This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

INTERIM REPORT ON AN INTENSIVE STUDY OF THE FISH FAUNA OF THE MUSKEG RIVER WATERSHED OF NORTHEASTERN ALBERTA

by

W.A. BOND and K. MACHNIAK

Department of Fisheries Fisheries and Marine Service Winnipeg, Manitoba

for

Alberta Oil Sands Environmental Research Program Aquatic Fauna Technical Research Committee

> Project AF 4.5.1 October 1977

TABLE OF CONTENTS

Letter Descrig Abstrac	ation of Transmittal otive Summary ct ledgements	ii iii ix xix xx
1. INT	TRODUCTION	1
2. RES	SUMÉ OF CURRENT STATE OF KNOWLEDGE	3
3. DES	SCRIPTION OF THE STUDY AREA	5
4. MAT	TERIALS AND METHODS	11
4.1	Counting fence construction	11
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Counting fence operation Sampling schedule Trap checks Tagging Dead samples Problems associated with the fence operation	13 13 16 19 20
4.3 4.3.1	Other fish collection techniques Small fish collection sites	21 21
4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6	Laboratory techniques Fish identification Age determination Fecundity Food habits Length and weight of small fish Data analysis	21 23 24 24 24 24
5. RES	SULTS	26
5.1	Fish species of the Muskeg River	26
5.2	Relative abundance and distribution	26
5.3 5.3.1 5.3.2	Tagging results Tag releases and recaptures Movement of tagged fish	26 26 26
5.4 5.4.1 5.4.1.1 5.4.1.2 5.4.1.3 5.4.1.3	Diel timing of upstream migration	31 31 39 39 39

TABLE OF CONTENTS (cont)

	5.4.1.5 5.4.1.6 5.4.1.7 5.4.1.8 5.4.1.9 5.4.1.10 5.4.1.10 5.4.1.12 5.4.1.12 5.4.1.13 5.4.1.14 5.4.1.15 5.4.1.16	Return of spawners Length of time on spawning grounds Spawning mortality Size composition of migrant white suckers Age composition of migrant white suckers Sex ratio for migrant white suckers Fecundity Age and growth Sex and maturity Length-weight relationship Growth of young-of-the-year Food habits	42 45 50 50 50 50 60 60 62
	5.4.2 5.4.2.1 5.4.2.2 5.4.2.3 5.4.2.4 5.4.2.5 5.4.2.6 5.4.2.7 5.4.2.9 5.4.2.9 5.4.2.10 5.4.2.12 5.4.2.12 5.4.2.12 5.4.2.12 5.4.2.13 5.4.2.14 5.4.2.15 5.4.2.16	Longnose suckers Seasonal timing of upstream migration Diel timing of upstream migration Spawning period Spawning areas and behaviour Return of spawners Length of time on spawning grounds Spawning mortality Size composition of migrant longnose suckers Age composition of migrant longnose suckers Sex ratio for migrant longnose suckers Fecundity Age and growth Sex and maturity Length-weight relationship Growth of young-of-the-year Food habits	62 65 65 68 71 71 77 81 85 85
	5.4.3 5.4.3.1 5.4.3.2 5.4.3.3 5.4.3.4 5.4.3.5 5.4.3.6 5.4.3.7 5.4.3.8 5.4.3.9 5.4.3.10	Arctic grayling Spring movement Spawning Summer residence of migrant grayling Overwintering Age and growth Sex and maturity Fecundity Length-weight relationship Growth of young-of-the-year Food habits	86 86 88 89 95 95 95 98
9	5.4.4 5.4.4.1 5.4.4.2 5.4.4.3 5.4.4.4 5.4.4.5 5.4.4.5 5.4.4.5 5.4.4.7	Northern pike	98 98 103 103 103 103 103

TABLE OF CONTENTS (cont)

5.4.5 5.4.5.1 5.4.5.2 5.4.5.3 5.4.5.4 5.4.5.5 5.4.5.6	Mountain whitefish108Spring movement108Spawning108Age and growth108Sex and maturity108Length-weight relationship108Food habits108
5.4.6 5.4.6.1 5.4.6.2 5.4.6.3 5.4.6.4 5.4.6.5 5.4.6.6 5.4.6.7	Lake whitefish
5.4.7	Walleye 112
5.4.8	Burbot
5.4.9 5.4.9.1 5.4.9.2 5.4.9.3 5.4.9.4 5.4.9.5	Lake chub113Distribution and relative abundance113Age and growth113Sex and maturity116Length-weight relationship116Spawning116
5.4.10 5.4.10.1 5.4.10.2 5.4.10.3 5.4.10.4 5.4.10.5	Slimy sculpin116Distribution and relative abundance116Age and growth116Sex and maturity120Length-weight relationship120Spawning120
5.4.11 5.4.11.1 5.4.11.2 5.4.11.3 5.4.11.4 5.4.11.5 5.4.11.6	Brook stickleback
5.4.12 5.4.12.1 5.4.12.2 5.4.12.3	Longnose dace
5.4.13 5.4.13.1 5.4.13.2 5.4.13.3	Other species
6. LITERAT	URE CITED
7. LIST OF	AOSERP REPORTS 13

LIST OF FIGURES

1.	Map of AOSERP study area indicating location of Muskeg River	6
2.	Map of Muskeg River drainage basin	7
3.	Discharge of the Muskeg River from April 1 to September 15, 1976	9
4.	The Muskeg River counting fence, 1976	12
5.	Map of Muskeg River drainage basin indicating location of counting fence and small fish collection sites	22
6.	Seasonal timing of white sucker migration, 1976	43
7.	Number of days spent in Muskeg River by individual white suckers	46
8.	Length-frequency distribution for white suckers measured during counting fence operation	47
9.	Length-frequency distribution for male and female white suckers during upstream migration	48
10.	Age composition for white suckers sampled during counting fence operation	51
11.	Age-length relationship for white suckers from the Muskeg River watershed, 1976	55
12.	Age-weight relationship for white suckers from the Muskeg River watershed, 1976	57
13.	Length-frequency distribution for young-of-the-year suckers captured in the Muskeg River and Hartley Creek, June 15-17, 1976	61
14.	Seasonal timing of longnose sucker migration, 1976 .	64
15.	Number of days spent in Muskeg River by individual longnose suckers	70
16.	Length-frequency distribution for longnose suckers measured during counting fence operation	73
17.	Length-frequency distribution for male and female longnose suckers during upstream migration	74

- xiii -

LIST OF FIGURES (cont)

18.	Age composition for longnose suckers sampled during counting fence operation	75
19.	Age-length relationship for longnose suckers from the Muskeg River watershed, 1976	80
20.	Age-weight relationship for longnose suckers from the Muskeg River watershed, 1976	83
21.	Seasonal timing of Arctic grayling migration, 1976 .	87
22.	Length-frequency distribution for Arctic grayling measured during counting fence operation	90
23.	Age-length relationship for Arctic grayling from the Muskeg River watershed, 1976	91
24.	Age-weight relationship for Arctic grayling from the Muskeg River watershed, 1976	94
25.	Length-frequency distribution for young-of-the-year Arctic grayling taken from the Muskeg River and Hartley Creek on three collecting dates	99
26.	Seasonal timing of northern pike migration, 1976	102
27.	Length-frequency distribution for northern pike from the Muskeg River, 1976	104
28.	Age-length relationship for northern pike from the Muskeg River, 1976	107
29.	Seasonal timing of mountain whitefish migration in 1976	109
30.	Length-frequency distributions for lake whitefish and mountain whitefish from the Muskeg River, 1976 .	110
31.	Age-length relationship for mountain whitefish from the Muskeg River, 1976	111
32.	Length-frequency distribution for lake chub from the Muskeg River watershed, 1976	114
33.	Age-length relationship for lake chub from the Muskeg River watershed, 1976	117
34.	Age-weight relationship for lake chub from the Muskeg River watershed, 1976	118

- xiv -

LIST OF FIGURES (cont)

35.	Length-frequency distribution for slimy sculpins from the Muskeg River watershed, 1976	119
36.	Age-length relationship for slimy sculpins from the Muskeg River watershed, 1976	122
37.	Age-weight relationship for slimy sculpins from the Muskeg River watershed, 1976	123
38.	Length-frequency distribution for brook sticklebacks from the Muskeg River watershed, 1976	126
39.	Age-length relationship for brook sticklebacks from the Muskeg River watershed, 1976	128
40.	Age-weight relationship for brook sticklebacks from the Muskeg River watershed, 1976	129
41.	Length-frequency distribution for longnose dace and trout-perch from the Muskeg River watershed, 1976	132

LIST OF TABLES

1.	Summary of physical and chemical characteristics of the Muskeg River on several dates, 1976	10
2.	Sampling schedule for Muskeg River counting fence, spring, 1976	14
3.	Daily water temperatures and relative levels recorded at the Muskeg River fence site, 1976	17
4.	List of fish species captured in the Muskeg River drainage during 1976	27
5.	Summary of fish passed through the Muskeg River counting fence, 1976	28
6.	Distribution and composition of fish species captured by seine, minnow trap, and back pack electroshocker in the Muskeg River drainage, 1976	29
7.	Summary of tag releases and recaptures by species for fish tagged at Muskeg River counting fence, 1976	30
8.	Dates of tagging and recapture, location of recapture, distances travelled and elapsed time between release and recapture for fish tagged at Muskeg River counting fence, 1976	32
9.	Summary of fish enumerated during the counting fence operation in the Muskeg River, 1976	3 ¹ ;
10.	Summary of diel timing of the upstream migration of white suckers in the Muskeg River, 1976	40
11.	Condition of spawning white suckers sampled during the Muskeg River run, 1976	41
12.	Summary of diel timing of the downstream movement of white suckers in the Muskeg River, 1976	44
13.	Length-frequency distribution of white suckers sampled and/or tagged during fence operations at the Muskeg River, 1976	49
14.	Sex ratio for white suckers during upstream migration, Muskeg River, 1976	52
15.	Fecundity estimates of seven white suckers sampled during the 1976 spawning migration	53

LIST OF TABLES (cont)

Page

and the second second

16.	Age-length relationship for white suckers captured in the Muskeg River and Hartley Creek, 1976	56
17.	Age-weight relationship for white suckers captured in the Muskeg River and Hartley Creek, 1976	58
18.	Age-specific sex ratios and maturity for white suckers from the Muskeg River watershed, 1976	59
19.	Comparison of mean fork lengths and mean weights for young-of-the-year and juvenile suckers collected from the Muskeg River, Hartley and Kearl Creeks, 1976	63
20.	Summary of diel timing of the upstream migration of longnose suckers in the Muskeg River, 1976	66
21.	Condition of spawning longnose suckers sampled during the Muskeg River run, 1976	67
22.	Summary of diel timing of the downstream movement of longnose suckers in the Muskeg River, 1976	69
23.	Length-frequency distribution of longnose suckers sampled and/or tagged during fence operations at the Muskeg River, 1976	72
24.	Sex ratio for longnose suckers during upstream migration, Muskeg River, 1976	76
25.	Fecundity estimates of seven longnose suckers sampled during the 1976 spawning migration	78
26.	Age-length relationship for longnose suckers captured in the Muskeg River and Hartley Creek, 1976	79
27.	Age-weight relationship for longnose suckers captured in the Muskeg River and Hartley Creek, 1976	82
28.	Age-specific sex ratios and maturity for longnose suckers from the Muskeg River and Hartley Creek, 1976	84
29.	Age-length relationship for Arctic grayling captured in the Muskeg River, 1976	92
30.	Age-weight relationship for Arctic grayling captured in the Muskeg River, 1976	93

- xvi-

- xvii -

LIST OF TABLES (cont)

Ρ	а	g	е

31.	Age-specific sex ratios and maturity for Arctic grayling captured and aged from the Muskeg River, 1976	96
32.	Actual egg counts of two Arctic grayling sampled during the 1976 spawning migration	96
33.	Comparison of mean fork lengths and mean weights of young-of-the-year grayling collected from the Muskeg River and Hartley Creek, 1976	97
34.	Food habits of yearling Arctic grayling in Hartley Creek, 1976	100
35.	Food habits of young-of-the-year Arctic grayling from the Muskeg River and Hartley Creek, 1976	101
36.	Age-length relationships, age-specific sex ratios and maturity of lake whitefish, mountain whitefish, northern pike, walleye and burbot captured from Muskeg River in 1976	105
37.	Age-length relationship, age-specific sex ratios and maturity of lake chub captured from the Muskeg River, Hartley and Kearl Creek, 1976	115
38.	Sex and maturity ratios by age class for lake chub captured from the Muskeg River, Hartley and Kearl Creeks, 1976	121
39.	Age-length relationship, age-specific sex ratios and maturity of slimy sculpin captured from the Muskeg River, 1976	115
40.	Sex and maturity ratios, by size class, for slimy sculpin captured from the Muskeg River, 1976	124
41.	Age-length relationship, age-specific sex ratios and maturity of brook stickleback captured from the Muskeg River, Hartley and Kearl Creeks, 1976	127
42.	Sex and maturity ratios, by size class for brook stickleback captured from the Muskeg River, Hartley and Kearl Creeks, 1976	130
43.	Age-length relationships, age-specific sex ratios and maturity of trout-perch, longnose dace, pearl dace and spottail shiner captured from the Muskeg River in 1976	134

ABSTRACT

The fish fauna of the Muskeg River was studied during spring and summer, 1976. Migrations of non-resident fish from the Athabasca River into the Muskeg River watershed were monitored through the use of a two-way counting fence between 28 April and 30 July. A total of 6153 fish were passed through the upstream trap of which white suckers (46%) and longnose suckers (46%) comprised the vast majority. Arctic grayling (5%) and northern pike (2%) accounted for most of the remainder. After spawning in the lower reaches of the Muskeg River, migrant suckers of both species returned to the Athabasca River. Arctic grayling, however, remained in the tributary throughout the summer.

Floy tags applied to 2269 migrant fish yielded a 1.2% return rate for fish recaptured outside the Muskeg watershed.

Small fish collections made throughout the summer demonstrated the importance of the lower Muskeg drainage as a rearing area for youngof-the-year white suckers, longnose suckers and Arctic grayling. Lake chub, slimy sculpin and brook stickleback were the most abundant forage fish species.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the direction and encouragement provided by Dr. R. R. Wallace and the members of the Aquatic Fauna Technical Research Committee and by Mr. M. R. Falk of the AOSERP head office staff during the planning and conduct of this project.

We sincerely appreciate the advice and constructive criticism offered us by Dr. B. Hammond and Dr. S. B. Smith of the Alberta Environment Research Secretariat; by Dr. M. J. Paetz of Alberta Recreation, Parks and Wildlife and by Dr. W. Falkner and Mr. J. N. Stein of the Department of Fisheries and Environment, Winnipeg.

Special thanks are extended to Mr. D. Hadler and Mrs. C. Boyle of the AOSERP Fort McMurray office for the many services they provided during the course of the study.

We would like to thank Mr. M. R. Orr, Mr. B. Corbett and associated staff for their excellent technical support.

To the residents of northeastern Alberta who assisted us through the return of fish tags and to the many people who provided assistance in various ways, we offer our sincere appreciation.

1. INTRODUCTION

The proposed development of the Athabasca Oil Sands is expected to introduce large scale disturbance to the lake and river systems of the lower Athabasca River drainage. Especially suspectible is that section of the surface-mineable area for which the Alberta Energy Resources Conservation Board has granted development approval. Local disruption in the form of land clearing, muskeg drainage and removal, stream diversions and the construction of access routes will affect the water quality and quantity of streams in addition to the physical alterations produced. Other activities that may affect water quality include tailings pond seepages and saline minewater discharge. The diversion or blockage of streams may affect fish spawning runs. Traditional fish rearing and feeding areas might be distrubed or lost altogether. In the case of migrant fish populations, such local disruptions could be felt over much wider areas.

In order to minimize the adverse effects of development on fish populations of the Athabasca River and its tributary streams, the Alberta Oil Sands Environmental Research Program, through its Aquatic Fauna Technical Research Committee, initiated an integrated series of projects to assess the baseline state of the fish resources of the area.

The work involves a broadly based fisheries investigation of the Athabasca River downstream from Fort McMurray as well as siteintensive study of selected tributaries. Tributaries selected for intensive study are those considered to be most immediately imperilled by future surface mining operations. Those tributary streams located

more remotely from the surface mining area and in the in-situ area which are not considered to be in immediate danger are to be assessed through a program of synoptic surveys.

This report presents preliminary results of work done in 1976 on the Muskeg River, a medium sized watershed on the east side of the Athabasca River. The Muskeg watershed was the first tributary stream selected for intensive study because a large portion of the drainage lies within the surface-mineable area and because the Alberta Energy Resources Conservation Board has approved the construction here of two synthetic crude oil plants, one by Shell Canada Ltd. and the other by Home Oil Co.Ltd. and Alminex Ltd. Construction of these plants would involve massive disturbance of the watershed and the eventual diversion of both the Muskeg River and its major tributary, Hartley Creek.

The general objective of the project is to describe the baseline states of the fish resources of the Muskeg River watershed and to provide a quantitative estimate of the significance of the watershed to the fisheries of the Athabasca River system.

This report is to be considered interim in nature pending completion of field work in 1977.

2.

RESUMÉ OF CURRENT STATE OF KNOWLEDGE

Information relative to the fish fauna of the Muskeg River is limited to that generated by Griffiths' (1973) preliminary survey and subsequent baseline studies conducted by Shell (Lombard-North Group Ltd. 1973) and Shell and Home (Renewable Resources Consulting Services Ltd. 1974). The latter two studies were performed as part of an environmental assessment of Shell's lease 13 mining project and a summary of the work is included in the lease 13 environmental impact assessment that was filed with Alberta Environment in 1975 (Shell Canada Ltd. 1975).

Since Griffiths' work was part of a broad regional study intended to evaluate the sport fishery potential of a large number of streams in the oil sands area, his treatment of any one stream was, of necessity, cursory. He did, however, document the presence of eight fish species in the Muskeg River, five of which he found only at the mouth. Griffiths also identified the presence of a grayling population in the lower reaches of the Muskeg River and reported capturing mature grayling here on 27 September, 1972. Griffiths did not examine the upper Muskeg watershed nor did he sample Hartley Creek.

