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Abstract

This dissertation describes the AURORA project, that develops approaches and techniques for large-

scale data integration. The focus of the project is on the following:

1. Scalable mediation. Adding and removing data sources to/from the access scope of a data

integration system should be easy.

2. Flexible mediation. Specific properties of data sources, such as data models, query processing

capabilities, and availability, should be dealt with by the system at run-time.

AURORA consists of three components: (1) a two-tiered mediation model and flexible data model
support; (2) mediation methodologies and Mediator Author’s Toolkits (MATSs); and (3) query models
and processing techniques.

The two-tiered mediation model mandates that data integration be performed in two steps:
homogenization followed by integration. This model is designed to enable a divide-and-conquer
approach towards data integration. Data sources are homogenized independently and in parallel,
before they are integrated. AURORA provides specialized mediators to support homogenization
and integration. The general principle of designing AURORA mediators is “semi-automatic homog-
enization, automatic integration”. The homogenization mediators are equipped with a Mediator
Author’s Toolkit (MAT) to assist mediator authors in working with semantics. A MAT mandates a
mediation methodology that prescribes an approach of systematically identifying and resolving se-
mantic mismatches. AURORA integration mediators provide a framework for automatic integration
of homogenized sources.

AURORA provides mediators that support either the relational data model or an object-oriented
data model (ODMG 2.0). The flexible data model support in AURORA allows applications to select
data models according to their data access requirements. Moreover, sources can be integrated as long
as they support a relational or an object-oriented interface (by themselves or through a wrapper).
Thus, the amount of work in “upgrading” data model is reduced; this potentially allows a larger
variety of data sources to be integrated with less effort.

Query processing in various AURORA mediators employs different techniques for manipulating
data. In the homogenization mediators, query processing is based on Mediation Enabling Algebras

(MEAs), which provide operators to enable manipulation of data to remove a wide range of se-
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mantic mismatches. These MEAs are also used for algebraic query optimization. The integration
mediators deal with only instance level conflicts, since all other types of semantic differences have
been removed by homogenization. AURORA integration mediators employ an integration operator
that retains instance level conflicts and provide the applications with special query models, called
Conflict Tolerant (CT) query models, to deal with the conflicts at query time. The key is to provide
enough number of levels of tolerance without leaving the application overwhelmed.

Four types of AURORA mediators are described in this dissertation: AURORA-RH. AURORA-
RI, AURORA-OH, and AURORA-OI. The homogenization mediators, AURORA-RH and AURORA-
OH, are each equipped with a MAT. The CT query model used by the AURORA-RI mediator, and
related query processing techniques, is described in detail. The relational mediators have been im-
plemented. A prototype system that demonstrates the AURORA approach and techniques is also

described.
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Chapter 1

Introduction

A significant challenge facing the database field has been accessing multiple, heterogeneous data
sources. Connecting to multiple data sources from a single application is easy. but accessing them
transparently is difficult due to the heterogeneities in platform, structure, and semantics among the
sources. An Integrated Data Access Middleware Systermn (IDAMS) is a software system that provides
applications with one-stop data services using data from multiple heterogeneous and autonomous
data sources. IDAMSs are middleware systems; they are non-intrusive, respecting the autonomy
of the data sources involved, and they deal with the complexities of accessing data from multiple
sources on the applications’ behalf. IDAMSs support service views, which are interfaces through
which data from multiple sources can be accessed transparently. A service view may consist of a
loose collection of source schemas presented in a common data model acceptable to the applications.
In this case, the applications pose queries against multiple schemas that often ¢verlap in semantics;
mismatches and inconsistencies among these schemas must be dealt with at query time. More
often, a service view is integrated, allowing applications to access multiple sources as if they are
a single source. Research on IDAMSs dates back to the 1980s and has seen substantial progress
[47, 7, 51, 51, 5, 44, 6, 88, 12, 50]. Recently, this area of research is experiencing a resurgence due to
the advances in distributed computing technology and the fast growing availability of the Internet.
These advances give rise to new application scenarios and pose new requirements on IDAMSs. This
dissertation describes a project, AURORA [97, 94, 98, 95], that develops frameworks and techniques

to address these challenges.

1.1 Motivation

The availability of the Internet and the Web changes the way people use digital information; it gives
rise to new applications, such as electronic commerce and digital libraries, that use the Web as a
media for conducting business and exchanging information anytime anywhere. These changes bring

the following new dimensions (among others) into IDAMSs:
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1. Large scale of access scope. Highly distributed, on-line applications, such as electronic
commerce and digital libraries, demand access to a large number of data sources around the
globe for information gathering. This calls for a paradigm of scalable mediation, to allow large
number of data sources to be integrated in a dynamic and incremental manner. Scalability in

this context means the following:

o Integration of a large number of sources should have the same degree of complexity and
require the same level of expertise as integrating a small number of sources. For instance.

integrating 500 sources should be as easy as integrating 2 data sources.

o The effort involved in adding/removing a data source should be manageable. For instance,
tools and methodologies should be provided to assist the users in specifying how source

data should be transformed in order to be integrated.

8

Highly dynamic and diverse environment. Data sources come and go autonomously at
unpredictable rates and vary in availability and capabilities. Applications consuming the data
range from business applications that usually prefer the relational data model, to multimedia
applications that work with object data. These characteristics of the environment calls for a

paradigm of flexible mediation. Flexibility in this context means the following:

¢ Flexible data model support. Applications should be given the flexibility of using a data
model of their choice. The effort in upgrading data models of the sources for integration

purpose should be reduced.

e Dynamic access scope. Inclusion/exclusion of a data source from the access scope should
have no impact on the availability of the service view or the participation of other data

sources.

Existing IDAMSs are built with one of two paradigms: source-driven integration and application-

driven integration.

Source-Driven Integration

In this paradigm, an integrated service view is derived by resolving the various types of hetero-
geneities among the participating sources. Such a derivation is defined by an integration specifica-
tion, which references the structure and semantics of individual sources directly. Adding or removing
a source requires modification to this specification and/or to the service view itself. When the num-
ber of sources is large and the sources have unpredictable availability, the integration specification
becomes difficult to maintain. Federated database systems [47, 88, 5, 44, 12] and some mediator

systems [74] use this paradigm.
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Application-Driven Integration

In the application-driven integration paradigm, the service view is defined based on the application’s
view of data, regardless of the structure or semantics of the participating sources; it is a contract
of data service between the application and the IDAMS. For a source to participate in a service
view, the IDAMS must be able to “understand” the data provided by this source. Representative
systems using this paradigm are SIMS [6] and Information Manifold (IM) [50]. In SIMS, the service
view is a knowledge base that can be queried in the target applications’ terms. A participating
source describes its content in a domain model consisting of definitions of all the relevant terms and
values in a given ontology. SIMS then uses this knowledge for source selection and query planning
when processing queries. In IM, the service view is a relational view and a participating source
describes its content as a materialized view of the service view. In both SIMS and IM, sources join
and leave the service view autonomously without impacting on the availability of the service view
or the participation of other sources.

The application-driven integration paradigm does not remove any semantic or structural het-
erogeneities among the data sources but it allows for a divide-and-conquer approach towards data
integration: rather than examining a large number of sources and trying to piece them together to
form a service view, each source can be “hooked” into the service view independently. This effec-
tively decomposes the task of “integrating a large number of sources” into a set of smaller tasks of
“hooking individual sources” into a common service view. Conceivably, each source can be worked
on independently and in parallel. While this is a promising idea, various issues must be resolved
to make such a system practical. This dissertation addresses some of these issues, including the
following:

Easy participation of data sources. Making the source data understandable in the context
of a canonical application model (the service view) requires removal of a wide range of mismatches
in structure and semantics between the source schema and the service view. As demonstrated by
previous work [7, 85, 44, 41, 64], working with semantics is hard. Therefore, provision of tools and
facilities in support of this task is an important factor in usability of an IDAMS. IM does not provide
such facilities. SIMS provides a model building tool, but describing source data in a given ontology
requires a significant level of expertise.

The impact of data integration on query processing must be taken into account.
Although much is known about classifying and resolving semantic heterogeneities [44]. the impact
of this process on query processing is seldom discussed. Most previous approaches assume that an
IDAMS uses the same set of data manipulation operators as traditional DBMSs, although these
operators must be evaluated with different techniques since the operand data may reside in het-
erogeneous and autonomous sources. In order to entertain queries against the service views, an
IDAMS needs data manipulation operators that are unknown to traditional DBMSs. For instance,

in addition to select, join, and project, it may be necessary to apply functions to columns in a table,
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to transform table names into data values, and so on. It is important to define these operators,
and to incorporate them into an algebraic framework which enables algebraic or cost-based query
optimization in an IDAMS. Without this framework, service view queries may become extremely
expensive to evaluate in the presence of information overload.

Instance level conflicts must be dealt with. Instance level conflicts arise when sources
provide inconsistent data on the same application entity. Most systems dealing with large scale
integration, such as IM, do not deal with these conflicts. The reason may be that, to protect the
applications from the scale of the access scope, an IDAMS aims at creating a single-source illusion.
limiting treatment of instance level conflicts to detecting and resolving them before query evaluation.
Previous work has demonstrated that conflict detection and resolution is fundamentally expensive.
requiring retrieval and manipulation of large amounts of source data, and the situation gets worse
when the number of sources grows. However, it is unrealistic to assume full consistency among a
large number of autonomous sources; instance level conflicts must be handled in spite of the scale of
the integration. Since creating single-source illusion significantly limits conflict-handling options, a
compromise approach is established in AURORA by exposing the conflicts to the applications in a
controlled and easy-to-manage manner, and in coarse granularities. Such a technology will improve
the practical value of IDAMSs.

In this dissertation, the above-described issues are addressed within the context of the AURORA
project. AURORA is based on a 2-tiered mediation model that realizes the application-driven
integration paradigm. The goal of AURORA is to enable scalable mediation, so that adding and
removing data sources is easy, and efficient mediation, so that mediator queries can be processed

without retrieving irrelevant source data. Several enabling techniques are developed:

1. The Mediator Author’s Toolkits that assist in the tasks of making sources “understandable”
in the context of a canonical application model (the service view). These tools allow easy

participation of data sources in the access scope of a target service view.

2. The Mediation Enabling Algebras that are specially designed to support mediator query pro-

cessing and optimization.

3. Conflict tolerant query model and processing techniques for querying potentially inconsistent

data.

1.2 The AURORA Approach

The AURORA project consists of three components: (1) 2-tiered mediation model and flexible data
model support; (2) mediation methodologies and Mediator Author’s Toolkits (MATs); and (3) query
models and processing techniques. The general architecture adopted by AURORA is the mediator
architecture [91]. AURORA mediators cooperate with one another to achieve data integration; they

can be composed. However, AURORA mediators perform specific types of mediation prescribed by
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the AURORA mediation mnodel that defines the tasks involved in the data integration process. and

the relationships among them.

1.2.1 2-tiered Mediation Model and Flexible Data Model Support

The goal of mediation in AURORA is to support data access through service views. A service view
is a database schema designed to satisfy the data access requirements of a class of applications. For
these applications, the service view is a schema designed according to their view of data in a data
model they are familiar with. Given a service view, AURORA must enable the relevant applications
to access data residing in multiple sources through this service view, typically by entertaining queries
posed against it. AURORA achieves this goal by first establishing a mediation model, and then
developing techniques to achieve each task prescribed by this model.

AURORA models data integration as a 2-step process: homogenization followed by integration:
each step is performed by respective mediators (Figure 1.1). Each integration mediator supports
a pre-defined service view. Data sources can participate in one or more of these service views by
contributing data towards them. To do this, they must first be wrepped and then homogenized
against the service view(s) they want to participate in. Wrappers provide conformity in data model
and query languages of data sources; they do not deal with any other types of heterogeneities.
Homogenization removes idiosyncrasies of a data source so that it conforms to the target service
view in structure and semantics. If a source participates in more than one service view, it must be
homogenized multiple time - once against each target service view - but it needs to be wrapped only
once. Homogenization is where individual sources “adapt” themselves into a form that is ready to be
included in the access scope of the target service view; homogenization mediators can be thought of
as data adaptors. The result of homogenization is a homogenizing view that satisfies a few conditions,
prescribed by the AURORA’s mediation model, that ensure the data provided through this view be
interpreted appropriately by the target service view. Homogenization involves only one data source;
multiple sources can be homogenized independently and in parallel. After being homogenized, a
data source participates in the target service view by describing the homogenizing view it supports
to the relevant integration mediator. A data source can remove itself from the scope of a service
view by informing the relevant integration mediator that it contributes data towards this service
view.

An integration mediator is responsible for providing data through a pre-defined service view
using data contributed by participating sources through respective homogenizing views. Since all
the sources are homogenized before participating in the service view, integration is fully automatic.
In comparison, homogenization is 2 more difficult task and is assisted by AURORA tools.

AURORA’s mediation model realizes the application-driven integration paradigm. It defines a
divide-and-conquer approach towards data integration. In particular, it enables decomposition of

the data integration task into two smaller and simpler tasks: homogenization and integration. While
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Application 1 Application 2
Integration Integration
Mediator Mediator

Homogenization Homogenization Homogenization Homogenization

Mediator Mediator Mediator Mediator
I Wrapper I ’7 Wrapper I

Figure 1.1: The 2-tiered Mediation Model of AURORA

integration is automatic, homogenization requires human interference and it can be performed on
individual sources independently and in parallel. In this fashion, multiple parties can independently
contribute to the same integration effort. As discussed later, in Section 3.1.4, the mediation model
also facilitates the decomposition of complex technical issues in large-scale data integration systems.
such as query processing, into more manageable, simpler problems.

Traditionally, an IDAMS supports a canonical data model (CDM) as the only data model via
which data are accessed. The CDM is often chosen for its power of expressing resolutions of mis-
matches and for representing a large variety of data types. In recent years, object models have
been favored as the CDM by a number of systems [5, 89, 24, 44, 12]. However, based on the data
access requirements and other historical or practical factors, applications may prefer to use a cer-
tain data model. For example, the majority of existing database applications use a relational data
model. Forcing these applications to use an object data model may reduce the practical appeal of
an IDAMS. Furthermore, using an object model as the CDM may introduce the complexities of
object-oriented DBMSs even when it is not called for.

The AURORA architecture and framework are designed to allow applications to select a data
model that best satisfies their data access requirements. AURORA supports two popular data
models: relational and object-oriented. Each AURORA mediator is characterized by the type of
mediation it performs - homogenization or integration - and the canonical data model it supports -
relational or object-oriented. Figure 1.2 shows the various AURORA mediators. Necessary guidelines

and techniques are provided to allow these mediators to co-exist and cooperate, as described in

Chapter 3.
Canonical Data
Mediator Model Relational | Object-Oriented
Type
Homogenization AURORA-RH | AURORA-OH
Integration AURORA-RI | AURORA-OI

Figure 1.2: AURORA Mediator Classification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A general principle of designing AURORA mediators is “semi-automatic homogenization, au-
tomatic integration”. The activity of homogenization deals with a wide range of semantic and
structural mismatches between a source schema and a service view. This is a difficult task since it
requires dealing with semantics. AURORA homogenization mediators are equipped with a Mediator
Author’s Toolkit (MAT), which provides guidelines and facilities to a mediator author for performing
homogenization. MATs are further described in Section 1.2.2. AURORA integration mediators deal
with a small number of conflicts and are fully automatic; they have no MAT attached. All four types
of AURORA mediators have been designed and the implementation of two of themm, AURORA-RH
and AURORA-RI, have been completed. Implementation of AURORA-OH and AURORA-OI me-
diators is on-going and is beyond the scope of this dissertation. AURORA mediators are described
in Chapters 4 to 6.

1.2.2 Mediator Author’s Toolkit

Instance level conflicts arise when different sources record conflicting values about the same appli-
cation entity. Semantic and structural mismatches arise when sources model the same application
domain differently. Instance level conflicts are not handled until multiple sources “meet” at an in-
tegration mediator. All structural and semantic heterogeneities between a participating source and
the target service view must be resolved during homogenization. Previous research gives rise to two

approaches for dealing with structural and semantic mismatches:

1. Automatic, by using a knowledge base and/or ontology. The structure, semantics, and content
of a participating source must be incorporated into a knowledge base or described using an
ontology. The IDAMS is then responsible for automatic integration of all participating sources
by inferring relevance and correspondence among the source data using the knowledge base.

SIMS [6] takes this approach.

2. Manual, by means of a human using the provided language constructs tc resolve mismatches.
Significant progress has been made in classifying the types of semantic and schematic mis-

matches and in resolving them [44].

Describing the meaning of a source schema using a knowledge representation language or a given
ontology requires a significant level of expertise, making the automatic resolution approach difficult
to deploy. Comparing a source schema and a service view to identify all mismatches between them
and resolving these mismatches may overwhelm a human when the schemas are large, and when a
large variety of mismatches are present between the two schemas.

In AURORA, structural and semantic mismatches are dealt with by mediator authors, individ-
uals who have good knowledge of both the source schema and the target service view. However,
the mediator authors are provided with a GUI-driven Mediator Author’s Toolkit (MAT) to help

them to work with semantics. A MAT consists of two parts: a mediation methodology and a set of
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transformations that allow expression of resolutions of various mismatches. The mediation method-
ology guides the mediator author to identify and resolve mismatches in well-defined steps; in each
step, transformations specially designed for resolving certain types of mismatches can be used to
express the resolutions chosen by the mediator author. Intuitively, a MAT provides a skeleton for
constructing a mediator; the mediator authors must fill various parts of this skeleton using their un-
derstanding of the mismatches and the resolutions of their choice. The transformations they choose
are represented internally as expressions in Mediation Enabling Algebras (MEAs), algebra systems

that specialize in manipulating heterogeneous data, as described below.

1.2.3 Query Models and Processing Techniques

AURORA mediators entertain application queries and hence provide data services: they do so by
sending queries to relevant AURORA components, such as mediators and wrappers, and assemble
answers to the application queries based on the results returned by these components. Query pro-

cessing in different types of mediators requires different techniques to be developed.

Query Processing in Homogenization Mediators

AURORA homogenization mediators must be able to answer queries posed against the homogenizing
views - views generated by the homogenization process. Although much is known about classifying
and resolving semantic heterogeneities [44, 64] that may be encountered during homogenization, the
impact of these resolutions on mediator query processing is seldom discussed. AURORA homog-
enization mediators provide homogenization operators. These operators are specially designed for
transforming data during homogenization and they form algebras, called Mediation Enabling Alge-
bras (MEAs), that are suitable for query optimization and processing in homogenization mediators.
MEAs allow the impact of data integration on query processing to be identified and taken into

consideration. Work in this category includes the following:
1. Development of MEAs for each AURORA homogenization mediator.

2. Development of transformation rules for each MEA to facilitate algebraic query optimization

techniques for the corresponding mediators.

Homogenizing views as well as queries against them are expressed in MEAs. The view expressions
are used to modify a view query. The modified expression is then manipulated by an algebraic query
optimizer that pushes, whenever possible, the operations into the underlying data source so as to
cut down the volume of data fetched into the mediator. Data returned from the underlying sources
are further processed by the mediator to produce query results. In this process, MEA operators are

used to restructure, transform, and assemble data.

Query Model and Processing in Integration Mediators.
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Query processing in integration mediators not only requires MEAs to be developed, as in homoge-
nization mediators, it also requires techniques for dealing with instance level conflicts. The approach
employed by AURORA is to expose these conflicts to the applications at query model level.

