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Abstract

The pioneering paper by (Kuhn, W., Grün, F., 1942. Kolloid-Zeitschrift 101, 248-271) pro-

vided a thorough understanding of the finite extensibility of the freely-jointed chain model in

polymer science. In their work, the relative number of conformations are evaluated through

the introduction of a non-Gaussian probability distribution for the free (subjected to zero

force) chains. However, (Flory, P., 1969. Statistical Mechanics of Chain Molecules. Inter-

science Publishers) pointed out that this distribution does not truly describe the probability

for the end-to-end vector of the chain. To tackle this issue, a corrected probability distribu-

tion was proposed and compared with the original form. Despite this improvement, numerous

research studies still rely upon the original formulation of Kuhn and Grün, without being

aware of Flory’s correction. The present work attempts to clarify the fundamental differ-

ence between the two probabilities through recognition of the distinct underlying ensembles.

Then, the influence of this correction is studied on the force-extension relationship of the

individual chain, as well as on some well-known micromechanics-based network models. Fi-

nally, it is demonstrated that misuse of the probability distribution can lead to significant

discrepancy in the force-extension relationship of a coil-rod chain, a model for the building
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element of some biopolymer gels.

Keywords: Kuhn-Grün model, Freely-jointed chain model, Inverse Langevin function,

Flory’s correction, Statistical mechanics

1. Introduction

The statistical mechanics of the freely-jointed chain (FJC) model has a profound influence

on the development of micromechanical insight into the macroscopic properties of polymers.

Owing to its simplicity, the model has been widely applied in various branches of polymer

science (Rubinstein and Colby, 2003). A FJC is assumed to consist of n consecutive rigid

segments with identical length b (the Kuhn length) such that each segment is free to rotate in

any direction. To determine the entropic elasticity of the chain, the primary objective of the

FJC model is to evaluate the entropy of the system or equivalently the number of available

conformations of the chain at any given end-to-end vector r. Alternatively, the relative

number of chain conformations can be related to the probability distribution of a “free”

chain (not subjected to any forces) as a function of r, i.e., W0(r). More precisely, W0(r)dr

denotes the probability of finding one end of the free chain at volume element dr, while

the other end is fixated at the origin. The simplest possible treatment is to postulate the

Gaussian distribution for W0(r) (Kuhn, 1936). However, studies show that this distribution

becomes increasingly inadequate as the end-to-end distance of the chain |r| approaches the

fully extended length nb, especially with unrealistic nonzero values in the impermissible

range |r| ≥ nb.

To overcome this difficulty, Kuhn and Grün (1942) propounded a more elaborate the-

ory for the probability distribution of FJC with large n in the entire range of extension.
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Their proposed non-Gaussian formulation led to a probability distribution involving the in-

verse Langevin function (Hereafter referred to as the inverse Langevin distribution), which

recovers the Gaussian distribution for small end-to-end distance (|r| → 0). The pertinent

force-extension relationship was also derived based on this probability distribution. Later,

Treloar (1946) provided an exact form of the probability distribution for arbitrary values of

n and end-to-end vector r, at the cost of considerable sacrifice of simplicity. Accordingly,

for practical purposes, the inverse Langevin distribution and the resulting force-extension

relation are still in the spotlight of abundant research studies. They have contributed to

different fields including the modelling of single chain behaviour (Volkenshtĕın et al., 1963;

Treloar, 1975; Smith et al., 1992; Weiner, 2002; Rubinstein and Colby, 2003), its augmented

versions accounting for extensibility (Smith et al., 1996; Fiasconaro and Falo, 2019; Buche

et al., 2022) and coil-rod structure (Higgs and Ball, 1989), the development of macroscopic

constitutive equations for single polymer networks (Wang and Guth, 1952; Treloar, 1954;

Treloar et al., 1979; Arruda and Boyce, 1993; Wu and Van Der Giessen, 1993; Boyce and

Arruda, 2000; Horgan and Saccomandi, 2002; Miehe et al., 2004; Bahrololoumi et al., 2020;

