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Abstract

This thesis develops three major essays on Arbitrage Theory, Market’s Viabil-

ity and Informational Markets. The first essay (Chapter 3) elaborates the exact

connections among the No-Unbounded-Profit-with-Bounded-Risk (called NUPBR

hereafter) condition, the existence of the numéraire portfolio, and market’s weak/lo-

cal viability. These tight relationships together with the financial crisis become our

principal financial/economic leitmotif for the development of the next essay.

In the second essay (Chapter 4 – Chapter 6), we focus on quantifying with

extreme precision the effect of some additional information/uncertainty on the non-

arbitrage concepts. As a result, we describe the interplay of this extra informa-

tion and the market’s parameters for these non-arbitrage concepts to be preserved.

Herein, we focus on the classical no-arbitrage and the NUPBR condition. This study

contains two main parts. In the first part of this essay (Chapter 4), we analyze prac-

tical examples of market models and extra information/uncertainty, for which we

construct explicit ”classical” arbitrage opportunities generated by the extra infor-

mation/uncertainty. These examples are built in Brownian filtration and in Poisson

filtration as well. The second part (Chapters 5 and 6) addresses the NUPBR con-

dition in two different directions. On the one hand, we describe the pairs of market

model and random time for which the resulting informational market model fulfills

the NUPBR condition. On the other hand, we characterize the random time mod-

els that preserve the NUPBR condition. These results are elaborated for general

market models with special attention to practical models such as discrete-time and

Lévy market models.

The last essay (Chapter 7) investigates the effect of additional information on

the Structure Conditions. These conditions are the alternatives to the non-arbitrage

and viability assumption in the Markowitz settings.
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Chapter 1

Introduction

Since their birth in the PhD thesis of Louis Bachelier (see [16]), mathematical finance

and modern finance has known many successful topics that became pillars of both

areas. Among these topics, we cite Portfolio Analysis that was pioneered by Merton

[109, 110] and Markowitz [108], Arbitrage theory (Arrow and Debreu [13] and Duffie

[56], Delbaen and Schachermayer [47, 50]), and Asset Pricing Theory and hedging

rules (Black-Scholes [23] and Merton [110]).

1.1 Market’s Viability

The market’s viability was defined —up to our knowledge— by Harrison and Kreps

in [69] (see also Kreps [101] and Jouini et al. [85]) as the setting for which there

exists a risk-averse agent who prefers more to less, has continuous preference, and

can find an optimal net trade subject to her/his budget constraint. In terms of the

popular von Neumann-Morgenstern utility, the market’s viability is “essentially”

equivalent to the existence of the solution to utility maximization problems and is

also related to the economic equilibrium and absence of arbitrage opportunities.
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1.2 Arbitrage Theory

Arbitrage theory is a relative modern topic of Finance which becomes fundamental

since it was directly linked to Asset Pricing Theory of Black-Scholes-Merton (see

[23] and [110]), which was honored by the 1997 Nobel Price in Economics. Probably,

the idea of non-arbitrage is best explained by telling a little joke from the book of

Delbaen and Schachermayer [51]:

”A professor working in Mathematical Finance and a normal person

go on a walk and the normal person sees a $100 bill lying on the street.

When the normal person wants to pick it up, the professor says: do not

try to do that. It is absolutely impossible that there is a $100 bill lying

on the street. Indeed, if it were lying on the street, somebody else would

have picked it up before you.”

Turning to financial markets, loosely speaking, in a rationale and reasonable mar-

ket, there is no possibility that one could make profit without taking any risk. In

other words, there is no financial strategy that makes profit out of nothing and

without any risk (those financial strategies are called arbitrage opportunities). As

the joke says, if there were some free snacks and cheap thrills in the financial mar-

ket, somebody else would have taken the opportunities before you. In the his-

tory of the development of non-arbitrage theory, there are several competing defini-

tions (vary in different market models) such as No-arbitrage (NA), No-Unbounded-

Profit-with-Bounded-Risk (NUPBR), No-Free-Lunch (NFL), No-Free-Lunch-with-

Bounded-Risk (NFLBR), No-Free-Lunch-with-Vanishing-Risk (NFLVR), Asymptotic-

Arbitrage, Immediate-Arbitrage, etc..

To keep the story short, the casting from the economic meta-meaning of non-

arbitrage into a rigorous mathematical framework goes back to the work of Harrison

and Kreps [69] for finite discrete time markets and Harrison–Pliska [70] for complete
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continuous martingale settings. For their settings, they proved the equivalence be-

tween NA and the existence of equivalent martingale measures. Going beyond finite

discrete time market model becomes more tricky and mathematically complicated.

The key idea brought by Dalang–Morton–Willinger in [44] pushed the study of non-

arbitrage theory to the modern mathematical finance by using the powerful tools

of measurable selection theorem and Kreps-Yan’s separation theorem. The next

ground-breaking seminar papers of Delbaen and Schachermayer [47] and [50] estab-

lished the golden principle of The Fundamental Theorem of Asset Pricing (FTAP,

name given by Dybvig and Ross [58]). It was proved that there is No-Free-Lunch-

with-Vanish-Risk (called NFLVR hereafter) if and only if there exists an Equivalent

Sigma Martingale Measure (called ESMM hereafter).

The economic interpretation of FTAP is that under an equivalent change of our

belief, the financial market is a fair game and evolves as a dynamic of a martingale.

The pricing and valuation of contingent claim is brought back to its intrinsic value

under this equivalent belief. Since its elaboration, the FTAP has known numerous

applications in Finance and Economics including, but not limited to, optimal port-

folio problem, market viability, market efficiency and risk management.

Optimal portfolio problem is a rather antique problem in Finance and Economics,

where economic agents tend to maximize their benefits, gains and wealth. The 1990

and 1997 Nobel Prize winners in Economics, Harry M. Markowitz and Robert Mer-

ton, established the foundation of modern optimal portfolio in their seminar papers

[108], [109] and [110]. Turning to mathematical finance field, Markowitz and Mer-

ton’s framework had been extended, studied and enriched to more general settings

using semimartingale theory, stochastic analysis and convex analysis. For those rich

topics such as utility maximization, forward utility, and mean-variance hedging, we

refer to Kramkov and Schachermayer [98, 99], Schachermayer [128], Delbaen et al.
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[46], Frei and Schweizer [64, 65], Karatzas et al. [92, 91], Musiela and Zariphopoulou

[112, 114, 113], Choulli and Ma [35], Ma [107], Choulli et al. [36] and the references

therein.

There has been an upsurge interest in understanding the relationship among non-

arbitrage, market’s viability, and utility maximization problem since the time of

Arrow and Debreu. In fact, for discrete markets (i.e. when there are only a finite

number of trading times and scenarios), Arrow and Debreu proved in [13] (see also

[56]), that the market’s viability (i.e. utility maximization admits optimal solution

for a “nice” von Neumann-Morgenstern utility), absence of arbitrage opportuni-

ties and the existence of an equivalent martingale measure are equivalent. These

equivalences were extended to the discrete-time case (with infinity many scenarios).

However, the question of how the existence of optimal portfolio is connected to the

absence of arbitrage (weak or strong form) has been forgotten for the continuous-

time context. Recently, Frittelli proposed in [67] an interesting approach for this

issue, while his obtained results are not applicable in the context of [105]. Also

Karatzas and Kardaras proved in [90] that the NUPBR condition is equivalent to

the existence of the numéraire portfolio, and the NUPBR is the least condition for

the utility maximization problem having a possible solution.

Thus, the FIRST theme of this thesis is to answer the following:

Prob(1.I): How is the market’s viability (or utility maximization problem) re-

lated to non-arbitrage concepts in general continuous time semi-martingale models

and without any assumtpion?
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1.3 Information and Its Rôle in Finance and Economics

In Finance and Economics, information means the acquirement of knowledges about

prices, costs, inventory, supply and demand of products, which can be exploited to

by economic agents to reduce uncertainties in their environment (see Rose [122]).

The key to the Economics of uncertainty appears for the first time —up to our

knowledge– as Bernoulli’s utility principle in 1738 ([19]). However this principle

was ignored until 1947, when it was first made respectable and rigorously proved

based on a few assumptions of how rational people make their decisions under un-

certainty by von Neumann and Morgenstern in [138]. Thus, from the economic

standpoint of view, information is a commodity that bears values; and economic

agents desire information because it helps them to make decision and maximize

their state-dependent utilities, especially when they are facing uncertainties. A

good explanation was elaborated by Arrow as follows:

”There is a basic assumption about the nature of information con-

tained in the economics of asymmetric information which I certainly

wish to retain: that information is scarce to the individual, as well as

to society as a whole. Asymmetric information arises because one party

cannot obtain freely (or at all) information available to another.”

In 2001, the scientific community and the Nobel Prize Committee recognized the

deep importance of the information in Economics and Finance by awarding George

Akerlof, Michael Spence, and Joseph E. Stiglitz the 2001 Nobel Price in Economics

for their contribution to the field of markets with asymmetric information (see [2],

[132], [133], [135] and [68]). Asymmetric information means that one party has more

or better information than the other when making decisions, investments and trans-

actions that would lead to adverse selection, moral hazards, and market failure,

especially in insurance markets. Adverse selection used in economics, insurance,

risk management, and statistics refers to a market process in which undesired re-
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sults occur when buyers and sellers have access to different information. Moral

hazards is a situation where a party will have a tendency to take risks because the

costs that could result will not be felt by the party taking the risk. All of these

economic weaknesses have the potential to lead to market failure and affect the

market’s equilibrium (see Riley [119] and Rothschild and Stiglitz [124]). For the

testing of asymmetric information in insurance markets, we refer to Abbring et al.

[1], Chiappori and Salanie [28], Chiappori et al. [27], Cawley and Philipson [25]

and the references therein. For more details about information and uncertainty and

their rôles in Economics, we consult Allen [5] and Arrow [9, 10, 11, 12], Antonelli

[8], Borch [24], Ross [122], Shackle [131], Stigler [134], Wolpert, S. A. and Wolpert,

J. F. [139] and the references therein. For the rôle of information in other fields such

as accounting, we refer the reader to Rothenberg [123], Hofmann and Rothenberg

[73] and the references therein. In these latter works, the authors studied the rela-

tionship between the quality of information available for production decisions and

performance evaluation to the choice of whether or not production should occur in

teams.

The most common assumption, considered in Finance and Economics, consists of

assuming that all the agents share the same information flow on which their portfo-

lio decisions are based. However, this assumption is too restrictive and unrealistic

in the real world. Asymmetric information arises quite naturally in Economics since

individual’s knowledge and availability of information varies from one agent to an-

other. Many mathematical models have been developed to capture the behaviors

of two agents with different information levels and are both price-taker and unable

to influence the price dynamics of the risky assets. The uninformed (public) trader

acts on the basis of the evolution of the market, while the insider trader possesses

some additional knowledge and could probably make arbitrage.
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Mathematically speaking, the uninformed agents are assumed to have the public

information modelled by the filtration (Ft)t≥0, while the the extra information is

possessed by the financial managers or insiders only. Examples of the extra informa-

tion can be the IPO price, the possibility of default, the change in the CEO board.

Throughout the thesis, the extra information will be modelled mathematically by

a random time τ or an honest time. This random time represents a retirement

time, a death time, a default time of firms and/or agents, and any time where an

event will occur and affect the markets and/or the agents’ decisions. Usually, the

random time τ is not adapted to the flow of public information (Ft)t≥0 since the

availability of the extra information is not possible before its happening, like the

Subprime mortgage crisis of 2008.

To incorporate the extra information to the public information F := (Ft)t≥0, there

are two main streams in the literature: initial enlargement and progressive

enlargement that generate an enlarged filtration G (see Jeulin [83], Jeulin and

Yor [84], Pardoux [116], Yoeurp [140], Jacod [77] and Meyer [111]). It turns out

that the techniques of enlargement are fitting very well in studying credit risk and

defaultable market (see [22], [82, 81], [60], [43], [20], [102] and the references therein).

The SECOND main theme of this thesis consists of finding how the non-arbitrage

concepts (i.e. NA, NUPBR, NFLVR) would be affected for informational mar-

kets. Here, informational market means that the agents in the market possess

different information levels that they could take advantage of to maximize their

utilities, hedge financial outlays, and even make arbitrages. Precisely, we start with

an arbitrage-free market (called initial market) and we add some extra information

to this initial market. The resulting new market model is called informational mar-

ket. We will investigate the following three problems for this informational market:

Prob(1.II): Are there any arbitrage opportunities in informational markets?
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Prob(1.III): How are those non-arbitrage concepts affected when some extra in-

formation is partially/fully incorporated into the market?

Prob(1.IV): What are the necessary and sufficient conditions on the extra infor-

mation such that the non-arbitrage conditions are preserved?

In this thesis, we focus on two weaker non-arbitrage concepts: No-Unbounded-

Profit-with-Bounded-Risk (NUPBR) and Structure Conditions (SC) for

three main reasons.

Firstly, for many market models, the NFLVR condition is too much to ask and does

not hold in general, while the utility maximization problem might have a solution

(see Pikovsky [117], Ruf [125] and the references therein). It turns out that the

NUPBR condition is the right non-arbitrage concept that is intimately related to

the weakest forms of markets’ viability (see Choulli et al. [34] and Kardaras [96] for

details about this issue) and is the necessary and sufficient condition for the local

existence of the solution to the utility maximization problem.

Secondly, due to Takaoka [137] and Choulli et al. [34], the NUPBR condition pos-

sesses the ‘dynamic/localization’ feature that the NFLVR and others arbitrage con-

cepts lack to possess. By localization feature, we mean that if the property holds

locally (i.e. the property holds for the stopped models with a sequence of stopping

times increasing to infinity), then it holds globally.

At last, since the seminal work of Markowitz on the optimal portfolio, the quadratic

criterion for hedging contingent claims becomes a very popular and important topic

in mathematical finance, modern finance, and insurance. In this context, two main

competing quadratic approaches were suggested: The local risk minimization and

the mean-variance hedging. For more details about these two methods and their

8



relationship, we refer the reader to [72], [26], [57], [49], [21], [80], [129, 130], [41],[103]

and the references therein. One important common feature for these methods lies in

the assumptions that the market model should fulfill in order that the two methods

admit solutions at least locally. These conditions are known as the Structure Con-

ditions and sound to be the alternative to non-arbitrage condition in this quadratic

context. Indeed, for the case of continuous price processes, it was proved that these

conditions are equivalent to NUPBR, or the existence of a local martingale deflator

for the market model. For details about these equivalence, we refer the reader to

Choulli and Stricker [39]. However, in the general case, the two concepts (i.e. SC

and NUPBR) differ tremendously.

1.4 Thesis’ Summary

This thesis is based on several research papers co-authored by the candidate during

his PhD studies under the supervision of Prof. Tahir Choulli. They include Ak-

samit/Choulli/Deng/Jeanblanc [3, 4], Choulli/Aksamit/Deng/Jeanblanc [30], Choul-

li/Deng [31, 32, 33] and Choulli/Deng/Ma [34]. Beside the current chapter, the

thesis contains five highly innovative chapters and one chapter for the preliminaries.

We keep each chapter of this thesis as independent and self-contained as possible

(some chapters do have intersections in notations for the convenience of reader).

The organization of these six chapters is detailed in the following.

In Chapter 2, we review the main stochastic tools that will be used throughout the

thesis. These tools are essentially from the general theory of stochastic calculus

and the theory of enlargement of filtrations. In addition to these mathematical and

statistical preliminaries, this chapter introduces the reader to the mathematical for-

mulation of some economic/financial concepts that we will deal with throughout the
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thesis.

Chapter 3 answers completely (Prob(1.I)) and closes the existing gaps in this re-

search direction. Our result already draw the attention of many researchers and had

been investigated and extended to the context of markets with transaction costs.

Our innovative contribution can be described as follows. Firstly, we establish the

equivalence among the NUPBR condition, the existence of the numéraire portfolio,

and the existence of the solution to the utility maximization under an equivalent

probability measure for any nice utility. Furthermore, the equivalent probability

measure under which the optimal portfolio exists can be chosen as close to the

real-world probability measure as we want (but might not be equal). Secondly, un-

der some mild assumptions on the model and the utility, we prove the equivalence

between NUPBR and the local existence of optimal portfolio. These results lead nat-

urally to two new types of viability that we call weak viability and local viability.

In Chapter 4, we give a positive answer to (Prob(1.II)). Precisely, we prove that

there exist classic arbitrage opportunities (i.e. NA) for a class of honest times, when

the market is complete, in progressive enlargement of filtrations. Furthermore, in

the case of Brownian filtration and Poisson filtration, we calculate explicitly the

arbitrage strategies. The failure of the classic arbitrage condition leads us to inves-

tigate the effect of extra information on the NUPBR condition in full generality.

In Chapter 5, we give a complete and precise answer to (Prob(1.III)) and

(Prob(1.IV)) for the NUPBR condition when the semi-martingale model S being

stopped at a random time. For this non-arbitrage notion, we obtain two principal

results. The first result lies in describing the pairs of initial market model and ran-

dom time for which the resulting stopped model fulfills the NUPBR condition. The

second main result characterizes the random time models that preserve the NUPBR

10



property after stopping. Moreover, we construct explicit martingale/pricing densi-

ties (deflators) for some classes of local martingales when stopped at random time.

The first originality of Chapter 6 lies in introducing a class of honest times that

have the potential to preserve the non-arbitrage concepts for the part after-default

of a process. For our family of specific honest times, we give a partial answer to

(Prob(1.III)) and (Prob(1.IV)), when dealing with the NUPBR and the part

“after-default” of the model. In this setting, we obtain two principal results in the

same spirit of Chapter 5. The first result lies in describing the pairs of market

model and random time for which the market model fulfills NUPBR condition after

an honest time. The second main result characterizes the random time models that

preserve the NUPBR condition for the part after an honest time.

In Chapter 7, we give a partial answer to (Prob(1.III)) and (Prob(1.IV)) for the

so-called Structure Conditions when the extra information is added to the initial

model progressively in time. Precisely, for a fixed market model, we prove that

Structure Conditions is preserved under a mild condition and we give the neces-

sary and sufficient condition on the random time for which Structure Conditions is

preserved for any semi-martingale model.

11



Chapter 2

Notations and Preliminaries

In this chapter, we introduce notations, definitions of different concepts (mathe-

matical, statistical or financial/economic), and their preliminary analysis. For all

unexplained mathematical and statistical/stochastic/probabilistic terms, terminolo-

gies and techniques, we refer to Delbaen and Schachermayer [51], Jacod [76], Jacod

and Shiryaev [78], Dellacherie and Meyer [54] and He et al [71].

This chapter contains five sections. In section 2.1, we define σ-martingale density.

Section 2.2 recalls optional stochastic integral and some properties. In Section 2.4,

we give three important non-arbitrage concepts. Section 2.5 introduces the frame-

work of utility maximization problem. In the last section, we present the mathe-

matical models for additional information.

Throughout the remaining chapters of the thesis, our mathematical and economic

models start with a stochastic basis (Ω,A,H := (Ht)t≥0,P). Here, Ω is the sample

space, P is the physical measure (economically means the subjective belief), and H

is a filtration that satisfies the usual conditions of right continuity and completeness,

and represents the flow of information through time.

Definition 2.1: A process is a family X = (Xt)t≥0 of measurable mapping from Ω

12



into some set E. Usually, E is taken as Rd.

If X is a process and T is a random time (i.e. a mapping Ω → R+), we define the

stopped process at T , denoted by XT , by

XT
t := XT∧t. (2.1)

Definition 2.2: An H-stopping time is a random time such that for all t ∈ R+, the

set {T ≤ t} is Ht-measurable.

On the set Ω×R+, we define two σ-fields O(H) and P(H) that are generated by all

càdlàg H-adapted processes, and all continuous H-adapted processes respectively.

If S and T are two stopping times, we define four kinds of stochastic intervals:

[[S, T ]] := {(ω, t) : t ∈ R+, S(ω) ≤ t ≤ T (ω)},

[[S, T [[ := {(ω, t) : t ∈ R+, S(ω) ≤ t < T (ω)},

]]S, T ]] := {(ω, t) : t ∈ R+, S(ω) < t ≤ T (ω)},

]]S, T [[ := {(ω, t) : t ∈ R+, S(ω) < t < T (ω)}.

Definition 2.3: An H-predictable stopping time is an H-stopping time such that

the stochastic interval [[0, τ [[ is H-predictable.

Proposition 2.1: Let T be an H-stopping time, which is the debut T (ω) = inf{t :

(ω, t) ∈ A} of an H-predictable set A. If [[T ]] ⊂ A, then T is an H-predictable

time.

The next concept is a sort of counterpart of predictable stopping time.

Definition 2.4: An H-stopping time T is called H-totally inaccessible if P (T =

S < +∞) = 0 for all H-predictable times S.

The following theorem shows that, loosely speaking, any stopping time can be

decomposed into two parts: totally inaccessible part and accessible part.
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Theorem 2.1: Let T be an H-stopping time. There exist a sequence of H-predictable

stopping times (Sn)n≥1 and a unique (up to P-null set) HT -measurable subset A

on {T < +∞}, such that the stopping time TA is totally inaccessible, and that the

stopping time TAc satisfies [[TAc ]] ⊂
⋃

[[Sn]]. TA is called the H-totally inaccessible

part of T , and TAc its H-accessible part. They are unique, up to a P-null set.

Proof. We refer to Dellacherie [52] (Page 58, Théorèm 41) or Jacod and Shiryaev

[78] (Page 20, Theorem 2.22) for the proof.

Definition 2.5: A càdlàg H-adapted process X is called quasi-left-continuous if

∆XT = 0 a.s. on the set {T < +∞} for every H-predictable time T.

Definition 2.6: A random set A is called H-thin if it is of the form A =
⋃
n≥1[[Tn]],

where (Tn)n≥1 is a sequence of H-stopping times; if the sequence (Tn)n≥1 satisfies

[[Tn]] ∩ [[Tm]] = ∅ for all n 6= m, it is called the exhausting sequence of A.

Now, we give the definitions of martingale, sub-martingale and super-martingale

that are essentially due to Doob [55].

Definition 2.7: An H-adapted càdlàg processX on the stochastic basis (Ω,A,H, P )

is called an H-martingale (resp. sub-martingale, resp. super-martingale) if E|Xt| <

+∞ and for all s ≤ t,

E[Xt|Hs] = Xs, (resp. E[Xt|Hs] ≥ Xs, resp. E[Xt|Hs] ≤ Xs). (2.2)

The set of martingales for a filtration H will be denoted byM(H). As usual, A+(H)

denotes the set of increasing, right-continuous, H-adapted and integrable processes.

If C(H) is a class of processes for the filtration H, we denote by C0(H) the set of

processes X ∈ C(H) with X0 = 0, and by Cloc the set of processes X such that

there exists a sequence of H-stopping times, (Tn)n≥1, that increases to +∞ and the

stopped process XTn belongs to C(H). We put C0,loc = C0 ∩ Cloc.
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Definition 2.8: An H-semimartingale is a càdlàg H-adapted process X of the form

X = X0+M+A, where X0 is a finite-valued andH0-measurable random variable,

M is an H-local martingale and A is a finite variation process.

If A is predictable, we call X a special semimartingale and the decomposition

X = X0 +M +A is called the canonical decomposition of X.

For a generic filtration H and an H-semimartingale X, the set of H-predictable

processes H integrable with respect to X in the sense of semimartingale would be

denoted by L(X,H) and the stochastic integral as H �Xt =
∫ t

0 HudXu.

Below, we define the optional and predictable projection of a measurable pro-

cess endowed with suitable integrability properties. For their proof, we refer to

Dellacherie and Meyer [54].

Theorem 2.2: Let X be a positive or bounded A-measurable process. There exist

an H-optional process o,H(X) and an H-predictable process p,H(X) such that

E
[
XT I{T<+∞}|HT

]
= o,H(X)T I{T<+∞} a.s. for any H-stopping time T,

E
[
XT I{T<+∞}|HT−

]
= p,H(X)T I{T<+∞} a.s. for any H-predictable time T.

The two processes o,H(X) and p,H(X) are unique up to evanescent set; and they

are called the H-optional projection and H-predictable projection of X respectively.

Now, we state another very important concept – dual predictable projection or

compensator – that would be used frequently in the thesis.

Theorem 2.3: Let A be a process in A+
loc(H). There exists a process Ap,H, which

is unique up to an evanescent set, and is an H-predictable process in A+
loc(H)

satisfying one of the following three equivalent properties:

(a) A−Ap,H is an H-local martingale.

(b) E(Ap,HT ) = E(AT ) for all H-stopping times T .
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(c) E[H �Ap,H∞ ] = E[H �A∞] for all nonnegative H-predictable process H.

The process Ap,H is called the dual H-predictable projection or compensator of A.

The concept of dual predictable projection (or compensator) would be frequently

used throughout the thesis. To distinguish the effect of filtration and probability

measure, we will denote 〈., .〉Q,H to specify the sharp bracket calculated under the

pairs (Q,H), if confusion may rise. When P = Q, then we simply write 〈., .〉H. Simi-

larly for the dual projections, we use (., .)p,Q,H to specify the compensator calculated

under (Q,H), and when P = Q, we simply write (., .)p,H.

2.1 σ-martingale Densities

The definition of σ-martingale goes back to Chou [29] (see also Émery [61]) under

the name of semi-martingales de la classe (
∑

m). It results naturally when we

integrate –in the semimartingale sense– an unbounded and predictable process with

respect to a local martingale. We start by defining local martingale density for an

H-semimartingale X.

Definition 2.9: Consider an H-semimartingale X and an H-positive local martin-

gale L > 0. We call L is the local martingale density for X if the product LX is

an H-local martingale.

Definition 2.10: An H-semimartingale is called a σ-martingale if there exists a

real-valued H-predictable process φ such that 0 < φ ≤ 1 and φ �X is an H-local

martingale.

Below, we define σ-martingale density for an H-semimartingale X.

Definition 2.11: Consider an H-semimartingale X and a positive H-local martin-

gale K (i.e. K > 0). The process K is called a σ-martingale density for X if the

product KX is an H σ-martingale.
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The difference and relationship between σ-martingale and local martingale was

discussed by Ansel and Stricker [7].

Proposition 2.2 (Ansel-Stricker): Let X be an Rd-valued H-local martingale and H

be an H-predictable, X integrable Rd-valued integrand in the sense of semimartin-

gale. Then H � X is an H-local martingale if and only if there is an increasing

sequence of H-stopping times (Tn)n≥1 ↑ +∞ and a sequence of non-positive inte-

grable random variables (θn), such that

∆(H �X)Tn = H∆XTn ≥ θn. (2.3)

Theorem 2.4 (Ansel-Stricker): Let X be an H-local martingale and H �X exists in

the sense of semimartingale. If H �X is bounded from below with some constant

a, then H �X is an H-local martingale.

2.2 Optional Stochastic Integral

Here, we recall optional stochastic integral (or compensated stochastic integral) that

is one of our crucial techniques. We refer to Jacod [76] (Chapter III.4.b p. 106-

109), also studied in Dellacherie and Meyer [54] (Chapter VIII.2 sections 32-35 p.

356-361) and He et al. [71] for the details. Below, we give the definition and some

elementary properties of optional stochastic integral which are important for our

benefits.

Definition 2.12: [[76], Definition (3.80)] Let N be an H-local martingale with

continuous martingale part N c, H an H-optional process, and p ∈ [1,+∞).

(a) The process H is said to be p-integrable with respect to N if

(a.1) The process p,HH is N c integrable and
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(a.2) The process

(∑(
H∆N − p,H(H∆N)

)2
)p/2

∈ A+
loc(H). (2.4)

The set of p-integrable processes with respect to N is denoted by oLploc(N,H).

(b) For H ∈ oLploc(N,H), the optional stochastic integral of H with respect to N

is the unique local martingale, M , that is p-locally integrable and satisfies

M c = p,HH �N c and ∆M = H∆N − p,H(H∆N). (2.5)

It is denoted by M = H �N .

It is obvious that the optional stochastic integral is a generalization of the Itô’s

integral (i.e. stochastic integral with predictable integrands). The conditions, given

in the definition, for the existence of optional stochastic integrals are the most

general ones, but they are hard to be verified. The following theorem (see [71] and

[54]) remedies these two defects to some extent.

Theorem 2.5: Let M be an H-local martingale and H be an H-optional process. If√
H2 � [M ] ∈ A+

loc(H), then H �M exists and it is the unique H-local martingale

L such that for every bounded H-martingale N , [L,M ]−H � [M,N ] ∈Mloc(H).

Lemma 2.1: Let H be an H-optional process and N be an H-local martingale. Then

H ∈ oL2
loc(N,H) and H2 � [N,N ] has finite values if and only if p,H (|H∆N |) <

+∞, and H2 � [N,N ] ∈ A+
loc(H).

Proof. The proof of the lemma is implied in He et al. [71] (see Theorem 9.10 and

the Remarks on pages 232-233). For completeness, we provide the details.

If H2 � [N,N ] ∈ A+
loc(H), it is clear that H2 � [N c, N c] and

∑
H2(∆N)2 are both

H-locally integrable. By Yor and Lepingle’s inequality (see [142] and [104]) and the
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elementary inequality

∑(
H∆N − p,H(H∆N)

)2
≤ 2

∑
(H∆N)2 + 2

∑(
p,H(H∆N)

)2
,

we deduce
∑(

H∆N − p,H(H∆N)
)2 ∈ A+

loc(H). ThereforeH belongs to oL2
loc(N,H).

Conversely, if H ∈ oL2
loc(N,H) and H2 � [N,N ] is finite, we have H2 � [N c, N c] and∑(

H∆N − p,H(H∆N)
)2

are both H-locally integrable and
∑
H2(∆N)2 is finite.

Then, for any interval Γ ∈ R+, we derive

∑
IΓ

(
p,H (H∆N)

)2
≤ 2

∑
IΓ

(
H∆N − p,H (H∆N)

)2
+ 2

∑
IΓ (H∆N)2

< +∞.

Therefore,
∑(

p,H (H∆N)
)2

is locally bounded. Hence, it is H-locally integrable.

Since H2 � [N,N ] ≤ H2 � [N c, N c]+2
∑(

H∆N − p,H(H∆N)
)2

+2
∑(

p,H (H∆N)
)2

,

we conclude that H2 � [N,N ] is H-locally integrable. This ends the proof of the

lemma.

The optional stochastic integral arises naturally when jumps are incorporated.

The following lemma gives two (maybe the most) commonly known examples.

Lemma 2.2: Let X be an H-semimartingale and M an H-local martingale. Then

the following properties hold:

(a) The optional integral I{∆M 6=0} �M is well defined and I{∆M 6=0} �M = Md.

(b) If [X,M ] ∈ Aloc(H), then (∆X)�M = [X,M ]− 〈X,M〉.

Proof. (1) Since I{∆M 6=0}∆M = ∆M and p,H(I{∆M 6=0}∆M) = 0, the assertion (a)

follows immediately from the definition of optional stochastic integral.

(2) The proof of assertion (b) becomes trivial if one notices that ∆X∆M− p,H(∆X∆M) =

∆[X,M ] − ∆〈X,M〉 and {∆X 6= 0} is a thin set. This ends the proof of the

lemma.
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Below, we recall some important properties of the optional stochastic integral

that would be used later.

Proposition 2.3: (a) The optional stochastic integral M = H � N is the unique

H-local martingale such that, for any H-local martingale Y ,

E ([M,Y ]∞) = E

(∫ ∞
0

Hsd[N,Y ]s

)
.

(b) The process [M,Y ]−H � [N,Y ] is an H-local martingale.

(c) If K is locally bounded and predictable, then the following three stochastic

integrals are well defined and are equal K � (H �X) = (KH)�X = H � (K �X).

(d) If X is purely discontinuous, then H � X is also purely discontinuous, for

every process H ∈ oLploc(X,H).

We end this section by a lemma that would be used in last Chapter 7.

Lemma 2.3: Let M and N be two H-locally square integrable local martingale,

H ∈ oL2
loc(N,H), and K ∈ oL2

loc(M,H). Then, we have

〈H �N,K �M〉H =
(
HK � [M,N ]

)p,H
−
∑

p,H
(
H∆N

)
p,H
(
K∆M

)
.

Furthermore, if N or M is quasi-left continuous, then

〈H �N,K �M〉H =
(
HK � [M,N ]

)p,H
.
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Proof. To this end, we calculate that

[H �N,K �M ] = 〈H �N c,K �M c〉+
∑

∆ (H �N) ∆ (K �M) (2.6)

= HK � [N c,M c] +HK � [M,N ]d

−
∑(

H∆N − p,H(H∆N)
)
p,H (K∆M)−

∑
p,H(H∆N) p,H (K∆M)

= HK � [N,M ]−
∑(

H∆N − p,H(H∆N)
)
p,H (K∆M)

−
∑

p,H(H∆N) p,H (K∆M). (2.7)

It is easy to see that p,H (K∆M) is locally bounded and due to (2.5), we have∑(
H∆N − p,H(H∆N)

)
p,H (K∆M) = p,H (K∆M)H � N is a local martingale.

Therefore, we get

〈H �N,K �M〉H =
(
HK � [M,N ]

)p,H
−
∑

p,H
(
H∆N

)
p,H
(
K∆M

)
.

If N or M is quasi-left continuous, then p,H
(
H∆N

)
= 0 or p,H

(
K∆M

)
= 0.

2.3 Jacod’s Representation for Local Martingales

In this section, we will recall the modern theory of semimartingale. Although it

is much less widely known than the classical semimartingale theory, it would be

essential for our purpose. Most of the results presented in this section can be

founded in Jacod [76], Jacod and Shiryaev [78] and He et al [71]. However the

proofs are not always given in details. We refer to Choulli and Schweizer [37] for a

detailed English proof.

Let us consider an auxiliary measurable space (E, E) which we assume to be

a Blackwell space (i.e., a separable space and for any (E, E) measurable random

variable ξ admits a regular condition distribution with respect to the sub-σ-filed H′

of H). Thoughout this thesis, (E, E) would be (Rd,B(Rd).
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Definition 2.13: A random measure on R+×E is a family µ = µ(ω, dt, dx), ω ∈ Ω

of nonnegative measure on (R+ × E, B(R+) ⊗ E) satisfying µ(ω, {0} × E) = 0

identically.

Throughout the thesis, on the space
(

Ω̃ := Ω× R+ × E, Ã := A⊗ B(R+)⊗ B(E)
)

,

we will consider two σ-fields

Õ(H) = O(H)⊗ E and P̃(H) = P(H)⊗ E . (2.8)

For an H-adapted càdlàg process X, we denote the jump random measure asso-

ciate with X by µ (µHX if confusion may arise), which is given by

µ(ω, dt, dx) :=
∑
s>0

I{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx), (2.9)

where δa is the Dirac measure at the point a.

For an optional functional W on Ω̃, we define the integral process W ? µ by

W ? µt(ω) :=


∫

[0,t]×EW (ω, s, x)µ(ω, ds, dx), if
∫

[0,t]×E |W (ω, s, x)|µ(ω, ds, dx) < +∞

+∞, otherwise.

Another important and useful measure on (Ω̃, Ã) is given by

MP
µ (B̃) := EP

[∫
R+×E

I
B̃

(ω, t, x) µ(ω, dt, dx)

]
, for all B̃ ∈ Ã. (2.10)

Thus, byMP
µ [g|P̃(H)], we denote the unique P̃(H)-measurable function, providing

it exists, such that for any bounded P̃(H)-measurable function W ,

MP
µ (Wg) := E

(∫
R+

∫
E
W (s, x)g(s, x) µ(ds, dx)

)
= MP

µ

(
WMP

µ

[
g
∣∣∣P̃(H)

])
.

Remark 2.1: In this thesis, we shall reserve the notation “?” for integrals with
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respect to random measures.

Definition 2.14: A random measure µ is called Õ(H)-optional (resp. predictable) if

the process W ? µ is H-optional (resp. H-predictable) for every Õ(H)-measurable

(resp. P̃(H)-measurable) function W.

For any µ, a jump random measure of a process X, we associate a P̃(H)-

measurable random measure ν satisfying W ?µ−W ?ν is an H-local martingale,

for any P̃(H)-measurable function W on Ω̃ with |W | ? µ ∈ A+
loc(H).

Moreover, there exists a predictable process A ∈ A+(H) and a kernel F (ω, t, dx)

from (Ω× R+,P(H)) into (E, E) such that

ν(ω, dt, dx) = dAt(ω) F (ω, t, dx). (2.11)

For any Ã-measurable function W , we associate the following processes

Ŵt(ω) :=

∫
E
W (ω, t, x)ν(ω, {t} × dx), (2.12)

W̃t(ω) := W (ω, t,∆Xt(ω))I{∆X 6=0}(ω, t)− Ŵt(ω). (2.13)

The resulting random measure µ− ν is called a “martingale random measure”. For

the pair of random measures (µ, ν), we consider two types of integrals that corre-

spond to the sets of integrands denoted by G1
loc(µ,H) and H1

loc(µ,H) respectively.

These two integrals result in two classes of pure jump local martingales. The two

sets of integrands are defined by

G1
loc(µ,H) :=

{
W ∈ P̃(H) :

√∑
s≤� W̃

2
s ∈ A+

loc(H)

}
and

H1
loc(H, µ) :=

{
g : g ∈ Õ(H),Mp

µ[g|P(H)] = 0,
√
g2 ? µ ∈ A+

loc(H)
}
.

(2.14)
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The resulting integrals are denoted by W ? (µ− ν) and W ?µ when W ∈ G1
loc(µ,H)

and W ∈ H1
loc(µ,H) respectively.

Now, we present the canonical predictable representation for a semimartingale, which

is based on the stochastic integral with respect to a random measure. For its proof,

we refer to Jacod and Shiryaev [78] (see Theorem 2.34, Page 84).

Theorem 2.6: Let X be an H-semimartingale. Then X has the canonical repre-

sentation:

X = X0 +Xc + h ? (µ− ν) + (x− h(x)) ? µ+B, (2.15)

where Xc is the continuous martingale part of X, B is a predictable finite varia-

tion process and h is a truncation function with the form of h(x) = xI{|x|≤1}.

For the matrix C with entries Cij := [Xc,i, Xc,j ], the triple (B,C, ν) is called

predictable characteristics of X. Furthermore, we can find a version of the charac-

teristics triplet satisfying

B = b �A, C = c �A, and ν(ω, dt, dx) = dAt(ω)Ft(ω, dx). (2.16)

Here, A is an increasing and predictable process, b and c are predictable process and

Ft(ω, dx) is a predictable kernel such that

� Ft(ω, {0}) = 0,
∫ (
|x|2 ∧ 1

)
Ft(ω, dx) ≤ 1,

� ∆Bt =
∫
h(x)ν({t}, dx), c = 0 on {∆A 6= 0},

� at := ν({t},Rd) = ∆AtFt(Rd) ≤ 1.

If X is a special semimartingale, we have the following:

Corollary 2.6.1: Let X be an H-special semimartingale. Then X has the following
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decomposition:

X = X0 +Xc + x ? (µ− ν) +B, (2.17)

where B is a predictable process with finite variation.

For the following representation theorem, we refer to Jacod [76] (Theorem 3.75,

page 103) and Jacod and Shiryaev [78] (Lemma 4.24, page 185) and recent results

in Choulli and Schweizer [37]. Then the representation of a local martingale with

respect to a semimartingale X is given by the following

Theorem 2.7: [Jacod’s representation] Let X be an H-semimartingale, µ is its

random jump measure, and ν is the random measure compensator of µ. Consider

N ∈M0,loc(H). Then, there exist an H-predictable Xc-integrable process β, N ′ ∈

M0,loc(H) with [N ′, X] = 0, f ∈ G1
loc(µ,H) and g ∈ H1

loc(µ,H) such that

N = β �Xc +W ? (µ− ν) + g ? µ+N ′, W := f +
f̂

1− a
, MP

µ [g|P̃ (H)] = 0,

where f := MP
µ [∆N |P̃ (H)], g := ∆N − f , f̂ is defined via (2.12) and f has a

version such that {a = 1} ⊂ {f̂ = 0}. Moreover,

∆N = (f(∆X) + g(∆X)) I{∆X 6=0} −
f̂

1− a
I{∆X=0} + ∆N ′. (2.18)

Remark 2.2: The Jacod Decomposition Theorem would be frequently used in

Chapter 5 and Chapter 6. In the sequel, we shall call (β,W, g,N ′) or (β, f, g,N ′)

the Jacod Parameters of N with respect to X.

The following is a simple but useful result on the conditional expectation with

respect to MP
µ .
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Lemma 2.4: Let f and g be two nonnegative Õ(H)-measurable functionals. Then,

MP
µ

(
fg
∣∣ P̃(H)

)2
≤MP

µ

(
f2
∣∣ P̃(H)

)
MP
µ

(
g2
∣∣ P̃(H)

)
, MP

µ –a.e. (2.19)

Proof. The proof is the same as the one of the regular Cauchy-Schwarz formula, by

putting f := f/MP
µ

(
f2
∣∣ P̃(H)

)
and g := g/MP

µ

(
g2
∣∣ P̃(H)

)
and using the simple

inequality xy ≤ (x2 + y2)/2. This ends the proof of the lemma.

The following lemma is borrowed from Jacod (see Theorem 3.75 in [76] or Proposi-

tion 2.2 in [37]).

Lemma 2.5: Let E(N) be a positive local martingale and (β, f, g,N ′) be the Jacod’s

parameters of N . Then, E(N) > 0 (or equivalently 1 + ∆N > 0) implies that

f > 0, MP
µ − a.e.

Lemma 2.6: (see Choulli and Schweizer [37]): Let f be a P̃(H)-measurable

functional such that f > 0 and

(
(f − 1)2 ? µ

)1/2
∈ A+

loc(H). (2.20)

Then, the H-predictable process
(

1− a+ f̂
)−1

is locally bounded, and hence

Wt(x) :=
ft(x)− 1

1− at + f̂t
∈ G1

loc(µ,H). (2.21)

Here, at := ν({t},Rd) and f̂t :=
∫
ft(x)ν({t}, dx).

We end this section by recalling a lemma that is useful when one computes

compensator of integral with random measure. It was proved in [71], page 350.

Lemma 2.7: Let W ∈ G1
loc(µ,H) and M := W ? (µ − ν). For any N ∈ Mloc(H)
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such that [M,N ] ∈ Aloc(H), we have

〈W ? (µ− ν), N〉 = (VW ) ? ν, (2.22)

where V := MP
µ [∆N |P̃(H)].

2.4 Mathematical Formulation for Non-Arbitrage

In this section, we recall three important non-arbitrage concepts, precisely, No-

arbitrage, No-Free-Lunch-with-Vanish-Risk and No-Unbounded-Profit-with-Bounded-

Risk. Loosely speaking, in a rationale market, there is no possibility that one could

gain profit without taking any risk. We refer to the book of Delbaen and Schacher-

mayer [51] for this rich topic.

Definition 2.15: Let a be a positive real number and X be an H-semimartingale.

An X-integrable H-predictable process H is called a-admissible if H0 = 0 and

H � Xt ≥ −a for all t ≥ 0. H is called admissible if it is admissible for some

a ∈ R+.

Given the semi-martingale X, we denote by K0 the convex cone of L0, given by

K0 :=

{
H �X∞

∣∣∣ H is X − admissible and lim
t→+∞

H �Xt exists

}
.

By C0, we denote the cone of functions dominated by elements of K0, i.e. C0 :=

K0 − L0
+. With C and K, we denote the corresponding intersections with the space

L∞ of bounded functions K := K0 ∩ L∞ and C := C0 ∩ L∞. By C, we denote the

closure of C with respect to the norm topology of L∞.

Definition 2.16: We say that the H-semi-martingale X satisfies the condition of

(a) No Arbitrage (NA) if C ∩ L∞+ = {0}.

(b) No Free Lunch with Vanishing Risk (NFLVR) if C ∩ L∞+ = {0}.
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Remark 2.3: (1) It is clear that (b) implies (a). The no-arbitrage property (NA)

is equivalent to K0 ∩ L0
+ = {0} and has an obvious interpretation: there should

be no possibility of obtaining a positive profit by trading alone according to an

admissible strategy.

(2) The condition of NFLVR has the following economic interpretation: there

should be no sequence of final payoffs of admissible integrands, fn := Hn �XT such

that the negative parts f−n tends to 0 uniformly and such that fn tends almost

surely to a [0,∞]-valued function f0 satisfying P [f0 > 0] > 0. If (NFLVR) is not

satisfied then there is a f0 in L∞+ , not identically 0, as well as a sequence (fn)n≥1

of elements in C, tending almost surely to f0, such that for all n, we have that

fn ≥ f0 − 1
n .

Definition 2.17: The H-semi-martingale X is said to satisfy the No-Unbounded-

Profit-with-Bounded-Risk (called NUPBR(P,H)) condition if the set

K1 :=

{
H �X∞

∣∣∣ H �X ≥ −1 and lim
t→+∞

H �Xt exists

}
, (2.23)

is bounded in L0(P) (i.e. bounded in probability under P). When there is no

confusion, we simply call it NUPBR.

Remark 2.4: The terminology of NUPBR is also articulated as The First Kind of

No Arbitrage in Kardaras [94] or (BK) in Kabanov [86].

The following connection among (NA), (NUPBR) and (NFLVR) was proved in [86].

Lemma 2.8: The semimartingale X satisfies (NFLVR) if and only if (NA) and

(NUPBR) are satisfied, i.e., NFLVR = NA + NUPBR.

The fundamental theorem of asset pricing, due to Deblean and Schachermayer’s

seminal papers [47] and [50], could be read as:

Theorem 2.8: Let X be an (H,P)-semimartingale. Then X satisfies NFLVR if and
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only if there exists a probability measure Q ∼ P such that X is a σ-martingale

with respect to Q.

The precise relationship between NUPBR and σ-martingale density was proved by

Takaoka [137]; and for the case of continuous semi-martingale, we refer to Choulli

and Stricker [39].

Theorem 2.9 (Takaoka): Let XT (i.e. X stopped at T ) be an (H,P)-semimartingale

for a fixed T ∈ (0,+∞). Then XT satisfies the condition of NUPBR if and only

if there exists a σ-martingale density Z for XT , i.e. ZXT is a σ-martingale.

2.5 Utility Maximization

In this subsection, we provide the mathematical definitions of the utility and the

corresponding admissible set of strategies afterwards.

Definition 2.18: A utility function is a function U satisfying the following:

(a) U is continuously differentiable, strictly increasing, and strictly concave on its

effective domain dom(U).

(b) There exists u0 ∈ [−∞, 0] such that dom(U) ⊂ (u0,+∞).

The effective domain dom(U) is the set of r ∈ R satisfying U(r) > −∞.

Given a utility function U , an H-semimartingale X, and a probability Q, we

define the set of admissible portfolios as follows

Aadm(α,U,X,Q) :={
H | H ∈ L(X), H �X ≥ −α & EQ

[
U−(α+ (H �X)T )

]
< +∞

}
.

(2.24)

When Q = P , X = S, and U is fixed, we simply denote Aadm(α, S).

The main goal for utility maximization problem is to find the optimal strategy

Ĥ ∈ Aadm(α,U,X,Q) that maximizes the following function

MaxH∈Aadm(x,U,X,Q) E
Q [U (x+H �XT )] = EQ

[
U
(
x+ Ĥ �XT

)]
. (2.25)
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2.6 Mathematical Models for Additional Information

In the literature, the additional information is usually modelled by a random time τ

(a positive random variable) that would represent the time of default, bankruptcy,

retirement, · · · , etc.. To incorporate the information from τ , probabilitist developed

two main-streams: initial enlargement of filtration and progressive enlargement of

filtration. In the thesis, we will restrict our attention to the informational market

in progressive enlargement of filtration.

2.6.1 Progressive Enlargement of Filtration

The framework of the progressive enlargement is suitable for formulating and char-

acterizing the problems associated with an additional information conveyed by ob-

servations of occurrence of a random time τ . Below, the elementary properties of

progressive enlargement of filtration will be introduced. For their proof, we refer to

Jeulin [83]. For a random time τ : Ω → R+, we denote by D the right-continuous

process Dt = I{τ≤t}, and by G = (Gt, t ≥ 0) where

Gt =
⋂
s>t

Hs ∨ σ(Du, u ≤ s) (2.26)

is the smallest right-continuous filtration which contains H and makes τ a stopping

time. We introduce the H-supermartingale Z and the H-strong supermartingale Z̃

(without right continuity)

Zt := P (τ > t|Ht), and Z̃t := P (τ ≥ t|Ht) (2.27)

and we denote by m the H-martingale

m = Z +Do,H, (2.28)

30



where Do,H is the H-dual optional projection of I[[τ,∞[[. Therefore,

Z̃+ = Z, ∆Do,H = (Z̃ − Z)I[[0,+∞[[, Z̃− = Z− = p,H(Z̃), on [[0,+∞[[. (2.29)

Remark 2.5: The decomposition Z = m − Do,H is, in general, different from the

Doob-Meyer decomposition Z = MZ − Dp,H, where MZ is a martingale and

Dp,H is a predictable increasing process. If τ avoids the H-stopping times, or if

all H-martingales are continuous, then Dp,H = Do,H and Z = m − Do,H is the

Doob-Meyer decomposition of Z.

The following theorem characterizes the precise relationship between H-local

martingales and G-local martingales on [[0, τ ]].

Proposition 2.4: [83] Let τ be a random time. Then the following hold:

(a) If X is an H-semimartingale, Xτ (i.e. X stopped at τ) is a G-semimartingale.

(b) If X is an H-local martingale, then

X̂t = Xt∧τ −
∫ t∧τ

0

1

Zs−
d〈X,m〉Hs (2.30)

is a G-local martingale.

Next, we shall study the compensator of the jump measure µ under G and the

canonical representation of Xτ in the progressive enlargement of filtration.

Proposition 2.5: Let µ be the jump measure of X and ν be its H-compensator.

Then, on [[0, τ ]], the G-compensator of µ is given by

νG :=
(
I[[0,τ ]] � µ

)p,G
=
MP
µ [Z̃|P̃(H)]

Z−
I[[0,τ ]] � ν. (2.31)

Proof. Due to Proposition 2.4, for any W ∈ P̃(H) such that |W |?µ ∈ A+
loc, we know

W ? (µ− ν)τ − 1

Z−
I[[0,τ ]] � 〈W ? (µ− ν),m〉H
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is a G-local martingale. Therefore, we calculate from Lemma 2.7 that

WI[[0,τ ]] ? µ −WI[[0,τ ]] ? ν −
WMP

µ [∆m|P̃(H)]

Z−
I[[0,τ ]] ? ν

= WI[[0,τ ]] ? µ−
WMP

µ [Z̃|P̃(H)]

Z−
I[[0,τ ]] ? ν ∈Mloc(G,P),

where we used the fact that Z− + ∆m = Z̃. Therefore, (2.31) follows.

Theorem 2.10: Let X be an H-semimartingale with the canonical representation

X = X0 +Xc + (x− h) ? µ+ h ? (µ− ν) +B.

Then the canonical representation of Xτ is given by

Xτ = X0 + X̂c + h ? (µG − νG) + (x− h) ? µG + B̃, (2.32)

where X̂c is defined via (2.30) and B̃ := Bτ+
I[[0,τ ]]
Z−

�〈Xc,m〉H+h
MP
µ [∆m|P̃(H)]

Z−
I[[0,τ ]]? ν.

Proof. By Proposition 2.5, we have

µG = I[[0,τ ]] � µ and νG =

(
1 +

MP
µ [∆m|P̃(H)]

Z−

)
I[[0,τ ]] � ν.

Therefore,

Xτ = X0 + I[[0,τ ]] �X
c + hI[[0,τ ]] ? (µ− ν) + (x− h) I[[0,τ ]] ? µ+ I[[0,τ ]] �B

= X0 + X̂c + h ? (µG − νG) + (x− h) ? µG + B̃,

where X̂c is defined via (2.30) and B̃ := Bτ+
I[[0,τ ]]
Z−

�〈Xc,m〉H+h
MP
µ [∆m|P̃(H)]

Z−
I[[0,τ ]]?ν.

It remains to show the process h
MP
µ [∆m|P̃(H)]

Z−
I[[0,τ ]] ? µ is locally integrable. Let

(σn)n≥1 be the localizing sequence for the G-locally bounded process Z−1
− I[[0,τ ]] (i.e.

Z−1
− I[[0,τ ]]∩[[0,σn]] ≤ n); and (Tn)n≥1 be the localizing sequence of V ar([X,m]). Then,
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we derive

E

|h|
∣∣∣MP

µ [∆m|P̃(H)]
∣∣∣

Z−
I[[0,τ ]] ? µσn∧Tn

 = E

|x|I{|x|≤1}

∣∣∣MP
µ [∆m|P̃(H)]

∣∣∣
Z−

I[[0,τ ]] ? µσn∧Tn


≤ nE

[
|x|I{|x|≤1}

∣∣∣MP
µ [∆m|P̃(H)]

∣∣∣I[[0,τ ]] ? µσn∧Tn

]
≤ nE

 ∑
0≤u≤σn∧Tn

|∆Xu|I{|∆Xu|≤1}|∆mu|


≤ nE [V ar([X,m])σn∧Tn ] < +∞.

This ends the proof of the theorem.

2.6.2 Honest Times

In the theory of enlargement of filtration, one class of random time playing important

role is honest time. One crucial feature of honest time is that the (H ′)-hypothesis

(i.e. every F-martingale is a G-semimartingale) is valid on the whole time interval

]0,+∞[. For a general random time τ and an H-semimartingale X, the process after

τ , X −Xτ may not be a G-semimartingale.

Below, we recall the definition of honest time (see [17], [83] and the references

therein).

Definition 2.19: A random time τ is H-honest, if for any t, there exists an Ht

measurable random variable Tt such that τI{τ<t} = TtI{τ<t}.

Now, we are collecting some fundamental results of honest times which will be

used later. For their proof, we refer to Jeulin [83].

Proposition 2.6: Let τ be a random time valued in R+ = [0,+∞]. The following

assertions are equivalent:

(a) τ is an H-honest time.

(b) τ coincides with an end of an H-optional set on {τ < +∞}.

(c) Z̃τ = 1, P − a.s. on {τ < +∞}.
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(d) P(G) is generated by P(H) and [[0, τ ]].

Remark 2.6: (a) The end of an optional set is honest.

(b) A finite honest time is the end of an optional set.

(c) If τ is honest and A is measurable, the variable τA defined by τA = τ on A,

τA = +∞ on Ac, is honest.

(d) A random variable τ is the end of an optional set if and only if there exists a

set of finite honest times (τn)n≥1 such that supn τn = τ.

Proposition 2.7: Let τ be an H-honest time. Then the following hold:

(a) If H is an P(G)-measurable process, then there exist two P(H)-measurable

processes J and K such that

HI[[0,+∞[[ = JI[[0,τ ]] +KI]]τ,+∞[[.

(b) If H is an O(G)-measurable process, then there exist two O(H)-measurable

processes U and W , and a progressive measurable process V such that

H = UI[[0,τ [[ + V I[[τ ]] +WI]]τ,+∞[[.

Accordingly, for a measurable process N , we have

(c) The G-predictable projection of N , denoted by p,G(N), satisfies:

p,G (N) I[[0,+∞[[ = p,H (NI[[0,τ ]]

) 1

Z−
I]]0,τ ]] + p,H (NI]]τ,+∞[[

) 1

1− Z−
I]]τ,+∞[[.

(d) The G-optional projection of N , denoted by o,GN , satisfies:

o,G (N) I[[0,+∞[[ = o,H (NI[[0,τ ]]

) 1

Z̃
I[[0,τ ]] + o,H (NI]]τ,+∞[[

) 1

1− Z̃
I]]τ,+∞[[.