The work by Shell (1973) and Shell and Home (1974) while extending our knowledge of the fish fauna of the Muskeg River, left many questions unanswered. These studies, although they were unable to enumerate the runs, suggested an important role for the Muskeg in terms of providing spawning areas for longnose suckers and white suckers. The capture of Arctic grayling, longnose and white suckers and mountain whitefish in Hartley Creek suggested a greater importance

for that tributary than was predicted by Griffiths. The significance of the mouth region for fish populations from the Athabasca River was implied.

On the other hand, because these studies concentrated on the region within leases 13 and 30, they provided no information on the resident fish populations of the upper reaches of the watershed or the extent to which this region is utilized by migrant populations. Since no attempt was made to capture small fish, the likely presence of several species was not detected nor were the younger age classes of larger species sampled. Small sample sizes precluded an adequate description of the life history and general biology of several species.

Our present data base is insufficient to permit an adequate description of the fish resources of the Muskeg River watershed. The composition and distribution of resident species within the watershed must be described. We require quantification of migrant populations that utilize the Muskeg watershed on a seasonal basis and a clear description of such seasonal utilization patterns. Areas within the watershed that are critical in the life histories of the various species must be defined. Life history patterns and general biological features of all species require further elucidation.

A recent report by Jantzie (1975) provides a complete review of the literature review to the fisheries of the AOSERP study area.

DESCRIPTION OF THE STUDY AREA

3.

The Muskeg River originates in the Muskeg Mountain uplands and travels a distance of approximately 90 km before joining the Athabasca River 58 km downstream from Fort McMurray (Fig. 1). The area drained by the Muskeg River is 1464 km² of which 80 percent is forest and 20 percent muskeg (NHCL 1974). Only 2 percent of the total watershed area is lakes, the largest of which, Kearl Lake (Fig. 2), is only 5.4 km² in surface area with a maximum depth of 2 m. Hartley Creek (Fig. 2), the major tributary of the Muskeg River, drains 325 km² south of the main stream and enters the Muskeg River about 33 km upstream from its confluence with the Athabasca River. The water of the Muskeg River and Hartley Creek is stained brown as a result of the presence of humic and fulvic acids.

The climate of the study area is continental, characterized by cold winters, short cool summers and wide seasonal temperature fluctuations. January is usually the coldest month with a mean daily maximum of -15C and a mean daily minimum of -26C. The warmest month is July with corresponding values of 25C and 9C. Temperature extremes can reach -45C and 32C (INTEG 1973). Precipitation records for the Muskeg Mountains show the average annual precipitation to be 49.8 cm of which 33.5 cm falls between May and September (NHCL 1974).

In its upper portion, the Muskeg River watershed is well drained and vegetated by mixed spruce and areas of treed muskeg. Surficial deposits consist of relatively thick drift composed mainly of till (NHCL 1974) while the bedrock material is largely

Figure 1. Map of AOSERP study area indicating location of Muskeg River.

Figure 2. Map of Muskeg River drainage basin.

Cretaceous shales and sandstones. The large central area of the watershed is flat, poorly drained and covered with marshland and treed muskeg. In this area a thin surficial layer of outwash sand is underlain by the McMurray Oil Sands Formation. In the lower 16 km of its course the Muskeg River leaves the flat central portion of its watershed and begins to cut through the McMurray Oil Sands and Waterways limestone (NHCL 1974). The lower reaches of the river valley are stream cut and the channel is frequently confined by bedrock outcroppings. The stream channel in this area is fairly stable, the substrate consisting of large areas of gravel with occasional areas of boulders and bedrock.

The Muskeg River generally freezes over in late October and remains ice covered until late April. Under ice cover, water temperatures remain near OC but the stream can warm quickly in the spring and reach high temperatures in mid summer. In 1976 ice left the Muskeg on April 15 (Fig. 3). By April 28 the daily maximum water temperature was 9.5C and a reading of 25C was recorded on July 3. Considerable cooling can occur at night and daily fluctuations of up to 8C were recorded.

Discharge records for the Muskeg River, obtained from the Water Survey of Canada show a mean daily discharge of 223 cfs (9-1490) in 1974 and 215 cfs (12-968) for 1975. After the spring flood water levels generally decline through the summer although considerable fluctuation may occur as a result of heavy precipitation (Fig. 3).

The physical and chemical characteristics of Muskeg River water are given in Table 1.

Parameter		Da	ate	
nan managan kana kana managan kana ang managang parta sa 1960 ni dalam nan ang mangang kana kana kana kana kana	Feb. 11	May 14	July 27	Sept. 7
Discharge (cfs)	15.8	92.0	30.9	104.0
pH (pH units)	7.7	8.1	7.8	7.8
Specific conductance (µmhos/cm @ 25C)	367	259	380	270
Turbidity (JTU)	6.3	2.8	17.0	14.6
Colour (Hazen units)	65	70	35	80
Total alkalinity	119	136	228	148
Total hardness	139	137	196	137
Humic acid	8	4	9	8.5
Fulvic acid	10	20	9	8.5
Filterable residue	-	181	276	162

Table 1. Summary of physical and chemical characteristics of the Muskeg River on several dates, 1976¹. Except as indicated, data are expressed as $mg\ell^{-1}$.

¹Data provided by Mr.C.R. Froelich, Alberta Oil Sands Environmental Research Program.

4. MATERIALS AND METHODS

Study of the fish fauna of the Muskeg River began in late April, 1976. During the spring and summer various methods were employed to collect fish throughout the watershed. The major emphasis, however, was on the construction and operation of a twoway fish counting fence to monitor the spring movements of fish into and out of the Muskeg River. The fence was established approximately 1 km from the confluence of the tributary with the Athabasca River, making it possible to enumerate virtually every fish moving from the main river into the Muskeg River watershed. The counting fence was in continuous operation from 28 April to 30 July, 1976.

4.1 COUNTING FENCE CONSTRUCTION

The counting fence (Fig. 4) was constructed in such a way as to form a complete temporary barrier to fish. Fish travelling upstream or downstream encountered the fence at some point and were led into one of the holding boxes.

The traps themselves were constructed of 2.5 cm x 2.5 cm welded wire fabric over a frame of 5.1 cm x 10.2 cm lumber with a floor of 1.9 cm thick plywood. The trap entrance was formed by two hinged doors set at such an angle that they tapered to a 10.2 cm wide slot. Fish passed through the slot over a 10.2 cm high ramp that elevated the trap entrance above the floor. The back of the trap contained two sliding doors stacked one above the other. The upper door could be removed to facilitate passage of fish by personnel working inside the trap or both doors could be taken out to permit free passage of fish. Overall dimensions of the traps

Figure 4. The Muskeg River counting fence, 1976.

were 2.4 m long x 1.8 m high by 1.2 m wide.

The fence proper was also constructed of 2.5 cm x 2.5 cm welded wire fabric, wired to spruce pole stringers to form panels up to 4.6 m long. Once constructed, the panels were floated into place on supporting steel stakes that had been driven into the substrate. Each panel was wired to the steel stakes and to adjacent panels.

Both the fence panels and the traps were anchored in place by piling rocks upon a skirt of wire mesh that had been affixed to the bottom of these structures.

4.2 COUNTING FENCE OPERATION

4.2.1 Sampling schedule

Fence construction was completed at 1930 hours on 28 April. Thus 29 April represents the first full day of fence operation. From 29 April to 14 June the traps were checked five to seven times daily although additional checks were necessary at times of heavy fish movements. After 14 June, traps were checked less frequently, usually once or twice daily until operations ceased on 30 July. The complete sampling schedule from 29 April to 30 June inclusive is shown in Table 2.

4.2.2 Trap checks

Each trap check was performed by two persons, one working inside the trap and the other serving as recorder. As fish were passed through the fence (in the direction they were moving) a complete record was made of the number of fish of each species. For white suckers and longnose suckers the development of pearl organs on the males made it possible to distinguish males from

Date		Time of Fence Check*						
	agui me a sebala dan 100 Manufa yang dan kasar	0300	0900	1200	1500	1800	2100	2400
Apr. 29			1000		1400	+	+	+
30			+	+	+	+	+	+
May l			+	+	+	+	+	+
2			+	+	+	+	+	+
3			+	+	+	+	+	+
4			+	+	+	+	+	+
5			+	+	+	+	+	+
6			+	+	+	+	+	+
7 8		+ +	+ +	1300	1400 + 1600 1600	1700 + 1900	+	+ +
9		+	•	+	+	1700 + 1900	2000 2200	•
10		+	÷	+	+	+	+	+
11		+	+	, -}-	+	+	+	· +
12		+	+	+	+	+	+	+
13		+	+	+	+	+	+	+
14		+	+	+	+	+	+	+
15		+	+	+	+	+	+	+
16		+ 0600		+	+	+	+	+
17		+	+	+	+	+	+	+
18		+	+	+	+	+	+	+
19		+	+	+	+	+	+	+
20		+		+	1600	1700 + 1900	+	+
21		+		+	+	+	+	+
22		+		+	+	+	+	+
23		+		+	+	+	+	÷
24		+		+	+	· +	+	+
25		+			+	+	+	+
25 26		+		+	+	+	+	+
27		+		+	· +	+	+	2300
28	0100				+	+	+	2300
29	0100			+	+	+	+	2300
30	0100			+	+	+	+	2300
31	0100	+			+	+	+	+

TABLE 2. Sampling schedule for Muskeg River counting fence, spring, 1976.

TABLE 2. (Cont'd)

Date			Time of Fence Check*								
			0300	0900	1200	1500	1800	2100	2400		
June	1		÷			+	+	+	+		
	2		+			+	+	+	2300		
	3				+	+	+	+	2 300		
	4				+	+	+	+	2300		
	5	0100			+	÷	+	+	2300		
	6	0100			+	+	4-	+	2300		
	7	0100			+	+	+	+	2300		
	8				+	+	+	+	+		
	9				+	+	+	+	+		
	10				+	+	+	+	+		
	11				+	+	+	+	+		
	12				+	+	+	+	+		
	13				+	+	+	+	+		
	14				+	+	+	+	+		
	15			1000		+					

*Actual check time indicated where different from scheduled check time.

Checks once daily from June 16 to July 30.

females between 3 May and 16 May. The only exceptions to this were small fish that were either females or immature males and such fish were recorded as being of unknown sex. After spawning, the pearl organs were lost very quickly and their presence or absence became difficult to determine, especially in the dark. Thus their usefulness for sex determination became doubtful after 16 May.

Handling of fish was minimized by using a scoop constructed of PVC pipe and rochelle netting.

At each check, relative water level was read from a staff gauge situated 10 m above the upstream trap and water temperature was taken from a max-min thermometer suspended in the water at the fence. A continuous record of stream temperatures was provided by a Ryan Model D15 recording thermometer. Relative water levels and daily water temperatures are given in Table 3.

The fence was examined daily for evidence of holes developing and was cleaned as required to remove debris.

4.2.3 Tagging

Numbered Floy tags were applied to as many white suckers and longnose suckers as was practicable. A small number of northern pike were also tagged. Tags were inserted into the left side of the fish near the base of **the** dorsal fin. The risk of infection was minimized by holding the tagging gun in disinfectant and then rinsing in fresh water before each insertion.

No anaesthetic was used. However, suckers retained in a holding pen up to 15 minutes after tagging rarely showed any ill effects. Grayling did not appear to cope well with the stress imposed by the tagging process and, therefore, tagging of this

	Daily Wate	er Temperatu	ires	Daily Water Levels	
Date	Max.	(°C) Min.	Mean	(cm)	
April 28	9.5	7 0	0.05	50	
29 30	9.5 10.0	7.0 7.5	8.25 8.75	50 49	
May 1	10.0	7.0	8.50	47	
2	9.5	6.5	8.00	46	
3 4	9.5	7.0	8.25	45	
	9.5	7.5	8.50	46	
5 6	10.5	6.5	8.50	43	
	10.0	5.5	7.75	39	
7	11.0	7.0	9.00	38	
8	9.5	7.0	8.25	36	
9 10	12.0 14.0	5.5 7 F	8.75	35	
11	11.5	7.5	10.75 10.75	36 35	
12	14.0	10.0	12.00	36	
13	13.0	10.0	11.50	36	
14	12.0	9.0	10.50	36	
15	13.5	7.5	10.50	35	
16	15.0	8.5	11.75	33	
17	13.0	10.5	11.75	33	
18	13.0	9.0	11.00	39	
19	12.5	10.0	11.25	29	
20	14.0	9.0	11.50	29	
21	11.5	10.5	11.00	29	
22 23	15.0 16.5	9.5 11.5	12.25 14.00	27 28	
24	18.0	13.0	14.00	28	
25	16.5	13.5	15.00	27	
26	18.5	13.5	16.00	26	
27	18.5	13.0	15.75	26	
28*	16.5	15.0	15.75	25	
29	19.0	14.5	16.75	24	
30	17.5	15.5	16.50	23	
31	17.5	15.0	16.25	22	
June l	19.0	15.0	17.0	22	
2	19.0	15.0	17.0	22	
3	16.5	14.0	15.25	21	
3 4 5 6	17.0	15.0	16.0	20	
5	17.5	13.5	15.5	21	
	20.0	15.0	17.5	19	
7 8	20.0	15.5	17.75	19	
o 9	21.0	18.0	79.5	17	
10	23.0 22.0	20.0 20.0	21.5 21.0	18 17	

Table 3. Daily water temperatures and relative levels recorded at the Muskeg River fence site, 1976.

	Daily Wate	er Temperatu	res Da	Daily Water Levels		
Date	Max.	(°C) Min.	Mean	(cm)		
June 11	21.0	20.0	20.5	17		
12	17.0	16.5	16.75	18		
13	17.5	15.5	16.5	18		
14	17.5	15.5	16.5	18		
15	20.0	15.0	17.50	18		
16	18.5	13.0	15.75			
17	20.0	12.5	16.25	-		
18	21.5	15.0	18.25	16		
19	20.5	17.0	18.75	-		
20	18.0	16.0	17.00	640		
21	19.5	14.0	16.75	-		
22	21.0	13.0	17.00	13		
23	17.0	15.0	16.00	-		
24	14.0	14.0	14.00	14		
25	15.5	13.0	14.25	18		
26	17.0	14.5	15.75	18		
27	19.5	15.0	17.25	1000		
28	21.5	16.0	18.75	18		
29	23.0	16.5	19.75	17		
30	23.0	17.5	20.25	19		

Table 3. cont'd

* From May 28 to June 14 inclusive, water temperatures were recorded with a max.-min. thermometer. species was discontinued after the first day.

Tagging was conducted only during the daylight hours. At all times care was taken not to impede the progress of the fish any more than necessary. If fish were observed to be backing up in front of the trap, tagging was discontinued and the remaining fish were simply passed through and enumerated.

For each fish tagged fork length $(\pm 1.0 \text{ mm})$ was recorded and the sex noted if possible. Tagged fish were not weighed and no structures were retained for purposes of age determination.

The tagging program was well publicized by posters and press releases and a two dollar reward was offered for returned tags.

4.2.4 Dead samples

A small number of fish were sacrificed each day for biological analysis. For such fish, fork length (±1.0 mm) and weight were recorded. At the outset weight was recorded to the nearest 50 g but the arrival of a new scale in mid-May permitted weight determinations to the nearest 20 g. Sex and stage of maturity were determined by examination of the gonads. Stomach contents were noted and a small number of stomachs were preserved in 10% formalin for a more detailed assessment of food habits. Ovaries were removed from several white suckers, longnose suckers and Arctic grayling and preserved in Gilson's fluid. For purposes of age determination, scales were removed from the appropriate location (Hatfield et al. 1972) for grayling, pike, mountain whitefish, lake whitefish and walleyes. Otoliths (ear **bone**s) were taken from burbot and for suckers the left pectoral fin was retained for this purpose.

4.2.5 Problems associated with the fence operation

Several problems were encountered with the fence operation that may have a bearing on the interpretation of our results and should be recorded.

During the first few days of the project it was discovered that some fish, after being passed through the upstream trap, failed to continue upstream and instead entered the downstream trap minutes later, from which they were released downstream. Some tagged fish, released downstream on one such occasion later renegotiated the upstream trap. There was some double counting, therefore, of a number of fish (mostly longnose suckers). After 4 May the door to the downstream trap was closed prior to passing fish through the upstream trap and on 7 May the downstream trap was closed completely, to be re-opened at 1500 hours on 15 May.

A second problem was the result of rapidly dropping water levels during the first week of the project. The result was a drastic reduction in flow through the upstream trap. This problem was rectified by re-locating the upstream trap closer to midstream. This operation commenced at 0900 hours on 7 May and the fence was re-established by 1230 hours. It is believed that few, if any fish passed through the fence during this interval.

The third problem involves the question of the efficiency of the traps in retaining fish. In the case of the upstream trap this efficiency was observed to be very high, only the very rare fish escaping. However, the downstream trap left much to be desired in this respect. Because of the fact that the fish orient into the current, the entrance to the downstream trap was in plain

view of fish inside this trap. On some occasions, suckers seemed to enter and leave the "trap" almost at will. There is some question, therefore, as to how closely our data will describe the pattern of downstream migrations.

4.3 OTHER FISH COLLECTION TECHNIQUES

Apart from the counting fence, fish were collected from the Muskeg River by various methods including drift nets, dip nets, minnow traps, gill nets, electrofishing, angling and small mesh seines. Large fish captured by these methods were completely sampled as described previously for dead samples or measured and tagged. Small fish were preserved in 10% formalin for subsequent analysis. These were later transferred to 50% isopropyl alcohol.

4.3.1 Small fish collection sites

Small fish were collected from 10 general areas in the Muskeg River watershed (Fig. 5). Each area consisted of from 10 m to 3 km of stream channel which was sampled in such a way as to obtain a representative sample of the fish population of the area. No standard unit of effort was applied.

