option is to interpolste the (L,yo) points by a cubic spiine. This
would result in a curve with a continuous second derivative, and thus would lead to a
smooth 8 curve. However. the values of the datapoints would not be interpolafed,
snd thus our goal of utilizing our available information most efficiently would ﬁot be
stteined.

The ‘second option is to interpolste the (L,8) points by a cubic spline. _This
will result in a smooth curve. but unfortunstely the resulting curve may lack accuracy

becsuse, for example. the total collision efficiency would likely not equal the integral

4
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under the B curve. as it should according to (291).

The third option 1s to fit the (1,y0,8) points with s quintic spline (Spath.
1974). This curve possesses all of the sdvantages of the first two options without
their disadvantages. Further. the interpolstor will utilize all the nformation in the dits
set For example. the srea under the 8 curve between any two data ponts will be
equsl to the total collision efficiency within the Jrajectory envelope corresponding to
this pair of dstapoints A requirement of thus method is the specificstion of the siope
mm-ﬂﬂa@;r-mmﬂtcﬂnﬁ'msm:afﬂn g curva in the two

nesrest intervals, viz

S . = 0.5 tan[2 tan ! (S

g1 ) = tanii (

1,2 (S, 3)] (2.104)

S, = 0.5 tan[2 tan ! (S

8n ) - tan'! (s )] (210%)

n=1,n=2""
i

n,n=1

51‘2 - (3E - 31)/(’-2 - 1) : (2.106)

and similarty for 52139 sninfl‘ and Sn*“néz ‘

Hermite spiine. Then, it determines the difference between the interpoisted g vaiues
of this curve and the cubic Hermite curve at 200 points along the curve's length If
the maximum difference is less than some predetermined tolerance, the quintic spline
is adopted for further use. If the difference between the curves is t00 grest it m-=
plies that oscillations exist in the quintic spline because of poorly placed dstapoints.
in this case, the Hermite cubic spline of the last section becomes the interpolated
curve (CE{187,200).

i;\
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2.4.5.4 The combined collision iﬂléiiﬁﬁ?tfﬁf dropiet distribution. .

Chapter 1 described the types of droplet distributions which may be encoun-—
tered in an icing cloud Taﬁ:p@ﬁthsmmwwfﬂﬂm@f
determining the collision efficiency of an airfoil for a monodisperse distribution of
droplets The challenge of extending this mathod to realistic droplet distributions
remains. ‘

The swmplest approximation to the natural crapkt ‘size distribution 13 to assume
that all dropiets have the mass median diameter Dm of the natural size spsctrum  in
this case, haif of the hguid water ce;ntsit of the élgud will ba composed of dropiets
with dismeters lass than Dm. and half above this size.

Grester accuracy in determining the true arfoil collision efficiency when
encountering a natural droplet distribution would be achieved by dividing the natral
distribution into a set of cstegories. each catory being representsd by droplets having
the mass median diameter for that group. Fig 13 shows the Langmur "D” distribution.
for example, divided nto five categories. each representing 20% of the total liqud
water content of the cloud The sssocisted representative droplet sizes are factors
of 1.75, 1.27. 1.00, 0.77. and 050 umes the mass median diameter of the entire dis-
tribution, Dm The methods described earlier In this section may be employed to
determine the collision efficiency of each category separately. Then, for any pont on
the airfoil surface, the collision efficiency for the natural distribution of droplets may
be approximated by the sum of the collision efficiency vsiues for the separate
categories 8. sach weighted by the fraction of the total liquid water content which
that category contributes to the total w, . Thus we have: -

n

Bl = 1 w8 (1) for n <5 (2107)
i1

Naturally, the total LWC in any approximste distribution must equal the total LWC of
the distribution being modefied The only dissdvantage of this method 1s its cost  The
computing effort expended in running the entire program is approximately proportional -

to the number of categories chosen to model the natursl droplet distribution.
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A compromise between a single dropiet size category, and a set of five
categories (the maximum number permitted in the present program) is two Categories
Tha resuits a¥ such an experment sre described m Chapter 3, with a repressntative
pair of collision efficiency curves displayed in Fig 14 Inspection of this graph
revesis the probiem that exists in combining the two curves at the point where the
inner curve (corresponding to the smalier droplets) falis to zero collision efficiency.
The combined B8 curve typically has a kink in it at this grazing vaiue of L In order
to remove this kink. a varisble iength Boxcar filter (Jenkins and Watts, 1968) was sp-
phed to aeach collision efficiency ‘curve prior’ 1o the curves being combined
(CE{346,382]). A varusble length filter was chosen because there is very littie need to
spply any smoothing nasr the peak of the B8 curve. but there exists a greatsr need
naar the ends of this curve. The method used in filtering may be described briefly as
follows.

Smoothing the 8 curve with a Boxcar filter of length Fv(g,) simply consists
of replacing the value of g (L) with the average vaiuve of 8 b-twm LaFv(L)IZ

and L *FV(L)IZ,, viz:

L+F (2)/2
-‘ v

EF(L) = FlT gde {2.108)
v 2-F (2)/2

Bp(t) = lyo(t +F (2)/2) - yolr - F (1)/2)1/F (1) (2.108)
If L!F?(L)/Bﬂ.l or ;*Fv(z)/z; L . where &, and L are the limiting vaives of t

st the grazing trajectories, then we may replace the corresponding vaiue of yo in

(2.109) by ether yo, or yo,. s sppropriste.  The form of the varisble length filter

F8) = F 0.9 F( - ,)/(2, - 4y)  for 2ysese,
(2.110)

0.1 F+0.9F(2 - L)/ (e = t,)  for t st
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where !.D is the value of L corresponding to the pesk of the 8 curve (that is st
B, ) and F is the maxi mgth of the Boxcar filter. The user may indirectly con—
trol the maximum length of the Boxcar filter by mputting the value of the ratio F/!.R,
which sets the maximum filter length for a given droplet size v:ltigory as some
fraction of the total length of accretion on the arrfoil surface produced by droplets
from that category. Further discussion on the effectiveness of this techmaue follows
in Chapters 3. 4. and 5.

2.4.6 Finding the sccretion thickness.

The previous sections of this chapter have outlined the methods used to pre=
dict the mass flux of water droplets impinging upon any point of the airfoil surface.
This section shall be concerned with determining the thickness of the accretion which
rasults.

Rime ice is formed when supercooled water droplets collide with a substrate
under conditions in which the droplets freaze upon mpact The deposit tempersture
remains sufficiently below freezing so that no runback of liquid water occurs The
density of the deposit will depend upon the degree of deformation of the impacting
droplets as they freeze. but by this definition, the density will be less than or equal to
that of“solid ice.

On a mscrc:;e;pic scale (that is. the scale of the individual droplets), the rime
structure is influenced by the stochastic nature of the impaction process. One
realization of a numerical simulation of this process is displayed in Fig 15 (after
Lozowski, 1881). Droplets from a monodisperse size distribution enter from the left
with their ordinate vaiue selected from a uniform random distribution. They continue
to the right. flowing with the uniform arfiow (which is assumed to be unaffected by
the accretion which may have aiready taken piace). The droplets, continue this motion
until either they pass through the right edge of the figure. or until they impact with
snother droplet forming part of the accretion When collision occurs, it is assumed
that the dropiets freeze mnstantly. retsining their original shape. inspection of this fig-
ure revesis considerable varistions in the accretion density. depending upon the loca-

tion and size of the samping srea The existence of rime festhers (features



-
4
characterized by thewr long, slender sppssrance) is aiso predicted by this simulstion

The angle of growth predicted by this model averages about 20°

fluctustions in the rime density have not been modelled Nor have we sttempted to
predict the fm;n of rime festhers Both festres sre beyond the predictive
capability of the deterministic formulstions empioyed hersin Instead, we have as-—
sumad either a constant rime ice density, or one which is dependent upon the droplet
diameter. the impact velocity, and the deposit temperatre.

The mass of the accretad ice sctually deposited upon the airfoil is the product
of the collision efficiency and the coalescence efficiency. This latter term is simply
the ratio of the mass of water droplets wﬁﬁhfﬁﬁkf@ﬁ?!&ff@it@ﬂﬂléf .
water droplets impnging upon the arfoil We have assumed the canm;
efficiency *to be unity in thus study. Hallett (1980) cautions, however, that at aircraft
speeds, some splashing of wnpacting water droplets may occur if the droplets are
sufficiently large. He has determined that when the ratio of droplet kinetic snergy to
surface energy exceeds about 20, some loss of mass may occur. Until thus ratio
sxceeds 200, however, the loss of mass will not be important

We assume all accretion to grow normal to the airfoil surface. Bragg er a/.
(1981) have investgated the result of allowing the accretion to grow in the direction
from which the droplets have arrived st their mpact location The shape of the
sccretion formed m this way can be substanially different from that presentsd in the
fauem chapters. but Bragg et a/. were unable to conclude which formulstion might
better aspproximats experimental results. This remans a question for further
investigation

in the limit where only a small number of droplets impmge onto the arfoil
surface, forming a layer about one droplet diametsr thick, the growth will be
approximately normal to the original airfoil surface. Thus if the accretion process is
trested as a time dependent process. with a layer b-mg formed during each of seversl
discrete accretion periods (rather than during one extended intervall, then the
assumption of normal grcsw& may better spproximate the natural accretion process.

The program has been written to facilitate time dependent, muiti=isyer accretion



Dstails of this formulstion are presentsd in the remander of this chapter
2.4.8.1 Accretion on s flat surface.
The thickness Q of the gpcretion that would occur on a fist surface. oriented
iar to the arfoil which does not disturb the flow, is a function of the

droplet mass flux through the plats, the period of the accretion TA.:ﬁdﬁisg
density gi.vi::

~ s
<. a = UM, /p. 2111
- \ i
where W is the cloud liquid water content and U_ is the freestream air velocity
This may be non—dimensionalized via the chord length C to give a ND accretion param-

oter
w = Q/C ' (2.112)

With the mean collision efficiency B or §F known for a point on the airfoil surface,
we can estimate the ND locsl sccretion thickness, if the surface were locally flat. to

p = w B _ (2113

2.4.6.2 Accretion on » curved surface.

If the airfoil surface is not locally fist. as is the case for most parts of thé
sirfoils studied. then the thicknass of the ice accretion calculsted by (2 113) may be in
error. especially if the surface h!_;l ] ifnill radius of curvature. To correct for the ef-
fect of the surface curvatire, a n:w wm is required

Fig. 16 shows a curved section of an arfoill surface having on it & l:y-; of ce
accretion of thickness m If the representative ridnu: of curvature of the original
surface at point O at time él is .
of the accretion over the time interval [t,,t,] is

.and at t, is r,, then the cross-sectional ares
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2r1

= Mm + 0.5 Mm?/r,

(2114)

where M is the length aiong the surface st t, from points P to Q Point O is

located st SSE i, pomnt P is midway between SSEs i-1 and i. and point Q is midway

betwesn SEEs i and i+1. The ND cross—sectionsi srea on a locally fist surface of

length M and thickness p (where p is given by (2.113) is:
o = pM
Combining (2.1 14} and (2.1185), and solving for m gives:

m e -r +/r2 +
1 r 2r1p
- - - 2
m r v'r1 + 2r,p

1

These formuise are implemented in subroutine ICING [180] and

(2.115)

for r,> 0
2.118)

for rr<o0

(234)

The problem of determining a representative radius of curvature for the arfoil

surface remains. The standard formula for the radius of curvature of a surface de™

fined by:
y = f(x) (2117
is
: 1S ,
‘ re = [l + (91” &y 2118)
) c - dx d 2
X
Now, the spline interpolstor between SSE's i and i+1 s L
= 3 24 i . .
Ya 30 S8t G 8t Yy 2.119)



(2.120)
and the coordinates of SSE i are (SRI‘YRI)’ Combirng (2.118) and the derivatives
of (2119 yieids the radius of curvature at SSE i
]
1+ €2
(r+c2 )

r - 2 (2121
cl 2C2 '

if an averaged valus of the radius of curvature is required st SSE i, we may use the
arithmetic average of the values st SSE's i—1. i, and i+1. This averaged valus has besn
found particularly useful in smoothing out small irreguisrities in the surface
smoothness.  Such irreguiarities. which might be caused by a lack of smoothness of
the g curve for the previous sccretion layer, can cause substantial fiuctustions in tha
collision afficiency over relatively small surface distances Such fluctustions lead to a

rapid amplification of the original perturbat

(231] and [187)

2.4.8.3 Acocommodsting a variable ice density.

The density of the rime sccretion is nfluenced by stochastic fluctuations in the
ice deposition, which can lsad to rime feathers, for axampie. This cause for density
varigtion will not be modelled A second factor affecting the density is the degree of
drop pforrmd |;n during the freezing period following the droplets impact with the

sirfoil surface. This deformation is a function of the interval over which the freezing
takes place, the dropiet radius R, the impact spesd V' . the tempersture of the -
sccretion surface © . the temperaturs of tha droplets just prior to impact, and the
rate at which the airfail surface 15 being ventillated, among other factors.

Once we know the density of the ice. we .I‘ﬁly caiculate the thickness of tha

accretion Mo ViZ

| ™o m/® (2122)
o]

where ¢ is the ND ice density, that is the calculated density normalized by the density

6f pure ice .= 917 kg m-!,
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A series of experimentsi observations has led” Mackin (1862 to derive an
empirical formula for the accretsd ice density when dropiets of radws Rd (i um)
impact with a surface of tempersture és (in degrees Ceicius) st a speed of \!ilr in m
s) This equstion masy be normalized by the density of pure ice to give (CING
[170,1786] and [219.224]

& = 0.120(- RdV*/gs)GJ’E (2123
whare the following rastrictions hoid

-20 g 0_ ¢ -5 2.124)

0.88 s R,V*/6_ s 16.29 2125

Since (2.123) was empirically derived, the dropiet radius actually refers to the mass
median radius of the droplet distribution extant in the measuring wind tunnel.  The
impact speed similarly refers to the speed of the these same droplets. The program
csiculstes dropiet impact velocities for sach of the droplet size categories which are
used to model the natural droplet distribution Thus, if we wish to apply (2.122) and
(2.123) at some point on the airfoil surface, we must determine the impact velocities
for each of the dropiets which are sbie to impact at that point, and find a combined

in a fashion similar to that used to calcuiste the combined

collision efficiency st thet point, viz

=

o n(e) ] n(e)
VA(L) = Z w; vait(;_) E W, (2.128)
| i=1 ’ L i=1 '

in this equstion, n(L) refers to the total number of the droplet size categories
whose droplets impact at 1. and as befors, the w, refer to the fraction of the tota
liquid water content of the natural distribution contributed by droplets from the
category i These calculations take piace in subroutines ICING [92,94] ICING
(150.152] and COLVEL (1.28]

Equstion (2.123) requires a knowledge of I which has not been discussed

previously. Since the present version of the program does not soive the 4
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tempersture is the same as that of the arstream eimehmﬁmnpc‘m

The varisbles V', v‘: and 7 may be defined by either of two formulations
when used in (2.123) The first is the total velocity of the impacting droplets. The
mwisﬁcm:ﬁﬁsvﬂxﬁ%ismmﬁﬁfcnﬁﬂgcnﬁ

point of impact in either case, the velocity is obtained by nterpolsting upon the
datapoints (L,v*iei) with cubic spiines. The datapoints are obtaned from each
vnmusﬂaﬁmﬂbyhm@fﬁmla The varisble

0" is the angle from the normal to the airfoil surface to the tangent to the droplet
trajectory at impact (ICING [ 166, 169] and [215.218).

2.4.7 The sirfoll shape following a Isyer of scoretion.

Section 2.4.6 has sllowed us to determine the thickness of the ice accretion
layer that forms st any pont on the airfoil surface during a given tme interval. If we
sre to repest the process. that is to accrete subsequent layers, we must know the
shape of the ir;fail following sach sccretion interval

The siope of the normal to the airfoil in the rotated reference frame st surface

segment endpoint (SSE) | may be obtained from (2119) as

S, = -V, 2127

The equation of the normal to the surface is thus. -

However. we aiso know that the length of this line joining a SSE on the old surface to
the corresponding SSE on the new surface must be m or ™" Thus:

(M
I
g\

(1-1,-3;)2-'-(‘;r-'w;ri)2 - m (2.1

Combining (2.128) and (2.129), and solving for x and y yields:

S ) 757 4 =
x = x; * rs'il n? - (2.130
i 1+ Szi
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e
and .t
1',

,1.%

S ~ v, *+ S k- x;) (2.131)
-

The point (x.y) becomes a SSE on the new sirfoil surface, following accretion, with
respect to the oid rotsted reference frame (GCING [191,192) and [235.236).

Section 2.4.1 outiined the method used to interpolate cubic splines to the upper
and lower airfoil surfaces. One requirement of the method was a set of rotated
coordingtes with origin st the airfoil nose. Since the position of the nose (which is
defined as the pomnt on the surfsce having the smallest sbscissa vsiue in the unrotated
coordinste system) has likely changed followihg a layer of accretion. the first step 5. _ .
to locate its new position Fig 17 displays the two arfoil surfaces, st tme tk and st
tk + Also shown sre rotsted reference frames for the upper surface centered Lonn
the new and old nose positions. Given an abscisss vsiue for a point on the new airfoil
surface in the oid rotated frame. x.. the subroutine NSURF caicuistes the abscissa of
this point in the oid unrotated frame. This subroutine is employed in turn by the IMSL
(1979) subroutine ZXGSN to find the new nose position through the use of the Goiden
section—search sigorithm for locating the mnimum vaiue of a function in s given
interval (ICING (253.280D.

With the new nose position locsted. a new SSE is created at this point All
other SSE's on the new sirfoil surface are then tagged as belonging to either the new
upper or lower surface, depending upon their ordinste value as compsred to that of
the new nose. The old rotated coordinate system is then transisted so that the new
system hss its Origin co-locsted with the new nose position With thcs sccomplished.
we are in a8 position to fit cubic splines on the new upper and lower surfaces.

employing the new rotated coordinate systems (ICING [281.,424)

2.4.8 The cross-sectional srea of the scoreted layer.

A cross check upon the sccurary of caiculating the new airfoil shape is provi-
ded by comparing the mass of the accretion layer caicuisted in two differsnt ways.
The first method invoives finding the product of the cross-sectionsl srea of the

accretion, A

T and the ice density o, In this 2-D problem, the spsnwise length is

s
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unity. The second way is 10 determine the product of the accretion parameter . the
ice density o, . the total collision efficiency Em; and the maximum arfoil ﬂmeknnn
Ha _In order to make this comparison, we need to find the cross—sectionsl srea of
the accretion layer.

The formula for the cubic spline mterpolstor of the arfoil surface in the
rotated reference frame is given by (2119). [f we integrate this equstion between
SSEs | and i+ 1 with respect to the distancs varisble ‘SR we obtain the sres under the
surface spline segment with respect to the rotated refersnce coordinstes Thus

mntegral is:

2132

0.25 ¢, &4 +0.33 ¢, S%-ﬁaisc

e 2 . i?
'3,1%1 1,181 ¥ Yriy

where 8. = Xp(1+1) ~ *R¥ 3,10

cubic p@lynamil spiine segment between SSE's | and 1+1.
mmufﬁifaﬁmtw:mymmavsdl " segments making up

-x_. and ¢ through \x:1 i e the coefficients of the

the old msface to obtain the total srea of this surface sbove thl old rotated x—axis.

VIE

Repesting the process for the new arfoil &k+1) with respect to the new rotated

coordinates (that is those centered on the new nose) gives

nk*i

1 - ) L, (2.134)
j=1

Referring to Fig 17. we see that the new nose position in the oid rotsted coordinate

system is  (x )  Since the integrals I, and I are with respect to

MR’ YNR k+1
different coordinste systems. we must make an adjustment to the dif ference between
the integrals if we are to find the area between the two curves. This adjustment

i
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involves the rectangle with area vy, Xoo. where x o is the abscissa of the airfoil ta
in the oid rotated system [t siso nvolves the trisngle with ares 05 XuRYNR' whose
hypotsnuse joins the two nose positions. Combining these adjustments wvﬂ‘\ {2.133
and (2.134) gives us the cross—sectionsl area of the accretion on the upper surface:

Ay " Tt~ T T *wRVNR7Z T YNRTTR (2.13%)

A similar expression may be derived for the area between the lower surfaces, AL,
and the two combined to give the total cross—sectionsl accretion »ea for the layer

(FIT (33.68]

A = A +A (2.138)

2.4.9 Placemant of the control element endpoints on the new sirfoll surfsoa
Section 24.7 outhined the method used to locste the SSEs on the k+1 arfoil

surface. that is. after the accretion of layer k. |f we are to solve for the airflow

sbout the new arfoil shape  step vital to the time—dependent modelling of the

accretion process), the Kennedy & Marsden techrique of saction 224 requres that

we locate s set of CEE's on the new artoil surfsce. Wae have several requirements to

satisty n pl;:lﬁg these CEEx ‘

1. w-mihmr-tﬁiﬁmafh&:mmnmafﬁunﬂaﬂ surface
wﬁi’%ﬁ? change hn occurred, that m where there has been no accretion
A CEm&db-mnﬂniwmrfmlnanpqmm

i if we are to maintain a reasonable cost n computing the dropiet trajectones. ‘the
total number of CEE's should not mcrease substantially as the number of accreted
lay@rs iNCreases

4 The CEEs on the newly accreted surface should be spaced spart n a fashion
which is consistent with their spacing on the previous surface.

5 If an area Qf strong surface curvature exists, CEE's should be placed so that the
straight=line elements joining them approximate the curved surface reasonably

will.
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Let us confine the remainder of ths discussion to the upper surface - the -
procedures used for the lower surface sse virtuaslly identical Our first step is to

locste the CEE which lies immedistely aft of the accretion region Assume that the
index of this CEE is | and the index of the co-located SSE is i This CEE and all
those aft of it retain their previous positions (with appropriste changes for the
transiation of the rotated coordinsta system). L:ti us define two ratios that of CEE to
SSE indices; and of lengths from the new and oid nose positions along the new and

oid surfaces to CEE | vir

QS - (j-1/0 =) (2137

Q = Y1, ' (2.138)

We desire to ensure that the lengths on the new surface between CEE's foward of
CEE j remsin spproximately proportionsl to the corresponding lengths on the oid
surface If the same number of CEE's were desired on both surfaces. then the ratio
of these corresponding length intervals would simply be Q. But. the lengths between
corresponding pasrs 6f SSE's vary as the ﬂ'fncknns of the accretion snd the radius of
curvature vary over the accretion. region Thus. exact correspondence is Qenerally
Further, we position CEE's on the new surface only at positions where

SSE's sre locsted Since there are IIQS surface segments for esch control element
in this region. adjustments are necessary to effect a compromise between the
conflicting goais of proportionsl spacing and co-locating the CEE's with some SSE's.
This is sccomplished by ensuring that the distance between successive CEE's on the

new surface divided by the corresponding distance on the old surface i

Lyer -1
L -

feer,]
Y o

> min [Q’D’QDH] (1 - 0.5 QS) (2.139)

The parameter QDH is chosen to be the maximum sliowed incresss in length between
corresponding CEE's on ﬂ;u two surfaces. It must be sufficiently small so that the
spacing between CEE's on the new surface is smaller near the nose (where typically

the grestest curvatures occur) than farther back, slong the non-accreted arfoil
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surface. This method of locating CEE's will tend to be most successful when the ratio
QS is small, implying a large number of SSE's to choose from when locsting a new
CEE. The last of our gosis sbove is satisfied by checking the ratio of the lengths be-
tween two CEE's siong the airfoil surface, to that siong the straight line joing them
If this ratio exceeds 1.2. a new CEE is placed midway between the other two, given a
sufficient number of SSE's in the region These formuise are Mmplemented in subrou=
tine ICING [425.524]

2.8 Time-dependent acorstion modeliing.

Section 2.2 has described the flow regime sbout a helicopter rotor blade and
has detailed the methods used in genersting the potentisl flowfield about an artoil of
srbitrary shape. It aiso has developed the techniques for defining the mitisl wir f ol
surface. Section 2.3 has outiined the calculstion of the water droplet trajectorias.
which begin their paths several chord lengths ahead of the arfoil. moving n virtually
the same fashion as the air surrounding them.  Section 2.4 has described the means by
which the impact locations of the dropiets are found, the manner in which the collision
efficiency is calculsted. how the thickness of a layer of ice accretion is determinsd.
and the method for finding the shape of the airfoil surface followng this layer of

accretion

surfsce shape, then the revised flowfield will mf a new collision efficiency
curvels). and a new distribution of ice for the following layer. Once the shape of the
resulting airfoil surface has been found, the process may be repested

This sequence of steps forms the basis for the tme—dependent madimﬁg of

the ice accretion which can form on an arfoil



3. COOE OPTIMIZATION

3.1 Iintroduction
N the course of writing a lengthy and compiex program, a number of

occasions arise where small adj s must be made to standard algoritms.  There

points, that is places where branches may be. taken depending upon whether or not s
variable exceeds a given tolerance. In addition to these, programs may provide the
user with s set of nput options. Appendix H outiines the adjustments, options and
tolerances embodied N the program diiﬁ:ﬁba:;ﬂ in Chapter 2. This chapter detasils the
sequence of trials that were used to estmste the optimum values of the various

3.2 Optimizing User options and input values.

Appendix H describes the locations of adjustments and tolerances which are
built into the program, and which should not require frequent user alteration Trus
section, on the other hand, will detail those options and adjustments which are re-
qured as Input to the program each time it is run.  There are aiso a number of input
vaiues which define the conditions of sach simuistion These will generally not be
described here. A complete list and description of user Inputs 1s given at the begmn-
ning of the program (see Appendix G

The discussion of this section will centsr around a sequence of trial simulstions
which were carried out to spproximate optimal values for various options and
tolerances. and also to test the sensitivity of the simulstion resuits to changes in these
vaiues. The primary goal of this procedure was to increass the program's efficiency,
that is to sttain the smallest lxﬁﬂndlﬁrl of computing effort for s given level of



3.21 Control slements and Vﬁl@ﬁhv esloulstions.

One of the first steps that the program takes (after finding the airfoil shape) is
to csiculste the air velocity st pem outside the arfoil profile. The accuracy with
which such values are caiculsted (when the Kennedy and Marsden technique is
empioyed) is dependent upon the number and spacing of the control siemant sndpoints
used The grester the number of & Tts, and the shorter the straight line segments

joing them, the better these segments approximate the true airfoil shape. and thus

give the correct vorticity density aslong the segments On the other hand, we
anticipate that the cost of computing droplet trajectories will depend grestly upon the
number and distribution of endpoints. Thus they must be located with care. '

We shall begin by choosing an approprista cass for thess aptuwmgn

experiments. The program is more severely tested (particularly in determining the -
collision ’iffS::y curve) when the angle of attack ALPHA is non—zero. Also, it is

essential to choose an arfoil shape for which we know tha soltion for the velocity
of the potential arfiow at any point This profile should asiso resemble a typical
helicopter rotor bisde cross—sechon g0 that the conclusions drawn from thess tests
will be spplicable to the more general cases to be run later in subsequent chapters.

The conditons chosen conform to those used it a paper with which
comparisons will be made in the next chapter (Werner. 1973). The angle of sttack is
ALPHA = 468° the arfoil u:';-w uncambered Joukowski profile of length C=0711
meters, and thickness THICK= 12.0%; the freestream arrspeed is VINF= 128.6 m s the
tempersture of the freestream air is TINF=-20°C. and the freestream statiC pressure is
PINF=1013 kPa Finally. n order to request that velocities be caliculated at specified
iNput points. we have set ViINQ=1 The results of several runs are displayed in Table
3 -

The errors in the calculation of the velocity at all points upstream of one chord
length shead of the sirfoil are less then one percent for sll combinations of NEF and
NEB tested For each of the upper snd lower airfoil surfaces. these two parameters
é:rc the number of CEE's on the front third, and on the remainder of the airfoil surface
respectively Ther method of placement was described in Section 224  Just shead

of the nose position. that is at (-0.01,0001), the error n velocity shows an inverse



dependence upon NEF.  This reistion siso hoids true farther back near the lower airfoil
surface (0.12533,-0.05328) On sverage. the results for the two points just above
the upper surface ((0.00%,0.015) and (0.01,0.0185) displsy this resutt agan. sithough
the accuracy st any Qiven point sppesars to be related to its position with respect to
the nesrest CEE's. Thesa raesults are t0 be expected - as the distance between CEE's
decreasss. the eiemants better approximats the airfoil profile. and thus lead to a better
estimate of the air velocity.

Kennedy and Marsden (1976) recommend that 8 minvmum of 41 CEE's be used
to define the entire arfoil surface. The case just meeting this requirement (NEF=11,
NEB=10) has 3 maximum error of less than 1.7% for all the points interrogated. and
thus it was chosen as a suitable representstive case for the experiments to follow n

the next section

3,2.2 Control siements snd trajectory cslculstions. f

The resuits of the previous section have provided some ides as to the number
of CEE's required to model sufficiently accurately the potential airflow about an sirfoil
But these runs are only the first step because we suspect that the accuracy of the
sccretion mass and shape is highly dependent upon the accuracy of the droplet
trsjectory caiculations. snd thus on the accuracy of the ar and drop velocities at all
points slong the dropiet path To study“the
tion upon the parameters NEF, NEB, and EPS (the truncation error tolerancs). a series

pnce of the droplet collision loca-

of experiements was conducted The results are summarized in Table 4.

Column 5 gives the local collision efficiency (defined in Chapter 2) for a
particular pesir of trajectories impacting slightly back of the nose on the upper airfoil
surface. Column 7 displays the distance of /mpact of the upper dropiet trajectory
from the nose along the airfoil surface. Columns 8 and 8 show the errors in these
vaiues as compared to the values for an anslytical sirflow. Column 9 compares the
compdting cost of calculsting the pair of trajectories using the Kennedy and Marsden
spproach (rows 2 through 15) to the cost of the analytical approach (row 1).

In the first few rows (1 through 7) EPS s constant, while the ratos of NEF to

NEB mncreases As NEF increases. the relstive cost increases. as does (in genersl) the
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sccuracy of the simulstions. An exception is row 5 where NEB=7. This imphes that
pr::;"i’acd:ﬁm NEB 2 10. The cost also escaistes as the

sccuracy will be mmnta
sum NEF + NEB increases (see rows 6 and 7). Keeping NEF and NEB reistively con-
stant for rows 8 through 15 allows us to vary EPS. . One result is predictable as EPS
decreases, the reiative cost incresses. However, changes in the accuracy seem to be
small and varisbie The best overall compromise sppesrs to be row 15 where the
erors in 8 and in L° are both relstively smail. Further, this is one” of the least
expensive of the runs presentsd. and at the s.fni tme it has a relatively small
truncation error tolerance EPS. Based upon these resuits. the values of EPS, NEF,
NEB and NIF chosen for the simuistions of the next section are those in row 15

An ineresting sidelight may be provided by comparing the cc ats of the

costs assocusted with obtainng the results of this table. Using the case of row 15 as
sn example. the computing cost of loading the entire program and computing the con-
trol element vorticity density by the method of section 224 is about 5| cents.  The
sdditional cost involved in the computation of two trajectorias is $2.84 when the RKF4
method PC=2) and the full set of trajectory equations EQN=2) sre used From this
we can see that while the efficiency of the technique used in determining the vorticity
density is high (as clamed by Kennedy and Marsden. 1976). the cost of computing arr
velocities st every time step (and sub—tme-steps in the case of the RK4 and RKF4
aigorithms) can be very substantal This knowledge emphasizes the need to caiculste
the coliision aefficiency curve as accurstely as possible. In this connection. we will
now mcitlgnl the relative costs of the RKF4 and PC4 aigorithms.

As was mentioned in Section 2.3, the H,-ﬂrﬂﬂg PC4 method utilizes a mimmal
number of function svalustions (air velocity computations) per time step, but it s
restricted to a constant time step. The aigorithm RKF4 on the other hand uses more
evaiustions per step, but is is able to change the step size after each time step so as
to maintan the largest time step consistent with the associsted truncation error
tolerance. For this comparison we have cham the system of squations without the
history term (EQN=1), because this term may interfere with the time-step selection
method of RKF4 (described in Appendix B), and/or the error-mop-up process of PC4
(Hemming. 1973) The results of the comparison sre given in Table 5. The columns



“have the same meaning as those in Table 4. except that cokamn 1 now gives the type
of ODE integrator used, and column 7 displsys the ND step size in the :tgppit prior
to coliision _

Thewomwsmmrm“caﬁb-m;;ﬂﬂtﬁxﬂuﬁﬂrﬁuQﬂJﬂm
is approximately the same as thst for the full set of equstions (shown in Table 4) We
umMafuﬁrco«wimbﬁwmhFﬁHﬁFCdsﬁimiimmﬁ

step size for PC4 method This assures similar truncation errors for the two
techniques in the region just prior to collision where the ar velocity is changing most
rapidly. The resuit of this assumption is a computing cost for the PC4 method which
isS.?timo:MofunRKFAmmod Clesrly, any method using constant tone steps.
no matter how etficientiyghs not suitable for the solution of this system of equations

With the RKF4 having been singled out as the most appropriste of the
ones sttempted. and with suitable starting values of EPS, NEF, NEB and NIF having been
determined, we shall now move to choose the most appropriste values of other con-
stants and optigns.
3.2.3 Program sensitivity tutihg for monodisperse droplet distributions.

Let us retrict ourseives to results from modeliing with a single droplet size
We must choose appropriste tolerances and options to obtain the collision afficiency
curve (and thus the accretion shape snd mass) which best approximate the true values
for a given computing effort The parsmeters we shall choose to vary ‘are the
method of finding the potential airflow (snalytical (TYPE 0) vs. vorticity density
(TYPE>O). the number and location of CEE's and SSE's (given by NEF. NEB and NIF); the
system of oquat:bm used EQN=2 for the full set; EQN=1 without the Mhistory term)
the 8 coefficient formulation (CDS=1 for the hybrid Stak-rSrt_ar and
Abbott-Abrsham method; CDS=2 for the Langmuir and Blodgett method), the truncation
error tolersnce EPS) the maximum permissible chenge n the 8 Ccurve after
incorporsting the last trajectory pair (CEDEL), and the trajectory itarting point sbscissa
(X0). The results for a series of e'xp;crinﬂntal runs where these parameters were

_varied sre displayed n T_th 6. In column 12 we have the total accretion area Al i

i

-
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other columns have mesnings similaer t0 columns in Tables 4 and 5 |

We begn (in row 1) with an anslytical run in which tolerances are set to the
fine end of the range within which we ;mm to axperimant A plot of the flowfield
sbout the Joukowsk:! arrfoil of tvs case 1s shown in Fig 18 This figure aiso displays
the trajectories used to caiculate the collision efficiency curve of Fig 19 and the ice
accretion prof® of Fig 20 .. Changmg the number of pomms specifying the arfoil
surface. a8 m row 2. resufts m 2 small inaccuracy. and a small saving in axpenditure
Changing the tolerance CEDEL (row 3) decreases the cost still further by regquiring one
f.c'wor trajectory to be caiculsted Since the grazing trajectories sre m::hmgad Em
remains constant, but the shape of the 8 curve changes somewhst Changing the
arag efficient formuistion (row 4 increases the cvr;ll cost, and results in a significant
change in E., _ch.rm CDS -ta its normal vaiue and relaxing the truncation error
tolerance (row 5/ yieids vaiues for B, L  and E_ aimost identical to those n row
1. but at half the cost Removing thc hiﬁér% term from the droplet trajectory equa-

tions (row 8) effects a substantial improvement ih reiative cost (to 0.29), but incurs

. =30me errors in B8 io, E and A_. A further m?f X0 (row 7) from =10 to

m T

-5 has little effect upon either the simulation accuracy, or ﬁéan Comparing rows
8 10'5. we see that the decrease in X0 from -10 to =5 more than compensates for
the increased cost in sitering CEDEL from 4.0 to 1.0, and wrth virtuslly no degradstion
of accuracy. |If we relax the tolersnce EPS once again, and begin the trajectories only
2.5 chord-lengths ahead of the airfoil, the relative costs drop from 0.44 to 0.31 )

Let us now confine our attention to the subset of the runs with a relstive cost
of less than 0.50. Of these. the ones in rows 5. 8 and 9 are the most accurate. The
least expensive one is that in row 9 Thus a suitable compromise with which to begin
the simuistions of the next section will be a run employing the values EQN=2, CDS=1;

b}

EPS=1x10-* CEDEL= 1.0, and X0=-5 or -2.5 for a dropiet of dismeter 20 um



70

3.2.4 Program sensistivity testing  with a varisble number of droplet size
categories. :

The resutts of the previous section were based upon srmcman:umnqi sngie
agropiet size. In actusl fact nstural clouds have a distribution E;f droplet sizes within
them Let us assume that the Langmuir D" distribution (see Fig 9) farly approximstes
"8 typicsi iBural cloud droplet distribution Then we may, employ several droplet size
categories (o to five in the present version of the program) to approximata gbrifail
icing  Simuistions using only ona droplet Sini (for sxampis. that of the mass median
dismeter for the entire distribution) are predicted to produce less accurscy. The re-
sults for a series of such simulations sre presented in Table 7 _ '

Column 1 of tus table indicstes the length of tHe Boxcar filter used in
smoothing the B8 curve (C denotes a constant lenditb filter, V a varsbie length one)
This length is the fruction/of the total length (in 17’&_ g curve Column 2 gives
the number of dropiet size categories. Columns 3 through 8 display. respectively. the
mass median droplet diameter, the fract\ion of the total LWC in that particulsr size
category the truncatidri Brros tajgrance. the maximum value of the 8 curve, the loca-
ton of this maxmom. and the total collison efficiency. for each of the categories
Columns S and 10 display the mean vaives of 8, and L, for the set i:f categories,
or the corresponding vaiues of the smoothed 8 curve. when filtering 1s applied
Column 11 gives the accretion cross—sectionsl area based on the mean and/or Fi’ltara:i
8 curve while column 12 dispiays the relative iv:cst as ¢bmpared to the most accurate
mutti-category simulation. that of Case 1 ’ !

From Table 7 we may make the following observstions. Case 1 displays the
most sccurste and comprehensive simuiation we have made for these conditions (the
conditions used for these simulations are the same as those in Section 3.3.1) A plot
of the 8 curves for this case is given in Fig 21, with the mesn ouwrve (as defined in
Section 2.4.54) superimposed as a heavy solid line without symbols. The other. curves
ore nested. with the curve for the smeliest droplets having the smallest pesk vatue BD
We see that-the all curves hsve pesks at approximately the same location As the
dropiet size ncreases. the ares under the B curve corresponding-to the total mass of
ice accreted from that size cstegory. ncreases as well. Further the impingemente -

.
L
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limits (that 15 the locations of the grazing trajectories) mcrease in distance from the
nQse as the droplet giameter incresses. Case 2 is virtuslly identical except that the
values chosen for EPS correspond more closely to the optwmum value suggested from
Section 323 There is a smail change i the height of the 8 curve pesk. but the
overfit sccurscy is nesrty as hegh st 79% of ﬂ-v: computing cost  From thig point. we
contn.7 to relax taﬂrm by reducng tha number of droplet size categories. In
.Case 3. there sre three :éganu The reistive cost of thus simulstion 1s 0.53. and
the accuracy of the simulation appesrs to be very good indeed Cases 4 5 and 6
combine 3 two-category distribution with several different category weights (that s
relstive contributions to the total LWC) and representstive droplet diameters The
trend in these simulations is towsrd grester accuracy (and only macginally mncreashg
coJas.tho weights approach an even sphit, that s ED;X: sach Cases 7 through 10
illustrate the resufts of simulstions using c;nstmt and vri%a length fitters t:;'i the 8
curves. The need for this smoothing is apparent if’\yc examine Fig 21 and compare
the center 8 curve (with trisngie symbois) to the hesvy solid symboi-less mean curve
8. The centrai curve corresponds to a simulation wherp the natural dropiet distribu-
tion is modelled by a monodisperss distributon with all droplets hwvﬁg tha mass
medisn diameter of the natural distributiot Such & simulstion resuits n an
overestimate of the vaiue of BQ (70.3% vs. 67.9%). and s substantial error in
predicting the limits of the 8 curve (¢ =-0.1368 vs. -0.2342 for the lower surface.
and 2=00196 vs. 00367 for the upper surface Further. if we compare the
accretion outlines for ﬂ‘!ifl two simuistions (the solid curve in Fig 22 corresponds to
the B curvel, we see that the more serious departure from the shape of the mean
curve occurs on the upper surface. In that region the predicted arfoil m foilow-
ing the sccretion has a prominent Swpp whereas the mesn curve joins the original
sirfoil surface smoothly. Case 7 cc:ﬁﬁnn two equally weighted size categories using
asconstant iength fiiter F=0 10. Case 8 uses a varuble length filter. While the varia-
ble length filter results in a slightly grester over—estimaste of the cross-sectional
accretion sres. it improves considerably on the value of B 0 asnd L If we compare
the 8 curves for Case 8 and Case 1 m detail (shown as solid and dashed symbol-less

curves in Fig 23), we see that Case 8 provides a very good spproximation indeed to
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1, and &t 37% of tha cost of

. the composite B, curve of the most accursts simuilstic
the high accuracy casa Cases 9 and 10 are simnilar to line 3 of Case 1, where the
nlh;gl dropiet distribution 13 modelied by a monodisperss distribution st the MMD
However. Case 9 empioys 8 constant length filter F=0.20, while Case 10 uses a varis-
mmfumefhmmmmmfmﬂﬂﬁ 8 curves These 8
curves are displayed in Figs ¢4 and 25 respectively The 8 curve of Fig 24 poorly
estmistes the height and locstion of the natursl curve's pesk - a situstion smilar to
thet of Case 7 The varusbie length filter spplied n Fig 25 mmproves the smulstion
considerably, howaver, with a smaller difference between the ﬁlivy solid and dashed
B curves. ﬁﬁrm-rgmlsmmmmmirmmimam
spproxmmation to the B8 curve of Case ' (dashed ine). but st only 12% of the cost

even better fit The corresponding accretion profiles are shown in Fig 26. The cusp

on the arfoil surface apparent ;urt sbove the noss in Fig 22 has besen removed by
applying the smoothing - E\r&\thi lower accretion surfaces coincide more
accurately- as well i Fig 26 The final two cases, mmblr: 11 snd 12. represent the
resuits of simulations ﬁgg- using the Kennedy & Marsden vorticity dansity method to
compute the fiowfisld We see ﬂn&pﬁ-cu‘rly when the finer tolerance of Case 12
is employed. the accuracy of the simuiation is compsrable to that of Case 10
However we siso note that this par of simulations confirms the results of our asrher

experiments regarding the costs of this method compared with the analyticai method

settings for the tolerances snd options which the user must mput to employ the pro-
gram.  Trials to determine the accuracy of the flowfisld caiculstiong by the vortcrty
density method, and the relability of local collision efficiency calculstions through
droplet trajectory parr simulations, have led to a prelimmary -set of mput parameters.
Thess have been used to calcuiste the collision efficiency curve for an airfoil under

conditions similar to those which have been measured during helicopter icigg trials (see
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usng only .
to an accretion profile very similar to a

catagories have led to the following ¢o

profile genersted by the most mim svailable withwn thus program if the 8
curve is smoothed wrth a suitsbie varisble length filter Without smoothung, the profile
is comparsbie only if two or more dropiet size.cstegories are used to mode! the

monodisparse dropiet size distribution can

natural droplet size distribution Further comments on the desrability of smoothing
the £ curve will ba made in Chapter 5.

The pasrametsrs effecting the best compromise between computing cost and
the accuracy of tha accreton p%afili e and shape sre NEF=.1]1 NEB=10 NIF=g
EQN=2 CDS=1 EPS spproximately equal 10 1x10-* depending upon the dr Gpiet ’:izj!
CEDEL=10 X0=-50, and DDISTN=1 provided that FILTER # 00

5

s
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, 4 TESTING THE CODE FOR' COLLISION EFFICIENCY ACCURACY

I

P
4.1 introduction .
\rhoprw'ousdmtwhudn&bodwadpsm'ﬂofuurmmopbom -
tolerances so as to find a sood compromise between computing cost and . »
In order to prepare for spplications. we now ro'cpiro a2 more general ve
the progr-'n‘; sccurscy. The predictive capsbility of the progrsm onco- -
the colliugn efficiency. and the accretion profile Since these 18 "Eve
commonly been ssparsted n past results, we shall first sttempt ogrs =
pfog’l‘;!'l predictions regarding the total collison efficiency, the '- e

mpmngement. the c?roplot velocity st impact, maxmum iocal collisior

snd the oversit shaps of thof 8 curve. with the predictions of 6ther sanhe e«
in the next chapter, these intercothparisons will be carried one step - verall
accretion shape. accretion srea. and indirectly, accretion density .

Within this chapter, comparisons of resuits will be made frs- "~ . mnders.
Pocauu they wers the first substrates um eariy studies Of iICe accretion We will
~ then progress through Joukowski arfoils. NACA four digit airfoils. and finsily on to a
more modorn "arfoil.  Most of the pmo‘r; .w:th ‘whuch we may compare display
theorestical resuits. One or two also outine experimental ones.

In order to ensure repestability of the results presented herein all simulgtions in
the remsinder of the dissertation shall be identifed by s unique Case number,
continuing on from those of Section 3.24 with a listing of the input options and ps-—
ramaters for sach case given in Appendix H Additionally, for esch case where an in-
put peramater 1s changed 8o as to affect the conditions defining the simuistion. up to
four additionsi non-dimensional paramaeters will be givén These parameters are:

1. The non-dimensional free—stream Reynoids number This is the va?uo that Re

d
would take on if the dropiet were moving through the air with a reistive velocity
of U . that s ' ’

-
- 4 1)
Re 2R dU-'oa/u ;

7
{

In this equstion R s the dropiet radius. 8 is the free stream velocity. Py 'S
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the air density. and is the dynamic sir viscosity.
2 The ND inectia parameter This was first defined by Langmuir & Biodgett (1948)
for a cylinder The definition used herein ix

) 20 .R2y
K =« 9dd= (4.2)

uc {

Rt conforms to currenmt common practice. and differs from Langmur and
Blodgetrs ‘definition in that the characteristic length C now refers to the arfoi
Thmnnthocuoofthocylndor C is the dismeter. whormunqnutrnd
used the radius In (4.2) P4 'S the density of water
3 The ND Impngement parameter This was sigo first cefined by Langmuir and
B!odoott and sgam differs from current use by the sarhe convention regarding C.
¢ Owr defintion shall be

-

’ 18 02U
a .
¢ = — Egpr 4.3

UDd

We note that the reistion between Re_ . K and ¢ is

—-—

s ¢ = Rel/Kk 44y

!
i

a. The ND accretion parameter. This was defined in (2.111) and (2.112)

Any two of the first three parasmeters are sufficient to uniquely define the conditions
which should produce the $ame collision efficiency curve. The addition of the
accretion parameter aliows us to define the combingtion of conditions leading to the

same accretion profile.

4.2 The collision efficiency of a cylinder.

Amongst the first to porform an in-depth ansiysis of the phenomenon of |cmg

on cyhnders were Langmuir & Blodgett (1946). Ther caicuistions of uporcoolod
water dropiet trajectories were made on s differential Anslyzer. Following a relstively
large number of such simulstions thoy prepsred a series of tabies and charts reducing
the large numbers of cases through tho use of the non-dimensionsl parameters Re

“-
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K snd ¢ Their predictions inciuded the sl collision efficiency Em, the local
collision efficiency st the stagnstion Iin:ttaf 8 cylnder) 8 . lnd the maximum angie of
mpingement. 8 . which corresponds to our grazing trajectory length iiG n some
mstances. they siso predicted the components of the velocrty at impact. u* and v'
Using the same techmcues, Brun A& Mergier (1953) repested a number of
and Biodgett n the courss of evalusting the
multi—cylinder method for determirng cloud properties. such as MMO LWC. and the

experiments performed by Langn

shepe of the dropiet size cistribution Table 1 of their paper presents a COMPErison
between ther results and those of Langmuir and Blodgett From this table we have
chosen three sampie pars with which to rmaks comparisons The values n two of the
three cisplay substantial disagresmant in the vaiue of E, The resuits of the third pair
sgree much more closely with each other

In the six cases presentad in Tabie B the even numbered ones iNCorporats the
higtory term n the droplet mnans of motion The odd numbered ores do not An
inspection of thig table reveais some interesting resuits. In the first set, the total
collision efficiency v,ilunvef Cases B snd 13 agree waell, 1; do the vaiues of lG’ u*

and v*; Eln both c.nin‘l Vlthi equations of droplet motion axclude the histaryﬁ term.
Thf:isb::;;mﬂmﬂ*&ic& | ,

In the second set. the grestest agreement is reached between Cases A iﬁd 15,
This time, our predictions vary considerably from those of Brun and Mergler. As
would be expected the differences between 13 and 14 sre grester than those be-
iess accelerstion, and thus the history term, Which is 8 function of the strength of past
accelerastions, is smalier The trajectories of Case |5 are shown in Fig 27, with the
corresponding 8 curve displayed in F'& 28 .

in the third set where the trajectories are once agsin more c;ﬁ"

Fig 29). the agreement sesms to be best between Cases B and 17. Thus, in the threg

sets examined, the present resuits agree best with those of Brun and Mergier twice.
and with Langmuir and Blodgett once. More important, our resuits compare very waell
with st least one case of each set Further, although the formulation excluding the

history term generally provides s better comparison, as would be expected since the



Gﬁmléd@mhﬂﬁﬁﬂmtmnﬂﬁ'Mﬁﬂ@mﬂﬁafh
history term does not sffect the values used for comparison by an smount rm:h
grester than the disagreement between the results of the previous pspers

ﬁ-mﬂyafrmciFMmmmvabmmuEWImm
Htaﬁmafﬂm.mﬁeﬂﬁMtgm-fahcﬁﬁm
efficiency McComber & Touzot (1981), for exampie. have employed a finte—element
orid. with & rebtructuring of the droplet equations of motion using an Eulerien refer-
ence frame. to solve for the velocity field of the dropists  This contrasts with the
method of the present study. where we soive for the ar velocity field first. and then
Csicuiste ngjvidual Lagranguan droplet trajectories The dropiet velocity fisld calculsted
for one size of dropiet (ususlly a size for which K is small, then slows McComber and
Touzot to iterste to the dropiet velocity fisld for the next viui of K and thus Dd
The local t:aihmgn efficiency is determined from the velocity fmid and s 'ﬁmﬁztld
numericsily to ymiﬂ the total collision afficiency

The pressure snd tempersture vaiues chosen for comparstive simulstrons with
McComber and Tc}gza; were once agamn those used by Langmurr from experiments on
Mt Wastungton. New Hampshire. Table O details the results of series of simulgtions.
As before. definitions of K and ¢ vary, and thus vaiues ‘using both defintions are
given

For the cases shown in Table 9 (Cases 19 through 24); the trajectory equation
of motion was varied. as was the drag coefficient formulation The reason for doing
this was to study the effect such changes produce in the parameters used for
comparison As beford. the inclusion of the history term has the most significant ef- "
fect on the values of En. Lo and B, when the accelerstions sre strongest (Em
smaliest) This 1s seen by comparing Cases 19 and 21 with Cases 22 and 24
Similarly, when the drag coefficient formulation is changed (Cases 20 and 23) thy
grestest effect upon the resurts occurs when the accelerstions age strongast When
the history tertn is excluded (which makes a fairer comparison with the methods of
the other two papers) we see that ouwr results most' closely match those of Langmur
and Biodgett fgr both sets of Re, and K parameters. Once again the differsnces in



results The fact that McComber and Touzots resuits deviste somewhat from the
ﬂﬁlmﬂiﬁ?jfﬁtiimFdWﬁﬁﬁvmvﬁﬁymimtm
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4.3 The ocoliision efficiency of a 36.5 peroant thiddk koW sirfoll.
roplats upon a Joukowski
arfoil In order to determine if sugh an artoil (or set of arfoils) mught be befter suitad

Brun and Voyt (1957) studied the MpINgement o

for estmating the cloud LWC and MMD than the rotasting cylinder method Ther
method of solution for the droplet trajectories was the same as that used by Brun and
Mergier (1953), that is the mechanical snalog  We shall make comparisons with this
paper because it allows us to take one step up the lsdder of airfoil flowfisld com-
plexity The analytical sokuston for the flowfisld sbout tns type of sirfoil 1s known.
just as 1t is for the cylinder. and thus it allows us to evaiyste the uttmate effect of the
scouracy with which w::aﬂcuuﬁ the flowfield by the method of Kennedy and .
Marsden Results for seversl simuistions are found in Table 10 Comparisons of E

and 1. show that Case 25 approximates the results of Brun and Voyt to within the

1% error imit estrmatad by Brun and Voyt to be ippfgﬁ)i“l;ta for ther resuits. In this
situation, inciusion of the history term has only s smail effect upon Em and B8 If we
compare the 8 curves for Case 25 (trajectories displayed in Fig. 30) and Case D. we
Can see (Fig 31) that the 'agreement is excellent except perhaps right at the arfoil
nose, where a small discrepancy exists between the solid line (present results) snd the

dashed line (resufts of Brun and Voyt).

4.4 The collision efficiency of uncambered four-digit NACA airfoils.

As explained in Chapter 2, no anasiytical solution exists for the flowfieid about
four and five-digit NACA asirfoils Thus we have chosen to compare the results of
the present model with those of Waerner (1973) and Bragg et #/. (1981) to determmne

the program’s accuracy in modelling these more-difficult-to-model airfoils.

arbitrary shaped arfoil in essentially the same way as we have in the present paper



He too uses a vorticity substitution techrique for genersting the flowfield at a distance
from the srfoil However, whereas we continue to use the flowfield provided by this
method to Caiculsts the droplet trajectories up to their pomt of arfoil collison. he-

uses another (unknown) technique near the arrfoil surface. presumably because he feels

s vorticity mubstitution method is not sufficiently accursts atar the surface We
have shown that errors in the potentisl flow velocity quite near the arfoil .surface g

reman small when the Kennedy and Marsden techmique is used 1o generste
flowfisld Waerner goes on to integrate the simplified system of equations describn

process one step further by aiso unc:&p?'fmng 3 limited set of
grocesses. which he uses to predict the initisl freezing rate based upon the initial
collision efficiency The resuits of a :mﬁ‘st;ﬂ between the two progrims is given
n Table 11 From this table we may note that the best agreement is between Cases E
. and 27, where the equstions of droplet motion are most swmilar There 1s a grester
discrepancy in Em hars then has been notad in eariier cmxlan: aithough the val-
8o
zy in the limits of mpmgement To study this problem more closely. we may

agree reasonsbly well However. we see that there is a considersble

ves for the two cases Fn;.;’ﬂ

sttack[ were in error. R may siso be due to Werner beginning fus tramctory

large disagresment between thess "g curves
decided to maske a further com ish Bragg et a/. (19€ umﬁg::;; arfoil,
the NACA 0015 Bragg #t &/. have written a }ﬁ}pécmhm many of the aims
described in Chapter 1 They have employed a completely different approach toward
i the caiculstion of the sirflow about srbitrarily shapad airfoils however. - Whersas we
7 employ a vorticity density techniqua to creste the sppropriate arflow subject to the
boundsry conditions of Kennedy and Marsden, the technique of Bragg er a/. i1s based



\ N
upon the Theodorsen & Garnick (1932) method of conformal transformation This

nvolves the fitting of a series of conformally transformed circies to provide a
composite -'foﬂ shepe thet matches the deswed shape sufficiently wel. The ml'!:hl'lﬁ
of arfoil shapes is accomplished by Fourier compononu These same :compm
may then be used to find the composite flowfield wﬁoch matches the composite airfoil
profih

Two cases have been chosen for comparison They are outined n Table 12
ﬁn mstory term s oicludo_d n order 10 make a farr comparison writh the predictions
of Bragg er a/. Further. the effects of this term have been determwned in the
sxperments above. The agreement between the rowtﬁ sppegrs to be quite good.
especisily grven that the results r‘o obtaned by substantislly different methods
inspection of Figs 34 and 35. where a comparison s made between the collision
efficlency curves of Bragg (1981) and the values predicted n ths paper. shows that
the curves match quite well The grester extent of impingement. predicted by the
present results may be a function of the considorm'caro that has been taken tq find
these vaiues directly rather then by extrapoistion In both figures~Braggs 8 curve
has a slightly lower vaiue of £ . that is the pesk 15 shifted to the left This 18 the
opposite shift to thet of Fig 33. Th’tocquuos used by Werner much more closely
resembie those used hers than éo.thoso of Bragg Since the agresment between
Bragg and the present paper is much better than with Werner, we may suspect that

Werner' s resuits may be in error.