The following theorem states the precise relationship between H-local martingale

and G-local martingale on the time interval ]0,+∞[.
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Theorem 2.11: Let τ be an H-honest time, then:

(a) G satisfies (H ′)-hypothesis, (i.e. every F-martingale is a G-semimartingale).

(b) For all H-local martingale X,

Yt :=

∫ t∧τ

0

1

Zs−
d〈X,m〉Hs −

∫ t∧τ

τ

1

1− Zs−
d〈X,m〉Hs

is a G-predictable process with finite variation and X := X − Y is a G-local

martingale.

Below, we investigate the compensator of a random measure on ]]τ,+∞[[.

Proposition 2.8: Let µ be the jump measure of X and ν its H-compensator. Then,

on ]]τ,+∞[[, the G-compensator of µ is given by

νGa :=
(
I]]τ,∞[[ � µ

)p,G
=

1−MP
µ [Z̃|P̃(H)]

1− Z−
I]]τ,∞[[ � ν (2.33)

Proof. Due to Theorem 2.11, for any |W | ? µ ∈ A+
loc, we know that

I]]τ,∞[[W ? (µ − ν) + (1− Z−)−1I]]τ,∞[[ � 〈W ? (µ − ν),m〉H is a G-local martingale.

Therefore, we calculate from Lemma 2.7 that

WI]]τ,∞[[ ? µ −WI]]τ,∞[[ ? ν +
WMP

µ [∆m|P̃(H)]

1− Z−
I]]τ,∞[[ ? ν

= WI]]τ,∞[[ ? µ−
WMP

µ [1− Z̃|P̃(H)]

1− Z−
I]]τ,∞[[ ? ν ∈Mloc(G,P),

where we used the fact that Z− + ∆m = Z̃. Therefore, (2.33) follows.

Theorem 2.12: The canonical representation of I]]τ,∞[[ �X is given by

I]]τ,∞[[ �X = X0 +Xc + h ? (µGa − νGa ) + (x− h) ? µGa +B, (2.34)
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where

Xc := I]]τ,∞[[ �X
c +

1

1− Z−
I]]τ,∞[[ � 〈Xc,m〉H,

B := I]]τ,∞[[ �B −
1

1− Z−
I]]τ,∞[[ � 〈Xc,m〉H − h

MP
µ [∆m|P̃(H)]

1− Z−
I]]τ,∞[[ ? ν.

Proof. We start by showing that h
MP
µ [∆m|P̃(H)]

1−Z− I]]τ,∞[[ ? µ is locally integrable. Let

(Tn) be the localizing sequence of V ar([X,m]). We get

E

|h|
∣∣∣MP

µ [∆m|P̃(H)]
∣∣∣

1− Z−
I]]τ,+∞[[ ? µTn

 = E

|x|I{|x|≤1}

∣∣∣MP
µ [∆m|P̃(H)]

∣∣∣
1− Z−

I]]τ,+∞[[ ? µTn


≤ E

[
|x|I{|x|≤1}

∣∣∣MP
µ [∆m|P̃(H)]

∣∣∣ ? µTn]
≤ E

 ∑
0≤u≤Tn

|∆Xu|I{|∆Xu|≤1}|∆mu|


≤ E [V ar([X,m])Tn ] < +∞.

Then, the proof of the theorem mimics the proof of Theorem 2.10. This ends the

proof of the theorem.
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Chapter 3

Viability versus Non-Arbitrage

In this chapter, we will discuss the exact relationship among non-arbitrage, viability

and numéraire portfolio without any assumption and for the general continuous-time

market model. Firstly, we establish the equivalence among the No-Unbounded-

Profit-with-Bounded-Risk condition (called NUPBR hereafter), the existence of the

numéraire portfolio, and the existence of the solution to the utility maximization

under an equivalent probability measure for any nice utility. Secondly, under some

mild assumptions on the model and the utility, we prove the equivalence between

NUPBR and the “local” existence of optimal portfolio. These results lead naturally

to two new types of viability that we call weak viability and local viability.

3.1 Problem Formulation

Here, we will discuss the three financial concepts of non-arbitrage, viability and

numéraire portfolio. Among these concepts, the numéraire portfolio is the most re-

cent concept that was introduced by Long in [106]. It is the portfolio with positive

value process such that zero is always the best conditional forecast of the numéraire-

dominated rate of return of every portfolio.
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What does the literature say about this relationship? For

discrete-time markets, the economic and financial literature provides the most pre-

cise results in this context that we summarize in the following.

Theorem 3.1: For discrete-time market models, the following are equivalent:

(a) The market is viable/Utility Maximization admits solution for a ”nice” von

Neumann-Morgenstern utility,

(b) There are no arbitrage opportunities,

(c) There exists an equivalent martingale measure (EMM hereafter),

(d) The numéraire portfolio exists.

The equivalence among (a), (b) and (c) was termed in the financial literature as

the Fundamental Theorem of Asset Pricing (FTAP hereafter) by Dybvig and Ross

(see Theorems 1 and 2 of [59]). This result goes back to Arrow and Debreu for

discrete markets (see [13] and [56]). In mathematical finance the FTAP stands for

the equivalence between (b) and (c), and for the rest of the thesis, this meaning

will be adopted. The equivalence between (a) and (b) in discrete-time for smooth

utilities was proved by [88] and [118]. The utility maximization problem has been

intensively investigated, under the assumption that (c) holds. This condition allows

authors to use the two rich machineries of martingale theory and convex duality.

These works can be traced back to [92], [66], [46] and [98], and the references therein

to cite few. The main results in this literature focus on finding assumptions on the

utility function for which duality can hold, and/or the solutions to the primal prob-

lem and its dual problem will exist.

The question of how the existence of optimal portfolio is connected to the absence of

arbitrage (weak or strong form) has been forgotten for the continuous-time context.

Recently, Frittelli proposed in [67] an interesting approach for this issue, while his

obtained results are not applicable in the context of [105].

The equivalence between (b) and (c) goes back to Kreps in [101], Harrison–Pliska
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in [70], and Dalang–Morton–Willinger in [44]. To obtain an analogous equivalence

in the most general framework, Delbaen and Schachermayer had to strengthen the

non-arbitrage condition (by considering NFLVR) while weakening the EMM (by

considering σ-martingale measures). Their approach established the very general

version of the FTAP in their seminal works [47] and [50].

Our Goal: The main aim of this chapter is to elaborate the equivalence among

all four assertions of Theorem 3.1 for the most general continuous-time framework

under no assumption by choosing adequate notions and formulations. This main

result is detailed in Section 3.2, and is based on a key lemma that is important in

itself. In fact this lemma closes the existing gap in the tight connection between (a)

and (b) without changing the underlying probability measure (the original belief).

The proof and the extensions of this lemma are given in Section 3.3.

3.2 NUPBR, Weak Viability and Numéraire Portfolio

In order to elaborate our main results, we start with describing the mathematical

framework and formalizing mathematically the economic concepts used through-

out this chapter. Our mathematical model, herein, is the same as the one defined

in Chapter 2, Section 2.5. For the reader’s convenience, we recall the most im-

portant ingredients of this model. Our model is based on a filtered probability

space (Ω,A,F, P ), where the filtration, F := (Ft)0≤t≤T , satisfies the usual condi-

tions of right continuity and completeness. On this stochastic basis, we consider a

d-dimensional semi-martingale (St)0≤t≤T , that represents the discounted price of d

risky assets. The set of F-predictable processes H that are S-integrable (i.e. H � S

exists) in the sense of semimartingale will be denoted by L(S).

Throughout this section, we will focus on utility functions U satisfying the Inada’s

conditions and the Kramkov and Schachermayer’s asymptotic elasticity assumption
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defined in [100]:

dom(U) = (0,+∞), U ′(0) = +∞, U ′(∞) = 0, and lim sup
x→∞

xU
′
(x)

U(x)
< 1. (3.1)

These utilities were termed by ”nice” von Neumann-Morgenstern utilities. For any

x > 0, we define the set of wealth processes obtained from admissible strategies with

initial capital x by

X (x) :=
{
X ≥ 0

∣∣ ∃ H ∈ L(S), X = x+H · S
}
. (3.2)

Given a utility function U , a semimartingale X, and a probability Q, we define the

set of admissible portfolios as follows

Aadm(α,U,X,Q) :={
H | H ∈ L(X), H ·X ≥ −α & EQ

[
U−(α+ (H ·X)T )

]
< +∞

}
.

(3.3)

When Q = P , X = S, and U is fixed, we simply denote Aadm(α, S).

Below, for the reader’s convenience, we recall the definitions of NUPBR, σ-martingale

density and numéraire portfolio.

Definition 3.1: The semi-martingale S is said to satisfy the No-Unbounded-Profit-

with-Bounded-Risk (called NUPBR(P ), hereafter) condition if the following set

K1 := {(H · S)T | H � S ≥ −1}, (3.4)

is bounded in L0(P ) (i.e. bounded in probability under P ).

Definition 3.2: A σ-martingale density for S is any positive local martingale, Z,

such that there exists a real-valued predictable process φ satisfying 0 < φ ≤ 1

and Z(φ ·S) is a local martingale. The set of σ-martingale densities for S will be
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denoted by

Zloc(S) := {Z ∈Mloc(P )
∣∣∣ Z > 0, ZS is a σ-martingale }. (3.5)

Definition 3.3: Let Q be a probability measure. A process X̃ ∈ X (x0) is called

a numéraire portfolio under Q if X̃ > 0 and for every X ∈ X (x0), the relative

wealth process X/X̃ is a Q-supermartingale .

If Q = P , then X̃ is simply called the numéraire portfolio.

In the following, we will state our principal theorem of this chapter, and discuss its

novelties by comparing it to the existing literature. Afterwards, we will provide its

proof and related technical results.

3.2.1 The Main Theorem and Its Interpretations

Below, we state the principal result of this chapter.

Theorem 3.2: The following properties are equivalent:

(i) S satisfies the NUPBR condition.

(ii) The σ-martingale density for S is not empty.

(iii) There exists a probability Q ∼ P , such that for any utility U satisfying (3.1)

and any x ∈ dom(U), there exists θ̂ ∈ Aadm(x, U, S,Q) such that

maxθ∈Aadm(x,U,S,Q)E
QU
(
x+ (θ · S)T

)
= EQU

(
x+ (θ̂ · S)T

)
< +∞. (3.6)

(iv) For any ε > 0, there exists Q̂ε ∼ P such that E|dQ̂εdP − 1| ≤ ε, and for any

utility U satisfying (3.1) and any x ∈ dom(U), there exists θ̂ε ∈ Aadm(x, U, S, Q̂ε)

such that

max
θ∈Aadm(x,U,S,Q̂ε)

EQ̂εU
(
x+ (θ · S)T

)
= EQ̂εU

(
x+ (θ̂ε · S)T

)
< +∞. (3.7)
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(v) For any ε ∈ (0, 1), there exist Q̃ε ∼ P and θ̃ε ∈ Aε,1 := Aadm(1, log, S, Q̃ε)

such that E|dQ̃εdP − 1| ≤ ε and

maxθ∈Aε,1 E
Q̃ε log

(
1 + (θ · S)T

)
= EQ̃ε log

(
1 + (θ̃ε · S)T

)
< +∞. (3.8)

(vi) The numéraire portfolio exists.

Interpretations of the Main Theorem:

(a) The innovation of this theorem lies in the equivalence among assertions (i), (iii),

(iv), (v) and (vi). The equivalence between (i) and (ii) is exactly Theorem 2.6 of

[137] on which our proof relies heavily on the one hand. On the other hand, by

adding assertion (ii), we show how Theorem 3.1 becomes in our general context. In

our view, Theorem 3.2 is very important from the financial economic side and the

mathematical finance side. Below, we will detail these two views.

(b) From the financial/economic side, our theorem is a generalization of Theorem

3.1 to the most complex market model with no assumption. In fact, by substituting

the viability under an equivalent belief and the NUPBR condition to assertions

(a) and (b) of Theorem 3.1 respectively, we obtained similar important result for

continuous-time framework. Furthermore, our statement (iii) claims that any agent

whose preference fulfills (3.1) can find optimal net trade under the same equivalent

belief. This belief can be chosen as close to the real-world belief as we want (but

might not be equal). This enhances our economic interpretation of the statement

(iii) given by the following.

Definition 3.4: A market is weakly viable when there exist an agent —whose

utility fulfills (3.1)— and an initial capital for which the corresponding optimal

portfolio exists under an equivalent probability measure.

It is worth mentioning that the equivalence between assertions (b) and (d) of The-

orem 3.1 was proved by Long in [106], and was extended afterwards to general and

different contexts by many scholars. For details, we refer the reader to the works
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of Artzner [14], Becherer [18], Christensen and Larsen [42], Karatzas and Kardaras

[90], Korn et al. [97] and the references therein.

(c) From the mathematical finance perspective, the equivalence between (i) and (vi)

of the theorem was established in [18], [42] and [90]. For this part, our originality lies

in the method used to prove this equivalence. In fact our approach is much shorter,

and much less technical than the one of [90] (our proof does not use the semimartin-

gale characteristics nor the measurable selection theorem that are very powerful

tools but not easy to handle). Furthermore, Becherer and Christensen/Larsen (see

[18] and [42]) connected these two assertions to the existence of growth-optimal

portfolio and the existence of the solution to the log-utility maximization. A sum-

mary of these results is given by Hulley and Schweizer (see Theorem 2.3. of [74]),

where the authors stated that the assertions (i), (vi), and

(vii) The growth-optimal portfolio Xgo exists,

are equivalent. If furthermore

sup
{
E
[
logXT

] ∣∣∣ X ∈ X (1), X− > 0, and E
[
(logXT )−

]
<∞

}
<∞, (3.9)

then the properties (i), (vi), and (vii) are also equivalent to

(viii) The existence of the solution of the log-utility maximization.

(d) Theorem 3.2 proposes a new formulation for which the equivalence among the

above four properties holds without any assumption and for any utility satisfying

(3.1) –not only the log utility–. This formulation uses the appropriate change of

probability. More importantly, the set of equivalent probabilities —under which

utilities satisfying (3.1) admit optimal portfolios— is variation-dense. The change

of probability measure has been known as a powerful probabilistic technique used

in stochastic calculus to overcome integrability difficulties. Thus, mathematically

speaking, the change of probability in Theorem 3.2 is a natural and adequate for-

mulation that allowed us to establish the exact connection between the viability
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and the NUPBR with no assumption —such as (3.9)— on the model. It is worth

mentioning that the utility maximization problem might have no solution (even for

the log utility) for models satisfying the NUPBR (see Example 4.3 in [42]). This

explains the intuitive mathematical idea that motivated this change of probability.

Our next question in this discussion is: What is the economic meaning of this prob-

ability change? In order to answer this question, we need to go back to financial

economics, where scholars call the probability measures by agents’ subjective be-

lieves. In this literature, the change of probability measures/believes has been well

received and adopted since a while, and the robust/uncertainty models and the ran-

dom utility theory are among the successful areas of economics in which the change

of probability is central. In this spirit of random utility theory, our assertion (iii)

says that the market’s viability is achieved by a random field utility for which (3.1)

is fulfilled pathwise. In mathematical terms, assertion (iii) is equivalent to

(iii’) There exists a random field utility Ũ(ω, x) and θ̃ ∈ Aadm(x, Ũ) such that

Ũ(ω, .) is a utility fulfilling (3.1) and

max
θ∈Aadm(x,Ũ)

EŨ
(
x+ (θ · S)T

)
= EŨ

(
x+ (θ̃ · S)T

)
.

For other situations —where the change of probability is economicly motivated and

strongly supported— and for the random utility theory literature, we refer the reader

to [35] and the references therein.

3.2.2 Proof of the Main Theorem

The proof of the main theorem is based essentially on five lemmas that we start

with. The first three lemmas are dealing with the Fatou convergence of processes

that was defined in Definition 5.2 of Föllmer and Kramkov [62], while the fourth

lemma deals with a supermartingale property. The fifth lemma states our second

contribution in this chapter.
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The following lemma is a variant of Kolmos’ argument and is borrowed from [47].

Lemma 3.1: (see Lemma A1.1 in [47])

Let (fn) be a sequence of [0,+∞[ valued measurable functions on a probability

space (Ω,F , P ). There is a sequence gn ∈ conv(fl, l ≥ n) such that gn converges

almost surely to a [0,+∞] valued function g, and the following properties hold:

(a) If conv(fn, n ≥ 1) is bounded in L0, then g is finite almost surely,

(b) If there are c > 0 and δ > 0 such that for all n

P (fn > c) > δ,

then P (g > 0) > 0.

Definition 3.5: Let J be a dense subset of R+. A sequence of processes (Xn) is

called Fatou convergent on J to a process X if (Xn) is uniformly bounded from

below, and if for any t ≥ 0 we have

Xt = lim sup
s↓t,s∈J

lim sup
n→∞

Xn
s = lim inf

s↓t,s∈J
lim inf
n→∞

Xn
s .

If J = R+, the sequence (Xn)n≥1 is called simply Fatou convergent.

The dynamic version of Lemma 3.1 can be found in Föllmer and Kramkov [62] and

is recalled below.

Lemma 3.2: (a) Let (Xn)n≥1 be a sequence of non-negative supermartingales.

Let J be a dense countable subset of R+. Then, there exists a sequence Yn ∈

conv(Xn, Xn+1, · · · ) and a supermartingale Y such that Y0 ≤ 0 and (Yn)n≥1 is

Fatou convergent on J to Y.

(b) Let (An)n≥1 be a sequence of increasing processes such that An0 = 0. There

exists a sequence Bn ∈ conv(An, An+1, · · · ) and an increasing process B with val-

ues in R+ such that (Bn)n≥1 is Fatou convergent to B. If there are T > 0, a > 0

and δ > 0 such that P (AnT > α) > δ for all n ≥ 1, then P (BT > 0) > 0.
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The importance of this lemma lies mainely in the optional decomposition of Kramkov

(see [100]), that we will use in our proof. In fact, we will use its weakest form that

was elaborated by Stricker and Yan in Theorem 2.1 of [136], where the authors used

the set Zloc(S) instead of the set of σ-martingale measures. As a direct consequence

of Lemma 3.2 and Theorem 2.1 of [136], we obtain the following

Lemma 3.3: Suppose that Zloc(S) 6= ∅. Let (θn)n≥1 be such that θn ∈ L(S) and θn ·

S ≥ −1. Then, there exist φn ∈ conv(θk, k ≥ n), θ̂ ∈ L(S), and a nondecreasing

process C such that θ̂ · S ≥ −1, C0 = 0, and

1 + φn · S is Fatou convergent to 1 + θ̂ · S − C. (3.10)

The following lemma is dealing with a supermartingale property.

Lemma 3.4: Let X be any RCLL semimartingale, and π̃ ∈ L(X) such that E(π̃ ·

X) > 0. Then, the following are equivalent:

(a) For any π ∈ L(X) such that E(π ·X) ≥ 0, and any stopping time, τ , we have

E
[E(π ·X)τ
E(π̃ ·X)τ

]
≤ 1. (3.11)

(b) For any π ∈ L(X) such that E(π · X) ≥ 0, the ratio E(π · X)/E(π̃ · X) is a

supermartingale.

Proof. The proof of (b) =⇒ (a) is obvious and will be omitted. Suppose that

assertion (a) holds, and consider π ∈ L(X) such that E(π ·X) ≥ 0. Then, for any

pair of stopping times, τ and σ, such that τ ≤ σ P − a.s. and A ∈ Fτ , we put

π := π̃I]]0,τA]] + πI]]τA,+∞[[, τA :=

 τ on A

+∞ on Ac
.

Then, we easily calculate
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E(π ·X)σ
E(π̃ ·X)σ

=
E(π̃ ·X)τ
E(π̃ ·X)σ

E(π ·X)σ
E(π ·X)τ

IA + IAc .

Therefore, a direct application of (3.11) for π and σ, we obtain

E
{E(π̃ ·X)τ
E(π̃ ·X)σ

E(π ·X)σ
E(π ·X)τ

IA

}
≤ P (A),

for any A ∈ Fτ . Hence, the supermartingale property for E(π · X)
(
E(π̃ · X)

)−1

follows immediately, and the proof of the lemma is achieved.

Now, we state our Key Lemma in this chapter that will be interpreted econom-

ically, proved, and extended to other types of utilities in Section 3.3.

The Key Lemma Let U be a utility function satisfying (3.1). Suppose that there

exists a sequence of stopping times (Tn)n≥1 that increases stationarily to T and

xn > 0 such that

sup
θ∈Aadm(xn,STn )

EU
(
xn + (θ · S)Tn

)
< +∞, ∀ n ≥ 1. (3.12)

Then, the following are equivalent:

(i) There exists a sequence of stopping times (τn)n≥1 that increases stationarily

to T such that for any n ≥ 1 and any initial wealth x0 > 0, there exists θ̂(n) ∈

Aadm(x0, S
τn) satisfying

maxθ∈Aadm(x0,Sτn )EU
(
x0 + (θ · S)τn

)
= EU

(
x0 + (θ̂(n) · S)τn

)
< +∞. (3.13)

(ii) S satisfies the NUPBR condition.

The remaining part of this section is devoted to the proof of Theorem 3.2.

Proof of Theorem 3.2:

The proof of this theorem will be achieved after three steps. The first step will focus

on proving (i)⇐⇒ (ii)⇐⇒ (iii). The second step will prove (i)⇐⇒ (iv)⇐⇒ (v),

47



while the last step will deal with (v) =⇒ (vi) =⇒ (i).

1) The equivalence (i) ⇐⇒ (ii) is exactly Takaoka’s result (see Theorem 2.6 in

[137]), and its proof will be omitted.

The proof of (i)⇐⇒ (iii) boils down to the proof of (i) =⇒ (iii), since the reverse

implication follows directly from the Key Lemma by considering Q instead of P

and taking τn = T for all n ≥ 1. Suppose that assertion (i) holds. Then, due to

the equivalence between (i) and (ii), we consider Z ∈ Zloc(S) (i.e. a σ-martingale

density for S) and put

Q :=
ZT

E [ZT ]
· P ∼ P. (3.14)

Let U be a utility function satisfying (3.1) and x ∈ dom(U). For any θ ∈ Aadm(x, U, S,Q),

Z(x+ θ · S) is a nonnegative local martingale, and hence a supermartingale. Then,

the concavity of U leads to

EQU (x+ (θ · S)T ) ≤ U(x/E [ZT ]) < +∞, ∀ θ ∈ Aadm(x, U, S,Q). (3.15)

Therefore, a direct application of the Key Lemma under Q implies the existence of

a sequence of stopping times (τn)n≥1 that increases stationarily to T and a sequence

θ̂(n) ∈ Aadm(x, U, Sτn , Q) such that

sup
θ∈Aadm(x,U,Sτn ,Q)

EQU (x+ (θ · S)τn) = EQU
(
x+ (θ̂(n) · S)τn

)
. (3.16)

Thus, thanks to Lemma 3.3, we deduce the existence of (al)l≥1 (al ∈ (0, 1)), θ̂ ∈

L(S), and a nondecreasing RCLL process C such that C0 = 0,

mn∑
l=n

al = 1, and x+

mn∑
l=n

alθ̂
(l) · Sτl is Fatou convergent to x+ θ̂ · S − C. (3.17)

Hence, assertion (iii) will follow immediately once we prove that θ̂ belongs to
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Aadm(x, U, S,Q) and it is the optimal solution to (3.6). We start by proving the

admissibility of θ̂. Due to Fatou’s lemma and the concavity of U , we get

EQU−(x+ θ̂ · ST ) ≤ lim inf
n
EQU−

(
x+

mn∑
l=n

alθ̂
(l) · Sτl

)

≤ lim inf
n

mn∑
l=n

alE
QU−

(
x+ θ̂(l) · Sτl

)
.

(3.18)

If U(∞) ≤ 0, then we have

mn∑
l=n

alE
QU−

(
x+ θ̂(l) · Sτl

)
= −

mn∑
l=n

alE
QU

(
x+ θ̂(l) · Sτl

)
≤ −U(x) < +∞,

and the admissibility of θ̂ follows immediately from this inequality and (3.18). Sup-

pose that U(+∞) > 0. Then, there exists a real number r such that U(r) > 0, and

the following hold

lim inf
n

mn∑
l=n

alE
QU−

(
x+ θ̂(l) · Sτl

)
≤ lim inf

n

mn∑
l=n

alE
QU

(
r + x+ θ̂(l) · Sτl

)
− U(x)

≤ U
(
r + x

E[ZT ]

)
− U(x) < +∞.

(3.19)

A combination of these inequalities and (3.18) completes the proof of θ̂ ∈ Aadm(x, U, S,Q).

Furthermore, we get U(x + θ̂ · ST ) ∈ L1(Q). Next, we will prove the optimality of

the strategy θ̂. To this end, we will start by proving

EQU
(
x+ θ̂ · ST

)
≥ lim sup

n
EQU

(
x+

mn∑
l=n

alθ̂
(l) · Sτl

)
. (3.20)

If U(+∞) ≤ 0, then the above inequality follows from Fatou’s lemma. Suppose that

U(+∞) > 0. In this case, by mimicking the proof of Lemma 3.2 of [98], we easily
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prove that

{
U(yn) : yn := x+

mn∑
l=n

alθ̂
(l) · Sτl , n ≥ 1

}
is Q-uniformly integrable. (3.21)

Denote the inverse of U by φ : (U(0+), U(+∞)) → (0,+∞). Then we derive

EQ[φ(U(yn))] ≤ x/E(ZT ) and due to l’Hospital rule and (3.1) we have

lim
x→U(+∞)

φ(x)

x
= lim

y→+∞

y

U(y)
= lim

y→+∞

1

U ′(y)
= +∞.

Then, the uniform integrability of the sequence (U(yn))n≥1 follows from the La-

Vallée-Poussin argument. Then, (3.20) follows immediately from this uniform inte-

grability and (3.17). Therefore, we obtain

EQU
(
x+ θ̂ · ST

)
≥ lim sup

n
EQU

(
x+

mn∑
l=n

alθ̂
(l) · Sτl

)

≥ lim sup
n

mn∑
l=n

alE
QU

(
x+ θ̂(l) · Sτl

)
≥ lim sup

n

mn∑
l=n

alE
QU (x+ εθ · Sτl) (3.22)

≥ lim inf
n

mn∑
l=n

alE
QU (x+ εθ · Sτl)

≥ EQU (x+ εθ · ST ) (3.23)

≥ (1− ε)U(x) + εEQU (x+ θ · ST ) ,

for any θ ∈ Aadm(x, U, S,Q), and any ε ∈ (0, 1). It is clear that the optimality of

θ̂ follows immediately from the above inequalities by letting ε increases to one. It

is obvious that (3.22) follows from (3.16), while (3.23) follows from Fatou’s lemma

and U(x + ε(θ · S)τn) ≥ U((1 − ε)x) > −∞. This proves assertion (iii), and the

proof of (i)⇐⇒ (iii) is achieved.

2) Herein, we will prove (i) ⇐⇒ (iv) ⇐⇒ (v). Since the log-utility satisfies (3.1),

then it is easy to see that the proof of (i)⇐⇒ (v) is similar to the proof of (i)⇐⇒
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(iv). Thus, we will focus on proving this latter equivalence only.

Suppose that assertion (i) holds. Then, assertion (iv) follows immediately as soon

as we find Qδ equivalent to P whose density converges to one in L1(P ) when δ goes

to zero, and the utility maximization problem admits solution under Qδ for any

δ ∈ (0, 1). To prove this latter claim, we put

q :=
ZT

E[ZT ]
, qδ :=

q

δ + q
, Zδ :=

qδ
E[qδ]

:= qδCδ, Qδ := Zδ · P ∼ P, (3.24)

for any δ ∈ (0, 1). By examining closely the proof of (i) =⇒ (iii), we can easily

conclude that the utility maximization problem admits solution under Qδ whenever

Qδ satisfies similar inequality as in (3.15). Thus, for any utility U satisfying (3.1),

any x ∈ dom(U), any δ ∈ (0, 1), and any θ ∈ Aadm(x, U, S,Qδ), we derive

EQδU (x+ (θ · S)T ) ≤ U
(
EQδ [x+ (θ · S)T ]

)
≤ U

(
E [ZT [x+ (θ · S)T ]]

δE(qδ)E(ZT )

)
≤ U

(
x

δE(qδ)E[ZT ]

)
< +∞.

Hence, this allows us to conclude that for any δ ∈ (0, 1) and any utility U satisfying

(3.1), the utility maximization problem admits solution under Qδ. To conclude the

proof of (i) =⇒ (iv), we will prove that Zδ converges to one in L1(P ) when δ goes

to zero. Thanks to

1 > (Cδ)
−1 = E

(
q

δ + q

)
≥ E

[
q

1 + q

]
=: ∆0,

we deduce that Zδ is positive, bounded by (∆0)−1, and converges almost surely to

one when δ goes to zero. Then, for any ε > 0, the dominated convergence theorem

implies the existence of δ := δ(ε) > 0 such that E|Zδ(ε)−1| < ε. This ends the proof

of (i) =⇒ (iv). The reverse implication follows from (iv) =⇒ (iii) =⇒ (i), and the

proof of (i)⇐⇒ (iv)⇐⇒ (v) is completed.

3) In this last part, we will prove (v) =⇒ (vi) =⇒ (i). Suppose that assertion (v)
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holds (and hence we have Zloc(S) 6= ∅). Then, it is easy to see that assertion (v)

implies the existence of the numéraire portfolio under each Qε. Therefore, for any

n ≥ 1, there exist 0 < Zn = Cnqn (here qn = n
n+q−1 where q is given by (3.24)) that

converges to one in L1(P ), and Wn the numéraire portfolio for S under Qn := Zn ·P .

Hence, a direct application of Lemma 3.3 leads to the existence of (βn)n≥1 (βn ∈

(0, 1)), θ̃ ∈ L(S), and a nondecreasing and RCLL process C such that C0 = 0,

mn∑
k=n

βl = 1, and

mn∑
k=n

βkWk is Fatou convegent to W̃ = x+ θ̃ · S − C =: Ŵ − C.

Let W ∈ X (x) be a wealth process, b ∈ (0, 1), α > 1, and τ be a stopping time.

Then, there exists a sequence of stopping times (τk)k≥1 that decreases to τ and takes

values in
(
IQ+ ∩ [0, T [

)
∪ {T} such that

on {τ < T} T ≥ τk > τ, and on {τ = T} τk = T.

Due to Fatou’s Lemma, we obtain

E
(
Wτ

Ŵτ
∧ α
)
≤ E

(
Wτ

W̃τ
∧ α
)
≤ lim inf

n
lim inf

k
E

(
Wτk∑mn

l=n βlWl(τk)
∧ α
)

≤ lim inf
n

lim inf
k
E
([mn∑

l=n

βl
Wτk

Wl(τk)

]
∧ α
)
.

Since qn := n
n+q−1 is increasing in n, then for any l ≥ n and any k we have

{E(qn|Fτk) > b} ⊂ {E(ql|Fτk) > b} = {1 < b−1Zl(τk)

Cl
= E(ql

∣∣Fτk)b−1}.
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Hence, we derive

E
([mn∑

l=n

βl
Wτk

Wl(τk)

]
∧ α
)

= E
([mn∑

l=n

βl
Wτk

Wl(τk)

]
∧ αI{E(qn|Fτk )≤b}

)
+

+E
([mn∑

l=n

βl
Wτk

Wl(τk)

]
∧ αI{E(qn|Fτk )>b}

)
≤ αP

(
E(qn|Fτk) ≤ b

)
+ b−1E

(mn∑
l=n

βl
Zl(τk)

Cl

Wτk

Wl(τk)

)
≤ αP

(
E(qn|Fτk) ≤ b

)
+ b−1

mn∑
l=n

βl
Cl
.

Since both Cn and qn converge to one when n goes to infinity, and E(qn|Fτk) con-

verges to E(qn|Fτ ) when k goes to infinity, then it is obvious that

αP
(
E(qn|Fτk) ≤ b

)
+ b−1

mn∑
l=n

βl
Cl

converges to b−1,

when k and afterwards n goes to infinity. Hence, we deduce that

E

(
Wτ

Ŵτ

∧ α
)
≤ b−1,

for any b ∈ (0, 1), any α > 1, and any stopping time τ . Thus, by taking b to one

and α to +∞ and using Fatou’s lemma, we deduce that

E

(
Wτ

Ŵτ

)
≤ 1, for any stopping time τ.

A straightforward application of Lemma 3.4 leads to the conclusion that Ŵ is the

numéraire portfolio under P . This completes the proof of assertion (vi).

The proof of the remaining implication (i.e. (vi) =⇒ (i)) is easy, and will be detailed

below for the sake of completeness. Suppose that there exists a numéraire portfolio

W ∗. Then, for any θ ∈ L(S) such that 1 + θ · S ≥ 0,

1 + θ · S
W ∗

is a nonnegative supermartingale.
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As a result, for all c > 0, we obtain

P
(1 + (θ · S)T

W ∗T
> c
)
≤ c−1E

{1 + (θ · S)T
W ∗T

}
≤ c−1.

This clearly implies the boundedness of K(1) in probability and hence S satisfies

the NUPBR. This ends the proof of the theorem.

3.3 The Proof of The Key Lemma and Its Extensions

This section contains three subsections, where we prove the Key Lemma, and de-

velop two of its extensions. The condition (3.12), in the Key Lemma, is vital for

the analysis of the utility maximization problem (see [92], [93], and [98] and the

references therein). Furthermore, (3.12) is irrelevant for the most innovative part of

our lemma which is (i) =⇒ (ii). The reverse implication follows from the seminal

work of Kramkov and Schachermayer (see [98]), and for the sake of completeness,

details will be provided in the proof below. Below, in three parts a), b) and c) we

will discuss the meaning of the Key Lemma, and the importance of its extensions.

(a) What is the meaning of the Key Lemma? In virtue of Theorem 3.2, the

Key Lemma proposes —under assumption (3.12)— an alternative to the equiva-

lence between the NUPBR and the weak viability when working with the real-world

probability measure is not an option. This lemma claims that, under mild assump-

tions, one can use the original belief P and look for the optimal portfolio “locally”

instead of globally. The result of the lemma supports our definition of market’s

local viability as the market’s viability up to a sequence of stopping times that in-

creases stationarily to T (respectively increases to infinity for the infinite horizon

context). Furthermore, as mentioned in the introduction, this lemma closes the ex-

isting gap in quantifying the tightest relationship between the absence of arbitrage

and the utility maximization à la Delbaen and Schachermayer (i.e. without changing
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measure, but by weakening and/or strengthening the concepts under consideration).

(b) Can NFLVR be substituted into NUPBR in the Key Lemma? The

stability of the NUPBR under the localization is a direct consequence of Takaoka’s

Theorem (see Theorem 2.6 in [137]). In contrast to the NUPBR, Non-Arbitrage

or NFLVR can hold locally and fail globally. Thus, the existence of the optimal

portfolio might not illuminate arbitrage opportunuities in the model and hence

NFLVR might be violated. For the sake of completeness, below we provide an

example.

Example 3.1 Consider the market model where there is one stock on the finite time

horizon [0, 1], with S0 = 1 and S satisfying the stochastic differential equation

dSt = (1/St)dt+dβt. Here β is a standard one-dimensional Brownian motion, and

hence S is the three-dimensional Bessel process. This example was considered in

many papers starting with [48], [6], and [90]. Precisely, in [90] (see Example 4.6),

the authors proved that this market model admits arbitrage opportunities and the

numéraire portfolio given by 1/S = E(− 1
S ·β) (which is a local martingale). Here,

with simple calculation, we will prove that the log-utility maximization problem

admits solution for this model. It is worth mentioning that —in general— the

existence of numéraire portfolio does not guarantee the existence of the optimal

portfolio (for more details about this fact, we refer the reader to Example 4.3 of

[42]). If we put

dXt := dSt/St = (1/S2
t )dt+ (1/St)dβt,

then it is easy to calculate

log(E(X)T ) =

∫ T

0

1

Su
dβu +

1

2

∫ T

0

1

S2
u

du, and E

∫ T

0

1

S2
u

du ≤ 8 + T < +∞.

This proves that 1
S · β is a square integrable martingale and log(E(X)T ) is an

integrable random variable. Hence, by combining this with the supermartingale
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property of 1+θ·S
E(X) —for any θ ∈ L(S) such that 1 + θ · S > 0— we derive

E [log(1 + θ · S1)]− E [log(E(X)1)] = E
[
log
(

1+θ·S1
E(X)1

)]
≤ log

(
E
[

1+θ·S1
E(X)1

])
≤ 0.

Thus, for this model, the optimal portfolio for the log-utility exists, while there

is no equivalent martingale measure.

(c) Why are the extensions of The Key Lemma important? In our view,

the Key Lemma is important for two reasons. The first reason is its role in the

proof of Theorem 3.2 which is vital. Then, the extension of this theorem to the

framework of lemmas 3.5-3.6 will be an obvious motivation for the extension of

the Key Lemma. However, extending Theorem 3.2 certainly will add technical

complexity in the formulation that will make our result difficult to interpret since

the main ideas will be buried with technical conditions. The second reason —

which is our main leitmotif for extending the Key Lemma — resides in studying

the dependence structures of the optimal portfolio on the model’s factors such as

initial wealth, horizon, ..., etcetera. The minimal assumption for the development

of these structures is the existence of the optimal portfolio (at least locally), and

the use of convex duality —that requires the NUPBR condition— is crucial for

the analysis. Our Lemmas 3.5-3.6 claim that the NUPBR holds automatically in

this context. Furthermore, for the exponential case, the martingale density —dual

process— possesses a nice property of local integrability.

3.3.1 Proof of The Key Lemma:

We will start proving the easier part of the lemma, which is (ii) =⇒ (i). Suppose

that S satisfies the NUPBR condition. Thanks to Takaoka’s Theorem (see Theorem

2.6 in [137]), we conclude the existence of a local martingale Z > 0 and a real-valued

predictable process ϕ such that 0 < ϕ ≤ 1 and Z(ϕ · S) ∈ Mloc(P ). Then, for any

θ ∈ L(S) we have θ · S = θϕ · Sϕ where θϕ := θ/ϕ and Sϕ := ϕ · S. Thus, without
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loss of generality, we assume that ZS is a local martingale. Consider a sequence of

stopping times, (σn)n≥1, that increases stationarily to T such that both Zσn and

ZσnSσn are martingales. Put

Qn := Zσn · P and τn := Tn ∧ σn ↑ T.

Then, Qn is an equivalent martingale measure for Sσn . Since θI[[0,τn]] ∈ Aadm(xn, S
Tn)

whenever θ ∈ Aadm(xn, S
τn), we derive

sup
θ∈Aadm(xn,Sτn )

EU
(
xn+(θ ·S)τn

)
≤ sup

ψ∈Aadm(xn,STn )

EU
(
xn+(ψ ·S)Tn

)
< +∞, ∀n.

Therefore, a direct application of Theorems 2.1 and 2.2 of [98] implies that for any

n ≥ 0 and any initial wealth x0 > 0, there exists an x0-admissible optimal strategy

θ̂(n) for Sτn , such that

maxθ∈Aadm(x0,Sτn )EU
(
x0 + (θ · S)τn

)
= EU

(
x0 + (θ̂(n) · S)τn

)
< +∞.

This proves assertion (i). In the remaining part of the proof, we will focus on proving

(i) =⇒ (ii). Suppose that assertion (i) holds, and consider x0 = 1 + r such that

r ∈ dom(U). Then, there exists θ̂(n) ∈ Aadm(1 + r, Sτn) such that

maxθ∈Aadm(1+r,Sτn )EU
(

1 + r + (θ · S)τn

)
= EU

(
1 + r + (θ̂(n) · S)τn

)
< +∞.

For the sake of simplicity, we put τ := τn and θ̂ := θ̂(n) in what follows. In order to

prove the NUPBR for Sτ , we proceed by assuming that

K := {(H · S)τ |H is a 1-admissible strategy for Sτ}

is not bounded in L0(P ). Therefore, there exist a sequence of 1-admissible strategy

(θm)m≥1, a sequence of positive real numbers, (cm)m≥1, that increases to +∞, and
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α > 0 such that

P
(

(θm · S)τ ≥ cm
)
> α > 0.

Consider a sequence of positive numbers, (δm)m≥1, such that

0 ≤ δm → 0, and δmcm → +∞.

Then, put

Xm := δm(θm · S)τ ≥ −δm, for all m ≥ 1.

Hence, an application of Kolmos’s argument to (Xm + δm)m≥1 (see Lemma 3.1)

leads to the existence of a sequence of random variables, (gk)k≥1, such that

0 ≤ gk :=

Nk∑
m=k

αmXm +

Nk∑
m=k

αmδm ∈ conv
(
Xm + δm, m ≥ k

)
,

and gk converges almost surely to X̃ ≥ 0, with P (X̃ > 0) > 0.

Since yk :=

Nk∑
m=k

αmδm converges to zero, we conclude that

−yk ≤ X̃k :=

Nk∑
m=k

αmδm(θm · S)τ converges to X̃ P − a.s., and

−(1 + r)(1− yk) ≤ X̂k := (1− yk)(θ̂ · S)τ converges to (θ̂ · S)τ P − a.s.

Consider the new trading strategies

θ̃(k) :=

Nk∑
m=k

αmδmθm +
(

1−
Nk∑
m=k

αmδm

)
θ̂ =

Nk∑
m=k

αmδmθm + (1− yk)θ̂.

Then, it is easy to check that 1 + r + θ̃(k) · Sτ = 1 + r + X̃k + X̂k ≥ ykr > 0 (due

mainly to −yk ≤ X̃k and −(1+r)(1−yk) ≤ X̂k). Furthermore, due to the concavity
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of U , we have

U
(

1 + r + (θ̃(k) · S)τ

)
= U

(
1 + r + X̃k + X̂k

)
= U

(
1 + r + X̃k + (1− yk)(θ̂ · S)τ

)
≥ U

(
1 + r − yk + (1− yk)(θ̂ · S)τ

)
= U

(
ykr + (1− yk)

[
1 + r + (θ̂ · S)τ

])
≥ ykU(r) + (1− yk)U

(
1 + r + (θ̂ · S)τ

)
.

This implies that θ̃(k) ∈ Aadm(1 + r, Sτ ). On the one hand, a combination of the

previous inequality and Fatou’s lemma implies that

E
{
U
(

1 + r + X̃ + (θ̂ · S)τ

)
− U

(
1 + r + (θ̂ · S)τ

)}

= E

{
lim
k

[
U
(

1 + r + X̃k + X̂k

)
− (1− yk)U

(
1 + r + (θ̂ · S)τ

)
− ykU(r)

]}

= E

{
lim
k

[
U
(

1 + r + (θ̃(k) · S)τ

)
− (1− yk)U

(
1 + r + (θ̂ · S)τ

)
− ykU(r)

]}

≤ lim inf
k

E
{
U
(

1 + r + (θ̃(k) · S)τ

)
− (1− yk)U

(
1 + r + (θ̂ · S)τ

)
− ykU(r)

}

≤ lim inf
k

E
{
U
(

1 + r + (θ̂ · S)τ

)
− (1− yk)U

(
1 + r + (θ̂ · S)τ

)
− ykU(r)

}
= 0.

(3.25)

On the other hand, since P (X̃ > 0) > 0 and U is strictly increasing, we get

E
{
U
(

1 + r + X̃ + (θ̂ · S)τ

)}
> E

{
U
(

1 + r + (θ̂ · S)τ

)}
.

This is a contradiction with (3.25), and the NUPBR for Sτ is fulfilled. Then, the

global NUPBR for S is a direct consequence of Takaoka’s Theorem (Theorem 2.6 of

[137]), and the proof of the lemma is completed.
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3.3.2 Extension to the Case of Real-valued Wealth Processes

In this subsection, we will consider a locally bounded semimartingale S and a utility

function U satisfying

dom(U) = IR, U ′(∞) = 0, U ′(−∞) =∞, (3.26)

and

AE+∞(U) := lim sup
x→+∞

xU ′(x)

U(x)
< 1, AE−∞(U) := lim inf

x→−∞

xU ′(x)

U(x)
> 1. (3.27)

These conditions are used by Schachermayer in [128], which are essential in his

proofs. In the current setting, the set of admissible strategies will be

Θ(x, S) :=
{
H admissible

∣∣∣ E
[∣∣∣U(x+H · ST )

∣∣∣] < +∞
}
. (3.28)

Let us point out that when U(∞) < +∞, the required integrability in the definition

of Θ(x, S) is superfluous and in that case, we simply put Θ(S).

Lemma 3.5: Let U be a utility function satisfying (3.26)–(3.27). Suppose that

there exist a sequence of stopping times (Tn)n that increases stationarily to T and

xn ∈ R such that

sup
θ∈Θ(xn,STn )

EU
(
xn + (θ · S)Tn

)
< U(+∞), ∀n.

Then, the following properties are equivalent:

(i) There exists a sequence of stopping times (τn)n≥1 that increases stationarily

to T such that for any n ≥ 0 and any initial wealth x0, there exist W ∗n ∈ L0 and

(θ̂m)m≥1 ∈ Θ(x0, S
τn) satisfying

maxθ∈Θ(x0,Sτn )EU
(
x0 + (θ · S)τn

)
= EU(W ∗n) < U(+∞),
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and

lim
m
E
[∣∣∣U(W ∗n)− U(x0 + θ̂m · Sτn)

∣∣∣] = 0.

(ii) S satisfies the NUPBR.

Proof. We start by proving the easier part of the lemma which is (ii) =⇒ (i). Sim-

ilarly as in the proof of (ii) =⇒ (i) of the Key Lemma, we use Takaoka’s Theorem

(see Theorem 2.6 in [137]) and assume without loss of generality that there exists

a positive local martingale Z, such that ZS ∈ Mloc(P ). Consider a localizing se-

quence for Z and ZS that we denote by (σn)n≥1. Then, Zσn and ZσnSσn are both

martingales. Put

Qn := Zσn · P and τn := Tn ∧ σn ↑ T.

Thus, Qn is an equivalent martingale measure for Sσn and for Sτn as well. Since

θI[[0,τn]] ∈ Θ(xn, S
Tn) whenever θ ∈ Θ(xn, S

τn), we get

sup
θ∈Θ(xn,Sτn )

EU
(
xn + (θ · S)τn

)
≤ sup

ϕ∈Θ(xn,STn )

EU
(
xn + (ϕ · S)Tn

)
< U(+∞), ∀n.

Thus, a direct application of Theorem 2.2 in [128] leads to conclude that for any

n ≥ 0 and any initial wealth x0, there exist W ∗n ∈ L0 and θ̂m ∈ Θ(x0, S
τn) such that

lim
m
E
[∣∣∣U(W ∗n)− U(x0 + θ̂m · Sτn)

∣∣∣] = 0,

and

maxθ∈Θ(x0,Sτn )EU
(
x0 + (θ · S)τn

)
= EU(W ∗n) < U(+∞).

This proves assertion (i). Now we focus on proving the reverse implication and start

with assuming that assertion (i) holds. Without loss of generality, we take x0 > 1,
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and due to

lim
m
E
[∣∣∣U(W ∗n)− U

(
x0 + (θ̂m · S)τn

)∣∣∣] −→ 0,

we obtain the convergence in probability of U
(
x0 + (θ̂m · S)τn

)
to U(W ∗n). Thus,(

x0 +(θ̂m ·S)τn

)
converges in probability to W ∗n when m goes to infinity. By taking

a subsequence, w.l.o.g. we assume that the sequence converges almost surely to W ∗n .

Then, for any λ ∈ (0, 1) and any θ ∈ Θ(x0, Sτn), we derive

λf(λ,m) :=
{
U
(
x0 + (θ̂m · S)τn + λ((θ − θ̂m) · S)τn

)

−λU(W ∗n)− (1− λ)U
(
x0 + (θ̂m · S)τn

)}

≥ λ
[
U(x0 + θ · Sτn)− U(W ∗n)

]
.

(3.29)

Since the RHS term in the above inequality is integrable, then due to Fatou’s lemma,

this implies that

E[(x0 + θ · Sτn −W ∗n)U
′
(W ∗n)] = E[limλ↓0 limm f(λ,m)]

≤ limλ↓0limm
1−λ
λ

{
EU(W ∗n)− EU(x0 + (θ̂m · S)τn)

}
= 0.

By combining the inequality 0 ≤ ξU
′
(ξ) ≤ U(ξ) − U(0) (for any ξ ∈ L0

+(P )) and

(3.30), we obtain

E[(x0 + (θ · S)τn)U
′
(W ∗n)] ≤ E[W ∗nU

′
(W ∗n)] < +∞, and

x0E[U
′
(W ∗n)] ≤ E[W ∗nU

′
(W ∗n)] < +∞.

(3.30)

Consider the probability measure

R :=
U
′
(W ∗n)

E[U ′(W ∗n)]
· P ∼ P.
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Then, (3.30) becomes

ER [x0 + θ · Sτn ] ≤ ER[W ∗n ] < +∞. (3.31)

Thus, {1 + (θ · S)τn | θ ∈ L(S) and (θ · S) ≥ −1} is bounded in L1(R), and the

NUPBR for Sτn follows. Then, again Theorem 2.6 of [137] implies the global NUPBR

for S, and the proof of the lemma is achieved.

3.3.3 Extension to the Case of Exponential Utility

Even though the exponential utility is a particular case of Subsection 3.3.2, it de-

serves special attention for two reasons. The first reason lies in the popularity of the

exponential utility, while the second reason lies in our belief that for this case, when

S is locally bounded, we may obtain more precise results with less assumptions.

Throughout this section the set of admissible strategies for the model (X,Q) will

be denoted by Θ(X,Q), and is given by

Θ(X,Q) :=
{
θ ∈ L(X)

∣∣ θ ·X are uniformly bounded in (ω, t)
}
.

When Q ∼ P , we simply write Θ(X) := Θ(X,P ) for short. Then, the set of local

martingale densities that are locally in L logL will be denoted by

Zf,loc(X,Q) :=
{
Z > 0

∣∣∣ Z, ZX ∈Mloc(Q), Z log(Z) is Q-locally integrable
}
.

(3.32)

when Q = P , we simply write Zf,loc(X).

Definition 3.6: Let Z = E(N) ≥ 0, where N ∈M0,loc(P ). If

V (E)(N) :=
1

2
〈N c〉+

∑[
(1 + ∆N) log(1 + ∆N)−∆N

]
, (3.33)

is locally integrable, then its compensator is called the entropy-Hellinger process
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of Z and is denoted by hE(Z,P ) (see [40] for details).

Lemma 3.6: Suppose S is locally bounded. Then the following are equivalent:

(i) There exist a sequence of stopping times (τn)n≥1 increasing stationarily to T

and θ̂n ∈ L(Sτn) such that E

(
sup

0≤t≤τn
exp

[
−(θ̂n · S)t

])
< +∞ and

inf
θ∈Θ(Sτn )

E
(
e−(θ·S)τn

)
= E

(
e−(θ̂n·S)τn

)
. (3.34)

(ii) Zf,loc(S) 6= ∅.

Proof. We start by proving (ii) =⇒ (i). Suppose that assertion (ii) holds, and

consider Z ∈ Zf,loc(S). Then, there exists a sequence of stopping times, (τn)n≥1,

that increases stationarily to T such that Zτn is a martingale and hEt∧τn(Z,P ) is

bounded. Therefore, due to Theorem 3.7 or Proposition 3.6 in [40], we deduce that

Qn := Zτn · P is an equivalent martingale measure for Sτn satisfying the reverse

Hölder condition RL logL (P ) (for the definition of reverse Hölder condition, we refer

to [46] or [40]). Thus, Theorem 2.1 of [87] implies the existence of the optimal solu-

tion θ̂n ∈ L(Sτn) for (3.34) such that exp
[
−(θ̂n · S)τn

]
= E exp

[
−(θ̂n · S)τn

]
Z

(E,n)
τn

on the one hand. Here, Z(E,n) is the minimal entropy martingale density for Sτn

which is an LlogL-integrable martingale and hence E
(

sup0≤t≤τn Z
(E,n)
t

)
< +∞.

On the other hand, by Lemma 3.2 of [46], we conclude the existence of a positive

constant Cn such that exp
[
−(θ̂n · S)t∧τn

]
≤ CnZE,nt∧τn . This ends the proof of asser-

tion (i).

In the remaining part of this proof, we will prove (i) =⇒ (ii). Suppose that assertion

(i) holds and put

U
(n)
t := exp

(
−θ̂n · St∧τn

)
. (3.35)

Then by mimicking the proof of Lemma 4.1 in [46], we deduce that there exists a
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sequence of bounded strategies (θ(N))N≥1 ⊂ Θ (Sτn) such that

lim
N−→+∞

e−(θ(N)·S)τn = U (n)
τn P − a.s. & sup

0≤t≤T
e−θ

(N)·Sτn ≤ 6 sup
0≤t≤T

U
(n)
t ∈ L1(P ).

(3.36)

Therefore, exp
[
−(θ(N) · S)τn

]
converges to U

(n)
τn in L1 when N goes to +∞. For an

arbitrary but fixed θ ∈ Θ(Sτn) and any λ ∈ (0, 1), we denote

φλ,N := −λθ + θ(N) ∈ Θ(Sτn),

and derive

Ee−θ
(N)·Sτn − Ee−φλ·Sτn

λ
=
−Ee−θ̂n·Sτn + Ee−θ

(N)·Sτn

λ
+
−Ee−φλ·Sτn + Ee−θ̂

n·Sτn

λ

≤ −Ee
−θ̂n·Sτn + Ee−θ

(N)·Sτn

λ
→ 0, as N goes to +∞.

Due to (3.36) and the boundedness of (θ · S), it is easy to check that(
e−(θ(N)·S)τn − e−(φλ,N ·S)τn

)
/λ converges to −e−θ̂n·Sτn (θ · Sτn) in L1(P ) when λ and

N go to zero and infinity respectively. By combining all the above remarks, we obtain

EQn
[
−(θ · S)τn

]
≤ 0, where Qn :=

exp
[
−(θ̂n · S)τn

]
E
(

exp
[
−(θ̂n · S)τn

]) · P. (3.37)

Since θ is arbitrary in Θ(Sτn), we conclude that Qn is an equivalent martingale

measure for Sτn . The density process of this martingale measure will be denoted by

Ẑnt :=
E
(

exp
[
−(θ̂n · S)τn

] ∣∣∣Ft)
E
(

exp
[
−(θ̂n · S)τn

]) =: Et
(
N̂ (n)

)
.

For any θ ∈ Θ(Sτn), and any λ ∈ (0, 1), on the one hand, the convexity of ex leads

to conclude that ((θ · S)τn − (θ̂n · S)τn) exp(−(θ̂n · S)τn) is bounded from below by

− exp(−(θ · S)τn) ∈ L1(P ). On the other hand, again the convexity of ex combined
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with Fatou’s lemma and the minimality of θ̂n imply that

E
(
e−(θ̂·S)τn ((θ − θ̂n) · S)τn

)
≤ lim

λ→0
E

e−θ̂·Sτn 1− exp
[
−λ((θ − θ̂n) · S)τn

]
λ

 ≤ 0,

This proves that (θ̂n · S)τn exp
[
−(θ̂n · S)τn

]
∈ L1(P ). By combining this with

Ẑnτn log(Ẑnτn) =
−(θ̂n · S)τn exp(−(θ̂n · S)τn)− exp(−(θ̂n · S)τn) log

(
E
[
exp(−(θ̂n · S)τn)

])
E
(

exp
[
−(θ̂n · S)τn

]) ,

we deduce that Ẑnτn log(Ẑnτn) is integrable, and hence Ẑn is a martingale density for

Sτn that is L logL-integrable. Then, by putting

N̂ :=
+∞∑
n=1

I]]τn−1,τn]] · N̂ (n),

and applying Lemma 3.7 below, assertion (ii) follows immediately. This ends the

proof of the lemma.

