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ABSTRACT

Measurements of the longitudinal sound velocity vy
in hcp He4 single crystals were made as a function of direction
relative to the hexagonal axis for molar volumes between 20.3
and 17.3 cm3/mole. The direction was determined by measuring
the birefringence of the crystals along the sound path. The
variation of vy with molar volume is much stronger than
predicted by theory but agrees with neutron scattering data.
Agreement is also found with theoretical predictions for the-
anisotropy of the velocity.

All five elastic constants were determined from these
measurements and from published compressibility data. They
are compared with existing theoretical and experimental
constants for solid helium.

The temperature dependence of v, was measured at a
molar volume of 20.42 cm3/mole and was related to the tempera-

ture dependence of the adiabatic compressibility.
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1. INTRODUCTION

Solid helium attracts the interest of experimental
and - theoretical physicist for various reasons. It can be
prepared with a chemical and isotopic purity that is
impossible in other substances. Its density can be doubled
Uwith modest equipment and finally some hope still persists
that the spectacular behéviour of liquid helium below a
temperature. of 2 K would be reflected in some properties
of the solid. From a theoretical point of view, the
challenge consists in the complete breakdown of classical
lattice dynamics when it is applied to solid helium, most.
drastically demonstrated by the imaginary sound velocities
that classical theory predicts.

The activity shown by theorists in the past ten
years to remedy the situation has unfortunately not been
matched by many experiments on sound propagation. Measurement
of the longitudinal sound velocity in solid He3 and He4 by
Vignos and H. Fairbank (1961, 1966) on polycrystals gave
values with a spread of 12%, indicating the presence of
large cristallites or possibly single crystals and anisotropies

of that order. The experiment covered a pressure range of



26 to 140 atm, but nothing definite could be concluded about
the volume dependence of the velocity because the orientation
of the crystals was unknown. Shortly afterwards, Lipshultz
and Lee (1965) observed transverse sound in He-4 between 26
and 29 atm and found a somewhat larger anisotrophy in the

hexagonal phase. Longitudinal sound in bcc He3 was also

seen by Abel et al. (1961).

From the theoretical side, Nosanow and Werthamer
(1965) found an anisotropy in the longitudinal velocity that
was larger than the observed 12% and also a smaller volume
dependence. At that time it.was thought that an improved
theory (Gillis et al.(1968)) would be accurate to within a
few percent. A meaningful comparison with experiment requires
therefore that the sound velocity is measured as a function
of orientation so that it can be clearly decided whether any
discrepancies are real or simply due to anisotropy.

Another incentive was provided by a theoretical paper
by Guyer. (1966) on sound absorption in solid helium, which:
led to the observation of second sound by Ackerman et al.
(1966). It predicted two peaks in the sound absorption as
a function of temperature, one associated with normal pro-
cesses, the other with umklapp processes. To observe sound

attenuation turned out to be difficult and no reproducible



results have been obtained so far (apart from the rule that
the absorption increases with decreasing temperature). We
found it therefore advisable to first gain more experience

in ultrasonics and in preparing single crystals of solid
helium. The present work should therefore be regarded as a
first step in a project. to measure sound absorption. Shortly
after starting it, the birefringence of hexagonal close packed
(hcp) He4 was measured by Vos et al. (1967) and by Heybey

and Lee (1967). This offered a convenient method of finding
the orientation of helium crystals. At the same time I
realized that the sound velocity in hexagonal crystals depends
only on the angle between the crystallographic c-axis and the
propagation direction. Therefore, one does not have to know
the direction of all the crystallographic axes but only the
c-direction relative to the direction of sound propagation,
and this is exactly what the birefringence technique pro-
vides.

The impact of these facts led me to abandon the
absorption measurements and to measure the longitudinal sound
velocity as a function of orientation and later also as a
function of pressure and temperature. Simultaneously but
independently, the orientation dependence of both longitudinal

and transverse velocity was measured by a group working under



Professor D. M. Lee at Cornell University. They grew the
crystals from superfluid helium and also use the birefringence:
technique to find the crystal orientation (Heybey and Lee
(1968), Crepeau et al. (1968), Lee et.al. (1969)). |
Preliminary results of our work have already been
reported elsewhere (Franck (1968), Franck and Wanner (1969),

Wanner and Franck (1970)).



2. THEORY

Much theoretical work has been done both on sound
propagation, lattice dynamics and solid helium, so much. in
fact that even of the review papers only a small portion will
be mentioned here.

Classical lattice dynamics is covered extensively in
Born and Huang's book (1962) and by Maradudin, Montroll and
Weiss (1963), but I have found Leibfried's handbook article
(1955) the clearest introduction to the subject. Anharmonic
effects are treated by Leibfried and Ludwig (1961). About.
30 papers on lattice dynamics of solid helium have been
published since 1962 and are reviewed by Werthamer (1969).

I have made heavy use of this paper in the paragraph on solid
helium theory. The latest review of experimental data is in
Wilks book (1967) and in Keller's book (1969). An intro-
duction to elastic constants that I have often used is the
article by Huntington (1958) and the books of the series

"Physical Acoustics" edited by Mason.



2.1 Classical lattice dynamics

The problem in lattice dynamics is to calculagte the-
macroscopic elastic and thermal behaviour of a, solid from the.
given microscopic. properties of the particles from which it is
formed. We will see later that this problem cannot bé solved
in the case of solid helium using classical mechanics a}one,
but since some steps are identical in a classical and a
quantum mechanical treatment I will give a short.qutline of
classical lattice dynamics, based on Ziman (1965).

To find the equations of motion of each atom we write

down the kinetic energy of the whole crystal

2.1

H

n
NI
]
1= ™
I
=

where m is the mass of one atom and u the displacement of
1 ‘

the atom from its equilibrium position 1. The potential
energy of the crystal is expanded in terms of the cartesian

components ui of the displacements

N 43 i i 3V + . 2.2
l—ll:jlj’ - = Buiau

If the approximation is terminated after the second term it

is called a harmonic approximation. The equations of motion



are found using the Lagrangian formulas

. 2 .-
mﬁi = - I L . U.i, 2;3
= 173" dujoud.

or written in tensor form

mEl = - i’ G‘]__l.’ . 1_11.4 2.4
where
c . 2
Giiz = §—ij’-————jv' ’ 2.5
== au; Bul,

The right hand terms are the forces acting on atom 1 due to
the displacement of atom 1 and can be evaluated if the
potential between these atoms is given as was assumed in the
beginning. They clearly depend.only on the relative position

h=1-1" of these atoms.

The periodicity of the lattice reduces the number of
equations and restricts the solutions to waves because Bloch's

theorem relates the motion of the atoms at different sites

igh 2.6



g is the wave vector of a particular solution of the equations
of motion. The equation of motion for that particular solution
and a particular atom is- then

mi(g) = (26(0)e’®® (g = a(g)ulg) 2.7
h

G(g) is called the dynamical matrix and is simply the Fourier
transform of the force constand tensor G(h). To solve that

equation, we try a solution of the form

iwt , 2.8

plug it into 2.7 and get 3 simultaneous equations for the

components ug (depending on the wave vector q)

w

i3 2 ] =
G - ... =0 2.9
=l( (@) - w™m 33 ) ug (g)

.

The secular equation (that is the condition that the
determinant of the system of equations is zero) will give 3
solutions for w(qg), corresponding to. the three different
polarizations of the waves.

In principle then, this is the recipe for calculating
sound velocities from interparticle potentials: PFirst write

down the tensor G(h), involving the second derivative of the



interparticle potentials of as many neighbours as.is necessary.
Next calculate the Fourier transform G(g) for that wave vector
g for which the sound velocity is desired. The secular
determinant of that matrix gives a cubic equation for the
frequency w. The sound velocity for the wave in the direction
g is v = w/ |g].

It is customary to restrict the use of the word
"sound" to the limiting case g+0, that is to long wavelengths.
(long compared with the lattice spacing) and to speak .of
phonons for general q. The elements of the dynamical matrix
in the long wave length limit are intimately related to the

elastic constants ik (see equation 2.28).

2.2 Lattice dynamics of solid helium

The classical theory of lattice dynamics fails

dramatically for solid helium. Using a Lennard-Jones potential
V(r) = 4e ((o/0)1? - (o/0)%) 2.10

for the attraction between two He atoms with parameters e and
o derived from measured virial coefficients of helium gas it
predicts a molar volume of 10 cm3 which is too small by a

factor 2, a compressibility too small by a factor 30 and sound
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velocities too high by a factor 4 if compared to experimental
values at T = OK and at p = 26 bar, the minimum pressure re-

quired to solidify He4.

An attempt by de Wette and Nijboer (1965) to calculate
the phonon frequencies classically yielded imaginary frequen-
cies and sound velocities for volumes. larger than 12 cm3/mole,
although the lattice is stable for volumes up to 21 cm3/mole.

The reason for this unusual behaviour is that the.
helium atoms have a large kinetic energy from the zero-point
motion, an energy comparable or larger than the potential
energy which has only a very shallow attractive well due to
the tightly bound electronic shell. This zero-point energy
can be estimated using the uncertainty principle. Confining
an atom to its lattice site will define its position with an
uncertainty of the order of the lattice constant a which will

lead to an uncertainty in momentum and thereby to a kinetic

energy per atom of

v (ap)? o KA 2.11

Because of that motion the atom will no longer be at the
minimum of the potential well and the lattice will expand to
such an extent that helium solidifies only under pressure,

even at 0 K.
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Using these arguments F. London (1954) has calculated
the molar volume of the solid at 0 K and found agreement to
within 15% of the measured value and his simple theory repro-
duces the volume dependence of the groundstate energy or the
compressibility remarkably well.

A more detailed theory of solid helium faces a number
of problems. Because of the large vibration amplitudes the
forces on an atom will be highly anharmonic. Figure 1 shows
a He atom in the potential of its two nearest neighbours in
a simple, one dimensional model. Instead of being at a
minimum, the central atom sits at a maximum and assumed vi-
brations around this position will be unstable since the second
derivative of the potential is negative and the vibration
frequencies therefore imaginary. This is the explanation for
the imaginary phonon frequencies obtained by de Wette and
Nijboer (1965). The problem is therefore that the anharmonic
terms are so large that the quasi harmonic approximation does
not exist any longer.

How to introduce into the theory the correlation be-
tween the movement of neighbouring atoms, the socalled short-
range or dynamic correlations poses another question: One
might expect that the large amplitude vibration of the atom

would lead to many collisions between neighbouring atoms,
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involving the strong hardcore repulsion, but in fact the atoms
will correlate their movements to avoid such collisions.
Nosanow (1966) points out that correlation lowers both the
kinetic energy by increasing the radius of the effective
potential well and the potential energy by increasing the
probability that two particles are at a distance roin corre-
sponding to the minimum in the Lennard-Jones potential.

Finally, if the theory is formulated in terms of
phonons it is not obvious a priori whether the large anharmon-
icity will not lead to unreasonably short phonon lifetimes,
that is whether phonons do exist in solid helium or not
(Gillis and Werthamer (1968)).

Two different approaches have been.tried to deal with
these problems. One is formulated in terms of single particle
wave functions while the other describes the crystal in terms
of phonons.

The basic idea of the single particle picture (Nosanow
(1964) , Fredkin and Werthamer (1965))is to do a time dependent
Hartree calculation assuming a trial wave function of the so
called Jastrow form (Jastrow (1955))

) = - -
‘P(rl...rn E¢o(ri li)IIf(rj rk) 2.12



FIGURE 1

A helium atom in the Lennard-Jones potential V(r) of its

nearest neighbours.

V(r) = 4e((o/x)1? - (o/1) )
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The ¢o are single particle wave functions localized around

the lattice sites 1; while f(rj-rk) describes the correlations
between particle j and k. The correlation function f(r) should
go to zero for r smaller than the hardcore radius, thereby
decreasing the probability that two particles come closer
together and should be unity for large particle separation
because ¢O will not be influenced by far away particles.

A useful analytic form is

£(r) = e KVI(X) 2.13

where V(r) is the Lennard-Jones potential and K a variational
parameter. The next step is to express the expectation value
of the ground state energy Eo_for an assumed value of K in
terms of a cluster expansion, truncate it after the first term
and then minimize E to get a differential equation for the
single particle wave function ¢o. This equation is solved

and the ground state energy calculated as a function of K.

It turns out that ¢O is approximated well by a spherically
symmetric Gaussian (as is the case for the ground state of the

harmonic oscillator)

2
6 = c~Ar7/2 2.14

where A 1s a variational parameter that minimizes EO for a
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given K. Finally, the ground state energy is minimized by
varying K. The whole procedure is formally equivalent to a
Hartree calculation with no correlations in which the Lennard-

Jones potential is replaced by an effective potential

2
V e (r) = [V(r) + T‘mK Cv2v(r)] . e RKVI(D) 5 s

This effective potential has a softer core than the Lennard-
Jones potential. Using manybody techniques, Fredkin and
Werthamer (1965) have shown how to calculate the phonon fre-
qguencies from these single particle exitations. They find for

the eigenvalue equation at T = 0 K

2 16

moly (@) = z(1-e7388) 20 o)y (o “+h) [0>u(g) °°
U g J eff ‘LT TO uilg
The above equation is very similar to the eigenvalue equation
2.9 of classical lattice dynamics with the exception that the
interparticle potential has been replaced by an average with

respect to the mean position probability of the two particles

<0IVeff|0>' 2.17

From here on the equations of classical lattice dynamics

(Leibfried and Ludwig 1961) apply. This is also a plausible
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theoretical explanation why helium is in many respects a solid
like any other which has long been established experimentally.

