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FERROMAGNETIC RESONANCE OF A PERMALLOY MICROSTRUCTURE

USING TIME RESOLVED SCANNING KERR EFFECT MICROSCOPY

Magnetic oscillations were studied in a single lithographically patterned permalloy
microstructure, placed in an in-plane biasing magnetic field, excited by sub-nanosecond
pulses of perpendicular field. Local changes of the perpendicular magnetization
component were detected by time-resolved scanning Kerr effect microscopy, allowing
direct observation of the non-uniform spatial evolution of the magnetization. The modal
frequency of the oscillations was found to agree well with the ferromagnetic resonance
frequency. Modeling with the Landau-Lifshitz-Gilbert equation, with damping constant
equal to 0.008, well described more uniform features of the data and clear departures were

evident due to non-uniform response.



PREFACE

This work may be generally grouped into two categories: (1) technical concerns
encompassing fabrication, characterization, and materials science issues, and (2)
fundamental investigation including physical understanding, experimental technique, and
scientific results. Chapters 3 through 6 fall roughly into the first group while chapters 7
and 8 mainly cover the second.

Chapter 1 gives the scope of the work with an introduction and motivation.
Chapter 9 is the conclusion.

Chapter 2 is an attempt to prime the reader on concepts in magnetism important
for this work. It is not near comprehensive of the entire field and is even incomplete in
discussion of ferromagnetism and magnetization reversal but still gives a flavour for the
fundamental motivations and concepts. Sections which are particularly key to the
understanding of results and should be read are: 2.3 Landau-Lifshitz equation, 2.6.3
ferromagnetic resonance, and 2.7 magneto-optic Kerr effect.

Chapters 3 through 6 involve technical concerns beginning with the wide body of
knowledge on materials and magnetic properties of NiFe in chapter 3. Chapters 4 and 5
deal specifically with fabrication of materials and devices needed for the experiment and
include issues of design, deposition, and lithography. Some of the discussion does not
lead to culmination in technique but is still important for ongoing development. Chapter 6
cites several techniques used in characterization of the devices; some of the material
included comes from the learning process of an MSc. student and has, perhaps, as much

value in the writing as the record.



Chapters 7 and 8 are the heart of the work and relate the crux of the scientific
investigation. Chapter 7 deals with the experimental set-up and novel technique of TR-
SKEM including insightful discussion regarding the technique and improvements. Chapter
8 gives the results of measurements and modeling and discussion of the fundamental

investigation.
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1 INTRODUCTION

The physics of magnetization processes in nanostructured magnetic materials has
become a subject of intense investigation'"', Dynamical issues such as wall motion,
magnetization reversal and reversal mechanisms, and ferromagnetic resonance have long
been intriguing subjects for experimental and theoretical work and have been well tied
with industrial application. Recently, strong advances in magnetic devices have pushed
materials to the limit (high speed, ultra-high density magnetic recording) and have
demanded a new, more fundamental understanding of these dynamics.

The advent of magnetic force microscopy (MFM) has rejuvenated experimental
work, giving highly detailed spatial information of the static configurations. Combined
with improved computational abilities a solid forum is provided for the comparison of
numerical modeling and micromagnetics to experimental results""**"'®, In spite of this,
measurement of dynamical phenomena has remained indirect and spatially unresolved,
unable to provide the necessary information against which to test numerical predictions.

This work reports on studies of magnetic excitations in a permalloy microstructure
using time-resolved scanning Kerr effect microscopy (TR-SKEM)"". This technique is
uniquely well-suited to elucidate such dynamics. The combined picosecond temporal and
sub-micrometer spatial resolutions allow direct study of dynamical phenomena; direct time
dependence of magnetic excitation development is accomplished and “snapshot” magnetic
maps of a sample surface are acquired. As a result, first-hand observation of the magnetic
excitation development is obtained, giving non-uniform spatial profiles invisible to other
techniques. In addition, numerical modeling is compared directly to data in the time-

domain allowing determination of the phenomenological damping rate.



2
The experiment is effectively an optical implementation of a ferromagnetic
resonance (FMR) measurement. The microstructure is magnetically saturated in-plane and
excited by sub-nanosecond perpendicular field pulses. Optical detection synchronous with
the excitations allows the temporal resolution (time-width of laser pulse) with a scanned,
focused laser spot giving the spatial resolution (to the diffraction limit of optics).
Work in this thesis consists of :

1) fabrication design, fabrication, and characterization where the tasks of
fabricating good quality permatloy microstructures and turning optical
pulses into pulsed magnetic fields are taken up, and

2) experimental design and discussion and time-resolved measurement and
analysis where TR-SKEM is used for elucidation of the dynamical
magnetic properties of the permalloy microstructure including time-

resolved observation of spatially non-uniform magnetization response.



2 RECENT HISTORICAL DEVELOPMENTS OF MAGNETISM

2.1 Introduction
Here I would like to briefly outline some of the major concepts in modern
magnetism. I strive to introduce only those concepts that are needed for the context of

this present work. There are several books on the subject referenced in the

bibliography*'%*,

2.2  Energy Considerations - From Weiss to Bloch

One of the most important conceptual approaches in modern magnetism is use of
minimization of energy in the ferromagnet. It was noticed that ferromagnets like iron
would have no net magnetic moment at room temperature, though in theory, the exchange
interaction in the material should have all spins lining up. Weiss was the first to propose*”’
that this observation could be explained if the material were split up into several regions
that were saturated in themselves but were randomly oriented macroscopically. This was
the birth of the concept of domains.

Bloch was the first to consider*® why this domain formation should happen from
an energy point of view. If a material has a preferred axis of orientation (due to
crystallinity, for example), there is an energy penalty associated with not lining up with
that axis. Further energy (demagnetizing energy) is associated with free poles at the edges
of a large, uniformly magnetized body and competes with energy that accompanies the
formation of domain walls (the spins over a domain wall are not aligned and hence

introduce exchange energy). Several other energy considerations add to the complexity of



a ferromagnet and can include energy due to magnetic “stretching” of the material called
magnetostriction and energy due to inclusions or defects in the material. The minimization
of these energies in the magnet is what leads to domain structure.

There are some important notes about domain formation. Generally, as a
ferromagnet reduces in size, the number of domains decreases because the energy in a
domain wall remains the same while the competing demagnetizing energy scales down.
Eventually, if a ferromagnet is small enough in size, one single domain wall would contain
more energy than the total of demagnetizing energy and the ferromagnet should act as a
single domain. In thin films, there is a further consideration on the type of domain wall
that is formed: a thick film will act like bulk material as the spins in the wall contain no
component perpendicular to that wall (Bloch wall), a very thin film (as thin as the wall)
will lead to very short domain walls (more like a domain line) meaning demagnetizing
effects start to favour spin rotation in the thin film plane (Neel wall), and an intermediate

thickness will result in a combination (cross-tie wall)>?,

2.3 Landau-Lifshitz equation
In a classic paper in 1935, Landau and Lifshitz considered a 180 domain wall in a
material with an easy axis of magnetization*®. A phenomenological theory was developed

for the dynamic configuration in the form of the famous Landau-Lifshitz equation:

(%)%=(Mxﬁ)—l[H—(H-M)M/Mszl (1)

where M is the magnetization at a given point and H is the magnetic field felt at that point.

The first part on the right hand side is simply stating that, when M and H are not



parallel, the configuration will not be static. Indeed because we are dealing with the
coupling of an angular momentum (spin) with the magnetic field we find a precession of
the spin vectors (fig 2.1) around that field given by the time rate of change of M (y is the
gyromagnetic ratio or the magneto-mechanical coupling given by e/m = 1.76x10"' s"'T").
The second part on the right hand side arises from the fact that M and H will never
align with just the first term. With a direction of H-M and a magnitude that approaches
zero as H and M become parallel, this second term acts as a source of damping to the
dynamical equation (here A is a damping parameter having the same dimensions as M).
The Landau-Lifshitz equation has been written in other forms. Galt wrote the
form most often quoted as the Landau-Lifshtiz equation*'® and Bloch-Bloembergen have

used another. One form in much use today is the Gilbert formulation™"":

M 1 a
—=-y(MxH)-a| — MX— 2
dt g ) O{Ms dt )

where we now have a dimensionless damping parameter c. This form will be made use of

in the work described herein.

2.4  The Intricacy of H (Introduction of Anisotropy K, Exchange A, and
Magneto-Striction A)

The Landau-Lifshitz equation may look easy to deal with but what makes up the
variable H can be very complicated. The field that each spin feels acting upon it can vary
over a physical sample and even from spin to spin if the conditions change. In general H
can be thought of as containing an external magnetic field, a magnetostatic field, an

anisotropy field, an exchange field, and a reaction field due to eddy currents (in a



Fig 2.1 Damped precession of the magnetization vector. The terms containing 'y and A are the oscillatory
and damping terms, respectively, in a different formulation of the Landau-Lifshitz equation"’.



conducting ferromagnet).

2.4.1 External magnetic field

This is simply the field applied to the sample that would be there regardless of the

sample’s presence. We will call it B, = yt H, .

2.4.2 Magnetostatic Field
This is field that each spin feels due to the total magnetization of the sample:

B = u,H+M . This nonlinearity is what makes the solution to the total ficld untenable,

except for contrived sample conditions (infinite sample or divH = 0 for instance), because
this magneto-static field depends on the magnetization (and derivatives) at every point in
the sample (similarly, the demagnetizing field of a sample is unsolvable except for special
cases like the ellipsoid). Landau and Lifshitz use a contrived sample in their original paper

out of which comes the speed of the domain wall.

2.4.3 Anisotropy Field

This is the field produced by the various anisotropies of the sample of which there
can be many different types. The spins in a sample may have a preferred direction of
orientation (along the “easy-axis™), in which case there is extra energy associated with
orientations not in this preferred direction. This preference can be caused by:
i) a crystallographic orientation of the sample (magneto-crystalline anisotropy),
ii) demagnetizing effects due to free poles at the sample surface, ultimately depending

on the shape (shape anisotropy)



iiiy  stress in the sample which can be induced (magnetostrictive anisotropy)
iv) annealing a sample in a magnetic field (induced magnetic anisotropy)
2

This interaction can be expressed in terms of a sin power series:

E_ =K sin* ¢+ K, sin*¢+..., where the first term is often adequate and leads to the
(simplest) anisotropy field of: (B,,), =-2K,.M,/ M, , (B,,), =-2K,M, | M.’ and
(B..), =0 , where the easy axis has been taken to be parallel to the z-axis.

Note that magnetostriction is important in its own right, though of less concern for
the present work. Magnetostriction A is a constant per material (for instance A1y, is the
“magnetostriction” in the <111> crystal orientation). The calculation of A depends on the
crystal structure and lattice spacing and will not be given here. A positive constant means
elongation along that axis with increasing magnetization, negative means constriction with

increasing magnetization.

2.4.4 Exchange Field
An exchange interaction between neighboring spins is minimized in a ferromagnet
by alignment (as opposed to energy minimization for anti-alignment in anti-ferromagnets).

This is often considered from atomic coupling in the lattice where a potential energy takes
the form of V = (—2.IS2 / M,Z)M , *M, where J is the exchange energy integral, S is the
spin, My/M, and M/M. are unit vectors in the directions of the spins on the pth and qth

sites (notice the minimum happens for parallel spins). A usual nomenclature convention is

to introduce A=2J5%a as the exchange constant (where a is the lattice spacing). A simple



form of the exchange field might look like: B,, = (2A/ M,’)V’M

2.4.5 Eddy-current field

This field is the reciprocating resuit of the currents that are induced by *“magnetic
motion” in the sample (known as eddy currents). A first approximation would depend on
the velocity of the wall (vy), conductivity (o), height (h), and saturation magnetization of
the sample: B.=poohM.v/r.

Another way to look at eddy currents is their characteristic decay time in a finite-
sized conductive sample. This would be proportional to conductivity and area of current
flow. An expression for this would be: 7=u,0rd/2 where tis an eddy current decay time

and r and d are radius and thickness of the ferromagnet, respectively.

2.5 Reversibility and Irreversibility: The Hysteresis Loop

Reversal of magnetization in a ferromagnet is an interesting process. Ramping a
magnetic field from saturation in one direction to saturation in the opposite direction
usually involves irreversible processes and a loss of energy which is visible in a graph of
flux density B or magnetization M vs. magnetic field H (fig 2.2). This is known as the
hysteresis curve and is characterized by its “squareness”, remanence (B), and coercivity
(Ho).

The least energetic reversal process involves movement of domain walls. The
energy associated with a wall, however, will vary spatially over the magnet due to grain

boundaries and inclusions (fig 2.3) as it takes less energy for a wall to sit on an impurity.



/

/ Bt

Fig 2.2 Example of hysteresis loop with

definitions of remanence B, and coercivity H>.
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Fig 2.3 “Potential energy surface™: variation of
the wall energy as a function of position of the
domain wall. The movement from so t0 s, is
reversible; the movement from s o s; is

irreversible™*.

Fig 2.4 (a) Easy axis hysteresis loop and coercive field H.. (b) Hard axis hysteresis loop and approximate

value of anisotropy field H,**.
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Small wall movements (for instance, from s; to s;) will revert to their original position
with removal of the field that caused the movement. A larger wall movement that crosses
an energy barrier, however (s; to s4) will not return upon removal of the field and needs
extra energy (extra field in the opposite direction) to return to their original position. This
accounts for the remanence at zero field and the coercivity. Of note, another type of
reversal - by rotation - can be reversible and irreversible as well. In general, both types of
reversal, and both reversibilities and irreversibilities happen as the field is swept giving the
particular shape of the hysteresis curve. The sweep range also effects the shape of the
curve; a smaller sweep range may not overtake all irreversibilities leading to what is called
a minor hysteresis loop as opposed to the full (major) hysteresis loop.

As a special note, in the case of anisotropy energy being present (magnetization
having a preferred direction) the ferromagnet may have an easy and a hard axis defined as
aligned with preferred direction and 90° to alignment, respectively. Applying the field
sweep along the easy axis should result in a squarer loop as spins are harder to turn away
from the axis and want to anti-align as soon as they do (fig 2.4(a)). Sweeping the field in
the hard direction should result in a small hysteresis with low remanence since spins will
want to “lead” the field to zero in the hard direction (by aligning with the easy axis) and
will be slow and steady to rotate to saturation in the opposite field (fig 2.4(b)). The
anisotropy field H, may be defined as the field necessary to saturate the magnetization in

the hard direction: that is, the field that is able to completely overcome anisotropy energy.
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2.6 Main dynamical problems
Some of the major dynamical problems worked on will be outlined below. These

include domain wall motion, dynamic reversal and reversal mechanisms, and ferromagnetic

resonance.

2.6.1 Domain wall dynamics: Early work with dynamical Kerr microscopy

This problem is linked with dynamic reversal in many ways. It is interesting from
both the point of view of understanding and that of application, to study the way a
magnetic material will respond to a change in magnetic field.

The Landau-Lifshitz equation was applied to domain wall motion to determine
characteristic wall velocities and wall mobilities. A good report on this technique, its
correction for eddy current damping, and its application to permalloy, is given in O’Dell*'.
Some of the experiments used to test these velocitics used optical techniques to directly
study the magnetization: specifically the magneto-optic Kerr effect, MOKE, (more on this
effect will be said in this chapter), was first used in the dynamical sense by Lee and
Calaby*"? for this detection. The basic experiment had two separated laser spots to detect
the passage of a wall in time (giving velocity). Altered forms of this technique were done
by Ford®"* and Thompson and Chang™'. These first attempts were strewn with problems
in measuring velocity because of a delay in starting and stopping of the wall with the
driving pulse. The first implementation of a stroboscopic technique to do this detection
was by Green and Prutton in 1962*", (followed by Copeland and Humphrey*'® and
Conger and Moore*'"). This work culminated in single shot high speed photography by

Kryder and Humphrey*'*#'*2%, More recently, wall motions continue to be studied in
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this way**'*? and are even used in reverse to modulate light spots, knowing wall
velocity.>*® More discussion on the Kerr effect experiment and its history will be given
later in this chapter.

Domain wall dynamics are still of much interest and are now better tied into
ferromagnetic resonance. Exact solutions for domain walls in a uniaxial ferromagnet are
known for the static case but much recent theoretical, computational, and experimental
work has been done for the dynamic situation. Schryer and Walker have considered the
motion of 180° domain wall in step-function dc magnetic fields*** where the wall tends
smoothly to equilibrium unless the driving field is greater than the coercivity, in which case

h%? proposes a dynamic domain

a precessing periodic motion of the wall occurs. Smit
model for magnetic thin films (in theory and computation) and Helman®?® gives a general

solution to the Landau-Lifshitz-Gilbert equation linearized around a Bloch wall.

2.6.2 Dynamic reversal

Wall motion may almost be thought of as a subfield of dynamic reversal:
understanding reversal being the more important goal (both for physics and application),
with the study of wall motion being the method to understanding. Understanding dynamic
reversal is almost at the very heart of ferromagnetism. Additionally some of the most
useful applications of the ferromagnet have proven to be in digital data storage and this
technology depends on reversal.

There are several different mechanisms that the magnet can use to reverse from
one direction to another. Domain wall motion consist of domains aligned with the

external field growing and those aligned against the field shrinking (via movement of the
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domain wall). It is the least energetic of processes, but also the slowest. Coherent
rotation will be quicker, and therefore more desirable in the case of magnetic recording,
for instance. In general, the explicit dynamics of the reversal process are not yet well
understood, especially experimentally. Theoretical work in dynamic reversal has had a
large head start through micromagnetics.*?’ Frei*?* shows how reversal could take place
in an infinite cylinder by rotation in unison, curling, or buckling as shown in figure 2.5. It
was first shown by Conger®? that, for coherent rotation in a thin film memory element,
the switching time © should become faster with the field B, (t = 1.76 o/ {y| B, where a, ¥
are Gilbert damping parameter and gyromagnetic ratio, respectively) though this time was
found to be inaccurate experimentally, possibly due to a magnetization ripple effect®!.

