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ABSTRACT

We study in this thesis some aspects of the physics of black hole interiors.
In particular, we consider the effects on the interior geometry of non rotating black
holes of gravitational collapses presenting small departures from spherical symmetry.
For the Schwarzschild black hole, it is shown that aspherical perturbations do not
reach the asymptotic portion (for late advanced times) of the singularity. Spherical
symmetry hence holds down to very small radii. For the Reissner-Nordstrgm case,
these perturbations have more dramatic effects: they produce a separation between
the inner and Cauchy horizons. We also verify that, as in the static situation, there

exists a singular surface of infinite blueshift on the dynamic Cauchy horizon.

Quantum effects near the black hole singularity are also investigated. A
schematic analysis shows that the infinite rise of the curvature can be slowed down
if the stress induced by the quantum vacuum polarization is a tension along the
axes of the 3-cylinders of constant time r = constant. If the stress is instead a

pressure, the singularity occurs sooner than in the classical picture.

v
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CHAPTER ONE

THE INTERIOR OF A
SCHWARZSCHILD BLACK HOLE

1.1: Introduction

Although the idea of a star having an escape velocity larger than that of light is
more than two hundred years old, it was not until the discovery of galactic X-ray
sources and of quasars in the early sixties that the idea of complete gravitational
collapse, and of black holes, became generally accepted by the physics community 1],
J. Michell in 1783, and later P.S. Laplace in 1796, proposed that if light were
composed of particles and, as any other body in the universe, submitted to the
force of gravity, then it could be possible that a star be so large that even light
could not escape from its surface. This remarkable idea, however, did not survive
the discovery, early in the nineteenth century, of the wave theory of light. The idea
quickly resurfaced after the results of the eclipse expedition of 1919 became known,
but because of the absence of any motivation from astrophysics to introduce such
a peculiar object amongst the celestial bodies, it had to wait a while longer before

being seriously considered.

In 1930, S. Chandrasekhar, and independently L. Landau, discovered that
the electron degeneracy pressure was not sufficient to support a white dwarf from its

own gravitational collapse, should the mass of the star be larger than a certain limit.
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The existence of such a limit was not understood at that time. A few years later,
in 1939, J.R. Oppenheimer and his students realized that a neutron star also could
undergo a gravitational collapse, if it was too massive. This result remained almost
unnoticed, until the discovery in the early sixties of very powerful energy sources
in the universe. It then became clear that accretion of matter onto very compact
objects would explain in a very satisfying way the kind of energy that was observed
from these sources. Tiie presence of neutron stars hence became established, and
since the complete gravitational collapse of a massive enough star could not be
prevented by any known mechanism, the idea of a black hole as a real astronomical

object finally appeared.

What followed probably wers the most fruitful years of gravitation theory
since the invention of the general theory of relativity, completed in 1915. In less
than fifteen years, the complete nature of black holes was revealed; from the entire
description of the geometry outsidg black holes, to S. Hawking’s famous result of
1974 stating that a hole would act as a black body with temperature inversely pro-
»portional to its mass. One of the most beautiful results discovered in those years
is the realization that black holes are by far the simplest objects in the universe.
The works of Israel, Carter, Hawking and Robinson between the years 1967 and
1975 (2 brought the proof that the geometry (i.e. the gravitational field) around
the most general black hole (in isolation) is completely determined by three param-
eters: the mass of the hole, its charge and its angular momentum. This remarkable
result, usually referred to with Wheeler’s characteristic phrase “a black hole has no
hair"Bl, is, at first éight, very surprising. Indeed, the gravitational field of a typical

star contains virtually an infinite amount of information, since each term in the
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multipole expansion of the field can play a réle. What is the mechanism by which
a collapsing star loses all this information, to settle down to a state where only
three parameters survive? The complete answer to this question is still unknown,
because the general description of a gravitational collapse involving arbitrarily large
angular momentum is beyond reach. However, it is possible to study a simpler col-
lapse, where the departure from spherical symmetry is small. Such a perturbative
treatment was carried out by R. Price in 1972 4. His results show that all the
superfluous information is radiated away; part of it (the short wavelength modes)
reaching infinity, part of it (the long wavelength modes) being backscattered by the
spacetime curvature, which acts as a potential barrier, towards the interior of the
hole. This scattering is, moreover, found to happen soon after the initial radia-
tion is emitted from the star: the amplitude of the backscattered waves dies out
like ¢~ for late times (¢ > 2M). The parameter q depends on the multipole order
of the perturbating field (section 1.4b)). Only three parameters survive when the

geometry has settled down: the mass, charge and angular momentum.

What is also remarkable is the fact that the expression for the metric of
this most general black hole is explicitly known. It is called the Kerr-Newman
solution (5. In what follows, we will consider two limiting cases of this solution. The
simplest black hole is described by the Schwarzschild line element (section 1.2b));
the only non vanishing parameter is here the mass of the hole. Accordingly, the
Schwarzschild solution is the unique static, spherically symmetric, vacuum solution
to the Einstein field equations describing the exterior geometry of a black hole.
The other case that we -vill consider is the static, spherically symmetric, electrovac

(vacuum plus electric field) solution, known as the Reissner-Nordstrgm solution
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(section 3.2). It represents the exterior geometry of a non rotating, charged black
hole. These two solutions are two special cases of the Kerr-Newman solution: the
latter reduces to the Reissner-Nordstrgm solution when the angular momentum of
the hole is taken to be zero; the Reissner-Nordstrgm solution then reduces to the
Schwarzschild solution when the charge of the hole is put equal to zero. These two
solutions are also simpler than the Kerr-Newman solution, since they both possess

spherical symmetry.

The physics outside black holes is therefore well known. In fact, detailed
calculations of the interaction of holes with their surroundings can be very compli-
cated 6], but it is believed that the basic physics is well understood. The compre-
hension of the physics inside black holes, however, is much more limited. Since the
physics of a general gravitational collapse is very difficult to analyse, it is difficult
to predict what the interior of a Kerr-Newman black hole should look like, so we
are left with the easier problem of determining the interior geometry of a spherical
black hole, produced by a spherical gravitational collapse. The situation is here,
by contrast, incredibly simple. Birkoff’s theorem [7) states that if the geometry of
spacetime is spherically symmetric and a vacuum (electrovac) solution to the Ein-
stein field equations, then that geometry is necessarily a piece of the Schwarzschild
(Reissner-Nordstrgm) geometry. Therefore, as long as the collapse is spherically
symmetric, the geometry outside the star, even inside the hole, is everywhere given
by the Schwarzschild, or Reissner-Nordstrgm solutions. We are then led to the sur-
prisingly simple picture for a purely spherical black hole: both the interior and the
exterior regions of the hole (as long as we are outside the collapsing star) possess

the same geometry, described by the appropriate solution of the field equations.
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A purely spherical collapse, however, is not a very realistic model. To
obtain a more satisfying picture, we should allow the collapse to present at least
small departures from sphericity. This model is relatively easy to analyse, and we
can hope that it will succeed in showing the qualitative behavior of a general non-
spherical collapse. What effect can this have on the interior geometry of a non
rotating black hole? We have mentioned earlier that such a collapsing star emits
outgoing radiation, in trying to get rid of all its useless information; we might expect
that this radiation can play a réle on the interior geometry of the black hole. In fact,
we will see below that while for the Schwarzschild case this outgoing radiation does
not play an essential réle on the interior geometry, it can play a very determining

one in the Reissner-Nordstrgm case.

Let us now have a closer look at the interior region of a Schwarzschild
black hole, in the purely spherically symmetric picture. This region, as we saw
earlier, is also described by the Schwarzschild solution, but this solution presents
a very peculiar behavior at the origin of the coordinates r = 0: there is a curva-
ture singularity there. Indeed, it can be shown (section 1.2b)) that the spacetime
curvature blows up like r=3 when r goes to zero. Also, when one considers the
endpoints of the gravitational collapse of an uncharged star, one finds quite gener-
ally that the collapse only stops when all the mass gets infinitely concentrated at
the origin. All this indicates that there is a physical singularity at the centre of
the Schwarzschild black hole. It is worth noting that singularities appear in other
solutions of Einstein’s field equations. A very good example is the initial singularity

of the Friedmann-Robertson-Walker cosmological solution (8],
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How can we interpret the presence of this singularity? At first sight, it is not
very surprising: in the Newtonian theory, if one lets a spherical ball of pressureless
matter collapse spherically, a singularity will develop since all the mass elements
are attracted towards the centre of the ball. But it is clear that in this example, the
singularity is simply a consequence of our idealizations; a realistic collapse would
present at least small departures from spﬁericity, and these departures will pre-
vent the singularity from develobing. Could it be then, that the general relativistic
singularity of the Schwarzschild solution is a mere consequence of too idealized a
gravitational collapse model? This was the question considered in the early works
of Khalatnikov, Lifshitz and collaborators (9, They attempted to show that singu-
larities are not a generic feature of general relativity, but rather the consequence of

the imposed symmetries of the idealized problems.

Although very appealing, this viewpoint was shown to be incorrect when
the singularity theorems (10] of Penrose, Hawking and Geroch were developed. These
theorems tell us, when applied to the case of black holes, that a singularity always
comes with the presence of a trapped surface. A trapped surface is a surface such
that a beam of photons sent out perpendicularly from it, both inwards and outwards,
will converge. This is precisely the kind of behavior that one observes inside black
holes: even if a photon is emitted towards the exterior of the hole, it cannot escape
and will start converging towards a photon that was emitted inwards. We can
therefore conclude that, according to the singularity theorems, a singularity is truly
an essential feature of every black hole. It has to be noted that the theorems possess
a certain number of underlying assumptions; one of them (the most restrictive one)

roughly states that the energy density of the matter present in the hole, added to
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the sum of its principal pressures, should be greater than, or equal to, zero. If this
condition, called the strong energy condition, holds for all known classical matter
distributions, it is possible that it be violated by quantum matter distributions; a
good example of such a distribution being false vacuum (section 1.3), which obeys
the equation of state P = —p, where p is positive. However, in the Schwarzschild
spacetime, the strong energy condition is satisfied, and we find that a singularity

must necessarily exist.

The singularity theorems show that singularities are not only the conse-
quence of the symmetries of a given solution, but are a true generic feature of
general relativity. We are therefore back to our question: how.can we interpret
the presence of those singularities? There are numerous examples showing how the
prediction of singularities can be removed when a given theory is replaced by a more
complete one. For instance, classical mechanics predicts that a proton-electron sys-
tem should radiate an infinite amount of energy in a finite time, as the electron
spirals towards the proton. The introduction of quantum mechanics showed other-
wise. When a better theory is not available, one can always introduce ad hoc rules
to prevent singular behavior. In our example: Bohr's postulate, according to which

electrons in circular orbits should not radiate.

In the case of general relativity, ad hoc rules were also introduced, for
example, Markov’s new law of nature {11] where curvature is always subject to an
upper limit of Planckian magnitude. Another example is Gonzalez-Diaz’ interior
model for the Schwarzschild black hole (section 1.3). Although ad hoc rules can

sometimes bring hints towards a better understanding, it is generally expected that
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a more complete theory will be needed in order to satisfyingly rule out singular
behaviors. It is therefore reasonable to expect that the singularities in general
relativity should disappear when a better theory, namely, a quantum theory of
gravitation, is discovered. In this view, singularities signal the breakdown of general

relativity: the theory becomes invalid in the vicinity of a singularity.

A .complete quantum theory of gravitation is still missing, so it is hopeless
for the moment to try to directly probe the singularity. However, if we remain
far enough from it, such that quantum effects in the geometry can be neglected, it
may be possible to apply the ideas of quantum physics to all the other fields, but
still treating gravity classically. This is called the semiclassical approach. It is then
interesting to evaluate the effects that the quantum fields can have on the geometry;
it can be hoped that these effects would succeed in slowing down the infinite rise of

the curvature, in the spirit of Le Chatelier’s principle (12] (section 1.4c)).

We will devote most of Chapter One, and a part of Chapter Two of this the-
sis to this question. We will begin with a brief review of the classical Schwarzschild
black hole, and proceed with the discussion of an interior black hole model in-
troduced by Gonzalez-Diaz in 1981 (131, This model, as we mentioned above, is an
example of an ad hoc model designed explicitly to remove the black hole singularity.
Following this, we will consider the effects of small departures from spherical sym-
metry in the gravitational collapse, on the interior geometry of the Schwarzschild
black hole. We will show that for a significant portion of the spacetime near the sin-
gularity, these aspherical perturbations play no réle; spherical symmetry is therefore

expected to hold to a high degree of precision, near this portion of the singulanty.
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With this result established, we will try to probe the effects due to the vacuum
polarization of the quantized fields on the geometry in the vicinity of the singu-
larity. We will show that there are two possibilities: either the infinite rise in the
curvature appears sooner than in the classical picture (if the stress induced by the
vacuum polarization is a pressure), or the curvature remains bounded (if the stress
is a tension, rather than a pressure), even for arbitrary small values of r, as long
as the semiclassical approach remains valid. If the latter picture happens to be the
correct one, the singularity of the hole would be better described as a nucleus of

finite extent where the mass of the black hole is concentrated.

Motivated by the results of section 1.4c), we will introduce at the beginning
of Chapter Two a line element where the two relevant metric elements are given
by undetermined powers of r. The semiclassical problem will then be reconsidered
with this “power-law” metric, and new pieces of information will be gathered. The
remaining part of Chapter Two will consist in a study of the power-law metric; we

will consider the stability of the geometries, as well as the accessibility of the origin.

The interior of a Reissner-Nordstrsm black hole is very different from the
interior of a Schwarzschild one (compare Fig. 1.1 and 1.3 with Fig. 3.1). The
presence of the inner apparent horizon, which lies on the Cauchy horizon of the
spacetime, brings interesting new features to this black hole interior. The Reissner-
Nordstrgm solution also presents a curvature singularity at the coordinate value r =
0. This was expected on general grounds from the singularity theorems. There is
a major difference, however, between this singularity and that of the Schwarzschild

solution: the singularity is here timelike. In the Schwarzschild case, an observer
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is forced to hit the singularity after he has crossed the horizon of the hole; the
situation is completely different for the Reissner-Nordstrem case: an observer can
avoid hitting the singularity, and can end up in an entirely different universe. A
consequence is that while in the Schwarzschild case the star is forced to collapse
to a single point, in the Reissner-Nordstrgm case the star may bounce and begin a
new life in the other universe [14]. Even if the curvature singularity of the Reissner-
Nordstrem solution is timelike, it is still possible that quantum effects will have to
play a role similar to the réle they were playing in the Schwarzschild case, but we

shall not pursue this question further.

But there is another kind of singularity present in the Reissner-Nordstrem
spacetime. It has been shown (15] (section 3.3) that if one slightly perturbs the
geometry, and allows the perturbating field to propagate along the inner apparent
horizon (Fig. 3.2) (as it would be the case for the backscattered part of the radiation
initially coming from the collapsing star, if the scattering occurs at very late times),
then the energy density of the field, when measured by a free falling observer crossing
this horizon, blows up to infinity. (The amount of radiation is very small, but
its effects can be quite catastrophic!) It is possible to give a heuristic argument
explaining this result. Consider in Fig. 3.2 the sequence of light rays approaching
the line v = 0o. In the exterior region, this line represents future null infinity and
these rays therefore represent the radiation backscattered at very late times towards
the interior of the hole. There is an infinite lapse of time between the first ray and
the last one coinciding with J+. However, inside the hole, the line v = oo represents
the inner apparent horizon, and the lapse of time between the first ray and the last

becomes finite. There is therefore an infinite accumulation of light rays on the
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inner horizon: an observer crossing this horizon would receive an infinite amount of
information (the amount of total energy is however finite) in a finite proper time.
For this reason, the inner apparent horizon of the Reissner-Nordstrsm spacetime is

sometimes referred to as a singular surface of infinite blueshift.

We have mentioned above that in the Schwarzschild spacetime, the cur-
vature of spacetime acts on radiation as a potential barrier; since the spacetime
outside the hole is static, the barrier simply scatters the waves, without any am-
plification. There is also such a barrier inside the Reissner-Nordstrem black Lole,
but here, the spacetime is dynamic (r is now a time variable). It is the time de-
pendence of the potential barrier which produces the amplification of the waves.
This amplification is furthermore found to be infinite when the waves propagate
along the inner horizon. Although this result is based on first order perturbation
theory where it is assumed that the effects of the perturbation on the geometry
remain small, it suggests that perhaps a (perturbation) singularity could develop at
the inner apparent horizon. How can we interpret the presence of this new singu-
larity? If the curvature singularity was a necessary consequence of the singularity
theorems, what of this one? Could it be that this time, the singularity appears
because of our idealizations, because our model for the gravitational collapse is too
simplistic? Indeed, we have mentioned that the Reissner-Nordstrgm solution de-
scribes the exterior of a charged star undergoing a perfectly spherical collapse; it
would then be interesting to consider the consequences of small departures from
spherical symmetry. Chapter Three, after a brief review of the Reissner-Nordstrgm

solution, will be devoted to this problem. We will show that the radiation emitted
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from the surface of the collapsing star plays an essential réle on the interior geo-
metry of the Reissner-Nordstrgm black hole: it produces a separation of the inner
apparent horizon from the Cauchy horizon of the spacetime (section 3.1, Fig. 3.3).
The question is now: do we still have in this dynamic situation a singular surface of
infinite blueshift? If the answer is yes, where does it arise? At the Cauchy horizon,
or at the inner apparent horizon? From our heuristic picture described above, it can
be expected that a surface of infinite blueshift will arise at the Cauchy horizon, but
that everything should be regular at the inner horizon. We will verify this explicitly
in section 3.3 and we will conclude that the singular surface of infinite blueshift is

an essential feature of a spacetime possessing a Cauchy horizon, and not a product

of simplistic models.

This was the plan of the thesis. Before we close this section, let us say a
few words about the notations and conventions. It was not possible, nor a good
idea, to try to use a consistent convention throughout the thesis. The reason is that
the literature does not, and it appears to be better to follow as much as possible
the generally acéepted conventions. In most of the thesis, where it is not explicitly
stated otherwise, we will use the conventions of Misner Thorne and Wheeler 3],
That is, we will use geometrized units, where ¢ = G = 1. In those units, mass
and charge have units of length; curvature, energy density and pressure have units
of inverse length squared. We will use the spacelike convention (- + ++) for the
metric, and the sign convention for the Riemann and Ricci tensors is such that the
field equations are written G, = 87T}, . In the sections where quantum effects are
discussed, and where explicitly stated, Planck units where ¢ = G = h = 1 will be

used. In section 2.2 (and only there), where we deal with quantum field theory in
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curved spacetime, we will take the timelike convention (+——~—) for the metric. Also
in this section, we will use the opposite sign convention for the curvature tensor,
such that the field equations will there be written as G, = —87T,,. To avoid any
confusion, the reader will be warned whenever we depart from the standard MTW

conventions.
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1.2: The Schwarzschild geometry

The objective of this section is twofold.  First, a brief description of the
Schwarzschild solution is a good starting point to the thesis. Second, we will take

the opportunity to derive a few results that will be used later on.
) The general metric for a static, spherically symmetric geometry.

The Schwarzschild geometry is a vacuum solution of the Einstein field equa-
tions which is static (the geometry does not depend on time) and spherically sym-
metric. To derive this solution, we have to consider the most general metric that

possesses those symmetries. It is given by the form f16]
ds? = —A(r) dt?® + B(r) dr® + r2d22, (1.1)

where

d0? = d6® + sin® 8 d¢? (1.2)

is the metric on a 2-sphere. 8 and ¢ are the usual spherical coordinates; r is a radial
coordinate such that the area of the 2-sphere r = 'constant, t = constant, is equal
to 47r2, and t is a time coordinate. Spherical symmetry is reflected by the presence
of the last term in the metric, and also by the fact that two arbitrary functions of
r are needed. Instead of the form (1.1) , we shall use a more convenient form given
by

ds? = e¥(—® dt* + ®71dr?) + r2dQ?, (1.3)
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where 3 = 9(r) and ® = ®(r) are our two arbitrary functions of r. We introduce

now another function of r derived from ¥ and &:

-2l vg (1.4)

r

m(r) is called the mass function and we will see a bit later why it is called this way.