The single. particle picture has been refined in various
ways but all numerical calculations were done for the bcc
structure only. Hetherington et al (1967) extended the cluster
expansion to include 3-body terms. They f£ind that the ex-
pansion converges indeed sufficiently fast for a correlation
of the form 2.13. Another expansion given by Brueckner and
Frohberg (1965) however seems to converge less well. The
ground state energy was also computed by Hansen and Levesque
(1965) with a Monte Carlo Method using a different correlation
function. Etters (1968) considers the dynamical behaviour of
a pair of particles in the averaged field of all other par-
ticles.

Another improvement especially in the volume dependence
of the calculated quantities is expected from a better corre-
lation function f. The usefulness of the particular choice
2.13 for f is mainly in the rapid convergence of the cluster
expansion. Brueckner and Frohberg (1965) and recently
Mullin et al. (1969) have tried different correlation functions
obtained by numerically solving a differential equation for f£.
To find a better correlation function is difficult because the

cluster expansion converges only for a restricted class of
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furctions f and not all variational parameters are suitable
variational parameters. Massey and Woo (1968) use an effect-
ive potential Vogs that includes liquid like correlations
while in Meissners formulation (1968a, 1968b) both long and
short range correlations are included. No numerical results
have yet been published for sound velocities in hcp helium
based on these improved correlation functions.

The theories mentioned so far emphasize the single
particle aspect of the problem and the phonons are constructed
from the normal modes of response of the crystal to an ex-
ternally applied disturbance.

The socalled self consistent phonon theories (Hooton
(1958), Boccara and Sarma (1965), Ranninger (1965), Koehler
(1967, 1968), Choquard (1967)) consider the phonons as the
basic coordinates for describing the crystal (thereby assuming
that they exist in solid helium) and describe the motion of the
individual atoms through the occupation number of the different
phonon modes. While the two different approaches give similar
results (Koehler (1967)) at T = 0 K, the collective theories
seem to be more suitable for numerical calculations. In
Koehlers work, this was achieved by expanding the crystal
potential in Hermite polynomials (being the eigenfunctions

of the harmonic oscillator) instead of a Taylor series.
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The idea underlying the collective theories is the following

(Koehler (1968)):

The true crystal Hamiltonian Hc

2
Ho=-0_ 592 5w, 2.18
c 2m ;1 1j

is approximated by a harmonic Hamiltonian Hh

2 .
__Hh 2 1
H o= -85— IV, +V +5 u

3 g3 3] 2.19
h > 2, "1 1

11

where the entire set of spring constants G is to be determined
variationally. Koehler finds that the choice of G that

minimizes the energy is

3372 j gi°
Giy- = <0]vy Vi. [0> 2.20

and that the ground state eigenfunction of the harmonic

Hamiltonian is

0> = exp(-% ul F13. uj.) 2.21
where
2 = m/R%) . G 2.22

The similarity with the single particle picture is apparent

and the main difference is that instead of averaging with
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respect to single particle distributions, the average is here
with respect to the phonon groundstate. The theory is. self-
consistent because the spring constants G depend on the
eigenfunctions |0> which in turn depend on G.

As in the single particle theory, a Jastrow factor
has to be introduced to deal with correlations.

Horner (1967) uses a diagramatic technique which in
lowest order is equivalent to the selfconsistent phonon-
approximation and also includes finite lifetime corrections,
which affect the sound velocity via the Kramers-Kronig
relations. This effect is also included in the papers by
Ranninger (1965), Choquard (1967) and Werthamer (1967).

Unfortunately, only two papers (Nosanow and Werthamer
(1965) , Gillis, Koehler and Werthamer (1968)) contain numerical
values for sound velocities in hcp He4. Nosanow and
Werthamer's (1965) calculation is based on a single particle
theory with a Jastrow factor of the form 2.13 and a Lennard-
Jones inter-particle potential with € = 10.22 K and 0 = 2.556 2.
The cluster expansion of the groundstate energy is truncated
after the two body terms and the energy estimated to be accurate
within a few percent.

Within the framework of the selfconsistent phonon

theory Gillis, Koehler and Werthamer (1968) have calculated the
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phononspectrum at two different densities and the sound
velocities at the density of 19.Zcm3/mole, using the same data
for the interparticle potential and the same Jastrow-factor
as Nosanow and Werthamer. The internal energy is lowered by
about 17 cal/mole in comparison with values given by the
single particle theory (Nosanow (1966) Hetherington et al. (1967))

Figure 2 shows the two theoretical results for the
sound velocities in different crystal directions. They will
be compared with experimental data in sections 4.1 to 4.3.

Sound propagation in hexagonal crystals will be
discussed in section 2.3 and the elastic constants obtained
from the data of Gillis et al.will be used as an example to
illustrate the concepts.

In order to give an impression of the performance of
the other theories I show in figure 3 the internal energy E
at absolute zero for bcc He3 for which most numerical calcu-
lations have been done. The reason for this is that the cubic
structure is simpler than the hexagonal, and only in He3 does
this structure exist at absolute zero and over a sizable
volume range. The experimental points are from Pandorf and

Edwards (1968).
From EO(V) we obtain the pressure p

p = -dE_/aV 2.23
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FIGURE 2

Theoretical sound velocity vs. molar volume, according to
Nosanow and Werthamer (1965) (solid lines), and Gillis et al,
(1968) (circles, triangles and squares). Y is the angle

between c-axis and direction of propagation.
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the Bulk modulus B

B =-Vdp/dv = V. a%E /av* 2.24

and an approximate expression for the longitudinal sound

velocity Ve

vi =B .UM = (Vi/mM) . don/dVZ 2.25

(V is the molar volume, M the atomic weight).

2.3 Sound in hexagonal crystals

Before measuring the anisotropy of the sound
velocities in a crystal one would like to know something in
principle about the velocity surface which consists of. the
three surfaces obtained by plotting in each direction the
longitudinal and the two transverse velocities. They must
have the same symmetry as the crystal and I will show that in
addition they have to meet some other conditions.

The surface is described completely by the elastic
constants and the density . The elastic constants cijkl
describe the stresses Gij in various directions in the crystal

in terms of the strains €11 applied in various other directions:

g.. =L C.. . € 2,26
ij k,1 ijkl kl
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FIGURE 3

Ground state energy E0 vs. molar volume V in bcc He3

The curves represent calculations by

1. London (1954, p. 24)

2. Nosanow (1966)

3. Hetherington et al. (1967)
4, Mullin et al. (1969)

5. Horner (1967)

6. Koehler (1967)

7. Hansen and Levesque (1968)

8. Iwamoto and Namaizawa (1966)

The circles are measurements by Pandorf. and Edwards (1968) .
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oij is the force acting on plane i in direction j.and the
strain €11 is defined in terms of the displacement u as
du du
1 (%% + 1) 2.27

€ =
k17 2(&,; T &,

Equation 2.26 is nothing else than Hook's law.
Knowing the forces on a small elementary cube allows us to

write down the equation of motion for it

2
i 43 -, = % 2.28
pu, = X = C.. « m=——m— .
i 3 dxi k1 ijkl dxjdxl
This has a plane wave solution
gvei(g r - wt) | 2.29
from which
pwzu = 1 c | q. g u 2.30
i ijkl #j5 #*1 ° "k ' *

j1k

which is nothing else than the leading term in the Fourier
expansion 2.7. To get the sound velocities we then proceed
in the same way as before by solving the secular equation
for the desired wave vectors g.

The number of independent elastic constants is greatly
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reduced using symmetry and thermodynamic arguments and only
5 remain for hexagonal crystals namely Cyqr Cyar G137 C33 and
Ca4 (we have used the shorted notation of Voigt €111 = S11/

=C c44) and the

C1122 = €127 C1133 T ©137 ©3333 = C337 C3323 =

matrix Cix for hexagonal symmetry is

€11 C2 €13 0 0 0
€12 ©1 ©3 0 0 0
€13 ©3 ©33 0 0 0
e, = |0 0 0 c,0 0 2.31

0 0 0 0 0 %(cll'ch)

Several authors (Zener (1936), Gold (1950), Musgrave
(1954)) have explicitly solved the secular equation for hexago-
nal crystals and find that for this symmetry (and no other)
the cubic equation factors into a quadratic and a linear
equation for all directions and the sound velocity can there-
fore be expressed explicitly as a function of the direction
cosines of the wave vector g. Another result which is of.
decisive importance for the design of the experiment is that

the velocity surface has a cylindrical symmetry around the
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c-axis, which means that the sound velocities depend only
on the angle y between wave vector and c-axis.
The expressions for the sound velocities are:
1
z
Vl = (cl/p)
1

_ 2 2.32
Vi (ctl/p)

1

2
Vi, (ctz/p)

with
1 2 2

= + 1 + +
¢y .2[(c11 c““) sin y + (c33 c““) cos Y +¢ (y)]
c, =3%(c -c ) sin?y + ¢ cos? y 2.33
t) 11 12 4 4

= 4 + in2y+ + 2y -
S, 2[(C11 c““) sin‘y (c33 cgk) cos“y =-¢(v)]
62 =(c -c )?sin*y+ (¢ - c )2 cos*y +
11 4 4 33 44

+ 2sin?y cos?y [(c - ¢ ) (¢ -¢c ) + 2(c _ +c )Z]
11 4 4 4 4 3 13

3 4 b

For propagation along the c-axis (y = 0)
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and for propagation in the basal plane (y = 90°)

c. = ¢
1 11
c, =4%(c -c )
ta 11 12
c = c

t2 Wy

A computer program for calculating velocities from elastic
constants is found in the appendix.

If the sound velocities are known as a function of
the angle vy, the elastic constants of the solid can be calcu-
lated. The most convenient set of values are the velocities
along the c-axis, perpendicular to the c-axis and for a
direction in between (which is necessary to obtain c13).

A section through a velocity surface based on theo-
retical sound velocities published by Gillis et al. (1968)
is shown in figure 4. The corresponding elastic constants
are given in section 4.3.

Some pecularities about sound propagation in crystals
are worth mentioning here. One of them is that in general
the direction of propagation of a sound beam does not coincide
with the wave normal so that we have the situation shown in

figure 5. The formula for the angle Ai between beam direction
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FIGURE 4

Velocity surface of hcp He4 according to Gillis et al. (1968)
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and wave normal for the polarization i is given by Musgrave
(1954).

Since it is rather lengthy I present it in the form
of a computer program in the appendix. Figure 6 shows
numerical values based on Gillis (1968) elastic constants.

The deviations are surprisingly large and have to be
considered in the design of a sample chamber. The chamber
used by Vignos and Fairbank (1966) cuts off beams completely
for which 4> 16° thereby preventing the observation of long-
itudinal sound for directions y in the range 20 ... 45°. This
may partly explain that their data do not show the same large
anisotropy as found in my measurements where deviations A up
to 30° can be accomodated. Similar considerations apply to
the chamber of Lipshultz and Lee (1965) which allows a devi-
ation A€ 16° that cuts off almost all directions for the
t2 - branch. This property can be used to obtain elastic
constants im bcc He3 (Wanner (1970)).

The three sound velocities in each direction have
three different polarizations. In general, the polarizations
are not "pure”, that is the particle displacement for the
longitudinal mode is not perpendicular to the wavefront, nor

are the tramnsverse motions in the plane of the wavefront. 1In

hexagonal crystals however one transverse branch (usually
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labelled tl) is always pure due to the rotational symmetry
of the velocity surface. Its polarization is perpendicular
to the c-axis and the propagation vector and it usually has
the lowest anisotrophy of all branches. The other transverse
branch t2 and the longitudinal branch 1 deviate by an angle

§ (figure 6) but the 3 polarization vectors are mutually
perpendicular.

The motion of a transducer surface will therefore be
split into 3 components, and the transducer will in general
excite all three branches with an amplitude proportional to
the corresponding component along the polarization vector.

It is difficult to observe the transverse components
when exciting with a longitudinal transducer because the first
transverse echos often coincide with the second longitudinal,
but longitudinal sound coming from transverse transducers

has occasionally been seen both by us and Lee et al (1969).

2.4 Related Quantities

If the transverse and longitudinal velocities are
known for a sufficient number of directions, the elastic
constants can be determined. From known elastic constants

several other quantities such as the Debye temperature OO



FIGURE 5

Propagation of longitudinal and transverse sound beams in

hexagonal crystals (schematic).
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FIGURE 6

Deviation Ai of beam direction and.deviation § of polarization
vector from wave normal vs. orientation y. The curves are

calculated from elastic constants obtained from the work of

Gillis et al. (1968).
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at 0 K and the compressibility can be calculated and compared

with thermal measurements.

Debye temperature Oo

The Debye temperature at 0 K is (Alers (1965))

_h (38 \?
%% = k (‘4n'v) -V

where the Debye velocity v is

_ -3 ~3 . -3 -1/3
V = (f(vl U Vtz) dQ/12m)

= Planck constant
= Boltzmann constant

= Avogadro constant

< 2 ®r 5
|

= molar volume

2.34

2.35

The integration over the solid angle Q is particularly

easy for hexagonal crystals, where the only integration

variable is the angle Y between wave vector and c-axis.

A

computer program for OO using the elastic constants as input

is given in the appendix. The Debye temperature so obtained

should be identical with the calorimetric Debye temperature

measured at temperatures below 00/50.
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Compressibility, isothermal and adiabatic elastic constants

For hexagonal crystals the isothermal compressibility
K = -(3V/3p)/V in terms of the isothermal elastic constants is
(Nye (1946), p. 146)

% 3 + Cip = 4c13 + 2c33
= >
- 2cl3

2.36

©11%33 * ©1,¢33

To compare the compressibility obtained by thermo-
dynamic measurements with the compressibility calculated from
sound velocity data one has to keep in mind that the former
are static measurements giving the isothermal compressibility
while the sound velocities give adiabatic elastic constants
and compressibility. The difference cik‘- czk depends on the

particular elastic constant and is of the order (Bhatia (1967)

p. 40)
s £
ik " %k . S5 % 2.37
. C
ik v

(Cp, CV heat capacities at constant pressure, volume).