It was not possible in 1976 to sample all areas on a regular basis and areas 3, 4, 5, 8 and 9 were sampled only once each. Areas 6 and 10 were each sampled twice, once in June and once in late March, 1977.

Complete habitat descriptions for each area will be provided in a subsequent report.

- 4.4 LABORATORY TECHNIQUES
- 4.4.1 Fish identification

In the laboratory, preserved fish specimens were identified

Figure 5. Map of Muskeg River drainage basin indicating location of counting fence and small fish collection sites.

x-FISH FENCE

A-SMALL FISH COLLECTION SITES using taxonomic keys and descriptions given by Paetz and Nelson (1970) and Scott and Crossman (1973). While most fish could be identified to species, larval Catostomids could often be identified only to genus.

4.4.2 Age determination

For Arctic grayling, mountain whitefish, lake whitefish, walleye and northern pike, ages were determined by the scale method. For each fish, several scales were cleaned and mounted between two glass slides and the annuli read from the image produced by an Eberbach microprojector.

Ages for white suckers and longnose suckers were determined from cross sections of pectoral fin rays as described by Beamish and Harvey (1969) and Beamish (1973). After embedding the dried fin rays in epoxy, thin sections (0.5 mm to 1.0 mm) were cut by hand using a jeweller's saw with No. 6 or No. 7 blades. These sections were then mounted in Permount on glass slides and read under a microscope.

For all other fish included in this report, ages were determined from otoliths. Where required the otolith was ground by hand on a carborundum. The otolith was then cleared in a 3:1 mixture of benzyl benzoate and methyl salicylate and read under a dissecting microscope using reflected light against a black background.

In all cases independent age determinations were made by three people. Where discrepancies existed among the three results, the readers conferred until a consensus was achieved.

4.4.3 Fecundity

Fecundity was determined for several white suckers, longnose suckers and Arctic grayling using the gravimetric method of estimation described by Healey and Nichol (1975).

In this method the ovarian tissue is removed from the sample and the separated eggs dried to constant weight. The weight of a subsample of eggs is determined and the total number of ova is then derived by extrapolation. The accuracy of our estimates was assessed by performing total counts on several ovaries.

4.4.4 Food habits

Analysis of food habits was limited by time considerations. For those fish that were examined in the laboratory, the stomach contents were removed and the food items identified to the lowest possible taxon. Results were expressed as percentage frequency of occurrence, percentage of total number and (in some cases) percentage of total volume.

4.4.5 Length and weight of small fish

Small, preserved fish specimens were measured to the nearest 0.5 mm (nearest 1.0 mm in some cases) and weighed either to the nearest 0.1 g on a triple beam balance or to the nearest 0.01 g on an analytical balance.

4.4.6 Data analysis

Data were analyzed for graphic and tabular presentation using a Hewlett-Packard Model 9810-A programmable calculator.

Length-weight relationships are described by the power equation:
log₁₀ W = a + b (log₁₀L); sb =
where: W = weight in grams,
L = fork or total length in millimeters,
a = y-intercept,

b = slope of the regression line, and

sb = standard deviation of b.

Data summaries and raw data are presently on file at the Freshwater Institute in Winnipeg.

drainage during 1976.	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰
Family and Generic Names	Common Names
Family Coregonidae	
Coregonus clupeaformis (Mitchill) Prosopium williamsoni (Girard)	Lake whitefish Mountain whitefish
Family Thymallidae	
Thymallus arcticus (Pallas)	Arctic grayling
Family Esocidae	
Esox lucius Linnaeus	Northern pike
Family Cyprinidae	
Semotilus margarita nachtriebi (Cox) Couesius plumbeus (Agassiz) Rhinichthys cataractae (Valenciennes) Notropis hudsonius (Clinton)	Northern pearl dace Lake chub Longnose dace Spottail shiner
Family Catostomidae	
Catostomus commersoni (Lacépède) Catostomus catostomus (Forster)	White sucker Longnose sucker
Family Percopsidae	
Percopsis omiscomaycus (Walbaum)	Trout-perch
Family Gadidae	
Lota lota (Linnaeus)	Burbot
Family Gasterosteidae	
Culaea inconstans (Kirtland)	Brook stickleback
Family Cottidae	
Cottus cognatus Richardson	Slimy sculpin
Family Percidae	
Stizostedion vitreum vitreum (Mitchill)	Walleye

Table 4. List of fish species captured in the Muskeg River drainage during 1976.

.

5. RESULTS

5.1 FISH SPECIES OF THE MUSKEG RIVER

Work in 1976 documented the presence in the Muskeg River watershed of 15 fish species representing 10 families (Table 4).

5.2 RELATIVE ABUNDANCE AND DISTRIBUTION

A total of 6153 fish (8 species) were counted through the upstream trap during the operation of the counting fence (Table 5). White suckers and longnose suckers occurred in equal numbers (46.1%) while Arctic grayling (5.0%) and northern pike (2.1%) made up most of the remainder of large fish captured.

Small fish collections made throughout the watershed produced 3411 fish. The relative abundance and distribution of these fish are indicated in Table 6.

5.3 TAGGING RESULTS

5.3.1 Tag releases and recaptures

Floy tags were applied to 2269 fish with longnose suckers (55.8%) and white suckers (38.6%) accounting for the vast majority (Table 7). Recapture results have been disappointing with only a 1.2% return rate to date. It is anticipated that an increased number of tags in the system and increased activity by AOSERP fishery crews in the study area will produce better results in 1977.

5.3.2 Movement of tagged fish

White suckers

Of 8 recaptured white suckers, 1 was captured upstream of the Muskeg River while the remaining 7 had moved downstream in the Athabasca River. Two white suckers tagged at the fence travelled 162 km downstream in just 8 days while one had travelled

Species	Number	of Fish
	Upstream Trap	Downstream Trap
White sucker	2839	1669
Longnose sucker	2837	2191
Arctic grayling	305	78
Northern pike	131	155
Mountain whitefish	33	101
Lake whitefish	3	14
Walleye	4	3
Burbot	1	2
Total	6153	4213

Table 5. Summary of fish passed through the Muskeg River counting fence, 1976.

						Muskeg	River							Hartley	Cree	<u>k</u>		Kearl			
Species	Area N	a 1 %	Are N	a 2* %	Ar N	ea 3 %	Are N	ea 4 %	Ar N	ea 5 %	Ar N	ea 6 %	Ar N	ea 7 %	Ar N	ea 8 %	Ar N	ea 9 %	Area N	10 %	Total
Arctic grayling	23	1.5	7	1.4	17	5.7							82	20.1	6	20.0					135
Pearl dace			4	0.8																	4
_ake chub			23	4.6	84	28.3					8	14.3	127	31.4	14	46.7	6	4.2			262
Longnose dace			72	14.9									1	0.3							75
Spottail shiner			1	0.2																	1
ucker spp.	1292	83.1	40	8.1			355	99.2					98	24.1							1785
White sucker	197	12.7	160	32.2	100	33.7							20	4.9	6	20.0	129	89.5			612
_ongnose sucker			10	2.0	1	0.3							5	1.2	1	3.3	8	4.6			25
Frout-perch	40	2.6	2	0.4																	42
Burbot			3	0.6																	_ 3
Brook stickleback			4	0.8	22	7.4	3	0.8	61	100	48	85.7	54	13.3	3	10.0	1	0.7	8	100	204
Slimy sculpin	2	0.1	167	33.6	73	24.2							19	4.7							261
lalleye			2	0.4																	2
Totals	1554		497		2 97		358		61		56		406		30		144		8		3411

Table 6. Distribution and composition of fish species captured by seine, minnow trap and backpack electroshocker in the Muskeg River drainage, 1976.

*Other species recorded (from fence operation) in Area 2 include: lake whitefish, mountain whitefish and northern pike.

Species	Number Tagged	Percent of Total Number Tagged	Number Recaptured	Percent Recaptured
White sucker	876	38.6	8	0.9
Longnose sucker	1267	55.8	1	+
Northern pike	119	5.2	18	15.1
Arctic grayling	3	0.1	0	0
Walleye	4	0.2	0	0
Total	2269	100.0	27	1.2

Table 7. Summary of tag releases and recaptures by species for fish tagged at Muskeg River counting fence, 1976.

approximately 280 km in 32 days when it was recaptured in Lake Athabasca (Table 8).

Longnose suckers

Only 1 longnose sucker was recaptured out of a total of 1267 tagged. This fish was at large for 84 days before being recaptured in the Athabasca River only 5 km downstream from the Muskeg River (Table 8).

Northern pike

A total of 18 tagged northern pike were recaptured which was 15.1% of all pike tagged. Generally, pike demonstrated little tendency to move around as 12 fish were recaptured at the fence site or at the mouth of the Muskeg after 10 to 75 days (Table 8). One pike, however, had travelled 72 km in 43 days when it was recaptured.

5.4 LIFE HISTORIES OF FISH SPECIES

5.4.1 White suckers

5.4.1.1 <u>Seasonal timing of upstream migration</u>. The seasonal pattern of the 1976 upstream migration of white suckers into the Muskeg River is shown in Fig. 6 and Table 9.

White sucker spawning migrations appear to be initiated by increasing water temperatures and often begin when the daily maximum water temperature approaches 10C (Geen et al. 1966; Bond 1972).

At the time of the installation of the 1976 counting fence on the Muskeg River the daily maximum water temperature was already at 9.5C. The run appeared to have commenced initially on 29 April. However, when daily maximum water temperature dropped below 10C during the first few days of May, the number of upstream

Species	Date Tagged	Location Recaptured ¹	Date Recaptured	Dista Trave		Elapsec Time
and a subscription of the		an ang barang sang sang sang sa sang sa sang sa sang sa sang sang	- 	Miles	km	(Days)
White sucker	May 6/76 ²	Mile 26	May 22/76	10	16	2
	May 18/76	Mile 135	May 26/76	101	162	8
	May 18/76	Mile 135	May 26/76	101	162	8
	May 19/76	Lake Athabasca	June 20/76	175	280	32
	June 26/76	Mile 37	Aug. 15/76	3	5	50
	June 28/76	Mile 37	Aug. 15/76	3	5	48
	June 28/76	Mile 37	Aug. 15/76	3	5	48
	July 11/76	Mile 37	Sept. 30/76	3	5	81
Longnose sucker	May 23/76	Mile 37	Aug. 15/76	3	5	84
Northern pike	May 4/76 ³	Mile 26	June 8/76	10	16	7
	May 4/76	Fence	June 19/76		-	46
	June 9/76	Mile 33	July 21/76	3	5	42
	June 10/76	Mile 79	July 23/76	45	72	43
	June 15/76	Mile 26	July 20/76	10	16	35
	June 22/76	Mile 33	July 21/76	3	5	29
	June 22/76	Mile 35 ⁴	July 25/76	0.6]	33
	June 26/76	Mile 26	Sept. 20/76	10	16	86
	June 26/76	Mile 35	Aug. 10/76	0.6	1	45
	June 27/76	Fence	July 21/76	200		24
	June 29/76	Mile 35	July 25/76	0.6	1	26
	July 1/76	Fence	July 11/76	-	~	10
	July 1/76	Mile 35	Sept. 15/76	0.6	1	75

Table 8. Dates of tagging and recapture, location of recapture, distances travelled and elapsed time between release and recapture for fish tagged at Muskeg River counting fence, 1976.

.

Table 8. (Cont'd)

Species	Date Tagged	Location Recaptured	Date Recaptured	Distar Travel		Elapsec Time
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Miles	km	(Days)
Northern pike	July 8/76	Mile 35	July 25/76	0.6	1	17
·	July 13/76	Mile 35	July 25/76	0.6	1	12
	July 21/76	Mile 35	Sept. 15/76	0.6	1	45
	July 24/76	Mile 35	Sept. 14/76	0.6	1	52
	July 27/76	Mile 35	Aug. 16/76	0.6	1	20

¹Mileage refers to distance below Fort McMurray.

 2 This fish was tagged going upstream on May 6/76 and was passed through downstream trap on May 20/76.

 3 This fish was tagged going upstream on May 4/76 and was passed through downstream trap on June 1/76.

 4 Mile 35 refers to the mouth of the Muskeg River.

Non-Non-P and the Propagation of the State Propagation of the State		Upstr	eam Tra	ар					Downs	stream	Trap		
Date	Longnose Sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Daily Totals	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Lake whitefish	Daily Totals
April 27 28 29 30 May 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 65 130 213 132 109 186 117 21 65 124 79 359 398 134 164 133 144 116	4 2 72 96 34 10 4 34 1 69 697 270 561 407 203 112 93 35 28	1 19 61 30 25 29 6 21 9 5 15 6 7 3 12 7 6 9	- 8 10 13 8 6 1 7 2 5 5 4 3 - 1 4 9 1	- 2 2 1 1 1 1 3 - 3 3 4 - 2 1 5 1 -	6 88 273 350 205 157 203 176 38 144 844 364 930 817 341 294 238 195* 156*	- 9 25 19 13 33 17 25 3 2 4 - - 3 1 - - 3 1 - - 28	- - 4 6 1 1 - - 7 2 - - 7 2 - - 17 28 - 5 206	- 3 7 8 8 7 1 2 - 2 - - 1 - 1 - 1 -		-		0 12 37 33 22 41 18 28 3 11 6 0 0 0 20 30 0 5 239
16 17 18	68 9 4	22 14 3	5 4 1	2 2 2	- 1	97 30* 11	53 65 51	164 81 121	- -	4 1 1	- - -	- 2 -	222 149 173

Table 9. Summary of fish enumerated during the counting fence operation in the Muskeg River, 1976. Percentage values indicate composition of fish moving through upstream and downstream traps.

		Upstr	eam Tra	эр					Downs	tream T			
Date	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Daily Totals	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Lake whitefish	Daily Totals
May 19				2	₩ ₩	2	43	81		4	1	ub k	129
20		-	2	3	1	6	232	172	2		1	-	407
21	3	8	_	-	1000	11	75	20		874	ligite	1	96
22	4	6	2		łazmi	13	224	89	900	1	-	2	316
23	3	9	1	1	634	14	90	38		1		1	130
24	Ĩ	2	_	2	boa	5	25	15	-	1	1	-	42
25	_	4	240	2	-	6	39	28	0.00	3	1	1	72
26	-	4	2	1	ant.	7	91	19	1	2	1	-	115+
27	-	1	608	-	-	1	105	10	1	1	-	1	118
28	-	1	-	-	-	1	62	3	1	-	1	1	68
29	-	-	-	2	-	2	179	12	3	3	1		198
30	8 ,23	-	-	-	bes	0	100	17		2	-	-	119
31	scak	2	2	3	-	7	25	10	825	2	1		38
June	22	13	3	2	-	40	30	14	3	4	-	1	52
2	16	6	-	2	— 4	25*	5	3	-	-	2	-	10
3	-	1	Low .	-	legis	1	32	3	-	1	4	-	40
4	3	-	-	2	-	5	122	36	2	4	3	-	167
5	1	-	2	. 🗕	-	3	71	21	-	2	2	1	97
6	-	2	1	-		3	28	17	-	1	7	-	53
7	4	-	-	-	-	4	12	4	-	1	3	-	20
8	4	-	-	1	-	5	7	6		2	1	-	16
9	3	-	-	. 1	1	- 4	35	27	·	5	4	2	73
10	2	1	2	3	-	8	23	13	6	7	10	-	59
11	-		-	4	1.	5	13	11	3	5	10	-	42

Table 9. (Cont'd)

ω Մ

n terrentatikaran antikan mananan an	and a second	L	lpstream	n Tr ap	این به «معند طبیع محمد می می وارد این این به معند می وارد می وارد می وارد می وارد می وارد می	نیسین محمد مید و اور ایران مید کوری داد. مربون محمد مید و اور ایران مید می کوری در میدون می ایران میدون می کوری دو ایران میدون می کوری	and a state of the		Down	stream			
Date	Longnose sucker	White Sucker	Arctic grayling	Northern pike	Mountain whitefish	Daily Totals	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Lake whitefish	Daily Totals
June 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20	-		-	1 - - - - - - - - - - - - - - - - - - -		1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 * 0 0 0 1 2	2 7 1 - 2 2 2 4 - 30 6 13 2	- 7 3 - 1 - - 1 - 27 5 13 3		2 4 1 3 - 4 2 - 7 3 1 - 8 4 1 4 1 4	16 -4 -2 -1 - 74 - 4 23 -		21 18 9 3 6 0 7 5 0 0 16 10 5 0 70+ 17 30 9
30 July 1 2 3 4	-		-	- - -		0 0 0 2*	5 4 - 8 3	7 1 - 2	1	- - 2	- - 1	- - - -	7 17 2 10 9

Table 9. (Cont'd)

(p,
Ļ
uo
പ്
\mathbb{Z}
Ó
e
q
~

Table 9. ((Cont'd)												
			Upstream	m Trap				Dov	Downstream	Trap			
Date	rongker Longnose	White White	Arctic grayling	bike Northern	nistnuoM Asitetidw	Daily Totals	sucker Longnose	white Mhite	Arctic grayling	Northern Northern	nistnuoM Asifətidw	lake Lake	Daily Totals
July 965522332187757757698765						000000mm000-00000000.	-01-0-01-040-1101-1			- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2/	8	_	I	I	ŧ	_	_		I		1	1	Ś

Table 9. (Cont'd)

		Ĺ	lpstream	n Trap					Downstr	eam Tra	р		
Date	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Daily Totals	Longnose sucker	White sucker	Arctic grayling	Northern pike	Mountain whitefish	Lake whitefish	Daily Totals
July 27	-	1		-	-	1	1	1	-	1		-	3
28		-	-	-	-	0		658		1			1
29	-	-		10	-	0	1	1	1	1	-	100	4
30		-	-	-	-	0	2	1		-		-	3
Totals	2837	2839	305	131	33	6153	2191	1669	78	155	101	14	4213
%	46.1	46.1	5.0	2.1	0.5		52.0	39.6	1.9	3.7	2.4	0.3	

* Other species counted through the upstream trap: three lake whitefish, May 15, 17 and June 2; four walleye, May 14, June 24 and July 4 (two fish), and one burbot, May 15.