Thomson derived a form for coherent rotation switching time that depends on energy as a

A (% dé
. 22 ==
function of angle™* (¢, = y’ J.m JE/d6

with A being the L-L damping parameter and y

being the gyromagnetic ratio). No matter what the form of ¢, for coherent rotation or
domain wall motion, the two are found to have different signatures. Figure 9*°*? shows
some switching investigation on films of uniaxial permalloy studied by Dietrich et.al**.
H, was a pulsed field in the easy direction (a dc field H. was applied in the hard direction).
Reversible changes were found for H, (H,>> H.) where the film appears to switch entirely

by coherent rotation. More recently, Lederman et. al. measure the spontaneous thermal

1

switching of a single domain particle** and find evidence of a much more complex

reversal then the single energy barrier model of Neel*”. High powered computer

calculations with micromagnetics have given simulations of reversal processes’******%.

Experimental work that probes the dynamics directly has been lagging and this is where
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Fig 2.5 Modes of magnetization for an infinite cylinder: (a) rotation in unison, (b) magnetization
curling, and (c) magnetization buckling®2*,
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Fig 2.6 Inverse switching time as a function of the longitudinal field strength for a permalloy film of
unspecified thickness. H; is the pulsing field along the easy axis; H, is a dc field along the hard axis™*.
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time resolved scanning probe techniques can become extremely useful.

2.6.3 Ferromagnetic resonance (FMR)

Effectively, we've already introduced Ferromagnetic Resonance (FMR) by
introducing the Landau-Lifshitz equation and the oscillatory behaviour associated with it
when the magnetization is not aligned with the external field (equations 1 and 2 and figure
1). The motion of excited magnetic spins may be called FMR (just as the motion of
nuclear spins is termed NMR), though classically, the excitation should be sinusoidal to be
called resonance (in our experiment, the excitation is pulsed). More recently, pulsed
magnetic resonance has been more common than continuous wave magnetic resonance.

For the simple, uniformly magnetized ferromagnet, H takes on the form H = Hy +

4nM; and solving the undamped Landau-Lifshitz equation, one may obtain a characteristic

resonance frequency @ = yJFL,(H,, +4n'M,) . To maintain resonance, however, energy

must be fed into the system, because of the various forms of damping (crystal lattice, etc.).
Figure 2.7 shows the classic set-up for the microwave cavity FMR experiment. The
magnetic material is aligned in a strong external field. A microwave, with its magnetic
vector perpendicular to the external field, induces precession in the spins and is thus
absorbed. By ramping the external field, the absorption (or, experimentally, the effective
permeability) may be measured and the peak absorption should correspond to a match
between the resonance frequency and microwave frequency (fig 2.8). Not only are
resonance frequencies obtained, but the width of the resonance peak may also be used to
calculate the damping coefficient.>' This calculation, however, must assume excitation of

only uniform modes in the resonance (that is, identical resonance conditions everywhere in
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Fig 2.9 Tustration of resonance peak broadening. Different resonance conditions lead to multiple peaks
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the ferromagnet). Non-uniform modes of excitation serve to broaden the absorption peak
due to the differing resonance frequencies as shown in figure 2.9, and can thus give
erroneously high values for the damping. Patton has overcome this problem**’ by using
more than one microwave frequency to obtain a set of absorption curves by which the
non-uniform mode excitations may be removed.

Needless to say, the resonance frequency is highly dependent on the field each spin
feels inside the ferromagnet. The intricacy of H has already been discussed so it’s easy to
see how the oscillation conditions can be quite complicated and even vary across a single
thin film (this fact will become significant to our results). Vonsovskii discusses, among
other things, the effect of many different parameters on the resonance frequency’”,
including shape, crystal anisotropy, and domain structure. Some recent work gives an
aspect of spatial resolution to the FMR experiment by measuring an array of non-
interacting particles**® and even undertakes some discussion of the magneto-static mode
effects (non-uniform modes).

Our experiment uses a pulsed excitation applied to the sample instead of a
sinusoidal one (akin to pulsed-NMR). This has the disadvantage (or advantage) of
introducing a band of frequencies for excitation. Monitoring of the oscillations can be
done directly by observing the magnetization of the films. In fact, with the time resolved
scanning Kerr effect microscopy (TR-SKEM) system described in “time resolved set-up”,
we can spatially localize response detection and possibly even see differing resonance in
differing locations for the non-uniform case. This has the advantage over the bulk FMR of
looking at small particles. It has the advantage over particle arrays of looking within a

single particle (spatially) and directly observing magneto-static mode effects. Finally, TR-
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SKEM is not limited to FMR information; the temporal resolution (with the spatial

resolution) allows elucidation of all dynamical problems.

2.7  Introduction to the Magneto-optic Kerr Effect (MOKE)

In its most basic form, the magneto-optic Kerr effect is the interaction of electro-
magnetic radiation with a magnetic field upon reflection from an interface. MOKE is one
of a class of magneto-optic effects including the Faraday effect (which takes place upon
transmission through a magnetic material). Derivation of these effects are basically from
solutions to the Fresnel equations that incorporate the magnetization of the material. In
simple terms, one can think of an incident polarization vector (Ej) interacting with
magnetization in a surface through the cross product E, x M. A rigorous derivation of the
MOKE is omitted. Refer to Freiser**, Robinson*****', Argyres*¥, and Voigt** for

more detailed discussion and derivation.

2.7.1 Definitions and reflectance coefficients

Consider the dielectric tensor for the magnetized slab>*:

K, x, 0
0 0 «x,

where off-diagonal elements contain the magnetic information. Other notations replace x;
with x; = -ieQ where Q is the complex magneto-optic parameter and is a function of the
material and wavelength of illuminating light (¢ is the dielectric constant). The magnitude

of @ (and k) is proportional to H (or M inside the ferromagnet).
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Fig 2.10 The orientation of magnetization M with respect to the plane of incidence (plane of the diagram)
for (a) polar, (b) longitudinal, and (c) transverse Kerr effect™**.
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Fig 2.11 Definition of p- and s- polarized light and Intensity and Reflectivity L, I and R,, R, respectively;
p-polarized light lies in the plane of incidence and s- polarized light is perpendicular to it.
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There are three configurations for the MOKE (fig 2.10): polar, longitudinal, and
transverse (sometimes named polar, meridional, and equatorial, respectively) depending
upon the orientation of magnetization within the sample with respect to the plane of
incidence and the surface normal (polar for M perpendicular to the surface, longitudinal
for M in the plane of incidence and parallel to the surface, and transverse for M
perpendicular to the plane of incidence). The definition of p- and s- polarized light is also
given in figure 2.11 with p-polarized light lying in the plane of incidence and s-polarized
light perpendicular to it. The reflectance coefficients**® (or Fresnel coefficients) for the
three configurations are given below (to first order) where 0 is the angle of incidence, n is

the index of refraction of the magnetic material and x; is the off-diagonal element in the

dielectric tensor (Ix:l o IMI):

polar and longitudinal: Iy = "7'7, r, = Y —ny :
ny+y Y +ny
K,/n
polar: r,=r, = ’2 _
P (y+nyYnr+7)
longitudinal: r,=-r,= 7ﬁ'|_ K'z /n : ]
ny’ [ (v +ny"Yny +7')

transverse: =nr-l I 1+ sin(26)xc, /n }

( ny+11 (ny+1)Xny -1)

§<

-n
Y+n

)
Y = cos@ y'=cos0'=‘/1-smze B =sin6
n

s, = ';p

=r,=0




22

Rp rpp rp o IP : [ [3 . 3 . . I P
where r 1=l 1y is the complex reflectivity matrix for incident intensity gt
4 P L s 3

As can be seen in the above equations, in the polar and longitudinal case, pure s-
or p- reflected modes (s- to s- and p- to p-) are not affected by the sample magnetization,
however mixed modes (p- to s- or s- to p-) are introduced with reflection proportional to
M. K also introduces a phase shift, in general, with the result that incident linearly
polarized light becomes elliptically polarized with a rotation of the major axis proportional
to the magnetization. It is this rotation of polarization that most measurement schemes of
the MOKE try to detect and interpret as magnetization at the surface. In the case of the
transverse Kerr effect, there is no mixing of polarization states (and thus, no rotation)
though there is a linear effect on the pure p- reflected intensity (and phase) with the
surprising result of elliptically polarized light with no rotation but a small change in
intensity. In our case, we concentrate on detection of polarization rotation so limit our
measurements to polar and longitudinal Kerr effects.

Both effects allow larger rotations for p- polarized light. This is true because p- to
p- reflectance (r,p) is always less or equal to s- to s- reflectance (r,;) but the magnitudes of
r. and rp, are the same so crossed modes have more of an effect when in vector addition
with the smaller rp, (giving larger rotation). Also mixed incident polarized light (not pure
p- or pure s-) should be avoided as off-diagonal terms are introduced that are independent
of x; (that is rotation non-magnetic in origin). The equations also tell us that the Kerr
effects are a function of angle (the longitudinal effect has a broad maximum around 60°).
Along with the magneto-optic parameter being dependent on material and wavelength, this

gives a wide range of variation for Kerr rotation; several studies have been done on
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permalloy to this effect (see, for example, figs 2.12 and 2.13). Finally, the polar effect is,
in general, five to ten times larger than the longitudinal effect and is thus easier to detect in

practice.

2.7.2 Generalized scanning Kerr effect microscope (SKEM) set-up:

Figure 2.14 generalizes a MOKE set-up. Light reflects off the surface defining
some angle and plane of incidence from zero to ninety degrees and rotation in the plane of
polarization is detected. We will begin the discussion with the reflection portion of the
apparatus.

In general, light could be collimated as it strikes the surface (giving the advantage
of one defined angle of incidence) or it could be focused and recollected by regular optics
for an improvement in spatial resolution. For very high spatial resolution a microscope
objective (LO) is needed, but this is hard to set at an oblique angle to the sample because
two bulky pO’s won’t fit side by side. This is no problem for the polar case, in fact, we
prefer the angle of incidence to be zero to maximize the signal. Light would need to come
in and out on the same path, but this can be solved by using a beamsplitter. When we
want to measure the longitudinal effect, we must have a non-zero incident angle which can
be accomplished in two ways (figs 2.15 and 2.16). If we block half of the light falling on
the uO aperture (either before or after the beamsplitter) the circular symmetry will be
broken and light will have a net non-zero average angle of incidence and an average plane
of incidence perpendicular to the cut (fig 2.15). The same could be achieved by using a
mirror edge to illuminate half the aperture (fig 2.16) giving the advantage of four times the

intensity (not having the beamsplitter twice).
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several wavelengths of the light, as derived from the
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incidence, repectively, as dependent on the angle of
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Fig 2.14 Idealized MOKE set-up. The rotation of the plane of polarized light reflected off a surface is
detected.
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Fig 2.15 Schematic illustrating blocking of half the beam. A range of angles of incidence (and planes of
incidence) accompanies focussing with the pO. The average plane of incidence will be perpendicular to
the cut line and net average angle of incidence will be non-normal. Cutting may occur before the beam-

splitter as well.
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Fig 2.16 Schematic showing beam cutting by illuminating a mirror on its edge (a “balf-cut” mirror).
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We now consider the means of detection. As has been mentioned, measurement of
polar or longitudinal effects is by detection of polarization rotation. The problem is that
this rotation tends to be very small for most materials (the Faraday effect is easier to see
simply because of the distance of material traversed: centimeters through some insulators
as opposed to the 20 nm optical depth for reflections from metals). The most obvious
way to measure a signal would be to cross two polarizers (polarizer and analyzer) before
and after the interaction (fig 2.17) though this detection near extinction makes signal to
noise a problem and demands zero stray light on the photodetectors (the detectors could
be photomultipliers or, more likely, photodiodes (PDs)). Also, a change in the
polarization leads to a quadratic change in intensity which is extremely small for a small
angle. The signal can be doubled in a split beam differential set-up™* in which a Glan-
Thomson cube is set 45° with respect to the initial polarizer to give two beams of equal
intensity (fig 2.18) which are subtracted electronically. A small rotation in polarization
increases the intensity in one beam and decreases (fig 2.18 inset) it in the other giving
twice the signal (this technique makes extinction electronic not photonic so stray light
doesn’t spoil the measurement and signal to noise is improved). Furthermore, 45° is the
point of maximum slope of intensity change vs. angle giving the maximum signal per
rotation. Other attempts at improving the signal include “blooming the sample” in which
an anti-reflectivity coating like zinc sulfide is deposited on the surface>****’, Attempts to
subtract out background noise were also done since non-magnetic rotations and
background can easily swamp the signal: Fowler and Fryer took a transparent positive in
the magnetic saturated state (with photodetection by photographic plate) and

superimposed a negative without magnetic saturation***. A more recent iteration of this
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Fig 2.17 Crossed polarizers detection system. Any polarization rotation due to the black box increases
the signal at photodetection quadratically.
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Fig 2.18 Split-beam subtraction using a Glan-Thomson prism. Background is still subtracted and
rotation increases the signal linearly (inset).
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idea is CCD imaging in which images of the sample are taken with and without magnetic
field and immediately subtracted>******%!, These have been particularly successful since
the whole image is captured at once removing the problem of drift in a raster scanning
system. Images may also be improved with time-averaging and image processing.

In general, though, the signal is too small, so modulation and synchronous
detection is necessary. Light polarization modulation is an elegant way to achieve this and
readily allows static imaging. Robinson uses a Faraday cell with an ac electro-magnet to
modulate the magnetization in the cell along the optic axis**! (which is passed onto the
light as a Faraday rotation). Jasperson and Schnatterly modulated the light photo-
elastically using a strain wave in a quartz crystal>*>. In our work, we use a commercial
instrument, the Photoelastic Modulator (PEM), which stems from Jasperson’s research. A
strain wave in one dimension retards one component of electric field by A/2 with respect
to the other. In our case, rotation is picked up at 2f. This technique has the advantage of
being very sensitive to rotation and very versatile for ellipsometry (circular polarizations
and rotations can be detected for different configurations of analyzer angle and f or 2f
detection). The drawback to the above techniques is that they directly modulate the light
which may be undesirable. More will be discussed on this in chapter 7.

Modulation of the magnetic field at the sample also serves for synchronous
detection. Lee et. al. applied an ac magnetic field to image domain walls as the boundary
moved back and forth across the light spot>>. Re and Kryder drove a magnetic recording
head with its own coils to check its magnetization response as a function of ﬁ'equencf"“.
In the time resolved case, “slow” (kHz) modulation is given electronically to a series of

fast tipping pulses™*>; more will be discussed on this in the chapter 7.
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3 PROPERTIES OF NiFe (PERMALLQY)

There is a very extensive body of literature on the properties of NiFe. Arnold
opened a huge field of interest (known as “the permalloy problem”) in 1923 when he
found (78:5%/21.5% Ni/Fe) permalloy had high permeability only when quenched from
600 C*'. Pioneering experimental work in the field was done by Elmen*? and Dillinger
and Bozorth®® with temperature and magnetic annealing ideas. Several review papers
have been written on the subject including works by Pfeifer and Radeloff*, Chin®*, and
Freedman®®. Several classic papers are also cited including Hall*’, Ferguson®®, and
Bozorth and Walker’”, Finally, some good reference texts include Chikazumi*'°,
Thomson™"", and Prutton™'>. With the excellent reviews already done, it is the author’s

intention to merely touch on important parameters for this work.

3.1 “81/19” Permalloy

“81/19” permalloy falls into the category of “soft” magnetic materials. That is, it
has high saturation magnetization (4nM,=10000 G) and low coercivity (H.<2 Oe).
Furthermore, it can be made to have extremely high maximum permeability (100000).
Other parameters that are important for technical reasons include uniaxial anisotropy K,,
crystalline anisotropy K, and magnetostriction Ay, Ao, and A, (As is saturation
magnetostriction). All of these properties are functions of various factors including
stoichiometric makeup of the alloy, temperature annealing and type of cooling, substrate
temperature, magnetic annealing, induced strain, cold rolling, grain size, and substrate or
seeding layer and all properties may be selected and controlled (though not

independently).
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3.2  Annealing and Magnetic Annealing (Historical Work)

Let us discuss first the annealing and magnetic annealing effects. Figure 3.1 shows
the effect on initial permeability of three different heat treatments as a function of Ni-
percentage*!!, The treatment labeled “b” consisted of annealing at 900-950 C for 1 hour
and cooling at a maximum rate of 100 C/h. The treatment “a” is a double treatment of “b”
followed by reheating to 600 C and quenching in air on a copper plate (cooling about
1500 C/min). Treatment “c” comprised of a bake at 450 C for 20h after heating to 900-
950 C. Figure 3.2 shows the effect of “field annealing” (slow cooling in a field) as a
function of %Ni*?***!! (this time, on the maximum permeability Hm). The field
annealing®>, labeled “a”, has substantial affect only for Curie temperature 8 above 450 C.
A rapid cool*?, “b”, is given for comparison. Such treatments are probably tapping into
ordering or disordering effect in the permalloy (slow or fast cool).