Since integration mediators deal with homogenized sources, the only operator needed is an inte-
gration operator that matches and combines the homogenized data pieces provided by participating
sources, to produce integrated data suitable to be served to the applications. Both integration
mediators in AURORA, AURORA-RI and AURORA-OI, define such an integration operator.

Traditionally, an IDAMS attempts to create a single-source illusion, that is, it allows the applica-
tions to access the multi-source data as if they reside in a single-source, with no inconsistencies. To
follow this tradition, AURORA integration mediators would have to detect and resolve all instance
level conflicts without impacting on the query model. This is not a desirable approach since it can
be expensive and, fundamentally, little can be done to cut the cost [21, 15]. AURORA integration
mediators employ a new approach towards instance level conflict handling, called conflict tolerant
guerying. In this approach, instance level conflicts are not resolved at schema integration time,
rather, they are exposed to the applications, which deal with them using a conflict tolerant query
model. This query model defines query semantics based on possibly inconsistent data; conflicts are
tolerated to a few levels to be specified by the users at query time, and conflict resolutions are only
performed to produce conflict-free results. The key is to keep the query tolerance levels simple for
the applications to understand and to use.

A conflict tolerant query model, a CT query model, and related processing techniques have
been developed for AURORA-RI, the relational integration mediator. This query model currently
supports three levels of conflict tolerance. With this model, it is possible to reduce the overhead
of conflict detection and resolution and to develop new techniques to optimize query processing.
Fundamentally, the CT-query approach allows applications and the mediation systems to handle
conflicts at a coarse granularity and achieve better query performance when conflict resolution
requirements are relaxed and/or data contain occasional conflicts. CT query model and processing
techniques for the AURORA-OI mediator constitute a future research topic and are beyond the
scope of this dissertation.

It is conceivable that the CT-query model gives rise to new data manipulation operators that,
together with the data integration operator, form an algebraic framework that can be used as the
basis for optimized processing of CT-queries in an integration mediator. However, the current work
on CT-queries is not yet in this stage. Rather, the current work focuses on establishing the query
model itself and developing optimization strategies. The developed strategies are presented as query
optimization algorithms, rather than as algebraic transformation rules. Using formal MEAs to

optimize CT-query processing in AURORA integration mediators is an issue for further research.
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1.3 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 contains a review of previous work related to
AURORA. Chapter 3 contains a general description of AURORA’s architecture and a road-map
to the techniques developed. Chapter 4 describes the homogenization and integration frameworks
in the relational context. Chapter 5 describes the query processing frameworks and techniques
developed for the relational mediators. Chapter 6 describes the homogenization and integration
framework in the object-oriented context ( a query processing framework and techniques suite in
the object-oriented context similar to those described in Chapter 5 is beyond the scope of this
dissertation). Chapter 7 describes the current implementation of the prototype system. Chapter 8

contains conclusions and future work.

10
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Chapter 2

Related Work

In Chapter 1, a distinction is made between two paradigms of data integration performed by an
IDAMS: source-driven and application-driven. This is a high level distinction based on “what” an
IDAMS does. This chapter reviews “how” previous IDAMSs work. Even though many previous
systems perform source-driven integration, the architecture, model, languages, and query processing
techniques developed are relevant to AURORA. In this chapter, these works are reviewed and AU-
RORA is positioned with respect to them. More specific comparisons between techniques employed
by AURORA and previous work are included in later chapters when these techniques are described

in detalil.

2.1 Classification of Approaches

I[DAMSs facilitate data access through a service view, based on data contributed by a set of hetero-
geneous sources. They must have knowledge as to how the service view is to be derived from the
sources. This knowledge can be used to load data into the IDAMS if the supported service view
is to be materialized. If the supported service view is virtual, the IDAMS can use this knowledge
to process queries against the service view by decomposing these queries into subqueries, sending
the subqueries to various sources for execution, and using the returned data to assemble the query
answer. Based on the representation, acquisition, and use of this knowledge, previous approaches

can be classified into three categories:

1. Procedural integration. The knowledge is provided to the IDAMS as a derivation specification
constructed by a mediator author, who identifies and resolves all the structural and semantic
mismatches among the participating sources, and specifies how the service view is derived. The
system uses an underlying algebraic or logical framework to “execute” the integration specifi-
cation in order to derive view data. Systems in this category include Multibase [47], Mermaid
(88], MRSDM {51], Omnibase [82], Pegasus [5], UniSQL/M [44], MIND [24], HERMES ([87],
TSIMMIS [74], Garlic [12], IRO-DB [30], and many others.

11
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2. Intelligent integration. The knowledge is provided to the IDAMS as a canonical model of the
application semantics in the form of a knowledge base or an ontology. Each participating source
provides descriptions of the data it provides in terms of this canonical semantic model: these
descriptions are incorporated as part of the knowledge base. The IDAMS reasons about the
semantics of source data to determine how to match and merge them to derive data described
by the service view. Systems in this category include Carnot [17], SIMS [6], InfoSleuth [8], the
Context Interchange approach [31], DIOM [53], and others.

3. Declarative integration. The knowledge is provided to the IDAMS as a collection of source
descriptions, each specifying the relationship of a source schema to the service view. For
instance, a source schema could be described as a materialized view of the service view. As
another example, a source schema could be described as containing a collection of objects which
is a sub-extent of a class in the service view. The IDAMS does not reason about semantics,
but uses a mechanism that interprets the relationships of various sources to the service view
and “pieces” the source data together to produce view data. Systems in this category include

Information Manifold [50], DISCO {89], and others.

In the intelligent integration approach, adding a source into the integration scope means *hooking”
its description onto the underlying semantic model, without impacting on the service view itself, or
the participation of other sources. The drawback of this approach is that it requires significant levels
of expertise to construct source descriptions, which may make hooking a new source into the service
view a difficult task. If so, the integration process is not scalable since adding a source is difficult.
It is also not clear how this approach facilitates the processing of complex queries such as those
involving the use of aggregation functions and nested queries. Procedural integration systems often
do not facilitate scalable construction of the integration specification, making this paradigm weak
in its support for scalability of integration. Declarative integration systems are scalable, since each
data source can be described in regard to the service view independently. However, these systems
often provide fewer facilities for dealing with various mismatches between the sources and the service
view. Such facilities may require a rich set of constructs for describing a source schema in terms of
a given service view. The presence of these constructs may make it difficult, if not impossible, to
establish an algorithm for piecing together source data to produce view data.

AURORA retains the scalability of the declarative integration approach. while enhancing its
facilities for dealing with heterogeneities by incorporating features of the procedural integration
approach - namely, “procedural homogenization, declarative integration”. Once the heterogeneities
are identified, resolving them is relatively easy [42, 7]. The most difficult part in dealing with
heterogeneities is in identifying them in the first place, since this requires understanding, comparing
and matching of the “meaning of things”. Intelligent integration systems reason about semantics
based on source descriptions in order to identify and resolve heterogeneities automatically. Other

systems leave this task to a human, but provide facilities for resolving them once they are identified;
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AURORA falls into this category. However, AURORA differs from existing systems in that it
provides mediation methodologies to assist the mediator authors in systematic identification and
treatment of semantic and structural heterogeneities. As such, work on reasoning about semantics
is less relevant to AURORA than work on providing facilities for resolving heterogeneities. However,
for completeness of this survey, a brief review of the work done on reasoning about semantics is given
below.

Reasoning About Semantics. A good overview of various techniques for reasoning about the
meaning and resemblance of heterogeneous objects is given in [36]. In [64] and [63], the theory of
information capacity equivalence and dominance is used to develop tests that can be used to check
for correctness and other properties of semantic transformations. Intelligent integration systems such
as Carnot [17], SIMS [6], and InfoSleuth [8] use a knowledge base and/or ontology to “understand”
the semantics of various sources, to reason about it, and eventually, to integrate the sources based on
such understandings. Work in this category also includes context mediation [84], context interchange
[31], the query mediation approach [77], dynamic query routing for a digital library application [54],
query reformulation using semantic knowledge represented by integrity assertions and mapping rules
(28, 29], and others.

The rest of this chapter reviews the architecture, model, and language features developed in
procedural and declarative IDAMSs. These systems are developed in four areas of research: federated
database systems, distributed object management systems, mediator systems, and systems that deal
with dynamic integrations. Mediator query processing techniques are discussed separately in Section

2.6.

2.2 Federated Database Systems (FDB)

Federated database systems (FDBs) [47, 16, 5, 44, 88, 12, 24] represent a traditional paradigm of
building IDAMSs. FDBs perform procedural integration. Compared with declarative integration
systems, FDBs are characterized by the use of a monolithic integration specification that resolves a
wide range of semantic heterogeneities among a small number of participating databases.

This section contains case studies of a few representative systems, and a review of various areas
of research in the context of federated database systems. The case studies focus on the paradigm
and architecture of the systems. Specific technical issues are reviewed by category.

Traditionally, federated database systems are built based on a five-level extended schema archi-
tecture, as shown in Figure 2.1 [85]. A local schema is the conceptual schema of a data source,
referred to as a component database; it is expressed in the data model of the component database.
Hence different local schemas may be expressed in different data models. A component schema is
derived by translating a local schema. into a canonical data model. An ezport schema is a subset of
a component schema that is made available to the federation. A federated schema is an integration

of multiple export schemas. The ezternal schemas are the views exposed to applications.
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Figure 2.1: Schema Architecture of Federated Database

Based on whether the federated schema is a loose collection of imported schemas represented
uniformly in a common data model or an integrated schema, called a global schema, the federated
database systems are classified into two categories: tightly-coupled and loosely-coupled. Tightly-
coupled systems support a global schema via which queries against data in the federation can be
processed. Construction of this global schema requires that the semantic heterogeneities among
participating databases be resolved. Users who query the global schema are presented with a single-
source illusion. In loosely-coupled systems, the federated schema is a collection of possibly incon-
sistent schemas represented uniformly in a common data model. The users query this collection of
schemas using a multidatabase query language. Since the schemas are not integrated, heterogeneities
among them must be resolved by the users at query time. The distinction between tightly-coupled
and loosely-coupled systems is blurred in systems such as Pegasus and UniSQL/M. In these sys-
tems, schema integration is optional. Users can choose to perform integration to various degrees

and resolve other semantic discrepancies at query time.

2.2.1 Case Study: Pegasus

The Pegasus project [5] is built around the architecture given in Figure 2.1, but is not as elaborate.
The schema architecture of Pegasus is given in Figure 2.2 [5]. Implementation of this architecture
is given in Figure 2.3 [5].

Pegasus [5] uses an object-oriented, functional data model, Iris, as a framework for uniform

interoperation of multiple heterogeneous databases. The unifying data definition and manipulation
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Figure 2.2: Pegasus System Configuration

language is the Heterogeneous Object Structured Query Language, the HOSQL, which provides
statements to unify, manipulate, and query multiple heterogeneous databases.

A component database, referred to as a local database, must be registered with Pegasus and
its schema must be imported. Registration describes the types in the local DBMS, the network
protocols, network nodes, machine types, and so on. For each type of local database, Pegasus
provides a module, called local translator, that maps a local database schema into the Pegasus data
model and also translates queries expressed in HOSQL over this schema into local query language
(such as relational SQL). These modules are used to import local database schemas.

After being imported, multiple data sources can interoperate through Pegasus in that HOSQL
can be used to query the union of the imported schemas. Construction of integrated schemas
from multiple imported schemas is optional and deals with semantic and schematic heterogeneities
among the imported schemas. This integration is supported by specially designed HOSQL language
constructs. The major constructs are (1) creating supertypes of types defined in the underlying
database; (2) creating dertved functions; and (3) creating foreign functions. These constructs are

illustrated in the following example:

Example 2.2.1 [HOSQL for schema integration]

Suppose there are two imported types, Studentl and Student2, with functions Grade and Points
defined on them, respectively. Also assume that the two functions use different grading systems.
For instance, function Grade might return a value in {A, B, C, D, E}, while function Points returns

an integer value between 1 and 10. The user can define two functions, Mapl and Map2, to convert
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Figure 2.3: Pegasus Functional Layers

Points and Grade to a common grading system. The integrated type Student can then be defined

as follows:
Create Supertype Student of Studentl, Student?2;
Create Function Score(Student x) -+ REAL r AS

IF Studentl(x) THEN MAP1(Grade(x))
ELSE IF (Student2(x) THEN MAP2(Points(x))
ELSE ERROR

Type STUDENT is created as a supertype of imported types Studentl and Student2. The function
SCORE is a derived function. Functions MAP1 and MAP2 are foreign functions. O

As shown in Figure 2.3, a HOSQL query is decomposed into an operation tree whose operators
are commands for performing global joins, to pass parameters, and to synchronize execution of

parallel steps. The leaf nodes of this tree are queries against local databases. These queries are

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sent to the local translator module to be translated into the query language supported by the local
database. These translated queries are then sent to the local translator mappers that perform system
level mappings on the query before passing it to the Pegasus agent that runs on top of the local
databases. The local translator mapper and the Pegasus agent work together to submit the query
for execution and to collect the query result back into Pegasus. The query processing activities, as

well as global transactions, are controlled and synchronized by the global interpreter.

2.2.2 Case Study: MSQL

MSQL [51, 52, 34, 65, 86, 66] is designed as an extension of SQL for querying multidatabase sys-
tems. In MSQL, multiple databases are visible to the users who can refer to attributes, tables, and
databases. However, the users must also be responsible for the consistency of the data retrieved.
Location of data sources is made transparent to the users in that site-dependent access protocols are
transparent. The most important extension from SQL to MSQL is the notion of multiple queries,
which enables expression of multiple queries to several (related) databases in a single query. Central
to the multiple query facility are the concepts of multiple identifiers and semantic variables. A
multiple identifier is a means to refer to multiple relations/attributes using a single identifier, as
illustrated in Example 2.2.2. A semantic variable is a variable that ranges over multipie databases,
relations, or attributes, as illustrated in Example 2.2.3. These two concepts allow factorization of
single multidatabase queries into a set of elementary queries against individual databases. The main

features of MSQL are illustrated by the following examples.

Example 2.2.2 [Multiple identifiers in MSQL)]
Assume there are three bank databases, By, B> and Bj, each containing a relation client. A multi-

database BANKS can be created as follows:
CREATE MULTIDATABASE BANKS(B,, B2, B3)

To retrieve client information from all three databases, the following MSQL statement can be used:
USE BANKS
SELECT *

FROM client

In this query, client is a multiple identifier. At query processing time, this query is replaced by three

queries retrieving client information from the three databases, respectively. O

Example 2.2.3 [Semantic variables in MSQL]

Continue with Example 2.2.2, assume all three databases contain a relation that describes branches,
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but in B;, this relation is named branch, in B>, BR, and in B3, BRCH. The following MSQL
query retrieves all the bank branches on 101 Street:

USE BANKS

LET z BE branch, BR, BRCH
SELECT *

FROM z

WHERE street = “101”

In the above query, z is a semantic variable. At query processing time, the above query is replaced
by three queries produced by replacing = with branch, BR, and BRC H respectively. The use of
semantic variables enables expression of three queries against three databases in a single, compact

MSQL query. O

As one can infer from the above examples, to use the original MSQL correctly, the user must
have good knowledge about the scope of databases and the data they hold. In some later work
[65, 66], MSQL is extended to allow external functions, class attributes, implicit joins and type
casting. These are language constructs for users to resolve semantic mismatches among the imported
schemas concisely at query time. The query processor for this extended variety of MSQL must be

“intelligent” enough to expand, factorize and decompose queries.

2.2.3 Case Study: MIND

The METU INteroperable DBMS (MIND) [24] is an implemented FDB system that supports inte-
grated access to multiple heterogeneous and autonomous databases. MIND is able to access Oracle
7, Sybase, Adabas and MOOD - an object-oriented DBMS developed by the same group. Like many
other FDB systems, MIND is built around the 5-layer schema architecture, as shown in Figure 2.1.
The canonical data model and query language of MIND are object-oriented. MIND differs from
other FDB systems in that it uses CORBA as the infrastructure for managing the distribution and
system level heterogeneities. As such, the system has a distributed and object-oriented architecture,
as shown in Figure 2.4. All components in this diagram are built as objects that communicate with
one another via an object request broker.

The central components of MIND are two object classes: the Global Database Agent (GDA)
class and the Local Database Agent (LDA) class. Objects of these classes can be created by an

object factory. These objects are described in terms of their functionalities as follows:
1. A LDA object is responsible for the following:

e Maintaining export schemas provided by the local DBMSs. This schema is represented

in the canonical data model.
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e Translating queries received in the canonical query language to the query language of the
local DBMSs.

e Submitting queries to local DBMS for execution and collecting the query results.

2. A GDA object is responsible for:

e Parsing, decomposing, and optimizing the queries according to the information obtained

from the Schema Information Manager object.

e Global transaction management that ensures serializability of multidatabase transactions

without violating the autonomy of local databases.

When a user wants to query MIND, a GDA object is created by the object factory. The location
and implementation transparency for this object is provided by the ORB. A GDA object contains
an object of the Global Query Manager (GQM) class, which is able to process queries, and an object
of the Global Transaction Manager (GTM) class, which is able to execute global transactions.
The former decomposes the query into subqueries using information obtained from the Schema
Information Manager and sends these subqueries to the latter, which then cooperates with LDAs to
execute the subqueries and obtain results. As soon as partial results that can be further processed
are returned from the LDAs, a Query Processor Object (QPO) is created to process them. There
could be many QPOs running in parallel as needed.

MIND views each data source involved as an LDA object registered with an ORB. These objects
have a standard interface but, most likely, different implementations. Objects in individual databases
are not registered with the ORB, that is, they are not accessible via the ORB; they are only accessible

by the DBMS where they reside. For example, consider a data source storing Person information.
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With the MIND approach, the interface of Person objects is mot known to the ORB. This means that
MIND cannot pass Person objects around; it can only pass data that the ORB knows how to handle,
such as string, integer, and so on. In general, MIND does not allow registration of fine-granularity
objects. Hence, the way MIND uses CORBA is as an advanced communication backplane and is
orthogonal to the technical aspects of MIND, such as schema integration and query processing.
Schema integration in MIND is performed by DBAs using an object definition language that
allows specification of interfaces of objects in the global s<chema, and how they relate to objects
exported by various data sources. Query processing in MIND aims at maximizing execution paral-

lelism. This aspect of MIND will be further reviewed in Section 2.6.

2.2.4 Modeling and Language Features in FDBs

In their 1986 survey paper, Batini et al [7] investigated twelve methodologies for designing a single
conceptual schema based on a set of specific user-oriented relational schemas. These methodologies
are then compared on the basis of five commonly accepted conceptual schema design activities:
pre-integration, comparison of schemas, conforming of schemas, merging, and restructuring. The
work in this area does not address as many types of semantic heterogeneities as are known today
because it is aimed at designing a conceptual schema or external view based on a set of relatively
homogeneous, user-criented schemas.

Considerable work on modeling and language features for data integration has been done in the
context of federated database systems, including classifying semantic heterogeneities and proposing
resolutions; identifying and designing models and/or language features that allow expression of such
resolutions; and implementation of these features. Typically, primitives found in popular data models
are limited in their support of data integration [41, 46]. Object data models offer more facilities
but these models still need to be extended in order to be suitable for use in an FDB system. For
instance, DISCO [89] extended the ODMG object model #o allow a bag of extents, rather than
allowing a single extent for each object class; Garlic [12] introduced the concept of weak identities
to the ODMG object model, rather than insisting on unique and immutable object identifiers.