⁺Other species counted through the downstream trap: three walleye, May 26, June 26 and July 9; two burbot, July 15.

migrants decreased. With increasing water temperature the main run of white suckers began on 7 May as 79.3% of all migrants passed upstream between 7 May and 12 May inclusive. The greatest numbers of migrating fish were observed on days when daily maximum water temperature exceeded 10C.

5.4.1.2 <u>Diel timing of upstream migration</u>. The majority of spawners (75%) moved upstream between noon and midnight with a maximum usually in the late afternoon and evening hours (Table 10). This maximum daily movement appeared to occur just following the time of highest daily water temperature.

5.4.1.3 <u>Spawning period</u>. The actual spawning period of white suckers in 1976 lasted approximately two weeks. The first ripe male and female suckers were captured on 29 April (Table 11). The first spent fish were collected at the downstream trap on 14 May and by 18 May all fish taken were spawned out.

5.4.1.4 <u>Spawning areas and behaviour</u>. Throughout the second week of May, 1976, white suckers in spawning coloration were observed throughout the lower 3 km of the Muskeg River. This region contains large areas of suitable spawning gravel.

Mr. Malcolm Orr observed white suckers spawning immediately below the counting fence on 11 May 1976, at which time the water temperature varied between 10C and 11.5C. Spawning suckers occupied an area of approximately 726 m². In most of this area the substrate consisted of coarse gravel (6-15 cm in diameter) interspersed with finer gravel (<6 cm). Water depth at the time averaged about 30 cm in this region.

During the spawning act, fish were rather vigorous,

5.4.1.6 Length of time on spawning grounds. The length of time spent by individual white suckers on the spawning grounds was determined from fish tagged going upstream and recaptured passing through the downstream trap. The actual times varied greatly from 3 to 84 days although the majority of fish (64%) returned downstream within 19 days (Fig. 7).

5.4.1.7 <u>Spawning mortality</u>. Between 18 June and 30 July, 112 white suckers were found dead in the Muskeg River. The number of mortalities increased and the general condition of the fish decreased through July. At this time many white suckers were found blind in one or both eyes, displayed signs of physical deterioration and were often heavily infested with the parasitic copepod *Argulus sp.* Spawning mortality among white suckers in north-western Canada is usually around 15-20% (Scott and Crossman 1973).

5.4.1.8 <u>Size composition of migrant white suckers</u>. During the 1976 counting fence operation, fork lengths were determined for 1205 white suckers of which sex was determined in 432 cases (Table 13 and Fig. 8). Migrant suckers ranged in length from 155 mm to 587 mm and in weight from 40 g to 3200 g. The lengthfrequency polygon (Fig. 8) shows 3 major modes in the length distribution (350-369; 390-409 and 450-469 mm).

Considering only the upstream migration, female suckers were generally larger than males as indicated in Figure 9. Females had a mean fork length of 410 mm (Range: 239-587 mm) while males showed a mean fork length of 368 mm (Range: 218-515 mm).

			T	ime Che	cks			Number
Date	0300	0900	1200	1500	1800	2100	2400	of Fis
April 27	*	*	*	*	*	4	*	4
28	*	*	*	-	Can	2	-	2
29	-	66	-	-	-	5	1	72
30	*	52	-	1000	11	-	33	96
May 1	*	25		-	1	-	8	34
2	*	5	-	4001	-	-	5	10
3	*		-	-	1		3	. 4
4	*	27	649	-	1	-	6	34
5	*	1	-	-	-	-	-	
6	*	-	-	-	68	-		69
7	-		-	167	300 *	142	88	697
8	79	47	40	14			90	270
9	46	26	14	13	180	183	125	561 407
10 11	111 114	26 10	1	69 15	74 Trap	65	62 63	407 203
12	114	5	1	15 28	цгар	Closed	rap clo	
13	22	9	-	20	20		20	93 seu 112
14	17	2		22	20	_	15	35
15	2	2	1	1	8	1	13	28
16	10	-		1	2	ا س	12	22
17	8	5	_	-	_	-	1	14
18	-	í		_	Ne G	_	2	3
19	-		C 74	THE	_	_	-	Ó
20	-	*	-	_	_	-		_
21	3	*	-	-	1	-	4	8
22	Ĩ4	*	6.000	-	-	-	2	6
23	8	*	***	1	_	-	-	9
24	2	*	-	-	***	-	-	2
25	-	*	-	1	3	-	-	4
26	2	*	-	-	-	-	2	4
27	-	*	1	-		-	-	1
28	-	1	*	-	-	- T	rap clo	sed l
29	-	*	679	-	-	-	-	0
30		*	-	-	-	-	-	0
31	-	*	*	-	2	- T	rapclo	sed 2
Totals	439	284	58	332	674	466	556	2808
% Grand Total	16%	10%	2%	12%	24%	17%	20%	

Table 10. Summary of diel timing of the upstream migration of white suckers in the Muskeg River, 1976. Fish which were counted at times other than those indicated were included in the next check period. Asterisks indicate times not checked.

	Spawn	ing Cond	ition-	emales	Spa	wning Co	nditio	n-Male
_		%	%	%		%	%	%
Date	N	Mature	Ripe	Spent	N	Mature	Ripe	Spent
April 27					4	100		
28					1	100		
29	2		100		8	25	75	
30	8	12	88		5	40	60	
May 2	1		100		3		100	
4	2	50	50		3		100	
6	4	25	75		5		100	
7	5	40	60		8	25	75	
8	12	80	20		20	20	80	
9	4	100						
10					1	100		
11	2	50	50		1	100		
12	3	3 3	67		7		100	
13					3	33	67	1
14	4			100	2		50	50
15	3			100	12		83	17
17	3	33		67	3		33	67
18	3			100	3			100
19	5			100				
20	2			100	3			100
21					1			1.00
Totals	63				93			

Table 11. Condition of spawning white suckers sampled during the Muskeg River run, 1976. Spawning conditions were determined by dissection.

exposing their backs and splashing water. Most spawning activity was seen to occur from mid-afternoon until late evening, coinciding with the period of highest daily water temperature.

By 15 May, only a few fish remained on the spawning grounds. These were often observed to move around, apparently combing the substrate as if feeding.

From fry collections made in June, it seems likely that suckers spawned on suitable substrate downstream from Hartley Creek and in the lower reaches of Hartley Creek itself. No young-of-theyear suckers were taken upstream of Area 4 (Fig. 5) in 1976 although a large number of yearling white suckers were captured on 21 June, 1976 near the mouth of Kearl Creek (Area 9, Fig. 5).

5.4.1.5 <u>Return of spawners</u>. The seasonal pattern of the downstream movement of spent white suckers in 1976 is shown in Figure 6. The main movement of spent fish from the Muskeg River began on 15 May, about 16 days after the spawning migration began (Table 9). Although the downstream trap was closed for a few days prior to 15 May, the fence was under constant observation and no fish were seen near the trap before that date.

The downstream migration showed a peak between 15 May and 20 May and thereafter, fish continued to trickle downstream through 30 July after which time the fence was no longer monitored.

The downstream migration took place mainly in the early evening and night with 79% of the spent fish being counted between 1800 and 0300 hours (Table 12). Maximum movement occurred during the period following highest daily water temperature.

WHITE SUCKERS

Figure 6. Seasonal timing of white sucker migration, 1976.

Time Checks Number of Fish Date April 27 * 쑸 × * × * -* \star * -..... _ ----_ unt * **4**0 -May * _ -----_ 쑸 _ * -* _ _ _ -* ------* _ _ Downstream trap closed -..... -wa -_ _ -* _ ÷ _ * _ * _ _ * 쑸 _ $_{\star}$ _ * ----_ * × _ _ Trap closed 3 * _ × × \star _ - Trap closed 10 -Totals % Grand Total 17% 7% 2% 12% 29% 4% 29%

Table 12. Summary of diel timing of the downstream movement of white suckers in the Muskeg River, 1976. Fish which were counted at times other than those indicated were included in the next check period. Asterisks indicate times not checked.

Figure 7. Number of days spent in Muskeg River by individual white suckers.

Figure 9. Length-frequency distribution for male and female white suckers during upstream migration.

Fork Length (10 mm intervals)	Male	Female	Unknown	Fork Length (10 mm intervals)	Male	Female	Unknown
150 - 159			1	400 - 409	2	13	42
160 - 169				410 - 419	7	4	40
170 - 179	1			420 - 429	7	17	35
180 - 189				430 - 439	7	3	28
190 - 199				440 - 449	3	7	25
200 - 209		1	1	450 - 459	3	5	37
210 - 219	1		2	460 - 469	11	6	28
220 - 229	1			470 - 479	7	6	27
230 - 239	1	2		480 - 489	7	11	22
240 - 249	3		4	490 - 499	8	2	26
250 - 259	5	2		500 - 509	12	5	26
260 - 269	3	4		510 - 519	3	11	20
270 - 279	13	6	2	520 - 529	1	10	21
280 - 289	8	4	2	530 - 539		7	14
290 - 299	8	4	5	540 - 549		7	6
300 - 309	6	4	5	550 - 559	1	4	6
310 - 319	12	3	15	560 - 569		4	
320 - 329	7	7	32	570 - 579			
330 - 339	8	8	33	580 - 589		1	
340 - 349	5	17	47	590 - 599			
350 - 359	11	11	52				
360 - 369	3	6	49				
370 - 379	12	8	41	Totals	203	229	773
380 - 389	10	4	35				
390 - 399	6	15	44	Grand Total		1205	

Table 13. Length-frequency distribution of white suckers sampled and/or tagged during fence operations at the Muskeg River, 1976.

5.4.1.9 Age composition of migrant white suckers. The age composition of the 1976 spawning run is shown in figure 10. The majority of fish in the sample (43%) were 4 or 5 years old. The oldest fish taken was a male, 17 years old. There was no indication in the data that females in this population live longer than males, a situation reported by many authors. 5.4.1.10 <u>Sex ratio for migrant white suckers</u>. Of 2372 white suckers for which sex was determined during the upstream migration, 1467 (62%) were females. This represents a significant deviation $(\chi^2 = 133.2, p < 0.001)$ from the usual 1:1 ratio.

The sex ratio during the upstream run varied with time. The early portion of the run was dominated by males, the latter by females (Table 14).

The ratio of males to females in the descending run was not determined due to difficulties in sexing fish externally at that time.

5.4.1.11 <u>Fecundity</u>. Ovaries were removed from seven female white suckers in spawning condition and fecundity estimated gravimetrically. The estimated total number of eggs per female (size range 397 to 485 mm fork length) ranged from 21,402 to 51,221 (Table 15). Actual counts on four ovaries revealed errors of from +1.6% to -0.5% for the estimated values.

In 6 cases out of 7 the right ovary contained more eggs than did the left ovary (average 20,409; range 11,482-27,943 eggs).

Length-relative fecundity ranged from 539.1 to 1085.2 ova per cm of fork length while weight-relative fecundity varied from 24.9 to 41.1 eggs per g of body weight.

		Number	of Fish		Percent
Date	Males	Females	Unknown	Total	Males*
April	·····			1	
27	4			. 4	100
28 29	1 8	2	1 62	2	100 80
30	0 4	2 9	62 83	72 96	
	4	9	03 34	96 34	31
May l 2	4	1	54 E	10	80
2	т	I	5 4	4	00
5 Ц	13	17	4	34	43
т 5	, j	• 7	1	1	L L
3 4 5 6 7 8	46	23	-	69	67
7	390	303	4	697	56
8	88	175	7	270	33
9	179	361	21	561	33
10	68	273	66	407	20
11	39	135	29	203	22
12	29	72	11	112	29
13	17	46	30	93	27
14	9	22	- 4	35	29
15	9 4	22	2	28	15
16	2	6	14	22	25
17			14	14	
18			3	3	
19					
20					
21			8	8	
22			6	6	
23			9 2	9	
24			2	2	
25			4	4	
26			4	4	
27			1	1	
28			1	1	
29					
30					
31			2	2	
une 1-July 30			31	31	
otals	905	1467	467	2839	

يتقرق

Table 14. Sex ratio for white suckers during upstream migration, Muskeg River, 1976.

* Based on fish of known sex.

Fork		Num	ber of Egg		Relative Fecundity			
_ength (mm)	Weight (g)	Left Ovary	Right Ovary	Total	(cm)	(g)		
466	1600	19,263	20,579	39,842	854.9	24.9		
427	950	17,474	18,000	35,474	830.8	37.3		
426	950	19,900	19,122 [*] (+1.4%)	39,022	916.0	41.1		
485	1840	22,226* (-0.5%)	22,615* (+1.6%)	44,841	924.6	24.4		
460	1600	20,008* (+0.9%)	21,833	41,841	909.6	26.2		
397	800	9,920	11,482	21,402	539.1	26.8		
472	1740	23,278	27,943	51,221	1085.2	29.4		

Table 15. Fecundity estimates of seven white suckers sampled during the 1976 spawning migration. Asterisks indicate actual egg counts and percentages in parenthesis the error deviation of estimated counts.

Regression analysis indicated a significant (p < 0.01), positive correlation between fecundity and fork length (n = 7; r = 0.877). The relationship between fecundity and fork length is expressed by the equation:

log₁₀ Fecundity = 3.408 log₁₀ Fork Length (mm) - 4.451
5.4.1.12 Age and growth. Growth in fork length proceeded at a
constant rate until approximately age 10 at which age white suckers
had a mean length of 485 mm (Fig. 11, Table 16). After age 10
little increase in length occurred.

Females were generally longer than males of the same age but the difference was not significant (Student's t test) except for age 14 fish (Table 16).

White suckers gained weight very slowly during the first three years of life, then rapidly up to age 10 (Fig. 12, Table 17). Although females were generally heavier than males of the same age, the weight difference was not significant (Table 17).

5.4.1.13 <u>Sex and maturity</u>. Of 310 white suckers aged and sexed, 53% were males (Table 18). The number of males exceeded that of females in age groups 2 to 4, 15 and 17. The sexes were equally represented in age groups 6, 7, 11 and 14 and females outnumbered males in age groups 5, 8, 9, 10, 13 and 16.

The earliest age of sexual maturity was 3 years for male white suckers and 4 years for females (Table 18). All fish were mature by age 10 although a few immature fish were recorded at older ages. The presence of such fish may indicate that some white suckers do not spawn every year.

Figure 11. Age-length relationship for white suckers from the Muskeg River watershed, 1976.

տ Ծ

Age			Males			1	Females			A1	l Fish		t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
1									14	53.00	10.91	36-69	_
2	2	96.00	1.41	95-97	0				3	91.00	8.72	81-97	000
3	3	132.33	14.15	116-141	1	129.00			5	136.20	14.58	116-155	Ciria
4	35	261.40	28.68	77.6-303	10	271.30	45.89	99.8-330	48	260.98	33.66	77.6-330	0.84
5	40	314.75	21.91	259-357	45	314.76	33.23	239-364	91	315.20	17.75	213-364	0.002
6	14	357.79	21.18	308-382	14	3 67.93	17.14	339-393	32	362.06	19.03	308-395	1.39
7	16	392.13	21.32	350-421	16	396.63	17.46	354-432	35	395.66	19.89	350-432	0.12
8	10	411.50	37.21	367-465	12	420.50	33.21	365-485	26	416.89	20.42	365-485	0.60
9	11	456.10	40.33	374-491	14	460.79	24.18	420-486	25	458.72	31.62	374-491	0.37
10	2	483.50	36.06	458-509	8	491.13	25.69	145-531	10	485.60	25.61	445-531	0.36
11	11	482.27	14.64	465-504	11	491.27	34.16	427-532	23	488.22	26.38	427-532	0.80
12	9	477.56	34.58	400-505	5	501.40	65.38	423-569	15	483.00	46.66	400-569	0.90
13	4	507.25	15.90	490-528	6	516.83	65.77	394-587	10	513.00	50.12	394-587	0.28
14	3	474.33	32.35	438-500	3	537.33	16.17	520-552	6	505.83	41.40	438-552	3.02*
15	2	506.00	65.05	460-552	1	560.00			3	524.00	55.57	460-560	-
16	0]	519.00			2	505.00	19.80	491-519	
17	1	475.00							1	475.00			
Totals	163				147				349				

TABLE 16. Age-length relationship (derived from fin rays and otoliths) for white suckers captured in the Muskeg River and Hartley Creek, 1976, sexes separate and combined sample (includes unsexed fish). Differences in mean length at each age for males and females were tested for significance using Student's t-test. Asterisk indicates a significant difference in means (P < 0.05).

Figure 12. Age-weight relationship for white suckers from the Muskeg River watershed, 1976.

Age			Males			F	emales			А	ll Fish		t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
]									14	2.56	2.00	.55-7.5	-
2	2	10.35	0.07	10.3-10.4					3	9.67	1.18	8.3-10.4	-
3	3	28.63	11.50	17-40	1	22.8	-	-	5	25.00	2.23	17-40	
4	35	234.79	70.09	60-350	10	275.98	142.48	99.8-580	48	236.61	92.93	60-580	1.27
5	37	410.81	83.75	240-590	44	407.27	139.47	150-640	87	414.14	20.35	100-710	0.16
6	14	605.71	125.98	380-780	14	634.29	66.07	550-820	31	631.94	25.14	380-860	0.75
7	15	834.00	195.55	620-1160	15	828.67	101.20	640-1060	32	836.88	28.93	620-1160	0.09
8	10	955.00	269.83	650-1460	12	1050.00	362.57	680-1840	26	988.85	31.45	650-1840	0.69
9	11	1343.64	515.45	750-1940	14	1395.00	265.15	950-1800	25	1412.40	335.55	750-1940	0.32
10	2	1510.00	14.14	1500-1520	8	1722.50	365.11	980-2280	10	1680.00	334.27	980-2280	1.30
11	11	1592.73	206.40	1320-2000	11	1615.46	464.87	950-2380	23	1627.00	360.85	950-2380	0.15
12	9	1616.67	40.21	980-2100	5	2076.00	879.71	880-3100	15	1739.33	611.58	880-3100	1.62
13	4	1927.50	354.53	1440-2280	6	1993.33	991.38	940-3200	10	1967.00	767.51	940-3200	0.12
14	3	1660.00	597.33	980-2100	3	2143.33	270.25	1940-2450	6	1901.67	491.95	980-2450	1.28
15	2	1890.00	523.26	1520-2260	_				2	1890.00	523.26	1520-2260	-
16	0				1	2280.00			2	2030.00	353.55	1780-2280	=1
17	1	1400.00	-						1	1400.00	-		-
Totals	159				144				340				

TABLE 17. Age-weight relationship for white suckers captured in the Muskeg River and Hartley Creek, 1976, sexes separate and combined sample (includes unsexed fish). Differences in mean weight at each age for males and females were tested for significance using Student's t-test.

