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Abstract

The spatial scan statistic (SSS) has been used for the identification of geo-

graphical clusters of higher than expected numbers of cases of a condition such

as an illness. Disease outbreaks in a geographic area are a typical example.

These statistics can also identify geographic areas with longer time to events

if the SSS uses appropriate distribution. Other authors have proposed the

exponential and Weibull distributions for the event times. We have established

the log-Weibull distribution as a new and alternative approach for the SSS, and

compared and contrasted the three distributions through simulation studies to

investigate right censoring. Different datasets from the exponential, Weibull,

log-Normal, and gamma probability distributions have been generated in order

to test the robustness of the SSS’s. Three differential censoring settings were

imposed on the generated datasets to test the detection power of the true

spatial cluster by each SSS. The method along with the existing exponential

and Weibull SSS’s were also illustrated on the time to specialist visit (cardiology

or internal medicine) data for discharged patients presenting to an Emergency

Department for atrial fibrillation and flutter in Alberta during 2010-2011.
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This study is based in part on data provided by Alberta Health. The inter-

pretation and conclusions contained herein are those of the researchers and do

not necessarily represent the views of the Government of Alberta. Neither the

Government nor Alberta Health express any opinion in relation to this study.
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Chapter 1

Introduction

1.1 Introduction and Background

A cluster is defined as a group of objects or people with some common charac-

teristics. The existence of more than a presumed number of cases of a disease

condition, such as a disease outbreak within a certain region, is referred to as a

spatial disease cluster.1 Public health officials, epidemiologists, and researchers

use various cluster detection techniques to test for the presence and location

of the occurrence of incident cases of diseases, that comprise spatial disease

clusters. These officials seek to find the geographical clusters which are least

likely to appear by chance with an elevated number of disease cases. Early

and timely detection of spatial disease clusters enables the health authorities

to take actions to assist in understanding the distribution of disease and if

possible, control disease.

A large number of methods have been proposed and applied by authors for the

identification and evaluation of geographical disease clusters and for disease
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surveillance. These methods include the scan statistic,2,3 global clustering

tests,4 kriging,5,6 and spatial smoothing methods.7 Kulldorff and Nagarwalla

proposed the scan statistic in a purely spatial setting for geographic disease

surveillance and the evaluation of disease cluster alarms.8 The method was

capable of identifying spatial clusters of variable sizes and locations in the study

area. They applied their proposed method to leukaemia patients in Upstate

New York during 1978-1982. Besag and Newell developed a spatial cluster

detection method to find proximities of unexpected occurrence of certain events

with a fixed number of cases.9 They illustrated the methodology on data for

acute lymphoblastic leukaemia patients in England during 1975-1985.

Petrisor et al. used the kriging and the DAC (difference between the empirical

cumulative distribution of cases and non-cases at a particular point) statistic to

predict the low birthweight clusters in Spartanburg county, SC, United States

during 1989-1990.10 Thomas and Carlin used the technique of data smoothing

using Bayesian methods implemented via Markov chain Monte Carlo, in addi-

tion to the various mapping and cluster detection techniques on the breast and

colorectal cancer detection data for Minnesota counties for 1995-1997.7

This study focuses on the scan statistic in two dimensions, i.e., the spatial scan

statistic (SSS). The SSS has been widely used as a standardized approach with

its possible extensions for the last two decades, not only in the disease cluster-

ing literature but also in various other fields of study like natural disasters,11

forestry,12 astronomical data,13 history,14 and psychology.15 The key reasons

for the popularity of this method include that it identifies the cluster location

and tests the tendency to cluster.16 According to Costa and Assunção, the
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latter advantage is considered to be more important in terms of health related

interventions than global clustering results.16 Another important reason for

the popularity of the SSS is that it can be easily analyzed in SaTScan, which

is an easy to operate free software, originally developed by Martin Kulldorff.17

SaTScan allows the choice of using different probability models for the SSS

including the Poisson, Bernoulli, Normal, and the exponential.

The SSS’s based on the Bernoulli and Poisson models are frequently used for

count data for cluster identification and geographical disease surveillance.18

These scan statistics have been further extended to other kinds of data such as

ordinal,20 multinomial,21 and continuous data.22

The SSS for time to event data is used to determine if there are geographical

clusters with either longer than expected and/or shorter than expected times

to event. For example, in case of a survival time, if the SSS can detect the

geographical clusters of people with shorter than expected survival time, it

may be an indication of antagonistic or insufficient treatment or health prac-

tices.19 Similarly, if longer than expected survival time geographical clusters

are detected, it may reflect advancement of the treatment or better health

conditions of the people.19 The SSS’s based on the exponential18 and Weibull19

probability models have already been proposed by other authors. We propose

the log-Weibull as an alternative distribution for the SSS for cluster detection

of time to event data. The log-Weibull distribution has wide applications

in extreme value theory. Our focus is to establish a new SSS for the cluster

detection of rare and extreme events.
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1.2 Objectives of the Study

Main objectives of this study are to:

1. Develop a spatial scan statistic based on the log-Weibull distribution for

detecting spatial clusters.

2. Use the new method to identify clusters of longer times to specialist

physician follow-up after an emergency department presentation for atrial

fibrillation and flutter in Alberta, Canada.

3. Compare the new method with methods based on the exponential18 and

Weibull19 spatial scan statistics for the Alberta data.

4. Perform simulation studies to investigate power, the effect of right (type

I) differential censoring, and the ability to identify the true cluster.

1.3 Structure of the Chapters

Brief methodologies for the general SSS and SSS’s based on the exponential,

Weibull and log-Weibull distributions are described in Chapter 2. The new

developed method along with the existing exponential and Weibull SSS’s have

been illustrated on the administrative data from Alberta Health and the results

are presented in Chapter 3. Chapter 4 contains the results from the simulation

studies performed to compare and contrast the three SSS’s to investigate the

effect of right differential censoring on the power of detection of a potential

cluster. A discussion and suggested future work follow in Chapter 5.
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Chapter 2

Methodology

2.1 Overview

A brief review of the literature on the spatial scan statistic (SSS) is first

provided. Next, the details of a new formulation for the SSS using the log-

Weibull distribution are given after the descriptions of the SSS’s based on the

exponential and Weibull distributions. The chapter ends with a discussion of a

permutation test to obtain p-values and a summary.

2.2 Literature Review

A tremendous amount of work has been done on the SSS since it was first

presented by Naus3, in his paper entitled “clustering of random points in two

dimensions”. In this section, some of the literature based on the SSS and

its extensions has been reviewed. The main focus of the review is on the

application, various data types and models, comparison with other methods,

and the advancement of the SSS.

5



Kulldorff and Nagarwalla developed the SSS for the detection and evaluation

of potential spatial clusters for a specified event such as a disease outbreak.8

The proposed technique was based on the Bernoulli model. Since then, many

advances have handled different data types and statistical models.

Kulldorff presented the general statistical theory of the SSS for count data

based on the Bernoulli and Poisson distributions in his published research paper

“A spatial scan statistic”.24 He illustrated the method on sudden infant death

syndromes in North Carolina. The theory of the SSS was further extended by

Kulldorff et al. for continuous data by using the Normal distribution.22 The

authors used the proposed methodology to detect the geographical clusters of

low birth weight and early gestation in New York city.

The SSS has also been constructed for ordinal,20 multinomial,21 and multivari-

ate25 data types. The SSS’s based on these three data types were applied on

the prostate cancer grade and stage data in the Maryland,20 meningitis data

in the United Kingdom,21 and data from the National Bioterrorism Syndromic

Surveillance Demonstration Project in Massachusetts,25 respectively. The

Weighted Normal SSS has also been developed based on the heterogeneous

population data and was applied to the short-term and long-term lung cancer

survival data in Los Angeles County.26 Rosychuk and Chang developed the

SSS with a compound Poisson model for the correlated count data.27 They

illustrated the proposed method on multiple disease-related visits to emergency

departments in Alberta.
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Time to event data (e.g., survival time) is one of the important health out-

comes for which the SSS is of deep interest.18 Censoring is an important and

main characteristic of time to event data, which may occur when the data

is partially or not available due to some reason. The SSS has the capability

of incorporating the censored data. The exponential18 and Weibull19 SSS’s

(adjusted for censoring) have been developed for time to event data. These

SSS were illustrated on survival data for men diagnosed with prostate cancer

in Connecticut18 and tuberculosis patients in Nainital district of Uttarakhand,

India,19 respectively.

The SSS has been further advanced to three dimensions by incorporating time

as a third dimension, and is called the space-time scan statistic. Kulldorff et

al. introduced the retrospective space-time scan statistic and illustrated the

method on the evaluation of a brain cancer cluster alarm in Los Alamos, NM.28

Kulldorff also proposed a prospective space-time scan statistic and applied the

method on the data of thyroid cancer among men in New Mexico.29

Many other authors have developed spatial and space-time scan statistics for

non-circular, irregular, and flexible scanning windows. Research on these win-

dows include that of Kulldorff et al., who introduced the SSS for an elliptical

scanning window of variable location, shape, angle, and size.30 They used this

technique on the breast cancer mortality data from Northeastern United States

and female oral cancer mortality in the United States. Iyenger extended the

restrictive shaped space time clustering technique to a flexible square pyramid

base and applied the method on a real dataset of brain cancer occurrence over

a 19 year period.31 Takashi et al. presented a flexible space-time scan statistic

7



and showed that it is more appropriate for detecting and monitoring disease

outbreaks in irregularly shaped areas.32 They illustrated the proposed method

on daily syndromic surveillance data in eastern Massachusetts.

