
The Voice...can be heard only in silence, and as long as the heart

is filled with the clamor of desire the silver tones of the Voice can-

not be heard...and not all earth’s tumult will be able to deafen us

to the majestic rhythm of that Voice, that Voice that reverberates

throughout the Eternities as the tides of Being thunder upon the

beaches of the worlds.

Sri Krishna Prem, The Yoga of the Bhagavad Gita

Accept the view that nothing in nature is useless...In short, con-

sider problems on their own merits when attacking them. Avoid

deviating to secondary concerns that distract attention and weaken

analytical powers. In struggling with nature, the biologist, like the

astronomer, must look beyond the earth he lives on and concentrate

on the serene universe of ideas, where the light of truth will even-

tually shine.

Santiago Ramon y Cajal, Advice for a Young Investigator
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Abstract

Researchers in vocal acoustics have used computer simulations of

single and multi-mass models of the human vocal folds to study

human phonation for over 40 years. They have successfully given

insight into different voice qualities and registers as well as the ir-

regular phonation associated with pathologies. This study hypoth-

esizes that current techniques for simulating egressive phonation

will also lead to self-oscillation of the vocal folds upon changing

the pressure and flow orientation. Through symmetrical reason-

ing, well-established aeroelastic relations for multi-mass vocal fold

models are generalized to cases where the lung pressure is neg-

ative and the air flows into the trachea. The pitch, flow rates,

and phonation ranges are compared between the ingressive and

egressive conditions. A modal analysis is used to understand the

differences between the two approaches. This study shows that

current techniques can be utilized to simulate ingressive phonation

and provides a unified framework for both kinds of phonation.
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Nomenclature

Matrices are represented by bold uppercase letters. Vectors are indicated by

lowercase bold letters. The corresponding elements of matrices and vectors

are in lower case.

Main Notation

A Area

A System matrix

Â Augmented system matrix incorporating aerodynamic feed-

back

F Force or linear frequency or formant

K Stiffness matrix

Lg vocal fold dorsal length along y axis

M Mass matrix

PM Mouth Pressure

PL Lung Pressure

PA Atmospheric Pressure

Ps Pressure below glottis



R Damping matrix

T thickness along z axis

Z Acoustic impedance

ag glottal area [cm2]

b Backward delay line and also body

be Backward delay line pressure in the supraglottal waveguide

bs Backward delay line pressure in the subglottal waveguide

c Speed of sound in air

col Collisional

f Forward delay line

fe Forward delay line pressure in the supraglottal waveguide

fs Forward delay line pressure in the subglottal waveguide

e Epilaryngeal

h Height (distance between the folds)

k Stiffness

kc,ij Stiffness of coupling spring between mass i and mass j

m Mass

q Vocal fold tension modifier



p+e Acoustic perturbation above glottis leaving glottis (towards

pharynx)

p−e Acoustic perturbation above glottis incident on glottis (from

pharynx)

p+s Acoustic perturbation below glottis incident on glottis (from

trachea)

p−s Acoustic perturbation below glottis leaving glottis (towards

trachea)

r Reflection coefficient

sup Supraglottal

sub Subglottal

t Time

u Flow

v Flow velocity

x Distance from glottal midline along the dorsalventral axis

x Displacements from prephonatory distances

y Lateral distance along the left-right axis

z Rostral distance along the anteroposterior axis

0 Resting or initial

c Coupling spring

(·)T Transpose



(·)ij ijth element of a matrix

˙(·) First time derivative

(̈·) Second time derivative

Greek Symbols

Ω Aggregate pressure difference across glottis

ω Angular frequency

γ Propagation loss factors in the waveguides

δ Boundary layer thickness

λ Eigenvalue

ρ Density

ς Damping parameter

� Imaginary component

� Real component

Abbreviations

FV Fs False vocal folds

TV Fs True vocal folds

vent Ventricular

sep Referring to jet separation
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Chapter 1

Introduction

1.1 Motivation

Researchers in vocal acoustics have used computer simulations of single and

multi-mass models of the human vocal folds to reproduce and understand hu-

man phonation for over 40 years [4]. They have successfully given insight into

different voice qualities and singing registers as well as the irregular phona-

tion associated with pathologies. Despite their widespread use, they have not

yet been applied to sounds generated by a negative lung gauge pressure and

reversal of airflow which lead to ingressive phonation. Given the frequency

of occurrence of ingressive sounds in human communication [5], the question

arises as to whether current egressive models are still applicable with slight

modifications or if an entirely new framework is required for simulating this

approach to phonation.

1.2 General tissue behavior

The human vocal cords are a pair of soft tissues found within the larynx [6] and

situated between two acoustical resonators: the supra- and subglottal tracts

[7]. The application of air pressure of sufficient magnitude below the folds can

lead to their deformation and flow-induced oscillations [8]. This contributes

to a time-varying pressure field within the vocal tract which is perceived as
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sound. The vibration of the tissue can be examined through its equations of

motion.

In terms of its displacement x, the behavior of a single oscillator with mass

m may be predicted by a balance of forces [9, 10]:

F����
driving/external

= mẍ����
inertial

+ rẋ����
dampening

+ kx����
elastic

(1.1)

This equation expresses that the forces external to a body are counter-

acted by the internal forces of inertia, dampening and elastic deformation

which depend on the acceleration, velocity and displacement of the oscillator

respectively.

To model the oscillatory phenomena within the human phonatory system,

independent coordinates can be assigned both to points or regions between, on

or within the vocal fold tissue to describe its changing configuration over time,

as well as to the aeroacoustical conditions of the air upstream and downstream

of the folds. In the case of the folds, these coordinates may describe the

position and velocity of several tissue regions as well as the flow of air between

the folds. Meanwhile, coordinates can be ascribed to the pressures or flows

within regions of the resonators. The number of such independent coordinates

is known as the degrees of freedom of the system [11] and the set of these

coordinates characterizes the state of the system. A system will often execute

motions such as vibrations in characteristic patterns known to engineers as

eigenmodes with growth rates and frequencies determined by their respective

complex-valued eigenvalues. An important result of classical mechanics is

that a body with N degrees of freedom may have at most N such resonant

modes [12]. For a given phenomenon of interest, a major question in vocal

acoustic research is precisely how many degrees are required to capture the

behavior of interest?

Early researchers explored two extremes for modeling individual vocal

folds: finite-element methods [13] or large arrays of masses [14] vs. one- to

two-lumped mass models [4, 15]. The latter provided computational advan-

tages and was justified in that the first few eigenmodes of the multi-element

simulations accounted for the bulk of the material dynamics [16] making addi-
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tional elements unnecessary [17]. As such, a relatively low number of elements

were attributed material properties to reproduce the low-order modes [17],

a standard analysis technique in vibrational analysis of structures [11]. The

question as to how many elements are sufficient to model a behavior of inter-

est persists to this day and techniques continue to range from a discretized

near-continuum to a single mass.

A behavior of interest that constitutes a major area of ongoing research

is that of phonation onset which is studied in terms of the conditions under

which oscillations prevail over energy losses [18].

In order for the vocal tissue oscillations to be sustained, the system must

allow for the net transfer of energy from the flow to the folds to overcome

losses [19]. For this to occur, there must be at least two eigenmodes [18]

and therefore two degrees of freedom in the system to allow for a temporal

asymetry in the energy transfer over the course of a cycle [20].The earliest vocal

models had one degree of freedom representing the lateral tissue displacement

and another degree for the acoustic loading of the vocal tract [21]. These are

known as single-mass models which did not oscillate without the vocal tract

loading [7].

Titze [22] provided an explanation of possible energy transfer mechanisms

in terms of the phase relationships between the velocity of the folds, the den-

sity of air downstream of the glottis, and the changing shape of the folds’

surfaces. He described two complementary mechanisms for phonation. In the

first mechanism, the mass of air downstream of the folds lags behind the tissue

motion because of the former’s inertia. During the glottal opening phase, the

air in this region gains mass and density and therefore exerts a pressure force

in the same direction as the folds motion. By the time the folds begin closing

because of a restoring spring force, the air column has shifted, leaving a low

pressure region adjacent to the folds thereby facilitating their closure. Once

the folds are closed, the pressure below the folds would be restored contributing

to their eventual re-opening. The other mechanism was based on the obser-

vation of a surface wave travelling along the vocal fold surface, from bottom

to top, known as the mucosal wave. During opening, the folds first separated

from their fully-contacted state at the bottom of the folds and the result-
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ing convergent channel was maintained over the opening phase causing higher

outward pressures. During closing, the lower portion still led the downstream

portion movement, forming a divergent channel and lower or even negative

gauge pressures. The convergent-divergent channel shape alternated in phase

with the fold motion allowing for energy transfer. Although the folds had an

alternating shape in his model, it was still a single-mass model described by

the position and velocity of each fold’s midpoint; the mucosal wave delay was

a prescribed control parameter [23]. This model did however elucidate and

contrast two velocity-dependent energy transfer mechanisms.

Two-mass vocal fold models had been explored earlier than Titze’s paper,

most notably by Ishizaka and Flanagan [15]. In such models, the mucosal wave

resulted from the independent motion of two masses coupled to each other by a

spring [3]. Later refinements gave the vocal fold surface a smooth profile [2]. In

this model, shown in Figure 1.1, two masses given identical material properties

and geometry. The model is symmetric about the midpoint of the masses. It is

of interest to the present study as any difference in behavior between ingressive

and egressive phonation would be due to the lack of symmetry in terms of the

differences in aerodynamic and acoustic conditions.

Figure 1.1: 3D view of glottis - 2 Mass Model after Lous 1998 [2]

It has been argued that the early one or two lumped mass models were

over-simplifications [3]. Although promising, the single mass models could

not independently model the convergent-divergent surface phenomenon within
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the glottis, if at all, whereas the two mass models aggregated several distinct

tissue layers into a single mass with uniform stiffness, density and damping

[24]. Given these inherent limitations, models with more than 2 masses were

eventually explored [21].

Story and Titze [3] proposed a 3-mass model (Figure 1.2) that modeled

both the pliable-mobile cover via two masses of roughly equal properties and

the body with a larger and stiffer mass behind the cover [3]. The left-right

vocal folds were mirror images, so no lateral asymmetries were investigated in

the paper. They were able to successfullly model different vocal registers such

as chest voice and falsetto yet needed to rely on alternative parameter settings

to produce distinct registers.

Figure 1.2: 3D view of glottis - 3 Mass Model after Story and Titze 1995 [3]

A more recent model of the vocal folds, proposed by Tokuda et al. [1]

and depicted in Figure 1.3, divides the vibrating part of the vocal folds into a

body mass and three cover masses. The dampers r1, r2 and r3 dissipate the

energy in the system. The body-cover springs k1, k2 and k3 act to maintain a

distance between the body mass and the cover masses while the body spring

kb acts between the body and the immobile part of the vocal folds attached

to the laryngeal wall. The cover springs k1,2 and k2,3 provide stiffness solely

along the x-axis despite appearing vertical. A unique element of their model

is the presence of 3 cover masses, the third of which is significantly lighter

than the other two. The researchers successfully modeled register breaks and
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other phenomena with a single parameter set using this configuration [1], [25].

The reader is referred to [21] for a comprehensive survey of lumped-parameter

models.