Further comments on this point are found in section 4.4.
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Phonon spectrum

The sound velocity is equal to the phase velocity of

phonons
W
v = = 2.38
g |q << Qnax
(w = phonon energy, q = wave vector, dpax = Wave vector at

zone boundary) in the limit of long wavelengths Leibfried

and Ludwig (1961, p. 426) argue that the above definition

may give isothermal sound velocities rather than adiabatic
velocities, but leave the question open. In neutron scat-
tering experiments, the excited phonons have usually rather
high frequencies compared with ultrasonic frequencies and
elastic constants calculated from 2.38 are therefore isothermal
constants (see section 4.4). I have purposely avoided the

notation "q - 0", since this, taken literally, would give

adiabatic constants.

Second sound

Assuming an isotropic material, the velocity of second

sound is (Ackerman and Guyer (1968))

-3 -3 -5 -5
(vl + 2vt ) / (vl + 2vt ) 2.39

<
|
Wi+
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Cauchy relations

If every atom in the crystal is a centre of inversion
symmetry and if there are only central forces between a pair
of atoms the elastic constants obey relations known as Cauchy

relations (Born and Huang (1962)). For hexagonal crystals

these are
C44 = C13
2.40
11 = 3¢,

In a hexagonal close packed crystal the condition of inversion
symmetry is not satisfied, but Leibfried (1955) shows that
this affects only the relation Cyp = 3c12. For the case of

next nearest neighbour central forces C13 = Cyy4 remains

valid.

2.5 Elastic constants from unoriented single crystals

in the cubic phase

Finding the orientation of the crystals with the
birefringence technique is possible only for the hexagonal
phase. The orientation of cubic crystals is done either with

neutron diffraction or with x-rays. It is believed that
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neutron diffraction is not a suitable method for He3 because
of the large capture cross section for this isotope and x-ray
scattering has so far been applied only to samples of a few
millimeter diameter, because the small X-ray scattering cross
section of helium requires thin container walls. On the
other hand bcc He3 is of great experimental interest. The
large deviation of the specific heat from the Debye theory

at low temperatures is as yet unexplained and sound velocity
measurements at low temperatures would at least establish

the phonon contribution to the specific heat. From a
theoretical point of view, this phase and isotope have been
studied most extensively. I have therefore investigated the
possibility of finding the elastic constants of a cubic
crystal using ultrasonic means alone. Assuming that the
crystals do not grow in preferred directions, that many
crystals can be grown and a substantial fraction of them are
single crystals, this should indeed be possible.

The method consists of measuring the longitudinal
velocity A and at least one transverse velocity Ve along the
same path and then plotting them on a (vl, vt)- graph. For
cubic single crystals the points are restricted to the two
shaded areas indicated in figure 7. These areas are

topologically identical for all cubic crystals and the co-
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ordinates of their prominent features, namely of the corners
and extrema can be expressed in terms of the elastic constants.
For most cubic elements the figure lies in the (Vl, Vt)- plane
as drawn, but for some binary compounds it may be rotated by
180°. The calculations (Nosanow and Werthamer (1965), de

Wette et ale(1967)) show that in this respect helium is

similar to most of the elemental crystals, but should the
figure turn out to be upside down the extension of the analysis
would be straight forward.

Sound velocities in polycrystals will increase the
areas and fill in the forbidden zone in the center but the
extremas and corners will not be obscured. With a sufficient
number of (vl, vt)— points it should be possible to determine
their coordinates and calculate the 3 elastic constants from
them. Five linear combinations of C117 ©15 and C,y are
obtained which allows a check for consistency. This method
works also for hexagonal materials, even better than for cubic
since the (vl, Vt)- points are restricted to ly on two curves
rather than in two areas.

Once the elastic constants are obtained it is in
principle also possible to find the orientation of the
crystal from sound velocity measurements alone (Green and

Henneke (1967)).



39

FIGURE 7

Transverse vs. longitudinal sound velocity in bcc He4, based

on elastic constants from de Wette et al. (1967).
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3. EXPERIMENT

3.1 Low temperature apparatus

3.11 Cryostat

Helium solidifies only under pressure. The high
pressure cell in which the helium crystals are grown must
therefore contain transducers to measure the sound velocity
and a window through which the orientation of the crystal can
be determined. In order to grow and anneal .a crystal, the
temperature of the cell must be controlled during a long time
within close tolerances. To meet these design parameters,

a special cryostat was built.

Crystals are grown by keeping the temperature at the
top of the pressure cell slightly above the melting temperature
with an electric heater and by slowly decreasing the bottom
temperature by pumping on a helium pot on which the cell is
mounted. The cell is in vacuum and the high pressure fill
line is vacuum jacketed to prevent it from blocking. Figure
8 shows the layout of the pumping system. An important part
of it is a pressure regulator (Walker (1959)) that can be

connected either to the pumpline for the dewar or to the



FIGURE 8

Pumping system

1. Wallace - Tiernan precision pressure gage
2, Walker pressure regulator

3. Needle valve

4, Ballast volume

5. High vacuum gage

6. Diffusion pump

7. Exchange gas container

V  Vent valve

R Connection to helium gas recovery system
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pumpline for the pot. Usually the helium in the dewar was

at atmospheric pressure and 4 K, the regulator connected to
the pot pump line and the dewar pump used in parallel with
the pot pump. The regulator holds temperatures within a few
mK in the temperature range 1.4 ... 4 K. It can very easily
be adapted to automatic crystal growth (Ackerman (1967)) by
including a low flow calibrated needle valve through which
the reference pressure in the ballast volume is slowly pumped
down and the pot temperature therefore slowly decreased.

One filling of the 280 cm3 pot lasts about 16 hours

at 2 K and it can be refilled through a needle valve in about
10 min. while pumping on it. In this way it is possible to
keep the temperature below 2 K for an arbitrary long time.
A rough estimate of the pot temperature is obtained from the
vapour pressure which is read on a bourdon gage (Model FA
145, Wallace & Tiernan, Belleville, N.J.) in the pump line.
The lowest temperature obtained was 1.23 K. The pot is sus-
pended on two stainless steel tubes, one of which is the
pumpline and the other serves as a vapour pressure bulb for
calibration of a germanium thermometer which is attached to
the pot near that bulb (Figure 9).

Optical access into the copper can is through a

vertical 13 mm tube with a room temperature window at the top
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of the cryostat. This is a very easy solution from the point
of view of cryostat construction but .eguires a window or
prism inside the cryostat and one on top of it to get a
horizontal light beam. This complicates the optical problems.
A nickel vane inside the vacuum container and at low temper-
ature can be moved from the outside with a magnet to block

the optical path so that no room temperature radiation enters.
However neither the temperature control of the pot nor the
growth of helium crystals was in any way affected by opening
or closing this vane.

Shortly after completing the measurements on longi-
tudinal sound velocity I had the unfortunate experience of
observing pressure oscillation in the helium gas above the
liquid level of the dewar similar to the oscillation in the
familiar dipstick level indicator. They increased the
evaporation rate from the previous 140 cm3/hr to about 2500
cm3/hr and prevented further experiments. I have tried to
suppress these oscillations by a styrofoam plug about half
way between the liquid helium surface and the top of the
dewar, by filling the brass head of the cryostat with styro-
foam or aluminum foil, by connecting a 10 litre ballast volume
to the dewar, by disconnecting the dewar from the recovery

line and venting it to atmospheric pressure, and by using a
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FIGURE 9

Cryostat

l. Copper can, enclosing high vacuum

2. Vacuum jacketed high pressure capillary
3. High pressure sample chamber

4, Connector to sound transducer

5. Germanium thermometer

6. Pot, filled with pumped ;iquid helium
7. Laser beam

8. Allen-Bradley thermometer

9. Manganin heater

10. Mirror

11. Adjustable mirror support
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slightly longer dewar (78 cm instead of 73 cm), but with little
success. The oscillation would sometime be absent only to
appear again spontaneously after the next filling of the dewar.
The inside of the dewar is 9 cm and it is connected to a brass
head of 12 cm inside diameter and 13 cm length through a
Corning flange (Pyrex conical pipe system, Corning Glass works,

Corning N. Y.). The round copper can inside the dewar measures

7.5 x 26 cm.

3.12 The high pressure cell

The aim of the experiment was initially to measure
not the velocity but the absorption of sound and I spent there-
fore much time in developing a suitable support for the quartz
transducers. With this support I have observed up to 72 sound
echos in liquid helium and up to 200 in solid helium. In the
first bomb that had an optical window (figure 10) I retained
this support and did some preliminary measurements at a pressure
of 58 and 128 bar with it. This chamber hangs freely from
the pressure capillary inside a copper can which is submerged
in a pumped bath of liquid helium. Crystals were grown by
cooling the chamber with exchange gas and keeping the capillary
from blocking with a manganin heater wire that runs inside it.

Not surprisingly, the success rate for making single crystals



FIGURE 10

Sample chamber 1

1. High pressure capillary
2. Lens ring seal

3. Spring

4. Sound transducer assembly
5. Quartz transducer

6. Indium O-ring

7. Quartz window
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was quite low and led me to design an improved version which
is described below. The crystals in the preliminary chamber
were observed from the top of the cryostat through a window
in the bottom of the cell using a system of two mirrors

. attached to the cell.

In the improved sample chamber (figure 1l1), crystals
were grown with a vertical temperature gradient and I made
the bottom of the cell from copper which has a high- heat.
conductivity and can carry away the heat of solidification
to the helium pot. The cell itself is made from a 2% beryllium
copper alloy which has high tensile strength, low heat con-
ductivity (compared with copper) which makes it easy to pro-
duce a temperature gradient, and is easy to machine, polish
and solder. After machining it is hardened for 1 1/2 hrs at
315° c.

The special shape of the bottom should induce nucle-
ation at the coldest spot A. One of the nuclei will then out-
grow the others as the solid liquid interfaces moves up and
act as a single crystal seed for the larger crystal higher up.
I have however no proof that this arrangement really increases
the probability of single crystal growth. It is around 50%
with the growth technique described later.

No obstacles should be in the path of the growing



FIGURE 11

Sample chamber 2

1. High pressure capillary

2. Indium O-ring

3. Electrical connection to backside of sound transducer
4. stycast epoxy for electrical insulation

5. Solid helium

6. Soft solder

7. Helium pot

8. Sound transducer

9, Window
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crystal and Dr. J.E. Vos (Delft) has told us that he sometimes
observed pinning of grain boundaries to discontinuities in
the wall of the container. My cell is a tube with window and
transducer mounted in holes drilled from the side into it.
The sound transducers are thin quartz plates of 12.5 mm
diameter plated on both sides with a layer of aluminum as
electrodes. The transducer serves also as a mirror to reflect
the light beam that is used for orientation determination out
of the cell again. Therefore the cell requires only one window
which facilitates corrections for stress birefringence, and
this window is at the same time a reflector for the sound beamn.
The advantage is that light and sound beam coincide in
direction and position and sample the same part of the crystal.
I used the greased indium O-ring technique described
by Vos and Kingma (1967) to seal the fused silica window to
the bomb. The O-rings had initially a square cross section
of 0.7 mm and an inside diameter of 15 mm. After compression
the thickness was approximately 0.1 mm. The sealing surface
on the bomb was hand lapped and polished to a mirror finish.
This seal withstands repeated temperature and pressure cycling
but fails eventually. The same technique is used to seal the
backing plates for the transducers to the cell. The center

piece of the plate is electrically insulated from the cell
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and in contact with one electrode of the transducer. The
other electrode facing the helium is grounded to the bomb.
This centerpiece is epoxied into place with Stycast 2850 GT
(Emerson & Cumming Inc., Canton, Mass.). The tapering should
prevent back reflection of sound. The surface against which
the transducer is pressed with to washer springs is lapped

and polished until a check for flatness with an interferometer
plate in sodium light shows less than one fringe over the
whole surface. This is more than adequate for a sound wave
length of approximately 0.1 mm.

The parallelism between window and transducer is not
very critical for velocity measurements. Coarse adjustment
was achieved by shining a laser beam onto the transducer and
compressing the indium O-ring until the reflection from the
transducer coincides with the reflection from the inside face
of the window. With careful tightening of the screws inter-
ference fringes are observed and circularized. I estimate

window and transducer to be parallel within about lO_3 radians.

3.13 Temperature measurement and control

I determined the temperature of the helium pot by
measuring the resistance of a germanium thermometer (Solitron

Devices, Riviera Beach, Fla.) with an isolating potential
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FIGURE 12

Electronic temperature regulator

R1
R2
R3
sl
S2
s3
sS4

Allen-Bradley thermometer, 3.5 k at T = 2.5 K

Manganin heater

Dummy heater

Thermometer current on/off

Time constant selector

Heater current on/off

left side: measure Rl, manual heater current regulation

right side: automatic heater current regulation

105 Operational amplifier, model 105 (Analog Devices)
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comparator circuit (Dauphinee and Mooser (1955) Dauphinee and
Woods QQSSL Dauphinee and Preston-Thomas (1958)). The resistance
at 2 K is about 1000 Ohm, the measuring current 10-6 Amp. and
the precision about 0.1 mK. The thermometer is calibrated
against the vapour pressure of He4 using the T58 scale
(Brickwedde et al. (1960)). For unknown reasons, but most

likely because I did not wait long enough for thermal equi-
librium, the calibration points show a scatter of £ 5 mK from
a smooth curve. For interpolation a polynom of degree 6 is

fitted by computer to the points using the method of least

squares:
S i
log T = g A, (log R) 3.1
A, = ~-28.798, A = 41.815, A, = -20.512, Ay = 3.2818,
A, = 0.42763, Ay = -0.19410, Ag = 0.016811.