Lemma 3.7: Let (τn)n≥1 be a sequence of stopping times that increases stationarily

to T , and (N (n))n be a sequence of local martingales. Then, the process

N :=

+∞∑
n=1

I]]τn−1,τn]] ·N (n), (τ0 = 0),

is a local martingale satisfying the following.

(i) If E(N (n)) > 0 for any n ≥ 1, then E(N) > 0.

(ii) If V (E)(N (n)) ∈ A+
loc(P ) for any n ≥ 1, then V (E)(N) ∈ A+

loc(P ).

(iii) If E(N (n)) is a σ-martingale density for Sτn for any n ≥ 1, then E(N) is a

σ-martingale density for S.
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Proof. It is obvious that

N τn =

n∑
k=1

I]]τk−1,τk]] ·N (k) ∈M0,loc(P ).

This proves that N ∈ (M0,loc(P ))loc =M0,loc(P ), and E(N) > 0 since

1 + ∆N = 1 + ∆N (n) > 0 on ]]τn−1, τn]], n ≥ 1.

Then, due to the definition of the operator V (E) given by (3.33), it is also easy to

remark that V (E)(I]]σ,τ ]] ·M) = I]]σ,τ ]] · V (E)(M) for any local martingale M (with

1 + ∆M ≥ 0) and any pair of stopping times τ and σ such that τ ≥ σ. Thus, we get

(
V (E)(N)

)τn
=

n∑
k=1

I]]τk−1,τk]] · V (E)(N (k)) ∈ A+
loc(P ).

Hence, we deduce (thanks to Lemma 1.35 of [78]) that V (E)(N) ∈
(
A+
loc(P )

)
loc

=

A+
loc(P ). This ends the proof of assertion (i) and (ii) of the lemma. To prove the

last assertion, we first remark that E(M) is a σ-martingale density for S if and only

if there exists a predictable process ϕ such that 0 < ϕ ≤ 1 and

ϕ · S + ϕ · [S,M ] ∈M0,loc(P ).

Therefore, since E(N (n)) is a σ-martingale density for Sτn for each n ≥ 1, then there

exists φn such that 0 < φn ≤ 1 and

Yn := φn · S + φn · [Sτn , N (n)] ∈M0,loc(P ), ∀ n ≥ 1. (3.38)

Put φ :=
∑+∞

k=1 I]]τk−1,τk]]φk. Thus, it is easy to prove that 0 < φ ≤ 1, and

(φ · S + φ · [S,N ])τn =

n∑
k=1

I]]τk−1,τk]] · Yk ∈M0,loc(P ).
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Hence, φ · S + φ · [S,N ] ∈ (M0,loc(P ))loc = M0,loc(P ), and hence E(N) is a σ-

martingale density for S. This ends the proof of the lemma.

Conclusions

In this chapter, we established the equivalence among the NUPBR condition, the

existence of the numéraire portfolio, market’s weak viability and local viability.

These results together with the next chapter (Chapter 4) constitute an important

motivation for Chapters 5, 6 and 7. In fact, the results of these chapters explain

that one needs to check the validity of the NUPBR condition for any model before

thinking about finding an optimal portfolio in the weakest form possible. Recently, in

mathematical finance, there has been an upsurge interest in developing optimization

problems, hedging and pricing rules for models with additional information. In

virtue of the results of this chapter, these investigations may end to nonsense if the

NUPBR is violated under this extra information.
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Chapter 4

Examples of Informational

Arbitrages: Explicit Descriptions

This chapter presents some practical examples that admit classic arbitrage oppor-

tunities in informational markets, i.e. some extra information is incorporated into

the markets. The extra information could be the occurrence time of a default event,

the knowledge that only insiders could get, the last passage time of a process, · · · ,

etc. For these markets, we calculate explicitly the arbitrage opportunities.

The financial market in which some assets, with prices adapted with respect to a

reference filtration F = (Ft)t≥0 (public information), are traded. One then assumes

that an agent who has some extra information, and may use those strategies that

are predictable with respect to a larger filtration G, i.e. F ⊂ G. This extra infor-

mation is modeled by the knowledge of some random time τ . We restrict our study

to progressive enlargement of filtration setting, and we pay a particular attention

to honest times.

Our goal is to detect if the knowledge coming from τ allows for some arbitrage, i.e., if

by using G-predictable strategies, the agent can make profit without taking any risk.
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This chapter is organized as follows: Section 4.1 presents the problem and the

general theorem. In Section 4.2, we study the case of Brownian filtration; while

Section 4.3 deals with the case of Poisson filtration. Those fact are illustrated by

many examples, where we exhibit these arbitrages in a closed form. In Section 4.4,

we deal with arbitrage in a two period discrete time model. In the last Section 4.5,

we study some examples of non-honest times.

4.1 General Theorem

We consider a filtered probability space (Ω,A,F := (Ft)t≥0,P) where the public in-

formation filtration F satisfies the usual hypotheses with F∞ :=
∨
t≥0Ft ⊂ A, and a

random time τ (i.e., a positive A-measurable random variable and τ would vary in

different examples below). We assume that the financial market where a risky asset

with price S (an F-adapted positive process) and a non-risky asset S0 (assumed,

for simplicity, to have a constant price so that the risk-free interest rate is null) are

traded is arbitrage free. More precisely, without loss of generality we assume that

S is a (P,F)-(local) martingale.

For a generic filtration H and an H-semimartingale X, we denote L(X) the set of

H-predictable processes ϕ integrable with respect to X in the sense of semimartin-

gale, i.e, L(X) := {ϕ ∈ P(H) : ϕ �X is well defined}.

We denote by G := (Gt)t≥0 the progressively enlarged filtration of F by τ , i.e., the

smallest right-continuous filtration that contains F and makes τ a stopping time

defined by

Gt =
⋂
ε>0

Ft+ε ∨ σ(τ ∧ (t+ ε)), t ≥ 0.

Let us recall the F-supermartingale Z and the strong supermartingale Z̃ (without
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right-continuity)

Zt := P (τ > t|Ft), and Z̃t := P (τ ≥ t|Ft), (4.1)

and the F-martingale m given by

m = Z +Do,F. (4.2)

Here, Do,F is the F-dual optional projection of I]]τ,∞]]. Therefore,

Z̃+ = Z, ∆Do,F = (Z̃ − Z)I]]0,+∞]], Z̃− = Z− = p,F(Z̃), on ]]0,+∞]].

Remark 4.1: The definitions of Z, Z̃ and m depend on the random time τ and the

filtration F. In the following examples, they vary from one to another. With an

abuse of notations, we will use Z, Z̃ and m without specifying random time and

filtration, when there is no confusion.

For the reader’s convenience, we recall below the definition of honest time (see

[17], [83] and the references therein).

Definition 4.1: A random time τ is honest, if for any t, there exists an Ft measur-

able random variable Tt such that τI{τ<t} = TtI{τ<t}.

A trivial remark is that, in the particular case where τ is an F-stopping time, the

enlarged filtration G and the reference filtration F are identical. Therefore, no-

arbitrage conditions hold.

We denote by Ts the set of all F-stopping times, Th the set of all F-honest times,

and R the set of random times given by

R :=
{
σ r.t.

∣∣ ∃ Γ ∈ A and T ∈ Ts such that σ = T11Γ +∞11Γc

}
. (4.3)
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Proposition 4.1: The following inclusions hold

Ts ⊂ R ⊂ Th. (4.4)

Proof. The first inclusion is clear. For the inclusion R ⊂ Th, we give, for ease of

the reader two different proofs. Let us take σ ∈ R.

(1) On {σ < t} = {T < t}∩Γ, we have σ = T ∧ t and T ∧ t is Ft-measurable. Thus,

σ is an honest time.

(2) Since Z̃t = 11{T≥t}P{Γ|Ft}+ P{Γc|Ft}, we derive

11{σ<∞}Z̃σ = 11Γ11{T<∞}Z̃T = 11Γ11{T<∞}{11{T≥T}P{Γ|FT }+ P{Γc|FT }}

= 11Γ11{T<∞} = 11{σ<∞}.

Therefore, Z̃σ = 1, on the set {σ <∞}. This ends the proof of the proposition.

The following theorem is our principal result for honest times in this chapter.

Theorem 4.1: Assume (S,F) is a complete market, τ is an honest time and m =

1 + ϕ � S, where m is defined in (4.2) and ϕ ∈ L(S). Then the following hold.

(a) If τ 6∈ R, then the G-predictable process ϕb = ϕ11[[0,τ ]] is a classical arbitrage

strategy in the market ”before τ”, i.e., in (Sτ ,G).

(b) If τ is not an F-stopping time, and if {τ =∞} ∈ F∞, then the G-predictable

process ϕa = −ϕ11]]τ,ν]], with G-stopping time defined as

ν := inf

{
t > τ : Z̃t ≤

1−∆Do,F
τ

2

}
, (4.5)

is a classical arbitrage strategy in the market ”after τ”, i.e., in (S − Sτ ,G).

Proof. (a) From m = Z̃ + Do,F
− and Z̃τ = 1, we deduce that mτ ≥ 1. Since τ /∈ R,

we have P(mτ > 1) = P(Do,F
τ− > 0) > 0. Therefore, the process ϕb = ϕ11[[0,τ ]] is an

arbitrage strategy in (Sτ ,G).
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(b) From m = Z +Do,F, we have for t > τ , mt−mτ = Zt−Zτ ≥ −1. On the other

hand, using m = Z̃+Do,F
− , we get, for t > τ , mt−mτ = Z̃t−1+∆Do,F

τ . Assumption

{τ =∞} ∈ F∞ ensures that Z̃∞ = 11{τ=∞} and in particular {τ <∞} ⊂ {Z̃∞ = 0}.

So, G-stopping time ν defined in (4.5) satisfies {ν <∞} = {τ <∞}. Then,

mν −mτ = Z̃ν − 1 + ∆Do,F
τ ≤ ∆Do,F

τ − 1

2
≤ 0,

and, as τ is not an F-stopping time,

P(mν −mτ < 0) = P(∆Do,F
τ < 1) > 0.

Hence −
∫ t∧ν
τ ϕsdSs = mτ∧t − mt∧ν is the value of an admissible self-financing

strategy ϕa = −ϕ11]]τ,ν]] with initial value 0 and terminal valuemτ−mν ≥ 0 satisfying

P(mτ −mν > 0) > 0. This ends the proof of the theorem.

We present here two basic examples, in order to show in a first step how arbitrages

can occur in a Brownian filtration, and in a second step that discontinuous models

present some difficulties.

Example 4.1 (Brownian Case) Let dSt = StσdWt, be the price of the risky

asset, where W is a Brownian motion and σ a constant. This martingale S goes

to 0 a.s. when t goes to infinity. Hence the random time τ = sup{t : St = S∗}

where S∗ = sups≥0 Ss is a finite honest time, and obviously leads to an arbitrage

before τ : at time 0, buy one share of S (at price S0), borrow S0, then, at time

τ , reimburse the loan S0 and sell the share of the asset at price Sτ . The gain is

Sτ −S0 > 0 with an initial wealth null. There are also arbitrages after τ : at time

τ , take a short position on S, i.e., hold a self financing portfolio with value V such

that dVt = −dSt, Vτ = 0. Usually shortselling positions are not admissible, since

Vt = −St+Sτ is not bounded below. Here −St+Sτ is positive, hence shortselling

is an arbitrage opportunity.
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Example 4.2 (Poisson case) Let N be a Poisson process with intensity λ and

Mt := Nt − λt. We define the price process S as dSt = St−ψdMt, S0 = 1 with ψ

a constant satisfying ψ > −1 and ψ 6= 0, so that

St = exp(−λψt+ ln(1 + ψ)Nt) .

Since Nt
t goes to λ a.s. when t goes to infinity and ln(1 + ψ)− ψ < 0, St goes to

0 a.s. when t goes to infinity. The random time

τ = sup {t : St = S∗}

with S∗ = sups≥0 Ss is a finite honest time. The arbitrage strategies are:

(a) If ψ > 0, then Sτ ≥ S0 and an arbitrage opportunity is realized at time τ , with

a long position in the stock. If ψ < 0, then the arbitrage is not so obvious.

We shall discuss that with more details in Section 4.3.

(b) There are arbitrages after τ , selling at time τ a contingent claim with payoff

1, paid at the first time ϑ after τ when St > sups≤τ Ss. For ψ > 0, it reduces

to Sτ = sups≤τ Ss, and, for ψ < 0, one has Sτ− = sups≤τ Ss. At time t0 = τ ,

the non informed buyer will agree to pay a positive price, the informed seller

knows that the exercise will be never done.

4.2 Classical Arbitrages in a Brownian Filtration

In this section, we develop practical market models S and honest times τ within

the Brownian filtration for which we compute explicitly the arbitrage opportunities

for both before and after τ . For other examples of honest times, and associated

classical arbitrages we refer the reader to Fontana et al. [63] (note that the arbitrages

constructed in [63] are different from our arbitrages). Throughout this subsection,

we assume given a one-dimensional Brownian motion W and F is its augmented
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natural filtration. The market model is represented by the bank account whose

process is the constant one and one stock whose price process is given by

St = exp(σWt −
1

2
σ2t), σ > 0 given. (4.6)

Remark 4.2: In this subsection, only the market S is fixed. The random time τ

changes from one to another. With an abuse of notations, τ appears in different

examples, when there is no confusion.

It is worth mentioning that in this context of Brownian filtration, for any process

V with locally integrable variation, its F-dual optional projection is equal to its F-

dual predictable projection, i.e., V o,F = V p,F.

4.2.1 Last Passage Time at a Given Level

Proposition 4.2: Consider the market S in (4.6) and the following random times

τ := sup{t : St = a} and ν := inf{t > τ
∣∣ St ≤

a

2
},

where 0 < a < 1. Then, the following assertions hold.

(a) The model ”before τ” (Sτ ,G) admits a classical arbitrage opportunity given

by the G-predictable process

ϕb =
1

a
11{S≤a}I]]0,τ ]].

(b) The model ”after τ” (S−Sτ ,G) admits a classical arbitrage opportunity given

by G-predictable process

ϕa = −1

a
11{S≤a}I]]τ,ν]].

Proof. It is clear that τ is a finite honest time, and does not belong to the set R

defined in (4.3). Thus τ fulfills the assumptions of Theorem 4.1. We now compute
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the predictable process ϕ such that m = 1 + ϕ � S. To this end, we calculate Z as

follows. Using Jeanblanc et al. [79][exercise 1.2.3.10], we derive

P (τ ≤ t|Ft) = P
(

sup
t<u

Su ≤ a|Ft
)

= P
(

sup
u
S̃u ≤

a

St
|Ft
)

= Ψ

(
a

St

)

where S̃u = exp(σW̃u − 1
2σ

2u), W̃ is a Brownian motion independent of F and

Ψ(x) = P
(

supu S̃u ≤ x
)

= P( 1
U ≤ x) = P( 1

x ≤ U) = (1 − 1
x)+, where U is a

random variable with uniform law. Thus we get Zt = 1− (1−St/a)+ (in particular

Zτ = Z̃τ = 1 and τ is honest), and

dZt = 11{St≤a}
1

a
dSt −

1

2a
d`at

where `a is the local time of S at the level a (see page 252 of He et al. [71] for the

definition of the local time). Therefore, we deduce that

m = 1 + ϕ � S, where ϕt := 11{St≤a}
1

a
.

Note that ν := inf{t > τ
∣∣ St ≤ a

2} = inf{t > τ | 1− (1− St
a )+ ≤ 1

2}, so ν coincides

with (4.5). Theorem 4.1 ends the proof of the proposition.

4.2.2 Last Passage Time at a Level before Maturity

Our second example, in this subsection, takes into account finite horizon. In this

example, we introduce the following notation

H(z, y, s) := e−zyN
(
zs− y√

s

)
+ ezyN

(
−zs− y√

s

)
, (4.7)

where N(x) is the cumulative distribution of the standard normal distribution.
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Proposition 4.3: Consider the market S in (4.6) and the following random time

τ1 := sup{t ≤ 1 : St = b}

where b is a real number, 0 < b < 1. Let V and β be given by

Vt := α− γt−Wt, where α =
ln b

σ
and γ = −σ

2

βt := eγVt
(
γH(γ, |Vt|, 1− t) + sgn(Vt)H

′
x(γ, |Vt|, 1− t)

)
,

with H defined in (4.7), and let ν be as in (4.5). Then, the following hold.

(a) The model ”before τ1”, i.e. (Sτ1 ,G) admits a classical arbitrage opportunity

given by the G-predictable process

θb :=
1

σSt
βtI[[0,τ1]].

(b) The model ”after τ1”, i.e. (S−Sτ1 ,G) admits a classical arbitrage opportunity

given by G-predictable process

θa := − 1

σSt
βtI]]τ1,ν]].

Proof. The proof of this proposition follows from Theorem 4.1 as long as we can

write the martingale m as a stochastic integral with respect to S. This is the main

focus of the remaining part of this proof. The time τ1 is a finite honest time. From

τ1 = sup {t ≤ 1 : γt+Wt = α} = sup {t ≤ 1 : Vt = 0}.

and setting T0(V ) = inf{t : Vt = 0}, we obtain, using standard computations (see

Jeanblanc et al. [79] p. 145-148)

1− Zt = P(τ1 ≤ t|Ft) = (1− eγVtH(γ, |Vt|, 1− t))11{T0(V )≤t≤1} + 11{t>1},
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where H is given in (4.7). In particular Zτ = Z̃τ = 1 and τ is an honest time.

Using Itô’s lemma, we obtain the decomposition of 1 − eγVtH(γ, |Vt|, 1 − t) as a

semimartingale. The martingale part of Z is given by dmt = βtdWt = 1
σSt

βtdSt.

This ends the proof of the proposition.

4.3 Classic Arbitrages in a Poisson Filtration

Throughout this subsection, we suppose given a Poisson process N , with intensity

rate λ > 0, and natural filtration F. The stock price process is given by

dSt = St−ψdMt, Mt := Nt − λt, S0 = 1, (4.8)

or equivalently St = exp(−λψt + ln(1 + ψ)Nt), where ψ > −1 and ψ 6= 0. In what

follows, we introduce the notations

α := ln(1 + ψ), µ :=
λψ

ln(1 + ψ)
and Yt := µt−Nt, (4.9)

so that St = exp(− ln(1 + ψ)Yt). We associate to the process Y its ruin probability

Ψ(x) given by, for x ≥ 0,

Ψ(x) = P(T x <∞), with T x = inf{t : x+ Yt < 0} . (4.10)

Remark 4.3: In this subsection, only the market S is fixed. The random time τ

changes from one to another. With an abuse of notations, τ appears in different

examples, when there is no confusion.
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4.3.1 Last Passage Time at a Given Level

Proposition 4.4: Consider the market S in (4.8) with the notations (4.9) and

(4.10). Suppose that ψ > 0 and ϕ given by

ϕ :=
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a} + 11{Y−<a+1} − 11{Y−<a}

ψS−
.

For 0 < b < 1, consider the following random time

τ := sup{t : St ≥ b} = sup{t : Yt ≤ a}, where a := − ln(b)/α. (4.11)

Then the following assertions hold.

(a) The random time τ is an honest time.

(b) The model ”before τ” (Sτ ,G) admits a classical arbitrage opportunity given

by the G-predictable process ϕb := ϕI[[0,τ ]].

(c) The model ”after τ” (S−Sτ ,G) admits a classical arbitrage opportunity given

by the G-predictable process ϕa := −ϕI]]τ,ν]], with ν as in (4.5).

Proof. Since ψ > 0, one has µ > λ so that Y goes to +∞ as t goes to infinity, and

τ is finite. The supermartingale Z associated with the time τ is

Zt = P(τ > t|Ft) = Ψ(Yt − a)11{Yt≥a} + 11{Yt<a} = 1 + 11{Yt≥a} (Ψ(Yt − a)− 1) ,

where Ψ is defined in (4.10). We set θ =
µ

λ
− 1, and deduce that Ψ(0) = (1 + θ)−1

(see Asmussen [15]). Define ϑ1 = inf{t > 0 : Yt = a} and then, for each n > 1,

ϑn = inf{t > ϑn−1 : Yt = a}. It can be proved that the times (ϑn)n are F-predictable

stopping times. The F-dual optional projection Do,F of the process 11[[τ,∞]] equals

Do,F =
θ

1 + θ

∑
n

11[[ϑn,∞]].
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Indeed, for any F-optional process U , we have

E(Uτ ) = E
(∑

11{τ=ϑn}Uϑn

)
= E(

∑
E
(
11{τ=ϑn}|Fϑn)Uϑn

)
and E(11{τ=ϑn}|Fϑn) = P(T 0 =∞) = 1−Ψ(0) = 1− (1 + θ)−1.

As a result the process Do,F is predictable, and hence Z = m −Do,F is the Doob-

Meyer decomposition of Z. Thus we can get

∆m = Z − p,FZ,

where p,FZ is the F-predictable projection of Z. To calculate p,FZ, we write the

process Z in a more adequate form. To this end, we first remark that

11{Y≥a} = 11{Y−≥a+1}∆N + (1−∆N)11{Y−≥a}

11{Y <a} = 11{Y−<a+1}∆N + (1−∆N)11{Y−<a}.

Then, we obtain

∆m =
(
Ψ(Y− − a− 1)11{Y−≥a+1} −Ψ(Y− − a)11{Y−≥a}

)
∆N

+
(
11{Y−<a+1} − 11{Y−<a}

)
∆N

= ψS−ϕ∆M = ϕ∆S.

Since the two martingales m and S are purely discontinuous, we deduce that m =

1 + ϕ � S. Therefore, the proposition follows from Theorem 4.1.

4.3.2 Time of Supremum on Fixed Time Horizon

The second example requires the following notations S∗t := sups≤t Ss and

Ψ(1)(x, t) := P(S∗t > x), Ψ̃(x, t) := P
(

sup
s<t

Ss < x

)
, Ψ̂(t) := Ψ̃(x, 1) . (4.12)
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Proposition 4.5: Consider the market S in (4.8) with the notations (4.9) and

(4.12) and the random time τ defined by

τ = sup{t ≤ 1 : St = S∗t }, (4.13)

where S∗t = sups≤t Ss. Then, the following assertions hold.

(a) The random time τ is an honest time.

(b) For ψ > 0, define the G-predictable process η as

ηt := 11{t<1}

[
Ψ(1)

(
max(

S∗t−
St−(1 + ψ)

, 1), 1− t
)
−Ψ(1)

(
S∗t−
St−

, 1− t
)]

+11{S∗t−<St−(1+ψ)} Ψ̂(1− t)

+
[
11{max(S∗1−,S1−(1+ψ))=S0} − 11{max(S∗1−,S1−)=S0}

]
11{t=1}. (4.14)

Then, ηb := η11[[0,τ ]] is an arbitrage opportunity for the model (Sτ ,G), and ηa :=

−ηI]]τ,ν]] is an arbitrage opportunity for the model (S − Sτ ,G). Here Ψ(1) and Ψ̂

are defined in (4.12), and ν is defined similarly as in (4.5).

(c) For −1 < ψ < 0, define the G-predictable process

η
(1)
t :=

ψI{S∗t =St−}Ψ̂( 1
1+ψ , 1− t) + Ψ(1)(

S∗t
St−(1+ψ) , 1− t)−Ψ(1)(

S∗t
St−

, 1− t)
ψSt−

.(4.15)

Then, η(1),b := η(1)11[[0,τ ]] is an arbitrage opportunity for the model (Sτ ,G), and

η(1),a := −η(1)I]]τ,ν]] is an arbitrage opportunity for the model (S − Sτ ,G).

Proof. Note that, if −1 < ψ < 0 the process S∗ is continuous, Sτ < S∗τ = supt∈[0,1] St

on the set (τ < 1) and Sτ− = S∗τ− = supt∈[0,1] St. If ψ > 0, Sτ− < S∗τ− < supt∈[0,1] St

on the set (τ < 1).

Define the sets (En)∞n=0 such that E0 = {τ = 1} and En = {τ = Tn} with n ≥ 1.

The sequence (En)∞n=0 forms a partition of Ω. Then, τ = 11E0 +
∑∞

n=1 Tn11En . Note

that τ is not an F stopping time since En /∈ FTn for any n ≥ 1.
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The supermartingale Z associated with the honest time τ is

Zt = P(τ > t|Ft) = P( sup
s∈(t,1]

Ss > sup
s∈[0,t]

Ss|Ft) = P( sup
s∈[0,1−t]

Ŝs >
S∗t
St
|Ft)

= 11(t<1)Ψ
(1)(

S∗t
St
, 1− t),

with Ŝ an independent copy of S and Ψ(1)(x, t) is given by (4.12).

As {τ = Tn} ⊂ {τ ≤ Tn} ⊂ {ZTn < 1}, we have

Zτ = 11{τ=1}Z1 +
∞∑
n=1

11{τ=Tn}ZTn < 1, and {Z̃ = 0 < Z−} = ∅.

In the following we will prove assertion (b). Thus, we suppose that ψ > 0, and we

calculate

Do,F
t = P(τ = 1|F1)11{t≥1} +

∑
n

P(τ = Tn|FTn)11{t≥Tn}

= 11{S∗1=S0, t≥1} +
∑
n

11{Tn<1, S∗Tn−<STn}
P( sup
s∈[Tn,1[

Ss ≤ STn |FTn)11{t≥Tn}

= 11{S∗1=S0, t≥1} +
∑
n

11{Tn<1, S∗Tn−<STn−(1+ψ)} Ψ̂(1− Tn)11{t≥Tn},

with Ψ̂ is given by (4.12). As before, we write

Do,F
t = 11{S∗1=S0}11{t≥1} +

∑
s≤t

11{s<1}11{S∗s−<Ss−(1+ψ)} Ψ̂(1− s)∆Ns

= 11{S∗1=S0}11{t≥1} +

∫ t∧1

0
11{S∗s−<Ss−(1+ψ)} Ψ̂(1− s) dMs

+λ

∫ t∧1

0
11{S∗s−<Ss−(1+ψ)} Ψ̂(1− s)ds.

Remark that we have

11{S∗1=S0} =
[
11{max(S∗1−,S1−(1+ψ))=S0} − 11{max(S∗1−,S1−)=S0}

]
∆M1 + 11{max(S∗1−,S1−)=S0}
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and

∆m = ∆Z + ∆Do,F = Z − p,FZ + ∆Do,F − p,F(∆Do,F).

Then we re-write the process Z as follows

Z = 11[[0,1[[Ψ
(1)

(
max(

S∗−
S−(1 + ψ)

, 1), 1− t
)

∆M + (1−∆M)I[[0,1[[Ψ
(1)

(
S∗−
S−

, 1− t
)
.

This implies that

Z − p,FZ = 11[[0,1[[

[
Ψ(1)

(
max(

S∗−
S−(1 + ψ)

, 1), 1− t
)
−Ψ(1)

(
S∗−
S−

, 1− t
)]

∆M.

Thus by combining all these remarks, we deduce that

m = m0 + η � S, where η is given by (4.14).

Then, the assertion (b) follows immediately from Theorem 4.1.

Next, we will prove assertion (c). Suppose that −1 < ψ < 0, and we calculate

Do,F
t = P(τ = 1|F1)11{t≥1} +

∑
n

P(τ = Tn|FTn)11{t≥Tn}

= 11{S∗1=S1, t≥1} +
∑
n

11{Tn<1, S∗Tn=STn−}P( sup
s∈[Tn,1[

Ss < STn−|FTn)11{t≥Tn}

= 11{S∗1=S1}11{t≥1} +
∑
n

11{Tn<1}11{S∗Tn=STn−}Ψ̃(
STn−
STn

, 1− Tn)11{t≥Tn},

with Ψ̃(x, t) is given by (4.12). In order to find the compensator of Do,F, we write

Do,F
t = 11{S∗1=S1}11{t≥1} +

∑
s≤t

11{s<1}11{S∗s=Ss−}Ψ̃(
1

1 + ψ
, 1− s) ∆Ns

= 11{S∗1=S1}11{t≥1} +

∫ t∧1

0
11{S∗s=Ss−}Ψ̃(

1

1 + ψ
, 1− s) dMs

+λ

∫ t∧1

0
11{S∗s=Ss−}Ψ̃(

1

1 + ψ
, 1− s) ds.
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As a result, due to the continuity of the process S∗, we get

Do,F
t − p,F(Do,F)t = I{S∗t =St−}Ψ̃(

1

1 + ψ
, 1− t)∆Mt,

Zt − p,FZt =

[
Ψ(1)(

S∗t
St−(1 + ψ)

, 1− t)−Ψ(1)(
S∗t
St−

, 1− t)
]

∆Nt.

This implies that

∆mt = Zt − p,FZt +Do,F
t − p,F(Do,F)t = ψ11{S∗t =St−}Ψ̃(

1

1 + ψ
, 1− t)}∆Nt

+

{
Ψ(1)

(
S∗t

St−(1 + ψ)
, 1− t

)
−Ψ(1)

(
S∗t
St−

, 1− t
)}

∆Nt.

Since m and S are pure discontinuous F-local martingales, we conclude that m can

be written in the form of

m = m0 + η(1) � S, where η(1) is given by (4.15)

and the proof of the assertion (c) follows immediately from Theorem 4.1. This ends

the proof of the proposition.

4.3.3 Time of Overall Supremum

Below, we will present our last example of this subsection. The analysis of this

example is based on the following three functions, where S∗ = supu∈[0,+∞] Su.

Ψ(2)(x) = P(S∗ > x), Ψ̂(2) = P(S∗ ≤ 1), Ψ̃(2)(x) = P(S∗ < x). (4.16)

Proposition 4.6: Consider the market S in (4.8) with the notations (4.9) and

(4.16) and the random time τ (2) given by

τ (2) = sup{t : St = S∗t }. (4.17)
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Then, the following assertions hold.

(a) The random time τ (2) is an honest time.

(b) For ψ > 0, define the G-predictable process ϕ as

ϕt :=
11{S∗t−<St−(1+ψ)}Ψ̂(2) + Ψ(2)

(
max(

S∗t−
St−(1+ψ) , 1)

)
−Ψ(2)(

S∗t−
St−)

St−ψ
. (4.18)

Then, ϕb := ϕ11[[0,τ (2)]] is an arbitrage opportunity for the model (Sτ
(2)
,G), and

ϕa := −ϕI]]τ (2),ν]] is an arbitrage opportunity for the model (S − Sτ (2) ,G). Here

Ψ(2) and Ψ̂(2) are defined in (4.16), and ν is defined in similar way as in (4.5).

(c) For −1 < ψ < 0, define the G-predictable process ϕ as

ϕ(2) :=
Ψ(2)( S∗

S−(1+ψ))−Ψ(2)( S
∗

S−
) + 11{S∗=S−}Ψ̃

(2)( 1
1+ψ )ψ

ψS−
. (4.19)

Then, ϕ(2),b := ϕ(2)11[[0,τ (2)]] is an arbitrage opportunity for the model (Sτ
(2)
,G),

and ϕ(2),a := −ϕ(2)I]]τ (2),ν]] is an arbitrage opportunity for the model (S−Sτ (2) ,G).

Here again ν is defined as in (4.5).

Proof. It is clear that τ (2) is an F-honest time. Let us note that τ (2) is finite and,

as before, if −1 < ψ < 0, Sτ (2) < S∗
τ (2)

= supt St and S∗ is continuous and if ψ > 0,

Sτ (2) = S∗
τ (2)

= supt St.

The supermartingale Z associated with the honest time τ (2) is

Zt = P( sup
s∈(t,∞]

Ss > sup
s∈[0,t]

Ss|Ft) = P( sup
s∈[0,∞]

Ŝs >
S∗t
St
|Ft) = Ψ(2)

(
S∗t
St

)
,

with Ŝ an independent copy of S and Ψ(2) is given by (4.16). As a result, we deduce

that Zτ (2) < 1.

In the following, we will prove assertion (b). If ψ > 0, by putting (Tn)n the sequence
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of jumps of the Poisson process N , we derive

Do,F
t =

∑
n

P(τ (2) = Tn|FTn)11{t≥Tn}

=
∑
n

11{S∗Tn−<STn}
P( sup
s≥Tn

Ss ≤ STn |FTn)11{t≥Tn}

=
∑
n

11{S∗Tn−<STn−(1+ψ)}Ψ̂(2)11{t≥Tn},

with Ψ̂(2) = P(sups Ss ≤ 1) given by (4.16).

To get the compensator of Do,F, we rewrite it as

Do,F
t =

∑
s≤t

11{S∗s−<Ss−(1+ψ)}Ψ̂(2)∆Ns

=

∫ t

0
11{S∗s−<Ss−(1+ψ)}Ψ̂(2)dMs + λ

∫ t

0
11{S∗s−<Ss−(1+ψ)}Ψ̂(2)ds.

Now as we did for the previous propositions, we calculate the jumps of m. To this

end, we re-write Z as follows

Z =

[
Ψ(2)

(
max(

S∗−
S−(1 + ψ)

, 1)

)
−Ψ(2)

(
S∗−
S−

)]
∆M + Ψ(2)

(
S∗−
S−

)
.

This implies that

Z − p,FZ =

[
Ψ(2)

(
max(

S∗−
S−(1 + ψ)

, 1)

)
−Ψ(2)

(
S∗−
S−

)]
∆M.

Hence, we derive

∆m =

[
11{S∗s−<Ss−(1+ψ)}Ψ̂(2) + Ψ(2)

(
max(

S∗−
S−(1 + ψ)

, 1)

)
−Ψ(2)

(
S∗−
S−

)]
∆M.

Since both martingales m and M are purely discontinuous, we deduce that m =

m0 + ϕ � S, where ϕ is given by (4.18). Then, the assertion (b) follows immediately

from Theorem 4.1.
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In the following, we prove assertion (c). If −1 < ψ < 0, we calculate

Do,F
t =

∑
n

P(τ (2) = Tn|FTn)11{t≥Tn}

=
∑
n

11{S∗Tn=STn−}P

(
sup
s≥Tn

Ss < STn−|FTn

)
11{t≥Tn}

=
∑
n

11{S∗Tn=STn−}Ψ̃
(2)

(
STn−
STn

)
11{t≥Tn},

with Ψ̃(2)(x) given in (4.16). Therefore,

Do,F
t =

∑
s≤t

11{S∗s=Ss−}Ψ̃
(2)

(
1

1 + ψ

)
∆Ns

=

∫ t

0
11{S∗s=Ss−}Ψ̃

(2)

(
1

1 + ψ

)
dMs + λ

∫ t

0
11{S∗s=Ss−}Ψ̃

(2)

(
1

1 + ψ

)
ds.

Since in the case of ψ < 0, the process S∗ is continuous, we obtain

Z − p,FZ =

[
Ψ(2)

(
S∗

S−(1 + ψ)

)
−Ψ(2)

(
S∗

S−

)]
∆N,

Do,F − p,F(Do,F) = 11{S∗=S−}Ψ̃
(2)

(
1

1 + ψ

)
∆M.

Therefore, we conclude that

∆m = Z − p,FZ +Do,F − p,F(Do,F)

=

{
Ψ(2)

(
S∗

S−(1 + ψ)

)
−Ψ(2)

(
S∗

S−

)
+ 11{S∗=S−}Ψ̃

(2)

(
1

1 + ψ

)
ψ

}
∆N.

This implies that the martingale m has the form of m = 1 + ϕ(2) � S, where ϕ(2)

is given by (4.19) and assertion (c) follows immediately from Theorem 4.1, and the

proof of the proposition is completed.
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4.4 Classic Arbitrages in Discrete Time

In this section, we consider a two period market model, where we calculate explicitly

the arbitrage opportunities. On the stochastic basis (Ω,A,F := (Fn)0≤n≤2,P), we

assume given a risky asset S := (Sn)0≤n≤2, where Ω = {ω1, ω2, ω3, ω4} represents

the uncertainties and the natural filtration F := (Fn)0≤n≤2 is given by

F0 = {∅,Ω}, F1 = {∅,Ω, {ω1, ω2}, {ω3, ω4}}, and F2 = σ({∅,Ω, {ω1}, {ω2}, {ω3}, {ω4}}).

Let u and d be two constants such that u > 1 and 0 < d < 1. Assume that

S1({ω1, ω2}) = uS0, S1({ω3, ω4}) = dS0,

S2({ω1}) = u2S0, S2({ω2}) = udS0, S2({ω3}) = udS0, S2({ω4}) = d2S0.

The probability that the stock price will increase (or decrease) is p (or q = 1 − p).

For the sake of simplicity, we assume pu + (1 − p)d = 1, i.e. S is an F-martingale

under the physical probability

P = (P(ω1),P(ω2),P(ω3),P(ω4)) = (p2, pq, pq, q2).

The evolution of the stock price S through time is illustrated as

S → S0

uS0

u2S0, ω1

udS0, ω2

dS0

udS0, ω3

d2S0, ω4
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Consider the random time

τ (d) =

1, on {ω3}

2, otherwise.
(4.20)

Apparently, τ (d) is not an F-stopping time since {τ (d) = 1} /∈ F1. A straightforward

calculation shows Sτ
(d)

:= (Sn∧τ (d))0≤n≤2 takes the following values:

Sτ
(d)

0 = S0, Sτ
(d)

1 ({ω1, ω2}) = uS0, Sτ
(d)

1 ({ω3, ω4}) = dS0,

Sτ
(d)

2 ({ω1}) = u2S0, S
τ (d)

2 ({ω2}) = udS0, S
τ (d)

2 ({ω3}) = dS0, S
τ (d)

2 ({ω4}) = d2S0.

The evolution of the stock price Sτ
(d)

through time is illustrated as

Sτ
(d) → S0

uS0

u2S0, ω1

udS0, ω2

dS0

dS0, ω3

d2S0, ω4

The progressive enlarged filtration G associated to the random time τ (d) is given by

G0 = {∅,Ω}, G1 = σ(∅,Ω, {ω1, ω2}, {ω3}, {ω4}), and G2 = σ(∅,Ω, {ω1}, {ω2}, {ω3}, {ω4}).

For the random time τ (d), we define the stopping times:

R1 := inf{n ≥ 1 : Zn = 0}, R2 := inf{n ≥ 1 : Zn−1 = 0} and R3 := inf{n ≥ 1 : Z̃n = 0},

σ1 := inf{n ≥ 1 : Zn < 1}, σ2 := inf{n ≥ 1 : Zn−1 < 1} and σ3 := inf{n ≥ 1 : Z̃n < 1}.

(4.21)

Lemma 4.1: For the above market, the following properties hold:
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(a) The processes D,m,Z and Z̃ take the form of

D0 = 0, D1 = p1{ω3,ω4}, D2 = p1{ω3,ω4} + 1{ω1,ω2,ω4}.

m0 = 1, m1 = 1, m2 = p1{ω3,ω4} + 1{ω1,ω2,ω4}.

Z0 = 1, Z1 = 1− p1{ω3,ω4}, Z2 = 0.

Z̃0 = 1, Z̃1 = 1, Z̃2 = 1{ω1,ω2,ω4}.

(b) Z̃τ (d) = 1, τ (d) = sup{n ≥ 0 : Z̃n = 1}, and τ (d) is an honest time.

(c) The stopping times in (4.21) are given by

R1 = 2, R2 = +∞, R3(ω3) = 2, R3(ω1, ω2, ω4) = +∞,

σ1(ω1, ω2) = 2, σ1(ω3, ω4) = 1,

σ2(ω1, ω2) = +∞, σ2(ω3, ω4) = 2, σ3(ω3) = 2, σ3(ω1, ω2, ω4) = +∞.

Proof. By the definitions of Z and Z̃, we calculate that

Z0 = P (τ (d) > 0) = 1, Z1 = P (τ (d) > 1|F1) = 1{ω1,ω2} + 1{ω3,ω4}(1− p), Z2 = 0

Z̃0 = P (τ (d) ≥ 0) = 1, Z̃1 = P (τ (d) ≥ 1|F1) = 1, Z̃2 = P (τ (d) ≥ 2|F2) = 1{ω1,ω2,ω4}.

The calculation for D and m is similar. The proofs of the assertions (b) and (c) are

straightforward. Hence, we omit them here.

Theorem 4.2: Under the current settings, the following properties hold:

(a) For the market Sτ
(d)

, there are arbitrage opportunities by using public infor-

mation F and extra information G .

(b) In the market S, there are arbitrage opportunities only in G.

(c) {∆S2 6= 0}∩ {Z̃2 = 0}∩ {Z1 > 0} = {ω3} and {∆S2 6= 0}∩ {Z̃2 = 1}∩ {Z1 <

1} = {ω4}.

Proof. In the market Sτ
(d)

, apparently, by takingH1 = 0, H2({ω1, ω2}) = 0, H2({ω3, ω4}) =
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−1, one can make an arbitrage. While in the market S, by takingHG
1 = 0, HG

2 ({ω1, ω2}) =

0, HG
2 ({ω3}) = 1, HG

2 ({ω4}) = −1, only the one with information G can make an

arbitrage since the strategies (HG
n )1≤n≤2 are only G-predictable. Assertion (c) is

straightforward to verify. This ends the proof of the theorem.

4.5 Classic Arbitrages for Non-honest Times

In this section, we develop a number of practical examples of market models and

examples of random times that are not honest times and we study the existence of

classical arbitrages.

4.5.1 In a Brownian filtration: Emery’s Example

We present here an example where τ is a pseudo stopping time (see Nikeghbali and

Yor [115] for the definition). Let S be defined through dSt = σStdWt, where W is

a Brownian motion and σ a constant. Consider the random time

τ = sup {t ≤ 1 : S1 − 2St = 0}.

Proposition 4.7: For the above settings, there is no arbitrage opportunity before

τ , i.e. (Sτ ,G); while arbitrage opportunity exists after τ , i.e. (S − Sτ ,G).

Proof. Note that

{τ ≤ t} = { inf
t≤s≤1

2Ss ≥ S1} =

{
inf

t≤s≤1
2
Ss
St
≥ S1

St

}

Since Ss/St, s ≥ t and S1/St are independent from Ft, we derive

P
(

inf
t≤s≤1

2
Ss
St
≥ S1

St
|Ft
)

= P
(

inf
t≤s≤1

2Ss−t ≥ S1−t

)
= Ψ(1− t)

where Ψ(u) = P(infs≤u 2Ss ≥ Su). It follows that the supermartingale Z is a
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deterministic decreasing function. Hence τ is a pseudo stopping time (see [115]) and

S is a G-martingale up to time τ and there are no arbitrages up to τ .

There are obviously arbitrages after τ , since, at time τ , one knows the value of S1

and S1 > Sτ . In fact, for t > τ , one has St > Sτ , and the arbitrage occurs at any

time before 1.

4.5.2 In a Poisson Filtration

This subsection develops similar examples of random times – as in the Brownian

filtration of the previous subsection – and shows that the effects of these random

times on the market’s economic structure differ tremendously from the one of the

previous subsection. In this section, we will work with a Poisson process N having

intensity λ and the compensated martingale Mt = Nt − λt. Denote

Tn := inf{t ≥ 0 : Nt ≥ n}, and Hn
t := 11{Tn≤t}, n = 1, 2. (4.22)

The stock price S is described by

dSt = St−ψdMt, where, ψ > −1, and ψ 6= 0, (4.23)

or equivalently, St = S0 exp(−λψt+ ln(1 + ψ)Nt). Then,

M1
t := H1

t − λ(t ∧ T1) := H1
t −A1

t ,

M2
t := H2

t − (λ(t ∧ T2)− λ(t ∧ T1))) := H2
t −A2

t (4.24)

are two F-martingales. Remark that if ψ ∈ (−1, 0), between T1 and T2, the stock

price increases; if ψ > 0, between T1 and T2, the stock process decreases. This would

be the starting point of the existence of arbitrages.

Example 4.3 (Convex Combination of two jump times) Below, we present

an example of random time that avoids stopping times and the non-arbitrage
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property fails.

Proposition 4.8: Consider the market S in (4.23) with notations (4.22) and (4.24)

and the random time

τ = k1T1 + k2T2, where k1 + k2 = 1 and k1, k2 > 0,

which avoids F-stopping times. Then the following properties hold:

(a) The random time τ is not an honest time.

(b) Z̃τ = Zτ = e−λk1(T2−T1) < 1, and {Z̃ = 0 < Z−} = [[T2]].

(c) There is a classical arbitrage before τ , given by

ϕ
(1)
t := −e−λ

k2
k1

(t−T1) (
11{Nt−≥1} − 11{Nt−≥2}

) 1

ψSt−
11{t≤τ}. (4.25)

(d) There exist arbitrages after τ : if ψ ∈ (−1, 0), buy at τ and sell before T2; if

ψ > 0, short sell at τ and buy back before T2.

Proof. First, we compute the supermartingale Z:

P(τ > t|Ft) = 11{T1>t} + 11{T1≤t}11{T2>t}P(k1T1 + k2T2 > t|Ft).

On the set E = {T1 ≤ t} ∩ {T2 > t}, the quantity P(k1T1 + k2T2 > t|Ft) is

FT1-measurable. It follows that, on E,

P(k1T1 + k2T2 > t|Ft) =
P(k1T1 + k2T2 > t, T2 > t|FT1)

P(T2 > t|FT1)
= e
−λ k1

k2
(t−T1)

,

where we used the independence property of T1 and T2 − T1. Therefore,

Zt := P(τ > t|Ft) = 11{T1>t} + 11{T1≤t}11{T2>t}e
−λ k1

k2
(t−T1)

.
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Since Zt = (1−H1
t )+H1

t (1−H2
t )e
−λ k1

k2
(t−T1)

and e−λ(t−T1)dH1
t = dH1

t , we deduce

dZt = e
−λ k1

k2
(t−T1)

(−H2dH1
t −H1

t dH
2
t )− λk1

k2
H1
t (1−H2

t )e
−λ k1

k2
(t−T1)

dt

= −e−λ
k1
k2

(t−T1)
dH2

t − λ
k1

k2
H1
t (1−H2

t )e
−λ k1

k2
(t−T1)

dt

= dmt − e
−λ k1

k2
(t−T1)

dA2
t − λ

k1

k2
H1
t (1−H2

t )e
−λ k1

k2
(t−T1)

dt,

where dmt = −e−λ
k1
k2

(t−T1)
dM2

t . Hence,

mτ = 1−
∫ τ

0
e
−λ k1

k2
(t−T1)

dM2
t = 1 +

∫ τ

T1

e
−λ k1

k2
(t−T1)

λdt > 1.

Now we start proving the proposition.

(i) Since τ avoids stopping times, Z = Z̃. Note that Z̃τ = Zτ = e−λk1(T2−T1) < 1.

Hence, τ is not an honest time. Thus, assertions (a) and (b) hold.

(ii) Now, we prove assertion (c). We will describe explicitly the arbitrage strategy.

Note that {T2 ≤ t} = {Nt ≥ 2}. We deduce that

M2
t = 11{T2≤t} −A

2
t = 11{Nt≥2} −A2

t = 11{Nt−≥1}∆Nt + 11{Nt−≥2}(1−∆Nt)−A2
t .

Hence,

∆M2
t =

(
11{Nt−≥1} − 11{Nt−≥2}

)
∆Nt =

(
11{Nt−≥1} − 11{Nt−≥2}

)
∆Mt.

Since M2 and M are both purely discontinuous, we have mt = 1 + φ � Mt =

1 + ϕ(1) � St, where

φt = −e−λ
k1
k2

(t−T1) (
I{Nt−≥1} − I{Nt−≥2}

)
, and ϕ

(1)
t = φt

1

ψSt−
.

(iii) Arbitrages after τ : At time τ , the value of T2 is known for the one who has

G information. If ψ > 0, then the price process decreases before time T2, while
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waiting up to time T2 does not lead to an arbitrage. Setting ∆ = T2− τ (which is

known at time τ), there is an arbitrage selling short S at time τ for a delivery at

time τ + 1
2∆. The strategy is admissible, since between T1 and T2, the quantity

St is bounded by S0(1 + ϕ). This ends the proof of the proposition.

Example 4.4 (Minimum of two scaled jump times) We give now an example

of a non honest random time, which does not avoid F stopping time and induces

classical arbitrage opportunities.

Proposition 4.9: Consider the market S in (4.23) with notations (4.22) and (4.24)

and the random time

τ2 := T1 ∧ aT2, where 0 < a < 1 and β = λ(1/a− 1).

Then, the following properties hold:

(a) τ2 is not an honest time and does not avoid F-stopping times.

(b) Zτ2 = 11{T1>aT2}e
−βaT2(βaT2 + 1) < 1 and Z̃τ2 = e−βaT2(βaT2 + 1) < 1, and

{Z̃ = 0 < Z−} = ∅.

(c) m ≡ 1 and M τ is a G-local martingale for any F-local martingale M .

Proof. First, let us compute the supermartingale Z,

Zt = 11{T1>t}P(aT2 > t|Ft) = 11{T1>t}
P(aT2 > t, T1 > t)

P(T1 > t)

= 11{T1>t}e
λt E(11T1>te

−λ( t
a
−T1)+)

= 11{T1>t}e
λt

∫ t/a

t
e−λ( t

a
−x)λe−λxdx+ 11{T1>t}e

λt

∫ ∞
t/a

λe−λydy

= 11{T1>t}e
−βt(βt+ 1) .

In particular Zτ2 = 11{T1>aT2}e
−βaT2(βaT2+1) < 1. Similar computation as above

leads to Z̃t = Zt− = 11{T1≥t}e
−βt(βt+1). This proves assertions (a) and (b). Since

∆m = Z̃ − Z−, we have ∆m ≡ 0. Hence m is a constant equal to 1 since m is
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a purely discontinuous F-martingale. This proves assertion (c) and the proof of

the proposition is achieved.

Conclusions

In this chapter, we treated the question whether the no-arbitrage conditions are sta-

ble with respect to progressive enlargement of filtration. Precisely, we proved that

there exist classic arbitrage opportunities for many models of honest times when

the market is complete. Furthermore, in the case of Brownian filtration and Poisson

filtration, we calculated explicitly the arbitrage strategies. One may further inves-

tigate similar problem without assuming market completeness and consider other

examples/classes of non-honest random times.

The failure of the classic arbitrage condition leads us to investigate the stability of

the NUPBR condition in Chapters 5 and 6.
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Chapter 5

Non-arbitrage under Stopping

with Random Time

This chapter is dedicated to the problem of how an arbitrage-free semimartingale

model is affected when stopped at a random horizon. We focus on weaker non-

arbitrage concept: No-Unbounded-Profit-with-Bounded-Risk (called NUPBR here-

after) concept, which is also known in the literature as the first kind of non-arbitrage.

For this non-arbitrage notion, we obtain two principal results. The first result lies

in describing the pairs of market model and random time for which the resulting

stopped model fulfills NUPBR condition. The second main result characterizes the

random time models that preserve the NUPBR property after stopping for any mar-

ket model. These results are elaborated in a very general market model, and also

some particular and practical models.

Mathematically speaking, we consider a general semimartingale model S satisfying

the NUPBR property under the “public information” and an arbitrary random time

τ and we investigate the following problems:

For which pairs (S, τ), does the NUPBR property hold for Sτ? (Prob(5.I))
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In Theorem 5.6 we characterize the pairs of initial market S and of random time τ ,

for which (Prob(5.I)) has a positive answer.

Our second main question consists of

For which τ , is NUPBR preserved for any S after stopping at τ? (Prob(5.II))

To deepen our understanding of the precise interplay between S (initial market

model) and τ (the random time model), we address these two principal questions

separately in the case of quasi-left-continuous models, and then in the case of thin

processes with predictable jumps. Afterwards, we combine the two cases and state

the results for the most general framework. The results for the quasi-left-continuous

models are Theorem 5.2 and Proposition 5.3, where the questions (Prob(5.I)) and

(Prob(5.II)) are fully answered respectively. For the case of thin processes with

predictable jumps, our main result is Theorem 5.5. Then, the general case follows

by splitting the process S into a quasi-left-continuous process and a thin process

with predictable jumps.

This problem was studied in the literature (see [63]) for particular case of continuous

filtration, under the hypothesis that τ avoids F-stopping times and that the market

is complete.

5.1 Notations and Preliminary Results on NUPBR

We consider a stochastic basis (Ω,A,F = (Ft)t≥0, P ), where F is a filtration satis-

fying the usual hypotheses (i.e., right continuity and completeness) and represents

the flow of public information through time with F∞ :=
∨
t≥0Ft ⊆ A. On this

basis, we consider an arbitrary but fixed d-dimensional càdlàg F-semimartingale S

that represents the discounted price processes of d-risky assets; while the non-risky

asset’s price is assumed to be constant one.
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Beside the initial model (Ω,A,F, P, S), we consider a random time τ , i.e., a non-

negative A-measurable random variable. To this random time, we associate the

process D and the filtration G given by

D := I[[τ,+∞[[, G = (Gt)t≥0 , Gt =
⋂
s>t

(
Fs ∨ σ(Du, u ≤ s)

)
.

The filtration G is the smallest right-continuous filtration which contains F and

makes τ a stopping time. In the probabilistic literature, G is called the progressive

enlargement of F with τ . In addition to G and D, we associate to τ two important

F-supermartingales given by

Zt := P
(
τ > t

∣∣ Ft) and Z̃t := P
(
τ ≥ t

∣∣∣ Ft) . (5.1)

The supermartingale Z is right-continuous with left limits and coincides with the

F-optional projection of I]]0,τ [[, while Z̃ admits right limits and left limits only and

is the F-optional projection of I]]0,τ ]]. The decomposition of Z leads to an important

F-martingale m, given by

m := Z +Do,F, (5.2)

where Do,F is the F-dual optional projection of D (See [83] for more details).

In what follows, H is a generic filtration satisfying the usual hypotheses and Q is a

probability measure on the filtered probability space (Ω,H). The set of martingales

for the filtration H under Q is denoted byM(H, Q). When Q = P , we simply denote

M(H). As usual, A+(H) denotes the set of increasing, right-continuous, H-adapted

and integrable processes.

If C(H) is a class of H adapted processes, we denote by C0(H) the set of processes

X ∈ C(H) with X0 = 0, and by Cloc the set of processes X such that there exists a
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sequence (Tn)n≥1 of H-stopping times that increases to +∞ and the stopped pro-

cesses XTn belong to C(H). We put C0,loc(H) = C0(H) ∩ Cloc(H).

For a process K with H-locally integrable variation, we denote by Ko,H its dual

optional projection. The dual predictable projection of K (also called the H-

predictable dual projection) is denoted Kp,H. For a process X, we denote o,HX

(resp. p,HX ) its optional (resp. predictable) projection with respect to H.

For an H- semi-martingale Y , the set L(Y,H) is the set of H predictable processes

integrable w.r.t. Y and for H ∈ L(Y,H), we denote H � Yt :=
∫ t

0 HsdYs.

To distinguish the effect of filtrations, we will denote 〈., .〉F, or 〈., .〉G the sharp

bracket (predictable covariation process) calculated in the filtration F or G, if con-

fusion may rise. We recall that, for general semi-martingales X and Y , the sharp

bracket is (if it exists) the dual predictable projection of the covariation process

[X,Y ].

Below, we recall the non-arbitrage notion that will be addressed in this chapter.

Definition 5.1: An H-semimartingale X satisfies the No-Unbounded-Profit-with-

Bounded-Risk condition under (H, Q) (hereafter called NUPBR(H, Q)) if for any

T ∈ (0,+∞) the set

KT (X,H) :=
{

(H � S)T
∣∣ H ∈ L(X,H), and H �X ≥ −1

}

is bounded in probability under Q. When Q ∼ P , we simply write, with an abuse

of language, X satisfies NUPBR(H).