Figure 1.3: 3D view of glottis - 4 Mass Model after Tokuda et al. 2010 [1]

While the ability of these models to model vocal phenomena has improved

considerably, the understanding of the conditions required for phonation have

also developed. Returning to the balance of forces equation (1.1), since the

energy transfer in Titze’s (1988) model [22] results from the effect of velocity

it is known as a negative damping model [23] in analogy with the positive

damping term r which results in the dissipation of energy [10]. Newer models

have been explored which consider the potential of displacement-dependent

phenomena to cause energy gain by the system [23]. In particular, Zhang

developed a continous model and later contrasted a fuller set of phenomena by

which the folds can be set and kept in motion [23]. He explored the possibility

for two of the resonant eigenmodes of the tissue to synchronize their frequency

prior to the onset of vibration. In the absence of air pressure, these eigenvalues

have zero or negative growth rates, however the effect of air pressure and

various flow effects may lead to two eigenvalues meeting (in the complex plane)

at the same frequency and one of the eigenvalues gaining a positive growth rate

[23]. When at least one of the eigenvalues in a system has a positive growth

rate, the system becomes exponentially unstable meaning that a disturbance

will lead to either a growing oscillation about an equilibrium configuration
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[23] or a static divergence from that configuration [8, 18]. In the first case,

the vibration of the folds will result in phonation. While Zhang mentioned

the possibility of and even observed the latter case of a static divergence,

it was not central to his observations and analysis [18]. In the case of a

dynamic instability, there is therefore a clear connection between an eigenvalue

gaining a positive growth rate and phonation being possible. As such, to

answer the question as to whether ingressive phonation can be modeled may

amount to considering under what conditions at least one eigenvalue of the

system assumes a positive growth rate. In the present study, this heuristic is

developed for a system with an arbitrary number of surface masses and applied

specifically to a very recent model, namely Tokuda’s four-mass model [1] in

terms of a tissue geometry parameter set and acoustical resonators.

1.3 Vocal tract and subglottal resonators

In contrast to the range of glottal modeling approaches, the treatment of vocal

tract acoustics is more standard though equally relevant to our considerations.

1.3.1 Uniform tubes

The simplest approximation of the supra- and sub-glottal resonators is a cylin-

drical tube of length Ltube with constant cross-sectional area. This study as-

sumes longitudinal plane waves propagating in one-dimension. Such waves

propagate as pulses of air rarefactions and compressions along the tube that

reflect off of the ends of the tube. The new wave crests superimpose with

reflected ones and cause regions of amplitude cancellation or amplification. At

certain source frequencies, known as resonances, a standing wave will be es-

tablished as certain locations along the tube will be associated with a pressure

node or antinode. The resonant frequencies of such tubes depend on whether

the ends are open or closed.

If the tubes are open or closed at both ends, the resonant frequencies for

its n modes (n = 1, 2, 3, ...) are given by [26]:

fn = n
cair

2Ltube
(1.2)
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If the tubes are open at one end and closed at the other, the resonant

frequencies are given by [26]:

fn = (2n− 1)
cair

4Ltube
(1.3)

The latter represents an ideal case of the supraglottal resonator. The lips

are approximated as an open end while the glottal aperture is much smaller

than the tube’s cross-sectional area and therefore treated as closed. Taking the

length of the vocal tract to be 17.5 cm and the speed of air to be 35, 000 cm/s

suggests resonant frequencies at 500Hz, 1500Hz, 2500Hz and so on. These

resonant frequencies are known as the formants of the vocal tract. Actual vocal

tracts deviate significantly from a uniform tube and the resonant frequencies

can be further shifted by a speaker’s articulators to produce the formants

associated with different vowels such as /a/, /e/, /i/, /o/, /u/.

As a first approximation, the subglottal resonator can be treated as a 20 cm

tube open at the inferior end and closed at the glottal end [27]. Assuming the

same air speed, the previous calculations with equation (1.3) now provide res-

onances at 437.5Hz, 1312.5Hz, 2187.5Hz, 3062.5Hz, 3937.5Hz, 4812.5Hz.

This approach is suitable for the 2nd and 3rd resonances but underestimates

the first [27]. Lulich provides a more accurate equation as follows [27]:

Sgn = (2n− 1)
cair,body
4h/ka

(1.4)

Here cair,body = 35, 900 cm/s is “the free-field speed of sound in saturated

air at body temperature” is given as appropriate for humid air at body tem-

perature, h is the person’s height in cm, ka = 8.508 is a scaling factor for

curve fitting and Sgn are the subglottal resonances. They define an acoustic

length for the subglottal resonator via the ratio La = h/ka which for their 50

participants was roughly 20 cm on average. For the 2nd and 3rd subglottal

resonances, they conclude:“that a rigid-walled, uniform tube with a length

equal to about 1/ka times the height of any given speaker is an anatomically

appropriate model for estimating the frequencies of Sg2 and Sg3. The rapid

expansion of the area function beyond 20 cm below the glottis essentially acts

as an infinite baffle, so that the tube can be considered open at this distal end.”
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The scenario for Sg1 is complicated by the resonant frequencies of the subglot-

tal walls which cause a shift in the wave propagation velocities [27]. Given the

latter deviation, Chapter 2 of this study adopts the subglottal model proposed

by Zanartu [7] as it successfully reproduces the first three subglottal resonances

through an expansion section below 20 cm rather than a fully uniform tube.

Perhaps the most common method is to segment the tract into a series

of cylinders with equal thickness and different radii [28]. The acoustic wave

generated by flow through the glottis is then propagated from each cylindrical

section to the next in a sequential fashion [28]. Computational savings are

realized by simultaneously back-propagating the reflected wave in each seg-

ment for every time step [28]. Oftentimes either the subglottal section or the

supraglottal section is ignored to concentrate on the interaction between one

half of the tract with the glottis. Additional algorithmic complexity arises

in modeling the lengthening of the tract, lip rounding and filtering of certain

frequencies and pressure attenuation from heat and momentum losses to the

compliant walls [7]. Another approach of note that includes these effects is

to treat the vocal tract column as a pipe and consider the glottis to be valve.

This produces a water hammer effect and greatly reduces the computational

cost in accounting for the vocal tract as was performed by Sciamarella et al.

[29].

1.4 Thesis objectives and scope

The central objective of this study was to determine whether ingressive phona-

tion could be simulated via a lumped-parameter approach and if so under

what conditions. The choice of physiological conditions was limited to the

prephonatory gap between the vocal folds and the lung pressure. Several pa-

rameter scans were performed to investigate the roles of these two variables.

The spring stiffness multiplier q was set to a value of 1 such that the tension

of the folds was kept constant.

This study hypothesizes that ingressive phonation can be interpreted through

traditional lumped- parameter methods with the following modifications: a) a

negative gauge pressure in the lungs and b) reversal of airflow.
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The scope of the work will be limited as follows, although the importance

of these aspects to a more general understanding of ingressive phonation is

recognized:

• the two folds are assumed to be identical in their geometry, material

properties and motions such that calculations are required for only one

of them

• the false vocal folds are not incorporated in the analysis

• the moving masses will only oscillate along a single axis toward or away

from their counterparts in the other vocal fold

• the tissue stiffnesses are approximated as being linear

• the subglottal and supraglottal tracts will be treated as straight waveg-

uides

• the nasal cavity is not included

• the flow will be treated as non-viscous and time-invariant

• the prephonatory profile of the folds is assumed to be rectangular (neither

divergent nor convergent)

This study will show that current techniques can in fact be utilized to simu-

late ingressive phonation and thereby provides a unified theoretical framework

for both kinds of phonation.

1.5 Thesis overview

Chapter 2 presents a generalization of multi-mass models with tissue oscillation

along the lateral axis (adduction/abduction) of the folds. The aerodynamics

of the folds are coupled to sub- and supraglottal resonators, the latter with lip

radiation. Chapter 3 concludes the study, reviews the key findings and suggests

future work based on the new framework. An appendix is also provided to show

the equivalency between the state-space representation used in Chapter 2 and

Newton’s laws of motion.
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Chapter 2

Ingressive Phonation using a Multi-Mass

Model

2.1 Introduction

Researchers in vocal acoustics have used computer simulations of single and

multi-mass models of the human vocal folds to reproduce and understand hu-

man phonation for over 40 years [30]. They have successfully given insight into

different voice qualities and singing registers as well as the irregular phonation

associated with pathologies. Despite their widespread use, they have not yet

been applied to sounds generated by a negative lung gauge pressure and rever-

sal of airflow which lead to ingressive phonation [31]. According to Kelly and

Fisher in 1999, “phonatory modeling and theory in general have not included

the mechanisms by which vocal fold oscillation can be initiated or sustained

by ingressive airflow [31].” They point out that one of the only attempts to

study a model of phonation with airflow in both directions was carried out by

van den Berg, Zantema, and Doornenbal in 1957 [31, 32].

The occurrence of ingressive sounds in human communication [5] justifies

further theoretical studies to complement experimental ones. The utility of

ingressive phonation studies goes beyond linguistics and pathologies to under-

standing laryngeal tissue mechanics and aerodynamics. While the top portion

of the vocal folds is visible with high-speed laryngoscopy, the bottom portion is

not. By reversing the direction of airflow and consequently the tissue motion,

the motion of the folds in regular phonation from the perspective below the

folds can be inferred [33]. As Orlikoff states: “renewed examination of phona-
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tion produced using ingressive airflow may yield important insight regarding

mucosal and laryngeal airway dynamics [34].”

Experimentalists have observed several key differences between egressive

and ingressive phonation. Childers and Larar [33] used ultrahigh-speed la-

ryngeal films combined with EGG to compare a subject phonating with an

/i/ vowel with both flow directions. In ingression phonation, they observed

the mucosal wave traveling in the opposite direction from regular phonation

and noted mild vocal fry in ingressions with a double beat pattern. Kelly

and Fisher [31], whose participants also phonated with an /i/ vowel, likewise

noted the reversal of the mucosal wave direction. In contrast to the anterior

glottal chink present in egressive phonation, they observed the glottis closing

anteriorly and a large posterior glottic opening for all of their participants. In

common with regular phonation, they observed that ingressive phonation oc-

curs with the true vocal folds. Orlikoff et al. recorded microphone, EGG and

airflow signals and observed decreased vocal fold contact, significantly higher

fundamental frequency (F0) and greater absolute airflow by 48.5% relative to

egressive phonation [34].

Given these significant differences and the shared occurence of true vocal

fold vibration, the question arises as to whether current egressive models are

still applicable with slight modifications or if an entirely new framework is

required for simulating this inverse approach to phonation.

This study hypothesizes that current techniques for simulating egressive

phonation will also lead to self-oscillation of the vocal folds upon changing

the pressure and flow orientation which lead to ingression. Through symmet-

rical reasoning, well-established aeroelastic relations for both multi-mass and

single-mass vocal fold models are generalized to cases where the lung pressure

is less than atmospheric and the air flows into the trachea. The resulting pres-

sure forces are then used for simulating the response of the vocal fold masses

in terms of their motion.

The pitch, flow rates, and range of phonation are compared between the in-

gressive and egressive conditions. A modal analysis is also used to understand

the differences in motion between the two approaches.
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2.2 Methods

2.2.1 Overview

This paper considers the dynamic behavior of the full system shown in Fig-

ure 2.1. The system is based directly on Tokuda et al.’s model [1]. It is com-

posed of three components: a valve (the glottis) at z = 0 and two waveguide

resonators on either end of it [29]. The valve opens and closes based on the vi-

bratory motion of the vocal fold tissue [29]. The glottal air flow depends on the

valve’s aperture size and the pressures upstream and downstream from it [35].