Many authors have performed the comparison among different cluster detection

methodologies. For example, Torabi and Rosychuk compared five popular

spatial disease clustering methods by analyzing the dataset of malignant cancer

diagnoses in children in Alberta during 1983-2004.33 The five methods under

consideration were the Besag-Newell, the circular spatial scan statistic, the

flexible spatial scan statistic, the Tango’s maximized excess events test, and

the Bayesian disease mapping. The authors concluded that the performance

of all these methods was good, but the Besag-Newell and Tango’s maximized

excess events test methods were able to identify both local (region of interest)

and general (any significant cluster in the study region) clusters. Costa and As-

sunção performed a fair comparison between two of the most popular clustering

methods, i.e., the spatial scan and the Besag-Newell disease clustering tests.16

A publicly available simulated benchmark dataset was used to find that both

of the methods produced the similar results, except the performance of the

spatial scan was better for the clusters located in regions with sparse population.

Although, spatial and space-time scan statistics have gained wide popularity

and have been applied successfully in numerous fields of study, researchers

are developing new techniques to improve the accuracy and computational

efficiency of spatial cluster detection. Neil have proposed a fast subset scan

approach based on the “linear time subset scanning property”, and proved

that this approach significantly improves the timeliness and accuracy of the

8



event detection.34 It was demonstrated that the proposed technique detected

the disease outbreaks two days faster than the other detection methods.

2.3 The Methodology of the Spatial Scan Statistic

The SSS is a statistical technique for identifying the geographic zones from a

study region that have the strongest indication of representing a spatial cluster.

The SSS can be used for both, spatially aggregated data and data for the

exact geographic co-ordinates for each individual.8 For aggregated data, the

study region is divided into non-overlapping geographical sub-regions, each

characterized by a centroid (either geographical or population based) and the

data are aggregated to the sub-region’s centroid. In case of non-aggregated

data, each region contains only one individual.8

The SSS for cluster detection uses data such as administrative health data

collected for geographical sub-regions. The SSS imposes circular searching

window (also called circular spatial scan window) of radius r on each centroid

with its center at the co-ordinate of a centroid.8 A zone (Z) defined by this

circular window is comprised of all the individuals in those sub-regions whose

centroids lie inside the circle.8 For the purpose of the analysis, an upper bound

r∗ (usually between 10% and 50% of the total population) is chosen for the

radius of the circular spatial scan window.19

For each region’s centroid, its nearest neighbours covering altogether r∗ percent

of the total population are calculated. For any given position of the centroid,

the radius of the window is expanded continuously to take any value between

9



0 and r∗.19 During the expansion, every time a new zone is created with an

inclusion of a new neighbouring centroid in the circular window.27 In this whole

process, there would be infinite number of distinct circles, but a finite number

of zones.8 Zones defined in this way have irregular geographical boundaries

depending on the size and shape of those sub-regions, whose centroids lie inside

the spatial scan window.27

The methodology of SSS is based on calculating the maximum likelihood ratio,

or more precisely maximum log likelihood ratio (LLR). The SSS partitions the

geographical area into zones (i.e., areas of potential cluster versus the rest of

the study region) and the LLR is calculated every time when a new zone is

created for each centroid.19,24 The zone maximizing the LLR is called the most

likely cluster (i.e., the cluster least likely to occur by chance).

Let the most likely cluster be the zone Ẑ that maximizes the LLR. The

hypothesis under consideration is:

. H0: The disease risk is constant over Ẑ ∪ Ẑc.

. H1: There is an elevated risk in Ẑ.

Since information about the exact statistical distribution of the test statistic is

not known, a permutation testing procedure is used to perform the hypothesis

testing. The associated p-value is calculated to check the statistical significance

of the potential cluster. The following subsections describe the methodologies

and test statistics for the already developed SSS’s based on the exponential18

and Weibull19 distributions along with the newly developed SSS based on the

10



log-Weibull distribution. For symmetry, the same notations (Section 2.3.1)

have been used to describe the three SSS’s.

2.3.1 Notations

Let G be the whole study region which can be partitioned into Z and Zc

mutually exclusive sub-regions, where Z indicates a zone designated to be a

potential cluster and Zc is the rest of the study region. The null hypothesis

of existence of no cluster for any Z is contrasted with one of three alternative

hypotheses:

. At least one zone is detected with shorter than expected times to event.

. At least one zone is detected with longer than expected times to event.

. At least one zone is detected with either shorter or longer than expected
times to event.

Let N = nin + nout be the total number of individuals in G, where nin and

nout are the total individuals inside and outside the zone, respectively. The

subscript “in” indicates the object is calculated from the individuals inside the

zone. Similarly, the subscript “out” indicates the measurement is calculated

from the individuals outside the zone.

Let the ith individual have a time to event Ti, (i = 1, ..., N) or a fixed right

censoring time Li. The event time Ti is observed if Ti ≤ Li (δi = 1), and Li

is observed if Ti > Li (δi = 0), where δi is the indicator to represent if time

is censored or not.18 The observed time is defined as ti = min (Ti, Li). Let

R = rin + rout be the total number of uncensored observations, where rin and

11



rout are the total number of uncensored observations inside and outside the

zones, respectively. These are defined as:

rin =
∑
iεZ

δi and rout =
∑
iεZc

δi .

2.3.2 A Spatial Scan Statistic Based on the Exponential

Distribution

Huang et al. have proposed the SSS based on the exponential model for

continuous time to event (survival) data, which has the ability to incorporate

both censored and uncensored observations.18 In this section, a brief review of

the SSS based on the exponential distribution has been presented. Complete

details of the methodology can be found in the paper presented by Huang et al.18

Assume that the times to event T ′i s (i = 1, ..., N) are independently and

identically distributed (i.i.d.) with the exponential probability density function

(PDF)

f(Ti) =
1

θ
e−Ti/θ Ti ≥ 0, (2.3.1)

where θ is the scale parameter. It is further assumed that the time to event for

each individual inside the zone is distributed as the exponential distribution

with the scale parameter θin. Similarly, the times to event for individuals

outside the zone are also exponentially distributed with the scale parame-

ter θout. The mathematical forms of the null and alternative hypotheses of

shorter, longer, and either shorter or longer than expected times to event are

12



H0 : θin = θout, H1 : θin < θout, H1 : θin > θout, and H1 : θin 6= θout, respectively.

The likelihood function, based on the exponential distribution for any zone Z

can be written as

L(Z, θin, θout) =
1

(θin)rin
e
−
∑

iεZ

(
ti
θin

)
1

(θout)
rout e

−
∑

iεZc

(
ti
θout

)
. (2.3.2)

The likelihood ratio test statistic for the the alternative hypothesis H1 : θin 6=

θout for at least one zone Z is

λ =
maxZ,θin 6=θout L (Z, θin, θout)

maxZ,θin=θout L (Z, θin, θout)
=
L(Ẑ)

L̂
(2.3.3)

where Ẑ is the zone maximizing L(Z, θin, θout) under H1, and L̂ is the maximum

of L(Z, θin, θout) under H0. After applying the natural log on L(Z, θin, θout) and

taking the derivatives, the maximum likelihood estimates of θin and θout are

θ̂in =
rin∑
iεZ ti

and θ̂out =
rout∑
iεZc ti

, respectively.

By using the maximum likelihood estimates of the scale parameters for in-

side and outside the zone, the derived likelihood ratio test statistic for the

exponential SSS for H1 : θin 6= θout is

λ =

maxZ

(
rin∑
iεZ ti

)rin ( rout∑
iεZc ti

)rout
(

R∑
iεG ti

)R . (2.3.4)

The test statistic λ in (2.3.4) is multiplied by I

(
rin∑
iεZ ti

<
rout∑
iεZc ti

)
, if at

least one cluster is to be detected with shorter than expected times to event.

13



Similarly, λ is multiplied by I

(
rin∑
iεZ ti

>
rout∑
iεZc ti

)
, if one wants to detect at

least one cluster with longer than expected times to event.

2.3.3 A Spatial Scan Statistic Based on the Weibull

Distribution

Bhatt and Tiwari established the SSS based on the Weibull distribution in

the same spirit of the SSS based on the exponential distribution. The Weibull

model is a nice generalization of the exponential model by including a shape pa-

rameter with the existing scale parameter.19 The additional parameter provides

the opportunity for the hazard function of the Weibull distribution to take

different shapes rather than to be a constant like the exponential distribution.

In this section, the methodology of the SSS based on the Weibull distribution

has been summarized. Complete details of the methodology can be found in

the paper presented by Bhatt and Tiwari.19

Let the times to event T ′i s (i = 1, ..., N) be i.i.d. with the Weibull PDF

f(Ti) =
1

θ
p T

(p−1)
i e(−T

p
i /θ) Ti ≥ 0, (2.3.5)

where θ = scale and p = shape parameters, respectively. Let the time to event

for each individual inside the zone be distributed as the Weibull distribution

with θin and pin as the scale and shape parameters, respectively. Similarly,

assume that the times to event for individuals outside the zone are Weibull

distributed with θout and pout as the scale and shape parameters, respectively.
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The null hypothesis under consideration is H0 : θin = θout versus the alternative

hypotheses H1 : θin < θout, H1 : θin > θout, or H1 : θin 6= θout, representing

the existence of spatial clusters of individuals with shorter than expected,

longer than expected, or either shorter or longer than expected times to event,

respectively.

