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Abstract

We discuss non-parametric shape constrained density estimation methods in

univariate setting and their applications to the classic Gaussian compound

decision problem. The original contribution of the thesis is establishing various

important consistency results of the shape constrained density estimators,

which clarify the theoretical properties in the ρ-concave density estimation

problem and the mixture density estimation in classical Gaussian compound

decision problem.

Our main results begin with the consistency properties of ρ-concave density

estimator in quasi-concave density estimation problem, proposed by Koenker

and Mizera (2010). We consider a new type of divergence called ρ-divergence

and prove the ρ-consistency for the corresponding ρ-concave density estimator

when ρ < 0. We also generalize this consistency result to the consistencies

under the Hellinger and the total variation distance.

Next, we consider the monotone constrained mixture density estimation

problem in the classical Gaussian compound decision problem. We first obtain

the Hellinger consistency of the mixture density estimator and further adopt

the similar formulation of the convex transformed maximum likelihood density

estimation method of Seregin and Wellner (2010) to prove the pointwise

consistency of the estimated convex function and decision rule in the interior

of the domain of the true convex function.

At last, we propose some new mixture density estimation approaches by

imposing additional log-concave shape constraint on both the original monotone

constrained maximum likelihood estimation and Kiefer-Wolfowitz maximum



likelihood mixing distribution estimation methods respectively. Finally, we

perform a simulation study to compare the new methods with various existing

ones in the empirical Bayes inference problems.
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Chapter 1

Estimation of probability

densities

1.1 Introduction to density estimation

The probability density function is a fundamental concept in statistics. For a

random variable X that has a probability density function f , the latter provides

a natural description of the probabilistic law of the random variable X, via

the simple relation

P (a < X < b) =

∫ b

a

f(x)dx.

Density estimation, as discussed in this thesis, addresses the problem to

construct an estimate of the density function from a sequence of observed data

points, sampled from an unknown probability density function.

A density estimate can provide many important properties of the given data

set. For example, it can provide valuable information regarding the skewness

and mutimodality of the probability distribution governing the data, and more

importantly points the way to further statistical analyses. For example, density

estimation often plays an important role in statistical analyses such as mixture

problems, data discrimination, quantile regression, etc.

One approach to density estimation is parametric: it is assumed that the
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data comes from a known parametric density family— for instance, the binomial

distribution with single parameter p, or the normal distribution with the mean

µ and the variance σ2. The parametric method seeks first the estimates of the

parameters p or µ and σ2 from the data, and then substitutes the estimates into

the expression for the corresponding density function. In many situations there

is insufficient motivation for using a particular parametric model in statistical

analysis. In this thesis, we consider alternative, nonparametric methods, which

make less rigid assumptions than the parametric method about the distribution

of the observed data. Although it is assumed that the distribution has a

probability density f , the data will be allowed to “explain for themselves” in

determining the estimate of f .

In the following sections, we will give a brief survey of the current exist-

ing methods in nonparametric density estimation. Despite the focus on the

method like shape constrained density estimation in later chapters, it is very

helpful to have a overall review of the well known methods and their basic

properties. Moreover, we will introduce many general notations and definitions

in nonparametric density estimation which will be used all through the thesis.

For the remaining parts of this chapter, it is assumed that we have a sample

of n independent and identically distributed (iid) observations X1, . . . , Xn

whose underlying density f is to be estimated and that f̂n denotes the density

estimator of the target density f .

1.2 Histogram

The histogram is probably the oldest and most widely used density estimator.

Particularly in one dimension, histograms constitute an extremely useful and
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simple class of density estimates for the presentation and exploration of the

data. The method of histogram requires an origin x0 and a bin width h; the bins

of the histogram then can be defined to be the intervals [x0 +mh, x0 +(m+1)h)

for positive and negative integers m. (The intervals can also be chosen closed

on the left and open on the right.)

The histogram estimate is defined to be,

f̂n(x) =
1

nh
(number of Xi in the same bin as x) .

Note that in order to construct the histogram, we need to choose both the

origin and bin width, and the choice of bin width primarily controls the amount

of the smoothing in the procedure.

There are always some users of density estimation who ask why it is

ever necessary to use methods more complicated than the simple histogram.

From the mathematical point of view, the discontinuity of histogram density

estimates causes difficulties if derivatives of the estimates are required—for

example, in the quantile regression and the Gaussian compound decision

problem. Another mathematical drawback is the inefficient use of data when

histograms are used as density estimates in procedures like the cluster analysis

and the nonparametric discriminant analysis. In particular, when density

estimates are used as intermediate components of other methods, the need for

alternative methods is very strong.

The choice of the parameters, the origin and bin width, may also have very

significant impact on the density estimates: such examples can be found in

many texts on density estimation, for example, Silverman (1986). Histograms

for graphical presentation of multivariate data pose also serious difficulties. In
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the multidimensional situation, one cannot easily draw the histogram because

of the dependence on the choice of the origin and the bin width in different

coordinate directions.

1.3 The Kernel and other related density esti-

mation methods

1.3.1 The method of kernel

LetX1, . . . , Xn be a random sample of size n from a population with distribution

function F (x) and density function f(x). Given that f is the derivative of F

almost everywhere, it is natural to expect [F (x+ h)−F (x− h)]/2h to be close

to f(x) for sufficiently small h. Let

Fn(x) =
number of Xi ≤ x

n

be the empirical distribution function based on the observed sample. Letting

hn ↓ 0, we consider

f̂n(x) = [Fn(x+ hn)− Fn(x− hn)]/2hn

to be an estimator of f(x). Here f̂n(x) denotes the proportion of observations

falling in the interval (x−hn(x), x+hn(x)] divided by the length of the interval.

By using

K(x) =


1
2

if x ∈ [−1, 1),

0 otherwise,
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the “naive” estimator can be written in the form

f̂n(x) =
1

n

n∑
i=1

1

hn
K

(
x−Xi

hn

)
.

In order to produce this estimate, it still remains to choose the bin width hn, to

control the amount by which the data are smoothed. The naive estimator is not

fully satisfactory since the density estimator is not a continuous function, but

has jumps at the points Xi ± hn and has zero derivative everywhere else—that

is, it has somewhat ragged character.

It is easy to generalize the naive estimator to a class of estimators of the

form

f̂n(x) =
1

n

n∑
i=1

1

hn
K

(
x−Xi

hn

)
,

where hn → 0 as n→∞ and K is a suitable density function, which satisfies∫∞
−∞K(x)dx = 1. This is called the kernel-type estimator. Usually, but not

always, K will be a symmetric probability density function—for instance, the

standard normal density. The parameter hn is the window width, also called

smoothing parameter, or bandwidth.

Some basic properties of kernel estimates follow from the definition. For

example, since the kernel K is a probability density function, the estimate f̂n

is a probability density; f̂n will inherit all the continuity and differentiability

properties of the kernel function K.

The problem of choosing how much to smooth is of crucial importance in

the kernel density estimation method. There are various methods of choosing

smoothing parameters for the kernel method— for instance, least-squares cross-

validation, likelihood cross-validation, test graph method, etc. It is important
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to note that the shape constrained methods we introduce later in this chapter

do not require any smoothing parameter selection.

It is also worth to mention some asymptotic properties of the kernel method.

Since we will discuss the asymptotic behaviour of various shape constrained

methods, we give now some basic consistency definitions of density estimators

that will be used throughout the thesis.

Hereafter, we use
p−→ to denote convergence in probability. Let d(x, y) be

a distance function in Rd—for instance, the Euclidean distance

d(x, y) = ‖x− y‖ = (
d∑
i=1

(
xi − yi)2

)1/2
.

A sequence of random variables Xn is said to converge in probability to X if

for every ε > 0

P (d(Xn, X) > ε)→ 0.

We denote it by Xn
p−→ X.

An even stronger mode of convergence is almost sure convergence. The

sequence Xn is said to converge almost surely to X if d(Xn, X) → 0 with

probability one:

P ( lim
n→∞

d(Xn, X) = 0) = 1.

This is denoted by Xn
a.s.−→ X. We will also use the notation w.p.1 (with

probability one) interchangeably with almost surely (a.s) in the thesis.

Using the notations above, we can define the various types of consistency.

Definition 1.3.1. A sequence of density estimators f̂n is said to be weakly

consistent if

f̂n(x)
p−→ f(x) as n→∞
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for every x in the domain of f .

Definition 1.3.2. A sequence of density estimators f̂n is uniformly weakly

consistent if

sup
x
|f̂n(x)− f(x)| p−→ 0 as n→∞.

Definition 1.3.3. A sequence of density estimators f̂n is strongly consistent if

f̂n(x)
a.s.−→ f(x) as n→∞.

for every x in the domain of f .

Definition 1.3.4. A sequence of density estimator f̂n is uniformly strongly

consistent if

sup
x
|f̂n(x)− f(x)| a.s.−→ 0 as n→∞.

There is a vast literature on the asymptotic properties of kernel estimators.

In this section we just mention a few asymptotic results; for more details,

interested readers are referred to Prakasa Rao (1983) and Silverman (1986).

The consistency of the kernel estimator at a single point x was studied

by Parzen (1962). He assumes that K should be a bounded Borel function,

satisfying ∫
|K(t)|dt <∞ and

∫
K(t)dt = 1 (1.1)

and

|tK(t)| → 0 as |t| → ∞.

These conditions are satisfied by almost all kernels in general use. Assuming
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that smoothing parameters hn satisfy

hn → 0 and nhn →∞ as n→∞,

Parzen (1962) proveed that f̂n is weakly consistent.

A stronger consistency result is uniform weak consistency of the kernel

estimator. Suppose the kernel is bounded and satisfies condition (1.1); assume

that f is uniformly continuous on (−∞,∞) and hn satisfies

hn → 0 and nhn(log n)−1 →∞ as n→∞.

Under this assumption, Bertrand-Retali (1978) showed that kernel estimator

f̂n is uniformly weakly consistent.

There are also many results regarding the rates of the convergence of kernel

estimators; for example, Prakasa Rao (1983) and Van der Vaart (1998), to

name a few.

1.3.2 The nearest neighbour method

The nearest neighbour method focuses on adapting the amount of smoothness

to the local density of data. The smoothness is controlled by an integer k which

is much smaller than the sample size—typically by k = n4/4+q in q-dimension

by minimizing the MSE of the density estimator. Following the usual definition

of the distance, let d(x, y) = |x− y|, and for each t define the ordered distance

from point t to the points of the sample data as

d1(t) ≤ d2(t) ≤ . . . ≤ dn(t).
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Then the kth nearest neighbour density estimate is defined by

f̂n(t) =
k

2ndk(t)
. (1.2)

A simple illustration of the meaning of (1.2) is: given a sample size n with

density function f(t), we would expect to observe 2rnf(t) observations to fall

within the interval [t− r, t+ r] for r > 0. Therefore, there are k observations

fall within the interval [t − dk(t), t + dk(t)], and an estimate of the density

can be obtained by the relationship k = 2dknf̂n(t) which yields the definition

above.

Like the naive estimator, to which it is related, the nearest neighbour

estimate in equation (1.2) is not a smooth curve. While the distance function

dk(t) is continuous, its derivative will have a discontinuity at every point of the

form 1
2
(X(j) +X(j+k)), where X(j) are order statistics of the sample. Thus f̂n is

positive and continuous everywhere, but will have discontinuous derivative at

all same points as dk. Unlike kernel estimate, the nearest neighbour estimate

will not be itself a probability density function, because it will not integrate

to unity. To explain this point, consider t less than the smallest data point,

we have dk = Xk − t. For t > X(n), we have dk = t−X(n−k+1). Substituting

into the definition (1.2), it turns out that
∫∞
−∞ f̂n(t) is infinite. Therefore, the

nearest neighbour estimate is unlikely to be an appropriate estimate if an

estimate of entire density is required.

So it is possible to generalize the nearest neighbour estimate related to the

kernel estimate. We can define generalized kth nearest neighbour estimate by

f̂n(t) =
1

ndk(t)

n∑
i=1

K

(
t−Xi

dk(t)

)
. (1.3)
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From (1.3), we can see that the estimate is the kernel estimate evaluated

at t with window width dk(t). The ordinary nearest neighbour estimate is

the special case of (1.3). However, the derivative of the generalized nearest

neighbour estimate will be discontinuous at all the points where the function

dk(t) has discontinuous derivative. A general form of the nearest neighbour

estimate in multivariate dimension can be found in Silverman (1986).

An important extension of the nearest neighbour method combined with the

kernel method is the adaptive kernel method. Adaptive kernel method allows

to deal with the long-tailed densities by using a broader kernel in regions of low

density. It has been also proposed that when estimating mixture parameters

in finite mixture models, adaptive kernel density estimators are preferable over

nonadaptive kernel density estimators. Regarding the adaptive kernel method,

more detailed formulations and definitions can be found in Silverman (1986)

and one can refer to Karunamuni et al. (2006a) and Karunamuni et al. (2006b)

for the applications of adaptive kernel method to finite mixture models.

1.3.3 Orthogonal series estimators

The orthogonal series density estimation method is based on the Fourier

expansion of the density function. To illustrate this point of view, we will start

from an example which estimates a density f on the interval [0, 1]. The idea is

to represent the density function f on the interval [0, 1] based on its Fourier

expansion, then we will only need to estimate its Fourier coefficients in order
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to obtain the density estimate. Define the sequence φv(t) for v = 1, 2, . . . by

φ0(x) = 1

φ2v−1(x) =
√

2 cos 2πvx

φ2v(x) =
√

2 sin 2πvx.

Then f can be expressed as the Fourier series

∞∑
v=0

fvφv,

where for each v ≥ 0,

fv =

∫ 1

0

f(x)φv(x)dx. (1.4)

Now suppose X is a random variable with density f , then (1.4) can be

written as fv = Eφv(X). Thus a natural estimator of fv based on the sample

X1, . . . , Xn from f is

f̂v =
1

n

n∑
i=1

φv(Xi).

Substituting fv with f̂v above yields
∑∞

v=0 f̂vφv as an estimator of f ; however

Silverman (1986) showed that this estimator will converge to a sum of delta

functions at the observations. The easy way to overcome this problem is to

truncate the expansion at some point. Select an integer k and define the density

estimator by

f̂(x) =
k∑
v=0

f̂vφv(x); (1.5)

the choice of the cutoff point k then determines the amount of smoothness.

A more general approach is to use a sequence of weights to obtain the
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estimator

f̂(x) =
∞∑
v=0

λvf̂vφv(x)

where λv → 0 as v →∞.

Without the restriction of the finite interval as the range of the data, we

can use other orthogonal sequences of functions. Suppose a(x) is a weighing

function and (ψv) is a series satisfying for u, v ≥ 0

∫ ∞
−∞

ψu(x)ψv(x)a(x)dx =


1 u = v

0 otherwise.

The sample coefficients are defined by

f̂v =
1

n

n∑
i=1

ψv(Xi)a(Xi) (1.6)

and the density estimator is

f̂(x) =
k∑
v=0

f̂vψv(x)

or

f̂(x) =
∞∑
v=0

λvf̂vψv(x).

The properties of the orthogonal series estimates depend on the details of

the Fourier series and weight functions used. For example, the density estimate

will integrate to one given λ0 = 1. Estimates obtained according to (1.5) will

have derivatives of all orders. More details can be found in Silverman (1986).
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1.4 Maximum penalized likelihood estimator

The maximum penalized likelihood estimator attempts to apply the idea of

maximum likelihood to curve estimation. Let X1, X2, . . . , Xn be a sample of iid

observations with common density f . The logarithm of the likelihood function

of the sample is

L(f) =
n∑
i=1

log(f(Xi)).

A naive application of the maximum likelihood method would make the

estimator the mean of a set of the Dirac delta functions at the n observations

and yields a value of +∞ for the likelihood function. Therefore it is not possible

to use the maximum likelihood directly without imposing any restrictions on the

class of densities over which the likelihood is to be maximized. One approach

suggested for using the method of maximum likelihood for density estimation

is to add a penalty function to the likelihood, taking into account the degree

of roughness or local variability of the density.

Let F be the class of density functions defined over R. A penalty function

Φ : F → R is a real-valued functional defined over F . The functional Ψ(·|α) :

f → L(f) − αΦ(f), where α > 0 is the smoothing parameter, is called

the logarithm of penalized likelihood function. Any measurable function

f̂n : R → F that maximizes Ψ(·|α) over F is called penalized maximum

likelihood density estimator of f .

The penalty approach can be explained as aiming at two often conflicting

objectives in a single curve estimation problem: one is to maximize fidelity

to the data, as measured by L(f), while the other is to avoid curves which

exhibit too much roughness or rapid variation, as measured by Φ(f). The

choice of the smoothing parameter α controls the balance between smoothness
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and goodness-of-fit.

One of the first penalty functions was suggested by Good and Gaskins

(1971). They propose the penalty using γ =
√
f , the square root of the density

function. The penalty is defined as

Φ(f) =

∫
(γ′)

2
.

The advantage of working with γ instead of f is that the constraint f(x) ≥ 0

is automatically satisfied if γ is real. Furthermore, the constraint
∫∞
−∞ f = 1

is replaced by
∫
γ2 = 1, an easier constraint under the numerical method

proposed by Good and Gaskins (1971).

It is also convenient to use roughness penalties based on the logarithm of

the density. Consider the penalty function that penalizes the third derivative

of the log-density,

Φ(f) =

∫
[(d/dx)3(log f(x))]2dx. (1.7)

Then the corresponding maximum likelihood problem can be expressed, by

denoting g(x) = log f(x), as maximizing

Ψ(g) =
n∑
i=1

g(Xi)− α
∫

(g(3))2, (1.8)

subject to the constraint ∫
eg(x)dx = 1. (1.9)

Notice that working with the logarithm of the density means there is no need to

add the positivity constraint on f (since f = eg will be positive automatically).
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The penalty (1.7) has the important property that it is zero if and only if

f is a normal density. The normal densities are considered to be infinitely

smooth since they are not penalized at all in equation (1.8). Silverman (1986)

points out that when α→∞, the limiting estimate is a normal density with

the same mean and variance as the data. As α varies, the method provides

different estimates from “infinitely rough” sum of the Dirac delta functions to

the “infinitely smooth” maximum normal density. It is also possible to define

other penalty functions, corresponding to other infinitely smooth exponential

families of densities. The key property is that Φ(f) should be zero if and only

if f is in the target family.