Zhao et al., 2022), filled elastomers (Dargazany et al., 2014), double networks (Zhao, 2012;

Liu et al., 2015; Zhong et al., 2020), nanocomposite hydrogels (Wang and Gao, 2016) and

mechanochemically responsive polymers (Wang et al., 2015), as well as the study of photoe-

lasticity (Treloar, 1954; Sun et al., 2021), damage and fracture phenomena (Lavoie et al.,

2016; Mao et al., 2017; Vernerey et al., 2018; Lamont et al., 2021; Lei et al., 2021; Arunachala

et al., 2021), to name but a few.

In contrast to the wide application of the model by Kuhn and Grün (1942), a noteworthy

correction model by Flory (1969) has received scant attention. Specifically, Flory pointed out
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that the proposed probability by Kuhn and Grün (1942) is established on the premise that

the chain conformations have a given end-to-end displacement along an arbitrarily chosen

direction rather than having a specific end-to-end vector r. Subsequently, a modified version

of the probability distribution W0(r) was provided. How should one understand the source of

deviation between the original work by Kuhn and Grün and the modified version? What is

the implication of this modification to the force-extension relationship for a single chain? How

much will it impact the micromechanics-based constitutive models for polymer networks?

The present study aims at answering these questions through a critical examination on the

derivation of W0 (r) and its influence on several network models.

For this purpose, in Section 2, different statistical ensembles are introduced to ex-

pound the difference between their associated probability distributions and clarify the force-

extension relationship that can be derived from each ensemble. It is emphasized that both

“force” and “extension” can have different meanings in different ensembles. Next, in Sec-

tion 3, Flory’s modification is implemented to the probability by Kuhn and Grün to deter-

mine the corrected force-extension relationship which is given by

〈fx〉r = kBT
β

b
+ kBT

(
1

x
− β

nb
(
1− β2csch2β

)
)
. (1)

In this equation, 〈fx〉r is the average force applied at the ends of an FJC with a fixed end-

to-end vector r = xi, kB is the Boltzmann constant, and T is temperature. β is defined

as

β = L −1
( x

nb

)
, (2)

where L −1 (· · · ) is the inverse of the Langevin function L (· · · ) and L (s) = coth (s)−1/s.

4



In comparison, the original force-extension relationship derived by Kuhn and Grün is

〈fx〉 = kBT

b
β. (3)

It will be shown that Eq. (3) predicts the average force on an FJC when its end-to-end

displacement in x direction is fixed while the displacements along y and z directions can

change freely. Fundamentally, 〈fx〉 and 〈fx〉r are different, but the former has been com-

monly used in the place of the latter. In Section 4, the preceding results are utilized to

extract the stress-stretch curves for several network models under different loading condi-

tions. Although results in Section 4 show that for large n the correction alters the results

only slightly, Section 5 demonstrates that misuse of the probability distribution can cause

large discrepancies, for instance, in the development of a force-extension relationship for a

coil-rod structure.

2. FJC in different ensembles

In order to understand the nature of Flory’s correction, it is beneficial to study several

pertinent ensembles. In this section, different ensembles are described in detail, all with

fixed temperature T and fixed number of Kuhn segment n.

2.1. Isothermal-isotension ensemble

Suppose that a chain is fixed at one end, while the other end is subjected to a force f.

The corresponding partition function is dependent on f, temperature T , and n. For FJC,

the exact form of the isothermal-isotension partition function is given by (Flory, 1969)

Q(f, T, n) = Z0

{
sinh

[
(kBT )

−1 b|f|]
(kBT )−1b|f|

}n

, (4)
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where |f| denotes the magnitude of vector f. Z0 refers to the same partition function in the

absence of any external force f (i.e., for a free chain). The Gibbs free energy is calculated

from Q(f, T, n) by

G(f, T, n) = −kBT lnQ(f, T, n). (5)

Thus, the average of the chain’s end-to-end vector is

〈r〉 = −∂G

∂f
= kBT

∂Q/∂f

Q
. (6)