The temperature at the top of the pressure cell is
found from the resistance of an Allen-Bradley radio resistor
with a room temperature resistance of 100 Ohm. It is cali-
brated against the germanium thermometer using exchange gas
to establish thermal equilibrium between the two thermometers.

This thermometer serves also as the sensing element in an
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electronic circuit that keeps the top temperature constant
and above the melting temperature to keep the pressure capillary
from blocking and provides the necessary temperature gradient
for crystal growth. It forms one arm of a Wheatstone bridge.
The out of balance dc-signal is amplified and integrated by
an operational amplifier with a time constant that can be
selected between 0.01 and 250 sec. and then amplified further
by a power amplifier which controls the current through a
100 Ohm manganin heater. This feedback loop regulates the
top temperature around 2 K to within a few mK when cooling
the bottom of the cell to 1.3 K and has a drift under stable
conditions of less than 1 mK over a period of 8 hrs. Used
together with a dummy heater and a meter for the heater
current it also serves as a thermometer. I would like to
thank Dr. J.S. Rogers for help in the design of it.

It turned out that too much heat is flowing down the
capillary (stainless stell, OD = 2.5 mm) from room temperature.
A copper wire clamped to it and anchored at the pot is enough

however to reduce the top temperature.

3.14 High pressure gas handling system.

Mezhov-Deglin (1965), who was the first to successfully

grow single crystals of helium, stresses the importance of
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purity of the initial gas and reports that best results are
obtained by cleaning it with a leak that allows passage of
superfluid helium only. On the other hand Ackerman and Guyer
(1968) have observed second sound in crystals prepared from
gas obtained from evaporating liquid helium. The sound
velocity is probably much less affected by impurities than
the sound absorption and it has to be only sufficiently high
to allow the growth of single crystals.

The gas handling and cleaning system is shown in
figure 13. The sample chamber is evacuated and flushed several
times at room temperature with cleaned gas and then cooled
with exchange gas under constant pressure of about 10 bar to
77 K. Then it is slowly pressuriZed to either 36 or 58 bar
and cooled further to 4 K, thereby sucking gas through the
U-tube that is dipped into a storage dewar. Cooling from 77
K to 4 K takes approximately one hour which should be suffi-
ciently slow to liquify all helium that passes through the
trap. A storage cylinder is used as ballast volume to maintain
constant pressure during the growth as more helium passes into
the cell. Pressure stability is therefore mainly determined
by the amount of room temperature fluctuation and always less
than 0.1 bar. I read the pressure on a Bourdon gage (Heise

Bourdon Tube Co. Inc., Newton, Conn.) to * 0.1 bar. (1 bar =
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10°N/m? = 0.98692 atm = 1.01972 kg/cm® = 10%dyn/cm?).

3.15 Crystal Growth

Crystals were grown at constant pressure and with a
constant growth rate of 2 cm/hr using a technique described
by Ackermén.and Guyer (1968). I would like to thank Dr.
Ackerman for telling me about it prior to publication. The
main idea is to keep the fluid helium slightly above the
melting temperature (about 20 mK) and to lower the temperature
of the solid helium in such a way that the solid-liquid inter-
face progresses upwards at constant velocity. Since the heat
conductivity of the solid is several orders of magnitude
higher than the liquid conductivity it can be assumed that all
the heat of melting is carried away through the solid (the
walls have a similar or smaller conductivity as solid He and
are ignored). From the known temperature dependent conductiv-
ity (Bertman et al.l1966) the temperature at the bottom can be
calculated as a function of time for a given growth rate.

Liquid helium I has a temperature conductivity
k/p.C (k = heat conductivity, C = heat capacity per gram) of
about 10_4 cm2 sec-l so that it takes about 104 sec to reach
thermal equilibrium in a volume of 1 cm3. Convective flow is

absent because of the very small thermal expansion of liquid



FIGURE 13

High pressure gas handling system
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helium. Usually I made a new crystal after melting the previous:
and waiting for one or two hours for equilibrium. I have. tried
to observe the influence of that waiting time on crystal quality
but find no conclusive results, probably because it depends
also on many other factors. However after completing the
experiments I calculated the average waiting time for the
runs that yielded single crystals and find 90 min while the
time for polycrystals was 65 min. Ackerman (1968) waits 6 to
10 hrs with a chamber of similar size.

I keep the sound switched on before and during the
growth to monitor the progress of the crystal. Since at 36
bar the séund velocity is temperature dependent near the
melting line due to the vicinity of the A ~-transition, this
also allows to check for temperature equilibrium in the liquid.
After a growth time of 60 min the liquid echo decreases in
amplitude in a fluctuating way but the time delay remains the
same. This shows that the pressure inside the cell has remained
constant. After 100 min a small, fast echo from the solid is
visible and grows at the expense of the liquid echo or, quite
often, the liquid echo disappears completely before a new
echo can be seen. After about 150 min the solid echo is stable
in amplitude, or grows very slowly (figure 20).

Another indication shows that solid helium is in

contact with the transducer: The transducer oscillates long



FIGURE 14

Temperature at bottom of sample chamber vs. time for a

constant growth rate of 2 cm/hr.
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after the 2 usec electrical high frequency pulse is stopped
because of the high Q-factor. The decay time depends on the
acoustic impedance of the load and is about 53 usec for liquid
and 35 ... 39 usec for solid helium, just about inversely
proportional to the acoustic impedance. It should in principle
be possible to measure the sound velocity at the surface via
this effect and then compare it with the bulk sound velocity
to determine crystal quality.

After the whole bomb is filled with solid, I.reduce
the heater power to zero and simultaneously raise the bottom
temperature to within 0.2 K of the melting temperature to get
equilibrium. Between 2 and 4 hrs after beginning of growth
the velocity usually changes, mostly to higher values and
seldom more than 1% in good crystals and then reaches a steady
value. I assume that during this time recristallization takes
place and the growth of large single crystals which eventually
fill the whole cell. Annealing for a longer time or closer to
the melting temperature does not increase the echos any further
and often decreases them.

I have occasionally attempted to measure the temperature
dependence of the sound absorption. In figure 15 I plot the
logarithm of the intensity of the first echo versus temperature.

The experiment extended over 3 days. While this measurement
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FIGURE 15

Intensity of longitudinal sound echo under repeated

temperature cycling. The crystal was grown at a pressure

of 36.2 bar, the sound frequency was 5 MHz, the total path

length 4.57 cmn.



LI

END

i 1 1 L1 1 1 1 1 | I | 1

100

000 086 432
<t ™M N —

(s#tun-qip) OHD3I ANNOS 40 ALISNILNI

19 Tm

14 15 16 17 18
TEMPERATURE (K)

1.3

1.2



61

is wildly irreproducible one can see fhat repeated temperature
cycling from 1.9 K to 1.3 K and up again improves. the crystal,
more so than a stay at constant temperature. The cause may

be that the temperature gradients which are invariably pro-
duced when cooling and warming offer a preferred direction

for the movement of the grain boundaries, and it appears
therefore that annealing under a gradient yields better
crystals. I would like to thank Len Vienneau.for an illu-
minating discussion on these points.

Lee, Heybey and Crepeau have recently undertaken the
same measurements, at a lower density, with crystals grown
from superfluid helium by pressurization. They report (Heybey
and Lee (1967)) that single crystals can be grown in less than
five minutes. The reason is that the heat of solidification
is carried away much more rapidly because of the high heat
conductivity of the superfluid. Since many crystals are
required for a determination of the orientation dependence of
the sound. velocity, the importance of quick crystal growth
can hardly be over estimated. The disadvantage of this method

is that only a very limited density range can be studied.
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3.2 Optics

3.2.1 Birefringence

The crystal structure of solid He4 was determined with
x-rays (Keesom and Taconis, (1938), Mills and Schuch, (1961),
Mills and Schuch, (1962), Schuch and Mills, (1962), Schuch and
Mills (1963) and with neutron scattering (Henshaw (1958),
Lipschultz et al.(1967), Minkiewicz et al.(1968) Brun et al.
(1968), to be hexagonal close packed over the greater part of
the phase diagram.

Because of the hexagonal symmetry helium is uniaxially
birefringent which means that the index of refraction is
different for light polarized parallel (= né) and perpendicular
(= n;) to the optic axis. The optic axis of a plate is the
projection of the c-axis on the plate (figure 16). Plane
polarized light will be split into two components and after

passage through the plate they will have a phase difference ¢

b = (ne - no) . d 3.2
A

d is the thickness of the plate, A the light wavelength. The

resulting light is in general elliptically polarized. I will

in the remainder of this chapter call any optical element that
introduces a phase difference between two perpendicular

components a phase plate and ¢ the retardation of the plate.



Birefringent plates

FIGURE 16
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-

The difference in the refractive indices, né - ng,
depends on the direction of the lightbeam with respect to the
crystal axis anmd in hexagonal crystals is a function of the

angle y between beam and c-axis only

P - — - » 2
n, -mn, = (ne no) . sin”y . 3.3

Strictly speaking this relation holds only for
Ine - nol4<1.which is certainly true for helium (ne-no X 10—6).
By measuring the phase difference one can therefore determine

the position of the c-axis in space and the angle y if the

birefringence is Xnown:

1
siny = @—J—L—T——jé 3.4
n 0ol g .
n - n_ was measured by Vos et al. (1967 b,c) for densities

e o
between 11 and 21 cm3/mole and by Heybey and Lee (1967) at

21 cm3/mole {see Table 1.).

TABLE 1
o} n, - n, Ref.
25 atm 2.6 * 0.1y 1076 Heybey and Lee (1967)
26 2.8 £ 0.2 Vos et al. (1967 b)
30 2.76 + 0.08 Vos et al. (1967 c)
72 2.91 =+ 0.07 Vos et al. (1967 c)
140 3.42 + 0.07 Vos et al. (1967 c)
1050 6.3 * 0.5 Vos et al. (1967 c)
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I want to emphasize at this point that it is a
coincidence that we can use birefringence to orientate the
crystals for ultrasonic work, since birefringence does not
give us the position of the a-axes. Fortunaﬁely this is not
required because of the cylindrical symmetry of the velocity
surface in hexagonal materials. Cubic materials are neither
birefringent nor do they have a simple velocity surface.

One can measure the retardation in principle with one
of the many methods suggested in textbooks of optics. These
methods become however inaccurate or unreliable in the
presence of straylight of which we have plenty due to the two
windows between the helium crystal and ﬁhe analyzing equipment.
I use therefore a similar procedure as Vos et al (1967 b). A
plane polarized beam of arbitrary polarization vector is
sent through the crystal. The resulting light is elliptically
polarized. With a quarter wave plate and an analyzer I then
determine the two parameters that characterize it, namely
the direction o of the major axis of the ellipse (measured
from some arbitrary zero direction fixed to the laboratory
frame) and the ratio tan p of the minor and major axis. I
plot these parameters for about 25 different directions of the
initial polarization vector, ezch approximately 15° apart.

The way o and p change with initial polarization obviously



FIGURE 17

Ellipticity and axis direction of elliptically polarized

light.
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depend on the properties of the plate, that is its retardation
¢ and the direction G of its optical axis and they can be
inferred from the p(a) - plot (figure 7).

I now return to a more detailed description of the
individual steps in this procedure. The first is the
measurement of p and o. To do this I place a quarter wave
plate, which is just a phase plate with ¢ = 90° with its axis
parallel to the axis of the ellipse and remove thereby the
90° phase shift between the two perpendicular components.
After the quarter wave plate the elliptically polarized light
is plane polarized. With an analyzer I then determine the
direction of polarization by setting it perpendicular to it
for complete extinction. Of course I do not know initially
where the axis of the ellipse is and have to find by trial
and error the position of quarter wave plate (=ml) and analyzer

(=n1), that results in complete extinction of the light. I

then get

3.5

This assumes that both quarterwave plate and analyzer are

properly mounted, that is the zero reading on their scale
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coincides exactly with their optical axis, but usually this
is not so. Fortunately I get complete extinction for two
different but symmetric settings of plate (m,, m2) and

analyzer (nl, n2) and can use them to calculate and eliminate

that error

=1
o =3 (nl + n2)
3.6
-1 _
p - 2 (nl n2)

The next step is the calculation of the retardation
¢ and the axis direction G of the phase plate from the p(o)~
plot. For this I make use of formulas given in Born (1965,
p. 27) that relate the shape and position of an ellipse to the
phase difference and amplitude of two perpendicular oscillations

and find for p(a)

sin®é.tan? 2(0-G) 3.7
cosz¢+tan2 2(a~-G)

sinZZp(a,¢,G) =

One can see that p = 0 for a = G and G can therefore be read

directly from the plot. To find the retardation ¢ we note

that

sin2 2p = sin2 ¢ for o =G + %
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or

¢ = 2p (=G + g) 3.8

A better way is to use the computer and find the
parameters ¢ and G in equation 3.7 that give the best fit
to the measured curve p(a). The problem has no analytic
solution like many non linear least square fits and requires
an iterative procedure.

The optical observation in polarized light allows. also
to decide whether I have grown a single crystal or not. Un-
fortunately I am too far away from the crystal, and the various.
windows and mirrors distort the image so much that I could
not see the crystal directly. However, if more than one
crystal is present it is impossible to find a setting of
guarter wave plate and analyzer that results in complete ex-
tinction of the beam. Extinction could only be accomplished
for one crystal and this setting would not block light of
another polarization. The sensitivity of the criterion is
given by the amount of stray light which I estimate at a few
percent, so that stray crystals which cover less than a few
percent of the field of view will go undetected.

Another indication of single crystals is the fact
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that the measured p(a) -curves obey the relationship 3.7 to
within the accuracy of measurement of p and a. A large
scatter s usually due to difficulties in locating the
extinction setting and means therefore that more than one
crystal is present. For single crystals the rms deviations
from the curve are of the same order (2 ... 3°) as in the

measurements with liquid helium in place of the solid.

