
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographicaliy in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

B u i l d i n g S c a l a b l e a n d F l e x i b l e M e d i a t i o n : t h e A U R O R A A p p r o a c h

by

Ling Ling Yan

A thesis subm itted to the Faculty of G raduate Studies and Research in partial fulfillment of the
requirem ents for the degree of D o c to r o f P h ilo s o p h y .

Departm ent of Com puting Science

Edm onton, A lberta
Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ * l National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibiiotheque nationale
du Canada

Acquisitions et
services bibliographiques
395. me Wellington
Ottawa ON K1A0N4
Canada

Your me Voire riterenca

Our tile Notre reference

The author has granted a non
exclusive licence allowing the
National Library o f Canada to
reproduce, loan, distribute or sell
copies o f this thesis in microform,
paper or electronic formats.

The author retains ownership o f the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive pennettant a la
Bibiiotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
N i la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-60042-4

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs i ty o f A lb e r ta

L ib ra ry R e le ase F o rm

N a m e o f A u th o r: Ling Ling Yan

T i t le o f T hesis: Building Scalable and Flexible M ediation: the AURORA Approach

D e g ree : Doctor of Philosophy

Y e a r th is D eg ree G ra n te d : 2000

Permission is hereby granted to the University of A lberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The au thor reserves all other publication and other rights in association with the copyright in the
thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any m aterial form whatever without the au thor’s prior
w ritten permission.

IX.I/&0
Ling Ling Yan
364 Spode Way
San Jose, California
United States, 95123

D a t e :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Everything should be as simple as possible - bu t not simpler.
- Albert E instein

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs ity o f A lb e r ta

F a c u lty o f G ra d u a te S tu d ie s a n d R e s e a rc h

The undersigned certify th a t they have read, and recommend to the Faculty of G raduate Studies
and Research for acceptance, a thesis entitled B u ild in g S c a la b le a n d E ffic ien t M e d ia tio n : th e
A U R O R A A p p ro a c h subm itted by Ling Ling Yan in partial fulfillment of the requirements for
the degree of D o c to r o f P h ilo s o p h y

/lu. (KTwflLC
M .Tamer Ozsu

.Cc>)
Li Yan

Duane Szafron

Michael R arrett

tenee J /M ille r

j <2-7 / ^ -ood
D a t e :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Murray

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This dissertation describes the AURORA project, th a t develops approaches an d techniques for large-

scale da ta integration. The focus of the project is on the following:

1. Scalable mediation. Adding and removing da ta sources to /from the access scope of a d a ta

integration system should be easy.

2. Flexible mediation. Specific properties of d a ta sources, such as da ta models, query processing

capabilities, and availability, should be dealt with by the system at run-tim e.

AURORA consists of three components: (1) a two-tiered mediation model and flexible da ta model

support; (2) mediation methodologies and M ediator A uthor’s Toolkits (MATs); and (3) query models

and processing techniques.

The two-tiered mediation model m andates th a t da ta integration be performed in two steps:

homogenization followed by integration. This model is designed to enable a divide-and-conquer

approach towards data integration. D ata sources are homogenized independently and in parallel,

before they are integrated. AURORA provides specialized m ediators to support homogenization

and integration. The general principle of designing AURORA mediators is “semi-automatic homog

enization, automatic integration”. The homogenization mediators are equipped with a M ediator

A uthor’s Toolkit (MAT) to assist m ediator au thors in working with semantics. A MAT m andates a

mediation methodology th a t prescribes an approach of system atically identifying and resolving se

m antic mismatches. AURORA integration m ediators provide a framework for autom atic integration

of homogenized sources.

AURORA provides mediators th a t support either the relational da ta model or an object-oriented

d a ta model (ODMG 2.0). The flexible da ta model support in AURORA allows applications to select

d a ta models according to their d a ta access requirem ents. Moreover, sources can be integrated as long

as they support a relational or an object-oriented interface (by themselves or through a w rapper).

Thus, the am ount of work in “upgrading” d a ta model is reduced; this potentially allows a larger

variety of da ta sources to be integrated w ith less effort.

Query processing in various AURORA m ediators employs different techniques for m anipulating

data . In the homogenization m ediators, query processing is based on M ediation Enabling Algebras

(MEAs), which provide operators to enable m anipulation of d a ta to remove a wide range of se

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m antic mismatches. These MEAs are also used for algebraic query optim ization. The integration

m ediators deal with only instance level conflicts, since all o ther types of sem antic differences have

been removed by homogenization. AURORA integration m ediators employ an integration operator

th a t retains instance level conflicts and provide the applications w ith special query models, called

Conflict Tolerant (CT) query models, to deal with the conflicts a t query tim e. The key is to provide

enough num ber of levels of tolerance w ithout leaving the application overwhelmed.

Four types of AURORA m ediators are described in this dissertation: AURORA-RH. AURORA-

RI, AURORA-OH, and AURORA-OI. The homogenization m ediators, AURORA-RH and AURORA-

OH, are each equipped with a MAT. The CT query model used by the AURORA-RI mediator, and

related query processing techniques, is described in detail. T he relational m ediators have been im

plemented. A prototype system th a t dem onstrates the AURORA approach and techniques is also

described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I thank my advisor, Professor M .Tamer Ozsu, for the directions and support he kindly and generously

provided to me throughout the years. Tam er introduced me to the Center of Advanced Studies, IBM

Toronto, and th a t opened the doors for my current position at IBM Alm aden Research Center. After

the arrival of my son in 1998, he has helped me through many difficult situations, both in my study

and in other aspects of my life. I wish I could develop some streng th in my character tha t is

comparable to his. I consider myself fortunate to have Tamer as an advisor, in th a t if it is not for

him, I would not be where I am today.

Special thanks go to Dr. Ling Liu, who was involved in my work for the first few years and

provided interesting input into my project. I deeply admire Ling’s drive and energy. Dr. Duane

Szafron, who took tim e to look at part of my work, has helped m e trem endously in improving the

object-oriented framework of AURORA. My external examiner, D r. Renee Miller, from University

of Toronto, has raised interesting issues and kindly helped me to finish this thesis on time.

I thank my friend Vincent Oria for agreeing to do all the work for me when I repeatedly told

him th a t I could never get th a t work done. Although I did finally do all the work myself, his words

a t the tim e were invaluable. I also thank Anne Nield for making all sorts of arrangement for me so

I can work off campus. Anne also proof-read through my long long thesis, given tha t I wrote it, I

know how much work th a t is. Thanks Anne!

My parents and m y in-laws, Rudy and Heidi Kornelsen, have provided great support throughout

my study. My m other came to C anada twice to take care of my young child so I can work on my

project. Rudy and Heidi always opened their beautiful home to me, complete with nice meals and

top-quality baby-sitting. I consider myself lucky to have wonderful parents and in-laws and my baby

is lucky to have such wonderful grandparents, that he obviously loves very much.

Finally, I thank my husband Randal and my beautiful baby M urray, for their faith in me and for

their support. In the first 6 months of his life, M urray exercised incredible am ount of patience and

a tten tion span to allow me to work for a few hours a day while chewing up all his toys and learning

all about space and com puters (he also grew some eyelashes in his spare time!). When things get

tough, M urray is always there to cheer me up. My dear husband R andal always had more faith iri

me than I myself do and he never allowed me to quit. Being with Randal has transformed my life

for the b e tte r and the stronger. This achievement is so much yours as it is mine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 I n tr o d u c t io n 1
1.1 M otivation .. 1
1.2 T he AURORA Approach .. 4

1.2.1 2-tiered Mediation Model and Flexible D ata Model S u p p o r t 5
1.2.2 M ediator Author’s T oo lk it... 7
1.2.3 Query Models and Processing T e c h n iq u e s ... 8

1.3 Organization of D issertation .. 10

2 R e la te d W o rk 11
2.1 Classification of A pproaches.. 11
2.2 Federated Database Systems (FDB) .. 13

2.2.1 Case Study: P eg a su s ... 14
2.2.2 Case Study: MSQL .. 17
2.2.3 Case Study: M IN D .. 18
2.2.4 Modeling and Language Features in F D B s ... 20
2.2.5 Schema and Query Translation Techniques in F D B s .. 23
2.2.6 AURORA and F D B s .. 23

2.3 D istributed Object M a n a g e m e n t... 24
2.4 T he M ediator S y s te m s .. 26

2.4.1 TSEM M IS.. 26
2.4.2 H E R M E S .. 28
2.4.3 AURORA and Mediator S y s tem s.. 29

2.5 Paradigm s For Dealing with Highly Dynamic E n v iro n m e n ts .. 30
2.5.1 AURORA in Highly Dynamic Environm ents .. 31

2.6 Query Processing and Optimization in ID A M S s... 31
2.6.1 New Enabling Operators and Evaluation S tra teg ie s .. 33
2.6.2 Algebraic Transformation R u les ... 34
2.6.3 Coping with Unavailable Optim ization Information For Cost Modeling 35

2.7 S u m m a r y .. 37

3 T h e A U R O R A A rc h ite c tu re 38
3.1 AURORA Mediation M o d e l.. 38

3.1.1 Two-tiered Mediation M o d e l .. 39
3.1.2 Building A D ata Mediation System with AURORA: A Scenario 40
3.1.3 Two-tiered Model and Scalab ility ... 40
3.1.4 W hy T w o-tiered?... 42

3.2 AURORA Architecture ... 44
3.2.1 D ata Sources and W rap p ers ... 44
3.2.2 AURORA Mediators As Middleware Components .. 44
3.2.3 M ediator Author’s Toolkits (MATs) in A U R O R A ... 46

3.3 Semantics of Integrated D ata S e rv ic e s .. 47
3.4 Enabling Techniques in AURORA: A R o a d m a p .. 50

4 R e la tio n a l M e d ia tio n F ram ew o rk 52
4.1 An Overview of the Relational Mediation F ram ew ork .. 52

4.1.1 Service V i e w ... 53
4.1.2 D ata Sources and Relational W rap p e rs ... 53
4.1.3 Homogenization of D ata S o u r c e s ... 54
4.1.4 Integration of Homogenized S o u r c e s .. 55

4.2 AURORA-RH Homogenization EVamework .. 56
4.2.1 The Homogenization P ro b lem .. 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Mismatches and R esolutions.. 57
4.2.3 AURORA-RH P r im i t iv e s ... 60
4.2.4 Homogenization M ethodology and A U R O R A -R H .. 62
4.2.5 Homogenization with A U R O R A -R H .. 63

4.3 The Integration Framework and A U R O R A -R I.. 72
4.3.1 R e g is tra tio n s ... 72
4.3.2 M atch J o i n .. 73
4.3.3 An Integration E x a m p le ... 74

4.4 S u m m a r y ... 77

5 Q u e r y P ro c e s s in g in R e la tio n a l M e d ia to rs 78
5.1 Conflict Tolerant Querying in A U R O R A -R I... 79

5.1.1 M o tiv a t io n .. 79
5.1.2 Instance Level Conflicts and R eso lu tions.. 81
5.1.3 Conflict Tolerant Query M o d e l ... 84

5.2 Prim itive Evaluation of Conflict Tolerant Q u e r ie s ... 86
5.3 Optimized Processing of Conflict Tolerant Q u e r i e s .. 89

5.3.1 CT Query Optimization: an O v erv iew ... 89
5.3.2 A Theory of Conflict Tolerant Query P r o c e s s in g .. 90
5.3.3 Optimized Conflict Tolerant Query Evaluation A lgorithm s................................... 95

5.4 AURORA-RH Query P r o c e s s in g ... 99
5.4.1 AQP Query Execution Engine and Q E P s ... 99
5.4.2 Query R e w r i t in g .. 99
5.4.3 AQP Query O p tim iz a tio n ... 102

5.5 Related W o rk .. 107
5.6 S u m m a r y ... 110

6 O b je c t- O r ie n te d M e d ia t io n F ra m e w o rk 113
6.1 The Service V ie w ... 113
6.2 D ata Sources and W ra p p e rs ... 114
6.3 Overview of the Homogenization Fram ew ork... 115

6.3.1 The Homogenization S c e n a rio .. 115
6.3.2 Homogenizing V ie w s ... 116
6.3.3 The Homogenization Facilities ... 116
6.3.4 Homogenization M ethodology.. 118
6.3.5 AURORA-OH MEOs .. 120
6.3.6 A Com pact Homogenization E x a m p le .. 122
6.3.7 MEOs and the Homogenization M eth o d o lo g y .. 123

6.4 An Overview of the Object-Oriented Integration ...124
6.5 Basic Concepts in Object-Oriented H om ogenization... 125

6.5.1 A Running E x a m p le ... 125
6.5.2 A Framework for Describing C la s s e s ... 125
6.5.3 Navigation M e th o d s ... 130

6.6 M ediation Enabling Operators for H om ogen ization ... 133
6.6.1 Regrouping M E O s .. 133
6.6.2 The MEO for Object Generation: O B J G E N .. 134
6.6.3 MEOs for Renaming and Deriving M e th o d s ... 136

6.7 Homogenization with A U R O R A -O H .. 140
6.7.1 A Homogenization M e th o d o lo g y ... 140
6.7.2 A W alk-Through of the Homogenization Example .. 141

6.8 AURORA-OI: T he Integration M e d ia to r ... 142
6.8.1 Oid Generation for Integrated O b je c ts .. 142
6.8.2 Fragments and R e g is tr a t io n s .. 143
6.8.3 Proxies .. 145
6.8.4 Proxy M atch Join: AURORA’S Integration O p e ra to r .. 147

6.9 S u m m a r y .. 150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Implementation of AURORA 151
7.1 Choosing a Distributed Com puting F ra m e w o rk .. 151
7.2 An overview of COM /DCOM a n d OLE-DB T e c h n o lo g y .. 152

7.2.1 W hat is C O M /D C O M ? ... 152
7.2.2 The COM Way of Building S y s te m s ... 153
7.2.3 OLE-DB Technology.. 154

7.3 AURORA Mediators as COM C o m p o n e n ts ... 157
7.3.1 Interfaces of AURORA. C o m p o n e n ts ... 157
7.3.2 OLE-DB Providers as AURORA W r a p p e r s ... 158

7.4 Im plem entation of AURORA-RH and A U R O R A -R I .. 159
7.4.1 Implementation of A U R O R A -R H ... 159
7.4.2 Implementation of A U R O R A -R I ... 167

7.5 Observations and E xperiences.. 170

8 Conclusions and Future Work 171
8.1 C o n tr ib u tio n s .. 171

8.1.1 Mediation Model, Flexible D ata Models, and Mediation Methodologies 171
8.1.2 Scalability and Flexibility of the AURORA A p p r o a c h ... 172
8.1.3 Enabling T echn iques.. 173

8.2 E x p e r ie n c e s ... 173
8.3 Future W o r k .. 174

Bibliography 176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cj
i

Cn
O

l
Ol

O

l

List of Tables

3.1 AURORA’S Flexible D ata Model S u p p o r t .. 46

4.1 category M ap: Domain Value Mapping for Books.category ... 71

.1 Querying Integrated D a t a .. SO

.2 Example Queries and Answers .. 87

.3 Exam ple Queries and Answers .. 88

.4 Fragment Reduction with S e le c tio n s .. 90

.5 Transform ation Rules for pad, rename and deriveAttr ... 106

6.1 Example Global Schema and Source Homogenizing V i e w s .. 126
6.2 Source schemas and populations ... 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01

oi

O
i

O
i

Cn
cn

01

Cn
O

i
Oi

Oi

Oi

O

i
Cn

O
i

O
i

O
i

List of Figures

1.1 The 2-tiered Mediation M odel of A U R O R A .. 6
1.2 AURORA M ediator Classification ... 6

2.1 Schema Architecture of F ederated D a ta b a s e .. 14
2.2 Pegasus System C onfigu ra tion ... 1-5
2.3 Pegasus Functional L a y e r s .. 16
2.4 MIND A rchitecture .. 19

3.1 Divide-and-conquer data, integration of A U R O R A .. 41
3.2 ISG Navigator as a W rapper ... 45
3.3 AURORA Application: u n ifo rm .. 46
3.4 AURORA Application: m ix e d ... 47
3.5 An AURORA W o rk b e n c h .. 48

4.1 Homogenizing View and Service V i e w .. 55
4.2 A Homogenization E x a m p le .. 57
4.3 Source T a b le s .. 58
4.4 Architecture of AURORA-RH W o rk b en ch .. 64
4.5 B ooksp: Result of R E L m a t .. 65
4.6 Salespi Result of A T T R m a t.. 67
4.7 Derived population of re la tio n B o o k s .. 71
4.8 Derived population of re la tion B o o k S a le s ... 71
4.9 Relationship Between Hom ogenization and Integration M ediators 73
4.10 Registered Fragments fo r Global Relation B o o k s .. 75
4.11 Derived Population of GLobal Relation B o o k s ... 76

.1 R A C (Books, j/eanMIN, oprahClub:ANY, bestSeller.D lSC ARD)...................................... 83

.2 RTC(Books, A N Y) .. 84

.3 Compute CSET and con ten t of B! when ci = RandomEvidence or HighConfidence 96

.4 Compute CSET Phase fo r PossibleAtAll ... 97

.5 Value of 5,-’s with d = DLSCARD ... 98

.6 Query Results .. 98

.7 Query Rewriting: Qi ... 101

.8 Query Rewriting: Qo ... 102

.9 Query Rewriting: Q3 ... 103

.10 Query Rewriting: Q4 ... 104

.11 Query Rewriting: Q5 ... 105

.12 Query optimization exam ple: first m o d if ic a tio n ... 107

.13 Query optimization exam ple: second modification ... 108

.14 Query optimization exam ple: third modification .. 109

.15 Query optimization exam ple: fourth modification ... 110

.16 Query optimization exam ple: fifth m o d if ic a tio n ... I l l

.17 Query optimization exam ple: sixth modification .. 112

6.1 A Homogenization M ethodology .. 119
6.2 Logical and Im plem entation Schemas of Class P ro fe s s o r ... 129
6.3 Use of Proxy for Uniform. A c c e s s .. 145

7.1 Use of OLE-DB Interfac&s and the Role of R o w se ts ... 156
7.2 AURORA Components a s COM C o m p o n e n ts ... 158
7.3 The Making of AURORA. W rappers Using OLE-DB P rov iders ... 159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Implementation of AURORA-R M e d ia to rs .. 160
7.5 M ain Window of MAT-RH G U I ... 161
7.6 Im port pop-up m e n u .. 162
7.7 SME-1 pop-up m e n u .. 163
7.8 Dialog Window for the R E L m at Transform ation .. 164
7.9 Dialog Window for the A T T R m a t Transform ation ... 165
7.10 Pop-up Menu of RLE ... 166
7.11 F irst Dialog for Specifying Domain S tructu ra l F u n c tio n s ... 167
7.12 Second Dialog for Specifying D om ain S tructural F u n c tio n s .. 168
7.13 F irst Dialog for Registering Relations w ith Integration M e d i a t o r 169
7.14 Second Dialog for Registering Relations with Integration M e d ia to r 170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A significant challenge facing the database field has been accessing multiple, heterogeneous data

sources. Connecting to multiple d a ta sources from a single application is easy, but accessing them

transparently is difficult due to the heterogeneities in platform, s tructu re , and semantics among the

sources. An Integrated Data Access Middleware System (EDAMS) is a software system that provides

applications with one-stop d a ta services using d a ta from multiple heterogeneous and autonomous

d a ta sources. EDAMSs are middleware systems; they are non-intrusive, respecting the autonomy

of the d a ta sources involved, and they deal with the complexities of accessing d a ta from multiple

sources on the applications’ behalf. IDAMSs support service views, which are interfaces through

which d a ta from multiple sources can be accessed transparently. A service view may consist of a

loose collection of source schemas presented in a common data model acceptable to the applications.

In this case, the applications pose queries against multiple schemas th a t often overlap in semantics;

m ism atches and inconsistencies among these schemas must be dealt w ith a t query time. More

often, a service view is integrated, allowing applications to access m ultiple sources as if they are

a single source. Research on IDAMSs dates back to the 1980s and has seen substantial progress

[47, 7, 51, 51, 5, 44, 6, 88, 12, 50]. Recently, this area of research is experiencing a resurgence due to

the advances in d istributed com puting technology and the fast growing availability of the Internet.

These advances give rise to new application scenarios and pose new requirem ents on IDAMSs. This

dissertation describes a project, AURORA [97, 94, 98, 95], tha t develops framewrorks and techniques

to address these challenges.

1.1 M o tiv a tio n

The availability of the Internet and the Web changes the way people use digital information; it gives

rise to new applications, such as electronic commerce and digital libraries, th a t use the Web as a

media for conducting business and exchanging information anytim e anywhere. These changes bring

the following new dimensions (among others) into IDAMSs:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. L a rg e sca le o f access sc o p e . Highly distributed, on-line applications, such as electronic

commerce and digital libraries, demand access to a large number of da ta sources around the

globe for information gathering. This calls for a paradigm of scalable mediation, to allow large

num ber of d a ta sources to be integrated in a dynamic and incremented manner. Scalability in

this context means the following:

• Integration of a large num ber of sources should have the same degree of complexity and

require the same level of expertise as integrating a small num ber of sources. For instance,

integrating 500 sources should be as easy as integrating 2 d a ta sources.

• The effort involved in adding/rem oving a data source should be manageable. For instance,

tools and methodologies should be provided to assist the users in specifying how source

da ta should be transform ed in order to be integrated.

2. H ig h ly d y n a m ic a n d d iv e rse e n v iro n m e n t. D ata sources come and go autonomously at

unpredictable rates and vary in availability and capabilities. Applications consuming the data

range from business applications that usually prefer the relational d a ta model, to multimedia

applications th a t work with object data. These characteristics of the environment calls for a

paradigm of flexible mediation. Flexibility in this context means the following:

• Flexible d a ta model support. Applications should be given the flexibility of using a data

model of their choice. The effort in upgrading d a ta models of the sources for integration

purpose should be reduced.

• Dynamic access scope. Inclusion/exclusion of a da ta source from the access scope should

have no impact on the availability of the service view or the participation of other data

sources.

Existing IDAMSs axe built with one of two paradigms: source-driven integration and application-

driven integration.

S o u rc e -D riv e n In te g ra t io n

In this paradigm, an integrated service view is derived by resolving the various types of hetero

geneities among the participating sources. Such a derivation is defined by an integration specifica

tion, which references the structure and semantics of individual sources directly. Adding or removing

a source requires modification to this specification and/or to the service view itself. W hen the num

ber of sources is large and the sources have unpredictable availability, the integration specification

becomes difficult to m aintain. Federated database systems [47, 88, 5, 44, 12] and some mediator

systems [74] use this paradigm.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p lic a t io n -D r iv e n I n te g ra t io n

In the application-driven integration paradigm, the service view is defined based on the application's

d e w of da ta , regardless of the structure or semantics of the participating sources: it is a contract

of d a ta service between the application and the IDAMS. For a source to participate in a service

view, the IDAMS m ust be able to “understand” the d a ta provided by this source. Representative

system s using this paradigm are SIMS [6] and Inform ation M anifold (IM) [50]. In SIMS, the service

view is a knowledge base th a t can be queried in the target applications’ term s. A participating

source describes its content in a domain model consisting of definitions of all the relevant term s and

values in a given ontology. SIMS then uses this knowledge for source selection and query planning

when processing queries. In IM, the service view is a relational view and a participating source

describes its content as a materialized view of the service view. In both SIMS and IM, sources join

and leave the service view autonomously w ithout im pacting on the availability of the service view

or the participation of o ther sources.

The application-driven integration paradigm does not remove any semantic or structural het

erogeneities am ong the d a ta sources but it allows for a divide-and-conquer approach towards data

integration: ra ther than examining a large number of sources and trying to piece them together to

form a service view, each source can be “hooked” into the service view independently. This effec

tively decomposes the task of “integrating a large num ber of sources” into a set of smaller tasks of

“hooking individual sources” into a common service view. Conceivably, each source can be worked

on independently and in parallel. While this is a prom ising idea, various issues m ust be resolved

to make such a system practical. This dissertation addresses some of these issues, including the

following:

E a s y p a r t ic ip a t io n o f d a ta so u rc e s . Making the source d a ta understandable in the context

of a canonical application model (the service view) requires removal of a wide range of mismatches

in struc tu re and semantics between the source schema and the service view. As dem onstrated by

previous work [7, 85, 44, 41, 64], working with semantics is hard . Therefore, provision of tools and

facilities in support of this task is an im portant factor in usability of an IDAMS. IM does not provide

such facilities. SIMS provides a model building tool, b u t describing source da ta in a given ontology

requires a significant level of expertise.

T h e im p a c t o f d a t a in te g ra tio n o n q u e ry p ro c e s s in g m u s t b e ta k e n in to a c c o u n t.

A lthough much is known about classifying and resolving sem antic heterogeneities [44]. the* impact

of this process on query processing is seldom discussed. Most previous approaches assume that an

IDAMS uses the sam e set of data manipulation operators as trad itional DBMSs, although these

operators m ust be evaluated with different techniques since the operand da ta may reside in het

erogeneous and autonom ous sources. In order to en terta in queries against the service views, an

IDAMS needs da ta m anipulation operators th a t are unknown to trad itional DBMSs. For instance,

in addition to select, join, and project, it may be necessary to apply functions to columns in a table,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to transform tab le names in to da ta values, and so on. It is im portan t to define these operators,

and to incorporate them into an algebraic framework which enables algebraic or cost-based query

optim ization in an IDAMS. W ithout this framework, service view queries may become extremely

expensive to evaluate in the presence of information overload.

In s ta n c e le v e l co n flic ts m u s t b e d e a lt w ith . Instance level conflicts arise when sources

provide inconsistent d a ta on the same application entity. Most system s dealing with large scale

integration, such as IM, do no t deal with these conflicts. T he reason m ay be that, to protect the

applications from the scale o f the access scope, an IDAMS aims at creating a single-source illusion,

lim iting treatm ent of instance level conflicts to detecting and resolving them before query evaluation.

Previous work has dem onstrated th a t conflict detection and resolution is fundam entally expensive,

requiring retrieval and m anipulation of laxge amounts of source data, and the situation gets worse

when the num ber of sources grows. However, it is unrealistic to assum e full consistency among a

large number of autonom ous sources; instance level conflicts m ust be handled in spite of the scale of

the integration. Since creating single-source illusion significantly limits conflict-handling options, a

compromise approach is established in AURORA by exposing the conflicts to the applications in a

controlled and easy-to-m anage maimer, and in coarse granularities. Such a technology will improve

the practical value of IDAMSs.

In this dissertation, the above-described issues are addressed within th e context of the AURORA

project. AURORA is based on a 2-tiered mediation model th a t realizes the application-driven

integration paradigm . The goal of AURORA is to enable scalable m ediation , so chat adding and

removing data sources is easy, and efficient mediation, so th a t m ediator queries can be processed

w ithout retrieving irrelevant source data. Several enabling techniques are developed:

1. The Mediator A u thor’s Toolkits that assist in the tasks of making sources "understandable"

in the context of a canonical application model (the service view). These tools allow easy

participation of da ta sources in the access scope of a target service view'.

2. The Mediation Enabling Algebras that are specially designed to support m ediator query pro

cessing and optim ization.

3. Conflict tolerant query model and processing techniques for querying potentially inconsistent

data.

1.2 T he A U R O R A A pproach

The AURORA project consists of three components: (1) 2-tiered m ediation model and flexible data

model support; (2) m ediation methodologies and M ediator A uthor’s Toolkits (MATs); and (3) query

models and processing techniques. The general architecture adopted by AURORA is the mediator

architecture [91]. AURORA m ediators cooperate with one another to achieve da ta integration; they

can be composed. However, AURORA mediators perform specific types of mediation prescribed by

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the AURORA mediation model that defines the tasks involved in the data integration process, and

the relationships am ong them.

1.2.1 2 -tiered M ediation M odel and F lex ib le D a ta M od el Support

The goal of m ediation in AURORA is to support d a ta access through service views. A service view

is a database schema designed to satisfy the da ta access requirem ents of a class of applications. For

these applications, the service view is a schema designed according to their view of da ta in a data

model they are familiar with. Given a service view, AURORA m ust enable the relevant applications

to access da ta residing in multiple sources through th is service view, typically by entertaining queries

posed against it. AURORA achieves this goal by first establishing a m ediation model, and then

developing techniques to achieve each task prescribed by this model.

AURORA models d a ta integration as a 2-step process: homogenization followed by integration:

each step is performed by respective mediators (Figure 1.1). Each integration mediator supports

a pre-defined service view. Data sources can participate in one or more of these service views by

contributing d a ta towards them. To do this, they must first be wrapped and then homogenized

against the service view(s) they want to participate in. W rappers provide conformity in d a ta model

and query languages of da ta sources; they do not deal w ith any other types of heterogeneities.

Homogenization removes idiosyncrasies of a da ta source so th a t it conforms to the target service

view in structure and semantics. If a source participates in m ore than one service view, it must be

homogenized m ultiple tim e - once against each target service view - but it needs to be wrapped only

once. Homogenization is where individual sources “ad a p t” themselves into a form that is ready to be

included in the access scope of the target service view; homogenization m ediators can be thought of

as data adaptors. The result of homogenization is a homogenizing view that satisfies a few conditions,

prescribed by the AURORA’S mediation model, th a t ensure the da ta provided through this view be

interpreted appropriately by the target service view. Homogenization involves only one d a ta source;

multiple sources can be homogenized independently and in parallel. After being homogenized, a

da ta source participates in the target service view by describing the homogenizing view it supports

to the relevant integration mediator. A data source can remove itself from the scope of a service

view by informing the relevant integration m ediator th a t it contributes d a ta towards this service

view.

An integration m ediator is responsible for providing d a ta through a pre-defined service view

using d a ta contributed by participating sources through respective homogenizing views. Since ail

the sources are homogenized before participating in the service view, integration is fully autom atic.

In comparison, homogenization is a more difficult task and is assisted by AURORA tools.

AURORA’S m ediation model realizes the application-driven integration paradigm. It defines a

divide-and-conquer approach towards da ta integration. In particular, it enables decomposition of

the d a ta integration task into two smaller and simpler tasks: homogenization and integration. While

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application 1
Integration Integration
Mediator Mediator

Application 2

Homogenization Homogenization Homogenization
Mediator Mediator Mediator

Wrapper Wrapper

Homogenization
Mediator

= J

Figure 1.1: The 2-tiered M ediation Model of AURORA

integration is autom atic, homogenization requires hum an interference and it can be performed on

individual sources independently and in parallel. In th is fashion, m ultiple parties can independently

contribute to the same integration effort. As discussed later, in Section 3.1.4, the m ediation model

also facilitates the decomposition of complex technical issues in large-scale d a ta integration systems,

such as query processing, into more manageable, sim pler problems.

Traditionally, an EDAMS supports a canonical data model (CDM) as the only d a ta model via

which d a ta are accessed. The CDM is often chosen for its power of expressing resolutions of mis

matches and for representing a large variety of d a ta types. In recent years, object models have

been favored as the CDM by a number of systems [5, 89, 24, 44, 12]. However, based on the data

access requirem ents and other historical or practical factors, applications may prefer to use a cer

tain data model. For example, the m ajority of existing database applications use a relational da ta

model. Forcing these applications to use an object d a ta model may reduce the practical appeal of

an EDAMS. Furtherm ore, using an object model as the CDM may introduce the complexities of

object-oriented DBMSs even when it is not called for.

The AURORA architecture and framework are designed to allow applications to select a data

model th a t best satisfies their data access requirements. AURORA supports two popular data

models: relational and object-oriented. Each AURORA m ediator is characterized by the type of

mediation it performs - homogenization or integration - and the canonical da ta model it supports -

relational or object-oriented. Figure 1.2 shows the various AURORA m ediators. Necessary guidelines

and techniques are provided to allow these mediators to co-exist and cooperate, as described in

Chapter 3.

''"'''---^Canonical Data

Mediator''~~,~~^Moc*e l
Type _

Relational Object-Oriented

Homogenization AURORA-RH AURORA-OH

Integration AURORA-RI AURORA-OI

Figure 1.2: AURORA M ediator Classification

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A general principle of designing AURORA m ediators is “sem i-autom atic homogenization, au

tomatic integration”. The activity of homogenization deals w ith a wide range of semantic and

s tructu ra l mismatches between a source schema and a service view. This is a difficult task since it

requires dealing w ith semantics. AURORA homogenization m ediators are equipped with a Mediator

A uthor’s Toolkit (MAT), which provides guidelines and facilities to a mediator author for performing

homogenization. MATs are further described in Section 1.2.2. AURORA integration mediators deal

w ith a small num ber of conflicts and axe fully autom atic; they have no MAT attached. All four types

of AURORA m ediators have been designed and the im plem entation of two of them , AURORA-RH

and AURORA-RI, have been completed. Im plem entation of AURORA-OH and AURORA-OI me

diators is on-going and is beyond the scope of this dissertation. AURORA m ediators are described

in Chapters 4 to 6.

1.2.2 M ediator A u th o r ’s T oolk it

Instance level conflicts arise when different sources record conflicting values about the same appli

cation entity. Sem antic and structural mismatches arise when sources model the same application

dom ain differently. Instance level conflicts are not handled until m ultiple sources “meet” at an in

tegration m ediator. All struc tu ra l and semantic heterogeneities between a participating source and

the target service view m ust be resolved during homogenization. Previous research gives rise to two

approaches for dealing with s truc tu ra l and semantic mismatches:

1. Autom atic, by using a knowledge base a n d /o r ontology. T he structu re , semantics, and content

of a participating source m ust be incorporated into a knowledge base or described using an

ontology. The IDAMS is then responsible for autom atic in tegration of all participating sources

by inferring relevance and correspondence among the source d a ta using the knowledge base.

SIMS [6] takes this approach.

2. M anual, by means of a hum an using the provided language constructs to resolve mismatches.

Significant progress has been m ade in classifying the types of semantic and schematic mis

matches and in resolving them [44].

Describing the m eaning of a source schema using a knowledge representation language or a given

ontology requires a significant level of expertise, making the au tom atic resolution approach difficult

to deploy. Com paring a source schema and a service view to identify all m ismatches between them

and resolving these mismatches may overwhelm a hum an when the schemas are large, and when a

large variety of mismatches are present between the two schemas.

In AURORA, structu ra l and semantic mismatches are dealt w ith by mediator authors, individ

uals who have good knowledge of bo th the source schema and the target service view. However,

the m ediator authors are provided w ith a GUI-driven M ediator A u th o r’s Toolkit (MAT) to help

them to work with semantics. A MAT consists of two parts: a m ediation methodology and a set of

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transform ations th a t allow expression of resolutions of various m ism atches. The m ediation m ethod

ology guides the m ediator au thor to identify and resolve mismatches in well-defined steps; in each

step, transform ations specially designed for resolving certain types of mismatches can be used to

express the resolutions chosen by the m ediator author. Intuitively, a MAT provides a skeleton for

constructing a m ediator; the m ediator authors m ust fill various parts of this skeleton using their un

derstanding of the mismatches and the resolutions of their choice. The transform ations they choose

axe represented in ternally as expressions in Mediation Enabling Algebras (M EAs), algebra systems

th a t specialize in m anipulating heterogeneous data , as described below.

1.2.3 Q uery M od els and P rocessin g Techniques

AURORA mediators entertain application queries and hence provide da ta services: they do so In-

sending queries to relevant AURORA components, such as m ediators and wrappers, and assemble

answers to the application queries based on the results returned by these components. Query pro

cessing in different types of m ediators requires different techniques to be developed.

Query Processing in Homogenization Mediators

AURORA homogenization m ediators m ust be able to answer queries posed against the homogenizing

views - views generated by the homogenization process. Although much is known about classifying

and resolving semantic heterogeneities [44, 64] th a t may be encountered during homogenization, the

impact of these resolutions on m ediator query processing is seldom discussed. AURORA homog

enization mediators provide homogenization operators. These operators are specially designed for

transform ing data during homogenization and they form algebras, called Mediation Enabling Alge

bras (MEAs), tha t a re suitable for query optim ization and processing in homogenization mediators.

MEAs allow the im pact of da ta integration on query processing to be identified and taken into

consideration. Work in this category includes the following:

1. Development of MEAs for each AURORA homogenization mediator.

2. Development of transform ation rules for each MEA to facilitate algebraic query optimization

techniques for the corresponding mediators.

Homogenizing views as well as queries against them are expressed in MEAs. The view expressions

are used to modify a view query. T he modified expression is then m anipulated by an algebraic query

optim izer th a t pushes, whenever possible, the operations into the underlying da ta source so as to

cut down the volume of d a ta fetched into the m ediator. D ata returned from the underlying sources

are further processed by the m ediator to produce query results. In this process, MEA operators are

used to restructure, transform , and assemble data.

Query Model and Processing in Integration Mediators.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Query processing in integration mediators not only requires MEAs to be developed, as in homoge

nization m ediators, it also requires techniques for dealing with instance level conflicts. The approach

employed by AURORA is to expose these conflicts to the applications at query model level.

Since integration m ediators deal with homogenized sources, the only operator needed is an inte

gration operator th a t m atches and combines the homogenized d a ta pieces provided by participating

sources, to produce integrated data suitable to be served to the applications. Both integration

m ediators in AURORA, AURORA-RI and AURORA-OI, define such an integration operator.

Traditionally, a a EDAMS attem pts to create a single-source illusion, that is, it allows the applica

tions to access the multi-source data as if they reside in a single-source, with no inconsistencies. To

follow this tradition , AURORA integration m ediators would have to detect and resolve all instance

level conflicts w ithout impacting on the query model. This is not a desirable approach since it can

be expensive and, fundamentally, little can be done to cut the cost [21, 15]. AURORA integration

m ediators employ a new approach towards instance level conflict handling, called conflict tolerant

querying. In this approach, instance level conflicts are not resolved at schema integration time,

rather, they are exposed to the applications, which deal with them using a conflict tolerant query

model. This query model defines query semantics based on possibly inconsistent data; conflicts are

tolerated to a few levels to be specified by the users a t query time, and conflict resolutions are only

performed to produce conflict-free results. The key is to keep the query tolerance levels simple for

the applications to understand and to use.

A conflict tolerant query model, a CT query model, and related processing techniques have

been developed for AURORA-RI, the relational integration m ediator. This query model currently

supports three levels of conflict tolerance. W ith this model, it is possible to reduce the overhead

of conflict detection and resolution and to develop new techniques to optimize query processing.

Fundamentally, the C-T-query approach allows applications and the mediation systems to handle

conflicts a t a coarse granularity and achieve b e tte r query performance when conflict resolution

requirements axe relaxed an d /o r data contain occasional conflicts. CT query model and processing

techniques for the AURORA-OI mediator constitute a future research topic and are beyond the

scope of this dissertation.

It is conceivable th a t the CT-query model gives rise to new d a ta manipulation operators that,

together w ith the d a ta integration operator, form an algebraic framework tha t can be used as the

basis for optimized processing of CT-queries in an integration m ediator. However, the current work

on CT-queries is not yet in this stage. Rather, the current work focuses on establishing the query

model itself and developing optimization strategies. The developed strategies are presented as query

optim ization algorithm s, rather than as algebraic transform ation rules. Using formal MEAs to

optimize CT-query processing in AURORA integration mediators is an issue for further research.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 O rgan ization o f D isser ta tio n

This dissertation, is organized as follows. C hapter 2 contains a review of previous work related to

AURORA. C hapter 3 contains a general description of AURORA’S architecture and a road-map

to the techniques developed. C hapter 4 describes the homogenization and integration frameworks

in the relational context. C hapter 5 describes the query processing frameworks and techniques

developed for the relational m ediators. C hapter 6 describes the homogenization and integration

framework in the object-oriented context (a query processing framework and techniques suite in

the object-oriented context sim ilar to those described in C hapter 5 is beyond the scope of this

dissertation). C hapter 7 describes the current implem entation of the prototype system. C hapter S

contains conclusions and future work.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

In C hapter 1, a distinction is made between two paradigm s of d a ta integration performed by an

EDAMS: source-driven and application-driven. This is a high level distinction based on "what" an

EDAMS does. This chapter reviews “how” previous EDAMSs work. Even though m any previous

system s perform source-driven integration, the architecture, model, languages, and query processing

techniques developed are relevant to AURORA. In this chapter, these works are reviewed and AU

RORA is positioned w ith respect to them . More specific comparisons between techniques employed

by AURORA and previous work are included in later chapters when these techniques are described

in detail.

2.1 C lassifica tion o f A pproaches

IDAMSs facilitate d a ta access through a service view, based on da ta contributed by a set of hetero

geneous sources. They m ust have knowledge as to how the service view is to be derived from the

sources. This knowledge can be used to load data into the EDAMS if the supported service view

is to be m aterialized. Ef the supported service view is virtual, the EDAMS can use this knowledge

to process queries against the service view by decomposing these queries into subqueries, sending

the subqueries to various sources for execution, and using the returned d a ta to assemble the query

answer. Based on the representation, acquisition, and use of this knowledge, previous approaches

can be classified into three categories:

1. Procedural integration. The knowledge is provided to the EDAMS as a derivation specification

constructed by a m ediator author, who identifies and resolves all the structural arid semantic

m ismatches am ong the participating sources, and specifies how the service view is derived. The

system uses an underlying algebraic or logical framework to “execute” the integration specifi

cation in order to derive view data . Systems in this category include M ultibase [47], Mermaid

[88], MRSDM [51], Omnibase [82], Pegasus [5], UniSQL/M [44], MEND [24], HERMES [87],

TSIMMIS [74], Garlic [12], ERO-DB [30], and m any others.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Intelligent integration. The knowledge is provided to the ID AMS as a canonical model of the

application semantics in the form of a knowledge base or an ontology. Each participating source

provides descriptions of the data it provides in term s of this canonical semantic model: these

descriptions are incorporated as part of the knowledge base. The EDAMS reasons about the

semantics of source data to determine how to m atch and merge them to derive data described

by the service view. Systems in this category include C arnot [17], SIMS [6], InfoSleuth [8], the

Context Interchange approach [31], DIOM [53], and others.

3. Declarative integration. The knowledge is provided to the EDAMS as a collection of source

descriptions, each specifying the relationship of a source schema to the service view. For

instance, a source schema could be described as a m aterialized view of the service view. As

another example, a source schema could be described as containing a collection of objects which

is a sub-extent of a class in the service view. The EDAMS does not reason about semantics,

but uses a mechanism that interprets the relationships of various sources to the service view

and “pieces” the source data together to produce view da ta . Systems in this category include

Inform ation Manifold [50], DISCO [89], and others.

In the intelligent integration approach, adding a source into the integration scope means “hooking"

its description onto the underlying semantic model, w ithout im pacting on the service view itself, or

the participation of other sources. The drawback of this approach is th a t it requires significant levels

of expertise to construct source descriptions, which may make hooking a new source into the service

view a difficult task. If so, the integration process is not scalable since adding a source is difficult.

It is also not clear how this approach facilitates the processing of complex queries such as those

involving the use of aggregation functions and nested queries. Procedural integration systems often

do not facilitate scalable construction of the integration specification, making this paradigm weak

in its support for scalability of integration. Declarative integration systems are scalable, since each

d a ta source cam be described in regard to the service view independently. However, these systems

often provide fewer facilities for dealing with various mismatches between the sources and the service

view. Such facilities may require a rich set of constructs for describing a source schema in terms of

a given service view. The presence of these constructs may make it difficult, if not impossible, to

establish an algorithm for piecing together source d a ta to produce view data.

AURORA retains the scalability of the declarative integration approach, while enhancing its

facilities for dealing with heterogeneities by incorporating features of the procedural integration

approach - namely, “procedural homogenization, declarative in tegration” . Once the heterogeneities

are identified, resolving them is relatively easy [42, 7]. The most difficult part in dealing wdth

heterogeneities is in identifying them in the first place, since this requires understanding, comparing

and m atching of the “meaning of things” . Intelligent integration systems reason about semantics

based on source descriptions in order to identify and resolve heterogeneities automatically. O ther

systems leave this task to a human, but provide facilities for resolving them once they are identified;

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AURORA falls into this category. However, AURORA differs from existing systems in th a t it

provides mediation methodologies to assist the m ediator authors in system atic identification and

treatm ent of semantic and structu ra l heterogeneities. As such, work on reasoning about semantics

is less relevant to AURORA than work on providing facilities for resolving heterogeneities. However,

for completeness of this survey, a brief review of the work done on reasoning abou t semantics is given

below.

R e a so n in g A b o u t S e m a n tic s . A good overview of various techniques for reasoning about the

meaning and resemblance of heterogeneous objects is given in [36]. In [64] and [63], the theory of

information capacity equivalence and dominance is used to develop tests th a t can be used to check

for correctness and other properties of semantic transform ations. Intelligent integration systems such

as Carnot [17], SIMS [6], and InfoSleuth [8] use a knowledge base a n d /o r ontology to “understand"

the semantics of various sources, to reason about it, and eventually, to integrate the sources based on

such understandings. Work in th is category also includes context m ediation [84], context interchange

[31], the query mediation approach [77], dynamic query routing for a digital library' application [54],

query reformulation using semantic knowledge represented by integrity assertions and m apping rules

[28, 29], and others.

The rest of this chapter reviews the architecture, model, and language features developed in

procedural and declarative IDAMSs. These systems are developed in four areas of research: federated

database systems, distributed object management systems, m ediator systems, and systems th a t deal

with dynamic integrations. M ediator query- processing techniques are discussed separately in Section

2 .6 .

2.2 Federated D a ta b a se S y stem s (F D B)

Federated database systems (FDBs) [47, 16, 5, 44, 8 8 , 12, 24] represent a traditional paradigm of

building IDAMSs. FDBs perform procedural integration. Com pared with declarative integration

systems, FDBs are characterized by the use of a monolithic integration specification that resolves a

wide range of semantic heterogeneities among a small number of participating databases.

This section contains case studies of a few representative systems, and a review of various areas

of research in the context of federated database systems. The case studies focus on the paradigm

and architecture of the systems. Specific technical issues are reviewed by category.

Traditionally, federated database systems are built based on a five-level extended schema archi

tecture, as shown in Figure 2.1 [85]. A local schema is the conceptual schema of a data source,

referred to as a component database-, it is expressed in the data model of the component database.

Hence different local schemas m ay be expressed in different da ta models. A component schema is

derived by translating a local schem a into a canonical data model. An export schema is a subset of

a component schema th a t is m ade available to the federation. A federated schema is an integration

of multiple export schemas. The external schemas are the views exposed to applications.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

External schema External schema External schema

Federated
schema

Federated
schem a

Export schema Export schem a Export schema

Component
schema

Component
schema

Local schema Local schem a

Component OB Component DB

Figure 2.1: Schema A rchitecture of Federated D atabase

Based on whether the federated schema is a loose collection of im ported schemas represented

uniformly in a common data model or an in tegrated schema, called a global schema, the federated

database systems are classified into two categories: tightly-coupled and loosely-coupled. Tightly-

coupled systems support a global schema via which queries against d a ta in the federation can be

processed. Construction of this global schem a requires th a t the sem antic heterogeneities among

participating databases be resolved. Users who query the global schema are presented with a single

source illusion. In loosely-coupled systems, th e federated schema is a collection of possibly incon

sistent schemas represented uniformly in a comm on da ta model. The users query this collection of

schemas using a multidatabase query language. Since the schemas are not integrated, heterogeneities

among them must be resolved by the users a t query time. The distinction between tightly-coupled

and loosely-coupled systems is blurred in system s such as Pegasus and UniSQL/M . In these sys

tems, schema integration is optional. Users can choose to perform integration to various degrees

and resolve other semantic discrepancies a t query time.

2.2.1 C ase Study: Pegasus

The Pegasus project [5] is built around the architecture given in Figure 2.1, bu t is not as elaborate.

The schema architecture of Pegasus is given in Figure 2.2 [5]. Im plem entation of this architecture

is given in Figure 2.3 [5].

Pegasus [5] uses an object-oriented, functional d a ta model, Iris, as a framework for uniform

interoperation of multiple heterogeneous databases. The unifying data definition and m anipulation

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Full
Autonomy

Local
schema

Import
schema

Native OB
schema

Local
schema

Integrated
schema

Integrated
schema

Import
schema

Local
schema

Import
schema

Native
Database

Local
Data Source

Local
Data Source

Local
Data Source

Figure 2.2: Pegasus System Configuration

language is the Heterogeneous O bject S tructured Query Language, the HOSQL, which provides

statem ents to unify, m anipulate, and query m ultiple heterogeneous databases.

A component database, referred to as a local database, must be registered with Pegasus and

its schem a must be imported. Registration describes the types in the local DBMS, the network

protocols, network nodes, machine types, and so on. For each type of local database, Pegasus

provides a module, called local translator, th a t maps a local database schema into the Pegasus data

model and also translates queries expressed in HOSQL over this schema into local query language

(such as relational SQL). These modules are used to im port local database schemas.

A fter being imported, m ultiple d a ta sources can interoperate through Pegasus in that HOSQL

can be used to query the union of the im ported schemas. Construction of integrated schemas

from m ultiple imported schemas is optional and deals with semantic and schematic heterogeneities

among the imported schemas. This integration is supported by specially designed HOSQL language

constructs. The major constructs are (1) creating supertypes of types defined in the underlying

database; (2) creating derived functions; and (3) creating foreign functions. These constructs are

illustrated in the following example:

E x a m p le 2 .2 .1 [HOSQL for schema integration]

Suppose there are two im ported types, S tuden tl and Student2, with functions Grade and Points

defined on them, respectively. Also assume th a t the two functions use different grading systems.