Now, if the coordinate system is set up such that the x axis is aligned with the force direction

(see Fig. 1a), then

|f| = fx, (7)

fy = fz = 0. (8)

The isothermal-isotension partition function (4) is rephrased as

Q(fx, fy = 0, fz = 0, T, n) = Z0

{
sinh

[
(kBT )

−1 bfx
]

(kBT )−1bfx

}n

. (9)

Substitution of Eq. (9) into (6) leads to

〈x〉 = nbL

(
fxb

kBT

)
, (10)

and

〈y〉 = 〈z〉 = 0, (11)

since the partition function (9) is independent of fy and fz.
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2.2. Canonical ensemble

Suppose that the chain ends are fixed at two points separated by the end-to-end vector

r. Different conformations of the chain constitute the canonical ensemble with fixed r, T ,

and n. The Helmholtz free energy is related to the canonical partition function Z(r, T, n) by

Ψ(r, T, n) = −kBT lnZ(r, T, n). (12)

The average force exerting on the chain ends is

〈f〉 = ∂Ψ

∂r
= −kBT

∂Z/∂r

Z
. (13)

If the coordinate system is chosen such that the x axis is along the end-to-end vector (see

Fig. 1b), then

|r| = x, (14)

y = z = 0. (15)

Herein, the canonical partition function is written as Z(x, y = 0, z = 0, T, n), and Eq. (13)

is simplified to

〈fx〉r = −kBT
∂Z/∂x

Z
, (16)

where 〈fx〉r denotes the component of the average force along x direction. Since Z(x, y =

0, z = 0, T, n) is independent of y and z,

〈fy〉r = 〈fz〉r = 0, (17)

and 〈fx〉r is equal to the magnitude of 〈f〉. The subscript r emphasizes this is the average

force along the end-to-end vector of the chain.
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To compute the canonical partition function, we note that Z(r, T, n) and Q(f, T, n) are

related via the Laplace transform (Flory, 1969)

Q(f, T, n) =

∫∫∫
Z(r, T, n)exp

[
(kBT )

−1 f · r] dr. (18)

In essence, Q(f, T, n) is determined by summing all possible Z(r, T, n) over different r,

weighted by the Boltzmann factor exp
[
(kBT )

−1 f · r]. By substituting Eq. (18) into Eq. (6),

we obtain

〈r〉 =
∫∫∫

rWf(r) dr, (19)

where Wf(r) is the distribution function defined as

Wf(r) =
Z(r, T, n)exp

[
(kBT )

−1 f · r]∫∫∫
Z(r, T, n)exp

[
(kBT )

−1 f · r] dr
. (20)

Wf(r)dr can be identified as the probability that, under the force f, one end of the chain is at

dr while the other end is fixed at the origin. By setting f = 0, one can obtain the probability

density for one chain end to be at r in the absence of applied force, while the other end is

fixed at the origin:

W0(r) =
Z(r, T, n)∫∫∫
Z(r, T, n) dr

. (21)

For a chain subjected to zero force the probability W0(r) merely depends on the end-to-

end distance r and not direction of r; hence the vector r can be replaced by r in W0(r)

and Z(r, T, n). Since W0(r) is proportional to Z(r, T, n), it can replace Z(r, T, n) in the

calculation of 〈fx〉r in Eq. (16), i.e.,

〈fx〉r = −kBT
∂W0(x, y = 0, z = 0)/∂x

W0(x, y = 0, z = 0)
. (22)
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Now we define another probability distribution as follows. Let pf(x)dx be the probability

of finding one end of a chain under applied force f located in dx along x−direction, while

the other end is fixed at the origin. Apparently,

pf(x) =

∫ +∞

y=−∞

∫ +∞

z=−∞
Wf (r) dydz. (23)

Substitution of (20) into (23) yields

pf(x) =
Π(x, fy, fz, T, n)exp

[
(kBT )