4.5 Compsrison with experimental collision efficiency curves for severs! sirfoll
types.

All of tt‘n resuits with which we have been making comparisons up to this
point have been based upon theorsetical caiculstions of 8 curves and mmpingement
cheracteristics. We now subject the program to a series of tests which will sllow us
to determine Its accuracy as compared to experimental results obtaned in 8 wind
tunnel using a distribution of iMpnging droplet sizes. These resuits are found n a
paper by Geider et a/. (19568). The locsl collision efficiency was deterrmmned by

covering sn arrfoil surface with blotter paper. and then injecting a water soiuble dye
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nto the water used to produce ﬂu dropiet spragy . A colorimetric analysis of the
biotter paper revesied the rate st which dye reached the airfoil surface and thus gave
the vaive of B In order to increase confidence m the conclusions which could be
reached from this ntercomparison, three sets of cases were run in the first three
cm-mmﬂmufmmm iIn Case 34, the history term was dropped in

L}

order to study its significance upon the accuracy of the resuits

4.5.1 The collision efficiancy of 15% thiok Joukowski sirfoll st s zero attack angle.

The first ;mriién sot is cisplayed in Table 13 The droplet size distribution
of the tunnel spray resembiled a Langmuwr “D” distribuwtion with a8 mass median diameter
of 186 um. All four cases produced from the pﬂ:lfiﬂ (31 through 34) show a val-
ue of B  whichris slightly higher than the measured vaiue The overall colimion
efficiencies Fm tend to be slightly lower than rniul.rcd and b!;emn we have not
modeiled the largest dropiets in the spectrum, the impingement limits EG ngmﬁﬁ-—f
cantly underestimated Once again the monodispgrse droplet size distribution of Case

33 provides good estimastas of -B;;, and fm as compared to those of Case G The

o

= ¥

eﬁ;ét of dropping the history term (Case 34) 15 to further reduce both Em and B
This 18 consistent with previous comparisons with :ru; wrthout the history term. We
see from this comparison that including the hi:tar; term does indeed regult in a better
simulation of the experiment results We now turn our sttention to Figs. 36 through
38 which display the results of Cases 31 through 33 respectively as solid lines, and
expermnentsl ;M’ as dashed lines There has been no smoothing applied téh
curves making up Case 31. For discussion of the need for smoothing return to
Section 324 The B curves for 255 sand 132 um diameter xdrr;plns wre combined to
give a mean curve (shown as a heavy solid line without symboisi Wae see that where
the inner B curve (for the smaller dropiets) terminates. a kink results n the 8 curve.
If this case is repeated. but with the application of a variable length filter of maximum
length 0.2 times the length of the total 8 curve. the result is the 8 curve of Fig 37.
The kink has been smoothed out and the limits of impingement have been extended
We see that the varisble length filtering has two significant and desirable festures: ’

1. cusps caused by simuisting the natursl droplet distribution by a small number of

¥
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monodisperse size categories sre rémoved: ‘ .
2. the limits of /mpingement are extended, and thus the effects of the Ii'gor
dropiets wiuch sre not explicitlty modelied may be crudely accounted for.
Fig 38 shows the filtered and ynfiltered 8 curves for s simuigtion using a single
droplet size of 186 um Once again the agreement with the experimentsl results is
very good. asithough the effects of the largest dropiets are not modelled correctly.
The overall fit is not quite as good as that for Case 32 but if this level of error is
acceptable. the resuits of Case 33 can hgeproduced st spproximately half the cost of
~Case 32

4.5.2 The collision efficiency of a 18% thick Joukowski sirfoil at » 4. sngle of
sttack. \

Tabie 14 displays the resuits of the second comparison set The experimental
results of Gelder et a/. are designated ss Case G We have siso inserted two other
theoretical results in order to increase the pool of results available for comparison
Kioner (1970) (designated as Case H) has produced a numerical model which solves for
the potential flow about an arbitrarily shaped airfoil and then calculstes the dropiet
trajectories < His model 1s very iimilar to that of Werner (1973). which was described
in Section 4.4 Kioner aiso cites the resuits of Guibert et a/. (1949) (designated as
Case ) which were obtained by the methods of Langmur & ‘Blodgett (1948). described
in Section 42 In both cases. monodisperse droplet size distributions are used The
total collision efficiency predicted n Cases G. H and | is 392, 37, and 39% rnpoc-‘
tively. Geider ef s/. measured a maximum local collision efficiency B, of 70% If
we turn to the predictions of the present program for ALPHA=4.0 we see Em
verying from 38.6% to 39.5% and 8, varying from 68.2% to 74.7% depending upon
the number of size cstegories used. These resuits are displayed in greater detail in
Figs. 39 through 41 When we compare the unsmoothed mesn 8 curve Fig 39 or
*its smoothed counterpart (Fig 40) to the expermental B8 curve (displayed as a dashed
line) we immediately notice that our results seem to be shifted somewhat to the left
of the experimental curves. Excepting this anomaly. all of our curves appear to match

quite well. especially the smoothed versions When only a singie droplet size category
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is used. as n Case 37 Fig 41). the same misalignment is erigent Once agsin, as n
Section 451, the smoothed monodisperse B cyve soproXinates the experiments

—_ L e
curve simost as well as the 8 curve from Case_86. but at a considersbly reduced

cost

In order to investigats a possible explanstion. for the mMisalignment between our
results and the experimental ones. we have run another simuistion identical to Case 36
except that the angle of attack has been changed to 3* The result (Case 38. Fig 42)
15 & much better match batween tha two B curves We may specuiste that a one
degree error in the experimentai results Mght be possible. as this seems to be a
reistively small error in the shighment of a wing section relative to the flow in the wind
tunel. These results point out a significant factor In these intercomparisons. The
present program is sble to pradict the changes that will occur in the B8 curve as a re-
sult of a small change in the conditions defining the case. Thus if comparisons are to
be fruitful, the sxperiments must be done with grest care.

4.5.3 The collision efficiency of a NACA 85-212 sirfoil st a 4° sngle of sttack.
This set of simulations is outlined in Tabie 15 The axperimental results with
which we are comparing are once agan those of Geider er a/. (1956) designated as
Case G Two case sets are incorporated in the table The first set is the more
difficult to simulate because the coliision efficiency is very low. This means that the
trajectories are much more curved and thus that more computing effort is required to
maintain sufficient accuracy during such calculations. Because of the computing effort
required. moncdisperse droplet size distributions sre used in both of our cases. Tha
is performing well under these conditions. The impingement limits are in poorer
agresment because the largest dropiets in the spray dropilet size distribution sre not
modelled in Case 38 If we shift our attention to the second set. we discover that
there 13 a significant discrepancy batween the experimental resuits (Case G) snd those
predicted by this program (Case 40). It is interesting to note that the theoretical

predictions of Bragg er a/. (Case F) are in better agreement with our results than are
the axperimental onas. This is even more evident when wé look st the three 8

& -



curves of Fig 43 The pesks of the three curves align very well, contrary to the
situstion in the previous section The greatest disagreement between Cases G and 40
appesrs 1o be along the lower surface We see that the short-dash curve of Bragg
ot a/. usdwlow«&\mﬂnonoprodictodbyouprowm‘wwprowm
predicts a grester extent of impingement siong the iower surface than does thst of
Bragg et a/. The considerable discrepancy between the two theoretcal zu.rvn and tho
experimental curve remans unexpisined Figure 44 shov?s the mpinging dropiet
trajectories used in determming the 8 curve of Case 38 It siso displays the siender
nature of this particular airfoil It is the small radius of curvature of the airfoil nose

which leads to the sharp peak in the collision efficiency curves.

4.8 The collision efficiency of a modern light sircraft wing.

This set of simuistions is inciuded to show that the methods presented may be
spplied to a variety of two-dimensional airfoil profiles under conditions pPropriate
for general avistion wings as well as heliéopter main rotor biades. The case with
which shall compare is described by Bragg et a/. (1981). They used conditions based
on experimental results obtained usmg a full-scale general aviation wing section in the
NASA Lewis icing wind tunnel. A comparison between the resuits of our programs
and the experimental impingement results for this Hicks modified NACA 64-215 asirfoil
at a2 0.7° angie of attack is given in Table 16. Bragg et a/. do not provide vaives of
Em for their experimental and theoretical results. However, they do provide
estmates of the smount of ice sccretion which forms for a given vaiue of the
non—-dimensional accretion parameter. From these. Em may be inferred as 5.3 and
6.2% respectively The vaiue obtained by the present program is 8.2% The set of
trajectories which were used to obtain this result are shown in Fig 45 The airfoil
shape was derived from dsta provided by Bragg (1981) and it was verified against the
profile coordinates provided in the original paper (Szelszek and Hicks. 1979) A piot
(provided by Bragg. 1981) of the experimental and theoretical accretion shspe on the
arfoil nose displays an arfoil profile n the nose region which departs substantially
from the one provided for use in this dissertstion This ciscrepancy has not yet been

resolved The collision efficiency curves for the two theorstical resuits are displayed
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in Fig 46 where the solid iine represents the present resuits, and the dashed iine those

of Bragg et a/.

4.7 A summary of the oollision efficiency simuistions.

In tws chapter a series of intercomparisons has been made using a variety of
arfoils to explore the degree of agreement between the collision efficiency
predictions of the present program. and the impmgement characteristics of other
theoretical and experimental resufts We have begun with a simple icing shape. the
cylinder. and gradually moved up to recent arfoil designs. such as the Hicks modified
NACA 84-215 arfoil The agreement with previous results has been very good m
many cases. with &t laast one of our simulations agreeing well with erther a previous
theoretical or experimental result for each arrfoil tested. except perhaps the final one
in this last case. where a modern general aviation arfoil was used. the error may be
caused by a discrepancy m the arrfoil profie bstween owr results and those with
which we e :mm However even in this case the general festures of the £
curve are reproduced reasonably well These results concerning 8 give us
confidence to carry out still further comparisons. this time of accretion profiles. in the

naxt chaptar



8. THE PREDICTION OF ICE ACCRETION AND OTHER APPLICATIONS.

8.1 Introduction

Chapter 4 has presented a series of intercompasrisons between r-m of the
model described in Chapter 2. and theorstical and axperiemental resuits for various
‘srfoils” These compsrisons were limited to saveral characteristics of the droplet
mpmgement. such as the totali collision effitiency Em and the siope of the local
colision efficiency (or B8) curve This restriction was mtentional [t allowed us to
make comparisons with those types of results for which numerous examplas exigt

Our desre to compsre the present model's predictive capabilities regarding tha srea

i$ hampered by 3 distinct lsck of carsfully controlied resuits with whuch to compare
This fact will be 8 subject for discussion in Chapter 6

Within this chapter. we shall make ouwr first comparisons for accretion on a
cylinder This substrate has played s piwvotal role in icmg studies, and is one of the
few for which previous theoreticai predictions of sccretion profilas axisf The next
arfoil to be studied will be the NACA 0015 at 0° and 8° angles of attack.  Following
tus. the NACA 0012 arfoil forming the main rotor of a Sikorsky S=55 will be
sxamined : ;_‘_;”

Sections 55 and 56 will indicate some of the applications for the program
described and tested within this dissertation In Section 5.5, the predicted sccretions
on a8 NACA 0012 and a NPL 9615 airfoil are compared to see what effect a change in
arfoil shape has upon its icing characteristics. This type of comparison is aiso applied
to the Joukowski 0015 and NACA 0015 ,iif-ﬁ:ilsx Finally, in Section 5.6. an experiment

Is carried out to test a scaling theory, by comparing our collision efficiency results for

Joukowsk@O‘ch\m at full and one-quarter scale



5.2 Acoretion on » cylinder.

Amafcylmcmemmddmﬁm-ﬂwmmuprm
have been carried out st the Nastionsl Resssrch Councils facilites in Ottawa. Canads
(Stallsbrass & Lozowski, 1978, Lozowski et &/.. 19791 The numerical simuigtions
ncorporste the collision efficiency resuits of Lafgmur & Biodgett (1948) and »
Amarébyﬁnstar calculstion of the thermodynamics of the accretion  These
aﬂ;;drbw take Nto account the impingement of supercooled water droplets and ice
cryﬂil: When the deposit tempersture is st freezing, the unfrozen deposit 13 allowed
to run back siong the Cylinder surface. thereby siterng the accretion profile. This
model does not ncorporste the time dependence of the accretion process. This will
not cause difficulty m making comparisons, however becauss the present model can
be run m a single step fasmon as well

The cases with which we wish to make COMParisons will be mited to those
from the sets described by Lozowsk et a/. which occur n a cloud composed entirely
of supercooled water dropiets at temperatures st or below - 15'C Thess restrictions
are necessary because the present program has not been designed 10 accommodate
the calculstions of ice crystal trajectories. and because it 1s restricted by design 10
simulating riming  Thus the accreting droplets must freeze upon imMpact. requiring a

reistively low sir temperaturs

8.2.1 Accretion with a constant density.

The first seven cases prasented in Table 17 are calcuistions of the accretion
on a cylinder with an assumed constant density of 917 kg m. as -d-ﬂtlflid by
DENSE=0. Cases 42 and 43 were run to investigite the importance of incorporating
the arfoil surface curvsture when caiculating the thickness of the accretion This
process was discussed in Section 2462 The non-dimensional cross—sectional ares

of the accreted ice is given by

7 = hamgm % 1)

wﬁrl hg is the ND maximum asirfoil thickness. » is the ND accretion psramaeter, and

Em s the total collision efficiency When we compare Em giverr by (5 1) with the
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for obtanng an accursts estmats of the asccretion profie shape and srea The
profiles for these two cases we displayed m Fig 47  Also indicated l; the
axperimentally derived profile of Lozowski et #/. (19781 ‘

Maintaining the same conditions as for Case 43 (Cass 44 mcorpormtes two
catsgories of droplet %izea (270 and 144 um diameter) as saﬂﬁi’-ﬂ"tc the
monodisperse distribution of Case 43 (20 um dismeter). The resulting accretion ares
is identical, sithough the values of 8, and ?m have Oecresséd slightly. When we
compare the _sccretion profile to the profiles observed and predicted by Lozowski

somawhat better for Case 44 than for Case 43. particularly in the region where the
accretion is thinning rapidly, that is nesr i‘G‘ We alsc may nots that the- vaiues of
8, ae virtually dentical for the two theoretical results (Cases 44 and H). although the
program of Lozowski of a/. underpredicts tha accretion thickness virtuslly sverywhere
us compared to the experimentally observed thickness We may speculste that the
agreement at the "nose’ is due to their use of Langmuir & Blodgetts (19486) values for

We have shown that the present program generstes results that agree waell with
those of Langmuir & Blodgett On the other hand. the formulation used by Lozowski

srea under the B curve to squal the total collision efficiency as we do.

The accretion areas for the axperimental and theoretical profiles of Lozowski
et o/. (1979) are 0.081 and 0.06%5 respectively as compared to 00864 and 00841
for Cases 43 and 44 respectively The areas for the results of Lozowsk: & a/. were

determined by measuring/ (with a planimeter) their profiles drawn st the same scaie as

the origmal (full size) vedsion of Fig 47. Thus the relstive difference in areas between
Case G (expermmental resuit) and Case 44 is only 4% The remaning cases n Table 17
deal with simulstions made with a LWC of 0.8 g m*' The collision efficiency curves

for the 27.0 um and 144 um diameter droplets of Cases 44, 45 and 46 »re shown



as solid ines with symbols m Fig 49 Also shown 15 the filtered B8 curve of Case
46. The effect of this filtering may be studied by comparing Cases 45 and 46 mn
Table 17 and Fig 50. Wgq notes that while the total accreted ares remans the ssme.
the pesk value of 8 s reduced shghtly by fitering Of grester sigmificance. however.
is the extension of the limit of impingement by 19% when filtering is spplied.  This is
seen clearly in Fig 50 where the dashed curve corresponds to the filtered case. The
fitering aiso removes the cusp n the accretion profile of Case 45 caused by kinks n
the unsmoothed B curve first noted n Chapter 3 In Fig 51 we compare our results
for Case 46 with the theoretical (dashed iine) and experimental (solid symbol-less line)
results of Lozowsk et a/. Once agan, as in Fig 48, the theoretical resutts match waell
st the "‘nose’ In this figure. the departure from the sxperimental results of the model
resuits of '‘Lozowsk: @t &/. 15 grester than it was previously Our simulstion
underpredicts the accretion thickness observed by Lozowski er a#/. virtually
sverywhere. sithough the departure is grestsst where it sppesrs that rime festhers
may have begun to form st the outer edge of the Bccretion The implications of the
varigtion of ice density in such rime feasthers will be INnvestigated in the next section

Table 17 compares the accretion areas for Cases G. H 45 and 46 Cases H,
45 and 46 have accreted sress which are 40%. 18% and 16% less than the area of the
sxparimentally deterrmunad accreton of Case G

Cases 47 and 48 sre the same as Cases 45 angd 46 with regard to filtering, ai-
though n the new par the natursl dropiet distribution is modelled by a monodispersa
distribution of droplets having the mass median diameter of the natural distribution
The unfiltered and filtered collision efficiency curves of these two cases are shown in
Fig 52 as solid lines with and without symbols respectively The area of thc accretion
is shown in Table 17 to remain unchanged by the filtering, though the value of Ea s
reduced, and that of EG incressed The two corresg ”,iﬁg accretion profiles are

given in Fig 53, with the filtered version sppearing as a
The best resutts from Cases 45 thwrough 48
filtered auﬂfn displayed in Fig 54 The difference between the profiles represented

d lina.

- i, those with the kmks

by & solid fine with symbols (Case 48) and the iong dashed line (Case 46) is smail.
indicating that by filterng the B curve. monodisperse droplet distribution simuistions



can provida comparsbie results to two-droplet simuistions it approximatsly 50% of
the computing cost
The accreted sres for Case 48 13 n somewhat bettsr sgresment with the
sxperimental resuits of Lozowski o a/. (Case G than is Case 46, but the mprovement
g
5.2.2 Varying the demsity of the sccretion on a cylinder.

is small (14% vs. 16% error).

Sechon 521 drew stiention to the discrepancy betwsen the prasent resufts
and the experimental observations of Lozowsk: er a/. (1979) regardng the srea and
the shape of the accretior profile This disagreement is most pronounced whers 1t
appears that rime fasthers have formed
- The i’téﬂ:ﬂi‘tiﬂ fluctustions " density which are an megral part of rime
formstion were discussed m Secton 246 These are not explicitly modelied by the
present program.  On the other hand, varstions of density caused by the degree of

fhree varables was presented i Section 24 63 Wa have sliowed for two
interpretations of the marner n which ths' formula 15 1o be spplied Tha first
(denoted by DENSE = 2) uses the total droplet impact velocity in (2 123), whereas the
second (DENSE = 1) uses only the component of the impact velocity normsl to the
arfoil surface st the point of mpact The results of thres simuistions with varsble
density are praesentsd as Cases 49, 50 and 51 in Table 17

Begmrming with Case 49 (DENSE = 2) we see that an /mprovement m the total
accreted area 1s mads over previous cases (a difference of 8% vs. 14% for Case a7)
but that this is at the expense of agreement in the accretion thickness st the "'nose”.
Since the B curve has not changed from Case 47. we siso note that the limits of

impingamant are identical n Cases 47 and 48 T’h--:criunn pﬂfih for tws case is

:m‘d to the profiles of Lozowski er &/. (1979 in Fig 55" The conclusions
reached from the table are verified the sraas of our results and the experimental ones

e more smilar than before. but the previous casas (Cases 46 and 48) seem to fit the
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sxperimental profile better over most of the layer's extant
Whaen - the normal component of the velocity s used (DENSE = 1) the accretion
thwckness (Case 50) st the 'nose” remamns the sasme as for Case 49 but there is &

substantial increase in the thickness as we approach the limrts of impingem

to tha arfoil

Fig 56). in this ragion the component of the velocity

surface decreases rapdly. thersby producing s rapid decresass in the accretion density
according to (21231 The totwal srea of the i,ii:tj:!’itiéﬂ INCreases considersbly as well
{from BE% of the experimental ares for Case 4B to 138% for Case 50)

If conditions remsam the same but the natural droplet distrbution 13 modeiled by
two size categories mstead of one. and If a variable iength fiher (F = 0.2) 1s spphed,
we find that the accreted srea decresses somewhat from the prs:naus case (from
136% for Case 50 to 128% of the sxpermentsi arsa for Case 51) Further the
profie shapes agree to a mghtly grester extent but generaily agresment is still not
good (see Fig 57). This ponts out the need for better formulse to be used n
estimatmg accretion density. Such formulse should be based on empirical studies of
the microscopic processes of rime accretion Judging from the poor performance of
the present results. variabie density simulations will not be pursued further

There i1s aisc a need for better understanding of the growth angle of rime
festhers Lozowsk: (personal cormwnunication) has swrulsted the growth of rime
festhers numaerically (see Fig 15). They é;g'pl:y s total growth sngle of about 35* It
is Interesting to note that the angle between the edge of what appears 10 be a rme
feather in Fig 57 and the edge of the predicted accretion is approximately 15°

e 5.2.3 Multi ~isyer (time-dependeént) scoretions on s cylinder.

All simulations carried out to this point have empioyed the arflow sbout the
original arfoil profile to deterrwne the coliision efficiency and thus the accretion
profile. We shall now move to time—dependent modeling, where the arflow is
recaicuisted to account for the change in arfoil shape after ssch of a series of layers
have been accreted The first exampie of thus method 1s Case 52 n Table 17 Here
the accretion parameter w has been reduced to one-third of its previous vaive and

tiree layers of ice have bsen mmulatad Iin physical terms, this 18 equivalent to
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studying changes n the accretion after trme periods that are one-third that of the
while Em and E‘G decreass This can be seen as well m Fig 58, which displays the
filtered (sohd iine without symboisi 8 curve for lsyer 3 and a similar curve (dashed
fne) for layer 1 The accreton srea decreases with time much as does the total
collision efficiency The total accreted area after three layers is 0 1677, sbout 84%
of the experimental area, compared with 86% for the sngie step case (Case 48! The
hmits of impingement are essentially the same, the total collision efficiencies are sinilar
(85% for Case 48 compared with an average of 534% for Case 52) but the effective
combined vaiue of B has incressed to 80 1% from 70.9% This combined vaive of

B, '8 derived from the thwckness of the accretion st the nose. and thus ncorporstes
the effect of the radius of curvatre. It mdicates the value B would need to have at
the “nose” in order to achieve the same thickness with only one layer. The accretion
profiles for Case 52 sre shown in Fig 59 Aiso shown are the experimental and
theoretical profies of Lozowski et a/. (1979) n solid without symbols. and short
;ﬁs respactively, and the pradictad profile for a single layer of accretion (Case 48)
in long dashes We note from these comparisons that the agreement betwsen Case
48 and the experimemal results 15 better than between Case 52 and m;abnrv-d
profile. Aithough we do not know why ’Iiﬁij-mﬁt modelling has resulted in
Rpoorer agreement rather than better. we suspect thst an accurate formula for
predicting the density of the deposit has not yet been empioyed It is interesting to
note that the multi-layer case does give better agreement with the angle of growth of
rme festhers simulsted by Lozowski.

The resuits of Case 52 incorporated the use of a varisble length Boxcar filter
F=0.20) upon the B8 curve for sach layer A strong incentive for the development of
such a :r;u:cm operator is displayed as Case 53 in the next four figures Fig 60
shows the collision efficiency curves (solid lines with symbois) for the 27.0 and 144
um diameter droplets used in the simulstion of layer 1. The unsmoothed B8 curve
lies between them The collision efficiency curves for layers 2 and 3 are dispisyed in
Figs. 61 and 62 Our attention 18 immediately drawn to the wavy nature of these

curves nesr the limit of impingement To study ﬂgmu for this. we must examine
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the accretion profiles for the srtustion. which are dispiayed in Fig 63 The
unsmoothed B curve for layer | has resulted m a siight trough and ridge in the
accretion profile for this layer The program is so sensitive to the profile shape. that
when the curves sre csicuisted for the second layer. there is an amplificaton of the
waviness of the surface of the first layer. Thst i1s. the collision efficiency is predicted
to decresse on the “windward™ side of the trough. and to incresse om the “windward”
side of the ridge Careful scrutmy revesls that this positive fe

process
continues for the third lsyer as well The net result 15 a "windwald shift of the
rough as the number of isyers ncreases. siong wrth an amplificatien éf s magnitude.
Similar tendencies may be noted for the ridges This type of feedbsck must be
damped out if we sre to successfully model multi—layer time-dependent sccretion
Part of the problem lies within the INnarpolaton scheme used for determining the
shape of the 8 curve. The present scheme seems to amplify the 'waviness which
oxists in the dsts ponts (8 vaiues. However. this case grsphically ;ﬁmﬁm exam-=
pie of preferentisi riming upon small protrusions on a sirfoil surface. It m,ﬁg&vimﬂ be
that such protrusions play a sigmficant role in the formstion of rime feathers as well.
such as that shown in the expermaentaily observed profile of Fig 59

8.3 Acoretion on a NACA 0018 sirfoil st 0* snd 8° sngle of attack.

Stallabrass and Lozowski (1978) have described s seres of wind tunnel
experiments which they carred out 1o study the icing of 8 section of a helicopter tail
rotor We have chosen two cases from these experiments with which to make
compsrisons. The conditions for these two cases are summarized in Appendix H and
n Tsble 18

Let us first confine out sttention to accretion on a NACA 0012 airfoil st a O*
angie of sttack. A single layer simuiation of the accretion under these conditions 15
designsted Case 54. which may be compared to the experimentsi results (Case ) in
Table 18 or in Fig 84 From this figure we see that the theoretical and experimental
accretions nesrly coincide m all regions except nesr the nose where a3 considerasble
difference ex:sts The ares of the accretion predicted by the program 15 8% less than
that observed in the experiments.
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" an sttempt 10 Mprove upon the results of this first simuistion, we have tried
another, this trme with a total of tres layers. The non—dime

ter w has been reduced by a factor of three to give an eqQuivalent total accreton

period. with all other conditions remmning the same. Scrutiny of the results of Case
55 »n Tsbie 18 revasis the following facts As the number of lsyers mcreases the
pesk of the g curve retans its original value although the total cofimon efficiency
decreases. There is 3 gradual increase n the limvis of dropiet /mpngament The total
accrated srea decreases much as does Em.wﬁﬁﬂfﬁﬁtsiﬁd sres for gl three
layers bemng 7% less than the sres of the observed accretion profie (a8 compared to
6% less for the single layer case above) These results may siso be seen n Fig 65
which shows the fitered and unfitered B8 curves for the first (solid lmes) and thrd

(dashed lings) layers. The accretion profilas for tus case sre displayed n Fig 86

the single layer Since the sctusl values of B8, do not exceed B0 4% for sny of the
layers of Case 55 we ses that the layers increase in Mmss:mmmw
the decreasing radius of curvature of the arfoil surface nesr the nose. This accounts
for the higher equivaient vaiue which is calculated by employmng the ratio of accretion
thicknesses st the nose between Cases 54 and 55 The result of ths simuistion is to
siter the shape of the ice accretion, that 15 to make 1t generally more siongated than
.for the previous singie layer simulation The profile for Case 55 sppesrs to ajree
better with the experimental profile than that for Case 54 for virtually its entire
length. The mability of the smgie step method to take Mto account the changes n the
radius of curvature is another of the weaknesses of the method

| Wa shall now tun to a st of comparisons for the same airfoil under almost
the same conditions, with the exception of s change in angle of attack to 8° The
sxpermental results of Stallabrass and Lozowski are once again designsted Case | in
" Table 18 When we compsre Case 56 with Case |, we see that our. singie layer
simulstion overestmates the ;;ératod ares by 32% Inspection of Fig 67 reveals that
the accretion nesr the nc;s:-‘is underpredicted, while that along the lower airfoil
surface 15 overpredicted Moving on to a three layer simulation (Case 57) we note

that while Em decraases consistently with tima, TG Incresses with tme just as for



Case 55 The sccreted ares A, decresses sgan siong with fm; The total accreted
srea for the three lay#rs ncreases very shghtly. while the ifficbv- value of Ea over
the three layers shows a small ncrease. The change m the B curves is illustrated in
Fig 68. whie the accretion profile s displayed in Fig 69. |There is still lack of
agreement between the profile for the triple layer cass snd the sxpermental profile.
Ttus time. however the accretion st the nose s better simuisted The disagresmbnt
lesds us to suspect that the angie of sttack for the experiments may have been
differsnt than for- the present simuiation There sre also uncertsmties caused durng

the measurement of the accration profila.

5.4 Accretion on 8 NACA 0012 sirfoil st a 5.7° angie of sttack. A

Stalisbrass (1958) describes a series of icing experiments performed upon a
Sikorsky HO4S-2 helicoptar in the icing spray rig of the Nationsl Research Council.
Ottawa The spray rig produces a cloud composed of supercooled water droplets
moms 3 portion of the helicopter hovering nesrby. The accretion period is
controlied by the tme the helicopter remains within the cloud Other conditions are
clearly defined. except for the liquid water content of the cloud. and the size distribu-
tion of the droplets. Vanous factors contributed to the difficuity of deterrning the
liquid water content accurately

Stallsbrass resoived this problem in determiring the LWC by comparing the ice
sccretion thickness for a given arfoil with the accretion predicted at the stagnation
line of a cylinder of radius equal to the airfoil radius of curvature at the noss. The
LWC was estimated so that the two thicknesses would biidmticﬂ i

The resuits of a numerical simulation of the icing In one experiment described
By Stallabrass are given as Case 58 in Table 19. The predicted accretion area s 50%
greater than the observed icing accretion srea The gi*cpist trajectories used to
calculate the collision efficiency curve upon whncﬁjm accretion srea is based are
shown in Fig 70. The two sccreted profiles are displayed m Fig 71. Wae note thet
the accretion at the nose is underpredicted. while the thickness on the lower and
upper surfaces is highly Qvﬁfiéiﬁtid This is similar to the results of Section 5.3

An sttempt was made 10 wriprove the results of the comparison vis a2 three layer



time—-dependent simulation The resuits are found in Table 19 as Case 59 As time
progressed. the valuas of B, and Em decreased, while the limits of impingement
Loy and Let generally increased This can be seen aisc in Fig 72 where the curves
of the first and third layers are cmnﬂ The accretion sres tumned out to be the
same as that predicted by the one layer simulstion, afthough Fig 73 reveals that the
agreement N the shape has improved somewhat near the nose as well as aiong the
upper and lower surfaces

The disagreement between theoretical and expermental results is somewhat .
different here than between Cases 57 and | In the earfier pair. the antiré accretion
was shifted upwards so ss to imply that a different effective angle of attack might
sxist Here the program overpredicts the accretion thickness on both ths upper and
lower arfoil surfaces Since the droplet size distribution was not measured precisely.

this gffect could expiain the disagreement evident in Fig. 73

5.5 Predicting the effect upon icing of changes in sirfoll shapa.

A possible application of the program presented in this thasis is to study the
effects of changing the arfoil profile upon the accreted ice. One pair of rotor blade
profiles chosen for such a comparison is mada up of the NACA Q012 airfoil-and the
NPL 9615 airfoil which 1s derived from it The latter profile has a 6.2% iaﬁggr chord
The primary purpose behind such a restructuring of the profile is to improve the stall
cheracteristics of the blade when the angle of attack is great However, it will be
interesting to study what effect this change has upon the bisde's icing proparties

The results of such a simulation are given in Table 19 (Case 60). Aill conditions
were the same as for Case 58) except for the longer chord length. The trajectories
used to calculste the collision efficiency curve for this airfoil are displayed in Fig 74
The resulting filtered and unfiltered collision efficiency curves are shown in Fig 75 as
dashed lines. They are compared to the resuits for the NACA 0012 arfoil of Case
58 (shown as a solid line without symbolsi. We ses that the primary difference
c:t:cu;s part of the way back along the lower surface, where the NPL airfoil has lower

values of B8 This curve also déxtends farther back along the length of the lower
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surface than does the corresponding curve for NACA 0012 Tabie 19 indicstes that
the change in Em is relatively small; from 80.1% for Case 58 to 59.3% for Case 60.
The accreted ares computad in the coordinste system of Case 58 shows that the
second arfoil sccretes margnaily less ice over the same time interval. The accretion
profiles for both airfoils are shown in Fig 76 where the NPL 9615 airfoil is shown in
proper perspective relative to the NACA 0015 from which it is derived.

The slight indentation in the accretion profile nesr the nose for the NPL airfoil
is an artifact produced by an error in the way the present version of the program
caiculates the accretion thickness of the highly curved surface when this surface is
specified by too few points. A slightly more sccurste prediction of the shape of the
pesk of the B curve when narrow pesks occur would heip to aslleviste the problem.

A second set of comparisons between two sirfoils under identical conditions
may be made by re—examining Cases 12 and 27 They are presented together in
Tﬁf}c ZG Case 12 describes a Joukowski 0012 airfoil, while Case 27 is for a NACA
DD;'iz"airfail. We see from Tabie 20 that there are only small differences between
the vaiues of By e and Em These differences may be studiié in Fig. 77 where
the two B curves are displayed The difference in accretion areas is only 4%, and a
plot of the accretion and airfoil profiles (Fig 78) reveals only minor differences. This
indicates that smail changes in the arfoil shape will generally produce oniy very small
changes in the characteristics of the accretion

5.8 The scaling of airfoil models.

A problem which has plagued seronautical engineers since the inception of
manned. flight has been to determine the serodynamic characteristics of s newly de-
signed airfoil without producing and flying s full scale prototype. One soiution I1s to
test the arfoil in a wind tunnel where near-resiistic conditions are simulsted
However, as arcraft have become larger, building wind tunnels capable of achieving
aircraft flight speeds in test sections large enough to house aircraft prototypes has
become impractical A simple solution is to scale down the prototype. exactly
reproducing the arfoil characteristics at a substantially reduced size According to

dimensional analysis. several dimensioniess ratios, such as.the wing Reynoids number,
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must reman constant when scaled experiments mre run if the results are 10 be
maaningful. A second significant factor is the maintenance of the correct Mach num-
ber. or flight speed as a fraction of the speed of sound This number must reman
constant between the model and the full scale to obtan similar effects of
compressibility Unfortunstely. maintarng both a constant wing Reynolds number
given by

Reﬁ = U@Cpa/u (5.2)

and a constant Mach m-r is impossible as the airfoil size is scaled down Thus »
compromise s raquired to ensure neasrly identical conditions between the full and
recuced scale sirfoils
series of investigators: Hauger et a/. (1954), Bryn (1957), Googan & Jsckson (1967),
and Googan & Hubbold (1968) Their results (as they apply to helicopters and arcraft
in general) have been summarized by Armand er a/. (1978) They have set down a
number of conditions which must be met if the scate models are to lead to valid
simulations of the full-scale conchtions and results.  Included in s summary are equa-
tions dealing with aerodynamic. thermodynamic. water droplef trajectory, and ice
deposit similitude Since we have chosen to treat the helicopter rotor blade as an
arfoil in two dimensional flow, the aspects of similitude due to the rotary bisde
motion may be ignored here. Alsc we do not consider the thermodynamic aspects of
the icing process, and we shall ignore the requirements for thermodynamic similitude.
provided that we are careful to snsure that both full and scaled down versions of our
simuistions fall within the range of conditions where no runback csn occur
If the ratic between the model and full~scale airfoil chord lengths s

‘ | q = C/C :%! (8.3)

© the ratio of pressures is

P

P ./P_ ' 84 .
q 'H/PF 8.4

the ratio of air temperstures (in ) is &



e = 9.,/8 5.5

the ratio of ar velocrues js
‘ Uog = VYap/Vep 5.6

=q
and the ratio of dropiet radii 1
Ra ™ Raw/Rar . ®.7

then the equation relating ail these ratios is given by Armand et /. (1978) as

-

q = — Ei 3 - B — (5.8)
b . B-5by2 B} . , b=}
[Pq 8 (eH + !17)/eF + 117)J .

The vaiue of b in (5.8) is that obtaired from

: b
CD RedIZA = a(Rgd) 5.9

where this equation represents the least squares best fit to the actusl droplet drag
curve over the range of Raynoids numbers that the droplet experiences prior to
colliding with the airfoil. -

Equation (5 8) may be simplified considerably if we set some of the ratios equal
to one. For exampie. to mantan a constant Mach number, set uiqil nd eq! 1
Let the model simulations occur st the same pressure as the full scale Further. fol-
lowng the lead of Bragg er a/. (1981) and conforming to the approach wa have

sdopted in Chapter 2. let us rewrite (5.9) in tha form

¢, - ;(Red)b (5.10)

From thess assumptions we have Pq- 1 and = 1 with

b = b-1 ‘ (®.11)
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2 = a/2bh ®.12)

Equation (5.8} may thus be reduced to

1

R = aﬁ B5.13)

in an effort to verify the above analysis, we have run a simulstion (designated
Case 61) using a Joukowsk: 0015 srfoil st one-quarter the scaie of the arfoil used in
Case 32 From Table 21 we see that Case 32 used two dropiet size categories with
mass median dismeters for the two categorias of 255 and 132 um  The detailed
resuits of the trajectories of this cass are dispiayed as & sarmple program output in
Appendix |. From this output. we may note the range of Reynoids numbers that esch
dropiet size experences prior to grazmg or colliding with the arfoil surface F’rgj 79

displays a log-log plot of the caiculsted drag coefficient as a function of Red, and

3iso shows two straight ine least-squares fits, one for each droplet size category
The vaives of b for the two categories are -066 and ~-071 for the larger and

smalier droplets respectively When these values of 5 and tha values of Rd’F ”re

mnput nto (5.13) and (57), we obtan the scaled valuas of the droplet dismeter 1105
and 587 um for the larger and small dropiet size cstegories. Table 21 shows the
results of the simuiation using the reduced arfoil chord length and droplet diameters
(Case 61). The values of Em and IG are identical to the full scale model. The
reistive errors in the values of B, and A, are less then 1% The collision efficiency
curves for these two cases sre displayed n Fig 80. Once agsin we may nots the
excelient agreement between the 8 curves Further tests are required under other
conditions to verify that (5 13) has general validity, but these resuits are encouraging.
This pair of smuistions has provided snother spplication of the present pro-
gram It may be used to check upon the validity of the assumptions leading to a
particular version of a scaling theory by actually simuisting the full-size and scllcé
down conditions and determing the degres of agreement between the results. The
theory summarized by Armand verifies well with our simulstions to the extent that we
have tested the theory. A future version of the program which incorporates

=
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thermodynamic  CalCulItions, might be empioyed to verify the thermodynamic similitude

5.7 A summary of thw socretion profile similstions.

This chapter has described a series of computar smulstions of the ice
sccretions that would form on various arfoils under a diverse set of conditions The
agresment wrth the experimental observestions of various resssrchers has been
reasonsbly “good. but certanly not as good as was experenced n compsrisons with
the sxpermental collimion afficiency curves in Chapter 4 This lack of agreement
could be the resuit of program errors or poor assumptions leacing to the methods or
squations employed within the program However. the lack of expermental F:EL
with which we may compare, and the fact that most of these experiments were
carried out when the droplet size distributhion and ligud water content of the cloud
could not be measured accurastely leads us to beslwve that the esxpermental conditons
may not be sufficiently precisely definad to allow conclusive comparisons

Two spplicstions of the program were also presented The first invoives
predictng the effects of chenging arfoi shape upon the accretion shape snd srea
The second consists of simulsting the raesults of varying the arfoil chord length and
dropiet dismeters so as to obtan mpproxrmate aerodynamic and droplet trajectory
similitude. Tha resuits of thess mimuistions suggest that the theory presentsd by
Armand (1978). to the extent that we have tested . is correct:



. - 8.1 Summaery

n this dissertstion, we have developed a numerical model for the prediction of
rme or dry ice accretion on two-dimensionsl srfoils. The model is primarily imtended
for spplicstion to helicopter rotor biades. but the techmiques empioyed are equally
suitsble for other 2-D airfoil shapes. such as those used on general svistion mrcraft
A set of assumptions has bsen presentad which restricts the vaiidity of the simuiations
to cases where the Mach number s below asbout 05 and the vm:gus,
three—dimensionsl and time—dependent features of the flow sbout s rotor bisde are

ignored

The program incorporstes the ability to modei several arfoil shapes expicrtly
{the cyinder. the Joukowski airfoil. and several types of four- and five-digit NACA
arfoils) and aiso any other profile whose surface can be specified by a series of (x.y)
coordinates. The flow is caicuisted by snalytical means when possibie (for the cylinder
and Joukowski srfoill, ahd by a vorticity substitution method otherwise. Since the ice
accretion is csused by the impmgement upon the arfoil surface of supercooled water
dropiets. the equations of motion for these droplets are integrated to yieid the droplet
tn,octono;. The integrations begin as the dropiets move with the ar seversl chord
lengths upstream of the arfoil. The equstions of motion employed incorporste all the
sccelerstive terms (including the effects of the droplet inertia, the effects of the drag
of the sr upon the dropiet. and the effects of the firvts rate st which vorticity is shed
byrthe droplet as it accelerates). The integrator empioyed 1s the Runge-Kutta-Fehiberg
fourth-order variable time step aigorithm with local truncation error estimation.

A series of colliding trajectories is caiculated for a given droplet diameter
under a specified set of ambient conditions. When the yo vs. L values for these
trajectories sre fitted by a quintic Hermite spiine. the rate of droplet impingement at
any point on the arrfoil surface within the grazing trajectory limits fﬂl; be determined
This allows us to caiculate the ice accretion thickness in the vicinity of that point The
thickness is influenced by the curvature of the underlymg surface. by the density of

the deposit. and by the accretion time The latter quantity 1s kept small so that only a

102
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r§My tin sccretion 18 normally considered The accretion density may be
considered to be a constant. or a determwustc function of the droplet dismeter, the
dropist /mpact speed. and the murface deposit temperstre The growth of the
Bccreted iCe is assumed 1o occur m 3 drection which 13 perpendicular to the
underlying arfoil surface The new arfoil surface which s calculsted n this way
sllows us to retun to the first step. that s to caiculste the new fiowfisid sbout the
iced srfoil. and to accrets another iayer of ice in a time—dependent fashion

An effort has been made to optimize the above procedure by varymg a number
of built-m and external (inputl options and tolerances so as to achieve the grestest
computing economy for a given level of accuracy in the accretion profile simulston
Up to five droplet size categories may be used 1o simulate a natural dropiet size
spectrum. The collision efficiency curve may be smoothed by a varisble length Boxcar
fiter to better approximate the edge effects of a natural droplet distribution

The r;';urt; of a series of model simuistions have been compared with the
axperimental and theoretical results of other researchers. Agreement of the coliision
efficiency curves with other work has been very good Model simulations of

accretion shapes observed in wmd tunnel and /n-5/tu exper s have shown less

agreement however Unfortunstely, the difficulty of mefqsurng expermental icing
conditons accurstely, and the imited number of axperimental results available, prielud,
a complete verification of the methods empioyed in the model. and make 1t difficult to
discern the precisas reasons for tha lack of agresment

Two spplicstions of the model have been presented The first invoives
predicting the changes n icae accretion which will ocewr if modifications are made to
the airfoil shape. Such modifications could be made to mprove the aerodynamic
properties of the awfoil. but could concewably have a detrimental effect upon the
asirfoil's icing characteristics. The second application has been a limited verification of
an arfoil scaling theory through the comparison of simulastions of icing on full and
one-fourth scale airfoils
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8.2 Conciusions

Two major sets of conclusions may be drawn from the present work. The

first set desis with the effectiveness of the methods empioyed here as comparsd to

those used by others m previous theorstcsl icing srmulstons. The second set is

concerned with the results of the simuistions. and ther comparison with other

6.2.1 The simuistion techniques.

1

The vorticity substitition method of Kennedy and Marsden (1978). which was
used mn the dissertstion to model the potentisl flow about complex artoil
profiles. provided accurste results when compered wrth the exact salytical
flowfieid sbout the cylinder and the Joukowsk: sirfoil

The history term in the equations of droplet motion should be included if the
goal of computer smuiations s to achieve high accuracy This 1s especially
important under those conditions where the total collision efficiency i1s low, that
1$. when the droplets undergo rapid acceleration and their trajectories are h:gijn\y
The effects upon the ice accretion of a natural distribution of dropiet sizes may
be approximated by using erther a set of droplet size ;:t-genn which lead to
expensive computations, or by a monodisperse distribution of droplets all having
the mass median diameter of the n:ia,.nl distribution  If the lstter method s
adopted. then the filtering of the resuiting collision efficiency curve by a varisble
length Boxcar filter improves the realism of the simulation nesr the hmits of
droplet /mpingement That 13, the effects of the impingement by very large
droplets are spproximated with only a smail error in the total accreted area and
with & grestly improved correspondence to the natural accretion profile nesr the
edge. The costs of simulating by this techrique are much less than those
associsted with the muiti-category approach

The Runge-Kutta-Fehiberg sigorithm has proven to be the most cost efficient
of the ODE integration techmques which we have used The nsture of the
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orders of magnitude) are requred n the tme step size to mantan a consta
locsl truncstion error

Of the techriques used tO Nterpoiats the yo vs. { curva (or siternately the 8
curvel the one with the grestest accuracy over the largest number of trials has
been the qQuintic Hermite spine fitted to the yo vs. L curva R provides a
smooth B curve when differentisted. and yet retans the important quaity that
the ares under the curve equals the total colision efficiency Em it must be
used with cars however in cases where the siope of the 8 curve changes
abruptly In these cases this mterpoiator may creaste undesirabie oscilations n
the g8 curve

The curvature of the underiying surface can be sn important factor in caiculsting
the twckness of a layer of accretion, especislly when the radius of curvature 13

small Thig factor shouid be mnciuded n all thickness caiculgtions

6.2.2 The compaerisons with other resuits. : *

i

The methods used n deveioping the program sppear to be based én reasonable
assumptions judging from the agreement which has been acheved with previous
theoretical and experimaentai resuits. in general. the agresment between the
present resuits and others is best for the 8 curves Tha comparisons with
sxpermentally observed sccretion profiles show grester disparity. however, even
here the general sppesrance of the accretion I1s pf.dn‘:';lé reascnably waell

The comparisons which have boon‘ drawn between single-iayer and muliti-layer
(time—-dependent) swmulstions show that for the cases mmt‘ the B8 curve
does not change substantially with time. However. considerasbie changes in the
shape of the finsl accreted layer (in the muiti—layer vs. the single layer cases) are
the resuit of chsnges in the cxrv-'fx*q" of the accreted surface as accretion
proceeds. The net resuit of time dependent modeliing 13 to eiongate the profile
- that 13, to increase the thickness of the accretion at the arfoil nose. and to
decrease the thickness further back.

Comparisons between experimentally observed accretion profiles and the profiles
predicted by the singie and muiti—layer approaches of this work verify that for all

v "
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cases except the cCylnder. the agresment for profile shapes and cross—sectional
ress s Qgreater wh_on the time—dependent method 15 used For the cyinders. the
grestest disparity between the observed and predicted accretion profiles occurs
midway back siong the surface where rme festhers sppear to form  Since the
present model cannot simuiste rime festhers, thus deficiency Mmay explem the lack
of sgreement in this case.

The vsrisbie ice density formula proposed by Macklin (1962) when NCOrporsted
nto the present model. did not Mmprove the sgreement with the experimentally
observed resuits. The use. in Macklin's formula, of the total droplet collision
velocity. and aiso the component of this velocity winch 15 normal to the srfoil
surface st the point of collimion led to equaily poor agreemant

We hsve verified the artfoil scaling theory summarized by Armand et a/. (1978)
over a very limited range of testng conditions. The collision efficiency curves
of the one-quarter scsie model match very well with those of the full-scale
simulstion

The shape and the cross—sectional area of the ice accreted by the NPL 9615 and
NACA 0012 arrfoils under the same conditions are very swmisr Thus if the NPL
srfol has better ssrodynamc characteristics. this comparison persusdes us to
recommend the use of of the more advanced profile.

6.3 Recommaeandstions

“in the course of developing the ice accretion model which has been described

within this dissertation. snd during the comparisons which have been made with previ-

ous theoretcsl snd experimental icing results. several recommendations have been

formulated to erther improve upon the present model. or to INcrease our confidence n

the experimental results with which the model may be compared.

1

At present, the accretion thickness is casicuisted only at surfsce segment
endponts (SSE's). For most arfois tiws csuses no problem because we may
specify the number and location of these points on the original surface of the
sirfoil. However. for those airfoils whose profile is specified by a set of

discrete coordinstes snd for winch only a irmted number of (x.y) coordinstes are
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provided (TYPE = 4 or TYPE = 5) there may be a lack of pomts in the nose
region (especwally it it has a small radius of curvaturel. Furthermors. the pomts
may be poorly placed. resulting in a poor mterpolston of the surface by the
cubic spine method  In such cases. a change should be made to the program to
enabie it to crests ntermediste SSE's by nterpoistion
Careful scrutny of the droplet trajectory detsiled output (for an example. see
Appendix ) shows that the RKF4 sutomatic step-size selection pigorithm
described n Appendix B typically encounters a srtustion once for esch trajectory
caiculsted. where it i1s unable to find a suitable step size with whuch to continue
This problem requires more nvestigation Presently such problem areas are
stepped—over and the mtegration continues. 't may be that the tolerance which
detects the probiem has been set tac: fine, or that a minor adjustment s required
in the sigorithm which choosas the step-size
When local collision efficiency vaiues are calculsted and the Hermite quintic spline
18 used to mterpoista a B curve, there sre occasions when oscillations occur in
the curve nesar pomnts which are unevenly spaced. or where the siope of the
curve must change rapidly At present. such situstions are detected by the pro-
gram and the quintic Hermite spline is replackd by cubic Hermite polynomical
segments. Further research into spime nterpolation rmight result in a better
solution to this probiem
Related to the problem in 3 is the need to specify the B8 curve very accurately
n regions where the radius of curvature of the arfoil 15 small - Such
sharp-nosed airfoils affect the thickness of the accretion significantly when the
curvature effect is ncorporsted mnto the thickness caiculations. |f the peask of
the B curve is sightly shifted from its proper location. a significant error will
result in the ;;er}-tian profile. Therefore. a specisl sffort must be made to
"’;inun that the collision efficiency curve is particularly accurate in regions where
the vaiue of 8 is changing rapidly slong the arrfoil surface
The varisble-length Boxcar filter used to smooth the curve was incorported lste
in the model develoment and thus the aigorithm employed to effect the varistion

of filter length may not be optimsily adjusted This aspect rpquires further
e

{
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nvestgation

We have assumed in this model, that sl sccretion forms in 3 direction normal to
the underlying accretion (or arfoill surface. This assumption has grester validity
for single dropiet diametér thick layers. except near the limits of impingement
Vriatién of the growth direction from thst used here to thst from wihich the
droplets have arrived might result in better sgreement with experiments! resuits.
A rguonaie for the varigtion of the growth direction is required

The varistion of the accretion density asccording to the empiricsily derived
formula of Macklin (1962) did not improve the agreement with experimentsl re-
sults Further. experimental investigation of the accretion density varigtion is re—
quired. particularly for the casss with rime feather growth

When the muiti-iayer (tme-dependent) spprosch was used to model an accretion
with 3 totsl thickness of over 7% of the chord length, a8 problem was encoun-
tered In Mantaswng a reasonsbie computing efficiency It may be reisted to our
lack of smoothing of the accreted arfoil profile and the rou.mmg smpiification of
small perturbations on the arfoil surface, or to the crestion of too many control
eslements. Further work should reveal the cause of this problem

Thi‘ dissertation has been restricted in scope to the prediction of the features of
rime ice. The applicability of the model would be enhsnced if the thermodynamic
proco;sos which occur during the accretion process could be incorporated. This
would allow the program to handle accretion st warmer temperatures. and should
lead to better agreement with observed accretion when runback of liquid water
occurs on the airfoil surface. Further it would allow simulstion of the effect of
including heat sources within the airfoil for the purpose of thermal de—icing.
Thoro Is 8 distinct lack of experimental resuits with which we may make
comparisons to verify the present model. Further. of the resuits which do exist,

we know of none where the iquid water content snd cloud droplet distribution

" wers measured by state—of-the—art techniques. The methods used to display or

measure the accretion profiles are also Eom'wo!y crude. Improvements in these
areas would greatly enhance the opportunity for refining the present model so as

to improve its predictive capasbilities regarding accretion profiles.
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v
Only one set of i!m was performed to test the chnﬁiﬁﬁlQFy
summarized by Armmand -r a/. (1878). In order to fully test this theory, other
expermaents should be carried out within the full range of conditions for whsch
the theory applies.
The present program would require very little modification to allow a change in
the angie of sttack or air velocity after esch sccretion layer Such a change
would allow a better smulation of the cyclic varition Q; 8 helicopter rotor biade
during forward flight X
The present model would be of greater benefit to arfoil design engineers if it
incorporated an snalysis of the serodynamic effects of the accreted icaa The lift
coefficient that it presently provides is based upon potential flow theory Thig
should be enhanced by the addition of an anslysis of the arfoil drag \



TABLE 1. Paramaeters defini
mesn line designation’

110

ng the mean ine of a NACA five digit airfoil for a given

Non-dimension

al

Parameter Parameter

Mean line position of

designation camber p “m “k
210 0.05 0.058 361 .4
220 0.10 0.126 51.64
230 R RE: 0.2025 15.957

{

240 d‘go% 0.29 6.643
250 0.25 0.391 3.320

IThe values of Cqm and ¢, have been calculated to give the
desired position of camber, and a design lift coefficient

of 0.3.
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TABLE 2. Derivation ofnq?-dhnonﬁond Quantities.

Derivation from

ND symbol Code name Meaning standard variables
x XDS Distance X/C ) )
Yy YDS Y/C
u, UAS Velocity of air Ua/U§
Va VAS va/Uﬁ
uy VDS Velocity of droplet Ud/U_

V4 VDS Vd/Ud

t TS Time Tu_/c

At DTS Time step aTU_/C

ry RDS Droplet radius Rd/c

g GS Gravitational Eb/U:
acceleration

v, NUS Kinematic viscosity u /(paCUH) =v

of air




TABLE 3 The dependence of the accuracy of the flow fieid

number and locstion of the control slement endpomnts (CEE s).