Remark 5.1: (i) It is important to notice that this definition for NUPBR condition

appeared first in [95] (up to our knowledge), and it differs when the time horizon

is infinite from that of the literature given in Delbaen and Schachermayer [47],
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Kabanov [86] and Karatzas and Kardaras [90] (see Definition 2.17 of Subsection

2.4 in Chapter 2). It is obvious that, when the horizon is deterministic and finite,

the current NUPBR condition coincides with that of the literature. We could

name the current NUPBR as NUPBRloc, but for the sake of simplifying notation,

we opted for the usual terminology.

(ii) In general, when the horizon is infinite, the NUPBR condition of the literature

implies the NUPBR condition defined above. However, the reverse implication

may not hold in general. In fact if we consider St = exp(Wt + t), t ≥ 0, then it

is clear that S satisfies our NUPBR(H), while the NUPBR(H) of the literature is

violated. To see this last claim, it is enough to remark that

lim
t−→+∞

(St − 1) = +∞ P − a.s. St − 1 = H � S ≥ −1 H := I]]0,t]].

The following proposition slightly generalizes Takaoka’s results obtained for a finite

horizon (see Theorem 2.6 in [137]) to our NUPBR context.

Proposition 5.1: Let X be an H-semimartingale. Then the following assertions

are equivalent.

(a) X satisfies NUPBR(H).

(b) There exist a positive H-local martingale, Y and an H-predictable process θ

satisfying 0 < θ ≤ 1 and Y (θ �X) is a local martingale.

Proof. The proof of the implication (b)⇒ (a) is based on [137] and is omitted. Thus,

we focus on proving the reverse implication and suppose that assertion (a) holds.

Therefore, a direct application of Theorem 2.6 in [137] to each (St∧n)t≥0, we obtain

the existence of a positive H-local martingale Y (n) and an H-predictable process θn

such that 0 < θn ≤ 1 and Y (n)(θn � Sn) is a local martingale. Then, it is obvious

that the process

N :=
+∞∑
n=1

I]]n−1,n]](Y
(n)
− )−1 � Y (n)
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is a local martingale and Y := E(N) > 0. On the other hand, the H-predictable

process θ :=
∑

n≥1 I]]n−1,n]]θn satisfies 0 < θ ≤ 1 and Y (θ � S) is a local martingale.

This ends the proof of the proposition.

For any H-semimartingale X, the local martingales fulfilling the assertion (b) of

Proposition 5.1 are called σ-martingale densities forX. The set of these σ-martingale

densities will be denoted throughout the paper by

L(H, X) :=
{
Y ∈Mloc(H)

∣∣ Y > 0, ∃θ ∈ P(H), 0 < θ ≤ 1, Y (θ �X) ∈Mloc(H)
}

(5.3)

where, as usual, P(H) stands for predictable processes. We state, without proof, an

obvious lemma.

Lemma 5.1: For any H-semimartingale X and any Y ∈ L(H, X), one has

p,H(Y |∆X|) <∞ and p,H(Y∆X) = 0

Remark 5.2: Proposition 5.1 implies that for any process X and any finite stop-

ping time σ, the two concepts of NUPBR(H) (the current concept and the one of

the literature) coincide for Xσ.

Below, we prove that, under infinite horizon, the current NUPBR condition is stable

under localization, while the NUPBR condition defined in the literature fails.

Proposition 5.2: Let X be an H adapted process. Then, the following assertions

are equivalent.

(a) There exists a sequence (Tn)n≥1 of H-stopping times that increases to +∞,

such that for each n ≥ 1, there exists a probability Qn on (Ω,HTn) such that

Qn ∼ P and XTn satisfies NUPBR(H) under Qn.

(b) X satisfies NUPBR(H).

(c) There exists an H-predictable process φ, such that 0 < φ ≤ 1 and (φ � X)

satisfies NUPBR(H).

102



Proof. The proof for (a)⇐⇒(b) follows from the stability of NUPBR condition for

a finite horizon under localization which is due to [137] (see also [37] for further

discussion about this issue), and the fact that the NUPBR condition is stable under

any equivalent probability change.

The proof of (b)⇒(c) is trivial and is omitted. To prove the reverse, we assume that

(c) holds. Then Proposition 5.1 implies the existence of an H-predictable process

ψ such that 0 < ψ ≤ 1 and a positive H-local martingale Z = E(N) such that

Z(ψφ �X) is a local martingale. Since ψφ is predictable and 0 < ψφ ≤ 1, we deduce

that S satisfies NUPBR(H). This ends the proof of the proposition.

Lemma 5.2: Let X be an H-predictable process with finite variation. Then X

satisfies NUPBR(H) if and only if X ≡ X0 (i.e. the process X is constant).

Proof. It is obvious that if X ≡ X0, then X satisfies NUPBR(H). Suppose that

X satisfies NUPBR(H). Consider a positive H-local martingale Y , and an H-

predictable process θ such that 0 < θ ≤ 1 and Y (θ �X) is a local martingale. Let

(Tn)n≥1 be a sequence of H-stopping times that increases to +∞ such that Y Tn and

Y Tn(θ �X)Tn are true martingales. Then, for each n ≥ 1, define Qn := (YTn/Y0) �P.

Since X is predictable, then (θ �X)Tn is also predictable with finite variation and is

a Qn-martingale. Thus, we deduce that (θ �X)Tn ≡ 0 for each n ≥ 1. Therefore, we

deduce that X is constant (since XTn − X0 = θ−1 � (θ � X)Tn ≡ 0). This ends the

proof of the lemma.

Now, let us characterize the σ-martingale density in terms of characteristics of

semimartingale, see also [107].

Theorem 5.1: Let X be an H-semi-martingale with predictable triplet (b, c, ν).

Then X satisfies NUPBR(H) with the σ-martingale density E(N) if and only

if the following two properties hold:
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(a) The integral

∫ ∣∣∣ (x− h(x) + xf(x))
∣∣∣F (dx)+

∫
|x|MP

µ

(
|g|
∣∣∣ P̃(H)

)
< +∞, P ⊗A−a.s and

(5.4)

(b) The following equality holds:

b+ βc+

∫
(x− h(x) + xf(x))F (dx) ≡ 0, P ⊗A− a.s. (5.5)

where (β, f, g,N ′) are the Jacod’s parameters of N with respect to X (see (2.18)),

F is the kernel and A is an H-predictable process associated with compensator ν

(see (2.11)).

Proof. Thanks to Itô formula, we deduce that ZX is a σ-martingale if and only if

there exists an H-predictable process 0 < φ ≤ 1 such that φ �X+φ � [X,N ] is a local

martingale. From the Jacod Decomposition (2.18), we derive that

φ �X + φ � [X,N ] = φ �X + φ � [Xc, N c] +
∑

φ∆X∆N

= X0 + φ �Xc + φh ? (µ− ν) + φ(x− h) ? µ+ φb �A+ φβc �A

+
∑

φ∆X (f(∆X) + g(∆X)) I{∆X 6=0}

= X0 + φ �Xc + φh ? (µ− ν) + φb �A

+φβc �A+ φ[x− h(x) + x (f(x) + g(x))] ? µ.

Therefore, φ � X + φ � [X,N ] is a local martingale if and only if the assertions (a)

and (b) are satisfied.

5.2 Main Results and their Interpretations

This section presents our main results and their immediate consequences. To this

end, we start specifying our mathematical setting and the economic concepts.
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5.2.1 The Quasi-Left-Continuous Processes

In this subsection, we present our two main results on the NUPBR condition under

stopping at τ for quasi-left-continuous processes. The first result consists of charac-

terizing the pairs (S, τ) of market and random time models, for which Sτ fulfills the

NUPBR condition. The second result focuses on determining the models of random

times τ such that, for any semi-martingale S enjoying NUPBR(F), the stopped pro-

cess Sτ enjoys NUPBR(G) .

The following theorem gives a characterization of F-quasi-left-continuous processes

that satisfy NUPBR(G) after stopping with τ . Recall that µ, ν and MP
µ are defined

by (2.9), (2.11) and (2.10) in Subsection 2.3 respectively. The proof of this theorem

will be given in Subsection 5.5.1, while its statement is based on the following F-

semimartingale

S(0) := xI{ψ=0<Z−} ? µ, where ψ := MP
µ

(
I{Z̃>0}

∣∣∣P̃ (F)
)
. (5.6)

Theorem 5.2: Suppose that S is F-quasi-left-continuous. Then, the following as-

sertions are equivalent.

(a) Sτ satisfies NUPBR(G).

(b) For any δ > 0, the process

I{Z−≥δ} �
(
S − S(0)

)
satisfies NUPBR(F). (5.7)

(c) For any n ≥ 1, the process (S − S(0))σn satisfies NUPBR(F), where

σn := inf{t ≥ 0 : Zt < 1/n}.

Remark 5.3: 1) From assertion (c) one can understand that the NUPBR(G) prop-

erty for Sτ can be verified by checking whether S − S(0) satisfies NUPBR(F) up
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to σ∞ := supn σn. This is also equivalent to NUPBR(F) of the same process on

the predictable sets {Z− ≥ δ}, δ > 0.

2) The functionals ψ and Z− + fm := MP
µ (Z̃

∣∣P̃(F)) satisfy

{ψ = 0} = {Z− + fm = 0} ⊂ {Z̃ = 0}, MP
µ − a.e. (5.8)

Indeed, due to Z̃ ≤ I{Z̃>0}, we have

0 ≤ Z− + fm = MP
µ

(
Z̃
∣∣ P̃(F)

)
≤ ψ.

Thus, we get {ψ = 0} ⊂ {Z− + fm = 0} ⊂ {Z̃ = 0} MP
µ − a.e. on the one hand.

On the other hand, the reverse inclusion follows from

0 = MP
µ

(
I{Z−+fm=0}I{Z̃=0}

)
= MP

µ

(
I{Z−+fm=0}ψ

)
.

3) As a result of remark 2) above and {Z̃ = 0 < Z−} ⊂ [[σ∞]], we deduce that

S(0) is a càdlàg F-adapted process with finite variation that takes the form of

S(0) := ∆Sσ∞I{Z̃σ∞=0=ψ(σ∞,∆Sσ∞ ) & Zσ∞−>0}I[[σ∞,+∞[[.

This proves the claim stated before Theorem 5.2 about the process S(0).

The following corollary is useful for studying the problem (Prob(5.II)), and it

describes examples of F-quasi-left-continuous model S that fulfills (5.6) as well.

Corollary 5.2.1: Suppose that S is F-quasi-left-continuous and satisfies NUPBR(F).

Then, the following assertions hold.

(a) If
(
S, S(0

)
satisfies NUPBR(F), then Sτ satisfies NUPBR(G).

(b) If S(0) ≡ 0, then the process Sτ satisfies NUPBR(G).

(c) If {∆S 6= 0} ∩ {Z̃ = 0 < Z−} = ∅, then Sτ satisfies NUPBR(G).

(d) If Z̃ > 0 (equivalently Z > 0 or Z− > 0), then Sτ satisfies NUPBR(G).
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Proof. (a) Suppose that
(
S, S(0

)
satisfies NUPBR(F). Then, it is obvious that

S − S(0) satisfies NUPBR(F), and assertion (a) follows from Theorem 5.2.

(b) Since S satisfies NUPBR(F) and S(0) ≡ 0, then
(
S, S(0

)
≡ (S, 0) satisfies

NUPBR(F), and assertion (b) follows from assertion (a).

(c) It is easy to see that {∆S 6= 0} ∩ {Z̃ = 0 < Z−} = ∅ implies that S(0) ≡ 0 (due

to (5.8)). Hence, assertions (c) and (d) follow from assertion (b), and the proof of

the corollary is completed.

Remark 5.4: It is worth mentioning that X − Y may satisfy NUPBR(H), while

(X,Y ) may fail NUPBR(H). For a non trivial example, consider Xt = Bt+λt and

Yt = Nt, where B is a standard Brownian motion and N is the Poisson process

with intensity λ.

We now give an answer to the second problem (Prob(5.II)) for the quasi-left-

continuous semimartingales. Later on (in Theorem 5.7) we will generalize this result.

Theorem 5.3: The following assertions are equivalent:

(a) The thin set
{
Z̃ = 0 & Z− > 0

}
is accessible.

(b) For any (bounded) S that is F-quasi-left-continuous and satisfies NUPBR(F),

the process Sτ satisfies NUPBR(G).

Proof. The implication (a)⇒(b) follows from Corollary 5.2.1–(c), since we have

{∆S 6= 0} ∩ {Z̃ = 0 < Z−} = ∅.

We now focus on proving the reverse implication. To this end, we suppose that

assertion (b) holds, and we consider an F-stopping time σ such that [[σ]] ⊂ {Z̃ =

0 < Z−}. It is known that σ can be decomposed into a totally inaccessible part σi

and an accessible part σa such that σ = σi ∧ σa. Consider the quasi-left-continuous

F-martingale

M = V − Ṽ ∈M0,loc(F)
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where V := I[[σi,+∞[[ and Ṽ := (V )p,F. It is known from [53, paragraph 14, Chapter

XX], that

{Z̃ = 0} and {Z− = 0} are disjoint from ]]0, τ ]] . (5.9)

This implies that τ < σ ≤ σi P − a.s.. Hence, we get

M τ = −Ṽ τ is G-predictable. (5.10)

Since M τ satisfies NUPBR(G), then we conclude that this process is null (i.e. Ṽ τ =

0) due to Lemma 5.2. Thus, we get

0 = E
(
Ṽτ

)
= E

(∫ +∞

0
Zs−dṼs

)
= E

(
Zσi−I{σi<+∞}

)
,

or equivalently Zσi−I{σi<+∞} = 0 P−a.s. This is possible only if σi = +∞ P−a.s.

since on {σi < +∞} ⊂ {σ = σi < +∞} we have Zσi− = Zσ− > 0. This proves

that σ is an accessible stopping time. Since {Z̃ = 0 < Z−} is an optional thin set,

assertion (a) follows immediately. This ends the proof of the proposition.

5.2.2 Thin Processes with Predictable Jump Times

In this subsection, we outline the main results on the NUPBR condition for the

stopped accessible parts of F-semimartingales with a random time. This boils down

to consider thin semimartingales with predictable jump times only. We start by

addressing the question (Prob(5.I)) in the case of single jump process with pre-

dictable jump time.

Theorem 5.4: Consider an F-predictable stopping time T and an FT -measurable

random variable ξ such that E(|ξ|
∣∣ FT−) < +∞ P − a.s..

If S := ξI{ZT−>0}I[[T,+∞[[, then the following assertions are equivalent:

(a) Sτ satisfies NUPBR(G),
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(b) The process S̃ := ξI{Z̃T>0}I[[T,+∞[[ = I{Z̃>0} � S satisfies NUPBR(F).

(c) There exists a probability measure on (Ω,FT ), denoted by QT , such that QT

is absolutely continuous with respect to P , and S satisfies NUPBR(F, QT ).

The proof of this theorem is long and requires intermediary results that are inter-

esting in themselves. Thus, this proof will be given later in Section 5.5.

Remark 5.5: 1) The importance of Theorem 5.4 goes beyond its vital role, as a

building block for the more general result. In fact, Theorem 5.4 provides two

different characterizations for NUPBR(G) of Sτ . The first characterization is ex-

pressed in term of NUPBR(F) of S under absolute continuous change of measure,

while the second characterization uses transformation of S without any change

of measure. Furthermore, Theorem 5.4 can be easily extended to the case of

countably many ordered predictable jump times T0 = 0 ≤ T1 ≤ T2 ≤ ... with

supn Tn = +∞ P − a.s..

2) In Theorem 5.4, the choice of S having the form S := ξI{ZT−>0}I[[T,+∞[[ is not

restrictive. This can be understood from the fact that any single jump process S

can be decomposed as follows

S := ξI[[T,+∞[[ = ξI{ZT−>0}I[[T,+∞[[ + ξI{ZT−=0}I[[T,+∞[[ =: S + Ŝ.

Thanks to {T ≤ τ} ⊂ {ZT− > 0}, we have Ŝτ = ξI{ZT−=0}I{T≤τ}I[[T,+∞[[ ≡ 0

which is (obviously) a G-martingale. Thus, the only part of S that requires careful

attention is S := ξI{ZT−>0}I[[T,+∞[[.

The following result is a complete answer to (Prob(5.II)) in the case of predictable

single jump processes.

Proposition 5.3: Let T be an F-predictable stopping time. Then, the following

assertions are equivalent:
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(a) On {T < +∞}, we have

{
Z̃T = 0

}
⊂
{
ZT− = 0

}
. (5.11)

(b) For any M := ξI[[T,+∞[[ where ξ ∈ L∞(FT ) such that E(ξ|FT−) = 0, M τ

satisfies NUPBR(G).

Proof. We start by proving (a)⇒ (b). Suppose that (5.11) holds; due to the above

Remark 5.5-(2), we can restrict our attention to the case whenM := ξI{ZT−>0}I[[T,+∞[[,

where ξ ∈ L∞(FT ) such that E(ξ|FT−) = 0. Since assertion (a) is equivalent to

[[T ]] ∩ {Z̃ = 0 & Z− > 0} = ∅, we deduce that

M̃ := ξI{Z̃T>0}I{ZT−>0}I[[T,+∞[[ = M is an F-martingale.

Therefore, a direct application of Theorem 5.4 (to M) allows us to conclude that

M τ satisfies the NUPBR(G). This ends the proof of (a)⇒ (b). To prove the reverse

implication, we suppose that assertion (b) holds and consider

M := ξI[[T,+∞[[, where ξ := I{Z̃T=0} − P (Z̃T = 0|FT−).

From (5.9), we obtain {T ≤ τ} ⊂ {Z̃T > 0} ⊂ {ZT− > 0} which implies that

M τ = −P (Z̃T = 0|FT−)I{T≤τ}I[[T,+∞[[ is G-predictable.

Therefore, M τ satisfies NUPBR(G) if and only if it is a constant process equal to

M0 = 0 (see Lemma 5.2). This is equivalent to

0 = E
[
P (Z̃T = 0|FT−)I{T≤τ}I[[T,+∞[[

]
= E

(
ZT−I{Z̃T=0 & T<+∞}

)
.

It is obvious that this equality is equivalent to (5.11), and assertion (a) follows. This
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ends the proof of the theorem.

We now state the following version of Theorem 5.4, which provides, as already said,

an answer to (Prob(5.I)) in the case where there are countable many arbitrary

predictable jumps. The proof of this theorem will be given in Subsection 5.5.3.

Theorem 5.5: Let S be a thin process with predictable jump times only and satis-

fying NUPBR(F). Then, the following assertions are equivalent.

(a) The process Sτ satisfies NUPBR(G).

(b) For any δ > 0, there exists a positive F-local martingale, Y , such that

p,F (Y |∆S|) < +∞ and

p,F
(
Y∆SI{Z̃>0 & Z−≥δ}

)
= 0. (5.12)

Remark 5.6: 1) Suppose that S is a thin process with predictable jumps only,

satisfying NUPBR(F), and that {Z̃ = 0 & Z− > 0}∩{∆S 6= 0} = ∅ holds. Then,

Sτ satisfies NUPBR(G). This follows immediately from Theorem 5.5 by using

Y ∈ L(S,F) and Lemma 5.1.

2) Similarly to Proposition 5.3, we can easily prove that the thin set {Z̃ =

0 & Z− > 0} is totally inaccessible if and only if Xτ satisfies NUPBR(G) for

any thin process X with predictable jumps only satisfying NUPBR(F).

5.2.3 The General Framework

Throughout the paper, with any H-semimartingale, X, we associate a sequence of

(H)-predictable stopping times (TXn )n≥1 that exhaust the accessible jump times of

X. Furthermore, we can decompose X as follows.

X = X(qc) +X(a), X(a) := IΓX �X, X(qc) := X −X(a), ΓX :=

∞⋃
n=1

[[TXn ]]. (5.13)
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The process X(a) (the accessible part of X) is a thin process with predictable jumps

only, while X(qc) is an H-quasi-left-continuous process (the quasi-left-continuous

part of X).

Lemma 5.3: Let X be an H-semimartingale. Then X satisfies NUPBR(H) if and

only if X(a) and X(qc) satisfy NUPBR(H).

Proof. Thanks to Proposition 5.1, X satisfies NUPBR(H) if and only if there exist

an H-predictable real-valued process φ > 0 and a positive H-local martingale Y such

that Y (φ �X) is an H- local martingale. Then, it is obvious that Y (φIΓX �X) and

Y (φIΓX
c �X) are both H-local martingales. This proves that X(a) and X(qc) both

satisfy NUPBR(H).

Conversely, if X(a) and X(qc) satisfy NUPBR(H), then there exist two H-predictable

real-valued processes φ1, φ2 > 0 and two positive H-local martingalesD1 = E(N1), D2 =

E(N2) such that D1(φ1 � (IΓX � S)) and D2(φ2 � (IΓX
c �X)) are both H-local martin-

gales. Remark that there is no loss of generality in assuming N1 = IΓX � N1 and

N2 = IΓX
c �N2. Put

N := IΓX �N1 + IΓX
c �N2 and ψ := φ1IΓX + φ2IΓX

c .

Obviously, E(N) > 0, E(N) and E(N)(ψ � S) are H-local martingales, ψ is H-

predictable and 0 < ψ ≤ 1. This ends the proof of the lemma.

Below, we state the answer to question (Prob(5.I)), in this general framework,

which is a consequence of Theorems 5.2 and 5.4, due to Lemma 5.3.

Theorem 5.6: Suppose that S satisfies NUPBR(F). Then, the following assertions

are equivalent.

(a) The process Sτ satisfies NUPBR(G).
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(b) For any δ > 0, the process

I{Z−≥δ} � (S(qc) − S(qc,0)) := I{Z−≥δ} � (S(qc) − IΓc � S
(0))

satisfies NUPBR(F), and there exists a positive F-local martingale, Y , such that

p,F (Y |∆S|) < +∞ and

p,F
(
Y∆SI{Z̃>0 & Z−≥δ}

)
= 0.

Proof. Due to Lemma 5.3, it is obvious that Sτ satisfies NUPBR(G) if and only if

both (S(qc))τ and (S(a))τ satisfy NUPBR(G). Thus, using both Theorems 5.2 and

5.5, we deduce that this last fact is true if and only if for any δ > 0, the process

I{Z−≥δ} � (S(qc) − IΓc � S(0)) satisfies NUPBR(F) and there exists a positive F-local

martingale Y such that

p,F (Y |∆S|) = p,F (Y |∆S(a)|
)
< +∞ and

p,F
(
Y∆SI{Z̃>0, Z−≥δ}

)
= p,F

(
Y∆S(a)I{Z̃>0, Z−≥δ}

)
= 0.

This ends the proof of the theorem.

Corollary 5.6.1: The following assertions hold.

(a) If either m is continuous or Z is positive (equivalently Z̃ > 0 or Z− > 0), Sτ

satisfies NUPBR(G) whenever S satisfies NUPBR(F).

(b) If S satisfies NUPBR(F) and {∆S 6= 0}∩{Z̃ = 0 < Z−} = ∅, then Sτ satisfies

NUPBR(G).

(c) If S is continuous and satisfies NUPBR(F), then for any random time τ , Sτ

satisfies NUPBR(G).

Proof. 1) The proof of assertion (a) of the corollary follows easily from Theorem

5.6. Indeed, in the two cases, one has {Z̃ = 0 < Z−} = ∅ which implies that

113



{Z̃ = 0, δ ≤ Z−} = ∅ and S(qc,0) ≡ 0 (due to (5.8)). Then, due to Lemma 5.1, It

suffices to take Y ∈ L(S,F) —since this set is non-empty— and apply Theorem 5.6.

2) it is obvious that assertion (c) follows from assertion (b). To prove this latter, it

is enough to remark that {∆S 6= 0} ∩ {Z̃ = 0, δ ≤ Z−} = ∅ implies that

I{Z−≥δ} � S
(qc,0) ≡ 0 and ∆SI{Z̃=0,δ≤Z−} = 0.

Thus, again, it is enough to take Y ∈ L(S,F) (i.e. Y is the σ-martingale density of

S) and apply Theorem 5.6. This ends the proof of the corollary.

Remark 5.7: Any of the two assertions of the above corollary generalizes the main

result of Fontana et al. [63], obtained under some restrictive assumptions on the

random time τ and the market model as well.

Below, we provide a general answer to question (Prob(5.II)), as a consequence of

Theorems 5.2 and 5.5 and Proposition 5.3.

Theorem 5.7: The following assertions are equivalent:

(a) The thin set
{
Z̃ = 0 & Z− > 0

}
is evanescent.

(b) For any (bounded) X satisfying NUPBR(F), Xτ satisfies NUPBR(G).

Proof. Suppose that assertion (a) holds, and consider a processX satisfying NUPBR(F).

Then, X(qc,0) := IΓcX
�X(0) ≡ 0, where X(0) is defined as in (5.6). Hence I{Z−≥δ} �(

X(qc) − IΓcX
�X(0)

)
satisfies NUPBR(F) for any δ > 0, and NUPBR(G) property

of (X(qc))τ follows immediately from Theorem 5.2 on the one hand. On the other

hand, it is easy to see that X(a) fulfills the condition (5.12) with Y ≡ 1. Thus,

thanks to Theorem 5.5 (applied to the thin process X(a) satisfying NUPBR(F)), we

conclude that (X(a))τ satisfies NUPBR(G). Thus, due to Lemma 5.3, the proof of

(a)⇒(b) is completed.

We now suppose that assertion (b) holds. On the one hand, from Proposition

5.3, we deduce that {Z̃ = 0 < Z−} is accessible and can be covered with the
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graphs of F-predictable stopping times (Tn)n≥1. On the other hand, a direct ap-

plication of Proposition 5.3 to all single predictable jump F-martingales, we obtain

{Z̃ = 0 < Z−} ∩ [[T ]] = ∅ for any F-predictable stopping time T . Therefore, we get

{Z̃ = 0 < Z−} =

∞⋃
n=1

(
{Z̃ = 0 < Z−} ∩ [[Tn]]

)
= ∅.

This proves assertion (a), and the proof of the theorem is completed.

5.3 Stochastics from–and–for Informational Non-Arbitrage

In this section, we develop new stochastic results that will play a key role in the

proofs and/or the statements of the main results outlined in the previous section.

The first subsection compares the G-compensators and the F-compensators, while

the second subsection studies G-localization and F-localization. Section 5.3.3 is con-

structing a G-local martingale that is vital in the explicit construction of deflators.

We recall that Z− + ∆m = Z̃ (see [84]).

Lemma 5.4: Let Z and Z̃ be the two supermartingales given by (5.1).

(a) The three sets {Z̃ = 0}, {Z = 0} and {Z− = 0} have the same début which is

an F-stopping time that we denote by

R̂ := inf{t ≥ 0
∣∣ Zt− = 0}. (5.14)

(b) The following F-stopping times

R̂0 :=

 R̂ on {Z
R̂− = 0}

+∞ otherwise
and R̃0 :=

 R̂ on {Z̃
R̂

= 0}

+∞ otherwise

are such that R̂0 is a F-predictable stopping time, and

τ ≤ R̂, τ < R̃0, P − a.s. (5.15)
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(c) The G-predictable process

Ht := (Zt−)−1 I[[0,τ ]](t), (5.16)

is G-locally bounded.

Proof. From [53, paragraph 14, Chapter XX], for any random time τ , the sets

{Z̃ = 0} and {Z− = 0} are disjoint from ]]0, τ ]] and have the same lower bound R̂,

the smallest F-stopping time greater than τ . Thus, we also conclude that {Z = 0}

is disjoint from ]]0, τ [[. This leads to assertion (a). The process X := Z−1I]]0,τ [[ being

a càdlàg G-supermartingale [141], its left limit is locally bounded. Then, due to

(Z−)−1I]]0,τ ]] = X−,

the local boundedness of H follows. This ends the proof of the lemma.

5.3.1 Projection and Compensator under G and F

The main results of this subsection are summarized in Lemmas 5.5 and 5.6, where

we address the question of how to compute G-dual predictable projections in term

of F-dual predictable projections and vice versa. These results are based essentially

on the following standard result on progressive enlargement of filtration (we refer

the reader to [53, 83] for proofs).

Proposition 5.4: Let M be an F-local martingale. Then, for any random time τ ,

the process M̂ given by

M̂t := Mt∧τ −
∫ t∧τ

0

d〈M,m〉Fs
Zs−

(5.17)

is a G-local martingale, where m is defined in (5.2).

Remark 5.8: Throughout this chapter, it is worthy to keep in mind that the process
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X̂ would be defined via (5.17) for any F-local martingale X.

In the following lemma, we express the G–dual predictable projection of an F-locally

integrable variation process in terms of an F–dual predictable projection, and G-

predictable projection in terms of F-predictable projection.

Lemma 5.5: The following assertions hold.

(a) For any F-adapted process V with locally integrable variation, we have

(V τ )p,G = (Z−)−1I]]0,τ ]] �
(
Z̃ � V

)p,F
. (5.18)

(b) For any F-local martingale M , we have, on [[0, τ ]]

p,G
(

∆M

Z̃

)
=

p,F
(

∆MI{Z̃>0}

)
Z−

, and p,G
(

1

Z̃

)
=

p,F
(
I{Z̃>0}

)
Z−

. (5.19)

(c) For any quasi-left-continuous F-local martingale M , we have, on [[0, τ ]]

p,G
(

∆M

Z̃

)
= 0, and p,G

(
1

Z− + ∆m(qc)

)
=

1

Z−
, (5.20)

where m(qc) is the quasi-left-continuous F-martingale defined via (5.13).

Proof. (a) By considering M = V − V p,F and M̂ defined via (5.17), we obtain

V τ = I]]0,τ ]] �V
p,F +M̂+

1

Z−
I]]0,τ ]] � 〈V,m〉F = M̂+I]]0,τ ]] �V

p,F +
1

Z−
I]]0,τ ]] � (∆m � V )p,F,

which proves assertion (a).

(b) Let M be an F-local martingale, then, for any positive integers (n, k) the process

V (n,k) :=
∑ ∆M

Z̃
I{|∆M |≥k−1, Z̃≥n−1} has locally integrable variation. Then, by using

the known equality p,G(∆V ) = ∆(V p,G) (see Theorem 76 in pages 149–150 of [54] or

Theorem 5.27 in page 150 of [71]), and applying assertion (a) to the process V (n,k),
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we get, on ]]0, τ ]]

p,G
(

∆M

Z̃
I{|∆M |≥k−1, Z̃≥n−1}

)
=

1

Z−
p,F
(

∆MI{|∆M |≥k−1, Z̃≥n−1}

)
.

Since M is a local martingale, by stopping we can exchange limits with projections

in both sides. Then by letting n and k go to infinity, and using the fact that Z̃ > 0

on ]]0, τ ]], we deduce that

p,G
(

∆M

Z̃

)
=

1

Z−
p,F
(

∆MI{Z̃>0}

)
.

This proves the first equality in (5.19), while the second equality follows from Z̃ =

∆m+ Z−:

Z−
p,G
(
Z̃−1

)
= p,G

(
(Z̃ −∆m)/Z̃

)
= 1− p,G

(
∆m/Z̃

)
= 1− (Z−)−1 p,F

(
∆mI{Z̃>0}

)
= 1− p,F

(
I{Z̃=0}

)
= p,F

(
I{Z̃>0}

)
.

In the above string of equalities, the third equality follows from the first equality in

(5.19), while the fourth equality is due to p,F(∆m) = 0 and ∆mI{Z̃=0} = −Z−I{Z̃=0}.

This ends the proof of assertion (b).

(c) If M is a quasi-left-continuous F-local martingale, then p,F
(

∆MI{Z̃>0}

)
=

0, and the first property of the assertion (c) follows. Applying the first prop-

erty to M = m(qc) and using that, on ]]0, τ ]], one has ∆m(qc) (Z− + ∆m)−1 =

∆m(qc)
(
Z− + ∆m(qc)

)−1
, we obtain

1

Z−
p,G
(

Z−

Z− + ∆m(qc)

)
=

1

Z−

(
1− p,G

(
∆m(qc)

Z− + ∆m(qc)

))
=

1

Z−
.

This proves assertion (c), and the proof of the lemma is achieved.

The next lemma proves that Z̃−1I]]0,τ ]] is Lebesgue-Stieljes-integrable with respect
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to any process that is F-adapted with F-locally integrable variation. Using this fact,

the lemma addresses the question of how an F-compensator stopped at τ can be

written in terms of a G-compensator, and constitutes a sort of converse result to

Lemma 5.5–(a).

Lemma 5.6: Let V be an F-adapted càdlàg process. Then the following hold.

(a) If V belongs to A+
loc(F) (respectively V ∈ A+(F)), then the process

U := Z̃−1I]]0,τ ]] � V, (5.21)

belongs to A+
loc(G) (respectively to A+(G)).

(b) If V has F-locally integrable variation, then the process U is well defined, its

variation is G-locally integrable, and its G-dual predictable projection is given by

Up,G =

(
1

Z̃
I]]0,τ ]] � V

)p,G
=

1

Z−
I]]0,τ ]] �

(
I{Z̃>0} � V

)p,F
. (5.22)

In particular, if supp(V ) ⊂ {Z̃ > 0}, then, on ]]0, τ ]], one has V p,F = Z− � Up,G.

Proof. (a) Suppose that V ∈ A+
loc(F). First, remark that, due to the fact that Z̃

is positive on ]]0, τ ]], U is well defined. Let (ϑn)n≥1 be a sequence of F-stopping

times that increases to +∞ such that E (Vϑn) < +∞. Then, if E (Uϑn) ≤ E (Vϑn),

assertion (a) follows. Thus, we calculate

E (Uϑn) = E

(∫ ϑn

0
I{0<t≤τ}

1

Z̃t
dVt

)
= E

(∫ ϑn

0

P (τ ≥ t|Ft)
Z̃t

I{Z̃t>0}dVt

)
≤ E (Vϑn) .

The last inequality is obtained due to Z̃t := P (τ ≥ t|Ft). This ends the proof of

assertion (a) of the lemma.

(b) Suppose that V ∈ Aloc(F), and denote by W := V + + V − its variation. Then
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W ∈ A+
loc(F), and a direct application of the first assertion implies that

(
Z̃
)−1

I]]0,τ ]] �W ∈ A+
loc(G).

As a result, we deduce that U given by (5.21) for the case of V = V + − V − is well

defined and has variation equal to
(
Z̃
)−1

I]]0,τ ]] �W which is G-locally integrable. By

setting Un := I]]0,τ ]] �
(
Z̃−1I{Z̃≥1/n} � V

)
, we derive, due to (5.18),

(Un)p,G =
1

Z−
I]]0,τ ]] �

(
I{Z̃≥1/n} � V

)p,F
.

Hence, since Up,G = limn−→+∞ (Un)p,G , by taking the limit in the above equality,

(5.22) follows immediately, and the lemma is proved.

5.3.2 G-Localization versus F-Localization

Lemma 5.7: Let HG be a P̃(G)-measurable functional. Then, the following hold.

(a) There exist an P̃(F)-measurable functional HF and a B(R+)⊗P̃(F)-measurable

functionals KF : R+ × R+ × Ω× Rd → R such that

HG(ω, t, x) = HF(ω, t, x)I]]0,τ ]] +KF(τ(ω), t, ω, x)I]]τ,+∞]]. (5.23)

(b) If furthermore HG > 0 (respectively HG ≤ 1), then we can choose HF > 0

(respectively HF ≤ 1) such that

HG(ω, t, x)I]]0,τ ]] = HF(ω, t, x)I]]0,τ ]].

(c) If LG is an Õ(G)-measurable functional, then there exist a Õ(G)-measurable

functional L(1)(t, ω, x), a P̃prog(F)-measurable functional L(2)(t, ω, x) and P̃prog(F)⊗

B(Rd)-measurable functional, L(3)(t, ω, x, v), such that

LG(t, ω, x) = L(1)(t, ω, x)I]]0,τ [[ + L(1)(t, ω, x)I[[τ ]] + L(3)(t, ω, x, τ)I]]τ,+∞[[,(5.24)
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where Pprog(F) is the F-progressive σ-field on Ω×R+, and P̃prog(F) := Pprog(F)⊗

B(Rd). If furthermore, 0 < LG (respectively LG ≤ 1), then all L(i) can be chosen

such that 0 < L(i) (respectively L(i) ≤ 1), i = 1, 2, 3.

(d) For any F-stopping time, T , and any positive GT -measurable random vari-

able Y G, there exist two positive FT -measurable random variables, Y (1) and Y (2),

satisfying

Y GI{T≤τ} = Y (1)I{T<τ} + Y (2)I{τ=T}. (5.25)

Proof. (a) We are mimicking the approach of Jeulin [83]. Notice that P̃(G) is

generated by the process of the form

hG(ω, t, x) := α (s ∧ τ(ω)) fs(ω)g(x)I{s<t},

where α and g are Borel measurable functions and fs ∈ Fs. Now, by taking

hF(ω, t, x) := α (s) fs(ω)g(x)I{s<t} ∈ P̃(F) and

kF(y, t, ω, x) := α (y ∧ s) fs(ω)g(x)I{s<t} ∈ B(R+)⊗ P̃(F)

we have

hG(ω, t, x) = hFI[[0,τ [[ + kF(τ(ω), t, ω, x)I[[τ,+∞]].

Therefore, (5.23) follows immediately.

(b) To prove positivity of HF when HG > 0, we consider

H
F

:= (HF)+ + I{HF=0} > 0,

and we remark that due to (5.23), we have ]]0, τ ]] ⊂ {HG = HF} ⊂ {HF > 0}. Thus,
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we get

HGI]]0,τ ]] = H
F
I]]0,τ ]].

Similarly, we consider HF ∧ 1, and we deduce that if HG is upper-bounded by one,

the process HF can also be chosen to not exceed one. This ends the proof of asser-

tion (b).

(c) For the proof of assertion (c), we mimic Jeulin (see [83]) in his proof of Propo-

sition (5,3)–(b). In fact, it is clear that the σ-field Õ(H) is generated by the func-

tionals H((t, ω, x) := g(x)I[[σ1,σ2]] where σi are G-stopping times such that σ1 < σ2

on {σ1 < +∞}. Then, it is easy to remark that

H(t, ω, x) = lim sup
s−→t

H(s, ω, x), where H(s, ω, x) := g(x)I[[σ1,σ2[[(s).

Thus a direct application of assertion (a) to the functional H, we obtain the exis-

tence of an P̃(F)-measurable functional, J(t, ω, x) , and a B(R+)⊗P̃(F)-measurable

functional, K(t, ω, x, v), such that

H(s, ω, x) = J(t, ω, x)I]]0,τ ]] +K(t, ω, x, τ)I]]τ,+∞]].

Put

J(t, ω, x) := lim sup
s−→t

J(s, ω, x), K(t, ω, x, v) := lim sup
s−→t

K(s, ω, x, v),

and

W (t, ω, x, v) := sup

{
lim sup
s→t,s<t

J(s, ω, x), lim sup
s→t,s>t

K(s, ω, x, v)

}
.

Then, due to [52] (see also Lemma (4,1) in Jeulin [83]), J is Õ(F)-measurable, K

is Õ(F)⊗ B(R+)-measurable and W (t, ω, x, v) is P̃prog(F)⊗ B(R+)-measurable. As

a result, we deduce (due to Lemma 5.8 below), that W (t, ω, x) = W (t, ω, x, t) is
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P̃prog(F)-measurable, and we have

H(t, ω, x) = J(t, ω, x)I]]0,τ [[ +W (t, ω, x)I[[τ ]] +K(t, ω, x, τ)I]]τ,+∞]].

Thus, the proof of the first part of the assertion (c) follows from the class monotone

theorem. The proof of the positivity and the upper boundedness follows the same

arguments as in the proof of assertion (b).

(d) The proof of assertion (d) is a direct application of assertion (c) combined with

the fact that for any F-progressively measurable process Y and any F-stopping time

T , we have YT I{T<+∞} is FT -measurable. For this last fact, we refer the reader to

Theorem 64 in [54]. This ends the proof of the lemma.

Below, we state a simple and useful lemma that generalizes a result of [38].

Lemma 5.8: If X(t, ω, x, v) is an Õ(H)⊗ B(R+)-measurable functional, then

X(t, ω, x) := X(t, ω, x, t) is Õ(H)-measurable.

Proof. The proof of this lemma is immediate from a combination of the class mono-

tone theorem, and the proof of the lemma for the generators of Õ(H) ⊗ B(R+)

having the form of X(t, ω, x, v) = H(t, ω, x)k(v). Here H is Õ(H)-measurable and

k is B(R+)-measurable. For these generators, we have X(t, ω, x) = H(t, ω, x)k(t)

which is obviously Õ(H)-measurable.

In the following, we state and prove our main results of this subsection.

Proposition 5.5: For any α > 0, the following assertions hold:

(a) Let h be a P̃(H)-measurable functional. Then,
√

(h− 1)2 ? µ ∈ A+
loc(H) iff

(h− 1)2I{|h−1|≤α} ? µ and |h− 1|I{|h−1|>α} ? µ belong to A+
loc(H).

(b) Let (σGn )n be a sequence of G-stopping times that increases to infinity. Then,
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there exists a nondecreasing sequence of F-stopping times, (σFn)n≥1, satisfying the

following properties

σGn ∧ τ = σFn ∧ τ, σ∞ := sup
n
σFn ≥ R̂ P − a.s., (5.26)

and Zσ∞− = 0 P − a.s. on Σ ∩ (σ∞ < +∞), (5.27)

where Σ :=
⋂
n≥1

(σFn < σ∞).

(c) Let V be an F-predictable and non-decreasing process. Then, V τ ∈ A+
loc(G) if

and only if I{Z−≥δ} � V ∈ A
+
loc(F) for any δ > 0.

(d) Let h be a nonnegative and P̃(F)-measurable functional. Then, hI]]0,τ ]] ? µ ∈

A+
loc(G) if and only if for all δ > 0, hI{Z−≥δ} ? µ

1 ∈ A+
loc(F), where µ1 := Z̃

centerdotµ.

(e) Let f be positive and P̃(F)-measurable, and µ1 := Z̃�µ. Then
√

(f − 1)2I]]0,τ ]] ? µ ∈

A+
loc(G) iff

√
(f − 1)2I{Z−≥δ} ? µ

1 ∈ A+
loc(F), for all δ > 0.

Proof. (a) Put W := (h − 1)2 ? µ = W1 + W2, where W1 := (h − 1)2I{|h−1|≤α} ?

µ, W2 := (h− 1)2I{|h−1|>α} ? µ and W ′2 := |h− 1|I{|h−1|>α} ? µ. Note that

√
W ≤

√
W1 +

√
W2 ≤

√
W1 +W ′2.

Therefore
√
W1,W

′
2 ∈ A

+
loc imply

√
W is locally integrable.

Conversely, if
√
W ∈ A+

loc,
√
W1 and

√
W2 are both locally integrable. Since W1 is

locally bounded and has finite variation, W1 is locally integrable. In the following,

we focus on the proof of the local integrability of W ′2. Denote

τn := inf{t ≥ 0 : Vt > n}, V := W2.

It is easy to see that τn increases to infinity and V− ≤ n on the set ]]0, τn]]. On the set

{∆V > 0}, we have ∆V ≥ α2. By using the elementary inequality
√

1 + n
α2−

√
n
α2 ≤
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√
1 + x−

√
x ≤ 1, when 0 ≤ x ≤ n

α2 , we have

√
V− + ∆V −

√
V− ≥ βn

√
∆V on ]]0, τn]], where βn :=

√
1 +

n

α2
−
√

n

α2
,

and

(
W ′2
)τn =

(∑√
∆V

)τn
≤ 1

βn

(∑
∆
√
V
)τn

=
1

βn

(√
W2

)τn
∈ A+

loc(H)

Therefore W ′2 ∈ (A+
loc(H))loc = A+

loc(H).

(b) Due to Jeulin [83], there exists a sequence of F-stopping times (σFn)n such that

σGn ∧ τ = σFn ∧ τ. (5.28)

By putting σn := supk≤n σ
F
k , we shall prove that

σGn ∧ τ = σn ∧ τ, (5.29)

or equivalently {σFn∧τ < σn∧τ} is negligible. Due to (5.28) and σGn is nondecreasing,

we derive

{σFn < τ} = {σGn < τ} ⊂
n⋂
i=1

{σGi = σFi } ⊂ {σFn = σn}.

This implies that,

{σFn ∧ τ < σn ∧ τ} = {σFn < τ, & σFn < σn} = ∅,

and the proof of (5.29) is completed. Without loss of generality we assume that the

sequence σFn is nondecreasing. By taking limit in (5.28), we obtain τ = σ∞∧τ, P−a.s.

which is equivalent to σ∞ ≥ τ, P−a.s. Since R̂ is the smallest F-stopping time
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greater or equal than τ almost surely, we obtain, σ∞ ≥ R̂ ≥ τ P − a.s.. This

achieves the proof of (5.26).

On the set Σ, it is easy to show that

I[[0,σF
n]] −→ I[[0,σF

∞[[, when n goes to +∞.

Then, thanks again to (5.28) (by taking F-predictable projection and let n go to

infinity afterwards), we obtain

Z− = Z−I[[0,σF
∞[[, on Σ. (5.30)

Hence, (5.27) follows immediately, and the proof of assertion (b) is completed.

(c) Suppose that hI[[0,τ ]] ? µ ∈ A+
loc(G). Then, there exists a sequence of G-stopping

times (σGn )n≥1 increasing to infinity such that hI[[0,τ ]] ? µ
σG
n is integrable. Consider

(σn)n≥1 a sequence of F-stopping times satisfying (5.26)–(5.27) (its existence is guar-

anteed by assertion (b)). Therefore, for any fixed δ > 0

Wn := MP
µ

(
Z̃|P̃

)
I{Z−≥δ}h ? ν

σn ∈ A+(F), (5.31)

or equivalently, this process is càdlàg predictable with finite values. Thus, it is

obvious that the proof of assertion (iii) will follow immediately if we prove that the

F-predictable and nondecreasing process

W := MP
µ

(
Z̃|P̃

)
I{Z−≥δ}h ? ν is càdlàg with finite values. (5.32)

To prove this last fact, we consider the random time τ δ defined by

τ δ := sup{t ≥ 0 : Zt− ≥ δ}.
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Then, it is clear that I]]τδ,+∞[[ �W ≡ 0 and

τ δ ≤ R̂ ≤ σ∞ and Zτδ− ≥ δ P–a.s. on {τ δ < +∞}.

The proof of (5.32) will be achieved by considering three sets, namely {σ∞ = ∞},

Σ∩{σ∞ < +∞}, and Σc∩{σ∞ < +∞}. It is obvious that (5.32) holds on {σ∞ =∞}.

Due to (5.27), we deduce that τ δ < σ∞, P−a.s. on Σ ∩ {σ∞ < +∞}. Since W is

supported on [[0, τ δ]], then (5.32) follows immediately on the set Σ ∩ {σ∞ < +∞}.

Finally, on the set

Σc ∩ {σ∞ < +∞} =

⋃
n≥1

{σn = σ∞}

 ∩ {σ∞ < +∞},

the sequence σn increases stationarily to σ∞, and thus (5.32) holds on this set. This

completes the proof of (5.32), and hence hI{Z−≥δ} ? (Z̃ � µ) is locally integrable, for

any δ > 0.

Conversely, if hI{Z−≥δ}Z̃ ? µ ∈ A+
loc(F), there exists a sequence of F-stopping times

(τn)n≥1 that increases to infinity and
(
hI{Z−≥δ}Z̃ ? µ

)τn
∈ A+(F). Then, we have

E
[
hI{Z−≥δ}I[[0,τ ]] ? µ(τn)

]
= E

[
hI{Z−≥δ}Z̃ ? µ(τn)

]
< +∞. (5.33)

This proves that hI{Z−≥δ}I[[0,τ ]] ? µ is G-locally integrable, for any δ > 0. Since

(Z−)−1I[[0,τ ]] is G-locally bounded, then there exists a family of G-stopping times

(τδ)δ>0 that increases to infinity when δ decreases to zero, and

[[0, τ ∧ τδ]] ⊂ {Z− ≥ δ}.

This implies that the process
(
hI[[0,τ ]] ? µ

)τδ is G-locally integrable, and hence asser-

tion (c) follows immediately.
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(d) The proof of assertion (d) follows from combining assertions (a) and (b). This

ends the proof of the proposition.

5.3.3 An Important G-local martingale

In this subsection, we introduce a G-local martingale that will be crucial for the

construction of the deflator.

Lemma 5.9: The following nondecreasing process

V G
t :=

∑
0≤u≤t

p,F
(
I{Z̃=0}

)
u
I{u≤τ} (5.34)

is G-predictable, càdlàg, and locally bounded.

Proof. The G-predictability of V G being obvious, it remains to prove that this pro-

cess is G-locally bounded. Since Z−1
− I]]0,τ ]] is G-locally bounded, then there exists a

sequence of G-stopping times (τGn )n≥1 increasing to infinity such that

(
1

Z−
I]]0,τ ]]

)τGn
≤ n+ 1.

Consider a sequence of F-stopping times (σn)n≥1 that increases to infinity such that

〈m,m〉σn ≤ n + 1. Then, for any nonnegative F-predictable process H which is

bounded by C > 0, we calculate that

(H � V G)σn∧τGn =
∑

0≤u≤σn∧τGn

Hu
p,F
(
I{Z̃=0}

)
u
I{u≤τ}I{Zu−≥ 1

n+1
}

≤
∑

0≤u≤σn

Hu
p,F
(
I{∆m≤− 1

n+1
}

)
u

≤ (n+ 1)2H � 〈m,m〉σn ≤ C(n+ 1)3.

This ends the proof of the proposition.
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The important G-local martingale will result from an optional integral which will

play the role of deflator for a class of processes.

Proposition 5.6: Consider the F-martingale m in (5.2) and m̂ defined via (5.17).

The following process K given by

K :=
Z2
−

Z2
− + ∆〈m〉F

1

Z̃
I]]0,τ ]], (5.35)

belongs to the space oL1
loc(m̂,G) defined in 2.12. Furthermore, the G-local mar-

tingale

L := −K � m̂, (5.36)

satisfies the following

(a) E (L) > 0 (or equivalently 1 + ∆L > 0).

(b) For any M ∈M0,loc(F) and M̂ defined via (5.17), we have

[L, M̂ ] ∈ Aloc(G)
(

i.e. 〈L, M̂〉G exists
)
. (5.37)

Proof. The proof contains three steps. In the first step, we prove that the optional

integral L in (5.36) is well-defined. For the second step, we prove (a). The last step

is focusing on (b).

Step 1: For the sake of simplicity in notations, throughout this proof, we will use

κ := Z2
− + ∆〈m〉F. We start by calculating on ]]0, τ ]], making use of Lemma 5.5.

K∆m̂− p,G(K∆m̂) =
I]]0,τ ]]Z

2
−∆m̂

κZ̃
− p,G

(
I]]0,τ ]] Z

2
−

κZ̃
∆m̂

)

=
(Z2
−∆m− Z−∆〈m〉F)

κ Z̃
+

p,F(I{Z̃>0}∆〈m〉F)

κ
−

p,F(∆mI{Z̃>0})Z−

κ

=
∆m

Z̃
I]]0,τ ]] − p,F

(
I{Z̃=0}

)
I]]0,τ ]] =: ∆V −∆V G.

(5.38)

Here, V G, defined in (5.34), is nondecreasing, càdlàg and G-locally bounded (see

Proposition 5.9). Hence, we immediately deduce that
∑

(∆V G)2 = ∆V G � V G is
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locally bounded, and in the rest of this part we focus on proving
√∑

(∆V )2 ∈

A+
loc(G). To this end, we consider δ ∈ (0, 1), and define C := {∆m < −δZ−} and

Cc its complement in Ω⊗ [0,+∞[. Then we obtain

√∑
(∆V )2 ≤

(∑ (∆m)2

Z̃2
ICI]]0,τ ]]

)1/2

+

(∑ (∆m)2

Z̃2
ICcI]]0,τ ]]

)1/2

≤
∑ |∆m|

Z̃
ICI]]0,τ ]] +

1

1− δ

(
I]]0,τ ]]

1

Z2
−
� [m]

)1/2

=: V1 + V2.

The last inequality above is due to
√∑

(∆X)2 ≤
∑
|∆X| and Z̃ ≥ Z−(1 − δ) on

Cc. Using the fact that (Z−)−1I]]0,τ ]] is G-locally bounded and that m is an F-locally

bounded martingale, it follows that V2 is G-locally bounded. Hence, we focus on

proving the G-local integrability of V1.

Consider a sequence of G-stopping times (ϑn)n≥1 that increases to +∞ and

(
(Z−)−1I]]0,τ ]]

)ϑn
≤ n.

Also consider an F-localizing sequence of stopping times, (τn)n≥1, for the process

V3 :=
∑ (∆m)2

1+|∆m| . Then, it is easy to prove

Un :=
∑
|∆m|I{∆m<−δ/n} ≤

n+ δ

δ
V3,

and conclude that (Un)τn ∈ A+(F). Therefore, due to

C ∩ ]]0, τ ]] ∩ [[0, ϑn]] = {∆m < −δZ−} ∩ ]]0, ϑn]] ∩ ]]0, τ ]]

⊂ ]]0, τ ]] ∩ ]]0, ϑn]] ∩ {∆m < − δ
n
},

we derive

(V1)ϑn∧τn ≤
(
Z̃
)−1

I]]0,τ ]] � (Un)τn .
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Since (Un)τn is F-adapted, nondecreasing and integrable, then due to Lemma 5.6, we

deduce that the process V ϑn∧τn
1 is nondecreasing, G-adapted and integrable. Since

ϑn ∧ τn increases to +∞, we conclude that the process V1 is G-locally integrable.

This completes the proof of K ∈ oL1
loc(m̂,G), and the process L (given via (5.36))

is a G-local martingale.

Step 2: We now prove assertions (a). Due to (5.38), we have, on ]]0, τ ]],

−∆L = K∆m̂− p,G(K∆m̂) = 1− Z−
(
Z̃
)−1
− p,F

(
I{Z̃=0}

)
.

Thus, we deduce that 1 + ∆L > 0, and assertion (a) is proved.

Step 3: In the rest of this proof, we will prove (5.37). To this end, let M ∈

M0,loc(F). The formula (5.37) is equivalent to

K � [m̂, M̂ ] ∈ Aloc(G) (or equivalently V4 :=
1

Z̃
I]]0,τ ]] � [m̂, M̂ ] ∈ Aloc(G)),

for any M ∈M0,loc(F). Then, it is easy to check that

V4 =
Z−

Z̃
I]]0,τ ]] � [m̂, M̂ ] =

1

Z̃
I]]0,τ ]] � [m, M̂ ]− 1

Z− Z̃
I]]0,τ ]] � [〈m〉F, M̂ ]

=
1

Z̃
I]]0,τ ]] � [m,M ]− 1

Z− Z̃
I]]0,τ ]] � [m, 〈M,m〉F]

− 1

Z−Z̃
I]]0,τ ]] � [〈m〉F,M ] +

1

Z2
− Z̃

I]]0,τ ]] � [〈m〉F, 〈M,m〉F].

Since m is an F-locally bounded local martingale, all the processes

[m,M ], [m, 〈M,m〉F], [〈m〉F,M ], and [〈m〉F, 〈M,m〉F]

belong to Aloc(F). Thus, by combining this fact with Lemma 5.6 and the G-local

boundedness of Z−p− I]]0,τ ]] for any p > 0, it follows that V4 ∈ Aloc(G). This ends the
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proof of the proposition.

5.4 Explicit Deflators

This section describes some classes of F-quasi-left-continuous local martingales for

which the NUPBR is preserved after stopping with τ . For these stopped processes,

we describe explicitly their local martingale densities in Theorems 5.8–5.9 with an

increasing degree of generality. We recall that m(qc) was defined in (5.13) and L was

defined in Proposition 5.6.