The remarkable form of maximum density estimation with penalty function

was proposed by Silverman (1982), who showed that the maximum of (1.8)

subject to the constraint (1.9) can be found as the unconstrained maximum of

the strictly concave functional

n∑
i=1

g(Xi)− α
∫

(g(3))2 − n
∫
eg(x)dx. (1.10)

The form (1.10) is remarkable because it contains no unknown Lagrange multi-

pliers to be determined; its maximum will automatically satisfy the constraint

(1.9). The fact that the estimates can be found as the unconstrained maximum

of a concave functional also makes it possible to derive many theoretical prop-

erties of the estimates— for example, see Silverman (1982). The unconstrained

form also sheds light on the further density estimation problems that can

be expressed in the similar concave (convex) forms—for instance, the shape

constrained density estimation problem considered in the next chapters. Com-

putationally, the concave problem (1.10) also makes the maximum penalized
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likelihood method possible to calculate by using modern convex optimization

methods (adding a negative sign on problem (1.10) makes the problem convex).

The details of convex optimization numerical methods will be discussed in the

section on shape constrained methods.

So far, we have discussed the L2 penalty functions Φ(f). There are also

the L1 alternatives for the penalty functions (the L1 penalized method is

also called total variation method). In the L1 framework, weighted sums

of squared L2 norms are replaced by weighted L1 norms as an alternative

penalized regularization device. Squaring penalty contributions inherently

exaggerates the contribution to the penalty of jumps and sharp bends in the

density. Indeed, density jumps and piecewise linear bends are impossible in

the L2 framework since the penalty evaluates them as “infinitely rough”. Total

variation penalties tolerate such jumps and bends, and they are therefore better

suited to identifying discrete jumps in densities or in their derivatives, the

property that has made them attractive in imaging applications.

Koenker and Mizera (2006) proposed to use roughness penalties Φ(f) based

on total variation of the transformed density and its derivatives. Recall that

the total variation of a real function f on Ω is defined as

∨
Ω

(f) = sup
m∑
i=1

|f(ui)− f(ui−1)|,

where the supremum is taken over all partitions, u1, u2, . . . , um of Ω. When f

is absolutely continuous, we can write

∨
Ω

(f) =

∫
Ω

|f ′(x)|dx.
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Usually, we focus on penalizing the total variation of the first derivative of

the log-density, which leads to

Φ(f) =
∨
Ω

((log f)′) =

∫
Ω

|(log f(t))′′|dt.

Equivalently, setting g = log f , the maximum L1 penalized likelihood problem

is maximizing:

Ψ(g) =
n∑
i=1

g(Xi)− λ
∨
Ω

(g′), subject to

∫
Ω

eg = 1.

However, this is only one of many choices: one may think about using

Φ(f) =
∨
Ω

(g(k)),

where g(0) = g, g(1) = g′, etc, and g may be log f ,
√
f , f itself, or more generally

gk = f , for k ∈ [1,∞], with the convention that g∞ = eg. Furthermore,

the linear combinations of such penalties with positive weights may also be

considered.

We know that even for L2 formulations the presence of the integrability

constraint prevents the usual reproducing kernel strategy from finding exact

solutions. Therefore iterative algorithms are needed. Koenker and Mizera

(2006) suggested to adopt a finite element strategy that enables to exploit the

sparse structure of the linear algebra used by modern interior-point algorithms

for convex programming.

An advantage of the parametrization of the problem in terms of log f is

that it obviates any worries about the non-negativity of f . However, we still

need to ensure that our density estimates integrate to one. In the piecewise
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linear model for log f this involves a awkward nonlinear constraint on the α′s,

m∑
j=1

hj
eαi − eαi−1

αi − αi−1

= 1.

This form of the constraint cannot be incorporated directly in its exact form

into our optimization framework, nevertheless its approximation by a Riemann

sum on a sufficient fine grid provides a numerically satisfactory solution.

1.5 Shape constrained density estimation

In nonparametric density estimation, it is sensible to place a priori restriction on

the true density. For example, in the kernel method discussed in the preceding

section, we assume the true density is smooth since the kernel method is a

smoothing method. However, smoothness is not the only possible restriction.

In this section we assume that the true density satisfies some shape constraints—

for instance, we may assume the underlying density is monotone, unimodal,

log-concave or even more general ρ-concave. The earliest work on the shape

constraint density estimation dates back to the Grenander (1956) monotone

density estimation which estimates a nonincreasing density in the positive half

line. In recent years, the shape constrained density estimation has received

a lot of interest—partly due to the development of the efficient computing

algorithms which make the complicated mathematical optimization problems

easier to solve.

The attractive virtue of the methods involving shape constraints is that,

unlike the classical kernel and maximum penalized likelihood density estimation

methods, the shape constrained methods are fully automatic: there are no
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tuning (smoothing) parameters to choose. This is especially appealing in the

multidimensional context, since there the choice of smoothing parameters can

be extremely difficult. For instance, when the observations take values in Rd,

the general kernel estimator requires the specification of a symmetric, positive

definite d× d bandwidth matrix.

1.5.1 Estimating a monotone density

We start with monotone densities and next view a unimodal density as a

combination of two monotone pieces. Monotone density models are often used

in survival analysis and reliability analysis in economics—see Huang and Wellner

(1995), Huang and Zhang (1994). It is interesting that for the monotone density

estimation, we can apply maximum likelihood as the estimating principle.

Suppose that X1, . . . , Xn is a random sample from a density f on [0,∞) that

is known to be nonincreasing; the maximum likelihood estimator f̂n then can

be defined as the nonincreasing density that maximizes the likelihood

f 7→
n∏
i=1

f(Xi).

This optimization problem has a unique solution under the monotone

assumption and was first proposed by Grenander (1956)—so the estimator

is also called the Grenander estimator. This estimator is given explicitly by

the left derivative of the least concave majorant of the empirical distribution

function. The least concave majorant of the empirical distribution function Fn

is defined as the smallest concave function F̂n with F̂n ≥ Fn for every x. This

can be found by attaching a rope at the origin (0, 0) and winding this from

above around the empirical distribution function Fn. Because F̂n is concave,
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its derivative is nonincreasing.

The limiting distribution of the Grenander estimator at a point was first

obtained by Prakasa Rao in 1969; see Prakasa Rao (1983). Groeneboom (1988)

provided a characterization of the limit distribution and other interesting

related results. Van der Vaart (1998) pointed out that the rate of convergence

of the monotone density estimator is slower than that of the kernel estimator

when the existence at least two derivatives is assumed. The rate of convergence

of maximum likelihood estimator, can be found in, for example, Van der Vaart

(1998).

It is quite natural to generalize the monotone density to the unimodal

density: we can define a density f on the real line to be unimodal if there

exists a number M such that f is nondecreasing on the interval (−∞,M ] and

nonincreasing on [M,∞). The mode needs not to be unique. If we have a

random sample from a unimodal density and we know the location of the true

mode M a priori, then a natural extension of the monotone density estimation

method is to estimate the distribution function F of the observation by the

distribution function F̂n that is the least concave majorant of Fn in the interval

[M,∞) and the greatest convex minorant on (−∞,M ], and then to estimate

the density function f by taking the derivative of F̂n. Provided that none

of the observations coincides with the mode M , the estimator maximizes the

likelihood. The previous limiting results can also be applied to the unimodal

case.

If the mode is not known as a priori, then the maximum likelihood estimator

does not exist: the likelihood can be maximized to infinity by placing an

arbitrary large mode at some fixed observation. It has been proposed to fix this

problem by restricting the likelihood to densities that have a modal interval of a
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given length (in which the f must be constant and maximal). Alternatively, we

can also estimate the mode by some independent methods and then apply the

procedure for a known mode as preceding discussions. However even if the mode

is known, the estimator also suffers from the so called spiking problem—the

inconsistency happening near the mode.

It seems that due to these problems, unimodality is not a reasonable

assumption in shape-constrained density estimation. Thus there is strong need

to find an alternative to the class of the unimodal densities. It turns out

that log-concave densities are attractive and natural substitution for unimodal

densities: the class of log-concave densities is a subset of unimodal densities,

but it contains most of the common used parametric distributions and provides

a rich and useful nonparametric model.

1.5.2 Log-concave density estimation

In this section, we provide a brief introduction to the log-concave density

estimation method. A probability density function f is called log-concave if

− log f is a convex function on the support (the smallest closed set whose

complement has probability zero) of f .

Log-concave densities play a crucial role in various probability models: in

reliability theory, search model, social model and economics, for instance, see

An (1995), An (1998) and Bagnoli and Bergstrom (2005). Caplin and Nalebuff

(1991) showed that in the theory of elections, under a log-concavity assumption

the proposal that is most preferred by the mean voter is unbeatable under

a 64% majority rule. Brooks (1998), Mengersen and Tweedie (1996) have

developed the properties of the convergence of Markov chain Monte Carlo
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sampling procedures on log-concave densities in Bayesian analysis.

Log-concave density functions have a number of properties that are desirable

for modeling: the marginal distributions, convolutions and product measures

of log-concave distributions are again log-concave. There are also some alterna-

tive characterizations for the class of univariate log-concave distributions, for

example, Ibragimov (1956) proves that log-concave distributions are precisely

the distributions whose convolution with a unimodal distribution is always

unimodal, so sometimes log-concave distributions are also called strongly uni-

modal. Log-concave densities are also precisely the Polya frequency functions

of order 2. Log-concave density family contains most of the common used

parametric distributions—for instance, the normal density, gamma densities

with shape parameter ≥ 1, exponential, Weibull densities with exponent ≥ 1,

are all log-concave density functions.

Due to these attractiveness, recently the most intensively studied shape

constraint is log-concavity— not only in univariate case, but also in multidi-

mensional situations. In general, let X1, . . . , Xn be an iid sample on Rd with

log-concave density f0 and denote the nonparametric maximum likelihood

estimator as f̂n. For d = 1, the one dimensional case, the recent research

showed that the nonparametric MLE exists and is unique; the log-concave

density estimator f̂n = eφ̂n , where φn is continuous and piecewise linear on

[X(1), X(n)] with the set of knots contained in {X1, . . . , Xn}, and φ̂n = −∞

on R\[X(1), X(n)]; more properties of maximum likelihood log-concave density

estimators in univariate case can be found in Pal et al. (2007) and Dümbgen

and Rufibach (2009).

The consistency results of univariate log-concave density estimators were
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developed by many authors: Pal et al. (2007) established the Hellinger consis-

tency, an important type of consistency for log-concave density estimator in

both univariate and multivariate settings. The Hellinger consistency can be

defined as follows.

Definition 1.5.1. For two arbitrary densities f and g on Rd, the Hellinger

distance between f and g is denoted by

H(f, g) =

(
1

2

∫
(
√
f(x)−

√
g(x))2dx

)1/2

=

(
1−

∫
Rd

√
f(x)g(x)dx

)1/2

.

If H(f̂n, f0)→ 0 (or equivalently, H2(f̂n, f0)→ 0) almost surely for n→∞,

then f̂n is called Hellinger-consistent estimator of f0.

Besides the Hellinger consistency, Dümbgen and Rufibach (2009) proved

the uniform strong consistency on the compact subsets in the interior of the

support of f̂n and also provide the convergence rate of the density estimator.

Regarding the computation of log-concave density estimation in one di-

mension, Walther (2002), Pal et al. (2007) and Rufibach (2007) employed

the ICMA (Iterated Convex Minorant Algorithm) to compute the log-concave

density estimator. Rufibach (2007) also gave thorough descriptions of the

algorithm and comparisons to the alternative algorithms like interior-point

method; Dümbgen and Rufibach (2007) and Dümbgen and Rufibach (2011)

computed the log-concave MLE with an active set algorithm. Both ICMA and

active set algorithm can be found in R package “logcondens” (Rufibach and

Dümbgen (2006)), which is accessible from “CRAN”.

For d > 1, the structure of the multivariate maximum likelihood log-concave

density estimators is similar to the univariate case. The support of the MLE

is the convex hull of the data, and there is a triangulation of this convex hull
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such that log f̂n is linear on each simplex of the triangulation. Nonparametric

estimation of a log-concave density on Rd was initiated by Cule et al. (2010).

These authors apply the powerful non-differential convex optimization method

of the subgradient method of Shor (1985) and Shor’s γ−algorithm implemented

by Kappel and Kuntsevich (2000) to produce the estimator. An R version of the

algorithm is available in the package “LogConcDEAD” (Cule et al. (2007)) and

works in arbitrary dimension. Koenker and Mizera (2010) developed a family of

penalized criterion functions related to Renyi divergence measures and explored

duality in the optimization problems. Schuhmacher and Dümbgen (2010) proved

the Hellinger consistency for the nonparametric maximum likelihood estimation

of a log-concave probability density estimator on Rd. Cule and Samworth

(2010) established the consistency of the maximum likelihood estimator of a

log-concave density on Rd even in a setting of model misclassification: when

the true density is not log-concave, they show that the estimator converges to

the log-concave density that is closest in the Kullback-Leibler sense to the true

density.

1.5.3 ρ-concave density estimation

The log-concave densities discussed in the previous section have property that

the tails must decrease exponentially: for example, densities with algebraic

tails like t and F families are not log-concave. This restriction motivates a

search for weaker forms of the concavity constraint that contains a richer family

of densities. Koenker and Mizera (2010) and Seregin and Wellner (2010) both

considered the generalization of the log-concave family called the ρ-concave

densities defined as follows. For a, b ∈ R, ρ ∈ R and λ ∈ (0, 1), let the

24



generalized mean of order ρ, Mρ(a, b;λ) be defined for a, b ≥ 0 as

Mρ(a, b;λ) =


((1− λ)aρ + λbρ)1/ρ, ρ 6= 0, a, b > 0,

0, ρ < 0, ab = 0,

a1−λbλ, ρ = 0.

(1.11)

A density function f is then called ρ−concave on C ⊂ Rd if and only if

f((1− λ)x+ λy) ≥Mρ(f(x), f(y);λ) for all x, y ∈ C, λ ∈ (0, 1).

In this terminology, log-concave functions are 0-concave, and concave functions

are 1-concave. As Mρ(a, b;λ) is monotone increasing in ρ for a, b ≥ 0 and

λ ∈ (0, 1), it follows that if f is ρ-concave, then f is also ρ′-concave for any

ρ′ < ρ. Therefore, concave functions are log-concave, but not vice-versa. The

limiting −∞-concave functions satisfy the condition

f((1− λ)x+ λy) ≥ min{f(x), f(y)},

which means that all ρ-concave functions are quasi-concave. The generalization

of log-concave densities to ρ-concave was considered by many authors, starting

with Avriel (1972); more details can be also found in Prékopa (1973), Borell

(1975), and Dharmadhikari and Joag-Dev (1988).

Currently, there are two different approaches to the ρ-concave density esti-

mation problem. Firstly, Koenker and Mizera (2010) considered the maximum

likelihood estimation of log-concave density and then generalize the problem to

ρ-concave density estimation. They also apply the conjugate dual formulation
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of the primal estimation problem to estimate the ρ-concave densities which is

not only numerically more efficient than the corresponding primal problem,

but also conveys a maximum entropy interpretation.

Koenker and Mizera (2010) defined the general (primal) problem as,

Φ(g) =
1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dx = min

g∈C(X)
! subject to g ∈ K(X), (1.12)

where K(x) denote the cone of closed convex function on H(X), the convex

hull of X. This cone is a subset of C(X), the collection of function continuous

on H(X). Generally speaking, ψ is a nonincreasing convex function on R.

The convex function g in problem (1.12) is not the density function we

want to estimate. The relationship between g and the estimated density f

can be derived through the dual formulation of (1.12), and is given by the

formula f = −ψ′(g), according to Theorem 2 of Koenker and Mizera (2010).

To interpret the problem (1.12) as ρ−concave density estimation, Koenker and

Mizera proposed to use power function ψ(x) with parameter α < 1, where

ψ(x) =


+∞ for x ≤ 0,

−xβ/β for x > 0.

(1.13)

and 1/β + 1/α = 1.

Given the power function ψ(x) in (1.13), the estimated density function can

be derived as f = gβ−1, or equivalently the convex function g = fα−1, based on

f = −ψ′(g) . In particular, for α < 1, according to the definition of ρ-concave

functions, f is (α− 1)-concave density function—and this class is a significant

relaxation of the class of the log-concave functions. In the next chapter we
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focus on the proof of the consistency of the ρ-concave density estimator for

ρ = α− 1 < 0, given the power function defined in (1.13).

The crucial advantage of adopting the ρ-concave constraint is that the

density estimation problem (1.12) is convex, thus it can be solved by the modern

convex optimization tools as shown by Koenker and Mizera (2010). On the other

hand, Koenker and Mizera (2010) also provided many theoretical properties of

their approach to the ρ-concave density estimation problem: they established

both primal and the dual formulations, derived the explicit relationship between

them, proved the existence of the solution, the uniqueness of the solution and

the Fisher consistency. We provide more detailed formulations of this approach

when we discuss the new consistency result in next chapter.

The other way to solve the ρ-concave density estimation problem was

proposed by Seregin and Wellner (2010). They denoted the class of all ρ-

concave densities on C ⊂ Rd by P̂(y
1/ρ
+ ;C) and write P̂(y

1/ρ
+ ) when C = Rd. By

Dharmadhikari and Joag-Dev (1988), for ρ ≤ 0, it suffices to consider P̂(y
1/ρ
+ ),

and f ∈ P̂(y
1/ρ
+ ) if and only if f(x) = (g(x))1/ρ for some convex function

g : Rd → [0,∞). For ρ > 0, f ∈ P̂(y
1/ρ
+ ;C) if and only if f(x) = (g(x))1/ρ,

where g mapping C into (0,∞) is concave.

Motivated by these results, Seregin and Wellner (2010) defined the classes

P(y−s+ ) = {f(x) = g(x)−s : g is convex} for s ≥ 0 and more generally, for a

fixed monotone function h from R to R,

P(h) ≡{h ◦ g = h(g) : g convex and h ◦ g is a density with respect

to Lebesgue measure}.

Seregin and Wellner (2010) investigated the maximum likelihood estimation in
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the class P(h) corresponding to a fixed monotone (decreasing or increasing)

function h. In particular, for decreasing function h, they handle all of ρ−concave

class P(y
1/ρ
+ ) with ρ = 1/s and ρ ≤ −1/d (or s ≥ d). On the increasing side,

they treat the case h(y) = y1[0,∞)(y) and h(y) = ey with C = Rd
+. On the

decreasing side, this is also the ρ-concave density family considered by Koenker

and Mizera (2010) by using the power functions defined in (1.13). Although the

two papers use different parameters to denote the ρ-concave density family, they

both achieve the solution of the same ρ-concave density estimation problem

by setting parameters s = 1 − β. The equivalence of the ρ-concave density

families in two papers can be summarized by the relationship of the parameters

as follows

ρ = −1/s = 1/(β − 1) = α− 1 (1.14)

by using the notations from two papers.

