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Abstract

This dissertation describes the AURORA project, th a t develops approaches an d  techniques for large- 

scale da ta  integration. The focus of the project is on the following:

1. Scalable mediation. Adding and removing da ta  sources to /from  the access scope of a d a ta  

integration system should be easy.

2. Flexible mediation. Specific properties of d a ta  sources, such as da ta  models, query processing 

capabilities, and availability, should be dealt with by the system at run-tim e.

AURORA consists of three components: (1) a  two-tiered mediation model and flexible da ta  model 

support; (2) mediation methodologies and M ediator A uthor’s Toolkits (MATs); and (3) query models 

and processing techniques.

The two-tiered mediation model m andates th a t da ta  integration be performed in two steps: 

homogenization followed by integration. This model is designed to enable a  divide-and-conquer 

approach towards data  integration. D ata sources are homogenized independently and in parallel, 

before they are integrated. AURORA provides specialized m ediators to  support homogenization 

and  integration. The general principle of designing AURORA mediators is “semi-automatic homog

enization, automatic integration”. The homogenization mediators are equipped with a M ediator 

A uthor’s Toolkit (MAT) to assist m ediator au thors in working with semantics. A MAT m andates a 

mediation methodology th a t prescribes an approach of system atically identifying and resolving se

m antic mismatches. AURORA integration m ediators provide a  framework for autom atic integration 

of homogenized sources.

AURORA provides mediators th a t support either the relational da ta  model or an object-oriented 

d a ta  model (ODMG 2.0). The flexible da ta  model support in AURORA allows applications to select 

d a ta  models according to their d a ta  access requirem ents. Moreover, sources can be integrated as long 

as they support a  relational or an object-oriented interface (by themselves or through a  w rapper). 

Thus, the am ount of work in “upgrading” d a ta  model is reduced; this potentially allows a  larger 

variety of da ta  sources to be integrated w ith less effort.

Query processing in various AURORA m ediators employs different techniques for m anipulating 

data . In the homogenization m ediators, query processing is based on M ediation Enabling Algebras 

(MEAs), which provide operators to enable m anipulation of d a ta  to remove a wide range of se
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m antic mismatches. These MEAs are also used for algebraic query optim ization. The integration 

m ediators deal with only instance level conflicts, since all o ther types of sem antic differences have 

been removed by homogenization. AURORA integration m ediators employ an integration operator 

th a t retains instance level conflicts and  provide the applications w ith special query models, called 

Conflict Tolerant (CT) query models, to  deal with the conflicts a t query tim e. The key is to provide 

enough num ber of levels of tolerance w ithout leaving the application overwhelmed.

Four types of AURORA m ediators are described in this dissertation: AURORA-RH. AURORA- 

RI, AURORA-OH, and AURORA-OI. The homogenization m ediators, AURORA-RH and AURORA- 

OH, are each equipped with a MAT. The CT query model used by the AURORA-RI mediator, and 

related query processing techniques, is described in detail. T he relational m ediators have been im

plemented. A prototype system th a t  dem onstrates the AURORA approach and  techniques is also 

described.
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Chapter 1

Introduction

A significant challenge facing the database field has been accessing multiple, heterogeneous data  

sources. Connecting to multiple d a ta  sources from a single application is easy, but accessing them 

transparently  is difficult due to the heterogeneities in platform, s tructu re , and semantics among the 

sources. An Integrated Data Access Middleware System  (EDAMS) is a  software system that provides 

applications with one-stop d a ta  services using d a ta  from multiple heterogeneous and autonomous 

d a ta  sources. EDAMSs are middleware systems; they are non-intrusive, respecting the autonomy 

of the d a ta  sources involved, and they deal with the complexities of accessing d a ta  from multiple 

sources on the applications’ behalf. IDAMSs support service views, which are interfaces through 

which d a ta  from multiple sources can be accessed transparently. A service view may consist of a 

loose collection of source schemas presented in a common data  model acceptable to  the applications. 

In this case, the applications pose queries against multiple schemas th a t often overlap in semantics; 

m ism atches and inconsistencies among these schemas must be dealt w ith a t query time. More 

often, a  service view is integrated, allowing applications to  access m ultiple sources as if they are 

a single source. Research on IDAMSs dates back to  the 1980s and has seen substantial progress 

[47, 7, 51, 51, 5, 44, 6, 88, 12, 50]. Recently, this area of research is experiencing a  resurgence due to 

the advances in d istributed com puting technology and the fast growing availability of the Internet. 

These advances give rise to new application scenarios and pose new requirem ents on IDAMSs. This 

dissertation describes a project, AURORA [97, 94, 98, 95], tha t develops framewrorks and techniques 

to address these challenges.

1.1 M o tiv a tio n

The availability of the  Internet and the Web changes the way people use digital information; it gives 

rise to new applications, such as electronic commerce and digital libraries, th a t use the Web as a 

media for conducting business and exchanging information anytim e anywhere. These changes bring 

the following new dimensions (among others) into IDAMSs:
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1. L a rg e  sca le  o f  access  sc o p e . Highly distributed, on-line applications, such as electronic 

commerce and digital libraries, demand access to a  large number of da ta  sources around the 

globe for information gathering. This calls for a paradigm  of scalable mediation, to allow large 

num ber of d a ta  sources to be integrated in a  dynamic and  incremented manner. Scalability in 

this context means the following:

• Integration of a  large num ber of sources should have the same degree of complexity and 

require the same level of expertise as integrating a small num ber of sources. For instance, 

integrating 500 sources should be as easy as integrating 2 d a ta  sources.

• The effort involved in adding/rem oving a  data  source should be manageable. For instance, 

tools and methodologies should be provided to assist the users in specifying how source 

da ta  should be transform ed in order to be integrated.

2. H ig h ly  d y n a m ic  a n d  d iv e rse  e n v iro n m e n t. D ata sources come and go autonomously at 

unpredictable rates and vary in availability and capabilities. Applications consuming the data 

range from business applications that usually prefer the relational d a ta  model, to multimedia 

applications th a t work with object data. These characteristics of the  environment calls for a 

paradigm  of flexible mediation. Flexibility in this context means the following:

• Flexible d a ta  model support. Applications should be given the  flexibility of using a data 

model of their choice. The effort in upgrading d a ta  models of the sources for integration 

purpose should be reduced.

• Dynamic access scope. Inclusion/exclusion of a da ta  source from the access scope should 

have no impact on the availability of the service view or the participation of other data 

sources.

Existing IDAMSs axe built with one of two paradigms: source-driven integration and application- 

driven integration.

S o u rc e -D riv e n  In te g ra t io n

In this paradigm, an integrated service view is derived by resolving the  various types of hetero

geneities among the participating sources. Such a  derivation is defined by an integration specifica

tion, which references the structure and semantics of individual sources directly. Adding or removing 

a source requires modification to this specification and/or to the service view itself. W hen the num

ber of sources is large and the sources have unpredictable availability, the  integration specification 

becomes difficult to  m aintain. Federated database systems [47, 88, 5, 44, 12] and some mediator 

systems [74] use this paradigm.
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A p p lic a t io n -D r iv e n  I n te g ra t io n

In  the application-driven integration paradigm, the service view is defined based on the application's 

d e w  of da ta , regardless of the structure or semantics of the participating  sources: it is a contract 

of d a ta  service between the application and the IDAMS. For a  source to participate in a  service 

view, the  IDAMS m ust be able to “understand” the d a ta  provided by this source. Representative 

system s using this paradigm  are SIMS [6] and Inform ation M anifold (IM) [50]. In SIMS, the service 

view is a  knowledge base th a t can be queried in the  target applications’ term s. A participating 

source describes its content in a domain model consisting of definitions of all the relevant term s and 

values in a  given ontology. SIMS then uses this knowledge for source selection and query planning 

when processing queries. In IM, the service view is a  relational view and a  participating source 

describes its content as a  materialized view of the service view. In  both  SIMS and IM, sources join 

and  leave the service view autonomously w ithout im pacting on the  availability of the service view 

or the participation of o ther sources.

The application-driven integration paradigm does not remove any semantic or structural het

erogeneities am ong the d a ta  sources but it allows for a  divide-and-conquer approach towards data  

integration: ra ther than  examining a large number of sources and trying to piece them  together to 

form a  service view, each source can be “hooked” into the service view independently. This effec

tively decomposes the task  of “integrating a large num ber of sources” into a set of smaller tasks of 

“hooking individual sources” into a  common service view. Conceivably, each source can be worked 

on independently and in parallel. While this is a prom ising idea, various issues m ust be resolved 

to  make such a  system  practical. This dissertation addresses some of these issues, including the 

following:

E a s y  p a r t ic ip a t io n  o f  d a ta  so u rc e s . Making the  source d a ta  understandable in the context 

of a  canonical application model (the service view) requires removal of a  wide range of mismatches 

in struc tu re  and semantics between the source schema and the  service view. As dem onstrated by 

previous work [7, 85, 44, 41, 64], working with semantics is hard . Therefore, provision of tools and 

facilities in support of this task is an im portant factor in usability of an IDAMS. IM does not provide 

such facilities. SIMS provides a model building tool, b u t describing source da ta  in a given ontology 

requires a  significant level of expertise.

T h e  im p a c t  o f  d a t a  in te g ra tio n  o n  q u e ry  p ro c e s s in g  m u s t  b e  ta k e n  in to  a c c o u n t. 

A lthough much is known about classifying and resolving sem antic heterogeneities [44]. the* impact 

of this process on query processing is seldom discussed. Most previous approaches assume that an 

IDAMS uses the  sam e set of data manipulation operators as trad itional DBMSs, although these 

operators m ust be evaluated with different techniques since the operand da ta  may reside in het

erogeneous and autonom ous sources. In order to en terta in  queries against the service views, an 

IDAMS needs da ta  m anipulation operators th a t are unknown to  trad itional DBMSs. For instance, 

in addition to select, join, and project, it may be necessary to apply  functions to columns in a table,
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to transform  tab le  names in to  da ta  values, and so on. It is im portan t to define these operators, 

and  to incorporate them  into an algebraic framework which enables algebraic or cost-based query 

optim ization in an  IDAMS. W ithout this framework, service view queries may become extremely 

expensive to evaluate in the presence of information overload.

In s ta n c e  le v e l co n flic ts  m u s t b e  d e a lt  w ith . Instance level conflicts arise when sources 

provide inconsistent d a ta  on the same application entity. Most system s dealing with large scale 

integration, such as IM, do no t deal with these conflicts. T he reason m ay be that, to protect the 

applications from the scale o f the access scope, an IDAMS aims at creating a single-source illusion, 

lim iting treatm ent of instance level conflicts to detecting and  resolving them  before query evaluation. 

Previous work has dem onstrated th a t conflict detection and  resolution is fundam entally expensive, 

requiring retrieval and m anipulation of laxge amounts of source data, and  the situation gets worse 

when the num ber of sources grows. However, it is unrealistic to assum e full consistency among a 

large number of autonom ous sources; instance level conflicts m ust be handled in spite of the scale of 

the  integration. Since creating single-source illusion significantly limits conflict-handling options, a 

compromise approach is established in AURORA by exposing the conflicts to the applications in a 

controlled and easy-to-m anage maimer, and in coarse granularities. Such a technology will improve 

the practical value of IDAMSs.

In this dissertation, the above-described issues are addressed within th e  context of the AURORA 

project. AURORA is based on a 2-tiered mediation model th a t realizes the application-driven 

integration paradigm . The goal of AURORA is to enable scalable m ediation , so chat adding and 

removing data  sources is easy, and efficient mediation, so th a t  m ediator queries can be processed 

w ithout retrieving irrelevant source data. Several enabling techniques are  developed:

1. The Mediator A u thor’s Toolkits that assist in the tasks of making sources "understandable" 

in the context of a canonical application model (the service view). These tools allow easy 

participation of da ta  sources in the access scope of a  target service view'.

2. The Mediation Enabling Algebras that are specially designed to support m ediator query pro

cessing and optim ization.

3. Conflict tolerant query model and processing techniques for querying potentially inconsistent 

data.

1.2 T he A U R O R A  A pproach

The AURORA project consists of three components: (1) 2-tiered m ediation model and flexible data 

model support; (2) m ediation methodologies and  M ediator A uthor’s Toolkits (MATs); and (3) query 

models and processing techniques. The general architecture adopted by AURORA is the mediator 

architecture [91]. AURORA m ediators cooperate with one another to achieve da ta  integration; they 

can be composed. However, AURORA mediators perform specific types of mediation prescribed by
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the AURORA mediation model that defines the tasks involved in the data  integration process, and 

the relationships am ong them.

1.2.1 2 -tiered  M ediation  M odel and F lex ib le  D a ta  M od el Support

The goal of m ediation in AURORA is to support d a ta  access through service views. A service view 

is a  database schema designed to satisfy the da ta  access requirem ents of a  class of applications. For 

these applications, the service view is a schema designed according to their view of da ta  in a data  

model they are familiar with. Given a service view, AURORA m ust enable the relevant applications 

to access da ta  residing in multiple sources through th is service view, typically by entertaining queries 

posed against it. AURORA achieves this goal by first establishing a m ediation model, and then 

developing techniques to  achieve each task  prescribed by this model.

AURORA models d a ta  integration as a  2-step process: homogenization followed by integration: 

each step is performed by respective mediators (Figure 1.1). Each integration mediator supports 

a  pre-defined service view. Data sources can participate in one or more of these service views by 

contributing d a ta  towards them. To do this, they must first be wrapped and then homogenized 

against the service view(s) they want to participate in. W rappers provide conformity in d a ta  model 

and query languages of da ta  sources; they do not deal w ith any other types of heterogeneities. 

Homogenization removes idiosyncrasies of a da ta  source so th a t it conforms to the target service 

view in structure  and semantics. If a source participates in m ore than one service view, it must be 

homogenized m ultiple tim e - once against each target service view - but it needs to be wrapped only 

once. Homogenization is where individual sources “ad a p t” themselves into a  form that is ready to be 

included in the access scope of the target service view; homogenization m ediators can be thought of 

as data adaptors. The result of homogenization is a homogenizing view  that satisfies a few conditions, 

prescribed by the AURORA’S mediation model, th a t ensure the da ta  provided through this view be 

interpreted appropriately by the target service view. Homogenization involves only one d a ta  source; 

multiple sources can be homogenized independently and in parallel. After being homogenized, a 

da ta  source participates in the target service view by describing the homogenizing view it supports 

to the relevant integration mediator. A data  source can remove itself from the scope of a  service 

view by informing the relevant integration m ediator th a t it contributes d a ta  towards this service 

view.

An integration m ediator is responsible for providing d a ta  through a  pre-defined service view 

using d a ta  contributed by participating sources through respective homogenizing views. Since ail 

the sources are homogenized before participating in the service view, integration is fully autom atic. 

In comparison, homogenization is a  more difficult task  and is assisted by AURORA tools.

AURORA’S m ediation model realizes the application-driven integration paradigm. It defines a 

divide-and-conquer approach towards da ta  integration. In particular, it enables decomposition of 

the d a ta  integration task into two smaller and simpler tasks: homogenization and  integration. While
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Application 1
Integration Integration
Mediator Mediator

Application 2

Homogenization Homogenization Homogenization
Mediator Mediator Mediator

Wrapper Wrapper

Homogenization
Mediator

= J

Figure 1.1: The 2-tiered M ediation Model of AURORA

integration is autom atic, homogenization requires hum an interference and it can be performed on 

individual sources independently and in parallel. In th is fashion, m ultiple parties can independently 

contribute to  the same integration effort. As discussed later, in Section 3.1.4, the m ediation model 

also facilitates the decomposition of complex technical issues in large-scale d a ta  integration systems, 

such as query  processing, into more manageable, sim pler problems.

Traditionally, an EDAMS supports a  canonical data model (CDM) as the only d a ta  model via 

which d a ta  are accessed. The CDM is often chosen for its power of expressing resolutions of mis

matches and  for representing a  large variety of d a ta  types. In recent years, object models have 

been favored as the CDM by a  number of systems [5, 89, 24, 44, 12]. However, based on the data  

access requirem ents and other historical or practical factors, applications may prefer to use a cer

tain  data  model. For example, the m ajority of existing database applications use a  relational da ta  

model. Forcing these applications to use an object d a ta  model may reduce the practical appeal of 

an EDAMS. Furtherm ore, using an object model as the  CDM may introduce the complexities of 

object-oriented DBMSs even when it is not called for.

The AURORA architecture and framework are designed to allow applications to  select a data  

model th a t best satisfies their data  access requirements. AURORA supports two popular data  

models: relational and object-oriented. Each AURORA m ediator is characterized by the type of 

mediation it performs - homogenization or integration - and the canonical da ta  model it supports - 

relational or object-oriented. Figure 1.2 shows the various AURORA m ediators. Necessary guidelines 

and techniques are provided to allow these mediators to co-exist and cooperate, as described in 

Chapter 3.

''"'''---^Canonical Data

Mediator''~~,~~^Moc*e l 
Type _

Relational Object-Oriented

Homogenization AURORA-RH AURORA-OH

Integration AURORA-RI AURORA-OI

Figure 1.2: AURORA M ediator Classification 
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A general principle of designing AURORA m ediators is “sem i-autom atic homogenization, au

tomatic integration”. The activity  of homogenization deals w ith a  wide range of semantic and 

s tructu ra l mismatches between a  source schema and a  service view. This is a  difficult task since it 

requires dealing w ith semantics. AURORA homogenization m ediators are equipped with a Mediator 

A uthor’s Toolkit (MAT), which provides guidelines and facilities to a  mediator author for performing 

homogenization. MATs are further described in Section 1.2.2. AURORA integration mediators deal 

w ith a  small num ber of conflicts and axe fully autom atic; they have no MAT attached. All four types 

of AURORA m ediators have been designed and the im plem entation of two of them , AURORA-RH 

and AURORA-RI, have been completed. Im plem entation of AURORA-OH and AURORA-OI me

diators is on-going and is beyond the scope of this dissertation. AURORA m ediators are described 

in Chapters 4 to 6.

1.2.2 M ediator A u th o r ’s T oolk it

Instance level conflicts arise when different sources record conflicting values about the same appli

cation entity. Sem antic and structural mismatches arise when sources model the same application 

dom ain differently. Instance level conflicts are not handled until m ultiple sources “meet” at an in

tegration m ediator. All struc tu ra l and semantic heterogeneities between a participating source and 

the target service view m ust be resolved during homogenization. Previous research gives rise to two 

approaches for dealing with s truc tu ra l and semantic mismatches:

1. Autom atic, by using a knowledge base a n d /o r ontology. T he structu re , semantics, and content 

of a  participating source m ust be incorporated into a knowledge base or described using an  

ontology. The IDAMS is then responsible for autom atic in tegration of all participating sources 

by inferring relevance and correspondence among the source d a ta  using the knowledge base. 

SIMS [6] takes this approach.

2. M anual, by means of a hum an using the provided language constructs to  resolve mismatches. 

Significant progress has been m ade in classifying the types of semantic and schematic mis

matches and in resolving them  [44].

Describing the m eaning of a source schema using a  knowledge representation language or a given 

ontology requires a  significant level of expertise, making the au tom atic  resolution approach difficult 

to  deploy. Com paring a source schema and a  service view to identify all m ismatches between them  

and resolving these mismatches may overwhelm a  hum an when the schemas are large, and when a  

large variety of mismatches are present between the two schemas.

In AURORA, structu ra l and  semantic mismatches are dealt w ith by mediator authors, individ

uals who have good knowledge of bo th  the source schema and the target service view. However, 

the m ediator authors are provided w ith a  GUI-driven M ediator A u th o r’s Toolkit (MAT) to help 

them  to work with semantics. A MAT consists of two parts: a  m ediation methodology and a set of
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transform ations th a t allow expression of resolutions of various m ism atches. The m ediation m ethod

ology guides the m ediator au thor to  identify and resolve mismatches in well-defined steps; in each 

step, transform ations specially designed for resolving certain types of mismatches can be used to 

express the  resolutions chosen by the m ediator author. Intuitively, a  MAT provides a skeleton for 

constructing a m ediator; the m ediator authors m ust fill various parts of this skeleton using their un

derstanding of the mismatches and  the resolutions of their choice. The transform ations they choose 

axe represented in ternally  as expressions in Mediation Enabling Algebras (M EAs), algebra systems 

th a t specialize in m anipulating heterogeneous data , as described below.

1.2.3 Q uery M od els and P rocessin g  Techniques

AURORA mediators entertain  application queries and hence provide da ta  services: they do so In- 

sending queries to relevant AURORA components, such as m ediators and wrappers, and assemble 

answers to  the application queries based on the results returned by these components. Query pro

cessing in different types of m ediators requires different techniques to be developed.

Query Processing in Homogenization Mediators

AURORA homogenization m ediators m ust be able to  answer queries posed against the homogenizing 

views - views generated by the homogenization process. Although much is known about classifying 

and resolving semantic heterogeneities [44, 64] th a t may be encountered during homogenization, the 

impact of these resolutions on m ediator query processing is seldom discussed. AURORA homog

enization mediators provide homogenization operators. These operators are specially designed for 

transform ing data  during homogenization and they form algebras, called Mediation Enabling Alge

bras (MEAs), tha t a re  suitable for query optim ization and processing in homogenization mediators. 

MEAs allow the im pact of da ta  integration on query processing to be identified and taken into 

consideration. Work in this category includes the following:

1. Development of MEAs for each AURORA homogenization mediator.

2. Development of transform ation rules for each MEA to facilitate algebraic query optimization 

techniques for the  corresponding mediators.

Homogenizing views as well as queries against them  are expressed in MEAs. The view expressions 

are used to  modify a  view query. T he modified expression is then m anipulated by an algebraic query 

optim izer th a t pushes, whenever possible, the operations into the underlying da ta  source so as to 

cut down the volume of d a ta  fetched into the m ediator. D ata returned from the underlying sources 

are further processed by the m ediator to produce query results. In this process, MEA operators are 

used to restructure, transform , and  assemble data.

Query Model and Processing in Integration Mediators.
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Query processing in integration mediators not only requires MEAs to  be developed, as in homoge

nization m ediators, it also requires techniques for dealing with instance level conflicts. The approach 

employed by AURORA is to  expose these conflicts to the applications at query model level.

Since integration m ediators deal with homogenized sources, the only operator needed is an inte

gration operator th a t m atches and combines the homogenized d a ta  pieces provided by participating 

sources, to  produce integrated data  suitable to be served to the applications. Both integration 

m ediators in AURORA, AURORA-RI and AURORA-OI, define such an integration operator.

Traditionally, a a  EDAMS attem pts to create a  single-source illusion, that is, it allows the applica

tions to access the multi-source data as if they reside in a single-source, with no inconsistencies. To 

follow this tradition , AURORA integration m ediators would have to detect and resolve all instance 

level conflicts w ithout impacting on the query model. This is not a  desirable approach since it can 

be expensive and, fundamentally, little can be done to  cut the cost [21, 15]. AURORA integration 

m ediators employ a  new approach towards instance level conflict handling, called conflict tolerant 

querying. In  this approach, instance level conflicts are not resolved at schema integration time, 

rather, they are exposed to the applications, which deal with them  using a conflict tolerant query 

model. This query model defines query semantics based on possibly inconsistent data; conflicts are 

tolerated to a  few levels to be specified by the users a t query time, and conflict resolutions are only 

performed to  produce conflict-free results. The key is to keep the query tolerance levels simple for 

the applications to understand and to use.

A conflict tolerant query model, a CT query model, and related processing techniques have 

been developed for AURORA-RI, the relational integration m ediator. This query model currently 

supports three levels of conflict tolerance. W ith this model, it is possible to reduce the overhead 

of conflict detection and resolution and to develop new techniques to optimize query processing. 

Fundamentally, the C-T-query approach allows applications and the mediation systems to handle 

conflicts a t a  coarse granularity and achieve b e tte r  query performance when conflict resolution 

requirements axe relaxed an d /o r data contain occasional conflicts. CT query model and processing 

techniques for the  AURORA-OI mediator constitute a future research topic and are beyond the 

scope of this dissertation.

It is conceivable th a t the CT-query model gives rise to new d a ta  manipulation operators that, 

together w ith the d a ta  integration operator, form an  algebraic framework tha t can be used as the 

basis for optimized processing of CT-queries in an integration m ediator. However, the current work 

on CT-queries is not yet in this stage. Rather, the current work focuses on establishing the query 

model itself and developing optimization strategies. The developed strategies are presented as query 

optim ization algorithm s, rather than as algebraic transform ation rules. Using formal MEAs to 

optimize CT-query processing in AURORA integration mediators is an issue for further research.
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1.3 O rgan ization  o f  D isser ta tio n

This dissertation, is organized as follows. C hapter 2 contains a  review of previous work related to 

AURORA. C hapter 3 contains a general description of AURORA’S architecture and a  road-map 

to the techniques developed. C hapter 4 describes the homogenization and integration frameworks 

in the relational context. C hapter 5 describes the query processing frameworks and techniques 

developed for the relational m ediators. C hapter 6 describes the  homogenization and integration 

framework in the object-oriented context ( a  query processing framework and techniques suite in 

the object-oriented context sim ilar to those described in C hapter 5 is beyond the scope of this 

dissertation). C hapter 7 describes the current implem entation of the prototype system. C hapter S 

contains conclusions and future work.
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Chapter 2

Related Work

In C hapter 1, a  distinction is made between two paradigm s of d a ta  integration performed by an 

EDAMS: source-driven and application-driven. This is a high level distinction based on "what" an 

EDAMS does. This chapter reviews “how” previous EDAMSs work. Even though m any previous 

system s perform  source-driven integration, the architecture, model, languages, and query processing 

techniques developed are relevant to AURORA. In this chapter, these works are reviewed and AU

RORA is positioned w ith respect to them . More specific comparisons between techniques employed 

by AURORA and previous work are included in later chapters when these techniques are described 

in detail.

2.1  C lassifica tion  o f A pproaches

IDAMSs facilitate d a ta  access through a  service view, based on da ta  contributed by a set of hetero

geneous sources. They m ust have knowledge as to how the service view is to be derived from the 

sources. This knowledge can be used to  load data  into the EDAMS if the supported service view 

is to  be m aterialized. Ef the supported service view is virtual, the EDAMS can use this knowledge 

to  process queries against the service view by decomposing these queries into subqueries, sending 

the subqueries to various sources for execution, and using the returned d a ta  to assemble the query 

answer. Based on the representation, acquisition, and use of this knowledge, previous approaches 

can be classified into three categories:

1. Procedural integration. The knowledge is provided to the EDAMS as a  derivation specification 

constructed by a  m ediator author, who identifies and resolves all the structural arid semantic 

m ismatches am ong the participating sources, and specifies how the  service view is derived. The 

system  uses an underlying algebraic or logical framework to “execute” the integration specifi

cation in order to derive view data . Systems in this category include M ultibase [47], Mermaid 

[88], MRSDM [51], Omnibase [82], Pegasus [5], UniSQL/M  [44], MEND [24], HERMES [87], 

TSIMMIS [74], Garlic [12], ERO-DB [30], and m any others.
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2. Intelligent integration. The knowledge is provided to  the ID AMS as a canonical model of the 

application semantics in the form of a knowledge base or an  ontology. Each participating source 

provides descriptions of the data  it provides in term s of this canonical semantic model: these 

descriptions are incorporated as part of the knowledge base. The EDAMS reasons about the 

semantics of source data to  determine how to m atch and merge them  to derive data  described 

by the  service view. Systems in this category include C arnot [17], SIMS [6], InfoSleuth [8], the 

Context Interchange approach [31], DIOM [53], and others.

3. Declarative integration. The knowledge is provided to  the EDAMS as a collection of source 

descriptions, each specifying the relationship of a source schema to the service view. For 

instance, a source schema could be described as a  m aterialized view of the service view. As 

another example, a  source schema could be described as containing a collection of objects which 

is a sub-extent of a class in the service view. The EDAMS does not reason about semantics, 

but uses a  mechanism that interprets the relationships of various sources to the service view 

and “pieces” the source data  together to produce view da ta . Systems in this category include 

Inform ation Manifold [50], DISCO [89], and others.

In the intelligent integration approach, adding a source into the integration scope means “hooking" 

its description onto the underlying semantic model, w ithout im pacting on the service view itself, or 

the participation of other sources. The drawback of this approach is th a t it requires significant levels 

of expertise to construct source descriptions, which may make hooking a new source into the service 

view a  difficult task. If so, the integration process is not scalable since adding a  source is difficult. 

It is also not clear how this approach facilitates the processing of complex queries such as those 

involving the use of aggregation functions and nested queries. Procedural integration systems often 

do not facilitate scalable construction of the integration specification, making this paradigm weak 

in its support for scalability of integration. Declarative integration systems are scalable, since each 

d a ta  source cam be described in regard to the service view independently. However, these systems 

often provide fewer facilities for dealing with various mismatches between the sources and the service 

view. Such facilities may require a rich set of constructs for describing a source schema in terms of 

a  given service view. The presence of these constructs may make it difficult, if not impossible, to 

establish an algorithm  for piecing together source d a ta  to produce view data.

AURORA retains the scalability of the declarative integration approach, while enhancing its 

facilities for dealing with heterogeneities by incorporating features of the procedural integration 

approach - namely, “procedural homogenization, declarative in tegration” . Once the heterogeneities 

are identified, resolving them is relatively easy [42, 7]. The most difficult part in dealing wdth 

heterogeneities is in identifying them in the first place, since this requires understanding, comparing 

and m atching of the “meaning of things” . Intelligent integration systems reason about semantics 

based on source descriptions in order to identify and resolve heterogeneities automatically. O ther 

systems leave this task  to  a human, but provide facilities for resolving them once they are identified;
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AURORA falls into this category. However, AURORA differs from existing systems in th a t it 

provides mediation methodologies to  assist the  m ediator authors in system atic identification and 

treatm ent of semantic and structu ra l heterogeneities. As such, work on reasoning about semantics 

is less relevant to AURORA than  work on providing facilities for resolving heterogeneities. However, 

for completeness of this survey, a  brief review of the work done on reasoning abou t semantics is given 

below.

R e a so n in g  A b o u t  S e m a n tic s . A good overview of various techniques for reasoning about the 

meaning and resemblance of heterogeneous objects is given in [36]. In [64] and [63], the theory of 

information capacity equivalence and dominance is used to develop tests th a t can be used to  check 

for correctness and other properties of semantic transform ations. Intelligent integration systems such 

as Carnot [17], SIMS [6 ], and InfoSleuth [8 ] use a  knowledge base a n d /o r ontology to “understand" 

the semantics of various sources, to  reason about it, and eventually, to integrate the sources based on 

such understandings. Work in th is category also includes context m ediation [84], context interchange 

[31], the query mediation approach [77], dynamic query routing for a  digital library' application [54], 

query reformulation using semantic knowledge represented by integrity  assertions and m apping rules 

[28, 29], and others.

The rest of this chapter reviews the architecture, model, and language features developed in 

procedural and declarative IDAMSs. These systems are developed in four areas of research: federated 

database systems, distributed object management systems, m ediator systems, and systems th a t deal 

with dynamic integrations. M ediator query- processing techniques are discussed separately in Section 

2 .6 .

2.2 Federated  D a ta b a se  S y stem s (F D B )

Federated database systems (FDBs) [47, 16, 5, 44, 8 8 , 12, 24] represent a  traditional paradigm  of 

building IDAMSs. FDBs perform procedural integration. Com pared with declarative integration 

systems, FDBs are characterized by the use of a  monolithic integration specification that resolves a 

wide range of semantic heterogeneities among a  small number of participating databases.

This section contains case studies of a  few representative systems, and a review of various areas 

of research in the context of federated database systems. The case studies focus on the paradigm  

and architecture of the systems. Specific technical issues are reviewed by category.

Traditionally, federated database systems are built based on a five-level extended schema archi

tecture, as shown in Figure 2.1 [85]. A local schema is the conceptual schema of a data  source, 

referred to as a  component database-, it is expressed in the data  model of the component database. 

Hence different local schemas m ay be expressed in different da ta  models. A component schema is 

derived by translating a local schem a into a canonical data model. An export schema is a  subset of 

a component schema th a t is m ade available to the federation. A federated schema is an integration 

of multiple export schemas. The external schemas are the views exposed to applications.

13
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Figure 2.1: Schema A rchitecture of Federated D atabase

Based on whether the federated schema is a  loose collection of im ported schemas represented 

uniformly in a common data  model or an in tegrated  schema, called a  global schema, the federated 

database systems are classified into two categories: tightly-coupled and loosely-coupled. Tightly- 

coupled systems support a global schema via which queries against d a ta  in the federation can be 

processed. Construction of this global schem a requires th a t the sem antic heterogeneities among 

participating  databases be resolved. Users who query the global schema are presented with a single

source illusion. In loosely-coupled systems, th e  federated schema is a collection of possibly incon

sistent schemas represented uniformly in a  comm on da ta  model. The users query this collection of 

schemas using a  multidatabase query language. Since the schemas are not integrated, heterogeneities 

among them  must be resolved by the users a t query time. The distinction between tightly-coupled 

and loosely-coupled systems is blurred in system s such as Pegasus and UniSQL/M . In these sys

tems, schema integration is optional. Users can choose to perform integration to various degrees 

and resolve other semantic discrepancies a t query time.

2.2.1 C ase Study: Pegasus

The Pegasus project [5] is built around the architecture given in Figure 2.1, bu t is not as elaborate. 

The schema architecture of Pegasus is given in Figure 2.2 [5]. Im plem entation of this architecture 

is given in Figure 2.3 [5].

Pegasus [5] uses an object-oriented, functional d a ta  model, Iris, as a  framework for uniform 

interoperation of multiple heterogeneous databases. The unifying data  definition and m anipulation
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Figure 2.2: Pegasus System Configuration

language is the Heterogeneous O bject S tructured Query Language, the  HOSQL, which provides 

statem ents to unify, m anipulate, and query m ultiple heterogeneous databases.

A component database, referred to as a  local database, must be registered with Pegasus and 

its schem a must be imported. Registration describes the types in the local DBMS, the network 

protocols, network nodes, machine types, and so on. For each type of local database, Pegasus 

provides a  module, called local translator, th a t maps a local database schema into the Pegasus data 

model and also translates queries expressed in HOSQL over this schema into local query language 

(such as relational SQL). These modules are used to im port local database schemas.

A fter being imported, m ultiple d a ta  sources can interoperate through Pegasus in that HOSQL 

can be used to query the union of the im ported schemas. Construction of integrated schemas 

from m ultiple imported schemas is optional and deals with semantic and  schematic heterogeneities 

among the imported schemas. This integration is supported by specially designed HOSQL language 

constructs. The major constructs are (1) creating supertypes of types defined in the underlying 

database; (2) creating derived functions; and (3) creating foreign functions. These constructs are 

illustrated  in the following example:

E x a m p le  2 .2 .1  [HOSQL for schema integration]

Suppose there are two im ported types, S tuden tl and Student2, with functions Grade and Points 

defined on them, respectively. Also assume th a t the two functions use different grading systems. 

For instance, function Grade m ight re tu rn  a  value in (A, B, C, D, E}, while function Points returns 

an integer value between 1 and 10. The user can define two functions, M apl and Map2, to  convert
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Points and Grade to a  common grading system. The integrated type Student can then be defined 

as follows:

C re a te  S u p e r ty p e  Student o f  S tuden tl, Student2;

C re a te  F u n c tio n  Score(Student x) —>• R E A L  r  A S

IF  Student l(x) T H E N  M A Pl(G rade(x))

E L S E  I F  (Student2(x) T H E N  MAP2(Points(x))

E L S E  E R R O R

Type STUDENT is created as a  supertype of imported types S tudentl and Student2. The function 

SCORE is a  derived function. Functions M A PI and MAP2 are foreign functions. □

As shown in Figure 2.3, a  HOSQL query is decomposed into an operation tree whose operators 

axe commands for performing global joins, to pass param eters, and to synchronize execution of 

parallel steps. The leaf nodes of this tree are queries against local databases. These queries are
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sent to the local translator module to  be translated  into the  query language supported by the local 

database. These tran s la ted  queries are then sent to  the  local translator mappers that perform system 

level mappings on the query before passing it to the  Pegasus agent th a t runs on top of the local 

databases. The local transla tor m apper and the Pegasus agent work together to submit the query 

for execution and to  collect the query result back into Pegasus. The query processing activities, as 

well as global transactions, are controlled and synchronized by the global interpreter.

2.2.2 C ase S tu d y: MSQL

MSQL [51, 52, 34, 65, 8 6 , 6 6 ] is designed as an extension of SQL for querying m ultidatabase sys

tems. In MSQL, m ultiple databases axe visible to the users who can refer to  attributes, tables, and 

databases. However, the users must also be responsible for the  consistency of the da ta  retrieved. 

Location of da ta  sources is made transparent to the users in th a t site-dependent access protocols are 

transparent. The m ost im portant extension from SQL to MSQL is the notion of multiple queries, 

which enables expression of multiple queries to several (related) databases in a  single query. Central 

to the m ultiple query  facility are the concepts of multiple identifiers and  semantic variables. A 

multiple identifier is a means to refer to multiple re la tio n s/a ttrib u tes  using a single identifier, as 

illustrated in Exam ple 2.2.2. A semantic variable is a  variable th a t ranges over multiple databases, 

relations, or a ttrib u tes , as illustrated in Example 2.2.3. These two concepts allow factorization of 

single m ultidatabase queries into a set of elementary queries against individual databases. The main 

features of MSQL axe illustrated by the following examples.

E x a m p le  2 .2 . 2  [M ultiple identifiers in MSQL]

Assume there axe th ree  bank databases, B \, Bn and B 3, each containing a  relation client. A multi

database B A N K S  can  be created as follows:

C R E A T E  M U L T ID A T A B A S E  B A N K S { B l ,B 2 : B 3)

To retrieve client inform ation from all three databases, the following MSQL statem ent can be used:

U S E  B A N K S  

S E L E C T  *

F R O M  clien t

In this query, c lien t is a multiple identifier. At query processing time, this query is replaced by three 

queries retrieving client information from the three databases, respectively. □

E x a m p le  2 .2 .3  [Semantic variables in MSQL]

Continue with Exam ple 2.2.2, assume all three databases contain a  relation th a t  describes branches,
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but in B i ,  this relation is nam ed branch , in B o, B R , and in B 3 , B R C H .  T he  following MSQL 

query retrieves all the bank branches on 101 Street:

U S E  B A N K S

L E T  x  B E  branch , B R , B R C H

S E L E C T  *

F R O M  x

W H E R E  street =  “101”

In the above query, x  is a sem antic variable. At query processing time, the  above query is replaced 

by three queries produced by replacing x w ith branch, B R , and B R C H  respectively. The use of 

semantic variables enables expression of three queries against three databases in a  single, compact 

MSQL query. □

As one can infer from the above examples, to use the original MSQL correctly, the user must 

have good knowledge about the scope of databases and the da ta  they hold. In  some later work 

[6 0 , 6 6 ], MSQL is extended to allow external functions, class a ttribu tes, implicit joins and type 

casting. These axe language constructs for users to resolve semantic mismatches am ong the imported 

schemas concisely a t query time. The query processor for this extended variety of MSQL must be 

“intelligent” enough to  expand, factorize and decompose queries.

2.2.3 C ase Study: M IN D

The M ETU IN teroperable DBMS (MIND) [24] is an implemented FDB system  th a t supports inte

grated  access to m ultiple heterogeneous and autonomous databases. MIND is able to access Oracle 

7, Sybase, Adabas and MOOD - an  object-oriented DBMS developed by the sam e group. Like many 

other FDB systems, MIND is built around the 5-layer schema architecture, as shown in Figure 2.1. 

The canonical d a ta  model and query language of MIND are object-oriented. MIND differs from 

other FDB systems in th a t it uses CORBA as the infrastructure for m anaging the  distribution and 

system level heterogeneities. As such, the system has a  distributed and object-oriented architecture, 

as shown in Figure 2.4. All components in this diagram are built as objects th a t communicate with 

one another via an  object request broker.

The central components of MIND are two object classes: the Global D atabase Agent (GDA) 

class and the Local Database Agent (LDA) class. Objects of these classes can be created by an 

object factory. These objects axe described in term s of their functionalities as follows:

1. A LDA object is responsible for the following:

• M aintaining export schemas provided by the local DBMSs. This schema is represented 

in the canonical da ta  model.
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• Translating queries received in  the canonical query language to  the query' language of the 

local DBMSs.

• Subm itting queries to local DBMS for execution and collecting the query' results.

2. A GDA object is responsible for:

• Parsing, decomposing, and optim izing the queries according to  the information obtained 

from the  Schema Information M anager object.

• Global transaction management th a t ensures serializability of m ultidatabase transactions 

without violating the autonom y of local databases.

W hen a user wants to query MIND, a GDA object is created by the object factory. The location 

and im plem entation transparency for this object is provided by the ORB. A GDA object contains 

an object of the Global Query Manager (GQM) class, which is able to process queries, and an object 

of the Global Transaction M anager (GTM ) class, which is able to execute global transactions. 

The former decomposes the query into subqueries using information obtained from the Schema 

Information M anager and sends these subqueries to the latter, which then  cooperates with LDAs to 

execute the subqueries and obtain results. As soon as partia l results th a t  can be further processed 

are returned from the LDAs, a  Query Processor Object (QPO) is created to process them. There 

could be m any QPOs running in parallel as needed.

MIND views each data  source involved as an LDA object registered w ith an ORB. These objects 

have a  standard  interface but, most likely, different implementations. O bjects in individual databases 

are not registered w ith the ORB, that is, they  are not accessible via the ORB; they are only accessible 

by the DBMS where they reside. For example, consider a  da ta  source storing Person information.
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W ith the MIND approach, the interface of Person objects is mot known to the ORB. This means that 

MIND cannot pass Person objects around; it can only pass d a ta  th a t the ORB knows how to handle, 

such as string, integer, and so on. In general, MIND does o o t  allow registration of fine-granularity 

objects. Hence, the  way MEND uses CORBA is as an advanced  communication backplane and is 

orthogonal to the technical aspects of MIND, such as schem a integration and query processing.

Schema integration in MIND is performed by DBAs u sing  an object definition language that 

allows specification of interfaces of objects in the global schem a, and how they relate to objects 

exported by various da ta  sources. Query processing in MINTD aims a t maximizing execution paral

lelism. This aspect of MIND will be further reviewed in Section  ‘2.6.

2.2 .4  M odeling  and Language Features in  F D B s

In their 1986 survey paper, Batini et al [7] investigated tw elve methodologies for designing a single 

conceptual schema based on a set of specific user-oriented re la tional schemas. These methodologies 

are then compared on the basis of five commonly accep ted  conceptual schema design activities: 

pre-integration, comparison of schemas, conforming of schem as, merging, and restructuring. The 

work in this area does not address as many types of sem antic  heterogeneities as are known today 

because it is aimed a t designing a conceptual schema or ex te rn a l view based on a set of relatively 

homogeneous, user-oriented schemas.

Considerable work on modeling and language features fo r  d a ta  integration has been done in the 

context of federated database systems, including classifying semantic heterogeneities and proposing 

resolutions; identifying and designing models an d /o r language features th a t allow expression of such 

resolutions; and im plem entation of these features. Typically, primitives found in popular da ta  models 

are limited in their support of da ta  integration [41, 46]. O b jec t da ta  models offer more facilities 

but these models still need to be extended in order to be s uitable for use in an FDB system. For 

instance, DISCO [89] extended the ODMG object model to  allow' a  bag of extents, rather than 

allowing a  single extent for each object class; Garlic [12] in troduced  the concept of weak identities 

to the ODMG object model, rather than insisting on un ique  and im m utable object identifiers.

Previous work in this area includes [22, 67, 18, 51, 52, 66, 34, 40, 41, 45, 42, 83, 46]. These 

approaches differ in the canonical data  model, query langmage, and specific language constructs 

provided for expressing database integration. The canonical da ta  models employed range from 

relational to object-oriented and logical.

The work reported  in [22, 21] uses a specific notion of generalization to facilitate integration of 

multiple databases. Given two types that originate from different da ta  sources, a generalization type 

can be defined over them. The derivation of instances of th is generalized type must be defined. Such 

derivation involves two steps. The first step is the outerjoim of the subtypes on a merge condition. 

This step specifies the population of the generalized type. T h e  second step specifies how the functions 

on the generalized type are derived from the subtypes’ function . The following example is taken
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from [21]. Assume there are two databases, bo th  modeling ships, with ship being modeled by type 

S H I P  1 a t  s ite l and  by S H I P 2  a t site 2. A generalized type S H I P  is defined by the following:

derive SHIP from
for s in outerjoin of (si in SHIP1, s2 in SHIP2) 

on merge condition IDl(sl) = ID2(s2) 
case s isin SHIP1 and notin Ship2 

ID := IDl(s) 
weight := weightl(s) 

case s isin SHIP2 and notin SHIP1 
ID := ID2(s) 
weight := weight2(s) 

case s isin SHIP1 and isin SHIP2 
ID := chooseAny(IDl(s), ID2(s)) 
weight := AVG (weightl(s), weight2(s)) 

endfor
end

The ou terjo in  of S H I P  1 and S H I P 2  has the following attribu tes: I D  1. I D2 .  weight 1. weight2. Af

te r  the aggregation functions specified above are applied, S H I P  has two a ttribu tes: I D  and weight. 

A query decomposition m ethod and various query processing tactics related  to this generalization 

mechanism are described in [22, 21],

The Superview system [67] develops a  set of schema restructuring operators th a t facilitate cre

ation of superviews integrating the  schemas of m ultiple databases. The operators meet, jo in , fold, 

combine, connect m anipulate generalization hierarchy. The operators aggregate and telescope manip

u late  a ttr ib u te  hierarchy. The operators add and delete extend and reduce schema structure. This 

approach assumes th a t all participating databases, as well as the superview, are represented by a 

functional d a ta  model. Query processing is based on function translations.

The work reported in [18] uses extended abstract data types to represent d a ta  domains. These 

ADTs “know” how to convert a  value in a  native format into the canonical form at. The ADTs 

solve the dom ain-incompatibility problem th a t is common in m ultidatabase queries. W hen values 

from different sources are to be compared, the ADTs are used to convert the  values into canonical 

representation and perform the comparison. An ADT also has other functions, such as suggesting 

names of a ttribu tes and tables th a t might involve the data  domain modeled by the ADT. These 

ADTs hold a  large amount of sem antic knowledge and they form a  domain knowledge base. Another 

construct for representing semantic knowledge is connector, th a t  describes how relations are seman

tically related to one another. Connectors are defined using ADTs. A relational algebra extended 

with connectors is then developed. This algebra includes operators such as D elete/A dd Connector, 

D elete/A dd Relation/Attribute, Join Combine, Rename R elation/A ttribute, Union Combine, and 

Difference Combine. These operations are essentially relational m anipulations enriched by the se

m antics of connectors. The extended algebra can be used for bo th  schema in tegration and for direct 

m anipulation of individual databases in order to formulate a  query. T he system  takes the input
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from the user and generates queries th a t  access participating databases.

The two approaches described above allow creation and querying of views that hide hetero

geneities. They' map queries posed against such views to source queries, bu t do not discuss the 

optim ization of this mapping. For instance, the im pact of using ADTs on query processing is not 

discussed in [18]. This issue will be further discussed in Section 2.6.