−1 fxx
]∫

Π(x, fy, fz, T, n)exp
[
(kBT )

−1 fxx
]
dx

, (24)

where

Π(x, fy, fz, T, n) =

∫ +∞

y=−∞

∫ +∞

z=−∞
Z(r, T, n)exp

[
(kBT )

−1 (fyy + fzz)
]
dydz. (25)

In the absence of applied force, the corresponding probability simplifies to

p0(x) =
Π(x, fy = 0, fz = 0, T, n)∫
Π(x, fy = 0, fz = 0, T, n) dx

. (26)

Through analogy of the above result with (21), one can introduce a new ensemble which has

Π(x, fy = 0, fz = 0, T, n) as its partition function. We name this ensemble “semi-canonical

ensemble” and explain it in detail below.

2.3. Semi-canonical ensemble

Consider an ensemble of chains with one end fixed at the origin. The other end is fixed

along an arbitrarily chosen x axis, while its y and z positions are free to move. Moreover,

the force applied at this end is zero along y and z directions. Evidently, this is neither

the isothermal-isotension nor the canonical ensemble. The only difference between this new
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ensemble and the isothermal-isotension ensemble is the specification of x rather than fx (see

Fig. 1c). It can be seen that

〈y〉 = 〈z〉 = 0. (27)

Similar to Eq. (16), the average of the applied force is given by

〈fx〉 = −kBT
∂Π(x, fy = 0, fz = 0, T, n)/∂x

Π(x, fy = 0, fz = 0, T, n)
. (28)

By using Eq. (26), the average force can also be calculated from p0(x):

〈fx〉 = −kBT
∂p0(x)/∂x

p0(x)
. (29)

3. FJC model of Kuhn and Grün

Kuhn and Grün (1942) determined the probability that the end-to-end vector of a FJC

under no external force has a projection of x along an arbitrarily chosen x axis without

constraints on y or z. This is precisely p0(x)dx discussed in Section 2.3. The expression

derived by Kuhn and Grün is

p0(x) = c0

(
sinhβ

β

)n

exp

[
−βx

b

]
, (30)

where c0 is the normalization factor and β is defined in Eq. (2). The detailed proof of Eq. (30)

was provided in Kuhn and Grün (1942) as well as in Flory (1969). However, for the sake

of self-containment, the derivation is given in Supplementary Material, Section S1. With

the aid of (29), the associated force-extension relationship is obtained as given in Eq. (3).

It should be emphasized that x here does not denote the end-to-end distance, instead it is

the end-to-end displacement of the chain along x direction. Therefore, 〈fx〉 represents the
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Figure 1: Different ensembles for a FJC with fixed number of Kuhn segments under constant

temperature: (a) the isothermal-isotension ensemble in which the applied force is specified

such that fy = fz = 0; (b) the canonical ensemble in which the components x, y, and z are

fixed such that y = z = 0; (c) the semi-canonical ensemble in which different conformations

occur with fixed x and fixed fy = fz = 0.
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average force applied along the x axis in order to fix the end-to-end displacement along x

while allowing the displacements along y and z directions to freely change. This average

force is described in the framework of the partition function Π(x, fy = 0, fz = 0, T, n) rather

than Z(x, y, z, T, n). However, in Kuhn and Grün (1942) an erroneous distribution W ∗(r) is

derived by simply replacing x with r,

W ∗(r) = c0

(
sinhβ∗

β∗

)n

exp

[
−β∗r

b

]
, (31)

where β∗ = L −1
( r

nb

)
.