An increasing flow causes a rise in the downstream pressure and drop in the

upstream pressure [22]. Such pressure variations propagate as waves towards

the ends of the upstream and downstream tubes and undergo reflections and

transmissions at the interfaces of pairs of sections with different cross-sectional

area [36]. The subglottal resonator on the left represents the airways below

the larynx including the lungs and trachea [37]. The supraglottal resonator

corresponds to the pharynx and oral cavity [38]. Lip radiation is included and

acts to raise the higher frequencies exiting the mouth and to reflect mainly

low frequencies back towards the glottis [39]. In their model, Tokuda et al. [1]

did not include the nasal cavity, piriform sinus or the epilaryngeal constriction

and the supraglottal waveguide was assigned a constant cross-section of 3 cm2.

The model is rich enough to consider the coupling between the source and its

two filters (resonators) as the pressures upstream and downstream to it are

composed of both the static lung and oral pressures along with the dynamic

acoustic pressures which affect the flow through the folds and the pressure

distribution along them [36].

What is unique about the present analysis is the consideration of cases

where the static oral pressure is non-atmospheric and instances where the static

lung pressure is lower than the static oral pressure or even sub-atmospheric, in

other words a weak partial vacuum. The only other variations to the system

considered in [1] are the inclusion of reflection coefficients in the glottal flow

calculation as suggested by Titze [35], since the glottis has a finite area and

should therefore not be approximated as a fully closed end, and an increment of

the damping ratios by 1.0 upon collision as suggested by Ishizaka and Flanagan
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[15].

 



 





  




Figure 2.1: Full System showing subglottal and supraglottal resonators, larynx

and possible flow directions. The lung and mouth pressures are shown along with

the pressures upstream and downstream of the larynx. The system is based on the

Tokuda et al. model [1]. The larynx is comprised of two symmetrical vocal folds

each represented by a body mass and three cover masses connected by springs and

dampers. The half-heights along the profile are shown along with the vocal fold

length.

2.2.2 Tissue Mechanics

While the earliest vocal fold simulations used single mass oscillators to re-

produce phonation, two or more mass models were eventually explored [21].

A recent model of the glottis, proposed by Tokuda et al. [1] and depicted

in Figure 1.3, divides the vibrating part of the vocal folds into a body mass

and three cover masses. The dampers r1, r2 and r3 dissipate the energy in

the system. The body-cover springs k1, k2 and k3 act to maintain a certain

distance between the body mass and the cover masses while the body spring

kb acts between the body and the immobile part of the vocal folds attached
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to the laryngeal wall. The cover springs k1,2 and k2,3 provide stiffness solely

along the x-axis despite appearing vertical. The air pressures upstream and

downstream of the folds generally exert a force away from the midline and

serve to push the folds apart during the opening phase of the glottal cycle. A

unique element of their model is the presence of 3 cover masses, the third of

which is significantly lighter than the other two. The researchers have success-

fully modeled register breaks and other phenomena with a single parameter

set using this configuration [1], [25].

In considering ingressive phonation, it is difficult to anticipate in advance

how many masses are required to reflect a given phenomena of interest. The

general case with an arbitrary number of cover masses with a single body mass

is considered.

For a general oscillator with n-degrees of freedom:

Mẍ+Rẋ+Kx = F(t) (2.1)

The vectors x, ẋ, and ẍ represent the oscillatory displacements, velocities

and accelerations of n + 1 control point masses respectively noting that the

body mass motion is included in these vectors: x = [x1 x2 ... xn xb]
T . The

positive x direction is associated with a movement away from glottal midline

along the dorsalventral axis.

Taken together, these represent the system’s state at a given point in time:

w =

�
x

ẋ

�
(2.2)

With initial conditions:

x(t0) = x0 ; ẋ(t0) = ẋ0 ; w0 =

�
x0

ẋ0

�
(2.3)

The actual position of the masses relative to the midline hi/2 is the sum of

the displacements xi and their corresponding prephonatory half-heights x0i:
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h = 2





x01

x02

x03

...

x0n





+ 2





x1

x2

x3

...

xn





(2.4)

During a collision, the force pushing apart the folds is modeled as being

proportional to their linear interpenetration past the midline following Lous

et al. [2]. The proportionality constant is given by the collisional springs kc

which are taken to be three times the magnitude of the cover-to-body springs

ki [1, 2]. As such, the force exerted is expressed by:

Fci = −kc(hi/2) = −kc(x0i + xi) hi < 0 (2.5)

The dampening depends on the mass, stiffness and dampening ratio ζi of

each component “i”:

ri = 2ζi
�

miki (2.6)

As shown in Figure 2.2, the total forces acting on each mass include the

aerodynamic pressure force, the dampening force, the spring force to the body

and the spring forces to its adjacent masses which gives:

�
Fi

� �� �
total

= Faero,i� �� �
air

− ri(ẋi − ẋb)� �� �
dampening

− ki(xi − xb)� �� �
body-cover

− kc(hi/2)� �� �
collisional

− ki−1,i(xi − xi−1)� �� �
lower mass

− ki,i+1(xi − xi+1)� �� �
upper mass

(2.7)

For the body mass:

�
Fb

� �� �
total

= − rb(ẋb)� �� �
dampening

− kb(xb)� �� �
body

−
n�

i=1

ri(ẋb − ẋi)

� �� �
dampening

−
n�

i=1

ki(xb − xi)

� �� �
stiffness

(2.8)
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ri(ẋi − ẋb)

ki−1,i(xi − xi−1)

ki,i+1(xi − xi+1)

ki(xi − xb)

Faero,i

kc(−hi/2) if colliding

x

z
mg

Figure 2.2: Free body diagram of a cover mass

Using Newton’s 2nd law of motion we can derive the acceleration of the

masses to determine their trajectory in state space:

ẍi =

�
Fi

mi
(2.9)

ẍb =

�
Fb

mb
(2.10)

2.2.3 Aerodynamics

We return our attention to F(t), the matrix of applied forces to each mass,

in equation (2.1). In a lumped-parameter glottal model, the aerodynamic

pressure profile along the vocal fold surface supplies the energy behind these

forces and is of central importance. What is unique about our approach is that

no prior assumption is made as to the direction of the flow u and the variable

can therefore take on both positive and negative values to represent flow from

and into the trachea respectively.

To derive the aperture areas at any two points, we first express the flow
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channel height as a piecewise linear function [1]:

hi,i−1(z, t) =
hi(t)− hi−1(t)

zi − zi−1
(z − zi−1) + hi−1(t) (2.11)

here hi,i−1 provides the height function within (zi ≤ z ≤ zi−1)

Figure 2.3: Aerodynamic forces and reaction forces [after Lous et al.[2]]. The

forces are actually applied to both sides of the glottis but only the bottom fold is

shown with force for comprehension purposes.

Each mass supports two reaction forces as a result of the aerodynamic

forces acting on the massless plates to its left and right. The right reaction

force of one mass and the left reaction force of the adjacent mass support the

total aerodynamic force bearing down on the plate between them:

Fi−1R + FiL = Lg

� zi

zi−1

P (z)dz (2.12)
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Treating mass i− 1 as the moment origin gives the following:

FiL(zi − zi−1) = Lg

� zi

zi−1

(z − zi−1)P (z)dz

FiL =

� zi

zi−1

Lg
z − zi−1

zi − zi−1
P (z)dz (2.13)

Treating mass i+ 1 as the moment origin gives the following:

FiR(zi+1 − zi) = Lg

� zi+1

zi

(zi+1 − z)P (z)dz

FiR =

� zi+1

zi

Lg
zi+1 − z

zi+1 − zi
P (z)dz (2.14)

As such, the total reaction force at each mass can be evaluated as follows:

[1, 2]:

Faeroi(t) =

� zi

zi−1

Lg
z − zi−1

zi − zi−1
P (z, t)dz +

� zi+1

zi

Lg
zi+1 − z

zi+1 − zi
P (z)dz (2.15)

To derive the pressure relation between any two points within the larynx,

the simplest approximation is a steady, laminar, incompressible, inviscid and

lossless airflow given by Bernoulli’s equation [40, 41] where v is the average

velocity:

P1 +
1

2
ρv21 = P2 +

1

2
ρv22 (2.16)

For any two points with cross-sectional areas A1 and A2, with volumetric flow

rates u1 and u2, mass balance gives [41]

u = u1 = A1v1 = u2 = A2v2 (2.17)

such that Bernoulli’s equation can be written as:

P1 +
1

2
ρ
u2
1

A2
1

= P2 +
1

2
ρ
u2
2

A2
2

(2.18)
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By continuity of flow:

P1 +
1

2
ρ
u2

A2
1

= P2 +
1

2
ρ
u2

A2
2

(2.19)

Bernoulli’s equation is invoked up to the point of jet separation at which

point the pressure is set to the jet pressure [42]. In their model, Tokuda et al.

[1] set the jet pressure equal to the pressure downstream of the glottis, which

in the case of egressive phonation is the oral pressure. In the present analysis,

the jet pressure is equated to the pressure downstream of the glottis regardless

of flow direction.

P (z) +
1

2
ρ
u2

a2i
= Pjet +

1

2
ρ
u2

a2g
(2.20)

P (z) = Pjet +
1

2
ρu2

�
1

a2g
− 1

a2i

�
(2.21)

Since the glottal areas can be expressed as the heights by the length of the

vocal folds [36]:

ai = 2(xi + xi0)Lg = hiLg (2.22)

this gives an expression for the glottal area mentioned above based on the

minimum height [1]:

ag =





(hminLg), hmin > 0

0, hmin < 0
(2.23)

It is important to note that the glottal aperture area ag provided here differs

from the amin defined by [1] which equates to hminLg regardless of whether

the folds are in collision or not. The present definition of ag is considered

preferable as it lessens the requirements for specifying conditionals when hmin

is negative by making it implicit.

In the standard case where the pressure is lower in the epilarynx than in

the trachea, the pressure P (z) at any point along the vocal fold profile can

therefore be determined via [36]:



CHAPTER 2. INGRESSIVE PHONATION USING A MULTI-MASS
MODEL 21

Ps > Pe : P (z) =






Pe +
ρ

2

�
u

Lg

�2 � 1

(hmin)2
− 1

(h(z))2

�
, if z < zsep

Pe, if z ≥ zsep
(2.24)

Here zsep refers to the position along z at which the flow is predicted to separate

from the vocal fold surface as a jet. For simplicity, this is taken as the vertical

point of minimum height between the folds [1, 43].

Based on symmetrical reasoning, the following approach is proposed to

determine the pressure profile P (z) during ingressive phonation:

Ps < Pe : P (z) =






Ps, if z ≤ zsep

Ps +
ρ

2

�
u

Lg

�2 � 1

(hmin)2
− 1

(h(z))2

�
, if z > zsep

(2.25)

Within a collision’s timeframe, it has been suggested that the dynamics of

the flow boundary layer could affect the rate of flow decrease [43] but since this

model uses a tophat (uniform) velocity profile, this effect is not built into the

simulation. In fact, any consideration whatsoever of the dynamics of the flow

field from variable geometry could be misleading. Clearly, the true flow field

would be complex and three-dimensional, but to avoid the extreme complexity

of full three-dimensional direct numerical simulation of the Navier-Stokes equa-

tions resolving the smallest flow structures to the Kolmogorov length scale, one

must draw the line, balancing the mutually exclusive advantages of simplicity

and rigour. In this simplified analysis, the flow is arrested when the vocal folds

come into contact. Regardless of the prior flow direction, the pressure at a

given point will then be determined by:

hmin < 0 : P (z) =





Ps, if z ≤ zhmin

Pe, if z > zhmin

(2.26)
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2.2.4 Waveguides and acoustic Pressures

The pressures on the epilaryngeal and subglottal sides of the glottis, pe and

ps, are taken to be the sum of the static pressures, PM and PL and the su-

perposition of the backward and forward traveling pressure waves [36]. While

many researchers ignore PM [1], as the mouth pressure is near-atmospheric

and therefore set to zero, this study includes it for the sake of generality:

pe = p+e + p−e + PM (2.27)

ps = p+s + p−s + PL (2.28)

The forward and backward traveling waves are modeled using waveguides

based on the Kelly-Lochbaum model [28].