112

calculstion upon the

NEF! AS3 12 20 16 6
NEB2 AS3 28 12 15 716 14
x Yy v Percentage error

-10 -1 0.99981 0.001 0.002 0.00! 0.001  0.001
-5 -0.5 0.99945 0.0 0.001 0.0 0.001  0.001
-1 -0.1 0.99293 0.001 0.002 0.002 0.004 0.006
-0.01 0.001 0.83615 -0.209 -0.006 -0.081 -0.1hk4 -0.538
0.005 0.015 1.56856 0.385 0.007 -1.204 -1.676 1.767
0.0} 0.0185% 1.64639 -2.331 0.201 ~-1.134 ~-1.467 =-2.60]
0.12553 -0.05328 0.97686 -0.308 -0.236 -0.277 0.504

INo. of CEE's on front third of airfoil (per surface)

2No. of CEE's on remainder of airfoll (per surface)

3Analytical solution
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TABLE 4 Compering the accuracy of the local collision efficiency snd impact loca-
tion caiculstions aganst the relative computing cost as the number and position of
CEE's and the runcstion erTor tolerance are varied

1

2

2

L

[

€

od

8

e

Row EPS NEF! NEBZ NIF3 8(%) Error 2 Error Relative
(2) (%) Cost
1 x 1074 124 R 35 0 .00981 0 1.00
2 x 10" 6 14 N 46 29 00747 -24 7.7
3 x 10°¢ 9 11 8 38 7 .00886 -10 8.2
4 x 107" 1 3 6 -3 00964 -2 9.6
5 x 0% 13 7 5 31 -1 .01065 9 9.5
6 x 10 14 1 4 35 0 .00961 -2 1.4
7 x10* 17 a3 3 3 -3 .00957 -2 13.0
8 x to™" 12 9 5 33 -6 .00990 | 8.7
9 x 105 12 9 5 W -3 .00979 0o 11.9
*10 x10™* 12 10 5 35 0 .00958 -2 11.0
C x 104 1" 1 5 37 3 .00930 -5  10.4
12 x10* 1N " s 35 0 .00942 -4 9.3
13 x 10" H R 5 35 0 .00927 -6 9.0
14 x 1074 12 10 5 3 -3 .00970 -1 9.3
. 4
15 x 104 1 10 6 35 0 00944 -4 10.2
1NEF: No. of CEE's on front third of airfoil (per surface)
2NEB_: No. of CEE's on remainder of airfoil (per surface)
3NIF: No. of SSE's between adjacent CEE's on front third of airfoil

4

Denotes analytical
foil at 4.6° attack

solution to potential flow about a Joukowski air-

angle.



tion caiculstions against the reistive computing cost and final step size as a function of
the type of differsntal equstion solver used

1 2 3 u s 6 ' - 8

Row Type EPS ] Error ) Error Final At Relative
4 (%) (%) (%)

1 RKF 41 b 0 0.00649 0 0.0060 1.00
2 RKF 4 T 46 4 0.00647 -0.3 0.0059 1.9

3 PCh k6 b 0.00662 2 0.0150 68.4

- S —— e -

1penotes analytical solution to potential flow about a Joukowski airfoil.
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TABLE 9 imercomperisons of the characteristics of droplet /mpingement upon
cylinders. . )

T I — —— A R _ I _ ]

Case EQN CDS Re k! K2 ol 62

A 0 2 1h.0 0.196 0.098 1000 2000 .080 9.
‘ 0.221+ 12
0.068 7
0.052 5.

2

0. 148 2.

M P 1
o ]
X
R LY - T « LR N Y, |

LY ]

Lo T = B = R R -]
oo

(=2 = I = B = R =]

~d
LS
v ]

93.
91.
93.
.722  93.
.730 93.

A 0 2 180.0 32.4 16.2 1000 2000 88.

1 8s5.
22 1 1 88.
23 I 2 87.
r1 2 . 1 88.

~
N
—

N W N D
o o o O o
~J
(%]

L%, |
B VORI, - N

lvalue according to definition gﬁngmir and Blodgett
2value according to present definition

A: Results of Langmuir and Blodgett (1946)

C: Results of McComber and Touzot (1981)



TABLE 10. imtercomparisons of the characteristics of droplet wmpingement on 2 *
Joukowski airfoil of 36.5% thickness.

8 (3)
[a}

EQN Re K $

Case # - E G

D 0 16 0.184

25 vy
/

26 2

0.3214  796.5 bi.o

39.9 0.186

41.3 0.190

D: Results of Brun and Voyt (1957)

-0.110 71.5 -0.006

1.718 x 105

202.2 0.238 32.5 0.039

-0.147 70.2 -0.006

35.6 0.018 -0.153

34.5 0.018

28 i 71.1 -0.006

E: Results of Werner (1973)

TABLE 12 intercomparisons of the characteristics of droplet impingement on a

NACA 0015 arfoil.

Case
#

EQN | Re K ¢ E_
- m

0 55 0.257

1.18 x 10% 47.3

1 kg.9

0 109 .0.407 2.92 x 10

| - 58.2

73.8
75.5
76.4
78.8

-0.013

-0.011

=0.019

=0.011

F:

Results of Bragg (1981)
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TABLE 15 intercomgarisons of the characteristics of droplet mpingement on a
NACA 85-212 sirfoil at 4* angie of sttack. ‘ ® '

Case # Re- K ) Em ] lGU £

, 0 GL
(2) (%)
G 86.4 0.0374 2.00 x 10° 9.2 £52.0 0.02 =0.13
39 9.6 9.9 0.005 -0.060

6 . 96.2 0.257 3.60 x 10*° 32.7 72.0 0.109 -0.460
Fo 78.0 0.017 -0.208
40 ' 43.9 82.0 0.018 -0.279

F: Results of Bragg et al. (1981)
G: Results of Gelder et al. (1956)

TABLE 16. lnt:n;migéns of the characteristics of droplet mpingement on a
NACA 64-215 Hicks modified arrfoil at 0 7* angle of attack.

Case # Rew K ) Em E@ g"GU lGL
(%) (%)
Fl 113.9 0.0436 2.976 x 105 5.3
F2 6.2
b 8.2 36.7 0.032 -0.018

F1: Experimental results of Bragg et al. (1981)
F2: Theoretical results of Bragg et al (1981)
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TABLE 20. Intercompsrisons of the characteristics of droplat impmgen
Joukowski 0012 srfoil and on a NACA 0012 arfoil st 8 4* sngle of attack.

Case # Type E@ Ern EEU EGL AT

12 2 69.9 36.1 0.021 -0.141 0.002164

27 0 70.2  34.5 0.018 -0.147  0.002073

TABLE 21 Imercomparisons of the characteristics of droplet mpingement on a
Joukowsk! 0015 airfoil at full and one—-quarter scale.

Ca:e ) C DD W BQ Em LG Ba Em "G A’T

32 0.330 25.5 0.50 81.3 47.8 0.115 71.9 36.6 0.138 0.002743
13.2 0.50 62.7 24.4 0.057

61 0.0825 11.05 0.50 81.0 47.8 0.112 71.6 36.6 0.138 0.002742
4 5.87 0.50 62.3 24.3 0.058
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Werner, 1975).
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FIG 3 Recommended atmospheric icing criteria for curmukform clouds

Werner, 1978)

Recommended atmospheric icing crrteria for stratiform clouds (from

(from
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FIG 4 A comperison of drop size mass distribution for 8 nstural Minngsota cloud

‘mo“d y li’no), the spray from HISS (symbols), and from the Langmuir D" distribut
s ine). distrit
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FIG 5 Gridpont notstion for the grid. centered upon snd moving with the droplet.
which is used to caiculste air velocities and accelerstions. The grid length is equal to
the radius of the dropiet
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AIRFOIL SURFACE

CONTROL ELEMENT ENDPOINTS
(CEE's)

&

’ CONTROL
POINT J

CONTROL ELEMENT J WITH
VORTICITY DENSITY Yj

AIRFOIL NOSE

CONTROL POINT I

Fi ) i icionts (afte NS '
1972)’ 8 Nota\t-on used to caiculste influence coefficients (after Kennedy & Marsden,
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FIG 79 The functionsl dependence of the drag coefficient C. upon the Reynoids
number Re4q . The short dashed line 15 the log—iog least squafes fit for 255 um
dropiets m%;u 32 1t has a siope of ~0.866 The long dashed iine 15 the fit for 132
um dropiets n Case 32. it has a slope of -071
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APPENDIX A. Finding the sigenvaiues of the Jacobian of the system of droplet
trajectory squstions.

Section 2.34.2 has stated the need for deveioping an indicator of the stabiity
of the ordinary differentisl equstion soilver used to deterrrwne the dropilet trajectorias.
This indicator is based upon the compiex sigenvsiues of the Jacobisn af/ax . This
appendix will outime the means of finding those eigenvaiues.

Ifweimoromegrwnywmmdwmnorytrmh(zss).thovoctoriquil—

tions of motion become

v 3,0, o
- - - - 1
v o Wd(zod ) |vd val(vd va) A1)
and
dX
- d Vd . A2)

If these equations sre broken into thew components and nom—dimensionslized. the
resulting set of first-order equations is

dxd )
T = v Ry % w3
dud _ _ L
T ° KyCplvg - Vol lug = u) = F2lxgougeYyrVy) it

dyd
Ti- - f3 (Vd) (A.!b)
, end '

. O<\\ dvd _ _ _

T = " KaCplVy Vol lvg mvp) = i lxgaugygvy) ne
. _ .
30.

K =

S T ¢ "I A7)
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The Jacobian 23f/3y s thus
0 1 0 0
afgfaxd afzfaud aleayd aleavd

(A.B)
0 o - 0 1
BFB/Exd BFhiaud EFL/B'yd Efglavd
if we now set -
z, = auila‘x’d | (AP
z, = vy } 10
- \ .
z, = ava/axd ; 7 )]
’zt - Bviléyd = (A12)
9, = (uy-u) A13)
9, = (vg-v,) A4
- 1T -7 - f2 . .2 B .
93 Ivd vil 91 + 92 ‘A"B’
and
K, = 2rylv, (A 16)
will yield:
af, aC 9. 29 g
2 e - b 3. 34 +—C.g
x K3l K2 aRe, ax, 939 * o, Cpoy * i, Cp93 (A17)
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af | :
M 2y 29, oo 9 - 9 . . A8
u 3] ™2 3o, 0% T 3o “p9: '

d BRed 3ud 371 3ud D71 Bud D73

and smmilarly for 3f,/3y, through af.,/avd. When these vaiues sre mnsertsd into
(A 18) and the determnant caicuisted. the compiex eigenvaiues of the system of equs—
tions will have been determmed Thess eigenvaiues shail be complex if the solution to
. the system of ordmary differential equstions contmns both an oscillstory and 8
decaymng or growing part The eigenvaiues cannot be siated here precisely. because
as was mentiofed in Section 2.34.2, the derivatives denoted z, trough z must be

determined numerically as the mtegration proceeds.
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APPENDIX B. A modified Runge-Kutta-Fehiberg (RKF4) sigorithm.

The standsrd RKF4 sigorthm may be found in several textbooks (see for ex-
smple page 254 of Burden et »/. 1975_, If we have a system of first order equa-
tons to solve, we must apply each section of the asigorithm to each gguation before
moving on 10 the next section Briefly the algorithm may be summarized as follows.

Beginrung at time t.. we wish to solve for Xy ud,yd.m vg o t;ﬂ

Using (A 3) through (A6). we find the values of

ky = Qtifl(tiix iivﬂi) ® 1)

UL »Y
di di d

r
L]

2 se f (e, + ot /hx, + ky/buy + RPN VIR

+n /4) B5%)
I i i d 1

ng = 8t f (t; + At /2,x - 8/27n + 2n, - 35M4/2565n,...) ®.24)

These values may then be combined to give fourth and fifth order estimstes for Xy

. - i . _ é, 7 . = i e B .- 7 f ]
Vg and \E denoted !d(l*l)'xd(l*i)'ud(l-ﬂ)ﬂ $o on tavd“*”. f we

x, = (x - x )/At,
di-ﬂ di+] I

and similarly farg‘, X, and _\!f_‘mwla;ﬂ truncation error at

fl’tiﬂ'ﬂﬁd as

I



The mput parameter EPS sets the local erTor tolerance ¢ Thus, ifeist* we accept

the values x and prepars for the next tma step If

d(i+1)5g (ie1Y Ya(141) Vg (101)

€. > c. then we repest the mtegration st t. with a smaller trme stap

I

The choice of an appropriste time step for the RKF4 sigorithm has proven to
b-sm;robwv?w Burden et a/. suggest setting the new time step
according to the formull

' At, . = I:;xibti |27

i+l
whaere

Xpo= [e/max{|x|,lu],ly],[v|}10-25 . 828

k = (0.5)0-25 ~ ®29

Equation (B.27) is aiso used when a step is 10 be repested. In this case bt,,, 1sre-
piaced by Ati Experience with thas formuistion led to serious reservations about its
spplicability to the system of squationg we were sttempting to solve. Foliowing the

step size to avoid spending 0o much time with very smal st-p sizes N regions with

rreguiarities in derivatives of | x cand v 1. and to avoid spending too littie

d Ya' Y4
tme [in a region] with large step sizes. which may result in skipping sensitive regions
nearby.” Another problem we encountered with (B.27) was an oscillation (‘chattering”)
m the size of the time step about a gracually varymg average value In order to
prevermt these two problems from occurring. we have replaced B.27) with a mora
complex set of equations. The rationale for thus set is as follows. Limits placed upon
the rate at which the time step can grow or shrink will tend to prevent the probilem
discussed by Burden er /. Eliminating the “chattering” is more difficult The most ef-
fective procedure we have devised to date sets limits upon the value of X wf
iNg UPON fts value at the two previous time steps X;_;. and X;., Thus for exam-
pie. if the two previous vaiues of X were less than 1. then the new tme step will

be specified by (B.27) provided that 0.25x;s1 If X;£0.2 then we replace it with

l_\

H
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02 in B27). This will ensure that trme steps do not become too small, too rapidly.
If on the other hand B.28) incicates that » valus prester than 1 is required. the follow-
nNQ equation is used for finding the new time :t-;s

At, . 0= B.30)

P41 kat [(x; = 1)/104+ 1]

Thes dampens the rapid growth of the time step .immedistet
mn size. ﬁ-cmmgfmﬁmfﬁfm'ﬁim

tme step is For x;_, 2 1. and x;_, 2 !

sfter two time steps

if x;_y <1, ot = kyx,at

i 83N

i+1

$x; <9 At o=kt [, - /4 + 1) 8.32)

if X! z 9, Ati*‘ = Sklét‘ B8.33)

For Xy y 2 land x;_5 <1

- klgzil(xi—l)no*- 1] B.3%)

b1

L T L LU T ' 838

= 0.8 ijt' : |37

Lﬂ‘
K
@

= kyx At

" 08«<x, <1, at, .,

ifox; > 1, At 1)/10 + 1] B.39)

= kyat [{x, -
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1f x, < 0.2, At .. = 0.2 k At, 840

I 0.2 < x; <1, 8t ., = katx, ®41)

Fox, > 1, A, - kot [{x; - 1)/10 + 1)) B842)

When e, >¢c. i+ 113 replaced by | m B.23) through (B.34), and the step is re—integrated
(GLERK5({86.11 1))

it was discovered during the testing of this modified algorithm. that
occasionally the automatic step=size routing would hang up st one pont in time, unable
to fmd an sppropriste step size to contnue. This seemed 1o occur when the ar
velocity components changed very rapidly To prevent this problem from terrunating
exascution. the following two modifcations were added First the ﬂjp size was not
sllowed to decreasse below At P41 =5x 10 Th:: it was determmed on the basis of
trisl and error as s reasonable comprormise between efficiency and accuracy Second.

if e >c. and yet

min (), ol loly,lolv, )
e > !oei_ _ iii,,*i, %' enl — B43)
min {liiql;|5;§1'alii!1|-!i;ijl}

then rather than re-integrating. we set

Bt = (At;*um)/z B44)

where Atl-ﬂ on the RHS. of (B.44) 15 taken from (B.31) to B42) Wae then rewsn to
the use of B.31) through (B42) if possible. If (B44) must be used to step over a
region of difficulty, a " is placed n the first Em of the output (see Appendix |
(GLERKS{112,128).

in ona last effort to improve the sfficiency of the mbove procedures, it was

determimed through experimentstion that an extrapolated vaiue of At [ 1 given by
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i - nlAt 2A1 - At B 45
bt, ., mln[btiﬂ,uthi m;'] B.45)

preventsd excessive re—evalustion durng a continusl reduction n stop size while

mantaning a constant local truncation error estimste (GLERKS{128]. Thus a value of

AI:H_‘ is deterrmined from (B.31) ttrough B42). i no difficulty is encountsred (that

s e,>c) then thus vaiue 15 substituted into the RHS of B45) and a final value of
| 15 Obtaned

At
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~ APPENDIX C. Integrsting the history term. e

Sections 2342 and 235 outtined the difficulty n ntegrating the complete
:ur*rtggr?diffirm squstions wiwch describe the droplet trajectories  We have
contribution of the history term. but wiuch 1s not as difficult to wmplement as the
classical methods of solving such problems.  We pstify thes approxmsbion on the
basis that the history term becomas s significant factor n the dropiet accelerstion only
just prior to a droplet arfoil collimon, or around the pomt of ciosest approach
Except m these crcumsances. the history term has only a minor eaffect upon the
solution to the system n (2.89). ‘ e

The hestory term in (2.69) 15 of e form E——

Ydv, dr

‘o const. J —11& prm——— ic1
&t Yt -1 )

We have changed the lower limit of integration from - to O becauss before t=0.
the dropiet is assumed to be travelling in a constant uniform arfiow where there are

Experiments involving the numerical evaluation of the history term mtegral. using
various Newton-Cotes formGise showed that such formulss provided accurste
sstimstes of the ntegral for all but the portion of the interval where T approached t
In this interval, substantisl errors could resuft 7

As a result of the sbove discovery, s semi—analytical technique for finding the
solution was adopted It was noted that if the accelerstive part of the kernel. that is
dv 4/dt couid be interpoisted by a Lagrange polynomial of degree less than or equal
to three, then the vaiue of the history term could be approximated from a combination

of the following formulse:
L i
J —EE‘L - % [(5:13 + 6q2t + Bqt? + 16t3)/t - q
) A== B . 7
9 ’ (€2

(583 + 6s2t + Bst2 + 16t3)7 tixs]



[ ifiéfi - ig [(3:; + hqt + 8t2)/t - q - (352 + kst + 8t2)/t - 5] €3

q
, )
s
f L [(Zt + q)?'?-a (2t + s)v’ﬁ] - c4
q /t - 1 3
and
5
f L . g - AT (€5
t = 1

ﬁfmmyfamwmfhcmathqmmrl

. gven by Burden et a/. (1978). for example.
ﬁnviluafmmmaﬂnﬁmm tH‘ 15 obtaned by a

two-part nerative process First. for some algorithms (RK4 RKF4) values of the

i+

f’fxnary term are required for times intermaediate between t, and t These sre

obtained by extrapolation using a third order Lagrange polynorrusl fitted to the. fustory
term values for the time steps EL—I 1=2,1-3,1-h (except for t;h-vfr;t few time
steps. when a lower order Lagrange polynomial ii used) Then extrapolstion from the
previously fitted pﬁlynarmnl is used to pr-dict’ the vaiue of the history term at t‘ o
This allows the caiculation of the accelerstions at t.;ﬂ With an estimate of

a?dfat ot ti*l known, we may interpolate a\e /3t between t=0 tc::l:-t:t Y If i

1$ odd, this 15 accomplished by a sequence of ;gc;and degres Lagrange poiynomuals
Over successive tripiets of tme steps. If i is even, the procedure is the same. but

with 8 third degree Lagrange polynomial used over the last four pomts. In this way

we retan the greatest interpolation accuracy in the time steps just past, that 15, thoss
,,,,, which contribute the most to the history term

Ls‘
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APPENDIX D. Integrating ordinary differential squstions by a Hermite

axtrapolistion technique.

Section 2.3 7 pointed out the problem that occurs when a droplet approaches
the airfoil surface and it becomes necessary to determine whether or not a coliision
has actusily occurred. and f so st what pomt In that section 1 was stated that the
higher order integrations empioyed n this thesis all used ar velocity valuss within the

time interval (t‘.t ] to determine the position sand velocity of the dropiet at

i+1°
tiv Careful scrutiny of these ntegrators reveasls

1 The RK4 aigorithm must calculste the ar velocity &t points approximately

midway between (xd‘yd)i and ('xd‘yd)iﬂ’ as well as nesr (xd.yﬂ)'ﬂ n
order to .determine the value of (xd.yd) ot

2 The PC4 aigorithm due to Hamming (1973) uses the modified estimate from the
pﬁésc;t@r to caiclipgm the accelerstion at EHEI' for use in the corrector. This
acceleration is based upon knowiedge of thirlif‘ velocity near (xd.'yd) a1

3. The RKF4 algorithm caiculstes the air veiocity st points approximately 0.25,
0375, 0.5 and 0.823 of the distance between ("d"’d)z and (';&-td.yd)w1 as

well as near (xd “yﬂ) e

If any of the gridpoints used to find the air velocity (see Fig 5) in the interval

(t‘ ‘tiﬂ] iie within the airfoil profile. the ear%sspm streamfunction vaiue will

be meaningless. This will lsad to an incorrect vaiue for the air velocity, and thus will
E adversely affect the accuracy of the droplet position and velocity st time t'_ﬂ .

The problem 1s resolved by extrapolating forward from the position and

velocity of the droplet at t; and tiéi instead of using values in the interval

(i;l 1t 4] For an equation of the form of (2.77). the Hermite extrapolator may be
expressed as
Xipp = 7 bk w5k o+t (x4 2x ) ®.1)

This formuls has a lower order truncation error than do the other integrators
fthird—order vs. fourth—order for RK4, RKF4, and PC4) and so it is used only 10 test
whether or not the collision has occurred by the time the dropiet reaches its position

n t, ..

[+1 If 1t has Section 24.3 describes the methods used to find the collision



location, If not, the sfop is re—integrated by one of the higher order methods.
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APPENDIX E. Finding the length of a portion of s cubic spline curve.

The foliowing set of soiutions has been derived by Philips (1980) Let us
begin with the general cubic polynomusl defireng the spine segment between X, and
) ST

’Y = Yo + ;153 +* 3252 + {13§ E 1)

where § is given by

Than we have

i - - I, 1 . -
Y 3316 3 2;26 + a, E3

The length of a curve between Xa and X ﬁy be expressed as:

X
L(Xo,X) = f v !+ (Y')2 gx E4)

Xo

- 6 - — = - - = —
L(§) = j /l + (3;152 + 22,6 + :3)? ds E5)
0

We must test now for the values of a; and a, This will laad to three separate
solutions:
1 If ili g: = . then

L(§) = &/1 + a2 €6

3

2 If aj = 0but a,¢0, then (E5) may be rewritten as | ’ ﬁfﬂj

L]

A 4 h .
LE) = [ /1 (20,8 + a,)? dé €7)
a i . ' .

The solution to the integral is given by
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¥
L(§) = {(2a.6 + a )/1 + (2a.6 +7; )72 - a,v/;nfa?
2 3 2 3 3 3 B
EB)

+ ln[(igzé + 33) + Wg . !'3)”2] - 1n[a§ + 1";’;513/%2

3 WII#O.MH’I

V = -’,3!{! (6 + a,/3a,) ‘ E9)
v, = v/,jlall (8 *:2/3a1) - €10

and
= g 3 ' E 11)
Vo ;2J3|31| /3a, AR
whars
£ - - A 12’
& = Xy X, €

A chenge of variable allows us to wrnte E5) in the form

S Y1~ — ~
/3ay) ) ’
. Vo
- [I(v,) = I(v,)] E14)
"3|31| ! ° :
where
b = (a, - 82/3a)sgn(s) €15)
_The integral I(v) in E14) is given by
v 777 — . . ] \/‘;‘
Iv) = [ /1 + (V2 +8)2 av
[]
, . (E.16)

— — -2 i . . o
= X/ (v242)2 (1 ¢ =25 4 — [ + 862)F(g,k) - 2862E(g,K)]
3 1+ vzt 36]
T

™~



6 = (1 +a2)70.25 . ; €17
™

1

]

k = /1 - a62)/2 el

[ = taﬁ-l[ZEﬁ“] ( E19)

The functions F(r k) and E(T,k) in (E16) are the incomplete eliiptic mtegrals of
the first and second kind respectively.

v = 1/6 €20

r = x/2 E21)

which silows us to replsce F(z,k) and E(C,k) m £16) by K(k) and E(k) the
compiete elliptic imegrais of the first and second kind respectively. If 0<v<1/G, we
may use (E 16) directly If 1/G<v <=, then we replace F(z,k) and E(g.k) in E16)
by

F(z,k) = 2K(k) - F(n - g, k) : . €22

E(z,k) 2E(k) = E(n - g,k) @één

in the present program, thess elliptic integrais sre evalusted using the subroutines

b
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APPENDIX F. Locsting points on the interpoiated sirfoil surfsca.

determine the ordinate value y of an mterpolated pomt on the arfoil surface when
the abscissa 18 given as x If the rotated coorcinate system 15 dencied by the
subscript R. then the equations relsting a pomt in the two coordinate systams are.

Xg = x cos BDQ + vy sin 3DB 3 F1
snd

Yp = Y cos 369 - x sin 303 F.2)
The interpoistion equations were formuisted on the rotsted coordinste systemn for

reasons outliined in Section 24 1 From (F. 1) and F.2) it 1s apparent that if oniy a value
for x is known (x ), we cannot nterpolate for ; until we sre abie 1o determine ;R’

To overcome this problem. we begin by fiting a straght Ime between the
surface segment endpomnts SSE i and SSE 1+1 with coordinates (xi.y') and
(x'”,y"”) respectively (see Fig 81) The ordinate value on this line for the
sbscissa x 18

Yo = v, ¢t (x - xi)(yiﬂ - Yi)/(xiﬂ = xi) F.3)

Now that Yo 'S known. we may substitute into (F.1) and (F.2) to find the pomt on the

1'"1 e This 1s our frrst approximation

to (;,;). Since the cubic spline nterpolstor may be differentusted with respect to

sirfoil surface (x ) for the rotated x value x

Xp - We may use the Newton—Raphson sigorithm to nerate on successive vaiues of
*ng until xI-; becomes sufficiently small The inverse parr of equations from (F 1)

v (F.2) may then be used to give this approximated vaiue for y.
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APPENDIX G. The program listing.

WRITTEN BY: M OLESKIW ON 790526 LAST MOOIFIED: 811024

CALCULATE POTENTIAL FLOW ABOUT AN ARBITRARILY SHAPED AEROFOIL:
CALCULATE A SERIES OF DROPLET TRAJUECTORIES AND
DETERMINE THE COLLISION LOCATIONS: FIND THE RESULTING COLLISION
EFFICIENCY AND ACCRETE A LAYER OF ICE
REPEAT THE PROCESS FOR A PREDETERMINED NUMBER OF STEPS.

INTERNAL SUBROUTINES AND FUNCTIONS -

ACCN CALCULATES RHS OFf NON-DIMENSIONAL EONS OF MOTION

AIRPLT - PLOTS OUTLINE OF AIRFOIL WITHIN VIEW WINDOW.

AIRVEL CALCULATES THE AIR VELOCITY COMPONENTS AT A
GIVEN LOCATION

CE: CALCULATES AND PLOTS COLLISION EFFICIENCY CURVES EW
ARBITRARY AIRFOILS BY DET INING A SET OF
IMPACTING TRAJUECTORIES

COLVEL - INTERPOLATES DROPLET IMPACT VELOCITY
ALONG AIRFOIL SFC

COORDS CALCULATES A SET OF POINTS DEFINING THE AIRFOIL SFC.

DRAG - CALCULATES THE REYNOLDS NUMBER AND
DRAG COEFFICIENT OF THE DROPLET

FIT: ROTATES UPPER AND LOWER SFCS. IF REQUIRED, F1Y
CALCULATES CUBIC SPLINES AND DETERMINES LENGTHS
ALONG THE AJRFOIL SFC TO EACH ENDPOINT
CALCULATES THICKNESS OF ACCRETION

GLERKS INTEGRATES THE DROPLET EONS OF MOTION
(IN X AND Y ) USING
1: A 4TH ORDER RUNGE-XUTTA-FEMLBERG TECHNIQUE
2. ORDER EXTRAPOLATION OF THE ABOVE.

3: STEP EXTRAPOLATION OF THE ABOVE (85TH ORDER ACCURACY).
GROWTH: PLOTS SUCCESSIVE AIRFOIL OUTLIENS WITHIN VIEW WINDOW
HERMS - CALCULATES COEFFICIENTS FOR HERMITE QUINTIC SPLINES.
HERMIT CALCULATES THE HERMITE CUBIC POLYNOMIAL

INTERPOLATOR GIVEN THE FUNCTION AND ITS DERIVATIVES

AT THE ENDPTS OF THE INTERVAL
HIST: DETERMINES VALUE OF INTEGRAL IN MISTORY TERM
ICING: CALCULATES AMOUNT OF ACCRETION AND DETERMINES A NEV

SEY OF AIRFOIL SURFACE ELEMENT ENDPOINTS AFTER DETERMINING

THE AIRFOIL NOSE LOCATION
JTHICK . CALCULATES THE NEGATIVE OF THE THICKNESS OF THE

JOUKOWSKA AJRFOIL AS A FUNCTION OF THETA AND €.

NSURF - CALCULATES THE UNROTATED X VALUE OF A POINT ON THE
ACCRETED AIRFOIL SFC. BASED UPON THE COLLISION EFFICIENCY,
DIRECTION OF GROWTH, AND OLD AIRFOIL (ROTATED) SFC. POSITION.

PC4: INTEGRATES THE EONS OF MOTION USING THE 4TH ORDER
PREDICTOR-CORRECTOR METHOD OF HAMMING .

POX: CALCULATES ANALYTICAL VALUE OF STREAMFN. AT TRANSFORMED
COORDS . Xx.Y USING THE EXACT AIRFOIL GENERAT]ION METHOO .

PLTSZ: DETERMINES PARAMETERS NECESSARY FOR SCALING OF A
PLOT AND ITS AXES A

POT1: SOLVES FOR SURFACE VORTEX DENSITY ON A ONE-ELEMENT
AJRFOIL IN POTENTIAL FLOW, GIVEN THE COORDS. OF THE
AIRFOIL SFC.

RK4: INTEGRATES THE OROPLET EONS OF MOTION (IN X AND V)
USING THE 4TH ORDER RUNGE-KUTTA TECHNIQUE

SFC: CALCULATES Y VALUES AND THE LENGTH FROM THE MOSE ON THE
SFC. OF THE AIRFOIL BY A CUBIC SPLINE INTERPOLATION.

SFCLEN: CALCULATES THE LENGTH ALONG A SEGMENT OF THE CUBIC
SPLINE FIT OF THE AIRFOIL SFC.

STAB: FINDS THE UACOBIAN (DOF/DY), ITS EIGENVALUES AND
DETERMINES SUITABILITY OF ODE INTEGRATING TECHNIQUES.

STRMFN  CALCULATES THE STREAMFN. ON A GRID ABOUT AN AIRFOIL
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SECTION GIVEN THE SFC. VORTICITY DENSITY ON THE AIRFOIL
AMD PLOTS THE FLOW USING VELDCITY VECTORS

TRAJEC. CALCULATES TRAJECTORIES OF DROPLETS IN POTENTIAL FLOW
ABOUT AN AIRFOIL .

WHAMO - DETERMINES CLOSEST APPROACH BETWEEN DROPLET AND
AIRFOIL SFC

EXTERMAL SUBROUTINES

IN IMSL (INTERNATIONAL MATHEMATICAL AMD STATISTICAL LIBRARY)
LEQT1IF: SOLVES SYSTEM OF EQNS
ICSICU- CUBIC SPLINE INTERPOLATIDN -
ZxG5N: GOLDEN SECTION SEARCH METHOD FOR FIMDING FN. MIMIMUM.
VERTRD  SORT A VECTOR SO THAT ELEMENTS ARE IN INCREASING ORDER .
EIGRF FIND THE COMFLEx EIGENVALUES OF A MATRIX
IOH5CU. CALCULATE COEFFICIENTS OF A QUASI-HERMITE

INTERPOLATING POLYNOMIAL

IN SSPLIB (SCIENTIFIC SUBROUTINE LIBRARY - SUPPLIED BY IBM)
DELIT THCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
DELI2 INCOMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND
DCELY COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND.

DCEL2: COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND

IHFUT/DUTPUT DEVICE ASSIGMNMENTS

AIRFOIL INPUT COORDIMNATES (IF TYPEe=4 DR TYPE=S)

DATA READ By SUBPROGRAM PLTSZ TO SCALE PLOTS.

PROGRAM INPUT PARAMETERS AND OPTIONS (DESCRIBED EELD‘)
INPUT CRT DEVICE FOR CONTROL OF PROGRAM

OUTPUT CRT DEVICE FOR MONITORING OF PROGOAM

CUTPUT HARDCOPY DEVICE FOR PRINTED OUTPUT .

OUTPLE OF SURFACE SEGMENT EMDPOINTS FOR EACH ACCRETED
SURFACE IN FDRMAT SUITABLE FOR SUBSEQUENT

INPUT INTO DEVICE 2

OUTPUT FILE FOR STORAGE OF PLOT DESCRIPYION

(CALCOME FORMAT)

R R

PROGRAM INPUT PARAMETERS AND DOPTIONS
TO BE READ IN FROM INPUT DEVICE 4 EACH GROUF OF PARAME EES
1S TO BE READ FROM THE SAME LINE (CARD) USING THE SPECIF
FORMAY. EACH DATA LINE PRECEDED By A DESCRIPTIVE REMINDER
LINE. SEE APPENDCIx I FOR DETAILS L

OPTIONS ANO DATA (SEPARATED Bv COMMAS) (SYMBOLS IN BRACKETS
AT ENDS OF LIMNES REFER TO FORTRAN FORMAT TYPE)
ALPHA=ANGLE OF ATTACK IN DEGREES(F)
TYPE=AIRFOIL TYPE(I)
~11:ANALYTICAL PARABOLA AS A 2-D BOOY OF BREVOLUTION ABOUT
THE CHORD NOTE - STRMFN UNDEFIMNED AT CHORD LINE.
-10:ANALYTICAL FLYING CIGAR AS A 31-D BODY OF REVOLUTION
ABOUT THE CHORD

~3:ANALYTICAL JOUKOWSK] AEROFOIL (APPROXIMATE)

=2 ANALYTICAL JOUKOWSKI AEROFOIL (EXACT)

~1:ANALYTICAL CYLINDER

O:NACA RAZOR
1:CYLINDER (VORTEX SHEETS)
2:JOUKOWSK] (VORTEX) (EXACT)
3 JOUKOWSK] (VORTEX) (APPROXIMATE)
4:INPUT 'x AMD Y COORDS FOR UPPER SFC OF SYMMETRICAL

AERQFOIL S
INPUT X AND Y COORDS FOR BOTH SFCS OF ASYMMETRICAL
AEROFOIL
THICK=THICKNESS OF AIRFOIL IN PERCENT (F)
MEAN=NACA DESIGNATION FOR MEAN LINE IN 4 & 5 DIGIT AEROFOILS (1)
NEF=ND. OF CEE’'5S ON FRONT THIRD OF AEROFOIL (1)
MEB*MO OF CEE 'S ON BACK TWwO-THIRDS OF AEROFOIL (1)

i ]
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(INCLUDES THE ENDPT AT THETA=O DEG )
NIFeNO. OF SSE 'S BETWEEN CEE S ON FRONT THIRD (1)
ANAL=O ESTIMATE SEGMENT LENGTH NUMERICALLY
1 DETERMINE SEGMENT LENGTH BY ANALYTICAL METHOD (APPENDIX E).
PLTFAC=PLOT REDUCTION OR EXPANSION FACTOR FOR ALL PLOTS (F)

UINFeFREESTREAM VELDCITY [M/S] (F)

C=CHORD LENGTH [M]) (F)

TINFFREESTREAM TEMPERATURE [C] (F)

PINF=FREESTREAM PRESSURE [KPA] (F)

VINQ*DETERMIME AIDR VELOCITR COMPONENTS AT INPUT COORDS X & Y
(D OR 1)

TRUPLA=Q NO TRAJECTORY PLOTS
1 PLOT TRAJECTORIES ONLY FOR FIRST LAYER
2 PLOT TRAJECTORIES FOR ALL LAYERS

XMINs

XMAX= TRAUECTORY VIEWPORT SIZE IN X (F)

YMINe -

YMAX= TRAJECTORY VIEWPORY SIZE IN ¥ (F)

XZ= GRID SIZE IN x (1)

v2= GRID SIZE IWN v (1)

XMINI s

XMAX]=ICE ACCRETION VIEWPORT SIZE IN X (F)

YMIN]I =

YMAXI=]CE ACCRETION VIEWFORT SIZE IN Y (F)

EQN=O: EON OF MOTION INCLUDES TERMS A AND B (NO INMDUCED
MASS OR BUOYANCY)
1 EON. OF MOTION INCLUDES TERMS APRIME ANMD BPFRIME
2 EON OF MOTION INCLUDES TERMS APRIME, BFRIME, AMD
CPRIME (HISTORY TERM)
PCeO: INTEGRATE BY RUNGE-KUTTA

2:INTEGRATE Bv BUNMGE-HUTTA-FEHLBERG
ACN=QO INITLAL DROPLET VELOCITY GREATER THAN THAT OF AIR
BUT IN THE SAME DIRECTION
1 INITIAL DROPLET VELOCITY DIFFERS FROM THAT OF AlIR
AS PER LOCAL AIR ACCN ]
GRAVSINCLUDE GRAVITATIOMAL ACCH (O 0OR 11
COS=0 ABRAHAM ( 1970) CD
t - SARTOR & ABBOTT (197%) CO FOR O Q1<RED<S
STOKES CO FOR RED<O Of
2 LANGMUIR & BLODGETT (1984%) CD
TRUPRA=PRINT TRAJCTORY INFD (O OR 1)
PRINTO*NQ OF PRINT POINTS IN VIEWPORT DIAGOMNAL LENGTH
(QUTSIDE VIEWPORT (1))
PRINTI=NO OF PRINT POINTS IN VIEWPORT DIAGONAL LEMGTH
{(WITHIN VIEWPDRT (1))

ODISTNeNUMBER OF DROPLET SIZES IN DROPLET DISTRIBUTION (I)
DO & WeDROPLET DIAMETERS (IN WMICROMETERS) AMD FRACTIONAL
WEIGHTS FOR DROPLET DISTN. (ALTERMNATELY) (F . F)

EPS= LOCAL ERFROR IN ODE INTEGRATION DIVIDED B8Y STEP SIZE
FOR EACH DROPLETY SI1ZE IN DISTRIBUTION (D)

AT=0 START TRAJECTORIES AS SPECIFIED BY DD, EPS, XO, YO

1 AUTOMATICALLY DETERMINE TRAJECTORY STARTING POINTS

AFTER FIRST ONE FOR EAGCH SFC
CEDEL=CRITERION FOR MAX % DIFFERENCE BETWEEN TWO REALIZATIONS
OF CE VS5 L CURVE YF)
EMDEL=CRITERION FOR MAX. X DIFFERENCE BETWEEN E MAX AS PER
INTEGRATION OF BETA, AND DISTANCE BETWEEN GRAZING TRAJ. (F)

HS=0:Y0 VS L CURVE INTERPOLATED 8Y HEAMITE CUBIC POLYNOMIALS.

1:YO VS L CURVE INTERPOLATED By HMERMITE QUINTIC SPLINE.
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YOL=PLOT THE YO VS L GRAPH (0. 1, OR 2) (2 PLOTS AT HMALF PAGE SIZE)
CEL=PLOT THE CE VS L GRAPH (0.1.2.3.00 4)
(2 AMD 4 PLOT AT HALF PAGE SIZE 3 AND 4 ALSO PLOT MEAM
CE VS L CURVE wHEN THERE IS A DROPLET DISTRIBUTION,
OR IF SMOOTHING 15 PERFORMED)
CEXx=PLOT THE CE VS X GRAPH (0O, 1, DR 2) (2 PLOTS AT HALF PAGE SIZE)
FILTER=LENGTH OF BOXCAR FILTER(AS A FRACTION OF L RANGE OF ‘
LARGEST OROPLET SIZE) TO BE APPLIED TO SMODOTH CE VvE L
CUBRVE(S) IF O, THEN DON'T FILTER (F)
LLEFT=LEFTMOST POINT TO BE PLOTTED IN YO VS L AND CE V$§ L
CURVES IF O, DETERMINE AUTOMATICALLY (F)
LRIGHT=RIGHTMOST POINT AS ABOVE (F)

1CEPLA=O- WD PLOT
1. PLOT AEROFOIL & ICE LAVERS .

LYRMAX=MAX NUMBER OF LAYERS TO ACCRETE (1)
ICE=FRACTION OF CHORD LENQTH TO BE ACCRETED PER LAYER ASSUMING

A COLLISION EFFICIENCY DF 100% (F)
LTOL=MAY INCREASE IN LENGTH ALLOWED BETWEEN CEE'S

BETWEEN SUCCESSIVE AIRFOIL SURFACES (F)
ATHICK=0 CALCULATE ACCRETION THICKNESS ASSUMING FLAT SFC.

LOCALLY
! ACCOUNT FOR SFC CURVATURE IN CALCULATING ACCRETION
THICKNESS (IF ATHICK=-1, CALCULATE RADIUS OF

CURVATURE FROM SPLIME FIT AT THAT BQINT ONLY )

DENSE=D CONSTANT ICE DENSITY
’ 1

VARY ICE DENSITY ACCORDING TO NORMAL COMPONENT
OF DROPLET INPACT VELOCITY
2 VARY ICE DENSITY ACCORDING TD TOTAL DROPLET IMPACT VEL.

XO=X (UPSTREAM) CODRD FOR TRAJECTORY STAETI&‘. PTS. (F)
YO=y (OFF AX1S5) COORDS FOR TRAJECTORY STARTING POINTS. (F)
INPUT ONE SET FOR EACH SFC.. IF BOTH EQUALS 1.

m
Lol
—
N
»
L]
0
L]
lLI
U
Ll
h
Lol
Ll
"ﬂ\
~
[o]
—

FORMAT(/ F
FORMAT{/ F7 O.F§ 0.F7 0. FE a 151

FORMAT(/ 17 4F5 0.213,.4F6 0)

FﬂiﬁAT(/;IJ?IS.Ii.iS.IJ,Q!TP

FORMAT(/ .17 .%(F6 O.F% 0))

FORMAT(/ . 5D 10 O) L,
FORMAT(/ . 13,2F6 . 0.13.314.F7 0,.F6.0.F7.0) CT
FORMAT(/ 217.F6.0.F% 0.17.186)

FORMAT(14)

FORMAT(12 2F18 18§)

FORMAT( "OFNTER x & v )

FORMAT(2F10 2}

-

FORMAT(  VELOCITY COMPONENTS: Us’' . €9.5." Ve
F® 8 ' TOTAL VELOCITY - .F9.5) Ea L
FORMAT( 1 .T26. DISTANCE . LT84, DISTANCE ./, .
END . T28. FROM' K TSg, e -
POINT x CDORD v Cﬂﬂiﬂ NOSE X COORD v eqeﬂu NOSE’,/)
FORMAT( * LI4 . 2(F10 % 2F9 %)) >

OOUBLE PRECISION ALPHA.XE(101),vE(101) UINE C TINF PINF,
FI. X DFLOAT LTOL.I1CE ACCRY . EPS(N). B@(g) wis), Lu(vev) LL(!D');
CXUC101) YUl 101) XL{ 101, VL(!Q!) Tulci U, V. VV . TH F§,

XN, YN, ALPHAR  THETA XMINI  XMAXI, vMINI, YRREXT . DSEET DABS . FILTER

REAL XMAX XMIM, ¢MIN, K YMAX PLTFAC CEDEL.EMDEL  LLEFT LRIGHT

INTEGER I.J.TYPE . X2,.YZ.TRJPLA NCOU. NCOL . EON . PC,ACN, TRJPRA ,

©.PLY LAYER LYRMAX NCOLY,.CEL,YOL,ICEPLA. AT, !ﬁTH FAIL L ANAL ,

lTV?! 1A85, lU(Si! IL(S1), NES. NEF NIF MIFP1, CEX 11.1J.MEU,NEL,
LIXUQ101), IXLE101), PRINTO,PRINTI . DDISTH, CDS. AMAXD. IK,
.ATHICK ,DENSE . VIHG.JZ.GHAV MEAN H5 NEUU . NELL ,HBD(S)
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COMMON ALPHAR PI /AERDV/XE YE/NOSE/XM, YN
/LA/lHALfAEEES/NCBuEHEBLiHEEHTEKHE.HSQILE/LU.LL
/ﬁBID/!!!H,!HAxiVHiHiYiﬂi_xziYZKSFCSIEU,Tu.xLiVL
/AEHE;/HEU.NELEHEUUEHELg/EHBSqu.IL.I:ui!xL
JLLE;AEEET.LLVEB.ATSFE/TEAH51JUINF.FIH?.TIH?.EFS.DEHSE/HAEA/TH
/TRANS2/CDS . TRJUPRA PRINTI  BRINTO  EON.
PC.ACN.GRAV/WTS/W/TRANSI/DOD . C . TYPE .JZ/CRITS/CEDEL , EMDEL

c

C INPUT PARAMETERS
ﬂEADfﬂ;SlAL?HAiTfﬂE.THiEK.BEANQHEF(HEE‘HIF!AHiL;?lTFEC
READ(4. 1OJUINF C TINF PINF VINOD
EEAB(JE15DTEJFLAGXﬁIN_ZHAEEY!IH.Tﬁ!ii!Z.VZ.iHIHIiK-A!I‘
YMINI vMAX]
l!lnli,QQ)EaH.Fﬁ!Aéu.EEAV.EbsKTEJPEB.FEiH?n.FHIHTI
READ(4.25)DDISTN (DO(1) . W(I).1=1.DDISTN)
READ(4,26)(EPS(I).1=1 DDISTN)
READ(4.30)AT CEDEL . EMDEL . HS YOUL . CEL . CEX FILTER . LLEFT, LRIGHT
READ(4 3I5)ICEPLA (VYAMAYX ICE. LTOL.ATHICK , DENSE

PIl=3 141592653%89793
ALPHAR=ALPHA*F] /1 BD2

BOTH=0

IFITYPE EQ S O MEAN MNE O

-OR DABS(ALPHAR) GT 1.D-S)BOTH=

ACCRT=0D DO

TH=THICK .
ATYPE=]ABSITYPE)

C DETERMINE PARAMETERS FOR JOUKOWSKI AEROFOILS

IF(ATYPE EQ.2)CALL JOUMEX{THICK)
IF(ATYPE EQ I)CALL JOUKAP(THICK)

C DETERMIME PARAMETERS FOR MNACA MEAN LINE .
IF(TYPE EQ.Q)CALL KDORDS(MEAN)
IF(TYPE NE 4 AND TYPE NE.5)GOTD 200

C READ IN X AND v COORDS OEFINING THE AEROFOIL SPC.
NCOU=0
READ(2.40)NEU
NEUU=NEU
NELL *NEUU
Tu=t
DO 300 1+1,NEU
READ(2.50)IxU(1).xU(1),YU(])
IF(IXU(I) EO 0)GOTO 220
NCOUSNCOU+ 1
TU(1y) =]
IL(1y) =]
Tu=lys1
220 IF(TYPE EQ.S)GOTD 300
IXL(T1)eIXU(T)
XL(1)=xu(T)
YLOT)evU(T)
300 CONT INUE -
NCOL =NCOU L ' :
IF(TYPE . EQ.41GOTO 210 : ' ' 4
1de1
NCOLsO . »
READ(2.40)NEL .
NELL=NEL .
DO 310 I=1.NEL o oo
READ(2.BO)IXL(T) XL{T). YL(]}) i ; :
IFC(IXL(I).€Q.0)@0TO 310, . . ... .. .. ..'v ' . .
NCOL sNCOL + 1 . ' ’ ;
IL(1J)=1
Tusly+t
310 CONT INUE
@0T0 210

Rl I
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c
C CALCULATE AEROFDIL COORDS.

10 200 IF(ATYPE EQ 1)FS=PI1/2 DO

7 IF(ATYPE . NE 1V)FS=P1/3 DO

72 NIFP1aNIF4+1

73 IJ=1

T4 NCOU=MNEF+MNER

78 NMCOL =NCOU

76 DO 190 1=1 NEF

77 1u(1)=14

78 IL{IY=Iy

79 DO 140 J=1 NIFP1

) THETA=FS*DFLOAT{ (1= 1 )*NIFPi+)-1 ) /DF LOAT(NEF*MIFPRY)

a1 CALL COORDS(TYPE THICK THETA xU(IJ) . XL{IJ), YU(IJ), YL(IJ))

82 [J=TJ+1 ’

83 140 COMT THUE

[ P 110 CONT [ NUE

as IF(ATYPE €0 1)NEUU=TY

.1 DO 150 1=1 NEB

87 THETA=FS+(P1-FS)*DFLOAT(I-1)/DFLOAT(NEB-1)

as CALL CDORDS(TYPE THICK THETA xU(IJ), XL{1J),.YU(IJ).YL(IU})

19 IU(NEF+T)=1J

20 ILI(NEF+1)=14

91 Tuslg+t

22 1%0 CONT INUE

23 MEU=TJ-1

94 NEL=NEU

1] IF(ATYPE NE 1 INEUU=NEU

96 MELL=NEUU

a7 210 LAYERS

a8 XNsXU( 1)

29 YMHEYUY({ 1} R
c

100 PLY=TRUPLA*YOL+CEL+CEX+ICEPLA

C TRANSFORM THESE COORDS 70O ONE VECTOR OF LENGTH NCOU+NCOL-1
c IN CLOCKWISE ORDER. WITH XE(1)=xE(NCOL+NCOU-1) - THE LEADING PT.
101 100 00 102 1=t NCOU

102 [I=1U(1) f
103 XE(I)Y=xU(ID)
104 YE(T)=vyU(Il)
105 102 CONTINUE
106 NCOL 1=NCOL - 1
107 DO 104 I=1 NCOL
108 JENCOU+NCDL - ] :
109 II=1L(1) : .
110 XE(J)=XL(I]) :
119 YE(J)=YL(IT) ]
112 04 CONTINUE o
C
€ SAVE COORDS OF LATEST LAVER . _ T
113 IF{LAYER . LE 1)GOTO 106 S o .
114 WRITE(S 40INEU -
11% DO 380 I=1 NEU . . .
11§ WRITE(S . S0)IXU(T) XU(I),Yul1) : .
117 '::% CONTINUE :
118 WRITE(S, 40)NEL
t19 DO 390 1s=1, NEL
120 WRITE(S SO)IXL(I) . XL(I), vL(D)
121 90 CONT INUE
c
C FIT SPLINES TO UPPER & LOWER SFCS. R
122 106 IF{LAYER EQ . 1)CALL FIT(BOTH) ’
1232 IF{LAYER GT . LYRMAX)GOTD 370
C DETERMINE VORTICIES TO GENERATE FLOWFIELD.
124 IF(TYPE .GE O)CALL POT?
1298 IF(PLT EO.O1GOTO 121



126

127
128
129
130

131

132
133
134
138
136
137

138

139

140

141
142
143
144
148

146
‘147
148
149

151
152
183

154

189
186

157
158
159
160
161
162
163

205

IF(LAYER GT 1)GOTOD 12%
C
C OPEN PLOTTING
CALL PLOTS
CALL METRIC(1)
CALL ORGEP(S 0.% 0.5 0)
CALL FACTOR(PLTFAC)
C

128 IF(TRUPLA EQ O OR (TRJUPLA EQ ! AND.LAYER GT 1))Q@OTD 121
C PLOT VELOCITY VECTORS AND AEROFOIL SHAPE
CALL STRMFN(TYPE)
CALL AIRPLY(XMIN, XMAX . YMIN, YMAX,LAVER, Q)
121 IF(VING EQ 1)GOTO 3%0
IF(AT EQ 1)GOTO 130
CALL TRAJEC(TRUPLA, THICK AT . BOTH DDISTN.LAYER.O)
GOTO 360
C STORE COORDS OF ICING SHAPE
130 IF(ICEPLA EQ 1)CALL AIRPLT(XMINI XMAXT YMINI, K YMAXI,LAYER,{)
C DETERMINE COLLISION EFFICIENCIES
CALL CE(YOU.CEL,CEX.PLTFAC. THICK.LAYER DOISTN,BOTH, AT, TRUPLA,
™ FILTER.LLEFT LRIGHT)
C DETERMINE COLLISION IMPACT VELOCITIES
IF(DENSE NE O)CALL COLVEL(DDISTN)
C ACCRETE ICE LAVYERS
LAYER={AYER+
CALL ICING(LTOL.ICE.BOTH FAIL.DDISTN, ATHICK FILTER)
IFCLAYER GT LYRMAX AND. ICEPLA.EQ.O)GOTO 360
IF(FAIL EQ 1)GOTO 2360

GOTO 100
c .
C FIND VELOCITY COMPONENTS AT ARBITRARY X 8 Y
350 JZ=1

3%S WRITE(6.55%)
READ(S . 60)X . ¥
IF(DABS(X) LT t D-10.AND .DABS(Y).LT.1.D-10)STOP
CALL AIRVEL(X.Y U,V.&)

VVeDSORT(U*Y+VeV)
WRITE(6,70)U.V. VV
GOTO 388

C »

370 CALL AIRPLT(XMINI XMAXI,LYMINI YMAXI LAYER, 1)

C PLOT THE ICING LAYERS.

CALL GROWTH(XMINI XMAXI K YMINI,L YMAX],( LYRMAX K PLTFAC)

360 IF(PLT _NE O)CALL PLOT(O..0.,999)

C WRITE OUT THE NEW AIRFOIL COORDS.
NEU=AMAXO(NEU.NEL )
WRITE(7.80)

DO 400 IKs1 NEU .
WRITE(7.8%)1IK, XU(IK) YU(IK), LUCYK) XLOIK),YL(IK), LL(IK)

400 CONT INUE
STOP
END

C
C AL AL LA A TR R A P Y R R R ) A A A A A A Y Y Y P R R N L
C

SUBROUTINE ACCN(UD,VD.UA,VA RED.CD.EON.T,G)
C .

C WRITTEN BY: M OLESKIW ON: 801716 LAST MODIFIED: 810626
C .

C CALCULATES RHS OF NON-DIMENSIONAL EONS. OF MOTION
c
DOUBLE PRECISION RED,NUS,RD
L AN(2,6,2) HF HX HY HT(2.6.
-RHOD ,GS ,ALPHAR P ,CD.UD, VD,
.0COS . DSIN K2 .K3 . K4

.APU APV BPU, BPYV
) .DSORT ,AU AV . BU, BV, ,RHOA,
A VA T$(800.2).07S(6,2).T,
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13
14
15

ARPLT
Q
c
INTEGER EON.G.1(2).IM4(2), IM3(2). IM2(2), IM1(2).10(2), IP1(2).
CFNCALL . v
c

COMMON ALPMAR . PI/ECHMN/GS, RHOA  RHOD  ROS  NUS  HF
/INTEG/AN HT/LOC/TS DTS 1, TM4 IM3, IM2, 1M1, .10, IF‘ ]
/FC/PNCALL/STAB1/K2 K3 K4

IN UD»

IN VDeDROPLET VELDCITY COMPONENTS .