When the FJC model is applied to evaluate the entropy of a polymer network, the proba-

bility relevant to the chains is W0 (r) = W0 (x = r, y = 0, z = 0) discussed in Section 2.2, and

the relevant force-extension relationship is given by Eq. (22). However, (3) and the proba-

bility distribution (31) are used by many researchers unwittingly. W0(r) can be determined

from p0(x) using the following relation (Treloar, 1946)

−
(
dp0(x)

dx

)
x=r

= 2πrW0(r). (32)

The proof of the above relation is deferred to Supplementary Material, Section S2. By

adopting the chain rule, the left-hand side of the above relation is rephrased as

dp0(x)

dx
=

(
∂p0(x)

∂β

)
x

dβ

dx
+

(
∂p0(x)

∂x

)
β

. (33)

On the other hand the following identity holds for Eq. (30):

(
∂p0(x)

∂β

)
x

= c0n (β sinhβ)n exp

[
−βx

b

](
cothβ − 1

β
− x

nb

)
= 0. (34)

Now applying Eqs. (33) and (34) in Eq. (32) yields

W0(r) =
c0β

∗

2πbr

(
sinhβ∗

β∗

)n

exp

[−β∗r
b

]
, (35)

12



which was mentioned in Flory (1969). Finally, substitution of Eq. (35) in (22) leads to

Eq. (1). It should be noted that in Eq. (1) the second term is not singular as x → 0, since

1−β2csch2β ∼ β2/3 for small β and thus the second term converges to 0. The vast majority

of the works using force-extension relationship of FJC have adopted 〈fx〉 in (3) rather than

〈fx〉r in (1). Unlike (3), 〈fx〉r is not merely a function of x/nb, but also depends on n

separately. Fig. 2 depicts the relative difference

∣∣∣∣〈fx〉r − 〈fx〉
〈fx〉r

∣∣∣∣ vs. x/nb. Decreasing n as

well as increasing x/nb give rise to larger discrepancies between the two formulations. On the

other hand, for n ≥ 50 the relative difference is less than 2%. The inset also compares the

normalized forces 〈fx〉rb/kBT with 〈fx〉b/kBT against x/nb for n = 5. Clearly, 〈fx〉b/kBT

overestimates the stiffness of the chain, especially near the fully extended state.
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Figure 2: The relative difference between the average forces predicted by Eqs. (3) and (1)

vs. the normalized end-to-end distance, for n = 5, 15, 50, and 150. The inset shows the

normalized force vs. x/nb obtained from (3) and (1) for n = 5.

The above results show that increasing n causes the force-extension curves predicted

from Eqs. (3) and (1) to converge. As n → ∞, the statistical average of each property can

be replaced by its thermodynamic value. In other words, the three pictures in Fig. 1 all

correspond to the scenario where y = z = 0, fy = fz = 0, and fx is applied to obtain x.

Hence, the different ensembles can be employed interchangeably in the thermodynamic limit.

Experimentally, single molecule stretching has been achieved by techniques such as atomic

force microscopy (AFM). In the majority of the cases, the force-extension relationship given
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by Eq. (3) or similar entropic elasticity based models is able to fit the experimental data

up to a certain extension (Smith et al., 1992; Ghatak et al., 2000), beyond which entropic

elasticity is insufficient and enthalpic elasticity needs to be considered. The good agreement

with experimental data is due to the large length of the chain (i.e., large n), despite the

application of erroneous Eq. (3). We should also point out that the corrected Eq. (1) suffers

from the same limitation as Eq. (3) in the high-stretch regime, where adding extensibility is

necessary to match experimentally measured force-extension relationship.

4. Implementation in macroscopic constitutive models

In the construction of macroscopic network models two factors are of cardinal importance:

(a) the arrangement of the chains constituting the whole network structure; (b) the relation

between force and end-to-end distance of the individual chains. For those models that use

the FJC to account for entropic elasticity, the force-extension relationship of the chain plays

an important role in the subsequent stress-stretch relation for the network. In accordance

with the wide usage of the original inverse Langevin statistics, well-known models such as

the three chain model (Wang and Guth, 1952), eight chain model (Arruda and Boyce, 1993),

full network model (Wu and Van Der Giessen, 1993) and micro-sphere model (Miehe et al.,

2004) utilized the 〈fx〉-x relation in (3). In the current study, it is of interest to probe into

the influence of using the 〈fx〉r-x relation (1) for deriving the macroscopic stress-stretch

relation rather than Eq. (3). Herein, the full network and micro-sphere models (without

any inclusion of tube-like constraints) are revisited with both (3) and (1); subsequently the

pertinent results are compared for the equi-biaxial, uniaxial, and pure shear tests.