To write down the field equations for this metric, we need to know the form
of the stress-energy tensor [!7]. We first assume that the material is a fluid charac-
terized by its energy density p, its radial pressure P, and its tangential pressure Py.

We then introduce the orthonormalized tetrad:

e(!) = C'b@ aata
88 = om0

r 11!@'-1 !

° (1.5)

. 1
C(g) = ; 30’9,
- 1
e(g) " rsiné 0%

This tetrad forms the proper reference frame of static observers. Hence, it is the
proper reference frame of our fluid. This means that we can write its stress-energy

tensor as
T = p &80 + Pr €380 + PL (e(3>e(f) + e(i)‘fm) ’ (1.6)
or, since &(,) * €() = Jap é'(:)é'(f) = 1(a)(s) the Minkowski metric, we also have:

% = diag(—p, Pr, PL, Py ). (1.6')
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The fact that the 8 and ¢ components of the stress-energy tensor are equal (= PL)
follows from spherical symmetry. If the fluid is further assumed to be isotropic,

then we have P, = P;.

It is an elementary exercise in general relativity to derive the field equations
for the metric (1.3), (1.4) with stress-energy tensor (1.6). The easy way is to use
the results for the field equations obtained in ref. [16] for the form (1.1) and then

to translate them into our form. The results are:

m' =4nrip (1.7)
4nr(p + P,
vt (8
r

where a prime denotes a derivation with respect to 7. From the energy conservation

equation T"* =0 we obtain
|v
m + 4xr3P;
5
2 (1 _ _m.)
r

These are all the equations we need to specify the solution. The fact that we call

2
P+ = (Pr=Pu)+ (p+Pr)=0. (19)

m(r) the mass function is suggested by eq. (1.7) which is exactly like its Newtonian

counterpart.

A simplification occurs when 7 is a constant. From eq. (1.8) we find that
this happens when p + P, = 0, that is, either when p = P = 0 or when P. = —p.
Those two cases will both be important later. Eqs. (1.3) and (1.4) then give

2 2 -1
ds? = —e2¥ (1 - .._m_(_Q) di? + (1 — 5%(—7;2) dr? + r2dQ2.

r
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Since ¥ = constant, we can define a new time coordinate tNgpw = e¥torp and the

metric becomes
. 5 -1 .
ds® = — (1_“—"19—)) de® + (1— 2—'"5’—)) dr? +r%dQ?, p+ P.=0. (1.10)

Moreover, eq. (1.9) then reads

P..L=Pr+%rPr'! p+ Pr=0. (1.11)

We are now ready to derive the Schwarzschild solution.
b) The Schwarzschild solution.

The stress-energy tensor for vacuum is simply Tj,, = 0 so we take
p=P. =P =0. (1.12)
Eq. (1.7) gives m = constant = M. Eq. (1.11) is trivially satisfied and from
eq. (1.10) the metric becomes

-1
ds® = — (1 - 2—A-l-> dt* + (1 - ?M) dr? + r2dQ02. (1.13)
T

r

This is the so-called Schwarzschild solution. For test particles far from the hole,
the equations of motion in this spacetime reduce to the Newtonian equations with
a potential of the form —M/r. This property permits us to identify the constant of

integration M with the mass of the black hole.

A singularity develops in the metric coefficients at 7 = 2M. This singularity

is not a true physical singularity but merely a consequence of the misbehavior of
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the coordinates at this radius [18]. To see this, consider a typical non vanishing

element of the curvature tensor measured by a free falling (timelike) observer. This

is a measure of the tidal forces felt by the observer as he falls towards the hole {**},
This typical element is of order [!*]
M
R..~ 5. (1.14)
Also, we have for the curvature invariant:
48M?
Ra[i-y6Raﬂ76 = 7‘6 . (115)

Those two equations, both meaningful physically and independent of any system
of coordinates, do not show any bad behavior at r = 2M. However, we see that
infinite curvature occurs at r = 0: this a true physical singularity. Another sign
of misbehavior of the coordinates is that when r < 2M, gy is positive and g, is
negative. This means that r and ¢ interchange their roles as spacelike and timelike
coordinates! It is worth noting, however, that r always conserves its geometrical
meaning of being a measure of the area of the 2-sphere labelled by r = constant, as

we mentioned in the previous subsection.

To remove those difficulties, it is possible to construct a system of well
behaved coordinates (18120 such that the metric is regular at the horizon radius r =
oM. We will now proceed with this construction. Consider a line element of the

form

ds? = —® dt* + & 1dr? + r2dQ?, (1.16)
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where & = &(r) changes its sign at r = ro. We introduce first a new radial

coordinate r* defined by

oo [ -
r —_/CD(r)’ (1.17)

and then the null coordinates
u=1t-—r" v=t+r". (1.18)

u and v are respectively called retarded and advanced time. The line element (1.16)
then becomes

ds? = —& dudv + r2dQ2,

where r is now considered to be an implicit function of u and v. As always, r
keeps its geometrical meaning of being a measure of the area of the 2-sphere u,v =
constant. From the last equations, it is clear that radial lightlike geodesics (=
path of radial photons) are described by the equations u = constant for outgoing

geodesics, and v = constant for ingoing geodesics.

We have not removed the coordinate singularity yet. It is possible to do
so by simply relabelling the surfaces u = constant,v = constant. So introduce the

constant x called the surface gravity (21) and defined by
k=1 ®'(ro), (1.19)
and consider a new set of null coordinates defined by

U=—-e"" V =e"". : (1.20)
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With those coordinates, called the Kruskal-Szekeres coordinates, the line element

becomes:

¢

2 __
ds” = kUV

dUdV + r*dQ?. - (12y)

What we want to verify is that the ratio ®/UV is regular at 7 = ro. To do this, we

need to find the relation between UV and r. Egs. (1.18) and (1.20) yield:

UV = —e¥*. (1.22)

We now want to evaluate ®/UV at r = rg; it is then sufficient to evaluate the
numerator and the denominator in the vicinity of »r = ro. Expanding ®(r) as a
Taylor series and using eq. (1.19) we find that ®(r) ~ 2x(r — o). Using this in
eq. (1.17) yields: 7* ~ In |r/ro—1|/2k. Substituting this result into eq. (1.22) finally
gives UV = —|r —ro|/ro. This shows that, indeed, the ratio ®/UV is regular at
r = rog. We therefore have found our set of well behaved coordinates for the general

line element (1.16).

Let us now apply this formalism to the case of the Schwarzschild solution.

&(r) is given by eq. (1.13) : &(r) =1~ 2M/r, so egs. (1.17) and (1.19) give

r'=r+2M1n|2—rM——-1',

1

K= —

4M’
With the help of this last equation, eq. (1.22) yields

UV = ’ er/2M.

T
-|m“1



Section 1.2: The Schwarzschild geomelry 21

From eq. (1.20), it is clear that U is defined only in the range —co < U < 0, whereas
V is defined for 0 < V < co. This region of the U, V plane represents the ezterior of
the Schwarzschild black hole. To recover the interior region, we analytically continue
our spacetime such that both U and V are allowed to cover the whole line, from —co
to co. This means that we have to replace the last equation by

Uv = (1 - é'rzv_i) e"/2M (1.24)

and the line element (1.21) finally becomes

32M3

r

ds® = —

e~ "M JudV + r2d02, (1.25)
which is manifestly regular at r = 2M.

One important feature of the metric in the U,V coordinates is that, from
eq. (1.24), we discover that there exist two different horizons: one for U = 0, one
for V = 0. This also means that the horizons are null surfaces. We also discover that
there exist two singularities given by UV = 1; one for U and V both positive, the
other for U and V both negative (see Fig. 1.1). So half of the spacetime is hidden
when we use the Schwarzschild coordinates 18], This doubling of the spacetime is,

of course, a consequence of the analytical continuation.

In what we have done so far, there is one tacit assumption that we made
and which is important to underline. We have tacitly assumed that the interior of
the Schwarzschild black hole is also filled with vacuum. Only in this case can we
consider the Schwarzschild solution (1.13) to be valid for 7 < 2M. And only in this

case can the double-null form (1.25) be a good description of the spacetime. In the
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- N
(3

next section we will consider another model for the Schwarzschild black hole where,
while the exterior is described in the same way as we have seen here, the interior is

treated in a different manner.
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1.3: The Gonzalez-Diaz model

We will consider in this section an ad hoc model explicitly designed to remove the
singularity at the centre of a Schwarzschild black hole. In 1981, Gonzalez-Diaz (13]
proposed that the equation of state p = P. = P, =0 should not be used to describe
the interior of a Schwarzschild black hole and that the solution (1.13) should not be
valid there. Insfead, he made the simple assumption that p be a (positive) constant

inside. Using this assumption in eq. (1.7) yields
m= —pr°. (1.26)

Since the interior solution must be joined to the ezterior solution (1.13), it is
necessary that gu(r — 2M) — 0 and that g (r — 2M) — o when r = 2M is
approached from the inside. The easiest way to achieve this is to assume that g, =
—g,.~' and then impose that gu(r = 2M) = 0. This assumption, from eq. (1.3), is
equivalent to assuming that 1 = 0. Again, as we have seen in section 1.2a), this is
equivalent to assuming that p + P, = 0. So Py is also a constant inside the hole.
Furthermore, eq. (1.11) implies that Py = P = P. Therefore, the equation of state
inside the hole is

p = —P = constant, r < 2M. (1.27)

This equation describes “inflationary” material which is often called false-vacuum.
An important point is that this equation of state violates the energy conditions
needed in the proof of the singularity theorems (10], This means that the singularity

theorems do not hold in this black hole interior.
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Egs. (1.10) and (1.26) now give the metric inside the hole:

2 21!
ds? = — [1 _ (L) ] &t + [1 _ (l) ] dr? + 120, r<2M  (1.28)

To To

where

To <= —=p- (1.29)

This solution of the Einstein field equations has a name: it is called the static de

Sitter solution. ro has now to be identified with 2M:

ro = 2M. (1.30)
Egs. (1.29) and (1.30) then give
M
P= o (1.31)
ir(2M)?

which could lead to a nice interpretation since the denominator is the volume for-
mula for a sphere of radius 2M. However, the denominator of eq. (1.31) is not
the proper volume of the black hole. This last equation must then be seen as a
convenient way of expressing the relationship between p and the mass of the black

hole.

Combining the results that we have, we find that in this model the metric

of the Schwarzschild black hole is given by

ds? = —® dt? + & 1dr? + r’dQ? (1.32)
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where

r) = 1~ (r/ro)® r <o
o ={1tnm T3 (133

and where 7o = 2M . The material inside the hole is described by the equation of

state p = —P = constant and we have p = P = 0 outside.

The striking difference between this interior model and the one of the last
section is that here we have a constant curvature tensor. So we have a regular
spacetime everywhere inside the black hole. We have got rid of the singularity!

This is the reason why this black hole model is worth sperding some time to study.

But there is still .sorne work to be done in order to decide whether this
model can work, even before trying to justify the interior equation of state. We still
have to prove that the interior and exterior solutions can be joined continuously.
(The criterion for a continuous join is that the metric and its first derivatives shouid
be continuous at the horizon.) We mentioned earlier the necessary condition that
the interior solution should develop a (coordinate) singularity at r = 2M. This
condition is of course satisfied by our solution but it is not a sufficient condition
to have a continuous join. We also need continuity in the first derivatives of the

metric.

In fact, it can be expected that the join is not continuous directly from
the presence of t.he discontinuity in the stress-energy tensor (22, We can however
imagine that this discontinuity is only a product of our idealizations and that, in
fact, the jump takes place within a finite distance (see Fig. 1.2). This is entirely

equivalent to superposing to the sharp jump a shell of material with finite thickness
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which plays the role of smoothing the jump. Then, we can go back to the idealized
problem by formally letting the shell thickness go to zero. The stress-energy tensor
will, in this picture, have a term proportional to the Dirac § function, evaluated at
the horizon, which will represent the thin shell. The coefficient of the ¢ function
term will therefore represent the stress-energy of the thin shell. The problem of the

junction conditions then reduces to the study of the stress-energy tensor of the thin

shell (23],

To apply those ideas to our case, consider the following: for the entire
spacetime in the Gonzalez-Diaz model, the radial pressure is P = —p 6(ro — 1)
where p is the positive constant of eq. (1.31) and 6 the Heaviside step function.
Eq. (1.11) then gives Py = Pr + (1/2)rp é(r — ro) . The last term 1'; obviously
the contribution from the shell. But to have a meaningful description of Pirell,
the § function must be expressed as - invariant, independently of any coordinate

system. This means that we have to replace the argument of the é function by the

proper distance from the horizon: s = \/grr(r = ro)(r — ro). This yields

PL = P+ 1ropy/gre(r = 10) 6(3).

Using eq. (1.31) to express p as a function of rg, we finally obtain

13
Pj.he" =gV grr(r = 10). (1.34)

8T 1o

Since gp-(r — r9) — 00, we have that Pj_he" = 0o. Hence the shell would have to
supply infinite tangential pressures to support the interior material against its own

collapse. We can therefore conclude that the Gonzalez-Diaz model is dynamically
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unstable. This result can be recovered by a direct application of the theory of
singular surface layers in general relativity (3. Such an analysis was carried out by
@. Gren in 1985 (28, An important point to notice is that there is no objection, at
least in principle, to the Gonzdlez-Diaz model if the join is put elsewhere than at

the horizon.

This section on the Gonzalez-Diaz model comes as an answer to a paper by
Shen and Zhu published early in 1988 123}, In this paper, the authors constructed
Kruskal-Szekeres coordinates for the Gonzalez-Diaz spacetime and then examined
the junction conditions. They concluded that the join at the horizon was continuous
and that the model was stable. This must come as a surprise after our previous
discussion! There are two major problems with Shen and Zhu's paper. The first one
is the way they constructed their Kruskal-Szekeres coordinates. What they did was
to construct one set for the exterior region (as we did in the previous section) and
another set for the interior region. It can be shown that the two sets have no relation
whatsoever. There is therefore no meaning to studying the junction conditions with
those coordinates. The second problem is that, even if there was a meaning to this
study, a discontinuity in the first derivatives of the metric nevertheless appears.
Unfortunately, Shen and Zhu did not find it. We hope that this section of the thesis

will help to clarify the situation regarding this black hole model.

More importantly, I do not think that this model should be taken too
seriously, even if it was proven dynamically stable. The reason is that its underlying
assumptions are far too simplistic to be realistic. The principal assumption is that

the energy density should be constant inside the hole. There is no reason why it



Section 1.9: The Gonzédlez-Diaz model 28

should be so. Indeed, to justify this assumption, one would have to find a way to
explain the creation of matter out of nothing, and to explain why this matter has
to fill the black hole interior in such a way. Also, inspired by this approach, one
could invent any black hole interior model that one likes, and there would be no way
to tell which model is the “good one”. It is my opinion that a black hole interior

model should come from a more fundamental approach.

There is probably nothing wrong in seeing the black hole interior as being
filled with vacuum, at least in a spherically symmetric situation. Indeed, in this
case, a collapsing star does not emit any gravitational radiation and therefore leaves
nothing “behind” but vacuum. When the collapse departs from spherical symmetry,
however, gravitational radiation is emitted and it could be that, in this case, the
interior be filled with radiation; but this radiation would nevertheless propagate in
vacuum. We will see in the next section that, at least when the departure is small,
there is a region in the black hole interior where the influence of this radiation is
negligible. In this region, then, both spherical symmetry and the vacuum remain a

good description.

Again in the next section, we will see that near the singularity, in this
vacuum-filled black hole interior, there is a region where vacuum polarization effects
of the diverse quantum fields present cannot be neglected. This happens even before
quantum effects in the geometry itself have to be considered. In the following pages,

we will study the problem of solving the semiclassical Einstein field equations

Gu = 87(Tuw),
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where (T},,) is the expectation value of the stress-energy tensor, determined by

one-loop vacuum polarization effects of the quantized fields.

Before we close this section, let us say a few words about the Gonzalez-Diaz

equation of state

p = —P = constant.

This equation describes “inflationary” material for which the stress-energy tensor

can be written as (see eq. (1.6))

T;w = =P Guv-

This material is also called false vacuum because T}, is Lorentz invariant (it does not
single out any four-velocity). The solution of the field equations for this material is
called the de Sitter solution and, in a cosmological context, describes the inflationary
universe. In the theory of inflation, this equation of state is the consequence of the
presence of a Higgs boson field that dominates on the dynamics of the universe [#5],
It is also interesting to note that the de Sitter universe of Planckian size plays an
important réle in minisuperspace models of quantum cosmology (27) This is to say
that false vacuum is very likely a genuine quantum effect. The de Sitter spacetime

will come back to us when we consider the quantum effects near the singularity.

In conclusion, we will now leave the Gonzélez-Diaz model and consider from
another point of view the problem of determining the metric inside a spherically

symmetric black hole.
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1.4: The semiclassical model

a) Quantum effects in curved spacetime.

What we wish to consider in this section is a model for a spherically sym-
metric, uncharged, black hole where the Schwarzschild solution is valid everywhere
except near the singularity. What we expect is that, near the singularity where
the curvature is very large, vacuum polarization effects produced by the quantized
fields would influence the geometry such that the Schwarzschild solution will not
be valid there. It is easy to imagine what could be going on in this region of the
black hole. The large curvature near the centre of the hole induces pair creations
of all kinds of particles. Each pair will eventually recombiﬁe, but on an average,
their contribution on the stress-energy tensor will not be zero. Accordingly, this
non-vanishing stress-energy will have an effect on the geometry of spacetime and
the Schwarzschild solution will not hold in that region. This simple picture can be

very helpful to understand what follows.

The problem of determining the quantum effects in a curved spacetime is
complicated. To have a complete understanding of those effects, a theory where
gravity and all the other interactions are quantized would be needed. But quantum
gravity is still not on the market so we have to start from somewhere else. One
possibility, in analogy with quantum mechanics where the motion of the electrons
is quantized but not the electromagnetic field, is to assume that there is a “regime”
where gravity can be treated classically, while all the other fields are quantized. This

approach is called “quantum field theory in curved spacetime”. In this framework,
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one first specifies the background geometry (for example, the Friedmann-Robertson-
Walker cosmological solution), then considers a type of field (for example, a massless
scalar field), and then quantizes the field on the given background. Interesting quan-

tities can then be calculated (for example, the stress-energy tensor of the quantum

field).

An interesting thing happens when the stress-energy of the quantized fields
dominates over all the other contributions. The fields then act as a source in
the Einstein field equations. The problem thus becomes: specify the background
geometry, quantize the fields, calculate the stress-energy tensor, and then solve for

the background geometry via the semiclassical Einstein field equations
Gy =87(Ty). (1.35)

This is called the backreaction problem and it is somehow analogous to a Hartree-
Fock self-consistent treatment of multi-electronic atoms. For example, one can
quantize a massless scalar field on a Friedmann-Robertson-Walker background and

then solve for the scaling factor a(t).

It is of course difficult to obtain an expression for (T},,) and I do not claim
that I am able to do so. What I can do, however, is to use results that others have
already obtained! I will do so in Chapter Two of this thesis. For now, let us he more
general in the discussion. The principal observation regarding the general expression
for the renormalized vacuum expectation value of the stress-energy tensor, when
one-loop Feynman diagrams are considered, is that it depends on the curvature

tensor squared. This is true for all one-loop contributions from all quantized fields,
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including one-loop graviton diagrams. Another way of saying this is that vacuum
polarization effects induce terms quadratic in the curvature tensor in the standard

Einstein-Hilbert gravitational action 28] and hence in the field equations [29],

Schematically, we can write:
Sy = i_é—ﬂ /d"z\/—g (R+ciR.EE+ ), (1.36)

G = 8n(T,,) ~ R, (1.37)

where [p is the Planck length (the curvature tensor has units [length]=2) and ¢,
a coefficient of order unity. This coefficient depends on the effective numbes of
quantized fields, that is, the number of spin-0 ﬁeldé times a certain characteristic
coefficient; plus the number of spin-1/2 fields times their characteristic coefficient;
and so on. The derivations and details can be found in the book by Birrell and

Davies (ref. [29]).