Previous work in this area includes [22, 67, 18, 51, 52, 66, 34, 40, 41, 45, 42, 83, 46]. These
approaches differ in the canonical data model, query language, and specific language constructs
provided for expressing database integration. The canonical data models employed range from
relational to object-oriented and logical.

The work reported in [22, 21] uses a specific notion of generalization to facilitate integration of
multiple databases. Given two types that originate from different data sources, a generalization type
can be defined over them. The derivation of instances of this generalized type must be defined. Such
derivation involves two steps. The first step is the outerjoin: of the subtypes on a merge condition.
This step specifies the population of the generalized type. The second step specifies how the functions

on the generalized type are derived from the subtypes’ function. The following example is taken
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from [21]. Assume there are two databases, both modeling ships, with ship being modeled by type
SHIP1 at sitel and by SHIP? at site 2. A generalized type SHIP is defined by the following:

derive SHIP from
for s in outerjoin of (s1 in SHIP1, s2 in SHIP2)
on merge condition ID1(s1l) = ID2(s2)
case s isin SHIP1 and notin Ship2
ID := ID1i(s)
weight := weighti(s)
case s isin SHIP2 and notin SHIP1
ID := ID2(s)
weight := weight2(s)
case s isin SHIP1 and isin SHIP2
ID := chooseAny(ID1(s), ID2(s))
weight := AVG (weightl(s), weight2(s))
endfor
end

The outerjoin of SHIP1 and SHIP? has the following attributes: ID1. ID2. weightl. weight2. Af-
ter the aggregation functions specified above are applied, SH I P has two attributes: /D and weight.
A query decomposition method and various query processing tactics related to this generalization
mechanism are described in [22, 21].

The Superview system [67] develops a set of schema restructuring operators that facilitate cre-
ation of superviews integrating the schemas of multiple databases. The operators meet, join, fold,
combine, connect manipulate generalization hierarchy. The operators aggregate and telescope manip-
ulate attribute hierarchy. The operators add and delete extend and reduce schema structure. This
approach assumes that all participating databases, as well as the superview, are represented by a
functional data model. Query processing is based on function translations.

The work reported in [18] uses eztended abstract data types to represent data domains. These
ADTs “know” how to convert a value in a native format into the canonical format. The ADTs
solve the domain-incompatibility problem that is common in multidatabase queries. When values
from different sources are to be compared, the ADTs are used to convert the values into canonical
representation and perform the comparison. An ADT also has other functions, such as suggesting
names of attributes and tables that might involve the data domain modeled by the ADT. These
ADTs hold a large amount of semantic knowledge and they form a domain knowledge base. Another
construct for representing semantic knowledge is connector, that describes how relations are seman-
tically related to one another. Connectors are defined using ADTs. A relational algebra extended
with connectors is then developed. This algebra includes operators such as Delete/Add Connector,
Delete/Add Relation/Attribute, Join Combine, Rename Relation/Attribute, Union Combine, and
Difference Combine. These operations are essentially relational manipulations enriched by the se-
mantics of connectors. The extended algebra can be used for both schema integration and for direct

manipulation of individual databases in order to formulate a query. The system takes the input
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from the user and generates queries that access participating databases.

The two approaches described above allow creation and querying of views that hide hetero-
geneities. They map queries posed against such views to source queries, but do not discuss the
optimization of this mapping. For instance, the impact of using ADTs on query processing is not
discussed in [18]. This issue will be further discussed in Section 2.6.

The ViewSystem [40] is an object-oriented approach for querying and integrating multiple data
sources, including file systems. This system allows the definition of ezternal classes that physically
reside in external sources. It offers several constructs for creating derived classes over existing.
external classes as well as local classes. The expressive and computational power of an object-
oriented data model, VODAK [26], is used in integration and query processing. Query processing in
ViewSystem is a hybrid of materialization and query decomposition. Depending on the integration
construct used in its derivation, a derived class defined for integration purpose decides whether and
how to perform data materialization or query decomposition when processing queries posed on it.
For instance, if the derivation involves aggregation functions, the class will decide to materialize,
rather than decompose. If the class is derived using disjoint union, then queries will be decomposed.
In the case of query decomposition, optimization issues are not discussed.

In [42], an extensive list of schematic conflicts and their resolution are given in the context of
the multidatabase system UniSQL/M. UniSQL/M extends SQL with language constructs that allow
creation of virtual classes which hide various types of heterogeneities.

[45] discusses language features for database interoperability; in particular, it discusses in detail
the cross-over schema mismatches, where concepts represented as relations or attributes in one
database are represented as data values in another. The paper proposes higher-order language
features to express resolutions to such mismatches. The work done in this paper has significant
impact on later work, such as SchemaSQL [46] that builds on the result of [43], but focuses more
on making the language features compatible with SQL and establishing practical implementation
techniques. [41] uses behaviors to resolve domain and cross-over schema mismatches. Domain
mismatches arise when a concept - for instance, money - is represented differently in different sources.
[41] describes language constructs in the context of Pegasus [5] that use an object-oriented database
programming language to express mappings between these different representations in an integrated
manner.

SchemaSQL[46] extends SQL for querying multiple heterogeneous relational databases. In tradi-
tional SQL, variables can only range over tuples in relations. SchemaSQL allows variables to range
over databases in a federation, names of relations in a database, names of attributes in a relation,
values in a column in a relation, as well as tuples in a relation (as in the usual SQL). This essentially
makes it possible to query meta data, as well as data, a relational database. Used as a view defi-

nition language, SchemaSQL allows sophisticated restructuring of relational databases to eliminate
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heterogeneities such as the cross-over schema mismatches discussed by [45]. A methodology for
implementing SchemaSQL as a non-intrusive middleware over existing relational databases is also
sketched.

A flerible relational model is developed in [83] for integrating data from multiple, possibly in-
consistent databases. This model is based on the concept of a cluple. Intuitively, a cluple is a set
of tuples that represent possibly inconsistent data on the same entity. That is, all tuples match on
identifier attributes, but may not match on other attributes. Cluples also record other information
such as the origin of component tuples, consistency status, and so on. A flexible relation is a set
of cluples. An algebra is described to query over flexible relations. That is, selection, project, and
Jjoin operations are defined over flexible relations. Intuitively, this algebra facilitates querying data
that is possibly inconsistent. This is in contrast to traditional query processing approaches where
inconsistencies are either ignored or assumed to be resolved completely by the use of aggregation

functions. However, implementation of the flexible relational algebra is not given.

2.2.5 Schema and Query Translation Techniques in FDBs

In FDBs, source schemas must be translated into a component schema represented in the chosen
canonical data model. Queries against the component schema must be translated to those against
the source schema. Hence the dual issue of schema and query translation have received much
attention. In FDB systems, such tasks are often performed by a translation module as part of
the FDB system [5]. More recently, such tasks are performed by a system component called the
“wrapper”. However, recent work on wrappers mostly focuses on wrapping semi-structured sources
[75, 80]; wrapping traditional sources is considered to be a mature technology. Nevertheless, this
area of work is a main component in the federated database technology. This category of work
includes [4, 19, 13, 39, 57, 92, 59, 93, 60, 101, 37]. A few approaches [19, 13, 57, 93, 37] concentrate
on semantic enrichment, that is, to discover semantics from a given schema and represent this
semantics as well as the schema itself in a semantically rich data model. Kalinichenko [39] gives
a formal notion of equivalence among various data models. [60, 101} provide schema and query
translations between relational and object-oriented databases. As part of the Pegasus project, [4]
describes a simple tuple-an-object schema and query translation scheme. Meng et al. [59] described
a general approach to schema and query translation between relational data model and data models

that contain hierarchical structures, such as IMS and some object-oriented database svstems.

2.2.6 AURORA and FDBs

All FDBs perform procedural integration, requiring a monolithic integration specification to be
built manually. Constructs are provided for use in expressing resolutions and integration in these

specifications, but usually no other assistance is provided. This means that FDBs typically have
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two drawbacks. First, construction of the integration specification requires working with semantics
of multiple source schemas to piece them together to form an integrated view. Without assistance,
working with semantics would be difficult. Second, construction of the integration specification does
not scale well; adding or removing a data source requires modification to the specification and/or
to the integrated view itself. When the number of sources involved is large, such modifications will
become difficult to manage. AURORA overcomes both of these drawbacks. AURORA does not
require a monolithic integration specification to be constructed. A service view is pre-defined by the
application requirements but the way in which data from multiple sources are combined together to
support this service view is not specified by a human; instead, this integration is performed by the
AURORA framework. To allow scalable integration, AURORA divides the integration process into
two parts - homogenization and integration - and uses two separate mediators to perform these tasks.
Homogenization requires a specification to be constructed manually by a mediator author, but it
concerns only one data source. The Mediator Authors Toolkits (M ATSs) are provided by AURORA to
assist in this construction. No mediator author needs to examine multiple data sources to piece them
together, as in the FDB paradigm. Integration is performed automatically, requiring no specification
to be constructed.

Most FDBs support a single canonical data model, requiring all applications using the FDB to
adopt this data model. AURORA provides the applications with the flexibility of choosing a data
model that best satisfies the applications’ data access requirements. Currently, both relational and
object data models are supported.

Technically, AURORA differs from FDB systems in that it defines new data manipulation op-
erators and query models that are specially designed for dealing with multi-source, heterogeneous
data - while most FDBs apply traditional data manipulation operators and query models to such
data. AURORA’s Mediation Enabling Algebras (MEAs) and the conflict tolerant query models are

new techniques that have not been explored by previous FDBs.

2.3 Distributed Object Management

In recent years, distributed object computing (DOC) platforms such as CORBA [69] and COM/DCOM
[61] have been used for managing distributed and heterogeneous applications. These platforms by
themselves do not resolve the fundamental issues encountered in building IDAMSs - such as iden-
tification and resolution of structural and semantic mismatches, and efficient processing of queries
against multiple, heterogeneous data sources. However, these platforms facilitate a significant level of
interoperation. For instance, using an Object Request Broker (ORB), objects residing in distributed
and heterogeneous environments can communicate and cooperate with one another to perform tasks

that are otherwise difficult to achieve. In the context of an IDAMS, two types of objects can be

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



considered to be distributed objects:

1. System components that perform certain integration tasks, such as schema/query translation.
By considering these components as distributed objects, an IDAMS can be built as a network
of cooperative, distributed, and possibly heterogeneous components. Such componentization
would allow the system to deal with the distributed nature of large-scale data integration
gracefully. For instance, multiple data sources are often situated on machines connected by a
computer network. It is desirable that wrappers and other system components reside on sites

where they can function most efficiently and cooperate with one another across the network.

2. Source data objects or integrated data objects. These objects can be considered as distributed
objects accessible through a DOC platform. By this means, data objects residing at various

sources can be composed to form objects that are able to perform more comprehensive tasks.

An IDAMS built with a distributed object management approach supports distributed objects that
are either system components or data objects. However, current IDAMSs employing a distributed
object management approach mostly support system components as distributed objects. For in-
stance, MIND [24] has an architecture consisting of system components that are built as CORBA
servers. Data objects residing in various sources are not accessible beyond their home system bound-
ary; they are manipulated by the local query processors, producing query results that are returned
to the client as tuples of data, rather than objects.

In AURORA, both types of objects are considered as distributed objects. AURORA's architec-
ture consists of components of various types; these components are built as COM components that
can be identified, activated, and manipulated through COM/DCOM. As described later, AURORA's
object-oriented homogenization mediator is able to return objects that are accessible through a DOC
platform, and the object-oriented integration mediator manufactures integrated objects that perform
methods by dispatching them to source objects that are able to perform them. Queries posed to
an AURORA-OI mediator may return objects as query results; these objects can be further ma-
nipulated by the applications, in the same way objects in an OODBMS, such as ObjectStore, are
manipulated. In this way, the full power of an object query language can be supported by the
integration mediator.

A difficulty to be investigated in implementing data objects as distributed objects is in exporting
large numbers of objects onto a DOC platform at run-time. For example, if an ORB is used as the
DOC platform, a large number of objects may need to be registered and unregistered at run-time.
It is not clear whether the current CORBA technology supports such activities. AURORA’s work
in this direction is at the framework level, as described in Chapter 6. Implementation issues are
not yet studied. From a general viewpoint, a carefully designed query decomposition and opti-

mization framework would reduce the number of objects to be registered/unregistered. However,
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work in mediator query processing in the object-oriented mediators is also beyond the scope of this

dissertation.

2.4 The Mediator Systems

Recently, many systems have been built with the mediator architecture [91]. A mediator is a middle-
ware system that satisfies certain language and interface requirements, so that it can be composed
with other mediators to perform more complicated tasks. In this sense, FDBs are mediators if they
are capable of accessing other FDBs and are open to being accessed by other FDBs. The difference
between a mediator and a FDB is not in what they do and how they do it, but in what they are
used for. Originally [91], mediators were used to provide domain knowledge; they had to be able to
express such knowledge, and exchange knowledge with other mediators using a common language -
often a knowledge representation language, a common ontology, or logical rules. Consequently, many
mediator systems built for data integration use logic for integration and query processing. FDBs are
often used to provide a virtual database, a database that appears to be a traditional database to the
application, but really gets its data by combining data residing at relevant sources. Consequently,
most FDB systems use a SQL/OQL-like language for data integration, and process queries using an
algebraic framework such as relational algebra and object algebras. Both mediators and FDBs can
be considered as IDAMSs. It is conceivable that a FDB be built as a mediator system. It is also
conceivable that an FDB act as a mediator in a mediator architecture. There is no fundamental
reason for a mediator and a FDB to employ different underlying technologies. It is for historical
reasons that mediators often employ a logic-based framework for integration and query processing,

while a FDB’s underlying framework is similar to that of a traditional DBMS.

2.4.1 TSIMMIS

The TSIMMIS project at Stanford [74, 75, 73, 72] represents a large step away from most previous
work. Rather than a semantically rich, structured data model, TSIMMIS uses a self-describing
model - the Object Exchange Model, OEM - for expressing integration and for querying. OEM is
an information exchange model; it does not specify how objects are structured, it only specifies how
they are sent and received.

In TSIMMIS, one does not need to define in advance the structure of a source object of interest,
and there is no notion of schema or object class. Each object instance contains its own schema,
it is self-describing. An OEM object consists of four fields: an object id, a label which explains its
meaning, a type, and a value. Fields that are not important are omitted from the representation(as
is often the case in this section). The following OEM object describes a person object. This object

has three components, component; _3, representing the name, office number, and the department of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the person described. The object given below has name “Fred”, office number 333, and he works for

the 7oy department:

< pl, person-record, set, {componentl, components, compan.e'n.tg,} >
< component,, name, string, “Fred”>
< components, office-number-in-building-5, integer, 333>

< components, department, string, “Toy”>
Each data source to be accessed is viewed as a collection of OEM objects in the above form, with no

predefined structure. Querying in OEM is via patterns of the form <object-id, label, type, value>,
where constants or variables can be put in each position. When a pattern contains constants in the
label (value) field, it matches successfully only with OEM objects that have the same constant in
their label (value). For instance, the following pattern would match successfully with person Fred

given earlier:
<person-record, {<name “Fred”>, <department “Toy™>}>

Essentially, this pattern matches with all person-records that have a component name with value
“Fred” and a component department with value “Toy”. Notice that this pattern matching assumes
no structure on the objects, as long as the object has the right label with the right value, it matches
successfully. This effectively makes the labels (person-record, name, office-number-in-building-5,
department) first-class citizens. Labels do not put any constraints on what types of queries are
acceptable, rather, they can be queried themselves.

Queries and view specifications in TSIMMIS are also formed using patterns. The TSIMMIS
Mediator Specification Language (MSL) is a rule-based language. For instance, the following rule

defines a view ToyPeople that contains names of all people who work in the Toy department:
< ToyPeople, {<Name N>}>:- <person-record, {<name N>, <department “Toy”>}>
The following query finds all persons who have name “Fred”:
FredPerson :- FredPerson:<person-record, {<name “Fred”>}>

In this query, FredPerson is an object variable. The formula to the right of :- says that FredPerson
must bind to all person-records with a sub-object by the label of name and value of “Fred”. The
symbol :- says that all such objects are included in the query result. Notice that the query result is
potentially heterogeneous, with objects having all sorts of structures, except that each object must
have a label person-record and a name sub-object with value “Fred”.

All data sources in the access scope must be covered with a TSIMMIS wrapper. TSIMMIS
provides a wrapper implementation toolkit to support fast generation of wrappers. These wrappers

are indeed an OEM query processor. The wrapper implementer is required to (1) describe the
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types of OEM queries that the source can handle using query templates; and (2) map these query
templates to local queries/actions at the data source.

Intuitively, OEM is flexible enough to represent data of any type, from unstructured random
records, to relational data, to complex objects. After all types of data are represented in OEM, they
can then be integrated. The TSIMMIS approach uses logic rules that transform and merge OEM
objects from various data sources to form a mediator view. This view can then be queried. Query
processing in TSIMMIS leverages deductive database techniques; it includes view expansion and
execution plan generation. In [74], various aspects of the OEM model are defined and discussed. In
[73], an approach for developing OEM wrappers for semi- or unstructured data sources is described.
In [73], an OEM-based mediation language and its implementation is described. This language
allows creation of integrated views in the mediator that removes various types of semantic conflicts.
In [72], an approach for object matching (referred to as object fusion in this paper) using OEM
is described. This approach allows resolution of instance level conflicts. An approach for global
optimization of queries posed against these “fused” objects is also described.

In the database community, OEM is also the representative of an emerging data model that is not
constrained by database schemas. This feature alone removes a major representational heterogeneity
among data sources. The labeled-tree structures like those in OEM can represent all sorts of data
structures equally well and have great potential in supporting integration of heterogeneous data.
Query and manipulation language, and optimization techniques, are being developed for this new

data model [11].

2.4.2 HERMES

HERMES [87] is a mediator system that uses a logical model for integration and query processing.
In a HERMES mediator, a data source to be accessed, called a domain, is modeled as a triple
< o,F,R >, where o is a set of values, F, a set of functions that the domain is able tc perform.
and R, a set of relations over elements of o. For example, for a relational data source, o consists
of all the tables as well as individual values stored in these tables; F includes the usual relational
operators project, select, and join, and R is a set of predicates over the tables. Domain calls to
a domain retrieves data from this domain. For example, a domain call to the relational domain

PARADOX could look like this:
PARADOX : project('parts’, “partid”)

This domain call asks the PARXDOX relational database to perform a project on table “parts” on
attribute “partid”. A domain call atom is formed by a small set of predicates taking domain calls

as input, for example:

is({“green”}, PARADOX : project('parts’, color))
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evaluates to true if all objects in parts have color green. A mediatory rule is of the form:
Ag: LUQ,T(J] — .41&...&.4,1

where A;’s are domain call atoms and [uo, 7o] is an annotation on uncertainty and time. In HERMES.
these rules are used to perform query, information extraction, information merging (called pooling).
and conflict detection/resolution over all the imported domains. A domain call caching method
is developed in [3] to improve query performance in an environment that involves distributed and
autonomous data sources.