More effects for temperature annealing are given in figures 3.3 through 3.6.
Bozorth and Walker*® find the magnetocrystalline anisotropy K, has a definite dependence
on cooling rate with the largest effect being for samples showing most long range order
(NisFe) in figures 3.3 and 3.4. This long range order also affects the magnetostriction for
the quenched or baked case in figure 3.5*? (though not as pronounced). Similar reasons
are cited for the success of cold rolling (really magnetostrictive deformation) and strain
induced K,. Ferguson finds an effect for uniaxial anisotropy K, on the annealing
temperature™® in figure 3.6 and Neel discusses how short range ordering or “pairing” of
Ni-Fe atoms could cause annealing and magnetic annealing effect on K.*'*. Fujii et. al.

give a very interesting analysis on the origin of induced uniaxial anisotropy’'!. By
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considering Hy as a function of annealing time they were able to identify six different
contributions to the isothermal relaxation process and associate a relaxation time (and
activation energy) to each which they could further relate to magnetostrictive induced,

defect induced, and crystalline order induced uniaxial anisotropy.

3.3  The Technically Interesting Range of 70-90% Ni Content

Figure 3.7 shows a blow-up of figure 3.6 in the region where cooling rate has
strong effect. This range of Ni content between 70 and 85 % is also technically interesting
for several reasons as the zeros of A and K and the maximum permeability all lie in this
range. It is important for magnetic recording to have zero or small magnetostriction
effects since wall motion will be easier (and quicker) especially along the easy axis
direction (which is often <111>). Low anisotropy also means reversal is more likely to be
by coherent rotation which is also desirable and quicker (see chapter 2). The combination
of the two leads to high permeability, another positive feature. For these reasons much
work has been done on tracking the zero lines of these parameters. From the physics
point of view we choose permalloy of these qualities (e.g. 81/19) to tie research to
technical interests. It is also important to have low anisotropy and low magnetostriction
to more easily model time resolved reversal effects for comparison with experiment.

Thomson>* summarizes several important features from Bozorth and Walker® in
table 3.1. These features take place close to each other in this range but it should be noted
that none overlap in the binary alloy (NiFe). However, with small additions of some non-
ferromagnetic elements, the zeroes of anisotropy and magnetostriction can be made to

occur simultaneously. Figure 3.8** and 3.9 show crossing zero lines for the addition of
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Table 3.1 Some magnetic constants for single crystals of quenched NiFe alloys*” "',
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Mo and/or Cu. Several lines are given for K, for both the case of different tempering and
different cooling (ordering concerns have less of an effect on magnetostriciton).

Coercivity H. and anisotropy field Hy are also important parameters which have
interesting or unique points in the range 75 to 90% Ni. They are preferably lower for
easier switching. Freedman discussed the dependencies of H. and Hy on thickness, grain
diameter, deposition method, annealing or deposition temperature, underlayer, and
substrate temperature (fig 3.10)*. Motivation for our choice of 81/19 Ni% becomes clear
in light of the above discussion. It should be noted that, in the case of permalloy,
percentages are almost always given as a weight percent as opposed to atomic percent and
will be referred to as such in this work.

The range of 50/50 Ni/Fe should briefly be mentioned here. This range of alloy of
NiFe is much more resistive than 80/20, thus it speeds eddy current decay considerably so
is of current technical interest in eddy current speed limited magnetic recording heads.
34  Recent Work in Property Engineering

Having this large body of literature to draw from by no means makes property
engineering straight forward. More recent papers have continued to fill in data gaps
(sometimes in contradiction to previous works) and add new methods for property
control. Tsunashima et.al. have mapped out the thickness dependence of magnetic
annealing behaviour"* and Koo and Kasiraj have looked at magnetic annealing effects as
well*'S, Krush has investigated the effects of sputter gas (1% N2 addition to Ar) and
substrate biasing on A7 (with the ability to lower H,). Takahashi et. al. apply a surface
acoustic wave (SAW) to the substrate during deposition to change grain size dramatically

and control H, and H,>'®. Nakatani et.al. and Gillies et. al. have used Nb, Ta, Ti, Zr, and
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Fig 3.8 Lines for K,=0 and A=0 in Ni-Fe-Cu-Mo system™".
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Fig 3.9 Nickel comer of Ni-Fe-Mo alloys in which Cu is substituted for Fe. Room temperature lines of
K,=0 for three cooling rates, and lines of A=0 for 0 and 14 % Cu. At cryogenic temperatures, the K,=0
lines are displaced toward the lower left. Line A alloys are highly responsive to magnetic annealing™’.
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Hf as buffer or seed layers to enhance <l111> growth and minimize the effect of

anisotropy™'**?°, Kim et. al. use ceramic intermediates to affect properties®*!

and Grimes
and Lee can enhance complex permeability using CossCry, undercoats®?. Finally Kim and
Silva find abrupt increase in [A,l for thicknesses below 7nm*?,

The complexity of permalloy and magnitude of parameter control techniques in the
80/20 range has been demonstrated in this chapter. Motivation for the choice of 80/20

permalloy has also been given. Discussion of the deposition and characteristics of our

permalloy films will be given in chapters 5 and 6.
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4 FABRICATION DESIGN

4.1 Introduction

In order to probe the dynamical properties of a range of sizes and shapes of
permalloy microstructures, we needed to be able to magnetically excite these structures
with ultrafast fields. This necessitated a concentrated, transient magnetic field pulse to
occur in the sample. It needs to be in a perpendicular direction to the thin film substrate
and ultrafast*' (this necessitates an optical current switch). Photomasks would be made

for photolithographic fabrication of appropriate features to fill these needs.

4.2  Mask 1: Lithographic Coils and Dots

Layout for this mask is in the appendix. The main mask for photolithographic
fabrication was designed to have as much versatility as possible. The basic principle
would transform a current transient into a magnetic field transient, perpendicular to the
substrate, by using a one-loop conducting coil with transmission line leads (ultrafast
current generation will be discussed in the next section) following the patterns of Mark
Johnson*?,

In our case, seven different coil types were made with four different inner/outer
diameter combinations: 8/12 (# 3, 5, and 7 in fig), 8/16 (# 2 in fig), 16/24 (#1 and 4 in
fig), and 16/32 (#6 in fig) respectively (all diameters in micrometers). Their placement in
the photomask *die” is shown in figure 4.1; smaller coils were closer to the center of the
die as the lithographic process was alleged to give better resolution in the center if

centered over a small substrate . This was not a necessary precaution in our case, because
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the substrate could be placed under any part of the die in the mask. Coil # 7 had a 4x4 um
square in the center, coils 3 and 4 were to have 4 and 8 um circles inside but the
photomask company (Microtronics) erred in production. The different diameters allowed
different possible conditions for transient magnetic field: the thicker line width coils could
carry more current but would be less localized in magnetic field production than the
thinner ones, and the two types of inner diameter allowed for two scales with the smaller
coil able to give more concentrated ficlds for smaller particles. We wound up using coil
#6 almost exclusively because it was the biggest and easiest to work with and the fields
produced were adequate.

The layout was to allow any of the twenty-four particles from section 8 in figure
4.1 to be placed in the center of any coil with a subsequent lithography step by rotating the
photomask and realigning (fig 4.2). Again more intricate or smaller features were made
closer to the center. Only the three pointed alignment structures are visible with the
magnification in this figure. These alignment marks correspond precisely with marks
surrounding the coils; when overlapped a particle will be aligned in the center of a coil
loop. Particles included 2, 4, 6, and 8 um diameter squares and circles and a 10 pm
diameter circle, 2x4, 2x8, 2x10, and 1x14 umxpum rectangles in both orientations, 9, 6, 3
Kim on a side equilateral triangles, 1 isosceles triangle, 3, 4, and 6 pointed stars, and a
hexagon (see appendix for layout) but here also, several features (circles and squares)
were lost by Microtronics, which was especially unfortunate as one of the things we most

wanted to do was look for any dynamical scaling in circles and squares from 10 to 2 um.
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Fig 4.1 Layout of seven different coil combinations in the photomask “die”. Coils #3, 5, and 7 are 8/12,
coil #2 is 8/24, coils #1 and 4 are 16/24, and coil #6 is 16/32 inner/outer diameters respectively (in pm).

Fig4.2 Selected microstructure placement by “double lithography™: rotation and alignment of the
triangular marks.
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4.2 Mask 2: Photoconductive Switches

This design was also modeled after a source** and the layout is given in the
appendix. The photoconductive switch is necessary to turn a laser pulse into an ultrafast
electrical transient (photons generate electron-hole pairs across the band gap of a semi-
conductor substrate allowing brief current flow in a thin layer, the optical depth (a few
x100 nm for GaAs)). Interdigitated fingers allow a large surface area of semiconductor to
flow charge at once giving a large current pulse. This pulse’s temporal shape depends on
the laser pulse width for its rise time and the carrier recombination time for its decay
(though the rise time may be broadened by dispersion and reflections by the time it reaches
the coil). For more information on photoconductive switches refer to Auston**,

In each “3-set” die (fig 4.3), there are 2, 4, and 6 um wide fingers and gaps in the
3 switches, respectively. These should each give slightly different response (still looking
for versatility). The three switches are close together so that they could be bonded into
the same circuit if one is blown (this function was never used in practice and each switch
was individually diced). The original design had 100 um bonding pads on each end of the
switch; in our case, some had 100 um pads and others had 300 wm pads which are much
easier to work with. Because we had characterized its response (and it always survived

well in lithography) we wound up using the switch with 6 um fingers exclusively.
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Fig 4.3 Photoconductive switches “3-set”. The width of fingers is the same as the spacing between
fingers in each switch. Widths include 6, 4, and 2 um for 4, 6, and 12 fingered switches, respectively.
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5 FABRICATION

5.1 Introduction

The idea behind fabrication was simple: transfer the pattern of the microcoil to a
conducting thin film and transfer a shape pattern into permalloy at the center of the coil.
Ways that these transferences occur are detailed in this section including: deposition of
conducting and permalloy layers and pattern transfer through combinations of
photolithography, wet chemical etching, “double lithography”, ion-milling, electron beam

lithography (ebl), and lift-off process.

5.2  Deposition

5.2.1 Conducting Layer

The final choice for conducting layer wound up being gold because it is highly
conductive and the fabrication processes for it were well worked out at AMC. This
became the choice of thin film for both the conducting coil and the interdigitated
photoconductive switches. Gold needs an adhesion layer to glass and GaAs (the two
substrates used for the coils and switches, respectively). Ti is always used as the adhesion
layer in the case of GaAs; for adhesion to glass, either Ti or Cr had been used (Ti etch will
etch glass, but was never a major problem). Also some multiple depositions were done in
ultra-high vacuum (UHV) of Ti/Au/TV/Py and Ti/Au/Py (where Py = permalloy). A Ti/Py
beveling technique was known™' as well as the use of Ti as a <111> seed layer for

permalloy’**, Early depositions of Ti/Au were done by electron beam evapouration but
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the quality was always questionable. Now all Ti/Au (and Cr/Au) depositions are done in a
commercial sputtering system (Perkin Elmer) at AMC. In general, thicknesses are 50 or
100 A adhesion layer and 1000 to 3000 A Au. As mentioned some Au depositions were
done in UHV (especially for the multiple films) at 5 mtorr and 10 SCCM Ar. Though
adhesion seemed fine, the quality was questionable as coils of this type were known to

blow up more often and the UHV sputtering process was never finalized for Au.

5.2.2 NiFe layer

5.2.2A Electron-beam evapouration

The permalloy deposition process took a little longer to figure out. First attempts
were with rf induction melted e-beam evapouration of powder mixtures of Ni and Fe in a
graphite crucible. The induction melted permalloy target was also machined into a starter
source, for use with the electron beam, and etched, for purity reasons. The base pressure
of these was not spectacular (mid 10 torr) and the deposition rate was quite low (~2 A/s)
so there was always large concern of contamination, especially oxygen contamination. A
magnet was placed right behind the upside down substrate to induce uniaxial anisotropy
but was sometimes found to twist during deposition due to the e-beam. There was also
concern about the deposition system; being “well-used”, it had many loose large
particulates, many of which could become magnetized, so several films were ruined by
attraction of these to the surface. Nonetheless, a couple of magnetically good films (but
high resistivity) resulted from this type of process showing excellent hysteresis

characteristics which will be discussed in section 6.4.2.
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5.2.2B Perkin Elmer sputtered permalloy

One deposition run of permalloy was done using the commercial Perkin Elmer
sputter system at AMC. The properties of these films were very questionable, though they
were not suspected right away. Films exhibited very high resistivity (~400 pQ-cm) and
unidentifiable hysteresis loops using both the homemade hysteresis system (section 6.4.2)
and the SQUID magnetometer (6.4.1). Unfortunately, these films were thought to be high
quality and set back experimental work for quite some time including: calibration of the
homemade hysteresis set-up, establishment of an etching process, and confirmation of the
hypothesized resistivity. We believe they may have been full of oxygen and possibly non-

ferromagnetic, forming a thick oxide on the surface.

5.2.2C Ultra-high vacuum (UHV) sputtered permalloy

To make the risk of oxygen contamination as small as possible, films were finally
made using a UHV sputtering chamber to achieve very low base pressures. This proved
to be a difficult process to set-up for several reasons.

First, the sputtering was done by a dc magnetron gun which contains the sputter
plasma via magnetic field. Because the target that would be used (permalloy) has a very
high saturation magnetization (42M; =10000 G), the plasma containment would suffer.
For this reason, a special highly magnetized sputtering gun was used. Other ways to get
around dc sputtering magnetic materials (especially permalloy) have been discussed™*.

The second obstacle was how to have a sufficiently high in-plane field (~120 Oe)

on the substrate in-situ to induce uniaxial anisotropy (discussed in chapter 3). The UHV
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system was a two chamber system with a load-lock (the UHV chamber is not exposed to
atmosphere regularly) so any magnetic assembly had to be small, self-contained, and UHV
friendly, or it had to be external to the chamber. Helmholtz coils outside the chamber
would be possible but would need to be very strong and would affect the field inside the
whole chamber possibly ruining the plasma containment. A current flow induced magnetic
field would give the best approximation of an in-plane field but would be hard to make and
could also more drastically affect the plasma conditions inside the chamber (introducing a
substrate bias). For these reasons, a magnet assembly was designed (for full description,
see appendix).

The magnetic assembly was under definite size constraints due to the way the
substrate was passed from the load-lock to the UHV chamber. Any extra material had to
be directly behind the substrate and not to any one side. To make a perpendicular field
this way would be easy as one pole of a large magnet would give fairly uniform conditions
across a substrate. To make an in-plane field is more difficult. The way we chose to do it
was to use several small magnets with their north and south poles head to tail lying in the
plane of magnetization (fig 5.1). The magnets would serve as “point” dipoles and the
field, some distance away at the surface, would average out to an in-plane field. Setting a
line of these head-to-toe magnets side by side would fill out the plane. The magnets were
sintered AlnicoV, designed to not outgas at the low pressures and to have very high Curie
Temperature (850 C) to allow possible in-situ in-field temperature annealing of the films
(chapter 3). The magnets could not be precisely head to tail (flux had to be allowed to
escape some distance) so a gap was made of the order of the distance between the magnet

plane and the substrate surface. A qualitative testing confirmed this and the magnetic
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assembly was designed. Magnets were 0.500 inches long and the gap was 0.100 inches
(fig 5.2). Two plates were made; one to contain the magnets and the other to be screwed
on as a thin cover (1/16) on which would rest the substrate. Covers were made of both
aluminum and stainless steel, though the aluminum cannot be used in UHV at higher
temperatures (there was some concern about the weight of the magnetic assembly
dragging down a load-lock transfer arm). The backing was made of copper for best heat
conduction, though, in retrospect, stainless steel would have been better (it is sufficiently
conductive and is *‘cleanest” with respect to outgassing). The backing was also tailored to
have as little weight as possible and all components were made with mind for breathing
(no blind holes, etc.) Small fasteners (both aluminum and stainless steel available) serve to
hold on the substrate with stainless steel screws. Screw holes were designed to allow
holding of several sizes of substrates up to slightly more than 2 inch squares. Small (<1
cm) substrates could also be fastened.

A quick and dirty determination of the biasing field strength was done with a
gaussmeter held at the approximate height of the substrate surface. An interpolated chart
is shown in figure 5.3 giving the approximate horizontal (in-plane) and vertical (normal)
magnetic field components over the range of one cycle in the magnetic array (from center
to center of two magnet rows). The horizontal field component is the one of interest and
rises to about 200 Oe near the center of a magnet. It falls to 0 Oe near the ends and
actually dips to -20 Oe in the gap. The vertical field could be troublesome if too large. It
starts at zero in the center of the magnet and climbs to about 150 Oe near a pole. It then
switches polarity in the gap and climbs to - 150 Oe on the other side. During deposition,

areas of interest were purposefully placed near the center of a magnet to take advantage of
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Fig 52 Frontal view of a magnetic assembly. The substrate plane is the plane of the page. Rows are
0.500” high with 0.100” gaps between them.
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the high horizontal field and low vertical field. I would say that all samples of interest had
at least 150 Oe external field during deposition and not more than 50 Oe perpendicular
field.

Having solved these problems, the UHV sputtering turned out to give the best type
of films and the films that gave most of our results. Sputtering itself is a tricky but
repeatable process and I would like to stress that the work in this thesis was not sputter
oriented, so the process arrived at was neither thorough nor exhaustive of the possibilities.
The dc sputtering pressure is an important parameter as it determines what angle material
will tend to come in at and its energy (mean free path in the sputter gas), the rate at which
the material is sputtered off of the target, the amount of substrate sputtering, and the
amount of sputter gas atoms trapped in the substrate. These points all affect the quality of
the film in terms of purity, stress, adhesion, and type of film. I will not go into detail here
about these processes. Some excellent references are: Thin Film Processes II by Vossen
and Kern®®, which gives a clear and concise introduction and overview to sputtering, and
Thin Film course notes by Brett™®, which gives more detailed account of subtle sputtering
problems and techniques.

