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Abstract 

Disease resilience is defined as an animal’s ability to maintain a high level of 

performance in the face of disease challenges caused by multiple pathogens, as is often the case 

in commercial pig farms. Therefore, disease resilience is anticipated to be critical to the 

profitability of the pig industry. However, it is difficult to make genetic improvement for disease 

resilience because it is not expressed in the purebred nucleus herds housed in high-health 

environments where the selection of elite breeding animals occurs. In addition, disease resilience 

to the challenge of multiple pathogens in commercial pig production systems is a complex trait 

that is hard and expensive to measure. Complete blood count (CBC) is a relatively inexpensive, 

robust, and routinely used blood test in veterinary laboratories to evaluate overall health and 

detect disorders. Exploring CBC traits for genomic selection could be a promising approach to 

address the above issues of making genetic improvement of disease resilience. Two strategies 

have been proposed for genomic selection of disease resilience based on CBC traits. The first 

strategy is to explore indicator CBC traits of disease resilience that can be directly collected from 

the nucleus herds, and the second strategy is to explore practical CBC phenotypes of disease 

resilience in commercial farms when the disease challenge is present for genomic selection. 

Therefore, the overall objective of this thesis was to explore the opportunity to use CBC traits 

collected under the high-health nucleus farms condition and a model of the polymicrobial 

challenge faced in commercial farms to improve disease resilience in pigs.  

A wean-to-finish natural disease challenge model (NDCM) consisting of a high-health 

quarantine barn and a polymicrobial challenge barn was established for the project. Three sets of 

blood samples were collected to determine CBC: the first was collected from high-health pigs in 
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the quarantine barn, a second (termed Blood 3) and third (Blood 4) were collected in the 

challenge barn at 2- and 6-week after exposure to the polymicrobial challenge.  

Firstly, most CBC traits in Blood 1, 3, and 4 were heritable, with heritability estimates 

ranging from 0.06 ± 0.04 to 0.53 ± 0.05. A few CBC traits in Blood 3 and 4 were found to be 

genetically correlated with the resilience traits of grow-to-finish growth rate (GFGR) and 

antimicrobial and anti-inflammatory treatment incidence (treatment rate, TR) (-0.38 ± 0.18 to -

0.82 ± 0.47; 0.50 ± 0.23 to 0.89 ± 0.26). No significant genetic correlation was identified for 

CBC in Blood 1 with GFGR or TR. Then, genome-wide association studies (GWAS) of CBC 

traits and gene expression analysis of animals with divergent CBC traits in response to the 

challenge were used to investigate the genetic control of disease resilience. GWAS found that 

CBC traits were polygenic traits controlled by a large number of genes with small effects. Gene 

expression analysis suggested that up-regulation of genes involved in apoptosis might associate 

with the decreased lymphocyte concentration from Blood 1 to Blood 3 and resulted in lower 

disease resilience. Lastly, moderate genomic prediction accuracies (0.12 ± 0.04 to 0.28 ± 0.03) 

were found for three CBC traits under disease (lymphocyte concentration in Blood 3, neutrophil 

concentration and red blood cell distribution width in Blood 4) that had moderate to high genetic 

correlations (−0.38 ± 0.18 to 0.89 ± 0.26) with TR. Genomic selection on these three CBC traits 

may lead to a desirable decrease in TR to reduce antimicrobial use and antimicrobial resistance 

in the swine industry.  

Overall, the results reported in this thesis suggest that genomic selection of CBC traits 

collected from high-health nucleus farms cannot improve disease resilience regarding the 

resilience traits of GFGR and TR. However, CBC traits collected in commercial farms when the 

disease challenge is present can be used as practical disease resilience phenotypes and have the 
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potential to be used to help develop a selection index for nucleus animals to make genetic 

improvement for disease resilience.   
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Chapter 1. General introduction 

 The breeding pyramid (Figure 1) with specialized dam and sire lines, together with the 

separate nucleus, multiplier, and commercial farms, has been adopted in pig breeding programs 

since the 1960s and 70s. Most phenotype recording and selection occur in the purebred 

populations in nucleus farms to genetically improve the profitability and efficiency of the swine 

industry. The genetic improvement made through the selection at the nucleus level is then passed 

on to the multiplier and then to the commercial levels over a period of several years (genetic lag) 

by selling high-ranking nucleus gilts and boars to lower tiers (Visscher et al., 2000). The genetic 

improvement (∆𝐺 =
𝑟×𝑖×𝜎𝐴

𝐿
) in a breeding program depends on the accuracy of breeding value 

(r), selection intensity (i), genetic variation (𝜎𝐴), and generation interval (L). Thus, increased 

selection intensity, accuracy and genotypic variation but decreased generation interval improve 

the genetic improvement.  

By applying artificial insemination (AI) in pigs, breeding companies change the 

marketing strategy from selling live boars to selling semen to multiplier farms and commercial 

farms in the lower tiers (Visscher et al., 2000). Thereby, genetically superior nucleus boars can 

be used extensively to improve genetic gain with increased selection intensity at nucleus level 

(Visscher et al., 2000). In addition, AI makes it possible to accelerate genetic gain by decreasing 

the generation interval between the nucleus herds and the commercial population (Visscher et al., 

2000). Multiplier and commercial farms in the lower tiers multiply and cross animals from 

different purebred nucleus populations (or lines) to take advantage of heterosis and breed 

complementarity (Smith, 1964; Sellier, 1976). The pyramid breeding structure has been 

beneficial in the swine industry because only a relatively small number of animals need to be 

phenotyped and genotyped at the nucleus level to make genetic improvement for the very large 
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populations of commercial pigs raised for pork. For example, only 50 elite AI boars were 

selected out of the 1700 boars tested annually in the Norsvin Duroc (sire line) and the Norsvin 

Landrace (dam line) nucleus populations, respectively (Topigs Norsvin Canada & USA, 2014). 

Semen from these elite Duroc AI boars were used annually to inseminate 700 Duroc sows to 

produce 1450 litters per year. Similarly, the Landrace AI boars were used with 2000 Landrace 

sows to produce approximately 4400 litters per year (Topigs Norsvin Canada & USA, 2014). For 

all traits in the breeding goal, the genetic improvement was $4 to $5 per slaughter pig per year 

for Norsvin Duroc and $4 for Norsvin Landrace from 2008 to 2012 (Topigs Norsvin Canada & 

USA, 2014).  

However, a significant limitation of the pyramid structure is the difference in 

management and environment between the top and bottom of the pyramid, termed as genotype-

by-environment interaction (G × E). Nucleus purebred populations at the top of breeding 

pyramids are highly managed and kept in a high health environment to: firstly, maximize the 

additive genetic values that flow down the pyramid to commercial farms, leading to higher 

productivity and efficiency at the commercial level; secondly, avoid vertical transmission of 

infectious diseases to the multiplier farms and commercial farms at the lower tiers of the 

pyramid; lastly, avoid horizontal transmission of diseases to other countries when the pigs and/or 

semen are transported across borders to other countries for breeding companies. Strict movement 

licensing requirements and biosecurity adopted by the pig industry have ensured a clean 

environment for nucleus herds in the face of many disease challenges (Pritchard et al., 2005; 

British Pig Association, 2019). However, health status commonly degrades as we go down the 

pyramid. Due to the intensification and globalization of the swine industry, endemic and 

emerging pathogens can be spread rapidly in commercial farms by frequent movements of pigs, 
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feed, and pork products at local, national, and international scales (VanderWaal and Deen, 2018). 

Pig performance in commercial farms typically declines when the disease challenge is present 

compared to nucleus farms, and the ranking of animals at the genetic level may also change.  

Conventional methods, including strict biosecurity, vaccines, and antimicrobials, are 

being used in commercial farms to manage diseases and maintain animal performance and 

health. However, they are not always effective. The gaps in knowledge of epidemiology for 

different diseases and diverse ways for pathogen transmission are major challenges for 

successful biosecurity; and co-infections by multiple pathogens, and the high recombination rate 

for some of the viruses and their interaction with the host immune system (e.g. porcine 

reproductive and respiratory syndrome virus) impair vaccine efficacy; and there are also 

concerns of antimicrobial resistance from the overuse of antimicrobials for prevention 

(prophylaxis) and treatment of infections in the swine industry. Therefore, an additional strategy, 

breeding for disease resilient animals that maintain a high level of performance and productivity 

regardless of pathogen burden when challenged by infection, becomes a desirable attribute in the 

pig breeding program (Knap and Doeschl-Wilson, 2020). However, easy and inexpensive 

strategies are needed to improve disease resilience in the pig breeding program because 1) 

disease resilience is not expressed in the purebred nucleus herds housed in high-health 

environments where the selection of elite breeding animals occurs; and 2) disease resilience to 

the disease challenge of multiple pathogens that exist in commercial pig production systems is a 

complex trait, which can be hard and expensive to measure. 

Complete blood count (CBC) is a robust and relatively inexpensive blood test, which 

measures concentrations and relative proportions of circulating blood cells (leukocytes, 

erythrocytes, and platelets) that play essential roles in immune response, hematocrit, 
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hemoglobin, and several erythrocyte indices (George-Gay and Parker, 2003). It has been 

routinely used in veterinary laboratories to evaluate overall health and detect a wide range of 

disorders (e.g. infection, anemia). Several CBC traits have been found to be heritable and 

genetically correlated with pig performance in response to the disease challenge caused by 

specific types of pathogens (Henryon et al., 2006; Clapperton et al., 2008, 2009; Flori et al., 

2011; Mpetile et al., 2015). Therefore, exploring CBC traits for genomic selection could be a 

promising approach to address the above issues of making genetic improvement of disease 

resilience. 

Two strategies have been proposed for genomic selection of disease resilience in the face 

of these difficulties. The first strategy is to explore indicator traits of disease resilience that can 

be directly collected from the nucleus herds to select for disease resilience, and these indicator 

traits need to be heritable and genetically correlated with animal performance in response to the 

disease challenge. The second strategy is to explore highly heritable traits as practical 

phenotypes of disease resilience in commercial farms where the disease challenge is present. The 

single nucleotide polymorphisms (SNPs) marker effects over the whole genome can be estimated 

as a regression of indicator traits or phenotypes of disease resilience on genotypes of animals. 

Therefore, the genomic estimated breeding value (GEBV) of an animal can be predicted by 

summing up all SNPs marker effects over the whole genome, which allows for the genomic 

selection of elite nucleus breeding animals based on GEBV for disease resilience.  

To this end, the overall objective of this thesis was to explore CBC traits collected under 

the high-health environment (nucleus farms condition) and the polymicrobial challenge 

environment (commercial farms situation) as indicator traits and phenotypes of disease 
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resilience, respectively, to make genetic improvement for disease resilience in the swine 

industry. The short-term objectives corresponding to each study of this research were to:  

1) Explore indicators and phenotypes of disease resilience from CBC traits and estimate genetic 

parameters of CBC traits (Chapter 4);  

2) Identify genomic regions associated with CBC traits and disease resilience through a genome-

wide association study (Chapter 5);  

3) Explore the blood transcriptomic signature and immune mechanisms associated with disease 

resilience (Chapter 6);  

4) Estimate genomic prediction accuracy of disease resilience based on CBC traits (Chapter 7).  
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Figure 1. Pyramid breeding structure with an example of the typical three-way cross 

scheme. 

Nucleus farms: the top tier, contain specialized purebred dam lines (e.g. Landrace and 

Yorkshire, selected for a combination of good female reproductive performance and growth 

performance) and the sire line (e.g. Duroc or Pietrain, selected for the production traits of 

economic importance, such as growth rate, feed efficiency, and meat quality). Sell animals (blue 

arrows) and semen (green arrows) to multiplier and commercial farms. Multiplier farms: the 

middle tier, multiply purebred lines from nucleus farms and cross dam lines to produce and 

multiply crossbred F1 sows that are sold to commercial producers. Commercial farms: the 

bottom tier cross the F1 sows with purebred sires to produce the final crossbred animals. The 

commercial farms contain most animals in the production pyramid.  
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Chapter 2. Literature review 

2.1. Impact of infectious diseases in the swine industry 

Nowadays, the challenge of infectious diseases in the swine industry is caused by a 

multitude of infectious agents that exist around the world (Zimmerman et al., 2012; VanderWaal 

and Deen, 2018). The emergence and global spread of pathogens are caused by the 

intensification and globalization of the swine industry, driven in part by frequent movements of 

pigs, feed, and pork products at local, national, and international scales (VanderWaal and Deen, 

2018). The prevalence of infectious diseases has steadily increased morbidity and mortality in 

commercial herds, as well as the need for treatment programs. In addition to the loss of 

productivity, infectious diseases also constitute a threat to food safety, animal welfare, and 

international trade restrictions (Davies et al., 2009; Tomley and Shirley, 2009). The constant 

threat of infectious diseases results in significant economic losses for the swine industry, which 

in some instances (e.g. Influenza, Streptococcus suis, Salmonella spp., Escherichia coli) also 

impacts human health (VanderWaal and Deen, 2018).  

VanderWaal and Deen (2018) provided a global overview of research work on swine 

pathogens. From 2006 to 2016, porcine reproductive and respiratory syndrome virus (PRRSV), 

porcine circovirus type 2 (PCV2), influenza A virus, Salmonella spp., and Escherichia coli were 

recognized as the most important pathogens of swine that have been reported from nearly every 

country with significant losses to the swine industry (VanderWaal and Deen, 2018).  

2.1.1 PRRSV 

Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus, is one of 

the most economically significant swine infectious diseases. PRRSV is an enveloped RNA virus, 

which belongs to the family Arteriviridae, genus Arterivirusis (Zimmerman et al., 1997). The 
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PRRSV targets the porcine monocyte/macrophage lineage, where CD163 (a macrophage-specific 

protein) is the essential receptor for the PRRSV infection (Welch and Calvert, 2010). PRRSV 

primarily replicates in pulmonary alveolar macrophages, but it has also been identified in 

macrophages located in other tissues, including lymph nodes, thymus, spleen, Peyer’s patches, 

and liver of pigs (Rossow et al., 1996; Duan et al., 1997; Kavanová et al., 2017). PRRSV is 

highly mutagenic and resistant to low temperatures (Meulenberg, 2000). Also, it is highly 

transmissible and can persist for a long period (more than 100 days) in infected animals and the 

environment (Meulenberg, 2000; Rowland et al., 2012). Multiple methods are involved in 

PRRSV transmission, including aerial transmission (either short or long distance), coitus or 

insemination, ingestion, and contact with infected animals (Pileri and Mateu, 2016). 

PRRS infection was first recognized as a distinctly new swine disease in 1987 in 

America, followed in Europe and Asia in 1990 to 1992, and still causes numerous outbreaks in 

all age groups of pigs nowadays (Zimmerman et al., 1997; Meulenberg, 2000; Schweer et al., 

2017; Valdes-Donoso et al., 2018; Hancox, 2020). Clinical signs, including pyrexia, anorexia, 

coughing, lethargy, skin discolouration, and death, can be observed in all age groups (Hopper et 

al., 1992). PRRS in sows and gilts can cause reproductive failure, shown as increased abortions, 

mummified piglets, stillbirth levels, very weak piglets at birth, and pre-weaning morbidity (Done 

et al., 1996; Valdes-Donoso et al., 2018). Infected boars show loss of libido and a reduction in 

semen quality as PRRSV has been detected as early as 2-3 days post infection (dpi) and up to 92 

dpi in semen (Hopper et al., 1992; Schulze et al., 2013). The respiratory syndrome is more often 

observed in young growing pigs but also occurs in naïve finishing pigs and older breeding stock 

associated with severe pneumonia and increased mortality (Hopper et al., 1992; Done et al., 

1996). In 2006, a new PRRSV variant known as highly pathogenic PRRSV, led to a devastating 
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destruction to the swine industry and resulted in the culling of over 20 million pigs in China (An 

et al., 2010). The highly pathogenic PRRSV was rapidly spread to and affected many other 

countries in Southeast, East, and North Asia (An et al., 2011). In the United States, the annual 

cost of PRRS was estimated to be approximately $664 million, including $302.06 million in 

breeding herds and $361.85 million in growing pigs based on production records (2005 to 2016) 

from commercial farms (Haltkamp et al., 2013). The Guelph based George Morris Center on 

behalf of the Canadian Swine Health Board estimated PRRS was costing the Canadian swine 

industry a minimum of CA$130 million per year (Mussell, 2010). 

2.1.2 PCV2 

PCV2 is a non-enveloped DNA virus, a member of the family Circovoridae, 

genus Circovirus. It has a strong resistance to both chemicals (lipid-dissolving disinfectants 

based on alcohol, chlorhexidine, iodine, and phenol) and temperatures and is able to remain in 

the environment for extended periods, thus increases the risk of infection caused by the 

contamination of farm facilities (Segalés et al., 2005). PCV2 can be shed in respiratory and oral 

secretions, urine, and feces of infected pigs (Gillespie et al., 2009). The main routes of viral 

transmission involve oral and nasal contact with infected feces and secretions, and direct contact 

with infected pigs (Bolin et al., 2000; Magar et al., 2000). PCV2 infection resulting in severe 

porcine circovirus associated disease (PCVAD) characterized by high morbidity, high mortality, 

and decreased growth efficiencies has been reported from nearly every country with a significant 

commercial production industry (Madson et al., 2009). In addition, PCV2 has also been 

occasionally identified to cause reproductive failure (Madson and Opriessnig, 2011). In the 

United States, the disease has cost producers an average of $4/pig, with peak losses ranging up to 

$20/pig (Gillespie et al., 2009). In the United Kingdom, the cost was estimated to range from 
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£8.1/pig (~$11.26, subclinical pigs that reach slaughter age) to £84.1/pig (~$116.92, infected pig 

that die) (Alarcon et al., 2013). In 2007, Agriculture and Agri-Food Canada (AAFC) announced 

a contribution of CA$76 million from 2007 to 2014 to combat PCVAD and support activities 

related to biosecurity, research, and long-term disease risk management solutions (AAFC, 2015). 

2.1.3 Influenza A viruses 

Influenza A viruses cause a zoonotic viral disease that represents health and economic 

threats to both humans and animals worldwide (Vincent et al., 2008). Influenza A viruses are a 

group of closely related RNA viruses with the segmented genome, belong to the family 

Orthomyxoviridae, genus Alphainfluenzavirus (Suarez, 2016). The segmented nature of the virus 

genome is a key feature of the viruses to infect a variety of species (e.g., humans, pigs, birds), 

which supports the continued molecular evolution and the generation of new antigenic variants 

(Cheung and Poon, 2007). In other words, when the cells are infected with multiple influenza 

viruses, RNA segments can be exchanged between the viruses (reassortment), which allow the 

generation of viruses containing a novel combination of genes and result in the changes of 

surface hemagglutinin (HA) and neuraminidase (NA) antigens (Vincent et al., 2008; Steel and 

Lowen, 2014).  

Swine influenza was first recognized in pigs in the United States in 1918, coinciding with 

the human influenza pandemic known as the “Spanish flu” (Vincent et al., 2008). Afterwards, the 

swine influenza caused by multiple strains, including H1N1, H1N2, H3N2, has become widely 

established in the swine population throughout the world, and is characterized by high morbidity 

(approaching 100%) and generally low mortality (< 1%) to the swine industry (Olsen, 2002). 

Studies indicated that the 1918 human strain was closely related to the classical swine H1N1 

strain of avian origin; H3N2 contained genes derived from human, swine and avian viruses; and 

https://www.sciencedirect.com/topics/medicine-and-dentistry/avian-virus
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H1N2 resulted from reassortment between H3N2 and H1N1 (Olsen, 2002; Reeth et al., 2004; 

Olsen et al., 2006). It is clear that swine influenza viruses can be transmitted between species as 

zoonotic agents, in addition to the “Spanish flu”, a second human influenza pandemic in 2009 

was found to be caused by a new strain of H1N1 resulted from reassortment of avian, swine, and 

human viruses (Trifonov et al., 2009). Therefore, the impact and concern of influenza A viruses 

are not limited to pigs, but also avian and human, and the transmission and reassortment in 

between. The viruses will continue to change, and newly emerging strains remain risks and 

potentials to cause a pandemic.    

2.1.4 Salmonella spp. and Escherichia coli 

Salmonella spp. are rod-shaped (bacillus), Gram-negative, zoonotic bacteria causing 

subclinical to severe clinical infection shown as diarrhea, dehydration and death in pigs, and also 

severe diarrhea and death in humans (Letellier et al., 2000; Evangelopoulou et al., 2015). 

Foodborne Salmonella serovars enteritidis and typhimurium infections are the most prevalent 

serovars in humans that occur worldwide, and pork is one of the important sources in European 

countries (Evangelopoulou et al., 2015). Salmonella serovar choleraesuis is an example of the 

“host restricted or pig-adapted” serovars that only affect pigs (Jajere, 2019). The serovar 

choleraesuis infection is less common today due to effective vaccination protocols, but it still 

causes sporadic issues shown as a porcine post weaning disease with septicaemia, enterocolitis, 

and pneumonia (Foley et al., 2008). Accordingly, Salmonella in commercial pigs has also 

become an important research priority over decades, although pork is not considered a major 

source for human salmonellosis in North America (Wilkins et al., 2010). Swine 

acquire Salmonella infection from the contaminated environment, feed, or through direct contact 

with infected animals as infected pigs can be carriers of Salmonella and shed the bacteria via the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/influenza-a-virus-h1n2
https://www.sciencedirect.com/topics/medicine-and-dentistry/genetic-reassortment
https://en.wikipedia.org/wiki/Bacillus_(shape)
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feces intermittently for many months (Rber et al., 2016). Consuming undercooked pork and 

cross-contamination of consumer products during pork processing are high-risk factors for 

human infection (Prendergast et al., 2009). Every year, about 155,000 deaths in humans were 

estimated to be due to salmonellosis worldwide, and pigs were confirmed to be responsible for 

10% to 20% of the cases (Hill et al., 2010; Evangelopoulou et al., 2015). In Canada, the number 

of reported human deaths caused by Salmonella was 4,953 in 2004 (Funk, 2008).  

Escherichia coli are also rod-shaped Gram-negative flagellated bacteria belonging to the 

family Enterobacteriaceae, genus Escherichia (Nataro and Kaper, 1998). Shiga toxin-producing 

Escherichia coli (STEC, e.g., serotype O157:H7) strains are foodborne zoonotic pathogens that 

cause public health concerns (García et al., 2010; Tseng et al., 2014). Cattle are the most 

important STEC reservoir, but swine also play a role in STEC transmission and human disease as 

there are a few cases indicate that pork has been involved in outbreaks of STEC infection in 

human (CDC, 1995b, 1995a; Williams et al., 2000; MacDonald et al., 2004; Conedera et al., 

2006; Trotz-Williams et al., 2012; Tseng et al., 2014). Of note, during July to October of 2014, 

an outbreak of 119 cases of human infections associated with the exposure to STEC (serotype 

O157:H7) contaminated pork products occurred in Alberta, Canada (Honish et al., 2017). In the 

swine industry, enterotoxigenic Escherichia coli (ETEC) are not regarded as zoonotic pathogens 

(Wasteson, 2002), but intestinal infection with ETEC in pigs is a significant concern. ETEC 

enter the animal by ingestion, their fimbriae adhere to specific receptors on porcine intestinal 

brush border epithelial cells (enterocytes) to start the process of enteric infection, and then the 

bacteria produce one or more enterotoxins inducing diarrhoea after the colonization (Luppi, 

2017). Depending on the expression of receptors on porcine enterocytes, the ETEC infection 

results in neonatal colibacillosis (fimbriae F4, F5, F6, F41) and post-weaning diarrhoea (F4 and 

https://en.wikipedia.org/wiki/Bacillus_(shape)
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F18), which are important causes of death occurring worldwide in suckling and weaned pigs, 

respectively (Francis, 2002). Outbreaks of ETEC neonatal and post-weaning diarrhea can affect a 

large proportion of pigs and are often recurrent in the same herds, resulting in significant 

economic losses due to mortality, decreased weight gain, increased costs for treatments, 

vaccinations, and feed supplements (Luppi, 2017).  

2.1.5 Concurrent infections (Co-infections)  

The diseases discussed above are caused by a particular type of infectious agent. 

However, co-infections associated with multiple infectious agents contributing to a more 

insidious condition are more frequent in pig farms. For example, the porcine respiratory disease 

complex (PRDC) results from combinations of infectious agents in particular viruses (e.g., 

PRRSV, PCV2, swine influenza virus, coronavirus) and bacteria (e.g., Mycoplasma 

hyopneumoniae, Haemophilus parasuis, Streptococcus suis, Bordetella bronchiseptica, 

Actinobacillus suis, Actinobacillus pleuropneumoniae) and frequently occurs in pigs reared 

under confined conditions (Opriessnig et al., 2011). When PRDC outbreaks occur, typically 30% 

to 70% of pigs will be affected, resulting in significant reductions in health and performance of 

pigs and increases in medication costs and mortality (Kavanová et al., 2017; Ouyang et al., 2019; 

Saade et al., 2020).  

In practice, combinations of infectious agents may change over time and with new 

emerging pathogens, which may further complicate disease severity and management. Some 

pathogens act primarily and infect pigs as the first unique pathogen during the co-infection and 

then facilitate infection by secondary pathogens (Opriessnig et al., 2011). Many of these 

secondary infection pathogens can induce the production of excessive pro-inflammatory 

cytokines and the exacerbation of the disease during co-infections (Reeth and Nauwynck, 2000; 
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Thanawongnuwech et al., 2004; Brockmeier et al., 2008; Saade et al., 2020). Different types of 

co-infections, including virus-virus, virus-bacterium/bacterium-virus, and bacterium-bacterium 

(in the format of primary-secondary pathogens), have been observed in pig farms.  

Virus-virus and bacteria-bacteria co-infections 

PRRSV, PCV2, and swine influenza virus have been studied a lot for the virus-virus co-

infections as they are ubiquitous in farms. No matter which virus acted as a primary pathogen 

during the dual or co-infections, higher viral loads and more severe diseases were always 

identified (Rovira et al., 2002; Kitikoon et al., 2009; Ramamoorthy et al., 2011; Dong et al., 

2015; Sun et al., 2016; Ouyang et al., 2019).  

For bacteria-bacteria co-infections, experimental studies identified that pulmonary 

colonization by Mycoplasma hyopneumoniae predisposes pigs to secondary bacterial infections, 

such as Actinobacillus pleuropneumoniae and Pasteurella multocida, and resulted in more severe 

pneumonic lesions compared to the single infections (Amass et al., 1994; Marois et al., 2009). M. 

hyopneumoniae are essential airborne bacteria that cause the insidious bronchopneumonia known 

as enzootic pneumonia (EP), and also the outbreak of PRDC (Maes et al., 2011). M. 

hyopneumoniae infect only pigs and are ubiquitously found in nearly all countries. M. 

hyopneumoniae infection produces long-term colonization of ciliated epithelium in the 

respiratory tract, which causes damage to cilia, induces production of excessive thick mucus, 

reduces phagocytic efficiency of neutrophils and macrophages, suppresses innate and acquired 

pulmonary immunity, therefore, allow secondary bacteria to proliferate in the lungs and 

contribute to disease (Pieters and Maes, 2019). Mycoplasma hyopneumoniae co-infections with 

A. pleuropneumoniae, P. multocida, Bordetella bronchiseptica, Haemophilus parasuis, 
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Trueperella pyogenes, and Streptococcus suis have also been commonly observed in field 

outbreaks of EP (Pieters and Maes, 2019).  

Virus-bacteria/bacteria-virus co-infections 

For virus-bacterium co-infections, it is well-known that PRRSV infection often 

predisposes pigs to secondary bacterial infections, such as Streptococcus suis, Haemophilus 

parasuis, M. hyopneumoniae, Actinobacillus pleuropneumoniae and Salmonella spp. (Pol et al., 

1997; Solano et al., 1997; Thanawongnuwech et al., 2000, 2004; Wills et al., 2000). It has been 

proposed that the destruction and decreased function of pulmonary alveolar and intravascular 

macrophages, the damage to the mucociliary apparatus, and the decreased function of antigen-

presenting cells (dendritic cells and macrophages, vital for effective adaptive immune response) 

associated with PRRSV infection are likely to cause secondary bacterial infection (Brockmeier et 

al., 2002). However, it will need to be further explored as the pathogenesis of PRRSV is not yet 

fully understood. In addition to PRRSV, infection of swine influenza virus was also found to 

promote secondary infection by Streptococcus suis serotype 2 (Wang et al., 2013; Meng et al., 

2015). S. suis are zoonotic bacteria, and serotype 2 is the most virulent one for both pigs and 

humans (Gottschalk and Segura, 2019). The sialic acid moiety on the capsular polysaccharide 

surface (tightly packed polysaccharide which forms a barrier around the bacterial cell wall) of S. 

suis serotype 2 can directly interact with swine influenza virus or the virus-infected cells, acting 

as a “bacterial receptor” and leading to increased bacterial adhesion to and invasion of tracheal 

epithelial cells (Wang et al., 2013). Although swine influenza is typically self-limited with high 

morbidity but low mortality, the secondary bacterial infection of S. suis serotype 2 can 

substantially increase illness and death (Dang et al., 2014; Lin et al., 2015).  
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Bacterium-viral co-infections are also ubiquitous in farms. For instance, M. 

hyopneumoniae infection in pigs has been found to increase the host susceptibility to PRRSV 

and swine influenza virus infections (Thacker et al., 1999; Yazawa et al., 2004). Moreover, M. 

hyopneumoniae was also found to potentiate the severity and the duration of pneumonia in pigs 

induced by the later PRRSV and swine influenza virus infections (Thacker et al., 1999; Yazawa 

et al., 2004). 

2.1.6 Parasites 

Parasites, another major type of pathogens identified in the swine industry in addition to 

viruses and bacteria, have not been discussed yet. Parasites infections frequently occur in the 

swine industry worldwide but have generally received little attention, presumably because most 

of them seldom cause severe clinical diseases (Roepstorff et al., 2011). However, it is essential to 

control and eliminated parasites infections in the swine industry because many parasites are 

foodborne zoonoses (Djurković‐Djaković et al., 2013). Besides, parasites infections in pigs can 

reduce food utilization and growth rate, resulting in economic losses to the industry. Ascaris 

suum is by far one of the most prevalent pig parasites (Roepstorff et al., 2011). In addition to the 

above concerns, A. suum has been found to compromise the effect of M. hyopneumoniae 

vaccination significantly (Steenhard et al., 2009). M. hyopneumoniae, as mentioned above, can 

result in severe pneumonic lesions and respiratory disease in pigs by themselves and co-

infections with other viruses and bacteria if they are not timely or adequately controlled.    

2.2. Conventional control of diseases 

Therefore, as the swine industry faces disease challenges caused by multiple infectious 

agents, disease prevention and management are essential for both animal and human health, 

animal welfare, and economic productivity. Conventional methods, including strict biosecurity, 
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vaccines, and antimicrobials, are being used to control infectious diseases. However, they are not 

always effective.  

2.2.1 Biosecurity 

Biosecurity can be defined as applying measures aimed to reduce the probability of the 

introduction and transmission of pathogens (Levis, 2011). Numerous factors are involved in 

developing and maintaining external biosecurity that protects the farm from the “threats coming 

from the outside” and internal biosecurity that reduces the spread of pathogens once the farm has 

been infected (Alarcón et al., 2021). For example, physical barriers, rules banning and restricting 

the introduction of certain animals, people, and vehicles are some necessary external biosecurity 

measures (Levis, 2011; Alarcón et al., 2021). In addition, the farm location is also an essential 

part of external biosecurity related to the spatial clustering of infections, as the transmission can 

also occur among neighbours, especially for airborne pathogens (e.g., PRRSV) (Laffan et al., 

2011; Rosendal et al., 2014). Feed and water are also important factors that need to be included 

in external biosecurity as they could also be sources of pathogen introduction (Dee et al., 2016; 

Cochrane et al., 2017; Silva et al., 2018; Alarcón et al., 2021). Management of herd, hygiene of 

facilities, cleaning and disinfection, and experienced workers who know and follow the work 

routines and biosecurity measures are examples of internal biosecurity (Alarcón et al., 2021).  

Nowadays, the swine industry is developing towards high concentration and 

globalization, seen as bigger farms and larger commercial pig populations in fewer hands 

together with an increasing need of movements of pigs, feed, and pork products at local, 

national, and international scales (Alarcón et al., 2021). Within this frame, the emergence and 

introduction of new pathogens into farms and countries currently not affected and can have 

serious and even catastrophic consequences (Alarcón et al., 2021). For example, even with 
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biosecurity in pig farms, the porcine epidemic diarrhea (PED) virus spread from China to the 

United States in 2013 (Stevenson et al., 2013). The PED virus had impacted ∼50% of the United 

States breeding herds within one year, resulting in the deaths of at least seven million piglets 

(Stevenson et al., 2013). More recently, millions of pigs were culled in Asian countries to stop 

the spread of the African swine fever virus that emerged in China in 2018, which was 

devastating to the swine industry (Sánchez-Cordón et al., 2018; Zhou et al., 2018). Therefore, 

effective design of a cost-effective biosecurity program and its continuous improvement are still 

challenging many pig farms due to the gaps in knowledge of epidemiology of different diseases, 

including how diseases are transmitted, their risks and importance, and which measures are 

thought to be more effective and how to evaluate the biosecurity (Alarcón et al., 2021).  

2.2.2 Vaccines 

For diseases that threaten the swine industry, effective vaccination is an essential tool for 

herd immunity and disease control. However, vaccines cannot always protect all animals. There 

are many reasons why vaccines fail, such as the limited knowledge of epidemiology of diseases, 

the continuous change of genetic makeup of viruses, the impact of co-infections, and 

environmental and management causes (e.g. vaccine handling and storage, programmatic 

management, and disease surveillance).  

For instance, as discussed above, PRRSV has caused massive losses to the swine 

industry, and effective vaccines are not yet found, although at least 20 PRRSV vaccines are 

commercially available worldwide (Rowland et al., 2012). Like other RNA viruses, PRRSV are 

constantly evolving to adapt to existing immunity and re-emerging as new variants to cause new 

outbreaks continuously, making it hard to develop effective vaccines (Nan et al., 2017). 

Inactivated virus and modified-live virus are two approaches used for developing PRRS vaccines 
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(Rowland et al., 2012). However, the inactivated virus vaccines are generally not effective 

(Rowland et al., 2012). The modified-live virus vaccines can only effectively protect pigs 

challenged with a genetically similar (homologous) virus and provide little or even no protection 

against heterologous PRRSV isolates that are genetically diverse (Huang and Meng, 2010; 

Murtaugh and Genzow, 2011). The effectiveness of a vaccine against heterologous strains 

largely depends on the antigenic and genetic relatedness of the virus strain to which the 

vaccinated animals were exposed. Therefore, given the high degree of genetic diversity among 

PRRSV, it is unlikely that a vaccine based on a single strain will confer adequate protection 

against the antigenically and genetically diversified PRRSV strains currently circulating in swine 

herds worldwide. The genetic diversity of PRRSV will continue to be the major obstacle for 

PRRS control (Huang and Meng, 2010). Furthermore, the immunosuppressive properties of 

PRRSV to circumvent immune responses can also interfere with vaccine efficacy (Kimman et 

al., 2009). For example, the increased production of interleukin (IL)-10, a potent 

immunosuppressive cytokine that can interact with immune cells, including monocytes and 

lymphocytes, has been observed following PRRSV infection (Thanawongnuwech and Suradhat, 

2010). Some strains of modified-live PRRSV vaccines also induced IL-10 production and 

resulted in inhibition of immune responses in vaccinated pigs (Royaee et al., 2004; 

Thanawongnuwech and Suradhat, 2010). Meanwhile, the practical experience of currently 

licensed modified-live PRRSV vaccines has revealed numerous safety concerns, such as 

shedding of modified-live virus, reversion of live-attenuated vaccines to virulence, and 

recombination between field strains and modified-live virus (Nan et al., 2017). 

Although PCV2 vaccines have high efficacy in reducing associated clinical signs, it is of 

concern whether the current vaccines would be sufficient to eliminate a series of new PCV2 
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variants that have also emerged during the same period (Afghah et al., 2017). The co-infection 

with other pathogens is also a challenge for the efficacy of vaccines. For example, swine 

influenza virus vaccination in the absence of PRRSV significantly reduced pneumonia and viral 

load, but the presence of PRRSV can reduce vaccine efficiency significantly when co-infection 

occurs (Kitikoon et al., 2009). Moreover, the effect of M. hyopneumoniae vaccination has also 

been found to be significantly compromised by the presence of the parasite A. suum (Steenhard 

et al., 2009). 

2.2.3 Antimicrobials 

Antimicrobials, including antibiotics, antivirals, antifungals, and antiparasitics, are 

medicines used to prevent and treat infections in humans, animals, and plants (WHO, 2020). 

Antimicrobials have been used routinely in farm animal production since the 1950s for not only 

prevention (prophylaxis) and treatment of infections but also for controlling the spread of 

infection (metaphylaxis) and improvement of feed efficiency and promotion of animal growth 

(Lekagul et al., 2019). However, antimicrobial resistance (AMR) occurs when pathogens change 

over time and no longer respond to antimicrobials (WHO, 2020). Nowadays, the AMR is 

recognized as a “One Health challenge” (Figure 2) because of the rapid emergence and 

dissemination of drug-resistant pathogens and genes among humans, animals, and the 

environment on a global scale (King et al., 2008; Lammie and Hughes, 2015; Rousham et al., 

2018). This AMR threatens our ability to treat infections, especially the rapid global spread of 

multi- and pan-resistant bacteria (known as “superbugs”) that are not treatable with existing 

antimicrobials (WHO, 2020). In animals, many countries, including the United States, Canada, 

and Australia, have implemented policies and regulations that medically important 

antimicrobials for veterinary use in animals can only be sold by prescription only, and the use of 
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antibiotics for growth promotion has been banned in the European Union since 2006 (Lekagul et 

al., 2019).  

Nevertheless, antimicrobials that have been recognized as critically and highly important 

in humans by WHO are still commonly used for prophylaxis and treatment in the swine industry. 

Penicillins (highly to critically important in the WHO list) and Tetracyclines (highly important in 

the WHO list) are the most used antimicrobials in pigs worldwide due to their cost-effectiveness 

compared to other antimicrobials (Lekagul et al., 2019; WHO, 2019). This continues to raise 

global concerns and requires the swine industry to use antimicrobials with great care by 

employing principles of antimicrobial stewardship and utilizing alternatives where possible 

(Lammie and Hughes, 2015). 

Overall, the impact of infectious diseases and the concerns of using conventional control 

of diseases highlight the potential vulnerability of the swine industry worldwide and the 

importance of managing infectious diseases. With the emergence and re-emergence of difficult-

to-control diseases, conventional methods need to be continuously improved. Meanwhile, 

additional methods need to be explored to improve the cost-effectiveness of preventing and 

controlling infectious diseases in the swine industry.  

2.3. Infection and host immune responses 

 To explore methods for the prevention and control of infectious diseases, it is important 

to have a general understanding of the epidemiology of infectious diseases and host immune 

responses here since simple interventions may break the chain of transmission. In epidemiology, 

infection is defined as the entrance and development of infectious agents in an animal body, 

whether it develops into clinical infection with apparent symptoms or subclinical infection that 

does not produce noticeable symptoms (Barreto et al., 2006). Infectious agents or pathogens, 
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including bacteria, viruses, fungi, parasites, and prions, can be transmitted vertically from an 

infected individual to its offspring or horizontally from an infected organism to a susceptible 

contemporary animal by a variety of mechanisms, including: direct contact transmission with 

infected individuals; indirect contact transmission with inanimate objects, called fomites, that 

become contaminated by pathogens from infected individuals and or reservoirs; vehicle 

transmission of pathogens through water, food, and air; and vector-borne transmission that living 

organisms can carry and transmit pathogens from one host to another (Fèvre et al., 2006). The 

negative consequences and illness caused by pathogens and their toxic products that result from 

infection are defined as infectious diseases (Barreto et al., 2006; Bishop and Woolliams, 2014). 

The outcome of infection in vertebrates largely depends on the immune system to prevent the 

invasion of pathogens into the body and induce efficient immune defence to expel and eliminate 

infective pathogens that have invaded the body.  

 The immune system is comprised of two distinct but interrelated branches: innate and 

adaptive (acquired) immunity. Both branches involve a complex of cellular and humoral 

components that work in concert for defence against the pathogens (Nelson and Williams, 2014; 

Hermesch, 2014).  

2.3.1 Innate immunity 

 The innate immune system is the first line of defence against pathogens. It plays a crucial 

role in maintaining homeostasis, preventing microbe invasion, eliminating a great variety of 

pathogens, and contributing to the activation of the adaptive immune response (Romo et al., 

2016).  

The skin and mucosal surfaces are external barriers in the innate immune system that 

provide physical (stratified epithelial layers with tight junctions), chemical (lysozyme and 
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antimicrobial peptides), and cellular (epithelial cells thickening and cellular hyperplasia) 

effectors to prevent most pathogens from gaining access to the body (Delves and Roitt, 2000; 

Parham, 2014; Romo et al., 2016). Also, immature dendritic cells (Langerhans cells) and 

intraepithelial T lymphocytes found in the epithelial layer are cellular effectors that could 

prevent pathogen invasion, capture antigens, and prevent local infection (Hayday et al., 2001; 

Matsui and Amagai, 2015; Romo et al., 2016).  

When pathogens breach the skin and mucosa barriers, the innate immune system is 

designed to mount immediate and antigen-non-specific cellular and humoral responses within 

minutes (Turvey and Broide, 2010; Hoffmann and Akira, 2013). The cellular responses of the 

innate immunity are provided by a variety of leukocytes (white blood cells), including myeloid 

phagocytic cells and non-specific cytotoxic cells (Janeway, 2001; Abbas et al., 2015; Romo et 

al., 2016). Myeloid phagocytic cells, including monocyte-macrophages, neutrophils, basophils, 

and eosinophils, are professional phagocytes that phagocytose and destroy pathogens and secrete 

immune mediators, such as cytokines, histamine, reactive oxygen or nitrogen species, lysozyme, 

and antimicrobial peptides (Abbas et al., 2015; Romo et al., 2016). Natural killer cells are non-

specific cytotoxic cells, which play an essential role in antiviral defence and immune 

surveillance by secreting cytokines and chemokines and inducing apoptosis of virus-infected 

cells (Caligiuri, 2008). Besides, humoral responses are provided by the complement system, 

cytokines, natural antibodies, and acute phase proteins, which augments cellular defences to 

deliver innate immunity (Turvey and Broide, 2010). The complement system comprises a large 

number of distinct plasma proteins that react with one another to opsonize pathogens (the 

immune process which uses opsonins to tag pathogens for elimination by phagocytes), enhance 

inflammatory responses, and form the membrane attack complex on the cell wall of the bacteria 
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that helps to fight infection (Janeway, 2001). Cytokines, including interferons, interleukins, 

tumour necrosis factors, and transforming growth factors, are small secreted proteins released by 

many cell populations, but the predominant producers are leukocytes, including helper T 

lymphocytes and macrophages (Zhang and An, 2007). Both pro-inflammatory cytokines and 

anti-inflammatory cytokines can mediate the communication between cells and are essential for 

immune cell development, immunoregulation, and immune effector functions (O’Shea et al., 

2002). Natural antibodies and acute phase proteins circulate in the plasma and play crucial roles 

in innate immunity and host defence. The natural antibodies are pre-existent antibodies of the 

immunoglobulin M (IgM) isotype synthesized by B lymphocytes in the absence of pathogens, 

which provide immediate and broad reaction against pathogens (Baumgarth et al., 2005; Romo et 

al., 2016). Acute phase proteins are a class of proteins whose plasma concentrations increase or 

decrease in response to inflammation (Jain et al., 2011). Acute phase proteins are primarily 

synthesized by hepatocytes, which are a part of the acute phase response involved in a complex 

systemic reaction to re-establish homeostasis and promote healing in response to stimuli, 

including infection, stress, and inflammation (Cray et al., 2009).  

Various mechanisms work together in the innate immune system to provide the rapid 

sensing and elimination of pathogens. However, sometimes the innate immunity is insufficient to 

eradicate infection. For example, the overwhelming variability of antigen structures and some 

pathogens have also devised many mechanisms to evade the innate immune system through an 

evolutionary “arms race” with the hosts (Bailey et al., 2013). 

2.3.2 Adaptive (acquired) immunity 

 Regarding the insufficiency of innate immunity, adaptive immunity with specificity and 

memory for any individual agent has evolved in jaw-vertebrates, including all terrestrial 
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vertebrates, to express itself when the infection cannot be controlled or eradicated by the innate 

immune responses (Rolff, 2007; Chaplin, 2010).  

The adaptive immunity takes days or even weeks to be established, which is much longer 

than the innate immune response, but is more specific to individual pathogens and provides 

memory for rapid response in the event of re-exposure to the specific pathogens (Molnar and 

Gair, 2015). The cell-mediated immune response and the humoral immune response are the two 

arms of adaptive immunity carried out by T lymphocytes and B lymphocytes, respectively. 

Cytotoxic T cells are major players in the adaptive cell-mediated immune response, which 

directly kill infected cells by apoptosis and release cytokines to amplify the immune response 

(Janeway, 2001). B lymphocytes are activated and differentiate into antibody-secreting plasma 

cells involved in the humoral immune response (Janeway, 2001). The specificity of the adaptive 

immune response is based on the antigen-specific receptors expressed on the surface of T and B 

lymphocytes (Chaplin, 2010). These antigen-specific receptors are encoded by genes assembled 

by somatic rearrangement of germline gene elements to form millions of different T-cell 

receptors and immunoglobulin (B-cell antigen receptor) genes, each with potentially unique 

specificity for an antigen (Chaplin, 2010). The memory of the adaptive immune system is 

handled by producing long-lived and antigen-specific T and B memory cells that persist in a 

dormant state but can re-express effector functions rapidly after re-encountering their specific 

antigens (Chaplin, 2010; Molnar and Gair, 2015). 

Although the innate and adaptive immune systems are described separately here, they 

communicate and cooperate to enhance the chance of eliminating a great variety of pathogens. 