T he ViewSystem [40] is an object-oriented approach for querying and integrating m ultiple da ta  

sources, including file systems. This system  allows the definition of external classes th a t physically 

reside in external sources. It offers severed constructs for creating derived classes over existing, 

external classes as well as local classes. The expressive and com putational power of an  object- 

oriented d a ta  model, VODAK [26], is used in integration and query processing. Query processing in 

ViewSystem is a hybrid of m aterialization and query decomposition. Depending on the integration 

construct used in its derivation, a  derived class defined for integration purpose decides w hether and 

how to perform data  m aterialization or query decomposition when processing queries posed on it. 

For instance, if the derivation involves aggregation functions, the  class will decide to m aterialize, 

ra ther than  decompose. If the class is derived using disjoint union, then queries will be decomposed. 

In the case of query decomposition, optim ization issues are not discussed.

In [42], an  extensive list of schem atic conflicts and their resolution cure given in the context of 

the m ultidatabase system UniSQL/M . UniSQL/M  extends SQL w ith language constructs th a t allow 

creation of virtual classes which hide various types of heterogeneities.

[45] discusses language features for database interoperability; in particular, it discusses in detail 

the  cross-over schema mismatches, where concepts represented as relations or a ttribu tes in one 

database are represented as da ta  values in another. The paper proposes higher-order language 

features to express resolutions to such mismatches. The work done in this paper has significant 

im pact on later work, such as SchemaSQL [46] th a t builds on the result of [45], but focuses more 

on m aking the language features com patible with SQL and establishing practical implem entation 

techniques. [41] uses behaviors to  resolve domain and cross-over schema mismatches. Domain 

m ism atches arise when a  concept - for instance, m oney - is represented differently in different sources. 

[41] describes language constructs in the  context of Pegasus [5] th a t use an object-oriented database 

program m ing language to  express m appings between these different representations in an integrated 

m anner.

SchemaSQL[46] extends SQL for querying m ultiple heterogeneous relational databases. In tradi

tional SQL, variables can only range over tuples in relations. SchemaSQL allows variables to range 

over databases in a federation, names of relations in a database, names of a ttribu tes in a  relation, 

values in a  column in a relation, as well as tuples in a  relation (as in the usual SQL). This essentially 

makes it possible to query m eta da ta , as well as data , a  relational database. Used as a view defi

nition language, SchemaSQL allows sophisticated restructuring of relational databases to eliminate
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heterogeneities such as the cross-over schema mismatches discussed by [45]. A methodology for 

implementing SchemaSQL as a non-intrusive middleware over existing relational databases is also 

sketched.

A flexible relational model is developed in [83] for integrating d a ta  from multiple, possibly in

consistent databases. This model is based on the concept of a  cluple. Intuitively, a cluple is a set 

of tuples th a t represent possibly inconsistent d a ta  on the  same entity. T h a t is, all tuples match on 

identifier a ttribu tes, bu t may not m atch on other a ttribu tes. Cluples also record other information 

such as the origin of component tuples, consistency sta tus, and so on. A flexible relation is a set 

of cluples. An algebra is described to query over flexible relations. T ha t is, selection, project, and 

join operations are defined over flexible relations. Intuitively, this algebra facilitates querying data 

th a t is possibly inconsistent. This is in contrast to traditional query processing approaches where 

inconsistencies are either ignored or assumed to be resolved completely by the use of aggregation 

functions. However, implementation of the flexible relational algebra is not given.

2.2.5 Schem a and Query Translation Techniques in  F D B s

In FDBs, source schemas must be translated into a component schema represented in the chosen 

canonical da ta  model. Queries against the component schema must be translated to those against 

the source schema. Hence the dual issue of schema and query translation have received much 

attention. In FDB systems, such tasks are often performed by a translation module as part of 

the FDB system [5]. More recently, such tasks are performed by a system component called the 

“wrapper” . However, recent work on wrappers mostly focuses on wrapping sem i-structured sources 

[75, 80]; wrapping traditional sources is considered to be a m ature technology. Nevertheless, this 

area of work is a  m ain component in the federated database technology. This category of work 

includes [4, 19, 13, 39, 57, 92, 59, 93, 60, 101, 37], A few approaches [19, 13, 57, 93, 37] concentrate 

on sem antic enrichment, tha t is, to discover semantics from a given schema and represent this 

semantics as well as the schema itself in a  semantically rich da ta  model. Kalinichenko [39] gives 

a  formal notion of equivalence among various da ta  models. [60, 101] provide schema and query 

translations between relational and object-oriented databases. As part of the Pegasus project, [4] 

describes a  simple tuple-an-object schema and query translation scheme. Meng et al. [59] described 

a  general approach to schema and query translation between relational d a ta  model and data  models 

th a t contain hierarchical structures, such as INIS and some object-oriented database systems.

2.2.6 A U R O R A  and FD Bs

All FDBs perform procedural integration, requiring a  monolithic integration specification to be 

built manually. Constructs are provided for use in expressing resolutions and integration in these 

specifications, bu t usually no other assistance is provided. This means th a t FDBs typically have
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two drawbacks. F irst, construction of the integration specification requires working w ith semantics 

of m ultiple source schem as to piece them  together to form an in tegrated  view. W ithout assistance, 

working w ith sem antics would be difficult. Second, construction of the  in tegration specification does 

not scale well; adding or removing a  da ta  source requires modification to  the specification an d /o r 

to  the integrated view itself. W hen the num ber of sources involved is large, such modifications will 

become difficult to m anage. AURORA overcomes both  of these drawbacks. AURORA does not 

require a  monolithic in tegration  specification to be constructed. A service view is pre-defined by the 

application requirem ents but the  way in which da ta  from multiple sources are combined together to 

support this service view is not specified by a human; instead, this integration is performed by the 

AURORA framework. To allow scalable integration, AURORA divides the integration process into 

two parts - hom ogenization and integration - and uses two separate m ediators to perform these tasks. 

Homogenization requires a  specification to  be constructed m anually by a m ediator author, but it 

concerns only one d a ta  source. The M ediator Authors Toolkits (MATs) are provided by AURORA to 

assist in this construction. No m ediator au thor needs to examine m ultiple da ta  sources to piece them  

together, as in the FD B  paradigm . Integration is performed autom atically, requiring no specification 

to  be constructed.

Most FDBs support a  single canonical da ta  model, requiring all applications using the FDB to 

adopt this da ta  m odel. AURORA provides the applications with the  flexibility of choosing a da ta  

model th a t best satisfies the applications’ d a ta  access requirements. Currently, bo th  relational and 

object d a ta  models a re  supported.

Technically, AURORA differs from FDB systems in th a t it defines new da ta  m anipulation op

erators and query m odels th a t are specially designed for dealing w ith multi-source, heterogeneous 

d a ta  - while most FD B s apply traditional da ta  m anipulation operators and query models to such 

data . AURORA’S M ediation Enabling Algebras (MEAs) and the conflict tolerant query models axe 

new techniques th a t have not been explored by previous FDBs.

2.3 D is tr ib u te d  O b ject M an agem en t

In recent years, d istribu ted  object com puting (DOC) platform s such as CORBA [69] and COM /DCOM  

[61] have been used fo r m anaging d istributed and heterogeneous applications. These platforms by 

themselves do not resolve the fundam ental issues encountered in building IDAMSs - such as iden

tification and resolution of structu ral and sem antic mismatches, and  efficient processing of queries 

against multiple, heterogeneous d a ta  sources. However, these platforms facilitate a  significant level of 

interoperation. For instance, using an  O bject Request Broker (ORB), objects residing in distributed 

and heterogeneous environm ents can communicate and cooperate w ith one another to perform tasks 

th a t are otherwise difficult to achieve. In the context of an EDAMS, two types of objects can be
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considered to  be distributed objects:

1. System components that perform  certain integration tasks, such as schem a/query translation. 

By considering these components as d istributed objects, an  ID AMS can be built as a  network 

of cooperative, distributed, an d  possibly heterogeneous components. Such componentization 

would allow the system to deal with the distributed natu re  of large-scale da ta  integration 

gracefully. For instance, m ultiple da ta  sources are often situated  on machines connected by a 

com puter network. It is desirable th a t wrappers and other system components reside on sites 

where they can function m ost efficiently and cooperate w ith one another across the network.

2. Source da ta  objects or integrated da ta  objects. These objects can be considered as d istributed 

objects accessible through a DOC platform. By this means, data  objects residing a t various 

sources can be composed to  form  objects th a t are able to  perform more comprehensive tasks.

An DDAMS built w ith a  d istributed object management approach supports distributed objects th a t 

are either system  components or d a ta  objects. However, current IDAMSs employing a  d istributed 

object m anagement approach m ostly support system components as distributed objects. For in

stance, MIND [24] has an architecture consisting of system components that are built as CORBA 

servers. D a ta  objects residing in various sources are not accessible beyond their home system bound

ary; they are m anipulated by the local query processors, producing query results that are returned 

to the client as tuples of data, ra th e r than objects.

In AURORA, bo th  types of objects are considered as distributed objects. AURORA’S architec

ture consists of components of various types; these components are built as COM components th a t 

can be identified, activated, and m anipulated through CO M /D COM . As described later, AURORA'S 

object-oriented homogenization m ediator is able to retu rn  objects th a t are accessible through a DOC 

platform , and  the object-oriented integration m ediator m anufactures integrated objects th a t perform 

m ethods by dispatching them  to source objects that axe able to perform them . Queries posed to 

an AURORA-OI m ediator may re tu rn  objects as query results; these objects can be further ma

nipulated by the applications, in th e  same way objects in an OODBMS, such as ObjectStore, are 

m anipulated. In this way, the full power of an  object query language can be supported by the 

integration m ediator.

A difficulty to be investigated in implementing da ta  objects as distributed objects is in exporting 

large num bers of objects onto a DOC platform at run-tim e. For example, if an ORB is used as the 

DOC platform , a large number of objects may need to be registered and unregistered at run-tirne. 

It is not clear whether the current CORBA technology supports such activities. AURORA’S work 

in this direction is a t the framework level, as described in C hapter 6. Implementation issues are 

not yet studied. From a  general viewpoint, a  carefully designed query decomposition and opti

m ization framework would reduce the  num ber of objects to be registered/unregistered. However,
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work in m ediator query processing in the object-oriented m ediators is also beyond the scope of this 

dissertation.

2.4  T h e M ediator S ystem s

Recently, m any systems have been built with the mediator architecture [91]. A m ediator is a middle

ware system  th a t satisfies certain language and interface requirem ents, so that it can be composed 

with o ther m ediators to  perform more complicated tasks. In this sense, FDBs are mediators if they 

are capable of accessing other FDBs and are open to being accessed by other FDBs. The difference 

between a  m ediator and a FDB is not in what they do and how- they do it, but in what they are 

used for. Originally [91], mediators were used to  provide domain knowledge; they had to be able to 

express such knowledge, and exchange knowledge w ith o ther m ediators using a  common language - 

often a knowledge representation language, a  common ontology, or logical rules. Consequently, m any 

m ediator systems built for data  integration use logic for integration and  query processing. FDBs are 

often used to  provide a  virtual database, a  database th a t appears to  be a  traditional database to the 

application, but really gets its da ta  by combining d a ta  residing a t relevant sources. Consequently, 

most FDB systems use a  SQL/OQL-like language for da ta  integration, and process queries using an 

algebraic framework such as relational algebra and  object algebras. B oth  mediators and FDBs can 

be considered as IDAMSs. It is conceivable th a t a  FDB be built as a  mediator system. It is also 

conceivable th a t an FDB act as a  m ediator in a  m ediator architecture. There is no fundamental 

reason for a m ediator and a FDB to employ different underlying technologies. It is for historical 

reasons th a t m ediators often employ a logic-based framework for integration and query processing, 

while a FD B ’s underlying framework is similar to th a t of a  trad itional DBMS.

2.4.1 TSIM M IS

The TSIMMIS project a t Stanford [74, 75, 73, 72] represents a large step away from most previous 

work. R ather than  a semantically rich, structured da ta  model, TSIMMIS uses a self-describing 

model - the Object Exchange Model, OEM - for expressing integration and for querying. OEM is 

an information exchange model; it does not specify how objects are structured, it only specifies how 

they are sent and received.

In TSIMMIS, one does not need to define in advance the structu re  of a source object of interest, 

and there is no notion of schema or object class. Each object instance contains its own schema, 

it is self-describing. An OEM object consists of four fields: an object id, a label which explains its 

meaning, a  type, and a  value. Fields that are not im portan t axe om itted  from the representation(as 

is often the case in this section). The following OEM  object describes a  person object. This object 

has three components, co m p o n e n tis , representing the name, office num ber, and the departm ent of
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the person described. The object given below has name “Fred” , office number 333. and he works for 

the Toy departm ent:

<  p i ,  person-record, set, {com ponenti, com ponents, components, } >

<  com ponenti, name, string, “Fred”>

< components, office-number-in-building-5, integer, 333>

< components, department, string, “Toy”>
Each da ta  source to be accessed is viewed as a collection of O EM  objects in the above form, with no

predefined structu re . Querying in OEM is via patterns of the  form <object-id, label, type, value>, 

where constants or variables can be put in each position. W hen a pa tte rn  contains constants in the 

label (value) field, it matches successfully only with OEM objects th a t have the same constant in 

their label (value). For instance, the following pattern  would m atch successfully w ith person Fred 

given earlier:

<person-record, {<nam e uFred”>, <departm ent "Toy”>}>

Essentially, th is p a tte rn  matches with all person-records th a t have a  component name  with value 

“Fred” and a  component department with value “Toy” . Notice th a t this pattern  matching assumes 

no structu re  on the objects, as long as the object has the right label with the right value, it matches 

successfully. This effectively makes the labels (person-record, name, office-number-in-building-5, 

department) first-class citizens. Labels do not pu t any constraints on what types of queries are 

acceptable, rather, they can be queried themselves.

Queries and  view specifications in TSIMMIS axe also formed using patterns. The TSIMMIS 

M ediator Specification Language (MSL) is a  rule-based language. For instance, the following rule 

defines a  view Toy People that contains names of all people who work in the Toy departm ent:

<ToyPeople, {<Nam e N>}>:- <person-record, {< nam e N > , <department “Toy”>}>

The following query finds all persons who have name “Fred” :

FredPerson :- FredPerson:<person-record, {< nam e '‘Fred”>}>

In this query, FredPerson is an object variable. The formula to  the  right of :- says th a t FredPerson 

m ust bind to all person-records with a  sub-object by the label of name and value of “Fred” . The 

symbol :- says th a t all such objects are included in the query result. Notice that the query result is 

potentially heterogeneous, with objects having all sorts of s tructures, except that each object m ust 

have a  label person-record and a name sub-object with value “Fred” .

All d a ta  sources in the access scope must be covered w ith a TSIMMIS wrapper. TSIMMIS 

provides a  wrapper implementation toolkit to  support fast generation of wrappers. These wrappers 

are indeed an OEM query processor. The w rapper im plem enter is required to (1) describe the
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types of OEM  queries th a t the  source can handle using query tem plates; and (2) m ap these query 

tem plates to local queries/actions a t the d a ta  source.

Intuitively, OEM  is flexible enough to represent da ta  of any type, from  unstructured  random 

records, to  relational da ta , to complex objects. After all types of d a ta  axe represented in OEM, they 

can then  be integrated. The TSIMMIS approach uses logic rules th a t transform  and merge OEM 

objects from various da ta  sources to form a  mediator view. This view can then  be queried. Query 

processing in TSIMMIS leverages deductive database techniques; it includes view expansion and 

execution plan generation. In [74], various aspects of the OEM  model a re  defined and discussed. In 

[75], an approach for developing OEM wrappers for semi- or unstructured  da ta  sources is described. 

In [73], an OEM -based m ediation language and its im plem entation is described. This language 

allows creation of integrated views in the mediator th a t removes various types of semantic conflicts. 

In [72], an approach for object m atching (referred to as object fusion in this paper) using OEM 

is described. This approach allows resolution of instance level conflicts. An approach for global 

optim ization of queries posed against these “fused” objects is also described.

In the database community, OEM  is also the representative of an em erging d a ta  model that is not 

constrained by database schemas. This feature alone removes a m ajor representational heterogeneity 

am ong da ta  sources. The labeled-tree structures like those in OEM can represent ail sorts of data 

structures equally well and have great potential in supporting in tegration of heterogeneous data. 

Query and m anipulation language, and optimization techniques, are being developed for this new 

d a ta  model [11].

2.4 .2  H E R M E S

HERM ES [87] is a  m ediator system  th a t uses a  logical model for in tegration  and query processing. 

In a  HERMES m ediator, a  d a ta  source to be accessed, called a domain, is modeled as a triple 

<  cr, JF, 72. >, where cr is a  set of values, T ,  a set of functions that the dom ain is able to perform, 

and 72., a  set of relations over elements of a. For example, for a relational da ta  source, a  consists 

of all the tables as well as individual values stored in these tables; T  includes the usual relational 

operators project, select, and join, and 72. is a  set of predicates over th e  tables. Domain calls to 

a  dom ain retrieves d a ta  from this domain. For example, a  domain call to the relational domain 

P A R A D O X  could look like this:

P A R A D O X  : p ro jec t^p a rts ', "'partidr)

This domain call asks the P A R X D O X  relational database to  perform a  project on table “parts” on 

a ttr ib u te  “partid” . A domain call atom  is formed by a  small set of predicates taking domain calls 

as input, for example:

i s ( { “green”}, P A R A D O X  : p ro jec t^p a rts ' , color))

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



evaluates to  true  if all objects in parts have color green. A mediatory rale is o f the form:

Ao : [/iojTo] -4i&...&.4n

where A ’s are domain call atoms and \jj.q, To] is an  annotation on uncertainty and time. In HERMES, 

these rules are used to perform query, information extraction, information m erging (called pooling), 

and conflict detection/resolution over all the im ported domains. A dom ain call caching method 

is developed in [3] to improve query performance in an environment th a t involves distributed and 

autonom ous d a ta  sources.

HERM ES supports domains of various types, including relational, spatial, text, and pictorial. In 

order to set up a domain for a  new d a ta  source, th a t is, to import a  da ta  source into HERM ES, a 

mediator author specifies a  set of dom ain functions that can be accessed by the mediator, designs 

a  d a ta  structure  to be used to hold th e  output of these functions, and implements procedures for 

parsing the ou tput properly to fill th is da ta  structure. Once im ported, the  HERMES m ediator 

language is used for extracting and m erging information from multiple domains. This language is 

based on m ediatory rules (as described above) and has a  Prolog-like syntax.

HERM ES provides a m ediator program m ing environment (M PE) th a t assists mediator authors 

in constructing m ediators. The task of constructing a mediator includes domain integration, th a t is, 

im porting of da ta  sources, conflict resolution and information pooling. M PE provides toolkits for all 

three tasks. The conflict resolution toolkit is interesting, and works as follows. The mediator author 

specifies integrity constraints that disallow inconsistent da ta  values. The toolkit, upon receiving this 

constraint, generates all possible violations and, for each violation, it asks the mediator au thor to 

provide a resolution. A set of commonly used resolution strategies is also provided.

2.4 .3  A U R O R A  and M ed iator System s

The original m ediator architecture prescribes m ediators providing data/know ledge services of spe

cific kinds. These specialized m ediators can then be composed to provide more comprehensive 

services. Most m ediator systems developed for da ta  integration, such as TSIM M IS and HERMES, 

provide a  single type of m ediator th a t is used to support services of different kinds. Such mediators 

m ust provide a  framework generic enough to achieve all kinds of d a ta  integration tasks. In contrast, 

AURORA mediators are specialized; they are designed to perform either homogenization or inte

gration. The frameworks employed by individual mediators are small, specialized, and easy to use. 

This approach also allows enabling techniques tailored for specific integration tasks to be developed.
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2.5 P arad igm s For D ealin g  w ith  H igh ly  D yn am ic E nviron

m en ts

W ith the advent of the Internet and WWW, more and more information repositories have been 

opened. These da ta  sources are highly dynamic with varying query processing capabilities. The 

usual approach of “understanding” each data  source, integrate them, and then process queries is not 

viable in this context due to the large number of sources present. For instance, federated database 

systems often provide insufficient support for integrating a large number of d a ta  sources th a t varies in 

availability. Earlier d a ta  integration systems also did not deal with sem i-structured or unstructured 

da ta  sources. A few systems have been built to work with highly dynam ic environments. These 

systems typically provide features specially designed to cope with one or more of the problems 

present in a  dynamic integration scope.

DISCO [89] works with a set of dynamic data  sources by facilitating easy hook-in of individual 

sources, and by dealing with unavailable da ta  sources a t query processing time. It extends the 

ODMG IDL to allow a  bag of extents for a single interface type. Thus, adding a new source is done 

by adding a new extent into the bag of extents of a  global class. DISCO also proposes an approach 

for dealing w ith unavailable da ta  sources.

The DIOM system [53] accommodates the dynamic changes of the environment by identifying 

relevant da ta  sources, determ ining how these sources work together to provide data of interest, and 

binding to each of them  a t query time. This is a  query m ediation approach similar to [77] but with 

different underlying techniques. DIOM ’s query processing engine uses an  algebraic framework to 

m anipulate source data , while [77] uses logic.

The Information Manifold project [50, 48, 49] considers large number of d a ta  sources with varying 

query capabilities. Assume there is a worldview a t the m ediator level. M ost likely, this is a virtual 

view; it is the way th a t the target applications would like to  see the world. Each da ta  source to 

be accessed can be regarded as a  materialized view of this worldview', b u t with capability records 

attached describing the types of queries it can handle. Thus, the problem of answering a query 

against the worldview is transform ed to that of answering a query with existing materialized views, 

with additional constraints. This problem is solved in [50] in relational context. Recently, this work 

has been extended by [62], which allows expressing the materialized views using SchemaSQL. This 

increases the ability of IM in dealing with structurally heterogeneous sources. Other related work is 

the query folding approach [76], which allows queries to be answered using existing resources such 

as materialized views, cached query results, or queries answerable by an  existing query processor. 

Integration of multiple sources in these approaches is scalable; it only means addition of a new 

materialized view. Handling sources with limited query capabilities is a  very useful feature in 

accessing a  wide range of information repositories such as those typically present on the Web.
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All of th e  above-reviewed system s have no o r lim ited capabilities in dealing w ith instance level 

conflicts. DISCO and IM  assume th a t da ta  from various sources m e consistent. For DISCO, dealing 

with instance level conflicts might be a  m atter of introducing more m odel/language extensions to 

the ODMG model, b u t th a t is yet to  be seen. It is not clear whether the underlying framework of 

IM is able to  deal w ith  such conflicts. It is also not clear w hether or how DIOM deals with such 

conflicts.

2.5.1 A U R O R A  in  H igh ly  D ynam ic E nvironm ents

There are two equally im portant dimensions to the  problem of integrated d a ta  access in a highly 

dynamic environm ent: the  heterogeneities among the sources, and the sheer num ber of the sources. 

It is difficult to support bo th  dimensions. Systems with more traditional paradigm s such as FDBs 

and some m ediator system s provide elaborate facilities for dealing with heterogeneities, but their 

support for scalability is often insufficient. Newer system s geared towards in tegrating a large number 

of dynamic sources a re  often weak in  the facilities for dealing w ith heterogeneities. For instance, a 

rich framework for value and s tructu ra l conversion of source d a ta  is missing from IM, DISCO, and 

DIOM, and  none of these systems provides tools assisting in working w ith  semantics. Moreover, 

none of these systems deals with instance level conflicts.

Similar to  IM, DIOM , and DISCO, AURORA is built w ith the goal of supporting large-scale 

da ta  integration in a  highly dynamic environment. However, AURORA does not suffer from the 

problems described above, as these systems do. W ith  the 2-tiered m ediation model, AURORA is able 

to support scalable m ediation w ithout neglecting dealing with heterogeneities. This is achieved by 

dividing the  da ta  in tegration into two sub-tasks: homogenization and integration. Homogenization 

mediators deal with a  wide range of semantic and  structural heterogeneities. Conflict tolerant 

query models supported by the integration m ediators allow instance level conflicts to be dealt with 

gracefully.

2.6 Q u ery  P r o c e ss in g  and O p tim iza tio n  in  ID A M S s

Algebraic query optim ization is an im portant form of optim ization and is the  basis for cost-based 

query optim ization techniques. In the  context of query processing for IDAMSs, algebras that are 

suitable bo th  for m anipulation of heterogeneous da ta , and for use by a query optim izer, are of special 

interest. Query optim ization techniques for IDAMSs are also relevant. In th is section, previous work 

is reviewed with this perspective in mind.

Like traditional DBMSs, an IDAMS that supports queries over m ultiple sources, either via a 

global schem a or via a  m ultidatabase query language, relies on an algebra th a t transforms and 

integrates d a ta  from m ultiple sources. There are m any levels a t which this algebra can be discussed.
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O f interest to  this thesis is the  e n a b lin g  a lg e b ra , th e  lowest level algebraic framework supporting 

query processing: it m ust be simple, so th a t it can  be m anipulated by a  query- optimizer, bu t 

it m ust also be expressive, so th a t it can be used to  represent all the logical operations required 

for transform ing and assembling data. Operators in this algebra are referred to as the e n a b lin g  

o p e ra to r s .  For example, the  enabling algebra in a  centralized relational database usually consists 

of selection, project, join, and union operators. In  d istributed relational databases, the algebra 

is extended to  include the semijoin operator, in order to m anipulate distributed da ta  efficiently. 

[9] proposed an operator, “materialize*, for m anipulating d a ta  in am OODB: this operator can be 

transform ed into a  join and is believed to open up m ore query evaluation alternatives.

W hen processing a query th a t involves multiple d a ta  sources, the query is first translated into 

an  expression in the enabling algebra th a t only references im ported objects. This expression is then 

optimized and evaluated. In  general, query processing and optim ization in an ID AMS consists of 

the following categories of issues:

1. Identifying the enabling algebra. O ther than the usual da ta  m anipulations known to traditional 

DBMSs, d a ta  integration may require new d a ta  m anipulation operators to be developed. For 

instance, one such opera to r has been identified and studied as the semi-outer-join  operator, 

proposed by [20], to allow efficient processing o f queries posed against generalized types. This 

operato r will be further discussed later.

2. Algebraic rules for transform ing expressions in the  enabling algebra. Even if one assumes th a t 

the enabling algebra of an  EDAMS is no different from th a t of distributed database systems, 

algebraic transform ation raises new issues. For instance, in m ultidatabase query processing, 

outerjoins followed by aggregation functions are  required.(This combination is referred to as 

generalization [21]). These are not new operators but they are expensive to  evaluate in the 

context of IDAMSs. In general, new transform ation rules m ust be added to accommodate 

any new enabling operators developed, and to  transform  expensive combinations of existing 

operators (e.g., outerjoin and aggregation) into less expensive ones.

3. Cost modeling of global execution plans. Com puting the cost of a  query execution plan requires 

knowledge about da ta  volume, distribution, indices available, processing speed of various ex

ternal sources, and the  speed of communication links. Early work assumes these param eters 

are available in the context of IDAMSs [10, 99, 38]. In reality, autonomy of data  sources 

determ ines th a t the param eters required for cost modeling are not necessarily available, and 

the  d a ta  sources are no t as cooperative as sites in a  distributed database. For instance, semi

joins between autonom ous DBMSs may not be as efficient as in distributed databases, since 

it  may be impossible to  send data  directly into the system  buffers of the query processor of 

an  autonom ous DBMS [56]. More recently, research in this regard attem pts to cope with un-
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available knowledge for cost estimation by calibrating, sam pling, and dynamically adjusting 

existing cost estim ations. Garlic [1 2 , 35, 79] also builds facilities th a t allow wrappers to ex

port cost information. These techniques indeed cope w ith specific situations encountered by 

IDAMSs.

In the rest of this section, previous work is reviewed along the three dimensions described above. 

The first two dimensions are relevant to the work on AURORA reported  in this thesis. The third 

is relevant to  AURORA in general, but is not relevant to the work reported  here. A brief review of 

work in this dimension is included for completeness.

2.6.1 N ew  E nabling O perators and E valuation  S trateg ies

[2 0 ] describes the use of semiouterjoins to  process queries over generalized hierarchies in multi

databases. The focus is on generalized types that involve aggregation functions. Consider the ship 

example, as given in Section 2.2.4, and a  query select all SH IP  that have weight o f at least 55” . To 

process this query correctly, one could first compute the w eight a ttr ib u te  of each ship. This requires 

fetching complete populations of S H I P 1  and S H I P 2  from the respective sites they reside into the 

global site; this operation can be very expensive. The semiouterjoin  of S H I P  1 by S H I P 2 partitions 

S H I P  1 into two parts: the private part and the overlap part. The overlap part contains ships that 

are also described in S H I P 2 .  This part must be sent to the global site to be further evaluated. One 

can apply local selection w eight1 > 55 a t s ite l on the private portion of S H I P  1 . Only the S H I P  1 

records th a t satisfy this condition are sent to the global site. After the semiouterjoin is completed 

a t s ite l, the private or overlap part of S H I P 2  can be sent back to site2 and similar procedures take 

place there. Sometimes, local selection can even be performed on the  overlap part as well, but this 

depends on the type of aggregation functions used. This range of techniques are also described in [20] 

and surveyed in Section 2.6.2. Hwang and Dayal [38] developed general algorithms for identifying 

optim al schemes of using semiouterjoin for improving the performance of projection, selection, and 

join over generalized types involving an arbitrary  number of types. These algorithms assume that 

all cost measures useful for cost modeling are available.

Goldhirsh and Yedwab [32] suggest th a t the traditional query m odification approach is inappro

priate for optimizing queries th a t involve generalized types (Section 2.2.4). Consider a query involving 

type Person th a t is the generalization of types Student and Employee. The traditional approach 

would always modify the query so that it can be decomposed into subqueries against types Student 

and Employee. This paper argues that in a distributed environm ent, such queries can sometimes 

be more efficiently processed by materializing Person rather th an  by performing query modification 

to eliminate it. It is not necessary to materialize all the a ttribu tes of type Person. Inclusion of the 

m aterialization-based query evaluation plans into the optim ization space is also discussed.

A few papers generated from project Mermaid (more recently known as Interviso [8 8 ]) are closely
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related to general query optim ization techniques in distributed relational database systems. These 

techniques always assume th a t s ta tis tica l and system  measures required for cost modeling are avail

able. In the context of Mermaid, [10, 99] describe the general query processing strategies: semijoins 

and replication. The cost model Ls extended to  include these processing strategies, which are vari

ations of SDD-1 algorithms and replication m ethods for query processing in distributed database 

systems.

In [100], Yu et al. suggested tw o ways to improve query processing. F irst, use sem antic knowledge 

to  remove unnecessary operations or simplify certain operations. Second, com pare actual runtime 

numbers such as relation sizes, d a ta  transfer rate , and processing cost with those estim ated by 

the static cost formulas, and u p d a te  these formulas when they deviate from the actual numbers 

drastically and consistently.

2.6.2 A lgebraic T ransform ation  R ules

As far as query processing is concerned, the most studied da ta  m anipulation operator is general

ization (Section 2.2.4), which is usually  equated to outerjoin followed by aggregation. An example 

of generalization is the S H I P  exam ple discussed earlier. In th a t example, S H I P  is derived as the 

outerjoin of S H I P 1  and S H I P 2  o n  their IDs, followed by aggregation functions. Both outerjoin and 

aggregation functions are expensive to evaluate. In [20], Dayal described various algebraic tactics 

to transform  such expressions into less expensive ones. The m ain objectives of such transform ations 

are to distribute selections and jo ins over generalization, and to use sem iouterjoin reductions dis

cussed in Section 2.6.1. D istribution of joins is based on the rules th a t d istribu te  selections. The 

distribution of selections is discussed in more detail below.

W hether a  selection can be d istribu ted  over a generalization is determ ined by whether the fol

lowing equation holds:

V A O a A G G A tlh  R2) =  O’ASaAGGAicrAiBiaiPi.)  ^  CFAiOia{R‘l ) )

where 0 0  stands for outerjoin, A G G  is an aggregation function, such as sum, average, min, and 

max. AG G a means th a t this aggregation function is used to derive value for a ttribu te  .4. .4[ and 

Ao are a ttribu tes in R i and Rn, respectively. The meaning of expression A G G a {R\. ^  R-i) Is the 

following: for each tuple t 6  (f?i 0 0  Rn),  derive a new a ttr ib u te  .4 whose value is computed as 

t[A] =  AGG(i[Ai]. i[Ao]). The a ttr ib u te  weight in the S H I P  example is derived this way. In [20]. 

the following rules are given to push  the selection across AG G  and 0 0 :

•  If AGG =  chooseany{A \,A n), true distributivity holds; th a t is, the above equation holds with 

Qi — 9 2. — 6 .

• If AGG =  m ax(A i, An), th e re  are three cases:
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1. If  9 is > , then true  d istributivity  holds; th a t  is, the  above equation holds with 6 1 = 6 0 =  6 .

2. If  6  is = , d istributivity  holds with both  9\ and 6 0  being > .

3. If  6 is < , no distributivity  a t all.

•  If  A G G  = m in (A i, Ao),  there are three cases:

1. If 6  is < , then true d istributivity  holds; th a t  is, the above equation holds with 61  = 60  = 6 .

2. If 6  is = , distributivity holds with both  6 1 and do being < .

3. If 9 is > , no distributivity  a t ail.

•  If  A G G  =  coun t(A i, A 2 ), or A G G  =  s u m (A i , Ao) , or A G G  =  average(A i, Ao), no distribu- 

tiv ity  a t all.

A m ore complete and extensive set of rules are given in [58]. T he main extensions are in developing 

distribu tiv ity  under certain conditions when A G G  is sum  or avg. For instance, for the case of 

AG G  =  su m (A \,A o )  and 9 is = , the above equation holds w ith both  61 and 9o being <  if it is 

known th a t Ai and Ao values are not negative. These rules help in further reducing the am ount 

of d a ta  th a t m ust be transferred to the global site where aggregation finally takes place. However, 

the applicability of these rules is generally limited by the type o f the aggregation function and the 

selection predicate.

Chen [15] describes techniques to optimize outerjoins when no aggregation function is present, 

th a t is, when d a ta  inconsistency is not present. Essentially, this work considers the simpler cases of 

generalization, without aggregation functions. Let R  = R 1 0 0 R 0 . R  consists of three partitions: (1) 

the jo in  of R i  and Ro; (2) R i  tuples th a t have no m atching tuple in Ro padded with null values: and 

(3) Ro tuples th a t have no matching tuples in R i  padded with null values. A one-sided outerjoin  

is the union of (1 ) and (2) o r (1) and (3). If bo th  (2) and (3) are empty, the outerjoin becomes 

a  regular join. Regular joins are cheaper to com pute than one-sided outerjoins, which are in tu rn  

cheaper than  outerjoins. In [15], Chen described rules th a t use the cheapest strategy to process a  

query involving R . For instance, a  globed query referencing R  can be processed without involving 

R i  a t all if (1) no a ttribu te  of R i  is involved in any predicates; and  (2) all target attribu tes can be 

found in R 2 .

2.6 .3  C op ing w ith  U navailable O p tim ization  Inform ation For C ost M od

elin g

W hen accessing multiple autonomous database sources, inform ation about source da ta  may not be 

available. Such inform ation may include da ta  sizes, selectivity, distribution, and any available fast 

access paths such as indices. Different query processing and optim ization tactics may be used in
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different sources. These factors make it difficult to  identify an  optim al execution plan tha t involves 

m ultiple sources. Autonom y also makes the cooperation of the  global query processor and the local 

query processor difficult. A few approaches exist to cope w ith th is situation . Lu et al. [56] proposed 

to m onitor subquery execution and  compare the cost estim ate of the global query optimizer with the 

actual cost. The result of this comparison is then used for improving the  global cost model and for 

adjusting query execution plan a t run-tim e. Du et al. [25] proposed a  calibration m ethod to deduce 

the cost formulas for a  given database. Assume that the cost of queries can be modeled by a  set 

of formulas with unknown coefficients. In order to derive these coefficients, a specially constructed 

calibrating database is loaded into the local database and a  set of queries axe run against it. Cost 

m etrics of these queries are recorded and are used to deduce the  unknowns in the cost formulas.

MIND, a  m ultidatabase system  reviewed in Section 2.2.3 develops some techniques in global 

query optim ization [27, 71]. These include:

1. Cost-based global query optim ization in case of da ta  replication. This technique deals with 

site selection issues in cases when a subquery can be executed at more than one site.

2. Cost-based inter-site join optimization. This technique s ta r ts  from a  left-deep join tree and 

a ttem p ts to transform  this tree into a more bushy tree so th a t response time can be reduced 

by exploiting parallelism. However, it is stated  in [27] th a t  the performance study performed 

shows th a t the gain in performance cannot compensate for the complexity of rearranging the 

tree to maximize parallelism.

3. Dynamic optim ization of inter-site joins. This technique is still cost-based but is dynamic in 

th a t it uses partia l results a t run  time, adjusts cost estim ation and determines the next step. 

This approach reduces uncertainties in cost estimation.

Garlic [1 2 ] has produced significant work in cost modeling when querying diverse da ta  sources [35, 

79]. This work extends the rule-based query optimization technique proposed by [55], by providing 

a  framework for wrappers to export cost information to a degree chosen. In particular, wrappers 

export such information using Strategy Alternative Rules, which are fired to produce alternative 

plans and their costs. These plans are then evaluated by the  Garlic query optimizer to choose 

the optim al plan. The main appeal of this approach is th a t it provides wrappers with guidelines 

for exporting cost information, and it also allows them to evolve to  provide more information as it 

becomes available. The Garlic query optimizer then takes the inform ation provided by wrappers into 

consideration a t query processing tim e. This approach, combined with the calibration techniques 

evaluated earlier, provides a good basis for query processing in EDAMSs.
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2 .7  S um m ary

In this chapter, a survey of previous work is given, so as to position AURORA in respect to them. 

AURORA differs from previous work in paradigm, mediation models, and  the type of techniques 

developed. Most of these changes in approaches are made to improve usability, scalability, and 

efficiency. In the next chapter, the  overall architecture of AURORA is given. A road-map to the 

techniques developed in AURORA will also be provided.
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Chapter 3

The AURORA Architecture

This chapter describes the AURORA arch itec tu re . To s ta rt with, a detailed discussion on the design 

principles of the two-tiered m ediation m odel is given. The AURORA architecture is then  described, 

including an overview of AURORA m ediators and how they work together. Finally, a  road-m ap into 

the enabling techniques is provided; these techniques will be the subjects of the later chapters.

AURORA mediators perform a specific ty p e  of mediation - tha t of in tegrating d a ta  from multiple 

heterogeneous sources. This is the only ty p e  of mediation of interest to  AURORA. To distinguish 

this type of mediation from the general m ediation concept, the term data mediation  is used. A data 

mediation system  is a system th a t perform s d a ta  mediation. By nature, a d a ta  m ediation system is 

a  specific kind of ID AMS - the  kind built w ith  m ediator architecture. In the rest of this dissertation, 

the term  data mediation system  is used to  refer to  the middleware systems to  be constructed using 

AURORA mediators.

3.1 A U R O R A  M ed ia tio n  M o d el

The u ltim ate goal of d a ta  m ediation is to su p p o rt a service dew  determ ined by the target applica

tions’ d a ta  access requirements. To the applications, the service view is a global da tabase  schema 

th a t is designed to suit their d a ta  access needs. AURORA mediators are responsible for providing 

d a ta  according to this view, by transform ing and combining data  from participating sources. Fun

damentally, AURORA has to achieve two things: to remove heterogeneities am ong participating 

sources, and to combine source d a ta  in a m eaningful way. These tasks are accomplished differently 

by different d a ta  mediation systems.

A mediation model defines the tasks to  b e  completed in a mediation effort, and the relationships 

among these tasks. AURORA’S m ediation model is based on a perception of the heterogeneities 

encountered when integrating heterogeneous d a ta  sources and how they should be handled; and a 

perception of the relationship between source schemas and a target service view. T he AURORA
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m ediation model, shown in Figure 1 .1 , is a  two-tiered model. I t  models d a ta  m ediation as a  two-step 

process: homogenization followed by integration, perform ed by specialized m ediators.

3.1 .1  T w o-tiered  M ediation M odel

T he two-tiered m ediation model is based on the following perceptions of the  heterogeneities encoun

tered  during integration of large num ber of da ta  sources and on the  relationship of source schemas 

to the service view:

H e te ro g e n e it ie s .  Two categories of heterogeneities m ust be dealt w ith when integrating mul

tiple da ta  sources: schematic mismatches th a t arise when the sam e application domain is modeled 

differently by different sources; and instance level conflicts th a t arise when inconsistent values on 

the same application en tity  are recorded by different sources. Intuitively, the first type of mismatch 

happens because sources “use different languages to ta lk  about the  same th ing” . The second type 

happens because sources “say different things about th e  same m atte r” .

R e la t io n s h ip  b e tw e e n  p a r t ic ip a t in g  so u rc e s  a n d  th e  s e rv ic e  v iew . A d a ta  source par

ticipates in a  service view when it is able to contribute da ta  on som e  aspects of some objects of the 

service view. This assum ption covers most, but not all, scenarios of d a ta  integration. For instance, 

this assum ption excludes the scenarios where the age a ttribu te  of a person in the service view is 

derived by caking the average of all the age values of th is person provided by various sources. In this 

case, no d a ta  source is perceived as contributing the “correct” age value on entity  Person. Such use 

of aggregation functions is often, not always, for the purpose of resolving instance level conflicts. In 

AURORA, instance level conflicts are treated  using a  conflict to lerant query model, not aggregation 

functions, as described in Chapter 5.

D ata integration is achieved in AURORA through the following steps:

1 . W ra p p in g . Build a wrapper around each d a ta  source so it “speaks” in a da ta  model and 

query language th a t can be understood by AURORA m ediators.

2. H o m o g e n iz a tio n . Derive a  view on top of each d a ta  source. This view conforms to the 

service view in bo th  structure and semantics, and  is referred to as the homogenizing view. 

This view describes some aspects of some of the  objects in the service view. To derive this 

view, all schem atic mismatches between the sources and the  service view must be resolved. 

This process is referred to as the homogenization of the source. In AURORA, specialized 

homogenization mediators support homogenization.

3. I n te g ra t io n . Devise a mechanism to answer queries against the service view using data  

contributed by various sources through the respective homogenizing views. To do this, instance 

level conflicts m ust be resolved. This process is referred to  as integration. Tliis process is 

supported by specialized m ediators, the integration mediators.
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W rappers are da ta  model/language translators; each makes a  d a ta  source accessible to AURORA 

mediators. However, wrappers do not deal with semantic or structural heterogeneities. A more 

detailed discussion on AURORA wrappers is given in Section 3.2.1. Technology for wrapper con

struction already exists and is not a focus o f AURORA research; w rapper construction is treated as 

an engineering issue in AURORA. The two tiers of mediation refer to homogenization and integra

tion.
%

3.1.2 B u ild ing A  D ata  M ed iation  S ystem  w ith  A U R O R A : A  Scenario

Assume th a t a class of applications needs to  access da ta  residing at various d a ta  sources S i,..., 5 n, 

through a service view VseTvice, expressed using da ta  model D service. Also assum e that Vservice 

does not change bu t the list of sources is dynamic, new sources may be included, and previously 

included sources may decide to  not allow their d a ta  to  be accessed by this class of applications. Once 

the participating sources axe identified, w rappers must be constructed for these sources. Wrapping 

cam be done independently and in parallel for each source. W rappers must support a relational or 

ODMG interface - whichever is most easily generated. Choice of a  wrapper d a ta  model should be 

independent of the data model employed by the target service view; AURORA is responsible for 

accessing wrappers of various kinds. At the same time, a  m ediator author chooses an integration 

m ediator, M y ,  th a t supports da ta  model D service, and initializes it with Vservice. Once initialized, 

M y  accepts application queries immediately although its access scope may be insufficient as far as 

the applications are concerned, since M y  does not access any da ta  source, directly or indirectly, 

upon initialization. To expand the access scope to include desirable sources as fast as possible, one 

or more m ediator authors can be assigned the task  of using a homogenization m ediator supporting 

da ta  model D service to homogenize the d a ta  sources previously wrapped. After being homogenized, 

a  source informs the integration mediator M y  of its existence and is included in the  access scope of 

M y  automatically.

More scenarios using different types of AURORA m ediators to construct a d a ta  mediation system 

are given in Section 3.2.2. The mediation model, as described above, is designed to  facilitate scalable 

da ta  integration, where adding and removing a source from the integration scope is easy. This is 

discussed further in the next section.

3.1.3 T w o-tiered M odel and S calab ility

To include a new data  source in the access scope of a da ta  m ediation system, two issues must be 

resolved:

1. Communication. It must be possible to “ta lk” to the da ta  source. This is achieved by a wrapper 

th a t removes idiosyncrasies of the d a ta  source in communication protocol, da ta  model, and
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query language.

2. Semantic integration. I t  must be possible to include the da ta  source in the  access scope of an 

integrated view.

Scalable m ediation should make adding or removing a da ta  source to /from  the access scope easy to 

do. This in tu rn  requires fast wrapper generation and scalable semantic integration, which requires 

the following:

1 . Sources cam be added into, and removed from, the access scope w ithout causing previous 

integration effort to  be obsolete.

2. Adding and removing a data  source from the integration scope should be m ade as simple as 

possible.

Various enabling techniques have adready been developed for rapid wrapper construction [75, SO]. 

As discussed in C hapter 2, previous work does not provide satisfactory support for scadable semantic 

integration.

Data Integration____________________________________

Automatic Integration o f homogenized sources

Homogenization: Homogenization : Homogenization
of data source 1 of data source 2  j ........  of data source N

Figure 3.1: Divide-and-conquer d a ta  integration of AURORA

AURORA facilitates scalable da ta  integration by prescribing a divide-and-conquer approach 

towards da ta  integration. As shown in Figure 3.1, a  da ta  integration task is divided into .V -f- 1 

subtasks, where N  is the num ber of participating da ta  sources, including N  homogenization tasks and 

1 integration task. The N  homogenization tasks can be performed in parallel and independently of 

one another. The integration of homogenized da ta  sources is performed autom atically by AURORA. 

Homogenization of single d a ta  sources is significantly simpler than any integration effort th a t requires 

examining m ultiple sources a t once. Moreover, AURORA makes homogenization more manageable, 

and hence potentially faster, by providing tools to assist in this process. Participating sources register 

the da ta  they provide through respective homogenization mediators; this data  will be integrated by 

the relevant integration m ediator automatically. Removing a  source from the access scope only 

requires the relevant registrations to be cancelled.
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3 .1 .4  W h y  Tw o-tiered?

The two-tiered model defines a  divide-and-conquer approach to inform ation integration. Such an  

approach facilitates applications, such as electronic commerce, th a t require access to large numbers 

of diverse d a ta  sources. It also allows the d a ta  m ediation system  to b e tte r manage the technical 

complexity in large-scale middleware. An electronic commerce example is given below to illustrate 

these points.