HERMES supports domains of various types, including relational, spatial, text, and pictorial. In
order to set up a domain for a new data source, that is, to import a data source into HERMES, a
mediator author specifies a set of domain functions that can be accessed by the mediator, designs
a data structure to be used to hold the output of these functions, and implements procedures for
parsing the output properly to fill this data structure. Once imported, the HERMES mediator
language is used for extracting and merging information from multiple domains. This language is
based on mediatory rules (as described above) and has a Prolog-like syntax.

HERMES provides a mediator programming environment (MPE) that assists mediator authors
in constructing mediators. The task of constructing a mediator includes domain integration, that is,
importing of data sources, conflict resolution and information pooling. MPE provides toolkits for all
three tasks. The conflict resolution tooikit is interesting, and works as follows. The mediator author
specifies integrity constraints that disallow inconsistent data values. The toolkit. upon receiving this
constraint, generates all possible violations and, for each violation, it asks the mediator author to

provide a resolution. A set of commonly used resolution strategies is also provided.

2.4.3 AURORA and Mediator Systems

The original mediator architecture prescribes mediators providing data/knowledge services of spe-
cific kinds. These specialized mediators can then be composed to provide more comprehensive
services. Most mediator systems developed for data integration, such as TSIMMIS and HERMES,
provide a single type of mediator that is used to support services of different kinds. Such mediators
must provide a framework generic enough to achieve all kinds of data integration tasks. In contrast,
AURORA mediators are specialized; they are designed to perform either homogenization or inte-
gration. The frameworks employed by individual mediators are small, specialized, and easy to use.

This approach also allows enabling techniques tailored for specific integration tasks to be developed.
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2.5 Paradigms For Dealing with Highly Dynamic Environ-
ments

With the advent of the Internet and WWW, more and more information repositories have been
opened. These data sources are highly dynamic with varving query processing capabilities. The
usual approach of “understanding” each data source, integrate them, and then process queries is not
viable in this context due to the large number of sources present. For instance, federated database
systems often provide insufficient support for integrating a large number of data sources that varies in
availability. Earlier data integration systems also did not deal with semi-structured or unstructured
data sources. A few systems have been built to work with highly dynamic environments. These
systems typically provide features specially designed to cope with one or more of the problems
present in a dynamic integration scope.

DISCO [89] works with a set of dynamic data sources by facilitating easy hook-in of individual
sources, and by dealing with unavailable data sources at query processing time. It extends the
ODMG IDL to allow a bag of extents for a single interface type. Thus, adding a new source is done
by adding a new extent into the bag of extents of a global class. DISCO also proposes an approach
for dealing with unavailable data sources.

The DIOM system [53] accommodates the dynamic changes of the environment by identifying
relevant data sources, determining how these sources work together to provide data of interest, and
binding to each of them at query time. This is a query mediation approach similar to [77] but with
different underlying techniques. DIOM’s query processing engine uses an algebraic framework to
manipulate source data, while [77] uses logic.

The Information Manifold project {50, 48, 49] considers large number of data sources with varying
query capabilities. Assume there is a worldview at the mediator level. Most likely, this is a virtual
view; it is the way that the target applications would like to see the world. Each data source to
be accessed can be regarded as a materialized view of this worldview, but with capability records
attached describing the types of queries it can handle. Thus, the problem of answering a query
against the worldview is transformed to that of answering a query with existing materialized views.
with additional constraints. This problem is solved in [50] in relational context. Recently, this work
has been extended by [62], which allows expressing the materialized views using SchemaSQL. This
increases the ability of IM in dealing with structurally heterogeneous sources. Other related work is
the query folding approach [76], which allows queries to be answered using existing resources such
as materialized views, cached query results, or queries answerable by an existing query processor.
Integration of multiple sources in these approaches is scalable; it only means addition of a new
materialized view. Handling sources with limited query capabilities is a very useful feature in

accessing a wide range of information repositories such as those typically present on the Web.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



All of the above-reviewed systems have no or limited capabilities in dealing with instance level
conflicts. DISCO and IM assume that data from various sources are consistent. For DISCO. dealing
with instance level conflicts might be a matter of introducing more model/language extensions to
the ODMG model, but that is yet to be seen. It is not clear whether the underlying framework of
IM is able to deal with such conflicts. It is also not clear whether or how DIOMI deals with such

conflicts.

2.5.1 AURORA in Highly Dynamic Environments

There are two equally important dimensions to the problem of integrated data access in a highly
dynamic environment: the heterogeneities among the sources, and the sheer number of the sources.
It is difficult to support both dimensions. Systems with more traditional paradigms such as FDBs
and some mediator systems provide elaborate facilities for dealing with heterogeneities, but their
support for scalability is often insufficient. Newer systems geared towards integrating a large number
of dynamic sources are often weak in the facilities for dealing with heterogeneities. For instance, a
rich framework for value and structural conversion of source data is missing from IM, DISCO, and
DIOM, and none of these systems provides tools assisting in working with semantics. Moreover,
none of these systems deals with instance level conflicts.

Similar to IM, DIOM, and DISCO, AURORA is built with the goal of supporting large-scale
data integration in a highly dynamic environment. However, AURORA does not suffer from the
problems described above, as these systems do. With the 2-tiered mediation model, AURORA is able
to support scalable mediation without neglecting dealing with heterogeneities. This is achieved by
dividing the data integration into two sub-tasks: homogenization and integration. Homogenization
mediators deal with a wide range of semantic and structural heterogeneities. Conflict tolerant
query models supported by the integration mediators allow instance level conflicts to be dealt with

gracefully.

2.6 Query Processing and Optimization in IDAMSs

Algebraic query optimization is an important form of optimization and is the basis for cost-based
query optimization techniques. In the context of query processing for IDAMSs, algebras that are
suitable both for manipulation of heterogeneous data, and for use by a query optimizer, are of special
interest. Query optimization techniques for IDAMSs are also relevant. In this section, previous work
is reviewed with this perspective in mind.

Like traditional DBMSs, an IDAMS that supports queries over multiple sources, either via a
global schema or via a multidatabase query language, relies on an algebra that transforms and

integrates data from multiple sources. There are many levels at which this algebra can be discussed.
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Of interest to this thesis is the enabling algebra, the lowest level algebraic framework supporting
query processing: it must be simple, so that it can be manipulated by a query optimizer, but
it must also be expressive, so that it can be used to represent all the logical operations required
for transforming and assembling data. Operators in this algebra are referred to as the enabling
operators. For example, the enabling algebra in a centralized relational database usually consists
of selection, project, join, and union operators. In distributed relational databases, the algebra
is extended to include the semijoin operator, in order to manipulate distributed data efficiently.
[9] proposed an operator, “materialize”, for manipulating data in an OODB; this operator can be
transformed into a join and is believed to open up more query evaluation alternatives.

When processing a query that involves multiple data sources, the query is first translated into
an expression in the enabling algebra that only references imported objects. This expression is then
optimized and evaluated. In general, query processing and optimization in an IDAMS consists of

the following categories of issues:

1. Identifying the enabling algebra. Other than the usual data manipulations known to traditional
DBMSs, data integration may require new data manipulation operators to be developed. For
instance, one such operator has been identified and studied as the semi-outer-join operator,
proposed by [20], to allow efficient processing of queries posed against generalized types. This

operator will be further discussed later.

2. Algebraic rules for transforming expressions in the enabling algebra. Even if one assumes that
the enabling algebra of an IDAMS is no different from that of distributed database systems,
algebraic transformation raises new issues. For instance, in multidatabase query processing,
outerjoins followed by aggregation functions are required.(This combination is referred to as
generalization [21]). These are not new operators but they are expensive to evaluate in the
context of IDAMSs. In general, new transformation rules must be added to accommodate
any new enabling operators developed, and to transform expensive combinations of existing

operators (e.g., outerjoin and aggregation) into less expensive ones.

3. Cost modeling of global execution plans. Computing the cost of a query execution plan requires
knowledge about data volume, distribution, indices available, processing speed of various ex-
ternal sources, and the speed of communication links. Early work assumes these parameters
are available in the context of IDAMSs [10, 99, 38]. In reality, autonomy of data sources
determines that the parameters required for cost modeling are not necessarily available. and
the data sources are not as cooperative as sites in a distributed database. Fer instance, semi-
joins between autonomous DBMSs may not be as efficient as in distributed databases, since
it may be impossible to send data directly into the system buffers of the query processor of

an autonomous DBMS [56]. More recently, research in this regard attempts to cope with un-
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available knowledge for cost estimation by calibrating, sampling, and dynamically adjusting
existing cost estimations. Garlic {12, 35, 79] also builds facilities that allow wrappers to ex-
port cost information. These techniques indeed cope with specific situations encountered by

IDAMSs.

In the rest of this section, previous work is reviewed along the three dimensions described above.
The first two dimensions are relevant to the work on AURORA reported in this thesis. The third
is relevant to AURORA in general, but is not relevant to the work reported here. A brief review of

work in this dimension is included for completeness.

2.6.1 New Enabling Operators and Evaluation Strategies

[20] describes the use of semiouterjoins to process queries over generalized hierarchies in multi-
databases. The focus is on generalized types that involve aggregation functions. Consider the ship
example, as given in Section 2.2.4, and a query “select all SHIP that have weight of at least 55°. To
process this query correctly, one could first compute the weight attribute of each ship. This requires
fetching complete populations of SHIP1 and SHIP?2 from the respective sites they reside into the
global site; this operation can be very expensive. The semiouterjoin of SHIP1 by SHIP2 partitions
SHIP1 into two parts: the private part and the overlap part. The overlap part contains ships that
are also described in SHIP2. This part must be sent to the global site to be further evaluated. One
can apply local selection weightl > 55 at sitel on the private portion of SHIP1. Only the SHIP1
records that satisfy this condition are sent to the global site. After the semiouterjoin is completad
at sitel, the private or overlap part of SHIP2 can be sent back to site2 and similar procedures take
place there. Sometimes, local selection can even be performed on the overlap part as well. but this
depends on the type of aggregation functions used. This range of techniques are also described in [20)
and surveyed in Section 2.6.2. Hwang and Dayal [38] developed general algorithms for identifying
optimal schemes of using semiouterjoin for improving the performance of projection, selection, and
join over generalized types involving an arbitrary number of types. These algorithms assume that
all cost measures useful for cost modeling are available.

Goldhirsh and Yedwab [32] suggest that the traditional query modification approach is inappro-
priate for optimizing queries that involve generalized types (Section 2.2.4). Consider a query involving
type Person that is the generalization of types Student and Employee. The traditional approach
would always modify the query so that it can be decomposed into subqueries against types Student
and Employee. This paper argues that in a distributed environment, such queries can sometimes
be more efficiently processed by materializing Person rather than by performing query modification
to eliminate it. It is not necessary to materialize all the attributes of type Person. Inclusion of the
materialization-based query evaluation plans into the optimization space is also discussed.

A few papers generated from project Mermaid (more recently known as Interviso [88]) are closely
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related to general query optimization techniques in distributed relational database systems. These
techniques always assume that sta.tistical and system measures required for cost modeling are avail-
able. In the context of Mermaid, [ 10, 99] describe the general query processing strategies: semijoins
and replication. The cost model is extended to include these processing strategies, which are vari-
ations of SDD-1 algorithms and replication methods for query processing in distributed database
systems.

In [100], Yu et al. suggested two ways to improve query processing. First, use semantic knowledge
to remove unnecessary operations or simplify certain operations. Second, compare actual runtime
numbers such as relation sizes, data transfer rate, and processing cost with those estimated by
the static cost formulas, and update these formulas when they deviate from the actual numbers

drastically and consistently.

2.6.2 Algebraic Transformation Rules

As far as query processing is concerned, the most studied data manipulation operator is general-
ization (Section 2.2.4), which is usually equated to outerjoin followed by aggregation. An example
of generalization is the SHIP example discussed earlier. In that example, SHIP is derived as the
outerjoin of SHIP1 and SHIP?2 on their IDs, followed by aggregation functions. Both outerjoin and
aggregation functions are expensive to evaluate. In [20], Dayal described various algebraic tactics
to transform such expressions into less expensive ones. The main objectives of such transformations
are to distribute selections and joins over generalization, and to use semiouterjoin reductions dis-
cussed in Section 2.6.1. Distribution of joins is based on the rules that distribute selections. The
distribution of selections is discussed in more detail below.

Whether a selection can be distributed over a generalization is determined by whether the fol-

lowing equation holds:
040a AGG A (R1 33 R3) = 040a AGG 4(04,0,a(R1) T TA26.0(R2))

where & stands for outerjoin, AGG is an aggregation function, such as sum, average, min, and
maz. AGG 4 means that this aggregation function is used to derive value for attribute 4. 4; and
A are attributes in R; and R», respectively. The meaning of expression AGG4(R; T R») is the
following: for each tuple t € (R; & R-), derive a new attribute 4 whose value is computed as
t[A] = AGG(t[A,].t[As]). The attxribute weight in the SHIP example is derived this way. In [20].

the following rules are given to push the selection across AGG and &3:

o If AGG = chooseany(A;, A3), true distributivity holds; that is, the above equation holds with
6 =6, =86.

o If AGG = maz(A;, Aa), there are three cases:
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1. If 8 is >, then true distributivity holds; that is, the above equation holds with 8; =8, = 6.
2. If  is =, distributivity holds with both 8, and 8- being >.

3. If 8 is <, no distributivity at all.
o If AGG = min(A4;, A,), there are three cases:

1. If 8 is <, then true distributivity holds; that is, the above equation holds with 8; = 6, = 4.
2. If 8 is =, distributivity holds with both 8; and &» being <.

3. If 8 is >, no distributivity at all.

o If AGG = count(A;, A2), or AGG = sum(4,, 42), or AGG = average(4;, 42), no distribu-
tivity at all.

A more complete and extensive set of rules are given in [38]. The main extensions are in developing
distributivity under certain conditions when AGG is sum or avg. For instance, for the case of
AGG = sum(A;, 4»2) and @ is =, the above equation holds with both 8, and 6> being < if it is
known that A, and A, values are not negative. These rules help in further reducing the amount
of data that must be transferred to the global site where aggregation finally takes place. However,
the applicability of these rules is generally limited by the type of the aggregation function and the
selection predicate.

Chen [15] describes techniques to optimize outerjoins when no aggregation function is present.
that is, when data inconsistency is not present. Essentially, this work considers the simpler cases of
generalization, without aggregation functions. Let R = R;&5R>. R consists of three partitions: (1)
the join of R; and Ra; (2) R, tuples that have no matching tuple in R, padded with null values: and
(3) R» tuples that have no matching tuples in R; padded with null values. A one-sided outerjoin
is the union of (1) and (2) or (1) and (3). If both (2) and (3) are empty, the outerjoin becomes
a regular join. Regular joins are cheaper to compute than one-sided outerjoins, which are in turn
cheaper than outerjoins. In [15], Chen described rules that use the cheapest strategy to process a
query involving R. For instance, a global query referencing R can be processed without involving
R, at all if (1) no attribute of R, is involved in any predicates; and (2) all target attributes can be

found in R,.

2.6.3 Coping with Unavailable Optimization Information For Cost Mod-
eling

When accessing multiple autonomous database sources, information about source data may not be
available. Such information may include data sizes, selectivity, distribution, and any available fast

access paths such as indices. Different query processing and optimization tactics may be used in
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different sources. These factors make it difficult to identify an optimal execution plan that involves
multiple sources. Autonomy also makes the cooperation of the global query processor and the local
query processor difficult. A few approaches exist to cope with this situation. Lu et al. [56] proposed
to monitor subquery execution and compare the cost estimate of the global query optimizer with the
actual cost. The result of this comparison is then used for improving the global cost model and for
adjusting query execution plan at run-time. Du et al. [25] proposed a calibration method to deduce
the cost formulas for a given database. Assume that the cost of queries can be modeled by a set
of formulas with unknown coefficients. In order to derive these coefficients, a specially constructed
calibrating database is loaded into the local database and a set of queries are run against it. Cost
metrics of these queries are recorded and are used to deduce the unknowns in the cost formulas.
MIND, a multidatabase system reviewed in Section 2.2.3 develops some techniques in global

query optimization [27, 71]. These include:

1. Cost-based global query optimization in case of data replication. This technique deals with

site selection issues in cases when a subquery can be executed at more than one site.

2. Cost-based inter-site join optimization. This technique starts from a left-deep join tree and
attempts to transform this tree into a more bushy tree so that response time can be reduced
by exploiting parallelism. However, it is stated in [27] that the performance study performed
shows that the gain in performance cannot compensate for the complexity of rearranging the

tree to maximize parallelism.

3. Dynamic optimization of inter-site joins. This technique is still cost-based but is dynamic in
that it uses partial results at run time, adjusts cost estimation and determines the next step.

This approach reduces uncertainties in cost estimation.

Garlic [12] has produced significant work in cost modeling when querying diverse data sources [35,
79]. This work extends the rule-based query optimization technique proposed by [35], by providing
a framework for wrappers to export cost information to a degree chosen. In particular, wrappers
export such information using Strategy Alternative Rules, which are fired to produce alternative
plans and their costs. These plans are then evaluated by the Garlic query optimizer to choose
the optimal plan. The main appeal of this approach is that it provides wrappers with guidelines
for exporting cost information, and it also allows them to evolve to provide more information as it
becomes available. The Garlic query optimizer then takes the information provided by wrappers into
consideration at query processing time. This approach, combined with the calibration techniques

evaluated earlier, provides a good basis for query processing in IDAMSs.
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2.7 Summary

In this chapter, a survey of previous work is given, so as to position AURORA in respect to them.
AURORA differs from previous work in paradigm, mediation models, and the type of techniques
developed. Most of these changes in approaches are made to improve usability, scalability, and
efficiency. In the next chapter, the overall architecture of AURORA is given. A road-map to the
techniques developed in AURORA will also be provided.
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Chapter 3

The AURORA Architecture

This chapter describes the AURORA architecture. To start with, a detailed discussion on the design
principles of the two-tiered mediation model is given. The AURORA architecture is then described,
including an overview of AURORA mediators and how they work together. Finally, a road-map into
the enabling techniques is provided; these techniques will be the subjects of the later chaprers.
AURORA mediators perform a specific type of mediation - that of integrating data from multiple
heterogeneous sources. This is the only type of mediation of interest to AURORA. To distinguish
this type of mediation from the general mediation concept, the term data mediation is used. A data
mediation system is a system that performs data mediation. By nature, a data mediation system is
a specific kind of IDAMS - the kind built with mediator architecture. In the rest of this dissertation,

the term date medintion system is used to refer to the middleware systems to be constructed using

AURORA mediators.

3.1 AURORA Mediation Model

The ultimate goal of data mediation is to support a service view determined by the target applica-
tions’ data access requirements. To the applications, the service view is a global database schema
that is designed to suit their data access needs. AURORA mediators are responsible for providing
data according to this view, by transforming and combining data from participating sources. Fun-
damentally, AURORA has to achieve two things: to remove heterogeneities among participating
sources, and to combine source data in a meaningful way. These tasks are accomplished differently
by different data mediation systems.

A mediation model defines the tasks to be completed in a mediation effort, and the relationships
among these tasks. AURORA'’s mediation model is based on a perception of the heterogeneities
encountered when integrating heterogeneous data sources and how they should be handled; and a

perception of the relationship between source schemas and a target service view. The AURORA
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mediation model, shown in Figure 1.1, is a two-tiered model. It models data mediation as a two-step

process: homogenization followed by integration, performed by specialized mediators.