The innate immune system is not just a primitive and first-line defence but also an “ingenious 

doorbell” that awakens the adaptive immune response (Yatim and Lakkis, 2015). The innate 
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immune system contains antigen-presenting cells (APCs, e.g., macrophages and dendritic cells) 

that detect and engulf pathogens and then inform the adaptive immune response about the 

presence of antigens (Molnar and Gair, 2015). After processing by APCs, the antigens are loaded 

onto major histocompatibility complex (MHC) class I in the endoplasmic reticulum or MHC 

class II in the specialized vesicular compartment and then are transported to the cell surface for 

antigen presentation (Molnar and Gair, 2015). Naïve CD8+ and CD4+ cells bind antigen-

presenting cells via the antigen-embedded MHC class I and MHC class II molecules on cell 

surfaces and are simulated to become cytotoxic T lymphocytes and helper T lymphocytes, 

respectively (Molnar and Gair, 2015). Helper T lymphocytes are essential cells for both cell-

mediated and humoral adaptive immune responses, which comprise two major populations, TH1 

and TH2 (Janeway, 2001). TH1 cells are involved in the cell-mediated immune response as they 

help the activity of cytotoxic T cells and secrete cytokines to inform more target cells about the 

pathogenic threat (Janeway, 2001; Abbas et al., 2015). TH2 cells are involved in the humoral 

immune response and help activate B lymphocytes to defend against pathogens via antibody 

secretion (Janeway, 2001; Abbas et al., 2015). The adaptive immune system, in turn, amplifies 

its responses by recruiting the components of the innate immune response for a fully effective 

immune response.   

2.3.3 Immune system and performance 

 A well-functioning and tightly regulated immune system plays essential roles in 

maintaining performance and preventing death from the infection by investing nutrient resources 

appropriately in immune defences and optimizing the competing demands for investment in 

other body functions when infection occurs (Calder, 2013; McDade, 2005). In the presence of 

infection, the immune system becomes increasingly active, which results in a significant increase 
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in the demand for nutrients (Calder, 2013). For example, amino acids are required to synthesise 

cytokines and antibodies and play important roles in the proliferation, metabolism of immune 

cells (Li et al., 2007). Therefore, adequate nutritional status is necessary for the normal 

functioning of various components of the immune system (Coop and Kyriazakis, 2001; Nelson 

and Williams, 2014). Any changes in resource demands by the immune system can create 

significant differences in the level of fitness and performance of an animal. Ecological 

immunologists proposed that the energetic cost associated with immune responses requires a 

trade-off among other physiological processes that are energy demanding (Ayres and Schneider, 

2012). In addition to the endogenous energy and nutrient pools of an animal, diet is a primary 

exogenous source of energy to meet these demands. Although pigs are raised in controlled and 

nutrient-rich environments with a well-formulated diet, the course of infection could adversely 

affect nutritional status and cause undernutrition by infection-induced cachexia with the loss of 

appetite and the reduction of feed intake (Exton, 1997; Adamo et al., 2010, Calder, 2013). 

Moreover, the infection can further impair nutritional status by damaging the intestinal wall, 

causing diarrhea or vomiting, which results in nutrient malabsorption and loss (Calder, 2013). 

When nutrient resources to the animal are limited, a trade-off is expected to occur 

between mounting an immune response and other body functions, such as growth, reproduction, 

and thermoregulation (Lochmiller and Deerenberg, 2000; McDade, 2005; Doeschl-Wilson et al., 

2009; Rauw, 2012). The infection can become chronic if it is not eliminated quickly or 

effectively due to immunodeficiency in which the ability of immune system to fight against 

pathogens is compromised by the intrinsic defects in the immune system (primary 

immunodeficiency), or extrinsic factors (secondary immunodeficiency), such as limited nutrient 

resources in infected pigs (Bourke et al., 2016). In addition, the immunosuppressive properties of 

https://en.wikipedia.org/wiki/Immune_system
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PRRSV, such as the induction of lymphopenia and apoptosis, increased production of 

immunosuppressive cytokine IL-10, interferences with the induction of proinflammatory 

response and antigen presentation, etc., can result in persistent infection and secondary 

immunodeficiency (Kimman et al., 2009). Therefore, malnutrition may result from a prolonged 

infection that further compromises the immune system, leading to a more severe disease state 

and increased susceptibility to other pathogens (Nelson and Williams, 2007; Hine et al., 2014). 

In turn, the infection could further influence nutritional status by cachexia, reduced nutrient 

absorption, losses of both endogenous and exogenous nutrients, and increased nutrient 

requirements for immune responses (Calder and Jackson, 2000; Calder, 2013). Thus, 

malnutrition, immunodeficiency, and increased susceptibility to infectious diseases reinforce one 

another and are locked into a cyclical relationship by a bidirectional interaction (Calder and 

Jackson, 2000; Nelson and Williams, 2007). Such susceptible animals are expected to show poor 

performance or even death due to reaching a cachectic state. 

Conversely, some animals can show a relatively undepressed performance in the face of 

infection or even maintain a healthy status in the presence of pathogens by employing 

appropriate immune responses and biological strategies. Advances in genetics and genomics 

have highlighted the potential for genetic control strategies to manage the effect of infectious 

disease and maintain high health and or performance level in pigs (Doeschl-Wilson and 

Kyriazakis, 2012). Disease resistance, tolerance, and resilience have been discussed as 

alternative host defence strategies for coping with pathogens and maintaining high health and or 

performance in response to infectious challenge, which could be tackled by genetic improvement 

(Doeschl-Wilson and Kyriazakis, 2012). 

2.4. Disease resistance 
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 Host disease resistance has been invariably discussed as a high priority trait that can be 

further investigated for infectious disease control. It is apparent that different studies and authors 

have different interpretations of the term “disease resistance” (Bishop, 2012). Of note, a “narrow 

sense” and a “broad sense” of disease resistance have been commonly used to define resistance 

from a livestock viewpoint. The following two sections describes the research in pigs regarding 

the “narrow sense” and the “broad sense” definitions of disease resistance, respectively.  

2.4.1 A “narrow sense” definition of disease resistance: complete resistance  

 Complete resistance is regarded as a “narrow sense” definition of disease resistance 

because it describes a special situation where an animal has the ability to maintain completely 

healthy status when challenged by infection. The most apparent cause of complete resistance is 

the non-adhesion of the pathogen when the target tissue or cells of an animal do not express the 

receptors, which stops the first step of establishing the infection (Plastow, 2016). Therefore, 

complete resistance is the most cost-effective mechanism of preventing infection from the host’s 

perspective. There is no need to increase energy expenditure on the immune system as resistant 

animals can maintain a healthy status and avoid infection when exposed to pathogens (Plastow, 

2016; Burkard et al., 2017).  

 In pigs, complete resistance has been identified to ETEC expressing F18 (ETEC F18) 

fimbriae. Infection of ETEC F18 results in post-weaning diarrhea in susceptible pigs 

characterized by sudden death, diarrhea, dehydration, and growth retardation in surviving piglets, 

which are economically important diseases in pig production worldwide (Rhouma et al., 2017). 

A single nucleotide polymorphism (SNP) at bp 307 (G/A) in the fucosyltransferase gene (FUT1) 

was found to be associated with the complete resistance to infection with ETEC F18 (Meijerink 

et al., 1997, 2000; Bao et al., 2012). Pigs that had homozygous resistant alleles were completely 
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resistant to ETEC F18 due to the absence of receptors for attachment of the bacterium on the 

small intestinal epithelium (Meijerink et al., 1997, 2000; Bao et al., 2012).  

 In addition to the inherited ability of being completely resistant to ETEC, genome editing 

technology has been emerging to provide opportunities to create resistance to other pathogens in 

pigs. The protein encoded by the cluster of differentiation 163 (CD163) gene has been identified 

as a definitive fusion receptor for PRRSV expressed on cells of the macrophage lineage (Calvert 

et al., 2007; Breedam et al., 2010; Welch and Calvert, 2010; Whitworth et al., 2016; Yang and 

Wu, 2018). Therefore, PRRSV-resistance pigs have been explored using CRISPR/Cas9 to 

modify the CD163 gene (Wells et al., 2016; Whitworth et al., 2016). CRISPR/Cas9 originally 

known as an adaptive immune system in bacteria and archaea to defend against the invasion of 

foreign genetic elements through DNA or RNA interference, has been adapted for mammalian 

gene editing (Gasiunas et al., 2012; Jinek et al., 2012; Wiedenheft et al., 2012). Among the 

CD163-modified pigs, those with CD163-null phenotype macrophages generated by the 

knockout of the CD163 gene were completely resistant to several isolates of both type 1 and type 

2 PRRSV (Wells et al., 2016; Whitworth et al., 2016). However, as CD163 plays multiple 

biological functions, including the clearance of hemoglobin in blood plasma and participation in 

anti-inflammation, the knockout of the CD163 gene may have a negative impact on the animal 

(Onofre et al., 2009; Gorp et al., 2010). Therefore, a precision modification was used to only 

delete Exon 7 of the CD163 gene, encoding the scavenger receptor cysteine-rich domain 5 

(SRCR5), whereby the SRCR5 is an interaction site for PRRSV infection with no other 

biological functions identified (Wells et al., 2016; Burkar et al., 2017). Their results indicated 

that pigs lacking the CD163 SRCR5 domain were fully resistant to both type 1 and type 2 

PRRSV genotypes, and no adverse effects had been identified on growth rate or immune cell 

https://www.frontiersin.org/articles/10.3389/fgene.2018.00360/full#B35
https://www.frontiersin.org/articles/10.3389/fgene.2018.00360/full#B48
https://www.frontiersin.org/articles/10.3389/fgene.2018.00360/full#B121
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counts of the genome-edited pigs (Burkard et al., 2017). 

Selective breeding or genomic editing for complete resistance to infection seems a 

promising way to maintain an animal’s health status and avoid infection. However, such 

complete resistance may only be present in the face of a single type or an isolate/strain of the 

infectious agent, which requires further exploration for co-infections caused by multiple 

pathogens in the swine industry.  

Regarding the multiple pathogens in the swine industry, Xu et al. (2020) created the 

CD163 SRCR5 domain and the porcine aminopeptidase N (pAPN) double-knockout pigs to 

PRRSV and transmissible gastroenteritis virus (TGEV) infections. In addition to PRRSV, TGEV 

is globally distributed and causes tremendous economic losses in pork production characterized 

by vomiting, severe diarrhea, dehydration, and a high mortality rate (~100%) of infected piglets 

under the age of 14 days (Xu et al., 2020). The function of the CD163 SRCR5 domain in PRRSV 

infection has been discussed above. The pAPN protein on the surface of small intestinal 

epithelial cells is the receptor for binding TGEV glycoproteins and mediating infection (Delmas 

et al., 1992). pAPN knockout pigs have already been identified to be completely resistant to 

TGEV (Luo et al., 2019; Whitworth et al., 2019). The CD163 SRCR5 domain and pAPN double-

knockout pigs were resistant to both PRRSV and TGEV, and the genome-edited pigs reproduced 

and produced meat at the same level as the control pigs (Xu et al., 2020).  

Overall, given the high efficiency and low cost of genome editing tools, particularly 

CRISPR/Cas9, genome editing holds vast promise for the future production of animals resistant 

to diseases, although its efficacy for more complex situations in the swine industry with other 

pathogens will need to be further explored (Ruan et al., 2017; Proudfoot et al., 2019). The two 

major hurdles in implementing genome-editing technology are consumer acceptance and the 
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regulatory framework (Proudfoot et al., 2019). Approval of genome-edited pigs for human 

consumption relies on national and multinational legislation, which is currently still at an early 

stage (Proudfoot et al., 2019).  

2.4.2 A “broad sense” definition of disease resistance 

 Back to the strategy of selective breeding for resistance, since naturally occurring 

complete resistance is not commonly identified, the term “disease resistance” is often loosely 

used. Therefore, the term “disease resistance” (refers to the “broad sense” definition from now 

on in the thesis) is commonly defined as an animal’s ability to prevent pathogen entry and to 

control the pathogen lifecycle within a host (Bishop and Stear, 2003; Bishop and Morris, 2007; 

Råberg et al., 2007, 2009; Bishop, 2012). In addition to the barriers to pathogen entry, disease 

resistant animals may employ active innate and adaptive immune responses which work by 

detection, neutralization, or destruction of pathogens to restrict the proliferation of pathogens and 

result in a reduction of pathogen burden (Bishop and Woolliams, 2014; Glass, 2012). Therefore, 

improving disease resistance could reduce disease prevalence or may have the potential to lead to 

disease eradication. Here, disease resistance has been recognized to be a relative rather than an 

absolute status as is the case for the “narrow sense” definition (section 2.4.1). In order to 

compare the level of disease resistance among animals, pathogen burden, including fecal egg 

count, viremia (viral load), or bacterial load, is often used to measure resistance for animals 

infected with parasites, viruses, or bacteria, respectively (Bishop, 2012). For example, the viral 

load for PRRSV infection in pigs was measured using a cumulative statistic quantification of 

repeated measures of viremia throughout the infection (Boddicker et al., 2012). Therefore, more 

PRRS resistant animals were expected to have a lower viral load based on cumulative measures.  

 Numerous studies have demonstrated host genetic variation for disease resistance. In 
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pigs, a major focus has been on PRRSV as it is the causative agent of the major endemic disease 

globally (see Section 2.1.1). Differences in PRRSV disease resistance were firstly found among 

breeds. A Hampshire × Duroc synthetic line was found to have higher viremia at 4, 7, and 14 dpi 

with PRRSV than a Yorkshire × Landrace line (Petry et al., 2005). Subsequently, higher PRRSV 

viremia was observed in Pietrain pigs than Yorkshire pigs (Doeschl-Wilson et al., 2009). These 

results together demonstrated the existence of a genetic basis of the disease resistance to PRRSV 

infection at a breed level. More studies were then conducted to further explore the variation of 

disease resistance among individuals. Using commercial crossbred pigs under a nursery PRRSV 

challenge model, Boddicker et al. (2012) and Hess et al. (2016) measured the overall viremia 

from 0 to 21 dpi for the PRRSV isolates of KS06 and NVSL for each pig and found that the viral 

loads (cumulative measures of viremia from 0 to 21 dpi) were moderately heritable (NVSL: 0.31 

± 0.06; KS06: 0.51 ± 0.09). They also identified negative genetic correlations between viral load 

and weight gain for NVSL (-0.74 ± 0.10) and KS06 (− 0.52 ± 0.06), suggesting that disease 

resistant pigs also tend to grow faster than susceptible pigs when challenged with PRRSV (Hess 

et al., 2016; Dekkers et al., 2017).  

Genome-wide association studies (GWAS) found a region on swine chromosome 4 

(SSC4) was associated with both viral load and weight gain following PRRSV infection 

(Boddicker et al., 2012). Multiple candidate genes within this region encode a group of guanylate 

binding proteins (GBPs) that were known to be involved in the innate immune response 

(Boddicker et al., 2012). A SNP, WUR10000125 (WUR), was found to explain 13.2% and 9.1% 

of the genetic variance for viral load and growth, respectively (Boddicker et al., 2012, 2014; 

Hess et al., 2016). Further studies about this region found the truncated GBP5 was associated 

with the AA genotype for the WUR locus, which is an unfavourable genotype and may reduce an 
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animal’s ability to inhibit viral entry and replication (Koltes et al., 2015; Schroyen et al., 2016). 

In addition to growing pigs, the genetic basis for disease resistance has also been observed by 

assessing the viral load in the thymus of fetuses from pregnant gilts challenged with PRRSV and 

the viral load in the endometrium of challenged pregnant gilts (Yang et al., 2016). Overall, these 

results unravel the genetic basis of disease resistance in response to the PRRSV challenge and 

provide an opportunity for genetic improvement of disease resistance in the pig industry. 

Although the animals are not completely resistant in this case, it may still help to select pigs that 

are less susceptible to PRRSV. Meanwhile, the low pathogen burden could also benefit other 

population members by reducing the transmission of infection (Bishop and Woolliams, 2014).  

 Before applying selection for disease resistance in practice, one aspect that needs to be 

considered is the potential for increasing host disease resistance to fuel the arms race between 

host and pathogen and stimulate pathogen evolution toward higher virulence and multiple ways 

of evasion from the host immune system (Doeschl-Wilson and Kyriazakis, 2012). Moreover, 

studies of disease resistance are often pathogen-specific. The genetic basis for an animal to be 

disease resistant under the challenge caused by multiple pathogens in the field remains mostly 

unknown (Doeschl-Wilson and Kyriazakis, 2012). It has been suggested that selecting pigs to be 

more disease resistant to a specific pathogen may have some serious drawbacks for their health. 

For example, Hine et al. (2014) indicated that the selection of animals based on their disease 

resistance to a specific pathogen might inadvertently increase the susceptibility to other 

pathogens, which may involve the resource allocation and trade-off between the cell-mediated 

and humoral-mediated immune responses. An inverse relationship between antibody production 

and macrophage activity was identified in mice selected for resistance to Leishmania tropica and 

also in cattle selected for resistance to Brucella abortus (Hale and Howard, 1981; Price et al., 
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1990). Subsequently, cell-mediated and antibody-mediated immune responses were found to 

have a negative genetic correlation in dairy cattle (Thompson-Crispi et al., 2012). The selection 

of resistant animals with a strong humoral-mediated immune response to extracellular pathogens 

might inadvertently increase their susceptibility to intracellular pathogens controlled by cell-

mediated immune responses (Thompson-Crispi et al., 2012).  

2.5. Disease tolerance 

 Concerning the potential for fueling the arms race between host and pathogen with the 

selection of “broad sense” disease resistance and the limitation of disease resistance mechanisms 

which are often pathogen-specific, disease tolerance is proposed as an alternative host defence 

strategy for coping with infectious challenge that could be targeted for genetic improvement. In 

contrast to disease resistance, disease tolerance is defined as an animal’s ability to mitigate the 

detrimental impact and possible damages to the host caused by persistent infection and or 

immunopathology under a given pathogen burden but does not exert any direct negative effect on 

pathogens (Ayres and Schneider, 2012; Bishop, 2012; Doeschl-Wilson and Kyriazakis, 2012; 

Nakov et al., 2019). According to the definition, disease tolerance mechanisms may avoid 

stimulating pathogen evolution toward higher virulence and are more host than pathogen specific 

and therefore do not necessarily exert a direct effect on pathogens. Improving disease tolerance 

is unlikely to lead to disease eradication as disease tolerant animals can harbour high pathogen 

burden without showing obvious symptoms or significant drops of performance and productivity. 

These disease tolerant animals will act as “super-spreaders” and inadvertently infect susceptible 

animals on the farm, national, and international scales through direct and indirect contacts, 

movements of pigs, feed, and pork products or even infect humans if there are zoonotic 

pathogens. However, it may be more beneficial to improve disease tolerance rather than 
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resistance where individuals are exposed to multiple pathogens (e.g. in commercial pig farms), 

where high risk of pathogen evolution exists, and where disease eradication has proven difficult 

with the present of asymptomatic carriers (Doeschl-Wilson and Kyriazakis, 2012). 

2.5.1 Possible biological and immunological mechanisms involved in disease tolerance 

 Since “tolerance” has also been used to describe the core property of the immune system, 

it is essential to not confuse “disease tolerance” with the equally important concept of “immune 

tolerance” (Soares et al., 2017; King and Divangahi, 2019). Although some of the mechanisms 

regulating immune tolerance and disease tolerance may be functionally related, these two 

mechanisms are distinct (Soares et al., 2017). Immune tolerance is an active process that 

eliminates or suppresses the activation and proliferation of antigen-specific lymphocytes based 

on immunoregulatory mechanisms (Soares et al., 2017). Therefore, immune tolerance plays a 

vital role in the immune discrimination between self and non-self and the regulation of host-

commensal interactions (Soares et al., 2017; King and Divangahi, 2019). Current understanding 

of disease tolerance is limited but seems to revolve around evolutionarily conserved stress and 

damage responses that confer tissue damage control to maintain homeostasis and functional 

integrity of tissues in the infected host (Figure 3) (Soares et al., 2014, 2017; Shourian and 

Qureshi, 2019).  

Stress responses emerged at an early stage of evolution as the means to provide 

adaptation and preserve host homeostasis to environmental changes (Soares et al., 2017). In the 

face of persistent infection, stress responses are triggered through the engagement of stress 

sensors that monitor the disturbance imposed on host cells, such as microbial toxins, hyperoxia 

and hypoxia, oxidative stress, osmotic stress, and metabolic stress caused by infection and 

aberrant immune responses (Soares et al., 2014). Once these parameters of stress change beyond 
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a certain threshold, stress sensors set off signal transduction pathways to alert cells and to trigger 

metabolic adaptation, which preserves core cellular functions at the expense of accessory ones 

while preventing macromolecular and organelle damage in host cells (Kültz, 2005; Soares et al., 

2017).  

Stress responses and metabolic adaption are sometimes insufficient to prevent the stress 

from causing cellular damage when the infection continuously persists in strength and time. 

Persistent infection could lead to cellular damage, including macromolecular damage of DNA, 

proteins, lipids, and eventually, organelles caused by both pathogens and immunopathology 

(Medzhitov et al., 2012; Soares et al., 2017). Therefore, the corresponding damage responses are 

triggered to repair the damage and maintain essential cellular functions at the expense of 

accessory ones (Soares et al., 2014). Meanwhile, tissue damage control is activated by stress and 

damage responses, which work through various mechanisms to reinforce the epithelial barrier, 

neutralize pathogen toxin and virulence factors, and regulate the intensity and duration of the 

host immune and inflammatory responses to establish disease tolerance (Medzhitov et al., 2012; 

Soares et al., 2014, 2017). Although the disease tolerance mechanisms cannot control the 

pathogen burden in an infected host, a high level of tolerance may be sufficient for the host to 

prevent disruptions of physiological functions and eventually establish a state of persistent but 

asymptomatic infection (Shourian and Qureshi, 2019). 

2.5.2 Quantification of disease tolerance 

The quantification of disease tolerance is originated from the ecology term of reaction 

norm, which describes the pattern of phenotypic expression of a given genotype across a range of 

environments (Simms, 2000). Therefore, disease tolerance has been quantitatively defined as the 

change in host performance (e.g. growth rate, feed intake) with respect to the change in within-
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host pathogen burden (Simms, 2000; Schneider and Ayres, 2008; Ayres and Schneider, 2012; 

Doeschl-Wilson et al., 2012; Mulder and Rashidi, 2017). Although animal disease tolerance is 

defined at the individual level, monitoring and repeat measuring of animal performance and 

pathogen burden over infection on an individual level are laborious and costly. In addition, the 

animal performance and pathogen burden trajectories on an individual level are not always a 

linear pattern as there can be multiple infection stages involved over the infection (e.g. pathogens 

proliferate, recede, or rebound; the host gets sick, recovers or the infection becomes chronic). 

Empirical tolerance estimates based on a group of related individuals (e.g. breed, line, or 

contemporary group) had been commonly used for practical reasons (Simms and Triplett, 1994; 

Mauricio et al., 1997; Råberg et al., 2007; Kause, 2011). In particular, such group disease 

tolerance has been usually estimated using regression analysis, where performance measures of 

infected group members are regressed against their respective pathogen burden at a given post-

infection time point, and the slope is regarded as the estimate of disease tolerance (Simms and 

Triplett, 1994; Mauricio et al., 1997; Råberg et al., 2007; Kause, 2011; Lough et al., 2017, 2018).  

The estimate of group disease tolerance is attractive for practical reasons and has 

provided valuable evidence on the existence of genetic variation in disease tolerance. However, 

Doeschl-Wilson et al. (2012) identified three significant issues that may render group disease 

tolerance not ideal for pig breeding programs using field data. Firstly, the estimate of group 

disease tolerance relies on the assumption that all animals have been infected with the same dose 

and type of pathogens at the same time, which is unlikely to be true for pigs in commercial farms 

(Bishop and Woolliams, 2010; Doeschl-Wilson et al., 2012). Secondly, the phenotypes, both 

animal performance and pathogen burden for group tolerance, are cross-sectional measures 

(Doeschl-Wilson et al., 2012). In other words, these phenotypes are taken at one time point 
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during the infection, which may poorly represent the overall impact of infection on host 

performance over the entire time course of infection (Ayres and Schneider, 2012; Doeschl-

Wilson et al., 2012). Finally, the major drawback of group disease tolerance from an animal 

breeding perspective is the within-group variation cannot be exploited, which could limit 

selection accuracy (Doeschl-Wilson et al., 2012).  

2.6. Disease resilience 

There is considerable debate on the relative utility of disease resistance and disease 

tolerance. Both disease resistance and disease tolerance have benefits and concerns for different 

scenarios as discussed above. Uncoupling disease resistance and tolerance may be vital as they 

differ in pathogens prevalence and evolution and, consequently, on breeding programs (Guy et 

al., 2012). However, explicit selection for disease resistance and tolerance is very difficult and 

has failed in many studies, as it would require extensive routine data recording for pathogen 

burden and animal performance in response to infection, leading to considerable investment for 

breeding companies (Knap and Doeschl-Wilson, 2020). Regarding this challenge, recent studies 

proposed to focus on disease resilience, a combination of disease resistance and tolerance, as a 

practical breeding goal trait rather than explicit selection for these two components traits (Mulder 

and Rashidi, 2017; Knap and Doeschl-Wilson, 2020). With the contribution of both disease 

resistance and tolerance, disease resilience is defined as an animal’s ability to maintain a high 

level of performance and productivity in the face of disease challenge that can be caused by 

multiple pathogens (Albers et al., 1987). Studies of disease resilience focus more on reducing the 

impact of infection on performance and productivity regardless of uncoupling disease resistance 

and tolerance. Therefore, the effect of disease resilience on infection itself or the pathogen load 

remains unknown (Hermesch, 2014).  
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2.6.1 Exploring disease resilience phenotypes from production traits 

In the context of commercial farms, production traits are economically important for the 

swine industry and disease resilience is commonly referred to as a relatively undepressed 

expression of production potential. Therefore, it has been measured as deviation of production 

traits in within-host longitudinal data series (Colditz and Hine, 2016; Friggens et al., 2017; Knap 

and Doeschl-Wilson, 2020). In this case, more resilient animals are expected to show smaller 

deviations compared to less resilient animals, because they are less influenced by disturbances 

caused by the infection (Berghof et al., 2019). For example, body weight, wool growth, and wool 

fibre diameter were recorded in Merino sheep with varying intervals on uninfected, infected, and 

recovered occasions from infection by the parasite Haemonchus contortus and the deviations of 

these traits within each host were used as phenotypes of disease resilience to measure the 

depression and recovery of productivity due to infection (Albers et al., 1987). However, the 

heritabilities of these traits were too low to make tangible genetic improvement (Albers et al., 

1987). In dairy cows, the daily milk yield of each animal is the longitudinal data recorded by 

automatic milking systems. The resilience phenotype measured as the variance of milk yield of 

an individual cow per lactation was moderately heritable (0.10 to 0.24) and genetically correlated 

(-0.22 to -0.66) to udder health, ketosis, and longevity (Elgersma et al., 2018; Poppe et al., 2020). 

Multiple traits developed based on the deviation of body weights over time from an individual 

were investigated as resilience phenotypes in layer chickens, and these traits were moderately 

heritable with heritability estimates ranged between 0.09 and 0.11 (Berghof et al., 2019). In pigs, 

individual daily feed intake data are longitudinal data that can be automatically collected by the 

electronic feeding systems. The variabilities of daily feed intake and feed intake duration over 

time for each finishing pig in the same polymicrobial challenge model established for studies of 
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this thesis were estimated to be heritable (0.08 to 0.21 and 0.23 to 0.26, respectively) and 

genetically correlated with mortality and the standardized number of treatment events (0.12 to 

0.62) (Putz et al., 2019; Cheng et al., 2020).  

In addition, phenotypes obtained based on longitudinal data (e.g. growth rate or average 

daily gain based on body weights; treatment rate or incidence based on medicine records) and 

one-time measures of production traits (e.g. carcass traits) can also be used as resilience 

phenotypes. More resilient animals are expected to show higher productivity, for example, 

higher growth rate with lower treatment incidence compared to less resilient animals in the 

contemporary group. For instance, disease resilient sheep to nematode parasite challenge were 

selected based on the age when a first post-weaning anthelmintic treatment (age-at-first-drench) 

was required to maintain acceptable growth, which increased the average age-at-first-drench and 

the 6-month live weight, and decreased the breech fleece fecal soiling (Morris et al., 2010). In 

pigs, Cheng et al. (2020) analyzed many production traits in response to the same polymicrobial 

challenge describe here in Chapter 3, such as average daily gain, feed conversion ratio, carcass 

weight, lean yield, etc. and indicated the potential of further developing them as resilience 

phenotypes.  

2.6.2 Immune traits as phenotypes of resilience 

Immunocompetence defined as the ability of the body to produce effective and 

appropriate immune responses when exposed to a variety of pathogens, has been hypothesized to 

be closely correlated with both disease severity (related to disease resistance) and tissue damage 

(related to disease tolerance), which may be a key player in maintaining an animal’s performance 

and productivity (disease resilience) in response to disease challenge (Wilkie and Mallard, 1999; 

Hine et al., 2014). Accordingly, multiple immune traits, including antibody titers and immune 
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cell counts, have also been investigated as resilience phenotypes in several studies (Wilkie and 

Mallard, 1999; Clapperton et al., 2008, 2009; Flori et al., 2011; Guy et al., 2019; Chen et al., 

2020). Many innate and adaptive immune traits were demonstrated to be genetically controlled in 

pigs. For example, peripheral blood mononuclear leucocytes (PBML) of pigs challenged on low 

health status farms for 60 days were moderately to highly heritable (0.18 to 0.71) (Clapperton et 

al., 2008). Furthermore, negative genetic correlations of some PBML subsets with the daily 

weight gain of pigs measured during the challenge were identified, indicating that improved 

performance was associated with decreased values for PBML traits in response to the challenge 

(Clapperton et al., 2008, 2009). The results of these studies indicated that the changes of immune 

traits (PBML) in response to infection have the potential to be used as phenotypes of disease 

resilience and are able to capture the genetic variation to make genetic improvement of disease 

resilience.  

Although production traits are economically important in the swine industry and they 

have been previously used as phenotypes for disease resilience, they can only be obtained in 

commercial farms when the disease challenge is present, the same problem therefore occurs as 

for pathogen load although it may not be the priority target for disease resilience. Therefore, the 

phenotypes that can be collected at early ages and even before the challenge from the nucleus 

farm where selection takes place are of particular interest as they may have the potential to be 

developed as indicators and or predictors of disease resilience in commercial pigs.  

Multiple immune traits in response to vaccination or collected from healthy animals were 

found to be heritable and genetically correlated with animal performance in response to infection 

later in life. A broad range of 54 immune traits involved in innate immunity and adaptive 

immunity were analyzed for pigs vaccinated against Mycoplasma hyopneumoniae, and thirty of 
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them were highly heritable with heritability estimates higher than 0.4 (Flori et al., 2011). 

Immunoglobulin M (IgM) and IgG natural antibodies are essential parts of the innate immune 

system, and their titers measured from healthy pigs were estimated to be moderately heritable 

(0.12 to 0.53) (Chen et al., 2020). Furthermore, the IgG natural antibody titer of healthy pigs was 

found to have positive genetic correlations (0.18 to 0.47) with the variability of daily feed intake 

duration for an animal after exposure to the same polymicrobial challenge established for studies 

of this thesis (Chen et al., 2020). These studies further indicated that immune traits collected 

before infection have the potential to be used as cost-effective indicator traits of disease 

resilience because these traits can be directly collected from high-health nucleus breeding herds 

for the selection of disease resilience.   

2.6.3 Complete blood count: a practical measure of immune traits 

Since immune traits collected before and after infection may have the potential to be 

further developed as indicator traits and phenotypes of disease resilience in pigs, respectively, 

there is a need to further explore the most cost-effective and practical method to measure 

immune traits that can be applied in the swine industry. The complete blood count (CBC) is a 

group of flow cytometry-based tests that provide an automatic measure of cells in blood samples, 

including the concentrations and relative proportions of leukocytes that play multiple essential 

roles in the immune system (George-Gay and Parker, 2003). It is a relatively inexpensive, robust, 

and routinely used blood test in veterinary laboratories to evaluate overall health and detect 

disorders, which may have the potential to be used as a practical measure of immune traits for 

the selection of disease resilience in the swine industry. 

The CBC analyzer uses light scattering, differential white blood cell (leukocyte) lysis, 

myeloperoxidase staining to determine white blood cell parameters, including the concentration 
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and relative proportions of total white blood cells, neutrophils, lymphocytes, eosinophils, and 

basophils (Harris et al., 2005). A colorimetric method is used by the CBC analyzer for 

hemoglobin analysis, and the light scattering is used for red blood cell (erythrocyte) and platelet 

analyses to quantify the hemoglobin concentration of the red blood cell, and concentration and 

volume of red blood cells and platelets (Harris et al., 2005).  

The CBC traits measured from an individual should be in a normal range identified from 

the healthy population when there are no disease or perturbation challenges. Therefore, when the 

CBC traits are out of the normal range, either higher or lower than the normal range may provide 

us with information about the animal’s diagnosis, prognosis, response to infection and stress, and 

recovery (George-Gay and Parker, 2003). Although CBC values outside the normal range can be 

from many sources, infection and inflammation found in animals are the most significant reasons 

for the increases of white blood cell traits. Significant increases in white blood cell traits can be 

caused by vasodilation, a manifestation of inflammation that increases blood flow to the 

infection areas, bringing nutrients and large amounts of white blood cells to defend against 

pathogens (George-Gay and Parker, 2003). Moreover, white blood cells also release cytokines to 

recruit more white blood cells to the area to reinforce the inflammatory response to defend 

against pathogens effectively (George-Gay and Parker, 2003). The primary function of red blood 

cells is to carry oxygen in the lungs to the cells of the body and transport carbon dioxide from the 

cells to the lungs for excretion (Diez-Silva et al., 2010). Besides, red blood cells carry the 

majority of iron of the body, which is an essential nutrient for both humans and pathogenic 

microbes (Cassat and Skaar, 2013). Hemoglobin is the iron-containing oxygen-transport 

metalloprotein in red blood cells that plays an essential role in the functions of red blood cells. 

The levels of red blood cell indices, including red blood cell concentration, hemoglobin 
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concentration, and hematocrit (the volume percentage of packed red blood cells in blood), may 

increase or decrease due to multiple and complex reasons. However, under the disease challenge, 

a significant decrease of red blood cell indices is likely caused by the challenge of bacterial 

pathogens, which could damage circulating blood cells and accelerate hemolysis for iron to 

support bacterial cellular processes of respiration and replication (Barrett-Connor, 1972; Kent, 

1994; Viana, 2011; Cassat and Skaar, 2013). Although hemostasis is the primary function of 

platelets, they also work as important immune cells in both innate and adaptive immune response 

by secreting mediators and interacting with vascular endothelial cells and leukocytes 

(Tamagawa-Mineoka, 2015; Hottz et al., 2018). A transient increase in platelet concentration can 

be observed as a response to infection (George-Gay and Parker, 2003). 

To date, many studies of immune traits and the relationships between immune traits and 

disease responses only focused on the immune traits collected at a specific time point, for 

example, before or after the challenge, under healthy or unhealthy conditions (Section 2.6.2). 

Such results are a single “snap-shot” and may be one-sided and confuse the understanding of the 

immunological mechanisms of resilience because the correlation between immune traits and 

performance can be either positive or negative depending on the sampling time and the health 

status of animals. In a study of pig responses to disease challenge with the protozoan pathogen 

Sarcocystis miescheriana, longitudinal CBC data were measured at four different time points 

before and after the challenge for genetic analyses of disease response (Reiner et al., 2008). 

Although this study only focused on a specific pathogen challenge in pigs, it indicated the 

potential of using longitudinal CBC data collected at different time points and health conditions, 

for example, healthy stage, acute disease stage, and recovery or chronic disease stage, for further 

genetic studies of disease resilience.  
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Overall, CBC provides a description of circulating blood cells that play essential roles in 

immune responses, which can be a practical measure of immune traits. Many studies have 

indicated the value of CBC traits in predicting cancer, heart diseases, and neonatal sepsis in 

humans (Ottolini et al., 2003; Spell et al., 2004; Anderson et al., 2007; Hornik et al., 2012; 

Lassale et al., 2018). However, little has been known about their value and usage as indicators 

and or phenotypes of disease resilience in pigs. 

2.7. Summary 

Hence, CBC is an excellent candidate for a practical measure of immune traits and may 

have the potential to be further explored to improve disease resilience for the swine industry 

where pigs are facing disease challenge caused by multiple pathogens. It may be possible and 

feasible to collect longitudinal CBC data by conducting CBC for blood samples collected before 

and after exposure to pathogens or at multiple time points throughout an animal’s response to 

infection. Therefore, the following studies presented in this thesis were conducted to explore the 

potential of longitudinal CBC data collected before and after exposure to a polymicrobial 

infectious challenge (as is the case in many commercial farms) as indicator traits and phenotypes 

of disease resilience, respectively, to make genetic improvement for disease resilience in the 

swine industry.  
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Figure 2. One health concept. 

One Health is at the intersection of human health, animal health, and environmental health; it is 

an approach to design and implement programmes, policies, legislation and research in which 

multiple sectors communicate and work together to achieve better public health outcomes; One 

Health approach includes food safety, the control of zoonoses, and combatting antimicrobial 

resistance (WHO, 2017). The figure was derived from https://en.wikipedia.org/wiki/File:One-

Health-Triad-en.png, accessed March 21, 2021.  
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Figure 3. Mechanisms involved in disease tolerance. 

Derived from Soares et al. (2014).  
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Chapter 3. Natural disease challenge model 

To achieve the objective of exploring CBC traits collected from the high-health nucleus 

farm as indicator traits and from the commercial farm with a polymicrobial challenge as 

phenotypes of disease resilience for genetic improvement of the swine industry, a natural disease 

challenge model (NDCM) consisted of a healthy quarantine unit and a challenge barn was 

established as the basis for the studies described in this thesis.  

3.1. The design of the natural disease challenge model 

The NDCM for wean-to-finish pigs was established in November of 2015 at 

Deschambault, in Québec, Canada. There were two major facilities in the NDCM: (1) a non-

challenged quarantine unit for a 3-week nursery and acclimation after weaning and transportation 

(qNur, 19 to 40 days old); (2) a challenge barn for a 4-week late nursery stage (cNur, 41 to 68 

days of age on average) where the test pigs were first exposed to the polymicrobial challenge and 

a 16-week grow-to-finish stage (GF, approximately 69 to 181 days of age). Test pigs were 

healthy F1 crossbred (Landrace  Yorkshire) barrows (castrated male pigs) sourced from healthy 

multiplier farms (n = 14) of seven genetic suppliers (Alliance Genetics Canada, AlphaGene, 

DNA Genetics, FastGenetics, Genesus, Hypor, and Topigs), all members of PigGen Canada, in 

rotation. A batch of 60 or 75 test pigs from one of the multiplier farms was introduced into the 

NDCM every three weeks. Every seven batches constituted one cycle for cycle 1 to cycle 6, and 

the last eight batches (batches 43 to 50) formed cycle 7. In total, fifty batches of pigs (n = 3285) 

were introduced into the NDCM and were used for the studies presented in this thesis. A 

summary of batches and their corresponding farms, genetic suppliers, and cycles is shown in 

Table 1. Since batches were nested within farms, genetic suppliers, and cycle, and coded 

uniquely, the batch effect was fitted as the fixed effect in the studies of this thesis to control false 
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positive results due to population stratification and batch differences, and also to focus on the 

variance within each batch. The protocol specified that only two to four weaned barrows should 

be sampled per litter as test pigs. For each batch, the number of test pigs per pen was 

approximately 4, 7, and 13 for qNur, cNur, and GF, respectively. The quarantine unit and the 

challenge barn were in the same building connected by a hallway for the first cycle (batches 1 to 

7), but strict biosecurity protocols were practiced. Since the biosecurity practices were found to 

be insufficient to stop the spread of pathogens from the challenge barn to the quarantine unit, a 

separate quarantine unit located approximately 1 km south of the challenge barn was set up for 

cycles 2 to 7 (batches 8 to 50) and kept free of disease by adhering to strict biosecurity protocols. 

Common disease-causing pathogens found in commercial farms were the primary target 

pathogens in the NDCM, including multiple strains of PRRSV and swine influenza A virus, 

various respiratory and enteric bacterial pathogens (such as Mycoplasma hyopneumoniae, 

Haemophilus parasuis, Brachyspira hampsonii, Salmonella enterica serovar typhimurium, and 

Streptococcus suis), and parasites including Cystoisospora suis and Ascaris suum. The challenge 

barn was operated as a high health status facility prior to the introduction of the disease agents. 

The polymicrobial challenge in the challenge barn was established by introducing naturally 

infected animals (seeder pigs) from strategically selected commercial farms with known disease 

outbreaks into the challenge barn. Four groups of 12 to 28 seeder pigs (approximately 2 to 4 

seeder pig per pen with 7 test pigs in cNur) were sourced from four different commercial farms 

and co-introduced into the challenge barn with the first four batches of test pigs (Table 2). Once 

the challenge was established, the pathogen circulation and the polymicrobial challenge were 

maintained as a continuous flow system. The new incoming batch was challenged by direct nose-

to-nose contact with the adjacent proceeding batch for one week in the challenge late nursery 
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without repeatedly introducing seeder pigs after the first four batches (Figure 4A). During the 

periods of very high challenge pressure, as indicated by morbidity and mortality, twelve batches 

of test pigs were physically separated from the preceding batch that was co-housed during the 

week of cNur without the direct nose-to-nose contact (Figure 4B). The non-direct nose-to-nose 

challenge helped maintain the mortality rate below the target level established by the Animal 

Protection Committee for animal welfare.  

For the data used in this thesis, every batch was confirmed to have been exposed to 

PRRSV in the challenge barn based on randomly sampling blood from a subset of individuals for 

reverse transcription-polymerase chain reaction (RT-PCR) four weeks post-challenge and 

enzyme-linked immunosorbent assay (ELISA) six weeks post-challenge. In addition to the target 

pathogens, other pathogens including PCV2, porcine rotavirus A, Erysipelothrix rhusiopathiae, 

Staphylococcus hyicus, and some undefined minor pathogens were also identified in the NDCM. 

The disease challenge was a function of these pathogens, together with the environment, 

management, and veterinary strategies. The disease pressure varied by batch and also on a 

seasonal basis. Therefore, not all pigs were exposed to all the same types or doses of pathogens, 

which would also be the case on a commercial farm. In the NDCM, a part of the pigs died (see 

details in section 3.3.4), and the other animals reaching the target slaughter weight (~130 kg) at 

approximately 181 days-old were slaughtered commercially and entered the food chain.    

To ensure animal welfare and maintain the mortality rate below the target level 

established by the Animal Protection Committee, individual treatments were given on a case-by-

case level. Also, the level of mortality in a batch was carefully monitored. The periodic group 

treatments were given through water and feed on the entire batch- or the large group-level for 

batches with significantly higher mortality rates. Due to significant problems in managing the 
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associated impact caused by PCV2 in cycle 1 (batches 1 to 7), Ingelvac CircoFLEXR® PCV2 

vaccination (Boehringer Ingelheim, Ingelheim am Rhein, Germany) was administered 

intramuscularly as per the label instructions to pigs before being exposed to the polymicrobial 

challenge in the challenge barn from the second cycle onwards. The treatment protocol was 

established and fully overseen by the research staff and veterinarians.  

3.2.  Blood samples collected from the natural disease challenge model 

In the NDCM, four sets of blood samples (Blood 1, Blood 2, Blood 3, and Blood 4) were 

collected from the jugular vein of each test pig by trained research staff following the established 

protocol. Blood 1 samples were collected in the qNur at an average age of 26 days, a week post-

arrival from their farm of origin, and two weeks before the challenge. At the time of the 

collection of Blood 1, animals were expected to have recovered from acute stress, for example, 

weaning and shipping stress, and to acclimate to the change of diet from highly digestible liquid 

milk to solid dry feed that is less digestible. The Blood 2 samples were collected immediately 

before entry into the challenge barn, at an average age of 40 days, which were not used for the 

work described in this thesis. The Blood 3 samples were collected in the cNur at an average age 

of 54 days, four weeks after the collection of Blood 1 and also two weeks after exposure to the 

polymicrobial challenge, representing the acute stage of the disease. The Blood 4 samples were 

collected during GF at approximately 82 days old, four weeks after the collection of Blood 3 and 

also six weeks after exposure to the polymicrobial infectious challenge. The Blood 4 timepoint 

was expected to represent the chronic stage of the disease with the culmination of clinical 

symptoms or the convalescent stage established by disease resilience. 

Blood 1, Blood 3, and Blood 4 were whole blood collected into K2 

ethylenediaminetetraacetic acid (EDTA) tubes (BD Vacutainer® Blood Collection Tubes, United 
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States) and TempusTM Blood RNA tubes (BD Vacutainer® Blood Collection Tubes, United 

States). These samples were shipped overnight with ice packs to the University of Alberta. The 

whole blood samples in EDTA tubes were used for CBC test to evaluate the cells circulating in 

blood using the ADVIA® 2120i Hematology System (Siemens Healthineers, Germany). Fresh 

samples were necessary for CBC analysis, and most of the samples were received and processed 

within 24 hours. In a few cases shipping delays occurred but even in these cases the samples 

were usually delivered within 24 to 48 hours, and we also found the samples were relatively 

robust for CBC when analyzed 48 hours after collection. The whole blood samples in TempusTM 

Blood RNA tubes were stored and frozen at -20 °C for future RNA extraction. Finally, Blood 2 

samples were collected into Plus Serum tubes (BD Vacutainer® Blood Collection Tubes, United 

States) for analysis of serum for antibody-mediated responses for a separate study. 

3.3. Phenotypes collected from the natural disease challenge model 

Multiple phenotypes from the NDCM were monitored and collected by trained research 

staff following the established protocol, and individual feed and water intakes data in the 

finishing phase were recorded automatically using IVOG® feeding stations (Insentec, 

Netherlands). Of note, CBC collected before and after exposure to the challenge, bodyweights, 

treatments, mortality, and daily interior and outside temperature of the barn were the phenotypes 

monitored and analyzed for this thesis.  