IN UA» .
IN VA=AIR VELOCITY COMPOMENTS

RED=RELATIVE MOTION REYNOLDS ND.

IN CO=DRAG COEFFICIENT

IN EON=PARAMETER TO DETERMINE TERMS USED IN EON. OF MOTION.
IN Te=TIME AT THIS TIME STEP

IN G=0O: EXTRAPOLATE HISTORY TERM SEQUENCE

IN 1 CALCULATE NEW HISTORY TERM VALUE .

e N NeN oW o NN o No N NaNa Ns)
L d
E 4

FNCALL=FNCALL#+
IF(EON EQ O)GOTO 100

FIRST TWO TERMS IN EQN. OF MOTION INCLUDING GRAVITATION AMD N
STEADY STATE DRAG (INCLUDES BUOYANCY AND INDUCED MASS EFFECTS) ‘“
APU=K4*GS*DSIN(ALPHAR)
APVaK4+*GS*DCOS(ALPHAR)
BPUsCD*K3*(UD-UA)*RED /K2
BPV=CD*KJI*(VO-VAI*RED /K2
AN( 1 IP1(MM) MM}=APU-BRU
AN(2.1P1(MM) MM)=-APYV-BPY
IF(EON.EQ 2)GOTO 2350
HF =0 DO
RETURN

[aNaNel

[}
C THIRD (HISTORY) TERM FOR SHEDODING OF VORTICITY
300 CALL HISTI(T _G)
HX*-9 DO*K3I/0 TSDO*DSORT(NUS/PII*HT( 1 TP 1(MM) MM)
HY= -9 DO*K3I/C 7SDO*DSORT(MUS/PI I=HT(2 [P 1(MM) MM)
ANCY IPI(MM) MM)=ANT T TPI(MM) . MM)+HX
AN(2.IP1(MM) MM )sANTZ TF1(MM) , W)Y
IF(G EQ OIRETURN .
HF =DSQRT ( (HX *HX+HY *HY } / ( (APU-BPU ) ** 2+ ( APVARPV ) ¥%2) )
RETURN
(o}
C FIRST TWO TERMS IN EQN. OF MOTION WITHOUT BUOYANCY AND INDUCED MASS
100 AU*GS*OSIN(ALPHAR)
AV=GS*DCOS(ALFHAR]}
BU=0.37SDO*RHDA/RHOD*CD/RDS*(UD-UA ) *RED/K2
BV=0 375D0*RHOA/RHOD*CD/RDS*(VD-VA ) *RED/K2
AN(t IP1(MM) MM )=AL-BU
AN(2,1P1(MM) MM )=-AV-BY =
HF =0 .00
RETURN
END

.--.-----'.----.-!-iiiin’!-i-ﬁgjiiii-’i--’-;§ii-i-i!!giiii----:!-!giii
SUBROUTINE AIRPLT(XMIN,XMAX, YMIN. YMAX LAYER,PT)
WRITTEN BY: M OLESKI¥ ON:BOO607 LAST MODIFIED: B10B 1D

PLOTS OUTLINE OF AEROFOIL WITHIN VIEW WINDOW

OO0 o000

DOUBLE PRECISION XU(101),YU(101) XL 101), YL(iDi)
CXE(101) , YE(101)
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C¥YPT(204) . xPE(203),YPE(203) ,XGR( 204, 10),YGR( 204,10},

REAL XMIN XMAX YMIN, G YMAX SNGL. XP, YP XPT(204),
XGRE(203,10) . YGRE(203.10) ., XPP_ YPP

INTEGER NCOU.NCOL .NCOB.IE.IP, J NCOBY, I,

IT(10)  LAYER ITT . IPB . ITE(10).ITTE,

NEL,NEU . NELMZ PT NEUU NELL

COMMON /GROW/XGR . YGR,

=
XGRE ,YGRE  ITE, ITfAEEﬂi/XE YE/AEROI/NCOU , NCOL

/SFCS/XU. VU, XL ,YL/AERD4 /NEU NEL NEUU NELL

XMIN=
XMAX =
YMIN=
YMAX=PLOT wWINDOW BOUMDARIES
LAYER=LAYER NOC

PT=0:CALCULATE PLO

TTING SHAPE AND PLDT IT.
1:CALCULATE PLOTTI

NG SHAPE OWMLY

NELM2=NEL-2
NCOB=RCOU+NCOL -1
NCOB 1 =NCDHE - 1

IP=0
1E=C

THE UPFER 5FC
DO 700 J=1 NEU
XP=SNGL{XU(J))
YP=SNGL{YU(J))
. IF{YP.GE.YMAX)GOTO 720
_IF(XP GE XMAX)GOTO 730
XPT(IP JmxP
YPT({IP)kYP
CONTINUK
GOTO 740
IF(IP.GT . 0)GOTO 750
XPT(IP+1)=xP
YPT(IP+1)=vMAY
GOTD 7&0
ALOMG THE TOF EDGE

XPT(IP+1)=(XP-XPT{IP))/(YP-YPT(IP) )= (YMAX-YPT(1P))+XPT(IP)

YRPT(IP+1)=yMAX

C UPPER RIGHT CORNER

760

IP=1P4+2

EPT(IP)=xXMAY .
YPT{IP)=YMAX

GOTQ 740

ALONG THE RIGHT EDGE
XPT(IP+1)=xXMAX

YPT(IP+1)=(YP-YPT(IP))/(XP=XPT(IP))*(XMAX-XPT(IP))+YPT(IP)

IP=Ip+1

DO 800 J=1 NELM2

XP=SNGL(XL{NEL-J})

YP=SNGL{YL(NEL-J})

IF(XP GE XMAX OR YP LE YMIN)GOTD 830
IF{J EO 1)GOTO 830

IF(XPP LE XMAX AND. YPP GE YMINIGOTO B30
IF(YPP LE YMINIGOTD B40

C IN ON THE RIGHT EOGE

IP=1pP+1

N
[=]
‘\]\

AIRPLT



XPT(IP)wXMAX
YPT(IP)=(VYP-YPR)/(XP-XPP)*( XMAX-XPP )+YPP

GOTO 830
C IN ON THE BOTTOM EDGE
840 XPY(1P+1)exMaX
YPT(IP+1)=YMIN
1P=1P+2

XPT(IP)=(XP-XPR)/(YP-YPP)*(YMIN-YPP )+XPP
YPT(IP)evYMIN

C ADD ANOTHER POINT WITHIN WINDOW.

830 1P=s1IP+ 4 .
XPT(IP)=XP .
YPT(IP)=YP

820 XPP = XP -

YPP=YP
800 CONT INUE
IF(IP NE IPBIGOTO 8%0
IP=IP+ 1

XPT(1P)=XMAX -

YPT(IP)=sYMIN

C ADD PARAMETERS NECESSARY FOR PLOTTING
850 XPT(1P+1)eXPT(1]}
YPT(IP+1)=yPT(1)
XPT(IP+2)=sxMIN
YPT(1P+2)=YMIN
DO 200 1s=91 NCOB1
XP*SNGL(XE(]1))
» YP=SNGL(YE(I))
1F(XP GT XxMAX )GOTOD 200
IF(YP GT YMAX OR YP LT YMINIGOTD 200
IE=]E+
XPE(I1E)=xP
YPE(IE)=YP
200 CONT INUE -
XPE(IE+1)=XMIN
YPE(IE+1)=YMIN
XPT(IP+3)=(XMAX-XMIN)/20.
XPE(JE+2)=( XMAX-XMIN)/20.
YPT(IP+3)=(YMAX-YMIN)/ 12
YPE(JE+2)=( YMAX=-YMIN)/12.
IT(LAYER)=IP+2]
ITTelP+3
ITE(LAYER)=IE+2
ITTE=1E+2
IF(PY . EQ O)GOTO 460

2000

C
C THESE ARE THE AEROFOIL DUTLINE LINE SEGMENTS
o TO 8E PLOTTED WITHIN THE WINDOW
DO 400 I=1. 177
XGR(I, LAYER)«XFT(I)
YGR(I . LAYER)=YPT(I)
400 CON E
C THESE ARE THE AEROFOIL ELEMENT ENDPTS. WITHIN THE WINDOW.
DO 480 1=1 ITTE
XGRE(1 .LAYER)=XPE(I)
YGRE(].LAYER)=YPE(I)
480 CONT INUE
IF(PY EQ. 1)RETURNM
C
ENTRY ERRPLT
C PLOT THE AEROFOIL OUTLINE
460 CALL NEWPEN(J)
CALL LINE(XPT YPT IP+1. 1,.0.0)
CALL LINEP(O 1)
CALL LINB(XPE YPE IE.1,-1,0) -

208
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SUBROUTINE AIRVEL(X.Y UAS, VAS NP)

WRITTEN BY ™M OLESKIW ON BOO222 LAST MODIFIED: 810608

CALCULATES THE AIR VELDCITY COMPOMENTS AT A GIVEN LOCATION

DOUBLE PRECISION X.Y. UAS VAS XP( 13}, YP(13), xC(101),YC{ 101},

RDS . GAMMA( 101) . D(100) . K(101) . PT . PUK DD(%) . C AA, MM, SIGMA,
S1(100).CO(100).PSI(13),DXC.DYC . DELTA,A B R1S.R2S,TH, DSORT . DSORT.
R3S .DATAM. T3 DABS.DSIGN,.ALPHAR, T1,T2 DLOG.R.DCOS.DSIN

INTEGER L NP J.NCOU,NCOL .N,TYPE, Uy

COMMON ALPHAR .P1/AERO3/NCOU, NCOL/AEROZ/XC YC, GAMMA .D.S1.CD

/AIR/XP . YP PSI/TRANSI/ODD.C.TYPE K JJ/MACA/TH

) &

Y=*COORDS. AT WHICH AIR VELOCITY 15 TO BE DETERMINED.
UAS=

VAS=COMPONENTS OF AIR VELOCITY.

NP=NUMBER OF FOINTS AT WHICH TO CALCULATE PSI.

HN=NCOU+ANCOL -2

SIGMA=1 DO

GRID FOR AIR VELOCITY CALCULATIONS
RDS=DD(JJ)/2 D&/C

XP{1)=x

XP({2)=x -
XP(3)=x-RDS

iP{4)=xX+RDS

XP(5)=Xx

YyP(1)=v+RDS

YR(2)=v-ROS

YP(3)=y

YP(4 )=y . : C#
YP(8 )=y

IF(NP NE 13)GOTO 100

C GRID FOR JACOBIAN CALCULATIONS

100

XP(6)=xP(4)
XP{7T)1=xP(4) .
XP(B)=xP(3)
XP(9)=xP(1)
XP{10)=x
XP(11)=x+2 DO*ROS
XP{12)=x-2 DO*RDS
XP{13)=x
YP(6&)=YP(1)
YP(7)=vP(2)
YP(A)sYP(1)
YE(B)=YP(2)
YP{10)=v+2 DO*RDS
YP{11)=y
YP{12)=y
YP{(13)=Y-2 DO*RDS
DO 110 J=1 NP
IF(TYPE EO -1)GOTO 115
IF(TYPE EQ.-2 OR.TYPE . EQ.-3)00TD 200
IF(TYPE EQ . -10)GDTD 400
PSI(U)=0.0
DO 120 L=V N



76
17
78
79

210

C FIMD DISTANCE EETﬁ{;H COMTROL PT. L AND GRID PT. I1.4J.
DxC=xXP(J)-XC(L)
DYC=YP{U)=VC(L)
C CALCULATE COMPONENTS OF EON. 9 AND FIG. 2
DELTA=D(L)/2 DO
B=DxC*CO(L)+DYC*SI(L)
A=DVC*CO(L)-DXC*SI(L)
RiS=A*A+(B+DELTA)*(B+DELTA)
R2S=A*A+(B-DELTA)"(B-DELTA)
RIS=AA+B*BE-DELTA*DELTA
IF(R3IS LT 1 D-30)G0 TO 130
TI=ODATAN(2Z DO-A*DELTA/RIS)
GO TO 140
130 IF(DABS(A) LT 1 D-30)1G0 TO 150
TI=DATANI (B+DELTA ), A)-DATAN((B-DELTA)/A)
GO TO 140 .
150 T3=DSIGN(PI &)
140 T1=(B+DELTA)*DLOG(R15)
T2=(B-DELTA)*DLOG(R2S)
K(L)=(T1-T2+42 DO*A=T3-4 DO*DELTA)/4.DO/P1
BSI(J)=PST(J)-GAMMA(L )*K(L)
120 CONT INUE
BeyP{J)*DCOSIALPHAR)-XP(J)*DSINIALPHAR)
C ABSSURE THAT P51 ON AEROFOIL = O.
PSI(U)=PSI{(J)+R-GAMMA (N+1)
@070 110

c
¢ STREAMFN. FOR A CYLINDER
115 ESI(J)=YP(J)-YP(J)/4 DO/((XP(Y)=-5.D-1)=*2+YE{J)*YP(J))
anvTo 110
c
C STREAMEN FOR A JOUKOWSK]I AEROFOIL
200 PEI(J)=P(XP(J) YP(J))
GOTO 110
C
C STHEAMEN. FOR A FLYING CIGAR.
400 AA=TH/4 D2
MM=AA*AA
IFI(YP(J).LT.O DO)IGOTD 4D
PSI(U)=MM*(AA-XP({J))/DSORT( (AA-XP{J))*=2+ ;
YP(J)*YPIJ)I+YP(JY*YP(J)/2 DO : .
@OT0 110

410 PSI(J)=2 DO*MM-MM*(AA-XP(J))/DSORT((AR-XP(y))**2e

. YP(J)*YR(JY)-¥P(J)*YP(J)/2.D0
110 CONTINUE

-

FOR BODIES OF REVOLUTION IN 3-D. CHANGE THE VELOCITY TN
FROM STRMEN FORMULA
IF(TYPE LE -10)SIGMA=DABS(Y)

¥y 0y

e Rn]

CALCULATE AIRSPEED FROM STREAMFM
UAS=(PSI(1)-PSI1{2))/2. DO/RDS/SIGMA
VAS=(PSI(3)-PSI(4))/2 DO/RDS/SIGMA
RETURN
END
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SUBROUTINE CE(YOL.CEL.CEX,PLTFAC. THICK.LAYER,DDISTN, BOTH, AT,
TRUPLA FILTER LLEFT, LRIGHT)

WRITTEN BY: M. OLESKIW ON:BO0O622 LAST MODIFIED:811024

CALCULATE AND PLOT COLLISION EFFICIEWCY OF ARBITRARY AEROFOIL
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DOUBLE PRECISION D, L(31).Y0(31), CEE(S,30), THICK FILTER,

PH P DIST.SLP SSLP DABS ALPHAR CEMAX,LZZ . DCDS.C.DD(S).
CLUCI01)  LLO101) XU 101) XL 101) , YU(101) . YL( 101}, Y  DBLE,
.CEED(5.30.5).LD(31.5).v00(31.5%).LEST.DOD . BETA . VTW(2), ACW(2),
_LSPLM _4A AAM BE BEM CC ,CCM, LDRG, CEDRG,DE. LSPL ELM, LMXCE(S),
ELPP . ELP SPLPP SPLP FELPP FELP.EL DEAXT DB LW(2),YON(2),
.DYDL(31),YOM DL . YPL  DYDLD(231,5) VTOT{(31 . 5) ACOL{31.%5).w(8),
.CEF(5%, 30)

REAL LPMIN, YOFMIN, LRG, SNGL . FACT(4),.LP(203) FLDAT E(2),LDL,

.YOP(203) CEP(20F) . XPAR(4 . 24) YPAR(S 24) . L5(33),v0%5(33),.LDn,

PLTFAC XP(203) XPWIN CEPMIN X XLF XRG,COS,CEV(201,31),LMx,

CET . CALPH CEDEL . CEMAXE CETOT ,EMDEL .CES(33) . LBRG.FL(5) . YOE(2),
CABS ,AMAY 1 CEDIF CEB(203) LPB(203) LLEFT LRIGHT AMINI_ FLV

INTEGER CEL . F,1,ICT IRX IRY PX . PY _YOL,ICUD(®), ICLDI(S).1dJ,

MK KL KU, LAYER NEU MNEL.CO.TIU,TIL,J.CEX JJ,ICTD(5).11,DDISTH,

K. BOTH GRAZE W] . M M] MIM My NCH, ICU . JCL. AT _NCHA TRJPLA TYPE,
NDCPX NOCPY  INSRT2 WP WS KE MNEUU NELL HSD(5%) J1,J2 FF

21

COMMON ALPHAR/COL/LD.YOD.ICTD.ICUD. ICLD/EFF/CEED/PLTPRM/XPAR, YPAR

/CEM/LMXCE/LG/LU.LL/SFCS/XU YU. XL YL/SRCH/D T1IU,1IL/WTS/VW

./AERDO4/NEU NEL NEU NELL/COLS/L.LVW,.YD, YOW, VTW, ACW

/CRITS/CEDEL .EMDEL /HERMTS/HS HSD/TRANSI/DD.C.TYPE J/CV/

.VTOT , ACOL

YOL#FLOT THE YO VS L GRAPH (O, 1, OR 2)

(2 PLOTS AT HALF PAGE SIZE)

CEL=PLOT THE CE VS L GRAPH (0.1,2.3.0R 4)

(2 AND 4 PLOT AT HALF PAGE SI2E; 3 ANDO 4 ALSO PLOT MEAN

CE VS L CURVE WHEN THERE IS A DROPLET DISTRIBUTION,

OR IF SMOOTHIMG HAS BEEN PERFORMED
CEX=PLOT THE CE VS X GRAPH (O, 1, OR 2)

(2 PLOTS AT HALF PAGE SIZE)
PLTFAC=FACTOR FOR SCALING ALL PLOTS
THICK=AEROFOIL THICKMNESS IM %
LAYER=LAYER OF ACCRETION
DOISTN=NO OF SI12ES IN DROPLET OISIN.
BOTH=TRAJECTORIES FOR BOTH SFCS (O~DR
AT=AUTO-TRAJECTORY MODE (O OR 1)
TRJPLA=PLOT TRAJECTORIES (O OR 1)
FILTER=LENGTH OF BOXCAR FILTER(AS A FRACTION OF L RANGE OF

LARGEST OROPLET SIZE) TO BE APPLIED TO SMOOTH CE VS L
CURVE(S). IF O, THEN DON'T FILTER. (F)
LLEFT=LEFTMOST POINT TO BE PLOTTED IN YO V5 L AND CE VS L
CURVES IF O, DETERMINE AUTOMATICALLY. (F)
LRIGHT=RIGHTMOST FOINT AS ABOVE. (F)
FORMAT( 1BETAO (MAX LOCAL CE) IS .FS 1,°'% AT A DISTANCE OF’,

1)

F7 3.’ FROM THE NOSE ‘' ./, 'OTHE TOTAL COLLISION EFFICIENCY IS°,

FS 41.7%)y
FORMAT( "OLOCAL BETA: " FS 1,
"% EST. MAx BETA: " ,F5.1,'% MAX BETA CHANGE: . FB8.1,°'%’)

FACT(1)=1
FACT(2)+0
FACT(3)=1
FACT(4)e0. ; .
CALPH=COS (SNGL (ALPHAR))

LMXCE (6)=0 DO

~NO SO

C DD FOR EACH DROPLET SIZE

DO 700 J=1.DDISTN
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IF(J EQ -1 AND _LAYER EQ 1)

CALL TRAJECITRJPLA  THICK AT BOTH . DDISTN,.LAYER, GRAZE)
IF(J.NE. 1 OR LAYER NE 1)CALL\TRAJEK(LAYER GRAZE 1)
GRAZE=O

IF{BOTH EQ 1)GOTO 130

C FOR SYMMETRICAL CASE, CREATE SYMMETRICAL VECTORS «

130

]
o
[
2

10

e~

TARGET
PAIRS OF TRAJECTORIES

I 2 ZE R R E R R R R R EEZE R R RN R R RS SRR ESR SRS R R AR RS R AR AR R R RN SRR 2]

L{t)w=LE2)
YO({1)==-v0I(2)

VTOT(1.J)=VTOT(2.J)

ACQL(1,J)==ACOL(2. J)

LORG=L(2)-L(1)

LS( 1 Y=SNGLIL( 1))

LS(2)1=SNGLIL(2))

LRG=LS(2)-LS(1)
FL(J)=*SNGL(FILTER)*LRG/2.0

COLLISION EFFICIENCY.
CET=SNGL((Y0(2)=-YO(1))/THICK )*CALPH*1 E4

TTING POINTS IN L

DO 710 KI=1, 201
LP(KINI=LS{1)+FLOATI(KI-1)/200 O*LRG

CONT 1MUE

DISTANCE IN L BETWEEN COLLISION PTS5. OF

OL=LDRG/S D2

g
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C FIT MERMITYE CUBIC POLYNOMIAL TO YO AND L

CALL HEBMIT(L(1).L(2),Y0{1),v0(2).0.DO,0.DO,CEE(3,1),
CEE(2.1),CEE(1,1))

C FIND vO'S FOR FIRST TRAJECTORY PAIR

IF(BOTH EQ . O)DOD=0. 56DO*LDRG
1F(BOTH EQ 1)0DD=0 25D0“LDRG

C 12232220 ZZERERR R ARRRAE SRR AR ER R AR R RS RS AS R AR RSN RRRES] D]

DYDOL(2)=(3 DO*CEE(J,1)*DDD+2 DO*CEE(2.1))*DOD+CEE(1.1)
IF(BOTH EQ O)YOM=0O 4400*Y0(1)+0 5600*v0(2)
IF(BOTH EQ. 1)YOM=0 T73DO*YO(1)+0 285D0O*Y0(2)

C DISTANCE IMW YO BETWEEN PAIR DF TRAJECTORIES

YPL=DYDL(2)DL

E iiiiiiiﬂiii-?iilii!i?i‘i‘i—------if?i'iﬂjitisiiiiiiiiiiiﬁ!iiii-iﬂii

€ SHIFT

£ =

MCH=1 i e

TO MAKE RODM FOR 15T TRAJECTORY/
IF{BOTH EQ O)GOTOD 197 ' '
L{3)=t(2)

LS{3)=L5(2] :
YO(3)ev0(2) :
VTOT(3,J)=vTOT(2,J)
ACOL(3.J)=aCOL(2Z.J)

INSRT2=0

M=0

ICT=3

MIM= 1

OYDL(1}=0.D0

DYDL(3)=0.00

govo 190 e

TO MAKE ROOW FOR 15T TWe TRAJECTOWIES.
L(4)=L1(2)

LS(4)=LS(2) : .
vO{4)evOi2)

VTOT(4,J)=VTOT(2.J)

ACOL(4, J)=aCOL(2.J)

INSRTZ2=1 )

IF(YPL LT 4 D-5)YPL=4 D-5 ;gf
c F-i-i!-!ii--iiiiili!--iiliiiiiiii'i;gﬂ:&fff:;ﬁiﬂi;;i::iiii!il!ll!!!
- \__.
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LA

=0
ICT=4
MIm=2
DYDL( 1)=0.DO
DYDL(4)=0 DO
C TRAJECTORY PAIR - ¥YO VALUES:
1890 YOW( 1 )avOM-vYPL/2.DO
YOW(2V=vyOM+YPL/2 DO
YO(MIM {)=vyOM
CALL TRAJEK(LAVER GRAZE, 1)
CALL TRAJEX(LAVER GRAZE 2)
LiMIm+1)={hw(1)+LW(2))/2.00
VTOT(MIM+1 J)={VTWI1)+VTW(2))/2. DO
ACOL(MIM+1 J)={ACW(1)+ACW(2))/2.DO
C CALCULATE COLLISION EFFICIENCY FOR TRAJECTORY PAIR
DYDL(MIM+ 1 )= yOW(2Z)-YOW( 1))/ (LWI{2)-LW{ 1))
IF(DYOL{MIM+1) LT O DOIRETURN
FIT WNEW HERMITE CUBIC POLYMNOMIAL TO FIRST & SECOND
INTERVALS CREATED IN YO AND L VECTORS
IF(BOTH EQ O AND M EQ OIGOTO 280
CALL HERMIT(L(MIM) L{MIM+1) vYO(MIM) YO(MIM+1),
DYDL(MIM) DyDL{MIM+1) CEE(3 MIM) CEE(2 WIM) CEE(1 . MIN})
280 CALL HERMIT(L(MIM=+ 1) L{(MIM+2) YO(MIM+1) YO(MIM+2),
DYOL(MIM+1) DYOL(MIM+2) CEE(I MIMeq)
CEE(2 MIM+1) CEE(1 MIM+1))
LS(MIM= 1 ) =SNGLIL{MIM+T))
IF{INSRT2 EQ O)GOTO 290
C CREATE SYMMETRICAL VECTORS FOR SYMMETRICAL SITUATION.
LONCH= 1 j=-L{MIM+1)
LSINCH+1)=-L5(MIM+ 1)
YOIMCH+ 1 )s-vyO(MIM+1)

0y

ACOL({NCH*1 J)v-ACOL(MIM+1 J)

DYDL{NCH+ 1 )=DVDL( MM+ 1)

CALL HERMIT(L(NCH) L{INCH+1) YO(NCH) YO(NCH+1),

DYDL (NCH) DYDL(NCH+1) CEE(3 NCH) CEE(2 NCH) . CEE(1 NCH))

CALL HERMIT(LINCH+1) L{NCH+2Z], YOUNCH+1}, YO(NCH*2)},

DYDL (NCH+ 1) DYDL(NCH+2) CEE(3 . NCH+1) CEE(2.NCH+1) CEET1.NCH+1))

WE =M
M=1CT-1
CEMAXE=(G O
CEDIF=0 . C
CETOT=0 O
I=1

F=1

$°

C FIND CE CURVE TOTAL CE, AND MAX VALUE OF Cf
DO 71% KI=1,201

720 IF{LP(KI) LE. L5(F+1))GOTD 730
FaF+y ~ .
QoT0 720

730 DB=DBLE(LP(KI )=-L5S(F)) -

EEV(KIiﬁ)!SHGL((3.DG*EEEf}iF)‘DB
+2 DO*CEE(2 . F))*DB+CEE(1 . F))*100. . 0O*CALPH
CETOT=CETOT+CEV(KI M)
CEMAXE=AMAX 1 (CEMAXE . CEV(X] M))
IF(CEMAXE EQ.CEVI(K] M) }PN=DBLE(LP(K])) )
IF(MP NE OICEDIF=AMAXV(CEDIF ABS(CEV(KI M)-CEV(KI WF)))
718 COMT INUE
CETOT=CETOT/SHGL(THICK)/2 O*LRG

c [(IX2 32232 RRES R YRR RN SRR ER AR AR AR RS AR RS2 R R Rnl ]

BETA=DYDL(MIM+1)*1 DI*CALPH

C i?ﬁiiiiiii?,‘iiiitiit?ﬁﬁPQQQ?@D!ili!iEiii‘?iitiiﬁiii,ﬁiii‘i‘iiii?liﬁi
WRITE(6, 3QO)BETA, CEMAXE CEDIF
WRITE(7 30VBETA CEMAXE CEDIF



115
116

117

118
119

120
121
122

123
124
128

126

127
128
129
130
131
132
133
134

13%
136
137
128
139
140
141
142
143
144
145
146
147

149
180
151
182
153
154
155
156
157
158
159
160
161
162
193
164
163
166
167
168

CEDRG=2 DODBLE(CEMAXE/100.O/CALPH)

IF(ICT GT 5+(2-BOTH) AND CEDIF/CEMAXE .LT CEDEL/100.0

-AND ABS(CETOT-CET)/CET LT EMDEL/100.0)GOTO 180

L5SPLM=0 DO

C FIND FARTHEST APART PTS ON CE VS L CURVE

00 BO0 M=t M
1F(BOTH EQ O AND L(MI+1) LT 0. DO)GDTO 800
NORMALIZED CUBIC HERMITE FOLYMOMIAL COEFFICIENTS
LOPE OF CUumRVE

AA=0Q DO

BB=3 DO*CEE(I M )*LDRG*LOWG/CEDRG

CC=2 DO-CEE(2 MI)*LDRG/CEDRG

[T

C FIND LENGTH OF CUBIC POLYNOMIAL SEGMENT

DE={L{MI+1)- (M]))/LDRG

IF(DE LT 1 D-2)GOT0 BOO
IFCIL(MIN=LO1))}/(LUICT)-L(1)) GT.O 9%00
AND L(MI+t) GT PNIGOTO 800

CALL SFCLEN(DE.LSPL AA BB .CC)

C LOCATE LONGEST SEGMENT ON CE V5 L CURVE

00

¥

o
o
0

a2l ]
d
™oy

LSPLM=DMAX1{LSPLM LSPL)
IF(LSPL LT LSPLM)GOTO 800
ELM=DE

MIM=M]

AAM=AA

BEM=88

CCM=CC

CONTINUE

FIND MIDPOINT TRAHCTORY:

ELPP=ELM/3 DO

ELP=ELM=2 DO/3 DO .
CALL SFCLEN(ELPP SPLFP AAM BBM_CCM)
FELPP=LSPLM/2 DO-SPLPP

CALL SFCLEN(ELP . SPLP AAM BEM,CCM)
FELP=LSPLM/2 DO-SPLP

IF(DABSIFELP) LT LSPLM/20.DO)GOTO BT0
EL=ELP-FELFP*{ELP-ELPP)/(FELP-FELPPY
ELPP=ELP

ELP=EL

FELFP=FELP

GOTO &8s

DDO=ELFP*LDRG

STIMATED NEW VALUE OF L FOR INSERTIONM

LEST=DDD+L(MIM)
€ SHIFT VECTORS TD MAKE ROOWM FOR MEW TRAJECTORIES.
NCH=ICT-MIM
DO 810 MI=1 NCH .

ais
810

MJ=ICT+1-M]
LiMg+1)=L(mJ)
YO(MJ+ 1 ) =vO(My)
OYDL(My+1)=DyDL(MJ)
LS(My+1)=L5(My) .
VIOT{(MJ+1, J)sVTOT(MJ, J) '
ACOL(My+1,J)=ACOL(MS, J)
IF{™M] EQ 1)@0OT0 810

DO 815 I=1.,3

CEE(I MJ+1)=CEE(] mJ)

CONT INUE
CONT INUE

YOM=( (CEE(3, MIM)*DDD+CEE(2,MIM) ) *OOfPCEE (.1, MIN) ) *DOD+YO(MIN)

IF(BOTH EQ O AND M EQ.J)YOM=(vO(3)+Y0D(4))/2.00

T 1CT=1CT+1

IN 2=
IF(BOTH €0 . 1 OR DABS(LEST).LT.LDRG/2 D2)INSRT2=0
IF(INSRT2 EQ 0)GOTO 830

214



169
170
171
172
173
174
178
176
177
178
179
180
181
182
183
184
189

186
187
188

189
190
191
192
193
194
19%

197
198
199

NCHA sMIMs
DO 820 MI=1 NCHA
MYsICT+1-M1
Limys t)e L (MJ)
YO(MY+1)=YO(MY)
DYDL (MU+ 1 )=DYDL (MJ)
LS(MU+ 1)L S(MJ)
VTIOT(MJ+1 . J)=VTOT(MJ, J)
ACOL(MJ+ 1 J)=ACOL(MY, V)
IF(M] EQ 1)GOYO 820
DO 82% 1=1.3 - ,
CEE(] MU+1)=CEE(] . MJ)

83s CONT INUE
820 CONT INUEY
MIMaMIMs 1
ICT=ICTe 1
830 DYDL(MIM+1)=(3 DO*CEE(3 . MIM)*D00D

+2 DO'CEE(2.UIN))°DOD‘CE£(1.lll)5
YPLSDYDL (MIM+ 1)*DL
1F(YPL LT 4 D-5)YPL=4.D-5
GOTO 190
C
C FIND BETAQ (MAX VALUE OF LOCAL CE)
C USING THE NEWTON-RAPHSON ALGORITHM
180 .  HSD(J)=HS
' IF(HS EQ O)GOTO 1814
i CEDIF=0 O
\ CALL HERMS(L . .YO.DYDL.ICT CEF)
* FFe(
pO 182 X]=1. 201
183 IF(LP(KI) LE LS(FF+1))GOTO 184
FFeFF+1
GOTO 183
184 DBDBLE(LP(XI)-LS(FF))
CEDIF=AMAX 1 (CEDIF ABS(CEV(X] M)-
SNGL(( ((S DO®CEF(S FF)*D8+4 DO*CEF(4 FF))*D8
+3 DO*CEF(3.FF))*DB+2 DO*CEF(2 FF))*D8
SCEF(1 . FF))*100 O*CALPH))

182 CONT INUE
IF(CEDIF/CEMAXE LT O.08)GDTO 18%
HSD(J) =0
GOTO 181

18% DO 186 Jt=1, 30

DO 187 J2=1.5%
CEE(U2.U1)=CEF(J2,J1) -

187 CONT INUE
186 CONT INUE .
181 JJ=0
520 P=PN
C FIND CE VS L SLOPE AND ITS SLOPE
505 1F(P .GT.L(1))GOTO 300
1el-1
1F(1.GE 1)GOTO S0S
PeL(1)
1=1
@OTO S10
00 IF(P.LE.L(1+1))GOTO 310
© Jelst
I@1.LT ICT)GOTO 800
1=1CT.~ 1
pPeL(iCT)
s1p DIST=P-L(1)

1F(HSO(JU) .EQ. 1)GOTO 518 .

C SLOPE OF CE CURVE AND ITS SLOPE FOR HERMITE CUBIC POLYNOMIAL .

$SLP=6 DO*CEE(],I)
SLPe6 .DO*CEE(I, 1)°DIST+2 DO*CEE(2.1)

s
oot

e

215



231
232

238
239
240
241
242

243

286
267
268
269
270
271

172

273

274
278

278

216

CE
anTo 517
C SLOPE OF CE CURVE AND ITS SLOPE FOR HERMITE QUINTIC SPLINE.
515 SLP={ (20 DO-CEE(5.1)"DIST+12. DD‘ﬁEE(! 1)1*D157+6 DO=CEE(3.1)

)*DIST+2 DO*CEE(2.1)
SSLP=(60 DO*CEE(S,.1)*DIST+24 DO*CEE(4.1))*DIST+6€. BO':EE(: 13
517 PP -SLE/S5LP
IF(DARS(P-PN) LT LDRG/5.D21G0TO 512 .
= S
IF{JJ LT 1001GDTO %20
WRITE{(& 201}
WRITE(7.20)
@OTO %560
512 IF{HSD(J) EQ O)CEMAX=( (3 DO*CEE(3.1)*DIST+2 DOCEE(2.1))*
DIST+CEE{(1,.11)*1 D2*DCOS{ALPHAR) i
TF(H50(J) EQ 1ICEMAX=((( (% DO*CEE(S.1)*DI15T+4 DO*CEE(4, 1))*DIST
+3 DO*CEE(3,1)}1*DI5T+2 DO*CEE(2,1))*DIST+CEE(1,I))*1.D2
*DCOS(ALPHAR)
LMXCE(J)=P
WRITE(6. 1Q)CEMAX P CET
WRITE(7 10)CEMAX P CET
%60 ICU=0o ’
ICL=0
c
C CREATE DISTRIBUTED SPLINE COEFF MMATRIX.
KE=3+2*H3D(J)
DO S70 I=1_1CY
IF(1 EQ.ICTIGDTD SA1
Do 580 k-v KE
CEED(K I, ,J)=CEE(K 1}
[ 1e] CDHT!NUE
81 IF(L{1) LT.O DO)ICL=ICL+1
IF(L{1) GE © DO)ICU=ICU+1
LD(TI  Ji=sL(])
YOD(I . J)=YO(])
YOS(I)1=SNGLIYO(I1))
DYDLD(I . Jr=DVYDL(T)
570 CONT INUE
ICTD(JS)I=ICT
ICUD{J)=1CU
ICLD(J)=1CL
C FINMD PROBABLE LOCATION OF FPEAX OF MEAN CE VS L CURVE.
LMXCE(G )=LMXCE(&)+LMXCE(J)*W(J)
IF(YOL EQ O AMD .CEL EQ O)GDTO 700
IF{J GT 1)GOTD 170

3
S

c
C DETERMINE PLOTTING PARAMETERS
LRIGHT=AMAX 1(LRIGHT ,LS{ICT)I+FL( 1))
LLEFT=AMINT(LLEFT LS{1)-FL(1]})
IF(LAYER EQ 1)CALL PLTSZ(LLEFT LRIGHT vOS5(1).Y0S(ICT),
LPMIN, yOPMIN Px PY [RX TRY NDCPX NOCPY)
IF(LAYER . GT 1)CALL PLTSZE(LLEFT LRIGHT vOS(1).Y0S5(ICT),
LPMIN, YOPMIN Px Py [RX IRY NOCPX NDCPY)
LP({202)=LPMIN
LP(203)=XPAR{4 IRX)/ 10 O**Px
CALL WNEWPEN(1)
IF(YOL EQ.0)GDTO 700
YOP (202 )=YOPMIN
YOP(203)=YPAR(4 IRY)/ 10 O**PY
C PLOT YO VS L AXES
CALL FACTOR(FACT(YOL)*PLTFAC)
CALL ORIGINI999.20.0.13.0,5.0,.5.0)
CALL AXZEP{XPAR(3,IRX),3 NDCPX.0,1.0)
CALL AXIS210.0.0.0.'L/C’ . -3 . XPAR(2.1IRX).0.0.LPFRIN XFAR(4, INX
}/10.0=*Fx XPAR(3, IRX]))
CALL AXIS2{XPAR(2,IRX)}. 0.0,  *,-1,-YPAR(2 . IRY) . 80.0.1.0.1.0.YPAR
(3, IRV })



27
278

279
280
281

282
283

284 -

285
286
287
288
289
290
291
292
293

294
293

296
297

298
299

300 .

301
302
303

310
In
312
313
314
318
316
I
318
319
320
321
322
323
324
328

=} 3

3127
328
329

170

-C

CALL AXQZEP(YPAR(3,IRY) 3 NDCPY O.t.1)

217

ce

CALL AX]S2(0.0,0 0.°'YO/C' .4, ,YPAR(2,IRY) . 90.0.YOPMIN, YPAR(4,IRY)/

10 .0*°PY . -YPAR(3 IRY))
CALL AXIS2(0.O.YPAR(2.IRY), " . 1 -XPAR(2,IRX),0.0.1.,1. XPAR

(3. IRX))

1F(YOL EQ.0)GOTD 700

C PLOT THE YO VS L POINTS

120

110

100

LS(ICT+1)=LP(202)
LS(ICT+2)=LP(203)
YOS(ICT+1)=YOP(202)
YOS({ICT+2)=vYOP(203)

CALL LINEP(O 18)

CALL LINE(LS. Y0S.ICT, 1 - u-1)

Fey
D0 100 I=1,201 : .
IF(LP(I) LE LS(F+1))GOT0 110
FaFe+
GOTO 120

DB=DBLE(LP(I)-LS(F))
IF(H30(U) €EQ.O)YOP(1)=SNGL(((CEED(3.F J)*DB+CEED(2.F . J)) D8
+CEED(1 . F JU))*D8B)+YOS(F)

IF(HSD(J) EQ 1)YOP(1)=SNGL(((((CEED(S.F . J)*OB+CEED(4.F, u))"D8

+CEED(3.F . U))*DB+CEED(2.F.J))*DB+CEED(1,F,J))*DB)+YOS(F)
CONT INUE

C PLOT THE YO VS L LINE

700
C

CALL LINETLP YOP 201.1,0.1)
CONT INUE

IF(CEL EQ 0)A0TO 300
Je 1

C PLOT THE CE VS L AXES

240

CALL FACTOR(FACT(CEL)*PLTFAC)

CALL ORIGIN(999.20.0.13.0.5% 0.5.0)

CALL AX2EP(XPAR(3,IRX). 3 NDCPX,0,1.0) -

CALL AXIS2(0.0,0.0.°L/C'.-3 XPAR(2,IRX).0.0.LPMIN, XPAR(4 IRX)/
10.0¢*Px , XPAR(3,IRX))

CALL AXIS2(XPAR(2 . IRX).0.0.° ".-1.-YPAR(2.10).90.0,0.0.1.0.YPAR(3,

10)) .
CALL AX2EP(YPAR(3,10),3.0,0,1.1)
CALL AXIS2(0.0.0 O. 'COLLISION EFFICIENCY IN %’ ,28.YPAR(2.10),

. 90.0,0 0. YPAR(4,10)*10.0.-YPAR(3,10))

CALL AXIS2(0 O.YPAR(2.10).’ °.1,-20.0.0.0.1..1..XPAR(3,IRX))

CEP(202)=0.0 :

CEP(203)=YPAR(4.10)*10 O

CEB(202)+0.0

CEB(203)=CEP(203)

LPB(202)=LP(202)

LPB(203)=LP(203)

1CT=ICTD(J) ¢
DO 240 I=1.ICT :
LSCI)=SNGL(LD(I.U))
CES(1)=SNGL(DYDLD(I1.U)*1.D2)*CALPH
CONT INUE

CES(ICT+1)=CEP(202)

CES(ICT+2)=CEP(203)

LS(ICT+1)e(P(202)

LS(ICT+2)=LP(2023)

LRA=LS(ICT)-LS(1)

C PIND TME PLOTTING POINTS FOR THE MEAN AND/OR SMOOUTHED CURVE.

238

IF(U.NE. 1 OR (FILTER £Q.O.DO AND DDISTN.EQ.1))GOTO 228
LBRG=LRG+FL(U)*2 O
LPB(t)sLS(1)-FL(U)

DO 2385 1=1, 201

LPB(1)=LPB( 1)+FLOAT(I~-1)/200 O*LBRG

CONT INUE



I
3332
333
334
EEL
336
37
138
339

341
342

343
344
34%
348

347
348
349
180
384
382
353
354
388
kL1
as7
I8
ase
360
361
362

364
368
3gs
367
68
369
370
T
372
373
37a
378

376

10

c

LOT THE CE VS L POINTS.

CALL LINER(O.15) .

CALL LINE(LS.CES.ICT.1.-1 J=1)
DO 210 1=1,201
LP(I1)=LS{1)+FLOAT(1-1)/200. 0%LRG .
IF(LP(I) LE LS(F+1))GDTD 220
FefF+i
GOTO 230
DB=DBLE(LP(I)-L5(F))
IFIHSD(J) EQ OICEP{I)=SNGL((3 DO*CEED(3 E.J)"DB
+2 DO*CEED(2.F,J))*DB+CEED( Y F J))* 100 O*CALPH
TF(HSD(J) EQ. 1)CEP(1 }=SNGL({((S DO*CEED(S.F.J)~08

" 44 DO*CEED(4.F J))*DB+3 DO*CEED(3.F.J))*0D8

+2 DO*CEED(2.F . J))*DB+CEED( 1 .F.J))=100.O*CALPH
CONT INUE

PLOT THE CE V5 L LINE

IF((FILTER NE O DOYOR DDISTHN GT 1) AMND (CEL.EQ.J3.OR.CEL.EQ.4))
CALL WEWPEN(3)

CALL LINE(LP CEP,201.1,0,1)

JEJ+ 1

IF(J.LE DDISTN)GOTO 2%0 )

IFI(CEL NE 3 AND CEL NE 4)Q0TO 300

C PLOT THE MEAN AND/OR SMOOTHED CE VS L CURVE.

980

930

8910
g

1000

DO 980 1=1. 201
CEB(I)=0 ©
- CONTIMUE
IF(FILTER NE 0.DO)GOTO 1000
IF(DDISTN LE 1)GOTO 300
DO 900 J=1 DDISTN
F=1
ICT=ICTD(U)
DO 910 1=t 201
IF(LPBI{I) . LT SNOL(LD( 1, ,J)))0OTD #10
IF(LPB(I) GT SNGL({LD(ICT J)))GOTO 910
TE(LPR(T) LE SHGL(LD(F+1 J)))G0OTD 9820
FeF+1
GOTO 930
DB=DBLE(LFB(1))-LD(F.J)
IF(HED(J) EQ O)CEB(I)=CER(I)+SNGL(W(J)*=((3 DO*CEED(3.F,.J) D8
42 DO=CEED(2.F . J))*DB+CEED(1,F J)))1* 100 0O*CALPH L |
IF(HSD(J) EQ 1ICEB({T)=CEB{I}+5NaBLI(W(J)*({( ({5 DO*CEED(5,.F J)*
+4 DO*CEED(4 F J))*D8+1 DO*CEED(3 . F J))=D8
+7 DOCEED(2.F,.J))*DB+CEED(1 . F . J))})*100 . O*CALPH
COMT IMUE -
COMT IMNUE
GOTO 1100
DO 1010 J=1 DODISTNH -
ICT=ICTD(J)
F=1
LOL=SNGLI{LD(1.J))
LOR=SNGL(LD(ICT J))
LMX=SNGL(LMXCE(J))
00 1020 lJd=t, 201
IFILPB{1J) GE LMX)GOTO 1110
IF(LPB(IJ) LE.LDL)GOTO 1120

C I i i s R s T s ST AR R R R R R A 2 S AR R Y R AR R R R R R R AR R R R A ]y

FLVeFL(J)=0.9°FL(J)/(LMX-LDOL)*(LPB(1J)~LDL}

C ﬁﬁiiiii!iiﬁii!iiijiiDiiﬁijii!i!Q!ﬁﬂﬁ.ﬁi‘i-iiiiii!iilﬁiiliiii‘i‘,iiﬁ‘

1110

@0T0 1200
IF(LPB(1J) GE.LDR)GOTO 1120

c I X332 2222232232222 AR R R RN R R RS R RN RSN LR AL R L ERLESLERRE ]

QOTO 1200



81
3az
383
a4
k1 L}
me
an7
aas
Jag

351
3e2
393
394
395
386
397
ej-1.]

399

400
401
402
403
404
405

406
407
408

409
410
a1
412
413
414
415
418
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
438
438
437
438
439
440
441

1130
1200

1040

1O

1060

1070

1030
1020
1010
1100

c
300

€00

FLVsFL(J)
E(1)=LPB({I1J)-FLV
E(2)sLPB{I1J)+FLYV
0o 1030 I=1.,2
IF(E(TI) . GT SNGL(LD(1,J)))GOTD 1040
YOE(T)=SNGL(YOD(1,J))
GOTO 1030 )
IF(E(I) LT SNGL({LDUICT J)}1)GOTO 1050
YOE(1)=SHNGL(YQD(ICT.J})
GOTD 1030
IF(E(I).GT SNGL{LD(F J)))GOTD 1060
F=F-1
anY10 10%0
IF(ECT) LE SNGL(LD(F+1, J)11GoT0 137@
FeF+1
GOTD 1060
DB=DELEIE(II)I-LD(F . J)

I1F(HBD(J) EQ O)YOE(I)=SNGL(((CEED(3.F ,J)*DB+CEED(2,.F.J))*DB

+CEED(1,F,J))*DB+YOD(F J))
IF(HSD(J} EQ. 1)YOE(T)=SNGL(((((CEED(S . F J)*DB+
CEED(4.F.J))*DB+CEED(3 F J))*DB+CEED{(2.F J))*D8B
+CEED( 1, F.q))!DQ*VGQIF,J))
CONT INUE
CEB(IJ)=CEB(IJI+(YOE(2)-YOE(1))/FLV*S0 O*CALPH*SNGL(W{J))
CONT INUE
~ CONTINUE
CALL NEWPEN( 1)
CALL LINE(LPB CEB,201.1.0.1}

IF(CEX . EQ O OR LAYER GT 1V )RETURN
LA
ICT=ICTD(J)

€ FIND RAMGE OF X

310
320

330
340

360
370

8o
o

410

00 610 I=1.ICT
L{1)=LD{1.J}

CONT INUE

DO 310 KL=1.NEL

IF(LL(KL) . LE L(1))GOTO 320 'a
CONT INUE

DO 330 KU=1,NEU
IF(LU(KU) GT L(ICT))IGOTO 340
CONT INUE
XRG=SNGL ( XL{KL ) +XU(KU))
XLF=SNGL(=-XU(KU)})
co=0
I1=ICT-1

S 1IL=1

1IU=NEU
DO 3%0 KK=1, 201
X=XLF+XRG/200 *FLOAT(KK-1)
XP(KK =¥
IF(X.GT 0. )GOTD 360
CALL SFC(DBLE(-X},v,1.1.22) =
GOTO 370 . 3
CALL SFC(DBLE(X).Y.,0,1, L2Z) ’
IF{CO EQ 1)GOTO 38O
1F(ZZ.GT L{ICT))GOTO 2380
IF(ZZ.GT L(11))GOTO 410
I1I=I1-1
1F(11.EQ.0)GOTO 2390
aoTO 2370
co=1
CEP(MK)I=0 . O
GOYO 380
DR=Z2Z-L(II)
IF(HB0(J) EQ. OVCEP(MK)=SNGL ({3 .DO*CEED(3, 11, J)‘B!



442

443
444

445

446
447
448
440

450
4% 1
4952
433

454

458
456

457
458
459
460

46 1
462

oedenm

220

COLVEL

+2 DO'CEED(2.11.J))*DB+CEED(1,11,J))*100.0°CALPH
IF(HSD(J) EQ. 1)CEP(KK)=SNGL((((S.DO*CEED(S.11,U)*D8
+4 DOCEED(4 .11 J))*D8+3 .DO*CEED(3.11.J))=D8
+2 DO*CEED(2.11.J))*OB+CEED(1.1]1.J))*100.0*CALPH
3%0 CONTINUE |
1F(U.GT 1)GOT0 620
C DETERMINE PLOTTING PARAMETERS
CALL PLTSZ2E(XP(1).XP(201).0.0,.99 9 XPMIN CEPMIN, PX PY_ IRX, IRY,
_NDCPX ,NDCPY )
XP(202)=xPMIN
XP(203)=XPAR(4 IRX)/10 O**PX
CEP(202)=0.0
CEP(203)=YPAR(4 10)°10.0
C PLOT CE VS X AXES.
CALL FACTOR(FACT(CEX)*PLTFAC)
CALL ORIGIN(999.,20.0.13 0.%.0.%.0)
CALL AX2EP(XPAR(3, IRX), 3 NDCPX,0.t O)
CALL AXIS2(0 0.0.0.'X/C’',-3,XPAR(2,IRX), 0 O.XPMIN XPAR(4, IRX)
/10 .0O**PX . XPAR(3,IRX))
CALL AXIS2(XPAR(2.IRX) 0 0.’ '.-1.-YPAR(2.10).90.0,0.0.1.0,YPAR(],
10))
CALL AX2EP(YPAR(3,10).3.0.0,1.1)
CALL AXIS2(0.0.0.0. COLLISION EFFICIENCY IN %X’'.2%5,.YPAR(2.10),
.90.0,0 O.YPAR(4,10)°10.0,-YPAR(DJ.10))
CALL AXIS2(0 O.YPAR(2.,10),’ ',1.-20.0.0.0,1..1. XPAR(3,IRX))
C PLOT THE CE VS X LINE. .
620 CALL LINE(XP CEP,201.1.,0.1)
Jeys
1F(J.LE DDISTN)GOTO 600

C
c
C IIIIUI-I-I-Il-l.'l'..IIIII-I..I-;-I-IIl-l.I---IIIII..I-.lI.I--.....
e -
SUBROUT INE COLVEL(DDISTN)
c
C WRITTEN BY M_OLESKIW ON:81022% LAST MODIFIED: 810506
c .
C INTERPOLATE DROPLET IMPACT VELOCITY ALONG AEROFOIL SFC.
C
QOUBLE PRECISION BPAR(4),LD(31.%),vY00(31,8),
A(31).V(31).L(31) COEFA(30.3).COEFV(30.3),CFA(3.30,8),
CFV(3.30.%).VTOT(31,8) ACOL(31.%)
c
INTEGER I.J.DOISTN.ICT ICTD(S).ICUD(S),ICLD(S).IER K
C
COMMON /CV/vrov.ACOL/COL/LD.voo.xcro.lcuo.ICLD/CEV/cﬁV.crA
[ . .
C IN DDISTNsNG OF SIZES IN DROPLET DISTRIBUTION.
c .
C CUBIC SPLINE END PARAMETERS (FREE SPLINE) .

DO 100 1=1.4
BPAR(1)=0.D0O
100 CONTINUE* . .
DO 200 J=1,DOISTN
ICT=ICTD(U)
C CREATE SINGLE VECTORS FOR U AND V COMPONENTS,
c AND IMPACT LOCATION LENGTHS.
D0 210 I=1. ICY
V(I)=vT0T(1.J)
A(I)=ACOL(I,J)
L(I)=to(I1.J)
210 CONT INUE
1F(ICY GE 4)GOT0 300



16
17
18

3 COORDS
C _
C FIT CUBIC SPLINES FOR IMPACT VELOCITY AND ANGLE © °
CALL 1CSICU(L.V.ICT.BPAR, COEFV,30.1ER)
CALL ICSICU(L .A.1CT.BPAR.COEFA.30.1ER)
G0T0 340
¢

C CALCULATE QUASI-HERMITE CUBIC POLYNOMIALS FOR IMPACT
C VELOCITY AND ANGLE

300

C

CALL IOHSCU(L v, ICT . COEFV 20,1
CALL TOHSCU(L.A J1CT.COEFA 30.1

ER
ER

C CREATE DISTRIBUTED COEFFICIENT MATRICES.

[ %]
\M‘

210 DO 220 I=1.1CT
DO 230 K=1.,3
CFA(K.I J)=CDEFA(I K)
. CFV(K 1,J)"COEFV(] K)
230 CONTINUE
220 CONT IHUE
200 CONTINUE
RE TURN
END
c
c .------..-liiiii!I!llIl!’!ﬁi!iii.'iiiiiili!jﬁI!IIiiiiEiii_!I-i--iifi
c
SUBROUTINE COORDS{TYPE T THETA, XU, XL,YU.YL)
C
C WRITTEN BY: M. OLESKIW ON:790828 LAST MODIFIED:81072%
c

DOYBLE PRECISION X, YU,YL DSQRT.C.T . THETA DCOS,EIM2,EIMY,
E1,DABS.A.B . DSIN,x] ETA ALPHAR P1 TOL LE.RE THETAM, YC,
CJTIMY UTIM2 M P DFLOAT K1 XU XL,YT DATAN PHI YURR DTANM,

o®J

10
11

12

13

14

s NoeNaNeNoNeNeNe I el [e]
—
z

c

c

.JTHICK

INTEGER TYPE ATYPE IABS.1, 1ER ME
COMMON ALPHAR PI/JOUK1/A B . EI
EXTERNAL JTHICK
FORMAT( ‘OFAILURE T

TYPE=AEROFOIL TYPE

TeAEROFOIL THICKNESS IN PERCENT
THETA*ANGLE FROM NEGATIVE X AXIS
X=X-COORD OF AEROFOIL SFC.

YUs=

YL= UPPER & LOWER Y-COORDS. -OF A
ATYPE=]TABS(TYPE)

IF(ATYPE EQ 1)GOTO 101

IF(ATYPE .EQ.2.0R.ATYPE EQ 3)GOTO
I (TYPE . EQ.-10)GOTO 103

GOTO 100

ENTRY KOORDS{MEAN)

AN, MOD . M

EROFOIL SFC.