For instance, function Grade m ight re tu rn a value in (A, B, C, D, E}, while function Points returns

an integer value between 1 and 10. The user can define two functions, M apl and Map2, to convert

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Heterogeneous Object SQL (HOSQL)

Parser

Transaction
manager

Communication Services

Query decomposer

Global optimizer

Executive

Global interpreter

Storage services

Built-in
local

translator

Schema manager
Object manager

Local translator mapper

Pegasus Agent

Database

Figure 2.3: Pegasus Functional Layers

Points and Grade to a common grading system. The integrated type Student can then be defined

as follows:

C re a te S u p e r ty p e Student o f S tuden tl, Student2;

C re a te F u n c tio n Score(Student x) —>• R E A L r A S

IF Student l(x) T H E N M A Pl(G rade(x))

E L S E I F (Student2(x) T H E N MAP2(Points(x))

E L S E E R R O R

Type STUDENT is created as a supertype of imported types S tudentl and Student2. The function

SCORE is a derived function. Functions M A PI and MAP2 are foreign functions. □

As shown in Figure 2.3, a HOSQL query is decomposed into an operation tree whose operators

axe commands for performing global joins, to pass param eters, and to synchronize execution of

parallel steps. The leaf nodes of this tree are queries against local databases. These queries are

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sent to the local translator module to be translated into the query language supported by the local

database. These tran s la ted queries are then sent to the local translator mappers that perform system

level mappings on the query before passing it to the Pegasus agent th a t runs on top of the local

databases. The local transla tor m apper and the Pegasus agent work together to submit the query

for execution and to collect the query result back into Pegasus. The query processing activities, as

well as global transactions, are controlled and synchronized by the global interpreter.

2.2.2 C ase S tu d y: MSQL

MSQL [51, 52, 34, 65, 8 6 , 6 6] is designed as an extension of SQL for querying m ultidatabase sys

tems. In MSQL, m ultiple databases axe visible to the users who can refer to attributes, tables, and

databases. However, the users must also be responsible for the consistency of the da ta retrieved.

Location of da ta sources is made transparent to the users in th a t site-dependent access protocols are

transparent. The m ost im portant extension from SQL to MSQL is the notion of multiple queries,

which enables expression of multiple queries to several (related) databases in a single query. Central

to the m ultiple query facility are the concepts of multiple identifiers and semantic variables. A

multiple identifier is a means to refer to multiple re la tio n s/a ttrib u tes using a single identifier, as

illustrated in Exam ple 2.2.2. A semantic variable is a variable th a t ranges over multiple databases,

relations, or a ttrib u tes , as illustrated in Example 2.2.3. These two concepts allow factorization of

single m ultidatabase queries into a set of elementary queries against individual databases. The main

features of MSQL axe illustrated by the following examples.

E x a m p le 2 .2 . 2 [M ultiple identifiers in MSQL]

Assume there axe th ree bank databases, B \, Bn and B 3, each containing a relation client. A multi

database B A N K S can be created as follows:

C R E A T E M U L T ID A T A B A S E B A N K S { B l ,B 2 : B 3)

To retrieve client inform ation from all three databases, the following MSQL statem ent can be used:

U S E B A N K S

S E L E C T *

F R O M clien t

In this query, c lien t is a multiple identifier. At query processing time, this query is replaced by three

queries retrieving client information from the three databases, respectively. □

E x a m p le 2 .2 .3 [Semantic variables in MSQL]

Continue with Exam ple 2.2.2, assume all three databases contain a relation th a t describes branches,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but in B i , this relation is nam ed branch , in B o, B R , and in B 3 , B R C H . T he following MSQL

query retrieves all the bank branches on 101 Street:

U S E B A N K S

L E T x B E branch , B R , B R C H

S E L E C T *

F R O M x

W H E R E street = “101”

In the above query, x is a sem antic variable. At query processing time, the above query is replaced

by three queries produced by replacing x w ith branch, B R , and B R C H respectively. The use of

semantic variables enables expression of three queries against three databases in a single, compact

MSQL query. □

As one can infer from the above examples, to use the original MSQL correctly, the user must

have good knowledge about the scope of databases and the da ta they hold. In some later work

[6 0 , 6 6], MSQL is extended to allow external functions, class a ttribu tes, implicit joins and type

casting. These axe language constructs for users to resolve semantic mismatches am ong the imported

schemas concisely a t query time. The query processor for this extended variety of MSQL must be

“intelligent” enough to expand, factorize and decompose queries.

2.2.3 C ase Study: M IN D

The M ETU IN teroperable DBMS (MIND) [24] is an implemented FDB system th a t supports inte

grated access to m ultiple heterogeneous and autonomous databases. MIND is able to access Oracle

7, Sybase, Adabas and MOOD - an object-oriented DBMS developed by the sam e group. Like many

other FDB systems, MIND is built around the 5-layer schema architecture, as shown in Figure 2.1.

The canonical d a ta model and query language of MIND are object-oriented. MIND differs from

other FDB systems in th a t it uses CORBA as the infrastructure for m anaging the distribution and

system level heterogeneities. As such, the system has a distributed and object-oriented architecture,

as shown in Figure 2.4. All components in this diagram are built as objects th a t communicate with

one another via an object request broker.

The central components of MIND are two object classes: the Global D atabase Agent (GDA)

class and the Local Database Agent (LDA) class. Objects of these classes can be created by an

object factory. These objects axe described in term s of their functionalities as follows:

1. A LDA object is responsible for the following:

• M aintaining export schemas provided by the local DBMSs. This schema is represented

in the canonical da ta model.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Schem a
Information

Manager^
Client -------(^Object Factory

(^ Q u e ry Processor Query Processor

MOODA dabasSybase O racle 7

Local DB AgentLocal DB Agent Local DB AgentLocal DB Agent

Global Database Agent

Figure 2.4: MIND Architecture

• Translating queries received in the canonical query language to the query' language of the

local DBMSs.

• Subm itting queries to local DBMS for execution and collecting the query' results.

2. A GDA object is responsible for:

• Parsing, decomposing, and optim izing the queries according to the information obtained

from the Schema Information M anager object.

• Global transaction management th a t ensures serializability of m ultidatabase transactions

without violating the autonom y of local databases.

W hen a user wants to query MIND, a GDA object is created by the object factory. The location

and im plem entation transparency for this object is provided by the ORB. A GDA object contains

an object of the Global Query Manager (GQM) class, which is able to process queries, and an object

of the Global Transaction M anager (GTM) class, which is able to execute global transactions.

The former decomposes the query into subqueries using information obtained from the Schema

Information M anager and sends these subqueries to the latter, which then cooperates with LDAs to

execute the subqueries and obtain results. As soon as partia l results th a t can be further processed

are returned from the LDAs, a Query Processor Object (QPO) is created to process them. There

could be m any QPOs running in parallel as needed.

MIND views each data source involved as an LDA object registered w ith an ORB. These objects

have a standard interface but, most likely, different implementations. O bjects in individual databases

are not registered w ith the ORB, that is, they are not accessible via the ORB; they are only accessible

by the DBMS where they reside. For example, consider a da ta source storing Person information.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W ith the MIND approach, the interface of Person objects is mot known to the ORB. This means that

MIND cannot pass Person objects around; it can only pass d a ta th a t the ORB knows how to handle,

such as string, integer, and so on. In general, MIND does o o t allow registration of fine-granularity

objects. Hence, the way MEND uses CORBA is as an advanced communication backplane and is

orthogonal to the technical aspects of MIND, such as schem a integration and query processing.

Schema integration in MIND is performed by DBAs u sing an object definition language that

allows specification of interfaces of objects in the global schem a, and how they relate to objects

exported by various da ta sources. Query processing in MINTD aims a t maximizing execution paral

lelism. This aspect of MIND will be further reviewed in Section ‘2.6.

2.2 .4 M odeling and Language Features in F D B s

In their 1986 survey paper, Batini et al [7] investigated tw elve methodologies for designing a single

conceptual schema based on a set of specific user-oriented re la tional schemas. These methodologies

are then compared on the basis of five commonly accep ted conceptual schema design activities:

pre-integration, comparison of schemas, conforming of schem as, merging, and restructuring. The

work in this area does not address as many types of sem antic heterogeneities as are known today

because it is aimed a t designing a conceptual schema or ex te rn a l view based on a set of relatively

homogeneous, user-oriented schemas.

Considerable work on modeling and language features fo r d a ta integration has been done in the

context of federated database systems, including classifying semantic heterogeneities and proposing

resolutions; identifying and designing models an d /o r language features th a t allow expression of such

resolutions; and im plem entation of these features. Typically, primitives found in popular da ta models

are limited in their support of da ta integration [41, 46]. O b jec t da ta models offer more facilities

but these models still need to be extended in order to be s uitable for use in an FDB system. For

instance, DISCO [89] extended the ODMG object model to allow' a bag of extents, rather than

allowing a single extent for each object class; Garlic [12] in troduced the concept of weak identities

to the ODMG object model, rather than insisting on un ique and im m utable object identifiers.

Previous work in this area includes [22, 67, 18, 51, 52, 66, 34, 40, 41, 45, 42, 83, 46]. These

approaches differ in the canonical data model, query langmage, and specific language constructs

provided for expressing database integration. The canonical da ta models employed range from

relational to object-oriented and logical.

The work reported in [22, 21] uses a specific notion of generalization to facilitate integration of

multiple databases. Given two types that originate from different da ta sources, a generalization type

can be defined over them. The derivation of instances of th is generalized type must be defined. Such

derivation involves two steps. The first step is the outerjoim of the subtypes on a merge condition.

This step specifies the population of the generalized type. T h e second step specifies how the functions

on the generalized type are derived from the subtypes’ function . The following example is taken

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from [21]. Assume there are two databases, bo th modeling ships, with ship being modeled by type

S H I P 1 a t s ite l and by S H I P 2 a t site 2. A generalized type S H I P is defined by the following:

derive SHIP from
for s in outerjoin of (si in SHIP1, s2 in SHIP2)

on merge condition IDl(sl) = ID2(s2)
case s isin SHIP1 and notin Ship2

ID := IDl(s)
weight := weightl(s)

case s isin SHIP2 and notin SHIP1
ID := ID2(s)
weight := weight2(s)

case s isin SHIP1 and isin SHIP2
ID := chooseAny(IDl(s), ID2(s))
weight := AVG (weightl(s), weight2(s))

endfor
end

The ou terjo in of S H I P 1 and S H I P 2 has the following attribu tes: I D 1. I D2 . weight 1. weight2. Af

te r the aggregation functions specified above are applied, S H I P has two a ttribu tes: I D and weight.

A query decomposition m ethod and various query processing tactics related to this generalization

mechanism are described in [22, 21],

The Superview system [67] develops a set of schema restructuring operators th a t facilitate cre

ation of superviews integrating the schemas of m ultiple databases. The operators meet, jo in , fold,

combine, connect m anipulate generalization hierarchy. The operators aggregate and telescope manip

u late a ttr ib u te hierarchy. The operators add and delete extend and reduce schema structure. This

approach assumes th a t all participating databases, as well as the superview, are represented by a

functional d a ta model. Query processing is based on function translations.

The work reported in [18] uses extended abstract data types to represent d a ta domains. These

ADTs “know” how to convert a value in a native format into the canonical form at. The ADTs

solve the dom ain-incompatibility problem th a t is common in m ultidatabase queries. W hen values

from different sources are to be compared, the ADTs are used to convert the values into canonical

representation and perform the comparison. An ADT also has other functions, such as suggesting

names of a ttribu tes and tables th a t might involve the data domain modeled by the ADT. These

ADTs hold a large amount of sem antic knowledge and they form a domain knowledge base. Another

construct for representing semantic knowledge is connector, th a t describes how relations are seman

tically related to one another. Connectors are defined using ADTs. A relational algebra extended

with connectors is then developed. This algebra includes operators such as D elete/A dd Connector,

D elete/A dd Relation/Attribute, Join Combine, Rename R elation/A ttribute, Union Combine, and

Difference Combine. These operations are essentially relational m anipulations enriched by the se

m antics of connectors. The extended algebra can be used for bo th schema in tegration and for direct

m anipulation of individual databases in order to formulate a query. T he system takes the input

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the user and generates queries th a t access participating databases.

The two approaches described above allow creation and querying of views that hide hetero

geneities. They' map queries posed against such views to source queries, bu t do not discuss the

optim ization of this mapping. For instance, the im pact of using ADTs on query processing is not

discussed in [18]. This issue will be further discussed in Section 2.6.

T he ViewSystem [40] is an object-oriented approach for querying and integrating m ultiple da ta

sources, including file systems. This system allows the definition of external classes th a t physically

reside in external sources. It offers severed constructs for creating derived classes over existing,

external classes as well as local classes. The expressive and com putational power of an object-

oriented d a ta model, VODAK [26], is used in integration and query processing. Query processing in

ViewSystem is a hybrid of m aterialization and query decomposition. Depending on the integration

construct used in its derivation, a derived class defined for integration purpose decides w hether and

how to perform data m aterialization or query decomposition when processing queries posed on it.

For instance, if the derivation involves aggregation functions, the class will decide to m aterialize,

ra ther than decompose. If the class is derived using disjoint union, then queries will be decomposed.

In the case of query decomposition, optim ization issues are not discussed.

In [42], an extensive list of schem atic conflicts and their resolution cure given in the context of

the m ultidatabase system UniSQL/M . UniSQL/M extends SQL w ith language constructs th a t allow

creation of virtual classes which hide various types of heterogeneities.

[45] discusses language features for database interoperability; in particular, it discusses in detail

the cross-over schema mismatches, where concepts represented as relations or a ttribu tes in one

database are represented as da ta values in another. The paper proposes higher-order language

features to express resolutions to such mismatches. The work done in this paper has significant

im pact on later work, such as SchemaSQL [46] th a t builds on the result of [45], but focuses more

on m aking the language features com patible with SQL and establishing practical implem entation

techniques. [41] uses behaviors to resolve domain and cross-over schema mismatches. Domain

m ism atches arise when a concept - for instance, m oney - is represented differently in different sources.

[41] describes language constructs in the context of Pegasus [5] th a t use an object-oriented database

program m ing language to express m appings between these different representations in an integrated

m anner.

SchemaSQL[46] extends SQL for querying m ultiple heterogeneous relational databases. In tradi

tional SQL, variables can only range over tuples in relations. SchemaSQL allows variables to range

over databases in a federation, names of relations in a database, names of a ttribu tes in a relation,

values in a column in a relation, as well as tuples in a relation (as in the usual SQL). This essentially

makes it possible to query m eta da ta , as well as data , a relational database. Used as a view defi

nition language, SchemaSQL allows sophisticated restructuring of relational databases to eliminate

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heterogeneities such as the cross-over schema mismatches discussed by [45]. A methodology for

implementing SchemaSQL as a non-intrusive middleware over existing relational databases is also

sketched.

A flexible relational model is developed in [83] for integrating d a ta from multiple, possibly in

consistent databases. This model is based on the concept of a cluple. Intuitively, a cluple is a set

of tuples th a t represent possibly inconsistent d a ta on the same entity. T h a t is, all tuples match on

identifier a ttribu tes, bu t may not m atch on other a ttribu tes. Cluples also record other information

such as the origin of component tuples, consistency sta tus, and so on. A flexible relation is a set

of cluples. An algebra is described to query over flexible relations. T ha t is, selection, project, and

join operations are defined over flexible relations. Intuitively, this algebra facilitates querying data

th a t is possibly inconsistent. This is in contrast to traditional query processing approaches where

inconsistencies are either ignored or assumed to be resolved completely by the use of aggregation

functions. However, implementation of the flexible relational algebra is not given.

2.2.5 Schem a and Query Translation Techniques in F D B s

In FDBs, source schemas must be translated into a component schema represented in the chosen

canonical da ta model. Queries against the component schema must be translated to those against

the source schema. Hence the dual issue of schema and query translation have received much

attention. In FDB systems, such tasks are often performed by a translation module as part of

the FDB system [5]. More recently, such tasks are performed by a system component called the

“wrapper” . However, recent work on wrappers mostly focuses on wrapping sem i-structured sources

[75, 80]; wrapping traditional sources is considered to be a m ature technology. Nevertheless, this

area of work is a m ain component in the federated database technology. This category of work

includes [4, 19, 13, 39, 57, 92, 59, 93, 60, 101, 37], A few approaches [19, 13, 57, 93, 37] concentrate

on sem antic enrichment, tha t is, to discover semantics from a given schema and represent this

semantics as well as the schema itself in a semantically rich da ta model. Kalinichenko [39] gives

a formal notion of equivalence among various da ta models. [60, 101] provide schema and query

translations between relational and object-oriented databases. As part of the Pegasus project, [4]

describes a simple tuple-an-object schema and query translation scheme. Meng et al. [59] described

a general approach to schema and query translation between relational d a ta model and data models

th a t contain hierarchical structures, such as INIS and some object-oriented database systems.

2.2.6 A U R O R A and FD Bs

All FDBs perform procedural integration, requiring a monolithic integration specification to be

built manually. Constructs are provided for use in expressing resolutions and integration in these

specifications, bu t usually no other assistance is provided. This means th a t FDBs typically have

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two drawbacks. F irst, construction of the integration specification requires working w ith semantics

of m ultiple source schem as to piece them together to form an in tegrated view. W ithout assistance,

working w ith sem antics would be difficult. Second, construction of the in tegration specification does

not scale well; adding or removing a da ta source requires modification to the specification an d /o r

to the integrated view itself. W hen the num ber of sources involved is large, such modifications will

become difficult to m anage. AURORA overcomes both of these drawbacks. AURORA does not

require a monolithic in tegration specification to be constructed. A service view is pre-defined by the

application requirem ents but the way in which da ta from multiple sources are combined together to

support this service view is not specified by a human; instead, this integration is performed by the

AURORA framework. To allow scalable integration, AURORA divides the integration process into

two parts - hom ogenization and integration - and uses two separate m ediators to perform these tasks.

Homogenization requires a specification to be constructed m anually by a m ediator author, but it

concerns only one d a ta source. The M ediator Authors Toolkits (MATs) are provided by AURORA to

assist in this construction. No m ediator au thor needs to examine m ultiple da ta sources to piece them

together, as in the FD B paradigm . Integration is performed autom atically, requiring no specification

to be constructed.

Most FDBs support a single canonical da ta model, requiring all applications using the FDB to

adopt this da ta m odel. AURORA provides the applications with the flexibility of choosing a da ta

model th a t best satisfies the applications’ d a ta access requirements. Currently, bo th relational and

object d a ta models a re supported.

Technically, AURORA differs from FDB systems in th a t it defines new da ta m anipulation op

erators and query m odels th a t are specially designed for dealing w ith multi-source, heterogeneous

d a ta - while most FD B s apply traditional da ta m anipulation operators and query models to such

data . AURORA’S M ediation Enabling Algebras (MEAs) and the conflict tolerant query models axe

new techniques th a t have not been explored by previous FDBs.

2.3 D is tr ib u te d O b ject M an agem en t

In recent years, d istribu ted object com puting (DOC) platform s such as CORBA [69] and COM /DCOM

[61] have been used fo r m anaging d istributed and heterogeneous applications. These platforms by

themselves do not resolve the fundam ental issues encountered in building IDAMSs - such as iden

tification and resolution of structu ral and sem antic mismatches, and efficient processing of queries

against multiple, heterogeneous d a ta sources. However, these platforms facilitate a significant level of

interoperation. For instance, using an O bject Request Broker (ORB), objects residing in distributed

and heterogeneous environm ents can communicate and cooperate w ith one another to perform tasks

th a t are otherwise difficult to achieve. In the context of an EDAMS, two types of objects can be

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considered to be distributed objects:

1. System components that perform certain integration tasks, such as schem a/query translation.

By considering these components as d istributed objects, an ID AMS can be built as a network

of cooperative, distributed, an d possibly heterogeneous components. Such componentization

would allow the system to deal with the distributed natu re of large-scale da ta integration

gracefully. For instance, m ultiple da ta sources are often situated on machines connected by a

com puter network. It is desirable th a t wrappers and other system components reside on sites

where they can function m ost efficiently and cooperate w ith one another across the network.

2. Source da ta objects or integrated da ta objects. These objects can be considered as d istributed

objects accessible through a DOC platform. By this means, data objects residing a t various

sources can be composed to form objects th a t are able to perform more comprehensive tasks.

An DDAMS built w ith a d istributed object management approach supports distributed objects th a t

are either system components or d a ta objects. However, current IDAMSs employing a d istributed

object m anagement approach m ostly support system components as distributed objects. For in

stance, MIND [24] has an architecture consisting of system components that are built as CORBA

servers. D a ta objects residing in various sources are not accessible beyond their home system bound

ary; they are m anipulated by the local query processors, producing query results that are returned

to the client as tuples of data, ra th e r than objects.

In AURORA, bo th types of objects are considered as distributed objects. AURORA’S architec

ture consists of components of various types; these components are built as COM components th a t

can be identified, activated, and m anipulated through CO M /D COM . As described later, AURORA'S

object-oriented homogenization m ediator is able to retu rn objects th a t are accessible through a DOC

platform , and the object-oriented integration m ediator m anufactures integrated objects th a t perform

m ethods by dispatching them to source objects that axe able to perform them . Queries posed to

an AURORA-OI m ediator may re tu rn objects as query results; these objects can be further ma

nipulated by the applications, in th e same way objects in an OODBMS, such as ObjectStore, are

m anipulated. In this way, the full power of an object query language can be supported by the

integration m ediator.

A difficulty to be investigated in implementing da ta objects as distributed objects is in exporting

large num bers of objects onto a DOC platform at run-tim e. For example, if an ORB is used as the

DOC platform , a large number of objects may need to be registered and unregistered at run-tirne.

It is not clear whether the current CORBA technology supports such activities. AURORA’S work

in this direction is a t the framework level, as described in C hapter 6. Implementation issues are

not yet studied. From a general viewpoint, a carefully designed query decomposition and opti

m ization framework would reduce the num ber of objects to be registered/unregistered. However,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work in m ediator query processing in the object-oriented m ediators is also beyond the scope of this

dissertation.

2.4 T h e M ediator S ystem s

Recently, m any systems have been built with the mediator architecture [91]. A m ediator is a middle

ware system th a t satisfies certain language and interface requirem ents, so that it can be composed

with o ther m ediators to perform more complicated tasks. In this sense, FDBs are mediators if they

are capable of accessing other FDBs and are open to being accessed by other FDBs. The difference

between a m ediator and a FDB is not in what they do and how- they do it, but in what they are

used for. Originally [91], mediators were used to provide domain knowledge; they had to be able to

express such knowledge, and exchange knowledge w ith o ther m ediators using a common language -

often a knowledge representation language, a common ontology, or logical rules. Consequently, m any

m ediator systems built for data integration use logic for integration and query processing. FDBs are

often used to provide a virtual database, a database th a t appears to be a traditional database to the

application, but really gets its da ta by combining d a ta residing a t relevant sources. Consequently,

most FDB systems use a SQL/OQL-like language for da ta integration, and process queries using an

algebraic framework such as relational algebra and object algebras. B oth mediators and FDBs can

be considered as IDAMSs. It is conceivable th a t a FDB be built as a mediator system. It is also

conceivable th a t an FDB act as a m ediator in a m ediator architecture. There is no fundamental

reason for a m ediator and a FDB to employ different underlying technologies. It is for historical

reasons th a t m ediators often employ a logic-based framework for integration and query processing,

while a FD B ’s underlying framework is similar to th a t of a trad itional DBMS.

2.4.1 TSIM M IS

The TSIMMIS project a t Stanford [74, 75, 73, 72] represents a large step away from most previous

work. R ather than a semantically rich, structured da ta model, TSIMMIS uses a self-describing

model - the Object Exchange Model, OEM - for expressing integration and for querying. OEM is

an information exchange model; it does not specify how objects are structured, it only specifies how

they are sent and received.

In TSIMMIS, one does not need to define in advance the structu re of a source object of interest,

and there is no notion of schema or object class. Each object instance contains its own schema,

it is self-describing. An OEM object consists of four fields: an object id, a label which explains its

meaning, a type, and a value. Fields that are not im portan t axe om itted from the representation(as

is often the case in this section). The following OEM object describes a person object. This object

has three components, co m p o n e n tis , representing the name, office num ber, and the departm ent of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the person described. The object given below has name “Fred” , office number 333. and he works for

the Toy departm ent:

< p i , person-record, set, {com ponenti, com ponents, components, } >

< com ponenti, name, string, “Fred”>

< components, office-number-in-building-5, integer, 333>

< components, department, string, “Toy”>
Each da ta source to be accessed is viewed as a collection of O EM objects in the above form, with no

predefined structu re . Querying in OEM is via patterns of the form <object-id, label, type, value>,

where constants or variables can be put in each position. W hen a pa tte rn contains constants in the

label (value) field, it matches successfully only with OEM objects th a t have the same constant in

their label (value). For instance, the following pattern would m atch successfully w ith person Fred

given earlier:

<person-record, {<nam e uFred”>, <departm ent "Toy”>}>

Essentially, th is p a tte rn matches with all person-records th a t have a component name with value

“Fred” and a component department with value “Toy” . Notice th a t this pattern matching assumes

no structu re on the objects, as long as the object has the right label with the right value, it matches

successfully. This effectively makes the labels (person-record, name, office-number-in-building-5,

department) first-class citizens. Labels do not pu t any constraints on what types of queries are

acceptable, rather, they can be queried themselves.

Queries and view specifications in TSIMMIS axe also formed using patterns. The TSIMMIS

M ediator Specification Language (MSL) is a rule-based language. For instance, the following rule

defines a view Toy People that contains names of all people who work in the Toy departm ent:

<ToyPeople, {<Nam e N>}>:- <person-record, {< nam e N > , <department “Toy”>}>

The following query finds all persons who have name “Fred” :

FredPerson :- FredPerson:<person-record, {< nam e '‘Fred”>}>

In this query, FredPerson is an object variable. The formula to the right of :- says th a t FredPerson

m ust bind to all person-records with a sub-object by the label of name and value of “Fred” . The

symbol :- says th a t all such objects are included in the query result. Notice that the query result is

potentially heterogeneous, with objects having all sorts of s tructures, except that each object m ust

have a label person-record and a name sub-object with value “Fred” .

All d a ta sources in the access scope must be covered w ith a TSIMMIS wrapper. TSIMMIS

provides a wrapper implementation toolkit to support fast generation of wrappers. These wrappers

are indeed an OEM query processor. The w rapper im plem enter is required to (1) describe the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

types of OEM queries th a t the source can handle using query tem plates; and (2) m ap these query

tem plates to local queries/actions a t the d a ta source.

Intuitively, OEM is flexible enough to represent da ta of any type, from unstructured random

records, to relational da ta , to complex objects. After all types of d a ta axe represented in OEM, they

can then be integrated. The TSIMMIS approach uses logic rules th a t transform and merge OEM

objects from various da ta sources to form a mediator view. This view can then be queried. Query

processing in TSIMMIS leverages deductive database techniques; it includes view expansion and

execution plan generation. In [74], various aspects of the OEM model a re defined and discussed. In

[75], an approach for developing OEM wrappers for semi- or unstructured da ta sources is described.

In [73], an OEM -based m ediation language and its im plem entation is described. This language

allows creation of integrated views in the mediator th a t removes various types of semantic conflicts.

In [72], an approach for object m atching (referred to as object fusion in this paper) using OEM

is described. This approach allows resolution of instance level conflicts. An approach for global

optim ization of queries posed against these “fused” objects is also described.

In the database community, OEM is also the representative of an em erging d a ta model that is not

constrained by database schemas. This feature alone removes a m ajor representational heterogeneity

am ong da ta sources. The labeled-tree structures like those in OEM can represent ail sorts of data

structures equally well and have great potential in supporting in tegration of heterogeneous data.

Query and m anipulation language, and optimization techniques, are being developed for this new

d a ta model [11].

2.4 .2 H E R M E S

HERM ES [87] is a m ediator system th a t uses a logical model for in tegration and query processing.

In a HERMES m ediator, a d a ta source to be accessed, called a domain, is modeled as a triple

< cr, JF, 72. >, where cr is a set of values, T , a set of functions that the dom ain is able to perform,

and 72., a set of relations over elements of a. For example, for a relational da ta source, a consists

of all the tables as well as individual values stored in these tables; T includes the usual relational

operators project, select, and join, and 72. is a set of predicates over th e tables. Domain calls to

a dom ain retrieves d a ta from this domain. For example, a domain call to the relational domain

P A R A D O X could look like this:

P A R A D O X : p ro jec t^p a rts ', "'partidr)

This domain call asks the P A R X D O X relational database to perform a project on table “parts” on

a ttr ib u te “partid” . A domain call atom is formed by a small set of predicates taking domain calls

as input, for example:

i s ({ “green”}, P A R A D O X : p ro jec t^p a rts ' , color))

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

evaluates to true if all objects in parts have color green. A mediatory rale is o f the form:

Ao : [/iojTo] -4i&...&.4n

where A ’s are domain call atoms and \jj.q, To] is an annotation on uncertainty and time. In HERMES,

these rules are used to perform query, information extraction, information m erging (called pooling),

and conflict detection/resolution over all the im ported domains. A dom ain call caching method

is developed in [3] to improve query performance in an environment th a t involves distributed and

autonom ous d a ta sources.

HERM ES supports domains of various types, including relational, spatial, text, and pictorial. In

order to set up a domain for a new d a ta source, th a t is, to import a da ta source into HERM ES, a

mediator author specifies a set of dom ain functions that can be accessed by the mediator, designs

a d a ta structure to be used to hold th e output of these functions, and implements procedures for

parsing the ou tput properly to fill th is da ta structure. Once im ported, the HERMES m ediator

language is used for extracting and m erging information from multiple domains. This language is

based on m ediatory rules (as described above) and has a Prolog-like syntax.

HERM ES provides a m ediator program m ing environment (M PE) th a t assists mediator authors

in constructing m ediators. The task of constructing a mediator includes domain integration, th a t is,

im porting of da ta sources, conflict resolution and information pooling. M PE provides toolkits for all

three tasks. The conflict resolution toolkit is interesting, and works as follows. The mediator author

specifies integrity constraints that disallow inconsistent da ta values. The toolkit, upon receiving this

constraint, generates all possible violations and, for each violation, it asks the mediator au thor to

provide a resolution. A set of commonly used resolution strategies is also provided.

2.4 .3 A U R O R A and M ed iator System s

The original m ediator architecture prescribes m ediators providing data/know ledge services of spe

cific kinds. These specialized m ediators can then be composed to provide more comprehensive

services. Most m ediator systems developed for da ta integration, such as TSIM M IS and HERMES,

provide a single type of m ediator th a t is used to support services of different kinds. Such mediators

m ust provide a framework generic enough to achieve all kinds of d a ta integration tasks. In contrast,

AURORA mediators are specialized; they are designed to perform either homogenization or inte

gration. The frameworks employed by individual mediators are small, specialized, and easy to use.

This approach also allows enabling techniques tailored for specific integration tasks to be developed.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 P arad igm s For D ealin g w ith H igh ly D yn am ic E nviron

m en ts

W ith the advent of the Internet and WWW, more and more information repositories have been

opened. These da ta sources are highly dynamic with varying query processing capabilities. The

usual approach of “understanding” each data source, integrate them, and then process queries is not

viable in this context due to the large number of sources present. For instance, federated database

systems often provide insufficient support for integrating a large number of d a ta sources th a t varies in

availability. Earlier d a ta integration systems also did not deal with sem i-structured or unstructured

da ta sources. A few systems have been built to work with highly dynam ic environments. These

systems typically provide features specially designed to cope with one or more of the problems

present in a dynamic integration scope.

DISCO [89] works with a set of dynamic data sources by facilitating easy hook-in of individual

sources, and by dealing with unavailable da ta sources a t query processing time. It extends the

ODMG IDL to allow a bag of extents for a single interface type. Thus, adding a new source is done

by adding a new extent into the bag of extents of a global class. DISCO also proposes an approach

for dealing w ith unavailable da ta sources.

The DIOM system [53] accommodates the dynamic changes of the environment by identifying

relevant da ta sources, determ ining how these sources work together to provide data of interest, and

binding to each of them a t query time. This is a query m ediation approach similar to [77] but with

different underlying techniques. DIOM ’s query processing engine uses an algebraic framework to

m anipulate source data , while [77] uses logic.

The Information Manifold project [50, 48, 49] considers large number of d a ta sources with varying

query capabilities. Assume there is a worldview a t the m ediator level. M ost likely, this is a virtual

view; it is the way th a t the target applications would like to see the world. Each da ta source to

be accessed can be regarded as a materialized view of this worldview', b u t with capability records

attached describing the types of queries it can handle. Thus, the problem of answering a query

against the worldview is transform ed to that of answering a query with existing materialized views,

with additional constraints. This problem is solved in [50] in relational context. Recently, this work

has been extended by [62], which allows expressing the materialized views using SchemaSQL. This

increases the ability of IM in dealing with structurally heterogeneous sources. Other related work is

the query folding approach [76], which allows queries to be answered using existing resources such

as materialized views, cached query results, or queries answerable by an existing query processor.

Integration of multiple sources in these approaches is scalable; it only means addition of a new

materialized view. Handling sources with limited query capabilities is a very useful feature in

accessing a wide range of information repositories such as those typically present on the Web.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All of th e above-reviewed system s have no o r lim ited capabilities in dealing w ith instance level

conflicts. DISCO and IM assume th a t da ta from various sources m e consistent. For DISCO, dealing

with instance level conflicts might be a m atter of introducing more m odel/language extensions to

the ODMG model, b u t th a t is yet to be seen. It is not clear whether the underlying framework of

IM is able to deal w ith such conflicts. It is also not clear w hether or how DIOM deals with such

conflicts.

2.5.1 A U R O R A in H igh ly D ynam ic E nvironm ents

There are two equally im portant dimensions to the problem of integrated d a ta access in a highly

dynamic environm ent: the heterogeneities among the sources, and the sheer num ber of the sources.

It is difficult to support bo th dimensions. Systems with more traditional paradigm s such as FDBs

and some m ediator system s provide elaborate facilities for dealing with heterogeneities, but their

support for scalability is often insufficient. Newer system s geared towards in tegrating a large number

of dynamic sources a re often weak in the facilities for dealing w ith heterogeneities. For instance, a

rich framework for value and s tructu ra l conversion of source d a ta is missing from IM, DISCO, and

DIOM, and none of these systems provides tools assisting in working w ith semantics. Moreover,

none of these systems deals with instance level conflicts.

Similar to IM, DIOM , and DISCO, AURORA is built w ith the goal of supporting large-scale

da ta integration in a highly dynamic environment. However, AURORA does not suffer from the

problems described above, as these systems do. W ith the 2-tiered m ediation model, AURORA is able

to support scalable m ediation w ithout neglecting dealing with heterogeneities. This is achieved by

dividing the da ta in tegration into two sub-tasks: homogenization and integration. Homogenization

mediators deal with a wide range of semantic and structural heterogeneities. Conflict tolerant

query models supported by the integration m ediators allow instance level conflicts to be dealt with

gracefully.

2.6 Q u ery P r o c e ss in g and O p tim iza tio n in ID A M S s

Algebraic query optim ization is an im portant form of optim ization and is the basis for cost-based

query optim ization techniques. In the context of query processing for IDAMSs, algebras that are

suitable bo th for m anipulation of heterogeneous da ta , and for use by a query optim izer, are of special

interest. Query optim ization techniques for IDAMSs are also relevant. In th is section, previous work

is reviewed with this perspective in mind.

Like traditional DBMSs, an IDAMS that supports queries over m ultiple sources, either via a

global schem a or via a m ultidatabase query language, relies on an algebra th a t transforms and

integrates d a ta from m ultiple sources. There are m any levels a t which this algebra can be discussed.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O f interest to this thesis is the e n a b lin g a lg e b ra , th e lowest level algebraic framework supporting

query processing: it m ust be simple, so th a t it can be m anipulated by a query- optimizer, bu t

it m ust also be expressive, so th a t it can be used to represent all the logical operations required

for transform ing and assembling data. Operators in this algebra are referred to as the e n a b lin g

o p e ra to r s . For example, the enabling algebra in a centralized relational database usually consists

of selection, project, join, and union operators. In d istributed relational databases, the algebra

is extended to include the semijoin operator, in order to m anipulate distributed da ta efficiently.

[9] proposed an operator, “materialize*, for m anipulating d a ta in am OODB: this operator can be

transform ed into a join and is believed to open up m ore query evaluation alternatives.

W hen processing a query th a t involves multiple d a ta sources, the query is first translated into

an expression in the enabling algebra th a t only references im ported objects. This expression is then

optimized and evaluated. In general, query processing and optim ization in an ID AMS consists of

the following categories of issues:

1. Identifying the enabling algebra. O ther than the usual da ta m anipulations known to traditional

DBMSs, d a ta integration may require new d a ta m anipulation operators to be developed. For

instance, one such opera to r has been identified and studied as the semi-outer-join operator,

proposed by [20], to allow efficient processing o f queries posed against generalized types. This

operato r will be further discussed later.

2. Algebraic rules for transform ing expressions in the enabling algebra. Even if one assumes th a t

the enabling algebra of an EDAMS is no different from th a t of distributed database systems,

algebraic transform ation raises new issues. For instance, in m ultidatabase query processing,

outerjoins followed by aggregation functions are required.(This combination is referred to as

generalization [21]). These are not new operators but they are expensive to evaluate in the

context of IDAMSs. In general, new transform ation rules m ust be added to accommodate

any new enabling operators developed, and to transform expensive combinations of existing

operators (e.g., outerjoin and aggregation) into less expensive ones.

3. Cost modeling of global execution plans. Com puting the cost of a query execution plan requires

knowledge about da ta volume, distribution, indices available, processing speed of various ex

ternal sources, and the speed of communication links. Early work assumes these param eters

are available in the context of IDAMSs [10, 99, 38]. In reality, autonomy of data sources

determ ines th a t the param eters required for cost modeling are not necessarily available, and

the d a ta sources are no t as cooperative as sites in a distributed database. For instance, semi

joins between autonom ous DBMSs may not be as efficient as in distributed databases, since

it may be impossible to send data directly into the system buffers of the query processor of

an autonom ous DBMS [56]. More recently, research in this regard attem pts to cope with un-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

available knowledge for cost estimation by calibrating, sam pling, and dynamically adjusting

existing cost estim ations. Garlic [1 2 , 35, 79] also builds facilities th a t allow wrappers to ex

port cost information. These techniques indeed cope w ith specific situations encountered by

IDAMSs.

In the rest of this section, previous work is reviewed along the three dimensions described above.

The first two dimensions are relevant to the work on AURORA reported in this thesis. The third

is relevant to AURORA in general, but is not relevant to the work reported here. A brief review of

work in this dimension is included for completeness.

2.6.1 N ew E nabling O perators and E valuation S trateg ies

[2 0] describes the use of semiouterjoins to process queries over generalized hierarchies in multi

databases. The focus is on generalized types that involve aggregation functions. Consider the ship

example, as given in Section 2.2.4, and a query select all SH IP that have weight o f at least 55” . To

process this query correctly, one could first compute the w eight a ttr ib u te of each ship. This requires

fetching complete populations of S H I P 1 and S H I P 2 from the respective sites they reside into the

global site; this operation can be very expensive. The semiouterjoin of S H I P 1 by S H I P 2 partitions

S H I P 1 into two parts: the private part and the overlap part. The overlap part contains ships that

are also described in S H I P 2 . This part must be sent to the global site to be further evaluated. One

can apply local selection w eight1 > 55 a t s ite l on the private portion of S H I P 1 . Only the S H I P 1

records th a t satisfy this condition are sent to the global site. After the semiouterjoin is completed

a t s ite l, the private or overlap part of S H I P 2 can be sent back to site2 and similar procedures take

place there. Sometimes, local selection can even be performed on the overlap part as well, but this

depends on the type of aggregation functions used. This range of techniques are also described in [20]

and surveyed in Section 2.6.2. Hwang and Dayal [38] developed general algorithms for identifying

optim al schemes of using semiouterjoin for improving the performance of projection, selection, and

join over generalized types involving an arbitrary number of types. These algorithms assume that

all cost measures useful for cost modeling are available.

Goldhirsh and Yedwab [32] suggest th a t the traditional query m odification approach is inappro

priate for optimizing queries th a t involve generalized types (Section 2.2.4). Consider a query involving

type Person th a t is the generalization of types Student and Employee. The traditional approach

would always modify the query so that it can be decomposed into subqueries against types Student

and Employee. This paper argues that in a distributed environm ent, such queries can sometimes

be more efficiently processed by materializing Person rather th an by performing query modification

to eliminate it. It is not necessary to materialize all the a ttribu tes of type Person. Inclusion of the

m aterialization-based query evaluation plans into the optim ization space is also discussed.

A few papers generated from project Mermaid (more recently known as Interviso [8 8]) are closely

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

related to general query optim ization techniques in distributed relational database systems. These

techniques always assume th a t s ta tis tica l and system measures required for cost modeling are avail

able. In the context of Mermaid, [10, 99] describe the general query processing strategies: semijoins

and replication. The cost model Ls extended to include these processing strategies, which are vari

ations of SDD-1 algorithms and replication m ethods for query processing in distributed database

systems.

In [100], Yu et al. suggested tw o ways to improve query processing. F irst, use sem antic knowledge

to remove unnecessary operations or simplify certain operations. Second, com pare actual runtime

numbers such as relation sizes, d a ta transfer rate , and processing cost with those estim ated by

the static cost formulas, and u p d a te these formulas when they deviate from the actual numbers

drastically and consistently.

2.6.2 A lgebraic T ransform ation R ules

As far as query processing is concerned, the most studied da ta m anipulation operator is general

ization (Section 2.2.4), which is usually equated to outerjoin followed by aggregation. An example

of generalization is the S H I P exam ple discussed earlier. In th a t example, S H I P is derived as the

outerjoin of S H I P 1 and S H I P 2 o n their IDs, followed by aggregation functions. Both outerjoin and

aggregation functions are expensive to evaluate. In [20], Dayal described various algebraic tactics

to transform such expressions into less expensive ones. The m ain objectives of such transform ations

are to distribute selections and jo ins over generalization, and to use sem iouterjoin reductions dis

cussed in Section 2.6.1. D istribution of joins is based on the rules th a t d istribu te selections. The

distribution of selections is discussed in more detail below.

W hether a selection can be d istribu ted over a generalization is determ ined by whether the fol

lowing equation holds:

V A O a A G G A tlh R2) = O’ASaAGGAicrAiBiaiPi.) ^ CFAiOia{R‘l))

where 0 0 stands for outerjoin, A G G is an aggregation function, such as sum, average, min, and

max. AG G a means th a t this aggregation function is used to derive value for a ttribu te .4. .4[and

Ao are a ttribu tes in R i and Rn, respectively. The meaning of expression A G G a {R\. ^ R-i) Is the

following: for each tuple t 6 (f?i 0 0 Rn), derive a new a ttr ib u te .4 whose value is computed as

t[A] = AGG(i[Ai]. i[Ao]). The a ttr ib u te weight in the S H I P example is derived this way. In [20].

the following rules are given to push the selection across AG G and 0 0 :

• If AGG = chooseany{A \,A n), true distributivity holds; th a t is, the above equation holds with

Qi — 9 2. — 6 .

• If AGG = m ax(A i, An), th e re are three cases:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. If 9 is > , then true d istributivity holds; th a t is, the above equation holds with 6 1 = 6 0 = 6 .

2. If 6 is = , d istributivity holds with both 9\ and 6 0 being > .

3. If 6 is < , no distributivity a t all.

• If A G G = m in (A i, Ao), there are three cases:

1. If 6 is < , then true d istributivity holds; th a t is, the above equation holds with 61 = 60 = 6 .

2. If 6 is = , distributivity holds with both 6 1 and do being < .

3. If 9 is > , no distributivity a t ail.

• If A G G = coun t(A i, A 2), or A G G = s u m (A i , Ao) , or A G G = average(A i, Ao), no distribu-

tiv ity a t all.

A m ore complete and extensive set of rules are given in [58]. T he main extensions are in developing

distribu tiv ity under certain conditions when A G G is sum or avg. For instance, for the case of

AG G = su m (A \,A o) and 9 is = , the above equation holds w ith both 61 and 9o being < if it is

known th a t Ai and Ao values are not negative. These rules help in further reducing the am ount

of d a ta th a t m ust be transferred to the global site where aggregation finally takes place. However,

the applicability of these rules is generally limited by the type o f the aggregation function and the

selection predicate.

Chen [15] describes techniques to optimize outerjoins when no aggregation function is present,

th a t is, when d a ta inconsistency is not present. Essentially, this work considers the simpler cases of

generalization, without aggregation functions. Let R = R 1 0 0 R 0 . R consists of three partitions: (1)

the jo in of R i and Ro; (2) R i tuples th a t have no m atching tuple in Ro padded with null values: and

(3) Ro tuples th a t have no matching tuples in R i padded with null values. A one-sided outerjoin

is the union of (1) and (2) o r (1) and (3). If bo th (2) and (3) are empty, the outerjoin becomes

a regular join. Regular joins are cheaper to com pute than one-sided outerjoins, which are in tu rn

cheaper than outerjoins. In [15], Chen described rules th a t use the cheapest strategy to process a

query involving R . For instance, a globed query referencing R can be processed without involving

R i a t all if (1) no a ttribu te of R i is involved in any predicates; and (2) all target attribu tes can be

found in R 2 .

2.6 .3 C op ing w ith U navailable O p tim ization Inform ation For C ost M od

elin g

W hen accessing multiple autonomous database sources, inform ation about source da ta may not be

available. Such inform ation may include da ta sizes, selectivity, distribution, and any available fast

access paths such as indices. Different query processing and optim ization tactics may be used in

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different sources. These factors make it difficult to identify an optim al execution plan tha t involves

m ultiple sources. Autonom y also makes the cooperation of the global query processor and the local

query processor difficult. A few approaches exist to cope w ith th is situation . Lu et al. [56] proposed

to m onitor subquery execution and compare the cost estim ate of the global query optimizer with the

actual cost. The result of this comparison is then used for improving the global cost model and for

adjusting query execution plan a t run-tim e. Du et al. [25] proposed a calibration m ethod to deduce

the cost formulas for a given database. Assume that the cost of queries can be modeled by a set

of formulas with unknown coefficients. In order to derive these coefficients, a specially constructed

calibrating database is loaded into the local database and a set of queries axe run against it. Cost

m etrics of these queries are recorded and are used to deduce the unknowns in the cost formulas.

MIND, a m ultidatabase system reviewed in Section 2.2.3 develops some techniques in global

query optim ization [27, 71]. These include:

1. Cost-based global query optim ization in case of da ta replication. This technique deals with

site selection issues in cases when a subquery can be executed at more than one site.

2. Cost-based inter-site join optimization. This technique s ta r ts from a left-deep join tree and

a ttem p ts to transform this tree into a more bushy tree so th a t response time can be reduced

by exploiting parallelism. However, it is stated in [27] th a t the performance study performed

shows th a t the gain in performance cannot compensate for the complexity of rearranging the

tree to maximize parallelism.

3. Dynamic optim ization of inter-site joins. This technique is still cost-based but is dynamic in

th a t it uses partia l results a t run time, adjusts cost estim ation and determines the next step.

This approach reduces uncertainties in cost estimation.

Garlic [1 2] has produced significant work in cost modeling when querying diverse da ta sources [35,

79]. This work extends the rule-based query optimization technique proposed by [55], by providing

a framework for wrappers to export cost information to a degree chosen. In particular, wrappers

export such information using Strategy Alternative Rules, which are fired to produce alternative

plans and their costs. These plans are then evaluated by the Garlic query optimizer to choose

the optim al plan. The main appeal of this approach is th a t it provides wrappers with guidelines

for exporting cost information, and it also allows them to evolve to provide more information as it

becomes available. The Garlic query optimizer then takes the inform ation provided by wrappers into

consideration a t query processing tim e. This approach, combined with the calibration techniques

evaluated earlier, provides a good basis for query processing in EDAMSs.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 .7 S um m ary

In this chapter, a survey of previous work is given, so as to position AURORA in respect to them.

AURORA differs from previous work in paradigm, mediation models, and the type of techniques

developed. Most of these changes in approaches are made to improve usability, scalability, and

efficiency. In the next chapter, the overall architecture of AURORA is given. A road-map to the

techniques developed in AURORA will also be provided.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The AURORA Architecture

This chapter describes the AURORA arch itec tu re . To s ta rt with, a detailed discussion on the design

principles of the two-tiered m ediation m odel is given. The AURORA architecture is then described,

including an overview of AURORA m ediators and how they work together. Finally, a road-m ap into

the enabling techniques is provided; these techniques will be the subjects of the later chapters.

AURORA mediators perform a specific ty p e of mediation - tha t of in tegrating d a ta from multiple

heterogeneous sources. This is the only ty p e of mediation of interest to AURORA. To distinguish

this type of mediation from the general m ediation concept, the term data mediation is used. A data

mediation system is a system th a t perform s d a ta mediation. By nature, a d a ta m ediation system is

a specific kind of ID AMS - the kind built w ith m ediator architecture. In the rest of this dissertation,

the term data mediation system is used to refer to the middleware systems to be constructed using

AURORA mediators.

3.1 A U R O R A M ed ia tio n M o d el

The u ltim ate goal of d a ta m ediation is to su p p o rt a service dew determ ined by the target applica

tions’ d a ta access requirements. To the applications, the service view is a global da tabase schema

th a t is designed to suit their d a ta access needs. AURORA mediators are responsible for providing

d a ta according to this view, by transform ing and combining data from participating sources. Fun

damentally, AURORA has to achieve two things: to remove heterogeneities am ong participating

sources, and to combine source d a ta in a m eaningful way. These tasks are accomplished differently

by different d a ta mediation systems.

A mediation model defines the tasks to b e completed in a mediation effort, and the relationships

among these tasks. AURORA’S m ediation model is based on a perception of the heterogeneities

encountered when integrating heterogeneous d a ta sources and how they should be handled; and a

perception of the relationship between source schemas and a target service view. T he AURORA

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ediation model, shown in Figure 1 .1 , is a two-tiered model. I t models d a ta m ediation as a two-step

process: homogenization followed by integration, perform ed by specialized m ediators.