Two-tiered Mediation in Electronic Commerce

A virtual shopping mall is a  typical electronic commerce (EC) application. A key component in 

this application is the catalog system. Companies organize their catalogs differently; this gives rise 

to  a  set of heterogeneous and autonomous catalogs. W hen the num ber of participating catalogs is 

large, it is difficult for a shopper to  locate items of interest. One approach is to require all vendors 

to re-organize their catalogs into a  common form at and  merge them  into a  central catalog that 

allows custom ers to perform sophisticated searching w ithout dealing with individual catalogs. This 

requires re-engineering of existing catalogs. In  general, vendors want to participate in the central 

catalog w ithout making changes to  their existing ones. A virtual catalog th a t has the look and feel 

of a  central catalog but holds no physical data , is desirable. Upon a custom er request, this catalog 

retrieves relevant information from (multiple) individual catalogs and assembles an answer. Such a 

virtual catalog should satisfy the following requirements: (1) it is up-to-date, bu t does not violate the 

autonom y of the participating catalogs; (2) its search performance does not degrade as the number 

of participating catalogs increases; (3) it allows easy inclusion of new catalogs and integrates with 

o ther EC applications; and (4) it is easy to construct; tools should be provided to assist in this 

process.

Typically, to include a  supplier catalog in a  virtual catalog, the supplier is first required to map 

his or her catalog into a format required by the v irtual catalog. Essentially, the supplier catalog must 

be homogenized before participating in the virtual catalog. Homogenization is performed by suppliers 

independently, referencing the common catalog form at. Individual suppliers are not concerned with 

inter-catalog conflicts, which are resolved a t the central catalog level. Often, suppliers are provided 

w ith a  workbench to  perform homogenization. This workbench is a homogenization m ediator, while 

the central catalog is an integration mediator. A supplier can participate in m ultiple virtual catalogs 

requiring varying catalog formats. In this case, the supplier must use m ultiple homogenization 

m ediators.

AURORA’S two-tiered mediation model closely corresponds to the process of construcring vir

tual catalogs. A mediation model suitable for building virtual catalogs must, clearly define which 

mismatches are to be resolved by the suppliers independently, and which mismatches are to be han

dled a t the central catalog level. Suppliers are responsible for removing mismatches between their
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catalog and the  v irtual catalog schema, and the virtual catalog is responsible for resolving instance 

level conflicts, such as the  same product bearing different n a m e s .

A virtual catalog effort can be initiated by a  third-party  broker who seeks to offer value-added 

catalog services using AURORA mediators. The broker first designs a  common catalog structure, its 

d a ta  model and  query language. To include a vendor in the v irtua l catalog, the broker homogenizes 

the vendor’s catalog using an  AURORA homogenization m ediator. This process maps the vendor 

catalog structu re  and sem antics into those in the common catalog. After homogenization, it should 

be straightforw ard to “plug” a  catalog into an AURORA integration m ediator th a t supports the 

common catalog. W hile homogenization is a  more complex process, the broker can hire a few people 

to homogenize individual vendor catalogs in parallel. An in tegration m ediator is where large number 

of virtual catalogs merge bu t the integration is a  simple mechanism. Overall, construction of the 

v irtual catalog is scalable.

M a n a g in g  C o m p le x itie s

Integrated access to  a  large num ber of highly heterogeneous d a ta  sources is complicated. There are 

two aspects to this complexity: integration and query processing.

C o m p le x ity  in  in te g ra t io n . When there are 100 sources involving m any types of mismatches 

and conflicts, which one should be resolved first? Can several people work on the same integration 

task? W hat kind of assistance is provided for working with sem antic heterogeneities? Most previous 

work focused on classifying mismatches and proposing resolutions, w ithout prescribing the sequence 

in which these m ism atches are to be identified and resolved. O nly systems th a t perform declarative 

integration allow several people to work on the same integration task. Assistance for working with 

semantics provided by these systems is insufficient.(For instance, neither EM nor DISCO provide 

such assistance.)

C o m p le x ity  in  q u e ry  p ro ce ss in g . When a large num ber of highly heterogeneous sources are 

involved in a query, there arises a  complex optimization problem th a t is unknown to traditional data 

m anagement systems. Query optimization in middleware system s is known to be a difficult problem 

even without considering the scale of the system [56]. In large scale middleware systems such as 

virtual catalogs in EC, this problem is even more difficult, as discussed in Section 2.6.

AURORA’S two-tiered model enables better management of both  complexities. AURORA’S 

divide-and-conquer d a ta  integration approach helps in m anaging the complexity of integration. In 

query processing, AURORA’S two-tiered mediation model enables the decomposition of the query 

processing issue into two sm aller problems: query processing in homogenization mediators and in 

integration m ediators. As shown in Chapter 4, each type of AURORA m ediator uses a specialized 

M ediation Enabling Algebra (MEA) to facilitate efficient query processing.
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3.2 A U R O R A  A rch itectu re

This section describes the general forms of AURORA mediators, including da ta  model, query lan

guage support, interfaces, and also how they work together to facilitate d a ta  mediation.

3.2.1 D a ta  Sources and W rappers

D ata sources can be of any type but they must be covered w ith a  wrapper th a t facilitates accessing 

of the source through an ODMG [14] interface or a relational interface, whichever is most easily 

generated. ODMG has the modeling and querying power to m anipulate and query relational data as 

sets of “structs” . Such OQL queries can be translated to SQL queries in a  straightforward manner. 

Generally, AURORA’S homogenization mediators, which are the clients of wrappers, can access 

either ODMG sources or relational sources. It should be possible to wrap up sources as read-only 

or updatable. Only the read-only wrappers tire considered in AURORA.

AURORA employs “th in” wrappers in that the schema presented to the  world by a  wrapper is 

a normal relational or ODMG schema with no restrictions. W rappers do not perform any semantic 

translation, bu t only syntactic mappings that make the data in the source accessible in the relational 

or ODMG model. W rapper generation issues are not investigated within the AURORA project; 

others have investigated this problem [75, 80].

AURORA uses commercial middleware products to build wrappers. As an example of such 

a  wrapper, consider a  commercially available middleware system  - the ISG Navigator [2] - which 

accesses any da ta  source with an OLE-DB provider and adds SQL capabilities to it if it does not 

have it. ISG Navigator is an OLE-DB provider itself and hence supports the standard OLE-DB 

interfaces. A da ta  source such as a spreadsheet may have an OLE-DB provider but may not support 

SQL queries. Once “w rapped” with ISG Navigator, this source can be accessed through OLE- 

DB interfaces using SQL. An application can access this source even if it has no knowledge of 

spreadsheets. ISG Navigator as a  wrapper is illustrated in Figure 3.2.

3.2.2 A U R O R A  M ediators A s M iddleware C om ponents

As described in Section 1.2.1 and shown in Figure 1.2, AURORA provides specialized mediators 

supporting flexible da ta  models. Like other mediators, the AURORA m ediators and wrappers can 

be composed to perform increasingly complicated data  mediation. This section discusses various 

scenarios of such compositions.

In the AURORA context, when m ediator M \ composes w ith HL, one of them will access the 

other to make use of the da ta  the la tte r mediator is able to serve. However, AURORA mediators 

are specialized, the integration mediators are able to access multiple other m ediators, and the homog

enization mediators are able to  deal with single sources. Generally, AURORA mediator composition
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API: OLE-DB provider with 
SQL support

ISG Navigator

OLE-DB provider

Spreadsheet

Figure 3.2: ISG N avigator as a  W rapper

m ust follow th e  following rules:

1. In tegration  mediators can only access hom ogenization m ediators.

2. Hom ogenization mediators can access m ediators of tmy kind, including wrappers, integration 

m ediators, and other homogenization m ediators.

3. M ediators th a t support an object da ta  model should have the  built-in capability of accessing 

those supporting  the relational da ta  model, bu t not vice versa.

A da ta  m ediation system can be constructed by using a  network of m ediators that cooperate 

with one an o th e r to provide an  integrated data  service. The use of AURORA mediators in building 

middleware is illustrated by Figures 3.3 and 3.4. T he left of Figure 3.3 illustrates a  scenario where 

AURORA m ediators supporting the relational d a ta  model are used to  construct a da ta  mediation 

system th a t provides a  relational service view. T he diagram  on the right of Figure 3.3 illustrates 

a  scenario w here all mediators support an object d a ta  model. Figure 3.4 illustrates how mediators 

supporting different da ta  models can be composed. In this diagram , sources 1 and 2 are wrapped to 

support the relational da ta  model. These two sources are first homogenized with respective relational 

hom ogenization m ediators and then integrated w ith a  relational integration m ediator. Eventually, 

these sources participate in the object-oriented m ediator a t the top of Figure 3.4. To do this, the 

relational in tegration  m ediator - the  left-most R I m ediator - is trea ted  as a  relational source and is 

homogenized by an object-oriented homogenization m ediator before it is composed with the target 

01 m ediator on the top of the diagram.

Generally, a  m ediation scenario is determined by the da ta  model of the service view and th a t of 

the da ta  sources. Sources can be wrapped with a  relational w rapper or an  object-oriented wrapper, 

whichever is m ost conveniently built. There m ay be m any types of da ta  sources but after they
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Figure 3.3: AURORA Application: uniform

are wrapped, there are only two types of sources as far as AURORA mediators are concerned: 

relational and object-oriented. The service view can be relational or object-oriented. Therefore, 

various m ediation scenarios can be summarized in Table 3.1. Each entry in this table refers to  a 

diagram  th a t  depicts an example composition of AURORA m ediators supporting the corresponding 

m ediation scenario. M ost entries in this table have been explained in the previous paragraph. The 

N /A  entries in this table represent scenarios th a t cannot be realized using AURORA mediators. 

These are scenarios where the service view is relational bu t one or more of the sources is object- 

oriented.

Source W rapper

S erv ice  V iew

R ela tion a l O b ject-orien ted M ixed

R ela tio n a l F igure 3 .3: left N /A N /A

O b jec t-o r ien ted F igure 3.3: left F igu re 3.3: right F igure 3.4

Table 3.1: AURORA’S Flexible D a ta  Model Support

3.2.3 M ed iator A uthor’s Toolkits (M A T s) in  A U R O R A

A general design principle of AURORA mediators is “semi-automatic homogenization, automatic  

integration”. The activ ity  of homogenization deals w ith a  wide range of semantic and structured 

mismatches between a  source and a  service view; th is activ ity  requires a m ediator author to work 

with semantics. All AURORA homogenization m ediators are equipped with a  Mediator A u thor’s 

Toolkit (M AT), which provides guidelines and facilities to  a mediator author, performing homogeniza-
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tion. AURORA mediators with MATs tire illustrated  in Figure 3.5. A MAT provides a user-friendly 

interface th a t helps the mediator authors to perform  homogenization systematically. It gathers 

various sem antic knowledge from the m ediator au thors and stores it in an internal repository; this 

knowledge will be used by the homogenization m ediator for query translation and processing. AU

RORA integration mediators deal with a small class of conflicts and are autom atic, requiring no 

user interference in handling semantics; they do not have MATs attached.

3.3  S em an tics o f In tegrated  D a ta  Serv ices

Using the framework presented by [33], an in tegrated  data  service is provided as a global database 

whose schema is a service view in AURORA term s. This global database is virtual, storing no data. 

An integration mediator is in charge of accepting queries w ritten in terms of this global database, 

transla te  it to queries against various sources, and  assemble a  query answer.

Semantics of well-known database query languages are defined based on concrete databases, 

databases th a t store data according to a schema. Generally, one can assume that, given any concrete 

database D  using a  well-known da ta  model, such as relational d a ta  model or the object-oriented 

d a ta  model, and a  query, Q, written against the schema of D, in a  well-known query language, such 

as SQL or OQL, th a t is compatible with the underlying data  model of D , the answer to Q using D, 

an sw er(D ,Q ), has a  well-understood meaning.
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Figure 3.5: An AURORA Workbench

Since the global database in systems such as AURORA is virtual, semantics of queries posed 

against this database gives rise to  the following question: what is the meaning of a query against a 

virtual global database? Although the global database is virtual, the participating sources are not 

virtual (when viewed as a d a ta  source). Fundamentally, this set of sources implicitly represent a 

global database. If  one can construct the global database from the sources, then the semantics of 

queries posed against the virtual database is the same as those posed against any database where 

schema and content matches the constructed global database. Hence, before answering the question 

posed a t the beginning of this paragraph, the following question must be answered: Given a set o f 

data sources, is there always one and only one global database? I f  so, what data are in it? The rest 

of this section answers this question without using a formal model of semantics.

In AURORA, the answer to this question is affirmative. Each da ta  source is homogenized by a 

m ediator author, producing a  homogenizing view. This view is derived procedurally by the mediator 

author using operators of her choice; it has well-defined semantics and can be m aterialized easily. 

Formally speaking, one can assume th a t for any given d a ta  source, S, there exists a  function, H orns, 

th a t maps S  to a  database instance. This instance, H o m s(S ) ,  is referred to as the  homogenized 

data source due to S. In practice, function H orns  is constructed by a  m ediator au tho r working to 

"hook up” 5  to  a  chosen global database, using the AURORA homogenization facilities.

Once homogenization of all sources is completed, an integration m ediator supporting the ta r

get service view also obtains a  function Fragments, th a t maps each global relation name to  one 

or more source relation names. T hat is, given any global relation name, N , F ra g m e n ts{N ) =  

{ S i - N i , ..... Sk-nk}, where for any k  <  0, iVjt is the name of a  relation in H o m sk{Sk)- In  the rest of
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this section. H o m R el(S .N )  is used to denote the  relation nam ed N  in H o m s(S ).

Given a  service view Vg containing relation definitions R \ , R ^ ,  and a set of source databases 

S  =  { S i . , , S m }, the  global database implicitly represented by S , with schema Vg, contains an 

instance for each relation defined in Vg. The instance of global relation R? is derived as follows:

in s t{R f) =

where P ID ( R f)  is the plug-in identifier of globed relation i? f , as specified in Vg, R j = H  om R el ( S j .N j ) 

F ra g m e n ts (R f)  =  ..., 5 ' .A^}. For now, it is sufficient to think of the plug-in identifier as

the prim ary key of the global relation. The concept of a  fragm ent is described in m ore detail in 

C hapter 4. For the purposes of this section, a  fragm ent can be considered as a  sound , but not 

necessarily complete, view of a global relation, in term s of the  framework described in [33].

The construction of a global database is determ inistic, although it depends on the availability of 

two functions: P ID (R ), which returns the plug-in identifier of globed relation R , and F ra g m e n ts (R ) , 

which returns the set of source relations that a re  fragments of R . As described in C hapter 4, in 

the AURORA framework, P ID (R )  must be provided as part of the service view definition, and 

the Fragments function is constructed autom atically, upon completion of homogenization of all 

participating sources, by AURORA integration m ediators th a t keep track of relationships between 

source relations and the target, global, relations. Intuitively, these two functions are m ade available 

by AURORA’S m ediation model. In other words, the m ediation model of AURORA requires th a t 

the m ediator authors provide these functions. In  practice, the mediator authors are required to 

provide enough inform ation so th a t these functions can be defined.

A few properties of the global database thus constructed axe of interest, these include the fol

lowing:

1. Schema coverage: W hether the global database schema can be derived from the source database 

schemas. On this property, it is assumed th a t  the sources collectively provide a  full coverage. 

Intuitively, this means th a t it is assumed th a t  the sources collectively “have som ething to say 

abou t every domain of interest in the global schema” .

2. E ntity  coverage: W hether the globed database contains information on all entities of interest 

according to  the semantics of the global schema. Currently, it is assumed th a t the sources 

collectively provide full entity coverage. This is a  reasonable assumption. If the opposite is 

assumed, then one can assume th a t there is a  “more complete” database, containing d a ta  on 

entities th a t can not be found in the known sources. These entities would not be of interest 

since their validity can not be verified.

3. Data coverage: W hether the global database contains “unknown” values and how these values 

are represented. This is a  more complicated issue. In AURORA, it is assumed th a t da ta
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coverage is partial and unknown values axe represented as null values. Moreover, no atom ic 

predicate evaluate to  true if it is applied to a  null value. A related issue is the problem 

of instance level conflicts in the global database. It is not clear whether these conflicts are 

considered and how in [33]. In AURORA, conflicts axe retained in the global database, and 

the users query the database with the conflict tolerant querying facilities.

Once a  global database is constructed, queries axe answered using this database with well-known 

semantics. If  the service view is relational, then the query semantics can be formally defined. If the 

service view is object-oriented, then  the query semantics should conform to the standard  chosen. 

In AURORA, 0 0  query semantics should conform to the semantics of OQL queries as defined in 

the ODMG 2.0 standard [14]. Conflict tolerant querying in AURORA causes some extension to the 

well-known query semantics but these extensions axe described in detail in Chapter 5.

As pointed out by [33], in system s such as Information Manifold [50], due to the type of da ta  

sources considered (sources may provide d a ta  th a t is irrelevant to the semantics of the global view), 

there m ay be infinite num ber of possible global databases. Hence the semantics of queries in these 

systems require new techniques to define and  evaluate. In contrast, query semantics in AURORA 

raises fewer issues once the sem antics of a  global database is defined. The next paragraph describes 

AURORA in the terms of [33].

It is the  mediator au thors’ responsibility to  make sure th a t all the relations in homogenizing 

views are sound  views of globed relations, views th a t contains only tuples tha t fit into the global 

schema in term s of semantics. This means th a t till d a ta  sources axe open, providing a true, although 

not necessarily complete, model of the  world of interest. Consequently, the collection of da ta  sources 

is always consistent. It is currently a  conjecture th a t the query answers AURORA produces (modulo 

conflicts and CT querying) correspond to the certain answers, as described by [33], but this is yet to 

be proven. The other type of query answer, the possible answer, will be infinite and does not make 

sense.

3 .4  E nabling T ech n iqu es in  A U R O R A : A  R oadm ap

Each AURORA mediator requires a suite of enabling techniques. At the core of a m ediator is a 

Mediation Enabling Algebra (MEA) th a t provides Mediation Enabling Operators (MEOs) th a t axe 

suitable for manipulation of heterogeneous and autonomous data . MEAs must also be suitable for 

query processing in th a t they should facilitate optimized processing of mediator queries. Typically, 

a  MEA consists of operators found in algebras th a t m anipulate single-source data, such as relational 

algebra or object algebra, together w ith MEOs specially designed in AURORA for da ta  m anipulation 

required by homogenization or integration. The development of a  MEA involves the following tasks:

1. Development of a  m ediator query rewriting algorithm to produce query evaluation plans
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(QEPs) in the MEA;

2. Development of query transform ation rules in the MEA th a t potentially allow optimization of 

the above-generated QEPs;

3. Design of a  query optim ization strategy; and

4. Development of techniques for evaluating expensive MEOs efficiently.

Different mediators require different MEAs, depending on the type of m ediation they perform and 

the da ta  model they support. For homogenization mediators, a  M ediator A uthor’s Toolkit (MAT) 

m ust also be developed. This involves the design of a  homogenization methodology, and a  GUI- 

driven toolkit to support this methodology. The design of a  MAT often proceeds that of a MEA, 

since it identifies the  types of d a ta  m anipulation required.

Technique suites are complete for AURORA-RH and AURORA-RI. The high-level design of a 

MAT for AURORA-OH is also complete. Complete development of MEAs for AURORA-OH and 

AURORA-OI are limited by the lack of a  well-accepted object algebra as a starting  point. However, 

the da ta  m anipulation operators in both of these mediators have been defined. How these operators 

form an algebraic framework to be used for query processing and optim ization is a future research 

topic.
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Chapter 4

Relational Mediation Framework

W hen a  class of applications requires an  integrated d a ta  service to be provided through a service 

view, based on a chosen d a ta  model and query language, a d a ta  m ediation system needs to be 

constructed. Various ta sk s  m ust be achieved in proper sequence in order to build  such a system . A 

■mediation framework defines these tasks, how they relate  to one another, and how they are achieved. 

As discussed earlier, in AURORA, the d a ta  mediation process consists of two tasks: homogenization 

followed by integration. Therefore, the  mediation framework of AURORA consists of two sub

frameworks: the hom ogenization framework and the  integration framework. Moreover, when the 

service view d a ta  model is relational, the  mediation framework works with relational da ta  and  is 

simpler than  when the service view is in an object d a ta  model.

This chapter describes the relational mediation framework of AURORA in a  bottom-up fash

ion, from how sources a re  to be wrapped, to how w rapped sources are homogenized and, finally, 

integrated. The topics covered include the following:

1. The hom ogenization framework and its realization by AURORA’S Relational Homogenization 

m ediator, AURORA-RH.

2. T he integration fram ework and its realization by AURORA’S Relational Integration m ediator. 

AURORA-RI.

3. How the above fram eworks and mediators work together to achieve da ta  mediation.

4.1  A n  O v erv iew  o f th e  R ela tion a l M ed ia tio n  Fram ew ork

Construction of a  d a ta  m ediation system  th a t supports a  pre-defined service view based on a set of 

d a ta  sources (referred to as participating sources), s ta r ts  with the activity  of wrapping the sources. 

W rapped sources axe first homogenized to  remove their idiosyncrasies with respect to the service 

view, and then integrated, into the access scope of the  service view.
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4 .1 .1  Service V iew

For applications, the service view is a  relational schema th a t can  be queried. For sources th a t provide 

d a ta  through this view, it is a pre-defined relational schem a where each relation, called a global 

relation, specifies a group of a ttribu tes as its p lu g - in  id e n t if ie r  (PID). T he PID is semantically a 

relational key and is used for object matching, the process of identifying source tuples that describe 

the same application entity; these source tuples m ust be combined to  form tuples in global relations. 

For instance, a  service view may contain the following relation w ith PID “IS B N ”:

Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview , avgReview, price)

This relation contains information on books, their ISBN num ber, title, year of publication, whether 

it is chosen by the O prah’s reading club, whether it is a  national best seller, the rating by the New 

York Times, the  average rating  of customer reviews, and th e  price of the  book. Intuitively, the 

PID  is a “ticket” th a t a  source tuple must produce in order to  identify itself in the context of the 

global relation to which it contributes data. Tuples from different sources holding the same PID are 

considered to  describe the same application entity, and are com bined to form a tuple in the global 

relation.

In the rest of this chapter, the following notations are used. P ID (R )  is used to denote the PID 

of global relation R . To simplify presentation, most of the tim e it is assumed th a t P ID (R )  consists 

of a  single a ttr ib u te . For t €  R, its PCD value is denoted as t .P ID .  For any global relation R. 

R { P ID (R )}  denotes the set of PED values appearing in R.

4.1 .2  D a ta  Sources and R elational W rappers

In order to  participate  in a  service view supported by an AU RORA m ediator, a data source must 

be accessible through an A PI known to AURORA m ediators. In the relational context, this API 

m ust allow access to schema information, submission and execution of SQL queries, and collection of 

query' results in tabu lar form. A wrapper is used to  provide such an  API. AURORA employs “thin” 

wrappers, th a t is, these wrappers do not remove any differences between a source schema and the 

target service view in structu re  or semantics: although accessible, a wrapped source could still be 

different from the service view in m any ways.

W rapper technology is an active area of reseaxch [75, 80], although it is not a  focus of research 

in AURORA. As described in Chapter 7, currently, AURORA wrappers are constructed using com

mercially available middleware systems. This approach allows a  wide range of data  sources to be 

wrapped, bu t it is not a  generic solution: there are sources th a t  cannot be wrapped. However, as 

w rapper technology progresses, AURORA, would be able to gain  access to these sources as needed.
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4.1 .3  H om ogenization, o f  D ata  Sources

Once wrapped, a  d a ta  source m ust be homogenized to  conform in structure and  semantics to  the 

target service view. The process of homogenizing a  source requires derivation of a  homogenizing 

view on top of the (wrapped) source. Some or all relations in this view must be fragments of various 

global relations. For instance, a  relation Som eBooks(ISBN, title, authors, publisher) is a fragment 

of a globed relation Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview, avgReview, 

price). Intuitively, a  fragment of a  global relation provides da ta  on some a ttribu tes of some tuples 

in this relation. For instance, SomeBooks is able to provide da ta  on the ISBN number and title of 

books. A nother da ta  source maybe able to  provide da ta  on the category of the books described by 

SomeBooks. Yet another da ta  source may provide da ta  on books th a t are unknown to SomeBooks.

Formally, a  source relation R s qualifies to be a fragment of a global relation R tJ if P ID (R ,j) C 

A T T R (R S), th a t is, R s is able to produce the PID a ttribu tes required by R g. W hether a source 

relation is really a  fragment of a  global relation is a  decision to be made by mediator authors. 

AURORA’S m ediation model determines th a t source d a ta  must be transform ed into fragments of 

global relations in order to be included in a  service view. Upon completion of homogenization, all 

the da ta  th a t a source willingly exports and th a t are relevant to the target service view must exist 

as (view) relations in the homogenizing view. Moreover, these view relations m ust be specified, by a 

m ediator author, as fragments of relevant globed relations; this "fragment-oF relationship between 

source relations and global relations must be available a t  the time the global relation is derived. 

Generally, a homogenizing view may contain relations th a t are not specified as fragments of any 

global relation; these relations are irrelevant to the service view in th a t they will not be identified 

or accessed as da ta  contributors. The relationship between source relations in homogenizing views 

and the target service view is illustrated in Figure 4.1.

Homogenization is performed by a mediator author as follows. The m ediator author compares 

the source schema and the target service view to decide which portion of the service view the source 

is able to contribute data  to, and then designs the homogenizing view accordingly. This design 

requires good understanding of the service view and the source schema, and requires many semantic 

decisions to be made. After a  homogenizing view is designed, it must be derived from the source 

view by a  m ediator au thor following a homogenization methodology. This methodology is designed 

to help a  m ediator au thor to manage the complexities of the homogenization process.

The AURORA-RH m ediator assists the m ediator au thor in deriving a homogenizing view system 

atically. It does not design the homogenizing view, neither does it determine how a  homogenizing 

view is to be derived from the underlying source schema; rather, it provides two closely related 

facilities to the m ediator author: a  Mediation Enabling Algebra (M EA), MEA-RH, and a M ediator 

A uthor’s Toolkit (MAT), MAT-RH. MEA-RH provides am algebraic framework suitable for use in 

homogenization; it supports operators in the  usual relational algebra and operators specially de-
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Figure 4.1: Homogenizing View and Service View-

signed for homogenization. MAT-RH m andates the homogenization m ethodology th a t guides the 

m ediator author to system atically identify and resolve structural and sem antic differences between a 

source schema and the target service view. In each step of this methodology, certain types of deriva

tions can be specified as an expression in MEA-RH. Section 4.2 describes how this methodology 

works and how MAT-RH supports it.

4 .1 .4  In tegration  o f H om ogen ized  Sources

Once homogenized, a  da ta  source should provide a description of the d a ta  it is able to  contribute 

to the target service view. This description is constructed by the m ediator au thor who specifies 

which source relation is a  fragm ent of which global relation. Continuing w ith  the previous example, 

if the da ta  source wishes to contribute data  towards Books through SomeBooks, it must make 

SomeBooks known to Books as a  fragm ent. The integration framework m ust allow such a  relationship 

to be specified and understood, and  must also provide a mechanism for deriving global relations by 

combining all the known fragments.

In AURORA, integration is performed by AURORA-RI, the relational integration mediator. An 

AURORA-RI m ediator supports a pre-defined service view by keeping track  of fragments of the 

global relations, and using these fragments to derive global relations. T he  integration framework
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and the AURORA-RI m ediator are described in Section 4.3.

4 .2  A U R O R A -R H  H o m o g en iza tio n  F ram ew ork

The process of homogenization must remove all s tru c tu ra l and sem antic mismatches between a  source 

schema and the target service view; this is a com plicated process especially when multiple types of 

mismatches are present. In practice, not only do the  m ediator au thors need constructs/operators to 

express resolutions of mismatches, they also need a  homogenization methodology to ensure th a t iden

tification as well as resolution of mismatches are perform ed system atically. AURORA-RH provides 

such a  methodology and enforces it with a  M ediator A uthor’s Toolkit (MAT), called MAT-RH, that 

m andates a  sequence in resolving mismatches of various types and  provides facilities for expressing 

required resolutions. Intuitively, MAT-RH provides the  m ediator au tho r with a  skeleton of homog

enization: the m ediator author follows the hom ogenization methodology to system atically identify 

various mismatches and “hang” the resolutions of choice on the skeleton. MAT-RH maintains all 

the resolutions in an internal repository so th a t th is knowledge can be used for the processing of 

m ediator queries. T he resolutions gathered by M AT-RH axe expressed using the  M ediation Enabling 

Algebra (MEA) of AURORA-RH, MEA-RH.

M EA-RH extends the relational algebra w ith operators specially designed for constructing ho

mogenizing views. The extensions are to support m ore powerful structural mapping and value 

mapping. A structured mapping is a transform ation th a t  removes a  difference in structure between 

the homogenizing view and the source schema, while a  value m apping is a  transform ation th a t re

moves a  difference in d a ta  values between the two. For instance, a  relation in the  homogenizing view 

may have an a ttr ib u te  whose values correspond to  relation or a ttr ib u te  names in the underlying 

database. This is referred to as a  cross-over schema mismatch  [41]. It has been argued th a t the 

relational algebra cannot express a m apping th a t resolves this s truc tu ra l difference [45]. In contrast, 

M EA-RH can express such structural mappings. Defining homogenizing views often requires that 

arb itrary  functions/look-up tables to be used to derive da ta  values from the underlying database. 

Such value mappings may be allowed when defining relational views, but the characteristics of the 

mappings are not taken into consideration during processing of relational view queries.

4.2 .1  T h e H om ogen ization  P roblem

This section gives a  formal description of the hom ogenization problem  and describes an example 

used for illustrating the homogenization process, and for dem onstrating how facilities provided by 

AUROR4.-RH can be used by a m ediator author to  achieve homogenization.

Let B  be a  relational database. Let H  be a homogenizing view consisting of relations M i , ..., M n. 

The problem of homogenizing database B  into H  is to  specify procedures, P ,(H )(1  < i < n), that
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construct relations M i (i  =  l ,n )  from the relations in B . B  is the source database; relations in B  

are source relations; M i (i =  1, n) are target relations. H  is also referred to  as the target view.

- Source Database Schema -

Sales (month, hardcover, paperback, audiobook) 
Travel(ISBN, title, price, deduction, bestseller) 
NewAge(ISBN, title, price, deduction, bestseller) 
Computer (ISBN, title, price, deduction, bestseller) 
Hobbies(ISBN, title, price, deduction, bestseller) 
Children(ISBN, title, price, deduction, bestseller)

- Target View -

BookSales(month, book-type, salesAmt) 
Books(ISBN, title, category, price, bestseller)

Figure 4.2: A Homogenization Example

E x a m p le  4 .2 .1  [ A Homogenization Example.] Figure 4.2 depicts a homogenization problem . The 

target view contains two relations: BookSales, which summarizes sales of various types o f books, 

and Books, which describes all the books available, their ISBN number, title, category, price, and 

whether they are a  national best seller. The source database provides similar inform ation but is 

organized differently. D ata on the monthly sales of different types of books are stored in  relation 

Sales, which has one tuple for each month, with one column recording the sales of a particu lar type 

of books. Books in the same category are stored in a relation named after this category. In addition 

to these differences in structure, the following differences in semantics also exist: 1) in th e  source 

database, the sales and price da ta  are recorded in Canadian dollars, while in the target view, the 

same da ta  are to be reported in US dollars; 2) In the target view, Books.price  is the cost o f  a book 

after deductions, while in the source database, the price is given as the regular price and a  deduction 

rate; and 3) The target view perceives the ‘‘categories of books” differently from the source database. 

R ather than  the categories of

{T  ravel, N ew  Age, Com puter, Hobbies, C hildren}  

the  target view assumes th a t books are from the following categories:

{ Travel and Adventure, Alternative, Computer and Internet, Hobbies, Young Reader}

The content of the source tables are shown in Figure 4.3. □

4.2 .2  M ism atches and R esolutions

Each database defines domains th a t model conceptual territories. A domain is characterized by the 

following:
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Travel
ISBN title price deduction bestseller
001 “Florida” 45 0.15 No
002 “China” 67 0 No

New Age
ISBN title price deduction bestseller
003 “M editation” 24 0 No
004 “Dreams” 23 0.20 Yes

Computer
ISBN I title price deduction bestseller
005 “T C P /IP ” 41 0.15 Yes
006 | “HTML” 37 0.20 Yes

Hobbies
ISBN title price deduction bestseller
007 “Pens” 74 0.15 No
008 “Quilts” 45 0.30 No

Children
ISBN title price deduction bestseller
009 “Micky” 10 0 No
010 “Pooh” 8 0 No

Sales
m onth hardcover paperback audiobook
Feb/99 6700 6900 800
M ar/99 7600 8400 7800

Figure 4.3: Source Tables

1. Its conceptual territory.

2. Its representation construct in the relational da ta  model, whether it is represented as relations, 

attribu tes, or da ta  values.

3. The d a ta  type and semantics of its elements.

For instance, the conceptual territory of “title of books” is modeled by domain Books.title  in the 

target view; the elements of this domain are data  values of the a ttribu te  title  of relation Books: and 

these elements are character strings. A domain can be a meta domain, consisting of relations and 

attribu tes, or a  data domain, consisting of values in a relation. For example, the conceptual territory 

of “book categories” is modeled by a  m eta domain {T ra v e l , N ew  Age, Com puter. Hobbies. Children} 

in the source database in Figure 4.2. The representation construct of this domain is relation, the 

elements o f this domain are relation names. Domains from different databases th a t model the 

same conceptual territory  are said to be corresponding domains. W hen corresponding domains me 

different in their representation constructs, data  types or semantics of elements, there is a domain 

mismatch.
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Consider a  source database B  and a  target relation M  to  be  derived from B . Fundamentally, 

deriving M  from B  requires deriving the  domains of each a ttr ib u te  of M  from B  and then combining 

these dom ains together to form relation M . Each a ttrib u te  A  of M  defines a  da ta  domain D ‘)f that 

models a  conceptual territo ry  Ca , which is also modeled by B .  If B  models Ca with the same 

representation construct, d a ta  type, and semantics as M .A , then  derivation of the domain of M .A  is 

easy. If  not, th a t is, there axe dom ain mismatches over conceptual dom ain C a, deriving M .A  from 

B  requires removal of these dom ain mismatches.

Generally speaking, given a  source database B  and a da ta  dom ain D  th a t models a conceptual 

territo ry  Ca , the following types o f domain mismatches between D  and its corresponding domains 

in B  may arise:

T y p e  1 c ro ss -o v e r  s c h e m a  m ism a tc h . A type 1 cross-over schema mismatch happens when 

Ca  is modeled by a dom ain consisting of relation names in B .

T y p e  2 c ro ss -o v e r  s c h e m a  m ism a tc h . A type 2 cross-over schema m ism atch happens when 

Ca  is modeled by a dom ain consisting of a ttribu te  names in  B .

D o m a in  s t r u c tu r a l  m is m a tc h e s . A domain struc tu ra l m ism atch happens when Ca is 

modeled by more than  one domain(s) in B .

D o m a in  e le m e n t  m is m a tc h e s . A domain element m ism atch happens when Ca is modeled 

in B  by a  domain whose elements are of a different da ta  type  or semantics from the elements 

of D .

According to the definition of a domain given earlier, the above list covers all possible cases of 

mismatches between a  target d a ta  domain D  and its corresponding domains in a given database. 

These mismatches tire illustrated by the following example.

E x a m p le  4 .2 .2  The example shown in Figure 4.2 dem onstrates the  following mismatches:

1. Type 1 cross-over schema mismatch: In the target database, the concept of “book categories” 

is represented as da ta  dom ain Books.category. The same concept is represented as relation 

names in the source database.

2. Type 2 cross-over schema mismatch: In the target database, the concept of “type of books” 

is represented as d a ta  dom ain B ookS ales, book -type, bu t is represented as attribute names in 

the source database.

3. Domain structu ra l m ism atch: In the target database, B ooks.price  means the price including 

deductions. In the source database, the same concept is represented by two data  domains: 

Price =  Travel.price U NewAge.price U ... Children.price and  Deductions =  Travel.deduction U 

NewAge.deduction U ... Children.deduction.
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4. Domain element mism atch: In the target database, the domain Books.price  contains values 

th a t represent money am ounts in US dollars while, in the source database, the domain Price 

as described earlier contains values th a t represent amounts in C anadian dollars.

5. Domain element m ism atch: In the source database, the domain representing the concept of 

“book categories” contains elements whose values are from the collection of strings {Travel, 

New Age, Computer, Hobbies, Children }. In the target view, elem ents of the  domain that 

represents the same concept, Book.category, draw their values from {Travel and Adventure, 

Alternative, Computer and Internet, Hobbies, Young Reader}.

a

A mismatch is resolved by deriving a view in which this particular m ism atch no longer exists. 

However, the derived view m ay contain o ther mismatches th a t require m ore views to be derived 

in order to  remove them. Therefore, such view derivations can be done as many times as it takes 

until ail mismatches are resolved. Each derivation aims at solving particu lar mismatches and may 

require special transform ation to the data . These transform ations are expressed by the usual rela

tional operators as well as the AURORA primitives, operators specially designed for resolving the 

mismatches described above.

4 .2 .3  A U R O R A -R H  P rim itives

AURORA-RH primitives are M ediation Enabling Operators (MEOs) specially designed to facilitate 

homogenization. These prim itives consist an extension to the relational algebra to form MEA-RH, 

a  M ediation Enabling Algebra (MEA) th a t is the basis for performing hom ogenization and, later, 

for processing queries. All primitives take a  relation as an argum ent and generate a  relation; they 

compose with relational operators in a  well-defined manner.

In this dissertation, A T T R (R )  denotes the set of attributes in relation R , R E L n a m e{R )  denotes 

the name of relation R, and A T T R n a m e (A )  denotes the name of a ttr ib u te  A. Let B  be the source 

database to be homogenized. AURORA-RH provides the following prim itives:

p r im it iv e  retrieve.

Let Q be an expression in relational algebra over the source relations in database B .

R ' = retrieve(Q ) 

subm its query Q to database B  and returns the result table R '.

p r im it iv e  pad.

Let R  be a  relation, A be an  a ttribu te , A  ^  A T T R (R ), and c a  constant,
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R ' =  pad{R, A , c)

defines a  relation f i ',  A T T R (R ')  =  A T T R (R )  U {.4}. The population of R ' is defined by 

R ' =  {£' | £'[.4] =  c; £'[.4'] =  t[A '],t G R ,A '  G A T T R (R )}

Intuitively, for each tuple £ G R , pad  generates a R ' tuple £' by “padding” £ w ith a new field .4 

with value c. pad is useful for restructuring relations. Consider the relation T ra ve l  in Figure 4.2. 

Let R ' =  pad{ retrieve(Travel), category, “T ra v e l”). R ' has scheme (ISBN , title, price, deduction, 

category) and a  population consisting of all the Travel tuples each tagged with relation name “Travel” 

as a ttribu te  category.

p r im it iv e  rename.

Let R  be a relation, .4 G A T T R (R ),  and  n  be an  attribute nam e, such th at no attrib u te in R  has 

nam e n , then

R ' =  renam e(R , .4, n)

defines a  relation R ' with scheme identical to  the scheme of R  with a ttrib u te  .4 renam ed to n. The 

population of R 1 is defined by the following:

R ' =  {£' 1 £'[n] =  £[.4],£'[.4'] =  £[.4'],£ G R ,A '  G A T T R (R )  -  { .4 } }

p r im it iv e  deriveAttr.

Let I? be a relation. Let Lt- C A T T  R {R ){i =  1, Ar) be a list of a ttribu tes in R . Let N i(i = 1, A:) be 

a ttribu tes. Let f i  be functions of appropriate  signatures.

R ' =  d eriveA ttr  (R, L i ,N l , f l , ...., L k, N k,fk )  

defines a  relation R', A T T R (R ')  = A T T R (R )  U {jVl , ...,N k}. The population of f?' is defined by:

R ' =  {£' [ £'[iVf] =  /,-(£[£,,]), I < i  < k; £'[.4] =  £[.4], .4 G A T T R (R )  -  {A ^ ..... N k }. t G i?}

Intuitively, for each tuple £ of R , d er iveA ttr  generates a tuple £' of R' by adding fields .V, tu t (i= l.kj 

and sets their values to be /,(£[£,,]), where £[£,-] is the list of values obtained by projecting t over Lt. 

If an a ttrib u te  in R  has the same name with some N s (1 <  s < k), this a ttr ib u te  is replaced by Ns.

d eriveA ttr  is used for resolving dom ain mismatches with arb itrary  functions, as shown in Sections 

4.2.5 and 4.2.5. Notice th a t functions f i  in deriveA ttr  are not aggregates; they  apply to field(s) in 

a single tuple, while aggregates apply to  m ultiple tuples. Given a table containing student grades, 

deriveA ttr  cannot be used to derive an  a ttr ib u te  “ GradeAverage”; it can be used to  derive the basic 

student-grade table. “GradeAverage’ can then  be derived using the usual aggregates.

A tra n s fo rm a tio n  e x p re s s io n  is an  expression in MEA-RH th a t defines the  derivation of the 

scheme and population of a  relation from given relations and other argum ents. A transformation 

expression deriving relation f i is in the form of R  =  Te - If Te  is in the form of retrieve{Q ), where 

Q is a  relational algebra expression, R  is a  direct relation-, otherwise, ii T e  is an  expression that
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involves o ther MEOs, such as pad, renam e, or deriveA ttr, R  is a  derived relation. Intuitively, a  

direct relation is the immediate result of a  query over the source database.

4.2 .4  H om ogen ization  M eth od ology  and A U R O R A -R H

W hen deriving a  target homogenizing view H  from a source database B , multiple do m ain mismatches 

are often encountered. For instance, over the conceptual territo ry  of “book categories” , there are two 

domain mismatches: a type 1 cross-over mismatch and a  domain element m ism atch  (mismatches 1 

and 5 in Exam ple 4.2.2). A mediation methodology m andates a  sequence in which chese mismatches 

should be identified and resolved. Such methodologies are designed to assist the  m ediator au thor 

in examining and resolving mismatches systematically and is a  pragm atic m eans for making the 

process of homogenization more manageable. Many different methodologies can b e  invented. One 

such methodology, called the homogenization methodology, is designed as part o f  the AURORA 

homogenization framework. This methodology m andates th a t homogenization be perform ed in the 

following 6 steps:

1. Schema import;

2. Resolve type 1 schema mismatches;

3. Resolve type 2 schema mismatches;

4. Link relations;

5. Resolve domain structural mismatches; and,

6. Resolve domain un it/popu la tion  mismatches.

In step 1, the schema im port step, the m ediator author selects the portion of the  source database 

B  th a t is relevant to  the target view H . I t is possible th a t the whole schema o f  B  is relevant. 

More often, only some portion of some relations of B  are of interest. M ajor s tru c tu ra l differences 

are eliminated in steps 2 and 3; after step 3, all domain mismatches th a t are left a re  between data  

domains of the source and those of the  target view. In step 4, the relation-linking s te p , the m ediator 

author m ust gather relevant domains in a meaningful way to derive one distinguished relation for 

each target relation M  in H . This relation, called the prototype relation of M , should  contain all 

the da ta  domains th a t correspond to data  domains in M . Finally, in steps 5 and 6, the m ediator 

author specifies how da ta  domains in each target relation are to  be derived, by resol ving mismatches 

between these d a ta  domains and their corresponding domains in the prototype relation. These 

mismatches are often resolved using user-defined functions and look-up tables.

Each step of the homogenization methodology is characterized by the following:

1. Input: In each step, certain relations should be examined.
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2. O perators: MEOs and  transform ations that can be used in th is step .

3. O utput: dom ain m appings and other semantic information, such as enumerated domains, 

look-up tables, and derived relations, that may be generated by th is step.

AURORA’S homogenization methodology is enforced by a  M ediator A u th o r’s Toolkit in AURORA- 

RH, called MAT-RH. Each step of the methodology is supported by a  specialized tool. MAT-RH 

m andates th a t  tools be invoked in sequence. The tools are designed to  provide the following facilities:

1. R estrict the scope of the  supported mediation step. For instance, steps after relation linking 

should only work w ith the prototype relations. Tools supporting these steps should ensure 

th a t no other relations are visible or manipulated.

2. A user-friendly interface to  assist the mediator authors in specifying transform ations and other 

inform ation used for view derivation.

3. Transform ations specially designed for resolving complicated m ism atches. For instance, a 

transform ation for resolving type 1 cross-over m ism atch, R E L m a t , is provided by SME-1, the 

tool supporting resolution of type 1 cross-over mismatches, which is step  2 of the methodology. 

This transform ation is not available in any other tools.

4. Store the  transform ations, domain mappings and other sem antic inform ation provided by the 

m ediator au thor for homogenization in an internal repository, in a  proper format, so th a t this 

inform ation can be used later for query processing.

The architecture of AURORA-RH is shown in Figure 4.4. M A T -R H  consists of 6 tools, named 

EE, SME-1, ..., DEE, th a t support the 6 steps of the homogenization methodology, respectively. 

These tools will be described later in this chapter. Each tool gathers and  stores various semantic 

information into the V iew  D e fin itio n  R e p o s ito ry . A U R O R A -R H  P r im itiv e s  implements 

primitives described in Section 4.2.3. A U R O R A -R H  Q u e ry  P ro c e s s o r  (A Q P ) processes queries 

posed against the target view. It translates such a query into a set of queries over the source database, 

using the m apping inform ation from the View Definition Repository, sends these queries for execution 

and assembles the  final answer from the returned data, using the prim itives. The query processing 

techniques of AURORA-RH is described in Chapter 5.

4.2 .5  H om ogen ization  w ith  A U R O R A -R H

This section dem onstrates the homogenization methodology by walking through the process of de

riving the target view from the  source database, as given in Figure 4.2. As each step is performed, 

the tool in MAT-RH supporting this step will be described.
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Figure 4.4: Architecture of AURORA-RH W orkbench 

S te p  1: S c h e m a  Im p o r t  U s in g  th e  I m p o r t  E n v iro n m e n t (IE )

The input to step 1 includes all the source relations exported by a  source database B . In this 

step, the m ediator author can derive relations using relational algebraic expressions over B; these 

expressions select portions of B  th a t are relevant to the target view. T he output of this step is a  

relational schema, referred to  as the import schema, th a t contains a set of direct relations of the 

form of R  = retrieve{Q ), where Q is a relational algebraic expression over database B.

E x a m p le  4 .2 .3  [Importing source database.] In the example given in Figure 4.2. all relations are 

of interest and hence are im ported in full. The schema im port step produces a set of direct relations 

R  =  re trieve(R ), where R  G { Travel, New Age, Computer, Hobbies, Children}. T he repetition of 

relation names on the two sides of the retrieve operator causes no confusion because any relation 

name referenced by the param eter of retrieve refers to source relations, and  the relations on the left 

hand side are always view relations. Generally, relations in the im ported schema can be derived by 

expressions such as A dult =  retrieve(aAge> isSom ePeople), when the target view is used to provide 

da ta  on adults only. □

The step of schema im port is supported by the Im port Environm ent (EE) tool. The input to IE 

includes all the source relations exported by a source database B . The main facilities provided by 

IE  is a source schema browser, which displays the structure of the source schema. EE also supports 

common schema im port options, such as im porting the entire source schema. In this case, derivation 

of view relations are autom atically generated by IE so th a t the m ediator author does not have to 

write derivations such as R  =  retrieve(R) for each relation.
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S te p  2: S o lv ing  T y p e  1 C ro ss-o v er S c h e m a  M is m a tc h e s  a n d  S M E -1

Step 2 of the homogenization methodology requires the m ediator au thor to remove type 1 cross

over schema mismatches. The input to this step includes all the relations in the im ported schema 

produced by step 1. All relational operators and AURORA primitives can be used for deriving view 

relations in this step. A special transform ation, R E L m a t, is also available.