Where can the semiclassical equation be applied? Qualitatively, from
eq. (1.35), it is clear that if the T}, eigenvalues in a given quantum state are much
different from the averaged value (T, ), then the semiclassical approach becomes a
poor approximation. So we expect that eq. (1.35) will be valid when quantum fluc-
tuations are small. On the other hand, it is believed that quantum effects in the geo-
metry itself become important around the Planck length [p = V/Gh/c3 ~ 10733 cm.
Of course, the semiclassical equation cannot work around this length scale. Now,

from eq. (1.36), the quantum field effects are expected to become important when

R...~R.22
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In the case of a Schwarzschild black hole, a typical element of the curvature tensor

is given by eq. (1.14) and the last equation becomes

k]

G (G o

~ ==
c2 3 23] o3

or:

1/3
r~rg = (-—— M) , (1.38)

where all the factors of ¢ and G have been reinserted. In Planck units, eq. (1.38)
becomes r ~ rq = M!/3. For a solar mass black hole, rq ~ 10~%%cm, which is
much larger than the Planck length. From these results, we can expect that the

semiclassical equation (1.35) or (1.37) will be valid in the range:
1< r<rg=M", (1.39)

in Planck units. For r ~ 1, the effects caused by a fully quantized theory of
gravitation become important, whereas for r > rq, qﬁantum effects in general
(including one-loop quantum gravity) become negligible and we recover the classical

solution.

Before we go further in this direction, we need to answer a very important
question: can we expect spherical symmetry to hold at small radii? This is a very
important question because, if the answer is yes, the general problem of determining
the quantum effects at the centre of the hole will be greatly simplified. We will

consider this in the next subsection.
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b) Spherical symmetry holds near the singularity.

In this subsection we consider the problem of a star undergoing a nearly
spherical gravitational collapse. In particular, we will study the effect on the region
near the singularity of small departures from spherical symmetry in the gravitational
collapse. We will show that at late (advanced) times, non-spherical perturbations
have negligible effects on the singularity. This means that at sufficiently late ad-
vanced times, spherical symmetry holds, not just externally but also down to very

small radii.

The general problem of non-spherical gravitational collapse is very compli-
cated and most of the studies undertaken so far postulated only small departures
from spherical symmetry. What is usually considered is the propagation of as-
pherical perturbations on a spherically symmetric background, as we mentioned in
section 1.1. Price (4] showed in 1972 that part of the gravitational radiation emitted
by small aspherical “lumps” in the density distribution of the star is backscattered
towards the hole by the curvature of the Schwarzschild spacetime. If the initial
perturbation is a multipole of order /, then the amplitude of the external (backscat-
tered) radiation field falls off as ¢—(21+2) This means that external perturbations
caused by small departures from spherical collapse die off at times larger than the
characteristic timescale 2M. This decay of external radiation will play an important

role in what follows.

Fig. 1.3 is a spacetime diagram depicting the collapse of a spherical star.
The coordinates used are the same as in section 1.2b). Choose a late advanced

time vy, whose world line meets the singularity r = r* = 0 at point C. Let u; be
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the retarded time whose world line also meets point C. From eq. (1.18) it is clear

that we have

u; =, (1.40)

and from egs. (1.20) and (1.23) we obtain for the Kruskal coordinates
Uy =Vt = e /4M, (1.41)

(The interior region is the one for which U,V > 0; we have used the analytical

continuation of eq. (1.20).) Choose now any intermediate time ¥ such that

2M L5 K vy (1.42)

Perturbations at the region of the singularity for which v > v, (at the right
of point C) come from several contributions. The first contribution is the infalling
radiation at times later than v;. But, as we discussed previously, an external
perturbation dies off like v—(2+2) for a multipole of order [. This means that
this first contribution is very small and can be neglected. The second contribution
comes from infalling radiation that passes through segment MD to be scattered
by the curvature of spacetime towards segment CD. Since  is also a “late time”,
the argument used above still applies and this contribution too is negligible. Then
comes the contribution of the infalling radiation that crosses segment AM and
scatters towards segment MN, and that of the outgoing radiation escaping from

the star and crossing segment AB to reach segment MN. Those contributions have
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little effect since the radial thickness of the slice MN is exponentially small: near
the horizon, for r =2M - Ar , U=U,,V = V; eq. (1.24) reduces to
Ar >~ 2Me™ UV

~ 2M e(i)—v; —4M)/4M

~ OM eV /M (1.43)

where eqs. (1.41) and (1.42) have been used. If this were only a statement about
the smallness of a coordinate difference, it would not mean very much. But we have
outlined in section 1.2 that r is a direct measure of the area of the 2-spheres r =
constant. The fact that Ar is small therefore leads to the fact that the difference
in the areas is small. This also means that the region of spacetime corresponding
to segment MN is small. The result is that the smallness of Ar guarantees that
the perturbation reaching segment CD will be very small, since very little of the
radiation will be focussed through segment MN. So this contribution too can be

neglected.

Since we do not have any other contribution, we arrive at the surprisingly
simple conclusion that for regions of the singularity corresponding to late advanced
times, aspherical perturbations become very small and can be neglected. We have
to remember that inside the black hole, r and ¢ have interchanged their réles of
spacelike and timelike coordinates. The concept of exterior late times then becomes
interior large distances. Now, a spacelike hypersurface r = constant, still in the

Schwarzschild spacetime, is described by the line element:

ds? = constant dt? + r2dQ?,
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where the constant is positive. This line element describes a “3-cylinder” whose
axis is the t axis and where the surfaces of constant ¢ are 2-spheres, all of the same
radius r. Therefore, r represents the radius of the cylinder; it decreases as time
increases. In this geometrical picture, the decay of external aspherical perturbations
is reflected near the singularity as a spatial damping with increasing distance along

the 3-cylinders r = constant.

It is clear that this result simplifies considerably the problem of determining
the geometry of the region near the singularity, since we know that a study using
spherical symmetry can be undertaken and be meaningful. Note that the results
derived in this subsection were first discovered by Doroshkevich and Novikov in
1978 3% from an analysis similar to that of Price (ref. [4]). The derivation found

here is however simpler.

With the confidence that we now have that spherical symmetry holds (at
late times) near the singularity, we can now turn to the problem of the quantum

effects near the singularity.
¢) Solving the semiclassical equation.
[Warning: we will use Planck units in this subsection.]

The results derived in the two previous subsections now allow us to consider
the problem of the quantum effects on the geometry near the singularity of a spher-
ical black hole. From the last subsection we know that at sufficiently late times,

the spacetime is spherically symmetric near the singularity even if the gravitational
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collapse presents small departures from sphericity. From subsection 1.4a) we know

that the semiclassical Einstein field equations
Gy = 87(Ty) (1.44)

can be applied in therange 1 K r <rq =M 1/3, The way to proceed would then

be to start with a spherically symmetric line element given by eq. (1.1):
ds? = —A(r) dr® + B(r) dt? +r2dQ2.

Since we are inside the black hole, r plays the réle of time, whereas t plays the
role of space. The fact that this metric does not depend on ¢ means that the
spacetime is spatially homogeneous. The next step would be to quantize each type
of field (spin-0, spin-1/2, etc.) on this general background; then to compute the
vacuum expectation value of the stress-energy tensor induced by the presence of the
quantum fields. Using this result in the semiclassical equation, the aim would be
to solve for the functions A(r) and B(r) with the constraint that for 7 3> rg, the

Schwarzschild solution should be recovered.

This is too difficult a problem for me to handle at this stage, and I will
have to learn a few more things before going back to it. For now I will consider
only simplified versions of this problem. In Chapter Two of this thesis we will make
an ansatz regarding the form of the two functions of r, motivated by the results
of this subsection. With this simplified form for the line element, the backreaction
problem can be handled relatively easily. But for the moment we will take advantage
of our previous observation that, for one-loop vacuum polarization effects, (Tyw)

is proportional to the square of the curvature. The proportionality constant is
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expected to be a number of order unity depending somehow on the effective number
of quantized fields (see section 1.4a)). For the moment we know nothing about this
number, not even its sign. The reason is that it is still uncertain what exactly those
quantum fields are. What is needed to gather the information is the correct Grand
Unified Theory which is not yet singled out. We shall therefore leave this number

undetermined, until we go a bit further into this problem in Chapter Two.

So, with all this in mind and recalling from eq. (1.14) that the curvature
of a Schwarzschild spacetime goes as M/r®, we make the ansatz of allowing M to
become a function of r and of writing the t¢-component of the vacuum expectation

value of the stress-energy tensor schematically as

(~T') = — a® ——, (1.45)

where a? is our unknown coefficient depending on the effective number of fields,
expected to be of order unity. The important point is that the sign of a® can be
either positive or negative (a in itself does not have any meaning, only a® does).
The factor 3/4r is inserted for convenience. Since t is a spacelike coordinate, (=T
is not an energy density but rather a negative pressure, or tension, along the axes
of the 3-cylinders of constant time r = constant (see section 1.4a)). This is why we

write —T', instead of p.

We can now use eq. (1.45) to solve the tt-component of eq. (1.44). This is

the same thing as solving eq. (1.7):

m'(r) = dnr? (-T").



Section 1.4: The semiclassical model 40

We easily find that the solution for m(r) is

m(r) _ 1

r3 T a2+ (r/rq)®’ (1.46)

where the constant of integration has been identified with rq. This equation is, of
course, our new curvature function taking into consideration the quantum effects.
For r > rqg, eq. (1.46) reduces to m(r)/r® ~ (rq/r)® which means that m(r)
becomes constant and equal to rQs. Thus, for r > rq, we recover the Schwarzschild

solution.

The behavior of eq. (1.46) for 7 ~ rq depends strongly on the sign of al.
If it is negative, a singularity develops at r = |a?|"/ 3rqg. So, if a? is negative, the
physical singularity occurs sooner than in the classical solution. However, if a? is

positive, the right hand side of eq. (1.46) goes to the finite limit, for r < rq:

m(r) —a~?
3

(1.47)

)

that is, the curvature does not rise above Planckian magnitudes (11, From this to
the conclusion that there is no singularity anymore, is a step that we cannot take.
We have to remember that this is just a semiclassical investigation. As we approach
the Planck length, those results become invalid. The only conclusion that we can
make is that, if the constant ~? is positive, or in other words, if the stress induced
by vacuum polarization is a tension rather than a pressure; then in the limits of our
semiclassical treatment, the curvature does not raise to infinity but stops around the
Planckian magnitude. The spacetime is then self-regulatory, much in the spirit of

Le Chatelier’s principle 2] which states that a system responds so as to oppose an
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imposed perturbation. This is very encouraging. It can now be seriously suspected
that the singularity could be avoided if mother nature were kind enough to provide
the right sign for ¢?! Instead of having an infinite concentration of mass, the black
hole would appear to have a nucleus of radius of order rq where all its mass would

be contained.

Let us now go further in this study of the case where a? is positive. We
however have to remember that it is equally possible that a® be negative, but since
this case is far less interesting than the “positive” one, let us hide it under the
carpet for the remaining of the discussion. So, with a? positive, we want now to use
our solution for m(r) to discover the metric in the semiclassical region. We consider

the range a € r <« rq so eq. (1.46) yields: m(r) =~ r3/a?. Egs. (1.3) and (1.4) give

r r

ds® = — (zm(’") - 1) dr? + e2¥(" (M - 1) dt® 4+ r2dQ?, (1.48)
which reduces to, when applied to our case:

dr? 2
2, 1,29 | 22 p) 2
ds? = ~}a? = 4+ (e U g (L) +d0 )
We can now rescale our units by making the transformation tygw = V2 JatoLp.
The last equation then becomes

7 dr?

ds? =~ —%a — + rt (ew(') dt* + sz) . aLr<Lrg. (1.49)
T
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Since r plays the réle of the time coordinate, and from the form of the line element,
it seems a good idea to make this last transformation: 7 = —Inr (time increases as

r decreases), and z = t. This finally yields
ds? ~ —1a® dr® + e %" (ez'l’(') dz* + sz) . (1.50)

This line element has a form similar to the cosmological de Sitter solution that
we have briefly discussed at the end of section 1.3. The principal feature of this
spacetime is the exponentially decreasing “radius” of the 3-cylinders 7 = constant.
This suggests the possibility of a “long squeeze picture” replacing the conventional

“big crunch picture” of the classical Schwarzschild solution.

We still have an undetermined function ¥(r). Eq. (1.8) applied in the
range a L 7 L rg gives

dip(r) 2md?

dr r

((Trr> - (Ttt))v

or, when we use the 7 coordinate

fi%(:—) ~ —2ma? ((T7) - (T4)) ; (1.51)

so 1(7) can be determined once (I'7) is specified. We shall not go further in this

direction.

If we look at the metric when we silow r to approach the neighbourhood of
a, we find from eq. (1.13) that an inner horizon appears when r = 2m(r), or V2r

a. This could yield interesting new features in the geometry, should a be a few
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orders of magnitude larger than unity. But if a is smaller than that, this value of r
is too close to the Planck length and we are outside the semiclassical limits. Again,

we will not go further in this direction.

To conclude this section, and this chapter, let us go back to the semiclassical
metric in the form (1.49). We are still assuming that a? is positive and that we lie
in the range a < r < rq. The interesting feature that we would like to point out is
that for a value of r much less than the “quantum radius” rq, grr 13 giwven by a power
law. This simple expression for g suggests the study of the backreaction problem
from another angle. We could assume @ priori that both g, and gq are given by
to-be-determined powers of r. It turns out that it is relatively easy to solve the
semiclassical equation with such a background, the solutions giving constraints on
the power coefficients. So, motivated by the very positive results of this subsection
(the discovery of the self-regulatory spacetime), we will attack this problem in the
next chapter. We will see that we can add new pieces of information to what we

have found so far.



CHAPTER TWO

THE POWER-LAW METRIC

2.1: Introducing the power-law metric

The last section of Chapter One brought us interesting new information about the
structure of a black hole nucleus. It was found that if the stress induced by vacuum
polarization effects is a tension, then the spacetime is self-regulatory. By assuming
that this was the case, it was then discovered that for lp <« r « rq, where [p is the
Planck length and rg the radius at which quantum effects become important, the
metric element g, is proportional to r=2 (eq. (1.49)). The metric element g;; was
left undetermined. It is clear that in order to gather more information, especially
on the sign of a? (eq. (1.45)), the backreaction problem must be attacked from
another angle. In this view, we will therefore postulate that, for r much less than

the “quantum radius”, but much larger that the Planck length, the metric of a

spherical black hole can be given by

2 dr? n o2 2302
ds? = ——— + (ar)" dt" + r°dQ°, (2.1)

(ar)™

where m and n are two undetermined integers; t' is the ordinary Schwarzschild
coordinate (we will use later on a coordinate t different from the Schwarzschild

coordinate), and a~! is the length scale that tells us that r is small (ar < 1).

44
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The aim now is to reconsider the backreaction problem starting with the
line element (2.1). Solving the semiclassical equation should bring constraints on
the powers m,n, as well as on «. From the results already obtained, we should be
able to verify that m = 2, and a™! should be identified with rg. The following
sections will be devoted to this calculation. Using previously obtained results from
quantum field theory on curved spacetime, we will derive an expression for (T}, )
on the background (2.1), and then solve the semiclassical Einstein fields equations.
The rest of the chapter will consist of a general study of the line element (2.1) from
a purely classical viewpoint. We will consider stability of the solutions, for every

couple (m,n), as well as the accessibility of the origin (r=0).

To be able to consider the backreaction problem with our “power-law”
background, it is helpful to simplify the form of the line element (2.1). Consider

the metric on the 2-spheres r = constant, t = constant, (eq. (1.2)):
dQ? = d6® + sin’ 6 d¢’.

If we focus attention around the “North Pole” 6 = 0, we can rewrite this equation

as

dO? ~ d6? + 6° d¢®. (2.

[S%]
[S%]
N

There is no real loss in generality in doing this, since, from spherical symmetry, we
can choose the origin of the 8 coordinate wherever we want. We can therefore cover
the entire 2-sphere with small coordinate patches such that, for each patch, 8 1s
always small enough to verify sinf =~ 8. The result is that we can focus attention
on one of these patches, knowing that the situation will be the same for cveryone'

of them; what really matters being the r dependence. We can now look at eq. (2.2)
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with new eyes: 8 can be viewed as a (bounded) radial coordinate and we can define

the new coordinates

z' = 6cos g, y' =0sing. (2.3)

Eq. (2.2) then becomes

dQ? ~ dz"* + dy"?, (2.4)

the flat metric. This demonstration is just the mathematical way of saying that, for

small distances, the surface of a sphere appears to be flat. With this simplification,

eq. (2.1) becomes

dr?

n 2 2 ” 1?2
(ar)™ + (ar)" dt'* + r*(dz" + dy’*).

ds? = —

Since r represents a timelike coordinate, it appears to be a good idea to make the

coordinate transformation

) z = t,, (25)

= I/ e

yielding
ds? = —dt? + [ar(?)]" d2? + [r(2)]? (dz"® + dy'?). (2.6)

In order to integrate eq. (2.5), lzt us first consider the case where m # 2. We get

Bt = (ar)'~™/2 where 8 = |1 — m/2|a. If we define:

I
R =

xl
T ) y
(84

it is easy to verify that eq. (2.6) becon:es

ds? = —dt* + (Bt)?P(dz? + dy?) + (Bt)29dz?, m # 2, (2.8)
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where p = 2/(2 — m) and ¢ = n/(2 — m). Consider now the case where m = 2.

Eq. (2.5) yields ar = e~* so eq. (2.6) becomes

ds? = —dt® + e~ 2! (dz? + dy®) + e "dz},  m

i
o

(2.9)

To summarize the results, we can write the line elements (2.8) and (2.9)

as
ds® = —dt® + A%(t)(dz?® + dy®) + B¥(t) dz?, (2.10)
where
2y = § (BPP m#£2 D)
ww={ @7 "%} (211)
t)2e 2
BY(t) = {fﬁn)m m 2 (2.12)
and
_ 2 _.n 5= m (2.13
P=o 1= _I 2.0' 213)

It has to be noted that for m > 2, ¢t — co when 7 — 0, whereas for m <2,t—0

asr — 0.

The line element (2.10) represents an homogeneous, anisoiropic cosmologi-
cal solution where the z direction behaves differently from the z and y directions.
Since we have a diagonal form for the metric tensor, we recognize in eq. (2.10) a
special case of a Bianchi Type I cosmological solution (31 This type of solution is

obtained when one is interested in a non isotropic universe (for example, to study
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the evolution of the departures from isotropy as the universe expands). If n = 2,

then A%(t) = B?(t) and eq. (2.10) reduces to
ds? = —dt? + A%(t)(dz? + dy? + d2?), n=2 (2.14)

This is the well-known Friedmann-Robertson-Walker solution describing a homo-
geneous, isotropic and spatially flat universe (321, The case where n = 2 therefore

represents an isotropic matter distribution inside the black hole.