3.1 .1 T w o-tiered M ediation M odel

T he two-tiered m ediation model is based on the following perceptions of the heterogeneities encoun

tered during integration of large num ber of da ta sources and on the relationship of source schemas

to the service view:

H e te ro g e n e it ie s . Two categories of heterogeneities m ust be dealt w ith when integrating mul

tiple da ta sources: schematic mismatches th a t arise when the sam e application domain is modeled

differently by different sources; and instance level conflicts th a t arise when inconsistent values on

the same application en tity are recorded by different sources. Intuitively, the first type of mismatch

happens because sources “use different languages to ta lk about the same th ing” . The second type

happens because sources “say different things about th e same m atte r” .

R e la t io n s h ip b e tw e e n p a r t ic ip a t in g so u rc e s a n d th e s e rv ic e v iew . A d a ta source par

ticipates in a service view when it is able to contribute da ta on som e aspects of some objects of the

service view. This assum ption covers most, but not all, scenarios of d a ta integration. For instance,

this assum ption excludes the scenarios where the age a ttribu te of a person in the service view is

derived by caking the average of all the age values of th is person provided by various sources. In this

case, no d a ta source is perceived as contributing the “correct” age value on entity Person. Such use

of aggregation functions is often, not always, for the purpose of resolving instance level conflicts. In

AURORA, instance level conflicts are treated using a conflict to lerant query model, not aggregation

functions, as described in Chapter 5.

D ata integration is achieved in AURORA through the following steps:

1 . W ra p p in g . Build a wrapper around each d a ta source so it “speaks” in a da ta model and

query language th a t can be understood by AURORA m ediators.

2. H o m o g e n iz a tio n . Derive a view on top of each d a ta source. This view conforms to the

service view in bo th structure and semantics, and is referred to as the homogenizing view.

This view describes some aspects of some of the objects in the service view. To derive this

view, all schem atic mismatches between the sources and the service view must be resolved.

This process is referred to as the homogenization of the source. In AURORA, specialized

homogenization mediators support homogenization.

3. I n te g ra t io n . Devise a mechanism to answer queries against the service view using data

contributed by various sources through the respective homogenizing views. To do this, instance

level conflicts m ust be resolved. This process is referred to as integration. Tliis process is

supported by specialized m ediators, the integration mediators.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W rappers are da ta model/language translators; each makes a d a ta source accessible to AURORA

mediators. However, wrappers do not deal with semantic or structural heterogeneities. A more

detailed discussion on AURORA wrappers is given in Section 3.2.1. Technology for wrapper con

struction already exists and is not a focus o f AURORA research; w rapper construction is treated as

an engineering issue in AURORA. The two tiers of mediation refer to homogenization and integra

tion.
%

3.1.2 B u ild ing A D ata M ed iation S ystem w ith A U R O R A : A Scenario

Assume th a t a class of applications needs to access da ta residing at various d a ta sources S i,..., 5 n,

through a service view VseTvice, expressed using da ta model D service. Also assum e that Vservice

does not change bu t the list of sources is dynamic, new sources may be included, and previously

included sources may decide to not allow their d a ta to be accessed by this class of applications. Once

the participating sources axe identified, w rappers must be constructed for these sources. Wrapping

cam be done independently and in parallel for each source. W rappers must support a relational or

ODMG interface - whichever is most easily generated. Choice of a wrapper d a ta model should be

independent of the data model employed by the target service view; AURORA is responsible for

accessing wrappers of various kinds. At the same time, a m ediator author chooses an integration

m ediator, M y , th a t supports da ta model D service, and initializes it with Vservice. Once initialized,

M y accepts application queries immediately although its access scope may be insufficient as far as

the applications are concerned, since M y does not access any da ta source, directly or indirectly,

upon initialization. To expand the access scope to include desirable sources as fast as possible, one

or more m ediator authors can be assigned the task of using a homogenization m ediator supporting

da ta model D service to homogenize the d a ta sources previously wrapped. After being homogenized,

a source informs the integration mediator M y of its existence and is included in the access scope of

M y automatically.

More scenarios using different types of AURORA m ediators to construct a d a ta mediation system

are given in Section 3.2.2. The mediation model, as described above, is designed to facilitate scalable

da ta integration, where adding and removing a source from the integration scope is easy. This is

discussed further in the next section.

3.1.3 T w o-tiered M odel and S calab ility

To include a new data source in the access scope of a da ta m ediation system, two issues must be

resolved:

1. Communication. It must be possible to “ta lk” to the da ta source. This is achieved by a wrapper

th a t removes idiosyncrasies of the d a ta source in communication protocol, da ta model, and

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query language.

2. Semantic integration. I t must be possible to include the da ta source in the access scope of an

integrated view.

Scalable m ediation should make adding or removing a da ta source to /from the access scope easy to

do. This in tu rn requires fast wrapper generation and scalable semantic integration, which requires

the following:

1 . Sources cam be added into, and removed from, the access scope w ithout causing previous

integration effort to be obsolete.

2. Adding and removing a data source from the integration scope should be m ade as simple as

possible.

Various enabling techniques have adready been developed for rapid wrapper construction [75, SO].

As discussed in C hapter 2, previous work does not provide satisfactory support for scadable semantic

integration.

Data Integration____________________________________

Automatic Integration o f homogenized sources

Homogenization: Homogenization : Homogenization
of data source 1 of data source 2 j of data source N

Figure 3.1: Divide-and-conquer d a ta integration of AURORA

AURORA facilitates scalable da ta integration by prescribing a divide-and-conquer approach

towards da ta integration. As shown in Figure 3.1, a da ta integration task is divided into .V -f- 1

subtasks, where N is the num ber of participating da ta sources, including N homogenization tasks and

1 integration task. The N homogenization tasks can be performed in parallel and independently of

one another. The integration of homogenized da ta sources is performed autom atically by AURORA.

Homogenization of single d a ta sources is significantly simpler than any integration effort th a t requires

examining m ultiple sources a t once. Moreover, AURORA makes homogenization more manageable,

and hence potentially faster, by providing tools to assist in this process. Participating sources register

the da ta they provide through respective homogenization mediators; this data will be integrated by

the relevant integration m ediator automatically. Removing a source from the access scope only

requires the relevant registrations to be cancelled.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .1 .4 W h y Tw o-tiered?

The two-tiered model defines a divide-and-conquer approach to inform ation integration. Such an

approach facilitates applications, such as electronic commerce, th a t require access to large numbers

of diverse d a ta sources. It also allows the d a ta m ediation system to b e tte r manage the technical

complexity in large-scale middleware. An electronic commerce example is given below to illustrate

these points.

Two-tiered Mediation in Electronic Commerce

A virtual shopping mall is a typical electronic commerce (EC) application. A key component in

this application is the catalog system. Companies organize their catalogs differently; this gives rise

to a set of heterogeneous and autonomous catalogs. W hen the num ber of participating catalogs is

large, it is difficult for a shopper to locate items of interest. One approach is to require all vendors

to re-organize their catalogs into a common form at and merge them into a central catalog that

allows custom ers to perform sophisticated searching w ithout dealing with individual catalogs. This

requires re-engineering of existing catalogs. In general, vendors want to participate in the central

catalog w ithout making changes to their existing ones. A virtual catalog th a t has the look and feel

of a central catalog but holds no physical data , is desirable. Upon a custom er request, this catalog

retrieves relevant information from (multiple) individual catalogs and assembles an answer. Such a

virtual catalog should satisfy the following requirements: (1) it is up-to-date, bu t does not violate the

autonom y of the participating catalogs; (2) its search performance does not degrade as the number

of participating catalogs increases; (3) it allows easy inclusion of new catalogs and integrates with

o ther EC applications; and (4) it is easy to construct; tools should be provided to assist in this

process.

Typically, to include a supplier catalog in a virtual catalog, the supplier is first required to map

his or her catalog into a format required by the v irtual catalog. Essentially, the supplier catalog must

be homogenized before participating in the virtual catalog. Homogenization is performed by suppliers

independently, referencing the common catalog form at. Individual suppliers are not concerned with

inter-catalog conflicts, which are resolved a t the central catalog level. Often, suppliers are provided

w ith a workbench to perform homogenization. This workbench is a homogenization m ediator, while

the central catalog is an integration mediator. A supplier can participate in m ultiple virtual catalogs

requiring varying catalog formats. In this case, the supplier must use m ultiple homogenization

m ediators.

AURORA’S two-tiered mediation model closely corresponds to the process of construcring vir

tual catalogs. A mediation model suitable for building virtual catalogs must, clearly define which

mismatches are to be resolved by the suppliers independently, and which mismatches are to be han

dled a t the central catalog level. Suppliers are responsible for removing mismatches between their

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

catalog and the v irtual catalog schema, and the virtual catalog is responsible for resolving instance

level conflicts, such as the same product bearing different n a m e s .

A virtual catalog effort can be initiated by a third-party broker who seeks to offer value-added

catalog services using AURORA mediators. The broker first designs a common catalog structure, its

d a ta model and query language. To include a vendor in the v irtua l catalog, the broker homogenizes

the vendor’s catalog using an AURORA homogenization m ediator. This process maps the vendor

catalog structu re and sem antics into those in the common catalog. After homogenization, it should

be straightforw ard to “plug” a catalog into an AURORA integration m ediator th a t supports the

common catalog. W hile homogenization is a more complex process, the broker can hire a few people

to homogenize individual vendor catalogs in parallel. An in tegration m ediator is where large number

of virtual catalogs merge bu t the integration is a simple mechanism. Overall, construction of the

v irtual catalog is scalable.

M a n a g in g C o m p le x itie s

Integrated access to a large num ber of highly heterogeneous d a ta sources is complicated. There are

two aspects to this complexity: integration and query processing.

C o m p le x ity in in te g ra t io n . When there are 100 sources involving m any types of mismatches

and conflicts, which one should be resolved first? Can several people work on the same integration

task? W hat kind of assistance is provided for working with sem antic heterogeneities? Most previous

work focused on classifying mismatches and proposing resolutions, w ithout prescribing the sequence

in which these m ism atches are to be identified and resolved. O nly systems th a t perform declarative

integration allow several people to work on the same integration task. Assistance for working with

semantics provided by these systems is insufficient.(For instance, neither EM nor DISCO provide

such assistance.)

C o m p le x ity in q u e ry p ro ce ss in g . When a large num ber of highly heterogeneous sources are

involved in a query, there arises a complex optimization problem th a t is unknown to traditional data

m anagement systems. Query optimization in middleware system s is known to be a difficult problem

even without considering the scale of the system [56]. In large scale middleware systems such as

virtual catalogs in EC, this problem is even more difficult, as discussed in Section 2.6.

AURORA’S two-tiered model enables better management of both complexities. AURORA’S

divide-and-conquer d a ta integration approach helps in m anaging the complexity of integration. In

query processing, AURORA’S two-tiered mediation model enables the decomposition of the query

processing issue into two sm aller problems: query processing in homogenization mediators and in

integration m ediators. As shown in Chapter 4, each type of AURORA m ediator uses a specialized

M ediation Enabling Algebra (MEA) to facilitate efficient query processing.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A U R O R A A rch itectu re

This section describes the general forms of AURORA mediators, including da ta model, query lan

guage support, interfaces, and also how they work together to facilitate d a ta mediation.

3.2.1 D a ta Sources and W rappers

D ata sources can be of any type but they must be covered w ith a wrapper th a t facilitates accessing

of the source through an ODMG [14] interface or a relational interface, whichever is most easily

generated. ODMG has the modeling and querying power to m anipulate and query relational data as

sets of “structs” . Such OQL queries can be translated to SQL queries in a straightforward manner.

Generally, AURORA’S homogenization mediators, which are the clients of wrappers, can access

either ODMG sources or relational sources. It should be possible to wrap up sources as read-only

or updatable. Only the read-only wrappers tire considered in AURORA.

AURORA employs “th in” wrappers in that the schema presented to the world by a wrapper is

a normal relational or ODMG schema with no restrictions. W rappers do not perform any semantic

translation, bu t only syntactic mappings that make the data in the source accessible in the relational

or ODMG model. W rapper generation issues are not investigated within the AURORA project;

others have investigated this problem [75, 80].

AURORA uses commercial middleware products to build wrappers. As an example of such

a wrapper, consider a commercially available middleware system - the ISG Navigator [2] - which

accesses any da ta source with an OLE-DB provider and adds SQL capabilities to it if it does not

have it. ISG Navigator is an OLE-DB provider itself and hence supports the standard OLE-DB

interfaces. A da ta source such as a spreadsheet may have an OLE-DB provider but may not support

SQL queries. Once “w rapped” with ISG Navigator, this source can be accessed through OLE-

DB interfaces using SQL. An application can access this source even if it has no knowledge of

spreadsheets. ISG Navigator as a wrapper is illustrated in Figure 3.2.

3.2.2 A U R O R A M ediators A s M iddleware C om ponents

As described in Section 1.2.1 and shown in Figure 1.2, AURORA provides specialized mediators

supporting flexible da ta models. Like other mediators, the AURORA m ediators and wrappers can

be composed to perform increasingly complicated data mediation. This section discusses various

scenarios of such compositions.

In the AURORA context, when m ediator M \ composes w ith HL, one of them will access the

other to make use of the da ta the la tte r mediator is able to serve. However, AURORA mediators

are specialized, the integration mediators are able to access multiple other m ediators, and the homog

enization mediators are able to deal with single sources. Generally, AURORA mediator composition

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

API: OLE-DB provider with
SQL support

ISG Navigator

OLE-DB provider

Spreadsheet

Figure 3.2: ISG N avigator as a W rapper

m ust follow th e following rules:

1. In tegration mediators can only access hom ogenization m ediators.

2. Hom ogenization mediators can access m ediators of tmy kind, including wrappers, integration

m ediators, and other homogenization m ediators.

3. M ediators th a t support an object da ta model should have the built-in capability of accessing

those supporting the relational da ta model, bu t not vice versa.

A da ta m ediation system can be constructed by using a network of m ediators that cooperate

with one an o th e r to provide an integrated data service. The use of AURORA mediators in building

middleware is illustrated by Figures 3.3 and 3.4. T he left of Figure 3.3 illustrates a scenario where

AURORA m ediators supporting the relational d a ta model are used to construct a da ta mediation

system th a t provides a relational service view. T he diagram on the right of Figure 3.3 illustrates

a scenario w here all mediators support an object d a ta model. Figure 3.4 illustrates how mediators

supporting different da ta models can be composed. In this diagram , sources 1 and 2 are wrapped to

support the relational da ta model. These two sources are first homogenized with respective relational

hom ogenization m ediators and then integrated w ith a relational integration m ediator. Eventually,

these sources participate in the object-oriented m ediator a t the top of Figure 3.4. To do this, the

relational in tegration m ediator - the left-most R I m ediator - is trea ted as a relational source and is

homogenized by an object-oriented homogenization m ediator before it is composed with the target

01 m ediator on the top of the diagram.

Generally, a m ediation scenario is determined by the da ta model of the service view and th a t of

the da ta sources. Sources can be wrapped with a relational w rapper or an object-oriented wrapper,

whichever is m ost conveniently built. There m ay be m any types of da ta sources but after they

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Application/Usei

RH OHRH OHRH OH

W
A

W

Figure 3.3: AURORA Application: uniform

are wrapped, there are only two types of sources as far as AURORA mediators are concerned:

relational and object-oriented. The service view can be relational or object-oriented. Therefore,

various m ediation scenarios can be summarized in Table 3.1. Each entry in this table refers to a

diagram th a t depicts an example composition of AURORA m ediators supporting the corresponding

m ediation scenario. M ost entries in this table have been explained in the previous paragraph. The

N /A entries in this table represent scenarios th a t cannot be realized using AURORA mediators.

These are scenarios where the service view is relational bu t one or more of the sources is object-

oriented.

Source W rapper

S erv ice V iew

R ela tion a l O b ject-orien ted M ixed

R ela tio n a l F igure 3 .3: left N /A N /A

O b jec t-o r ien ted F igure 3.3: left F igu re 3.3: right F igure 3.4

Table 3.1: AURORA’S Flexible D a ta Model Support

3.2.3 M ed iator A uthor’s Toolkits (M A T s) in A U R O R A

A general design principle of AURORA mediators is “semi-automatic homogenization, automatic

integration”. The activ ity of homogenization deals w ith a wide range of semantic and structured

mismatches between a source and a service view; th is activ ity requires a m ediator author to work

with semantics. All AURORA homogenization m ediators are equipped with a Mediator A u thor’s

Toolkit (M AT), which provides guidelines and facilities to a mediator author, performing homogeniza-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OH

RH RH RH

OH

01

OHOH

OH

OH

OI

W1 W2 W3 \V6W4o W5/

Applicauon/Usei

Figure 3.4: AURORA Application: mixed

tion. AURORA mediators with MATs tire illustrated in Figure 3.5. A MAT provides a user-friendly

interface th a t helps the mediator authors to perform homogenization systematically. It gathers

various sem antic knowledge from the m ediator au thors and stores it in an internal repository; this

knowledge will be used by the homogenization m ediator for query translation and processing. AU

RORA integration mediators deal with a small class of conflicts and are autom atic, requiring no

user interference in handling semantics; they do not have MATs attached.

3.3 S em an tics o f In tegrated D a ta Serv ices

Using the framework presented by [33], an in tegrated data service is provided as a global database

whose schema is a service view in AURORA term s. This global database is virtual, storing no data.

An integration mediator is in charge of accepting queries w ritten in terms of this global database,

transla te it to queries against various sources, and assemble a query answer.

Semantics of well-known database query languages are defined based on concrete databases,

databases th a t store data according to a schema. Generally, one can assume that, given any concrete

database D using a well-known da ta model, such as relational d a ta model or the object-oriented

d a ta model, and a query, Q, written against the schema of D, in a well-known query language, such

as SQL or OQL, th a t is compatible with the underlying data model of D , the answer to Q using D,

an sw er(D ,Q), has a well-understood meaning.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application /End-user/ Other mediators

M ediator Author

t
f

AURORA Mediator
Standard Service Interfaces

AURORA
M ediator Author’s

Toolkit (MAT)

< - > AURORA
M ediator Skeleton

r i—__ 1̂
Mediator/
Wrapper

Mediator/
Wrapper

Mediator/
Wrapper

Figure 3.5: An AURORA Workbench

Since the global database in systems such as AURORA is virtual, semantics of queries posed

against this database gives rise to the following question: what is the meaning of a query against a

virtual global database? Although the global database is virtual, the participating sources are not

virtual (when viewed as a d a ta source). Fundamentally, this set of sources implicitly represent a

global database. If one can construct the global database from the sources, then the semantics of

queries posed against the virtual database is the same as those posed against any database where

schema and content matches the constructed global database. Hence, before answering the question

posed a t the beginning of this paragraph, the following question must be answered: Given a set o f

data sources, is there always one and only one global database? I f so, what data are in it? The rest

of this section answers this question without using a formal model of semantics.

In AURORA, the answer to this question is affirmative. Each da ta source is homogenized by a

m ediator author, producing a homogenizing view. This view is derived procedurally by the mediator

author using operators of her choice; it has well-defined semantics and can be m aterialized easily.

Formally speaking, one can assume th a t for any given d a ta source, S, there exists a function, H orns,

th a t maps S to a database instance. This instance, H o m s(S) , is referred to as the homogenized

data source due to S. In practice, function H orns is constructed by a m ediator au tho r working to

"hook up” 5 to a chosen global database, using the AURORA homogenization facilities.

Once homogenization of all sources is completed, an integration m ediator supporting the ta r

get service view also obtains a function Fragments, th a t maps each global relation name to one

or more source relation names. T hat is, given any global relation name, N , F ra g m e n ts{N) =

{ S i - N i , Sk-nk}, where for any k < 0, iVjt is the name of a relation in H o m sk{Sk)- In the rest of

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this section. H o m R el(S .N) is used to denote the relation nam ed N in H o m s(S).

Given a service view Vg containing relation definitions R \ , R ^ , and a set of source databases

S = { S i . , , S m }, the global database implicitly represented by S , with schema Vg, contains an

instance for each relation defined in Vg. The instance of global relation R? is derived as follows:

in s t{R f) =

where P ID (R f) is the plug-in identifier of globed relation i? f , as specified in Vg, R j = H om R el (S j .N j)

F ra g m e n ts (R f) = ..., 5 ' .A^}. For now, it is sufficient to think of the plug-in identifier as

the prim ary key of the global relation. The concept of a fragm ent is described in m ore detail in

C hapter 4. For the purposes of this section, a fragm ent can be considered as a sound , but not

necessarily complete, view of a global relation, in term s of the framework described in [33].

The construction of a global database is determ inistic, although it depends on the availability of

two functions: P ID (R), which returns the plug-in identifier of globed relation R , and F ra g m e n ts (R) ,

which returns the set of source relations that a re fragments of R . As described in C hapter 4, in

the AURORA framework, P ID (R) must be provided as part of the service view definition, and

the Fragments function is constructed autom atically, upon completion of homogenization of all

participating sources, by AURORA integration m ediators th a t keep track of relationships between

source relations and the target, global, relations. Intuitively, these two functions are m ade available

by AURORA’S m ediation model. In other words, the m ediation model of AURORA requires th a t

the m ediator authors provide these functions. In practice, the mediator authors are required to

provide enough inform ation so th a t these functions can be defined.

A few properties of the global database thus constructed axe of interest, these include the fol

lowing:

1. Schema coverage: W hether the global database schema can be derived from the source database

schemas. On this property, it is assumed th a t the sources collectively provide a full coverage.

Intuitively, this means th a t it is assumed th a t the sources collectively “have som ething to say

abou t every domain of interest in the global schema” .

2. E ntity coverage: W hether the globed database contains information on all entities of interest

according to the semantics of the global schema. Currently, it is assumed th a t the sources

collectively provide full entity coverage. This is a reasonable assumption. If the opposite is

assumed, then one can assume th a t there is a “more complete” database, containing d a ta on

entities th a t can not be found in the known sources. These entities would not be of interest

since their validity can not be verified.

3. Data coverage: W hether the global database contains “unknown” values and how these values

are represented. This is a more complicated issue. In AURORA, it is assumed th a t da ta

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coverage is partial and unknown values axe represented as null values. Moreover, no atom ic

predicate evaluate to true if it is applied to a null value. A related issue is the problem

of instance level conflicts in the global database. It is not clear whether these conflicts are

considered and how in [33]. In AURORA, conflicts axe retained in the global database, and

the users query the database with the conflict tolerant querying facilities.

Once a global database is constructed, queries axe answered using this database with well-known

semantics. If the service view is relational, then the query semantics can be formally defined. If the

service view is object-oriented, then the query semantics should conform to the standard chosen.

In AURORA, 0 0 query semantics should conform to the semantics of OQL queries as defined in

the ODMG 2.0 standard [14]. Conflict tolerant querying in AURORA causes some extension to the

well-known query semantics but these extensions axe described in detail in Chapter 5.

As pointed out by [33], in system s such as Information Manifold [50], due to the type of da ta

sources considered (sources may provide d a ta th a t is irrelevant to the semantics of the global view),

there m ay be infinite num ber of possible global databases. Hence the semantics of queries in these

systems require new techniques to define and evaluate. In contrast, query semantics in AURORA

raises fewer issues once the sem antics of a global database is defined. The next paragraph describes

AURORA in the terms of [33].

It is the mediator au thors’ responsibility to make sure th a t all the relations in homogenizing

views are sound views of globed relations, views th a t contains only tuples tha t fit into the global

schema in term s of semantics. This means th a t till d a ta sources axe open, providing a true, although

not necessarily complete, model of the world of interest. Consequently, the collection of da ta sources

is always consistent. It is currently a conjecture th a t the query answers AURORA produces (modulo

conflicts and CT querying) correspond to the certain answers, as described by [33], but this is yet to

be proven. The other type of query answer, the possible answer, will be infinite and does not make

sense.

3 .4 E nabling T ech n iqu es in A U R O R A : A R oadm ap

Each AURORA mediator requires a suite of enabling techniques. At the core of a m ediator is a

Mediation Enabling Algebra (MEA) th a t provides Mediation Enabling Operators (MEOs) th a t axe

suitable for manipulation of heterogeneous and autonomous data . MEAs must also be suitable for

query processing in th a t they should facilitate optimized processing of mediator queries. Typically,

a MEA consists of operators found in algebras th a t m anipulate single-source data, such as relational

algebra or object algebra, together w ith MEOs specially designed in AURORA for da ta m anipulation

required by homogenization or integration. The development of a MEA involves the following tasks:

1. Development of a m ediator query rewriting algorithm to produce query evaluation plans

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(QEPs) in the MEA;

2. Development of query transform ation rules in the MEA th a t potentially allow optimization of

the above-generated QEPs;

3. Design of a query optim ization strategy; and

4. Development of techniques for evaluating expensive MEOs efficiently.

Different mediators require different MEAs, depending on the type of m ediation they perform and

the da ta model they support. For homogenization mediators, a M ediator A uthor’s Toolkit (MAT)

m ust also be developed. This involves the design of a homogenization methodology, and a GUI-

driven toolkit to support this methodology. The design of a MAT often proceeds that of a MEA,

since it identifies the types of d a ta m anipulation required.

Technique suites are complete for AURORA-RH and AURORA-RI. The high-level design of a

MAT for AURORA-OH is also complete. Complete development of MEAs for AURORA-OH and

AURORA-OI are limited by the lack of a well-accepted object algebra as a starting point. However,

the da ta m anipulation operators in both of these mediators have been defined. How these operators

form an algebraic framework to be used for query processing and optim ization is a future research

topic.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Relational Mediation Framework

W hen a class of applications requires an integrated d a ta service to be provided through a service

view, based on a chosen d a ta model and query language, a d a ta m ediation system needs to be

constructed. Various ta sk s m ust be achieved in proper sequence in order to build such a system . A

■mediation framework defines these tasks, how they relate to one another, and how they are achieved.

As discussed earlier, in AURORA, the d a ta mediation process consists of two tasks: homogenization

followed by integration. Therefore, the mediation framework of AURORA consists of two sub

frameworks: the hom ogenization framework and the integration framework. Moreover, when the

service view d a ta model is relational, the mediation framework works with relational da ta and is

simpler than when the service view is in an object d a ta model.

This chapter describes the relational mediation framework of AURORA in a bottom-up fash

ion, from how sources a re to be wrapped, to how w rapped sources are homogenized and, finally,

integrated. The topics covered include the following:

1. The hom ogenization framework and its realization by AURORA’S Relational Homogenization

m ediator, AURORA-RH.

2. T he integration fram ework and its realization by AURORA’S Relational Integration m ediator.

AURORA-RI.

3. How the above fram eworks and mediators work together to achieve da ta mediation.

4.1 A n O v erv iew o f th e R ela tion a l M ed ia tio n Fram ew ork

Construction of a d a ta m ediation system th a t supports a pre-defined service view based on a set of

d a ta sources (referred to as participating sources), s ta r ts with the activity of wrapping the sources.

W rapped sources axe first homogenized to remove their idiosyncrasies with respect to the service

view, and then integrated, into the access scope of the service view.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .1 .1 Service V iew

For applications, the service view is a relational schema th a t can be queried. For sources th a t provide

d a ta through this view, it is a pre-defined relational schem a where each relation, called a global

relation, specifies a group of a ttribu tes as its p lu g - in id e n t if ie r (PID). T he PID is semantically a

relational key and is used for object matching, the process of identifying source tuples that describe

the same application entity; these source tuples m ust be combined to form tuples in global relations.

For instance, a service view may contain the following relation w ith PID “IS B N ”:

Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview , avgReview, price)

This relation contains information on books, their ISBN num ber, title, year of publication, whether

it is chosen by the O prah’s reading club, whether it is a national best seller, the rating by the New

York Times, the average rating of customer reviews, and th e price of the book. Intuitively, the

PID is a “ticket” th a t a source tuple must produce in order to identify itself in the context of the

global relation to which it contributes data. Tuples from different sources holding the same PID are

considered to describe the same application entity, and are com bined to form a tuple in the global

relation.

In the rest of this chapter, the following notations are used. P ID (R) is used to denote the PID

of global relation R . To simplify presentation, most of the tim e it is assumed th a t P ID (R) consists

of a single a ttr ib u te . For t € R, its PCD value is denoted as t .P ID . For any global relation R.

R { P ID (R)} denotes the set of PED values appearing in R.

4.1 .2 D a ta Sources and R elational W rappers

In order to participate in a service view supported by an AU RORA m ediator, a data source must

be accessible through an A PI known to AURORA m ediators. In the relational context, this API

m ust allow access to schema information, submission and execution of SQL queries, and collection of

query' results in tabu lar form. A wrapper is used to provide such an API. AURORA employs “thin”

wrappers, th a t is, these wrappers do not remove any differences between a source schema and the

target service view in structu re or semantics: although accessible, a wrapped source could still be

different from the service view in m any ways.

W rapper technology is an active area of reseaxch [75, 80], although it is not a focus of research

in AURORA. As described in Chapter 7, currently, AURORA wrappers are constructed using com

mercially available middleware systems. This approach allows a wide range of data sources to be

wrapped, bu t it is not a generic solution: there are sources th a t cannot be wrapped. However, as

w rapper technology progresses, AURORA, would be able to gain access to these sources as needed.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 .3 H om ogenization, o f D ata Sources

Once wrapped, a d a ta source m ust be homogenized to conform in structure and semantics to the

target service view. The process of homogenizing a source requires derivation of a homogenizing

view on top of the (wrapped) source. Some or all relations in this view must be fragments of various

global relations. For instance, a relation Som eBooks(ISBN, title, authors, publisher) is a fragment

of a globed relation Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview, avgReview,

price). Intuitively, a fragment of a global relation provides da ta on some a ttribu tes of some tuples

in this relation. For instance, SomeBooks is able to provide da ta on the ISBN number and title of

books. A nother da ta source maybe able to provide da ta on the category of the books described by

SomeBooks. Yet another da ta source may provide da ta on books th a t are unknown to SomeBooks.

Formally, a source relation R s qualifies to be a fragment of a global relation R tJ if P ID (R ,j) C

A T T R (R S), th a t is, R s is able to produce the PID a ttribu tes required by R g. W hether a source

relation is really a fragment of a global relation is a decision to be made by mediator authors.

AURORA’S m ediation model determines th a t source d a ta must be transform ed into fragments of

global relations in order to be included in a service view. Upon completion of homogenization, all

the da ta th a t a source willingly exports and th a t are relevant to the target service view must exist

as (view) relations in the homogenizing view. Moreover, these view relations m ust be specified, by a

m ediator author, as fragments of relevant globed relations; this "fragment-oF relationship between

source relations and global relations must be available a t the time the global relation is derived.

Generally, a homogenizing view may contain relations th a t are not specified as fragments of any

global relation; these relations are irrelevant to the service view in th a t they will not be identified

or accessed as da ta contributors. The relationship between source relations in homogenizing views

and the target service view is illustrated in Figure 4.1.

Homogenization is performed by a mediator author as follows. The m ediator author compares

the source schema and the target service view to decide which portion of the service view the source

is able to contribute data to, and then designs the homogenizing view accordingly. This design

requires good understanding of the service view and the source schema, and requires many semantic

decisions to be made. After a homogenizing view is designed, it must be derived from the source

view by a m ediator au thor following a homogenization methodology. This methodology is designed

to help a m ediator au thor to manage the complexities of the homogenization process.

The AURORA-RH m ediator assists the m ediator au thor in deriving a homogenizing view system

atically. It does not design the homogenizing view, neither does it determine how a homogenizing

view is to be derived from the underlying source schema; rather, it provides two closely related

facilities to the m ediator author: a Mediation Enabling Algebra (M EA), MEA-RH, and a M ediator

A uthor’s Toolkit (MAT), MAT-RH. MEA-RH provides am algebraic framework suitable for use in

homogenization; it supports operators in the usual relational algebra and operators specially de-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fragment-Of

Homogenization

Wrapped Source

Figure 4.1: Homogenizing View and Service View-

signed for homogenization. MAT-RH m andates the homogenization m ethodology th a t guides the

m ediator author to system atically identify and resolve structural and sem antic differences between a

source schema and the target service view. In each step of this methodology, certain types of deriva

tions can be specified as an expression in MEA-RH. Section 4.2 describes how this methodology

works and how MAT-RH supports it.

4 .1 .4 In tegration o f H om ogen ized Sources

Once homogenized, a da ta source should provide a description of the d a ta it is able to contribute

to the target service view. This description is constructed by the m ediator au thor who specifies

which source relation is a fragm ent of which global relation. Continuing w ith the previous example,

if the da ta source wishes to contribute data towards Books through SomeBooks, it must make

SomeBooks known to Books as a fragm ent. The integration framework m ust allow such a relationship

to be specified and understood, and must also provide a mechanism for deriving global relations by

combining all the known fragments.

In AURORA, integration is performed by AURORA-RI, the relational integration mediator. An

AURORA-RI m ediator supports a pre-defined service view by keeping track of fragments of the

global relations, and using these fragments to derive global relations. T he integration framework

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the AURORA-RI m ediator are described in Section 4.3.

4 .2 A U R O R A -R H H o m o g en iza tio n F ram ew ork

The process of homogenization must remove all s tru c tu ra l and sem antic mismatches between a source

schema and the target service view; this is a com plicated process especially when multiple types of

mismatches are present. In practice, not only do the m ediator au thors need constructs/operators to

express resolutions of mismatches, they also need a homogenization methodology to ensure th a t iden

tification as well as resolution of mismatches are perform ed system atically. AURORA-RH provides

such a methodology and enforces it with a M ediator A uthor’s Toolkit (MAT), called MAT-RH, that

m andates a sequence in resolving mismatches of various types and provides facilities for expressing

required resolutions. Intuitively, MAT-RH provides the m ediator au tho r with a skeleton of homog

enization: the m ediator author follows the hom ogenization methodology to system atically identify

various mismatches and “hang” the resolutions of choice on the skeleton. MAT-RH maintains all

the resolutions in an internal repository so th a t th is knowledge can be used for the processing of

m ediator queries. T he resolutions gathered by M AT-RH axe expressed using the M ediation Enabling

Algebra (MEA) of AURORA-RH, MEA-RH.

M EA-RH extends the relational algebra w ith operators specially designed for constructing ho

mogenizing views. The extensions are to support m ore powerful structural mapping and value

mapping. A structured mapping is a transform ation th a t removes a difference in structure between

the homogenizing view and the source schema, while a value m apping is a transform ation th a t re

moves a difference in d a ta values between the two. For instance, a relation in the homogenizing view

may have an a ttr ib u te whose values correspond to relation or a ttr ib u te names in the underlying

database. This is referred to as a cross-over schema mismatch [41]. It has been argued th a t the

relational algebra cannot express a m apping th a t resolves this s truc tu ra l difference [45]. In contrast,

M EA-RH can express such structural mappings. Defining homogenizing views often requires that

arb itrary functions/look-up tables to be used to derive da ta values from the underlying database.

Such value mappings may be allowed when defining relational views, but the characteristics of the

mappings are not taken into consideration during processing of relational view queries.

4.2 .1 T h e H om ogen ization P roblem

This section gives a formal description of the hom ogenization problem and describes an example

used for illustrating the homogenization process, and for dem onstrating how facilities provided by

AUROR4.-RH can be used by a m ediator author to achieve homogenization.

Let B be a relational database. Let H be a homogenizing view consisting of relations M i , ..., M n.

The problem of homogenizing database B into H is to specify procedures, P ,(H)(1 < i < n), that

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

construct relations M i (i = l ,n) from the relations in B . B is the source database; relations in B

are source relations; M i (i = 1, n) are target relations. H is also referred to as the target view.

- Source Database Schema -

Sales (month, hardcover, paperback, audiobook)
Travel(ISBN, title, price, deduction, bestseller)
NewAge(ISBN, title, price, deduction, bestseller)
Computer (ISBN, title, price, deduction, bestseller)
Hobbies(ISBN, title, price, deduction, bestseller)
Children(ISBN, title, price, deduction, bestseller)

- Target View -

BookSales(month, book-type, salesAmt)
Books(ISBN, title, category, price, bestseller)

Figure 4.2: A Homogenization Example

E x a m p le 4 .2 .1 [A Homogenization Example.] Figure 4.2 depicts a homogenization problem . The

target view contains two relations: BookSales, which summarizes sales of various types o f books,

and Books, which describes all the books available, their ISBN number, title, category, price, and

whether they are a national best seller. The source database provides similar inform ation but is

organized differently. D ata on the monthly sales of different types of books are stored in relation

Sales, which has one tuple for each month, with one column recording the sales of a particu lar type

of books. Books in the same category are stored in a relation named after this category. In addition

to these differences in structure, the following differences in semantics also exist: 1) in th e source

database, the sales and price da ta are recorded in Canadian dollars, while in the target view, the

same da ta are to be reported in US dollars; 2) In the target view, Books.price is the cost o f a book

after deductions, while in the source database, the price is given as the regular price and a deduction

rate; and 3) The target view perceives the ‘‘categories of books” differently from the source database.

R ather than the categories of

{T ravel, N ew Age, Com puter, Hobbies, C hildren}

the target view assumes th a t books are from the following categories:

{ Travel and Adventure, Alternative, Computer and Internet, Hobbies, Young Reader}

The content of the source tables are shown in Figure 4.3. □

4.2 .2 M ism atches and R esolutions

Each database defines domains th a t model conceptual territories. A domain is characterized by the

following:

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Travel
ISBN title price deduction bestseller
001 “Florida” 45 0.15 No
002 “China” 67 0 No

New Age
ISBN title price deduction bestseller
003 “M editation” 24 0 No
004 “Dreams” 23 0.20 Yes

Computer
ISBN I title price deduction bestseller
005 “T C P /IP ” 41 0.15 Yes
006 | “HTML” 37 0.20 Yes

Hobbies
ISBN title price deduction bestseller
007 “Pens” 74 0.15 No
008 “Quilts” 45 0.30 No

Children
ISBN title price deduction bestseller
009 “Micky” 10 0 No
010 “Pooh” 8 0 No

Sales
m onth hardcover paperback audiobook
Feb/99 6700 6900 800
M ar/99 7600 8400 7800

Figure 4.3: Source Tables

1. Its conceptual territory.

2. Its representation construct in the relational da ta model, whether it is represented as relations,

attribu tes, or da ta values.

3. The d a ta type and semantics of its elements.

For instance, the conceptual territory of “title of books” is modeled by domain Books.title in the

target view; the elements of this domain are data values of the a ttribu te title of relation Books: and

these elements are character strings. A domain can be a meta domain, consisting of relations and

attribu tes, or a data domain, consisting of values in a relation. For example, the conceptual territory

of “book categories” is modeled by a m eta domain {T ra v e l , N ew Age, Com puter. Hobbies. Children}

in the source database in Figure 4.2. The representation construct of this domain is relation, the

elements o f this domain are relation names. Domains from different databases th a t model the

same conceptual territory are said to be corresponding domains. W hen corresponding domains me

different in their representation constructs, data types or semantics of elements, there is a domain

mismatch.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider a source database B and a target relation M to be derived from B . Fundamentally,

deriving M from B requires deriving the domains of each a ttr ib u te of M from B and then combining

these dom ains together to form relation M . Each a ttrib u te A of M defines a da ta domain D ‘)f that

models a conceptual territo ry Ca , which is also modeled by B . If B models Ca with the same

representation construct, d a ta type, and semantics as M .A , then derivation of the domain of M .A is

easy. If not, th a t is, there axe dom ain mismatches over conceptual dom ain C a, deriving M .A from

B requires removal of these dom ain mismatches.

Generally speaking, given a source database B and a da ta dom ain D th a t models a conceptual

territo ry Ca , the following types o f domain mismatches between D and its corresponding domains

in B may arise:

T y p e 1 c ro ss -o v e r s c h e m a m ism a tc h . A type 1 cross-over schema mismatch happens when

Ca is modeled by a dom ain consisting of relation names in B .

T y p e 2 c ro ss -o v e r s c h e m a m ism a tc h . A type 2 cross-over schema m ism atch happens when

Ca is modeled by a dom ain consisting of a ttribu te names in B .

D o m a in s t r u c tu r a l m is m a tc h e s . A domain struc tu ra l m ism atch happens when Ca is

modeled by more than one domain(s) in B .

D o m a in e le m e n t m is m a tc h e s . A domain element m ism atch happens when Ca is modeled

in B by a domain whose elements are of a different da ta type or semantics from the elements

of D .

According to the definition of a domain given earlier, the above list covers all possible cases of

mismatches between a target d a ta domain D and its corresponding domains in a given database.

These mismatches tire illustrated by the following example.

E x a m p le 4 .2 .2 The example shown in Figure 4.2 dem onstrates the following mismatches:

1. Type 1 cross-over schema mismatch: In the target database, the concept of “book categories”

is represented as da ta dom ain Books.category. The same concept is represented as relation

names in the source database.

2. Type 2 cross-over schema mismatch: In the target database, the concept of “type of books”

is represented as d a ta dom ain B ookS ales, book -type, bu t is represented as attribute names in

the source database.

3. Domain structu ra l m ism atch: In the target database, B ooks.price means the price including

deductions. In the source database, the same concept is represented by two data domains:

Price = Travel.price U NewAge.price U ... Children.price and Deductions = Travel.deduction U

NewAge.deduction U ... Children.deduction.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Domain element mism atch: In the target database, the domain Books.price contains values

th a t represent money am ounts in US dollars while, in the source database, the domain Price

as described earlier contains values th a t represent amounts in C anadian dollars.

5. Domain element m ism atch: In the source database, the domain representing the concept of

“book categories” contains elements whose values are from the collection of strings {Travel,

New Age, Computer, Hobbies, Children }. In the target view, elem ents of the domain that

represents the same concept, Book.category, draw their values from {Travel and Adventure,

Alternative, Computer and Internet, Hobbies, Young Reader}.

a

A mismatch is resolved by deriving a view in which this particular m ism atch no longer exists.

However, the derived view m ay contain o ther mismatches th a t require m ore views to be derived

in order to remove them. Therefore, such view derivations can be done as many times as it takes

until ail mismatches are resolved. Each derivation aims at solving particu lar mismatches and may

require special transform ation to the data . These transform ations are expressed by the usual rela

tional operators as well as the AURORA primitives, operators specially designed for resolving the

mismatches described above.

4 .2 .3 A U R O R A -R H P rim itives

AURORA-RH primitives are M ediation Enabling Operators (MEOs) specially designed to facilitate

homogenization. These prim itives consist an extension to the relational algebra to form MEA-RH,

a M ediation Enabling Algebra (MEA) th a t is the basis for performing hom ogenization and, later,

for processing queries. All primitives take a relation as an argum ent and generate a relation; they

compose with relational operators in a well-defined manner.

In this dissertation, A T T R (R) denotes the set of attributes in relation R , R E L n a m e{R) denotes

the name of relation R, and A T T R n a m e (A) denotes the name of a ttr ib u te A. Let B be the source

database to be homogenized. AURORA-RH provides the following prim itives:

p r im it iv e retrieve.

Let Q be an expression in relational algebra over the source relations in database B .

R ' = retrieve(Q)

subm its query Q to database B and returns the result table R '.

p r im it iv e pad.

Let R be a relation, A be an a ttribu te , A ^ A T T R (R), and c a constant,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R ' = pad{R, A , c)

defines a relation f i ', A T T R (R ') = A T T R (R) U {.4}. The population of R ' is defined by

R ' = {£' | £'[.4] = c; £'[.4'] = t[A '],t G R ,A ' G A T T R (R)}

Intuitively, for each tuple £ G R , pad generates a R ' tuple £' by “padding” £ w ith a new field .4

with value c. pad is useful for restructuring relations. Consider the relation T ra ve l in Figure 4.2.

Let R ' = pad{ retrieve(Travel), category, “T ra v e l”). R ' has scheme (ISBN , title, price, deduction,

category) and a population consisting of all the Travel tuples each tagged with relation name “Travel”

as a ttribu te category.

p r im it iv e rename.

Let R be a relation, .4 G A T T R (R), and n be an attribute nam e, such th at no attrib u te in R has

nam e n , then

R ' = renam e(R , .4, n)

defines a relation R ' with scheme identical to the scheme of R with a ttrib u te .4 renam ed to n. The

population of R 1 is defined by the following:

R ' = {£' 1 £'[n] = £[.4],£'[.4'] = £[.4'],£ G R ,A ' G A T T R (R) - { .4 } }

p r im it iv e deriveAttr.

Let I? be a relation. Let Lt- C A T T R {R){i = 1, Ar) be a list of a ttribu tes in R . Let N i(i = 1, A:) be

a ttribu tes. Let f i be functions of appropriate signatures.

R ' = d eriveA ttr (R, L i ,N l , f l ,, L k, N k,fk)

defines a relation R', A T T R (R ') = A T T R (R) U {jVl , ...,N k}. The population of f?' is defined by:

R ' = {£' [£'[iVf] = /,-(£[£,,]), I < i < k; £'[.4] = £[.4], .4 G A T T R (R) - {A ^ N k }. t G i?}

Intuitively, for each tuple £ of R , d er iveA ttr generates a tuple £' of R' by adding fields .V, tu t (i= l.kj

and sets their values to be /,(£[£,,]), where £[£,-] is the list of values obtained by projecting t over Lt.

If an a ttrib u te in R has the same name with some N s (1 < s < k), this a ttr ib u te is replaced by Ns.

d eriveA ttr is used for resolving dom ain mismatches with arb itrary functions, as shown in Sections

4.2.5 and 4.2.5. Notice th a t functions f i in deriveA ttr are not aggregates; they apply to field(s) in

a single tuple, while aggregates apply to m ultiple tuples. Given a table containing student grades,

deriveA ttr cannot be used to derive an a ttr ib u te “ GradeAverage”; it can be used to derive the basic

student-grade table. “GradeAverage’ can then be derived using the usual aggregates.

A tra n s fo rm a tio n e x p re s s io n is an expression in MEA-RH th a t defines the derivation of the

scheme and population of a relation from given relations and other argum ents. A transformation

expression deriving relation f i is in the form of R = Te - If Te is in the form of retrieve{Q), where

Q is a relational algebra expression, R is a direct relation-, otherwise, ii T e is an expression that

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involves o ther MEOs, such as pad, renam e, or deriveA ttr, R is a derived relation. Intuitively, a

direct relation is the immediate result of a query over the source database.

4.2 .4 H om ogen ization M eth od ology and A U R O R A -R H

W hen deriving a target homogenizing view H from a source database B , multiple do m ain mismatches

are often encountered. For instance, over the conceptual territo ry of “book categories” , there are two

domain mismatches: a type 1 cross-over mismatch and a domain element m ism atch (mismatches 1

and 5 in Exam ple 4.2.2). A mediation methodology m andates a sequence in which chese mismatches

should be identified and resolved. Such methodologies are designed to assist the m ediator au thor

in examining and resolving mismatches systematically and is a pragm atic m eans for making the

process of homogenization more manageable. Many different methodologies can b e invented. One

such methodology, called the homogenization methodology, is designed as part o f the AURORA

homogenization framework. This methodology m andates th a t homogenization be perform ed in the

following 6 steps:

1. Schema import;

2. Resolve type 1 schema mismatches;

3. Resolve type 2 schema mismatches;

4. Link relations;

5. Resolve domain structural mismatches; and,

6. Resolve domain un it/popu la tion mismatches.

In step 1, the schema im port step, the m ediator author selects the portion of the source database

B th a t is relevant to the target view H . I t is possible th a t the whole schema o f B is relevant.

More often, only some portion of some relations of B are of interest. M ajor s tru c tu ra l differences

are eliminated in steps 2 and 3; after step 3, all domain mismatches th a t are left a re between data

domains of the source and those of the target view. In step 4, the relation-linking s te p , the m ediator

author m ust gather relevant domains in a meaningful way to derive one distinguished relation for

each target relation M in H . This relation, called the prototype relation of M , should contain all

the da ta domains th a t correspond to data domains in M . Finally, in steps 5 and 6, the m ediator

author specifies how da ta domains in each target relation are to be derived, by resol ving mismatches

between these d a ta domains and their corresponding domains in the prototype relation. These

mismatches are often resolved using user-defined functions and look-up tables.

Each step of the homogenization methodology is characterized by the following:

1. Input: In each step, certain relations should be examined.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. O perators: MEOs and transform ations that can be used in th is step .

3. O utput: dom ain m appings and other semantic information, such as enumerated domains,

look-up tables, and derived relations, that may be generated by th is step.

AURORA’S homogenization methodology is enforced by a M ediator A u th o r’s Toolkit in AURORA-

RH, called MAT-RH. Each step of the methodology is supported by a specialized tool. MAT-RH

m andates th a t tools be invoked in sequence. The tools are designed to provide the following facilities:

1. R estrict the scope of the supported mediation step. For instance, steps after relation linking

should only work w ith the prototype relations. Tools supporting these steps should ensure

th a t no other relations are visible or manipulated.

2. A user-friendly interface to assist the mediator authors in specifying transform ations and other

inform ation used for view derivation.

3. Transform ations specially designed for resolving complicated m ism atches. For instance, a

transform ation for resolving type 1 cross-over m ism atch, R E L m a t , is provided by SME-1, the

tool supporting resolution of type 1 cross-over mismatches, which is step 2 of the methodology.

This transform ation is not available in any other tools.

4. Store the transform ations, domain mappings and other sem antic inform ation provided by the

m ediator au thor for homogenization in an internal repository, in a proper format, so th a t this

inform ation can be used later for query processing.

The architecture of AURORA-RH is shown in Figure 4.4. M A T -R H consists of 6 tools, named

EE, SME-1, ..., DEE, th a t support the 6 steps of the homogenization methodology, respectively.