3.1.1 Two-tiered Mediation Model

The two-tiered mediation model is based on the following perceptions of the heterogeneities encoun-
tered during integration of large number of data sources and on the relationship of source schemas
to the service view:

Heterogeneities. Two categories of heterogeneities must be dealt with when integrating mul-
tiple data sources: schematic mismatches that arise when the same application domair is modeled
differently by different sources; and instance level conflicts that arise when inconsistent values on
the same application entity are recorded by different sources. Intuitively, the first type of mismatch
happens because sources “use different languages to talk about the same thing”. The second type
happens because sources “say different things about the same matter”.

Relationship between participating sources and the service view. A data source par-
ticipates in a service view when it is able to contribute data on some aspects of some objects of the
service view. This assumption covers most, but not all, scenarios of data integration. For instance,
this assumption excludes the scenarios where the age attribute of a person in the service view is
derived by taking the average of all the age values of this person provided by various sources. In this
case, no data source is perceived as contributing the “correct” age value on entity Person. Such use
of aggregation functions is often, not always, for the purpose of resolving instance level conflicts. In
AURORA, instance level conflicts are treated using a conflict tolerant query model, not aggregation
functions, as described in Chapter 5.

Data integration is achieved in AURORA through the following steps:

1. Wrapping. Build a wrapper around each data source so it “speaks”™ in a data model and

query language that can be understood by AURORA mediators.

2. Homogenization. Derive a view on top of each data source. This view conforms to the
service view in both structure and semantics, and is referred to as the homogenizing view.
This view describes some aspects of some of the objects in the service view. To derive this
view, all schematic mismatches between the sources and the service view must be resolved.
This process is referred to as the homogenization of the source. In AURORA, specialized

homogenization mediators support homogenization.

3. Integration. Devise a mechanism to answer queries against the service view using data
contributed by various sources through the respective homogenizing views. To do this, instance
level conflicts must be resolved. This process is referred to as integration. This process is

supported by specialized mediators, the integration mediators.
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Wrappers are data model/language translators; each makes a data source accessible to AURORA
mediators. However, wrappers do not deal with semantic or structural heterogeneities. A more
detailed discussion on AURORA wrappers is given in Section 3.2.1. Technology for wrapper con-
struction already exists and is not a focus of AURORA research; wrapper construction is treated as
an engineering issue in AURORA. The two tiers of mediation refer to homogenization and integra-

tion.

L)

3.1.2 Building A Data Mediation System with AURORA: A Scenario

Assume that a class of applications needs to access data residing at various data sources Si,..., S,
through a service view Vieryice, expressed using data model Dgeryice- Also assume that Vieryice
does not change but the list of sources is dynamic, new sources may be included, and previously
included sources may decide to not allow their data to be accessed by this class of applications. Once
the participating sources are identified, wrappers must be constructed for these sources. Wrapping
can be done independently and in parallel for each source. Wrappers must support a relational or
ODMG interface - whichever is most easily generated. Choice of a wrapper data model should be
independent of the data model employed by the target service view; AURORA is responsible for
accessing wrappers of various kinds. At the same time, a mediator author chooses an integration
mediator, My, that supports data model Dgervice, and initializes it with Vi yice. Once initialized,
My accepts application queries immediately although its access scope may be insufficient as far as
the applications are concerned, since My does not access any data source, directly or indirectly,
upon initialization. To expand the access scope to include desirable sources as fast as possible, one
or more mediator authors can be assigned the task of using a homogenization mediator supporting
data model Dgeryice to homogenize the data sources previously wrapped. After being homogenized,
a source informs the integration mediator My of its existence and is included in the access scope of
My automatically.

More scenarios using different types of AURORA mediators to construct a data mediation system
are given in Section 3.2.2. The mediation model, as described above, is designed to facilitate scalable
data integration, where adding and removing a source from the integration scope is easy. This is

discussed further in the next section.

3.1.3 Two-tiered Model and Scalability

To include a new data source in the access scope of a data mediation system, two issues must be

resolved:

1. Communication. It must be possible to “talk” to the data source. This is achieved by a wrapper

that removes idiosyncrasies of the data source in communication protocol, data model, and

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



query language.
2. Semantic integration. It must be possible to include the data source in the access scope of an

integrated view.

Scalable mediation should make adding or removing a data source to/from the access scope easy to
do. This in turn requires fast wrapper generation and scalable semantic integration, which requires

the following:

1. Sources can be added into, and removed from, the access scope without causing previous

integration effort to be aobsolete.

2. Adding and removing a data source from the integration scope should be made as simple as

possible.

Various enabling techniques have already been developed for rapid wrapper construction [73, 80].
As discussed in Chapter 2, previous work does not provide satisfactory support for scalable semantic

integration.

Data Integration

Automnatic Integration of homogenized sources

Homogenization i Homogenization Homogenization
of data source 1. of datasource2 | °*°°°° ' ofdata source N

Figure 3.1: Divide-and-conquer data integration of AURORA

AURORA facilitates scalable data integration by prescribing a divide-and-conquer approach
towards data integration. As shown in Figure 3.1, a data integration task is divided into v + 1
subtasks, where iV is the number of participating data sources, including /V homogenization tasks and
1 integration task. The /N homogenization tasks can be performed in parallel and independently of
one another. The integration of homogenized data sources is performed automatically by AURORA.
Homogenization of single data sources is significantly simpler than any integration effort that requires
examining multiple sources at once. Moreover, AURORA makes homogenization more manageable,
and hence potentially faster, by providing tools to assist in this process. Participating sources register
the data they provide through respective homogenization mediators; this datz will be integrated by
the relevant integration mediator automatically. Removing a source from the access scope only

requires the relevant registrations to be cancelled.
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3.1.4 Why Two-tiered?

The two-tiered model defines a divide-and-conquer approach to information integration. Such an
approach facilitates applications, such as electronic commerce, that require access to large numbers
of diverse data sources. It also allows the data mediation system to better manage the technical
complexity in large-scale middleware. An electronic commerce example is given below to illustrate

these points.

Two-tiered Mediation in Electronic Commerce

A virtual shopping mall is a typical electronic commerce (EC) application. A key component in
this application is the catalog system. Companies organize their catalogs differently; this gives rise
to a set of heterogeneous and autonomous catalogs. When the number of participating catalogs is
large, it is difficult for a shopper to locate items of interest. One approach is to require all vendors
to re-organize their catalogs into a common format and merge them into a central catalog that
allows customers to perform sophisticated searching without dealing with individual catalogs. This
requires re-engineering of existing catalogs. In general, vendors want to participate in the central
catalog without making changes to their existing ones. A wvirtual catalog that has the look and feel
of a central catalog but holds no physical data, is desirable. Upon a customer request, this catalog
retrieves relevant information from (multiple) individual catalogs and assembles an answer. Such a
virtual catalog should satisfy the following requirements: (1) it is up-to-date, but does not violate the
autonomy of the participating catalogs; (2) its search performance does not degrade as the number
of participating catalogs increases; (3) it allows easy inclusion of new catalogs and integrates with
other EC applications; and (4) it is easy to construct; tools should be provided to assist in this
process.

Typically, to include a supplier catalog in a virtual catalog, the supplier is first required to map
his or her catalog into a format required by the virtual catalog. Essentially, the supplier catalog must
be homogenized before participating in the virtual catalog. Homogenization is performed by suppliers
independently, referencing the common catalog format. Individual suppliers are not concerned with
inter-catalog conflicts, which are resolved at the central catalog level. Often, suppliers are provided
with a workbench to perform homogenization. This workbench is a homogenization mediator, while
the central catalog is an integration mediator. A supplier can participate in multiple virtual catalogs
requiring varying catalog formats. In this case, the supplier must use multiple homogenization
mediators.

AURORA’s two-tiered mediation model closely corresponds to the process of constructing vir-
tual catalogs. A mediation model suitable for building virtual catalogs must clearly define which
mismatches are to be resolved by the suppliers independently, and which mismatches are to be han-

dled at the central catalog level. Suppliers are responsible for removing mismatches between their
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catalog and the virtual catalog schema, and the virtual catalog is responsible for resolving instance
level conflicts, such as the same product bearing different names.

A virtual catalog effort can be initiated by a third-party broker who seeks to offer value-added
catalog services using AURORA mediators. The broker first designs a common catalog structure, its
data model and query language. To include a vendor in the virtual catalog, the broker homogenizes
the vendor’s catalog using an AURORA homogenization mediator. This process maps the vendor
catalog structure and semantics into those in the common catalog. After homogenization, it should
be straightforward to “plug” a catalog into an AURORA integration mediator that supports the
common catalog. While homogenization is a more complex process, the broker can hire a few people
to homogenize individual vendor catalogs in parallel. An integration mediator is where large number
of virtual catalogs merge but the integration is a simple mechanism. Overall, construction of the

virtual catalog is scalable.

Managing Complexities

Integrated access to a large number of highly heterogeneous data sources is complicated. There are
two aspects to this complexity: integration and query processing.

Complexity in integration. When there are 100 sources involving many types of mismatches
and conflicts, which one should be resolved first? Can several people work on the same integration
task? What kind of assistance is provided for working with semantic heterogeneities? Most previous
work focused on classifying mismatches and proposing resolutions, without prescribing the sequence
in which these mismatches are to be identified and resolved. Only systems that perform declarative
integration allow several people to work on the same integration task. Assistance for working with
semantics provided by these systems is insufficient.(For instance, neither IM nor DISCO provide
such assistance.)

Complexity in query processing. When a large number of highly heterogeneous sources are
involved in a query, there arises a complex optimization problem that is unknown to traditional data
management systems. Query optimization in middleware systems is known to be a difficult problem
even without considering the scale of the system [56]. In large scale middleware systems such as
virtual catalogs in EC, this problem is even more difficult, as discussed in Section 2.6.

AURORA’s two-tiered model enables better management of both complexities. AURORA’s
divide-and-conquer data integration approach helps in managing the complexity of integration. In
query processing, AURORA’s two-tiered mediation model enables the decomposition of the query
processing issue into two smaller problems: query processing in homogenization mediators and in
integration mediators. As shown in Chapter 4, each type of AURORA mediator uses a specialized

Mediation Enabling Algebra (MEA) to facilitate efficient query processing.
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3.2 AURORA Architecture

This section describes the general forms of AURORA mediators, including data model, query lan-

guage support, interfaces, and also how they work together to facilitate data mediation.

3.2.1 Data Sources and Wrappers

Data sources can be of any type but they must be covered with a wrapper that facilitates accessing
of the source through an ODMG [14] interface or a relational interface, whichever is most easily
generated. ODMG has the modeling and querying power to manipulate and query relational data as
sets of “structs”. Such OQL queries can be translated to SQL queries in a straightforward manner.
Generally, AURORA’s homogenization mediators, which are the clients of wrappers, can access
either ODMG sources or relational sources. It should be possible to wrap up sources as read-only
or updatable. Only the read-only wrappers are considered in AURORA.

AURORA employs “thin” wrappers in that the schema presented to the world by a wrapper is
a normal relational or ODMG schema with no restrictions. Wrappers do not perform any semantic
translation, but only syntactic mappings that make the data in the source accessible in the relational
or ODMG model. Wrapper generation issues are not investigated within the AURORA project;
others have investigated this problem [75, 80].

AURORA uses commercial middleware products to build wrappers. As an example of such
a wrapper, consider a commercially available middleware system - the ISG Navigator [2] - which
accesses any data source with an OLE-DB provider and adds SQL capabilities to it if it does not
have it. ISG Navigator is an OLE-DB provider itself and hence supports the standard OLE-DB
interfaces. A data source such as a spreadsheet may have an OLE-DB provider but may not support
SQL queries. Once “wrapped” with ISG Navigator, this source can be accessed through OLE-
DB interfaces using SQL. An application can access this source even if it has no knowledge of

spreadsheets. ISG Navigator as a wrapper is illustrated in Figure 3.2.

3.2.2 AURORA Mediators As Middleware Components

As described in Section 1.2.1 and shown in Figure 1.2, AURORA provides specialized mediators
supporting flexible data models. Like other mediators, the AURORA mediators and wrappers can
be composed to perform increasingly complicated data mediation. This section discusses various
scenarios of such compositions.

In the AURORA context, when mediator M composes with M, one of them will access the
other to make use of the data the latter mediator is able to serve. However, AURORA mediators
are specialized, the integration mediators are able to access multiple other mediators, and the homog-

enization mediators are able to deal with single sources. Generally, AURORA mediator composition
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Figure 3.2: ISG Navigator as a Wrapper

must follow the following rules:
1. Integration mediators can only access homogenization mediators.

2. Homogenization mediators can access mediators of any kind, including wrappers, integration

mediators, and other homogenization mediators.

3. Mediators that support an object data model should have the built-in capability of accessing

those supporting the relational data model, but not vice versa.

A data mediation system can be constructed by using a network of mediators that cooperate
with one another to provide an integrated data service. The use of AURORA mediators in building
middleware is illustrated by Figures 3.3 and 3.4. The left of Figure 3.3 illustrates a scenario where
AURORA mediators supporting the relational data model are used to construct a data mediation
system that provides a relational service view. The diagram on the right of Figure 3.3 illustrates
a scenario where all mediators support an object data model. Figure 3.4 illustrates how mediators
supporting different data models can be composed. In this diagram, sources 1 and 2 are wrapped to
support the relational data model. These two sources are first homogenized with respective relational
homogenization mediators and then integrated with a relational integration mediator. Eventually.
these sources participate in the object-oriented mediator at the top of Figure 3.4. To do this. the
relational integration mediator - the left-most RI mediator - is treated as a relational source and is
homogenized by an object-oriented homogenization mediator before it is composed with the target
OI mediator on the top of the diagram.

Generally, a mediation scenario is determined by the data model of the service view and that of
the data sources. Sources can be wrapped with a relational wrapper or an object-oriented wrapper,

whichever is most conveniently built. There may be many types of data sources but after they
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are wrapped, there are only two types of sources as far as AURORA mediators are concerned:
relational and object-oriented. The service view can be relational or object-oriented. Therefore,
various mediation scenarios can be summarized in Table 3.1. Each entry in this table refers to a
diagram that depicts an example composition of AURORA mediators supporting the corresponding
mediation scenario. Most entries in this table have been explained in the previous paragraph. The
N/A entries in this table represent scenarios that cannot be realized using AURORA mediators.

These are scenarios where the service view is relational but one or more of the sources is object-

oriented.

Application/Use

Ol
R
W \%4 w
O O A

Figure 3.3: AURORA Application: uniform

Source Wrapper

Relational Object-oriented Mixed
Service View
Relational Figure 3.3: left N/A N/A
Object-oriented Figure 3.3: left | Figure 3.3: right | Figure 3.4

Table 3.1: AURORA’s Flexible Data Model Support

3.2.3 Mediator Author’s Toolkits (MATs) in AURORA

A general design principle of AURORA mediators is “semi-automatic homogenization, automatic
integration”. The activity of homogenization deals with a wide range of semantic and structural
mismatches between a source and a service view; this activity requires a mediator author to work
with semantics. All AURORA homogenization mediators are equipped with a Mediator Author’s

Toolkit (MAT), which provides guidelines and facilities to a mediator author, performing homogeniza-
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Figure 3.4: AURORA Application: mixed

tion. AURORA mediators with MATs are illustrated in Figure 3.5. A MAT provides a user-friendly
interface that helps the mediator authors to perform homogenization systematically. It gathers
various semantic knowledge from the mediator authors and stores it in an internal repository; this
knowledge will be used by the homogenization mediator for query translation and processing. AU-
RORA integration mediators deal with a small class of conflicts and are automatic, requiring no

user interference in handling semantics; they do not have M ATs attached.

3.3 Semantics of Integrated Data Services

Using the framework presented by [33], an integrated data service is provided as a global database
whose schema is a service view in AURORA terms. This global database is virtual, storing no data.
An integration mediator is in charge of accepting queries written in terms of this global database.
translate it to queries against various sources, and assemble a query answer.

Semantics of well-known database query languages are defined based on concrete databases,
databases that store data according to a schema. Generally, one can assume that, given any concrete
database D using a well-known data model, such as relational data model or the object-oriented
data model, and a query, @, written against the schema of D, in a well-known query language, such
as SQL or OQL, that is compatible with the underlying data model of D, the answer to @ using D,

answer(D, @), has a well-understood meaning.
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Figure 3.5: An AURORA Workbench

Since the global database in systems such as AURORA is virtual, semantics of queries posed
against this database gives rise to the following question: what is the meaning of a query against a
wirtual global database? Although the global database is virtual, the participating sources are not
virtual (when viewed as a data source). Fundamentally, this set of sources implicitly represent a
global database. If one can construct the global database from the sources, then the semantics of
queries posed against the virtual database is the same as those posed against any database where
schema and content matches the constructed global database. Hence, before answering the question
posed at the beginning of this paragraph, the following question must be answered: Given a set of
data sources, is there always one and only one global database? If so, what data are in it? The rest
of this section answers this question without using a formal model of semantics.

In AURORA, the answer to this question is affirmative. Each data source is homogenized by a
mediator author, producing a homogenizing view. This view is derived procedurally by the mediator
author using operators of her choice; it has well-defined semantics and can be materialized easily.
Formally speaking, one can assume that for any given data source, S, there exists a function, Homg,
that maps S to a database instance. This instance, Homg(S), is referred to as the homaogenized
data source due to S. In practice, function Homg is constructed by a mediator author working to
“hook up” S to a chosen global database, using the AURORA homogenization facilities.

Once homogenization of all sources is completed, an integration mediator supporting the tar-
get service view also obtains a function Fragments, that maps each global relation name to one

or more source relation names. That is, given any global relation name, N, Fragments(N) =
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this section, HomRel(S.N) is used to denote the relation named N in Homgs(S).
Given a service view V containing relation definitions RY,...., RY, and a set of source databases
S = {S1,....,Sm}, the global database implicitly represented by S, with schema V. contains an

instance for each relation defined in V,. The instance of global relation RY is derived as follows:
inst(RY) = MJ(PID(R?),R:,....,RL)

where PID(RY) is the plug-in identifier of global relation R{, as specified in V;, R} = HomRel(S};.N}),
Fragments(R?) = {S{.N{,...,S:.N:}. For now, it is sufficient to think of the plug-in identifier as
the primary key of the global relation. The concept of a fragment is described in more detail in
Chapter 4. For the purposes of this section, a fragment can be considered as a sound, but not
necessarily complete, view of a global relation, in terms of the framework described in [33].

The construction of a global database is deterministic, although it depends on the availability of
two functions: PID(R), which returns the plug-in identifier of global relation R, and Fragments(R),
which returns the set of source relations that are fragments of R. As described in Chapter 4, in
the AURORA framework, PID(R) must be provided as part of the service view definition, and
the Fragments function is constructed automatically, upon completion of homogenization of all
participating sources, by AURORA integration mediators that keep track of relationships between
source relations and the target, global, relations. Intuitively, these two functions are made available
by AURORA’s mediation model. In other words, the mediation model of AURORA requires that
the mediator authors provide these functions. In practice, the mediator authors are required to
provide enough information so that these functions can be defined.