Given D R =  {R i, ...,R n } , a  group of relations w ith identical schemes, let A  be an attribute, 

A  <£ A T T R (R i) ,  then:

n

R E L m a t(D R, A) =  \^J pad(Ri, A , R E L n a m e(R i))
i=1

The result relation has a ttribu te  set A T T U {-4.}. The population of the result relation contains 

tuples from all the relations in D R, each tagged with a new field A th a t contains the name of the 

relation it came from. For example, if D R =  { Travel, New Age. Computer. Hobbies, Children }. and 

if the relations in D R contain tuples as shown in Figure 4.3, then the following transformation

Booksp =  R E L m a t(D R, category)

derives relation Booksp, as shown in Figure 4.5. R E L m a t  transforms a m eta domain, the relation 

group, into a  d a ta  domain. T hat is, the relation derived with R E L m a t  contains a  da ta  domain 

whose elements axe relation names. For instance, the relation shown in Figure 4.5 contains a data  

domain category that draws its values from a  set of relation names, { Travel, NewAge, Computer, 

Hobbies, Children}. Step2 of the homogenization example is given in the following example.

ISBN title price deduction bestseller category
001 “Florida” 45 0.15 No “Travel”
002 “China” 67 0 No “Travel”
003 “M editation” 24 0 No “NewAge”
004 “Dreams” 23 0.20 Yes “NewAge”
005 “T C P /IP ” 41 0.15 Yes “Computer”
006 “HTML” 37 0.20 Yes “Computer”
007 “Pens” 74 0.15 No “Hobbies"
008 “Quilts” 45 0.30 No “Hobbies”
009 “Micky” 10 0 No “Children”
010 “Pooh” 8 0 No “Children”

Figure 4.5: BooksP: Result of RELm at

E x a m p le  4 .2 .4  [ Solving type 1 cross-over schema mismatch.] The source database models the 

concept of “book category” as relation names, while the taxget view models it as a  da ta  domain 

Books.category. The following is the resolution to this mismatch, using the transform ation R E L m at:  

D R =  {Travel, N ew  Age,C om puter, H obbies,C hildren}
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B ooksp =  R E L m a t(D R , category)

As shown in Figure 4.5, relation B ooksp has scheme B ooksv (ISBN , title, price, deductions, bestseller, 

category). The d a ta  domain category  contains elements whose values are from D R . □

The ou tpu t of this step of the homogenization methodology consists of all the relations produced 

in the previous step, as well as those derived in th is step. At the end of this step, the result view 

should contain no type 1 cross-over schem a mismatch.

The tool of Schema M ism atch Environm ent 1, SME-1, in M AT-RH supports this step. The 

main facility provided by SME-1 is a  tem plate for constructing a  R E L m a t  transform ation, so tha t 

the m ediator au tho r does not have to write a formula, but ra the r fills out a  form that is designed 

to  collect various information needed for a  R E L m a t  “transform ation. The transform ation itself is 

generated by SME-1.

Step 3: Solving Type 2 Cross-over Schema Mismatches using SME-2

Step 3 of the homogenization methodology requires removal of type 2 cross-over schema mismatches. 

The input to this step  includes all the relations in the  output of step  2. All relational operators and 

AURORA primitives can be used for deriving view relations in th is step. A special transform ation, 

A T T R m a t,  is also available.

A T T f?m at(a ttribu te  m aterialize) is a special transform ation used for resolving type 2 cross-over 

schema m ism atches. Given D A =  { .4 i,. . . ,-4n}, a  group of a ttrib u tes  in a  relation S  th a t have 

identical d a ta  types, let N A and AV be a ttribu te  names, N A, N y  £  A T T R{S),  then:

A T T R m a t{S , D A , N A, N V)

=  Ur=i pad{renam e(~ATTR{S) - d *u{a ,} (S ) , .4,-, A T T Rname(Nv)) ,  N a ,A T T Rname(Ai))
The result relation has a ttribu te  set A T T R (R )  — D A U {NA, N y } .  A ttribu te  N A is the name of the 

a ttr ib u te  in the derived relation whose domain corresponds to  D A . A ttribu te  JYV is the nam e of 

the a ttr ib u te  in the derived relations whose domain corresponds to  the dom ain of the a ttribu tes in 

D A . For instance, if D A = { hardcover, paperback, audiobook } and relation Sales contains tuples 

as shown in the lower right com er of Figure 4.3, th en  the following transform ation

Salesp = A T T R m a t{S a le s , D A, book-type, sa lesA m t)

derives a relation Sa lesp, as shown in Figure 4.6. A T T R m a t  transform s a  m eta domain, the a ttribu te  

group, into a d a ta  domain. For instance, the table shown in Figure 4.6 contains a  data  dom ain 

“book_type” , whose elements draw their values from D A . Step 3 of the  hom ogenization methodology, 

and the application of A T T R m a t , axe illustrated by the following example.

Example 4.2.5 [Solving type 2 schema mismatch.] The target view models the concept of “types 

of books” as a  d a ta  domain BookSales.book-type, while the source database models it as a ttribu tes
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m onth salesAmt book_type
Feb/99 6700 “hardcover”
M ar/99 7600 “hardcover”
Feb/99 6900 “paperback”
M ar/99 8400 “paperback”
Feb/99 8000 “audiobook”
M ar/99 7800 “audiobook”

Figure 4.6: S a lesp: Result of A TTRm at

hardcover, paperback, and  audiobook in relation Sa les. The following is the resolution for this 

mismatch:

D A =  {hardcover, paperback, audiobook}

BookSalesp  =  A T T  R m at{Sa les, D A, book-type, sales A m t)

As shown in Figure 4.6, relation B ookSa lesp has scheme (month, salesAm t. book-type). The data 

domain book-type contains elements th a t draw  their values from D A . □

The ou tpu t of this step  of the methodology consists of all the relations produced by the previous 

step, as well as those derived in this step. A t the end of this step, the result view should contain no 

type 1 or type 2 cross-over schema mismatch.

The tool of Schema M ismatch Environm ent 2 of MAT-RH, SME-2, supports this step. The main 

facility provided by SME-2 is a  tem plate for constructing an  A T T R m a t  transform ation, so th a t the 

m ediator au tho r does not have to write a formula, bu t ra ther fills out a  form th a t is designed to 

collect various information needed for an A T T R m a t  transform ation. The transform ation itself is 

generated by SME-2.

Step 4: Relation Linking and RLE

Assume th a t a  target relation M  has a ttrib u te  .4 i , ..., .4n , m odeling conceptual territories C i , ..., Cn.

After both  types of cross-over schema mismatches are removed by steps 2-3, C i  ,C n would now

be modeled by d a ta  domains in the output view of Step 3. The step of relation linking requires the 

m ediator au thor to combine all the d a ta  domains th a t are related to C i ,..., C„ to form a distinguished 

relation M p. M p contains all the d a ta  domains modeling C i , . . . ,  C n and is called a  prototype of M . 

Moreover, a ttribu te  names in M p m ust satisfy the following condition: for any a ttrib u te  .4' 6 

A T T R (M P), if it models the conceptual territo ry  of C,-, then  4.'- should have the same attribu te  

name as A,- £  A T T R (M ) .  Intuitively, this condition ensures th a t if an a ttr ib u te  .4' of M p is "the 

same” as a ttr ib u te  A  of target relation M , it should bear the same name as the latter. The output 

of the relation linking step  is a  set of prototype relations, one for each of the target relations.
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E x a m p le  4 .2 .6  [Relation linking. ] In Exam ples 4.2.4 and 4.2.5, relations B ooksp and B ookSalesp 

are defined. These two relations are the prototypes of target relations Books and BookSales, respec

tively, and they are the output of the Relation Linking step. No derivation is explicitly performed 

in the relation linking step in this example b u t in general, one or more view relations can be derived 

to facilitate the final derivation of the prototype relations □

MAT-RH supports the step of relation linking with the tool of Relation Linking Environment. 

RLE. The main facility provided by RLE is for the m ediator authors to derive and m ark the distin

guished relations as the only output relations.

Step 5: Solving Domain Structural Mismatches using DSE

Step 5 of the homogenization methodology requires the m ediator authors to remove domain struc

tural mismatches between the prototype relations, which are the output of the relation linking step, 

and the respective target relations.

Consider a  target relation M  and an a ttr ib u te  A  £  A T T R (M )  th a t models a  conceptual territory  

Ca - After the relation linking step, Ca  m ight be modeled by the prototype relation of M , M p, as 

one d a ta  domain or as more than one d a ta  domain. Step 5 of the homogenization methodology 

requires tha t for each attribute .4t- of M  th a t corresponds to more than one da ta  domain in M p, the 

m ediator au thor specify the following:

1. L i =  {.4^1 ;..., .4^ .} , a ttribu tes in M p th a t  correspond to .4,-. Li is referred to as the source 

domain list of attribute .4;.

2. A domain structural function (DSF), f f  with the following signature:

f t  : x  ... x A?l{ -> Ti

where (1 < I < L) is the d a ta  type of a ttribu te  .4 ^  of M p, and T  is the data  type of

a ttribu te  A,- of relation M .

DSFs m e arb itrary  functions th a t m ust be provided by the m ediator author. Once all the DSFs are

specified, the m ediator author can derive a  relation M v as follows:

M v = 7r A l , . . . , A m (deriveA ttr(M p ,L d i, A d l, f di,...., L dk, A dk, f dk))

where .4^ ,,..., Adfc(0 < k < m, 1 <  di < m) are all the attribu tes of M  th a t correspond to more 

than  one a ttribu te  of Mp. The schema of relation M v is similar to that of the target relation M  

except th a t an a ttribu te  M V.A  may have a different da ta  type or meaning, such as unit of measure, 

from a ttribu te  M .A . M v is referred to as the  value model of relation M  since the only difference 

between M v and M  is in the da ta  values they contain; these differences are due to domain element 

mismatches which are to be removed in the next step of homogenization.
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Example 4.2.7 [ Solving domain structured m ism atch.] In  relation B ooksp derived in Example 

4.2.4, attribu tes price  and deduction together describe the over-the-counter price of a  book. In 

target relation Books, price  means over-the-counter price, including ail deductions. To resolve this 

mismatch, the following is specified:

B B o o k s . price —  [price, deduction ]■ 

f B o o k s . p r i c e ^ P ' d) =  ( I  -  d) *  p

Relations B ooksv can be derived as follows:

B ooksv = 7TI S B N , title,category,bestSeltertprice(.dcri'VeAttr(^Booksp, [jyricc, deduction}, price, f []ooks.price)) 

There is no domain structural m ism atch over th e  domains of relation BookSales. Hence

B ookSalesv  =  B ookSa lesp

a

The output of this step of the methodology includes the following:

1. Source domain lists and the DSFs for all the a ttribu tes of M  th a t correspond to more than 

one domain in the prototype relation;

2. The derivation of the value model relation for each target relation.

MAT-RH supports this step with the Dom ain S tructure Environm ent, DSE, which supports the 

following:

1. It provides tem plates for the m ediator au tho rs to specify the source dom ain lists and the DSF 

for a ttribu tes of M .

2. It ensures th a t the DSFs are provided w ith  the appropriate signatures.

3. It autom atically creates the derivation of the value model relations, using the  source domain 

lists and the DSFs specified by the m ediator author.

Step 6: Solving Domain Element Mismatches and DEE

The value model relation of a target relation M , M v, as derived by step 5 of the methodology, 

has a  scheme similar to that of M .  However, for an a ttribu te  .4 E A T T R (M ) ,  the values of 

M V.A  may differ from th a t of M .A  in d a ta  type  a n d /o r in semantics. For instance, they might be 

based on different units of measurement. To derive M .A  from M V.A, step 6 of the  homogenization 

methodology requires the mediator to specify a  domain value mapping th a t converts values of M V.A  

to th a t of M .A  when needed. If a domain value m apping maps each M V.A  value to a  unique M .A  

value, it is a  domain value function (DVF). O therwise, there is uncertainty  in the  homogenization
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process. In  this dissertation, only DVFs are considered. Inverses of DVFs, if they exist, must also 

be specified; they  are used for efficient query processing, as described hi Chapter 5. After the DVFs 

are specified, the  target relation can be derived w ith  the opera to r deriveAttr  as follows:

M  =  deriveA ttr{M v, { A i} ,  A i ,  f  * { A k }, A k , f„ )

where A T T R (M )  =  { A i,..., Am} and / " ( i  =  l ,m )  is the DVF for a ttribu te  .4;. This step of the  

m ediation m ethodology is illustrated by the following examples.

E x a m p le  4 .2 .8  [ Solving domain element mismatch.] Consider relation B ooksv in Example 4.2.7. 

The semantics of a ttribu te  price  is “price including deduction” but the price is still in Canadian 

dollars. In  the target view, the price is represented in US dollars. Assume 1 US dollar is worth 1.5 

Canadian dollars, then the DVF for Books.price  can be defined as:

f VBooks.Price(s) = C D N to U S D (s )  =  s/1 .0  

Similarly, the DVF for Book Sa les.sa les A m t  can  be defined as

f B o o k S a l e s . s a l e s A m t  (®) =  C D N to U S D (s)

C D N to U S D Q  has an  inverse th a t should be specified by the m ediator author as well. □

E x a m p le  4 .2 .9  [ Solving domain element mismatch.] Consider relation Booksv in Example 4.2.7. 

The domain of B ooksv .category consists of values from { Travel, NewAge, Computer, Hobbies, 

Children}, while domain Books.category  consists of values from {Travel and Adventure, Alterna

tives, Computer and Internet, Hobbies, Young Readers}. To resolve this mismatch, a DVF must be 

specified for Books.category. This DVF is given as a  m apping table categoryMap shown in Table 

4.1. T hat is, feooks.categoryU) =  categoryM ap(j). This m apping is 1-1 and is invertible.

Combining all the DVFs specified above with those specified in the previous example, the relations 

B ooks  and B ookSa les  can be derived as follows:

B ooks =  deriveA ttr(B ooksv , {category}, ca tegory, f g ooks category, {price}, price, C D N toU SD )  

B ookSa les  =  d eriveA ttr(B ookSa lesu, {sa leA m t} , sa le sA m t, C D N toU SD )

The derived populations of these two target relations are shown in Figures 4.7 and 4.8. □

MAT-RH supports this step with the Domain E lem ent Environm ent, DEE. The facilities provided 

by D EE are the following:

1. It provides tem plates for the m ediator authors to  specify the DVFs with appropriate signatures.

2. It allows the m ediator au thor to specify look-up tables.

3. It allows the m ediator au thor to specify the  properties o f DVFs th a t axe useful for efficient 

query processing, and their inverses, if they  exist.
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Travel Travel and Adventure
NewAge Alternative

Com puter Com puter and Internet
Hobbies Hobbies
Children Young Readers

Table 4.1: categoryM ap : Domain Value M apping for Books.category

ISBN title price bestseller category
001 “Florida” 26 No “Travel and A dventure”
002 “China” 47 No “Travel and A dventure”
003 “M editation” 16 No “Alternative”
004 “Dreams” 11 Yes “Alternative"
005 “TC P/B P” 23 Yes “Com puter and In ternet”
006 “HTML” 20 Yes “Com puter and In ternet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky” 7 No “Young Readers”
010 “Pooh” 5 No “Young Readers”

Figure 4.7: Derived population of relation Books

m onth salesAmt book_type
Feb/99 4467 “hardcover”
M ar/99 5067 “hardcover”
Feb/99 4600 “paperback”
M ar/99 5600 “paperback”
Feb/99 5333 “audiobook”
M ar/99 5200 “audiobook”

Figure 4.8: Derived population of relation BookSales
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4. I t autom atically creates the derivation of the target relations, using the DVFs provided by the 

m ediator author.

By now the task of deriving the target view from the source database, as shown in Figure 4.2, 

is completed using the homogenization methodology and MAT-RH. The contents of the derived 

relations of Books  and BookSales  cure shown in Figures 4.7 and 4.8. The next section shows how 

homogenizing views are combined to derive relations in a service view.

4 .3  T h e In tegration  Fram ew ork and A U R O R A -R I

AURORA’S mediation model prescribes th a t the da ta  sources be first homogenized and then inte

grated. Integration is the process of deriving data  in a pre-defined service view based on da ta  from 

a  set of homogenizing views. The integration framework consists of two components:

1. A registration mechanism. Given a  set of homogenizing views, constructed by m ediator authors 

for respective participating sources, integration requires th a t the m ediator au thor describe 

the homogenizing view using registrations th a t declare the fragment-of relationship between 

relations in the homogenizing view and the global relations in the service view. Registration 

is a means for the m ediator au thor to describe the content of the homogenizing view in the 

context of a service view.

2. The M atch Join operator. M atch join is an operator tha t derives a global relation by combining 

all the fragments known through registrations.

Integration is performed by AURORA’S Relational Integration mediator, AURORA-RI, which ac

cepts registrations from relevant AURORA-RH mediators and realizes the M atch Join operator. 

AURORA-RI is also responsible for entertaining queries against the service view, as described in 

C hapter 5. The relationship between AURORA-RH and AURORA-RI is illustrated in Figure 4.9.

4.3 .1  R egistrations

A d ata  source contributes da ta  to a  service view S  by describing the da ta  it offers with a registration, 

sent to the AURORA-RI m ediator supporting S.  A registration is a  3-tuple:

R E G  = <  D S N , S R ,  G R N  >

where D S N  is a  da ta  source name, S R  is the schema of a  relation at D S N ,  G R N  is the name 

of a  global relation in S.  Once the above registration goes through, S R  is said to be a  registered 

fragment of relation G R N . S R  must provide the PID of G R N  in order to be a  fragment of it, that 

is, P ID { G R N )  C A T T R (S R ) .  For any a ttribu te  B  of G R N , S R  s u p p o r ts  B  if B  <E A T T R (S R ) .  

A fragment of a  global relation R  often supports some, but not all, of the attribu tes of R.
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AURORA-RI

Registration 
Server__ Query Server

Utility 0 8

AURORA-RH AURORA-RH

Mediator Author 
Toolkit (MAT)

Mediator Author 
Toolkit (MAT)Query Server Query Server

Utility OB Utility OB

;Sourc§:

Figure 4.9: Relationship Between Homogenization and Integration M ediators 

4.3 .2  M atch  Jo in

For global relation R g and any of its fragments, R ,  it is m andatory that P I D ( R g) C A T T R (R ) .  

Any valid value of P I D ( R g), v, identifies an application entity, E v. If v G R g{ P I D ( R g)\  or 

v  G R { P I D { R g)}, then E v is described by R g or R .  respectively. Assume that R g is a global 

relation and  R i , . . . ,R m are all the fragments known. Given the content of relations R i , . . . .R n . the 

derived content of relation R g must satisfy the following conditions:

1. Vv, v  G R { P ID (R g)} if and only if 3 i ,v  G R i{ P ID (R g)}.

2. Vt G R S,VA G A T T R ( R g) ,A  £  P I D { R g), 3a null,t[A] = a if and only if 3i ,3 t '  G R i - A  G 

A T T R { R i ) , t '[ P I D { R g)] =  t[P ID (R g)},t'{A} =  a.

The first condition ensures that any entity  described by any fragm ent is also described by R g, and 

any entity  described by R g must be described by a t least one of its fragments. T hat is, R g does 

not contain "invented” entities. The second condition ensures th a t, for any entity E v described by 

R g according to  the first condition, and a  non-PID a ttr ib u te  A of this entity, the value of a ttribu te  

A of en tity  E v as described by Rg should be the same as th a t described by the fragment(s) tha t 

provide a  non-null value on E V.A. The value of E V.A  as described by Rg is null if and only if no 

fragm ent provides a  non-null value for a ttribu te  A in its description of entity E v. Notice th a t if 

m ultiple fragm ents provide distinct, non-null values of E V.A, th a t is, when there is an instance level 

conflict over a ttr ib u te  A of entity E v , the second condition above says that all of these values are 

retained in the global relation, that is, such conflicts are not resolved at integration time. As shown
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later, these conflicts are resolved a t query time, according to application requirem ents on conflict 

handling.

In AURORA, global relations are derived using the Match Join  (MJ) operator, which com

bines tuples from registered fragments based on PED values. Consider two registered fragments, 

F1(P, A , B)  and F 2 (P , B , C),  of relation R(P, A , B ,  C) with PID  P.  If <  p, a, 6 > £  FI, < p ,b ,c  >£  

F 2, then <  p ,a ,  b, c > €  R. If <  p, b', c > 6  F2 and b ^  6', then bo th  <  p .a ,b ,c  > and < p, a, 6', c > 

are in R.  M J can be expressed using outer-joins.

D e f in i t io n  4 .3 .1  [Value Set.] Let Y  =  {Fi, ...,F a /}  be a set of fragments w ith a  common PED P. 

Let .4,- be a non-PED attribu te . The value set o f  A , given Y , V  A L se t{A ( \Y ) , is defined as:

Mi
V  A L se t(A i \Y )  =  (J wP,Ai (F £.) 

j - i
where F tj. ’s ( I  <  j  < M,-) are all the fragments in Y  supporting .4,. □

V A L se t (A i \Y )  is a  binary relation (P , .4,-) containing all th e  .4,-values from the fragments in Y  

and the related PED value. These binary relations are then outer-joined to derive a  global relation.

D e f in i t io n  4 .3 .2  [Match Join Operator.] Let Y  — {F i , ..., F \r}  be a set o f fragments with a 

common PID P . Let S  =  {P, A i , ..., .4ff} be a  set of attributes, VI <  i  < g, .4j P .  The Match Join 

(MJ)  of relations in Y  based on P  in regard to S  is defined as:

M J (P, S, Y )  = V A L s e t (A i \Y )K p V A L s e t (A 2 \Y)Wp....™P V A L se t (A g\Y)  (4.1)

where Wp denotes outer-equi-join on P . □

D e f i n i t i o n  4 .3 .3  [Global Relation Population.] Let R  be a global relation and let Y r  be the set 

of all fragm ents registered with R, Y r  =  { F i , ..., F \ f} .  Then the population of relation R  is derived 

as:

R  = M J ( P I D ( R ) ,A T T R ( R ) ,  Y r )

a

It is easy to verify th a t the global relations derived according to  the above definition satisfy the two 

conditions given earlier.

4.3 .3  A n  In tegration  E xam ple

E x a m p le  4 .3 .1  Assume th a t  a service view defines the following global relation, Books-.

Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview, avgReview, price) 

w ith PID  “ISBN” . Also assume th a t Books has four registered fragm ents, as shown in Figure 4.10. 

According to Definition 4.3.3, AURORA-RI will derive Books  as shown in Figure 4.11. The column 

t id  is not p a rt of the result but is used later to refer to tuples. □
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Fragment 1
ISBN title year oprahClub
001 “Florida” 1960 No
002 “China” 1966 No
003 “M editation” 1972 Yes
004 “Dream s” 1970 Yes

Fragment 2
ISBN title oprahClub bestseller
002 “China” No Yes
003 “M editation” No Yes
004 “Dream s” Yes Yes
005 “T C P /E P ” Yes Yes

Fragment 3
ISBN title price bestseller category
001 “Florida” 26 No “Travel and Adventure”
002 “China” 47 No “Travel and Adventure”
003 “M editation” 16 No “Alternative”
004 “Dream s” 11 Yes “A lternative”
005 “T C P /IP ” 23 Yes “Com puter and Internet”
006 “HTM L” 20 Yes “C om puter and Internet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky” 7 No “Young Readers”
010 “Pooh” 5 No “Young Readers”

Fragment 4
ISBN title year NYTreview avgReview

001 “Florida” 1960 1 12
002 ” China” 1968 5 7
003 “M editation” 1974 8 7
004 “Dream s” 1980 9 3
005 “T C P /IP ” 1992 15 15
006 “HTM L” 1974 16 2
007 “Pens” 1986 10 14

Figure 4.10: Registered Fragments for Global Relation Books
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tid IS B N title y ea r o p ra h 
C lub

b e s t 
s e l l e r

c a te g o ry N Y T -
rev iew

avg-
R ev iew

p rice

£1 001 “Florida 1960 No No “Travel and 
Adventure”

1 12 26

*2 002 “China” 1966 No No “Travel and 
Adventure”

5 t 47

£3 002 “China" 1968 No No “Travel and 
Adventure”

5 1 47

£4 002 “China” 1966 No Yes “Travel and 
Adventure”

5 i 47

£5 002 “China” 1968 No Yes “Travel and 
Adventure”

5 7 47

£e 003 “M editation” 1972 Yes No “Alternative” 8 7 16
£7 003 “M editation” 1972 Yes Yes “Alternative” 8 7 16
ta 003 “M editation” 1972 No Yes “Alternative” 8 7 16
£9 003 “M editation” 1972 No No “Alternative” 8 7 16

£10 003 “M editation” 1974 Yes No “Alternative” 8 7 16
£11 003 “M editation” 1974 Yes Yes “Alternative” 8 7 16
£12 003 “M editation” 1974 No Yes “Alternative” 8 7 16
£ i  3 003 “M editation” 1974 No No “Alternative” 8 7 16
£14 004 “Dreams” 1970 Yes Yes “Alternative” 9 3 11
£15 004 “Dreams” 1980 Yes Yes “Alternative” 9 3 11
£16 005 “T C P /T P ” 1992 Yes Yes “Computer and 

Internet”
15 15 23

£ 17 006 “HTML" 1974 null Yes “Computer and 
Internet”

16 2 20

£18 007 “Pens” 1986 null No “Hobbies” 10 14 42
£ 19 008 “Quilts” 1986 null No “Hobbies” 10 14 21
£20 009 “Micky” 1986 null No “Young

Readers”
10 14 7

£21 010 J “Pooh1’ 1986 null No “Young
Readers”

10 14 5

Figure 4.11: Derived Population of G lobal Relation Books
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By requiring sources to return  fragment d a ta  sorted  on PID , M J can be calculated by a multi

way merge-join algorithm . For each PID value k, all non-PID  a ttr ib u te  values identified by k  are 

collected from all fragments in respective sets, and  a  C artesian  product of these sets is performed 

to produce all tuples with PID value k. The result of M J thus com puted is sorted on PID.

As discussed earlier, the global relations thus derived may contain instance level conflicts. For 

example, relation Books, as shown in Figure 4.11, gives inconsistent d a ta  on the year the book 

“M editation” is published. In this sense, AURORA’S integration framework produces conflict- 

accommodating relations. These retained conflicts are dealt with a t query processing time using 

a conflict to leran t query model, described in C hap ter 5.

4 .4  S u m m ary

This chapter describes the relational m ediation fram ework of AURORA. It consists of two sub

frameworks: the  homogenization framework and  the  integration framework. Comparison of AU

RORA with previous work, in terms of the m ediation frameworks, can be found in Chapter 2. The 

hom ogenization framework consists of a m ediation m ethodology and a  set of m ediation enabling op

erators designed for transforming da ta  for hom ogenization. Com pared w ith previous approaches, this 

framework not only provides operators th a t specialize in m anipulating heterogeneous data, it also 

provides a  pragm atic means for managing the complexity of working with sem antic differences, via 

the m ediator au th o r’s toolkit. The relational integration framework has a built-in objert-m arrhing 

facility and retains instance level conflicts, which are exposed to the applications. A conflict toler

an t query model is provided to  allow the applications to manage these conflicts at query time, as 

described in the next chapter.
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Chapter 5

Query Processing in Relational 

Mediators

From the view point of the applications, a  service view is a  relational schema th a t can be queried, 

regardless of the fact th a t the da ta  actually originate from m ultiple heterogeneous data  sources. 

Given a query Q against the service view, the data  m ediation system  is responsible for decomposing 

Q into subqueries against the  sources, sending these subqueries to the da ta  sources for execution, 

collecting the result of these queries, and assembling the  answer to Q  using these query results.

In  AURORA, service views are supported by AURORA-RI m ediators th a t see the sources as a 

collection of homogenizing views supported by respective AURORA-RH m ediators, which in tu rn  

access the da ta  sources through the wrappers. A query Q  against a  service view supported by an 

AURORA-RI m ediator, Mr,  is processed as follows:

1. M f  decomposes the query into queries against the participating AURORA-RH mediators.

2. Each AURORA-RH m ediator that receives subqueries from Mr  translates these queries into 

queries against the underlying data  source, submits them  for execution through the wrapper, 

collects the result from the wrapper, assembles the answers to the subqueries submitted by 

Mr,  and returns this answer to Mr-

3. Mr  uses the query results returned by AURORA-RH m ediators to assemble an answer to Q.

Therefore, AURORA-RI and AURORA-RH cooperate to process queries against the service view, 

as shown in Figure 4.9. Both AURORA-RI and AURORA-RH perform query decomposition and 

query answer assembly. While this is the common paradigm  of query processing in da ta  mediation 

systems, AURORA’S query processing techniques differ from previous work in the following ways:

1. AURORA-RI supports a  conflict tolerant query model, th a t allows the applications to query
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potentially inconsistent da ta . As shown in Section 4.3, the integration framework of AURORA- 

RI does not resolve instance level conflicts. The reason is th a t conflict detection and resolution 

can be costly if done at integration time. In AURORA, conflicts are retained in the integrated 

relations, and the applications deal with them  at query time using the conflict tolerant query 

model, which provides language constructs to assist the applications in managing the conflicts 

in large granularities. This query model is described in Section 5.1.

2. AURORA-RH processes queries based on MEA-RH, an algebraic framework specially designed 

for m anipulating data  for homogenization. MEA-RH is described in Section 4.2.3. Relations in 

a  homogenizing view are derived using MEA-RH operators. Query processing in AURORA-RH 

requires query rewriting using view definitions, until a QEP is produced. Intuitively, a QEP is 

an expression that involves only source relations. The Q EP is transformed using transform ation 

rules to produce a  more efficient QEP, which is then evaluated. A Q EP as an operation tree 

has leaf nodes th a t are retrieve  operators which submit queries to the underlying da ta  source. 

Non-leaf nodes can be any operator defined by MEA-RH. Query rewriting, transform ation 

rules, and algebraic optimization algorithms are described in Section 5.4.

N o ta tio n s .  In this chapter, the following notations are used. f..4 is used to denote the value 

of a ttribu te  .4 in tuple t, and R { A }  to denote all values of a ttribu te  .4 in relation R, th a t is, F{-4} 

=  {a | 6 R , t .A  =  a}. Given a  collection of relations, Y  — { F i,. . . ,F m}, and an a ttribu te  B,

Y { B }  =  Fi{f?} U ... U Fm{B }. A T T R (R )  denotes the set of attributes of relation R; A T T R (p )  

denotes the set of attributes referenced by predicate p.

5.1 C onflict Tolerant Q uerying in A U R O R A -R I

This section describes a technique for querying data  in the presence of instance level conflicts. This 

approach allows applications to control conflict resolution policies at a coarse granularity and gives 

the system more space for query optimization.

5.1.1 M otivation

Traditionally, instance level conflicts are resolved a t schema integration time using aggregation func

tions [21]. Consider a relation Books with an a ttribu te  year, meaning the year a book is published. 

One may specify th a t when multiple sources record different year for a  book, the “correct” year 

value be computed as the average of these values. Queries are written as if da ta  are conflict-free. 

Conceptually, instance level conflicts are resolved before queries are evaluated; users have no say 

over resolution policies a t query time. This approach is referred to as the static resolution approach. 

These resolutions are realized during m aterialization or query processing. If integrated d a ta  are
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m aterialized, instance level conflicts are removed before any query is processed. If d a ta  are not 

m aterialized, th a t is, they are virtual, enough da ta  m ust be retrieved for conflict detection and reso

lution a t query time: this may incur a  significant performance penalty  as illustrated by the following 

example:

E x a m p le  5 .1 .1  Assume th a t sources A and  B provide d a ta  on Books, and conflicts on year are to 

be resolved by taking the average of all year  values. Consider query:

Qo =  se lec t ISBN, title, category f ro m  Books w h e re  year >  1970 

I t is not sufficient to retrieve only books w ith year > 1970; all Books d a ta  from both A and B 

m ust be retrieved so tha t the correct year  values can be computed, and  the predicate "year >  1970” 

evaluated. This cost stays the same even when no conflict over year actually  occurs. Optim ization 

strategies have been proposed [21, 15], bu t cases such as Qo are fundam entally difficult to optimize. 

This drawback becomes significant when m ore sources contribute large volumes of Books data . □

In a  dynam ic data integration system where large numbers of d a ta  sources come and go. m ateri

alization m ay not be desirable. It is also difficult to foresee when and where instance level conflicts 

are likely to  happen; adding a  new source m ay give rise to new conflicts. Specifying a resolution 

for conflicts th a t do not really happen incurs unnecessary performance penalties if d a ta  are virtual. 

On the o ther hand, applications vary in requirem ents for conflict handling. For Qo in Example 

5.1.1, the exact year of publication of a  book does not m atte r so long as the book is published 

after 1970. W hen multiple sources offer different year values of a book, one user may consider a 

book to  be published after 1970 if some  sources say so, while another m ay require th a t all sources 

say so. Conflict resolutions on title and category can be performed only for books th a t  qualified as 

“published after 1970” . Conflicts on Books.year  is not resolved, but ra ther tolerated by the system 

during query processing. This approach of instance level conflict handling is referred to  as co n flic t 

to le r a n t  q u e ry in g .

Conflicts

Query Evaluation
Statically Resolved Tolerated

On Materialized D ata 1 3
On Virtual D ata 2 4

Table 5.1: Q uerying Integrated D ata

Depending on whether integrated d a ta  a re  m aterialized, and how instance level conflicts are 

handled, there are 4 cases of querying in tegrated  data , as shown in Table 5.1. Cases 1 and 2 raise 

no new issues in query semantics; these are well-studied domains. Case 1 requires m aintenance of 

m aterialized da ta . Query optim ization issues in case 2 have been studied [21, 15]. In  AURORA,
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the conflict tolerant query model, the C T  q u e ry  m o d e l, is defined for use in cases 3 and 4. A 

framework for reducing redundant d a ta  retrieval is developed for use in case 4. Optim izing queries 

on m aterialized d a ta  in case 3 leverages existing techniques, and is not discussed.

The CT query model enables users to  resolve instance level conflicts to a  desired degree and let 

the system  “to lerate” the rest; it allows flexible conflict handling and b e tte r query performance for 

users who do not require s ta tic  resolutions. Consider the following CT query:

Q '0 =  s e le c t ISB N , £i£/e[ANY], year[ANY], ca£eyory[DISCARD] 
f ro m  Books 

w h e re  year >  1970 w ith  HighConfidence

HighConfidence in the w ith  clause specifies th a t if inconsistent year values exist, a book qualifies 

as year >  1970 only if all sources say so. A fte r  a. book qualifies, if there is conflict on title, year, or 

category, the functions ANY, ANY, and DISCARD, respectively, are used to remove these conflicts 

to produce a  conflict-free query answer. Given a  set of values S, function ANY returns a  random  

value from S;  function DISCARD returns a  null value if S  contains more them one distinct value, 

otherwise it returns the only value in S .  These resolutions do not affect predicate evaluation; they 

are used only to produce conflict-free query results. If all sources record th a t the book “M editation” 

is published before 1970, then it does not have to  be retrieved even if there is conflict on its year. 

The framework described in Section 5.3 enables such optimized processing.

5.1 .2  In stan ce Level C onflicts and R eso lu tion s

In Figure 4.10, Fragment 1  records th a t the book “M editation” is published in 1972 while Fragment 

4 indicates th a t the same book is published in 1974. This conflict is reflected in Figure 4.11 as a 

violation of key constraint, since there is more than  one tuple with ISBN 003; these tuples form the 

alternative tuple set for 003.

D e f i n i t i o n  5 .1 .1  [Alternative Tuple Set.] Consider a  relation R  and a PID value k. The  alternative 

tuple set of R  for  k , A T se t{R , k), is defined as:

A T s e t (R ,k )  ={£ | t  £  R , t .P I D  =  £}

□

For example, in Books relation given in Figure 4.11, the following can be found:

ATset(Books, 001) =  {£i}, ATset(Books, 002) =  {to, £3 , £4 , £5 }, ATset{Books, 004) =  {£1 4 , £1 5 } 

A T  sets  containing more than  one tuple indicate conflicts, as defined below.

D e f i n i t i o n  5 .1 .2  [Conflicts and CA-Relations.] Given a  globed relation R  and a PID  value k, if 

\A T se t{R ,k ) \  > 2, then there is a  conflict in R  a t k. Relations th a t may contain conflicts are called 

conflict-accommodating relations, or CA-relations. □
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Global relations derived according to  Definition 4.3.3 axe CA-relations, in th a t they potentially 

contain conflicts. Formally, conflicts are  caused by inconsistencies among registered fragments. 

Consider two fragments Fi, Fj of relation R,  both supporting a non-PID a ttr ib u te  .4. If G 

F i , t j  G Fj, t i .P ID  =  t j .P I D  =  k  bu t t i .A  ^  t j .A ,  then by Definition 4.3.2. flti.fo  £ R ■ such that 

t i .P I D  = to .P ID  =  k, t j .A  U.A. T h a t is, \ATset{R ,  A:)} >  2. A T se t  describes conflicts a t tuple 

level. Definition 5.1.3 below describes conflicts a t a ttribu te  level.

D e f in i t io n  5.1.3 [Conflicts over a ttribu tes.] Given global relation R,  non-PED a ttrib u te  .4, and 

PED value k, there is a conflict on R .A  a t  A: if \ATset(7rp[D,A(R)), k)\ > 2. □

Tuple level conflicts result from a ttr ib u te  level ones; resolutions can be performed a t both levels. As 

defined below, a resolution in either case is a function with an appropriate signature.

D e f in i t io n  5.1.4 [A ttribute/Tuple Conflict Resolution.] Given a global relation R  and its a ttribu te  

.4, an  attribute conflict resolution on R .A  is a  function f : s e to f ( T ) —> T ,  where T  is the  type of i?..4. 

A tuple conflict resolution on R  is a  function g such th a t, given a set of tuples S  =  ( t i , ..., tn } C R, 

t i .P ID  =  k  for 1 <  i  < n, g(S) — t where A T T R ( t )  — A T T R (R ) ,  t — null  or t .P I D  — k. □

AURORA provides common functions such as SUM, AVG, MAX, MEN, ANY. DISCARD, but 

also allows user-defined functions. If conflicts on all a ttributes are resolved, then effectively a tuple 

conflict resolution has been performed. This relationship between the two types of resolutions is 

captured by the concept of equivalent tuple conflict resolution (ETCR) given below.

D e f in i t io n  5.1.5 [Equivalent tuple conflict resolution (ETCR)] Let R  be a global relation and X  

=  { .4 i ,..., .4n } be all the non-PID a ttrib u tes  of R  over which there may be conflicts. Let 

be a ttribu te  conflict resolutions on A i ,  . . . ,A n , respectively. Let S  be a  set of tuples of R  th a t have 

the same PID value. A tuple conflict resolution of R, g, is the equivalent tuple conflict resolution of

/ i , ..., / n , denoted as g =  E T C R ( f i , ..., f n), if for any set of i?-tuples with a  common PED value, S,

g(S) = t where t satisfies the following:

1. Vi, 1 <  i  <  n, t.Ai = f f lS i )  where Si  =  {v \ 3r  6  5, r..4t- =  u}; and

2. VS e  A T T R (R )  -  X ,  t .B  =  n . B ,  where n  G S.

□

Definitions 5.1.6 and 5.1.7 define AURORA’S conflict resolution operators: R A C  and R T C .

D e f in i t io n  5.1.6 [Operator RAC]  Let R  be a CA-relation and / ls ..., /„  be conflict resolutions on 

non-PID attributes 4 i , . . . , 4 n . O perator Resolve Attribute Conflict, R A C ,  is defined as
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R A C (R ,  A i  : f i , ..., A n:fn) =  {?  | 3k, t , t  G R ,  t .P I D  = k, t ' .P ID  = k,
Vi, 1 <  i  <  n, t ' .A i  =  f i{S {R , 4.,-, fc)),
V B ,B  G A T T R ( R )  -  {At , A „ } ,  t ' .B  = t .B }

where S ( R , A , k ) =  {a | < k, a >G 7Tp / d ,a (-R)}- a

D e f in it io n  5 .1 .7  [Operator R T C ] Let R  be a  C A -relation  and F  be a  tuple conflict reso lu tion  o f

R. O perator Resolve Tuple Conflict, R T C ,  is defined as:

R T C ( R ,F ) =  {t | 3k, t  =  F (A T s e t(R ,  k))}

a

Intuitively, R A C  rem oves conflicts on a ttributes .4 Li A n o f R  using functions R T C

rem oves tup le level conflicts using function F .  T h ese  operators are illustrated  in F igures 5.1 and  

5.2. G iven C, a  set o f  conflict resolution functions for all th e  non-PID attributes o f  R  over w hich  

there m ay ex ist conflicts, RTC {R , E T C R {C ))  =  R A C (R ,  C).

IS B N ti t le year o p ra h 
C lub

b e s t
s e lle r

ca te g o ry N Y T -
rev iew

avg-
R ev iew

p r ic e

001 “Florida 1960 No No “Travel and 
Adventure”

1 12 26

002 “China” 1966 No null “Travel and 
Adventure”

5 7 47

003 “M editation” 1972 Yes null “Alternative” 8 7 16
004 “Dreams” 1970 Yes Yes “Alternative" 9 3 11
005 “T C P /T P ” 1992 Yes Yes “Com puter and 

Internet”
15 15 23

006 “HTML” 1974 null No “Com puter and 
In ternet”

16 2 20

007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young

Readers”
10 14 7

010 “Pooh” 1986 null No “Young
Readers”

10 14 1 5
i  i

Figure 5.1: R A C  ( Books, t/eanMIN, oprahClub:ANY, 6est5W/enDISCARD)

Choice of the stra tegy  for conflict handling is significant. For applications, this strategy im pacts 

on the quality of the d a ta  service they receive; it is desirable to have control over this quality. 

For the m ediator, d a ta  services of varying qualities incur varying cost; it is desirable to optim ize 

accordingly. In the next section, the Conflict Tolerant (CT) query model - a new approach tow ards 

conflict handling - is described. In contrast to previous approaches th a t either ignore conflicts or 

require sta tic  resolutions, this query model works w ith CA-relations, but generates conflict-free query 

results and thus provides conflict to le ra n c e .
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IS B N ti t le y e a r o p ra h -
C lu b

b e s t
s e l le r

c a te g o ry N Y T -
re v ie w

avg-
R ev iew

price

001 “Florida 1960 No No “Travel and 
Adventure”

1 12 26

002 “China” 1966 No No “Travel and 
Adventure”

5 7 47

003 “Meditation.” 1972 Yes No “Alternative” 8 7 16
004 “Dreams” 1970 Yes Yes “Alternative” 9 3 11
005 “T C P /T P ” 1992 Yes Yes “Computer and 

Internet”
15 15 23

006 “HTML” 1974 null No “Computer and 
Internet”

16 2 20

007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young

Readers”
10 14 7

010 “Pooh” 1986 null No “Young
Readers”

10 14 5

Figure 5.2: RTC(Books, ANY)

5 .1 .3  Conflict Tolerant Q uery M odel

The semantics of single relation CT queries is defined in this section. A CT query over global relations 

i?i, . . . ,R n  is semantically equivalent to  a  single relation CT query over relation R q  =  R x x ... x /?„. 

The PCD of R q  includes PIDs of all involved relations. Single relation CT queries are in the following 

form:
Q c t  =  se le c t L  

f ro m  R  
w h e re  p  w ith  Ci

where L  is in one of the following forms:

1. L  =  E i , ..., E m where Ei =  R .B i  (1 <  i  < m)  if Bi =  P ID (R ) ;  Ei = R .Bi[di] if Bi P ID (R ) ,  

di is an a ttribu te conflict resolution for R.Bi.

2. [D]R.Bi , ..., R .B m where D  is a tuple conflict resolution for 7r piD(R),Bl ,...,Bn (R)-

ci is called the predicate evaluation parameter, or P E -p a ra m e te r ,  c\ €  {HighConfidence, Ran- 

domEvidence, PossibleAtAll}; it controls how conflicts are handled during predicate evaluation. d(s  

and D  specify how conflicts are removed to  produce a conflict-free query answer. Qi and Qo are 

example CT queries with two forms of select clauses:

Q i- Qi-
se le c t ISBN, fif/e[ANY], year[ANY], se lec t [ANY] ISBN, title,

category[D IS CARD] year, category
f ro m Books from Books
w h e re year > 1970 w h ere year > 1970
w i th HighConfidence w ith Random Evidence
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B oth queries retrieve ISBN, title, year and category of books published after 1970. When there is 

conflict on year, Q i selects books for whom all year values available are >1970, while Qo random ly 

samples one year value and if it is >1970, then the  book is selected. After a book qualifies as year 

>  1970, there may still be conflicts on title, year or category, these conflicts m e resolved using the 

resolutions specified in the selection clause. Qi resolves conflicts on a ttribu te  level while Qo does it 

on tuple level. The semantics of CT queries is defined in Definitions 5.1.8 and 5.1.10.

A few default forms of L  are supported. L  =  A i,. . . ,A n , where -4 ;S  are a ttribu tes, is the same 

as L  =  [ANY ].4i,..., A n. If a t least one a ttr ib u te  resolution is specified in L, the default resolution 

for all o ther non-PED attribu tes with no specified resolution is ANY. Fundamentally, no m atter 

which form L  takes, it specifies a  tuple conflict resolution, D E (L ) ,  referred to as the data extraction 

parameter (the DE-parameter). If L  is in form 2, D E ( L ) = D. A form 1 select clause can 

be rew ritten into form 2 w ith D = E T C R (d i , . . . ,d m ) .  From now on, only form 2 select clause is 

considered.

D e f i n i t i o n  5 .1 .8  [Contributing PID Set.] Given a CA-relation R ,  a predicate p and a  PE- 

param eter c i, the contributing PID set of R  in regard  to p  under Ci, C S E T (R ,  p, ci), is defined as 

follows:

1. For any k  G R { P I D }  such th a t \A T se t(R ,  fc)| =  1, k  G C S E T ( R ,  p, ci) if and only if p(t) = 

true, where t G A T s e t (R ,k ) .

2. For any k  G R { P I D }  such that \A T se t{R ,k ) \  > 2:

• If ci =  RandomEvidence, k  G C S E T { R ,  p, ci) if and only if p(t) = true, where t G 

.4Tset(R , k) is selected by a function a t  query evaluation time.

• If Ci =  PossibleAtAll, k  G C S E T ( R ,  p, ci) if and only if 31 G A T s e t (R ,k ) ,  p(t) = true.

• If ci =  HighConfidence, k  G C S E T ( R ,p ,  ci) if and only if Vt G A T se t(R ,  k), p(t) = true.

□

A C S E T  contains PEDs identifying tuples th a t satisfy a  predicate under a given PE-param eter; 

these tuples will contribute to the query result. W hen the PE-param eter is RandomEvidence, the 

value of C S E T  depends on the run-tim e function used to choose a  tuple from an A T  set, based on 

which the query predicate is evaluated. Such variations are captured by the following definition.