3.3.1 Complete blood count (CBC) 

Three categories of CBC traits, including white blood cell traits, red blood cell traits, and 

platelet traits, were measured from Blood 1, Blood 3, and Blood 4 samples. The description and 

abbreviations of these CBC traits are shown in Table 3. White blood cell concentration traits 

were log10-transformed to reduce the skewness of the distribution. Due to the relative complexity 
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of the sample handling and laboratory analysis, CBC measures from “damaged samples” (e.g. 

from delays in transport with unfavourable environmental conditions) with clotting and severe 

hemolysis were regarded as outliers. Additional issues were sometimes encountered with the 

Hematology System used to measure CBC from blood samples. By annotating the results during 

sample processing and comparing the CBC data to the reference intervals, outliers potentially 

caused by shipping, layover, and equipment problems rather than a response of CBC to the 

challenge were removed from the analyses. The descriptive statistics for the CBC traits measured 

in Blood 1, Blood 3, and Blood 4 of all seven cycles after removing outliers are shown in Figure 

5 to Figure 7. Most CBC traits were recorded on all animals at Blood 1, but fewer and fewer 

samples were available for Blood 3 and Blood 4 because some of the animals died throughout 

the NDCM in response to the challenge prior to sampling. Most of the white blood cell traits in 

Blood 3 and Blood 4 had higher standard deviations and thinner violin plots than Blood 1, 

indicating that the white blood cell traits in Blood 3 and Blood 4 were spread out over a broader 

range. In contrast, several red blood cell traits had thinner violin plots for Blood 1 than Blood 3 

and Blood 4.  

In addition to these direct measures of CBC traits from blood samples, we also calculated 

the changes of CBC traits between blood samples collected at different time points, which were 

referred to as 13 for the change from Blood 1 to Blood 3 (calculated by subtracting CBC in 

Blood 1 from CBC in Blood 3, Blood 3 − Blood 1), 34 for the change from Blood 3 to Blood 4 

(Blood 4 − Blood 1), and 14 for the change from Blood 1 to Blood 4 (Blood 4 − Blood 1). 

Descriptive statistics for the changes in CBC traits are shown in Figure 8 to Figure 10. Not all 

animals responded to the challenge in the same way, shown as either positive (increasing) or 

negative (decreasing) values in 13, 34, and 14 of each trait. This difference among 
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individuals may be associated with an animal’s performance after exposure to the challenge, 

which will be further discussed in Chapter 4.  

3.3.2 Bodyweight and growth rate 

The bodyweights of each test pig were measured every three weeks in the NDCM. The 

growth rates of pigs, including the dead animals in different phases of NDCM, were estimated 

using the linear regression of body weights collected during each stage. The qNur growth rate 

(qNurGR) was assessed using the bodyweights collected at approximately 19 days of age on the 

first day of entry into the NDCM and 40 days-old at the end of the qNur. The cNur growth rate 

(cNurGR) was estimated using the body weights collected from 40 to 69 days of age. The GF 

growth rate (GFGR) for each animal in the challenge barn was estimated using the multiple sets 

of body weights collected from an average of 69 days-old to the endpoint when the test pig died 

or reached the target slaughter weight at approximately 181 days of age. 

The growth curves of pigs in all fifty batches are shown in Figure 11, and the growth 

curves of dead animals are highlighted in red. The majority of dead animals had relatively slow 

growth, shown as flat growth curves. A few animals showed a significant gain of body weight 

but died before reaching the target slaughter weight. The highest standard deviation was 

identified for cNurGR (0.10) among all the animals which was greater than that for qNurGR 

(0.06) and GFGR (0.05). The means and standard deviations of qNurGR, cNurGR, and GFGR 

for each batch are shown in Figure 12. The cNurGR was not applicable for batches 24 and 25 

because body weights were not collected in the qNur. Overall, GFGR was higher than qNurGR 

and cNurGR for all batches because both lean and fat accretion increase during the grow-to-

finish stage of pigs. All batches showed higher standard deviations in the cNurGR and GFGR of 

animals after exposure to the challenge than the qNurGR of animals before the challenge. The 
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means of qNurGR, cNurGR, and GFGR varied among batches due to the differences in genetic 

background and challenge level among batches.  

3.3.3 Mortality 

A total of 944 pigs died in the natural disease challenge model. The cause of death is 

summarized in Figure 13, which can be classified into infectious and non-infectious reasons. 

The majority of animals died due to infectious diseases, according to the clinical and 

pathological signs observed from the animals, such as heavy breathing, lameness, scores, and 

fever, etc. The largest class died due to “poor/skinny/hairy/failure to thrive” (n=313), which was 

also classified with the group assigned infectious reasons because inappetence and failure to eat 

were typical symptoms of the disease caused by multiple pathogens in the NDCM. 

“Thumping/heavy breathing” was also a major cause of death (n=223), which was a typical 

symptom of pneumonia caused by respiratory pathogens in the NDCM, such as PRRSV, swine 

influenza A virus, Mycoplasma hyopneumoniae, and Haemophilus parasuis. Many pigs (n=129, 

including 7 pigs in the qNur, 57 pigs in the cNur, and 65 pigs in the GF) were recorded as 

“sudden death” when the pigs died unexpectedly with no pathological or warning signs that 

could alert the veterinarians and research staff in the NDCM. Sudden death can be found in 

almost all batches in the NDCM and was regarded as a non-infectious cause of death because the 

exact reason was unknown. In addition to the sudden death, there were 41 pigs that died due to 

other non-infectious and unclear reasons, including “others”, “sampling/bleeding”, 

“fraction/sprain”, “fighting/tail/ear/flank biting”, “allergic reaction”, “hernia”, and “intestinal 

torsion”. 

The mortality rates in qNur, cNur, and GF of each batch are shown in Figure 14. For 

most batches, the mortality rates were higher in cNur and GF after exposure to the challenge than 
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the qNur, where the animals were not yet challenged with infectious pathogens. The mortality 

rate varied among batches. Several successive batches had a higher mortality rate in cNur; 

accordingly, the mortality rate of these batches in GF was also higher than the other batches. The 

weekly death counts are summarized based on the scale of weeks after exposure to the challenge 

(Figure 15A). The first three bars on the histogram indicate the weekly death counts in the qNur, 

three weeks before exposure to the challenge. The weekly death count increased significantly in 

the cNur from one to four weeks after exposure to the challenge. The peak of weekly death 

counts was also observed in the cNur at three and four weeks after exposure to the challenge. In 

the GF stage, the death count was high in the first two weeks, five to six weeks after exposure to 

the challenge, but dropped to a low level afterward.  

3.3.4 Treatments and individual treatment rate 

Individual medications were given to pigs that exhibited clinical signs, such as coughing, 

fever, inappetence, wasting, hairy appearance, swollen joints, and sloppy feces with a range of 

colours (grey, red, and yellow), which were indicative of pneumonia, diarrhea, meningitis, 

arthritis, erysipelas, conjunctivitis, etc. Some pigs exhibited a combination of multiple 

symptoms, for example, coughing and diarrhea can be observed in a pig simultaneously or at 

different time points, which suggested infection caused by a variety of pathogens. Antibiotics 

were used as per a regimented treatment protocol for each ailment. Anti-inflammatory 

medications were also administered for some clinical signs. Same as death counts, individual 

treatment counts were high in the cNur stage (Figure 15B). Individual medications were given 

intensively in the cNur, especially in the two and three weeks after exposure to the challenge, 

shown as significantly more counts of individual treatment events in Figure 15B. Test pigs did 

not necessarily stay in the NDCM for the same number of days because some died throughout 
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the NDCM, but others reached the target slaughter weight on different days, which affected the 

count of individual treatment events that animals received in the NDCM. For example, some 

animals had fewer counts of treatment events only because they died early in the NDCM due to 

infectious disease. Therefore, individual treatment rate or incidence (TR) was calculated for each 

pig to standardize the count of individual treatment events to approximately the same scale (TR 

= count of individual treatment events/days in the NDCM × 100%). The mean and standard 

deviation of the individual treatment rate of each batch is shown in Figure 16A, where variations 

of the mean and large standard deviations can be observed among batches.  

 The counts of group treatment events for each batch are summarized in Figure 16B. 

Twenty-five batches received group treatments, which were given to the entire batch or on a 

large group-level through water and feed to maintain the mortality rate below the target level 

established by the Animal Protection Committee. Of note, seventeen batches received group 

treatments multiple times throughout the NDCM, and most group treatments were given during 

the cNur and GF stages in the challenge barn. 

3.3.5 Daily interior and outside temperatures 

In addition to the challenge of pathogens, environmental conditions have also been 

identified as critical components for pig health, welfare, and production efficiency. In the pig 

industry, considerable efforts have been made to control the interior environment of the barn and 

maintain the thermo-neutral zone where pigs can maintain body temperature without using 

energy beyond the basal metabolic rate. The minimum and maximum interior temperatures were 

controlled and monitored on a daily basis for the qNur and challenge barn of the NDCM. The 

daily maximum and minimum temperatures were monitored from both east and west sides of the 

building to ensure the temperature was managed in the large challenge barn.  
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 The daily interior and outside temperatures of the qNur are shown in Figure 17. 

Although the minimum interior temperature fluctuated slightly for days from October to 

December in 2015, it was well managed and stabilized to 23.5°C from 2016 to 2018. The interior 

temperature of the qNur was difficult to control for days from May to September when the 

outside temperature was above 20°C, based on the variation observed for the maximum interior 

temperature which varied from 23.1°C to 37.5°C. From May to September of each year, the daily 

maximum interior temperature was higher than 25°C for approximately 70% of the time and 

higher than 30°C for 15% of the time.  

The daily temperatures (maximum and minimum) measured from the east and west sides 

of the challenge barn are shown in Figure 18. Overall, the interior temperature of the challenge 

barn was managed to be lower than the qNur barn. The minimum interior temperatures were 

maintained to 21.5°C for both sides. However, the maximum interior temperatures were also 

hard to control from May to September of each year for both sides when the outside temperature 

was higher than 20°C. Of note, the maximum interior temperatures of the east and west sides 

were higher than 25°C for more than 70% of the time and higher than 30°C for almost 25% of 

the time from May to September of each year. The interior temperature on the east side 

fluctuated slightly in 2019, shown as the minimum temperature ranging from 21.9°C to 18.5°C 

and the maximum temperature varying from 25.3°C to 19.3°C.  

3.3.6 Changes in mortality and treatment events throughout the year 

The prevalence of diseases has been reported to show a seasonal pattern and potentially 

be associated with climate factors, including ambient temperature (Sanchez-Vazquez et al., 2012; 

Eze et al., 2015; Lee et al., 2020). For example, Lee et al. (2020) found that the cyclical annual 

patterns for the prevalence of respiratory disease showing peaks in the summer months and 
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troughs in the winter months. Therefore, the daily death count and daily count of the group and 

individual treatment events in the qNur barn and the challenge barn of the NDCM are plotted in 

Figures 19 to 20 to explore if they could be affected by the climate and season in addition to 

pathogens. As mentioned above (Figure 15), most death and individual treatment events 

happened in the challenge barn after exposure to the challenge, which can also be observed from 

Figures 19 and 21. Mortality, group treatment events, and individual treatment events happened 

sporadically in the qNur stage (Figures 19A, 20A, and 21A). 

For the qNur, relatively higher mortality was found during the winter months (January to 

March and October to December) in 2016 and 2017 (Figure 19A). During the winter months, the 

low outside temperature could be a challenge for the transportation of pigs from their farms of 

origin to the NDCM, which might result in high mortality in qNur. Group treatments in the qNur 

were given four times in December of 2015, three times in January and July of 2017, and four 

times from October to December of 2017 (Figure 20A). Each group treatment in the qNur was 

given for two to three successive days. It seems that during the winter months of 2017, although 

more group treatments were given in the qNur, the mortality was still relatively higher than the 

other months. The count of daily individual treatment events was high from the end of March to 

early April, and also July in 2016 compared to the other months (Figure 21A).  

For the challenge barn, higher daily death count, daily count of group treatment and 

individual treatment can be observed compared to the qNur. The daily death count was higher 

from January to early April and from October to December of 2016 and 2017 compared to the 

other months (Figure 19B). Although the maximum interior temperature was difficult to control 

from May to September and resulted in a large difference between the minimum and maximum 

interior temperature of the challenge barn, the mortality was relatively low during these months 
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in the years of 2016 and 2017 (Figure 19B). Conversely, animal deaths were relatively low and 

occurred sporadically from January to March but showed a tendency of increasing from June to 

September at the end of the NDCM in the year of 2018 (Figure 19B). The group treatment in the 

challenge barn was only found to be relatively higher during the winter months (January to 

March and October to December) when the death count was high, which was also the protocol 

for conducting group treatment (Figure 20B). The individual treatment in the challenge barn 

showed a tendency of changing in a cyclical pattern as more individual treatments were given for 

a period of time and then fewer were given for the next period of time (Figure 21B).  

The death count, counts of group treatment events, and numbers of individual treatment 

events were also plotted on a month scale (Figure 22). Group treatment seemed to be given in 

the months (January, March, April, and December) with higher mortality in 2016; higher counts 

of group treatments were also given for the months (January to May, and September to 

December) with higher mortality in 2017, which might indicate the animals were facing a more 

challenging environment during these months (Figure 22A and B). In 2017, more individual 

treatments also seemed to be given for the months with higher mortality (Figure 22C). In 2018, 

the mortality was low and stayed at a relatively stable level throughout the year (Figure 22A). 

Therefore, both counts of group treatment events and individual treatment events were lower and 

did not change dramatically among different months in 2018 compared to the other years 

(Figure 22B and C).  

3.4. Summary 

This chapter provided a detailed description of the NDCM. It aimed to help improve the 

understanding of the NDCM as the following studies were conducted using the data collected 

from the NDCM.   
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Table 1 A summary of batches and their corresponding farms, genetic suppliers, and cycles 

for test pigs introduced into the natural disease challenge model. 

Cycle 
Genetic 

suppliers 
Farm Batch  Cycle 

Genetic 

suppliers 
Farm Batch 

1 A I 1  4 A E 26 

B A 2  E H 27 

E H 3  D C 28 

F D 4  5 

 

A I 29 

G B 5  B A 30 

D K 6  E H 31 

C G 7  F D 32 

2 F D 8  G B 33 

E L 9  D J 34 

A E 10  C G 35 

D C 11  6 F D 36 

D C 12  G B 37 

G B 13  A E 38 

B A 14  C F 39 

3 E H 15  D C 40 

F D 16  E L 41 

A I 17  B M 42 

B A 18  7 C F 43 

A E 19  F D 44 

D C 20  G B 45 

G B 21  C F 46 

4 B A 22  B N 47 

C G 23  D C 48 

F D 24  E L 49 

G B 25  B N 50 

Genetic suppliers and farms are recoded using the alphabet for privacy. There are 7 cycles, 7 

genetic suppliers, 14 farms (farms E and I for genetic supplier A; farms A, M, N for genetic 

supplier B; farms F and G for genetic supplier C; farms C, J, and K for genetic supplier D; farms 

H and L for genetic supplier E; farm D for genetic supplier F; farm B for genetic supplier G), and 

50 batches used for this thesis.   
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Table 2 The scheme for introducing seeder pigs from four commercial farms with healthy 

test pigs to establish the polymicrobial challenge in the natural disease challenge model. 

Entry date Commercial farm1 for seeder pigs Batch of test pigs 

2015-11-11 Commercial farm A 1 

2015-12-04 Commercial farm A 2 

Commercial farm B 

2015-12-23 Commercial farm C 3 

2016-01-14 Commercial farm D 4 
1The commercial farm was recoded for privacy.  
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Table 3 Description of complete blood count traits analyzed in the thesis. 

Abbreviation Trait 

WBC Total white blood cell concentration (103/µL) 

NEU Neutrophil concentration (103/µL) 

LYM Lymphocyte concentration (103/µL) 

MONO Monocyte concentration (103/µL) 

EOS Eosinophil concentration (103/µL) 

BASO Basophil concentration (103/µL) 

RBC Red blood cell concentration (106/µL) 

HGB Hemoglobin concentration (g/dL) 

HCT 
Hematocrit (%). 

Measure the percentage of packed red blood cells volume in blood 

MCV 
Mean corpuscular volume (fL). 

Indicates the volume of the “average” red blood cell in a sample (fL; 10-15L) 

MCH 

Mean corpuscular hemoglobin (pg). 

A calculated red blood cell index that indicates the average amount of 

hemoglobin in the red blood cells. MCH = HGB / RBC  

MCHC 

Mean corpuscular hemoglobin concentration (g/L). 

A calculated red blood cell index that indicates the mean hemoglobin 

concentration per unit volume in red blood cells. MCHC = (HGB / 

HCT)×100 

RDW 
Red blood cell distribution width (%). 

An index of the variation in cell volume within the red blood cell population 

PLT Platelet concentration (103/µL) 

MPV Mean platelet volume (fL) 
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Figure 4 Pen arrangements in the challenge barn late nursery stage. 

Pen arrangements for a week of nose-to-nose direct challenge (A). Pen arrangement for a week 

of indirect contact during the period of excessively high pressure of challenge (B). Derived from 

Bai et al. (2020).  
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Figure 5 Violin plots for descriptive statistics for white blood cell traits of all seven cycles in 

Blood 1, Blood 3, and Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after 

exposure to the challenge, respectively.  

WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability. Suggested reference intervals for 

CBC traits were derived from Iowa State University's Clinical Pathology Laboratory (2011). The 

suggested reference intervals for BASO traits are not applicable.  
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Figure 6 Violin plots for descriptive statistics for red blood cell traits of all seven cycles in 

Blood 1, Blood 3, and Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

exposure to the challenge, respectively. 

RBC: red blood cell concentration; HGB: hemoglobin concentration; HCT: hematocrit; MCV: 

mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability. Suggested reference intervals for 

CBC traits were derived from Iowa State University's Clinical Pathology Laboratory (2011). The 

suggested reference intervals for RDW traits are not applicable.   
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Figure 7. Violin plots for descriptive statistics for platelet traits of all seven cycles in Blood 

1, Blood 3, and Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively.  

PLT: platelet concentration; MPV: mean platelet volume.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability. Suggested reference intervals for 

CBC traits were derived from Iowa State University's Clinical Pathology Laboratory (2011). The 

suggested reference intervals for MPV traits are not applicable.  
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Figure 8. Violin plots for descriptive statistics for white blood cell traits in 13, 34, and 

14 of all seven cycles.  

13 for the change from Blood 1 to Blood 3; 34 for the change from Blood 3 to Blood 4; 14 

for the change from Blood 1 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively. 

WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability.
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Figure 9. Violin plots for descriptive statistics for red blood cell traits in 13, 34, and 14 

of all seven cycles.  

13 for the change from Blood 1 to Blood 3; 34 for the change from Blood 3 to Blood 4; 14 

for the change from Blood 1 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively. 

RBC: red blood cell concentration; HGB: hemoglobin concentration; HCT: hematocrit; MCV: 

mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability.  
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Figure 10. Violin plots for descriptive statistics for platelet traits in 13, 34, and 14 of all 

seven cycles.  

13 for the change from Blood 1 to Blood 3; 34 for the change from Blood 3 to Blood 4; 14 

for the change from Blood 1 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively. 

PLT: platelet concentration; MPV: mean platelet volume.  

Wider sections of the violin plots represent a higher probability density of the data at the given 

value and the skinnier sections represent a lower probability.  
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Figure 11. Growth curves of animals in the natural disease challenge model.  

Growth curves of dead animals are highlighted in red. The blue dashed lines indicate the average 

ages of animals entering into and leaving from the quarantine nursery (qNur), the challenge 

nursery (cNur), and the challenge grow-to-finish barn (GF).  
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Figure 12. A summary of growth rate for each batch of animals in the natural disease challenge model. 

Mean of growth rate (kg/d) in the quarantine nursery (qNur), challenge nursery (cNur), and challenge grow-to-finish stage (GF) of 

each batch. The error bar indicates the upper standard deviation of the growth rate of each batch.
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Figure 13. A summary of the cause of death in the natural disease challenge model.  
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Figure 14. A summary of the mortality rate for each batch of animals in the natural disease challenge model. 

Mortality rate (%) in the quarantine nursery (qNur), challenge nursery (cNur), and challenge grow-to-finish stage (GF) of each batch. 
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Figure 15. Weekly death count (A) and count of individual treatment event (B) in the 

natural disease challenge model. 

qNur represents for quarantine nursery stage, cNur represents for challenge nursery, GF 

represents for challenge grow-to-finish stage.
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Figure 16. A summary of treatment for each batch of animals in the natural disease challenge model.  

Mean (red bar) and standard deviation (error bar) of individual treatment rate in each batch (A). The count of group treatments given 

to each batch during the quarantine nursery stage (qNur, grey bar) and in the challenge barn (yellow bar) during the late nursery 

(cNur) and grow-to-finish (GF) stages (B).
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Figure 17. Daily temperatures of the quarantine nursery barn (qNur). 

Maximum (Max) and minimum interior temperatures (A) and outside temperatures (B) of the quarantine nursery (qNur) barn.  



 

 

Figure 18. Daily temperatures of the challenge barn. 

Maximum (Max) and minimum (Min) interior (A) and outside (B) temperatures measured from 

the east side of the challenge barn. Daily Max and Min interior (C) and outside (D) temperatures 

measured from the west side of the challenge barn.   



 

 

Figure 19. Daily death count in the quarantine nursery barn (qNur) (A) and the challenge barn (B).  



 

 

Figure 20. Daily count of group treatment events in the quarantine nursery barn (qNur) (A) and the challenge barn (B). 

The thickness of the bar indicates the duration of group treatment that was given for successive days.Therefore, the thicker bar 

represents the group treatment was giveb for more successive days. 



 

 

Figure 21. Daily count of individual treatment events in the quarantine nursery (qNur) barn (A) and the challenge barn (B).



 

 

Figure 22. Count of mortality (A), group treatment events (B), and individual treatment 

events (C) in the challenge barn on the monthly basis.  
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Chapter 4. Exploring Phenotypes for Disease Resilience in Pigs Using 

Complete Blood Count Data1 

4.1. Introduction 

Disease resilience is defined as an animal’s ability to maintain a relatively undepressed 

performance in the face of infection (Albers et al., 1987; Mulder and Rashidi, 2017). In pig 

breeding, disease resistance, which is defined as the ability to suppress establishment and 

subsequent development of infection, has been generally discussed in terms of making genetic 

improvement of herd health (Albers et al., 1987; Bishop and Steer, 2003; Guy et al., 2012). For 

example, the discovery of a polymorphism at bp 307 (G/A) in the fucosyltransferase gene 

(FUT1) associated with susceptibility/resistance to infection with F18 fimbriated Escherichia 

coli (ECF18) made it possible to select for ECF18 resistant pigs (Meijerink et al., 1997; 

Meijerink et al., 2000). Pigs that are homozygous for the resistant allele are resistant to ECF18 

due to the non-adhesion of ECF18 in the small intestine (Meijerink et al., 1997; Bao et al., 2012). 

However, such complete resistance to a pathogen is not common, and selection for disease 

resistance to a specific pathogen may have unfavourable consequences for defending against 

other pathogens (Wilkie and Mallard, 1999; Guy et al., 2012). Currently, the challenge of 

infectious diseases in the pig industry is caused by a multitude of pathogens exists around the 

world (Zimmerman et al., 2012). Some pathogens, including porcine reproductive and 

respiratory syndrome virus (PRRSV), can also modulate the immune system to increase 

susceptibility to other pathogens while suppressing the immunologic memory of the host for the 

 
1This chapter has been published as Bai, X., Putz, A. M., Wang, Z., Fortin, F., Harding, J. C. S., Dyck, M. K., 

Dekkers, J. C. M., Field, C. J., Plastow, G. S., and PigGen Canada. (2020). Exploring phenotypes for disease 

resilience in pigs using complete blood count data from a natural disease challenge model. Frontiers Genetics 11, 

216. doi:10.3389/fgene.2020.00216.  
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same pathogen (Zhu et al., 2010). Therefore, selective breeding for resilient animals that can 

maintain a relatively undepressed performance in a commercial system that typically harbors 

abundant infectious agents could be a pragmatic way to help maintain or even improve the 

productivity of the swine industry.  

Direct selection for disease resilience is generally not feasible, because it is impractical to 

obtain heritable measures of resilience in the high health nucleus herds where the selection of 

elite breeding animals takes place (Wilkie and Mallard, 1999). Moreover, it is also challenging to 

appropriately characterize resilience because it is a complex trait composed of multiple 

biological functions, such as production, health, nutrient status, and other dynamic elements, 

including the efficiency of immune response and the rate of recovery from infection (Friggens et 

al., 2017). Many studies have explored the relationship of immune traits with performance. 

These include the use of white blood cell traits (Figure 23), which are reported to be moderately 

to highly heritable and genetically correlated with an animal’s performance (Henryon et al., 

2006; Clapperton et al., 2008, 2009; Flori et al., 2011; Mpetile et al., 2015). In addition to white 

blood cells, red blood cells and platelets have also been shown to play multiple roles in the 

immune system to help defend against pathogens, and these also have the potential to be 

genetically correlated with an animal’s performance (Gershon, 1997; Liepke et al., 2003; Jiang et 

al., 2007; Rondina and Garraud, 2014; Hottz et al., 2018). Complete blood count (CBC) is a 

clinical measure used to evaluate the concentration and relative proportion of circulating blood 

cells and may be a practical measure of immune response and, therefore, could be a candidate 

phenotype for disease resilience. Moreover, CBC also evaluates the volume and concentration of 

red blood cells and hemoglobin to provide information about oxygen-carrying capacity and 
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anemia, which are of concern during the disease process, with further impacts on animal 

performance (George-Gay and Parker, 2003).  

Therefore, the objectives of this study were: 1) to assess CBC profiles of pigs that 

exhibited divergent performance in terms of growth and individual treatment in response to a 

polymicrobial infectious challenge; and 2) to estimate heritabilities of CBC traits and genetic 

correlations of CBC with growth and treatment rates following the disease challenge.  

4.2. Materials and methods 

4.2.1 Natural disease challenge model 

Details of the natural disease challenge model (NDCM) that provided a polymicrobial 

infectious challenge environment to test pigs and the data collected from the NDCM can be 

found in Chapter 3. The first six cycles of 2743 pigs were used for this study. All of these pigs 

were introduced in 42 batches at three-week intervals into the NDCM. 

4.2.2 Genotyping 

The genotyping of animals was performed at Delta Genomics (Edmonton AB, Canada) 

using the 650K Affymetrix Axiom ® Porcine Genotyping Array. In total, 658,692 single 

nucleotide polymorphisms (SNPs) were included on the chip. Raw Affymetrix SNP data for each 

cycle were processed separately at Delta Genomics with the Axiom Analysis Suite, using all 

defaults. Missing genotypes were imputed using FImpute (Sargolzaei et al., 2014). Sscrofa 11.1 

was used as the reference genome. Quality control was performed using the preGSf90 software 

from the BLUPF90 family of programs to remove SNPs with a minor allele frequency lower 

than 0.01 and call rates lower than 0.90. Overall, genotypes for 2593 animals from all six cycles 

were used, with 475,839 SNPs remaining after processing and quality control.  
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4.2.3 Traits 

A detailed description of CBC traits, the growth rate of each animal in the grow-to-finish 

phase (GFGR), and the individual treatment rate (TR) for each animal and group treatments can 

be found in sections 3.3.1, 3.3.2, and 3.3.4 of Chapter 3, respectively. Group treatments given 

on the batch-level were not included in the data analyses because their effects would be 

accounted for in the model by fitting the fixed effect of batch. The TR for animals that died 

before receiving any treatment was set to missing.  

4.2.4 Classification of pigs based on resilience 

Based on resilience indicated by phenotypes of GFGR and TR, pigs were classified into 

four groups as “resilient (RES)”, “average (MID)”, “susceptible (SUS)”, and “dead (DEAD)” by 

batch. Within each batch, slaughtered pigs that had equal or higher GFGR than the third quartile 

(Q3, 75% quartile), and equal or lower TR than the first quartile (Q1, 25% quartile) of all 

slaughtered pigs in the batch were classified as RES; slaughtered pigs that had equal or lower 

GFGR than the Q1 and equal or higher TR than the Q3 of all slaughtered pigs in the batch were 

regarded as SUS; the rest of the slaughtered animals, which had moderate TR and GFGR, were 

classified as MID (Figure 24). The influence caused by the environmental changes and 

differences among batches were controlled and minimized by classifying animals within each 

batch. Among 2593 genotyped pigs, mortalities (n = 160) caused by hernia, fighting, fracture, 

sampling, or sudden death due to unclear reasons were excluded from the analysis. Of the 

remaining 2433 pigs, 505 (21%) pigs that died as a result of infectious disease were classified as 

DEAD. For the 1928 pigs that were slaughtered at market body weight in the six cycles, 213 

(9%) pigs were in the RES group, 1505 (61%) pigs were in the MID group, and 210 (9%) pigs 

were in the SUS group. 
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4.2.5 Statistical analyses 

Removal of Outliers  

Due to the relative complexity of the sample handling, shipping conditions, and 

laboratory analysis, outliers for the measures of CBC traits could be the result of damaged 

samples with hematological issues including hemolysis and clotting, or mechanical problems of 

the Hematology System used to measure CBC from blood samples. Such outliers were detected 

and removed using the Adjusted Boxplot in R (R Core Team, Package ‘robustbase’). It is a 

robust measure of skewness in the determination of thresholds for the removal of outliers and 

can avoid erroneously declaring points as outliers in a skewed distribution (Hubert and 

Vandervieren, 2008). The skewness of a CBC trait was measured using Medcouple (Brys et al., 

2004). Thresholds for removing outliers for CBC measures were determined by several 

parameters, including Medcouple (MC), first quartile (Q1), third quartile (Q3), and interquartile 

range between Q1 and Q3 (IQR). The lower and upper bounds for a right-skewed distribution 

(MC > 0) were Q1 - 1.5(-4MC) × IQR and Q3 + 1.5(3MC) × IQR; for a left-skewed distribution 

(MC < 0), the lower and upper bounds were Q1 - 1.5(-3MC) × IQR and Q3 + 1.5(4MC) × IQR; 

and for a symmetric distribution (MC = 0), the outliers were removed using Tukey’s boxplot 

(lower bound Q1 - 1.5 × IQR, upper bound: Q3 + 1.5 × IQR) (Seo, 2006; Hubert and 

Vandervieren, 2008). All CBC measures outside of the upper and lower bounds were removed as 

outliers.  

Models 

The likelihood ratio test in ASReml 4.1 was used to determine the significance of 

different environmental random terms for litter and pen effects by comparing the full model, 
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including batch, bleed age, litter, pen, and genetic effects to reduced models without each litter 

or pen effect (Hagger, 1998; Gilmour et al., 2015). 

The CBC phenotype data were analyzed using linear mixed effects models to estimate the 

least-squares means for CBC traits by group (RES, MID, SUS, and DEAD), and the Tukey-

Kramer test was applied for pairwise comparisons of the difference between groups in R (R Core 

Team, packages ‘lme4’ and ‘lsmeans’). White blood cell traits were log10-transformed because 

of residual heterogeneity. In the mixed model, batch was fitted as a fixed effect to control and 

minimize the influence of the environmental changes among batches, group was also fitted as a 

fixed effect, and bleeding age was fitted as a covariate. Of note, for the changes of CBC between 

time points, bleeding age of Blood 1 was fitted for Δ13 and Δ14, and Blood 3 bleeding age was 

fitted for Δ34 since the four-week interval between each blood sampling was the same for all 

animals. Random terms, including the litter and pen effects were fitted if significant (p-value < 

0.05).  

Heritabilities and genetic correlations of CBC traits with resilience traits were estimated 

in ASReml4.1 using pairwise bivariate models, with batch, bleed age, litter, and pen effects as 

described above for estimating the difference between resilience groups. Analyses for GFGR and 

TR included the fixed effect of batch for both traits, and random effects of litter and pen if 

significant (p-value < 0.05). Animal genetic effects were fitted using the genomic relationship 

matrix for 2593 animals, rather than the pedigree-based relationship matrix because the complete 

pedigree was unavailable due to the use of pooled semen in some batches. The genomic 

relationship matrix was constructed using 𝒁𝒁´/2∑𝑝𝑖(1 − 𝑝𝑖), where 𝒁 contains centered 

genotypes codes and 𝑝𝑖 is the minor allele frequency for locus i (VanRaden, 2008). The average 

estimate of corresponding pairwise bivariate analyses was reported as the heritability for each 
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trait. In the bivariate models, batch was fitted as a fixed effect for both traits. The likelihood ratio 

test was applied to test the significance of estimates for heritabilities and genetic correlations in 

ASReml 4.1, where the log-likelihood of full models were compared to restricted models that 

constrained the genetic variance and the genetic covariance to zero, respectively (Gilmour et al., 

2015).  

The model used in ASReml 4.1 can be written as 

[
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where y1 and y2 denote vectors of observations for traits 1 and 2; X1 and X2 are incidence 

matrices relating fixed effects to y1 and y2, b1 and b2 are vectors of fixed effects for traits 1 and 

2; Z1 and Z2 represent design matrices that associate observations of traits 1 and 2 to vectors of 

animal genetic effects g1 and g2; c1 and c2 are vectors of random effects, including litter and pen 

effects when they were significant (p-value < 0.05); Z3 and Z4 are incidence matrices relating y1 

and y2 to random effects c1 and c2; e1 and e2 are vectors of unknown and random residuals for 

traits 1 and 2 (Miar et al., 2014a; Miar et al., 2014b; Gilmour, 2015). 

 When random effects c and residuals errors e are uncorrelated, and identically 

distributed following a normal distribution, the (co-)variances of random effects are assumed to 

be 
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𝟎 𝟎 𝟎 𝟎 𝑰𝝈𝒆𝟏
𝟐 𝑰𝝈𝒆𝟏𝒆𝟐

𝟎 𝟎 𝟎 𝟎 𝑰𝝈𝒆𝟏𝒆𝟐
𝑰𝝈𝒆𝟐

𝟐
]
 
 
 
 
 
 
 

 

where G is the genomic relationship matrix, I is the identity matrix, 𝝈𝒈
𝟐  is the additive 

genetic variance, 𝝈𝒄
𝟐 is the random effect variance, and 𝝈𝒆

𝟐 is the residual variance. 𝝈𝒈𝟏𝒈𝟐, 𝝈𝒄𝟏𝒄𝟐
, 
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and 𝝈𝒆𝟏𝒆𝟐
 are covariances between two traits due to the additive genetic effects, common random 

effects, and residual effects, respectively. Heritability (h2) of a trait was estimated using variance 

components obtained from the bivariate analyses, and the average estimates of corresponding 

pairwise bivariate analyses were reported as the heritabilities: 

𝒉𝟐  =  𝝈𝒈
𝟐/(𝝈𝒈

𝟐 + 𝝈𝒄
𝟐 + 𝝈𝒆

𝟐) 

and the genetic correlation (rg) between two traits was estimated as: 

𝒓𝒈  = 𝝈𝒈𝟏𝒈𝟐/𝝈𝒈𝟏𝝈𝒈𝟐 

4.3. Results 

4.3.1 Descriptive statistics for CBC traits 

Table 4 summarizes the descriptive statistics for the CBC data of 2593 genotyped 

animals after removing outliers. Most traits were recorded on all animals in Blood 1, but some 

samples for Blood 3 and Blood 4 were unavailable for animals that died prior to the sampling. 

Relevant random effects fitted in the models for CBC traits are presented in Table 5. The 

random effect of litter was fitted for GFGR, and pen effects in the challenge barn late nursery 

and the grow-to-finish stage were fitted for TR.  

4.3.2 Group differences in CBC traits 

White Blood Cell Traits 

Results comparing the least-squares means of white blood cell traits in groups with 

different responses to the natural disease challenge are shown in Table 6. In Blood 1, no 

significant difference was found between groups for any of the white blood cell traits. However, 

in Blood 3, the RES group had a significantly higher LYM, and the LYM for the MID group was 

also significantly higher than for the DEAD group (FDR = 0.0003). In Blood 4, the RES and 

MID groups had significantly lower NEU levels than both the SUS and DEAD groups (FDR = 
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0.0002). For the count of LYM in Blood 4, the DEAD group was significantly lower than both 

the RES and MID groups (FDR = 0.0012). 

Results comparing the least-squares means of changes in white blood cell traits between 

groups are summarized in Table 7. All white blood cell traits increased from Blood 1 to Blood 3 

shown as positive Δ13. The increase of LYM was significantly higher for the RES group than for 

the other groups (FDR = 0.0002), but no significant difference was found among the MID, SUS 

and DEAD groups. Changes of white blood cell traits from Blood 3 to Blood 4 were not as 

dramatic as those from Blood 1 to Blood 3, except for LYM, which had a higher increase from 

Blood 3 to Blood 4 for all groups. The WBC, LYM, and MONO levels increased continuously 

for all groups based on positive Δ13 and Δ34, but EOS and BASO decreased from Blood 3 to 

Blood 4 based on negative Δ34. NEU showed a tendency to decrease in the RES and MID 

groups, which was opposite to the positive NEU in the SUS and DEAD groups for Δ34 (FDR 

<0.0024). Additionally, a significant difference in NEU among groups was also identified for 

Δ14, which represents the overall change of NEU from Blood 1 to Blood 4. Δ14 for NEU were 

positive for all groups, but the SUS and DEAD groups had significantly higher increases in NEU 

than the RES and MID groups (FDR = 0.0002). Compared with Blood 1, which was collected in 

the quarantine unit, the other white blood cell traits, including WBC, LYM, MONO, EOS, and 

BASO, also increased significantly in Blood 4, although no significant differences based on Δ14 

were found between groups. 

Red Blood Cell and Platelet Traits 

Results of comparing red blood cell and platelet traits in the RES, SUS, MID, and DEAD 

groups are summarized in Table 8. No significant differences were identified between groups for 

either red blood cell or platelet traits in Blood 1. However, for Blood 3, RDW and MPV were 
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significantly higher in the DEAD group than in the RES and MID groups (FDR < 0.002). For 

Blood 4, several red blood cell traits showed significant differences between groups. Notably, 

HGB, HCT, and MCH were found to be significantly lower in the SUS and DEAD groups than 

in the RES and MID groups (FDR < 0.0005). Moreover, RBC was significantly higher in the 

RES and MID groups than in the SUS and DEAD groups (FDR = 0.0036), and MCV was 

significantly lower in the DEAD group than in the others. In contrast, RDW and MPV were 

found to be significantly higher in the DEAD group than in the RES in Blood 4. 

Table 9 summarizes the results of comparing the least-squares means of changes in red 

blood cell and platelet traits between groups. In contrast to the increase in white blood cell traits, 

all red blood cell traits decreased from Blood 1 to Blood 3, except for MCHC, which increased 

significantly in the DEAD group. Apart from MCHC, the drop for the other red blood cell traits 

from Blood 1 to Blood 3 did not show a tendency of being different between groups. The MPV 

in the SUS group was the only platelet trait that did not show a significantly positive Δ13 due to 

a relatively large standard error. Changes of platelet traits based on Δ13 did not show significant 

differences between groups. In contrast to the decreasing trend of red blood cell traits from 

Blood 1 to Blood 3, RBC and HCT increased significantly from Blood 3 to Blood 4 for all 

groups based on positive Δ34. Moreover, HGB also increased for both the RES and MID groups 

from Blood 3 to Blood 4, and Δ34 for HGB of these groups was significantly different from Δ34 

for the SUS and DEAD groups (FDR = 0.0002), which were not found to be significantly 

different from zero. The MCV decreased continuously based on negative Δ34, and the DEAD 

group showed a more dramatic drop in MCV than the RES and MID groups (FDR = 0.0003). 

MCH and MCHC also kept decreasing based on negative Δ34, and the decrease of MCH for the 

DEAD group was significantly higher than for the RES and MID groups. Platelet traits also 
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reduced from Blood 3 to Blood 4 for all groups, except for PLT in the SUS group, which did not 

show a significantly negative Δ34 due to a relatively large standard error.  

Although several traits increased slightly from Blood 3 to Blood 4, for the overall 

changes from Blood 1 to Blood 4, all traits decreased significantly based on negative Δ14, except 

for RBC and PLT. Comparing Blood 4 to Blood 1, RBC increased slightly for the RES and MID 

groups, but it showed a tendency to return to the same level as in Blood 1 for the SUS and 

DEAD groups. PLT increased significantly from Blood 1 to Blood 4 for the RES, MID, and SUS 

groups, with no significant change identified for the DEAD group. MCHC was the only trait that 

showed a significant difference between groups for Δ14, which was lower in the SUS group than 

in the RES group (FDR = 0.04). 

4.3.3 Estimates of Heritability  

The GFGR was estimated to be moderately heritable (0.15 ± 0.04), but the heritability 

estimate of TR was low (0.04 ± 0.01). Heritability estimates for CBC traits with standard errors 

are in Table 10. Most CBC traits were moderately heritable, with estimates ranging from 0.11 ± 

0.03 to 0.27 ± 0.04. A few red blood cell traits showed moderate to high heritability estimates, 

ranging from 0.30 ± 0.04 to 0.53 ± 0.05, including RBC, MCV, and MCH in Blood 3 and 4. 

Estimates of heritability were low for some CBC traits, including BASO, HGB, and HCT in 

Blood 1, PLT in Blood 3 and Blood 4, RDW in Blood 4, and also for the changes of many CBC 

traits based on Δ13, Δ34, and Δ14. Genetic variances of several traits, especially MONO, and 

some changes of EOS, BASO, HCT, PLT and MPV were not found to be significantly different 

from zero based on likelihood ratio tests, which compared full models to restricted models that 

constrained the genetic variance to zero in ASReml 4.1 (p-value > 0.05) (Gilmour et al., 2015).  

4.3.4 Estimates of Genetic Correlations  
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GFGR and TR were estimated to be negatively correlated, with a genetic correlation of -

0.50 ± 0.16. Estimates of genetic correlations for CBC traits that showed significant differences 

among groups (RES, MID, SUS, and DEAD) and the resilience traits of GFGR and TR are 

summarized in Table 11. LYM in Blood 3 and its change based on Δ13, which had the highest 

levels in the RES group, showed significantly negative genetic correlations with TR of -0.38 ± 

0.18 and -0.46 ± 0.24, respectively. HCT based on Δ34, which was significantly higher in the 

RES and MID groups, showed a high negative genetic correlation with TR (-0.82 ± 0.47). NEU 

in Blood 4, RDW in Blood 4, and the change of NEU based on Δ14, which all had higher counts 

in the SUS and DEAD groups, showed significantly positive genetic correlations with TR. 

Genetic correlations between these CBC traits and GFGR showed a tendency of being opposite 

to the positive genetic correlations with TR but had relatively large standard errors. NEU based 

on Δ34, which was significantly positive in the SUS and DEAD groups but not significantly 

different from zero in the RES and MID groups, was estimated to have a negative genetic 

correlation with GFGR (-0.45 ± 0.21). TR showed a tendency to have a positive genetic 

correlation with the NEU based on Δ34 but had a large standard error (0.44 ± 0.26). For CBC 

traits from Blood 1, RDW was the only trait that showed a significantly positive genetic 

correlation with TR (0.41 ± 0.20), while none of the other CBC traits from Blood 1 showed 

significant correlations with TR or GFGR due to having low estimates and relatively high 

standard errors. Estimates of genetic correlations for CBC traits within Blood 1, Blood 3, and 

Blood 4 are summarized in Table 12, while estimates of genetic correlations for each CBC trait 

between Blood 1, Blood 3, and Blood 4 are shown in Table 13. Genetic correlations between 

Δ13, Δ34, and Δ14 were also estimated for each CBC trait and are summarized in Table 14.  
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4.4. Discussion 

4.4.1 CBC Traits and Disease resilience 

Hematopoiesis, including the establishment and maintenance of all circulating cellular 

blood components, relies on the proliferation and differentiation of hematopoietic stem cells 

(HSCs) (Orkin and Zon, 2008; Zaretsky et al., 2014). In response to disturbances of the 

hematopoietic equilibrium, such as infection, extensive proliferation and increased 

differentiation of HSCs are required to meet the higher demand of immune effector cells 

(Baldridge et al., 2001; Shahbazian et al., 2004; Singh et al., 2008; Johns et al., 2009; Yáñez et 

al., 2009; Boettcher and Manz, 2017). In the natural challenge model, our results showed that all 

white blood cell traits increased significantly from Blood 1 to Blood 4, although some traits, 

including NEU, EOS, and BASO, decreased from Blood 3 to Blood 4 (Tables 7). According to 

the reference intervals, white blood cell traits have the tendency to increase slightly with age, 

except for NEU, which tends to decrease with age (Table 4) (Iowa State University's Clinical 

Pathology Laboratory, 2011). Eze et al. (2011) indicated that white blood cell traits did not vary 

significantly between clinically healthy piglets and adults raised under an intensive management 

system. Therefore, the significant increases of all white blood cell traits observed here are likely 

to result from recruiting phagocytes (monocytes, neutrophils), immunocytes (lymphocytes), and 

granulocytes (neutrophils, eosinophils, and basophils) to drive immune responses at the early 

stage of infection (George-Gay and Parker, 2003; Rothenberg and Hogan, 2006; Mitre and 

Nutman, 2006; Porwit et al., 2011).  