Theorem 5.8: Suppose that S is a quasi-left-continuous F-local martingale. If S

and τ satisfy

{∆S 6= 0} ∩ {Z− > 0} ∩ {Z̃ = 0} = ∅, (5.39)

then the following equivalent assertions hold

(a) E (L)Sτ is a G-local martingale.

(b) E
(
I{Z̃=0<Z−} �m

(qc)
)
S is an F-local martingale.

Proof. We start by giving some useful observations. Since S is F-quasi-left-continuous,

on the one hand we deduce that (Γm is defined in (5.13))

〈S,m〉F = 〈S,m(qc)〉F = 〈S, IΓcm �m〉F. (5.40)

On the other hand, we note that assertion (a) is equivalent to E(L(qc))Sτ is a G-local

martingale, where L(qc) is the quasi-left-continuous local martingale part of L given

by L(qc) := IΓcm � L = −K � m̂(qc). Here K is given in Proposition 5.6 and

m̂(qc) := I]]0,τ ]] �m
(qc) − (Z−)−1I]]0,τ ]] � 〈m(qc)〉F.
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It is easy to check that (5.39) is equivalent to

I{Z−>0 & Z̃=0} � [S,m] = 0. (5.41)

We now compute −〈L(qc), Ŝ〉G, where Ŝ is defined via (5.17). Due to the quasi-

left-continuity of S and that of m(qc), the two processes 〈S,m〉F and 〈m(qc)〉F are

continuous and [S,m(qc)] = [S,m]. Hence, we obtain

K � [Ŝ, m̂(qc)] = K � [S, m̂(qc)]−K∆m̂(qc)(Z−)−1 � 〈S,m〉F

= (Z̃)−1I]]0,τ ]] � [S,m(qc)] = (Z̃)−1I]]0,τ ]] � [S,m].

It follows that

−〈L(qc), Ŝ〉G =
(
K � [Ŝ, m̂(qc)]

)
p,G =

(
(Z̃)−1I]]0,τ ]] � [S,m]

)
p,G

= (Z−)−1I]]0,τ ]] �
(
I{Z̃>0} � [S,m]

)p,F
= (Z−)−1I]]0,τ ]] � 〈S,m〉F − (Z−)−1I]]0,τ ]] �

(
I{Z̃=0<Z−} � [S,m]

)p,F
= (Z−)−1I]]0,τ ]] � 〈S,m〉F + (Z−)−1I]]0,τ ]] � 〈S,−I{Z̃=0<Z−} �m

(qc)〉F. (5.42)

The first and the last equality follow from Proposition 2.3 applied to L(qc) and

−I{Z̃=0<Z−} � m
(qc) respectively. The second and the third equalities are due to

(5.40) and (5.22) respectively.

Now, we prove the theorem. Thanks to (5.42), it is obvious that assertion (a) is

equivalent to 〈S,−I{Z̃=0<Z−} �m
(qc)〉F ≡ 0 which in turn is equivalent to assertion

(b). This ends the proof of the equivalence between (a) and (b).

It is also clear that the condition (5.39) or equivalently (5.41) implies that assertion

(b), due to 〈I{Z̃=0<Z−} �m
(qc), S〉F =

(
I{Z̃=0<Z−} � [m,S]

)p,F
≡ 0.

Remark 5.9: Suppose that S is a quasi-left-continuous F-local martingale and let
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R̃0 be defined in Lemma 5.4–(b). Then, E (L)S
τ

is a G-local martingale, where

S := SR̃0− +
(

∆S
R̃0
I

[[R̃0,+∞[[

)p,F
. (5.43)

Indeed, writing

S := SR̃0 −∆S
R̃0
I

[[R̃0,+∞[[
+
(

∆S
R̃0
I

[[R̃0,+∞[[

)p,F
it is easy to see that the condition (5.39) is satisfied for S.

Corollary 5.8.1: If S is quasi-left continuous and satisfies NUPBR(F) and {∆S 6= 0}∩

{Z− > 0} ∩ {Z̃ = 0} = ∅, then Sτ satisfies NUPBR(G).

Proof. This follows from Proposition 5.2, Theorem 5.8 and the fact that, if Q is

equivalent to P , then we have

{Z− > 0} ∩ {Z̃ = 0} = {ZQ− > 0} ∩ {Z̃Q = 0}.

Here ZQt = Q(τ > t|Ft) and Z̃Qt = Q(τ ≥ t|Ft). This last claim is a direct appli-

cation of the optional and predictable selection measurable theorems, see Theorems

84 and 85 (or apply Theorem 86 directly) in [54].

In order to generalize the previous result, we need to introduce more notations and

recall other notations and some results. For the random measure µ, we associate its

predictable compensator random measure ν. A direct application of Jacod represen-

tation theorem, to the martingale m, leads to the existence of a local martingale m⊥

as well as a P̃(F)-measurable functional fm, a process βm ∈ L(Sc,F) and an Õ(F)-

measurable functional gm such that fm ∈ G1
loc(µ,F), gm ∈ H1

loc(µ,F) and βm ∈ L(Sc)

such that

m = βm � Sc + fm ? (µ− ν) + gm ? µ+m⊥. (5.44)
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Due to the quasi-left-continuity of S, G1
loc(µ,F) (respectively H1

loc(µ,F)) is the set of

all P̃(F)-measurable functions (respectively all Õ(F)-measurable functions) W such

that √
W 2 ? µ ∈ A+

loc(H).

we introduce µG := I[[0,τ ]] ? µ and its G-compensator measure

νG(dt, dx) := (1 + fm(x)/Zt−)I[[0,τ ]](t)ν(dt, dx). (5.45)

Below, we state our general result that extends the previous theorem.

Theorem 5.9: Suppose that S is an F-quasi-left-continuous local martingale. Con-

sider S(0), ψ, and L defined in (5.6) and (5.36) respectively. If
(
S, S(0)

)
is an

F-local martingale, then E
(
L+ L(1)

)
Sτ is a G-local martingale, where

L(1) := g1 ? (µG − νG), and g1 :=
1− ψ

1 + fm/Z−
I{ψ>0}, (5.46)

and E
(
L+ L(1)

)
> 0, i.e. 1 + ∆L+ ∆L(1) > 0.

Proof. We start by recalling from (5.8) that {ψ = 0} = {Z− + fm = 0} MP
µ − a.e..

Thus the functional g1 is a well defined non-negative P̃(F)−measurable functional.

The proof of the theorem will be completed in two steps. In the first step we prove

that the process L(1) is a well defined local martingale, while in the second step we

prove the main statement of the theorem.

1) Herein, we prove that the integral g1 ?
(
µG − νG

)
is well-defined. To this end, it

is enough to prove that g1 ? µ
G ∈ A+(G). Therefore, remark that

(1− ψ)I{0<Z−} = MP
µ

(
I{Z̃=0<Z−}|P̃(F)

)
= MP

µ

(
I

[[R̃0]]
|P̃(F)

)
I{0<Z−},
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and calculate

E
(
g1 ? µ

G(∞)
)

= E
(
g1Z̃ ? µ(∞)

)
≤ E

(
I

[[R̃0]]
? µ(∞)

)
= P

(
∆S

R̃0
6= 0 & R̃0 < +∞

)
≤ 1.

Thus, the process L(1) is a well defined G-martingale.

2) In this part, we prove that E
(
L+ L(1)

)
Sτ is a G-local martingale. To this end,

it is enough to prove that 〈Sτ , L+ L(1)〉G exists and

Sτ +
〈
Sτ , L+ g1 ?

(
µG − νG

)〉G
is a G-local martingale. (5.47)

Recall that

L = −
Z2
−

Z2
− + ∆〈m〉F

1

Z̃
I]]0,τ ]] � m̂,

and hence 〈Sτ , L〉G exists due to Proposition 5.6–(b). By stopping, there is no loss

of generality in assuming that S is a true martingale. Then, using similar calculation

as in the first part 1), we can easily prove that

E
[
|x|g1 ? µ

G(∞)
]
≤ E

(
|∆S

R̃0
|I{R̃0<+∞}

)
< +∞.

This proves that
〈
Sτ , L+ L(1)

〉G
exists. Now, we calculate and simplify the expres-

sion in (5.47) as follows.

Sτ +
〈
Sτ , L+ g1 ?

(
µG − νG

)〉G
= Ŝ +

1

Z−
I]]0,τ ]] � 〈S,m〉F + 〈Sτ , L〉G + xg1 ? ν

G

= Ŝ +
1

Z−
I]]0,τ ]] � 〈S,m〉 −

1

Z−
I]]0,τ ]] �

(
I{Z̃>0} � [S,m]

)p,F
+ xg1 ? ν

G

= Ŝ +
1

Z−
I]]0,τ ]] �

(
I{Z̃=0} � [S,m]

)p,F
+ xMP

µ

(
I{Z̃=0<Z−}|P̃(F)

)
I{Z−+fm>0}I]]0,τ ]] ? ν

= Ŝ − xMP
µ

(
I{Z̃=0<Z−}|P̃(F)

)
I{ψ=0}I]]0,τ ]] ? ν = Ŝ ∈Mloc(G).

The second equality is due to (5.42), while the last equality follows directly form the
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fact that S(0) is an F-local martingale (which is equivalent to xI{ψ=0<Z−}?ν ≡ 0) and

MP
µ

(
I{Z̃=0<Z−}|P̃(F)

)
= I{0<Z−}(1− ψ). This ends the proof of the theorem.

Remark 5.10: 1) Both Theorems 5.8-5.9 provide methods that build-up explicitly

σ-martingale density for Xτ , whenever X is an F-quasi-left-continuous process

that is a local martingale under a locally equivalent probability measure and is

fulfilling the assumptions of the theorems respectively.

2) The extension of Theorem 5.8 to the general case where S is an F-local martin-

gale (not necessarily quasi-left-continuous) boils down to find a predictable pro-

cess Φ such that Φ is locally bounded, Φ ≥ −1, {Φ > 1} is thin and Y (1) := E(Φ�L)

will be the martingale density for Sτ . Finding the process Φ will be easy to guess

when we will address the case of thin semimartingale. However the proof of Y (1)

is a local martingale density for Sτ is very technical. The extension of Theorem

5.9 to the case of arbitrary F-local martingale S requires additional careful mod-

ification of the functional g1 so that 1 + Φ(∆L) + ∆L(1) remains positive. While

both extensions remain very feasible, we opted to not overload the paper with

technicalities.

5.5 Proofs of Three Main Theorems

This section is devoted to the proofs of Theorems 5.2, 5.4 and 5.5. They are quite

long, since some integrability results have to be proved. For the reader’s convenience,

we recall the canonical decomposition of S by

S = S0 + Sc + h ? (µ− ν) + b �A+ (x− h) ? µ,
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where h defined as h(x) := xI{|x|≤1} is the truncation function. The canonical

decomposition of Sτ under G is given by

Sτ = S0 + Ŝc + h ? (µG − νG) + cβm
Z−

I]]0,τ ]] �A+ h fmZ− I]]0,τ ]] ? ν + b �Aτ + (x− h) ? µG

where µG and νG and (βm, fm) are given in (5.45) and (5.44) respectively and Ŝc is

defined via (5.17).

5.5.1 Proof of Theorem 5.2

The proof of Theorem 5.2 will be completed in four steps. The first step provides an

equivalent formulation to assertion (a) using the filtration F instead. In the second

step, we prove (a)⇒(b), while the reverse implication is proved in the third step.

The proof of (b)⇐⇒ (c) is given in the last step.

Step 1: Formulation of assertion (a): Thanks to Proposition 5.1, Sτ satisfies

NUPBR(G) if and only if there exist a G-local martingale NG with 1 + ∆NG > 0

and a G-predictable process φG such that 0 < φG ≤ 1 and E
(
NG) (φG � Sτ

)
is a

G-local martingale. We can reduce our attention to processes NG having the form

of (see Theorem 5.1)

NG = βG � Ŝc + (fG − 1) ? (µG − νG),

where βG ∈ L(Ŝc,G) and fG is positive such that (fG − 1) ∈ G1
loc(µ

G,G).

Then, one notes that E
(
NG) (φG � Sτ

)
is a G-local martingale if and only if φG �

Sτ + [φG � Sτ , NG] is a G-local martingale, which in turn, is equivalent to

φG|xfG(x)− h(x)|
(

1 +
fm(x)

Z−

)
I[[0,τ ]] ? ν ∈ A+

loc(G), (5.48)
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and P ⊗A− a.e. on [[0, τ ]], (Fω,t(dx) is the transit kernel)

b+ c(
βm
Z−

+ βG) +

∫ [
(xfG(x)− h(x))

(
1 +

fm(x)

Z−

)
− h(x)

fm(x)

Z−

]
F (dx) = 0.

(5.49)

From Lemma 5.7, there exist φF and βF two F-predictable processes and a positive

P̃(F)-measurable functional, fF, such that 0 < φF ≤ 1,

βF = βG, φF = φG, fF = fG on [[0, τ ]]. (5.50)

In virtue of these and taking account integrability conditions given in Proposition

5.5, we deduce that (5.48)–(5.49) imply that, on {Z− ≥ δ}, we have

W F :=

∫
|(xfF(x)− h(x))|

(
1 +

fm(x)

Z−

)
F (dx) < +∞ P ⊗A− a.e, (5.51)

and P ⊗A-a.e. on {Z− ≥ δ}, we have

b+c

(
βF +

βm
Z−

)
−
∫
h(x)I{ψ=0}F (dx)+

∫ [
xfF(x)(1 +

fm(x)

Z−
)− h(x)

]
I{ψ>0}F (dx) = 0.

(5.52)

Due to (5.51), this latter equality follows immediately by taking the F-predictable

projection of (5.49) after inserting (5.50).

Step 2: Proof of (a) ⇒ (b). Suppose that Sτ satisfies NUPBR(G), hence (5.51)–

(5.52) hold. To prove that I{Z≥δ} � (S − S(0)) satisfies NUPBR(F), we consider

β :=

(
βm
Z−

+ βF
)
I{Z−≥δ} and f = fF

(
1 +

fm
Z−

)
I{Z−≥δ & ψ>0}+I{0≤Z−<δ or ψ=0}.

(5.53)

If β ∈ L(Sc,F) and (f − 1) ∈ G1
loc(µ,F), we conclude that

N := β � Sc + (f − 1) ? (µ− ν). (5.54)
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is a well defined F-local martingale. Therefore, by choosing φ =
(
1 +W FI{Z−≥δ}

)−1
,

using (5.52), and applying Itô’s formula for E(N)
(
φI{Z−≥δ} � (S − S(0))

)
, we deduce

that this process is a local martingale. Hence, I{Z−≥δ}�(S−S(0)) satisfies NUPBR(F),

and the proof of (a)⇒(b) is completed.

Now we focus on proving β ∈ L(Sc) and (f − 1) ∈ G1
loc(µ,F) (or equivalently√

(f − 1)2 ? µ ∈ A+
loc(F)). Since βm ∈ L(Sc), then it is obvious that βm

Z−
I{Z−≥δ} ∈

L(Sc) on the one hand. On the other hand, (βF)T cβFI{0≤Z−<δ} �A ∈ A
+
loc(F) due to

(βF)T cβF � Aτ = (βG)T cβG � Aτ ∈ A+
loc(G) and Proposition 5.5–(c). This completes

the proof of β ∈ L(Sc).

Now, we focus on proving (f − 1) ∈ G1
loc(µ,F). Since S is quasi-left-continuous,

this is equivalent to prove
√

(f − 1)2 ? µ ∈ A+
loc(F). Thanks to Proposition 5.5 and√

( fF − 1)2 ? µG =
√

( fG − 1)2 ? µG ∈ A+
loc(G), we deduce that

( fF − 1)2I{|fF−1|≤α}Z̃I{Z−≥δ} ? µ and |fF − 1|I{|fF−1|>α}Z̃I{Z−≥δ} ? µ ∈ A
+
loc(F).

(5.55)

By stopping, there is no loss of generality in assuming that these two processes and

[m,m] are integrable. By putting Σ0 := {Z− ≥ δ & ψ > 0}, then we get

f − 1 =
(
fF − 1

)(
1 +

fm
Z−

)
IΣ0 +

fm
Z−

IΣ0 =: h1 + h2. (5.56)

Therefore, we derive that

E
[
h2

1I{|fF−1|≤α} ? µ∞

]
≤ δ−2E

[(
fF − 1

)2
(Z− + fm)2 I{|fF−1|≤α}I{Z−≥δ} ? µ∞

]
≤ δ−2E

[(
fF − 1

)2
Z̃I{|fF−1|≤α}I{Z−≥δ} ? µ∞

]
< +∞,
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and

E
[
|h1|I{|fF−1|>α} ? µ∞

]
≤ δ−1E

[
|fF − 1| |Z− + fm|I{|fF−1|>α}I{Z−≥δ} ? µ∞

]
= δ−1E

[
|fF − 1|Z̃I{|fF−1|>α}I{Z−≥δ} ? µ∞

]
< +∞.

By combining the above two inequalities, we conclude that
(
h2

1 ? µ
)1/2 ∈ A+

loc(F). It

is easy to see that
(
h2

2 ? µ
)1/2 ∈ A+

loc(F) which follows from

E
[
h2

2 ? µ∞
]
≤ δ−2E

[
f2
m ? µ∞

]
≤ δ2E

[
(∆m)2 ? µ∞

]
≤ δ−2E [m,m]∞ < +∞.

Step 3: Proof of (b) ⇒ (a). Suppose that for any δ > 0, the process I{Z−≥δ} �(
S − S(0)

)
satisfies NUPBR(F). Then, there exist an F-local martingale NF and an

F-predictable process φ such that 0 < φ ≤ 1 and E
(
NF) (φI{Z−≥δ} � (S − S(0)

))
is

an F-local martingale. Again, thanks to Theorem 5.1, we can restrict our attention

to the case

NF := βF � Sc + (fF − 1) ? (µ− ν), (5.57)

where βF ∈ L(Sc) and fF is positive such that (fF − 1) ∈ G1
loc(µ,F).

Thanks to Itô’s formula, the fact that E
(
NF) (φI{Z−≥δ} � (S − S(0)

))
is an F-local

martingale implies that on {Z− ≥ δ}

kF :=

∫
|xfF(x)I{ψ(x)>0} − h(x)|F (dx) < +∞ P ⊗A− a.e. (5.58)

and P ⊗A-a.e. on {Z− ≥ δ}, we have

b−
∫
h(x)I{ψ=0}F (dx) + cβF +

∫ [
xfF(x)− h(x)

]
I{ψ>0}F (dx) = 0. (5.59)
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Consider

βG :=

(
βF − βm

Z−

)
I]]0,τ ]] and fG :=

fF

1 + fm/Z−
I{ψ>0}I]]0,τ ]] + I{ψ=0}∪]]τ,+∞[[,

(5.60)

and assume that

βG ∈ L(Ŝc) and (fG − 1) ∈ G1
loc(µ

G). (5.61)

Then, necessarily NG := βG � Ŝc + (fG − 1) ? (µG − νG) is a well defined G-local

martingale satisfying E(NG) > 0. Furthermore, due to (5.59) and to {ψ = 0} =

{Z− + fm = 0} (see(5.8)), on ]]0, τ ]] we obtain

b+ c

(
βG +

βm
Z−

)
+

∫ (
xfG

(
1 +

fm
Z−

)
− h(x)

)
F (dx) = 0. (5.62)

Then, by taking φG :=
(
1 + kFI{Z−≥δ}

)−1
, and applying Itô’s formula for (φGI{Z−≥δ}�

Sτ )E(NG), we conclude that this process is a G-local martingale due to (5.62). Thus,

I{Z−≥δ} � S
τ satisfies NUPBR(G) as long as (5.61) is fulfilled.

Since Z−1
− I]]0,τ ]] is G-locally bounded, then there exists a family of G-stopping times

(τδ)δ>0 such that [[0, τδ]] ⊂ {Z− ≥ δ} (or equivalently I{Z−≥δ} � S
τ∧τδ = Sτ∧τδ) and

τδ increases to infinity when δ goes to zero. Thus, using Proposition 5.2, we deduce

that Sτ satisfies NUPBR(G). This achieves the proof of (b)⇒(a) under (5.61).

To prove that (5.61) holds true, we remark in a first step that Z−1
− I]]0,τ ]] is G-locally

bounded and both βm and βF belong to L(Sc). This, easily, implies that βG ∈ L(Ŝc).

Now, we prove that
√

(fG − 1)2 ? µG ∈ A+
loc(G). Since

√
(fF − 1)2 ? µ ∈ A+

loc(F),

Proposition 5.5 allows us again to deduce that

(fF − 1)2I{|fF−1|≤α} ? µ ∈ A+
loc(F) and |fF − 1|I{|fF−1|>α} ? µ ∈ A+

loc(F). (5.63)

Without loss of generality, we assume that these two processes and [m,m] are inte-
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grable. Put

fG − 1 = I{ψ>0}I]]0,τ ]]
Z−(fF − 1)

fm + Z−
− I{ψ>0}I]]0,τ ]]

fm
fm + Z−

:= f1 + f2. (5.64)

Then, we calculate

E
(
f2

1 I{fm+Z−>δ/2}∩{|fF−1|≤α} ? µ
G
∞

)
≤
(

2
δ

)2
E
[
(fF − 1)2I{|fF−1|≤α} ? µ∞

]
< +∞.

and

E
√
f2

1 I{fm+Z−≤δ/2}∩{|fF−1|≤α}∩{Z−≥δ} ? µ
G
∞

≤ αE
(
I{fm+Z−≤δ/2}∩{Z−≥δ}(Z− + fm)−1 ? µG(∞)

)
≤ E

(
I{|fm|≥δ/2} ? µ(∞)

)
≤ 4α

δ2
E[m,m]∞ < +∞.

This proves that
√
f2

1 I{|fF−1|≤α} ? µ
G ∈ A+

loc(G). Similarly, we calculate

E
√
f2

1 I{|fF−1|>α} ? µ
G
∞ ≤ E

(
|f1|I{|fF−1|>α} ? µ

G
∞
)
≤ E

( |fF − 1|
1 + fm/Z−

I{|fF−1|>α} ? µ
G
∞
)

≤ E
(
|fF − 1|I{|fF−1|>α} ? µ∞

)
< +∞.

Thus, by combining all the remarks obtained above, we conclude that
√
f2

1 ? µ
G is

G-locally integrable. For the functional f2, we proceed as follows. We calculate

E
(
f2

2 I{fm+Z−>δ/2} ? µ
G
∞
)
≤ (2/δ)2E

(
f2
m ? µ∞

)
≤ (2/δ)2E[m,m]∞ < +∞,

and

E
√
f2

2 I{fm+Z−≤δ/2}∩{Z−≥δ} ? µ
G
∞ ≤ E

(
|fm|I{|fm|≥δ/2} ? µ(∞)

)
≤ (2/δ)E

(
f2
m ? µ(∞)

)
≤ (2/δ)E[m,m]∞ < +∞.

This proves that
√
f2

2 ? µ
G is G-locally integrable. Therefore, we conclude that
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(5.61) is valid, and the proof of (b)⇒(a) is completed.

Step 3: Proof of (b) ⇐⇒ (c). For any δ > 0 and any n ∈ N, we denote

σ∞ := inf{t ≥ 0 : Zt = 0}, τδ := sup{t : Zt− ≥ δ}.

Then, due to ]]σ∞,+∞[[⊂ {Z− = 0} ⊂ {Z− < δ}, we deduce

σ1/δ ≤ τδ ≤ σ∞ and Zτδ− ≥ δ > 0 P − a.s. on {τδ <∞} .

Furthermore, setting Σ :=
⋂
n≥1(σn < σ∞), we have

on Σ ∩ {σ∞ <∞} Zσ∞− = 0, and τδ < σ∞ P − a.s.

We introduce the semimartingale X := S − S(0). For any δ > 0, and any H

predictable such that Hδ := HI{Z−≥δ} ∈ L(X) and Hδ �X ≥ −1 , due to Theorem

23 of [54] (page 346 in the French version),

(Hδ �X)T = (Hδ �X)T∧τδ , and on {θ ≥ τδ} (Hδ �X)T = (Hδ �X)T∧θ.

Then, for any T ∈ (0,+∞), we calculate the following

P ((Hδ �X)T > c) = P ((Hδ �X)T > c & σn ≥ τδ) + P ((Hδ �X)T > c & σn < τδ)

≤ 2 sup
φ∈L(Xσn ):φ�Xσn≥−1

P ((φ �X)σn∧T > c) + P (σn < τδ ∧ T ).

(5.65)

It is easy to prove that P (σn < τδ ∧ T ) −→ 0 as n goes to infinity. This can be seen

due to the fact that on Σ, we have, on the one hand, τδ ∧T < σ∞ (by differentiating

the two cases whether σ∞ is finite or not). On the other hand, the event (σn < σ∞)
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increases to Σ with n. Thus, by combining these, we obtain the following

P (σn < τδ ∧ T ) = P ((σn < τδ ∧ T ) ∩ Σ) + P ((σn < τδ ∧ T ) ∩ Σc)

≤ P (σn < τδ ∧ T < σ∞) + P ((σn < σ∞) ∩ Σc) −→ 0.

(5.66)

Now suppose that for each n ≥ 1, the process (S − S(0))σn satisfies NUPBR(F).

Then a combination of (5.65) and (5.66) implies that for any δ > 0, the process

I{Z−≥δ} �X := I{Z−≥δ} � (S − S(0)) satisfies NUPBR(F), and the proof of (c)⇒ (b)

is completed. The proof of the reverse implcation is obvious due to the fact that

[[0, σn]] ⊂ {Z− ≥ 1/n} ⊂ {Z− ≥ δ}, for n ≤ δ−1,

which implies that (I{Z−≥δ} �X)σn = Xσn . This ends the proof of (b) ⇐⇒(c), and

the proof of the theorem is achieved.

5.5.2 Intermediate Result

The proofs of Theorems 5.4 and 5.5 rely on the following intermediatory result about

single jump F-martingales, which is interesting in itself.

Lemma 5.10: Let T be a finite F-predictable stopping time. Then the following

holds.

{T ≤ τ} ⊂ {Z̃T > 0} ⊂ {ZT− > 0} = Γ(T ) :=
{
P
(
Z̃T > 0

∣∣∣FT−) > 0
}
.

Proof. It is enough to prove the non-trivial equality {ZT− > 0} = Γ(T ). In-

deed, due to E
(
P (Z̃T > 0|FT−)I{ZT−=0}

)
= P (Z̃T > 0 = ZT−) = 0, we get

Γ(T ) ⊂ {ZT− > 0}. On the other hand, due to E
(
ZT−IΓ(T )c

)
= E

(
Z̃T IΓ(T )c

)
≤

E
(
I{Z̃T>0} IΓ(T )c

)
= 0, we obtain {ZT− > 0} ⊂ Γ(T ). This ends the proof of the

lemma.
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Lemma 5.11: Let R be an equivalent probability to P . Then the following hold.

{Z̃ = 0} = {Z̃R = 0}, and {Z− = 0} = {ZR− = 0},

where Z̃Rt := R(τ ≥ t|Ft) and ZR− is the (R,F)-predictable projection of Z̃R.

Proof. For any F-stopping time σ and any F-predictable stopping time T , due to

E
[
Z̃σI{Z̃Rσ =0}

]
= E

[
I{τ≥σ}I{Z̃Rσ =0}

]
= 0 and

E
[
ZT−I{ZRT−=0}

]
= E

[
I{τ≥T}I{Z̃RT−=0}

]
= 0,

we obtain {Z̃R = 0} ⊂ {Z̃ = 0} and {ZR− = 0} ⊂ {Z− = 0}. The symmetric roles

of R and P complete the proof of the lemma.

Proposition 5.7: Let M be an F-martingale given by M := ξI[[T,+∞[[, where T is an

F-predictable stopping time, and ξ is an FT -measurable random variable. Then

the following assertions are equivalent.

(a) M is an F-martingale under QT given by

dQT
dP

:=
I{Z̃T>0}∩Γ(T )

P (Z̃T > 0
∣∣ FT−)

+ IΓc(T ), Γ(T ) := {P (Z̃T > 0|FT−) > 0}. (5.67)

(b) On the set {T < +∞}, we have

E
(
MT I{Z̃T=0<ZT−}

∣∣ FT−) = 0, P − a.s. (5.68)

(c) M τ is a G-martingale under QG
T :=

(
UG(T )/E(UG(T )

∣∣ GT−)
)
·P where

UG(T ) := I{T>τ} + I{T≤τ}
ZT−

Z̃T
> 0. (5.69)

Proof. The proof will be achieved in two steps. In Step 1, we prove (a)⇔(b); while

Step 2 focuses on (a)⇔(c). First, we remark that the probability QG
T in assertion
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(c) is well defined since E
(
LG
b (T )

∣∣ GT−) = I{T>τ}+P (Z̃T > 0|FT−)I{T≤τ} > 0 due

to Lemma 5.10.

Step 1: Here, we prove (a)⇐⇒(b). To this end, we calculate that

EQT (ξ
∣∣FT−) = IΓ(T )E(ξI{Z̃T>0}

∣∣FT−)
(
P (Z̃T > 0

∣∣FT−)
)−1

= −IΓ(T )E(ξI{Z̃T=0}
∣∣FT−)

(
P (Z̃T > 0

∣∣FT−)
))−1

.

Therefore, we conclude that assertion (a) (or equivalently EQT (ξ|FT−) = 0) is equiv-

alent to (5.68). This ends the proof of (a) ⇐⇒ (b).

Step 2: To prove (a)⇐⇒(c), we calculate that

E
(
LG
b (T )

∣∣ GT−) EQ
G
T
(
ξI{T≤τ}|GT−

)
= E

(
ZT−

Z̃T
ξI{T≤τ}|GT−

)
= E

(
ξI{Z̃T>0}|FT−

)
I{T≤τ} = EQT (ξ|FT−)P

(
Z̃T > 0

∣∣FT−) I{T≤τ}.
This equality proves that M τ is a martingale under (G, QG

T ) –where QG
T is defined

via (5.69)– if and only if M is a martingale under (F, QT ), and the proof of (a)⇐⇒(c)

is completed. This ends the proof of the proposition.

5.5.3 Proof of Theorem 5.4

For the reader convenience, in order to prove Theorem 5.4, we state a more precise

version of the theorem, in which we describe explicitly the choice for the probability

measure QT .

Theorem 5.10: Suppose that the assumptions of Theorem 5.4 are in force. Then,

the assertions (a) and (b) of Theorem 5.4 are equivalent to the following asser-

tions.

147



(d) S satisfies NUPBR(F, Q̃T ), where Q̃T is

Q̃T :=

(
Z̃T
ZT−

I{ZT−>0} + I{ZT−=0}

)
� P. (5.70)

(e) S satisfies NUPBR(F, QT ), where QT is defined in (5.67).

Proof. The proof of this theorem will be achieved by proving (d) ⇐⇒ (e) ⇐⇒ (b)

and (b)⇒ (a)⇒ (d). These will be carried out in four steps.

Step 1: In this step, we prove (d)⇐⇒ (e). By putting Γ(T ) :=
{
P
(
Z̃T > 0

∣∣∣FT−) > 0
}

and using Lemma 5.10, we deduce that

QT =

(
I{Z̃T>0}

P (Z̃T > 0
∣∣ FT−)

+ IΓ(T )c

)
· P, Q̃T :=

(
Z̃T
ZT−

I{Z̃T>0} + I{ZT−=0}

)
· P,

where QT and Q̃T are defined in (5.67) and (5.70) respectively. Then it is easy to

see that QT and Q̃T are equivalent. This achieves this first step.

Step 2: This step proves (e)⇐⇒ (b). Assume that (e) holds. Then, there exists a

positive and FT –measurable random variable, Y , such that P − a.s. on {T < +∞},

we have

EQT (Y |FT−) = 1, EQT (Y |ξ||FT−) < +∞, & EQT (Y ξI{ZT−>0}|FT−) = 0.

Since Y > 0 on {Z̃T > 0}, by putting

Y1 := Y I{Z̃T>0} + I{Z̃T=0} and Ỹ1 :=
Y1

E[Y1|FT−]
,

it is easy to check that Y1 > 0, Ỹ1 > 0,

E
[
Ỹ1|FT−

]
= 1 and E

[
Ỹ1ξI{Z̃T>0}|FT−

]
=
E
[
Y ξI{Z̃T>0}|FT−

]
E[Y1|FT−]

= 0.
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Therefore, S̃ is a martingale under R1 := Ỹ1 · P ∼ P , and hence S̃ satisfies

NUPBR(F). This proves assertion (b).

To prove the reverse sense, we suppose assertion (b) holds. Then, there exists

0 < Y ∈ L0(FT ), such that E[Y |ξ|I{Z̃T>0}|FT−] < +∞, E[Y |FT−] = 1 and

E[Y ξI{Z̃T>0}|FT−] = 0. Then, consider

Y2 :=
Y I{Z̃T>0}P (Z̃T > 0|FT−)

E[Y I{Z̃T>0}|FT−]
+ IΓc1

, where Γ1 :=
{
E
(
Y I{Z̃T>0}|FT−

)
> 0
}
.

Then it is easy to verify that Y2 > 0, QT − a.s.,

EQT (Y2|FT−) = 1, and EQT
(
Y2ξI{ZT−>0}|FT−

)
=
E
[
Y ξI{Z̃T>0}|FT−

]
E[Y I{Z̃T>0}|FT−]

IΓ1 = 0.

This proves assertion (e), and the proof of (e)⇐⇒(b) is achieved.

Step 3: Herein, we prove (a) ⇒ (d). Suppose that Sτ satisfies NUPBR(G). Then

there exists a positive GT -measurable random variable Y G such that on {T < +∞},

we have

E[Y GI{T≤τ}|GT−] = I{T≤τ} and E[ξY GI{T≤τ}|GT−] = 0. (5.71)

Due to Lemma 5.7–(d), we deduce the existence of two positive FT -measurable

variables Y (1) and Y (2) such that

Y GI{T≤τ} = Y (1)I{T<τ} + Y (2)I{τ=T}. (5.72)
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By inserting (5.72) into the first equation in (5.71), we get

I{T≤τ} = E[Y GI{T≤τ}|GT−] = E(ZTY
(1) + (Z̃T − ZT )Y (2)|FT−)

1

ZT−
I{T≤τ}.

Therefore, E(ZTY
(1) + (Z̃T − ZT )Y (2)|FT−)Z−1

T−I{ZT−>0} = I{ZT−>0}. Thus by

putting

Ỹ :=

[
ZT

Z̃T
Y (1) + (1− ZT

Z̃T
)Y (2)

]
I{Z̃T>0} + I{ZT−=0} > 0, Q̃T − a.s.,

we derive

EQ̃T (Ỹ |FT−) = E(ZTY
(1) + (Z̃T − ZT )Y (2)|FT−)Z−1

T−I{ZT−>0} + I{ZT−=0} = 1.

Similarly, by plugging (5.72) into the second equation of (5.71), we obtain

EQ̃T (ξI{Z̃T>0}Ỹ |FT−) = E
((
ZTY

(1) + (Z̃T − ZT )Y (2)
)
ξ
∣∣FT−) I{Z̃T>0}

ZT−
= 0.

Then, we conclude that S satisfies the NUPBR(Q̃T ,F). This ends the proof of

(a)⇒(d).

Step 4: This last step proves (b)=⇒(a). Suppose that S̃ satisfies the NUPBR(F).

Then, there exists Y ∈ L1(FT ) such that on {T < +∞} we have

E[Y |FT−] = 1, Y > 0, E[Y |ξ|I{Z̃T>0}|FT−] < +∞, and, E[Y ξI{Z̃T>0}|FT−] = 0.

Then by considering R := Y · P ∼ P and using Lemma 5.11 (precisely {Z̃ = 0} =

{Z̃R = 0}), we get

ER
[
S̃T
∣∣FT−] = ER

[
ξI{Z̃T>0}

∣∣FT−] = ER
[
ξI{Z̃RT >0}

∣∣FT−] = 0.
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Therefore, by applying Proposition 5.7 to M := S̃ under R ∼ P (it is easy to see that

the condition (5.68) in Proposition 5.7 holds for (S̃, R), i.e. ER(S̃T I{Z̃RT =0}|FT−) =

0). Then we conclude that S̃τ = Sτ satisfies NUPBR(R,F) and NUPBR(P,F), due

to R ∼ P . This ends the fourth step and the proof of the theorem is completed.

5.5.4 Proof of Theorem 5.5

To highlight the precise difficulty in proving Theorem 5.5, we remark that on {T <

+∞},
UG(T )

E(UG(T )
∣∣ GT−)

=
1 + ∆LT −∆V G

T

1−∆V G
T

6= 1 + ∆LT =
E(L)T
E(L)T−

.

where UG(T ) is defined in (5.69). This highlights one of the main difficulties that

we will face when we will formulate the results for possible many predictable jumps

that might not be ordered. Simply, it might not be possible to piece up

UG(Tn) = 1− ∆mTn

Z̃Tn
I{Tn≤τ}, n ≥ 1

to form a positive G-local martingale density for the process (I∪[[Tn]] � S)τ .

Thus, in virtue of the above, the key idea behind the proof of Theorem 5.5 lies in

connecting the NUPBR condition with the existence of a positive supermartingale

(instead) that is a deflator for the market model under consideration.

Definition 5.2: Consider an H-semimartingale X. Then, X is said to admit an

H-deflator if there exists a positive H-supermartingale Y such that Y (θ �X) is a

supermartingale, for any θ ∈ L(X,H) such that θ �X ≥ −1.

For supermartingale deflators, we reader the reader to Rokhlin [121]. Again, the

above definition differs from that of the literature when the horizon is infinite, while

it is the same as the one of the literature when the horizon is finite (even random).

Below, we slightly generalize [121] to our context.
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Lemma 5.12: Let X be an H-semimartingale. Then, the following assertions are

equivalent.

(a) X admits an H-deflator.

(b) X satisfies NUPBR(H).

Proof. The proof of this lemma is straightforward, and is omitted.

Now, we start giving the proof of Theorem 5.5.

Proof. of Theorem 5.5 The proof of the theorem will given in two steps, where we

prove (b)⇒(a) and the reverse implication respectively. For the sake of simplifying

the overall proof of the theorem, we remark that

{Z̃QT = 0} = {Z̃T = 0}, for any Q ∼ P and any F-stopping time T, (5.73)

where Z̃Qt := Q[τ ≥ t|Ft]. This equality follows from

E
[
Z̃T I{Z̃QT =0}

]
= E

[
I{τ≥T}I{Z̃QT =0}

]
= 0,

(which implies {Z̃Q = 0} ⊂ {Z̃ = 0}) and the symmetric role of Q and P .

Step 1: Here, we prove (b)⇒ (a). Suppose that assertion (b) holds, and consider

a sequence of F-stopping times (τn)n that increases to infinity such that Y τn is an

F-martingale. Then, setting Qn := Yτn/Y0 �P , and using (5.73) and Proposition 5.2,

we deduce that there is no loss of generality in assuming Y ≡ 1. Condition (5.68)

in Proposition 5.7 holds for ∆STnI{Z̃Tn>0} and ∆STnI{Z̃Tn>0}I[[Tn,+∞[[,. Therefore,

using the notation V G and L defined in (5.34) and (5.36), for each n, (1 + ∆LTn −

∆V G
Tn

)∆STnI{Tn≤τ}I[[Tn,+∞[[ is a G-martingale. Then, a direct application of Yor’s

exponential formula, we get that, for any θ ∈ L(Sτ ,G)

E
(
IΓ � L− IΓ � V G

)
E (θIΓ � Sτ ) = E (X)
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where Γ = ∪n≥1[[Tn]] and

X := IΓ � L− IΓ � V G +
∑
n≥1

θTn

(
1 + ∆LTn −∆V G

Tn

)
∆STnI{Tn≤τ}I[[Tn,+∞[[.

Consider now the G-predictable process

φ =
∑
n≥1

ξnI[[Tn]]∩[[0,τ ]] + IΓc∪]]τ+∞[[, where

ξn :=
2−n (1 + E(X)Tn−)−1(

1 + E
[
|∆LTn |

∣∣∣GTn−]+ ∆V G
Tn− + E

[
|θTn

ZTn−
Z̃Tn

I{Tn≤τ}∆STn |
∣∣∣GTn−]) .

Then, it is easy to verify that 0 < φ ≤ 1 and E (|φ � E(X)|var(+∞)) ≤
∑

n≥1 2−n =

1. Hence, φ�E(X) ∈ A(G). Since, ∆LTnI[[Tn,+∞[[ and (1+∆LTn−∆V G
Tn

)∆STnI{Tn≤τ}I[[Tn,+∞[[

are G-martingales, we derive

(φ � E(X))p,G =
∑
n≥1

φTnETn−(X)E(∆XTn |GTn−)I[[Tn,+∞[[ = −φE−(X) � V G ≤ 0.

This proves that E(X) is a positive σ-supermartingale1 as long as θ∆Sτ ≥ −1. Thus,

thanks to Kallsen [89], we conclude that it is a supermartingale and
(
I{Z−≥δ} � S

)τ
admits a G-deflator. Then, thanks to Lemma 5.12, we deduce that

(
I{Z−≥δ} � S

)τ
satisfies NUPBR(G). Remark that, due to the G-local boundedness of (Z−)−1I[[0,τ ]],

there exists a family of G-stopping times τδ, δ > 0 such that τδ converges almost

surely to infinity when δ goes zero and

[[0, τ ∧ τδ]] ⊂ {Z− ≥ δ} ∩ [[0, τ ]].

This implies that Sτ∧τδ satisfies NUPBR(G), and the assertion (a) follows from

Proposition 5.2 (by taking Qn = P for all n ≥ 1). This ends the proof of (b)⇒(a).

1Recall that a process X is said to be a σ-supermartingale if it is a semimartingale and there
exists a predictable process φ such that 0 < φ ≤ 1 and φ �X is a supermartingale
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Step 2: In this step, we focus on (a)⇒(b). Suppose that Sτ satisfies NUPBR(G).

Then, there exists a σ-martingale density under G, for I{Z−≥δ} � S
τ , (δ > 0), that

we denote by DG. Then, from a direct application of Jacod’s representation The-

orem 2.7 and Theorem 5.1, we deduce the existence of a positive P̃(G)-measurable

functional, fG, such that DG := E(NG) > 0, with

NG := wG ? (µG − νG), wG := fG − 1 +
f̂G − aG

1− aG
I{aG<1},

where νG was defined in (5.45), and, introducing fm defined in (5.44)

xfGI{Z−≥δ} ? ν
G = xfG

(
1 +

fm
Z−

)
I]]0,τ ]]I{Z−≥δ} ? ν ≡ 0. (5.74)

Thanks to Lemma 5.7, we conclude to the existence of a positive P̃(F)-measurable

functional, f , such that fGI]]0,τ ]] = fI]]0,τ ]]. Thus (5.74) becomes

UG := xf

(
1 +

fm
Z−

)
I]]0,τ ]]I{Z−>δ} ? ν ≡ 0.

Introduce the following notations

µ0 := I{Z̃>0 & Z−≥δ} � µ, ν0 := h0I{Z−≥δ} � ν, h0 := MP
µ

(
I{Z̃>0}|P̃

)
,

g :=
f(1 + fm

Z−
)

h0
I{h0>0} + I{h0=0}, a0(t) := ν0({t},Rd), (5.75)

and assume that √
(g − 1)2 ? µ0 ∈ A+

loc(F). (5.76)

Then, thanks to Lemma 2.6, we deduce that W := (g−1)/(1−a0 + ĝ) ∈ G1
loc(µ0,F),

and the local martingales

N0 :=
g − 1

1− a0 + ĝ
? (µ0 − ν0), Y 0 := E(N0), (5.77)
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are well defined satisfying 1 + ∆N0 > 0, [N0, S] ∈ A(F), and on {Z− > δ} we have

p,F
(
Y 0∆SI{Z̃>0}

)
Y 0
−

= p,F
(

(1 + ∆N0)∆SI{Z̃>0}

)
= p,F

(
g

1− a0 + ĝ
∆SI{Z̃>0}

)
= ∆

gxh0

1− a0 + ĝ
? ν = ∆

xf(1 + fm/Z−)

1− a0 + ĝ
? ν = Z−1

−

p,F (∆UG)
1− a0 + ĝ

≡ 0.

This proves that assertion (b) holds under the assumption (5.76).

The remaining part of the proof will show that this assumption always holds. To

this end, we start by noticing that on the set {h0 > 0},

g − 1 =
f(1 + fm

Z−
)

h0
− 1 =

(f − 1)(1 + fm
Z−

)

h0
+

fm
Z−h0

+
MP
µ

(
I{Z̃=0}|P̃

)
h0

:= g1 + g2 + g3.

Since
(
(f − 1)2I]]0,τ ]] ? µ

)1/2 ∈ A+
loc(G), then due to Proposition 5.5–(e)

√
(f − 1)2I{Z−≥δ} ? (Z̃ � µ) ∈ A+

loc(F), for any δ > 0.

Then, a direct application of Proposition 5.5–(a), for any δ > 0, we have

(f − 1)2I{|f−1|≤α & Z−≥δ} ? (Z̃ � µ), |f − 1|I{|f−1|>α & Z−≥δ} ? (Z̃ � µ) ∈ A+
loc(F).

By stopping, without loss of generality, we assume these two processes and [m,m]

belong to A+(F). Remark that Z−+fm = MP
µ

(
Z̃|P̃

)
≤MP

µ

(
I{Z̃>0}|P̃

)
= h0 that
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follows from Z̃ ≤ I{Z̃>0}. Therefore, we derive

E
[
g2

1I{|f−1|≤α} ? µ0(∞)
]

= E

[
(f − 1)2(1 + fm

Z−
)2

h2
0

I{|f−1|≤α} ? µ0(∞)

]

= E

[
(f − 1)2(1 + fm

Z−
)2

h2
0

I{|f−1|≤α} ? ν0(∞)

]
≤ δ−2E

[
(f − 1)2(Z− + fm)I{|f−1|≤α & Z−≥δ} ? ν(∞)

]
= δ−2E

[
(f − 1)2I{|f−1|≤α} ? (Z̃I{Z−≥δ} � µ)(∞)

]
< +∞,

and

E
[
g1I{|f−1|>α} ? µ0(∞)

]
= E

[
|f − 1|(1 + fm

Z−
)

h0
I{|f−1|>α} ? µ0(∞)

]

= E

[
|f − 1|(1 +

fm
Z−

)I{|f−1|>α}I{Z−≥δ} ? ν(∞)

]
≤ δ−1E

[
|f − 1|I{|f−1|>α} ? (Z̃I{Z−≥δ} � µ)(∞)

]
< +∞.

Here µ0 and ν0 are defined in (5.75). Therefore, again by Proposition 5.5–(a), we

conclude that
√
g2

1 ? µ0 ∈ A+
loc(F).

Notice that g2 + g3 =
MP
µ

(
∆mI{Z̃>0}|P̃

)
Z−h0

, and due to Lemma 2.4, we derive

E
[
(g2 + g3)2 ? µ0(∞)

]
= E

MP
µ

(
∆mI{Z̃>0}|P̃

)2

Z2
−h

2
0

? µ0(∞)


≤ E

MP
µ

(
(∆m)2|P̃

)
MP
µ

(
I{Z̃>0}|P̃

)
Z2
−h

2
0

? µ0(∞)


= E

MP
µ

(
(∆m)2|P̃

)
Z2
−

I{Z−≥δ} ? µ(∞)


≤ δ−2E [[m,m]∞] < +∞.

Hence, we conclude that
√

(g − 1)2 ? µ0 ∈ A+
loc(F). This ends the proof of (5.76),
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and the proof of the theorem is completed.

5.6 Discrete Time Market Models

In this section, we study discrete time market models. That is the case when

there are only finite number of trading times n = 1, 2, ..., N . We suppose given a

stochastic basis (Ω,A,F := (Fn)0≤n≤N ,P) on which we consider a real-valued F-

adapted stochastic process S = (Sn)0≤n≤N which represents the discounted risky

assets. For the sake of simplicity, we assume S is an F-martingale in this section.

We say a process X is said to satisfy the non-arbitrage condition under the filtration

H := (Hn)0≤n≤N (hereafter, NA(H)) if

for any predictable process H := (Hn)0≤n≤N , (i.e. Hn ∈ Hn−1) such that∑
1≤n≤N

Hn∆Xn ≥ 0, P− a.s., we have
∑

1≤n≤N
Hn∆Xn ≡ 0, P− a.s. (5.78)

The process H can be interpreted as the trading strategy that one holds dynamically

through time. Loosely speaking, the non-arbitrage condition means there is no

possibility that one can make profit out of nothing and without risk. The equivalence

between the non-arbitrage condition and equivalent martingale measure is essentially

due to the work of Dalang, Morton and Willinger [44] (see also different approaches

in Schachermayer [127] and Rogers [120]).

Theorem 5.11 (Dalang-Morton-Willinger): The process X satisfies the non-arbitrage

condition if and only there exists an equivalent martingale measure. In this case,

the equivalent martingale measure Q can be chosen to have a uniformly bounded

density dQ/dP.

Comparing with continuous time models, NA(H), NUPBR(H), NFLVR(H) are

equivalent in discrete time. We remark that optional stochastic integral does not

play a crucial rôle here; one can use conditional expectation instead.
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In this section, we shall prove that the non-arbitrage property is preserved (under

one mild condition) when the market is stopped at the random horizon τ . Further-

more, we gave the necessary and sufficient conditions (on τ or the stopping times

in (5.80)) to guarantee the stability of the non-arbitrage condition for any market Sτ .

Below, we define some notations related to the random time τ that would be fixed

throughout the discrete time framework. For any random time τ , we associate the

following two Azéma supermartingales

Zn := P [τ > n|Fn] and Z̃n := P [τ ≥ n|Fn], (5.79)

and the F-stopping times

R1 := inf{n ≥ 1 : Zn = 0}, R2 := inf{n ≥ 1 : Zn−1 = 0}

and R3 := inf{n ≥ 1 : Z̃n = 0}. (5.80)

To incorporate the information from the random time τ , we enlarge the filtration F

to include τ and obtain the filtration G = (Gn)1≤n≤N , where

Gn := Fn ∨ σ(τ ≤ n). (5.81)

The progressively enlarged filtration G is the smallest one that contains F and makes

τ a stopping time.

Lemma 5.13: For any random time τ and the associated stopping times in (5.80),

the following properties hold:

(a) The inclusions hold: {Zn−1 = 0} ⊂ {Z̃n = 0} ⊂ {Zn = 0} for all n.

(b) R2 is an F-predictable stopping time and R1 ≤ R3 ≤ R2.

(c) τ ≤ R1, Zn−1 and Z̃n are both positive when n ≤ τ .
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Proof. (a) Notice that

E
[
Z̃n1{Zn−1=0}

]
= E

[
Zn−11{Zn−1=0}

]
= 0. (5.82)

Hence, {Zn−1 = 0} ⊂ {Z̃n = 0}. Due to Zn ≤ Z̃n, we have {Z̃n = 0} ⊂ {Zn = 0}.

(b) We observe that {R2 ≤ n} = {Zn−1 = 0} ∈ Fn−1. Therefore R2 is predictable.

The inequalities R1 ≤ R3 ≤ R2 follow immediately from (a).

(c) Notice that

E
[
I{n≤τ}I{Zn−1=0}

]
= E

[
Zn−1I{Zn−1=0}

]
= 0, and

E
[
I{n≤τ}I{Z̃n=0}

]
= E

[
Z̃nI{Z̃n=0}

]
= 0.

Therefore, Zn−1 and Z̃n are strictly positive on the set {n ≤ τ}.

Remark 5.11: It was proved, in Dellacherie and Meyer [53], that these three sets

{Z− = 0}, {Z = 0} and {Z̃ = 0} have the same début in continuous time setting

that discrete time does not share. This fact is no longer true in the current

discrete time context. The difference is due to the fact that the filtration F is no

longer right-continuous in this discrete time framework.

Lemma 5.14: The Azéma supermartingale Zn has the following decomposition:

Zn = mn −An, mn := P [τ > n|Fn] +
∑

0≤k≤n
P [τ = k|Fk], An :=

∑
0≤k≤n

P [τ = k|Fk].

(5.83)

where mn is an F-martingale and A is an F-adapted increasing process.
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Proof. It is enough to prove (mn)n≥0 is an F-martingale. To this end, we derive

E
[
mn+1

∣∣∣Fn] = P
[
τ > n+ 1

∣∣∣Fn]+
∑

0≤k≤n+1

E
[
P [τ = k|Fk]

∣∣∣Fn]
= P

[
τ > n+ 1

∣∣∣Fn]+
∑

0≤k≤n
P
[
τ = k|Fk

]
+ P

[
τ = n+ 1

∣∣∣Fn]
= P [τ > n|Fn] +

∑
0≤k≤n

P [τ = k|Fk] = mn.

This ends the proof of the lemma.

The following lemma describes the connection between conditional expectations

under F and G. For its proof, we consult Jeulin [83].

Lemma 5.15: Let Y be an integrable and A-measurable random variable. Then,

the following properties hold:

(a) On the set {n < τ}, the conditional expectation under Gn is given by

E [Y |Gn]1{τ>n} = E
[
Y 1{τ>n}|Fn

] 1

Zn
1{τ>n}. (5.84)

(b) On the set {n ≤ τ}, the conditional expectation under Gn−1 is given by

E [Y |Gn−1]1{τ≥n} = E
[
Y 1{τ≥n}|Fn−1

] 1

Zn−1
1{τ≥n}. (5.85)

Moreover, if Y is Fn-measurable, we have

E [Y |Gn−1]1{τ≥n} = E
[
Y Z̃n|Fn−1

] 1

Zn−1
1{τ≥n}. (5.86)

The following theorem characterizes the relationship between F-martingales and

G-martingales. For the continuous time case, we refer the reader to Jeulin [83].

Theorem 5.12: Let M be an F-martingale and τ be an random time. Then the
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following process

MG
n := Mn∧τ −

∑
1≤k≤n

1

Zk−1
1{τ≥k}E

[
(Mk −Mk−1)Z̃k|Fk−1

]
, (5.87)

is a G-martingale.

Proof. Although it can be derived from Jeulin [83], we opt to give a direct proof

here. It is easy to see that

M(n+1)∧τ = Mn∧τ + (Mn+1 −Mn)1{τ≥n+1}. (5.88)

Then, we get

E
[
MG
n+1

∣∣∣Gn] = E
[
M(n+1)∧τ −

∑
1≤k≤n+1

1

Zk−1
1{τ≥k}E

[
(Mk −Mk−1)Z̃k|Fk−1

] ∣∣∣Gn]
= Mn∧τ + E

[
(Mn+1 −Mn)1{τ≥n+1}

∣∣∣Gn]
−
∑

1≤k≤n

1

Zk−1
1{τ≥k}E

[
(Mk −Mk−1)Z̃k|Fk−1

]
− 1

Zn
1{τ≥n+1}E

[
(Mn+1 −Mn)Z̃n+1|Fn

]
= Mn∧τ −

∑
1≤k≤n

1

Zk−1
1{τ≥k}E

[
(Mk −Mk−1)Z̃k|Fk−1

]
= MG

n ,

where we use the following fact that is due to Lemma 5.15

E
[
(Mn+1 −Mn)1{τ≥n+1}

∣∣∣Gn] =
1

Zn
1{τ≥n+1}E

[
(Mn+1 −Mn)Z̃n+1|Fn

]
.

This ends the proof of theorem.

In the following proposition, we construct a G-martingale that would serve as

the martingale density for a class of G-semi-martingales.
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Proposition 5.8: The following process

NG
n := −

∑
1≤k≤n

1{τ≥k}E[1{Z̃k>0}|Fk−1] +
∑

1≤k≤n

Zk−1

Z̃k
1{τ≥k} (5.89)

is a G-martingale such that 1 + ∆NG
n > 0 for all n ≥ 1.