The deposition pressure was chosen to be 2.0 mtorr as an attempt to make a
denser film (fig 5.4)>"*%. Originally 5.0 mtorr was tried but these films peeled easily,
presumably due to tensile stress. After success with 2.0 mtorr (no peeling), 1.5 and 1.0
mtorr were tried respectively (both near the limits of our dc power supply to hold a
plasma) but these also peeled, most likely because of the compressive stress from the
higher energy depositing atoms. The 2.0 mtorr pressure would also prove useful for

successful lift-off processes with sputter deposition as the angle of incidence (measured
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Fig 53 In-plane and normal magnetic field components of the magnet assembly as a function of position
from center to center of two rows. Values given are very approximate.
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Fig 5.4 Structural zone models for coating growth. (a) Zones 2 and 3 are denser with less columnar
structure®™”. (b) Zone T is a denser film resulting from sputter ions and neutrals “pounding” the film**.
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from surface normal) of sputter material is fairly low for this low pressure. Though the
system was designed for possible substrate heating and substrate electrical biasing, both of
which should improve the film quality (in terms of density, entering into zone 2 or 3),
these techniques have not yet been tried. The parameters of the dc power supply were set
at constant 300 mA and the voltage ranged around 420 or 430 V (giving power ~130 W)
for the 2.0 mtorr deposition pressure. The argon flow rate was always 10 SCCM
(standard cubic centimeters per minute); base pressures were usually in the 5 x 10°® range.
Attempts were also made at multiple film depositions in the UHV chamber.
Keeping in mind the possibilities of single time photolithography (obtaining the coil and
the microstructure at the same time) and fearing the permalloy might not be conductive
enough on its own, several multilayers of Ti/Au/Py or Ti/Au/Ti/Py were made. Both of
these fulfilled the need for conductive and one-step lithography. The entirety of these
films was questionable because of the gold layer (run at 5.0 mtorr with no other pressure
trials) whose quality was always suspect. The titanium layers were good quality because
their deposition process was well known in this particular UHV system, but the gold had
never been done before in the system. The reasoning for making a Ti layer directly below
the permalloy in some films was an attempt at inducing <111> order in the permalloy layer
(as in chapter 3). The process eventually worked out for very successful lithography (the
two-step or double litho) made these type of films obsolete regardless, as it was deemed
preferable to have no metal below the permalloy for the experiments (to avoid interface

effects, for instance, spin injection).
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5.2.2D IBM electroplated film

Some films were not made by ourselves but ordered directly from IBM. These
were high quality, electroplated, 2 um thick permalloy films which had excellent hysteretic
properties as will be discussed in section 6.4.2 and would even be appropriate for
conduction to be single step lithography films. The only problem with these is they were
too thick for our purposes: first, as we try to move to thinner films to enter a regime
where exchange interactioﬁ insures uniform response through the thickness, and second,
wet chemical etch lithography, being isotropic, limits our resolution capabilities of so thick
a film by introducing a 4 um (2 x thickness) error. These films could still be valuable
when using ion milling (because of inherent anisotropy of this etch) and as possible
tall/thin structures if used in combination with a nano-lithography technique like e-beam or

AFM lithography.

5.3 Patterning

5.3.1 Photolithography and Wet Chemical Etching

In general, photolithography and wet chemical etching techniques were successful
for any features above 2 um. The standard process was used where a photoresist is
exposed in the desired pattern and developed to act as a shield against etching this pattern
when the entire substrate is immersed in a chemical etch. We used a commercial
photoresist HPR 504 which is a positive resist (areas exposed to UV light are removed in
development), which we spun on at 4000 rpm (for 25s) and soft baked at 110 C for 1/2

hour. The speed of 4000 rpm should give a photoresist thickness of approximately 12 kA.
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We tried spinning at faster speed, including 5000 rpm, and including in a containment
drum (which allows less solvent evapouration) to make a thinner photoresist layer which
would enable higher ultimate resolution (light has less distance to diffract in the thinner
layer). This was successful with help from lithography experts at AMC, but was not a
regular “known process” so was abandoned in preference to the lower spin speeds.

The softbake at 110 C removes the solvent in the photoresist but also removes all
of the water from the resist. For this reason, softbaked substrates must be given at least
15 min to rehydrate before they are exposed or the resist will not develop properly (this
was learned the hard way by the author!). A soft-baked resist has had all the solvent (that
was needed to allow it to spin onto the substrate) removed and so lasts indefinitely after its
bake. Care must be taken, however, that it is not unintentionally exposed to any UV light
in this time period.

The UV exposure was done with a Karl Suss mask aligner (at AMC) which was
designed for uniformity across several inches. The Quintel aligner (also at AMC) may
have been more desirable for our work being more accurate in the center of alignment, but
being less uniform across inches. The Quintel was a more specialized machine, though, so
was rejected for the same reasons as the thinner resist process. Exposures on the Karl
Suss were precalibrated and took only a few seconds of exposing. Developing was done
using commercial developer 352 diluted 6:1 (from AMC - prediluted) and took on average
around 30 s. Endpoint detection was by viewing the disappearance of photoresist
“sludge™ that would cling to the surface of the substrate. The sludge would appear
immediately upon immersion. Again, many tricks are available to the fabricator for fine

resolution (for instance, further diluting the developer), but few were attempted due to
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time constraints.

Developing was followed by hard bake at 120 C for 1/2 hour. The temperature of
hard bake has to be fairly precise to prevent “flowing” of the patterned resist. Hard bake
completely dries the resist to strengthen it for wet etching. The effect only lasts for about
four hours after completion of the bake, so this process must be undertaken just prior to
the etching (multiple hard bakes shouldn’t degrade the quality of the pattern).

Wet chemical etching was the pattern transfer process successfully used in many of
the samples. Each metal had its own particular etchant so I will talk more about this

process when discussing the individual metal fabrications below.

5.3.1A Gold

All coils and switches were fabricated using the above mentioned photolithography
technique. In the case of some gold coils where ultimate resolution was not a concern,
resist was spun thicker (at a lower speed) and soft bakes were done with a vacuum bake
(with 10s N2 purge after) at 110 C for 50 s as opposed to the haif hour usual bake. The
gold etch was a commercial one obtained from AMC. Endpoint detection is similar to the
developing of photoresist in that the etch visibly dissolves the gold; when the brown
sludge is no longer visible near the surface of the substrate, the etching is finished (this
usually took about 15 s for 1000 A of gold). Titanium etch could be made with 10:1
H,O:HF which is almost instantaneous for less than 100 nm of Ti. This results in better
quality etching then you might think, because, the liquid has no time to get under the
pattern protection. Two micrometer lithography had not been readily achievable in the

gold but, for the most part, it was not needed. Early switch fabrication had only the 6 um
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lines turn out (this is one reason why these switches became the standard), but later

fabrication had most 2 pm features recognizable with around 50% yield.

5.3.1B Permalloy

The first microstructures fabricated (the coil with the 4 um square inside) were
actually of gold for a concurrent project’™’, Upon fabricating with permalloy, however
(coil and structure made of permalloy), the coil proved to be too resistive to pass the
necessary currents (of note, the films used in this process were the Perkin Elmer permalloy
which had high resistivity, so one shot lithography may still be a viable option). The
combination films made in UHV of Ti/AwPy were used in order to keep a one-step
process from which some success came (sample “previous”), however, it was undesirable
to have a metal layer underneath the permalloy which could skew results.

Chemical etching of many of the first structures attempted was unsuccessful. A
permalloy etchant taken from reference 5.1 (call it Py etch) consisted of 3.9M H,SOs,
1.12M H;0,, and 0.4M HF. This was made by using 21.8 ml of 98% H,SO, 17.8 ml of
30% H;0; and 1.9 ml of 49% HF (the HF was later found to be unnecessary except for
the specific Ti beveling use cited in ref. 5.1). This etchant first proved to disintegrate the
permalloy (Perkin Elmer films). The suspicion was that the HF was etching the glass
underneath and causing the problem. The etchant was tried without HF but had no effect
on the Perkin Elmer films. Similarly HNO; (a Ni etch®®) would change its rate of etch (an

h>®) only gave 10 um

oxidation layer was suspected for this) and Fe;Cl (an iron etc
resolution. The major error made in trying to characterize a reliable wet etch process was

that all of these etchants were tried on the Perkin Elmer films which we would eventually
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discredit. The original etch used (Py etch) did eventually work well for other films and
was even found to work without the need of the HF. The rate was previously established
as 4 um/min and our etching seemed to substantiate this. This meant most of our films (at
1000 A or less) took only a second or two to etch. Of note, the gold etch was found to
etch permalloy which also posed problems for any samples that had permalloy on top of
gold. Before it was known that the Py etch would work, however, wet chemical etching
was proving fruitless and so was temporarily abandoned in favour of ion milling as an etch

process.

5.3.2 Ion Milling

[on milling is done by simply allowing an inert ion gas (Ar) to bombard the sample.
It introduces the advantages of an isotropic etch (bombarding ions are accelerated
“straight down”) so that undercutting of the material is almost non-existent giving better
ultimate resolution than wet etch pattern transfer. Ion milling systems were used both in
the lab and at AMC.

The only concern with ion milling is the condition of the photoresist on top after
the milling is complete. Because of the energetic bombardment, the PR gets oxidized to
turn into a “sooty mess” which would not dissolve in regular acetone. Various solvents
were used (Microstrip, Trichloroethane, Toluene, Dichloromethane, benzene and
combinations thereof, with ultrasonic) to try and take it off with little success. Using an
oxygen plasma barrel etch at AMC did take off the PR but caused some concern over
oxidation contamination in the permalloy because the film actually grew in height 200-400

A during the process (which might mean an oxide of up to 600 A on the surface).
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Specifications of the oxygen plasma were 10 min at 400 mtorr O, with 300W rf power.
One method that was used to overcome this problem was a cycling of the milling. The ion
current would be “turned on” for five minutes and then off for five to ten minutes to allow
the resist to cool. Sample “previous” was made with this technique.

Another method that would allow getting rid of the problem of PR would use (for
example) aluminum as the ion milling mask (this method has not yet been tried). In the
case of (positive) photolithography, an aluminum layer would be on top of the permalloy.
This layer could be wet etched and then used as a milling mask. In the case of electron
beam lithography, aluminum could be deposited on top of PMMA and lifted off to provide

the milling mask.

5.3.3 Electron beam lithography (ebl) and lift-off technique

Because large numbers of samples were not needed in our case, we were able to
make use of electron beam lithography which would allow higher resolution features to be
fabricated. In this case, we would start with approximately 1x1 cm’ substrates with gold
coils on them (obtained by dicing). The standard process had 3% PMMA (made from 3
parts chlorobenzene and 2 parts 7.5 % PMMA) spread for 3s at 1000 rpm, ramped at 100,
and spun for 25s at various speeds (2000 to 4000 rpm were tried). The hardbake was at
150C for 1 hr or 150C in a vacuum bake for 50s (with 10s N2 purge). Exposure
happened with a focused electron beam in a commercial SEM ebl exposure system at
AMC and developed with 1:3 MIBK:IPA for 1 minute, IPA for 20s, rinsed with water for
20s and dried. With the positive results of double photolithography and success beyond

expectations with the measurements, an ebl process was not fully solidified in this work.
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For this reason, and because ebl efforts are currently in full force by a colleague some
descriptions of the particular instrumentation and techniques will be brief or omitted (refer
to manuals at AMC regarding NPGS - nano-pattern generation system and the thesis by
L.

The use of ebl allowed us to literally draw structures inside the coil. Figure 5.5
shows some photomicrographs of “wagon wheels” patterned in PMMA (details of
exposure (by K.W.Marsh) are omitted). There are nine wheels with different exposure
doses in a grid (the gold coil and alignment marks appear in the background). The three
wheels in the middle are not visible because this section has been overexposed by the field
of view of the electron beam in SEM mode (the circle to the left is the “dump point” for
the beam). Because of this, the place of exposure could not be viewed before exposing.

To overcome this problem, the alignment marks were used as origins for the ebl
patterns. The result is shown in figures 5.6 where a set of six 2x1 um particles was lined
up to land one in the center of the coil and the tip of the second alignment arrow was used
as an origin. The dump point (or resting place of the electron beam) is on the origin (a
guiding arrow points to its location). Several problems had to be solved for this method
to work. There was a magnification factor in the NPGS program that affected the scale of
the electron beam and it had to be adjusted to insure that micrometers in computer
patterns were also micrometers in the PMMA. Our particular SEM microscope also had a
peculiar tilt angle to the beam (about 2.5°) that was apparent in NPGS mode but not in

SEM mode which had to be manually corrected for to insure proper placement in the coil.

* This particular shape was chosen to specifically test the ebl process. The spoke widths could give away
possible astigmatism in the beam and the general design should elucidate the proximity effect.



61

Fig 5.5 SEM image of electron beam lithography attempt in PMMA. In the background appears the coil
with alignment marks. Visible is the field of view of the SEM in imaging mode which overexposed the
center of the wagon wheel design.

Fig 5.6 SEM image of ebl in PMMA. Six 2x] pm particles are guided upon the center of the coil by using
an alignment mark as origin. The large arrow points to the dump point at the origin.
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Finally, grounding the gold and PMMA became a concern since, when SEM beam was
moved off of the coil, the alignment marks charged up quickly and visibility was lost fairly
soon unless very low filament settings were used.

Liftoff was successfully done with test aluminum and permalloy, by soaking the
substrate upside-down in acetone for 30 seconds to a few minutes and sometimes using
brief ultrasonic bursts to aid the lift of the film. The aluminum was evapourated which is
the best technique to use with liftoff because the angle of deposition from the normal is
smaller. Because a reliable sputtering process had already been worked out for permalloy,
attempts at liftoff with permalloy were made with sputtered films, even though the flux
angle of a sputtered film is much larger (in both cases, target size and sample-target
distance is a major factor in angle). Surprisingly, these liftoffs worked! Figures 5.7 - 5.15
show SEM images of the first such sputtered permalloy liftoff results.

Figure 5.7 shows wagon wheels after exposing and developing (before deposition)
of sample 1-6. The nine different wheels have different exposure doses and the dump
point exposure and incoming beam line are clearly visible. Figure 5.8 - 5.11 and 5.12 -
5.15 show various views of samples 1-5 and 1-6 respectively after depositing permalloy
and lifting off the PMMA. The first thing to note is that not all PMMA lifted off and not
all of the desired metal stayed on. In figure 5.9 (magnification of fig 5.8) the black
background is clean substrate, grey features are metallization (permalloy) and bright
features are leftover PMMA. From this image, we see that the first four doses (three on
top and middle row left) were too low for the pattern to develop right through the resist to
the substrate. Only where the beam overlapped itself (at the center and corners) was

exposure enough to make room for metal/substrate contact (this could be a promising
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Fig$.9 Magnified image of figure 5.8. Dark
areas are substrate, grey areas are metalization,
and bright areas are leftover PMMA.

Fig 5.7 SEM micrograph of nine wagon wheel
structures with different exposures in PMMA in
electron beam lithography sample 1-6.

Fig 5.10 Wheel #8 showing proper lifioff. Some
outlines are apparent on the spokes possibly
indicating sidewalls.

Fig 5.8 SEM image of wagon wheels after
permalloy deposition and lifioff in sample 1-5.
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technique for making small dots by overlapping two beam lines in a pattern). The Sth and
6th wheels (middle and right in middle row) have enough exposure to penetrate to the
substrate, but the aspect ratio of the holes in the PMMA is still too high for our deposition
parameters. I presume this because pieces of the PMMA are left; the supposition is that
metal contacts the surface of the substrate but is also holding down the PMMA and/or
preventing acetone dissolution from the sides. Wheels 7 and 8 (and almost 9) had good
exposure doses for our conditions as the pattern transfer lifted off properly. Figure 5.10
shows a close-up of wheel 8. The center of the wheel is clean (proximity effect would
have insured *“open” deposition), but the spokes have some visible “outlines” which may
indicate metal sidewalls or PMMA left. Wheel 6 is magnified in figure 5.11 showing how
the gaps between PMMA pieces are very small.

Let us view figures 5.12 through 5.15 now. This sample should be identical to the
sample identified in figures 5.8 through 5.11 (sample 1-5) because the PMMA spinning
conditions, exposure dose template, and deposition run were all the same. The metal
adhesion, and leftover PMMA, however, are slightly different. Now, the first six wheels
are underexposed and all of the 7th, 8th, and 9th wheels have PMMA pieces left inside.
This tells us our process was not repeatable and more work is needed for reproducibility.
Figures 5.13, 5.14, and 5.15 show two of the wheels with wedges. 5.13 shows the best
wheel (with just one wedge) corresponding to wheel number 7 or 8 in sample 1-5. Figure
5.15 is an angle shot of figure 5.14 (wheel #9). In this case, we see wider gaps between
the wedges then figure 5.11 and, as indicated from 5.15, metallization is visible up the side
of the PMMA.

Liftoff was also done with features of interest for measurement. Figures 5.16 and



Fig 5.11 Wheel #6 (middle right). Gaps between
the PMMA pie pieces are small.

Fig 5.12 Sample 6-1 after deposition and liftoff.
Wheels #1 through 6 are underexposed and
wheels #7, 8, and 9 are full of PMMA.
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Fig 5.13 “Best wheel” of sample 1-6
corresponding with wheel #7 or 8 in 1-5.

Fig 5.14 Wheel #9 in sample 1-6. Several
PMMA pieces remain held to the substrate. The
gaps are wider here than in figure 5.11.

Fig 5.15 Angle shot showing metalization up the
sides of the PMMA.
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5.17 show angle views of a 2x1 um permalloy particle after liftoff. The surface of the
particle isn’t entirely smooth but there are definitely no sidewalls visible. Either there
never were sidewalls, or they’ve fallen off and are far from the particle, either of which
leaves a situation acceptable for measurement.

