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Abstract

Since the COVID-19 outbreak in Wuhan City in December 2019, numerous

model predictions on the COVID-19 epidemics in Wuhan have been reported.

These model predictions have shown a wide range of variations. In our first

study, we demonstrate that nonidentifiability in model calibrations using the

confirmed case data is the main reason for such wide variations. Our modeling

study indicates that more independent datasets, better inference methods, and

fitting algorithms can significantly reduce the nonidentifiable impact. Further

study is carried out for modeling the first COVID-19 wave in Alberta. Con-

firmed case data and testing data, based on the official reports from Alberta

Health, are fitted to a mathematical model estimating the total number of the

COVID-19 infections. A sensitivity analysis using PRCC is conducted to show

that decreasing the initial transmission rate and increasing the probability of

health-seeking for an individual are the most effective ways to help control the

epidemic.
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Chapter 1

Introduction

1.1 Mathematical modeling of COVID-19 epi-

demic and its challenges

In December 2019, a novel acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), later named COVID-19, caused an outbreak in the city of Wuhan,

China, has further spread worldwide, resulting in the COVID-19 global pan-

demic. By late October 2022, there have been over 624 million confirmed

cases and over 6.5 million deaths reported globally [2], making it the most se-

vere pandemic in recent history. In order to help public health agencies make

efficient decisions, it is essential for modelers to estimate the severity of the

epidemic specifically on the number of reported cases, number of hidden in-

fections, the occurrence of peak time of cases, total duration for certain wave,

and factors that can mitigate the COVID-19 transmission.

There have been several model projections for the COVID-19 epidemic
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in Wuhan from modeling groups around the world at the early stage of the

pandemic. The modeling results have shown a wide range of variations [3] that

peak time is estimated with a big difference: from mid-February to late March

2020, and the total number of infections ranges from 50,000 to millions. Such

wide variations in model estimations and predictions represented a significant

challenge for mathematical models of epidemics when confronted by real-world

epidemics.

One of the reasons for these varied projections by mathematical models is

that there was too little information available to modelers at the beginning

of the outbreak. In fact, the only reliable data that could be used for model

calibration was the reported case data. Another important issue lies in the

correct interpretation of public health data. In particular, confirmed cases

data represents the number of infected people with symptoms and were con-

firmed positive for COVID-19 by PCR tests. The daily confirmed cases data

is only a fraction of all infected people on a particular day, and the fraction

is often unknown due to the large number of people who were asymptomatic

on a particular day when cases were recorded. In infectious disease models,

the infection compartment I includes all people who are infected, both symp-

tomatic and asymptomatic, get tested or not. The daily case data should

not be matched to the I(t) in the modeling fitting. We will see in Chapter 2

that this leads to the nonidentifiability in model calibration, where infinitely

many choices for parameter values can give the best fit between case data and

model output, but different choices of best-fit parameter values give signifi-

cantly different projections of the total number of infected. A metaphor of an

iceberg best represents the difference between case data and total infections
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[4]. Public health surveillance and testing are only able to observe the tip of

the iceberg, which is the confirmed case data, while the rest of the iceberg un-

derneath the water represents the infected people in the communities unknown

to the public, the so-called “hidden infection”. One of the mean objectives of

mathematical modeling of epidemics is to predict and estimate the number of

hidden infections using the directly observable case data. The nonidentifia-

bility issue in model calibration is one of the serious challenges for accurate

model predictions and estimations.

Case-infection ratio measures the proportion of total cases among total in-

fections. Different viral infections that spread through air droplets and close

contacts can have very different case-infection ratios. For the 2003 SARS epi-

demic, the ratio was in the range of 1/5 to 1/2 [5, 6, 7, 8], mainly because

individuals infected by SARS-Cov-I virus became infectious after symptoms

appear, making identification of infected individuals much more efficient, com-

pared to SARS-Cov-II, for which infected individuals can be infectious before

symptoms appear. In contrast, for seasonal influenza in 2019 to 2020, the ratio

can be as small as 1/100, based on the estimates from US CDC [9]. Given

the uncertainty of COVID-19, a wide range of case-infection ratios and trans-

mission rates should be considered during a model fitting in order to allow

the model to find its most likely occurring scenario. The nonidentifiability in

modeling these epidemics is represented as a linkage between the case-infection

ratio parameter and the transmission coefficient parameter.

A suitable model framework is also crucial for reliable model projections

and estimations: complex models incorporate more biological mechanisms with

a larger number of model parameters compared to simpler models. When the
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data for model calibration is limited, more complex models tend to introduce

more uncertainty in parameter estimation by model fitting to data, and less

reliable model predictions. Model selection using information criteria including

the Akaike information criteria is necessary to determine the most suitable

model framework for the given dataset.

1.2 Importance of measuring the proportion

of infection

Canada’s first case of COVID-19 was reported in Toronto, Ontario on January

25, 2020, and by the end of October 2022, the total confirmed COVID-19 cases

reached 4.36 million and deaths over 46,700. True numbers of infected and

death are far greater due to the significant proportion of the infections having

been asymptomatic [10]. Accurate estimation of the proportion of the popu-

lation infected by COVID-19 is important for informing the true scale of the

pandemic and allows the estimation of the infection fatality ratio (IFR) pro-

vide a more accurate measure of the mortality burden and the severity of the

pandemic than the case fatality ratio (CFR). The infection-induced immunity,

together with the vaccine-induced immunity, shapes the overall population

immunity to COVID-19, and accurate estimation of the infected proportion

better informs the level of immunity in the population. Estimation of the in-

fected proportion also informs the case-infection ratio: the ratio of cumulative

confirmed cases and cumulative unidentified infections during a period, which

is a measure of the efficiency of the public health surveillance system during
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the COVID-19 pandemic.

Many COVID-19 seroprevalence studies have been carried out around the

world to inform estimation of the proportion of the population infected by

COVID-19. In Canada, the Canadian COVID-19 Immunity Task Force re-

ported that the national COVID-19 seroprevalence data suggested that over

70% of Canadians have been infected by COVID-19 from April 13, 2020, to

August 15, 2022 [11]. The estimated total number of infections in Canada was

9 times the confirmed COVID-19 cases during the same period. A seropreva-

lence study in British Columbia by the BC Centre for Disease Control and the

University of British Columbia estimated that over 60% of British Columbians

have been infected by COVID-19 from March 2020 to August 2022, and the

estimated total infections were 14 times the confirmed cases [12]. The propor-

tion of COVID-19 infections has also been estimated using population surveys.

Using probabilistic models and data on confirmed COVID-19 cases, as well as

data on population health-seeking behaviors, US Center for Disease Control

estimated that 146.6 million people in the US have been infected by COVID-19

(44% of the US population) from February 2020 to September 2021, which is

4 times the number of confirmed cases [13].

Mathematical modeling has been extensively used during the COVID-19

pandemic to project the spatial and temporal trend of the transmission and

spread of the infection. Earlier model projections of the infected proportion

have been significantly high, often in the 40 - 60% range during the first

COVID-19 wave, under the assumption that no social distancing measures

were to be implemented. In the study of exploring the spread of COVID-

19 within different communities, the use of constant transmission rate and
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lack of information on how well cases are diagnosed do not take public health

policy effects into consideration. That gives a reason to the drastically high

estimation of the proportion of infected from COVID-19 [28]. COVID-19 data

from Sweden during the Spring of 2020 shows that, under mild social distancing

measures, the seroprevalence of COVID-19 in the country is no greater than

10% [29]. A main reason for the apparent over-projection by mathematical

models was a lack of reliable data during the early stage of the pandemic. This

leads to an important question for mathematical modelers of COVID-19: after

almost three years of the pandemic, with all the medical knowledge we have

gained of the SARS-Cov-2 virus and its variants, information on the public

health measures that were implemented, and the epidemiological and public

health data on the pandemic that are available, can we use mathematical

models to retrospectively estimate the proportion of a population that were

infected during a COVID-19 wave? and can the estimations be validated using

the available seroprevalence data?