D e f i n i t i o n  5 .1 .9  [Valid CSET] Let R  be a  CA-relation, p  a  predicate, and c a  PE-param eter. A 

set of PED values C  is a valid value for C S E T { R ,p ,c )  if:

• RandomEvidence and C  =  C S E T ( R ,p ,  c); or
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•  c =  RandomEvidence and for any fc 6  C,  such th a t k  £ C S E T {R ,  p, HighConfidence), there 

exist tuples t i ,  t2 6  R ,  such th a t ty .P ID  =  U .P ID  — k, p{t{) = fa lse .  p{t2) =  true.

□

Example 5.1.2 Examine relation Books in Figure 4.11, the following can be found:

C S E T  {Books, “year> 1973” , PossibleAtAll) =  {003, 004, 005. 006. 007. 008. 090. 010}
C S E T  {Books, “year> 1973” , HighConfidence) =  (005, 006, 007, 008, 090, 010}
CSET{Books, “year> 1973” , RandomEvidence) =  {004, 005, 006, 007, 008, 090, 010}
C S E T  {Books, “year> 1973” , RandomEvidence) =  {003, 004, 005, 006, 007, 008, 090, 010}

The last two C S E T s  given above are both valid. 003 does not satisfy year >  1973 under HighCon

fidence because there is evidence in relation Books th a t the book 003, “M editation” , is published in 

1972. □

D e f i n i t i o n  5.1.10 [Answer Set.] The answer to  query Q c t  given earlier is defined as:

A  = ttBi Bm[RTC{R Wp[D C S E T { R ,p , Cl), DE{L))]

□

Tables 5.2 and 5.3 show 12 CT queries and results. These queries vary in PE-param eter and 

DE-param eter. Two DE-param eters are illustrated: ANY and DISCARD. The attribu tes in the 

select clause are also varied to demonstrate how the CT query model tolerates conflicts. Results of 

queries involving RandomEvidence or ANY may vary with the selection function used a t run-time. 

By specifying these param eters, one accepts such variations.

Example 5.1.3 First examine Qi-Qe  and their results shown in Table 5.2, and observe how' various 

conflict handling policies impact on the query results. The most rigorous control appears in Q-±- 

This query has the smallest C S E T  and one of the smallest results. Next, observe th a t queries in 

Table 5.3 often have larger results. For example, Q\  has a larger result than  Q.\ because relation 

Books contains no conflicts over title but it contains conflicts over year. This shows th a t when a 

query retrieves only conflict-free attributes, conflicts on other attributes are well tolerated by the 

system  and are often hidden from the users. □

5.2 P rim itive  E valuation  o f C onflict Tolerant Q ueries

Algorithm CT-QP-NoOpt  is an unoptimized algorithm  th a t directly implements the CT query se

m antics given in Definitions 5.1.8 and 5.1.10. Correctness of this algorithm is straightforward.

A L G O R IT H M  CT-QP-NoOpt {R, Q c t , i n , . . . ,  Fn) 
inpu t:

R: Global relation involved in the query.
Q c t ■ Q c t  = se lec t L from  R  w h e re  p w ith  ci-
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Query Answer
Q i :
se lec t [ANY] title, year 
fro m  Books 
w h e re  1967 < year <  1985 
w ith  HighConfidence

<  “M editation” , 1972 >
< “Dream s” , 1980 >
<  “HTM L” , 1984 >

Qz:
se lec t [DISCARD] title, year 
fro m  Books 
w h e re  1967 <  year < 1985 
w ith  HighConfidence

<  “HTM L” , 1974 >

Q a:
se lec t [ANY] title, year 
fro m  Books 
w h e re  1967 < year < 1985 
w ith  PossibleAtAll

<  “China” , 1968 >
<  “M editation” , 1972 >
<  “Dream s” , 1980 >
<  “HTM L” , 1974 >

Qa :
se lec t [DISCARD] title, year 
fro m  Books 
w h e re  1967 < year < 1985 
w ith  PossibleAtAll <  “HTM L” , 1974 >
Qs:
se lec t [ANY] title, year 
from  Books 
w h e re  1967 < year < 1985 
w ith  RandomEvidence

<  “M editation” , 1974 >
<  “Dream s” , 1980 >
<  “HTM L", 1974 >

Qe '■
se lec t [DISCARD] title, year 
fro m  Books 
w h e re  1967 < year < 1985 
w ith  RandomEvidence <  “HTM L” , 1974 >

Table 5.2: Example Queries and Answers

Fi’s: AH the fragments registered with R, Fi, ..., Fn-
o u tp u t :  A: the query answer, 
b eg in

1. R  = ttLiM J(P ID (R ) ,  A T T R (R ),F u  ..., Fn), where Li = {PID{R)}  U ATTR(p)  U ATTR(L).
2. C = ComputeCSET{R,p,c\.), where ci is the PE-param eter of Q c t - 

3- A =  ^ a t t r ( . l ) [ R P C ( t t a t t r ! . L ) u { p i d } ( R  > * p i d  C), DE(L))];
e n d  o f  a lg o rith m .

In step 1, CT-QP-NoOpt  retrieves all fragments and performs a m atch join. This can be expen

sive when fragm ents axe large and numerous. W hen query selectivity is low, a  large portion of the 

retrieved d a ta  is discarded in step 2, where C S E T  is com puted with the algorithm  given below: it 

is desirable to not retrieve these data  in step 1. In step 3, opera to r R T C  is applied to produce a 

conflict-free result. R T C  is a  direct implementation of Definition 5.1.7 and is not given here.

A L G O R IT H M  ComputeCSET(R,p,a) 
in p u t:

R: A CA-relation, sorted on PID(R).
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Q u ery A n sw er
Q i :
se lec t [ANY] title 
from  Books 
w h e re  1967 < year <  1985 
w ith  HighConfidence

<  “M editation” >
<  “Dreams” >
<  “HTML” >

Q 'i •
se lec t [DISCARD] title 
fro m  Books 
w h e re  1967 <  year <  1985 
w ith  HighConfidence

<  “M editation” >
<  “Dreams" >
<  “HTML” >

Q'z ■■
se lec t [ANY] title 
fro m  Books 
w h e re  1967 <  year < 1985 
w ith  PossibleAtAll

<  “China” >
<  “M editation” >
< “Dreams” >
<  “HTML” >

Q \ :
se lec t [DISCARD] title 
fro m  Books 
w h e re  1967 <  year < 1985 
w ith  PossibleAtAll

<  “China” >
<  “M editation” >
<  “Dreams” >
<  “HTML” >

Qs -
se lec t [DISCARD] title 
fro m  Books 
w h e re  1967 < year < 1985 
w ith  RandomEvidence

<  “M editation” >
<  “Dreams” >
<  “HTML” >

Q'e '■
se lec t [DISCARD] title 
fro m  Books 
w h e re  1967 < year < 1985 
w ith  RandomEvidence

<  “China” >
<  “M editation” >
<  “Dreams” >
<  “HTML” >

Table 5.3: Example Queries and Answers

p: A predicate.
ci: A PE parameter.

o u tp u t: C : C SE T(R ,p ,c i) .  
begin.

1. Let R ' =  ap(R).
2. If ci =  RandomEvidence or ci =  PossibleAtAll, then C =  ~ p i d ( R ' ) -

3. If ci =  HighConfidence, then C = ~ p i d ( R ' )  — t̂ p i d ( .R  — R')- 
end o f  algorithm .

In the next section, techniques are established to use query predicate p  to derive conditions 

based on which enough da ta  are retrieved from fragm ents to guarantee correct query evaluation, 

bu t d a ta  th a t do not contribute to  the query result are not retrieved. This technique reduces both 

communication cost and the volume of da ta  m anipulated a t the m ediator.
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5.3 O p tim ized  P ro cess in g  o f  C onflict T olerant Q ueries

For any predicate p  over a  global relation R  and  a given fragment of R , F ,  if A T T R (p )  C A T T R { F ) , 

then p  is a p p lic a b le  to F. T he goal of C T  query optimization is to use applicable predicates to 

reduce the volume of fragment da ta  retrieved while preserving query semantics.

5.3.1 C T  Q uery O ptim ization: an  O verview

Let p  be a  predicate over R  and let p  =  p \  A ... A pm be its conjunctive normal form. Given a  

registered fragment of R, F , the  question is: i f  px ( l  <  x  < m) is applicable to F ,  can one retrieve 

only aPlF  into the mediator and still evaluate C S E T ( R , p , c) correctly?

Consider the fragments shown in Figure 4.10 and C — C S E T  [Books, “year >  1973” . c). Assume 

th a t only the following is retrieved into the  m ediator: <7year>l973 (Fragment 1) and o\,ear>i973  

(Fragment 4). tme(n lation =  (003, “M editation” , 1972, Yes) in Fragment 1 will not be retrieved. 

This potentially excludes 003 from C. If c =  RandomEvidence, it is valid to exclude 003 from C. 

according to Definition 5.1.9. If c =  HighConfidence and if 003 is excluded from C  then it is correct. 

However, the mediator will retrieve tmeditation2 = (003, “M editation” , 1974, 8, 7) from Fragment 4. 

and algorithm  ComputeCSET  would include 003 in C. This is incorrect. To solve this problem, one 

can send 003 to the  site of Fragment 1 to  verify th a t the book “M editation” indeed has year  >  1973. 

In our example, the verification fails and 003 is removed from C. This process is referred to as 

PID verification. Obviously, when year is supported  by only one fragment, PHD verification is not 

needed. Assume th a t ComputeCSET  derives a  tem porary C S E T  value C' from reduced fragments, 

PID verification can be performed by sending the following queries to  the sites of Fragment 1 and 

4, respectively:

Si = C ' n  7ry5 BjV0 'j/ear< i9 7 3 (Fragment 1); SA = C' D ^iSBN^year<w~2 (Fragment 4)

PHD values in 51 or 64 m ust be removed from C'. The cost of this approach is low when (1) query 

selectivity is low resulting in a  small C ' ; and  (2) Conflict rate is low resulting in small Ss. When 

no conflict exists, all Ss are empty. When C '  is large, the cost of PID verification m ay defeat the 

savings achieved by pushing selections onto fragments; a  cost model is needed for strategy  selection.

If c =  PossibleAtAll, C  can be computed by C o m p u teC S E T  correctly from reduced fragments. 

However, pushing predicates th a t involve m ore than  one a ttribu te  is not as straightforw ard. Consider 

Ci =  CSET(Books, “oprahClub = bestseller”, PossibleA tA ll/ In Figure 4.10, Fragment 2 contains 

tuple (003, “M editation” , No, Yes). If only a oprahCiub=bestSeUer (Fragment 2) is retrieved, 003 will 

be excluded from Ci. This is incorrect, since combining Fragments 1 and 2, it is possible that the 

book “M editation” is both  an  O prah’s club book and a best seller. Generally, pushing a multi

a ttribu te  predicate p  onto a  fragm ent F  is possible only if no fragments other them F  support any 

of the a ttribu tes involved in p.
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CT query optim ization possibilities are summarized in Table 5.4. In the rest of this section, the 

above described optimization strategies are formally established. W hen c =  HighConfidence, a cost 

model is needed to determine whether the strategies devised here actually reduce cost. This is a  

future research issue; for now the validity of the strategies is established.

Can px be used for fragment reduction?
c =  RandomEvidence YES
c =  PossibleAtAll YES (Conditional)
c =  HighConfidence YES (with PID  verification)

Table 5.4: Fragment Reduction w ith Selections

5.3.2 A  T h eory  o f  Conflict Tolerant Q uery P rocessin g

The m ain theorems of our theory axe Theorems 5.3.1 and  5.3.2, which allow us to push selections 

across M J onto fragments, to various degrees, according to  the PE-param eter.

T h e o r e m  5 .3 .1  Let R  be a CA-relation. Let p = p \  A po A ... A px be a predicate over R  in 

conjunctive normal form. Let F i , . . . ,  Fn be all fragments registered with R that contain no null 

values. Let p ‘ =  p\  A ... A p ‘ ., where p'- 6  (p i , . . . ,p x }, 1 <  j  < Si is applicable to F ,. Let 

FI =  o-pi(Fi), 1 <  i  < n . Let T,- =  a ^ pi{Fi), 1 <  i  < n .  Let W  =  T i{ P I D }  U ... U T n{P ID } .  Let 

R ' =  M J ( P I D ( R ) ,A T T R ( R ) ,F [ , . . . ,F ) l). Then the following is true:

1. C SE T(R !, p, RandomEvidence) is a valid value fo r  CSE T(R , p. RandomEvidence):

2. CSET(R , p, HighConfidence) =  CSET(R‘, p, HighConfidence) — W.

Note th a t point 2 of Theorem 5.3.1 says th a t C S E T ( R ,p ,  HighConfidence) can be computed from 

reduced fragments, but one must verify th a t the PID values thus selected are not in any Tx. This 

process is called P ID  verifica tion .

THEOREM 5.3.2 L e t R  be a CA-relation. Let p = pi Apo A ...Apx be a predicate over R  in conjunctive 

normal form. Let F i , ..., Fn be all fragments registered with R .  FiS do not contain null values. Then

C S E T ( R , p , PossibleAtAll) =  C S E T { M  J ( R ,  F [ , ..., F)f),p, PossibleAtAll)

where Vi, 1 <  i  < n, F) =  <Tpi(F t), p* =  p\  A ... A p ‘ ., p] €  {pi, ...,p x}, 1 <  j  < Si; p1 satisfies the 

following:

1. A T T R ( p *') =  { P ID }  or A T T  R t f )  =  A T T R {p)  D A T T R (F i) ;  and

2- Py(l £  3 Sl Si) involves at most one non-PID attribute, or no registered fragment of R other 

than Fi supports any of the non-PID attributes in A T T R ( p *•).
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In  the rest of this section, the  proofs of the above theorems are presented. F irst, 5 theorems on basic 

properties of the M J operator are  given. P roof of these theorem s are m ostly by definition.

T h e o re m  5.3.3 Let R  be a global relation and F i , . . . ,F n be all the fragments registered with R. Let 

L  be a list of attributes such that P I D ( R )  £  L. Then:

7tl (R) =  M J ( P I D ( R ) ,L , i r L l(F l ) , . . . , ircA F n))

where Li  =  L n  A T T R (F i ), I  <  i  <  n.

This theorem allows us to push projections onto fragments. The projection list m ust include the 

PID .

T h e o re m  5-3.4 Let R  = M J ( P , S , Y )  where Y  =  {F i, . . . ,F n }, S  =  {--U, ...,.4m}, and P  is the 

common PID o f  all fragments in Y . Then:

R { P }  =  F i{ P }  U ...U  F „{P }  =  V A L s e t (A i \Y ) { P }  U ... U V A L s e t { A m\Y ){ P )

This theorem describes the relationship among the PID values in a CA -relation. those in the frag

ments, and those in the  value sets; this relationship is used to prove la te r theorems.

T h e o re m  5.3.5 Let R  = M J ( P , S , Y ) and let S i  C S  be a set of attributes, S i =  { -4 i,..., .4^}, and 

P  is the common PID  of all fragments in Y .  Let a i , ..., ad be a set of non-null values and let k be a 

PID value. Then the following two statements are equivalent:

1. 3t 6  R  such that t .P  =  k, t .A j  =  aj,  1 < j  < d .

Vj, 1 < j  < d, i f  A j  7  ̂P ,  then < k .a j  > £  V A L s e t ( A j \Y ) .

This theorem describes the relationship between the content of the value sets and tuples in the global 

relation computed using these value sets; this relationship is used to prove later theorems.

T h e o re m  5.3.6 Let R =  M  J (P , S, F i , . . . ,F n ), where P  is the common PID of fragments F ,( l  <  

i  < n). Let R ' = M J ( P ,S ,F i  - T U - , F n -  Tn ) where Ti C F,. Let W  =  T i{ P }  U ... U Tn{P }.  

For any PID value k '  £  ( P { P j  — W ), k' £ P '{ P )  and A T s e t (R ,k ' )  =  A T s e t (R ' .k ' ) .

This theorem says th a t if one does not retrieve a portion of each fragm ent, the Tis, before performing 

M J, the data  related to PID values in F { P }  — W  are not affected.

THEOREM 5.3 .7  Let R =  M  J(P , S, F l , . . . ,F „ ) ,  where P  is the common PID of fragments F,( 1 <  

i  <  n), and let Ti C F ;( l  <  i < n). Given a predicate p  and a tuple t' £  M J { P ,S ,F \  —T i , . . . ,F n — 

Tn), i f  VA £ A T T R { p ) , t ' .A  ^  null, then £  R  such that t .P  =  t ' .P  and p{t) = p ( t ' ) .
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This describes a  condition th a t is weaker than  the following:

M J (P ,  S, Ft -  T i ,..., Fn — Tn) C M J ( P , S, F i , Fn) 

which is in fact not always true.

D e f i n i t i o n  5 . 3 . 1  [Images.] Let R  be a  CA-relation with PID. P ,  and F  be a  registered fragment 

of R. Given a ttribu te  set S  C A T T R ( F ) ,  and tuple £/ G F , £ G R  is an image of t f  over S .  

denoted as £ G im a g e s O f ( t f ,S ,F .R ) ,  if:

1. S  =  { P }  and t .P  = t / .P ;  or

2. t .P  =  t / . P  and there exists a non-PID  a ttribu te  .4 G S,  such th a t £..4 =  t / .A .

□

Images of a  given source tuple t j  are all the  tuples in the global relation th a t t /  may  contribute to. For 

example, let £/ be tuple 004 in Fragment 1 in Figure 4.10, then: imagesO f  {t f , { “ISBN”},“Fragment 

1” ,Books) =  { ti4 , £1 5 }, im a g e s O f ( t f , { “year” } ,“Fragment 1” ,Books) =  {£1 4 }

D e f i n i t i o n  5 . 3 . 2  [Irrelevant Source Tuples.] Let R  be a  CA-relation and F  be a  fragment registered 

with P , p be a  predicate. £r G F  is an irrelevant source tuple of R  in regard to  p  if d£ £ R, such 

th a t t .P ID  = tr .P ID  and p(£) =  fa ls e .  □

D e f i n i t i o n  5 . 3 . 3  [Negative Source Tuples.] Let R  be a  CA-relation and F  be a  fragment reg

istered w ith R , p  be a  predicate. t v G F  is a  negative source tuple of R  in regard to p if 

V£ G im a g e s O f( tv,A T T R (p ) ,F ,R ) ,  p(£) =  fa lse .  □

Intuitively, not retrieving the irrelevant tuples does not impact on the correctness of CT query 

processing. Negative source tuples are those th a t definitely will not contribute to the final query 

result and hence should never be retrieved.

THEOREM 5.3 .8  Let R  be a CA-relation and F i , ..., F„ be fragments registered with R. Let T \ , ..., T n 

be sets o f  irrelevant source tuples in regard to p, Ti C F,-. Let R ' =  M J ( P I D ( R ) ,A T T R ( R ) ,F l — 

T i , ..., F„ — Tn ). Then:

1. C S E T ( R ' ,p ,  RandomEvidence) is a valid value fo r  C S E T (R ,  p, Random Evidence).

2. CSET(R,p,HighConfidence) =  C SE T (  R ' , p, HighConfidence) - W, where W  = {fc| 3 i ,k  G 

T i{P ID {R )} } .

P ro o f:  Consider C, a  valid value for C S E T (R ' ,p ,  RandomEvidence) and k  G C, k CSET(R, 

p, HighConfidence^. Since k  G C, 3 t  G M J(PID(R), A T T R (R ) ,  Fi ~  TL, ..., Fn -  Tn), such that 

t .P I D  =  k, p(t) = true. By Theorem 5.3.7, 3£i G R ,  such th a t t i .P I D  =  k  and p(£i) =  true. Since
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k  £ CSE T(R , p, HighConfidence/ 3fo E R  such th a t U -P ID  =  k  and p{tf) =  fa lse .  By Definition

5.1.9, C  is a  valid value for CSET(R, p, c).

Consider k  €  CSET(R, p, HighConfidence,) — W. By Theorem  5.3.6, since k  £ W , A T s e t (R .k )  

=  A T s e t (R ' ,k ) .  By definition, k  E C SE T(R ', p, HighConfidence)  — W. Thus CSET(R, p, High

Confidence,) — W  C CSET(R!, p, HighConfidence,) — W. However, Vfc € W ,  3f,- E Ti such tha t 

t i -P ID  =  k  and t,- is an irrelevant source tuple in regard to p. By definition, 3f E R, t .P I D  = k, 

p(t) =  fa ls e .  Thus k  £ CSET(R, p, HighConfidence/ Thus CSET(R, p, HighConfidence,) — W  = 

CSE T(R , p, HighConfidence J. Thus,

CSE T(R , p, HighConfidence)  C C SE T (R ', p, HighConfidence,) — W  

Now consider k  E CSET( R ', p, HighConfidence J — W. Since k  ^  W .  from Theorem 5.3.6. 

ATset(R ',k )  =  ATset(R,k). Hence k E CSET(R , p, HighConfidence/ Thus,

C SE T (  R ',  p, HighConfidence)  — W  C CSE T(R , p, HighConfidence)

Theorem is proven. I

T H E O R E M  5 .3 .9  Let R  be a CA-relation and F i ,  .. .,Fn be fragments registered with R. Let T  T n

be sets of negative source tuples in regard to predicate p, Ti C Ft . Let

R' = M J { P I D { R ) ,A T T R ( R ) 1Fi — T i , ..., Fn —Tn)

Then,

C S E T (R ,p ,  PossibleAtAll) = C S E T (R ' ,p ,  PossibleAtAll)

P ro o f:  Denote Y  = {Fu .., Fn}, Tt  =  {Ti, ...,T n}, Y '  =  { f \ - T x, ..., Fn -T „ } . Obviously, Y { P I D }  

-  Yt { P I D }  C Y '{ P I D } .  Consider k E CSET(R , p, PossibleAtAll; and show that k E C S E T (R ', 

p, PossibleA tA ll/ By definition, 3 t E R, t.PID = k, p(t)  =  true. Let ATTR[p)  =  { A i,..., A m } and 

let aj =  t .A j , 1 <  j  <  m, aj ^  null. If Aj  =  P I D ( R ) ,  then ay =  k. First show that k E Y ' { P I D } 

and th a t Vy, 1 <  j  < m, A j = P ID (R )  or <k,aj >E VALset(A j\Y '). Consider two cases:

case  1. A T T R (p )  = {PID(R)}, by theorem  assumption, Vt' E R  such tha t 3i, t ' .P ID  E 

Ti{P ID {R )) ,  p (t')  =  fa lse .  Hence k  E Y '{ P I D } - Y T { P I D ) .  Since Y { P I D } -  Yr { P I D )  C 

Y '{ P I D } ,  k E Y ' { P I D ) .

case  2 . A T T R (p )  includes a  non-PID a ttr ib u te  -4X(1 <  x  <  m ). Consider <k. ax >. Since pit)  

= true, by theorem  assumption, t is not an image of any tuple in any T,- over ATTR{p).  Hence

<k, ax >E VALset(Ax \Y) -  VALset(Ax \YT)

Since VALset(Ax \Y)  — VALset(Ax \Yr)  C VALset(Ax \Y '), the following holds:

<k, ax >E VALset(Ax \Y ')
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Hence, k  G Y ' { P I D } .  By Theorem  5.3.5, 3 t' G R '  such th a t Vj, 1 < j  < m , t ' .A j  =  aj = 

t .A j , t ' .A j  ^  null.  Obviously, p(t‘)  =  p(t) =  true. Hence, k  G CSET( R ' , p, Possible At A11J. So 

it is shown th a t CSET(R, p, PossibleAtAll^ C C S E T (  R ' ,  p, PossibleAtAll,). Now consider k  G 
C S E T (R ', p, PossibleAtAll,). 3t G R '  such th a t t .P ID  =  k, p(t) =  true. By Theorem  5.3.7, 3t' G R, 

such th a t t' .PID = k, p(t') =  p(t) = true, hence k  G CSET(R , p, Possible At All). So it is shown 

th a t C S E T { R ' ,p ,  PossibleAtAll) C C S E T (R ,p ,  PossibleAtAll). Theorem proven.

■

P r o o f  o f  T h e o r e m  5.3.1

P ro o f :  For any i, 1 <  i < n, since Fi contains no null values, F[ =  Fj — Ti. Now show th a t all 

tuples in Ti axe irrelevant source tuples in regard to  p by showing that 3tR  G R  such th a t tR .PID  =  

t.PID, p ( tf i)  =  false. The rest of the theorem  follows from Theorem 5.3.8.

Consider £t- G Ti, p l(t) =  fa ls e .  Let A T T R (p l)  =  {B \ ,  . . . ,B X}, k =  ti.PID  and bj =  t i .B j ,  

bj 7^ null,  1 <  j  < x .  Since T C Fi, k  G R { P I D } .  By Theorem 5.3.5, 3 tR  G R  tR .PID  = k, 

tR .Bi  =  t i .B i , l  < i < x. Obviously, pl{tR) =  p*(£f) =  fa lse .  Thus, p(tR) = false, and  if is an 

irrelevant source tuple in regard to p. Theorem proven.

■

P r o o f  o f  T h e o r e m  5.3.2

P ro o f:  Let T,- =  cr^p,(Ti), i, 1 < i  < n ,  since Ti contains no null values, F[ — Fi — Ti. Now show 

Ti is a  set of negative source tuples in regard to p by showing th a t V (r G R,VU  G T,. such that 

tR G im a g e s O f{ t i ,A T T R {p ) ,F i ,R ) ,  p(tR)  =  false. T he rest of the theorem follows from Theorem

5.3.9. Let U G Ti and consider the following cases:

case  1. A T TR (p l) = {PID}. If  tR is an image of £,■ in R, tR.PID = ti.PID. pt {tR) = p ‘( ti) =  

false.

c a se  2. A T T R (p l) involves non-PID a ttribu tes , but ATTR(px) =  ATTR(p)  n  ATTR(Fi). 

Consider am image of ti, tR G R  over ATTR{p).  By Definition 5.3.1, tR.PID = ti.PID,  and 

3 B  G A T T R (p )n A T T R {F i) ,  such th a t tR .B = U.B. Since ATTR(p‘) = ATTR(p)  n  ATTR(Fi), B  

G ATTR(p%), th a t is, 3j ,  1 <  j  < s,-, B  G ATTR(p}). Consider two cases:

1. p} involves only one non-PID attribu te, B . Pj{tR) = p){ti) =  fa lse .  Hence p(ftf) =  fa ls e .

2. p} involves more than one non-PID a ttr ib u te  B ,  B i ,..., B v , but no fragments o ther than  Ti 

support any of them. Vi, 1 <  i  <  y , t R.Bi =  U.Bi.  Thus, p){tR) — ?*•(£,•) =  fa lse .  Thus, p ( tRJ 

= false.

Theorem  proven. I
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5.3 .3  O ptim ized C onflict T olerant Q uery E valuation  A lgorith m s

The following algorithm is directly based on Theorems 5.3.1 and 5.3.2.

A L G O R IT H M  Optimized-CT-QP (R, Qc t , Fu ..., Fa) 
in p u t:

R: Global relation R  involved in the query.
Qc t '- Qc t  =  select L fro m  R  w h e re  p w ith  ci- 
Fi’s: All the  fragments registered with R. 

o u tp u t :  A: the query answer.

b eg in

C o m p u te  C S E T :
- Let Li  =  ATTR(L)  U {PID(R)}  U ATTR(p). Write p into conjunctive normal form p =  pi (i ... n p x. 

Let X p = {pi, ...,px }.
- For i =  1, n  do:

- if ci PossibleAtAll then let p ‘ be the conjunction of all predicates in X p th a t are applicable 
to Fi. If no such p‘ is found, px =  true;

- if ci =  PossibleAtAll then let pl be the conjunction of all predicates in X p such that (1) it 
involves at most one non-PED attribute; or (2) No fragments other than  Fi supports any of the 
non-PID attributes involved. If ATTR(pl) ^  ATTR(p) fl ATTR(F,), p‘ = true.

S I  F- = ^,i 1nA7TR(Fi)<tp'' (Fi).
- R' = MJ(PID(R), L i,F i,. . . ,FU ;
- C — ComputeCSET(R!, p, cij;

P ID  V erification :
- If cl =  HighConfidence or DE(L) A N Y  then

- Let L? =  ATTR(L)  U {PID(R)}.
- For i = l,7i do:

S2 Let Si = 7T£2nATTR(F;)0'^pi (Fi txiPID(_R) C)\
- if ci =  HighConfidence

C = C -5i(PID(R)); Si = 0;

- R' = R! tXp/D(ii) C;
D a ta  C o m p le tio n :

- if DE(L) #  ANY then R' =  M J(PID (R), L2, R ', S u - , S n);
D a ta  E x tra c tio n :

- A = ita t t r (l)[RTC( R! Mp id (R) C, DE(L))]. 
en d  o f  a lg o rith m .

Steps S i  and S2 are where queries are sent to the da ta  sources th a t provide the respective 

fragments. These steps follow directly from Theorems 5.3.1 and 5.3.2. W hen the num ber of sources 

involved is large and da ta  volume is large, cu tting  down on da ta  retrieval a t S I and S2 improves 

query performance. Moreover, the following observations can be made:

O p tim iz e d -C T -Q P  is a  1- o r  2 -p h a s e  a lg o r ith m . The first phase retrieves enough data  to 

com pute C S E T .  Depending on the P E - and the DE-param eter, a second phase retrieves ex tra  data
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for PED verification and /o r d a ta  completion. PID verification is needed only if the PE-param eter is 

HighConfidence. D ata  completion is not needed when the D E-param eter is ANY.

P e r fo rm a n c e  p e rs p e c tiv e s  o f  O p tim iz e d -C T -Q P . Step SI is obviously a  good move towards 

saving communication cost. At step S2, one could send the content of the  com puted C S E T , C, to 

relevant da ta  sources. This works well when C  is small due to a  low query selectivity, but may get 

expensive when C  is large. A simple com putation can be applied to restrict this cost. Consider 

performing step S2 against a  d a ta  source supporting a  fragment Fi. The purpose of sending a query 

to  compute Wi is to retrieve d a ta  related to PIDs in F,- th a t are in C, bu t have not been retrieved 

in step S i. Thus, one can compare the volume of ~L2nATTR{Fi)a'^pi (P'i) with the volume of C. If 

the former is smaller, it is sim ply retrieved without sending C  to the relevant da ta  source, and the 

process continues normally.

O p tim iz e d -C T -Q P  p e rfo rm s  b e t t e r  w h e n  con flic t r a t e  is low . W hen conflict rate is low, 

the Si’s will be em pty or very small. This means the cost of PID verification and D ata Completion 

becomes low. Therefore, Optimize-CT-QP  is expected to be most efficient against low conflict data.

F i  — 7T/Si?iV,£i£/e,year,opra/iCUu60*year>1973(Fl) F 2 — 7Tf S  B  JV , t i t l e , o p r a h C l u b , b e s t S e t l e r  

& o p r a h C l u b = b e s  t S e l l e r  ( , F 2 )

ISBN title year oprahClub ISBN title oprahClub bestseller
004 “Dreams” Yes Yes
005 “T C P /IP " Yes Yes

F 3 =  Tt[  S  B N . t i t i e . b c s t S c l l e r i F z ) F 4 — F J S  B  N , t i t l e . y e a r , N V T r e v i e p j , a v g  R e v i c - w  

G’y e a r >  1973AN Y T r c v i c n i > a v g R e v i e w  ( F 1)

ISBN title bestseller ISBN title year NYTreview avgReview'
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “Meditation” No 005 “T C P /IP ” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “T C P /IP ” Yes
006 “HTML” Yes
007 “Pens” No :
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

R 1 = M J(P ID , L, F[,Fi, Fi, Fi)
ISBN title year oprahClub bestseller NYTreview avgReview
002 “China” null null No null null
003 “Meditation” 1974 null No 8 7
004 “Dreams” 1980 Yes Yes 9 3
005 “T C P /IP ” 1992 Yes Yes 15 15
006 ’’HTML” 1974 null Yes 16 2
007 ’’Pens” null null No null null
008 ’’Quilts” null null No null null
009 ’’Micky” null null No null null
010 ’’Pooh” null null No null null

Figure 5.3: Compute CSET and content of R ' when ci =  Random Evidence or HighConfidence
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F ±  — T T f S B N , t i t [ e , y e a r , o p r a h C l u b ( F l ) ■1*2 — ‘K l S B N , o p r a h C l u . b , b e s t S e l l e r { , F 2 . )

ISBN title year oprahClub ISBN title oprahClub bestseller
001 “Florida’’ 1960 No 002 “China” No Yes
002 “China” 1966 No 003 “M editation” No Yes
003 “M editation” 1972 Yes 004 “Dreams” Yes Yes
004 “Dreams” 1970 Yes 005 “T C P /IP ” Yes Yes

F i  =  I T r S B N . t i t l e M s t S e l l e r i F z ) F . \  — S  B N  , t i t l e , y e a r , N Y T r e v i e w , a v g R e v i e w  

& y e a r >  l 9 T 3 A N Y T r e v i e w > a v g  R e v i e w  (F i)

ISBN title bestseller ISBN title year NYTreview avgReview
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “M editation” No 005 “T C P/IP ” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “T C P /IP ” Yes
006 “HTML” Yes
007 “Pens” No
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

R' =  M J(P ID , L, F[,Fi,Fi, Fi)
ISBN title year oprahClub bestseller NYTreview avgReview
001 “Florida” 1960 No null null null
002 “China” 1966 No No null null
002 “China” 1966 No Yes null null
003 “M editation” 1972 Yes Yes 8 7
003 “M editation” 1972 Yes No 8 7
003 “Meditation” 1972 No Yes 8 7
003 “Meditation” 1972 No No 8 7
003 “M editation” 1974 Yes Yes 8 7
003 “M editation” 1974 Yes No 8 7
003 “M editation” 1974 No Yes 8 7
003 “Meditation” 1974 No No 8 7
004 “Dreams” 1970 Yes Yes 9 3
004 “Dreams” 1980 Yes Yes 9 3
005 “T C P/IP" 1992 Yes Yes 15 15
006 "HTML” 1974 null Yes 16 2
007 "Pens” null null No null null
008 "Quilts” null null No null null
009 "Micky” null null No null null
010 "Pooh” null null No null null

Figure 5.4: Compute CSET Phase for PossibleAtAll
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ci =  HighConfidence Ci =  RandomEvidence ci =  PossibleAtAll

*i =  <  004, “Dreams” , 1970 > Si = < 004, “Dream s” , 1970 > * i = 0
da =  0 IIc-j

'-O * 2 = 0
S3  — 0 II*5 * 3 = 0

II S4  = 0 * 4 = 0

Figure 5.5: Value of *i’s w ith d  =  DISCARD

ci =  HighConfidence Ci =  RandomEvidence ci =  PossibleAtAll

d=AN Y
<005, “T C P /IP ” ,1992> <004, “Dreams” ,1980>, 

<005, “T C P /IP ” ,1992>
<003, “M editation” ,1984>, 
<004, “Dreams” ,1980>. 
<005, “T C P /IP ” ,1992>

d=DISCARD <005, “TCP/BP” ,1992> <005, “T C P /IP ” ,1992> <005, “T C P /IP ” ,1992>

Figure 5.6: Query Results

E x a m p le  5 .3 .1  This example dem onstrates using the algorithm s given above to evaluate the fol

lowing 6 queries th a t retrieve the title  and year of publication of books published after 1973, and 

which are on both O prah’s Club list and the best seller list, or on none of them , and have a  higher 

rating  by the New York Times review than the average custom er review.

se le c t  \d\ISBN, title, year 
f ro m  Books

w h e re  year > 1973 a n d  oprahClub =bestSeller a n d  NYTreview > avgReview 
w i th  ci

where ci G {RandomEvidence, HighConfidence, PossibleAtAll} and d  6  {ANY. DISCARD}. Figure 

5.3 shows the predicates pushed onto Fi s to compute F['s{i =  1...4) in the case of HighConfidence 

and RandomEvidence. It also shows the result of the m atch join producing R',  from which one 

gets: C SE T {B ooks , p, RandomEvidence) =  {004,005}. PID  verification is performed based on this 

result. The * 's are computed when ci =  HighConfidence or d = DISCARD, shown in Figure 5.5. 

Based on this result: CSET(Person, p, HighConfidence)  =  {005}, Figure 5.4 shows the predicates 

pushed onto FfS to compute F[s{i =  1...4) in the case of ci =  PossibleAtAll. It also shows the 

result of the m atch join producing R',  from which one gets: CSET(Person, p, PossibleAtAll/ =  

{003,004,005}. Final results of the 6 queries are given in Figure 5.6. □
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5.4 A U R O R A -R H  Q uery P ro cessin g

As shown in the previous section, AURORA-RI sends subqueries to  various sources to fetch part or 

all of fragments. These subqueries are posed against homogenizing views of d a ta  sources maintained 

by respective AURORA-RH m ediators, which are responsible for processing the subqueries and 

shipping the results back to the  AURORA-RI mediators.

Assume th a t the source database B  has been homogenized into the target view H. Let Q be a 

relational query against H .  AURORA-RH’s query processor, AQP, translates this query into a set 

of queries over the  source database, sends the queries for execution, and assembles the answer to Q, 

using the  da ta  returned. As shown in Figure 4.4, AQP consists of a  query execution engine, a  query 

rewriter, and a  query optimizer.

5.4.1 A Q P  Q uery E xecu tion  E ngine and Q E Ps

Ultimately, AQP executes a  query based on a  query execution plan (Q EP) generated by the query 

rew riter and optim izer. Such QEPs are similar to the Q EPs used by a  query processor of a DBMS 

except they involve m ediation enabling operators. The algebraic-based and cost-based manipulations 

of these QEPs will also be different from those in a traditional query processor. Algebraic-based 

m anipulation of Q EPs will be discussed later in this section. Cost-based manipulation of QEPs are 

not discussed in this thesis. However, cost-based m ediator query optim ization is an active area of 

research, as reviewed in Section 2.6.3.

In the context of AURORA-RH query processing, QEPs are expressions th a t involve only source 

relations - relations th a t reside in the underlying da ta  source. A QEP can be depicted as an operation 

tree whose nodes axe annotated  with an operator name and  cm argum ent list. A non-leaf node of 

the tree is either an  AURORA-RH primitive, retrieve, renam e, pad, or deriveAttr ,  or a relational 

operator. The leaf nodes of the tree are source relations. T he AQP query execution engine evaluates 

QEP trees bottom  up.

5.4.2 Q uery R ew ritin g

In this section, m ediator queries in the form of - l <j p ( M )  are considered, where L  is a  list of attributes 

in M  and p  is a predicate. The rewriting algorithm given below can be adapted for join queries. Via 

MAT-RH, the derivation of M  is captured as transform ations, such as R E L m a t  and A T T R m a t .  

and domain mappings, such as Domain Structural Functions (DSFs) and Domain Value Functions 

(DVFs) in the View Definition Repository. The purposes of query rew riting are the following:

1. To modify a  m ediator query so that it only references source relations, not view relations.

2. To replace special transform ations, such as R E L m a t  and  A T T R m a t ,  w ith their definitions in
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MEA-RH. For instance, the rewriting algorithm will replace

R E L m a t(D a , A)

with
n

pad(Ri, A , R E L nam e(R i))
i=l

The algorithm  AQPrewriteQuery performs query rewriting.

A lg o r ith m . A Q P re w r ite Q u e ry  
In p u t:  Q = TTLcrp(M ).
O u tp u t :  A Q EP for Q

Repeat until all the relations referenced in Q are source relations:

1 . Replace any derived relation reference by Q with its definition stored in the View Defini
tion Repository.

2. Replace R E L m a t  and A T T R m a t  transform ations with their definition.

I
The above algorithm  modifies a  query expression repeatedly until ail relations referenced are source 

relations, and all R E L m a t  and A T T R m a t  transform ations are replaced with the equivalent MEA- 

RH expressions. The resulting expression is a QEP.

To make the presentation cleaner, MEA-RH expressions are given as operation trees, rather than 

as long formulas. An operation tree is like a  QEP except its leaf nodes m ay reference view relations. 

An operation tree th a t does not reference view relations is a  QEP. Therefore, an operation tree can 

be rew ritten into a  Q EP by repeatedly replacing the view relations with their derivations, as shown 

in the following example.

E x a m p le  5 .4 .1  Consider query:

Q  =  r t I S B N , t i t l e , p r i c e ® p r i c e < A 5 & c a t e g o r y — ' ' T r a v e l  a n d  A d v e n t u r e "  {Books)

that retrieves the I S B N ,  title  and price  of books of the category of “Travel and Adventure” that 

cost less than  45 US dollars. This query is posed against the homogenizing view as shown in Chapter

4. A graphical representation of this query is shown on the left of Figure 5.7. Rewriting of this 

query is performed as follows:

1. As shown in Exam ple 4.2.8 of Section 4.2.5 , B ooks  is a view relation with the following 

derivation:

B ooks = deriveA ttr(B ooksv , {price},price, f B o o k s . , p r i c e - ,  {category}, category, f e o o k s . c a t e g o r y )  

Replacing B ooks  in Q with the above expression gives Q \, shown on the right of Figure 5.7.
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T t :  ISB N ,title ,p rice 71: IS B N .title .p rice

q . price < 45 and
category = “Travel and 
Adventure"

f j .  price < 45 and
category = "Travel and Adventure'

Books deriveAttr:
{price}, price, fv{Books.price} 
{category}, category, fv{Books.category}

Booksv

Figure 5.7: Query Rewriting: Qi

2. As shown in Example 4.2.7 of Section 4.2.5, relation B ooksv is a  view relation w ith the following 

derivation:

(deriveA ttr{B ooksp, {price, deduction},price, f%ooks price))

Replacing B o o ksv in Q\  with the above derivation gives Qo, shown in Figure 5.8.

3. As shown in Example 4.2.4, relation B ooksp is a  view relation w ith the following derivation:

Booksp  =  R E L m a t{D R, category)

where D R = {Travel, N e w  Age, Com puter, Hobbies, C hildren}. Replacing B ooksP in Qo gives 

Qz,  shown in Figure 5.9. The transform ation R E L m a t  in Qz  must be replaced with its 

definition as given belowr:

R E L m a t(D R, category) = pad(T ravel, category, “Travel"’)U

Replacing the R E L m a t  transform ation in Qz w ith the above definition gives Q.i, shown in 

Figure 5.10.

4. All the leaf nodes in Q4  are still view' relations, as discussed in Exam ple 4.2.3 (Section 4.2.5). 

For instance, view relation Travel has derivation

T rave l — re tr ieve (T  ravel)

Replacing all view relations in Q4 writh their derivations gives Q$, shown in Figure 5.11.

B ooksu —  /i I S B N , t i t l e , c a t e g o r y , b e s t s e l l e r , p r i c e

pad(Travel, category, “NewAge”)U 

pad(Travel, category, “Com puter” )U

pad{Travel, category, “Hobbies”)U 

pad{Travel, category, “Children”)
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n: ISBN ,title,price

( j . price < 45 and
category = “Travel and Adventure”

{price}, price, f̂ Books.price} 
deriveAttr: {category}, category, f^Books.category}

n: ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs (Books.price} 

Booksp

Figure 5.8: Query Rewriting: Q 2

Q 5 is a  Q EP since it only involves source relations and M EA-RH operators. □

5.4 .3  A Q P  Q uery O ptim ization

The AQP query optimizer maximizes the  num ber of relational operations performed by the source 

DBMS so as to  leverage the query optim ization capability of the source, and reduce the am ount of 

d a ta  fetched into the AURORA-RH m ediator. In a  QEP, the retrieve  nodes represent queries to 

be sent to  the source DBMS for execution. The goal of query optimization in AURORA-RH is to 

transform  the QEPs generated by query rewriting to enlarge the queries subm itted to the source 

DBMS. As retrieve  is the only operator th a t submits queries, the optim izer pushes as m any as 

possible relational operators into re trieve . In order to achieve this goal, the AQP query optim izer 

performs two type of query modifications:

1. Relational operator push-downs. This type of modification pushes relational operators across 

M EA-RH operators towards the leaf nodes. Algebraic transform ation rules are required for 

performing this modification.

2. Predicate modification. A relational operator can be pushed into re trieve  if it is acceptable 

to the source query facility. Selections whose predicates involve functions th a t are not built- 

in in the source query facility do not exchange with retrieve. This potentially increases the 

am ount of da ta  fetched from the source. Predicate modification is a  mechanism of elim inating
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n: ISBN .titie,price

0 -. price < 45 and
category = "Travel and Adventure"

. A {price}, price, tv {Books.price} 
deriveAttr: (category}, category, f ' {Bo0ks.cateoory}

7t: ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs{Books.pnc8)

RELmat: DR, category

Figure 5.9: Query Rewriting: Qs

user-defined functions from predicates so as to increase the chances of these predicates being 

pushed into a retrieve node. For example, if a  predicate is in the form of

C D N toU SD (price)  >  45

and if the query processor “knows” th a t CDNtoUSD  is a monotone increasing function with 

inverse U S D to C D N , it could rewrite this predicate into

price > U SD toC D N (45)

It can then evaluate the right hand side of the predicate to produce

price  >  6 8

assuming th a t 45 US dollars is worth 6 8  C anadian dollars. This modified predicate can be 

pushed into a retrieve node easily.

Table 5.5 gives transformation rules for exchanging relational operators with pad , renam e , 

and d eriveA ttr ; these rules facilitate relational operator push-downs. For simplicity, the rules for 

d eriveA ttr  are given only for cases where there is one derived attribu te. Extensions can be easily 

made to allow multiple derived attribu tes. These rules are mostly self-explanatory. Proof of rules 

for deriveA ttr  is given in [96]. In Table 5.5, pAr<_x denotes the predicate obtained from p by substi

tu ting  all appearances of N  with X .  If p  does not involve N , pN*~x  = p. Ln <-a  denotes the list of 

a ttribu tes obtained from L  by replacing a ttr ib u te  N  with A . If L  does not involve Ar, L n *-a =  L.
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Tc: ISBN,title,price

price < 45 and
category = Travel and Adventure"

, . . {price}, price, ^(Sooks price}
deriveAttr: {category}, category, tv{BookS.category(

7 i :  ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs {Books.price}

pad: pad: pad: pad: pad:
"Travel" "NewAge" "Computer" "Hobbies" "Children"

Travel NewAge Computer Hobbies Children 

Figure 5.10: Query Rewriting: Q4

A control strategy selects the next transform ation rule to be applied. Currently AQP pushes 

relational operators across AURORA-RH primitives towards the leaves using the rules in Table 5.5. 

whenever and wherever applicable, in no particular sequence, until no rules are applicable. After 

each rule is applied successfully and if there are any changes to the predicates, AQP performs the 

predicate modification algorithm  as given below. More sophisticated strategies to speed up opti

mization are a  topic for future research.

A lg o r ith m . PredicateM odification ( Q )

in p u t:  A Q EP Q.

o u tp u t:  A modified Q EP Q.

B E G IN .