The combinations of successful liftoff and pattern transfer with lack of repeatability
tells us that the sputtered permalloy liftoff/ebl technique needs more characterization to be
reliable. What is known is that the permalloy films must have good adhesion to the
substrate to stay on and even hold sidewalls and PMMA on when the rest of the film lifts.
Still, some effort is needed to insure the sidewalls can be eliminated or, at least, removed
and that ebl exposure dose can be properly calibrated in order to have a clean process.
The latter of these concerns has since been addressed by a colleague. One process that
may work would combine liftoff with ion milling. The permalloy layer would be deposited
underneath the PMMA and an aluminum layer would be used in liftoff to form an
aluminum feature inside a coil (with permalloy film underneath). This would also solve
the problem of PMMA charging in the electron beam. This whole structure could then be
ion-milled using the aluminum as a mask (as referred to in section 5.3.2) to give clean,
straight walls to the final permalloy microstructure and maintain the benefits of ebl

resolution.

5.3.4 Double Lithography Technique
The technique that proved most effective in pattern transfer was doing two sets of
photolithography on the same substrate. A gold film was deposited and gold coils

transferred into it through photolithography and wet etching. A permalloy film was then



Fig 5.16 SEM micrograph (angle view) of a successful 2x1 pym
permailoy liftoff particle. The surface isn't entirely smooth but there
are no sidewalls.

Fig 5.17 Another 2x1 um liftoff particle. This one has higher
topography in the top left corner.
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put on top of these gold coils and the microstructure transferred inside a coil by a second
photolithography and etching step. This is what the mask was originally designed to do
(as referred to in section 4.2). Before the process was taken on seriously, it was delayed
as a last resort because of the complexity of the transfer. First, it was believed that a large
substrate was needed to satisfy conditions of photoresist spinning because any substrate
without a beveled edge will build up PR not allowing firm contact with the mask near the
edge (aggravating diffraction effects). Second, because of the mask design, only one
microstructure per exposure is possible and care must be taken to keep other areas of the
substrate unexposed. These reasons, combined with the need for two lithography and two
etching steps made this process seem undesirable.

The problem of PR buildup on the edge turned out to not affect the resolution
noticeably if far enough from an edge, even for small substrates and even for features only
1 mm from the edge. This alleviated the second problem by allowing exposure of small
substrates with single structures on them. Coils were diced into pieces approximately 1x1
cm? (as with the ebl samples) before permalloy deposition. This allowed more precise
placement of the substrate in the most favourable in-plane field during deposition (for the
sputter holder discussed in 5.2.2C). Any single feature could then be transferred to the
center of the coil with photolithography and wet etching. Sometimes, the second
photolithography step introduced structures that partially covered the coil. These could
be simply removed by using a small gob of half dry PR on top of the freshly etched feature
and dipping in the etch again.

Several samples were fabricated this way including the prize sample 3.6.8. Refer

again to the appendix for the types of microstructure features that are available for this
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double lithography process.

54  Fabrication Summary

Several metal deposition techniques were shown and a reliable and repeatable
deposition technique for each metal (permalloy, chromium, gold, titanium) was
demonstrated. In particular, some discussion regarding the UHV sputtering of permalloy
was given in detail allowing for future UHV sputtering experimentation.

A “double lithography” photolithography and wet chemical etching technique gave
a reliable and straightforward process for the fabrication of desired permalloy
microstructures. The merits and drawbacks of ion-milling were discussed, a successful
process was demonstrated, and further use and adaptation of the ion-milling process was
suggested. Electron beam lithography was investigated and a technique worked out.
Evapourated aluminum and sputtered permalloy films were successfully lifted off,
problems with the technique were identified, and an effective solution suggested, making
ebl a very promising and readily designed possibility for sub-2 pm lithography.

In summary, techniques were shown for the successful (reliable and repeatable)
simultaneous transference of a conducting coil and permalloy microstructure onto a non-

conducting substrate to fulfill the needs of the measurement process of this work.
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6 CHARACTERIZATION

6.1 Introduction

Early into experimentation, especially with the problems caused by the first
sputtered permalloy at AMC, it became clear that it was imperative to know what the
properties of the thin films were. Characterizations were done on the content (%Ni/%Fe)
and resistivity, static magnetic imaging was done with magnetic force microscopy (MFM),
and hysteresis loops were taken by SQUID magnetometery and magneto-optic Kerr effect

(MOKE) detection.

6.2 SEM Thin Film Stoichiometry

In any technique for the deposition of an alloy, the percentage makeup of the
alloyed target or evapouration melt does not necessarily reflect the final stoichiometry of
the thin film. For instance, the nature of sputtering being closely tied with cohesive
energies and atomic-scale kinematics means different atoms will sputter at different rates.
Quickly after a target is first used, one element becomes depleted enough that a steady
state is reached where thin films will always have the same composition thereafter (though
it need not, and probably won’t, be the same as the nominal composition). In this work,
using a scanning electron microprobe on the final film to detect the x-ray emission lines of
elements, allows the assignment of percentage of nickel and iron in the film. Table 6.1
summarizes the results for two films of the permalloy sputtered in UHV (all percentages
are given as weight percent). The first determination was done after only a few

depositions so the target may not have reached equilibrium. The second film was
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Table 6.1 Composition of two UHV sputtered permalloy films. Film 2 should reflect current and future
film compositions. All percentages are weight percent.

%Ni % Fe
Film 1 83.8 16.2
Film 2 84.2 15.8
Nominal Sputter Target 81.0

19.0
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produced after the sample 3.6.8 with similar deposition conditions (only base pressure
would be different) and should reflect all future runs of the particular sputtering target as
well as the composition of 3.6.8. The composition is not as close to 81/19 permalloy as

we would like but is still acceptable’ .

6.3  Magnetic Force Microscopy (MFM)

Magnetic Force Microscopy has been a very successful tool for static domain
imaging. In our case, it was useful for qualitative comparison to domains imaged with
SKEM, as well as for confirmation that films were magnetic and for checking patterning
techniques such as liftoff.

Figure 6.2 shows an AFM/MFM image of one of the UHV sputtered multi-layer
films (“previous™). The image on the left is topography of the structure with light areas
being higher. On the right is the magnetic information of this same topography. These
images were taken with a DI Nanoscope III in “lift” mode®' (see fig 6.1). The AFM
cantilever tip scans one line in contact with the surface to measure the topography through
piezofeedback (“‘classic” SPM). The magnetized tip is then lifted and immediately scanned
over the same line in “tapping” mode (the tip can be modeled as a damped harmonic
oscillator) remembering the topography and maintaining a constant height over the surface
(fig 6.1). Because of the magnetization of the tip, the magnetic flux near the surface of
the substrate changes the force on the cantilever, and so can be picked up as a change of

resonant frequency (or, because it is easier to detect instrumentally, as a phase shift in the

* The measurements were precise to at least 0.1% (ie. repeatable) but there was some concern over
accuracy of the particular x-ray analysis instrument used. Systematic error as high as 10% has been
suggested.
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Normal Trace Height 2
(Height Data)
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Fig 6.1 Lift mode of a magnetic force microscope (MFM). The origi i
. _ . ginal trace dete i
data, while the lifted trace determines magnetic data by maintaining a constant hei;::"’l'?s ‘opogrephic
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resonant frequency). The component of magnetization that actually exerts the force is
often modeled as the second derivative in the perpendicular direction of the magnetic field,
though this is only an approximation and thorough analysis of the interaction between the
tip and the surface is currently an open topic of research®?, In this sense, it is hard to
quantify magnetic images to determine the precise magnetization structure of the film. We
must be satisfied with the contrast revealing qualitative domain structure.

As can be seen, this ion-mill transferred pattern was not particularly clean; it
should be noted that scanning was from right to left in these images and “tails” seen to the
left of structures are scanning artifacts. Figure 6.3 reveals definitive magnetic information.
The outer coil shows magnetic contrast mostly where there is topographic contrast, but
elsewhere as well. The particle in the center shows domain structure as if cut into a 6
piece pie. Figures 6.4 and 6.5 are close-ups of this particle showing a topographic *“dot”
near the center that may have caused the domain structure; in 6.5 there is also a flux leak
across the middle of the particle apparently reflecting some of the subtle topography.

Figures 6.6 through 6.11 show MFM scans of some of the ebl/liftoff wagon wheel
structures (cf. section 5.3.3). The left image of figure 6.6 shows that extra exposure of
the PMMA may lead to a thicker film in deposition as the center and intersecting edges of
the wheel show higher topography. This topography is reflected in the magnetic image on
the right; visible in the center hub of the wheel is what might be a bright flux stream
exiting on its right and a darker line reentering on its left but may also be an artifact. One
of the major concerns in force microscopies is interpretation of data. The wave-like
background is again just a scanning artifact (e.g. electrical feedback loop pick-up which

would be scan rate dependent).
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Fig 6.2 A magnetic force microscope (MFM) image of sample “previous”. The figure on the left is
topography. On the right is magnetic information.

0 13.4 m 0 13.4 yn
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2 range 400 nn 2 range 1.000 de

Fig 6.3 MFM image of sample previous. Magnetic contrast in the right image reflects topography. A six-
piece pie domain structure is visible in the center structure.
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Fig 6.4 MFM image of the microstructure in sample “previous”. The topographic defect in the center of
the circle may have caused the domain structure.
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Fig 6.8 MFM image of microstructure in sample “previous”. A flux leak exists across the middle of the
structure.



77

0 28.1 pm O 28.1 pn
Data ture Height Data type Phase
2 range 100 nn 2 range 30.0 de
Fig 6.6 MFM images of ebl/liftoff permalloy wagon wheels. Topographic magnetic information is
reflected on the right. Bright and dark sections of the hub may signal flux lines or a scanning artifact.
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Fig 6.7 MFM image of liftoff wagon wheels. Domains in the lettering to the far right and in the wheel
hubs give indication of critical size for this permalloy film.
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Figures 6.7 and 6.8 confirm the wheel pieces are tending towards two or three
domain splitting (look at the wheel hubs for example) and start to give us a feel for the
size a particle will need to be to satisfy single domain regime (each full wheel is 10 um
diameter). Also visible on the right of 6.7, some lettering reveals domain structure and
critical size. Close-up images of the top right wheel in figures 6.9 and 6.10 show that
many of the spokes may even be single domain (as evidenced in magnification in fig 6.11).
The hub in these figures is notably absent of magnetic information. This probably does not
indicate the material there is non-magnetic though it may be completely demagnetized for
some reason. It may instead be telling us that the center portion of the particle has its
magnetization lying squarely in the plane of the substrate and flux is being channeled
through the spokes at either end. In figure 6.10, we do see a subtle bright highlight on the
right and dark on the left. This also gives us a feeling for how big the particle needs to be
to make demagnetizing at the edges only negligible. If we go back to figure 7, we see
various sized hubs for different exposures; as the hubs become smaller, the demagnetizing
effect (darker areas) becomes more noticeable.

Figures 6.12 and 6.13 take us back to the ion-milled sample “previous” again.
This time we look at some of the alignment marks to see if we can identify any square
domain structure. In fact, all four squares visible in 6.12 exhibit reasonable domains.
Three of them are split into four triangular closure domains while the fourth forms closure
by sticking in an extra domain around the defect. Figure 12 is a close-up of the upper
corner of one of the larger squares showing the domain there actually splits to

accommodate the rounded comer (see, for instance, Ding and Zhu®?).
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Fig 6.8 MFM image of liftoff wagon wheel. The magnetic response of the wheel hubs changes as the size
of the hubs grows qualitatively revealing critical size and demagnetizing effect.
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Fig 6.9 MFM image of wagon wheel. The spokes seem to be single domain and the hub is absent of
magnetic information.
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Fig 6.10 MFM image of wagon wheel. There is a possible dark highlight on the left of the hub which may
indicate flux or artifact.
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Fig 6.11 MFM image of spokes in a wagon wheel. Spokes are single domain.
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Fig 6.12 MFM image of some alignment marks on sample “previous”. Classic closure domains are
evident in these square microstructures.
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Fig 6.13 MFM image on “previous”. The four-domain closure structure splits to accommodate rounded
corners.
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Hysteresis Measurements:
Further static magnetic measurements were done to ascertain the properties of the
NiFe, specifically the hysteretic properties. These were accomplished both with
homemade laser MOKE detection and with the more standard process of SQUID

Magnetometery.

6.4.1 SQUID magnetometery:

As a check on the MOKE hysteresis measurements, hysteresis loops were recorded
in a SQUID magnetometer. The MOKE measurements were giving sometimes erratic
results and confirmation was needed. Figures 6.14 and 6.15 summarize these results. The
first figure shows the hystereses for both the assumed easy and hard axes ((a) and (b)) of
the lower quality permalloy referred to in section 5.2.2B. These measurements
convincingly confirm the suspicion that the films were very low quality. The first thing to
note, is that the easy and hard axes hystereses look very similar. This would mean that
there was no easy axis induced in this particular sample. Secondly, the magnetization does
not saturate, even at 1000 Oe. In fact, past about 400 Oe there seems to be linear slope
(the signature of a paramagnetic background). It is possible that the magnetometer was
contaminated with a paramagnetic material, though it is very unlikely to be so
contaminated as to give signal in the 10* emu range. More likely, what we see as a
paramagnetic background is the sample itself, indicating the permalloy might be very
oxygen contaminated and comprised partly of paramagnetic oxide. Furthermore,
resistance measurements on a patterned sample indicate resistivity of the order of 400 pQ-

cm (we would expect around 20 pQ-cm). There is still visible some hysteretic behaviour
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Fig 6.14(b) Hysteresis loop of Perkin Elmer sputtered permalloy at 90° indicating no uniaxial anisotropy
was induced.
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between -400 and +400 Oe indicating that the film also contains some ferromagnetic
material. Nevertheless, this measurement confirmed that a new deposition technique was
needed.

Alternately, figure 6.15 shows much more desirable magnetic behaviour from a
sample of UHV sputtered permalloy. The film diagnosed in this case was the same one
used for SEM stoichiometric determinations; it was a result of a deposition under identical
conditions to the deposition resulting in sample 3.6.8. Figure 14(a) shows the easy axis of
the film. The fact that it is offset from 0 Oe is due to a remanent field in the
superconducting coils inside the SQUID and has nothing to do with the magnetic
properties of the sample. The hysteresis loop is quite square as we would expect for
81/19 permalloy with a low value of coercivity of 0.9 Oe. This square loop also confirms
that the technique to induce an easy axis by in-situ in-plane field is successful. Saturation
for this particular sample is about 2x10” emu. The sample was approximately Smm x
5mm and 1000 A thick giving a volume of 2.5x10° c¢cm’. Thus the saturation
magnetization (M=emw/V(in cm’)) is 0.8 kG (so 47M, ~ 10 kG) agreeing well with the
indications for 3.6.8 of 10.8 kG found in the chapter on results.

The hard axis viewed in fig (b) also corroborates our expectations of having a very
small hysteresis, and quick to saturation (saturation indicates a value for Hy between 4 and
4.5 Oe. Because of the uncertainty in precise easy axis direction (substrates are aligned by
eye in the deposition system), in addition to the alignment by eye of the sample in the
magnetometer, the axes measurement may have been off by a few degrees (perhaps as
much as 5°) as is indicated by this hard axis measurement showing a tiny amount of easy

switch near the origin.
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Fig 6.15(a) Easy-axis hysteresis loop of UHV sputtered permalloy indicating coercivity of 0.9 Oe and
saturation magnetization of 800 G (4rM,=10kG).
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Fig 6.15(b) Hard-axis hysteresis loop of UHVsputtered permalloy indicating anisotropy field of
410 4.5 Qe. The loop is well closed with some easy switch visible near the center.
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6.4.2 Optical measurements: static longitudinal MOKE

The magneto-optic Kerr effect (MOKE) was described in chapter 2 and
generalized set-ups for the technique were given in figures 2.3-2.9. Hysteresis
. measurements were not only made to characterize the sample, but also to work out
possible problems for the experimental time-resolved scanning Kerr system. Problems
with consistency of hysteresis measurement and success of the scanning Kerr system on its
own eventually led to the abandonment of the optical hysteresis measurements and the use
of the SQUID for hystereses.

The major danger in the Kerr detection scheme is drift of the dc signal. Because
the detection is of a very small rotation in polarization (down to the order of microradians)
any movement of any component in the beam path is likely to be fatal to the
reproducibility of the system. Measurements taken with the set-up were characterized by
both abrupt changes in signal and slow floating. It would not be until setting up the time-
resolved system that a minimum level of constant stability was accomplished, though
stability remains a problem in the very delicate system. Further discussion regarding the
experimental set-up will be given in chapter 7 where polar Kerr detection will be shown to
give reliable and repeatable results and proposals for the longitudinal detection system will
be given.

Figures 6.16 through 6.18 show several hysteresis loops for the first three samples
of electron beam evapourated permalloy films. The y axis is the Kerr signal in arbitrary
units and the x axis is external field in Oersted. The easy and hard axis for the first film

show excellent characteristics. The easy axis defines a very square loop with H. = 1.5 Oe,
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Fig 6.16(b) Hard axis loop of first e-beam deposited film. The loop is well closed (accounting for the dc
level drift on the 0 to 5 Oe leg) and saturates at 5 Oe.
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while the hard axis goes quickly to saturation (by 5 Oe) and is almost completely closed.
Figure 6.16(b) also demonstrates some of the problems with the measurement system.
The scan followed a reasonable curve until crossing O G field on its final leg when the
saturation level changed (characteristic of floating).