The sub- and supraglottal resonators are each modeled by their own waveg-

uide. Each waveguide consists of a series of coaxial cylinders of equal thickness

and different cross-sectional areas [44]. The latter implies changes in the acous-

tic impedance leading to reflection and transmission of the acoustic waves at

the interface between each pair of cylinders [45].

The forward direction is here defined as moving away from the glottis

and either towards the lungs or the lips. The backward direction is defined

as moving towards the glottis. On the supraglottal side, + and − refer to

the forward and backward directions respectively. The notation is reversed

on the subglottal side; + referring to a wave traveling towards the glottis. A

uniformity in notation is thus maintained in that + always refers to waves

traveling in the direction from the lungs towards the lips and − in the oppo-

site direction in keeping with [35]. For a “half-sample delay” waveguide model

that provides calculation stability by ensuring updated information is trans-

ported exactly one node distance per time step (neglecting Doppler effect),

the segment length is given by [28]:

Lseg = c/(2Fs) (2.29)

This dictates a segment length of 0.397 cm if the speed of sound is 35000 cm/s

and the sampling frequency is 44.1 kHz [28]. The typical adult male vocal tract
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is approximately 17.5 cm [46] thus requiring 44 segments. The areas for the

44-segment supraglottal waveguide follow the Story et al. data based on MRI

studies of a single adult male [47]. Losses and lip radiation are included as

was done in previous studies [7]. The subglottal waveguide is based on the 64-

segment model proposed by Zanartu et al. [7]. The segments are numbered

according to the forward direction. As such, the index “1” denotes the first

segment adjacent to the glottis for both waveguides whereas “44” and “64”

refer to the last segment (lips/lungs) for the supra- and subglottal waveguides

respectively.

The reflection coefficient for a wave traveling from segment i to segment

i+ 1 is [28]:

ri =
(Ai − Ai+1)

(Ai + Ai+1)
(2.30)

There are three limiting cases of interest. The first is representative of

cases where the subsequent tube is much larger than the first tube and the

wave essentially moves into an open space as is the case at the lips [28]. The

second case is when the subsequent tube has no area and the propagating wave

sees only a wall as for example a closed glottis [28]. The last case is when the

two tubes have the same area and the wave does not scatter.

ropen = lim
Ai+1→∞

(Ai − Ai+1)

(Ai + Ai+1)
= −1 (2.31)

rclosed = lim
Ai+1→0

(Ai − Ai+1)

(Ai + Ai+1)
= 1 (2.32)

rneutral = lim
Ai+1→Ai

(Ai − Ai+1)

(Ai + Ai+1)
= 0 (2.33)

The partial pressures impinging on the glottis are taken from the backward

waveguide lines at the previous time-step:

p+s = bs(1) p−e = be(1) (2.34)

The tracheal and epilaryngeal fluid properties are assumed to be nearly
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equivalent for this study as others have done [1]:

ρe = ρs = ρair ; ce = cs = cair (2.35)

The forward pressures are derived via the assumption of flow continuity

above and below the glottis [48, 35]:

p+e = rep
−
e + un(

ρece
Ae,1

) p−s = rsp
+
s − un(

ρscs
As,1

) (2.36)

These are used as inputs into the waveguides via the initial segments:

fe(1) = p+e fs(1) = p−s (2.37)

The following expressions for the scattering equations are based on [28] but

with the inclusion of propagation loss factors according to [49]. The equations

apply to the scattering at junctions within subglottal tract by replacing the e

subscript with s.

fe,(i+1) = (1 + re,(i))fe,(i)γe,(i) − ribe,(i+1)γe,(i+1) (2.38)

be,(i) = re,(i)fe,(i)γe,(i) + (1− re,(i))be,(i+1)γe,(i+1) (2.39)

The propagation loss factors for each section are calculated according to

[7]:

αe,(i) =
0.0112�
Ae,(i)

(2.40)

γe,(i) = e−Lsegαe,(i) (2.41)

The reflection coefficients result from the relative areas of the glottis and

the adjacent sections of the waveguides [35]:

rs =
(As1 − ag)

(As1 + ag)
re =

(Ae1 − ag)

(Ae1 + ag)
(2.42)

If the glottis is closed (ag = 0) then the reflection coefficients are close to 1
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corresponding to a closed tube. This is in contrast to the last segment in the

subglottal waveguide, where the lungs are modeled as not reflecting (rlung = 0)

and the lips which are either treated as an open section (rlips = −1) or with

radiation. As ag increases as the folds separate, the glottal section will behave

more like a neutral end.

2.2.5 Lip radiation

As an alternative to assuming an open end at the lip segment of the supraglot-

tal waveguide, the following equations are used [28]. These convert Flanagan’s

infinite plain baffle model to the discrete-sampling domain via the bilinear

transform [28]. These equations provide the output lip pressure Pout and the

backward traveling wave pressure bM based on their previous values Pprev,

bprev, along with the forward traveling component fM and its former value

fprev.

bM =
1

b2
(fMa2 + fpreva1 + bprevb1) (2.43)

Pout =
1

b2
(Pprevb1 + fM(b2 + a2) + fprev(a1 − b1)) (2.44)

with filter coefficients according to [28]:

a2 = −R� − L� +R�L� (2.45)

a1 = −R� + L� −R�L�

b2 = R� + L� +R�L�

b1 = −R� + L� +R�L�

R� =
128

9π2

L� = 2Fs
8a

3πc
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2.2.6 Aeroacoustic Coupling

Titze [48] provides a relation between the transglottal pressure and the flow

that assumes negligible air inertia within the glottis and that viscous losses

can be included in a pressure coefficient, kt:

Ptrans = kt
1

2
ρ
�
|u| u/a2g

�
(2.46)

Recognizing that the transglottal pressure Ptrans is defined by ps − pe [48]

�
p+s + p−s + PL

�
−

�
p+e + p−e + PM

�
= kt

1

2
ρ
�
|u| u/a2g

�

�
p+s +

�
rsp

+
s − uρc

As

�
+ PL

�
−
�
p−e +

�
rep

−
e +

uρc

Ae

�
+ PM

�
= kt

1

2
ρ
�
|u| u/a2g

�

�
(1 + rs)p

+
s − (1 + re)p

−
e

�
+ [PL − PM ]− ρcu

�
1

As
+

1

Ae

�
= kt

1

2
ρ
�
|u| u/a2g

�

(2.47)

Defining Aeff through:

Aeff =

�
1

As
+

1

Ae

�−1

(2.48)

We arrive at the following 2nd-order polynomial in u

kt
1

2

ρ

a2g
(|u| u)+ρc

� 1

Aeff

�
u−

�
PL − PM + (1 + rs)p

+
s − (1 + re)p

−
e

�
= 0 (2.49)

It is appropriate at this point to propose a new term Ω defined as:

Ω ≡
�
PL − PM + (1 + rs)p

+
s − (1 + re)p

−
e

�
(2.50)

The polynomial can be re-written in quadratic form:

�
kt
1

2

ρ

a2g

�
|u| u +

�
ρc

Aeff

�
u− Ω = 0 (2.51)
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Bernoulli’s equation cannot suggest the direction of the flow. The direction

of the flow is imposed based on the relative magnitudes of PL and PM . If PL is

the greater of the two, then the flow is taken to be forward and equation (2.51)

is solved assuming u > 0 giving the standard result [36] with the reflection

coefficients at the glottis approximated by their closed-end values re ≈ rs ≈ 1:

ug =
agc

kt




−
�

ag
Aeff

�
±

��
ag
Aeff

�2

+
2kt
ρc2

(PL − PM + 2p+s − 2p−e )

�1/2





(2.52)

By symmetry, if PL is less than PM , then the flow would be in the reverse

direction and equation (2.51) can be solved assuming u < 0. The two cases

can be summarized as follows

ug =






agc

kt




−
�

ag
Aeff

�
+

��
ag
Aeff

�2

+
2kt
ρc2

Ω

�1/2



 , if PL > PM

−agc

kt




−
�

ag
Aeff

�
+

��
ag
Aeff

�2

− 2kt
ρc2

Ω

�1/2



 , if PL < PM

(2.53)

When the resonators are specified as not acting, the expressions for the

total pressure difference and the flow simplify to the following equation. This

approximation is also valid when the coupling between the tracts and the

glottal source are low as when their resonant frequencies are far apart [50, 48,

2].

Ω = {PL − PM} (2.54)

ug =






ag

��
2Ω

ρ

�1/2�
, Ω > 0

−ag

��
−2Ω

ρ

�1/2�
, Ω < 0

(2.55)
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2.2.7 Modal analysis

It is possible to anticipate the vibratory patterns (eigenmodes) and frequencies

of the system under consideration. The masses (M), dampening coefficients

(R) and stiffnesses (K) can be put in matrix form with the assumption of

proportional (Rayleigh) dampening:

M =





m1

m2

. . .

mn

mb





(2.56)

R =





r1

r2
. . .

rn

rb





(2.57)

For the 4-mass model:

K =





(k1 + k12) −k12 0 −k1

−k12 (k2 + k12 + k23) −k23 −k2

0 −k23 (k3 + k23) −k3

−k1 −k2 −k3 (kb + k1 + k2 + k3)




(2.58)

The forces acting from the exterior of the folds on the masses are:

Fexi = Faero,i + kc(−hi/2) (2.59)

Noting that there is no aerodynamic or collisional force applied to the

body mass (Fexb = 0), the external force vector can be defined as F =

[Fex1 Fex2 ... Fexn 0]
T .
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To simplify the analysis, the second-order differential equation 2.1 can be

put in first-order form [51]. With I representing the (n+ 1)by(n+ 1) identity

matrix, Equation (2.1) can be rewritten into state space as [52]:

�
I 0

0 M

��
ẋ

ẍ

�
=

�
0 I

−K −R

��
x

ẋ

�
+

�
0

F

�
(2.60)

Left multiplication by the inverse of the mass matrix gives [52]:

d

dt

�
x

ẋ

�
=

�
0 I

−M
−1
K −M

−1
R

��
x

ẋ

�
+

�
0

M
−1
F

�
(2.61)

If a matrix A is defined according to [51]:

A =

�
0 I

−M
−1
K −M

−1
R

�
(2.62)

and B as:

B =

�
0

M
−1
F

�
(2.63)

the dynamics of the system can then be derived from:

ẇ = Aw +B (2.64)

with w referring to the state vector as in equation (2.2).

According to [52] the matrix A is of central importance in characterizing

the system’s behavior in the absence of external forces (F = 0). For the

non-collided in vacuo case

ẇ = Aw (2.65)

Its eigenvalues λi and eigenvectors z have the following relationship:

λiz = Az (2.66)

These eigenvectors correspond to the normal modes of vibration of the

tissue in the absence of external forces. The eigenvalues correspond to an-
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gular frequencies. Their linear frequencies fi, from which vocal pitch can be

predicted, can be derived via [25]:

fi = |�(λi)| /2π (2.67)

Here � refers to the imaginary component of the eigenvalue.