By using the same statistic shown in (2.3.3), the derived likelihood ratio test

statistic for the Weibull SSS for H1 : θin 6= θout is

λ = maxZ

(
R∑
iεG t

p
i

)R
(

rin∑
iεZ t

pin
i

)rin ( rout∑
iεZc t

pout
i

)rout . (2.3.6)

For H1 : θin < θout, λ is multiplied by I

(
rin∑
iεZ t

p
i

<
rout∑
iεZc t

p
i

)
, and similarly

for H1 : θin > θout, it is multiplied by I

(
rin∑
iεZ t

p
i

>
rout∑
iεZc t

p
i

)
.

2.3.4 A Spatial Scan Statistic Based on the Log-Weibull

Distribution

The SSS’s for the exponential18 and Weibull19 distributions are very useful

in the field of cluster detection for time to event data. These two methods

help motivated the new methodology of the SSS based on the log-Weibull dis-

tribution, presented in this section. The log-Weibull distribution, also known

as the Gumbel distribution, is a specialized case of the generalized extreme

value distribution. It is often used to model the distribution of extreme values,

strength, event history data such as quick wear-out after reaching a certain age,

and logarithms of times.36 The log-Weibull distribution has a direct relationship
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with the Weibull distribution by a logarithmic transformation of the Weibull

random variable.37

Assume that times to event T ′i s (i = 1, ..., N) are i.i.d. with the log-Weibull

PDF

f(Ti) =
1

b
exp

(
Ti − a
b

)
exp

{
− exp

(
Ti − a
b

)}
Ti ≥ 0, (2.3.7)

where b = scale and a = location parameters. In general, the log-Weibull

random variable ranges from −∞ to∞, but as the time to event can not take

a negative value, its range is considered from 0 to ∞ in this case. The log-

Weibull PDF has no shape parameter (i.e., its PDF has only a constant shape).36

The survival function for the log-Weibull distribution is

S(Ti) = exp

{
− exp

(
Ti − a
b

)}
. (2.3.8)

Let the time to event for each individual inside zone Z be log-Weibull dis-

tributed with ain and bin as the location and scale parameters, respectively.

Similarly, the time to event for each individual outside zone Z (i.e., inside Zc)

follows the log-Weibull distribution with aout and bout as the location and scale

parameters, respectively.

The null hypothesis H0 : bin = bout for any Z is contrasted with one of three

alternative hypotheses: H1 : bin < bout, H1 : bin > bout, or H1 : bin 6= bout.

The alternative hypotheses show that at least one zone is detected with either
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shorter than expected, longer than expected, or either longer or shorter than

expected times to event. The likelihood function L(Z) = L(Z, bin, bout) for the

log-Weibull SSS can be written as:

L(Z) =
∏
iεZ

[(
f(Ti)

)δi(S(Li)
)1−δi]∏

iεZc

[(
f(Ti)

)δi(S(Li)
)1−δi]

=
∏
iεZ

[(
1

bin
e

(
Ti−ain

bin

)
−e(

Ti−ain
bin

)
)δi(

e−e
(Li−ain

bin
)
)1−δi]

×
∏
iεZc

[(
1

bout
e

(
Ti−aout

bout

)
−e(

Ti−aout
bout

)
)δi(

e−e
(Li−aout

bout
)
)1−δi]

=
∏
iεZ

[
1

bδiin
e
δi

((
Ti−ain

bin

)
−e(

Ti−ain
bin

)
)
e−(1−δi)e

(Li−ain
bin

)
]

×
∏
iεZc

[
1

bδiout
e
δi

((
Ti−aout

bout

)
−e(

Ti−aout
bout

)
)
e−(1−δi)e

(Li−aout
bout

)
]

= (bin)−rin (bout)
−rout

× e

∑
iεZ δi

(
Ti−ain
bin

)
−
∑

iεZ δie

(
Ti−ain

bin

)
−
∑

iεZ(1− δi)e
(

Li−ain
bin

)

× e

∑
iεZc δi

(
Ti−aout
bout

)
−
∑

iεZc δie

(
Ti−aout

bout

)
−
∑

iεZc (1− δi) e
(

Li−aout
bout

)

= (bin)−rin (bout)
−rout

× e

∑
iεZ δi

(
ti−ain
bin

)
−
∑

iεZ e

(
ti−ain

bin

)

× e

∑
iεZc δi

(
ti−aout
bout

)
−
∑

iεZc e

(
ti−aout

bout

)
.
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Taking natural log on both sides,

lnL(Z) = −rin ln bin − rout ln bout +
∑
iεZ

δi

(
ti − ain
bin

)
−
∑
iεZ

e

ti − ain
bin



+
∑
iεZc

δi

(
ti − aout
bout

)
−
∑
iεZc

e

ti − aout
bout


.

For H1 : bin 6= bout for at least one zone Z, the corresponding likelihood ratio

statistic is

λ =
maxZ,bin 6=boutL(Z, bin, bout)

maxZ,bin=boutL(Z, bin, bout)
=
L(Ẑ)

L̂
(2.3.9)

where Ẑ is the zone maximizing L(Z, bin, bout) under H1, and L̂ is the maximum

of L(Z, bin, bout) under H0.

The maximum likelihood estimators (MLE’s) of the parameters bin, bout, ain, and aout

for any arbitrary zone Z can be obtained by the following equations

∂ lnL(Z)

∂bin
= −rin

bin
− 1

b2in

∑
iεZ

δi (ti − ain)−
∑
iεZ

e

ti − ain
bin

(−1

b2in
(ti − ain)

)
= 0

∂ lnL(Z)

∂bout
= −rout

bout
− 1

b2out

∑
iεZc

δi (ti − aout)−
∑
iεZc

e

ti − aout
bout

(−1

b2out
(ti − aout)

)
= 0

∂ lnL(Z)

∂ain
=

1

bin

∑
iεZ

(−δi)−
∑
iεZ

e

ti − ain
bin

(−1

bin

)
= 0

∂ lnL(Z)

∂aout
=

1

bout

∑
iεZc

(−δi)−
∑
iεZc

e

ti − aout
bout

(−1

bout

)
= 0.
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Thus the MLE’s of the scale parameters bin and bout are

b̂in = 1
rin

∑
iεZ (ti − âin)

[
e

ti − âin
b̂in


− δi

]
and

b̂out = 1
rout

∑
iεZc (ti − âout)

[
e

ti − âout
b̂out


− δi

]
, respectively.

Similarly, the MLE’s of the location parameters ain and aout are obtained by the

equations rin =
∑

iεZ e

ti − âin
b̂in


and rout =

∑
iεZc e

ti − âout
b̂out


, respectively.

Under H1 : bin 6= bout, the obtained MLE’s provide

L(Ẑ) =
(
b̂in

)−rin (
b̂out

)−rout
×e

∑
iεZ δi

(
ti − âin
b̂in

)
+
∑

iεZc δi

(
ti − âout
b̂out

)
e(−rin−rout)

=
(
b̂in

)−rin (
b̂out

)−rout
×e

∑
iεZ δi

(
ti − âin
b̂in

)
+
∑

iεZc δi

(
ti − âout
b̂out

)
e−R.

Similarly, under H0 : bin = bout,

L̂ =
(
b̂G

)−rin (
b̂G

)−rout
e

∑
iεG δi

(
ti − âG
b̂G

)
e−R

=
(
b̂G

)−R
e

∑
iεG δi

(
ti − âG
b̂G

)
e−R.
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So, the likelihood ratio statistic for H1 : bin 6= bout is

λ =
maxz

(
b̂in

)−rin (
b̂out

)−rout
e

∑
iεZ δi

(
ti − âin
b̂in

)
+
∑

iεZc δi

(
ti − âout
b̂out

)
(
b̂G

)−R
e

∑
iεG δi

(
ti − âG
b̂G

) .

In order to address the alternative hypothesis bin < bout, the function λ

is multiplied by I
(
b̂in < b̂out

)
. Similarly, the function λ is multiplied by

I
(
b̂in > b̂out

)
if the alternative hypothesis bin > bout is under consideration.

2.4 Permutation Test Procedure

Since there is no closed analytical form of the distribution of the test statistic λ,

the standard analytical p-values cannot be calculated. Instead a permutation

test procedure was used to test the statistical inference of the selected clusters.

Unlike most of the scan statistics, it is not possible to generate the simulated

data under the null hypothesis, since the distribution of the observed time to

events is unknown. To overcome this situation, the observed time to event data

along with its corresponding censoring indicators were permuted a large number

of times and the statistical significance was calculated. This permutation step

ensures that no matter how the observed time to events data is distributed, this

distribution is preserved for each permuted dataset. This factor provides valid

statistical significance since all the permuted datasets are equally distributed,

irrespective of their spatial locations.18

In particular, the observed pairs {(ti, δi) i = 1, 2, . . . , N} were permuted among
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the individual geographical coordinates of the original study region.18 For each

permuted dataset, the log-likelihood was calculated for each zone and the most

likely cluster preserving the maximum log-likelihood in the dataset was saved.

In the permutation test procedure, a p-value is calculated as the fraction of

permutations that are atleast as extreme as the test statistic from the observed

time to event data.38 No matter how the time to event data are distributed,

the SSS using the Weibull distribution does not provide biased p-values asso-

ciated with the potential clusters,19 and is also true for the SSS’s based on

the exponential and log-Weibull distributions. This feature occurs because the

randomly permuted time to event data along with its permuted co-ordinates

preserve the correct α-level for any data distribution.18,19

Secondary clusters are the spatial clusters that do not overlap with the most

likely cluster, and reject the null hypothesis of no clustering on their own.18

These clusters are ranked with their corresponding LLR values and the associ-

ated p-values are calculated in the same spirit of the main cluster by comparing

the kth (say) highest likelihood in the real dataset with the maximum likelihood

in the randomly permuted datasets.18 All of the significant secondary clusters

were also reported with the most likely cluster in this study.
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2.5 Summary

The SSS is a statistical technique for identifying the presence and location of

the significant spatial clusters with certain elevated characteristics. In this

chapter, a newly established SSS for time to event data based on the log-Weibull

distribution has been developed. This SSS is capable of using both, the censored

and uncensored observations. The test statistic is based on the log-likelihood

ratio and is tested using the permutation testing approach. Already developed

SSS’s for the exponential and Weibull distributions have also been defined

briefly.
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Chapter 3

Data Description and Analysis

3.1 Overview

Administrative data from Alberta Health are described in Section 3.2. Section

3.3 contains the results for spatial scan statistics (SSS’s) using the exponential,

Weibull, and log-Weibull distributions. A summary of the spatial scan results

follows in Section 3.4.