A few properties of the global database thus constructed are of interest, these include the fol-

lowing:

1. Schema coverage: Whether the global database schema can be derived from the source database
schemas. On this property, it is assumed that the sources collectively provide a full coverage.
Intuitively, this means that it is assumed that the sources collectively “have something to say

about every domain of interest in the global schema”.

2. Entity coverage: Whether the global database contains information on all entities of interest
according to the semantics of the global schema. Currently, it is assumed that the sources
collectively provide full entity coverage. This is a reasonable assumption. If the opposite is
assumed, then one can assume that there is a “more complete” database, containing data on
entities that can not be found in the known sources. These entities would not be of interest

since their validity can not be verified.

3. Data coverage: Whether the global database contains “unknown” values and how these values

are represented. This is a more complicated issue. In AURORA, it is assumed that data
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coverage is partial and unknown values are represented as null values. Moreover, no atomic
predicate evaluate to true if it is applied to a null value. A related issue is the problem
of instance level conflicts in the global database. It is not clear whether these conflicts are
considered and how in [33]. In AURORA, conflicts are retained in the global database, and

the users query the database with the conflict tolerant querying facilities.

Once a global database is constructed, queries are answered using this database with well-known
semantics. If the service view is relational, then the query semantics can be formally defined. If the
service view is object-oriented, then the query semantics should conform to the standard chosen.
In AURORA, OO query semantics should conform to the semantics of OQL queries as defined in
the ODMG 2.0 standard {14]. Conflict tolerant querying in AURORA causes some extension to the
well-known query semantics but these extensions are described in detail in Chapter 5.

As pointed out by [33], in systems such as Information Manifold [50], due to the type of data
sources considered (sources may provide data that is irrelevant to the semantics of the global view),
there may be infinite number of possible global databases. Hence the semantics of queries in these
systems require new techniques to define and evaluate. In contrast, query semantics in AURORA
raises fewer issues once the semantics of a global database is defined. The next paragraph describes
AURORA in the terms of [33].

It is the mediator authors’ responsibility to make sure that all the relations in homogenizing
views are sound views of global relations, views that contains only tuples that fit into the global
schema in terms of semantics. This means that all data sources are open, providing a true, although
not necessarily complete, model of the world of interest. Consequently, the collection of data sources
is always consistent. It is currently a conjecture that the query answers AURORA produces (modulo
conflicts and CT querying) correspond to the certain answers, as described by [33], but this is yet to
be proven. The other type of query answer, the possible answer, will be infinite and does not make

sense.

3.4 Enabling Techniques in AURORA: A Roadmap

Each AURORA mediator requires a suite of enabling techniques. At the core of a mediator is a
Mediation Enabling Algebra (MEA) that provides Mediation Enabling Operators (MEOQOs) that are
suitable for manipulation of heterogeneous and autonomous data. MEAs must also be suitable for
query processing in that they should facilitate optimized processing of mediator queries. Typically,
a MEA consists of operators found in algebras that manipulate single-source data, such as relational
algebra or object algebra, together with MEOs specially designed in AURORA for data manipulation

required by homogenization or integration. The development of a MEA involves the following tasks:

1. Development of a mediator query rewriting algorithm to produce query evaluation plans

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(QEPs) in the MEA;

2. Development of query transformation rules in the MEA that potentially allow optimization of

the above-generated QEPs;
3. Design of a query optimization strategy; and
4. Development of techniques for evaluating expensive MEQOs efficiently.

Different mediators require different MEAs, depending on the type of mediation they perform and
the data model they support. For homogenization mediators, a Mediator Author’s Toolkit (MAT)
must also be developed. This involves the design of a homogenization methodology, and a GUI-
driven toolkit to support this methodology. The design of a MAT often proceeds that of a MEA,

since it identifies the types of data manipulation required.

Technique suites are complete for AURORA-RH and AURORA-RI. The high-level design of a
MAT for AURORA-OH is also complete. Complete development of MEAs for AURORA-OH and
AURORA-OI are limited by the lack of a well-accepted object algebra as a starting point. However,
the data manipulation operators in both of these mediators have been defined. How these operators
form an algebraic framework to be used for query processing and optimization is a future rescarch

topic.
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Chapter 4

Relational Mediation Framework

When a class of applications requires an integrated data service to be provided through a service
view, based on a chosen data model and query language, a data mediation system needs to be
constructed. Various tasks must be achieved in proper sequence in order to build such a system. A
mediation framework defines these tasks, how they relate to one another, and how they are achieved.
As discussed earlier, in AURORA, the data mediation process consists of two tasks: homogenization
followed by integration. Therefore, the mediation framework of AURORA consists of two sub-
frameworks: the homogenization framework and the integration framework. Moreover, when the
service view data model is relational, the mediation framework works with relational data and is
simpler than when the service view is in an object data model.

This chapter describes the relational mediation framework of AURORA in a bottom-up fash-
ion, from how sources are to be wrapped, to how wrapped sources are homogenized and, finally,

integrated. The topics covered include the following:

1. The homogenization framework and its realization by AURORA’s Relational Homogenization

mediator, AURORA-RH.

2. The integration framework and its realization by AURORA’s Relational Integration mediator.
AURORA-RI

3. How the above frameworks and mediators work together to achieve data mediation.

4.1 An Overview of the Relational Mediation Framework

Construction of a data mediation system that supports a pre-defined service view based on a set of
data sources (referred to as participating sources), starts with the activity of wrapping the sources.
Wrapped sources are first homogenized to remove their idiosyncrasies with respect to the service

view, and then integrated into the access scope of the service view.
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4.1.1 Service View

For applications, the service view is a relational schema that can be queried. For sources that provide
data through this view, it is a pre-defined relational schema where each relation. called a global
relation, specifies a group of attributes as its plug-in identifier (PID). The PID is semantically a
relational key and is used for object matching, the process of identifying source tuples that describe
the same application entity; these source tuples must be combined to form tuples in global relations.
For instance, a service view may contain the following relation with PID “ISBN”:

Books(ISBN, title, year, oprahClub, bestSeller, category, NY Treview, avgReview, price)

This relation contains information on books, their ISBN number, title, year of publication, whether
it is chosen by the Oprah’s reading club, whether it is a national best seller, the rating by the New
York Times, the average rating of customer reviews, and the price of the book. Intuitively, the
PID is a “ticket” that a source tuple must produce in order to identify itself in the context of the
global relation to which it contributes data. Tuples from different sources holding the same PID are
considered to describe the same application entity, and are combined to form a tuple in the global
relation.

In the rest of this chapter, the following notations are used. PID(R) is used to denote the PID
of global relation R. To simplify presentation, most of the time it is assumed that PID(R) consists
of a single attribute. For ¢ € R, its PID value is denoted as t.PID. For any global relation R,
R{PID(R)} denotes the set of PID values appearing in R.

4.1.2 Data Sources and Relational Wrappers

In order to participate in a service view supported by an AURORA mediator, a data source must
be accessible through an API known to AURORA mediators. In the relational context, this API
must allow access to schema information, submission and execution of SQL queries, and collection of
query results in tabular form. A wrapper is used to provide such an API. AURORA employs “thin”
wrappers, that is, these wrappers do not remove any differences between a source schema and the
target service view in structure or semantics: although accessible, a wrapped source could still be
different from the service view in many ways.

Wrapper technology is an active area of research [75, 80], although it is not a focus of research
in AURORA. As described in Chapter 7, currently, AURORA wrappers are constructed using com-
mercially available middleware systems. This approach allows a wide range of data sources to be
wrapped, but it is not a generic solution: there are sources that cannot be wrapped. However, as

wrapper technology progresses, AURORA would be able to gain access to these sources as needed.
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4.1.3 Homogenization of Data Sources

Once wrapped, a data source must be homogenized to conform in structure and semantics to the
target service view. The process of homogenizing a source requires derivation of a homogenizing
view on top of the (wrapped) source. Some or all relations in this view must be fragments of various
global relations. For instance, a relation SomeBooks(ISBN, title, authors, publisher) is a fragment
of a global relation Books(ISBN, title, year, oprahClub, bestSeller, category, NY Treview, avgReview,
price). Intuitively, a fragment of a global relation provides data on some attributes of some tuples
in this relation. For instance, SomeBooks is able to provide data on the ISBN number and title of
books. Another data source maybe able to provide data on the category of the books described by
SomeBooks. Yet another data source may provide data on books that are unknown to SomeBooks.

Formally, a source relation R, qualifies to be a fragment of a global relation R, if PID(R,) C
ATTR(R,), that is, Rs is able to produce the PID attributes required by R,. Whether a source
relation is really a fragment of a global relation is a decision to be made by mediator authors.
AURORA'’s mediation model determines that source data must be transformed into fragments of
global relations in order to be included in a service view. Upon completion of homogenization, all
the data that a source willingly exports and that are relevant to the target service view must exist
as (view) relations in the homogenizing view. Moreover, these view relations must be specified, by a
mediator author, as fragments of relevant global relations; this “fragment-of” relationship between
source relations and global relations must be available at the time the global relation is derived.
Generally, a homogenizing view may contain relations that are not specified as fragments of any
global relation; these relations are irrelevant to the service view in that they will not be identified
or accessed as data contributors. The relationship between source relations in homogenizing views
and the target service view is illustrated in Figure 4.1.

Homogenization is performed by a mediator author as follows. The mediator author compares
the source schema and the target service view to decide which portion of the service view the source
is able to contribute data to, and then designs the homogenizing view accordingly. This design
requires good understanding of the service view and the source schema, and requires many semantic
decisions to be made. After a homogenizing view is designed, it must be derived from the source
view by a mediator author following a homogenization methodology. This methodology is designed
to help a mediator author to manage the complexities of the homogenization process.

The AURORA-RH mediator assists the mediator author in deriving a homogenizing view system-
atically. It does not design the homogenizing view, neither does it determine how a homogenizing
view is to be derived from the underlying source schema; rather, it provides two closely related
facilities to the mediator author: a Mediation Enabling Algebra (MEA), MEA-RH, and a Mediator
Author’s Toolkit (MAT), MAT-RH. MEA-RH provides an algebraic framework suitable for use in

homogenization; it supports operators in the usual relational algebra and operators specially de-
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Figure 4.1: Homogenizing View and Service View

signed for homogenization. MAT-RH mandates the homogenization methodology that guides the
mediator author to systematically identify and resolve structural and semantic differences between a
source schema and the target service view. In each step of this methodology. certain types of deriva-
tions can be specified as an expression in MEA-RH. Section 4.2 describes how this methodology

works and how MAT-RH supports it.

4.1.4 Integration of Homogenized Sources

Once homogenized, a data source should provide a description of the data it is able to contribute
to the target service view. This description is constructed by the mediator author who specifies
which source relation is a fragment of which global relation. Continuing with the previous example,
if the data source wishes to contribute data towards Books through SomeBooks, it must make
SomeBooks known to Books as a fragment. The integration framework must allow such a relationship
to be specified and understood, and must also provide a mechanism for deriving global relations by
combining all the known fragments.

In AURORA, integration is performed by AURORA-RI, the relational integration mediator. An
AURORA-RI mediator supports a pre-defined service view by keeping track of fragments of the

global relations, and using these fragments to derive global relations. The integration framework
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and the AURORA-RI mediator are described in Section 4.3.

4.2 AURORA-RH Homogenization Framework

The process of homogenization must remove all structural and semantic mismatches between a source
schema and the target service view; this is a complicated process especially when multiple types of
mismatches are present. In practice, not only do the mediator authors need constructs/operators to
express resolutions of mismatches, they also need a homogenization methodology to ensure that iden-
tification as well as resolution of mismatches are performed systematically. AURORA-RH provides
such a methodology and enforces it with a Mediator Author’s Toolkit (MAT), called MAT-RH, that
mandates a sequence in resolving mismatches of various types and provides facilities for expressing
required resolutions. Intuitively, MAT-RH provides the mediator author with a skeleton of homog-
enization: the mediator author follows the homogenization methodology to systematically identify
various mismatches and “hang” the resolutions of choice on the skeleton. MAT-RH maintains all
the resolutions in an internal repository so that this knowledge can be used for the processing of
mediator queries. The resolutions gathered by MAT-RH are expressed using the Mediation Enabling
Algebra (MEA) of AURORA-RH, MEA-RH.

MEA-RH extends the relational algebra with operators specially designed for constructing ho-
mogenizing views. The extensions are to support more powerful structural mapping and value
mapping. A structural mapping is a transformation that removes a difference in structure between
the homogenizing view and the source schema, while a value mapping is a transformation that re-
moves a difference in data values between the two. For instance, a relation in the homogenizing view
may have an attribute whose values correspond to relation or attribute names in the underlying
database. This is referred to as a cross-over schema mismatch [41]. It has been argued that the
relational algebra cannot express a mapping that resolves this structural difference {43]. In contrast,
MEA-RH can express such structural mappings. Defining homogenizing views often requires that
arbitrary functions/look-up tables to be used to derive data values from the underlying database.
Such value mappings may be allowed when defining relational views, but the characteristics of the

mappings are not taken into consideration during processing of relational view queries.

4.2.1 The Homogenization Problem

This section gives a formal description of the homogenization problem and describes an example
used for illustrating the homogenization process, and for demonstrating how facilities provided by
AURORA-RH can be used by a mediator author to achieve homogenization.

Let B be a relational database. Let H be a homogenizing view consisting of relations My, ..., M,.

The problem of homogenizing database B into H is to specify procedures, P;(B)(1 <7 < n), that
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construct relations M; (f = 1,n) from the relations in B. B is the source database; relations in B

are source relations; M; (i = 1,n) are target relations. H is also referred to as the target view.

- Source Database Schema -

Sales(month, hardcover, paperback, audiobook)
Travel(ISBN, title, price, deduction, bestSeller)
NewAge(ISBN, title, price, deduction, bestSeller)
Computer(ISBN, title, price, deduction, bestSeller)
Hobbies(ISBN, title, price, deduction, bestSeller)
Children(ISBN, title, price, deduction, bestSeller)

- Target View -

BookSales(month, book_type, salesAmt)
Books(ISBN, title, category, price, bestSeller)

Figure 4.2: A Homogenization Example

Example 4.2.1 [ A Homogenization Example.] Figure 4.2 depicts a homogenization problem. The
target view contains two relations: BookSales, which summarizes sales of various types of books,
and Books, which describes all the books available, their ISBN number, title, category, price, and
whether they are a national best seller. The source database provides similar information but is
organized differently. Data on the monthly sales of different types of books are stored in relation
Sales, which has one tuple for each month, with one column recording the sales of a particular type
of books. Books in the same category are stored in a relation named after this category. In addition
to these differences in structure, the following differences in semantics also exist: 1) in the source
database, the sales and price data are recorded in Canadian dollars, while in the target view, the
same data are to be reported in US dollars; 2) In the target view, Books.price is the cost of a book
after deductions, while in the source database, the price is given as the regular price and a deduction
rate; and 3) The target view perceives the “categories of books” differently from the source database.
Rather than the categories of

{Travel, NewAge, Computer, Hobbies, Children}
the target view assumes that books are from the following categories:

{Travel and Adventure, Alternative, Computer and Internet, Hobbies, Young Reader}

The content of the source tables are shown in Figure 4.3. O

4.2.2 Mismatches and Resolutions

Each database defines domains that model conceptual territories. A domain is characterized by the

following:
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Travel
ISBN title price deduction | bestSeller
001 “Florida” 45 0.15 No
002 “China” 67 0 No
NewAge
ISBN title price deduction | bestSeller
003 “Meditation” 24 0 No
004 “Dreams” 23 0.20 Yes
Computer
ISBN title price deduction | bestSeller
005 “TCP/IP” 41 0.15 Yes
006 “HTML” 37 0.20 Yes
Hobbies
ISBN title price deduction | bestSeller
007 “Pens” 74 0.15 No
008 “Quilts” 45 0.30 No
Children
ISBN title price deduction | bestSeller
009 “Micky” 10 0 No
010 “Pooh” 8 0 No
Sales
month hardcover paperback | audiobook
Feb/99 6700 6900 800
Mar/99 7600 8400 7800

Figure 4.3: Source Tables

1. Its conceptual territory.

2. Its representation construct in the relational data model, whether it is represented as relations,

attributes, or data values.
3. The data type and semantics of its elements.

For instance, the conceptual territory of “title of books” is modeled by domain Books.title in the
target view; the elements of this domain are data values of the attribute title of relation Books: and
these elements are character strings. A domain can be a meta domain, consisting of relations and
attributes, or a data domain, consisting of values in a relation. For example, the conceptual territory
of “book categories” is modeled by a meta domain {Travel, NewAge, Computer. Hobbies.Children}
in the source database in Figure 4.2. The representation construct of this domain is relation. the
elements of this domain are relation names. Domains from different databases that model the
same conceptual territory are said to be corresponding domains. When corresponding domains are

different in their representation constructs, data types or semantics of elements, there is a domain

mismatch.
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Consider a source database B and a target relation M to be derived from B. Fundamentally,
deriving M from B requires deriving the domains of each attribute of M from B and then combining
these domains together to form relation M. Each attribute 4 of M defines a data domain D4/ that
models a conceptual territory C,, which is also modeled by B. If B models C4 with the same
representation construct, data type, and semantics as M.A, then derivation of the domain of M.4 is
easy. If not, that is, there are domain mismatches over conceptual domain C., deriving M. A from
B requires removal of these domain mismatches.

Generally speaking, given a source database B and a data domain D that models a conceptual
territory Cj4, the following types of domain mismatches between D and its corresponding domains

in B may arise:

Type 1 cross-over schema mismatch. A type 1 cross-over schema mismatch happens when

C, is modeled by a domain consisting of relation names in B.

Type 2 cross-over schema mismatch. A type 2 cross-over schema mismatch happens when

C4 is modeled by a domain consisting of attribute names in B.

Domain structural mismatches. A domain structural mismatch happens when C, is

modeled by more than one domain(s) in B.

Domain element mismatches. A domain element mismatch happens when C4 is modeled
in B by a domain whose elements are of a different data type or semantics from the elements

of D.

According to the definition of a domain given earlier, the above list covers all possible cases of
mismatches between a target data domain D and its corresponding domains in a given database.

These mismatches are illustrated by the following example.
Example 4.2.2 The example shown in Figure 4.2 demonstrates the following mismatches:

1. Type 1 cross-over schema mismatch: In the target database, the concept of “book categories”
is represented as data domain Books.category. The same concept is represented as relation

names in the source database.

2. Type 2 cross-over schema mismatch: In the target database, the concept of “type of bocks”
is represented as data domain BookSales.book_type, but is represented as attribute names in

the source database.

3. Domain structural mismatch: In the target database, Books.price means the price including
deductions. In the source database, the same concept is represented by two data domains:
Price = Travel.price U NewAge.price U... Children.price and Deductions = Travel.deduction U

NewAge.deduction U... Children.deduction.
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4. Domain element mismatch: In the target database, the domain Books.price contains values
that represent money amounts in US dollars while, in the source database. the domain Price

as described earlier contains values that represent amounts in Canadian dollars.

Domain element mismatch: In the source database, the domain representing the concept of

'CJ\

“book categories” contains elements whose values are from the collection of strings { Trave!,
NewAge, Computer, Hobbies, Children }. In the target view, elements of the domain that
represents the same concept, Book.category, draw their values from {Travel and Adventure,

Alternative, Computer and Internet, Hobbies, Young Reader}.