Repeat until no modification can be made:
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Ti: ISBN.titie,price

price < 45 and
category = “Travei and Adventure"

. {price}, price, iV{Books.price}
deriveAttr: {category}, category, f^ao oks.catego ry}

7 Z :  ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs (Books.price}

pad: pad: pad: pad: pad:
Travel" "NewAge" "Computer" ‘Hobbies' "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.11: Query Rewriting: Q$

For each subexpression in each predicate appearing in Q in th e  form of f { E i ) 6 f(E o)  or 

f ( E z ) 8 c, where E i, Eo and  Ez are expressions, c is a  constant, 8  6  {= , > , <}, and /  is 

a  function which has an  inverse f ~ l , if /  is strictly  monotonic o r 8  is “= ” , replace this 

subexpression w ith Ei&Eo or E^dc', respectively, where c' =  / _ 1 (c).

E x a m p le  5 .4 .2  This example is a  walk-through of the optim ization of the  Q EP shown in Figure 

5.11.

1. F irst try  to push the select, cr, operation near the top of the QEP tree  across the deriveAttr  

operator beneath it, using rule T  d e r i v e  A t t r \ S \ -  This produces the Q E P  shown in Figure 5.12. 

Apply algorithm  PredicateM odification on this QEP, predicate

C N D toU SD (price) < 45
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Transformation rules for p a d
Tpa<i[l]. 
TPad[2]. 
Tpa<i[3]. 
T pad [4]. 
Tpad[5].

7TL(jpad(R,N,s)) = ttl(R), L  C ATTR(R ), N  <£ ATTR(R).  
rL(pad(R, IV, s)) =  pad(rL_{xy(R), N, s), L C {N }  U ATTR(R),  iV 6  L. 
crp(pad(R, N, s)) = pad(apNr~.(R), iV, s).
RMp pad(R i,N i,s i)  = pad(RMpx l ~ . 1 R i ,N t ,s i ) .
pad (R i,N i,s i ) Np pad(R2, N2, s2) = pad(pad(Ri R 2, 'Vi, si), i\r2. s2).

Transformation rules for rename
T rename[l].
T rename[2].

Treuame[3]-
Trename[4].
Trename [5]*

■KL(rename(R,A,N)) =  ttc(R), L  C A T T R (R ) , N  £ ATTR(R).
iri.(rename(R, A, N)) = rename(—LK,_, (R.), A, -V),

L  C {AT} U AT T R (R )  -  {A}. ~ 
crp(rename(R, A, N)) = rename(opN~A.(R), A, N). 
itMp rename(Ri, Ai, JVi) = rename(R  IXp.v!.— Ri,  -4i, Ni). 
rename(Ri, A i ,N i)  £xSp rename(R2, A2, N2)
=  rename(rename(Ri R 2, .4i, iVi), A 2, N2).

Transformation rules for deriveAttr
'~i- deriveAttr [1]* 
Tderive Atir[2].

TderiveAttr [3]-
T<fertueA££T-[4].

Trfcrivea££r[5].

r L(der iveA t tr (R ,L i ,N ,f )) =  r L{R), L  C A T T R (R ), N  £ ATTR{R). 
tvl{deriveAttr(R, L i ,N ,  / ) )  =  r L(derive Attr(~L_ {,v } , (R) , L i , :V, /)) ,

L  C {iV} U A TTR(R ),  iV € L. 
ap(deriveAttr{R, L, iV, / ) )  =  deriveAttr(crp.s~t(D  (R), L, iV, / ) .
/£ txip derive Attr(Ri, Li,  A/j, f i )  =  derive Attr{R  _/(£.,) Ri, L \ , N \ , f i ),
ATTR(R)  n ATTR(R i)  = <p, Ni $ ATTR(R).
deriveAttr(Ri, Li, JVi, f i )  t<p deriveAttr(R2. L2, iVo, f 2)
= deriveAttr(deriveAttr(Ri tXp.vl - / 1(£.1)..v2- / 2(£.2) R 2 , Li, A/j, / i) ,  L2, N2, f 2), 
ATTR{R2) =<t>,Ni£ A T T R (R 2), N2 £ A TT R (R i) ,  Afi #  N2, N2 £ L2.

Table 5.5: Transform ation Rules for pad, rename and deriveAttr

can be modified to

price < 6 8

and predicate

category =  “Travel and Adventure”

can be modified to

category  =  “Travel”

Also, apply rule T  d e r i v e  A t t r [ l ]  to the  projection operator on top of the QEP and the deriveA ttr  

beneath it, derivation of one of the a ttribu te , category , can be eliminated. Q EP after these 

modifications is shown in Figure 5.13.

2. Exam ine the a  operator and push it across the projection beneath it and then try  to push 

it across the deriveA ttr  operator lower in the tree, using rule Tderiue.4 ( tr[3 ]. Then push the 

projection on top of the tree across the deriveA ttr  beneath it and merge it with the projection 

operation under the deriveA ttr. T he Q EP after these modifications is shown in Figure 5.14.

3. Push  the predicate category =  “Travel” across the U operator and across the pad  operator 

beneath it, using rule T pa<*[3]. M any of the branches are eliminated. For instance,

c a t e g o r y =  “T r a v e l ”pad{C om puter, category , “Com puter” )

=  pad(o-«computer"=“Traver C om puter, category, “Computer")

=  0
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re : ISBN,title,price

i

. {price}, price, f7{Books.price}
deriveAttr: {category}, category, f^Books.category)

U .  CDNtoUSD(price) < 45 and 
categoryMap(category) = 

"Travel and Adventure"

7C: ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs (Books.price}

pad: pad: pad: pad: pad:
"Travel" "NewAge" "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.12: Query optim ization example: first modification

The Q EP after these modifications is shown in Figure 5.15.

4. Pushing the second projection operator down all the way to meet the pad operator and use 

rule TPad[ 1]- The QEP after this modification is shown in Figure 5.16.

5. Finally, push the projection above the re trieve  into it to get the final QEP, as shown in Figure 

5.17.

The optim ization has cut down the number of source relations involved from 5 to 1. □

5.5 R ela ted  W ork

In [15, 21], algebraic rules for pushing selections across aggregation functions are studied under 

the assum ption that schema integration is performed by an integration specification which resolves 

all potential instance level conflicts, using various aggregation functions. AURORA integration

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K :  ISBN,title,price

deriveAttr: {price}, price, fv{Books.pric8}

q .  price < 68  and
category = “Travel”

T Z :  ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs{Books.pnc8}

pad: pad: pad: pad: pad:
"Travel" "NewAge” "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.13: Query optim ization example: second modification

m ediators do not keep integration specifications; sources participate  in the data  service by registering 

w ith the m ediator the data  they can contribute. Conflicts are not resolved at schema integration 

tim e bu t ra th e r tolerated at query time and resolved only upon returning of query results. In 

general, AU RO RA’S approach towards instance level conflict handling offers a new way of querying 

potentially  inconsistent data and new techniques for processing such queries efficiently.

T he flexible relation model [23, 83] is designed to deal w ith instance level conflicts, but it requires 

the  applications to  use a  non-standard da ta  model for d a ta  access. This approach only deals with 

conflicts a t predicate evaluation time and the tolerance m ode is always HighConfidence. Conflicts 

in query results are not removed. M ultiplex [6 8 ] deals w ith  instance level conflicts in the context of 

answering queries using given materialized views. Conflicts arise when the materialized views overlap 

and  the  same query can be evaluated in multiple ways, resulting in multiple answers. A mechanism 

is proposed to  derive an  approximate query answer using these candidate answers. However, without 

any object m atching assumption, it is not clear how conflicts can be detected.
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71: ISBN,title,price

deriveAttr: {price}, price, fv{Books.price} 

n: ISBN,title,price,category

deriveAttr: {price, deduction}, price, fs{Books.price)

( j -  fS(Books.price)(Pn'c e ,  deduction) < 68  and 
category = "Travel"

U

pad: pad:
Travel" "NewAge" "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.14: Q uery optim ization example: th ird  modification

[41] identifies domain mappings for resolving domain and schema m ism atches. Resolutions for 

individual mismatches are dem onstrated using an object-oriented database program m ing language. 

[41] does not provide a  mediation m ethodology, nor does it explore query optim ization techniques 

in the presence of the new language constructs. [42] provides a comprehensive classification of 

m ism atches and conflicts. Resolutions for individual conflicts are given. New language constructs 

are proposed but query rewriting and optim ization methods for these constructs are not given. [31] 

uses ontology to detect and resolve m ism atches due to different units of m easure. It is not cleax how 

[31] handles other types of schematic m ism atches.

Disco [89] extends ODMG ODL for m ediation and proposes to use Volcano for query optim ization. 

I t introduces a logical operator su b m it and gives rules for exchanging relational operators with it. 

The cost model used is unclear. [25, 56] describe approaches th a t collect/establish statistics to build 

m ediator query cost models. Query optim ization in AURORA-RH focuses on single-source query 

modification techniques to leverage the  source query optimization capability; a  m ediator query cost
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T il ISB N ,title,price

deriveAttr: {price}, price, f^Books.price}

T i :  ISBN,title,price

deriveAttr: {price, deduction}, price, fs {Books.price>

( y  fS{Books.price}(Pr,ce> deduction) < 68

pad: category,
Travel"

retrieve

Travel

Figure 5.15: Query optim ization example: fourth modification 

model is not necessary. However, m ediator query cost model is an interesting research topic.

5.6 Sum m ary

The CT query model and related processing techniques are a  new approach to handling instance 

level conflicts. Unlike previous approaches, conflicts are not resolved at schema integration time with 

aggregation functions, but are dealt w ith a t query time. W ith the CT query model, instance level 

conflicts are tolerated to a degree acceptable to the applications. The advantage of this approach 

is th a t applications gain more control of the quality of the data  access service they receive, and 

the m ediators gain more room for query optim ization. Techniques for optimized processing of CT 

queries have also been studied. In large scale d a ta  integration systems, the ability of optimizing 

query processing according to applications’ requirem ents for da ta  service quality is a significant 

factor in deployment.
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Tt: ISB N .title.price

deriveAttr: {price}, price, fV{Books.price}
I

7 t :  ISBN.title.price 

deriveAttr: {price, deduction}, price, fs {Books.price}

q : fs {B ooks.price}<Price, deduction) < 68

n: ISBN.title.price,deduction 

retrieve 

Travel

Figure 5.16: Query optim ization example: fifth modification

AURORA-RH query processing and optim ization axe based on the  MEA-RH algebraic fram e

work, which allows the query processor to use knowledge gathered from the m ediator author during 

hom ogenization, in order to build efficient QEPs. Homogenization is different from building a  rela

tional view in th a t  it requires more sophisticated structu ra l and sem antic transform ations of d a ta . 

Fundam entally, MEA-RH allows the im pact of the homogenization process on query processing ef

ficiency to  be sTudied. As dem onstrated in this section, algebraic optim ization of m ediator queries 

can significantly reduce the volume of d a ta  retrieved into, and m anipulated by, the mediator.

Future research in CT querying involves development of a cost model for stra tegy  selection and 

a  detailed perform ance study of the query optim ization techniques presented here. Since query' pro

cessing is a  muLti-phase procedure, apart from the m ajor transform ations th a t have been developed 

in this chapter, many smaller techniques for sm art reuse of da ta  retrieved in previous phases can  be 

explored. T hese  are engineering issues b u t may improve performance further.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deriveAttr: {price}, price, fv{Books.prica}

1 Z '. ISBN.title.price

deriveAttr: {price, deduction}, price, fs {Books.price}

(J : fS(8ooks.pnce}(Pr ic e . deduction) < 68

retrieve

I

71: ISBN.title.price,deduction 

Travel

Figure 5.17: Query optim ization example: sixth modification
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Chapter 6

Object-Oriented Mediation 

Framework

W hen the service view is based on an object data  model, a  m ediation framework is needed for ho

mogenizing and integrating data  represented as objects th a t reside in various participating sources. 

This chapter describes AURORA’S object-oriented m ediation framework. As in the relational con

text, there are two mediators: object-oriented homogenization m ediator, AURORA-OH, and object- 

oriented integration m ediator, AURORA-OI.

6.1 T h e  S erv ice  V iew

A service view is a  schema written in ODMG ODL [14] th a t satisfies the following syntactical 

constraints:

1. Each object class m ust define a method with the following signature:

P ID  : 0 ->• T

where T  is a  Pure Literal Type (PLT). PED stands for P lu g - in  Id en tifie r . Intuitively, the 

PID m ethod returns a  value th a t is required by the in tegration m ediator for object-matching 

and oid generation; sources that wish to contribute d a ta  towards a  global class in the service 

view m ust be able to perform the PID method of this class.

2. C lass/interface specifications contain only methods: no a ttribu tes, relationships, types, con

stants, or exceptions.

3. Exports of param eters in methods are either in  or out, not inout.

4. The param eter types and return types of methods are restricted  to  the following:
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(a) Pure literal types.

(b) Object types in the service schema.

(c) set < T  > where T  is an object type in the service schema.

This constraint says that the service view does not involve randomly complex types. This is 

because complicated structures with oids buried deep inside cannot be exported or interpreted 

easily; oids lose their validity once they leave the system where they are created. It is possible 

to  devise a mechanism to exchange randomly complex values involving oids but this is not 

the focus of this research. This constraint is posed to  simplify- the initial development of the 

integration framework; it will eventually- be removed.

These constraints do not restrict what can be represented in a  service view; it only restricts how to 

represent them . For instance, a service view does not contain a ttribu tes but an a ttribu te  can be 

represented by a get m ethod and a set method. Since the service view is read-only, a get m ethod would 

represent an  a ttribu te  completely. However, by restricting properties to methods, the integration 

mechanism of AURORA-OI is greatly simplified.

There are two ways of maintaining the extents of classes in the service view: as a  materialized 

collection of oids; or as a  virtual collection of oids. W hen dealing with a large number of sources that 

participate and withdraw from service views dynamically, m aterialized extents would be difficult to 

m aintain. In AURORA, all extents in the service view are v irtual, materialized only a t run-time to 

entertain  queries. It is the responsibility of the integration m ediator to (partially-) populate these 

virtual extents a t run-tim e with integrated objects “m anufactured” using objects exported by sources 

participating in the service view. Object classes in a service view are referred to as the global classes. 

Objects of global classes are referred to as the global objects.

N o ta tio n s .  The signature of a m ethod defined on a class is in the following form:

N  : e i ’.Ti x ... x en:Tn —>• Tq

where N  is the m ethod name, T q is the return type, T) and a  are the type and export of the z-th 

param eter, respectively, e,- =  in /ou t/inou t. A pure literal type (PLT) is a literal da ta  type that 

involves no object types; it is a type of pure value.

6.2 D a ta  Sources and W rappers

W rappers m ust support an interface known to AURORA, as discussed earlier in Section 3.2.1. An 

AURORA.-OH m ediator must be able to access either ODMG sources or relational sources. To access 

a relational source, an AURORA-OH mediator must have the ability to “understand” d a ta  in the 

form of relations. Since AURORA-OH is based on the ODMG object model, relations can be viewed
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as sets of “s tru c ts” and can be manipulated w ithin the  ODMG object model accordingly. This means 

th a t AURORA-OH m ediators m ust provide a  mapper which transla tes  relations into sets of structs, 

and translates OQL queries over these sets of structs into SQL queries over relations. Construction 

of this m apper is an  implem entation issue and is beyond the  scope of this dissertation. Generally, 

to participate in an object-oriented service view, d a ta  sources m ust be covered w ith a  wrapper that 

facilitates accessing of the sources through an ODMG interface or a  relational interface, whichever 

is m ost easily generated.

6.3 O verv iew  o f  th e  H om ogen iza tion  F ram ew ork

In the object-oriented context, a  data  source contributes d a ta  to  a  target service view by describing 

the d a ta  it provides as a set of class fragments of the global classes. Consider a service view containing 

three global classes: class People with methods name(), age(). and  phoneNumber(): class Dogs with 

m ethods nam e(’), pedigreeQ and breedQ; and class Cats with m ethod  longHairedQ. A class fragment 

of class People could be a class SomePeople defining methods nam e(), phoneNumberQ  and address(). 

A class fragm ent of class Dogs could be a class SomeDogs defining m ethods nam e() and pedigreeQ. 

A source may describe itself as being able to provide two classes, SomePeople and SomeDogs. Notice 

th a t this source does not contribute data towards Cats, nor does it contribute d a ta  on people’s age 

or the breeds of dogs. Also notice that SomePeople is able to  provide d a ta  on addresses of people 

although this inform ation is not of interest to the service view'. Nevertheless, SomePeople is a class 

fragm ent of People. Generally speaking, da ta  sources con tribu te  d a ta  on some aspects of some 

objects in a  target service view.

6.3.1 T h e H om ogen ization  Scenario

Homogenization is carried out by a mediator author, who designs an object-oriented homogenizing 

view. Some, usually not all, classes in this view are m arked as class fragm ents of global classes: 

these classes axe called the homogenizing classes. For instance, a homogenizing view of a data  

source m ay contain 5 classes arranged in some inheritance hierarchy. Among these classes are 

SomePeople, m arked as a  class fragment of global class People, and SomeDogs, marked as a class 

fragm ent of global class Dogs. A detailed discussion of homogenizing views is given in Section 6.3.2. 

Homogenizing views are derived by the mediator using an AURORA-OH m ediator. Once the class 

fragm ents axe explicitly marked, the homogenizing view and its relationship to the service view will 

be autom atically  understood by the target AURORA-OI in tegration  m ediator. This knowledge is 

used a t run-tim e for combining source data to provide d a ta  to  the  applications.

In term s of semantics, a  source class 5  is a  fragment of a  global class G  if they describe the same 

application entity, although 5  may describe some, not all, aspects th a t are of interest to G. In this
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case, objects of S  and G have th e  same sem antic intension. Semantic intension of homogenizing 

classes in relation to global classes is determ ined by m ediator authors; it is an im portan t piece of 

sem antic knowledge provided to the  integration m ediator. This knowledge is used by the integration 

m ediator for object-m atching - th e  process of identifying objects from various sources th a t  describe 

the  same application entity. Usually, several source objects describe the same global object, and 

these source objects are able to  perform  various methods; AURORA'S integration mechanism is 

responsible for dispatching m ethods to the source objects th a t are able to perform them .

6.3 .2  H om ogenizing V iew s

I t is the  responsibility of the  m ediato r au thor to design homogenizing views by determ ining which 

class fragments the underlying d a ta  source is able to provide, and which methods these class frag

m ents axe able to perform; these are semantic decisions th a t AURORA mediators do not au tom ati

cally make - mediators only provide facilities for the  m ediator au thor to derive homogenizing classes 

as virtual classes. However, homogenizing view is a  more relaxed notion than the usual object views 

[1 , 81] for the following reasons:

1. Homogenizing classes may contain m ethods th a t are not related to the service view; these 

methods will not be used for integration purpose, but their presence does not im pact on the 

d a ta  integration process. AURORA-OH does not provide facilities for “hiding" a m ethod from 

a class. This makes type inferencing of derived classes much simpler.

2. Homogenizing view may contain classes th a t are not related to the service view: these classes 

will not be queried for in tegration purpose, but their presence does not im pact on the da ta  

integration process. This also makes type inferencing of derived classes much simpler.

In  general, AURORA-OH does no t provide facilities to hide m ethods from classes or to hide classes 

from class hierarchies. The m ediator au thor derives a homogenizing view and exposes some classes 

to  the target integration m ediator by m arking these classes as fragments of respective global classes; 

these marked classes are the homogenizing classes. A m ethod defined on a  homogenizing class is 

exposed to the integration m ediator only if its name and signature matches those of a m ethod defined 

by G. These methods are referred to  as the export methods. M ethods that are not intended to be 

exposed to the integration m ediator in this way m ust be renam ed appropriately. AURORA-OH 

provides facilities for m ethod renam ing.

6.3 .3  The H om ogen ization  F acilities

Once the homogenizing view is designed, the m ediator au thor uses an AURORA-OH m ediator to 

derive it from the source schema by deriving the classes in the homogenizing view as virtual classes
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on top of the source schema. In addition to the  homogenizing classes, v irtual classes are some

tim es derived as an intermediate step towards the derivation of desirable homogenizing classes. 

AURORA-OH mediators, similar to the ir relational counterparts, provide M ediation Enabling Op

erators (M E O s) to facilitate these derivations. M EOs support the following types of derivations:

1 . Regrouping of existing classes, e ither by tak ing  the the union of existing classes or by selecting 

objects from an existing class based on a condition. For instance, one should be able to  combine 

classes Student and Employee to  form a  new class Person. One should also be able to select 

all students older than 50 to form a  new class SeniorStudent. W ith  AURORA-OH, Person 

can be derived using the operato r of generalization; SeniorStudent can be derived using the 

operator of specialization. These operators do not generate new objects; objects in Person or 

SeniorStudent already exist in the  source. Such operators are said to be object-preserving.

2. Restructuring of existing classes. For example, one may want to derive a  class Specialist with 

m ethod years!nPractice() and specialization() from class Pediatrician, defining only method 

years!nPractice(). In this case, one should be able to declare a virtual m ethod on class Pediatri

cian, specializationQ, which retu rns a  constant “Pediatrician” . This operation restructures the 

Pediatrician class into a  Specialist class by adding a new method to it. AURORA-OH provides 

an operator, deriveOP, for specifying virtual methods. This operator is object-preserving.

3. M erging/splitting of existing classes to generate new classes. For instance, one may want 

to  derive the Employee class from  a  Company class that m aintains an employee directory; 

this requires “splitting” a  Company object into x  Employee objects where x  is the num ber of 

employees in the company. Or, one may need to derive Department objects from Employee 

objects, which requires merging of the  Employee objects who work in the  same departm ent. 

Both of these operations can be expressed with MEO O B J G E N  in AURORA-OH. In both 

cases, objects in the derived classes do not exist in the source but only exist in the  homogenizing 

view; they are imaginary objects. O perators th a t produce imaginary objects are said to be 

object-generating. O B J G E N  is the  only object-generating operator in AURORA-OH.

4. M ethod mapping. Assume class Employee defines methods salarylnCDNQ, bonusInCDNQ. 

manager(), and phoneNumberQ. Also assum e that for homogenization purposes, a method 

totalIncomeInUSD(), which retu rns the to ta l income of an employee including bonus, in US 

dollars, and a method managerPhoneQ , which returns the phone num ber of the employee’s 

m anager, must be derived. M ethod m apping should allow a  m ediator au tho r to  specify func

tions for converting Canadian dollars to US dollars and for deriving to ta l income from salary 

and bonus. It should also allow specification of method managerPhoneQ  as a  pa th  expression 

Employee.managerQ.phoneNumberQ. In AURORA-OH, method m apping is supported  by the 

operator of deriveOP which is an  object-preserving operator.
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The collection of homogenization MEOs provided  by AURORA-OH overlaps w ith the operators 

previously proposed for constructing object views [1]. However, operators for hiding or im porting of 

m ethods or classes are not needed. Rather, a  m ore  sophisticated mechanism for m ethod m apping is 

required:

1. A framework needs to  be defined for specifying, using user-defined functions, value conversions 

on in- and out- parameters, and the retu rn  values of methods. This framework should serve 

as a  skeleton onto which the m ediator a u th o r  can “hang” her conversion functions so as to  

avoid reprogramming the methods them selves to  incorporate such conversions. Consider the  

salary example again. The methods sa larylnC D N  and bonusInCDN  may involve complicated 

calculations based on various business ru les. To support m ethod totallncomelnUSD, the me

diator au thor should not have to repeat these  calculations. Instead, it should be possible to 

specify th a t totallncomelnUSD  is to be perform ed by an Employee object by performing CD- 

Nto USD (SalaryAddBonus (THIS.salary InC I?N ), TH IS.bonusInCDN())). Therefore, all th a t 

m ediator author has to do is to provide two conversion functions, CDNtoUSD  and SalaryAd- 

dBonus, and to instruct the Employee ob jec ts  on how to use these functions to perform total- 

Incom eln USD.

2. A framework is required for declarative specification of virtual methods so as to exploit existing 

capabilities of objects and avoid the need to  w rite  new code. For instance, the m ediator au thor 

should be able to specify managerPhone as a virtual m ethod of Employee by specifying th a t 

each Employee object performs this m ethod by performing THIS,manager().phoneNumber().

Sources export information to the best of their capabilities. The only requirement is that if a source 

exports a class as a fragment of a global class, it m ust make sure th a t the class is able to perform 

the PID m ethod defined by the global class. C urrently , cases where a  new method is coded are not 

considered; this facility will be added as future w ork.

6.3 .4  H om ogenization  M eth od ology

AURORA-OH homogenization methodology and  M EO s are closely related facilities. The homog

enization methodology mandates th a t hom ogenization be performed in well-defined steps; in each 

step, only certain MEOs can be applied. A hom ogenizing class C  is derived in 2 steps: o b je c t  

p r o to ty p in g  followed by m e th o d  m a p p in g , as illustrated in Figure 6.1. Intuitively, object pro

totyping creates an  object class Cp that is capable o f performing each of the methods defined on C; 

this capability is a  semantic notion that only the m ed ia to r au thor understands. Moreover, there is a 

one-to-one m apping between Cp objects and C  ob jec ts , such th a t the  corresponding objects model 

the same application entity, with possibly different representations. Cp is called a prototype of C . 

For instance, object class Employee with m ethods employeeNo(), salaryInCDN(), bonus!nCDN().

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



manager(), and phoneNumberQ  is a  prototype of homogenizing class Employee2 w ith methods em- 

ployeeNoQ, totallncom elnU SD (), managerPhoneQ,..., because each Employee object corresponds to 

the Employee2 object th a t has the same Eno, and is capable of perform ing all the methods defined 

by Employee2 - although how exactly an  Employee object performs these m ethods is yet to be speci

fied. AURORA-OH supports object prototyping by providing facilities for regrouping, restructuring, 

merging, and splitting  of object classes.

source class

Object Prototyping

prototype class Cp

Method Mapping

export class C

Figure 6.1: A Homogenization M ethodology

Given any m ethod m  defined by class C, a prototype class of C, Cp, m ust be able to per

form m , th a t is, it is able to  “do the same thing1’ as m; so fax th is ability is determined by and 

known only to the m ediator author. The goal of m ethod m apping, the second step of homogeniza

tion, is to allow the m ediator author to express this semantics as a  specification of exactly how 

Cp objects perform  m . To do so, the m ediator au thor m ust derive m  as a virtual method of class 

Cp by using the m ethod m apping facilities provided by AURORA-OH. For instance, the mediator 

au thor cam specify th a t an Employee object, e, performs totallncom elnU SD () by invoking CD- 

NtoUSD(SalaryAddBonus(e.salaryInCDNQ, e.bonusInCDNQ)), where CDNtoUSD  and SalaryAd- 

dBonus are functions provided by the m ediator author. Once m ethod m apping is complete for every 

m ethod defined on C, Cp indeed becomes C. Thus the derivation of class C  is completed.
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6.3 .5  A U R O R A -O H  M EOs

AURORA-OH provides six M ediation Enabling Operators (M EOs):

G e n e ra l iz a t io n

Generalization creates a v irtual class as the superclass of existing classes. This is supported by the 

MEOs Gen  and B G en . O perator Gen creates a class as the common superclass of a given set of 

classes. O perator B G en  creates a  class as the common superclass of a  set of classes that support a 

given set of m ethods. These MEOs derive a new class and are in the  following forms:

G n e w =  G e n (C i,..., Cn)

where C i ,  ...,C n are existing classes; and

Gnew =  B G en {C \,..., Cn , S i)

where C i,. . . ,C n are existing classes and 5 /  is a set of m ethod signatures. For example, one can 

derive class People as a  generalization of Student and Professor as follows:

People =  G en(Student, P r o fe s s o r )

Class People, thus derived, defines all the methods th a t are commonly defined by Student and 

Professor. The extent of People is the union of those of Student and Professor. One can also derive 

class Printables as a  behavioral generalization of classes A scii Files, Email, HtmlFile, as follows:

P rin table  =  B G en(A sciiF iles, E m a il, H tm lF ile s , {p r in t()})

Class Printable, thus derived, defines a single method print(). T he extent of Printable is the union

of all classes in the param eter list that define method print().

S p e c ia liz a tio n

Specialization creates a  virtual class as the subclass of an existing class by selecting existing objects 

in this class with an  OQL query. This is supported by the MEO of Spe, in the following form:

Cnew =  Spe{C, Q)

where C  is an existing class and Q is an OQL query th a t produce a  set of objects in the extent of

C. For instance, once can create class SeniorStudent from class Student as follows:

S en io rS tu d en t  =  Spe(S tuden t, “se lec t s fro m  s tu d en ts  s  w h e re  s..4<?e() >  65”)

O b je c t  G e n e ra t io n

This operation allows joining and splitting of existing classes to  create new virtual classes. This is
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supported by the MEO of O B J G E N ,  in the following form:

Cnew = O B J G E N (Q ,f)

where Q is an OQL query that generates a  set of tuples and /  is an identifier function  that maps 

each element in the result of Q to a unique value; the system then maintains a  one-to-one mapping 

between this value and a  unique oid. For instance, let Q\ be the following:

Qi  =  s e le c t  DeptN o
f ro m  Employees e
g ro u p  by  DeptNo: e.DeptNo

and let f i  be a  function th a t maps an  element in the result of Q i, v  = <  D eptN o : d ,partition  : x  >

to d, th a t is, f i{ v )  =  d, then  the following operation

D epartm ent =  O B J G E N { Q i,f{ )

generates an object class Department th a t defines two methods: DeptNo() and partitionQ. For 

each distinct DeptNoQ  value of employees, d, a unique object of class Department, oa, is created. 

Moreover, Od-DeptNoQ) =  d, Od-partitionQ =  x  if and only if <  d, x  > €  Q. For another example, 

consider object class Company that has a  method employeeDirectory which returns a collection of 

tuples in the form of <  E no  : string, S I N  : string, nam e : s tr ing , phoneN um ber : string  >. To 

derive class Employee, Company objects must be “split” . First, the following query is specified:

Qo =  se le c t em pD ata
f ro m  companies c, em pD ata in  c.employeeDirectory

and let / 2 be a function th a t maps a  tuple <  E no : e ,S I N  : s ,n a m e  : n, p honeN  um ber : p > to 

s, th a t is, / 2(<  E no : e ,S I N  : s ,n a m e  : n ,phoneN um ber  : p >) — s. Then class Employee can be 

derived as follows:

E m ployee = O B JG E N (Q o ,f-2 )

R e n a m in g  m e th o d s

This is achieved by the MEO of R enam e  in the following form:

Renam e(C , N 0id, N new)

The above operation renames the existing method N 0id in class C, and in all its subclasses, to N new. 

D e fin in g  v i r tu a l  m e th o d s

AURORA-OH allows definition of virtual methods on virtual or base classes, and translations of 

param eters and return values of (virtual) methods using user-defined functions, path  expressions, 

and OQL queries. This is supported by the MEO of deriveO P, th a t has the following form:

deriveOP{C, S ^ ,E ,  M in, M out)
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This opera to r defines a  virtual m ethod on C  and all its subclasses. S n  is the signature of the virtual 

m ethod to  be defined. E  is a  navigation method. The concept of navigation m ethod is a  powerful 

one but for the current purpose it can be assumed to be a  path-expression like specification. M in 

specifies in-param eter translation. M out specifies out-param eter and re tu rn  value translation. These 

specifications, called parameter translation maps, allow m ediator authors to specify value conversions 

using user-defined functions as well as pa th  expressions. For example, the  following operation derives 

m ethod managerPhoneQ  on class Employee:

d eriveO P  (Em ployee, m anager Phone, T  H IS .m anager.phoneN um er,

0, {Go =  com pactForm at(Po)})

T he above operation specifies that virtual m ethod managerPhone is to be performed by an Employee 

object by invoking m ethod manager on itself, and then invoking phoneNumber on the returned 

object. T h e  last param eter says th a t the return  value of managerPhone of an employee, e, is derived 

by tran sla ting  e.managerQ.phoneNumberQ  from the form at of “(123) 456-7890” to the form at of 

1234567890 using a user-provided function compactFormat. Go specifies th a t it is a  conversion map 

for the re tu rn  value, considered to be the 0 -th  out param eter. Generally, M ,n and M oul provide the 

m ediator a u th o r w ith a  framework for “hanging” various conversion functions. As another example, 

the  following operation derives m ethod totallncomelnUSD  from salarylnCDN  and bonusInCDN: 
deriveOP (Employee, totallncomelnUSD , null, null,

{Go = C  DNtoUSD(Salary AddBonus(TH IS.salary InCDN(),TH IS.bonusInCD N())})

6.3 .6  A  C om pact H om ogen ization  E xam ple

In  this section, a  walk-through of an  example is given to dem onstrate the facilities AURORA- 

OH provides for homogenization. This example requires restructuring of object classes as well as 

generation of object classes whose extent contains im aginary objects. Assume that the class on the 

right is to be derived from the source class on the left:

class Sales class ProductSales
( e x te n t  salesRec ) (e x te n t productSalesRec )

{ {
s h o r t  month(); . s t r in g  productType();
in te g e r  desktop(); s h o r t  monthQ:
in te g e r  laptop (); in te g e r  sales();
in te g e r  printerQ; };

};

The num ber of objects in class ProductSales is 3 times as great as th a t in class Sales; each Sales 

object m ust be split into 3 ProductSales objects. To derive class ProductSales, one first derives 3 

classes: desktopSales, laptopSales, and printerSales, using the object generation operator O B J G E N . 

To derive class desktopSales, an OQL query is first specified:
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Q d e s k t o p S a l e s  =  se lec t s t r u c t  (salesO&j.-s, productType:“desktop”) 
from  salesRec s

A nd let /  be an  identity function on type s truc t(sa lesO b j : Sa les,productT ype : s tr in g ). Class 

desktopSales can then be derived by the following:

desktopSales =  O B  JGEN{QdesktopSales, f )

The desktopSales class has two methods: salesO bjQ  : % —> Sa les  and productType : 0 —¥ string . 

M oreover, for any object o in this class, o.productTypeQ  = “desktop”. The methods of month  and 

sales on desktopSales are then derived as follows:

d eriveO P {d esk to p S a les,m o n th ,T H IS .sa lesO b j.m o n th ,$ , {Go =  Po}) 

deriveO P{desktopSales, sales, T H IS .sa lesO b j.d e sk to p ,%, {Go =  Po})- 

T he first formula above says tha t to perform  m ethod month, a  desktopSales object should first 

invoke m ethod salesObj on itself, and then invoke m ethod m onth  on the returned result. The last 

param eter contains an out-parameter translation map, Go, where G indicates it is a transla tion  map, 

and 0 indicates th a t the map is for the Oth ou t param eter of month, the retu rn  value. This map 

says th a t the re tu rn  value of the new m ethod m onth is the same as the Oth out-param eter (Po) of 

THIS.salesObjQ.month(). The second deriveOP  formula can be interpreted in a  similar manner.

Similar to  the specification of class desktopSales, classes laptopSales and printerSales can be 

derived. Once these classes are derived, the  class of ProductSales can be derived as the generalization 

of these classes as follows:

ProductSales = G en{desktopSales, laptopSales, p r in ter  Sa les)

Most operators used in the above example have their precursors in previously proposed constructs 

for object views [1 ], except the operator of deriveOP. Since the use of these operators has been 

illustrated  in the  above example, it will not be  illustrated  elaborately again but will be defined 

formally in AURORA terms.

The above example does not require com plicated m ethod mappings, for which AURORA-OH 

provides a  richer and more elaborate framework th a n  the object view systems [1]. Therefore, another 

example is designed as the running example to  dem onstrate the m ethod m apping techniques of 

AURORA-OH. This example, described in Section 6.5.1, requires less regrouping, restructuring, 

and m erge/split of objects, but requires sophisticated m ethod m apping th a t will be carried out 

throughout the rest of this chapter.

6 .3 .7  M E O s and the H om ogen ization  M ethodology-

All M EOs described can be used for object prototyping but only two M EOs can be used in the 

step of m ethod mapping: Rename and deriveOP. W hen Rename and deriveOP  are used for object-
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prototyping, they facilitate restructuring of objects; when they are used for m ethod mapping, they 

facilitate sophisticated translation of param eters, re tu rn  values, and semantics of methods.

6 .4  A n  O verview  o f th e  O b ject-O rien ted  In tegration

In contrast to homogenization, which is a sem i-autom atic procedure th a t requires mediator au

tho rs’ intervention and guidance in transform ing individual sources, integration in AURORA is a 

fully autom atic process dealing w ith a  large num ber of participating sources through respective 

AURORA-OH m ediators. The integration m ediator, AURORA-OI, supports a fixed service view 

and is responsible for answering OQL queries posed against this view. To do this. AURORA-OI 

m ust be able to m anufacture global objects using the objects provided by participating sources. This 

in tu rn  requires AURORA-OI to do the following:

1 . AURORA-OI m ust be able to  access objects from multiple sources in a  uniform manner.

It is unlikely th a t AURORA-OI can access source objects using the oids assigned to these 

objects in their native sources. To use these oids as access handles, AURORA-OI must be 

linked w ith specific libraries and modules for each type of source. Integration would not scale, 

since access programs must be updated each tim e a new source is included. AURORA-OI uses 

run-tim e agents called proxies to access objects residing at various sources. A proxy represents 

one source object, but a source object may have any num ber of proxies. Proxies are the only 

type of handle used by AURORA-OI for accessing source objects; they are also responsible 

for facilitating the exchange of oids in a  meaningful way across system  boundaries, as param 

eters and as return  values of methods. Proxies axe generated a t run-tim e by AURORA.-OH 

mediators.

In contrast, AURORA-OH m ediators do not face the problem of dealing with objects from 

multiple sources as AUR0R.4.-0I mediators do. Generally, AURORA-OH is capable of ma

nipulating objects using their source oids. This is why proxies are needed by AURORA-OI 

m ediators, not AURORA-OH m ediators. However, AURORA.-0 H mediators are where proxies 

are generated. All object exchanges between AUROR.A.-OI and AURORA.-OH must be done 

using proxies.

2 . Given global class Cg, AUROR4.-OI must be able to combine objects from source classes 

registered as fragments of Cg to create objects of Cg. Often m ultiple source objects represent 

various portions of the same global object; such source objects are identified by object-matching. 

A set of m atching source objects, S , gives rise to  a  global object os', objects in S  are referred 

to  as the contributing source objects of 0 5 . Each object in S  is capable of performing some, but 

usually not all, of the  methods defined by Cg. o s  performs any given method m  defined by Cg
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by dispatching it to  a  source object in 5  th a t is capable of performing it. Since source objects 

are represented by proxies, object-m atching is performed using proxies. Global objects are 

m anufactured by operator Proxy Match Join  (PM J), which m atches proxies from all relevant 

sources to produce integrated objects.

Object-m atching is a  large issue by itself and is not a focus of research in AURORA; a  simple 

m atching assum ption is employed: object-m atching is based on PID values. Given source classes Si 

and S 2 , both  registered as fragments of a globed class Cg, objects oL G S i  and o2 6  So are considered 

to be m atching objects if they have the same PID value. This is why it is necessary that source 

classes wishing to contribute da ta  to a  global class be able to perform  the PED method defined on 

this global class. PID values of global objects are the basis for m aintaining unique and immutable 

oids for global objects.

6.5 B asic  C on cep ts in  O b ject-O rien ted  H om ogen ization

This section describes the basic concepts of AURORA’S object-oriented homogenization framework. 

First, a  running example is described. This example will be used for illustrating various concepts. 

The rest of the section describes two concepts that support the functioning of AURORA-OH: (1 ) 

an internal conceptual framework for describing object classes; and (2 ) the concept of navigation 

methods.

6.5.1 A  R u nn in g  E xam ple

A service view is shown a t the top of Table 6.1; it contains a class “Doctor” and its subclass 

“Specialist” . These classes have related extents and support a  set of m ethods. The rest of Table 6.1 

shows the homogenizing views of three sources: D S 1 , DSo, and D S 3 . These views axe partial since 

only the homogenizing classes axe shown. The globed classes of which these homogenizing classes 

are fragments are indicated on the first line of the class specification. These homogenizing classes 

are to be derived by homogenizing the respective data  sources. For convenience, the population of 

each of the homogenizing classes is also listed a t  the end of the class declaration. Table 6.2 shows 

the source schema a t da ta  sources D S i , DSo and D S 3 , respectively. These are pre-existing schemas. 

The population of each source class is also listed a t the end of the declaration of each class.

6.5.2 A  Fram ework for D escribing Classes

To support the MEOs, AURORA-OH needs an internal framework for describing classes from the 

source, as well as those derived. This section describes this framework.
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Service View
class Doctor ( e x te n t  doctors )
{

s tr in g  PID();
s tr in g  TeiNo();
s tr in g  CIinicAddress();
s tr in g  ProfileQ;
se t< s tr in g >  PatientHistory( in  s tr in g  PatientED,

o u t  Doctor PreviousDoc, o u t d a te  FirstA ppt);
};
class Specialist e x te n d s  Doctor ( e x te n t  specialists )
{

s tr in g  Specialization^);
sh o rt YearsAdvancedTirainingQ;

J i __________________________________________________________________________________
__________________________________________  Homogenizing View At DSi__________________

class MyDoctor ( e x te n t  myDoctors ) / /  fragment of: Doctor
{ / /  only methods of interest are listed.

s tr in g  PID();
s tr in g  CIinicAddress();
s tr in g  Profile();

};______/ /  Population: Qiy(001)”Smith”, 012 (002)" Jones”, 013 (003)” Hanks”._________________
_____________________________ Homogenizing View At D Si______________________________
class Pediatrician ( e x te n t  pediatricians ) / /  fragment of: Specialist
{

s tr in g  PEDQ;
strin g  TelNoQ;
s tr in g  ProfileQ;
s tr in g  Specialization();
sh o rt Years AdvancedTrainingQ;
set<ConsultationRecord> PatientHistory( in  s tr in g  PatientED,

o u t  FamilyPhysician PreviousDoc, o u t  d a te  First Appt); 
}; / /  Population: 021 (0 0 1 ) ”Smith”, on(OOf)"Low”

class FamilyPhysician ( e x te n t familyDocs ) / /  fragment of: Doctor
{

s tr in g  PED();
s tr in g  TelNo();
s tr in g  ClinicAddressQ;

}; / /  Population: oiz(005)’:Peters”
 Homogenizing View At DS 3 ______________________________
class Orthopedics ( e x te n t  docs ) / /  fragment of: Specialist
{

s tr in g  PEDQ;
s trin g  TelNoQ;
s tr in g  SpecializationQ;
sh o rt Years AdvancedTrainingQ;
s e t< s tr in g >  PatientHistory( in  s tr in g  PatientED,

o u t  Orthopedics PreviousDoc, o u t  d a te  First Appt);
};_____ / / Population: 031 (002)”Jones”, Ozz(007)"Bond”____________________________________

Table 6.1: Example G lobal Schema and Source Homogenizing Views
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Data Source D Si
class MyDoctor (e x te n t myDoctors ){

s t r in g  ID();
C lin ic  clinic();
S tr in g  bio();

}; //Population: on(001)”Smith”, o\i(002)’’Jones”, 0 1 3 (003)’’Hanks”.

class Clinic ( e x te n t clinics ){
s t r in g  NameQ;
s tr in g  Address();

};
___________________________________________ D ata Source DS 2 __________________________________________
class Doctor (e x te n t doctors ) {

s tr in g  PIDQ;
s tr in g  Profile();
P a t ie n t  FindPatient(in s t r in g  PatientED);

};
c lass FamilyPhysician e x te n d s  Doctor (e x te n t family Physicians ){

s t r in g  ClinicAddress();
}; / /  Population: 023 (005)”Peters”

c lass Pediatrician e x te n d s  Doctor (e x te n t pediatricians ) {
s tr in g  TelNoQ;
s tr in g  YearsOfTrainingO;

}; / /  Population: 0 2 1  (001)”Smith”, 0 2 2 (004)”Low”

class Patient ( e x te n t patients ){
s tr in g  SINQ;
s tr in g  GetConsultationRec(out Doctor LastDoc, o u t d a te  First Appt);

Data Source DS3
class Orthopedics (e x te n t orthopedics ){

s tr in g  PID();
s tr in g  TelNoQ;
s tr in g  ExperienceQ;
s h o r t  search(in s tr in g  SIN, o u t  Patient patient, o u t d a te  FirstAppt);

}; //Population:  031 (002)”Jones”, 0 3 2 (0 0 ?)”Bond,”

class Patient ( e x te n t patients ){
s tr in g  SINQ;
s tr in g  GetConsultationRec(out Doctor LastDoc);

};

class Clinic ( e x te n t clinics ) {
O rth o p e d ic s  SpecialistlnvolvedQ;
s tr in g  AddressQ;

h _____________________________________

Table 6 .2 : Source schemas and populations
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Class Hierarchy in Homogenizing Views

The goal of homogenization is to derive a  set of homogenizing classes th a t have the desirable extent, 

interface, and  semantics for the methods defined on the interface. Each MEO that derives a new 

(virtual) class from given classes defines all these characteristics of the derived class, based on those of 

the operand classes. One of the im portant characteristics of object classes is their position in a class 

hierarchy. AURORA-OH does not keep a  separate view hierarchy, as in [43]. Similar to [1], upon 

initialization, an AURORA-OH m ediator imports the subclass hierarchy from the underlying ODMG 

source. This hierarchy is then modified as the m ediator au thor derives new classes and methods 

using MEOs provided by AURORA-OH. Virtual classes are treated  the same way as the classes 

originally defined in the data  source. As described in Section 6.3.2, derivation of a homogenizing 

view does not require hiding methods from classes or hiding classes from the class hierarchy. This 

means th a t evolving the class hierarchy is much simpler in AURORA-OH than in general purpose 

object view systems such as those described in [1 ] and [81], where hiding of attributes, methods, and 

classes is required.

Homogenization generates a homogenizing class hierarchy in which the homogenizing classes are 

defined; this hierarchy is part of the homogenizing view. AURORA-OH does not export inheritance 

hierarchy semantics; it is considered to be a local semantics th a t is not of interest to the integration 

mediator. It is the responsibility of the AURORA-OH m ediator to translate queries against the 

homogenizing view into queries against the source schema.

Object classes

A distinction is m ade between logical schemas and implementation schemas. This distinction corre

sponds to ODM G’s distinction between an ODL specification of a  schema and the C + +  header and 

sources generated by the ODL preprocessor. Both specifications describe OODB schemas but the 

former is on a  logical level, while the la tte r is on an implementation level. A logical schema and its 

implem entation schema are shown in Figure 6 .2 .

An im plem entation schema contains application classes as well as system classes. In ODMG 

databases, it is m andatory that all implementation classes be subclasses of a root object class, 

d-Object, from which application objects inherit m any system-provided functions for manipulating 

database objects. Therefore, all database objects share system  characteristics that are defined by 

the root object class. These characteristics of the objects are not of interest in the AURORA-OH 

framework. In  contrast, logical schemas do not specify any system characteristics, or the object 

root as the ultim ate superclass of all classes; it only describes the logical characteristics of object 

classes due to  their application semantics, such as the interfaces of object classes, the semantics of 

each m ethod in these interfaces, and the sub-class relationship among object classes. AURORA-OH 

describes objects on the logical level. As such, object classes may be shown without a superclass.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// Logical Schema of Class Professor // 
class Professor ( extent professors )

string name();
unsigned short grant_tenureO;

>;

// Implementation Schema of Class Professor // 
class Professor: public d_0bject -C 
public:

d_String nameO ;
d_UShort grant_tenure();

>;

d_Extent<Professor> professors; // maintained by DBMS

Figure 6.2: Logical and Im plem entation Schemas of Class Professor

However, when these classes axe implem ented in an  ODMG database, they’ll be the subclass of the 

object root.