3.2 Data Description

3.2.1 Study Design

This retrospective cohort study used the data for patients discharged from the

emergency department (ED) who presented with atrial fibrilation and flutter

(AFF) in the province of Alberta during a 1-year period: April 1, 2010, to

March 31, 2011.
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3.2.2 Study Population

Alberta, with a land area of 661,848 km2 and a population size of 3,645,257 in

2011,40 is the fourth largest province of Canada.41 Under the Canada Health

Act of 1984, all Alberta residents have access to a publicly administered and

funded health care system.42 This system ensures that all Albertans have

universal access to health care services.

In 2003, the province of Alberta was divided into nine administrative health

areas also called Regional Health Authorities (RHA’s).43 These RHA’s were

further partitioned into 70 sub-Regional Health Authorities (sRHA’s) and are

shown in Appendix-A (Table A.1) and Figure 3.1. In 2008, the nine RHA’s

were combined to form Alberta Health Services and it was formally launched

on April 1, 2009.44 Alberta Health Services was further organized into five

geographic zones (South, Calgary, Central, Edmonton, and North), each with

different population sizes and geographical boundaries.45 These health zones

provide ease for the administration of health services locally.

The sRHAs have diverse population sizes ranging from 550 to 140,211 with a

median population size of 46,075 in 2011. Each sRHA was considered as a geo-

graphical unit for the analysis. For each sRHA’s centroid based on population,

the latitude and longitude of the centroids were developed by Alberta Health.43

Distances between the pairs of sRHA population-based centroids were ordered

and used to create the nearest neighbours, shown in Appendix-A (Table A.2).

Emergency departments are central and important units in the Alberta health
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care system for medically ill and injured patients to get around the clock emer-

gency care. For example, for patients with sudden cardiac conditions, ED’s

may be used for immediate care. Hospitals located in urban and rural areas

are equipped with emergency physicians on a fulltime or on-call availability

basis depending upon the volume of patients.46 Albertans receive emergency

care in more than 100 public funded hospitals.

Atrial fibrillation and flutter is one of the most common clinically diagnosed

forms of arrhythmia frequently observed in outpatient settings.47 It is caused

when the atria beats abnormally fast because of the development of an irregular

conduction circuit inside the right atrium.48 This leads to an unbalanced heart

rhythm and poor blood flow. In the last 20 years, a 60% increase in hospital

admissions for AFF has been noticed, the major reasons for which are the

aging population and an increase in chronic heart disease.49,50
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Figure 3.1: Alberta sub-Regional Health Authorities
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Table 3.1: Codes and corresponding Regional Health Authorities in Alberta

Codes Regional Health Authority (RHA)

1− 5 Chinook Regional Health Authority (R1)

6− 7 Palliser Health Region (R2)

8− 26 Calgary Health Region (R3)

27− 35 David Thompson Regional Health Authority (R4)

36− 40 East Central Health (R5)

41− 58 Capital Health (R6)

59− 62 Aspen Regional Health Authority (R7)

63− 66 Peace Country Health (R8)

67− 70 Northern Lights Health Region (R9)

3.2.3 Data Sources and Description

As a part of the activities of Alberta Health, administrative health datasets

are regularly maintained and are available for planning and research purposes.

There were three main data sources used in this study: the Ambulatory

Care Classification System, the Alberta Health Care Insurance Plan, and the

Physician’s Claim File.

Ambulatory Care Classification System (ACCS)

The ACCS database was developed by Alberta Health and put into practice in

1997 to track the ambulatory care visits within government funded hospitals.51

An ambulatory care service is defined as an approach to a regional health

service provider by a patient without the condition of staying at the hospital.51

One of the uses of the collected ACCS data is the classification of patients

receiving ambulatory care services into clinical groups according to their clinical
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profiles and required resources.52

The ACCS database includes ED visits, clinic visits, and outpatient services

delivered within acute care institutions in Alberta,51 which are used for the

analysis and management purposes at both the hospital and provincial levels.52

Information regarding the patient’s identification number, ED presentation

timings and dates, disposition status, and diagnosis information are entered

into computerized abstracts.51 All patients exiting the ED are allocated a

disposition status. Only ED visits ending in discharge were considered in this

study. If the patient had multiple ED visits, then the last visit was considered.

The National Ambulatory Care Reporting System (NACRS) based on ACCS

data system and commenced in 1997, is an effective database managed by

Canadian Institute for Health Information (CIHI).53,54 The NACRS provides

standardized data collection tools and reporting techniques to help the health

care institutions and community-based organizations to keep record of the

ambulatory care visits.54

Alberta Health Care Insurance Plan (AHCIP)

This data source contains the demographic information (e.g., age, gender, and

health sub-region of residence) for all people registered under the provincial

health insurance plan.55 The required information for this study was obtained

by linking the discharged ED patients in the ACCS database to the AHCIP

registry file. In addition, the AHCIP provided data for the population by the

demographic variables.
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Physician’s Claim File (PCF)

The Physician’s Claim File (PCF) was used to obtain the information for

patients’ visits in non-ED settings (follow-up visits). This information was

collected for all the patients who had ED presentations for AFF that ended

in discharge during 365 days of study period (i.e., April 1, 2010, to March

31, 2011). The required datasets were obtained by linking the patients in the

ACCS to the patients in the Physician’s Claims File database. The obtained

follow-up visits data were comprised of the date of the physician visit and

the speciality of the physician. A physician specialist visit in this study was

defined as either cardiology (CARD) or internal medicine (INMD). If a patient

had both cardiology and internal medicine follow-up visits, the first visited

physician was considered (i.e., earlier in date and time). Table 3.2 provides a

list of the data fields and sources used in this study.

Table 3.2: Data sources used in the study

Variable Source

Diagnostic Information for ED Visit ACCS

Disposition Status for ED visit ACCS

Start/End Dates/Time of ED visit ACCS

Age AHCIP

Gender AHCIP

Health Region of Residence AHCIP

Date of Follow-up Visit PCF

Diagnostic Information for Follow-up Visit PCF

Physician Specialty at Follow-up Visit PCF

29



3.2.4 Case Definition and Outcome of Interest

The key outcome of interest was the time from ED discharge for AFF to the

1st specialist visit during 365 days of the study period, i.e., April 1, 2010, to

March 31, 2011. The patient could have a specialist follow-up visit in the time

span of ED end time, to the end of the study. Each discharged ED presentation

during April 1, 2010, to March 31, 2011 with a follow-up visit to the specialist

during ED end time, to March 31, 2011 was considered as a complete time to

event outcome. If the patient had no specialist visit by the end of the study

(March 31, 2011), the outcome was referred to as right (type-I) censored. If

the patient had both ED discharge and the follow-up visit on the same day,

the time to event was rounded to a whole day. Each Alberta resident making

at least one ED presentation for AFF during the fiscal year was referred to as

a case (patient).

The methodology used in this study does not adjust for repeated ED presen-

tations of cases. Hence, independent patient data was considered by taking

only the last ED visit out of the multiple visits, if they occurred. This study

focused on detecting spatial clusters of patients in Alberta having longer times

to follow-up visits to cardiology or internal medicine specialists, who were

discharged from ED. The calculations were performed using the R and S-Plus

softwares.56,57 With the SSS, each detected cluster could contain only a max-

imum of r∗ = 10% (a pre-decided upper bound) of the total population, so

the variable scanning windows were created around each sRHA to absorb

neighbours up to a fixed 10% of the total population. This upper bound was

chosen based on the feasibility of analysis and time restrictions.
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3.2.5 Exploratory Data Analysis

During the study period, there were about 1.95M adults in the population,

aged 35 years and above, with an average age of 54.11 years. The reason behind

considering the age ≥ 35 in this study was that AFF is more prevalent in

older adults and covers more homogeneous groups.58 In total, 5,953 ED cardiac

visits were made during the study period, among them 4,292 were for the AFF.

The discharged subset excluding the multiple ED presentations for AFF (if

they existed) and including only the last ED visits, was comprised of 3,527

cases and the average age of these individuals was 68.15 years (Table 3.3). The

median time taken by the specialists to see ED discharged patients for AFF

was 151 days. Approximately 20% of the observations were censored. A set of

(ti, δi) was observed from i = 1, ..., 3, 527 patients, where ti = min(Ti, Li) with

Ti being the time to event and Li representing the fixed right censoring time.

The indicator of complete or censored observation is δi.