1.3 Objectives

In the first part of our study, we focused on the outbreak in Wuhan after

the quarantine and lockdown (January 23, 2020) with given confirmed case

dataset. We determined that the SIR model is a better choice than the SEIR

model based on model selection criteria. To illustrate the linkage between the

case infection ratio (or diagnosis rate) ρ and transmission rate β, the presence

of nonidentifiability was shown when only the confirmed case data is used for

model calibration.
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The second part of our study aimed to give an affirmative answer to the

question brought up at the end of Section (1.2), by demonstrating how simple

mathematical models of COVID-19 of SIR type can be used to produce estima-

tions of the proportion of infected population during the first COVID-19 wave

in the Province of Alberta, Canada, during March-May of 2020. We collected

and analyzed both published and confidential data on COVID-19 infection

from several Alberta Health reports. Daily new COVID-19 case reports for

the Province of Alberta from Alberta Health during the period from March

5 - June 1, 2020, were included in our study. We also used COVID-19 daily

testing data in Alberta during the same period including calls to Healthline

for PCR tests and COVID-19 online self-assessment forms. We tracked the

changes in COVID-19 public health measures including restrictions on social

gatherings, school closures, quarantine and isolation, policies on testing, and

contact tracing so as to incorporate those public measure information into our

model. The accuracy of our estimation is validated by the seroprevalence data

for the Alberta population in June 2020 from the Alberta Public Health Preci-

sion Lab[14]. Our modeling approach was also adapted to provide dependable

long-term model projections for subsequent COVID-19 waves. For long-term

modeling projections on the Delta wave in Alberta using our modeling ap-

proach, we refer the reader to a report to Alberta Health [15].
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Chapter 2

Mathematical theory for

epidemics

2.1 Formulation of mathematical model for epi-

demics

2.1.1 Epidemic model for the initial Wuhan outbreak

of COVID-19

A dynamic model was developed to quantify the COVID-19 dynamics of infec-

tions. We considered both SIR and SEIR frameworks to model the COVID-19

epidemic in Wuhan and decided which one outperformed the other based on

the applied model selection criteria.

In SIR and SEIR models, compartment S denotes all susceptible popu-

lations in Wuhan, compartment I denotes the infectious population, and R

denotes the confirmed cases. In the SEIR model, a latent compartment E is
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added to denote the individuals who are infected but not infectious. The la-

tency of COVID-19 infection is biologically realistic because of an incubation

period of about 14 days in which newly infected individuals may not be infec-

tious while the virus is still incubating in the body [4]. The transfer diagrams

for both models are shown in Figures (2.1) and (2.2). The epidemiological

meanings of all model parameters are given in Tables (2.1) and (2.2). Since

we use the newly confirmed case data for model calibration, which is matched

to the ρI(t) term in both models, the death term in the R compartment has no

effect on our model fitting [4]. Each model is described by the set of nonlinear

autonomous ordinary differential equations (ODEs) below:

SIR

S ′ = −βIS

I ′ = βIS − ρI − γI

R′ = ρI − dR

(2.1)

SEIR

S ′ = −βIS

E ′ = βIS − ϵE

I ′ = ϵE − ρI − γI

R′ = ρI − dR

(2.2)

9



Figure 2.1: An SIR model Figure 2.2: An SEIR model

Parameter Epidemiological Meaning

β Transmission rate

ρ Diagnosis rate

γ Recovery rate

I0 Initial infections

τ σ2 = 1/τ is the variance of data noise

Table 2.1: Parameter description table for SIR model

Parameter Epidemiological Meaning

β Transmission rate

ρ Diagnosis rate

γ Recovery rate

ϵ Transfer rate

E0 Initial latent size

I0 Initial infections

τ σ2 = 1/τ is the variance of data noise

Table 2.2: Parameter description table for SEIR model

10



2.1.2 Epidemic model for the first wave of COVID-19

in Alberta

We use a modified version of SIR, which is the SICRmodel with time-dependent

parameters to model the transmission dynamics of COVID-19 within the pop-

ulation of the Province of Alberta. The model is described by the set of

nonlinear autonomous ordinary differential equations in (2.4). The model

schematic is shown in Figure (2.3), and the epidemiological meanings of all

model parameters are given in Table (4.3). The compartment S contains all

individuals who are susceptible to COVID-19, which essentially includes the

entire Alberta population at the beginning of the COVID-19 pandemic. Com-

partment C contains all individuals who are confirmed positive for COVID-19

infection by a PCR test, and compartment I contains all individuals who are

infected with COVID-19 but have not confirmed the infection by a PCR test.

The compartment R contains individuals who have recovered from COVID-19

infection and are protected by immunity against reinfection by COVID-19.

Individuals in compartment I consist of what is called “hidden infection”,

which includes many who are asymptomatically infected and others who may

have symptoms but have not been tested. These individuals help to spread

transmissions in the community. In contrast, individuals in compartment C

have been confirmed of being positive for COVID-19, and by public health

restrictions, are under strict isolation orders for 10-14 days. Because of the

lack of contact with the outside world, we assume that they are not infective.

Recovery from COVID-19 can take two different routes: an individual,

especially those who are asymptomatically infected, recovers from the infection
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without being tested, and this is denoted by γ1I(t) in the model, and 1/γ1 is

the mean infectious period; or an individual is tested positive and isolated in

compartment C and recovers during isolation. Recovery from compartment C

is denoted by γ2C. Both of these routes are included in the model as shown

in Figure (2.3).

Public health measures are implemented in the transmission term β(t)I(t)S(t)

and the testing term ρ(t)I(t). Social distancing measures will decrease the

transmission coefficient β(t) and COVID-19 testing levels and capacity will

influence the parameter ρ(t). In particular, ρ(t)I(t) is the daily number of

positive COVID-19 tests, which is part of the public health data we use for

model calibration, and the parameter ρ(t) is the case-infection ratio: the ratio

between daily new case reported number and number of people living with

COVID-19 infection in the community on the day. It is an indicator for the

efficiency of public health surveillance and answers the question: for each

COVID-19 case identified, how many hidden infections are there in the com-

munity.

Many factors can influence the values of transmission coefficient β(t), in-

cluding the average number of contacts among individuals in the populations,

and the average probability of transmission for each contact, which may de-

pend on both the infectivity of the infected individual and the susceptibility

of the susceptible individual during each contact. The value of β(t) is av-

eraged over individual variations in the population. The time dependence of

β(t) is informed by the changes in COVID-19-related public health restrictions

that directly reduces transmission. Piece-wise linear functions are used to in-

corporate different time points of changes in policy and parameters in these

12



functions are estimated through model fitting to data.

Transmission rate β(t) remained the same from March 9 to March 15, 2020.

In the following three days, the province of Alberta declared further public

health policies to use ”all powers necessary” to ”keep Albertans safe” [16].

This included but was not limited to all closure for all day-cares, suspending

classes for all K-12 schools, remote teaching for post-secondary institutions,

mandatory masking requirements, and restriction occupy in fitness facilities,

restaurants and etc. In this period, the transmission rate decreased dramat-

ically and stayed low. All mandatory public health restrictions were lifted

around the beginning of May as the first wave subsided and COVID-19 hospi-

talizations continued to decline, the transmission rate increased by a certain

amount at the end stage of the first wave in our model.

COVID-19 testing, contact tracing, and isolation measures are important

parts of the overall public-health control measures against COVID-19. In our

model, COVID-19 testing moves an infected individual from compartment I

to compartment C for identified cases, after a positive PCR test. This process

is modeled by fρ(t)I(t). Here f is the probability an infected individual will

seek a PCR test, and the time-dependent ρ(t) is defined by:

ρ(t) = Newly reported positive COVID-19 cases at time t
Total number of Healthline calls and completed online self-assessment forms at time t

. (2.3)

Then the total number of new cases at time t is given by fρ(t)I(t). The

function fρ(t) captures the changes in health-seeking behaviors in the popu-

lation during the course of the epidemic wave of COVID-19.

Since the first COVID-19 wave in Alberta lasted only three months, we

13



assume that the natural birth (24,898) and non-COVID-19 death (13,949), net

inter-provincial migrations (-7,390) and net international migrations (12,093)

are negligible compared to the total population (4.42 million). COVID-19-

related deaths are mainly among the identified cases and are included in the

dC term. Since the daily COVID-19 death is comparably small, dC is set to

be zero in our model.

The SICR model is much simpler than most mathematical models used for

COVID-19 in the literature, such as SEIR or SEIAR models. Models that are

more complex have a larger number of parameters than SICR that need to be

estimated by model fitting to data. Since the public health data used for model

calibration is the same, a larger number of model parameters to be estimated

gives rise to a higher degree of nonidentifiability in model calibration, which

leads to a higher degree of uncertainty in model estimations and predictions.