For the increasing transformation h, the first situation h(y) = y1[0,∞)(y)

corresponds to an interesting class of models which can be thought as multivari-

ate generalizations of the class of decreasing and convex densities studied by

Groeneboom and Wellner (2001), while the second h(y) = ey corresponds to the

multivariate versions of log-convex families studied by An (1998). In particular,

the increasing classes P(y
1/ρ
+ ) with ρ > 0 are actually ρ-convex densities which

are quite different from ρ-concave classes defined in the problem (1.11).

Let X1, . . . , Xn be independent random variables distributed according to

the density f0 = h(g0(x)) on Rd, where h is a fixed monotone (either increasing

or decreasing) function and g0 is an unknown convex function; the probability

measure on Borel sets Bd corresponding to f0 is denoted by P0. Seregin and

Wellner (2010) proposed to solve the problem in a straightforward way, seeking
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the convex transformed density estimator by maximizing the likelihood. Let C

denotes the class of all closed proper convex functions g : Rd → (−∞,∞], the

estimator ĝn of g0 is the maximizer of the functional

Ln(g) ≡
∫

(log (h ◦ g))dPn (1.15)

over the class of all convex functions g such that h ◦ g = h(g(x)) is a density

with respect to the Lebesgue measure and Pn is the empirical measure of the

observations. Seregin and Wellner (2010) proved, under regularity conditions

that, the maximum likelihood estimator of the convex transformed density

f̂n = h(ĝn) exists and is unique. Under some other natural assumptions,

they also established the consistency in both Hellinger and uniform metrics

and provide the asymptotic minimax lower bound and for estimation under

curvature hypotheses.

In summary, both methods of Koenker and Mizera (2010) and Seregin and

Wellner (2010) can be applied to estimate ρ-concave (ρ < 0) densities and are

very similar by considering the density as some power function transformations:

in Koenker and Mizera (2010), the ρ-concave density estimation problem

corresponds to choosing ψ(g) as the power function defined in (1.13), while in

Seregin and Wellner (2010) it corresponds to the nonincreasing transformation

power function h(g). The natural question is what are the differences between

the two ρ-concave density estimation problems. Generally speaking, the most

important distinction between problem (1.12) and (1.15) is that the formulation

(1.12) in Koenker and Mizera (2010) is convex, adding the integral term in

problem (1.12) is a device that ensures that the solution integrates to one

without enforcing this condition explicitly. Thus, the convex optimization
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problem can be solved efficiently by the numerical algorithms proposed by

Koenker and Mizera (2010). But adding the integral term “breaks” the

traditional formulation of the maximum likelihood problem, which makes the

proof of consistency results more challenging. So far, there was no successful

proof of the Hellinger or uniform consistency of Koenker and Mizera’s problem.

In the next chapter, we provide a proof of a different type of consistency result

for the ρ-concave density estimator based on Koenker and Mizera’s method

and also prove this particular consistency result implies the convergence with

respect to Hellinger and total variation distance.

On the other hand, for the latter problem (1.15), Seregin and Wellner

(2010) solved the convex transformed density estimation problem directly by

maximizing the log-likelihood under the assumptions that the convex trans-

formed function is a density. Seregin and Wellner (2010) successfully proved

the Hellinger consistency for the convex transformed density estimators and

pointwise convergence of the estimated convex functions, by applying many

theorems from convex analysis and borrowing some techniques from the proof

of consistency of the maximum likelihood log-concave density estimation prob-

lem. However, problem (1.15) is not convex, which makes the computation

of the estimators more difficult than (1.12); Seregin and Wellner (2010) do

not provide any algorithm to solve (1.15) numerically. For this reason, no

numerical comparisons between two methods have been undertaken yet. Given

all this, the method of Koenker and Mizera (2013) appears more preferable in

practice, especially when density estimators are required in statistical proce-

dures; the value of the method of Seregin and Wellner (2010) is in providing

more theoretical insights on the ρ−concave density estimators.
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1.6 Density estimation in the empirical Bayes

inference

The purpose of this section is to introduce empirical Bayes method, James-Stein

estimator, Gaussian compound decision problem and more importantly, point

out the how the shape constrained density estimation methods can be applied

to estimate the mixture density in Gaussian compound decision problem. The

theoretical results regarding to the mixture density estimation will be discussed

in Chapter 3 and 4. Most of the known results introduced in this section are

based on Efron (2010) and Koenker and Mizera (2013).

1.6.1 J-S estimator and the empirical Bayes method

Charles Stein in 1955 proved that the common maximum likelihood methods

for Gaussian models are inadmissible beyond simple one or two dimensional

situations: the James-Stein estimator everywhere dominates the MLEs in

higher dimensions. Efron (2010) discusses the empirical Bayes interpretation

of the Stein estimator.

We will start from the introduction to the Bayes rule in normal means

estimation. Suppose an observed data vector z = (z1, z2, . . . , zn) has the

density fµ(z) given the unknown parameter vector µ = (µ1, µ2, . . . , µn) with

prior density g(µ)

z|µ ∼ fµ(z) and µ ∼ g(·).

The Bayes rule then gives the posterior distribution of µ given the observed

data z by

g(µ|z) = g(µ)fµ(z)/f(z), (1.16)
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where f(z) is the marginal distribution of z,

f(z) =

∫
g(µ)fµ(z)dµ.

Now suppose that µi ∼ N(0, a) and zi|µi ∼ N(µi, 1) for i = 1, 2, . . . , n,

with pairs (zi, µi) being independent. Given the Bayes rule above we denote in

n-dimensions

µ ∼ Nn(0, aI) (1.17)

and

z|µ ∼ Nn(µ, I) (1.18)

where I is n×n identity matrix. With b = a/(a+ 1), the posterior distribution

is

µ|z ∼ Nn(bz, bI). (1.19)

From the statistical inference point of view, we denote the estimator µ̂ = t(z),

and use the total squared error loss to measure the error between µ̂ and µ by

L(µ, µ̂) =‖ µ− µ̂ ‖2 (1.20)

with the corresponding risk function

R(µ) = Eµ{L(µ, µ̂)} = Eµ{‖ µ− µ̂ ‖2}, (1.21)

where Eµ is the expectation with respect to z ∼ Nn(µ, I) for µ fixed.
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The maximum likelihood estimator of µ in model (1.18) is the data itself,

µ̂(MLE) = z,

and has the risk

R(MLE)(µ) = n

for every choice of µ.

Suppose we have the prior belief (1.17), then the corresponding Bayes

estimator based on relationship (1.19) is

µ̂(Bayes) = bz =

(
1− 1

a+ 1

)
z (1.22)

which minimizes the expected squared error given z.

Assume the model is right but if the value a is unknown, so we can not use

the Bayes estimator µ̂(Bayes) in equation (1.22). However, the empirical Bayes

estimation method will work in this situation. The assumptions (1.17) and

(1.18) imply the marginal distribution of z is

z ∼ Nn(0, (a+ 1)I).

The sum of squares S = ‖Z‖2 follows a chi-square distribution with n degrees

of freedom, S ∼ (a+ 1)χ2
n, so that E(n−2

S
) = 1

a+1
. The James-Stein estimator

is then defined as

µ̂(J-S) =

(
1− n− 2

S

)
Z. (1.23)

The James-Stein estimator just replaces the unknown term 1/(a+ 1) in µ̂(Bayes)

in equation (1.22) by the unbiased estimator (n − 2)/S. Therefore µ̂(J-S) is
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called “empirical Bayes” estimator since the Bayes estimator µ̂(Bayes) is being

empirically estimated from the data. This is feasible because that we have n

similar problems, zi ∼ N(µi, 1) for i = 1, 2, . . . n. The James-Stein theorem

from James and Stein (1961) below demonstrates the statement at the beginning

of the section.

Theorem 1.6.1. For n ≥ 3 the James-Stein estimator everywhere dominates

the MLE in terms of expected total squared error; that is,

Eµ{‖µ̂(J-S) − µ‖2} < Eµ{‖µ̂(MLE) − µ‖2} (1.24)

for every choice of µ.

Theorem 1.6.1 states that for n ≥ 3, µ̂(J-S) dominates µ̂(MLE) no matter

what is the prior of µ. But we should notice that the James-Stein Theorem

only concentrates on the total squared loss function, without concerning for the

effects on the individual cases. Thus under some circumstances, we still use the

MLE rather than empirical Bayes method, for instance, the linear regression

problems. More examples can be found in Efron (2010).

1.6.2 Gaussian compound decision problem

The James-Stein estimator can be viewed as a special case of the empirical

Bayes procedure for the Gaussian compound decision problem. The compound

decision problem concerns the estimation of a vector with iid normal errors

under the average squared loss. The problem has been considered as the

canonical model or motivating example in the developments of empirical Bayes,

admissibility, adaptive nonparametric regression, variable selection and many

34



other areas in statistics. It also plays a significant role in statistical applications

since the observed data are often represented or summarized as the sum of a

signal vector and the white noise.

We suppose that the vector µ = (µ1, µ2, . . . , µn) is sampled from

µi ∼ F. (1.25)

Given the parameters µi, the observations (X1, X2, . . . , Xn) follow the normal

distribution with known variance σ2 as

Xi | µi ∼ N(µi, σ
2). (1.26)

The observations Xi then have the mixture (marginal) density,

g(x) =

∫
φσ(x− µ)dF (µ). (1.27)

where φσ(x) = (2πσ2)−1/2 exp{−x2/2σ2}.

The Tweedie’s formula calculates the posterior expectation of µ given x,

which is also known as the Bayes rule (denoted by δ(x))

E(µ|X = x) = δ(x) = x+ σ2l′(x). (1.28)

where l(x) = log(g(x)).

The attractive advantage of Tweedie’s formula is that it works directly

with the mixture density g without estimating the mixing distribution F , thus

avoiding the difficult deconvolution procedure of F . The formulas above hold

for any one parameter exponential family and can be verified by considering
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the more general exponential generalization of (1.25) and (1.26),

η ∼ f(·) and x | η ∼ fη(x) = eηx−ψ(η)f0(x) (1.29)

where f is the prior density with distribution function F , η is the natural or

canonical parameter of the family, ψ(η) is the cumulant generating function or

cgf (which assures fη(x) integrate to 1), and f0(x) is the density when η = 0.

The choice f0(x) = φσ(x) in (1.27) is a N(0, σ2) density, yields the normal

family N(µ, σ2) with η = µ/σ2 and ψ(η) = 1
2
σ2η2.

The Bayes rule then gives the posterior density,

f(η | x) = fη(x)f(η)/g(x),

where g(x) is the marginal density

g(x) =

∫
fη(x)f(η)dη.

The generalized model (1.29) yields

f(η | x) = exη−λ(x)[f(η)e−ψ(η)] where λ(x) = log

(
g(x)

f0(x)

)
. (1.30)

Equation (1.30) denotes the exponential family with canonical parameter x

and cgf λ(x). Therefore, differentiating λ(x) provides the posterior cumulant

of η given x, which yields

E{η | x} = λ′(x), Var{η | x} = λ′′(x). (1.31)
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It worth to note that (1.31) implies that E{η | x} is an increasing function

of x; see Van Houwelingen and Stijnen (1983).

With l(x) = log(g(x)) and l0(x) = log(f0(x)), the posterior mean and

variance can be expressed as

η | x ∼ (l′(x)− l′0(x), l′′(x)− l′′0(x)). (1.32)

In the normal translation family case, (1.32) implies

µ | x ∼ (x+ σ2l′(x), σ2(1 + σ2l′′(x))), (1.33)

which illustrates the formula (1.28).

It is also worth to note that if the mixture density g(x) is log-concave, that

is l′′(x) ≤ 0, then Var(η|x) is less than σ2; The log-concavity of mixing density

f(µ) in (1.25) will guarantee the log-concavity of mixture density g(x), see

Marshall and Olkin (2007), and this property will be used in Chapter 4 where

we investigate the new density estimation methods for the Gaussian compound

problem.

We can see that the empirical Bayes formula µ̂i = Xi + σ2l̂′(Xi) requires

the estimation of the mixture density g(x) in the Gaussian compound decision

problem. Efron (2011) proposes the Lindsey’s method, a Poisson regression

method described in Efron (2008) and Efron (2010) to accomplish this task.

On the other hand, we will apply the shape constrained density estimation

method to estimate the mixture density g for this problem. In particular, in

Chapter 3, we will utilize the increasing property of (1.31) as a constraint in

the maximum likelihood estimation of the mixture density and discuss the
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consistency property of the density estimator. In Chapter 4, we investigate the

new methods to estimate the mixture density by imposing additional shape

constraints based on the monotone constrained method discussed in Chapter 3.

1.7 Prerequisites

In this section, we provide some basic definitions from measure theory and

convex analysis. The references we use are Rosenthal (2006) and Rockafellar

(1970) . These definitions will be used all through Chapter 2 to Chapter 4,

since the measure theory and the properties of convex function and convex sets

will play important roles in the remaining chapters.

First, we use the notation (Ω,F , P ) to denote a probability triple, where

Ω is the sample space, F is the σ-algebra, and P is the probability measure.

We will also use B for the Borel σ-algebra of the subsets of R, defined as the

smallest σ−algebra that includes all the intervals.

The distribution or law of a random variable is defined in the usual way:

Definition 1.7.1. Given a random variable X on a probability triple (Ω,F , P ),

its distribution (or law) is the function µ defined on B, the Borel subsets of R,

by

µ(B) = P (X ∈ B) = P (x−1(B)), B ∈ B.

If µ is the law of a random variable, then (R,B, µ) is also a valid probability

triple. We will write µ as L(X) or as PX−1. We will also write X ∼ µ to

indicate that µ is the distribution of X. We define the cumulative distribution

function of a random variable X by FX(x) = P (X ≤ x), for x ∈ R.

Given any Borel-measurable function (called a density function) f such
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that f ≥ 0 and
∫∞
−∞ f(t)λ(dt) = 1, we can define a law µ by

µ(B) =

∫ ∞
−∞

f(t)1B(t)λ(dt), for every Borel set B.

We will sometimes write this as µ(B) =
∫
B
f(t)λ(dt), or even as µ(dt) =

f(t)λ(dt).

For the example of the distribution of a random variable, consider X with

the normal (0, 1) distribution (usually denoted as N(0, 1)). We can define the

law µN by

µN(B) =

∫ ∞
−∞

φ(t)1Bλ(dt), for every Borel set B,

where λ is the Lebesgue measure on R and φ(t) = 1√
2π
e−t

2/2.

Since we consider the density on the real line R, by choosing the Borel

set B above as interval (−∞, x], the definition of distribution and cumulative

distribution are identical. Using the usual notation, Φ, for the cumulative

distribution function of N(0, 1), we have

Φ(x) =

∫
φ(t)1(−∞,x]λ(dt) =

∫ x

−∞
φ(t)dt.

The next Lemma is the Radon-Nikodym Theorem.

Lemma 1.7.2. A Borel probability measure µ is absolutely continuous (i.e.

there is f with µ(A) =
∫
A
fdλ for all Borel A) if and only if it is dominated by

λ (i.e. µ� λ, i.e. µ(A) = 0 whenever λ(A) = 0).

From the Radon-Nikodym Theorem, we know that the standard normal

probability measure Φ is dominated by the Lebegue measure λ on R.
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In the following, we list some definitions from convex analysis.

Definition 1.7.3. If x and y are different points in Rd, then the set of points

(1− λ)x+ λy, λ ∈ R is called the line through x and y. A subset M is called

an affine set if (1− λ)x+ λy ∈M for every x, y ∈M and λ ∈ R.

The affine set in one dimension is simply the whole real line R.

Definition 1.7.4. A subset C is of Rd is said to be convex if (1−λ)x+λy ∈ C,

whenever x ∈ C, y ∈ C and 0 < λ < 1.

The intersection of all convex sets containing a given subset S of Rd is

called the convex hull of S and is denoted by convS. Thus convS is the unique

smallest convex set that contains S.

Definition 1.7.5. A subset K of Rd is called a cone if it is closed under positive

scalar multiplication. A convex cone is a cone which is a convex set.

Definition 1.7.6. Let f be a function whose values are real or ±∞ and whose

domain is a subset of Rd. The set {(x, µ)|x ∈ S, µ ∈ R, µ ≥ f(x)} is called the

epigraph of f and is denoted by epi f .

We then define f to be a convex function on S if epi f is convex as a subset

of Rd+1. A more often used definition of a convex function is the following.

Definition 1.7.7. Let f be a function from C to (−∞,+∞], where C is a

convex set, then f is convex if and only if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), 0 < λ < 1,

for every x and y in C.
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A convex function f is said to be proper if its epigraph is non-empty and

contains no vertical lines, i.e, if f(x) < +∞ for at least one x and f(x) > −∞

for every x.

Definition 1.7.8. The Euclidean unit ball in Rd is defined to be: B = {x||x| ≤

1} = {x|d(x, 0) ≤ 1}. Then for any set C in Rd, the set of points x whose

distance from C does not exceed ε is {x|∃y ∈ C, d(x, y) ≤ ε} = ∪{y + εB|y ∈

C} = C + εB.

Then the closure cl C and interior int C can be defined by the mathematical

expressions

cl C = ∩{C + εB|ε > 0}

int C = {∃ε > 0, x+ εB ⊂ C}.

or equivalently, the closure cl C of a set C ⊂ D consists of all points that are

the limit of a sequence in C; it is the smallest closed set containing C. The

interior int C is the collection of all points x such that x ∈ G ⊂ C for some

open set G; it is the largest open set contained in C. The relative interior of

a convex set C in Rd, which is denoted by ri C is then defined as the interior

which results when C is regarded as a subset of its affine hull aff C,

ri C = {x ∈ aff C|∃ε > 0, (x+ εB) ∩ (aff C) ⊂ C}.

In one dimension, the definition of the relative interior is equivalent to interior

of a convex function, which is the largest open set within the domain of the

convex function (the domain of a convex function is defined in definition 1.7.9).
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Definition 1.7.9. The effective domain of a convex function f on S, which

we denote by dom f , is the projection on Rd of the epigraph of f ,

dom f = {x|∃µ, (x, µ) ∈ epif} = {x|f(x) <∞}.