Summaries of the administrative data by sub-Regional Health Authorities were

calculated for both the population and cases under study and are shown in

Table 3.4. This table shows that during 2010-2011, on average there were

approximately 28,000 people living in each sRHA. An average of 50 presented

to an ED for AFF with a mean age of 68 years. An average of 10 censored

outcomes were observed in each sRHA. Twenty seven out of 13,861 males were

observed on average presenting to ED for AFF in each sRHA.
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Table 3.3: Summary of the administrative data

Population Cases

N 1,953,830 3,527

Censored, N – 687 (19.40%)

Male, N 970,338 (49.60%) 1,909 (54.00%)

Age

Mean (SD) 54.11 (13.45) 68.15 (13.83)

Med (Min, Max) 57.01 (35, 112) 68.81 (35, 97)

ED presentations – 5,953

AFF cases – 4,292

Time to 1st follow-up

Med (Min, Max) – 151 (1, 365)

Med=Median Min=Minimum

Max=Maximum SD=Standard Deviation

Table 3.4: Summary of the administrative data by sub-Regional Health Au-
thorities

Population Cases

N

Mean (SD) 27,912 (18,154.46) 50 (30.86)

Med (Min, Max) 26,152 (2,573, 70,510) 45 (3, 123)

Censored, N

Mean (SD) – 10 (7.23)

Med (Min, Max) – 8 (0, 35)

Males, N

Mean (SD) 13,861 (8,895.56) 27 (16.22)

Med (Min, Max) 12,857 (1,282, 34,731) 24 (1, 73)

Age, Means

Mean (SD) 54.39 (2.04) 68.03 (4.51)

Med (Min, Max) 54.40 (48, 58) 67.58 (53, 85)

Med=Median Min=Minimum

Max=Maximum SD=Standard Deviation
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Figure 3.2: Total number of uncensored and censored observations per sub-
Regional Health Authority. Uncen=Uncensored observations, Cen=Censored
observations
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Figure 3.2 shows the total number of uncensored (complete) and censored

time to events for each sRHA. There were a total of 3,527 cases who were

discharged from the ED for AFF. Among these cases, 2,840 provided uncensored

information and 687 were censored outcomes. These numbers are also presented

in Table A.3 (Appendix A).
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Kaplan Meier (KM) plots adjusted for censoring, for the whole data and a few

sRHAs, are shown in Figure 3.3 to show the estimated probabilities of times to

event. The plots show variation in the time to 1st specialist visit by sRHA. The

median time to event for the whole dataset was 151 days and the corresponding

95% lower and upper confidence limits were 144 to 161 days, respectively.

Figure 3.4 shows the KM estimated median (the black dot in each bar) and

lower and upper quartiles (lower and upper borders of each bar) for each

sRHA. These estimated values were calculated after adjusting for the censored

information. The figure depicts the variation by sRHAs in the study region

and that the majority of the sRHAs had median time to events between 100

and 200 days. Among all 70 sRHAs used in the study, the maximum median

time to event (364 days) was observed for R63 and the minimum was for R5

(54 days). A solid horizontal line represents the overall KM estimated median

for time to specialist visits for 3,527 discharged cases, with the corresponding

lower and upper quartiles provided as dotted lines.
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Figure 3.3: Kaplan Meier plots for the whole data and selected sub-Regional
Health Authorities
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(a) Kaplan-Meier plots for whole data (WD) and sRHAs 1-5
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(b) Kaplan-Meier plots for whole data (WD) and sRHAs 66-70
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Figure 3.4: KM estimated median and lower and upper quartiles for each
sub-Regional Health Authority
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3.3 Analysis and Results from the Spatial Scan Statistics

In this section, the candidate main clusters along with the statistically significant

secondary clusters, based on three probability distributions (i.e., the exponential,

Weibull and log-Weibull) are shown. Each method identified geographical areas

with longer than expected times to a specialist follow-up visit.

3.3.1 Exponential Spatial Scan Statistic

The identified main and secondary clusters for longer time to specialist visits for

patients discharged from the ED who presented with AFF using the exponential

distribution are shown in Table 3.5. Highlighted detected main and secondary

clusters are also shown on the Alberta map (Figure 3.6) in red and orange

colours, respectively.

Table 3.5 shows that the most likely cluster with significantly longer times to

events was mainly from the Peace Country Health region, Northern Lights

Health Region, and the Aspen Regional Health Authority. This cluster was

identified with 202 observed number of cases. The log-likelihood ratio (LLR)

was 35.87 with the associated p-value (P) of 0.004. The detected secondary

cluster with the p-value of 0.013 was mainly at the hub of the East Central

Health Authority, and parts of the David Thompson RHA and the Capital

Health Authority.
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Table 3.5: Spatial scan results for the exponential distribution

Cluster Pop Cases LLR P M-In M-Out

Main

68 64 67 63 69 65 61 61,277 202 35.87 0.004 229 148

Secondary

38 37 35 39 36 40 62 34 154,011 360 32.17 0.013 190 148

52 55 58

Pop=Population

LLR=Log-Likelihood Ratio

M-In=Medain time to 1st specialist visit within the cluster

M-Out=Medain time to 1st specialist visit outside the cluster

The median times to 1st follow-up visits for inside and outside the detected

main and secondary clusters were also obtained by accounting for the censored

information. Within the main and secondary clusters, the medians were 229 and

190 days, respectively. The corresponding 95% confidence intervals (CI’s) were

(173, 279) for inside the main cluster and (163, 223) for inside the secondary

cluster, respectively. Outside the main and secondary clusters, the median was

148 days. That is, for the entire province without the main cluster, the median

was 148 days with (141, 159) being the 95% CI. In addition, for the entire

province without the secondary cluster, the median was also 148 days with 141

to 158 days as the confidence bounds. The median event time for the whole

province excluding both the main and secondary clusters was 145 days, with

(137, 153) as the 95% CI.

Figure 3.5 shows the KM curves for the times to event for the three distinct

areas: the main cluster, the secondary cluster, and rest of the province (exclusive

of the main and secondary clusters). Since we were detecting the clusters with
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Figure 3.5: Kaplan Meier curves for the detected main and secondary clusters
and rest of the province for time to 1st specialist visit for the exponential spatial
scan statistic
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longer times to specialist visits, the estimated KM curve for the main cluster

showed the highest probabilities of seeing a specialist near 365 days.
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Figure 3.6: Alberta Map highlighting the main and secondary clusters for the
exponential Distribution. (Red=Main cluster, Orange=Secondary cluster)
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3.3.2 Weibull Spatial Scan Statistic

The identified main and secondary clusters are highlighted on the Alberta

map (Figure 3.8) with red and orange colours, respectively, and the results are

presented in Table 3.6.

The Weibull SSS detected the same most likely cluster as of the exponential

SSS, i.e., the combination of the Peace Country Health region, Northern Lights

Health Region, and the Aspen Regional Health Authority. The corresponding

value of the LLR was 95.22 with the associated p-value of 0.001. The detected

secondary cluster showed a narrower zone than the exponential SSS’s secondary

cluster, which had an LLR= 35.89 and p-value= 0.001. The major geographical

areas detected in the secondary cluster were the East Central Health Region

with some parts of the David Thompson RHA and the Capital Health Authority.

Table 3.6: Spatial scan results for the Weibull distribution

Cluster Pop Cases LLR P M-In M-Out

Main

68 64 67 63 69 65 61 61,277 202 95.22 0.001 229 148

Secondary

38 37 35 39 36 40 62 34 136,554 323 35.89 0.001 194 147

52

Pop=Population

LLR=Log-Likelihood Ratio

M-In=Medain time to 1st specialist visit within the cluster

M-Out=Medain time to 1st specialist visit outside the cluster
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Median times to 1st specialist within the main and secondary clusters were 229

and 194 days, respectively. The associated 95% CI’s were (173, 279) for the

main cluster and (170, 225) for the secondary clusters, respectively. Similarly,

the median times were 148 and 147 days for the entire province excluding

the main and secondary cluster, respectively. The CI’s were (141, 159) for

the area excluding the main cluster and (141, 157) for the area without the

secondary clusters. By excluding both the main and secondary clusters, the

median time to events for the rest of the province was calculated as 145 days

and the corresponding lower and upper confidence bounds were 137 to 153

days, respectively. It is worth noting that the observed time to events data

(complete and censored) used in study follows the Weibull distribution with

the estimated shape and scale parameters be 0.884 and 194.356, respectively.

The KM curves for the main and secondary clusters and the rest of the province

detected by the Weibull SSS were created. As expected, the KM curve for the

main cluster was above the other curves.

42



Figure 3.7: Kaplan Meier curves for the detected main and secondary clusters
and rest of the province for time to 1st specialist visit for the Weibull spatial
scan statistic
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Figure 3.8: Alberta Map highlighting the main and secondary clusters for the
Weibull Distribution. (Red=Main cluster, Orange=Secondary cluster)
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3.3.3 Log-Weibull Spatial Scan Statistic

The log-Weibull SSS as a new method was used to detect the main and sec-

ondary clusters and the results are shown in Table 3.7. Highlighted main and

secondary clusters are presented in Figure 3.10. The results for the log-Weibull

SSS were not much different from the exponential and Weibull SSS’s.

The SSS with the log-Weibull distribution detected the same most likely cluster

as of the exponential and Weibull SSS with LLR = 76.23 and p-value = 0.001.

This SSS provided two different statistically significant secondary clusters, one

of them was a narrower form of the already detected secondary cluster by

the exponential and Weibull distributions, i.e., a combination of the David

Thompson RHA and the East Central Health Authority. The other one was a

part of the Chinook Regional Health Authority.