A mismatch is resolved by deriving a view in which this particular mismatch no longer exists.
However, the derived view may contain other mismatches that require more views to be derived
in order to remove them. Therefore, such view derivations can be done as many times as it takes
until all mismatches are resolved. Each derivation aims at solving particular mismatches and may
require special transformation to the data. These transformations are expressed by the usual rela-
tional operators as well as the AURORA primitives, operators specially designed for resolving the

mismatches described above.

4.2.3 AURORA-RH Primitives

AURORA-RH primitives are Mediation Enabling Operators (MEOQs) specially designed to facilitate
homogenization. These primitives consist an extension to the relational algebra to form MEA-RH,
a Mediation Enabling Algebra (MEA) that is the basis for performing homogenization and, later,
for processing queries. All primitives take a relation as an argument and generate a relation; they
compose with relational operators in a well-defined manner.

In this dissertation, ATT R(R) denotes the set of attributes in relation R, RELname(R) denotes
the name of relation R, and ATT Rname(4) denotes the name of attribute 4. Let B be the source

database to be homogenized. AURORA-RH provides the following primitives:

primitive retrieve.
Let Q be an expression in relational algebra over the source relations in database B,
R' = retrieve(Q)

submits query @ to database B and returns the result table R'.

primitive pad.

Let R be a relation, A be an attribute, A ¢ ATTR(R), and ¢ a constant,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R’ = pad(R, A,c)
defines a relation R, ATTR(R') = ATTR(R) U {A}. The population of R’ is defined by
R ={t'|t[A] =c; t'[A]| =t[A'],te R, A" € ATTR(R)}
Intuitively, for each tuple ¢t € R, pad generates a R' tuple ¢’ by “padding” ¢ with a new field 4
with value ¢. pad is useful for restructuring relations. Consider the relation Travel in Figure 4.2.
Let R' = pad( retrieve(Travel), category, “Travel”). R' has scheme (ISBN, title, price, deduction,
category) and a population consisting of all the Travel tuples each tagged with relation name “Travel”

as attribute category.

primitive rename.
Let R be a relation, 4 € ATTR(R), and n be an attribute name, such that no attribute in R has
name n, then
R' = rename(R, A, n)
defines a relation R’ with scheme identical to the scheme of R with attribute 4 renamed to n. The
population of R’ is defined by the following:
R = {t'| t'[n] = t[A],t'[A) = t[{A'],t e R, A" € ATTR(R) — {A}}

primitive deriveAttr.
Let R be a relation. Let L; C ATTR(R)(i = 1,k) be a list of attributes in R. Let N;(i = 1,k) be
attributes. Let f; be functions of appropriate signatures.
R' = dertveAttr(R, Ly, Ny, f1, -y L, N, fi)
defines a relation R', ATTR(R') = ATTR(R) U {{Ny, ..., Nt }. The population of R’ is defined by:

R ={t'|t'[N{] = fi(t[L:]), 1 i < k; t'[4] = ¢t[4],4 € ATTR(R) — {Ny.---. N }.t € R}

Intuitively, for each tuple ¢ of R, deriveAttr generates a tuple ¢’ of R' by adding fields N, to ¢t (e=1.k;
and sets their values to be f;(¢[L;]), where t[L;] is the list of values obtained by projecting t over L,.
If an attribute in R has the same name with some N; (1 < s < k), this attribute is replaced by ;.

derive Attr is used for resolving domain mismatches with arbitrary functions, as shown in Sections
4.2.5 and 4.2.5. Notice that functions f; in deriveAttr are not aggregates; they apply to field(s) in
a single tuple, while aggregates apply to multiple tuples. Given a table containing student grades,
derive Attr cannot be used to derive an attribute “GradeAverage”; it can be used to derive the basic
student-grade table. “GradeAverage” can then be derived using the usual aggregates.

A transformation expression is an expression in MEA-RH that defines the derivation of the
scheme and population of a relation from given relations and other arguments. A transformation
expression deriving relation R is in the form of R = Tg. If Tk is in the form of retrieve(Q), where

Q@ is a relational algebra expression, R is a direct relation; otherwise, if T¢ is an expression that
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involves other MEOQOs, such as pad, rename, or deriveAttr, R is a derived relation. Intuitively, a

direct relation is the immediate result of a query over the source database.

4.2.4 Homogenization Methodology and AURORA-RH

When deriving a target homogenizing view H from a source database B, multiple do main mismatches
are often encountered. For instance, over the conceptual territory of “book categories”, there are two
domain mismatches: a type 1 cross-over mismatch and a domain element mismatch (mismatches 1
and 5 in Example 4.2.2). A mediation methodology mandates a sequence in which these mismatches
should be identified and resolved. Such methodologies are designed to assist the mediator author
in examining and resolving mismatches systematically and is a pragmatic means for making the
process of homogenization more manageable. Many different methodologies can e invented. One
such methodology, called the homogenization methodology, is designed as part of the AURORA
homogenization framework. This methodology mandates that homogenization be performed in the

following 6 steps:
1. Schema import;
2. Resolve type 1 schema mismatches;
3. Resolve type 2 schema mismatches;
4. Link relations;
5. Resolve domain structural mismatches; and,
6. Resolve domain unit/population mismatches.

In step 1, the schema import step, the mediator author selects the portion of the source database
B that is relevant to the target view H. It is possible that the whole schema of B is relevant.
More often, only some portion of some relations of B are of interest. Major structural differences
are eliminated in steps 2 and 3; after step 3, all domain mismatches that are left are between data
domains of the source and those of the target view. In step 4, the relation-linking st.ep, the mediator
author must gather relevant domains in a meaningful way to derive one distinguished relation for
each target relation M in H. This relation, called the prototype relation of M, shiould contain all
the data domains that correspond to data domains in M. Finally, in steps 3 and 6, the mediator
author specifies how data domains in each target relation are to be derived, by resolving mismatches
between these data domains and their corresponding domains in the prototype relation. These
mismatches are often resolved using user-defined functions and look-up tables.

Each step of the homogenization methodology is characterized by the following :

1. Input: In each step, certain relations should be examined.
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2. Operators: MEOQOs and transformations that can be used in this step.

3. Output: domain mappings and other semantic information, such as enumerated domains,

look-up tables, and derived relations, that may be generated by this step.

AURORA’s homogenization methodology is enforced by a Mediator Author’s Toolkit in AURORA-
RH, called MAT-RH. Each step of the methodology is supported by a specialized tool. MAT-RH

mandates that tools be invoked in sequence. The tools are designed to provide the following facilities:

1. Restrict the scope of the supported mediation step. For instance, steps after relation linking
should only work with the prototype relations. Tools supporting these steps should ensure

that no other relations are visible or manipulated.

N

A user-friendly interface to assist the mediator authors in specifying transformations and other

information used for view derivation.

3. Transformations specially designed for resolving complicated mismatches. For instance, a
transformation for resolving type 1 cross-over mismatch, RE Lmat, is provided by SME-1, the
tool supporting resolution of type 1 cross-over mismatches, which is step 2 of the methodology.

This transformation is not available in any other tools.

4. Store the transformations, domain mappings and other semantic information provided by the
mediator author for homogenization in an internal repository, in a proper format, so that this

information can be used later for query processing.

The architecture of AURORA-RH is shown in Figure 4.4. MAT-RH consists of 6 tools, named
IE, SME-1, ..., DEE, that support the 6 steps of the homogenization methodology, respectively.
These tools will be described later in this chapter. Each tool gathers and stores various semantic
information into the View Definition Repository. AURORA-RH Primitives implements
primitives described in Section 4.2.3. AURORA-RH Query Processor (AQP) processes queries
posed against the target view. It translates such a query into a set of queries over the source database,
using the mapping information from the View Definition Repository, sends these queries for execution
and assembles the final answer from the returned data, using the primitives. The query processing

techniques of AURORA-RH is described in Chapter 5.

4.2.5 Homogenization with AURORA-RH

This section demonstrates the homogenization methodology by walking through the process of de-
riving the target view from the source database, as given in Figure 4.2. As each step is performed,

the tool in MAT-RH supporting this step will be described.
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Figure 4.4: Architecture of AURORA-RH Workbench

Step 1: Schema Import Using the Immport Environment (IE)

The input to step 1 includes all the source relations exported by a source database B. In this
step, the mediator author can derive relations using relational algebraic expressions over B; these
expressions select portions of B that are relevant to the target view. The output of this step is a
relational schema, referred to as the import schema, that contains a set of direct relations of the

form of R = retrieve(Q), where @ is a relational algebraic expression over database B.

Example 4.2.3 [Importing source database.] In the example given in Figure 4.2. all relations are
of interest and hence are imported in full. The schema import step produces a set of direct relations
R = retrieve(R), where R € { Travel, NewAge, Computer. Hobbies, Children}. The repetition of
relation names on the two sides of the retrieve operator causes no confusion because any relation
name referenced by the parameter of retrieve refers to source relations, and the relations on the left
hand side are always view relations. Generally, relations in the imported schema can be derived by
expressions such as Adult = retrieve(c.ge>18SomePeople), when the target view is used to provide

data on adults only. O

The step of schema import is supported by the Import Environment (IE) tool. The input to [E
includes all the source relations exported by a source database B. The main facilities provided by
IE is a source schema browser, which displays the structure of the source schema. IE also supports
common schema import options, such as importing the entire source schema. In this case, derivation
of view relations are automatically generated by IE so that the mediator author does not have to

write derivations such as R = retrieve(R) for each relation.
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Step 2: Solving Type 1 Cross-over Schema Mismatches and SME-1

Step 2 of the homogenization methodology requires the mediator author to remove type 1 cross-
over schema mismatches. The input to this step includes all the relations in the imported schema
produced by step 1. All relational operators and AURORA primitives can be used for deriving view
relations in this step. A special transformation, RELmat, is also available.

Given DR = {Ry,...,R.}, a group of relations with identical schemes, let A be an attribute,

A ¢ ATTR(R;), then:

RELmat(D®, A) = | | pad(R:, A, RELname(R;))

i=1
The result relation has attribute set ATT R(R;)U{A}. The population of the result relation contains
tuples from all the relations in D®, each tagged with a new field A that contains the name of the
relation it came from. For example, if D® = { Travel, NewAge, Computer, Hobbies, Children }. and

if the relations in D#® contain tuples as shown in Figure 4.3, then the following transformation
Books, = RELmat(D®, category)

derives relation Booksp, as shown in Figure 4.5. RELmat transforms a meta domain, the relation
group, into a data domain. That is, the relation derived with RELmat contains a data domain
whose elements are relation names. For instance, the relation shown in Figure 4.5 contains a data
domain category that draws its values from a set of relation names, { Travel, NewAge, Computer,

Hobbies, Children}. Step2 of the homogenization example is given in the following example.

ISBN title price | deduction | bestSeller category
001 “Florida” 45 0.15 No “Travel”
002 “China” 67 0 No “Travel”
003 | “Meditation” 24 0 No “NewAge”
004 “Dreams” 23 0.20 Yes “NewAge”
005 “TCP/IP” 41 0.15 Yes “Computer”
006 “HTML” 37 0.20 Yes “Computer”
007 “Pens” 74 0.15 No “Hobbies™
008 “Quilts” 45 0.30 No “Hobbies™
009 “Micky” 10 0 No “Children”
010 “Pooh” 8 0 No “Children”

Figure 4.5: Books,: Result of RELmat

Example 4.2.4 [ Solving type 1 cross-over schema mismatch.] The source database models the

concept of “book category” as relation names, while the target view models it as a data domain

Books.category. The following is the resolution to this mismatch, using the transformation RELmat:
DR = {Travel, NewAge, Computer, Hobbies, Children}

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Books, = RELmat(D®, category)
As shown in Figure 4.5, relation Books, has scheme Books, (ISBN, title, price, deductions, bestSeller,

category). The data domain category contains elements whose values are from D®. O

The output of this step of the homogenization methodology consists of all the relations produced
in the previous step, as well as those derived in this step. At the end of this step. the result view
should contain no type 1 cross-over schema mismatch.

The tool of Schema Mismatch Environment 1, SME-1, in MAT-RH supports this step. The
main facility provided by SME-1 is a template for constructing a RELmat transformation, so that
the mediator author does not have to write a formula, but rather fills out a form that is designed
to collect various information needed for a RELmat transformation. The transformation itself is

generated by SME-1.

Step 3: Solving Type 2 Cross-over Schema Mismatches using SME-2

Step 3 of the homogenization methodology requires removal of type 2 cross-over schema mismatches.
The input to this step includes all the relations in the output of step 2. All relational operators and
AURORA primitives can be used for deriving view relations in this step. A special transformation,
ATT Rmat, is also available.

ATT Rmat(attribute materialize) is a special transformation used for resolving type 2 cross-over
schema mismatches. Given D4 = {A1,...,4,}. a group of attributes in a relation S that have
identical data types, let V4 and Ny be attribute names, N4, Ny ¢ ATT R(S), then:

ATTRmat(S,D*,N4,Ny)

=UL,; pad(rename(m srTR(S)-DAu{A:}(S), 4i, ATT Rname(Nv')), Na, ATT Rname(4;))

The result relation has attribute set ATTR(R) — D* U {N4, Ny }. Attribute N4 is the name of the
attribute in the derived relation whose domain corresponds to D<. Attribute Ny is the name of
the attribute in the derived relations whose domain corresponds to the domain of the attributes in
DA, For instance, if D4 = { hardcover, paperback, audiobook } and relation Sales contains tuples

as shown in the lower right corner of Figure 4.3, then the following transformation
Sales, = ATT Rmat(Sales, D4, book type, sales Amt)

derives a relation Sales,, as shown in Figure 4.6. ATT Rmat transforms a meta domain, the attribute
group, into a data domain. For instance, the table shown in Figure 4.6 contains a data domain
“book_type”, whose elements draw their values from D*. Step 3 of the homogenization methodology,

and the application of AT'T Rmat, are illustrated by the following example.

Example 4.2.5 [Solving type 2 schema mismatch.] The target view models the concept of “types

of books” as a data domain BookSales.book_type. while the source database models it as attributes
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month | salesAmt book_type

Feb/99 6700 “hardcover”
Mar/99 7600 “hardcover”
Feb/99 6900 “paperback”
Mar/99 8400 “paperback”
Feb/99 8000 “audiobook”
Mar/99 7800 “audiobook”

Figure 4.6: Salesy: Result of ATTRmat

hardcover, paperback, and audiobook in relation Sales. The following is the resolution for this
mismatch:

D4 = {hardcover, paperback, audiobook}

BookSales, = ATT Rmat(Sales, D*,book_type, sales Amt)
As shown in Figure 4.6, relation BookSales, has scheme (month, salesAmt. book_type). The data

domain book_type contains elements that draw their values from D-. O

The output of this step of the methodology consists of all the relations produced by the previous
step, as well as those derived in this step. At the end of this step, the result view should contain no
type 1 or type 2 cross-over schema mismatch.

The tool of Schema Mismatch Environment 2 of MAT-RH, SME-2, supports this step. The main
facility provided by SME-2 is a template for constructing an ATT Rmat transformation, so that the
mediator author does not have to write a formula, but rather fills out a form that is designed to
collect various information needed for an ATT Rmat transformation. The transformation itself is

generated by SME-2.

Step 4: Relation Linking and RLE

Assume that a target relation M has attribute 4, ..., 4,, modeling conceptual territories Cy, ..., Cy.
After both types of cross-over schema mismatches are removed by steps 2-3, C)....,C, would now
be modeled by data domains in the output view of Step 3. The step of relation linking requires rhe
mediator author to combine all the data domains that are related to C}, ..., C,, to form a distinguished
relation M. M, contains all the data domains modeling Cjy, ...,C, and is called a prototype of M.
Moreover, attribute names in M, must satisfy the following condition: for any attribute 4} €
ATTR(M,), if it models the conceptual territory of Cj, then A! should have the same attribute
name as A; € ATTR(M). Intuitively, this condition ensures that if an attribute 4’ of M, is “the
same” as attribute A of target relation A, it should bear the same name as the latter. The output

of the relation linking step is a set of prototype relations, one for each of the target relations.
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Example 4.2.6 [Relation linking. ] In Examples 4.2.4 and 4.2.5, relations Books, and BookSales,
are defined. These two relations are the prototypes of target relations Books and BookSales, respec-
tively, and they are the output of the Relation Linking step. No derivation is explicitly performed
in the relation linking step in this example but in general, one or more view relations can be derived

to facilitate the final derivation of the prototype relations O

MAT-RH supports the step of relation linking with the tool of Relation Linking Environment.
RLE. The main facility provided by RLE is for the mediator authors to derive and mark the distin-

guished relations as the only output relations.

Step 5: Solving Domain Structural Mismatches using DSE

Step 5 of the homogenization methodology requires the mediator authors to remove domain struc-
tural mismatches between the prototype relations, which are the output of the relation linking step,
and the respective target relations.

Consider a target relation M and an attribute A € ATT R(M) that models a conceptual territory
Ca. After the relation linking step, C'4x might be modeled by the prototype relation of M, M,, as
one data domain or as more than one data domain. Step 5 of the homogenization methodology
requires that for each attribute 4; of M that corresponds to more than one data domain in M, the

mediator author specify the following:

1. L; = {Afl,...,Af,l_}, attributes in M, that correspond to A;. L; is referred to as the source

domain list of attribute A4;.
2. A domain structural function (DSF), f§ with the following signature:
fETE x . x A3, = T;

where Tiﬁ(l <l < [;) is the data type of attribute Af, of M,, and T; is the data type of

attribute A; of relation M.

DSF's are arbitrary functions that must be provided by the mediator author. Once all the DSF's are

specified, the mediator author can derive a relation M, as follows:
M, = TAL s Am (derz'veAttr(A/[p, Ld1 , -4-d1 s f;l 3 meeey Ldk , Ad,‘ , fjk ))

where Ag,,.-y Ad, (0 <k < m,1 < d; < m) are all the attributes of M that correspond to more
than one attribute of M. The schema of relation M, is similar to that of the target relation A
except that an attribute M,.A may have a different data type or meaning, such as unit of measure,
from attribute M.A. M, is referred to as the value model of relation M since the only difference
between M, and M is in the data values they contain; these differences are due to domain element

mismatches which are to be removed in the next step of homogenization.
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Example 4.2.7 [ Solving domain structural mismatch.] In relation Books, derived in Example
4.2.4, attributes price and deduction together describe the over-the-counter price of a book. In
target relation Books, price means over-the-counter price, including all deductions. To resolve this
mismatch, the following is specified:

Lpooks.price = {price,deduction}

-fgooks.price(p7 d)=(1-d)*p

Relations Books, can be derived as follows:
Books, = TISBN,title,category,bestSeller,price (deri-ueAttr(Booksp, {p’rice, deductzon} P”'ice, onoks.price))
There is no domain structural mismatch over the domains of relation BookSales. Hence

BookSales, = BookSales,
a

The output of this step of the methodology includes the following:

1. Source domain lists and the DSF's for all the attributes of A/ that correspond to more than

one domain in the prototype relation;
2. The derivation of the value model relation for each target relation.

MAT-RH supports this step with the Domain Structure Environment, DSE, which supports the

following:

1. It provides templates for the mediator authors to specify the source domain lists and the DSF

for attributes of M.
2. It ensures that the DSFs are provided with the appropriate signatures.

3. It automatically creates the derivation of the value model relations, using the source domain

lists and the DSF's specified by the mediator author.