102

C IN MEANSDESIGNATION FOR NACA MEAN LINE.

c

C DETERMINE PARAMETERS FOR MEAN LIWES

IF(MEAN . GE  100)GOTO 200

C
C FOUR DIGIT FAMILY OF NACA AEROFOILS.

M=DFLOAT(MEAN/10)/1.D2
PeDFLOAT(MAD(MEAN, 10))/1.D1
RETURN

OF NACA AEROFOILS.

s

(]
-
L
(]
Q
n
x
(]
]
-~
P
»
o
-
E
Ly
-
sl
]
L,
P "
.~ ]
n
»
[
n
Q
™
\u\
L]
~
m—



46

47
48
49
50
51
52
33

54
55
56
57
58

LN K
¥ N AR N

c .
C FIVE DIGIT FAMILY OF MNACA AEROFOILS.
200 M= (MEAN-200)/10
: GOT0(210.220.230,240,25%0) .M
210 M=0 O%800
Ki=361 4D0O
RETLRN
220 M=0 12600
Ki=51 &4DO
RETURN
230 M=0 . 202500
K1=1%5 957D0
RETURM
240 M=0 2900
K1=E 64300
RETURM
250 M=0.391D0
K1=3 2300
RETURN
c
C CALCULATE THE THICKHESS DIST. OF A NACA AEROFOIL
C MODIFIED TO HAVE A RAZOR-LIKE TRAILIMG EDGE BY REMOVING
C A LINEARLY IHCREASING AMOLUMT FROM x=0 3 TO x=1 .0
C REF: GREGORY, N 8 P G WILBY (1973), A.R.C. PAPER #1281
[ ABBOTT, 1. & A E VOM DOENHOFF (19%9), THEDRY OF WING
c TL 672 Ai; 9%9, P113 & 321
o
C CALCULATE AEROFOIL x & v COORDS. FOR EACH SFC.
100 X={1 DO-DCOS(THETA))/2 DO
B=0 . 29€9D0*DSORT(X)-0. 126D0*X-0 3IB16DO*X*X
C=0 . 284300%x**3-0 1015D0*x=*4
YT=T/0.202*(8B+C)
IF(X GT O 3D0)YT=¥T-(x-0 3D0)*2 . 10-3*7/0.7D0/0.202

IF(Xx=-1. DO GT -1.D-8)YT=0 DO
IF(MEAN NE OIGOTO %20

C SYMMETRICAL WNACA AEROFOIL

520

Y II.I\ L2

oo ey

F
530

XUs=x
AlL=x
YU=YT
YL=-¥T
RETURN

IF(MEAN GE 100)GOTO 530

FOUR DIGIT FAMILY DF MEAN LINES.

IF(X GT.P)GOTO %40
YC=M/P/P*(2 DO*P*X-X"X)
PHI=DATAN(2 DO*M/P/P*{P-X))
GOTO 850

YC=M/(1.D0-P1**2%(1 DO-2.00%P+2

PHI=DATANI2 DO*M/ (1 DO-P)**2*(P-

GOTO 5%0

IVE DIGIT FAMILY OF MEAN LINES.

IF(X GT M)GOTO %60

YC=K1/6 DO*(x**3-3 DO*M*X=X+M*M*(3 DO-I

.DO*P*X-X*X)

X))

M)*Xx)

PHI=DATAN(K1/6.D0*(3 . DO*X*X=-6.DO*M=x+M*M*(3.DO-M))) .

GOTO 550

YCeK 1/€& .DO*M*+*3+( 1 DO-X)
PHI=DATAN{ =K 1/6 DO*M**3)
XUsX-¥T+*DSIN(PHI)
YU=YC4+YT*DCOS{PHI)
XLeX+YT*DSIN{PHI)
YLe=YC-YT*DCOSI{PHI)
RETURN

-

s

Ly

COORDS



91
92
93
94
9s

96
97

99
101
102
103

104

108

106
107
108

223

' v COORDS

C CALCULATE THE X 8 Y COORDS. OF A CYLINDER
10t XUe( 1 .DO-DCOS(THETA))/2.D0O

XL=xU .
YU=DSORT(O 25D0-(XxU-0.%00)*(XU-0.%00)). "
IF(xU-1.00 GT -1.D~-8)YU=0O DO

YL=-YU

RETURN

(9]

ENTRY JOUKEX(T)

C DETERMINE VALUE OF € TO HAVE APPROPRIATELY THICK AEROFOIL
C FOR EXACT JOUKOWSK] AEROFOIL GENERATION USING SECANT METHOO.
Isyd
C P00 00000000 0ar vttt sttt ttatettssetettetesseretsssstdttnsdtensotstosnse
ToL=P1/1. 802
C TP 0000000000ttt et et el et st ter st inetsdoscrstsestsdttottsststorssss
C INITIAL GUESS AT E .
Elf‘.DO/a DO/DSORT(3.00)*T/1 .02
EIM2=E]
330 LE=PI/3 1500
RE=PI1/2 6DO

C FIND MAX THICKNESS OF AEROFOIL FOR THIS VALUE OF E
B=(1.D00+42 DO*EI)/4 DO/(1.DO+2 DO*E1+E1*E]l)
A=B*(1 DO+EI)

340 CALL ZXGSN{UTHICK LE,RE,TOL, THETAM, IER)
IF(IER LT 129 OR.I1ER GY 132)GOT0 300
WRITE(6.10)

WRITE(7,10)
GOTO S10

300 1F(1 GE.2)GOTO 320
JTIM2=-JUTHICK( THETAM)-T/1.D2

C SECOND GUESS AT E
El=T/0.6602/0SQRT(3.00)

EIMi=E]
12

C 250002000000 03 044040800090 00t000t00es9ttsrintesetsttotnnstcttotscnsss

TOL=P1/1.8D4

c ..O.“.....t“.t'...t..‘....'.‘...‘.‘.........‘.I‘.O..‘..‘.-..“..‘
GOTO 330

320 JTIM1e-UTHICK( THETAM)-T/1 D2
1=+t

C SUCCESSIVELY BETTER APROXIMATIONS FOR E TO GIVE DESIRED THICKNESS.
ETCEIMI-UTIMIC(EIMI-EIM2)/(UTIMI-UTIM2)

c AAAS AR N R AR R AR RSN E R R R R R R A 2 R R N R R R N R R R S R X S 2 I3y

IF(DABS(JUTIM1) LT 1 D-8)GOTO %S00
C $S282 008308830303 00 210 v sttt tettsdétitstovoiantdsed sttty
EIM2=E 1M
EIMi=E] .
JTIM2=yTIM Y
LE*THETAM-PI /1t D2 '
RE=THETAM+PI /1 D2
Be=(1 DO+2 DO*E1)/4.D0/(1.DO+2 DO*EI+EI*E])
A=B*(1 DO+EI)

GOTO 340
C
ENTRY JOUKAP(T)
C DETERMINES VALUE OF E TO HAVE APPROPRIATELY THICK AEROFOIL FOR
c APPROXIMATE UOUKOWSKI AEROFQIL GENERATION
C
El1=4 .D0/9 DO*DSORT(3.DO)*T/1.D2
C

C DETERMINE A AND B
500 Be=(1.DO+2 . 0Q*EI)/4.D0/(1.D0+2 . DO*EI+EI1*El)
A=B*(1.DO+E1)

510 RETURN {

c -«
C CALCULATE THE SHAPE OF A JOUKOWSK! AEROFOIL USING THE FULL (EXACT)
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DRAG
¥
TRANSFORMATION AND SHIFTING FORMULAE .
REF. HOUGHTON, E L. & A E BROCK (1970) AERDDYNAMICS FDR ENGINEERING
STUDENTS (2ND EDITION) EDWARD ARNOLD LTD., LONDON, 458FPP.

e Bl s

02 X=-B*(% DO+EI)*DCOS(THETA)-B*E]
YUSB* (1 DO+EI)*DSIN(THETA)
XI=x*( 1. DO+*B*B/(X*X+YU*YU))
ETA=YU*(1 DO-B*B/(X*X+YU*YU))
XUs(4 DO+2 DO*EI+2 DO*EI=E1)/2.DO/(1.DO+2.DO*EI+EI*EI)+XI
1F(XU LT © DOIXU=O DO
XL =XU
YU=ETA
IF(XU-1 DO GT -1 D-8)YU=0 DO
YL=-YU
RETURN

CALCULATE THE SHAPE OF =
REF: MILNE-THOMSON (3RD. ED.

- Y
K I

03 A=T/4.D2
IF((PI-THETA)/PI LT.1.D-9)Q0TO 400
€. CHECK FOR FRONT OR REAR SECTION OF CIGAR.
YU=A*DSIN({THETA)/DCOS(THETA/2 DO)
IF(THETA LT P1/2 DO)GOTO 410
C REAR SFC. IS5 4% DEGREE SLOFING LINE
YURR=({A-1 DO)*OTAN(THETA) /(1 DO-DTAN{THETA))
IF(YU LT YURR)GOTO 410
YU=YURR
YL=-YU
U=t DO-A-¥U
XL=XU
RETURN
= -
§ CIGAR SHAPED FRONT SECTION
10 YL=-YU
XU=A®*( 1 DO-DCOS(THETA)/DCOS{THETA/2 DO))
XL=XU
RETURN
c
400 Xus=1 .00
xL=1.DO
YUu=o DO . .
YL=0 DO
RETURN
END

s Nalel

SUBROUTINE DRAG(UDS,vDS UAS VA5, CD5 . RED.CD)
WRITTEN BY: M OLESKIW ON:800222 ULAST MODIFIED: 810408

CALCULATES THE REYNOLDS NUMBER AND DRAG COEFFICIENT OF THE DROPLETY

s EeXaNaNal

DOUBLE PRECISION DSORT UDS, VDS, UAS,VAS RED.CD,
K2 KD M4

L2

INTEGER CDS

¥

) >
COMMON /STAB1/M2 K3 K4

IN  UDS=

VOS=DROPLET VELOCITY COMPONENTS .
IN UAS=

IN VAS=AIR VELOCITY COMPONENTS.



~I L

.-

11
12

13
i4

15
16

IN CDS=PARAMETER TO DETERMINE ORAG COEFFICIENT FORMULATION.
OUT RED=RELATIVE MOTION REYNOLDS MO
OUT CD=DRAG COEFFICIENT.

1 0y

RED=DSQRT((UDS-UAS I **2+(VDS-VAS)**2)*K2
1F{CDS EQ 2)GOTD 300
IF(CDS.EQ 1 AND RED LE .5 .DOIGOTOD 100
STEADY STATE DRAG COEFFICIENT OF DROPLET FOR RED < 5000
ABRAHAM (1970)
CD=0.292400°(1.D0O+9 O6DO/DSORT(RED))*=*2
RETURN
100 IF(RED GE 1+ .D-2)GDTOD 200

[ Ea N nl

c -
C STEADY STATE STOKE'S DRAG FOR RED < 0.0t
CD=24 DO/RED
RETURN
c
C STEADY STATE DRAG COEFFICIENT FOR O O1 « RED < % - SARTOR
c AND ABBOTT (1975%)
200 CDO=24 DO/RED+2.200
RETURN
c
C STEADY STATE DRAG COEFFICIENT - LANGMUIR & AL TT.(194%)
300 CO=24 DO/RED+4 TIDO/RED**0 3ITDO+6 . 24D0-3ICRED I80O
RETURN gafsfy
END
¢
E !-l---IIl-Ii-l-ll.l’iiii..l--l--ﬁﬁ,,iﬁii’ii-!---- L i 2 R 2R3 2 2 2R 2R 22 2 F
c

SUBROUTINE FIT(BOTH)
WRITTEN BY: M. OLESKIW ON:810201 LAST MODIFIED:810922
ROTATE UPPER AND LOWER SFCS.  IF REQUIRED TO FIT CUBIC SPLINES

.. AND DETERMINE LENGTHS ALDNG SFC. TO EACH ENDPT. CALCULATE
THICKNESS OF ACCRETION.

Wl % Y Y

s} FORMAT( '-THE ACCRETED AREA FOR LAYER',I3,’ 15’ .F9.6./,
‘OTHE ACCUMULATED ACCRETED AREA IS’ .FP 6)

Lo

DOUBLE PRECISION $30.C30.DSORT . XUR(101),YUR(101),XU{(104),YU(10D1},
CXLROYO1) ,YLR{101) . XL{101) . ¥L(101) BPARU(4) . BPARL(4), CU(100,3),
GL{100.3) . LUFTO1) . LLU101), XS, LEN, INTU, INTL, IHHUE,YNHUE,KHF.YNP,
AIHTUP.lHTLF(vNHLHi!HNLRiXUETLP.ELETLR.ACCE,lGCEU,AEEEL.ACEETi
CXNLYN O XUXR XLXR

INTEGER ATYPE WEU NEL,IERU,JERL.LAVER BOTH, I.LYRMI NEUU, NELL

COMMON /FOIL/XUR,.YUR XLR YLR/LG/LU, LL/ROTF/C30.%30
./SPLINE/CU.CL/AERDA/NEU . NEL . NEUU NELL/NNOSE/XNP YNB/LLR/
.ACCRT [ LAYER ATYPE/SFCS/XU.YU, XL, YL/NOSE/XN, YN/ XXR/XUXR XLXR

IN BOTH=TRAJECTORIES TO COLLIDE ON BOTH SFCS. (O OR 1)

ROTATE UPPER & LOWER SFCS. BY 30 DEG. ABOUT NOSE IN ORDER
TO FIT CUBIC SPLINES
- SEE KENNEDY & MARSDEN (1976)
$30=5 D=1
C30=D5ORT(3.D0)/2.D0
DO 320 I=1 NEU
XUR(I)s(XU(T)-XU{1))*CIO+{YU(])-YU(1))*520
YUR(TI D)= (YU{T)=YU{1))*CIO=-(XU(]I)=xXU(1))*%30
320 CONT INUE
DO 330 I=1 MEL

(s RN NaNsNel



13 XLR(I)=ixXL(I)=-XL{1))*C30- (VL(I) YL{1))*s30
14 YLROI ) =(vYLIT)=YLOT))*CIOH(XL(TI)-XL{1))*530
15 130 CONT I MUE
c
C SET PARAMETERS FOR SPLINE FITTING .
16 BPARU(1)=1 DO
17 BPARU(2)=6 DO/(XUR(Z2)-XUR(1))*((YUR(2)-YUR(1))/(XUR(2)-XUR
(1))-DS0RT(3.DO))
18 BPARU(3)=0 DOB
19 BPARU(4)=0 DO
20 BPARL(1)=1 DO )
21 BPARL{2)%6 DO/(XLR(2)-XLR(1))*((YLR(2)-YLR{T))/(XLR(2)-
XLR(1))+DSORT(3 DO))
22 BPARL(2)=0 DO
23 BPARL(4)=0 DO
24 IF(ATYPE NE 1)GOTO 230
25 BPARU(3)=1 DO
26 BPARU(A4)=6 DO/ (XUR(NEUU ) -XUR(NEUI-1))*

. (~DSORT(3 DO)V/3 DO-(YUR(NEWU) - VUE(HEUU=1!&J
( XUBR(NEUU ) - xUB(NEUU-1)))
27 BPARL(3)=1 DO
28 BPARL(4)=6 DO/ (XLB(NELL)-XLR(NELL-1))"
(DSORTI3 DO)’3 DO-(YLRINELL)-YLR(NELL-1)1}/
(XLR(NELL )-XLR({NELL=-1}))
C FIT CUBIC SPLINES TO EACH SFC.
28 230  CALL ICSICU(YUR.YUR NEUU,BPARU.CU, 100, 1ERU)
30 CALL ICSICU(XLR.YLR NELL.BPARL.CL,100. 1E®L)
c
C CALCULATE INTEGRAL OF UPPER AND LOWER SFC PROFILES.

C FIND THE LENGTHS FROM THE NOSE TO VARIOUS ENDPTS.

i LU(1)=0.00

a2 LL{1)=0 DO

a3 INTY=0.DO

34 INTL=0O DO

as DO 2340 I+2 NEU

k[ IF(I LE NEUU)GDTO 380

37 LU(I)=0 DO

as GOTO 340

9 180 XS=XUR(I)=-XUR(I~-1)

40 CALL SFCLEN(XS,LEN.CU(I-1,.3),CUII-1,2).cu(I-1,1))

41 LU(I)=LU(I-1)+LEN

42 INTU=INTU+(({CU({1-1,3)*X5/4 . DO+CU(1~-1,2)/3.D0)*x5
+CU(TI-1,1)/2 DOY*X5+YUR(]I=1))*x%

43 340 CONT INUE

a4 DO 350 I=2 MEL

a8 1IF(I LE NELL)GOTO 370

46 LL(I)=0 DO

47 GOTD 350

as a7 XS=XLR{I)-XLR{I-1)

49 CALL SFCLEN(XS . LEN.CL{I-1,3),CLII=-1.2).CL(I=-1.1%))

S50 LL(IVYeLL{T-1)-LEN

51 INTL=INTL+{(I{CL(I-1,3)*X5/4.00+CL(I-1,2)/3.00)*x5%
+CLII-1.1)/2 DOY*XS+YLR(I-1))*X%S -

52 80 CONT INUE =

53 XUXR=XU(NEUU)

54 XLXR=XL(NELL)

-1 IF(LAYER EQ 1)GOTOD 400

56 XNNUR= ( XN=XNP ) *CIO+ (YN=-YNP ) *530

57 YNNUR= ( YN-YNP ) *C30~-( XN-XNP }*5$30

58 ACCRU=INTU-INTUP+YNNUR*XURTLE- xnuun*vunun/:

59 I1F(BOTH EQ. 1)G0TO 410

€0 ACCR=2 DO*ACCRU

61 GOTO 420

62 410 XNNLR=(XN-XNP ) *CI0-( YN=-YNP )*530

&3 YNNLR={ YN=YNP ) *C30+( XN-XNP ) *£30

64 ACCRL=INTLP-INTL-YNNLR*XLRTLP+XNNLR*YNNLR/2 .DO

N
x4
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WRITTEN gﬁ.in OLESKIW ON 810626 LAST MODIFIED: 810722

M
L]
~J

-\ ; GLERKS

-

RRrACCRU+ACCRL
CCRT=ACCRT+ACCR
MisLAYER-1
HE!TE(E JOILYRM1 ACCR . ACCRT
WRITE(7 30)LvAEMt ACCR _ACCHT
INTUR=INTU
INTLP=INTL
XURTLP=XUR(NELL)
XLATLP=X_LRINELL)
RETURN

QUEBDUTIHE GLERKS(EON CDS . EPS . LAMBH WARN SHOAT . GLOBAL .GER)

INTEGRATE THE DROPLET EQNS. OF MOTION (IN X AND Y} USING:
1;! ATH DROER RUNGE-KUTTA-FEHLBERG TECHNIOQUE .

2:

DER EXTRAFPOLATION OF THE ABOVE

3: STEF EXTRAPOLATION OF THE ABOVE (5TH ORDER ACCURACY)

REF :

BURDEN, R L ., J D FAIRES, & A C REYNOLDS (1978).

HUMERICAL ANALYSIS. P 254, QA 287 &84

PROTHERO . A ., 1980 ESTIMATING THE ACCURACY OF NUMERICAL SOLNS.
TO ODE"S. IN GLADWELL.I. AND D K SAYERS, EDS. COMPUTATIOMAL

TECHMNIQUES FOR DDE'S ACADEMIC FRESS, 303 PP.. QA 370 C74 1978

AMD SHAMPIME, L. F AND H. A WATTS, 1976 GLOBAL ERROR

ESTIMATION FOR OOE S ACM TRANS MATH SOFTWARE, 2, #2, 172-186.

DOUBLE PRECISION EPS XDS(6,2),UDS(6,2),AN(2,6.2).YD5(6.2),

.VDS(8&,2) HT(2,6,2) . DTS(6,2).UAS(6,.2) . VAS(6 2) RED(6,2).CD.RE,

1.K2 K3 K4 K5 K6 LT, L2, L3 L4, LS LG M7 M2 M3 W4 WS WG,

N1,N2.N3I N4 NS N6, UA VA RMAX DMAX1 DMIN DMINT,

DABS ., XBE. YR UR VR XT vT UT VT RMINP(2) RMAXP(2) RMIN,
XD.YD,UD.VD . CC1,CC2,C3,C4,C%.C6.C7.C8.C9,C10,C11,C12,C13,
.C14,C1%,C16.,C17,C18,C19,C20.C21,C22.C23,C24 T5(%00.2)

DOUBLE PRECISION DMINF(2) DMINFE(2) LAMEBH EIGMX K XD50,Y050,

.UDS0,.vD50,.750.DT50,.DTSK

INTEGER EON.CDS.I(2).IM4(2), IM3(2).1M2(2).1M1(2),10(2),

CIBP1(2) .MM SHORT WARN, GLOBAL . GER

COMMON /PV/XDS,YDS,UDS, VDS/INTEG/AN, HT

L/LOC/TS DTS T.IMa IM3, IM2, 1M1, 10 TP MM
./REL/UAS ,VAS RED.CD
 /RKFM/CC1,CC2,€3,C4.C5,C6,.C7.C8,C9,C10,€11,C12,C13,C14,
.C18,.C16,C17,C18,C19,C20,C21,C22.C23.C24

IN

EON=DENOTES PORTION OF TOTAL SYST
CDS=TYPE OF DRAG COEFFICIENT TO 8
EPS=LOCAL ERROR PARAMETER
LAMBH=STABILITY PARAMETER.

OF EQUATIONS TO BE SOLVED.
s

T WARN=WARNING OF INSTABILITY (O OR 1).

SHORT=INDICATOR FOR NECESSITY OF SHORTING THE AUTO-
STEP-SIZE ALGORITHM.
eLoBAL 0 RKF4 INTEGRATING METHOD.
'S ABOVE BUT WITH ORDER EXTRAPOLATION TO FIND GLOBAL
ERROR
2 AS ABOVE BUT USING STEP EXTRAPOLATION.
GER=INDICATOR THAT COLLISION HAS OCCURRED. AND THUS THAT
GLOBAL EXTRAPOLATION CANNOT BE COMIINUED.

SHORT =0
XDSO=XDS( TO(WM) MM )
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YD50=VDS( 120 MM ) )
UDSO=UDS( 1O MM ) _ M8 )
VDSO=VDS{ JO(MM) WM )
TSO=TS( I (ad) wmt)
DTSOSDTS( [O7 MM ) w8 )
IF(1(mm) GT 1)1G0TO 100
DMINEP (MM )=1 O1DO
DMINE (MM )=+ 0O1D0
TS(I(MM)+1 MM )eTEO+DTSO
K1«DTS0*UDS0O

L1=DTS50* VD50
MI=DTSO=AMO 1, JO(MM) MM )
N1=DTSO*AN(2, TO(MM) MM)
XD=XDSO+CC 1=Ky
YD=vyDSO+CCI1*L Y
UD=UDSO+CC 1 "M
VD=VDSO+CC 1N T

CALL AIRVEL(XD vD,UA VA 4)
CALL DRAG(UD. VD.UA, VA CDS,RE.CD)

K2=DT50*UD
L2=DT50*VD

CALL ACCN(UD.VD.UA. VA RE . CD.EON.TSO+DTS0/4.00.0)
M2=DTSO*AN{ 1 IP1(MM) MM)
N2Z=DTSO*AN{ 2. IP 1 M) W)
XDeXD50+CC2 K 1+CI*K2

YD=YDSO+CC2*L 1+C3*L2
UD=UDS0+CC2*M1+CT*M2
VD=VDSO+CC2Z*N1+CI*N2

CALL AIRVEL(XD.YD,.UA,VA 4)

CALL DRAG(UD.VD,UA VA, CD5 . RE . CD)

K3=DT50+UD
LI=DTSO*VD

CALL ACCNIUD VD,UA, VA RE . CD, EON, TSO+DTS0*3.7%0-1,0)
MI=DTSO“AN( 1, IP1(MM) MM)

NI=DTSO*AN(2,IP1(MM) M)

XOeXD5S0+CA4*K 1-CH*KI+CE*KD

YD=VOSO+CA*L1-CB*L2+CE*LD

UD=UDSO+CA*M1 -CEM2 + O

VD=VDSO+C4*}
CALL AIRVEL(XD, YD UA VA 4)

CALL DRAG(UD.VD.UA, VA CDS.RE.CD)

Kd=pDTSO=UD

L4=DT50*VD

CALL ACCN(UD.VD.UA . VA RE.CD.EON.T50+12.D0O/131.D0
.*DpTS50.0)

MA=DTSOAN( 1, IP 1 (MM), MM) )
NA=DTSOAN(2 TR 1{MM) MM} *
XDuYDSO+CT*K 1 ~CR*KI+CP*KI=-CI10O*K4
YD=eYDSO+CT*L1-CA*L2+CO*LI-C10%L4
UD=UDSO4CT*M1-CEB*M2+CO*MI-C10*M4
VO=VDSO+CT*NI1-CA*N24CB*NI-C10*N4
CALL AIRVEL(XD,YD,UA VA, 4)

CALL DRAG(UD, vD, UA VA CDS,RE.CD)

ACCN(UD . VD, UA. VA RE.CD.EQN. TS{I(MM)+1,M8).0)
M3=DTSO*AN( T . IP1( M) MM)

NS=DTSO*AN(Z IP1(MM), MM}

XD=XDS0-C11*K 1+C12°KI-CI1I*KI+C14*KA-C15*KS
YD=YDSO-Cl11*L1+C12*L2-C13°LI+C14°L4-C15°LY
UD=UDSO-C11*M1+C12*M2-C1I*MI+C14 " MA-C15+N%
VD=VDSO-C11*N1+C1Z2*N2-C13+*NI+C14*N4-C15+NS



94
25
-1
a7
98

99
100
101
102

103
104
10%
106
107
108
109
110
1114

142
113
114
118

118

117
118

C 4TH

C NEW
110

229

CALL AIRVEL(xD.YD.UA.vVA 4)
CALL DRAG(UD VD .UA VA CDS RE . CD)

K6=DTSO*UD
L6=DTSO* VD

CALL ACCN(UD.VD.UA, VA RE.CD.EON. TSO+DT50/2.00.0)
MG=DTSO*AN( 1, 1P 1(MM) M)

NE=DTSO*AN(2 1P 1 (M) M)

IF(MM EQ.2 AND GER EQ 0)GOTO 110

ORDER ESTIMATE AT TS(I(MM)+1, MM)
ATeXDSO+CIE "R 1I+C 1T *KI+CI1D*K4=-C19*KS
YTeYDSO+C1€ " L1+CIT*LI+C1B8*L4-C19*LS
UT=UDSO+CI1E*MI+C 1T *MI+CIB*"MA-C19*MS
VIsVOSO+CIE*NISCIT*NI+CIB*NA-C19*NS -~

POSITION AND VELOCITY AT TS(I(MM)+1 MM)

XDS(IP V(W) MM)=XDSO+CI0 K 1+C21*KI+C22*KA-CII*KI+CI4*KE
YOS{IF1{MM) MM)=yDSO+C20*L 14C21*LF3+C2T7*L4-C2I*LB+CJ4"L6
UDS(TE (M) MM)=UDSO+C20*M1+C21*MI+CI2*MA-CII*M5+C24*ME
VOS( TP T(MM) M) =VDSO+CIO*NI1+CI1*NI+CI2*N4-C2I*NB+CL4=NE
IF(MM EQ 2 AND GER EQ 0)GOTO 130

C DETERMINE DIFFERENCES IN 4TH AND 5TH ORDER ESTIMATES.

ekt

200

220

XR=DABSI (xT-xDS(IP1(mM) wMM))/DT50)
YR=DABS( (YT -vOS(IPT(MM) MM)}/DTS0)
UR=DABS{ (UT-UDS(IP1 (M) mM))/0T50)
VR=DABS((VT-VvOS{IP1(MM) M) )/DTS0)
BMAX=DMAX1(*R YR, UR VR
BMIN=DMIMNI{XR R UR Vv8)

IF(GLOBAL LT 2)DMIN=(EPS/EMAX)=*0 25DO
IF(GLOBAL EQ 2 )DMIN={EPS/RMAX)**0 2000

ADJUST NEXT STEP SI1ZE. TRY TD MINIMIZE OSCILLATIONS.

A I I 2 22 2 TR RS TR RS R AR R AR AL R R RS AR RS R R AR AR LR R R R LR Ll Ldl

IF(DMINP(MM) LT 1 DDO)IGOTO 200

IF(DMINFR(MM) LT 1 DOIGOTO 230

IF(DMIN. LT 1 DOIDTSK=0 B4DO*DMIN*DTS0

IF(DMIN.GE 8 DOIDTSK=2 %200*DTSO

IF{DMIN GE ' DO AND DMIN.LT 8 DOIDTSK=((DMIN-1.D0)/4.D0+1.0D0)
.*DT50=0.84D0 !
GOTD 210

IF(DMIN LT 1 .DO)DTSK=0 B4DO*DMIN*DTSO

IF(DMIN GE 11 DOIDTSK=1. 68D0*DTS0

IF(DMIN. GE 1. DO.AND .DMIN.LT. 11 DO)IDTSK=((DMIN-1.D0)/10.00+1.00)
*DT50+0. 84D0

GOT0 210

IF(DMINPP({MM) LT 1.DO)IGOTO 220

IF(DMIN . LE © BDO)DTS5K=0.672DO*DTSO .

1F(DMIN. GT 1 DO)DTSKk=({(DMIN-1.00)/10.D0+1.D0)*0.8400*DTSO

IF(DMIN GT O BDO AND OMIN LE. 1. DOIDTSK=DMIN*O B4DO*DTSO

GOTO 210
IF(DMIN . LE O 2D0)DT5K=0. 168DO*DTSO

IF(DMIN GT 1 DO)DTSKk=((DMIN-1.D0)/40.D0+1.00)*0. B4D0*DTSO
IF(OMIN.GT O 2DO . AND DMIN.LE.1.DOIDTSK=DMIN*O. 84D0O*DTSO

C ﬁiiiﬁijii!iiliiiiiﬁilijiﬁ?!ﬂ-fﬁjiiiliii!iii‘ﬁiﬁiiﬁi!!iiiﬁiﬁjiﬁiiii‘

c

C CHECK FOR SUFFICIENT ACCURACY.

210

DMINPP (MM ) =DMINP ( M4 )

DMING (MM ) =OMIN

IF(DTSK.LT S.D-4)0TSK=S D-4 . .
1F(RMAX GT EPS AND DTSK GT S.D-4)GOTO 170 '

C DO NOT ALLOW TIME STEP TO INCREASE INTO INSTABILITY.

IFCI(MM) GT 1 AND DTSK/OTSO*LAMEM LT . ~2, 2D0)
.DTSK=-2 . 200/LAMBH*DTS0 T
OTS(IP1(MM) WM)=DTSK .

GOTO 300
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130

131
132
133
134

140

141
142
143
144

145
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170 IF(1(™MM) NE.1)GDTO 140
GOTO 160

140 IF{MMAX /AMAXP(MM) GT 4 DO*RMIN/RMINP(MM) IGOTO 150
[ o 13322233312 2R 22 2R SRR R R RN R RN AR R R R R R R Rl Yl R )
160 DT SO=DT 5K
DTS(T10(MM) MM )=DT5K
@QTO 100
C STEP OVER EXTREMELY RAFPIDLY CHANGING AREAS
150 DTS(IP1{MM) MM )=({DTSO+DTSK)/2.D0
SHORT =1
300 REINE (M) =RM]N
RUAXP (MM ) = TMA x
IF(I(MM) GT 1IOTSOIP (M) MM )=DMINI(DTS{ TP (M) MM),
. 2.DO*DTS(IP1(MmM) MM)-0TS0)

[

IF(GLOBAL EQ 2)GOTO 130
C NEW POSITION AND VELOCITY ARE 4TH ORDER ESTIMATES -
XDS(IP1(MM) M )=xT
YOS(IP (M) MMt)=vT
UDS(IP1( M) Ml)=UT
VOS{IP1{we) WM)=VT

C NEW ACCELERATIONS AT [+1

130 CALL AIRVEL(XDS(IP((MM) M), YOS{IP1(M) M),
CUAS(IP1(MM) M) VAST TP I(MM) MM) S+8%(2-MM))
CALL DRAG(UDSIIPI(MM) MM) VDS(IP1(MM) M) UAS(IP1(MM) M),
VAS(IP1(MM) MM) CDS RED(IP1{MM) M) CD)
CALL ACCN(UDS(IPA{MM) MM) VOS(TIP{(MM) MM) UAS(IP1(MM) MM),
VAS{TPA(MM) M) RED(TIP1(MM) MM) CD EON.TS{I(MM)+1 MM) O)
IF{M GT 1)IRETURN

C SKIP STABILITY CALCULATION IF TIME STEF 15 DECREASING

C AND 15 FAR FROM STABILITY LIMIT.
IF(I(1) GT t AND.DTSK/DTSO.LT 1 anD. Lameu 6t -1 8po)
goTo 120
CALL STABIRED(IPI(MM) M) CD UDS(IP (M) M) vDS(IPI(MM) WM),
CUAS(IPI{MM) MM) VAS(IPI(MM) MM) CDS5 EIGMX)
LAMBH=EIGMX*DTS0O
TF(LAMBH LT -2 7DO)WARN=1{ t

120  IF(EON.NE . 2IRETURN
CALL ACCN(UDS(IPI(MM) MM} VOS(IP1(MM) S0) UAS(IP1(MM) M),
,us(xpuum,mn.EED{IFi(gﬁ)iu—).ca,Em.TS(I(iii)ﬂi!ln.n

c
C T2 2123222122233 32x23 73222120020 2200222220200 QR R Rl i i i 2 00 0 | )
c

SUBROUTINE GROWTH{XMIN, XMAX, YMIN, K YMAX ,LYRMAX PLTFAC)

[
C WRITTEN BY: M OLESKIW ON-BOO713 LAST MODIFIED: 810422
c
C PLOTS SUCCESSIVE AEROFOIL OUTLIMNES WITHIN VIEW WINDOW
c
REAL XGR(204.10),YGR{204,10) PLTFAC XMIN, XMAX, K YMIN, K YHAX,
XPLT(204) , YPLT(204) , XGRE(203,10), YGRE( 203,10}, XPLTE(101),
LYALTE( 101).DX.DY . DDX .DOY . ABS ,AINT ’
c
INTEGER IT(10). . LYRMAXY ITT. I, J,LYRM1,
CITE(4OQ) , ITTE  MDCRX _NODCPY
E 1]
COMMDN/GROW/XGR . YGR . XGRE , YGRE , ITE . IT -
c
C IN XMIN=
C IN XMAXS=
C IN VYMIN=



43
44
4%
46

IN
IN
IN

510

YMAX=X AND Y LIMITS OF ICE ACCRETION PL

LYRMAX=MO OF LAYERS TO BE ACCRETED.
PLTFAC=PLOT EXPANSION/REDUCTION FACTOR.

NDCPX =0
NDCPY =0

DX={ XMAX-XMIN)/20 O
DY=(YMAX-YMIN)/12.0
DOX=ABS(4 O*DX)+1 E-6
DOY=ABS(2 O*DY)+1 E-6
1F(DOX-AINT(DOX).LT 2./10.%*(6-NDCPX) )GOTO 510
NDCPX =NDCP X+ 1
DDX=DDX*10.0

GOTO

S00

DT WINDOW.

IF(DDY-AINT(DOY) LT 2 /10 *+(&- NDCPY ) )GOTO 520
NDCPY=NDCPY+ 1
DOY=00Y=*10. 0

GOTO

510

C DRAW AXES FOR ICE ACCRETION PLOT.
520

240

CALL
CALL
CALL
CALL
CALL
CAaLL
CALL
CALL
CALL

NEWPEM( 1)
FACTORIPLTFAC)
ORIGIN(999.230.0.12.0.9.0.5%.0}
AX2EF(4 0,3 MNDCPX, D )
Ax152(0 .G . i/C XM
AXI52(20..0

1

-3.2C

. 1 =13
AX2EP(2 0.3, kl:M:Pv 1,
.3,
.1,

.0.
D DQ
2)

(5] M 0\ U

1
AXI52(0 .0, VXC 12.
AXIS2(0 .12 O, ‘3@ ié

LYRM = YRMAX + 1

Do

100 I=1, LYRMI

ITT=IT(1)
ITTESITE(T)
DO 110 U=1,ITT
XPLT(J)=XGR(J.1)
YRPLT(J)evGR{J. 1)
CONT INUE
DO 210 J=1,ITTE
XPLTE(JI*XGRE(J.1)
YPLTE(J)=YGRE(U.1)
CONT INUE
CALL MNEWPEN(3)
C PLOT ACCRETION OUTLINES.
CALL LIME(XPLY YPLT IT(1)=2.1.0.0)
CALL LINEP(O 0O7)

(2

X.4.0)

IN, D)
.0..0 .2.0)

0.90. ,YMIN DY, ,-2.0)
5., 0 .0

.4 0}

231

C PLOT CONTROL SEGMENT EMDPTS.
CALL LINE{YPLTE YPLTE, ITE(]}-2,1,-1,0)

100 CONTIMUE

EETUEH

END &
c
[ L L L L L T L L L T L L
c

SUBROUTINE HERMS(L . YO.DYDL .N,CEE)
c
C WRITTEN BY: M OLESKIW OM: 810721 LAST MODIFIED: 811002
c
C CALCULATE COEFFICIENTS FOR HERMITE OUINTIC SPLINE.
c )

]

s R Nal

;I ﬂ u1, Ul $1.T1, BTAH DLTAN SS? 533 M1, SNQ

INTEGER N, N1 K, J2,J1,M2

L=LENGTH ALONG AEROFOIL SFC.
YO=TRAJECTORY STARTING VALUE.



N Ne sl

L

IH DYDOL=SLOPE OF YO VS L CURVE.
IN MN=NUMBER OF DATA PTS. TO BE FITTED.
OUT CEE=VECTOR OF COEFFICIENTS FOR QUINTIC HERMITE POLYNOMIAL SPLINE.

4
-

L B i T T

2

(DYDL(2)V-DYDLO1 I}/ (L(2)=LL1))

DYDL(I ) -DYDL{2))/(L(3)-L(2))

={DYDL(NV-DYDL(N1))/(L(N)=-L{H1})}

i-iDVDLiHiI-DVDLiHZDD/(Lﬂﬂi) -L{NZ))

CEE(2.1)=0 SDO*DTAN(2 DO*DATAN(S52)-DATAN(S53))
';. O SDO*DTAN(2 DO*DATAN(SNI)-DATAN(SMNZ))

( Do

. Do

DO 200 K=1 MA

JZem 49

U=t DO/(L{JZY-LITK))

CEE(S K )=u2

V2=U2+°U2

$2=10 DO*vV2*u2+(v0(J2)-vYO(K)})

T2=4 DO*V2+{DYDL(J2)+DYDL(K)) s
IF(X EQ 1)GOTO 100

I=1 DO/(3 DO*(UV+U2)+U1*CEE(4.U1))

CEE(4 . K)=-12%2

R=E2-51-T2+71+2 DO*(V1-Vv2)*DYDLI(K)

IF(K EQ 2)R=R+UY*CEE(2,1)

IF(XK EQ N1)R=R+UI*CEE(2.N)

CEE(I K)=Z*(R+U1*CEE(T Jt))

- G k3 W
w
s~

m
.
‘Z‘
I
s

OO0 O OO W e
Loy |
=
L
I
Lo

[,
L]
o
K
-
[ ]
Cl

100 Jink

L

Ut=u2
Visy3?
£1=252
Ti=T2

o0 CONT IMUE

CEE(2.N1)=CEE(3,N1) , . .
IF(MN1.LE 2)GOTO 400 :

DO 300 Ui=2.N2

K=N=1

CEE(2.K)=CEE(3 K)-CEE(4 K)*CEE(2.K+1)

300 CONT IMUE
400 DO SO0 K=1 Ni

0y Y

O 00 00 0 Y

JZ=EE e

R=YO(J2)V-YO(K)

Z=CEE(S5 K}

CEE(3 ,K)=Z*({CEE(2,J2)-3.DO*CEE(2.K)-Z*(6. DQ-DVDL(:)
+4 DO*DYDL(J2)-10.DO*Z*R))

CEE(4,K)y=2+*2+(3 DO*CEE(2,K)-2 DOSCEE(2,J2)

+Z+(8 DO*DYDLI{R)+7 DO*OYDL(J2)-1%.D0*Z*R))

CEE(S . K)=2*2*Z+(CEE(2,J2)-CEE(2,.K)

=3 DO*Z-(DYOL(K)+DYOL(U2)-2.D0*Z*R))
CEE(1.K)=DYDL(K)

500 CONT INUE

SUBROUTINE HERMIT(X0.X1.Y0.Y1 . YPO.YP1 A B.C) -
WRITTEN BY: M OLESKIW ON 810414 LAST MODIFIED:
CALCULATE THE HERMITE CUBIC POLYNOMIAL INTERPOLATOR . n
GIVEN THE FUNCTION AND ITS DERIVATIVES AT THE

ENDPTS. OF THE INTERVAL
REF: BURDEN . R L. ET AL . (1978), BUMERICAL ANALYSIS,

\ =
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HIST
PRINDLE WEBER. & SCHMIDT, BOSTON. OA 297 BB4, P 108.
DOUBLE PRECISIDON XO.X1.Y0D, Y1, YPO,YP1 A .B,C,2Z :
IN XxOs * - .
IN X1=LEFT AND RIGHT BOUNDS OF THE INTERVAL
1 YO=
IN  vi=FN. VALUES AT ENDS OF INTERVAL.
IN  YPO=
IN YPi=DERIVATIVES OF FN. AT ENDS OF INTERVAL .
oUT A=
ouT 8=
OUT G=CUBIC POLYNOMIAL COEFFICIENTS. ‘
I=X1-X0
A=(2.DO*Y0/2-2 DO*Y1\/Z+YPO+YP1)/2/2
B=(3.D0*Y1/2-3 DO*Y0/2-2.D0*YPO-YP1)}/2
C=YPOD =
RETURN
END
LA A L L L AR AR AL R Rt Rl Y Y Y N Y R s N T Y s P Y P e T

SUBROUTINE HIST(T.G)

WRITTEN BY: M OLESKIW ﬂN’EG‘iCS LAST MODIFIED: 810626

DETERMINES VALUE OF INTEGRAL IN HI

IN
IN
IN

STORY TERM.FOR U COMPONENT EON.
BURDEN. R.L . J D. FAIRES, & A.C. REYNOLDS (1978)
MUMERICAL ANALYSIS P 80 QA 297 884

DOUBLE PRECISION TAVYI TAU2,TAUY,TAUO.PY1.P10.P21,P22.P20.

-P33,P32.P31.P30.TO. 71, 72,73, 75(500,2).FO.F1,F2 F3 DSQRT ,OTS(S.2),
HT(2.6.2).7.4.B.C.0.F.AN(2.6,2).P(2,74%,2),22,233,1232,231,230,
.AA BB

INTEGER d.L.FFiE.iDD.JZ.dd;@;1(2)!IHJ(Q).Iﬂaiil.lﬂi(ilgili(i)i
100(2),1P1(2) .MM 11

COMMON /LOC/TS. DTS, 1, IM4 IMI, IM2, 1M1 10, IP1,MM/INTEG/AN, HT
T=TIME AT PRESENT TIME STEP.
GO EXTRAPOLATE HISTORY TERM SEQUENCE .

1:CALCULATE NEW HISTORY TERM,

TAUJ(A.B)e( (5 DO“A**3+6 DO*A*A*T+8 DO*A*T*T+16.D0O*T#+3)

C*OSQRT(T-4)-(5 DO*B**3+6 DO*B*B*T+8 . DO*B*T*T+16 .DO*T**3)
.*OSQRTI(T-B))*2.00/3% DO

TAU2(A . B)=((3.DO*A*A+4 DO*A*T+8 . DO*T*T)*DSORT(T-4)

.={3.DO*B=B+4 DO*B*T+8 . DO*T:T)*DSORT(T-B))*2.D0/15.D0

TAUI(A B)=((2 DO*T+A)*DSORT(T-A)-(2.DO*T+B)*DSORT(T-8))*2 DO/3.DO
TAUO(A .B)=2 DO*(DSORT(T=-A)-DSORT(T-8))

STATEMENT FNS. TO FIND THE TERMS OF THE LAGRANGE POLY. FIT.

PI1(TO)=(F1-FO)/(T1-TO)
PIO(TO)=(FO*T1-F1*TO)/(T1-TO)

Z2(A .8 C.FI=F/(A-B)/(A-&) -
P22(TO)=22(70.T1,. T2, FO}+Z2(T1,70.T2,F1)+22(T2,70.71,F2)
PI4{TO)=-(T14T2)*Z2(T0,T1, T2, FO)-(TO+T2)*22(T1,T0,T2,F1)

=(TO*T1)*22(T2,70,T1, F2)

P2O(TO)=T1#T2+Z2(T0,T1 T2, FO)+TO*T2*22(T1,70.72.F1)

LATO*T1#22(7T2.70.7T1,F2) .

233(A.B.C.O.F)=F/(A-8)/(A-C)/(A-D)
P3II(TO)=233(T0, 71,72, T3, FO)+233(T1,70,72,T3,F1)

AIIFTI TO.T1, T3, F2)+Z33(TI . TO. 74,72 F3I)
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Z32(A.B . C.D.Fix-(B+C+D)*F/(A-B)/(A-C)/(A-D)
PI2(TO)=Z32(T0, 71 T2, T3.FO)+Z32(T1.70,7T2.13.F1)
+232(T2,TO. T, T3 F2)+232(73.70.7T1,T2,F3)

Z31EA 8. C.D.Fi=(B*C+B*D+C*D)*F/(A-B)/(A-C)/(A-D)
BI(TO)=ZIN(TO, T1, T2, T3 FO)+Z31(T1,70,T2.T3.F1)
ATTLLFR.TO.TI T3 F2)+Z391(T3.7T0.T1.T2 F3I)
Z;éfi:E.C.DiF)-EE‘C‘D‘F/(A-S)/(AEC)/(AED)
PIO(M)I*220(T0. 71, 72,73, FO}+230(T1.70,T2.7T3.F 1)
+Z¥0(T2.TO. T1 T3, F2)+230(73,70.T1,72.F3)

I1=106M)
IF(G EQ 1)G60OTO 200
C EXTRAPOLATION OF HISTORY TERM SEQUENCE
GOTO( 140, 120,100}, 11
TO=TS(11-3, M)
T1sTS(11-2 wm) -
T2=TS(11-1,MM)
TI=TS(1].mm)
DO 110 u=1.2
jf FO=HT (J, TMI( MM ) M)
- FAsHT(J, IMI1TMM ) MM
F:-HT(J,!H!(H‘),Hﬂg
FImHT(J, TOIMM ) M)
HT(J.IP1(MM) MM)I=PII(TO)*T*+3+P32(TO)I*T+T+PI1({TO)*T+PIO(TO)
110 CONT INUE
RETURN

100 TO=TS(1.MM)
T1=TS(2.MM)
T2=T5(3, M)
© DO 130 Jst,2
FO=HT (J, TMZ(MM) MM )
FAsHT(J, IMI(MM) M)
E2sHT(J, 1O(MM) )
HT(J,IP1(MM) MM)=P22({TOI=T*T+P21(TO)*T+P20(TO)
130 COMT INUE
RETURN

120 TO=TS( 1. MM)
Ti=TS5(2.MM)
DO 150 J=1,2
FOsHT(J.IM1{MM) MM)
FAa=HT(J,TO(MM) M)
HY{J. IP1(MM) MMI=PI1(TOI=T+P10{TO)
150 CONT INUE
RETURNM

140 HT{1.1F1(WMM) MWM)=0 DO
HT{2,1P1(MM) MM )=0 DO
RETURN ke

L4

L]

o0 Le{I{MM)-4)/2%3+1
HT(1. IP1() MM)=0 DO
o HT(2.IP1(mMM)} MM)=0 DO
GOTO(400,5%00.600,700}) .11
FE=mMOO(I(MWM) . 2)
E=]11-5+FF
C EVALUATE INTEGRAL UP TO LAST SEVERAL INTERVALS .,
DO 210 J=1.E.2
AA=TS5(J MM}
BB=TS5(J+2.MM)
JI=(J=1)/23+1 b
DO 220 -JJ=1.2

HT(JJ. 1P (M) M) =HT(JJ TP (M) M )+P{JJ.J1 MM)=TAU2(AA . BB)

. AP(JJ JI+1 MM TAUI(AA BE)4P(JJ, JT+2.MM)*TAUO(AA.BR)
220 CONT INUE '
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111
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114
118
116

23%

210 CONT INUE
IF(FF EQ.1)GOTO 600

C EVALUATE INTEGRAL FOR LAST 4 INTERVALS

C USING TWO INTERVAL PAIRS (FOR I EVEN)

700 TO=TS(11-3.MM) *

T1eTS(I1-2.MM)

T2=TS(11-1. MMm)
DO 710 U=1.2
FOSAN(J. IM3( M) MM)
FisAN(J. IM2(MM) MM)
F2sAN(J . TM1(MM), M)

C FIT A 2ND ORDER LAGRANGE POLYNOMIAL

P(J.L.MM)=P22(TO)
P(J.L+1. . MM)eP21(TO)
P(JU.L+2.MM)=P20(T0O)
HT(J_ EP1(MM) MM)eHT(J, 1P 1(MM) MM)+P(J L. MM}*TAUZ(TO, T2)4
P(J. L+, MM)*TAUI(TO, T2)+

 P(J.L+2.MM)*TAVO(TO,T2)
710 CONT INUE
C FOR THE SECOND PAIR OF THE SET
C (OR FOR THE VERY FIRST PAIR OF INTERVALS)
%00 TO=TS{I1-1,MM) .
Ti=TS(I1.MM) .
T2=TS(I1+1 MM)
DO 720 J=1.,2 )
FO=AN(J, IM1(MM)  MM) N
FioAN(J, TO(MM) M) .
F2oAN(J.IP1(MM) MM)
HT(u.xm(m).m)-HT(u.le(!!i!).m)*Pgaifo)*ﬂui(Té,T;)*
P21(TO)*TAUI(TO.T2)+

. P20(TO*TAULO(T0.T2)

720 CONT INUE
RETURN

Cc
C EVALUATE INTEGRAL FOR LAST 3 INTERVALS (FOR [ 0DD)
“600 TO=TS(I1-2.MM)
Ti=TS(I1-1.MM)
T2eTS(11 .MM}
TI=sTS(I1+1 MM)
DO 610 U=t 2
FO=AN(J. IM2(MM)  MM)
FIsaAN(J. IM1(MM)  MM)
F2=AN(J.  1O(MM)  MM)
FIsAN(J., IP1(MM)  MM)
HT(J.IP1(MM) MM)sHT (U, IP1(MM) MM)+PI3(TO)*TAU3I(TO.TI)+
P3I2(TO)"TAU2(TO,.T3)+
. 931(T0)‘TAU1170.73)0930(TQ)‘TAL@(TDQT3)
610 CONT INUE
RETURN
C
C EVALUATE INTEGRAt FOR TME FIRST INTERVAL
400 TO=TS(1,MM)
TieTS(2,MM)
DO 410 J=1.,2
FO=AN(J.I10(MM) M)
FisAN(J.IP1(MM) MM)
HT(-J.IP\(W).W)-HT(J.I?!(l‘l),'!ll)*PH(TD)*TALH(TaiT‘)*
P1O(TO)*TAUO(TO . TY)

410  CONTINUE
RETURN
END

¢

C

SUBROUTINE ICING(LYOL . ICE BOTH.FAIL .DDISTN, ATHICK FILTER)
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WRITTEN ByY: M OLESKIW ON: 800713 LAST MODIFIED:B11024

CALCULATE AMOUNT OF ACCRETION AND DETERMIME A NEW SET OF AEROFOIL.

SURFACE ELEMENT ENOPOINTS AFTER DETERMINING THE AEROFOIL
NOSE LOCATION.

IN

IN
IN
ouTt
IN
IN

IN
IN

DOUBLE PRECISION XN, YN, XNN, YNN, XUR({101),YUR(101),BU(101]),

,EU(1@@.3).§L(1@G.3)iKL§TiQ1)!VLEI1Qi}iL(3|i§),VQ(31i5),
D,CEED(S.30.5%),LTOL.OSIGN XLRN(101) YLRN(101) XNM BL(101),
§30,C30.NSURF  XURN( 1011 'YURN( 101}  CEU(101.5) ,CEL(101,5),
.IUT(!Qi)!xLT(iai).xuiiGi).Vu(1DI)iKL(‘éi)ileiﬂl)iE(i),

YUT{101),YLT(101).DABS ,DSORT LU(101),.LL(10Y) ICE MDU(101),
TOL.LE,.RE, ICEE  ALPHAR ,DCOS,LUP(101).LLP{101), 5L MDL(101)

DOUBLE PRECISION NSURFY XRMIN, XWP, K YNP DOD DSIN, FXU, FXL,

CACU(101),ACL(101) KU 101) KL(101) . W(S),XI vI1.C,DO(S) OFLOAT,

THCU( 101), THKL{ 101 ) ,UNEU , VNEU UNEL BETA FLV,LUM, LLM ACCRT,

VNEL,CFV(3,30.%).CFA(3,30,%) . MMD VTOT(31,5) . ACOL(31.5),
CRU(101) ,RL(101) , RHOSU{ 101)  RHOSL{101) UINF PINF TINF,

VTIMP T PAR DMIN1 DMAX1 EPS(S) KLF LRU.LRL, TOLL.R{ R2,R],

VTL(101) . VTU(101) . YOE(2) ,FL(5) FILTER.LDL .LDR, LMXCE(6), LMX

INTEGER EﬁfgldiﬂéﬂU!NCDL.ICT(E).ICU(SS,IEL(E)QIi!EE.HDlC.

CIM,IUS,ILS.IK, FALL.RUN.NEU NEL, TU(S1) . 1L(51) ATH DDSTN,

KK, IXUCI01), IXL(104), TUU, ILL  NEUP NELP KJP KJ NCOUM1T, 11, 0,

NCOLM?Y DOISTHN, JJ, ATHICK. TYPE . DENSE . HS . N, ICTT HELLP NEUUF,
CIMAXU, IMAXL . ITMXU, IMXL M NEUUPT NELLPIT KI NEU NELL, JI.1J,

LAYER ATYPE HSD(S)
¥

COMMON ALﬁHAE/AEﬁﬂzfﬂiﬂu.HéBL!HESE/iH@VN/FDIL/XUEETUR.

 XLR.YLR/ROTP/C30,530/CEM/LMXCE/IND/NSURFY FL ICEE,I1,JJ.RUN
1/AEEDJ/HEU3MELENEUUiHELL/EEV/EFV.EFA/EG/EU.ELiATHiDQSTN
,ISPLIHEXEU;CL/EHQE/IU.iL.ixuiIXL/NHGSE/XNﬁ.VHFXHEE!TSZHEiHaﬁ

L /WTS/W/TRANS3/DD . C TYPE, J/CV/VTOT ACOL
/TRANS i /UINF . PINF TINF EPS DENSE/LLR/ACCRT LAYER ATYPE

./COL/L.v¥0,1CT 1CU, ICL/EFF/CEED/SFCS/XU YU XL YL/LG/LU,LL

EXTERNAL NSURF

LTOL=MAX INCREASE ALLOWED IN LENGTH BETWEEN CEE'S
BETWEEN SUCCESSIVE AIRFOIL SURFACES.