		Femal	es		Male				
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total	
1	0			0	-	-	14	14	
2	0	-	-	2	100	0	1	3	
3	1	25	0	3	75	33	1	5	
4	10	29	43	35	71	76	3	48	
5	45	46	36	40	44	35	6	91	
6	14	50	36	14	50	53	4	32	
7	16	50	50	16	50	50	3	35	
8	12	55	75	10	45	70	4	26	
9	14	56	79	11	44	100	0	25	
10	8	80	100	2	20	100	0	10	
11	11	50	91	11	50	100	1	23	
12	5	36	100	9	64	89	1	15	
13	6	60	100	4	40	100	0	10	
14	3	50	67	3	50	100	0	6	
15	1	33	100	2	67	100	0	3	
16	1	100	100	0	-	-	1	2	
17	0	-	-	1	100	100	0	1	
Totals	147	47		163	53		39	349	

Table 18. Age specific sex ratios and maturity for white suckers from the Muskeg River watershed, 1976. Sex ratios were based only on fish for which sex was determined. Maturity data included fish which would either spawn in the year of capture or had spawned previously.

5.4.1.14 <u>Length-weight relationship</u>. The following length-weight relationships were determined from white suckers captured during the counting fence operation. Both upstream and downstream fish were included.

For male white suckers (n = 149, r = 0.992, range 175-504 mm) the relationship between fork length and body weight is described by the equation:

 $\log_{10} W = 3.2052 (\log_{10} L) - 5.3962; sb = 0.0346$

For female white suckers (n = 141, r = 0.971, range 209-587 mm) the length-weight relationship is expressed by the equation:

 $\log_{10} W = 3.2427 (\log_{10} L) - 5.5048; sb = 0.0539$

Analysis of covariance indicated a significant difference (p < 0.05) between adjusted means (F = 3.6136), but not the slopes (F = 0.3597) of the length-weight relationships of male and female white suckers.

5.4.1.15 <u>Growth of young-of-the-year</u>. The spawning period for white suckers in 1976 was the first two weeks of May. Although it is not certain when the young-of-the-year emerged from the gravel it is likely that this event commenced between the last week of May and the first week of June.

At hatching, larval white suckers usually have a mean length of approximately 10 mm and begin their downstream movement at about 12 mm.

By mid-June, 1976, sucker fry were abundant throughout the lower reaches of the Muskeg River and Hartley Creek. Most of these fry had a modal length of 18 mm at this time and ranged in length from 14 to 31 mm (Fig. 13). While it was not possible to

Figure 13. Length-frequency distribution for young-of-the-year suckers captured in the Muskeg River and Hartley Creek, June 15-17, 1976.

state for sure what percentage of these fry were white suckers and what percentage were longnose suckers it seems likely that the majority were white suckers. Longnose sucker fry are usually smaller than white suckers at this stage as suggested in the lower portion of figure 13. We interpret the two modes in this figure as representing the two species of suckers.

By early July, young-of-the-year white suckers showed a mean fork length of 34 mm (Range 26-38). Fork length increased to 44 mm (Range 24-56) by early August and a sample taken in September averaged 44 mm (Range 32-57) in length (Table 19), indicating a slowing down of growth rate in late summer.

5.4.1.16 <u>Food habits</u>. Time limitations precluded an analysis of the food habits of young suckers in the Muskeg River. Field analysis of sucker stomachs during the spawning period indicated that migrant fish were not feeding at that time. Of 270 sucker stomachs observed, 97% were empty. The remainder contained only traces of food (insects and vegetable matter).

5.4.2 Longnose suckers

5.4.2.1 <u>Seasonal timing of upstream migration</u>. The seasonal pattern of the 1976 upstream migration of longnose suckers into the Muskeg River is shown in Figure 14 and Table 9.

Longnose sucker spawning migrations appear to be initiated by increasing water temperatures and often begin when the daily maximum water temperature approaches 5C (Geen et al. 1966).

At the time of fence installation in 1976, the daily maximum water temperature was already at 9.5C and it appeared that the spawning migration was well under way as 68 longnose suckers passed upstream on 28 April. The run probably commenced several days prior to this date.

brac	kets, origin	al sample	sizes.	
Species/Age Location	Date	N	Mean Fork Length (mm) ± Std. Dev.	Mean Weight (g) ± Std. Dev.
Longnose sucker	-			
<u>Age O+</u> Muskeg River	4/8/76	1	38	0.55
huskey kiver	11/9/ 7 6	8	45.8 ± 6.1 (36 - 56)	1.08 ± 0.49 (0.45 - 1.95)
<u>Age 1+</u> Hartley Creek	16/6/76	2	50.0 ± 1.3 (45 - 55)	1.25 ± 0.64 (0.80 - 1.70)
White sucker				
<u>Age O+</u> Muskeg River	7/7/76	18[58]	33.9 ± 3.2 (26 - 38)	0.43 ± 0.13 (0.20 - 0.65)
	4/8/76	80	43.9 ± 6.3 (24 - 56)	0.95 ± 0.41 (0.30 - 1.90)
	10-11/9/76	73	43.5 ± 6.1 (32 - 57)	0.91 ± 0.40 (0.40 - 1.90)
<u>Age 1+</u> Muskeg River	15/6/76	1	62	2.50
	4/8/76	1	68	2.45
Hartley Creek	16-21/6/76	12	51.0 ± 10.4 (36 - 69)	2.08 ± 1.54 (0.60 - 5.10)
Kearl Creek	21/6/76	60[129]	40.7 ± 3.2 (34 - 51)	0.80 ± 0.22 (0.45 - 1.50)

Table 19. Comparison of mean fork lengths (mm) and mean weights (g) of young-of-the-year and juvenile suckers collected from the Muskeg River, Hartley and Kearl creeks, 1976. Numbers in parenthesis indicate ranges and those in brackets, original sample sizes.

Figure 14. Seasonal timing of longnose sucker migration, 1976.

The portion of the spawning run monitored in 1976 had a bimodal character (Fig. 14 and Table 9) with peak counts occurring on 30 April (n = 213) and again on 10 May (n = 398). Although the sex of most fish was not assessed during the first few days of operation it is likely that the first mode consisted largely of male fish. The second mode, on the other hand (May 5-15) was dominated by females (59.7%). The upstream migration continued until 16 May.

5.4.2.2 <u>Diel timing of upstream migration</u>. The majority of spawners (76%) moved upstream between 1500 and 2400 hours with a maximum in the evening hours (Table 20). Maximum upstream movement appeared to occur each day just following the time of highest water temperature.

5.4.2.3 <u>Spawning period</u>. The spawning period of longnose suckers lasted at least two weeks in 1976. The first ripe female was captured on 27 April and the first ripe male was taken 28 April (Table 21).

The first spent male was caught 1 May while the first spent female was reported on 9 May at the downstream trap. By 20 May all fish taken were spawned out (Table 21).

5.4.2.4 <u>Spawning areas and behaviour</u>. Although the spawning act itself was not observed in 1976 numerous fish were observed in spawning colouration. On 3 May, a fish fitting the description of a male longnose sucker in spawning colours was observed in Hartley Creek (Dr. R. Hartland-Rowe, pers. comm.).

Since the specific spawning requirements of longnose suckers are similar to those of white suckers spawning probably

				т	ime Che	cks			Number
Date	and 101 million 2014 #156	0300	0900	1200	150 0	1800	2100	2400	Number of Fish
April	27	*	*	*	*	*	1	*	1
	28	*	*	*			65		65
	29	•••	13	-	-	4	113	1	130
	30	*	37	-	50m	98	-	78	213
May	1	*	17	-	-	68	<i>e</i> 2	47	132
	2	*	3	679	PG	6	-	100	109
	3	*	7	-	-	86	15	78	186
	4	* *	16 1	-		35	2 4	64	117
	5 6	*	-		-	15 65	4	1	21 65
	6 7	8	-	-	- 9	46	3	- 58	124
	8	51	8	-	2 -	40) *	20	79
	9	8	-	10	6	72	114	149	359
	10	35	58	1	48	103	72	81	398
	11	50	5	1	12	Trap c		66	134
	12	3	4		73	2		apclose	
	13	21	15	853	11	22	-	64	133
	i4	11	2	-	84	_	14	33	144
	15	Ī	17	1	1	38	14	44	116
	16	3	1	-	-	8		56	68
	17	Ĩ,	4	K a	0.04	-	-	1	9
	18	-	1		2	1	-		4
	19		-	-	-	-	-		0.
	20	-	*	-		-	-	-	0
	21	2	651	1	-	-	-		3 4
	22	-		-	3	-	-	1	
	23	2	-	-	-	-		1	3
	24	-	-	ap	1	1020	-	-	1
	25	-	-		100		600		0.
	26 27 28			No	moveme to end of May	nts			
Totals	5	199	209	14	250	669	499	942	2782
% Grar Total		7%	8%	1%	9%	24%	18%	34%	

Table 20. Summary of diel timing of the upstream migration of longnose suckers in the Muskeg River, 1976. Fish which were counted at times other than those indicated were included in the next check period. Asterisks indicate times not checked.

	Spawn	<u>ing Condi</u> %	tion-F %	emales %	<u>Spa</u>	wning Co %	nditio %	<u>n-Male</u> %
Date	Ν	Mature	Ripe	Spent	Ν	Mature	Ripe	Spent
April							****************	
27	1		100					
28	7	71	29		6	50	50	
29	2		100		8		100	
30	7		100		8	12	88	
May l	8	63	37		3	33	33	33
2					1		100	•
3	4		100		4		100	
4	8	25	75		5		100	
6	1	100			5		100	
9	7	71		29	3	100		
11	2	50	50		3		100	
12	1		100		3		100	
13	2	50	50		1	100		
14	1			100	2		100	
15	3		33	67	2		50	50
16					2	50	50	
17	4		25	75	2.			100
20	2			100	5			100
22	4			100	1			100
Totals	64				64			

Table 21. Condition of spawning longnose suckers sampled during the Muskeg River run 1976. Spawning conditions were determined by dissection.

occurred in the same general areas for both species although perhaps somewhat earlier in the season for longnose suckers.

5.4.2.5 <u>Return of spawners</u>. The seasonal pattern of the downstream movement of longnose suckers in 1976 is shown in figure 13. The main downstream movement of spent fish started at least 18 days after the spawning migration began (Table 9).

The highest count of downstream fish (n = 232) was made on 20 May (Table 9 and Fig. 14) and while suckers continued to trickle downstream through 30 July, the majority (66.9%) had passed the downstream trap by 30 May. This percentage was higher in reality since suckers caught in the downstream trap between 28 April and 4 May were upstream fish that had drifted into the downstream trap after passing through the upstream trap.

Diel timing of the downstream movement of spent longnose suckers is summarized in Table 22. The majority of downstream fish were captured between 0900 and 1800 hours (50%) with 41% being taken between 2100 and 0300 hours. The maximum downstream movement of longnose suckers occurred each day during the period of highest water temperature.

5.4.2.6 <u>Length of time on spawning grounds</u>. The length of time spent by individual longnose suckers on the spawning grounds was determined from fish tagged going upstream and recaptured passing through the downstream trap. The actual time varied greatly from 2 to 87 days although the majority of fish (81.6%) returned downstream within 29 days (Fig. 15).

5.4.2.7 <u>Spawning mortality</u>. Between 18 June and 30 July, a total of 63 longnose suckers were found dead in the Muskeg River.

D (0000		ime Che		0100	<u></u>	Number
Date	0300	0900	1200	1500	1800	2100	2400	of fish
April 28		*	*	*	*	9	*	9
29		*	×	1	2	13	5	25
30		3		2	5	-	9	19
May 1	*	2	-	-		2	9	13
2		4 2	I	***	* 7	- r	28	33
3 4	*	2	-	_	7 8	5	3 16	17 25
		2	_	_	1	_	-	
5 6	*	-		-		1	1	2
7	4	ulict	j				<u>+</u>	3 2 4
8								0
9								0
10		[]		Downst	ream tra	ap <mark>cl</mark> ose	ed	
11		3						0 3 1
12		1						
13		······						0.
14	l							0
15 16		7	-	2		4	21	.28
17	19	-	_	۲ -	_	4	46	53 65
18	13	4	-	1	18	5	10	51
19		_			17	5 4	13	43
20		*	3	9	124	29	42	232
21	20	*	-	1	-	32	22	75
22	16	*	56	119	5	4	24	224
23	5	*	14	65	5 5	-	1	90
24	1	*	4	14	-	-	6	25
25	14	*	*	3	2	5	15	39
26		*	4	24	33	3 4	23	91
27	15	* *	23 *	14 16	19	•	30 an close	105 ed 62
28	27 20	*		54	7 16	12 11	ap close 70	179
29 30		*	3 43	14	14	4	16	100
31	9 4	*	رب *	21	-		apclose	
June 1	4	*	*	14	4	1	7	30
2	5	*	*	-	-	-		5
3	*	*	-	29	3	-	-	32
3 4	*	*	32	13	3 9	-	68	122
5	7	*	54	2	-		8	71
Totals	258	30	237	418	299	153	506	1901
% Grand								
Total	14%	2%	12%	22%	16%	8%	27%	

Table 22. Summary of diel timing of the downstream movement of longnose suckers in the Muskeg River, 1976. Fish which were counted at times other than those indicated were included in the next check period. Asterisks indicate times not checked.

Figure 15. Number of days spent in Muskeg River by individual longnose suckers.

Natural spawning mortality among longnose suckers usually runs about 10-25% (Scott and Crossman 1973).

5.4.2.8 <u>Size composition of migrant longnose suckers</u>. During the 1976 counting fence operation fork lengths were determined for 1440 longnose suckers of which sex was determined in 459 cases (Table 23 and Fig. 16). Migrant suckers ranged in length from 130 mm to 487 mm and in weight from 20 to 1350 g. The lengthfrequency polygon (Fig. 16) demonstrated a strong single mode containing fish between 340 and 459 mm. Of the total sample, 89.8% fell within this length range.

Considering only the upstream migration, female longnose suckers tended to be larger than the males (Fig. 17). Females had a mean fork length of 395 mm (Range 277-468 mm) while males showed a mean length of 371 mm (Range 192-487 mm).

5.4.2.9 Age composition of migrant longnose suckers. The age composition of the 1976 spawning run is shown in Figure 18. Age determinations from fin rays showed that migrating longnose suckers ranged in age from 4 to 13 years with age groups 7 to 11 comprising 85% of the total. All fish less than 7 years old were sexually immature.

5.4.2.10 Sex ratio for migrant longnose suckers. Of 1815 longnose suckers for which sex was determined during the upstream migration, 1050 (58%) were females. This represents a significant deviation $(x^2 = 44.75, p < 0.01)$ from the usually observed 1:1 ratio. The actual sex ratio may have been closer to unity than observed since the first few days of the upstream migration were probably missed. This portion of the run may have been dominated by males just as the latter portion was dominated by females (Table 24).

Fork Length (10 mm intervals)	Male	Female	Unknown	Fork Length (10 mm intervals)	Male	Female	Unknowr
120 - 129			1	330 - 339	5	. 6	34
130 - 139			1	340 - 349	15	6	42
140 - 149			3	350 - 359	26	9	71
150 - 159				360 - 369	39	20	128
160 - 169				370 - 379	49	23	129
170 - 179			2	380 - 389	34	29	135
180 - 189	1		1	390 - 399	25	30	120
190 - 199]	400 - 409	16	26	103
200 - 209				410 - 419	6	29	61
210 - 219		1		420 - 429	1	25	55
220 - 229	1			430 - 439	2	15	25
230 - 239	1			440 - 449	1	7	17
240 - 249			4	450 - 459		4	9
250 - 259			1	460 - 469		1	2
260 - 269				470 - 479			
270 - 279	3	1	2	480 - 489	1		1
2 80 - 289			1	-			
290 - 299			1	Totals	225	234	981
300 - 309			3		-	-	-
310 - 319	1		11	Grand Total		1440	
320 - 329		2	17				

Table 23. Length-frequency distribution of longnose suckers sampled and/or tagged during fence operations at the Muskeg River, 1976.

۱.

.

.

Figure 16. Length-frequency distribution for longnose suckers measured during counting fence operation.

Figure 17. Length-frequency distribution for male and female longnose suckers during upstream migration.

Ĵ

Figure 18. Age composition for longnose suckers sampled during counting fence operation.

		Number of	Fish		Percent
Date	Males	Females	Unknown	Total	Males*
April			a a na an	ngan menuna di Kalèn Palan	······
27	`	1		1	
28	3	7	55	65	30
29	3 8 5 1	2	120	130	80
30	5	6	202	213	45
May 1	1	5	126	132	17
2	2	2	108 181	109 186	100
3	54	3 58	5		40
4 E	1	3	5 17	117 21	25
5	39	25	1	65	61
7	62	61	5	124	50
8	31	43		79	42
q	146	211	5 2	359	41
2 3 4 5 6 7 8 9 10	140	228	30	398	38
11	34	84	16	134	29
12	73	87	4	164	46
13	53	66	14	133	45
14	62	80	2	144	44
15	43	69	4	116	38
16	7	11	50	68	39
17			9 4	9 4	
18			4	4	
19					
20					
21			3	3	
22			4	4	
23			3 4 3 1	3 4 3 1	
24			1	I	
25					
26					
27					
28					
29					
30 31					
June 1-July 30				55	
Totals	765	1050	967	2837	

Table 24.	Sex ratio for	longnose	suckers	during	upstream	migration,
	Muskeg River,	1976.				