SICR

S ′ = −β(t)IS

I ′ = β(t)IS − fρ(t)I − γ1I

C ′ = fρ(t)I − γ2C − dC

R′ = γ1I + γ2C

(2.4)
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Figure 2.3: An SICR model
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2.2 Mathematical theory for epidemics

The nonlinear autonomous ODE systems (2.1), (2.2), and (2.4) can be written

in vectorized form

x′ = f(x), (2.5)

where x = ⟨x1, x2, ..., xk⟩ and f = ⟨f1(x), f2(x), ..., fk(x)⟩, with the vector

of initial conditions x0 = ⟨x10, x20, ...xk0⟩. Here x denotes the vector of state

variables and f denotes the corresponding vector fields. We would like to solve

the initial value problem as follows:

Let D be an open set in Rn. Assume that f ∈ C (D → Rn). Find a solution

of the ODE model in Rn which subject to the initial condition x0,

x′ = f(x)

x(t0) = x0.

(2.6)

2.2.1 Existence and uniqueness

Definition 2.1 (Lipschitz Condition): Let D be an open subset of Rn. A

function f ∈ C (D → Rn) is said to satisfy Lipschitz condition with respect to

x if there exists (Lipschitz) constant K > 0, such that

|f (t,x1)− f (t,x2)| ≤ K |x1 − x2|

for all (t,x1), (t,x2) ∈ D, where | · | is any norm in Rn.
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Theorem 2.1 (Picard Local Existence Theorem and Uniqueness under Lips-

chitz) Suppose

(1) f ∈ C (D → Rn),

(2) f satisfies Lipschitz condition in D with respect to x,

Then there exists α > 0 such that the IVP has a unique solution for t ∈

[t0 − α, t0 + α].

Theorem 2.2 (Peano existence theorem): Suppose that f ∈ C (D → Rn) and

f satisfies Lipschitz condition in D with respect to x. Then for each point

x0 ∈ D, there exists a maximal interval (ω−, ω+) on which the initial value

problem (2.6) has a unique solution, ϕ(t).

f = ⟨f1(x), f2(x), ..., fk(x)⟩ in the ODE models above are continuous,

differentiable functions for x ∈ Rn, therefore f satisfies Lipschitz condition

over Rn.

By Theorem (2.1), there exists an α > 0 such that the initial value prob-

lem (2.6) has a unique solution ϕ(t) on the interval t ∈ [t0 − α, t0 + α]. By

Theorem (2.2), a solution ϕ(t) can be extended to its maximal interval of ex-

istence (ω−, ω+). When D is compact, there exists a solution for t ∈ (−∞,∞).

Definition 2.2 (Orbits of solutions) The orbit of a solution x(t,x0) of the

initial value problem (2.6) is defined as:

γ(x0) = {x(t,x0) : t ∈ (ω−, ω+)}. (2.7)
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Definition 2.3 (Positive invariance) A subset K ∈ Rn is positively invariant

if all solutions starting in K remain in K, i.e. x0 ∈ K =⇒ x(t,x0) ∈ K, t ≥

0.

Definition 2.4 (Limit sets)

(1) The ω-limit set of a solution x(t,x0) is ω(x0) = {x | there exists tn → ∞

such that x(tn,x0) → x}.

(2) The α-limit set of a solution x(t,x0) is α(x0) = {x | there exists tn → −∞

such that x(tn,x0) → x}.

The ODE Model (2.1) is well-posed since the non-negative cone of R3,

R3
+ = {(S, I, R) ∈ R3|S ≥ 0, I ≥ 0, R ≥ 0}

is positively invariant with respect to (2.1).

To verify the positive invariance of R3
+, we consider the direction of the

vector field ⟨−βIS, βIS − fρI − γI, ρI − dR⟩ on the coordinate planes.

(1) On the SR-plane: I = 0 on this plane, and

dI

dt

∣∣∣∣
I=0

= 0,

This shows that the vector field on the SR-plane is tangent to the SR-plane.

This tangency also implies that the SR-plane itself is invariant.

(2) On the IR-plane: S = 0 on this plane, and

dS

dt

∣∣∣∣
S=0

= 0,
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Therefore, the IR-plane is also invariant. No solutions in the interior of R3
+

can escape through the IR-plane.

(3) On the SI-plane: R = 0 on this plane, and

dR

dt

∣∣∣∣
R=0

= γI ≥ 0,

Therefore, the vector field on the SI-plane points to the interior of R3. No

solutions can escape the interior through the SI-plane.

Eventually, all solutions with nonnegative initial conditions stay in R3
+ for

t ≥ 0.

2.2.2 Equilibrium, stability and global phase portrait

To simplify our analysis, we can ignore the R equation in system (2.1) since

the first two equations do not contain R. Therefore consider the following

equivalent system:

S ′ = −βIS

I ′ = βIS − ρI − γI

(2.8)

in a 2-dimensional feasible region

G = {(S, I) ∈ R2
+|S ≥ 0, I ≥ 0}. (2.9)
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Dividing the two equations from (2.8), we obtain

dI

dS
= −1 +

ρ+ γ

βS
= −1 +

S̄

S
, (2.10)

where S̄ = ρ+γ
β

is the threshold number for S0. We also call it the critical

community size to sustain the epidemic. Integrating (2.10), we obtain the first

integral of system (2.8)

ϕ(S, I) = I + S − S̄ log S = C, (2.11)

and we have

d

dt
ϕ(S(t), I(t)) = I ′(t) + S ′(t)− S̄

S ′(t)

S(t)
= −(γ + ρ)I(t) + S̄βI(t) = 0 (2.12)

for all t, where C is an integration constant and can be determined from S0

and I0. In this case, the function ϕ(S, I) remains a constant along the solution

(S(t), I(t)) and we are able to present the trajectories of (S(t), I(t)) of system

(2.8) by a family of level curves ϕ(S, I) = C for different values of C. The

global phase portrait is given by these level curves of ϕ(S, I) and is depicted

in Figure (2.4).
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Figure 2.4: Family of epidemic curves

Equilibrium and stability.

The equilibria of the system (2.8) are given by the solutions of S ′ = I ′ = 0.

We denote the set of all equilibria as below,

S+ = {(S, I) | S ≥ 0, I = 0}.

For any equilibrium P = (S0, 0) ∈ S+, we consider the linearized system of

(2.8) at P given by:

x′ = J(P )x, (2.13)

where x = (S, I) denotes all the model compartments, and J(P ) is the Jaco-
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bian matrix of system (2.8) evaluated at P , which can be computed as:

J(P ) =

0 −βS0

0 βS0 − (ρ+ γ)

 . (2.14)

Because of the upper triangularity of J(P ), its eigenvalues are λ1 = 0 and

λ2 = βS0 − (ρ + γ). For eigenvalue λ1 = 0, the corresponding eigenspace is

S+, which is the set of all equilibria contained in system (2.13). Since S+ is

independent of time t, the local stability of P is determined solely on the sign

of the other eigenvalue λ2. For λ2 = βS0 − (ρ + γ), when S0 < S̄, we have

λ2 < 0, which indicates P is attracting in the direction transversal to S+.

When S0 > S̄, we have λ2 > 0, and P is repelling in the direction transversal

to S+.

Additionally, in Figure (2.4), for each initial point x0 = (S0, I0), each phase

line intersects the set of equilibria S+ at two points, denoted as P0 and P∞.

This implies the corresponding solution x(t,x0) satisfies:

lim
t→−∞

x(t,x0) = P0, lim
t→∞

x(t,x0) = P∞.

The ω-limit set is the single equilibrium P∞ on the left of the S̄, and α-limit

set is the single equilibrium P0 on the right of the S̄. The solution x(t,x0) is

a heteroclinic orbit connecting the two equilibria P0 and P∞.
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Interpretation of mathematical results.

Critical community size S̄ = ρ+γ
β

defined in Section (2.2.2) is a crucial thresh-

old value during an epidemic. If the initial population at the beginning of the

epidemic is smaller than this value, then no matter how large the initial in-

fected population size is, I(t) will monotonically decrease as time goes. Then

the epidemic will eventually diminish and no new outbreaks occur. When the

initial population at the beginning of the epidemic equals this critical commu-

nity size S̄, the maximum value of Imax of I is achieved. This peak number of

infections and its corresponding peak time are the two model outcomes that

public health agencies are mostly interested in. When the initial population

at the beginning of the epidemic is larger than this critical value S̄, enough

susceptibles are there to start the epidemic: I(t) initially increases while S(t)

decreases until S = S̄, yields the maximal I(t); then I(t) decreases to 0 while

S(t) decreases below S̄. This gives the rise-peak-decline cycle of an epidemic

[26].

One great obstacle to accurate model estimation is the final-size challenge.