This transformation from a black >hole interior solution, eq. (2.1), to a cos-
mological solution, eq. (2.10) is very important because it simplifies our problem
tremendously. The reason is that quantum field theory in a cosmological back-
ground has been extensively studied (3. The case n = 2 is particularly simple
because not only the line element (2.14) has flat hypersurfaces of constant time,
but it is also conformally flat *4. This means there exists a function Q called the
conformal factor (and not related to the 2-sphere line element) such that our metric
tensor can be written as g,, = Q%n,, where n,, is the Minkowski metric tensor of
flat spacetime. To see this, define the new time coordinate n (not related to the

Minkowski metric!) as:

n='/-‘i—tt-)- . (2.15)

Then rewrite eq. (2.14) in terms of this new coordinate:
ds? = A%(n)(—dn® + dz? + dy* + d2?), n=2. (2.16)

It becomes clear that the flat Friedmann-Robertson-Walker line element is confor-

mally flat, and that the conformal factor is A(7).
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Before we can finally explain why the case n = 2 is so simple, we nced to
expand on the topic of conformal transformations (41, A conformal transforma-
tion is defined in general as a transformation that maps a metric g,, into another
metric §uy via v = 0%gus where Q is a smooth function of the spacetime. This
transformation is equivalent to rescaling the units of measure at every point of the
spacetime. Now, a field ¥, solution of its field equation in the metric g,,,, is said to
be conformally invariant if there exists a number s such that ¥ = Q' is a solution
of the field equation in the metric §,,. For example, it can be shown that the
electromagnetic field is conformally invariant. The massless scalar field is originally
not conformally invariant, but it is possible to modify its wave equation (by adding
a term R¥, where R is the curvature scalar) such that it becomes so. For more

information on conformal transformations, see ref. [34].

In quantum field theory on curved spacetime, when one has a conformally
invariant field evolving in a conformally flat spacetime, one has the conformally
trivial situation. The expectation value of the stress-energy tensor becomes casy to
calculate since the evaluation of its trace only will give all the different elements [3s],

It is then sufficient to calculate the expectation value of the trace of the stress-energy

tensor, which is easier than calculating all the components.

This is why the case n = 2 is so important: we have a conformally trivial
situation. This allows us to quantize conformally invariant fields of all spins at
once since the expressions for the trace of the stress-energy tensor differ only in the
values of a few coefficients called the coefficients of the trace anomaly (35), We will

consider this case first in the following section.
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2.2: Solving the semiclassical equation

[Warning: in this section, we will use Planck units, as well as the timelike conven-
tion (+ — ——) for the metric. The field equations will be written G, = =871},

(opposite sign convention for the curvature tensor).]

We will consider here the backreaction problem for the line element (2.10).
First for the isotropic, n = 2 case, and then for the general case, we will find the
expression for the expectation value of the stress-energy tensor (for all conformally
invariant fields in the isotropic case, for conformally invariant scalar fields in the
general case). Using this expression as the right hand side of the Einstein field
equation, we will find constraints on the values of the powers (m,n), as well as on

the scaling factor a.
a) Isotropic case (conformally invariant fields).

We consider the line element (2.10)-(2.13) in the case where n = 2. This
corresponds to an isotropic distribution of matter. Egs. (2.14), (2.11) and (2.13)
give the complete expression for this line element, but it is more convenient to work

with the conformally flat form (2.15) and (2.16), which we rewrite as
ds* = C(n)(dn® — dz? — dy® — dz?), (2.17)
with C(n) = A%(n). It will also be useful to introduce a new function D(n) defined

by

D(n) = —% (2.18)
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where the prime denotes a differentiation with respect to 7.

To proceed further, we will have to separate the calculations into three
different cases. We know from the last section that we already have to separate the
value m = 2 from all the other values of m. A look at egs. (2.11) and (2.15) then
tells us that we also have to separate the value p =1, or m = 0, from all the other
values of p, or m. The three cases are therefore the following: first of all we will
consider the case m # 2, m # 0; then the case m = 0, and finally the case m = 2.

Table 2.1 summarizes the results.

So assume for the moment that m # 2, m # 0. Eq. (2.11) gives the

expression for A(t) that we can substitute in eq. (2.15) to give
| [
"7 By

¥n = (Bt)' 7P, (2.19)

bl

which yields, after integration

where v = |1 — p| 8. The assumption that m # 0 was necessary to avoid the case

where p = 1. Substituting eq. (2.19) into eq. (2.11) yields

C(n) = A*(n) = (1), (2.20)
where
=22 _ 4 (2.21)
1-p m

and where we have used eq. (2.13). After substituting eq. (2.20) into eq. (2.18), we
easily find
D(n) =7t 12.22)
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We are now ready to examine the stress-energy tensor. Birrell & Davies (36]
derive an explicit form for (T, ) valid for all conformally invariant fields (see sec-

tion 2.1). It is given by

1 Y -
(T4) = ~ 153 (% My 428 <3>H“v) : (2.23)

where @ and f§ are the coefficients of the trace anomaly, their values depend on the
type of field (see previous section); (VH® and (DHH are two tensors depending
on the square of the curvature, as well as on the derivatives of the curvature. For

the line element (2.17), they have the form

(I)I{O0 — 90—2(_DIID + %Dﬂ + %D4)
MWHY = -3C~%2D" - D"D + {D"? - 3D'D* + }D*)
(2.24)
(3)H00 = %C_2D4
®HY = -3C~*(~D'D* + 3D*).
Isotropy guarantees that MWHY = MH? = (D HY, the same relation holding for
(e Eq. (2.24) is easily evaluated with the help of eqs. (2.20) and (2.22). We

find that all the elements of the H tensors have the same 7 dependence:
OF =0 [(m™n7"],
or, if we translate back to the ¢ coordinate, using eq. (2.19):

OF =0o@r™). (2.25)
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(4]
[

(We will see a bit later that it is not necessary to go further into the details of the

calculations.) Eq. (2.25) can now be substituted into eq. (2.23) to yield

(ThYy=0O(@™"), m#2 m#0. (2.26)

To use this result in the semiclassical equation, we still have to evaluate the
Einstein tensor for the line element (2.17). Again. we can copy the results directly
from Birrell & Davies 37! (or any other textbook of general relativity, but watch

out for the sign conventions!). The Ricci tensor elements are

ROO — %C_ID'
(2.27)
R!, = 1Cc7'(D' + D?%),
with R}, = R% = R%;. This yields for the Ricci scalar:
R=3C7Y(D'+1iD%. (2.28)

The Einstein tensor is then given by G4, = R*, — 1/2 6%, R, or, more explicitly:
6% = 3C71D' - 3CH(D' + 1D?)
(2.29)
G', = iCc-1(D' +D*) - 3C7I(D' + 3 D%).

Eq. (2.29) can then be evaluated, using once again egs. (2.20) and (2.22). It follows

that all the G#, have the same ¢ dependence:

G*, =0(t7%), m#2 m#0. (2.30)

We see now why the details of the calculations can be omitted: the t de-

pendence of (TX) and G*, are not the same. This means that the semiclassical
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equation G¥, = —~8m(T%) cannot be solved, since we want a solution valid at all
times, not only at a single, particular value of ¢. The conclusion is that all the cases

where m # 2, m # 0 have to be excluded. That limits our choice quite a lot!

Let us now consider the case m = 0. We will in fact repeat the same

analysis as before: egs. (2.11) and (2.13) now give A(t) = ft, so eq. (2.15) yields

After having used this in eq. (2.20), we find that the conformal factor C(7) is now

given by
C(n) = €7, (2.32)

yielding for D(7):
D(n) =28. (2.33)

We can go like that exactly like we did previously, using the egs. (2.23), (2.24) and
(2.29). The results are

(ThYy=0@1t"*), m=0, (2.34)
Gt =0@7%), m=0, (2.35)

as before. So the case m = 0 too has to be excluded.

The only remaining case is m = 2, the result we wanted to recover in the

first place! Let us consider this case now. Going back to eq. (2.11), we find that
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(41}
(1]

now A(t) = e~°%. Eq. (2.15) yields an = e™*' so we get C(3) = (am)~2, and

D(n) = —2n~!. Substituting these results in eq. (2.24) yields

(I)Hoo = 0
(I)Hll = 0
(2.36)
(3)H00 = 3a“
(3)Hll = 3&4.
Inserting eq. (2.36) into eq. (2.23) gives
(T%) = (TY) = -3 B at, m=2. (2.37)
8n?

The fact that we now have constant values for (7% ) will allow us to finally solve the
semiclassical equation. The elements of the Einstein tensor can also be calculated

from eq. (2.29) and we get

GOO = Gll = —302,

il
X
_——
)
[
e o)
N

The semiclassical Einstein field equations
G*, = —8n(TH,) (2.39)

are then easy to solve. They give constraints on the value of o when a value for f

is specified:

ol =122, (2.40)
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What is # 7 Again, Birrell & Davies provide the answer [*8]. For spin-0 conformally
invariant fields, 3603 = —1; for spin-1/2, 3608 = ~11 /2; and for spin-1, 3608 =

—60. The general expression for B is therefore

3603 = —No — 4 Ny, — 60Ny, (2.41)

! can be evaluated

where N is the number of scalar fields, and so on. So a™
once the effective number of fields B (see section l.4a)) is specified. This piece
of information is unfortunately still missing, and will come once the good Grand
Unified Theory is singled out. Nevertheless, it is a relief to discover that the value of
A is necessarily negative. This means, from eq. (2.40) that &~ is real, corresponding
to a positive a2, in the language of the last chapter. It has to be remembered that
eq. (2.40) is valid only for n = 2 (isotropic material), and for conformally invariant

fields. We are still far from a complete description of the quantum effects at the

black hole centre!

It is interesting to note that eq. (2.37) is the description of a false
vacuum p = —P = constant, which yields the de Sitter solution of section 1.3 and
of eq. (1.28). In return, if we take the limit of line element (1.28) for r < 7o, we
recover line element (2.1) with (m,n) = (2,2). The Gonzélez-Diaz model bounces
back! But this time, only a small region of the black hole interior is filled with false

vacuuni.

Summarizing, when we investigate the case n = 2, keeping m undetermined,
the value m = 2 gets to be singled out naturally in solving the semiclassical equation

for conformally invariant fields. The solution for (m,n) = (2,2) is the de Sitter
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solution with material in a false vacuum state. The quantum radius a™! can be
evaluated once the effective number of fields 3 is specified. These results are in
agreement with the analysis of section 1.4c). Our assumption that n = 2 would

correspond to the assumption that ¥(r) = 0 in eq. (1.50).

In the next subsection, we will consider the general problem where n is left
undetermined. Since we no longer have the conformally trivial situation (the line
element (2.10) is not conformally flat), we shall restrict ourselves to the backreaction

problem involving only conformally invariant scalar fields.
~ b) General case (conformally invariant scalar fields).

‘We will now consider the backreaction problem for the line element (2.10)-
(2.13), keeping both m and n undetermined. The calculations will involve only
conformally invariant scalar fields and will provide a unique value for m. As in the
last subsection, we will find that m has to be equal to 2. We will also find that
n must lie in the range 0 < n < 6 in order for a to be real. Unfortunately, to
calculate all the elements of (T}, ) is a very complicated task, and only expressions
for its trace can be found in the literature 9. So, to simplify the problem a bit
further, we will solve not the full semiclassical equation itself, but its trace: G¥, =

R, -1/2 ¥R = ~R = -8n(T%), or
R = 8r(T), (2.42)

where (T') = (T%,). This does not bring as much information, but we shall see what

it can reveal anyway.



Section 2.2: Solving the semiclassical equation 58

To derive an expression for (T'), we will follow closely the paper written by
Hu quoted in ref. [39]. All the hard work is done in this paper, we will merely copy
the results. The first step is to define a variable n, similar to that of the previous

subsection, for the line element (2.1) that we rewrite in the form
ds? = dt? — b*(t) (dz? + dy?) — by*(t) d=?, (2.43)

with by(¢) = A(t) and b3(t) = B(t). To do so we introduce the function b(t) defined

as

1y = [b2(0)bs(8)]', (2.44)

and define our new time variable by

dt
= — 2.
"= l ol (243)
By substituting the two last equations into eq. (2.43), we get
ds® = b3 (n) dn® = b2 (n) (dz® + dy*) — by’ (n) dz”, (2.46)

It is now necessary $o introduce a collection of new functions of 7 that will lighten

the expressions of R and (T). So let

— bl, —_ b3l
dl = by y d3 = -b:,
and:
D= %d; + %dg,
Q = 3(d — &),
(2.47)
S = Zl;'(dl - D)(dl - d3)2,

()
i
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where a prime denotes a differentiation with respect to 7. There is an apparent
difference between those equations and the ones found in Hu's paper. The reason

is that Hu discusses the more general situation where the line element is written as
3
ds® = dt* = ) _b2(t) (d=')?,
i=1

whereas we deal with the special case b, = by. So egs. (2.44) and (2.47) are written

in the more general form in Hu'’s paper.

With the functions defined in eq. (2.47), the curvature scalar for the line

element (2.46) takes the form
R=6b"2(D'+D*+Q), (2.48)

and the expectation value of the trace of the stress-energy tensor is

1
()= Iomepe

(D" —4D'D? - 4DQ' - 4QD'

+Q" - 12Q% - 3U + 85").

In the case where b; = b (or n = 2), we get from eq. (2.47) that Q = S=U =0. It
is then easy to verify that the eqgs. (2.48) and (2.49) agree with the similar equations

of the last subsection, when applied to scalar fields.

The procedure to obtain explicit expressions for (T') and R and to solve the
semiclassical equation (2.42) is now quite straightforward. Eqs. (2.11) and (2.12)
give us b, and b3 as functions of t. With the help of eq. (2.44), we can integrate

eq. (2.45) to find the new time variable 7. Then b; and b3, now functions of n can
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be inserted in eq. (2.47) and finally egs. (2.48) and (2.49) can be evaluated. In
order to integrate eq. (2.45) for n, we will have to separate the calculations in a
few cases, just like we did in the previous subsection. So, even if the procedure is
simple, the rest of this subsection will not be very appealing! The cases are listed
in Table 2.2, where a summary of the results of this subsection is also given. The
only case where we can actually solve the semiclassical equation is when m = 2.

We begin to discuss this case in the paragraph starting above eq. (2.57).

Consider first the case m # 2, n + 3m # 2. Egs. (2.11) and (2.12) give
by = (Bt)?, by = (Bt)7, where 3, p and g are defined in eq. (2.13). Eq. (2.44) yields

b = (Bt)(?P*tD/3 and we obtain from eq. (2.45) the relation between 7 and ¢:
yn = (87200, (2.50)

where v = |(3 - 2p— q)/3| B. The assumption that n+ 3m # 2 protects us from the
possibility that the exponent in eq. (2.50) is equal to zero. We have now to express

b,,bs and b as functions of n. It is easy to show that the are given by

by(n) = (ym)",
ba(n) = (1), (2.51)

b(n) = (yn) BtV

with
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With these results, we can write down the functions (2.47) explicitly. First we have

d; = kn~! and d3 = Ap™?; and then:

D=3+ 07",

Q = %(R - ’\)217—2a

(2.53)
S = -};(K —2\)3%p73,
U= %(n -\~
Eq. (2.53) can finally be substituted into eqs. (2.48) and (2.49) to yield
R=0 [(777)—2(2.:“)/377—2] ,
(T)=0 [('m)‘“z"“’/ 75
or, when we go back to the t coordinate:
R=0("?)
m# 2, n+3m#2 (2.54)
(T) =0(t™)

This shows, like we found in the previous subsection, that the semiclassical equation
cannot be solved, and that we have to rule out this case. We have therefore narrowed
down our choices for m and n, and we have now to repeat the above analysis for

the remaining cases.

This paragraph will then be devoted to the case m #2,n+3m =2 The

expressions for b; and b; are the same as above, but b is now simply given by b = t.
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The integration of eq. (2.45) then gives fn = In ft, yielding b, = ePBn by = 987

and b = 7. Using these results to evaluate eq. (2.47) gives d; = pB, d3 = ¢B, and:

D =3,
Q= (p-1)7°8,

2.55
S=(-1)7°8, (2:5)
U=0.

We finally obtain the expressions for R and (T') by inserting eq. (2.55) in egs. (2.48)
and (2.49):
R=0("?)
m#2, n+3m=2. (2.56)
(T) = Ot™)
So here too, we cannot solve the semiclassical equation and we have to abandon
this case as well. But there is a subtle point that we have to discuss. If p = 1,
or equivalently from eq. (2.13), m = 0, which then corresponds to n = 2 since
n + 3m = 2; it is easy to see from eqs. (2.55), (2.48) and (2.49) that (T) = 0 while
R = 6t~2. This is a bit different than what eq. (2.56) tells us. But this does not
change the fact that we cannot solve the semiclassical equation so the case p =1
is no more special. In fact, the case m = 0,n = 2 has already been studied in the
last subsection: it was rejected there too. It is interesting to note that the detailed

version of eq. (2.34) shows that the elements of the stress-energy tensor are not

zero, but are related by (T%) = —3(T",) which yields a vanishing trace.

We can now look at the case m = 2 which should be more interesting than

those we have examined so far! For m = 2, egs. (2.11) and (2.12) give b, = e
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and by = e~"°"/2_ With this we find that b = e~(#*™t/® 5o we need to consider
separately the cases n # —4 and n = —4. Let us begin with the case n # —4.
Eq. (2.45) can be integrated to yield |[3|n = e7* where ¥ = (4 + n)a/6. The metric

elements then become

by(n) = (|3In)~8/4+™,
ba(n) = (|3lm) =3/ 4+™), (2.57)
b(n) = (A~

Substituting eq. (2.57) into eq. (2.47) yields

6 3n
dy = —l, d - _ -1
1 4+n n 3 44n n
and:
D=—'T’—la

This yields, when inserted in egs. (2.48) and (2.49), the following expressions for It
and (T):

R=12[ 4 +n)" (1 + iN?) o

[é(4 + n)]4

(T) = = 10n2

(1-SN% +4N° —6N*) o
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where

N= . (2.60)

Once again we find constant values for those two quantities when m = 2. This

allows us to solve the semiclassical equation. We find a relation between the value

of o and n given by

= =2 - )
a 31on” m , n# —4, (2.61)
where
_ (4+n)? 5 72 3 4
Before we discuss this result, let us first consider the last case (finally!):
the case where m = 2,n = —4. For those values of m and n we find that b; =

e~ by = e2°! and b = 1. This yields that n is simply equal to ¢. So we have
d, = —a, d3 = 2a, which give D = 0. We also find @ = a?, S=—-a’and U =0.

Using those results in egs. (2.48) and (2.49) yields

R = 6a?
o m=2 n=-4 (2.63)
(T) =-
4072

a®=-30r, m=2 n=-4, (2.64)

corresponding to an imaginary a.
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We have just found an imaginary value for a~!. Inspection of eqs. (2.61)
and (2.62) reveals that there too, imaginary values can arise. What is the meaning
of this? If we go back to our original line element, eq. (2.1), it is clear that an
imaginary value for ™! is unacceptable since it represents a scaling factor. So the
conclusion would be that we have to reject all values of n for which a™! is found
to be imaginary. Unfortunately, this is not the correct interpretation. To find the
reason why, we must go further back to section 1.4c). In deriving eq. (1.49), whichis
the motivation behind the power-law metric of this chapter, we explicitly assumed
that a® was positive. So the assumption that a is real is directly reflected here
by our understanding that a™! is a scaling factor. So the rejection of imaginary
values for a~! would correspond to the rejection of negative values of a?. This
is a step that we cannot take. Egs. (2.61), (2.62) and (2.64) cannot therefore be
viewed as constraints on the values of n. But they can be seen as a valuable piece
of information telling which values of n lead to a self-regulatory spacetime, with
constant curvature, near the center of the black hole. The “true” value of n would
then have to come from a more detailed analysis, as discussed at the beginning of

section 1.4c).

So what are those values of n which give real values for a~!? Fig. 2.1 shows
the graph of T'(n), drarvn with the help of eq. (2.62). We find that the only values

of n for which I'(n) is positive, making a~! real, lie in the range
0<n<6. (2.65)

But this does not give the complete picture. Eq. (2.65) would be valid only if the

only contribution to vacuum polarization would come from scalar fields. We know
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from eq. (2.40) that o' also depends on the effective number of fields. In fact, it
is easy to verify that if one puts B = —1/360 in eq. (2.40) and n = 2 in eq. (2.61),
the results are the same. The point is that a complete expression for a™! would
involve a function of the effective number of fields and a function of n. It is therefore
possible that the range (2.65) should be modified. However, what is remarkable is
the fact that m = 2 is singled out without any doubt. This is important because
the line clement (2.1) with m = 2 leads to constant curvature. This means that
the self-regulatory spacetime comes out quite naturally, if the sign of a72, or a?, is

positive. On this issue, unfortunately, we will have to wait to know better.