Film # 2 was not as good quality as the first film, though none of the deposition
parameters had been changed. Figure 6.17 shows a series of easy axis scans taken in a
row of film #2. The loop is not as fully square and the coercivity is also higher at 5 Qe.
Figure 6.17(b) also typifies the problems with the scanning system, giving a very poor
trace and showing no visible hysteresis, though nothing was changed between this scan
and the ones before and after.

Film # 3 (fig 6.18) was the first film deposited from the induction melted pellet (as
opposed to powder) and the deposition rate was slower (0.6 A/s). The coercivity given by
this easy axis is apparently very low but also hard to identify because the saturation seems
much lower this time. As mentioned, one of the recurring problems with the
measurements was inconsistency; in this case we could not be sure if the film properties
were different or the scanning system had changed. Specifically, in the case of the initial
sputtered films (non-UHYV) where the surface was more paramagnetic, we were not able
to identify this fact immediately with this system.

The 2 um permalloy films from IBM were also measured. These were certainly
the films of highest quality (as one might expect from the electroplating). Resistivity was
also very good (~10-15 uQ-cm). Figure 6.19 shows the easy axis loop which is extremely
square with a very low coercivity of 0.18 Oe. The gaussmeter used to monitor the

external magnetic field was even able to pick up the switch from the film because of
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permalloy’s high saturation magnetization.

Two of the UHV sputtered films were tested for hysteresis using the Kerr effect.
Some examples of the result for film 1.2.1 are shown in figure 6.20. The film generally
exhibited a square but not fully square easy loop with coercivity of 15 to 20 Oe. In trying
to evaluate the success of the magnetic assembly (referred to in section 5.2.2C), which
would’ve introduced different biasing field conditions for different areas of the substrate
during deposition, measurements were taken at several points across the sample.
Unfortunately, the unreliability of the system prevented a detailed analysis or even
qualitative discussion. Sample 1.3.1, however, did support the merits of the magnetic
assembly giving nice easy loop with 2 to 2.5 Oe coercivity (fig 6.21). Finally, sample
“previous” was focused onto with a microscope objective (adding new problems which
will be discussed in chapter 7) to show an easy axis hysteresis loop with 3.5 Oe coercivity
(fig 6.22).

What we can conclude from these film characterizations is that the IBM
electroplated films are the best quality. These, however, have the problem of not being of
use with small feature wet chemical etching or with simple liftoff technique. The UHV
sputtered films, also, have become reliable and reproducible and show characteristics
suitable for our purposes. Of note, resistivity measurements on various UHV sputtered
films did confirm their quality with values below 20 uQ-cm.

SEM stoichiometric determinations, MFM microscopy, and optical and SQUID
magnetometer hysteresis measurements have confirmed the characteristics of our
permalloy films. The UHYV films have been shown to be suitable for fabrication and time-

resolved measurements. An optical hysteresis measurement system, using the longitudinal
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Fig 6.22 Easy loop of sample “previous” giving H. = 3.5 Qe.
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magneto-optic Kerr effect, was briefly discussed, shortcomings were pointed out, and
some preliminary results were given. Repeatable success with and suggestions for
improvement of a longitudinal Kerr experimental set-up will be discussed in the next

chapter.
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7 EXPERIMENTAL SET-UP: TIME RESOLVED SCANNING KERR

EFFECT MICROSCOPY (TR-SKEM)

7.1  Introduction

The magneto-optic Kerr effect was discussed in chapter 2 and several diagrams
were given for the generic set-up such detection would need (for both longitudinal and
polar Kerr microscopy). Because of its optical implementation, MOKE allows for time-
resolution by using a pulsed laser in the pump-probe experimental technique. This chapter

deals with the experimental setup of the time-resolved scanning Kerr technique.

7.2  Polar TR-SKEM

The detection scheme that was successfully used for the FMR measurements
discussed in chapter 8 is specifically polar SKEM detection and is demonstrated in figures
7.1 through 7.3. Details of this experimental technique have been presented™’. The
output of a mode-locked dye laser (tuned to 591 nm, cavity dumped at 4 MHz with an
energy of 25 nJ per 2 ps pulse or about 100 mW average power) is split into a pump beam
(90%) and a probe beam (10%). The pump beam is focused onto a biased GaAs
photoconductive switch sending a current pulse around a lithographic gold coil, creating a

transient magnetic field A, at the center of the coil, perpendicular to the plane of the
substrate (fig 7.2 and inset). The probe beam undergoes a variable optical delay and is
focused onto the permalloy structure at the center of the gold coil with an 80x (0.75 N.A.)
microscope objective, giving better than 0.7 um spatial resolution. The photoconductive

switch is ac biased at 40 V, and 4.234 kHz giving an RMS current of 0.3 mA. The
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coil loop with axes definition overlaid.
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permalloy particle is magnetically saturated in the x direction by a dc biasing magnetic

field (H,) and the transient magnetic field (H;) (fig 7.2 inset) sets the spins precessing.

The change in polarization of the laser light, due to the polar magneto-optical Kerr effect,
is differentially detected upon reflection from the permalloy giving the perpendicular
magnetization component at the surface.

In the probe beam path, an electro-optic noise eater stabilizes the probe laser beam
and the neutral density filter protects the sample surface from spot burning. The
polarization rotator allows easy manipulation of the desired p- and s- polarized planes and
the polarizer and Thomson cube complete the rotation detection optics. The split
photodiode set-up allows for twice the signal compared to a simple polarizer/analyzer
scheme. The amplified signal is locked into by modulating the photoconductive switch
bias as demonstrated in figure 7.32. The x-y-z piezo stage allows for scanning over the

surface; the scan rate is limited, practically, by signal averaging time.

7.3  Sample Mounting and Electrical Considerations

Several issues need to be taken into consideration when mounting the sample,
including stability, electrical contact and pump and probe line of sight among others. The
need for stability dictated gluing the sample substrate to a printed circuit board and then
gluing the ensemble to a larger mounting holder that would be screwed down to the
flexure stage.

Both the photoconductive switch and the coil were connected to circuit board
transmission lines by indium bonding (being a much quicker method than wire bonding).

Problems occurred in our system because of the high numerical aperture microscope
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objective blocking the line-of-sight of the pump beam to the photoconductive switch. This
necessitated a longer distance between the switch and the coil, aggravating the effects of
current pulse broadening. The transmission lines of the circuit board were soldered either
directly to a co-axial cable or soldered to intermediate leads which were connected to the
coax. The interconnection between the coax and wire leads proved to give a very large
reflection (more on the effect of electrical reflections will be given in the chapter on
results) as did the wire lead to transmission line connection. The switch itself and the
indium bonds did not give obvious reflections in the current pulse but probably contributed
to broadening it out. In fact, the coil itself (because of the tapering width and resistance)
probably increases the pulse width as well. In any case, our current pulse rise times were
much larger than expected by the time they reached the coil loop (over 100 ps when they
should’ve started under 10 ps at the switch). Some of the reflection problems were
rectified by eliminating as much as possible the wire leads between the coax and
transmission line. The broadening problem has to be dealt with by making the switch as
close as possible to the coil loop. One idea would be to incorporate the switch right into
the fabricated coil transmission line in a mask design, though this has its own problems of
needing to fabricate the sample on expensive semi-conductor instead of glass. Another
possibility is to shorten the coil transmission line.

Electronics considerations also played a role. A coaxial cable was needed close to
the circuit board to minimize rf pickup by the wire leads. The diodes had to be selected to
have a higher natural RC rolloff than the lock-in frequency. This wasn’t usually a problem
except when modulation was done by the photoelastic modulator (instead of the ac bias)

whose 2nd harmonic was at 100 kHz. Also, the co-axial cable that carried the ac current
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to the switch had to be kept as far away as possible from the cable carrying the signal;
when they were running side by side the signal cable was able to pick-up enough ac even
through both ground shields to add a background to the signal.

The dc external field also caused problems. The large electro-magnet coils that
were used heated up at high field values which was the suspected cause of considerable
thermal drift (micrometers). This was corrected by incorporating a fan. The magnet bulk
also made it necessary to lower the flexure stage and have longer (higher) mounts which
increased the sensitivity to temperature changes. In desiring to achieve as high fields as
possible, the pole tips of the electromagnet were made close to the sample so the mount
also had to be quite thin which further decreased mechanical stability. Of note, the pole
tips were also made so close to try and localize flux and minimize the field in the
microscope objective (expecting Faraday rotation in the lenses) but this was only
necessary for hysteresis measurements, as microscope induced rotation would only give a

background dc signal which would be ignored by the lock-in.

74  Static Longitudinal MOKE Detection Revisited

In the previous chapter much was discussed regarding the static measurement of a
longitudinal Kerr system: specifically, obtaining the hysteresis curve. On first inspection,
it seems that a static measurement should be easier to implement than a dynamic one,
however, our experiences indicate otherwise in the case of the hysteresis.

The nature of the hysteresis curve is, of course, its irreversibility. The material’s
response to an external field depends upon the direction from which the field is being

swept. Once critical field values are reached (coercive field, for instance) a removal and
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reapplication of the field will give a different result (domain walls have moved to the other
side of pinning sites, etc.). This means, when measuring the curve, the external field
sweep must be monotonic and modulation is not possible. For lock-in detection we must
therefore rely on the photoelastic modulator (PEM) which raises problems of its own,

Contrary to what I've just stated, however, for a very small field change (smaller
than Barkhausen steps), magnetization in the material should be reversible. Alternately,
for fairly small field changes, we cycle around minor hysteresis loops which close. Relying
on this assumption, we lightly modulate the external field as it is swept and lock-in at the
frequency of modulation (removing the PEM). This is known as the “dither” technique
(see section 2.7.2). Because of the sharpness of permalloy’s easy axis, using a small
enough dither for reversibility is fairly difficult. Even when successful, the hysteresis curve
itself would not be the result but the derivative of the curve since our signal is now from
small change in magnetization and no longer magnetization itself, Figure 7.4 shows a
dithered field sweep taken while defocused on a large triangle from sample ‘“‘previous”.
Two peaks, one negative the other positive, identify the slopes of the hysteresis curve
we’d expect (because of the noise, conversion to a hysteresis curve by numerical
integration is not possible). Figure 7.5 is taken while defocused on a 10x10 pum square
and shows more than two peaks. In fact, some peaks are traced in both directions
possibly indicating a different switching mechanism (rotation instead of wall movement for
example).

Further use of the dithering technique can be made for static domain imaging.
Leaving the field set near an irreversible switch on the 10 x 10 pm particle should trigger

domain wall jittering which shows up in spatial scans in figures 7.6(a),(b). These were
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Fig 7.5 Dithered response of a 10x10 um square on “previous” to a field sweep. Some steps are are non-
retracable and some retracable possibly indicating different mechanisms for switching.
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taken by maximizing the signal in the center of the particle and indicate this 10x10 pum
structure is split into four closure domains. MFM images (figs 6.12 and 6.13) are of the
same 10x10 um structures and give a similar result.

I've made reference to the idea that the PEM is undesirable to have in detection.
Part of the reason (which will be expanded on later) are the non-magnetic polarizations in
the system. In our case, the beam splitter was discovered to be degrading the polarization
information. This was solved by using a mirror cut in half (sending only half the beam into
the pnO as discussed in chapter 2) or obtaining a special “stress-free” beam splitter that
would interfere much less, both of which worked. The pO was also found to be seriously
degrading the polarization. Again, a special “stress-free” or “polarizing” O was obtained
but this did not fully solve the problem because of a spatial variation of degradation
known as the “polarizing cross” (fig 7.7(a)). Light incident on a boundary that is perfectly
s- polarized or perfectly p- polarized is safe in retaining its polarization. However, light
incident at an oblique polarization that is some combination of p- and s- will automatically
suffer degradation of the p-/s- information as it crosses the surface (Kerr effect aside)
simply by virtue of the Fresnel equations. Collimated light entering the optics of a
microscope objective will have pure p- or s- or close to pure p- or s- interaction only in
the area designated by the central cross in figure 7.7(a) and the four “corners” of the
objective will degrade the polarization. To try and restrict this problem a mechanical slit
was installed to let through only the center portion of the beam (fig 7.7(c)). This
introduced a host of problems not limited to the loss of spatial resolution. The amount of
light being cut meant a much lower photon count (and correspondingly lower signal-to-

noise ratio). The slit also added the problem of very finicky mechanical dependence; any
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Fig 7.6(a),(b) Kerr rotation of a 10x10 um particle from sample “previous” by dither
technique showing closure domain structure.
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Fig 7.7(b) Introducing a mechanical slit to restrict illumination of the objective aperature.
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slight movement of the beam on the slit could drastically change the signal.

Further, non-magnetic polarization rotations of the sample are picked up by the
PEM (de-polarization at the edge of a sample) and can swamp the signal. One solution to
this was to subtract a spatial scan with magnetic field on from one without magnetic field
which would leave only magnetic rotation information (like CCD detection referred to in
section 2.7.2). This proved to be unsuccessful because of the localization of the effects (at
edges) being finer than spatial drift in our system. Finally combination of PEM and dither
and two lock-in amplifiers was conceived of to eliminate non-magnetic polarization
rotation, though this technique was not attempted.

The accumulation of improvements that removed almost all depolarizing effects
made measurements with the PEM possible again. As a result Fig 7.8 shows our first
hysteresis curve of a microstructure from defocusing on a large triangle of sample
“previous”. The hysteresis shows the structure is still very bulk like (as expected). Fig
7.9 was taken while defocused on the 10x10 pm square and reveals some of the single
step switchings hinted at with the dither technique and that one would expect from the
smaller size regime; this confirms the possibility of static hysteresis loop microstructure

imaging with the PEM and a highly stable system.

7.5  The Generalized TR-SKEM

Some of the experimental techniques for longitudinal Kerr detection have been
discussed in chapter 2. Indeed, the sensitivity and delicacy of the system were expanded
upon in the previous section in discussing hysteresis measurements and critical problems

were touched on. Here, we continue the discussion and set clear objectives for the
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Fig 7.8 Static response of a triangle on “previous” to a field sweep. Succesful hysteresis loop
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Fig 7.9 Static response of a 10x10 um square on “previous” to a field sweep. More succesful hysteresis
measurements on a permalloy microstructure, this time showing individual switchings.
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successful scanning longitudinal Kerr detection system.

Because the signal tends to be very small, any depolarization interference can ruin
the measurement system (especially with PEM modulation). This includes all optics in the
beam path between the polarizer and analyzer so these should be minimized. In our
system, elements that must sit in this path are a beam-splitter or half cut mirror, a
microscope objective, and the sample itself. If the PEM is used, it must also sit in this
path. Inherently, the PEM and beamsplitter (because of their “flat” interfaces with the
collimated light) should be able to be completely non-polarizing (the PEM we use has
been questionable in its ability to null, however, possibly due to some non-horizontal
component in its modulation). The microscope objective, even if strain free, maintains its
polarizing cross as discussed in the previous section. Removing all light except that which
goes through the cross may be necessary to eliminate this depolarizing but using the whole
objective may also be possible. If a solid immersion lens (SIL) is used™ it also carries the
same problem as the pO but compounded. Since the SIL sits right on top of the area of
interest, the pulsed laser induced excitation may cause a time-resolved effect in the glass
as well as the sample. Finally the sample itself could induce non-magnetic polarization at
non p- or s- polarized reflection sites (especially edges and defects).

The other factor that is essential for several reasons is extreme stability of all
elements between the polarizer and analyzer, including the beam (especially when using
the PEM). With the sensitivity possible with this system, it may need to be considered as
delicate as an STM or AFM scanner and kept in vibration isolation (more than just an
optical table). This may include a quiet box and/or vibration platform, though bungee

cord isolation is not possible unless the beam can be coupled in with a fibre. When using
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the pO with a slit, very slight movement of the slit would seem like a signal as cross
depolarization is introduced.

In this light, the detection system should not include the PEM unless absolutely
necessary. In the case of the hysteresis tracking, it was undesirable to modulate the
magnetic field in any way because of the irreversibility, so the PEM was needed. With the
time resolved measurements, however, some modulated magnetic field is present anyway
(fulfilling its name as a pump/probe experiment) and this can be easily adapted to lock-in
detection (as in figure 7.3 with ac bias). In this way, modulation is introduced directly to
the desired effect (for instance: dynamic reversal) instead of assigned to the light. It is
desirable to decouple light modulation from signal modulation so that detection is
unquestionably of magnetic origin (this is why the repetition rate frequency is not used for
synchronizing).

In fact, the elimination of the PEM does much to eliminate the problem with the
polarizing cross. Since the PEM modulates all polarization rotations, the de-polarizing
due to the pO (and SIL) is picked up by the lock-in amplifier. If, however, the sample
itself is modulated, rotation due to the cross becomes background which can be removed.
The only catch is, since the SIL lies so close to the sample, a modulation (like, for
instance, Hi(t) referred to in the results) could be passed onto the SIL as either Faraday
rotation in the glass or onto cross de-polarization.

The difficulty of longitudinal detection over polar detection comes from the
inherent polar axis of the pO. Consider the full beam entering the objective, reflecting off
the sample and coming back through (polar detection). Any irregularities in the pO (even,

in theory, polarization rotation outside the cross) will be canceled by the time-reversed
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path because of subtraction in our split-beam system. Furthermore, the information of the
entire beam is used for optimal resolution.

When the beam is cut for detection of in-plane components, however, the
symmetry is broken and depolarizing effects become severe problems, necessitating
restriction of light to the polarizing cross (with a slit). This, in turn, creates the problems
of a system more susceptible to mechanical movement and, a cut beam, since it only has
half of the light (or worse with a slit), only retains half of the spatial resolution.