These tools will be described later in this chapter. Each tool gathers and stores various semantic

information into the V iew D e fin itio n R e p o s ito ry . A U R O R A -R H P r im itiv e s implements

primitives described in Section 4.2.3. A U R O R A -R H Q u e ry P ro c e s s o r (A Q P) processes queries

posed against the target view. It translates such a query into a set of queries over the source database,

using the m apping inform ation from the View Definition Repository, sends these queries for execution

and assembles the final answer from the returned data, using the prim itives. The query processing

techniques of AURORA-RH is described in Chapter 5.

4.2 .5 H om ogen ization w ith A U R O R A -R H

This section dem onstrates the homogenization methodology by walking through the process of de

riving the target view from the source database, as given in Figure 4.2. As each step is performed,

the tool in MAT-RH supporting this step will be described.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MAT-RH

Mediator
Author / '

DEE

DSE

RLE

SME-2

SME-1
IE

Query Engine

AURORA-RH Query Processor (AQP)

Query
Rewriter

Query
Optimizer

Query
Execution Engine

View Definition
Repository

AURORA-RH
Primitives

Wrapper
----------------------- i —------ ---------------------

^ Source DB

Figure 4.4: Architecture of AURORA-RH W orkbench

S te p 1: S c h e m a Im p o r t U s in g th e I m p o r t E n v iro n m e n t (IE)

The input to step 1 includes all the source relations exported by a source database B . In this

step, the m ediator author can derive relations using relational algebraic expressions over B; these

expressions select portions of B th a t are relevant to the target view. T he output of this step is a

relational schema, referred to as the import schema, th a t contains a set of direct relations of the

form of R = retrieve{Q), where Q is a relational algebraic expression over database B.

E x a m p le 4 .2 .3 [Importing source database.] In the example given in Figure 4.2. all relations are

of interest and hence are im ported in full. The schema im port step produces a set of direct relations

R = re trieve(R), where R G { Travel, New Age, Computer, Hobbies, Children}. T he repetition of

relation names on the two sides of the retrieve operator causes no confusion because any relation

name referenced by the param eter of retrieve refers to source relations, and the relations on the left

hand side are always view relations. Generally, relations in the im ported schema can be derived by

expressions such as A dult = retrieve(aAge> isSom ePeople), when the target view is used to provide

da ta on adults only. □

The step of schema im port is supported by the Im port Environm ent (EE) tool. The input to IE

includes all the source relations exported by a source database B . The main facilities provided by

IE is a source schema browser, which displays the structure of the source schema. EE also supports

common schema im port options, such as im porting the entire source schema. In this case, derivation

of view relations are autom atically generated by IE so th a t the m ediator author does not have to

write derivations such as R = retrieve(R) for each relation.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S te p 2: S o lv ing T y p e 1 C ro ss-o v er S c h e m a M is m a tc h e s a n d S M E -1

Step 2 of the homogenization methodology requires the m ediator au thor to remove type 1 cross

over schema mismatches. The input to this step includes all the relations in the im ported schema

produced by step 1. All relational operators and AURORA primitives can be used for deriving view

relations in this step. A special transform ation, R E L m a t, is also available.

Given D R = {R i, ...,R n } , a group of relations w ith identical schemes, let A be an attribute,

A <£ A T T R (R i) , then:

n

R E L m a t(D R, A) = \^J pad(Ri, A , R E L n a m e(R i))
i=1

The result relation has a ttribu te set A T T U {-4.}. The population of the result relation contains

tuples from all the relations in D R, each tagged with a new field A th a t contains the name of the

relation it came from. For example, if D R = { Travel, New Age. Computer. Hobbies, Children }. and

if the relations in D R contain tuples as shown in Figure 4.3, then the following transformation

Booksp = R E L m a t(D R, category)

derives relation Booksp, as shown in Figure 4.5. R E L m a t transforms a m eta domain, the relation

group, into a d a ta domain. T hat is, the relation derived with R E L m a t contains a da ta domain

whose elements axe relation names. For instance, the relation shown in Figure 4.5 contains a data

domain category that draws its values from a set of relation names, { Travel, NewAge, Computer,

Hobbies, Children}. Step2 of the homogenization example is given in the following example.

ISBN title price deduction bestseller category
001 “Florida” 45 0.15 No “Travel”
002 “China” 67 0 No “Travel”
003 “M editation” 24 0 No “NewAge”
004 “Dreams” 23 0.20 Yes “NewAge”
005 “T C P /IP ” 41 0.15 Yes “Computer”
006 “HTML” 37 0.20 Yes “Computer”
007 “Pens” 74 0.15 No “Hobbies"
008 “Quilts” 45 0.30 No “Hobbies”
009 “Micky” 10 0 No “Children”
010 “Pooh” 8 0 No “Children”

Figure 4.5: BooksP: Result of RELm at

E x a m p le 4 .2 .4 [Solving type 1 cross-over schema mismatch.] The source database models the

concept of “book category” as relation names, while the taxget view models it as a da ta domain

Books.category. The following is the resolution to this mismatch, using the transform ation R E L m at:

D R = {Travel, N ew Age,C om puter, H obbies,C hildren}

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ooksp = R E L m a t(D R , category)

As shown in Figure 4.5, relation B ooksp has scheme B ooksv (ISBN , title, price, deductions, bestseller,

category). The d a ta domain category contains elements whose values are from D R . □

The ou tpu t of this step of the homogenization methodology consists of all the relations produced

in the previous step, as well as those derived in th is step. At the end of this step, the result view

should contain no type 1 cross-over schem a mismatch.

The tool of Schema M ism atch Environm ent 1, SME-1, in M AT-RH supports this step. The

main facility provided by SME-1 is a tem plate for constructing a R E L m a t transform ation, so tha t

the m ediator au tho r does not have to write a formula, but ra the r fills out a form that is designed

to collect various information needed for a R E L m a t “transform ation. The transform ation itself is

generated by SME-1.

Step 3: Solving Type 2 Cross-over Schema Mismatches using SME-2

Step 3 of the homogenization methodology requires removal of type 2 cross-over schema mismatches.

The input to this step includes all the relations in the output of step 2. All relational operators and

AURORA primitives can be used for deriving view relations in th is step. A special transform ation,

A T T R m a t, is also available.

A T T f?m at(a ttribu te m aterialize) is a special transform ation used for resolving type 2 cross-over

schema m ism atches. Given D A = { .4 i,. . . ,-4n}, a group of a ttrib u tes in a relation S th a t have

identical d a ta types, let N A and AV be a ttribu te names, N A, N y £ A T T R{S), then:

A T T R m a t{S , D A , N A, N V)

= Ur=i pad{renam e(~ATTR{S) - d *u{a ,} (S) , .4,-, A T T Rname(Nv)) , N a ,A T T Rname(Ai))
The result relation has a ttribu te set A T T R (R) — D A U {NA, N y } . A ttribu te N A is the name of the

a ttr ib u te in the derived relation whose domain corresponds to D A . A ttribu te JYV is the nam e of

the a ttr ib u te in the derived relations whose domain corresponds to the dom ain of the a ttribu tes in

D A . For instance, if D A = { hardcover, paperback, audiobook } and relation Sales contains tuples

as shown in the lower right com er of Figure 4.3, th en the following transform ation

Salesp = A T T R m a t{S a le s , D A, book-type, sa lesA m t)

derives a relation Sa lesp, as shown in Figure 4.6. A T T R m a t transform s a m eta domain, the a ttribu te

group, into a d a ta domain. For instance, the table shown in Figure 4.6 contains a data dom ain

“book_type” , whose elements draw their values from D A . Step 3 of the hom ogenization methodology,

and the application of A T T R m a t , axe illustrated by the following example.

Example 4.2.5 [Solving type 2 schema mismatch.] The target view models the concept of “types

of books” as a d a ta domain BookSales.book-type, while the source database models it as a ttribu tes

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m onth salesAmt book_type
Feb/99 6700 “hardcover”
M ar/99 7600 “hardcover”
Feb/99 6900 “paperback”
M ar/99 8400 “paperback”
Feb/99 8000 “audiobook”
M ar/99 7800 “audiobook”

Figure 4.6: S a lesp: Result of A TTRm at

hardcover, paperback, and audiobook in relation Sa les. The following is the resolution for this

mismatch:

D A = {hardcover, paperback, audiobook}

BookSalesp = A T T R m at{Sa les, D A, book-type, sales A m t)

As shown in Figure 4.6, relation B ookSa lesp has scheme (month, salesAm t. book-type). The data

domain book-type contains elements th a t draw their values from D A . □

The ou tpu t of this step of the methodology consists of all the relations produced by the previous

step, as well as those derived in this step. A t the end of this step, the result view should contain no

type 1 or type 2 cross-over schema mismatch.

The tool of Schema M ismatch Environm ent 2 of MAT-RH, SME-2, supports this step. The main

facility provided by SME-2 is a tem plate for constructing an A T T R m a t transform ation, so th a t the

m ediator au tho r does not have to write a formula, bu t ra ther fills out a form th a t is designed to

collect various information needed for an A T T R m a t transform ation. The transform ation itself is

generated by SME-2.

Step 4: Relation Linking and RLE

Assume th a t a target relation M has a ttrib u te .4 i , ..., .4n , m odeling conceptual territories C i , ..., Cn.

After both types of cross-over schema mismatches are removed by steps 2-3, C i ,C n would now

be modeled by d a ta domains in the output view of Step 3. The step of relation linking requires the

m ediator au thor to combine all the d a ta domains th a t are related to C i ,..., C„ to form a distinguished

relation M p. M p contains all the d a ta domains modeling C i , . . . , C n and is called a prototype of M .

Moreover, a ttribu te names in M p m ust satisfy the following condition: for any a ttrib u te .4' 6

A T T R (M P), if it models the conceptual territo ry of C,-, then 4.'- should have the same attribu te

name as A,- £ A T T R (M) . Intuitively, this condition ensures th a t if an a ttr ib u te .4' of M p is "the

same” as a ttr ib u te A of target relation M , it should bear the same name as the latter. The output

of the relation linking step is a set of prototype relations, one for each of the target relations.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E x a m p le 4 .2 .6 [Relation linking.] In Exam ples 4.2.4 and 4.2.5, relations B ooksp and B ookSalesp

are defined. These two relations are the prototypes of target relations Books and BookSales, respec

tively, and they are the output of the Relation Linking step. No derivation is explicitly performed

in the relation linking step in this example b u t in general, one or more view relations can be derived

to facilitate the final derivation of the prototype relations □

MAT-RH supports the step of relation linking with the tool of Relation Linking Environment.

RLE. The main facility provided by RLE is for the m ediator authors to derive and m ark the distin

guished relations as the only output relations.

Step 5: Solving Domain Structural Mismatches using DSE

Step 5 of the homogenization methodology requires the m ediator authors to remove domain struc

tural mismatches between the prototype relations, which are the output of the relation linking step,

and the respective target relations.

Consider a target relation M and an a ttr ib u te A £ A T T R (M) th a t models a conceptual territory

Ca - After the relation linking step, Ca m ight be modeled by the prototype relation of M , M p, as

one d a ta domain or as more than one d a ta domain. Step 5 of the homogenization methodology

requires tha t for each attribute .4t- of M th a t corresponds to more than one da ta domain in M p, the

m ediator au thor specify the following:

1. L i = {.4^1 ;..., .4^ .} , a ttribu tes in M p th a t correspond to .4,-. Li is referred to as the source

domain list of attribute .4;.

2. A domain structural function (DSF), f f with the following signature:

f t : x ... x A?l{ -> Ti

where (1 < I < L) is the d a ta type of a ttribu te .4 ^ of M p, and T is the data type of

a ttribu te A,- of relation M .

DSFs m e arb itrary functions th a t m ust be provided by the m ediator author. Once all the DSFs are

specified, the m ediator author can derive a relation M v as follows:

M v = 7r A l , . . . , A m (deriveA ttr(M p ,L d i, A d l, f di,...., L dk, A dk, f dk))

where .4^ ,,..., Adfc(0 < k < m, 1 < di < m) are all the attribu tes of M th a t correspond to more

than one a ttribu te of Mp. The schema of relation M v is similar to that of the target relation M

except th a t an a ttribu te M V.A may have a different da ta type or meaning, such as unit of measure,

from a ttribu te M .A . M v is referred to as the value model of relation M since the only difference

between M v and M is in the da ta values they contain; these differences are due to domain element

mismatches which are to be removed in the next step of homogenization.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 4.2.7 [Solving domain structured m ism atch.] In relation B ooksp derived in Example

4.2.4, attribu tes price and deduction together describe the over-the-counter price of a book. In

target relation Books, price means over-the-counter price, including ail deductions. To resolve this

mismatch, the following is specified:

B B o o k s . price — [price, deduction]■

f B o o k s . p r i c e ^ P ' d) = (I - d) * p

Relations B ooksv can be derived as follows:

B ooksv = 7TI S B N , title,category,bestSeltertprice(.dcri'VeAttr(^Booksp, [jyricc, deduction}, price, f []ooks.price))

There is no domain structural m ism atch over th e domains of relation BookSales. Hence

B ookSalesv = B ookSa lesp

a

The output of this step of the methodology includes the following:

1. Source domain lists and the DSFs for all the a ttribu tes of M th a t correspond to more than

one domain in the prototype relation;

2. The derivation of the value model relation for each target relation.

MAT-RH supports this step with the Dom ain S tructure Environm ent, DSE, which supports the

following:

1. It provides tem plates for the m ediator au tho rs to specify the source dom ain lists and the DSF

for a ttribu tes of M .

2. It ensures th a t the DSFs are provided w ith the appropriate signatures.

3. It autom atically creates the derivation of the value model relations, using the source domain

lists and the DSFs specified by the m ediator author.

Step 6: Solving Domain Element Mismatches and DEE

The value model relation of a target relation M , M v, as derived by step 5 of the methodology,

has a scheme similar to that of M . However, for an a ttribu te .4 E A T T R (M) , the values of

M V.A may differ from th a t of M .A in d a ta type a n d /o r in semantics. For instance, they might be

based on different units of measurement. To derive M .A from M V.A, step 6 of the homogenization

methodology requires the mediator to specify a domain value mapping th a t converts values of M V.A

to th a t of M .A when needed. If a domain value m apping maps each M V.A value to a unique M .A

value, it is a domain value function (DVF). O therwise, there is uncertainty in the homogenization

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process. In this dissertation, only DVFs are considered. Inverses of DVFs, if they exist, must also

be specified; they are used for efficient query processing, as described hi Chapter 5. After the DVFs

are specified, the target relation can be derived w ith the opera to r deriveAttr as follows:

M = deriveA ttr{M v, { A i} , A i , f * { A k }, A k , f„)

where A T T R (M) = { A i,..., Am} and / " (i = l ,m) is the DVF for a ttribu te .4;. This step of the

m ediation m ethodology is illustrated by the following examples.

E x a m p le 4 .2 .8 [Solving domain element mismatch.] Consider relation B ooksv in Example 4.2.7.

The semantics of a ttribu te price is “price including deduction” but the price is still in Canadian

dollars. In the target view, the price is represented in US dollars. Assume 1 US dollar is worth 1.5

Canadian dollars, then the DVF for Books.price can be defined as:

f VBooks.Price(s) = C D N to U S D (s) = s/1 .0

Similarly, the DVF for Book Sa les.sa les A m t can be defined as

f B o o k S a l e s . s a l e s A m t (®) = C D N to U S D (s)

C D N to U S D Q has an inverse th a t should be specified by the m ediator author as well. □

E x a m p le 4 .2 .9 [Solving domain element mismatch.] Consider relation Booksv in Example 4.2.7.

The domain of B ooksv .category consists of values from { Travel, NewAge, Computer, Hobbies,

Children}, while domain Books.category consists of values from {Travel and Adventure, Alterna

tives, Computer and Internet, Hobbies, Young Readers}. To resolve this mismatch, a DVF must be

specified for Books.category. This DVF is given as a m apping table categoryMap shown in Table

4.1. T hat is, feooks.categoryU) = categoryM ap(j). This m apping is 1-1 and is invertible.

Combining all the DVFs specified above with those specified in the previous example, the relations

B ooks and B ookSa les can be derived as follows:

B ooks = deriveA ttr(B ooksv , {category}, ca tegory, f g ooks category, {price}, price, C D N toU SD)

B ookSa les = d eriveA ttr(B ookSa lesu, {sa leA m t} , sa le sA m t, C D N toU SD)

The derived populations of these two target relations are shown in Figures 4.7 and 4.8. □

MAT-RH supports this step with the Domain E lem ent Environm ent, DEE. The facilities provided

by D EE are the following:

1. It provides tem plates for the m ediator authors to specify the DVFs with appropriate signatures.

2. It allows the m ediator au thor to specify look-up tables.

3. It allows the m ediator au thor to specify the properties o f DVFs th a t axe useful for efficient

query processing, and their inverses, if they exist.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Travel Travel and Adventure
NewAge Alternative

Com puter Com puter and Internet
Hobbies Hobbies
Children Young Readers

Table 4.1: categoryM ap : Domain Value M apping for Books.category

ISBN title price bestseller category
001 “Florida” 26 No “Travel and A dventure”
002 “China” 47 No “Travel and A dventure”
003 “M editation” 16 No “Alternative”
004 “Dreams” 11 Yes “Alternative"
005 “TC P/B P” 23 Yes “Com puter and In ternet”
006 “HTML” 20 Yes “Com puter and In ternet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky” 7 No “Young Readers”
010 “Pooh” 5 No “Young Readers”

Figure 4.7: Derived population of relation Books

m onth salesAmt book_type
Feb/99 4467 “hardcover”
M ar/99 5067 “hardcover”
Feb/99 4600 “paperback”
M ar/99 5600 “paperback”
Feb/99 5333 “audiobook”
M ar/99 5200 “audiobook”

Figure 4.8: Derived population of relation BookSales

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. I t autom atically creates the derivation of the target relations, using the DVFs provided by the

m ediator author.

By now the task of deriving the target view from the source database, as shown in Figure 4.2,

is completed using the homogenization methodology and MAT-RH. The contents of the derived

relations of Books and BookSales cure shown in Figures 4.7 and 4.8. The next section shows how

homogenizing views are combined to derive relations in a service view.

4 .3 T h e In tegration Fram ew ork and A U R O R A -R I

AURORA’S mediation model prescribes th a t the da ta sources be first homogenized and then inte

grated. Integration is the process of deriving data in a pre-defined service view based on da ta from

a set of homogenizing views. The integration framework consists of two components:

1. A registration mechanism. Given a set of homogenizing views, constructed by m ediator authors

for respective participating sources, integration requires th a t the m ediator au thor describe

the homogenizing view using registrations th a t declare the fragment-of relationship between

relations in the homogenizing view and the global relations in the service view. Registration

is a means for the m ediator au thor to describe the content of the homogenizing view in the

context of a service view.

2. The M atch Join operator. M atch join is an operator tha t derives a global relation by combining

all the fragments known through registrations.

Integration is performed by AURORA’S Relational Integration mediator, AURORA-RI, which ac

cepts registrations from relevant AURORA-RH mediators and realizes the M atch Join operator.

AURORA-RI is also responsible for entertaining queries against the service view, as described in

C hapter 5. The relationship between AURORA-RH and AURORA-RI is illustrated in Figure 4.9.

4.3 .1 R egistrations

A d ata source contributes da ta to a service view S by describing the da ta it offers with a registration,

sent to the AURORA-RI m ediator supporting S. A registration is a 3-tuple:

R E G = < D S N , S R , G R N >

where D S N is a da ta source name, S R is the schema of a relation at D S N , G R N is the name

of a global relation in S. Once the above registration goes through, S R is said to be a registered

fragment of relation G R N . S R must provide the PID of G R N in order to be a fragment of it, that

is, P ID { G R N) C A T T R (S R) . For any a ttribu te B of G R N , S R s u p p o r ts B if B <E A T T R (S R) .

A fragment of a global relation R often supports some, but not all, of the attribu tes of R.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AURORA-RI

Registration
Server__ Query Server

Utility 0 8

AURORA-RH AURORA-RH

Mediator Author
Toolkit (MAT)

Mediator Author
Toolkit (MAT)Query Server Query Server

Utility OB Utility OB

;Sourc§:

Figure 4.9: Relationship Between Homogenization and Integration M ediators

4.3 .2 M atch Jo in

For global relation R g and any of its fragments, R , it is m andatory that P I D (R g) C A T T R (R) .

Any valid value of P I D (R g), v, identifies an application entity, E v. If v G R g{ P I D (R g)\ or

v G R { P I D { R g)}, then E v is described by R g or R . respectively. Assume that R g is a global

relation and R i , . . . ,R m are all the fragments known. Given the content of relations R i ,R n . the

derived content of relation R g must satisfy the following conditions:

1. Vv, v G R { P ID (R g)} if and only if 3 i ,v G R i{ P ID (R g)}.

2. Vt G R S,VA G A T T R (R g) ,A £ P I D { R g), 3a null,t[A] = a if and only if 3i ,3 t ' G R i - A G

A T T R { R i) , t '[P I D { R g)] = t[P ID (R g)},t'{A} = a.

The first condition ensures that any entity described by any fragm ent is also described by R g, and

any entity described by R g must be described by a t least one of its fragments. T hat is, R g does

not contain "invented” entities. The second condition ensures th a t, for any entity E v described by

R g according to the first condition, and a non-PID a ttr ib u te A of this entity, the value of a ttribu te

A of en tity E v as described by Rg should be the same as th a t described by the fragment(s) tha t

provide a non-null value on E V.A. The value of E V.A as described by Rg is null if and only if no

fragm ent provides a non-null value for a ttribu te A in its description of entity E v. Notice th a t if

m ultiple fragm ents provide distinct, non-null values of E V.A, th a t is, when there is an instance level

conflict over a ttr ib u te A of entity E v , the second condition above says that all of these values are

retained in the global relation, that is, such conflicts are not resolved at integration time. As shown

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

later, these conflicts are resolved a t query time, according to application requirem ents on conflict

handling.

In AURORA, global relations are derived using the Match Join (MJ) operator, which com

bines tuples from registered fragments based on PED values. Consider two registered fragments,

F1(P, A , B) and F 2 (P , B , C), of relation R(P, A , B , C) with PID P. If < p, a, 6 > £ FI, < p ,b ,c >£

F 2, then < p ,a , b, c > € R. If < p, b', c > 6 F2 and b ^ 6', then bo th < p .a ,b ,c > and < p, a, 6', c >

are in R. M J can be expressed using outer-joins.

D e f in i t io n 4 .3 .1 [Value Set.] Let Y = {Fi, ...,F a /} be a set of fragments w ith a common PED P.

Let .4,- be a non-PED attribu te . The value set o f A , given Y , V A L se t{A (\Y) , is defined as:

Mi
V A L se t(A i \Y) = (J wP,Ai (F £.)

j - i
where F tj. ’s (I < j < M,-) are all the fragments in Y supporting .4,. □

V A L se t (A i \Y) is a binary relation (P , .4,-) containing all th e .4,-values from the fragments in Y

and the related PED value. These binary relations are then outer-joined to derive a global relation.

D e f in i t io n 4 .3 .2 [Match Join Operator.] Let Y — {F i , ..., F \r} be a set o f fragments with a

common PID P . Let S = {P, A i , ..., .4ff} be a set of attributes, VI < i < g, .4j P . The Match Join

(MJ) of relations in Y based on P in regard to S is defined as:

M J (P, S, Y) = V A L s e t (A i \Y)K p V A L s e t (A 2 \Y)Wp....™P V A L se t (A g\Y) (4.1)

where Wp denotes outer-equi-join on P . □

D e f i n i t i o n 4 .3 .3 [Global Relation Population.] Let R be a global relation and let Y r be the set

of all fragm ents registered with R, Y r = { F i , ..., F \ f} . Then the population of relation R is derived

as:

R = M J (P I D (R) ,A T T R (R) , Y r)

a

It is easy to verify th a t the global relations derived according to the above definition satisfy the two

conditions given earlier.

4.3 .3 A n In tegration E xam ple

E x a m p le 4 .3 .1 Assume th a t a service view defines the following global relation, Books-.

Books(ISBN, title, year, oprahClub, bestseller, category, NYTreview, avgReview, price)

w ith PID “ISBN” . Also assume th a t Books has four registered fragm ents, as shown in Figure 4.10.

According to Definition 4.3.3, AURORA-RI will derive Books as shown in Figure 4.11. The column

t id is not p a rt of the result but is used later to refer to tuples. □

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fragment 1
ISBN title year oprahClub
001 “Florida” 1960 No
002 “China” 1966 No
003 “M editation” 1972 Yes
004 “Dream s” 1970 Yes

Fragment 2
ISBN title oprahClub bestseller
002 “China” No Yes
003 “M editation” No Yes
004 “Dream s” Yes Yes
005 “T C P /E P ” Yes Yes

Fragment 3
ISBN title price bestseller category
001 “Florida” 26 No “Travel and Adventure”
002 “China” 47 No “Travel and Adventure”
003 “M editation” 16 No “Alternative”
004 “Dream s” 11 Yes “A lternative”
005 “T C P /IP ” 23 Yes “Com puter and Internet”
006 “HTM L” 20 Yes “C om puter and Internet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky” 7 No “Young Readers”
010 “Pooh” 5 No “Young Readers”

Fragment 4
ISBN title year NYTreview avgReview

001 “Florida” 1960 1 12
002 ” China” 1968 5 7
003 “M editation” 1974 8 7
004 “Dream s” 1980 9 3
005 “T C P /IP ” 1992 15 15
006 “HTM L” 1974 16 2
007 “Pens” 1986 10 14

Figure 4.10: Registered Fragments for Global Relation Books

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tid IS B N title y ea r o p ra h
C lub

b e s t
s e l l e r

c a te g o ry N Y T -
rev iew

avg-
R ev iew

p rice

£1 001 “Florida 1960 No No “Travel and
Adventure”

1 12 26

*2 002 “China” 1966 No No “Travel and
Adventure”

5 t 47

£3 002 “China" 1968 No No “Travel and
Adventure”

5 1 47

£4 002 “China” 1966 No Yes “Travel and
Adventure”

5 i 47

£5 002 “China” 1968 No Yes “Travel and
Adventure”

5 7 47

£e 003 “M editation” 1972 Yes No “Alternative” 8 7 16
£7 003 “M editation” 1972 Yes Yes “Alternative” 8 7 16
ta 003 “M editation” 1972 No Yes “Alternative” 8 7 16
£9 003 “M editation” 1972 No No “Alternative” 8 7 16

£10 003 “M editation” 1974 Yes No “Alternative” 8 7 16
£11 003 “M editation” 1974 Yes Yes “Alternative” 8 7 16
£12 003 “M editation” 1974 No Yes “Alternative” 8 7 16
£ i 3 003 “M editation” 1974 No No “Alternative” 8 7 16
£14 004 “Dreams” 1970 Yes Yes “Alternative” 9 3 11
£15 004 “Dreams” 1980 Yes Yes “Alternative” 9 3 11
£16 005 “T C P /T P ” 1992 Yes Yes “Computer and

Internet”
15 15 23

£ 17 006 “HTML" 1974 null Yes “Computer and
Internet”

16 2 20

£18 007 “Pens” 1986 null No “Hobbies” 10 14 42
£ 19 008 “Quilts” 1986 null No “Hobbies” 10 14 21
£20 009 “Micky” 1986 null No “Young

Readers”
10 14 7

£21 010 J “Pooh1’ 1986 null No “Young
Readers”

10 14 5

Figure 4.11: Derived Population of G lobal Relation Books

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By requiring sources to return fragment d a ta sorted on PID , M J can be calculated by a multi

way merge-join algorithm . For each PID value k, all non-PID a ttr ib u te values identified by k are

collected from all fragments in respective sets, and a C artesian product of these sets is performed

to produce all tuples with PID value k. The result of M J thus com puted is sorted on PID.

As discussed earlier, the global relations thus derived may contain instance level conflicts. For

example, relation Books, as shown in Figure 4.11, gives inconsistent d a ta on the year the book

“M editation” is published. In this sense, AURORA’S integration framework produces conflict-

accommodating relations. These retained conflicts are dealt with a t query processing time using

a conflict to leran t query model, described in C hap ter 5.

4 .4 S u m m ary

This chapter describes the relational m ediation fram ework of AURORA. It consists of two sub

frameworks: the homogenization framework and the integration framework. Comparison of AU

RORA with previous work, in terms of the m ediation frameworks, can be found in Chapter 2. The

hom ogenization framework consists of a m ediation m ethodology and a set of m ediation enabling op

erators designed for transforming da ta for hom ogenization. Com pared w ith previous approaches, this

framework not only provides operators th a t specialize in m anipulating heterogeneous data, it also

provides a pragm atic means for managing the complexity of working with sem antic differences, via

the m ediator au th o r’s toolkit. The relational integration framework has a built-in objert-m arrhing

facility and retains instance level conflicts, which are exposed to the applications. A conflict toler

an t query model is provided to allow the applications to manage these conflicts at query time, as

described in the next chapter.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Query Processing in Relational

Mediators

From the view point of the applications, a service view is a relational schema th a t can be queried,

regardless of the fact th a t the da ta actually originate from m ultiple heterogeneous data sources.

Given a query Q against the service view, the data m ediation system is responsible for decomposing

Q into subqueries against the sources, sending these subqueries to the da ta sources for execution,

collecting the result of these queries, and assembling the answer to Q using these query results.

In AURORA, service views are supported by AURORA-RI m ediators th a t see the sources as a

collection of homogenizing views supported by respective AURORA-RH m ediators, which in tu rn

access the da ta sources through the wrappers. A query Q against a service view supported by an

AURORA-RI m ediator, Mr, is processed as follows:

1. M f decomposes the query into queries against the participating AURORA-RH mediators.

2. Each AURORA-RH m ediator that receives subqueries from Mr translates these queries into

queries against the underlying data source, submits them for execution through the wrapper,

collects the result from the wrapper, assembles the answers to the subqueries submitted by

Mr, and returns this answer to Mr-

3. Mr uses the query results returned by AURORA-RH m ediators to assemble an answer to Q.

Therefore, AURORA-RI and AURORA-RH cooperate to process queries against the service view,

as shown in Figure 4.9. Both AURORA-RI and AURORA-RH perform query decomposition and

query answer assembly. While this is the common paradigm of query processing in da ta mediation

systems, AURORA’S query processing techniques differ from previous work in the following ways:

1. AURORA-RI supports a conflict tolerant query model, th a t allows the applications to query

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potentially inconsistent da ta . As shown in Section 4.3, the integration framework of AURORA-

RI does not resolve instance level conflicts. The reason is th a t conflict detection and resolution

can be costly if done at integration time. In AURORA, conflicts are retained in the integrated

relations, and the applications deal with them at query time using the conflict tolerant query

model, which provides language constructs to assist the applications in managing the conflicts

in large granularities. This query model is described in Section 5.1.

2. AURORA-RH processes queries based on MEA-RH, an algebraic framework specially designed

for m anipulating data for homogenization. MEA-RH is described in Section 4.2.3. Relations in

a homogenizing view are derived using MEA-RH operators. Query processing in AURORA-RH

requires query rewriting using view definitions, until a QEP is produced. Intuitively, a QEP is

an expression that involves only source relations. The Q EP is transformed using transform ation

rules to produce a more efficient QEP, which is then evaluated. A Q EP as an operation tree

has leaf nodes th a t are retrieve operators which submit queries to the underlying da ta source.

Non-leaf nodes can be any operator defined by MEA-RH. Query rewriting, transform ation

rules, and algebraic optimization algorithms are described in Section 5.4.

N o ta tio n s . In this chapter, the following notations are used. f..4 is used to denote the value

of a ttribu te .4 in tuple t, and R { A } to denote all values of a ttribu te .4 in relation R, th a t is, F{-4}

= {a | 6 R , t .A = a}. Given a collection of relations, Y — { F i,. . . ,F m}, and an a ttribu te B,

Y { B } = Fi{f?} U ... U Fm{B }. A T T R (R) denotes the set of attributes of relation R; A T T R (p)

denotes the set of attributes referenced by predicate p.

5.1 C onflict Tolerant Q uerying in A U R O R A -R I

This section describes a technique for querying data in the presence of instance level conflicts. This

approach allows applications to control conflict resolution policies at a coarse granularity and gives

the system more space for query optimization.

5.1.1 M otivation

Traditionally, instance level conflicts are resolved a t schema integration time using aggregation func

tions [21]. Consider a relation Books with an a ttribu te year, meaning the year a book is published.

One may specify th a t when multiple sources record different year for a book, the “correct” year

value be computed as the average of these values. Queries are written as if da ta are conflict-free.

Conceptually, instance level conflicts are resolved before queries are evaluated; users have no say

over resolution policies a t query time. This approach is referred to as the static resolution approach.

These resolutions are realized during m aterialization or query processing. If integrated d a ta are

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m aterialized, instance level conflicts are removed before any query is processed. If d a ta are not

m aterialized, th a t is, they are virtual, enough da ta m ust be retrieved for conflict detection and reso

lution a t query time: this may incur a significant performance penalty as illustrated by the following

example:

E x a m p le 5 .1 .1 Assume th a t sources A and B provide d a ta on Books, and conflicts on year are to

be resolved by taking the average of all year values. Consider query:

Qo = se lec t ISBN, title, category f ro m Books w h e re year > 1970

I t is not sufficient to retrieve only books w ith year > 1970; all Books d a ta from both A and B

m ust be retrieved so tha t the correct year values can be computed, and the predicate "year > 1970”

evaluated. This cost stays the same even when no conflict over year actually occurs. Optim ization

strategies have been proposed [21, 15], bu t cases such as Qo are fundam entally difficult to optimize.

This drawback becomes significant when m ore sources contribute large volumes of Books data . □

In a dynam ic data integration system where large numbers of d a ta sources come and go. m ateri

alization m ay not be desirable. It is also difficult to foresee when and where instance level conflicts

are likely to happen; adding a new source m ay give rise to new conflicts. Specifying a resolution

for conflicts th a t do not really happen incurs unnecessary performance penalties if d a ta are virtual.

On the o ther hand, applications vary in requirem ents for conflict handling. For Qo in Example

5.1.1, the exact year of publication of a book does not m atte r so long as the book is published

after 1970. W hen multiple sources offer different year values of a book, one user may consider a

book to be published after 1970 if some sources say so, while another m ay require th a t all sources

say so. Conflict resolutions on title and category can be performed only for books th a t qualified as

“published after 1970” . Conflicts on Books.year is not resolved, but ra ther tolerated by the system

during query processing. This approach of instance level conflict handling is referred to as co n flic t

to le r a n t q u e ry in g .

Conflicts

Query Evaluation
Statically Resolved Tolerated

On Materialized D ata 1 3
On Virtual D ata 2 4

Table 5.1: Q uerying Integrated D ata

Depending on whether integrated d a ta a re m aterialized, and how instance level conflicts are

handled, there are 4 cases of querying in tegrated data , as shown in Table 5.1. Cases 1 and 2 raise

no new issues in query semantics; these are well-studied domains. Case 1 requires m aintenance of

m aterialized da ta . Query optim ization issues in case 2 have been studied [21, 15]. In AURORA,

80

with permission of the copyright owner. Further reproduction prohibited without permission.

the conflict tolerant query model, the C T q u e ry m o d e l, is defined for use in cases 3 and 4. A

framework for reducing redundant d a ta retrieval is developed for use in case 4. Optim izing queries

on m aterialized d a ta in case 3 leverages existing techniques, and is not discussed.

The CT query model enables users to resolve instance level conflicts to a desired degree and let

the system “to lerate” the rest; it allows flexible conflict handling and b e tte r query performance for

users who do not require s ta tic resolutions. Consider the following CT query:

Q '0 = s e le c t ISB N , £i£/e[ANY], year[ANY], ca£eyory[DISCARD]
f ro m Books

w h e re year > 1970 w ith HighConfidence

HighConfidence in the w ith clause specifies th a t if inconsistent year values exist, a book qualifies

as year > 1970 only if all sources say so. A fte r a. book qualifies, if there is conflict on title, year, or

category, the functions ANY, ANY, and DISCARD, respectively, are used to remove these conflicts

to produce a conflict-free query answer. Given a set of values S, function ANY returns a random

value from S; function DISCARD returns a null value if S contains more them one distinct value,

otherwise it returns the only value in S . These resolutions do not affect predicate evaluation; they

are used only to produce conflict-free query results. If all sources record th a t the book “M editation”

is published before 1970, then it does not have to be retrieved even if there is conflict on its year.

The framework described in Section 5.3 enables such optimized processing.

5.1 .2 In stan ce Level C onflicts and R eso lu tion s

In Figure 4.10, Fragment 1 records th a t the book “M editation” is published in 1972 while Fragment

4 indicates th a t the same book is published in 1974. This conflict is reflected in Figure 4.11 as a

violation of key constraint, since there is more than one tuple with ISBN 003; these tuples form the

alternative tuple set for 003.

D e f i n i t i o n 5 .1 .1 [Alternative Tuple Set.] Consider a relation R and a PID value k. The alternative

tuple set of R for k , A T se t{R , k), is defined as:

A T s e t (R ,k) ={£ | t £ R , t .P I D = £}

□

For example, in Books relation given in Figure 4.11, the following can be found:

ATset(Books, 001) = {£i}, ATset(Books, 002) = {to, £3 , £4 , £5 }, ATset{Books, 004) = {£1 4 , £1 5 }

A T sets containing more than one tuple indicate conflicts, as defined below.

D e f i n i t i o n 5 .1 .2 [Conflicts and CA-Relations.] Given a globed relation R and a PID value k, if

\A T se t{R ,k) \ > 2, then there is a conflict in R a t k. Relations th a t may contain conflicts are called

conflict-accommodating relations, or CA-relations. □

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Global relations derived according to Definition 4.3.3 axe CA-relations, in th a t they potentially

contain conflicts. Formally, conflicts are caused by inconsistencies among registered fragments.

Consider two fragments Fi, Fj of relation R, both supporting a non-PID a ttr ib u te .4. If G

F i , t j G Fj, t i .P ID = t j .P I D = k bu t t i .A ^ t j .A , then by Definition 4.3.2. flti.fo £ R ■ such that

t i .P I D = to .P ID = k, t j .A U.A. T h a t is, \ATset{R , A:)} > 2. A T se t describes conflicts a t tuple

level. Definition 5.1.3 below describes conflicts a t a ttribu te level.

D e f in i t io n 5.1.3 [Conflicts over a ttribu tes.] Given global relation R, non-PED a ttrib u te .4, and

PED value k, there is a conflict on R .A a t A: if \ATset(7rp[D,A(R)), k)\ > 2. □

Tuple level conflicts result from a ttr ib u te level ones; resolutions can be performed a t both levels. As

defined below, a resolution in either case is a function with an appropriate signature.

D e f in i t io n 5.1.4 [A ttribute/Tuple Conflict Resolution.] Given a global relation R and its a ttribu te

.4, an attribute conflict resolution on R .A is a function f : s e to f (T) —> T , where T is the type of i?..4.

A tuple conflict resolution on R is a function g such th a t, given a set of tuples S = (t i , ..., tn } C R,

t i .P ID = k for 1 < i < n, g(S) — t where A T T R (t) — A T T R (R) , t — null or t .P I D — k. □

AURORA provides common functions such as SUM, AVG, MAX, MEN, ANY. DISCARD, but

also allows user-defined functions. If conflicts on all a ttributes are resolved, then effectively a tuple

conflict resolution has been performed. This relationship between the two types of resolutions is

captured by the concept of equivalent tuple conflict resolution (ETCR) given below.

D e f in i t io n 5.1.5 [Equivalent tuple conflict resolution (ETCR)] Let R be a global relation and X

= { .4 i ,..., .4n } be all the non-PID a ttrib u tes of R over which there may be conflicts. Let

be a ttribu te conflict resolutions on A i , . . . ,A n , respectively. Let S be a set of tuples of R th a t have

the same PID value. A tuple conflict resolution of R, g, is the equivalent tuple conflict resolution of

/ i , ..., / n , denoted as g = E T C R (f i , ..., f n), if for any set of i?-tuples with a common PED value, S,

g(S) = t where t satisfies the following:

1. Vi, 1 < i < n, t.Ai = f f lS i) where Si = {v \ 3r 6 5, r..4t- = u}; and

2. VS e A T T R (R) - X , t .B = n . B , where n G S.

□

Definitions 5.1.6 and 5.1.7 define AURORA’S conflict resolution operators: R A C and R T C .

D e f in i t io n 5.1.6 [Operator RAC] Let R be a CA-relation and / ls ..., /„ be conflict resolutions on

non-PID attributes 4 i , . . . , 4 n . O perator Resolve Attribute Conflict, R A C , is defined as

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R A C (R , A i : f i , ..., A n:fn) = {? | 3k, t , t G R , t .P I D = k, t ' .P ID = k,
Vi, 1 < i < n, t ' .A i = f i{S {R , 4.,-, fc)),
V B ,B G A T T R (R) - {At , A „ } , t ' .B = t .B }

where S (R , A , k) = {a | < k, a >G 7Tp / d ,a (-R)}- a

D e f in it io n 5 .1 .7 [Operator R T C] Let R be a C A -relation and F be a tuple conflict reso lu tion o f

R. O perator Resolve Tuple Conflict, R T C , is defined as:

R T C (R ,F) = {t | 3k, t = F (A T s e t(R , k))}

a

Intuitively, R A C rem oves conflicts on a ttributes .4 Li A n o f R using functions R T C

rem oves tup le level conflicts using function F . T h ese operators are illustrated in F igures 5.1 and

5.2. G iven C, a set o f conflict resolution functions for all th e non-PID attributes o f R over w hich

there m ay ex ist conflicts, RTC {R , E T C R {C)) = R A C (R , C).

IS B N ti t le year o p ra h
C lub

b e s t
s e lle r

ca te g o ry N Y T -
rev iew

avg-
R ev iew

p r ic e

001 “Florida 1960 No No “Travel and
Adventure”

1 12 26

002 “China” 1966 No null “Travel and
Adventure”

5 7 47

003 “M editation” 1972 Yes null “Alternative” 8 7 16
004 “Dreams” 1970 Yes Yes “Alternative" 9 3 11
005 “T C P /T P ” 1992 Yes Yes “Com puter and

Internet”
15 15 23

006 “HTML” 1974 null No “Com puter and
In ternet”

16 2 20

007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young

Readers”
10 14 7

010 “Pooh” 1986 null No “Young
Readers”

10 14 1 5
i i

Figure 5.1: R A C (Books, t/eanMIN, oprahClub:ANY, 6est5W/enDISCARD)

Choice of the stra tegy for conflict handling is significant. For applications, this strategy im pacts

on the quality of the d a ta service they receive; it is desirable to have control over this quality.

For the m ediator, d a ta services of varying qualities incur varying cost; it is desirable to optim ize

accordingly. In the next section, the Conflict Tolerant (CT) query model - a new approach tow ards

conflict handling - is described. In contrast to previous approaches th a t either ignore conflicts or

require sta tic resolutions, this query model works w ith CA-relations, but generates conflict-free query

results and thus provides conflict to le ra n c e .

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IS B N ti t le y e a r o p ra h -
C lu b

b e s t
s e l le r

c a te g o ry N Y T -
re v ie w

avg-
R ev iew

price

001 “Florida 1960 No No “Travel and
Adventure”

1 12 26

002 “China” 1966 No No “Travel and
Adventure”

5 7 47

003 “Meditation.” 1972 Yes No “Alternative” 8 7 16
004 “Dreams” 1970 Yes Yes “Alternative” 9 3 11
005 “T C P /T P ” 1992 Yes Yes “Computer and

Internet”
15 15 23

006 “HTML” 1974 null No “Computer and
Internet”

16 2 20

007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young

Readers”
10 14 7

010 “Pooh” 1986 null No “Young
Readers”

10 14 5

Figure 5.2: RTC(Books, ANY)

5 .1 .3 Conflict Tolerant Q uery M odel

The semantics of single relation CT queries is defined in this section. A CT query over global relations

i?i, . . . ,R n is semantically equivalent to a single relation CT query over relation R q = R x x ... x /?„.

The PCD of R q includes PIDs of all involved relations. Single relation CT queries are in the following

form:
Q c t = se le c t L

f ro m R
w h e re p w ith Ci

where L is in one of the following forms:

1. L = E i , ..., E m where Ei = R .B i (1 < i < m) if Bi = P ID (R) ; Ei = R .Bi[di] if Bi P ID (R) ,

di is an a ttribu te conflict resolution for R.Bi.

2. [D]R.Bi , ..., R .B m where D is a tuple conflict resolution for 7r piD(R),Bl ,...,Bn (R)-

ci is called the predicate evaluation parameter, or P E -p a ra m e te r , c\ € {HighConfidence, Ran-

domEvidence, PossibleAtAll}; it controls how conflicts are handled during predicate evaluation. d(s

and D specify how conflicts are removed to produce a conflict-free query answer. Qi and Qo are

example CT queries with two forms of select clauses:

Q i- Qi-
se le c t ISBN, fif/e[ANY], year[ANY], se lec t [ANY] ISBN, title,

category[D IS CARD] year, category
f ro m Books from Books
w h e re year > 1970 w h ere year > 1970
w i th HighConfidence w ith Random Evidence

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B oth queries retrieve ISBN, title, year and category of books published after 1970. When there is

conflict on year, Q i selects books for whom all year values available are >1970, while Qo random ly

samples one year value and if it is >1970, then the book is selected. After a book qualifies as year

> 1970, there may still be conflicts on title, year or category, these conflicts m e resolved using the

resolutions specified in the selection clause. Qi resolves conflicts on a ttribu te level while Qo does it

on tuple level. The semantics of CT queries is defined in Definitions 5.1.8 and 5.1.10.

A few default forms of L are supported. L = A i,. . . ,A n , where -4 ;S are a ttribu tes, is the same

as L = [ANY].4i,..., A n. If a t least one a ttr ib u te resolution is specified in L, the default resolution

for all o ther non-PED attribu tes with no specified resolution is ANY. Fundamentally, no m atter

which form L takes, it specifies a tuple conflict resolution, D E (L) , referred to as the data extraction

parameter (the DE-parameter). If L is in form 2, D E (L) = D. A form 1 select clause can

be rew ritten into form 2 w ith D = E T C R (d i , . . . ,d m) . From now on, only form 2 select clause is

considered.

D e f i n i t i o n 5 .1 .8 [Contributing PID Set.] Given a CA-relation R , a predicate p and a PE-

param eter c i, the contributing PID set of R in regard to p under Ci, C S E T (R , p, ci), is defined as

follows:

1. For any k G R { P I D } such th a t \A T se t(R , fc)| = 1, k G C S E T (R , p, ci) if and only if p(t) =

true, where t G A T s e t (R ,k) .

2. For any k G R { P I D } such that \A T se t{R ,k) \ > 2:

• If ci = RandomEvidence, k G C S E T { R , p, ci) if and only if p(t) = true, where t G

.4Tset(R , k) is selected by a function a t query evaluation time.

• If Ci = PossibleAtAll, k G C S E T (R , p, ci) if and only if 31 G A T s e t (R ,k) , p(t) = true.

• If ci = HighConfidence, k G C S E T (R ,p , ci) if and only if Vt G A T se t(R , k), p(t) = true.

□

A C S E T contains PEDs identifying tuples th a t satisfy a predicate under a given PE-param eter;

these tuples will contribute to the query result. W hen the PE-param eter is RandomEvidence, the

value of C S E T depends on the run-tim e function used to choose a tuple from an A T set, based on

which the query predicate is evaluated. Such variations are captured by the following definition.

D e f i n i t i o n 5 .1 .9 [Valid CSET] Let R be a CA-relation, p a predicate, and c a PE-param eter. A

set of PED values C is a valid value for C S E T { R ,p ,c) if:

• RandomEvidence and C = C S E T (R ,p , c); or

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• c = RandomEvidence and for any fc 6 C, such th a t k £ C S E T {R , p, HighConfidence), there

exist tuples t i , t2 6 R , such th a t ty .P ID = U .P ID — k, p{t{) = fa lse . p{t2) = true.

□

Example 5.1.2 Examine relation Books in Figure 4.11, the following can be found:

C S E T {Books, “year> 1973” , PossibleAtAll) = {003, 004, 005. 006. 007. 008. 090. 010}
C S E T {Books, “year> 1973” , HighConfidence) = (005, 006, 007, 008, 090, 010}
CSET{Books, “year> 1973” , RandomEvidence) = {004, 005, 006, 007, 008, 090, 010}
C S E T {Books, “year> 1973” , RandomEvidence) = {003, 004, 005, 006, 007, 008, 090, 010}

The last two C S E T s given above are both valid. 003 does not satisfy year > 1973 under HighCon

fidence because there is evidence in relation Books th a t the book 003, “M editation” , is published in

1972. □

D e f i n i t i o n 5.1.10 [Answer Set.] The answer to query Q c t given earlier is defined as:

A = ttBi Bm[RTC{R Wp[D C S E T { R ,p , Cl), DE{L))]

□

Tables 5.2 and 5.3 show 12 CT queries and results. These queries vary in PE-param eter and

DE-param eter. Two DE-param eters are illustrated: ANY and DISCARD. The attribu tes in the

select clause are also varied to demonstrate how the CT query model tolerates conflicts. Results of

queries involving RandomEvidence or ANY may vary with the selection function used a t run-time.

By specifying these param eters, one accepts such variations.

Example 5.1.3 First examine Qi-Qe and their results shown in Table 5.2, and observe how' various

conflict handling policies impact on the query results. The most rigorous control appears in Q-±-

This query has the smallest C S E T and one of the smallest results. Next, observe th a t queries in

Table 5.3 often have larger results. For example, Q\ has a larger result than Q.\ because relation

Books contains no conflicts over title but it contains conflicts over year. This shows th a t when a

query retrieves only conflict-free attributes, conflicts on other attributes are well tolerated by the

system and are often hidden from the users. □

5.2 P rim itive E valuation o f C onflict Tolerant Q ueries

Algorithm CT-QP-NoOpt is an unoptimized algorithm th a t directly implements the CT query se

m antics given in Definitions 5.1.8 and 5.1.10. Correctness of this algorithm is straightforward.