AURORA-OH views a class as a 4-tuple C  =  <1, E, SUP, SUB>. C .I  is a  set of methods, 

called the interface method set, which includes all methods applicable to  objects in class C, defined 

directly by C , o r inherited from superclasses of C . C .E  is the extent of class C; it is the collection 

of oids of all objects in class C. C .SU P  is the set of immediate superclasses of C . and C .SU B  is the 

set of im m ediate subclasses of C. To define a class, all four aspects must be defined. In particular, 

each m ethod in the  interface method set m ust be described by a  m ethod signature and a description 

of the semantics, often given procedurally. Following the ODMG object model, methods in C .I  

m ust have a  unique name; overloading sim ilar to function overloading in C-F-t- is not considered. 

Moreover, when a  class AT is a subclass of class Y , Y .I  C X .I ,  X .E  C Y .E .

Generally, a  property th a t is an a ttr ib u te  or relationship can be viewed as a  pair of methods: one 

th a t gets the  value of the property and one th a t sets the value of the property. In AURORA-OH, 

the gets m ethod in this pair is of in terest and an attribute/relationship  p roperty  is viewed as a

O-parameter m ethod with the name of the  property  as method name, and the type of the property 

as the retu rn  type. In the rest of this chapter, only methods are discussed; all discussions apply to 

a ttribu tes and relationships.

Virtual Classes and Imaginary Objects

Given an ODM G data  source, all the classes th a t are already defined in this source are referred to as 

base classes. A virtual class is a class w ith a derived interface m ethod set and a  derived, virtual extent 

th a t can be (partially) materialized a t query processing time. In AURORA-OH. virtual classes are
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specified by M EOs th a t regroup and restructure previously defined classes. These operators are the 

subject of Sections 6.6.1 - 6.6.3. Once specified, a  v irtua l class behaves exactly the  same as a base 

class; it can be queried by OQL and can be used to  derive o ther virtual classes.

A base class has an extent th a t is a m aterialized collection of oids. V irtual classes always have 

a  virtual extent th a t is conceptually a  collection of oids bu t the collection may not be physically 

m aintained by AURORA mediators. Moreover, depending on how a  virtual class is created, its 

extent may contain real objects or imaginary objects [1]. Real objects are objects th a t already exist 

in a d a ta  source; they  have a  unique and im m utable oid th a t is m aintained by the source where they 

reside. Im aginary objects exist only in the derived views, not in the da ta  source. These objects are 

m aintained by AURORA-OH to allow data  values to  be accessed like objects; they have unique and 

im m utable oids, and  they are materialized a t run-tim e to en terta in  da ta  access requirements.

6.5 .3  N av iga tion  M ethods

Navigation method  is a way of declaring virtual m ethods w ithout writing code. Given a class C, the 

m ethods in C .I  Eire referred to as the base methods of C . Assume th a t m ethod p  defined on class 

C  returns an object of class C ', which defines m ethod p '. One can declare a new method on class 

C, M new, by asking objects of class C  to first perform  p  on themselves, get an object of C' as the 

result, invoke m ethod p' on this object, Eind re tu rn  the result of this last invocation to the client. 

This m ethod can be declared as follows:

M new =  T H IS .p .p '

M new is CEilled a navigation method. For instance, THIS.manager.phone is a navigation method 

defined on class Employee.

Intuitively, a  navigation method defined on a  class provides objects in this class with a  spec

ification for navigating  through the database to locate o ther objects and da ta  values of interest. 

An object, o, cam reach an object or value, o', as the result of performing a m ethod it is capable 

of performing. As such, navigation methods can be specified as path expressions wiiich serve as a 

“m ap” for navigating. However, navigation m ethods in AURORA extend the usual concept of path 

expression in two ways:

1. Objects can locate objects and vtdues of interests via the out-param eters of method invocations. 

This type of navigation is illustrated in Exam ple 6.5.2.

2. Objects can locate objects and values of interest via directed relationships specified as ODMG 

OQL queries or user-defined functions and m apping tables.

In the rest of this section, the concepts of directed relationships and navigation m ethods axe formally 

defined.
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D e f i n i t i o n  6 . 5 . 1  [Directed Relationships.] A directed relationship from object class Ci to object 

class or ODMG literal type To is a  m apping M : Ci —> set < T 2 >. D irected relationships exist in 

two forms in AURORA-OH:

1. M  =  / ,  where /  is a function f:C i -y  set < T o > .

2. M  =  where R  is a (virtual) collection of structs of type s tru c t(A i :C\ , .4-> :To). R a ^ a^

is a  m apping such th a t R a i -*.4 2(oi) =  ( ° 2  j <  > 6  f?}.

A directed relationship is many-to-1 if VoL € C i, |M (oi)[ <  1, otherwise it is many-to-manv. □

A directed relationship is a  m apping th a t exists external to  any object class, but is available to all 

classes for constructing navigation methods. This concept is illustrated by the following example.

E x a m p le  6 .5 .1  Consider DS-j, shown in Table 6.2. An Orthopedics object does not “know” its 

clinic, a  directed relationship can be specified to provide this missing link:

Q =  se le c t struc t (Doc:d, clinic:c) 
f ro m  orthopedics d, clinics c 

w h e re  d in  c.SpecialistsInvolvedQ

Q defines a  virtual collection of structs of type struct(Doc: Orthopedics, clinic: Clinic) that link 

orthopedics w ith the clinics they axe involved with. Qooc-tciinic is a  directed relationship from 

Orthopedics to Clinic. If a doctor works a t only one clinic, then QDoc^ciinic is many-to-1, otherwise 

it is many-to-many. □

A navigation m ethod is constructed recursively, as described in Definition 6.5.2 below. Each step 

of recursion defines a  move of navigating forward. There are four ways of moving forward:

1. By invoking a  m ethod and returning the retu rn  value of this invocation.

2. By invoking a m ethod and returning an out-param eter used in this invocation.

3. By locating a  relevant object/value through a  many-to-1 directed relationship.

4. By locating a  relevant set of object/value through a m any-to-m any directed relationship.

The following definition defines the signature of a  navigation m ethod thus constructed, and describes 

the semantics of a  navigation m ethod procedurally.

D e f i n i t i o n  6 . 5 . 2  [Navigation Method.] T H I S  is a navigation method on class C  with signature 

T H I S  : 0 —y C. Vo G C, o .T H IS Q  = o. If X  : e\:T i x ... x em:Tm ~y Treturn is a navigation method 

on C, then  the following are also navigation m ethods on C:
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1. D  =  X .P ,  if Tretum  is an  object type and P  : e[:T[ x ... x e'n\T'n —> T0 is a  base or navigation 

m ethod defined on it. T he  signature of D  is:

X .P  : e i :Ti x ... x em :Tm x  out:Treturn x  e[:T[ x ... x  e'n :T„ -»• T0 

Vo €  C, o .D (p i,...,p m,p m+i,P i,....,p J l) has the following semantics:

{Pm+i = o .T (p i,. . . ,P m ); return pm+i.P (p[, ...,p'n);}

2. D =  X.P[/c], if Tretum is an  object type and P  : e't :T[ x  ... x  e'n:T^ -+ To is a base or navigation

m ethod defined on Tretum , 1  < k  < n , ek = out or e'k = inout. The signature of D  is

X .P [k ] : e i:2 \ x  ... x  en:Tm x out:Treturn * e['-T[ x  ... x  e'n :T"n x  out:T0  —> T k 

Vo S C, o.D(p!, ...,Pm ,Pm+uPri,  ,PniPn+i) has tIie following sem antics:

{Pm+i =  o.X(j?i, ...,pm); p'n+1 = p m+i.P (p ,l ,...,p 'm); re tu rn  p't ; }

3. D  =  X .M  where M  is a  many-to-1 directed relationship from Tretum  to  C lt the signature of 

D  is X .M  : e i:T i x ... x  en :Tm x out:Tretum -*■ Ci- Vo e  C, o .D {pi, ....p m.p ,„ ^ L) has the 

following semantics:

{Pm+ 1  =  o .J ( p h ...;pm); return e /em ent(M (pm^ !)) ; } 

where e lem ent returns an  element from a  set value.

4. D = X .M  where M  is a  m any-to-m any directed relationship from Tretum  to C \. The signature

of D  is X .M  : e\:Ti x  ... x en :Tm x out:Treturn -+ set < C \ > . Vo G C , o.D (pi, k )

has the following semantics:

{ jW i  =  o .X (p i, ...,p m); return  M (p m+l); }

□

E x a m p le  6 .5 .2  This example illustrates navigation methods using source DSo  shown in Table 6.2:

- THIS.FindPatient.GetConsultationR.ee is a  navigation m ethod th a t returns a set of consulta

tion records of a patient. This m ethod has the following signature:

THIS.FindPatient.GetConsultationR.ee : imstring  x out:Patient x

out:Doctor x  outidate —»■ set < string  >

- TH IS.FindPatient.GetConsultationRecfl] is a  navigation method th a t returns the previous 

doctor of a given patient. This m ethod has the following signature:
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THIS.FindPatient.GetConsultationRecfl] : inistring  x cm£:Patient x  cm£:Doctor x

out'.date x out: set <  string >-¥ Doctor

Now consider source D S z,  shown in Table 6.2, and recall the directed relationship Qooc-^cHnic 

defined in Example 6.5.1. Assume th a t QDoc-*ciinic is many-to-1. THIS.QDoc^clinic is a  navigation 

m ethod on class Orthopedics w ith signature

THIS.QDoc^ciinic ■ 0 -> Clinic

This m ethod returns the clinic an orthopedics is attached to. □

6 .6  M ed iation  E nab lin g  O p erators for H o m o g en iza tio n

This section describes the m ediation enabling operators provided in AURORA-OH for homogeniza

tion. These MEOs are used to derive v irtual classes to  remove sem antic and structural differences 

between source classes and the global classes. These MEOs perform three types of transform ations: 

regrouping, object generation, and m ethod derivation.

6.6 .1  R egrouping M EOs

Generalization, specialization, and behavioral generalization axe three object-preserving MEOs. 

These M EOs create virtual classes whose populations consist of objects from existing base or virtual 

classes. Interface methods of the virtual classes created by these operators include some or all of 

the m ethods previously defined on the operand classes. These MEOs axe sim ilar in semantics to the 

view operators with the same name as defined in [1], In this section, these operators are redefined 

in AURORA terms.

D e f i n i t i o n  6 .6 .1  [Generalization.] The generalization of object class C n

C  =  G e n (C i ,..., Cn)

is defined as follows:

1. C .I  =  G i . / n  . . .n  Cn./.

2. C .E  = C i .E  U ... U C n.E.

3. C .S U P  =  D ,  where D  is the m ost specific common superclass of C i , ..., C n.

4 . C .S U B  =  {C L,. . . ,C n}.

□
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Similar to  [1], the m ost specific common superclass of a  given set of classes C \  Cn is a class D

such that:

1. Class D  is an ancestor class of C\, ...,C „.

2. There exists no D ', a  descendent class of D , such th a t D ' is an  ancestor class of C \ , . . . .  Cn.

D e f i n i t i o n  6 .6 .2  [Specialization.] A specialization of object class C based on query Q, which 

returns a  set of objects of class C ,

C ' = Spe(C , Q)

is defined as follows:

1. C '.I  =  C.I.

2. C . E  = {o | o €  C.E,p(o) = true}.

3. C .SU P  =  C. C '.SU B  =  0.

□

D e f i n i t i o n  6 . 6 . 3  [Behavioral Generalization.] Let L =  {C i, ...,C n} be a set of object classes. 

Let P  =  { p i,- ..,p m} be a  set of method signatures. V i,j, 1 <  i , j  <  n. P C  C ,./ .  P  C  C'j.T. 

C i.E  n  C j.E  =  0, the behavioral generalization of classes L by P

C  =  BGen{L, P)

is defined as follows:

1.  C.I = P.

2. C .E  =  {o | 1 <  i  < n, o 6  Ci-E, P  C  Ci.I}.

3. C .SU P =  0. C .SU B  =  { C  \C '  e  L ,P  C C . I ) .

□

6.6 .2  T h e M EO  for O bject G eneration: OBJGEN

Sometimes objects m ust be merged or split to form new objects during homogenization. To do this, 

an  ODMG OQL query is first used to generate a set of values, called data containers, and then each 

of these containers is translated  into an object of a virtual class. For example, to derive an object 

class Family from object class Person, a set of da ta  containers, family, is first created:

fam ily =  se lec t struct(W ife: w, Husband: h) 
fro m  persons w 

w h e re  w.sexQ = “F ” a n d  w.husband() = h
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Each element in fam ily  is a  s tructu re  th a t holds all the “raw m aterial” needed for generating Family 

objects. The MEO of O B J G E N  will do the rest of the work of generating class Family from family.

Objects generated by O B J G E N  are imaginary objects. Like o ther objects, they must have oids 

and m ust support a well-defined set of methods. O B J G E N  m ust assign oids to the imaginary 

objects it generates and also define the methods supported by them . Oid generation for imaginary 

objects is a  rather controversial issue because such oids can only be assigned based on values, but 

an oid is by definition not value-based. AURORA’S solution is described below.

The goal of O B J G E N  is to assign unique and immutable oids to da ta  containers and turn  them 

into objects. Uniqueness in this context can only be based on the assum ption th a t there already 

exists a  way of distinguishing one d a ta  container from another. This means that for a set of data 

containers, S, there exists an identifier function, f ,  an invertible function th a t maps a given data 

container vc to a  value f { v c) th a t uniquely identifies vc from S . T ha t is, there exists no v'c 6 5, 

v'c vc, such that f{v'c) =  f ( v c). f { v c) is referred to as the core value of vc. For example, the 

identifier function of fam ily  could be one th a t maps each element in fam ily , <  w, h >  to a value 

<  *1 , 1 2  >  where i i  =  w .P ID Q , and  io =  h .P ID Q . Identifier functions must be provided by a 

m ediator author; it is a way for the  m ediator author to describe the identification semantics of the 

da ta  containers tha t have been created.

O B J G E N  maintains a  one-to-one mapping between the core values of da ta  containers and the 

oids assigned to the objects representing these data  containers. Im m utability of oids in this context 

requires th a t “an oid always represent the same data  container” . Since d a ta  containers are identified 

by their core values, a da ta  container remains the same as long as its core value is not changed. 

By maintaining a one-to-one m apping between assigned oids and core values, O B J G E N  supports 

im m utable oids. Change of core values gives rise to new imaginary objects and is equivalent to 

deleting an old imaginary object and  adding a new one, with a new oid.

Implementation techniques may vary in the way these functions and mappings are generated and 

m aintained. Conceptually, for each virtual class C derived by O B J G E N . an invertible function. 

O ID c ,  as defined below, is m aintained.

D e f i n i t i o n  6.6 .4  [Function O ID c-]  Let C  be a virtual class created from a set S  of data  containers 

of type T , and let /  be an identifier function of S , f  : T  -¥ T ' , where T '  is the type of the core 

values of the data containers in S . T he OID function of class C, O ID c ,  is an invertible function 

w ith signature O ID c  '■ T ' C  such th a t, for any value v of type T ' , O ID c{v )  returns the oid 

assigned to the imaginary object generated from the value in S  th a t is uniquely identified by v. □

D e f i n i t i o n  6.6.5 [MEO O B JG E N .]  Let Q be an OQL query of type T  — s tr u c t(A i:T i,..., A n :Tn) 

and let /  be an identifier function on the result of Q, f  : T  —> T ' , where T '  is the type of the core
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value of the da ta  containers in Q. Then

C  = O B J G E N { Q ,f)

creates a virtual class C  as follows:

1. C .E  = {O ID c {Iv) \ 3 v e Q , I v = f ( v ) } ,

2. C .I  =  { P I D ,A i , . . . ,A n } .  M ethod .4.,-(l <  i  < n) has signature .4,- : 0 —> T,-. M ethod P ID  

has signature P ID  : 0 —¥ T ' . Vo €  C .E , o .P ID Q  = O ID q 1 (o), o..4f() =  / - 1 (OJZ?^l (o))[.4,].

1 <  i  < 7i,

3. C .SU P  =  0. C .S U B  =  0.

□

E x a m p le  6.6.1 Consider the set of da ta  containers family  specified earlier in this section. Let

/  be a  function th a t maps a  given value <  Wife:w, Husband:h> to a value <  WifeID:w.PIN(),

HusbandID:h.PIN()>. The following operation creates an im aginary class, Family.

F a m ily  =  O B J G E N ( fa m i ly , f )

The extent of F a m ily  includes one object for each element of fa m ily . F a m ily  objects defines 

3 methods: P ID Q , W ife { )  an d  H usbandQ . Assume that function OIDFamiiy (v) is a program 

th a t creates oids by concatenating the name “Family” with each element in v. Then a struct 

<  W ife  : w, H usband  : h >€E fa m i ly  where w .P IN Q  = “001” and h .P I N  () =  “002” has oid 

“Family-001-002” , and:

Family-001-002.PID() =  < “001”, “002” >;
Family-001-002. WifeQ =  w;
Family-001-002. HusbandQ = h;

□

6.6.3 M EOs for R en a m in g  and D eriv ing  M ethod s

AURORA-OH supports derivation of a  virtual m ethod, IWj, as a  “w rapper” m ethod of an existing 

m ethod, Mo, base or navigation. Once derived, M i  works as follows:

1. Derive each in-param eter of Mo from the in-param eters of M i.

2. Invoke Mo with the above derived in-param eters.

3. Derive each out-param eter and  return  value of M i from those returned from step 2, and return 

them.
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It is the responsibility of the  m ediator au tho r to specify the details of the derivations in steps 1 

and 3, and to  provide such specifications to  the  MEO of deriveO P, which facilitates the derivation 

of virtual m ethods. By doing so, deriveO P  provides the  m ediator au thor with a  framework for 

performing sophisticated param eter transla tion . AURORA-OH allows a m ediator au thor to express 

these translations w ith three constructs:

1. Parameter derivation expressions, PD Es. A PD E is a  function th a t derives a  value from a 

given set of param eters using constants, user-defined conversion functions, as well as existing 

m ethods. For instance, a PD E th a t  applies a user-defined function /  to the 1st param eter can 

be expressed as f ( P \ ) .  PDEs are defined in Definition 6.6.7.

2. Inward Parameter Translation Map, IPTM . An IPTM  is a  set of PDEs, one for each in

param eter of Mo; these PDEs involve only the in-param eters of M t . Intuitively, these PDEs 

are used to  derive all the in-param eters of iV/0 from the in-param eters of M -L.

3. Outward Parameter Translation Map, O PTM . An O PTM  is a  set of PDEs, one for each out- 

param eter of M i and one for the re tu rn  value of M i. Each of these PDEs can involve only the 

out-param eters and retu rn  value of M q. Intuitively, these PD Es are used to derive the values 

of out-param eters and  the return  value of Mo.

If a  class already has a  m ethod with the same name as a  target v irtua l m ethod b u t is semantically 

different from the latter, it must be renam ed.

D e f i n i t i o n  6 .6 .6  [MEO R enam e .] Let C  be an object class and let A  be a  base or navigation 

method of C  th a t is not inherited from a superclass of C . The operator Renam efC , N, N 1 ), wrhere 

N 1  is a  nam e th a t is not used by any m ethod defined on C  or any of C ’s descendent classes, renames 

the m ethod N  to iVl in C  and all its descendent classes. □

D e f i n i t i o n  6 . 6 . 7  [Param eter Derivation Expression (PDE).] Let N  : e t :T) x  ...  x  en :Tn —» To 

be a  m ethod defined on class C. Let o be an object of C. Let V  =  <  v o ,—.,v n > be a value 

of type <  T o ,...,T n > . A parameter derivation expression(PDE) on N , G, its type, type(G), its 

source param eter set, S P se t(G ), and its  evaluation based on V  and o, E V A L (G ,V ,o ) , are defined 

recursively as follows:

1. G = T H I S ,  is a PD E. type(G) =  C, S P se t(G ) =  0, EVA LfG , V,o) =  o.

2. G  =  c, where c is a  constant, is a  PD E. type(G) =  type(c), S P se t(G ) = 0, EV A L(G ,V ,o) =  c.

3. G = Pi, 0 <  i  < n, is a  PDE. type(G) =  Tt-, SPset(G ) =  {P i} ,  EVAL(G , V,o) =  v{.

4. If G' is a  PD E on N  of object type T , p  : e[:T[ x  ... x  e ^ iT ^  T£ is a m ethod defined on 

T , and Gi is a  PD E on N  of type  T '■ (1 <  i  < m ), then G = G '.p(G i, ...,G m ) is a PD E on
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N . type(G) =  T^. SPset(G) =  SP set{G ')  U S P se t(G x) U ... U SP se t{G m), E V A L (G , V, o) =  

E V A L ( G V ,  o ).p (E V A L {G u V ,o ) ,.. . ,E V A L (G n ,V ,o )).

5. If G' is a PD E on N  of object type T , p  : e\:T[ x  ... x e'm:T'm — Tq is a  m ethod defined on 

T , =  out, and Gi is a  PD E on N  of type T[ (1 <  i  < m ), then G  =  G'.p{G\, . . .,G m)[fc] is a  

PD E on N . type(G) = Tk . SPset(G) =  S P se t(G ‘) U SP se t{G i) U ... U SP set(G m ). EVALfG . 
V,o) has the following semantics:

E V A L (G ', V,o).p(EVAL(Gi, V ,o),...EVAL(G k- u V, o), t,E V A L (G k+u V,o) , ..., E V A L (G n, V., o)); 
EVAL(G, V,o) = t;

6. Let /  : iniT[ x...x in:T^. —>■ Tq be a function and let G i , ..., Gx be PD Es on N  of types T[, 

respectively. G =  / ( G i ,..., Gx) is a PD E on N . type(G) = Tq, SPset(G) = S P se t(G i)  U ... U 

S P se t{G x), EVAL(G, V, o) =  f(E V .A L (G 1 ,V ,o ) , . . . ,E V A L (G XlV ,o)).

□

Param eter mappings are specified as translation maps of two kinds: inward and outward. 

D efin itio n  6 .6 .8  [Inward/Outward Param eter Translation Maps ( EPTM and O PTM  )] Let

A' : ei:Ti x ... x en:Tn —¥ Tq

and

D : e[:T[ x ... x  e'm:T ^ -a  T '

be two methods where N  involves no inout param eters. The inward parameter translation map 

(IPTM ) from N  to D  is a list of PDEs on N , L in = {G,-n i , ....,G tn i}, where Vu, 1 <  v < x , 1 <

in v < m , ( e '7li, . . . ,e 'iUi} are all the in /inout exports in D , type(Gin„) =  SPset(G in„) contains

only in-param eters in N . The outward parameter translation map ( OPTM  ) from D  to N  is a 

list of PD Es on D , L out = {GOut0i —; G outy}, where outo = 0, Vu>, 1 <  w < y, 1 <  outw < n,

{eoutl, : . , e 0uty} are all the out exports in N , type(G a titu,) — Tout., SPset(G0utm) contains only

return  value and the out/inout parameters in D . □

E x a m p le  6 .6 .2  Assume that an Employee class defines method FindSalary as follows:

integer FindSalary( in string Year,
out integer salary, out integer bonus, out Employee manager) 

signature: FindSalary: in:string x ouUinteger x out:integer x out:Employee —> integer

Mow consider ( virtual ) method Salary2:

integer Salary2 ( in date Date, out string managerPhone)
signature: Salary2: in'.integer x out:string —> integer
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th a t returns the  s a la ry  of an Employee object. Also assume th a t this returned value is the sum 

of the salary and Ebonus an employee receives in  a  given year, in US dollars, while both  salary and 

bonus returned as out-param eters in FindSalary are in Canadian dollars. The IPTM  from S a la ry2 

to F in d S a la ry  is cthe following:

L in = {Gin i}, G in i= da teT o Y ea r{P J

where da teT oY ea ir  is a function th a t takes an  in-param eter of type d a te  and returns the  year in 

string form. Intuiitively, this map specifies th a t there is only one in-param eter in F in d S a la ry , the 

first param eter. TThis param eter to FindSalary, in string Year, is to be derived by applying the 

function dateToYeear to the first param eter of Salary2. The OPTM  from FindSalary to Salary2 is 

the following:

L o u t — {C"ou£o , G o u tz  }j
Gouto =  CN D toiiSD (SalaryAddBonus(P2 , P3 ));
G out2 =  P4.ph.0neN um ber § ;

The above map specifies th a t there are two out-param eters in Sa lary 2 , param eter 0 (the return 

value), and param -eter 2(out string managerPhone). The two PDEs, Gout0 and G out2, specify how 

these two p a ra m ete rs  are to be derived from the  out-param eters of F indSalary. Gout0 specifies that 

the retu rn  value off Salary2 is to be derived by applying function SalaryA ddB onus  to param eters 

2 and 3 of F in d S a la r y . Gout2 specifies th a t the  2nd param eter of Sa lary2, m anagerP hone, is to 

be derived by ta k in g  the 4th param eter of F in d S a la ry  and invoking method phoneNumber on it. □

D e f in i t i o n  6 .6 .9  [MEO deriveO P .] Let C  be an object class, N  : ei:Ti x  ... x  en:Tn —r T q be a 

m ethod involving n o  inout param eters, and C  or any of C"s descendent classes do not have a m ethod 

named N .  Let D  toe a  base or navigation m ethod of C  w ith signature D : e[:T[ x  ... x e '^ .T ^  —»• Tq. 

Let Lin =  { G in j,— , Gin*} be an IPTM  from N  to  D  and L out = {Gout0, — Gout ,} be an O PTM  

from D  to N .  The- following operation

deriveO P{C , N , D , L in ,L ollt)

adds an interface m eth o d  N to class C  and all its subclasses. For any object o 6 C .E , the semantics 

of o .N (p i , ..., Pn) i s  defined procedurally as follows:

1. Vj, 1 <  j  < m ,  let aj = E V A L {G in_, < p i , ....,Pn >> o) if e'- =  in  or e'- =  inou t, otherwise let 

aj =  null.

2. Let a0 =  o.D  ( a i , . . . ,a m).

3. Vfc, 0 <  k  < r», if k  =  0 or e*.- =  out, let 6* =  E V  A L {G outk, < a0,..., am >, o). R eturn  bo-

a
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O perator deriveO P  derives a  virtual operation N  from a  base or navigation m ethod D using user- 

provided param eter translation maps. The m ethod  N  thus derived is a  "wrapper" m ethod of D . N  

works as follows: it first derives all the in-param eters of D  using the in-parameters of N  according 

to the IPTM , Lin, provided as the 4th param eter to  deriveO P . It then invokes D using the in

param eters ju s t derived. Finally, it derives its own out-param eters and return values using the 

O PTM , L out, provided as the 5 th  param eter of deriveO P . This operator is illustrated by the 

following example.

E x a m p le  6 .6 .3  This example continues Exam ple 6.6.2 to  show how Salary2  can be derived from 

F in d S a la ry . To add a  virtual m ethod Salary2  on class Employee-.

deriveO P {Employee, T  H I  S .F in d S  alary, L in, L out)

For any employee e, the semantics of e.Sa lary2(aD  ate, m anager P H )  is the following:

1. Let <2 i =  dateToYear{aD ate);

2. Let ao =  e.FindSalary(ai, salary, bonus, manager);

3. bo =  CNDtoUSD(SalaryAddBonus(salary, bonus)); managerPH = manager.phoneNumber(); 

return bo.

a

6 .7  H om ogen iza tion  w ith  A U R O R A -O H

Homogenization is performed by m ediator au thors following a homogenization methodology. Each 

step prescribed by the methodology requires a  m ediator au thor to derive virtual classes th a t are 

closer to the target homogenizing classes in s truc tu re  and semantics. These virtual classes are 

derived using the operators described in Section 6.6. This section first describes the m ediation 

m ethodology of AURORA and then dem onstrates how it can be used to homogenize the  sources 

shown in Table 6.2 to generate respective homogenizing views in Table 6.1.

6.7 .1  A  H om ogen ization  M eth od o logy

A homogenizing class, C, is derived in 2 steps: o b je c t  p r o to ty p in g  followed by m e th o d  m a p p in g . 

This process is illustrated in Figure 6.1. O bject prototyping creates a prototype object class C ', 

th a t has the ability to perform each of the m ethods defined on C. This ability is determined by

the m ediator au thor. That is, it is the m ediator a u th o r’s responsibility to design and derive C '.

However, there m ust be a one-to-one m apping between objects in C ' and those in C, in th a t the 

corresponding objects model the same application entity, with possibly different representations.
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The goal of m ethod m apping is for the mediator au thor to describe exactly how each m ethod of C  

can be perform ed by objects of C '. To do so, the m ediator au tho r m ust derive each m ethod of C  

as a  virtual method of class C '. This step does not generate new classes or change the position of 

the p ro to type (virtual) class in the  inheritance hierarchy; it defines a new, virtual m ethod that is 

equivalent to  a  target m ethod both  syntactically and semantically. Once all the virtual methods are 

defined, one can simply renam e C ' to C, that is, C ' becomes C .

T he object-oriented homogenization methodology m andates the sequence in which transform a

tions are performed. The transform ations themselves are performed using AURORA-OH’s Mediation 

Enabling O perators (MEOs), described in Section 6.6.

T he object-oriented homogenization methodology is less e laborate than  its relational counterpart; 

it is not based on a  detailed classification of mismatches and how to remove them  systematically. 

This is because the object-oriented da ta  model is flexible and rich in semantics. An enumeration 

of all possible mismatches would be large. It will be difficult to design an approach to identify 

and resolve these mismatches systematically. In AURORA, it is expected that in an object-oriented 

context, m ost, if not all, mismatches encountered in a  da ta  integration process are up to the mediator 

authors to  define, identify and resolve. AURORA provides a  set of operators that are commonly 

recognized as useful for deriving object views - such as generalization, specialization and object 

generation - and provides a  framework for deriving virtual m ethods using user-provided functions.

6.7 .2  A  W alk-T hrough o f  th e  H om ogen ization  E xam ple

This section gives a  walk-through of the homogenization of D S i ,  DSo, and Z?S3 as shown in Table

6.2 against the globed schema, as shown in Table 6.1. The homogenizing views of the three sources 

are also shown in Table 6.1. As shown below, this example does not require step 1 of the mediation 

m ethodology to  be performed. Generally, the object prototyping step requires regrouping, restruc

turing  of existing object classes, a n d /o r  generation of object classes; it can be a giant step in many 

cases, bu t AURORA’S m ediation methodology does not provide fine granularity guidelines in this 

step. Various examples of the kind of transformations that could happen in this step are given in Sec

tion 6.3.6 and Section 6.6. The rest of this section contains a  w alk-through of the method-mapping 

step of the  example shown in Tables 6.2 and 6.1.

At D S  1 , class MyDoctor is already a prototype of the targe t class MyDoctor. In the step of

m ethod m apping, specify the following:

deriveOP (MyDoctor, PID, ID, 0, {G0ut0 = Po})
deriveOP (MyDoctor, Clinic Address, THIS.clinic.Address, 0, {Gout0 =  Po})
deriveOP (MyDoctor, Profile, bio, 0, {GOut0 — Po})

At D S 2 , classes F a m ily  P h ysic ia n  and Pediatrician  are the prototypes of target classes with the 

same names in the export view shown in Table 6.1. In the step  of m ethod mapping, specify the
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following:

deriveOP (Pediatrician, YearsAdvancedTraining, YearsOfTraining, 0, {G out0 = Po}) 
deriveOP (Pediatrician, Specialization, null, 0, {GOU£0 =  “P ed ia tric ian”})  
deriveOP (Doctor, PatientHistory, THIS.FindPatient.GetConsultationRecord, {Gmi =  P l }, 

{Gouto =  Pqi Gout2 =  P3, Gout 2 =  P i} )

Note th a t by specifying a  virtual m ethod PatientHistory on class Doctor, the same method is 

specified for both Pediatrician and FamilyPhysician. The signature of the navigation method 

THIS.FindPatient.GetConsultationRecord  is given in Example 6.5.2. Also note the specification 

of m ethod Specialization, where the th ird  param eter is null. In this case, deriveO P  adds a virtual 

m ethod th a t returns a  constant value, “Pediatrician” .

At D S z, class Orthopedics is a pro to type of the class with the same nam e in the homogenizing 

view of D Sz. In the step of m ethod m apping, specify the following:

deriveOP (Orthopedics, Years AdvancedTraining, Experience, 0, {Gout0 = Po}) 
deriveOP (Orthopedics, Specialization, null, 0, {Gouio =  “Orthopedics”}) 
deriveOP (Orthopedics, PatientHistory, THIS.search[2].GetConsultationRecord, {G,ni =  P i} , 

{Gouto =  Po,G 0ut2 =  P s,G outz =  P3})

By Definition 6.5.2, the navigation m ethod THIS.search[2].GetConsultationRec on Orthopedics has 

the  following signature:

TH IS.search[2].G etC onsulta tionR ec : in istring  x out:Patient x out:date  x out:shortx
out:Doctor —¥ set < string  >

It is easy to understand the last deriveO P  formula above for specifying operation P atien tH isto ry  

on Orthopedics.

6.8 A U R O R A -O I: T h e  In tegration  M ediator

The AURORA-OI m ediator supports a  service view by manufacturing global objects using relevant 

objects exported by participating sources.

6.8 .1  O id G eneration for In tegrated  Objects

Global objects manufactured by an AURORA-OI mediator are imaginary objects since they only 

exist in AURORA-OI, not in any d a ta  sources. Similar to the approach described in Section 6.6.2, 

AURORA-OI assigns unique and im m utable oids to the generated objects by m aintaining a one-to- 

one m apping between the assigned oids and the PID values. This mapping is captured by function 

G O ID .

F u n c tio n  G O ID . For each global class G in the service view, AURORA-OI maintains an 

invertible function G O ID c  : T pID —>• G, where T p ro is the PID type of class C. For any PID

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



value of Cg, v, G O ID  c iv )  is the oid assigned to the imaginary object in C  identified by PID value 

v . This function is similar to the function O ID  defined in Definition 6.6.4. This function is named 

G O ID  to  emphasize th a t it is used for m ain ta in ing  oids of global objects.

6.8 .2  Fragm ents and R eg istra tio n s

O bject classes exported by various sources, through respective AURORA-OH m ediators, are referred 

to  as the  source classes. M ethods defined, on these classes are referred to as the source methods. 

Source classes can be registered as fragm ents  of global classes. Once registered, these classes are 

known to AURORA-OI as registered fragm ents. Semantic intension of the source classes, and the 

semantics of the source methods, m ust be m aintained by m ediator authors. It is the responsibility 

of the m ediator authors working a t various AURORA-OH m ediators to guarantee th a t each source 

class registered as a fragment of a  global class indeed models the “sam e” entity  of interest as the 

global class, and that each source m ethod w ith the same name as a global m ethod “does the same 

thing” as the global method. AU RO RA -O I imposes a  few syntactical conditions on source classes 

th a t are registered as fragments so th a t th ese  classes can be interpreted correctly and autom atically 

by AURORA-OI. The following definition describes the kind of d a ta  exchange th a t is possible.

D e f i n i t i o n  6 .8 .1  [Portable and A pplicable Types.] A source data  type Ts is portable to a global 

d a ta  type Tg if

1. B oth Ts and Tg axe pure literal types and  Ts = Tg; or

2. Ts is a  registered fragment of Tg or o f  a  subclass, directly or indirectly, of Tg; or

3. T s — set < Tj > , Tg = se t < Tg > , a n d  T's is portable to T'g.

A global da ta  type Tg is applicable to a source d a ta  type Ts if

1. Both Ts and Ts are pine literal types and Ts =  Tg; or

2. Ts is a registered fragment of Tg o r o f  a  superclass, directly or indirectly, of Tg; or

3. Ts = se t < T's >, Tg = se t < Tg' > , a n d  Tg' is applicable to T's .

□

There are two directions th a t d a ta  can be passed: from AURORA-OH to AURORA-OI and from 

AURORA-OI to AURORA-OH; different ty p es  of da ta  can be passed in each direction so th a t the 

d a ta  passed into an mediator can be in te rp re ted  properly. To distinguish the two directions in which 

d a ta  are passed, AURORA-OH m ediators Eire said to port d a ta  to AURORA-OI m ediators and the 

la tte r  apply d a ta  to the former. The concepts of portable types and applicable types then define
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the  kind of d a ta  passing that is possible in the tw o directions. AURORA-OH and AURORA-OI can 

only exchange d a ta  values using portable types and  applicable types.

I f  a  source d a ta  type Ts is portable to a  global d a ta  type Tg, then a  value of type Ts can  be passed 

by AURORA-OH to AURORA-OI, and this value can be interpreted by AURORA-OI as a  type Tg 

value. According to the above definition, Ts and Tg m ust satisfy one of the following conditions: (1) 

they are identical PLTs; or (2) the semantic intension of Ts is the same as th a t of Tg. in which case 

Ts is a  registered fragment of Tg; or it is a  specialization of the semantic intension of Tg , in which 

case T , is a  registered fragment of a  descendent class of Tg. Intuitively, Ts represents an  entity" that 

is by semantics a kind o fT g.

Similarly, if a  global data type Tg is applicable to a source data type Ts, then a value of type Tg 

can be passed by AURORA-OI to AURORA-OH and this value will be interpreted by the  la tte r as 

a  value of type Ts . According to the above definition, Ts and Tg must satisfy one of the  following 

conditions: (1) they are identical PLTs; or (2) T he  sem antic intension of Tg is the same as th a t of T ,, 

in which case Ts is a  registered fragment of Tg; o r  it is a  specialization of the semantic intension of 

Ts , in which case Ts is a  registered fragment of an  ancestor class of Tg in the service view. Intuitively, 

Tg represents an entity  that is by' nature a kind o f  Ts .

DEFINITION 6 .8 .2  [Delegatable m ethod.] A  source m eth od  w ith signature N  : e i:T i x  ... x  en :Tn -»• 

To is a  delegatable method of a global m ethod N g : e \:T f  x  ... x  eam:T^  —>■ Tq if:

1. M ethod N g has the same name as m ethod N  and m  = n.

2. To is portable to Tq . Vi, 1 < i  <  n, ex- =  e f . Moreover, if e,- =  in , then T f  is applicable to T , 

if ej =  out, then T  is portable to T f .

□

A delegatable m ethod of a given global m ethod is a  source method whose signature qualifies to

execute the  global method; it is the  m ediator au th o rs’ responsibility to ensure th a t the source

m ethod qualifies in semantics as well. In Table 6.1, PatientHistory in classes Pediatrician  and 

Orthopedics are bo th  delegatable methods of the global m ethod PatientHistory of Doctor.

D e f i n i t i o n  6 .8 .3  [Valid Fragments.]. A source class Cf  is a  valid fragment of global class Cg if

1. Cf  has a  PED method th a t is identical in signature  to  that of Cg s; and

2. 3AT, a  set of methods defined on Cg, such th a t V fg 6  S , 3 /  defined on C /  such th a t /  is a

delegatable m ethod of f g.

□
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This definition says th a t a  valid fragment of a  global class must support the PID  method of the 

global class and should define delegatable methods for some  of the  methods defined in the global 

class. In Table 6.1, source classes FamilyPhysician, Pediatrician  and Orthopedics are valid fragments 

of global classes Doctor and Specialist.

A source class C  can be registered as a  fragment of global class Cg only if C  is a valid fragment 

of Cg, but not all valid fragments are registered fragments: which source class to register with which 

global class is determined by the m ediator authors a t sources. For instance, the mediator authors 

may decide to register FamilyPhysician w ith Doctor, Pediatrician and Orthopedics with Specialist, 

and so on. A registered fragment of Cg is said to be compatible w ith Cg and all its super-classes. 

M ethods are registered implicitly. If C  is a  registered fragm ent of Cg, then a  m ethod of C  th a t has 

the same name as a  m ethod of Cg is a  registered method. It is the m ediator au thors’ responsibility to 

make sure th a t all registered methods are delegatable m ethods of the  global methods they share the 

same names with. All m ethods listed in the homogenizing views in Table 6.1 are registered methods.

6.8.3 P roxies

AURORA-OI

Global object

GOID(-1) GOID

Proxy

LOlD(-1)LOID

source
object^

AURORA-OH

Figure 6.3: Use of Proxy for Uniform Access

AURORA uses proxies, handles generated by various AURORA-OH mediators to enable uniform 

access of source objects. Each proxy represents one source object but a source object may have any 

num ber of proxies. Proxies exist to perform the following tasks:

1. To accept requests from a  foreign client, pass this request to the source object it represents
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for execution, and re tu rn  the results to the client.

2. To facilitate passing oids across system  boundaries. M ethods on local objects often take oids 

as in-param eters and return  oids. Proxies m u st facilitate such exchange of oids in a meaningful 

way.

Uniform access of source object using proxies is illu s tra ted  in Figure 6.3. Proxies run at various 

AURORA-OH m ediators and they accept PID values in place of oids as in-parameters for method 

invocation. A proxy executes a  method by transla ting  the PID values passed as in-parameters into 

local oids using a system function L O ID , and uses the obtained oids as in-parameters to invoke 

the corresponding m ethod on the source object it ^represents. Upon returning of this invocation, 

the proxy translates all returned oids, either as re tu rn  value or as out param eters, into appropriate 

PID values using the inverse of function L O ID , a n d  returns the obtained PID values to the client. 

AURORA-OI accesses source objects through p ro v es . Global objects a t AURORA-OI invoke a 

source m ethod by first translating any in-param eters th a t are oids into PID  values, using the inverse 

of function G O ID . Upon returning of a  request to a proxy, the globed object translates the returned 

PID values into oids, using function G O ID . Function G O ID  was defined in Section 6.8.1. Function 

L O ID  is defined below.

F u n c tio n  L O ID c • For each class C  registered., the AURORA-OH mediator where this class 

resides must m aintain a function L O ID c  '■ T p lD where T p[D is the PHD type of C, th a t maps

a  given PID value of C  to  the C  object identified by v. T h a t is, given PID value of class C, p, 

L O ID cip )  =  o if and only if o.P ID Q  =  v.

Proxies of different source objects are able to handle different requests; this is defined by proxy 

types. The semantics of methods on proxies is defined in Definition 6.8.5.

D e f i n i t i o n  6 .8 .4  [Proxy Type.] Let C  be a registered fragment and F  be all the registered methods 

of C. The proxy type of C, P X Y { C ) ,  is defined a s  follows: Vp £ F  w ith signature N  : ei'.Ti x 

... x en:Tn —t  To, P X Y ( C ) defines a  m ethod p' w itli signature N  : e\:T[ x  ... x en:T'n ->■ Tq where 

Vi, 0 <  i <  n, if T; is a  pure literal type, T[ =  T .  J f  T; is an object type C' or set < C' > , then 

T- = Tpid or T[ =  set < TPid >  respectively, where T"v id is the  PID type of object class C '. PXY(C) 

does not define any other methods. □

P X Y ( C ) defines a  proxy method for each registere-d m ethod of C. The signatures of the proxy 

m ethods axe modified from the original signature to accept an d /o r retu rn  PEDs in place of oids.

D e f in i t io n  6 .8 .5  [Proxies.] Let o be an object of a. registered fragment C  and let F  =  { / i , ..., /„}  

be all the registered m ethods of C  where has signatu re  f i  : e \:T l x ... x  e^.-.T^ —>• Tq. A proxy of 

o, pxy0, is an object of type P X Y (C ) .  The sem antics of p x y o.fi(p 0, ..., ) is defined procedurally

as follows:
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1. o b je c t  im p o r t .  For all j ,  1 <  j  <  k{, where e'- =  in , if T ‘ is an object type C ', let p'- =  

L O I D c iP j ); if Tj =  set < C ' >, where C ' is an object type, let p'- =  { L O ID c (v )  | Vu G p , }. 

If T j  is not an object type, let p'- =  p j.

2. m e th o d  d e le g a tio n . R ' = o.fi(p'0, ...,p 'n).

3. o b je c t  e x p o r t .  For all j ,  I  <  j  < n , where ej =  o u t, if T j is an object type C ', let 

Pj =  p 'j.P ID Q , if Tj = set < C ’ > where C 1 is an object type, let p j =  [o.P ID Q  | Vo G p ' }. 

If Tq is am object type C 1, let R  = R '.P ID Q .  If T0* =  se t < C r > where C ' is an object type, 

let R  = {o.P ID Q  | Vo G i?'}-

4. r e t u r n  to  c lien t. R eturn R.

□

The code th a t  implements proxy types with interfaces as described in Definition 6.8.4, and semantics 

as described in Definition 6.8.5, must be generated by AURORA-OH m ediators for all registered 

classes.

E x a m p le  6 .8 .1  Consider the homogenizing view of DS-± as shown in Table 6.1. The proxy type of 

Pediatrician should have the following interface:

c lass  PXY(Pediatrician)
{

s tr in g  PID ();
s tr in g  TelNo();
s tr in g  Profile();
s tr in g  Specialization();
sh o rt Years AdvancedTraining();
setof(string) Patien tH isto ry( in  s t r in g  PatientID ,

o u t  s t r in g  PreviousDoc, o u t  d a te  FirstAppt);
};

The only modification of interface from th a t of Pediatrician is in m ethod PatientHistory, the proxy 

type replaces the type of the second param eter w ith s tr in g , the  PID type of Doctor. □

6 .8 .4  P r o x y  M a t c h  J o i n :  A U R O R A ’S I n t e g r a t i o n  O p e r a t o r

The goal of d a ta  integration in AURORA-OI is to  use the proxies of the registered fragments of a 

global class Cg to construct Cg objects. These constructed objects, called integrated objects, are really 

distributed objects th a t delegate their m ethods for execution by appropriate  proxies running at various 

AURORA-OH mediators. To the applications running at AURORA-OI, integrated objects appear 

to be usual objects that can be queried using OQL, and accessed using the programming language 

of choice. This section defines the integration operator used by AURORA-OI for manufacturing 

integrated objects. First, a  few concepts m ust be presented.
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DEFINITION 6 . 8 . 6  [Intended Global Type.] Given a  proxy p representing an  object of source type 

C  registered as a  fragm ent of global class Cg, the intended global type of p, IG T (p ) =  Cg. □

Intended global type is the s e m a n t ic  in te n s io n  of a  proxy. This inform ation is used to select 

proxies to delegate m ethods to.

D e f i n i t i o n  6 . 8 . 7  [Proxy M ethod Stub.] Let M  : e\:T\_ x  ... x  en:Tn —t T0 be a  m ethod of global 

class Cg. Let p  be a proxy of type  P X Y (C )  where C  is a  registered fragm ent of Cg. For a given 

object og £ Cg, og.M  is a  proxy method stub of p .M  if the semantics of R  = og.AI(pq. ...,pn). is 

equivalent to th a t described procedurally as follows:

1. o b je c t e x p o r t .  V j, 1 < j  < n ,  where ej =  in , if Tj is an object type, let p'- =  p j.P ID Q ;  if 

Tj = se to f(C ') , where C ' is an object type, let p'- =  {o .P ID Q  | Vo G p j} . Otherwise, p'- =  pj.

2. m e th o d  d e le g a tio n  to  p ro x y . R ' = p.M(p'0, ...,p'n).

3. o b je c t  im p o r t .  Vj, 1 < j  < n , where e_,- =  out, if Tj is an object type C ', let pj = 

G O ID c iP j); if Tj =  se to f(C ') ,  where C ' is an object type, let p j =  { G O ID c (k )  | 'ik  e  p '}. 