3.2.2 Optical apparatus

Figure 18 is a diagram of the optical apparatus used
to measure the retardation. The light of the Spectra Physics
Laser (Mod. 130) is monochromatic with a wavelength of
632.8 nm, well collimated (beam spread 7.10_4 rad) and plane
polarized. The output power is 1 mW. Since the direction of
polarization is fixed, a polarization rotator was built
consisting of a quarter wave plate and a polarizer. The plate
has its axis 45° from the polarization direction of the laser
and produces therefore circular polarized light which is then
plane polarized by a plastic sheet polarizer. The beam is
then reflected into the cryostat by a mirror that can be
rotated around a vertical axis and tilted around a horizontal

axis with adjusting screws. The window is a glass disc of



FIGURE 18

Optics for the birefringence measurement (schematic)
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12 mm aperture pressed against a rubber O-ring by the atmos-
pheric pressure. Inside the cryostat is another mirror that
can be turned around the same axis as the mirror on top and.
also adjusted around a horizontal axis. The beam then enters
the pressure cell through a 12 mm thick window of fused
silica, traverses the cell and gets reflected on the alummized
surface of the sound transducer. The incoming and outgoing
beam are at a slight angle (5x10—3rad) so that the outgoing
beam just misses the laser and can be analyzed with a quarter
wave plate and an analyzer. The extinction of the light beam
is observed on a ground glass. Since the beam passes the
crystal twice, its effective length in the crystal is doubled
to 4.57 cm and so is the total phaseshift ¢.

As mentioned before the simple mechanical arrangement
leads to a number of optical problems. The reflection at the
surface of a metallic mirror introduces a phase shift between
the components of the electric vector that are parallel and
perpendicular to the plane of incidence and the reflection
coefficient for the two components are not exactly the same.
I have tried to use totally reflecting prisms instead, because
although they give also a phase difference for the two compo-
nents at least the reflection coefficient is the same for

both. I found the prisms unsuitable however because it was



73

difficult to keep the lower prism at constant and uniform
temperature and it showed stress birefringence varying with
time and temperature due to nonuniform thermal expansion of
the glass.

If we are only interested in the state of polarization
of a light beam and not its direction we can represent a
mirror through a phase plate. Its axis is in the plane of
incidence and its retardation is equal to the phase difference
¢ for reflection of parallel and perpendicular component and
can be calculated from electromagnetic theory. The reason is
that it does not matter for a mathematical description of the
beam by which mechanism the shift has been produced in an
element. (I have assumed here that the difference in re-
flection coefficient between the two components can be neg-
lected. It is 7% for aluminum mirrors and its influence will
be discussed later).

The problem is now how to measure the birefringence of
a plate that can only be observed through a series of phase
plates, two of it being the "mirror"-plates and one the high
pressure window which might show stress induced birefringence.

Vos et al. (1967 b) have solved that problem when only
one plate is present, namely the birefringent window. The

solution is based on a matrix calculus invented by Jones
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(1941 a,b,c) in which optical elements are represented by
matrices and a series of elements by matrix products. It
involves measuring the retardation ¥ and the axis direction
p of the combination of helium crystal and window and the
retardation B and axis direction b of the empty cell. The
retardation ¢ and axis direction g of the helium crystal

alone is then

1, - -p) .sintp.sind : 1
cos §¢ = cos2(b p).51n2w‘51n28 + coszw.coszs
3.9

sin2(b-g) = sin%w . sin2(b—p)/sin% 0

This solution is easily adapted to the case of
compound windows. Jones (1941 b) shows that a series of phase
plates can be represented mathematically by one single phase
plate and a rotation of the coordinate system. The rotation
affects only the axis direction g of the crystal, in which
we are not interested anyway, but otherwise the same formula
as for the singie window case apply, only B and b are now
the retardation and axis direction of the whole optical
system but without the helium crystal, or with liquid helium

which is not birefringent.
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3.2.3 Errors in the orientation measurement

The assumption made above that for metallic reflection
the reflection coefficient is identical for components parallel
and perpendicular to the incident plane needs some justifi-
cation. It is very difficult to treat the whole optical
system mathematically without making that assumption and I
will therefore only examine what happens to the p(a) -curve
of a single metallic mirror and an angle of incidence of 45°,
Then I will verify experimentall& that egation 3.9 can indeed
be used for a train of mirrors. For an aluminum mirror at 45O
incidence the retardation is 168° and the ratio of the re-
flection coefficients is 0.927.

The axis direction of the equivalent phase plate
remains unchanged, since this involves only the reflection of
one component, and the reflection coefficient for the other
does not matter. If both incident components are equal, that
is for a = G + 45° and one of them is reduced by 7% more than

the other through the reflection, this is equivalent to a

1

rotation of the coordinate system by an amount (tan ~— 0.927)

- 450, in other words a distortion of the a -axis by a maximum
of 2°. This is within the accuracy of measuring a.
For the experimental verification I put a mica phase

plate at room temperature in place of the helium crystal and
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measure its phase difference through the cryostat. Giving it
3 different orientations gave the same results within 1° and
agreed with a direct measurement to within 1°. The retarda-
tion of that plate was 28°. with a 67° ~-plate, consistency
was again 1° and the deviation from the direct measurement 2°.
The total retardation B of the empty cryostat was 32° at

room temperature.

During the actual run B changed to 80° and the empty
cryostat had to be measured at frequent intervals. This could
be due to formation of an oxide layer on the mirror or a
change of the complex refractive index of the bottom mirror
with temperature, and an uncertainty of 5° for ¢ is probably
more realistic. The corresponding error in the orientation ¥y
is greatest for B = 0° and B = 90° since dy/d¢ is infinite
there. This is an unfortunate aspect of the birefringence
method since these are just the direction of prime interest.
Around y = 10° and Y = 80° the uncertainty is of the order of

o

+ 10°, going down to * 5° at y = 45°,

The error due to the uncertainty of crystal thickness

is negligible compared with this, but the uncertainty in the

birefringence n, - n, of about 3% contributes 1° at Y = 450,

going up to 7° at Y = 70°.



77

3.3 Ultrasonics

3.3.1 Electronics

The sound velocity was measured with the pulse echo
method. A high frequency pulse of 10 MHz and 150 Vpp amplitude
is applied to a piezoelectric quartz crystal of 12 mm diameter
for 2 psec with a pulse repetition frequency of 100 Hz. The
transducers for longitudinal sound are X-cuts, for transverse
I use AC-cut plates. The transducers resonate mechanically
at that frequency and send a sound pulse through the helium
which is reflected, travels back and is picked up again by the
same transducer which converts it into an electrical signal.
The time delay between the initial pulse and the echos is
measured with the calibrated delayed sweep of an oscilloscope.
The total path length is obtained from a flight time measure-
ment in liquid helium and the known sound velocity of liquid
helium (Vignos and H. Fairbank 1966). I have also determined
this velocity at 4.13 K in the pressure range from 20 to 50
bar by measuring the cell dimensions at room temperature with
a micrometer and get values which are higher by about 0.2%,
which is well within the combined errors.

Figure 19 is a schematic diagram of the circuitry.

All components except the matching network are commercially



FIGURE 19

Electronics for sound velocity measurement.
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available. As pulsed oscillator I used part of a Sperry
Ultrasonic Comparator (Sperry Products Inc., Danburry, Conn.).
The pulse amplifier of that unit failed repeatedly and I
replaced it therefore with an Arenberg wideband amplifier
(Arenberg Ultrasonic Laboratory, Jamaica Plain, Mass.) with

a bandwidth from 0.7 to 70 MHz. This corresponds to a rise
time of about 0.02 usec which is much smaller than the rise
time of the pulse generator (0.1 usec). After amplification
the pulses are rectified and displayed on a Tektronix Model
556 oscilloscope which is triggered by the Sperry unit. Its
delayed sweep was calibrated with a crystal controlled counter
(Transistor Specialities Inc., Plainview, L.I.) of a rated
accuracy of 3 parts in 107 and found to agree with the dial to
within 0.1%. This calibration was repeated after one year

and no change in accuracy was observed.

To increase the accuracy of the time measurement I
read the time from the trigger to the leading edge of as many
echos as possible (always more than two) and made a linear
least square fit through a plot of time vs. echo number. The
slope then gives the averaged‘time between two echos while
the intercept represents the sum of the delays in the elec-
tronic circuits probably associated with finite trigger rise
times. A similar although smaller effect was also seen by
Vignos and H. Fairbank (1966) who attribute it to a delay in

the conversion of mechanical into electric signal. It is of
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the order of 1 or 2 usec in our case, depending on the time
base setting of the oscilloscope and can therefore not be
neglected.

The accuracy of the time measurement is limited to
0.1 usec by the risetime of the pulses and to 0.1% by the
resolution of the dial of the calibrated sweep. Since the
velocity data used to calculate v are accurate to 0.3% I
estimate the absolute error in v to be about 0.5%. Using the
same equipment, the resolution of the time measurement can
be increased by displaying with high time resolution (0.05
usec/cm) a portion of an unrectified echo with fixed delay
and observing the phase shift of the echo. The jitter in the
delayed sweep of 0.01% sets the limit for the sensitivity.
I found it convenient to record the shape and amplitude of
the echos during crystal growth. This was done with a boxcar
integrator (Princeton Applied Research, Princeton, N.J.) and

a chart recorder (figure 20).

3.32 Matching

The impedance of the quartz transducer at resonance
is of the order of 1 MOhm in parallel with the electrode

capacitance C of 10 pF, while the impedances of amplifier and
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oscillator are around 50 Ohms. The capacitance represents

a short circuit to the high frequency pulse and a much higher:
oscillator. amplitude is required than if C were absent. The-
usual procedure is to put an inductance in parallel and tune
the resulting LC-circuit to resonate at.the mechanical reso-
nance of the transducer, but this has the disadvantage to
require critical tuning, which may not survive during cooling
of the apparatus and more seriously, it works only for one
frequency. A solution which solves both this problem and the
mismatch between oscillator and transducer is found from
transmission line theory (Skillig(i95lL p. 337 f£f). This
theory says that a transmission line can be used as an im-
pedance. transformer if its length is comparable to.the wave-
length of the electromagnetic wave that it transmits. At 10
MHz the wave length is about 20 m, and since the coax cable
between equipment and transducer is 3 m that is. the case. The

complex input impedance ZL of a cable with cable impedance Zo

and length a for a load Z1 and a wave vector k is given as

B =5 (1o oL _-2ika), (1, S0 °L _-2ika
i 0 % +&_ % +Z
o L 0o L

Various graphical ways exist to evaluate this ex-

pression (Smith (1944)). The first thing to do is to calculate



82

FIGURE 20

Sound echos in liquid and solid helium during crystal growth

The elapsed time since the start of growth is given in minutes
beside each chart recorder trace. Between 0 and 90 min the
echos correspond to propagation in liquid helium. After 10
min. a small echo from solid helium is observed and grows

to reach a maximum amplitude at 240 min. In order to observe
the small echos in solid helium the amplifier gain was set.
very high. The smaller sound absorption in liquid helium
then yields echos so large that the amplifier saturates and
they appear with a clipped off top and constant amplitude on
the recorder trace. The irregular shape of the multiple
echos is not well understood but may be due to resonance and

interference effects in the amplifier.



OOOOOOO
® ® & =Z & B8 & = § 8

N o



83

the input impedance of the coaxcable on top of the cryostat
for the desired frequency from its known length and charac-
teristic impedance (50 Ohm) and from the known load. The rest
is then a room temperature problem, namely matching this
calculated impedance to the amplifier and oscillator.

This again can be done with transmission lines by
connecting various impedances along the line from generator
to load and in parallel to the load and is referred to in the
literature as double stub matching. Again the place of.
connection and magnitude of. the necessary matching impedances
can be calculated in principle. 1In practice the parameters
of that calculation, namely. the generator and load impedance.
and the characteristic impedance of the cable inside the
cryostat (# 39 copper wire in a stainless steel tube of 0.8 mm
ID) are not known too well. I have therefore adapted the basic
layout of a double stub matching network and terminated the
stub ends with a variable capacitor or inductor and find by
trial and error the setting of these terminations that yield

maximum signal into the amplifier.
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4, RESULTS

4.1 Sound velocity in hcp He4 as a function of. crystal

orientation.

The velocity of longitudinal sound for different
orientations was measured for pressures of 36, 58 and 128
bar. Table 2 gives total path length 2x1l, birefringence
n, - n, (Vos et al. 1967 c), molar voluﬁe V and melting

temperature T (Grilly and Mills, (1959), (1962)x for

these experiments.

TABLE 2
P 2x1 ne-ng6 g T
(bar) (cm) (x 10 ) (cm™/mole) K

36.0x0.1 4.57 -+ 0.01 2.77 + 0.08 20.32+0.01 1.949£0.005
58.0+0.1 4.09 + 0.01 2.85 * 0.08 19.28+0.01-2.52420.005

128.0+0.1 7.17 # 0.02 3.35 + 0,08 17.33+0.01 3.924+0.005

The first experiments at 58 and 128 bar were done with the
preliminary bomb. Only two points were measured at 128 bar,
both giving the same orientation y = 46° and velocity vy =
748m/sec. At 58 bar a total of 60 crystals were grown

(figure 21). The large scatter in the data, which is outside
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the estimated error in velocity and orientation is probably
due to . an unsatisfactory optical arrangement that could not
detect .polycrystals. The light beam has to pass 3 mirrors
between laser and helium crystal and it is likely that it is.
cut off at the edges and does not cover the whole cross. section
sampled by the sound beam. The criterion of total extinction.
to establish whether a single or polycrystal is present then
loses its power and the data suggest that it fails frequently:
in this arrangement. If another criterion is chosen for the
quality of the crystals namely the number of echos that could
be detected, the picture improves.sqmewhat. (Black dots in
Figure 21 are samples that showed more than 6 echos). 1In any
case it is clear that the two points at 128 bar have to be
regarded with caution.