A L G O R IT H M CT-QP-NoOpt {R, Q c t , i n , . . . , Fn)
inpu t:

R: Global relation involved in the query.
Q c t ■ Q c t = se lec t L from R w h e re p w ith ci-

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Query Answer
Q i :
se lec t [ANY] title, year
fro m Books
w h e re 1967 < year < 1985
w ith HighConfidence

< “M editation” , 1972 >
< “Dream s” , 1980 >
< “HTM L” , 1984 >

Qz:
se lec t [DISCARD] title, year
fro m Books
w h e re 1967 < year < 1985
w ith HighConfidence

< “HTM L” , 1974 >

Q a:
se lec t [ANY] title, year
fro m Books
w h e re 1967 < year < 1985
w ith PossibleAtAll

< “China” , 1968 >
< “M editation” , 1972 >
< “Dream s” , 1980 >
< “HTM L” , 1974 >

Qa :
se lec t [DISCARD] title, year
fro m Books
w h e re 1967 < year < 1985
w ith PossibleAtAll < “HTM L” , 1974 >
Qs:
se lec t [ANY] title, year
from Books
w h e re 1967 < year < 1985
w ith RandomEvidence

< “M editation” , 1974 >
< “Dream s” , 1980 >
< “HTM L", 1974 >

Qe '■
se lec t [DISCARD] title, year
fro m Books
w h e re 1967 < year < 1985
w ith RandomEvidence < “HTM L” , 1974 >

Table 5.2: Example Queries and Answers

Fi’s: AH the fragments registered with R, Fi, ..., Fn-
o u tp u t : A: the query answer,
b eg in

1. R = ttLiM J(P ID (R) , A T T R (R),F u ..., Fn), where Li = {PID{R)} U ATTR(p) U ATTR(L).
2. C = ComputeCSET{R,p,c\.), where ci is the PE-param eter of Q c t -

3- A = ^ a t t r (. l) [R P C (t t a t t r ! . L) u { p i d } (R > * p i d C), DE(L))];
e n d o f a lg o rith m .

In step 1, CT-QP-NoOpt retrieves all fragments and performs a m atch join. This can be expen

sive when fragm ents axe large and numerous. W hen query selectivity is low, a large portion of the

retrieved d a ta is discarded in step 2, where C S E T is com puted with the algorithm given below: it

is desirable to not retrieve these data in step 1. In step 3, opera to r R T C is applied to produce a

conflict-free result. R T C is a direct implementation of Definition 5.1.7 and is not given here.

A L G O R IT H M ComputeCSET(R,p,a)
in p u t:

R: A CA-relation, sorted on PID(R).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q u ery A n sw er
Q i :
se lec t [ANY] title
from Books
w h e re 1967 < year < 1985
w ith HighConfidence

< “M editation” >
< “Dreams” >
< “HTML” >

Q 'i •
se lec t [DISCARD] title
fro m Books
w h e re 1967 < year < 1985
w ith HighConfidence

< “M editation” >
< “Dreams" >
< “HTML” >

Q'z ■■
se lec t [ANY] title
fro m Books
w h e re 1967 < year < 1985
w ith PossibleAtAll

< “China” >
< “M editation” >
< “Dreams” >
< “HTML” >

Q \ :
se lec t [DISCARD] title
fro m Books
w h e re 1967 < year < 1985
w ith PossibleAtAll

< “China” >
< “M editation” >
< “Dreams” >
< “HTML” >

Qs -
se lec t [DISCARD] title
fro m Books
w h e re 1967 < year < 1985
w ith RandomEvidence

< “M editation” >
< “Dreams” >
< “HTML” >

Q'e '■
se lec t [DISCARD] title
fro m Books
w h e re 1967 < year < 1985
w ith RandomEvidence

< “China” >
< “M editation” >
< “Dreams” >
< “HTML” >

Table 5.3: Example Queries and Answers

p: A predicate.
ci: A PE parameter.

o u tp u t: C : C SE T(R ,p ,c i) .
begin.

1. Let R ' = ap(R).
2. If ci = RandomEvidence or ci = PossibleAtAll, then C = ~ p i d (R ') -

3. If ci = HighConfidence, then C = ~ p i d (R ') — t̂ p i d (.R — R')-
end o f algorithm .

In the next section, techniques are established to use query predicate p to derive conditions

based on which enough da ta are retrieved from fragm ents to guarantee correct query evaluation,

bu t d a ta th a t do not contribute to the query result are not retrieved. This technique reduces both

communication cost and the volume of da ta m anipulated a t the m ediator.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 O p tim ized P ro cess in g o f C onflict T olerant Q ueries

For any predicate p over a global relation R and a given fragment of R , F , if A T T R (p) C A T T R { F) ,

then p is a p p lic a b le to F. T he goal of C T query optimization is to use applicable predicates to

reduce the volume of fragment da ta retrieved while preserving query semantics.

5.3.1 C T Q uery O ptim ization: an O verview

Let p be a predicate over R and let p = p \ A ... A pm be its conjunctive normal form. Given a

registered fragment of R, F , the question is: i f px (l < x < m) is applicable to F , can one retrieve

only aPlF into the mediator and still evaluate C S E T (R , p , c) correctly?

Consider the fragments shown in Figure 4.10 and C — C S E T [Books, “year > 1973” . c). Assume

th a t only the following is retrieved into the m ediator: <7year>l973 (Fragment 1) and o\,ear>i973

(Fragment 4). tme(n lation = (003, “M editation” , 1972, Yes) in Fragment 1 will not be retrieved.

This potentially excludes 003 from C. If c = RandomEvidence, it is valid to exclude 003 from C.

according to Definition 5.1.9. If c = HighConfidence and if 003 is excluded from C then it is correct.

However, the mediator will retrieve tmeditation2 = (003, “M editation” , 1974, 8, 7) from Fragment 4.

and algorithm ComputeCSET would include 003 in C. This is incorrect. To solve this problem, one

can send 003 to the site of Fragment 1 to verify th a t the book “M editation” indeed has year > 1973.

In our example, the verification fails and 003 is removed from C. This process is referred to as

PID verification. Obviously, when year is supported by only one fragment, PHD verification is not

needed. Assume th a t ComputeCSET derives a tem porary C S E T value C' from reduced fragments,

PID verification can be performed by sending the following queries to the sites of Fragment 1 and

4, respectively:

Si = C ' n 7ry5 BjV0 'j/ear< i9 7 3 (Fragment 1); SA = C' D ^iSBN^year<w~2 (Fragment 4)

PHD values in 51 or 64 m ust be removed from C'. The cost of this approach is low when (1) query

selectivity is low resulting in a small C ' ; and (2) Conflict rate is low resulting in small Ss. When

no conflict exists, all Ss are empty. When C ' is large, the cost of PID verification m ay defeat the

savings achieved by pushing selections onto fragments; a cost model is needed for strategy selection.

If c = PossibleAtAll, C can be computed by C o m p u teC S E T correctly from reduced fragments.

However, pushing predicates th a t involve m ore than one a ttribu te is not as straightforw ard. Consider

Ci = CSET(Books, “oprahClub = bestseller”, PossibleA tA ll/ In Figure 4.10, Fragment 2 contains

tuple (003, “M editation” , No, Yes). If only a oprahCiub=bestSeUer (Fragment 2) is retrieved, 003 will

be excluded from Ci. This is incorrect, since combining Fragments 1 and 2, it is possible that the

book “M editation” is both an O prah’s club book and a best seller. Generally, pushing a multi

a ttribu te predicate p onto a fragm ent F is possible only if no fragments other them F support any

of the a ttribu tes involved in p.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CT query optim ization possibilities are summarized in Table 5.4. In the rest of this section, the

above described optimization strategies are formally established. W hen c = HighConfidence, a cost

model is needed to determine whether the strategies devised here actually reduce cost. This is a

future research issue; for now the validity of the strategies is established.

Can px be used for fragment reduction?
c = RandomEvidence YES
c = PossibleAtAll YES (Conditional)
c = HighConfidence YES (with PID verification)

Table 5.4: Fragment Reduction w ith Selections

5.3.2 A T h eory o f Conflict Tolerant Q uery P rocessin g

The m ain theorems of our theory axe Theorems 5.3.1 and 5.3.2, which allow us to push selections

across M J onto fragments, to various degrees, according to the PE-param eter.

T h e o r e m 5 .3 .1 Let R be a CA-relation. Let p = p \ A po A ... A px be a predicate over R in

conjunctive normal form. Let F i , . . . , Fn be all fragments registered with R that contain no null

values. Let p ‘ = p\ A ... A p ‘ ., where p'- 6 (p i , . . . ,p x }, 1 < j < Si is applicable to F ,. Let

FI = o-pi(Fi), 1 < i < n . Let T,- = a ^ pi{Fi), 1 < i < n . Let W = T i{ P I D } U ... U T n{P ID } . Let

R ' = M J (P I D (R) ,A T T R (R) ,F [, . . . ,F) l). Then the following is true:

1. C SE T(R !, p, RandomEvidence) is a valid value fo r CSE T(R , p. RandomEvidence):

2. CSET(R , p, HighConfidence) = CSET(R‘, p, HighConfidence) — W.

Note th a t point 2 of Theorem 5.3.1 says th a t C S E T (R ,p , HighConfidence) can be computed from

reduced fragments, but one must verify th a t the PID values thus selected are not in any Tx. This

process is called P ID verifica tion .

THEOREM 5.3.2 L e t R be a CA-relation. Let p = pi Apo A ...Apx be a predicate over R in conjunctive

normal form. Let F i , ..., Fn be all fragments registered with R . FiS do not contain null values. Then

C S E T (R , p , PossibleAtAll) = C S E T { M J (R , F [, ..., F)f),p, PossibleAtAll)

where Vi, 1 < i < n, F) = <Tpi(F t), p* = p\ A ... A p ‘ ., p] € {pi, ...,p x}, 1 < j < Si; p1 satisfies the

following:

1. A T T R (p *') = { P ID } or A T T R t f) = A T T R {p) D A T T R (F i) ; and

2- Py(l £ 3 Sl Si) involves at most one non-PID attribute, or no registered fragment of R other

than Fi supports any of the non-PID attributes in A T T R (p *•).

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the rest of this section, the proofs of the above theorems are presented. F irst, 5 theorems on basic

properties of the M J operator are given. P roof of these theorem s are m ostly by definition.

T h e o re m 5.3.3 Let R be a global relation and F i , . . . ,F n be all the fragments registered with R. Let

L be a list of attributes such that P I D (R) £ L. Then:

7tl (R) = M J (P I D (R) ,L , i r L l(F l) , . . . , ircA F n))

where Li = L n A T T R (F i), I < i < n.

This theorem allows us to push projections onto fragments. The projection list m ust include the

PID .

T h e o re m 5-3.4 Let R = M J (P , S , Y) where Y = {F i, . . . ,F n }, S = {--U, ...,.4m}, and P is the

common PID o f all fragments in Y . Then:

R { P } = F i{ P } U ...U F „{P } = V A L s e t (A i \Y) { P } U ... U V A L s e t { A m\Y){ P)

This theorem describes the relationship among the PID values in a CA -relation. those in the frag

ments, and those in the value sets; this relationship is used to prove la te r theorems.

T h e o re m 5.3.5 Let R = M J (P , S , Y) and let S i C S be a set of attributes, S i = { -4 i,..., .4^}, and

P is the common PID of all fragments in Y . Let a i , ..., ad be a set of non-null values and let k be a

PID value. Then the following two statements are equivalent:

1. 3t 6 R such that t .P = k, t .A j = aj, 1 < j < d .

Vj, 1 < j < d, i f A j 7 ̂P , then < k .a j > £ V A L s e t (A j \Y) .

This theorem describes the relationship between the content of the value sets and tuples in the global

relation computed using these value sets; this relationship is used to prove later theorems.

T h e o re m 5.3.6 Let R = M J (P , S, F i , . . . ,F n), where P is the common PID of fragments F ,(l <

i < n). Let R ' = M J (P ,S ,F i - T U - , F n - Tn) where Ti C F,. Let W = T i{ P } U ... U Tn{P }.

For any PID value k ' £ (P { P j — W), k' £ P '{ P) and A T s e t (R ,k ') = A T s e t (R ' .k ') .

This theorem says th a t if one does not retrieve a portion of each fragm ent, the Tis, before performing

M J, the data related to PID values in F { P } — W are not affected.

THEOREM 5.3 .7 Let R = M J(P , S, F l , . . . ,F „) , where P is the common PID of fragments F,(1 <

i < n), and let Ti C F ;(l < i < n). Given a predicate p and a tuple t' £ M J { P ,S ,F \ —T i , . . . ,F n —

Tn), i f VA £ A T T R { p) , t ' .A ^ null, then £ R such that t .P = t ' .P and p{t) = p (t ') .

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This describes a condition th a t is weaker than the following:

M J (P , S, Ft - T i ,..., Fn — Tn) C M J (P , S, F i , Fn)

which is in fact not always true.

D e f i n i t i o n 5 . 3 . 1 [Images.] Let R be a CA-relation with PID. P , and F be a registered fragment

of R. Given a ttribu te set S C A T T R (F) , and tuple £/ G F , £ G R is an image of t f over S .

denoted as £ G im a g e s O f (t f ,S ,F .R) , if:

1. S = { P } and t .P = t / .P ; or

2. t .P = t / . P and there exists a non-PID a ttribu te .4 G S, such th a t £..4 = t / .A .

□

Images of a given source tuple t j are all the tuples in the global relation th a t t / may contribute to. For

example, let £/ be tuple 004 in Fragment 1 in Figure 4.10, then: imagesO f {t f , { “ISBN”},“Fragment

1” ,Books) = { ti4 , £1 5 }, im a g e s O f (t f , { “year” } ,“Fragment 1” ,Books) = {£1 4 }

D e f i n i t i o n 5 . 3 . 2 [Irrelevant Source Tuples.] Let R be a CA-relation and F be a fragment registered

with P , p be a predicate. £r G F is an irrelevant source tuple of R in regard to p if d£ £ R, such

th a t t .P ID = tr .P ID and p(£) = fa ls e . □

D e f i n i t i o n 5 . 3 . 3 [Negative Source Tuples.] Let R be a CA-relation and F be a fragment reg

istered w ith R , p be a predicate. t v G F is a negative source tuple of R in regard to p if

V£ G im a g e s O f(tv,A T T R (p) ,F ,R) , p(£) = fa lse . □

Intuitively, not retrieving the irrelevant tuples does not impact on the correctness of CT query

processing. Negative source tuples are those th a t definitely will not contribute to the final query

result and hence should never be retrieved.

THEOREM 5.3 .8 Let R be a CA-relation and F i , ..., F„ be fragments registered with R. Let T \ , ..., T n

be sets o f irrelevant source tuples in regard to p, Ti C F,-. Let R ' = M J (P I D (R) ,A T T R (R) ,F l —

T i , ..., F„ — Tn). Then:

1. C S E T (R ' ,p , RandomEvidence) is a valid value fo r C S E T (R , p, Random Evidence).

2. CSET(R,p,HighConfidence) = C SE T (R ' , p, HighConfidence) - W, where W = {fc| 3 i ,k G

T i{P ID {R)} } .

P ro o f: Consider C, a valid value for C S E T (R ' ,p , RandomEvidence) and k G C, k CSET(R,

p, HighConfidence^. Since k G C, 3 t G M J(PID(R), A T T R (R) , Fi ~ TL, ..., Fn - Tn), such that

t .P I D = k, p(t) = true. By Theorem 5.3.7, 3£i G R , such th a t t i .P I D = k and p(£i) = true. Since

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k £ CSE T(R , p, HighConfidence/ 3fo E R such th a t U -P ID = k and p{tf) = fa lse . By Definition

5.1.9, C is a valid value for CSET(R, p, c).

Consider k € CSET(R, p, HighConfidence,) — W. By Theorem 5.3.6, since k £ W , A T s e t (R .k)

= A T s e t (R ' ,k) . By definition, k E C SE T(R ', p, HighConfidence) — W. Thus CSET(R, p, High

Confidence,) — W C CSET(R!, p, HighConfidence,) — W. However, Vfc € W , 3f,- E Ti such tha t

t i -P ID = k and t,- is an irrelevant source tuple in regard to p. By definition, 3f E R, t .P I D = k,

p(t) = fa ls e . Thus k £ CSET(R, p, HighConfidence/ Thus CSET(R, p, HighConfidence,) — W =

CSE T(R , p, HighConfidence J. Thus,

CSE T(R , p, HighConfidence) C C SE T (R ', p, HighConfidence,) — W

Now consider k E CSET(R ', p, HighConfidence J — W. Since k ^ W . from Theorem 5.3.6.

ATset(R ',k) = ATset(R,k). Hence k E CSET(R , p, HighConfidence/ Thus,

C SE T (R ', p, HighConfidence) — W C CSE T(R , p, HighConfidence)

Theorem is proven. I

T H E O R E M 5 .3 .9 Let R be a CA-relation and F i , .. .,Fn be fragments registered with R. Let T T n

be sets of negative source tuples in regard to predicate p, Ti C Ft . Let

R' = M J { P I D { R) ,A T T R (R) 1Fi — T i , ..., Fn —Tn)

Then,

C S E T (R ,p , PossibleAtAll) = C S E T (R ' ,p , PossibleAtAll)

P ro o f: Denote Y = {Fu .., Fn}, Tt = {Ti, ...,T n}, Y ' = { f \ - T x, ..., Fn -T „ } . Obviously, Y { P I D }

- Yt { P I D } C Y '{ P I D } . Consider k E CSET(R , p, PossibleAtAll; and show that k E C S E T (R ',

p, PossibleA tA ll/ By definition, 3 t E R, t.PID = k, p(t) = true. Let ATTR[p) = { A i,..., A m } and

let aj = t .A j , 1 < j < m, aj ^ null. If Aj = P I D (R) , then ay = k. First show that k E Y ' { P I D }

and th a t Vy, 1 < j < m, A j = P ID (R) or <k,aj >E VALset(A j\Y '). Consider two cases:

case 1. A T T R (p) = {PID(R)}, by theorem assumption, Vt' E R such tha t 3i, t ' .P ID E

Ti{P ID {R)) , p (t') = fa lse . Hence k E Y '{ P I D } - Y T { P I D) . Since Y { P I D } - Yr { P I D) C

Y '{ P I D } , k E Y ' { P I D) .

case 2 . A T T R (p) includes a non-PID a ttr ib u te -4X(1 < x < m). Consider <k. ax >. Since pit)

= true, by theorem assumption, t is not an image of any tuple in any T,- over ATTR{p). Hence

<k, ax >E VALset(Ax \Y) - VALset(Ax \YT)

Since VALset(Ax \Y) — VALset(Ax \Yr) C VALset(Ax \Y '), the following holds:

<k, ax >E VALset(Ax \Y ')

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hence, k G Y ' { P I D } . By Theorem 5.3.5, 3 t' G R ' such th a t Vj, 1 < j < m , t ' .A j = aj =

t .A j , t ' .A j ^ null. Obviously, p(t‘) = p(t) = true. Hence, k G CSET(R ' , p, Possible At A11J. So

it is shown th a t CSET(R, p, PossibleAtAll^ C C S E T (R ' , p, PossibleAtAll,). Now consider k G
C S E T (R ', p, PossibleAtAll,). 3t G R ' such th a t t .P ID = k, p(t) = true. By Theorem 5.3.7, 3t' G R,

such th a t t' .PID = k, p(t') = p(t) = true, hence k G CSET(R , p, Possible At All). So it is shown

th a t C S E T { R ' ,p , PossibleAtAll) C C S E T (R ,p , PossibleAtAll). Theorem proven.

■

P r o o f o f T h e o r e m 5.3.1

P ro o f : For any i, 1 < i < n, since Fi contains no null values, F[= Fj — Ti. Now show th a t all

tuples in Ti axe irrelevant source tuples in regard to p by showing that 3tR G R such th a t tR .PID =

t.PID, p (tf i) = false. The rest of the theorem follows from Theorem 5.3.8.

Consider £t- G Ti, p l(t) = fa ls e . Let A T T R (p l) = {B \ , . . . ,B X}, k = ti.PID and bj = t i .B j ,

bj 7^ null, 1 < j < x . Since T C Fi, k G R { P I D } . By Theorem 5.3.5, 3 tR G R tR .PID = k,

tR .Bi = t i .B i , l < i < x. Obviously, pl{tR) = p*(£f) = fa lse . Thus, p(tR) = false, and if is an

irrelevant source tuple in regard to p. Theorem proven.

■

P r o o f o f T h e o r e m 5.3.2

P ro o f: Let T,- = cr^p,(Ti), i, 1 < i < n , since Ti contains no null values, F[— Fi — Ti. Now show

Ti is a set of negative source tuples in regard to p by showing th a t V (r G R,VU G T,. such that

tR G im a g e s O f{ t i ,A T T R {p) ,F i ,R) , p(tR) = false. T he rest of the theorem follows from Theorem

5.3.9. Let U G Ti and consider the following cases:

case 1. A T TR (p l) = {PID}. If tR is an image of £,■ in R, tR.PID = ti.PID. pt {tR) = p ‘(ti) =

false.

c a se 2. A T T R (p l) involves non-PID a ttribu tes , but ATTR(px) = ATTR(p) n ATTR(Fi).

Consider am image of ti, tR G R over ATTR{p). By Definition 5.3.1, tR.PID = ti.PID, and

3 B G A T T R (p)n A T T R {F i) , such th a t tR .B = U.B. Since ATTR(p‘) = ATTR(p) n ATTR(Fi), B

G ATTR(p%), th a t is, 3j , 1 < j < s,-, B G ATTR(p}). Consider two cases:

1. p} involves only one non-PID attribu te, B . Pj{tR) = p){ti) = fa lse . Hence p(ftf) = fa ls e .

2. p} involves more than one non-PID a ttr ib u te B , B i ,..., B v , but no fragments o ther than Ti

support any of them. Vi, 1 < i < y , t R.Bi = U.Bi. Thus, p){tR) — ?*•(£,•) = fa lse . Thus, p (tRJ

= false.

Theorem proven. I

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 .3 O ptim ized C onflict T olerant Q uery E valuation A lgorith m s

The following algorithm is directly based on Theorems 5.3.1 and 5.3.2.

A L G O R IT H M Optimized-CT-QP (R, Qc t , Fu ..., Fa)
in p u t:

R: Global relation R involved in the query.
Qc t '- Qc t = select L fro m R w h e re p w ith ci-
Fi’s: All the fragments registered with R.

o u tp u t : A: the query answer.

b eg in

C o m p u te C S E T :
- Let Li = ATTR(L) U {PID(R)} U ATTR(p). Write p into conjunctive normal form p = pi (i ... n p x.

Let X p = {pi, ...,px }.
- For i = 1, n do:

- if ci PossibleAtAll then let p ‘ be the conjunction of all predicates in X p th a t are applicable
to Fi. If no such p‘ is found, px = true;

- if ci = PossibleAtAll then let pl be the conjunction of all predicates in X p such that (1) it
involves at most one non-PED attribute; or (2) No fragments other than Fi supports any of the
non-PID attributes involved. If ATTR(pl) ^ ATTR(p) fl ATTR(F,), p‘ = true.

S I F- = ^,i 1nA7TR(Fi)<tp'' (Fi).
- R' = MJ(PID(R), L i,F i,. . . ,FU ;
- C — ComputeCSET(R!, p, cij;

P ID V erification :
- If cl = HighConfidence or DE(L) A N Y then

- Let L? = ATTR(L) U {PID(R)}.
- For i = l,7i do:

S2 Let Si = 7T£2nATTR(F;)0'^pi (Fi txiPID(_R) C)\
- if ci = HighConfidence

C = C -5i(PID(R)); Si = 0;

- R' = R! tXp/D(ii) C;
D a ta C o m p le tio n :

- if DE(L) # ANY then R' = M J(PID (R), L2, R ', S u - , S n);
D a ta E x tra c tio n :

- A = ita t t r (l)[RTC(R! Mp id (R) C, DE(L))].
en d o f a lg o rith m .

Steps S i and S2 are where queries are sent to the da ta sources th a t provide the respective

fragments. These steps follow directly from Theorems 5.3.1 and 5.3.2. W hen the num ber of sources

involved is large and da ta volume is large, cu tting down on da ta retrieval a t S I and S2 improves

query performance. Moreover, the following observations can be made:

O p tim iz e d -C T -Q P is a 1- o r 2 -p h a s e a lg o r ith m . The first phase retrieves enough data to

com pute C S E T . Depending on the P E - and the DE-param eter, a second phase retrieves ex tra data

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for PED verification and /o r d a ta completion. PID verification is needed only if the PE-param eter is

HighConfidence. D ata completion is not needed when the D E-param eter is ANY.

P e r fo rm a n c e p e rs p e c tiv e s o f O p tim iz e d -C T -Q P . Step SI is obviously a good move towards

saving communication cost. At step S2, one could send the content of the com puted C S E T , C, to

relevant da ta sources. This works well when C is small due to a low query selectivity, but may get

expensive when C is large. A simple com putation can be applied to restrict this cost. Consider

performing step S2 against a d a ta source supporting a fragment Fi. The purpose of sending a query

to compute Wi is to retrieve d a ta related to PIDs in F,- th a t are in C, bu t have not been retrieved

in step S i. Thus, one can compare the volume of ~L2nATTR{Fi)a'^pi (P'i) with the volume of C. If

the former is smaller, it is sim ply retrieved without sending C to the relevant da ta source, and the

process continues normally.

O p tim iz e d -C T -Q P p e rfo rm s b e t t e r w h e n con flic t r a t e is low . W hen conflict rate is low,

the Si’s will be em pty or very small. This means the cost of PID verification and D ata Completion

becomes low. Therefore, Optimize-CT-QP is expected to be most efficient against low conflict data.

F i — 7T/Si?iV,£i£/e,year,opra/iCUu60*year>1973(Fl) F 2 — 7Tf S B JV , t i t l e , o p r a h C l u b , b e s t S e t l e r

& o p r a h C l u b = b e s t S e l l e r (, F 2)

ISBN title year oprahClub ISBN title oprahClub bestseller
004 “Dreams” Yes Yes
005 “T C P /IP " Yes Yes

F 3 = Tt[S B N . t i t i e . b c s t S c l l e r i F z) F 4 — F J S B N , t i t l e . y e a r , N V T r e v i e p j , a v g R e v i c - w

G’y e a r > 1973AN Y T r c v i c n i > a v g R e v i e w (F 1)

ISBN title bestseller ISBN title year NYTreview avgReview'
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “Meditation” No 005 “T C P /IP ” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “T C P /IP ” Yes
006 “HTML” Yes
007 “Pens” No :
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

R 1 = M J(P ID , L, F[,Fi, Fi, Fi)
ISBN title year oprahClub bestseller NYTreview avgReview
002 “China” null null No null null
003 “Meditation” 1974 null No 8 7
004 “Dreams” 1980 Yes Yes 9 3
005 “T C P /IP ” 1992 Yes Yes 15 15
006 ’’HTML” 1974 null Yes 16 2
007 ’’Pens” null null No null null
008 ’’Quilts” null null No null null
009 ’’Micky” null null No null null
010 ’’Pooh” null null No null null

Figure 5.3: Compute CSET and content of R ' when ci = Random Evidence or HighConfidence

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ± — T T f S B N , t i t [e , y e a r , o p r a h C l u b (F l) ■1*2 — ‘K l S B N , o p r a h C l u . b , b e s t S e l l e r { , F 2 .)

ISBN title year oprahClub ISBN title oprahClub bestseller
001 “Florida’’ 1960 No 002 “China” No Yes
002 “China” 1966 No 003 “M editation” No Yes
003 “M editation” 1972 Yes 004 “Dreams” Yes Yes
004 “Dreams” 1970 Yes 005 “T C P /IP ” Yes Yes

F i = I T r S B N . t i t l e M s t S e l l e r i F z) F . \ — S B N , t i t l e , y e a r , N Y T r e v i e w , a v g R e v i e w

& y e a r > l 9 T 3 A N Y T r e v i e w > a v g R e v i e w (F i)

ISBN title bestseller ISBN title year NYTreview avgReview
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “M editation” No 005 “T C P/IP ” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “T C P /IP ” Yes
006 “HTML” Yes
007 “Pens” No
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

R' = M J(P ID , L, F[,Fi,Fi, Fi)
ISBN title year oprahClub bestseller NYTreview avgReview
001 “Florida” 1960 No null null null
002 “China” 1966 No No null null
002 “China” 1966 No Yes null null
003 “M editation” 1972 Yes Yes 8 7
003 “M editation” 1972 Yes No 8 7
003 “Meditation” 1972 No Yes 8 7
003 “Meditation” 1972 No No 8 7
003 “M editation” 1974 Yes Yes 8 7
003 “M editation” 1974 Yes No 8 7
003 “M editation” 1974 No Yes 8 7
003 “Meditation” 1974 No No 8 7
004 “Dreams” 1970 Yes Yes 9 3
004 “Dreams” 1980 Yes Yes 9 3
005 “T C P/IP" 1992 Yes Yes 15 15
006 "HTML” 1974 null Yes 16 2
007 "Pens” null null No null null
008 "Quilts” null null No null null
009 "Micky” null null No null null
010 "Pooh” null null No null null

Figure 5.4: Compute CSET Phase for PossibleAtAll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ci = HighConfidence Ci = RandomEvidence ci = PossibleAtAll

*i = < 004, “Dreams” , 1970 > Si = < 004, “Dream s” , 1970 > * i = 0
da = 0 IIc-j

'-O * 2 = 0
S3 — 0 II*5 * 3 = 0

II S4 = 0 * 4 = 0

Figure 5.5: Value of *i’s w ith d = DISCARD

ci = HighConfidence Ci = RandomEvidence ci = PossibleAtAll

d=AN Y
<005, “T C P /IP ” ,1992> <004, “Dreams” ,1980>,

<005, “T C P /IP ” ,1992>
<003, “M editation” ,1984>,
<004, “Dreams” ,1980>.
<005, “T C P /IP ” ,1992>

d=DISCARD <005, “TCP/BP” ,1992> <005, “T C P /IP ” ,1992> <005, “T C P /IP ” ,1992>

Figure 5.6: Query Results

E x a m p le 5 .3 .1 This example dem onstrates using the algorithm s given above to evaluate the fol

lowing 6 queries th a t retrieve the title and year of publication of books published after 1973, and

which are on both O prah’s Club list and the best seller list, or on none of them , and have a higher

rating by the New York Times review than the average custom er review.

se le c t \d\ISBN, title, year
f ro m Books

w h e re year > 1973 a n d oprahClub =bestSeller a n d NYTreview > avgReview
w i th ci

where ci G {RandomEvidence, HighConfidence, PossibleAtAll} and d 6 {ANY. DISCARD}. Figure

5.3 shows the predicates pushed onto Fi s to compute F['s{i = 1...4) in the case of HighConfidence

and RandomEvidence. It also shows the result of the m atch join producing R', from which one

gets: C SE T {B ooks , p, RandomEvidence) = {004,005}. PID verification is performed based on this

result. The * 's are computed when ci = HighConfidence or d = DISCARD, shown in Figure 5.5.

Based on this result: CSET(Person, p, HighConfidence) = {005}, Figure 5.4 shows the predicates

pushed onto FfS to compute F[s{i = 1...4) in the case of ci = PossibleAtAll. It also shows the

result of the m atch join producing R', from which one gets: CSET(Person, p, PossibleAtAll/ =

{003,004,005}. Final results of the 6 queries are given in Figure 5.6. □

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 A U R O R A -R H Q uery P ro cessin g

As shown in the previous section, AURORA-RI sends subqueries to various sources to fetch part or

all of fragments. These subqueries are posed against homogenizing views of d a ta sources maintained

by respective AURORA-RH m ediators, which are responsible for processing the subqueries and

shipping the results back to the AURORA-RI mediators.

Assume th a t the source database B has been homogenized into the target view H. Let Q be a

relational query against H . AURORA-RH’s query processor, AQP, translates this query into a set

of queries over the source database, sends the queries for execution, and assembles the answer to Q,

using the da ta returned. As shown in Figure 4.4, AQP consists of a query execution engine, a query

rewriter, and a query optimizer.

5.4.1 A Q P Q uery E xecu tion E ngine and Q E Ps

Ultimately, AQP executes a query based on a query execution plan (Q EP) generated by the query

rew riter and optim izer. Such QEPs are similar to the Q EPs used by a query processor of a DBMS

except they involve m ediation enabling operators. The algebraic-based and cost-based manipulations

of these QEPs will also be different from those in a traditional query processor. Algebraic-based

m anipulation of Q EPs will be discussed later in this section. Cost-based manipulation of QEPs are

not discussed in this thesis. However, cost-based m ediator query optim ization is an active area of

research, as reviewed in Section 2.6.3.

In the context of AURORA-RH query processing, QEPs are expressions th a t involve only source

relations - relations th a t reside in the underlying da ta source. A QEP can be depicted as an operation

tree whose nodes axe annotated with an operator name and cm argum ent list. A non-leaf node of

the tree is either an AURORA-RH primitive, retrieve, renam e, pad, or deriveAttr , or a relational

operator. The leaf nodes of the tree are source relations. T he AQP query execution engine evaluates

QEP trees bottom up.

5.4.2 Q uery R ew ritin g

In this section, m ediator queries in the form of - l <j p (M) are considered, where L is a list of attributes

in M and p is a predicate. The rewriting algorithm given below can be adapted for join queries. Via

MAT-RH, the derivation of M is captured as transform ations, such as R E L m a t and A T T R m a t .

and domain mappings, such as Domain Structural Functions (DSFs) and Domain Value Functions

(DVFs) in the View Definition Repository. The purposes of query rew riting are the following:

1. To modify a m ediator query so that it only references source relations, not view relations.

2. To replace special transform ations, such as R E L m a t and A T T R m a t , w ith their definitions in

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MEA-RH. For instance, the rewriting algorithm will replace

R E L m a t(D a , A)

with
n

pad(Ri, A , R E L nam e(R i))
i=l

The algorithm AQPrewriteQuery performs query rewriting.

A lg o r ith m . A Q P re w r ite Q u e ry
In p u t: Q = TTLcrp(M).
O u tp u t : A Q EP for Q

Repeat until all the relations referenced in Q are source relations:

1 . Replace any derived relation reference by Q with its definition stored in the View Defini
tion Repository.

2. Replace R E L m a t and A T T R m a t transform ations with their definition.

I
The above algorithm modifies a query expression repeatedly until ail relations referenced are source

relations, and all R E L m a t and A T T R m a t transform ations are replaced with the equivalent MEA-

RH expressions. The resulting expression is a QEP.

To make the presentation cleaner, MEA-RH expressions are given as operation trees, rather than

as long formulas. An operation tree is like a QEP except its leaf nodes m ay reference view relations.

An operation tree th a t does not reference view relations is a QEP. Therefore, an operation tree can

be rew ritten into a Q EP by repeatedly replacing the view relations with their derivations, as shown

in the following example.

E x a m p le 5 .4 .1 Consider query:

Q = r t I S B N , t i t l e , p r i c e ® p r i c e < A 5 & c a t e g o r y — ' ' T r a v e l a n d A d v e n t u r e " {Books)

that retrieves the I S B N , title and price of books of the category of “Travel and Adventure” that

cost less than 45 US dollars. This query is posed against the homogenizing view as shown in Chapter

4. A graphical representation of this query is shown on the left of Figure 5.7. Rewriting of this

query is performed as follows:

1. As shown in Exam ple 4.2.8 of Section 4.2.5 , B ooks is a view relation with the following

derivation:

B ooks = deriveA ttr(B ooksv , {price},price, f B o o k s . , p r i c e - , {category}, category, f e o o k s . c a t e g o r y)

Replacing B ooks in Q with the above expression gives Q \, shown on the right of Figure 5.7.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T t : ISB N ,title ,p rice 71: IS B N .title .p rice

q . price < 45 and
category = “Travel and
Adventure"

f j . price < 45 and
category = "Travel and Adventure'

Books deriveAttr:
{price}, price, fv{Books.price}
{category}, category, fv{Books.category}

Booksv

Figure 5.7: Query Rewriting: Qi

2. As shown in Example 4.2.7 of Section 4.2.5, relation B ooksv is a view relation w ith the following

derivation:

(deriveA ttr{B ooksp, {price, deduction},price, f%ooks price))

Replacing B o o ksv in Q\ with the above derivation gives Qo, shown in Figure 5.8.

3. As shown in Example 4.2.4, relation B ooksp is a view relation w ith the following derivation:

Booksp = R E L m a t{D R, category)

where D R = {Travel, N e w Age, Com puter, Hobbies, C hildren}. Replacing B ooksP in Qo gives

Qz, shown in Figure 5.9. The transform ation R E L m a t in Qz must be replaced with its

definition as given belowr:

R E L m a t(D R, category) = pad(T ravel, category, “Travel"’)U

Replacing the R E L m a t transform ation in Qz w ith the above definition gives Q.i, shown in

Figure 5.10.

4. All the leaf nodes in Q4 are still view' relations, as discussed in Exam ple 4.2.3 (Section 4.2.5).

For instance, view relation Travel has derivation

T rave l — re tr ieve (T ravel)

Replacing all view relations in Q4 writh their derivations gives Q$, shown in Figure 5.11.

B ooksu — /i I S B N , t i t l e , c a t e g o r y , b e s t s e l l e r , p r i c e

pad(Travel, category, “NewAge”)U

pad(Travel, category, “Com puter”)U

pad{Travel, category, “Hobbies”)U

pad{Travel, category, “Children”)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n: ISBN ,title,price

(j . price < 45 and
category = “Travel and Adventure”

{price}, price, f̂ Books.price}
deriveAttr: {category}, category, f^Books.category}

n: ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs (Books.price}

Booksp

Figure 5.8: Query Rewriting: Q 2

Q 5 is a Q EP since it only involves source relations and M EA-RH operators. □

5.4 .3 A Q P Q uery O ptim ization

The AQP query optimizer maximizes the num ber of relational operations performed by the source

DBMS so as to leverage the query optim ization capability of the source, and reduce the am ount of

d a ta fetched into the AURORA-RH m ediator. In a QEP, the retrieve nodes represent queries to

be sent to the source DBMS for execution. The goal of query optimization in AURORA-RH is to

transform the QEPs generated by query rewriting to enlarge the queries subm itted to the source

DBMS. As retrieve is the only operator th a t submits queries, the optim izer pushes as m any as

possible relational operators into re trieve . In order to achieve this goal, the AQP query optim izer

performs two type of query modifications:

1. Relational operator push-downs. This type of modification pushes relational operators across

M EA-RH operators towards the leaf nodes. Algebraic transform ation rules are required for

performing this modification.

2. Predicate modification. A relational operator can be pushed into re trieve if it is acceptable

to the source query facility. Selections whose predicates involve functions th a t are not built-

in in the source query facility do not exchange with retrieve. This potentially increases the

am ount of da ta fetched from the source. Predicate modification is a mechanism of elim inating

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n: ISBN .titie,price

0 -. price < 45 and
category = "Travel and Adventure"

. A {price}, price, tv {Books.price}
deriveAttr: (category}, category, f ' {Bo0ks.cateoory}

7t: ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs{Books.pnc8)

RELmat: DR, category

Figure 5.9: Query Rewriting: Qs

user-defined functions from predicates so as to increase the chances of these predicates being

pushed into a retrieve node. For example, if a predicate is in the form of

C D N toU SD (price) > 45

and if the query processor “knows” th a t CDNtoUSD is a monotone increasing function with

inverse U S D to C D N , it could rewrite this predicate into

price > U SD toC D N (45)

It can then evaluate the right hand side of the predicate to produce

price > 6 8

assuming th a t 45 US dollars is worth 6 8 C anadian dollars. This modified predicate can be

pushed into a retrieve node easily.

Table 5.5 gives transformation rules for exchanging relational operators with pad , renam e ,

and d eriveA ttr ; these rules facilitate relational operator push-downs. For simplicity, the rules for

d eriveA ttr are given only for cases where there is one derived attribu te. Extensions can be easily

made to allow multiple derived attribu tes. These rules are mostly self-explanatory. Proof of rules

for deriveA ttr is given in [96]. In Table 5.5, pAr<_x denotes the predicate obtained from p by substi

tu ting all appearances of N with X . If p does not involve N , pN*~x = p. Ln <-a denotes the list of

a ttribu tes obtained from L by replacing a ttr ib u te N with A . If L does not involve Ar, L n *-a = L.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tc: ISBN,title,price

price < 45 and
category = Travel and Adventure"

, . . {price}, price, ^(Sooks price}
deriveAttr: {category}, category, tv{BookS.category(

7 i : ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs {Books.price}

pad: pad: pad: pad: pad:
"Travel" "NewAge" "Computer" "Hobbies" "Children"

Travel NewAge Computer Hobbies Children

Figure 5.10: Query Rewriting: Q4

A control strategy selects the next transform ation rule to be applied. Currently AQP pushes

relational operators across AURORA-RH primitives towards the leaves using the rules in Table 5.5.

whenever and wherever applicable, in no particular sequence, until no rules are applicable. After

each rule is applied successfully and if there are any changes to the predicates, AQP performs the

predicate modification algorithm as given below. More sophisticated strategies to speed up opti

mization are a topic for future research.

A lg o r ith m . PredicateM odification (Q)

in p u t: A Q EP Q.

o u tp u t: A modified Q EP Q.

B E G IN .

Repeat until no modification can be made:

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ti: ISBN.titie,price

price < 45 and
category = “Travei and Adventure"

. {price}, price, iV{Books.price}
deriveAttr: {category}, category, f^ao oks.catego ry}

7 Z : ISBN,title,price.bestSeller, category

deriveAttr: {price, deduction}, price, fs (Books.price}

pad: pad: pad: pad: pad:
Travel" "NewAge" "Computer" ‘Hobbies' "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.11: Query Rewriting: Q$

For each subexpression in each predicate appearing in Q in th e form of f { E i) 6 f(E o) or

f (E z) 8 c, where E i, Eo and Ez are expressions, c is a constant, 8 6 {= , > , <}, and / is

a function which has an inverse f ~ l , if / is strictly monotonic o r 8 is “= ” , replace this

subexpression w ith Ei&Eo or E^dc', respectively, where c' = / _ 1 (c).

E x a m p le 5 .4 .2 This example is a walk-through of the optim ization of the Q EP shown in Figure

5.11.

1. F irst try to push the select, cr, operation near the top of the QEP tree across the deriveAttr

operator beneath it, using rule T d e r i v e A t t r \ S \ - This produces the Q E P shown in Figure 5.12.

Apply algorithm PredicateM odification on this QEP, predicate

C N D toU SD (price) < 45

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transformation rules for p a d
Tpa<i[l].
TPad[2].
Tpa<i[3].
T pad [4].
Tpad[5].

7TL(jpad(R,N,s)) = ttl(R), L C ATTR(R), N <£ ATTR(R).
rL(pad(R, IV, s)) = pad(rL_{xy(R), N, s), L C {N } U ATTR(R), iV 6 L.
crp(pad(R, N, s)) = pad(apNr~.(R), iV, s).
RMp pad(R i,N i,s i) = pad(RMpx l ~ . 1 R i ,N t ,s i) .
pad (R i,N i,s i) Np pad(R2, N2, s2) = pad(pad(Ri R 2, 'Vi, si), i\r2. s2).

Transformation rules for rename
T rename[l].
T rename[2].

Treuame[3]-
Trename[4].
Trename [5]*

■KL(rename(R,A,N)) = ttc(R), L C A T T R (R) , N £ ATTR(R).
iri.(rename(R, A, N)) = rename(—LK,_, (R.), A, -V),

L C {AT} U AT T R (R) - {A}. ~
crp(rename(R, A, N)) = rename(opN~A.(R), A, N).
itMp rename(Ri, Ai, JVi) = rename(R IXp.v!.— Ri, -4i, Ni).
rename(Ri, A i ,N i) £xSp rename(R2, A2, N2)
= rename(rename(Ri R 2, .4i, iVi), A 2, N2).

Transformation rules for deriveAttr
'~i- deriveAttr [1]*
Tderive Atir[2].

TderiveAttr [3]-
T<fertueA££T-[4].

Trfcrivea££r[5].

r L(der iveA t tr (R ,L i ,N ,f)) = r L{R), L C A T T R (R), N £ ATTR{R).
tvl{deriveAttr(R, L i ,N , /)) = r L(derive Attr(~L_ {,v } , (R) , L i , :V, /)) ,

L C {iV} U A TTR(R), iV € L.
ap(deriveAttr{R, L, iV, /)) = deriveAttr(crp.s~t(D (R), L, iV, /) .
/£ txip derive Attr(Ri, Li, A/j, f i) = derive Attr{R _/(£.,) Ri, L \ , N \ , f i),
ATTR(R) n ATTR(R i) = <p, Ni $ ATTR(R).
deriveAttr(Ri, Li, JVi, f i) t<p deriveAttr(R2. L2, iVo, f 2)
= deriveAttr(deriveAttr(Ri tXp.vl - / 1(£.1)..v2- / 2(£.2) R 2 , Li, A/j, / i) , L2, N2, f 2),
ATTR{R2) =<t>,Ni£ A T T R (R 2), N2 £ A TT R (R i) , Afi # N2, N2 £ L2.

Table 5.5: Transform ation Rules for pad, rename and deriveAttr

can be modified to

price < 6 8

and predicate

category = “Travel and Adventure”

can be modified to

category = “Travel”

Also, apply rule T d e r i v e A t t r [l] to the projection operator on top of the QEP and the deriveA ttr

beneath it, derivation of one of the a ttribu te , category , can be eliminated. Q EP after these

modifications is shown in Figure 5.13.

2. Exam ine the a operator and push it across the projection beneath it and then try to push

it across the deriveA ttr operator lower in the tree, using rule Tderiue.4 (tr[3]. Then push the

projection on top of the tree across the deriveA ttr beneath it and merge it with the projection

operation under the deriveA ttr. T he Q EP after these modifications is shown in Figure 5.14.

3. Push the predicate category = “Travel” across the U operator and across the pad operator

beneath it, using rule T pa<*[3]. M any of the branches are eliminated. For instance,

c a t e g o r y = “T r a v e l ”pad{C om puter, category , “Com puter”)

= pad(o-«computer"=“Traver C om puter, category, “Computer")

= 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

re : ISBN,title,price

i

. {price}, price, f7{Books.price}
deriveAttr: {category}, category, f^Books.category)

U . CDNtoUSD(price) < 45 and
categoryMap(category) =

"Travel and Adventure"

7C: ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs (Books.price}

pad: pad: pad: pad: pad:
"Travel" "NewAge" "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.12: Query optim ization example: first modification

The Q EP after these modifications is shown in Figure 5.15.

4. Pushing the second projection operator down all the way to meet the pad operator and use

rule TPad[1]- The QEP after this modification is shown in Figure 5.16.

5. Finally, push the projection above the re trieve into it to get the final QEP, as shown in Figure

5.17.

The optim ization has cut down the number of source relations involved from 5 to 1. □

5.5 R ela ted W ork

In [15, 21], algebraic rules for pushing selections across aggregation functions are studied under

the assum ption that schema integration is performed by an integration specification which resolves

all potential instance level conflicts, using various aggregation functions. AURORA integration

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K : ISBN,title,price

deriveAttr: {price}, price, fv{Books.pric8}

q . price < 68 and
category = “Travel”

T Z : ISBN,title,price,bestseller, category

deriveAttr: {price, deduction}, price, fs{Books.pnc8}

pad: pad: pad: pad: pad:
"Travel" "NewAge” "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.13: Query optim ization example: second modification

m ediators do not keep integration specifications; sources participate in the data service by registering

w ith the m ediator the data they can contribute. Conflicts are not resolved at schema integration

tim e bu t ra th e r tolerated at query time and resolved only upon returning of query results. In

general, AU RO RA’S approach towards instance level conflict handling offers a new way of querying

potentially inconsistent data and new techniques for processing such queries efficiently.

T he flexible relation model [23, 83] is designed to deal w ith instance level conflicts, but it requires

the applications to use a non-standard da ta model for d a ta access. This approach only deals with

conflicts a t predicate evaluation time and the tolerance m ode is always HighConfidence. Conflicts

in query results are not removed. M ultiplex [6 8] deals w ith instance level conflicts in the context of

answering queries using given materialized views. Conflicts arise when the materialized views overlap

and the same query can be evaluated in multiple ways, resulting in multiple answers. A mechanism

is proposed to derive an approximate query answer using these candidate answers. However, without

any object m atching assumption, it is not clear how conflicts can be detected.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71: ISBN,title,price

deriveAttr: {price}, price, fv{Books.price}

n: ISBN,title,price,category

deriveAttr: {price, deduction}, price, fs{Books.price)

(j - fS(Books.price)(Pn'c e , deduction) < 68 and
category = "Travel"

U

pad: pad:
Travel" "NewAge" "Computer" "Hobbies" "Children"

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children

Figure 5.14: Q uery optim ization example: th ird modification

[41] identifies domain mappings for resolving domain and schema m ism atches. Resolutions for

individual mismatches are dem onstrated using an object-oriented database program m ing language.

[41] does not provide a mediation m ethodology, nor does it explore query optim ization techniques

in the presence of the new language constructs. [42] provides a comprehensive classification of

m ism atches and conflicts. Resolutions for individual conflicts are given. New language constructs

are proposed but query rewriting and optim ization methods for these constructs are not given. [31]

uses ontology to detect and resolve m ism atches due to different units of m easure. It is not cleax how

[31] handles other types of schematic m ism atches.