In conclusion we can say that the analysis of this section agrees very well
with the simpler (and more direct) one of section 1.4. The crucial point is of course
the nature of the stress induced by vacuum polarization. Should it be a tension
(positive a2 or a?), then the spacetime is self-regulatory. Should it be a pressure
(negative a~2 or a?), then things get even worse than in the classical description,
a singularity developing before r = 0. A good sign comes from egs. (2.40) and
(2.41) which show that, when the matter distribution near the black hole centre is
isotropic, a~? is definitely positive. After all, isotropy seems like a pretty reasonable
requirement. Ann much different from 2 would means large departure from isotropy,
which aesthetically speaking, is not what we would expect. So I consider that this
study of the quantum effects near the centre of a black hole shows that it is likely,
but far from certain, that spacetime is self-regulatory there, the infinite rise of the
curvature being stopped by vacuum polarization effects caused by the presence of

the quantized fields.
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This concludes the discussion on the quantum effects near the centre of a
spherically symmetric black hole. What follows in this chapter is a study of other

aspects of the line element (2.1).
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2.3: Stability of the power-law geometries

In this section we continue our study of the power-law metric of section 2.1. We will
consider here the stability of the different geometries corresponding to the different
pairs (m,n). In particular, we will be interested in the stability of the geome-
tries (2.1) in the region ar < 1, where this metric is expected to be valid. The
stability of a geometry can be characterized loosely by the property that small
perturbations propagating in the background geometry always remain small, if the
geometry is stable. That is, perturbations do not become so large that they could
modify the geometry itself. As an example, consider the propagation of some per-
turbation, say a gravitational wave, in a flat spacetime. It is clear that if the
perturbation carries energy and momentum, the originaiiy flat spacetime will have
to curve to respond to the presence of this energy. The perturbation then appears
as ripples on the flat background. So, even if the perturbation can be said to be
small in some sense, it still has a non negligible effect on the background spacetime.
With this meaning understood, the background spacetime (the flat spacetime in

our example) would be unstable if its response to a small perturbation is large.

Consider another example: the propagation of perturbations inside a
Schwarzschild black hole (described by the classical solution, without the quantum
effects). Suppose that the curvature superposed on the Schwarzschild background
and induced by the perturbation rises to infinity as r goes to zero. What is the
effect on the background geometry? Since the Schwarzschild curvature also goes to
infinity, as M/r®, we need to know how fast the perturbation curvature blows up. If

it behaves, say, like 72, it will be negligible compared to the background curvature
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and the Schwarzschild geometry would be said to be stable against this type of
perturbation. But if instead we find that the perturbation curvature behaves like,
say, r~%, then we would say that the Schwarzschild geometry is unstable. But we
have to be careful. The calculation of the behavior of the perturbation curvature
is based on a perturbative treatment, which holds only when the perturbation is
small. When it becomes large, backreaction effects on the background geometry
(the perturbation is large enough to act as a source on the geometry) have to be
taken into account and the perturbative calculation breaks down. So from this type
of analysis, we can say that a given geometry is stable, when perturbations remain

small; but we can never say that it is unstable, even when the perturbation blows

up.

We will then consider the curvature induced by a perturbation in our geo-
metries (2.1) in the vicinity of the centre (ar « 1). The perturbation will be repre-
sented By a massless scalar field ¥ propagating in the background spacetimes. The
problem then consists in solving the wave equation of the field in the spacetimes (2.1)
and in calculating the induced curvature by constructing the stress-energy tensor
of the field. This will be done for each pair (m,n). As a criterion for stability, we
will adopt the condition that the curvature induced by the perturbation should be

at most as large as the background curvature:

Rpertutbation < Rbackgrounda (266)

where R is the curvature scalar. Eq. (2.66) will be called the stability test and if it
is satisfied for a given pair (m, n), we will say that this geometry passes the test and

is stable. If, on the other hand, eq. (2.66) is not satisfied for the pair (m,n), then
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we will say that this geometry fails the test. The graph of Fig. 2.2 summarizes the

work of the entire section. The stable geometries are represented by dotted points

in the m,n plane.

In regard to the results of section 1.4b), it can seem pointless to proceed
with this quite complicated analysis. After all, we have shown that external per-
turbations do not reach the region of spacetime where the line element (2.1) is
expected to hold. The spacetime should therefore be automatically stable! This is
true and in fact, the analysis of this section has no consequences on the other parts
of this thesis. This section is inserted here mainly for completeness, and because
the results derived in it will be applicable to any solution that can be modeled by
the line element (2.1). For example, a glance at Fig. 2.2 tells us that the geometry
corresponding to the pair (-1, —1) is stable. But the Schwarzschild line element,
eq. (1.13), for r < 2M, is exactly of the form (2.1) with (m,n) = (-1,-1). So we
get automatically that the Schwarzschild geometry, near the singularity, is stable.
The information gathered in Fig. 2.2 can be very useful and this is one of the reason

why we will spend some time on this study.
a) The differential equation.

We will now derive the differential equation describing the behavior of a
massless scalar field in the spacetimes (2.1). In a general spacetime with metric g,,,

such a test field obeys the wave equation (40]

gy = 0, (267)
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where the stroke (;) denotes a covariant differentiation. When written out explicitly,

the left hand side reads
g% Ujap = U5y + Tha T
= ve, + 2= (VA0

= o= [V + (vV79) , 7]

ﬁ

2

(V=994

where g is the determinant of the matrix formed by the metric tensor. This yields

that the wave equation can now be written as
—aq®P =
(V-99°° ¥} , =0 (2.68)

Since we have a diagonal metric, the elements of g°? can be evaluated directly.
They are: g™ = —(ar)™, g* = (ar)™", ¢* = r7% and ¢#* = r~? sin"%8. The
determinant ¢ is also easy to read out ans we find /~¢ = (ar)(n=m™/2;:24in 4,

Eq. (2.68) then yields

‘{QT)m+n‘I’,rr + (2 + m +n) (ar)m*i-nr—l\p'r

+(ar)"r~2L*¥ - ¥, = 0,

where L? is the “angular momentum operator™:

2y 1 8 9 1 2
L= “sind 86 (SmBOO " sin?99¢? (2.70)
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We can separate the variables in eq. (2.69) by postulating a solution of the

form
U(t,r,0,8) =) / dw ¥ (t,7,6, 4), (2.71)
im
where
‘I’f;?(t, r,6,¢) = %(r)Yim(8, e, (2.72)

and where Yi,, are the spherical harmonics. Substituting egs. (2.71) and (2.72) into

eq. (2.69) yields

a2y n+m\ dy w?
2 9 hak sl -m | 2—n —
rioT + (.. + ) T + (ar) -2 (ar)* ™"+ (1+1)[ ¢ =0,

4

that can be simplified by introducing the following dimensionless quantities:

2

r=ar, ylz)=¢ar), A= ‘Ci:; (2.73)
We finally obtain
oty" + (?. - il :- n> zy' + 7™ [A2?T U1+ ]y =0. (2.74)

The explicit solution of this differential equatit;n cannot be expressed in
closed form, but we can use the fact that we are only interested in the behavior
of y when r « 1 to simplify eq. (2.74). For example, if n > 2, Az?~" dominates
over /(I + 1) and this last term can be neglected, allowing us to find an explicit
solution to the differential equation. This is the kind of game we shall play in the

next subsection.
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b) The solutions of the differential equation.

Before we seek for the solutions of eq. (2.74), we shall spend some time
gathering a few results from ref. [41]. In what follows, eq. (2.74) will always be
reduced to one of the following forms, by some approximation using the fact that .«
is very small:

z%y" + azy’ + (b2 + )y = 0, (2.75)

or

22y" + azy' + cy = 0. (2.76)

We are interested in finding the asymptotic behavior for r <« 1 of the solutions y

of egs. (2.75) and (2.76). Consider first eq. (2.75). Its explicit solution is

y =1t} /27, (% Vb 1:”/2> , (2.77)

where Z, is the most general linear combination of J, and Y, the Bessel functions
of order v. The argument of Z, in eq. (2.77) for £ < 1 can be either > 1 or < 1,
depending on the sign of p. The parameter v is given by
1
v="=y(1-a)?—4c, (2.78)
p
and can be imaginary as well as real. The asymptotic behaviors of the Bessel

functions are well known and given by

v

(v-1)12" 1

Yu(f < 1) ~ - 27’
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and

IS 1)~ \/?—; - v+ 13,

2
Y.¢(>1)= \/;—_E:sm [{—(z/-{»%)%].

We can summarize this by writing Z,(6 € 1) ~ €*¥ and Z,(¢§ > 1) ~ £71/2¢%4,
The phase factor of the solution does not really matter and we will consider only
the modulus of y in what follows. It can then be verified that |Z,(£ < 1)[ ~ gERev
and that |Z,(§ > 1)| ~ £€~1/2. Rev is a notation for the real part of v. Using now
these results in eq. (2.77) yields that the asymptotic behavior of |y| for z < 1 can

be written as

ly(z < 1)| ~ 29, (2.79)
where
i(l-axpRev) p>0
Q= { 2 form (2.75); 2.80

so all the information that we need to obtain about the solution is the power coeffi-
cient Q. To select the sign in eq. (2.80), we will use the “worst behavior criterion”
that stipulates that if we have the choice between two solutions, we should select
the larger one. The reason is that if the worst behaved modes pass the stability
test, then the other ones will too. By choosing the worst behavior, we make sure
that nothing passes through the stability test filter by mistake. So, going back to
eq. (2.80), the worst behavior criterion tells us to choose the minus sign since it will

give a lower @ than with the plus sign, yielding a larger [y|.
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(1]

Consider now the solution of eq. (2.76). It is simply given by
y = Clz(l—a-ﬂt)/? + sz(l—a—u)/2‘ (2.81)
where C; and C; are two arbitrary constants and where  is given by

p=1+(1-a)?—4c. (2.82)

By applying again the worst behavior criterion, we find that the asymptotic behavior

of |y| for < 1 is in the form of eq. (2.79) with @ now given by

Q (1 —a — Rep), form (2.76). (2.83)

1
2

To summarize what we hav > so far, the original differential equation (2.74)
can be reduced, in the region z < 1, to one of the two forms (2.75) and (2.76). In

both cases, the asymptotic behavior of the solution can be written in the form
y(z < 1) ~ 2%,

with Q given by

(l—a—pRev) p>0

(1—a—Reu) p=0 (2.84)
(l—a—- %p) p<0.

Q:

DI B [ DD

We still can simplify this equation a bit further. From eq. (2.78), it is clear that
Re(v) € |1 — a|/p, yielding when substituted into eq. (2.84) Q > (1 —a~ |1 —a|)
if p > 0. Again, if we want to select the worst possible behavior, we can simply
rewrite this last equation with an equality sign. This is equivalent to imposing ¢ = 0

in eq. (2.78). This is reflected in our initial equation (2.74) by considering a “low
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frequency, s wave”, that is, by letting A — 0, [ = 0. This is to say that this kind of
wave will give the worst behavior that we can find. So, to select it for the stability
test will give us the most restrictive conditions, which is exactly what we want.

Using the same trick with eq. (2.82), we finally obtain:

jl—a—|1-aqa|) p20

Q={%(1—a—%p) p < 0. (2.85)

All we have to do now is to apply this result to the differential equation (2.74). We
shall do so by separating all the different pairs (m,n) into five cases. These cases,

and the corresponding values found for Q are listed in Table 2.3.
Consider first the case m = 0. With this value for m, eq. (2.74) reduces to
2" + (2 + jn)zy’ + (AT + U1+ D)y =0,

which is of the form of eq. (2.75) with1—a= —(1+n/2)aud p=2-n. Forn <2
we have p > 0 and we get that @ = —(2+n)/2if n > -2, and that @ = 0if n < =2
(we see in eq. (2.85) that the sign of 1 — a makes a difference on the value of @).
For n > 2 we find that Q = —1. Summarizing what we have just found:

2
n<?2 m = 0. (2.86)

IA

0 n <
Q={—%(2+n) -2
-1 n>

o IN

Consider now the case m = 2 — n. Using this equation in eq. (2.74) yields

¥y +3zy' + A+ (I + 1)z ™y =0,
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which is of the form (2.75) with 1 —a = —2 and p = —m. With m < 0 we get
from eq. (2.85) that @ = —2. The special case m = 0 corresponds to n = 2 and our
result agrees with eq. (2.86). When m > 0, we find that @ = —1+m/4. So we can

summarize this paragraph by writing

-2 m<0
Qz{%(m—4) m >0 m+n=2. (2.87)

Now comes the turn of the case n = 2. Eq. (2.74) here becomes
z?y" + (3 + fm)zy’ +[A+I(1+1)]z""y =0,

which again is in the form (2.75) with 1 —a = —(2+m/2) and p = —m. For m <0,
we have Q = —(2+ m/2) if m > —4, and @ = 0if m < —4. For m < 0 we find

Q = —1. This leads to the following equation:

0 m< —4
Q={%(4+m) —4<m<0 n =2 (2.88)
-1 m >0

We still have to examine two more cases. As the first one, consider n > 2.
Since we assume z < 1, I(I + 1) can be neglected when compared to Az*™" in

eq. (2.74), so this equation becomes

22y” + <2+ Z_r_‘__;_-_n_) zyl +A$2—-m—ny =0,
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We now find 1—a = —(2+m+n)/2 and p = 2—m—n. Assume first that m+n < 2.
If m+n > —2, we have that Q = —(2 + m + n)/2, whereas if m + n < -2, then

Q = 0. If we now assume that m + n > 2, then we find that @ = —1. So:

0 m+n< =2
Q={—%(2+m+n) -2<m+ng<2 n>2. (2.89)
-1 m+n>2

The last case is n < 2. This time it is Az?>~™ that is negligible when

compared to I(I + 1) in eq. (2.74), which now becomes

zy" + (‘2 s

=

n) zy' + (1 + 1)z ™y =0.

For this case we find that 1 —a = —(2+ m + n)/2 and that p = —m. For m <0
we get from eq. (2.85) that @ = —(2+ m +n)/2if m + n > -2, whereas @ =0 if

m+n < =2. For m > 0 we get that @ = —(2 + n)/4. Summarizing:

0 m<0, m+n<-2
Q:{—%(2+m+n) m<0, m+n>-2 n<2. (2.90)
[ —-1(2+n) m >0

The equations (2.86)-(2.90) give the asymptotic behavior for z < 1 of
all the solutions of the differential equation (2.74) via eq. (2.79). The results are
summarized in Table 2.3. We are now in a position to calculate the curvature
induced by the stress-energy of the test field. This is what we will do in the next

subsection. After this, we will proceed with the stability test.
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c¢) The stress-energy of the test field.

In the last subsection we have found the asymptotic behavior for ar < 1
of the solutions of the wave equation for a massless scalar field propagating in
the “power-law” spacetimes of eq. (2.1). From those solutions, we will construct
the stress-energy tensor of the test field and evaluate the curvature induced by its

presence.
The stress-energy tensor of a massless scalar field is given by 1] :
T =¥, %0 — 29,07 4. (2.91)
We will be interested in the trace of this tensor, which we can write as
T =—g°%¥ .0 5. (2.92)

To find the asymptotic behavior of eq. (2.92), we use the fact that ¥ o< y and that,
from eq. (2.79) |y(z <« 1)| ~ z@. This yields that ¥, ~ ¥ g ~ ¥ 4 ~ 9, and
¥, ~ 227!, We also have that g™ ~ z™, g* ~ 27", and g% ~ ¢%® ~ 7%, Using

those results in eq. (2.92) yields
T~z + 7% (z™ +1)].

The stress-energy tensor couples to the curvature of spacetime via Einstein’s field
equations G, = 87T}, that yield, when we take the trace: R = —8xT. The result

is that we can write the curvature induced by the stress-energy of the test field as

Rperturbation ~ $2Q [-T_n + iE—z(fEm + 1)] . (293)
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There is still a missing ingredient that we have to provide before we can
finally enter the stability testroom. We need to compute the curvature scalar for
the background geometry of eq. (2.1). To do this calculation, we can apply the
results of section 1.1a) to obtain p, Pr and P;. The sum —p+ Pr + 2P, is then
equal to —R/8m. This is a straightforward calculation and we shall merely give the

result. We find that

1 m+n m
Rbackground = “13 {2 + [2 (m + 1) +n (1 + '_2_>] (ar) }a

which yields, when we consider only the asymptotic behavior for ar <1

Rbackground ~ I—Z(zm + 1). (294)

We have now everything in hand to proceed with the stability test.
d) The stability test.

At the beginning of the section we have stated the stability test that we
shall impose on every one of our spacetimes characterized by the pairs (m, n). In
the preceding subsection, we have derived expressions for the background curvature
and for the perturbation curvature, tl:e latter depending on the values of Q derived
in section 2.3b) and listed in Table 2.3. The stability test can then be obtained by

substituting eqs. (2.93) and (2.94) into eq. (2.66). This yields
%9 [z7" + z7%(z™ +1)] < g (z™ +1). (2.95)

This last equation will impose constraints on @ that will have to be satisfied by the

actual values in order to have stability. The first step is to extract the condition
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equations for ¢ from eq. (2.95). To do so, just like in the previous subsection, we
will have to separate all the possible values of m and n into a few cases. The results

of this analysis are summarized in Table 2.4.

Consider first the case m > 0. This condition makes that 1 dominates over

z™ (since r < 1) and that eq. (2.75) reduces to
@+ (7" 4 272) < 1.

Assume now that n > 2. The last equation then simplifies further to z29+2=" <1,
which leads to 2Q + 2 —n > 0. The condition on Q is then @ > (n—2)/2. If n <2,
then we get 22Q < 1, which requires @ > 0. So for the case m > 0 we obtain that
the conditions that Q must satisfy in order to have stability are

1
Qz{gm‘” Zig m > 0. (2.96)

Consider now the case m < 0. Here, it is z™ that dominates over 1, so
eq. (2.95) reduces to

£z ™M +1) < L

Assume first that m +n > 2. The last equation then becomes z?¢+?~™~" < 1, or,
2Q + 2 ~m —n > 0. The condition on @ is then @ > (m + n — 2)/2. If we now
let m+n <2, we find 229 < 1, or @ > 0. So the stability condition for the case

m<0is

g lim+n=2) min22 5y (2.97)
- m+n<2



Section 2.3: Stability of the power-law geometries 82

We now have our stability conditions on Q. The next step is to compare
the actual values of @, egs. (2.86)-(2.90), Table 2.3; with the conditions (2.96) and
(2.97), Table 2.4, to see which of the pairs (m, n) correspond to stable geometries.
To proceed with this verification, we shall again separate the task into a few cases,

following the entries of Table 2.3.

The first case is m = 0. For n < -2, we find that @ = 0. From
eq. (2.96) (bottom), or eq. (2.97) (bottom), we verify that @ = 0 satisfies the condi-
tion for stability. Those values of m and n therefore pass the test. For -2 <n <2,
we have that @ = —(2+n)/2, which satisfies the condition only if n = —2. Finally,
for n > 2, Q = —1. Egs. (2.96) (top) and (2.97) (top) tell us that @ mus. satisfy
Q > (n — 2)/2; so we obviously have a violation of the stability condition. The
corresponding values of m and n then fail the test. The conclusion for the case

m = 0 is that we have stable solutions only for n < 2.

The second case is m +n = 2. For m < 0 we find that @ = —2. From
eq. (2.97) we discover that @ must satisfy Q > 0. We therefore fail the test. For
m > 0 we get from eq. (2.96) (bottom) that the condition is @ > 0, while eq. (2.87)
gives Q = (m — 4)/4. The condition is then satisfied if m > 4. So the conclusion

for the case m + n = 2 is that we have stable solutions only for m 2 4.

The next caseisn = 2. If m < —4, we have that @ = 0. Eq. (2.97) (bottom)
then tells us that Q must be equal or greater that zero. We therefore pass the test.
For —4 < m < 0, we find that Q = —(m + 4)/2. This is equal to zero only when
m = —4 and we pass the test only value of m. Finally, if m > 0, we find that

Q = -1, while Q@ must still be equal or larger that zero. Sc, here we fail the test.
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The conclusion for the case n = 2 is then that we have stable solutions only for

i < —4.