Notably, resilient pigs had significantly higher LYM for Blood 3 and based on Δ13 

compared to the other three groups. Lymphocytes are mainly indicative of initiation and 

execution of the adaptive immune responses due to their essential and multiple roles in adaptive 
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immunity (Figure 23B). Higher LYM in the blood of resilient pigs may indicate earlier and 

greater adaptive immune responses and increase the transport of lymphocytes to the infected 

tissues. Resilient pigs may be primed to orchestrate immune responses against a wide variety of 

pathogens more efficiently together with the higher concentrations of lymphocytes in infected 

tissues at the early stage of infection and, therefore, limiting the adverse effect caused by 

infectious challenges (Wilkie and Mallard, 1999, Badri and Wood, 2003, Zabriskie, 2009, Zhu et 

al., 2010; Luckheeram et al., 2012). This was also indicated by the negative genetic relationships 

of TR with LYM in Blood 3 and its change based on Δ13. A higher increase of LYM from Blood 

1 to Blood 3 should favor resilience, which is related to a lower TR. Neutrophils, which 

increased significantly from Blood 1 to Blood 3 for all groups are both present as phagocytes and 

granulocytes in the innate immune response to defend against bacterial pathogens (Figure 23A) 

(Pham, 2006; Kolaczkowska and Kubes, 2013; Boettcher and Manz, 2017). However, after 

moving animals into the grow-to-finish stage, between Blood 3 and Blood 4, NEU showed the 

tendency to decrease in the RES and MID groups, which was opposite to the significant rise 

observed for the SUS and DEAD groups. Thus, NEU in Blood 4, and its changes based on Δ34 

and Δ14 were also significantly lower for the RES and MID groups compared to the SUS and 

DEAD groups. Sustained high levels of NEU for the SUS and DEAD groups may be related to 

ongoing bacterial infection. The decrease of NEU in the blood of the RES and MID groups may 

indicate the recovery and resolution of inflammation when pathogens were brought under control 

by early initiation and efficient adaptive immune responses in resilient animals with higher 

increase of LYM from Blood 1 to Blood 3 (Savill, 1997; Nathan, 2006). Alternatively, it may 

reflect that neutrophils were already transported to the infected tissues to defend against 

pathogens in the RES and MID groups. These suggested processes need to be further explored 
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for example, by monitoring the pathogen load in animals and identifying signs of the resolution 

of inflammation, such as the exodus of neutrophils in infected tissues and “stop signals” or 

checkpoints of inflammation, including lipoxins, Resolvins, and D-series prostaglandins (Serhan 

et al., 2007). Positive genetic correlations of TR with NEU in Blood 4 and its change based on 

Δ14, and the negative genetic correlation of GFGR with NEU based on Δ34 together may 

indicate that higher NEU in the grow-to-finish stage has a negative relationship with resilience, 

which is associated with increased TR and decreased GFGR.  

Unlike the situation of white blood cells, red blood cell traits declined from Blood 1 to 

Blood 3 to the same degree for all groups, except for MCHC, which did not show a significant 

decrease (Table 9). By comparing clinically healthy grower to finisher pigs, Ježek et al. (2018) 

suggested that red blood cell traits, including RBC, HGB, HCT, MCV, and MCH, increased with 

age. The reference intervals from Iowa State University's Clinical Pathology Laboratory (2011) 

also indicated a tendency for red blood cell traits to increase with age in pigs. Therefore, 

significant decreases in red blood cell traits from Blood 1 to Blood 3 are likely caused by the 

challenge of bacterial pathogens, which could damage circulating blood cells and accelerate 

hemolysis for iron to support bacterial cellular processes of respiration and replication (Barrett-

Conner, 1972; Kent, 1994; Viana, 2011, Cassat and Skaar, 2013). This, however, changed during 

the late stage of infection for the RES and MID groups, for which HGB and HCT increased 

significantly from Blood 3 to Blood 4. Although red blood cell traits may increase with age, the 

significantly higher increase of HGB and HCT from Blood 3 to Blood 4 of more resilient 

animals may also suggest a better performance and faster recovery from infection by providing a 

higher level of iron and oxygen to the host (Morera and MacKenzie, 2011). Moreover, 

hemoglobin has been found to directly participate in immune responses as a source of bioactive 
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peptides that exhibit antimicrobial activity against bacteria (EL Bishlawy, 1999; Liepke et al., 

2003). The higher increase of HGB from Blood 3 to Blood 4 of resilient animals are expected to 

enhance immune responses and work together with the other immune cells to defend against 

pathogens. Although relatively large standard errors are reported, highly negative genetic 

correlations of TR with HGB and HCT based on Δ34 and in Blood 4 may indicate that higher 

HGB and HCT during the late stage of infection favors resilience, which is related to lower TR. 

In addition, the significant increase in RDW has been identified to be a valuable index for 

assessing various pathological conditions, including inflammation and respiratory diseases in 

humans (Goyal et al., 2017). Our results also showed higher levels of RDW in Blood 3 and 

Blood 4 for less resilient animals. According to the highly positive genetic correlation of TR with 

RDW in Blood 4 (0.89 ± 0.26), higher RDW after challenge may have adverse effects associated 

with increasing the TR.  

Significant genetic correlations of CBC traits with resilience traits suggest that a well-

functioning immune system plays an essential role in resilient animals to maintain performance 

and prevent death from infection. An adequate nutritional status is necessary for the normal 

functioning of various components of the immune system because the immune system is 

energetically expensive (Coop and Kyriazakis, 2001; McDade, 2005; Nelson and Williams, 

2007; Calder, 2013). Any changes in resource demands by the immune system can create 

significant differences in the level of fitness and performance that are related to resilience 

(Stearns, 1976). When nutrient resources are limited by decreased feed intake in response to 

disease challenge, a trade-off is expected to occur between the immune system and other 

nutrient-demands, such as growth (Lochmiller and Deerenberg, 2000; Doeschl-Wilson et al., 

2009; Rauw, 2012; Putz et al., 2018). Although the negative genetic correlation between GFGR 
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and TR could be the result of decreasing feed intake in challenged pigs, it might further indicate 

the trade-off and competing demands for the investment of nutrients in growth and immune 

function. In susceptible and dead animals, the infection may not be eliminated effectively as a 

result of a weak immune response. Therefore, decreased feed intake, along with prolonged 

infection, may further compromise the immune system, leading to a more severe disease state, 

and increased susceptibility to other pathogens (Keusch, 2003; Nelson and Williams, 2007; Hine 

et al., 2014). Conversely, the significant changes of CBC traits over time in RES animals, 

including higher LYM based on Δ13, higher HGB and HCT based on Δ34, and lower NEU 

based on Δ34 together, are expected to indicate the allocation of more resources towards 

immunity during the infection stage to help limit infection in resilient animals. Once the 

infection is brought under control by an efficient immune response, resilient animals may 

recover earlier from the infection, which could allow them to allocate more resources to maintain 

a higher growth rate in the grow-to-finish stage (Calder, 2013; McDade, 2005).  

4.4.2 Estimates of Heritabilities 

  Estimates of heritabilities for CBC traits have been reported in many studies (Table 15). 

Some of these were conducted under a controlled environment with limited disease challenges 

and types of pathogens (Clapperton et al., 2008, 2009). Others were conducted under a lower 

health status condition with multiple pathogens (Henryon et al., 2006; Flori et al., 2011; Mpetile 

et al., 2015). Heritability estimates for CBC traits in the natural challenge model in this study 

were within the range of estimates reported in these studies. Additionally, we were able to 

provide heritability estimates for novel CBC traits that capture changes of CBC in response to 

the challenge of infection. Heritability estimates for many CBC traits, especially red blood cells, 

were observed to be higher in Blood 3 and Blood 4 than in Blood 1, possibly because genetic 
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variances of these traits may be more fully expressed in a lower health environment when there 

is the challenge of infection (Clapperton et al., 2008, 2009).  

Heritability estimates for GFGR and TR in this study were 0.15 ± 0.04 and 0.04 ± 0.01, 

respectively. Guy et al. (2018) estimated the heritability of treatments for a relatively high-health 

herd to be between 0.04 ± 0.03 and 0.06 ± 0.04. Putz et al. (2018) estimated the heritability of 

finishing average daily gain (FinADG) to be 0.25 ± 0.07 based on the phenotypes of the first 

three cycles of this natural challenge model. Moreover, the heritability for treatment rate adjusted 

to 180 days for animals that reached 65 days of age (TRT180) was estimated to 0.29 ± 0.07 by 

Putz et al. (2018). Our use of phenotypes and genotypes on a larger population with 2593 

animals of six cycles resulted in relatively lower estimates of heritabilities and lower standard 

errors for both growth and treatment traits. Moreover, heritability estimates for the treatment rate 

were different since the definitions of this trait were not the same. In Putz et al. (2018), animals 

that died before the age of 65 days were excluded, but we included all animals unless they died 

without receiving any treatment. Moreover, we used additional batches of animals that were 

introduced into the natural challenge. As disease pressure varied by batch and on a seasonal 

basis, treatment rates could change accordingly. Moreover, treatment rates may also change with 

many other noninfectious factors, such as the level of stress caused by weather and transport in 

these batches (Bishop and Woolliams, 2014). Therefore, the heritability estimates for treatment 

rates are expected to change correspondingly. 

4.5. Conclusions 

Resilience is a valuable attribute in livestock to manage infectious diseases and 

sustainably increase production efficiency, as resilient animals can maintain their performance 

without the need for intensive treatment. Consequently, there is an increasing focus on exploring 
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the potential to select for resilience. Although CBC in Blood 1 is attractive as a potential 

predictor trait for resilience, as it is a cost-effective phenotype that can be collected from nucleus 

breeding herds with high health, no significant differences in CBC traits between resilience 

groups were identified for Blood 1 and estimates of genetic correlations of Blood 1 CBC traits 

with resilience were not significantly different from zero. Alternatively, for CBC under disease, 

resilient animals were found to have a greater increase of lymphocyte levels in the blood 

collected at 2-weeks after challenge, higher levels of hemoglobin and hematocrit, but a 

significantly lower level of the neutrophil concentration based on the changes from 2-weeks to 6-

weeks. Therefore, these changes of CBC traits in response to a disease challenge could provide a 

measure of resilience. Several of the latter CBC traits were found to be heritable and genetically 

correlated with resilience. Thus, these CBC traits may have the potential to be further developed 

as a phenotype for prediction of resilience by collecting data from commercial systems.   



126 

 

Reference 

Abbas, A. K., Lichtman, A. H., and Pillai, S. (2015). Basic immunology: functions and disorders 

of the immune system. Amsterdam: Elsevier. 

Albers, G. A., Gray, G. D., Piper, L. R., Barker, J. S., Le Jambre, L. F., and Barger, I. A. (1987). 

The genetics of resistance and resilience to haemonchus contortus infection in young merino 

sheep. Int. J. Parasitol. 17, 1355–1363. doi: 10.1016/0020-7519(87)90103-90102. 

Badri, M., and Wood, R. (2003). Usefulness of total lymphocyte count in monitoring highly 

active antiretroviral therapy in resource-limited settings. AIDS 17, 541–545. doi: 

10.1097/01.aids.0000050811.06065.7f. 

Baldridge, M. T., King, K. Y., and Goodell, M. A. (2011). Inflammatory signals regulate 

hematopoietic stem cells. Trends Immunol. 32, 57–65. doi: 10.1016/j.it.2010.12.003. 

Bao, W.-B., Ye, L., Zi, C., Su, X.-M., Pan, Z.-Y., Zhu, J., et al. (2012). Study on the age-

dependent tissue expression of FUT1 gene in porcine and its relationship to E. coli F18 

receptor. Gene 497, 336–339. doi: 10.1016/j.gene.2012.01.035. 

Barrett-Connor, E. (1972). Anemia and infection. Am. J. Med. 52, 242–253. doi: 10.1016/0002-

9343(72)90073-3. 

Bishop, S. C., and Stear, M. J. (2003). Modeling of host genetics and resistance to infectious 

diseases: understanding and controlling nematode infections. Vet. Parasitol. 115, 147–166. 

doi: 10.1016/s0304-4017(03)00204-8. 

Bishop, S. C., and Woolliams, J. A. (2014). Genomics and disease resistance studies in livestock. 

Livest. Sci. 166, 190–198. doi: 10.1016/j.livsci.2014.04.034. 

Boettcher, S., and Manz, M. G. (2017). Regulation of inflammation-and-infection-driven 

hematopoiesis. Trends Immunol. 38, 345–357. doi: 10.1016/j.it.2017.01.004. 

Brys, G., Hubert, M., and Struyf, A. (2004). A robust measure of skewness. J. Comput. Graph. 

Stat. 13, 996–1017. doi: 10.1198/106186004x12632. 

Calder, P. C. (2013). Feeding the immune system. Proc. Nutr. Soc. 72, 299–309. doi: 

10.1017/S0029665113001286. 

Cassat, J. E., and Skaar, E. P. (2013). Iron in infection and immunity. Cell Host Microbe 13, 

509–519. doi: 10.1016/j.chom.2013.04.010. 

Clapperton, M., Diack, A. B., Matika, O., Glass, E. J., Gladney, C. D., Mellencamp, M. A., et al. 

(2009). Traits associated with innate and adaptive immunity in pigs: heritability and 

associations with performance under different health status conditions. Genet. Sel. Evol. 

41:54. doi: 10.1186/1297-9686-41-54. 



127 

 

Clapperton, M., Glass, E. J., and Bishop, S. C. (2008). Pig peripheral blood mononuclear 

leukocyte subsets are heritable and genetically correlated with performance. Animal 2, 1575–

1584. doi: 10.1017/s1751731108002929. 

Coop, R. L., and Kyriazakis, I. (2001). Influence of host nutrition on the development and 

consequences of nematode parasitism in ruminants. Trends Parasitol. 17, 325–330. doi: 

10.1016/S1471-4922(01)01900-1906. 

Doeschl-Wilson, A. B., Brindle, W., Emmans, G., and Kyriazakis, I. (2009). Unravelling the 

relationship between animal growth and immune response during micro-parasitic infections. 

PLoS One 4:e7508. doi: 10.1371/journal.pone.0007508. 

El Bishlawy, I. M. (1999). Red blood cells, hemoglobin and the immune system. Med. 

Hypotheses 53, 345–346. doi: 10.1054/mehy.1997.0778. 

Elsevier Health Sciences and Khan Academy (2019). Immune system. Available online at: 

https://www.khanacademy.org/test-prep/mcat/organ-systems#theimmune-system. [Accessed 

September 3, 2019]. 

Eze, J. I., Onunkwo, J. I., Shoyinka, S. V. O., Chah, F. K., Ngene, A. A., Okolinta, N., et al. 

(2011). Haematological profiles of pigs raised under intensive management system in South-

Eastern Nigeria. Niger. Vet. J. 31, 115–123. doi: 10.4314/nvj.v31i2.68958. 

Flori, L., Gao, Y., Laloë, D., Lemonnier, G., Leplat, J.-J., Teillaud, A., et al. (2011). Immunity 

Traits in pigs: substantial genetic variation and limited covariation. PLoS One 6:e22717. doi: 

10.1371/journal.pone.0022717. 

Friggens, N. C., Blanc, F., Berry, D. P., and Puillet, L. (2017). Review: deciphering animal 

robustness. A synthesis to facilitate its use in livestock breeding and management. Animal 11, 

2237–2251. doi: 10.1017/S175173111700088X. 

George-Gay, B., and Parker, K. (2003). Understanding the complete blood count with 

differential. J. Perianesth. Nurs. 18, 96–117. doi: 10.1053/jpan.2003.50013. 

Gershon, H. (1997). The anti-inflammatory role of the erythrocyte: impairment in the elderly. 

Arch. Gerontol. Geriatr. 24, 157–165. doi: 10.1016/S0167-4943(96)00748-740. 

Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., and Thompson, R. (2015). ASReml 

user guide release 4.1 functional specification. Hemel Hempstead: VSN International Ltd. 

Goyal, H., Lippi, G., Gjymishka, A., John, B., Chhabra, R., and May, E. (2017). Prognostic 

significance of red blood cell distribution width in gastrointestinal disorders. World J. 

Gastroenterol. 23, 4879–4891. doi: 10.3748/wjg.v23.i27.4879. 



128 

 

Guy, S. Z. Y., Li, L., Thomson, P. C., and Hermesch, S. (2018). “Genetic parameters for health 

of the growing pig using medication records,” in Proceeding 11th World Congress of Genetics 

Applied to Livestock Production, Auckland. 

Guy, S. Z. Y., Thomson, P. C., and Hermesch, S. (2012). Selection of pigs for improved coping 

with health and environmental challenges: breeding for resistance or tolerance? Front. Genet. 

3:281. doi: 10.3389/fgene.2012.00281. 

Hagger, C. (1998). Litter, permanent environmental, ram-flock, and genetic effects on early 

weight gain of lambs. J. Anim. Sci. 76, 452–457. doi: 10.2527/1998.762452x. 

Henryon, M., Heegaard, P. M. H., Nielsen, J., Berg, P., and Juul-Madsen, H. R. (2006). 

Immunological traits have the potential to improve selection of pigs for resistance to clinical 

and subclinical disease. Anim. Sci. 82:597. doi: 10.1079/asc200671. 

Hine, C. B., Mallard, B. A., Ingham, A. B., and Colditz, I. G. (2014). “Immune competence in 

livestock,” in Breeding Focus 2014 - Improving Resilience, ed S. Hermesch, (Armidale: 

University of New England), 49–64. 

Hottz, E. D., Bozza, F. A., and Bozza, P. T. (2018). Platelets in immune response to virus and 

immunopathology of viral infections. Front. Med. 5:121. doi: 10.3389/fmed.2018.00121. 

Hubert, M., and Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Comput. 

Stat. Data Anal. 52, 5186–5201. doi: 10.1016/j.csda.2007.11.008. 

Iowa State University’s Clinical Pathology Laboratory (2011). Reference Intervals. Available 

online at: https://vetmed.iastate.edu/vpath/services/diagnosticservices/clinical-

pathology/testing-and-fees/reference-intervals. [Accessed September 3, 2019]. 

Janeway, C. A., Traver, P., Walport, M., and Schlomchik, M. J. (2001). Immunobiology: The 

Immune System in Health and Disease, 5th Edn. New York: Taylor & Francis, Inc. 

Ježek, J., Stariè, J., Nemec, M., Plut, J., Oven, I. G., Klinkon, M., et al. (2018). The influence of 

age, farm, and physiological status on pig hematological profiles. J. Swine Health Prod. 26, 

72–78. 

Jiang, N., Tan, N. S., Ho, B., and Ding, J. L. (2007). Respiratory protein-generated reactive 

oxygen species as an antimicrobial strategy. Nat. Immunol. 8, 1114–1122. doi: 

10.1038/ni1501. 

Johns, J. L., Macnamara, K. C., Walker, N. J., Winslow, G. M., and Borjesson, D. L. (2009). 

Infection with Anaplasma phagocytophilum induces multilineage alterations in hematopoietic 

progenitor cells and peripheral blood cells. Infect. Immun. 77, 4070–4080. doi: 

10.1128/IAI.00570-579. 



129 

 

Kent, S. (1994). The etiology of the anemia of chronic disease and infection. J. Clin. Epidemiol. 

47, 23–33. doi: 10.1016/0895-4356(94)90030-90032. 

Keusch, G. T. (2003). The history of nutrition: malnutrition, infection and immunity. J. Nutr. 

133, 336S–340S. doi: 10.1093/jn/133.1.336S. 

Kolaczkowska, E., and Kubes, P. (2013). Neutrophil recruitment and function in health and 

inflammation. Nat. Rev. Immunol. 13, 159–175. doi: 10.1038/nri3399. 

Liepke, C., Baxmann, S., Heine, C., Breithaupt, N., Ständker, L., and Forssmann, W.G. (2003). 

Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense 

peptides. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 791, 345–356. doi: 

10.1016/S1570-0232(03)00245-9. 

Lochmiller, R. L., and Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what 

is the cost of immunity? Oikos 88, 87–98. doi: 10.1034/j.1600-0706.2000.880110.x. 

Luckheeram, R. V., Zhou, R., Verma, A. D., and Xia, B. (2012). CD4 T Cells: differentiation 

and Functions. Clin. Dev. Immunol. 2012, 1–12. doi: 10.1155/2012/925135. 

McDade, T. W. (2005). Life history, maintenance, and the early origins of immune function. Am. 

J. Hum. Biol. 17, 81–94. doi: 10.1002/ajhb.20095. 

Meijerink, E., Fries, R., Vögeli, P., Masabanda, J., Wigger, G., Stricker, C., et al. (1997). Two a 

(1,2) fucosyltransferase genes on porcine Chromosome 6q11 are closely linked to the blood 

group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm. Genome 8, 

736–741. doi: 10.1007/s003359900556. 

Meijerink, E., Neuenschwander, S., Fries, R., Dinter, A., Bertschinger, H. U., Stranzinger, G., et 

al. (2000). A DNA polymorphism influencing a (1,2) fucosyltransferase activity of the pig 

FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 

adhesion. Immunogenetics 52, 129–136. doi: 10.1007/s002510000263. 

Miar, Y., Plastow, G. S., Bruce, H. L., Moore, S. S., Durunna, O. N., Nkrumah, J. D., et al. 

(2014a). Estimation of genetic and phenotypic parameters for ultrasound and carcass merit 

traits in crossbred beef cattle. Can. J. Anim. Sci. 94, 273–280. doi: 10.4141/cjas2013-115. 

Miar, Y., Plastow, G. S., Moore, S. S., Manafiazar, G., Charagu, P., Kemp, R. A., et al. (2014b). 

Genetic and phenotypic parameters for carcass and meat quality traits in commercial 

crossbred pigs. J. Anim. Sci. 92, 2869–2884. doi: 10.2527jas.2014-7685. 

Mitre, E., and Nutman, T. B. (2006). Basophils, basophilia and helminth infections. Chem. 

Immunol. Allergy 90, 141–156. doi: 10.1159/000088886. 

Morera, D., and MacKenzie, S. A. (2011). Is there a direct role for erythrocytes in the immune 

response? Vet. Res. 42:89. doi: 10.1186/1297-9716-42-89. 



130 

 

Mpetile, Z., Young, J. M., Gabler, N. K., Dekkers, J. C. M., and Tuggle, C. K. (2015). Assessing 

peripheral blood cell profile of Yorkshire pigs divergently selected for residual feed intake. J. 

Anim. Sci. 93:892. doi: 10.2527jas.2014-8132. 

Mulder, H. A., and Rashidi, H. (2017). Selection on resilience improves disease resistance and 

tolerance to infections. J. Anim. Sci. 95, 3346–3358. doi: 10.2527/jas.2017.1479. 

Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nat.Rev. Immunol. 

6, 173–182. doi: 10.1038/nri1785. 

Nelson, K. E., and Williams, C. (2007). Infectious Disease Epidemiology: Theory and Practice, 

3ed Edn. Burlington, MA: Jones & Bartlett Learning. 

Orkin, S. H., and Zon, L. I. (2008). Hematopoiesis: an evolving paradigm for stem cell biology. 

Cell 132, 631–644. doi: 10.1016/j.cell.2008.01.025. 

Pham, C. T. N. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nat. 

Rev. Immunol. 6, 541–550. doi: 10.1038/nri1841. 

Porwit, A., McCullough, J., and Erber, W. N. (2011). Blood and Bone Marrow Pathology. 

London: Churchill Livingstone. 

Putz, A. M., Harding, J. C. S., Dyck, M. K., Fortin, F., Plastow, G. S., Dekkers, J. C. M., et al. 

(2018). Novel resilience phenotypes using feed intake data from a natural disease challenge 

model in wean-to-finish Pigs. Front. Genet. 9:660. doi: 10.3389/fgene.2018.00660. 

R Core Team (2017). R: A language and environment for statistical computing. R foundation for 

statistical computing. Vienna: R Core Team. 

Rauw, W. M. (2012). Immune response from a resource allocation perspective. Front. Genet. 

3:267. doi: 10.3389/fgene.2012.00267. 

Rondina, M. T., and Garraud, O. (2014). Emerging evidence for platelets as immune and 

inflammatory effector cells. Front. Immunol. 5:653. doi: 10.3389/fimmu.2014.00653. 

Rothenberg, M. E., and Hogan, S. P. (2006). The eosinophil. Annu. Rev. Immunol. 24, 147–174. 

doi: 10.1146/annurev.immunol.24.021605.090720. 

Sargolzaei, M., Chesnais, J. P., and Schenkel, F. S. (2014). A new approach for efficient 

genotype imputation using information from relatives. BMC Genomics 15:478. doi: 

10.1186/1471-2164-15-478. 

Savill, J. (1997). Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61, 375–380. doi: 

10.1002/jlb.61.4.375. 



131 

 

Seo, S. (2006). A review and comparison of methods for detecting outliers in univariate data 

sets. Master’s Thesis, University of Pittsburgh, Pittsburgh. 

Serhan, C. N., Brain, S. D., Buckley, C. D., Gilroy, D. W.,Haslett, C., O’Neill, L. A. J., et al. 

(2007). Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–

332. doi: 10.1096/fj.06-7227rev. 

Shahbazian, L. M., Quinton, L. J., Bagby, G. J., Nelson, S., Wang, G., and Zhang, P. (2004). 

Escherichia coli pneumonia enhances granulopoiesis and the mobilization of myeloid 

progenitor cells into the systemic circulation. Crit. Care Med. 32, 1740–1746. doi: 

10.1097/01.CCM.0000132900.84627.90. 

Singh, P., Yao, Y., Weliver, A., Broxmeyer, H. E., Hong, S.-C., and Chang, C. H. (2008). 

Vaccinia virus infection modulates the hematopoietic cell compartments in the bone marrow. 

Stem Cells 26, 1009–1016. doi: 10.1634/stemcells.2007-2461. 

Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47. doi: 

10.1086/409052. 

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 

4414–4423. doi: 10.3168/jds.2007-2980. 

Viana, M. B. (2011). Anemia and infection: a complex relationship. Rev. Bras. Hematol. 

Hemoter. 33, 90–92. doi: 10.5581/1516-8484.20110024. 

Wilkie, B., and Mallard, B. (1999). Selection for high immune response: an alternative approach 

to animal health maintenance? Vet. Immunol. Immunopathol. 72, 231–235. doi: 

10.1016/S0165-2427(99)00136-131. 

Yáñez, A., Murciano, C., O’Connor, J.-E., Gozalbo, D., and Gil, M. L. (2009). Candida albicans 

triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a 

MyD88-dependent signaling. Microbes Infect. 11, 531–535. doi: 

10.1016/j.micinf.2009.01.011. 

Zabriskie, J. B. (2009). Essential Clinical Immunology. Cambridge: Cambridge University Press. 

Zaretsky, A. G., Engiles, J. B., and Hunter, C. A. (2014). Infection-induced changes in 

hematopoiesis. J. Immunol. 192, 27–33. doi: 10.4049/jimmunol.1302061. 

Zhu, J., Yamane, H., and Paul, W. E. (2010). Differentiation of effector CD4 T cell populations. 

Annu. Rev. Immunol. 28, 445–489. doi: 10.1146/annurevimmunol-030409-101212. 

Zimmerman, J. J., Karriker, L. A., Ramirez, A., Schwartz, K. J., and Stevenson, G. W. (2012). 

Diseases of Swine. Hoboken, NJ: JohnWiley & Sons.



 

 

Table 4. Descriptive statistics for complete blood count (CBC) traits in Blood 1, Blood 3, and Blood 4 after removing outliers, 

including the number of animals per trait (n), mean, standard deviation (sd), minimum (Min), and maximum (Max) values. 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte concentration; MONO: monocyte 

concentration; EOS: eosinophil concentration; BASO: basophil concentration; RBC: red blood cell concentration; HGB: hemoglobin 

concentration; HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width; PLT: platelet concentration; MPV: mean platelet volume. 

2Suggested reference intervals for CBC traits of 0 to 42 days-old pigs and 42 days-old to 2 years-old pigs (Iowa State University's 

Clinical Pathology Laboratory, 2011); 

3Not applicable.  

Traits1 
Blood 1  Blood 3  Blood 4  Reference Intervals2 

n mean sd Min Max  n mean sd Min Max  n mean sd Min Max  0 to 42 days 42 day to 2 years 

WBC, 

103/µL 
2222 11.47 3.67 5.64 28.21  2284 19.11 5.09 8.28 36.53  1802 21.92 6.15 9.23 43.01  9.62 – 25.20 11.35 – 28.90 

NEU, 103/µL 2375 4.76 2.38 1.33 14.71  2322 10.34 4.01 1.64 23.61  1808 9.95 4.65 2.48 28.37  2.35 – 11.90 2.00 – 10.40 

LYM, 

103/µL 
2425 5.61 1.85 2.39 12.65  2326 6.47 2.21 2.06 13.57  1840 9.82 3.11 3.67 21.09  4.02 – 12.50 5.30 – 17.90 

MONO, 

103/µL 
2440 0.32 0.21 0.04 1.23  2364 0.82 0.59 0.05 3.70  1890 1.01 0.74 0 4.06  0.05 – 2.30 0 – 3.70 

EOS, 103/µL 2474 0.47 0.40 0 2.61  2213 0.71 0.75 0.12 4.35  1807 0.60 0.48 0.12 3.01  0 – 0.50 0 – 1.30 

BASO, 

103/µL 
2096 0.13 0.23 0.02 1.69  2264 0.84 1.36 0.06 8.51  1798 0.33 0.32 0.05 2.09  NA3 NA 

RBC, 106/µL 2373 6.15 0.60 4.27 7.52  2242 5.79 0.67 3.82 7.55  1767 6.28 0.57 4.51 7.67  4.87 – 7.88 5.88 – 8.19 

HGB, g/L 2434 116.45 13.46 73 148  2239 100.59 10.35 68 126  1730 104.95 9.71 69 125  80.8 – 119 112 – 147 

HCT, % 2310 37.12 4.10 24 44  2228 32.81 3.63 22.10 41.80  1723 35.25 3.14 28 43  
28.22 – 

39.80 
32.30 – 42.60 

MCV, fL 2444 61.25 5.45 44.5 73.40  2339 57.02 3.59 49.60 69.50  1879 55.78 3.42 46.80 65.40  
43.40 – 

64.50 
47.50 – 59.20 

MCH, pg 2318 18.73 2.03 12.50 23.60  2153 17.52 1.26 14.70 21.80  1719 16.72 1.19 13.40 20.10  
12.40 – 

19.30 
16.30 – 20.60 

MCHC, g/L 2245 305.88 12.06 274 340  2150 307.40 15.77 268 366  1708 300.22 13.31 264 345  273 – 314 333 – 358 

RDW, % 2473 21.97 4.02 15.80 39.90  2321 18.45 1.61 15.90 25.10  1873 18.61 1.40 15.60 23.10  NA NA 

PLT, 103/µL 2457 285.13 177.18 0 949  2351 365.46 182.69 35 1062  1872 337.08 150.87 47 784  
374.3 – 

1080.8 
118.9 – 522.9 

MPV, fL 2435 14.63 3.35 8.30 26.20  2180 15.33 3.72 10.10 30.80  1849 13.57 2.01 9.30 20.50  NA NA 
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Table 5. Random effects included in the models for the analyses of complete blood count (CBC) traits. 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte concentration; MONO: monocyte 

concentration; EOS: eosinophil concentration; BASO: basophil concentration; RBC: red blood cell concentration; HGB: hemoglobin 

concentration; HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width; PLT: platelet concentration; MPV: mean platelet volume. 

2The change of CBC traits from Blood 1 to Blood 3; 3The change of CBC traits from Blood 3 to Blood 4; 4The change of CBC traits 

from Blood 1 to Blood 4.  

5The pen arrangement in the healthy quarantine unit; 6The pen arrangement in the challenge late nursery; 7The pen arrangement in the 

challenge grow-to-finish stage.  

8Significant random effect that was included in the model. 

9Not significant. 

Traits1 
Blood 1  Blood 3  Blood 4  Δ132  Δ343  Δ144 

Litter Pen15  Litter Pen1 Pen26  Litter Pen1 Pen2 Pen37  Litter Pen1 Pen2  Litter Pen1 Pen2 Pen3  Litter Pen1 Pen2 Pen3 

WBC √8 NS9  √ NS √  NS NS NS √  √ NS √  NS NS NS √  NS NS NS √ 

NEU √ NS  √ NS √  NS NS NS √  √ NS √  NS NS NS √  NS NS NS √ 

LYM √ NS  √ NS √  NS NS NS √  √ NS NS  NS NS NS √  NS NS NS √ 

MONO √ NS  NS NS √  √ √ NS NS  NS NS NS  √ NS NS √  √ NS NS NS 

EOS √ √  NS √ NS  NS NS NS NS  NS NS NS  NS √ NS NS  √ NS NS √ 

BASO NS √  NS √ √  √ √ NS √  NS √ √  NS √ √ NS  NS NS NS √ 

RBC √ √  √ √ √  NS NS NS √  √ √ NS  NS NS NS √  √ √ NS NS 

HGB √ √  √ √ √  NS NS NS √  √ √ √  NS NS NS √  √ √ NS √ 

HCT √ √  √ √ √  NS NS NS √  √ √ NS  NS NS NS √  √ √ NS √ 

MCV √ √  √ NS NS  √ NS NS √  √ √ NS  √ NS NS √  √ NS NS NS 

MCH √ √  √ NS √  √ NS NS NS  √ √ NS  √ NS NS √  √ NS NS √ 

MCHC √ √  √ √ NS  NS NS NS √  √ √ NS  NS NS NS √  √ √ NS √ 

RDW √ √  √ √ √  √ √ NS √  √ √ NS  √ NS NS √  √ NS NS NS 

PLT √ √  NS NS √  √ √ NS NS  √ √ NS  NS NS NS √  √ √ NS NS 

MPV √ √  NS NS √  NS NS NS √  NS √ NS  NS √ NS NS  NS √ NS NS 



 

 

Table 6. Least-squares means ± standard errors for white blood cell traits1 in Blood 1, 3, 

and 4 of animals from the resilient (RES), average (MID), susceptible (SUS), and dead 

(DEAD) groups. 

Blood 1, 103/µL RES MID SUS DEAD FDR-group2 

log10 (WBC) 1.03 ± 0.01a3 1.04 ± 0.00a 1.04 ± 0.01a 1.03 ± 0.01a 0.55 

log10 (NEU) 0.62 ± 0.01a 0.64 ± 0.01a 0.63 ± 0.01a 0.62 ± 0.01a 0.55 

log10 (LYM) 0.71 ± 0.01a 0.73 ± 0.00a 0.73 ± 0.01a 0.72 ± 0.01a 0.29 

log10 (MONO) -0.61 ± 0.02a -0.59 ± 0.01a -0.58 ± 0.02a -0.58 ± 0.01a 0.42 

log10 (EOS) -0.47 ± 0.02a -0.49 ± 0.01a -0.50 ± 0.02a -0.50 ± 0.01a 0.84 

log10 (BASO) -1.15 ± 0.02a -1.15 ± 0.01a -1.14 ± 0.02a -1.16 ± 0.01a 0.88 

Blood 3, 103/µL RES MID SUS DEAD FDR-group 

log10 (WBC) 1.27 ± 0.01a 1.27 ± 0.00a 1.25 ± 0.01a 1.26 ± 0.01a 0.18 

log10 (NEU) 0.97 ± 0.01a 0.98 ± 0.00a 0.97 ± 0.01a 0.98 ± 0.01a 0.56 

log10 (LYM) 0.82 ± 0.01c4 0.79 ± 0.00b 0.77 ± 0.01ab 0.75 ± 0.01a < 0.0001 

log10 (MONO) -0.18 ± 0.02a -0.21 ± 0.01a -0.23 ± 0.02a -0.22 ± 0.01a 0.27 

log10 (EOS) -0.32 ± 0.02a -0.30 ± 0.01a -0.33 ± 0.02a -0.33 ± 0.01a 0.15 

log10 (BASO) -0.51 ± 0.02a -0.51 ± 0.01a -0.55 ± 0.02a -0.49 ± 0.01a 0.15 

Blood 4, 103/µL RES MID SUS DEAD FDR-group 

log10 (WBC) 1.31 ± 0.01a 1.32 ± 0.00a 1.34 ± 0.01a 1.34 ± 0.01a 0.21 

log10 (NEU) 0.93 ± 0.01a 0.95 ± 0.01a 1.02 ± 0.01b 1.03 ± 0.02b < 0.0001 

log10 (LYM) 0.98 ± 0.01b 0.98 ± 0.00b 0.95 ± 0.01ab 0.92 ± 0.01a 0.0009 

log10 (MONO) -0.16 ± 0.02a -0.15 ± 0.01a -0.14 ± 0.02a -0.18 ± 0.03a 0.67 

log10 (EOS) -0.33 ± 0.01a -0.33 ± 0.01a -0.29 ± 0.02a -0.30 ± 0.02a 0.46 

log10 (BASO) -0.61 ± 0.02a -0.59 ± 0.01a -0.57 ± 0.02a -0.57 ± 0.02a 0.40 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration. 

2FDR-Group: adjusted p-values for the significant level of group effect using the Benjamini and 

Hochberg correction (FDR) in R to control false positives from multiple comparisons (R Core 

Team, Package ‘stats’). 

3Values in a column suffixed with different letters are significantly different from each other at 

FDR < 0.05.  

4Significant differences among RES, MID, SUS and DEAD groups are highlighted in bold (FDR 

< 0.05).  



 

 

Table 7. Least-squares means ± standard errors for changes of white blood cell traits1 

between Blood 1, 3, and 4 of animals in the resilient (RES), average (MID), susceptible 

(SUS), and dead (DEAD) groups.  

Δ132, 103/µL RES MID SUS DEAD FDR-group5 

WBC 8.39 ± 0.39a6 7.68 ± 0.17a 7.10 ± 0.40a 7.74 ± 0.29a 0.24 

NEU 5.52 ± 0.27a 5.52 ± 0.11a 5.35 ± 0.29a 5.93 ± 0.20a 0.38 

LYM 1.69 ± 0.17b7 0.85 ± 0.07a 0.67 ± 0.17a 0.51 ± 0.12a < 0.0001 

MONO 0.56 ± 0.03a 0.49 ± 0.01a 0.42 ± 0.03a 0.47 ± 0.02a 0.08 

EOS 0.23 ± 0.04a 0.26 ± 0.01a 0.18 ± 0.04a 0.24 ± 0.03a 0.38 

BASO 0.85 ± 0.08a 0.66 ± 0.04a 0.63 ± 0.07a 0.79 ± 0.06a 0.08 

Δ343, 103/µL RES MID SUS DEAD FDR-group 

WBC 2.13 ± 0.51a 2.89 ± 0.23a 4.06 ± 0.54a 3.91 ± 0.68a 0.08 

NEU -0.60 ± 0.41a -0.33 ± 0.17a 1.36 ± 0.40b 1.77 ± 0.51b < 0.0001 

LYM 3.08 ± 0.25a 3.41 ± 0.11a 3.24 ± 0.26a 2.78 ± 0.32a 0.32 

MONO 0.16 ± 0.05a 0.20 ± 0.02a 0.24 ± 0.05a 0.13 ± 0.06a 0.65 

EOS -0.08 ± 0.04a -0.13 ± 0.02a -0.04 ± 0.04a -0.03 ± 0.06a 0.16 

BASO -0.54 ± 0.06a -0.45 ± 0.03a -0.38 ± 0.06a -0.40 ± 0.08a 0.42 

Δ144, 103/µL RES MID SUS DEAD FDR-group 

WBC 10.39 ± 0.48a 10.75 ± 0.19a 11.60 ± 0.51a 11.73 ± 0.63a 0.27 

NEU 4.75 ± 0.35a 5.11 ± 0.14a 6.83 ± 0.36b 7.32 ± 0.45b < 0.0001 

LYM 4.63 ± 0.23a 4.37 ± 0.09a 4.06 ± 0.24a 3.56 ± 0.31a 0.08 

MONO 0.72 ± 0.04a 0.71 ± 0.02a 0.66 ± 0.04a 0.61 ± 0.05a 0.37 

EOS 0.12 ± 0.03a 0.13 ± 0.01a 0.22 ± 0.03a 0.19 ± 0.04a 0.12 

BASO 0.15 ± 0.03a 0.20 ± 0.01a 0.24 ± 0.02a 0.23 ± 0.03a 0.12 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration. 

2The change of complete blood count (CBC) traits from Blood 1 to Blood 3; 3The change of 

CBC traits from Blood 3 to Blood 4; 4The change of CBC traits from Blood 1 to Blood 4. 

5FDR-Group: adjusted p-values for the significant level of group effect using the Benjamini and 

Hochberg correction (FDR) in R to control false positives from multiple comparisons (R Core 

Team, Package ‘stats’). 

6Values in a column suffixed with different letters are significantly different from each other at 

FDR < 0.05.  

7Significant differences among RES, MID, SUS and DEAD groups are highlighted in bold (FDR 

< 0.05). 



 

 

Table 8. Least-squares means ± standard errors for red blood cell and platelet traits1 in 

Blood 1, 3, and 4 of animals in the resilient (RES), average (MID), susceptible (SUS), and 

dead (DEAD) groups. 

Blood 1 RES MID SUS DEAD FDR-group2 

RBC, 106/µL 6.18 ± 0.03a3 6.18 ± 0.01a 6.13 ± 0.03a 6.15 ± 0.02a 0.58 

HGB, g/L 117.15 ± 0.71a 116.84 ± 0.31a 116.89 ± 0.72a 116.50 ± 0.50a 0.92 

HCT, % 37.45 ± 0.23a 37.50 ± 0.10a 37.63 ± 0.23a 37.22 ± 0.16a 0.51 

MCV, fL 61.31 ± 0.28a 61.36 ± 0.13a 62.07 ± 0.28a 61.39 ± 0.20a 0.20 

MCH, pg 18.67 ± 0.11a 18.67 ± 0.05a 18.83 ± 0.11a 18.69 ± 0.08a 0.67 

MCHC, g/L 306.86 ± 0.68a 305.74 ± 0.29a 305.70 ± 0.68a 305.11 ± 0.47a 0.32 

RDW, % 21.94 ± 0.22a 21.77 ± 0.10a 21.91 ± 0.22a 22.12 ± 0.16a 0.32 

PLT, 103/µL 281.02 ± 10.26a 283.85 ± 4.29a 290.49 ± 10.42a 286.12 ± 7.10a 0.93 

MPV, fL 14.57 ± 0.16a 14.70 ± 0.07a 14.98 ± 0.16a 14.79 ± 0.11a 0.40 

Blood 3 RES MID SUS DEAD FDR-group 

RBC, 106/µL 5.81 ± 0.04a 5.77 ± 0.02a 5.75 ± 0.04a 5.79 ± 0.03a 0.74 

HGB, g/L 101.66 ± 0.60a 101.03 ± 0.25a 100.63 ± 0.61a 101.32 ± 0.44a 0.68 

HCT, % 32.92 ± 0.20a 32.87 ± 0.09a 32.85 ± 0.21a 32.71 ± 0.15a 0.87 

MCV, fL 57.15 ± 0.20a 57.15 ± 0.08a 57.22 ± 0.20a 56.80 ± 0.14a 0.29 

MCH, pg 17.51 ± 0.07a 17.54 ± 0.03a 17.52 ± 0.08a 17.49 ± 0.06a 0.93 

MCHC, g/L 306.66 ± 0.95a 306.68 ± 0.60a 304.65 ± 0.97a 307.79 ± 0.79b 0.14 

RDW, % 18.26 ± 0.10a4 18.40 ± 0.0a 18.58 ± 0.10ab 18.72 ± 0.07b 0.0004 

PLT, 103/µL 390.20 ± 11.04a 362.14 ± 11.10a 305.14 ± 0.81a 363.44 ± 8.12a 0.26 

MPV, fL 14.59 ± 0.16a 14.92 ± 0.06a 15.01 ± 0.16ab 15.51 ± 0.12b < 0.0001 

Blood 4 RES MID SUS DEAD FDR-group 

RBC, 106/µL 6.36 ± 0.04b 6.32 ± 0.01b 6.16 ± 0.04a 6.22 ± 0.05ab 0.0009 

HGB, g/L 106.52 ± 0.60b 105.16 ± 0.25b 100.78 ± 0.62a 100.94 ± 0.81a < 0.0001 

HCT, % 35.54 ± 0.20b 35.21 ± 0.08b 34.15 ± 0.22a 34.05 ± 0.28a < 0.0001 

MCV, fL 56.03 ± 0.20b 55.74 ± 0.08b 55.44 ± 0.20b 54.39 ± 0.26a < 0.0001 

MCH, pg 16.89 ± 0.07b 16.78 ± 0.03b 16.57 ± 0.07a 16.37 ± 0.09a < 0.0001 

MCHC, g/L 301.73 ± 0.72a 301.17 ± 0.30a 299.45 ± 0.73a 299.97 ± 0.94a 0.15 

RDW, % 18.31 ± 0.09a 18.57 ± 0.04b 18.84 ± 0.09c 18.89 ± 0.12bc 0.0001 

PLT, 103/µL 352.11 ± 9.84a 337.37 ± 4.02a 354.67 ± 10.25a 339.54 ± 13.13a 0.38 

MPV, fL 13.31 ± 0.11a 13.41 ± 0.04a 13.63 ± 0.11ab 14.12 ± 0.13b < 0.0001 
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1RBC: red blood cell concentration; HGB: hemoglobin concentration; HCT: hematocrit; MCV: 

mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width; PLT: platelet concentration; 

MPV: mean platelet volume. 

2FDR-Group: adjusted p-values for the significant level of group effect using the Benjamini and 

Hochberg correction (FDR) in R to control false positives from multiple comparisons (R Core 

Team, Package ‘stats’). 

3Values in a column suffixed with different letters are significantly different from each other at 

FDR < 0.05.  

4Significant differences among RES, MID, SUS and DEAD groups are highlighted in bold (FDR 

< 0.05).



 

 

Table 9. Least-squares means ± standard errors for changes of red blood cell and platelet 

traits1 between Blood1, Blood 3, and Blood 4 of animals in the resilient (RES), average 

(MID), susceptible (SUS), and dead (DEAD) groups. 