Disco [89] extends ODMG ODL for m ediation and proposes to use Volcano for query optim ization.

I t introduces a logical operator su b m it and gives rules for exchanging relational operators with it.

The cost model used is unclear. [25, 56] describe approaches th a t collect/establish statistics to build

m ediator query cost models. Query optim ization in AURORA-RH focuses on single-source query

modification techniques to leverage the source query optimization capability; a m ediator query cost

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T il ISB N ,title,price

deriveAttr: {price}, price, f^Books.price}

T i : ISBN,title,price

deriveAttr: {price, deduction}, price, fs {Books.price>

(y fS{Books.price}(Pr,ce> deduction) < 68

pad: category,
Travel"

retrieve

Travel

Figure 5.15: Query optim ization example: fourth modification

model is not necessary. However, m ediator query cost model is an interesting research topic.

5.6 Sum m ary

The CT query model and related processing techniques are a new approach to handling instance

level conflicts. Unlike previous approaches, conflicts are not resolved at schema integration time with

aggregation functions, but are dealt w ith a t query time. W ith the CT query model, instance level

conflicts are tolerated to a degree acceptable to the applications. The advantage of this approach

is th a t applications gain more control of the quality of the data access service they receive, and

the m ediators gain more room for query optim ization. Techniques for optimized processing of CT

queries have also been studied. In large scale d a ta integration systems, the ability of optimizing

query processing according to applications’ requirem ents for da ta service quality is a significant

factor in deployment.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tt: ISB N .title.price

deriveAttr: {price}, price, fV{Books.price}
I

7 t : ISBN.title.price

deriveAttr: {price, deduction}, price, fs {Books.price}

q : fs {B ooks.price}<Price, deduction) < 68

n: ISBN.title.price,deduction

retrieve

Travel

Figure 5.16: Query optim ization example: fifth modification

AURORA-RH query processing and optim ization axe based on the MEA-RH algebraic fram e

work, which allows the query processor to use knowledge gathered from the m ediator author during

hom ogenization, in order to build efficient QEPs. Homogenization is different from building a rela

tional view in th a t it requires more sophisticated structu ra l and sem antic transform ations of d a ta .

Fundam entally, MEA-RH allows the im pact of the homogenization process on query processing ef

ficiency to be sTudied. As dem onstrated in this section, algebraic optim ization of m ediator queries

can significantly reduce the volume of d a ta retrieved into, and m anipulated by, the mediator.

Future research in CT querying involves development of a cost model for stra tegy selection and

a detailed perform ance study of the query optim ization techniques presented here. Since query' pro

cessing is a muLti-phase procedure, apart from the m ajor transform ations th a t have been developed

in this chapter, many smaller techniques for sm art reuse of da ta retrieved in previous phases can be

explored. T hese are engineering issues b u t may improve performance further.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deriveAttr: {price}, price, fv{Books.prica}

1 Z '. ISBN.title.price

deriveAttr: {price, deduction}, price, fs {Books.price}

(J : fS(8ooks.pnce}(Pr ic e . deduction) < 68

retrieve

I

71: ISBN.title.price,deduction

Travel

Figure 5.17: Query optim ization example: sixth modification

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Object-Oriented Mediation

Framework

W hen the service view is based on an object data model, a m ediation framework is needed for ho

mogenizing and integrating data represented as objects th a t reside in various participating sources.

This chapter describes AURORA’S object-oriented m ediation framework. As in the relational con

text, there are two mediators: object-oriented homogenization m ediator, AURORA-OH, and object-

oriented integration m ediator, AURORA-OI.

6.1 T h e S erv ice V iew

A service view is a schema written in ODMG ODL [14] th a t satisfies the following syntactical

constraints:

1. Each object class m ust define a method with the following signature:

P ID : 0 ->• T

where T is a Pure Literal Type (PLT). PED stands for P lu g - in Id en tifie r . Intuitively, the

PID m ethod returns a value th a t is required by the in tegration m ediator for object-matching

and oid generation; sources that wish to contribute d a ta towards a global class in the service

view m ust be able to perform the PID method of this class.

2. C lass/interface specifications contain only methods: no a ttribu tes, relationships, types, con

stants, or exceptions.

3. Exports of param eters in methods are either in or out, not inout.

4. The param eter types and return types of methods are restricted to the following:

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Pure literal types.

(b) Object types in the service schema.

(c) set < T > where T is an object type in the service schema.

This constraint says that the service view does not involve randomly complex types. This is

because complicated structures with oids buried deep inside cannot be exported or interpreted

easily; oids lose their validity once they leave the system where they are created. It is possible

to devise a mechanism to exchange randomly complex values involving oids but this is not

the focus of this research. This constraint is posed to simplify- the initial development of the

integration framework; it will eventually- be removed.

These constraints do not restrict what can be represented in a service view; it only restricts how to

represent them . For instance, a service view does not contain a ttribu tes but an a ttribu te can be

represented by a get m ethod and a set method. Since the service view is read-only, a get m ethod would

represent an a ttribu te completely. However, by restricting properties to methods, the integration

mechanism of AURORA-OI is greatly simplified.

There are two ways of maintaining the extents of classes in the service view: as a materialized

collection of oids; or as a virtual collection of oids. W hen dealing with a large number of sources that

participate and withdraw from service views dynamically, m aterialized extents would be difficult to

m aintain. In AURORA, all extents in the service view are v irtual, materialized only a t run-time to

entertain queries. It is the responsibility of the integration m ediator to (partially-) populate these

virtual extents a t run-tim e with integrated objects “m anufactured” using objects exported by sources

participating in the service view. Object classes in a service view are referred to as the global classes.

Objects of global classes are referred to as the global objects.

N o ta tio n s . The signature of a m ethod defined on a class is in the following form:

N : e i ’.Ti x ... x en:Tn —>• Tq

where N is the m ethod name, T q is the return type, T) and a are the type and export of the z-th

param eter, respectively, e,- = in /ou t/inou t. A pure literal type (PLT) is a literal da ta type that

involves no object types; it is a type of pure value.

6.2 D a ta Sources and W rappers

W rappers m ust support an interface known to AURORA, as discussed earlier in Section 3.2.1. An

AURORA.-OH m ediator must be able to access either ODMG sources or relational sources. To access

a relational source, an AURORA-OH mediator must have the ability to “understand” d a ta in the

form of relations. Since AURORA-OH is based on the ODMG object model, relations can be viewed

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as sets of “s tru c ts” and can be manipulated w ithin the ODMG object model accordingly. This means

th a t AURORA-OH m ediators m ust provide a mapper which transla tes relations into sets of structs,

and translates OQL queries over these sets of structs into SQL queries over relations. Construction

of this m apper is an implem entation issue and is beyond the scope of this dissertation. Generally,

to participate in an object-oriented service view, d a ta sources m ust be covered w ith a wrapper that

facilitates accessing of the sources through an ODMG interface or a relational interface, whichever

is m ost easily generated.

6.3 O verv iew o f th e H om ogen iza tion F ram ew ork

In the object-oriented context, a data source contributes d a ta to a target service view by describing

the d a ta it provides as a set of class fragments of the global classes. Consider a service view containing

three global classes: class People with methods name(), age(). and phoneNumber(): class Dogs with

m ethods nam e(’), pedigreeQ and breedQ; and class Cats with m ethod longHairedQ. A class fragment

of class People could be a class SomePeople defining methods nam e(), phoneNumberQ and address().

A class fragm ent of class Dogs could be a class SomeDogs defining m ethods nam e() and pedigreeQ.

A source may describe itself as being able to provide two classes, SomePeople and SomeDogs. Notice

th a t this source does not contribute data towards Cats, nor does it contribute d a ta on people’s age

or the breeds of dogs. Also notice that SomePeople is able to provide d a ta on addresses of people

although this inform ation is not of interest to the service view'. Nevertheless, SomePeople is a class

fragm ent of People. Generally speaking, da ta sources con tribu te d a ta on some aspects of some

objects in a target service view.

6.3.1 T h e H om ogen ization Scenario

Homogenization is carried out by a mediator author, who designs an object-oriented homogenizing

view. Some, usually not all, classes in this view are m arked as class fragm ents of global classes:

these classes axe called the homogenizing classes. For instance, a homogenizing view of a data

source m ay contain 5 classes arranged in some inheritance hierarchy. Among these classes are

SomePeople, m arked as a class fragment of global class People, and SomeDogs, marked as a class

fragm ent of global class Dogs. A detailed discussion of homogenizing views is given in Section 6.3.2.

Homogenizing views are derived by the mediator using an AURORA-OH m ediator. Once the class

fragm ents axe explicitly marked, the homogenizing view and its relationship to the service view will

be autom atically understood by the target AURORA-OI in tegration m ediator. This knowledge is

used a t run-tim e for combining source data to provide d a ta to the applications.

In term s of semantics, a source class 5 is a fragment of a global class G if they describe the same

application entity, although 5 may describe some, not all, aspects th a t are of interest to G. In this

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case, objects of S and G have th e same sem antic intension. Semantic intension of homogenizing

classes in relation to global classes is determ ined by m ediator authors; it is an im portan t piece of

sem antic knowledge provided to the integration m ediator. This knowledge is used by the integration

m ediator for object-m atching - th e process of identifying objects from various sources th a t describe

the same application entity. Usually, several source objects describe the same global object, and

these source objects are able to perform various methods; AURORA'S integration mechanism is

responsible for dispatching m ethods to the source objects th a t are able to perform them .

6.3 .2 H om ogenizing V iew s

I t is the responsibility of the m ediato r au thor to design homogenizing views by determ ining which

class fragments the underlying d a ta source is able to provide, and which methods these class frag

m ents axe able to perform; these are semantic decisions th a t AURORA mediators do not au tom ati

cally make - mediators only provide facilities for the m ediator au thor to derive homogenizing classes

as virtual classes. However, homogenizing view is a more relaxed notion than the usual object views

[1 , 81] for the following reasons:

1. Homogenizing classes may contain m ethods th a t are not related to the service view; these

methods will not be used for integration purpose, but their presence does not im pact on the

d a ta integration process. AURORA-OH does not provide facilities for “hiding" a m ethod from

a class. This makes type inferencing of derived classes much simpler.

2. Homogenizing view may contain classes th a t are not related to the service view: these classes

will not be queried for in tegration purpose, but their presence does not im pact on the da ta

integration process. This also makes type inferencing of derived classes much simpler.

In general, AURORA-OH does no t provide facilities to hide m ethods from classes or to hide classes

from class hierarchies. The m ediator au thor derives a homogenizing view and exposes some classes

to the target integration m ediator by m arking these classes as fragments of respective global classes;

these marked classes are the homogenizing classes. A m ethod defined on a homogenizing class is

exposed to the integration m ediator only if its name and signature matches those of a m ethod defined

by G. These methods are referred to as the export methods. M ethods that are not intended to be

exposed to the integration m ediator in this way m ust be renam ed appropriately. AURORA-OH

provides facilities for m ethod renam ing.

6.3 .3 The H om ogen ization F acilities

Once the homogenizing view is designed, the m ediator au thor uses an AURORA-OH m ediator to

derive it from the source schema by deriving the classes in the homogenizing view as virtual classes

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on top of the source schema. In addition to the homogenizing classes, v irtual classes are some

tim es derived as an intermediate step towards the derivation of desirable homogenizing classes.

AURORA-OH mediators, similar to the ir relational counterparts, provide M ediation Enabling Op

erators (M E O s) to facilitate these derivations. M EOs support the following types of derivations:

1 . Regrouping of existing classes, e ither by tak ing the the union of existing classes or by selecting

objects from an existing class based on a condition. For instance, one should be able to combine

classes Student and Employee to form a new class Person. One should also be able to select

all students older than 50 to form a new class SeniorStudent. W ith AURORA-OH, Person

can be derived using the operato r of generalization; SeniorStudent can be derived using the

operator of specialization. These operators do not generate new objects; objects in Person or

SeniorStudent already exist in the source. Such operators are said to be object-preserving.

2. Restructuring of existing classes. For example, one may want to derive a class Specialist with

m ethod years!nPractice() and specialization() from class Pediatrician, defining only method

years!nPractice(). In this case, one should be able to declare a virtual m ethod on class Pediatri

cian, specializationQ, which retu rns a constant “Pediatrician” . This operation restructures the

Pediatrician class into a Specialist class by adding a new method to it. AURORA-OH provides

an operator, deriveOP, for specifying virtual methods. This operator is object-preserving.

3. M erging/splitting of existing classes to generate new classes. For instance, one may want

to derive the Employee class from a Company class that m aintains an employee directory;

this requires “splitting” a Company object into x Employee objects where x is the num ber of

employees in the company. Or, one may need to derive Department objects from Employee

objects, which requires merging of the Employee objects who work in the same departm ent.

Both of these operations can be expressed with MEO O B J G E N in AURORA-OH. In both

cases, objects in the derived classes do not exist in the source but only exist in the homogenizing

view; they are imaginary objects. O perators th a t produce imaginary objects are said to be

object-generating. O B J G E N is the only object-generating operator in AURORA-OH.

4. M ethod mapping. Assume class Employee defines methods salarylnCDNQ, bonusInCDNQ.

manager(), and phoneNumberQ. Also assum e that for homogenization purposes, a method

totalIncomeInUSD(), which retu rns the to ta l income of an employee including bonus, in US

dollars, and a method managerPhoneQ , which returns the phone num ber of the employee’s

m anager, must be derived. M ethod m apping should allow a m ediator au tho r to specify func

tions for converting Canadian dollars to US dollars and for deriving to ta l income from salary

and bonus. It should also allow specification of method managerPhoneQ as a pa th expression

Employee.managerQ.phoneNumberQ. In AURORA-OH, method m apping is supported by the

operator of deriveOP which is an object-preserving operator.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The collection of homogenization MEOs provided by AURORA-OH overlaps w ith the operators

previously proposed for constructing object views [1]. However, operators for hiding or im porting of

m ethods or classes are not needed. Rather, a m ore sophisticated mechanism for m ethod m apping is

required:

1. A framework needs to be defined for specifying, using user-defined functions, value conversions

on in- and out- parameters, and the retu rn values of methods. This framework should serve

as a skeleton onto which the m ediator a u th o r can “hang” her conversion functions so as to

avoid reprogramming the methods them selves to incorporate such conversions. Consider the

salary example again. The methods sa larylnC D N and bonusInCDN may involve complicated

calculations based on various business ru les. To support m ethod totallncomelnUSD, the me

diator au thor should not have to repeat these calculations. Instead, it should be possible to

specify th a t totallncomelnUSD is to be perform ed by an Employee object by performing CD-

Nto USD (SalaryAddBonus (THIS.salary InC I?N), TH IS.bonusInCDN())). Therefore, all th a t

m ediator author has to do is to provide two conversion functions, CDNtoUSD and SalaryAd-

dBonus, and to instruct the Employee ob jec ts on how to use these functions to perform total-

Incom eln USD.

2. A framework is required for declarative specification of virtual methods so as to exploit existing

capabilities of objects and avoid the need to w rite new code. For instance, the m ediator au thor

should be able to specify managerPhone as a virtual m ethod of Employee by specifying th a t

each Employee object performs this m ethod by performing THIS,manager().phoneNumber().

Sources export information to the best of their capabilities. The only requirement is that if a source

exports a class as a fragment of a global class, it m ust make sure th a t the class is able to perform

the PID m ethod defined by the global class. C urrently , cases where a new method is coded are not

considered; this facility will be added as future w ork.

6.3 .4 H om ogenization M eth od ology

AURORA-OH homogenization methodology and M EO s are closely related facilities. The homog

enization methodology mandates th a t hom ogenization be performed in well-defined steps; in each

step, only certain MEOs can be applied. A hom ogenizing class C is derived in 2 steps: o b je c t

p r o to ty p in g followed by m e th o d m a p p in g , as illustrated in Figure 6.1. Intuitively, object pro

totyping creates an object class Cp that is capable o f performing each of the methods defined on C;

this capability is a semantic notion that only the m ed ia to r au thor understands. Moreover, there is a

one-to-one m apping between Cp objects and C ob jec ts , such th a t the corresponding objects model

the same application entity, with possibly different representations. Cp is called a prototype of C .

For instance, object class Employee with m ethods employeeNo(), salaryInCDN(), bonus!nCDN().

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

manager(), and phoneNumberQ is a prototype of homogenizing class Employee2 w ith methods em-

ployeeNoQ, totallncom elnU SD (), managerPhoneQ,..., because each Employee object corresponds to

the Employee2 object th a t has the same Eno, and is capable of perform ing all the methods defined

by Employee2 - although how exactly an Employee object performs these m ethods is yet to be speci

fied. AURORA-OH supports object prototyping by providing facilities for regrouping, restructuring,

merging, and splitting of object classes.

source class

Object Prototyping

prototype class Cp

Method Mapping

export class C

Figure 6.1: A Homogenization M ethodology

Given any m ethod m defined by class C, a prototype class of C, Cp, m ust be able to per

form m , th a t is, it is able to “do the same thing1’ as m; so fax th is ability is determined by and

known only to the m ediator author. The goal of m ethod m apping, the second step of homogeniza

tion, is to allow the m ediator author to express this semantics as a specification of exactly how

Cp objects perform m . To do so, the m ediator au thor m ust derive m as a virtual method of class

Cp by using the m ethod m apping facilities provided by AURORA-OH. For instance, the mediator

au thor cam specify th a t an Employee object, e, performs totallncom elnU SD () by invoking CD-

NtoUSD(SalaryAddBonus(e.salaryInCDNQ, e.bonusInCDNQ)), where CDNtoUSD and SalaryAd-

dBonus are functions provided by the m ediator author. Once m ethod m apping is complete for every

m ethod defined on C, Cp indeed becomes C. Thus the derivation of class C is completed.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 .5 A U R O R A -O H M EOs

AURORA-OH provides six M ediation Enabling Operators (M EOs):

G e n e ra l iz a t io n

Generalization creates a v irtual class as the superclass of existing classes. This is supported by the

MEOs Gen and B G en . O perator Gen creates a class as the common superclass of a given set of

classes. O perator B G en creates a class as the common superclass of a set of classes that support a

given set of m ethods. These MEOs derive a new class and are in the following forms:

G n e w = G e n (C i,..., Cn)

where C i , ...,C n are existing classes; and

Gnew = B G en {C \,..., Cn , S i)

where C i,. . . ,C n are existing classes and 5 / is a set of m ethod signatures. For example, one can

derive class People as a generalization of Student and Professor as follows:

People = G en(Student, P r o fe s s o r)

Class People, thus derived, defines all the methods th a t are commonly defined by Student and

Professor. The extent of People is the union of those of Student and Professor. One can also derive

class Printables as a behavioral generalization of classes A scii Files, Email, HtmlFile, as follows:

P rin table = B G en(A sciiF iles, E m a il, H tm lF ile s , {p r in t()})

Class Printable, thus derived, defines a single method print(). T he extent of Printable is the union

of all classes in the param eter list that define method print().

S p e c ia liz a tio n

Specialization creates a virtual class as the subclass of an existing class by selecting existing objects

in this class with an OQL query. This is supported by the MEO of Spe, in the following form:

Cnew = Spe{C, Q)

where C is an existing class and Q is an OQL query th a t produce a set of objects in the extent of

C. For instance, once can create class SeniorStudent from class Student as follows:

S en io rS tu d en t = Spe(S tuden t, “se lec t s fro m s tu d en ts s w h e re s..4<?e() > 65”)

O b je c t G e n e ra t io n

This operation allows joining and splitting of existing classes to create new virtual classes. This is

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

supported by the MEO of O B J G E N , in the following form:

Cnew = O B J G E N (Q ,f)

where Q is an OQL query that generates a set of tuples and / is an identifier function that maps

each element in the result of Q to a unique value; the system then maintains a one-to-one mapping

between this value and a unique oid. For instance, let Q\ be the following:

Qi = s e le c t DeptN o
f ro m Employees e
g ro u p by DeptNo: e.DeptNo

and let f i be a function th a t maps an element in the result of Q i, v = < D eptN o : d ,partition : x >

to d, th a t is, f i{ v) = d, then the following operation

D epartm ent = O B J G E N { Q i,f{)

generates an object class Department th a t defines two methods: DeptNo() and partitionQ. For

each distinct DeptNoQ value of employees, d, a unique object of class Department, oa, is created.

Moreover, Od-DeptNoQ) = d, Od-partitionQ = x if and only if < d, x > € Q. For another example,

consider object class Company that has a method employeeDirectory which returns a collection of

tuples in the form of < E no : string, S I N : string, nam e : s tr ing , phoneN um ber : string >. To

derive class Employee, Company objects must be “split” . First, the following query is specified:

Qo = se le c t em pD ata
f ro m companies c, em pD ata in c.employeeDirectory

and let / 2 be a function th a t maps a tuple < E no : e ,S I N : s ,n a m e : n, p honeN um ber : p > to

s, th a t is, / 2(< E no : e ,S I N : s ,n a m e : n ,phoneN um ber : p >) — s. Then class Employee can be

derived as follows:

E m ployee = O B JG E N (Q o ,f-2)

R e n a m in g m e th o d s

This is achieved by the MEO of R enam e in the following form:

Renam e(C , N 0id, N new)

The above operation renames the existing method N 0id in class C, and in all its subclasses, to N new.

D e fin in g v i r tu a l m e th o d s

AURORA-OH allows definition of virtual methods on virtual or base classes, and translations of

param eters and return values of (virtual) methods using user-defined functions, path expressions,

and OQL queries. This is supported by the MEO of deriveO P, th a t has the following form:

deriveOP{C, S ^ ,E , M in, M out)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This opera to r defines a virtual m ethod on C and all its subclasses. S n is the signature of the virtual

m ethod to be defined. E is a navigation method. The concept of navigation m ethod is a powerful

one but for the current purpose it can be assumed to be a path-expression like specification. M in

specifies in-param eter translation. M out specifies out-param eter and re tu rn value translation. These

specifications, called parameter translation maps, allow m ediator authors to specify value conversions

using user-defined functions as well as pa th expressions. For example, the following operation derives

m ethod managerPhoneQ on class Employee:

d eriveO P (Em ployee, m anager Phone, T H IS .m anager.phoneN um er,

0, {Go = com pactForm at(Po)})

T he above operation specifies that virtual m ethod managerPhone is to be performed by an Employee

object by invoking m ethod manager on itself, and then invoking phoneNumber on the returned

object. T h e last param eter says th a t the return value of managerPhone of an employee, e, is derived

by tran sla ting e.managerQ.phoneNumberQ from the form at of “(123) 456-7890” to the form at of

1234567890 using a user-provided function compactFormat. Go specifies th a t it is a conversion map

for the re tu rn value, considered to be the 0 -th out param eter. Generally, M ,n and M oul provide the

m ediator a u th o r w ith a framework for “hanging” various conversion functions. As another example,

the following operation derives m ethod totallncomelnUSD from salarylnCDN and bonusInCDN:
deriveOP (Employee, totallncomelnUSD , null, null,

{Go = C DNtoUSD(Salary AddBonus(TH IS.salary InCDN(),TH IS.bonusInCD N())})

6.3 .6 A C om pact H om ogen ization E xam ple

In this section, a walk-through of an example is given to dem onstrate the facilities AURORA-

OH provides for homogenization. This example requires restructuring of object classes as well as

generation of object classes whose extent contains im aginary objects. Assume that the class on the

right is to be derived from the source class on the left:

class Sales class ProductSales
(e x te n t salesRec) (e x te n t productSalesRec)

{ {
s h o r t month(); . s t r in g productType();
in te g e r desktop(); s h o r t monthQ:
in te g e r laptop (); in te g e r sales();
in te g e r printerQ; };

};

The num ber of objects in class ProductSales is 3 times as great as th a t in class Sales; each Sales

object m ust be split into 3 ProductSales objects. To derive class ProductSales, one first derives 3

classes: desktopSales, laptopSales, and printerSales, using the object generation operator O B J G E N .

To derive class desktopSales, an OQL query is first specified:

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q d e s k t o p S a l e s = se lec t s t r u c t (salesO&j.-s, productType:“desktop”)
from salesRec s

A nd let / be an identity function on type s truc t(sa lesO b j : Sa les,productT ype : s tr in g). Class

desktopSales can then be derived by the following:

desktopSales = O B JGEN{QdesktopSales, f)

The desktopSales class has two methods: salesO bjQ : % —> Sa les and productType : 0 —¥ string .

M oreover, for any object o in this class, o.productTypeQ = “desktop”. The methods of month and

sales on desktopSales are then derived as follows:

d eriveO P {d esk to p S a les,m o n th ,T H IS .sa lesO b j.m o n th ,$, {Go = Po})

deriveO P{desktopSales, sales, T H IS .sa lesO b j.d e sk to p ,%, {Go = Po})-

T he first formula above says tha t to perform m ethod month, a desktopSales object should first

invoke m ethod salesObj on itself, and then invoke m ethod m onth on the returned result. The last

param eter contains an out-parameter translation map, Go, where G indicates it is a transla tion map,

and 0 indicates th a t the map is for the Oth ou t param eter of month, the retu rn value. This map

says th a t the re tu rn value of the new m ethod m onth is the same as the Oth out-param eter (Po) of

THIS.salesObjQ.month(). The second deriveOP formula can be interpreted in a similar manner.

Similar to the specification of class desktopSales, classes laptopSales and printerSales can be

derived. Once these classes are derived, the class of ProductSales can be derived as the generalization

of these classes as follows:

ProductSales = G en{desktopSales, laptopSales, p r in ter Sa les)

Most operators used in the above example have their precursors in previously proposed constructs

for object views [1], except the operator of deriveOP. Since the use of these operators has been

illustrated in the above example, it will not be illustrated elaborately again but will be defined

formally in AURORA terms.

The above example does not require com plicated m ethod mappings, for which AURORA-OH

provides a richer and more elaborate framework th a n the object view systems [1]. Therefore, another

example is designed as the running example to dem onstrate the m ethod m apping techniques of

AURORA-OH. This example, described in Section 6.5.1, requires less regrouping, restructuring,

and m erge/split of objects, but requires sophisticated m ethod m apping th a t will be carried out

throughout the rest of this chapter.

6 .3 .7 M E O s and the H om ogen ization M ethodology-

All M EOs described can be used for object prototyping but only two M EOs can be used in the

step of m ethod mapping: Rename and deriveOP. W hen Rename and deriveOP are used for object-

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prototyping, they facilitate restructuring of objects; when they are used for m ethod mapping, they

facilitate sophisticated translation of param eters, re tu rn values, and semantics of methods.

6 .4 A n O verview o f th e O b ject-O rien ted In tegration

In contrast to homogenization, which is a sem i-autom atic procedure th a t requires mediator au

tho rs’ intervention and guidance in transform ing individual sources, integration in AURORA is a

fully autom atic process dealing w ith a large num ber of participating sources through respective

AURORA-OH m ediators. The integration m ediator, AURORA-OI, supports a fixed service view

and is responsible for answering OQL queries posed against this view. To do this. AURORA-OI

m ust be able to m anufacture global objects using the objects provided by participating sources. This

in tu rn requires AURORA-OI to do the following:

1 . AURORA-OI m ust be able to access objects from multiple sources in a uniform manner.

It is unlikely th a t AURORA-OI can access source objects using the oids assigned to these

objects in their native sources. To use these oids as access handles, AURORA-OI must be

linked w ith specific libraries and modules for each type of source. Integration would not scale,

since access programs must be updated each tim e a new source is included. AURORA-OI uses

run-tim e agents called proxies to access objects residing at various sources. A proxy represents

one source object, but a source object may have any num ber of proxies. Proxies are the only

type of handle used by AURORA-OI for accessing source objects; they are also responsible

for facilitating the exchange of oids in a meaningful way across system boundaries, as param

eters and as return values of methods. Proxies axe generated a t run-tim e by AURORA.-OH

mediators.

In contrast, AURORA-OH m ediators do not face the problem of dealing with objects from

multiple sources as AUR0R.4.-0I mediators do. Generally, AURORA-OH is capable of ma

nipulating objects using their source oids. This is why proxies are needed by AURORA-OI

m ediators, not AURORA-OH m ediators. However, AURORA.-0 H mediators are where proxies

are generated. All object exchanges between AUROR.A.-OI and AURORA.-OH must be done

using proxies.

2 . Given global class Cg, AUROR4.-OI must be able to combine objects from source classes

registered as fragments of Cg to create objects of Cg. Often m ultiple source objects represent

various portions of the same global object; such source objects are identified by object-matching.

A set of m atching source objects, S , gives rise to a global object os', objects in S are referred

to as the contributing source objects of 0 5 . Each object in S is capable of performing some, but

usually not all, of the methods defined by Cg. o s performs any given method m defined by Cg

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by dispatching it to a source object in 5 th a t is capable of performing it. Since source objects

are represented by proxies, object-m atching is performed using proxies. Global objects are

m anufactured by operator Proxy Match Join (PM J), which m atches proxies from all relevant

sources to produce integrated objects.

Object-m atching is a large issue by itself and is not a focus of research in AURORA; a simple

m atching assum ption is employed: object-m atching is based on PID values. Given source classes Si

and S 2 , both registered as fragments of a globed class Cg, objects oL G S i and o2 6 So are considered

to be m atching objects if they have the same PID value. This is why it is necessary that source

classes wishing to contribute da ta to a global class be able to perform the PED method defined on

this global class. PID values of global objects are the basis for m aintaining unique and immutable

oids for global objects.

6.5 B asic C on cep ts in O b ject-O rien ted H om ogen ization

This section describes the basic concepts of AURORA’S object-oriented homogenization framework.

First, a running example is described. This example will be used for illustrating various concepts.

The rest of the section describes two concepts that support the functioning of AURORA-OH: (1)

an internal conceptual framework for describing object classes; and (2) the concept of navigation

methods.

6.5.1 A R u nn in g E xam ple

A service view is shown a t the top of Table 6.1; it contains a class “Doctor” and its subclass

“Specialist” . These classes have related extents and support a set of m ethods. The rest of Table 6.1

shows the homogenizing views of three sources: D S 1 , DSo, and D S 3 . These views axe partial since

only the homogenizing classes axe shown. The globed classes of which these homogenizing classes

are fragments are indicated on the first line of the class specification. These homogenizing classes

are to be derived by homogenizing the respective data sources. For convenience, the population of

each of the homogenizing classes is also listed a t the end of the class declaration. Table 6.2 shows

the source schema a t da ta sources D S i , DSo and D S 3 , respectively. These are pre-existing schemas.

The population of each source class is also listed a t the end of the declaration of each class.

6.5.2 A Fram ework for D escribing Classes

To support the MEOs, AURORA-OH needs an internal framework for describing classes from the

source, as well as those derived. This section describes this framework.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Service View
class Doctor (e x te n t doctors)
{

s tr in g PID();
s tr in g TeiNo();
s tr in g CIinicAddress();
s tr in g ProfileQ;
se t< s tr in g > PatientHistory(in s tr in g PatientED,

o u t Doctor PreviousDoc, o u t d a te FirstA ppt);
};
class Specialist e x te n d s Doctor (e x te n t specialists)
{

s tr in g Specialization^);
sh o rt YearsAdvancedTirainingQ;

J i __
__ Homogenizing View At DSi__________________

class MyDoctor (e x te n t myDoctors) / / fragment of: Doctor
{ / / only methods of interest are listed.

s tr in g PID();
s tr in g CIinicAddress();
s tr in g Profile();

};______/ / Population: Qiy(001)”Smith”, 012 (002)" Jones”, 013 (003)” Hanks”._________________
_____________________________ Homogenizing View At D Si______________________________
class Pediatrician (e x te n t pediatricians) / / fragment of: Specialist
{

s tr in g PEDQ;
strin g TelNoQ;
s tr in g ProfileQ;
s tr in g Specialization();
sh o rt Years AdvancedTrainingQ;
set<ConsultationRecord> PatientHistory(in s tr in g PatientED,

o u t FamilyPhysician PreviousDoc, o u t d a te First Appt);
}; / / Population: 021 (0 0 1) ”Smith”, on(OOf)"Low”

class FamilyPhysician (e x te n t familyDocs) / / fragment of: Doctor
{

s tr in g PED();
s tr in g TelNo();
s tr in g ClinicAddressQ;

}; / / Population: oiz(005)’:Peters”
 Homogenizing View At DS 3 ______________________________
class Orthopedics (e x te n t docs) / / fragment of: Specialist
{

s tr in g PEDQ;
s trin g TelNoQ;
s tr in g SpecializationQ;
sh o rt Years AdvancedTrainingQ;
s e t< s tr in g > PatientHistory(in s tr in g PatientED,

o u t Orthopedics PreviousDoc, o u t d a te First Appt);
};_____ / / Population: 031 (002)”Jones”, Ozz(007)"Bond”____________________________________

Table 6.1: Example G lobal Schema and Source Homogenizing Views

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data Source D Si
class MyDoctor (e x te n t myDoctors){

s t r in g ID();
C lin ic clinic();
S tr in g bio();

}; //Population: on(001)”Smith”, o\i(002)’’Jones”, 0 1 3 (003)’’Hanks”.

class Clinic (e x te n t clinics){
s t r in g NameQ;
s tr in g Address();

};
___ D ata Source DS 2 __
class Doctor (e x te n t doctors) {

s tr in g PIDQ;
s tr in g Profile();
P a t ie n t FindPatient(in s t r in g PatientED);

};
c lass FamilyPhysician e x te n d s Doctor (e x te n t family Physicians){

s t r in g ClinicAddress();
}; / / Population: 023 (005)”Peters”

c lass Pediatrician e x te n d s Doctor (e x te n t pediatricians) {
s tr in g TelNoQ;
s tr in g YearsOfTrainingO;

}; / / Population: 0 2 1 (001)”Smith”, 0 2 2 (004)”Low”

class Patient (e x te n t patients){
s tr in g SINQ;
s tr in g GetConsultationRec(out Doctor LastDoc, o u t d a te First Appt);

Data Source DS3
class Orthopedics (e x te n t orthopedics){

s tr in g PID();
s tr in g TelNoQ;
s tr in g ExperienceQ;
s h o r t search(in s tr in g SIN, o u t Patient patient, o u t d a te FirstAppt);

}; //Population: 031 (002)”Jones”, 0 3 2 (0 0 ?)”Bond,”

class Patient (e x te n t patients){
s tr in g SINQ;
s tr in g GetConsultationRec(out Doctor LastDoc);

};

class Clinic (e x te n t clinics) {
O rth o p e d ic s SpecialistlnvolvedQ;
s tr in g AddressQ;

h _____________________________________

Table 6 .2 : Source schemas and populations

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class Hierarchy in Homogenizing Views

The goal of homogenization is to derive a set of homogenizing classes th a t have the desirable extent,

interface, and semantics for the methods defined on the interface. Each MEO that derives a new

(virtual) class from given classes defines all these characteristics of the derived class, based on those of

the operand classes. One of the im portant characteristics of object classes is their position in a class

hierarchy. AURORA-OH does not keep a separate view hierarchy, as in [43]. Similar to [1], upon

initialization, an AURORA-OH m ediator imports the subclass hierarchy from the underlying ODMG

source. This hierarchy is then modified as the m ediator au thor derives new classes and methods

using MEOs provided by AURORA-OH. Virtual classes are treated the same way as the classes

originally defined in the data source. As described in Section 6.3.2, derivation of a homogenizing

view does not require hiding methods from classes or hiding classes from the class hierarchy. This

means th a t evolving the class hierarchy is much simpler in AURORA-OH than in general purpose

object view systems such as those described in [1] and [81], where hiding of attributes, methods, and

classes is required.

Homogenization generates a homogenizing class hierarchy in which the homogenizing classes are

defined; this hierarchy is part of the homogenizing view. AURORA-OH does not export inheritance

hierarchy semantics; it is considered to be a local semantics th a t is not of interest to the integration

mediator. It is the responsibility of the AURORA-OH m ediator to translate queries against the

homogenizing view into queries against the source schema.

Object classes

A distinction is m ade between logical schemas and implementation schemas. This distinction corre

sponds to ODM G’s distinction between an ODL specification of a schema and the C + + header and

sources generated by the ODL preprocessor. Both specifications describe OODB schemas but the

former is on a logical level, while the la tte r is on an implementation level. A logical schema and its

implem entation schema are shown in Figure 6 .2 .

An im plem entation schema contains application classes as well as system classes. In ODMG

databases, it is m andatory that all implementation classes be subclasses of a root object class,

d-Object, from which application objects inherit m any system-provided functions for manipulating

database objects. Therefore, all database objects share system characteristics that are defined by

the root object class. These characteristics of the objects are not of interest in the AURORA-OH

framework. In contrast, logical schemas do not specify any system characteristics, or the object

root as the ultim ate superclass of all classes; it only describes the logical characteristics of object

classes due to their application semantics, such as the interfaces of object classes, the semantics of

each m ethod in these interfaces, and the sub-class relationship among object classes. AURORA-OH

describes objects on the logical level. As such, object classes may be shown without a superclass.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// Logical Schema of Class Professor //
class Professor (extent professors)

string name();
unsigned short grant_tenureO;

>;

// Implementation Schema of Class Professor //
class Professor: public d_0bject -C
public:

d_String nameO ;
d_UShort grant_tenure();

>;

d_Extent<Professor> professors; // maintained by DBMS

Figure 6.2: Logical and Im plem entation Schemas of Class Professor

However, when these classes axe implem ented in an ODMG database, they’ll be the subclass of the

object root.

AURORA-OH views a class as a 4-tuple C = <1, E, SUP, SUB>. C .I is a set of methods,

called the interface method set, which includes all methods applicable to objects in class C, defined

directly by C , o r inherited from superclasses of C . C .E is the extent of class C; it is the collection

of oids of all objects in class C. C .SU P is the set of immediate superclasses of C . and C .SU B is the

set of im m ediate subclasses of C. To define a class, all four aspects must be defined. In particular,

each m ethod in the interface method set m ust be described by a m ethod signature and a description

of the semantics, often given procedurally. Following the ODMG object model, methods in C .I

m ust have a unique name; overloading sim ilar to function overloading in C-F-t- is not considered.

Moreover, when a class AT is a subclass of class Y , Y .I C X .I , X .E C Y .E .

Generally, a property th a t is an a ttr ib u te or relationship can be viewed as a pair of methods: one

th a t gets the value of the property and one th a t sets the value of the property. In AURORA-OH,

the gets m ethod in this pair is of in terest and an attribute/relationship p roperty is viewed as a

O-parameter m ethod with the name of the property as method name, and the type of the property

as the retu rn type. In the rest of this chapter, only methods are discussed; all discussions apply to

a ttribu tes and relationships.

Virtual Classes and Imaginary Objects

Given an ODM G data source, all the classes th a t are already defined in this source are referred to as

base classes. A virtual class is a class w ith a derived interface m ethod set and a derived, virtual extent

th a t can be (partially) materialized a t query processing time. In AURORA-OH. virtual classes are

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specified by M EOs th a t regroup and restructure previously defined classes. These operators are the

subject of Sections 6.6.1 - 6.6.3. Once specified, a v irtua l class behaves exactly the same as a base

class; it can be queried by OQL and can be used to derive o ther virtual classes.

A base class has an extent th a t is a m aterialized collection of oids. V irtual classes always have

a virtual extent th a t is conceptually a collection of oids bu t the collection may not be physically

m aintained by AURORA mediators. Moreover, depending on how a virtual class is created, its

extent may contain real objects or imaginary objects [1]. Real objects are objects th a t already exist

in a d a ta source; they have a unique and im m utable oid th a t is m aintained by the source where they

reside. Im aginary objects exist only in the derived views, not in the da ta source. These objects are

m aintained by AURORA-OH to allow data values to be accessed like objects; they have unique and

im m utable oids, and they are materialized a t run-tim e to en terta in da ta access requirements.

6.5 .3 N av iga tion M ethods

Navigation method is a way of declaring virtual m ethods w ithout writing code. Given a class C, the

m ethods in C .I Eire referred to as the base methods of C . Assume th a t m ethod p defined on class

C returns an object of class C ', which defines m ethod p '. One can declare a new method on class

C, M new, by asking objects of class C to first perform p on themselves, get an object of C' as the

result, invoke m ethod p' on this object, Eind re tu rn the result of this last invocation to the client.

This m ethod can be declared as follows:

M new = T H IS .p .p '

M new is CEilled a navigation method. For instance, THIS.manager.phone is a navigation method

defined on class Employee.

Intuitively, a navigation method defined on a class provides objects in this class with a spec

ification for navigating through the database to locate o ther objects and da ta values of interest.

An object, o, cam reach an object or value, o', as the result of performing a m ethod it is capable

of performing. As such, navigation methods can be specified as path expressions wiiich serve as a

“m ap” for navigating. However, navigation m ethods in AURORA extend the usual concept of path

expression in two ways:

1. Objects can locate objects and vtdues of interests via the out-param eters of method invocations.

This type of navigation is illustrated in Exam ple 6.5.2.

2. Objects can locate objects and values of interest via directed relationships specified as ODMG

OQL queries or user-defined functions and m apping tables.

In the rest of this section, the concepts of directed relationships and navigation m ethods axe formally

defined.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D e f i n i t i o n 6 . 5 . 1 [Directed Relationships.] A directed relationship from object class Ci to object

class or ODMG literal type To is a m apping M : Ci —> set < T 2 >. D irected relationships exist in

two forms in AURORA-OH:

1. M = / , where / is a function f:C i -y set < T o > .

2. M = where R is a (virtual) collection of structs of type s tru c t(A i :C\ , .4-> :To). R a ^ a^

is a m apping such th a t R a i -*.4 2(oi) = (° 2 j < > 6 f?}.

A directed relationship is many-to-1 if VoL € C i, |M (oi)[< 1, otherwise it is many-to-manv. □

A directed relationship is a m apping th a t exists external to any object class, but is available to all

classes for constructing navigation methods. This concept is illustrated by the following example.

E x a m p le 6 .5 .1 Consider DS-j, shown in Table 6.2. An Orthopedics object does not “know” its

clinic, a directed relationship can be specified to provide this missing link:

Q = se le c t struc t (Doc:d, clinic:c)
f ro m orthopedics d, clinics c

w h e re d in c.SpecialistsInvolvedQ

Q defines a virtual collection of structs of type struct(Doc: Orthopedics, clinic: Clinic) that link

orthopedics w ith the clinics they axe involved with. Qooc-tciinic is a directed relationship from

Orthopedics to Clinic. If a doctor works a t only one clinic, then QDoc^ciinic is many-to-1, otherwise

it is many-to-many. □

A navigation m ethod is constructed recursively, as described in Definition 6.5.2 below. Each step

of recursion defines a move of navigating forward. There are four ways of moving forward:

1. By invoking a m ethod and returning the retu rn value of this invocation.

2. By invoking a m ethod and returning an out-param eter used in this invocation.

3. By locating a relevant object/value through a many-to-1 directed relationship.

4. By locating a relevant set of object/value through a m any-to-m any directed relationship.

The following definition defines the signature of a navigation m ethod thus constructed, and describes

the semantics of a navigation m ethod procedurally.

D e f i n i t i o n 6 . 5 . 2 [Navigation Method.] T H I S is a navigation method on class C with signature

T H I S : 0 —y C. Vo G C, o .T H IS Q = o. If X : e\:T i x ... x em:Tm ~y Treturn is a navigation method

on C, then the following are also navigation m ethods on C:

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. D = X .P , if Tretum is an object type and P : e[:T[x ... x e'n\T'n —> T0 is a base or navigation

m ethod defined on it. T he signature of D is:

X .P : e i :Ti x ... x em :Tm x out:Treturn x e[:T[x ... x e'n :T„ -»• T0

Vo € C, o .D (p i,...,p m,p m+i,P i,....,p J l) has the following semantics:

{Pm+i = o .T (p i,. . . ,P m); return pm+i.P (p[, ...,p'n);}

2. D = X.P[/c], if Tretum is an object type and P : e't :T[x ... x e'n:T^ -+ To is a base or navigation

m ethod defined on Tretum , 1 < k < n , ek = out or e'k = inout. The signature of D is

X .P [k] : e i:2 \ x ... x en:Tm x out:Treturn * e['-T[x ... x e'n :T"n x out:T0 —> T k

Vo S C, o.D(p!, ...,Pm ,Pm+uPri, ,PniPn+i) has tIie following sem antics:

{Pm+i = o.X(j?i, ...,pm); p'n+1 = p m+i.P (p ,l ,...,p 'm); re tu rn p't ; }

3. D = X .M where M is a many-to-1 directed relationship from Tretum to C lt the signature of

D is X .M : e i:T i x ... x en :Tm x out:Tretum -*■ Ci- Vo e C, o .D {pi,p m.p ,„ ^ L) has the

following semantics:

{Pm+ 1 = o .J (p h ...;pm); return e /em ent(M (pm^ !)) ; }

where e lem ent returns an element from a set value.

4. D = X .M where M is a m any-to-m any directed relationship from Tretum to C \. The signature

of D is X .M : e\:Ti x ... x en :Tm x out:Treturn -+ set < C \ > . Vo G C , o.D (pi, k)

has the following semantics:

{ jW i = o .X (p i, ...,p m); return M (p m+l); }

□

E x a m p le 6 .5 .2 This example illustrates navigation methods using source DSo shown in Table 6.2:

- THIS.FindPatient.GetConsultationR.ee is a navigation m ethod th a t returns a set of consulta

tion records of a patient. This m ethod has the following signature:

THIS.FindPatient.GetConsultationR.ee : imstring x out:Patient x

out:Doctor x outidate —»■ set < string >

- TH IS.FindPatient.GetConsultationRecfl] is a navigation method th a t returns the previous

doctor of a given patient. This m ethod has the following signature:

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THIS.FindPatient.GetConsultationRecfl] : inistring x cm£:Patient x cm£:Doctor x

out'.date x out: set < string >-¥ Doctor

Now consider source D S z, shown in Table 6.2, and recall the directed relationship Qooc-^cHnic

defined in Example 6.5.1. Assume th a t QDoc-*ciinic is many-to-1. THIS.QDoc^clinic is a navigation

m ethod on class Orthopedics w ith signature

THIS.QDoc^ciinic ■ 0 -> Clinic

This m ethod returns the clinic an orthopedics is attached to. □

6 .6 M ed iation E nab lin g O p erators for H o m o g en iza tio n

This section describes the m ediation enabling operators provided in AURORA-OH for homogeniza

tion. These MEOs are used to derive v irtual classes to remove sem antic and structural differences

between source classes and the global classes. These MEOs perform three types of transform ations:

regrouping, object generation, and m ethod derivation.

6.6 .1 R egrouping M EOs

Generalization, specialization, and behavioral generalization axe three object-preserving MEOs.

These M EOs create virtual classes whose populations consist of objects from existing base or virtual

classes. Interface methods of the virtual classes created by these operators include some or all of

the m ethods previously defined on the operand classes. These MEOs axe sim ilar in semantics to the

view operators with the same name as defined in [1], In this section, these operators are redefined

in AURORA terms.

D e f i n i t i o n 6 .6 .1 [Generalization.] The generalization of object class C n

C = G e n (C i ,..., Cn)

is defined as follows:

1. C .I = G i . / n . . .n Cn./.

2. C .E = C i .E U ... U C n.E.

3. C .S U P = D , where D is the m ost specific common superclass of C i , ..., C n.

4 . C .S U B = {C L,. . . ,C n}.

□

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similar to [1], the m ost specific common superclass of a given set of classes C \ Cn is a class D

such that:

1. Class D is an ancestor class of C\, ...,C „.

2. There exists no D ', a descendent class of D , such th a t D ' is an ancestor class of C \ , Cn.

D e f i n i t i o n 6 .6 .2 [Specialization.] A specialization of object class C based on query Q, which

returns a set of objects of class C ,

C ' = Spe(C , Q)

is defined as follows:

1. C '.I = C.I.

2. C . E = {o | o € C.E,p(o) = true}.

3. C .SU P = C. C '.SU B = 0.

□

D e f i n i t i o n 6 . 6 . 3 [Behavioral Generalization.] Let L = {C i, ...,C n} be a set of object classes.

Let P = { p i,- ..,p m} be a set of method signatures. V i,j, 1 < i , j < n. P C C ,./ . P C C'j.T.

C i.E n C j.E = 0, the behavioral generalization of classes L by P

C = BGen{L, P)

is defined as follows:

1. C.I = P.

2. C .E = {o | 1 < i < n, o 6 Ci-E, P C Ci.I}.

3. C .SU P = 0. C .SU B = { C \C ' e L ,P C C . I) .

□

6.6 .2 T h e M EO for O bject G eneration: OBJGEN

Sometimes objects m ust be merged or split to form new objects during homogenization. To do this,

an ODMG OQL query is first used to generate a set of values, called data containers, and then each

of these containers is translated into an object of a virtual class. For example, to derive an object

class Family from object class Person, a set of da ta containers, family, is first created:

fam ily = se lec t struct(W ife: w, Husband: h)
fro m persons w

w h e re w.sexQ = “F ” a n d w.husband() = h

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each element in fam ily is a s tructu re th a t holds all the “raw m aterial” needed for generating Family

objects. The MEO of O B J G E N will do the rest of the work of generating class Family from family.

Objects generated by O B J G E N are imaginary objects. Like o ther objects, they must have oids

and m ust support a well-defined set of methods. O B J G E N m ust assign oids to the imaginary

objects it generates and also define the methods supported by them . Oid generation for imaginary

objects is a rather controversial issue because such oids can only be assigned based on values, but

an oid is by definition not value-based. AURORA’S solution is described below.