2.2.8 Aerodynamic state feedback

Equation (2.64) is a state-space description of a nonlinear system [53] and may

be written in the following form:

ẇ = g(w,B) (2.68)

The stability of the system can be evaluated by considering perturbations δw

and δB around operating points defined by g(weq,Beq) = 0 [53].

w = weq + δw B = Beq + δB (2.69)

d

dt
(weq + δw) =

d

dt
(δw) = g(weq + δw,Beq + δB) (2.70)

˙(δw) = g(weq,Beq) +
∂g

∂w

����
(weq,Beq)

δw +
∂g

∂B

����
(weq,Beq)

δB+ . . . (2.71)

The first term is zero by definition while the two Jacobians can be evaluated

from equation (2.64) [53]:

˙(δw) = Aδw + IδB (2.72)

According to [8] the forces arising from the Bernoulli effect depend on

the cross-sectional areas along the channel and thereby the positions of the

masses. Indeed, considering equations (2.59), (2.15), (2.25), and (2.24), the

external forces acting on the masses, whether collisional or aerodynamic, result

from their heights and therefore their displacements. They also depend on the
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flow, however the flow in turn depends on the mass displacements through the

glottal area term along with the Ω term. In essence then, the external forces

acting on the tissue are a function of the state w and the pressure Ω term and

the following can be written:

δB ≈ ∂B

∂w

����
(weq,Ωeq)

δw +
∂B

∂Ω

����
(weq,Ωeq)

δΩ (2.73)

The lung pressure is the reference input to the system while the oral pres-

sure is set to atmospheric. The only perturbation to it is from the acous-

tics of the waveguides. An appropriate choice for Ωeq is therefore the ref-

erence pressure input in the no-waveguide case without acoustic feedback:

Ωeq = {PL − PM}. As such, the perturbations can be attributed to the acous-

tic feedback effect. Hence, the case without waveguides reduces to:

δB ≈ ∂B

∂w

����
(weq,Ωeq)

δw (2.74)

Substituting the latter expression into the differential equation 2.72 gives:

˙(δw) = Aδw + I
∂B

∂w

����
(weq,Ωeq)

δw (2.75)

˙(δw) =

�
A+ I

∂B

∂w

����
(weq,Ωeq)

�
δw = Âδw (2.76)

Recognizing that:

∂B

∂w
=




0 0

M
−1∂F

∂x
M

−1∂F

∂ẋ



 (2.77)

with the components of the above two Jacobians being given by
∂Fi

∂xj
and

∂Fi

∂ẋj
,

an augmented system matrix can then be written as:

Â =




0 0

M
−1

�
∂F

∂x

����
(weq,Ωeq)

−K

�
M

−1

�
∂F

∂ẋ

����
(weq,Ωeq)

−R

�


 (2.78)
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˙(δw) = Âδw (2.79)

The last two equations express the feedback of the aerodynamic forces

as a result of the tissue’s state [54]. Since the coefficients of Â are real, its

eigenvalues, if complex, will each have their own conjugate [54]. Whereas

consideration of the system matrix A provides the natural frequencies and

eigenmodes of the system, an eigenvalue analysis of Â reveals the effect of

the feedback from the aerodynamic forces on the masses as a result of their

state. In particular, if the real part of any of the eigenvalues are greater than

zero (�(λ) > 0), then the operating point is unstable and tissue oscillations

will grow leading to phonation [23]. The eigenvalues may not all be complex

and an eigenvalue and its conjugate may meet on and diverge along the real

axis with one of them potentially taking on a positive value [8]. Such static

divergence instabilities have been observed in vocal fold simulations [18].

What remains is to evaluate the change in the aerodynamic forces on each

mass with respect to change in state variables. Rather than using a smooth

geometry, Tokuda et al. [25] treated the masses as flat plates such that the

air pressure across a mass was constant. To simplify the present analysis, the

force on each mass will be approximated by the pressure at the location of the

mass times its medial surface area:

Fi ≈
� 0.5(zi+zi+1)

0.5(zi+zi−1)

LgP (z)dz ≈ LgdiP (zi) ≈ LgdiPi (2.80)

The approximation is taken to be an equality in the remainder of this study.

As before, Bernoulli’s equation is invoked up to the point of jet separation

at which point the pressure is set to the jet pressure [42]. The jet pressure is set

equal to the downstream static pressure [1, 55]. In the present analysis, the jet

pressure is equated to the pressure downstream of the glottis regardless of flow

direction. Following [55] but with the jet pressure generalized as potentially

non-zero:

Pi +
1

2
ρ
u2

a2i
= Pjet +

1

2
ρ
u2

a2g
(2.81)
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Pi = Pjet +
1

2
ρu2

�
1

a2g
− 1

a2i

�
(2.82)

∂Pi

∂aj
=

∂Pjet

∂aj
+

1

2
ρ

�
2u

∂u

∂aj

�
1

a2g
− 1

a2i

�
+ u2

�
−2

a3g

∂ag
∂aj

+
2

a3g

∂ai
∂aj

��
(2.83)

Rewriting the expression for the flow (2.55) with the minus sign accounting

for the condition of reversed flow and deriving the terms with flow:

u = ±ag

�
2 |Ω|
ρ

(2.84)

∂u

∂aj
= ±∂ag

∂aj

�
2 |Ω|
ρ

(2.85)

u
∂u

∂aj
=

2 |Ω|
ρ

∂ag
∂aj

ag (2.86)

u2 =
2 |Ω|
ρ

(ag)
2 (2.87)

Substituting the flow terms leads to the following expression for the changes

in pressure with respect to changes in the areas:

∂Pi

∂aj
=

∂Pjet

∂aj
+ 2 |Ω|

�
ag

(ai)2

�
ag
ai

∂ai
∂aj

− ∂ag
∂aj

��
(2.88)

In terms of the forces:

∂Fi

∂xj
= Lgdi

∂Pi

∂aj

∂aj
∂xj

(2.89)

∂aj
∂xj

= 2Lg (2.90)

∂Fi

∂xj
= 2di(Lg)

2

�
∂Pjet

∂aj
+ 2 |Ω|

�
ag

(ai)2

�
ag
ai

∂ai
∂aj

− ∂ag
∂aj

���
(2.91)
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Since the state variables are independent of each other, their partials will be

unity when referrring to the same index and zero otherwise.

∂ai
∂aj

=
∂ai
∂xi

∂xi

∂xj

∂xj

∂aj
= 2Lg

∂xi

∂xj

1

2Lg
= δij (2.92)

∂Fi

∂xj

����
(weq,Ωeq)

= 4di(Lg)
2

��
ag

(ai)2

�
ag
ai
δij − δmin,j

���
|Ωeq| (2.93)

Here δij refers to the Kronecker delta. Substituting the partials of F with

respect to the state variables into equation (2.76) enables the calculation of

the augmented system matrix and its eigenvalues providing an understanding

of the stability of the feedback system.

Two extreme cases need to be considered: a rectangular channel with ag =

a1 = a2 = a3 and a convergent channel with ag = a1, a3 > a2 > a1 in the case of

ingression and ag = a3, a1 > a2 > a3 in the case of egression. Considering the

subset of the Jacobian referring to the cover masses, the ingressive convergent

channel leads to

∂F

∂x

����
(weq,Ωeq)

= 4di(Lg)
2 |Ωeq|





0 0 0

−a1
a22

a21
a32

0

−a1
a23

0
a21
a33




Matrix “C” (2.94)

while the rectangular channel leads to

∂F

∂x

����
(weq,Ωeq)

= 4di(Lg)
2 |Ωeq|

a1




0 0 0

−1 1 0

−1 0 1



 a1 < a3 Matrix “R13” (2.95)
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∂F

∂x

����
(weq,Ωeq)

= 4di(Lg)
2 |Ωeq|

a3




1 0 −1

0 1 −1

0 0 0



 if a3 < a1 Matrix “R31” (2.96)

Given the row of zeros, these matrices are degenerate and would, on their

own, lead to eigenmodes corresponding to rigid-body motions [11]. The spring

constants in the K matrix offset this degeneracy resulting in eigenvalues with

non-zero frequencies. However at high Ωeq values, the augmented matrix would

be increasingly dominated by the aerodynamic feedback terms and therefore

rigid-body motions. This effect should be less pronounced for the convergent

height profiles since the denominators a2, etc. are greater than the numerators

suggesting that rigid-body motions would only result at much greater Ωeq

values.

It should be noted that only the aerodynamic state feedback dependence

on the displacement was included in this analysis as Zhang highlighted its

importance over negative damping (velocity-dependent) terms [18]. Future

work should consider the influence of purely negative damping in determining

the conditions leading to phonation onset.

2.2.9 Computational algorithm

The equations for the tissue mechanics, aerodynamics and aeroacoustic cou-

pling were coded in Matlab version 7.11.0 (R2010b) with 64-bit precision.

The algorithm simulates both the tissue movement and the changing acous-

tic wave pressure distribution in the airways in synchrony. As stated previ-

ously, the sampling frequency is set to 44.1 kHz [7] such that the time step

between events is 0.0227 ms.

For each time step, the vocal fold medial height profile is derived from

the prephonatory half-heights and the displacements via equations (2.4) and

(2.11). The glottal area is then calculated from the product of the vocal fold

length by the minimum height (2.23). The z position corresponding to the

minimum height is taken to be the location of jet separation. The area is used
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in calculating the reflection coefficients at the glottis (2.42). The acoustic wave

pressures incident on the glottis are derived from the backward components

of the waveguides (2.34). The latter are taken together with the lung and

mouth pressures to form the aggregate pressure difference (2.50). If this value

is greater than zero, the positive flow equation is employed, otherwise the neg-

ative flow equation determines the flow value (2.53). The flow value scaled by

the acoustic impedance of the initial waveguide sections is combined with the

wave component reflected from the glottis to give the pressure components en-

tering the waveguides (2.36) and (2.37). At this point, the waveguide pressure

distribution is updated for both the forward and backward delay lines with

losses (2.39). The lip radiation is also calculated with the pressure exiting the

last section of the oral waveguide being stored in analogy to a microphone sig-

nal. The part not exiting the waveguide is fed backwards towards the glottis.

The calculated pressures upstream and downstream from the glottis involve

the static lung and mouth pressures respectively along with the incident and

reflecting acoustic wave components (2.27) and (2.28). The pressure distri-

bution along the medial section of the folds is calculated based on the flow,

the total upstream and downstream pressures and the height profile (2.24)

and (2.25). The corresponding aerodynamic forces on each mass (2.15) are

combined with collisional forces at locations of negative height to determine

the acceleration of the masses (2.7). The corresponding accelerations are used

by a fourth-order Runge-Kutta solver to derive the positions and velocities

for the masses in the next time step. The algorithm is presented in symbolic

flowchart form in Figure 2.4.
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Figure 2.4: Algorithm flowchart. See section 2.2.9 for details.

The differential equation (2.65) together with the initial conditions (2.3)

form an initial value problem. This problem is here solved using a 4th-order

classical Runge-Kutta solution.
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Equations (2.65) and (2.3) may be rewritten as follows:

ẇ = f(w), w(t0) = w0 (2.97)

An estimate for w at the next timestep n + 1 can be calculated from the

following system of equations where h is the timestep size [56]:

wn+1 = wn + (1/6)(k1 + 2k2 + 2k3 + k4) +O(h5)

tn+1 = tn + h

where k1 k2 k3 k4 are derived from:

k1 = hf(tn,wn)

k2 = hf(tn + h/2,wn + k1/2)

k3 = hf(tn + h/2,wn + k2/2)

k4 = hf(tn + h,wn + k3)

(2.98)

For the next timestep, the results of the calculation, wn+1 and tn+1, serve

as the new initial conditions to derive the subsequent state estimations wn+2

and tn+2. This process is repeated iteratively until t = tfinal to estimate the

time-course of the state.