Δ132 RES MID SUS DEAD FDR-group5 

RBC, 106/µL -0.43 ± 0.05a6 -0.44 ± 0.02a -0.43 ± 0.05a -0.33 ± 0.03a 0.16 

HGB, g/L -15.57 ± 0.93a -15.77 ± 0.38a -16.25 ± 0.96a -14.72 ± 0.68a 0.59 

HCT, % -4.58 ± 0.31a -4.68 ± 0.13a -4.83 ± 0.32a -4.59 ± 0.23a 0.93 

MCV, fL -4.11 ± 0.26a -4.31 ± 0.10a -4.74 ± 0.26a -4.44 ± 0.18a 0.43 

MCH, pg -1.22 ± 0.10a -1.20± 0.04a -1.30 ± 0.10a -1.17 ± 0.07a 0.81 

MCHC, g/L -0.63 ± 1.00a7 0.91 ± 0.42ab -0.92 ± 1.04a 3.13 ± 0.74b 0.01 

RDW, % -3.58 ± 0.20a -3.37 ± 0.08a -3.32 ± 0.20a -3.63 ± 0.14a 0.44 

PLT, 103/µL 105.93 ± 14.20a 76.20 ± 5.73a 67.59 ± 10.26a 67.59 ± 10.26a 0.29 

MPV, fL 0.29 ± 0.22a 0.40 ± 0.09a 0.10 ± 0.22a 0.79 ± 0.16a 0.14 

Δ343 RES MID SUS DEAD FDR-group 

RBC, 106/µL 0.56 ± 0.05a 0.54 ± 0.02a 0.40 ± 0.05a 0.36 ± 0.06a 0.01 

HGB, g/L 6.23 ± 0.79b 4.32 ± 0.34b 0.59 ± 0.81a -0.64 ± 1.03a < 0.0001 

HCT, % 2.61 ± 0.27b 2.22 ± 0.12b 1.15 ± 0.29a 1.04 ± 0.38a 0.0002 

MCV, fL -1.01 ± 0.20b -1.40 ± 0.08b -1.84 ± 0.20ab -2.55 ± 0.25a < 0.0001 

MCH, pg -0.59 ± 0.07c -0.73 ± 0.03bc -0.94 ± 0.08ab -1.01 ± 0.10a 0.0007 

MCHC, g/L -4.22 ± 1.06a -4.57 ± 0.45a -4.61 ± 1.10a -3.74 ± 1.43a 0.94 

RDW, % 0.06 ± 0.10a 0.22 ± 0.04a 0.30 ± 0.10a 0.15 ± 0.13a 0.46 

PLT, 103/µL -43.81 ± 14.00a -30.55 ± 5.90a -2.77 ± 14.53a -52.74 ± 18.46a 0.21 

MPV, fL -1.34 ± 0.17ab -1.55 ± 0.07a -1.24 ± 0.17ab -0.76 ± 0.22b 0.02 

Δ144 RES MID SUS DEAD FDR-group 

RBC, 106/µL 0.18 ± 0.05a 0.16 ± 0.02a 0.05 ± 0.05a 0.09 ± 0.06a 0.22 

HGB, g/L -10.75 ± 0.98a -11.76 ± 0.39a -14.96 ± 1.04a -13.42 ± 1.35a 0.06 

HCT, % -1.93 ± 0.32a -2.22 ± 0.12a -3.15 ± 0.35a -2.96 ± 0.43a 0.06 

MCV, fL -5.38 ± 0.29a -5.84 ± 0.11a -6.70 ± 0.30a -6.74 ± 0.39a 0.01 

MCH, pg -1.81 ± 0.11b -1.99 ± 0.05ab -2.33 ± 0.12a -2.20 ± 0.15ab 0.02 

MCHC, g/L -5.53 ± 1.02a -5.40 ± 0.44a -7.01 ± 1.04a -5.05 ± 1.27a 0.58 

RDW, % -3.36 ± 0.22a -2.93 ± 0.09a -2.84 ± 0.23a -3.68 ± 0.29a 0.08 

PLT, 103/µL 69.91 ± 13.48a 56.42 ± 5.35a 60.74 ± 14.30a 22.48 ± 18.13a 0.32 

MPV, fL -1.12 ± 0.18a -1.24 ± 0.07a -1.15 ± 0.19a -0.40 ± 0.25a 0.05 
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1RBC: red blood cell concentration; HGB: hemoglobin concentration; HCT: hematocrit; MCV: 

mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration; RDW: red blood cell distribution width; PLT: platelet concentration; 

MPV: mean platelet volume. 

2The change of complete blood count (CBC) traits from Blood 1 to Blood 3; 3The change of 

CBC traits from Blood 3 to Blood 4; 4The change of CBC traits from Blood 1 to Blood 4. 

5FDR-Group: adjusted p-values for the significant level of group effect using the Benjamini and 

Hochberg correction (FDR) in R to control false positives from multiple comparisons (R Core 

Team, Package ‘stats’). 

6Values in a column suffixed with different letters are significantly different from each other at 

FDR < 0.05.  

7Significant differences among RES, MID, SUS and DEAD groups are highlighted in bold (FDR 

< 0.05). 



 

 

Table 10. Estimates of heritability ± standard error for complete blood count (CBC) traits. 

Traits1 Blood 1 Blood 3 Blood 4 Δ132 Δ343 Δ144 

WBC 0.16 ± 0.045 0.22 ± 0.04 0.19 ± 0.04 0.09 ± 0.04 0.14 ± 0.04 0.15 ± 0.04 

NEU 0.18 ± 0.04 0.18 ± 0.04 0.13 ± 0.04 0.11 ± 0.04 0.11 ± 0.04 0.07 ± 0.04 

LYM 0.21 ± 0.04 0.21 ± 0.04 0.30 ± 0.04 0.11 ± 0.04 0.20 ± 0.04 0.24 ± 0.04 

MONO 0.05 ± 0.03 0.12 ± 0.03 0.02 ± 0.03 0.08 ± 0.03 0.00 ± 0.00 0.05 ± 0.04 

EOS 0.22 ± 0.04 0.19 ± 0.04 0.27 ± 0.04 0.07 ± 0.03 0.00 ± 0.03 0.08 ± 0.04 

BASO 0.08 ± 0.04 0.10 ± 0.03 0.13 ± 0.04 0.06 ± 0.04 0.06 ± 0.04 0.06 ± 0.05 

RBC 0.27 ± 0.04 0.30 ± 0.04 0.34 ± 0.05 0.08 ± 0.04 0.04 ± 0.04 0.08 ± 0.05 

HGB 0.08 ± 0.03 0.16 ± 0.04 0.28 ± 0.05 0.16 ± 0.04 0.11 ± 0.04 0.09 ± 0.05 

HCT 0.09 ± 0.03 0.23 ± 0.04 0.23 ± 0.04 0.04 ± 0.03 0.04 ± 0.04 0.10 ± 0.05 

MCV 0.19 ± 0.04 0.38 ± 0.04 0.46 ± 0.05 0.08 ± 0.03 0.22 ± 0.05 0.06 ± 0.04 

MCH 0.18 ± 0.04 0.39 ± 0.04 0.53 ± 0.05 0.15 ± 0.04 0.13 ± 0.05 0.06 ± 0.05 

MCHC 0.13 ± 0.04 0.25 ± 0.04 0.26 ± 0.05 0.17 ± 0.04 0.20 ± 0.05 0.07 ± 0.05 

RDW 0.13 ± 0.03 0.14 ± 0.04 0.08 ± 0.04 0.14 ± 0.04 0.09 ± 0.04 0.18 ± 0.05 

PLT 0.15 ± 0.03 0.07 ± 0.03 0.08 ± 0.04 0.01 ± 0.03 0.00 ± 0.03 0.04 ± 0.03 

MPV 0.11 ± 0.03 0.19 ± 0.04 0.23 ± 0.04 0.02 ± 0.03 0.10 ± 0.04 0.08 ± 0.04 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration; RBC: red blood cell concentration; HGB: hemoglobin concentration; 

HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; 

MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width; 

PLT: platelet concentration; MPV: mean platelet volume. 

2The change of CBC traits from Blood 1 to Blood 3; 3The change of CBC traits from Blood 3 to 

Blood 4; 4The change of CBC traits from Blood 1 to Blood 4. 

5Significant estimates of genetic variances are highlighted in bold based on the likelihood ratio 

test by comparing full models to restricted models that constrained genetic variances to zero in 

ASReml 4.1 (p-value < 0.05). 



 

 

Table 11. Estimates of genetic correlations ± standard errors for complete blood count 

(CBC) traits that showed significant differences among groups with the resilience traits of 

grow-to-finish growth rate (GFGR) and treatment rate (TR).  

Traits1 GFGR TR 

Blood3 

LYM 0.10 ± 0.18 -0.38 ± 0.182 

RDW -0.07 ± 0.21 0.39 ± 0.22 

MPV 0.09 ± 0.18 0.26 ± 0.18 

Blood4   

NEU -0.31 ± 0.20 0.50 ±0.23 

LYM 0.16 ± 0.15 -0.28 ± 0.16 

RBC 0.15 ± 0.15 -0.08 ± 0.17 

HGB 0.04 ± 0.16 -0.25 ± 0.18 

HCT 0.10 ± 0.17 -0.33 ± 0.19 

MCV -0.08 ± 0.15 -0.16 ± 0.16 

MCH -0.03 ± 0.14 -0.21 ± 0.15 

RDW -0.12 ± 0.28 0.89 ± 0.26 

MPV 0.09 ± 0.17 0.11 ± 0.19 

Δ133 

LYM 0.15 ± 0.23 -0.46 ± 0.24 

MCHC -0.25 ± 0.20 0.26 ± 0.21 

Δ344 

NEU  -0.45 ± 0.21 0.44 ± 0.26 

RBC -0.33 ± 0.45 -0.35 ± 0.43 

HGB 0.01 ± 0.25 -0.32 ± 0.28 

HCT -0.29 ± 0.44 -0.82 ± 0.47 

MCV 0.03 ± 0.19 0.02 ± 0.20 

MCH 0.25 ± 0.25 0.14 ± 0.28 

MPV -0.15 ± 0.26 -0.27 ± 0.28 

Δ145   

NEU -0.32 ± 0.26 0.76 ± 0.29 

MCV 0.02 ± 0.33 -0.02 ± 0.35 

MCH 0.00 ± 0.35 0.26 ± 0.36 

1NEU: neutrophil concentration; LYM: lymphocyte concentration; MONO: monocyte 

concentration; RBC: red blood cell concentration; HGB: hemoglobin concentration; HCT: 

hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: 

mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width. 

2Significant estimates of genetic correlations are highlighted in bold based on the likelihood ratio 

test by comparing full models to restricted models that constrained the genetic covariance to zero 

in ASReml 4.1 (p-value < 0.05). 

3The change of CBC traits from Blood 1 to Blood 3; 4The change of CBC traits from Blood 3 to 

Blood 4; 5The change of CBC traits from Blood 1 to Blood 4. 



 

 

Table 12. Estimates of genetic correlations ± standard errors for complete blood count 

traits1 within Blood 1, Blood 3, and Blood 4. 

Blood 1 WBC NEU LYM MONO EOS BASO RBC PLT 

WBC - Symmetric 

NEU 0.59 ± 0.092 -       

LYM 0.70 ± 0.09 0.24 ± 0.14 -      

MONO 0.30 ± 0.12 0.28 ± 0.24 0.47 ± 0.18 -     

EOS 0.42 ± 0.14 0.46 ± 0.12 0.24 ± 0.13 0.36 ± 0.21 -    

BASO 0.23 ± 0.32 0.65 ± 0.16 0.70 ± 0.17 0.87 ± 0.27 0.31 ± 0.22   -   

RBC 0.00 ± 0.15 -0.07 ± 0.14 -0.22 ± 0.13 -0.44 ± 0.25 0.18 ± 0.12 0.19 ± 0.21 -  

PLT -0.42 ± 0.18 -0.15 ± 0.17 -0.16 ± 0.16 -0.52 ± 0.31 -0.45 ± 0.13 0.05 ± 0.26 0.11 ± 0.14 - 

Blood 3 WBC NEU LYM MONO EOS BASO RBC PLT 

WBC - Symmetric 

NEU 0.83 ± 0.05 -       

LYM 0.76 ± 0.08 0.36 ± 0.15 -      

MONO 0.65 ± 0.12 0.34 ± 0.16 0.63 ± 0.12 -     

EOS 0.41 ± 0.12 0.25 ± 0.15 0.22 ± 0.14 0.21 ± 0.17 -    

BASO 0.57 ± 0.13 0.53 ± 0.14 0.23 ± 0.18 0.43 ± 0.19 -0.05 ± 0.19 -   

RBC 0.16 ± 0.12 0.17 ± 0.14 0.18 ± 0.13 -0.08 ± 0.14 -0.14 ± 0.13 -0.13 ± 0.16 -  

PLT -0.08 ± 0.21 -0.11 ± 0.23 -0.24 ± 0.22 -0.12 ± 0.25 0.10 ± 0.21 0.09 ± 0.26 -0.15 ± 0.17 - 

Blood 4 WBC NEU LYM MONO EOS BASO RBC PLT 

WBC - Symmetric 

NEU 0.79 ± 0.08 -       

LYM 0.82 ± 0.07 0.25 ± 0.16 -      

MONO 1.23 ± 0.35 1.03 ± 0.44 0.95 ± 0.48 -     

EOS 0.45 ± 0.12 0.52 ± 0.14 0.01 ± 0.12 0.56 ± 0.46 -    

BASO 0.93 ± 0.09 0.77 ± 0.14 0.76 ± 0.15 1.18 ± 0.65 0.50 ± 0.14 -   

RBC 0.34 ± 0.14 0.20 ± 0.16 0.35 ± 0.11 0.03 ± 0.24 -0.15 ± 0.12 0.13 ± 0.17 -  

PLT -0.08 ± 0.26 0.00 ± 0.29 0.01 ± 0.20 -0.45 ± 1.04 -0.15 ± 0.03 0.10 ± 0.30 0.03 ± 0.19 - 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration; RBC: red blood cell concentration; PLT: platelet concentration. 

2Significant estimates of genetic correlations are highlighted in bold based on the likelihood ratio 

test by comparing full models to restricted models that constrained the genetic covariance to zero 

in ASReml 4.1 (p-value < 0.05). 
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Table 13. Estimates of genetic correlations ± standard errors for each complete blood count 

trait between Blood 1, Blood 3, and Blood4. 

Traits1 Blood 1 & Blood 3 Blood 3 & Blood 4 Blood 1 & Blood 4 

WBC 0.85 ± 0.132 0.65 ± 0.12 0.62 ± 0.16 

NEU 0.73 ± 0.12 0.80 ± 0.17 0.64 ± 0.16 

LYM 0.68 ± 0.12 0.46 ± 0.12 0.57 ± 0.11 

MONO 0.93 ± 0.25 1.26 ± 0.93 0.88 ± 0.89 

EOS 0.40 ± 0.12 0.86 ± 0.12 0.60 ± 0.12 

BASO 0.70 ± 0.28 0.49 ± 0.21 0.98 ± 0.29 

RBC 0.86 ± 0.08 0.87 ± 0.07 0.82 ± 0.09 

HGB 0.73 ± 0.23 0.79 ± 0.11 0.80 ± 0.19 

HCT 0.60 ± 0.20 0.84 ± 0.11 0.69 ± 0.21 

MCV 0.84 ± 0.06 0.81 ± 0.05 0.77 ± 0.08 

MCH 0.77 ± 0.07 0.91 ± 0.04 0.79 ± 0.08 

MCHC 0.49 ± 0.14 0.74 ± 0.11 0.74 ± 0.13 

RDW 0.57 ± 0.13 0.62 ± 0.18 -0.28 ± 0.31 

PLT 0.78 ± 0.19 0.87 ± 0.26 0.99 ± 0.18 

MPV 1.02 ± 0.16 0.76 ± 0.11 0.66 ± 0.14 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration; RBC: red blood cell concentration; HGB: hemoglobin concentration; 

HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; 

MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width; 

PLT: platelet concentration; MPV: mean platelet volume. 

2Significant estimates of genetic correlations are highlighted in bold based on the likelihood ratio 

test by comparing full models to restricted models that constrained the genetic covariance to zero 

in ASReml 4.1 (p-value < 0.05).  



144 

 

Table 14. Estimates of genetic correlations ± standard errors for the changes of each 

complete blood count (CBC) trait between Blood 1, Blood 3, and Blood 4.  

Traits1 Δ132 & Δ343 Δ13 & Δ144 Δ34 & Δ14 

WBC -0.45 ± 0.215 0.36 ± 0.23 0.67 ± 0.13 

NEU -0.39 ± 0.23 0.52 ± 0.28 0.62 ± 0.19 

LYM -0.52 ± 0.15 0.25 ± 0.17 0.76 ± 0.07 

MONO -0.89 ± 0.71 0.48 ± 0.38 0.54 ± 0.72 

EOS -0.42 ± 0.38 0.76 ± 0.23 0.95 ± 0.60 

BASO -0.92 ± 0.11 -0.70 ± 0.76 0.42 ± 0.60 

RBC -0.76 ± 0.25 0.58 ± 0.42 0.25 ± 0.46 

HGB -0.30 ± 0.19 0.32 ± 0.26 0.44 ± 0.25 

HCT -0.93 ± 0.51 0.53 ± 0.42 -0.15 ± 0.60 

MCV -0.37 ± 0.22 0.44 ± 0.24 0.54 ± 0.22 

MCH -0.58 ± 0.25 0.02 ± 0.37 0.05 ± 0.35 

MCHC -0.76 ± 0.12 0.44 ± 0.22 0.36 ± 0.24 

RDW 0.64 ± 0.32 0.98 ± 0.03 0.87 ± 0.16 

PLT -0.44 ± 1.07 0.82 ± 1.03 0.62 ± 1.85 

MPV -0.77 ± 0.33 0.25 ± 0.50 0.34 ± 0.29 

1WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: lymphocyte 

concentration; MONO: monocyte concentration; EOS: eosinophil concentration; BASO: 

basophil concentration; RBC: red blood cell concentration; HGB: hemoglobin concentration; 

HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; 

MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width; 

PLT: platelet concentration; MPV: mean platelet volume. 

2The change of CBC traits from Blood 1 to Blood 3; 3The change of CBC traits from Blood 3 to 

Blood 4; 4The change of CBC traits from Blood 1 to Blood 4. 

5Significant estimates of genetic correlations are highlighted in bold based on the likelihood ratio 

test by comparing full models to restricted models that constrained the genetic covariance to zero 

in ASReml 4.1 (p-value < 0.05).  
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Table 15. Heritability estimates of complete blood count traits in related studies reported in the literature. 

1WBC: total white blood cell concentration; NEU: neutrophil concentration, LYM: lymphocyte concentration; MONO: 

monocyte concentration; EOS: eosinophil concentration; BASO: basophil concentration; RBC: red blood cell concentration; 

HGB: hemoglobin concentration; HCT: hematocrit; MCV: mean corpuscular volume; RDW: red blood cell distribution width; 

MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; PLT: platelet concentration; 

MPV: mean platelet volume. 

2Specific pathogen-free (SPF), free of all major swine pathogens;  

3Non-specific pathogen-free (Non-SPF), lower health status condition with the challenge of enzootic pneumonia, Pasteurella 

multocida, Actinobacillus pleuropneumoniae, Leptospira Bratislava, Salmonella typhimurium, and porcine multi-wasting 

syndrome; 

4Blood samples collected from animals in both SPF and non-SPF farms at the average of 89 days old; 

5Blood samples collected from animals in both SPF and non-SPF farms at the average of 148 days old; 

6Heritability estimate of the trait was not reported in the study.

Traits1 
Henryon et 

al. (2006) 

Clapperton et al. (2008)  Clapperton et al. (2009) Flori et al. 

(2011) 

 Mpetile et 

al. (2015) SPF2 Non-SPF3 Start-Test4 End-Test5  SPF Non-SPF  

WBC 0.25 ± 0.05 0.06 ± 0.11 0.37 ± 0.16 0.24 ± 0.15 0.18 ± 0.11  0.29 ± 0.13 0.28 ± 0.11 0.73 ± 0.20  0.23 ± 0.19 

NEU 0.22 ± 0.04 - - -6 -  - - 0.61 ± 0.20  0.31 ± 0.21 

LYM 0.24 ± 0.05 - - - -  - - 0.72 ± 0.21  0.15 ± 0.19 

MONO 0.22 ± 0.04 0.58 ± 0.18 0.58 ± 0.18 0.52 ± 0.17 0.59 ± 0.14  0.26 ± 0.11 0.16 ± 0.13 0.38 ± 0.20  0.36 ± 0.20 

EOS 0.30 ± 0.05 - - - -  - - 0.80 ± 0.21  0.58 ± 0.12 

BASO - - - - -  - - -  0.12 ± 0.19 

RBC - - - - -  - - 0.43 ± 0.20  0.62 ± 0.25 

HGB - - - - -  - - -  0.56 ± 0.13 

HCT - - - - -  - - -  0.06 ± 0.14 

MCV - - - - -  - - -  0.47 ± 0.24 

RDW - - - - -  - - 0.70 ± 0.20  0.34 ± 0.25 

MCH - - - - -  - - -  0.37 ± 0.24 

MCHC - - - - -  - - -  0.04 ± 0.16 

PLT - - - - -  - - 0.56 ± 0.19  0.11 ± 0.23 

MPV - - - - -  - - -  0.38 ± 0.25 
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Figure 23. Roles of white blood cells in innate (A) and adaptive (B) immunity.  

Roles of white blood cells in innate immunity: Phagocytosis is the process by which 

phagocytic cells recognize and ingest microbes for intracellular killing. Phagocytes include 

neutrophils, monocytes, dendritic cells, and eosinophils; Neutrophils, eosinophils, and basophils 

are granulocytes, the granules present in their cytoplasm contain biochemical mediators that 

serve inflammatory and immune functions; Eosinophils and basophils combat parasites through 

production of toxic proteins and histamine respectively; Dendritic cells produce cytokines that 

recruit white blood cells and initiate adaptive immune responses, and also present antigens to the 

adaptive immune system; Natural killer (NK) cells are a class of lymphocytes that recognize and 

kill infected cells to stop the spread of an infection; The complement system consists of a set of 

plasma proteins that act together to defend against extracellular pathogens.  

Roles of white blood cells in adaptive immunity: B lymphocytes mediate humoral immunity 

by secreting antibodies into the circulation and mucosal fluid to neutralize and eliminate 

extracellular infectious agents; T lymphocytes characterize cell-mediated immunity and kill host 

cells that are harboring infectious agents in the cytoplasm.  

Derived from Janeway et al. (2001), Abbas et al. (2015), and Elsevier Health Sciences and Khan 

Academy (2019). 
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Figure 24. An example of the classification of slaughtered animals (A) and growth curves 

for all animals in different groups (B) in Batch 14.  

Batch 14 was used as an example here. Slaughted animals were classified into resilient (RES), 

average (MID), and susceptible (SUS) groups based on the first (Q1) and the third (Q3) quartiles 

of grow-to-finish growth rate (GFGR) and treatment rate (TR).   
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Chapter 5. Investigating the genetic architecture of disease resilience in pigs 

by genome-wide association studies of complete blood count traits2  

5.1. Introduction 

The prevalence of infectious diseases caused by a multitude of pathogens results in high 

economic losses for the pig industry (Davies et al., 2008; Tomley and Shirley, 2009). Genetic 

improvement for disease resilience is a practical option to help address the problem of infectious 

disease as it can ensure production efficiency, because resilient animals are defined as 

maintaining a relatively undepressed performance in the face of disturbances caused by infection 

(Albers et al., 1987; Mulder and Rashidi, 2017). Disease resilience is a complex trait composed 

of multiple biological functions, such as growth, health, nutrient status, and other dynamic 

elements, including the efficiency of immune response and the rate of recovery from infection 

(Friggens et al., 2017). This complexity makes disease resilience hard to properly characterize 

and little is known about the genetic architecture that drives disease resilience. Alternatively, 

indirect selection of disease resilience based on immune-related traits may be a feasible breeding 

strategy, because the disease response of an animal largely depends upon its immunity (Knap 

and Bishop, 2000; Calder, 2013). 

Blood cells comprise white blood cells, red blood cells, and platelets that are important 

elements of an animal’s immune status (Abbas et al., 2015). Complete blood count (CBC) is one 

of the most common clinical tests performed to evaluate concentrations and relative proportions 

 
2This chapter has been submitted to BMC Genomics as Bai, X., Yang, T., Putz, A. M., Wang, Z., Li., Chang, Fortin, 

F., Harding, J. C. S., Dyck, M. K., Dekkers, J. C. M., Field, C. J., PigGen Canada, and Plastow, G. S. (2020). 

Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete 

blood count traits collected from a natural disease challenge model. doi:10.21203/rs.3.rs-50174/v1. 
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of these circulating blood cells, which may help to uncover the layers of immune system 

complexity (George-Gay and Parker, 2013). Our previous study (Bai et al., 2020) found that 

CBC traits collected from blood samples of pigs in both healthy and challenged conditions at 2-

weeks before, and 2 and 6-weeks after exposure to a polymicrobial challenge were moderately to 

highly heritable (0.08 ± 0.04 to 0.53 ± 0.05). Changes of each CBC trait between blood samples 

collected at different time points (e.g. the change of a CBC level from 2-weeks before to 2-weeks 

after exposure to the challenge) were also found to be heritable, with estimates ranging from 0.06 

± 0.04 to 0.24 ± 0.04 (Bai et al., 2020). These heritability estimates indicate the importance of 

the genetic component of CBC traits. Moreover, significant genetic correlations (either positive 

or negative) were found for several CBC traits collected after exposure to the challenge with the 

economically important production traits of grow-to-finish growth rate (GFGR) and treatment 

rate (TR) in response to the polymicrobial challenge (-0.82 ± 0.47 to 0.89 ± 0.26) (Bai et al., 

2020), which may further indicate the potential of developing those CBC traits as indicator traits 

of disease resilience. In addition to these significant genetic correlations for CBC with GFGR 

and TR, our previous study (Bai et al., 2020) also found high genetic correlations (≥ 0.40 ± 0.04) 

between the CBC traits. Changes in CBC traits between each time point were also found to be 

genetically correlated, with significant estimates ranging from -0.42 ± 0.21 to -0.92 ± 0.11 to 

0.44 ± 0.22 to 0.98 ± 0.03 (Bai et al., 2020). This allows multivariate models to be used for joint 

analyses of these genetically correlated traits, which provides the potential to improve statistical 

power and explore pleiotropy (Park et al, 2011; Shriner, 2012; Lu et al., 2018; Fatumo et al., 

2019). 
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To date, some quantitative trait loci (QTL) have been identified for some blood cell traits 

in pigs under either healthy or disease challenged status by linkage and association analyses 

(Edfors-Lijia et al., 1998; Edfors-Lijia et al., 2000; Wattrang et al., 2005; Reiner et al., 2007; 

Reiner et al., 2008; Zou et al., 2008; Gong et al., 2010; Ponsuksili et al., 2016). However, due to 

the use of a pathogen-specific challenge or a relatively low density of genetic markers, the 

genetic components of blood cell traits in pigs under typical commercial environments, where 

multiple disease-causing pathogens are present, remains largely unknown.  

In this study, CBC traits were collected from pigs in a natural polymicrobial disease 

challenge model, as described by Bai et al. (2020). Standard univariate genome-wide association 

studies (GWAS) and multivariate GWAS based on a relatively high-density panel of 465,910 

autosomal single-nucleotide polymorphisms (SNPs) were conducted for these CBC traits. The 

objectives were: (1) to reveal the genomic regions associated with the CBC traits and with their 

changes in response to the polymicrobial challenge; and (2) to explore the underlying genetic 

architecture for disease resilience of pigs in the face of a polymicrobial infectious challenge. 

5.2. Material and Methods 

5.2.1 Natural disease challenge model and phenotypic traits 

Details of the natural disease challenge model (NDCM) and the collection of phenotypic 

traits are described in Chapter 3. Descriptions of phenotypic traits, including CBC traits before 

and after exposure to the challenge, grow-to-finish growth rate (GFGR), and treatment rate (TR) 

can also be found in Chapter 3.   
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5.2.2 SNP array genotyping and quality control  

The genotyping using the 650K Affymetrix Axiom® Porcine Genotyping Array was 

performed at Delta Genomics (Edmonton AB, Canada). Raw Affymetrix SNP data were 

processed by Delta Genomics with the Axiom Analysis Suite, using all defaults (sample call rate 

≥ 97%; SNP call rate ≥ 97%; number of minor alleles observed ≥ 2). Imputation of sporadic 

missing genotypes was completed using FImpute (Sargolzaei et al., 2014). The pedigree was 

utilized for imputation but only included the dam, since sire was typically unknown due to the 

use of pooled semen. The preGSf90 software in the BLUPF90 suite of programs was used to 

remove SNPs with minor allele frequency lower than 0.01 (Misztal et al., 2002).  

5.2.3 Population stratification and linkage disequilibrium estimation 

Population stratification among genotyped animals was investigated using PLINK 1.90 

(Purcell et al., 2007) based on pairwise identity-by-state (IBS) distance, which was estimated 

using SNP genotypes. A multidimensional scaling (MDS) plot based on IBS pairwise distance 

was drawn by the ‘ggplot2’ package in R (R core team, 2019; Wickham, 2016) to show the first 

three dimensions of the population structure. The genomic inflation factor and quantile–quantile 

(Q–Q) plots were applied to assess genomic inflation of the test statistics using the R packages of 

‘GenABEL’ and ‘qqman’ (Aulchenko et al., 2007; Turner, 2014; R core team, 2019). The 

linkage disequilibrium (LD) of pairwise SNPs was measured as the squared correlation (r2) of 

allele counts for the two SNPs and haplotype blocks were built using the Haploview software 

(Barrett et al., 2005; VanLiere and Rosenberg, 2008). 

5.2.4 Single-step GWAS and Models  
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Univariate and multivariate single-step GWAS (SSGWAS) for CBC traits were 

implemented in the BLUPF90 suite of programs (Misztal et al., 2002; Aguilar et al., 2019) with 

the joint pedigree-genomic relationship matrix (H) for single-marker associations, 

accommodating both genotyped (n = 2593) and non-genotyped (n = 150) animals. Details for 

algorithms employed for these analyses have been described by Aguilar et al. (2019). Briefly, 

BLUPF90 combines the algorithms for single-step GBLUP and for back-solving to obtain 

estimates and p-values for SNP associations from estimates of breeding values. The genomic 

relationship matrix (G) for genotyped animals was constructed as 𝐙𝐙′/2∑pi(1 − pi), where the 

Z matrix contains centered SNP genotype codes and pi is the minor allele frequency for SNP i 

(VanRaden, 2008). The p-values for SNP associations were adjusted for multiple testing by the 

Benjamini and Hochberg correction (false discovery rate, FDR) (Benjamini et al., 1995; R core 

team, 2019). An FDR threshold of 0.05 was used to control false positive results and to declare 

significant associations. The most significant SNP above the genome-wise FDR of 0.05 in each 

genomic region were referred to as the top significant SNP, which were further separated into top 

lead and top floating SNPs, which referred to top significant SNPs in a genomic region with or 

without a group of supportive SNPs, respectively. 

The univariate mixed linear model used for GWAS can be described as follows: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐜 + 𝐞 

where y is a vector of observations on a CBC trait for all individuals, b is a vector of fixed 

effects, including the effect of batch and the covariate of bleeding age, X is a design matrix 

relating observations to the fixed effects, a is a vector of breeding values, Z is a design matrix 

that relates observations to breeding values, including genotyped and ungenotyped animals, and 
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e is a vector of residual effects. Vector c represents a stack of vectors (cLitter, cPen1, cPen2, and 

cPen3) of independent and uncorrelated random environmental effects, including litter (cLitter) and 

pen effects in the quarantine unit (cPen1), in the challenge barn second-stage nursery (cPen2), and 

in the challenge barn grow-to-finish stage (cPen3). These random environmental effects were 

tested and fitted in the model for each CBC trait when they were significant (p-value < 0.05). 

Matrix W (WLitter, WPen1, WPen2, and WPen3) is a stack of incidence matrices that relate 

observations to the corresponding random environmental effects. The random effects fitted for 

each of CBC traits were the same as Bai et al. (2020).   

Assuming the random effects c and e are uncorrelated and identically distributed, the (co-

) variances of random effects for univariate models are: 

var [
𝐚
𝐜
𝐞
] = [

𝐇σa
2 0 0

0 𝐈𝛔𝐜
𝟐 0

0 0 𝐈σe
2

] 

where H is the joint pedigree-genomic relationship matrix for genotyped and non-genotyped 

animals as mentioned above, I is the identity matrix, σa
2 is the additive genetic variance, 𝛔𝐜

𝟐 

represents a stack of random effect variances (e.g. 𝛔𝐜
𝟐 = [

σcLitter

2 0

0 σcPen1
2 ], when the random 

effects cLitter and cPen1 are significant and fitted in the model for a trait), and σe
2 is the residual 

variance.  

The model for multivariate analyses resembles a stack of univariate models for each of 

the traits that were found to be highly genetic correlated in (Bai et al., 2020), which can be 

written as (Mrode, 2013; Lu et al., 2018):  
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[

𝐲𝟏

𝐲𝟐

𝐲𝟑

] = [

𝐗𝟏𝐛𝟏 + 𝐙𝟏𝐚𝟏 + 𝐖𝟏𝐜𝟏 + 𝐞𝟏

𝐗𝟐𝐛𝟐 + 𝐙𝟐𝐚𝟐 + 𝐖𝟐𝐜𝟐 + 𝐞𝟐

𝐗𝟑𝐛𝟑 + 𝐙𝟑𝐚𝟑 + 𝐖𝟑𝐜𝟑 + 𝐞𝟑

] 

For each trait in the multivariate model, the same effects were fitted as in the univariate models. 

For multivariate models, assuming random effects cn and residual effects en for the nth trait (n = 

1, 2, 3) are uncorrelated and identically distributed, the (co-) variances of random effects are: 

Var 

[
 
 
 
 
 
 
 
 
𝐚𝟏

𝐚𝟐

𝐚𝟑

𝐜𝟏

𝐜𝟐

𝐜𝟑

𝐞𝟏

𝐞𝟐

𝐞𝟑]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝐇σa1

2 𝐇σa12
𝐇σa13

0 0 0 0 0 0

𝐇σa21
𝐇σa2

2 𝐇σa23
0 0 0 0 0 0

𝐇σa31
𝐇σa32

𝐇σa3
2 0 0 0 0 0 0

0 0 0 𝐈𝛔𝐜𝟏
𝟐 𝐈𝛔𝐜𝟏𝟐

𝐈𝛔𝐜𝟏𝟑
0 0 0

0 0 0 𝐈𝛔𝐜𝟐𝟏
𝐈𝛔𝐜𝟐

𝟐 𝐈𝛔𝐜𝟐𝟑
0 0 0

0 0 0 𝐈𝛔𝐜𝟑𝟏
𝐈𝛔𝐜𝟑𝟐

𝐈𝛔𝐜𝟑
𝟐 0 0 0

0 0 0 0 0 0 𝐈σe1
2 𝐈σe12

𝐈σe13

0 0 0 0 0 0 𝐈σe21
𝐈σe2

2 𝐈σe23

0 0 0 0 0 0 𝐈σe31
𝐈σe32

𝐈σe3
2

]
 
 
 
 
 
 
 
 
 
 
 

 

where σa12
= σa21

, σa13
= σa31

, and σa23
= σa32

 are additive genetic covariances between 

traits, 𝛔𝐜𝟏𝟐
= 𝛔𝐜𝟐𝟏

, 𝛔𝐜𝟏𝟑
= 𝛔𝐜𝟑𝟏

, and 𝛔𝐜𝟐𝟑
= 𝛔𝐜𝟑𝟐

 are covariances for common random effects 

between two traits, σe12
= σe21

, σe13
= σe31

, and σe23
= σe32

 are covariances for residual 

effects between two traits. 

5.2.5 Post-GWAS marker effect analyses 

The percentage of additive genetic variance explained by a 1 Mb window (with a median 

of 224 adjacent SNPs) was estimated by conducting window-based inferences for additive 

genetic variance in the BLUPF90 suit of programs (Misztal et al., 2002). Each chromosome was 

evaluated by using a sliding (moving) 1 Mb window by using every SNP on the chromosome as 

a starting SNP for a window segment (Misztal et al., 2002). Therefore, a top significant SNP was 

contained within multiple windows and among them, the largest percentage of additive genetic 
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variance explained by a window that contained that top significant SNP was reported for each 

trait.     

Additive and dominance effects of each top significant SNP were estimated using the 

BLUPF90 suite of programs (Misztal et al., 2002) based on the following model: 

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐜 + 𝐯α + 𝐝δ + 𝐞 

where y, X, b, Z, a, W, c, and e are the same as for the univariate model described above; v is a 

vector of the top significant SNP genotypes coded as -1, 0, and 1 for the AA, AB, and BB, 

respectively; α is the additive effect; d is a vector of dominance coded as 1 for heterozygous 

genotype (AB) and 0 for homozygous genotypes (AA and BB); δ is the dominance effect. 

Vectors v and d were fitted as covariates and the top significant SNPs were fitted one by one in 

the model. The likelihood ratio test was used to test the significance of the additive and 

dominance effects for each of the top significant SNPs by comparing full models to restricted 

models that constrained additive or dominance effects to zero using the REMLF90 program of 

BLUPF90 (Misztal et al., 2002). When the dominance effect was not significant (p-value > 

0.05), the additive effect for a SNP was re-estimated by removing the dominance effect from the 

model. 

5.2.6 Post-GWAS bioinformatics analyses 

Ingenuity Pathway Analysis (IPA) (Ingenuity® Systems, United States; 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/, IPA Spring 2020 

release) was used for functional enrichment analyses of candidate genes in significant genomic 

regions for the CBC traits. A maximum distance of 1 Mb on either side of the lead SNPs based 

on a genome-wise FDR < 0.10 was used to search for candidate genes for white blood cell traits 
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of EOSB3 and MONOΔ13. The lead pleiotropic SNPs at genome-wise FDR < 0.10 were used to 

search for common candidate genes for red blood cell (MCH, MCV, and RBC) and platelet 

(MPV and PLT) traits in different time points before and after exposure to the challenge. A 

relaxed FDR < 0.10 threshold was used here to increase identification of true positives for the 

significance of biological and functional relevance of candidate genes (Waide et al., 2017). 

Identification of positional candidate genes was conducted using the UCSC Genome Browser for 

the Ensembl annotation of the Sscrofa11.1 build of the swine genome (https://genome.ucsc.edu). 

One collective gene list was created for each trait by combing all candidate genes in associated 

genomic regions for IPA (Wang et al., 2020; Zhang et al., 2020). Human, mouse, and rat genes 

in the IPA knowledge base database were used as background for biological function analyses in 

diseases, molecular and cellular functions, and physiological system development and function 

categories. A biological function was considered significantly enriched if the p-value for the 

overlap comparison test between the input list of candidate genes and the IPA database was less 

than 0.05 (Wysocki et al., 2012; Wang et al., 2020; Zhang et al., 2020).  

5.3. Results 

5.3.1 Descriptive statistics and genetic parameters  

Descriptive statistics (mean, standard deviation, minimum, maximum, and distribution) 

for the CBC data of 2743 animals in six cycles after removing the outliers, including both 

genotyped (n = 2593) and non-genotype (n = 150) animals, are shown in Figures 25 to 27. 

Details about genetic parameters for the evaluated CBC traits, including heritabilities and genetic 

correlations, can be found in our previous study (Bai et al., 2020), which used the same 2593 

genotyped animals. In addition to the genetic correlations with resilience already reported for 
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these data by Bai et al. (2020), we also found significant genetic correlations for platelet 

concentration in Blood 3 collected at 2-weeks after exposure to a polymicrobial infectious 

challenge with GFGR (0.40 ± 0.22) and TR (-0.46 ± 0.26), and for the change of monocyte 

concentration from Blood 1 to Blood 3 (MONOΔ13) collected at 2-weeks before and 2-weeks 

after exposure to the challenge with GFGR (0.63 ± 0.21). 

5.3.2 Population structure 

As false positive results can be introduced in GWAS by confounding effects due to 

population stratification, MDS plots (Figure 28) were generated to provide a visualization of the 

population structure in the first three dimensions (C1, C2, and C3). Animals tended to cluster by 

farm of origin, as they shared a similar genetic background when they came from the same farm. 

Since batches were nested within farms and coded uniquely, population stratification associated 

with the farm effect was accounted for in the association analysis model by fitting the fixed 

effect of batch. The genomic inflation factors of SSGWAS for the CBC traits ranged from 0.98 

to 1.06, suggesting that there was no population stratification that confounded the GWAS results.   

5.3.3 Association results and estimates for SNP effects  

White blood cell traits  

Five genomic regions were found to be significantly associated with white blood cell 

traits at a genome-wise FDR of 0.05 by univariate SSGWAS. Of note, SNPs located on Sus 

scrofa chromosome (SSC) 4, SSC10, and SSC12 were found to be associated with eosinophil 

concentration in Blood 3, which was collected 2 weeks after exposure to the challenge (EOSB3). 

Meanwhile, SNPs on SSC2 and two adjacent floating SNPs (significant SNPs without a group of 

supportive SNPs) on SSC9 were identified to be associated with MONOΔ13. The Manhattan and 
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Q-Q plots for EOSB3 and MONOΔ13 are shown in Figures 29 and 30. Top lead SNPs (the most 

significant SNP with a group of supportive SNPs) for significant associations (genome-wise 

FDR < 0.05) with EOSB3 and MONOΔ13 are shown in Table 16. For EOSB3, the additive 

genetic variances explained by the 1 Mb window of the top lead SNPs (SNP1, SNP2, SNP3) and 

their adjacent SNPs on SSC4, SSC10, and SSC12 were estimated to be 0.46, 0.35, and 0.53% of 

the additive genetic variance for EOSB3, respectively. SNP4 was a floating SNP on SSC2 and its 

1 Mb window explained 0.12% of the additive genetic variance for MONOΔ13. The 1 Mb 

window for SNP5, the top lead SNP on SSC9, was estimated to explain about 1.23% of the 

additive genetic variance for MONOΔ13.  

Estimates of additive and dominance effects for the top significant SNPs (genome-wise 

FDR < 0.05, including both top lead and top floating SNPs) associated with EOSB3 and 

MONOΔ13 are summarized in Table 16. A significant dominance effect (p-value < 0.05) was 

only identified for SNP2, which was associated with EOSB3. Estimates of additive effects were 

found to be significant (p-value < 0.05) for all SNPs that were associated with EOSB3 and 

MONOΔ13. For EOSB3, estimates of additive effects were -0.05 ± 0.01, 0.14 ± 0.04, and -0.06 

± 0.01 for SNP1, 2 and 3, respectively. Estimates of additive effects for MONOΔ13 were 0.08 ± 

0.02 and -0.08 ± 0.02 for SNP 4 and 5, respectively.  

Due the relatively low genetic correlations and large standard errors between white blood 

cell traits (Bai et al., 2020), no genomic region was found to be significantly associated with 

white blood cell traits at FDR < 0.05 from multivariate SSGWAS.    

Red blood cell and platelet traits  
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Nine genomic regions were found to be significantly associated with red blood cell and 

platelet traits at the genome-wise FDR of 0.05 by univariate and or multivariate SSGWAS. The 

Manhattan plots and Q-Q plots are shown in Figures 31 to 36. The four top lead SNPs for 

significant associations (genome-wise FDR < 0.05) and estimates of additive genetic variances 

explained by these top lead SNPs and their adjacent SNPs in a 1 Mb window are summarized in 

Table 17. Five floating SNPs (genome-wise FDR < 0.05) that explained small amounts of the 

additive genetic variance (0.05% to 0.21%) for associated red blood cell and platelet traits were 

found and are summarized in Table 18. Of note, several pleiotropic SNPs associated with red 

blood cell or platelet traits were identified by multivariate SSGWAS of CBC traits in Blood 1, 3, 

and 4 (collected at 2-weeks before, 2- and 6-weeks after the challenge, respectively). High 

genetic correlations were found between mean corpuscular hemoglobin (MCH), mean 

corpuscular volume (MCV), and red blood cell concentration (RBC) traits (Table 19), and also 

between all three sampling time points for each of these traits (≥ 0.77 ± 0.08) (Bai et al., 2020). 

Therefore, pleiotropic SNP7 on SSC6 was identified as the top lead and pleiotropic SNP for 

MCH in Blood 1 and for both MCV and RBC traits in all three blood samples (Table 17). The 

percentage of additive genetic variance explained by the 1 Mb window of SNP7 and its adjacent 

SNPs ranged from 0.29 to 0.57% for its associated traits. Moreover, SNP8 was the top lead and 

pleiotropic SNP on SSC8, which was associated with MCH, MCV, and RBC traits in all three 

blood samples. The percentages of additive genetic variance explained by SNP8 and its adjacent 

SNPs in a 1 Mb window were estimated to range from 0.28 to 0.35% for its associated traits. 

SNP9 on SSC17 was the top lead and pleiotropic SNP for mean platelet volume (MPV) in Blood 

1 and 4. Together with adjacent SNPs in a 1 Mb window, SNP7 was estimated to explain about 
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0.49 and 0.40% of the additive genetic variances for MPV in Blood 1 and 4, respectively. 

Significant associations (genome-wise FDR < 0.05) for SNP7 with MCV in Blood 1 (genome-

wise FDR = 0.003) and for SNP8 with MCV in Blood 4 (genome-wise FDR = 0.04) were also 

found by univariate SSGWAS but at a lower significance level compared to the multivariate 

SSGWAS. Meanwhile, univariate SSGWAS only indicated suggestive associations (genome-

wise FDR of 0.10) for SNP8 with RBC in Blood 1 (genome-wise FDR = 0.09) and with MCV in 

Blood 1 (genome-wise FDR = 0.08). 

For red blood cell and platelet traits, the estimates of additive and dominance effects for 

the top lead SNPs are summarized in Table 17 and for the top floating SNPs in Table 18. Of 

note, the additive effects for pleiotropic SNPs showed a tendency of affecting each CBC trait in 

the three blood samples in the same way, including SNP7 for MCV, SNP8 for MCH and MCV, 

SNP9 for MPV, SNP10 for MCV, SNP11 for PLT, and SNP12 for MCH. For pleiotropic SNP8, 

no significant additive effect was found for RBC traits.  