The goal of O B J G E N is to assign unique and immutable oids to da ta containers and turn them

into objects. Uniqueness in this context can only be based on the assum ption th a t there already

exists a way of distinguishing one d a ta container from another. This means that for a set of data

containers, S, there exists an identifier function, f , an invertible function th a t maps a given data

container vc to a value f { v c) th a t uniquely identifies vc from S . T ha t is, there exists no v'c 6 5,

v'c vc, such that f{v'c) = f (v c). f { v c) is referred to as the core value of vc. For example, the

identifier function of fam ily could be one th a t maps each element in fam ily , < w, h > to a value

< *1 , 1 2 > where i i = w .P ID Q , and io = h .P ID Q . Identifier functions must be provided by a

m ediator author; it is a way for the m ediator author to describe the identification semantics of the

da ta containers tha t have been created.

O B J G E N maintains a one-to-one mapping between the core values of da ta containers and the

oids assigned to the objects representing these data containers. Im m utability of oids in this context

requires th a t “an oid always represent the same data container” . Since d a ta containers are identified

by their core values, a da ta container remains the same as long as its core value is not changed.

By maintaining a one-to-one m apping between assigned oids and core values, O B J G E N supports

im m utable oids. Change of core values gives rise to new imaginary objects and is equivalent to

deleting an old imaginary object and adding a new one, with a new oid.

Implementation techniques may vary in the way these functions and mappings are generated and

m aintained. Conceptually, for each virtual class C derived by O B J G E N . an invertible function.

O ID c , as defined below, is m aintained.

D e f i n i t i o n 6.6 .4 [Function O ID c-] Let C be a virtual class created from a set S of data containers

of type T , and let / be an identifier function of S , f : T -¥ T ' , where T ' is the type of the core

values of the data containers in S . T he OID function of class C, O ID c , is an invertible function

w ith signature O ID c '■ T ' C such th a t, for any value v of type T ' , O ID c{v) returns the oid

assigned to the imaginary object generated from the value in S th a t is uniquely identified by v. □

D e f i n i t i o n 6.6.5 [MEO O B JG E N .] Let Q be an OQL query of type T — s tr u c t(A i:T i,..., A n :Tn)

and let / be an identifier function on the result of Q, f : T —> T ' , where T ' is the type of the core

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of the da ta containers in Q. Then

C = O B J G E N { Q ,f)

creates a virtual class C as follows:

1. C .E = {O ID c {Iv) \ 3 v e Q , I v = f (v) } ,

2. C .I = { P I D ,A i , . . . ,A n } . M ethod .4.,-(l < i < n) has signature .4,- : 0 —> T,-. M ethod P ID

has signature P ID : 0 —¥ T ' . Vo € C .E , o .P ID Q = O ID q 1 (o), o..4f() = / - 1 (OJZ?^l (o))[.4,].

1 < i < 7i,

3. C .SU P = 0. C .S U B = 0.

□

E x a m p le 6.6.1 Consider the set of da ta containers family specified earlier in this section. Let

/ be a function th a t maps a given value < Wife:w, Husband:h> to a value < WifeID:w.PIN(),

HusbandID:h.PIN()>. The following operation creates an im aginary class, Family.

F a m ily = O B J G E N (fa m i ly , f)

The extent of F a m ily includes one object for each element of fa m ily . F a m ily objects defines

3 methods: P ID Q , W ife {) an d H usbandQ . Assume that function OIDFamiiy (v) is a program

th a t creates oids by concatenating the name “Family” with each element in v. Then a struct

< W ife : w, H usband : h >€E fa m i ly where w .P IN Q = “001” and h .P I N () = “002” has oid

“Family-001-002” , and:

Family-001-002.PID() = < “001”, “002” >;
Family-001-002. WifeQ = w;
Family-001-002. HusbandQ = h;

□

6.6.3 M EOs for R en a m in g and D eriv ing M ethod s

AURORA-OH supports derivation of a virtual m ethod, IWj, as a “w rapper” m ethod of an existing

m ethod, Mo, base or navigation. Once derived, M i works as follows:

1. Derive each in-param eter of Mo from the in-param eters of M i.

2. Invoke Mo with the above derived in-param eters.

3. Derive each out-param eter and return value of M i from those returned from step 2, and return

them.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is the responsibility of the m ediator au tho r to specify the details of the derivations in steps 1

and 3, and to provide such specifications to the MEO of deriveO P, which facilitates the derivation

of virtual m ethods. By doing so, deriveO P provides the m ediator au thor with a framework for

performing sophisticated param eter transla tion . AURORA-OH allows a m ediator au thor to express

these translations w ith three constructs:

1. Parameter derivation expressions, PD Es. A PD E is a function th a t derives a value from a

given set of param eters using constants, user-defined conversion functions, as well as existing

m ethods. For instance, a PD E th a t applies a user-defined function / to the 1st param eter can

be expressed as f (P \) . PDEs are defined in Definition 6.6.7.

2. Inward Parameter Translation Map, IPTM . An IPTM is a set of PDEs, one for each in

param eter of Mo; these PDEs involve only the in-param eters of M t . Intuitively, these PDEs

are used to derive all the in-param eters of iV/0 from the in-param eters of M -L.

3. Outward Parameter Translation Map, O PTM . An O PTM is a set of PDEs, one for each out-

param eter of M i and one for the re tu rn value of M i. Each of these PDEs can involve only the

out-param eters and retu rn value of M q. Intuitively, these PD Es are used to derive the values

of out-param eters and the return value of Mo.

If a class already has a m ethod with the same name as a target v irtua l m ethod b u t is semantically

different from the latter, it must be renam ed.

D e f i n i t i o n 6 .6 .6 [MEO R enam e .] Let C be an object class and let A be a base or navigation

method of C th a t is not inherited from a superclass of C . The operator Renam efC , N, N 1), wrhere

N 1 is a nam e th a t is not used by any m ethod defined on C or any of C ’s descendent classes, renames

the m ethod N to iVl in C and all its descendent classes. □

D e f i n i t i o n 6 . 6 . 7 [Param eter Derivation Expression (PDE).] Let N : e t :T) x ... x en :Tn —» To

be a m ethod defined on class C. Let o be an object of C. Let V = < v o ,—.,v n > be a value

of type < T o ,...,T n > . A parameter derivation expression(PDE) on N , G, its type, type(G), its

source param eter set, S P se t(G), and its evaluation based on V and o, E V A L (G ,V ,o) , are defined

recursively as follows:

1. G = T H I S , is a PD E. type(G) = C, S P se t(G) = 0, EVA LfG , V,o) = o.

2. G = c, where c is a constant, is a PD E. type(G) = type(c), S P se t(G) = 0, EV A L(G ,V ,o) = c.

3. G = Pi, 0 < i < n, is a PDE. type(G) = Tt-, SPset(G) = {P i} , EVAL(G , V,o) = v{.

4. If G' is a PD E on N of object type T , p : e[:T[x ... x e ^ iT ^ T£ is a m ethod defined on

T , and Gi is a PD E on N of type T '■ (1 < i < m), then G = G '.p(G i, ...,G m) is a PD E on

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N . type(G) = T^. SPset(G) = SP set{G ') U S P se t(G x) U ... U SP se t{G m), E V A L (G , V, o) =

E V A L (G V , o).p (E V A L {G u V ,o) ,.. . ,E V A L (G n ,V ,o)).

5. If G' is a PD E on N of object type T , p : e\:T[x ... x e'm:T'm — Tq is a m ethod defined on

T , = out, and Gi is a PD E on N of type T[(1 < i < m), then G = G'.p{G\, . . .,G m)[fc] is a

PD E on N . type(G) = Tk . SPset(G) = S P se t(G ‘) U SP se t{G i) U ... U SP set(G m). EVALfG .
V,o) has the following semantics:

E V A L (G ', V,o).p(EVAL(Gi, V ,o),...EVAL(G k- u V, o), t,E V A L (G k+u V,o) , ..., E V A L (G n, V., o));
EVAL(G, V,o) = t;

6. Let / : iniT[x...x in:T^. —>■ Tq be a function and let G i , ..., Gx be PD Es on N of types T[,

respectively. G = / (G i ,..., Gx) is a PD E on N . type(G) = Tq, SPset(G) = S P se t(G i) U ... U

S P se t{G x), EVAL(G, V, o) = f(E V .A L (G 1 ,V ,o) , . . . ,E V A L (G XlV ,o)).

□

Param eter mappings are specified as translation maps of two kinds: inward and outward.

D efin itio n 6 .6 .8 [Inward/Outward Param eter Translation Maps (EPTM and O PTM)] Let

A' : ei:Ti x ... x en:Tn —¥ Tq

and

D : e[:T[x ... x e'm:T ^ -a T '

be two methods where N involves no inout param eters. The inward parameter translation map

(IPTM) from N to D is a list of PDEs on N , L in = {G,-n i ,,G tn i}, where Vu, 1 < v < x , 1 <

in v < m , (e '7li, . . . ,e 'iUi} are all the in /inout exports in D , type(Gin„) = SPset(G in„) contains

only in-param eters in N . The outward parameter translation map (OPTM) from D to N is a

list of PD Es on D , L out = {GOut0i —; G outy}, where outo = 0, Vu>, 1 < w < y, 1 < outw < n,

{eoutl, : . , e 0uty} are all the out exports in N , type(G a titu,) — Tout., SPset(G0utm) contains only

return value and the out/inout parameters in D . □

E x a m p le 6 .6 .2 Assume that an Employee class defines method FindSalary as follows:

integer FindSalary(in string Year,
out integer salary, out integer bonus, out Employee manager)

signature: FindSalary: in:string x ouUinteger x out:integer x out:Employee —> integer

Mow consider (virtual) method Salary2:

integer Salary2 (in date Date, out string managerPhone)
signature: Salary2: in'.integer x out:string —> integer

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a t returns the s a la ry of an Employee object. Also assume th a t this returned value is the sum

of the salary and Ebonus an employee receives in a given year, in US dollars, while both salary and

bonus returned as out-param eters in FindSalary are in Canadian dollars. The IPTM from S a la ry2

to F in d S a la ry is cthe following:

L in = {Gin i}, G in i= da teT o Y ea r{P J

where da teT oY ea ir is a function th a t takes an in-param eter of type d a te and returns the year in

string form. Intuiitively, this map specifies th a t there is only one in-param eter in F in d S a la ry , the

first param eter. TThis param eter to FindSalary, in string Year, is to be derived by applying the

function dateToYeear to the first param eter of Salary2. The OPTM from FindSalary to Salary2 is

the following:

L o u t — {C"ou£o , G o u tz }j
Gouto = CN D toiiSD (SalaryAddBonus(P2 , P3));
G out2 = P4.ph.0neN um ber § ;

The above map specifies th a t there are two out-param eters in Sa lary 2 , param eter 0 (the return

value), and param -eter 2(out string managerPhone). The two PDEs, Gout0 and G out2, specify how

these two p a ra m ete rs are to be derived from the out-param eters of F indSalary. Gout0 specifies that

the retu rn value off Salary2 is to be derived by applying function SalaryA ddB onus to param eters

2 and 3 of F in d S a la r y . Gout2 specifies th a t the 2nd param eter of Sa lary2, m anagerP hone, is to

be derived by ta k in g the 4th param eter of F in d S a la ry and invoking method phoneNumber on it. □

D e f in i t i o n 6 .6 .9 [MEO deriveO P .] Let C be an object class, N : ei:Ti x ... x en:Tn —r T q be a

m ethod involving n o inout param eters, and C or any of C"s descendent classes do not have a m ethod

named N . Let D toe a base or navigation m ethod of C w ith signature D : e[:T[x ... x e '^ .T ^ —»• Tq.

Let Lin = { G in j,— , Gin*} be an IPTM from N to D and L out = {Gout0, — Gout ,} be an O PTM

from D to N . The- following operation

deriveO P{C , N , D , L in ,L ollt)

adds an interface m eth o d N to class C and all its subclasses. For any object o 6 C .E , the semantics

of o .N (p i , ..., Pn) i s defined procedurally as follows:

1. Vj, 1 < j < m , let aj = E V A L {G in_, < p i ,,Pn >> o) if e'- = in or e'- = inou t, otherwise let

aj = null.

2. Let a0 = o.D (a i , . . . ,a m).

3. Vfc, 0 < k < r», if k = 0 or e*.- = out, let 6* = E V A L {G outk, < a0,..., am >, o). R eturn bo-

a

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O perator deriveO P derives a virtual operation N from a base or navigation m ethod D using user-

provided param eter translation maps. The m ethod N thus derived is a "wrapper" m ethod of D . N

works as follows: it first derives all the in-param eters of D using the in-parameters of N according

to the IPTM , Lin, provided as the 4th param eter to deriveO P . It then invokes D using the in

param eters ju s t derived. Finally, it derives its own out-param eters and return values using the

O PTM , L out, provided as the 5 th param eter of deriveO P . This operator is illustrated by the

following example.

E x a m p le 6 .6 .3 This example continues Exam ple 6.6.2 to show how Salary2 can be derived from

F in d S a la ry . To add a virtual m ethod Salary2 on class Employee-.

deriveO P {Employee, T H I S .F in d S alary, L in, L out)

For any employee e, the semantics of e.Sa lary2(aD ate, m anager P H) is the following:

1. Let <2 i = dateToYear{aD ate);

2. Let ao = e.FindSalary(ai, salary, bonus, manager);

3. bo = CNDtoUSD(SalaryAddBonus(salary, bonus)); managerPH = manager.phoneNumber();

return bo.

a

6 .7 H om ogen iza tion w ith A U R O R A -O H

Homogenization is performed by m ediator au thors following a homogenization methodology. Each

step prescribed by the methodology requires a m ediator au thor to derive virtual classes th a t are

closer to the target homogenizing classes in s truc tu re and semantics. These virtual classes are

derived using the operators described in Section 6.6. This section first describes the m ediation

m ethodology of AURORA and then dem onstrates how it can be used to homogenize the sources

shown in Table 6.2 to generate respective homogenizing views in Table 6.1.

6.7 .1 A H om ogen ization M eth od o logy

A homogenizing class, C, is derived in 2 steps: o b je c t p r o to ty p in g followed by m e th o d m a p p in g .

This process is illustrated in Figure 6.1. O bject prototyping creates a prototype object class C ',

th a t has the ability to perform each of the m ethods defined on C. This ability is determined by

the m ediator au thor. That is, it is the m ediator a u th o r’s responsibility to design and derive C '.

However, there m ust be a one-to-one m apping between objects in C ' and those in C, in th a t the

corresponding objects model the same application entity, with possibly different representations.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The goal of m ethod m apping is for the mediator au thor to describe exactly how each m ethod of C

can be perform ed by objects of C '. To do so, the m ediator au tho r m ust derive each m ethod of C

as a virtual method of class C '. This step does not generate new classes or change the position of

the p ro to type (virtual) class in the inheritance hierarchy; it defines a new, virtual m ethod that is

equivalent to a target m ethod both syntactically and semantically. Once all the virtual methods are

defined, one can simply renam e C ' to C, that is, C ' becomes C .

T he object-oriented homogenization methodology m andates the sequence in which transform a

tions are performed. The transform ations themselves are performed using AURORA-OH’s Mediation

Enabling O perators (MEOs), described in Section 6.6.

T he object-oriented homogenization methodology is less e laborate than its relational counterpart;

it is not based on a detailed classification of mismatches and how to remove them systematically.

This is because the object-oriented da ta model is flexible and rich in semantics. An enumeration

of all possible mismatches would be large. It will be difficult to design an approach to identify

and resolve these mismatches systematically. In AURORA, it is expected that in an object-oriented

context, m ost, if not all, mismatches encountered in a da ta integration process are up to the mediator

authors to define, identify and resolve. AURORA provides a set of operators that are commonly

recognized as useful for deriving object views - such as generalization, specialization and object

generation - and provides a framework for deriving virtual m ethods using user-provided functions.

6.7 .2 A W alk-T hrough o f th e H om ogen ization E xam ple

This section gives a walk-through of the homogenization of D S i , DSo, and Z?S3 as shown in Table

6.2 against the globed schema, as shown in Table 6.1. The homogenizing views of the three sources

are also shown in Table 6.1. As shown below, this example does not require step 1 of the mediation

m ethodology to be performed. Generally, the object prototyping step requires regrouping, restruc

turing of existing object classes, a n d /o r generation of object classes; it can be a giant step in many

cases, bu t AURORA’S m ediation methodology does not provide fine granularity guidelines in this

step. Various examples of the kind of transformations that could happen in this step are given in Sec

tion 6.3.6 and Section 6.6. The rest of this section contains a w alk-through of the method-mapping

step of the example shown in Tables 6.2 and 6.1.

At D S 1 , class MyDoctor is already a prototype of the targe t class MyDoctor. In the step of

m ethod m apping, specify the following:

deriveOP (MyDoctor, PID, ID, 0, {G0ut0 = Po})
deriveOP (MyDoctor, Clinic Address, THIS.clinic.Address, 0, {Gout0 = Po})
deriveOP (MyDoctor, Profile, bio, 0, {GOut0 — Po})

At D S 2 , classes F a m ily P h ysic ia n and Pediatrician are the prototypes of target classes with the

same names in the export view shown in Table 6.1. In the step of m ethod mapping, specify the

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following:

deriveOP (Pediatrician, YearsAdvancedTraining, YearsOfTraining, 0, {G out0 = Po})
deriveOP (Pediatrician, Specialization, null, 0, {GOU£0 = “P ed ia tric ian”})
deriveOP (Doctor, PatientHistory, THIS.FindPatient.GetConsultationRecord, {Gmi = P l },

{Gouto = Pqi Gout2 = P3, Gout 2 = P i})

Note th a t by specifying a virtual m ethod PatientHistory on class Doctor, the same method is

specified for both Pediatrician and FamilyPhysician. The signature of the navigation method

THIS.FindPatient.GetConsultationRecord is given in Example 6.5.2. Also note the specification

of m ethod Specialization, where the th ird param eter is null. In this case, deriveO P adds a virtual

m ethod th a t returns a constant value, “Pediatrician” .

At D S z, class Orthopedics is a pro to type of the class with the same nam e in the homogenizing

view of D Sz. In the step of m ethod m apping, specify the following:

deriveOP (Orthopedics, Years AdvancedTraining, Experience, 0, {Gout0 = Po})
deriveOP (Orthopedics, Specialization, null, 0, {Gouio = “Orthopedics”})
deriveOP (Orthopedics, PatientHistory, THIS.search[2].GetConsultationRecord, {G,ni = P i} ,

{Gouto = Po,G 0ut2 = P s,G outz = P3})

By Definition 6.5.2, the navigation m ethod THIS.search[2].GetConsultationRec on Orthopedics has

the following signature:

TH IS.search[2].G etC onsulta tionR ec : in istring x out:Patient x out:date x out:shortx
out:Doctor —¥ set < string >

It is easy to understand the last deriveO P formula above for specifying operation P atien tH isto ry

on Orthopedics.

6.8 A U R O R A -O I: T h e In tegration M ediator

The AURORA-OI m ediator supports a service view by manufacturing global objects using relevant

objects exported by participating sources.

6.8 .1 O id G eneration for In tegrated Objects

Global objects manufactured by an AURORA-OI mediator are imaginary objects since they only

exist in AURORA-OI, not in any d a ta sources. Similar to the approach described in Section 6.6.2,

AURORA-OI assigns unique and im m utable oids to the generated objects by m aintaining a one-to-

one m apping between the assigned oids and the PID values. This mapping is captured by function

G O ID .

F u n c tio n G O ID . For each global class G in the service view, AURORA-OI maintains an

invertible function G O ID c : T pID —>• G, where T p ro is the PID type of class C. For any PID

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of Cg, v, G O ID c iv) is the oid assigned to the imaginary object in C identified by PID value

v . This function is similar to the function O ID defined in Definition 6.6.4. This function is named

G O ID to emphasize th a t it is used for m ain ta in ing oids of global objects.

6.8 .2 Fragm ents and R eg istra tio n s

O bject classes exported by various sources, through respective AURORA-OH m ediators, are referred

to as the source classes. M ethods defined, on these classes are referred to as the source methods.

Source classes can be registered as fragm ents of global classes. Once registered, these classes are

known to AURORA-OI as registered fragm ents. Semantic intension of the source classes, and the

semantics of the source methods, m ust be m aintained by m ediator authors. It is the responsibility

of the m ediator authors working a t various AURORA-OH m ediators to guarantee th a t each source

class registered as a fragment of a global class indeed models the “sam e” entity of interest as the

global class, and that each source m ethod w ith the same name as a global m ethod “does the same

thing” as the global method. AU RO RA -O I imposes a few syntactical conditions on source classes

th a t are registered as fragments so th a t th ese classes can be interpreted correctly and autom atically

by AURORA-OI. The following definition describes the kind of d a ta exchange th a t is possible.

D e f i n i t i o n 6 .8 .1 [Portable and A pplicable Types.] A source data type Ts is portable to a global

d a ta type Tg if

1. B oth Ts and Tg axe pure literal types and Ts = Tg; or

2. Ts is a registered fragment of Tg or o f a subclass, directly or indirectly, of Tg; or

3. T s — set < Tj > , Tg = se t < Tg > , a n d T's is portable to T'g.

A global da ta type Tg is applicable to a source d a ta type Ts if

1. Both Ts and Ts are pine literal types and Ts = Tg; or

2. Ts is a registered fragment of Tg o r o f a superclass, directly or indirectly, of Tg; or

3. Ts = se t < T's >, Tg = se t < Tg' > , a n d Tg' is applicable to T's .

□

There are two directions th a t d a ta can be passed: from AURORA-OH to AURORA-OI and from

AURORA-OI to AURORA-OH; different ty p es of da ta can be passed in each direction so th a t the

d a ta passed into an mediator can be in te rp re ted properly. To distinguish the two directions in which

d a ta are passed, AURORA-OH m ediators Eire said to port d a ta to AURORA-OI m ediators and the

la tte r apply d a ta to the former. The concepts of portable types and applicable types then define

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the kind of d a ta passing that is possible in the tw o directions. AURORA-OH and AURORA-OI can

only exchange d a ta values using portable types and applicable types.

I f a source d a ta type Ts is portable to a global d a ta type Tg, then a value of type Ts can be passed

by AURORA-OH to AURORA-OI, and this value can be interpreted by AURORA-OI as a type Tg

value. According to the above definition, Ts and Tg m ust satisfy one of the following conditions: (1)

they are identical PLTs; or (2) the semantic intension of Ts is the same as th a t of Tg. in which case

Ts is a registered fragment of Tg; or it is a specialization of the semantic intension of Tg , in which

case T , is a registered fragment of a descendent class of Tg. Intuitively, Ts represents an entity" that

is by semantics a kind o fT g.

Similarly, if a global data type Tg is applicable to a source data type Ts, then a value of type Tg

can be passed by AURORA-OI to AURORA-OH and this value will be interpreted by the la tte r as

a value of type Ts . According to the above definition, Ts and Tg must satisfy one of the following

conditions: (1) they are identical PLTs; or (2) T he sem antic intension of Tg is the same as th a t of T ,,

in which case Ts is a registered fragment of Tg; o r it is a specialization of the semantic intension of

Ts , in which case Ts is a registered fragment of an ancestor class of Tg in the service view. Intuitively,

Tg represents an entity that is by' nature a kind o f Ts .

DEFINITION 6 .8 .2 [Delegatable m ethod.] A source m eth od w ith signature N : e i:T i x ... x en :Tn -»•

To is a delegatable method of a global m ethod N g : e \:T f x ... x eam:T^ —>■ Tq if:

1. M ethod N g has the same name as m ethod N and m = n.

2. To is portable to Tq . Vi, 1 < i < n, ex- = e f . Moreover, if e,- = in , then T f is applicable to T ,

if ej = out, then T is portable to T f .

□

A delegatable m ethod of a given global m ethod is a source method whose signature qualifies to

execute the global method; it is the m ediator au th o rs’ responsibility to ensure th a t the source

m ethod qualifies in semantics as well. In Table 6.1, PatientHistory in classes Pediatrician and

Orthopedics are bo th delegatable methods of the global m ethod PatientHistory of Doctor.

D e f i n i t i o n 6 .8 .3 [Valid Fragments.]. A source class Cf is a valid fragment of global class Cg if

1. Cf has a PED method th a t is identical in signature to that of Cg s; and

2. 3AT, a set of methods defined on Cg, such th a t V fg 6 S , 3 / defined on C / such th a t / is a

delegatable m ethod of f g.

□

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This definition says th a t a valid fragment of a global class must support the PID method of the

global class and should define delegatable methods for some of the methods defined in the global

class. In Table 6.1, source classes FamilyPhysician, Pediatrician and Orthopedics are valid fragments

of global classes Doctor and Specialist.

A source class C can be registered as a fragment of global class Cg only if C is a valid fragment

of Cg, but not all valid fragments are registered fragments: which source class to register with which

global class is determined by the m ediator authors a t sources. For instance, the mediator authors

may decide to register FamilyPhysician w ith Doctor, Pediatrician and Orthopedics with Specialist,

and so on. A registered fragment of Cg is said to be compatible w ith Cg and all its super-classes.

M ethods are registered implicitly. If C is a registered fragm ent of Cg, then a m ethod of C th a t has

the same name as a m ethod of Cg is a registered method. It is the m ediator au thors’ responsibility to

make sure th a t all registered methods are delegatable m ethods of the global methods they share the

same names with. All m ethods listed in the homogenizing views in Table 6.1 are registered methods.

6.8.3 P roxies

AURORA-OI

Global object

GOID(-1) GOID

Proxy

LOlD(-1)LOID

source
object^

AURORA-OH

Figure 6.3: Use of Proxy for Uniform Access

AURORA uses proxies, handles generated by various AURORA-OH mediators to enable uniform

access of source objects. Each proxy represents one source object but a source object may have any

num ber of proxies. Proxies exist to perform the following tasks:

1. To accept requests from a foreign client, pass this request to the source object it represents

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for execution, and re tu rn the results to the client.

2. To facilitate passing oids across system boundaries. M ethods on local objects often take oids

as in-param eters and return oids. Proxies m u st facilitate such exchange of oids in a meaningful

way.

Uniform access of source object using proxies is illu s tra ted in Figure 6.3. Proxies run at various

AURORA-OH m ediators and they accept PID values in place of oids as in-parameters for method

invocation. A proxy executes a method by transla ting the PID values passed as in-parameters into

local oids using a system function L O ID , and uses the obtained oids as in-parameters to invoke

the corresponding m ethod on the source object it ^represents. Upon returning of this invocation,

the proxy translates all returned oids, either as re tu rn value or as out param eters, into appropriate

PID values using the inverse of function L O ID , a n d returns the obtained PID values to the client.

AURORA-OI accesses source objects through p ro v es . Global objects a t AURORA-OI invoke a

source m ethod by first translating any in-param eters th a t are oids into PID values, using the inverse

of function G O ID . Upon returning of a request to a proxy, the globed object translates the returned

PID values into oids, using function G O ID . Function G O ID was defined in Section 6.8.1. Function

L O ID is defined below.

F u n c tio n L O ID c • For each class C registered., the AURORA-OH mediator where this class

resides must m aintain a function L O ID c '■ T p lD where T p[D is the PHD type of C, th a t maps

a given PID value of C to the C object identified by v. T h a t is, given PID value of class C, p,

L O ID cip) = o if and only if o.P ID Q = v.

Proxies of different source objects are able to handle different requests; this is defined by proxy

types. The semantics of methods on proxies is defined in Definition 6.8.5.

D e f i n i t i o n 6 .8 .4 [Proxy Type.] Let C be a registered fragment and F be all the registered methods

of C. The proxy type of C, P X Y { C) , is defined a s follows: Vp £ F w ith signature N : ei'.Ti x

... x en:Tn —t To, P X Y (C) defines a m ethod p' w itli signature N : e\:T[x ... x en:T'n ->■ Tq where

Vi, 0 < i < n, if T; is a pure literal type, T[= T . J f T; is an object type C' or set < C' > , then

T- = Tpid or T[= set < TPid > respectively, where T"v id is the PID type of object class C '. PXY(C)

does not define any other methods. □

P X Y (C) defines a proxy method for each registere-d m ethod of C. The signatures of the proxy

m ethods axe modified from the original signature to accept an d /o r retu rn PEDs in place of oids.

D e f in i t io n 6 .8 .5 [Proxies.] Let o be an object of a. registered fragment C and let F = { / i , ..., /„}

be all the registered m ethods of C where has signatu re f i : e \:T l x ... x e^.-.T^ —>• Tq. A proxy of

o, pxy0, is an object of type P X Y (C) . The sem antics of p x y o.fi(p 0, ...,) is defined procedurally

as follows:

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. o b je c t im p o r t . For all j , 1 < j < k{, where e'- = in , if T ‘ is an object type C ', let p'- =

L O I D c iP j); if Tj = set < C ' >, where C ' is an object type, let p'- = { L O ID c (v) | Vu G p , }.

If T j is not an object type, let p'- = p j.

2. m e th o d d e le g a tio n . R ' = o.fi(p'0, ...,p 'n).

3. o b je c t e x p o r t . For all j , I < j < n , where ej = o u t, if T j is an object type C ', let

Pj = p 'j.P ID Q , if Tj = set < C ’ > where C 1 is an object type, let p j = [o.P ID Q | Vo G p ' }.

If Tq is am object type C 1, let R = R '.P ID Q . If T0* = se t < C r > where C ' is an object type,

let R = {o.P ID Q | Vo G i?'}-

4. r e t u r n to c lien t. R eturn R.

□

The code th a t implements proxy types with interfaces as described in Definition 6.8.4, and semantics

as described in Definition 6.8.5, must be generated by AURORA-OH m ediators for all registered

classes.

E x a m p le 6 .8 .1 Consider the homogenizing view of DS-± as shown in Table 6.1. The proxy type of

Pediatrician should have the following interface:

c lass PXY(Pediatrician)
{

s tr in g PID ();
s tr in g TelNo();
s tr in g Profile();
s tr in g Specialization();
sh o rt Years AdvancedTraining();
setof(string) Patien tH isto ry(in s t r in g PatientID ,

o u t s t r in g PreviousDoc, o u t d a te FirstAppt);
};

The only modification of interface from th a t of Pediatrician is in m ethod PatientHistory, the proxy

type replaces the type of the second param eter w ith s tr in g , the PID type of Doctor. □

6 .8 .4 P r o x y M a t c h J o i n : A U R O R A ’S I n t e g r a t i o n O p e r a t o r

The goal of d a ta integration in AURORA-OI is to use the proxies of the registered fragments of a

global class Cg to construct Cg objects. These constructed objects, called integrated objects, are really

distributed objects th a t delegate their m ethods for execution by appropriate proxies running at various

AURORA-OH mediators. To the applications running at AURORA-OI, integrated objects appear

to be usual objects that can be queried using OQL, and accessed using the programming language

of choice. This section defines the integration operator used by AURORA-OI for manufacturing

integrated objects. First, a few concepts m ust be presented.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEFINITION 6 . 8 . 6 [Intended Global Type.] Given a proxy p representing an object of source type

C registered as a fragm ent of global class Cg, the intended global type of p, IG T (p) = Cg. □

Intended global type is the s e m a n t ic in te n s io n of a proxy. This inform ation is used to select

proxies to delegate m ethods to.

D e f i n i t i o n 6 . 8 . 7 [Proxy M ethod Stub.] Let M : e\:T_ x ... x en:Tn —t T0 be a m ethod of global

class Cg. Let p be a proxy of type P X Y (C) where C is a registered fragm ent of Cg. For a given

object og £ Cg, og.M is a proxy method stub of p .M if the semantics of R = og.AI(pq. ...,pn). is

equivalent to th a t described procedurally as follows:

1. o b je c t e x p o r t . V j, 1 < j < n , where ej = in , if Tj is an object type, let p'- = p j.P ID Q ; if

Tj = se to f(C ') , where C ' is an object type, let p'- = {o .P ID Q | Vo G p j} . Otherwise, p'- = pj.

2. m e th o d d e le g a tio n to p ro x y . R ' = p.M(p'0, ...,p'n).

3. o b je c t im p o r t . Vj, 1 < j < n , where e_,- = out, if Tj is an object type C ', let pj =

G O ID c iP j); if Tj = se to f(C ') , where C ' is an object type, let p j = { G O ID c (k) | 'ik e p '}.

If I?' is an object type C ' , let R = G O ID c (R ') ', if R ' is of type s e to f(C ') , where C 1 is an

object type, let R = {G O I D c { k) | Vfe 6 R 1}.

4. R e tu r n r e s u l t . R eturn R .

a

Relating the above definition to Definition 6.8.5, one can see th a t proxy m ethod stubs cooperate

with proxies to facilitate exchange of oids between AURORA-OH and AURORA-OI mediators.

D e f i n i t i o n 6 .8 .8 [Proxy M atch Join.] Let Cg be a global class. Let F i , ..., F m be all the registered

fragments of Cg or its descendent classes. Let F m+1,..., Fm+n be all fragm ents registered with

ancestor classes of Cg. Let X j(l < i < m -t- n) be a collection of proxies such that Vo 6 F ..3p € A',,

p is a proxy of o. The extent o f Cg, Cg.E , is computed by operator Proxy Match Join (PM J)

C g.E = P M J { C g,m ,X j , . . . ,X m+a)

as defined below:

1. Cg.E = {o | 3p 6 X i U ... U X m ,o = G O ID c ,(p .P ID Q)} . Vp 6 U ... U X m+n, p is a

contributing proxy of object o 6 Cg.E if p .P ID Q = G O ID ^ (o). C P roxy(o) is used to denote

all contributing proxies of object o.

2. Vo 6 Cg.E and m ethod M of Cg, the semantics of o.M should be equivalent to that of a

proxy m ethod stub of p .M if 3p e C P ro x y (o), such th a t p supports M and there exists no

p ' 6 C P roxy(o), p ' supports M but IG T (p ') is a descendent of IG T {p). If no such p exists,

o.M is a null m ethod.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

□

The P M J operator constructs an object for each PID value appearing in fragments registered with

Cg or its descendents; these PEDs identify all objects in Cg .E . Contributing proxies may represent

objects from fragments registered with Cg’s ancestor classes as well as those registered with Cg and

its descendent classes. W hen multiple contributing proxies are able to perform a given method,

P M J selects the proxy with the most specific semantic intension; this is similar to the concept

of late binding in object-oriented programming. AURORA-OI is responsible for generating an

im plem entation for each m ethod M defined on Cg] such generated implementation must ensure that

for any object o € Cg.E , o .M has this semantics specified in 2 of the above definition. Operator

P M J is illustrated by the following example.

E x a m p le 6 .8 .2 Consider class Specialist shown in Table 6.1 and assume the following:

Y\ = {PlljP l2,P l3}, ^21 = {p21,P22}, Y22 = {P23}i Y3 = {p31,P32}

where Yi, Y>i, I 22 and I 3 are collections of proxies of objects in fragments MyDoctor in D Si,

Pediatrician in DSo, FamilyPhysician in DSo, and Orthopedics in D Sz, respectively, Pij is a proxy

of object O ij as shown in Table 6.1. Using the registration inform ation in Table 6.1 and Definition

6 .8 .8 :

specialists = P M J(S p ec ia lis t, 2, Y ol , Y3 , Yi, Yoi)

For illustration purpose, assume GO ID S p e c i a l i s t (k) = OI-Doctor-k, where Doctor is the most general

supertype of Specia list. For instance, the object in “specialists” with key 001 has oid OI-Doctor-OOl.

By Definition 6 .8 .8 , one gets:

specialists = {OI-Doctor-OOl, OI-Doctor-004, OI-Doctor-002, OI-Doctor-007, },
CProxy(OI-Doctor-OOl) = { p n ,P2 1 },
CProxy(OI-Doctor-004) = {P2 2 },
CProxy(OI-Doctor-002) = {p3 i , p 12 },
CProxy (OI-Doctor-007) = {P3 2 },

Behaviors of each object are derived using Definition 6 .8 .8 . The details of OI-Doctor-OOl “Smith”

are shown here. Two proxies, p n and P2 1 , contribute to Sm ith. The behaviors of Smith are:

OI-Doctor-001.PID() = “001”;
OI-Doctor-001.TelNo() = p2i-Te!No();
OI-Doctor-001.ClimcAddress() = pu.Clinic AddressQ;
OI-Doctor-OOl.Profile = p2i.Profile();

Both p u and P21 can perform method Profile, but P21 is chosen because it provides the profile of

Sm ith as a Specialist - a more specific description than the profile of Smith as a generic Doctor p\ 1 pro

vides. A related case is OI-Doctor-002.Profile(). 0 0 2 “Jones” is am orthopedics doctor but his profile

as am orthopedics doctor is not available. However, Jones as a general doctor has a Profile and object

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OI-Doctor-002 will return this profile. T his illustrates how objects registered w ith ancestor classes

axe used to construct integrated objects. T he semantics of OI-Doctor-OOl .PatientH istory (argl, arg2,

argS) should b e the following according to Definition 6.8.7:

return Value = pai-PatientH istoryfargl, tempString, arg3);
arg2 = GO ID Doctor (tempString);
R eturn return Value;

□

6.9 S u m m ary

This chapter described the object-oriented homogenization and integration fram ework of AURORA.

The homogenization framework overlaps with object-oriented view frameworks, w ithout operators

for hiding properties from classes or hiding classes from inheritance hierarchies, and with an elaborate

m ethod m apping mechanism provided by operato r deriveOP and the concept of navigation methods.

The in tegration framework supports a sim ple object-m atching assum ption and m anufactures global

objects th a t perform their m ethods by dispatching them to appropriate source objects.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Implementation of AURORA

Prototypes of AURORA’S relational mediators (AURORA-RH and AURORA-RI) described in this

dissertation have been implemented. The implementation is on Windows N T platform using the

following tools: Microsoft V isual C + + 5.0 with Microsoft Foundation Classes (MFC), DB2/NT

version 2.1.2, OLE-DB, and CO M /D COM .

7.1 C h o o sin g a D is tr ib u te d C om p u tin g F ram ew ork

The AURORA approach calls for three types of software components: the w rappers, the homoge

nization m ediators, and the integration m ediators. These components should cooperate to perform

a m ediation task. Im plem entation of AURORA is driven by two principles:

1. D is tr ib u t io n . To allow maximum flexibility, components should be allowed to run anytime,

anywhere. AURORA com ponents m ust be able to communicate w ith one another in the same

way w hether they reside on the same machine or not, and they should be able to activate

another component when they need its services.

2. D y n a m ic c o m p o s itio n . Since AURORA is built to facilitate large-scale d a ta integration,

the collection of AURORA components th a t makes up a d a ta m ediation system should ex

p an d / contract gracefully. Components should be allowed to join and leave the system freely;

they should also be allowed to evolve w ithout impacting on o ther com ponents and the function

of the system.

To support distribution, a d istribu ted com puting infrastructure is needed. To support dynamic

composition, an agent is needed to locate components by name or identity, and to facilitate access

to the components through pre-defined interfaces, so tha t the changes in a com ponent do not impact

on the use of it as long as the interfaces are maintained.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An obvious choice for an infrastructure th a t satisfies all the above requirements is a distributed

object com puting (DOC) platform such as CORBA [70, 90] or CO M /D CO M [61, 78]. These p lat

forms allow transparent identification, activation, and accessing of objects locally or remotely; a new

object supporting a known interface can jo in the m ediation system simply by informing potential

clients of its identity. These platforms also support access to objects through interfaces, which are

contracts between objects and their clients; objects can evolve, but their clients will not have to

modify their code or recompile; they are protected from such changes as long as the interfaces of

the objects are maintained.

The choice of a DOC platform for AURORA im plem entation is not based on a detailed com

parison of CORBA and COM. At a general level, it is clear th a t both CORBA and COM /DCOM

would satisfy the requirements of AURORA im plem entation. Hence the choice was made based on

availability of supporting technologies. C O M /D CO M is chosen because in the COM/DCOM world,

the advance in OLE-DB technology (Section 7.2.3) provides a strong commercial basis for wrappers.

OLE-DB providers are COM components th a t provide uniform access to a variety of da ta sources.

As shown in Section 7.3.2, with OLE-DB, the current im plem entation of AURORA does not need

to build custom wrappers; commercial OLE-DB providers are available for a wide variety of da ta

sources, and these providers can be composed to form w rappers. There is nothing similar to OLE-

DB in the CORBA world. If CORBA is used as the base platform , custom wrappers for sources to

be integrated m ust be built. Since wrapper technology is not a focus of AURORA research, building

home-made wrappers would consume a significant am ount of tim e without serving the purpose of

dem onstrating AURORA technology.

7.2 A n overview o f C O M /D C O M and O L E -D B T echnology

7.2.1 W h at is C O M /D C O M ?

The Component Object Model, COM, is a specification; it provides a s tandard th a t components and

clients follow to ensure that they operate together. It specifies how to build components, also referred

to as servers, th a t can be dynamically replaced without breaking the client code. In particular, it

specifies w hat it means to be a COM component and how these components are accessed. The COM

platform as provided by Microsoft consists of the following two closely related facilities:

1. The COM Library, an A PI tha t provides component m anagem ent services that are useful

for all clients and components. This library is w ritten to guarantee th a t the most im portant

operations are done in the same way for all components, and to save developers time in dealing

w ith component management issues. M ost of the COM library functions are built to provide

support for distributed or networked components, ra ther than the local components.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. D istributed COM (DCOM) facilities on W indows systems provide the code needed to commu

nicate w ith rem ote components. W ith DCOM , rem ote components can be accessed in exactly

the same way as local servers. DCOM is not yet another model or specification for building

components; it is the same as COM, bu t w ith a longer wire attached.

7.2.2 T he C O M W ay o f B u ild in g S ystem s

The COM provides a way to build a system as a collection of cooperative, possibly distributed,

components. F irst, it is necessary to know w hat it means to be a COM component.

A COM component consists of executable code distributed as Win32 dynamic linking libraries

(DLLs) or executables (EXEs). COM components m ust be written to meet all the requirem ents

prescribed by the COM specification. Program m ing details aside, on a higher level, these components

must satisfy the following requirements:

1. Dynamic linking. Components must be able to link a t run time. This ensures th a t components

can evolve or be replaced without breaking the client code.

2. Encapsulation. Clients must be protected from the implementation details of the components:

components m ust maintain stable interface(s). This means th a t the components m ust satisfy

the following conditions:

(a) Clients should be able to use any components regardless of the program ming languages

used to write the client or the component.

(b) Com ponents must be shipped in binary form, compiled, linked, ready to use.

(c) Components must be upgradable w ithout breaking client code.

(d) Com ponents must be transparently relocatable on a network; remote components should

be trea ted in exactly the same way as the local ones.

The COM library provides a variety of support for building components th a t satisfy the above re

quirements. Numerous hooks must be built into the component programs. These hooks are easy to

build once the program mer understands how they work. Given below are high level descriptions of

various aspects of COM components and their relationship with the clients.

Identification and Activation of COM components

COM components are executables identified by Class Identifiers (CLSIDs), which are Globally

Unique Identifiers (GUIDs). A GUID is a 128-bit s tructu re that is program m atically generated,

based on the com puter on which it was created and the time at which it is generated. GUIDs

axe globally unique, although they are generated w ithout coordination with any central authority.

COM components are registered with the W indow’s registry and can be launched by COM API

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions. To gain access to a component, aU a client needs is the CLSID of the components; COM

library functions a n d /o r DCOM support on W indows axe responsible for se tting up the connection

and facilitating exchange of data . Construction an d access of rem ote com ponents can be done in

exactly the same way as local ones; the DCOM support on Windows makes the com ponent location

transparen t to the clients.

Accessing COM components

COM components support one or more interfaces. W hen a client connects to a com ponent through

a COM A PI function, it m ust identify the interface to be used. If the connection is successful, then

the client gets back a pointer to the desired interface. The client can then use th is interface pointer

to access the services of the component and to get access to any other interface the component

supports. Interfaces are identified by Interface identifiers (IIDs), which are also GUIDs. The client

wishing to use a particular interface must know its IID .

Interfaces

To a client, a component is a set of interfaces. T he client can only access a com ponent through

an interface. The client has little knowledge of a component as a whole, o ther th an the interfaces

th a t provide the services of interest. A client is often not completely aware of all the interfaces

a com ponent supports. Interfaces m e described using the Interface Definition Language (IDL), a

C + + - like language with extensions, and without im plem entation of any m ethods defined. Compiling

of an IDL file will produce code that provides bo th the client and the com ponents w ith necessary

facilities to use or support all the interfaces described, including the IID of all the interfaces of

interest. Note th a t interfaces are not tied to any component: one interface m ight be implemented

by m any components and one component can im plem ent many interfaces. Interfaces can inherit

from other interfaces, bu t this inheritance does not im ply any relationship between the components

th a t implement these interfaces. From the surface, this seems to stop code reuse, which is an

im portan t feature of 0 0 programming. However, CO M allows code reuse through containment and

aggregation. These features wrill not be further discussed, since AURORA im plem entation does not

require them .

7.2 .3 O L E -D B Technology

OLE-DB is a specification of the standard interfaces of a specific type of COM components, the

ones th a t provide access to a wide variety of da ta sources. Such interfaces range from those used

for connecting to a source, starting and closing a session, retrieving schema inform ation, sending

queries, to those dealing with data as a set of rows. A n OLE-DB provider is an im plem ented COM

com ponent th a t supports some of the interfaces specified by the OLE-DB specification. OLE-DB

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specification states th a t certain interfaces are “m andatory” , th a t is, all OLD-DB providers must

support them . Often an OLE-DB provider allows access to a specific type of data source and

supports a subset of the interfaces specified by OLE-DB specification, depending on the capabilities

of the underlying d a ta source. Exam ple sources with OLE-DB providers axe sources with an ODBC

driver, email archives, and spreadsheets. The advent of the OLE-DB technology is notable for two

im pacts on the software industry:

1. I t allows a broader range of d a ta sources to be accessed through a standard interface. In

the past, the Open Database Connectivity (ODBC) was the omnipresent methodology for

providing access to da ta sources, but it typically only provides access to sources with database

capabilities.

2. It opens up da ta sources for access through COM /DCOM . An OLE-DB provider is just another

COM component and it can be accessed with all the convenience provided by the COM/DCOM

platform .

W ith the fast growing popularity of OLE-DB technology, an increasing num ber of data sources

are accessible through their OLE-DB providers. The rest of this section describes the OLE-DB

technology in more detail.

An OLE-DB provider is a COM component and hence is activated when a client requests it using

the CLSID of the provider. Upon activation, the provider first creates a data source object specified

by OLE-DB as below:

TDataSource {
[mandatory] interface IDBCreateSession;
[mandatory] interface IDBInitialize;
[mandatory] interface IDBProperties;
[mandatory] interface IPersist;
[optional] interface IConnectionPointContainer;
[optional] interface IDBAsynchStatus;
[optional] interface IDBDataSourceAdmin;
[optional] interface IDBInfo;
[optional] interface IPersistFile;
[optional] interface ISupportErrorlnfo;

>

A d a ta source object m ust support all the m andatory interfaces and may support some of the

optional ones. To get access to data, the client uses the ID B crea teS essio n interface to gain access

to a session object, which supports the following interfaces:

TSession {
[mandatory] interface IGetDataSource;
[mandatory] interface IOpenRowset;
[mandatory] interface ISessionProperties;

[optional] interface IDBCreateCommand;

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[optional]
[optional]
[optional]
[optional]
[optional]
[optional]
[optional]
[optional]

interface
interface
interface
interface
interface
interface
interface
interface

IDBSchemaRowset;
IIndexDef init ion;
ISupportErrorlnfo;
ITableDef init ion;
ITransaction;
ITransact ionJ o in;
ITransactionLocal;
ITransactionObject;

Depending on whether the da ta source is able to accept commands, the session object may or may

not support the IDBcreateCommand interface. If the underlying data source is an ODBC data source,

then this interface is supported and the client can use it for sending queries and getting the result

bade. If a da ta source is not able to entertain queries, this interface is often not supported. In this

case, the client uses the IOpenRowset interface to access da ta in tabu lar form. Various scenarios of

using an OLE-DB provider for da ta access are depicted in Figure 7.1.

IDBcreateSession

IDBcreateCommand

IOpenRowset
ICommand

Rowset Rowset

Session

Command

Data Source

Figure 7.1: Use of OLE-DB Interfaces and the Role of Rowsets

As shown above, all OLE-DB providers must be able to provide da ta in tabular form, as rowsets.

Indeed, rowsets are the central objects th a t enable ail OLE-DB providers to expose data in tabular

form. Conceptually, a rowset is a set of rows in which each row has columns of data. Base table

providers present their da ta in the form of rowsets. Query processors present the result of queries

in the form of rowsets. Even schema information is provided as rowsets. The interfaces of rowsets,

as specified by OLE-DB, are given below:

TRowset {
[mandatory] interface IAccessor;
[mandatory] interface IColumnsInfo;

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[mandatory] interface IConvertType;
[mandatory] interface IRowset;
[mandatory] interface IRowsetlnfo;
[optional] interface IChapteredRowset;
[optional] interface IColumnsRowset;
[optional] interface IConnectionPointContainer;
[optional] interface IDBAsynchStatus;
[optional] interface IRowsetChange;
[optional] interface IRowsetFind;
[optional] interface IRowsetldentity;
[optional] interface IRowsetLocate;
[optional] interface IRowsetResynch;
[optional] interface IRowsetScroll;
[optional] interface IRowsetUpdate;
[optional] interface IRowsetView;
[optional] interface ISupportErrorlnfo;

T he m ost basic rowset object exposes five interfaces: IRow set, which contains m ethods for fetching

rows in the rowset sequentially; IA ccesso r, which perm its the definition of groups of column bindings

describing the way tab u la r d a ta is bound to consumer program variables; IC olum nsInfo, which

provides inform ation about the columns of the rowset; and IR o w se tln fo , which provides information

about the rowset itself. Using IRowset, a consumer can sequentially traverse the rows in the rowset,

including traversing backward if the rowset supports it. The interface IRowset includes the following

m ethods: AddRefRows, th a t adds a reference count to an existing row handle; G etD ata th a t retrieves

d a ta from the row set’s copy of the row; GetNextRows th a t fetches rows sequentially, remembering

the previous position; ReleaseRows th a t releases rows; R e s ta r tP o s i t io n th a t repositions the next

fetch position to its initial position - th a t is, its position when the rowset was first created.