ICE=THICKNESS OF ICE ACCRETION ASSUMING CE=100%.

BOTH=TRAJECTORIES FOR BOTH SFCS. (0 OR 1)

FAIL=FAILURE INDICATOR.

DDISTN=NO OF S1ZES IN DROPLET DISTN. s

ATHICK = INCORPORATE SFC. CURVATURE IN ACCRETION THICKMESS
CALCULATION

DENSE=VARY DENSITY OF ICE ACCRETION (O OR 1)

FILTER=LENGTH OF BOXCAR FILTER(AS A FRACTION OF L RANGE oF
LARGEST DROPLET S]1ZE) TO BE APPLIED TO SMOOTH CE V5 L
CURVE(S).  IF O, THEN DON‘T FILTER. (F)

FORMAT( ' -MASS MEAMN DIAMETER: . F7.1.° MICROMETERS. ')

FORMAT( ‘OF AILURE TO CONVERGE TO NEW NOSE POSITION’) -
Y)./.0 +.T64.8(° DIAMETER ‘)./.

FORMAT( 'O’ .T64 5(  DROPLET

LY . TE4 . %(F& 1, UM ’))

FORMAT(® *.T26, ‘DISTANCE LAYER NOAM . AVERAGE ' ./,

.* END',T28, FRDM ACCRETION ICE *,6('COLLISION ),

./." POINT x COORD Y COORD NOSE THICKNESS DENSITY ‘.,

LE('EFFICIENCY ‘),/.," )

FORMAT( ' ' .14 F10.%,3F9.%5 F8.3,2PF9.2,8(2PF11.2))
FORMAT(* )

DOSTHN=DDISTN
ATHsATHICK
0O 100 I=1.NEU



16
18
19
20
21
22

23

23

27
28
29

. 30

31
32

33
34

3%
36

237

ACU(1)=0.DO

VTU(1)=0 DO

MOU(1)=0 DO

BU(1)=0 DO

RHOSU(1)s1 DO

1F(I.GT NEW)GOTO 100 .
C FIND PERPENDICULAR SLOPES FOR UPPER SFC. POINTS.

KU(I)=-1 DO/DSIGN(DMAXY(DABS(CU(I.1)).1.0-10).CU(I.1))
C FIND RADUIS OF CURVATURE FOR UPPER SFC. POINTS

RU(T)=((1 DO+CU(I.1})**2)**y 8D0)/2.00/

OSIGN(DMAX 1(DABS(CU(I1.2)},1.D0-10),-CU(1,2))
100 CONTINUE

1F(BOTH . EQ O)GOTO 180

DO 110 I=1 NEL

ACL(1)%0 DO

VTL(I)=0 DO

MOL(1)=0 DO

BL(I)=0.DC

RHOSL(1)=1.D0O

IF(I.GT NELL)GOTO 110
C FIND PERPENDICULAR SLOPES FOR LOWER SFC. POINTS

KL(I)=-1.DO/DSIGN(DMAX {(DABS(CL(I8n 1)), 1.0-10).CL(1,1)}
C FIND RADIUS OF CURVATURE FOR LOWER SFEC  POINTS.

RL(I)=((1 DO+CL(I.1)**2)*+1 8DO)/2.D0/ .

- DSIGN(DMAX 1(DABS(CL(1.2)).1.D-10).CL(1.2})

110 CONT I NUE
180 MMD=0.DO

c _

C FIND WEIGHTED AND/OR FILYER#D COLLISION EFFICIENCY T

C FOR UPPER SFC.: Y
DO 205 U=1.DOISTIN
JUsICL(J) \
JI=1CLIJ) : .
ICTT=1CT(y) N
FLOU)FILTER*(LEICTT . U)-L(1.U))/2.00
LOL=L(1,yU)
LDR=L(ICTT . y)
LMX=LMXCET(J)
C FIND VOLUME MEAN DIAMETER.
MMO =MMD+W ( J ) *DO(J)
00 200 I=1. NEU
IF(1.GY NEUU)GOTD 218
220 IF(LUCT) LE. L(JI1+1.J))GOTO 240
’ JInyled
. IF(JI 7 ICT(J))GOTO 220
C NO ACCRETION REGION

215 CEU(I,U)=0 .00

' IF(FILTER EQ.0.DO)GOTO 1375
GOTO 1400

240 D=LU(I)-L(JU], V)

C CALCULATE INTERPOLATED CE.

. IF(HSD(J) . EQ0.O)CEU(1.JU)=((3.DO*CEED(3.U1.J)*D
+2.DO*CEED(2.Ul,J))*D+CEED(1.UI,J))*DCOS(ALPHAR)
TF(HSO(J) EQ 1)CEU(I,JU)s((((%.DO*CEED(S.JI.J)*D
+4 DO*CEED(4.UI,J))*D+3.DO*CEED(3.UI.U))*D
+2.DO*CEED(2.JI,J))*D+CEED(1,Ul,J))*DCOS(ALPHAR)
IF(FILTER.NE .O.DO)GOTO 1400
BU(I)=BU(T)+CEU(T . U)*w(U)

. GOTO 1378

1400 IF(LU(1) GE LMX)GOTO 1610
1F(LU(I) .LE.LDL)GOTD 1620
FLVEFL(J)-0 900 FL(J)/(LMX-LDL)*(LU(1)-LDL)
GOTO 1600 .

1610 1F(LU(I) GE LDR)IGOTD 1620
FLV=O.1D0*FL(J)+0.9DO*FL(J)/(LDR-LMX)*(LU(T)~-LMX)
GOTO 1600



- 77

.

&7
(-1 ]
&9

71
72
73
T4
75
16

78
79
80
B1
‘82
a3
a4

102 .

193
104
10%
106
107
108

108
110
111
112

115
116
117
118
119

ICING
]
1620 FLV=FL(J)
1600 E(1)=LUCT)-FLV
E(2)=LU(T)+FLY
DO 1430 IJ=1.2
TF(E(IJ).GT . L(1.J))GOTO 1440
YOE(IJ)=YO(1.J)
GOTO 1430
1440 IF(E(TJ) . LT.LUICTT J))GOTO 1450
YOE(TJ)=vOIICTT )
GOTO 1430
14%0 IF(E(TJ} 6T L{JJ.J))GODTO 1460
NNLNNER
GOTD 14%0
1460 IF(E(TJ) LE L{JJ+1,J))GOTO 1470
NNLHNES
GOTO 1460
1470 DeE(IJ}-L{JJ.J) .
IF(HSD(J) €Q O)YOE(IJ)=((CEED(3, JJ.J]*D

+CEED(2.JdJ,J)1=D+CEED( 1, Jd,J})*D+¥0(UJ, J)
TE(HSD(J) EO 1)YOE(IU)=((((CEED(S, . J)*D
+CEED{4.0J.J))*D*CEED(I.JJ.J))*D
ACEED(2.UJd.JYV*D+CEED(1.JJ.J))*D+VO(JJ. J)
1430 CONTINUE
BETA=(YOE(2)-YOE(1))/2 EQ/FLV*BdES(ALFHAE)
BU(T)=BU(I1)+wW(dJ)*BETA
137% IF(DENSE EQ.0)GODTD 200
C CALCULATE AVERAGE DROPLET IMPACT VELOCITY COMBONENTS .
IF(LU(]) LEéL(!CTT.JA)GDTE 1380
IF(J.GT 1)GOTO 200
VIU(T ) =VTU(I)+W( 1) *vTOT(ICTT 1)
ACU(TI=ACU( 1 )+W{ 1)1*DABS(ACOL(ICTT 1))
MOU(1)*MDU(T)+W(1)=DD(1) -
. GOTO 200
1380 D=LU(IN-L{JI,J}
VIU(T ) =VTUC T ) +W ()= ((ICFV{3,J1,J)*D+CFV(2,J1,J))*D
+CFV(1,J1.J))*D+VTOT(JI,J))
ACU(T)-ACU(I)*U(J)‘DABS(((CFA(E.JIid)‘E*CFA(i,JI,d))‘D
+CFA{ 1,01 ,J))*D+ACOL(JT,J))
MDU(T)=MDU(T)+W(J)*DD(J)
200 CONT IHUE
1F(BOTH . EQ O)GOTO 205

c
C FOR LOWER SFC:
JUTICL(J)+
JIsICL(J)+1
DO 210 I=1 NEL
IF(1 GT NELL)GOTO 23%
230 TF(LL(IY 6T L{J1,4))GOTO 2%0
JI=JdlI=1
IF(JI.GT 0¥GOTO 230

C WO ACCRETION REGION.

22% CEL(1.4)=0.D0O
IF(FILTER E0.0.DO)GOTO 1475
GOTO 1500

2%0 DeLL(1)=L(JI, J)

¢ CALCULATE INTERPOLATED CE.
IF{HSD(J) EQ.O)CEL(1, J)=({3 . DO*CEED(3,.JI.J4)*D
+3.DO*CEED(2,4Jl,J))*D+CEED(1,J1,U))*DCOS(ALPHAR)
IF(H5D(J) EOQ 1)CEL(T,J)=((((5.DO*CEED(S U] J)*D
+4 DOYCEED(4,J1,.J))*D+3 DO*CEED(I.JI.J))*D
+2 DO=CEEDI2.J1,J))*D+CEED(1,J1,J))*DCOS(ALPHAR)
IF(FILTER .NE.O.DQ)GOTO 1500
BLIT)=BL(1)+CEL(] J)*W(J)
GOTO 147%

1500 IF(LL(I} GE.LMX)GOTD 1710
IF(LL{1) LE.LDL)GOTOD 1720



120
121
122
123
124
125%
126
127
128
129
130
131
132
133
134
135
i3é
137
138
139
140
141
142

143

144
145
146
147

148
149
150
151
152
1%3
154
}-1-]

156
157

158
159

180

3
ﬁig\,

164
165

166
167
168
1869
170
171
172

FLV=FL{J)-0 9DO*FL(J)/(LMX-LDL)*{LL{I)=-LDL) fj

GOTD 1700
1710 IF{LL(I) GE.LDR)GODTD 1720
FLV=O.  1DO*FL(J)+0. 9DO*FL(J)/(LDR=LMX)*(LL (1)~
GOTO 1700
1720 FLV=FL(J)
1700 E(1)sLL(I)-FLV

E(2)=LLI{TV+FLY
DO 1530 [J=1,2
IF(ECIJ) GY L{1,J))GOTO 1%40
YOE(1J)=Y0O( 1. J)
GOTO 1%30
1840 IF(E(IJ) LT LUICTT,J))GOTO 15%0
YOE(IJ)=YQ(ICTT J)
GOTO 1530
1580 IF(E(TIJ) GT L(JJ,J))GOTO 1560
WL IWNER
GOTO 15%0
1560 IF(E(1J) LE.L(Ju+1,4))GO0TO 1870
JuEd+
GOTD 1%60
1570 D=E(1J)-L(Jy.J)
IF(HSD(J) EQ O)YOE(1U)=((CEED(I,UJ.J)*D
+CEED(2.UJ.J))*D+CEED( V. UJ . J) ) *D+Y0(UJ . J)
IF(HSD(J) . EQ . 1IYOE(IJ)=(( ((CEED(S.JJ,J)*0D
4CEED(4.UJ.J))*D*CEED(3.JJ,J))*D
1530 CONT INUE
BETA=(YOE(2)-YOE(1))/2 DO/FLV*DCOS(ALPHAR)
BL(I)=BL(1)+W{J)*BETA
1478 IF(DENSE EQ .0O)GOTO 210
C CALCULATE AVERAGE DROPLET IMPACT VELOCITY COMPONENTS.
IF(LL(I) GE . L(1,J))G0TO 1480
IF(J.GT 1)GOTO 210
VIL(T ) =VTL(1)+w(1)=VTOT(1, 1)
ACL(I)=ACL(I)+w(1)*DABS(ACOL{1,1))
MOL(I)=MDL{I)+w(1)*DD(1)
GOTO 210
1480 DeLL{IY=L{JI, J)
VILIT)=VTL{I)+W{J)*{({CFV(I U1 J)*D+CFV(2.J1.J))*D
+CFV(1,J1 . J))*0+VTOT(JI ,J))
ACL(TI)=ACLIT)+w(J)*DABS({(CFA{3 JI, J)*D+CFA(2,JI,.J))*D
+CFA(T , JI . J))*D+ACOL(JI U}
MOL(T)=MOL(I)+W(JI*DD(Y)

210 COMT INUE
20% CONT INUE
c

C ACCRETE ICE ON EACH SFC (TAKING INTO ACCOUNT THE
C SFC CURVATURE IF ATHICK 15 1) -
C FOf THE UPPER SFC
NOAC=0

DO 300 1=1 ,NEU

IF(NOAC EQ 1)GOTO 320

IF(BU(I) EQ.O.DO)NOAC=1
CTINDEX OF BEGINNING OF NO ACCRETION REGION.

IF(NDAC EQ 1)IMAXU=I] : -

IF(DENSE EQ.O)GOTD 3I5%
C CALCULATE MEAN ICE DENSITY
UNEU=VTUL 1 )*DSIN(ACU(I)) v
VNEU=VTU( T )1*DCOS(ACU(I))
IF(DENSE EQ 1 )VTIMP=VNEU*UINF
IF(DENSE EQ 2)VTIMP=DSORT (UNEU**2+VNEU**3 ) *UINE
€ ICE DENSITY ACCORDING TO MACKLIN (1962) ’
TI=DMAX 1{ TINF, K -20.00)
TI=DMINI(TI -5 .D0O)
PAR=-MDU(I1)/2 DO*VTIME/TI



173
174
178
176
177
178
179
180
181
182
183
184

185
186
187

188
189
190

191

192
193

194
19%
196
197

198
199

200
201
202
203

208

206
207
208

209
210
211
212

213

214
218
216
217
218

219
220
221
222
223
224

240

PAR=DMINY(PAR, 16 2900)
PAR=DMAX 1{PAR O.BBDO) »
RHOSUII )=t 1D2*(PAR*+*0O T6D0O)/9. 17D2
358 THU( I )=ICE~BU(] )/mHO5U(])
IF(ATHICK EQ .0YGOTO 330
IF(ATHICK EQ.-1)GOTO 370
IF(I NE 1)GDTOD 340
IF(BOTH EQ. 1)GOTO 363
RI=DSIGN(2 DO*DABSIRU(2))+DABS(RU()) RU(1))/3.DO
GOTO 2380
36% R1=DSIGN(DABS(RL(2))+DABS(RU( 1) )+DABS(RU(2)).RU(1))/2.00
GOTD 23RO
C UNSMOOTHED RADIUS OF CURVATURE
3710 R1=RU(I1)
GOTO 38O
340 R1=DSIGNIDABSIRU(I-1))+DABS{RU(] ) )+DABS(RU(I+1)) RU(1))/3.D0
C ICE ACCRETION THICKNESS INCORFPORATING CURVED SFC.
380 IF(] EQ 1)RZ=R1
IF(] EQ 2)R3=R1 .
THKU{ I )=-RI+DSIGN(DSORT(R1**2+2 DO*RI*THRU(I)) R1)
C COORDS FOR NEW S5FC.
330 XURM( T ) =XUR( I +DSIGN(DSORT(THRU(] )*=2/
(1. DO+KU(1)*=*2)) . KULT))
YURN{ T Y= YUR( T )+U( ] })*(XURNI(I )-XUR{]I))

GOTO 300
C NO ACCRETION
320 XURN(I ) =xUR(T)
YURM( T j=YUR(1)
300 CONT INUE

1F(R2.GE R3IGDTOD 306
C ICE ACCRETIDN THICKNESS INCORPORATING CURVED SFC.
THKU( 1)=-R3I+DSIGN(DSORT(RI**2+2 DO*RI*ICE*BU( 1)
/RHOSU( 1)) '3}
XURN{ 1 1= XxUR( 1 )+DSIGNIDSORT{THRU({ 1)1¥*32/
(1. DO*KU(11**2)) ®KU( 1))
YURN{ 1) =YUR{ 1) +EU{ 1) *{ XURN({ 1)-XUR( 1))
306 WRITE{7 15 }MMD
WRITE(7.20)(DDI(N)  N=1 DOISTN)
WRITE(7.25)
DO 190 I=1 NEW
WRITE(7,30)1 ,XUCI), YUCT) LUCT)  PHRU(T) RHOSU(T ) . BU(I),
(CEU(I.N) N=1 DDISTN)
IFIBU(1] EQ O.DO)GOTOD 406

190 CONTINUE
406 IF(BOTH .EQ O)IGOTD 580
Cc
C FOR THE LOWER SFC
NOAC=0O

DO 400 I=1 ,MEL
IF(NOAC €0 1)GDTD 420,
IF(BL(I) EQ O DOINOAC=1
C INDEX OF BEGINNING OF NO ACCRETIOM REGIONM.
IF(NOAC EQ. 1)IMAXL=]
C CALCULATE MEAN ICE OENSITY
1F(DENSE EQ .O)GOTO 4558 )
UNEL=VTL(I)*DSIN(ACL(I)) :
VNEL=VTL(1)*DCOS(ACL(T1))
IF(DENSE EQO 1)VTIMP=VNEL*UINF
1F(DENSE . EQ.2)VTIMP=DSORT(UNEL**2+VNEL**2)*UINF
C NORMALIZED ICE DENSITY ACCORDING TO MACKLIMN (1962).
T1+DMAX1(TINF, -20.D0)
TI=DMINI(T], K -5%.DO)
PAR=-MOL(1)/2.DO*VTIME/T]
PAR=DMINI(PAR 16 . 2900)
PARSDMAX \ (PAR O BBDO)
RHOSL(I)=1. 1D2*(PAR**0.76D0)/9.17D2



P

223
226
227
228
229
230
an

232
233

246

247
248

45% THML(T )= ICE-BL(I)/AHOSL(I)
IF(ATHICK EQO _Q)GDTO 430
IF(] NE 1)GOTO 440
TERL ) =THEU( 1)
GOTO 430
440 IF(ATHICK EQ.-1)GOTO 470
€ FIND RADIUS OF CURVATURE
R1=DSIGN(DABS(RL(1-1))+DABS(RL(]))+DABS(RL(I+1)}) RL(I))/3.DO

GOTO 480
470 Ri=sRL(I)
€ ICE ACCRETION THICKNESS INCORFORATING CURVED SFC.
480 THEL (1 1=-R1+DSIGN(DSORTIR1**24+42 DO*RI*THML(I)) . R1)
€ CDORDS FOR NEW SFC
430 XLRN(I ) =X LRI )-DSIGN(DSORT(THL{I)*+2/

(1. DO+KLITI==2)) . KL{T1))
YLAEN(I ) =VLRET)+RL(T I = (XLAN(I)=XLR{I))

- GOTO 400

C NO ACCRETION

420 XLAN(I )=xLR(])
YLRN(T)=vLR(])

400 CONT INUE

WRITE(7.40)

DO 23% I=1 NWELL o

WRITE(7 . 30V . XL, YLOI ), LLOT) THL(I) RHOSL(T).BL(I),
(CEL{I . N) H=1 DDISTN)
IF(BL(I) EQ.O.DO)GOTD 200

235 - CONTINUE
T GOTO 900
Cc
C UPPER & LOWER 5FCS. MIRROR IMAGES:. NOSE 5TAYS OW THE X-AXIS.
590 DO 595 [=1 NEU
XLRN(T J=xyUaN(])
YLRH{I)=-YURN(I)
595 COMNT INUE
TMAXL =TMAXU
GOTO 930
c
€ FIND NEW NOSE LOCATION USING THE GOLDEN SECTION SEARCH METHOOD
c OF DETERMINING THE MIN. VALUE OF THE MEW SURFACE X-COORD.
800 ICEE=ICE
RUN=0
I=1
Ju=1

IF(LMXCE(&) LT.0.DO)GOTO 905
XNM=XN=-THKU( 1)
DO 1010 KK=1 NCOU
! TF{XU{KK)-THKU{KK) GT XNM)GDTD 102%
1010 CONTINUE

102% LE=1.D-10 ;
RE =XUR (KK ) . ’\
GOTO 920

290% XM= XN =THIL (1)
DO 910 KK=1 NCOL
IF(XL(KK)-THKL(KK) GT XNM)GOTO 925
o CONTIMNUE
5 LE=1.0-10
RE=XLR(KK)
c iiiiijjiiiiiit-l-ii!’si’I'Q?i!l?iiiiiiit;itiiiiiﬁiii!iiii‘l!ﬁili‘i-i!!irﬁ‘
920 TOL=1.D-8 )
C s e s s R R F A A L S F R N F S S SRR I RS S P RN SRR NP SRR RSP ATR A NSRS
FAIL=O
C L@MITS OF SEARCH
CALL ZXGSH(NSURF LE.RE TOL . XRMIN. IER)
IF(IER LT 179 OR 1ER GT_ 132)GOT0 950
FAJL=1
WRITE(&, 10)

]
2

PR



277
278

279
280

300
301
302
303
304
308

J06
307
308

309
310
KRR

J12
313
J14
318
316
317
318
319
320
321

322
323
324

328
J2¢
327
320
29

331

WRITE(?, 10}

GOTO 720
C NEW NOSE COORDS
950 YNNeNSURF Y ]
XNN=NSURF ( XEMIN )
C
C DE-ROYTATE NEW UPPER & LOWER SFCS. ABOUT PREVIOUS NOSE FOSITION
8930 DO 500 I=1 NEU

XUT(I)=XURNI)}*CIO-YURN(T )*S30O+XN
YUT(T 1 =XURN(T 1*5$30+YURN( ] ) *C30+YN
SO0 CONT INUE
DO 810 I=1 NEL -
XLT(I)=XLRN(1)*CI0O+YLRN(])*530+xN
YLT(I}=-XLAN(])*S30+YLRN(]I ) *C30+YN
510 CONT INUE
IF(BOTH EQ. 1)GOTD %20
XNN=XUT( 1)
YNN=YUT( 1)
$20 XU( 1) =X
XL(1)=xXMN
YU(1)=vim
YL(1)=vYNN
Uus ¢

1
1LL" )
F(BOTH E0 0)1GOTd €25%
IF(LMXCE(6) LT O .DO)GOTD &OS
C .
C SEE IF ANY UPPER SFC. ENDPTS. ARE BELOW THE NEW NOSE POSITION
C & THUS BELONG ON THE LOWER SFEC.
DO 1110 IM=1_NEU
IF(DABS(YUT(IM)-YNN) LT 0.2D0*(YUT(2)-YUT(1)))GOTO 1120
IF(YUT(IM) GT YNNIGOTO 1130
1110 CONT INUE
1120 IF(IM . GT 2)GOTO 1140 ,
IF(IM EQ 2)GOTO 11%0
C SAME NOSE INDEX
1USs2
1LS=2
GOTD 660
C NEW NOSE IS5 NEAR FIRST ENDPT. ABOVE PREVIOUS WNOSE.
1180 JUS=3
ILS=t
N GOTO 660
C WEW NOSE IS NEAR SECOND OR GREATER ENDPT ABOVE PREVIOUS NOSE
1140 _IK=IM-2
DO 1170 I=1 Tk
ILLeTLL+t
XLOILL)=XUT(IM-1)
YLOILL)=YUT(IM-T)
1170 CONT INLIE
1USs IMs+ 1
ILSe1
GOTO 660
1130 IF(IM.GT.2)GOTO 1180
C NEW NOSE 1S BETWEEN FIRST 8 SECOMD ENDPTS. ON UPPER SFC.
1US=2
ILSe 1
GOTO 660 -
C NEW NOSE I5 ABOVE SECOND ENDPT. ON UPFPER SFC.
1180 IKeIM-2

DO 1190 I=1, Ik
ILLeILL+1
XLOILL ) =XUT(IM-1)

YLOILL)=vYUT{IM-1)
1190 CONTINUE
TUS=IMm



332
333

334
338
336
337
338
339

J40
341
342

343
344
348

346
347
348
349

351
3%2
3%3
384
3ss

3%6
387
358

389
360
36
362
363
364

366
367
&8
289
370
371
372
373
374
378
37¢
377
378
379
380
381
382
8
384
388

387
88
389

610
620

ILS=1
GOTO 660

)

IF ANMY LOWER SFC. ENDPTS

ARE ABOVE THE

THUS BELONG ON THE UPPER SFC.

DO &10 IM=1 NEL

NEW NOSE POSITION

IF(DABS(YLT{IM)-YNN) LT . 0.200°(YLT(1)-YLT(2)))@OTD €20
IF(YLT(IM) LT YNMN)GDTD &30

CONT INUE

IF(IM GY 2)GOT0 640
IF(Im EQ 2)GOTO 650

C SAME NOSE INDEX

62%

700

Ew NOSE 15 BETWEEN

1US=2

1L5=2

GOTO &60

NOSE 15 NEAR FIRST
IUS=1

IL5=3

GOTO 6&0

EW NOSE 15 NEAR SECOMND OR GR

In=]M-2
DO €70 I+ 1K
TUU= U+
XUCTUU Y =XLT(IM-T1)
YU(TUU)=YLT(IM-1)
CONT INUE

1UsS=1

ILS=IM+

GOTO 660

1IF(IM GT 2)GOTO

LE 1

L
I
1UsS=1

IL5=2
QOT0 &80

y WOSE 15 BELOW SECOND ENDFPT

IK=IM-2
DO €90 I=1, 1K
Tuu=Tuu+ 1
XU(IUU ) =xLT({IM=1)
YU(TUU)=YLT(IM-=1)
CONT INUE

IUS=1

ILS=1IMm

DO 700 I=1US.NEU

TUU=TUU+1
XU{TUU ) =XUT(])
YU{ I =vyuT( 1)
CONT INUE
DD 710 I=ILS.NEL
ILL=ILL+Y
XLCILL)#*XLT(T1)
YLOILL)=YLT(1)
CONTINUE

NEUP=NEU

NELP=MEL

NEU= WU

MEL=ILL

NEUUP =NEUU

NELLF=NELL

NEUL =NEUU+NEU-NEUF

NELL=NELL+NEL-NELP

XHP = XN

YNP=YN

XN=XNN

YN= YN

IF(LAYER GT %2)GOTOD 7%0

O
]

BELOw PREVIOUS MNOSE

ATER ENDPT .

5T & SECOND ENDPTS

ON LOWER SFC

BELOW PREVIOUS NOSE

ON LOWER SFC.



410

414
413
416
417
418
419
420
421
422
423
424

4238
426

427

428
429

430

431
432
433

434

438
436
437
438
439
440

441

244

L]
LUM=LU(2) ’
LLMeLL(2])
750 DO 800 1=1 NEUUP
LUP(I)=LU(]) )
800 CONTINUE

DO 810 I+t NELLP
LLP(I)=LL(])
810 CONT INUE
DO 840 I+ NEU
I1xU(l)=0
840 CONT INUE
DO 84S I=1 NEL
IXL(I)=0O
845 CONT INUE
IXU(NEU )= 1
IXU(t)=1 -
IXL(NEL )=t :
IXL(1)=1 .
KJP=NEU .
KJeKJP
C SET VALUES TO O FOR PROPER OUTPUT.
IF(NEU-NEL GT 0)GOTO 9€0
IF(NEU-NEL EQ O)GOTO 970
NEUUP t = NEUU+ 1
DO 980 KI=NEUUP{ NELL
XU(K!)=0 DO
YU({K])=0.DO .
LU(KI)=0 DO

98Q CONT INUE
GOTO 970 » .
960 NELLPI=NELL*1 A4

DO 990 KI=NELLP1_ NEUU

XL(KI)=0 . DO

YL(KXI)=0.DO

LL(KI)=0.DO
290 CONT INUE
[of [
C FIND INDICES ON NEW SFCS OF BEGINNING OF NO ACCRETION REGION.
970 IMXU=NEU-NEUP+ I MAXU

IMXL=NEL-NELP+IMAXL

FIT CUBIC SPLINES TO THE SFCS. AND CHECK IF THERE ARE
ENOUGH VORTICITY SEGMENTS.
CALL FIT(BOTH)
Cc ‘ ’
C FIND RATIO OF LENGTHS ALONG SFC. TO BEGINNING OF NO ACCRETION REGION.
LRUSLU( IMXU)/LUP( IMAXU)
LRL=LL(IMXL)/LLP(IMAXL)

c [ A X Z AR AR ES RN EAREEARE AR AR AR RN NREENE AR RN AR YRR AN AR RS E]RR ]

TOLL=0.9900
[of (A AN B AR N R AN R R RSN S AR R R A RA NN AR AR R AR AR ERNESER AR AN AN RN 2N ]
C FIND RATIO OF SFC ENDPTS. TO CONTROL ENDPTS. IN ACCRETION REGION.
DO 1200 KI=1 _NCOU
IF(JU(KI) GE.IMAXU)GOTO 1250
1200 CONTINUE

c R R Y R PR PR R R R RN R R R RN R R Y RN R R RN SR N R RN R A NN AN SN RSN RN R AN S ¥ J

1280 FXU®1 . DO-DFLOAT(KI-1)/2.D00/DFLOAT(IMAXU-1)
c I E I I S X T EEE TS ERER AR RN R YR AN RSN RNNRRS R RN REN RN AN RS EE N R AN RN N E L ]
IF(BOTH.EQ. 1)GOTO 1210
FXLeFXVU
GOTO 1300
1210 DO 1220 Klei NCOL
IF(IL(X]I) GE IMAXL)GOTO 1260
1220 CONT INUE

[of I L R R R R R R P P RPN RSN RN Y ]

1260 FXL=1.DO-DFLOAT(KI-1)/2 DO/DFLOAT(IMAXL-1)

OO0



442
443
444
445

446
447
448
449

450
45

452

453
454
45%
456

457
458

459

460
461
462
463

464

465
466
467
468
469
470
471
472
473

474
47%
476
477
478
479
480

a81
482
483
484

483
486
487

4a8
489
490
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ICING

c AL AL LA LA AR RS A AN R R R R I T T R g g

c
C FOR THE UPPER SFC
1300 NCOUM | =NCOU - 1
=0 #
DO B20 1= NCOUMY
I1=NCOU+1-]
C REDEFINE CEE S IN NO-ACCRETION REGION

834 F{KJP LE IMXU)GOTO 813
“RKUeK - .
IF(NEU-KJ LT NEUP-IU(II-1))@DTD 834
GOTO 880
C OISTANCE BETWEEN CONTROL ENDPTS ON PREVIDUS S5SFC.
833 IF(M. EQ 1)GOTO 830

SLeDMAX 1 (LUP(TUCTIT))-LUP{IU(II=1)), LUM)
TOLL=OMINII(LRU, LTOL)*FxU

[ Q—iiiii-!igiﬂiyg-gt:-i--ii-i;-i--;!;iiiingi:é:ii::;iiiiiiji:iii-lli

31 IF(LU(KJP) GT 2.DO*TOLL*SL)GOTD 8230
TFCLUIKJR) LT 1. 200*TOLL*SL)@ATO A21
SLeLU(KJP ),/ 2 DO/DMAX1(TOLL. 1. .DO)
C iili!iiijiiiiii--’iiiiiiii---iiiiiiiiiﬂ!iiiiii—-iiiiiijlli!i!j!itiii
M= i ‘
830 KsK -1
. IF{KJ . EQ 1)GOTD BAO
IF(LU(KJP ) -LU(KJ} LT TOLL*S5L)GOTO &30
DISTANCE EXCEEDS THAT OF PREVIOUS CONTROL S
L8] IxuiKy)=1
IF(KJ EQ 1)GOTO 821
IF(nJP-KJ EQ 1)1GOTO BT7O
DQDiDSQﬁTl(iqlﬁdi=!U(KdP))‘-3*(VU(RJDEVU12JF))“2)

ﬁ ﬁﬁliﬁiil’i?iiiii!iQ‘!l‘l’iii!iii-!!iiiiiiiﬁ-iﬁiiiiiﬂ‘ﬁi‘i‘iii!iiii!‘-

IF((LUIKJP ) -LU(KJY) }/DDD.LE . 1. 3DO)GOTO 870

2

[
8a

c
C CONSIDERABLE SFC CURVATURE, CREATE NEW CONTEROL PT.
c MIDWAY BETWEEN PREVIDUS ONES
SN JP -1
860 TFOLUKJP)-LUTUK) GT O.48DO*TOLL*SL)GOTO 880
K-
GDTO 860
850 IXu{ur)=1
870 KJP=Ky
IF(M EQ 1)GOTO A2
IF(I] . EQ.2)GOTO B31
20 CONTINUE -

*

FOR THE LOWER SFC.

21 KJP=NEL
KJ=KJP
NCOLMY=NCOL -1
TOLL=0. 9900
M=

DO 823 I=1 NCOLMY
TI=NCOL+1-]

C REDEFINE CEE'S IN NO-ACCRETION REGION.

837 IF(KJP LE. IMXL)GOTO B3B8
K=K J-1
IF(NEL-KJ LT NELP=-IL(II-1))Q0T0 837
GOTO Ba%

ISTANCE BETWEEN CONTROL ENDFTS. ON PREVIOUS SFC.
IF(M EQ.1)GOTO A3%
SLeDMAXT(LLP(ILITI-1))=LLPCIL(IT)), LLM)
TOLL=DMINTI{LRL , LTOL)*FXxL

C -iggitiiitt—iiii:‘;nti-ai;iiia:l::;iiiiiiig::;tiijﬁ:;j:iiiii!jijiii

B36 IF(-LLIKJP) GT 2 DO*TOLL*SL)GOTO 83%

TF(-LL(KJP) LT 1. 200*TOLL*SL)IGOTO 826

SLe-LLI{KJP)/2 DO/OMAXI({TOLL,1.00)

5

[ RaXal |

oy
[~ K =]

3



491
492
493
494

499
496
497
498

499

508

510
511
512
513
514
518
316
$17
S8
519
520
521
522
323
524

[ N NI I

833

M=t

KJsKy-1

IF(xKJ .EQ. 1)GOTO 68%
IF(LL(XU)-LL(KUP) LT TOLL*SL)GOTD 835

C DISTANCE EXCEEDS THAT OF PREVIOUS CONTROL SEGMENT.

88s

IXL(KY)=1
IF(KJ . EQ. 1)GOTO 826
IF(KJP-KJ EQ 1)GOTO 873

DDD=DSORT ((XL(KJ)-XL(KJP))**2+(YL(KJ)-YL(KJP))**2)

C o.'oo.tno‘oooo'oo.-ot...o‘..-too.t.oi:;—iitgiiii!it;;iiﬁitiiii:iﬁij

IF((LL(KJ)-LL(KJP))/DDD.LE . 1.300)GOTO B7S

5

THICK

Cc .t.oooco-...-oooc--'.o.to-ooot...ooo-1-iitiig:ijiitiiiiliiiiijiiiijii

C CONSIDERABLE SFC. CURVATURE. CREATE NEW CONTROL PT.

[od MIDWAY BETWEEN PREVIOUS ONES.
IEKJP - 1
86s IF(LLIXJ)-LL(KUP) .GT.O. 45DO*TOLL*SL)GOTO 838
JK UK - 1
GOTO 86%
ass IXL(UK)= 1
878 KJPeKJ
1F(M.EQ 1)GOTD 826
IF(11 EQ.2)GOTO 836
825 CONT INUE
826 IUU=1
DO 730 I=1,NEU
1F(IXU(1) EQ O)GOTO 730
VIR {VTARR!
IUU=TUU+ -
730 CONT INUE -
ItL=?
DO 740 1=t NEL
IF(IXL(I) EO O)GOTO 740
ILCILL) et
ILL=ILL+Y
740 CONT INUE
NCOUsTUU- ¢
NCOL=ILL-!
720 RETURN
END
c
C ...l.ll..‘.IlIIIII..-.'Il...l.l-lI.iE!E!!!!Iiiii!!!-fiii!!---liiiii
c
DOUBLE PRECISION FUNCTION JTHICK(THETA)
C
C WRITTEN BY: M. OLESKIW ON:B10212 LAST MODIFIED:B10215
c
C CALCULATES THE NEGATIVE OF THE THICKNESS OF THE JOUKOWSKI AEROFOIL
C AS A FN. OF THETA AND E.
c
DOUBLE PRECISION E, DSIN.DCOS, THETA A 8 X,V
c
COMMON /JOUK1/A .8, E
c .
C IN THETA=ANGLE FROM NEGATIVE X-AX1S.
c )

O00

Xo-8*( 1. DO+E)*DCOS(THETA)-B4E

YeB* (1 DO+E)*DSIN(THETA)
JTHICK=-2.D00°Y*( 1 .00-B*B/(X*X+Y*Y))
RETURN

END



[ %]

DOUBLE PRECISION FUNCTION NSURF(XROT)

[
C WRITTEN By WM OLESKIW OW: B0OS05 LAST MODIFIED: 811024
c
€ CALCULATES THE UNROTATED X VALUE OF A POINT ON THE ACCRETED AERODFOIL
= SURFACE BASED UPON THE COLLISIOM EFFICIENCY, DIRECTION OF
c GROWTH, AND OLD AEROFOIL (ROTATED) SFC. POSITION.
C
2 DOUBLE PRECISION XUR(101),YUR(101) . CU(100.3) XLR(101),YLR(1OT).
CL{100.3).C30.530.XROT D, LENG . LEN, LU 101}, LL(101) DARS DCOS,
L(31.%).v0(31.5) XLRT YLRT XN, YN DODD, XLAN, YLRN UINF PINF,
DSIGN, DSORT . ICE . NSURFY . CE . CEED(5.30.%) . RL{101) CLL KLL RB, THK,
ALPHAR WiS) RUI 1D1’).CLIUJELJU,!UETiYUHT,KUEN.V\J?H@T!HF.E?S(gh
CFV(3.30.%).CFA(3,3% . 5) ACN,VTOT(31,5),ACOL(31.,5) . VTIMP UIMP,
VIMP DMINY DMAX 1 T] PAR,RHOS.DD(%).C VT AC,DSIN,E(2).YOE(2)
3 DOUBLE PRECISION MO LMXCE(&),LDL . LDR LMX FL(S) FLY
-
a4 INTEGER UK. RUN.I.ICT(5) . 1CU(S),ICL(S) NEU . NEL.NEL1.J . HSD(S),
DDISTN ATHICK  NEUT DENSE , TYPE, JZ2 HS NEUU NELL.IJ.I1
[
-] COMMON ALPHAR/FOIL/XUR YUR XLR, YLR/SPLINE/CU.CL/ROTP/CIO, 530
: /IND/NSUREY FL . ICE.I1 UK, RUN/LG/LU.LL/COL/L.YD,ICT, ICU, ICL
/NOSE/XN.YN/AERD4/NEU NEL ,MEUU NELL/RC/RU RL ATHICK DDISTN
/WTS/W/CEM/LMXCE/CV/VTOT ACOL/TRANS1/UINF PINF TINF EPS.DENSE
_ ./TRANS3/00,C.TYPE, JZ/HERMTS/HS HSD/CEV/CFV.CFA/EFF/CEED
c
C IN XROT=ROTATED x POSITION ON LOWER AEROFOIL SFC.
¢
€ 10 FORMAT ( 'OOUT OF BOUNDS IN SEARCHING FOR AEROFOIL’,
OR CE SPLINES IN NSURF')
¢
7 TE(JK. LT 1)uKs
8 RUN=RUN=+ 1
9 NEL 1=MNELL-1
10 NEU 1 =MEUU- 1
11 I1=1
12 IF(LMXCE(&). LT .O.D0)GOTO 120
c
C FOR THE UPPER SFC:
€ FIND THE APPROPRIATE AEROFOIL SPLINE SEGMENT
13 320 1F(XROT GT XUR(JK))GDTO 2308
14 S K=
15 1F(Jx EQ.0)GOTO 600
16 G0OTO. 320
17 305 1F(XROT LE XUR(JK+1))GOTO 310
18 i K+
19 IF(J.LE. NEU1)GOTO 308
20 @OTO 600
21 310  D=XROT-XUR(JK)
C FIND LENGTH ALONG SFC. FROM NOSE TO THIS POINT.
22 CALL SFCLEN(D.LENG,CU{JK . 3).CU(UK . 2),.CUlM 1))
73 LEN=LU({ JK J+LENG
C ROTATED COORODS. ’
24 XURTeXROT )
25 2 . YURT=YUR( UK )+ ( (CU UM, 3)*D+CU(UK . 2) }1*D+CU( U, 1))*D
! cf TANGENT SLOPE.
26 ) CUe((3.DO*CU(JK ., 3)*D+2.D0*CU(UK,2) )*D+CU(XK, 1))
27 IF(DABS(CUU) LT .1 D-10)GOTD 38O
C PERPEMDICULAR SLOPE )
28 KUU=- 1 DO/CUU
29 GOTD 2330
30 380 KUU=DSIGN(1.D10.-CWJ)
C BLENDED RADIUS OF CURVATURE.
3 230 RB=RU{JK)+(RU(JK+1)-RU(UK) )/ (LU(IK+1)-LU(K))*LENG
az @0TO0 230

(=

~d



€ FOR THE LOWER SFC
C FIND THE APPROPRIATE AEROFOIL SPLINE SEGMENT
120 IF(XROT GT xLR({JX))GOTO 108

S - 1

1IF(™ EQ O)GOTD €00

GOTO 120

1058 IF(XROT LE XLR(Uw+1))G0OTO 110

N LN SR
IF(J™ LE NEL1)GOTO 10%
GOTO 600
110 D=XROT-XLR( W)
C FIND LENGTH ALONG SFC. FROM MOSE TO THIS POINT.
CALL SFCLEN(D.LENG.CLIUX,3).CL{uK . 2).CL{M 1))
LEN=LL(JK)-LENG :
C ROTATED COORDS
XLRT=XxROT
YLRT=YLR(UK )+ ((CL{JK 3)*D+CL( UK, 2))*D+CLI M, 1))*D
C TANGENT SLOPE
CLL=((3 . DO*CLIUK,3)°D+2 DO*CL(JK 2))*D+CLlUM 1)) .
IF(DARS(CLLIW LT 1 D-10)GOTO 160
C PERPENDICULAR SLOPE
KLiL=-1.DO/CLL
@oTO 130

160 KLL=DSIGM( ' D10.-CLL)

C BLENDED RADIUS OF CURVATURE.

130  AB=RL{UK)-(RLOJK+1)-RU(M))/(LLIR+ 1) -LL{UK) )*LENG

c

C DETERMINE THE WEIGHTED COLLISION EFFICIENCY .

230  ACN=0.DO:

VT=0 .00

AC=0.DO

MD=0 DO

RHOS=1.DO
DO 200 J=1.DDISTN
LDL=L(1,J)
LOR=L(ICT(J),J)
LMX=LMXCE(J)

C FIND THE APPROPRIATE CE VS L SPLINE SEGMENT
IF(FL(J) NE O.DO)GOTD 1400
IF(I.LT.1)0=1

220 IF(LEN.GT.L(]1,J))GOTD 20%

I=1-1

IF(1.EQ.0)GOTO 600

@OTO 220

1F(LEN LE . LI1+1,J))GOTO 210

I=1+1

. 1F(I . LE.ICT(JY))IGOTO 20%
@070 600
210 DDD=LEN-L(1:J)

L

"
o
]

248

IF{H8D(J) EQ O)JCE=((3 DO*CEED(3.1,J)*DD0+2.DO*CEED(2.1.4))*D0OD

+CEED(1.1.J))*DCOS(ALPHAR)

IF(HSD(J) €O 1)CE=((( (5 DO*CEED(S,I,J)*D0OD+4. DO=CEED(4,.1,U))*DDD

+3 DO*CEED(3.1.J))=DDD+2 .DO*CES d))'ﬂﬂﬂ*t!EE(i.l,d})
*DCOS(ALPHAR)
GOTD 1390
1400 IF{LEN GE LMX)GOTOD 1110
IF(LEN.LE LDL)GOTO 1120 .-
FLV=FL(J)=0.900*FL(J)/(LMX-LDL)*(LEN-LDL)
GOTO 1200
1110 IF(LEN . GE LORIGOTO 1120
FLV=O. 1DO*FL{J)+0. SDQ‘FL(d){(LDP LMX}*(LEN- Lim)
QOTD 1200
1120 FLV=FL(Y) .
1200 E(1)=LEN-FLV

- E(2)=LEN+FLV
00 1430 lu=1,2



100

101,
102
103
104

1440

1450

1460

1470

138%

1380

200

IF(E(IJ) . GT.L(1.J))GOTO 1440
YOE(IJ)=YO(1.J)
GOTO 1430
TECE(IJ) LT . LOICT(J),J))GOTD 1450
YOE(1J)=YyO(ICT(U), J)
QOTO 1430 L
IF(E(TY) GT L{11.J))GOTO 1460
I1=11-1
4010 14%0
IF(E(1J) LE L¢II+1 . J))GOTOD 1470
1=+ .
GDTD 1460
DOD=E(fJ)-L(I1.J4)
IF(HSD(J) EQ.OIYOE(IJ)Y=((CEED(3,11,J)*DD0O
+CEED(2.11.J))*DDOD+CEED(1,11.0))*0D0D+Y0(I1.,4) -
IF(HSD(J) EQ TIVOE(IJ)=(({(CEED(5.11.J)*D0O0D '
+CEED(4.11.0))*DDD+CEED(3.I1.4))*DDD
+CEEDI(2.11.0))1*00D+CEED(1,11,0))*0OD+YO(11,J)
CONT INUE
CE={YOE(2V-YOE(1))/2 DO/FLV*DCOS(ALPHAR)
ACN=ACN+CE*W(J)
IF(DENSE EOQ 0)GOTO 200
IF{LEN LE LOICT(J),J))GOTO 13835
1F{J.GT 11G0O7T0 200
VTeyT+W({ 11=VTOT(ICT(1),1)
AC=AC+W( 1 1*DABSIACOL(ICT(1),.1))

GOTO 200

IF{LEN.GE L(1.J))GOTO 1380
IF(J.GT 1)1GOTO 200
VTIevT+W{1)=VTDT(1, 1)
AC=AC+W( 1)="DABS{ACOLL 1. 1))
MD=MD+W{1)=DD(1)

GOTO 200
DOD=LEN-LI(I,J)}
VTeVT+W(J)* ([ (CFV(3,1,J)*DDD+CFV(2.1.J))}*DDO+CFV(1,1,J))
*DOO+VTOT(I . J))
ACSAC+W(J)*DABS(((CFA(3,1, J)*DDD+CFA(2,1.J))*0D0+CFA(1.1.4))
*0DO+ACOL(Y, J))
MO =MD+W(J)Y*DO(J)
CONT INUE
IF(DENSE EQ O)GOTO 440
UIMP=VT*DSIN{AC)
VIMPsVT*DCOS(AC)
IF(DENSE EO 1)VTIMP=DABS(VIMR ) *UINF
IF({DENSE EQ 2IVTIMP=DSORT(UIMP*UIME+V NP *VIWP ) *UINF
TI=DMAX1(TINF K -20 DO)
TI=DMINI(TI -%.DO)
PAR=-MD/2 DO*VTIMP/TI
PAR=DMAX 1{PAR.O B8DO) ]
PARSDMINI(PAR, 16 28900} . qg
EHOS=1 102*(PAR**0 76D0O)/9 17D2 -

€ CALCULATE THICKNESS FOR ASSUMED FLAT SFC.

440

THK=[CE*ACN/RHOS
1IF(ATHICK EQ O)IGDTO 430

C CALCULATE THICKNESS FOR CURVED SFC

C NEVW
430

420

THK = -RE+DSIGHN(DSORT(RE*RAA+2 DO*RA*THK) RB)

SFC. CODORDS

IF(LMXCE(&) LT O DO)GOTOD 420
XURN=XURT+DSIGNIBSORT( TH*THK /(1 DO+KUU*KUU) ), KUU)
YUBRN=YURT +KUU* { XURN=XURT)

NSURF = XURN*C30- YURN® S30+XN
NSURFY«XURN®*SI0+YURN*CI0+ YN

RETURN
XLAN=XLRT-DS5IGN(DSORT( THK*THI/( 1 . DO+KLL*KLL)) KLL)
YLENsYLRT+ELL*(XLRN-XLRT)

4



144
14%
146
147
148
149
150

(%3

L
o

11
12
13
14
15

| ]
o
o

NSURE=XLRN*CIO+YLRN=530+XN
NSURFY=-XLRH*S30+YLRN*"C30+ VYN .
RETURN

600 WRITE(& .10}

e e sl

Lo 0 O T o O T T I T ]

[}

e EsEaEsN3Xal

[al gl

c
c

WRITE(7,10)
RETURN
END ’

SUBROUTINE PCA(EOQN.CDS.LAMBH WARN)
WRITTEN BY: M. OLESKIW ON: BOO122 LAST MODIFIED: B10626

INTEGRATE EONS. OF MOTION USING THE 4TH ORDER PREDICTOR-
CORRECTOR METHOD OF HAMMING . -
REF: BURDEN. R L.. J.O FAIRES, & A.C. REYNOLDS (1878),
NUMERICAL ANALYSIS 0A 297 B84 ' P 266
HAMMING . B W (1973). NUMERICAL METHODS FOR SCIENTISTS &
ENGINEERS, IND ED . OA 297 H28  CHAPS. 22 & 22

DOUBLE PRECISION XDS(6.2).UDS(&.2) AN(2.6.2) HT(2,6,2).YDS(6.2),
. VDS(6,2) AO. A4 A2 BO.BY B2 ,B3, LAMBH, EIGMX DTSO,
.CO,C1,C2,DM1,DO.01.02,UPT. UCT, VPI VCI MUAS MVAS,
PUDS.DTS(6.2).PVDS, MUDS . MVDS . CUDS . CVDS ,UDSP 1, VDSP 1

L FMU,FMY UST VST ER1,.ER2.PXDS.PYDS,.MxDS . MYDS,CXDS,.CYDS

. UAS(6€.2).VAS(6&. 2) RED(€.2) XPI,XCI,YPI ¥CI ,RE,CD.T$(500,2)

INTEGER 1(2) . EON.IMA(2), TMI(2).IM262), IM1(2),.10(2),.IP1(2),
.CDS ,WARN MM

COMMON/ INTEG/AN HT/PV/XDS. ¥D5,UDS, VDS

./PCM/AD A1, A2,B0,B1,82,83,C0,C1.C2,0M1,00,D1.02,
LUPI,UCI VvPI VCI ERi, ER2Z. XPI XCI.YPI ¥CI UST, VST
L/LDC/TS.DTS.1.1M4 IM3, IM2, IM1 10, IF1, MM
./REL/UAS VA5 RED.CD |

IN EON=DENOTES PORTION OF TOTAL SYSTEM OF EQUATIONS TO BE SOLVED.
IN CD5=TYPE OF DRAG COEFFICIENT TO BE USED.
OUT LAMBH=STABILITY PARAMETER.

OUT WARN=WARNING OF INSTABILITY (O OR 1),

DTSO=DTS( I1O(MM)  MM)
TSOT(MMI+1 MM)=TS(I(MM) MM)+DTSO

THE PREDICTOR
PXOS=AO*XDS{ IO(MM) MM)+A1=XDS(IM1(MM) MA)+A2*XDS( IMZ(MM) M)
+DTSO* (BO*UDS( TO(MM) MM )+B1*UDSTTMT(MM) M)+
BZ*UDS{IMZ(MM) MM)+BI*UDS( IMI(MM) WM ) )
PYDS=AO*YDS(1O(MM) MM)+A1*YDS(IM1(MM) MM)+A2°YDS( IM2Z(MM) M)
+DTSO* (BO*VDS{ 10O(MM) MM)+B1=VDSI TMI MM) MM)+
CB2*VDS{ ITMZ(MM) M) +BI* VDS TMI(MM) ) )
PUDS=AO*UDS(TO(MM) MM)+&A 1=UDS{ IM1(MM) MM )+A2=UDS( IM2(MM) M)
C+DTSO* (BO=ANI 1 TOUMM) WM)+B1*AN( 1 TM1 (MM}, WM )+ .
B2*ANT 1, TM2(WM) M) +BI-AN( 1, IMI(WM) MM))
PVDS=AO*VDS(TO(MM) MM)+A1*VOS{IM1(MM) MM )+A2*VDS( IHZ(MM) MM)
 4DTSO*(BO*AN(2, TO(MM) MM)+B1*AN( 2. TMI(MM) MM)+
B2EAN(Z, IM2(MM) MM )+BI*AN( 2, THMI(MM) M) )

MOOIFICATION OF THE PEEDYCTE
MXDS5=PXDS-ER1*(XPI-XCI)
MYDS=PYDS-ERV*(YPI-YCI)
MUOS=PUDS-ER1*(URI-UCT)
MVOS=PVDS-ER1=(VPI-VCI)

CALL AIRVEL(MXDS MYDS.MUAS MVAS.4)



16
17
18
19

22

24
a5
26
27
28

29

G G R G
YA KD

kL
39
40
41
42
43
a4
45
46
47
48
49
80

[a e
-
X
)]

PX

CALL DRAG(MUDS . MVDS MUAS WMVAS CDS.RE.CD)

CALL ACCN{MUDS MVDS MUAS MVAS RE CD.EON.TS(I(Ma)+1 MM). O)
FMU=AN( 1, 1P 1(MM) M) ‘
EMV=AN(Z TP 1({MM) MM)

CORRECTOR
CXDS=CO*XDS{1O(MM) MM)+Ci=XDS{IMI(WMM) WM )+C2*XDS{ IM2 (M) M )
+DTSO* (DM 1*MUDS DO UOS( TO(MM) MM )+D 1*UDS( IM1(MM) Mm)+02°

UDS(TM2 (M) MM} )

CYDS=CO*YDS(IO(MM) MM)+CI*YDS{TM1(MM) MM)+CI*vDS(TM2(MM) MM)
+DTSO* (DM =MVDS+DO*VOS{ TO(MM) MM ) +D1*VDS( TM1(MM) MM)+D2*

VOS{IMZ (M) M) )

CUDS=CO*UDS(TO(MM) MM )+CI1*UDS(IMI(MM) MM)+C2*UDS(ITM2 (M) MM )

ADTSO*(OMI1=FMU+DOAN( 1, JTO(MM) MM)+DT=AN( 1 ITMI(MM) MM)+
CO2AMT A, TM2UMM) o)) '

CVOS=CO*VDS(TO(MM) MM)+C1*VDS{IMI (MM} MM)+C2*VDS(IMI (M) MM)

+DTSO*(DM1*FMY+DO*AN(Z TO(MM) MM)+D1=AN{ 2, TH1(MM) M)+
CD2*AN(2, IM2(MM) M)} )

C FIMAL VALUES

[n]

NEW

0 n

100

00y

R p Xl

XDS(TP (M) MM)=CXD5+ER2*(PXD5-CXDS)

YDS(IPY{MM) MM)=CYDS+ERZ*(PYD5S-CYDS)

UDS(IP1(MM)  MM)=CUDS+ER2* (PUDS-CUDS)

VDS(IP1(MM) MM )=CVD5+ER2*(PVDS-CVDS)

VALUES FOR ACCELERATION AT [+1

CALL ATRVEL(XDS({IP1(MM) MM) YDS(IP1(MM) M) UAS(IP1(MM) MM},
VAS(TIP 1 (MM} MM) . 13)

CALL DRAG(UDS(IPI(MM) M) VDS(IP1(MM) MM) UASTIPI(Ms) M),
VAS{IP1(MM) MM) CDS.RED(IP1(MM) WMM) CD)

CALL ACCN(UDS(IPI(MM) W) VDS(IPT(MM) MM) UAS(IPi{(MM) MM),

CVAS(IP1(MM) MM) RED(TP1(MM) MM) CD EON.