One solution that has been proposed’*™* to overcome the latter problem relies on
the time reversal symmetry breaking of the longitudinal Kerr effect. As opposed to the
pO which keeps time reversal symmetry the longitudinal Kerr effect does not restore the
original light polarization upon reversal. This fact may be used to subtract the two
“halves” of the full Gaussian beam allowing detection of longitudinal components with the
added bonus that, not only is spatial resolution retained, the time reversed polar Kerr
effect is subtracted out as well.

Though this proposal uses the full beam it introduces new problems that must be
addressed. Since this technique involves physically cutting the beam and subtracting the
two halves, mechanical stability of the beam becomes very critical. When the two halves
subtract perfectly (with respect to intensity), slight mechanical movement will create a
very large non-magnetic signal as one half gains intensity and the other loses. Even still,
treatment like an STM could overcome the instability and create a working system.

A proposal by the author could eliminate this dependence on beam movement and
eliminate interference from pO as well with the addition of a “physical beam™ subtraction

to the “two half beams” subtraction system. This is done by using the Glan-Thomson and
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two split PD’s to work with four beams in total (fig 7.10). Split PD detector A/B by itself
achieves the goal of using the full beam (to retain spatial resolution). The addition of
detector C/D into the system allows the full physical beam intensity to subtract itself
(eliminating the problem of the previous paragraph) because A’s intensity is equivalent to
C’s (A and C are subtracted) and similarly, B’s intensity is equivalent to D’s, independent
of slight movement in the full beam. Detector C/D also makes all time reversible effects in
the pO (or SIL) subtract out, eliminating concern over defect in the objective (especially
de-polarizing effects).

The advantage of the author’s system is that it makes longitudinal Kerr
measurement identical to polar Kerr measurement for the purposes of inherent favouritism
of the pO polar axis and retains the advantage of a lower stability requirement. In fact,
the detection scheme outlined in figure 7.10 may be toggled between polar detection and
longitudinal detection merely by changing each split PD from addition to subtraction,

making it an extremely versatile system.

7.6 Summary

Full details for the set-up of the time-resolved polar SKEM measurement system
used for our FMR results were given including details on mounting, and electrical
considerations. Discussion on the difficulties of longitudinal detection in the static case
were continued, isolation and correction of the problems done, and the static hysteresis
measurements of microstructures proven in principle. Thorough scrutiny of the problems
of longitudinal measurement was taken, including discussions on the modulation technique

and the natural advantage of the polar axis to polar effects. Finally, a combined detection
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Fig 7.10 Schematic of a generalized SKEM measurement system. Physical beam intensity subtraction
accompanies longitudinal effect subtraction allowing advantages of the polar axis for the longitudinal

case.
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scheme for both polar and longitudinal SKEM was proposed that completely differentiates
between the two effects while not preferring one over the other, utilizes the full beam,

maintains spatial resolution, and does not rely on extreme mechanical stability.
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8 RESULTS

8.1 Introduction

A brief letter concerning many of these results can be found in a publication by the
author in Physical Review Letters®" . Initially, the goal was to use the time-resolved
Kerr microscopy to study the ferromagnetic resonance and dynamic properties of a
permalloy microstructure, including modeling and comparison, and to directly measure the
Gilbert damping parameter. This goal broadened as the experimental technique allowed
for unique analysis resolved in both time and space. Direct evidence of spatially varying
magnetization response spurred a novel qualitative examination of the different resonance

conditions across the microstructure.

8.2 Probe Beam “Lithography”

Direct observation of ferromagnetic resonance using the time-resolved scanning
Kerr microscopy was first done on a bulk thin film as proof of principle (the film was
placed face-to-face onto a coil containing glass substrate and the probe beam was focused
through the glass) to obtain a characteristic time domain image (see fig 8.1(a),(b) for
example). Remember that detection is of the perpendicular component of magnetization
so the spin precession, about the in-plane field direction, appears as an oscillation in time.

Observation proceeded on microstructures fabricated using the double lithography

technique, discussed in section 5.3.4, with the intention of measuring the characteristic

* A version of this chapter has been published. Hiebert, Stankiewicz, Freeman 1997. Physical Review
Letters 79 (6), 1134-1137.
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Fig 8.1 Characteristic time domain images of magnetization response. The oscillatory signal represents
FMR: (a) sample 3.1.10, (b) sample 3.4.10.

Fig 8.2 Examples of spot burning on permalloy microstructures. Samples (a) 3.1.10 and (b) 3.4.10 were
lost to these defects caused by the laser.
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“modal” frequencies as a function of external field strength. However, many of the
samples were plagued by problems of “spot burning” on the surface (fig 8.2(a),(b)). To
avoid this, the probe beam average power had to be kept under 100 uW, though the
problem was never fully resolved (as will be seen even the prize sample, after a month of
scanning with no problems, developed a “hole” one day with no change of the set-up or
laser power). The most likely reason, because of their haphazard nature, is that the
defects were caused by laser instability due to old arc lamps in the Nd:Yag pumping laser.

Could these “burns” literally be holes melted in the permalloy? A quick calculation
of the energy absorbed from the laser beam could raise the temperature of the permalloy
by 50 or even 100 K. This is unlikely to melt it but it could cause a change in magnetic
properties (defects migrating, changing domain structure, or permalloy lifting), especially
on recalling the sensitivity of permalloy properties to temperature annealing conditions
discussed in chapter 3. Alternatively, the adherence properties of the thin film to the
substrate could have been catastrophically altered upon the heating (due to stress change,
etc.) causing a partial lifting of the film and the creation of a hillock. Finally, they could be
caused by a piece of passing dust “welded” onto the surface by the probe beam. This
should have less effect on the magnetic properties but could result in something as simple
as domain wall pinning which could be seen as magnetic information.

Unfortunately, the sample which garnered all the results discussed in this chapter,
eventually fell victim to this “burning” process, limiting its use for further experiments.
SEM micrographs in figure 8.3 show pictures of the coil with permalloy microstructure
inside at various magnification factors. As the image is magnified, it becomes clear that

the defect is above the surface of the permalloy and has formed a hillock. This defect also



Fig 8.3 SEM micrographs at various angle and magnification of sample 3.6.8. Bright outlines in (a) and
(b) and shadow in (e) are signatures of an undercut profile. A hillock-like defect is visible in most images.
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was visible in intensity images as well as magnetic ones which tells us this particular burn
was probably caused by either “spot welding” or permalloy lifting. Figure 8.4 shows
spatial snapshots of the permalloy microstructure. The three images are due to the lock-in
signal detecting polarization rotation and show the magnitude of the polar magnetization
component with darker regions representing higher signal (of note, these and all future
grey-scale images have been normalized to the min-max data range in each image). These
represent a few different points in time during a tipping pulse excitation. The defect is
definitely influencing the magnetic signal as can be seen in panel 1 where the defect seems
to be causing some sort of quasi 360° domain wall as viewed on the top side of the picture
(I say “quasi” to remind the reader that this is not a static measurement but a dynamical
sampling of magnetization distribution that exists in a few picosecond window). The 2nd
and 3rd panels reveal some magnetization variation as well but each is different from the
other and from panel 1 also. This hints at the exciting ability to dynamically probe this
type of magnetic structure spatially.

As an aside, the SEM micrographs also reveal the type of lithographic process
used in this case (optical lithography and wet chemical etch). The bright outlines seen in
figures 8.3(a) and (b) are signatures of an undercut profile of the patterned metal. The
thickness of this outline also indicates the amount of undercutting and thus gives the
viewer a feel for how thick the metal layers are compared to the patterning features (the
thickness is the same order as the width of the bright lines). Figure 8.3(e) shows an angle
close-up of the permalloy disk confirming that the wall edge is invisible from this angle
and, therefore, does not come straight down.

This anomalous burning problem may not be totally negative. If the properties of
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Fig 8.4 Spatial snapshots of polar magnetization of
sample 3.6.8. The grey scale is Kerr signal
showing dynamical magnetic information probably
related to the defect.

Fig 8.5 Probe beam “lithography”. The
field of view of this intensity image is
within the borders of a topographically
structureless “large triangle”. The
square is “writing” done by a spatial
(raster) scan of the probe beam. The
bright feature in the center of the square
is “stronger writing” done by scanning a
smaller area at higher intensity.
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the burning are better understood it could even be used as a possible optical direct write
lithography technique. A proof in principle of this was done on one of the large permalloy
triangles (which served the purpose of alignment mark for the UV double lithography).
Figure 8.5 is an intensity image taken in the middle of this large triangle after doing two
scans: one in a very small area at high intensity and one in a medium sized area at medium
intensity. The square that is visible is the “writing” done by the “medium” spatial scan
(similar to the trace box left after an SEM high magnification image). Inside “the box” is
also visible the “extra writing” of the high intensity scan. The beam average power was
120 uW on /60 with a .75 NA Olympus objective. If this lithography is a result of energy
transferred heating the material, this technique might be used to temperature anneal only
selected parts of a permalloy microstructure giving the novel ability to “pattern properties”

into a substrate!

83  Time Scans: FMR Frequencies

Figure 8.6 shows time scans at the center of 3.6.8 (prior to spot burning) for
various external field strengths. The oscillation envelopes have two peaks due to a
reflection in the transmission line. Notice that the amplitude of oscillation generally
decreases as the field strength increases. This behaviour has previously been observed in
magnetic garnet films*” and is related to the finite bandwidth of the magnetic pulse. Note
also that the frequency of oscillation increases with external field, as is expected for the
Larmor precession, and the amplitude of oscillation decreases with time due to damping.

The characteristic or modal resonance frequencies are obtained by taking the

Fourier transform and looking at the maximum in the power spectrum. From this, we can
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Fig 8.7 Frequency vs field for modal FMR in a permalloy microstructure (3.6.8). The solid line is the
expected FMR (from Landau-Lifshitz equations) for a uniformly magnetized easy-plane ferromagnet, fitted
to the experimental points by using 4nM,=10.8kG.



123

determine the frequency vs. field for the oscillation (fig. 8.7). This can be compared to the
expected resonance frequency for a uniformly magnetized easy-plane ferromagnet (cf.

section 6.3) and shows excellent agreement with a value of 4zM, = 10.8 kG. As referred

to in chapter section 6.3 this value was measured for a bulk film of permalloy using
SQUID Magnetometery and disagrees by only around 20 %. A similar analysis (using an
alternate experimental technique) which culminates in this frequency vs. field measurement

appeared recently in Applied Physics Letters and agrees with our result quite well*>,

84  Non-Uniformity: Spatial Variation of Magnetization

Though the above agreement suggests a secondary role for non-uniform oscillation
behaviour, one would expect some non-uniformity in the magnetic response of the
structure. First of all, the excitation field will vary spatially over the sample because: (i)
the radius of the coil is not large compared to the size of the particle (16 yum compared to
8 um), (ii) the particle isn’t centered in the coil (it is closest to the top or “north™ part of
the coil as seen in fig 8.3(a)), and (iii) the fact that the coil is only 3/4 of a complete circle.
Furthermore, free pole demagnetizing energy changes the resonance conditions at the
edges of the structure. For these reasons, a study of the spatial response of the
magnetization as snapshots in time was undertaken.

Figures 8.8 and 8.9 demonstrate the uniqueness of the TR-SKEM technique in its
ability to resolve both time and space simultaneously. The first figure is in the time
domain and representative of previous figures. Spatial scans were taken at each of the
oscillation peaks in this time domain figure (to maximize signal) to obtain these grey scale

images (fig 8.9).
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Fig 8.8 Time domain response at j(ext)=500 Oe. Numbers above the peaks correspond to spatial
magnetization response snapshots at these times and are represented in figure 8.9.
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Fig 8.9 Evolution of spatial magnetization response. Broken circular symmetry, imposed external

field direction symmetry, and “top/bottom™ asymmetry are all evident in the response.
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The first thing to note is that these images show breaking of the circular symmetry.
This might be due to the fact that the coil is a broken circle or from the anisotropy field
but these reasons are unlikely because, as will be seen later, the symmetry is similarly
broken on rotation of the sample by 90°, not dependent on these substrate defined
directions. It is very likely, then, that the external field acts to break the symmetry, which
it can do in a couple of ways (fig 8.10). First, the demagnetizing energy is preferentially
lowered or raised for edges parallel or perpendicular to the external field, respectively (fig
8.10(a)). Second, the oscillation is not circular in 8/¢ space because of the strong planar
demagnetizing energy.

We consider the first explanation (fig 8.10(a)) to be most likely. Consider the
spins at edges parallel to the external field. A cross section perpendicular to the external
field (first inset of fig 8.10(a)) reveals that these spins would require no extra energy to
align with the field because they are parallel to an edge. Now, consider the spins at edges
perpendicular to the field (i.e. the cross section parallel to the field). The demagnetizing
energy is directly at odds with the external field energy. Furthermore, we should note two

important magnetic properties here. First, the sample thickness is much greater than the
range of exchange forces (< 1/ A/(27t M ,2) =100 A). This means that the spin direction

can change through the thickness without adding much energy. Second, permalloy has a
saturation magnetization (47M., ) of ~ 10000 G while the external field is only 500 Oe so
H, <<4zM,. It is thus likely that the disk is not saturated right to the edge in the dc
state, but rather but more like the latter cross-section (second inset) in 8.10(a). These

magnetically softer regions would surely respond quickest or with greatest amplitude to
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Fig 8.10 Possible reasons for symmetries observed in figure 8.9: (a) demagnetizing effects at the edges
carrying free poles, and (b) asymmetry of the magnetic vector phase trajectory.
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the pulsing field as seems to be indicated in panels of 8.9, and could even act as sources of
propagating non-uniformity (‘“shock wave” sources).

The second explanation (fig 8.10(b)) is less compelling. Because of the large out
of plane depolarizing energy the tip of the oscillation vector would follow a strongly
elliptical path with major axis in the plane (see fig 7.2 for polar coordinate definition). If
one considers this vector oscillating at a parallel edge, the large ¢ has to work against
demagnetizing energy making oscillation unfavourable; at a perpendicular edge, large ¢
actually decreases demagnetizing energy making oscillation favourable.

Let us go back now to the figure 8.9. Panel 1 starts at the first peak of the time
domain oscillation (fig 8.8) and seems to show excitation of the statically demagnetized
edge as might be expected. As we move from peak to peak along the time domain we can
see these excitation points moving in towards the center meeting in the 4th peak image. If
we look at peak 5 now we can see the excitation beginning again at the edges. This
corresponds to the onset of the transmission line reflection giving the particle another
“kick”. This continues on through peak images 5, 6, and 7, this time with the center
remaining excited from the initial pulse, giving very rich spatial structure associated with
this double kick. The propagation of an asymmetry between top and bottom is now even
visible in images 5, 6, and 7 which is likely due to a combination of incompleteness of coil
circumference and off-centeredness of the sample. The incomplete circle will cause the
tipping field to be stronger near the “north” side of the disk (away from the coil gap) while
the physical positioning of the structure being closer to the “north” will also break
symmetry, though it is not clear whether it will make a stronger pulse in the north or south

side. Inimages 5, 6, and 7, “north” is at the bottom of the figures and it seems the tipping
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field is more strongly felt in the south initially (during the onset of the second pulse) so
this section exhibits higher response in figure 5 which then propagates north in figures 6
and 7 as the tipping field recedes. It may also be that the tipping pulse is largest in the
north but takes time (o saturate there (that is, it doesn’t saturate until peak image 7) and
what seems like a pulse pump in the south in 5 and 6 may be leftover response from earlier
excitation. The reason that only the second pulse and not the first gives rise to top bottom
asymmetry may be due to the lower bandwidth contained in the second pulse. The second
pulse, having a shallower slope, has less ability to “spark” resonant response then the first
pulse which means it is easier to see the overall tipping amplitude reflected in the second
pulse (the tipping amplitude is what carries the top/bottom asymmetry information) Peaks
8, 9, and 10 seem to be far enough away from the initial pulses to have decayed into a
more uniform mode of oscillation as their spatial profiles reveal very little structure. This
seems reasonable, as the amplitude of the tipping pulse at these peaks is diminished and its
slope is very shallow, meaning the leftover pulse does little further excitation allowing

decoherence effects to level out the spatial response.

8.5 The Tipping Field: H{t)

Much analysis has relied on the shape and strength of the tipping pulse at different
places on the disk. Modeling work will be shown which requires this shape and its
features for numerical solutions. Yet to theoretically determine the field values, with an
incomplete coil loop, undetermined current density profile through the coil, and reflections
adding to the irregularity and complexity of the pulse, any attempts to calculate or model

the tipping pulse profile would be impractical. For this reason, the scanning procedures
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were repeated at high external fields, following the ideas of reference 8.2. A time domain
trace was taken (focused on the center of the particle) at 2.17 kOe. At the higher fields
magnetization response to the permeating tipping field becomes sufficiently rigid to mimic
that field; once high enough, the resonance oscillations reveal the shape of the pulse up to
the bandwidth of oscillation. If one then uses (low pass FIR and median) low pass filters
(to remove the resonance frequency information) and interpolates the point scanned time-
chart, a continuous tipping pulse function Hi(t) is created accurate up to the low pass cut-
off frequency (fig 8.11). As long as we keep enough bandwidth, this treatment does not

alter the pulse features important for particle excitation in smaller in-plane fields.