7.3 A U R O R A M ed ia tors as C O M C o m p o n en ts

AURORA com ponents are implemented as COM components th a t cooperate across networked com

puters, as shown in Figure 7.2. These components should support pre-defined interfaces.

7.3 .1 In terfaces o f A U R O R A C om ponents

AURORA w rappers and m ediators support pre-defined interfaces which describe the services offered.

Generally, all AURORA m ediators support the following services:

1. Schema export service: this service should allow the schem a supported by the mediator to

be accessed. D epending on the d a ta model of the m ediator, this schema can be relational or

object-oriented.

2. Query service: th is service should accept queries posed against the schema of the mediator.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Depending on the da ta model of the m ediator, the queries can be posed in SQL or OQL. Object-

oriented m ediators should also support access via an object-oriented database programming

language.

3. Event notification service: this service notifies the clients of events o f interest.

In the current im plem entation, interfaces of components are custom an d are supported only by

dem and of dem onstrating the base technology of AURORA. In the future, these services should be

defined to s tandard , such as the OMG object services, and be fully supported . Currently supported

interfaces are described in Sections 7.4.1 and 7.4.2.

Application

AURORA-RHAURORA-RI
AURORA W rapper
(OLEDB provider)

Data Source

Figure 7.2: AURORA Components as COM Com ponents

7.3.2 O LE-D B P roviders as A U R O R A W rappers

Microsoft provides am OLE-DB provider for all sources w ith an ODBC driver. This OLD-DB

provider supports interfaces for connecting to a database, retrieving schem a information, sending

SQL queries, and collecting query results as rowsets. This set of functions is sufficient for uniform

access of sources w ith SQL capabilities. For da ta sources w ithout SQL query capabilities, there are

commercial middleware products (e.g., the ISG Navigator, which are OLE-DB providers themselves)

th a t add SQL query capabilities to any OLE-DB provider th a t does not suppo rt it. Such middleware

can be used as an “adap to r” th a t transform s non-SQL OLE-DB providers into an SQL provider.

In the current im plem entation, AURORA wrappers are OLE-DB providers supporting SQL

queries. As such, bo th OLE-DB providers for ODBC sources and OLE-DB providers for a middle

ware such as the ISG N avigator can be used as wrappers. This w rapper stra tegy is illustrated in

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sources with ODBC Drivers

OLE-DB
Provider

ODBC Driver ISG Navigator

OLE-DB Provider with SQL support

Sources with OLE-DB provider but no SQL

Figure 7.3: The Making of AURORA W rappers Using OLE-DB Providers

Figure 7.3. A directed line from A to B in this figure m eans “A can access B” . WTiile these wrappers

do not support services to any standard, as described earlier, it will be easy to build a generic layer

on top of these wrappers to support interfaces to desired standard . More significantly, by employing

this w rapper strategy, the current implem entation of AURORA is able to access a variety of data

sources w ithout building custom wrappers. The focus of the implementation work is on the design

and im plem entation of AURORA-RH and AURORA-RI mediators.

7.4 Im p lem en ta tion o f A U R O R A -R H and A U R O R A -R I

AURORA’S relational mediators, AURORA-RH and AURORA-RI, have been implemented to form

a framework for dynamic integration of da ta sources w ith OLE-DB providers. The canonical data

model supported by this implementation is the relational d a ta model. These mediators are imple

mented as components th a t cooperate through the C O M /D C O M framework. It is necessary to look

a t AURORA-RH and AURORA-RI together to show what they do, and why, and how they work

together. The current AURORA implementation is illustrated in Figure 7.4.

7.4.1 Im p lem en tation o f A U R O R A -R H

As shown in Figure 7.4, implementation of AURORA-RH consists of two parts: (1) implementation

of MAT-RH; and (2) implementation of the AURORA-RH query server.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AURORA-RI

Query Server
(GUI)

Utility DB

:OMCOM COM vCOM

AURORA-RH AURORA-RH

MAT-RH RH_QP RH_QPMAT-RH

Utility DB Utility DB

OLE-DB OLE-DBOLE-DB'OLE-DB

Figure 7.4: Im plem entation of AURORA-R M ediators

MAT-RH

MAT-RH is built as a graphical user interface th a t allows m ediator authors to connect to a data

source, browse its source schema, create a homogenizing view by specifying virtual relations and their

derivations, and finally, register some or all relations in the homogenizing view with an AURORA-RI

m ediator. As shown in Figure 7.5, the top level menu consists of the following items:

1. I n i t i a l i z e . Selecting this item would activate a pop-up menu th a t allows the user to perform

the following tasks:

• Choosing the item I n i t i a l i z e allows initializing the AURORA-RH m ediator to a named

d a ta source. Upon initialization, the system retrieves the schema of the d a ta source and

allows the user to browse it. Internally, the system also creates a companion utility

database with a schema designed for storing mapping information. This database is later

used for storing derivations of th e homogenizing view and for m anipulating tem porary

tables during query processing.

• S ave To DB. C hoosing this item w ould cause the m appings that are specified to be saved

into th e com panion u tility d atab ase . T his is usually perform ed after th e hom ogenizing

view has been constructed com pletely.

2. Im p o r t . Choosing this item will activate a pop-up menu that provides two options for im port

ing part or all of the source schema: Im port whole schema and Im port by query . Another

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEG

■. Exit..' ' /

m m

Figure 7.5: M ain W indow of MAT-RH GUI

item on the pop-up menu allows the im ported schema to be browsed. This pop-up menu is

shown in Figure 7.6.

3. SME-1. Choosing this item will bring up the pop-up m enu th a t provides various facilities for

resolving type 1 cross-over mismatch. As shown in Figure 7.7, the items on this pop-up menu

include the following:

• ViewDef w ith Pad. This item allows the use of the pad primitive for defining derived

relations. A dialog window will pop up to collect various parameters for a pad operation.

• ViewDef w ith Rename. This item allows renam ing of relations.

• ViewDef w ith RELmat. This item allows the use of the RELm at transform ation. Choos

ing this item will bring up a dialog window, as shown in Figure 7.8. The user fills up the

entries in this dialog and a view relation will be derived by MAT-RH.

• ViewDef w ith Query. This item allows the user to specify a view relation as a relational

query over all the relations derived so far.

• D is p la y View Schema. This item allows the user to browse the schema that includes all

the view relations derived so far.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gaiETTH!!
Tnffiafa»| f s t i j E ^ p g S i R ^ - > ^ -
Tj-»j <, 1 mpoftV/holeScKenia ~
----------- Import Ru Dimly
B - UNG------- z— --------=----- -
B- SYS C Imported View ■-
B - SYSII Mark import as Complete
B -SYSSTAT

Figure 7.6: Im port pop-up menu

4. SME-2. Choosing this item will s ta r t the pop-up menu that provides various facilities for

resolving type 2 cross-over m ism atch. T he items on this pop-up menu are similar to those on

SME-1 except that ViewDef w ith RELmat is replaced by ViewDef w ith ATTRmat. The dialog

window brought up by choosing ViewDef w ith ATTRmat is shown in Figure 7.9.

5. RLE. Choosing this item will s ta rt the pop-up menu that provides various facilities for relation

linking. As shown in Figure 7.10, this pop-up menu includes the following items:

• ViewDef w ith Query. This item allows derivation of view relations using relational

queries over all the relations derived so far.

• S e le c t P ro to ty p e R e la t io n s . This item allows the user to m ark existing relations as

the prototype relations.

• D isp la y View Schema. After pro to type relations have been specified, the view schema

will include only these relations and are often smaller them before.

6. DSE. Choosing this item will bring up the pop-up menu that provides facilities for resolving

dom ain structural mismatches by specifying domain structural functions (DSFs). T he pop-up

menu includes two items:

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n t i t l e d - in i t ia l msm
;ih itia fe ^ I mpottl Ivl E-2% ̂ tJEMDS Ef;r D U E ^ T e s tire ^ R egisteL/Help

S - Imported

iDisplayMewSchema

i i r ^

Figure 7.7: SME-1 pop-up menu

• S p ec ify Domain S t r u c t u r a l F u n c tio n s . Choosing this item will bring up a sequence

of dialogs, shown in Figures 7.11 and 7.12, that allows the m ediator au thor to specify

the list of a ttribu tes in a prototype relation that correspond to am attribu te in the target

relation, and to declare a dom ain structural function of the appropriate signature. The

DSFs themselves m ust be provided by the user as a DLL. In the current implementation,

all such DLLs must be in a single file. In the future, this restriction will be removed.

• D isp lay View Schema. Displays the current schema.

7. DUE. Choosing this item will bring up the pop-up menu that provides facilities for resolv

ing domain element mismatches by specifying domain value functions (DSFs). The facilities

provided are similar to those in DSE, except the functions declared in this environment are

domain value functions, which are functions th a t take one in-param eter and return a value.

Inverses of these functions, if they exist, are also accepted by the system for later use.

8. R e g is te r . Choosing this item will bring up a sequence of dialogs, shown in Figures 7.13 and

7.14, which allow the user to register one source relation as a fragment of a target relation.

Ideally, the registration process should allow the mediator author to specify the name of

the target AURORA-RI m ediator, and the target relation of which a source relation is a

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V iew D ef by R E L m a f 3

View Relation Name: - i

Operand Relations:

ISYSADM.SOFTWAREENGINEER.MARKETINGSTAFF.RESEARCHSTAFF.

Materialized Attribute Name: |jOBNAME

OK .1

Figure 7.8: D ialog W indow for the R E Lm at Transformation

fragm ent. In the current im plem entation, there is only one AURORA-RI m ediator running

and its identity is hard-coded in the AURORA-RH mediators; hence the user does not choose

which AURORA-RI m edia to r to register d a ta with. This restriction will be removed in the

future.

source of interest. Then she invokes the 6 tools in sequence to remove various types of mismatches

by deriving view relations. This process is guided by the homogenization methodology. Once she

is satisfied with the homogenizing view derived, she must do two things before exiting MAT-RH.

First, she m ust save the hom ogenizing view and its derivation to the utility database. This is done

by choosing I n i t i a l i z e -> S ave to DB. Second, she must register some or all of the relations in

the derived view as fragments of relations in the target service view, supported by the AURORA-RI

m ediator. This is done by using th e registration facilities described earlier.

AURORA-RH Query Server: RH_QP

AURORA-RH query server is a COM server. It supports a single interface, IRHQuery, as show n

in th e IDL specification below . IRHQuery consists o f two m ethods: ExecQ uery and GetNextRow.

E xecQ uery accepts queries g iven as three strings: the select clause, the from clause, and th e where

clause. GetNextRow returns a r o w o f d a ta in a buffer. T his interface is used by AURORA-RI

m ediators to send queries for ex ecu tio n and to retrieve query results.

Usually a m ediator author works with MAT-RH as follows. First, she connects to the data

/ /

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V i e w D e f b y AT T Ft m a t

■View Riladon Name:
m

| CO M PANY_SAL£ S

Operand Relation Name::
SALES

Attributes to be materialized:.
IB M PC.MAC.APPLE

N_A: [PROD TYPE

N_V: jSALES.AMT

OK - I

Figure 7.9: Dialog W indow for the A TT R m at T ransform ation

// RH_QP.idl
/ /
import "unknwn.idl" ;
/ /
// Interface IRHQuery
/ /
[

object,
uuid(05EDAE72-D6EA-lldl-A811-0004AC9592CC) ,
helpstringC"Query Interface of AURORA-RH"),
pointer_default(unique)

]
interface IRHQuery : IUnknown
■C

HRESULT ExecQuery ([in, string] wchar_t* DataSourceName,
[in, string] wchar_t* selectClause,
[in, string] wchar_t* fromClause,
[in, string] wchar_t* whereClause

) ;
HRESULT GetNextRow ([out] int* succ,

[out] wchar_t RowBuffer[1000]
) ;

>;
/ /
// Component descriptions
/ /

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tef Help

S - LINGLING
GB-SYSCAT
IS- SYSI8M
IS- SYSSTAT

^^gf|yiewDef><fth Q uety.-vr'.:-
• -—■ g j Select Prototype Relah~Qns: > j

' ‘"Display^

Figure 7.10: Pop-up Menu of RLE

C
uuid(887365AD-D479-lldl-A811-0004AC9592CC),
version(l.O),
helpstringC'RHQP 1.0 Type Library")

]
library RHQP_Lib
-[

importlib("stdole32.tlb") ;
[

uuid(05EDAE74-D6EA-lldl-A811-0004AC9592CC),
helpstringC"AURORA-RH Query Processor Component")

]
coclass RHQP.CMPNT
•C

[default] interface IRHQuery ;
>;

> ;

Upon receiving a query against a da ta source D, RH_QP first loads the homogenizing view of source

D from the companion utility database of D . It then rewrites the query using view mappings loaded

from the utility database, to generate an initial QEP. This QEP is then transform ed into a more

efficient QEP. Currently, RH_QP is able to employ all the transform ation rules shown in Table 5.5

th a t involve selection to optimize the initial QEP. Once the optim ized Q EP is generated, RH_QP

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S p e c i f y D om ain S t i u c l u t a l F u n c t i o n s

Relations: c Columns:

PEOPLE:
COMPANY_SALES NAME:str

SALARY:int
BONUS'M
JOBNAME:

ID:s!r

Add Selected Column a s DSF Parameter j(

DSF in-Paim List

SALARYiint
BONUSiint Clear Parm List

D elete S elected Parm

Specify Domain Structural Function OK

Figure 7.11: F irst Dialog for Specifying Domain Structural Functions

will evaluate the QEP bottom up. F irst, it sends subqueries to source D , then, it assembles the

the GetNextRow m ethod in the IRHQuery interface supported by RH_QP..

7.4.2 Im plem entation o f A U R O R A -R I

AURORA-RI im plem entation includes tw o parts: the registration server, and t h e query server.

T h e registration server is a COM com ponent supporting a single interface, I R T R e g is te r , which

includes a single m ethod, R e g is te r F r a g m e n t. T his m ethod is invoked by MAT-R.H for registering

source relations. It accepts five param eters: hostN am e, the nam e of the host t h a t th e AURORA-

RH m ediator is running at; sourceDBName, the nam e of the source database; sou rceR elN a m e, the

nam e o f the source relation to be registered; targetR elN am e, the nam e o f the g lo b a l relation in the

service view o f which the relation nam ed by sourceR elN am e is a fragment; and fr a g m e n t Scheme,

the schem e o f th e relation nam ed by sourceR elN am e.

/ /
/ / RIREG. i d l
/ /
import "unknwn.idl" ;
typedef struct

returned results to produce the final query result. Query results can be retrieved b y the client using

■C

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specify a Mapping Function

Relation:.. jpEOPLE :

Source ColumnfsJ: | SALARY:intBONUS:int

Inverse Function Name:

■ Function Monotony:

j SALARY

] Integer ▼ }

jSalaryAddBonus

1
Monotony .̂ . ■

- Monotone-increasing

Monotone-decreasing

< * Other* OK 1

Figure 7.12: Second Dialog for Specifying Domain Structural Functions

numColumns;
columnName[50][60];
colType[50];

int
wchar_t
int

} XRelSch.eme;
/ /
// Interface IRIRegister
/ /
[

object,
uuid(9E900F31-DBA0-lldl-A81B-0004AC9592CC) , // Apr 24 2:
helpstring("Registration Interface of AURORA-RI") ,
pointer_def ault (unique)

]
interface IRIRegister : IUnknown

HRESULT RegisterFragment (

15pm

[in, string] wchar_t* hostName,
[in, string] wchar_t* sourceDBName,
[in, string] wchar_t* sourceRelName,
[in, string] wchar_t* targetRelname,
[in] XRelScheme fragmentScheme

>;
/ /
// Component descriptions
/ /
[

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPANY SALES

Register Selected Relation OK

! PEOPLE

R egister W ith Integration M ediator

Figure 7.13: F irst Dialog for Registering Relations with Integration M ediator

uuid(9E900F33-DBA0-lldl-A81B-0004AC9592CC),
versionCl.0),
helpstringO'RIREG 1.0 Type Library")

]
library RIREG_Lib
t

importlib("stdole32.tlb") ;
C

uuid(9E900F35-DBA0-lldl-A81B-0004AC9592CC) ,
helpstringC"AURORA-RI Registration Server")

]
coclass RIREG.CMPNT

[default] interface IRIRegister ;
>;

Upon receiving a registration, the AURORA-RI registration server will store the registration infor

m ation in a utility database. The content of this database will then be used by the AURORA-RI

query server to decide where and how to collect fragments when needed.

The AURORA-RI query server is currently a GUI driven program. The user launches the query

server and is presented w ith a GUI with which the supported service view can be browsed and queries

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Registration Details

Source Relation: JPEOPLE

Home Host Name: 1 Krbii

Target Relation: EM PLOYEE

OK

Figure 7.14: Second Dialog for Registering Relations with Integration M ediator

can be posed. Upon receiving a query, the query server goes to the utility database to find out which

fragments are needed for query processing. Currently, there are no query optim ization capabilities

implemented, so the query server always retrieves all the relevant fragments in full, performs a match

join to produce the relation(s), and then processes the query.

7.5 O bservations and E xp erien ces

Using a DOC framework is an elegant way of supporting distribution and dynamic composing of

AURORA components. Work done in order to ship the components as COM servers is limited; the

COM hooks in the client and server programs are mostly reusable. Generally, the amount of work

involved to use the COM platform is small in comparison to the work required for implementing the

logistics of the components.

Both AURORA-RH and AURORA-RI have a query engine. These engines do not implement

their own join, selection, buffer m anagement etc., but rather use these facilities provided by a

commercial RDBMS, DB2/NT. This strategy works, but it requires creating tem porary tables to

hold interm ediate results during m ediator query processing, which can be quite slow. It is probably

a much be tte r idea to expand am existing query processor with operators in AURORA. This requires

access to and knowledge of a good, existing, query processor.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions and Future Work

This d isserta tion describes the AURORA pro ject. Research in AURORA established new techniques

for building an integrated d a ta access m iddleware system (IDAMS) based on the m ediator archi

tecture. A prototype system is built to dem onstrate the paradigm and techniques developed. This

chapter sum m arizes the contributions and experiences of AURORA, and reviews future work.

8.1 C on trib u tion s

Research in AURORA has two m ain dimensions: (1) a 2-tiered m ediation m odel, flexible data

model suppo rt, and mediation m ethodologies; and (2) Mediator query processing based on Mediation

Enabling A lgebras (MEAs) and the conflict to lerant query model. The first dim ension deals with the

general paradigm of a da ta m ediation system , the second dimension focuses on developing enabling

techniques.

8.1 .1 M ed iation M odel, F lex ib le D a ta M odels, and M ed ia tio n M ethod

o log ies

A m ediation model prescribes various tasks in the data integration process (also referred to as

d a ta m ediation) and the relationship am ong them . AURORA’S 2-tiered m ediation model prescribes

th a t d a ta m ediation be performed in two steps: homogenization followed by integration. This

m ediation m odel enables a divide-and-conquer approach towards integration of a large number of

heterogeneous and autonomous d a ta sources. It enables scalable m ediation, where adding and

removing d a ta sources is easy. AURORA supports both relational and object-oriented data models:

m ediators a re available in both models. Consequently, AURORA m ediators are function specific,

performing specific mediation tasks; and data model specific, supporting either th e relational or the

object-oriented (ODMG) d a ta model. This paradigm enables scalable in tegration o f a wide range of

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data sources:

1. W rapper construction work is reduced due to the flexible da ta model support in AURORA.

D ata sources can be wrapped with a relational or an object-oriented interface, whichever is most

easily generated. As dem onstrated in AURORA, relational wrappers can be composed using

commercial middleware systems. In general, the AURORA paradigm does not require da ta

sources to “upgrade” their da ta models and thus allows them to participate in the integration

scope without incurring m ajor w rapper construction work.

2. T he 2-tiered m ediation model of AURORA divides the data integration task into pieces that

can be worked on independently and in parallel. The difficulties encountered in building large

scale da ta integration systems originate from two sources: semantics and scale. W orking with

semantics is difficult, working with sem antic differences among a large number of heterogeneous

sources is even more difficult. A general principle in building AURORA is “sem i-autom atic

homogenization, autom atic integration” . Homogenization deals with a wide range of semantic

issues but concerns single sources, while integration deals with a small num ber of sem antic is

sues although the num ber of sources involved is large. Furthermore, homogenization mediators

in AURORA, are equipped with a m ediator au th o r’s toolkit (MAT) th a t helps the m ediator

au thors to work with semantics. The basis of a MAT is a mediation methodology th a t guides

a m ediator author to work w ith sem antic issues systematically. MATs also provide various fa

cilities to the m ediator author. A MAT has been built as part of the AURORA-RH m ediator

in the prototype system.

8.1 .2 Scalability and F lex ib ility o f th e A U R O R A A pproach

Scalability of the AURORA, approach is enabled through the 2-tiered m ediation model, which con

trols the complexity of building a large-scale d a ta integration system by prescribing a divide-and-

conquer approach. Adding and removing of d a ta sources are easy. The complexity of the data

integration activity does not increase with the num ber of sources involved: large-scale integration

can be performed as easily as integration of a small num ber of sources.

Flexibility of the approach is enabled also by the 2-tiered mediation model and by the flexible data

model support provided with all the AURORA, m ediators. The 2-tiered m ediation model prescribes

th a t adding and removing of da ta sources do not im pact on the availability and validity of the service

view, or the participation of other da ta sources. Unavailable da ta sources can be treated as a source

th a t removed itself from the access scope voluntarily. Flexible data model support of AURORA

enables the applications and the da ta sources to consum e/contribute da ta based on a d a ta model

th a t is m ost comfortable; this greatly increases the practical appeal of a da ta integration system .

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 .3 E nabling Techniques

Enabling techniques are mainly in the a rea o f processing mediator queries. Two types of techniques

have been proposed: query processing and optimization based on M ediation Enabling Algebras

(MEAs), and Conflict Tolerant (CT) query m odels.

D ata manipulations tha t are specific to mediation systems, and are unknown to traditional

DBMSs, are captured in MEAs which are th e basis for algebraic and cost-based m ediator query

optim ization and processing. Different m ediators employ different MEAs. M EAs for all AURORA

m ediators have been defined. In the re la tiona l mediators, query processing techniques based on

MEAs have also been established. W ith M EA s, the impact of the m ediation process on query

processing has been identified and taken in to consideration during query processing.

The Conflict Tolerant (CT) query m odels are employed by AURORA integration mediators

for querying multi-source data . The C T query models represent a step away from the traditional

paradigm of querying data integrated from m ultiple sources. R ather than creating a single-source

illusion, conflicts are exposed to the applications in a controlled and m anageable manner. The key

point in designing a CT query model is to prov ide enough levels of conflict tolerance to cater for most

application requirements, w ithout overwhelm ing the applications w ith com plicated choices in conflict

handling. This approach allows the applications more control over how conflicts are handled and

provides the mediation systems with more spa.ce for query optimization, especially when conflict rate

is low. Currently, only the CT query m odel employed by the AURORA-RI m ediator is completed.

8.2 E xperien ces

The AURORA experience gives rise to two observations on research in DDAMSs. First, building

IDAMSs involves issues in both paradigm s a n d techniques; adopting a new paradigm gives rise to

new technical problems. From a pragm atic view point, employing a paradigm th a t applications can

identify with is equally im portant as developing techniques to make the system function efficiently.

AURORA chose to employ a new paradigm a n d study the related technical problems. In terms of

research, a drawback is th a t the validity and. applicability of the techniques developed depend on

th a t of the general paradigm employed; it is m ore difficult to dem onstrate their significance.

Second, choice of paradigms varies w ith target applications. The choice of the paradigm in

AURORA was not made based on an in -dep th study of several classes of applications, but rather

based on one specific type of application - th e electronic commerce application - and the potential

for producing technical results. In hindsight, a more thorough study of application scenarios may

provide more input into the design of the paradigm .

The current implementation of AURORA, realizes the vision of using light-weight, specialized,

easy-to-use components to build increasingly sophisticated data mediation system s. W ith the ad-

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vances in In ternet and distributed computing technology, monolithic m ediation systems with a static

access scope will no longer be sufficient. Future m ediation system s m ust be highly distributed and

m ust be able to expand/reduce their access scopes gracefully. The current prototype system demon

strates th a t the AURORA approach allows such m ediation system s to be constructed.

Two observations can be made after the im plem entation of the AURORA prototype. F irst,

m aking use of currently available software can reduce the workload tremendously. AURORA makes

use of commercial middleware systems, such as OLD-DB provides and the ISG Navigator, to form

wrappers, and hence avoids building custom w rappers while gaining access to a wide range of da ta

sources. Second, the efficiency of da ta exchange and m anipulation of mediators requires more work.

Currently, the AURORA prototype system focuses on dem onstrating the paradigm and the base

techniques; d a ta exchange among, and d a ta m anipulation w ithin, the mediators are inefficient. This

is an engineering issue and may require a detailed study of the state-of-the-art technology available.

8.3 F u tu re W ork

Future work on extending AURORA itself fails into the following categories:

1. Extending the flexible d a ta model support in AURORA to include XML. This extension will

eventually allow Web pages to be treated as d a ta sources. XML is regarded as the main

medium th a t allows Web data m anipulation and exchange. Currently, considerable work is

going on in querying and managing XML d a ta sources. Progress in this regard may provide

inspirations for building AURORA m ediators based on XML.

2. Further establishing of the conflict tolerant querying facilities. T he CT query model for object-

oriented integration mediator is not yet defined. Definition of the CT query model for relational

m ediators requires extension. In particular, th e CT query semantics may become unclear in

complicated queries such as nested queries, or queries involving aggregation functions. The

num ber of levels of tolerance cam be reviewed in the future. The key is to offer adequate support

for the applications to deal with conflicts a t run-tim e, w ithout overwhelming the applications

with complicated handling of these conflicts.

3. To carry on with the idea of exposing instance level conflicts to the applications, rather than

hiding them a t high system expenses, the C T query paradigm may be adapted to deal with

o ther types of conflicts, such as lineage and source credibility of da ta items. The challenge is

to design enough number of tolerance modes w ithout leaving the applications overwhelmed.

Work th a t further establishes the AURORA approach on a more formal basis also gives rise to

interesting future research topics, as discussed below.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formed Semantics of the AURORA Approach.

As described in Section 3.2.3, the formal semantics of queries posed against a service view in AU

RORA requires more work. Moreover, the introduction of CT queries may give rise to new issues

in completeness and soundness of a global database, as well as query semantics. Such work can be

carried out in a fashion similar to th a t of [33] and should provide insight into the value of systems

such as AURORA.

Criteria for Evaluating EDAMSs.

Choosing an ID AMS th a t work well can be a complex evaluation process since it involves issues such

as transform ation and composition of application semantics, usability of the facilities, etc. Some

part of this evaluation may not have a formal basis. For now, a few criteria may be useful, including

the following:

1. Completeness of the range of mismatches and conflicts a system is capable of handling. The

question to be answered is: “Given any data integration scenario, is the system capable of

performing all required data conversion, matching and combination fo r integration purpose?”

2. Providence of m ediation methodologies and their completeness. Most previous systems do

not provide a m ediation methodology while AURORA does. However, AURORA’S mediation

methodologies do not have a formed basis and their completeness is yet to be established. The

u ltim ate question to be answered is the following: “Given any data integration scenario, do

the mediation methodologies provided enable the users to identify all differences and overlaps

among the data sources, and, resolve them correctly? Do the mediation methodology guarantee

a correct data integration?”.

3. Ease of use of the system, whether the users axe provided w ith enough facilities to perform

m anual d a ta integration tasks.

4. Efficiency of d a ta m anipulation within the integration system, whether redundant da ta re

trieval is minimized.

5. Safety of queries, w hether the queries posed against the integrated (virtual) da ta have a well-

defined, determ inistic semantics.

The first two criteria of the evaluation lead to a more fundam ental issue: how do we formally

describe, compare, transform , and, merge m ultiple application models to produce a new application

model, required by a class of applications? To do this, a formal model is required for describing

the semantics of the source d a ta as well as the semantics of the desirable target data. Once such

formal models are established, one can formally identify a complete range of mismatches th a t must

be handled by a good IDAMS. One can also formally establish the completeness of a mediation

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methodology, by proving th a t it m andates the removal of all possible mismatches and guarantees a

correct d a ta integration.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. Abiteboul and A. Bonner. Objects and Views. In Proceedings of the 1991 ACM SIGM OD
International Conference on M anagement o f Data, pages 238-247, 1991.

[2] ISG N avigator Universal D ata Access. www.isgsoft.com/products/Navigator/. ISG Interna
tional Software Group.

[3] S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahmanian. Query Caching And
O ptim ization In Distributed M ediator System s. In Proceedings of the 1996 AC M SIGM OD
International Conference on M anagement o f Data, pages 137—148, 1996.

[4] R. Ahmed and R. Rafii. Relational Schema M apping and Query Translation in Pegasus. In
Proceedings o f the Workshop on Multidatabase and Semantic Interoperability, pages 22-25,
1990.

[5] R. Ahmed, P. Smedt, W. Du, W. K ent, M. Ketabchi, W. Litwin, A. Rafii, and M. Shan.
The Pegasus Heterogeneous M ultidatabase System. IE E E Computer, 24(12):19-27. December
1991.

[6] Y. Arens, C.Y. Chee, C-N. Hsu, and C.A. Knoblock. Retrieving and Integrating D ata From
M ultiple Information Sources. International Journal o f Intelligent and Cooperative Informa
tions System s , pages 127-158, June 1993.

[7] C. Batini, M. Lenzerini, and S. Navathe. A Com parative Analysis of Methodologies of Database
Schema Integration. AC M Computing Surveys, 18(4):323-364, 1986.

[8] R. Bayardo, B. Bohrer, R. Brice, A. Cichocki, J . Fowler, A. Helal, V. Kashyap. T. Ksiezyk.
G. M artin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh.
and D. Woelk. Semantic Integration of Inform ation in Open and Dynamic Environments. In
Proceedings o f the 1997 AC M SIGM OD International Conference on Management o f Data.
pages 195-206, 1997.

[9] J.A . Blakeley, W .J. McKenna, and G. Graefe. Experiences Building the Open OODB Query
Optimizer. In Proceedings o f the 1993 A C M SIGM OD International Conference on Manage
m ent o f Data, pages 287-296, 1993.

[10] D. Brill, M. Templeton, and C. Yu. D istributed Query Processing Strategies in Mermaid, A
Frontend to D ata Management Systems. In Proceedings of the First International Conference
on Data Engineering, pages 211-218, 1984.

[11] P. Bunem an, S.B. Davidson, G.G. H illebrand, and D. Suciu. A Query Language and Op
tim ization Techniques for U nstructured D ata. In Proceedings o f the 1996 ACM SIGM OD
International Conference on M anagement o f Data, pages 505-516, 1996.

[12] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, R. Fagin, M. Flickner, A. Luniewski,
W . Niblack, D. Petkovic, J . Thomas, J . W illiams, and E. W immer. Towards Heterogeneous
M ultimedia Information Systems: the Garlic Approach. In Fifth Int. Workshop on Research
Issues in Data Engineering - Distributed Object Management (RID E-D O M ’95), pages 124-
131, 1995.

[13] M. Castellanos and F. Saltor. Semantic Enrichm ent of Database Schema: An Object-Oriented
Approach. In Y. Kambayashi, M. Rusinkiewicz, and A. Sheth, editors, Proceedings o f the First
International Workshop on Interoperability in Multidatabase Systems (IM S 91), 1991.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isgsoft.com/products/Navigator/

[14] R. C attell and D. Barry. The Object Databse Standard: ODMG 2.0. Morgan Kaufraann. 1997.

[15] A. Chen. Outerjoin Optimization in M ultidatabase Systems. In Proceedings o f the 2 nd In ter
national Symposium on Distributed and Parallel Database Systems, pages 211-218, 1990.

[16] C. Chung. Dataplex: An Access to Heterogenous D istributed Databases. Communications o f
the A C M (CACM), 33(l):70-80, January 1990.

[17] C. Collet, M. Huhns, and W. Shen. Resource Integration Using a Large Knowledge Base in
Carnot. IE E E Computer, 24(12):55-62, December 1991.

[18] B. Czejdno, M. Rusinkiewicz, and D. Embley. An Approach to Schema Integration and Query
Form ulation in Federated D atabase systems. In Proceedings o f the Third International Con
ference on Data Engineering, pages 477-484, 1987.

[19] K.H. Davis and A.K. Arora. Converting a Relational D atabase Model into an Entity-
Relationship Model. In S.T March, editor, Entity-Relationship Approach, pages 551-572.
1988.

[20] U. Dayal. Processing queries over generalization hierarchies in a m ultidatabase system. In
Proceedings o f 9th International Conference on Very Large Data Bases, page 342=353, 1983.

[21] U. Dayal. Query Processing in a M ultidatabase System. In W. Kim, D. Reiner, and D. Batory,
editors, Query Processing in Database System s, pages 81-108. Springer-Verlag, 1985.

[22] U. Dayal and H-Y. Hwang. View Definition and G eneralization for Database Integration
in a M ultidatabase System. IE E E Transactions on Software Engineering, SE-10(6):62S-645,
November 1984.

[23] L. Demichiel. Performing Operations Over M ism atched Domains. In Proceedings o f the Fifth
International Conference on Data Engineering, pages 36-45, 1989.

[24] A. Dogac, C. Dengi, and M.T. Ozsu. Building Interoperable D atabases on D istributed Object
M anagement Platforms. Communication o f A C M (CACM), 41(9):95—103, September 1998.

[25] W. Du, R. Krishnamurthy, and M. Shan. Q uery Optim ization in a Heterogeneous DBMS. In
Proceedings o f 18th International Conference on Very Large Data Bases, pages 277-291, 1992.

[26] H. Duchene, M. Kaul, and V. Turau. VODAK Kernel D ata Model. In Klaus R. D ittrich,
editor, Advances in Object-Oriented Database System s, 2nd International Workshop on Object-
Oriented Database Systems, pages 242-261, 1988.

[27] C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan. M ultidatabase Query Optimization. D is
tributed and Parallel Databases, 5:77—114, 1997.

[28] D. Florescu, L. Raschid, and P. Valduriez. Using Heterogeneous Equivalences for Query
Rewriting in M ultidatabase Systems. In Proceedings o f the Third International Conference
on Cooperative Information Systems (CoopIS-95), pages 158-169, 1995.

[29] D. Florescu, L. Raschid, and P. Valduriez. Defining the Search Space For Query Optim ization
In A Heterogeneous Database M anagement System . In Under Review, 1996.

[30] G. G ardarin, B. Finance, and P. Fankhauser. Federating Object-Oriented and Relational
Databases: The ERO-DB Experience. In Proceedings o f the Second IFCIS International Con
ference on Cooperative Information System s (CoopIS 97), pages 2—13, 1997.

[31] C H. Goh, M E. Madnick, and M D. Siegel. Ontologies, Context, And Mediation: Represent
ing And Reasoning About Semantic Conflicts In Heterogeneous And Autonomous Systems.
Working Paper 3848, MIT Sloan School of M anagem ent, 1995.

[32] D. Goldhirsh and L. Yedwab. Processing Read-O nly Queries Over Views With Generalization.
In Proceedings o f 10th International Conference on Very Large Data Bases, pages 344-348,
1984.

[33] G sta Grahne and Alberto 0 . Mendelzon. T ableau Techniques for Querying Information Sources
through Global Schemas. In Catriel Beeri an d Peter Bunem an, editors, Database Theory -
IC D T ’99, 7th International Conference, Proceedings, Lecture Notes in Computer Science,
Vol. 1540, pages 332-347. Springer, 1999.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[34] J . G rant, W . Litwin, N. Roussopoulos, and T . Sellis. An Algebra and Calculus for Relational
M ultidatabase Systems. In Y. Kam bayashi, M. Rusinkiewicz, and A. Sheth, editors, Proceed
ings o f the First International Workshop on Interoperability in Multidatabase Systems (IM S
91), 1991.

[35] L. Haas, D. Kossmann, E. Wimmers, an d J . Yang. Optimizing Queries Across Diverse D ata
Sources. In Proceedings o f 23rd International Conference on Very Large Data Bases, pages
276-285, 1997.

[36] J . Ham m er and D. McLeod. An A pproach to Resolving Semantic Heterogeneity in a Federation
of Autonomous, Heterogeneous D atabase Systems. International Journal of Intelligent and
Cooperative Information Systems, 2 (l):51-83 , 1993.

[37] U. Hohenstein and C. Korner. A G raphical Tool for Specifying Sem antic Enrichment of Rela
tional Databases. In IF IP TC-2 Working Conference on Data Semantics (DS-6). 1995.

[38] H. Hwang, U. Dayal, and M. Gouda. Using Semiouterjoins to Process Queries in M ultidatabase
Systems . In ACM PODS, pages 153-162, 1984.

[39] L.A. Kalinichenko. M ethods and Tools for Equivalent D ata Model M apping Construction. In
Advances in Database Technology - E D B T ’90. International Conference on Extending Database
Technology, pages 92-119, 1990.

[40] M. Kaul, K. Drosten, and E. Neuhold. ViewSystem: In tegrating Heterogeneous Information
Bases by Object-Oriented Views. In Proceedings of the Sixth International Conference on Data
Engineering, pages 2-10, 1990.

[41] W . K ent. Solving Domain M ismatch and Schema M ism atch Problem s with an Object-Oriented
D atabase Programming Language. In Proceedings o f 17th International Conference on Very
Large Data Bases, pages 147-160, 1991.

[42] W . Kim, I. Choi, S. Gala, and M. Scheevel. On Resolving Schematic Heterogeneity In M ulti
database Systems. Distributed and Parallel Databases, l(3):251-279, 1993.

[43] W . Kim and W. Kelley. On View Support in O bject-O riented D atabase Systems. In Won
Kim, editor, Modem Database Systems: The Object Model, Interoperability, and Beyond, pages
108-129. Addison Wesley, 1995.

[44] W. Kim and J. Seo. Classifying Schematic and D ata Heterogeneity in M ultidatabase Systems.
IE E E Computer, 24(12):12-18, December 1991.

[45] R. Krishnamurthy, W. Litwin, and W . Kent. Language Features For Interoperability Of
D atabases W ith Schematic Discrepancies. In Proceedings o f the 1991 AC M SIGMOD Inter
national Conference on M anagement o f Data, pages 40-49, 1991.

[46] V.S. Lakshmanan, F. Sadri, and I.N. Subram anian. SchemaSQL: A Language for Interoper
ability in Relational M ulti-database Systems. In Proceedings o f 22nd International Conference
on Very Large Data Bases, pages 239-250, 1996.

[47] T . Landers and R. Rosenberg. An overview of M ultibase. In H J Schneider, editor, Distributed
Databases, pages 153-184. North-Holland, Netherland, 1982.

[48] A. Levy. Obtaining Complete Answers from Incomplete D atabases. In Proceedings o f 22nd
International Conference on Very Large Data Bases, pages 402-412, 1996.

[49] A. Levy, A. Rajaram an, and J. Ordille. Query Answering Algorithms for Information Agents.
In Proceedings of the 13th National Conference on Artificial Intelligence, AAAI-96,, pages
40-47, 1996.

[50] A. Levy, A. Rajaram an, and J. Ordille. Querying Heterogeneous Information Sources Using
Source Descriptions. In Proceedings o f 22nd International Conference on Very Large Data
Bases, pages 251-262, 1996.

[51] W . Litwin. MSQL: A m ultidatabase Language. Inform ation Sciences, 49(l-3):59-101, October
1990.

[52] W . Litwin and Ph. Vigier. Dynamic A ttribu tes in the M ultidatabase System MRDSM. In
Proceedings o f the Second International Conference on Data Engineering, pages 103-110,1986.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[53] L. Liu, C. Pu, and Y. Lee. An Adaptive Approach To Query Mediation Across Heterogeneous
Information Sources. In Int. Conf. on Cooperative Inform ation Systems (CoopIS), pages 144-
156, June 1996.

[54] Ling Liu. Query Routing in Large-Scale Digital Library Systems. In Proceedings o f the Fifteenth
International Conference on Data Engineering, pages 154-163, 1999.

[55] G. Lohman. Grammar-like Functional Rules for Representing Query Optimization Alternative.
In Proceedings o f the 1988 A C M SIGM OD International Conference on Management of Data,
pages 18-27, 1988.

[56] H J . Lu, B C. Ooi, and C H. Goh. On Global M ultidatabase Query Optimization. SIGM OD
Record, 21(4):6—11, December 1992.

[57] V.M. Markowitz and J.A. Markowsky. Identifying Extended Entity-Relationship Object S truc
tures in Relational Schemas. IE E E Trans, on Software Engineering, 16(8), August 1990.

[58] W. Meng and C. Yu. Query Processing in M ultidatabase Systems. In Won Kim, editor,
M odem Database Systems: The Object Model, Interoperability and Beyond, pages 551—572.
Addison-Wesley Publishing Company, 1995.

[59] W . Meng, C. Yu, and W. Kim. Processing Hierarchical Queries in Heterogeneous Environ
m ents. In Proceedings of the Eighth International Conference on Data Engineering, pages
394-401, 1992.

[60] W . Meng, C. Yu, W. Kim, G. Wang, T . Pham , and S. Dao. Construction Of Relational
Front-end For Object-Oriented Database Systems. In Proceedings of the Ninth International
Conference on Data Engineering, pages 476-483, 1993.

[61] Microsoft. The Com ponent Object Model Specification.
http://www.m icrosoft.com /oledev/olecom /title.htm , 1995.

[62] R. Miller. Using Schematically Heterogeneous Structures. In Proceedings of the 199S A C M
SIGM OD International Conference on M anagement o f Data, pages 189-200, 1998.

[63] R. Miller, Y. Ioannidis, and R. Ram akrishnan. Schema Equivalence in Heterogeneous Systems:
Bridging Theory and Practice. Information Systems, 19(1):3-31, 1994.

[64] R. Miller, Y .E. Ioannidis, and R. Ram akrishnan. The Use of Information Capacity in Schema
Integration and Translation. In Proceedings o f 19th International Conference on Very Large
Data Bases, pages 120-133, 1993.

[65] P. Missier. Extending A M ultidatabase Language To Resolve Schema and D ata Conflicts.
M aster’s thesis, University of Houston, 1993.

[66] P. Missier and Mark Rusinkiewicz. Extending a M ultidatabase Manipulation Language To
Resolve Schema And D ata Conflicts. In IF IP TC-2 Working Conference on Data Semantics
(D S-6), pages 93-115, 1995.

[67] A. M otro. Superviews: Virtual Integration O f M ultiple Databases. IEEE Trans, on Software
Engineering, SE-13(7):785-798, July 1987.

[68] A. Motro. Multiplex: A formal model for m ultidatabases and its implementation. Technical
Report ISSE-TR-95-103, Department o f Inform ation and Software System Engineering, George
Mason University, 1995.

[69] OMG. The Common Object Request Broker Architecture and Specification (CORBA). O bject
M anagement Group, 1992.

[70] OMG. The Common Object Request Broker Architecture and Specification (CO RBA). 2.0.
O bject Management Group, March 1995.

[71] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac. Dynamic Query Optim ization on
a D istributed Object Management Platform . In Proceedings o f Fifth International Conference
on Information and Knowledge M anagement (CIKM), pages 117-124, 1996.

[72] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-M olina. Object Fusion in Mediator Systems.
In Proceedings o f 22nd International Conference on Very Large Data Bases, pages 413-424.
1996.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microsoft.com/oledev/olecom/title.htm

[73] Y. Papakonstantinou, H. Garcia-Molina, and J . UlLman. Medmaker: A M ediation System
Based on Declarative Specifications. In Proceedings of the Twelfth In ternational Conference
on Data Engineering, pages 132—141, 1996.

[74] Y. Papakonstantinou, H. Garcia-M olina, and J . Widom. Object Exchange A cross Heteroge
neous Information Sources. In Proceedings o f the Eleventh International Conference on Data
Engineering, pages 251-260, 1995.

[75] Y. Papakonstantinou, A. Gupta, H. Garcia-M olina, and J. Ullman. A Q u ery Translation
Scheme for Rapid Implementation of W rappers. In International Conference on Deductive
and Object-Oriented Databases, pages 161-186, 1995.

[76] X. Qian. Query Folding. In Proceedings o f the Twelfth International Conference on Data
Engineering, pages 48-55, 1996.

[77] X. Qian and T F. Lunt. Semantic Interoperation: A Query M ediation Approa-ch. Technical
Report SRI-CSL-94-02, Com puter Science Laboratory, SRI International, April 1994.

[78] D. Rogerson. Inside COM. Microsoft Press, 1997.

[79] M. Roth, F. Ozcan, and L. Haas. Cost Models Do M atter: Providing Cost Inform ation for
Diverse D ata Sources in a Federated System. In Proceedings o f 25th In ternational Conference
on Very Large Data Bases, pages 599-610, 1999.

[80] M. R oth and P. Schwarz. Don’t Scrap It, W rap It: A W rapper Architecture fo r Legacy D ata
Sources. In Proceedings o f 23rd International Conference on Very Large D ata Bases, pages
266-275, 1997.

[81] E.A. Rundensteiner. Multiview: a M ethodology for Supporting Multiple V iew Schem ata in
O bject-Oriented Databases. In Proceedings o f 18th International Conference o n Very Large
Data Bases, pages 187-198, 1992.

[82] M. Rusinkiewicz. OMNIBASE: Design and Implementation of a M ultidatabase System. In
Proceedings o f the 1st Annual Symposium in Parallel and Distributed Processing, pages 162-
169, 1989.

[83] S.Agarwal, A. Keller, G. W iederhold, and K. Saraswat. Flexible Relation: an Approach for
Integrating D ata From Multiple, Possibly Inconsistent Databases. In Proc. 1 1 th Int'I. Conf.
on Data Engineering, pages 495-504, 1995.

[84] E. Sciore, M. Siegel, and A. Rosenthal. Using Semantic Values to Facilitate In teroperabil
ity Among Heterogeneous Inform ation Systems. AC M Transactions on Data-base Systems
(TOD S), 19(2):254-290, June 1994.

[85] A. Sheth and J. Larson. Federated D atabase Systems for Managing D istribu ted , Hetero
geneous, and Autonomous Databases. A C M Computing Surveys, 22(3):183—22>6, September
1990.

[86] L. Suardi, M. Rusinkiewicz, and W . Litwin. Execution of Extended M uitidatabase SQL. In
Proceedings o f the Ninth International Conference on Data Engineering, pages 641-650, 1993.

[87] V S. Subrahmanian, S. Adali, A. Brink, R. Emery, J . Lu, A. R ajput, T. Rogers, R. Ross, and
C. W ard. HERMES: Heterogeneous Reasoning And Mediator System. U npublished document,
University of Maryland.

[88] M. Templeton, H. Henley, E. Mar os, and D .J. Van Buer. InterViso: Dealing W ith the Com
plexity of Federated Database Access. VLD B Journal, 4(2):287-317, 1995.

[89] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases A n d The Design
O f Disco. In Proceedings o f the International Conference on Distributed C om puter Systems,
pages 449-457, 1996.

[90] S. Vinoski. CORBA: Integrating Diverse Applications W ithin D istributed H eterogeneous En
vironments. IEEE Communications Magazine, 14(2), February 1997.

[91] Gio W iederhold. Mediators In The Architecture Of Future Information System s. IE E E Com
puter, pages 38-49, March 1992.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[92] E. W ong and R. K atz. Logical Design and Schema Conversion for Relational and DBTG
D atabases. In P.P Chen, editor, Entity-Relationship Approach to System Analysis and Design.
1980.

[93] L. Yan and T . Ling. Translating Relational Schema with Constraints into OODB Schema. In
IF IP D S-5 Semantics o f Interoperable Database System s , 1992.

[94] L L. Yan. Towaxds Efficient and Scalable M ediation: the AURORA Approach. In Proceedings
o f the IB M C A SC O N Confemece, pages 15—29, 1997.

[95] L L. Yan and T . Ozsu. Conflict Tolerant Queries in AURORA. In Proc. 4th IFC IS Conference
on Cooperative Information Systems (CoopIS-99), pages 279—290, 1999.

[96] L L. Yan, T . Ozsu, and L. Liu. Towards a M ediator Development Environment: The AU
RORA Approach. Technical Report TR-96-21, D epartm ent of Com puting Science, University
of A lberta, August 1996.

[97] L L. Yan, T . Ozsu, and L. Liu. Accessing Heterogeneous D ata Through Homogenization and
Integration M ediators. In Proc. 2nd IFC IS Conference on Cooperative Information System s
(CoopIS-97), pages 130-139, 1997.

[98] L L. Yan, T . Ozsu, and L. Liu. M ediator Join Indices. In Seventh International Workshop
on Research Issues in Data Engineering: High-Performance Database Management fo r Large
Scale Applications (R ID E ’97), pages 51-59, 1997.

[99] C. Yu, C. Chang, M. Templeton, D. Brill, and E. Lund. Query Processing in a Fragmented
Relational D istributed System. IEEE Transaction on Software Engineering, 11(8):795-810,
1985.

[100] C. Yu, L. Lilien, K. Guh, M. Templeton, D. Brill, and A.L.P. Chen. Adaptive Techniques for
D istributed Query Optimization. In Proceedings o f the Second International Conference on
Data Engineering , pages 86-93, 1986.

[101] C. Yu, Y. Zhang, W . Meng, W. Kim, G. W ang, T. Pham , and S. Dao. Translation of Object-
Oriented Queries to Relational Queries. In Proceedings oif the Eleventh International Confer
ence on Data Engineering, pages 90-97, 1995.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