In the epidemic modeling literature, the final size of an epidemic is the number

of susceptible individuals who are not infected at the end of the epidemic. In

the context of the epidemic curves shown in Figure (2.4), this is given by P∞,

the end value of the susceptible population. In the public health interest of

estimating the scale of the epidemic, the final size can be more appropriately

defined as the total number or proportion of people who are infected. In the

context of Model (2.8), this is given by P0 − P∞ in numbers, or 1− P∞/P0 in

proportion.

In addition, with the same initial population of susceptible, a higher num-
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ber of initial infections will lead to a severer epidemic, and a larger proportion

of infected. This gives a solid evidence for public health authorities to imple-

ment strict shutdowns in the airports and ports to avoid the increase in initial

infections at the beginning of the epidemic.
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Chapter 3

Model fitting and sensitivity

analysis

For the Wuhan model, the data used for both Models (2.1) and (2.2) is the

newly confirmed case data in Wuhan city from the official reports during Jan-

uary 21 - February 4, 2020 [17]. The distribution of the count data was ap-

proximately normal and the probability model for the observed count data in

our study was assumed to be a normal distribution with mean given by ρI

and variance given by 1/τ [4]. For the SIR model: the transmission rate β,

diagnosis rate ρ, the initial infected population I0 on January 21, 2020 (t = 0),

and the variance of data q = 1/τ cannot be estimated directly from the data.

These four parameters were assessed by fitting the model prediction to the

observed case data. For the SEIR model, two extra parameters need to be

estimated from the data: transfer rate ϵ from E to I, and the initial latent

population E0 on January 21, 2020.

For the Alberta model, the datasets used for Model (2.4) are the daily

25



confirmed case data, daily testing data, and daily death data in Alberta from

the Alberta Health reports during March 5 – June 1, 2020. Since the in-

creasing testing number indicates the increasing confirmed case number, the

distribution of the testing data was assumed to be normal as well. For the

SICR model, time-dependent transmission rate β(t), and time-dependent di-

agnosis rate ρ(t) need to be estimated from the data. Figures (3.1) and (3.2)

show the constructed piecewise linear function β(t) and ρ(t) with labeled sub-

parameters. In order to precisely estimate the cumulative infection-fatality

ratio, we assumed daily death data follow the Poisson distribution with dif-

ferent mean values each day. A Gaussian mixture model is introduced to fit

the actual data of 7-day-average daily death, then a 3-Gaussian mixed curve

is chosen as the desired mean values for death numbers each day. In this way,

a reasonable estimation of the cumulative numbers of reported death can be

generated for each sample in the model, which in turn can be taken to compute

the cumulative infection-fatality ratio.
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3.1 Likelihood functions and Bayesian frame-

work in ODE models

3.1.1 Mathematical settings

Consider the Model (2.5) stated previously:

x′ = f(x),

where x = (x1, ..., xk) denotes the vector of state variables, and f(x) =

(f1(x), ...fk(x)) denotes the vector fields. We let θ ∈ Rs be the vector of all

model parameters, including initial conditions x0 = (x01, ...x0k). We assume

that there exists a unique solution x = x(θ, t) for each given θ.

Data such as newly confirmed cases are linear or nonlinear combinations

of the solutions x(θ, t) in the form:

y = y(x(θ, t), t).

If the dataset is collected at N time points t1, t2, · · · , tN , we will fit the model

outputs

yi = y (x (θ, ti) , ti) , i = 1, 2, · · · , N,

to the time series dataset

D = {D1, D2, · · · , DN} .
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Likelihood function. Likelihood function is the joint probability of the ob-

served data viewed as a function of the parameters of the chosen probability

model. In order to account for noise in the data, we let fi (Di) with mean yi

and variance σ2
i = 1/τi, i = 1, 2, · · · , N denote the probability of Di at time

ti. We will consider the normal distribution in our study. Now consider the

likelihood function [4]:

L(θ|D) = CP (D | θ) = Cf1 (D1) f2 (D2) · · · fN (DN) ,

where C is a constant independent of θ used to simplify the likelihood function

[18].

Bayesian framework. Given the observed data D with unknown parameters

θ, the probability model is expressed as P (D|θ). Parameter θ is randomly

distributed following the prior distribution P (θ). Then statistical inference

for θ can be made based on the posterior distribution P (θ|D). From Bayes

Theorem, we obtain:

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

∝ L(θ|D)P (θ) = π(θ|D),

where L(θ|D) is the likelihood function. By the above formula, the unnor-

malized posterior distribution π(θ|D) is given as long as we have pre-specified

likelihood function L(θ|D) and prior distribution P (θ). In infectious disease

modeling, epidemiology information often offers specific ranges for epi-related

parameters to be estimated. The utilization of prior information about those

unknown parameters is quite useful in mathematical modeling for statistical
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inference and model fitting.

3.1.2 Gaussian probability model on data and its like-

lihood function

It is common to use a negative binomial probability model for observed count

data. When the mean of a negative binomial distribution is large, it approxi-

mates a normal distribution. Since the newly confirmed cases are approaching

the large value quickly, the distribution of the count data will be approxi-

mately normal and the probability for the observed count data in our study

is assumed to be a normal distribution. Also, since the case infection ratio

ρ(t) in our second study is taking decimal values; it is appropriate to use the

normal distribution for this as well.

A method is shown to fit an ODE model with Gaussian probability data.

This method will be applied to both studies when fitting daily new confirmed

case data and to the second study when fitting daily case infection ratio.

Let Y be a random variable following the Gaussian distribution with mean

µ and variance σ2 = 1
τ
> 0, then the corresponding continuous probability

density function is given by :

f(y) =
1√
2πσ2

e−
1

2σ2 (y−µ)2 . (3.1)

Suppose there are m independent time series datasets all following the

Gaussian distribution. The jth time series dataset is given byDj = (dj1, ...d
j
n) at

times (tj1, ...t
j
n), then the corresponding continuous probability density function

of observing dji is given by [19]:
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f(dji ) =
1√
2πσ2

j

e
− 1

2σ2
j

(dji−µj
i )

2

. (3.2)

As we are fitting model solution to the jth time series dataset,

µj
i = xj(θ, t

j
i ) = (x1(θ, t

j
i ), ...xk(θ, t

j
i )),

where θ is the vector of parameters to estimate.

Then the likelihood function for the jth time series dataset is given by:

L(θ|Dj) =
n∏

i=1

1√
2πσj

e
−
(dji−xj((θ,tji )))

2

2σ2
j . (3.3)

If m independent datasets with the same vector of parameters θ, then the

overall likelihood L(θ|D1, ..., Dm) of the combined m independent datasets is

obtained by multiplying the m likelihood functions L(θ|D1),..., and L(θ|Dm)

together, given:

L
(
θ | D1, . . . , Dm

)
= L

(
θ | D1

)
· . . . · L (θ | Dm) . (3.4)

For all m independent datasets with the same vector of parameters θ and

for each jth dataset, we have model solution µj = xj(θ, t) to fit to the jth

dataset, then the combined likelihood L (θ | D1, . . . , Dm) is given by the fol-

lowing equation:

L
(
θ | D1, . . . , Dm

)
=

m∏
j=1

nj∏
i=1

(
1√
2π

)m
1

σj

e
−
(dji−xj(θ,tji))

2

2σ2
j . (3.5)

Fittings for Models (2.1), (2.2), and (2.4) are done through the affine in-
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variant ensembled Markov chain Monte Carlo (MCMC) algorithm by sampling

from the natural log of the unnormalized posterior distribution, π(θ|D), where

π(θ|D) = L(θ|D)P (θ), (3.6)

and θ ∈ Rs is a vector of parameters, D = (D1, ..., Dm) is the m independent

time series datasets, L(θ|D) is the likelihood function, and P (θ) = P(θ1) ×

...× P (θs) is the prior distribution for all parameters.

3.2 Affine invariant ensemble Markov chain

Monte Carlo algorithm

MCMC algorithms are used widely for approximating the target posterior dis-

tribution given likelihood function L(θ|D) and prior distribution P (θ). They

usually start with some initial guess θ0 from the parameter space, then the

algorithm iteratively generates a new sample θt from the posterior distribu-

tion based on the previous sample θt−1. The sample chain follows the Markov

property as each sample depends only on its previous sample. The Markov

process continues until the sample chain has arrived at its stationary distribu-

tion, which is our targeted posterior distribution π(θ|D). We then can obtain

a sample of the desired posterior distribution by recording states from the

chain. The more steps that are included, the more closely the distribution

of the sample matches the actual desired distribution, and the more accurate

our model estimation will be through the sample fitting. Commonly used

MCMC algorithms include the Metropolis-Hastings algorithm and Random-
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Walk Metropolis-Hastings algorithms [20]. Although those algorithms have

achieved great success, they still need some improvements in order to handle

the nonidentifiability issue, which keeps appearing when we have a complicated

model with limited data resources.