5.3.4 Candidate genes and functional enrichment results  

Browsing regions for candidate genes located within a maximum distance of 1 Mb on 

either side of the lead SNPs based on a genome-wise FDR < 0.1 for the associated CBC traits are 

summarized in Table 21. Enriched functions such as inflammatory responses, cell-to-cell 

signaling and interaction, cellular development, cell morphology, cellular growth and 

proliferation, and hematological system development and function were commonly identified for 

the candidate gene lists for white blood cell traits collected after exposure to the challenge, and 

or the pleiotropic candidate gene lists for red blood cell and platelet traits collected before and 

after exposure to the challenge.  
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Candidate genes that have been reported by previous studies of pigs, human, mice, or rats 

to be functionally and biologically related to the same category of blood cells, as explored here, 

are summarized in Table 21. A group of immunity genes on SSC2 has been reported to be 

functionally and biologically related to monocytes, including TICAM2 (toll-like receptor adaptor 

molecule 2), TMED7(transmembrane emp24 domain-containing protein 7 precursor), and 

CDO1 (cysteine dioxygenase type 1), which were located proximal to SNP4, and COMMD10 

(COMM domain containing 10), which harbored SNP4 (Table 21). An overview of the location 

of these candidate genes and the distribution of all the SNPs in this region on SSC2 is shown in 

the LD haplotype map in Figure 37. SNP6 on SSC4 is intronic within candidate gene SPTA1 

(spectrin alpha, erythrocytic 1) and the LD haplotype map for this region is shown in Figure 38. 

In Table 21, a group of candidate genes, including THAP11 (THAP domain containing protein 

11), PSMB10 (proteasome subunit beta type 10), LCAT (lecithin-cholesterol acyltransferase), 

and SLC12A4 (Potassium/Chloride Cotransporter 1), was reported to be functionally related to 

red blood cells and were located close to SNP7 in the same haplotype block on SSC6 (Figure 

39). SNP8 on SSC8 was found to be in LD (r2 > 0.30) with SNPs in the PDGFRA (platelet 

derived growth factor receptor alpha) gene (Figure 40). 

5.4. Discussion 

5.4.1 Potential roles of candidate genes  

Functional enrichment analyses for the candidate gene lists for CBC traits indicated 

multiple enriched functions that can be considered as functionally and biologically relevant to 

white blood cell traits in response to a polymicrobial infectious challenge, and red blood cell and 

platelet traits that were collected before and after exposure to the challenge, such as 
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inflammatory response, cell growth and proliferation, cell-to-cell signaling and interaction, and 

hematological system development and function.   

The candidate genes in Table 21 have been reported to be relevant to particular types of 

CBC traits by studies in pigs, human, mice, and rat, which may help us to further understand the 

functions of these candidate genes related to CBC traits in response to the polymicrobial 

challenge. Of note, candidate genes ARHGEF2 (Rho/Rac guanine nucleotide exchange factor), 

TGFB2 (transforming growth factor beta 2), and MIR21 (microRNA miR-21) were identified to 

be functionally and biologically relevant to eosinophils. The product of ARHGEF2 regulates the 

activity of GTPases and has been identified to be highly expressed in eosinophils. GTPases are 

known to be involved in mediator release from granulocytes, which is a crucial event in the 

activation of eosinophils and neutrophils during inflammation (Lacy, 2005; Turton, 2018). 

TGFB2 has also been found to be expressed mainly in eosinophils, and greater expression of 

TGFB2 has been identified to be associated with persistent eosinophilic inflammation (severe 

asthma) in human (Balzar et al., 2005). However, in the polymicrobial challenge, an increase in 

the number of eosinophils may be associated with parasitic infection (e.g. Ascaris suum) rather 

than respiratory disease. Eosinophils play an important role of killing larvae by releasing the 

toxic content of their granules as part of the immune response (Masure et al., 2013). Thus, 

further investigations are warranted to investigate the functional relationships between the 

expression of TGFB2 and response to the challenge. Expression of MIR21 has not been 

identified in eosinophils but in other white blood cells, including lymphocytes, monocytes, 

macrophages, and dendritic cells, which work collaboratively with eosinophils in the immune 

response (Cobb et al., 2006; Wu et al., 2007; Sheedy, 2015). Although the mRNA targets for 
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MIR21 are complex and remain an area of active investigation, it has been demonstrated that 

MIR21 acts as a key signal mediating the balance of the inflammatory reaction to promote 

healing, resolution, and a return to homeostasis (Sheedy, 2015).  

For the candidate genes on SSC2, the product of COMMD10 has been found to be related 

to the function of phagosomes in murine macrophages, which promotes phagolysosome 

maturation and facilitates the timely killing of pathogens (Dill et al., 2015; Shlomo et al., 2019). 

The product of ATG12 (autophagy related 12) is involved in autophagy of circulating monocytes 

for degradation and recycling of cellular components, which prevents apoptosis (programmed 

cell death) of monocytes and is essential for monocyte-macrophage differentiation and cytokine 

production in the innate immune response (Geng and Klionsky, 2008; Zhang et al., 2012). The 

product of CDO1, cysteine dioxygenase type 1, catalyzes taurine synthesis and it is commonly 

accepted that taurine plays an important role in the immune system as an antioxidant to protect 

phagocytes, including macrophages, from oxidative stress caused by the generation of reactive 

oxygen species at the site of inflammation (Booken et al., 2008; Schaffer et al., 2009; Wang et 

al., 2009; Marcinkiewicz and Kontny, 2012). Both TMED7 and TICAM2 are immunity genes and 

their products are involved in the function of toll-like receptors (TLRs), which are expressed on 

macrophages and monocytes and are responsible for the sensing of pathogen-associated-

molecular-patterns in the extracellular environment and in endosomes (Oshiumi et al., 2003; 

Doyle et al., 2012; Mekonnen et al., 2018). Of note, overexpression of TMED7 has been found to 

be associated with inhibition of MyD88-independent TLR4 signaling and the protein encoded by 

TICAM2 has been identified as a bridge adaptor recruiting TLRs to mediate innate immune 

responses (Oshiumi et al., 2003; Doyle et al., 2012; Mekonnen et al., 2018). In addition, NAMPT 
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(nicotinamide phosphoribosyl transferase) on SSC9 has been found to be functionally and 

biologically related to monocytes, and its gene product has been found to play an important role 

in governing monocyte recruitment and in monocyte-macrophage differentiation (Schilling et al., 

2011; Travelli et al., 2018).  

For red blood cells, the majority of candidate genes reported here have been identified as 

key components involved in hematopoiesis and erythropoiesis responsible for the differentiation 

and development of red blood cells, including MNDA (myeloid cell nuclear differentiation 

antigen) on SSC4, CBFB (core-binding factor subunit beta) and THAP11 on SSC6, PDGFRA 

and KIT (KIT proto-oncogene, receptor tyrosine kinase) on SSC8, and RARA (retinoic receptor 

alpha) and THRA (thyroid hormone receptor alpha) on SSC12 (Moller et al., 1996; Xie et al., 

1998; Kastner and Chan, 2001; Kastner et al., 2001; Zhu et al., 2001; Cools et al., 2003; 

Kendrick et al., 2008; Thorén et al., 2008; Kong et al., 2014; Zhai et al., 2014). In addition, 

SPTA1 on SSC4 encodes a protein in the red blood cell membrane, the products of LCAT and 

SLC12A4 on SSC6 regulate the lipid composition in the red blood cell membrane and cell 

swelling, respectively, and all these gene products work together to maintain the normal volume 

and biconcave shape of red blood cells, which helps to ensure the biological and biomechanical 

functions of the cells (Godin et al., 1978; Karai et al., 1982; Bize et al., 2000; Rust et al., 2007; 

Diez-Silva et al., 2010). ACKR1 (atypical chemokine receptor 1) on SSC4 and PSMB10 on SSC6 

are candidate genes that have been shown to be involved in the immune response of red blood 

cells. The receptor ACKR1 expressed in red blood cells was found to regulate immune responses 

by interacting with chemokines, and which works as a blood-based chemokine buffer involved 

with the uptake and degradation of chemokines (Permanyer et al., 2018). Meanwhile, ACKR1 
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has also been identified as an essential regulator of hematopoiesis and erythropoiesis promoting 

interactions between nuclear progenitor red blood cells and hematopoietic stem cells in the bone 

marrow (Bonavita et al., 2018; Permanyer et al., 2018). PSMB10 is found to be responsible for 

intracellular protein degradation and generation of peptides that bind to class I major 

histocompatibility complex (MHC) molecules (Wu et al., 2006). The MHC molecules display 

these peptides to cytotoxic CD8+ T cells to support their activity of immune surveillance (Leone 

et al., 2013). Further, through a study of anemia caused by congenital red blood cell aplasia in 

human, PSMB10 has been suggested to be functional in the MHC class I machinery in mature 

red blood cells in response to inflammatory signaling (Pesciotta et al., 2015). 

Candidate genes for platelet traits were annotated into two major functions, platelet 

aggregation and megakaryopoiesis. Platelet aggregation involves platelet-to-platelet adhesion, 

which is essential for effective hemostasis following injury and bleeding, and megakaryopoiesis 

is the process of differentiation and development of platelets (Rumbaut et al., 2010). Among 

them, CD9 (CD9 antigen) on SSC5 encodes a major platelet cell surface glycoprotein and plays 

dual roles in megakarypoiesis and platelet aggregation (Worthington et al., 1990; Boucheix et al., 

1991; Kaprielian et al., 1995; Clay et al., 2001). The products of VWF (von Willebrand factor), 

PHB2 (prohibitin 2), and GNB3 (G protein subunit beta 3) on SSC5 and GNAS (guanine 

nucleotide binding protein) on SSC17 were found to be involved in platelet aggregation (Frey et 

al., 2003; Freson et al., 2008; Dusse et al., 2012; Freson et al., 2012; Kanaji et al., 2012; Zhang et 

al., 2012). In addition to megakaryopoiesis, tubulin beta class VI coded by TUBB1 (tubulin beta 

1 class VI) on SSC17 has been reported to play a role in maintaining platelet morphology 

(Schwer et al., 2001; Kunishima et al., 2014; Burley et al., 2018). 
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5.4.2 Overlap with previously discovered QTL 

In addition to the novel QTL for CBC traits identified in this study, some of the QTL 

identified have been previously reported. QTL on SSC8 located nearby the KIT gene were found 

to be associated with MCH, MCV, and RBC in this study. In addition, this region has also been 

identified to show a significant effect on the levels of NEU and HCT in the crossbreds of 

European Wild Boar × Yorkshire and Landrace × Yorkshire subsequent to stress and disease 

challenges (Edfors-Lijia et al., 2000; Wattrang et al., 2005). For QTL on SSC5 that associated 

with PLT traits here, Reiner et al. (Reiner et al., 2007) found them to be associated with red 

blood cell traits in Pietrain × Meishan pigs including HCT, HGB, and RBC traits. These results 

may be caused by the common myeloid progenitors for all cells mentioned above. Moreover, it 

may also further indicate the pleiotropic roles of QTL involved in the functions of different 

blood cells. Apart from studies in pigs, the candidate gene SPTA1 associated with MCHC has 

also been identified by GWAS for red blood cell traits in human, which also functions in 

maintaining the shape and deformability of human red blood cells (Ganesh et al., 2009).  

5.4.3 Potential links with disease resilience 

Although the QTL uncovered for blood cell traits have small effects in this study, which 

has also been found in previous GWAS for blood cell traits of pigs and human (Zou et al., 2008; 

Ganesh et al., 2009), the genes involved in these QTL are suggested to be involved in 

hematopoiesis and immune responses in the face of a polymicrobial infectious challenge. In turn, 

they may contribute to disease resilience, as hematopoiesis and immune response are 

collaborative mechanisms that play essential roles in defending against pathogens, maintaining 

homeostasis, and preventing death from the infection (Baldridge et al., 2011; Calder, 2013; 
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Boettcher and Manz, 2017). None of the QTL identified for the CBC traits were pleiotropic with 

GFGR or TR in response to the challenge. However, some candidate genes are known to have 

pleiotropic effects among different CBC traits and play roles in both hematopoiesis and immune 

response. For example, KIT may be a pleiotropic gene for multiple blood cell populations in 

response to stress and disease challenge, and ACKR1 exhibits pleiotropic effects on 

hematopoiesis and immune responses, as discussed above (Edfors-Lijia et al., 2000; Wattrang et 

al., 2005; Bonavita et al., 2018; Permanyer et al., 2018). Accordingly, these results highlight the 

importance of further investigating and validating the function of such pleiotropic genes in 

disease resilience.  

5.5. Conclusion 

In this study, we identified fourteen genomic regions that were significantly associated 

(genome-wise FDR < 0.05) with CBC traits collected from the natural polymicrobial challenge 

model, including five for white blood cell traits and nine for red blood cell and platelet traits. 

Candidate genes or regions located nearby significant SNPs were found to have potential roles in 

immune response pathways, red blood cell morphology, platelet aggregation, and hematopoiesis, 

including granulopoiesis and granulocytic differentiation, erythropoiesis, and megakarypoiesis. 

These results complement previous GWAS for blood cell traits in pigs and contribute to 

improving our understanding of the genetic basis of blood cell composition before and after 

exposure to a polymicrobial infectious challenge. This study also advances understanding of the 

genetic control of disease resilience, as blood cells are key players in an animal’s immune 

response and are recruited by hematopoiesis. Validation and identification of the candidate genes 
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and causal mutations are necessary to further investigate and develop the use of CBC traits to 

enhance genetic improvement of disease resilience for the pig industry.  
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Table 16. Top significant SNPs identified by univariate SSGWAS for significant associations with white blood cell traits 

at a genome-wise false discovery rate (FDR) of 0.05. 

Trait1 Blood2 SNP ID SNP 

status3 
SSC4 SNP  

position (bp) 
MAF5 FDR GVar 

(%)6 

1-Mb window  

start SNP  

position7 (bp) 

Dominance 

effect  

± standard 

error 

Additive 

effect8  

± standard 

error 

EOS Blood 3 
SNP1: 

rs336560074 Top lead 4 93,647,202 0.31 0.006 0.46 93,331,316  0.001 ± 0.01  -0.05 ± 0.019 

EOS Blood 3 
SNP2: 

rs346258273 Top lead 10 8,186,695 0.08 0.03 0.35 7,396,201  -0.09 ± 0.04 0.14 ± 0.04 

EOS Blood 3 
SNP3: 

rs339860061 Top lead 12 36,308,994 0.13 0.003 0.53 35,450,868  0.002 ± 0.02 -0.06 ± 0.01 

MONO Δ13 
SNP4: 

rs321357560 
Top 

floating 
2 120,341,201  0.47 0.049 0.12 120,219,793  -0.03 ± 0.02 0.08 ± 0.02 

MONO Δ13 SNP5: 

rs327963623 Top lead 9 105,461,701 0.43 0.049 1.23 105,461,701  -0.02 ± 0.02 -0.08 ± 0.02 

1EOS: eosinophil concentration; MONO: monocyte concentration. 

2Blood 3: the CBC measures in Blood 3 collected at 2-weeks after exposure to the challenge; Δ13: the change of CBC 

measures from Blood 1 collected at 2-weeks before the challenge to Blood 3 collected at 2-weeks after exposure to the 

challenge.     
3Top lead: the most significant SNP with a group of supportive SNPs; Top floating: the most significant SNP without a group 

of supportive SNPs. 
4Sus scrofa chromosome. 
5Minor allele frequency. 
6The largest percentage of additive genetic variance explained by the top significant SNP and its adjacent SNPs in a 1 Mb 

window.  
7Positions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance.    
8Estimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p-value > 

0.05) the estimate of the additive effect was based on a model without the dominance effect.  
9Significant estimates of additive and dominance effects are highlighted in bold (p-value < 0.05). 
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Table 17. Top lead SNPs1 identified by univariate and multivariate SSGWAS for significant associations with red blood cell 

and platelet traits at a genome-wise false discovery rate (FDR) of 0.05. 

SNP ID SSC2 
SNP position 

(bp) MAF3 Trait4 Blood5  FDR 
GVar 

(%)6 

1-Mb window   

start SNP7  

position (bp) 

Dominance 

effect  

± standard 

error 

Additive 

effect8 

 ± standard 

error 

SNP6: 4 91,591,493 0.38 MCHC Blood 3 0.04 1.15 91,291,800  1.08 ± 0.029 -2.13 ± 0.02 

rs336055186           

SNP710: 6 28,511,423 0.41 MCH Blood 1 0.04 0.29 28,110,554  0.10 ± 0.07 -0.25 ± 0.06 

rs325274805    MCV Blood 1 0.001 0.57 28,110,554  0.29 ± 0.07 -0.73 ± 0.06 

     Blood 3 0.002 0.49 28,096,004  0.05 ± 0.04 -0.45 ± 0.04 

     Blood 4 0.002 0.48 28,096,004  -0.12 ± 0.04 -0.53 ± 0.04 

    RBC Blood 1 0.01 0.44 28,110,554  -0.02 ± 0.07 0.08 ± 0.06 

     Blood 3 0.01 0.44 28,110,554  0.001 ± 0.04 0.08 ± 0.04 

     Blood 4 0.03 0.40 28,110,554  -0.04 ± 0.05 0.06 ± 0.04 

SNP810: 8 41,156,538 0.45 MCH Blood 1 0.01 0.36 40,257,441  0.15 ± 0.06 0.20 ± 0.05 

rs344612650     Blood 3 0.04 0.36 40,257,441  0.11 ± 0.04 0.16 ± 0.04 

     Blood 4 0.04 0.35 40,257,441  -0.006 ± 0.04 0.18 ± 0.04 

    MCV Blood 1 0.03 0.33 40,219,864  0.35 ± 0.06 0.59 ± 0.05 

     Blood 3 0.006 0.27 40,219,864  0.19 ± 0.04 0.38 ± 0.04 

     Blood 4 0.002 0.33 40,219,864  0.04 ± 0.04 0.51 ± 0.04 

    RBC Blood 1 0.007 0.31 40,219,864  0.01 ± 0.06 -0.08 ± 0.05 

     Blood 3 0.02 0.31 40,219,864  -0.02 ± 0.04 -0.06 ± 0.04 

     Blood 4 0.03 0.30 40,219,864  0.01 ± 0.04 -0.06 ± 0.04 



180 

 

SNP910: 17 59,739,745 0.34 MPV Blood 1 0.02 0.49 59,053,639  0.002 ± 0.10 0.28 ± 0.08 

rs323125939     Blood 4 0.04 0.40 59,053,639  -0.09 ± 0.07 0.25 ± 0.05 

1The most significant SNP with a group of supportive SNPs. 
2Sus scrofa chromosome.  
3Minor allele frequency. 
4MCHC: mean corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; RBC: 

red blood cell concentration; MPV: mean platelet volume.  
5Blood 1, Blood 3, and Blood 4: CBC measures in blood samples collected at 2-weeks before, and 2- and 6-weeks after a 

polymicrobial infectious challenge.  
6The largest percentage of additive genetic variance explained by the top lead SNP and its adjacent SNPs in a 1 Mb window.  
7Positions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance. 
8Estimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p > 0.05) the 

estimate of the additive effect was based on a model without the dominance effect.  
9Significant estimates of additive and dominance effects are highlighted in bold (p < 0.05). 
10SNPs identified and results estimated by multivariate SSGWAS.
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Table 18. Top floating SNPs1 identified by univariate and multivariate SSGWAS for significant associations with red blood 

cell and platelet traits at a genome-wise false discovery rate (FDR) of 0.05. 

SNP ID SSC2 

SNP 

Position 

(bp) 

MAF3 Trait4 Blood5  FDR 
GVar 

(%)6 

1-Mb window   

start SNP7  

position (bp) 

Dominance 

effect 

± standard 

error 

Additive 

effect8 

± standard 

error 

SNP1010: 1 18,792,764 0.37 MCV Blood 1 0.003 0.18 18,536,535  -0.16 ± 0.18 0.52 ± 0.149 

rs319452131     Blood 3 0.004 0.21 18,546,024  0.03 ± 0.13 0.52 ± 0.10 

     Blood 4 0.02 0.15 18,536,535  -0.02 ± 0.14 0.37 ± 0.11 

SNP1110: 5 64,520,638 0.31 PLT Blood 1 0.001 0.09 63,861,170  -3.80 ± 6.83 26.78 ± 5.18 

rs1109789977     Blood 3 0.001 0.09 63,861,170  -9.28 ± 7.44 23.92 ± 5.39  

     Blood 4 0.03 0.05 63,861,170  -10.57 ± 7.40 18.33 ± 5.46 

SNP1210: 9 40,919,049 0.45 MCH Blood 1 0.03 0.05 39,919,771  0.07 ± 0.08 0.21 ± 0.07 

rs320615395     Blood 3 0.04 0.07 40,490,005  -0.04 ± 0.05 0.19 ± 0.05 

     Blood 4 0.04 0.06 40,490,005  0.03 ± 0.05 0.21 ± 0.05 

SNP13: 

rs80784550 

11 13,749,336 0.12 MCHC Δ14 0.02 0.07 13,011,748  1.89 ± 2.42 2.38 ± 2.33  

SNP1410: 

rs323585109 

12 22,234,265 0.3 MCV Blood 3 0.04 0.08 21,749,390  -0.06 ± 0.14 -0.40 ± 0.10 

1The most significant SNP without a group of supportive SNPs. 
2Sus scrofa chromosome.  
3Minor allele frequency. 
4MCV: mean corpuscular volume; PLT: platelet concentration; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular 

hemoglobin concentration. 
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5Blood 1, Blood 3, and Blood4: CBC measured in blood samples collected at 2-weeks before, and 2- and 6-weeks after a 

polymicrobial infectious challenge; Δ14: the change of CBC measures from Blood 1 collected at 2-weeks before the challenge to 

Blood 4 collected at 6-weeks after the challenge. 
6The largest percentage of additive genetic variance explained by the top significant SNP and its adjacent SNPs in a 1 Mb window.  
7Positions of the start SNP for the 1 Mb window segment with the largest amount of additive genetic variance. 
8Estimates of additive effects per additional copy of the “B” allele. When the dominance effect was not significant (p > 0.05) the 

estimate of the additive effect was based on a model without the dominance effect.  
9Significant estimates of additive and dominance effects are highlighted in bold (p < 0.05). 
10SNPs identified and results estimated by multivariate SSGWAS.  
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Table 19. Genetic correlations between red blood cell traits of mean corpuscular hemoglobin (MCH), mean corpuscular 

volume (MCV), and red blood cell concentration (RBC).   

Traits 
MCH 

Blood 11 Blood 32 Blood 43 

RBC Blood 1 -0.71 ± 0.10 -0.83 ± 0.07 -0.60 ± 0.09 

Blood 3 -0.62 ± 0.10 -0.74 ± 0.06 -0.43 ± 0.09 

Blood 4 -0.69 ± 0.10 -0.66 ± 0.08 -0.55 ± 0.08 

MCV Blood 1 0.90 ± 0.03 0.81 ± 0.07 0.77 ± 0.08 

Blood 3 0.75 ± 0.07 0.86 ± 0.03 0.77 ± 0.05 

Blood 4 0.95 ± 0.02 0.86 ± 0.04 0.95 ± 0.02 

Traits 
MCV 

Blood 1 Blood 3 Blood 4 

RBC Blood 1 -0.72 ± 0.09 -0.68 ± 0.08 -0.54 ± 0.09 

Blood 3 -0.65 ± 0.09 -0.59 ± 0.08 -0.44 ± 0.10 

Blood 4 -0.71 ± 0.10 -0.56 ± 0.08 -0.55 ± 0.08 

1Blood 1: Blood samples collected at 2-weeks before exposure to the challenge. 
2Blood 3: Blood samples collected at 2-weeks after exposure to the challenge. 
3Blood 4: Blood samples collected at 6-weeks after exposure to the challenge.   
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Table 20. Browsing regions for candidate genes located within 1-Mb on either side of lead SNPs (FDR < 0.10) associated with 

complete blood count traits. 

Traits1 Blood2 
Browsing region 

Sus scrofa chromosome (SSC): position (bp) 

EOS Blood 3 
SSC1: 110,498,112bp – 112,498,112bp; SSC4: 92,647,202bp – 94,647,202bp;  

SSC10: 7,186,695bp – 9,186,695bp; SSC12: 35,308,994bp – 37,308,994bp. 

MONO Δ13 SSC2: 119,341,201bp – 121,341,201bp; SSC9: 104,461,701bp – 106,461,701bp 

MCH Blood 1, 3, 4 SSC5: 9,683,166bp – 11,683,166bp; SSC6: 27,511,423bp – 29,511,423bp; 

SSC6: 164,588,523bp – 166,588,523bp; SSC7: 22,056,369bp – 24,056,369bp; 

SSC8: 40,156,538bp – 42,156,538bp; SSC9: 39,919,049bp – 41,919,049bp; 

SSC12: 23,001,577bp – 25,001,577bp; SSC13: 199,855,463bp – 201855463bp. 

MCV Blood 1, 3, 4 SSC1: 17,792,764bp – 19,792,764bp; SSC4: 76,486,634bp – 78,486,634bp; 

SSC6: 27,511,423bp – 29,511,423bp; SSC8: 40,156,538bp – 42,156,538bp; 

SSC12: 21,234,265bp – 23,234,265bp. 

RBC Blood 1, 3, 4 SSC2: 59,174,089bp – 61,174,089bp; SSC2: 104,736,448bp – 124,736,448bp; 

SSC3: 96,212,688bp – 98,212,688bp; SSC3: 120,086,804bp – 122,086,804bp; 

SSC6: 27,511,423bp – 29,511,423bp; SSC8: 40,156,538bp – 42,156,538bp. 

MPV Blood 1, 4 SSC4: 110,541,124bp – 112,541,124bp; SSC17: 58,739,745bp – 60,739,745bp. 

PLT Blood 1, 3, 4 SSC1: 1,655,014bp – 3,655,014bp; SSC5: 63,520,638bp – 65,520,638bp. 

1The category of traits that associated with candidate genes. EOS: eosinophil concentration; MONO: monocyte concentration; MCHC: 

mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; RBC: red blood cell concentration; MCH: mean 

corpuscular hemoglobin; MPV: mean platelet volume; PLT: platelet concentration.  
2 Blood 1, Blood 3, and Blood4: CBC measured in blood samples collected at 2-weeks before, and 2- and 6-weeks after exposure to 

the challenge; Δ13: the change of CBC measures from Blood 1 collected at 2-weeks before the challenge to Blood 3 collected at 2-

weeks after exposure to the challenge; Δ14: the change of CBC measures from Blood 1 collected at 2-weeks before the challenge to 

Blood 4 collected at 6-weeks after exposure to the challenge. 
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Table 21. Candidate genes located within 1 Mb on either side of the top significant SNPs1 that have been reported by 1 

previous studies of pigs, human, mice, and rats to be functionally and biologically related to CBC traits.  2 

3 

SNPID Traits2 Browsing region Candidate genes and locations 

SNP1 Eosinophils SSC4: 92,647,202bp – 94,647,202bp ARHGEF2 (94,026,391bp – 94,082,206bp) 

SNP2 Eosinophils SSC10: 7,186,695bp – 9,186,695bp TGFB2 (8,327,779bp – 8,435,306bp) 

SNP3 Eosinophils SSC12: 35,308,994bp – 37,308,994bp MIR21 (36,065,267bp – 36,065,358bp) 

SNP4 Monocytes SSC2: 119,341,201bp – 121,341,201bp COMMD10 (120,238,623bp – 120,429,913bp), ATG12 

(119,948,443bp – 119,965,702bp), CDO1 (119,928,476bp – 

119,940,425bp), TMED7 (119,794,608bp – 119,804,406bp), 

TICAM2 (119,758,636bp – 119,760,759bp) 

SNP5 Monocytes SSC9: 104,461,701bp – 106,461,701bp NAMPT (106,121,909bp – 106,161,841bp) 

SNP6 Red blood cells SSC4: 90,591,493bp – 92,591,493bp SPTA1 (91,485,067bp – 91,640,063bp), MNDA (91,416,410bp – 

91,433,243bp), ACKR1 (91,221,889bp – 91,225,651bp) 

SNP7 Red blood cells SSC6: 27,511,423bp – 29,511,423bp CBFB (27,684,030bp – 27,776,751bp), THAP11 (28,465458bp – 

28,466,387bp), PSMB10 (28,544,910bp – 28,547,609bp), LCAT 

(28,550,363bp – 28,553,512bp), SLC12A4 (28,554,162bp – 

28,576,458bp) 

SNP8 Red blood cells SSC8: 40,156,538bp – 42,156,538bp PDGFRA (40,967,493bp – 41,021,442bp), KIT (41,402,334bp – 

41,492,306bp) 

SNP9 Platelets SSC17: 58,739,745bp – 60,739,745bp GNAS (59,031,820bp – 59,053,022bp), TUBB1 (59,161,420bp – 

59,168,385bp) 

SNP10 Red blood cells SSC1: 17,792,764bp – 19,792,764bp STXBP5 (18,345,363bp – 18,513,252bp), RAB32 (18,870,875bp 

– 19,097,892bp) 

SNP11 Platelets SSC5: 63,520,638bp – 65,520,638bp VWF (64,517,593bp – 64,655,938bp), CD9 (64,420,177bp – 

64,459,776bp), GNB3 (63,863,656bp – 63,870,396bp), PHB2 

(63,751,566bp – 63,756,480bp) 

SNP12 Red blood cells SSC9: 39,919,049bp – 41,919,049bp ZBTB16 (41,639,701bp – 41,836,742bp) 

SNP13 Red blood cells SSC11: 12,749,336bp – 14,749,336bp TRPC4 (13,300,556bp – 13,517,568bp), FREM2 (13,959,865bp 

– 14,154,246bp) 

SNP14  Red blood cells SSC12: 21,234,265bp – 23,234,265bp           RARA (22,047,442bp – 22,085,674bp), THRA (22,270,062bp – 

22,296,618bp) 
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1The most significant SNP above the genome-wise FDR of 0.05 in each genomic region. 

2The category of traits that associated with candidate genes.  
3The gene location from the top significant SNP, described as “within” or to the left (L) or right (R) side of the gene as found on the 

reference genome sequence.  



187 

 

Figure 25. Violin plots for descriptive statistics for white blood cell traits of first six 

cycles in Blood 1, Blood 3, and Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively. 

WBC: total white blood cell concentration; NEU: neutrophil concentration; LYM: 

lymphocyte concentration; MONO: monocyte concentration; EOS: eosinophil 

concentration; BASO: basophil concentration.  

Wider sections of the violin plots represent a higher probability density of the data at the 

given value and the skinnier sections represent a lower probability. Suggested reference 

intervals for CBC traits were derived from Iowa State University's Clinical Pathology 

Laboratory (2011). The suggested reference intervals for BASO traits are not applicable.
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Figure 26. Violin plots for descriptive statistics for red blood cell traits of first six 

cycles in Blood 1, Blood 3, and Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively. RBC: red blood cell concentration; HGB: 

hemoglobin concentration; HCT: hematocrit; MCV: mean corpuscular volume; MCH: 

mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; 

RDW: red blood cell distribution width.  

Wider sections of the violin plots represent a higher probability density of the data at the 

given value and the skinnier sections represent a lower probability.  

Suggested reference intervals for CBC traits were derived from Iowa State University's 

Clinical Pathology Laboratory (2011). The suggested reference intervals for RDW traits 

are not applicable.  



189 

 

Figure 27. Violin plots for descriptive statistics for platelet traits of first six cycles in 

Blood 1, Blood 3, and Blood 4  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

PLT: platelet concentration; MPV: mean platelet volume. Wider sections of the violin 

plots represent a higher probability density of the data at the given value and the skinnier 

sections represent a lower probability.  

Suggested reference intervals for CBC traits were derived from Iowa State University's 

Clinical Pathology Laboratory (2011). The suggested reference intervals for MPV traits 

are not applicable. 
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Figure 28. Multidimensional scaling (MDS) plots for the population structure of genotyped animals in the first six cycles.  

The MDS plot showing the first three dimensions (C1, C2, and C3) of the population structure for genotyped animals based on 

pairwise identity-by-state distance. Each point represents a genotyped animal and the colors of the points represent the origin farms for 

animals. The MDS plot showing in the C1 and C2 dimensions (A). The MDS plot showing in the C2 and C3 dimensions (B). The 

MDS plot showing in the C1 and C3 dimensions (C).  
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Figure 29. Manhattan plot for the eosinophil concentration in Blood 3 (EOSB3) (A) and Quantile-Quantile plot for EOSB3 

(B). 

Blood 3 was collected at 2-weeks after exposure to the challenge.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (red dashed line) in the Manhattan plot, the grey 

region represents a 95% confidence interval in the Quantile-Quantile plot. Genomic inflation factor (λ) = 1.01.  
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Figure 30. Manhattan plot for the change of monocyte concentration from Blood 1 to Blood 3 (MONO∆13) (A) and Quantile-

Quantile plot for MONO∆13 (B). 

Blood 1 and Blood 3 were collected at 2-weeks before and at 2-weeks after exposure to the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (red dashed line) in the Manhattan plot, the grey 

region represents a 95% confidence interval in the Quantile-Quantile plot. Genomic inflation factor (λ) = 0.98.   
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Figure 31. Manhattan plots (A, C, E) and Quantile-Quantile plots (B, D, F) for the 

mean corpuscular hemoglobin (MCH) in Blood 1, Blood 3, and Blood 4, 

respectively.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region in the Quantile-Quantile plot 

represents a 95% confidence interval. Genomic inflation factors (λ) were 1.01, 0.99, and 

1 for MCH in Blood 1, Blood 3, and Blood 4, respectively.  
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Figure 32. Manhattan plots (A, C) and Quantile-Quantile plots (B, D) for the mean 

corpuscular hemoglobin concentration (MCHC) in Blood 3 and for the change of 

MCHC from Blood 1 to Blood 4 (Δ14), respectively. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region represents a 95% confidence 

interval in the Quantile-Quantile plot. Genomic inflation factors (λ) were 1 for MCHC in 

Blood 3 and 1.06 for MCHC in Δ14.  
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Figure 33. Manhattan plots (A, C, E) and Quantile-Quantile plots (B, D, F) for the 

mean corpuscular volume (MCV) in Blood 1, Blood 3, and Blood 4, respectively. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

 Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region represents a 95% confidence 

interval in the Quantile-Quantile plot. Genomic inflation factors (λ) were 0.99, 1, and 

0.99 for MCV in Blood 1, Blood 3, and Blood 4, respectively.  
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Figure 34. Manhattan plots (A, C, E) and Quantile-Quantile plots (B, D, F) for the 

red blood cell concentration (RBC) in Blood 1, Blood 3, and Blood 4, respectively.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region represents a 95% confidence 

interval in the Quantile-Quantile plot. Genomic inflation factors (λ) were 1, 1, and 0.99 

for RBC in Blood 1, Blood 3, and Blood 4, respectively.  
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Figure 35. Manhattan plots (A, C) and Quantile-Quantile plots (B, D) for the mean 

platelet volume (MPV) in Blood 1 and Blood 4, respectively.  

Blood 1 and Blood 4 were collected at 2-weeks before, and at 6-weeks after exposure to 

the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region represents a 95% confidence 

interval in the Quantile-Quantile plot. Genomic inflation factors (λ) were 1.02 and 1.01 

for MPV in Blood 1 and Blood 4, respectively.  
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Figure 36. Manhattan plots (A, C, E) and Quantile-Quantile plots (B, D, F) for the 

platelet concentration (PLT) in Blood 1, Blood 3, and Blood 4, respectively. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks 

after exposure to the challenge, respectively.  

Significant SNPs were determined with the genome-wise false discovery rate at 0.05 (the 

red dashed line in the Manhattan plot). The grey region represents a 95% confidence 

interval in the Quantile-Quantile plot. Genomic inflation factors (λ) were 0.99, 1, and 1 

for PLT in Blood 1, Blood 3, and Blood 4.  
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Figure 37. Haplotype block pattern (r2-scheme) for the region of candidate genes on SSC2. 

The region of candidate genes located within the maximum distance of 1-Mb on either side of 

the top lead SNP4 (SSC2, 120,341,201bp, the most significant SNP at genome-wise false 

discovery rate < 0.05 with a group of supportive SNPs in this region), based on the linkage 

disequilibrium (LD, measured as r2) among the SNPs within this region. The SNPs in each 

triangle box are suggested to be grouped in one haplotype block based on LD information.  
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Figure 38. Haplotype block pattern (r2-scheme) for the region of candidate genes on SSC4. 

The region of candidate genes located within the maximum distance of 1-Mb on either side of 

the top lead SNP6 (SSC4, 91,591,493bp, the most significant SNP at genome-wise false 

discovery rate < 0.05 with a group of supportive SNPs in this region), based on the linkage 

disequilibrium (LD, measured as r2) among the SNPs within this region. The SNPs in each 

triangle box are suggested to be grouped in one haplotype block based on LD information.  
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Figure 39. Haplotype block pattern (r2-scheme) for the region of candidate genes on SSC6. 

The region of candidate genes located within the maximum distance of 1-Mb on either side of 

the top lead SNP7 (SSC6, 28,511,423bp, the most significant SNP at genome-wise false 

discovery rate < 0.05 with a group of supportive SNPs in this region), based on the linkage 

disequilibrium (LD, measured as r2) among the SNPs within this region. The SNPs in each 

triangle box are suggested to be grouped in one haplotype block based on LD information.   
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Figure 40. Haplotype block pattern (r2-scheme) for SNPs (40,946,144bp to 41,198,574bp) on 

SSC8. 

The region of candidate genes located within the maximum distance of 1-Mb on either side of 

the top lead SNP8 (SSC8, 41,156,538bp, the most significant SNP at genome-wise false 

discovery rate < 0.05 with a group of supportive SNPs in this region), based on the linkage 

disequilibrium (LD, measured as r2) among the SNPs within this region.  
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Chapter 6. Exploration of genes associated with the changes in lymphocyte 

and neutrophil concentration in response to the polymicrobial infectious 

challenge  

6.1. Introduction 

The concentrations of circulating lymphocytes (LYM) and neutrophils (NEU) in blood 

samples collected at 2-weeks before (Blood 1), and 2- (Blood 3) and 6-weeks (Blood 4) after 

exposure to the polymicrobial challenge in the natural disease challenge model (NDCM) were 

quantified using complete blood count (CBC) as described in Chapter 3. The changes of LYM 

from Blood 1 to Blood 3 (LYMΔ13) and NEU from Blood 3 to Blood 4 (NEUΔ34) were found 

to be heritable (0.11 ± 0.04 for both) and genetically correlated with TR (-0.46 ± 0.24) and 

GFGR (-0.45 ± 0.21), respectively (Chapter 4). Therefore, higher LYMΔ13 but lower NEUΔ34 

may favour disease resilience due to the association with the decreased TR and increased GFGR, 

respectively, in response to the polymicrobial challenge. Accordingly, we hypothesized that 

resilient animals were primed to initiate a faster immune response with higher LYMΔ13 during 

the acute stage of infection because lymphocytes are of fundamental importance in the adaptive 

immune system with specificity and memory to defend against pathogens (LaRosa and Orange, 

2008). Due to the dual roles of neutrophils in inflammation, the lower NEUΔ34 associated with 

disease resilience was hypothesized to be caused by having more neutrophils transported to 

infected tissues to defend against pathogens or inflammation resolution to re-establish tissue 

homeostasis and functionality at the later stage of the disease (Jones et al., 2016; Rosales, 2018).  

Further investigation of the LYMΔ13 and NEUΔ34 traits may provide a more in-depth 

insight into the immune mechanisms employed by disease resilient animals in response to 

polymicrobial infectious challenge. Disappointingly we did not find any major genes associated 
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with LYMΔ13 and NEUΔ34 in the genome-wide association studies (GWAS) reported in 

Chapter 5 and concluded that these traits are likely to be controlled by multiple genes with small 

effects. RNA-sequencing (RNA-seq) is a widely used method for quantification of gene 

expression levels in blood samples and has been applied successfully to identify genes involved 

with pig response to important pathogens, such as porcine reproductive and respiratory syndrome 

virus (PRRSV), African swine fever virus, Salmonella enterica, and Mycoplasma suis 

(Kommadath et al., 2014, 2017; Schroyen et al., 2016; Wilkinson et al., 2016; Nascimento et al., 

2018). As we collected samples for RNA analysis at each timepoint (Blood 1, 3 and 4) of the 

natural disease challenge model (NDCM), we can use this approach to investigate the genes 

associated with LYMΔ13 and NEUΔ34 in relation to disease resilience.  

Therefore, we selected a subset of samples based on LYMΔ13 and NEUΔ34 for RNA-

seq to quantify the gene expression levels at 2- and 6-weeks after exposure to a polymicrobial 

challenge, with the objectives of 1) exploring genes and their expression patterns associated with 

the LYMΔ13 and NEUΔ34 in response to the polymicrobial challenge, and 2) investigating the 

immune mechanisms associated with disease resilience. 

6.2. Material and Methods 

6.2.1 NDCM and whole blood sample collection 

Details of NDCM and whole blood sample collection can be found in Chapter 3. Briefly, 

three sets of whole blood samples (Blood 1, Blood 3, and Blood 4) were drawn from the jugular 

vein of each pig at 2-weeks before, and at 2- and 6-weeks after exposure to the challenge. Blood 

1, Blood 3, and Blood 4 samples were collected into K2 ethylenediaminetetraacetic acid (EDTA) 

tubes (Applied BiosystemsTM, United States) and TempusTM Blood RNA tubes (Applied 

BiosystemsTM, United States). Blood samples in EDTA tubes were used for CBC using the 



205 

 

ADVIA®2120i Hematology System (Siemens Healthineers, Germany). A detailed description of 

CBC traits can be found in Chapter 3, section 3.3.1. The samples in TempusTM Blood RNA 

tubes were stored at -20 °C for future RNA extraction.  

6.2.2 Selection of animals for RNA-Seq analysis 

RNA analysis requires that the blood samples were collected and processed correctly to 

ensure thorough mixing of the sample with the stabilizing reagent to inactivate cellular RNases 

and precipitate RNA. We found that this was not always the case for the NCDM as indicated by 

the presence of clots on thawing the tubes. As this is a prerequisite to obtain RNA with sufficient 

concentration and integrity for RNA-Seq analysis, animals (n = 30) used for this study were 

selected from three more recent batches (Batch 38, 39, and 42) which were taken after the 

problem of insufficient mixing was addressed at the barn. Pigs were selected from each batch 

and classified into two groups (Group 1 and Group 2) based on LYMΔ13 and NEUΔ34. To 

enlarge the difference between the two groups, animals in Group 1 were required to have first 

increased LYM level from Blood 1 to Blood 3 then decreased NEU level from Blood 3 to Blood 

4, shown as positive LYMΔ13 but negative NEUΔ34. Five animals with the highest LYMΔ13 

within each batch were selected for Group 1 (n = 15) among the candidates who met the 

requirement. Conversely, animals in Group 2 had first decreased LYM from Blood 1 to Blood 3 

then increased NEU from Blood 3 to Blood 4, shown as negative LYMΔ13 but positive 

NEUΔ34. Five animals with the highest NEUΔ34 were selected from each batch for Group 2 (n 

= 15) among candidates.  

6.2.3 RNA preparation, library construction and Illumina sequencing 

Blood samples (n = 60) in TempusTM Blood RNA tubes collected at 2- and 6-weeks after 

exposure to the challenge from the selected pigs were used for total RNA extraction. Total RNA 
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from each sample was extracted using the Preserved Blood RNA Purification Kit I (Norgen 

Biotek Corp, Canada, Cat. 43400) following the manufacturer’s instructions. The DNA was 

removed using the RNase-Free DNase I kit (Norgen Biotek Corp, Canada, Cat. 25710, 25720) 

following the manufacturer’s instructions. Globin reduction of total RNA samples was conducted 

following the protocol developed in-house using porcine-specific oligonucleotides (Choi et al., 

2014). Globin depleted RNA was immediately purified with the RNeasy MinElute Cleanup Kit 

(Qiagen, Canada, Cat. No.: 74204). The RNA integrity number (RIN) and concentration were 

measured using the Agilent 2100 Bioanalyzer (Agilent Technologies, United States) and 

Nanodrop 2000 (Thermo Scientific, United States), respectively. The RIN values ranged from 

5.8 to 8.7, and 56 out of 60 samples had RIN values higher than 6.5. The concentrations of RNA 

samples ranged from 50.82 to 538.20 ng/μl with a volume of 13 μl, but were standardized and 

diluted with nuclease-free water (Thermo Scientific, United States) to approximately 500 ng in 

30 μl. The mRNA libraries were constructed using the NEBNext® Multiplex Oligos for Illumina 

(New England BioLabs, United States) and pair-end sequenced using the Illumina NovaSeq 

6000 S4 PE100 system (Illumina, United States) at Génome Québec (Canada).  

6.2.4 RNA-Seq reads processing 

The raw RNA-Seq reads were processed using BBDuk (https://jgi.doe.gov/data-and-

tools/bbtools/bb-tools-user-guide/bbduk-guide/) to trim the adaptor sequences and to filter out 

reads with a length less than 50 bp after trimming. FASTQC 0.11.9 (Andrews, 2010) was used 

first to check RNA-Seq reads quality before and after trimming. Trimmed reads were aligned to 

the Sus scrofa reference genome sequence (Scrofa 11.1; Warr et al., 2020) using STAR 2.7.6a 

(Dobin et al., 2013). For gene annotation, we used the GTF file for Scrofa 11.1 from Ensembl 

version 101 (Yates et al., 2019). The number of reads uniquely mapped to each gene was 
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determined using STAR 2.7.6a, which coincided with the HTSeq-count with default parameters 

(Dobin et al., 2013; Dobin, 2020). The Bioconductor (Gentleman et al., 2004) package edgeR 

(version 3.28.1) (Robinson et al., 2010) was used for further processing of the read counts in R 

(R core team, 2020). The read counts were normalized to counts per million (CPM), and genes 

expressed at low levels were removed by only keeping genes that achieve CPM above one in at 

least 50% of samples. Reads mapped to HBA and HBB were also filtered out in this way as they 

were expressed in low levels after globin reduction. The remaining read counts were normalized 

by the trimmed mean of M-values (TMM) to account for compositional differences between 

libraries. The normalized read counts were adjusted for batch effect using edgeR and 

transformed using log2(n + 1) to obtain scaled expression values for gene co-expression network 

analysis. 