Now comes the turn of n > 2. For m + n < —2 we have that @ = 0.
Eq. (2.97) (bottom) then confirms that we pass the test. If -2 < m +n < 2,
Q = —(2+ m + n)/2. But this value of @ equals zero only if m +n = -2, so we
pass the test only for this value of m + n. Finally, if m +n > 2, we have Q = —1.
Both eqgs. (2.96) (top) and (2.97) (top) require non negative values for @, so here
we fail the test. The conclusion for the case n > 2 1s that we have stable solutions

only form+n < -2,

The final case isn < 2. Form <0, m+n < -2, we find that Q@ = 0.
Eq. (2.97) (bottom) demands @ > 0, so we pass the test. Form <0, m+n 2 -2,
we have that @ = —(2 + m + n)/2. Eq. (2.97) is satisfied only if m + n = —2 and
we pass the test only for this value of m + n. Finally, if m >0, Q=-(2+n)/4
and we find from eq. (2.96) (bottom) that @ must be at least equal to zero. This is
satisfied only if n < —2. So the conclusion for the case n < 2 is that we have stable

solutions form <0, m+n < =2 and form >0, n < =2.

We have now considered all the possible cases and the complete set of stable
solutions can be gathered from the last sentences of the previous five paragraphs.
Fig. 2.2 is a picture of the plane (m,n) representing all the possible geometries of
eq. (2.1). The stable geometries are indicated by the dotted points of the plane.
We see that they are found below the lines n = —(2 +m) (for m < 0), and n = -2

(for m > 0). This figure is the very economical summary of this whole section!
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This completes our study of the stability of the geometries. In the next

section we will consider another aspect of the spacetimes: the accessibility of the

originr = 0.



n
(1]

Section 2.4: Accessibility of the origin

2.4: Accessibility of the origin

Before we leave the topic of the power-law metric of eq. (2.1), there is another
property of those spacetimes that we would like to have a look at. Let us go back
for a short moment to eq. {1.50). The interesting thing about that line element is

the exponentially decreasing radius of the 3-cylinders T = constant,
ds? = e~*"(constant dz® + d0?).

This suggests the possibility that, even if there were a singularity at r = 0 (7 = c0),
it would remain hidden to observers for an infinite amount of time. The problem
of the singularity could then be avoided because a singularity that develops only
in the remote future is quite harmiess. What we want to find then, are the space-
times (m,n) for which arbitrary observers will reach the origin r = 0 only after an
infinite amount of proper time. We therefore need to solve the geodesic equation

for arbitrary free falling observers, in the spacetimes of eq. (2.1).

The problem of geodesic motion is easy to solve with the help of the “La-
grangian method” [42) gimilar to that of ordinary classical mechanics. It can be
shown that the geodesic equation describing the path of a free falling observer in
an arbitrary spacetime is obtained b vriting the Euler-Lagran- _aation for the
Lagrangian

—l - ]
L—Eg“yz#l‘,

wheré 3* = dz¥ /d) and where )\ is an affine parameter along the geodesic. If the

geodesic is a timelike path, then A can be chosen to be the proper time measured
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by the observer moving on the geodesic. For the line element (2.1), the Lagrangian
is

2L = —(ar)™™r% + (ar)"i? + r2¢?, (2.98)
if we assume that the motion takes place in the equatorial plane § = r/2 (spherical
symmetry!). If we choose A to be the proper time along the geodesic, we get that

L has the constant value L = —1/2. The geodesic equation is then given simply by

the Euler-Lagrange equation

—_—— == . (2.99)

Let us first apply this equation for z® = ¢. Since the Lagrangian has no

t dependence, we get that

oL

i (ar)"t = constant = E.
Similarly, we have for z¢ = ¢:

—a—z = r2<f> = constant = J.
This is the well known property that a constant of motion always comes with a
cyclic variable. If ¢ represented a timelike coordinate, E would be interpreted as
the energy per unit mass of the test particle moving on the geodesic. But such an
interpretation could be mfsleading since here t is a spacelike coordinate. Instead, F
should be interpreted as a conserved linear momentum. However, J still represents

the angular momentum per unit mass of the test particle. We can now substitute
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the two last equations into eq. (2.98) and use the fact that the numerical value of

the Lagrangian is also constant. This yields
~(ar)™™? 4 (ar)"E? + 2 = -1,

or
dr

= —dA. 2.100
(ar)™/2\/1 + (ar) "E? + r=2J2 ( )

We want to solve eq. (2.100) in the vicinity of the origin. We can therefore
neglect the 1 in the square root, since it is much smaller than J27~2 (of course, this
is true only if J is not zero, but we consider the most general free falling observer).

Eq. (2.100) then reduces to

dr
(ar)™/2\/E?(ar)—" + J2r—2

= —d). (2.101)
To simplify this equation a bit further, we need to separate the values of (m,n) in
the two cases n > 2, and n < 2.

Consider first the case n > 2. The domninant term in the square root is here
E*(ar)™" (if n = 2, we have to replace this by {E2a~2 + J?)r~2, but the result

would be the same). Eq. (2.101) then reads
(ar)"=m™)/2 dr = E d).

To integrate this equation, first assume that m — n # 2. We then find

7‘(2+n—m)/2 x A= Mg,
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and we see that if m — n > 2, A goes to infinity when r goes to zero. We then say -
that the origin is not accessible. On the other hand, if m —n < 2, then r — 0 for
A — XAg. We now say that the origin is accessible. If m —n = 2, we would find that
r depends exponentially on A and that r — 0 as A — co. The conclusion for :he

~case n 2> 2 s that the origin is inaccessible only for m —n > 2.

Consider ncw the case n < 2. This time, the dominant term in the square

root is J2r~2%, so eq. (2.101) reduces to
(ar)™™/? r dr = —J dA.
To integrate this equation, assume first that (m — 2) $ 2. This leads to
r4=m/2 o X = Xy,

which tells us that if m > 4, then r — 0 for A — oo. This holds also for m = 4
where the dependence on A is now exponential. When m < 4, we find that r — 0

for A = Xg. The concluston for the case n < 2 13 that the origin is inaccessible only

for m > 4.

The results of this section are summarized in Fig. 2.2 where the spacetimes
for which the origin is inaccessible are represented by circles. An interesting feature
is that the spacetimes for which m is equal to 2, “the quantum-effects spacetimes”,
do have an accessible origin. This seems to be in contradiction with the “long
squeeze” effect that we discussed at the beginning of this section. The key to this
apparent paradox is that in the spacetime (1.50), only the observers at rest meet

the origin after an infinite amount of proper time. In this section, on the other
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hand, we were dealing with free falling observers. So the time dilatation effects
of ordinary special relativity ensure that those observers meet the origin within a

finite lapse of proper time.

This completes our study of the power-law metric. In Chapter Three, we
will still consider the interior of spherically symmetric black holes, but with new

complications: we will then allow the black hole to be charged.



CHAPTER THREE

THE INTERIOR OF A
REISSNER-NORDSTROYM BLACK HOLE

3.1: The Reissner-Nordstrgm solution

We will consider in this Chapter the spacetime inside the Reissner-Nordstrem black
hole. We have briefly mentioned in section 1.1 that our interest is on the effects
on the inner apparent horizon (and on the Cauchy horizon) of a gravitational col-
lapse presenting small departures from spherical symmetry. Before we specify the
formulation of the problem further, let us recall the main features of the Reissner-
Nordstrgm spacetime; to this end, we will first derive the solution, with the help of

the machinery of section 1.2a).

The Reissner-Nordstrgm solution [*3 is a static, spherically symmetric so-
lution of the Einstein field equation for a stress-energy tensor corresponding to
the electromagnetic field of a point charge located at the origin. According to
Birkoff’s theorem (7] (section 1.1), this solution represents the exterior gecometry of
a charged star undergoing a spherical gravitational collapse. Since we have staticity

and spherical symmetry, the form of the solution must be given by eq. (1.3)

ds? = e¥ (—f.b dt* + @_ldrz) +r2dQ?, (3.1)

90
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where 1 and ® are two functions of r to be determined by solving the field equa-
tions (1.7)-(1.9). To do this however, one must first find the form of the stress-
energy tensor, and this requires the knowledge of the expression for the electromag-
netic field tensor, F*#. To find this, it is necessary to solve Maxwell’s equations in

the background geometry of eq. (3.1), for a point charge located at the origin.

The strategy to find the solution is then the following: first, some physical
considerations will permit us to directly write down an expression for the electro-
magnetic field tensor, in terms of a yet to-be-determined function of . From this
we will be able to find an expression for the stress-energy tensor. A simplification
then occurs: the electromagnetic field obeys the equation of state p+ P, = 0, which
means, as we know from eq. (1.10), that the function # is constant and can be taken
to be zero. After this, it becomes simple to solve Maxwell’s equations and to finally

obtain the complete solution.

So the first step is to write down an expression for F*#. Since we have a
static situation, it is physically reasonable to expect that a static observer should
observe only an electric field, produced by the point charge. And since we consider a
point charge located at the origin, this electric field should be radial. Furthermore,
we recall that the reference frame of a static observer is given by the orthonormalized
tetrad of eq. (1.5). All those considerations allow us to write down the form of the

electromagnetic tensor as

Fof = 2B(r) &3¢

= E(r) (8585 - €@E0)
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if we also note that F*# is by definition an antisymmetric tensor. Using now the

eqs. (1.5) and (3.1), we obtain

Fof = 2E(r)e~¥("sle 68
(3.3)
Fog = —2E(r)e¥"é[ 8.

The stress-energy tensor can now be easily evaluated. It is given in general

by the expression [44]

a 1 ap [o 4 14
T% = o= (F**Fpu ~ 8% F" F,), (3.4)

which yields, when using eq. (3.3):
T% = Py diag(~1,-1,1,1), (3.5)

where P,) = E?/8m, a familiar result. By comparing eqgs. (3.5) and (1.61), one secs
that, as announced, the electromagnetic field obeys the equation of state p+ P, = 0,

which means that ¥(r) = 0.

We now have to solve Maxwell’s equations in the background geometry of

eq. (3.1). The only relevant equation here is (4]
F"ﬁw = 415, (3.6)

which relates the divergence of the electromagnetic field to the source current. Since,

in our case, the spacetime is free of sources, (except at the origin), the right hand
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side of eq. (3.6) vanishes. Following the same steps that we used to derive eq. (2.68),

we arrive at the following equation:
(\/_——gF"ﬂ)' 5=0. (3.7)

The only non trivial component of this last equation yields, with the use of eq. (3.1)

(with ¥ = 0), and of eq. (3.3):

d

4 o2p =
s E(r)=0,

which is easily integrated to give E(r) = e/r?, where e 1s the constant of integration
that can be interpreted as the charge of the black hole. Of course, we have recovered
the familiar equation for the electric field of a point charge. Substituting this result

into the expression of P, brings

Py= = (i)z. (3.8)

We have now an explicit expression for the stress-energy tensor of the elec-
tromagnetic field. All we have to do now is to solve Einstein’s field equations. It is
casy to show that eq. (1.11) is satisfied automatically, whereas eqgs. (1.7), (3.5) and

(3.8) give m' = €%/2r?, which yields

2
m(r)=M - —, (3.9)

ir

where M = constant. Inserting this result in eq. (1.10) finally yields the Retssner-

Nordstrom solution:

ds? = —f dt* + f~ldr? + r2dQ?, (3.10)
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where

f(r)zl——-r—+—.—. (3.11)

It is instructive to rewrite eq. (3.11) as

ARG ELS

2 , (3.11")
where
re =M%V M? el (3.12)

(We will assume from now on that e? < M?). The fact that f(r) possesses two
zeros means that this spacetime possesses two horizons. The outer (event) horizon,
located at r = ry, forms the boundary of the black hole. The inner (apparent)

horizon, located at » = r_, lies within the hole.

It is now time to introduce useful new coordinates that will help us do the
calculations of the following sections. First, introduce as in eq. (1.23) a new radial

coordinate r*, defined by

dr
f(r) (3.13)

=r+cyln|r—ry|—c-lnjr—r_|,

where

cp= —E (3.14)
7'+ - Tr.
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It can be noted that r* — —co when r — r4, and that r* — co whenr — r_. We

introduce now the null coordinates
u=t-—r", v=t+r" (3.15)
It is then easy to show that the line element (3.10) can be rewritten as

ds® = —du [2 dr + f(r) du] + r?dQ?, (3.16)

or

ds® = dv (2 dr ~ f(r) dv] + r2dQ2. (3.17)

It is also possible to give a double-null form, as in eq. (1.21), but this will not be
of any use for us. From the last three equations, it can be inferred that outgoing
radial lightlike geodesics follow u = constant lines, whereas ingoing ones follow

v = constant lines.

A study of the Reissner-Nordstrem solution was completed by Graves and
Brill in 1960 (2°). The presence of the inner apparent horizon plays an important
role in the global geometry of the spacetime. Fig. 3.1 is a conformal diagram
representing the analytical continuation of the Reissner-Nordstrom spacetime 451,
Unlike the Schwarzschild spacetime (Fig 1.1), the singularity is here timelike, this
means that an observer falling into the hole can avoid hitting the singularity, and
as the diagram shows, may <nd up in another universe. This interesting property is
even preserved when one considers the collapse of a charged star. In this case, the
left side of the conformal diagram must be replaced by the spacetime of the star
interior. But the “upper” universe is still there and the star, instead of collapsing

to a point, may bounce and start a new life in this other universe [14].



Section 3.1; The Reissner-Nordstrom solution 96

The inner apparent horizon also coincides with what is called the Cauchy
horizon (48] of the “initial” hypersurface £. Roughly, a Cauchy horizon is the
boundary of the spacetime where the initial conditions specified on T cease to
completely determine the future. This is related, of course, to the well known
instial value problem: suitable initial conditions (say, for a given field), specified at
one instant of time should be enough (with an evolution equation) to determine
the value of the field at all times. The Cauchy horizon signals the breakdown of
the initial value problem: events at “later times” than the Cauchy horizon are not
determined uniquely by the initial conditions on £. To undeistand this better,
consider the point P in Fig. 3.1. This point lies before the Cauchy horizon and it is
clear that a causal curve reaching P must have previously crossed £. Therefore, the
initial conditions specified on the hypersurface £ determine unijuely what goes on
at point P. The set of all such points is called the domain of dependence of £. On
the other hand, consider the point Q, located after the Cauchy horizon. It can be
seen that, now, information reaching Q could have come from other regions than E.
For example, information can come from the singularity. The point Q is therefore
outside the domain of dependence of £. The boundary of the domain of dependence
is precisely the Cauchy horizon. As the diagram shows, the Cauchy horizon of the

Reissner-Nordstrgm spacetime coincides with the inner apparent horizon.

The presence of the inner-Cauchy horizon brings new problems. The study
of the propagation of perturbations inside the Reissner-Nordstrgm black hole shows
that something very peculiar happens in the vicinity of this horizon. The energy
density of the perturbating field, when measured by a free falling observer crossing

the horizon, blows up to infinity [!3l. We have given at the end of section 1.1 a
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heuristic argument explaining this infinite blueshift in terms of an infinite accumu-
lation of light rays along the Cauchy horizon. This disturbing result has suggested
that the interior region of a charged black hole could be in fact different from what
the static solution depicts: the inner horizon is perhaps unstable, and it is possible
that a singularity would develop there. This new singularity would, in consequence,
block off the way to the other universe in a very efficient way! A conclusion could
not be reached, however, since the calculations of ref. [15] are based only on a per-
turbative analysis, which makes sense only if the effects of the perturbation on the
background spacetime remain small. This is obviously not the case here, and the
backreaction of the geometry must be taken into account before the issue can be

settled. We will say more about this in section 3.4.

We will consider in the next section the problem of the propagation of light
rays along the line v = 0o, showing that we indeed have a singular surface of infinite
blueshift located on the inner apparent horizon (Cauchy horizon) of the black hole.
In section 3.3, we will try to evaluate the effects of a realistic gravitational collapse
by allowing the collapse to present small deviations from spherical symmetry. We
will see that the radiation emitted from the surface of the star produces the effect
of separating the Cauchy horizon from the inner apparent horizon (Fig. 3.3). We
will then show that while everything becomes regular on the apparent horizon, the
Cauchy horizon remains a singular surface of infinite blueshift, in accordance with
the heuristic picture (an infinite amount of information is received by an observer

within a finite proper time).
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3.2: The static model

We will now proceed in showing that in the static Reissner-Nordstrem s'pacetime,
the energy density of infalling radiation blows up to infinity at the inner apparent
horizon, when measured by a free-falling observer. The problem is easy to formulate.
We want to find an expression for the energy density of infalling radiation, measured
by a free-falling observer. The stress-energy tensor of the infalling radiation can be
written as

Taf = pinl®l?, (3.18)

where p;,, is a function of r, and where [ is the four-velocity of the infalling photons.

Now, the energy density measured by a free-falling observer is

obs

p® = TP uqug, (3.19)

where u® is the four-velocity of the observer. We then get that the quantity we

want to evaluate is

P = pin (u%1a)" (3.20)

The problem then separates into three parts. The first part consists in solv-

ing the geodesic equation for [*. The second part is to solve the energy cornservotion
equation for T,:ﬂ , and hence to find an expression for p;,. Finally, we will have to
solve the geodesic equation for u®. Collecting the results will bring the expression

for p°b® via eq. (3.20).

in

But first of all, we need to choose the coordinate system that we want

to work with. The obvious choice is to use the r,v coordinate system, since the
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radially infalling photons follow the v = constant lines. This leads to a very simple
expression for {9. It is also a good choice because our surface of interest is the

surface v = co. We can therefore write the line element as

ds® = dv(2 dr — f dv) + r2dQ?, (3.17)
with
f= = "jﬁ" —r-), (3.11)

We are in‘erested in the interior region r_ < r < r,, this is why we rew.ote
eq. (3.11') in this form, showing that f is nonpositive in this region. Fig. 3.2 shows

the region of interest and illustrates the problem.

The first step is then to find an expression for the null vector /*. For
simplicity, we shall consider only radial four-velocities. This means that the 8 and
¢ components of {* will be set equal to zero. There is no real loss in generality in
doing so, and this will greatly simplify the demonstration. With this understood,

the equation gogl®1# = 0 reduces to

dv dr dv
n (2;1—/\? - ﬁ) =0, (3.21)

since {* = dz/d), where A is a parameter along the ingoing, radial geodesics.
There is a special class of such parameters, called affine parameiers 47]; when ) is

an affine parameter, the geodesic equation for a null vector k* = dz*/dA is

*"iﬁkﬂ =0, A : affine parameter. (3.22)
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Otherwise, the geodesic equation reads
k"mkﬂ = Ak, A :ordinary parameter, (3.23)

where A is some function of the coordinates. For convenience, let us choose —r to
be our parameter \. We choose —r since r decreases along the ingoing light rays.
Now, ingoing light rays follow the v = constant lines; we can therefore write down
the expression for {* as

1= (1,07, 18,19)
(3.24)
= (0,~1,0,0).

To check whether —r is an affine parameter, we need to calculate I"i ﬂlﬂ i if
the result is zero, then we have an affine parameter. To do this calculation, we would
need first to calculate the connection coefficients ', but there is a quicker way.
The trick is to observe that if [, can be written as the gradient of some function x:
la = X,a, then the equation l"‘l ﬂlﬁ = 0 holds automatically. To prove this, the first

step is to verify that
lalﬂ = XjaB = X{fa = lﬁlm
by observing that the coefficients I'%. are symmetric with respect to the lower

indices. Then we have that

lajplf = lgal® = 5 (1Plp)

]
»a

which is identically zero. Hence, to verify that —r is an affine parameter, we must
verify that I, is the gradient of some function. Using eq. (3.17), it is easy to see
that

lo = (—1,0,0,0), (3.25)
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so that
lo dz® = — dv = —v 4 dz°.