Proof. First, we prove that NG is a G-martingale. To this end, due to Lemma 5.15–

precisely (5.86)– we have

E

[
Zn

Z̃n+1

1{τ≥n+1}

∣∣∣Gn] = E

[
Zn

Z̃n+1

1{Z̃n+1>0}

∣∣∣Gn]1{τ≥n+1} = 1{τ≥n+1}E[1{Z̃n+1>0}|Fn].

Thus, as a result, we get

E
[
NG
n+1|Gn

]
= E

− ∑
1≤k≤n+1

1{τ≥k}E[1{Z̃k>0}|Fk−1] +
∑

1≤k≤n+1

Zk−1

Z̃k
1{τ≥k}

∣∣∣Gn


= −
∑

1≤k≤n+1

1{τ≥k}E[1{Z̃k>0}|Fk−1] +
∑

1≤k≤n

Zk−1

Z̃k
1{τ≥k} + E

[
Zn

Z̃n+1

1{τ≥n+1}

∣∣∣Gn]

= −
∑

1≤k≤n+1

1{τ≥k}E[1{Z̃k>0}|Fk−1] +
∑

1≤k≤n

Zk−1

Z̃k
1{τ≥k} + 1{τ≥n+1}E[1{Z̃n+1>0}|Fn]

= −
∑

1≤k≤n
1{τ≥k}E[1{Z̃k>0}|Fk−1] +

∑
1≤k≤n

Zk−1

Z̃k
1{τ≥k} = NG

n . (5.90)

Secondly, we check the integrability of NG. Indeed,

E[|NG
n |] ≤ n+

∑
1≤k≤n

E

[
Zk−1

Z̃k
1{τ≥k}

]
= n+

∑
1≤k≤n

E
[
Zk−11{Z̃k>0}

]
≤ 2n.

Finally, we show that 1 + ∆NG
n > 0. Indeed

1 + ∆NG
n = 1− 1{τ≥n}E[1{Z̃n>0}|Fn−1] +

Zn−1

Z̃n
1{τ≥n} ≥ 1{τ<n} +

Zn−1

Z̃n
1{τ≥n} > 0.

This completes the proof of the proposition.
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Remark 5.12: It is worthy to notice that
∑

1≤k≤n 1{τ≥k}E[1{Z̃k>0}|Fk−1] is the

G-compensator of the G-adapted increasing process
∑

1≤k≤n Zk−1/Z̃k1{τ≥k}.

Lemma 5.16: The stochastic exponential E(NG) of NG takes the form of

E(NG)n =
∏

1≤k≤n
(1 + ∆NG

k ). (5.91)

Proof. It is straightforward from the calculation of the stochastic exponential.

Now, we are ready to state our first main theorem for this section.

Theorem 5.13: Consider any random time τ and the F-martingale S. Denote the

probability measure Q ∼ P with density Dn := E(Y )n where

∆Yn := Z̃n1{Zn−1>0}E
[
1{Z̃n=0}|Fn−1

]
− Zn−11{Z̃n=0}, Y0 = 0. (5.92)

Then the following are equivalent:

(a) S is an (F,Q)-martingale;

(b) S is orthogonal to D and Y ;

(c) E(NG)nSn∧τ is a G-martingale.

As a consequence, all the above three equivalent conditions imply that:

(d) Sτ satisfies NA(G,P) and NA(G,Q).

Proof. First, we remark that the probability measure Q is well defined and is equiv-

alent to P. Indeed, it is easy to check that (Yn)n≥1 is an F-martingale and

1 + ∆Yn = Z̃n1{Zn−1>0}E
[
1{Z̃n=0}|Fn−1

]
+ 1{Z̃n>0} + (1− Zn−1)1{Z̃n=0} > 0,

where we used the fact that on the set {Z̃n > 0}, 1 + ∆Yn ≥ 1 and {Z̃n = 0} ⊂

{Zn−1 < 1}, which is due to {Zn−1 = 1} ⊂ {Z̃n = 1}. Therefore, D is a strictly

positive martingale.
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The equivalence between (a) and (b) is obvious. In the following, we will focus on

proving the equivalence between (a) and (c). Recall that

NG
n = −

∑
1≤k≤n

1{τ≥k}E[1{Z̃k>0}|Fk−1] +
∑

1≤k≤n

Zk−1

Z̃k
1{τ≥k}. (5.93)

Due to Lemma 5.15, we deduce that

E
[∆Sk

Z̃k
1{τ≥k}|Gk−1

]
=
1{τ≥k}

Zk−1
E
[
∆Sk1{Z̃k>0}|Fk−1

]
,

E
[
∆Sk1{τ≥k}|Gk−1

]
=
1{τ≥k}

Zk−1
E
[
∆SkZ̃k|Fk−1

]
. (5.94)

Therefore, we derive

E
[
E(NG)n+1S(n+1)∧τ

∣∣∣Gn+1

]
= E(NG)nE

[
(1 + ∆NG

n+1)S(n+1)∧τ

∣∣∣Gn]
= E(NG)nE

[
Sn∧τ + ∆Sn+11{n+1≤τ} + ∆NG

n+1Sn∧τ + ∆Sn+1∆NG
n+11{n+1≤τ}

∣∣∣Gn]
= E(NG)n

{
Sn∧τ + E

[
∆Sn+1Z̃n+1E

[
1{Z̃n+1=0}|Fn

] ∣∣∣Fn]1{n+1≤τ}

Zn

}
− E(NG)n

{
1{n+1≤τ}E

[
∆Sn+11{Z̃n+1=0}

∣∣∣Fn]}
= E(NG)nSn∧τ + E(NG)n

{
E
[
∆Sn+1

{
Z̃n+1E

[
1{Z̃n+1=0}|Fn

]
− Zn1{Z̃n+1=0}

} ∣∣∣Fn]} 1{n+1≤τ}

Zn

= E(NG)nSn∧τ + E(NG)nE
Q
[
∆Sn+1

∣∣∣Fn] 1{n+1≤τ}

Zn
.

Thus, (a) implies (c). Conversely, if (c) holds, we have

EQ [∆Sn+1|Fn]
1{n+1≤τ}

Zn
= 0, and EQ [∆Sn+1|Fn]1{Zn>0} = 0.

Notice that EQ [∆Sn+1|Fn]1{Zn=0} = 0, for all n . Thus, we conclude that

EQ [∆Sn+1|Fn] = 0, for all n. This completes the proof of the theorem.

Remark 5.13: We observe from Theorem 5.13 that even though Y is an F-martingale,
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the stopped process Yn∧τ =
∑

k≤n Z̃kE
[
1{Z̃k=0}|Fk−1

]
1{k≤τ} does not satisfy

NA(G) since it is a G-increasing process. This also sheds some light on the im-

portance of the conditions in Theorem 5.13.

Remark 5.14: It is worthy to notice that, in general, for an F-martingale M , if

M τ satisfies NA(G), we can not conclude M is orthogonal to Y . To prove this

claim, we consider the projection of Y with respect to m as follows

∆Yn = Hn∆mn + ∆mn,

where Hn ∈ Fn−1 and m is an F-martingale, orthogonal to m. If Y is not null, m

is not identical zero. By Theorem 5.12, it is easy to see that mτ is a G-martingale.

However, m can not be orthogonal to Y unless Y is null. Indeed, we can calculate

explicitly the F-martingale m that stays a G-martingale.

∆mn = ∆Yn −Hn∆mn = ∆Yn −
E [∆Yn∆mn | Fn−1]

E [(∆mn)2 | Fn−1]
∆mn.

Corollary 5.13.1: Let M be an F-martingale. If for all n,

{Z̃n = 0} = {Zn−1 = 0}. (5.95)

Then the following properties hold:

(a) (Mn∧τ )n≥1 satisfies NA(G);

(b)
(
E(NG)nMn∧τ

)
n≥1

is a G-martingale, where NG is given by (5.89) in Propo-

sition 5.8;

(c) The probability measure Q, given in (5.92) coincides with = P.

In particular, the above three properties hold when Zn > 0 for all n ≥ 1.

Below, we state our second main theorem of this section, where we give the necessary

and sufficient conditions on the random time τ (or equivalently the stopping times
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in (5.80)) to guarantee the no-arbitrage M τ for any F-martingale M .

Theorem 5.14: Consider a random time τ and the associated stopping times de-

fined in (5.80). Then the following are equivalent:

(a) For any F-martingale M , the stopped process M τ satisfies NA(G).

(b) {Z̃n = 0} = {Zn−1 = 0} for all n.

(c) R1 + 1 = R2 = R3.

(d) R3 is an F-predictable stopping time.

(e) The probability Q, defined via (5.92), coincides with = P.

Proof. The proof of the theorem would be achieved after four steps. In the first

step, we prove (b)⇔(c). The second step focuses on (c)⇔(d). The third step deals

with (b)⇔(e). In the last step, we will prove (a) ⇔ (b).

Step 1: The equivalence between (b) and (c) is obvious. Indeed, if (b) holds, it is

trivial that R2 = R3. Conversely, if (c) holds, we derive that

E
(
Zn−1I{Z̃n=0}

)
= E

(
Zn−1I{Z̃n=0}I{n≥R3}

)
= E

(
Zn−1I{Z̃n=0}I{n≥R2}

)
= 0.

Hence, we conclude that {Z̃n = 0} ⊂ {Zn−1 = 0} for all n.

Step 2: Herein, we will prove (c)⇔(d). If (c) holds, it is easy to see that R3 is an

F-predictable stopping time due to {R3 = n} = {R1 = n− 1} ∈ Fn−1. Conversely,

by the predictability of R3, we have 0 = E[Z̃R3 ] = E[ZR3−1]; hence ZR3−1 = 0 and

R3 = R2.

Step 3: This step will prove (b)⇔(e). If (b) holds, apparently, Y = 0 and Q = P.

Conversely, if (e) holds, ∆Yn = 0 for all n. Hence, Z̃n1{Zn−1>0}E
[
1{Z̃n=0}|Fn−1

]
=

Zn−11{Z̃n=0} = 0 and {Z̃n = 0} = {Zn−1 = 0} for all n.
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Step 4: In this step, we focus on the proof of the equivalence between (a) and (b).

Proof of (a)⇒(b): Suppose that for any F-martingale M , the stopped process M τ

satisfies NA(G). Consider

Vn := 1{R3>n} and Ṽn :=
∑

1≤k≤n
{E[Vk|Fk−1]− Vk−1} . (5.96)

It is easy to see that Mn := Vn− Ṽn is an F-martingale. Therefore Mn∧τ = 1− Ṽn∧τ

satisfies NA(G). Then there exists an equivalent probability Q1 ∼ P such that Ṽn∧τ

is a (G,Q1)-martingale. Therefore Ṽn∧τ ≡ 0. Hence, we have

0 = E
[
Ṽn∧τ

]
= E

 ∑
1≤k≤n

Zk−1∆Ṽk


=
∑

1≤k≤n
E
[
Zk−1

(
E
[
1{R3>k}|Fk−1

]
− 1{R3>k−1}

)]
=
∑

1≤k≤n
E
[
Zk−11{R3>k}

]
− E

[
Zk−11{R3>k−1}

]

= −
∑

1≤k≤n
E
[
Zk−11{R3=k}

]
= −

∑
1≤k≤n

E

Zk−11{Z̃k=0}

∏
1≤i≤k

1{Z̃i−1>0}


= −

∑
1≤k≤n

E

Zk−11{Zk−1>0}1{Z̃k=0}

∏
1≤i≤k

1{Z̃i−1>0}


= −

∑
1≤k≤n

E
[
Zk−11{Zk−1>0}1{Z̃k=0}

]
= −

∑
1≤k≤n

E
[
Zk−11{Z̃k=0}

]
.

In the last equality we used the fact that {Zk > 0} ⊂ {Z̃k > 0} ⊂ {Z̃k−1 > 0}.

Therefore, for all n, {Z̃n = 0} ⊂ {Zn−1 = 0} and R3 ≥ R2.

The proof of (b)⇒(a) follows immediately from Theorem 5.13 or Corollary 5.13.1.

This ends the proof of the theorem.

The following is a sort of surprising corollary

Corollary 5.14.1: Consider a two period model (Ω,A = F2,F := (Fn)n=0,1,2,P)

with an A-measurable random time τ . For any F-martingale M , the stopped
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process M τ satisfies NA(G) if and only if τ is an F-stopping time.

Proof. If τ is an F-stopping time, it is trivial that M τ satisfies NA(G) for any F-

martingale M . Conversely, for the random time τ , denote Ω2 := {τ = 2}, Ω1 :=

{τ = 1} and Ω1 ∪ Ω2 = Ω. By the definitions of Z and Z̃, we derive that

Z̃0 = 1, Z̃1 = 1, Z̃2 = IΩ2 , and Z0 = 1, Z1 = P(Ω2|F1), Z2 = 0.

If for any F-martingale M , the stopped process M τ satisfies NA(G), by Theorem

5.14, we know that {Z̃2 = 0} = Ω1 = {Z1 = 0} ∈ F1 and τ is an F-stopping

time.

The following theorem is a sort of reverse of Theorem 5.16 and 5.14 and shows

what we can conclude if Xτ satisfies NA(G) for some intergrable process X.

Theorem 5.15: Let X be an arbitrary F-adapted integrable process with the de-

composition Xn = X0 + Mn + An, where ∆An = E[∆Xn|Fn−1] and ∆Mn =

∆Xn−∆An. If Xτ satisfies NA(G), then the following inclusion holds on the set

{n ≤ τ}

{
Zn−1E

[
(∆Xn)2 Z̃n|Fn−1

]
= E2

[
∆XnZ̃n|Fn−1

]}
⊂
{
E
[
∆XnZ̃n|Fn−1

]
= 0
}
.

(5.97)

Proof. Let QG be the equivalent martingale measure for Xτ with the density process

Dn := E
(
KG)

n
. Thanks to Itô’s formula, this is equivalent to

Xn∧τ +
∑

1≤k≤n
E
[
∆KG

k ∆Xk|Gk−1

]
1{k≤τ}, (5.98)

is a G-martingale. Consider the projection of KG with respect to MG given by

∆KG
n = HG

n ∆MG
n + ∆Kn, (5.99)
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where MG is defined via (5.87) and K is a G-martingale, orthogonal to MG. Notice

that

Xτ = X0 +MG +
∑

1≤k≤n

1

Zk−1
E [∆Mk∆mk|Fk−1]1{k≤τ} +Aτ , (5.100)

and E
[
∆Kk∆Xk|Gk−1

]
= 0 for all k. Hence, the condition (5.98) is equivalent to

for all n

∆An+
1

Zn−1
E [∆Mn∆mn|Fn−1]+HG

n E
[
∆MG

n ∆Xn|Gn−1

]
≡ 0, on the set {n ≤ τ}.

(5.101)

In the following, we will transfer the condition (5.101) to the form in terms of the

public information F. To this end, we calculate on the set {n ≤ τ} that

E
[
∆MG

n ∆Xn

∣∣∣Gn−1

]
= E

[(
∆Xn −∆An −

1

Zn−1
E [∆Xn∆mn|Fn−1]

)
∆Xn

∣∣∣Gn−1

]
= E

[(
∆Xn − E[∆Xn|Fn−1]− 1

Zn−1
E
[
∆Xn∆mn

∣∣∣Fn−1

])
∆Xn

∣∣∣Gn−1

]
= E

[(
∆Xn −

1

Zn−1
E
[
∆XnZ̃n|Fn−1

])
∆Xn

∣∣∣Gn−1

]
=

1

Zn−1
E
[
(∆Xn)2 Z̃n|Fn−1

]
− 1

Z2
n−1

E2
[
∆XnZ̃n|Fn−1

]
,

and

∆An +
1

Zn−1
E [∆Mn∆mn|Fn−1] =

1

Zn−1
E
[
∆XnZ̃n|Fn−1

]
.

Therefore,

HG
n =

−Zn−1E
[
∆XnZ̃n|Fn−1

]
Zn−1E

[
(∆Xn)2 Z̃n|Fn−1

]
− E2

[
∆XnZ̃n|Fn−1

]1{n≤τ}.
and

{
Zn−1E

[
(∆Xn)2 Z̃n|Fn−1

]
= E2

[
∆XnZ̃n|Fn−1

]}
⊂
{
E
[
∆XnZ̃n|Fn−1

]
= 0
}
.
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This ends the proof of the theorem.

5.7 Lévy Market Model

In this section, we shall study Lévy market model. Suppose that the traded financial

asset is an exponential of a Lévy process given by S = S0 exp(X), where

Xt = γt+ σWt +

∫ t

0

∫
|x|≤1

xÑ(dt, dx) +

∫ t

0

∫
|x|≥1

xN(dt, dx), (5.102)

Ñ(dt, dx) = N(dt, dx)− νX(dx, dt) and νX(dx, dt) := FX(dx)dt. Here, γ and σ are

real numbers (σ > 0); W = (Wt)t≥0 represents a Brownian motion; N(dt, dx) is a

random measure on [0, T ]⊗R\{0}, called Poisson random measure; Ñ(dt, dx) is the

compensated Poisson measure with the intensity measure FX(dx)dt, where FX(dx)

is called the Lévy measure defined on R\{0}, satisfying

∫
R\{0}

(
|x|2 ∧ 1

)
FX(dx) < +∞. (5.103)

For more details about Lévy processes, we refer the reader to [126].

The relationship between the random measure µ and its compensator ν of S and

µX(dt, dx) := N(dt, dx) is given by

µ(dt, dx) = Φ(µX(dt, dx)) = the image of µX by the mapping Φ, and

ν(dt, dx) = F (dx)dt, F := Φ(FX) = the image of FX by Φ, (5.104)

where Φ(ω, t, ·) : R −→ R : Φ(ω, t, x) = St−(ω) (ex − 1− x) . To give more details

for the calculation, for any nonnegative P̃(F)-measurable functional, f , we have

∫
f(t, ω, x)F (ω, t, dx) =

∫
f(t, ω, St−(ω)(ex − 1− x))FX(dx).
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Although the Lévy market is a particular case of quasi-left-continuous semi-martingale

treated in Subsection 5.2.1, we want to give a practical condition, under which we

will prove the validity of the NUPBR after stopping with τ . This condition is

νG ∼ ν, on [[0, τ ]]. (5.105)

It is easy to prove that this condition is equivalent to the condition where νGX ∼ νX

on [[0, τ ]].

In the same spirit as Theorem 2.18, any local martingale Y in this model can be

decomposed as follows

Y = β � Sc + f ? (µ− ν) + g ? µ+ Y ⊥. (5.106)

Here, (β, f, g, Y ⊥) is the Jacod parameters of Y with respect to S .

Denote (βm, fm, gm,m
′) be the Jacod parameters of m with respect to (S,F,P) as

m = βm � Sc + fm ? (µ− ν) + gm ? µ+m′. (5.107)

The Jacod parameters of m would be fixed throughout this section.

Below, we recall the random measure and its compensator under the enlarged fil-

tration G for Lévy market.

Proposition 5.9: Consider the Lévy Market S, on [[0, τ ]], we have

(a) The compensator of µ in the filtration G is given by

νG :=
(
I[[0,τ ]] � µ

)p,G
=

(
1 +

fm
Z−

)
I[[0,τ ]] � ν. (5.108)
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(b) The canonical representation of Sτ is given by

Sτ = S0 + Ŝc + h ? (µG − νG) + (x− h) ? µG + B̂, (5.109)

where Ŝc is defined via (5.17) and B̂ := I[[0,τ ]] �B+ 1
Z−
I[[0,τ ]] �〈Sc,m〉F+h fmZ− I[[0,τ ]]?ν.

The following proposition proposes a local martingale density for Sτ .

Proposition 5.10: The following process E(NG) is well defined, being a positive

G-local martingale.

E(NG) := E
(
− 1

Z−
βmI[[0,τ ]] � Ŝc −

fm
fm + Z−

I[[0,τ ]] ?
(
µG − νG

))
, (5.110)

where Ŝc is defined via (5.17).

Proof. First, we show that the random integral fm
fm+Z−

I[[0,τ ]] ?
(
µG − νG

)
is well

defined. Note that

E
[
I[[0,τ ]]I{MP

µ [Z̃|P̃(F)]=0} ? µ
]

= E
[
Z̃I{MP

µ [Z̃|P̃(F)]=0} ? µ
]

= E
[
MP
µ

[
Z̃|P̃(F)

]
I{MP

µ [Z̃|P̃(F)]=0} ? µ
]

= 0.

Therefore, Z− + fm = MP
µ [Z̃|P̃(F)] > 0,MP

µ -a.s. on the set [[0, τ ]]. Next, we shall

prove that

fm
fm + Z−

I[[0,τ ]] ∈ G1
loc(µ

G).

To this end, we consider

δ ∈ (0, 1), Γ := {∆S 6= 0} and Γc its complement in Ω⊗ [0,+∞[.
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We calculate that

V :=

√√√√ ∑
0≤u≤�

(
fm(∆Su)

Z− + fm(∆Su)
IΓI[[0,τ ]]

)2

≤

√√√√ ∑
0≤u≤�

(
fm(∆Su)

Z− + fm(∆Su)
I[[0,τ ]]IΓI{fm<−δZ−}

)2

+

√√√√ ∑
0≤u≤�

(
fm(∆Su)

Z− + fm(∆Su)
I[[0,τ ]]IΓI{fm≥−δZ−}

)2

:= V1 + V2. (5.111)

Due to the G-local boundedness of 1/Z−I[[0,τ ]], we obtain that

V2(t) ≤ 1

1− δ

√√√√ ∑
0≤u≤t

(
fm(∆Su)

Zu−
I[[0,τ ]]IΓI{fm≥−δZu−}

)2

≤ 1

1− δ

√√√√ ∑
0≤u≤t

(
f2
m(∆Su)

Z2
u−

I[[0,τ ]]IΓ

)
=

1

1− δ

√
f2
mI[[0,τ ]]

Z2
−

? µ ∈ A+
loc(G),

where we used the fact that fm ∈ G2
loc(µ,F), i.e. f2

m ? µ ∈ A+
loc(F). Again due to the

G-local boundedness of 1/Z−I[[0,τ ]], and f2
m ? µ ∈ A+

loc(F), we deduce the existence

of a sequence of G-stopping times (Tn)n≥1 that increases to infinity and a sequence

of F-stopping times, (σn)n≥1, that increases to infinity such that

(Z−)−1I[[0,τ ]] ≤ n on [[0, Tn]] and Ef2
m ? ν(σn) < +∞.
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Then, we derive that

E[V1(Tn ∧ σn)] ≤ E
[
|fm|

fm + Z−
I[[0,τ ]]I{fm<−δZ−} ? µTn∧σn

]
≤ E

[
|fm|

fm + Z−
I[[0,τ ]]I{fm<−δ/n} ? µσn

]
≤ E

[
|fm|

fm + Z−
Z̃I{fm+Z−>0}I{fm<−δ/n} ? µσn

]
= E

[
|fm|I{δ/n<−fm<Z−} ? µσn

]
≤ n

δ
E[f2

m ? µσn ] < +∞.

This proves that the process V is G-locally integrable.

Secondly, the positivity of D is obvious. Indeed on [[0, τ ]], we have

1 + ∆N t = 1− fm(∆St)

Zt− + fm(∆St)
I{∆St 6=0} = I{∆St=0} +

Zt−
Zt− + fm(∆St)

I{∆St 6=0} > 0.

This ends the proof of the proposition.

Theorem 5.16: Let S be the Lévy market satisfying NUPBR(F) and τ be a random

time satisfying the condition (5.105). Then Sτ satisfies NUPBR(G).

Proof. Since S satisfies NUPBR(F), there exists a local martingale density DS . Let

(σn)n≥1 be the localizing sequence of DS and DSS. Put Qn := DS
σn � P ∼ P . By

change of probability, we could work under Qn, ZQt := Qn(τ > t|Ft) and Z̃Qt :=

Qn(τ ≥ t|Ft). Therefore, without loss of generality, we could assume S is an F-local

martingale. We shall prove that E(NG) is a local martingale density of Sτ . Recalling

from Proposition 5.9, we have

Sτ = I[[0,τ ]] � Ŝc + x ? (µG − νG) + xI[[0,τ ]] ? (νG − ν) +
I[[0,τ ]]

Z−
� 〈Sc,m〉F,

NG := − 1

Z−
βmI[[0,τ ]] � Ŝc −

fm
fm + Z−

I[[0,τ ]] ?
(
µG − νG

)
:= N c,G +Nd,G.
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Then, we calculate that

Sτ +
[
Sτ , NG

]
= Sτ +

[
(Sτ )c, N c,G

]
+
∑

∆Sτ∆NG

= S0 + I[[0,τ ]] � Ŝc + x ? (µG − νG) +
xfm
Z−

I[[0,τ ]] ? ν +
I[[0,τ ]]

Z−
βmc �A

−
I[[0,τ ]]

Z−
βmc �A−

xfm
fm + Z−

I[[0,τ ]] ? µ (5.112)

= S0 + I[[0,τ ]] � Ŝc + x ? (µG − νG) +
xfm
Z−

I[[0,τ ]] ? ν −
xfm

fm + Z−
I[[0,τ ]] ? µ.

It remains to show xfm
fm+Z−

I[[0,τ ]]?µ ∈ Aloc(G). Let (Tn)n≥1 be the localizing sequence

of [S,m]. To this end, we calculate that

E

[
|xfm|

fm + Z−
I[[0,τ ]] ? µTn

]
= E

[
|xfm|

fm + Z−
I{fm+Z−>0}Z̃ ? µTn

]
≤ E [|xfm| ? µTn ] ≤ E [V ar([S,m])Tn ] < +∞.

Notice that xfm
Z−

I[[0,τ ]] ? ν is the G-compensator of xfm
fm+Z−

I[[0,τ ]] ? µ. From (5.112),

we conclude that Sτ +
[
Sτ , NG] is a G-local martingale. Thanks to Itô formula,

E(NG)Sτ is a local martingale if and only if Sτ + [Sτ , NG] is a local martingale.

This ends the proof of the theorem.

Corollary 5.16.1: Let Y be a compensated Poisson process and τ be a random

time satisfying the condition (5.105). Then, Y τ satisfies NUPBR(G).

Proof. The proof follows analogy with previous Theorem and the G-local martingale

density is given by NG := − fm
fm+Z−

I[[0,τ ]] ? (µG−νG) since the continuous martingale

part is null. For the simplicity of jump measure of Poisson process, we provide a

direct easy proof of the integrability of NG. Let (Tn)n≥1 be the localizing sequence
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of 1 ? µ. To this end, we calculate that

E

[
|fm|

fm + Z−
I[[0,τ ]] ? µ

G
Tn

]
= E

[
Z̃
|fm|

fm + Z−
I{fm+Z−>0} ? µTn

]
= E

[
|fm|I{fm+Z−>0} ? νTn

]
≤ 4E [1 ? νTn ] < +∞.

This ends the proof of the Corollary.

Conclusions:

In this chapter, we obtained two principal results. The first result lies in describ-

ing the pairs of market model and random time for which the resulting stopped

model fulfills NUPBR condition. The second main result characterizes the ran-

dom time models that preserve the NUPBR property after stopping for any market

model. These results are elaborated in a very general market model, and also dis-

crete time and Lévy market models. The analysis that drives these results is based

on new stochastic developments in semimartingale theory with progressive enlarge-

ment. Furthermore, we construct explicit martingale densities (deflators) for some

classes of local martingales when stopped at random time.

In the next chapter, we will investigate NUPBR on the stochastic interval ]]τ,+∞[[.
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Chapter 6

Non-arbitrage for a Class of

Honest Times

This chapter completes the study undertaken in Chapter 5 about non-arbitrage in

informational market. Throughout the chapter, the financial market will be repre-

sented by a d-dimensional semimartingale S, (d-risky assets), and a non-risky asset

(assumed to be constant one) on the stochastic basis (Ω,G,F, P ), where F := (Ft)t≥0

is a filtration satisfying the usual hypotheses (i.e., right continuity and complete-

ness) and represents the flow of public information with F∞ :=
∨
t≥0Ft ⊆ G.

In this chapter (Ω,G,F, S,P) represents the initial model (the defaultable-free model)

to which we add a fixed random time denoted by τ . In Chapter 5, we addressed the

arbitrage theory for the sub-model (Ω,G, Sτ ), where G is the enlarged filtration that

contains F and the information from τ . Therefore, in virtue of the obtained results,

our main focus is the arbitrage of the sub-model (Ω,G, S − Sτ ). It is known in

the literature that a process satisfies the No-Unbounded-Profit-with-Bounded-Risk

(called NUPBR hereafter) property only if this process is a semimartingale. Thus,

the first question that arises before any arbitrage inquiry is whether the model S−Sτ

is a G-semimartingale. This is the main reason why we focus on random times that
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are honest times, when dealing with the part ”after” τ . It is known that honest

times (see [83]) preserve the semimartingale structures. It becomes also necessary

via the work of Imkeller [75] (see also Fontana et al. [63]), that for honest times

avoiding stopping times in a Brownian filtration, the NUPBR property is violated

after τ . Thus, the first challenging question is:

Are there honest times for which the NUPBR holds for some models?

The positive answer to this question constitutes our first original contribution of

this chapter. This class of honest times will be described in (6.4) and for this class

of honest times, we will address two important problems.

For which pairs (S, τ), the model (Ω,G, S − Sτ ) is arbitrage free? (Prob(6.I))

The investigating of this problem will lead us to a deep understanding of the precise

parts from both the random time and the initial market model that allow arbitrage

to occur. The second problem focuses on the model of τ such that

(Ω,G, S − Sτ ) is arbitrage free for any arbitrage free S? (Prob(6.II))

This will allow us to single out the class of honest times that preserve the non-

arbitrage considered in the thesis (i.e. NUPBR).

This chapter is organized as follows. In the following section (Section 6.1), we

present our main results, their immediate consequences, and/or their economic and

financial interpretations. These results are formulated for particular as well as gen-

eral framework. Section 6.2 is devoted to new stochastic developments vital for the

proof of the main results, while Section 6.3 deals with the derivation of explicit local

martingale deflators. The last section (Section 6.4) focuses on proving the main

theorems of Section 6.1.
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6.1 The Main Results

In what follows, H denotes a filtration satisfying the usual hypotheses. For an H-

semi-martingale Y , the set L(Y,H) is the set of H predictable processes integrable

w.r.t. Y and for H ∈ L(Y,H), we denote H � Yt :=
∫ t

0 HsdYs.

We recall the notion of non-arbitrage that is addressed in this Chapter.

Definition 6.1: An H-semimartingale S satisfies the No-Unbounded-Profit-with-

Bounded-Risk condition under (H, Q) (hereafter called NUPBR(H, Q)) if for any

finite deterministic horizon T , the set

KT (S) :=
{

(H � S)T
∣∣ H ∈ L(S,H), and H � S ≥ −1

}

is bounded in probability under Q. When Q ∼ P , we simply write NUPBR(H))

and write S satisfies NUPBR(H) instead of S satisfies the NUPBR(H) property.

For more details about this type of non-arbitrage condition and its relationship to

the literature, we refer to Definition 2.17 of Subsection 2.4 in Chapter 2.

Beside the defaultable-free model represented by (Ω,F, P, S), we consider a finite

random time τ : Ω→ R+. To this random time, we associate the process D and the

filtration G given by

D := I[[τ,+∞[[, G = (Gt)t≥0 , Gt =
⋂
s>t

(
Fs ∨ σ(Du, u ≤ s)

)
.

Recall two important F-supermartingales given by

Zt := P
(
τ > t

∣∣ Ft) and Z̃t := P
(
τ ≥ t

∣∣∣ Ft) . (6.1)

The decomposition of Z leads to an important F-martingale that we denote by m,
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given by

m := Z +Do,F, (6.2)

where Do,F is the F-dual optional projection of D = I[[τ,∞[[.

Throughout the chapter, we will assume that

τ is an honest time. (6.3)

For the reader’s convenience, we recall the definition of honest time.

Definition 6.2: A random time σ is honest, if for any t, there exists an Ft-

measurable r.v. σt such that σI{σ<t} = σtI{σ<t}.

We refer to Jeulin [83, Chapter 5] and Barlow [17] for more information about

honest times. For the case of quasi-left-continuous processes, we restrict our study

to the following subclass of honest times.

τ is an honest time satisfying Zτ < 1, P − a.s. (6.4)

It is clear that any stopping time satisfies (6.4). Furthermore, in [3], the authors

provided many examples that are not stopping times satisfying (6.4).

We end this section by recalling the following lemma, obtained in Chapter 5.

Lemma 6.1: Let X be an H-predictable process with finite variation. Then X

satisfies NUPBR(H) if and only if X ≡ X0 (i.e. the process X is constant).

6.1.1 The Case of Quasi-left-continuous Processes

In this subsection, we answer (Prob(6.I)) and (Prob(6.II)) for the case of F-quasi-

left-continuous processes.

We start investigating (Prob(6.I)) and characterizing processes S and honest
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times τ such that S − Sτ satisfies NUPBR(G). To this end, we recall µ, ν are

given in (2.9) and (2.11), P̃(H) := P(H) ⊗ B(Rd), Z− + ∆m = Z̃ and we state the

following.

Lemma 6.2: The process S(1) given by

S(1) := xfmI{Z−<1=Z−+fm} ? µ, where fm := MP
µ

(
∆m

∣∣ P̃(F)
)

(6.5)

is an F-semimartingale.

Proof. We remark that f2
m?µ is a càdlàg locally bounded and nondecreasing process

and for any 0 ≤ u < v, we have

Var(S(1))v −Var(S(1))u ≤
√

[S, S]v − [S, S]u

√
f2
mI]u,v] ? µ.

Therefore, S(1) is a càdlàg process with locally integrable variation.

Theorem 6.1: Suppose that S is an F-quasi-left-continuous semimartingale, and τ

is a finite honest time satisfying (6.4). If the process (1− Z−) � S − S(1) satisfies

NUPBR(F), then the process S − Sτ satisfies NUPBR(G).

Proof. The proof of this theorem will be given in Subsection 6.4.1.

Corollary 6.1.1: Suppose that S is F-quasi-left-continuous and satisfies NUPBR(F).

Then, the following assertions hold.

(a) If (S, S(1)) satisfies NUPBR(F), then S − Sτ satisfies NUPBR(G).

(b) If S(1) ≡ 0, then S − Sτ satisfies NUPBR(G).

(c) If {∆S 6= 0} ∩ {Z̃ = 1 > Z−} = ∅, then S − Sτ satisfies NUPBR(G).

(d) If S is continuous, then S − Sτ satisfies NUPBR(G).

Proof. (a) Suppose that (S, S(1)) satisfies NUPBR(F). Then, the process(
(1− Z−) � S − S(1)

)
= (S, S(1)) satisfies NUPBR(F). Then assertion (a) follows
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immediately from Theorem 6.1.

(b) Suppose that S(1) ≡ 0. Then, (S, S(1)) satisfies NUPBR(F) and assertion (b)

follows directly from assertion (a).

(c) Suppose that {∆S 6= 0} ∩ {Z̃ = 1 > Z−} = ∅. Then, due to

MP
µ

(
(1− Z̃)I{Z−+fm=1}

)
= MP

µ

[
(1−MP

µ

(
Z̃
∣∣P̃(F)

)
)I{Z−+fm=1}

]

= MP
µ

(
(1− Z− − fm)I{Z−+fm=1}

)
= 0.

we deduce that {∆S 6= 0} ∩ {1 = Z− + fm} ⊂ {∆S 6= 0} ∩ {Z̃ = 1}. Then, we get

S(1) ≡ 0. Hence assertion (c) follows from assertion (b).

(d) When S is continuous, then {∆S 6= 0}∩{Z̃ = 1 > Z−} ⊂ {∆S 6= 0} = ∅. Hence

assertion (d) follows from assertion (c). This ends the proof of the corollary.

In the following proposition, we answer (Prob(6.II)) for quasi-left-continuous

processes S.

Proposition 6.1: The following assertions are equivalent.

(a) The thin set {Z̃ = 1 > Z−} is accessible.

(b) Every (bounded) F-quasi-left-continuous martingale X, X−Xτ satisfies NUPBR(G).

Proof. We start by proving that (a)⇒(b). Suppose that the thin set {Z̃ = 1 > Z−}

is accessible. Consider an F-quasi-left-continuous martingale X, and let X(1) be the

process associated with X as in (6.5). Therefore, since X is quasi-left-continuous, we

have {∆X 6= 0} ∩ {Z̃ = 1 > Z−} = ∅. Hence, we get X(1) ≡ 0 and by Theorem 6.1,

we deduce that X −Xτ satisfies NUPBR(G). This completes the proof of (a)⇒(b).

To prove the reverse, we assume that assertion (b) holds and consider a sequence

of stopping times (Tn)n≥1 that exhausts the thin set {Z̃ = 1 & Z− < 1} (i.e{
Z̃ = 1 & Z− < 1

}
=

+∞⋃
n=1

[[Tn]]). Then, each Tn (that we denote by T , in the rest

of the proof, for the sake of simplicity) can be decomposed into a totally inacces-
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sible part T i and an accessible part T a as T = T i ∧ T a. Consider the following

quasi-left-continuous processes

V := I[[T i,+∞[[, and M := V − V p,F =: V − Ṽ .

Then, since {T i < +∞} ⊂ {Z̃T i = 1}, we deduce that {T i < +∞} ⊂ {τ ≥ T i} and

I]]τ,+∞[[ �M = −I]]τ,+∞[[ � Ṽ is G-predictable.

Then, the finite variation process I]]τ,+∞[[ �M satisfies NUPBR(G) if and only if it

is null, or equivalently

0 = E
(
I]]τ,+∞[[ � Ṽ∞

)
= E

(∫ ∞
0

(1− Zs−)dṼs

)
= E

(
(1− ZT i−)I{T i<+∞}

)
.

Therefore, we conclude that T i = +∞, P − a.s., and the stopping time T is an

accessible stopping time. This ends the proof of the proposition.

6.1.2 Thin Processes with Predictable Jump Times

This subsection addresses (Prob(6.I)) and (Prob(6.II)) for the case where the

process S is a single jump process with predictable jump time. The results of this

framework can be easily generalized to the case of finite number of jumps. It is

important to highlight the fact that, in this subsection, we work with the whole

class of honest times and we do not assume the condition (6.4) on τ .

Below, we state our first main result in this context, that answers (6.1). We give

a characterisation of processes S and honest times τ such that S − Sτ satisfies

NUPBR(G).

Theorem 6.2: Suppose that τ is an honest time. Consider an F-predictable stopping

time T and an FT -measurable r.v. ξ such that E(|ξ|
∣∣ FT−) < +∞ P − a.s.. If
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S := ξI{ZT−<1}I[[T,+∞[[, then the following assertions are equivalent.

(a) S − Sτ satisfies NUPBR(G).

(b) S̃ := ξI{Z̃T<1}I[[T,+∞[[ satisfies NUPBR(F).

(c) There exists a probability measure QT on (Ω,FT ), absolutely continuous with

respect to P such that S satisfies NUPBR(F, QT ).

The proof of this theorem is long and requires intermediary results. Thus, we

postpone the proof to Subsection 6.4.2.

Remark 6.1: Theorem 6.2 provides two equivalent (and conceptually different)

characterisations for the condition that S−Sτ satisfies NUPBR(G). One of these

characterisations uses the NUPBR(F) property under P for a transformation of S,

while the other characterisation is essentially based on the NUPBR(F) property

for S under an absolutely continuous probability measure.

The following theorem answers (Prob(6.II)) for single predictable jump martin-

gales.

Theorem 6.3: Consider an F-predictable stopping time T , and an honest time τ .

Then, the following are equivalent

(a) On {T < +∞}, we have

{
Z̃T = 1

}
⊂ {ZT− = 1} . (6.6)

(b) For any ξ ∈ L∞(FT ) such that E(ξ
∣∣ FT−) = 0, the process M −M τ satisfies

NUPBR(G), where M := ξI[[T,+∞[[.

Proof. Suppose that assertion (a) holds, and consider ξ ∈ L∞(FT ) such that E(ξ | FT−) =

0, P − a.s. on {T < +∞}. Splitting M as M = I{ZT− < 1}ξI[[T,+∞[[ + I{ZT− <

1}ξI[[T,+∞[[ := M1 + M2, and noting that M2 − (M2)τ = 0, one can restrict our

attention to the case where M = M1. Then, it is obvious that (6.6) is equivalent to
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{Z̃T < 1} = {ZT− < 1}, and hence

M̃ := I{Z̃T<1}M = M is an F-martingale.

Thus, assertion (b) follows from a direct application of Theorem 6.2 to M . This

ends the proof of (a)⇒ (b).

To prove the converse, we assume that assertion (b) holds, and we consider the

FT -measurable and bounded r.v. ξ := (I{Z̃T=1}−P (Z̃T = 1|FT−))I{T<+∞} and the

bounded F-martingale M := ξI[[T,+∞[[. Then, on the one hand, M −M τ satisfies

NUPBR(G). On the other hand, due to {T > τ} ⊂ {Z̃T < 1}, the finite variation

process

M −M τ = −P (Z̃T = 1|FT−)I{T>τ}I[[T,+∞[[ is G− predictable.

Thus, this finite variation process is null, or equivalently {ZT− < 1} ⊂ {Z̃T < 1}

P − a.s. on {T < +∞}. This proves assertion (a), and the proof of the theorem is

completed.

We now extend the main result of single predictable jump to the semimartingale

with countable predictable jumps that answers the question (Prob(6.II)). This

theorem constitutes with Theorem 6.1 the building blocks for the general result

that addresses (Prob(6.II)).

Theorem 6.4: Suppose that τ is an honest time and S is a thin semimartingale

with predictable jumps only (i.e., S(qc) ≡ 0). If there exists a positive F-local

martingale Y , such that

p,F (Y |∆S|) < +∞ and p,F
(
Y∆SI{Z̃<1 & Z−<1}

)
= 0, (6.7)

then the process S − Sτ satisfies NUPBR(G).
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The proof of this theorem is long and is based on the supermartingale deflator

concept that we will define later on. Thus, this proof is postponed to Subsection

6.4.3.

6.1.3 The General Framework

With any càdlàg F-semimartingale, X, we associate a sequence of F-predictable

stopping times (TnX)n≥1 that exhaust all the accessible jumps of X. Throughout the

chapter, we use the following notation

ΓX :=
+∞⋃
n=1

[[TnX ]], X(a) := IΓX �X, X(qc) := IΓcX
�X := X −X(a). (6.8)

We now state the first main result of this subsection, where we characterize pairs

(S, τ) such that S − Sτ satisfies NUPBR (G).

Theorem 6.5: Suppose that τ satisfies (6.4). Consider S(1) given by (6.5). If

(a) The process (1− Z−) � S(qc) − IΓc � S(1) satisfies NUPBR(F), and

(b) There exists a positive F-local martingale Y satisfying

p,F (Y |∆S|) < +∞ and p,F
(
Y∆SI{Z̃<1}

)
= 0 on {Z− < 1},

then the process S − Sτ satisfies NUPBR(G).

Proof. The proof will be detailed in Section 6.4.

As a direct consequence of Theorem 6.5, we obtain the following

Corollary 6.5.1: Suppose that τ satisfies (6.4), then the following hold.

(a) If {Z̃ = 1 > Z−} ∩ {∆S 6= 0} = ∅, then S − Sτ satisfies the NUPBR(G).

(b) If either m is continuous or Z is positive, then S−Sτ satisfies the NUPBR(G)

for any S satisfying NUPBR(F).

(c) If S is continuous and satisfies NUPBR(F), then S−Sτ satisfies the NUPBR(G).
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Proof. Apparently, assertions (b) and (c) follow from assertion (a). In the remaining

part of the proof, we focus on proving assertion (a). If {Z̃ = 1 > Z−} ∩ {∆S 6=

0} = ∅, we get S(1) ≡ 0. By taking Y any σ-martingale density of S (it exists since

S satisfies NUPBR), the two conditions (a) and (b) of Theorem 6.5 hold. Hence

S − Sτ satisfies the NUPBR(G).

We conclude this section with our second main general result that answers (Prob(6.II))

in full generality and characterizes honest times τ that preserves the NUPBR.

Theorem 6.6: Suppose that τ satisfies (6.4). Then, the following are equivalent.

(a) For any S satisfying NUPBR(F), the process S − Sτ satisfies NUPBR(G).

(b) The thin set {Z̃ = 1 & Z− < 1} is evanescent.

Proof. The implication (b) ⇒ (a) is a trivial consequence of Theorem 6.5 by taking

Y any σ-martingale density for S (since S satisfies the NUPBR(F) and S(1) = 0).

To prove the reverse, we assume that assertion (a) holds, and consider V := I[[T,+∞[[

and M = V −V p,F, where T is any F-stopping time such that [[T ]] ⊂ {Z̃ = 1 > Z−}.

Since {T > τ} ⊂ {Z̃T < 1}, we derive

M −M τ = SI{T>τ}I[[T,+∞[[ = −P
(
Z̃T = 1

∣∣FT−) I{T>τ}I[[T,+∞[[,

and conclude that the finite variation process M − M τ is G-predictable. Thus,

M −M τ satisfies NUPBR(G) if and only if it is a null process. This is equivalent to

0 = E
(
P
(
Z̃T = 1

∣∣FT−) I{+∞>T>τ}) = E
(

(1− ZT−)I{Z̃T=1}I{T<+∞}

)
.

As a result, we get T = +∞, P − a.s. Therefore, assertion (b) follows immediately

from a combination of this and the fact that {Z̃ = 1 > Z−} ⊂ {∆m 6= 0} is a thin

set. This ends the proof of the theorem.

187



6.2 New Stochastic Developments

This section provides new stochastic results that constitute the key stochastic tools

for the proof of the main results announced in the previous section. These results

complete those elaborated in Section 5.3 of Chapter 5, where we addressed the same

problems for the part up to an arbitrary random time τ . This section contains

two subsections. The first subsection gives the relationship between the dual pre-

dictable projections under F and G, while the second subsection defines two useful

G-semimartingales.

The results of this section are based on the following well known lemma.

Lemma 6.3: Let M be an F-local martingale, and τ be an honest time. Then the

process M̂ (a), defined as

M̂
(a)
t := Mt −Mt∧τ +

∫ t

τ∧t

d〈M,m〉Fs
1− Zs−

. (6.9)

is a G-local martingale.

Proof. This lemma is a standard result on progressive enlargement of filtration, and

we refer the reader to Jeulin [83] and Barlow [17] for proofs.

Remark 6.2: Throughout this chapter, the process X̂(a) will be defined via (6.9)

for any F-local martingale X.

6.2.1 Comparing Dual Predictable Projections under G and F

In the following, we start our study by writing the G-compensators/projections in

terms of F-compensators/projections respectively.

Lemma 6.4: Suppose that (6.4) holds, and denote

J := 1− Z− −∆m = 1− Z̃ . (6.10)
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Then the following assertions hold.

(a) The G-predictable process (1− Z−)−1 I]]τ,+∞[[ is G-locally bounded.

(b) For any F-adapted process V , with locally integrable variation we have

I]]τ,+∞[[ � V
p,G = I]]τ,+∞[[

1

1− Z−
� (J � V )p,F , (6.11)

and on ]]τ,+∞[[

p,G (∆V ) =
1

1− Z−
p,F (J∆V ) . (6.12)

(d) For any F-local martingale M , one has, on ]]τ,+∞[[

p,G
(

∆M

1− Z̃

)
=

p,F
(

∆MI{Z̃<1}

)
1− Z−

, and p,G
(

1

J

)
=

p,F
(
I{Z̃<1}

)
1− Z−

. (6.13)

(e) For any quasi-left-continuous F-local martingale M , one has, on ]]τ,+∞[[

p,G
(

∆M

J

)
= 0, and p,G

(
1

1− Z− −∆m(qc)

)
=

1

1− Z−
, (6.14)

where m(qc) is the quasi-left-continuous part (see (6.8)) of m, defined in (6.2).

Proof. The proof of the lemma will be achieved in four steps.

1) Herein, we prove assertion (a). It is known (see Chapter XX of [53]) that Z = Z̃

on ]]τ,+∞[[, and

]]τ,+∞[[⊂ {Z− < 1} ∩ {Z̃ < 1} = {Z− < 1} ∩ {Z < 1} .

Then, due to our specific assumption (6.4), we deduce that [[τ,+∞[[⊂ {Z < 1}, and

hence the process

X := (1− Z)−1I[[τ,+∞[[,

is càdlàg G-adapted. Combining these with ]]τ,+∞[[⊂ {Z− < 1}, we easily prove

that sup
0≤u≤t

Xu < +∞, P−a.s. This is equivalent to say that X is pre-locally bounded
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and hence its left limit process X− = (1 − Z−)−1I]]τ,+∞[[ is locally bounded. This

proves assertion (a).

2) This part proves assertion (b). From Lemma 6.3

I]]τ,+∞[[ � V − I]]τ,+∞[[ � V
p,F + I]]τ,+∞[[(1− Z−)−1 � 〈V,m〉F

is a G-local martingale. Hence

(
I]]τ,+∞[[ � V

)p,G
= I]]τ,+∞[[ � V

p,F − I]]τ,+∞[[(1− Z−)−1 � 〈V,m〉F,

= I]]τ,+∞[[ � V
p,F − I]]τ,+∞[[(1− Z−)−1 � (∆m � V )p,F ,

= I]]τ,+∞[[(1− Z−)−1 �
(

(1− Z− −∆m) � V
)p,F

,

where the second equality follows from [V,m] = ∆m � V (see [78]). This ends the

proof of (6.11). The equality (6.12) follows immediately from (6.11) by taking the

jumps in both sides.

3) Now, we prove assertion (c). By applying (6.11) for Vε,δ ∈ Aloc(F) given by

Vε,δ :=
∑ ∆M

J
I{|∆M |≥ε, J≥δ},

we get, on ]]τ,+∞[[,

p,G
(

∆M

J
I{|∆M |≥ε, J≥δ}

)
= (1− Z−)−1 p,F (∆MI{|∆M |≥ε, J≥δ}

)
.

Then, by letting ε and δ go to zero, on ]]τ,+∞[[ we obtain

p,G
(

∆M

J

)
= (1− Z−)−1 p,F (∆MI{J>0}

)
.

This proves the first equality in (6.13). To prove the remaining equality in (6.13),
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we write that, on ]]τ,+∞[[,

p,G
(

1

J

)
= (1− Z−)−1 + (1− Z−)−1 p,G

(
∆m

J

)
= (1− Z−)−1 + (1− Z−)−2 p,F (∆mI{J>0}

)
= (1− Z−)−1 − (1− Z−)−1 p,F (I{J=0}

)
= (1− Z−)−1 p,F

(
I{Z̃<1}

)
,

where the second equality follows from the first equality in (6.13) and the third

equality from the fact that p,F(∆m) = 0. This ends the proof of assertion (c).

4) The proof the first equality in (6.14) follows immediately from assertion (c) and

the fact that the thin process p,F (∆MI{J>0}
)

may take nonzero values on countably

many predictable stopping times only, on which ∆M already vanishes. A direct

application of this first equality implies that on {Z− < 1}, we have

p,F
(

1

1− Z− −∆m(qc)

)
=

1

1− Z−
+

1

1− Z−
p,F

(
∆m(qc)

1− Z− −∆m(qc)

)
=

1

1− Z−
.

This completes the proof of (6.14) as well as the proof of the lemma.

The next lemma focuses on the integrability of the process J−1I]]τ,+∞[[ with respect

to any process with F-locally integrable variation. As a result, we complete our

comparison of G and F compensators.

Lemma 6.5: Let V be a càdlàg F-adapted process and

U := (1− Z)−1 I]]τ,+∞[[ � V = J−1I]]τ,+∞[[ � V . (6.15)

Then, the following assertions hold.

(a) If V is nondecreasing and locally integrable (respectively integrable), then U

is G-locally integrable (respectively G-integrable).
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(b) If V ∈ Aloc(F), then U is a well defined process, U ∈ Aloc(G) and

(U)p,G = I]]τ,+∞[[(1− Z−)−1 � (I{Z̃<1} � V )p,F. (6.16)

Proof. (a) Let (ϑn)n≥1 be a sequence of F-stopping times that increases to +∞ such

that

E (Vϑn) < +∞.

Then assertion (a) follows immediately if we prove E (Uϑn) ≤ E (Vϑn) . To this end,

we use the fact that Z = Z̃ after τ to obtain

E (Uϑn) = E

(∫ ϑn

0
I{t>τ}

1

1− Z̃t
dVt

)
= E

(∫ ϑn

0

P (τ < t|Ft)
1− Z̃t

I{Z̃t<1}dVt

)
= E

(∫ ϑn

0
I{Z̃s<1}dVs

)
≤ E (Vϑn) .

Since ϑn increases to +∞, we get U ∈ A+
loc(G). This proves assertion (a).

(b) Suppose that V ∈ Aloc(F). Then, Var(V ) = V + + V − ∈ A+
loc(F), and due to

assertion (a), we deduce that U has a G-local integrable variation that coincides

with

Var(U) = (1− Z)−1 I]]τ,+∞[[ � Var(V ).

For any n ≥ 1, introduce

Un := (1− Z)−1 I]]τ,+∞[[I{Z̃≤1− 1
n
} � V =

(
1− Z̃

)−1
I]]τ,+∞[[I{Z̃≤1− 1

n
} � V.

Then, thanks to (6.11), we derive

Up,G = lim
n−→+∞

(Un)p,G = lim
n−→+∞

(1− Z−)−1I]]τ,+∞[[ �
(
I{Z̃≤1− 1

n
} � V

)p,F
.

This clearly implies (6.16), and the proof of the lemma is completed.
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6.2.2 An Important G-Local Martingale

In this subsection, we introduce a G-local martingales that will play the role of

deflator for a class of F-local martingale. The construction of this local martingale

relies on the following.

Proposition 6.2: Let τ be an honest time satisfying (6.4). Then, the following

assertions hold.

(a) The nondecreasing process

WG
t :=

∑
0<u≤t

p,F
(
I{Z̃=1}

)
u
I{u>τ}, (6.17)

is G-predictable, càdlàg, and locally bounded.

(b) The nonnegative and G-predictable process
(
1−∆WG)−1

is locally bounded.

Proof. a) Since the process (1−Z−)−1I]]τ,+∞[[ is G-locally bounded under assumption

(6.4), then there exists a sequence of G-stopping times (τn)n≥1 that increases to

infinity such that (
(1− Z−)−1I]]τ,+∞[[

)τn ≤ n.
Consider a sequence of F-stopping times, (σn)n≥1, that increases to infinity and

〈m,m〉σn ≤ n. Then, for any nonnegative F-predictable process H which is bounded

by C > 0, we derive

(H �WG)σn∧τn ≤
∑

0≤u≤σn

Hu
p,F
(
I{Z̃=1>Z−}

)
u
I{1−Zu−≥ 1

n
}

=
∑

0≤u≤σn

Hu
p,F
(
I{∆m=1−Z−≥ 1

n
}I{Z−≤1− 1

n
}

)
u

≤
∑

0≤u≤σn

Hu
p,F
(
I{∆m≥ 1

n
}

)
u
≤ (n)2H � 〈m,m〉σn ≤ C(n)3.

This ends the proof of the assertion (a).
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(b) We first calculate

1−∆WG = 1− p,F
(
I{Z̃=1}

)
I]]τ,+∞[[ = I]]0,τ ]]+

p,F
(
I{Z̃<1}

)
I]]τ,+∞[[ ≥ I]]0,τ ]]+(1−Z−)I]]τ,+∞[[.

The last inequality follows from 1− Z̃ ≤ I{Z̃<1}. Thus, we deduce that

(1−∆WG)−1 ≤ I]]0,τ ]] + (1− Z−)−1I]]τ,+∞[[,

which is locally bounded due to Lemma 6.4–(a). This proves assertion (b), and the

proof of the proposition is completed.

For the construction of the local martingale deflator, we will use, as in Chapter 5,

the optional integral.