6.2.5 Differential expression analysis 

Differential expression (DE) analysis was performed using edgeR by fitting a negative 

binomial generalized linear model (Robinson et al., 2010). The batch effect was corrected, and 

DE analysis was conducted for multiple comparisons within each batch. Comparisons between 

Group 1 and Group 2 within Blood 3 and Blood 4 were used to identify DE genes related to the 

changes of CBC traits in response to infection. Comparisons between Blood 3 and Blood 4 

across and within Group 1 and Group 2 were conducted to explore DE genes associated with the 

time course of infection. Genes that had at least a 2-fold change (log2FC > 1) in expression 

between the groups for comparison, log2CPM > 2, and a Benjamini-Hochberg correction 

(Benjamini et al., 1995) of false discovery rate (FDR) < 0.05 were recognized as DE genes.   

6.2.6 Co-expression network analysis 
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Gene co-expression network analysis was performed using the R package Weighted 

Correlation Network Analysis (WGCNA, version 1.69) (Langfelder and Horvath, 2008) to 

explore the gene co-expression network in Blood 3 and Blood 4 associated with the CBC traits in 

response to infection. The analysis was conducted on Blood 3 and Blood 4 expression data to 

explore consensus modules between Blood 3 and Blood 4 using the “automatic module detection 

(function blockwiseConsensusModules)” in WGCNA with the following options: maxBlockSize 

of 5000, minModuleSize of 30, networkType=” signed”, corType= “bicor”, and mergeCutHeight 

of 0.25. The lowest soft threshold power (β = 20) that resulted in approximate scale-free 

topology as measured by the scale-free topology fitting index was chosen for the analysis 

(Langfelder and Horvath, 2008). The modules were tested for their associations by correlation 

module eigengenes with the quantitative traits of LYMΔ13 and NEUΔ34. LYMΔ13 and 

NEUΔ34 traits were adjusted for the batch effect using linear regression for association with 

module eigengenes. 

6.2.7 Functional enrichment analysis  

Gene Ontology (GO) analysis was performed on DE genes and co-expressed gene 

modules to explore the biological processes that the genes are involved in. The human ortholog 

Entrez gene IDs corresponding to the pig Ensembl gene IDs were used in the enrichment test to 

take advantage of the more complete annotation available for human genes. The Bioconductor 

package clusterProfiler (version 3.14.3) (Yu et al., 2012) and org.Hs.eg.db (version 3.10.0) 

(Carlson, 2019) were used for over-representation tests of GO terms in R. The set of all 

expressed genes expressed in porcine whole blood was selected to be the universal set of genes 

for GO term enrichment test. The GO terms were ranked based on p-value to explore the 

candidate genes and immune mechanisms that may be associated with LYMΔ13 and NEUΔ34 in 
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response to the polymicrobial infectious challenge. The Benjamini-Hochberg correction of FDR 

on p-value was also conducted for the GO terms (Benjamini et al., 1995; Yu et al., 2012).        

6.3. Results 

6.3.1 Group classification 

The group classification of animals based on LYMΔ13 and NEUΔ34 is shown in Figure 

41. After correcting for the batch effect, the least-square mean (LSM) of LYMΔ13 was 

significantly higher (p-value < 0.0001) in Group 1 (3.28 ± 0.45) compared to Group 2 (-3.32 ± 

0.45), and the LSM of NEUΔ34 was significantly lower (p-value < 0.0001) in Group 1 (-4.35 ± 

0.54) compared to Group 2 (3.41 ± 0.54). The least-square mean of GFGR trended higher in 

Group 1 than Group 2 (Group1: 0.93 ± 0.03; Group 2: 0.90 ± 0.03, p-value = 0.51), and TR 

trended lower in Group 1 compared to Group 2 (Group1: 0.26 ± 0.13; Group 2: 0.50 ± 0.13, p-

value = 0.20). Most animals were sourced from different pens and litters (Table 22) to avoid any 

confounding effects for comparing results. Within each batch, the bleeding ages were not found 

to be significantly different (p-value > 0.05) between the two groups based on the t-test results 

(Batch 38: p-value = 1; Batch 39: p-value = 0.17; Batch 42: p-value = 0.47) as a batch of 

animals were managed as “all-in-all-out” in the NDCM (detail in Chapter 3). Overall, only 

batch effect was fitted as the fixed effect in the model for DE and gene co-expression analyses 

since the disease pressure likely varied by batch and pigs from different batches were not 

exposed to all the same pathogens, which would be the case on a commercial farm. Therefore, 

the focus was on differences in response between pigs within a batch, which all had the same 

exposure, rather than on comparison across batches. 

6.3.2 DE genes in response to infection   
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DE analysis between Group 1 and Group 2 was performed separately for Blood 3 and 

Blood 4 samples. The numbers of DE genes are summarized in Table 23. Among 11691 

expressed genes, 68 DE genes in Blood 3 samples with 61 up-regulated and 7 down-regulated 

genes, were found in Group 2 compared to Group 1. However, no DE genes were identified 

between Group 1 and Group 2 in Blood 4. The GO terms enriched in the DE genes set of each 

contrast were ranked based on the p-value. The top 10 GO terms enriched in the set of up-

regulated DE genes in Group 2 compared to Group 1 within Blood 3 samples are shown in Table 

24. Genes involved in immune-related GO terms, including negative regulation of NF-kappaB 

(NF- κB) transcription factor activity and tumor necrosis factor (TNF) -mediated signaling 

pathway, were up-regulated in Blood 3 samples of Group 2 compared to Group 1.  

DE analysis between Blood 3 and Blood 4 was performed separately for Group 1 and 

Group 2 samples to explore DE genes associated with the time course of infection. In total, 267 

DE genes were identified between Blood 3 and Blood 4 samples in Group 1 with 153 up-

regulated genes and 114 down-regulated genes in Blood 4 compared to Blood 3 (Table 23). For 

Group 2, 492 DE genes, including 197 up-regulated and 295 down-regulated genes, were 

identified in Blood 4 compared to Blood 3 (Table 23). There were 193 overlapped DE genes (95 

up-regulated and 98 down-regulated in Blood 4) identified between the contrast in Group 1 and 

Group 2. The top 10 GO terms enriched in the set of up-regulated DE genes in Blood 4 

compared to Blood 3 in both groups are shown in Table 25. Several up-regulated genes in Blood 

4 compared to Blood 3 of Group 1 were involved in immune-related GO terms, including 

regulation of lymphocyte migration, cytoskeleton organization, T cell migration, and cellular 

response chemokine. The top 10 enriched GO terms in the set of down-regulated DE genes in 

Blood 4 compared to Blood 3 in both groups are shown in Table 26. For the comparison of 
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Blood 4 to Blood 3 in Group 1, down-regulated genes in Blood 4 were found to be involved in 

immune-related GO terms of regulation of transforming growth factor-beta (TGF-β) production. 

For Group 2, genes involved in the GO terms of immune response regulation, negative regulation 

of immune factors (NF- κB, Interleukin 6) production, and Interleukin-1-mediated signaling 

pathway were downregulated in Blood 4 compared to Blood 3. 

6.3.3 Gene co-expression network associated with LYMΔ13 and NEUΔ34 in response to 

infection 

Gene co-expression modules (clusters of highly positively correlated genes) were labelled 

in colours by WGCNA. Nine Blood 3-Blood 4 consensus modules were identified between 

Blood 3 and Blood 4 gene expression profiles, except the grey gene module of all background 

genes that do not clearly belong to any other modules. The relationships for consensus module 

eigengenes with LYMΔ13 and NEUΔ34 in gene expression profiles of Blood 3 and Blood 4 are 

shown in Figure 42A and 42B, respectively. Positive correlations in Figure 42 indicated that 

increased and decreased expression levels of module eigengenes associated with the higher and 

lower levels of the trait, respectively. In contrast, the negative correlations indicated the 

increased and decreased expression levels of module eigengenes associated with the lower and 

higher levels of the trait, respectively. Multiple consensus modules, including magenta, 

turquoise, brown, red, and black consensus modules showed significant positive correlations 

with LYMΔ13 in the expression profile of Blood 3. Meanwhile, the turquoise, brown, black, and 

blue consensus modules shown negative correlations with NEUΔ34 in Blood 3, which 

corresponded to the negative genetic correlation (-0.93 ± 0.36) between LYMΔ13 and NEUΔ34. 

In addition, the blue consensus module had a negative correlation with LYMΔ13 but a positive 

correlation with NEUΔ34 in Blood 3. The yellow consensus module was the only one that had a 



212 

 

positive correlation with LYMΔ13 in the expression profile of Blood 4. The green consensus 

module was the only one that showed significant results in both Blood 3 and Blood 4 expression 

profiles, including a negative correlation with LYMΔ13 in Blood 3 and a positive correlation 

with NEUΔ34 in Blood 4.  

Several immune-related GO terms were found among the top 10 enriched (p-value ranged 

from 0.001 to 0.01, FDR ranged from 0.39 to 0.88) GO terms of magenta, red, blue, and green 

consensus modules (Figures 43 to 46). Immune-related GO terms of cytokine production, 

regulation of T cell mediated immunity, and JUN kinase activity were enriched in the magenta 

module (Figure 43). The GO terms of innate immune response signaling pathways (nucleotide-

binding oligomerization domain-like receptors, also known as nucleotide-binding leucine repeat 

receptors, are types of pattern recognition receptors) and cellular iron homeostasis were enriched 

in the red module (Figure 44). The positive correlations for the magenta and red modules with 

LYMΔ13 in Figure 42A suggested that decreased expression levels of eigengenes in both 

modules were associated with the lower LYMΔ13 in Blood 3. However, not all genes involved 

in the top 10 GO terms of the magenta and red modules were found to have lower expression 

levels in Blood 3 of Group 2 (lower LYMΔ13) than Group 1 (Figure 43 and 44). For the blue 

module, immune-related GO terms of I-kappaB kinase/NF- κB signaling, negative regulation of 

protein kinase B signaling, and TNF-mediated signaling pathway were enriched (Figure 45). 

The negative correlation for the blue module with LYMΔ13 but positive correlation with 

NEUΔ34 in Figure 42A indicated that higher expression levels of blue module eigengenes in 

Blood 3 associated with the lower level of LYMΔ13 but higher NEUΔ34. Accordingly, all genes 

involved in the top 10 enriched GO terms in the blue module were found to have higher 

expression levels in Blood 3 of Group 2 (lower LYMΔ13 but higher NEUΔ34) than Group 1 



213 

 

(Figure 45). Multiple top 10 GO terms enriched in the green module were found to be related to 

inflammatory and immune responses, including the negative regulation of inflammatory 

response, regulation of apoptosis (oxidative stress-induced cell death), cellular response to 

hypoxia (decreased oxygen levels), and myeloid cell (progenitor cell for granulocytes, 

monocytes, erythrocytes, and platelet) homeostasis (Figure 46). For Blood 3, all genes involved 

in the top 10 GO terms of the green module showed higher expression levels in Group 2 (lower 

LYMΔ13) than Group 1, except the TSC2 (Tuberous Sclerosis Complex 2) gene (Figure 46A), 

which corresponded to the negative correlation in Figure 42A for the green module with 

LYMΔ13. And then, all the genes continue to show higher expression levels in Group 2 (higher 

NEUΔ34) than Group 1 in Blood 4 (Figure 46B), corresponding to the positive correlation in 

Figure 42B between the green module and NEUΔ34 as it also suggested higher expression 

levels to be associated with higher NEUΔ34. The differential gene expression levels measured as 

log2(fold change) in Group 2 compared to Group 1 were found to be further enlarged in Blood 4 

than Blood 3 for multiple genes (TSC2, TMEFF2, ENDOG, SVIL, MPL, MIR140, CDK10, 

EXOSC10, PPM1D, ATF7IP, PGK1, STK25, TGFBR3, STAT5B, FEM1A) involved in the top 10 

GO terms of the green modules. Of note, the above genes in parentheses for the green module 

were ranked based on the difference of log2(fold change) in Blood 4 compared to Blood 3, from 

higher to lower levels ranged from 0.58 to 0.05. In addition to the top 10 enriched GO terms, 

multiple immune-related GO terms were enriched at the p-value of 0.05 in the turquoise, brown, 

black, and yellow modules (Table 27), which also showed significant correlations with 

LYMΔ13 and or NEUΔ34 in Figure 42. 

The adjacency and network for module eigengenes are shown in Figure 47, where the 

trait of LYMΔ13 or NEUΔ34 is also included as an eigengene in corresponding plots. The 
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module eigengenes were only considered to be in high adjacencies (0.6 to 1) and labeled by 

intense red when they had high positive correlations in WGCNA, indicating the genes were 

either up-regulated or down-regulated in the same direction. Therefore, the significant but 

negative correlations for LYMΔ13 with blue and green modules in Blood 3, and NEUΔ34 with 

turquoise, brown, red and black modules in Blood 3 (Figure 42A) were shown as low to zero 

adjacencies in Figure 47A and C when the trait was added as an eigengene in the plot. The 

positive correlations for modules with LYMΔ13 and or NEUΔ34 in Figure 42 can also be 

observed in Figure 47, shown as high adjacencies and colored by intense red in heatmap plots. 

The adjacencies between modules were highly conserved between Blood 3 and Blood 4 as the 

heatmap plots for Blood 3 and Blood 4 were indeed very similar. Of note, the turquoise, brown, 

black, and red modules were found to have high adjacencies with each other. Also, a high 

adjacency was identified between the blue and green modules. 

6.4. Discussion 

Our previous study (Chapter 4) has identified negative genetic correlations for LYMΔ13 

with GFGR and NEUΔ34 with TR, indicating the higher LYMΔ13 and lower NEUΔ34 may 

favour disease resilience and result in higher GFGR and lower TR in response to the 

polymicrobial infection (Bai et al., 2020). Thus, two groups of animals with divergent 

phenotypes of LYMΔ13 and NEUΔ34 were selected for transcriptome analysis to improve our 

understanding of disease resilience. Group 1 animals with positive LYMΔ13 but negative 

NEUΔ34 were expected to be more resilient, shown as higher GFGR and lower TR. Group 2 

animals with negative LYMΔ13 but positive NEUΔ34 were expected to be more susceptible to 

disease challenge, shown as lower GFGR and higher TR. LYM and NEU in Blood 1 (collected at 

2-weeks before the challenge) were not found to be correlated with GFGR or TR, and also did 
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not show any significant differences (FDR > 0.05) between animals in different resilient groups 

(results in Chapter 4). Therefore, this study focused on the Blood 3 and Blood 4 samples that 

were collected after the animals were exposed to the challenge. Blood 3 and Blood 4 samples 

were collected at 2- and 6-weeks after exposure to the challenge, respectively. Therefore, the 

Blood 3 timepoint was expected to represent the relatively acute stage of the disease and the 

Blood 4 timepoint to represent the later stage of infection (Díaz et al., 2005; Reiner et al., 2007; 

Lunney et al., 2014).  

6.4.1 Candidate genes and immune mechanisms associated with LYMΔ13 

Through the DE and co-expression network analyses on mRNA-seq data in Blood 3, the 

up-regulation of NFKBIA (NF-kappa-B Inhibitor Alpha) gene was consistently found to be 

associate with the lower LYM Δ13 (Table 24 and Figure 45). NF- κB inhibitor protein (IκB) 

encoded by NFKBIA is a major down-regulator of NF- κB by retaining inactive NF- κB dimers 

in the cytosol in unstimulated cells (Baeuerle and Baltimore, 1988). NF- κB is a transcription 

factor expressed in almost all cell types and tissues (Oeckinghaus and Ghosh, 2009). Many 

external stimuli lead to activation of NF- κB through signal-induced degradation of IκB proteins 

(Baldwin, 2001). NF- κB acts as a central mediator of immune and inflammation responses, 

stress responses, cell proliferation, and apoptosis (programmed cell death) regulation by binding 

specific promoter elements of DNA and inducing gene transcription (Barkett and Gilmore, 1999; 

Lentsch and Ward, 1999; Oeckinghaus and Ghosh, 2009). The increased level of IκB associated 

with the up-regulation of pro-apoptotic signaling has been found in gilts at two days post 

infected (2 dpi) with PRRSV (Wilkinson et al., 2016), which is also one of the major target 

pathogens in the NDCM. Accordingly, apoptosis has already been observed mainly in 

lymphocytes in a number of tissues from PRRSV-infected pigs, including lung, lymph node, 
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thymus, and reproductive tissues, and the 14 dpi has been indicated as the peak of apoptosis in 

multiple tissues (Labarque et al., 2003; Karniychuk et al., 2011; Gómez‐Laguna et al., 2013; 

Wang et al., 2014). Besides, acute decrease of total leukocytes and lymphocyte subpopulations, 

such as B cells, NK cells, T cells, and T helper cells, have also been observed in blood samples 

collected from PRRSV-infected gilts at 2 dpi, some leukocytes rebounded slowly from 6 dpi but 

still tended to be lower than in uninfected gilts till 19 dpi (Ladinig et al., 2014). In addition to 

PRRSV, a significant drop in lymphocytes between 3 and 7 dpi probably due to apoptosis was 

found in pigs infected with swine influenza virus (Pomorska‐Mól et al., 2012), which is also a 

target pathogen in the NDCM. Although classical swine fever virus (CSFV) is not present in the 

NDCM, the up-regulation of NFKBIA was also observed in pigs during CSFV infection 

corresponding with severe lymphopenia and apoptosis in thymus, spleen, lymph nodes and bone 

marrow (Sato et al., 2000; Summerfield et al., 2000, 2001; Shi et al., 2009).  

Overall, the lower and even negative LYMΔ13 Group 2 animals in response to the 

polymicrobial infectious challenge may be associated with pro-apoptosis induced by the up-

regulation of NFKBIA during the acute phase of infection. In addition to NFKBIA gene, the up-

regulation of the genes involved in TNF-mediated signaling pathways (PSMC1, CPNE1, CD70, 

TRAF1) and negative regulation of protein kinase B signaling (BANK1, SFRP5, PLEKHA1) in 

Blood 3 were also found to be associated with the lower value for LYMΔ13 (Table 24 and 

Figures 45). This may further suggest that apoptosis is the cause of low and even negative 

LYMΔ13 because TNF is known as one of the most potent inducers of apoptosis (Rath and 

Aggarwal, 1999). In addition, the important role of protein kinase B (PKB/AKT) in the 

inhibition of apoptosis has been discovered by many studies (Datta et al., 1997; Peso et al., 1997; 

Erhardt et al., 1999; Majewski et al., 1999; Cross et al., 2000). NF- κB has been known to be a 
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target for PKB in anti-apoptosis signaling as PKB can activate IκB kinase (IKK- α) that regulates 

IκB and leads to activation of NF- κB to behave as an antagonist of apoptosis (Romashkova and 

Makarov, 1999). The suppression of PKB activation has been found to induce cell cycle arrest 

and apoptosis (Persad et al., 2000). Therefore, the negative regulation of PKB signaling may 

further indicate the association between apoptosis and decreased LYMΔ13 during the acute 

phase of the polymicrobial infection. Meanwhile, genes involved in negative regulation of 

inflammatory response (RORA, NCOA7, KLF4) in the green module were also up-regulated in 

animals with negative LYMΔ13 during the acute phase of infection (Figure 46A) when animals 

were supposed to promote inflammation and initiate immune responses to defend against 

pathogens.  

In contrast, the lower expression level of NFKBIA may not induce significant apoptosis in 

Group 1 animals that had high and increased LYMΔ13. Alternatively, the animals may be able to 

overcome the apoptosis rapidly. Thus, the immune responses were initiated and activated during 

the acute stage of infection, shown as positive correlations between the higher LYMΔ13 and the 

up-regulation of genes involved in the activation of immune responses, such as complement 

cascade, cell population proliferation, and humoral immune response (Table 27 and Figure 42). 

The negative genetic correlation (-0.46 ± 0.24) between LYMΔ13 and resilience trait of TR (Bai 

et al., 2020), suggested that animals with higher LYMΔ13 may overcome apoptosis and initiate 

proper immune responses during the acute phase of infection and tended to be more resilient 

with lower TR.  

6.4.2 Candidate genes and immune mechanisms associated with NEUΔ34 

According to the negative genetic correlation (-0.45 ± 0.21) between NEUΔ34 and the 

disease resilience trait GFGR (Bai et al., 2020), different immune mechanisms have been 
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proposed to be associated with the negative NEUΔ34 and disease resilience. On the one hand, 

negative NEUΔ34 was expected to indicate the resolution of inflammation and convalescence 

during the later stage of infectious disease in resilient animals when pathogens have been 

brought under control by high LYMΔ13. On the other hand, negative NEUΔ34 may also reflect 

that circulating neutrophils have already been transported to the infected tissues to defend against 

pathogens rather than inflammation resolution.  

The up-regulation of genes involved in T lymphocyte migration, cellular response to 

chemokine, and cytoskeleton organization in Blood 4 collected at the later stage of infection was 

associated with the negative NEUΔ34 (Table 25, Blood 4 vs Blood 3 in Group 1). Of note, the 

expression of CCR8 in peripheral blood has been suggested to participate in the induction and 

amplification phase of inflammatory responses to pathogens (Soler et al., 2006). The CCR8 

receptor encoded by CCR8 is a chemokine receptor involved in recruiting leukocytes to inflamed 

tissues (Qu et al., 2004; Soler et al., 2006; Sokol et al., 2018). However, the effect of CCR8 on 

neutrophil migration was only found in a study of murine allergic enteritis (Blanco-Pérez et al., 

2019). Contrary to our results, Blanco-Pérez et al. (2019) suggested that CCR8 deficiency may 

promote neutrophil recruitment and accumulation in the inflamed intestinal tissues. Since the 

activation, polarization, migration, and phagocytosis of neutrophils are all driven by cytoskeletal 

remodeling (Fenteany and Glogauer, 2004), the up-regulation of genes involved in cytoskeleton 

organization in Blood 4 of animals with negative NEUΔ34 (Group 1) compared to Blood 3 may 

support the hypothesis that negative NEUΔ34 may be caused by the migration of neutrophils to 

the infected tissue.  

The DE analysis found that down-regulation of CD200 (Cluster of Differentiation 200) 

and SERPINF2 (Alpha 2-antiplasmin) were associated with negative NEUΔ34 (Table 26, Blood 
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4 vs Blood 3 in Group 1). The down-regulation of SERPINF2 may be of particular interest here 

and support the hypothesis that neutrophils are being transported to the infected tissue to defend 

against pathogens. This is because the α2-antiplasmin encoded by SERPINF2 is known as the 

primary physiological inhibitor of elastase (Kolev et al., 1994; Reyes-García et al., 2019). 

Neutrophils secrete elastase during inflammation, which is an important component in forming 

neutrophil extracellular traps to kill extracellular pathogens at the infection site (Brinkmann et 

al., 2004; Thomas et al., 2014). The CD200 encoded by CD200 gene is a membrane protein 

expressed by a broad range of cell types, however, the CD200 receptor (CD200R) is expressed 

almost exclusively by myeloid cells, including neutrophils, macrophages, dendritic cells, 

basophils and mast cells (Barclay et al., 2002; Snelgrove et al., 2008). The CD200 is thought to 

deliver a strong “off” signal to myeloid cells to inhibit myeloid cell pro-inflammatory activation 

through the CD200-CD200R interaction (Nathan and Muller, 2001; Barclay et al., 2002; Minas 

and Liversidge, 2006). The down-regulation of CD200 may indicate the pro-inflammation is still 

taking place. The biological function of the CD200-CD200R interaction has also been proposed 

to modulate myeloid cell functions during inflammation, such as proliferation, survival, 

trafficking, migration and secretion (Nathan and Muller, 2001), but no substantial evidence has 

been identified yet. Therefore, the association between down-regulation of CD200 and negative 

NEUΔ34 needs to be further explored.  

In contrast to the negative NEUΔ34 in Group 1 following the positive LYMΔ13, animals 

in Group 2 had a positive NEUΔ34 following the negative LYMΔ13. A rebound neutrophil 

concentration from 19 dpi was also observed in the previous study of PRRSV-infected gilts that 

showed a significant drop of leukocyte levels from 2 to 19 dpi (Ladinig et al., 2014). The up-

regulation of multiple genes in the green module (STAT5B, TGFBR3, MPL, EPAS1) involved in 
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myeloid cell homeostasis, the process of regulating the proliferation and elimination of myeloid 

cells, was found to be positively correlated with the higher level of NEUΔ34 (Figure 46B). 

Meanwhile, the expression levels of these genes in Group 2 were further up-regulated in Blood 4 

compared to Group 1. Genes involved in the negative regulations of NF- κB transcription factor 

activity and interleukin-6 (IL-6) production were found to be down-regulated in Blood 4 

compared to Blood 3 of Group 2 (Table 26, Blood 4 vs Blood 3 in Group 2), indicating the 

activation of NF- κB and increased production of IL-6 may be associated with the positive 

NEUΔ34. As discussed above, NF- κB can be activated in response to infection and acts as a 

central regulator of multiple aspects of immune functions and a mediator of inflammation 

responses (Liu et al., 2017). The activation of NF- κB was also associated with the 

degradation of IκB proteins, which can regulate the apoptosis induced by the up-regulation of the 

NFKBIA gene (encodes IκB) in Blood 3 (Liu et al., 2017). In addition to the role of pro-

inflammatory cytokine, IL-6 has also been found to be responsible for delaying neutrophil and 

apoptosis and resulting in a large population of surviving neutrophils (Biffl et al., 1996). Overall, 

it suggests that polymicrobial challenge-induced apoptosis may be mitigated in Group 2 and 

immune responses were finally evoked during the later stage of infection to defend against 

pathogens. However, a negative genetic correlation was observed between GFGR and NEUΔ34 

(-0.45 ± 0.21) (Bai et al., 2020), indicating decreased disease resilience associated with higher 

NEUΔ34, probably due to the late induction of immune responses following the apoptosis 

induced by the polymicrobial challenge.  

6.5. Conclusion 

In conclusion, this study integrates differential expression analysis and gene co-

expression network analysis to improve our understanding of LYMΔ13 and NEUΔ34 in 
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response to the polymicrobial challenge. It also reveals candidate genes and immune 

mechanisms that may be associated with disease resilience. The results suggest that apoptosis 

was responsible for negative LYMΔ13, which may be associated with PRRSV and swine 

influenza virus infection. Apoptosis during the acute stage of infection would reduce the 

concentrations of leukocytes in multiple tissues and blood, especially lymphocytes, resulting in 

impaired immune responses and increasing disease susceptibility. Although the apoptosis may be 

controlled and immune responses were evoked at the later stage of infection, shown as positive 

NEUΔ34, animal health and disease resilience may have already been impaired in these animals. 

In contrast, animals with positive LYMΔ13 were expected to overcome apoptosis and initiate 

immune responses successfully during the acute stage of infection to support disease resilience. 

The results here do not help determine whether the negative NEUΔ34 in blood samples 

(following positive LYMΔ13) were caused by inflammation resolution or migration of 

neutrophils to the infected tissues to further support disease resilience. Our interpretation of the 

results will need to be investigated further using more robust methods, such as single-cell 

sequencing, which could provide a higher resolution of cellular differences and a better 

understanding of the function of each individual cell in response to the polymicrobial challenge.   
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Table 22. The levels of pen and litter effects for the selected animals. 

Animals 

Levels1 

Pen12 Pen23 Pen34 Litter 

All selected animals (n = 30) 21 21 13 24 

Animals in Group 15 (n = 15) 12 12 11 13 

Animals in Group 26 (n = 15) 11 11 9 15 

1The number of unique levels for each factor. 

2The pen arrangement in the healthy quarantine unit. 

3The pen arrangement in the challenge late nursery. 

4The pen arrangement in the challenge grow-to-finish stage.  

5A group of animals with top five levels of the change of lymphocyte concentration from Blood 

1 to Blood 3 (LYMΔ13) among animals with positive LYMΔ13 but the negative change of 

neutrophil concentration from Blood 3 to Blood 4 (NEUΔ34) of each batch. 

6A group of animals with top five levels of NEUΔ34 among animals with negative LYMΔ13 but 

positive NEUΔ34 of each batch.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after 

exposure to the challenge, respectively.   
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Table 23. Numbers of differentially expressed genes1.  

Comparison Total2 Up3  Down4 

Group 2 (n = 15) vs Group 15 (n = 15) in Blood 37 68 61 7 

Group 26 (n = 15) vs Group 1 (n = 15) in Blood 48 0 0 0 

Blood 4 (n = 15) vs Blood 3 (n = 15) in Group 1 267 153 114 

Blood 4 (n = 15) vs Blood 3 (n = 15) in Group 2 492 197 295 

1Differentially expressed genes that had at least a 2-fold change (log2FC > 1) in expression 

between the groups for comparison, log2CPM > 2, and false discovery rate using the Benjamini-

Hochberg correction (FDR) < 0.05. 

2The count of differentially expressed genes. 

3The count of differentially expressed genes that were being up-regulated. 

4The count of differentially expressed genes that were being down-regulated.  

5A group of animals with top five levels of the change of lymphocyte concentration from Blood 

1 to Blood 3 (LYMΔ13) among animals with positive LYMΔ13 but the negative change of 

neutrophil concentration from Blood 3 to Blood 4 (NEUΔ34) of each batch. 

6A group of animals with top five levels of NEUΔ34 among animals with negative LYMΔ13 but 

positive NEUΔ34 of each batch.  

7Blood samples collected at 2-weeks after exposure to the challenge. 

8Blood samples collected at 6-weeks after exposure to the challenge.  
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Table 24. List of top 10 enriched Gene Ontology (GO) terms in biological processes in the set of up-regulated differentially 

expressed (DE) genes in Group 2 compared to Group 1 within Blood 3 samples. The GO terms were ranked based on p-value. 

1Benjamini-Hochberg correction of false discovery rate (FDR).  

GO ID Description p-value FDR1 Up-regulated DE genes 

GO:0044772 Mitotic cell cycle phase transition 0.0002 0.14 LSM10/ACVR1/PSMC1/MIR16-

1/CHMP7/GFI1 

GO:0044770 Cell cycle phase transition 0.0004 0.14 LSM10/ACVR1/PSMC1/MIR16-

1/CHMP7/GFI1 

GO:1903047 Mitotic cell cycle process 0.0004 0.14 LSM10/INTS13/ACVR1/PSMC1/MIR16-

1/CHMP7/GFI1 

GO:0000082 G1/S transition of mitotic cell cycle 0.0006 0.14 LSM10/ACVR1/MIR16-1/GFI1 

GO:0032088 Negative regulation of NF-kappaB transcription factor 

activity 

0.0006 0.14 NFKBIA/MIR16-1/GFI1 

GO:0044843 Cell cycle G1/S phase transition 0.0007 0.14 LSM10/ACVR1/MIR16-1/GFI1 

GO:0001667 Ameboidal-type cell migration 0.0008 0.14 GNA12/ACVR1C/EFNA1/ACVR1/MIR16-1 

GO:0000278 Mitotic cell cycle 0.001 0.16 LSM10/INTS13/ACVR1/PSMC1/MIR16-

1/CHMP7/GFI1 

GO:0060317 Cardiac epithelial to mesenchymal transition 0.001 0.16 EFNA1/ACVR1 

GO:0033209 Tumor necrosis factor-mediated signaling pathway 0.002 0.18 NFKBIA/PSMC1/CPNE1 
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Table 25. List of top 10 enriched GO terms in biological processes in the set of up-regulated differentially expressed (DE) 

genes in Blood 4 compared to Blood 3 within Group 1 and Group 2. The GO terms were ranked based on p-value.  

1Benjamini-Hochberg correction of false discovery rate (FDR).  

GO ID Description p-value FDR1 Up-regulated DE genes 

Blood 4 vs Blood 3 in Group 1 

GO:2000401 Regulation of lymphocyte migration 0.002 0.66 CRK/AIRE/CCL3 

GO:0007010 Cytoskeleton organization 0.003 0.66 DOCK2/CEP57/ATP8A2/MYLK3/LARP4/CRK/AK

AP9/SPAG16/ARHGAP6/CDK1/CORO1C/CCL3/

CAPN10/MIR138-1 

GO:0072678 T cell migration 0.004 0.66 CRK/AIRE/CCL3 

GO:1990868 Response to chemokine 0.005 0.66 DUSP1/CCR8/CCL3 

GO:1990869 Cellular response to chemokine 0.005 0.66 DUSP1/CCR8/CCL3 

GO:0042446 Hormone biosynthetic process 0.006 0.66 CACNA1H/CHST8/HSD11B1 

GO:0043087 Regulation of GTPase activity 0.006 0.66 DOCK2/ADPRH/FICD/CRK/ARHGAP6/CORO1C

/CCL3 

GO:0044782 Cilium organization 0.007 0.66 CEP57/BBS7/AKAP9/SPAG16/CDK1/LCA5L 

GO:0042775 Mitochondrial ATP synthesis coupled electron transport 0.008 0.66 NDUFB1/CDK1/UQCRFS1 

GO:0043547 Positive regulation of GTPase activity 0.008 0.66 DOCK2/ADPRH/CRK/ARHGAP6/CORO1C/CCL3 

Blood 4 vs Blood 3 in Group 2 
 

GO:0042775 Mitochondrial ATP synthesis coupled electron transport 0.002 0.75 UQCRH/UQCRFS1/NDUFB1/CDK1 

GO:0044782 Cilium organization 0.002 0.75 WDR11/BBS7/IFT57/CEP57/AKAP9/SPAG16/LC

A5L/CDK1 

GO:0042773 ATP synthesis coupled electron transport 0.002 0.75 UQCRH/UQCRFS1/NDUFB1/CDK1 

GO:0030010 Establishment of cell polarity 0.003 0.75 DOCK2/KIF20B/FSCN1/WWC1/CRK 

GO:0007389 Pattern specification process 0.003 0.75 HES7/EMX2/PGAP1/GDF3/AP1B1/LRP4/BBS7/I

FT57/NEUROG1 

GO:0006119 Oxidative phosphorylation 0.003 0.75 UQCRH/ATP5ME/UQCRFS1/NDUFB1/CDK1 

GO:0043113 Receptor clustering 0.003 0.75 LRP4/ITGAL/PTN 

GO:0022904 Respiratory electron transport chain 0.004 0.75 UQCRH/UQCRFS1/NDUFB1/CDK1 

GO:0015980 Energy derivation by oxidation of organic compounds 0.004 0.75 UQCRH/ENPP1/UQCRFS1/NDUFB1/MDH1/GC

GR/CDK1 
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Table 26. List of top 10 enriched GO terms in biological processes in the set of down-regulated differentially expressed (DE) 

genes in Blood 4 compared to Blood 3 within Group 1 and Group 2. The GO terms were ranked based on p-value. 

GO ID Description p-value FDR1 Down-regulated DE genes 

Blood 4 vs Blood 3 in Group 1 

GO:0006305 DNA alkylation 0.002 0.73 FOS/GNAS/ATF7IP 

GO:0006306 DNA methylation 0.002 0.73 FOS/GNAS/ATF7IP 

GO:0044728 DNA methylation or demethylation 0.003 0.73 FOS/GNAS/ATF7IP 

GO:0035137 Hindlimb morphogenesis 0.006 0.73 SHH/GNAS 

GO:0042572 Retinol metabolic process 0.008 0.73 ALDH1A3/TTR 

GO:0071604 Transforming growth factor beta production2 0.008 0.73 CD200/SERPINF2 

GO:0071634 Regulation of transforming growth factor beta production 0.008 0.73 CD200/SERPINF2 

GO:0006304 DNA modification 0.008 0.73 FOS/GNAS/ATF7IP 

GO:0060349 Bone morphogenesis 0.008 0.73 CDX1/PHOSPHO1/GNAS 

GO:0034754 Cellular hormone metabolic process 0.009 0.73 SHH/ALDH1A3/TTR 

Blood 4 vs Blood 3 in Group 2 
 

GO:0032088 Negative regulation of NF-kappaB transcription factor activity 0.002 0.80 CD200/NFKBIA/IRAK2/GFI1/MIR16-1 

GO:0003143 Embryonic heart tube morphogenesis 0.003 0.80 SHH/ACVR1/IFT172/SETDB2 

GO:0035050 Embryonic heart tube development 0.004 0.80 SHH/ACVR1/IFT172/SETDB2 

GO:0050776 Regulation of immune response 0.005 0.80 CD200/FOS/NFKBIA/SPON2/HLA-

DMB/IRAK2/PSMC1/IL12RB1/CD300LD/EIF2

B5/RBM14/TRAFD1/IFNGR2/PLEKHA1/GFI1/

PSMA7 

GO:0050709 Negative regulation of protein secretion 0.005 0.80 CD200/RAB11FIP5/ACVR1C/BANK1/RHBDF1 

GO:0032924 Activin receptor signaling pathway 0.005 0.80 SHH/ACVR1C/ACVR1 

GO:0046661 Male sex differentiation 0.005 0.80 SHH/BRIP1/ING2/PLEKHA1/NCOA4 

GO:0032259 Methylation 0.005 0.80 FOS/GNAS/ATPSCKMT/PRDM13/SPOUT1/GF

I1/SETDB2/ATF7IP 

GO:0070498 Interleukin-1-mediated signaling pathway 0.006 0.80 NFKBIA/IRAK2/PSMC1/PSMA7 

GO:0032715 Negative regulation of interleukin-6 production 0.006 0.80 CD200/BANK1/SLAMF1 
1 Benjamini-Hochberg correction of false discovery rate (FDR) on p-values.  
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Table 27. List of immune-related GO terms enriched at a p-value < 0.05 in the turquoise, 

brown, black and yellow consensus modules of clusters of highly positively correlated 

genes. 

1Benjamini-Hochberg correction of false discovery rate (FDR) on p-values. 

Module GO ID Description p-value FDR1 

Turquoise GO:0006956 Complement activation 0.009 1 

GO:1904892 Regulation of receptor signaling pathway via STAT 0.02 1 

GO:0050854 
Regulation of antigen receptor-mediated signaling 

pathway 
0.02 1 

GO:0002684 Positive regulation of immune system process 0.03 1 

GO:0002455 

 

Humoral immune response mediated by circulating 

immunoglobulin 
0.03 1 

GO:0046635 Positive regulation of alpha-beta T cell activation 0.03 1 

GO:0046425 
Regulation of receptor signaling pathway via JAK-

STAT 
0.04 1 

GO:0002253 Activation of immune response 0.04 1 

Brown GO:2000377 Regulation of reactive oxygen species metabolic process 0.01 0.84 

GO:0008284 Positive regulation of cell population proliferation 0.01 0.84 

GO:0045739 Positive regulation of DNA repair 0.01 0.84 

GO:0097190 Apoptotic signaling pathway 0.03 0.84 

Black GO:0007249 I-kappaB kinase/NF-kappaB signaling 0.01 0.91 

GO:0033209 Tumor necrosis factor-mediated signaling pathway 0.01 0.91 

GO:0016236 Macroautophagy 0.02 0.91 

GO:0046330 Positive regulation of JNK cascade 0.02 0.91 

GO:0046006 Regulation of activated T cell proliferation 0.04 0.91 

GO:2000107 Negative regulation of leukocyte apoptotic process 0.04 0.91 

Yellow GO:0051897 Positive regulation of protein kinase B signaling 0.02 0.82 
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Figure 41. The group classification of animals selected from Batch 38, 39, and 42 based on 

LYMΔ13 and NEUΔ34. 

LYMΔ13 represents for the change of lymphocyte concentration from Blood 1 to Blood 3. 

NEUΔ34 represents for the change of neutrophil concentration from Blood 3 to Blood 4. 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after 

exposure to the challenge, respectively. 

Group 1: a group of animals with top five levels of LYMΔ13 among animals with positive 

LYMΔ13 but negative NEUΔ34 of each batch. 

Group 2: a group of animals with top five levels of NEUΔ34 among animals with negative 

LYMΔ13 but positive NEUΔ34 of each batch.  
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Figure 42. Relationships of consensus module eigengenes and traits in gene expression 

profiles of Blood 3 (A) and Blood 4 (B).  

LYMΔ13 represents the change of lymphocyte concentration from Blood 1 to Blood 3. NEUΔ34 

represents the change of neutrophil concentration from Blood 3 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after 

exposure to the challenge, respectively. 

Numbers in each block report the correlations of the corresponding module eigengenes and traits, 

with the p-values printed below the correlations in parentheses. The block is color-coded by 

correlation according to the color legend.   
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Figure 43. Network plot of top 10 enriched GO terms in the magenta module.  

The p-value ranged from 0.001 to 0.01 and the FDR (Benjamini and Hochberg correction) was 

0.39 for the top 10 enriched GO terms. The log2(fold change) indicates the different expression 

level of the gene in Group 2 compared to Group 1 in Blood 3. The size indicated the number of 

genes in the module associated with the GO term. 

Group 1: a group of animals with top five levels of LYMΔ13 among animals with positive 

LYMΔ13 but negative NEUΔ34 of each batch. 

Group 2: a group of animals with top five levels of NEUΔ34 among animals with negative 

LYMΔ13 but positive NEUΔ34 of each batch. 

Blood 3 samples were collected at 2-weeks after exposure to the challenge.  
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Figure 44. Network plot of top 10 enriched GO terms in the red module.  

The p-value ranged from 0.002 to 0.01 and the FDR (Benjamini and Hochberg correction) was 

0.87 for the top 10 enriched GO terms. The log2(fold change) indicates the different expression 

level of the gene in Group 2 compared to Group 1 in Blood 3. The size indicated the number of 

genes in the module associated with the GO term. 

Group 1: a group of animals with top five levels of LYMΔ13 among animals with positive 

LYMΔ13 but negative NEUΔ34 of each batch. 

Group 2: a group of animals with top five levels of NEUΔ34 among animals with negative 

LYMΔ13 but positive NEUΔ34 of each batch. 

Blood 3 samples were collected at 2-weeks after exposure to the challenge.  
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Figure 45. Network plot of top 10 enriched GO terms in the blue module.  

The p-value ranged from 0.001 to 0.01 and the FDR (Benjamini and Hochberg correction) was 

0.88 for the top 10 enriched GO terms. The log2(fold change) indicates the different expression 

level of the gene in Group 2 compared to Group 1 in Blood 3. The size indicated the number of 

genes in the module associated with the GO term. 

Group 1: a group of animals with top five levels of LYMΔ13 among animals with positive 

LYMΔ13 but negative NEUΔ34 of each batch. 

Group 2: a group of animals with top five levels of NEUΔ34 among animals with negative 

LYMΔ13 but positive NEUΔ34 of each batch. 

Blood 3 samples were collected at 2-weeks after exposure to the challenge.  
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Figure 46. Network plot of top 10 enriched GO terms in the green module.  

The p-value ranged from 0.001 to 0.008 and the FDR (Benjamini and Hochberg correction) was 0.78 for the top 10 enriched GO 

terms. The log2(fold change) indicates the different expression level of the gene in Group 2 compared to Group 1 in Blood 3 (A) and 

Blood 4 (B). The size indicated the number of genes in the module associated with the GO term. 

Group 1: a group of animals with top five levels of LYMΔ13 among animals with positive LYMΔ13 but negative NEUΔ34 of each 

batch. 

Group 2: a group of animals with top five levels of NEUΔ34 among animals with negative LYMΔ13 but positive NEUΔ34 of each 

batch. 

Blood 3 and Blood 4 were collected at 2- and 6-weeks after exposure to the challenge, respectively.
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Figure 47. Heatmap plots of the adjacencies in the module eigengene network including the 

trait LYMΔ13 for gene expression profiles of Blood 3 (A) and Blood 4 (B), and the trait 

NEUΔ34 for gene expression profiles of Blood 3 (C) and Blood 4 (D).  

The LYMΔ13 represents the change of lymphocyte concentration from Blood 1 to Blood 3, and 

the NEUΔ34 represents the change of neutrophil concentration from Blood 3 to Blood 4. Each 

row or column in the heatmap corresponds to one module (labeled by color) or the trait. In the 

heatmaps, red indicates high adjacency (positive correlation), and blue indicates low adjacency 

(negative correlation). 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before and at 2- and 6-weeks after 

exposure to the challenge.  
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Chapter 7. Estimating genomic prediction accuracy of disease resilience based 

on complete blood count traits  

7.1. Introduction 

Disease resilience is anticipated to be an important contributor to the productivity and 

profitability of the pig industry because resilient animals maintain relatively undepressed 

performance in the face of infectious disease challenges regardless of pathogen burden (Albers et 

al., 1987). Although disease resilience is of great interest to the pig industry, direct selection for 

disease resilience is hard to achieve because: (1) disease resilience to the challenge of multiple 

pathogens that exist in commercial pig production is a complex trait, which can be hard and 

expensive to measure; and (2) disease traits are generally not expressed in the purebred nucleus 

herds housed in high-health environments where the selection of elite breeding animals takes 

place (Wilkie and Mallard, 1999; Friggens et al., 2017). Regarding these challenges, the first 

study of this thesis (Chapter 4) indicated the potential for using complete blood count (CBC) 

traits under disease or commercial conditions as phenotypes to quantity disease resilience and 

developing them in the selection index for nucleus animals. Later, the genome-wide association 

studies (GWAS) of CBC traits in this thesis (Chapter 5) revealed the genetic control of CBC 

traits and found that they were polygenic traits controlled by a large number of quantitative trait 

loci (QTL) with small effects. Therefore, genomic prediction on CBC traits under disease could 

be a promising approach to address the issues of making genetic improvement of disease 

resilience. Genomic prediction allows for the early selection of elite breeding animals from the 

high health nucleus herds (validation population) without CBC records under disease. This is 

because it predicts the genomic estimated breeding value (GEBV) of an animal by summing up 

all single nucleotide polymorphisms (SNPs) marker effects over the whole genome (Meuwissen 
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et al., 2001; Samorè and Fontanesi, 2016). The marker effects can be estimated as a regression of 

phenotypes on genotypes of animals (training population from the commercial environment) that 

have both CBC records under disease and genomic information (Samorè and Fontanesi, 2016). 

To date, several traits have been targeted in genomic prediction studies of pigs, for 

example, production traits of average daily gain, average daily feed intake, loin muscle depth, 

backfat thickness, and carcass weight (Akanno et al., 2014; Badke et al., 2014; Jiao et al., 2014; 

Guo et al., 2016; Zhang et al., 2018); meat quality traits such as pH (Miar et al., 2014); and 

maternal traits of litter size and number born alive (Tusell et al., 2013; Akanno et al., 2014). 