In our studies, we use an improved MCMC algorithm, the affine invariant

ensemble Markov chain Monte Carlo algorithm, which outperforms Metropolis-

Hastings and other MCMC algorithms, especially in the presence of noniden-

tifiability. Essentially, the nonidentifiability issue arises whenever there exists

a surface in parameter space such that all parameter choices on this surface

yield the maximum likelihood value. This likelihood surface will be highly

anisotropic and cause the traditional MCMC sampler slow or even fail to

converge. Affine invariant MCMC sampler starts by initializing k particles

simultaneously, then each particle will be updated iteratively based on the

current positions of all the other particles. It turns out that by stretch move

rule [21], each of the k particles will have the same stationary distribution that

is identical to π(θ|D). In addition, the resulting sample paths {Xi(θ, t)}ki=1

satisfies the affine invariant property:

Xi(Aθ + b, t) = AXi(θ, t) + b, θ ∼ π(θ|D), i = 1, 2, · · · , k, (3.7)

where A ∈ Rs×s, b ∈ Rs, and ϕ := A · +b is an affine transformation that

maps θ to Aθ+ b. Suppose the posterior distribution after the transformation

is highly skewed given by π(ϕ(θ)|D), then by the affine invariant property (3.7),

the corresponding sample path X(ϕ(θ), t) for π(ϕ(θ)|D) is given by ϕ(X(θ, t)),

which is essentially the map image resulting from the original sample path
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X(θ, t). We conclude that the affine invariant MCMC algorithm is uniformly

effective [21] on problems in highly skewed distributions that can be better

scaled through affine transformations.

In our studies, a large number of burn-in samples are needed to let Markov

chains reach stationary states, and an adequate amount of actual samples

are needed to obtain the desired posterior distribution through the MCMC

algorithm.

3.3 Akaike information criterion for model se-

lection

Let L(θ̂) be the maximum likelihood value at a best-fit parameter θ̂. Let p be

the number of parameters in a model and N be the number of sample sizes for

the given time series data. The Akaike Information Criterion (AIC) is defined

as [22]:

AIC = −2 lnL(θ̂) + 2p. (3.8)

When the sample size is small, AIC may prefer a model with more pa-

rameters without considering the overfitting issue. To address such potential

overfitting, a corrected AIC should be used [23]:

AICc = AIC +
2p2 + 2p

n− p− 1
. (3.9)

In our study, we use the AICc to correct for the small sample size. For

the Wuhan outbreak study, AICc will be computed for both SIR and SEIR
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models. The model with a smaller AICc is considered the best model.

3.4 Partial Rank Correlation Coefficient for

sensitivity analysis

Sensitivity analysis is an important component of statistical inference on model

calibration results. It is a widely adopted study for quantifying uncertainty,

as well as identifying crucial parameters in the model. Traditionally, there

are two different approaches when performing sensitivity analysis on mathe-

matical models. One is called local sensitivity analysis, which utilizes partial

derivatives of model outputs with respect to model parameters as sensitivity

indices. Since those partial derivatives are evaluated at a fixed point in pa-

rameter space, it is only effective in some small neighborhoods around that

point. While the other method considers a broader region and all the effects on

model outputs caused by certain perturbations of parameter values within this

range will be quantified. Global sensitivity analysis is usually implemented by

Monte Carlo stimulation, which have been discussed in the previous section.

In epidemiology, the model parameters usually have a huge uncertainty, hence

the global sensitivity analysis method is often more widely applied.

In this study, we will perform global sensitivity analysis based on model cal-

ibration results. After the model calibration process, a collection of posterior

samples for model parameter θ will be obtained from the MCMC algorithm.

Suppose there are N posterior samples, then the unnormalized joint posterior

distribution π(θ|D) is approximated by Θ = {θi}Ni=1, where θi ∈ Rs denotes
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an s dimensional successive posterior sample. The Maximum a Posterior esti-

mator (MAP) for the model parameter θ is given by:

θ∗ = max
θ∈Θ

π(θ|D). (3.10)

For each independent component θj of θ, we can obtain its 95% credible interval

given by Ij = [q0.025(θ
j), q0.975(θ

j)], where j = 1, 2, · · · , s; q0.025 and q0.975 are

the 2.5 and 97.5 percentiles of the marginal posterior distribution π(θj|D).

Therefore, we can define the global sensitivity analysis parameter range as the

hypercube I = I1 × I2 × · · · × Is, and all the samples within this range is

given by ΘI = Θ∩ I. Having determined the MAP estimator θ∗ together with

its 95% truncated sample set ΘI , it now comes to choose a proper sensitivity

index. Among different types of global sensitivity analysis indices, the most

popular used is: Partial Rank Correlation Coefficient (PRCC) [24].

PRCC is designed to measure the strength of the monotone relationships

between model outputs and model parameters. In general, for each sample

θi ∈ ΘI , we can stimulate its corresponding model output as y(θi). Hence the

overall Monte Carlo simulations for each posterior sample can be denoted by

Y = {y(θ) ∈ R : θ ∈ ΘI}. We start by assuming that there exist some mono-

tone relations for posterior samples ΘI and the model outputs Y . Suppose

these relations are additionally linear, then the correlation coefficients (CC)

between them can be calculated to quantify the strength of such linkage. Un-

der most circumstances, the connections between ΘI and Y are monotone but

nonlinear. Rank transformation is then performed on ΘI and Y to eliminate

the nonlinear correlation. Since there are NI samples included in ΘI , and each
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of them has s independent components, ΘI can be interpreted as a matrix of

size NI ×s. Y can be seen as a column vector of length NI . Then each column

of the concatenated matrix [ΘI |Y ](NI+1)×s is replaced by its ranking vector,

which returns the corresponding sorted positions of each element. This way,

the effects associated with the nonlinear relation can be eradicated.

Suppose the rank transformed concatenated matrix within range I is given

by [Θr|Yr], then the CC between component θjr and Yr can be computed as:

CC(θjr,Yr) =
Cov(θjr,Yr)√
Var(θjr)Var(Yr)

=

∑NI

i=1(θ
j
i − θ̄ji)(Yi − Ȳr)√∑NI

i=1(θ
j
i − θ̄ji)

2
∑NI

i=1(Yi − Ȳr)2
, (3.11)

where θ̄ji , Ȳr are mean values of the j-th, (NI + 1)-th columns of the matrix

[Θr|Yr], respectively. The above rank transformed CC value does not consider

the internal relations within sample matrix Θr. In order to tackle this, we

calculate the CCs between the two residuals given by θji − θ̂ji and Yr − Ŷ j
r ,

where

θ̂ji = aj +
s∑

k=1,k ̸=j

akθ
k
r , Ŷ j

i = bj +
s∑

k=1,k ̸=j

bkθ
k
r , (3.12)

with {ai}si=1 and {bi}si=1 been estimated from the normal multi-linear regres-

sion model. This way, the linear effects are removed among the sample set

ΘI , and more accurate partial CC values can be obtained. Then Partial Rank

Correlation Coefficient (PRCC) is designed as:

PRCC(θjr,Yr) = CC(θji − θ̂ji ,Yr − Ŷj
r), (3.13)

where j = 1, 2, · · · s. PRCC value is in between -1 to 1. It reflects the strength

of the monotone relation between the model output and a parameter com-
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ponent. A PRCC value close to 1 indicates the model output is extremely

sensitive to this parameter component, and a PRCC value close to 0 indi-

cates the model output is insensitive to the specific component. A positive

PRCC value indicates a positive relationship between the model outcome and

a specific parameter, and vice versa.
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Chapter 4

Numerical results

4.1 Numerical results on the first study: Wuhan

outbreak

4.1.1 Model fitting results for SIR and SEIR

Parameter Epidemiological Meaning Prior 95% Credible Interval Best-Fit Value

β Transmission rate U(1e-10,1e-5) (4.93e-8,2.01e-7) 7.14e-8

ρ Diagnosis rate U(1e-5,1) (0.012,0.887) 0.107

γ Recovery rate Source [25] Fixed value 0.1

I0 Initial infections U(1,8400) (73.3,7192) 674

τ σ2 = 1/τ is the variance of data noise U(1e-8,1e2) (1.43e-5,4.33e-5) 2.62e-5

Table 4.1: Parameter table for SIR model
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Parameter Epidemiological Meaning Prior 95% Credible Interval Best-Fit Value