I designed therefore another sample container with
a copper bottom that should provide a better nucleation point
than the quartz window of the preliminary cell and had a
horizontal optical path which reduced the number of mirrors
to. 2, and thereby increased the success rate for single.
crystals from 5% to 50%. A further improvement would be to
have windows in the side of the cryostat and eliminate the
mirrors altogether. This is also the set-up chosen by Lee's

group (Lee et al. (1969)), and it allows direct visual in-



FIGURE 21

4
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Longitudinal sound velocity in hcp He”, V = 19,28 cm3/mole.

Full circles are.from crystals with more.than 6 echos.
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FIGURE 22

Longitudinal sound velocity in. hcp He4; v = 20.32 cm3/mole.
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FIGURE 23

Anisotropy of sound velocity in hcp He4.

All velocities are multiplied with a normalization factor

to give a longitudinal velocity of 600 m/sec at y = 0.

NW Nosanow and Werthamer (1965)
GKW Gillis, Koehler and Werthamer (1968)

LCH Lee, Crepeau and Heybey (1969)
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spection of the crystals.

With this new container I have grown 42 crygtals
(figure 22) at a pressure of 36 bar. For 25 of thesé I
determined the orientation. Of the remaining 17 crystals, 10
showed only one sound echo of an intensity that was smaller
by a factor 10 or more compared with the other samples. Three
samples had small spurious echos with a delay of about 80% of
the delay for the first echo, which I interpret as a refleétion
from a grain boundary. Since.there is a discontinuity in the
wall of the container at the corresponding distance (the
window hole pierces through the wall) it may be that crystal
growth is disturbed at this point. Three samples were lost
through melting when I tried to anneal them very close to the
melting temperature. Three more samples were lost for other
reasons, such as running out of liquid helium in the dewar..

When it turned out that some of the remaining 25 points
showed scatter larger than expected from an error analysis,
their growth record was re-examined and I found. that one had
drifted 1% in velocity during the orientation measurement.
Three others had the lowest number of echos of all the 25
samples, namely 3 and I rejected them so that finally 21 points
remain. These criteria are arbitrary and are only justified

because the scatter gets smaller as the demands on crystal
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quality are raised.

The measured anisotropy of the longitudinal sound
velocity can be compared with Lees measurements at a smaller
density (Lee et al., 1969) (Figure 24) and with two theoretical
calculations (Nosanow and Werthamer (1965), Gillis et al.:
(1968)). As a guide to the eye, I have drawn a iine in
Figure 22 which represents the calculations of Gillis et al.
for a molar volume of 19.2 cm3/mole, but multiplied all their
velocities with 0.915 to get a best fit to the measured points.
Figure 23 includes in addition the results of Lee et al. and
of Nosanow and Werthamer, all multiplied by a scale factor to
give a velocity of 600m/sec for y = 0. I have thereby assumed
that the anisotropy is the same for different molar volumes.
Within the limited accuracy of this measurement there is
quantitative agreement between all four results, with the
measurements being slightly in favour of the calculations of
Gillis et al. Also shown in figure 23 are transverse veloc-
ities, multiplied by the same scale factors. Our results,
calculated from the elastic constants obtained in section 4.3
are between the experimental results of Lee et al. (1969) and
the theoretical results of Gillis et al. (1968) and have
gualitatively the same dependence on the angle y. For clarity,

the data of Nosanow and Werthamer are shown for the directions
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[0001], [0110] and [0111] only (y = 0°, 90° and 46°417%).

I have measured the transverse velocity and orientation
in one sample at 36.0 bar and get 319 m/sec at y = 62°. With
the scale factor chosen for a best fit to the longitudinal
velocity, this point agrees well with the theoretical and
scaled down velocity of Gillis et al. (1968) and also with
the velocity calculated from our elastic constants.

To my knowledge this is the first observation of
transverse sound in a He4 crystal that was not prepared from
the superfluid. Growing crystals from superfluid helium is
thought to be the easiest method and to give the best single
crystals and from my experience it is more difficult to
observe transverse sound than longitudinal. This may be the
reason for the lack of observations of transverse sound above
29 bar. Lipshultz and Lee (1965) have measured transverse
velocities in unoriented samples around 25 atm and obtain
values between 230 m/sec and 315m/sec and Lee et al. (1969)
finds 225m/sec for the smallest and 309m/sec for the biggest
velocity in oriented crystals at the same pressure.

To answer the question whether the observed anisotropy
in hcp He4 is in any way unusual, I have calculated the veloc-
ity surface of all 16 hexagonal crystals for which the elastic

constants are available (Landolt-Bornstein, (1966)). It turns



FIGURE 24

Sound velocity in hcp He4, according to Lee et al. (1969)

V = 20.97 cm3/mole.
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out that there is some correlation between the ratio of. the
crystallographic axes c/a (Crystal Data, 1963) and the shape

of the velocity surface. This ratio is obtained from x-ray

or neutron diffraction and is 1.63 for hcp He4, nearly identical
to the ratio for close packed spheres, c/a = (83)% = 1.63299.

In crystals that have the same c/a as helium, such as Co

(1.62), Mg (1.62) or Ice (l1.63), the anisotropy is quali-
tatively the same with the highest velocity occuring in the
direction of the c-axis and a minimum around 55°. This is

also the case for a simple theoretical model of a hexagonal

solid with harmonic springs between nearest neighbours, for
which Cy13C1piC13iC33iCyy = 29:11:8:32:8 (Leibfried, a955”.

In crystals for which c/a deviates much from 1.63, for
example in Cd (1.88), Zn (1.86), Apatite (0.73) or Beryl (1.00),
the anisotropy is quite different (figure 25) and it appears
therefore that it is given to a large extent by the shape of
the elementary cell and not so much by the exact nature of the
interparticle potential. Helium seems to be no exception to
that rule.

I conclude this section with a comment on growth in
preferred directions. If the single crystals would grow or

recristallize from polycrystals in a random way, the number of

measurements would be proportional to sin y, that is, we would



FIGURE 25

Longitudinal sound velocity in hexagonal crystals.

All velocities are multiplied with a normalization factor

to give a longitudinal velocity at vy = 0 of 600m/sec.
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see much more crystals with y = 90° than with Y = 0°. It is
obvious from figure 22 that this is not the case. Growth in
preferred directions might be induced by irregularities at the
nucleation point or by the temperature gradient during growth
and annealing which in our case is perpendicular to the direc-
tion of observation. If the c-axis would be preferentially
along the gradient we again would measure much more crystals
with y = 900, which we do not. All we can therefore say at
present is that we observe nonrandom distribution of orien-

tation and that the c-axis is not likely to coincide with the

temperature gradient.

4.2 Sound velocity as a function of molar volume

The compressibility of solid helium is about lO3 times
higher than that of sodium or about lO5 times that of diamond.
It is therefore possible to reduce the molar volume of helium
appreciably with modest pressure and to measure the volume
dependence of the sound velocity or of other propertieé of
solid helium. The former is perhaps the most stringent ex-
perimental test that can be applied to lattice dynamics in the
long wave length limit. It should be remembered that its
primary aim is to calculate the energy of the solid, and that

the volume derivative of the sound velocity involves the third
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derivative of energy with respect to volume (the first gives

the pressure, the second the compressibility).

In figure 25 I compare the measured sound velocity

along the c-axis (y = 0) and at vy = 45° from the c-axis with
values observed by Lee et al. (1969 b) at a molar volume of
20.97 cm3. Also shown are sound velocities calculated with
equation 2.38 from the phonon spectrum of hcp single crystals.
This was obtained from inelastic neutron scattering by
Minkiewicz et al. (1968) at Vv = 21.1 cm3/mole and by Brun et
al. (1968) at V = 16.0 cm3/mole. The black dots represent
measurements by Vignos and H. Fairbank (1966) on polycrystals
or possibly single crystals of unknown orientation.

The different measurements agree within the error
limits although the sound velocities of Lee et al. (1969) seem
to be somewhat low. I have therefore calculated the Debye
temperature from their elastic constants and cobtain &, =
2.58 K which is also lower than Edwards and Pandorfs value of
26.1 K at that volume. The Bulk modulus K © obtained from
equation (2.36) is also 10% lower than measured by Jarvis et
al. (1968). The data of Vignos and H. Fairbank show a smaller
anisotropy than our measurements. The explanation may be that
the largest velocities occur in directions around the c-axis,

and these directions have a small probability of occurring if



FIGURE 26

Longitudinal sound velocity in hcp He4

(double logarithmic).
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we assume crystal growth with random orientation. 1In addition
the lower velocities are associated with large deviations
between wave vector and beam direction and could therefore

not have been observed by Vignos (see section 2.3).

To discuss the volume dependence of the sound velocity
and to relate it to the volume dependence of the Debye temper-
ature, the compressibility and the second sound velocity I
will introduce the Griineisen constant y and begin with a review

of its various definitions:

1) Mode Griuneisen constant

) dlog w (g,s) 4.1
Yq,s d log V

This is a microscopic quantity where w (q,s) is the frequency
of a phonon with wave vector g and polarization s. V is the
molar volume. In general q,s will depend on orientation,
polarization and frequency of the phonon, and the molar
volume of the solid and the temperature. The various macro-
scopic definitions of the Griineisen constant will be averages
in which different frequencies, polarizations or orientations
will have a different weight, depending on the macroscopic
quantity.

Griineisen's assumption was that in a lowest approxi-
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mation all modes would have the same volume dependence, in
which case the various definitions of y will all give the
same value. In a real solid, this need not be so, nor will

the Griineisen constants be independent of volume or temperature.
2) Grilneisen constant from sound velocity

In the long wave length limit, where there is no

dispersion and

wlg,s) =q . v 4,2

we find
- _ dlog % 1 ,
s dlog V 3 4.3

where Vg is the sound velocity in direction q. Y depends

on direction and polarization s (= l’tl’tz)‘

3) Grineisen constant from Debye temperature

_ _ dlog 9, 4.4
D dlog Vv

Oo is the Debye temperature at absolute zero. This is the
quantity usually referred to without specification in the

solid helium literature. Expressing @O in terms of sound
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velocities
1 -1
3 . df) 3 4,5

and differentiating with respect to log V we get

_ -3 -3
Yp = é S Y + Vg dQ/é J Vg an 4.6

Under the assumption of elastic isotropy and for a typical
_ 1 . . .
case of Ve =5V, (Vl and Ve being the longitudinal and

transverse velocities) one gets,
Yp = (16vL + v;) / 17 = v, 4.7

Since the transverse modes contribute much more to the Debye
temperature than the longitudinal, the Debye Grilineisen

constant will also reflect their dominance.

4) Griineisen constant from compressibility:

dlog v
v, = - k 1 4.8
k dlog V 3

where Vi is a quantity with the dimension of a velocity

defined as

4.9

|
NI
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p is the density, K the compressibility at absolute zero.
K can be expressed in terms of the elastic constants which
in turn are obtained frum the sound velocities. If we know

their volume derivatives. Yy can be calculated exactly. For

the isotropic case

2

= (yl.vl - %thi) / (Vi - %vi) 4,10

Yk

The above relations all concern the behaviour of long wave .
length phonons at 0 K and do not depend on any assumptions

about the equation of state, while the next definition does.

5) Gruneisen constant from thermal expansion

__o.v _ VvV dp
Yo = " F = & - <dT)v 4,11

It can be shown by thermodynamic arguments (Edwards and
Pandorf, (1965)) that Yq is independent of temperature and
equal to Yp if the specific heat can be written in the form

CV(T,V) = f(T/OO) where @o is a function of V only.

6) Gruneisen constant from second sound

dlog Vi1

Y11 = T deg v 4.12

[OS1) o

+

Since the second sound velocity depends on the first
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sound velocity (equation 2.39) in such a way that the trans-
verse velocities are weighted even heavier than in the Debye
temperature, we would expect that Y11 would be very close to
Yo but nothing definite can be said before the anisotropic

case is calculated.

The experimental information on Grilneisen parameters
is collected in table 3. We note that both the compressibility
and the Debye temperature give values for Yp and Vi that are
lower. at smaller molar volumes. This is in agreement with
the volume dependence of the sound velocity which also decreases
with smaller molar volume as can be seen from figure 26, and
also with the neutron diffraction data at 16.03 cm3/mole, which

shows the decrease of the slope dlog v/ dlog V.

The Griineisen parameter for longitudinal sound that
we observe is the same for the two directions of propagation
that were investigated and is Y, = 3.0 + 0.1 for a volume of
20 cm3. This is larger than the Debye Grilineisen parameter
Yp = 2.6 at this density. We can ask how large the transverse
Y would have to be to give the correct Debye Griineisen constant
Yp and I find, by trying different values of Y in equation
4,6 that Ye = 2.54., I have assumed that Ye is the same for

both transverse branches and independent of orientation. Let
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Griineisen constants of hcp He".