Proposition 6.3: Suppose that τ satisfies (6.4) and consider the F-martingale m

in (6.2) and m̂(a) defined via (6.9). Then, the process K(a) given by

K(a) :=
(1− Z−)2

(1− Z−)2 + ∆〈m〉F
1

1− Z̃
I]]τ,+∞[[, (6.18)

belongs to oL1
loc(m̂

(a),G) defined in Definition 2.12.

Furthermore, the associated G-local martingale,

LG := K(a) � m̂(a), (6.19)

satisfies the following

(a) E(LG) > 0 (or equivalently 1 + ∆LG > 0) and I]]0,τ ]] � L
G = 0.

(b) Consider any M ∈M0,loc(F) and M̂ (a) defined in (6.9). Then,

[LG, M̂ (a)] ∈ Aloc(G)
(

i.e. 〈LG, M̂ (a)〉G exists
)
. (6.20)

Proof. This proof contains two steps. In the first step, we prove the optional integral
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LG in (6.19) is well-defined; while for the second step, we prove the remaining

assertions.

Step 1: Thanks to (6.13), we derive

0 ≤ p,G
(
K(a)

)
≤ (1− Z−)

(1− Z−)2 + ∆〈m〉F
I]]τ,+∞[[ ≤

1

1− Z−
.

Thus, we conclude that K ∈ oL1
loc(m̂

(a),G) if and only if

(∑(
1

J(1− Z−)
∆m̂(a) − p,G

(
1

J(1− Z−)
∆m̂(a)

))2
)1/2

∈ A+
loc(G). (6.21)

To prove this fact, on ]]τ,+∞[[, we calculate, making use of Lemma 6.4

∆m̂(a)

J(1− Z−)
− p,G

(
∆m̂(a)

J(1− Z−)

)
=

∆m

(1− Z−)J
+ (1− Z−)−2 1

J
∆〈m〉F

−(1− Z−)−3 ∆〈m〉F p,F(I{J>0})− (1− Z−)−2 p,F(∆mI{J>0})

=
∆m

1− Z̃
+ p,F

(
I{Z̃=1}

)
. (6.22)

Therefore, in virtue of Proposition 6.2, the proof of (6.21) follows from

√∑(
∆m

1− Z̃

)2

I]]τ,+∞[[ ∈ A+
loc(G). (6.23)

To prove this property, we put

Σ := {∆m ≤ (1− δ)(1− Z−)} and W1 :=
∑(

∆m

1− Z̃

)2

I]]τ,+∞[[.

Remark that IΣ ·W1 ≤ δ−2(1− Z−)−1I]]τ,+∞[[ · [m,m] ∈ A+
loc(G) and

√
IΣcI{Z−≤α} ·W ≤

∑ |∆m|
1− Z̃

I]]τ,+∞[[I{∆m>(1−δ)α} ∈ A+
loc(G),
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for any α ∈ (0, 1). Thus, for any α ∈ (0, 1), the process
√
I{Z−≤α} ·W1 ∈ A+

loc(G).

Since the process (1 − Z−)−1I]]τ,+∞[[ is G-locally bounded, then there exists a se-

quence of G-stopping times, (σn)n≥1, that increases to infinity such that on ]]τ,+∞[[∩[[0, σn]],

we have Z− ≤ 1−1/(n+1). This implies that for each n, we have
√
W σn

1 ∈ A+
loc(G),

and hence
√
W1 ∈

(
A+
loc(G)

)
loc

= A+
loc(G). This proves (6.23).

Step 2: Assertion (a) follows from I]]0,τ ]] � m̂
(a) = 0 and (6.22) implies that

1 + ∆LG = 1 +
∆m

1− Z̃
I]]τ,+∞[[ + p,F

(
I{Z̃=1}

)
I]]τ,+∞[[ > 0.

We now prove (6.20). Due to Proposition 2.3 and the G-local boundedness of (1−

Z−)−2I]]τ,+∞[[ (see Lemma 6.4(a)), we deduce that [LG, M̂ (a)] ∈ Aloc(G) if and only

if J−1 � [m̂, M̂ (a)] ∈ Aloc(G). We calculate this quantity

J−1 � [m̂(a), M̂ (a)] = J−1I]]τ,+∞[[ � [m,M ] + J−1(1− Z−)−1∆mI]]τ,+∞[[ � 〈m,M〉F

+
∆M

J(1− Z−)
I]]τ,+∞[[ � 〈m〉F +

∆〈m〉F

J(1− Z−)2
I]]τ,+∞[[ � 〈m,M〉F.

On the one hand,

(1− Z−)−1∆mI]]τ,+∞[[, ∆〈m〉F(1− Z−)−2I]]τ,+∞[[ and (1− Z−)−1I]]τ,+∞[[

are G-locally bounded. On the other hand, since [m,M ], ∆M � 〈m〉F and 〈m,M〉F

belong to Aloc(F), thanks to Lemma 6.5–(a) we conclude that

J−1I]]τ,+∞[[ � [m,M ], J−1I]]τ,+∞[[ �
(

∆M � 〈m〉F
)

and J−1I]]τ,+∞[[ � 〈m,M〉F

belong to Aloc(G). Therefore, this achieves the proof of (6.20), and the proof of the

proposition is completed.
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6.3 Explicit Deflators

We start this section by constructing explicitly local martingale densities (deflators)

under G for a class of F-local martingales. This will be achieved in Subsections 6.3.1

and 6.4.1, where the cases of quasi-left-continuous and thin with predictable jumps

are addressed respectively.

6.3.1 The Quasi-Left-Continuous case

Theorem 6.7: Let τ be an honest time satisfying (6.4), and LG be the G-local

martingale defined by (6.19). Let M be a quasi-left-continuous F-local martingale

such that {Z̃ = 1 > Z− & ∆M 6= 0} is evanescent. Then, the following two

assertions are equivalent and hold.

(a) E(LG) (M −M τ ) is a G-local martingale.

(b) E
(
I{Z̃=1>Z−} �m

)
M is an F-local martingale.

Proof. Suppose that {Z̃ = 1 > Z− & ∆M 6= 0} is evanescent. Then

∑
I{Z̃=1>Z−}∆M(1− Z−) = I{Z̃=1>Z−} � [M,m] ≡ 0,

and due to the quasi-left-continuity of M and Proposition 2.3-(b), we derive

〈I{Z̃=1>Z−} �m,M〉
F =

(
I{Z̃=1>Z−} � [M,m]

)p,F
= 0,

which implies assertion (b). To achieve the proof of the theorem, we will prove that

assertions (a) and (b) are equivalent.

Notice that the quasi-left-continuity of M implies

[〈m〉,M ] = [m, 〈m,M〉] = [〈m〉, 〈m,M〉] = 0.
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Hence,

K(a) � [m̂(a), M̂ (a)] = K(a) � [m,M ] =
1

1− Z̃
I]]τ,+∞[[ � [m,M ], (6.24)

where K(a) is defined in (6.18). Then, by combining (6.24), Proposition 2.3-(b) and

(6.11), we calculate

〈LG, M̂ (a)〉G =
(
K(a) � [m̂(a), M̂ (a)]

)p,G
=
(

(1− Z̃)−1I]]τ,+∞[[ � [m,M ]
)p,G

=
I]]τ,+∞[[

1− Z−
� 〈m,M〉F −

I]]τ,+∞[[

1− Z−
�
(
I{Z̃=1>Z−} � [M,m]

)p,F
=
I]]τ,+∞[[

1− Z−
� 〈m,M〉F −

I]]τ,+∞[[

1− Z−
� 〈I{Z̃=1>Z−} �m,M〉

F.

Then, from the above equality, the equivalence between the two assertions (a) and

(b) follows immediately.

As an immediate consequence of this theorem, we describe a class of F-quasi-

left-continuous processes for which the NUPBR is preserved for the part after τ .

Corollary 6.7.1: Suppose that τ satisfies (6.4), and that S is F-quasi-left-continuous

and satisfies NUPBR(F) and {∆S 6= 0}∩{Z̃ = 1 < 1} is evanescent. Then, S−Sτ

satisfies NUPBR(G).

Proof. The proof follows immediately from a combination of Theorem 6.7 and the

fact that

{Z̃ = 1 < Z−} = {Z̃Q = 1 < ZQ−}, for any Q ∼ P, (6.25)

where Z̃Qt := Q(τ ≥ t
∣∣Ft) and ZQt := Q(τ > t|Ft). This last fact is an immediate

application of Theorem 86 of [54] by taking X = I{Z̃=0} & Y = I{Z̃Q=0} and

X = I{Z−=0} & Y = I{ZQ−=0}.
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6.3.2 The Case of Thin Processes with Predictable Jumps

The construction of deflators for thin F-local martingales requires the following

results that are interesting in themselves.

Lemma 6.6: Let T be a finite F-predictable stopping time. Then the following holds.

{T > τ} ⊂ {Z̃T < 1} ⊂ {ZT− < 1} = Γ(T ) :=
{
P
(
Z̃T < 1

∣∣∣FT−) > 0
}
.

Proof. It is enough to prove the non-trivial equality {ZT− < 1} = Γ(T ). Indeed,

due to E
(
P (Z̃T < 1|FT−)I{ZT−=1}

)
= P (Z̃T < 1 = ZT−) = 0, we get Γ(T ) ⊂

{ZT− < 1}. On the other hand, due to

E
(
(1− ZT−)IΓ(T )c

)
= E

(
(1− Z̃T ) IΓ(T )c

)
≤ E

(
I{Z̃T<1} IΓ(T )c

)
= 0,

we obtain {ZT− < 1} ⊂ Γ(T ). This ends the proof of the lemma.

Lemma 6.7: Let R be an equivalent probability to P . Then the following hold.

{Z̃ = 1} = {Z̃R = 1}, and {Z− = 1} = {ZR− = 1},

where Z̃Rt := R(τ ≥ t|Ft) and ZR− is the (R,F)-predictable projection of Z̃R.

Proof. For any F-stopping time σ and any F-predictable stopping time T , due to

E
[
(1− Z̃σ)I{Z̃Rσ =1}

]
= E

[
I{τ<σ}I{Z̃Rσ =1}

]
= 0, and

E
[
(1− ZT−)I{ZRT−=1}

]
= E

[
I{τ<T}I{Z̃RT−=1}

]
= 0,

we obtain {Z̃R = 1} ⊂ {Z̃ = 1} and {ZR− = 1} ⊂ {Z− = 1}. The symmetric roles

of R and P complete the proof of the lemma.

Theorem 6.8: Let τ be an F-honest time. Consider an F-predictable stopping time

T and an FT -measurable random variable ξ such that E[|ξ||FT−] < +∞, P -a.s.
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Define M := ξI{ZT−<1}I[[T,+∞[[,

dQF
T

dP
:= DF :=

I{Z̃T<1 & P (Z̃T<1|FT−)>0}

P (Z̃T < 1|FT−)
+ I{P (Z̃T<1|FT−)=0}, and

dQG
T

dP
:= DG :=

1− ZT−
(1− Z̃T )P (Z̃T < 1|FT−)

I{T>τ} + I{T≤τ}. (6.26)

Then the following assertions are equivalent.

(a) M is a (QF
T ,F)-martingale.

(b) On {ZT− < 1}, we have

E
(
ξI{Z̃T<1}

∣∣ FT−) = 0, P − a.s. (6.27)

(c) (M −M τ ) is a (QG
T ,G)-martingale.

Proof. The proof of the theorem will be achieved in two steps. In Step 1, we prove

(a)⇐⇒(b); while Step 2 proves (b)⇐⇒(c). First we remark that the two probability

measures QF
T and QG

T in (6.26) are well defined due to Lemma 6.6.

Step 1: Herein, we will prove (a)⇐⇒(b). Thanks to E[DF|FT−] = 1, we obtain

EQ
F
T [ξI{ZT−<1}|FT−] = E

[
DFξI{ZT−<1}|FT−

]
=
E
[
ξI{Z̃T<1}|FT−

]
P (Z̃T < 1|FT−)

I{ZT−<1}.

Therefore, the equivalence between assertions (a) and (b) follows from a combi-

nation of this equality and the fact that M is a (QF
T ,F)-martingale if and only if

EQ
F
T (MT

∣∣ FT−) = 0 on {T < +∞}.

Step 2: This step will prove (b)⇐⇒ (c). To this end, we first notice that M −M τ

is (QG
T ,G)-martingale if and only if EQ

G
T [ξI{ZT−<1 & T>τ}|GT−] = 0 on {T < +∞}.
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Furthermore, due to Lemma 6.6 and E[DG|GT−] = 1, we have

EQ
G
T [ξI{ZT−<1 & T>τ}|GT−] = E

[
DGξI{ZT−<1}I{T>τ}|GT−

]
= E

[
ξI{T>τ}

1− Z̃T

∣∣∣GT−] 1− ZT−
P (Z̃T < 1|FT−)

I{ZT−<1 & T>τ}

=
E
[
ξI{Z̃T<1}|FT−

]
P (Z̃T < 1|FT−)

I{ZT−<1}I{T>τ}, (6.28)

where the last equality in (6.28) follows from the fact that

E
(
H
∣∣ GT−) I{T>τ} = E

(
H(1− Z̃T )

∣∣ FT−) I{T>τ}

1− ZT−
,

for any random variable H for which the above conditional expectations exist (see

Proposition 5.3 of [83] or Proposition 2.7 in Chapter 2). Therefore, if assertion (b)

holds, then assertion (c) follows immediately from (6.28). Conversely, if assertion

(c) holds, then EQ
G
T [ξI{ZT−<1}I{T>τ}|GT−] = 0. Thus, a combination of this with

(6.28) leads to E
[
ξI{Z̃T<1}|FT−

]
(1−ZT−) = 0. This proves assertion (b), and the

proof of the theorem is completed.

Remark 6.3: It is important to notice that

DG(T ) :=

(
1 +

∆mT

1− Z̃T

)
I{T>τ} + I{T≤τ} 6= 1 + ∆Ñ =

ET
(
LG)

ET− (LG)
.

This explains one of the main difficulties that we will face when dealing with

countable many predictable jumps. In fact, it might not be possible to piece-up

the sequence
(
DG(Tn), n ≥ 1

)
into a local martingale density when the stopping

times are not ordered. This explains the fact that the proof of the general case

needs a different idea and method.

Theorem 6.9: Let M be a thin F-local martingale (that is M (qc) ≡ 0) such that
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{∆M 6= 0} ∩ {Z̃ = 1 > Z−} = ∅. Then

E
(

(1−∆WG)−1 � LG
)

(M −M τ ) is a G-local martingale. (6.29)

Proof. Thanks to Itô’s formula, it is immediate that (6.29) is equivalent to

XG := M −M τ + [(1−∆WG)−1 � LG,M −M τ ] is a G-local martingale. (6.30)

It is obvious that XG is a G-special semimartingale since 〈LG,M −M τ 〉F exits (see

Proposition 6.3). Hence it is enough to prove that XG is a σ-martingale under G.

Let (Tn)n≥1 be the sequence of predictable stopping times that exhaust the jumps

of M . Then, thanks to Theorem 6.7, since {∆M 6= 0} ∩ {Z̃ = 1 > Z−} = ∅, we

conclude that for any n ≥ 1,

Mn := (S − Sτ )Tn

(
1 +

∆LG
Tn

1−∆WG
Tn

)
I[[Tn,+∞[[ is a G-martingale. (6.31)

Consider the following G-predictable and positive process that is bounded by one

Φ :=
∑
n≥1

2−n

1 + ξn
I[[Tn]]∩]]τ,+∞[[+IΓc∩[[0,τ ]], ξn := E

[
|∆STn |(1 +

|∆LG
Tn
|

1−∆WG
Tn

)
∣∣ GTn−

]
I{Tn<+∞},

where Γ := ∪n≥1[[Tn]]. Then, it is easy to check that Φ�XG satisfies E
[
Var(Φ �XG)(∞)

]
≤

1. Furthermore, due to (6.31), we calculate

(
Φ �XG

)p,G
=
∑
n≥1

(Φ �Mn)p,G ≡ 0.

This proves that Φ �XG is a G-martingale. As a result, XG is a G-local martingale.

This ends the proof of the theorem.

Corollary 6.9.1: Suppose that S is thin, {∆S 6= 0} ∩ {Z̃ = 1 > Z−} = ∅, and S

satisfies the NUPBR(F). Then S − Sτ satisfies the NUPBR(G).
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Proof. Since S satisfies the NUPBR(F), then there exist a F-predictable process φ,

a sequence of F-stopping times (Tn)n≥1 that increases to infinity, and a probability

measure Qn ∼ P on (Ω,FTn) such that

0 < φ ≤ 1, φ � STn ∈M0,loc(Q,F).

Then, a combination of {∆S 6= 0} ∩ {Z̃ = 1 > Z−} = ∅ and (6.39) leads to

{∆(φ � STn) 6= 0} ∩ {Z̃Qn = 1 > ZQn− } = ∅.

Therefore, by applying directly Theorem 6.9 to φ � STn under Qn, we conclude

that φ � STn − (φ � STn)τ has a local martingale density under (Qn,G). Thus, this

implies that STn − STn∧τ satisfies the NUPBR(G, Qn). Thus, the corollary follows

immediately from Proposition 5.2. This ends the proof of the corollary.

6.4 Proofs of Three Main Theorems

In this section, we will prove three theorems that were not proved in Section 6.1,

namely Theorems 6.1, 6.2 and 6.5. To this end, we introduce some notations that

will be used throughout the rest of the chapter. Recall that µ is the random measure

of the jumps of S, ν is its random measure compensator and the functional fm is

defined in (6.5). Here we put

µG(dt, dx) := I]]τ,+∞[[(t)µ(dt, dx), νG(dt, dx) := I]]τ,+∞[[(t)

(
1− fm(x, t)

1− Zt−

)
ν(dt, dx).

(6.32)

It is easy to check that νG is the random measure compensator under G of µG. The

canonical decomposition of S − Sτ under G is given by

S−Sτ = Ŝc
(a)

+h?(µG−νG)+bI]]τ,+∞[[�A−
cβm

1− Z−
I]]τ,+∞[[�A−h

fm
1− Z−

I]]τ,+∞[[?ν+(x−h)?µG,

203



where Ŝc
(a)

is defined by (6.9).

6.4.1 Proof of Theorem 6.1

The proof of the theorem will be achieved in two steps. Put

S := (1− Z−) � S − S(1) and Γ(1) := {Z− < 1 = Z− + fm}.

Step 1: Suppose that S satisfies the NUPBR(F). Then, there exist an F-local mar-

tingale NF and an F-predictable process φ such that 0 < φ ≤ 1 and E
(
NF) (φ � S

)
is

an F-local martingale. Again, thanks to Theorem 5.1, we can restrict our attention

to the case

NF := βF � Sc + (fF − 1) ? (µ− ν), (6.33)

where βF ∈ L(Sc) and fF is a positive P̃(F)-measurable functional.

Thanks to Itô’s formula, the fact that E
(
NF) (φ � S

)
is an F-local martingale implies

kF :=

∫
|x (1− Z− − fm) f − h(x)|F (dx) < +∞ P ⊗A− a.e. (6.34)

and we have

(1− Z−)(b+ cβ) +

∫
(x (1− Z− − fm) f − h(x))F (dx) = 0, P ⊗A− a.e.. (6.35)

Now, we will construct a σ-martingale density for S − Sτ as follows. Consider

βG :=

(
β +

βm
1− Z−

)
I]]τ,+∞[[, fG :=

f

1− fm(x)/(1− Z−)
I]]τ,+∞[[ + I]]0,τ ]],

and assume that

βG ∈ L(Ŝc
(a)
,G) and (fG − 1) ∈ G1

loc(µG,G). (6.36)
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Then, using Itô’s formula and (6.34)—(6.35) afterwards, we can easily prove that(
φG � (S − Sτ )

)
E(NG) is a G-local martingale, where

φG :=

(
1 +

∫
||xf(x)IΓc − h(x)|F (dx)I]]τ,+∞[[

)−1

.

Step 2: In this step, we will prove that (6.36) holds. Since βT cβ � A and βTmcβm �

A belong to A+
loc(F) ⊂ A+

loc(G) and (1 − Z−)−1I]]τ,+∞[[ is G-locally bounded, we

deduce that βG ∈ L(Ŝc
(a)
,G). To prove the second property of (6.36), we start by

calculating on ]]τ,+∞[[,

fG − 1 =
f − 1

1− fm/(1− Z−)
+

fm
1− Z− − fm

=: g1 + g2.

Since
√

(f − 1)2 ? µ ∈ A+
loc(F) and due to Proposition 5.5 in Chapter 5, we deduce

[
(f − 1)2I{|f−1|≤α} + |f − 1|I{|f−1|>α}

]
? µ ∈ A+

loc(F).

Without loss of generality we will assume that above two processes and f2
m ? µ are

integrable. Since (1− Z−)−1I]]τ,+∞[[ is G-locally bounded, there exists a a sequence

of G-stopping times (τn)n≥1 that increase to infinity and Zτn− ≤ 1−1/n on ]]τ,+∞[[.

Then, we put Γn(α) := {|f − 1| ≤ α & 1− Z− − fm ≥ 1/(2n)}, and we calculate

E
[
g2

1IΓn(α) ? µG(∞)
]

= E
[
g2

1IΓn(α) ? νG(∞)
]
≤ 2nE

[
(f − 1)2I{|f−1|≤α} ? ν(∞)

]
< +∞

and

E
[√

g2
1IΓn(α) ? µG(τn)

]
≤ E

[
|g1|IΓn(α) ? νG(τn)

]

≤ αE
[
I{|fm|> 1

2n
} ? ν(∞)

]
≤ 4n2αE

[
f2
m ? ν(∞)

]
< +∞.
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Also we calculate

E
√
g2

1I{|f−1|>α} ? µG(∞) ≤ E
[
|g1|I{|f−1|≤α} ? νG(∞)

]
≤ αE

[
|f − 1|I{|f−1|≤α} ? ν(∞)

]
< +∞.

This proves that
√
g2

1 ? µG ∈ A
+
loc(G). Now, similarly, we prove that

√
g2

2 ? µG ∈

A+
loc(G).

E
[
g2

2I{|fm|≤α & 1−Z−−fm≥ 1
2n
} ? µG(∞)

]
= E

[
g2

2I{|fm|≤α & 1−Z−−fm≥ 1
2n
} ? νG(∞)

]
≤ 2nE

[
(fm)2I{|fm|≤α} ? ν(∞)

]
< +∞

and

E
√
g2

2I{|fm|≤α & 1−Z−−fm< 1
2n
} ? µG(τn) ≤ E [|g2|IΣn ? µG(τn)]

≤ E
[
|fm|I{|fm|> 1

2n
} ? ν(∞)

]
≤ 2nE

[
f2
m ? ν(∞)

]
< +∞,

where Σn := {1− Z− ≥ 1/n & 1− Z− − fm ≥ 1/(2n)} and

E
√
g2

2I{|fm|>α} ? µG(∞) ≤ E
[
|g2|I{|fm|>α} ? νG(∞)

]
≤ αE

[
f2
m ? µ(∞)

]
< +∞.

Then, a direct application of Proposition 5.5 of Chapter 5 to these processes ends

the proof of this implication, and the proof of the theorem is completed.

6.4.2 Proof of Theorem 6.2

For the reader’s convenience, we state and prove a very detailed version of Theorem

6.2, where we provide explicit forms for the absolute continuous probability measure

QT mentioned in Theorem 6.2–(c).

Theorem 6.10: Suppose that the assumptions of Theorem 6.2 hold. Then, the
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assertions (a) and (b) of Theorem 6.2 are equivalent to the following assertions

(d) and (e):

(d) S satisfies NUPBR(F, Q̃F
T ), where

Q̃F
T :=

( 1− Z̃T
1− ZT−

I{ZT−<1} + I{ZT−=1}

)
· P. (6.37)

(e) S satisfies NUPBR(F, QF
T ), where QF

T is given by (6.26).

Proof. The proof consists of four steps. The first step addresses (d)⇔(e), the second

step focuses on (e)⇒(b), while the third step and the fourth step deal with (b)⇒

(a) and (a)⇒ (d) respectively.

Step 1: Herein, we will prove (d)⇔(e). Due to {ZT− = 1} = {P (Z̃T < 1|FT−) =

0} ⊂ {Z̃T = 1} (see Lemma 6.6), it is easy to see that Q̃F
T ∼ QF

T � P. Therefore,

the equivalence between (d) and (e) follows immediately.

Step 2: This step focuses on proving (e)⇒(b). Suppose (e) holds. Then, there exists

an FT -measurable random variable YT > 0, QF
T -a.s. such that EQ

F
T [STYT |FT−] = 0,

or equivalently

E[ξYT I{Z̃T<1}|FT−]I{ZT−<1} = 0 and E[ξYT |FT−]I{ZT−=1} = 0. (6.38)

Since, on the set {ZT− = 1}, S̃ ≡ 0, it is enough to focus on the part corresponding

to {ZT− < 1}. Put

ỸT := YT I{Z̃T<1} + I{Z̃T=1} and Q1 := ỸT /E(ỸT |FT−) · P ∼ P.

Then, from (6.38), we derive that EQ1 [S̃T |FT−] = EQ1 [ξI{Z̃T<1}|FT−] = 0. There-

fore, S̃ is a (Q1,F)-martingale and assertion (b) follows.
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Step 3: This step proves (b)⇒ (a). Suppose that S̃ satisfies NUPBR(F). Then,

there exists an FT -measurable Y3 > 0 such that E[Y3ξI{Z̃T<1}|FT−] = 0. Put

Q3 := Y3/E(Y3|FT−) · P ∼ P and remark that {Z̃T < 1} = {Z̃Q3

T < 1}, where

Z̃Q3
t := Q3(τ ≥ t|Ft). Therefore, a direct application of Theorem 6.8 under Q3, we

conclude that S − Sτ = S̃ − S̃τ satisfies NUPBR(G), and assertion (a) holds.

Step 4: This last step will prove (a)⇒ (d). Suppose S − Sτ satisfies NUPBR(G).

There exists a positive GT -measurable Y G such that E[ξY GI{T>τ}|GT−] = 0. Then,

thanks to Jeulin [83] (Proposition 5.3), we deduce the existence of a positive and

FT -measurable Y F such that Y GI{T>τ} = Y FI{T>τ}. Then, we calculate

0 = E[ξY GI{T>τ}|GT−] = E[ξY F(1− Z̃T )|FT−]
I{T>τ}

1− ZT−
= EQ̃

F
T

(
ξY F∣∣ FT−) I{T>τ} = EQ̃

F
T

(
ξỸ F∣∣ FT−) I{T>τ},

where Ỹ F := Y FI{ZT−<1} + I{ZT−=1}. Therefore, by taking conditional expectation

and using the fact that ST I{ZT−=0} = 0, we obtain

(1− ZT−)EQ̃
F
T [ξỸ F∣∣FT−] = 0, or equivalently EQ̃

F
T [ST Ỹ

F∣∣FT−] = 0 P − a.s.

By using the equality E(Y FI{T>τ}|GT−) = E(Y GI{T>τ}|GT−) = I{T>τ}, we deduce

that EQ̃
F
T [Ỹ F∣∣FT−] = 1. This proves that S satisfies NUPBR(F, Q̃F

T ) and the proof

of the theorem is achieved.

6.4.3 Proof of Theorem 6.5

We start by outlining a number of remarks that simplify tremendously the proof.

Due to Lemma 6.7, on {T < +∞}, we have

{Z̃QT = 1} = {Z̃T = 1} for any Q ∼ P and any F− stopping time T, (6.39)
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where Z̃Qt := EQ[I{τ≥t}|Ft].

On the other hand, assertion (b) is equivalent to the existence of a positive F-local

martingale Y such that

p,F
(
Y∆SaI{Z̃<1}

)
= 0.

These two remarks imply that without loss of generality we will assume that S = Sa

in the rest of the proof.

Consider a sequence of F-stopping times (σn)n≥1 such that Y σn is a martingale, and

put Qn := (Yσn/Y0) · P . Therefore, thanks to Proposition 5.2, it is enough to prove

that assertion (a) holds true under Qn for Sσn . Therefore, without loss of generality,

we assume Y ≡ 1. Put

Xn = ∆STnI{Z̃Tn<1} and Mn = XnI[[Tn,+∞[[.

Hence, the condition (6.27) in Theorem 6.8 is trivially satisfied for Xn and Mn.

Thus, we deduce that for each n,

(1 + ∆LG
Tn −∆WG

Tn)∆STnI{Tn>τ}I[[Tn,+∞[[,

is a G-martingale. Then, for each θ ∈ L(S − Sτ ) such that θT∆S > −1, Yor’s

formula implies that

E
(
IΓ � LG − IΓ ·WG

)
E (θIΓ � (S − Sτ )) = E

(
W (1)

)
,

where

W (1) := IΓ � (LG −WG) +
∑
n≥1

θTn

(
1 + ∆LG

Tn −∆WG
Tn

)
∆STnI{Tn>τ}I[[Tn,+∞[[,
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and LG(a)
and V (a) are defined in (6.19) and (6.17) respectively. Put

φ =
∑
n≥1

2−n
(
1 + E(W (1))Tn−

)−1

(1 + Ξn)
I]]τ,+∞[[∩[[Tn]] + IΓc∪[[0,τ ]] and

Ξn : = E
[
|∆LG

Tn |
∣∣∣GTn−]+ ∆WG

Tn + E

[
|θTn∆STn |(1− ZTn−)

1− Z̃Tn

∣∣∣GTn−
]
I{Tn<+∞}.

Then, it is easy to check that φ is G-predictable, 0 < φ ≤ 1, and E
(
|φ � E(W (1))|var(+∞)

)
≤∑

n≥1 2−n = 1. Hence φ � E(W (1)) ∈ A(G), and using the fact that ∆LG
Tn
I[[Tn,+∞[[

and (1 + ∆LG
Tn
−∆WG

Tn
)∆STnI{Tn>τ}I[[Tn,+∞[[ are G-martingales, we get

(
φ � E(W (1))

)p,G
=
∑
n≥1

φTnE
(

∆W
(1)
Tn

∣∣GTn−) I[[Tn,+∞[[ = −φE−(W (1)) �WG

is a non-increasing process. This proves that E(W (1)) is a positive σ-supermartingale,

and hence it is a supermartingale due to Kallsen [89]. Thus, S − Sτ admits a defla-

tor.

6.5 Discrete Time Market Models

Similar as Section 5.6 of Chapter 5, in the current section, we consider discrete time

market models. That is the case where there are only finite number of trading times

n = 1, 2, ..., N . In this context, we shall investigate the stability of non-arbitrage

after an honest time τ . For τ , we associate the following stopping times:

σ1 := inf{n ≥ 1 : Zn < 1}, σ2 := inf{n ≥ 1 : Zn−1 < 1} and σ3 := inf{n ≥ 1 : Z̃n < 1}.

(6.40)

First, we remark that in discrete time we do not assume Zτ < 1 considered in the

previous sections.

Lemma 6.8: For an honest time τ and the associated stopping times in (6.40), the
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following properties hold for any n ≤ N :

(a) {Z̃n < 1} ⊂ {Zn−1 < 1} and {Z̃n < 1} ⊂ {Zn < 1}.

(b) σ2 is an F-predictable stopping time and σ2 ≤ σ3 and σ1 ≤ σ3.

(c) On {τ < n}, we have

τ ≥ σ1, Zn−1 < 1, and Z̃n < 1, P − a.s..

Proof. (a) Notice that

E
[(

1− Z̃n
)
1{Zn−1=1}

]
= E

[
(1− Zn−1)1{Zn−1=1}

]
= 0.

Hence, {Zn−1 = 1} ⊂ {Z̃n = 1}. Due to Zn ≤ Z̃n, we have {Z̃n < 1} ⊂ {Zn < 1}.

(b) Since {σ2 ≤ n} = {Zn−1 < 1} ∈ Fn−1, we conclude that σ2 is predictable. The

inequalities σ2 ≤ σ3 and σ1 ≤ σ3 follow immediately from (a).

(c) Notice that

E
[
I{n>τ}I{Zn−1=1}

]
= E

[
(1− Zn−1)I{Zn−1=1}

]
= 0, and

E
[
I{n>τ}I{Z̃n=1}

]
= E

[
(1− Z̃n)I{Z̃n=1}

]
= 0.

Therefore, Zn−1 < 1 and Z̃n < 1 on the set {n > τ}. This ends the proof of the

lemma.

The following lemma, (already stated and proved in Jeulin [83]), describes the

connection between conditional expectations under F and G.

Lemma 6.9: Let Y be an integrable A-measurable random variable. Then, the

following properties hold:

(a) On the set {n > τ}, the conditional expectation under Gn is given by

E [Y |Gn]1{τ<n} = E
[
Y 1{τ<n}|Fn

] 1

1− Z̃n
1{τ<n}. (6.41)
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(b) On the set {n > τ}, the conditional expectation under Gn−1 is given by

E [Y |Gn−1]1{τ<n} = E
[
Y 1{τ<n}|Fn−1

] 1

1− Zn−1
1{τ<n}. (6.42)

Moreover, if Y is Fn-measurable, we have

E [Y |Gn−1]1{τ<n} = E
[
Y (1− Z̃n)|Fn−1

] 1

1− Zn−1
1{τ<n}. (6.43)

The following theorem characterizes the relationship between F-martingales and

G-martingales on the stochastic interval ]]τ,+∞[[. For the continuous time case, we

consult Jeulin [83].

Theorem 6.11: Let M be an F-martingale and τ be an honest time. Then the

following process

M (a)
n := Mn∨τ −Mτ −

∑
1≤k≤n

1

1− Zk−1
1{τ<k}E

[
(Mk −Mk−1)(1− Z̃k)|Fk−1

]
,

is a G-martingale.

Proof. Although it can be derived from Jeulin [83], here we give a direct proof here.

It is easy to see that

M(n+1)∨τ = Mn∨τ + (Mn+1 −Mn)1{τ<n+1}. (6.44)
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Then, we calculate

E
[
M

(a)
n+1

∣∣∣Gn] = E
[
M(n+1)∨τ −Mτ −

∑
1≤k≤n+1

1

1− Zk−1
1{τ<k}E

[
(Mk −Mk−1)(1− Z̃k)|Fk−1

] ∣∣∣Gn]
= Mn∨τ −Mτ + E

[
(Mn+1 −Mn)1{τ<n+1}

∣∣∣Gn]
−
∑

1≤k≤n

1

1− Zk−1
1{τ<k}E

[
(Mk −Mk−1)(1− Z̃k)|Fk−1

]
− 1

1− Zn
1{τ<n+1}E

[
(Mn+1 −Mn)(1− Z̃n+1)|Fn

]
= Mn∨τ −Mτ +

∑
1≤k≤n

1

1− Zk−1
1{τ<k}E

[
(Mk −Mk−1)(1− Z̃k|)Fk−1

]
= M (a)

n ,

where we used the following equality the follows from Lemma 6.9

E
[
(Mn+1 −Mn)1{τ<n+1}

∣∣∣Gn] =
1

1− Zn
1{τ<n+1}E

[
(Mn+1 −Mn)(1− Z̃n+1)|Fn

]
.

This ends the proof of the theorem.

The following proposition constructs a G-martingale density for a class of G-

semi-martingales.

Proposition 6.4:

N (a)
n := −

∑
1≤k≤n

1{τ<k}E[1{Z̃k<1}|Fk−1] +
∑

1≤k≤n

1− Zk−1

1− Z̃k
1{τ<k} (6.45)

is a G-martingale such that 1 + ∆N
(a)
n > 0.
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Proof. First, we prove that N (a) is a G-martingale. To this end, we calculate

E
[
N

(a)
n+1|Gn

]
= E

− ∑
1≤k≤n+1

1{τ<k}E[1{Z̃k<1}|Fk−1] +
∑

1≤k≤n+1

1− Zk−1

1− Z̃k
1{τ<k}

∣∣∣Gn


= −
∑

1≤k≤n+1

1{τ<k}E[1{Z̃k<1}|Fk−1] +
∑

1≤k≤n

1− Zk−1

1− Z̃k
1{τ<k} + E

[
1− Zn

1− Z̃n+1

1{τ<n+1}

∣∣∣Gn]

= −
∑

1≤k≤n+1

1{τ<k}E[1{Z̃k<1}|Fk−1] +
∑

1≤k≤n

1− Zk−1

1− Z̃k
1{τ<k} + 1{τ<n+1}E[1{Z̃n+1<1}|Fn]

= −
∑

1≤k≤n
1{τ<k}E[1{Z̃k<1}|Fk−1] +

∑
1≤k≤n

1− Zk−1

1− Z̃k
1{τ<k} = N (a)

n . (6.46)

The third equality above is obtained due to

E

[
1− Zn

1− Z̃n+1

1{τ<n+1}

∣∣∣Gn] = 1{τ<n+1}E[1{Z̃n+1<1}|Fn], (6.47)

which follows from Lemma 6.9 –precisely (6.43). Next, we show that 1+∆N
(a)
n > 0.

Indeed

1 + ∆N (a)
n = 1− 1{τ<n}E[1{Z̃n<1}|Fn−1] +

1− Zn−1

1− Z̃n
1{τ<n} ≥ 1{τ≥n} +

1− Zn−1

1− Z̃n
1{τ<n} > 0.

The integrability of N (a) follows from the fact that E|N (a)
n | ≤ 2n. This completes

the proof of the proposition.

Below, we state the first main theorem of this section.

Theorem 6.12: Consider an honest time τ and an F-martingale S. Denote the

probability measure Q(a) ∼ P with density D
(a)
n := E(Y (a))n where

∆Y (a)
n := (1− Z̃n)1{Zn−1<1}E

[
1{Z̃n=1}|Fn−1

]
− (1− Zn−1)1{Z̃n=1}, Y

(a)
0 = 0.

(6.48)

Then the following are equivalent:
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(a) S is a (Q(a),F)-martingale;

(b) S is orthogonal to both D(a) and Y (a);

(c) E(NG)n(Sn − Sn∧τ ) is a G-martingale.

As a consequence, all the above three equivalent conditions imply

(d) S − Sτ satisfies NA(G,P) and NA(G,Q(a)).

Proof. First, we remark that Y (a) is an F-martingale and 1 + ∆Y (a) > 0. Indeed,

1 + ∆Y (a)
n = (1− Z̃n)1{Zn−1<1}E

[
1{Z̃n=1}|Fn−1

]
+ 1{Z̃n<1} + Zn−11{Z̃n=1} > 0,

where we used the fact that on the set {Z̃n < 1}, 1 + ∆Y
(a)
n ≥ 1 and the inclusion

{Z̃n = 1} ⊂ {Zn−1 > 0}, since {Zn−1 = 0} ⊂ {Z̃n = 0}. Therefore, D(a) is a strictly

positive martingale.

The equivalence between (a) and (b) is obvious. In the following, we will prove the

equivalence between (a) and (c). Recall that

N (a)
n = −

∑
1≤k≤n

1{τ<k}E[1{Z̃k<1}|Fk−1] +
∑

1≤k≤n

1− Zk−1

1− Z̃k
1{τ<k}. (6.49)

Due to Lemma 5.15 , we deduce that

E
[ ∆Sk

1− Z̃k
1{τ<k}|Gk−1

]
=

1{τ<k}

1− Zk−1
E
[
∆Sk1{Z̃k<1}|Fk−1

]
,

E
[
∆Sk1{τ<k}|Gk−1

]
=

1{τ<k}

1− Zk−1
E
[
∆Sk(1− Z̃k)|Fk−1

]
. (6.50)

Notice that

Sn+1 − S(n+1)∧τ = Sn − Sn∧τ + ∆Sn+11{n+1>τ}, (6.51)
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and hence we get

E
[
E(N (a))n+1S(n+1)∧τ |Gn+1

]
= E(N (a))nE

[
(1 + ∆N

(a)
n+1)S(n+1)∧τ |Gn

]
= E(N (a))nE

[
Sn − Sn∧τ + ∆Sn+11{n+1>τ} + ∆Sn+1∆NG

n+11{n+1>τ}|Gn
]

= E(N (a))n

{
Sn − Sn∧τ + E

[
∆Sn+1(1− Z̃n+1)E

[
1{Z̃n+1=1}|Fn

]
|Fn
]1{n+1>τ}

1− Zn

}
−E(N (a))n

{
1{n+1>τ}E

[
∆Sn+11{Z̃n+1=1}|Fn

]}
= E(N (a))n (Sn − Sn∧τ )

+E(N (a))n

{
E
[
∆Sn+1

{
(1− Z̃n+1)E

[
1{Z̃n+1=1}|Fn

]
− (1− Zn)1{Z̃n+1=1}

}
|Fn
]} 1{n+1>τ}

1− Zn

= E(N (a))n(Sn − Sn∧τ ) + E(N (a))nE
Q(a)

[∆Sn+1|Fn]
1{n+1>τ}

1− Zn
.

Therefore (a) implies (c). Conversely, if (c) holds, we have

EQ(a)
[∆Sn+1|Fn]

1{n+1>τ}

1− Zn
= 0, and EQ(a)

[∆Sn+1|Fn]1{Zn<1} = 0.

Notice that

EQ(a)
[∆Sn+1|Fn]1{Zn=1} = 0, for all n .

Thus, we conclude that EQ(a)
[∆Sn+1|Fn] = 0, for all n. This ends the proof of the

theorem.

Remark 6.4: Similarly, we observe from Theorem 6.12 that even though Y (a) is

an F-martingale, the process Y
(a)
n − Y (a)

n∧τ =
∑

k≤n(1− Z̃k)E
[
1{Z̃k=1}|Fk

]
1{k>τ}

does not satisfy NA(G) since it is a G-increasing process. This also highlights the

importance of the conditions in Theorem 6.12.

Corollary 6.12.1: For any F-martingale M , if for all n

{Z̃n = 1} = {Zn−1 = 1}. (6.52)
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Then the following properties hold:

(a) The process Mn −Mn∧τ satisfies NA(G);

(b)
(
E(N (a))n (Mn −Mn∧τ )

)
n≥1

is a G-martingale, where N (a) is given by (6.45)

in Proposition 6.4;

(c) The probability measure Q(a), given in (6.48), coincides with P.

Below, we state our second main theorem in this section, where we give the

necessary and sufficient conditions on the random time τ (or equivalently the stop-

ping times in (6.40)) to guarantee that the process M −M τ satisfies NA(G) for any

F-martingale M .

Theorem 6.13: Consider an honest time τ and the associated stopping times de-

fined in (6.40). Then the following are equivalent:

(a) For any F-martingale M , the process Mn −Mn∧τ satisfies NA(G).

(b) {Z̃n = 1} = {Zn−1 = 1} for all n.

(c) σ1 + 1 = σ2 = σ3.

(d) σ3 is an F-predictable stopping time.

(e) The probability Q(a), defined via (6.48)), coincides with P.

Proof. The proof of the theorem would be achieved after four steps. In the first

step, we prove (b)⇔(c). The second step focuses on (b)⇔(d). The third step deals

with (b)⇔(e). In the last step, we prove (a) ⇔ (b).

Step 1: The equivalence between (b) and (c) is obvious. Indeed, if (b) holds, it is

trivial that σ2 = σ3. Conversely, if (c) holds, we derive that

E
(

(1− Zn−1)I{Z̃n=1}

)
= E

(
(1− Zn−1)I{Z̃n=1}I{n<σ3}

)
= E

(
(1− Zn−1)I{Z̃n=1}I{n<σ2}

)
= 0.

Hence, we conclude that {Z̃n = 1} ⊂ {Zn−1 = 1} for all n.
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Step 2: Here, we will prove (b)⇔(d). If (b) holds, it is easy to see that σ3 is an

F-predictable stopping time. Conversely, due to the predictability of σ3 and

E
[
(1− Zn−1)I{Z̃n=1}

]
= E

[
(1− Zn−1)I{n<σ3}

]
= E

[
(1− Z̃n)I{n<σ3}

]
= 0,

we conclude that {Z̃n = 1} ⊂ {Zn−1 = 1} for all n.

Step 3: This step will prove (b)⇔(e). If (b) holds, apparently, Y (a) = 0 and Q(a) =

P. Conversely, if (e) holds, ∆Y
(a)
n = 0 for all n. Hence, (1−Z̃n)1{Zn−1<1}E

[
1{Z̃n=1}|Fn−1

]
=

(1− Zn−1)1{Z̃n=1} = 0 and {Z̃n = 1} = {Zn−1 = 1} for all n.

Step 4: In this step, we focus on the proof of the equivalence between (a) and

(b). Suppose for any F-martingale M , the stopped process M τ satisfies NA(G).

Consider the F-martingale

Mn :=
∑

1≤k≤n

(
1{Z̃k=1} − E

[
1{Z̃k=1}|Fk−1

])
.

It is easy to see that Mn −Mn∧τ = −
∑

1≤k≤nE
[
1{Z̃k=1}|Fk−1

]
1{τ<k}. Note that

Mn −Mn∧τ is a G predictable decreasing process satisfying NA(G). Therefore it is

null. Then, we deduce that

0 = E [Mn −Mn∧τ ] =
∑

1≤k≤n
E
[
E
[
1{Z̃k=1}|Fk−1

]
1{τ<k}

]
=
∑

1≤k≤n
E
[
(1− Zk−1)1{Z̃k=1}

]
.

Hence, {Z̃k = 1} ⊂ {Zk−1 = 1} for all k.

The reverse implication follows immediately from Theorem 6.12 or Corollary 6.12.1.

This ends the proof of the theorem.
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6.6 Lévy Market Model

In this section, we shall study Lévy market model on the stochastic interval ]]τ,+∞[[

as Section 5.7 of Chapter 5. Suppose that the traded financial asset is an exponential

of a Lévy process given by S = S0 exp(X), where

Xt = γt+ σWt +

∫ t

0

∫
|x|≤1

xÑ(dt, dx) +

∫ t

0

∫
|x|≥1

xN(dt, dx), (6.53)

Ñ(dt, dx) = N(dt, dx)− νX(dx, dt) and νX(dx, dt) := FX(dx)dt. Here, γ and σ are

real numbers (σ > 0); W = (Wt)t≥0 represents a Brownian motion; N(dt, dx) is a

random measure on [0, T ]⊗R\{0}, called Poisson random measure; Ñ(dt, dx) is the

compensated Poisson measure with the intensity measure FX(dx)dt, where FX(dx)

is called the Lévy measure defined on R\{0}, satisfying

∫
R\{0}

(
|x|2 ∧ 1

)
FX(dx) < +∞. (6.54)

Recall the random measure µ and its compensator ν are defined in (5.104) of Sub-

section 5.7 in Chapter 5.

In the same spirit as in Theorem 2.7, any local martingale Y can be decomposed as

follows

Y = β · Sc + f ? (µ− ν) + g ? µ+ Y ⊥. (6.55)

Here, (β, f, g, Y ⊥) is the Jacod’s components of Y with respect to S .

Let (βm, fm, gm,m
′) be the Jacod’s parameters of m with respect to (S,F,P) such

that

m = βm · Sc + fm ? (µ− ν) + gm ? µ+m′. (6.56)

The Jacod parameters of m would be fixed throughout this section in which we
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assume that

Zτ < 1, and νG ∼ ν on ]]τ,∞[[. (6.57)

Below, we recall the compensator of the random measure µ after τ (see Proposition

2.8 and Theorem 2.12 in Chapter 2).

Proposition 6.5: Consider the Lévy market S. On ]]τ,+∞[[, we have

(a) The compensator of µ in the filtration G is given by

νG :=
(
I]]τ,∞[[ · µ

)p,G
=

(
1− fm

1− Z−

)
I]]τ,∞[[ · ν (6.58)

(b) The canonical representation of I]]τ,∞[[ · S is given by

I]]τ,∞[[ · S = S0 + Ŝc
(a)

+ h ? (µG − νG) + (x− h) ? µG +B, (6.59)

where Ŝc
(a)

is defined via (6.9) and B = I]]τ,∞[[ · B − 1
1−Z− I]]τ,∞[[ · 〈Sc,m〉F −

h fm
1−Z− I]]τ,∞[[ ? ν.

Proposition 6.6: Let τ be an honest time satisfying (6.57). The following process

D(a) is well defined, being a positive G-local martingale,

D(a) := E(N (a)) := E
(

1

1− Z−
βmI]]τ,∞[[ · Ŝc

(a)
+

fm
1− Z− − fm

I]]τ,∞[[ ?
(
µG − νG

))
,

where Ŝc
(a)

is defined via (6.9) and 1 + ∆N (a) > 0.

Proof. Note that

E
[
I]]τ,+∞[[I{1−MP

µ [Z̃|P̃(F)]=0} ? µ
]

= E
[
(1− Z̃)I{1−MP

µ [Z̃|P̃(F)]=0} ? µ
]

= E
[
(1−MP

µ

[
Z̃|P̃(F)

]
)I{1−MP

µ [Z̃|P̃(F)]=0} ? µ
]

= 0.
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Therefore, 1−Z−−fm = 1−MP
µ [Z̃|P̃(F)] > 0,MP

µ -a.s. on ]]τ,+∞[[. Let us consider

δ ∈ (0, 1), Γ := {∆S 6= 0} and Γc its complement in Ω⊗ [0,+∞[.

Then, we calculate

V :=

√√√√ ∑
0≤u≤·

(
fm(∆Su)

1− Z− − fm(∆Su)
IΓI]]τ,∞[[

)2

≤

√√√√ ∑
0≤u≤·

(
fm(∆Su)

1− Z− − fm(∆Su)
I]]τ,∞[[IΓI{fm<δ(1−Z−)}

)2

+

√√√√ ∑
0≤u≤·

(
fm(∆Su)

1− Z− − fm(∆Su)
I]]τ,∞[[IΓI{fm≥δ(1−Z−)}

)2

:= V1 + V2. (6.60)

Due to the G-local boundedness of (1−Z−)−1I]]τ,∞[[ and fm ∈ G2
loc(µ,F) (i.e. f2

m ? µ ∈

A+
loc(F)), we obtain that

V1(t) ≤ 1

1− δ

√√√√ ∑
0≤u≤t

(
fm(∆Su)

1− Zu−
I]]τ,∞[[IΓI{fm<δ(1−Zu−)}

)2

≤ 1

1− δ

√√√√ ∑
0≤u≤t

(
f2
m(∆Su)

(1− Zu−)2
I]]τ,∞[[IΓ

)
∈ A+

loc(G).

Now, we focus on the proof the G-local integrability of V2. Again due to the G-local

boundedness of (1 − Z−)−1I]]τ,∞[[ and f2
m ? µ ∈ A+

loc(F), we deduce the existence of

a sequence of G-stopping times (Tn)n≥1 that increases to infinity and a sequence of

F-stopping times, (σn)n≥1, that increases to infinity such that

(1− Z−)−1I]]τ,+∞[[ ≤ n on [[0, Tn]] and Ef2
m ? ν(σn) < +∞.
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Then, we derive that

E [V2(Tn ∧ σn)] ≤ E
[

|fm|
1− fm − Z−

I]]τ,∞[[I{δ(1−Z−)≤fm<1−Z−} ? µTn∧σn

]
≤ E

[
|fm|

1− fm − Z−
I]]τ,∞[[I{δ/n≤fm<1−Z−} ? µσn

]
≤ E

[
|fm|

1− fm − Z−
(1− Z̃)I{1−fm−Z−>0}I{δ/n≤fm<1−Z−} ? µσn

]
= E

[
|fm|I{δ/n≤fm<1−Z−} ? µσn

]
≤ n

δ
E[f2

m ? µσn ] < +∞.

As a result, V is G-locally integrable.

Secondly, the positivity of D(a) is obvious. Indeed, on ]]τ,+∞[[

1+∆N
(a)
t = 1+

fm(∆St)

1− Zt− − fm(∆St)
I{∆St 6=0} = I{∆St=0}+

1− Zt−
1− Zt− − fm(∆St)

I{∆St 6=0} > 0.

This ends the proof of the proposition.

Theorem 6.14: Let S be the Lévy market satisfying NUPBR(F) and τ be an honest

time satisfying (6.57). Then, S − Sτ satisfies NUPBR(G).

Proof. The proof of the theorem mimics the proof of Theorem 5.16 in Chapter 5.

Here, we only need to show that

∑
∆S∆N (a)I]]τ,+∞[[ = x

fm
1− Z− − fm

I]]τ,+∞[[ ? µ

is locally integrable. Let (Tn)n≥1 be the localizing sequence of [S,m]. Then, we have

E

[
|xfm|

1− fm − Z−
I]]τ,+∞[[ ? µTn

]
= E

[
|xfm|

1− fm − Z−
I{1−fm−Z−>0}(1− Z̃) ? µTn

]
≤ E [|xfm| ? µTn ] ≤ E [V ar([S,m])Tn ] < +∞.

This ends the proof the theorem.
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Corollary 6.14.1: Let Y be a compensated Poisson process and τ be an honest

time satisfying (6.57). Then Y − Y τ satisfies NUPBR(G).

Proof. The proof is the same as the proof of Corollary 5.16.1 in Chapter 5 and its

proof would be omitted.

Conclusions:

In this chapter, we obtained two principal results in the same spirit as those in Chap-

ter 5. The first result lies in describing the pairs of market model and honest time for

which the model fulfills NUPBR condition after an honest time. The second main

result characterizes the honest time models that preserve the NUPBR condition.

These results are elaborated in a very general market model, and also discrete time

and Lévy market models. Furthermore, we construct explicit martingale densities

(deflators) for some classes of local martingales.
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Chapter 7

Structural Models under

Additional Information

This chapter is dedicated to the question of how an extra information will affect

the stochastic structures of the market. The so-called ”Structure Conditions” (SC)

in the literature is imperative for the ”local” existence of the Markowitz’ optimal

portfolio or the solution to the local risk minimization problem. Herein, we consider

a semi-martingale market model (initial market model) fulfilling Structure Condi-

tions, and an arbitrary random time τ that is not adapted to the flow of the ”public”

information. By adding additional uncertainty to the initial market model, via this

random time τ , those structures may fail.

There are two mainstreams to combine the information coming from τ to the public

information F: The initial enlargement and progressive enlargement of the filtration

F (see [83], [77], [141] and the references therein). Herein, we restrict our attention

to adding the information from τ progressively to F, which results in a progressively

enlarged filtration G.

Precisely, we are dedicated to investigate the following two questions:
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For which pair (τ, S), does S satisfy SC(G) if S satisfies SC(F)? (Prob(7.I))

and

For which τ , SC(G) holds for any model satisfying SC(F)? (Prob(7.II))

To answer the two problems (Prob(7.I)) and (Prob(7.II)), we split the time hori-

zon [[0,+∞[[ into two disjoint intervals [[0, τ ]] and ]]τ,+∞[[. In other words, we in-

vestigate the impact of τ on the structures of S by studying Sτ and S−Sτ separately.

Our analysis allowed us to conclude that under some mild assumptions on the market

model and the random time, these structures will remain valid on the one hand. Fur-

thermore, we provide two examples illustrating the importance of these assumptions.

On the other hand, we describe the random time models for which these structure

conditions are preserved for any market model. These results are elaborated sepa-

rately for the two contexts of stopping with random time and incorporating totally

a specific class of random times respectively.

Below, we recall the definition of Structure Conditions and two simple but useful

lemmas on Structure Conditions.

Definition 7.1: Let X be an H-adapted process. We say that X satisfies the

Structure Conditions under (H,Q) (hereafter, SC(H,Q)), if there exist M ∈

M2
0,loc(Q,H) and λ ∈ L2

loc(M,H) such that

X = X0 +M − λ � 〈M〉H. (7.1)

When Q = P, we simply put SC(H).

Lemma 7.1: Let V be an H-predictable with finite variation process. Then, V

satisfies SC(H) if and only if V is constant (i.e. Vt ≡ V0, t ≥ 0).
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Proof. If V satisfies SC(H), then there exist an H-local martingale MV and an

H-predictable process λH ∈ L2
loc(M) such that V = V0 + MV + λH � 〈MV ,MV 〉H.