* Based on fish of known sex.

The ratio of males to females in the descending run was not determined due to difficulties in sexing fish externally at that time.

5.4.2.11 <u>Fecundity</u>. Ovaries were removed from seven female longnose suckers in spawning condition and fecundity estimated gravimetrically. The estimated total number of eggs per female (size range 410-440 mm) ranged from 16,068 to 31,572 (Table 25), with an average of 21,203 per female. Actual counts on five ovaries revealed discrepancies of from +7.2% to -4.4% for the estimated values.

Length-relative fecundity ranged from 390.0 to 717.5 ova per cm of fork length while weight-relative fecundity varied from 17.9 to 33.2 eggs per gram of body weight.

Regression analysis indicated a significant (p < 0.01), positive correlation between fecundity and fork length (n = 7; r = 0.776). The relationship between fecundity and fork length is expressed by the equation:

log₁₀ Fecundity = 7.319 (log₁₀ Fork Length) - 14.890 5.4.2.12 Age and growth. Table 26 presents the age-length relationship for longnose suckers captured during the present study. Most growth in length was achieved during the first 8 years of life at which age longnose suckers had a mean fork length of 373 mm. After age 8, suckers showed little increase in length (Fig. 19).

Female longnose suckers were generally longer than males of equal age with the differences in mean fork length being significant (Student's t-test) in age groups 7 to 11 inclusive (Table 26).

Fork		and an	ber of Egg	S		ative undity
_ength (mm)	Weight (g)	Left Ovary	Right Ovary	Total	(cm)	(g)
432	1000	12,000	11,939	23,939	554.1	23.9
414	850	11,438 [*] (-1,7%)	13,428	24,866	600.6	29.3
410	800	8,509 [*] (-1.9%)	7,806	16,315	397.9	20.4
440	950	16,429	15,143	31,572	717.5	33.2
413	850	8,400 [*] (+7.2%)	9,500	17,900	433.4	21.1
412	900	7,917 [*] (-0.3%)	8,151	16,068	390.0	17.9
424	850	8,384 [*] (-4.4%)	9,375	17,759	418.8	20 .9

.

Table 25. Fecundity estimates of seven longnose suckers sampled during the 1976 spawning migration. Asterisks indicate actual egg counts and percentages in parenthesis the error deviation of estimated counts.

TABLE 26.	Age-length relationship (derived from fin rays and otoliths) for longnose suckers captured in the Muskeg River
	and Hartley Creek, 1976, sex separate and combined sample (includes unsexed fish). Differences in mean length
	at each age for males and females were tested for significance using Student's t-test. Asterisks indicate
	significant differences in means ($P < 0.05$).

Age			Males]	Females			А	ll Fish		t-test
_	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	
0+									9	44.9	6.30	36-56	500
1	0				0				2	50.0	7.07	45-55	1054
2	0				0				1	89.0	_	-	#00p
3	3	129.33	25.48	100-146	4	138.50	5.80	130-143	12	136.58	13.67	100-148	0.72
4	4	197.25	24.58	175-229	0				7	189.00	20.82	172-229	-
5	2	214.00	31.11	192-236	1	215.00		-	4	208.50	21.42	191-236	
6	0				0				3	304.33	21.13	280-318	-
7	11	354.64	13.47	332-376	10	373.80	16.87	351-399	31	359.87	18.58	320-399	2.89*
8	17	366.12	16.07	337- 389	9	386.44	20.18	366-427	28	372.82	19.63	335-427	2.81*
9	20	368.55	19.15	345-416	14	402.93	20.69	372-439	38	382.13	28.03	340-444	4.99*
10	18	380.06	15.78	358-410	21	416.00	17.89	384-455	39	399.41	24.69	358-449	6.60*
11	16	392.38	15.94	371-436	13	411.92	25.69	363-442	31	399.48	23.13	363-442	2.56*
12	4	398.00	25.78	375-434	6	413.83	22.50	391-444	12	399.67	28.53	352-444	1.03
13	2	412.00	52.33	375-449	7	433.29	32.05	412-468	10	421.70	33.25	375-444	0.75
Totals	97				85				227				

Figure 19. Age-length relationship for longnose suckers from the Muskeg River watershed, 1976.

During the first few years of life longnose suckers added weight slowly with age 4 fish averaging 86 grams (Table 27). The rate of weight gain then increased for the next several years, decreasing again after about age 9 (Fig. 20). Female longnose suckers were generally heavier than males of the same age with the differences in mean weight being statistically significant (Student's t-test) for age groups 8-11 inclusive (Table 27). 5.4.2.13 <u>Sex and maturity</u>. Of 182 longnose suckers aged and sexed, 53% were males (Table 27).

Both male and female longnose suckers appear to mature at the relatively late age of 7 years (Table 28). Virtually all fish were sexually mature by age 9. The presence of a few immature fish at older ages may indicate that some longnose suckers do not spawn every year.

5.4.2.14 <u>Length-weight relationship</u>. The following length-weight relationships were determined from longnose suckers captured during the counting fence operation. Both upstream and downstream fish were included.

For male longnose suckers (n = 93, r = 0.960, range 181-449 mm) the mathematical relationship between fork length and body weight is expressed by the equation:

 $\log_{10} W = 3.0085 (\log_{10} L) - 4.9494; sb = 0.0917$

For female longnose suckers (n = 141, r = 0.971, range 209-587 mm) the equivalent expression is:

 $\log_{10} W = 3.0003 (\log_{10} L) - 4.9133; sb = 0.1034$

Analysis of covariance indicated a significant difference (p < 0.05) between adjusted means (F = 3.942) but not the slopes (F = 0.003) of the length-weight regressions of male and female longnose suckers.

TABLE 27.	Age-weight relationship for longnose suckers captured in the Muskeg River and Hartley Creek, 1976, sexes
	separate and combined sample (includes unsexed fish). Differences in mean weight at each age for males and
	females were tested for significance using Student's t-test. Asterisks indicate significant differences in means (P < 0.05).

Age			Males			F	emales			A	ll Fish		t-test
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range	ninta, maning pang mang di kuta katang mga katigi yayan
0+									9	1.02	0.49	0.45-1.95	80
1									2	1.25	0.64	0.8-1.7	4894
2									1	6.8	***	-	-
3	3	26.4	12.66	11.8-34.3	4	35.00	2.54	31.3-36.7	12	32.00	8.83	11.8-36.7	1.37
4	4	96.58	42.41	73.1-160	0				7	86.56	33.15	60-160	
5	2	105.00	77.78	50-160	1	100.00	~	2 00	4	97.50	46.46	50-160	65%
6	0	-	-	547	0		-	PETAT	3	350.00	62.45	280-400	-
7	11	581.82	58.28	490-680	10	636.00	80.58	520-750	30	594.00	82.49	400-750	1.78
8	17	584.12	102.90	400-800	9	712.22	84.38	550-800	28	628.93	109.79	400-800	3.20*
9	18	588.89	80.94	480-790	14	830.00	136.44	650-1040	34	703.82	165.42	480-1150	6.23*
10	18	662.78	91.12	500-800	21	876.67	95.99	760-1050	39	777.95	142.24	500-1050	7.10*
11	16	707.50	111.45	550-1000	13	853.85	142.57	600-1050	31	767.10	142.93	550-1050	3.11*
12	4	800.00	227.30	650-1100	6	890.00	164.92	710-1100	12	810.83	196.49	560-1100	0.73
13	2	780.00	169.71	660-900	7	980.00	195.87	800-1000	10	908.00	208.05	660-1350	1.30
Totals	95				85				22 2				

Figure 20. Age-weight relationship for longnose suckers from the Muskeg River watershed, 1976.

-

Table 28. Age specific sex ratios and maturity for longnose sucker from the Muskeg River and Hartley Creek, 1976. Sex ratios were based only on fish for which sex was determined. Maturity data included fish which would either spawn in the year of capture or had spawned previously.

	Females				Mal	es		
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total
<u>0</u> +	0		-	0	-	-	9	9
1	0	-	-	0	-	-	2	2
2	0	-	-	0		-	1	1
3	4	57	0	3	43	0	5	12
4	0	-		4	100	0	3	7
5	1	33	0	2	67	0	1	4
6	0	-	-	0	-		3	3
7	10	48	90	11	52	50	10	31
8	9	35	78	17	65	69	2	28
9	14	41	86	20	59	90	4	38
10	21	54	95	18	46	89	0	39
11	13	45	100	16	55	94	2	31
12	6	60	83	4	40	100	2	12
13	7	78	86	2	22	100	1	10
Totals	85	47		97	53		45	227

5.4.2.15 Growth of young-of-the-year. In 1976, longnose suckers completed spawning in the first two weeks of May.

By mid-June, young-of-the-year suckers were abundant throughout the lower reaches of the Muskeg River and Hartley Creek. While it was not possible to distinguish white sucker fry from longnose fry at this time the majority are thought to have been white suckers (modal length = 18 mm). Most of the small suckers collected at this time showed only a single mode in the length-frequency distribution (Fig. 13). One sample, however, collected June 17 at site 4 (Fig. 5) showed a distinctly bi-modal distribution (Fig. 13), with one mode at 14 mm and the other at 19 mm.

As white sucker fry are generally larger than longnose fry at this stage of development we interpret these two modes as representing the two species of suckers with longnose suckers being the smaller.

The fact that this bi-modal distribution appeared only in the one sample plus the fact that only 9 positively identified age 0+ and only 2 age 1+ longnose suckers were collected from the Muskeg watershed suggests that most young-of-the-year longnose suckers vacate the tributary very shortly after emergence.

One young-of-the-year longnose sucker taken in the Muskeg River on August 4 had a fork length of 38 mm. Eight others captured September 11 had a mean fork length of 46 mm (Range 36-56) (Table 19).

5.4.2.16 <u>Food habits</u>. Time limitations precluded an analysis of the food habits of young suckers in the Muskeg River. Field analysis of stomachs during the spawning period indicate that

longnose suckers did not feed at that time. Of 157 stomachs examined, 92% contained no food. The remainder contained only traces of food (insects and plant matter).

5.4.3 Arctic grayling

5.4.3.1 <u>Spring movement</u>. An upstream migration of Arctic grayling was under way in the Muskeg River at the time the 1976 counting fence was installed (Fig. 21 and Table 9). Although a total of 305 grayling were counted through the upstream trap the major movement occurred in the first few days of operation as 72% of upstream fish had passed the fence by 7 May. At this time most grayling examined were immature (63%).

Grayling tended to move upstream during the afternoon and evening hours or around the time of maximum daily water temperature. Of 221 fish passed upstream prior to 7 May, 90% were caught between 1200 and 2100 hours. Largest catches were recorded between 1500 and 1800 hours (47%).

There appeared to be no downstream migration as such for Arctic grayling during the period of fence operation although the odd fish was taken in the downstream trap through July. The largest number (49%) of downstream fish were taken prior to 6 May (Fig. 21). It is believed that these were upstream migrants that had entered the downstream trap within a short period after traversing the upstream trap.

5.4.3.2 <u>Spawning</u>. Spawning of Arctic grayling was not observed in the Muskeg River in 1976 although the presence of fry in mid-June indicated that it had occurred. It is likely that the lower reaches of Hartley Creek and the Muskeg River are principal spawning sites.

Grayling generally undertake upstream spawning migrations shortly after ice break-up in the spring. Spawning is usually reported to occur at water temperatures between 5 and 10C (numerous authors).

It seems likely that the main spawning migration of grayling up the Muskeg River was missed during the 1976 fence operation and that spawning occurred in late April and early May in 1976. Ripe males and females were collected at the counting fence on May 1-2 while a spent female was caught on 7 May. 5.4.3.3 <u>Summer residence of migrant grayling</u>. As mentioned previously there was no distinct downstream grayling migration in the Muskeg River during the time of counting fence operation. This may indicate that grayling remain in the lower Muskeg to feed after spawning is completed.

Throughout the summer, angling produced considerable numbers of grayling in the lower 10 km of the Muskeg River. The creel included mature fish. On August 8 and 10, 1976, 10 angler hours applied in the area between 3 and 10 km upstream from the Athabasca River produced 28 Arctic grayling. Of this number, 11 proved to be age 1 (in their second summer); 6 were age 2, 7 were age 3 and 2 were 4 years old.

Although the counting fence was not established in the fall there is evidence to suggest that grayling left the Muskeg River at that time, probably to overwinter in the Athabasca River or near the mouth of the Muskeg. AOSERP fishery crews working on the main river reported catching grayling in the Athabasca in the first week of October whereas few had been taken during the summer months.

5.4.3.4 <u>Overwintering</u>. The extent and location of overwintering areas of Arctic grayling in the Muskeg River watershed are at present unknown. However, Dr. D. Barton (pers. comm.) reported sighting 6-10 juvenile grayling through the ice on 30 October 1976 at area 7 on Hartley Creek (Fig. 4).

5.4.3.5 <u>Age and growth</u>. A total of 110 Arctic grayling were captured in the Muskeg River watershed exclusive of young-of-theyear fish. These fish ranged in size from 130 to 378 mm in fork length (Fig. 22). Age determinations were made for 103 of these grayling, 92 of which were sexed.

The above fish ranged in age from 1 year to 7 years although only four fish exceeded age 4.

Growth in fork length was rapid for the first four years of life (Fig. 23) with a mean fork length of 310 mm being reached by age 4. Although males tended to be longer than females of the same age for ages 1-4 (Table 29), there were no significant differences between the sexes (Student's t-test).

Growth in weight for Arctic grayling is summarized in Table 30 and presented graphically in Figure 24. Where sample sizes permitted, mean weight at each age for male and female grayling were compared (Table 30). Significant differences (p < 0.05) were found at age 2 and age 4 with females being heavier than males at age 2 and the reverse occurring at age 4.

5.4.3.6 <u>Sex and maturity</u>. Of 92 grayling aged and sexed, 62% were males (Table 29), representing a significant deviation from a 1:1 ratio (χ^2 = 5.26, p > 0.05).

Figure 22. Length-frequency distribution for Arctic grayling measured during counting fence operation.

Figure 23. Age-length relationship for Arctic grayling from the Muskeg River watershed, 1976.

Age	Age		Males			Females				All Fish				
-	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range		
1	14	161.3	20.2	130-193	2	144.5	20.5	130-159	18	159.8	19.4	130-193	1.10	
2	13	215.5	29.2	183-269	10	215.4	24.5	191-263	27	215.7	26.8	183-269	0.01	
3	22	253.0	35.9	198-304	10	247.6	33.3	213-295	37	251.4	34.5	198-304	0.33	
4	6	321.8	23.5	292-353	11	303.2	19.8	278-334	17	309.8	22.4	278 - 353	1.74	
5]	348.0	3.2	348-348	1	298.0	3.2	298-298	2	323.0	35.4	298-348	80	
6	0	-	-	-	0	· _	-	-	0	-	-	-	-	
7	1	366.0	3.2	366-366	1	378.0	3.2	378-378	2	372.0	8.5	366-378	-	
Totals	57				35				103					

TABLE 29. Age-length relationship (derived from scales) for Arctic grayling captured in the Muskeg River, 1976, sexes separate and combined sample (includes unsexed fish). Differences in mean length at each age for males and females were tested for significance using Student's t-test.

Age		Males				Females				All Fish				
	N	Mean	S.D.	Range	N	Mean	S.D.	Range	N	Mean	S.D.	Range		
1	6	32.2	8.9	25-43	1	25	-	-	8	33.5	10.5	25-50	-	
2	10	87.1	9.8	50-150	8	106.3	14.7	50-150	20	93.6	11.6	50-150	3.32*	
3	20	185.3	35.2	50-320	8	163.8	29.8	80-250	31	176.3	32.8	50-320	1.52	
4	4	375.0	20.6	300-520	10	332.0	20.5	220-480	14	344.3	21.7	220-520	3.54*	
5	1	490.0	3.2	490-490	1	280.0	3.2	280-280	2	385.0	35.4	280-490	-	
6	0	-	-	-	0	-	-	-	0	-	-	-		
7	1	560.0	3.2	560-560	1	620.0	3.2	620-620	2	590.0	8.5	560-620		
Totals	42				29				77					

TABLE 30. Age-weight relationship for Arctic grayling captured in the Muskeg River, 1976, sexes separate and combined sample (includes unsexed fish). Differences in mean weight at each age for males and females were tested for significance using Student's t-test. Asteriks indicate significant differences in means (P < 0.05).

Figure 24. Age-weight relationship for Arctic grayling from the Muskeg River watershed, 1976.

The earliest age of sexual maturity was 2 years for males and 3 years for females. At age 3, 50% of both sexes were sexually mature (Table 31).

5.4.3.7 <u>Fecundity</u>. Total egg counts were performed on two grayling captured at the counting fence. One grayling (fork length 225 mm) contained 271 g ova while the other (fork length 308 mm) contained 6971 eggs (Table 32).

5.4.3.8 <u>Length-weight relationship</u>. A comparison of lengthweight relationships indicated no significant difference (p > 0.05) between male and female grayling in slope or elevation. Therefore, the data for the two sexes were combined.

For Arctic grayling (n = 81, r = 0.971, Range 130-378 mm) the relationship between fork length and body weight is described by the equation:

 $\log_{10} W = 3.1157 (\log_{10} L) - 5.2341; sb = 0.0863$ 5.4.3.9 <u>Growth of young-of-the-year</u>. In 1976, spawning of Arctic grayling within the Muskeg River watershed probably occurred in late April or early May.

Grayling fry were first collected from the Muskeg River on 15 June at a mean fork length 36.7 mm. Young-of-the-year collected from Hartley Creek on June 16-21 averaged 32 mm in fork length (Table 33). Growth was rapid and by 4 August, fry in the Muskeg River had a mean fork length of 82 mm. Subsequent growth appeared slow since fish captured on 11 September had a mean length of 85 mm.

Although our sample was limited, young-of-the-year grayling appeared to grow more slowly in Hartley Creek than in the Muskeg River (Table 33).