TS(I(MM)+1 MM) O
CALL STAB(RED(IP1(MM) MM) CO UDS(IP1(MM) MM) vDS(IP1(MM), o),

CUAS(IPT(MM) M) VAS(IPI{MM) MM) CDS,L EIGMX)

LAMBH=E IGMX *DT50

IF(LAMBH LT -1 300)WARN=1

UDSP 1=ANC 1 TP (M) M)

VOSP1=AN(2 IP1(MM) MM)

IF(EON NE.2)GOTO 100

CALL ACCN(UDS{IP1(MM) MM) VDS(IP1(MM) M4) UAS(IP1(MM) WM),

VAS(IP1(Mm) met) RED(IP1(MM) MM) CO EOM.
CTS(I (MM} W), 1)

CALCULATE STABILITY INDICES

UST=(FMU=UDSP 1}/ (MUDS-UDS{IP1(MM) MM)) '
VET=(FMV-VDSP1 ) /(MVDS-VDS( TP 1(MM) MM))
XP1=PxD%

XCI=CxXD$%S

YPI=PYDS

YCI=CYDS

UPI=PUDS

UCT=CuDS

VPI=PVDS%S

VCI=CVDS

DYSCIP1(MM) MM)=DT50

RETURN

END

DOUBLE PRECISION FUNCTION PJK(X,Y)

WRITTEN BY: M. OLESKIW ON: BO1001 LAST MODIFIED: 810728

CALCULATES ANALYTICAL VALUE OF STREAMFN. AT TRANSFORMED CDORDS X,V
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DOUBLE FRECISION ALPHAR. A B, E.XI.E
_DSORT . XX .DSIGN.YY T2, 71,73 DSIN, DL

COMMON ALPHAR/JOWN 1/4 B.E

Xs
veCOORDS. IN TRANSFORMED COORDINATE SYSTEM AT WHICH PSI 1S
TO BE FOUND

Xxle¥=-(1 DO+2 DO*E+2 DOE*E)/2.DO/(1 DO+2.DO*E+E*E)
ETA=Y

GeX1*xX1-ETA*ETA-4 DO*B*B

He2 DO*XI*ETA

JeDSORT(G*G+H*H)

1f(J+G . GE .0 .DO)GOTD 100

Xx*x1/2 DO

GOTD 200

XX= (XI+DSIGH({DSORT (( +G)/2.00).x1))/2.00

IF(DABS(Y).GT 1.D-60)G0OTO 210

YY=0. DO

GOTO 220 :
YY=(ETA+DSIGN{DSORT((J=G)/2.00) .€TA)}/2.00
T1ivviDEDS(ALPHAR)-(XK*E*E)*QSIH(ALPHAED
To=A*A*Ti/((XX+B*E}1**24YY*YY)
Tssi.BQ‘L'DgIN(ALPHAE)‘D;@G(DSQET((XX*;‘E)";*VY‘VV)/&)
PUK=ET 1=-T2+T3

RETURN

END

SUBROUTINE PLTSZ( XMIN, XMAX K YMIN, K YMAX XL YB PX PY, IRY,IRY,
.NDCPX NOCPY)

WRITTEN BY: M OLESKIW ON:B80O0E27 LAST MODIFIED: B10420

DETERMINE PARAMETERS NECESSARY FOR SCALING DF A PLOT ANMD ITS AXES

REAL XPAR(4,24), YPAR(A 24) XD FLOAT, AINT XMIN, XMAX,
_xL,vpivuinivugxivsggx,ﬂvixnivTiﬁﬁx,DﬁviAES

INTEGER ﬁx.nnxipv,,ﬁ-m,La.Ix.Inx’.iHT.Iviﬂv,xFixJﬁchinﬁcPv
COMMON /P TPRM/XPAR, YPAR

XMIN=

XMAX =

YMIN=

YMAX®=

XL=LEFT EDGE OF PLOTY

Y8~BOTTOM EDGE DF PLOT

Px=POWER OF TEN IN X-AXIS RANGE

PYsPOWER OF TEN IN Y-AXIS RANGE

IRX=MIN. LENGTH OF X AXIS

IRY=MIN LENGTH OF v AXIS. .
NDOCPXsNO OF DECIMAL FLACES IN X-AX1S SCALES.
NOCPY=HO OF DECIMAL PLACES IN Y-AXTS SCALES.

FORMAT (BF 10 O) %

READ IN PLOTTING PARAMEYERS

DO 101 1=3, 24
READ(D . 10)(XPAR(Y. 1) .J=1,4) (YPAR(Y.I) . J=1.4)
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101 CONT INUE
¢
ENTRY PLTSZE(XMIN, XMAX, YMIN, VYMAX XL YB,.PX PY IRX,IRY,
_NDCPX , NDCPY )
PNX =0
PNY =0
¢

C DETERMINE THE PLOTTING RANMGE OF THE x VARIAALE
100 PX=PMX
XDu(XMAX-XMIN)* 10 .0**pPX
IF(XD . GT 22 O)PHX=PNX-1
= IF(XD. LT 2 20001 )PNX=PHX+ 1
IF(PNX NE FX)GOTO 100
C Px GIVES-1/(POWEE OF TEN) OF THE X VARIABLE PLOTTING RANGE
IXs=1
120 IRX=INT(XD)+]x
IF(IRX NE 7 AND IRX NE 9 . AND IRX NE 11 AND IRX.LT. 13)GOTOD 140
IF(IRXx EQC 16 OR IRX EQ 20.0R . IRX . EQ.24)GOTO 140
IXelx+1d
a0t 120
140 DX=FLOAT(IRX)/10.0**FX/XPAR( 1, IAX)
C SET THE X VALUE AT THE LEFT GRAPH EDGE
IF(XMIN.LYT O O)XL=AINT{XMIN/DX-1 0)*DX
IF(XMIN GE.O.O)XL=AINT{XMIN/DX )*DX
C SET X VALUE AT RIGHT GRAPH EDGE
XR=XL+XPAR( 1 IRX)*DX
IF(XR .GE XMAX)GOTO 105
TYxsfx+1
GOTO 120
C DETERMINE CORRECT NUMBER OF DECIMAL PLACES ON AXIS SCALES.
108 HOCPX=0
DDx=ABS(DX)+1 E-6
160 IF(DOX-AINT{DDX) LT 2./10 **(6-NDCPX))GDTO 1%0
NOCPX=NDCFX + 1
DOX=D0OX* 0.0
GoTO 160
150 IF(IFIX{(XR-XMAX )/DX) LE IFIX{(XMIN-XL)/DX))@OTO 110
C, CENTRE THE PLOT
XL=XL-D¥%
XR=XR-DX
GOTO 1%0
[
C DETERMINE THE PLOTTING RANGE OF THE v VARTABLE
110 PYwPMNY s
YD={YMAX-YMIN)*10 QO=*PyY . '
IF(YD.GT 22 O)PHY=PNY-1
IF(YD . LT.2 20001 PNY=PNY+1
IF(PNY NE PY)GDTO 110
C PY GIVES 1/(POWER OF TEN) OF THE Y VARIABLE PLOTTING RANGE B
Ty=+

130 IRY=INT{VYDI+1Y

IF(TRY . NE 13 AND IBY NE 15 AND.IRY NE. 17
. AND _IRY . HE 19 AND IRY NE 21 AWD . IRY WE 23)GOTO 170

Iy=lv+1
GOTO 130 ,

170 DYSFLOAT(IRY)/10.0%*PY/YPAR( 1. IRY) =

C SET THE Y VALUE AT THE BOTTOM OF THE GRAPH
IF(YMIN.LT O O)YB=AINT(YMIN/DY-1 O)DY
IF(YMIN.GE O O)YBAINT(YMIN/DY)*DV

€ SET THE Y VALUE AT THE TOP OF THE GRAPH. .
YT=VYB4YPAR( 1 1RY)*DY
IF(YT.GE YMAX)GOTO 13% .
LTISTY s :
GOTO 130

C DETERMINE CORRECT NUMBER OF DECIMAL PLACES DM AXIS SCALES.
13% NDCPY=(
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DOY=ABS(DvY )+t E-§

IF(ODY=-AINT(DDY) LT 2. /10.**(6=-NDCPY))GOTD 18O
NOCPY=NDCPY+ 1

DOY=DOY*10 O

GATO 180

IF(IFIX((YT-YMAX)/DY) LE.IFIX{(YMIN-YB)/DY) IRETURN

C CENTRE THE FLOT
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YB&=YB-Dv
YT=YT=DY
GOTO 1180
END

SUBROUTINE POTH
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POT1

C
C WRITTEM BY M OLESKIW ON.T7B1129 LAST MODIFIED 810726
C
C SOLVE FOR SURFACE VORTEX DEMNSITY ON 1 ELEMENT AEROFOIL IN POTENTIAL
C FLOW, GIVEN CODRDS OF AEROFOIL SURFACE.
C REF. KENNEDY, o L & D J MARSDEN (1976). CAN. AERO. & SPACE JDUR.
(o4 V22, #%, P243-7%6
C ADAPTED FROM KENNEDY 'S PROGRAM IM SCS5%5:LIB
C SUBROUTINE: LEQT1F OF <“IMSLDPLIB: LINEAR EON. SOLN.. FULL STORAGE
C MODE, SPACE ECONOMIZER SOLN
C
DOUBLE PRECISION XE(101) YE(101) XC(101),YC(101) . R(101),
.OATAN,DABS .DSIGN.DLDG.51(100).CO( 100),PI . CL,
K(101,101) WKAREA(101) . D(100) ,XT. YT ,DE ,DELTA,
DXC.DYC.B A RIS . R2S.R35,73.7TY T2 ALPHAR DCOS DSIN,DSORT
C
INTEGER N N1 . J.JY1,IDGT . IER. I NCOU NCOU1T NCOL ., JJ
C
COMMON ALPHAR . PI/AERO1V/XE YE/AEROI/NCOU NCOL/AERDO2/XC.YC . R.D,.SI.CO
C
10 FORMAT( OFOR EON SOLMN. I1ER=‘ _13)
15 FORMAT( OTHE POTENTIAL FLOW LIFT COEFFICIENT 1S°.F9.8)
16 FORMAT( ' 1THE POTENTIAL FLOW LIFT COEFFICIENT IS’ .F9.8)
20 FORMAT( -CONTROL PT X COORD. Y COORD. SFC. AIR VEL.’)
30 FORMAT( ' ' 16 %X, 2F10 % Fi1. 8)
C
NCOU 1 =MCOU -1
NeMCOU 1 +HNCOL - 1
Nizk+1 * . . —
Cc T

C CALC. ELEMENT LENGTHS (D) AND CONTROL POINTS (XC,YC)
C XE(1)=XE(2°NCO-1)*XE(N1)=LEADING PT X COORD

110

DO 110 J=1 N
Jimgj+ 1

XC(J)=iXE(J)+XE(J1))*0 . 3DO
YE({J)={YE(J)+YE{J1}}*0 BDO
O(J)=DSQRTI(XEIJ1)-XE(J))**2+{YE(JV)-YE(J)})==*2)
CONT INUE

C FIND TRAILING POINT COORDS. XC(M1) YC(Nt): FIG.SB

XTaXE(NCOU)-(XC(NCOU1)+XC{NCOU))*0. 500
YT#YE(NCOU)-{YC(NCOU1 )+YC(NCOU) ) *0 . 800
XC(H1)=XE{NCDU)+1.D-2*XT
YC(N1)=YE(NCOU)+1 . D-2"YT

C FORM MATRICES K AND R. EONS. 9 & 10
C DO FOR EACH SFC  ELEMENT U (COLUMN OF K) AND ROW OF R

H

00 120 J=1i M1
R(J)=YC{JU)*DCOS(ALPHAR)-XC{J)*OSIN(ALPHAR)
IF{J.EQ.N1)GD TO 140

J1=g+

DE=D{J)



C ORLCULATE ANGLE OF ELEMENT TO X-AXIS.
CO(J)=(XE(J1)-XE(U))/DE
SI(J)*(YE(JU1)-YE(U))/DE
DELTA=DE/2 DO

140 DO 130 1=1 Nt
1F(J EQ.N1)GO TD 150

C FIND DISTANCE BETWEEN CONTROL PTS. 1 AND J.
DXC=XC(1)-XC(J)

DYCeYC(1)-YC(U)

C CALCULATE COMPONENTS OF EON 9 AND FIG 2
B=DXC*CO(U)+0YC*SI(J)
A=DYC*CO(J)-OXC*S1(yY)
R1S=A*A+(B+DELTA)*(B+DELTA)
R2S*A*A+(B-DELTA)*(B-DELTA)
R3S*A*A+B*B-DELTA*DELTA
IF(R3S.LT . {.0-30)GO TO 160
TI=DATAN(2 DO*A*DELTA/R3IS)

GO TO 170

160 1F(DABS(A) LT 1.D-30)00 TO 180
TI*ODATAN((B+DELTA)/A)-DATAN((B-DELTA)/A)
Q0 YO 170

180 TI=OSIGN(PI . A)

170 Ti=(B+DELTA)*DLOG(R1S)

T2=(B-DELTA)*DLOG(R2S)
K(1.J)e(T1-7242.DO*A*T3I-4 DO*DELTA)/4 DO/PL

GO 70 130
C FOR LAST COLUMN OF K
150 K(I.J)=1 DO
130 CONT INUE
120 CONTINUE

255

C 20 000000000ttt ternintteteeNetetseonernotodttseetttddotossontsEsdnutas

IDGT=8

C ........‘......O‘....‘.........".O......'..‘..‘O.......'..‘j!‘-‘ii

CALL LEQTIF(K. 1 ,N1, 101 R,IDGT WKAREA,LIER)

€ ON DUTPUT, THE SOLN. IS IN R

C
C CALCULATE THE LIFT COEFFICIENT. .
CL=0.D0O
DO .200 JU=1. N
CL=CL-2 DO*R(UJ)*D(UVJ)
200 CONT INUVE
WRITE(6,10) IER
WRITE(6. 1S)CL
WRITE(7.16) CL
WRITE(7,20)
C OUTPUT AEROFOIL COORDS. AND SFC. VELOCITY.
DO 210 JJu=1 N1
WRITE(7.301VJJ.XC(JUJ).YC(UJ).R(UJ)

210 CONT INUE
RETURN
END
-
C
(o] --..-.I---.---l-ll.l----.-.---..---...-.---..-II...’I..I...-!!I!,
C

SUBROUTINE RK4(EQN,COS . LAMBH, WARN)
WRITTEN BY M. OLESKIW ON: 790926 LAST MOOIFIED: 810703

INTEGRATE THE DROPLET EONS. OF MOTION (IN X AND Y) USING THE 4TH

ORDER RUNGE-KUTTA TECHNIQUE .
REF: BURDEN.R.L . J.0O FAIRES, & A.C. REYNOLDS (1878). NUMERICAL

ANALYSIS P 281 QA 207 .884

(s NeNeNoNoReNeXs)

DOUBLE PRECISION K1,L1,K2,L2.K3,13,K4",L4,D7S(8,2),xD5(8.2),
-UDS(6.2).YDS(6.2).VDS(6.2) ,AN(2,.6,2) . HT(2,.6.2), E1GMX, LAMEH,
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30
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s NeNoNaNaNel

C NEw

C NEw

C NEv

M MD M MA M1 N2 ND,

INTEGER 1(2).EON.IM4{2) IMI(2).IM2(2).IM1(2).10(2).1P1(2),
.MM, CDS , WARN

N4 U1T,U2.U3.V1,V2 VY. CD,RE,
.VAS(6&,2), LIAS(E 2),75(5139 2) DTS0,T50,XD50, YD50,UDS0, VD50

COMMON /INTEG/AN.HT/Pv/XD5,YDS,UDS, VDS

/LOC/TS ., DTS, 1, 1M4, IM3,
./REL/UAS  VAS RED.CD

EON=DENOTES PORTION OF TOTAL

COS=TYPE DF DRAG COEF

ICER T ID 1P,

FICIENT TO BE US

LAMBH=STABILITY FPARAMETER .

WARN=WARNING OF INSTA

TSO=TS( (M) MM)
DTSO=DTS{ 10( MM ) M)
XDSO=XDS( 1O( M), MM )
YOSO=YDS( I O( M} M )
UDSO=UDS{ TO( MM ) MM)
VOSO=VDS( 1O( MM} MM)
TS(I (MM )+ 1 MM)=TSO+DT
K1=DTSO*UDSO
L1=DT50°*VDSO

BILITY (O OR/ 1).

50

M1SDTSOAN( 1, TO(MM) WM )
Nt=DTSO*AN(2Z . 1O(MM) M)
DO . YD50+L1/2 DO.U1.V1.4)

CALL DRAG(UDSO+M1/2 DO, VDSO+N4/2 DO, U1, V1 CDS, . RE . CD)

CALL AIRVEL(XDSO+K1/2

K2=0TSO*(UDSO+*MY1 /2 E‘Q

L2=DTSO*(VDSO+N1/2 .

)

ED.

CALL ACCN(UDSO+M1/2 Dﬂ VDSO+N1/2 DO, U1 V1 RE . CD.EQN,

.7$0.0)

M2=DTSO*AN( 1, IP1(MM)
N2eDTSO*ANI2 IPi(MM)

. ™)
L)

CALL AIRVEL({XDSO+K2/2.DO.YDS50+L2/2 0O, U2,V2,4)

CALL DRAGI{UDSO+M1/2 DO, VDSO+N

KIeOTSO={UDS50+MZ/2.00)
LI=DTSO*(VDEO+N2/2.D0)
CALL ACCN{UDS0O+M1/2 DO.VDS0+N2/2.D00,.U2,V2 RE CD . EQN,

T$0+0750/2 00,0)

MI=DTSO“AN( 1 IP1(MM),
N3=DTSO*AN(2. 1P 1(MM)
CALL AIRVEL(XDSO+¥]d. VY

M )

. .t )

DSO+L3. U3, v 4)

1/2.00,U2,V1.CDS,RE.CD)

CALL DRAG(UDSO+M3I VD50+N3,U3,v3 CDS,RE.CD)

K4=DT50* (UDSO+MI)
L4*DT50={ VD50+N3)
CALL ACCN{UDS0+M1 VD5
TSO0+0T50/2.00.0)

MA=DTSO*AN( 1. IP1(MMm)
NA=OTSO*AN({2 . IP1{WM)

DROPLET POSITION AT 1
XOS(IP1(MM) MM)=xD50+
YOS(IP1{MM) MM)=vYDSO+
VELOCITIES AT 41

UVOS(IFP1(MM) MM)=UDS0+
VOSC(IP1({WMM) MM)=vVDSO+
ACCELERATIONS AT [+19

CALL AIRVEL(xXDS{IP{(Mm),
CUAS(IF1{MM) M) VAS(I

CALL DRAG(UDS(IP1(MM)

VAS(IF1(MM) MM) CO5 RED(IFI(MM),

CALL ACCN(UDSIIPI(MM),

O+NI . U3 VI RE CD, EOQN,

. )
.-

+1

(K142 DO*K2+2.DO*K3I+K4d) /6. DO
(L1+2 DO*L2+2 DO*LI+L4)/6.0

0o
Do
(Mi1+2 . DO*"M2+2 DO*MI+N4) /8 .DO
(N1+2 DO*N2+3 DO*NI+N4)/6.00

Fi(Mm) M), 13)

L) VDS([Pi(ﬁ)gﬁ!).uAS(!PﬂﬁLiﬁ'),
M) . CD)

M) VOS(IPI(MM),

M) YDSOIP () W),

M) UASTIPY(MM)

RED(S.2),

SYSTEM OF EQUATIONS TOD BE SOLVED.

M),

256
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10
1
12
13
14
15
1€

17
18
19
20
21

_VAS(IP1(MM) MM) RED(IP1(MM) MM) CD.EON,
TS(T(MM)+1 MM), O)

CALL STAB(RED(IF V(M) MM) CO. UDS(IP1(MM) M) VDS(IP1(MM) MM),

UAS(IP1(MM) MM ) VAS(IP1(MM) M), CDS.EIGMX)

LAMBH=EIQMX *DT 50
IF(LAMBH LT -2 7D0O)WARN=1
DYS(IP1(MM) MM)=0DT50
IF(EQON ME 2)RETURN

CALL ACCH(UDS(IPI(MM) MM) VDS(IF1 ﬁﬁ).ﬁﬂiiUAS(IP1(HH)g“!).

LVAS(IPY(Mnd) k) RED(IPI(MM) M) CO. EQM TS(I(MM)+1 00M), 1)

RETURN
END
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SUBROUTINE SFC(X.Y.5,L.LEN)

WRITTEM BY: M. OLESKIVW ONM:BOOS23 LAST MOOIFIED:B11018
E

CALCULATES Y VALUES AND THE LENGTH FROM THE NOS
ON THE SFC. OF THE AEROFOIL BY A CUBIC SPLIME INTERFOLATION

CEXLR(101) ,YLR(101) X8 DELTA DELTAP DABS DSI1GN DATAN DATAN2,
.530,.C30 . XR, YR X Y LUCIOYV) ,LL(101) ,LEN, LENG D AS RS ALPHAR P],
CXUCI101),YUL101) , XL(101) YL 101) . vG DSORT . DFLOAT

INTEGER S.L.JU,JL NEUY NEU NELYT NEL,IU,IL NEUU NELL NEUUT NELLHY

COMMON ALPHAR.PI/NDSE/XN,YN/LG/LU.LL/FOIL/XUR,.YUR XLR.YLR

L /ROTP/C30,S30/AEROA/NEU  NEL . NEUU  NELL

/SRCH/D . IU, 1L/SA/AS/SPLINE/CU CL/SFCS/XU, YU xi YL é

X=POINT AT WHICH Y VALUE 15 TD BE CALCULATED

T ¥Y=S5FC. POSITION ON SPLINE

5=0:LOWER SFC

1:UPPER SFC.
L=t :FIND LENGTH ALDNG AEROFOIL SFC. FROW NOSE TO (X,¥)
LEN=LENGTH ALOMG AEROFOIL SFC. FROM NOSE TO (X,Y)

FORMAT( 'OOUT OF BOUNDS ON SEARCHING FOR SFC. POSITION .

"IN ROUTINE SFC°)

S
JL= A

C ROTATED x COORD

C fFom

c

IF(5.LE O)GOTO 150

THE UPPER SFC.
NELU t =NEUL- 1
HEL 1 =NELI-1

IF(X.GT XMN)GOTO 1214
IF(X LT xNIGDTOD &00
Y=YN

LEN=Q DO

AS=P1/2.D0

RETURN

C FIND THE APPROPRIATE SPLINE SEGMENT

121

TE(X.GT XU(IU))IGOTD 108
IU=1U-1

IF(IU.EQ.O)GOTO &00

aovTo 121

IF(X LE XUlIU+1))GOTO 1114



43
44
45

47

TUs=luU+1
IF(IU LE NEUTIGDTO 106
G30TD €00
1114 IF(IU.GT NEW1)GOTO 700
YEeYULTU)Y+( YU TU+ 1) =-YU(IU) )/ (xXU{TU+1)-xu{1U))
*(x-xu{1u))
XR=(X-XN)*CIO+{YG-YN)*530
120 1F(XR . GT XUR{TU)IGOTD 105
Iu=iu-=1
IF{IU EQ O)GOTD 600 ‘
GOTO 120
10% IF(XR LE. XUR{1U+1)})@0OT0 110 ‘
TusIu=+1
IF(IU.LE NEUY)IGOTO 105
@0TO 800
110 DesxR=-XUR(IU)
C ROTATED v COORD
YR=((CU(TU,3)*D+CU(IU.2))*D+CU(IU, 1)) *D+YUR(1U)
C TANGENT LINE SLOFE
RS5=(3 . DO*CU(1U,.3)*D+2 .DO*CU(IU,2))*D+CUCIU, 1)
IF(DABS(RS) GT 1.D201RS=DSIGN(Y D20.R5)
XB=XR*C3I0-YR*5I0+XN
DELTA=x-x8
[of PR i i sy a2 R A R R R R R R R AR AR A R A AR ARl Ll Al
IF(DABS(DELTA) LE 1 D-10)GOT0 400
Cc T ity e e e A2 R R R R AR R N R A0 R R A R A R L AR R LR Al Al byl
C USE NEWTON-RAPHSON METHOD TO CONVERGE TO CORRECT XR, VYR,
DELTAP=-C3I0+530°RS
XR=XR-DELTA/DELTAFP
IF(XR.LE O DO)xXR=1 D-7*DFLOAT(JU)
JUs I+
GOTO 120
C
C UNROTATED Y COORD
400 Y=YR*CIO+YN+XR*530
C ANGLE OF TAMNGENT LINE FROM x AX]S N
AS=DATAN{RS )+DATANZ(530.C30)
IF(L EQ.OIRETURN
CALL SFCLEN(D.LENG.CU(IU.3).CU(IU,2),.CU(IU, 1))
LEN=LU{ IUI+LENG

RETURN
c
700  YeDSORT(O 25DO-(Xx-0.500)**2)
LEN=0.DO
RETYAN
c

C FOR THE LOWER SFC
150  HNEL t=NEL-1
MELLIeNELL-1
C FIND THE APPROPRIATE SFC. SPLINE SEGMENT
221 IF(Xx GT XL{IL))IGOTD 206
IL=IL-1
IF(IL.EQ.O)GOTD 600
GoTD 2210 -
206 IF(X.LE. XL{IL+1))G0OTO 2114 o
IL=1L+A
IF(IL.LE NEL1)GOTO 208
GOTD 800 .
2114 IF(IL.GY NELL1)GOTO 800 :
VB!VL(IL)*(VL(IL*‘!‘YL(!L))/(!L(lL*i) xL(lL)l
o= (x=XL(IL))
XR=(X-XN)=*C30-( YG-Y¢) *S30
220 IF(XR GT XLR({IL))IGOTO" 208
ILesIL=-1
IF(IL.EQ.O)GOTO
Q@OTO 220 Egﬂ

-



74
7%
76
78
79
80

81
82

84

87
L]

208

210
C ROTATED Y COORD.

IF(XR . LE . XLR(IL+1))GOTO 210
IL=sILe+

IF(IL LE . NEL1IGOYD 203

GOYO €00

DeXR-XLR(IL)

YR=((CL{IL.3)*D+CL(IL.2))*D+CL(IL.1))*DsYLR{IL)

C TANGENT LINE SLOPE

RS=(3.DO*CL(IL.3)%0+2 DO*CL(IL.2))*D+CL(IL. 1)
IF(DABS(RS) GT 1 . D20)RS=DSIGN( 1 D20,RS)
XB=XR*C3I0+YR*SI0O+XN

DELTA=X-XB

c ..-‘...".........."'.’...‘....‘..".‘.‘...Ql‘?ii‘lliiiiﬁﬁiiﬁl.i‘

IF(DABS(DELTA) LE 1.D-10)GOTO %S00

C 0000830000089 0008008040000t lEdttrtnlIeteesseRis saddauddbdamudiddNn

C USE NEWTON-RAPHSON METHOD TO CONVERGE TO CORRECT xR, YR.

c

DELTAP=-C30-S30°RS

. XReXR-DELTA/DELTAP

IF(XR.LE.O.DO)XR=1 D-7*DFLOAT(UL)
JLsUL 4
@0T0 220

C UNROTATED Y COORD.
300
C ANGLE OF TANGENT LINE FROM X AXIS.

ao0on

ODOO0OOOOO

[e]

e NoNeNaNeXe]

Yo-XR*SIO+*YR*CIO+YN

AS*DATAN(RS)-DATAN2(S30.C30)
IF(L.EQ.O)IRETURN

CALL SFCLEN(D.LENG.CL(IL.3).CLCIL.2),.CL(IL.1)})
LEN=LL(IL)-LENG

RE TURN

Y= -DSQRT(0.25D0-(x-0.500)**2)
LEN=O DO
RETURN

WRITE(6.10)
WRITE(T7,10)
RETURN

END

-
SUBROUTINE SFCLEN(D.L .A .B.C)

WRITTEN BY: M OLESKIW ON:800%25 LAST MOOIFIED: 800802

CALCULATES THME LENGTH ALONG A SEGMENT OF THE CUBIC SPLINE FIT OF THE
AEROFOIL SFC.

REF

IN
ouT

IN

:DOUG S. PHILLIPS (1980)

DOUBLE PRECISION II,NU.E.F OSORT DELTA.G.A.8.C.D.L,

TH.T2.73. T4 NUT, ANU1T DABS NUO.ANUO K, E2 ,F2,.E3 F3, E02,F02,
.E03,FOI3 . XO. X1 ,CK, FO.EO.F1 E1,YP DISTP DIST . DFLOAT, VY,
.DLOG.DSIGN

INTEGER 1€R.I.ANAL
COMMON /LA/ANAL

D*ROTATED X COORDINATE OF POINT FROM BEGINWING OF SEGMENT
OF INTEREST TO WHICH THE LENGTH 1S YO BE FOUND.

L=SEGMENT LENGTH

Ae .

B



.~

s N w]

- Yy

A
11 10
12
13
14
15
16

c

TT(NU.E . F)=NU/3 DO*DSQRT(1 DO+{DELTA+MUNU)**2 )+
(1. 00+2 DO*DELTA*G*G/ (1. DO+NU*NU*G*G))
L 4{(1 . DO+DELTA*G*G)*F~-2 . DO*DELTA*G*G*E)/3.D0/G**2

"IF(ANAL EO 0O)GOTO 200
IF(A.NE O DO)GOTO 100
1F(8 NE O DO)GOTO 110

A AND B EQUAL TO O

L=D*DSQORAT( {+ DO+C*C)
RETURN

EQUAL O, B NOT EQUAL ©

T1={(2 DP*B=D+C)*DS0RT( 1.DO+(2 . DO*B*D+C)**2)
T2=C=DSQRT( 1 DO+C*C)

TI=DLOG( (2 DO*B*D+C)I+DSORT( 1. DO+(2 . DO*B*D+C)I**2))
TA=DLOG(C+DSORT (1 . DO+C*C))

Le(T1=T2+T3-Ta)/4 DO/B

RETURN

C A NOT EQUAL ©

17 100

PeRa )

33
<L)
s
36 120
37

MU1=DSORT(3 DO"DABS(A))*(D+B/3.00/A)
ANU1=DABS (WUt )

HUO=B/3 . DO/ADSORT(3 DO*DABS(A))
ANUO=DABS (NUO )
DELTA=(C-B*B/3 . DO/A)*DSIGN(1.D00.A)
d=1.DO/(1 DO+DELTA*DELTA)**0. 2500
K=DSORT(S D-1-DELTA*G*G/2.D0)
E2=0.D0O . a
F2=0.D0

€02=0 .00

FO2=0.DO

XO=2 DO*G*ANUO/ (1 .DO-ANUO*ANUD*G*G)
X122 DO*G=ANU1/ (1 . DO-ANU1I*ANU1*G*G)
CK=DS50RT(1.DO-K*K)

[F(ANUY EQ 1 DO/GIGOTO 120

IFQ@HU! GT 1.00/G)@OTO 130

ZETA LESS THAN PI/2

CALL DELIH(F1 x1 CK)
CALL DELIZ(E1 X1 CK. 1.DO,CK*CK)
GOTOD 140

C ZETA GREATER THAN P1/2

CALL DELIV(F2,.-X1.CK)
CALL DELIZ(EZ2. -x1.Ce. 1 DO,.CK*CK)

C ZETA EQUALS PI/2

an 120
as
40
a4
42 140
43

c ZE
44
4%
46

CALL DCELI(FI K TER)

CALL DCEL2(E3 . ®. .1 DO.CK*CK_[ER)
F1=2 DO*F3-F2

Et=2 DO*EJ-E2

IF{ANUQ EQ 1 DO/G)IGOTO 150
IF(ANUO GT.1.DO/G)GDTO 160

TA LESS THAN P1/2

CALL DELI1(FO, XO,CK)
CALL-DELI2(ED.XO.CK.1.DO.CK*CK)
ogfo 170

' ;szng GREATER THAN P1/2
47 Ls] CALL DELIV(FO2,-XO.CK)

e "

. 4
‘ cz
~. 49 180

0
%1
g 83

CALL DELIZ2(EQZ.-XO.CK,1.D0,CK=*CK)

TA EQUALS P1/2

CALL DCEL(FO3 W IER)

CALL DCEL2(EO3 .k, {1.DO . CK*CK IER) -
FO=2 . DO*FOI-FO2

E0=2 . DO*EQCI-EOQ2
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$3

54

10
11

12
13
14
18

17
10

170

c

261

STAB

L*(DSIGN(1.DO.NUT)*TT(ANUY . E1,F1)-DSIGN(1.DO.NUO)*I](ANUO, EO.FO))
./DSORT(3.DO*DABS(A))
RE TURN

C NON-ANALYTICAL (APPROXIMATE) SFC. LENGTH DETERMINATION.
200

210

e NaNel

(e NoNaNeNs Nel

(o]

(o] o s NoNoNeNoNeNoNoNeNel

L=0.D0

YP=0.DO

DISTP=0.D0
DO 210 I=1.25
DIST=D*DFLOAT(1)/2%5.DO
Yo((A*DIST+8)*DIST+C)*DIST .
LaL+DSORT((DIST-DISTP)**2+4(Y-YP)**2)
YPsY .
DISTP=DIST
CONT INUE

RETURN

END

SUBROUTINE STAB(RED.CD.UD.VD . UA VA . CDS. EIGMX)

WRITTEN BY: M. OLESKIW ON: 8108608 LAST MOOIFIED:810610

FINDS THE JUACOBIAN (DF/DY). ITS EIGENVALUES AND DETERMINES
SUITABILITY OF ODE INTEGRATING TECHNIQUE .

IN
IN
IN
IN
IN
IN
IN
ouT

DOUBLE PRECISION XP(13) . YP(13) PSI(13),21.22,.23,24.K2,K3. K4,
_RED.CD.DCD.UD.VD,.UA, VA DSORY . G1,G2.G3,0G3X.DG3Y.DGI,DA3V,
LJ(4,4) EIG(8) . 22(32) .wK(25) . DO(S).C.RDS. ETQMX , DMINY

INTEGER COS.N.1A 12 1ER.JJ,TYPE
COMMON /AIR/XP _YP PSI/STAB1/K2.K3 K4/TRANS3I/DO.C TYPE JJ

RED=RELATIVE MOTION REYNOLDS NO.

CO=DRAG COEFFICIENT

UD=

VDeDROPLET VELOCITY COMPONENTS.

UAs =

VA*AIR VELOCITY COMPONENTS.

CDS*PARAMETER TO DETERMINE ORAG COEFFICIENT FORMULATION.
EIGMX=LARGEST NEGATIVE REAL PART OF EIGENVALUES OFf JACOBIAN MATRIX

RDS=00(uUJ)/2 D6&/C

DUAS/DXDS

21=(PS1(6)-PSI(7)-PSI(8)+PSI(9))/4.DO/ROS/RDS

DUAS/DYDS

Z2=(PSI( 10)-2 DO*PSI(5)+PSI(13))/4.DO/RDS/ROS

OVAS/DX0S

23+«(2.DO*PSI(5)-PSI(11)-PSI(12))/4.D0/RDS/RDS

DVAS/DYDS

24=(PS1(8)-PSI(68)-PSI(8)+PSI(7))/4.00/RDS/RDS

Gt=UD-UA
G2=VD-VA

RELVEL

GIYRED/K2
DGIX*-(G1°21+4G2°23)/G3
DGIY=-(G1+22+G2°24)/G3
DGIU=G1/G3

DG3VeG@2/G3

FIND DCD/DRED

1F(CDS . €Q.2)GOT0 300
[F(CDS EQ. ¢ AND RED.LE 3.DO)GOTO 100



C | 2

DCD=-0 . 8848DC* (1 DO+9 O6DO/DSORT(RED))*4.SIDO/RED**1 . %00
GOTO 400
100 DCD=-24 DO/RED/RED
* GOTO 400 .
300 DCD=-24 DO/RED/RED- 1. 75DO/RED **1.3700+2.370-3/RED**0. 6200
¢
C FILL JACOBIAN MATRIX
400 J{1.1)=0.00
J(2,1)=-K3*(DCO*K2*DGIX*GI*Q1+DGIX*CD*G1-21*CD*Q3)
J(3,1)=0 DO
J(4 t)== KZ‘(DiD'E;‘DGS‘X*Gi‘E!*Dﬁi D*G2-713%CD*Q3)
J(1,2)=1 DO
Ji2, 2l-—x:‘(DED*K;*DG:U‘G?GHEG;U ED=G1+4CD*Q3)
J(3,2)=0.D0
J(4,2)%-K3*(DCD*K2*DGIU*GI*GZ+DGIU*CD*R2 )
J(1,3)=0.00
J(2,3)=-K3" (OCD*K2°DGIY*GI*G1+4DG3IY *CO*G1-Z2°CD*G3)
L‘(: 3)‘0 EG -
J{4,3)=-KI*(DCO*K2*DGIY*GI*G2+DAIY*CO*A2-24+CD*QI )
J(1.4)=0.D0
5 J(2,4)= -3+ (DCO*R2*DAIV=GI*G1+DGIV*CD*G1)
JU(3,4)=1 DO
U(4,4)=-K3*(DCD*X2°DGIV*GI*G2+DGIV*CD*G2+CO*GI )
C FIND EIGEMNVALUES OF THE JACOBIAN.
N=4
1A=a
[Z=4
CALL EIGRF(J.MN.IA.O, Eia ZZ.1Z.w, EE) ,
E1GMX=DMINI(EIG(1) EIG(3). EIG(S),.E1G(T)) ’ .
RETURM
END : -
c
ﬁ EEEw -!!E!iiiii!I-I-§iEiiiiii—i!!!ﬁigiii-!-!!!!!!ﬁii-h-!!!!E-------
= _
SUBROUT INE STEiiN(TvPE) ®
€
C WRITTEN BY: M. OLESKIV ON: 800222 LAST MOOIFIED: 810813
c )
C CALCULATE STREAMFUNCTION ON A GRID ABDUT AN AEROFOIL SECTION
c GIVEN THE SFC. VORTICITY DENSITY ON THE AEROFDIL AND PLOT THE
€ FLOW USING VELOCITY VECTORS.
C REF: KEMNEDY, J L. & D.F. MARSDEM (1976), CAN. AERO. & SPACE JOUR.
C ' V 22, #%, PP 243-21%6
¢
DOUBLE PRECISION ALPHAR, XE(101), YE(101) . XC(101),YC(101), GAMMA( 101)
..D(100).S1(100),.€0(100) ,DBLE, YUPY YLP1, YU, YL 22 PJK DD,
.PID,YUMY YLM1 TH
c
REAL PST(3721).K(101).DELTA.PI,ALPHAS . SNGL.SCO. SSI.X,v.DXC, pvec,
. XMIN, XMAX, YMIN, YMAX B A R1S,R2S. T3 ATAN.SIGN, T+, T2 DEN.AA MM,
R,ABS.LOG.FLOAT, SIN,COS R3S ,0X.DY.OPX, DPY, XPAGE , YPAGE . ATNT .
XTIP YTIP. XF1, YR VH!.U.Y.LHL.AHLEHiSQﬁT,!!igSIﬂiﬁXi!
.OYY,DOXX,DDYY .
[ : = }
INTEGER XZ.YZ,TYPE.J,I .M XZ1,YZ1,F N NCOU NCOL.LsLIU,TIL,MOD, -
. INC ,NDCPX  NDCPY
c
COMMOM ALPHAR.PID/AERDV/XE, VE/AEROD/NCOU ., NCOL/AERGE/XC ., VYC, GANNA D,
.51 ,CO/NACA/TH .
,/’ERIDIXHIH.:HAXivulmvi;x,vaZ/S?Eﬁ/ﬂD,HLI.'IIL
¢
C IN TYPE=AEROFOIL TYPE.
¢
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C ALPHAR=ANGLE OF ATTACK IN RADIANS
ALPHAS=SNGL { ALPHAR )
DO 120 JUe*1.XxZ .
X=XWMIMN+FLOAT(J-1)/FLOAT(XZ=-1)*( XMAX-XMIN)
IFé{mOD(J,.2) EQ O)GODTO 121
1=2
INC=2 -
ghtD 123 '

12 e
=1 S .
C P51 IS STORED IN VECTOR FORM BY COLUSMNS .
R M J=1)*yZ+]
YeYMAX-FLOAT(I-1}/FLOAT(YZ-1)*(YMAX-YMIN)
PSI(M)=0 O
IF(TYPE EQ -1)GOTD 138
IF(TYPE EQ -1 OR TYPE EQ -3)GOTO 300
IF(YYPE €0 -10)GOTO 400 .
DO 140 L=t M
C FIMD DISTANCE BETWEEN CONTROL PT L AND GRID PT. I.J.
DXCu)X-SNGL{XC(L))
DYC=vy-SNGL{YC(L))
C CALCULATE COMPONENTS OF EON 9 AMD FIG 2
DELTA=SNGLID(LII/2 ©
SCO=SNGL(CO(LY)
SSI=SNGLISII(L))
B=DXxC*SCO+DYC*55]
A=DYC*5CO-DXC*551
B1S=A*A+(B+DELTA)*(B+DELTA)
RIS=A*A+(BE-DELTA)*(B-DELTA) ¥
"RIS=A*A+BRB-DELTA=DELTA

IF(R35 LT 1 E-301G0 TO 160
T3=ATAN(2 O*A*DELTA/RIS) .
GO TD 170

160 IF(ABS(A) LT 1 E-30)G0 TO 180
TI=ATAN((B+DELTA)/A)-ATAN((B-DELTA)/A)
G0 TD 170

180  TA*SIGN(P] A)

170 Ti=(B+DELTA)*LDG(R15)
T2=(B-DELTA)*LOG(R2S) R
M{L)=(T1-T242 O*A*T3-4 O*DELTA)/4 O/P]

. PSI(M)=PST(M)-SNGL{GAMMA(L))*K(L)
140 CONT INUE
Rey=COS(ALPHAS )-X*SIN{ALPHAS)

C ASSURE THAT PSI ON AEROFOIL = O.
PSI(M)=PST(MI+R-SMNGL{GAMMA(N+1))
GOTO 130

c

= i

135 DEN=(X-0 %)**2+y*Y
IF(DEN LT 1 E-70)1GOTO 136 -
PSI(M)=y-v/4 DO/DEN
GaTo 130
c
C STREAMFN FOR & JOUKOWSK] AEROFOIL «
300 PSI(M)I=SNGL(PU(DBLE(X) DBLE(Y)))
@0T0 130
C
C STREAMFN. FOR A FLYING CIGAR.
400 AA=SNGL(TH)/400.0
L LTYRIYY '
FF(Y LT O O)GOTO 410
PSI(M)=MM=*(AA-X)/SORT((AA-X)=224Y*Y)+Y*Y/2 .0
; GOTD 130
410 PSI{M)=2 O+MM-MM*(AA-X)/SORT({AA-X)**2+Y*YV)}-Y*Y/2.0
GoTO 130
c

N
o
w



136
130

120

C

PSI(M)=0.0
I=1+INC .
IF(I LE YZ)GOTO 123
CONT INUE

XZ1aXZ2-1

Y21eYZ-1

DPX=20 /FLOAT(XZ1)

DX =(XMAX-XMIN) /FLOAT(X21)

DPY=12 /FLOAT(YZY)

Ov=PYMAX - YMIN)/FLOAT(YZY)

ENTRY STMFCN

C PLOT BOUNDARIES

510

NDCP X =0 v

NDCPY =0

DXX=(XMAX-XMIN)/20.0

DYyy=(YMAX-YMIN)/12.0

ODXX=ABS(4 O*DXX)+1 E-6 . *
DOYY=ABS(2 O°*DYY )+t E-6

IF(DDXX-AINT(DOXX) LT 2 /10.**(6-NOCPX))GOTOD 510

NDCPX=sNDCP X+ 1
DDXX=DDXX*10 O
GOTO 300

i

IF(ODYY-AINT(DOYY) LT.2 /10.°**(6-NDCPY) )GDTO %20

NDCPY=NDCPY+ 1 )
DOYY=DDYY* 10 O ”
G010 $10

C DRAW AXES FOR ICE ACCRETION PLOT.

820

CALL NEWPEN( 1)

CALL ORIGIN(989,20 0,12.0.5.0.5.0)

CALL AX2EP(4 O.3.NOCPX,1,0.9)

CALL AXIS2(0 .0 .°X/C*.-3.20..0..XMIN, Dxx, 4.0}
CALL AX1S2(20 .0 , ".~1.-12.0.90..0..0..2.0)
CALL AX2EP 0.3.NDCPY ,1,1.2)

CALL AXISZ(0..0..'Y/C’.3.12.0,90 ,YMIN.DYY,-2.0)
CALL AXTS2(0 .12 0, '.1.-20..0..0 .0..4.0)

C CHANGE TO SECOND PEN

CALL NEWPEN(2)

11U

1§ (R
sibma=1 O
Yypte-4 D- 10O
YLPt=1 D-10 .
DO 200 uU=2.xZ1.,2 .
F=0 s L
XeXMIN+FLOAT(J-1)*DX

C ARROWHEAD YtAIL IN FRAME COOROS.

»

XPAGE*FLOAT(U-1)-DPX
XP 1eX+DX
XMteX-DX

C CHECK IF CENTERED DIFFERENCING 1S OK o
IF(XP1 LE SNGL(XE( 1)) OR XMt GE.SNGL(XE{NCDU)))a0D

320

330

280

YUM=YUP 1
YLMieYLP

IF(X.GT . SNGL(XE(1)).AND X . LT.SNGL{XE(NCDU)))GOTD 320

YUs-1.D0-10

YL=1.D-10

GOTO 330

Fet

CALL SFC(DBLE(X),YU,k1,0,22)

CALL SFC(DBLE(X),YL,0.0,22)
IF(XPt GT SNGL(XE(NCDU)))GOTO 280
CALL SFC(DBLE(XP1),YUPY1,1.0.22)
CALL SFCIDBLE(XP{) YLP1.0,0.22)
GOTO 290

YUP tey( &

284 -



122
123

128

126
127
128
129
130

131

132

134
135
136
137
138
139

140

141

142

143,

144
145

152
153
154

15%
156
157
158
159
180

L]

ha

’ -
&
K ]
‘fLPi-vu
290 FaF+1
C DO FOR EACH COLUMN OF ARROWHEAD TAILS
220 DO 240 1+2,Y21.2 '

YeYBAX-FLOAT{(I-1)*DYV

C ARROWHEAD TAIL 1IN FRAME COORDS
YPAGE=12 -FLOAT(1-11*DPvY
Ms(g=-1)*vZ+1

IF(F NE 2'GOTO 220
/ ¥Pimy-Dv
¥YMiey+DY
C 15 CENTERED DIFFERENCING IN ¥ OK?,

1F(vYP1 GE SNGL(YU) OR vMi LE SNGL(YL))GOTO 230
IF(Y GE SNGL{YU)IGOTO 250

€ CHECK FOR LOCATION WITHIN AEROFOIL
1F(Y GT SNGL({YL))GOTO 210

C FORWARD DIFFERENCING IN v
IF{TYPE LE -10)5I1GMA=ABS((Y+YPi)/2. é)
Us(PS1(MI-PST(M+1))/DY/5]GMA

GOTO 240 .

IF(TYPE LE -10)SIGMA=ARS((v+YW1)/2 O)
Us(PSI(M-1)-F51(M))/DY/SIGMA

GAEE!LQD DIFFERENCING IN Y

GOTo 240

C CENTERED DIFFERENCING IN Y 5

230 IF(TYPE LE. -10)51GMA=ABS(Y) . =
Us(PSI(M-1)-PSI(M+1))/2 0/DY/S1GMA

c .

C 15 CENTERED DIFFERENGING IN X OK?

240 IF(TYPE LE ~40)SIGMA=ABS(Y)

IF(F EQ 0O)1GOTO 260

IFiy GE SHGLIYUP1) AMD ¥ GE SNGL(YUM1))GOTO 260

IF(Y LE SNGLI{YLP1) AND v LE SNGL{vLﬂirraaTu 260
€ 1% FORWARD DIFFERENCING OK?

1F(Y GE SHGL{YUP1) 0OR ¥ LE SHEL(YLP1))GD 310

C BACKWARD DIFFERENCING IN X
Ve(PSTI({.J-2)1%¥Z+1)= Psx((d—ip-vz*xi)/gx/sxGuA
GO0 270 ' :

FORWARD DIFFERENCING IN X

31@ Ve (PSI((J-1)=vZ+1)- PSIIJ‘VI*I))/D!/SIGHA
GoTO 270

c chTEEED DIFFERENCING IN X

260 Ve (PST((J=2)*vZ+1)-PSI(J*¥Z+1))/2 O/DX/S1GMA

C ARROWHEAD TIP

270 ATIF=XPAGE+U*DPX
YTIPsvPAGE+V*DPX

AHL=SORT(U*U+V*V) ?ff"

C ARROWHEAD LENGTH

AHLEN=0 25 AHL*DPX

CALL AROMD(XPAGE YPAGE  XTIP YTIP AHMLEN.O, 18)
210 CONTINUE

‘3

200 CONTINUE
RETURN
END
c .
C T T I I sz r 22 22 R A 0 R AR R R R R AR R LA B b bl bl
c -

SUBROUTINE TRAJEC(TRJPLA, THICK AT BOTH DOISTN . LAYER, GRAZE)

WRITTEN BY: M. OLESKIW OW 790%26 LAST MODIFIED: 811018

CALCULATE TRAJECTORIES OF ODROPLETS IN POTENTIAL FLOW
ABOUT AN AEROFOIL

s NsRaRslsl

DOUBLE PRECISION DFLOAT UINF C.DD(S).CD,G5. RDS WHOA RHOD NUS,

265
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- 80

.PPC _ACN GRAV/TRANSI/DD.C.TYPE . J/CV/VTOT, ACOL
/WH/AX BX CX AY BY _CY XXO.YYO.TTO.TT1 *

T30, "UAS ' . T59, 'UDS’ . T68, 'VAS' . T77, VDS’ ,T88,. 'RED’,THd,

-MU.DTS(6.2) . XP{13) YP(13) WOSREL DBLE HF UST VST EPS(S).PI.
.€C1.CC2,C3.C4.C%.C6.C7.C8.CP.C10,.C11,C12,.C13.C14.C158 _C1§,

C17.C18.C19.C20.€21,C22.C23.C24. . HFP  AS DATAN2.CLAPN CX . CY,
CLAP ACOLLD.TIMY TIM2 TST XCO,XIM1 XIM2 XPL ! XXI, YCA VYOG.KLA

-XCOLL .YCOLL .DABS .DSIGN ACOLL .ACOL(31.S). vImMy vIM2 TCOLL™

CLAPF.K.LTH.XN.VN.‘LPHAR.D.LV(2).VOU(2).VTV(2);!CE(§)
OOUBLE PRECISION PSI(13) DUADX DVADY ,DMINY L(31),Y0(31), XUXR

‘UAS(6.2).VAS(€.2) RED(6.2).AU.BU.CU AV BV CV UCOLL,VCOLL,XLX

L!N.PRDSTI.990570.0157{75(500.2).UVAT'XlO.VVO.TK.VV.TTG.TY1.
DSQRT PINF TINF xO(S%),YOT(10,2).v0I(2.%).0FDv GEXX GEX, K GEY

P,

DOUBLE PRECISION XDS(6.2) . UDS(6.2).AN(2 6. 2) vDS{6,2), TTLACN VPS5Q,

VDS(6€.2).H7(2.6.2),A0,A1.A2.B0.B? B2.83.ESB.CO.C1.C2.ATY,
OM1 . DO.DY.D2.ES.UP! UCI.VPI VCI XPI1 . XCl vYPI vC].ERY, ERZ,

PRD.THICK.SLP.XCLAP.LANBH..LlﬂBH.GEU.GEV.DIAX1,HAiZZ!TB.PSIP!PSYH,
VIOT(31.5) VTITL K2 K3 K& AX AY Bx BY CIM2.CIMI XL K XB,HCLAP HCLAPN

REAL XMIN XMAX ;YMIN. YMAX SNGL,X Y XDSP(2%0).YDSF({2%0). YPREV,

. XPREV

INTEGER 1(2).CDS . XZ.YZ.1J,.IK, TRJEND. SMASH AT BOTH_ ACN,
GRAZE 1G.JU.IU.IL . N DENSE.FNCALL, SHORT WARN, WARNP K [4ABS:
TRUPRA . TRUPLA PRINTI PRINTO . TYPE GLOBAL .CPRED.S.LL. FR, GER,

IMA(2) . IMI(2),IM2(2).IMI(2) 10€2) 1P1(2) mm [TEMP . EON, PRC. PC,

LAYER IMN1' DDISTN EQ.GRAV,ITP SHORTP

COMMON ALPHAR P1/EQONMN/GS, RHOA RHOD,RDS . NUS . HF

/AIR/XP _YP PSI/REL/UAS.VAS RED.CD/STABI/K2.K3 . K4
/GRID/XMIN, XMAX YMIN YMAX X2 Y2/XXR/XUXR . XLXR

/PV/XDS.¥DS . UDS. VDS TEG/AN HT/SA/AS
/PCM/AO A1 A2 BO B, 3.CO.CY.C2.0M1,00,D,02,
UPI . UCI1.VP] VCI ERY . ER2I®™XPI XCI YP] ¥C] UST, VST

/LOC/TS OTS.1.IM4 IM3 1M2, IM1 10, 1P 1 MM

COMMON /PKFM/CC1.CC2.C3.C4,C5.C$.C7.C!.CQ.C!O.C",Eii.éiﬂgﬁi
C!B.C!G.C17.C10.C09.C2Q.C21.C22,C23.C24
/COLS/L.LW. YO, YOW VTIW ACW/NOSE/XN,YN/FC/FNCALL

./TRANS1/UINF PINF TINF EPS DENSE/SRCH/D.IU.IL

/TRANS2/COS . TRUPRAPRINTI PRINTO, EON,

TRUPLA=PLOT TRAUECTORIES (O OR 1)

THICK=AEROFOIL THICKNESS IN %X

AT=AUTO-TRAJECTORY MODE (O OR 1)

BOTHeTRAJECTORIES TO COLLIDE ON BOTH SFCS (O OR 1)
DDISTNeNO OF SIZES IN DROPLET DISTN.

LAYER=LAYER NO .

GRAZE=FIND GRAZING TRAUECTORY MOOE (O OR 1)

FOR”AT(’iACCRiilON OF LAYER' 13, DROPLEY DIAMEYER: ' F7.1)
FORMAT( ' 1ACCRETION OFf LAYER’ 13,° DROPLETY ODIAMETER: © . F7 .1,
EPS=  , 1PE IO 3) :

'FORIAT("ACCRETXON OF LAYER' .13, DROPLEY DIAMETER:’ F7.1})

FORMAT( ' -ACCRETION OF LAYER' I3, ‘ DROPLET DIAMETER: ‘ F7 1,
EPS=" . 1PE10 3)

FORMAT( 1)
FORMAT(' C *WARNING*** STABILITY PARAMETER INDICATES POSSIBLE'.