This is a convex set in Rd. Its dimension is called the dimension of f . Trivially,

the convexity of f is equivalent to that of the restriction of f to dom f .
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Chapter 2

The ρ-consistency of univariate

ρ-concave density estimator

based on the quasi-concave

density estimation method

As mentioned in Chapter 1, there are two methods available regarding the

general ρ-concave density estimation problem. One is from Koenker and Mizera

(2010) and the other one is proposed by Seregin and Wellner (2010). To make

the terminology clearer, we follow the first paper’s name “quasi-concave density

estimation” to denote the general method of Koenker and Mizera (2010) and

use “maximum likelihood convex transformed density estimation” to denote

the method of Seregin and Wellner (2010).

The organization of Chapter 2 is: we first propose the ρ-concave density

estimation problem in one dimension based on the quasi-concave density

estimation approach. Then we introduce a new definition of divergence, that

is, the function u-divergence and its corresponding ρ-consistency, by a certain

choice of the power function u associated with parameter ρ. The focus of

Chapter 2 is to establish the theorem about the ρ-consistency of the ρ-concave

density estimator by choosing ρ = α − 1 for all 0 < α < 1. Finally, we
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investigate the relationships between the u-divergence and other distances. We

prove that the ρ-consistency actually implies the convergence of the density

estimator to the true density function under both Hellinger and total variation

distances.

2.1 The introduction to the ρ-concave density

estimation

The formulation of the primal problem (1.12) of quasi-concave density es-

timation is a generalization of that for the maximum likelihood estimation

for log-concave densities. Koenker and Mizera (2010) proposed the general

quasi-concave density estimation problem in Rd. Since we are going to discuss

the consistency result in univariate situation, we will adapt the notations and

definitions accordingly to R. Suppose that X1, . . . , Xn are the data points

in R, and the smallest convex set that contains the data collections has a

nonempty interior in R; such configuration occurs with probability 1 if n ≥ 1

and Xi behave like a random sample from f0, a probability density with respect

to the Lebesgue measure on R. We adhere to the conventions introduced in

Section 1.7, which allow convex functions to take infinite values— although

we will allow only +∞, because all our convex functions will be proper. The

domain of a convex (concave) function, dom g, is then the set of x such that

g(x) is finite. We also adopt the convention log 0 = +∞.

Let us first assume that the Xi’s are from an unknown, log-concave density
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f0; the usual maximum likelihood estimate of f0 is defined by solving

n∏
i=1

f(Xi) = max
f

! such that f is a log-concave density. (2.1)

It is convenient to rewrite (2.1) in terms of g = − log f with the density

estimate becoming f = e−g,

n∑
i=1

g(Xi) = min
g

! such that g is convex and

∫
e−gdx = 1. (2.2)

Following Silverman (1982), we may move the integral constraint over the

function g into the objective function,

1

n

n∑
i=1

g(Xi) +

∫
e−gdx = min

g
! such that g is convex. (2.3)

Adding the integral term in the objective function is a device that ensures the

solution integrates to one without enforcing this condition explicitly. More

importantly, it makes the problem (2.3) a convex problem— note that (2.2) is

not a convex problem.

Maximum likelihood estimation of log-concave densities constitutes impor-

tant special case; however, the wider class allows us to include a variety of other

shapes as discussed in Chapter 1. Expanding the scope of the investigation,

Koenker and Mizera (2010) replaced e−g into a generic function ψ which yields

the primal problem of quasi-concave density estimation (1.12) introduced in

Chapter 1:

Φ(g) =
1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dx = min

g
!

and impose the conditions on the form of ψ as follows:
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• (A1) ψ is a nonincreasing, proper convex function on R.

• (A2) The domain of ψ is an open interval containing (0,+∞).

• (A3) The limit, as τ → +∞, of ψ(y + τx)/τ is +∞ for every real y and

any x < 0.

• (A4) ψ is differentiable on the interior of its domain.

• (A5) ψ is bounded below by 0, with ψ(x)→ 0 when x→ +∞.

Given assumptions (A1)− (A5), Koenker and Mizera (2010) developed the

dual formulation of (1.12). Since we will not use the dual formulation in the

proof of the consistency in the thesis, we are not going to provide this dual

formulation, except the most important relationship between the primal and

the dual problem: the solution of the dual problem that is directly the estimate

of the density function f satisfies f = −ψ′(g), where g is the primal problem

solution. Thus unlike log-concave density estimation problem (2.3), ψ(g) is not

necessarily the estimated density f . From the computational aspect, solving

the dual problem is numerically more efficient than that of its corresponding

primal problem. Strong duality, established by Koenker and Mizera (2010),

means that both primal and dual problems achieve the same optimal value.

Therefore we can calculate the density estimate from either primal or the dual

problem.

For the log-concave density estimation problem (2.3), the choice of ψ is

ψ(g) = e−g. The authors interpret dual formulation of log-concave density

estimate as an equivalent maximum (Shannon) entropy problem. A general-

ization to ρ-concave density estimation is to consider the dual problem as the

maximum Renyi entropy problem, which yields the function ψ in the primal to
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be: with α > 1,

ψ(x) =


(−x)β/β for x ≤ 0,

0 for x > 0.

For the case with α < 1,

ψ(x) =


+∞ for x ≤ 0,

−xβ/β for x > 0,

where 1/β + 1/α = 1.

The case α > 1 is not interesting because it imposes a more restrictive form

of concavity than log-concave (with α = 1). Therefore, from our perspective, it

seems more reasonable to focus on the weaker form of concavity corresponding

to α < 1. There seems no obstacle to consider α < 0; the general primal

formulation (1.12) is still applicable. The shape constraint corresponding to

negative α contains more and more ρ-concave density functions, eventually

achieving (−∞)-concavity. However, Koenker and Mizera (2010) pointed that

“the formal complications, as well as computational difficulties dictate the more

prudent strategy of restricting attention to positive α cases.”

Therefore, we only focus on the case 0 < α < 1. The primal problem (1.12)

becomes

Φ(g) =
1

n

n∑
i=1

g(Xi)−
1

β

∫
gβdx = min

g is convex
! (2.4)

together with the relation f = gβ−1 or, equivalently, g = fα−1. The density

function f is called ρ-concave with ρ = α− 1 according to the definition of the

ρ-concave density functions.

Apart from the celebrated log-concave case α = 1, a specific example of
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the general formulation (2.4) that merits special attention is the situation

α = 1/2. The primal formulation can be written, after the application (2.4), in

a particularly simple form,

1

n

n∑
i=1

g(Xi) +

∫
1

g(x)
dx = min

g is convex
!

The estimated density satisfies f = 1/g2, which means that the primal con-

straint, g is convex, enforces the convexity of g = 1/
√
f . In the terminology of

ρ-concave densities, the estimated density is now only (−1/2)-concave, a signif-

icant relaxation of the log-concavity constraint; in addition to all log-concave

densities, all the Student tν densities with ν ≥ 1 satisfy this requirement.

2.2 The ρ-consistency of the ρ-concave density

estimator

For the maximum likelihood log-concave density estimation or ρ-concave density

estimation introduced in Chapter 1 and Chapter 2, many researchers considered

the Hellinger consistency and uniform consistency of the nonparametric density

estimator in both univariate and multivariate cases: Pal et al. (2007), Dümbgen

and Rufibach (2009), Cule et al. (2010), Schuhmacher and Dümbgen (2010), and

Seregin and Wellner (2010). However, proving the consistency of the ρ-concave

density estimators based on problem (2.4) seems to be quite different from the

usual maximum likelihood problems since the first term in problem (2.4) is not

exactly the log-likelihood of the density. Moreover, adding the second integral

term eliminates the need for assuming that the solution integrates to one, but

since ψ(g) is not necessarily the estimated density f , this convenience increases
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the difficulty in the proof of consistency for the ρ-concave density estimation

problem. The consequences of using formulation (2.4) are that some useful

techniques in the proof of maximum likelihood log-concave density estimation

can not be directly applied for the consistency proof of the ρ-concave density

estimation problem (2.4), and some of the results need to be modified according

to the ρ-concave problem (2.4).

Due to these obstacles, we are considering a different type of consistency for

ρ-concave density functions, which we call ρ-consistency (with ρ = α− 1 and

0 < α < 1). In the following, we first introduce the definition of the function

u-divergence and ρ-consistency between the two different probability densities

with respect to the Lebesgue measure.

Given the definitions and notations introduced in Section 1.7, we define the

function u-divergence between the two probability distributions as follows.

Definition 2.2.1. Let P and Q be two probability distributions over a space Ω

such that P is absolutely continuous with respect to Q. For a convex function

u such that u(1) = 0, the u-divergence of Q from P is

Du(P,Q) =

∫
Ω

u

(
dP

dQ

)
dQ.

If P and Q are both absolutely continuous with respect to a reference distribution

µ on Ω, then we have probability densities p and q satisfying dP = pdµ and

dQ = qdµ. In this case the u-divergence can be written as

Du(P,Q) =

∫
Ω

u

(
p(x)

q(x)

)
q(x)dµ(x). (2.5)

Lemma 2.2.2. Du(P,Q) ≥ 0; if u(t) is strictly convex at t = 1 then Du(P,Q) =
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0 only when P = Q.

Proof. Following Rockafellar (1970), we have

∑
i

bif(
ai
bi

) ≥ bf(
a

b
) a =

∑
ai and b =

∑
bi.

If f is strictly convex at c = a/b, then the equality holds if and only if ai = cbi,

for all i.

Replacing the summation with integral and considering p and q to be

two density function with respect to the Lebesgue measure (works for other

measures as well), we conclude that

∫
Ω

u

(
p(x)

q(x)

)
q(x)d(x) ≥ u

(∫
p(x)

q(x)
q(x)dx

)
= u(1) = 0.

Some examples of functions u(t) include the following:

(1) u(t) = t log t⇒ Du(P,Q) =

∫
p(x) log

p(x)

q(x)
dx,

(2) u(t) = (t− 1)2 ⇒ Du(P,Q) =

∫
(p(x)− q(x))2

q(x)
dx,

(3) u(t) = 1−
√
t⇒ Du(P,Q) = 1−

∫ √
p(x)q(x)dx,

(4) u(t) = |t− 1| ⇒ Du(P,Q) =

∫
|p(x)− q(x)|dx.

They correspond to KL-divergence, χ2-divergence, Hellinger divergence and

total variation distance in statistics.

Considering the nature of the power function ψ(g) = −1
β
gβ, we adopt the

similar definition from Liese and Vajda (2006) and Harremoës and Vajda (2011)
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to define the specific function u-divergence by choosing the convex function u

in Definition 2.2.1 as

uρ(t) =
tρ − ρ(t− 1)− 1

ρ(ρ− 1)
when ρ 6= 0, 1 (2.6)

with the corresponding limits

u0(t) = − ln(t) + t− 1 and u1(t) = t ln(t)− t+ 1.

The ρ-divergence is then denoted by

Dρ(P,Q)
def
= Duρ(P,Q), ρ ∈ R. (2.7)

A simpler and equivalent formulation of ρ-divergence in equation (2.7) that

will be used in the proof of the consistency theorem is

Dρ(P,Q) =

∫
1

ρ(1− ρ)

(
p

q

)ρ
qdx−

∫
1

ρ− 1

(
p

q

)
qdx+

∫
q

ρ
dx

=
1

ρ(ρ− 1)

∫
pρq1−ρdx− 1

ρ− 1

∫
pdx+

1

ρ

∫
qdx

=
1

ρ(ρ− 1)

[∫
pρq1−ρdx− 1

]
=

1

ρ(ρ− 1)

∫ [(
p

q

)ρ
− 1

]
qdx. (2.8)

Specifically, we call the divergence by the choice of parameter ρ = α− 1 as

(α− 1)-divergence for all 0 < α < 1 and denote the divergence of probability

distribution P to Q by Dρ=α−1(P,Q). Consequently, the (α− 1)-consistency

can be defined as follows.

Definition 2.2.3. If a sequence of density estimators {f̂n} converges to the
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true density f0 in the sense that

Dα−1(f̂n, f0)
a.s.−→ 0,

then {f̂n} is called (α− 1)-consistent estimator of f0.

Assume that X1, X2, · · ·Xn are iid random variables with a probability

distribution F0 on R, with ρ = (α − 1)-concave density function f0; let Fn

be their empirical distribution function. We assume that the true density

f0 is bounded, with the corresponding convex function g0 finite. This is a

very natural assumption according to the assumption (A3); such bounded

assumption is also imposed in the ρ-concave density estimation problem in

Seregin and Wellner (2010). Our goal is to estimate f0 based on the random

sample of size n > 1 from F0. The estimator is the solution of the optimization

problem

Φ(g) =
1

n

n∑
i=1

g(Xi)−
1

β

∫
gβdx = min

g convex
!. (2.9)

We denote the minimizer of problem (2.9) as ĝn = arg ming Φ(g), where the

arg min is taken over all convex functions g. The corresponding estimated

density function is denoted by f̂n = ĝβ−1
n . We further assume that for any such

convex function g = fα−1, with 0 < α < 1, the first moment of g exists, in the

sense that
∫
g(x)f(x)dx <∞. The function ψ(g) = −gβ/β satisfies conditions

(A1) − (A5) from Koenker and Mizera (2010). In the following, we assume

ρ = α − 1, and we will use ρ and α − 1 interchangeably in the proof of the

consistency.

Theorem 2.2.4. Under the assumptions mentioned above, we obtain that for

(α− 1)-concave density estimation problem, the (α− 1)-divergence from f̂n to
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f0 satisfies:

Dα−1(f̂n, f0) =
1

(α− 1)(α− 2)

∫
((
f̂n
f0

)α−1 − 1)f0dx
a.s.−→ 0.

That is, the sequence of estimators {f̂n} is (α− 1)-consistent.

2.3 The proof of the ρ-consistency theorem

We begin with introducing some lemmas which will be used in the proof of

Theorem 2.2.4. We use the notation X(1), X(2), . . . , X(n) for the order statistics

of X1, X2, . . . , Xn. Based on the Theorem 1 of Koenker and Mizera (2010),

the primal problem solution ĝn exists and is unique, it is linear on all intervals

[X(j), X(j+1)] for 1 ≤ j < n. Also according to conditions (A2) and (A5),

ĝn = +∞ on R \ [X(1), X(n)]. Lemma 2.3.1, Lemma 2.3.2 and Lemma 2.3.3 are

similar to Theorem 2.2, 2.4 and Corollary 2.5 of Dümbgen and Rufibach (2009)

with appropriate adaptations for the ρ-concave density estimation problem

(2.9). These lemmas provide some characterizations of the estimator ĝn, f̂n

and the estimated distribution function F̂n.

Lemma 2.3.1. Let g̃n be a convex function such that {x : g̃n(x) < ∞} =

[X(1), X(n)]. Then g̃n = ĝn, if, and only if,

∫
∆(x)dFn ≥

∫
∆(x)g̃β−1

n dx, (2.10)

for any ∆ : R→ R such that g̃n + λ∆ is convex for some λ > 0.

Proof. We restrict our attention to convex and real-valued functions g on

[X(1), X(n)] and set g :=∞ on R \ [X(1), X(n)]. The set Cn of all such functions
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is a convex cone, and for any function ∆ : R→ R and t > 0, the convexity of

g + t∆ on R is equivalent to its convexity on [X(1), X(n)]. A function g̃n ∈ Cn

is the minimizer of Φ(g) if and only if

lim
t→0

Φ(g̃n + t(g − g̃n))− Φ(g̃n)

t
≥ 0

for any g ∈ Cn. But this is equivalent to

lim
t→0

Φ(g̃n + t∆)− Φ(g̃n)

t
≥ 0,

for any function ∆ : R→ R such that g̃n + λ∆ is convex for some λ > 0. Now

this implies
∫

∆(x)dFn ≥
∫

∆(x)g̃β−1
n dx.

Our next characterization is in the terms of empirical distribution func-

tion Fn and the estimated distribution function F̂n. In Dümbgen and Ru-

fibach (2009), they defined for a continuous and piecewise linear function

h : [X(1), X(n)]→ R, the set of its “knots” to be

Sn(h) := {t ∈ (X(1), X(n)) : h′(t−) 6= h′(t+)}
⋃
{X(1), X(n)}.

Recall that ĝn in the problem (2.9) is an example of such a function h with

Sn(ĝn) ⊂ {X(1), X(2), . . . , X(n)}.

Lemma 2.3.2. Let g̃n which is linear on all intervals [X(j), X(j+1)], 1 ≤ j < n,

while g̃n =∞ on R\[X(1), X(n)]. Defining F̃n(x) =
∫ x
−∞ g̃

β−1
n (r)dr, we assume

further that F̃n(X(n)) = 1. Then g̃n = ĝn and F̃n = F̂n, if and only if, for

arbitrary t ∈ [X(1), X(n)],
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∫ t

X(1)

F̃ (r)dr ≤
∫ t

X(1)

Fn(r)dr. (2.11)

Proof. Let G be some distribution function with support [X(1), X(n)], and let

∆ : [X(1), X(n)]→ R be absolutely continuous with L1 derivative ∆
′
. Then

∫
∆dG = ∆(X(n))−

∫ X(n)

X(1)

∆
′
(r)G(r)dr. (2.12)

Now assume that g̃n = ĝn, and let t ∈ (X(1), X(n)]. Let ∆ be absolutely

continuous on [X(1), X(n)] with L1 derivative ∆
′
(r) = −1{r ≤ t} and arbitrary

value of ∆(X(n)). The absolute continuity of ∆(x) yields that g̃n + ∆ is convex.

Thus (2.10) and (2.12) entail

∆(X(n)) +

∫ t

X(1)

F̃n(r)dr ≤ ∆(X(n)) +

∫ t

X(1)

Fn(r)dr, (2.13)

which is equivalent to (2.11).

In the case of t ∈ Sn(g̃n)\{X(1)}, let ∆
′
(r) = 1{r ≤ t}. Then g̃n + λ∆ is

convex for some λ > 0, so that

∆(X(n))−
∫ t

X(1)

F̃ (r)dr ≤ ∆(X(n))−
∫ t

X(1)

Fn(r)dr, (2.14)

which yields the equality in (2.11).

A corollary of Lemma 2.3.2 is that the estimated distribution function F̂n

is very close to the empirical distribution function Fn on Sn(ĝn).