β Transmission rate U(1e-10,1e-5) (8.20e-8,1.26e-7) 8.68e-8

ρ Diagnosis rate U(1e-5,1) (0.016,0.024) 0.118

γ Recovery rate Source [25] Fixed value 0.1

ϵ Transfer rate U(0.07,1) (0.263,0.78) 0.631

E0 Initial latent size U(1,1700) (3444,4682) 1523

I0 Initial infections U(1,8400) (73.3,7192) 674

τ σ2 = 1/τ is the variance of data noise U(1e-8,1e2) (1.43e-5,4.13e-5) 2.61e-5

Table 4.2: Parameter table for SEIR model

Tables (4.1) and (4.2) show the model calibration results for both SIR and

SEIR models. It is assumed that all parameters are uniformly distributed over

the prior ranges. The uniform prior range (1e-10,1e-5) chosen for transmission

rate β is given a broad range based off of general mathematical models in

epidemiology. Since only a fraction of the infected population is being detected,

the uniform prior range chosen for ρ is (1e-5,1). From the source [25], the

recovery rate is fixed at 0.1. The uniform prior range for I0 is given a wide range

of (1,8400) due to the uncertainty of knowing the initial infected proportion

of people. The uniform prior range of the variance in the observed case data

is chosen to be between 0.01 to 1e8. The best-fit values as well as the 95%

credible intervals for all parameters are derived from the desired posterior

distribution through the affine invariant MCMC sampling algorithm.
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4.1.2 Unnormalized posterior distribution

For our studies, since the prior distribution is a product of uniform distribu-

tions, we have:

P (θ | D) ∝ L(θ | D)P (θ) = CL(θ | D) = π(θ | D).

Thus, the posterior distribution is proportional to any constant multiplied to

the likelihood distribution on the constrained parameter space. We choose the

simplest constant, C = 1. Hence, the unnormalized posterior distribution is

chosen to be equal to the likelihood distribution in these studies.

4.1.3 Model selections on SIR and SEIR

The data used for both Models (2.1) and (2.2) is the newly confirmed case

data in Wuhan. We pick the uniform prior ranges for all parameters in SIR

and SEIR models, and the same prior ranges are used for the common pa-

rameters shared in both models. We then calibrate SIR and SEIR separately

using the same set of data, and obtain the best-fit parameters for each model.

In Bayesian inference based calibration, the unnormalized posterior distribu-

tion is proportional to the likelihood function if uniform prior distributions

are used for each parameter. Then the maximum likelihood values and the

corrected Akaike Information Criterion at the best-fit parameters can be cal-

culated for both models. AICc for SIR is 174, and AICc for SEIR is 186.

Since the difference in the AICc scores is significant enough, we can conclude

that the SIR model better explains the variance in the data with less number
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of parameters than the SEIR model. Therefore, further analysis in this study

and the modeling for Alberta in the second study will be carried out using the

SIR framework.

4.1.4 Nonidentifiability and its visualization

In this work, we will focus on the following definition of nonidentifiability [30]:

Definition 4.1 Parameters θi, i = 1, 2, ..., s, of model (2.5) are called locally

structurally identifiable at the MAP estimator θ∗ if, there exists a neighborhood

V (θ∗), for all values θ′ ∈ V (θ∗) that satisfy system constraints,

y (x(θ∗, t), t) = y (x(θ′, t), t)

implies

θ∗i = θ′i, i = 1, 2, ..., s.

Parameters θi, i = 1, 2, ..., s are non-identifiable if they are not identifiable.

Nonidentifiability in epidemic model implies that we may obtain the same

best fits to the confirmed case data with drastically different estimations of

infected proportions. Mitigating the impact of nonidentifiability issue is es-

sential for estimating the true scale of the epidemic and for further model

predictions of the potential, upcoming waves.

To illustrate that when nonidentifiability occurs, model prediction can be

unreliable, we choose two different pairs of (β, ρ) values in model (2.1): (β1, ρ1)

= (2.1e-7, 0.909), and (β2, ρ2) = (7.3e-8,0.102). Figure (4.1) shows the same

goodness of fits (with the same likelihood value 7e-36) obtained by using these
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two parameter pairs, and Figure (4.2) shows the corresponding model predic-

tions under these two sets of parameters. The significant difference in the peak

number of cases and the scale of the epidemic shows a very different model

prediction.
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Figure 4.1: Two β-ρ parameter sets give equally best fits
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Figure 4.2: Two β-ρ parameter sets give different model projections
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Nonidentifiability issue can be visualized in two ways. One is through

checking the posterior distribution from different parameter perspectives, and

another is by examining the maximum likelihood surface on the parameter

space.

Posterior distribution check. In this study, there are 5 parameters being

fit from 14 observations. Each ith sample from the MCMC output is a 5-

dimensional parameter vector,

θ(i) = (βi, ρi, γi, I i0, τ
i)

with a corresponding unnormalized posterior density value πi. To view the

posterior surface from the β perspective, we plot the points (βi,πi) on a 2-

dimensional graph, Figure (4.3). This is the silhouette of the unnormalized

posterior density viewed from the β perspective. The posterior surface from

the perspective of another parameter ρ is viewed in the same fashion in Figure

(4.4).

Viewing the unnormalized posterior density from different parameter per-

spectives provides a convenient way to diagnose nonidentifiability. Flat distri-

bution for both parameters, β and ρ, indicates that among all the posterior

samples we have, the model is not able to find the optimal value of these two

parameters for the best fit solution or there are infinite many optimal values

of the two parameters to achieve equally best fitting performance.

Maximum likelihood surface check. We next show the projection surface of

the likelihood function L(θ|D) onto β-ρ parameter plane. We form the 3-

dimensional vector (βi, ρi, πi) from the MCMC samples, and plot the 3-
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dimensional graph by using the MATLAB command plot3 which creates both

Figure (4.5) and Figure (4.6). Figure (4.5) is obtained using the MATLAB

tool Rotate 3D in the figure window. The colors on the graphs are filled by

MATLAB command patch which orders the colors from blue to yellow with

increasing likelihood values. In Figure (4.5), the maximum likelihood value

follows the yellow curve rather than concentrating on a unique point. This

indicates that the best-fit values for parameters are not unique and any pair of

(β, ρ) along this curve will cause the model to equally likely achieve the best

fits. In Figure (4.6), we show the 3D projection of the likelihood surface onto

the β-ρ parameter plane. More clearly, it shows that the largest probability

are concentrated along a flat strip rather than on a single point.

To reduce the impact of this nonidentifiabiity issue, one option is to find

more independent data that can help model calibration. Applying the model

selection to determine the simplest model structure and using a more advanced

sampling algorithm can also help to ensure reasonable posterior distributions.
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Figure 4.3: Unnormalized posterior density from SIR model parameter β perspec-
tive 1
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Figure 4.4: Unnormalized posterior density from SIR model parameter ρ perspec-
tive 1

18 chains with a total number of burn-in samples of 600,000 and a total number of actual

samples of 1,400,000 are used for the fitting.
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Figure 4.5: Likelihood over β-ρ parameter plane

Figure 4.6: Likelihood over β-ρ parameter plane (3D)
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4.2 Retrospective estimation of proportion of

total infections of COVID-19 during the

first wave in Alberta

Accurate estimation of proportion of infected population of COVID-19 has

always been a major concern from public health agencies as this information

informs public health policies in timely efficiency to shorten the time course

of the epidemic as well as reduce the peak case number. It is usually diffi-

cult to derive the accurate estimation through modeling. One main reason

is the lack of reliable data and missing information for the hidden infections,

including those are asymptomatic or those are not tested but already infected.