Parameter Density Range Reference

Ylongitudinal

(y = 0°) 3.0 + 0.1 19...21 cm3 This work
Ytransverse
(y = 45°) 3.0 £ 0.1 19...21 This work

Yp 2.6 £ 0.05 16.5...21 Edwards and
Pandorf (1965)

Yp 2.4 12...16 Dugdale and
Franck (1964)

Yp 2.5 12...20 Heltemes and
Swenson (1962)

Yp 1.02 + 0.083.v 13.7...20.5 Ahlers (1967)

Yy 2.8...3.2 16.5...21 Edwards and
Pandorf (1965)

Y 2.4 12...16 Dugdale and
Franck (1964)

Yy 3.06 17.5...21 Jarvis et al.
(1968)

Yy 1.6 - 2.0 6...12 Stewart (1963)

Vs 2.5...2.9 17.5...21.0 Jarvis et al.
(1968)

YII 2.9 17.5...20.5 Ackerman and

Guyer (1968)
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us now calculate the volume dependence of the compressibility,
based on Yl = 3.0 and Y = 2,54, To do this I calculate the
sound velocities at two volumes V and V + dV, (using the
anisotropy of Gillis model), from these the elastic constants
and the compressibilities from equation 2.36 and finally Vi
from equation 4.9 for both volumes. I obtain Y = 3.2 which
compares well with values obtained from measured compress-
abilities at 20 cm3 (table 3). The observed volume dependence
of the longitudinal sound velocity is therefore consistent
with calorimetric data.

The work of Jarvis et al. (1968) has shown that the
assumption that solid helium obeys a reduced equation of state,
that is CV(T,V) = f(T/@o(V)L is not justified and therefore
no simple comparison can be made with the parameter Yoo
derived from thermal expansion measurements. It is also not
clear why the parameter from the second sound velocity, Yir <
2.9, differs so much from Yt’ but more detailed work on second
sound, both experimental and theoretical, is needed to discuss
this point further.

We finally compare the volume dependence of the longi-
tudinal sound velocity with theoretical calculations of Nosanow

and Werthamer (1965) (NW) and of Gillis, Koehler and Werthamer

(1968) GKW). For simplicity, figure 27 shows only the
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FIGURE 27

Theoretical and experimental longitudinal sound velocity

in the c-direction in hcp He4 (double logarithmic)

NW Nosanow and Werthamer (1965)

GKW Gillis, Koehler and Werthamer (1968)

The experimental curve is the same as in figure 26.
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velocities in the direction of the c-axis. We see that both
theories agree well with the observation at a molar volume of
20 cm3, but also that the volume dependence is not satisfactory
and leads to discrepancies of 20% in v, at high and low molar
volume. Stated in other words, the theories predict Griineisen
parameters .of Yy = 0.7 (GKW) and Yy = 1.0 (NW) in disagreement.
with our observed value of Y, = 3.0.

Which approximation in the theory is mainly responsible
for this is not clear at present and different possibilities
are discussed by Gillis et al. (1968):

In both calculations 3-particle short range corre-
lations. were neglected. We would expect that at smaller
volumes, where the motion of the particles is more restricted,
these would play a more important role. They have been in-
cluded in a calculation of sound velocities at different
densities for bcc He3 by de Wette et al. (1967) and change
the Griineisen parameter Yy from 1.0 (only 2-body terms in-
cluded) to 1.3 . They also found that the cluster expansion
converges less well for the hcp phase so that the inclusion of
3-body terms might lead to more significant improvements in
this phase.

Nevertheless it is thought that the main cause of the

discrepancy is the particular analytic form (equation 2.13) of
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the correlation function £, which has the advantage.of pro-
ducing a quickly converging cluster expansion. A better
correlation function would improve the theory at small volumes
and at the same time lead to a better convergence, which is
needed for the hcp phase. Work in progress on this problem
has been reported at the Aspen Quantum Crystal Conference
(1967) by Horner and Guyer and Nosanow.

Another approximation to be checked is the inter-
particle potential which may not be well represented by a
Lennard-Jones potential (Munn and Smith, (1965)). However
since the large zero point motion produces an average over
this potential its detailed behaviour is probably of minor

importance.

4.3 The elastic constants of solid helium

Of the five elastic constants of a hexagonal crystal,
only four (cll, Cy3r C337 c44) determine the longitudinal
sound velocity; cy, can only be determined from the pure
transverse mode. Of these four constants only two can be
obtained directly from the present set of measurements with
sufficient accuracy: Cy3 from the longitudinal velocity in

the basal plane and C3s3 from the longitudinal velocity in the

c-direction.
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To determine the remaining constants we may use the
longitudinal velocity at y = 450, published data for the
compressibility and a relation between four of the elastic
constants that holds for all hexagonal crystals provided they
do not change their shape under hydrostatic pressure.

Solid helium satisfies this condition very well at
least up to a pressure of 1100 bar and probably beyond as can
be seen from the observed variation of the ratio c/a of the
crystallographic axes with pressure (table 4). The most
accurate determination of c/a comes from birefringence
measurements because these are sensitive to deviations from
the ratio for close packed spheres, c/a = 1.€23299, while
neutron and x-ray diffraction experiments measure c and a
separately. The c/a ratios calculated by Vos et al. (1967 b,
1967 c) using the theory of Kronig and Sonnen (1958) change
only by 3 parts in lO4 for a volume change from 12.5 to 20.6
cm3/mole. This implies that the linear compressibility (the
relative decrease in the length of a line when the crystal is
subject to hydrostatic pressure) must be the same in the c-
direction and in the a-direction in solid helium. The ex-

pression for the linear compressibility in a hexagonal crystal

is (Nye (1964), pe.1l46)



109

(896T)

UOT3ORIIITP UOIINSN

N
UOTIDRIFITP Aea-X X
g

Sousbutagaatg

Ay

*Te 38 ‘unag N 100°0 8829°T €0°9T LZ?
(896T) “T® 3I1® ZOTMOTIUTIW N €00°0 F 8€9°T T°T¢ St
(656T) onyouoq
Aq uoTtjzernotreosy N #00°0 ¥ ZI9 T -16°8T 99
(8G6T) Mmeysusy N €0°0 ¥ €9°1 TG°8T 99
(696T) ISTTSN Aq pozond X G00°0 ¥ L6S°T voLT 62T
(€96T) STITW Pue yonyos X - LZ9°1 poLT 62T
(z96T) uyonUds pue STTIW X 600°0 ¥ 829°T 99°0¢ L 62
(2 L96T) °T® 3® Ssop g ¥2€9°T G°CT 0501
(2 L96T) °T® 3° soa g ZAX R 0°LT 0vT
(2 L96T) °"Te 3® sop g €2€9°T 8°8T1 zL
(0 L96T) °“T® 3@ sop g 0Z€9°T 9°02 o€
(d L96T) *T® 3@ soa q S00°0 F 2€9°T 6°0C 9z
AmHoE\mEov (uze)
souUaIaJFey x POUISOW ©/0 SUMTOA 2INSSvIg

14

y dT9VL

®H doy x03 e/o saxe otydexborTeysikio oy3z JO oTaeyd



110

(Can=Cra) = (CaatCqan=C..=C.,) cos2
B(y) = 3313 337%137%117 %127 - Y 4.13
(cyitcyp)egy = 265

where y is the angle between c-axis and the direction of the

line. The condition 8(0) = 8 (90°) leads to

- C;, =0 4.14 .

+ C 12

- C

C33 13 11

and the volume compressibility K0 becomes now

Ko = 3/ (c33 + 2cl3) 4.15

From published values for K and the previously determined
constants Cy3 and Cyy We obtain 3 from equation 4.15 and
then Cyg from equation 4.14. The three constants c;,, Cj; and
C33 together with the longitudinal velocity at y = 45° finally
yield Caqa from equation 2.33.

Values for the isothermal compressibility in the
density range of interest have been published by Edwards and
Pandorf (1965) and by Jarvis et al. (1968). Since the temper-
ature dependence of Edwards and Pandorf's isothermal com-
pressibilities is in conflict with the measurements of Jarvis
et al. and also with our measurements on the temperature de-

pendence of the sound velocity, we consider Jarvis data more

reliable. We find by interpolation of their measurements to
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the densities of our measurements for the compressibility at

0 K, K, = 0.309 x 1078 cm2/dyn at V = 20.32 cm3/mole and

0.218 x 10-'8 cmz/dyn at 19.28 cm3/mole. The corresponding
velocities at y = 45° are 517 m/sec and 596 m/sec, res-
spectively. A correction would have to be applied to all
velocities to get the elastic constants at 0 K because of the
variation of the velocities with temperature. This correction
of about 0.2% however is small compared with the errors in

vy and is therefore ignored. . The full set of elastic constants
obtained in this way is shown as a function of molar volume

in figure 28. Table 5 gives numerical values together with
constants directly determined by Lee et al. (1969) from their
measurements of longitudinal and transverse velocities. Also
shown are elastic constants obtained with equation 2.33 from
published theoretical sound velocities. We estimate the
accuracy of our constants to be t 4%,

These constants can now be used to calculate the
velocities of the transverse modes and the velocity of second
sound from equation 2.33 and 2.39 (Table 6). The one measure-
ment of the transverse velocity at 20.32 cm3/mole is 2.5%
lower than the value of 327 m/sec calculated from the elastic
constants, which we consider satisfactory agreement.

Interpolating second sound velocities reported by
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FIGURE 28

Theoretical and experimental elastic constants of hcp He

vs. molar volume.

NW Nosanow and Werthamer (1965)
GKW Gillis et al. (1968)
LCH Lee et al. (1969)

FW This work.
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TABLE 6
Longitudinal, transverse and second sound

Velocity for different orientations ¥y

vV = 20.32 cm3/mole
¥ V1 Vel Ve ViI
0° 600 m/sec 267 m/sec 267 m/sec 157 m/sec

10 595 267 275 159
20 579 266 296 163
30 554 264 322 166
40 528 263 345 l67
50 510 261 352 167
60 508 259 335 165
70 517 258 305 162
80 525 257 278 157
90 528 256 267 154
VvV = 19.28 cm3/mole.

Y V1 Vel Vi2 VIiI

0° 687 m/sec 307 m/sec 307 m/sec 180 m/sec

10 681 306 316 183
20 663 305 338 187
30 637 302 367 - 190
40 608 299 391 190
50 588 295 398 188
60 585 292 380 186
70 593 289 348 182
80 602 287 319 177

90 605 287 307 174
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Ackerman and Guyer (1968), we find 130 m/sec at 20.32 cm3/mole
and 170 m/sec at 19.28 cm}ﬁole. It is not clear at present
why the measured velocities are smaller than the values shown
in table 6, but it should be remembered that equation 2.39
assumed elastic isotropy which is certainly not the case in
solid helium. Qualitative agreement exists between the
angular variation of the second sound velocity observed by
Ackerman and Guyer (1968) and our data.

I have also calculated the Debye temperature at 0 K,
Oo, by numerical integration of equation 2.35 and obtain Oo=
28.8 * 0.6 K at 20.32 cm3/mole and OO = 33.2 £ 0.6 K at 19.28
cm3/mole in good agreement with calorimetric values of 28.3 K
and 32.5 K, respectively, reported by Edwards-and Pandorf
(1965) .

It is remarkable that one of the Cauchy relations,
Cpg = Cp37 (equation 2.40) is satisfied very.well, especially
at the higher densities. This is the relation that depends
on the assumption of central forces. The other, Cyp = 3c12,
which requires in addition that each atom is a center of

inversion symmetry, does not hold however, as is expected in

a hcp lattice.
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4.4 Sound velocity as a function of temperature

Using the high resolution method for measuring small
velocity changes described in section 3.31 we have measured
the temperature dependence of the sound velocity at a volume
of 20.42 cm3/mole (p = 34.2 bar) between 0.7 K and the melting
temperature of 1.9 K. We used a He3 cryostat of conwventional
design and a high pressure cell similar to sample chamber 1
described in section 3.12, except that the gquartz window was
replaced by a polished bottom of high conductivity copper to
improve crystal growth. Blocking of the high pressure line
during crystal growth was prevented with a heater wire inside
the line. The heater current was switched off during the
velocity measurements, which therefore give values at constant

volume. The data can be fitted to an equation
-4 4.3
vl(T) = 587 x (1-(1.23 x10 ) x T ) 4.16
(T in K, vl in m/sec)

The high absolute value of the velocity indicates that the
propogation direction was close to the c-axis and the sample
was probably a single crystal.

No theoretical estimates exist at present for the

variation of the sound velocity with temperature and we there-
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fore discuss the temperature dependence of the compressibility
velocity vk(T) (equation 4.9) which should give an idea of the
order of magnitude of the veriation of the longitudinal
velocity.

The temperature dependence of the isothermal compress-
ability KT(T) was found by Jarvis et al. (1968) who measured
(3p/3T) with a strain gage technique for different pressures and

obtained K. at the melting temperature from the work of Grilly

T
and Mills (1962). KT(T) can then be obtained from numerical

integration of the thermodynamic relations

a0l
oT p P /mq

where 4,17

= 1 fovy dp
% T ¥ (BT) = KT(ST)
P v

KT(T) has also been calculated from the specific heat by
Edwards and Pandorf who assumed that solid helium obeys a

reduced equation of state. With this assumption they get

K"l(T) - K (0)'l = ZB ((y~+1) (U-U )=y, .TC_) 4.18
p L T =¥ Yp o’ “Yp v .

U - Uo is the temperature dependent part of the internal

energy and is obtained from the specific heat Cv' The
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FIGURE 29

Ratio of specific heat at constant volume, CV, to specific

heat at constant pressure, Cp, vs. temperature.

vV = 20.4 cm3/mole.
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temperature variation of KT calculated in this way  is only
about half as large as the more directly obtained value of
Jarvis et al., who also show that their compressibilities can
not be represented by a reduced equation of state. We - there-
fore think that equation 4.18 is wrong if applied to hcp He4.
Edwards compressibility would also result in an increase of
velocity with temperature, while we observe a decrease.