If I?' is an object type C ' , let R  =  G O ID c (R ') ', if R ' is of type s e to f(C ') ,  where C 1 is an 

object type, let R  =  {G O I D c { k ) | Vfe 6  R 1}.

4. R e tu r n  r e s u l t .  R eturn  R .

a

Relating the above definition to  Definition 6.8.5, one can see th a t proxy m ethod stubs cooperate 

with proxies to facilitate exchange of oids between AURORA-OH and AURORA-OI mediators.

D e f i n i t i o n  6 .8 .8  [Proxy M atch Join.] Let Cg be a  global class. Let F i , ..., F m be all the registered 

fragments of Cg or its descendent classes. Let F m+1,..., Fm+n be all fragm ents registered with 

ancestor classes of Cg. Let X j( l  <  i  <  m -t- n) be a collection of proxies such that Vo 6 F ..3p  € A',, 

p is a  proxy of o. The extent o f Cg, Cg.E , is computed by operator Proxy Match Join  (PM J)

C g.E  =  P M J { C g,m ,X j , . . . ,X m+a)

as defined below:

1. Cg.E  = {o | 3p 6 X i  U ... U X m ,o  = G O ID c ,(p .P ID Q )} . Vp 6 U ... U X m+n, p is a 

contributing proxy of object o 6 Cg.E  if p .P ID Q  =  G O ID ^  (o). C P roxy(o) is used to denote 

all contributing proxies of object o.

2. Vo 6 Cg.E  and m ethod M  of Cg, the semantics of o.M  should be equivalent to that of a 

proxy m ethod stub of p .M  if 3p e  C P ro x y (o), such th a t p  supports M  and there exists no 

p ' 6 C P roxy(o), p ' supports M  but IG T (p ')  is a descendent of IG T {p). If no such p exists,

o.M  is a  null m ethod.
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□

The P M J  operator constructs an object for each PID value appearing in fragments registered with 

Cg or its descendents; these PEDs identify all objects in Cg .E . Contributing proxies may represent 

objects from fragments registered with Cg’s ancestor classes as well as those registered with Cg and 

its descendent classes. W hen multiple contributing proxies are able to perform a given method, 

P M J  selects the proxy with the most specific semantic intension; this is similar to the concept 

of late binding in object-oriented programming. AURORA-OI is responsible for generating an 

im plem entation for each m ethod M  defined on Cg] such generated implementation must ensure that 

for any object o €  Cg.E , o .M  has this semantics specified in 2 of the above definition. Operator 

P M J  is illustrated by the following example.

E x a m p le  6 .8 .2  Consider class Specialist shown in Table 6.1 and assume the following:

Y\ =  {PlljP l2,P l3}, ^21 =  {p21,P22}, Y22 =  {P23}i Y3 =  {p31,P32}

where Yi, Y>i, I 22  and I 3 are collections of proxies of objects in fragments MyDoctor in D Si, 

Pediatrician  in DSo, FamilyPhysician in DSo, and Orthopedics in D Sz, respectively, Pij is a proxy 

of object O ij  as shown in Table 6.1. Using the registration inform ation in Table 6.1 and Definition 

6 .8 .8 :

specialists  =  P M J(S p ec ia lis t, 2, Y ol , Y3 , Yi, Yoi)

For illustration purpose, assume GO ID  S p e c i a l i s t  (k) =  OI-Doctor-k, where Doctor is the most general 

supertype of Specia list. For instance, the object in “specialists” with key 001 has oid OI-Doctor-OOl. 

By Definition 6 .8 .8 , one gets:

specialists = {OI-Doctor-OOl, OI-Doctor-004, OI-Doctor-002, OI-Doctor-007, },
CProxy( OI-Doctor-OOl) =  { p n ,P2 1 },
CProxy(OI-Doctor-004) =  {P2 2 },
CProxy( OI-Doctor-002) =  {p3 i , p 12 },
CProxy ( OI-Doctor-007) =  {P3 2 },

Behaviors of each object are derived using Definition 6 .8 .8 . The details of OI-Doctor-OOl “Smith” 

are shown here. Two proxies, p n  and P2 1 , contribute to Sm ith. The behaviors of Smith are:

OI-Doctor-001.PID() =  “001”;
OI-Doctor-001.TelNo() =  p2i-Te!No();
OI-Doctor-001.ClimcAddress() =  pu.Clinic AddressQ;
OI-Doctor-OOl.Profile =  p2i.Profile();

Both p u  and P21 can perform method Profile, but P21 is chosen because it provides the profile of 

Sm ith as a  Specialist - a  more specific description than the profile of Smith as a  generic Doctor p\ 1 pro

vides. A related case is OI-Doctor-002.Profile(). 0 0 2  “Jones” is am orthopedics doctor but his profile 

as am orthopedics doctor is not available. However, Jones as a  general doctor has a Profile and object
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OI-Doctor-002 will return  this profile. T his illustrates how objects registered w ith ancestor classes 

axe used to  construct integrated objects. T he semantics of OI-Doctor-OOl .PatientH istory (argl, arg2, 

argS) should b e  the following according to  Definition 6.8.7:

return Value =  pai-PatientH istoryfargl, tempString, arg3); 
arg2 =  GO ID  Doctor (tempString);
R eturn return Value;

□

6.9 S u m m ary

This chapter described the object-oriented homogenization and integration fram ework of AURORA. 

The homogenization framework overlaps with object-oriented view frameworks, w ithout operators 

for hiding properties from classes or hiding classes from inheritance hierarchies, and  with an elaborate 

m ethod m apping mechanism provided by operato r deriveOP and the concept of navigation methods. 

The in tegration framework supports a  sim ple object-m atching assum ption and  m anufactures global 

objects th a t perform  their m ethods by dispatching them  to appropriate source objects.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Implementation of AURORA

Prototypes of AURORA’S relational mediators (AURORA-RH and AURORA-RI) described in this 

dissertation have been implemented. The implementation is on Windows N T platform  using the 

following tools: Microsoft V isual C + +  5.0 with Microsoft Foundation Classes (MFC), DB2/NT 

version 2.1.2, OLE-DB, and CO M /D COM .

7.1 C h o o sin g  a D is tr ib u te d  C om p u tin g  F ram ew ork

The AURORA approach calls for three types of software components: the w rappers, the homoge

nization m ediators, and the integration m ediators. These components should cooperate to perform 

a m ediation task. Im plem entation of AURORA is driven by two principles:

1. D is tr ib u t io n . To allow maximum flexibility, components should be allowed to  run anytime, 

anywhere. AURORA com ponents m ust be able to communicate w ith one another in the same 

way w hether they reside on the same machine or not, and they should be able to activate 

another component when they  need its services.

2. D y n a m ic  c o m p o s itio n . Since AURORA is built to facilitate large-scale d a ta  integration, 

the collection of AURORA components th a t makes up a d a ta  m ediation system  should ex

p an d / contract gracefully. Components should be allowed to join and leave the system freely; 

they should also be allowed to  evolve w ithout impacting on o ther com ponents and the function 

of the  system.

To support distribution, a d istribu ted  com puting infrastructure is needed. To support dynamic 

composition, an agent is needed to locate components by name or identity, and to facilitate access 

to the components through pre-defined interfaces, so tha t the changes in a com ponent do not impact 

on the use of it as long as the  interfaces are maintained.
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An obvious choice for an infrastructure th a t  satisfies all the above requirements is a distributed 

object com puting (DOC) platform  such as CORBA [70, 90] or CO M /D CO M  [61, 78]. These p lat

forms allow transparent identification, activation, and accessing of objects locally or remotely; a new 

object supporting a  known interface can jo in  the m ediation system  simply by informing potential 

clients of its identity. These platforms also support access to objects through interfaces, which are 

contracts between objects and their clients; objects can evolve, but their clients will not have to 

modify their code or recompile; they are protected from such changes as long as the interfaces of 

the objects are maintained.

The choice of a  DOC platform  for AURORA im plem entation is not based on a detailed com

parison of CORBA and COM. At a  general level, it is clear th a t both  CORBA and COM /DCOM  

would satisfy the requirements of AURORA im plem entation. Hence the choice was made based on 

availability of supporting technologies. C O M /D CO M  is chosen because in the COM/DCOM world, 

the advance in OLE-DB technology (Section 7.2.3) provides a strong commercial basis for wrappers. 

OLE-DB providers are COM components th a t  provide uniform access to a  variety of da ta  sources. 

As shown in Section 7.3.2, with OLE-DB, the  current im plem entation of AURORA does not need 

to build custom  wrappers; commercial OLE-DB providers are available for a  wide variety of da ta  

sources, and these providers can be composed to form w rappers. There is nothing similar to OLE- 

DB in the CORBA world. If CORBA is used as the base platform , custom wrappers for sources to 

be integrated m ust be built. Since wrapper technology is not a  focus of AURORA research, building 

home-made wrappers would consume a  significant am ount of tim e without serving the purpose of 

dem onstrating AURORA technology.

7.2 A n  overview  o f C O M /D C O M  and O L E -D B  T echnology

7.2.1 W h at is C O M /D C O M ?

The Component Object Model, COM, is a specification; it provides a  s tandard  th a t components and 

clients follow to ensure that they operate together. It specifies how to build components, also referred 

to as servers, th a t can be dynamically replaced without breaking the client code. In particular, it 

specifies w hat it means to be a COM component and how these components are accessed. The COM 

platform  as provided by Microsoft consists of the following two closely related facilities:

1. The COM Library, an A PI tha t provides component m anagem ent services that are useful 

for all clients and components. This library  is w ritten  to  guarantee th a t  the most im portant 

operations are done in the same way for all components, and  to save developers time in dealing 

w ith component management issues. M ost of the COM library functions are built to provide 

support for distributed or networked components, ra ther than  the local components.
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2. D istributed COM (DCOM) facilities on W indows systems provide the code needed to commu

nicate w ith rem ote components. W ith DCOM , rem ote components can be accessed in exactly 

the same way as local servers. DCOM is not yet another model or specification for building 

components; it is the same as COM, bu t w ith a  longer wire attached.

7.2.2 T he C O M  W ay o f B u ild in g  S ystem s

The COM provides a  way to build a system as a  collection of cooperative, possibly distributed, 

components. F irst, it is necessary to know w hat it means to  be a COM component.

A COM component consists of executable code distributed as Win32 dynamic linking libraries 

(DLLs) or executables (EXEs). COM components m ust be written to meet all the requirem ents 

prescribed by the COM  specification. Program m ing details aside, on a  higher level, these components 

must satisfy the following requirements:

1. Dynamic linking. Components must be able to  link a t run time. This ensures th a t components 

can evolve or be replaced without breaking the client code.

2. Encapsulation. Clients must be protected from the implementation details of the components: 

components m ust maintain stable interface(s). This means th a t the components m ust satisfy 

the following conditions:

(a) Clients should be able to use any components regardless of the program ming languages 

used to write the client or the component.

(b) Com ponents must be shipped in binary form, compiled, linked, ready to use.

(c) Components must be upgradable w ithout breaking client code.

(d) Com ponents must be transparently relocatable on a  network; remote components should 

be trea ted  in exactly the same way as the local ones.

The COM library provides a variety of support for building components th a t satisfy the  above re

quirements. Numerous hooks must be built into the  component programs. These hooks are easy to 

build once the program mer understands how they work. Given below are high level descriptions of 

various aspects of COM components and their relationship with the clients.

Identification and Activation of COM components

COM components are executables identified by Class Identifiers (CLSIDs), which are Globally 

Unique Identifiers (GUIDs). A GUID is a  128-bit s tructu re  that is program m atically generated, 

based on the com puter on which it was created and the time at which it is generated. GUIDs 

axe globally unique, although they are generated w ithout coordination with any central authority. 

COM components are registered with the W indow’s registry and can be launched by COM API
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functions. To gain access to  a  component, aU a  client needs is the  CLSID of the components; COM 

library functions a n d /o r  DCOM  support on W indows axe responsible for se tting  up the  connection 

and facilitating exchange of data . Construction an d  access of rem ote com ponents can be done in 

exactly the  same way as local ones; the DCOM support on Windows makes the  com ponent location 

transparen t to the clients.

Accessing COM components

COM  components support one or more interfaces. W hen a client connects to a  com ponent through 

a  COM A PI function, it m ust identify the interface to  be used. If the connection is successful, then 

the client gets back a  pointer to the desired interface. The client can then use th is interface pointer 

to access the services of the component and to get access to any other interface the component 

supports. Interfaces are identified by Interface identifiers (IIDs), which are also GUIDs. The client 

wishing to use a  particular interface must know its IID .

Interfaces

To a  client, a component is a  set of interfaces. T he  client can only access a com ponent through 

an  interface. The client has little knowledge of a component as a whole, o ther th an  the interfaces 

th a t provide the services of interest. A client is often not completely aware of all the interfaces 

a  com ponent supports. Interfaces m e described using the Interface Definition Language (IDL), a 

C + + - like language with extensions, and without im plem entation of any m ethods defined. Compiling 

of an  IDL file will produce code that provides bo th  the client and the com ponents w ith necessary 

facilities to use or support all the interfaces described, including the IID of all the  interfaces of 

interest. Note th a t interfaces are not tied  to any component: one interface m ight be implemented 

by m any components and one component can im plem ent many interfaces. Interfaces can inherit 

from other interfaces, bu t this inheritance does not im ply any relationship between the components 

th a t implement these interfaces. From the surface, this seems to stop code reuse, which is an 

im portan t feature of 0 0  programming. However, CO M  allows code reuse through containment and 

aggregation. These features wrill not be further discussed, since AURORA im plem entation does not 

require them .

7.2 .3  O L E -D B  Technology

OLE-DB is a  specification of the standard  interfaces of a  specific type of COM  components, the 

ones th a t provide access to a  wide variety of da ta  sources. Such interfaces range from those used 

for connecting to a source, starting and closing a  session, retrieving schema inform ation, sending 

queries, to those dealing with data  as a set of rows. A n OLE-DB provider is an im plem ented COM 

com ponent th a t supports some of the interfaces specified by the OLE-DB specification. OLE-DB
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specification states th a t certain interfaces are “m andatory” , th a t is, all OLD-DB providers must 

support them . Often an  OLE-DB provider allows access to a  specific type of data source and 

supports a  subset of the  interfaces specified by OLE-DB specification, depending on the capabilities 

of the underlying d a ta  source. Exam ple sources with OLE-DB providers axe sources with an ODBC 

driver, email archives, and spreadsheets. The advent of the OLE-DB technology is notable for two 

im pacts on the software industry:

1. I t  allows a  broader range of d a ta  sources to  be accessed through a standard  interface. In 

the  past, the Open Database Connectivity (ODBC) was the omnipresent methodology for 

providing access to da ta  sources, but it typically only provides access to  sources with database 

capabilities.

2. It opens up da ta  sources for access through COM /DCOM . An OLE-DB provider is just another 

COM  component and it can be accessed with all the convenience provided by the COM/DCOM 

platform .

W ith  the fast growing popularity of OLE-DB technology, an increasing num ber of data sources 

are accessible through their OLE-DB providers. The rest of this section describes the OLE-DB 

technology in more detail.

An OLE-DB provider is a  COM component and hence is activated when a  client requests it using 

the  CLSID of the provider. Upon activation, the provider first creates a  data source object specified 

by OLE-DB as below:

TDataSource {
[mandatory] interface IDBCreateSession;
[mandatory] interface IDBInitialize;
[mandatory] interface IDBProperties;
[mandatory] interface IPersist;
[optional] interface IConnectionPointContainer;
[optional] interface IDBAsynchStatus;
[optional] interface IDBDataSourceAdmin;
[optional] interface IDBInfo;
[optional] interface IPersistFile;
[optional] interface ISupportErrorlnfo;

>

A d a ta  source object m ust support all the m andatory interfaces and may support some of the 

optional ones. To get access to data, the client uses the ID B crea teS essio n  interface to gain access 

to a  session object, which supports the following interfaces:

TSession {
[mandatory] interface IGetDataSource;
[mandatory] interface IOpenRowset;
[mandatory] interface ISessionProperties;

[optional] interface IDBCreateCommand;
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[optional]
[optional]
[optional]
[optional]
[optional]
[optional]
[optional]
[optional]

interface
interface
interface
interface
interface
interface
interface
interface

IDBSchemaRowset;
IIndexDef init ion; 
ISupportErrorlnfo; 
ITableDef init ion; 
ITransaction; 
ITransact ionJ o in; 
ITransactionLocal; 
ITransactionObject;

Depending on whether the da ta  source is able to  accept commands, the session object may or may 

not support the IDBcreateCommand interface. If  the underlying data  source is an ODBC data  source, 

then this interface is supported and the client can use it for sending queries and getting the result 

bade. If a  da ta  source is not able to entertain  queries, this interface is often not supported. In this 

case, the client uses the IOpenRowset interface to access da ta  in tabu lar form. Various scenarios of 

using an OLE-DB provider for da ta  access are depicted in Figure 7.1.

IDBcreateSession

IDBcreateCommand

IOpenRowset
ICommand

Rowset Rowset

Session

Command

Data Source

Figure 7.1: Use of OLE-DB Interfaces and the Role of Rowsets

As shown above, all OLE-DB providers must be able to provide da ta  in tabular form, as rowsets. 

Indeed, rowsets are the central objects th a t enable ail OLE-DB providers to expose data  in tabular 

form. Conceptually, a rowset is a  set of rows in which each row has columns of data. Base table 

providers present their da ta  in the form of rowsets. Query processors present the result of queries 

in the form of rowsets. Even schema information is provided as rowsets. The interfaces of rowsets, 

as specified by OLE-DB, are given below:

TRowset {
[mandatory] interface IAccessor;
[mandatory] interface IColumnsInfo;
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[mandatory] interface IConvertType;
[mandatory] interface IRowset;
[mandatory] interface IRowsetlnfo;
[optional] interface IChapteredRowset; 
[optional] interface IColumnsRowset;
[optional] interface IConnectionPointContainer; 
[optional] interface IDBAsynchStatus;
[optional] interface IRowsetChange;
[optional] interface IRowsetFind;
[optional] interface IRowsetldentity;
[optional] interface IRowsetLocate;
[optional] interface IRowsetResynch;
[optional] interface IRowsetScroll;
[optional] interface IRowsetUpdate;
[optional] interface IRowsetView;
[optional] interface ISupportErrorlnfo;

T he m ost basic rowset object exposes five interfaces: IRow set, which contains m ethods for fetching 

rows in the rowset sequentially; IA ccesso r, which perm its the definition of groups of column bindings 

describing the way tab u la r d a ta  is bound to consumer program  variables; IC olum nsInfo, which 

provides inform ation about the  columns of the rowset; and IR o w se tln fo , which provides information 

about the rowset itself. Using IRowset, a  consumer can sequentially traverse the rows in the rowset, 

including traversing backward if the rowset supports it. The interface IRowset includes the following 

m ethods: AddRefRows, th a t adds a  reference count to an  existing row handle; G etD ata th a t retrieves 

d a ta  from the row set’s copy of the row; GetNextRows th a t fetches rows sequentially, remembering 

the previous position; ReleaseRows th a t releases rows; R e s ta r tP o s i t io n  th a t repositions the next 

fetch position to its initial position - th a t is, its position when the rowset was first created.

7.3  A U R O R A  M ed ia tors as C O M  C o m p o n en ts

AURORA com ponents are implemented as COM components th a t cooperate across networked com

puters, as shown in Figure 7.2. These components should support pre-defined interfaces.

7.3 .1  In terfaces o f  A U R O R A  C om ponents

AURORA w rappers and  m ediators support pre-defined interfaces which describe the services offered. 

Generally, all AURORA m ediators support the following services:

1. Schema export service: this service should allow the schem a supported  by the mediator to 

be accessed. D epending on the d a ta  model of the m ediator, this schema can be relational or 

object-oriented.

2. Query service: th is service should accept queries posed against the schema of the mediator.
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Depending on the da ta  model of the  m ediator, the queries can be posed in SQL or OQL. Object- 

oriented m ediators should also support access via an object-oriented database programming 

language.

3. Event notification service: this service notifies the clients of events o f interest.

In the current im plem entation, interfaces of components are custom  an d  are supported  only by 

dem and of dem onstrating the base technology of AURORA. In the future, these services should be 

defined to  s tandard , such as the OMG object services, and be fully supported . Currently supported 

interfaces are described in Sections 7.4.1 and 7.4.2.

Application

AURORA-RHAURORA-RI
AURORA W rapper 
(OLEDB provider)

Data Source

Figure 7.2: AURORA Components as COM  Com ponents

7.3.2 O LE-D B P roviders as A U R O R A  W rappers

Microsoft provides am OLE-DB provider for all sources w ith an ODBC driver. This OLD-DB 

provider supports interfaces for connecting to  a database, retrieving schem a information, sending 

SQL queries, and collecting query results as rowsets. This set of functions is sufficient for uniform 

access of sources w ith SQL capabilities. For da ta  sources w ithout SQL query capabilities, there are 

commercial middleware products (e.g., the  ISG Navigator, which are OLE-DB providers themselves) 

th a t add SQL query capabilities to  any OLE-DB provider th a t does not suppo rt it. Such middleware 

can be used as an “adap to r” th a t transform s non-SQL OLE-DB providers into an SQL provider.

In the  current im plem entation, AURORA wrappers are OLE-DB providers supporting SQL 

queries. As such, bo th  OLE-DB providers for ODBC sources and OLE-DB providers for a  middle

ware such as the ISG N avigator can be used as wrappers. This w rapper stra tegy  is illustrated in
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Sources with ODBC Drivers

OLE-DB
Provider

ODBC Driver ISG Navigator

OLE-DB Provider with SQL support

Sources with OLE-DB provider but no SQL 

Figure 7.3: The Making of AURORA W rappers Using OLE-DB Providers

Figure 7.3. A directed line from A to B in this figure m eans “A can access B” . WTiile these wrappers 

do not support services to any standard, as described earlier, it will be easy to  build a generic layer 

on top of these wrappers to  support interfaces to  desired standard . More significantly, by employing 

this w rapper strategy, the current implem entation of AURORA is able to access a variety of data 

sources w ithout building custom wrappers. The focus of the implementation work is on the design 

and im plem entation of AURORA-RH and AURORA-RI mediators.

7.4 Im p lem en ta tion  o f A U R O R A -R H  and A U R O R A -R I

AURORA’S relational mediators, AURORA-RH and AURORA-RI, have been implemented to form 

a  framework for dynamic integration of da ta  sources w ith  OLE-DB providers. The canonical data 

model supported by this implementation is the relational d a ta  model. These mediators are imple

mented as components th a t cooperate through the C O M /D C O M  framework. It is necessary to look 

a t AURORA-RH and AURORA-RI together to  show what they do, and why, and how they work 

together. The current AURORA implementation is illustrated  in Figure 7.4.

7.4.1 Im p lem en tation  o f A U R O R A -R H

As shown in Figure 7.4, implementation of AURORA-RH consists of two parts: (1) implementation 

of MAT-RH; and (2) implementation of the AURORA-RH query server.
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AURORA-RI

Query Server 
(GUI)

Utility DB

:OMCOM COM vCOM

AURORA-RH AURORA-RH

MAT-RH RH_QP RH_QPMAT-RH

Utility DB Utility DB

OLE-DB OLE-DBOLE-DB'OLE-DB

Figure 7.4: Im plem entation of AURORA-R M ediators

MAT-RH

MAT-RH is built as a graphical user interface th a t allows m ediator authors to connect to a data  

source, browse its source schema, create a homogenizing view by specifying virtual relations and their 

derivations, and finally, register some or all relations in the homogenizing view with an AURORA-RI 

m ediator. As shown in Figure 7.5, the top level menu consists of the following items:

1. I n i t i a l i z e . Selecting this item  would activate a pop-up menu th a t allows the user to perform 

the following tasks:

•  Choosing the item I n i t i a l i z e  allows initializing the AURORA-RH m ediator to a  named 

d a ta  source. Upon initialization, the system retrieves the schema of the d a ta  source and 

allows the user to browse it. Internally, the system also creates a companion utility 

database with a  schema designed for storing mapping information. This database is later 

used for storing derivations of th e  homogenizing view and for m anipulating tem porary 

tables during query processing.

•  S ave To DB. C hoosing this item  w ould cause the m appings that are specified  to  be saved  

into th e  com panion u tility  d atab ase . T his is usually perform ed after th e  hom ogenizing  

view  has been constructed  com pletely.

2. Im p o r t . Choosing this item will activate a  pop-up menu that provides two options for im port

ing part or all of the source schema: Im port whole schema and Im port by query . Another
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Figure 7.5: M ain W indow of MAT-RH GUI

item  on the  pop-up menu allows the im ported  schema to be browsed. This pop-up menu is 

shown in Figure 7.6.

3. SME-1. Choosing this item will bring up the  pop-up m enu th a t provides various facilities for 

resolving type 1 cross-over mismatch. As shown in Figure 7.7, the items on this pop-up menu 

include the following:

• ViewDef w ith  Pad. This item allows the use of the pad primitive for defining derived 

relations. A dialog window will pop up to collect various parameters for a pad operation.

• ViewDef w ith Rename. This item  allows renam ing of relations.

• ViewDef w ith  RELmat. This item  allows the  use of the RELm at transform ation. Choos

ing this item will bring up a dialog window, as shown in Figure 7.8. The user fills up the 

entries in this dialog and a  view relation will be derived by MAT-RH.

• ViewDef w ith  Query. This item  allows the user to  specify a view relation as a  relational 

query over all the relations derived so far.

•  D is p la y  View Schema. This item  allows the user to  browse the schema that includes all 

the  view relations derived so far.
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Figure 7.6: Im port pop-up menu

4. SME-2. Choosing this item will s ta r t the pop-up menu that provides various facilities for 

resolving type 2 cross-over m ism atch. T he items on this pop-up menu are similar to those on 

SME-1 except that ViewDef w ith  RELmat is replaced by ViewDef w ith  ATTRmat. The dialog 

window brought up by choosing ViewDef w ith  ATTRmat is shown in Figure 7.9.

5. RLE. Choosing this item will s ta rt the pop-up menu that provides various facilities for relation 

linking. As shown in Figure 7.10, this pop-up menu includes the following items:

• ViewDef w ith  Query. This item  allows derivation of view relations using relational 

queries over all the relations derived so far.

•  S e le c t  P ro to ty p e  R e la t io n s .  This item  allows the user to m ark existing relations as 

the prototype relations.

•  D isp la y  View Schema. After pro to type relations have been specified, the view schema 

will include only these relations and  are often smaller them before.

6. DSE. Choosing this item  will bring up the  pop-up menu that provides facilities for resolving 

dom ain structural mismatches by specifying domain structural functions (DSFs). T he pop-up 

menu includes two items:
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Figure 7.7: SME-1 pop-up menu

• S p ec ify  Domain S t r u c t u r a l  F u n c tio n s . Choosing this item will bring up a  sequence 

of dialogs, shown in Figures 7.11 and 7.12, that allows the m ediator au thor to specify 

the list of a ttribu tes in a  prototype relation that correspond to am attribu te  in the target 

relation, and to declare a  dom ain structural function of the appropriate signature. The 

DSFs themselves m ust be provided by the user as a DLL. In the current implementation, 

all such DLLs must be in a  single file. In the future, this restriction will be removed.

• D isp lay  View Schema. Displays the current schema.

7. DUE. Choosing this item will bring up the pop-up menu that provides facilities for resolv

ing domain element mismatches by specifying domain value functions (DSFs). The facilities 

provided are similar to those in DSE, except the functions declared in this environment are 

domain value functions, which are functions th a t take one in-param eter and return  a  value. 

Inverses of these functions, if they exist, are also accepted by the system for later use.

8. R e g is te r .  Choosing this item will bring up a sequence of dialogs, shown in Figures 7.13 and 

7.14, which allow the user to register one source relation as a fragment of a target relation. 

Ideally, the registration process should allow the mediator author to specify the name of 

the target AURORA-RI m ediator, and the target relation of which a source relation is a
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ISYSADM.SOFTWAREENGINEER.MARKETINGSTAFF.RESEARCHSTAFF.

Materialized Attribute Name: |jOBNAME

OK .1

Figure 7.8: D ialog W indow for the R E Lm at Transformation

fragm ent. In the current im plem entation, there is only one AURORA-RI m ediator running 

and its identity is hard-coded in the AURORA-RH mediators; hence the user does not choose 

which AURORA-RI m edia to r to register d a ta  with. This restriction will be removed in the 

future.

source of interest. Then she invokes the 6 tools in sequence to remove various types of mismatches 

by deriving view relations. This process is guided by the homogenization methodology. Once she 

is satisfied with the homogenizing view derived, she must do two things before exiting MAT-RH. 

First, she m ust save the hom ogenizing view and its derivation to  the utility database. This is done 

by choosing I n i t i a l i z e  -> S ave to  DB. Second, she must register some or all of the  relations in 

the derived view as fragments of relations in the target service view, supported by the AURORA-RI 

m ediator. This is done by using th e  registration facilities described earlier.

AURORA-RH Query Server: RH_QP

AURORA-RH query server is a  COM server. It supports a single  interface, IRHQuery, as show n  

in th e  IDL specification  below . IRHQuery consists o f  two m ethods: ExecQ uery and GetNextRow. 

E xecQ uery accepts queries g iven  as three strings: the select clause, the from clause, and th e  where 

clause. GetNextRow returns a  r o w  o f d a ta  in  a  buffer. T his interface is used by AURORA-RI 

m ediators to  send queries for ex ecu tio n  and to  retrieve query results.

Usually a m ediator author works with MAT-RH as follows. First, she connects to the data

/ /
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Figure 7.9: Dialog W indow for the A TT R m at T ransform ation

// RH_QP.idl 
/ /
import "unknwn.idl" ;
/ /
// Interface IRHQuery 
/ /
[

object,
uuid(05EDAE72-D6EA-lldl-A811-0004AC9592CC) , 
helpstringC"Query Interface of AURORA-RH"), 
pointer_default(unique)

]
interface IRHQuery : IUnknown
■C

HRESULT ExecQuery ( [in, string] wchar_t* DataSourceName,
[in, string] wchar_t* selectClause, 
[in, string] wchar_t* fromClause,
[in, string] wchar_t* whereClause

) ;
HRESULT GetNextRow ( [out] int* succ,

[out] wchar_t RowBuffer[1000]
) ;

>;
/ /
// Component descriptions 
/ /
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Figure 7.10: Pop-up Menu of RLE

C
uuid(887365AD-D479-lldl-A811-0004AC9592CC), 
version(l.O),
helpstringC'RHQP 1.0 Type Library")

]
library RHQP_Lib 
-[

importlib("stdole32.tlb") ;
[

uuid(05EDAE74-D6EA-lldl-A811-0004AC9592CC), 
helpstringC"AURORA-RH Query Processor Component")

]
coclass RHQP.CMPNT
•C

[default] interface IRHQuery ;
>; 

> ;

Upon receiving a  query against a  da ta  source D, RH_QP first loads the homogenizing view of source 

D  from the companion utility database of D . It then rewrites the query using view mappings loaded 

from the utility database, to generate an initial QEP. This QEP is then transform ed into a more 

efficient QEP. Currently, RH_QP is able to employ all the transform ation rules shown in Table 5.5 

th a t involve selection to optimize the initial QEP. Once the optim ized Q EP is generated, RH_QP
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S p e c i f y  D om ain  S t i u c l u t a l  F u n c t i o n s

Relations: c Columns:

PEOPLE:
COMPANY_SALES NAME:str
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Add Selected Column a s  DSF Parameter j(

DSF in-Paim List

SALARYiint
BONUSiint Clear Parm List

D elete S elected  Parm

Specify Domain Structural Function OK

Figure 7.11: F irst Dialog for Specifying Domain Structural Functions

will evaluate the QEP bottom  up. F irst, it sends subqueries to  source D , then, it assembles the

the GetNextRow m ethod in the IRHQuery interface supported by RH_QP..

7.4.2 Im plem entation  o f A U R O R A -R I

AURORA-RI im plem entation includes tw o parts: the registration server, and t h e  query server. 

T h e registration  server is a  COM com ponent supporting a single interface, I R T R e g is te r , which 

includes a  single m ethod, R e g is te r F r a g m e n t. T his m ethod is invoked by MAT-R.H for registering  

source relations. It accepts five param eters: hostN am e, the nam e of the host t h a t  th e  AURORA- 

RH m ediator is running at; sourceDBName, the nam e of the source database; sou rceR elN a m e, the  

nam e o f the source relation to be registered; targetR elN am e, the nam e o f the g lo b a l relation in the 

service view  o f  which the relation nam ed by sourceR elN am e is a  fragment; and fr a g m e n t Scheme, 

the schem e o f th e  relation nam ed by sourceR elN am e.

/ /
/ /  RIREG. i d l  
/ /
import "unknwn.idl" ; 
typedef struct

returned results to produce the final query result. Query results can be retrieved b y  the  client using

■C
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Specify a Mapping Function

Relation:.. jpEOPLE :

Source ColumnfsJ: | SALARY:intBONUS:int
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■ Function Monotony:
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] Integer ▼ }
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Monotone-decreasing

< * Other* OK 1

Figure 7.12: Second Dialog for Specifying Domain Structural Functions

numColumns; 
columnName[50][60]; 
colType[50];

int
wchar_t 
int

} XRelSch.eme;
/ /
// Interface IRIRegister 
/ /
[

object,
uuid(9E900F31-DBA0-lldl-A81B-0004AC9592CC) , // Apr 24 2: 
helpstring("Registration Interface of AURORA-RI") , 
pointer_def ault (unique)

]
interface IRIRegister : IUnknown 

HRESULT RegisterFragment (

15pm

[in, string] wchar_t* hostName,
[in, string] wchar_t* sourceDBName,
[in, string] wchar_t* sourceRelName,
[in, string] wchar_t* targetRelname,
[in] XRelScheme fragmentScheme

>;
/ /
// Component descriptions 
/ /
[
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COMPANY SALES

Register Selected Relation OK

! PEOPLE

R egister W ith Integration M ediator

Figure 7.13: F irst Dialog for Registering Relations with Integration M ediator

uuid(9E900F33-DBA0-lldl-A81B-0004AC9592CC), 
versionCl.0),
helpstringO'RIREG 1.0 Type Library")

]
library RIREG_Lib
t

importlib("stdole32.tlb") ;
C

uuid(9E900F35-DBA0-lldl-A81B-0004AC9592CC) , 
helpstringC"AURORA-RI Registration Server")

]
coclass RIREG.CMPNT

[default] interface IRIRegister ;
>;

Upon receiving a  registration, the AURORA-RI registration server will store the registration infor

m ation in a  utility database. The content of this database will then be used by the  AURORA-RI 

query server to decide where and how to collect fragments when needed.

The AURORA-RI query server is currently a  GUI driven program. The user launches the query 

server and is presented w ith a GUI with which the supported service view can be browsed and queries
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Registration Details

Source Relation: JPEOPLE

Home Host Name: 1 Krbii

Target Relation: EM PLOYEE

OK

Figure 7.14: Second Dialog for Registering Relations with Integration M ediator

can be posed. Upon receiving a  query, the query server goes to the utility database to find out which 

fragments are needed for query processing. Currently, there are no query optim ization capabilities 

implemented, so the query server always retrieves all the relevant fragments in full, performs a match 

join to  produce the relation(s), and then processes the query.

7.5 O bservations and E xp erien ces

Using a DOC framework is an elegant way of supporting distribution and dynamic composing of 

AURORA components. Work done in order to  ship the components as COM servers is limited; the 

COM hooks in the client and server programs are mostly reusable. Generally, the amount of work 

involved to use the COM platform is small in comparison to the work required for implementing the 

logistics of the components.

Both AURORA-RH and AURORA-RI have a query engine. These engines do not implement 

their own join, selection, buffer m anagement etc., but rather use these facilities provided by a 

commercial RDBMS, DB2/NT. This strategy works, but it requires creating tem porary tables to 

hold interm ediate results during m ediator query processing, which can be quite slow. It is probably 

a  much be tte r idea to expand am existing query processor with operators in AURORA. This requires 

access to and knowledge of a  good, existing, query processor.
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Chapter 8

Conclusions and Future Work

This d isserta tion  describes the AURORA pro ject. Research in AURORA established new techniques 

for building an integrated d a ta  access m iddleware system (IDAMS) based on the  m ediator archi

tecture. A prototype system is built to  dem onstrate  the paradigm and techniques developed. This 

chapter sum m arizes the contributions and experiences of AURORA, and reviews future work.

8.1 C on trib u tion s

Research in  AURORA has two m ain dimensions: (1) a 2-tiered m ediation m odel, flexible data 

model suppo rt, and mediation m ethodologies; and (2) Mediator query processing based on Mediation 

Enabling A lgebras (MEAs) and the conflict to lerant query model. The first dim ension deals with the 

general paradigm  of a da ta  m ediation system , the second dimension focuses on developing enabling 

techniques.

8.1 .1  M ed iation  M odel, F lex ib le  D a ta  M odels, and M ed ia tio n  M ethod

o log ies

A m ediation  model prescribes various tasks in the data  integration process (also referred to as 

d a ta  m ediation) and the relationship am ong them . AURORA’S 2-tiered m ediation model prescribes 

th a t d a ta  m ediation be performed in two steps: homogenization followed by integration. This 

m ediation m odel enables a  divide-and-conquer approach towards integration of a  large number of 

heterogeneous and autonomous d a ta  sources. It enables scalable m ediation, where adding and 

removing d a ta  sources is easy. AURORA supports both relational and object-oriented data  models: 

m ediators a re  available in both models. Consequently, AURORA m ediators are function specific, 

performing specific mediation tasks; and data model specific, supporting either th e  relational or the 

object-oriented (ODMG) d a ta  model. This paradigm  enables scalable in tegration o f a  wide range of
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data sources:

1. W rapper construction work is reduced due to  the  flexible da ta  model support in AURORA. 

D ata  sources can be wrapped with a  relational or an object-oriented interface, whichever is most 

easily generated. As dem onstrated in AURORA, relational wrappers can be composed using 

commercial middleware systems. In  general, the  AURORA paradigm  does not require da ta  

sources to “upgrade” their da ta  models and  thus allows them to participate in the integration 

scope without incurring m ajor w rapper construction work.

2. T he 2-tiered m ediation model of AURORA divides the  data  integration task  into pieces that 

can be worked on independently and in parallel. The difficulties encountered in building large 

scale da ta  integration systems originate from two sources: semantics and scale. W orking with 

semantics is difficult, working with sem antic differences among a large number of heterogeneous 

sources is even more difficult. A general principle in building AURORA is “sem i-autom atic 

homogenization, autom atic integration” . Homogenization deals with a  wide range of semantic 

issues but concerns single sources, while integration deals with a  small num ber of sem antic is

sues although the num ber of sources involved is large. Furthermore, homogenization mediators 

in AURORA, are equipped with a  m ediator au th o r’s toolkit (MAT) th a t helps the  m ediator 

au thors to work with semantics. The basis of a  MAT is a  mediation methodology th a t guides 

a  m ediator author to work w ith sem antic issues systematically. MATs also provide various fa

cilities to the m ediator author. A MAT has been built as part of the AURORA-RH m ediator 

in the  prototype system.

8.1 .2  Scalability  and F lex ib ility  o f  th e  A U R O R A  A pproach

Scalability of the AURORA, approach is enabled through the 2-tiered m ediation model, which con

trols the complexity of building a large-scale d a ta  integration system by prescribing a  divide-and- 

conquer approach. Adding and removing of d a ta  sources are easy. The complexity of the data  

integration activity does not increase with the num ber of sources involved: large-scale integration 

can be performed as easily as integration of a  small num ber of sources.

Flexibility of the approach is enabled also by the 2-tiered mediation model and by the flexible data  

model support provided with all the AURORA, m ediators. The 2-tiered m ediation model prescribes 

th a t adding and removing of da ta  sources do not im pact on the availability and validity of the  service 

view, or the  participation of other da ta  sources. Unavailable da ta  sources can be treated  as a  source 

th a t removed itself from the access scope voluntarily. Flexible data model support of AURORA 

enables the  applications and the da ta  sources to  consum e/contribute da ta  based on a  d a ta  model 

th a t is m ost comfortable; this greatly increases the  practical appeal of a da ta  integration system .
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8.1 .3  E nabling Techniques

Enabling techniques are mainly in the  a rea  o f  processing mediator queries. Two types of techniques 

have been proposed: query processing and optimization based on M ediation Enabling Algebras 

(MEAs), and Conflict Tolerant (CT) query m odels.

D ata  manipulations tha t are specific to mediation systems, and are unknown to traditional 

DBMSs, are captured in MEAs which are th e  basis for algebraic and cost-based m ediator query 

optim ization and processing. Different m ediators employ different MEAs. M EAs for all AURORA 

m ediators have been defined. In the re la tiona l mediators, query processing techniques based on 

MEAs have also been established. W ith  M EA s, the impact of the m ediation process on query 

processing has been identified and taken  in to  consideration during query processing.

The Conflict Tolerant (CT) query m odels are employed by AURORA integration mediators 

for querying multi-source data . The C T  query  models represent a  step away from the traditional 

paradigm  of querying data  integrated from m ultiple sources. R ather than  creating a  single-source 

illusion, conflicts are exposed to the applications in a controlled and m anageable manner. The key 

point in designing a CT query model is to  prov ide enough levels of conflict tolerance to cater for most 

application requirements, w ithout overwhelm ing the applications w ith com plicated choices in conflict 

handling. This approach allows the applications more control over how conflicts are handled and 

provides the mediation systems with more spa.ce for query optimization, especially when conflict rate  

is low. Currently, only the CT query m odel employed by the AURORA-RI m ediator is completed.

8.2 E xperien ces

The AURORA experience gives rise to  two observations on research in DDAMSs. First, building 

IDAMSs involves issues in both paradigm s a n d  techniques; adopting a new paradigm  gives rise to 

new technical problems. From a  pragm atic view  point, employing a  paradigm  th a t applications can 

identify with is equally im portant as developing techniques to make the system  function efficiently. 

AURORA chose to employ a new paradigm  a n d  study the related technical problems. In terms of 

research, a  drawback is th a t the validity and. applicability of the techniques developed depend on 

th a t of the general paradigm  employed; it is m ore difficult to dem onstrate their significance.

Second, choice of paradigms varies w ith target applications. The choice of the paradigm in 

AURORA was not made based on an in -dep th  study of several classes of applications, but rather 

based on one specific type of application - th e  electronic commerce application - and the potential 

for producing technical results. In hindsight, a more thorough study of application scenarios may 

provide more input into the design of the  paradigm .

The current implementation of AURORA, realizes the vision of using light-weight, specialized, 

easy-to-use components to build increasingly sophisticated data  mediation system s. W ith the ad-
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vances in In ternet and distributed computing technology, monolithic m ediation systems with a static  

access scope will no longer be sufficient. Future m ediation system s m ust be highly distributed and 

m ust be able to expand/reduce their access scopes gracefully. The current prototype system demon

strates th a t the AURORA approach allows such m ediation system s to be constructed.

Two observations can be made after the im plem entation of the AURORA prototype. F irst, 

m aking use of currently  available software can reduce the  workload tremendously. AURORA makes 

use of commercial middleware systems, such as OLD-DB provides and the ISG Navigator, to form 

wrappers, and hence avoids building custom w rappers while gaining access to a  wide range of da ta  

sources. Second, the  efficiency of da ta  exchange and  m anipulation of mediators requires more work. 

Currently, the AURORA prototype system focuses on dem onstrating the paradigm and the base 

techniques; d a ta  exchange among, and d a ta  m anipulation w ithin, the mediators are inefficient. This 

is an engineering issue and may require a detailed study  of the state-of-the-art technology available.

8.3 F u tu re W ork

Future work on extending AURORA itself fails into the  following categories:

1. Extending the  flexible d a ta  model support in AURORA to include XML. This extension will 

eventually allow Web pages to be treated  as d a ta  sources. XML is regarded as the main 

medium th a t  allows Web data  m anipulation and  exchange. Currently, considerable work is 

going on in querying and managing XML d a ta  sources. Progress in this regard may provide 

inspirations for building AURORA m ediators based on XML.

2. Further establishing of the conflict tolerant querying facilities. T he CT query model for object- 

oriented integration mediator is not yet defined. Definition of the CT query model for relational 

m ediators requires extension. In particular, th e  CT query semantics may become unclear in 

complicated queries such as nested queries, or queries involving aggregation functions. The 

num ber of levels of tolerance cam be reviewed in the future. The key is to offer adequate support 

for the applications to deal with conflicts a t run-tim e, w ithout overwhelming the applications 

with complicated handling of these conflicts.

3. To carry on with the idea of exposing instance level conflicts to the applications, rather than 

hiding them  a t high system expenses, the C T  query paradigm  may be adapted to deal with 

o ther types of conflicts, such as lineage and source credibility of da ta  items. The challenge is 

to  design enough number of tolerance modes w ithout leaving the applications overwhelmed.

Work th a t further establishes the AURORA approach on a  more formal basis also gives rise to 

interesting future research topics, as discussed below.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Formed Semantics of the AURORA Approach.

As described in Section 3.2.3, the formal semantics of queries posed against a service view in AU

RORA requires more work. Moreover, the introduction of CT queries may give rise to new issues 

in completeness and  soundness of a  global database, as well as query semantics. Such work can be 

carried out in a  fashion similar to  th a t of [33] and should provide insight into the value of systems 

such as AURORA.

Criteria for Evaluating EDAMSs.

Choosing an ID AMS th a t work well can be a  complex evaluation process since it involves issues such 

as transform ation and composition of application semantics, usability of the facilities, etc. Some 

part of this evaluation may not have a formal basis. For now, a  few criteria may be useful, including 

the following:

1. Completeness of the range of mismatches and conflicts a  system  is capable of handling. The 

question to be answered is: “Given any data integration scenario, is the system capable of 

performing all required data conversion, matching and combination fo r  integration purpose?”

2. Providence of m ediation methodologies and their completeness. Most previous systems do 

not provide a  m ediation methodology while AURORA does. However, AURORA’S mediation 

methodologies do not have a  formed basis and their completeness is yet to be established. The 

u ltim ate question to be answered is the following: “Given any data integration scenario, do 

the mediation methodologies provided enable the users to identify all differences and overlaps 

among the data sources, and, resolve them correctly? Do the mediation methodology guarantee 

a correct data integration?”.

3. Ease of use of the system, whether the users axe provided w ith enough facilities to  perform 

m anual d a ta  integration tasks.

4. Efficiency of d a ta  m anipulation within the integration system, whether redundant da ta  re

trieval is minimized.

5. Safety of queries, w hether the queries posed against the integrated (virtual) da ta  have a well- 

defined, determ inistic semantics.

The first two criteria  of the evaluation lead to a more fundam ental issue: how do we formally 

describe, compare, transform , and, merge m ultiple application models to produce a new application 

model, required by a class of applications? To do this, a  formal model is required for describing 

the semantics of the source d a ta  as well as the semantics of the desirable target data. Once such 

formal models are established, one can formally identify a  complete range of mismatches th a t must 

be handled by a  good IDAMS. One can also formally establish the completeness of a mediation

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



methodology, by proving th a t it m andates the removal of all possible mismatches and guarantees a 

correct d a ta  integration.
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