Table 3.7: Spatial scan results for the log-Weibull distribution

Cluster Pop Cases LLR P M-In M-Out

Main

68 64 67 63 69 65 61 61,277 202 76.32 0.001 229 148

Secondary(1)

38 37 35 39 36 40 62 34 121,880 299 70.93 0.001 199 147

Secondary(2)

1 2 20,238 71 17.83 0.032 292 150

Pop=Population

LLR=Log-Likelihood Ratio

M-In=Medain time to 1st specialist visit within the cluster

M-Out=Medain time to 1st specialist visit outside the cluster
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Median times to event were 229, 199, and 292 days for inside the main, secondary

(1), and secondary (2) detected clusters, respectively. The corresponding 95%

lower and upper confidence bounds were, 173 to 279, 171 to 231, and 150 to

295 days. For the entire province, collectively excluding the main and both

secondary clusters, the median event time was 144 days and the 95% CI was

(135, 152) days, respectively. Figure 3.9 shows the KM curves for the detected

main and secondary clusters and the rest of the province. The KM curve for

the secondary (2) cluster is on a slightly higher position than the main and the

secondary (1) clusters. One of the reasons can be the less number of patients

and higher percentage of censoring in secondary (2) cluster, which moved its

KM curve higher than the others.

46



Figure 3.9: Kaplan Meier curves for the detected main and secondary clusters
and rest of the province for time to 1st specialist visit for the log-Weibull spatial
scan statistic
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Figure 3.10: Alberta Map highlighting the main and secondary clusters for the
log-Weibull Distribution. (Red=Main cluster, Orange=Secondary cluster (1),
Dark orange = Secondary cluster (2))
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3.4 Summary

A summary of the spatial scan results for all three distributions is presented

in Table 3.8. Each SSS approach detected the same main cluster of longer

times to specialist visit after an ED presentation for AFF. Similarly, the sRHAs

detected under the secondary cluster (1) by each SSS were approximately the

same, with the exponential SSS providing the widest geographical area. The

log-Weibull SSS was able to detect one more statistically significant secondary

cluster with a p-value of 0.041.

Table 3.8: Summary of the results for the spatial scan statistics

Cluster
Distribution of the SSS

Exponential Weibull Log-Weibull

Main

sRHA’s 68 64 67 63 69 65 61 Same as Exponential Same as Exponential

LLR 35.875 95.215 76.32

P-value 0.004 0.001 0.001

Sec(1)

sRHA’s 38 37 35 39 36 40 38 37 35 39 36 40 38 37 35 39 36 40

62 34 52 55 58 62 34 52 62 34

LLR 32.172 35.896 70.93

P-value 0.013 0.001 0.001

Sec(2)

sRHA’s – – 1 2

LLR – – 17.83

P-value – – 0.032

LLR=Log-Likelihood Ratio

Sec=Secondary

49



Chapter 4

Simulation Studies

4.1 Overview

The simulation study procedures are described in Section 4.2. The exponential,

Weibull, and log-Weibull spatial scan statistics (SSS’s) under four different

probability models for right differential censoring are compared and contrasted

in Section 4.3. The summary of the chapter follows in Section 4.4.

4.2 Strategy Used for Simulation Studies

Simulation studies were conducted to investigate the power of detecting a

potential cluster, the effect of right differential censoring on cluster detection,

and the strength of detection of a true cluster using simulated datasets from

the exponential (Exp), Weibull (Weib), log-Normal (LN), and gamma (Gam)

probability models. All of the datasets were analyzed with the exponential,

Weibull, and log-Weibull SSS’s.
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To perform the simulation studies, time to event data were randomly generated

for 500 individuals (cases). To test the behaviour of the SSS’s, datasets were

generated from four different probability models, i.e., the exponential, Weibull,

log-Normal, and gamma under various parametric situations leading to diverse

means and variances inside and outside the zone designated as the true cluster.

The Alberta geography was used as the geography for analysis and the Alberta

population was used to create the zones for the simulation studies. Like the

spatial scan analysis of the real administrative data, an upper bound of 10%

was imposed on the population size under the continuously increasing searching

windows because of the time restrictions and feasibility of the simulation study

analyses.

For all simulated datasets, a true cluster of 25 individuals was created at the

Palliser North and Central Health Region (ID=6), to have longer time to events

than the rest of the province. Right differential censoring was added with the

ratios of 20%:20%, 20%:40%, and 40%:20% for inside:outside the true cluster.

More precisely, three different scenarios of right censoring were incorporated.

In the first case, 20% censoring was used both within and outside the true

cluster. In the second case, 20% censoring was used within the true cluster

and 40% outside the true cluster, whereas this ratio was reversed in the third

case. One of the purposes behind this simulation study was to examine the

behaviour of the SSS’s under various censoring situations.

One thousand simulated datasets were generated from the exponential, Weibull,

log-Normal, and gamma probability models using the differential censoring

settings described above under the alternative hypotheses of the existence of

51



longer than expected time to event clusters. For symmetry, parameters for each

probability model were chosen in such a way that they provided a constant

mean of 2 outside the true cluster and means of 10, 15, and 20, inside the true

cluster with corresponding variances. There were three time to event datasets’

means inside the true cluster for each probability model under all censoring

ratios. The variances for the data outside the true cluster were 4, 0.188, 2, and

1 for the exponential, Weibull, log-Normal, and gamma models, respectively.

For each simulated dataset, 999 random permutations were performed to

get the p-values from the permutation testing procedure. Power (Pow) was

calculated as the proportion of datasets out of 1000 having p-values< 0.05,19

not necessarily detecting the true cluster. In order to observe the strength of

identification of the true cluster by each SSS, three different proportions were

calculated for mutually exclusive situations from 1000 randomly generated

datasets under each probability model for all censoring situations. These were

the proportion of datasets:

1. Perfectly identifying the true cluster (PI);

2. Identifying a large cluster including the true cluster (LC); and,

3. Not identifying the true cluster (NI).

Mathematically, we define

Z∗ = True cluster.

Z(m) = The cluster identified in mth simulation.

M = Total simulations.
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The key quantities were defined as,

Power =
1

M

M∑
m=1

I[Z(m) ; P (Z(m))< 0.05] (4.2.1)

PI =
1

M

M∑
m=1

I[Z∗=Z(m)] (4.2.2)

LC =
1

M

M∑
m=1

I[Z∗⊂Z(m)] (4.2.3)

NI =
1

M

M∑
m=1

I[Z∗*Z(m)] (4.2.4)

= 1− PI− LC.

4.3 Simulation Study Results

4.3.1 Simulation Study for Exponential Spatial Scan Statistic

The results from the simulation study for the exponential SSS are provided in

Table 4.1, and also depicted in pictorial form in Appendix B (Figures B.1 and

B.2).

Table 4.1 contains the power values of detecting the potential clusters, the

proportions of datasets perfectly identifying a true cluster (PI), and the pro-

portions of datasets identifying large clusters including the true cluster (LC).

For the 20%:20% censoring setting, the power values of detecting a potential

cluster were between 0.705 and 1 for all of the probability models used in the
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study. The values of the proportions of the datasets, that detected a perfect

true cluster were between 0.554 and 1. No dataset was captured with a non-zero

proportion of not identifying a true cluster.

Under the 20%:40% censoring ratio situation, the powers ranged from 0.645 to

1 for all of the probability models. The values of the proportions of datasets

detecting a perfect true cluster were between 0.545 and 1, being highest for the

exponential and lowest for the log-Normal simulated time to event datasets.

The proportions of the datasets not identifying a true cluster were all zeroes

under the 20%:40% censoring ratio.

For the 40%:20% right censoring case, the power values were between 0.403

and 0.941 and the proportions of detection of a perfect true cluster ranged

from 0.119 to 0.957. The datasets generated under the log-Normal probability

model had the highest proportions of identifying large clusters including the

true cluster. There were also a few situations of not detecting a true cluster at

all in this censoring ratio, when the simulated data were generated from the

Weibull and gamma models.

Overall, a visible decrease was seen in the power of detection of a potential

cluster and the proportions of datasets identifying a perfect true cluster from

the 20%:20% to 20%:40% scenarios and the 20%:40% to 40%:20% scenarios

under each probability model for all of the parametric situations. It may also

happen that the power is higher for some probability model other than the expo-

nential, even when the exponential SSS has been used for the cluster detection.18
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Table 4.1: Simulation study results for the exponential spatial scan statistic.
Four probability models each with three different means inside true cluster are
used under three right censoring cases: a=20%:20%, b=20%:40%, c=40%:20%.
Outside cluster: Mean=2; Variance=4(Exponential), 0.188(Weibull),
2(log-Normal), and 1(Gamma).

Data IC Power PI LC

Distribution M V a b c a b c a b c

10 100.0 0.930 0.952 0.566 0.876 1.000 0.312 0.124 0.000 0.688

Exponential 15 225.0 0.941 1.000 0.831 0.920 1.000 0.659 0.080 0.000 0.341

20 400.0 1.000 0.989 0.941 1.000 1.000 0.710 0.000 0.000 0.290

10 4.0 0.696 0.645 0.492 0.836 0.876 0.654 0.164 0.124 0.090

Weibull 15 10 0.846 0.753 0.623 0.344 1.000 0.344 0.000 0.000 0.656

20 7.0 0.852 0.877 0.883 1.000 1.000 0.243 0.000 0.000 0.757

10 4.0 1.000 0.921 0.403 0.554 0.545 0.214 0.464 0.455 0.666

Log-Normal 15 10.0 0.941 1.000 0.742 0.708 0.612 0.119 0.292 0.388 0.881

20 17.0 0.994 0.962 0.887 0.720 0.694 0.490 0.280 0.306 0.510

10 5.0 0.705 0.699 0.545 0.781 0.739 0.709 0.291 0.261 0.008

Gamma 15 7.5 0.800 0.793 0.640 0.936 1.000 0.954 0.064 0.000 0.046

20 10.0 1.000 0.795 0.652 1.000 0.850 0.957 0.000 0.150 0.043

IC=Inside Cluster M=Mean V=Varaince PI=Perfect Identification

LC=Large Cluster Identification
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4.3.2 Simulation Study for Weibull Spatial Scan Statistic

For the Weibull SSS (Table 4.2, Figures B.3 and B.4), the overall results for the

power and all the proportions’ performances of the datasets were less variable

than the results of the exponential and log-Weibull SSS’s.