This shows that y = —v, and that —r is indeed an affine parameter. This means

that our [* satisfies the geodesic equation

A’ =0. (3.26)

Now that we have an expression for I%, the second step is to find one for p;,.

This is done by inserting eq. (3.18) in the energy conservation equation: T"“@| 5 =0.

This yields
0= pin, 11 + pinl(l? + pinl*V 5

= (Pin,ﬂlﬂ +Pinlpm) 1,

where we have used eq. (3.26). Now, pis sl? is simply dpi,/d(—r), and using the

familiar equation for the divergence of a vector, we get

d 1 .
E; In Pin = \/_—g (‘/:Z )’a

which finally yields

(3.27)

where k is an arbitrary constant for each given ingoing light ray. Since these rays

are labelled by v, k is effectively an arbitrary function of v, since we can choose a
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different constant for each ray. We will see later that we can evaluate k(v) for large

v's from physical considerations.

The last step is to calculate u®, the four-velocity of the free-falling observer.
Again, we will restrict ourselves to radial motion. In order to solve the geodesic
equation for u®, we will use the same technique as in section 2.4. The Lagrangian

for the motion of our observer is, from eq. (3.17):

L=rb—fo?=-1, (3.28)

where £¢ = dz®/dr = u®, and where 7 is the proper time of the observer. The

Euler-Lagrange equation, eq. (2.99), for the coordinate v yields

oL - .
—— =7 — f{ = constant = —E,

v
which gives

7 = fo — E. (3.29)

We will have to decide on the sign of E later on. If we substitute eq. (3.29) into
eq. (3.28), we get a quadratic equation for % in terms of f and E. Factorizing this

equation yields

E+ E?~f

v = )

f

so we, here too, have to choose the correct sign. Our observer falls towards r_;
hence 7 must be negative definite. Now, if we evaluate 7 with the help of eq. (3.29)
and of our expression for v, we find that r = :i:\/_Ez——f . Therefore, we have to
choose the lower sign:

s=E- sz’f. (3.30)
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We have now to choose the sign of the constant E. A look at Fig. 3.2
informs us that the observer we are interested in crosses the v = co sheet of the
inner apparent horizon. This means that ¥ must go to infinity as we cross r = r.__,
or f = 0. It is easy to see that only an E negative will produce this result. Therefore

we choose

E < 0; (3.31)

an observer with positive E would cross the v = —oo sheet of the inner horizon.

We have now everything in hand to evaluate p2P®. Egs. (3.25) and (3.30)

give

wol, = £ va2 -t (3.32)

and substituting this and eq. (3.27) into eq. (3.20) yields

2
obs E - V E? - f
o=k ——] . (3.33)
rf
This expression, we underline once more, is valid for each given ingoing light ray.
But we have to consider a sequence of rays approaching the inner apparent horizon;
this means that we have to evaluate eq. (3.33) for each ingoing ray, as we approach
the line v = oo, and find the limiting value of p2P® as v goes to infinity. We can do
this by evaluating p2®® for each v as we go zlong an outgoing radial line u = constant,

on which there is a relation between r and v given by eq. (3.21):

2dr—fdv=0. (3.34)
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Once integrated, this equation gives the relationship r(v) on our u = constant line,

and eq. (3.33) then gives p2P® as a function of v:

pPbs = (finite coefficient) k(v)f~2(v). (3.35)
Let us now integrate eq. (3.34) in the vicinity of f = 0 (v = 00). We can

Taylor expand f around r = r_ and get
f~=2k_(r—r2), (3.36)

where

(3.37)

Substituting eq. (3.36) into eq. (3.34) yields |r —r_| = r_e™™-" and we then get
f(v — 00) >~ —2k_r_e™"-". (3.38)
This finally yields
PP (v = 00) = (finite coefficient) k(v — co) €*-", (3.39)

and we see that unless k(v) goes exponentially to zero for large v, the energy density
of the radiation as measured by our free-falling observer will reach infinity on the

inner apparent horizon.

It has been mentioned earlier (section 1.1, section 1.4b)) that the amplitude
of the backscattered part of the initially outgoing radiation coming from the star

and falling towards the black hole decays as a power law in time, for late times.
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In particular, if the perturbating field is a multipole of order I, its amplitude goes
as v~(3"*2), To implement this result in our model, we go back to eq. (3.27) and
realize that k(v) precisely represents the time dependence of the amplitude (or the
square of it) of the infalling radiation. We therefore have that for realistic external

perturbations:

k(v = 00) ~v79, (3.40)

where ¢ is a positive number. It is then clear that this inverse power law behavior
of k is not sufficient to damp off the exponential factor of eq. (3.39) and we conclude

that, as announced:

P (v = 00) — 0. (3.41)

This completes our study of the static model for the Reissner-Nordstrgm
black hole. This model, as we pointed out, represents the exterior of a star under-
going a purely spherical gravitational collapse. In the next section, we will consider
the effects on the inner apparent horizon of a collapse with small deviations from
sphericity. We will see that the outgoing radiation coming from the surface of the

star will have an interesting réle to play on the interior structure of the hole.
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3.3: The dynamic model

In this section we will consider a model for the Reissner-Nordstrom spacetime which
is an attempt to emulate the effects of a realistic gravitational collapse of a charged
spherical star. We will allow the star to emit radiation while collapsing, as would be
the case if the collapse possessed (small) departures from sphericity. The outgoing
radiation coming from the star will have an effect on the inner apparent horizon; we
will see that it produces a separation between the inner apparent horizon and the
Cauchy horizon. The question we ask is then the following: in the dynamic model,
is there still a singular surface of infinite blueshift, and if there is, where is it? The
first thing we will want to verify is whether the situation is regular at the inner
horizon. We will find that indeed it is: no infinities occur when light rays cross this
horizon. We will look at this problem in subsection b) of this section. Subsection
c) will be devoted to the situation at the Cauchy horizon. We expect that we will
find the same answer as before: the Cauchy horizon is a singular surface of infinite
blueshift. The reason is that there is still an infinite accumulation of light rays
on the Cauchy horizon (Fig. 3.3): an observer still receives an infinite amount of

information in a finite proper time, as he crosses the Cauchy horizon.

To construct our dynamic model, we will try to follow as closely as possible
the physical situation. The basic picture is the following: the collapsing star emits
outgoing radiation, part of it will soon be backscattered inwards, part of it will
cross the Cauchy and inner horizons to reach the singularity. It is clear that near
the surface of the collapsing star, the situation is extremely complicated since both

the ingoing and outgoing radiation will have an effect on the background geometry.



Section 3.3: The dynamic model 107

But this region of spacetime is irrelevant to our problem. On the other hand, the
situation is quite simple at late times since there is very little scattering occurring
there. In this region of the black hole interior, it should be sufficient to consider
the effect on the background geometry of only the outgoing part of the radiation
coming from the star. We should then be able to treat the backscattered part of
the radiation as a perturbation. We have seen, and we will see once again, that the
response of the spacetime to this perturbation is rather large (infinite!). There is
therefore something very unsatisfying about this approach. Let us pursue it anyway
for the time being: we will attempt later (and elsewhere) to consider the influence
on the geometry of both parts of the radiation coming from the star. Needless to

say, this is a much more involved problem!

So, as our idealized model, we will assume that the star emits outgoing
radiation, but that no scattering occurs: all the radiation reaches the singularity.
In other words, we will neglect the wavelike effects of the radiation, to concentrate
on its effect on the inner horizon. This model is expected to give a good description
of the physical spacetime at late times (v large) and the hope is that it should
be sufficient to emulate the effects of a generic gravitational collapse. What kind
of radiation do we want to consider? To make the problem as simple as possible,
we have already assumed that the radiation will be composed of lightlike particles
following null geodesics. Indeed, this corresponds to the geometric optics approxi-
mation [*8] in which the wavelength of the radiation is assumed to be much smaller
than the characteristic dimensions of the wave front, and also much smaller than the
characteristic curvature radius of the spacetime. To show the effects of a charged

flux coming from the star, we will also allow our lightlike particles to carry charge.
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This further refinement is not necessary, but it does not add any difficulties to the

treatment.

Fig. 3.3 shows the spacetime diagram illustrating the model. Our radiation
leaves the star and follows outgoing, radial, null geodesics and crosses the inner
apparent horizon. The latter responds accordingly, and evolves in a way that we
will discover later. The problem is then to consider the propagation of ingning light
rays in this dynamic spacetime and to ask whether we still have a surface of infinite
blueshift at the inner horizon (or at the Cauchy horizon). We will find that the
situation is regular at the inner horizon, but that there is still a singular surface of

infinite blueshift at the Cauchy horizon.
a) The dynamic spacetime.

To work out the problem, we need first to find the solution to the Einstein
field equations corresponding to the spacetime described above. Since the solution
for the interior of the collapsing star is irrelevant to us, what we are looking for
is the solution for the spacetime exterior to a spherical charged star, and filled
with outgoing radiation that can carry charge. The stress-energy teuser for such a

spacetime can be written as
T8 = poun®n? + E°P, (3.42)

where n® is the four-velocity of an outgoing charged “phoion”, pou: plays a réle
similar to that of the p;, of the last section: it is the “proper” energy density of the

photons. Finally, E*? is the electromagnetic part of the stress-energy tensor.



Section 3.3: The dynamic model 109

The solution of the Maxwell-Einstein equations for this stress-energy tensor
was found by Bonnor and Vaidya in 1970 (49, The simplest form for this solution

is found when one uses the u, r coordinate system of section 3.1. We find:

ds® = —du (2 dr + f(r,u) du] + r2dQ2, (3.43)
where
fru)=1- f_’fv{‘(u) 4 ezr(zu) _ [r— r+(u)12[r - r_(u)]. (3.44)

The interpretation of the solution is obvious: at any time u we have a Reissner-
Nordstrgm black hole with mass M (u) and charge e(u). The proper energy density

of the outgoing radiation is related to the rate of change of the mass and charge by

1 9 [M(u) _ i(“_)} , (3.45)

Pout = " 4nr? Oy 2r

and the interpretation of this too is obvious: in the square bracket is the expression
for the mass function, eq. (3.9), at time u; 4712 poy, is therefore minus the rate of
change of the total mass function. This does not mean that the mass of the black
hole itself changes, since once the hole is formed, no radiation can escape from it.
What we have instead is a redistribution of the matter inside the black hole: some
of it leaves the star and goes into the singularity. The electromagnetic part of the

stress-energy tensor keeps its original form, for each instant u:
E% = Py diag(~1,-1,1,1), (3.46)

where

2
Py = [M} , (3.47)
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Finally, the null vector n® takes the form

n® =(0,-1,0,0)
(3.48)
Ng = (1,07 0, 0)$
when we use —r as the (non affine) parameter A along the outgoing radiation

geodesics.

An important thing to determine is the behavior of the functions r4(u) in
this spacetime. A priori, the functions M(u) and e(u) are completely arbitrary, so
we could a priori conclude that ri(u) are arbitrary functions. There is however
a constraint that we can impose. We will require the stress-energy tensor of our
dynamic spacetime to respect the weak energy condition 15/, The weak energy
condition imposes the following constraint on the stress-energy tensor: the energy
density of any reasonable matter distribution as measured by any timelike observer

should be non negative. We therefore impose
Taﬁvuvp Z 0,

for any timelike four-velocity v®. If we restrict ourselves to radial four-velocities,

we obtain, by using egs. (3.42), (3.46) and (3.48):

0 < pout(nav®)? + E"Bvavﬂ

< pout(v*)? + Pay(—v,0" — vy v*)

du\?
< Pout (2;) + Py,



Section 3.8: The dynamic model 111

since v¥ve = —1. Now, P, is positive definite, and du/dr can be anything from —oco
to oo, depending on the path of the timelike observer. The result is that p,,, must
be larger, or equal to zero, in order for the inequality to hold. Using eq. (3.45), we

then find a condition on the functions M () and e(u) that we write as
eé — Mr >0, (3.49)

where the dot denotes here a derivation with respect to u. This inequality will be

most uscful when we replace the arbitrary r by the two values of interest: r4(u).

Let us now look at the behavior of the function r_(u). Eq. (3.44) tells us
that r_ = M — VM? — €2, and we easily find that
dr_  eé~Mr_ _
r- _eé~Mr (3.50)

du — VM? e

The weak energy condition, eq. (3.49), then implies that r_ increases with u:

d(_;) <o. (3.51)

weak energy condition =

On the other hand, a similar demonstration shows that

d
weak energy condition = a0 rz ) > 0. (3.52)

We have used —u instead of u to clearly point out that u decreases as we go forward
in time, in the interior region r_ < r < r,. of the black hole. We have just found
the response of the inner horizon to the presence of the outgoing radiation: its

radius decreases as time increases. The situation is represented in Fig. 3.3. We
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see that ingoing radiation coming from the singularity can succeed in crossing the
inner apparent horizon, while that coming from the exterior region cannot reach it

but stays within the right hand sheet of the Cauchy horizon.

The u, r coordinate system will be useful for investigating the situation
near the inner apparent horizon, described by the equation r = r_(u). However,
to consider the situation at the Cauchy horizon, it will be better to use the v,
r coordinate system since this horizon is represented by the line v = co. In the w,
r system, a radial ingoing null geodesic satisfies the equation 2 dr + f(r,u) du = 0.
In the v, r system, it simply satisfies dv = 0. We therefore have that v, r, and u

must be related by an equation of the form
e—w
dv = r (2 dr + f du), (3.53)

where e~¥("*) plays the réle of an integrating factor. Since the Cauchy horizon lies
somewhere where r < r_(u), we have that r, u, and f are all finite there. Ca the
other hand, we know that v is infinite on the Cauchy horizon; iu order for eq. (3.53)

to hold everywhere, we find that e¥ must go to zero on the Cauchy horizon:
e¥(v — o00) = 0. (3.54)

If we substitute now eq. (3.53) into eq. (3.43), we get that in the v, r coordinates,

our line element becomes

ds® = e¥dv(2 dr — fe¥dv) + r2dQ?, (3.55)
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where ¥ and f are now viewed as functions of r and v; in particular, we recall that

2M£1', v) . e?(r,v) '

r2

f(rv)=1- (3.56)

The field equations for this line element can be found in ref. [51]. To write

them down, we decompose the stress-energy tensor as
TP = ¥ poun®n? + E°5, (3.57)

where the first term represents the outgoing radiation, the second term representing

the electric field. The four-velocity n® is now written as

Ng = (__fe‘/’, 1a Ov0)3

(3.58)
n® = (2¢7Y,f,0,0).
The field equations hence read
o —arpons(e* 1,
%AT/I = 8712 poure? f, (3.59)
%7 = 167Tpoure”.

(We have assumed for simplicity that e is a constant. This has no consequence on

the following.)

If we turn off the radiation source, the spacetime becomes static and ac-

cording to eqgs. (3.55), (3.56) and (3.59), the line element becomes

ds? = *Ody [2 dr = f(r)e* V] +1%02, (3.60)
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with

2M  e?
fry=1-2 18

r

We recover eq. (3.17) if we define a new variable vngw = [ e¥dvoLp and express
eq. (3.60) in terms of yyNgw. We may not always have this liberty, however. As an
example, consider the following: let us suppose that before the retarded time uqg,
the spacetime was static and described by the line element (3.17). At time up until
time u;, the outgoing radiation source is turned on and the inner apparent horizon
evolves accordingly, moving away from the Cauchy horizon. At time u,, the source
is turned off and the spacetime becomes static again, and is now described by the
more general line element of eq. (3.60). In order to have a continuous labelling of
the ingoing lines v = constant, we clearly do not want to redefine v in the way
described above. In particular, since e¥ goes to zero at the Cauchy horizon while
dvorp becomes infinite, we would find a finive dungw on the Cauchy horizon. In
order to avoid such an infinite jump in the labelling of the lines v = constant, we
have to leave unchanged the form (3.60) of the line element to describe the second
static region. It was worth noting this in such detail because we will make use of

the static line element (3.60) in subsection c).

We now have everything in hand to consider the propagation of radiation
in the dynamic spacetime. In the next subsection, we will look at the situation
where ingoing radiation crosses the inner horizon. In the following subsection, we

will consider the situation at the Cauchy horizon.
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b) Infalling radiation crossing the inner horizon.

We will consider in this subsection the situation where ingoing radiation
coming from the singularity crosses the inner apparent horizon (Fig. 3.3). In par-
ticular, we want to evaluate, as in section 3.2, the energy density of the radiation as
measured by a free-falling observer crossing this horizon. We will therefore follow
closely the analysis of section 3.2, this time in the dynamic model and using the u,

r coordinate system. The object we want to evaluate is then

obs

Pin = Pin(uala)z’ (3-61)

where [® is the four-velocity of the infalling photons, u® that of the free-falling
observer, and where p;, is the proper energy deunsity of the radiation. The line
element of the dynamic spacetime is given by eq. (3.43) that we rewrite here for

convenience:

ds? = —du[2 dr + f(r,u) du] + r2dQ?; (3.43)

we recall that the term in the square bracket is zero for radial, ingoing null geodesics.

We remember that in the static case, —r was an affine parameter along the
ingoing geodesics. It is therefore a good idea to use —r again here, but this time as

a non affine parameter. From eq. (3.43) we thus get that [* takes the form

e (2 100)
- f’ Yy
2
Ia = (_lv—faos()) )

(3.62)
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but does not satisfy eq. (3.26), I"lﬁlﬂ = 0. Instead, it satisfies the more general
geodesic equation

917 = Al (3.63)

where A is a function that can be determined by direct calculation. It is straight-

forward to show that it is given by

2

A=——f2.

(3.64)

The expression for u® can be found by writing down the Lagrangian cor-
responding to the line element (3.43). Since we consider only radial motion, this
Lagrangian is

9L = —2ur — ful = —1, (3.65)

where £ = dz®/dr. This last equation gives a quadratic equation for % as a
function of 7, which is everywhere finite and well behaved. In solving this equation
for ¢, we have to make a choice for the sign in front of the square root. Since we
assume that in the static limit our observer would cross the v = oo sheet of the
inner apparent horizon, we shall choose the sign that yields a finite u, as we cross

the surface r = r_(u). It is easy to verify that

i \f/rz—+f- (3.66)

U=

is the correct expression for #. Using eq. (3.62), we can now write down the

expression for the inner product u®l,. We find:
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R NCEY
f

: (3.67)

u®l, =

which goes to infinity like —27 /7 when f goes to zero. So unless p;, goes to zero at

least as fast as f2, the value of pSP® will go to infinity as the observer crosses the

inner horizon.

To find an expression for pj,, we apply the energy conservation equation

for the stress-energy tensor p;,I*l?. We obtain
0= (Pin,ﬂlﬂ + pinA + Pinlﬂw) 1~

if we also use eq. (3.63). A little algebra then gives

1  dp 1 o
: |4 =—-A - — (\/—gl ),a’
or, if we use egs. (3.43) and (3.64):

1 dpin 4f .4 2

— A _Zu = 3.68

om d—r) P T (3.68)
We will now show that pj, goes to zero precisely like f2, when r approaches r_.

What we want to do is to evaluate eq. (3.68) in the limit where r goes to r_; to do

so, we can first rewrite it as

L hnpar? = 2 1n g2,

dr Ou

|
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and we recall from eq. (3.43) that for our radial, ingoing light ray, the equation 2 dr+
f du = 0 holds. We can therefore replace the total differentiation with respect to r

by a total differentiation with respect to u, and this yields

d,,2_90,
T Inpinr = M In f°. (3.69)

We now observe that when f goes to zero, the differential element dr must vanish
as well, in order for the equation 2 dr + f du = 0 to remain valid. This means
that in the small region of interest, around f = 0, on our ingoing geodesic, r is
effectively constant. Consequently, the total differentiation of the left hand side
of eq. (3.69) can be replaced by a partial differentiation, and we get pinr?/f? ~
an arbitrary function of r. Again, since r is essentially a constant in the region of

interest, the final result, as announced, is
pin(f — 0) ~ constant f2. (3.70)

We note that this result is independent of the actual form of the metric element f.