Our study in this section use both confirmed case data and testing data to

better help model fitting. We also propose a method that mitigate the non-

identifiability issue so that a more accurate estimation of infected proportion

can be obtained. Since case data can be highly impacted by public testing

policies and intervention policies during the pandemic, the method constructs

a time dependent case-infection ratio ρ(t) informed by public health data on

population health seeking behavior, and a time-dependent transmission rate

β(t) informed by certain lockdown measurements from public health system

to track the real-time infections accurately. With such method implemented,

our estimation result agrees with the existing antibody test results from the

official seroprevalence surveys and reports.
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4.2.1 Model fitting results and Bayesian goodness of fit

Parameter Description Best-fit value 95% credible Interval Prior

beta Initial transmission rate 6.195e-08 (5.63e-08,7.84e-08) U(1e-9,1e-7)

γ1, γ2 Recovery rate 0.1429 (0.1260,0.1920) Source [25]

ρ(t) Case-infection ratio Time-varying Time-varying Time-varying

f Probability for health-seeking behavior 1.1013 (0.8146,1.4857) U(0,1.5)

q q·b is the new transmission rate during lockdown 0.6548 (0.5751,0.8163) U(0.01,1)

s s·b is the new transmission rate during open up 0.6864 (0.6054,0.9666) U(0.01,1)

p σ2
1 = 1/p is the variance of the case data noise 8.7933 (6.5232, 14.5960) U(1,79)

p2 σ2
2 = 1/p2 is the variance of the testing data noise 0.0042 0.0031, 0.0062) U(0.0001,0.03)

time1 Policy reaction time in testing 3.2 (1.1168,4.6156) U(1,10)

time1b Same as above 36.9 (35.1107,36.9854) U(10,37)

time2 Same as above 46.2 (44.1507,49.0937) U(39,55)

time3 Same as above 52.0 (52.0024,54.4615) U(52,60)

time4 Same as above 57.2 (57.0013,58.6041) U(57,72)

height val Testing number turning point value 0.0895 (0.0795,0.0989) U(0.001,0.1)

const val Same as above 0.0375 (0.0317,0.0431) U(0.001,0.1)

m0 val Same as above 0.0223 (0.0185,0.0268 U(0.01,0.04)

time1beta Policy reaction time in transmission 29.2070 (29.0017, 31.7245) U(29,32)

time2beta Same as above 66.5656 (65.1864,67.9948) U(65,68)

Table 4.3: Parameter table for SICR model

The census data is used to calibrate the total population N(t) = S(t)+ I(t)+

C(t) + R(t) during the period of modeling. Timelines of implementations of

public-health measures are used to define the time-dependent transmission rate

β(t) as in Section (2.1.2). Newly reported positive COVID-19 cases and the

total number of Healthline calls and COVID-19 online self-assessment forms

are used to produce the data for ρ(t) according to the definition in (2.3).

Parameters are estimated by fitting model outcomes to daily reported new
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positive COVID-19 cases data and Table (4.3) shows the model calibration

results for the SICR model. Since the Diffusive Nested Sampling algorithm

performs better in higher dimensions in comparison to the Affine Invariant

algorithm [[31], [32]], the Diffusive Nested Sampling algorithm is used to fit

the Alberta COVID-19 first wave mathematical model [33]. Same as before,

all parameters are assumed uniformly distributed over the given prior ranges,

and the best-fit values as well as the 95% credible intervals for all parameters

are derived from the desired posterior distributions.

Posteriors for all parameters are included in Appendix (A). Calibrated

β(t) and ρ(t) are shown in Figures (4.7) and (4.8). Model fitting to the daily

new positive case report data is shown in Figure (4.9).

In Figures (4.10) and (4.11), the predictive estimations with intervals for

the infectious population and susceptible population are shown. Based on

these projections, with measures undertaken in Alberta during the first wave,

starting with 4,371,000 susceptibles, there were an estimated 4,340,000 (95%

CI: 4,325,000-4,350,000) total susceptibles after the first wave. The most

likely peak time for infections occurred on April 15, 2020, with an estimated

3,585 new infections per day fluctuating between 2,716 and 4,979 new infec-

tions. We evaluate our fitting by going through every posterior predictive solu-

tion and test the optimal fitting values of the chi-squared discrepancy among

all possible values that could have been realized under this model with the

same set of parameters that generate the current data. The posterior predic-

tive p-value in our study gives 0.5412, which indicates the satisfying goodness

of fitting.

Validation of results using seroprevalence data. Estimating precisely the pro-
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portion of total infected, both hidden and diagnosed, is important for local

government to be conscious of the current situation and to guide effective pol-

icy implementations. It is also difficult to achieve the accurate result due to the

delay of the release of data and the absence of seroprevalence reports and sur-

veys. We estimated the proportion of infected using the integral of incidence,

and Figure (4.12) presents the estimated proportion of infected over the first

wave period. Consistent with provincial seroprevalence data, we estimated

that 3.0655e4 (95% CI: 2.1631e4-4.6084e4) people were infected by COVID-

19 at the end of the first wave, that is 0.72% (95% CI: 0.476%–1.014%) of the

total population. This result conforms to the crude SARS-CoV-2 IgG seropos-

itivity rate of 0.92% (95% CI: 0.72–1.13%) shortly after the first COVID-19

wave in June 2020. [14].

By the solid validation from an independent seroprevalence data, our model

ability is demonstrated. Our model is able to provide a timewise proportion

of infected population throughout the wave while serosurvey are usually done

only once or twice per wave. Additionally, the parameter values gained during

the training of the model are considered trustworthy and can be further used

as the baseline in later wave prediction.
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Figure 4.7: β(t)

Figure 4.8: ρ(t)
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Figure 4.9: Fitting to new cases

Figure 4.10: Estimated new infections
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Figure 4.11: Estimated total susceptibles

Figure 4.12: Estimated proportion of infected with color bar
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4.2.2 Estimated infection-fatality ratio and case-fatality

ratio

Infection-fatality ratio is an important epidemiological parameter which mea-

sures the risk of death per infection. Some studies use case-fatality ratio

instead of infection-fatality ratio to understand the true scale of the epidemic.

However, case-fatality ratio depends highly on how well cases of the disease

are identified and recorded. If different testing policies are implemented, then

different case numbers will be detected, leading to different case-fatality ra-

tios. The advantage of using infection-fatality ratio is that it’s independent of

the testing policy, and is suitable for comparison among epidemics in different

jurisdictions. A challenge in estimating the infection-fatality ratio is calculat-

ing its denominator, namely, the total number of infections, which is already

estimated in Section (4.2.1).

We define the case-fatality ratio (CFR) and infection-fatality ratio (IFR)

as follows:

Definition 4.2 (Case-fatality ratio)

CFR(t) = total number of deaths up to time t
total number of confirmed cases up to time t

.

Definition 4.3 (Infection-fatality ratio)

IFR(t) = total number of deaths up to time t
total number of infections up to time t

.

Here we adopt a method to precisely estimate the reported number of daily

new death each day. Since the actual data of daily new death are counting

numbers of small magnitude with considerable uncertainty, we assume those
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numbers follow Poisson distributions with different mean values each day. In

order to figure out all those mean values that will be used to generate estimated

death, a Gaussian mixture model is introduced to fit the 7-day-average daily

new death. Observing the natural shape of the averaged death data, we choose

to fit three Gaussian profiles to efficiently catch the trends in death data with

its three peaks. The Gaussian model fits peaks and is given by,

D̂eath(t) =
3∑

i=1

aie

[
−
(

t−bi
ci

)2
]
,

where a is the amplitude, b is the centroid (location), c is related to the peak

width. With the help of the Gaussian library model in MATLAB, we specify

the model type of gauss3 and fit the three-profile Gaussian model to the

averaged death data. Then this 3-Gaussian mixed curve is utilized as our

desired mean values for death numbers each day. A reasonable estimation of

the cumulative number of reported death can be generated for each posterior

sample in our model, and Figure (4.13) shows the fitting for death data.
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Figure 4.13: Estimated 7-day average death

Based on our generated death samples, we are able to compute the cor-

responding case-fatality ratio and infection-fatality ratio. Our result shows

that as of May 15, 2020, the estimated overall case-fatality ratio was 2.494%

with the 95% credible interval (2.024%-3.024%), which coincided with the ac-

tual case-fatality ratio calculated from the dataset. Meanwhile, as of May

15, 2020, our estimated overall infection-fatality ratio stayed stable at 0.513%

with a 95% credible interval (0.315%-0.732%). Tables (4.4) and (4.5) describe

pre-vaccine CFR and IFR estimates correspondingly on certain dates. Figures

(4.14) and (4.15) show the pre-vaccine CFR and IFR estimates during the first

wave.
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Figure 4.14: Cumulative CFR

Figure 4.15: Cumulative IFR
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CFR, March 31, 2020 CFR, April 15, 2020 CFR, May 15, 2020

Alberta 11.287% (6.633-18.205) 4.836% (3.463-6.563) 2.494% (2.024-3.024)

Table 4.4: COVID-19 CFR estimates during March, April, and May in 2020

IFR, March 31, 2020 IFR, April 15, 2020 IFR, May 15, 2020

Alberta 0.498% (0.253-0.812) 0.423% (0.239-0.636) 0.513% (0.315-0.732)

Table 4.5: COVID-19 IFR estimates during March, April, and May in 2020

4.2.3 Sensitivity analysis

Standard sensitivity analysis methods are designed for model parameters that

are constant, and are not applicable to models with time-dependent parame-

ters, such as β(t) and ρ(t) in Model (2.4). Since β(t) and ρ(t) are piece-wisely

defined, as shown in Figures (3.1) and (3.2), global changes in β(t) and ρ(t)

are influenced by variation of parameters in the definitions. As these param-

eters are estimated through the model fitting, we conducted the sensitivity

analysis for these parameters in the definition of β(t) and ρ(t) using PRCC,

as an indirect way of assessing the sensitivity of β(t) and ρ(t).