The power values of detecting a potential cluster were between 0.589 and 1

for the 20%:20% censoring setting, ranged from 0.621 to 1 for the 20%:40%

censoring ratio, and between 0.579 and 1 for the 40%:20% case. The propor-

tions of perfectly detecting a true cluster were high for all three censoring

situations across all of the datasets, being least for the exponential model with

the 40%:20% censoring ratio. A few observed non-zero proportions of datasets

generated under the exponential and gamma distributions, who did not identify

the true cluster were between 0.016 and 0.431.

The power values increased as the difference between the means of inside and

outside the cluster increased and similar effects were seen for the strength of

detection of the true cluster. This study showed that the Weibull SSS had more

similar results for the spatial cluster detection regardless of the probability

model used for the data generation.
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Table 4.2: Simulation study results for the Weibull spatial scan statistic.
Four probability models each with three different means inside true cluster are
used under three right censoring cases: a=20%:20%, b=20%:40%, c=40%:20%.
Outside cluster: Mean=2; Variance=4(Exponential), 0.188(Weibull),
2(log-Normal), and 1(Gamma).

Data IC Power PI LC

Distribution M V a b c a b c a b c

10 100.0 0.589 0.621 0.579 0.631 0.454 0.357 0.300 0.530 0.601

Exponential 15 225.0 0.909 0.844 0.791 0.704 0.492 0.522 0.291 0.077 0.478

20 400.0 1.000 1.000 0.983 0.982 0.949 0.593 0.018 0.000 0.391

10 4.0 1.000 0.979 0.947 0.989 0.963 0.944 0.011 0.037 0.056

Weibull 15 10.0 1.000 1.000 1.000 1.000 1.000 0.981 0.000 0.000 0.019

20 7.0 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

10 4.0 0.865 0.932 0.842 0.747 0.873 0.798 0.253 0.127 0.202

Log-Normal 15 10.0 0.951 0.964 0.823 0.962 0.919 0.850 0.038 0.081 0.150

20 10.0 1.000 1.000 0.968 1.000 1.000 1.000 0.000 0.000 0.000

10 5.0 0.946 0.833 0.724 0.812 0.753 0.843 0.188 0.067 0.157

Gamma 15 7.5 1.000 1.000 0.960 1.000 0.714 0.000 0.000 0.014 0.000

20 10.0 1.000 1.000 1.000 1.000 0.654 1.000 0.000 0.346 0.000

IC=Inside Cluster M=Mean V=Varaince PI=Perfect Identification

LC=Large Cluster Identification
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4.3.3 Simulation Study for Log-Weibull Spatial Scan Statistic

Using the log-Weibull SSS (Table 4.3, Figures B.5 and B.6), the results showed

that the powers varied from 0.432 to 0.969 for the 20%:20% censoring, from

0.411 to 0.824 for the 20%:40% censoring situation, and ranged from 0.324 to

0.631 for the 40%:20% censoring case. Overall, the maximum power was seen

when the data were generated under the Weibull distribution and the minimum

power was observed for the datasets distributed with the gamma probability

model.

The proportions of datasets perfectly identifying the true cluster were moderate

for the log-Weibull SSS. They were between 0.238 and 0.670 for the 20%:20%

case, ranged from 0.259 to 0.663 for the 20%:40% censoring ratio, and between

0.133 and 0.490 for the 40%:20% censoring setting, respectively. The datasets

from the gamma distribution had the highest proportions of large cluster iden-

tification including the true cluster among all four probability models, being

highest for the 40%:20% censoring case. There was a decrement found in the

power and the strength of identification of the true cluster for each model,

when comparing the 20%:20% to the 20%:40% and 40%:20% censoring cases.
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Table 4.3: Simulation study results for the log-Weibull spatial scan statistic.
Four probability models each with three different means inside true cluster are
used under three right censoring cases: a=20%:20%, b=20%:40%, c=40%:20%.
Outside cluster: Mean=2; Variance=4(Exponential), 0.188(Weibull),
2(log-Normal), and 1(Gamma).

Data IC Power PI LC

Distribution M V a b c a b c a b c

10 100.0 0.594 0.531 0.324 0.431 0.309 0.216 0.365 0.351 0.590

Exponential 15 225.0 0.601 0.634 0.595 0.541 0.360 0.206 0.416 0.386 0.567

20 400.0 0.696 0.548 0.619 0.455 0.431 0.349 0.381 0.274 0.439

10 4.0 0.748 0.643 0.548 0.519 0.451 0.385 0.285 0.312 0.318

Weibull 15 10.0 0.892 0.696 0.597 0.558 0.579 0.490 0.272 0.296 0.329

20 7.0 0.969 0.824 0.631 0.649 0.561 0.445 0.077 0.323 0.269

10 4.0 0.541 0.458 0.503 0.483 0.433 0.302 0.389 0.245 0.488

Log-Normal 15 10.0 0.792 0.502 0.615 0.538 0.663 0.322 0.461 0.139 0.227

20 17.0 0.684 0.634 0.597 0.670 0.604 0.466 0.322 0.194 0.239

10 5.0 0.432 0.411 0.400 0.238 0.259 0.133 0.418 0.481 0.514

Gamma 15 7.5 0.495 0.483 0.436 0.363 0.261 0.292 0.428 0.472 0.628

20 10.0 0.503 0.469 0.397 0.470 0.307 0.333 0.354 0.394 0.547

IC=Inside Cluster M=Mean V=Varaince PI=Perfect Identification

LC=Large Cluster Identification
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4.4 Summary

The results from the simulation studies showed that, the power of detecting

the potential cluster was higher for the 20%:20% ratio as compared to the

20%:40% and 40%:20% settings. This comparison was also true in the context

of identification of a true cluster. The effect of the right differential censoring

on power values and proportions of detection of the true cluster was similar,

irrespective of what distribution from the exponential, Weibull, and log-Weibull

for the SSS was used.

The true cluster was constructed with 25 individuals inside the cluster and 475

individuals outside the cluster. The results from the right differential censoring

situations make sense because as we lose more information from the smaller

data (inside cluster), the power and strength of detection of a true cluster may

diminish. More precisely, if 40% of the censoring is imposed on 25 individuals

instead of 20%, then the chance of losing the power of capturing a true cluster

may increase. Overall, the highest values of the power and proportions of

datasets who detected the true cluster were observed for the balanced censoring,

i.e., the 20%:20% censoring setting.

For all of the probability models under the three SSS’s, as the difference between

means of time to event data increased inside and outside the true cluster, the

power and proportion of detection of the true cluster also increased. It can be

observed from the overall results of the three SSS’s that the Weibull SSS had

good power for detecting a potential cluster for the datasets distributed with

any of the four probability models used in this study. Also for the identification

60



of the true cluster, the Weibull SSS showed less variability on the simulated

datasets than the exponential and log-Weibull SSS’s.
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Chapter 5

Discussion and Future Work

The spatial scan statistic (SSS) is a widely used statistical technique for the

identification of the spatial clusters of different data types by using various

probability distributions. In the context of time to event data, the SSS has

the ability to detect if there are potential geographical clusters of cases with

either longer and/or shorter than expected event times. These clusters can be

adjusted for censoring, if the appropriate probability model is used. The SSS’s

for the exponential18 and Weibull19 distributions have already been developed.

In this study, we have constructed the SSS for the log-Weibull distribution as an

alternative approach for detecting spatial clusters for time to event data. The

log-Weibull distribution, being a specialized case of the generalized extreme

value distribution, has a wide application in extreme value theory for modeling

extreme and rare events.

The new log-Weibull method and the exponential and Weibull SSS’s were

applied to administrative data from Alberta Health consisting of time from
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ED discharge for an AFF presentation to 1st specialist visit within 365 days

in Alberta during 2010-2011. The specialist visit was defined as a visit to a

physician specializing in cardiology or internal medicine for this study.

Results from the SSS’s showed that the exponential, Weibull, and log-Weibull

distributions have detected the same most likely cluster, i.e., the Peace Coun-

try, Northern Lights, and Aspen regional Health Authorities. The most likely

cluster was comprised of the rural areas in northern Alberta which have sparse

or low population. The results suggested that people living in these northern

rural areas may not have regular or quick access to the follow-up care to a

specialist after an ED presentation.

The simulation studies indicated that the SSS with a Weibull distribution

has more power and strength of detecting the true cluster as compared to

the exponential and log-Weibull distributions, when the random data were

simulated from the exponential, Weibull, gamma, and log-Normal distributions.

Under three different situations of right censoring imposed on the simulated

datasets, the Weibull SSS’s power and detection of the true cluster was the

most similar across all of the datasets for different parametric situations inside

and outside the zones.

There are many aspects that can be seen as future work arising from this

study. First, the proposed methodology based on the SSS for the log-Weibull

distribution does not adjust for important factors such as age and gender. In

future, such covariates can be adjusted in the analysis of the identification of

potential clusters for time to event data. Second, the new developed method
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can only be performed on a purely spatial setting. The space-time scan statistic

has been developed by other authors in both retrospective28 and prospective29

ways. In the future, the SSS based on the log-Weibull distribution can be

extended to the space-time setting, and similar simulation studies can be per-

formed to investigate power and detection of true space-time clusters. Third,

Prates et al. have evaluated the bias of estimated relative risks from the spatial

and space-time scan statistics.59 The same approach can be applied on the

new developed method in this study for the investigation of bias of relative

risk estimates of the detected clusters from both space and space-time scan

statistics for time to event data.