Lemma 2.3.3. Fn − n−1 ≤ F̂n ≤ Fn on Sn(ĝn).
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Proof. For t ∈ Sn(ĝn) and s < t < u, it follows from Lemma 2.3.2 that,

1

u− t
(

∫ t

X(1)

F̂n(r)dr +

∫ u

t

F̂n(r)dr) ≤ 1

u− t
(

∫ t

X(1)

Fn(r)dr +

∫ u

t

Fn(r)dr).

(2.15)

On the other hand, since t ∈ Sn(ĝn), we have

1

u− t

∫ t

X(1)

F̂n(r)dr =
1

u− t

∫ t

X(1)

Fn(r)dr. (2.16)

Therefore, (2.15) and (2.16) indicate

1

u− t

∫ u

t

F̂n(r)dr ≤ 1

u− t

∫ u

t

Fn(r)dr. (2.17)

In the same way, we can conclude

1

t− s

∫ t

s

F̂n(r)dr ≥ 1

t− s

∫ t

s

Fn(r)dr. (2.18)

Finally, let u ↓ t and s ↑ t; then we can derive F̂n(t) ≤ Fn(t) based on inequality

(2.17), and inequality (2.18) indicates that F̂n(t) ≥ Fn(t−) = Fn(t)− n−1.

After demonstrating some interested characterizations of ρ-concave density

estimators, we establish some lemmas for the proof of the consistency theorem.

The next lemma provides an important inequality about the ρ-concave densities.

Lemma 2.3.4. Let g = fα−1 be a convex function for 0 < α < 1, and f is a

density function . If 0 < f(a) ≤ f(b), then

g(a)− g(b) ≥ |b− a|(1− α)

α
[g(b)α/α−1 − g(a)α/α−1]. (2.19)

Proof. Without loss of generality, we may assume that 0 < a < b. Since
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0 < f(a) ≤ f(b), then g(a) ≥ g(b), considering α− 1 < 0. Due to the convexity

of g(x), for a < x < b in the domain of f ,

g(x) = g

(
x− a
b− a

b+
b− x
b− a

a

)
≤ x− a
b− a

g(b) +
b− x
b− a

g(a)

= g(a) +
x− a
b− a

(g(b)− g(a)). (2.20)

As f(x) is a density function, and f(x) = g(x)1/α−1, we can derive the

following relationship:

1 ≥
∫ b

a

f(x)dx

=

∫ b

a

g(x)1/α−1dx

≥
∫ b

a

[g(a) +
x− a
b− a

(g(b)− g(a))]1/α−1dx according to (2.20)

= (
1− α
α

)(
b− a

g(a)− g(b)
)(g(b)α/α−1 − g(a)α/α−1).

Following the inequality above, we can conclude that

g(a)− g(b) ≥ (
1− α
α

)(b− a)(g(b)α/α−1 − g(a)α/α−1). (2.21)

If a > b, we can derive the similar inequality as (2.21), so finally, (2.19) holds

as asserted.

In the following, we assume that ĝn attains its minimum at an order

statistics, say X(q), which depends on n, and also reach its maximum on an

order statistics, say, X(m), where X(q) and X(m) ∈ [X(1), X(n)]. This assumption

is justified due to the fact that ĝn is piecewise linear in [X(1), X(n)] and the
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knots of piecewise linear function can only be the data points.

Lemma 2.3.5. Suppose g = fα−1 is a convex function for 0 < α < 1, where

f is a (α − 1)-concave density function, and the first moment of g exists. If

ĝn = arg min
g

Φ(g), then sup
n≥1

ĝn(X(m)) <∞.

Proof. For any convex function g satisfying assumptions above, as Φ(g) is

minimized by ĝn, we have

1

n

n∑
i=1

ĝn(Xi)−
1

β

∫
ĝβndx ≤

1

n

n∑
i=1

g(Xi)−
1

β

∫
gβdx.

This is equivalent to

n− 1

n
ĝn(X(q)) +

1

n
ĝn(X(m))−

1

β

∫
ĝβndx ≤

1

n

n∑
i=1

g(Xi)−
1

β

∫
gβdx. (2.22)

For the left-hand side of the equation (2.22), we apply Lemma 2.3.4 with

0 < α < 1, β < 0, 1/α + 1/β = 1 to derive the following inequalities:

n− 1

n
ĝn(X(q)) +

1

n
ĝn(X(m))−

1

β(n+ 1)

∫
ĝβndx

≥ n− 1

n
ĝn(X(q)) +

1

n
ĝn(X(m))−

1

β(n+ 1)
ĝβn(X(m))|X(m) −X(q)|

≥ n− 1

n
ĝn(X(q)) +

1

n
ĝn(X(m)) +

|X(m) −X(q)|
n+ 1

(
ĝn(X(q))− ĝn(X(m))

|X(m) −X(q)|

− 1

β
ĝβn(X(q))

=
n− 1

n
ĝn(X(q))−

1

β

|X(m) −X(q)|
n+ 1

ĝβn(X(q)) + (
1

n
− 1

n+ 1
)ĝn(X(m))

+
1

n+ 1
ĝn(X(q)). (2.23)

Koenker and Mizera (2010) demonstrated the existence of the solution ĝn

(or f̂n), thus we must have ĝn(Xq) < ∞. Moreover, when we consider the
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right-hand side of the equation (2.22), due to the existence of the first moment

of g and the strong law of large numbers, we have

1

n

n∑
i=1

g(Xi)
a.s−→
∫
g(x)f(x)dx =

∫
g(x)βdx <∞.

As a result, 1
n

∑
g(Xi) − 1

β

∫
gβdx < ∞ almost surely, and we can conclude

that ĝn(X(m)) <∞ almost surely according to (2.23).

The next lemma is from Schuhmacher and Dümbgen (2010).

Lemma 2.3.6. Suppose that P and Q are two arbitrary probability measures

on Rd. Let ψ: Rd → R be a bounded unimodal function, where unimodal means

that the set Cψ,t := {x ∈ Rd;ψ(x) ≥ t} are closed and convex for all t ∈ R.

Then,

|
∫
Rd
ψd(P −Q)| ≤ 2 ‖ ψ ‖∞ sup

C∈ω∗
|P (C)−Q(C)|,

where ω∗ denotes the set of all closed convex subsets of Rd.

Proof. The quick proof from Schuhmacher and Dümbgen (2010) is by taking

K =‖ ψ ‖∞<∞; we have

∫
Rd
ψ(x)P (dx) = −K +

∫
Rd

(ψ(x) +K)P (dx)

= −K +

∫
Rd

∫
[0,∞)

1{r ≤ ψ(x) +K}drP (dx)

= −K +

∫
[0,∞)

P ({ψ ≥ r −K})dr

= −K +

∫ K

−K
P (Cψ,t)dt
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and therefore

|
∫
Rd
ψd(P −Q)| =

∫ K

−K
(P (Cψ,t)−Q(Cψ,t))dt ≤ 2K sup

c∈ω∗
|P (C)−Q(C)|.

Given the random sample with the true distribution function F0, the law of

large numbers states that the empirical distribution function is consistent in

the sense that

Fn(t)
a.s−→ F0(t), for every t.

The Glivenko-Cantelli theorem extends the law of large numbers and gives

uniform convergence. The uniform distance

‖Fn − F0‖∞ = sup
t
|Fn(t)− F0(t)|

is also known as the Kolmogorov-Smirnov statistic and the Glivenko-Cantelli

theorem states that

Lemma 2.3.7. If X1, X2 . . . , Xn are iid random variables with distribution

function F0, then ‖Fn − F0‖∞
a.s.−→ 0.

We are now ready to prove Theorem 2.2.4, by using the lemmas in this

section.

Proof. As Φ(g) is minimized by ĝn, we have

0 ≤
∫

(g0(x)− ĝn(x))dFn +
1

β

∫
ĝn(x)βdx− 1

β

∫
g0(x)βdx. (2.24)
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With ĝβ−1
n = f̂n and gβ−1

0 = f0, the equation (2.24) can be written as

0 ≤ β − 1

β

∫
(g0(x)− ĝn(x))dFn +

1

β

∫
ĝn(x)d(F̂n − Fn)

+
1

β

∫
g0(x)d(Fn − F0)

= In + IIn + IIIn, (2.25)

with

In =
β − 1

β

∫
(g0(x)− ĝn(x))dFn,

IIn =
1

β

∫
ĝn(x)d(F̂n − Fn),

IIIn =
1

β

∫
g0(x)d(Fn − F0).

We first consider the term In in the equation (2.25), for any b > 0,

In ≤
β − 1

β

∫
((g0(x) + b)− ĝn(x))dFn

≤ β − 1

β

∫
(g0(x) + b)d(Fn − F0) +

β − 1

β

∫
((g0(x) + b)− (ĝn(x) + b)) dF0

+
β − 1

β

(∫
(ĝn(x) + b)dF0 −

∫
ĝn(x)dFn

)
≤ ε(b)− β − 1

β

∫
(ĝn(x)− g0(x))dF0,

where

ε(b) =
β − 1

β

∫
(g0(x) + b)d(Fn − F0) +

β − 1

β

(∫
(ĝn(x) + b)dF0 −

∫
ĝn(x)dFn

)
−→ 0,
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as b → 0 and n → ∞. Due to the consistency of the empirical distribution

function Fn and the true convex function g0 is finite, we can apply Lemma

2.3.6 to unimodal function −g0 considering β < 0 and β − 1 < 0. Furthermore,

we can express
∫

(ĝn(x)− g0(x))dF0 as

∫
(ĝn(x)− g0(x))dF0 =

∫
(ĝnf0 − g0f0)dx

=

∫
f0(f̂α−1

n − fα−1
0 )dx

=

∫ (
(
f̂n
f0

)α−1 − 1

)
f0f

α−1
0 dx.

For the term IIn = 1
β

∫
ĝn(x)d(F̂n − Fn), we can further split it into two

terms IIn = IVn + Vn, where

IVn =
1

β

∫
(ĝn(x))d(F̂n − F0),

and

Vn =
1

β

∫
(ĝn(x))d(F0 − Fn).

The structure of IVn is similar as term In, which can be expressed in the
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following way

IVn =
1

β

∫
(ĝn(x))d(F̂n − F0)

=
1

β

∫
(ĝnf̂n − ĝnf0)dx

= − 1

β

∫
fα0 (

f̂α−1
n

fα−1
0

− f̂αn
fα0

)dx

= − 1

β

∫
(
f̂n
f0

)α−1 − 1)f0f
α−1
0 dx− 1

β

∫
(fα0 − f̂αn )dx

≤ − 1

β

∫
((
f̂n
f0

)α−1 − 1)f0f
α−1
0 dx− 1

β
α(α− 1)C1Dα(f0, f̂n)

≤ − 1

β

∫
(
f̂n
f0

)α−1 − 1)f0f
α−1
0 dx.

The last two inequalities hold since

− 1

β

∫
(fα0 − f̂αn )dx (2.26)

can be viewed as a negative value of another divergence with term C1 and

Dα(f0, f̂n) explained by the following: First of all, there exist C1 > 0 which is

the lower bound of g = fα−1 in the domain of g for all convex function such

that gβ−1 = f is a density function and yields the finite value of Φ(g). Such

lower bound exists due to the following: If there is C1 > 0 sufficiently small,

then the target function will be infinitely large. For instance, if we assume that

P (g < C1) > ε > 0, then

Φ(g) >
1

n

∑
g(Xi)−

1

β

∫
{g<C1}

Cβ
1 dx−

1

β

∫
{g>C1}

gβdx

>
ε

−β
cβ1 −→∞.
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Therefore according to the power divergence (2.7) and the derivation of the

equivalent formulation (2.8), we have

Dα(f0, f̂n) =
1

α(α− 1)

∫ (
(
f0

f̂n
)α − 1

)
f̂ndx

for 0 < α < 1. As a result, the term (2.26) is less or equal to

− 1

β
C1α(α− 1)Dα(f0, f̂n) ≤ 0

given 0 < α < 1 and β < 0. Hence we can demonstrate that IVn ≤

− 1
β

∫ (
( f̂n
f0

)α−1 − 1
)
f0f

α−1
0 dx.

Therefore, by combining In and IIn, we obtain

In + IIn ≤ ε(b)−
∫ (

(
f̂n
f0

)α−1 − 1

)
f0f

α−1
0 dx+ Vn.

According to the definition of (α−1)-divergence in the equation (2.7) and (2.8),

if ρ = α− 1, then the (ρ = α− 1)-divergence from f̂n to f0, is Dα−1(f̂n, f0) =

1
(α−1)(α−2)

∫ (
( f̂n
f0

)α−1 − 1
)
f0dx. The emergence of the power function tα−1 is

not surprising, and this can be viewed as a connection between (α− 1)-concave

density function and the corresponding function u-divergence. Hence, we first

conclude that

In + IIn ≤ ε(b)− C(α− 1)(α− 2)Dα−1(f̂n, f0) + Vn.

where C again is the lower bound of g0 = fα−1
0 in the domain of the true
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density function. Moreover, Lemma 2.3.5 shows that

‖ĝn(x)‖∞ = sup |ĝn(X(m))| <∞.

We next show that −ĝn is the unimodal function according to Lemma 2.3.6.

As −ĝn is a concave function, by denoting −ĝn(x) = G(x), we first need to

prove CG,t = {x : G(x) ≥ t} is a closed convex set. Let x1, x2 ∈ CG,t; the linear

combination (1− λ)x1 + λx2 with λ > 0 yields

G((1− λ)x1 + λx2) ≥ (1− λ)G(x1) + λG(x2) ≥ t,

due to the convexity of ĝn. Thus −ĝn(x) = G(x) is a unimodal function as

defined in Lemma 2.3.6. Given that ĝn is bounded, we can apply Lemma

2.3.6 with ψ = −ĝn P = F̂n, Q = F0 in one dimension. Therefore, due to the

consistency of Fn, we conclude that

|Vn| ≤
−1

β
‖ −ĝn(x) ‖∞‖ F0 − Fn ‖∞

a.s−→ 0.

Lastly,

|IIIn| =
−1

β
|
∫

(−g0)d(Fn − F0)| a.s−→ 0,

as n→∞ due to the consistency of Fn, g0 is bounded and Lemma 2.3.6.

Finally, following equation (2.25), we can conclude

Dα−1(f̂n, f0) ≤ 1

C(α− 1)(α− 2)
(ε(b) + |Vn|+ |IIIn|) −→ 0, (2.27)

as b → 0 and n → ∞. In another words, we conclude that {f̂n} is the

(α− 1)-consistent estimator of f0.
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2.4 From the ρ-divergence to the Hellinger and

the total variation distance

In previous section, we introduced the definition of ρ-consistency and proved

that for ρ = α−1, the (α−1)-concave density estimator f̂n is (α−1)-consistent.

However, this type of consistency is still dependent on the parameter of the

power function α. In this section, we will establish the relationship between

(α− 1)-divergence and other well-known “parameter-independent” distances,

for example, the Hellinger distance and the total variation distance, and

demonstrate that the (α− 1)-consistency implies the convergence of f̂n to f0

under both the Hellinger and the total variation distance.

According to the definition of the general ρ-divergence, if we choose ρ = 1/2,

then we have the symmetric Hellinger distance from Definition 1.5.1:

D1/2(P,Q) = 4H2(P,Q).

We will prove that for all 0 < α < 1, Dα−1(f̂n, f0) ≥ D1/2(f̂n, f0) = 4H2(f̂n, f0).

In another words, the (α− 1)-consistency implies the Hellinger consistency. An

important Lemma is Proposition 2 of Harremoës and Vajda (2011).

Lemma 2.4.1. Assume that functions f and g are C2 and that f ′′(1) > 0 and

g′′(1) > 0. Assume that lim inft→0
g(t)
f(t)

> 0, and lim inft→∞
g(t)
f(t)

> 0. Then there

exist γ > 0 such that

Dg(P,Q) ≥ γDf (P,Q)

for all distributions P and Q.

Theorem 2.4.2. If a sequence of density estimators {f̂n} is (α− 1)-consistent
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estimator of the true density f0, then {f̂n} is also Hellinger consistent:

H(f̂n, f0) =

√
1

4
D1/2(f̂n, f0)

a.s.−→ 0. (2.28)

Proof. First, we denote g = uρ1 with ρ1 = 2− α and f = u1/2. According to

Harremoës and Vajda (2011), for any ρ 6= 0, 1 we have

Dρ(P,Q) = D1−ρ(Q,P ). (2.29)

Therefore, Dα−1(P,Q) = D2−α(Q,P ) = Dg(Q,P ). Next, it is easy to verify

that g′′(1) = f ′′(1) = 1 > 0. Moreover,

g(t)

f(t)
=

uρ1
u1/2

=
−1

4ρ1(ρ1 − 1)

tρ1 − ρ1(t− 1)− 1

t1/2 − 1/2(t− 1)− 1
.

Given 0 < α < 1, then 1 < ρ1 = 2− α < 2, therefore we can conclude that

lim inf
t→0

g(t)

f(t)
=
g(0)

f(0)
=

1

2ρ1

>
1

4
> 0

and

lim inf
t→∞

g(t)

f(t)
= lim inf

t→∞

−1

4ρ1(ρ1 − 1)

tρ1−1 − ρ1 + (ρ1 − 1)/t

(
√
t)−1 − 1/2− 1/2t

=
−1

4ρ1(ρ1 − 1)
lim inf

t→∞

tρ1−1 − ρ1

−1/2

=
1

2ρ1(ρ1 − 1)
lim inf

t→∞
(tρ1−1 − ρ1) =∞ > 0.

Therefore, according to Lemma 2.4.1 and symmetric property of Hellinger
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distance, there exists γ > 0 such that

D2−α(f0, f̂n) ≥ γD1/2(f0, f̂n) = γD1/2(f̂n, f0).

Applying the equation (2.29), we conclude for all 0 < α < 1,

Dα−1(f̂n, f0) = D2−α(f0, f̂n) ≥ γD1/2(f̂n, f0) = 4γH2(f̂n, f0). (2.30)

Therefore, Theorem 2.4.2 is assured by the equation (2.30) and Theorem

2.2.4.

After discussing the relationship between the (α− 1)-divergence and the

Hellinger distance, we consider the total variation due to the well-known

inequality between the Hellinger distance and the total variation distance.