At nonzero temperature we have to distinguish between
isothermal compressibility KT(temperature T constant) and

adiabatic compressibility KS (entropy S constant). The

relationship between them is

KS/KT = CV/Cp 4.19

where C. and C_ are heat capacity at constant volume resp.

pressure. Thermodynamics gives the ratio of the specific heats

as
EE.-‘-]_ I I—(@.R) '(B_V
C C oT aT
\" v v
4,20
2
NERNEY
- C '{aTv‘V'KT
v
so that

TVK 2
_ _ T [3p 4.21
Kg = Ky ( C (BT)
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This equation now includes only quantities that are directly
accessible to measurement. (Cp/CV)-l is given in Jarvis (1968)
paper. For a reduced equation of state we would get

_ .2
Kg = Ky (1 - Y5 TC_ K/V) 4.22

4

We see that K, - is proportional to T in this

S KT

approximation (figure 29).
At a molar volume of 20.4 cm3, KT(T) increases by
about 3% between T = 0 and the melting temperature of 1.9 K

and Kn (T) is larger by about 2.4% than KS(T) at this temper-

ature.

Whether the sound velocities are given by the
adiabatic or isothermal compressibility (or rather: elastic
constants) depends on the frequency (Bhatia, (1967), p. 268).
For low frequencies the wave length is sufficiently large that
the compressed (or heated) and rarefied (or cooled) regions in
a sound train are far enough apart that no heat conduction
occurs between them. The compression is therefore adiabatic.

If the frequency is higher than a characteristic frequency

_ 2
W, = CV . Vl/K 4.23

(« is the heat conductivity; factors of the order unity are
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ignored) this is no longer the case and the isothermal constants
determine the longitudinal velocity. The transverse velocity
is obtained in any case from the isothermal constants since no

volume change is involved in their propagation.

In the intermediate region the velocity Vi is

2 2
2 -1 @t ug 4.24
Vi = (p.Kg) 7. 2
(KT/KS).w + Wy
The expression for W, is equivalent to
w = t.i= v / A 4,25
c 0 1 '

where s and A are the relaxation time and mean free path for
umk lapp processeé. Values for A have been calculated by
Mezhov-Deglin (1965) from his thermal conductivity measurements,
they depend on temperature as T_12 in the temperature range
that we have investigated. 1In our case the sound velocity was
measured at a frequéncy of 5 MHz which is smaller than W

down to about 0.8 K. At this temperature we would therefore
expect a velocity change of the order of %(CJQ.SK)/(CP (0.8K)
-1) N 10_4. Unfortunately this is just at the limit of
resolution of our velocity measurement but should be easily

observable with more sophisticated equipment (Abraham et al.

(1969)). Associated with the velocity change is a peak in
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FIGURE 30

Temperature dependence of the sound velocity in solid helium

at V = 20.4 cm3/mole (estimated).
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sound absorption (Guyer (1966)).

Due to the uncertainty of our knowledge of the relax-
ation time T, and also because we have neglected factors of-
the order unity in equation 4.23, the transition temperature
of 0.8 K is quite tentative at present, and in addition nothing
is known about. the temperature dependence of the transve;se
velocities. However, the general behaviour of the longitudinal
velocity vV, as a function of temperature should be quite
similar to the one of Vi shown in figure 30.

In figure 31 we show our measured velocity vy and also
Vier calculated from the temperature dependence of the
adiabatic compressibility obtained from the data of Jarvis et
al. and from Edwards and Pandorf. The change Avk = vk(T) -
Vk(O) from Jarvis et al. is approximately proportional to
T4'4 in the temperature range T = 1...2 K, in good agreement.
of the observed dependence of Avl N T4’3. For a Debye solid,
where 0(T) is independant of temperature, Avk would be pro-
portional to T4. In hcp He4 this approximation applies for
T< 0.02 . Oo or T < 0.6 K in our case.

I would like to thank Richard Hewko for performing

the measurement of vl(T).
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FIGURE 31

Longitudinal sound velocity in hcp He4 vs. temperature.-

V = 20.42 cm3/mole. The solid lines represent the temperature
dependence of the velocity calculated from the temperature
dependence of the adiabatic compressibility based on measure-

ments. of Edwards and Pandorf (1965) and Jarvis et al. (1969).
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5. CONCLUSIONS

It is possible to grow large single. crystals of
solid helium at pressures between 30 and 130 bar and to
measure their orientation using the birefringence technique.
The longitudinal sound velocity in these crystals is largest
in the direction of the hexagonal c-axis and has a minimum in
a direction 55° away from the c-axis. This is typical
for many other hexagonal crystals.

Extrapolations of the measurements to higher- and
lower- densities agree with sound velocities obtained from
neutron scattering experiments and also with unpublished
sound velocities in crystals grown from superfluid helium
by Lee et al. (1968). The variation of the longitudinal
velocity with volume can be expressed by a mode Griineisen
parameter y; = 3.0 £ 0.1, which is higher than the value
found from specific heat measurements, Yp = 2.6. This is not
unexpected and similar to the situation found in other
materials.

Measurements of the longitudinal velocity in the c-
direction, in the basal plane and in an intermediate direction
are sufficient in solid helium to determine al. five elastic
constants if the compressibility is known. The Debye temper-

atures calculated from these elastic constants were found to
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agree with the calorimetric Debye temperatures within the
combined errors of the two measurements.

For a molar volume 20.42 cm3/mole the longitudinal
velocity decreases by 0.25% between T = 0.6 K and the melting
temperature of 1.9 K, which is consistent with the increase
of the compressibility with temperature, observed in strain
gage experiments.

All these results lead to the conclusion that from
an experimental point of view solid helium is not different
from any other solid in its elastic behaviour.

The measurements allow for the first time a detailed
comparison of the predictions of the theory of quantum. crystals
with experiment. At our densities, good agreement between the
magnitude and the anisotropy of the longitudinal velocity is
found, but present theory predicts a much weaker volume.

dependence than found experimentally.
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7. APPENDIX: COMPUTER PROGRAMS

All computations were done on a IBM/360 time sharing
system using the language APL/360 (Falkoff and Iverson

(1968)) .
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SOUND PROPAGATION IN HEXAGONAL CRYSTALS

THE FUNCTIONS

VL VT1 VI2 DELTAL DELTAT1 DELTAT? DELL

CALCULATE QUANTITIES RELATED TO SOUND PROPAGATION IN
HEXAGONAL CRYSTALS FOR DIFFERENT PROPAGATION DIRECTIONS G.

G IS THZ ANGLE IN DEGREE BETWEEN C-AXIS AND
IIAVENORMAL .

c IS5 A VECTOR CONTAINING THE ELASTIC CONSTANTS I
UNITS OF 1E8 DYN/CMx2, THE DENSITY IN UNITS OF G/CH=*3
AND THE ATOMIC WEIGHT,

c11
C12
C13
€33
cul

cl1]
cl2]
cL3]
clu]
cls]
clel
cl7]

R N A

<G VL ¢

2«G V1 ¢

i«G Vr2 ¢

4«G DELTAL ¢
Z+«G DELTATL ¢
2«G DELTAT2 ¢

2+«G DELL ¢

G PR C

s+l HEXa C

Z<«D DEBil C

DENSITY
ATOMIC WEIGHT (REQUIRED FOR FUNCTION DEBH OllLY)

LONGITUDINAL VELOCITY IN M/SEC
1. TRANSVERSE VELOCITY IN M/SEC
2. TRANSVERSE VELOCITY IN I1/SEC

DEVIATION IN DEGREE OF LONGITUDINAL SOUND
BEAI FROM WAVENORMAL

DEVIATION OF TRANSVERSE SOUND BEAMS FROH
WAVENORMAL

DEVIATION IN DEGREES OF POLARIZATION VECTOR
FRCM PURE POLARIZATION DIRECTION

IS AN AUXILLIARY FUNCTION USED IN VL VT1 VT2

PRODUCES A TABLE OF THE ABOVE FUNCTIONS FOR
0sG<90 WITH INCREMENTS OF N DEGREES FOR G
21l ¢

2l:2] VL

z[;3) vra

ZL;u4] VP2

Z03;5] DELTAL

20:6) DELTATL

50371 DELTAT?

20;8] DELL

I& THE DEBYE TEMPERATURE AT ABSOLUTE ZERO.

D SPECIFIES THE NUMBER OF SECTIONS INTO WHICH
THE UIIT SPHERE IS DIVIDED FOR THE NUMERICAL
INTEGRATION. Z IS ACCURATE TO ABOUT 0.03
PERCENT FOR D+10,



(1]
[2]
(3]

[11]
[2]

(1]
[2]
L3]

f1]
[2]

(1]
[2]
[3]
Cul
[s5]

[6]
£71]

(1]
(2]
[3]
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vrLLolv

2«G VL C

G+0G+180
Z«((Cl1]+C[5])x(10G)*2)+(CLul+C[5])x(20G)*2
Z«100x((2+G PH C)+2xC[6])*0.5

vvrilOiv

Z+G VT1 C

G+0G+180
Z2+«100x(((0.5x(CL1]-CL2])x(10G)*2)+CL[51x(20G)*2):CL

6])%x0.5

vvra{O]lv

2«G VT2 C

G+«0G+180
Z2«((CL1]1+C[5])x(10G)*2)+(CLu]+CL[5])x(20G) *2
Z2+«100x((Z-G PH-C)+2xCL61)*0.5

VPELOIV

Z+G PH C
Z+(((CL11-CL51)*2)x(10G)*xu4)+((CLu]-C[5])*x2)x(20G)*

4
Z2+(2+2x((10G)*2)x((20G)*2)x((cl1]-cL5]1)x(CL5]-CL41))+

2x((CL3]4CL5])*2))*0.5

VDELTALLOIV

Z+«G DELTAL C3;H;M;N;AE

B«(CL61x((G VL C)+100)*2)-CLS]

M+100G+180

N+200G+180

A«(H-(CL4]-CL5])xN*2)sNxMxC[3]1+CL[5]

E«7203((((107304) #4)sM#2)+(((207304) *U4) +N*2))*
0,5

Z+«(Hx30E)+(CL61%x((G VL €):100)%2)
Z+(~302Z)x180%01

VDELTAT1( 0OV

Z«G DELTAT1 C;E; H

E+ 20100G+180

H«(CL61x((G VT1 C)+100)%2)-CL[5]
Z«("30(Hx30E)+(CL61x((G VT1 C)+100)%2))x180201
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VDELTAT2[ 01V
V 2+G DELTAT2 C3;H3M;N;A3E
(1] He(CL61x((G VP2 C)+100)%2)-C[5]
[2] M«100G+180
[3] N+200G¢180
L4l  A«(H-(CLul-CL51)xN*2)+NxMxCL3]1+C[5]
[51] E«7204((((107304) %4) sM*2)+(( (20 304) %l4) +N%2)) %
0.5
[6] Z+«(Hx30F)+(CL6Ix((G VT2 €):100)%2)
[7] 2«(730Z)x180%01

VDELLLOIvV
V Z2+«G DELL Ci;H;A3;M;N
[1] H«(CL61x((G VL C)+100)*2)-C[5]
[2] M+100G:180
[3] N+200G%+180
(4] A< 30(H-(CLu4I-CL5])xN%2)+MxNxCL31+CL5]
[5] Z<«(T20((104)xM)+(204)xN)x180%+01

VHEXALOIV
V Z«N HEXA C

[1] Z«(((90:N)+1),8)p0
[2] Z2031]«0,(1(902N))xN
[3] Z0;21«z[;11 vL ¢
[u] 20331«z2[;1] vra ¢
[5] Zlsulezl;1]1 VT2 C
(6] 2[1;1]«1
(7] 2[351+«Z[ ;1] DELTAL C
{81 Z[ ;61«20 ;1] DELTATL ¢
(9] ZL371«20 ;1] DELTAT2 C
(10] 2[;8]«2[;1] DELL ¢
(111 Z2[1,((90:N)+1); 5 6 7 81«0
[121 2[1;1]«0

VDEBHL O]V

V Z+«D DEBH C3;G;M
[1] Z+0
[2] M+1
[3] G+(Tu5:D)+Mx90%D
Cu] 2«Z2+(+/((G VL €¢),(G VT1 €),(G VP2 C))*-3)x100G%180
[5] >((M<«M+1)<D)/3
[e6] 2+0,36273433x(2xDxC[6]40ZxC[7])*+3
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EXAMPLE

C«5.,5 2,91 1.31 7.1 1.403 0.1970 4.003

10 VL ¢
594,.7
10 V71 C
266, 6
10 VT2 C
274, 7
10 DELTAL C
6.114
) 10 DELTAT1 ¢
0.756
10 DELTAT2 C
17.64
10 DEEL C
5,126
20 DEBH C
28,77
5 HEXA ¢
0 600.3 266.9 266.9 0,0 0,0 0,0 0.0
5 598.9 266.8 268.9 3.1 0.4 9.7 2.6
10  594,7  266.6 274,7 6.1 0.8 17.6 5.1
15 587.9 266.2 283,9 9.0 1.1 23,1 7.5
20 578.6  265.7 295,6 11,6 _1.4% 26.0 9.5
25  567.3 265,0 308.7 13.8 1.7 26.8 11.1
30 554.4% 264,3 322.3 15.4 ~1,9 25,5 12,1
35 541,0 263.5 335.1 15.9 2,1 22.0 12,1
40 528.0 262.6  345,% 14,9 ~2,2 16,0 10,9
45  517.0 261,7 351.7 11.7 ~2.3 6.8 8.2
50 509.7 260.8 352.4 6.5 2.3 4.8 4.5
56 506.9 259.9 346,6 0.8 2.2 16,1 0.5
60 508.1 259.0 335.4% 3,6 2,0 24,5 2,5
65 511.9 258,3 320.7 5.8 1.8 29.2 4,2
70 516.7 257.6 304.9 6.2 1.5 30.6 4.7
75 521,3 257.1 289.9 5.4 ~1,2 28,7 4,2
80 525.1  256.7 277.7 3.9 0.8 23.1 3.1
85 527.5 256.5 269.7 2.1 0.4 13.2 1,7
90 528.4  256.4 266.9 0.0 0.0 0.0 0,0