A 4th-order classical Runge-Kutta solver provided by Mathworks [57] was

used to solve the differential equation (2.65) subject to the initial conditions

(2.3). This is a non-adaptive solver with a constant step-size, which is here

equated to the sampling period of the waveguides, 0.023 ms based on a 44.1

kHz sampling rate. The function determines the derivative of the state vector

and integrates the differential equation to arrive at the state for the next time

step 0.023 ms later.

2.2.10 Tissue parameters

The parameters for the lumped-mass tissue were set as detailed by Tokuda et

al. for their four-mass model [1] and summarized in Table 2.1. The prephona-

tory displacement of the cover masses was doubled as ingression is associated

with a greater abduction of the folds [31]. The same displacement was also

applied to egression for consistency. In contrast to [1], the initial values for
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the displacements were all set to zero.

The uniform tube area for the supraglottal tract was set to 3.0 cm2 [58, 1]

while the subglottal tract areas were set according to [7].

Table 2.1: Tokuda et al. (2010) parameters. Lg = 1.4, k12 = 1.0 [N/m],k23 = 0.5

[N/m][1]

z [cm] h [cm] m [g] k [N/m] ζ

0 1.8 0 0 0

0.05 0.072 0.009 6.0 0.1

0.2 0.072 0.009 6.0 0.4

0.275 0.072 0.003 2.0 0.4

0.3 1.8 0 0 0

body N.A. 0.05 30.0 0.4

2.2.11 Parameter space: range of lung pressures and pre-phonatory

half-widths

Lausted et al. found that the maximum static pressures generated by the

respiratory muscles range from −66 to 61 cmH2O in women and −97 to 97

cmH2O in men [59]. Comfortable expiratory phonation is usually performed at

approximately 6 cmH2O [60]. For conditions of loud voicing, the average values

are 9.0 cmH2O for men and 8.2 cmH2O for women [61]. The following equation

can be used to estimate a corresponding value for inspiratory phonation [61]:

∆P = RU (2.99)

The resistance term R incorporates both viscous losses and dynamic resis-

tance while ignoring the air’s inertia [61]. By reversing the airflow through

a cast model of the human larynx, van den Berg et al. found that the air

resistance for ingression was 15 percent higher than in egression [32]. Mean-

while, Orlikoff found that airflow was 48.5 percent greater in ingression [34].

Taken together, the pressure drop for ingressive phonation for a corresponding

egressive pressure drop can be estimated via
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∆PIN = RINUIN = (1.15)REX(1.485)UEX = (1.71)PEX (2.100)

Thus, the average to loud pressure drop values for exhalation of 6 to 9.0

cmH2O would correspond roughly to −10.3 to −15.4 cmH2O. Extending

slightly beyond the latter value the minimum lung pressure considered in this

study is −20 cmH2O. To facilitate comparison, 20 cmH2O is the maximum

egressive lung pressure in this study. The −20 to 20 cmH2O range should

accomodate the range of subglottal pressures that occured in previous stud-

ies on inspiratory phonation where participants were instructed to produce

comfortable phonation rather than loud voicing [31, 34].

The pre-phonatory half-height is the half-distance between the vocal folds

in the absence of a pressure drop across them [22]. Above a certain thresh-

old distance, the folds no longer oscillate. By fitting a two-mass model to

experimental frequency and flow data for both men and women, Lucero et al.

[62] found a maximum prephonatory distance of x0 = 0.14 cm above which

oscillation ceased. A value of 0 was used at the lower end as in their study.

The case of pressed phonation is not considered in this study. Tokuda et al.

used a nominal value of 0.018 cm for the prephonatory displacement [1].

Taken together, the lung pressures in this study range from −20 to 20

cmH2O while the prephonatory half-heights range from 0 to 0.15 cm. These

ranges include the default values typically used in lumped-parameter simula-

tions of 8 cmH2O and x0 = 0.02 cm [63].
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2.2.12 Post-simulation analysis

According to Tokuda et al. (2007) [25], the simulated extreme positions and

velocities for each mass vsim can be contrasted against the set of eigenmodes of

the system matrix veigen when each are normalized by their maximum values.

In their study, they invite the reader to do a visual comparison between the

two. In this study, correlations values were calculated between the following

two vectors based on the simulation results and the eigenmode analysis over

all eigenmodes i:

vsim = {(x1)max − (x1)min, (ẋ1)max − (ẋ1)min, · · · ,

{(xb)max − (xb)min, (ẋb)max − (ẋb)min} sim

(2.101)

veigen,i = {x1, ẋ1, x2, ẋ2, x3, ẋ3, xb, ẋb}i (2.102)

The eigenvalues based on aerodynamic state feedback were calculated for

each lung pressure and the largest real value Re(λ) over the sets of both

oscillatory and zero-frequency (rigid-body) modes were plotted. The pitch in

hertz was calculated as the inverse of the period between maximum values in

the glottal aperture area. The phase delay was estimated as the difference

in milliseconds between the peak values of the displacements of mass three

to mass one. In other words, if the third mass trailed behind the first mass

as generally observed for egressive phonation [2], the value was positive and

represented a lag time. A negative value would indicate a lead time of mass

three over that of mass one. The areas of the three cover masses and the

volumetric flow rates were also plotted.

The pressure output at the lips Pout was retained and used to generate a

spectrogram along with a sound pressure measure as follows:

Poutrms =

����(1/N)
nstart+N�

n=nstart

(Poutn)2 (2.103)

SPL[dB] = 10log10(Poutrms/20µPa)2−30 dB−20log10(15cm/10cm) (2.104)
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The reduction by 30 dB was found empirically by Zanartu to convert between

the sound pressure at the lips, as generated by simulations such as these, and

a distance 10 cm from the lips where a microphone would be placed [64]. The

further reduction via the last term accounts for the level 15cm from the lips for

ease of comparison with [61]. In the foregoing, N = 4096 is the total number

of data points retained and nstart = 1.

2.3 Results and Discussion

The central objective of this study was to determine whether ingressive phona-

tion could be simulated via a lumped-parameter approach and if so, under

what conditions. The choice of physiological conditions was limited to the

prephonatory gap 2x0 and the lung pressure PL. Several parameter scans were

performed to investigate the roles of these two variables. The spring stiffness

multiplier q was set to a value of 1 such that the tension of the folds was kept

constant.

The system was first simulated without the waveguides affecting the pres-

sures near the glottis. As such, the upstream pressure was equated to the

lung pressure while the downstream pressure was set to atmospheric. These

approximations are valid for fundamental frequencies well below the first for-

mant [65]. The waveguides still affected the pressure signal leaving the glottis

to generate the expected pressure at the lips, Pout, for which sound pressure

levels were calculated.

In vacuo analysis is depicted in Figure 2.5. From Figure 2.5(a) we can see

the four natural frequencies of the associated eigenmodes, veigen, of the 4-mass

model as defined by equation (2.102) and vsim as per equation (2.101). From

this figure it can be seen that the lowest frequency corresponds to the most

in-phase potential motion. The in-phase motion will dictate the overall lateral

motion and thereby strongly influences the aperture of the glottis and the flow

through it [66]. The highest frequencies involves more out-of-phase motions

[12]. The out-of-phase motions allow for the mucosal wave and the possibility

of an alternating converging and diverging channel profile [67, 50]. Of note,

the software presents eight eigenmodes, but four distinct pairs of eigenmodes.
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The sim line is the difference of the extrema of each degree of freedom; this

result line will be compared with those of Figure 2.6. Figure 2.5(b) shows that

the system is stable since none of the eigenvalues have crossed to the positive

side of the real components axis. The distance of these eigenvalues from the

real line determines the frequency according to equation (2.67). Figure 2.5(c)

is the power spectrum of the analysis. Given the absence of lung pressure, no

vibration occurs and there is no signal energy.
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Figure 2.5: In vacuo eigenanalysis of a 4 mass system with PL = 0Pa, PM = 0

Pa, x0 = 0.036cm. (a) Natural frequency eigenmodes of a four mass model (veigen)

in comparison to the simulation extrema (vsim); (b) Eigenvalues of each eigenmode

on imaginary versus real component axes, colors correspond to eigenmodes of (a);

(c) Power spectrum analysis graph of the 4 mass model.



CHAPTER 2. INGRESSIVE PHONATION USING A MULTI-MASS
MODEL 44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

N
o
rm

a
liz

e
d
 E

ig
e
n
m

o
d
e

 

 

x
1

dx
1
/dt x

2
dx

2
/dt x

3
dx

3
/dt x

b
dx

b
/dt

SIM

83.156 hz

83.156 hz

142.879 hz

142.879 hz

145.731 hz

145.731 hz

163.987 hz

163.987 hz

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

o

o

o oo o

o

o

E
ig

e
n
va

lu
e
 im

a
g
in

a
ry

 c
o
m

p
o
n
e
n
ts

Eigenvalue real components
10

1
10

2
10

3
10

4
10

5
10

−2

10
−1

10
0

10
1

10
2

L
o
g
 a

m
p
lit

u
d
e

Frequency [hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

N
o
rm

a
liz

e
d
 E

ig
e
n
m

o
d
e

 

 

x
1

dx
1
/dt x

2
dx

2
/dt x

3
dx

3
/dt x

b
dx

b
/dt

SIM

83.156 hz

83.156 hz

142.879 hz

142.879 hz

145.731 hz

145.731 hz

163.987 hz

163.987 hz

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

o

o

o

o

o

o

o

o

E
ig

e
n
va

lu
e
 im

a
g
in

a
ry

 c
o
m

p
o
n
e
n
ts

Eigenvalue real components
10

1
10

2
10

3
10

4
10

5
10

−2

10
−1

10
0

10
1

10
2

L
o
g
 a

m
p
lit

u
d
e

Frequency [hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

N
o
rm

a
liz

e
d
 E

ig
e
n
m

o
d
e

 

 

x
1

dx
1
/dt x

2
dx

2
/dt x

3
dx

3
/dt x

b
dx

b
/dt

SIM

83.156 hz

83.156 hz

142.879 hz

142.879 hz

145.731 hz

145.731 hz

163.987 hz

163.987 hz

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

o

o

o

o

o

o

o

o

E
ig

e
n
va

lu
e
 im

a
g
in

a
ry

 c
o
m

p
o
n
e
n
ts

Eigenvalue real components
10

1
10

2
10

3
10

4
10

5
10

−3

10
−2

10
−1

10
0

10
1

L
o
g
 a

m
p
lit

u
d
e

Frequency [hz]

(a) (b) (c)

Figure 2.6: Aero feedback eigenanalysis. Eigenmodes still shown in vacuo.
PL = −100 top,−120 middle and− 140Pa bottom, PM = 0 Pa, x0 = 0.036cm. (a)

Natural frequency eigenmodes of a four mass model (veigen) in comparison to the

simulation extrema (vsim); (b) Eigenvalues of each eigenmode on imaginary versus

real component axes; (c) Power spectrum analysis graph of the 4 mass model.
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In Figure 2.6 are presented the eigenanalysis for three different test cases,

where PL = −100 top,−120 middle and− 140Pa bottom. In decreasing the

pressure, the general trend from the vsim curve of the (a) subfigures, from

an in-phase to an out-of-phase motion. It is known that out-of-phase motions

generally correspond to higher eigenfrequencies [12] and a corresponding right-

ward shift is seen in the power spectrum of subfigures (c). In subfigures (b),

in comparison with in vacuo case, the pair of eigenvalues are moving towards

the real half plane. In the case of the top figure, subfigure (b) the degeneracy

is lost for point 5 and 6 when the two meet on the real axis. The subse-

quent movement of one of these towards the positive real half plane is called

a static divergence [8] and is considered a rigid-body mode because it has a

zero-frequency component [11]. Although one eigenvalue has adopted a very

large positive growth rate as seen in later Figures 2.10, 2.12 and 2.14, it can

be seen that several other eigenvalues have also shifted towards the real half

plane. For the middle and bottom subfigures (b) it can be seen that there

are no eigenvalues on the real axis and that there are no rigid body modes.