Le Cam (1969) showed that total variation distance DTV (P,Q) is bounded

above by the multiple of the Hellinger distance DTV (P,Q) ≤
√

2H(P,Q). By

applying Theorem 2.2.4 and 2.4.2, we conclude that

Theorem 2.4.3. If a sequence of density estimators {f̂n} is (α− 1)-consistent

estimator of the true density f0, then {f̂n} is also consistent estimator of f0

with respect to the total variation distance:

DTV (f̂n, f0) =

∫
|f̂n − f0|dx

a.s.−→ 0. (2.31)

Therefore, once the (α− 1)-concave is established, the convergence under

the Hellinger and the total variation metrics are automatically guaranteed.

We are safe to conclude that (α− 1)-concave density estimator f̂n, obtained

through solving the quasi-concave density estimation problem of Koenker and
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Mizera (2010), is consistent under both the Hellinger and the total variation

metrics.
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Chapter 3

The consistency of the

estimated mixture density and

the decision rule in the classical

Gaussian compound decision

problem

In this chapter, we introduce more definitions and methods regarding the

classical Gaussian compound decision problem and propose the monotone

constrained mixture density estimation problem. From the theoretical point of

view, we establish the Hellinger consistency of the mixture density estimator in

the classical Gaussian compound decision problem. Due to the recent work of

Seregin and Wellner (2010), we adopt the similar convex transformed density

estimation method to further prove the pointwise convergence of the estimated

convex function k̂n(x) in the interior of the domain of true convex function

k0(x). Last but not least, the pointwise convergence of the estimated decision

rule is also demonstrated.
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3.1 Mixture density estimation in the Gaus-

sian compound decision problem

In Chapter 1, we have introduced the empirical Bayes method and Gaussian

compound decision problem. There are many recent references: for instance,

Brown (2008), Brown and Greenshtein (2009), Efron (2010), Efron (2011)

and Jiang and Zhang (2009) consider empirical Bayes methods for Gaussian

compound decision problems, especially the computational methods for non-

parametric mixture models.

Recall that the classical compound decision problem amounts to estimating

an n-vector µ1, . . . , µn of parameters, under the squared error loss, where µi

is iid from a distribution F . Given a conditionally Gaussian random sample,

Xi ∼ N(µi, 1), i = 1, 2 . . . n (assume σ2 = 1), the mixture density of Xi is

g(x) =

∫
φ(x− µ)dF (µ).

If F and g are known, the optimal prediction of the µ’s is given by the Bayes

rule (the Tweedie’s formula in Section 1.6.2)

δ(x) = E(µ|X = x) = x+ l′(x) = x+
g′(x)

g(x)
, (3.1)

where l(x) = log(g(x)) = log(
∫
φ(x− µ)dF (µ)).

The estimation of the Bayes prediction rule δ(x) is directly associated with

the estimation of the mixture density function g(x) according to equation (3.1).

Therefore, the estimation of the mixture density g(x) plays a key role in the

classic Gaussian compound decision problem and has been considered by many
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authors. For example, Brown and Greenshtein (2009) showed that the simple

kernel density estimates of g(x) can be applied to achieve attractive performance

compared with other empirical Bayes procedures. Jiang and Zhang (2009)

have recently proposed a variant of the classical Kiefer and Wolfowitz (1956)

nonparametric MLE as another promising approach to estimate empirical Bayes

rule for the Gaussian compound decision problem. They demonstrated that

the good predictive performance for the class of Gaussian compound decision

problem can be achieved by an implementation of the Kiefer and Wolfowitz

(1956) nonparametric maximum likelihood estimator. The original, infinitely-

dimensional, formulation of the Kiefer and Wolfowitz (1956) nonparametric

MLE solves,

min{−
n∑
i=1

log(

∫
φ(Xi − µ)dF (µ))}, (3.2)

where F runs over all mixing distributions. Jiang and Zhang (2009) showed that

under mild moment conditions on the means, the MSE of the general maximum

likelihood empirical Bayes (GMLEB) is within an infinitesimal fraction of the

minimum average MSE among all separable estimators which use a single

deterministic estimating function on individual observations, provided that the

risk is of greater order than (log n)5/n. They also proved that the GMLEB is

simultaneously uniformly approximately minimax.

The objective function (3.2) is convex and is minimized over a convex

set of F , therefore we have a convex problem. This approach estimates the

mixing distribution function F instead of mixture density g(x), so the implied

empirical Bayes rule is obtained by substituting this estimate for F through
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the simple conditional expectation of µ given X = x:

δ(x) =

∫
µφ(x− µ)f(µ)dµ∫
φ(x− µ)f(µ)dµ

,

where f = F ′ is the mixing density function. The numerical method proposed

by Jiang and Zhang (2009) employs the EM algorithm, a strategy introduced

by Laird (1978). Considering the EM algorithm runs slow even for moderately

large sample sizes toward their objective (3.2), Koenker and Mizera (2013)

proposed to solve this maximum likelihood problem by establishing the dual

formulation of (3.2), since it is convex. Their implementation by interior-point

algorithm in Mosek is much quicker compared to the EM algorithm, as reported

in Koenker and Mizera (2013). We will explore this application with numerical

implementations in Chapter 4.

In the following, we will introduce an alternative method for estimating the

mixture density g(x). The method is inspired by the monotone property of

the prediction rule which comes from the derivation of (1.31) from Chapter 1:

the empirical Bayes prediction rule δ(x) is nondecreasing in x, not only for

the conditional Gaussian case, but for more general one-parameter exponential

families as well, no matter what the prior distribution F is. The monotonicity

of the empirical Bayes prediction rule δ(x) further suggests the function

k(x) =
1

2
x2 + log g(x) (3.3)

to be convex, where k′(x) = δ(x). As the unconstrained kernel estimators do

not deliver the monotonicity property of δ(x), Van Houwelingen and Stijnen

(1983) suggested a greatest convex minorant estimator based on a preliminary
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histogram-type estimate of the density g(x). Koenker and Mizera (2013)

proposed to solve the mixture density g(x) via maximum likelihood, subject

to the constraint (3.3), motivated by the close link to the recent work on the

maximum likelihood estimation of the log-concave densities and other shape

constrained estimation problems.

Although the constraint looks quite different from the constraints used in

previous nonparametric shape constrained density estimation methods, the

essence of the problem is very similar. Analogous to the development of Koenker

and Mizera (2010), Koenker and Mizera (2013) considered maximizing the

log-likelihood
n∑
i=1

log g(Xi),

over the mixture density g(x). Using the same technique as quasi-concave

density estimation approach, they add a Lagrange term into the likelihood

above to ensure the result is a density. With log g(x) = l(x), the whole task is

to maximize
n∑
i=1

l(Xi)−
∫
el(x)dx,

under the constraint 1
2
x2 + l(x) to be convex on R. Evidently, this constraint

is equivalent to the requirement that

k(x) = log
√

2π +
1

2
x2 − cx+

1

2
c2 + log g(x) = log

√
2π +

1

2
(x− c)2 + l(x)

is convex for arbitrary c. Rewriting everything in terms of k(x) yields the

objective function

n∑
i=1

k(Xi)− n log
√

2π − 1

2

n∑
i=1

(Xi − c)2 −
∫
ek(x)φc(x)dx,
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where φc(x) is the normal density function with mean c and unit variance.

Koenker and Mizera (2013) expressed the optimization problem in the

minimization form and obtain the formulation without constant terms,

min
k
{−

n∑
i=1

k(Xi) +

∫
ek(x)dΦc(x)|k ∈ K},

where Φc denotes the Gaussian distribution function with unit variance and

mean c and K is the cone of convex functions on R. They further adopted

c = 0 due to its simplicity which yields the (primal) formulation Φ = Φ0 (and

also denote φc = φ as the standard normal density function)

min
k
{−

n∑
i=1

k(Xi) +

∫
ek(x)dΦ(x)|k ∈ K}. (3.4)

Problem (3.4) only differs from the general primal form of Koenker and

Mizera (2010)—as introduced in Chapter 2, the log-concave density estimation

problem (2.3)—in the sign of k (and correspondingly in the requirement that

k(x) be convex rather than concave), and in the integration measure dΦ(x) =

φ(x)dx rather than dx. The fact the objective function in problem (3.4) is

convex and minimized over the convex set K implies that the problem is convex.

Similarly as quasi-concave density estimation, the convexity property of the

problem also makes the dual interpretation possible. Koenker and Mizera (2013)

provide the dual form of problem (3.4) as well as the numerical algorithms by

using two independent convex programming algorithms employing interior-point

methods: the PDCO algorithm of Saunders (2003) and the Mosek methods

of Andersen (2010). Via the dual formulation, they prove that the solution of

the primal (3.4), k̂n(x), exists and is piecewise linear. Given the relationship
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between primal solution k̂n(x) and dual solution f̂n(x), we have ek̂n(x) = f̂n(x).

The estimated empirical Bayes rule is given by δ̂n(x) = k̂′n(x) and ĝn(x) =

φ(x)ek̂n(x) = φ(x)f̂n(x). The numerical methods and more applications with

additional shape constraints will be discussed in Chapter 4.

Once the existence of the maximum likelihood estimator is ensured, our

attention shifts to other properties of the estimator: our main concern is to

establish the consistency of the mixture density estimator and also that of

the Bayes prediction rule. Due to the similarity of the problem to the log-

concave density estimation problem of Koenker and Mizera (2010), it is quite

plausible to explore the consistency as the similar way as the log-concave density

consistency proof. Indeed, the structure of the Hellinger consistency proof for

the mixture density is analogous to the work of Pal et al. (2007) along with the

characterizations of the mixture density estimator from Koenker and Mizera

(2013). Furthermore, the exploration of pointwise consistency of the convex

function estimator k̂n(x) on any compact set in the interior of the domain of

the convex function k0(x) is also possible due to the connection between the

Hellinger consistency of the mixture density estimator ĝn(x) and the uniform

consistency (pointwise convergence) of the estimated convex function k̂n(x)

established by Seregin and Wellner (2010). We can demonstrate the pointwise

convergence of the estimated convex function k̂n(x) to the true convex function

k0(x) since we can reformulate problem (3.4) to a similar form as the convex

transformed density estimation problem of Seregin and Wellner (2010). We

will focus on the proof of the Hellinger consistency of the estimated mixture

density, the pointwise convergence of the estimated convex function and the

estimated decision rule in the remainder of this chapter.
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3.2 The Hellinger consistency of the mixture

density estimator ĝn

The purpose of this section is to establish the Hellinger consistency of the

density estimator ĝn(x). If g0(x) = e(k0(x))φ(x) is the true mixture density

and ĝn(x) = ek̂n(x)φ(x) is the maximum likelihood estimator according to the

problem (3.4), we will show that limn→∞H(ĝn(x), g0(x)) = 0 almost surely.

We further denote the empirical distribution measure of the observations

X1, X2 . . . , Xn as Pn.

The following two lemmas are from Pal et al. (2007).

Lemma 3.2.1. If p and q are densities, b > 0, P is the distribution function

of p, then ∫
R

log

(
b+ q

b+ p

)
dP ≤ ε(b)− 2H2(p, g),

where

ε(b) = 2

∫
R

√
b

b+ p
dP.

Proof. In this case, according to the inequality

1

2
log(x) ≤

√
x− 1.

Then for any x > 0, we can derive the following inequalities
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∫
R

log

(
b+ q

b+ p

)
dP ≤ 2

[∫
R

√
b+ q

b+ p
dP − 1

]

≤ 2

[∫
R

√
b

b+ p
dP +

∫
R

√
q

b+ p
dP − 1

]

≤ ε(b) + 2

[∫
R

√
q

b+ p
pdx− 1

]
≤ ε(b) + 2

[∫
R

√
pqdx− 1

]
= ε(b)− 2H2(p, q).

Lemma 3.2.2. Let 0 < b, c <∞. If p is a unimodal density and supx(g(x)) ≤

c, then

|
∫
R

log(b+ p)d(Pn − P )| ≤ 2 sup
x
|Pn(x)− P (x)| log

(
1 +

c

b

)
.

Proof. One can refer to the proof of Lemma 2 of Pal et al. (2007).

The next lemma based on the characterizations of k̂n(x) gives the bounded

property of mixture density estimator ĝn(x).

Lemma 3.2.3. For the nonparametric maximum likelihood estiamtor ĝn of

problem (3.4), we obtain that

sup
n>1
‖ ĝn ‖∞≤

1√
2π
.

Proof. We first need to review the characterization of the solution k̂n(x) of

the problem (3.4). Theorem 1 of Koenker and Mizera (2013) states that the
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solution k̂n(x) exists and is piecewise linear. The difference from Theorem 2.1

of Koenker and Mizera (2010) is that although the solution is still piecewise

linear, the knots (the breakpoints of linearity in k̂n(x)) do not necessarily occur

at the observed Xi. Without loss of generality, we assume that there are m

pieces of linear function k̂n(x). The linearity of k̂n(x) indicates that the decision

rule δ̂n(x) is piecewise constant. Denoting the constant as ci and the density

estimator as ĝi on each piece, on each interval corresponding to i = 1, 2, . . . ,m

in R we have

ci = x+ (log ĝi(x))′. (3.5)

Taking the anti-derivative of the equation (3.5) yields

ĝi(x) = bie
−1
2

(ci−x)2 .

Although the number of pieces m may depend on n, each bie
−1
2

(ci−x)2 ≤ ĝn(x)

where ĝn is the estimated density on the real line. Hence, we can derive

bi =

∫
bi√
2π
e
−1
2

(ci−x)2dx ≤ 1√
2π

∫
ĝn(x)dx =

1√
2π
. (3.6)

Since ĝn(x) = maxi ĝi for i = 1, 2, . . . ,m, we obtain that

sup ĝn(x) ≤ sup
i

sup
x
ĝi(x) = sup bi ≤

1√
2π
.

Given all the lemmas in this section, we can establish the Hellinger consis-

tency theorem for the mixture density estimators as follows.

Theorem 3.2.4. Assume the true density function g0(x) = e(k0(x))φ(x) is
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bounded in R with distribution function P0

∫
log[g0(x)]dP0 <∞ (3.7)

where k0 is a unknown convex function. Under the conditions above, we

conclude that H(ĝn, g0)
a.s−→ 0; that is, the sequence of estimators {ĝn} is

Hellinger consistent estimator of g0.

Proof. For ε ∈ (0, 1), according to condition (3.7) we have

0 ≥
∫
{g0(x)≤1−ε}

log[ε+ g0]dP0 ≥ log[ε]P0{g0 ≤ 1− ε} > −∞

0 ≤
∫
{g0(x)≥1}

log[ε+ g0]dP0 ≤
∫
{g0(x)≥1}

log[2g0]dP0

≤
∫

log[g0]dP0(x) + log 2 <∞.

Therefore the function log[ε + g0] is integrable with respect to probability

measure P0.

Since k̂n(x) minimizes the objective function (3.4), we obtain that

−
n∑
i=1

k̂n(Xi) +

∫
ek̂n(x)dΦ(x) ≤ −

n∑
i=1

k0(Xi) +

∫
ek0(x)dΦ(x). (3.8)

Notice that if k̂n(x) is the solution of objective function, then the estimated

function ĝn = ek̂n(x)φ(x) is automatically a density function. Therefore the
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inequality (3.8) is equivalent to

0 ≤
n∑
i=1

k̂n(Xi)−
n∑
i=1

k0(Xi) =

∫
log[ĝn/φ]dPn −

∫
log[g0/φ]dPn

=

∫
log[ĝn]dPn −

∫
log[g0]dPn

≤
∫

log[ε+ ĝn]dPn −
∫

log[g0]dPn

≤
∫

log[ε+ ĝn]d(Pn − P0) (3.9)

+

∫
log

[
ε+ ĝn
ε+ g0

]
dP0 (3.10)

+

∫
log[ε+ g0]dP0 −

∫
log[g0]dPn (3.11)

for any ε > 0.

Denote the terms (3.9), (3.10) and (3.11) as In, IIn and IIIn respectively.

With Glivenko-Cantelli Theorem 1.6.1, Lemma 3.2.2 and Lemma 3.2.3, we

can conclude that

|In| ≤ 2 sup
x
|Pn − P0| log

(
1 +

1√
2πε

)
−→ 0

almost surely as n→∞.

For the term IIn we apply the Lemma 3.2.1 and derive

IIn ≡
∫

log

[
ε+ ĝn
ε+ g0

]
≤ 2

∫ √
ε

ε+ g0

dP0 − 2H2(ĝn, g0). (3.12)

At last, the strong law of large numbers implies that

IIIn =

∫
log[ε+ g0]dP0 −

∫
log[g0]dPn

a.s→
∫

log[ε+ g0]dP0 −
∫

log[g0]dP0 =

∫
log

[
ε+ g0

g0

]
dP0.
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Therefore, with probability 1, we have

0 ≤ lim inf(I + II + III)

≤ − lim sup 2H2(ĝn, g0)

+2

∫ √
ε

ε+ g0

dP0 +

∫
log

[
ε+ g0

g0

]
dP0,

which yields

lim supH(ĝn, g0) ≤
(∫ √

ε

ε+ g0

dP0 +
1

2

∫
log

[
ε+ g0

g0

]
dP0

)1/2

→ 0 (3.13)

as ε ↓ 0 by monotone convergence. Therefore, we can conclude {ĝn} is the

Hellinger consistent estimator of g0.

3.3 The pointwise convergence of k̂n and δ̂n

The next consistency property we are interested is the pointwise convergence of

k̂n(x) in the compact set within the interior of the domain of the true convex

function k0(x). We will establish the pointwise consistency of the MLE {k̂n(x)}

once the Hellinger consistency of {ĝn(x)} is proved. In order to obtain this

result, we will first need to reformulate the problem (3.4) into the equivalent

form as follows.

We denote the function h(k(x)) = ek(x), where the convex function k(x) =

log(
√

2π) + 1
2
x2 + log(g(x)) satisfies the equivalent relationship

ek(x) =
g(x)

1√
2π
e−1/2x2

. (3.14)

Due to the fact that g is the mixture density with respect to the Lebesgue
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measure, the monotone transformation h(k(x)) can be viewed as a density

with respect to the standard normal measure Φ(x). Hence, this motivates us

to define a new density function q(x) with respect to the standard normal

measure Φ(x) through

q(x) =
g(x)

1√
2π
e−1/2x2

=
g(x)

φ(x)
. (3.15)

If g(x) is the mixture density with respect to the Lebesgue measure, in the

sense that
∫
g(x)dx = 1 over the domain of the density function on the real line,

then q(x) defined in equation (3.15) is a density function with respect to the

standard normal measure, with
∫
q(x)dΦ(x) = 1. Following the conventions

in the measure theory, for any Borel measurable set A ∈ B, the Borel subset

of R, the corresponding probability measure is Q(A) =
∫
A
q(x)dΦ(x), or

q(x) = dQ(x)/dΦ(x). Similarly, the distribution function FqX can be defined

as FqX(x) =
∫ x
−∞ q(x)dΦ(x).