Table 31.	Age specific sex ratios and maturity of Arctic grayling captured and aged from the Muskeg River, 1976. Sex ratios were based only on fish for which sex was determined. Maturity data included fish which would either spawn in the year of capture or had spawned previously.

		Femal			Male				
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total	
1	2	13	0	14	87	0	2	18	
2	10	43	0	13	57	7	4	27	
3	10	31	50	22	69	50	5	37	
4	11	65	73	6	35	100	0	17	
5	1	50	0	1	50	0	0	2	
6	0	-	.cr.s	0	~	-	0	0	
7	1	50	0	1	50	100	0	2	
Totals	35	38	alaan soona waxaa ka sa sa ka waxaa ka sa	57	62]]	103	

Table 32. Actual egg counts of two Arctic grayling sampled during the 1976 spawning migration.

Fork	Maiabt	Nu left	mber of Egg	nen eta anti den eta Bener (Constitutenta den eta anti	Relative Fecundity		
Length (mm)	Weight (g)	Ovary	Right Ovary	Total	(cm)	(g)	
308	350	3601	3370	6971	226.3	19.9	
225	150	1247	1472	2719	120.8	18.1	
Location	Date	N	Mean Fork Length (mm) ± Std. Dev.	Mean Weight (g) ± Std. Dev.			
---------------	------------	----	---	-----------------------------------			
Muskeg River	15/6/76	23	36.7 ± 2.9 (32 - 42)	0.56 ± 0.14 (0.3 - 0.8)			
	4-7/8/76	7	82.3 ± 4.4 (75 - 88)	5.93 ± 0.97 (4.3 - 7.1)			
	11/9/76	17	85.0 ± 6.9 (71 - 101)	6.23 ± 1.73 (3.5 - 10.6			
Hartley Creek	16-21/6/76	77	32.5 ± 2.9 (27 - 38)	0.39 ± 0.12 (0.2 - 0.7)			
	11/9/76	3	83.7 ± 0.6 (83 - 84)	5.90 ± 0.36 (5.6 - 6.3)			

Table 33. Comparison of mean fork lengths (mm) and mean weights (g) of young-of-the-year grayling collected from the Muskeg River and Hartley Creek, 1976. Numbers in parenthesis indicate ranges.

Length-frequency distributions for young-of-the-year Arctic grayling taken from the Muskeg River and Hartley Creek are given in figure 25.

5.4.3.10 Food habits. A total of 60 grayling stomachs were examined in the field and only 10 were empty. Most stomachs were $\frac{1}{4}$ to $\frac{1}{2}$ full, the contents consisting mainly of aquatic insects.

Detailed laboratory analysis of four age 1+ grayling from Hartley Creek revealed a diet consisting mainly of insects; chironomid, trichopteran and tipulid larvae, plecopteran and ephemeropteran nymphs, ants and beetles (Table 34).

The food habits of young-of-the-year grayling from the Muskeg River and Hartley Creek (Table 35) were similar although the diet of Muskeg River fish was somewhat more varied.

5.4.4 Northern pike

5.4.4.1 <u>Spring movement</u>. A total of 286 pike were counted through the fish fence, 131 going upstream and 155 downstream (Table 9 and Fig. 26).

5.4.4.2 <u>Spawning</u>. The Muskeg River drainage does not appear to contain areas that are suitable for spawning of northern pike. Any areas that might provide spawning habitat in years of high runoff were certainly inaccessible during 1976 when little flooding occurred.

Although there was a large upstream movement of pike in the Muskeg River during the early spring many of these fish appeared to be immatures. Of those fish for which sexual maturity was determined (n = 24), only 4 were mature, 4 ripe and 1 spent.

Food Item	Number	Percent	Volume (ml)	Percent
Diptera				
Chironomidae larvae	20	20.0	+	+
Simuliidae larvae pupae	1 1	1.0 1.0	+ +	+ +
Tipulidae larvae	9	9.0	0.01	0.4
Dipteran adults	4	4.0	0.02	0.8
richoptera (larvae)	8	8.0	0.06	2.3
lecoptera				
nymphs adults	3 10	3.0 10.0	0.10 0.85	3.9 33.1
phemeroptera (nymphs)	13	13.0	0.05	1.9
Coleoptera (adults)	8	8.0	0.08	3.1
lemiptera	1	1.0	+	+
lymenoptera (ants)	12	12.0	0.06	2.3
Unidentified insects Hydracarina Insect remains Hematoda Nematomorpha Arachnida Fish remains	4 1 + 1 2 1 1	4.0 1.0 + 1.0 2.0 1.0 1.0	0.08 + 0.96 + + + + 0.30	3.1 + 37.4 + + 11.7
Total	100	100.0	2.57	100.0

Table 34. Food habits of yearling Arctic grayling in Hartley Creek, 1976 (N = 4).

Food Item			Muskeg Ri					Hartley		<u> </u>
	June 15 (N		Aug. 4 (N		Sept. 11 (N		June 16 (N			= 3)
	% Frequency	% No.	% Frequency	% No						
Diptera										
Chironomidae	100.0	40.1	100.0	89.4	100.0	76.6	100.0	76.3	100.0	61.5
Simuliidae	10.0	1.3	20.0	0.8	~	-	43.5	2.9	-	-
Tipulidae	-	-	-	-	42.9	3.2	4.3	0.2	33.3	2.6
Rhagionidae	-	-	20.0	0.4	_	-		-	-	-
Trichoptera	10.0	1.3	80.0	8.4	59.1	5.6	17.4	0.8	100.0	20.5
Plecoptera	20.0	2.5	20.0	0.4	14.3	0.8	4.3	0.2	-	-
Ephemeroptera	100.0	55.0	20.0	0.4	-	-	100.0	18.3	66.7	9.0
Coleoptera	-	-	-	-	14.3	0.8	•	-	33.0	1.3
Hemiptera	-	-	-	-	42.9	3.2	-	-	33.3	1.3
Hymenoptera	-	-	-	-	-	-	-	-	66.7	2.6
Insect remains	100.0	-	100.0	-	100.0	-	100.0	-	100.0	-
Nematoda	-	-	-	-	14.3	0.8	-	-	33.3	1.3
Arachnida	-	-	-	-	14.3	0.8	-	-	-	-
Hydracarina	-	-	-	-	28.6	1.6	-	-	-	-
Nematomorpha	-	-	-	-	14.3	0.8	-	-	-	-
Copepoda	~	-	-	-	14.3	0.8	-	-	-	-
Cladocera	-	-	-	-	28.6	3.2	-	-	-	-
Fish	-	-	-	-	14.3	0.8	-	-	-	-

Table 35. Food habits of young-of-the-year Arctic grayling from the Muskeg River and Hartley Creek, 1976.

Figure 26. Seasonal timing of northern pike migration, 1976.

•

No young-of-the-year pike were collected from the study area in 1976.

5.4.4.3 <u>Distribution of pike in Muskeg watershed</u>. Within the Muskeg watershed, northern pike seem to be confined to the lower reaches and mouth. Angling results indicate that, in 1976, pike did not ascend more than 6 or 7 km upstream in the Muskeg. In years of higher water it is likely that they ascend considerably farther.

Tagging results (Table 8) indicate that pike generally tended to move very little during the summer.

5.4.4.4 <u>Age and growth</u>. Northern pike sampled from the study area ranged in fork length from 267 to 950 mm (Fig. 27). Most fish were in the 400 to 500 mm range. The scale age-fork length analysis for 20 northern pike is presented in Table 36. Pike captured from the Muskeg River ranged in age from 2-7 years with all the older fish (5-7 years) being females.

The age-length relationship for northern pike is shown in Figure 28.

5.4.4.5 <u>Sex and maturity</u>. Of 20 northern pike for which age and sex was determined, 50% were males (Table 36). The earliest age at which mature fish were observed was 4 years for both sexes. 5.4.4.6 <u>Length-weight relationship</u>. The length-weight relationship for northern pike (n = 23, r = 0.979) is described by the equation:

 $\log_{10} W = 3.4515 (\log_{10} L) - 6.3611; sb = 0.1584$

5.4.4.7 <u>Food habits</u>. Twenty-one northern pike stomachs were examined in the field. Of these 15 were empty and 6 contained fish remains (slimy sculpin and white sucker) and some insects.

Figure 27. Length-frequency distribution for northern pike from the Muskeg River, 1976.

Species/Age		Fema			Ma l		Unsexed	Total	For	k length	(mm)
· _	N	%	% Mature	N	%	% Mature	Fish	Sample	Mean	S.D.	Range
Lake whitefish											
3	1	100	100					1	318.0	-	-
4	1	100	0					1	298.0	-	-
6	1	33	100	2	67	100		3	382.7	21.5	359-401
7 8	1	50	100	1	50	100		2	379.5	28.9	359-400
	1	50	100	1	50	100		2	391.0	24.0	374-408
9]	100	100		1	411.0	-	-
Totals	5			5				10			
Mountain whitefish											
2				2	100	0	2	4	186.8	5.9	180-194
3	3	43	33	4	57	50	1	8	263.6	24.4	213-290
3 4	3 4	67	50	2	33	50	1	7	325.7	13.9	255-353
5	2	100	50	L))	50	•	2	320.0	31.0	289-351
		100		0			L		2		
Totals	9			8			4	21			
Northern pike											
2				1	100	0		1	267.0	-	-
3				5	100	0		5	372.8	27.5	331-403
Ĩ4	2	33	100	4	67	50		6	417.7	22.9	390-455
	3	100	67					3	534.7	99.2	453-645
5 6	4	100	50					4	663.8	53.1	610-737
7	1	100	0					1	684.0	-	-
Totals	10			10				20			

TABLE 36. Age-length relationships (derived from scales and otoliths*), age specific sex ratios and maturity of lake whitefish, mountain whitefish, northern pike, walleye and burbot captured from Muskeg River in 1976.

TABLE 36. (Cont'd)

Species/Age		Fema	les		Ma 1	es	Unsexed	Total	For	k length	(mm)
. ~	N	%	% Mature	N	%	% Mature	Fish	Sample	Mean	S.D.	Range
Walleye											
0+							2	2	83.0	9.1	68-98
5				1	100	100		1	347.0	-	-
12				1	100	100		1	424.0	-	-
15	1	100	0					1	540.0	-	-
Totals	1			2			2	5			
Burbot*	×										
2	1	100	0				2	3	131.0	11.4	119-139
Totals	1						2	3			

5.4.5 Mountain whitefish

5.4.5.1 <u>Spring movement</u>. A total of 134 mountain whitefish were counted through the fish fence, 33 going upstream and 101 coming downstream (Table 9 and Fig. 29).

5.4.5.2 <u>Spawning</u>. Mountain whitefish usually spawn in October or early November, the young hatching about March (Paetz and Nelson 1969). Whether mountain whitefish spawn in the Muskeg watershed is unknown. However, no young-of-the-year mountain whitefish were collected during the present study.

5.4.5.3 <u>Age and growth</u>. The length-frequency distribution for 23 mountain whitefish is shown in Figure 30. Age-length data for the sample are presented in Table 36 and Figure 31.

5.4.5.4 <u>Sex and maturity</u>. Of 17 mountain whitefish for which sex and age were determined, 9 were females (Table 36). The youngest mature male was age 3 as was the youngest mature female. 5.4.5.5 <u>Length-weight relationship</u>. The length-weight relationship for mountain whitefish (n = 23, r = 0.977) is described by the equation:

 $\log_{10} W = 2.7510 (\log_{10} L) - 4.3008; sb = 0.1313$

5.4.5.6 <u>Food habits</u>. Field examinations were made of 19 mountain whitefish stomachs. Of these, 15 were empty and only 3 contained identifiable food (insects).

5.4.6 Lake whitefish

5.4.6.1 <u>General</u>. The lake whitefish is common in the Athabasca River system and AOSERP fishery crews working on the main river documented a large spawning migration into the AOSERP study area in late August 1976. While the mouth of the Muskeg River seems

Figure 29. Seasonal timing of mountain whitefish migration in 1976.

Figure 30. Length-frequency distributions for lake whitefish and mountain whitefish from the Muskeg River, 1976.

Figure 31. Age-length relationship for mountain whitefish from the Muskeg River, 1976.

to be important in the fall as a resting spot for migrant whitefish, it appears that only occasionally do they move up the Muskeg much beyond the mouth area.

5.4.6.2 <u>Spring movement</u>. A small number of lake whitefish were counted through the fence during the spring. Three of these were counted moving upstream and 14 coming down (Table 9).

5.4.6.3 <u>Spawning</u>. Lake whitefish usually spawn from October to December, the eggs hatching in the spring. We found no evidence of lake whitefish spawning in the Muskeg River and no young-of-theyear whitefish were collected during the present study. It is suspected that lake whitefish spawn in the Athabasca River proper. However actual locations of spawning sites are unknown.

5.4.6.4 <u>Age and growth</u>. The length-frequency distribution for 11 lake whitefish from the Muskeg River is shown in figure 29. Age-length data for the sample are presented in table 36.

5.4.6.5 <u>Sex and maturity</u>. Of 11 lake whitefish sampled, 6 were females. Although the data are limited, the earliest age of sexual maturity for lake whitefish appears to be age 3 (Table 36). 5.4.6.6 <u>Length-weight relationship</u>. The length-weight relationship for lake whitefish (n = 11, r = 0.964) is described by the equation:

 $\log_{10} W = 3.5233 (\log_{10} L) - 6.2045$; sb = 0.3227 5.4.6.7 Food habits. Of six lake whitefish stomachs examined in the field only 1 contained food (Corixids).

5.4.7 Walleye

A total of 10 walleye were taken from the Muskeg River during the study; seven were passed through the fence (Table 9), two were gill-netted at the mouth of the tributary and two were collected by seine in Area 2 (Fig. 5) on 4 August.

Five fish were aged from scales (Table 36) the oldest being 15 years old.

One walleye stomach examined in the field contained fish remains (slimy sculpin and an unidentified cyprinid).

Although large numbers of walleye migrate through the AOSERP study area in April on their way to spawning grounds, walleye appear not to utilize the Muskeg River for this purpose.

5.4.8 Burbot

Six burbot were captured in the Muskeg River during the study. Three were passed through the fence (Table 9) and three were taken in minnow traps in Area 2 (Fig. 5) during May.

Three immature burbot (119-139 mm total length) were aged from otoliths and found to be 2 years old (Table 36).

5.4.9 Lake chub

5.4.9.1 <u>Distribution and relative abundance</u>. Excluding suckers, lake chub were the most abundant small fish taken in the Muskeg River watershed in 1976, comprising 27% of the total catch. Lake chub were collected at 6 of the 10 sampling areas with the largest number of specimens collected at Area 7 on Hartley Creek (Table 6). 5.4.9.2 <u>Age and growth</u>. Lake chub from the study area ranged in size from 14 to 118 mm fork length (Fig. 32). The vast majority were in the 27-45 mm range.

Otolith ages were determined for 106 lake chub and the age-length relationship is shown in Table 37. The oldest lake chub captured were 5 year old females that had a mean fork length of 108 mm.

Figure 32. Length-frequency distribution for lake chub from the Muskeg River watershed, 1976.

		Female	S		Males	i			Fo	ork Length (mm)
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total Sample	Mean	Std. Dev.	Range
0+	18	50	0	18	50	0	4	40	32.5	6.4	14-44
1	15	58	0	11	42	0	7	33	39.7	7.3	29-56
2	1	25	0	3	75	0	0	4	63.0	7.5	54-71
3	6	46	83	7	54	43	0	13	76.4	5.3	70-88
4	8	62	100	5	38	80	0	13	88.9	4.2	83-96
5	3	100	100	Ō	-	-	0	3	108.0	8.9	101-118
Totals	51	54		44	46		11	106			

Table 37. Age-length relationship (derived from otoliths), age-specific sex ratios and maturity of lake chub captured from the Muskeg River, Hartley and Kearl creeks, 1976.

Table 39. Age-length relationship (derived from otoliths), age-specific sex ratios and maturity of slimy sculpin captured from the Muskeg River, 1976.

		Female	S		Males				То	otal Length	(mm)
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total Sample	Mean	Std. Dev.	Range
0+	34	71	0	14	29	0	9	57	29.0	5.6	11-38
1	0	0	_	2	100	0	0	2	41.5	4.9	38-45
2	7	58	0	5	42	0	0	12	56.2	3.1	52-63
3	í	25	0	3	75	67	0	4	68.5	2.9	65-72
4	1	100	100	Ō	-		0	<u> </u>	75	-	-
Totals	43	64		24	36		9	76			

Age-length and age-weight curves for lake chub are shown in figures 33 and 34 respectively.

5.4.9.3 <u>Sex and maturity</u>. Of the lake chub sexed (n = 220) from the study area, 51% were females (Table 38). Of 95 fish aged and sexed, 54% were females (Table 37), but the sex ratio did not differ significantly from unity ($\chi^2 = 0.52$, p > 0.05).

The smallest size at sexual maturity was 55-59 mm for males and 70-74 mm for females (Table 38). The minimum age at which sexual maturity was attained was age 3 for both sexes (Table 37). 5.4.9.4 <u>Length-weight relationship</u>. The length-weight relationship for lake chub from the study area (n = 237, r = 0.994), as determined for both sexes combined is described by the equation:

 $\log_{10} W = 3.019 (\log_{10} L) - 5.000; sb = 0.021$

5.4.9.5 <u>Spawning</u>. Ripe female lake chub were collected until 21 June in the Muskeg River and Hartley Creek. The first young-of-the-year was captured on 29 June (fork length 27 mm).

5.4.10 Slimy sculpin

5.4.10.1 <u>Distribution and relative abundance</u>. Slimy sculpins made up 26% of all small fish captured in the Muskeg River watershed (excluding suckers). This species was common in the lower reaches of the Muskeg (Areas 1, 2 and 3) and in the lower reaches of Hartley Creek (Area 7). These areas possess abundant gravel under which this fish customarily hides. This species was not observed anywhere in the Muskeg River watershed upstream from Hartley Creek (Table 6). 5.4.10.2 <u>Age and growth</u>. Figure 35 gives the length-frequency distribution for slimy sculpin (n = 187) taken from the Muskeg River and Hartley Creek in 1976. While fish ranged in total length from

Figure 33. Age-length relationship for lake chub from the Muskeg River watershed, 1976.