We conduct the sensitivity analysis using PRCC to four main public health

measurement outputs at the end of the epidemic: case-infection ratio, cumula-

tive infection-fatality ratio, proportion of infected population, and peak time of

cases. In Figures (4.16), (4.17), (4.18), and (4.19), the PRCC values for each of

the four indicators with respect to every model parameter are listed. In order

to better reflect which parameter causes the major effects on these outcomes
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during the epidemic, we further apportion all the model parameters into three

groups: β-related risk reduction behavior, ρ-related health-seeking behavior,

and other common factors including initial infection size and recovery rate.

In Figure (4.16), for case-infection ratio, we conclude that the most influ-

ential parameter is the health-seeking factor f , which means strengthening the

human action of case detection can most significantly enhance the capability

of unearthing the true case among the hidden infections. A negative corre-

lation occurs between the baseline transmission rate β and the case-infection

ratio. As we reduce the initial transmission rate β, the infected population

decreases, and in turn the overall case-infection ratio increases. The same con-

dition holds for the factor initial infectious population I0. For the cumulative

infection-fatality ratio, very similar results have been obtained. The health-

seeking factor f and baseline transmission rate β are now affecting infection-

fatality ratio at nearly the same level, but one causes a positive effect while

the other causes a negative effect, as shown in Figure (4.17).

On the subject of peak time of cases and the proportion of the infected

population, the situation can be different. In Figure (4.18), for peak time, the

only parameter that is considered to be sensitive is the timepoint time2, which

is the estimated time-point that the testing numbers start to increase. This is

quite realistic as the case number is highly related to the case detection rate,

and high testing number yields high case detection number. In Figure (4.19),

for the proportion of the infected population, the most influential parameters

are still β and f . This indicates that either increasing the case detection rate

or reducing the transmission rate can reduce the proportion of infected.

In conclusion, risk-reduction behavior together with health-seeking behav-
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ior are the two main focuses we need to pay attention to and they are actually

controllable by either government or people themselves throughout the whole

epidemic. Public measurements should be implemented speedily and effec-

tively to ensure the initial transmission rate is small enough to avoid rapid

outbreaks. At the same time, health agencies may try as hard as possible to

improve the case-detection capability such as increasing testing numbers to

keep cases from being hidden out of control at the begining of the epidemic.
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Figure 4.16: Sensitivity of case-infection ratio
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Figure 4.17: Sensitivity of infection-fatality ratio
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Figure 4.18: Sensitivity of peak time
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Figure 4.19: Sensitivity of proportion of infected
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Chapter 5

Conclusions and future work

The COVID-19 epidemic is an unprecedented global public health challenge

in recent years, bringing a large impact on human lives, government policy

planning and public health systems, as well as global economic growth. Math-

ematical modeling can help project how infectious diseases progress to show

the scale and time course of the epidemics, and help inform public health poli-

cies. The focus of our first study is to demonstrate the challenges modelers are

facing in predicting outbreaks like this and to provide a partial explanation

for the wide variability in earlier model predictions of COVID-19 [4]. Based

on the model framework chosen from the first study, our second study follows

the same pattern with more reliable data to estimate the true scale of the first

wave of COVID-19 in Alberta with in-depth analysis.

Our first study focused on the COVID-19 epidemic in Wuhan city after

the lockdown and quarantine. By comparing the SIR and SEIR frameworks

using the Akaike Information Criterion, we concluded that a more complicated

model may not necessarily perform better in model prediction since there are
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more parameters needed to be estimated during the fitting process. Using a

simple SIR model and the daily new confirmed case data for model calibration,

we found the linkage between the transmission rate β and the diagnosis rate

ρ which resulted in the nonidentifiability issue. The nonidentifiability yields

significantly different model predictions under infinite combinations of best-fit

parameter values, and is caused by the lack of independent data which allows

producing independent estimates of β and ρ. Modelers should be cautious

about how to reduce the nonidentifiability impact during model calibration,

and be realistic about the selection of parameter ranges and values.

Our second study focused on the COVID-19 epidemic during the first wave

in Alberta. As discussed in our first study, we chose the modified version of

the SIR, SICR model, and used two datasets, one is the daily new confirmed

case data, and another is the daily testing data from Alberta Health for model

calibration. To incorporate the real-time policy changing, we used the time-

dependent transmission rate β(t) and the time-dependent diagnosis rate ρ(t).

With an extra independent dataset and more specific parameter construction,

the nonidentifiability has been greatly reduced. We also demonstrated that

with Bayesian inference and an improved MCMC algorithm, the affine en-

semble MCMC algorithm, the model can significantly narrow down the given

uniform prior ranges, and produce sufficiently small credible intervals for pa-

rameters in the model. We further estimated the timewise proportion of the

infected population among all populations in Alberta during the first wave, and

computed the real-time case-fatality ratio and infection-fatality ratio, respec-

tively. These numbers have been validated by official seroprevalence reports

and can provide a solid understanding of the true scale of the epidemic. We
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further provided the PRCC values for all parameters to several public health

outcomes to study the sensitivity of each parameter. We demonstrated that

the peak time of the epidemic is much less sensitive to parameter variations

than the proportion of the infected population, infection-fatality ratio, and

case-infection ratio. This was also observed in our first study on predicting

the Wuhan outbreak using two different β-ρ parameter pairs. We showed that

there is a positive relationship between the initial transmission rate β and

the proportion of the infected population. When more restrictive measures

are implemented at the beginning of the epidemic, including the lockdown

of residential buildings and the quarantine of suspected cases and their close

contacts, there will be less proportion of infectious people at the end of the

first wave. We also showed the negative relationship between case-infection

detection power f and the proportion of the infected population. That means

when the testing capacity is lifted and more human power is included to facili-

tate the testing process during the epidemic, there will also be less proportion

of infectious people at the end of the first wave. These findings provide a

theoretical verification of the effectiveness of these measures.

COVID-19 is still a threat to our lives as no one can predict when a new

strain might surface. There are still many questions remaining and modelers

are still working hard to investigate more in-depth. There are many variants of

concerns have been identified and these are now circulating in Alberta. With

currently available data and knowledge we have for COVID-19, further studies

are warranted to model a coexisting-strain epidemic. This will be an intricate

mathematical network of channels incorporated with different biological in-

formation and vaccination effectiveness information. Modeling allows a more
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accurate estimation of the virus which will serve as an important signal to the

public health authorities. In the development of the mathematical model and

fitting process, it’s essential to seek and develop methods to deal with noniden-

tifability issue. More efficient sampling algorithms are worth to be tried and

be improved to ensure an optimal fitting result is achieved with high-quality

samples in a sufficiently shorter time.
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A Posteriors for SICR Model
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Figure 0.1: Posterior for parameter β for SICR model
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Figure 0.2: Posterior for parameter f for SICR model
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Figure 0.3: Posterior for parameter q for SICR model
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Figure 0.4: Posterior for parameter s for SICR model
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Figure 0.5: Posterior for parameter time1beta for SICR model
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Figure 0.6: Posterior for parameter time2beta for SICR model
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Figure 0.7: Posterior for parameter constval for SICR model
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Figure 0.8: Posterior for parameter heightval for SICR model
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Figure 0.9: Posterior for parameter m0val for SICR model
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Figure 0.10: Posterior for parameter time1 for SICR model
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Figure 0.11: Posterior for parameter time1b for SICR model
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Figure 0.12: Posterior for parameter time2 for SICR model
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Figure 0.13: Posterior for parameter time3 for SICR model
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Figure 0.14: Posterior for parameter time4 for SICR model
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Figure 0.15: Posterior for parameter I0 for SICR model
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Figure 0.16: Posterior for parameter γ for SICR model
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Figure 0.17: Posterior for parameter p for SICR model
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Figure 0.18: Posterior for parameter p2 for SICR model
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