A note should be made here about the sensitivity of modeled results to the initial
slope of the interpolated tipping pulse. Because the oscillatory modes that are excited are
very much dependent on a strong component of their particular frequency with the
bandwidth of this rising edge, some of the modeling results for some frequencies are
extremely sensitive and sometimes entirely dependent on minute changes in this initial
slope. This problem was best handled by solving for several different external fields
(therefore several different modal frequencies) using the identical tipping pulse for each. In
this way, only a very small range of initial slopes would reproduce each modal excitation
keeping the same overall normalization, and we could expect these slopes to fairly
accurately represent the true tipping pulse. In practice, this was done by truncating the
pre-pulse excitation whose initial curve to the slope we believed was trimming a lot of
higher frequency excitation in the bandwidth (results of this simultaneous fitting are given

in section 8.8).
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Fig 8.11 Time domain image of magnetization response in a high field (2.17 kOe): points - experimental
data; solid curve - interpolation of the point scan to a continuous function (with filtering) to create the
tipping pulse function H(1).
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Finally, once an interpolating function was formed for H,(t), the area underneath

it (multiplied by the repetition rate) could be calibrated with the RMS current measured in
the switch-transmission line circuit allowing an approximate, absolute magnetic field scale
for the tipping field vertical axis. To convert current to magnetic field, the simple
assumption was made that the coil was a 20 um diameter one full loop turn. Because the
inner and outer diameters were 16 and 32 um respectively, a better choice for diameter
might have been 24 um (noting that the current density through the coil width was
probably fairly uniform). Furthermore, since the circle was not a complete loop, we could
assume some weakening of the field. Because of this, qualitatively, the vertical axis on the
tipping pulse may be about 20 % too large, but it was only given as approximate anyway.
We have also seen that this tipping function should vary spatially over the disk.
Spatial scans at high field were taken to try and elucidate this behaviour as well as to see
the change in demagnetization effects. Figure 8.12(a) shows the spatial response on the
first and second peaks of the 2.2 kOe oscillation. As we would expect, the magnetization
varies little (the amplitude of oscillation is small) and only a *“crescent moon” is visible on
the “north” side of the first peak, presumably corresponding to the asymmetry of particle
placement (closer to the north in the coil) and/or the gap at the south side of the coil. This
gives us some qualitative feel (which we will be limited to) for the spatial dependence of
the tipping pulse (a numerical modeling of tipping field distribution inside the coil would
help to make this semi-quantitative). For all calculations the interpolating function taken
at the center of the particle will be used. Demagnetization (dc-field) symmetry is almost
non-existent which is consistent with the higher field doing a better job of saturation in the

static state. For the lower field of 1.1 kOe (fig 8.12(b)), the demagnetizing symmetry has



133

Fig 8.12(a) Spatial response of 3.6.8 under 2.17 kOe external field. Tipping pulse asymmetry is
visible and external field imposed symmetry is notably absent,

Fig 8.12(b) Spatial response of 3.6.8 under 1.1 kQOe field. Some external field symmetry imposition
has been restored at this lower field but is gone by the second peak.
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reappeared on the first peak but is undetectable by the time the second peak is reached

confirming that demagnetizing energy plays less of a role at higher fields.

8.6  Magnetic Modeling: Numerical Solutions to the Landau-Lifshitz-Gilbert
Equation

So far, the time domain images have been intuitively insightful for viewing the
particle response and oscillatory behaviour. They have also provided a check against the
ferromagnetic resonance model for the easy-plane ferromagnet by assigning a modal
frequency to the oscillation. Much more information may be extracted however with more
detailed modeling by solving the Landau-Lifshitz equation using the actual shape of the
tipping pulse we have “derived” above and later, in fact, through iterative procedure.

In the angle variables (6,p) defined in figure 8.13 we have a constant length
magnetization vector of M = (M,,M,, Mz) = M, (sin 8 cos @,sin Osin @,cos8). Using this

form of magnetization, the Landau-Lifshitz-Gilbert equation takes on the form:

o),
dt —sinf = M, &p a sm )
do LA
T —sinf = M 60

where o is the dimensionless damping constant and w is the free energy density. In our
case, we limited the free energy density to demagnetizing and Zeeman contributions for an
infinite layer (ie. uniform in the whole volume of the particle) to make the calculation
tractable (edge demagnetizing contributions are not included because of the complexity

they would have with the circular particle, though can be used in the future with
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Fig 8.13 SEM of the permalloy particie in coil, annotated to show alignment of the magnetic fields A, (dc)
and H1). H(t) is induced by current pulse, CP.
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rectangular particles). It takes the form:

w=w, +w, =2rM? - MH(r)

where H(r)=(H,.0,H,(t)). The calculated value of M,(t) may be converted into Kerr

rotation angle ¢ (¢) using the proportion ¢/¢, = M,/M, where ¢, =25 mrad is the

specific polar Kerr effect rotation attributed to light reflection from a perpendicularly
magnetized surface (recall that M,(t) itself has uncertainty already of ~ 20 % from the

assignment of a vertical axis to the interpolating function).

Figures 8.11 and 8.14 show the result of this modeling. 8.11, as discussed earlier,
gives the interpolating function which serves as the envelope for the numerical solution.
Fig 8.14 is the time domain response at 500 Oe and at the center of the particle (for which
we have already seen several spatial snapshots (figs 8.9)) overlaid with the numerical
solution.  Parameters used in the fitting included the saturation magnetization

(4zM, =108 kG from previous fitting of the FMR frequency data - fig 8.7), the

gyromagnetic ratio (¥ = 1.76x 107 (s Oe) ™), and the damping parameter o Of the above,

only o was allowed to range and in this case was assigned a value of oz = 0.008. As can
be seen the fit is not fully successful, probably indicating that the non-uniformities (not
accounted for in the model) do, indeed, play an important role. The first four peaks agree
fairly well. This is before the shock waves meet in the middle of (fig 8.9) panel 4 and also
before the second pulse has arrived. Peaks 5, 6, 7, and 8 don’t agree as well and, in fact,
have a phase lag. This makes sense if attributed to the non-uniformity of response as these

are the places that show the richest spatial structure (fig 8.9). Peaks 9, 10, and 11 agree
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Fig 8.14 Numerical modeling of the magnetization response (solid curve) overlaying the experimental
data. Agreement is lost at the Sth through 8th peaks where non-uniform effects may be invalidating the
modeling assumptions.
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somewhat more with the data, again, coinciding with settling down of the spatial response.

The modeling is not completely satisfactory in this case with the double pulse
exciting field. Features are reproduced generally, though the value for the damping
parameter may just as easily have been chosen to try and make peaks 5 through 8 agree

with the data, so must be taken only as an order of magnitude at this juncture.

8.7  More Investigations of the Spatially Varying Magnetization Response

Spatial non-uniformity has been shown at 500 Oe and initial modeling done. A
limiting of this non-uniformity has been shown at 2200 Oe and a partial limiting at 1100
Oe. Itis of interest to check the spatial response at other external fields to confirm similar
response. In fact, the power of temporal and spatial resolutions has some aesthetic
advantages not yet fully explored. It would be intriguing to take enough spatial images to
“fill in” the oscillatory behaviour so that viewing them in succession gives a feel for the
dynamical oscillation. An external field of 250 Oe is used to illustrate this because of its
slower oscillation and higher amplitude for better signal. The time domain image is shown
in figure 8.15. This time, spatial scans are taken at the noted points: on the initial slope,
at each peak, at each valley, and in between. Results were limited to times before the
second pulse. Many of the images show non-uniformity of the tipping pulse (with crescent
moon excitation on the north sides) and all show in-plane field symmetry substantiating
our ideas about the causes of symmetry. Excitation maxima occur at both the center and

demagnetized edges as usual, but also at four corners for panels 9 and 10.
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Kerr rot (arb units)

time (ps)

Fig 8.15(s) Excitation oscillation at 250 Oe. Numbers given correspond to the panels containing
their spatial snapshot in time.

Intensity

Fig 8.15(b) Temporal evolution of spatial response. The possibility exists to animate this evolution.
Panels 9 and 10 show four corner symmetry.
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The argument that the magnetization is most spatially rich, and therefore most
non-uniform, after a double kick has been invoked several times. Presumably, the
modeling done in figure 8.14 is in disagreement because of this spatial richness. Spatial
scans at 250 Oe, taken after the onset of the reflection pulse, support these suppositions
(fig 8.16). Panels 1 and 2 show the sharpest polarity change we've seen on vertical lines
left and right as the center excitation is splitting into two on peak 2. Peaks 3 through 6
show two and sometimes three excitation points (all excitations reflect the in-plane
induced symmetry) and peaks 7 through 11 show continuance of some excitation though

they begin to be lost in the noise and perhaps begin to settle down.

88 Rotation by 90°: Spatial Variance Confirmation, New Tipping Pulse, and
Precise Modeling Results

In order to confirm the reasoning for symmetry breaking, the sample was rotated
90° and the experiment repeated. If the induced anisotropy was to play a role, it would be
seen here. Because the reflection was bothersome for modeling purposes, care was taken
in remounting to try and minimize it as discussed in section 7.3. Figures 8.17 summarizes
the spatial findings at 90° where the dc external field is again in the horizontal plane at 250
Oe, but the coil break is off to the right instead of above. Peak 1 occurs on the upward
rise of the current pulse and doesn’t show much information. Peaks 2 through 5 show
spatial structure that is again consistent with our idea of the dc field symmetry (the
preferred depolarizing edges begin the response that propagates towards the center).
Peaks 1 and 2 again reveal the uncenteredness of the tipping pulse as the response is

higher on the left side (away from the coil gap and closer to the coil - on the north side).
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Fig 8.16 Spatial magnetization evolution after the second pulse of a “double kick”. Extremely rich
magnetization structure is seen.
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Kerr rot (arb units)

; time (ps)

Fig 8.17 Time domain response and spatial magnetization evolution at 90° rotation of the sample.
Anisotropy seems to have negligible role.
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Also, peaks 1, 2, and 3 compare well with the corresponding peaks 2, 6, and 10 in figure
8.15 (the same external field and time locations, but a different tipping pulse). As

expected, the symmetries are retained and the anisotropy field seems to have little effect.

More meaningful modeling may now be done using the 90° data, as the particle is
less likely to be put into vastly non-linear modes without the double-kick. Figure 8.18(a)
shows the time-domain response at high field (1.9 kOe) overlaid with its interpolating
function Hi(t) (as discussed above in section 8.5). Temporal responses for 250, 500, and
1000 Oe are also shown in figures 8.18(b)-(d). Using the same modeling techniques as
cited above, the data for the three field value oscillations were fit, simultaneously as
mentioned in section 8.5. The results are also shown in figures 8.18(b)-(d) (overlaid on

the data) with fitting parameters, y = 1.76 x10*" (s Oe)™, 47 M, = 108 kOe, ¢, and o

Here, ¢ is determined from the overall normalization of the signal amplitude, and yis a
well known constant, leaving o as the single parameter describing decay of the
oscillations. As can be seen the numerical solutions agree quite well with the experimental
data. The only obvious deviation of the fitting from the data occurs during the same time
range in all three fits: from about 600 to 1200 ps after the onset of the pulse. If we look
back to figure 8.9 from the double pulse data, we notice that the most exciting spatial
information corresponds with this time window. In each of panels 4 through 7 of 8.9,
excitation “shock waves” combine in the center of the particle and in panels 9 and 10 of
fig 8.15(b), four corners of excitation are visible. It makes sense that these locations
should represent a higher amplitude oscillation then would be expected for uniform

modes. If we assume that there is somewhat similar propagation of non-uniformity



144

a)

@
[=]

H, =190 kOe

Pu!se field [Oc)
[
o

b)

Kerr rotation {prad)

i

¢)

20

10

Kerr rotation [prad)
Ll

Kerr rotation [prad)

0 1000 2000
Time [ps]

Fig 8.18 Time dependencies for Kerr rotation for several different fields with modeling. Solid line in (a) is
the interpolating pulse shape H(?). Solid lines in (b)-(d) are the modeling fit simltaneously to all three sets
of data.
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information (even with the different tipping function) at 90° then the disagreement seen in
the center sections of figure 8.18 is well explained. Admittedly, 500 Oe external field
value data for this 90° position would have made our argument more convincing.
Unfortunately, the sample was burned after 250 Oe data, not allowing a chance for
measurements in 500 Oe.

The value of ¢, =25 mrad agrees well with ~3 mrad from interpolating a

graph®®. It should be remembered that ¢y propagates the estimation of the vertical axis of
the tipping function which may assign about 20% too high a value to the z-magnetization.
In this case, the specific Kerr rotation would appear low. The value obtained for o is
0.008 which is reasonably consistent with the most reliable value of 0.005 found by
Patton®* (using several frequencies as discussed in section 2.6.3). Hearn®® finds a value
consistent with 0.014 and Dietrich et al*’. imply 0.06 both using less reliable methods. A
change of o by ~10% was found to still fit the data reasonably and can be considered the
margin of error. Because of the huge array of particulars that can affect the properties of
permalloy the comparison with Patton should be seen as a good agreement. The direct
method of measuring o described here is superior in principle, simply because of the ability
to localize the measurement.

A note should be made about eddy currents which are usually considered very
important in any dynamic analysis of a conducting ferromagnet. In our case, because our
structure is small enough, calculations show the eddy current relaxation to be of the order
of 1 ps (cf. section 2.4.5: t=ueord/2, where r=4um, d=0.1pum, o=1/(~20uQ-cm), and
po=4nx107 farads/meter) which is much faster than the rise time of the current pulse so

could be omitted in our case.
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8.9  Discussion: Uniform Modeling vs. Non-Uniform Response

We have not satisfactorily answered the question as to why the modeling seems to
work so well, even though it assumes all excitations are uniform, and at the same time our
microstructure clearly exhibits non-uniform response every step of the way. Some
assurance is gained by looking at the scale of the non-uniformities that were observed.
Many of them were in the micrometer and several micrometer size range. It is possible
that our resolution is limiting how small we see these non-uniformities but, because several
were larger than our focal spot, it is more likely that we are observing their true scale.
Because the range of exchange interaction is much smaller than the non-uniformities, we
can suppose that the magnetization is considerably more uniform on this interaction scale,
so the mesoscopic non-uniformities would act merely as perturbations (as is evidenced by
fig 8.18). This still isn’t the whole story, though, considering figure 8.14 again where the
strong non-uniformities seem to act as more than a mild perturbation. In fact, the size of
the non-uniformities seems to reflect the size of the particle and it is possible that the two
scale down together to some degree. In this case, we could conjecture these are the
results of an intermediate size regime; the particle is large enough to have non-exchanging
perturbations (i.e. large enough to emulate bulk film) so uniform approximations work
well in modeling, and at the same time small enough for the edges to play a real role in the
bulk oscillations of the particle (it is less likely that the non-uniformities scale up in size,
iLe. I've assumed we are seeing their natural scale and energy limitations of a smaller

structure could only shrink that scale).
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We also stress that creation of the non-uniformities is probably a non-linear
process. Hence, the registered response in non-uniform regions may increase non-linearly
with the amplitude of pumping current. Furthermore, our detection is only of the surface
of the permalloy so we couldn’t determine what is occurring below the surface (this
problem as well as the problem of thickness being much larger than exchange interaction
can be solved merely by going to a thinner film). In order to describe the excitation
process accurately, it is necessary to solve the Landau-Lifshitz equation in three
dimensions with realistic energy density and proper boundary conditions.

Again, I would like to mention that none of this analysis could even be considered
using any other experimental technique. Damping has been measured before, usually
indirectly through microwave cavity measurements, as discussed in chapter 2, which
necessitates a bulk film. Recall that there was a problem of resonance line broadening
from the excitation of non-uniform modes. In our case, we not only avoid this problem
but are able to expose the non-uniformities causing it with spatial and temporal resolution.
Non-interacting arrays of small structures have also been studied®® to try and identify the
small structure properties, but these also must halt their (experimental) analysis at the
assumption of uniformity; spatial variance of the magnetization response could never be

identified this way.

8.10 Summary

In this chapter we have witnessed the power of time resolved scanning Kerr effect
microscopy (TR-SKEM) in which data is taken with simultaneous spatial and temporal

resolutions. We have seen ferromagnetic resonance in a permalloy microstructure and
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viewed oscillatory behaviour in the time domain. Resonance frequencies were compared
with the easy-plane ferromagnet with good agreement ranging from 3 to 11 GHz for
external fields of 100 to 1900 Oe, respectively. Non-uniform spatial response was
observed and qualified. The magnetization tipping pulse was quantified and an
investigation of the effect of boundary conditions and tipping pulse effects on the spatial
response was undertaken. Oscillatory response symmetry was shown to be most probably
imposed by external field via demagnetizing effects while “extra” asymmetry was seen
from the un-centered tipping pulse. Numerical solutions of the Landau-Lifshitz-Gilbert
equation, using uniform excitation assumptions, were shown and modeling of the
resonance oscillations was done giving good agreement in mildly non-uniform time
windows, but substantial disagreement in significantly non-uniform time sections. Model
fitting to experimental data was used to confidently elicit a value for the Gilbert
dimensionless damping parameter of & = 0.008. Discussion regarding the uniformity vs.
non-uniformity was given and a conclusion made that the permalloy particle is in an
intermediate size regime. It was also concluded that a more complicated modeling of the
Landau-Lifshitz equation is needed to more fully understand the behaviour of the

permalloy microstructure.
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9 CONCLUSION

Ferromagnetic resonance has been studied in a permalloy microstructure using
time resolved scanning Kerr effect microscopy (TR-SKEM). Discussions of the design,
fabrication, and characterization of the sample were given, several subtleties of the
experimental technique were discussed, and results and analysis presented.

The power of the technique has been demonstrated. Picosecond temporal and sub-
micrometer spatial resolutions have allowed time-domain and spatial snapshot observation
of polar magnetization response giving FMR agreement with theory, numerical modeling
partial agreement and elicitation of the damping rate, and non-uniform spatial profile
observation.

Discussion for adaptation to longitudinal Kerr detection has been presented for
improved versatility of the technique. The spatial and temporal resolutions can be
improved and other configurations of the excitation pulse may permit observations of

other phenomena including magnetization reversal.,
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