Now, we can define the new problem in a similar fashion as the problem (3.4):

let X1, . . . , Xn be n independent random variables distributed according to the

Gaussian compound problem with the mixture density function g0 with respect

to the Lebesgue measure on R. Denote the corresponding probability measure

as dP0 = g0(x)dx. Define the probability density function q0 = g0(x)
φ(x)

= h(k0(x))

on R with respect to the standard normal measure Φ(x) with h(k0(x)) = ek0(x)

and k0 an (unknown) convex function. The probability measure on the Borel

sets A ∈ B corresponding to q0 is denoted by Q0 (which means Q0(A) =∫
A
q0(x)dΦ(x)). Since q0 is the density function of the random variables with

respect to the normal measure and g0 is the density with respect to the Lebesgue

measure, the following relationships dP0 = g0dx = q0φ(x)dx = q0dΦ(x) = dQ0
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also hold.

Notice that the problem (3.4),

min
k
{−

n∑
i=1

k(Xi) +

∫
ek(x)dΦ(x)|k ∈ K}

is equivalent to

max
g
{
∫

log gdPn|k(x) = log
√

2π +
1

2
x2 + log(g(x))}, (3.16)

where g(x) is the mixture density with respect to the Lebesgue measure and

k(x) is a convex function. Furthermore, (3.16) is equivalent to max
q

∫
log qdPn

due to the equation (3.15). Hence we rewrite the maximum likelihood problem

(3.16) as maximizing

Ln(k) ≡
∫

log h(k(x))dPn (3.17)

subject to q(x) = h(k(x)) = ek(x), where k(x) is a convex function and q(x) is

a density with respect to the standard normal measure Φ on R. We denote

q̂n(x) = h(k̂n(x)) as the estimated density function of q0(x) with respect to

the measure Φ, ĝn(x) as the estimated mixture density with respect to the

Lebesgue measure, and δ̂n(x) as the corresponding estimated empirical Bayes

prediction rule.

Theorem 3.3.1. Under the assumption of Theorem 3.2.4, we obtain that

HΦ(q̂n, q0) −→ 0 (3.18)

almost surely, where HΦ(q̂n, q0) is the Hellinger distance with respect to the

standard normal measure Φ. In another words, the sequence of estimators {q̂n}
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is the Hellinger consistent estimator of q0.

Proof. Since we have already proved that the Hellinger consistency between

ĝn and g0 in Theorem 3.2.4, we show that this is equivalent to the Hellinger

consistency between q̂n and q0 with respect to the standard normal measure.

In Chapter 2, we define the Hellinger distance between the two probability

measure with respect to the Lebesgue measure, here we give the similar defini-

tion of the Hellinger distance with respect to the standard normal probability

measure.

Definition 3.3.2. Let HΦ(p, q) denote the Hellinger distance between densities

p and q, which are densities with respect to the standard normal measure Φ on

R. Then

HΦ(p, q) =

(
1

2

∫
R
(
√
p(x)−√q(x))2dΦ(x)

)1/2

=

(
1−

∫
R

√
p(x)q(x)dΦ(x)

)1/2

.

Since the mixture density g(x) is a density with respect to the Lebesgue

measure, the Hellinger distance between ĝn and g0 follows from Definition 1.5.1.

On the other hand from Definition 3.3.2, we obtain

H2
Φ(q̂n, q0) = 1−

∫ √
q̂nq0dΦ(x)

= 1−
∫ √

ĝng0/φ(x)dΦ(x)

= 1−
∫ √

ĝng0dx

= H2(ĝn, g0).

Thus, the Hellinger distance between ĝn and g0 with respect to the Lebesgue
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measure is the same as the Hellinger distance between q̂n and q0 with respect

to the standard normal measure. Therefore according to Theorem 3.2.4, we

conclude that HΦ(q̂n, q0)→ 0 almost surely.

The next Lemma is Lemma S.A.2 of the supplement to Seregin and Wellner

(2010); it is used to prove the Lemma 3.3.4 later.

Lemma 3.3.3. Let A be a convex set in Rd such that dim(A) = d and ri(A) 6=

∅. Then:

• suppose a sequence of convex sets Bn is such that A ⊆ Bn and limλ[Bn \

A] = 0 then lim sup cl(Bn) = cl(A);

• suppose a sequence of convex sets Cn is such that Cn ⊆ A and limλ[A \

Cn] = 0 then lim inf ri(Cn) = ri(A).

Here λ[S] is the Lebesgue measure of S.

Analogous to Lemma 3.14 of Seregin and Wellner (2010), the next lemma

allows us to obtain the pointwise consistency of the MLEs {k̂n(x)} once the

Hellinger consistency of {q̂n(x)} is proved.

Lemma 3.3.4. Suppose that, for the model (3.17), a sequence of MLEs

{h(k̂n(x)) = q̂n(x)} is Hellinger consistent. The sequence k̂n(x) is then point-

wise consistent. In other words, k̂n(x)
a.s.−→ k0(x) for x in the interior of

dom k0(x) and the convergence is uniform on compact sets.

Proof. Let us denote L0
a and Lna in the following sublevel sets:

L0
a = levak0 = {x : k0(x) ≤ a}

Lna = levak̂n = {x : k̂n(x) ≤ a}.
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Consider Ω0 such that Pr[Ω0] = 1 and H2(h(k̂n)w, h(k0))→ 0, where k̂wn is

the MLE for w ∈ Ω0. For all w ∈ Ω0 we have:

∫
[
√
h(k0)−

√
h(k̂n)]2dΦ(x) ≥

∫
L0
a\Lna+ε

[
√
h(k0)−

√
h(k̂n)]2dΦ(x)

≥ (
√
h(a)−

√
h(a+ ε))2Φ(L0

a \ Lna+ε)→ 0.

Therefore, Φ(L0
a \ Lna+ε) → 0. Since the standard normal density φ is

bounded on {L0
a \ Lna+ε}, we have that λ(L0

a \ Lna)→ 0. By Lemma 3.3.3,

lim inf ri(L0
a ∩ Lna+ε) = ri(L0

a).

Hence lim sup k̂n(x) < a+ ε for x ∈ ri(L0
a). Since a and ε are arbitrary we have

lim sup k̂n ≤ k0 on ri(dom k0). Note that in Section 1.7, we explain that in

R the relative interior becomes interior of the domain of the convex function;

therefore, we avoid using the relative interior notation from now on, as the

problem is defined in one dimension, and we conclude that lim sup k̂n ≤ k0 in

the interior of dom k0.

On the other hand, we have

∫
[
√
h(k0)−

√
h(k̂n)]2Φ(dx) ≥

∫
Lna−ε\L0

a

[
√
h(k0)−

√
h(k̂n)]2Φ(dx)

≥ (
√
h(a− ε)−

√
h(a))2Φ(Lna−ε \ L0

a)→ 0.

By Lemma 3.3.3

lim sup cl(Lna−ε ∪ L0
a) = cl(L0

a).

Therefore lim inf k̂n(x) > a− ε for x such that k0(x) ≥ a. Since a and ε are

arbitrary we have lim inf k̂n ≥ k0 in the interior of dom k0.

87



Thus k̂n(x)→ k0(x) almost surely in the interior of dom k0. By Theorem

10.8 of Rockafellar (1970), the convergence is uniform on every compact set K

that belongs to the interior of dom k0.

Therefore, by using Theorem 3.3.1 and Lemma 3.3.4, we can establish the

following theorem.

Theorem 3.3.5. Under the assumption of Theorem 3.2.4, we obtain that

k̂n(x)→ k0(x) almost surely in the interior of dom k0, (3.19)

and the convergence is uniform on any compact set contained in the interior of

dom k0.

For the empirical Bayes rules estimation problem, estimating the mixture

density g(x) is only the intermediate step of the whole procedure. The final

goal is to estimate the corresponding empirical Bayes prediction rule δ(x).

Therefore, we consider the consistency of the estimated empirical Bayes rule

δ̂n(x) = k̂′n(x) at last.

Theorem 3.3.6. Following the assumptions above and assume that k′′(x) exists,

then the derivative of sequence of MLEs {k̂′n(x)} or the estimated empirical

Bayes decision rule {δ̂n(x)} is consistent. That is k̂′n(x)→ k′0(x) almost surely

and the convergence is uniform on any compact set in the interior of dom k0.

Proof. By assuming k′′(x)(> 0) exists, then k′(x) is continuous on compact

sets. We now need to prove that k̂′n(x) = δ̂n(x) converges to a function σ(x)

for x in the interior of dom k0, and the function σ(x) is identical to δ0(x).

We notice that the function δ̂n(x) is the estimated decision rule, so that

δ̂n(x) is a monotone function of x and bounded on the compact sets according
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to Jiang and Zhang (2009). Every subsequence of δ̂n(x), say δ̂nk(x), is then also

bounded on the compact sets. The Bolzano-Weierstrass theorem says there is

at least one subsequence δ̂nki (x) of δ̂nk(x) such that δ̂nki (x)→ σi(x). Since we

choose the subsequence δ̂nk(x) arbitrarily, and each of the subsequences has a

convergent subsequence, we will next show that all these sub-subsequences will

converge to the same limit.

Actually for any a and x belonging to a compact set, as nki →∞, following

Lemma 3.3.4, we have

∫ x

a

σi(t)dt = lim

∫ x

a

k̂′nki
(t)dt

= lim{k̂nki (x)− k̂nki (a)}

= k0(x)− k0(a).

Since k′0(x) exists, then the equation above indicates δ0(x) = k′0(x) = σi(x)

for all i, so σi(x) ≡ σ(x) are all identical. Therefore every subsequence of δn(x)

has a convergent subsequence, and all these sub-subsequences converge to the

same limit δ0(x) (or σ(x)).

Next we will show that the original sequence δ̂n(x) must converge to δ0(x).

We use two steps to prove it. First of all, we will show that δ̂n(x) converges. To

see this, if we assume the sequence δ̂n(x) diverges, then we can at least find a

subsequence which also diverges, and this divergent subsequence satisfies that

for all nk, nl > N , |δ̂nk − δ̂nl | > ε. Then we can find the subsequence of δ̂nk and

δ̂nl , say δ̂nki and δ̂nlj , the two sub-subsequences all converge to the same limit

as in the argument in last paragraph. But mathematically, the subsequence

index must have the order that nki > nk > N and nlj > nl > N , indicating

the two sub-subsequences must satisfy the condition |δ̂nki − δ̂nlj | > ε and this
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contradicts with the statement that these two sub-subsequences converge to

the same limit. Thus, δ̂n(x) must be a convergent sequence.

Secondly, we demonstrate the limit of δ̂n(x) is δ0(x). To see what is the

limit of δ̂n(x), we assume δ̂n(x)→ σ1(x) 6= σ(x), then the subsequence δ̂nk(x)

must converge to σ1(x) as well since δ̂n(x) is convergent, and we can find the

sub-subsequence δ̂nki (x) → σ(x) according to the sub-subsequence property

that already proved. On the other hand, since δ̂nki (x) is a subsequence of

δ̂nk(x), δ̂nki (x) should have the same limit as parent sequence δ̂nk(x) which is

σ1(x), which contradicts the assumption σ1(x) 6= σ(x).

Therefore, we can finally state that δ̂n(x)→ δ0(x) for x in the interior of

dom k0, and the convergence is uniform in any compact set in the interior of

dom k0.
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Chapter 4

Shape constraints in empirical

Bayes inference

Koenker and Mizera (2013) investigated two different approaches for the

estimation of the mixture density g(x) in the classic Gaussian compound

decision problem. We have already introduced both methods in Chapter 3: the

maximum likelihood estimation of the mixture density subject the monotonicity

constraint on the Bayes rule and the maximum likelihood estimation of the

mixing distribution F using the mixture representation of the mixture density.

In this chapter, we pursue two alternative approaches based on the two methods

above, which consider the additional log-concave or the quasi-concave shape

constraint(s) on the mixture density. These modifications exhibit superior

behavior in the case when the shape assumption reasonably captures the

behavior of the data, in particular, when the mixing distribution is unimodal.

Similar as in the earlier work, the new proposals are both self-automatic, without

choosing any extra tuning parameters and also yield convex optimization

problems that can be efficiently solved by modern convex optimization methods.

The finite-sample properties of these density estimation procedures are also

discussed in this chapter. A small simulation study is presented to compare

the new proposals with several existing empirical Bayes methods.
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4.1 Empirical Bayes estimation for unimodal

distributions

We have seen that the empirical Bayes rule based on the maximum likelihood

estimation of the Gaussian mixture densities subject to the monotone constraint

provides some improvements over unconstrained kernel based estimation meth-

ods. On the other hand, Kiefer-Wolfowitz nonparametric maximum likelihood

estimation of mixing distribution offers good performance and the computation-

al burden of the EM implementations of the Kiefer-Wolfowitz estimator can

be dramatically reduced by the interior-point methods for solving the convex

Kiefer-Wolfowitz maximum likelihood problem.

In this section, we explore some new approaches to the mixture density

estimation in the classic Gaussian compound decision problem. Consider the

first method we introduced in Chapter 3: the monotone constrained problem

(3.4). Rewriting problem (3.4) in terms of l(x) = log(g(x)), where g(x) is the

mixture density, yields the equivalent form,

min
l
{−

n∑
i=1

l(Xi) +

∫
el(x)dx | 1

2
x2 + l(x) convex}. (4.1)

The second approach is the maximum likelihood based on the formulation

of Kiefer and Wolfowitz (1956),

min
F
{−

n∑
i=1

log(

∫
φ(Xi − µ)dF (µ))} (4.2)

over all mixing distributions F . The Problem (4.2) is convex as illustrated

in Chapter 3, which opens the possibility of the dual presentation as well.
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Theorem 2 in Koenker and Mizera (2013) provides the dual formulation of

(4.2) and states that the solution of (4.2) exists and is an atomic probability

measure.

Both methods as a rule yield estimators that are not very smooth—as

illustrated in Koenker and Mizera (2013) and also confirmed by our numerical

experiment in the next section. The estimated mixture density is piecewise

linear and the estimated Bayes rule is piecewise constant by the monotonicity

constraint method. The mixing distribution estimated by the maximum likeli-

hood approach is atomic. In certain situations, the density estimate by mixing

distribution is believed to be more smooth. Therefore a natural question is

whether we can obtain more smooth density estimate and subsequently better

prediction rule by using the density estimation with constraints on mixing

distribution. Although it is always possible to control the size of the atoms

of the mixing distribution by a proper upper bound and other regularization

strategies, these methods would introduce additional tuning parameters. In or-

der to avoid this, we can employ further suitable shape constraint, for example,

the log-concave on the estimated mixing density.

However, adding the shape constraint on the mixing density usually leads

to a non-convex problem with uncertain numerical implementation. As noted

by Efron (2011), if the mixing distribution is log-concave, then the mixture

density is also log-concave. Since the shape constraint on mixing distribution

does not give us a convex problem, the promising way out is via switching

the interest from mixing distribution to mixture density. Thus, the remedy of

the non-convexity problem is to impose the shape constraint on the mixture

distribution g(x), rather than the mixing distribution. This way preserves the

convexity of the problem—for both the approaches we introduce in this section.
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Moreover, the log-concave shape constraint on the mixture distribution can

take place even in the case where the mixing distribution is not log-concave.

Therefore, the log-concave shape constraint on mixture density will cover a

more general case than when applied to the mixing distribution. The convexity

property once again ensures the efficient numerical implementation and also

the theoretical insights into the problem.

Following the discussions above, we first apply the shape constraint on

mixture density according to the monotonicity constraint maximum likelihood

problem (4.1). A slight modification of the problem (4.1) reveals the new

problem is

min
l
{−

n∑
i=1

l(Xi) +

∫
el(x)dx | 1

2
x2 + l(x) convex and l concave}. (4.3)

The additional constraint is that the function l(x) = log g(x) is concave, or

equivalently, that the mixture density g(x) is log-concave. The constraints can

also be expressed through derivatives. First, the monotone constraint gives

l′′(x) ≥ −1. The concavity constraint is achieved by adding a upper bound 0 to

l′′(x), which implies l(x) is concave. The constraint can be roughly expressed in

the derivative form 0 ≥ l′′(x) ≥ −1, which is very similar as the dual constraints

in density estimation regularized with total variation. The implementation

of the problem (4.3) is a straightforward extension of the problem (4.1), the

minor modification brings no increase in computational complexity or running

time.

The problem (4.3) is a restrictive form of the original monotone constrained

mixture density estimation problem (4.1) or equivalently the problem (3.4)

defined in Chapter 3. Although the formulations of the two density estimation
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problems are very similar, the theoretical properties of the problem (3.4) can

be applied to the problem (4.3) if and only if we impose the same constraint

over the true density g0. Equivalently, the convex function k0(x) = log
√

2π +

1
2
x2 + log g0(x) should have bounded second derivative k′′0(x) ≤ 1 due to the

log-concavity of g0. Then the existence of the density estimator is guaranteed by

Theorem 1 of Koenker and Mizera (2013). With the additional assumption we

can also establish the similar consistency results immediately for the problem

(4.3) since (4.3) is a special case of the original problem (3.4). The proof of

the consistency theorem is very similar to the Hellinger consistency proof of

Theorem 3.2.4 for the problem (3.4). The introduction of log-concave constraint

will guarantee that the condition
∫

log[g0(x)]dP0 <∞ is satisfied—thus we do

not need to make it an assumption as required in Theorem 3.2.4. The following

result is from Schuhmacher and Dümbgen (2010), Lemma 2, in one-dimension.

Lemma 4.1.1. For any log-concave density g , we have

∫
| log(g(x))|g(x)dx <∞.

With Lemma 4.1.1 and all the other assumptions and lemmas for the proof

of the consistency of the problem (3.4), we can follow exactly the same way as

the proof of Theorem 3.2.4 to derive the following theorem.

Theorem 4.1.2. For the mixture density estimation problem (4.3), assuming

k′′0(x) ≤ 1, the sequence of mixture density estimators {ĝn(x)} is Hellinger

consistent: H(ĝn, g0)
a.s−→ 0.