Combining egs. (3.70), (3.67) and (3.61), we find that the energy density of
the infalling radiation, measured by a free-falling observer, reaches the finite limit
when r goes to r_:

pCP3(r — r_) — constant 2. ' (3.71)

This result shows that the situation is, as announced, perfectly regular at the inner
apparent horizon: an observer crossing it would measure a finite amount of energy
density for the radiation coming from thé singularity. This result could be expected
from the heuristic picture discussed earlier: there is no accumulation of light rays
on the inner apparent horizon, as there is on the Cauchy horizon. In the next

subsection, we will finally consider the situation at the Cauchy horizon.
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¢) Infalling radiation at the Cauchy horizon.

We will repeat in this subsection the calculations of the previous one, but
this time using the v, r coordinate system. This will allow us to consider the
situation at the Cauchy horizon and we will show that there is a singular surface
of infinite blueshift there, as there was in the static model. We will interpret this
result in terms of our heuristic argument of section 1.1, according to which there is
an infinite accumulation of light rays on the Cauchy horizon. We have introduced
at the end of subsection a) the line element for the dynamic spacetime in this

coordinate system. We recall that it is
ds® = e¥dv(2 dr — fe¥dv) + r2dQ?, (3.55)

where ¥ = ¢(r,v), f = f(r,v), and from eq. (3.54) we know that e¥ goes to zero
on the Cauchy horizon. Since the latter lies where r < r_, we also know that f is
nowhere zero on the Cauchy horizon. Now, the expression that we want to evaluate

is, as usual: p?nbs = pin(u®ly)?, so we will have to find expressions for the three

objects 1%, u®, pi,.

Radial, ingoing null geodesics follow lines of constant v, so we shall choose

the following form for the null four-velocity:

l, =(-1,0,0,0),

—~~
o
[SV]

N

[* = (0,—e"¥,0,0);

which guarantees that [* obeys the geodesic equation lﬂﬁlﬂ = 0, since [/, is expressed
as the gradient of —v (we do not choose —r as a parameter along the ingoing lines,

as we did in section 3.2).
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From eq. (3.72), it is clear that only the component & = dv/dr of the four-
velocity u® of the free-falling observer will contribute in the inner product u?l,.
This component can be expressed in terms of r (everywhere finite) via the La-
grangian constraint

oL = 2e¥ir — 2¥ f° = —1,

which is a quadratic equation for 9. To choose the correct sign in front of the square
root, we once again invoke the fact that in the static limit (¢ = 0), our observer
would cross the v = oo sheet of the inner apparent horizon. The answer can be

verified to be

p=tZ VTS Vw"“rf (3.73)
evf

We see once again that v reaches infinity when e¥ goes to zero, which occurs at the

Cauchy horizon. Combining eqs. (3.72) and (3.73) yields

._1'- + 'V/7:2 + f
e¥f ’

(3.74)

u®l, =

which goes to infinity on the Cauchy horizon.

We can now find the expression for p;, by imposing the energy conservation
equation:

0= (pinl®lP)

1
= (lnpin),ﬁlﬂ + ‘\/-T_g'(\/—glﬂ),ﬂ.
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The value of /=g can be easily evaluated from eq. (3.55): /g = e¥r?sin8. Use of

cq. (3.72) and a little algebra then yields

g
5? In p;,,r2 =,
which can be integrated to give
k(v
Pin = _%)" (375)

where k(v) is an arbitrary function of v; it plays the same réle as in eq. (3.27): it tells
how the amplitude of the radiation has to evolve with time. From the discussion of
section 3.2, we impose that

k(v = o0) ~ 079, (3.40)
expressing the fact that the amplitude of the backscattered radiation must die off

like a power-law tail.

Combining eqs. (3.74), (3.75) and (3.40), we find that the energy of the
ingoing radiation as measured by a free-falling observer in the vicinity of the Cauchy

horizon is given by

P25 (v = 00) = (finite coefficient) e~2¥(v—)y =9, 3.76)
mn

We know that e~ ¥ goes to infinity on the Cauchy horizon, while the factor v~ goes
to zero. We have now to find out which goes faster; we will show that e~¥ goes to

infinity exponentially, therefore making pf°® infinite on the Cauchy horizon.

To show this, we will simplify our dynamic model a bit further. We will

divide our dynamic spacetime into slices (Fig. 3.4). In the region corresponding
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to the range ug — up + Au, we will assume that the spacetime is static. In the
following slice ug + Au — ug + 2Au, we will assume that the spacetime is dynamic.
And so on. We will further assume that the increment Au can be as small as one
wishes. We therefore end up with a succession of alternating thin slices. Each static

slice can be described by a line element of the form (3.60):
ds? = eV dy [2 dr — f(r)e*™Mdy]| + r2dQ?,

with f(r) of the usual form

fry=1-2L 4 ¢

r o2
Because two successive static slices are always separated by a dynamic slice, where
the mass and charge are allowed to vary, we have that each static slice possesses
a different mass, charge and function 1. We will therefore characterize each static

slice by a discrete index n, and accordingly, the line element for the n'" slice will

be written as

ds? = e () dy [2 dr — fa(r)e¥Wdv| + r2dQ?, (3.77)
with
2M, el
falr)=1-—+ . (3.78)

By construction, the 0! static slice is connected to the exterior region of the space-

time; so according to eq. (3.17), we have that

Yo(v) = 0. (3.79)
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Our aim is to find out what the function e¥~(*) is. To this end, consider the
n't and (n + 1)'® static slices. In the limit considered, the dynamic region between
those slices is simply a very thin bundle of radial outgoing null geodesics. At the
limit, the bundle becomes a single geodesic. As viewed from the n'? static slice, the

differential equation describing this geodesic is
2 dr = fo(r)e¥*(Vdy,
whereas if viewed from the (n + 1)'! slice it is
2 dr = fopi(r)e¥r+(Vdy,

The differential elements dr an” dv are here the same in both slices since both
equations describe the same line. We then can divide the second equation by the

first and find

ewn+l Pt fn ewn.
)
fn+1

(3.80)

where f, and f,4; can be viewed as functions of v once the differential equations
are integrated. Eq. (3.80) can now be iterated to express e¥" in terms of e¥° (= 1,

according to eq. (3.79)). We find

(¥n(¥) %% (3.81)

Now the last step. In the 0'! static slice, the inner apparent horizon still

lies on the Cauchy horizon; in the n® one, they are completely separated. In other
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words, we have that f, remains non-zero while fo goes to zero at v = co. We can

therefore write, eliminating the subscript n:
e¥™®) = (finite coefficient)fy(v).

We already have an expression for fo(v): we have done this calculation at the end

of section 3.2. Substituting eq. (3.38) into our last equation yields
e¥(®) = (finite coefficient)e ", (3.82)

which shows that, as announced, e~¥ goes exponentially to infinity, when v goes to

infinity. Inserting eq. (3.82) in eq. (3.76) finally yields
P23 (v — 00) = . (3.83)

We still find a singular surface of infinite blueshift at the Cauchy horizon, as we
expected in view of the infinite accumulation of light rays: an observer crossing the
Cauchy horizon receives an infinite amount of information within a finite proper

time.

This completes our discussion of the dynamic model. We have shown that
the outgoing radiation emitted by the collapsing star (as it happens when the col-
lapse presents small deviations from spherical symmetry) produces a separation
between the Cauchy horizon and the inner horizon. We have shown that a free-
falling observer crossing the inner horizon would not measure any infinities, but
that one crossing the Cauchy horizon would. This establishes on firm grounds the
heuristic argument of section 1.1, in terms of which the infinite blueshift is pro-

duced by an infinite accumulation of light rays on the Cauchy horizon. Since this
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argument is quite general and does not depend on spherical symmetry, it can be
expected that singular surfaces of infinite blueshift are a general characteristic of
Cauchy horizons and that they should appear in generic situations, in particular,

the Kerr black hole.

.
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3.4: Conclusion

The reader has been more than patient for long enough, let us now summarize
and conclude. The central goal of this thesis was to investigate the effects on the
geometry inside non rotating black holes of gravitational collapses presenting small
deviations from spherical symmetry. The hope is that this analysis can succeed in
showing the qualitative behavior of a non spherical collapse. The same investigation
was carried out for the exterior geometry by Richard Price [4}; we were able to extend

his results to the interior case.

For the Schwarzschild black hole, we were able to show in section 1.4b)
that the asymptotic portion {(for late advanced times) of the interior spacetime was
essentially unaffected by the aspherical perturbations. Hence, spherical symmetry
holds even down to very small radii in this asymptotic portion. This result is
remarkable since it could be expected that the perturbations would grow more and
more as the star collapses, and that the situation would be very chaotic near the
singularity. We have shown that this picture holds only for small advanced times

(of order 2M). For late times, order exists and the singularity is rather “clean”.

This result then allowed us to consider quantum effects near the singularity
from a spherically symmetric point of view, which eases the investigation consid-
erably. Our analysis has been there very schematic and more detailed work will
have to be undertaken in order to verify or contradict our conclusions. But that
is Ph.D. material! Qur schematic analysis showed that two possibilities can arise,
depending on the sign of the stress induced by the quantized fields. The first possi-

bility was that the quantum effects could provoke the infinite rise of the spacetime
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curvature sooner than in the classical solution: the curvature would reach infinity
at a non-vanishing value of r. The second possibility, the most aesthetically pleas-
ing one, states that quantum effects could slow down the rise of the curvature, and
leave it bounded at Planckian magnitudes in accordance with Markov’s “new law
of nature” ['1), The curvature is moreover found to be essentially constant for small
radii, which is the signature of the dé Sitter spacetime describing an exponentially
collapsing universe. In fact, we found from the semiclassical Einstein field equations
a whole family of de Sitter-like solutions which describe anisotropic collapses. It is
clear that this analysis cannot be valid for very small radii where the effects due to
the fully quantized gravitational field would become important. It would therefore
be very unsafe to assume that the curvature remains finite even at the origin. In
fact, there is another term in the curvature function, called the transverse curvature,
which is the curvature associated with the collapsing 2-spheres. This term goes like
1/r? and will start to dominate around the Planck length. According to this, the

curvature would still blow up at r = 0, but in a “milder” way than before.

It is too tempting not to dive into wild speculations at this point. Let us
imagine for a short while that Markov’s law holds and that curvature (even the
transverse term) is always subject to an upper limit. In this picture, the spacetime
is not singular at » = 0 and this brings us to the fascinating question: what happens
for negative r’s? Since there is no singularity anymore at r = 0 there is no reason
whatsoever for the spacetime to naturally stop at that instant of time. An observer
at r = 0 could always wait a little while to see what happens, and while doing
that, would automatically paés to the negative r region. Ti.e existence of such a

region hence appears inevitable. So what happens in this region? A possibility is
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that the de Sitter collapsing universe would bounce and start to expand, producing
a brand new inflationary universe. According to this picture, universes can be
created out of black holes! Although very speculative, this question was addressed
in a very recent work by Frolov, Markov and Mukhanov [53l; we did not dare to
go that far into speculations in our own paper (53! Another possibility would be
the existence of another de Sitter-Schwarzschild transition in the negative r region.
For an observer in this region, however, r (as a spacelike coordinate) would still be
perceived as positive; it is the mass of the “white hole” that would be interpreted
as being negative. We would then wind up with repulsive gravity in this region
of spacetime. This idea is not new, similar things happen in the Kerr spacetime
when an observer passes through the ring singularity. The fate of the negative r
region is therefore rich in possibilities, and it would be more than prudent to leave
the question open for the time being. The level of speculations has indeed become
very high! To conclude on this part, it appears that a detailed calculation of the
renormalized expectation value of the stress-energy tensor of quantized fields in the
Hartle-Hawking vacuum (the vacuum state seen by a free-falling observer) would be
of considerable interest in regard to the conclusions of the schematic result presented

here. We should attack this problem shortly.

The presence of an inner-Cauchy horizon in the Reissner-Nordstrgm space-
time makes this black hole interior even more interesting to study. Because the
Cauchy horizon is the prolongation of future null infinity, we discover that an infi-
nite number of light rays propagate along the Cauchy horizon, hence forming a thin
shell of infinite energy density, as measured by an observer crossing it. We have ver-

ified this statement explicitly in the static model (section 3.2); and in the dynamic



Section 3.4: Conclusion 129

model (section 3.3), where the star emits outgoing radiation while it collapses, as
would be the case if the collapse presented small deviations from sphericity. Fur-
thermore, since this outgoing radiation produces'a separation between the Cauchy
and inner horizons, we find that the situation becomes perfectly regular at the in-
ner apparent horizon. The final picture is that there exists on the dynamic Cauchy
horizon a singular thin shell formed by the accumulation of infalling radiation prop-
agating at very late times. We stress that this analysis was carried out assuming
that the response of the spacetime to the ingoing radiation would remain small.
This is hardiy the case and a direct calculation where both the effects of the ingo-
ing and outgoing radiation are taken into account needs to be performed in order
to draw a conclusion. This project presents a natural prolongation of this thesis

and we have started to work on it at the time of writing,.

It is too tempting not to go, once again, into the area of speculation. Let
us imagine once again that Markov’s law holds and that in fact, the energy density
of the ingoing thin shell is found to be finite. That would mean that the total
mass of the shell would also be finite and that our observer could go through it.
What could we then say about the nature of the spacetime inside the inner apparent
horizon, in particular about the curvature singularity when we consider quantum
effects? Let us consider a spacelike slice taken in the future of the Cauchy horizon
(see Figs. 3.1 or 3.3). At the extreme left of the slice, we find the centre r = 0
of the collapsing star, which is an origin for the slice. At the extreme right, we
now find the singularity, a boundary of the spacetime. We hence have that this
spacelike slice is a closed hypersurface (or volume): the slice has a finite extent.

Now, the collapsing star carries a charge, say, of +e. Since the slices are closed,
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we must have that the singularity carries a charge —e. This follows from the fact
that the total net charge can be evaluated using a surface integral (Gauss’ law)
and that the surface of support can be shrunk to a point, hence imposing a zero
net charge. We therefore have an infinite concentration of charge at the singularity,
hence producing a very intense electric field in its vicinity. It is well known from
QED that extreme electric fields produce an abundance of pair creations, so there
will be a lot of particle-antiparticle pairs produced in the vicinity of the singularity.
The positively charged particles will be atiracted towards the singularity, whereas
the negatively charged ones will go towards the collapsing star. The end result will
be that all the charge inside the black hole will be annihilated and we will end up
with a neutral closed universe. Presumably, the pair creations will also succeed in
removing the singularity so that our spacetime will be perfectly regular. But once
again, we should refrain from going too deeply into speculations and leave this issue

open.

To summarize, we have shown that, within our perturbative analysis, the
property that the Cauchy horizon is a singular surface of infinite blueskiit is pre-
served when one considers a gravitational collapse with small deviations fromn
sphericity. It is plausible that this property could also be preserved when the
deviations are arbitrarily large and that any Cauchy horizon would be a singular
surface of infinite blueshift. This conclusion follows from the fuct that an infinite
accumulation of light rays occurs whenever a Cauchy horizon exists. It is obvious
that a direct calculation where the ingoing and outgoing radiation is allowed to
play a réle would be highly interesting and some new phenomena could thus be

discovered.



Section 3.4: Conclusion 131

The physics of black hole interiors is a very fascinating topic that has been
left almost untouched until now. This thesis is just the beginning of the exploration
of what appears to be a very rich and interesting subject of research. It certainly
is very bold to give to this thesis the title “Black holes: the inside story” since we
are only at the first page of what will probably become a very thick volume. I hope

the reader will forgive such an absence of humility!
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uv=1
singularity

AN

Uv=1
singularity

Figure 1.1: The Schwarzschild spacetime in Kruskal coordinates. The null coor-
dinates U and V are related to the Schwarzschild radial coordinate by eq. (1.24).
Region I is the exterior of the black hole, Region II the interior. Regions 111 and
IV are exact replicas of those two regions, belonging to another universe. Only the
first two regions are realized when the black hole corresponds to the endpoint of a
gravitational collapse.
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Figure 1.2: The Gonzélez-Diaz model where T),, is constant inside the black hole
horizon, and zero outside. A shell of matter is substituted for the sharp jump in
order to obtain a smooth join. The thickness of the shell is formally taken to be

Zero.
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/—Singularity: r=0.

Matter

LCentre :r=0

Figure 1.3: The conformal diagram of a gravitational collapse presenting small
departures from spherical symmetry. The coordinates are defined in section 1.2b)
and are the same as in Fig. 1.1. The wavy lines represent infalling and outgoing

radiation.
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Case Semiclassical equation

m#2, m#0 cannot be solved
see eqs. (2.26) and (2.30)

m=20 cannot be solved
see eqs. (2.34) and (2.35)

m=2 can be solved
see egs. (2.37), (2.38) and (2.40)

Table 2.1: Solving the semiclassical equation in the power-law spacetimes, for the
isotropic case n = 2. This table summarizes section 2.2a).
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Case Semiclassical equation

m#2, n+3m#2 cannot be solved
see eq. (2.54)

m#2, n+3m=2 cannot be solved
see eq. (2.56)

m=2, n#—4 can be solved
see egs. (2.59)-(2.62)

m=2, n=—-4 can be solved

see eqs. (2.63) and (2.64)

Table 2.2: Solving the semiclassical equation in the power-law spacetimes in the
general case. This table summarizes section 2.2b).
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50
40

Figure 2.1: The graph of I'(n). The function is defined in eq. (2.62). Only the
integer values of n, and the corresponding values of T are of interest.
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Case Q
m=0 n<-2
n>2 -1
m+n=2 m<0 0
m>0 m—4)
n=2 <-4 0
—-4<m<0 —1(m+4)
m>0 -1
n>2 m+n< -2 0
-2<m+n<2 —3(2+m+n)
m+n>2 -1
n<2 m<0 m+n< -2 0
m<0,m+n>-2 —%(2+m+n)
m >0 -2+ n)

Table 2.3: The asymptotic behavior z9 for z <« 1 of a massless scalar field prop-
agating in the power-law spacetimes of eq. (2.1). This table is the summary of
section 2.3b).
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Case Condition on @
m>0 n>2 2%(71_2)
n<2 20
m<0 m+n>2 2%(m+n—2)
m+n<2 20

Table 2.4: The stability test. This table gives the conditions that the actual values
of Q must satisfy, in order for the geometry (m,n) to be stable.
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V4
2 ‘4
m= 4
n= -2 L’
~— -}‘ .
° ° ® @
° ° o o e -4 ¢ o o ° @
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Figure 2.2: The plane (m,n) represents all the possible spacetimes of eq. (2.1).
The points of the plane corresponding to stable geometries are represented by dots.
Those corresponding to spacetimes with inaccessible origin are represented by cir-
cles. This figure summarizes the work of the sections 2.3 and 2.4.
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r=0

singularity |  singularity

. Cauchy
\ horizon

Figure 3.1: The Reissner-Nordstrem spacetime. Region I is the exterior region of
the black hole, belonging to “our” universe. Region Il is the interior of the hole,
and region III is another universe. If the black hole is the result of the gravitational
collapse of a charged star, only the part of the diagram at the right of the dashed
line is realized. The part at the left is then replaced by the interior of the collapsing
star. More details are given in the text of section 3.2a).
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r=0

V=00

Ingoing
radiation

Figure 3.2: Infalling radiation near the inner apparent horizon. This picture shows
the free falling observer crossing the inner horizon, where there is a flow of ingoing
radiation coming from the exterior region.



Appendiz: figures and tables 149

r=0
centre—

Star
interior

Figure 3.3: The dynamic model. The collapsing star emits outgoing radiation
which disturbs the inner apparent horizon. Infalling radiation that comes from th‘e
exterior region cannot reach the surface r = r._, but stays within the Cauchy h?r1~
zon. However, ingoing radiation coming from the singularity succeeds in crossing
it.
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Figure 3.4: The “sliced” dynamic model. The dynamic spacetime is here replaced
by alternating static and dynamic slices; each static slice being represented by a
discrete index n. We take the limit where each slice becomes an infinitesimally thin

shell.