From macroscopic viewpoint, the Helmholtz free energy density (energy per unit reference
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volume) Ψ is defined as a function of deformation gradient F and temperature T :

Ψ = Ψ0 +Ψ(F, T ), (36)

where Ψ0 is the Helmholtz free energy density of the reference configuration. For incom-

pressible materials, the Cauchy stress tensor is defined as

σ =
∂Ψ

∂F
FT − P I, (37)

where I and P are the identity tensor and unknown hydro-static pressure, respectively.

For the collection of chains forming a network, Ψ can be written as the summation of the

Helmholtz free energy of the individual chains in a unit reference volume. Thus,

Ψ(F, T ) =
m∑
i=1

ψi(λ
N), (38)

where m is the number of chains in the unit reference volume, and λN refers to the micro-

stretch of the chain initially oriented along unit vector N. The micro-stretch is defined as

the ratio of the current chain end-to-end distance to the corresponding value in the reference

configuration, r0. ψi is the Helmholtz free energy of the ith chain and can be related to 〈fx〉r

by

ψi(λ
N) =

∫ r0λN

r0

〈fx〉r dx. (39)

For the full network model (Wu and Van Der Giessen, 1993) the chains are assumed to

be uniformly distributed in all directions in the reference configuration. Hence

Ψ(F) =
1

4π

∫∫
S

mψ(λN)dS, (40)
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where S denotes a spherical surface with unit radius in the reference configuration and ψ = ψi

given in (39). Insertion of the above relation in Eq. (37) yields

σ + P I =
1

4π

∫∫
S

m
∂ψ(λN)

∂λN

∂λN

∂F
FTdS. (41)

By taking r0 =
√
nb as the end-to-end distance of the chain in the reference configuration,

one can deduce that

σ + P I =
1

4π

∫∫
S

m
√
nb〈fx〉r

∣∣∣
x=

√
nbλN

(
∂λN

∂F
FT

)
dS. (42)

To construct a proper relationship between the macroscopic deformation and micro-stretch,

let us define the macro-stretch of a line element located along direction N in the reference

configuration:

λ̄N =
√

N · FTFN. (43)

For the affine network models, it is assumed that the micro-stretch of the chain is identical

to the macro-stretch along the same direction N, i.e.,

λN = λ̄N. (44)

Fig. 3(a) and 3(b) illustrate this relationship. Now, applying Eqs. (43) and (44) in Eq. (42)

leads to

σ + P I =
1

4π

∫∫
S

m
√
nb〈fx〉r

∣∣∣
x=

√
nbλN

(
λ̄N

)−1 (
N · FTFN

)
dS, (45)

which completes the constitutive relation for the full network model.

Analogous to the previous treatment, a non-affine micro-sphere model can be developed

in which (44) is no longer assumed. Instead, the following relation

λ∗ =
(

1

4π

∫∫
S

(
λ̄N

)p
dS

)1/p

(46)
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is introduced to replace λN, where p is an additional material parameter of the model. λ∗ is

essentially the stretch of the volume element averaged over different directions, as illustrated

by Fig. 3(a) and 3(c). The free energy density of the network, Ψ (F), can now be simplified

to mψ(λ∗), where ψ(λ∗) =
∫ r0λ∗

r0

〈fx〉rdx. The Cauchy stress tensor is then given by

σ + P I = m
∂ψ(λ∗)
∂λ∗

∂λ∗

∂F
FT. (47)

Applying (46) in the above relation and assuming the end-to-end distance of
√
nb in the

reference configuration results in

σ + P I =
1

4π
(λ∗)1−p m

√
nb〈fx〉r

∣∣∣
x=

√
nbλ∗

∫∫
S

(
λ̄N

)p−2 (
N · FTFN

)
dS. (48)