Figure 34. Age-weight relationship for lake chub from the Muskeg River watershed, 1976.

Figure 35. Length-frequency distribution for slimy sculpins from the Muskeg River watershed, 1976.

9 to 75 mm, those in the 25 to 34 mm size range comprised 72% of the total sample.

Otolith ages were determined for 76 slimy sculpin and the age-length relationship is indicated in Table 38. The oldest slimy sculpin taken was a 4 year old female, 75 mm in total length.

Age-length and age-weight curves for slimy sculpin are given in Figures 36 and 37 respectively.

5.4.10.3 <u>Sex and maturity</u>. Overall, male sculpins (53%) were more abundant than females (Table 40) but the sex ratio did not differ significantly from 1:1 ($\chi^2 = 0.54$, p > 0.05).

Most of the sculpins captured were classified as immature fish (Table 40). Only 4 fish, one female and three males, were judged to be mature, i.e., would either spawn in the year of capture or had spawned previously.

The smallest size at sexual maturity was 60-64 mm for male sculpins and 75-79 mm for females (Table 40). 5.4.10.4 <u>Length-weight relationship</u>. The following length-weight relationship (sexes combined) was calculated for slimy sculpins (n = 187, r = 0.989).

 $\log_{10} W = 3.445 (\log_{10} L) - 5.748$, sb = 0.038 5.4.10.5 <u>Spawning</u>. A ripe female and male slimy sculpin were captured on May 8 and 9 respectively in the Muskeg River (Area 2). The first young-of-the-year fish (11 mm total length) was taken 9 June in Hartley Creek.

5.4.11 Brook stickleback

5.4.11.1 <u>Distribution and relative abundance</u>. Brook stickleback accounted for 21% of all small fish taken in the Muskeg River

Table 38. Sex and maturity ratios, by size class, for lake chub captured from the Muskeg River, Hartley and Kearl creeks, 1976. Sex ratios were based only on fish for which sex was determined. Percent mature included only those fish which would either spawn in the year of capture or had spawned previously.

			Matu	rity				
Fork		Male		Fema			Sex Ra	
Length (mm)	Sample Size	% Im- mature	% Mature	% lm- mature	% Mature	% Unsexed	% Female	% Male
10-14	1		-		_	100	-	-
15-19	0	-	-	-	-	0	-	-
20-24	8	100	0	100	0	0	13	87
25-29	20	100	0	100	0	10	20	70
30-34	56	100	0	100	0	5	51	49
35-39	65	100	0	100	0	9	63	37
40-44	41	100	0	100	0	10	46	54
45-49	4	100	0	100	0	0	25	75
50-54	5	100	0	100	0	20	25	75
55 - 59	1	0	100	-	-	0	0	100
60-64	1	0	100	_	-	0	0	100
65-69	1	100	0	4334	-	0	0	100
70-74	8	0	100	0	100	0	50	50
75-79	3	0	100	0	100	0	67	33
80-84	5	0	100	0	100	0	20	80
85-89	8	0	100	0	100	0	62	38
90-94	6	0	100	0	100	0	83	17
95-99	1	-	-	0	100	0	100	0
100-104	1	-	-	0	100	0	100	0
105-109	1	-	-	0	100	0	100	0
110-114	0	-	-	-	-	0	-	-
115-119	1	-	-	0	100	0	100	0
Totals	237	53%	47%	44%	56%	7%	51%	49%

Figure 36. Age-length relationship for slimy sculpins from the Muskeg River watershed, 1976.

Figure 37. Age-weight relationship for slimy sculpins from the Muskeg River watershed, 1976.

Table 40. Sex and maturity ratios, by size class, for slimy sculpin captured from the Muskeg River, 1976. Sex ratios were based only on fish for which sex was determined. Percent mature included only those fish which would either spawn in the year of capture or had spawned previously.

			Matu	rity				
Total			les		ales		Sex Ra	
Length (mm)	Sample Size	% lm- mature	% Mature	% lm- mature	% Mature	% Unsexed	% Female	% Male
0-4	0	-	-	-	-	-	-	-
5-9	0	-	-	-		-	-	-
10-14	5	-	-	-	-	100	-	-
15-19	5	-	-	100	0	80	100	0
20-24	4	100	0	100	0	50	50	50
25-29	42	100	0	100	0	10	76	24
30-34	93	100	0	100	0	12	73	27
35-39	18	100	0	100	0	7	41	59
40-44	2	100	0	-		0	0	100
45-49	1	100	0	-	-	0	0	100
50-54	4	100	0	100	0	0	75	25
55-59	6	100	0	100	0	0	67	33
60-64	2	100	0	-	-	0	0	100
65-69	3	0	100	100	0	0	33	67
70-74	1	100	0	-	-	0	0	100
75-7 9	1	-	-	0	100	0	100	0
Totals	187	91%	9%	89%	11%	19%	47%	535

watershed (excluding suckers). This species was most commonly seen in the upper watershed areas where the river was deep and of low gradient. They made up 100% of the catch in Areas 5 and 10, and 86% of the total catch in Area 6 where they were associated with lake chub (Table 6). This species is more abundant in Area 10 than indicated in Table 6 but few fish were taken here because of marshy conditions and deep water.

5.4.11.2 Age and growth. The length-frequency distribution for 194 brook sticklebacks is shown in Figure 38. Stickleback from the Muskeg River and Hartley Creek ranged from 10 to 62 mm in total length with a modal length of 39 mm. Fish in the 31-42 mm length range were most common (79% of sample).

Otolith ages were determined for 55 brook stickleback and the age-length relationship is given in Table 41. The oldest fish in the sample were 3 year old males although these comprised only 7% of all stickleback caught.

Age-length and age-weight curves for brook stickleback from the Muskeg River and Hartley Creek are shown in Figures 39 and 40 respectively.

5.4.11.3 <u>Sex and maturity</u>. Female brook stickleback were more abundant than males in our sample making up 57% of the total (Table 42). However, the sex ratio did not differ significantly from unity (χ^2 = 3.52, p > 0.05).

The smallest mature fish were males in the 20-24 mm size class while in the 40-44 mm group, all stickleback were judged to be mature (Table 42). The minimum age of maturity was age 1 for both males and females (Table 41).

Figure 38. Length-frequency distribution for brook sticklebacks from the Muskeg River watershed, 1976.

		Femal	е		Male				Total Length (mm)			
Age	N	%	% Mature	N	%	% Mature	Unsexed Fish	Total Sample	Mean	Std. Dev.	Range	
0+	4	100	0	0			5	9	16.1	4.5	10-21	
1	10	53	40	9	47	57	0	19	32.8	3.3	27-40	
2	12	52	58	11	48	100	0	23	41.6	3.4	37-49	
3	0	-	-	4	100	75	0	4	59.5	2.4	57-62	
Totals	26	52		24	48		5	55				

.

Table 41. Age-length relationship (derived from otoliths), age-specific sex ratios and maturity of brook stickleback captured from the Muskeg River, Hartley and Kearl creeks, 1976.

Figure 39. Age-length relationship for brook sticklebacks from the Muskeg River watershed, 1976.

•

Figure 40. Age-weight relationship for brook sticklebacks from the Muskeg River watershed, 1976.

Table 42. Sex and maturity ratios, by size class, for brook stickleback captured from the Muskeg River, Hartley and Kearl creeks, 1976. Sex ratios were based only on fish for which sex was determined. Percent mature included only those fish which would either spawn in the year of capture or had spawned previously.

			Ma	aturity				
Fork		Male			ales		Sex Ra	
Length (mm)	Sample Size	% Im- mature	% Mature	% lm- mature	% Matu r e	% Unsexed	% Female	% Male
5-9	0	_	-		-	-	-	-
10-14	4	-	-	100	0	50	100	0
15-19	1	100	0	-	-	0	0	100
20-24	5	67	33	100	0	0	40	60
25-29	3	0	100	50	50	0	67	33
30-34	43	14	86	10	90	0	49	51
35-39	66	0	100	25	75	0	52	48
40-44	51	0	100	0	100	0	55	45
45-49	12	0	100	0	100	0	50	50
50-54	4	0	100	0	100	0	25	75
55-60	3	0	100	0	100	0	33	67
60-64	2	0	100		-	0	0	100
Totals	194	18%	82%	32%	68%	1%	57%	43%

5.4.11.4 Length-weight relationship. A common length-weight relationship was calculated for male and female brook stickleback (n = 194, r = 0.974). This relationship is described by the equation:

 $\log_{10} W = 3.0435 (\log_{10} L) - 5.1041$; sb = 0.0510 5.4.11.5 <u>Spawning</u>. Ripe males were first collected on 12 May in the Muskeg River and were still in spawning colouration when taken on 18 June. Ripe females and males in spawning colouration were captured in Hartley Creek as late as 16 June.

The first young-of-the-year (10-11 mm total length)

5.4.11.6 <u>Overwintering</u>. Stickleback were collected at the outlet of Kearl Lake (Area 10 in Fig. 5) on 5 March 1977. At this time several hundred feet of Kearl Creek were ice free, one of the few open water areas in the study area at that time. Large numbers of brook stickleback were observed but only a few could be captured because of the difficult seining conditions at this location.

5.4.12 Longnose dace

5.4.12.1 <u>Distribution and relative abundance</u>. A total of 75 longnose dace were collected from the study area with 74 of these being captured in Area 2 (Table 6). This species accounted for 8% of all small fish taken (excluding suckers).

5.4.12.2 <u>Age and growth</u>. Longnose dace ranged in fork length from 18 to 89 mm (Fig. 41).

Otolith ages were determined for 73 longnose dace, the age-length relationship given in Table 41. Of this number, 72 fish were found to be young-of-the-year (age 0+) while one was a 3 year old female, 89 mm in fork length.

Figure 41. Length-frequency distribution for longnose dace and trout-perch from the Muskeg River watershed, 1976.

5.4.12.3 <u>Spawning</u>. Although only 1 ripe longnose dace (female) was collected, this species probably spawns in the lower reaches of the Muskeg River. Young-of-the-year dace were abundant in Area 2 on 4 August 1976 at which time fork length ranged from 18-37 mm.

5.4.13 Other species

5.4.13.1 <u>Trout-perch</u>. Forty-two trout perch ranging in size from 10 to 58 mm fork length were collected from the Muskeg River (Fig. 4 and Table 43). One fish was a ripe female (age 3), taken in a minnow trap on 14 May. Forty young-of-the-year fish (size range 10-17 mm) were collected at the confluence of the Muskeg and Athabasca rivers (Area 1) on 15 June. This species, while abundant in the Athabasca River, is rarely found in the Muskeg River watershed.

5.4.13.2 <u>Pearl dace</u>. Only four young-of-the-year pearl dace (range 20-25 mm in fork length) were taken from the Muskeg River (Table 43). These fish were seined from Area 2 on 4 August 1976. 5.4.13.3 <u>Spottail shiner</u>. Only 1 young-of-the-year spottail shiner was captured. This fish was 22 mm in fork length (Table 43) and was seined from Area 2 on 4 August 1976.

TABLE 43. Age-length relationships (derived from otoliths and length frequencies), age specific sex ratios and maturity of trout-perch, longnose dace, pearl dace and spottail shiner captured from the Muskeg River in 1976.

Species/Age		Fema	les		Mal	es	Unsexed	Total	Fo	rk Length	(mm)
·	N	%	% Mature	N	%	% Mature	Fish	Sample	Mean	S.D.	Range
Trout-perch											
0+ 3	1	100 100	0				40	41	12.2 58.0	3.5	10-34
3	J	100	100				0	1	50.0	-	-
Totals	2						40	42			
Longnose Dace											
0+	10	50	0	10	50	0	52	72	27.6 89.0	4.6	18-37
3	I	100	100					ł	09.0	-	-
Totals	11			10			52	73			
Pearl Dace											
0+	2	67	. 0	1	33	0	1	4	22.3	4.7	20-25
Totals	2			1			1	4			
Spottail Shiner											
0+							1	1	22.0	-	-
Totals							1	1			

6. LITERATURE CITED

Beamish, R. J. 1973. Determination of age and growth of populations of the white sucker (*Catostomus commersonic*) exhibiting a wide range in size at maturity. J. Fish. Res. Bd. Canada. 30: 607-616.

- Beamish, R. J. and H. H. Harvey. 1969. Age determination in the white sucker. J. Fish. Res. Bd. Canada. 26: 633-638.
- Bond, W. A. 1972. Spawning migration, age, growth and food habits of the white sucker, *Catostomus commersoni* (Lacépède), in the Bigoray, River, Alberta. M.Sc. Thesis, Dept. of Zoology, Univ. of Alberta, Edmonton, Alberta.
- Geen, G. H., T. G. Northcote, G. F. Hartman and C. C. Lindsey. 1966. Life histories of two species of Catostomid fishes in Sixteenmile Lake, British Columbia, with particular reference to inlet stream spawning. J. Fish. Res. Bd. Canada. 23: 1761-1788.
- Griffiths, W. E. 1972. Preliminary fisheries survey of the Fort McMurray tar sands area. Alberta Dept. of Lands and Forests, Fish and Wildl. Div., Edmonton, Alberta. 618 pp.
- Healey, M. C. and C. W. Nicol. 1975. Fecundity comparisons for various stocks of lake whitefish, Coregonus clupeaformis. J. Fish. Res. Bd. Canada. 32: 404-407.
- Intercontinental Engineering of Alberta Ltd. 1973. An environmental study of the Athabasca Tar Sands. Report prepared for Alberta Environment. 112 pp.
- Jantzie, T. D. 1976. A synopsis of the physical and biological limnology and fishery programs within the Alberta Oil Sands area. Alberta Oil Sands Environmental Research Program Report No. 7. 73 pp.
- Lombard North Group Ltd. 1973. Supplementary ecological base-line measurements of tar sands lease C-13. Report prepared for Shell Canada Ltd.
- Northwest Hydraulic Consultants Ltd. 1974. Northeast Alberta regional plan, water resources study, sector I. Report prepared for Ekistic Design Consultants Ltd. 27 pp and appendices.
- Paetz, M. J. and J. S. Nelson. 1970. The fishes of Alberta. Queen's Printer, Edmonton. 282 pp.
- Scott, W. B. and E. J. Crossman. 1973. Freshwater fishes of Canada. Bull. 184. Fish. Res. Bd. Canada. 966 pp.

Renewable Resources Consulting Services. 1974. Fisheries investigation of the Muskeg River and Hartley Creek. Report prepared for Shell Oil Ltd. and Home Oil Ltd. 127 pp.

Shell Canada Ltd. 1975. Environmental Impact Assessment. Lease 13 mining project, Alberta Oil Sands. Prepared for Alberta Environment. 257 pp.

7. LIST OF AOSERP REPORTS

1			AOSERP First Annual Report, 1975
2	AF	4.1.1	Walleye and Goldeye Fisheries Investigations in the
			Peace-Athabasca Delta- 1975
3	ΗE	1.1.1	Structure of a Traditional Baseline Data System
4	VE	2.2	Preliminary Vegetation Survey of the AOSERP Study Area
5	ΗY	3.1	Evaluation of Wastewaters from an Oil Sands Extraction
			Plant
6			Housing for the North - Stackwall System Construction
			Report
7	AF	3.1.1	Synopsis of the Physical and Biological Limnology and
,		5.1.1	Fishery Programs within the Alberta Oil Sands Area
8	ΔF	1.2.1	Impact of Saline Waters upon Freshwater Biota
0	111	1.2.4	(A Literature Review and Bibliography)
9	ME	3 3	Preliminary Investigation into the Magnitude of Fog
2	1.112	L.L	Occurrence and Associated Problems in the Oil Sands Area
10	HE	2 1	
10	n£ .	2 • 1	Development of a Research Design Related to Archaeological
1 1	A T1	0 0 1	Studies in the Athabasca Oil Sands Area
11	AF	2.2.1	Life Cycles of Some Common Aquatic Insects of the Athabasca
1.0			River
12	ME	1./	Very High Resolution Meteorological Satellite Study of
			Oil Sands Weather, a Feasibility Study
13	ME .	2.3.1	Plume Dispersion Measurements from an Oil Sands Extraction
			Plant
14	HE :	2.4	Athabasca Oil Sands Historical Research Project (3 volumes)
			(in preparation)
15	HE	3.4	Climatology of Low Level Air Trajectories in the Alberta
			Oil Sands Area
16	ME	1.6	The Feasibility of a Weather Radar near Fort McMurray,
			Alberta
17	AF 2	2.1.1	A survey of Baseline Levels of Contaminants in Aquatic
			Biota of the AOSERP Study Area
18	ΗY	1.1	Alberta Oil Sands Region Stream Gauging Data(in preparation)
19	ME 4	4.1	Sulphur Dioxide Concentrations at Ground Level (in preparation)
20	HY	3.1.1	Evaluation of Organic Constituents (in preparation)
21			AOSERP Second Annual Report, 1976-77
22	HE :	2.3	Maximization of Technical Training and Involvement of Area
		_	Manpower(in preparation)
23	AF	1.1.2	Acute Lethality of Mine Depressurization Water on Trout,
			Perch and Rainbow Trout (in preparation)
24	ME 4	4.2	Review of Dispersion Models Possible Applications in the
24	1111	- T + Z	Alberta Oil Sands Area (in preparation)
25	MF	3.5.1	Review of Pollutant Transformation Processes Relevant to
20	1111 ·	L . L . L	the Alberta Oil Sands Area (in preparation)
26	ለፔ	4.5.1	
26	AF 4	4•J•T	An Interim Report on an Intensive Study of the Fish
			Fauna of the Muskeg River Watershed of Northeastern Alberta

For information regarding any of these publications of the Alberta Oil Sands Environmental Research Program, please contact the Program Office. Alberta Oil Sands Environmental Research Program 15th Floor, Oxbridge Place, 9820 - 106 Street, Edmonton, Alberta, Canada T5K 2J6 Telephone: (403) 427- 3943 This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.