In summary, we have provided a new SSS using the log-Weibull distribution,

applied the new method to specialist follow-up data in Alberta, and compared

and contrasted SSS’s for time to event data on real and simulated data. The

covariates’ adjustment, extension to the space-time scan statistics, and the

relative risk estimates of detected clusters can be considered as future work of

this study.
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Appendix A

Geographic Units
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Table A.1: Regional Health Authority (RHA) and sub-Regional Health Au-
thority (sRHA) codes and names.

RHA Code sRHA

R1 Chinook RHA 1 R101 Crowsnest Pincher Creek
2 R102 Ft Mcleod Cardston
3 R103 Lethbridge
4 R104 Picture Butte Raymond Milk River
5 R105 Vauxhall Taber

R2 Pallisor Health Region 6 R201 Palliser North and Central
7 R202 Palliser West

R3 Calgary Health region 8 R301 Calgary North East
9 R302 Calgary Beddington Heights
10 R303 Calgary Northwest
11 R304 Calgary University
12 R305 Calgary Charleswood
13 R306 Calgary Marlborough
14 R307 Calgary Shaganappi
15 R308 Calgary Bowness
16 R309 Calgary Scarboro
17 R310 Calgary Forest Lawn
18 R311 Calgary Lakeview
19 R312 Calgary Mount Royal
20 R313 Calgary Haysboro
21 R314 Calgary Bonavista
22 R315 Calgary South
23 R320 Banff-Canmore
24 R321 Didsbury-Strathmore
25 R322 Vulcan-Claresholm
26 R323 High River-Black Diamond

R4 David Thompson RHA 27 R401 Clearwater
28 R402 Brazeau
29 R403 Wetaskiwin-Hobbema
30 R404 Ponoka
31 R405 Lacombe
32 R406 Red Deer
33 R407 Olds
34 R408 Drumheller-Hanna
35 R409 Stettler-Consort

R5 East Central Health 36 R501 Region 5 Northwest
37 R502 Regions 5 Northeast
38 R503 Region 5 Southeast
39 R504 Region 5 South Central
40 R505 Region 5 Southwest
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RHA Code sRHA

R6 Capital Health 41 R601 St. Albert
42 R602 Edmonton Castle Downs
43 R603 Edmonton Woodcroft
44 R604 Edmonton Eastwood
45 R605 Edmonton North Central
46 R606 Edmonton North East
47 R607 Edmonton Bonnie Doon
48 R608 Edmonton West Jasper Place
49 R609 Edmonton Twin Brooks
50 R612 Edmonton Mill Woods
51 R613 Sherwood Park
52 R614 Strathcona County
53 R615 Thorsby
54 R616 Leduc Office
55 R617 Beaumont
56 R618 Westview
57 R619 Sturgeon County
58 R620 Fort Saskatchewan

R7 Aspen RHA 59 R701 Aspen West
60 R702 Aspen Central
61 R703 Aspen North
62 R704 Aspen East

R8 Peace Country Health 63 R801 Peace NW
64 R802 Peace NE
65 R803 Peace SE
66 R804 Peace SW

R9 Northern Lights Health Region 67 R901 High Level
68 R902 La Crete
69 R903 Northern Lights NW
70 R904 Fort McMurray
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Table A.2: Nearest neighbours for each sub-Regional Health Authority leading
to the combined population of ≤ 10% of the total population for the feasibility
of the analysis and time restrictions.

sRHA Nearest Neighbours

R101 1 2 26 3 22
R102 2 3 4 1 5 25 26 21
R103 3 4 2 5 25 1 26 7
R104 4 3 5 2 25 7 1 6 26
R105 5 4 3 7 6 2 25 1 26
R201 6 7 5 4 3 25 34 35 2
R202 7 5 6 25 34 4 3 35
R301 8 11 15 9
R302 9 12 8 10
R303 10 13 12 9 17
R304 11 8 15 14
R305 12 9 15 10
R306 13 17 10 16 12
R307 14 15 11 18
R308 15 14 11 12 18
R309 16 17 19 20 13
R310 17 16 13 20 19
R311 18 19 20 15 14
R312 19 18 20 16 21
R313 20 19 21 16 18
R314 21 20 22 19
R315 22 21 20 19
R320 23 27 8 33 11 14
R321 24 10 13 9
R322 25 26 21 17 13
R323 26 22 21 20
R401 27 28 23 33 29 56 30 59 53 31
R402 28 56 53 29 30 48 60
R403 29 30 53 31 54 49 48
R404 30 29 31 53 32 54 55
R405 31 32 30 29 33 53 54 40 55
R406 32 31 33 30 29 24
R407 33 32 8 9
R408 34 35 7 24 25 32
R409 35 39 38 34 40 36 37 7 32 31
R501 36 39 62 52 40 58 55 51 46
R502 37 38 36 62 39 35 40 52 58 55 51
R503 38 37 35 39 36 40 62 34 52 55 58 51
R504 39 40 36 35 38 55 52 37 54 51
R505 40 55 39 54 50 52 51
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sRHA Nearest Neighbours

R601 41 42 43 45
R602 42 41 45 43 44
R603 43 41 42 48
R604 44 45 47 42
R605 45 44 42 46
R606 46 51 45 44
R607 47 44 50 45
R608 48 43 49
R609 49 48 47
R612 50 47 49
R613 51 46 47 44
R614 52 58 51 46 45 44
R615 53 29 48 49 54
R616 54 55 50 49
R617 55 54 50 51 47
R618 56 28 53 60 48 29
R619 57 46 45 42 58 41
R620 58 52 46 51 57 45
R701 59 65 27 66 28 56 60 53 29
R702 60 56 41 57 28 43
R703 61 70 62 57 58 69 60 52 46
R704 62 36 37 52 58 39 46 57 51
R801 63 67 64 66 65 68 59 60 56 28
R802 64 65 68 63 60 67 66 61 59 56
R803 65 64 59 66 60 63 56 28 53 27
R804 66 65 59 63 64 60 27 28 56 67 53
R901 67 63 68 64 65 66 69 59 61 60 56
R902 68 64 67 63 69 65 61 60 70 66
R903 69 70 61 68 62 64 60 57 58 36 52
R904 70 61 69 62 37 36 58 52 57
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Table A.3: Total number of uncensored (complete) and censored observations
per sub-Regional Health Authority.

SRHA Uncensored Censored

R101 11 16
R102 29 15
R103 102 18
R104 37 11
R105 14 3
R201 87 26
R202 15 6
R301 50 6
R302 26 4
R303 34 0
R304 38 5
R305 64 7
R306 26 5
R307 63 7
R308 47 15
R309 18 2
R310 32 11
R311 44 8
R312 45 7
R313 66 10
R314 63 7
R315 43 13
R320 37 11
R321 94 25
R322 18 7
R323 58 23
R401 25 10
R402 10 1
R403 27 11
R404 24 7
R405 23 6
R406 93 18
R407 33 12
R408 33 35
R409 19 10
R501 25 11
R502 6 1
R503 14 8
R504 19 6
R505 23 10
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SRHA Uncensored Censored

R601 59 10
R602 43 2
R603 79 9
R604 39 9
R605 65 7
R606 59 7
R607 92 12
R608 106 17
R609 94 5
R612 74 6
R613 54 2
R614 20 4
R615 3 0
R616 21 2
R617 11 2
R618 96 17
R619 21 2
R620 17 7
R701 37 13
R702 46 10
R703 32 17
R704 56 23
R801 26 29
R802 11 10
R803 29 16
R804 69 20
R901 6 2
R902 5 3
R903 11 5
R904 24 5
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Appendix B

Figures for Simulation Study

Figure B.1: Power of the exponential SSS for detecting a potential cluster
under right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2.
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Figure B.2: Strength of the exponential SSS for detecting a true cluster under
right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2. PI= Perfect Identification, LC= Large
Cluster(including true), NI= No Identification.
Exp=Exponential, Weib=Weibull, LN=Log-Normal, Gam=Gamma.
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Figure B.3: Power of the Weibull SSS for detecting a potential cluster under
right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2.

10 15 20

Exponential
Weibull
Log_Normal
Gammma

Inside Cluster Mean

Po
w

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(a) Censoring inside:outside cluster=20%:20%

81



10 15 20

Exponential
Weibull
Log_Normal
Gammma

Inside Cluster Mean

Po
w

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b) Censoring inside:outside cluster=20%:40%

10 15 20

Exponential
Weibull
Log_Normal
Gammma

Inside Cluster Mean

Po
w

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(c) Censoring inside:outside cluster=40%:20%

82



Figure B.4: Strength of the Weibull SSS for detecting a true cluster under
right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2. PI= Perfect Identification, LC= Large
Cluster(including true), NI= No Identification.
Exp=Exponential, Weib=Weibull, LN=Log-Normal, Gam=Gamma.
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Figure B.5: Power of the log-Weibull SSS for detecting a potential cluster
under right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2.
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Figure B.6: Strength of the log-Weibull SSS for detecting a true cluster under
right differential censoring. Datasets are generated using four probability
models with outside cluster mean=2. PI= Perfect Identification, LC= Large
Cluster(including true), NI= No Identification.
Exp=Exponential, Weib=Weibull, LN=Log-Normal, Gam=Gamma.
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(b) Censoring inside:outside cluster=20%:40%
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(c) Censoring inside:outside cluster=40%:20%
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