However there are oscillatory eigenvalues in the positive real plane, suggesting

that the system is unstable under aerodynamic feedback.

In comparison with Figure 2.5, the in vacuo case study, we see that drop-

ping the pressure leads to an increasingly out of phase motion and therefore an

increasingly higher frequency. Also, the aerodynamic feedback destabilizes the

in vacuo eigenvalue frequencies. Also important to note was the observation

of static divergence not seen in the in vacuo cases. It was observed that upon

continued dropping of the pressure, the eigenvalues return to the negative real

plane.

The following series of figure pairs beginning with Figure 2.7 show the

system time history as a result of raising or lowering the lung pressure in

equal increments or decrements. For each pressure level, 4096 data points

were simulated at a sampling rate of 44.1 kHz. The second figure in each

pair, such as Figure 2.8, shows certain measures corresponding to each lung

pressure level. In the first figure of each pair, subgraph a) is a spectrogram

providing the short-time Fourier transform of the glottal area signal ag. The

signal was generated at 44.1 kHz and subsequently downsampled by a factor of
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4. The spectrogram used Hamming windows of length 1024 overlapping by 800

data points. Subgraph b) shows the volumetric flow rate [cm3/s] of air passing

through the glottis while subgraph c) shows the vocal fold aperture areas [cm2]

at each of the masses along with the glottal area ag in black. In the second

figure of each pair, subgraph a) presents the sound pressure level in decibels

measured 15 cm from the lips based on the Pout signal and equation (2.104).

The next subgraph b) provides the pitch in hertz based on ag signal. The

period was determined by the average spacing in seconds between the maxima

of ag. The pitch was then calculated from the inverse of the period. Subgraph

(c) presents the mucosal wave phase delay in milliseconds. For a given lung

pressure increment, the nearest peak in the x3 signal to each peak in the x1

signal was first found. For each such pairing, the time instant of the x1 peak

was subtracted from that of the x3 peak to generate the time delay. The time

delays were then averaged across the pairings to arrive at the mucosal wave

phase delay. This approach allowed for the possibility of both positive and

negative delays depending on whether the x1 peaks preceded or lagged behind

the x3 peaks in each pairing. Subgraph d) presents the largest real eigenvalue

components in two sets of modes, namely the oscillatory modes and the rigid-

body modes with zero frequency. The latter modes are not readily apparent in

this figure yet show up prominently in subsequent figures referring to ingressive

phonation. Positive values of the real eigenvalue components imply positive

growth rates of the corresponding eigenmodes and system instability. Finally,

subgraph e) shows the correlation of simulation extrema (vsim) to in vacuo

eigenmodes (veigen). Values may range between −1 and 1 with higher values

indicating a greater resemblance of the simulation extrema to a particular

eigenmode. The correlation was based on the off-diagonal values of Matlab’s

’corrcoef’ function.

Figure 2.7 shows the system time history as a result of raising the lung pres-

sure in increments of 100 Pa. At the outset, the lung pressure is nil and there

is no vocal fold motion. As seen in subgraph d) of Figure 2.8, the real parts of

all of the in vacuo eigenvalues are less than zero and the system is exponen-

tially stable. With a rise in the lung pressure, at least one eigenvalue adopts

a positive growth rate and phonation onset occurs. This remains the case
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throughout the rest of the simulation. Consequently, the phonation region in

the spectrogram in subgraph a) of Figure 2.7 extends to the highest pressure

at 2000 Pa. It can be seen in c) of Figure 2.8 that the phase delay is positive

throughout the range of phonation.
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Figure 2.7: Time history of key variables for egression for four-mass model, source

not coupled with waveguides. 0Pa < PL < 2000Pa, PM = 0Pa, x0 = 0.036cm. a)

Spectrogram ; b) volumetric flow rate [cm3/s] ; c) Vocal fold aperture areas [cm2
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Figure 2.8: Key measures for egression for four-mass model, source not coupled

with waveguides. 0Pa < PL < 2000Pa, PM = 0Pa, x0 = 0.036cm. a) Sound

pressure level [dB] ; b) Pitch [hz] ; c) Mucosal wave phase delay [ms]; d) Largest

real eigenvalue component ; e) Correlation of simulation extrema (vsim) to in vacuo
eigenmodes (veigen)

Figure 2.9 shows the system time history as a result of lowering the lung

pressure in decrements of 100 Pa leading to ingression. As with egression, the

in vacuo case is exponentially stable according to subgraph d) of Figure 2.10.

According to subgraph c) in Figure 2.9, the folds move from a rectangular

shape, with all of the areas overlapping, to a convergent one with a1 < a3.

The masses undergo a rotation such that the first mass is in a nearly closed
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state while the other two masses move apart from their counterparts in the

other fold. A convergent state with respect to the flow direction results. This

is reflected in the eigenanalysis which predicts a rigid-body (zero-frequency)

mode of rotation in d) of Figure 2.10. At the same time, the real part of at least

one oscillatory mode increases, eventually becoming positive. The vibration

of the folds is more sustained according to b) of Figure 2.9 and the sound

pressure level at the lips becomes pronounced in a) of Figure 2.10. As the

pressure is further dropped, the largest real eigenvalue part steadily decreases

in d) of Figure 2.10 and the system is increasingly more stable. Consequently,

the oscillations are damped out in b) of Figure 2.9.

The system returns to stability as the pressure is lowered since the folds

are increasingly drawn together at the first mass, as seen in c) of Figure 2.9,

arresting the flow and therefore the aerodynamic feedback. With the reduc-

tion in the aerodynamic feedback, the eigenvalues of the overall mechanical-

aerodynamic system seen in d) of Figure 2.10 return to their in vacuo values

and corresponding exponential stability.

It can also be seen in b) of Figure 2.10 that the frequency of the glottal area

generally rises. Part of this rise may be accounted for by the dominance of

a higher frequency out-of-phase eigenmode over the lower frequency in-phase

one in subgraph e). The pitch exceeds that of all of the in vacuo modes in

Figure 2.5 however suggesting that the aerodynamic feedback effectively raises

the stiffness of the system.

In the region of phonation, the mucosal wave in c) of Figure 2.10 is observed

to travel in the reverse direction with the lower mass trailing the upper mass.

As such, the phase delay is negative.
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Figure 2.9: Time history of key variables for ingression for four-mass model, source

not coupled with waveguides. 0Pa > PL > −2000Pa, PM = 0Pa, x0 = 0.036cm. a)

Spectrogram ; b) volumetric flow rate [cm3/s] ; c) Vocal fold aperture areas [cm2
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Figure 2.10: Key measures for ingression for four-mass model, source not coupled

with waveguides. 0Pa > PL > −2000Pa, PM = 0Pa, x0 = 0.036cm. a) Sound

pressure level [dB] ; b) Pitch [hz] ; c) Mucosal wave phase delay [ms]; d) Largest

real eigenvalue component ; e) Correlation of simulation extrema (vsim) to in vacuo
eigenmodes (veigen)

In the next six figures, 2.11 through 2.16, the above analysis is repeated

but with decrements of 40 Pa to focus on the smaller range of phonation found

in ingression.

With the first decrement, the folds are drawn inwards in c) of Figure 2.11

and oscillate about a new equilibrium point but the vibration is damped out b);

the eigenvalues are still within the left-half of the complex plane in subgraph
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d) of Figure 2.12 and the system remains stable. Subgraph c) of Figure 2.11

shows that towards the second decrement the cover masses undergo a rotation

as before in Figure 2.9. A convergent state with respect to the flow direction

results. This rotation is reflected in the eigenanalysis which predicts a rigid-

body (zero-frequency) mode of rotation in subgraph d) of Figure 2.12. At the

same time, the real part of at least one oscillatory mode increases, eventually

becoming positive. The vibration of the folds is more sustained in b) of Figure

2.11 and the sound pressure level at the lips becomes pronounced in a) of

Figure 2.12. As the pressure is further dropped, the largest real eigenvalue

part steadily decreases d) of Figure 2.12 and the system is increasingly more

stable. The oscillations are therefore damped out as seen in b) of Figure

2.11. Within the range of phonation seen in the spectrogram a) of Figure

2.11, a general rise in pitch and reversed mucosal wave are again observed in

subgraphs b) and c) of Figure 2.12 respectively.

Figure 2.13 shows the effect of the waveguide coupling and the strengthen-

ing of the secondary phonatory burst towards full glottal closure by the waveg-

uides. The oral tract resonator is known to have a first resonance around 500

Hz [68] and the vocal fold oscillation appears to entrain to and be boosted by

the tract’s resonance. For the real-component eigenvalue plot in subgraph c)

of figuref 2.12 and 2.14, the ordinate axis is limited such that subtle changes

about zero can be clearly seen. This leads to certain parts of the rigid-body

curves being cut-off.
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Figure 2.11: Time history of key variables for ingression for four-mass model,

source not coupled with waveguides. 0Pa > PL > −800Pa, PM = 0Pa, x0 =

0.036cm. a) Spectrogram ; b) volumetric flow rate [cm3/s] ; c) Vocal fold aperture

areas [cm2
]
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Figure 2.12: Key measures for ingression for four-mass model, source not coupled

with waveguides. 0Pa > PL > −800Pa, PM = 0Pa, x0 = 0.036cm. a) Sound

pressure level [dB] ; b) Pitch [hz] ; c) Mucosal wave phase delay [ms]; d) Largest

real eigenvalue component ; e) Correlation of simulation extrema (vsim) to in vacuo
eigenmodes (veigen)
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Figure 2.13: Time history of key variables for ingression for four-mass model,

source coupled with waveguides. 0Pa > PL > −800Pa, PM = 0Pa, x0 = 0.036cm.

a) Spectrogram ; b) volumetric flow rate [cm3/s] ; c) Vocal fold aperture areas [cm2
]
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Figure 2.14: Key measures for ingression for four-mass model, source coupled

with waveguides. 0Pa > PL > −800Pa, PM = 0Pa, x0 = 0.036cm. a) Sound

pressure level [dB] ; b) Pitch [hz] ; c) Mucosal wave phase delay [ms]; d) Largest

real eigenvalue component ; e) Correlation of simulation extrema (vsim) to in vacuo
eigenmodes (veigen)

Figure 2.15 shows the system time history as a result of lowering the lung

pressure in decrements of 40 Pa but with the damping parameter set to 1.0 for

all of the masses, the critical damping condition. This removes the oscillations

seen in Figure 2.11 and provides a clearer picture as to the effect of lowering

the pressure in a step-like manner. The lowest pressure is −800 Pa since the

phonation region at this level of vocal fold adduction is limited as found in



CHAPTER 2. INGRESSIVE PHONATION USING A MULTI-MASS
MODEL 57

figure 2.9. It can be seen that the folds start out in a rectangular configura-

tion with the upstream and downstream cross-sectional areas roughly equal

in subgraph c) of Figure 2.15. A shift occurs however, and the folds adopt

a convergent profile with respect to flow direction. None of the oscillatory

eigenvalues cross the zero-axis in subgraph d) of Figure 2.16, as expected for

critical damping. Rigid-body modes persist however.
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Figure 2.15: Time history of key variables for ingression for four-mass model,

source not coupled with waveguides, tissue critically damped. 0Pa > PL > −800Pa,
PM = 0Pa, x0 = 0.036cm. a) Spectrogram ; b) volumetric flow rate [cm3/s] ; c)
Vocal fold aperture areas [cm2
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Figure 2.16: Key measures for ingression for four-mass model, source not coupled

with waveguides, tissue critically damped. 0Pa > PL > −800Pa, PM = 0Pa,
x0 = 0.036cm. a) Sound pressure level [dB] ; b) Pitch [hz] ; c) Mucosal wave phase

delay [ms]; d) Largest real eigenvalue component ; e) Correlation of simulation

extrema (vsim) to in vacuo eigenmodes (veigen)

The aim of this study was to determine whether ingressive phonation could

be simulated via a lumped-parameter approach and if so, under what condi-

tions. As there is found to be a range of pressures for which there is sustained

oscillation in the foregoing ingression simulations, it can be said that phonation

can indeed be modeled in this way. The stability analysis predicts the range

of parameters where the oscillations of the folds are not completely damped
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out. The correspondence between the ranges of phonation and the parts of

the Re(λ) curve where at least one eigenvalue adopts a positive growth rate

suggests that the aerodynamic state feedback model is applicable.