.. INSTABILITY )

FORMATY(/SF 10.0)

'y

-

FORMAT( 'OSTEP . T8, 'TIME ,T1S5, ‘OTS' . T23, 'XDS'.T32, 'YDS".T41, ‘PSI‘,

"ACCN/MOD HIST/RHS'  T114, 'USTAB . T123, 'VSTAB')
FORMAT(' ' 14 F6.2.F7.4,7F9 .85 F11.3,4F9.8)
FORMAT( ' * 13.F6.2.F7 4 .7F9 .8 F11.3, 4F9.8)
FORMAT (' STABILITY INDEX: ' . F8.3.° AT X=' F@8.5,
CLOSESYT APPROACH IS Y=’ F8. 8,
/. TIME STEPSe 13, ' FN. EVALUATIONS= 14,  FINAL Y=’ F8



[ ’ . x
' L] # #
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TRAEC
20 &5 FORMAT( 'OSTABILITY INDEX: ' F8&8 3. AT x=' FB.S,
¢ CLOSEST APPROACH !S Y= FB8 &, :
/. OTIME STEPS= 13, FM. EVALUATIONS= 14,0 FINAL Y=’ FB.5)
21 70 FEE-AT( OTRAJECTORY STARTING Basrfxnu 1% x-f
F6 2, YO= _FA %)
22 a0 FORMAT( " COLLISION COORDS: !-‘iF!,si ‘Y=’ FB. 85, " L=' F8.5./.
- TIME STEPSs 13, FH  EVALUATIONS* 14,
/. STABILITY IMDEY=' F8 3, COLLISION VELOCITY. ' FB.S,° AT’ ¢
FE 1. ' DEG ')
23 L] FORMAT( "OCOLLISION COORDS xX=' FRA & ' v=s' F8 8§ ° Lfi.FEVSH/.
‘OTIME STEPS= " I3, FN  EVALUATIONS= 14, ;
/, OSTABILITYy IMNDEx=' FA 3, ' COLLISION VELOCITY: ' FB. S5, AT’
F&. 1, "DEG '}
24 g0 FORMAT( OFIBST TRAJECTORY HWIT &AEROFOIL ')
25 25 FORMAT( OUNEXPECTED AEROFOIL MISS )
26 26 FORMAT! 00D . EPS. %O, YO, GLOBAL? ) ’
27 97 FORMAT(F10 0.D10 0.2F10.0.12)
28 1] FORMAT( GLOBAL ERRORY AT X=' FB 5 ° ARE- IN X * F8 .8, [IN Y-,
. Fa s INU .FB 5, INV  FR 5)
29 29 FORMAT{ "OGLDBAL ERRORS AT x=' FB %, ' ARE IM X ° . F8. & I v,
FB S INU FB S INV ,FB S) . S
c
30 U=t '
a IL=1
a2 1F(AT EQ D)GDTD 710 = -
€ INPUT PARAMETERS FOR AUTO TRAJECTORY MODE
a3 READ(4 .30)(x0(J) J=1 DDISTN)
34 READ( 4 .30)(vY01{2,J).J=1 DDISTN]) . s
as IF(BOTH EQ VIREAD(4 ,30)(Y01(1, J), J=1 DDISTN)
C FIND GRAZING TRAJECTORIES FIRST. *
36 GRAZE=
37 IF(PPC LE 2)GLOBAL=O .
C SET FOR-STEP EXTRAPOLATION L
LT iFZEPE,EG 3 AND EOQN . NE . 2)GLOBAL=2
€ FIRST c TEGORY IN DROPLET DISTN. .
as J=
c
C NON-DIMENSIONAL VIEWPORT DIAGONAL LENGTH *
40 710 - LEN=DSORT(DBLE( (XMAX-XMIN)**2+( YMAX-YMIN)**2)) *
C PRINT LENGTH INTERVAL WITHIN VIEWPORT
41 * PRDSTI=LEN/DFLOAT(PRINTI)
C PRINT LENGTH INTERVAL TO LEFT OF VIEWPORY
42 | PRDSTO=LEN/DFLOAT(PRINTO)
C NON-DIMENSIONAL #CCH  OF GRAVITY
43 GE=DFLOAT(GRAV )9 81DO*C/UINF/UINF
C AIR DENSITY
44 RHOA=PINF* Y DI/287 O4DO/(TINF+273 16D0)
C WATER DEMSITY REF LIST - SMT
4% RMOD=999 1500
C OYMAMIC VISCOSITY OF AIR REF: LOZOWSKI ET AL. (197%)
46 MU=1 718D-5%+5 {1D-B*TINF -
C NON-DIMENSIONAL KINEMATIC VISCOSITY OF AIR:
47 NUS =ML /RHOA /C /UINF
a8 IF(PPC LT 21GOTD 420
c
C DETERMINE PARAMETERS FOR BUNGE-KUTTA-FEHLBERG METHOD.

cC1=_ 25800

CC2+=3.D00/32 DO

CI=9.D0/32 .DO

Cd=1837 00/2187 DO

C8=72 D2/2197 DO

cC&=7298 DO/2197 .00 .

C7=439 00/216 DO .
CA=8 DO ’

Co#=3680 DO/%12 DO

C10=84% DO/4104 DO
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100

101
102

103
104

1058
106
107
108

109

- . 268
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R ) s TRAJEC
) - R
Ci1=8 BO/27 DO
c12e2. DO . . . - _
. C13=3%44 DO/2%6%.DO . g
" C14=18%9 DO/4104 DO
{  C18=11.D0/40 DO 2

C18%2% DO/216.DO -
C17=1408 .DO/2§6% DO :
CiB*2197 DO/4104 DO " :
C19e . 200 ,
€20+16.00/ 135 DO N ’
C21=66%€ DO/ 1282% DO '
C22+28%61 DO/56430 DO > .
€239 DO/S0 DO _ - : -
C24=2 .DO/%% DO )
QOTO 400

420 IF(PPC NE 1)GOTD 400

C

C DETERMINE PARAMETERS FOR PREDICTOR-CORRECTOR METHOD .
At1=0 DO
A2+6 380-2

AOQ=1 DO-A1V-A2

80+(5S DO+9 DO*A1+8 DO*A2)/24 DO

B1=(-59.00+19 DO“A1+32 DO*A2)/24 DO

B2=(37 DO-% DOrA1+B DO°A2)/24.DO ‘
B3=(-9 DO*W1)/24 DO :

ES8=(2%1 DO-19 DO*A1-8 DO*A2)/6 DO

C1=41

C2=A2 .
€O=1 DO-C1-C2

DMi=(9 DO-C1)/24 DO

DO={ 19 DO+ 13 DO*Ci+8 DO*C2)/24 DO

D1+(-% DO+13 DO*C1+32 DO*C2)/24 DO

D2=(1 DO-C1+8 DO*C2)/24 DO
€8=(-19.00+11.00*Ct-A . D0O*C2)/6.00

ERI-ESB/(ESB-E%)

ER2=ES/(ESB-ES) *

o

400 IF(AT EQ 1)GOTD 470 :

J= 1 =

C READ IN VALUES FOR INDIVIDUAL TRAJECTORY MOODE.

490 WRITE(G.96) *
READ(S 97)DO(J) . EPS(J) . XDS( 1, 1), YDS( 1, 1), GLOBAL . T T
1F(DD(J) EQ O DOIRETURN { .
IF(PPC LE 1 OR EON.EQ.2)GLOBAL=0 '
GOTO 480 .

c

C BEGINNING OF AUTO-TRAJECTONY MODE .
ENTRY TRAJEK(LAYER,GRAZE.N)

C

C IN N=INDEx OF TRAJECTORY PAIR

c

470 1y=3
1F(GRAZE EQ 1)GOTO 460

C TRAJECTORY SPECIFIED BY CE SUBROUTINE
YOS{1,1)=vyOW(N) .

GOTO 405 .

C TRAJECTORY DETEGMINED TO FIND GRAZIMG TRAJECTORY.

460 Ty=std-1
1E(1J EQO 2 AND . TRJPRA EO.O)WRITE(7,1%)
16=1

C SLOPES FOR SECANT METHOD . .

c ﬁﬂiﬁiii!ﬂﬁ!iii!’iii!ii!iiiliiiiiiﬁj‘ﬁi‘ﬂ!!-iﬂ‘-Qﬂiiiiﬂiiﬁiiﬂﬂiiiﬁtﬂi
K=0 8%D0 ; .

c i?lil‘iiy:iiiiiiiiiiiliiiii-l!iﬁi-iiitlﬁliiiiiiiiiiﬁiiiﬁ?iiili?iiii
TO=0 200

€ INITIAL DROPLET POSITION -



110
111

112
113
1174
119

116
117
118
119
120
121

124
12%
126
127
128
129
130
131
132

133
134
138
136
137
138
139
140
141

142
143
144
149
146
147
148
149
180

1814
152
183
154

135
156

187
158

*

Y

405
c

F 4

YDS(1,1)*vO1(1J.0)
XDS (1. 1)=x0(J)

.

C PARAMETERS FOR CALCULATING THE JACOBIAN (DF/DY).

480

c
cs

483

A0S=DD(J)/C/2 D8
K2+=2 DO*RDS/NUS

K3=0. 7500*RHOA/RDS /(2 DO*RHOO+RHDA )
K4=2 DO*(RHOD-RHOA )/ (2 .DO*RMDO+RHOA ) [

ET COUNTERS
DO 485 Wm=1 2
IMd (M) =2
CIM3I¢M) =3
IM2(MM)=4
THy (s
1O(MM) =6

’ TP 1 (M) =1
T(Mm) =5

CONTINUE
IK=0
CPRED=0
GER=O
WARN=0
MLAMBH«0O DO
FNCALL=Q
LR
XCLAP=XDS( 1, 1)

C DROPLET #T INITIAL POSITION

4086

407

IF(TRJUFRA EQ 11GDTO
IF(PPC LT 2)WRITE(7,
IF{PPC.GE 2)WRITE(7,
GOTO~407

IF(PPC LT 2)WRITE(7,
IF(PPC GE 2)WRITE(7,

408
12)LAYER
13)LAYER

10)LAYER
11)LAYER

.Do(d)
.DO(J) EPSLD)

.OD(Y)
DO(J) . EPS(U)

WRITE(G .70} XDS(1.1),v05(1.1)
WRITE(7 7001 XDS{1.1).vDS(1, 1) -

IF(PPCHME 1)GOTD 410

=
C SEY PREVIOUS PREDICTOR-CDRRECTOR VALUES T0 O.

410

La ]

1]

2]

Yy

15

IPFI=0.D0O
XC1=0 L
YRI=0 .
YC1=0
UPI=0
uci=o
VR]=Q.
vCl=0
IF{ACN EQ 1)GOTO 41%

88883888

THAN AIR (RED=0Q OO1)

CALL ATRVEL(XDS{1,1) vDS(1,4) UAS(1,.1),VAS(1.1).58)
CALCULATE TOTAL AIR VELOCITY

.~

SET DROPLET TRAVELLING WITH JUST SLIGHTLY GREATER

VELODC

UVAT=DSORTIUASE Y, 1)=LaS( 1, 1)+VAS(1 1)*VAS(1, 1})

WOSREL=1 . D-23*NUS/2 DO/RDS

CALCULATE IMITIAL DROPLET VELOCITY

CALCULATE TOTAL STARTING RELATIVE VELOCITY.

UDS( 1, 1)=UAS(1,1)*( 1 DO+WOSREL/UVAT)
YOS{1,1)=VAS( 1 1)=(1 DO+WDSREL/UVAT)

GOTO 416

ACCELERATIVE COMPONENTS .

XP(6)=XDS( 1. 1)+RDS
XPE(7)exXP(6)

SET GRID FOR INITIAL DROPLET VELOCITY CALCULATIONS

ASSURE STARTING RED=0.001 WEIGHTED BY POTENTIAL FLOW

1

TY



159
160
161
162
163
164

165

17%

176
177
i78
179
180
181
182
183
i84
185
186
187

188

189
180
191

192
193
194
198
196
197
198
199

201
202
203
204
205
206
207

La ]

C

416

XP(8)=xDS( 1, 1)-ADS

XBE(9)=XR(B)

YP(€)=YDS(1, 1)+RDS
YBE(T7)=vyD5(1, 1)-RDS

YR(B)=vP(§)
YP(B)sYP(T)
FIND AIR VELOCITY

=

CALL AIRVEL(XDS(1.1).vYDS(1, 1) UAS(1.1).VAS(1,1),9)

CALCULATE DUA/Dx

DUADX = (PSI(6)-PSI(7)-PSI(8)+PSI(9))/4 DO/RDS/RDS

CALCULATE Dva/Ov

DVADY=(PSI(8)-PSI(6)-PSI(9)+PSI(7))/4 DO/ROS/ROS

TOTAL POTENTIAL FLOW ACCELERATIVE TERM

UVAT=DSQRT(DUADX *DUADX+DVADY *DVADY )
CALCULATE TOFAL STARTING RELATIVE VELOCITY
WOSREL=1 D-3*NUS/2 DO/RDS
UDS( 1, 1)=UAS(1 1) -DUADX/UVAT*WDSREL
VDS{1 . 1)=sVAS({ 1 1)-DVADY/UVAT*WDSREL

C CALCULATE STARTING ACCELERATIONS:

EQ=EON

IF(EOM EQ 29EQ=1
CALL ACCW(UDS(1,1).vDS(1, 1) UAS(1, 1) VAS(1,

RED(1.1).CD.€0.0.DO,0)
IF{TRJPRA EQ 1)WRITE(7, 40)
IF(AT EQ QIWRITE(&, 40)

TRUEND =0
HT{{ 1 1120 DO
MT(2.1:11%0 DO
TS§1.1)=0 DO
CLAP=1 DO

PSIN=PSI(S) )

SHORT =0
PC=PPC
SMASH=0O

IF(PC LT 2)GOTO

C FIND INITIAL STEP SIZE FOR'AXF4
DFDYy«DMAX 1 (DABS({UDS(1,1))

C FOR

L o N e

L]

o

R
o0

DABS(AN(Z . 1,1}))
1F{GLOBAL LE 1)DTS(1.1)=0 SDO*(EPS(J)/DFDY)®=0 2500
IF(GLOBAL EQ . 0O)GOTO
IF(GLOBAL EQ 2)DT5(1.1)=0
GLOBAL EXTRAPOLATION, 1

HY{1. 1.2)=0 DO
HT(2.1,21=0.00
TS(1,2)=0 DO

XD5(1.2)=xXD5(1.1)
YDS(1.,2)=¥D5(1,1)
UosS(1.2)=upS5( 1.1
VDS(‘.ilisggfﬁii'
UAS(1,2)=uas{1 1
VAS(1,2)=vaS5(1. 1)
RED(1,.2)=RED( 1,1
DTS(1,2)=0TS(1,1}
AM(Y . 1. 2Y=AN(1,1.1)
AN(2 .t 2)=aMN(2 1.1)

MM =2

LL=2
GDTO 100

Wl

E

”y

INITIALIZE D
RD=0 DO

T

100

INIT

& GLEAXS,

.DABS(VDS(1.1)) .DABS(AN(1,1.1)).
=

.3300*(EPS(J)/DFDY)**0. 200"

aLl1Z

NITIAL STEF SIZE FOR RK4 & PC4.
DTS{1.1)=EPS(J)**0. 25D0

E

ISTANCE BETWEEN PRINT POSITIONS.

CALL DRAG(UDS(1.1) . VDS(1,1).UAS(1.1).VAS(1.1).CDS.

1},

[N
o

(1,1),C0)



210

211
212

213

214

i ] *

1098 1F(GLOBAL GT 0)GOTO 104~
C FOR B4 PC4 AND RKF4 METHODS

FR=1

&N

GOTD 1086
c
104 IF(GLOBAL EQ.2)GOTD 107

C FOR ORDER EXTRAPOLATION:
IF(me EQ t)GOTO 108
IF(SMASH EO OIGOTO 208

C FIND GLOBAL ERRORS, SINCE TRAJECTORY HAS ENDED UPON

¢ seEconp sTeP OF Palm
GEXX=XDS([O(1),1)
GEX=XDS(IO(1).1)-xD5(10(2).2)
GEY=YDS(IO(1),1)-#D5(10(2),2)
GEU=UDS(IO( 1), 1)1-up5(10(2).2)
GEV=VDS(10( 1), 1)-vDS(10(2).2)

C CONTINUE FIRST STEPS TO END OF TRAJECTORY.

Q?F!!
C4BEGIN FIRST STEP OF PAIR

208 LB
FR=1{
@070 106

c

108 IF(GER EQ 1)IGDTD 106
M =2

C SECOMD STEP IN PAIR OF SAME SIZE.
DTS(IP1(2).2)=DTS(10(1).1)

FR=0O

@OTO 108
c
C FOR STEP EXTRAPOLATION:
107 IF(GER EQ 1)GOTD 1086

IF(LL EQ 2)GOTO 909
IF(SMASH EQ O)IGOTO 109

FINMD GLOBAL ERRORS, SINCE TRAJECTORY HAS ENMDED

c
c UPOM FIRST STEF OF TRIPLET
GEXx=xDS(IP1(2).2)
GEX=(XDS({IO(1} 1)-xDS(IP1(2),2))/31.
GEY=(YDS{10(1),1)-vDS{IP1{(2),2))/31.
GEU=(UDS(I0( 1), 1)-UDS(IP1(2).2))/21.
) GEV=(VDS({IO(1). 1)-VvDS(IPI(2),2))/31,
C CONTIWUE HALF-STERS TO END OF TRAJECTORY .
GER=1
MM =D
FR=1
aaTo 108
C BEGIM MNEXT STEP OF TRIPLET
909 LR :

[y
&
et
b 4
"
I
- |

- % A
Ca
I
“!:‘ ]
o~ Y [w]

S(1P1(2).2)=D %~ 10(1).1)/2.D0

C

C INCREMENT IMOICES

108 TTENE= M4 (W)
TW4 (WM ) = T M3 ()
TM3 () = [ M2 (M)
FM2 UMY =101 i)
T (MM)=1O(MM)

4 TO(MM)=TFP (W)

33383

A



257
2%8
2%9
266
261
262

264

2683
266
267
268

270
271
272
273
274
2738
276

277
278

- 279

280

28
282

283
284

288
286
287
288
289

290

291
292
293

204
298
29¢
297
298

01
302
303

C

c

D | ;- .

IP1 (M) ] TEMP

T(M)=](MM)s

IF(FR _EQ 1 )HFPapF

1F(FR EQ 1 IWARNPeWARN

XPL1=XDS(IO(MM) MM)+ 1t 2D0°DTS(TO(MM) MM)*UDS(1D(Mt) )
IF(XPLY LT XN-RDS+1 D-9 OR xPL1 GT
DMINt( XUXR XLXR)-RDS/S DOIGOTO 120

C HERMITE EXTRAPOLATION TO ECX FOR COLLISION

CaLL HERMIT(Tg(1( V-t MM) TSI (M) ) .
XOSCIMItMm ) MM yOSETID(MM) MM)
UDS(IMI(MM) MM) UDSIIO(MM) MM) AX 8X CX)

CALL HERMITITG{ I (MM)s MM) TS(T(MM) M),

YOS(IM (MM} MM) vDS(TO(MM) MM)

VDS(IMiiame! M) vDS(IO(MM) MM) AY BY €Y)
TTO=TS (T (MM - ¢ pam)

TY1=TS(T (M) M)

XXQeXDS({IM1 (M) M)

YYOuYDS( IM (M) MM)

TSOI(MM)+ s MM)eTST(MM) MM)+DTS{IO(MM) M)
TESTaTS(I(MM)Ys 1 MM)-TS(I(MM)-1 MM)

XOS(IP1{MM) MM)a((AE*TST+BX )*TSTHCX)*TST+XDS(IMI(MM) M)
YOS(IP1(MM) MM )=((AY*TST+BY )*TST+CY)*TST+YDS(I1M1(MM), M)
CPRED =1

XeSNGL(XDS(IP1(MM) MM))

XPREVESNGL{XDS(IO(MM) Mm))

GOTO 190 .

C INTEGRAYE EONS OF MOTION VIA HIGHER OQDER TECHNIQUE
c (RK4 _PC& RKF4 OR GLERKS)

120

HCLAPN=CLAPN

IF(FR EQ 1)PSIP=PSIN

IF(FR.EQ. 1)SHORTP=SHORT

IF(PC GE 2)CALL GLERWXS(EON . COS EPS(JU). LAMBH, WARN, SHORT

‘GLOBAL . GER)

IF(I(Mm) GE 4 AND PC EQ 1)CALL PCA(EQON.CDS.LAMBM, WARN)
IF(I(MM) LT 4 AND PC EQ.1.0R .PC EQ O)
CALL RK4(EOQON.CDS . LAMBH. WARN)

IF(FR EQ 1)PSIN=PSI(S)
CPRED=O o

C STABILITY PARAMETER

TF(MM EQ TIMLAMBH=DMINI(MLAMBH L AMBH )
IF(FR EQ.0)GOTO 192

IF(WARN EQ O OR WARNP EQ 1)GOTD 17%
WRITE(6.20)

IF(TRUPRA EQ 1)WRITE(7.20)

C CALCULATE DISTANCE SINCE LAST PRINT OF DROPLET POSITION

178

C CHECK

180

C CHECK

191
C CHECK

DISTDSQRT( (XDS(IP1(MM) MM)-XOS(IO(MM) M) )*e2s
(YOS(IP1 (M) MM)-YDS{IO(MM) MM))=*2)
PRD=PRD+DIST

XeSNGL(XOS(IP1(MM) MM))

XPREV=SNGL( XDS(TO(MM) MM))

IF DROPLET HAS ENTERED VIEW WINOOW.

IF(X GT XMIN)GOTO 190

IF{TRUPRA EQ 0O)GOTO 10%

lF(Pi‘O GE PRDSTO OR SHORTP EQ . 1)GOTO 231
aQT0o 10%

YaSNGL(YDS(IP 1 (Mod) ) )

YPREV=SNGL (YDS(1O(MM) mMm))

FOR OUT-OF -BOUNDS . .

IF(Y GE YMAX)GOTO 211 .

IF(BOTH EQ O)GOTO 191

IF(Y LY YMIN AND YPREV GT YMIN)GODTO 212
IF(X . GE XMAX)GOTO 213

IF COLLISION IS POSSIBLE.

(%]
~
LN



306

307

310
FRR!

312
313
314
AL ]
316

317
318

319

320

321
323

324
328
326

327
328
329
330
331
332
333
334
338
336

337
338
339
340
341
342
343
Jas
343
346
347

Ja8
Ja49

NOOOO

192 IF(XDS(IP1 (M) MM) GE XN-RDS+1 D-9 AND.
. XOS(IP1(MM) M) LE DMINI(XUXR, K XLXR)-RDS/S.00)Q0TO 248
C FIRSY POINT TO BE PLOTTED?
IF(TRUPLA EQ.O . OR (TRJPLA .EQ.1 AND .LAYER .GT.1))GOTO 222
IF(IK . EQ O AND FR EQ 1 AND CPRED EQ O)GOTO 216
C STORE POINT FOR PLOTTING?

222 1F(CPRED EQ 1)GOTO 120
GOTO 221 -~
2453 IF(CPRED EQ t)GOTO 140
C . .
C HIGH ORDER INTEGRATING TECHNIQUE (CPRED=0)
S=1 -

CatLL VHAN)(KDS(U’HH) M), YOS(IP1(MBt) M) TS(TI(MM)+ 1, M),
S.CLAPN xCD.vCA)
C HAS THERE BEEN A COLLISION?
IF(CLAPN*DFLOAT(S) LT O.DO)GOTOD 250
IF(FR EQ O'GOTO 108
C IS THIS THE CLOSEST APPROACH?
IF(CLAPN/CLAP GT 1 DO)IGOTO 221
C STORE CLOSEST APPROACH VALUE AND LOCATION

CLAP=CLAPN ™ v
HCLAP*HCLAPN

XCLAP=XCD

GOTO 221 ‘ <

HERMITE EXTRAPOLATION & HIGHER ORDER INTEGRATING
METHOD DON'T AGREE LATTER PREDICTS COLLISION.
TRY AGAIN USING HALF-SIZE DT (AND RX4 [F USING PC4).
$0 IF(PC EQ 1)PC=O
DYS(IO( 1), 1)=DTS(10(1),1)/2.00
IF(PC GE 2 AND GLOBAL .NE .0)GOTO 260

LA
260 1F¢MM EQ. 1)GOTO 130
C RETURN “TO FIRST STEP OF PAIR OR TRIPLET. !
m'ﬂ /]
LL=0
IF(LL.EO.2)GOTD 270 .

C DECREMENT INDICES FOR LLe=1
1(2)e1(2)-

ITEMP=1P1(2)
1P1(2)=10(2)

. 10(2)=1M1(2) .
IM1(2)=1M2(2)
IM2(2)=1M3(2)
IMI(2)=1M4(2)
IM4(2)=ITEMP

FRe= 1

@010 130
C DECREMENT INOICES #OR LLe2
270 1(2)=1(2)-2

1TP=1P1(2)
ITEMP=10(2)
IP1(2)eIM1(2)
10(2)=1M2(2)
IM1(2)=1M3(2)
- IM2(2)=1M4(2)
IM3(2)=11P
IMa(2)=ITEMP

FR«O

@OT0 30
C
C HERMITE EXTRAPOLATION TECHNIOQUE (CPREDe1)
140 Se=1

CALL WHAMO(XDS(IP1(MM) MM) YOS(IP 1(MM) M00) TS(I(MM)s1 M),

. S.CLAPN XCD.YCA)
C HAS THERE BEEN A COLLISION?

273



C IF NOT, TRY AGAIN WITH A HIGHER ORDER METHODOD .

%0 IF(CLAPN/DSIGN{RDS . DFLOAT(5)) . GT . 1.0-3)G0T0D 120
C iiiiiiiﬂii!!ii?iifﬁi?liii!iPili?ii?liiiiiiiiiiiﬁlﬁiﬂi!‘liiii??‘ﬂii!!
C COLLISION BY HERMITE EXTRAPOLATION oy
I51 CMASH={
352 IF(FR EQ O)0OTO 105
€ IS THIS AN “ALMOST COLLISION?
353 _ IF{CLAPN*DFLOAT(S) LT O DO)GDTO 320
354 - XCOLL=XCD .
s TCOLL=TS(I (MM )41 md)
156 CALL SFC(xCOLL.YCOLL.S.1,LTH)
87 GOTO 210
C A TRUE COLLISION - FIND COLLISION LOCATION: .
€ SET UP ITERATIVE PROCEDURE
ass 320 XIM2=DMAY 1( XN-BDS+1 D-10 XDS(IO(MM) MM}
159 XL=xIM2
360 532
351 CALL WHAMO( ~]M2 vIM2 TIM2, 5. CIM2 xCD.VCA) 'y

C DOES THE TRAJECTORY CROSS THE .yN LINE?

362 IF(vIM2=YyDS(IF1(MM) MM) GT O DO)GDTO 330
363 YIM{=DSIGN(Y D-10 vIM2)
36a 5=3
k!4 CALL WHAMD(I xIMY vYIM1 TIMY S CIMI, XCD,YCA)
366 GOTO %10 *
asT 330 XIMi=XDS(IP1(MM) M)
368 XR=xX MY
369 CIMM=CLAPH
C ITERATE USING SECANT METHOD
370 510 XXIexXIMI-CIM{*(XIM1-XIMZ)/(CIMI-CIM2)
an ' IF(XX] GE xL)GOTO %114
372 XXIsxXL
2723 514 IF{xXx] LE xXRIGOTD %132
374 XXI=xR
7S 512 XIMIa Y TW1
3re CIM2=CIM1
aT7 AIMimxx]
are S=2 fi
ave CALL WHAMO{XIMY YIMY TIM{ S CIM1, XCD,YCA)
ﬁ LE A R B RN R AN SRS SRS LI E RS RS R RN R SRR EREEEEEEE N TN TR E N SN RR ISR RN RS R N I
1 1s] IF(DABS(XIM1-XIM2) GT.1.0-9)@0T0O S10
E iiiﬁi?iiﬁ:i!ﬂi!iii?!?iiﬁi!i!iQi‘ii?iﬁiii?iiiDiliiii!il?iil?!iiiiiiﬁ
C COLLISION LOCATION -
m XCOLL=xCD
s TCOLL=TIMY
383 CALL SFC(XCOLL,YCOLL.,S5,1.LTH)
¢ .
C END OF TRAJECTORY FLAGGED: COLLISION -
N4 210 TRJEND =1
c
C VELOCITY AT COLLISION
385 CALL HERMIT(TSII{MM) -1 MM) TSOI(MM) M) UDS(IMI(MM) Mm),
UDS(IO(MM) MM} ANCT IMI(MM) M) AN(T, JTO(MM), MM), AU, BU,CU)
Iss CALL HERMIT(TSOI(MM) -1 MM} TS(T(MM) M) VDS(IMI(MM) M),
VOS(TIO(MM) M) ANT2. IMI(MM) M) AN(2. IO(MM) MM) AV BY . CV)
387 - TETeTCOLL-TS(I(MM)-1 mmt).
Jss UCOLL={ (AU*TST+BU)*TSET+CU)*TET+UDS( IM 1 (M)  MM)
g A VCOLL=( (AV*TSTHBVI*TETH+CVI*TSTAVDS( IM1 (M) M) B
C TOTAL VELOCITY
90 VPSO=UCOLL*UCOLL+VCOLL *VCOLL
C AMOLE OF TRAJECTORY IMNCLIMATION AT COLLISION
I ATJU=DATAN2(VCDLL ,UCOLL)
€ AMGLE DF TRAJECTORY FROM PERPENDICULAR TD THE SFC.
Is2 ACOLL=AS-ATY
Il ACOLL=DSIGN(P]/2 DO.ACOLL)-ACOLL :
394 IF(GRAZE EQ 1)ACOLL=DSIGN{ACOLL .DFLOAT(2*10-3))



.
Y
27%
. ] .
395 ACOLLD=ACOLL/FPI*1 BD2 = =
396 VITL=DSORT(VESQ), . - ’
97 IK=]Ks+1 . .
398 XDSP{IK )=SNGL(XCOLL) -
399 YOSP{IK )sSHNGLI{YCOLL)
400 GOTO 232
C END OF TRAJECTORY FLAGGED EXCEEDED YMAX -
401 244 TRJEND = 1
402 IK=TK+1 » o . 4
403 YOSP(IK )evyMAx ' .
404 IF(CPRED E2 O)IGOTO "215 N
405 GOTO 219 _
C END OF TRAJECTORY FLAGGED:. EXCEEDED YMIM
4086 212 TRJIEND =1 .
_407 IK=IK+ 1 ! ) - ; ’
408 _ YOSP(IK)=YMIN
409 IF{CPRED EQ O)GDTO 21%
410 219 YY=DBLE(YDSP(IK))
411 55 -
412 G0TO 233 .. - .
C FIND X FOR HIGHER ORDER WMETHOD. o »
413 ‘218 XOSPIIKI=(x-XPREV)/{VY-YPREV)*(YDSEP({IK)- V“EV)*XF-EV
414 @OTO 232 -
€ END OF TRAJRCTORY FLAGGED: EXCEEDED XMAX
415 213 TRJEND= 1 : N
FET eI+ *
417 xDSP(HK)exmax .
418 - IF(CPRED EQ O)IGDTD 216 -
419 XX=DBLE(XDSP{IK)) -
420 5=4
421 GOTO 233
C FIND v FOR HIGHER ORDER METHOD.
. #4322 218 YOSP(IK)=(vY-YPREV)/(X-XPREV)*“(XMAX-XPREV )+YPREY
423 232 IF{TRJPRA EO O AND AT . EQ 1)GOTO 234
#24 GDTO 231
C FIND X & Y FOR HEGMITE EXTRAPOLATION. , .
42% 233 CALly, WHAMO! XX Y¥ TCOLL.$,ZZ.XCD.YCA) 4
426 IF{IABS{(S) EQ 4)YDSP(IK)=SNGL(YY) J‘f
427 IF(IABS(S) EQ S)IXDSPUIK)=SNGL(XX) .
428 IF(TRJFRA EQ O.AND AT EQ.1)GODTD 180
429 GoT0 231
€
€ STORE PLOT COORDIMATES FOR FIRST POIMT WITHIN WINDOW
430 226 IK=1
431 XDSP(IK)=xXMIN
432 VOSP(IK)=(Y-YPREV)/(X-XPREV)*(XMIN-XPREY )+ YPREV
433 1F(CPRED EQ 0O)GOTO 230
434 GoTO 120
. [
C STORE COORDS FOR LATER PLOTTING
43% 221 IF(TRJPLA EQ O)GOTO 230
436 IF(TRJPLA . EQ 1 AND . LAYER . GT. 1)GDOTO 230
437 IK=IK+1 :
43 XDSP(IK)= SHGL(!BSHQ(*) L _} B
439 YDOSP(IK)=SNGL(YDS(TIO(MM) MM))
440 230 1F(TRJPRA EO O)QOTO 10% )
441 IF(PRD LT PEDSTI AND. SHORTP £0Q.0)Q0OTO 108
c
C PRINT INTERVAL EXCEEDED *
442 221 TTUACH=DSORT(ANC 1, IO(MM) MM)*AN( 1, 1O(MM) MM)+
. AN(Z, TO(MM) M) *AN(2,  IO(MM) M) )
443 VESO=UDS{ TO(MM) MM)*UDS(1O(MM) MM )+VDS{JO(MM)  MM)*VDS(TO(MM)  MM)
4424 NA=RODS*TTLACN/DTS(IO(MM) MM)/VPSO
c
C WRITE TRAJECTORY IMFO INTO STYORAGE FILE.
445 IMM =] (M) -t
i) .

"



446

447

448
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452
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484
45%

456

457

438

460

461
462
463
464
463
486
467

468
469

470

471
472
473

474
473
47¢
477
478

479
480
481
482
483
484

488
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TRAJEC

IF(PC . EQ 1 AND ['WM) GT 4)GOTO 235

C FOR RX4 RKF4 & GLERKS

IF(SH@ETP EC OJWRITE(7.SO)IMNY TS{T(MM) M) DTS{IO(MN) M),
XDS(TO(MM) MM) YOS(IO(MM) MM) PSIP UAS(IO(MM) MM) UDS
(1@(!!&!'),!!!1,usi!Q(i-),iinivt:S(Imiij),iﬁ),iimiélﬁ)_i-!)_NLHFﬁ
IF(SHORTP EQ IWRITE(T SS)IIMNT TS(I (W) M) DTS(IO(MM) MM)
XDS(IO(MM) M) YDSOIO(MM) M) PSIP UAS(TO(MM) W) DS

(TO(MM) MM} VAS{IO(NE) M) VOS{TIO(MM) WM) RED(TO(MM) MM} NA HFP
IF{TRJEND EQ Q1GDTO 100

GOTO 22%

C FOR PC4-

23%

[FISHORTP EQ CIWBITE(7 . SO)IMNY TS{I(MM) MM) DTS IO(MM) M)
XDS(TIO (MM ) MM YDS{IO(MM) M) FSIP UAS(IO(MM) MM) .
UDS(ID([‘I!.&N\,VAS(I@(“)’).@S(iCHﬁ)Jﬂ!),EEE(XD(_).ﬂ);HA.
HFP  UST V5T

[F{SHORTP EC *IWRITE(T. SS)IMNT TS(I(MM) M) DTS(IO(MM) . MM)
XDS(IO(MM) MM ) YOS(IO(MM) MM PSIP UAS(IO(MM) MM),
L@S(Zéfm).nﬂl.vAsilmﬁl).ﬁH\.VDSII@(ﬂi).iﬂnjEB(Iiﬂiﬂl!ﬂl').ﬂli
HFE UST VST

IF{(TRJEND £ 0)GOTO 100

C EMD OF TRAJECTORY INFO

22%

C WRITE

181

C

WRITE(T7 SO 1 (wMM) TSI (MMi+t MM) DTSUIFIiMM) MM) X V

IF(AT EQ 1:1G070 181

EMO OF TRAJECTORY INFO ONTOD TERMINAL

IF(SHORTP EQ OIWRITE(S SOIIMNY TS{T(MM) M) DTS(IO(MM) MM)
XDS(IO(MM) M) YDS(TO(MM) MM) PSIP UASTIO(MM) MM) .
UDSTTO(MM) MM VAS(IO(MEM) WM) VOS(TO(MM) MM) EED(ID(Q) ) MNA
HF P

IF(SHORTP EO 1)WERITE(E SSIIMNT TS(T(WMM) MM) DTS(IO(MM) MM),
XDS(TO(MM) MM DS{TO( M) MM PSIP UASITO(MM) MM),

UDS(IO(MM) MM VAS(TO(MM) MM vDS{IO(MM) MM) RED(TO(MM) MM) NA.
HF P

UEITE(EACHHSH’).TS!I([-H*iilﬁl).DTS(Iéiil—!\,lﬁ)i:,v

IF{TRJPLA EC CHMGODTO 180

IF(TRJPLA EC 1 AND LAYER GT 1)GOTO 180

C PLOT TRAJECTORIES

234

180

C WRITE

170

C WRITE

199

196

XDSP{IK+ 1) =xMIN

XDSP(IK+2)=(XMAX-XMIN)}/20 O

YOSP(IK+1)=VvHIN

YOSP(IK+2 )= (YMAX-YMIN)/12 O

CALL LINE(XDSP YDSP,IK,1,0.0)

IF(SMASH EQ 1)GOTD 198%

IF{IK .NE.O)GOTO 170

CLOSEST APPROACH INFO.

WRITE(E. GO MLAMBH  xCLAP CLAP 1(MM) FNCALL,YOS(IP1(MM), MM)
WRITE(7 ES)MLAMBH, XCLAP CLAP (WM) FHCALL, YDS(IP1(MM) MM)
G0TO 196

WRITE(G.60 /MLAMBH XCLAP CLAP T1{(WMM) FHCALL,
WRITE(7 65 )MLAMBN  XCLAP CLAP, J(MM) FNCALL.Y
GOTO 196

COLLISION INFO

WRITE(E. BO)XCOLL,YCOLL.LTH, T(MM) FNCALL MLAMBH. VTTL, ACOLLD
U’EITE(T.EE)KCGLLNE@LLELTH.I(lilli)iFHtALL.HLAIQH.VTTL.AEDLLE
1F(GLOBAL EQ.0)GOTOD 197

IF{GER.EOQ 1)GOTO 199

IF(GLOBAL EQ 2)GDTC 198

5P
5P

- <
U”U

1K)
1K)

AA

C CALCULATE ORDER EXTRAPOLATION GLOBAL ERROR.

GEXX=XDS(10(1).1)
GEX=XDS(I10( 1), 1)-XDS(1P1( 2) 2
GEV=YDS(IO(1),1)-¥YDS({IP1(2),2
GEUSUDS(10(1),1)-UDS(IPI(2),
GEV=VDS(10(1),1)-vOS(IP1(2),

GOTO 199

)
)
2)
2}

C CALCULATE STEP EXTRAPOLATION GLOBAL ERROR.

198

GEXX=XDS(IMi(2),2)



ase
487
488
489
490
481
492
493
an4

495
496

497

498
499
800

501

[ W]
LY
ol

TRAJEC

GEX=(xXDS(10(1).1)-xD5{IM1(2).2))/31
GEv=(YyDS(IO(1),.1)-vD5(IM1(2).2))/31.

- GEU={UDSI{IO(1),1)-uDS(IMiI(2).2))}/31.

- GEY=(VDSI{I0(1),1)=-vDS(IM¥(2),2))/31
199 IF{AT EQ O)IWRITE(6,98)GEXX GEX . GEY .G

<3333

.GEV

197 IF(AT EO QIGOTO 480
IF(GRAZE EO O)GOTO 630
IF(SMASH EQ 1)GOTO 610

c

C ITERATE TOWARD THE GRAZING TRAJECTORY

IF(1G EQ . 1)GOTO 600
IF(CLAP/CLAPP GE 1.DO)GOTD €05
IF(DFLOAT(2°1J-3)*(CLAP+CLAPP) LE.2 D-%)KeK+0. 100
(A AR R AR AN R R ERERESEAERERELERESESESNENEEELERESEREEEEEEE LR R R L ELEERND S ]
FIND NEW YO POSITION By USING THE SECANT METHOD TO ESTIMATE
THE LDCATION OF YO AT GRAZING
SLP=(YOT(IG. IJF-YOT(1G-1,1J)}/(CLAP-CLAPP)
YOT(IG+1 . 1J)1=YOT(IG. 1J)-K*CLAP*SLP
GOTO 606 .

C AFTER FIRST MISSING TRAJECTORY, ESTIMATE MNEW YO VIA CLAP.

600 YOT(Y, IJ)=vOI{1J.J)

C ESTIMATE NEW YO VIA CLAF ALONE

C * S s IS A F R e F I T R R A R T A R P A RN R R RN F R SR R EF FF RN R R SRS R A AN E TN EE AR

605 YOT(IG+1, IJ)=YOT(UIG,.14)-0. R500*CLAP
: iiii!i!téijiliiiiiiiiﬂﬁlilt-t-iﬁ:ﬁ;ji-li-i!l!iﬁiﬁiiﬁﬁﬁiiiﬁﬁiﬁiiiii‘
606 YOG=YOTI(IG.1J)

CLAPF=CLAF

KLAPSCLAP

IG=1G+1

YOS 11=Y0T(1G.1J)

GOTO 40%

[a e Ny

THESE ARE COLLIDING TRAJECTORIES. ARE THEY THE GRAZING ONE?
o IF(1G .GT 1)GOTO 620
WRITE(&,80)

C ADJUST FIRST TRAJECTORY TO BE A NEAR MIS5S
YOI(1J.J)=vOI(IJ,.J)+DSIGN(S . D-4 DFLOAT(2*1J=-2))
YOS(1,1)=¥0l(1d.J)

GOTO 405
C WAS LAST TRAJECTORY ALMOST GRAZING?

620 IF(DABS(KLAP) LT 1 BD-5)GOTOD €2%

C [ 22 22 EERRRRNEARE SRR R RSN EN AR AR AR AR R R AR AR R AR RN RN RS R NE 3

€ IS ANGLE OF COLLISION CLOSE TO 90 DEG.7?

E I Y 33222222 2222222322 R 2 R RS R RE R R AT RS R 2R SRR AR R R EA R DR R R R AR R R N R 2
IF(90 DO-DABS(ACOLL)/PI*1 BD2 LE TD)GOTOD &2%

Y 222 R 22 R A R 22 R R R R R R R RS AR AR E N RN R R R R R RS R AR R EN R R N ER S D)
TO=TD+0 100

33 ZE222X23 2222522222 R EZEZ RN R R RREEAE AR R R R B AR RN RN R R RN R R R R RN NDE R

THE ANGLE OF COLLISION ISN'T CLOSE ENOUGH TD 90 DEG.

TRY AGAIN MIDWAY BETWEEN PREVIOUS TwD TRAJECTORIES

(]

[a el elel

™y
L]
L]
L
L
Ll
»
L]
Ll
L]
-
L}
Ll
LJ
*
-
"
L]
»*
]
L
»
L]
L]
*
»
L]
*
L]
™
™
™
™
L}
™
L
»
L]
W
»
™
L
Ll
L]
Ll
»*
*
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YOT(IG,. IJ)=(VYOT(1G,1J)+Y0G)/2.D00
YDS(1,1)1=Y0T(1G,1J)
GOTO 40%
C THIS 1% THE GRAZING TRAJECTORY.
625 YO(1J)=YOT(1G.14)
L(IJ)=LTH
VTOT(IJd,J)=VTTL _
ACOL( Iy, J)=ACOLL
TF(ROTH EQ. 1 AND.IJ ECQ.2)@0TOD 480
RETURN

g

o —



¥

c R
C THESE ARE COLLIDING TRAJECTORIES
527 €30 IF(SMASH EO 1)GOTO €3% !
528 WRITE(& . 95) . )
£39 RETURN .
c .
530 €3% LW{N)=LTH ,
£31 VTIW{Mi=syTTL * \
532 ACW(N)=ACDLL \
533 RETURN
534 EMND
¢ .
c I3 1 A 22222 2R R R 2R R R AR R 22 R 2 AR R 222222 22 R 2 2 R A 2 2 d 2 0 3
¢
1 SUBROUT INE WHAMO(X v . T.5 CLAP x{D, YCA)
[
C WRITTEW BY: M OLESKIW OW: B10623 LAST MODIFIED: 811018
c
C DETERMIME CLOSEST APPROACH BETWEEN DROFLET AND AIRFOIL SFC.
C
2 . DOUBLE PREC]SION DSIGM.DSORT AX AY A1,A2 A3 BX, BY, TST,
LCLAP . CX.CY,.D50.0.R RDS.00(S).C.SLOPE,55.7.TT DFLOAT,
X ,ACD.XN,YN.XO.YO,¥Y,YCA ¥CD.¥51,v52,7Z.0. THETAD,  DARCOS,
.50 .RT(4) ALPHAR PI T1 DCOS.TO,A21 DABS,DMIN{ DMAX1,
XL . XR, XUXR XL X8
c .
3 INTEGER I1ABS ISIGN.TYPE . J,.5.A5.IR(4) LA, I
c .
4 COMMON ALPHAE B[ /wH/AX BX CX AY _BY CY _XO,Y0,TO.T1
/TRANSI/OD . C.TYPE, J/NOSE/XN, YN/XXR/XUXR XLXR
c .
€ IN/OUT XsDROPLET X CDORD e
€ IN/OUT Y=DROPLET v COORD.
C IN/OUT T=TIME AT ABOVE POSITI
€ IN/OUT S#1 . GIVEN x. ¥ & T, FI CLAP
c 2:GIVEN X, FIND T, ¥ & CLAP
¢ 3.-GIVEN Y. FIND T. X & CLAP.
c 4. GIVEN X, FIND T & ¥
c S GIVEN Y. FIND T & X.
c +VE :DROPLET 15 ABOVE NOSE
c -VE DROPLET IS5 BELOW NOSE
C OUT . CLAP=CLOSEST APPROACH BETWEEN DROF & AIRFOIL SFC.
c out xCD=
Cc ourt YCA=X & v CODRDS OF AIRFOIL AT CLOSEST APPROACH.
C
5 RDS=DD(J)/C/2 D&
€ AS=I1ABS(S)
7 IF(AS €0 1)GOTO 200
8 1IF(AS EQ 2.0R AS . EQ 4)GOTD 180
N «
€ FIND COEFFICIENTS FOR Vv EOM.
-] Ai=BY/AY
10 A2=CY/AY
11 AZ=(YO-Y)/AY
12 @oTo 110
C FIND COEFFICIENTS FOR X EON.
13 180  A1=8X/AX
4 A2=CX/AX
L] A= (XO-X)/AX
C FIND TIME T5T
18 110 O=(3 DO*A2-41°41)/9 DO :
17 Re(9 DO*A1*A2-27 DO*A3-2.DO*A1**3)/5%4 DO
18 D=Q**3+R*R
19 A31=A1/3 DO



L] ]
3]
82
%3

S4
1]

56

S8

59
60
61

C FOR A NEGATIVE DISCRIMINANT:
" THETA3=DARCOS(R/DSORT(-0*+*23))/3 .00
$Q=2.DO*DSORT( -0}
RT(1)=0 9900*(T1-T0)
RT(2)=SQ0*DCOS(THETAI ) -A31
RY(I)*SO*DCOS(THETAI+2 DO/3 . DO*PI)-A31
RY(4)=50"DCOS(THETAI+4 DO/ . DO*PI)-A21
DO 31% I=1.4
IR(I)=1]

afs CONT INUE

C SORT FOR LEAST ROOT GREATER THAN TS({T(MM) MM}
LA=a A
CALL VSRTRO(RT LA IR)

I=1

330 IF(IR(I) EQ 1)GOTO 320
Ieled
GOTO 330

320 TST=RT(1+1)

GOTO 340

C FOR A POSITIVE DISCRIMINANT:

310 DSQ=DSORTI(D)

SS=DSIGN( (DABS(R+D50) )=*( 1 0O/ DO).R+05Q)
TT=0SIGN({ (DABS(R-05Q))**(1.00/3 DO}, ,R-D59Q)
TSTeCS+TT-431

340 TeTST+TO
IF(AS.EQ 2 OR . AS EQ 4)GOTD 160

c

C POSITION OF DROF CENTRE AT TIME T
Xos((AX*TST+BY })*TST+CX I *TET+XO
GOTO 200

160 Ye((AY*TST+RY )*TET4CY )*TET+YO

200 1F(AS GE 4)RETURN

C SET S NEGATIVE FOR BELOW NOSE.

IF(Y.LY YNIS=-TABS(S)
c
300 XL=DMAX 1(X XN+1 D-10)
XReDMINI( X+RDS, XUXR XLXR)
CALL SFC(XL.¥51,5,0.22Z)
CALL SFC(¥R.¥5%2.5.0.1I2)
SLOPE=DSORT( (XB-XL}**2+(¥52-Y51)%*2)

C FIND DROPLET x & v CODRDS. OF CLOSEST APPROACH.
YCDev-DSIGN( ( XxBE-XL )*ROS/S5LOPE DFLOAT(S))
XCODMAX Y (XN X-1SIGN( 1 S)*RDS*(Y¥51-Y52)/SLOPE)

C FIND AIRFOIL Y COORD. AT CYDSEST APPROACH.
XCO=DMAX1(XCD XN+1 D=A0)
XCO=OMINT( XCD . XUXR, XLXR)

CALL SFC(XCD.vCA.5,0.Z2)

C CLOSEST APPROACH
CLAP=YCD-YCA
RETURN
END
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APPENDIX H Program tolerances, sdjustments snd options.

Chapter 3 described a sequence of trisls thst were used to estimate the
optimum values of the subset of tolerances snd options which the pProgram requires
as user input ndwmwﬁmmﬂwgﬂofmm:ﬁd;dmm:-
built into the program becsuse they should nof require frequem modificstion The
The

frst section of this appendix describes thess built—in tolersnces and adjustrm

second section is 8 hsting of the compiets set of input parameters in the exact format

requrred by the program for each of the cases mont:omd in Chapters 3 4 and 5

All of the locations where adjustments may be made to tolerances and to
sigorithms m the program hsve been mdicsted by a row of 'ws before and after the

ine of interest The references to program iocstion are by the convention adopted n

the previous chapter. that is by the mternal stastement number of a given subroutine as

isted n Appendix G The mportant adjustment options are outiined below. m

spproximately the same order as they would be encountered durmng a routing execu-

tion of the program Ther present values have been chosen through a process of -
trial and error

1 Finding appropriste vaiues for e and 8 m (2.13) to produce a Joukowsk: arfoil
of desired thickness (see Section 2.2.2.2) Tolersnces for the subroutine ZXGSN
are sot gt COORD{73] and [S0] for 6 A tolerance for ending the S-m

. sigorithm used to find the appropriste vaiue of e 13 set st COORDSI(95] ’

2.  Inverting the system of equstions to give the vorticity density m the Kennsdy and
Marsden technique (see Section 2.2 4} The mverting subroutme LEQT IF tests for
the accuracy of the soltion to Ax = b by changing siements of A after IDGT
decimsi places and determining if the resulting solution is near th- orignal  IDGT
is sot at POT1(54]

3 Finding Cg\dm. values of interpolsted points siong the airfoil surface A
Newton-—Raphson }gomhm is used to iterste to the correct vsiue of Ya
sccording to formulse of Appendix F. The tolersnce for deciding when to ﬂaé
the iterations is found st SFC [43] and (861

4 Determining the grazing trajectories (ﬁe Section 24 4) The secant sigorithm s
used to iterste tO\ the grazing trajectory.  The aigorithm is modified by the
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parameter k n (2.86). which 1s set st TRAJEC[104] (485) ::ud (5051 When a
droplet passas to wittin 10! chord lengths from the ,iifféil surface on two
consecutive trajectories, the rate of convergence 13 accelersted This tolerance
is set st TRAJECI485] The rate of convergence after the first trajectory be-
fore the Secant sigorthm may be employed is set st TRAJECI480] If the previ-
ous trajectory passed within 15x 10 chord lengths of the arfoil surface snd the
pcesent one ends in a colision, thus s confidered 10 be the grazing trajectory.
Tris tolerance s set a} TRAJECI502] On the other hand. if the angle between
the tangent to the trajectory and the normal to the arfoil surface is close enough
to 90°'. this 1s the grazing trajectory This tolerance is set st TRAJECI503] and
504}

Proximty of approach which is defined as a colhsion (see Section 24.3) If the
dropiet surface approsches the srfoil to within 0.1% its radius it 13 deemed to
have collided This tolerance is set st TRAJEC!I340} '
Finding the colision location (see Section 24 3} The Secant aigorithm 15 used to
iterate toward the collision locstion as in Fig 6 until the difference n x between
two iterations 1s less than 10-* (TRAJECI370)

Adjusting the tme step n RKF4 conservatively (see Appendix B) This is done to
reduce the likelihood that the step size chosen will be too large, thersby causing
the estimated trucation error to exceed the tolerance (GLERKIS4.111)
Adjustment of the next time step depending upon the previous and current step
sizas (see Appendix B} This is required to damp the undesirable al;ill.!tia'm in the
step which sre chosen automaticslly This adjustment also occurs in the interval
GLERK5(84.111]

Stepping over difficult ntegrating regions (see Appendix B). Occasionally. the air
velocity will change so rapiudly in 3 short distance that the current time step can—
not be made small enough for all component squations to satisfy the truncation
such situstions occur. the tolerance is bypassed This situstion 1s detected in
GLERKS[121]

The distance between trajectory pairs for caiculating B (see Section 245 1) The



i

13

14

grester the distance between the par of trajectories, the grester s the
computational accuracy However at the same tme the £ value derived
becomes sveraged over a grester miterval. thereby h‘;liﬂq accuracy if the siope of
the 8 curve in that region is changing rapidly The distance between the pars i
set st CE[35] and [44]

Locatmg the first trajectory par withm the grazing trajectory enveiope (see
Section 2452) Experiments have shown that the posiion of the frrst pomt on
the B curve can grastly affect the rapidity wrth which the procedure used 10
determine the B curve converges to a consistent shape These locstions are
calculsted at CE[38.39] -

Adjusting the varable fitter length aigorithm (see Section 24.54) The constants
used 0 these formulas sre adjustabie to grve the “best” agresmen between the
sveraged and smoothed B.curves The filter length 1s caiculsted st CE[355] and
[358]

The position of the new nose after sccretion (see Section 247) The Goiden
Section search aigorithm ZXGSN needs to know when to stop searching for the
new nose posrtion  This criterion 15 located st ICYNGE?H

Findng CEE's on the new arfoil surface (see Section 24.9) The parameters for
determining which SSE's also become CEE's sre located st ICINGI430] [434]
[441), (453.455] [464] 1488 490] and [499]
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APPENDIX |. Sampls program output

The output which follows is & portion of the output from Case 32 1t is dis-
played hers because the trajectory dsta for this Case were used m determirng the
correct values of the scaling parameters for Case 61  included sre sampie pages of
output prior to the grazing trajectory, a3 well as for a trajectory par well within the
grazng trajectory snvelope Also dispiayed are pages giving the layer thickness and
collismon efficiency values. the total accreted area. and the coordmstes of the final
sirfoil surface.

On the first page. STEP refers to the time step number, DTS to s suze, and
TME to the sum of DTS XDS and YDS give the droplet posrtion, PS| the
streamfunction vaiue, and UAS, UDS. VAS VDS the x and y components of the ar and
droplet velociies RED odisplays the oroplet Reynolds number., ACCN/MOD the
acceleration modulus. and HIST/RHS the proportion of the total accelerstion
contributed by the history term
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