Therefore, MV is an H-predictable local martingale with finite variation. Hence M

is null, and V ≡ V0. This ends the proof of the lemma.

The following lemma explains why one can split the study of the Structure

Conditions of (S,G) into two separate cases, namely (Sτ ,G) and (S − Sτ ,G).

Lemma 7.2: (S,G) satisfies the Structure Conditions if and only if both (Sτ ,G)

and (S − Sτ ,G) do.

Proof. The proof follows immediately from the definition.

This chapter is organized as follows. Section 7.1 contains two subsections where

we present the main results before τ and after τ . In Section 7.2, we develop the

stochastic tools that would be crucial to prove the main theorems. The last section

provides the proofs of the main theorems announced in Section 7.1.

7.1 The Main Results

In this section, we will summarize our main results in two subsections. The first

subsection addresses the problems (Prob(7.I)) and (Prob(7.II)) under stopping

with τ (i.e. we study Sτ instead), while the second subsection treats the case of τ

being an honest time and focuses on S−Sτ instead. To elaborate our main results,

we start by a stochastic basis (Ω,A,F = (Ft)t≥0,P), where F is a filtration satisfying

the usual conditions of right continuity and completeness and represents the flow

of “public” information over time. On this filtered probability space we consider a

d-dimensional F-adapted semimartingale, S, that models the tradable risky assets.
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We assume that S is a special semimartingale with the Doob-Meyer decomposition

S = S0 +MS +AS , (7.2)

whereMS is a locally square integrable F-local martingale andAS is an F-predictable

finite variation process. Thus, (Ω,A,F, S,P) constitutes the initial market model.

In addition to this model, we consider additional information and/or uncertainty

that is modelled by an A-measurable random time τ : Ω → R+ that is fixed from

the beginning and for the entire chapter. To formulate this rigorously, we associate

to τ the process D and the progressive enlargement of filtration G given by

D := I[[τ,+∞[[, G = (Gt)t≥0 , where Gt =
⋂
s>t

(
Fs ∨ σ(Du, u ≤ s)

)
. (7.3)

Recall the two Azéma supermartingales given by

Zt := P
(
τ > t

∣∣ Ft) and Z̃t := P
(
τ ≥ t

∣∣∣ Ft) . (7.4)

The decomposition of Z leads to another important martingale m by

m := Z +Do,F, (7.5)

where Do,F is the F-dual optional projection of D = I[[τ,∞[[. Furthermore, we have

Z̃+ = Z and Z̃ = Z− + ∆m.

7.1.1 Structure Conditions under Stopping with Random Time

In this section, we will investigate and quantify the effect of stopping with τ on the

Structure Conditions in two different ways. Below, we state the first main result
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of this subsection, which provides sufficient condition on τ and S for which the

Structure Conditions are preserved after stopping with τ . This answers partially

the problem (Prob(7.I)).

Theorem 7.1: Consider any random time τ and suppose that S satisfies SC(F)

with the Doob-Meyer decomposition S := S0 +MS +AS. If

{∆MS 6= 0} ∩ {Z̃ = 0} ∩ {Z− > 0} = ∅, (7.6)

then Sτ satisfies SC(G).

Proof. The proof requires many intermediary results that are interesting in them-

selves. Therefore, this proof is delegated to Section 7.3.

Our second main theorem of this subsection answers completely the problem

(Prob(7.II)), and describes the random time models for which the Structure Con-

ditions are preserved after stopping with τ .

Theorem 7.2: Let τ be a random time. Then, the following are equivalent.

(a) The thin set {Z̃ = 0} ∩ {Z− > 0} is evanescent.

(b) For any process X satisfying SC(F), Xτ satisfies SC(G).

Proof. The proof of (a) ⇒ (b) follows immediately from Theorem 7.1. To prove

the reverse sense, we assume that assertion (b) holds. Remark that {Z̃ = 0} ∩

{Z− > 0} ⊂ {∆m 6= 0}, it is a thin set, and consider T a stopping time such that

[[T ]] ⊂ {Z̃ = 0} ∩ {Z− > 0}. Then, M τ satisfies SC(G), where

M = V − Ṽ ∈M0(F), V := I[[T,+∞[[ and Ṽ := (V )p,F. (7.7)

Since τ < T, P − a.s. on {T < +∞} (due to Z̃T = 0 on {T < +∞}), we deduce

that

M τ = −(Ṽ )τ is G− predictable and satisfies SC(G). (7.8)
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Hence, by combining (7.8) and Lemma 7.1, we conclude that M τ is null (i.e. (Ṽ )τ =

0), or equivalently

0 = E
(
Ṽτ

)
= E

(∫ +∞

0
Zs−dṼs

)
= E

(
ZT−I{T<+∞}

)
. (7.9)

Thus T = +∞, P − a.s., and the thin set {Z̃ = 0} ∩ {Z− > 0} is evanescent (see

Proposition 2.18 on Page 20 in [78]). This ends the proof of the theorem.

Corollary 7.2.1: For any random time τ , if either m is continuous or Z is positive,

then Sτ satisfies SC(G) for any process S that satisfies SC(F).

Proof. Under the condition either m is continuous or Z is positive, the set {Z̃ =

0} ∩ {Z− > 0} is evanescent. Hence, the proof of the corollary follows immediately

from Theorem 7.2. Below, we detail a direct proof for the case when m is continuous.

In fact this direct proof contains the key ideas for the proof of Theorem 7.1, but

with more delicate arguments due to the jumps.

Suppose that S satisfies SC(F) with the canonical decomposition S = S0 + M −

λ � 〈M,M〉F, where M ∈ M2
loc(F) and λ ∈ L2

loc(M,F). Put the G-locally square

integrable local martingale (see Jeulin [83])

M̂ := I[[0,τ ]] �M − (Z−)−1 I[[0,τ ]] � 〈M,m〉F. (7.10)

Then, the canonical decomposition of Sτ under G has the form of

Sτ = S0 + M̂ − λI[[0,τ ]] � 〈M,M〉F + (Z−)−1 I[[0,τ ]] � 〈M,m〉F. (7.11)

Thus, the proof will follow as long as we find a G-predictable process λ̂ ∈ L2
loc(M̂,G)

such that

−λI[[0,τ ]] � 〈M,M〉F + (Z−)−1 I[[0,τ ]] � 〈M,m〉F = λ̂ � 〈M̂〉G. (7.12)

229



Indeed, since m is continuous, the Galtchouk-Kunita-Watanabe decomposition of

m with respect to M under F implies the existence of an F-predictable process

βm ∈ L2
loc(M) and a locally square integrable F-local martingale m⊥ such that

m = m0 + βm �M +m⊥ and 〈M,m⊥〉F = 0. (7.13)

Therefore,

−λI[[0,τ ]] � 〈M,M〉F +
1

Z−
I[[0,τ ]] � 〈M,m〉F = −λI[[0,τ ]] � 〈M,M〉F +

βm
Z−

I[[0,τ ]] � 〈M,M〉F

=

(
−λ+

βm
Z−

)
I[[0,τ ]] � 〈M,M〉F. (7.14)

It is easy to prove that I[[0,τ ]] � 〈M〉F = I[[0,τ ]] � 〈M〉G = I[[0,τ ]] � 〈M̂〉G, due to the

continuity of m. Thus, we obtain

Sτ = S0 + M̂ − λ̂ � 〈M̂〉G, (7.15)

where λ̂ :=
(
λ− βm

Z−

)
I[[0,τ ]]. It is obvious that λ̂ ∈ L2

loc(M̂) due to the local bound-

edness of (Z−)−1 I[[0,τ ]]. This ends the proof of the corollary.

One may wonder what could happen when the condition (7.6) fails. Below, we

provide an example when {Z̃ = 0 < Z−} is nonempty, and Sτ fails to satisfy SC(G)

(for the arbitrage opportunities in the example, we refer to Aksamit et al. [3]).

Proposition 7.1: Suppose that the stochastic basis (Ω,A,F = (Ft)t≥0, P ) supports

a Poisson process N with intensity λ, and the stock price –denoted by X– is given

by

dXt = Xt−ψdMt, where, ψ > −1, and ψ 6= 0, Mt = Nt − λt.

If

τ = k1T1 + k2T2,
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where Ti = inf{t ≥ 0 : Nt ≥ i}, i ≥ 1, k1, k2 > 0, and k1 + k2 = 1,

then Xτ does not satisfy SC(G).

Proof. We recall from Aksamit et al. [3] that the Azéma supermartingale Z and m

take the forms of:

Z = I[[0,T1[[ + φmI[[T1,T2[[, m = 1− φmI]]T1,T2]] �M, where φmt = e
−λ k1

k2
(t−T1)

. (7.16)

Then, it is easy to calculate that

1

Z−
I[[0,τ ]] � 〈X,m〉t =

−1

Z−
I]]T1,τ ]]X−ψφ

m � 〈M〉t

= −λ
∫ t

0

1

Zu−
I]]T1,τ ]]Xu−ψuφ

m
u du = −λ

∫ t

0
Xu−ψuI]]T1,τ ]]du

and

〈
X̂, X̂

〉G
t

= I[[0,τ ]] � 〈X,X〉t +
1

Z−
I[[0,τ ]] �

(∑
∆m(∆X)2

)p,F
t

= λ

∫ t

0
X2
u−ψ

2
uI[[0,τ ]]du− λ

∫ t

0

1

Zu−
X2
u−ψ

2
uφ

m
u I]]T1,τ ]]du

= λ

∫ t

0
X2
u−ψ

2
uI[[0,T1]]du,

where X̂ is defined via (7.26). Hence, there is no G-predictable process λ̂ ∈ L2
loc(X̂)

satisfying

1

Z−
I[[0,τ ]] � 〈X,m〉 = λ̂ �

〈
X̂, X̂

〉G
, (7.17)

since ]]T1, τ ]] and [[0, T1]] are disjoint. This ends the proof of the proposition.

7.1.2 Structure Conditions under a Class of Honest Times

In this section, we focus on answering the two problems (Prob(7.I)) and (Prob(7.II))

when we totally incorporate a random time. This can be achieved by splitting the

whole half line into two stochastic intervals ]]0, τ ]] and ]]τ,+∞[[. The first part, i.e.
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Sτ is already studied in the previous section. Thus, this section will concentrate on

studying the Structure Conditions of S on the stochastic interval ]]τ,+∞[[. The first

obstacle that one can face in this study is how far the (H ′)–hypothesis is preserved

on this interval (i.e. any F-semimartingale stays a G-semimartingale)? To overcome

this difficulty that is not our main focus in this chapter, we restrict our study to the

important class of random times, called honest times. Below, we recall its definition.

Definition 7.2: A random time τ is called an honest time, if for any t, there exists

an Ft-measurable random variable τt such that τI{τ<t} = τtI{τ<t}.

We refer to Jeulin [83, Chapter 4] for more information on honest times. Through-

out this section, the random time τ is supposed to be honest and satisfies

Zτ < 1, P − a.s. (7.18)

Remark 7.1: This assumption is also crucial for the validity of No-Unbounded-

Profit-with-Bounded-Risk after an honest time. We refer to Choulli et al [4] for

more details on this subject.

Now, we state the two main theorems in this section. This answers partially the

problem (Prob(7.I)) and completely the problem (Prob(7.II)).

Theorem 7.3: Let τ be an honest time satisfying Zτ < 1, a.s.. If S is a process

satisfying SC(F) and

{∆MS 6= 0} ∩ {Z̃ = 1 > Z−} = ∅, (7.19)

then S − Sτ satisfies SC(G).

Proof. The proof will be detailed in Section 7.3.

Theorem 7.4: Let τ be an F-honest time satisfying Zτ < 1, a.s.. Then, the following

are equivalent.
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(a) The thin set {Z̃ = 1 > Z−} is evanescent.

(b) For any process X satisfying SC(F), X −Xτ satisfies SC(G).

Proof. The proof of (a) ⇒ (b) is a direct consequence of Theorem 7.3. To prove

the reverse, we assume that assertion (b) holds, and follow similar steps as in the

proof of Theorem 7.2. For the sake of completeness, we give the full details. Since

{Z̃ = 1} ∩ {Z− < 1} ⊂ {∆m 6= 0}, it is a thin set. Let T be any stopping time such

that [[T ]] ⊂ {Z̃ = 1} ∩ {Z− < 1}. Then, consider the following F-martingale,

M = V − Ṽ ∈M0(F), where V := I[[T,+∞[[ and Ṽ := (V )p,F. (7.20)

Since {T > τ} ⊂ {Z̃T < 1} (see Jeulin [83] or Choulli et al. [4]) and Z̃T = 1, we

deduce that τ ≥ T, P − a.s., and

M −M τ = −I]]τ,+∞[[ � Ṽ (7.21)

which is G-predictable and satisfies SC(G). By combining (7.21) with Lemma 7.1,

we conclude that M −M τ is null (i.e. I]]τ,+∞[[ � Ṽ = 0). Thus, we get

0 = E
(
I]]τ,+∞[[ � Ṽ∞

)
= E

(∫ +∞

0
(1− Zs−)dṼs

)
= E

(
(1− ZT−)I{T<+∞}

)
, (7.22)

or equivalently (1−ZT−)I{T<+∞} = 0 that implies that T = +∞, P−a.s.. Therefore

the thin set {Z̃ = 1} ∩ {Z− < 1} is evanescent (see Proposition 2.18 on Page 20 in

[78]). This ends the proof of the theorem.

As a simple corollary, we have

Corollary 7.4.1: For any F-honest time τ satisfying Zτ < 1, P − a.s., if m is

continuous, then S − Sτ satisfies SC(G) for any process S that satisfies SC(F).

Proof. It is enough to notice that under the condition m is continuous, the set

{1 = Z̃ > Z−} ⊂ {∆m 6= 0} is empty.
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Example 7.1 Herein, we present an example for which {∆X 6= 0} ∩ {1 = Z̃ >

Z−} 6= ∅, and X−Xτ fails to satisfy SC(G). We suppose given a Poisson process

N , with intensity rate λ > 0, and the natural filtration F. The stock price process

is given by

dXt = Xt−σdMt, X0 = 1, Mt := Nt − λt,

or equivalently Xt = exp(−λσt+ ln(1 + σ)Nt), where σ > 0. In what follows, we

introduce the notations

a := − 1

ln(1 + σ)
ln b, 0 < b < 1, µ :=

λσ

ln(1 + σ)
and Yt := µt−Nt.

We associate to the process Y its ruin probability, denoted by Ψ(x) given by, for

x ≥ 0,

Ψ(x) = P (T x <∞), with T x = inf{t : x+ Yt < 0} . (7.23)

Proposition 7.2: Consider the model and its notations in Example 7.1, and the

following random time

τ := sup{t : Xt ≥ b} = sup{t : Yt ≤ a}. (7.24)

Then X −Xτ fails to satisfy SC(G).

Proof. We recall from Aksamit et al. [3] that the supermartingale Z and m are

given by

Zt = P (τ > t|Ft) = Ψ(Yt − a)I{Yt≥a} + I{Yt<a} = 1 + I{Yt≥a} (Ψ(Yt − a)− 1) ,

∆m = I{Y−>a+1} (Ψ(Y− − a− 1)− 1) ∆N − I{Y−>a} (Ψ(Y− − a)− 1) ∆N

:= I{Y−>a+1}φ1∆N − I{Y−>a}φ2∆N,
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where Ψ is defined in (7.23). Then it is easy to calculate that

1

1− Z−
I]]τ,+∞[[ � 〈X,m〉t = −λσ

∫ t

0

Xu−
φ2(u)

{
I{Yu−>a+1}φ1(u)− I{Yu−>a}φ2(u)

}
I]]τ,+∞[[du, and

I]]τ,+∞[[ �
〈
X̂, X̂

〉G
t

= I]]τ,+∞[[
1

1− Z−
�
(

(1− Z̃) � [X,X]
)p,F
t

= λσ2

∫ t

0

φ1(u)X2
u−

φ2(u)
I{Yu−>a+1}I]]τ,+∞[[du,

where X̂ is defined via (7.47). Notice that on the interval {a+ 1 ≥ Y− > a},

1

1− Z−
I]]τ,+∞[[ � 〈X,m〉t = λσ

∫ t

0
Xu−I{Yu−>a}I]]τ,+∞[[du, while I]]τ,+∞[[ �

〈
X̂, X̂

〉G
= 0.

Hence, there is no G-predictable process λ̂ ∈ L2
loc(X) such that

1

1− Z−
I]]τ,+∞[[ � 〈X,m〉 = I]]τ,+∞[[λ̂ �

〈
X̂, X̂

〉G
.

Hence, X −Xτ fails to satisfy SC(G).

7.2 The Key Stochastic Tools

In this section, we will provide the crucial stochastic tools for the proof of two main

theorems announced in Section 7.1. This section contains three subsections. In

subsection 7.2.1, we recall a Lazaro and Yor’s result that we extend to the case of

locally square integrable martingales. Then, we give the definition and important

properties of the optional stochastic integral. In subsections 7.2.2–7.2.3, we provide

innovative lemmas and propositions that play key roles in the proof of the two main

theorems.

7.2.1 Lazaro–Yor’s Representation

This subsection introduces and slightly extends two stochastic tools that are pillars

in our analysis, namely the Lazaro-Yor’s representation and the optional stochastic
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integral. The following extends the representation of Lazaro and Yor [45] to the

“local and dynamic” framework.

Lemma 7.3: Let M be a local martingale and (Y n
t ), (Yt) be two uniform integrable

martingales such that Y n
∞ converges to Y∞ weakly in L1. If Y n admits represen-

tation as stochastic integrals with respect to M , i.e.

Y n
t =

∫ t

0
φns dMs. (7.25)

Then there exists a predictable process φ such that Yt =
∫ t

0 φsdMs.

Proof. For the proof we refer the reader to Lazaro and Yor [45] or Jacod [76].

To extend this lemma to the dynamic case, we first define the weak convergence

in the space M2
loc(H).

Definition 7.3: A sequence of elements of M2
loc(H), (Y n)n≥1, is said to converge

weakly in M2
loc(H) if there exist Y ∈ M2

loc(H), and a sequence of H-stopping

times that increases to infinity, (σk)k≥1 such that for each k ≥ 1, the sequence

(Y n
σk

)n≥1 converges weakly to Yσk in L2(P).

Below, we extend Lazaro-Yor’s lemma to the dynamic and local framework,

which will play important rôles in the proofs of the main results.

Lemma 7.4: Let M be a locally square integrable local martingale, and (φn)n≥1 be

a sequence of predictable processes that belong to L2
loc(M). If (φn �M) converges

weakly in M2
loc(H), then there exists φ ∈ L2

loc(M) such that φ �M coincides with

its limit.

Proof. If (φn �M) converges weakly inM2
loc(H) with the localizing sequence (σk)k≥1,

then there exists Y ∈ M2
loc such that Y σk and (φn � M)σk are square integrable

martingales and (φn � M)σk converges weakly in L1(P ) to Yσk . Hence, a direct

application of Lemma 7.3 implies the existence of a predictable process ψk that is
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Mσk -integrable and the resulting integrable (ψk �Mσk) coincides with Y σk (due to

the uniqueness of the limit). Then, by putting

φ :=
+∞∑
k=1

ψkI]]σk−1,σk]],

we can easily deduce that φ ∈ L2
loc(M), as well as Y = φ ·M . This ends the proof

of the corollary.

7.2.2 The Key Stochastic Results for the Part up to Random Hori-

zon

In this section, we will present some lemmas and propositions that are crucial for

the proof of Theorem 7.1. First, let us point out that to prove Sτ ∈ SC(G), it is

essential to find a G-predictable process φG ∈ L2
loc(M̂

S) such that I[[0,τ ]] � 〈m,MS〉 =

φG � 〈M̂S〉G. As one could predict, the difficulty lies in the existence and the locally

square integrability of φG. Due to Jeulin [83], the (H’)-hypothesis is preserved, i.e.

any F-semimartingale stays a G-semimartingale on [[0, τ ]].

Lemma 7.5: To any F-local martingale M , we associate the process M̂ (b) given by

M̂
(b)
t := Mt∧τ −

∫ t∧τ

0

d〈M,m〉Fs
Zs−

, (7.26)

which is a G-local martingale.

Proof. The proof of this lemma can be found in Jeulin [83].

On the stochastic integral [[0, τ ]], it is worthy to keep in mind that for any F-local

martingale M , M̂ (b) would be defined via (7.26) in what follows.

Below, we recall an important lemma due to Choulli et al. [4].
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Lemma 7.6 ([4]): The following assertions hold.

(a) For any F-adapted process V with locally integrable variation, we have

(V τ )p,G = (Z−)−1I[[0,τ ]] �
(
Z̃ � V

)p,F
. (7.27)

(b) For any F-local martingale M , we have, on [[0, τ ]]

p,G
(

∆M

Z̃

)
=

p,F
(

∆MI{Z̃>0}

)
Z−

, and p,G
(

1

Z̃

)
=

p,F
(
I{Z̃>0}

)
Z−

. (7.28)

Remark 7.2: To explain the main difficulty that one will encounter when proving

the Structure Conditions for Sτ , we assume that S is an F-local martingale. Then,

due to Choulli et al. [4], the condition {∆S 6= 0} ∩ {Z̃ = 0} ∩ {Z− > 0} = ∅

implies that

E
(

−Z2
−

Z2
− + ∆〈m〉

1

Z̃
I[[0,τ ]] � m̂(b)

)
(7.29)

is a local martingale density for Sτ . However, because of the term 1/Z̃, in general

it is not locally square integrable. To overcome this difficulty, one applies the

Galtchouk-Kunita-Watanabe decomposition of

Hn � m̂(b) :=
1

Z̃
I{Z̃≥1/n}I[[0,τ ]] � m̂(b)

with respect to M̂ (b), and obtain

Hn � m̂(b) = φn � M̂ (b) + Ln, where φn ∈ L2
loc(M̂

(b)), and Ln ⊥ M̂ (b).

Then, the main difficulty lies in proving the weak convergence of φn �M̂ (b), and by

using Lemma 7.3 and Lemma 7.4 afterwards, we conclude that φn �M̂ (b) converges

weakly inM2
loc(G) to a locally square integrable local martingale having the form

of Φ1 � M̂ (b). Therefore, this will establish the connection between 〈M̂ (b)〉G and

〈m,M〉F on the stochastic interval [[0, τ ]].
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We start with a proposition that is dealing with weakly convergence in M2
loc

that would be frequently used in what follows.

Proposition 7.3: Let M,N be two H-locally square integrable local martingales and

H be an non-negative H-optional process such that H � [M,M ] and H � [N,N ] have

finite values. If Hn := HI{H≤n}, then the following assertions hold.

(a) If
√
H ∈ oL2

loc(M), then
√
HI{H≤n}�M converges in M2

loc(H) to
√
H �M.

(b) If
√
H ∈ oL2

loc(M) ∩ oL2
loc(N), then there exists a sequence of H-stopping

times (ηk)k≥1 increasing to infinity such that for all k ≥ 1,

〈√
HI{H≤n} �M,

√
HI{H≤n} �N

〉
ηk

converges in L1 to
〈√

H �M,
√
H �N

〉
ηk
.

(c) Suppose that
√
H ∈ oL2

loc(Y )∩ oL2
loc(N), where Y ∈ {ψ �M : ψ ∈ L2

loc(M)}.

Consider the Galtchouk-Kunita-Watanabe decomposition of Hn �N with respect

to M given by

Hn �N = φn �M + Ln, where φn ∈ L2
loc(M), and Ln ⊥M. (7.30)

Then, φn �M converges weakly in M2
loc(H).

Proof. (a) Denote (σk)k≥1 the localizing sequence of H � [M,M ]. Due to Lemma

2.3, we calculate that

∥∥∥(√HI{H≤n} −√H)�Mσk
∥∥∥2

M2(H)
= E

(〈(√
HI{H≤n} −

√
H
)
�M

〉
σk

)
= E

(〈(√
HI{H>n}

)
�M

〉
σk

)
≤ E

(
HI{H>n} � [M,M ]σk

)
→ 0, as n→ +∞.

(b) Without lose of generality, we could assume
√
H �M and

√
H � N are both
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square integrable. We derive from (a) and Kunita-Watanabe inequality that

E
(∣∣∣〈√HI{H≤n} �M,

√
HI{H≤n} �N

〉
∞
−
〈√

H �M,
√
H �N

〉
∞

∣∣∣)
≤ E

(∣∣∣〈√HI{H≤n} �M,
√
HI{H≤n} �N

〉
∞
−
〈√

HI{H≤n} �M,
√
H �N

〉
∞

∣∣∣)
+E

(∣∣∣〈√HI{H≤n} �M,
√
H �N

〉
∞
−
〈√

H �M,
√
H �N

〉
∞

∣∣∣)
= E

(∣∣∣〈√HI{H≤n} �M,
√
HI{H>n} �N

〉
∞

∣∣∣)+ E
(∣∣∣〈√HI{H>n} �M,

√
H �N

〉
∞

∣∣∣)
≤
√
E
(〈√

HI{H≤n} �M
〉
∞

)√
E
(〈√

HI{H>n} �N
〉
∞

)
+

√
E
(〈√

HI{H>n} �M
〉
∞

)√
E
(〈√

H �N
〉
∞

)
→ 0, as n→ +∞.

(c) For any ψ ∈ L2
loc(M), using Lemma 2.3, we derive

〈φn �M,ψ �M〉H = 〈Hn �N,ψ �M〉H =
(
Hn � [N,ψ �M ]

)p,H
=
〈√

Hn �N,ψ
√
Hn �M

〉H
+
∑

p,H
(√

Hn∆N
)
p,H
(
ψ
√
Hn∆M

)
:= V n

1 + V n
2 . (7.31)

Thanks to assertions (a) and (b), we deduce that both processes
√
Hn � N and

ψ
√
Hn �M converge weakly in M2

loc(H) to
√
H �N and

√
Hψ �M, and

V n
1 converges locally in L1(P ) to

〈√
H �N,ψ

√
H �M

〉H
. (7.32)
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Due to Cauchy–Schwarz inequality, we derive

|V n+l
2 − V n

2 | =
∣∣∣ ∑ p,H

(√
Hn+l∆N

)
p,H
(
ψ
√
Hn+l∆M

)
− p,H

(√
Hn∆N

)
p,H
(
ψ
√
Hn∆M

)∣∣∣
≤
∣∣∣ ∑ p,H

(√
Hn+l∆N

)(
p,H
(
ψ
√
Hn+l∆M

)
− p,H

(
ψ
√
Hn∆M

))∣∣∣
+
∣∣∣ ∑(

p,H
(√

Hn+l∆N
)
− p,H

(√
Hn∆N

))
p,H
(
ψ
√
Hn∆M

)∣∣∣
=
∣∣∣ ∑ p,H

(√
Hn+l∆N

)
p,H
(
ψ
√
HI{n<H≤n+l}∆M

)∣∣∣
+
∣∣∣ ∑ p,H

(√
HI{n<H≤n+l}∆N

)
p,H
(
ψ
√
Hn∆M

)∣∣∣
≤
√

(H � [N,N ])p,H
√(

HI{n<H≤n+l} � [ψ �M ]
)p,H

+

√(
I{n<H≤n+l}H � [N,N ]

)p,H √
(H � [ψ �M ])p,H.

An application of the Lebesgue Dominating convergence theorem implies the local

convergence in L1(P ) of the process V n
2 . This proves that 〈φn �M,ψ �M〉H = 〈Hn�

N,ψ �M〉H converges locally in L1(P ). Then, for any K ∈M2
loc(H), we have

K = θK ·M +NK , where θK ∈ L2
loc(M) and 〈M,NK〉H = 0.

Therefore, 〈φn �M,K〉H =
〈
φn �M, θK �M

〉H
converges locally in L1(P) and φn �M

converges weakly in M2
loc(H). This completes the proof of the proposition.

The following proposition proves that (Z̃)−
1
2 I[[0,τ ]] is locally square integrable

with respect to a class of G-local martingales.

Proposition 7.4: If M is an F-locally square integrable local martingale, then

I[[0,τ ]](Z̃)−1�[M̂ (b), M̂ (b)] ∈ A+
loc(G). As a result, I[[0,τ ]](Z̃)−

1
2 belongs to oL2

loc(M̂
(b),G),

where M̂ (b) is given by (7.26).

Proof. Since M ∈ M2
loc(F) and m is bounded, then there exists a sequence of F-

stopping times, (Tk)k≥1, that increases to +∞ such that

〈M〉FTk + V ar(〈M,m〉F)Tk ≤ k, P − a.s. (7.33)
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Since Z−1
− I[[0,τ ]] is locally bounded, then there exists a sequence of G-stopping times,

(τk)k≥1, that increases to +∞ and

sup
0≤t≤τk

(
(Zt−)−1I{t≤τ}

)
≤ k, P − a.s. (7.34)

Consider

σk := τk ∧ Tk, k ≥ 1, and W := I[[0,τ ]](Z−)−1 � 〈M,m〉F. (7.35)

Then it is clear that (σk)k≥1 is a localizing sequence for the process W , and due to

Lemma 7.6-(b), we obtain

E

{
I[[0,τ ]]

Z̃
� [M̂ (b)]σk

}
≤ 2E

{
I[[0,τ ]]

Z̃
� [M ]Tk

}
+ 2E

{
I[[0,τ ]]

Z̃
� [W ]σk

}
≤ 2E

{
I{Z̃>0} � [M ]Tk

}
+ 2E

{
I[[0,τ ]]

Z−
� [W ]σk

}
≤ 2E[M ]Tk + 2kE[W ]σk < +∞.

Hence, Z̃−1I[[0,τ ]] � [M̂
(b)] is locally integrable and I[[0,τ ]](Z̃)−1/2 ∈ oL2

loc(M̂
(b),G) (see

He et al. [71]).

Throughout the rest of this subsection, we will stick to the following notations

hn := I{Z̃≥ 1
n
}, Hn := Z−

(
Z̃
)−1

hn, n ≥ 1. (7.36)

As an application of Proposition 7.3 and Proposition 7.4, in the following, we prove

that φn �M̂ (b) converges weakly inM2
loc(G), where Hn�m̂(b) = φn �M̂ (b) +Ln, φn ∈

L2
loc(M̂

(b)), and Ln ⊥ M̂ (b).

Proposition 7.5: Let M ∈M2
loc(F) and M̂ (b) is given by (7.26). Then the follow-

ing hold:

(a)
(
I[[0,τ ]](Z̃)−1/2I{Z̃≥1/n} � M̂

(b)
)

converges inM2
loc(G) to

(
I[[0,τ ]](Z̃)−1/2 � M̂ (b)

)
.
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(b) For any K ∈ M2
loc(F), there exists a sequence of G-stopping times, (ηk)k≥1

that increases to +∞, and for each k ≥ 1

〈
I[[0,τ ]](Z̃)−1/2I{Z̃≥1/n} � M̂

(b), I[[0,τ ]](Z̃)−1/2I{Z̃≥1/n} � K̂
(b)
〉G
ηk

converges in L1(P ) to

〈
I[[0,τ ]](Z̃)−1/2 � M̂ (b), I[[0,τ ]](Z̃)−1/2 � K̂(b)

〉G
ηk
,

where K̂(b) is defined via (7.26).

(c) Consider the Galtchouk-Kunita-Watanabe decomposition of Hn � m̂(b) with

respect to M̂ (b)

Hn � m̂(b) = φn � M̂ (b) + Ln, where φn ∈ L2
loc(M̂

(b)), and Ln ⊥ M̂ (b). (7.37)

Then, φn � M̂ (b) converges weakly in M2
0,loc(G) and

Φ1 := lim
n→+∞

d〈Hn � m̂(b), M̂ (b)〉G

d〈M̂ (b), M̂ (b)〉G
∈ L2

loc(M̂
(b),G). (7.38)

Proof. It is a direct consequence of Proposition 7.3 and Proposition 7.4 by taking

H := I[[0,τ ]]Z−(Z̃)−1, Hn := Z−Z̃
−1I[[0,τ ]]I{Z̃≥ 1

n
}, and H = G. To complete the

proof, we just need to show (7.38). To this end, we apply Proposition 7.3 and

Lemma 7.4 to Hn� m̂(b) to conclude that there exists Φ1 ∈ L2
loc(M̂

(b),G) such that

〈Hn � m̂(b), M̂ (b)〉G converges locally in L1 to 〈Φ1 � M̂ (b), M̂ (b)〉G and

Φ1 := lim
n→+∞

d〈Hn � m̂(b), M̂ (b)〉G

d〈M̂ (b), M̂ (b)〉G
. (7.39)

This completes the proof of the proposition.

As explained in Remark 7.2, we will characterize the relationship between I[[0,τ ]] �
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〈m,M〉F and 〈M̂ (b), M̂ (b)〉G. This is the main focus of the following.

Proposition 7.6: Let M ∈ M2
loc(F) and M̂ (b) be given in (7.26). If {∆M 6=

0} ∩ {0 = Z̃ < Z−} = ∅, we have

1

Z−
I[[0,τ ]] � 〈m,M〉F = Φ̂1 � 〈M̂ (b)〉G, and Φ̂1 ∈ L2

loc(M̂
(b),G), (7.40)

where Φ̂1 := Φ1

(
p,F
(
I{Z̃>0}

)(
Z2
− + ∆〈m〉F

))−1
Z−I[[0,τ ]] and Φ1 is given in

(7.38).

Proof. By Proposition 7.5, we know that

lim
n
〈Hn � m̂(b), M̂ (b)〉G = Φ1 � 〈M̂ (b), M̂ (b)〉G, (7.41)

where Hn and m̂(b) are defined in (7.36) and (7.26) respectively. Now it remains to

describe explicitly the limit limn 〈Hn� m̂(b), M̂ (b)〉G. To this end, we first calculate

1

Z−
� [m̂(b), M̂ (b)] =

1

Z−
I[[0,τ ]] � [m,M ]− I[[0,τ ]]

∆M

Z2
−

� 〈m〉F − ∆m

Z2
−
I[[0,τ ]] � 〈M,m〉F

+
1

Z3
−
I[[0,τ ]]∆〈m〉F � 〈M,m〉F. (7.42)

Then, by integrating Hn on both sides above, and using the properties of optional

integration (see Proposition 2.3 and Proposition 7.3), we obtain

1

Z−
I[[0,τ ]] � (hn � [m,M ])p,F =

1

Z−
I[[0,τ ]] � (Hn � [m,M ])p,G

=
( 1

Z−
Hn � [m̂(b), M̂ (b)]

)p,G
+I[[0,τ ]]

p,G
(
Hn∆M

)
Z2
−

� 〈m〉F

+I[[0,τ ]]

p,G
(
Hn∆m

)
Z2
−

� 〈M,m〉F − I[[0,τ ]]
∆〈M,m〉F

Z3
−

p,G
(
Hn
)
�〈m〉F. (7.43)
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Due to {∆M 6= 0} ∩ {0 = Z̃ < Z−} = ∅, we get

p,F
(

∆MI{Z̃>0}

)
= p,F (∆M) = 0.

By taking the limit, we derive

lim
n

I[[0,τ ]]

Z−
� (hn � [m,M ])p,F =

I[[0,τ ]]

Z−
�
(
I{Z̃>0} � [m,M ]

)p,F
=
I[[0,τ ]]

Z−
� 〈m,M〉F,

lim
n
I[[0,τ ]]

p,G
(
Hn∆M

)
Z2
−

� 〈m〉F = I[[0,τ ]]

−p,F
(

∆MI{Z̃=0}

)
Z2
−

� 〈m〉F = 0, (7.44)

and

lim
n

p,G (Hn) I[[0,τ ]] = p,F
(
I{Z̃>0}

)
I[[0,τ ]],

lim
n
I[[0,τ ]]

p,G
(
Hn∆m

)
Z2
−

= I[[0,τ ]]

p,F
(

∆mI{Z̃>0}

)
Z2
−

= I[[0,τ ]]

p,F
(
I{Z̃=0}

)
Z−

, (7.45)

where in (7.43)-(7.45) we used Lemma 7.6. Then, by combining the above equalities

and (7.38), we conclude that

Φ1 � 〈M̂ (b)〉G = lim
n

(
Hn � [m̂(b), M̂ (b)]

)p,G
= I[[0,τ ]]

p,F
(
I{Z̃>0}

)(
1 +

∆〈m〉F

Z2
−

)
� 〈M,m〉F.

The proof of the proposition is completed due to the G-local boundedness of(
p,F
(
I{Z̃>0}

))−1
I[[0,τ ]] (see Lemma 7.7 below).

Lemma 7.7: The following process

V (b) :=
(
p,F
(
I{Z̃>0}

))−1
I[[0,τ ]] (7.46)

is G-predictable and locally bounded.

Proof. It is enough to notice that Z̃ ≤ I{Z̃>0} and the process (Z−)−1I[[0,τ ]] is G-

locally bounded.
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7.2.3 The Key Stochastic Results for the Part after an Honest Time

In this section, we will present some lemmas and propositions that are useful for the

proof of Theorem 7.3.

Lemma 7.8: For any F-local martingale M , we associate M̂ (a) given by,

M̂ (a) := I]]τ,+∞[[ �M + I]]τ,+∞[[ (1− Z−)−1 � 〈M,m〉F, (7.47)

which is a G-local martingale.

Proof. The proof can be found in [17], [53] and [83].

Similarly as in the part on [[0, τ ]], we will keep the notation M̂ (a) defined in (7.47)

for any F-local martingale M .

Below, we recall an important lemma due to Choulli et al. [4].

Lemma 7.9: Suppose that Zτ < 1. Then the following assertions hold.

(a) The process (1− Z−)−1I]]τ,+∞[[ is a G-locally bounded and predictable process.

(b) For any F-adapted process with locally integrable variation, V , we have

I]]τ,+∞[[ � V
p,G = I]]τ,+∞[[ (1− Z−)−1 �

(
(1− Z̃) � V

)p,F
. (7.48)

(c) For any process V as in (b), the G-predictable projection of ∆V , is given on

]]τ,+∞[[ by

p,G (∆V ) = (1− Z−)−1 p,F
(

(1− Z̃)∆V
)
. (7.49)

(d) For any F-local martingale, on ]]τ,+∞[[, we have

p,G
(

∆M

1− Z̃

)
=

p,F
(

∆MI{Z̃<1}

)
1− Z−

, and p,G
(

1

1− Z̃

)
=

p,F
(
I{Z̃<1}

)
1− Z−

. (7.50)
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The following proposition proves that (1 − Z̃)−
1
2 I]]τ,+∞[[ is locally square inte-

grable with respect to a class of G-local martingales.

Proposition 7.7: Let M be an F-locally square integrable local martingale, then

I]]τ,+∞[[

(
1− Z̃

)−1
� [M̂ (a)] ∈ A+

loc(G),

where M̂ (a) is defined via (7.47). As a result, I]]τ,+∞[[

(
1− Z̃

)−1/2
∈ oL2

loc(M̂
(a),G).

Proof. Let us denote the localizing sequences ofW := I]]τ,+∞[[ (1− Z−)−1/2�〈M,m〉F,

(1− Z−)−1I]]τ,+∞[[ and [M ] by (σn)n≥1, (τn)n≥1 and (Tn)n≥1 respectively. Then, due

to Lemma 7.9, we derive that

E

{
I]]τ,+∞[[

1− Z̃
� [M̂ (a)]σn∧τn∧Tn

}
≤ 2E

{
I]]τ,+∞[[

1− Z̃
� [M ]Tn

}
+ 2E

{
I]]τ,+∞[[

1− Z̃
� [W ]σn∧τn

}
≤ 2E[M ]Tn + E

{
2I]]τ,+∞[[

1− Z−
� [W ]σn∧τn

}
< +∞.

This ends the proof of the proposition.

Throughout the rest of this subsection, we will use the following notations

kn := I{1−Z̃≥ 1
n
}, Kn := (1− Z−)

(
1− Z̃

)−1
kn, n ≥ 1. (7.51)

As a counterpart of Proposition 7.5, we have on ]]τ,+∞[[:

Proposition 7.8: Let M ∈M2
loc(F), M̂ (a) defined by (7.47) and

Un := Kn (1− Z−)−1 I]]τ,+∞[[, n ≥ 1.

Then, the following assertions hold.

(a)
(√

Un � M̂ (a)
)

converges to

(
I]]τ,+∞[[√

1−Z̃
� M̂ (a)

)
in M2

loc(G).

(b) For any L ∈ M2
loc(F), there exists a sequence of G-stopping times (ηk)k≥1
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increasing to infinity such that for all k,
〈√

Un � M̂ (a),
√
Un � L̂

〉G
ηk

converges

in L1(P ) to

〈
I]]τ,+∞[[√

1−Z̃
� M̂ (a),

I]]τ,+∞[[√
1−Z̃

� L̂
〉G

ηk

.

Proof. The proof is similar to the proof of Proposition 7.3. Indeed, it is enough

to consider the G-locally bounded process (1 − Z−)−1I]]τ,+∞[[, and use the same

techniques as in Proposition 7.3.

Lemma 7.10: Under the condition Zτ < 1, the following process

V (a) :=
(
p,F
(
I{Z̃<1}

))−1
I]]τ,+∞[[ (7.52)

is G-predictable and locally bounded.

Proof. It is enough to notice that 1− Z̃ ≤ I{Z̃<1} and the process (1−Z−)−1I]]τ,+∞[[

is G-locally bounded.

Proposition 7.9: Let M ∈M2
loc(F) and M̂ (a) is given by (7.47). Then, the follow-

ing hold.

(a) Consider the Galtchouk-Kunita-Watanabe decomposition of Kn � m̂(a) with

respect to M̂ (a)

Kn � m̂(a) = θn � M̂ (a) + Ln, where θn ∈ L2
loc(M̂

(a)), and Ln ⊥ M̂ (a). (7.53)

Then, (θn � M̂ (a)) converges weakly in M2
loc(G).

As a result, we have

Φ2 := lim
n→+∞

d〈Kn � m̂(a), M̂ (a)〉G

d〈M̂ (a), M̂ (a)〉G
∈ L2

loc(M̂
(a),G). (7.54)

248



(b) If {∆M 6= 0} ∩ {1 = Z̃ > Z−} = ∅, we have

1

1− Z−
I]]τ,+∞[[ � 〈m,M〉F = Φ̂2I[[0,τ ]] � 〈M̂ (a)〉G, and Φ̂2 ∈ L2

loc(M̂
(a)),(7.55)

where

Φ̂2 := Φ2

(
p,F
(
I{Z̃<1}

)(
1 +

∆〈m〉F

(1− Z−)2

))−1 I]]τ,+∞[[

1− Z−
, and Φ2 is given in (7.54).

Proof. (a) It is a consequence of Proposition 7.3 and Lemma 7.4 by taking

Kn := (1− Z−)
(

1− Z̃
)−1

I{1−Z̃≥ 1
n
}, and H = G. (7.56)

(b) Now it remains to describe explicitly the limit in (7.54), that is limn 〈Kn �

m̂(a), M̂ (a)〉G. To this end, we first calculate

1

1− Z−
� [m̂(a), M̂ (a)] =

1

Z−
I]]τ,+∞[[ � [m,M ] + I]]τ,+∞[[

∆M

(1− Z−)2
� 〈m〉F

+
∆m

(1− Z−)2
I]]τ,+∞[[ � 〈M,m〉F +

1

(1− Z−)3
I]]τ,+∞[[∆〈m〉F � 〈M,m〉F. (7.57)

Then by integrating Kn on both sides above, and using the properties of optional

integration (see Proposition 2.3 and Proposition 7.9), we obtain

1

1− Z−
I]]τ,+∞[[ � (kn � [m,M ])p,F =

1

1− Z−
I]]τ,+∞[[ � (Kn � [m,M ])p,G

=
( 1

1− Z−
Kn � [m̂(a), M̂ (a)]

)p,G
−I]]τ,+∞[[

p,G
(
Kn∆M

)
(1− Z−)2

� 〈m〉F

−I]]τ,+∞[[

p,G
(
Kn∆m

)
(1− Z−)2

� 〈M,m〉F − I]]τ,+∞[[
∆〈M,m〉F

(1− Z−)3
p,G
(
Kn
)
�〈m〉F. (7.58)

Due to {∆M 6= 0} ∩ {1 = Z̃ > Z−} = ∅, we have

p,F
(

∆MI{Z̃<1}

)
I{Z−<1} = p,F (∆M) I{Z−<1} = 0.
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By taking the limit, we derive

lim
n

I]]τ,+∞[[

1− Z−
� (kn � [m,M ])p,F =

I]]τ,+∞[[

1− Z−
�
(
I{Z̃<1} � [m,M ]

)p,F
=
I]]τ,+∞[[

1− Z−
� 〈m,M〉F,

lim
n
I]]τ,+∞[[

p,G
(
Kn∆M

)
(1− Z−)2

� 〈m〉F = I]]τ,+∞[[

−p,F
(

∆MI{Z̃=1}

)
(1− Z−)2

� 〈m〉F = 0, (7.59)

and

lim
n

p,G (Kn) I]]τ,+∞[[ = p,F
(
I{Z̃<1}

)
I]]τ,+∞[[,

lim
n
I]]τ,+∞[[

p,G
(
Kn∆m

)
(1− Z−)2

= I]]τ,+∞[[

p,F
(

∆mI{Z̃<1}

)
(1− Z−)2

= −I]]τ,+∞[[

p,F
(
I{Z̃=1}

)
1− Z−

. (7.60)

Then, by combining (7.54), (7.58) and (7.59), we conclude that

Φ2 � 〈M̂ (a), M̂ (a)〉G = lim
n

(
Kn �

[
m̂(b), M̂ (a)

] )p,G
= I]]τ,+∞[[

p,F
(
I{Z̃<1}

)(
1 +

∆〈m〉F

(1− Z−)2

)
� 〈M,m〉F.

The proof of the proposition is completed.

7.3 Proofs of Theorems 7.1 and 7.3

Now, we have prepared all the ingredients to prove the two main theorems of Section

7.1 (Theorems 7.1 and 7.3).

7.3.1 Proof of Theorem 7.1

Suppose that S satisfies Structure Conditions under F. Then, there exist a lo-

cally square integrable F-local martingale, MS , and an F-predictable process λ̂ ∈

L2
loc(M

S ,F) such that

S = S0 +MS +AS = S0 +MS − λ̂ � 〈MS〉F. (7.61)

250



For notational simplicity, we put M = MS and M̂ (b) = M̂S
(b)

, where M̂S
(b)

is

defined via (7.26). Then the G-canonical decomposition of Sτ has the form of

Sτ = S0 +M τ − λ̂I[[0,τ ]] � 〈M〉F =: S0 + M̂ (b) +
1

Z−
I[[0,τ ]] � 〈M,m〉F − λ̂I[[0,τ ]] � 〈M〉F.

Recall the notations in (7.36),

hn := I{Z̃≥ 1
n
}, Hn := Z−

(
Z̃
)−1

hn, n ≥ 1.

Consider the following locally square integrable G-local martingale.

Ñ (b) :=
1

Z−
� m̂(b) − λ̂ � M̂ (b). (7.62)

Notice that

1

Z−
I[[0,τ ]] � [m,M ]− λ̂I[[0,τ ]] � [M ] = [Ñ (b), M̂ (b)] +

∆m

Z2
−
I[[0,τ ]] � 〈M,m〉F

+
∆M

Z2
−
I[[0,τ ]] � 〈m〉F −

∆〈M,m〉F

Z3
−

I[[0,τ ]] � 〈m〉F −
2λ̂

Z−
∆M � 〈M,m〉F +

λ̂

Z2
−

∆〈M,m〉F � 〈M,m〉F.

Then, by integrating both sides with Hn and combining the obtained equality with

the properties of the optional integral (see Proposition 2.3 and Lemma 7.6), we
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derive that

1

Z−
I[[0,τ ]] � (hn � [m,M ])p,F − λ̂I[[0,τ ]] � (hn � [M ])p,F

=
1

Z−
I[[0,τ ]] � (Hn � [m,M ])p,G − λ̂I[[0,τ ]] � (Hn � [M ])p,G

=
(
Hn � [Ñ (b), M̂ (b)]

)p,G
+

p,G
(
Hn∆M

)
(Z−)2

I[[0,τ ]] � 〈m〉F −
∆〈M,m〉F p,G

(
Hn
)

(Z−)3
I[[0,τ ]] � 〈m〉F

− 2λ̂

Z−
p,G
(
Hn∆M

)
I[[0,τ ]] � 〈M,m〉F +

λ̂∆〈M,m〉F

(Z−)2
p,G
(
Hn
)
I[[0,τ ]] � 〈M,m〉F

+

p,G
(
Hn∆m

)
(Z−)2

I[[0,τ ]] � 〈M,m〉F. (7.63)

Then, the similar arguments as the limits in (7.44) lead to conclude that

lim
n

(
Hn � [Ñ (b), M̂ (b)]

)p,G
= I[[0,τ ]]

1

Z−
� 〈M,m〉F − λ̂I[[0,τ ]] � 〈M〉F +R(b) � 〈M,m〉F,

where

R(b) :=
1

Z−

(
− p,F(I{Z̃=0}) +

∆〈m〉F

Z2
−

p,F(I{Z̃>0})−
λ̂∆〈M,m〉F

Z−
p,F(I{Z̃>0})

)
I[[0,τ ]].

Again, by applying Proposition 7.3 to Hn � Ñ (b) and M̂ (b), we conclude that there

exists Φ(b) ∈ L2
loc(M̂

(b),G) such that

〈Hn � Ñ (b), M̂ (b)〉G converges locally in L1 to 〈Φ(b) � M̂ (b), M̂ (b)〉G.

Recall that I[[0,τ ]] � 〈M,m〉F = Φ̂1 � 〈M̂ (b)〉G in (7.55). Thus, the uniqueness of the

limit leads to

I[[0,τ ]]
1

Z−
� 〈M,m〉F − λ̂I[[0,τ ]] � 〈M〉F =

(
Φ(b) −R(b) Φ̂1

)
� 〈M̂ (b)〉G. (7.64)
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Due to the locally boundedness of Z−1
− I[[0,τ ]], it is easy to see that

λ̂G :=
(

Φ(b) −R(b) Φ̂1

)
∈ L2

loc(M̂
(b),G), (7.65)

and

Sτ = S0 + M̂ (b) + λ̂G � 〈M̂ (b), M̂ (b)〉G. (7.66)

This proves the Structure Conditions for Sτ under G, and the proof of the theorem

is completed.

7.3.2 Proof of Theorem 7.3

Suppose that S satisfies Structure Conditions under F. Then, there exist a lo-

cally square integrable F-local martingale, MS , and an F predictable process λ̂ ∈

L2
loc(M

S ,F) such that

S = S0 +MS +AS = S0 +MS − λ̂ � 〈MS〉F. (7.67)

For notational simplicity, we put M = MS and M̂ (a) = M̂S
(a)

, where M̂S
(a)

is

defined via (7.47). Then we get

I]]τ,+∞[[ � S = I]]τ,+∞[[ �M − λ̂I]]τ,+∞[[ � 〈M〉F

=: M̂ (a) − 1

1− Z−
I]]τ,+∞[[ � 〈M,m〉F − λ̂I]]τ,+∞[[ � 〈M〉F. (7.68)

Recall the notations in (7.51),

kn := I{1−Z̃≥ 1
n
}, Kn := (1− Z−)

(
1− Z̃

)−1
kn, n ≥ 1.
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Consider the following locally square integrable G-local martingale.

Ñ (a) := − 1

1− Z−
� m̂(a) − λ̂ � M̂ (a), (7.69)

where m̂(a) is given by (7.47). Notice that

− 1

1− Z−
I]]τ,+∞[[ � [m,M ] − λ̂I]]τ,+∞[[ � [M ] = [Ñ (a), M̂ (a)] +

∆m

(1− Z−)2
I]]τ,+∞[[ � 〈M,m〉F

+
∆M

(1− Z−)2
I]]τ,+∞[[ � 〈m〉F +

∆〈M,m〉F

(1− Z−)3
I]]τ,+∞[[ � 〈m〉F

+
2λ̂

1− Z−
∆M � 〈M,m〉F +

λ̂

(1− Z−)2
∆〈M,m〉F � 〈M,m〉F.

Then, by integrating both sides with Kn and combining the obtained equality with

the properties of the optional integral (see Proposition 2.3 and Lemma 7.9), we

derive

− 1

1− Z−
I]]τ,+∞[[ � (kn � [m,M ])p,F − λ̂I]]τ,+∞[[ � (kn � [M ])p,F

= − 1

1− Z−
I]]τ,+∞[[ � (Kn � [m,M ])p,G − λ̂I]]τ,+∞[[ � (Kn � [M ])p,G

=
(
Kn � [Ñ (a), M̂ (a)]

)p,G
+

p,G
(
Kn∆M

)
(1− Z−)2

I]]τ,+∞[[ � 〈m〉F +
∆〈M,m〉F p,G

(
Kn
)

(1− Z−)3
I]]τ,+∞[[ � 〈m〉F

+
2λ̂

1− Z−
p,G
(
Kn∆M

)
I]]τ,+∞[[ � 〈M,m〉F +

λ̂∆〈M,m〉F

(1− Z−)2
p,G
(
Kn
)
I]]τ,+∞[[ � 〈M,m〉F

+

p,G
(
Kn∆m

)
(1− Z−)2

I]]τ,+∞[[ � 〈M,m〉F. (7.70)

Then, the similar arguments as in (7.59) lead to conclude that

lim
n

(
Kn � [Ñ (a), M̂ (a)]

)p,G
= I]]τ,+∞[[

−1

1− Z−
�〈M,m〉F−λ̂I]]τ,+∞[[�〈M〉F+R(a)�〈M,m〉F,
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where

R(a) :=
−1

1− Z−

(
− p,F(I{Z̃=1}) +

∆〈m〉F

(1− Z−)2
p,F
(
I{Z̃<1}

)
+
λ̂∆〈M,m〉F

1− Z−
p,F
(
I{Z̃<1}

))
I]]τ,+∞[[.

Again, by applying Proposition 7.3 to Kn � Ñ (a) and M̂ (a), we conclude that there

exists Φ(a) ∈ L2
loc(M̂

(a),G) such that

〈Kn � Ñ (a), M̂ (a)〉G converges locally in L1 to 〈Φ(a) � M̂ (a), M̂ (a)〉G.

Recall that I]]τ,∞[[ � 〈M,m〉F = Φ̂2 � 〈M̂ (a)〉G in (7.55). Thus, the uniqueness of the

limit leads to

I]]τ,+∞[[
−1

1− Z−
� 〈M,m〉F − λ̂I]]τ,+∞[[ � 〈M〉F =

(
Φ(a) −R(a) Φ̂2

)
� 〈M̂ (a)〉G.(7.71)

Due to the locally boundedness of (1− Z−)−1I]]τ,+∞[[, it is easy to see that

λ̂G :=
(

Φ(a) −R(a) Φ̂2

)
∈ L2

loc(M̂
(a),G), (7.72)

and satisfies

I]]τ,+∞[[ � S = M̂ (a) + λ̂G � 〈M̂ (a), M̂ (a)〉G. (7.73)

This proves the Structure Conditions for S − Sτ under G, and the proof of the

theorem is completed.

Conclusions:

In this chapter, we addressed the problem that how the Structure Conditions is

affected by some extra information (characterized by a random time) that would be

the knowledge only insider traders could get through time in progressive enlargement
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of filtration. Our main results are twofold. First of all, for a fixed market model,

we proved that the Structure Conditions are preserved under a mild condition.

Secondly, we singled out the necessary and sufficient conditions on the random time

for which Structure Conditions are preserved in the enlarged filtration for any initial

market model satisfying this structures. Two explicit examples were presented to

illustrate the importance of the condition and the consequence of its failure.
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