The model was able to simulate both egression and ingression with only a

single parameter change, namely the lung pressure. While the aerodynamic

equations were reflected upon flow reversal, the dynamics of ingressive phona-

tion appear to be quite distinct from their egressive counterpart. The pitch

is consistently higher as was found by [34]. In trying to explain the higher

pitch, experimentalists have argued that the vocal fold tension must be greater

[31, 34], however the tension has not been changed at all in the present simula-

tions. There was also found to be a reduced range of phonation in ingression.

Since the energy transfer to the folds is from the fluid flow, it is reasonable to

expect that the system would not be able to gain energy as efficiently as the

flow is arrested by a narrowing glottis. The rapid sustained vocal fold oscilla-

tions just prior to closure have not yet been fully explained. It is premature

to assert that they are an artifact of the simulation. Figure 2.17 provides a

potential explanation for a decreased range of phonation for ingression relative

to that of egression. In egression (top of figure), two eigenvalues synchronize

with one adopting an increasingly positive growth rate and thus de-stabilizing

the system towards phonation [18, 23]. By contrast, in ingression the folds

move towards a lack of stability via a static divergence along the real axis.

The static divergence causes a rotation that shifts the folds from a rectangular

equilibrium position to a convergent one. In this new convergent state, at

least one eigenvalue then adopts a non-zero frequency and oscillation results.

However, upon further lowering the pressure and drawing the downstream

masses closer together, the flow is arrested and the aerodynamic feedback is

suppressed causing a return to stability and loss of phonation.
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Figure 2.17: Observed eigenvalue trajectories for egressive (top) and ingressive

(bottom) phonation with equilibrium matrices indicated

It is important to note that the mucosal wave direction was not imposed

on the simulation, but emerged from it as suggested by [23]. It was consis-

tently found that for ingressive phonation, the phase delay was negative in

the first (leftmost) oscillation region. This is in keeping with observations
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by experimentalists [33, 31]. This requires an update of Titze’s assertion that

“Surface-wave propagation in the mucosa (cover) must be from bottom to top.

Reversal of this direction would not produce oscillation.” [22]. It can perhaps

be said that, where the mucosal wave is the source of energy transfer, the

upstream mass must lead the downstream mass whether the flow is from or

towards the lungs. The secondary region of oscillation in ingression overturns

this assertion however since the phase delay is again positive in this region,

suggesting an energy transfer mechanisms that requires further elucidation.

2.4 Conclusion

It was found that the equations, geometry and tissue parameters used by pre-

vious authors for simulating egressive phonation could be extended to simulate

ingressive phonation without major theoretical or parameter adjustments be-

yond symmetrical reasoning. The range of PL values for which phonation was

observed was significantly reduced for ingression relative to that for egression

and were found to be −100Pa < PL < −200Pa and PL > 200Pa respectively

for a prephonatory half-width of 0.036 cm. This could be accounted for by the

suction force causing the folds to remain closed increasingly as PL was reduced

and arresting flow-induced oscillations. The frequency in ingression was typi-

cally higher than in egression as was found by Orlikoff [34]. However, while the

latter author speculated that this had to do with greater tension in the folds,

the present results and eigenmode vibrational analyses suggest that increased

frequency may be a general result of ingressive phonation, as tension was not

varied in this study. Orlikoff also observed increased flow in ingression [34] in

contrast to present findings. The difference can be explained by the possibility

of inspiratory muscle posturing leading to a greater prephonatory half-width

and therefore a larger glottal area and increased flow. There may also be a

contribution to the area and thus the flow rate from the large posterior glottic

opening seen in ingression [31]. The latter’s contribution to the flow was not

modeled here.

This study highlights the need for more experimental data comparing in-

gression and egression in terms of sound pressure levels, flow rates, pitch, lung
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pressure and resting position of the folds. As well, other variables may be con-

sidered in the study of ingression including the glottal angle and the tension

parameter.

This study shows that current techniques can in fact be utilized to simulate

ingressive phonation and thereby provides a unified theoretical framework for

both kinds of phonation.
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Chapter 3

Summary and outlook

3.1 Summary

The purpose of this study was to establish a general theoretical framework

encompassing both ingressive and egressive phonation. The specific objective

was to determine whether ingressive phonation could be simulated via lumped-

parameter approach and if so under what conditions. This was accomplished

by considering a recently developed four-mass lumped-parameter model [1]

that has been used to simulate egression and by further exploring its behavior

upon reversal of lung pressure and flow direction. The equations for the flow

were established through symmetrical reasoning. The system was then simu-

lated with the lung pressure either raised or dropped in a step-like manner and

the results in terms of the mucosal phase delay, pitch, sound-pressure level,

spectrogram, areas, and volumetric flow rates were recorded. It was found that

phonation did result in ingression but for a narrower region of the parameter

space then was the norm for egression.

A new aerodynamic feedback analysis was developed to explain the poten-

tial destabilizing effect of the flow upon the folds. The aerodynamic forces

were cast as a function of the state of the system and the input lung pressure.

It was found that the parameter regions of phonation for both egression and

ingression corresponded to regions where at least one eigenvalue adopted a

positive growth rate and non-zero frequency. For egression, the system moved

towards instability without any of the eigenvalues touching the real axis. For

ingression, eigenvalues met on the real axis with at least one moving into
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the positive real half-plane. This static divergence caused a rotation of the

folds’ surfaces such that the equilibrium position changed from rectangular to

convergent. With a further decrease in pressure, the folds were increasingly

drawn together throttling the flow and suppressing aerodynamic feedback and

thereby phonation.

The study was limited in several ways. A main limitation was that the

folds were assumed to have the same shape and properties regardless of flow

direction and pressure polarity. It is likely that the folds would not only be

drawn inward by negative pressures but also downwards towards the lungs.

Only the first effect was modeled in this study. As well, the distribution of

the mass density and stiffness properties of the folds may change along with

the nodal points of vibration [69]. This could be modeled by changing the

values of the mass and vertical position assigned to each oscillator along the

cover. A detailed finite-element model would give a clearer picture as to the

potential changes in oscillatory behavior from a negative pressure. A more de-

tailed aerodynamic simulation of the fluid flow via the Navier-Stokes equations

would also be appropriate with consideration of the flow’s time dependency

and viscosity at small aperture sizes.

The main contributions of this work are threefold: a unified framework for

both ingressive and egressive phonation highlighting distinctions between the

two, a generalized treatment of vocal folds to allow for an arbitrary number

of cover masses, and an aerodynamic feedback analysis capable of predicting

phonation parameter ranges. Since ingressive phonation essentially inverts

the vocal folds’ motion, reversing the directions of horizontal and vertical

wave propagation [31], future experimental studies including EGG analysis

and high-speed cameras coupled with the theoretical analysis and results of

this study, could provide greater insight into vocal fold dynamics not only

in ingression but in egression as well [33, 34]. As Orlikoff states: “renewed

examination of phonation produced using ingressive airflow may yield impor-

tant insight regarding mucosal and laryngeal airway dynamics [34].” Such in-

sight could inform both vocal pedagogy and clinical treatments for vocal fold

pathologies.



CHAPTER 3. SUMMARY AND OUTLOOK 65

3.2 Future work

Future work based on this study could consider the following:

• the effect of changing the prephonatory half-widths as a result of muscle

activation [69]

• the incorporation of the false vocal folds

• the ability of the masses to oscillate along more than one axis including

lateral, vertical and horizontal motions

• the nonlinear tissue stiffness

• the role of the cover coupling springs in determining the mucosal wave

and consequent energy transfer

• a more detailed subglottal tract and a rounded non-uniform supraglottal

tract with inclusion of the nasal tract

• a prephonatory profile of the folds with either a divergent or convergent

shape

• a more detailed prediction of the flow separation vertical location along

the folds

In particular, future work towards understanding the rapid sustained os-

cillations at very small aperture sizes would be justified.

3.3 Closing remarks

The modeling and analysis presented in this work drew together theory and

techniques from several disciplines including vocal science, fluid dynamics, con-

trol theory, mechanics, vibration and signal processing. It is remarkable that

such a commonplace human activity as phonation, typically explored from

an arts or medical perspective, should involve so many branches of engineer-

ing. This highlights the ongoing need for greater dialogue between the arts,

medicine and science and the availability of generalist engineering education.
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Appendix A

Equivalency of state-space representation

of the tissue dynamics to Newton’s second

law of motion

Newton’s second law form for the behavior of the oscillators:

m1ẍ1 + r1ẋ1 + k1x1 + (x1 − x2)k12 = F1 (A.1)

m2ẍ2 + r2ẋ2 + k2x2 + (x2 − x1)k12 = F2 (A.2)

Proof that the following is equivalent to Newton’s second law:

d

dt

�
x

ẋ

�
= A

�
x

ẋ

�
+

�
0

M
−1
F

�
(A.3)

where A is defined by:

A =

�
0 I

−M
−1
K −M

−1
R

�
(A.4)

Positional vector:

x =

�
x1

x2

�
(A.5)
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The state is the combination of both positions and velocities:

�
x

ẋ

�
=





x1

x2

ẋ1

ẋ2




(A.6)





ẋ1

ẋ2

ẍ1

ẍ2




=

d

dt





x1

x2

ẋ1

ẋ2




(A.7)

M =

�
m1 0

0 m2

�
(A.8)

R =

�
r1 0

0 r2

�
(A.9)

K =

�
k1 + k12 −k12

−k12 k2 + k12

�
(A.10)

M
−1
R =

�
1/m1 0

0 1/m2

��
r1 0

0 r2

�
=

�
r1/m1 0

0 r2/m2

�
(A.11)

M
−1
K =

�
(k1 + k12)/m1 −k12/m1

−k12/m2 (k2 + k12)/m2

�
(A.12)

F =

�
F1

F2

�
(A.13)

M
−1
F =

�
1/m1 0

0 1/m2

��
F1

F2

�
=

�
F1/m1

F2/m2

�
(A.14)
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Recalling the definition for the A matrix:

A =





0 0 1 0

0 0 0 1

−(k1 + k12)/m1 k12/m1 −r1/m1 0

k12/m2 −(k2 + k12)/m2 0 −r2/m2




(A.15)

d

dt
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(A.16)

Applying the time derivative and multiplying out the matrices for each row

of A:

−(k1 + k12)

m1
x1 +

k12
m1

x2 −
r1
m1

ẋ1 +
F1

m1
= ẍ1 (A.17)

k12
m2

x1 +
−(k2 + k12)

m2
x2 +− r2

m2
ẋ2 +

F2

m2
= ẍ2 (A.18)

Which are identical to the Newton’s second law expressions as required.