It should be emphasized that in the present formulation, the tube-like constraints on the

individual chains are excluded for the sake of simplicity. In this case, the non-affine micro-

sphere model with p = 2 collapses to the eight-chain model (Miehe et al., 2004).
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Figure 3: Schematic illustrations for the relationship between macroscopic stretch and mi-

croscopic chain extension in the full network and micro-sphere models. (a) Macroscopic de-

formation where a line element AB, originally oriented along N with length dX, is deformed

into λ̄NdX. (b) The full network model with affine deformation where the micro-stretch of

the chain λN is assumed equal to the macro-stretch λ̄N. The ellipsoid drawn indicates the

dependence of λN on N. (c) The micro-sphere model with non-affine deformation where the

micro-stretch of the chain λ∗ is obtained by an averaging process over different directions

(indicated by the sphere drawn). In both (b) and (c) the initial end-to-end distance of the

chain is considered as
√
nb.

Eqs. (45) and (48) connect the deformation gradient F to the Cauchy stress σ; however,

the selection of proper force-extension relation of the individual chains is a key factor in the
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constitutive equations. By applying different relations such as those given in Eq. (3) or (1),

different stress states in the macroscopic sample can be obtained for the same deformation.

Fig. 4 displays the normalized Cauchy stress σ11/G vs. the principal stretch λ1 in equi-

biaxial test, uniaxial test, and pure shear test for both affine (Eq. (45)) and non-affine models

(Eq. (48)). G = mkBT is the shear modulus. In the non-affine model, the parameter p is set

to 2 to recover the eight-chain model. The results are provided with different force-extension

relationships (3) and (1) for n = 10 in order to depict the impact of Flory’s correction at the

macroscopic level. All integrations over the unit sphere were calculated numerically through

the 21-point integration scheme of Bažant and Oh (1986).

By introducing the following dimensionless quantity as a measure of deviation

η =
1√

G(λ̂− 1)

∫ λ̂

1

√∣∣∣σ(1)
11 (λ1)− σ

(2)
11 (λ1)

∣∣∣dλ1 (49)

the total difference between the stress components σ
(1)
11 and σ

(2)
11 can be evaluated from the two

different methods (superscripts (1) and (2) represent the use of Eqs. (3) and (1), respectively).

The variable λ̂ denotes the stretch at which the sample encounters chain locking without any

further extension. All figures are drawn for extension λ1 between 1 and λ̂. Since the stress

components are proportional to λ−1
1 as λ1 → λ̂, the square root function is introduced to the

integrand to ensure convergent integration for η. Based on η reported in the plots, for the

full network model (Figs. 4a, 4c, 4e) the normalized stress in the equi-biaxial test possesses

the maximum difference, while the differences for uniaxial and pure shear tests are smaller

and approximately the same. In the eight-chain model (Figs. 4b, 4d, 4f), the equi-biaxial

test has the minimum departure between the curves, while the uniaxial and pure shear tests

exhibit larger deviations. Furthermore, comparison between the full network and eight-chain
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models shows larger η for the latter. Hence, the eight-chain model is more sensitive to the

correction of the force-extension relationship.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The normalized stress σ11/G vs. λ1 for equi-biaxial test in (a)-(b), uniaxial test in

(c)-(d), and pure shear test in (e)-(f). (a), (c), (e) represent the affine (full network) model,

while (b), (d), (f) display the non-affine micro-sphere model with p = 2. In all plots, λ1 is

the principal stretch in direction 1 (horizontal), and the other two principal directions are

vertical, 2, and perpendicular to the page, 3. σ11 is the normal stress in direction 1. In pure

shear, the deformation is given by x1̄ =
√

1 + γ2X1̄ + γX2̄, x2̄ = γX1̄ +
√

1 + γ2X2̄, and

x3̄ = X3̄ where xi and Xi, i = 1̄, 2̄, 3̄ respectively denote the spatial and material coordinates.

Directions 1̄ and 2̄ are shown in the insets of (e) and (f).