Once the Hellinger consistency of mixture density is established, by using

the same trick of convex transformation as we applied to the problem (3.4), we
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can similarly obtain the pointwise consistency of estimated convex function

k̂n(x) and the empirical Bayes decision rule δ̂n(x) on any compact set in the

interior of the domain of convex function k0(x) as Theorem 3.3.5 and 3.3.6.

Theorem 4.1.3. For the mixture density estimation problem (4.3), assum-

ing that k′′0(x) ≤ 1, the sequence of convex functions {k̂n(x)} is consistent:

k̂n(x)
a.s−→ k0(x) for x in the interior of dom k0 and the convergence is uniform

on any compact set.

Theorem 4.1.4. For the mixture density estimation problem (4.3), assuming

that k′′0(x) ≤ 1, the derivative of sequence of estimators {k̂′n(x)} or the estimated

empirical Bayes decision rule {δ̂n(x)} is consistent. That is k̂′n(x)
a.s−→ k′0(x)

for x in the interior of dom k0 and convergence is uniform on any compact set.

We can also consider to impose the shape constraint on the mixture density

in the nonparametric likelihood problem (4.2). But the problem is a bit

more tricky than the original problem (4.1) since it can even create a non-

convex problem by adding the shape constraint over g(x). The way out is

by introducing a slack function and the constraint expressing in an epigraph,

inequality form

min
h,F
{

n∑
i=1

h(Xi) | h(x) ≥ − log(

∫
φ(x− µ)dF (µ)) and h convex}. (4.4)

The emergence of convex function h(x) dominates the negative logarithm

of mixture density and preserves the convexity of the problem (4.4). The

inequality in (4.4) should be satisfied over all x from some fine grid (not only

over the actual observed Xi). Thus, it brings more computational complexity

in this formulation. Nevertheless, due to the dominance of maximum likelihood
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approach over the monotonicity constraint of the Bayes rule, it still worth

the effort to pursue such application. Moreover, this method also allows for

the incorporation of the general ρ-concave constraints considered in previous

chapter. Last but not least: from the theoretical point of view, establishing the

consistency property the density estimator of the problem (4.4) is an important

future work.

4.2 The discrete formulations and numerical

comparisons

So far we have discussed the theoretical properties of the monotone constrained

mixture density estimation method, the Kiefer-Wolfowitz nonparametric max-

imum likelihood estimation of mixing distribution method and also the new

approaches with additional shape constraints based on the these two methods.

In this section, we are going to illustrate the discrete formulations of these four

methods and conduct a numerical experiment to compare the performance of

the new approaches with other existing methods.

First of all, the numerical implementation of the problem (4.1) requires the

discrete formulation of the monotone constrained mixture density estimation

method. This is accomplished by choosing a fine grid of points, say x1 < x2 <

· · · < xm, setting αi = l(xi) = log g(xi) to be unknown function values of the

mixture density and solving

max
α
{wTα−

∑
cie

αi | Dα + 1 ≥ 0}. (4.5)

The matrix D represents the finite difference version of the second derivative
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operator that in the variational form in the problem (4.1), is involved in

the monotonicity constraint, Dα + 1 ≥ 0. The accuracy of the Riemann

approximation of the integral is controlled by the fineness the grid, which

increases the number of estimated function values as a result. The typical

choice of the fine grid with equal spacing is m ≈ 300, as reported by Koenker

and Mizera (2013). The vector w is an evaluation term that simply allows to

recover and sum up the contributions to the likelihood term given the expanded

vector of function values; the ci’s are Riemann weights of the integral term

corresponding to the the fine grid. Koenker and Mizera (2013) also investigate

the finite-dimensional formulation for the dual problem of (4.1). The dual form

of the estimator is implemented by using two independent convex programming

algorithms both utilize the interior-point methods: the PDCO algorithm of

Saunders (2003) and Mosek method of Andersen (2010).

The numerical experiments reveal that the fitted k̂′n(x) is piecewise linear

and the estimated Bayes rule δ̂n(x) = k̂′n(x) is piecewise constant which is

assured by the Theorem 1 in Koenker and Mizera (2013). But the piecewise

linear property of k̂′n(x) consequently makes log ĝn(x) to be piecewise quadratic,

which leads the density estimate ĝn(x) looks rather bizarre compared to the

conventional kernel density estimate. The numerical plot of the piecewise

constant Bayes rule in Koenker and Mizera (2013) also illustrates that its

jumps do not (necessarily) occur at the observed data points. The estimates

of the mixture density may look a bit strange, but their implied Bayes rules

nevertheless conform to the monotonicity requirement and perform quite well—

as we will see in our numerical experiment.

The numerical implementation of problem (4.3) is similar to problem (4.1).

A discrete formulation of the shape constrained MLE can be obtain similarly
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as

max
α
{wTα−

∑
cie

αi | 0 ≥ Dα ≥ −1}. (4.6)

All notations in the finite discrete form (4.6) are the same as the formulation

(4.5). The additional log-concave shape constraint is expressed through the

condition 0 ≥ Dα.

Regarding the implementation of the Kiefer-Wolfowitz nonparametric max-

imum likelihood approach (4.2), Jiang and Zhang (2009) recently proposed a

fixed EM iteration that requires a grid {µ1, . . . , µm} containing the support of

the observed sample. This produces a sequence

f̂k+1
j =

1

n

n∑
i=1

f̂kj φ(Xi − µj)∑m
l=1 f̂

k
l φ(Xi − µl)

,

where f̂kj denote the value of the estimated “prior” mixing density on the interval

(µj, µj+1) at the kth iteration. The decision rule is simply the conditional

expectation of µi given Xi,

δ̂n(Xi) =

∑m
j=1 µjφ(Xi − µj)f̂kj∑m
j=1 φ(Xi − µj)f̂kj

.

Jiang and Zhang (2009) reported good performance of their simulations applying

a design of Johnstone and Silverman (2004), but it is hard for us to reproduce

the experiment by the EM algorithm since it yields slow implementation even

for the moderate large sample sizes.

An alternative proposed by Koenker and Mizera (2013) is to apply the

convex optimization tool to solve the problem (4.2) since the problem itself is

convex. Let {µ1, . . . , µk} be the fixed grid for µ and {x1, . . . , xm} be the fixed

grid for the data. Let A be an m by k matrix, with the elements φ(Xi − µj)
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on the ith row and jth column. The discrete form of the primal problem (4.2)

can be then expressed as

min{− log(1Tmg) | Af = g, f ∈ S}, (4.7)

where S denotes the unit simplex in Rk: S = {s ∈ Rk | 1T s = 1, s ≥ 0}. Now

fj is the estimated mixing density estimate f̂n evaluated at the grid point

µj, and gi denotes the estimated mixture density estimate, ĝn, evaluated at

xi. Koenker and Mizera (2013) also provide the dual formulation of problem

(4.7) and the interior-point algorithm as implemented in Mosek solves the dual

problem quicker and more accurately compared to the EM procedures.

In the simulation experiments, this approach has a slight, but visible edge

over the monotone constraint maximum likelihood method; and both dominate

all other existing methods. The algorithm employing monotonicity constraint

on the Bayes rule easier scales to larger data sets while the nonparametric

Kiefer-Wolfowitz maximum likelihood is more comfortable with the inclusion

of covariates.

The finite dimensional discrete formulation of the problem (4.4) can be

derived in a analogous manner to the discrete work of the problem (4.2):

min{−1Tmh | Af = g ≥ e−h, f ∈ S,Dh ≥ 0}. (4.8)

All the notations in the problem (4.8) are the same as the problem (4.7).

In order to compare the proposed new estimators/prediction schemes with

other existing methods, we finally perform a simulation study using the fol-

lowing mixing distributions: the uniform distribution on [5, 15] (featured in
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the examples shown in Figure 4.1 and 4.2); the t distribution with 3 degrees of

freedom; the χ2 distribution with 2 degrees of freedom; and four instances from

simulation study of Johnstone and Silverman (2004), employed also by Koenker

and Mizera (2013): a mixture consisting of two numbers, k of which (we choose

k = 5 and k = 50) are equal to some fixed µ (we use µ = 2 and µ = 5) and

the rest are zeros. For each distribution, we performed 1000 repetitions. The

results in Table 1 show the averages of the sums, computed for each repetition,

of squared errors for all sampled µi. The sample size is n = 100 for all cases.

In addition to the methods considered above, Table 1 shows also the results of

the “naive” maximum likelihood predictor µi = Xi; the predictor based on the

James-Stein estimator

Xi −
n− 3∑n

i=1(Xi − X̄)2
(Xi − X̄), X̄ =

1

n

n∑
i=1

Xi;

and the “oracle” predictor, the optimal Bayes predictor assuming the knowledge

of the mixing distribution.

The simulation results indicate that the precision gain of the Kiefer-

Wolfowitz maximum likelihood method (4.2) over the monotone constrained

method (4.1), as confirmed by similar experiments in Koenker and Mizera

(2013), is still somewhat preserved when we compare the maximum likelihood

method (4.4) with log-concavity constrained to the monotone and log-concavity

constrained approach (4.3). The actual magnitude of the differences becomes

rather negligible, and obviously can be offset by the lower computational

complexity of the method (4.3) over (4.4). The plots in Figure 4.1 and 4.2

confirm what we have observed about the new approaches: firstly, the monotone

constrained method (4.1) produces the piecewise quadratic estimated mixture
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U [5, 15] t3 χ2
2 095|205 050|250 095|505 050|550

br 101.5 112.4 77.8 19.7 57.3 12.6 21.1
kw 92.6 114.4 71.9 17.4 51.3 10.0 17.0
brlc 85.6 98.1 67.6 17.3 51.7 21.6 58.2
kwlc 84.9 98.2 66.8 16.5 50.4 21.2 67.6
mle 100.2 100.1 100.2 100.7 100.4 100.1 99.6
js 89.8 98.5 80.2 18.5 52.1 56.2 86.8
oracle 81.9 97.5 63.9 12.6 44.9 4.9 11.5

Table 1: The empirical risk of several estimators/prediction schemes: the MLE
of the mixture density with the monotonicity constraint on the prediction rule
(br); the Kiefer-Wolfowitz nonparametric MLE of the mixing distribution (kw);
their versions, (brlc) and (kwlc) respectively, with mixture density constrained
to be log-concave; the MLE (no shrinkage) predictor (mle); the James-Stein
estimator/predictor, assuming the normal mixing distribution (js); and finally
the “oracle” predictor, the Bayes rule employing the knowledge of the mixing
distribution.

density and piecewise constant estimated Bayes prediction rule; secondly, the

new approach (4.3) with log-concave constraint gives more smooth estimator

than the original monotone constrained method (4.1); third, the original Kiefer-

Wolfowitz maximum likelihood method (4.2) produces the estimate with visible

edge, but looks smoother than the original monotone constrained method

(4.1); at last, the Kiefer-Wolfowitz maximum likelihood with additional shape

constraint method (4.4) generates smoother estimator than its original method

(4.2).

It also worth mentioning that a different—reversed—behavior is observed

for the heavy-tailed distribution, t3—not only for the versions with enforced

log-concavity, but also for the unrestricted ones—which are, interestingly, in

this case dominated by the “naive” predictor µ̂i = Xi (which is however, still

dominated by the oracle predictor, in accord with the theory). The squared

errors of the traditional MLE for all choices of mixing distribution are all
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around 100 which is the number of observations as demonstrated in Section 1.6.

Finally, we can see that the versions with enforced mixture log-concavity still

dominate the James-Stein predictor, based on the assumption of the normality

of the mixture distribution—in the case of asymmetric mixing distribution χ2
2,

the difference in efficiency seems to be substantial.

On the other hand, it should be prudent to apply the new approaches

described above, since they give better prediction properties and estimates

only when the true distribution is unimodal. For example in the last two

examples, where we choose µ to be 0 or 5: no matter we select 95 of them to

be 0 and remaining of µ are 5, or 50 of them are 0 and the remaining 50 are

5, the convolution of these two mixing distribution functions with the normal

density φ(x) yields the mixture density g(x) to be bimodal. Therefore our new

proposals do not perform any better than the original monotone constrained

mixture density estimation method and Kiefer-Wolfowitz maximum likelihood,

since the additional shape constraint does not capture the true behaviour the

data. Hence, one can always first apply the preliminary density estimation

approaches introduced in Chapter 1 to check the modality of the density

and then decide which method to use. For bimodal cases, the unconstrained

methods are preferable.
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Figure 4.1: Estimated mixture density (left) and corresponding Bayes rule
(right) for the monotone constrained maximum likelihood (dashed blue) and
the log-concave shape constrained variant (solid). The target, “oracle” mixture
density and its Bayes rule are plotted in dotted red line.
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Figure 4.2: Estimated mixture density (left) and corresponding Bayes rule
(right) for the Kiefer-Wolfowitz maximum likelihood (dashed blue) and its
log-concave shape-constrained variant (solid). The target, “oracle” mixture
density and its Bayes rule are again plotted in dotted red line.
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Chapter 5

Summary of the results and the

future work

5.1 Summary of the results

In this chapter, we present a thorough summary of all the original work/results

from Chapter 2 to Chapter 4 and point out some promising and important

future work in the ρ−concave density estimation and mixture density estimation

in the Gaussian compound decision problem .

First of all, in Chapter 2, we apply the definition of function u-divergence

from probability distribution P to Q to establish the (α− 1)-consistency, in

one dimension, in (α− 1)-concave density estimation problem (2.9), based on

quasi-concave density estimation method proposed by Koenker and Mizera

(2010). The (α − 1)-concave density family is an important subset of the

quasi-concave densities by choosing the function ψ(g) from the power function

family and setting 0 < α < 1. From our perspective, the (α−1)-concave density

functions discussed in this chapter are weaker forms of concave functions than

well studied log-concave density functions. In Koenker and Mizera (2010), the

authors make some conjectures about the convergence of the (α− 1)-concave

density estimators. Thus, the (α− 1)-consistency result not only can be viewed

as a complement to the theoretical results of Koenker and Mizera (2010), but
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also confirms the simulation study in the paper.

Given that the (α− 1)-consistency property depends on the power function

parameter α, we strengthen and extend (α−1)-consistency into the convergence

under other distances that are free of parameters. In view of many recent

results regarding the Hellinger consistency of log-concave and ρ-concave density

estimators, we also investigate the Hellinger consistency of (α − 1)-concave

density estimators. Specifically, we prove that the (α− 1)-consistency actually

implies the convergence of the sequence of (α− 1)-concave density estimators

{f̂n} to f0 with respect to the Hellinger distance. Due to the familiar relation-

ship between the Hellinger distance and the total variation distance, we also

demonstrate the convergence of density estimators under the total variation

distance.

Chapter 3 concerns the mixture density estimation in the classic Gaussian

compound decision problem. Following the recently developed monotonely

constrained mixture density estimation method in Koenker and Mizera (2013),

we give the original proof of the Hellinger consistency property of the mixture

density estimators, which substantiates the numerical experiment performance

in Koenker and Mizera (2013). As the convexity constraint is imposed on k(x),

and the mixture density g(x) is closely associated with the convex function

k(x), we further adopt the similar formulation of convex-transformed density

estimation approach of Seregin and Wellner (2010) to establish the pointwise

consistency of the estimated convex function k̂n(x) in any compact set in the

interior of the domain of the true convex function k0(x). In addition, since

the monotone compound decision rule δ(x) is the first derivative of the convex

function k(x), we also prove the pointwise convergence of the estimated decision

rule. Thus, we eventually figure out three important consistency problems in
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the classic Gaussian compound decision problem.

Last but not least, we propose two new approaches to estimate the mixture

density in the classic Gaussian compound decision problem in Chapter 4. The

new proposals are natural extensions of the work of Koenker and Mizera

(2013) and enrich the mixture density estimation methods for classic Gaussian

compound decision problem. The new methods are developed by imposing

additional shape constraints on the monotone constrained mixture density

estimation and the Kiefer-Wolfowitz maximum likelihood mixing distribution

estimation methods, respectively. In particular, since the shape-constrained

version of monotone constrained mixture density estimation problem is a

special case of the original monotone constrained maximum likelihood density

estimation problem, the theoretical properties of this new method can be

also established by assuming that the true density satisfies the additional

log-concave shape constraint. Due to the convexity of the new approaches, all

methods can be easily implemented by modern convex optimization tools and

our numerical experiment shows that the new approaches perform better than

their earlier work in terms of lower mean squared error in Table 1 and produce

smoother density estimate as shown in Figure 4.1 and 4.2.

5.2 Future work

Although we prove a series consistency results and propose some new density

estimation approaches, there are still some open questions left and interesting

future work worthy more effort—in both the ρ-concave density estimation and

mixture density estimation in the classic Gaussian compound decision problem.

For instance, one of the possible problems of interest regarding the ρ-concave
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density estimation is to generalize the current results into multidimensional

setting—which is more challenging since many of our univariate proof tricks

are not applicable in higher dimensions. These results are plausible, because

the numerical experiment in Koenker and Mizera (2010) already confirms the

performance of the density estimators in higher dimensions. On the other

hand, due to the recent multidimensional work of Schuhmacher and Dümbgen

(2010), Cule et al. (2010), Cule and Samworth (2010) and Dümbgen et al.

(2013) for the log-concave density estimation, we believe these excellent results

can be applied or adapted to ρ-concave density estimation problem as well.

Moreover, according to Lemma 2.3.1—2.3.3, we can see that the estimated

distribution function is very close to the empirical distribution function on the

set Sn(ĝn). Thus another perspective is to establish the similar convergence

result of F̂n → Fn as Dümbgen and Rufibach (2009) did, at least in the fixed

compact set on the real line.

With respect to the mixture density estimation problem in Chapter 3,

an important perspective is establishing the convergence rate of the mixture

density estimators. For the new approach (4.4) proposed in Chapter 4, the

theoretical results for this method are still open problems for future work.

Another possible direction that takes both the ρ-concave density estimation

and mixture density estimation into account is considering ρ-concave shape

constraints other than log-concavity in the new proposals of mixture/mixing

density estimation problem in Chapter 4, since the ρ-concavity with ρ < 0

imposes weaker concavity than log-concavity. This is more tricky since the

naive application of the ρ-concave constraint on mixture density can produce a

non-convex form, which makes the numerical implementation much harder.
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Dümbgen, L. and Rufibach, K. (2011). Logcondens: Computations related to
univariate log-concave density estimation. J. Statist. Software, 39:1–28.
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