However, genomic prediction studies of the host response to infectious challenges are limited. 

Although the prediction accuracies of the host response (viral load, weight gain, and antibody 

level) to porcine reproductive and respiratory syndrome (PRRS) has been assessed by Boddicker 

et al. (2014) and Serão et al. (2016), the genomic prediction accuracy of disease resilience to a 

polymicrobial challenge commonly found in commercial pig farms remains largely unknown. 

Therefore, estimating genomic prediction accuracy of disease resilience based on CBC traits 

collected from pigs in the natural disease challenge model (NDCM) with the polymicrobial 

infectious challenge may be of particular interest and can provide possible solutions for 

improving disease resilience in the pig industry. Therefore, this study aimed at assessing the 

genomic predictability of CBC traits collected from the NDCM to explore if they can be further 

used as a part of developing predictions for disease resilience.  

7.2. Material and Methods 

7.2.1 NDCM and CBC traits 

The NDCM and the collection of CBC traits from the NDCM have been described in 

detail in Chapter 3. Briefly, animals with genotypes (n = 3205), approximately 400 to 500 
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animals from each genetics supplier, were used for this study. Animals were introduced in 50 

batches at 3-weeks interval, and each batch consisted of approximately 65 or 75 pigs from one of 

the genetic suppliers. Every seven batches constituted one cycle for cycle 1 to cycle 6, and the 

last eight batches (43 to 50) formed cycle 7. Detailed information for batch, genetic supplier, and 

cycle can be found in Chapter 3, Table 1. CBC traits measured from three sets of blood samples 

drawn at 2-weeks before (Blood 1), and at 2- and 6-weeks (Blood 3 and Blood 4) after exposure 

to the challenge were the phenotypes in this study. In addition, the changes of CBC traits were 

also calculated for each animal and used as phenotypes, which were referred to as Δ13 for the 

change from Blood 1 to Blood 3, Δ34 for the change from Blood 3 to Blood 4, and Δ14 for the 

change from Blood 1 to Blood 4.  

7.2.2 Genotype data and quality control 

The genotyping of animals was performed at Delta Genomics (Edmonton, AB, Canada) 

using the 650K Affymetrix Axiom® Porcine Genotyping Array. In total, 658,692 SNPs were 

included on the chip. Raw Affymetrix SNP data for each cycle were processed separately at 

Delta Genomics with the Axiom Analysis Suite, using all defaults. Missing genotypes were 

imputed using FImpute with the reference genome Sscrofa 11.1 (Sargolzaei et al., 2014). Quality 

control was performed using the preGSf90 software in the BLUPF90 family of programs to 

remove SNPs with a minor allele frequency lower than 0.05 and call rates lower than 0.90 

(Misztal et al., 2002). Overall, 435,172 SNPs passed quality control for 3205 animals and were 

used for analysis.  

7.2.3 GRM 

The preGSf90 software in the BLUPF90 family of programs was used to build the GRM 

(Misztal et al., 2002). The GRM was constructed using 𝑍𝑍′/2∑𝑝𝑖(1 − 𝑝𝑖), where Z contains 
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centered genotypes codes, and pi is the minor allele frequency for locus i (VanRaden, 2008). 

Firstly, a conventional intact GRM was constructed using all genotyped animals (n = 3205), the 

genomic relationships were estimated between all animals based on their genotypes. All 

genotyped animals were regarded as one population with the same pi for locus i for the intact 

GRM. However, since the animals were provided by seven genetic suppliers, they can be 

regarded as seven populations corresponding to seven genetic suppliers. This is because different 

genetic suppliers usually have different breeding strategies on animal selection and mating, and 

pi for locus i could change accordingly. Therefore, the GRM was built separately for each 

genetic supplier using the formula above and then combined into one large custom matrix in 

which genomic relationships between animals in different genetic suppliers were set to zero as 

non-related (Chen et al., 2020; Cheng et al., 2020). The custom GRM was expected to only focus 

on variances within each genetic supplier, and allow the marker effects to be estimated 

independently within each genetic supplier to predict the GEBV of animals from the same 

genetic supplier in the validation population. The pooled heritability and genomic prediction 

accuracy for the trait based on the estimates of each genetic supplier were obtained by using 

custom GRM.   

7.2.4 Statistical model 

The genomic best linear unbiased prediction (GBLUP) was used to estimate heritability 

(h2) and GEBV for each CBC trait collected from the NDCM. The GBLUP model for CBC traits 

can be described by the following equation:  

𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐜 + 𝐞 

where y is a vector of observations on a CBC trait for all individuals; b is a vector of fixed 

effects, including the effect of batch and the covariate of bleeding age; X is a design matrix 
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relating observations to the fixed effects; a is a vector of breeding values; Z is a design matrix 

that relates observations to breeding values; and e is a vector of residual effects. Vector c 

represents a stack of vectors (cLitter, cPen1, cPen2, and cPen3) of independent and uncorrelated 

random environmental effects, including litter (cLitter) and pen effects in the quarantine unit 

(cPen1), in the challenge nursery (cPen2), and in the challenge grow-to-finish stage (cPen3). These 

random environmental effects were tested using the intact GRM and fitted in each CBC trait 

model when significant (p-value < 0.05). Matrix W (WLitter, WPen1, WPen2, and WPen3) is a stack 

of incidence matrices that relate observations to the corresponding random environmental 

effects.  

Assuming the random effects c and e are uncorrelated and identically distributed, the (co-

) variances of random effects for univariate models are: 

var [
𝐚
𝐜
𝐞
] = [

𝐆σa
2 0 0

0 𝐈𝛔𝐜
𝟐 0

0 0 𝐈σe
2

] 

where G is the GRM, the intact GRM was first used to estimate the h2 and GEBV for each CBC 

trait, and then the intact GRM was changed to custom GRM for the second estimate of h2 and 

GEBV for each trait; I is the identity matrix, σa
2 is the additive genetic variance; 𝛔𝐜

𝟐 represents a 

stack of random effect variances (e.g. 𝛔𝐜
𝟐 = [

σcLitter

2 0

0 σcPen1
2 ], when the random effects cLitter 

and cPen1 are significant and fitted in the model for a trait); and σe
2 is the residual variance. 

Heritability (h2 = σa
2/σa

2 + σc
2 + σe

2) was estimated using ASReml 4.1 (Gilmour et al., 2015). As 

described in Chapter 4, the likelihood ratio test in ASReml 4.1 was used to determine the 

significance of heritability estimates (Gilmour et al., 2015). Estimation of GEBV was conducted 

using the BLUPF90 family of programs (Misztal et al., 2002). 
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7.2.5 Cross-validation  

The genomic prediction accuracy of CBC traits was estimated using the sevenfold cycle-

based cross-validation, which involved model training on six cycles and validating on the left-out 

cycle. This was repeated until all seven cycles were used as the validation dataset. The cycle-

based cross-validation was used rather than random cross-validation (randomly partitions the 

sample into subsamples) because: (1) each cycle consisted of 7 or 8 batches to provide 

reasonable amounts of animals in training and validation populations for genomic prediction; and 

(2) the introduction and management of the entire batch of animals together in each cycle were 

close to the all-in-all-out system operated in swine production. Here, the genomic prediction 

accuracy was defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑟 (𝐺𝐸𝐵𝑉, 𝑦∗)

√ℎ2̅̅ ̅
 

where r (GEBV, y*) is the correlation of GEBV with adjusted phenotypes (𝑦∗) in the validation 

population, the GEBV estimated with the intact GRM and the custom GRM was used to estimate 

the intact GRM prediction accuracy and the custom GRM prediction accuracy, respectively; ℎ2̅̅ ̅ 

is the average of two heritability estimates for each trait, one estimated with the intact GRM and 

the other one estimated with the custom GRM. Phenotypes were adjusted for estimates of the 

fixed effect of batch and the covariate of bleeding age.  

For the sevenfold cycle-based cross-validation, the pooled r (GEBV, y*) was calculated 

as a weighted average correlation across seven validation cycles (Serão et al., 2016):  

𝑟 (𝐺𝐸𝐵𝑉, 𝑦∗) =  
∑ 𝑛𝑖𝑟𝑖 (𝐺𝐸𝐵𝑉, 𝑦∗)7

𝑖=1

∑ 𝑛𝑖
7
𝑖=1

 

where 𝑟𝑖 (𝐺𝐸𝐵𝑉, 𝑦∗) is the correlation of GEBV (intact GRM estimates or custom GRM as 

described above) with 𝑦∗ in the ith validation cycle (i = 1 to 7); 𝑛𝑖 is the number of animals in 
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the ith validation cycle. The 𝑟𝑖 (𝐺𝐸𝐵𝑉, 𝑦∗) was estimated using the R package ‘stats (version 

3.6.2) (R Core Team, 2020).  

A paired t-test was conducted between the genomic prediction accuracies, 
𝑟𝑖 (𝐺𝐸𝐵𝑉,𝑦∗)

√ℎ2̅̅̅̅
, 

estimated by the intact GRM and the custom GRM for all seven validation cycles using R to 

explore if there are any significant differences in between (Kim, 2015, R core team, 2020). The 

raw p-values for all CBC traits were corrected using the Benjamini and Hochberg correction 

(FDR) to control false positives from multiple comparisons (Benjamini et al., 1995; R core team, 

2020) 

The standard error of genomic prediction accuracy was estimated as (Altman and Bland, 

2005):  

𝑠𝑒 =
𝑠

√𝑛
 

where 𝑠 is the sample standard deviation of genomic prediction accuracies, 
𝑟𝑖 (𝐺𝐸𝐵𝑉,𝑦∗)

√ℎ2̅̅̅̅
, across the 

seven validation cycles, and 𝑛 is the sample size of seven.  

7.3. Results  

7.3.1 Genomic relationships in the intact GRM and the custom GRM 

Both intact GRM and custom GRM were n × n matrices, where n was the number of 

genotyped animals (n = 3205) in this study. Each diagonal value in both intact GRM (Figure 

48A) and custom GRM (Figure 48B) indicated the genomic relationship for each animal with 

itself. The diagonal genomic relationship estimates in the intact GRM ranged from 0.54 to 1.34, 

with an average of 1 (estimated as no inbreeding in the population across seven genetic 

suppliers). The diagonal genomic relationship estimates in the custom GRM ranged from 0.42 to 

1.26, with an average of 0.89 (genomic inbreeding was estimated to be negative indicating the 
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animals are “more heterozygote than what is expected”) (Legarra et al., 2018). The off-diagonal 

values for both intact GRM (Figure 48C) and custom GRM (Figure 48D) were the pairwise 

genomic relationships for animals with the others. The off-diagonal relationship estimates in the 

intact GRM ranged from -0.19 to 1.01, with the average close to 0 (-9.19e-07, the property of the 

centered GRM), approximately 64% of genomic relationships were negative. Most negative 

genomic relationships in the intact GRM were found between animals from different genetic 

suppliers (Figure 48E), and the majority of animals from the same genetic supplier had positive 

genomic relationship estimates in the intact GRM (Figure 48F). For the off-diagonal of the 

custom GRM, 9% of the genomic relationship estimates were negative among the off-diagonal 

values in the custom GRM, the genomic relationships were set to zero for animals from different 

genetic suppliers (86% of the off-diagonal values) to allow the marker effects to be estimated 

independently within each genetic supplier. The off-diagonal genomic relationships in the 

custom GRM for animals from the same company ranged from -0.23 to 0.95, with the average 

close to 0 (-0.0003, the property of the centered GRM).  

7.3.2 Estimates of heritability by intact GRM and custom GRM 

 Heritability estimates for CBC traits using intact GRM and custom GRM models are 

shown in Figure 49 for Blood 1, Blood 3, and Blood 4 and in Figure 50 for Δ13, Δ34, and Δ14. 

Similar to what has been identified with six cycles of animals in Chapter 4, most CBC traits in 

Blood 1, Blood 3, and Blood 4 were heritable for both models with seven cycles of animals here, 

shown as significant heritability estimates (p-value < 0.05). Several red blood cell traits in Blood 

3 and Blood 4 were moderately to highly heritable (0.25 ± 0.04 to 0.60 ± 0.04). However, CBC 

traits in Δ13, Δ34, and Δ14 were less heritable, shown as relatively low heritability estimates 

with both models, and many were not significantly different from zero (p-value > 0.05). For the 
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comparison of heritability estimates between intact GRM and custom GRM models, heritability 

estimates with the custom GRM were slightly higher than the intact GRM for most CBC traits. 

Only eosinophil concentration (EOS), mean corpuscular volume (MCV), and red blood cell 

distribution width (RDW) in Blood 4 had higher estimates of heritability with intact GRM 

models than custom GRM models. A few CBC traits had the same heritability estimates in intact 

GRM and custom GRM models, including white blood cell concentration (WBC) in Blood 1, 

monocyte concentration (MONO) and platelet concentration (PLT) in Blood 3, mean corpuscular 

volume (MCH) and PLT in Blood 4, the Δ13 of lymphocyte concentration (LYM) and MONO, 

and the Δ14 of hemoglobin concentration (HGB). However, higher standard errors were found 

with custom GRM (an average of 0.04) than intact GRM (an average of 0.03) models for most 

traits that had the same heritability with the two models.  

7.3.3 Estimates of genomic prediction accuracy with intact GRM and custom GRM 

The genomic prediction was only conducted for CBC traits that had significant (p-value 

< 0.05) estimates of heritability. The genomic prediction accuracies calculated based on the 

weighted average correlation across validation sets are shown in Figure 51 for CBC traits in 

Blood 1, Blood 3, and Blood 4, and in Figure 52 for Δ13, Δ34, and Δ14. In general, genomic 

prediction accuracies for white blood cell traits ranged from 0.15 to 0.3 with an average standard 

error of 0.05 for both models in all blood samples. Higher genomic prediction accuracies, 

ranging from 0.2 to 0.4 with an average standard error of 0.05, were found for most red blood 

cell traits in Blood 1, Blood 3, and Blood 4 with both models, especially those that showed 

moderate to high heritability (0.25 ± 0.04 to 0.60 ± 0.04). The genomic prediction accuracies 

were found to be lower for most red blood cell traits in Δ13, Δ34, and Δ14 (ranging from 0.1 to 

0.2 with an average standard error of 0.05) compared to Blood 1, Blood 3, and Blood 4 with both 
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models, which corresponded to their lower heritability estimates (ranging from 0.07 ± 0.03 to 

0.26 ± 0.05). According to the t-test results for the comparison of genomic prediction accuracies 

between intact GRM and custom GRM models, basophil concentration (BASO) in Blood 1, and 

MONO and red blood cell concentration (RBC) in Blood 3 showed significantly (FDR < 0.05) 

higher genomic prediction accuracy with the intact GRM model compared to the custom GRM 

model.  

7.4 Discussion 

This study estimated the heritability and assessed the genomic prediction accuracy for 

CBC traits collected in the NDCM before and after exposure to the polymicrobial infectious 

challenge. Analyses were conducted on all genotyped animals (n = 3205) in seven cycles using 

GBLUP with intact GRM and custom GRM. Although genomic prediction can be conducted by 

multiple methods, for example, Bayesian methods in addition to GBLUP, GBLUP was only used 

here for genomic prediction of CBC traits. The reason is that GBLUP assumes an infinitesimal 

model that all markers have the same and small contribution to the trait, but Bayesian methods 

assume that only a small proportion of SNPs have a large effect on the trait (Henderson 1984; 

Meuwissen et al., 2013; Mrode 2014). Based on the GWAS results in Chapter 5, CBC traits 

were mostly controlled by QTL with small effects throughout the genome. Therefore, GBLUP 

was used because its model assumption more closely represented the underlying genetic 

architecture of CBC traits.  

7.4.1 Heritability estimates for CBC traits 

Heritability estimates of CBC traits using intact GRM and custom GRM models for all 

genotyped animals in seven cycles were not precisely the same but close to the results in 

Chapter 4 using genotyped animals in the first six cycles (n = 2593). The heritability estimate of 
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a trait was not precisely the same as Chapter 4 because heritability is a population parameter 

(Wray and Visscher, 2008). The heritability estimate depends on population-specific factors, 

such as allele frequencies, the effects of gene variants, and variation due to environmental 

factors, which differ between the population of animals in all seven cycle of animals and the 

population of animals in the first six cycles (Visscher et al., 2008). However, both heritability 

estimates using the six cycles and all seven cycles indicated that many CBC traits collected 

before and after exposure to the polymicrobial challenge were heritable. 

The heritability estimates for each CBC trait with the intact GRM and with the custom 

GRM were also close but not precisely the same, although the same genotyped animals in all 

seven cycles was used for both estimates. The change was caused by the difference between the 

intact GRM and the custom GRM. The heritability with the intact GRM was estimated based on 

the variances across all animals from seven genetic suppliers. However, the heritability with the 

custom GRM was estimated based on the pooled within-genetic supplier variances. It was still 

puzzling because numerically higher heritability estimates were generally found with the custom 

GRM model than the intact GRM model in this study. Intuitively, it may be caused by a larger 

number of negative genomic relationships in the intact GRM (approx. 64%) compared to the 

custom GRM (approx. 9%) (Figures 48C and D). The negative genomic relationships estimated 

based on genotypes of SNPs are also puzzling but have been validated and accepted as 

reasonable estimates with no error in the GRM (Toro et al., 2011; Thompson, 2013; Legarra et 

al., 2018). Thompson (2013) suggested that the GRM constructed based on SNPs reinforced the 

interpretation of relatedness (potentially negative) rather than a probability (necessarily positive) 

as a genomic relationship. Legarra et al. (2018) further demonstrated that the negative 

relatedness could be due to the animals carrying different SNP genotypes. Indeed, most negative 
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genomic relationships in the intact GRM were found between animals from different genetic 

suppliers (Figures 48E and F). However, whether and how this factor affected the heritability 

estimates needs to be further explored with additional studies on two GRMs, and the algorithm 

for constructing the GRMs and solving the models.  

7.4.2 Genomic prediction accuracy estimates for CBC traits 

Most CBC traits did not show any significant differences (FDR > 0.05) between the 

intact GRM and the custom for the estimates of genomic prediction accuracy. The intact GRM 

regarded all animals from seven genetic suppliers as one population and estimated the SNP 

marker effects to be the same for all seven genetic suppliers. The custom GRM considered the 

fact that marker effects can differ among different genetic suppliers. The genomic prediction 

with the custom GRM allowed the marker effects to be estimated within each genetic supplier 

independently to predict the GEBV of the validation population from the same genetic supplier. 

However, the genomic prediction accuracy for each CBC trait did not show a significant 

improvement with the custom GRM. Instead, the genomic prediction accuracy was found to be 

significantly higher with the intact GRM for BASO in Blood 1, and for MONO and RBC in 

Blood 3 (Figure 51).  

Since the marker effects were estimated within each genetic supplier with the custom 

GRM, the small training population (approximately 300 animals) within each genetic supplier 

for each fold of cross-validation may impair the accuracy of estimating the marker effects. 

Although the intact GRM overlooked the differences of marker effects among genetic suppliers, 

the training population (approximately 1995 animals) was enlarged by combining animals across 

all genetic suppliers for each fold of cross-validation. Multiple previous studies suggested that 

maximizing training population size by combining data across populations (e.g. breeds, genetic 
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suppliers) was especially valuable for improving genomic prediction accuracy when the number 

of phenotypes per population is small (Roos et al., 2008, 2009; Brøndum et al., 2011; Zhou et al., 

2014; Iheshiulor et al., 2016; Meuwissen et al., 2021). However, such improvement of genomic 

prediction accuracy can only be achieved when the animals in the training population and the 

validation population are closely related or the high-density marker data is used, as both 

strategies could ensure a relatively high linkage disequilibrium (LD) between SNPs marker and 

QTL (Meuwissen et al., 2021). In this study, although the animals from different genetic 

suppliers were less likely to be closely related, a relatively high-density marker date (n = 435,172 

SNPs) was used. Therefore, genomic prediction with the intact GRM provided an opportunity to 

improve the genomic prediction accuracy because the animals from different genetic suppliers 

were combined to enlarge the validation population. 

Of note, the most significant improvement of genomic prediction accuracy with the intact 

GRM model compared to the custom GRM model was observed in BASO in Blood 1 (Figure 

51). Due to the mechanical problems of the Hematology System used to measure BASO from 

Blood 1 samples, the BASO measures from batches 31 (genetic supplier E) and 34 (genetic 

supplier D) in cycle 5 and the batch 42 (genetic supplier B) in cycle 6 (Table 1 in Chapter 3 for 

the relation of the batch, cycle, and genetic supplier) were extraordinarily high and regarded as 

outliers. Approximately 50 measures of BASO in Blood 1 were removed from each of the three 

genetic suppliers. The significantly lower genomic prediction accuracy with the custom GRM 

model for BASO in Blood 1 may be caused by further reducing the training population size 

within these three genetics suppliers, which affected the accuracy of estimating the marker 

effects (Goddard and Hayes, 2009; VanRaden et al., 2009). However, the intact GRM model 

provided an opportunity to use phenotypes across all genetics suppliers in the training population 
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to estimate the marker effects, which may be less impacted by the reduced training population 

within these three particular genetic suppliers.   

In addition, animals can be genetically correlated although they were sourced from 

different genetic suppliers. It may be biased to set the genomic relationship between animals in 

different genetic suppliers to zero as non-related in the custom GRM, which resulted in the 

reduction of genomic prediction accuracy compared to the intact GRM. 

7.4.3 Improve disease resilience with CBC traits 

Some CBC traits under disease were expected to have the potential to be developed as 

phenotypes for genomic prediction of disease resilience in Chapter 4 based on their significant 

genetic correlations with resilience traits of grow-to-finish growth rate (GFGR) and treatment 

rate (TR) (details of GFGR and TR are described in Chapter 3). This study further supports this 

idea as three CBC traits under disease that had significant genetic correlations with TR, 

including LYM in Blood 3, neutrophil concentration (NEU) in Blood 4, and RDW in Blood 4, 

showed moderate genomic prediction accuracies (0.12 ± 0.04 to 0.28 ± 0.03, Figure 51). The 

moderate negative genetic correlation between the LYM in Blood 3 with TR (-0.38 ± 0.18, 

Table 11 in Chapter 4) indicating selection on a higher level of LYM in Blood 3 may lead to a 

desirable decrease in TR. High positive genetic correlations for NEU in Blood 4 and RDW in 

Blood 4 with TR (0.50 ± 0.23 and 0.89 ± 0.26, respectively, Table 11 in Chapter 4) suggested 

that selection on lower levels of NEU and RDW traits in Blood 4 may lead to lower TR.  

Regarding the importance and need to reduce antimicrobial use and antimicrobial 

resistance in commercial farms of the swine industry for “One Health” (Chapter 2, section 

2.2.3), genomic selection for resilient animals with low TR in response to disease challenge is of 

particular interest. However, the low heritability for TR (0.04 ± 0.01) makes it difficult to be 
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directly used for genomic selected for resilient animals with lower TR because the low 

heritability indicating the TR will be primarily affected by environmental effects rather than 

genetics. Therefore, developing those three CBC traits (LYM in Blood 3, NEU and RDW in 

Blood 4) with higher heritability estimates (0.06 ± 0.03 to 0.26 ± 0.04) and moderate to high 

genetic correlations with TR in the selection index for disease resilience may be more promising 

to a desirable decrease in TR than a selection directly and solely on TR. In addition, according to 

the negative genetic correlation between TR and GFGR (-0.50 ± 0.16) found in Chapter 4, the 

genomic selection for resilient animals with lower TR may potentially improve GFGR in 

response to the challenge simultaneously.   

Many CBC traits were analyzed here, for example, CBC traits in Blood 1, although they 

were not significantly associated with the economically important resilience traits of GFGR or 

TR in response to the polymicrobial infectious challenge in the pig industry. The results of those 

CBC traits are anticipated to provide reference values for future studies because the genetic and 

genomic analyses of CBC traits collected from a polymicrobial challenge were rare or absent, 

and their genetic parameters were largely unknown. In addition, there are also other 

economically important resilience traits, such as carcass traits, mortality, health scores, that can 

be tested for the genetic correlation with CBC traits and whether CBC traits can be further 

developed as the indicator traits for the genomic selection of disease resilience.  

7.5 Conclusion 

In conclusion, several CBC traits collected before and after the polymicrobial infectious 

challenge were found to be predictable with GBLUP models. The effects of intact GRM and 

custom GRM on heritability and genomic prediction accuracy estimates are still puzzling, which 

need to be further explored with additional studies on two GRMs, and the algorithm for 
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constructing the GRMs and solving the models. For genomic prediction, using an intact GRM 

that includes the genomic relationships of all animals from multiple genetics suppliers in the 

GBLUP model was hypothesized to have the potential to improve the prediction accuracy of 

CBC traits due to the increased number of phenotypes that can be used for marker effects 

estimates in the training set. However, the hypothesis needs to be further tested also with some 

other traits. Genomic selection for a higher level of LYM in Blood 3 but lower levels of NEU 

and RDW in Blood 4 after exposure to the challenge may provide an opportunity to make genetic 

improvement of disease resilience by reducing TR so as to help reduce antimicrobial use and 

antimicrobial resistance in commercial farms of the pig industry. However, further research is 

needed to validate the results. Many other CBC traits were also found to be heritable and 

predictable, especially CBC traits in Blood 1 that can be directly measured from nucleus herds 

and used as the most cost-effective indicators of disease resilience. Therefore, these CBC traits in 

Blood 1 are still attractive and may be worthwhile to explore if they are associated with other 

economically important resilience traits (e.g. carcass traits, mortality, health scores) in addition 

to GFGR and TR.   
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Figure 48. Genomic relationship estimates in the intact GRM and the custom GRM. 

Diagonal genomic relationship estimates in the intact GRM (A) and the custom GRM (B) for 

each animals with itself. 

Off-diagonal genomic relationship estimates in the intact GRM (C) and the custom GRM (D) for 

animals with the others. 

Off-diagonal genomic relationship estimates in the intact GRM for animals with the others from 

different genetic suppliers (E) and for animals with the others in the same genetic supplier (F). 
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Figure 49. Heritability estimates of all complete blood count (CBC) traits in Blood 1 (A), 

Blood 3 (B) and Blood 4 (C) using intact genomic relationship matrix (GRM) and custom 

GRM models.  

The NS indicates a non-significant (p-value > 0.05) estimate of heritability. The error bar 

represents one standard error of the estimate.  

WBC (total white blood cell concentration), NEU (neutrophil concentration), LYM (lymphocyte 

concentration), MONO (monocyte concentration), EOS (eosinophil concentration), BASO 

(basophil concentration), RBC (red blood cell concentration), HGB (hemoglobin concentration), 

HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), 
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MCHC (mean corpuscular hemoglobin concentration), RDW (red blood cell distribution width), 

PLT (platelet concentration), MPV (mean platelet volume). 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after 

exposure to the challenge, respectively   
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Figure 50. Heritability estimates of all complete blood count (CBC) traits in Δ13 (A), Δ34 

(B), Δ14 (C) using custom genomic relationship matrix (GRM) and intact GRM models. 

 The NS indicates a non-significant (p-value > 0.05) estimate of heritability. The error bar 

represents one standard error of the estimate.  

WBC (total white blood cell concentration), NEU (neutrophil concentration), LYM (lymphocyte 

concentration), MONO (monocyte concentration), EOS (eosinophil concentration), BASO 

(basophil concentration), RBC (red blood cell concentration), HGB (hemoglobin concentration), 

HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), 
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MCHC (mean corpuscular hemoglobin concentration), RDW (red blood cell distribution width), 

PLT (platelet concentration), MPV (mean platelet volume). 

13 for the change from Blood 1 to Blood 3; 34 for the change from Blood 3 to Blood 4; 14 

for the change from Blood 1 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively.  
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Figure 51. Genomic prediction accuracy for complete blood count trait that has significant 

heritability estimates (p-value < 0.05) in Blood 1 (A), Blood 3 (B), and Blood 4 (C) using 

intact genomic relationship matrix (GRM) and custom GRM models. 
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*CBC traits showed significantly different (FDR < 0.05) genomic prediction accuracy estimates 

between the intact GRM and the custom GRM. FDR is the Benjamini-Hochberg correction of 

false discovery rate on the p-value.  

The error bar represents one standard error of the estimate.  

WBC (total white blood cell concentration), NEU (neutrophil concentration), LYM (lymphocyte 

concentration), MONO (monocyte concentration), EOS (eosinophil concentration), BASO 

(basophil concentration), RBC (red blood cell concentration), HGB (hemoglobin concentration), 

HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), 

MCHC (mean corpuscular hemoglobin concentration), RDW (red blood cell distribution width), 

PLT (platelet concentration), MPV (mean platelet volume). 

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively.  
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Figure 52. Genomic prediction accuracy for CBC trait for complete blood count trait that 

has significant in heritability estimates (p-value < 0.05) in Δ13 (A), Δ34 (B), Δ14 (C) using 

intact genomic relationship matrix (GRM) and custom GRM models.  

The error bar represents one standard error of the estimate.  

WBC (total white blood cell concentration), NEU (neutrophil concentration), LYM (lymphocyte 

concentration), MONO (monocyte concentration), EOS (eosinophil concentration), BASO 

(basophil concentration), RBC (red blood cell concentration), HGB (hemoglobin concentration), 

HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), 

MCHC (mean corpuscular hemoglobin concentration), RDW (red blood cell distribution width), 

PLT (platelet concentration), MPV (mean platelet volume). 
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13 for the change from Blood 1 to Blood 3; 34 for the change from Blood 3 to Blood 4; 14 

for the change from Blood 1 to Blood 4.  

Blood 1, Blood 3, and Blood 4 were collected at 2-weeks before, and at 2- and 6-weeks after the 

challenge, respectively.  
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Chapter 8. General Discussion 

The productivity of pigs has been primarily organized in the pig production system or 

pyramid by selecting superior parents from nucleus herds to multiply and breed commercial pigs. 

However, health status degrades from nucleus farms to commercial farms, caused by more 

frequent movements of pigs, feed, and pork products at local, national, and international scales in 

commercial farms. The productivity of pigs in commercial farms can decline when challenged by 

endemic and or emerging pathogens. Therefore, managing infectious diseases and maintaining 

herd productivity in commercial farms are critical to the profitability of the swine industry. 

Conventional methods, including strict biosecurity, vaccines, and antimicrobials, are being used 

in commercial farms to manage diseases and maintain animal performance and health. However, 

they are not always effective as discussed in Section 2.2. Briefly, biosecurity needs to be 

continuously improved regarding gaps in knowledge of epidemiology for emerging diseases and 

diverse ways for pathogen transmission. The co-infections by multiple pathogens, and the high 

recombination rate for some of the viruses (e.g. PRRSV) and their interaction with the host 

immune system impair vaccine efficacy. And the use of antimicrobials to maintain or return pig 

health need to be reduced due to the concern of antimicrobial resistance. Regarding the 

limitations of conventional methods, breeding disease resilient pigs that can maintain relatively 

undepressed performance and productivity in commercial farms is anticipated to be a practical 

method to address these issues. To date, many research studies have been dedicated to breeding 

disease resilient pigs, but it is not yet a common objective in practical pig breeding programs due 

to the lack of valuable and cost-effective traits for breeding (Knap, 2005; Hermesch et al., 2015; 

Harlizius et al., 2020; Knap and Doeschl-Wilson, 2020). 
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Thus, in my thesis studies, I aimed to explore the potential of complete blood count 

(CBC) to generate valuable and cost-effective CBC traits for breeding disease resilient pigs. To 

do this I analyzed longitudinal CBC data collected from the natural disease challenge model 

(NDCM) at 2-weeks before and 2- and 6-weeks after the polymicrobial challenge. Overall, the 

results of this thesis suggested good potential to use CBC under disease or commercial 

conditions as phenotypes for breeding disease resilient pigs and also helped to further understand 

the genetic basis and immunological mechanisms of disease resilience in pigs. Furthermore, this 

thesis provides many reference values for future studies, including heritability, genetic 

correlation and genomic prediction accuracy estimates for CBC traits. These reference values are 

valuable because the genetic and genomic analyses of CBC traits collected from a polymicrobial 

challenge model were rare or absent prior to the work, and their genetic parameters were mostly 

unknown. 

8.1. Feasibility of collecting CBC traits from commercial farms 

Collecting blood samples from commercial pig farms for CBC can be “costly” in terms of 

the requirements for proper training and skilled technicians to limit the injury and stress of pigs 

caused by blood sampling. Also, fresh blood samples are crucial to successful CBC, and most 

laboratories require delivery of blood samples for CBC within 24 hours after sampling.  

Intuitively, mortality in response to disease challenge seems to be a phenotype that is 

easier to be collected than CBC traits. However, mortality is a notoriously tricky trait with low 

heritability, which makes it difficult to be used for breeding. The disease pressure in the NDCM 

was relatively high, with an average mortality of 26%, and the heritability estimate for mortality 

was only 0.09 ± 0.03 (Cheng et al., 2020). Typically, the average mortality in a wean-to-finish 

pig barn is expected to be 6% to 8%, and the finishing barn may only experience a 4% to 6% 
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mortality on average (Stalder, 2018). This means the heritability estimate for mortality at the 

commercial level will be even lower than the estimate from NDCM due to the lack of phenotypic 

variance. Accordingly, the genomic prediction for mortality with low heritability is less likely to 

be accurate. Recording mortality traits can also be laborious and costly as it is not a simple “yes 

or no” trait. Instead, the precision tracking of mortality for more accurate breeding requires the 

date and reason of death to be recorded along with the pig ID or the tag number. In commercial 

farms, the reason for death can be complex or even mysterious. For example, pigs can die with 

clinical signs caused by co-infection with multiple pathogens. Moreover, sudden death with no 

signs of illness (also observed in NDCM) can occur at any age in commercial farms. In these 

cases, necropsy by veterinarians is needed to explore and identify the reason for death, which is 

costly.  

In addition, feed intake, carcass traits, and growth performance collected from the 

NDCM, have also been investigated as phenotypes for disease resilience. Moderate heritability 

estimates (0.08 ± 0.03 to 0.23 ± 0.05) were found for resilience traits derived from longitudinal 

feed intake data of each animal in the NDCM finishing barn (Putz et al., 2019; Cheng et al., 

2020). However, the high cost of installing and maintaining electronic feeding equipment is a 

significant issue associated with the collection of feed intake data in commercial farms (Putz et 

al., 2019). Moderate to high heritability estimates were found for carcass traits (0.12 ± 0.04 to 

0.54 ± 0.06) and growth performance (0.15 ± 0.04 to 0.30 ± 0.05) under disease (Bai et al., 2020; 

Cheng et al., 2020). However, collecting either carcass traits or growth performance for each pig 

is not expected to be necessarily less laborious than CBC traits.  

Typically, nothing is ever easy and cheap to collect at commercial farms. CBC traits from 

commercial farms have the advantage of being further explored as phenotypes of disease 
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resilience because many CBC traits have moderate to high heritability (0.1 to 0.5) and genomic 

prediction accuracy (0.1 to 0.4). The cost-effectiveness of CBC traits can be further improved by 

exploring time points that are more practical for blood sample collection in commercial farms. In 

this thesis, only two sets of blood samples were collected at 2-weeks and 6-weeks after exposure 

to the challenge regarding cost and animal welfare. Still, they are not necessarily the optimal 

time points for all commercial farms when the pathogen types and management strategies are 

different. In addition, the polymicrobial infectious challenge always existed in the challenge barn 

of the NDCM and animals were exposed to the challenge as soon as they entered the barn. 

However, the outbreak of infectious diseases in commercial farms can be more sporadic and 

complex. The time point for animals being exposed to the challenge may be hard to determine in 

commercial farms, making it difficult to follow the suggested time points of 2- and 6-weeks after 

exposure to the challenge for blood sampling and collecting of CBC traits. Instead, it may be 

more practical to collect blood samples for CBC traits based on “pig signals” captured in 

commercial farms. For example, a set of blood samples can be collected as soon as the drop of 

health score or clinical signs has been observed in commercial farms. With increasing 

advocacy for precision pig farming and burgeoning research of new remote monitoring 

technology (e.g. cameras, microphones, and accelerometers), more “pig signals” can be captured 

timely and efficiently through sensors, images, sounds and movements (Benjamin and Yik, 

2019). The continuous development of precision farming in the swine industry will enhance the 

swine specialist’s eyes, ears, and nose to capture “pig signals” in everyday farming to make use 

of CBC more practical and help to improve the cost-effectiveness of CBC traits.  
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8.2. Disease resilience and its effect on the infection itself 

Disease resilience has been primarily defined and quantified by animal productivity and 

performance regardless of pathogen burden. Therefore, its effect on the infection itself, such as 

pathogen transmission and disease prevalence, remains unknown. This property of disease 

resilience makes it to be regarded as a practical strategy with the contribution of both disease 

resistance and tolerance, because recording pathogen burden can be more difficult and costly 

than collecting some other animal performance traits. This is because pathogens can be 

distributed, non-uniformly, throughout multiple different cells, tissue, or organ compartments of 

the body, many of which are difficult to sample (Cunnington, 2015). Therefore, measuring 

pathogen burden is constrained to use samples that are readily accessible such as blood, urine, 

and feces by assuming that these are representative of total pathogen load (Cunnington, 2015). In 

the face of multiple pathogens in commercial pig farms, multiple different samples and methods 

(e.g. reverse-transcription or real-time polymerase chain reaction and enzyme-linked 

immunosorbent assay for some viruses and bacteria, plating and culture bacteria, fecal egg/worm 

count for parasites, etc.) may need to be used regarding the epidemiology of different pathogens. 

Although having animals (e.g. disease resistant animals) that exert control on pathogen burden 

can limit disease transmission in the population, it is not always necessary or cost-effective for 

the swine industry regarding the difficulty of monitoring pathogen burden. For example, there is 

no concern on disease transmission when the basic reproduction ratio (R0, expected number of 

cases directly generated by one case in a completely susceptible population) of infection is lower 

than 1 (Bishop and MacKenzie, 2003; Heffernan et al., 2005). In that case, less than one 

naïve pig gets infected during the infectious period of a pig on average, and the disease will die 

out on its own (Heffernan et al., 2005). The epidemic can arise in the population when R0 > 1 as 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Infection
https://en.wikipedia.org/wiki/Na%C3%AFve_art
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more than one naïve pig gets infected during the infectious period of a pig, and disease will 

propagate to susceptible animals (Bishop and MacKenzie, 2003; Heffernan et al., 2005). 

However, the epidemic may not necessarily be a concern for the profitability of the swine 

industry as long as the animals have been selected for disease resilience and can maintain high 

productivity regardless of pathogen burden.  

Pathogen burden and disease transmission should not be overlooked regarding zoonotic 

pathogens. Pigs and pork products with high zoonotic pathogen burden can threaten human 

health, especially for workers in pig farms and consumers. In this case, another advantage of 

developing CBC traits for breeding disease resilient pigs arises. Although the pathogen burden is 

not directly measured for disease resilience, CBC traits, especially white blood cell traits, are 

measures of immune responses that play essential roles in controlling the pathogen lifecycle. 

Based on the results of this thesis, disease resilient animals are also likely to be primed to initiate 

more efficient immune responses during the infection, which will help to defend against 

pathogens and limit transmission of infection. However, since the pathogen burden was not 

recorded for this thesis, the effect of disease resilience on pathogen burden and infection 

transmission will need to be further explored and validated in the next step.  

Furthermore, pathogen virulence evolution in response to changing host genotypes is 

often raised as a risk with genetic disease control strategies. Pathogen virulence is defined as the 

damage of pathogens done to the host, which is often measured by the magnitude of the 

morbidity and the increase of mortality resulting from the colonization and proliferation of the 

pathogen in a host (Mackinnon and Read, 2004; Margolis and Levin, 2008). The immune 

mechanisms employed by the host to defend against pathogens were thought to cause harmful 

effects on pathogen fitness and impose selection pressure on pathogens (Margolis and Levin, 

https://en.wikipedia.org/wiki/Na%C3%AFve_art
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2008). Therefore, it may fuel the arms race and co-evolution between host and pathogens, 

stimulate pathogen evolution toward high virulence or ways of evading and subverting the host 

immune defence (Gandon and Michalakis, 2000; Woolhouse et al., 2002). Although the hosts 

evolve simultaneously, pathogens could adapt to the environment much more rapidly than the 

hosts due to their much shorter generation intervals and the horizontal gene transfer in bacteria 

(Read et al., 2008; Carrillo-Bustamante et al., 2015). Breeding for disease resistance that the host 

exert control over pathogen lifecycle is likely to fuel the arms race between host and pathogen 

(Casadevall and Pirofski, 2001; Glass, 2012). In contrast, disease tolerance may form stable host-

pathogen associations (mutualism) that give neither hosts nor pathogens an evolutionary 

incentive because there are no competitive mechanisms (Roy and Kirchner, 2000; Little et al., 

2010). Disease resilience with contribution of both disease resistance and tolerance may balance 

the benefits and concerns to some degree, showing a tendency to fuel the arms race between host 

and pathogen, but less likely to be as significant as disease resistance. Therefore, continuous 

monitoring and collecting CBC data and pig productivity from commercial farms will be 

necessary to re-estimate genetic parameters and prediction accuracies of CBC traits on disease 

resilience frequently and repeatedly in future studies. In addition, random sampling of pathogen 

burden from a proportion of animals throughout infection, continuous monitoring of pig signals 

and clinical signs, and recording of morbidity and mortality may also need to be considered. All 

these together will help ensure the animals are being selected and bred in the right direction 

regarding pathogen virulence evolution and its associated changes of disease challenge.  

8.3. CBC traits as phenotypes for breeding general resilience (robustness)  

Apart from the infectious challenge, non-infectious environmental challenges, including 

animals’ social status and stress, deterioration in environmental conditions and management, 
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such as extreme climatic conditions, poor air quality, low feed quality, may further intensify 

adverse effects on animal performance and productivity in response to the disease challenge on 

commercial farms (Knap, 2005; Nakov et al., 2019). For example, it has been found that the 

average daily gain of grower pigs can be reduced by 12% to 30% when aerial ammonia levels in 

the barn increased from 50 ppm to 150 ppm (Drummond et al., 1980). High ammonia exposure 

and Ascaris suum (one of the most common nematode parasites of pigs) infection together was 

found to result in a significantly higher percentage reduction (61%) in the average daily gain of 

pigs compared to either ammonia-exposed (32%) or infection (28%) alone (Drummond et al., 

1981). Stress hormones (glucocorticoids) could disrupt the T-cell homeostasis and the balance 

between TH1 and TH2 by inducing suppression or enhancement of innate immune response and 

cytokine production (e.g. interleukins-4, -5, -6, -12, and interferon-γ), therefore, disturb immune 

function and increase animals’ susceptibility to disease (Sapolsky et al., 2000; Salak-Johnson and 

McGlone, 2007). Heat stress is also a major economic concern in addition to the disease 

challenge, which decreases pork production, increases mortality, and more importantly, reduces 

feed intake of pigs (Gabler and Pearce, 2015; Cross et al., 2018, 2020). The estimated annual 

loss due to heat stress is nearly US$900 million in the U.S. pig industry alone (Pollmann, 2010; 

Mayorga et al., 2018). 

In line with the above, a more general resilience (robustness) refers to the high 

production potential with high resilience to perturbations in intensive pig commercial farms (e.g. 

pathogens and stress caused by weaning, housing conditions, social environment, and heat) is 

becoming one of the most desirable attributes of pigs (Knap and Bishop, 2000; Knap, 2005). 

This thesis primarily focused on resilience to disease challenges as the high polymicrobial 

challenge level in the NDCM was expected to have the most significant effect on animal 
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performance. The stress effect on productivity has not been dissected in this study, although the 

stressors, for example, heat stress may exist in both quarantine barn and challenge barn during 

the summer season in the NDCM (Chapter 3, section 3.3.4), which may also impact animal 

performance in addition to infection.  

Alterations in immune indices, for example, the elevated CBC trait of neutrophil 

concentration, have been found to be associated with pigs that had aggressive and submissive 

responses to heat and social stress (Morrow-Tesch et al., 1994). Additionally, the neutrophil 

concentration to lymphocyte concentration ratio (NLR) calculated based on CBC measures has 

also been gaining increasing attention as higher NLR can be a phenotype of physiological stress 

(Zahorec, 2001). Increased endogenous cortisol induced by stress has been known to increase the 

neutrophil concentration while simultaneously decreasing the lymphocyte concentration (Onsrud 

and Thorsby, 1981). Therefore, CBC traits may also have the potential to be further explored as 

valuable indicators and or phenotypes of robustness, including resilience to physiologic stress in 

addition to pathogens. 

8.4. Overall summary of the discussion 

Disease resilience is a complex trait composed of multiple biological functions, such as 

production, health, nutrient status, and other dynamic elements, including the efficiency of 

immune response and the rate of recovery from infection, which makes it hard to be 

appropriately characterized. Therefore, further exploration and integration of multiple 

phenotypes will assist with a better characterization of disease resilience. This thesis identified 

the potential of using CBC traits under disease as phenotypes of disease resilience. It also helps 

to explore the immunological mechanisms and genetic basis for disease resilience because the 

blood cells play multiple roles in the immune system to help defend against pathogens. This 
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thesis highlighted the potential of CBC traits that can be further investigated as valuable 

phenotypes for breeding disease resilience as CBC is a robust test that is routinely available in 

veterinary laboratories. More research is also needed to investigate the opportunity to use CBC 

traits for breeding more general resilience, including resilience to stressors, such as weaning, 

social interaction, housing, and heat stress, in addition to disease challenges. Collecting indicator 

traits and phenotypes of resilience can be laborious and costly. However, due to the high 

economic losses caused by pathogens and stressors in the pig industry, it would be valuable to 

further explore and integrate resilience into the breeding scheme. The promise of new automated, 

remote, monitoring technologies may make this even more useful. All of these together will 

contribute to the improvement of resilience (roburtness) to perturbations induced by pathogens 

and stressors, therefore, they are anticipated to improve the profitability and animal health of the 

pig industry. Last but not least, the improvement of disease resilience may also help reduce 

antimicrobial use and antimicrobial resistance, which will ultimately contribute to improving the 

“One Health” of the world and sustainability of the pork industry.   
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