Step 6: Solving Domain Element Mismatches and DEE

The value model relation of a target relation M, M,, as derived by step 5 of the methodology.
has a scheme similar to that of M. However, for an attribute 4 € ATTR(AS), the values of
M,.A may differ from that of M.4 in data type and/or in semantics. For instance, they might be
based on different units of measurement. To derive M.A from M,.4, step 6 of the homogenization
methodology requires the mediator to specify a domain value mapping that converts values of M,.A
to that of M.A when needed. If a domain value mapping maps each M,.A value to a unique M.A

value, it is a domain value function (DVF). Otherwise, there is uncertainty in the homogenization
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process. In this dissertation, only DVFs are considered. Inverses of DVFs, if they exist, must also
be specified; they are used for efficient query processing, as described in Chapter 5. After the DVFs

are specified, the target relation can be derived with the operator deriveAttr as follows:
M = deriveAttr(My, {A1}, A1, 1y {Ax}, Ak, f1)

where ATTR(M) = {A1,...,An} and f¥(i = 1,m) is the DVF for attribute 4;. This step of the

mediation methodology is illustrated by the following examples.

Example 4.2.8 [ Solving domain element mismatch.] Consider relation Books, in Example 4.2.7.
The semantics of attribute price is “price including deduction” but the price is still in Canadian
dollars. In the target view, the price is represented in US dollars. Assume 1 US dollar is worth 1.5

Canadian dollars, then the DVF for Books.price can be defined as:
FBooks price(s) = CDNtoUSD(s) = s/1.5
Similarly, the DVF for BookSales.salesAmt can be defined as
fBookSates.satesame{5) = CDNtoUSD(s)
CDNtoUSD() has an inverse that should be specified by the mediator author as well. O

Example 4.2.9 [ Solving domain element mismatch.] Consider relation Books, in Example 4.2.7.
The domain of Booksy.category consists of values from {Travel, NewAge, Computer, Hobbies,
Children}, while domain Books.category consists of values from {Travel and Adventure, Alterna-
tives, Computer and Internet, Hobbies, Young Readers}. To resolve this mismatch, a DVF must be
specified for Books.category. This DVF is given as a mapping table categoryMap shown in Table
4.1. That is, fBooks.category(J) = categoryMap(j). This mapping is 1-1 and is invertible.

Combining all the DVFs specified above with those specified in the previous example. the relations
Books and BookSales can be derived as follows:

Books = deriveAttr(Books,, {category}, category, fB,ors category {PTice}, price, CDNtoUSD)

BookSales = deriveAttr(BookSales,, {saleAmt}, salesAmt, CDNtoUSD)

The derived populations of these two target relations are shown in Figures 4.7 and 4.8. O

MAT-RH supports this step with the Domain Element Environment, DEE. The facilities provided
by DEE are the following:

1. It provides templates for the mediator authors to specify the DVF's with appropriate signatures.
2. It allows the mediator author to specify look-up tables.

3. It allows the mediator author to specify the properties of DVFs that are useful for efficient

query processing, and their inverses, if they exist.
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Travel
NewAge
Computer
Hobbies
Children

Travel and Adventure
Alternative
Computer and Internet
Hobbies

Young Readers

Table 4.1: categoryMap: Domain Value Mapping for Books.category

ISBN title price | bestSeller category
001 “Florida” 26 No “Travel and Adventure”
002 “China” 47 No “Travel and Adventure”
003 “Meditation” 16 No “Alternative”
004 “Dreams” 11 Yes “*Alternative”
005 “TCP/IP” 23 Yes “Computer and Internet”
006 “HTML” 20 Yes “Computer and Internet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky” 7 No “Young Readers”
010 “Pooh” 5 No “Young Readers”

Figure 4.7: Derived population of relation Books

month | salesAmt | book_type

Feb/99 4467 “hardcover”
Mar/99 5067 “hardcover”
Feb/99 4600 “paperback”
Mar/99 5600 “paperback”
Feb/99 5333 “audiobook”
Mar/99 5200 “audiobook”

Figure 4.8: Derived population of relation BookSales
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4. It automatically creates the derivation of the target relations, using the DVFs provided by the

mediator author.

By now the task of deriving the target view from the source database, as shown in Figure 4.2,
is completed using the homogenization methodology and MAT-RH. The contents of the derived
relations of Books and BookSales are shown in Figures 4.7 and 4.8. The next section shows how

homogenizing views are combined to derive relations in a service view.

4.3 The Integration Framework and AURORA-RI

AURORA'’s mediation model prescribes that the data sources be first homogenized and then inte-
grated. Integration is the process of deriving data in a pre-defined service view based on data from

a set of homogenizing views. The integration framework consists of two components:

1. A registration mechanism. Given a set of homogenizing views, constructed by mediator authors
for respective participating sources, integration requires that the mediator author describe
the homogenizing view using registrations that declare the fragment-of relationship between
relations in the homogenizing view and the global relations in the service view. Registration
is a means for the mediator author to describe the content of the homogenizing view in the

context of a service view.

2. The Match Join operator. Match join is an operator that derives a global relation by combining

all the fragments known through registrations.

Integration is performed by AURORA’s Relational Integration mediator, AURORA-RI, which ac-
cepts registrations from relevant AURORA-RH mediators and realizes the Match Join operator.
AURORA-RI is also responsible for entertaining queries against the service view, as described in

Chapter 5. The relationship between AURORA-RH and AURORA-RI is illustrated in Figure 4.9.

4.3.1 Registrations

A data source contributes data to a service view S by describing the data it offers with a registration,

sent to the AURORA-RI mediator supporting S. A registration is a 3-tuple:
REG =< DSN,SR,GRN >

where DSN is a data source name, SR is the schema of a relation at DSN, GRN is the name
of a global relation in S. Once the above registration goes through, SR is said to be a registered
fragment of relation GRN. SR must provide the PID of GRN in order to be a fragment of it, that
is, PID(GRN) C ATTR(SR). For any attribute B of GRN, SR supports B if B € ATTR(SR).
A fragment of a global relation R often supports some, but not all, of the attributes of R.
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Figure 4.9: Relationship Between Homogenization and Integration Mediators

4.3.2 Match Join

For global relation Ry and any of its fragments, R, it is mandatory that PID(R,) C ATTR(R).
Any valid value of PID(Ry), v, identifies an application entity, E,. If v € R,{PID(R,)} or
v € R{PID(Ry)}, then E, is described by R, or R, respectively. Assume that R, is a global
relation and Ry, ..., R, are all the fragments known. Given the content of relations Rj..... Rn. the

derived content of relation R, must satisfy the following conditions:
1. Vv, v € R{PID(Ry)} if and only if 3¢,v € R;{PID(R,)}.

2. Vt € Ry,VA € ATTR(R,),A ¢ PID(R,), 3a # null,t[A] = a if and only if 3,3t' € R;, 4 €
ATTR(R:), ¢ [PID(R,)] = t{PID(R,)], t'[4] = a.

The first condition ensures that any entity described by any fragment is also described by Ry, and
any entity described by R, must be described by at least one of its fragments. That is, R, does
not contain “invented” entities. The second condition ensures that, for any entity E, described by
R, according to the first condition, and a non-PID attribute A of this entity, the value of attribute
A of entity E, as described by R, should be the same as that described by the fragment(s) that
provide a non-null value on E,.4. The value of E,.A as described by R, is null if and only if no
fragment provides a non-null value for attribute 4 in its description of entity E,. Notice that if
multiple fragments provide distinct, non-null values of E,.4, that is, when there is an instance level
conflict over attribute 4 of entity E,, the second condition above says that all of these values are

retained in the global relation, that is, such conflicts are not resolved at integration time. As shown
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later, these conflicts are resolved at query time, according to application requirements on conflict
handling.

In AURORA, global relations are derived using the Match Join (MJ) operator, which com-
bines tuples from registered fragments based on PID values. Consider two registered fragments,
F1(P, A, B) and F2(P, B,C), of relation R(P, 4, B,C) with PID P. If < p,a,b >€ F1, <p,b,c>€
F2 then < p,a,b,c>€ R. If < p,b/,c >€ F2 and b # b, then both < p.a,b,c > and < p,a,b’.c >

are in R. MJ can be expressed using outer-joins.

DEFINITION 4.3.1 [Value Set.] Let Y = {F1, ..., Far} be a set of fragments with a common PID P.
Let A; be a non-PID attribute. The value set of A; given Y, V ALset(4;|Y), is defined as:

M;
VALset(AdY) = | 7p.a.(F;)

j=1

where F};’s (1 £ 7 < M;) are all the fragments in Y supporting 4;. O

V ALset(4;lY) is a binary relation (P, A;) containing all the A;-values from the fragments in ¥

and the related PID value. These binary relations are then outer-joined to derive a global relation.

DEFINITION 4.3.2 [Match Join Operator.] Let ¥ = {Fy,...,Far} be a set of fragments with a
common PID P. Let S = {P, 41, ..., A5} be a set of attributes, V1 < < g, 4; # P. The Match Join
(MJ) of relations in ¥ based on P in regard to S is defined as:

MJ(P,S,Y) = VALset(A,|Y)RpV ALset(A2|Y)Rp...RpV ALset(A4|Y) (4.1)
where Rp denotes outer-equi-join on P. O

DEFINITION 4.3.3 [Global Relation Population.] Let R be a global relation and let Yz be the set
of all fragments registered with R, Ygr = {F}, ..., Far}. Then the population of relation R is derived
as:

R = MJ(PID(R), ATTR(R), Yr)

a

It is easy to verify that the global relations derived according to the above definition satisfy the two

conditions given earlier.

4.3.3 An Integration Example

Example 4.3.1 Assume that a service view defines the following global relation, Books:
Books(ISBN, title, year, oprahClub, bestSeller, category, NY Treview, avgReview, price)

with PID “ISBN”. Also assume that Books has four registered fragments, as shown in Figure 4.10.

According to Definition 4.3.3, AURORA-RI will derive Books as shown in Figure 4.11. The column

tid is not part of the result but is used later to refer to tuples. O
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Fragment 1
ISBN title year oprahClub
001 “Florida” 1960 No
002 “China” 1966 No
003 “Meditation” 1972 Yes
004 “Dreams” 1970 Yes
Fragment 2
ISBN title oprahClub | bestSeller
002 “China” No Yes
003 “Meditation” No Yes
004 “Dreams” Yes Yes
005 “TCP/IP” Yes Yes
Fragment 3
ISBN title price bestSeller category
001 “Florida” 26 No “Travel and Adventure”
002 “China” 47 No “Travel and Adventure”
003 “Meditation” 16 No “Alternative”
004 “Dreams” 11 Yes “Alternative”
005 “TCP/IP” 23 Yes “Computer and Internet”
006 “HTML” 20 Yes “Computer and Internet”
007 “Pens” 42 No “Hobbies”
008 “Quilts” 21 No “Hobbies”
009 “Micky™” 7 No “Young Readers”
010 “Pooh” 5] No “Young Readers”
Fragment 4
ISBN title year NYTreview avgReview
001 “Florida” 1960 1 12
002 ”China” 1968 5 7
003 | “Meditation” 1974 8 7
004 “Dreams” 1980 9 3
005 “TCP/IP” 1992 15 15
006 “HTML” 1974 16 2
007 “Pens” 1986 10 14
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tid | ISBN title year | oprah- | best- category NYT- avg- price
Club Seller review | Review
t1 001 “Florida 1960 No No “Travel and 1 12 26
Adventure”
to 002 “China” 1966 No No “Travel and 5 n 17
Adventure”
ta 002 “China” 1968 No No “Travel and 5 T 47
Adventure”
ts 002 “China” 1966 No Yes “Travel and 3 T 17
Adventure”
ts 002 “China” 1968 No Yes “Travel and 5 7 47
Adventure”
te 003 “Meditation” | 1972 Yes No “Alternative” 8 7 16
tz 003 “Meditation” | 1972 Yes Yes “Alternative” 8 7 16
ts 003 “Meditation” | 1972 No Yes “Alternative” 8 7 16
tg 003 “Meditation” | 1972 No No “Alternative” 8 7 16
tio 003 “Meditation” | 1974 Yes No “Alternative” 8 7 16
ti1 003 “Meditation” | 1974 Yes Yes “Alternative” 8 T 16
t12 003 “Meditation” | 1974 No Yes “Alternative” 8 7 16
ti3 003 “Meditation” | 1974 No No “Alternative” 8 7 16
tia 004 “Dreams” 1970 Yes Yes “Alternative” 9 3 11
tis 004 “Dreams” 1980 Yes Yes “Alternative” 9 3 11
tis 005 “TCP/TP” 1992 Yes Yes “Computer and 15 15 23
Internet”
ti7 006 “HTML” 1974 null Yes “Computer and 16 2 20
Internet”
tis 007 “Pens” 1986 null No “Hobbies” 10 14 42
tio 008 “Quilts” 1986 null No “Hobbies” 10 14 21
t20 009 “Micky” 1986 null No “Young 10 14 T
Readers”
to1 010 “Pooh” 1986 null No “Young 10 14 3
Readers”

Figure 4.11: Derived Population of Global Relation Books
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By requiring sources to return fragment data sorted on PID, MJ can be calculated by a multi-
way merge-join algorithm. For each PID value k, all non-PID attribute values identified by k are
collected from all fragments in respective sets, and a Cartesian product of these sets is performed
to produce all tuples with PID value k. The result of MJ thus computed is sorted on PID.

As discussed earlier, the global relations thus derived may contain instance level conflicts. For
example, relation Books, as shown in Figure 4.11, gives inconsistent data on the year the book
“Meditation” is published. In this sense, AURORA’s integration framework produces conflict-
accommodating relations. These retained conflicts are dealt with at query processing time using

a conflict tolerant query model, described in Chapter 3.

4.4 Summary

This chapter describes the relational mediation framework of AURORA. It consists of two sub-
frameworks: the homogenization framework and the integration framework. Comparison of AU-
RORA with previous work, in terms of the mediation frameworks, can be found in Chapter 2. The
homogenization framework consists of a mediation methodology and a set of mediation enabling op-
erators designed for transforming data for homogenization. Compared with previous approaches, this
framework not only provides operators that specialize in manipulating heterogeneous data, it also
provides a pragmatic means for managing the complexity of working with semantic differences, via
the mediator author’s toolkit. The relational integration framework has a built-in object-marching
facility and retains instance level conflicts, which are exposed to the applications. A conflict toler-
ant query model is provided to allow the applications to manage these conflicts at query time. as

described in the next chapter.
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Chapter 5

Query Processing in Relational

Mediators

From the view point of the applications, a service view is a relational schema that can be queried.
regardless of the fact that the data actually originate from multiple heterogeneous data sources.
Given a query @ against the service view, the data mediation system is responsible for decomposing
@ into subqueries against the sources, sending these subqueries to the data sources for execution,
collecting the result of these queries, and assembling the answer to @} using these query results.

In AURORA, service views are supported by AURORA-RI mediators that see the sources as a
collection of homogenizing views supported by respective AURORA-RH mediators, which in turn
access the data sources through the wrappers. A query @ against a service view supported by an

AURORA-RI mediator, M/, is processed as follows:
1. M decomposes the query into queries against the participating AURORA-RH mediators.

2. Each AURORA-RH mediator that receives subqueries from A, translates these queries into
queries against the underlying data source, submits them for execution through the wrapper,
collects the result from the wrapper, assembles the answers to the subqueries submitted by

M, and returns this answer to M.
3. M uses the query results returned by AURORA-RH mediators to assemble an answer to Q.

Therefore, AURORA-RI and AURORA-RH cooperate to process queries against the service view,
as shown in Figure 4.9. Both AURORA-RI and AURORA-RH perform query decomposition and
query answer assembly. While this is the common paradigm of query processing in data mediation

systems, AURORA'’s query processing techniques differ from previous work in the following ways:

1. AURORA-RI supports a conflict tolerant query model, that allows the applications to query
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potentially inconsistent data. As shown in Section 4.3, the integration framework of AURORA-
RI does not resolve instance level conflicts. The reason is that conflict detection and resolution
can be costly if done at integration time. In AURORA, conflicts are retained in the integrated
relations, and the applications deal with them at query time using the conflict tolerant query
model, which provides language constructs to assist the applications in managing the conflicts

in large granularities. This query model is described in Section 35.1.

2. AURORA-RH processes queries based on MEA-RH, an algebraic framework specially designed
for manipulating data for homogenization. MEA-RH is described in Section 4.2.3. Relations in
a homogenizing view are derived using MEA-RH operators. Query processing in AURORA-RH
requires query rewriting using view definitions, until a QEP is produced. Intuitively, a QEP is
an expression that involves only source relations. The QEP is transformed using transformation
rules to produce a more efficient QEP, which is then evaluated. A QEP as an operation tree
has leaf nodes that are retrieve operators which submit queries to the underlying data source.
Non-leaf nodes can be any operator defined by MEA-RH. Query rewriting, transformation

rules, and algebraic optimization algorithms are described in Section 5.4.

Notations. In this chapter, the following notations are used. ¢.4 is used to denote the value
of attribute A in tuple ¢, and R{A} to denote all values of attribute A in relation R, that is, R{4}
= {a | 3t € R,t.A = a}. Given a collection of relations, ¥ = {Fi,..., F,,}, and an attribute B,
Y{B} = Fi{B} U ...U Fp{B}. ATTR(R) denotes the set of attributes of relation R; ATT R(p)

denotes the set of attributes referenced by predicate p.

5.1 Conflict Tolerant Querying in AURORA-RI

This section describes a technique for querying data in the presence of instance level conflicts. This
approach allows applications to control conflict resolution policies at a coarse granularity and gives

the system more space for query optimization.

5.1.1 Motivation

Traditionally, instance level conflicts are resolved at schema integration time using aggregation func-
tions [21]. Consider a relation Books with an attribute year, meaning the year a book is published.
One may specify that when multiple sources record different year for a book, the “correct” year
value be computed as the average of these values. Queries are written as if data are conflict-free.
Conceptually, instance level conflicts are resolved before queries are evaluated; users have no say
over resolution policies at query time. This approach is referred to as the static resolution approach.

These resolutions are realized during materialization or query processing. If integrated data are
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materialized, instance level conflicts are removed before any query is processed. If data are not
materialized, that is, they are virtual, enough data must be retrieved for conflict detection and reso-

lution at query time; this may incur a significant performance penalty as illustrated by the following

example:

Example 5.1.1 Assume that sources A and B provide data on Books, and conflicts on year are to
be resolved by taking the average of all year values. Consider query:

Qo = select ISBN, title, category from Books where year > 1970
It is not sufficient to retrieve only books with year > 1970; all Books data from both A and B
must be retrieved so that the correct year values can be computed, and the predicate “year > 1970
evaluated. This cost stays the same even when no conflict over year actually occurs. Optimization

strategies have been proposed [21, 15], but cases such as Qg are fundamentally difficult to optimize.

This drawback becomes significant when more sources contribute large volumes of Books data. O

In a dynamic data integration system where large numbers of data sources come and go. materi-
alization may not be desirable. It is also difficult to foresee when and where instance level canflicts
are likely to happen; adding a new source may give rise to new conflicts. Specifving a resolution
for conflicts that do not really happen incurs unnecessary performance penalties if data are virtual.
On the other hand, applications vary in requirements for conflict handling. For Qo in Example
5.1.1, the exact year of publication of a book does not matter so long as the book is published
after 1970. When multiple sources offer different year values of a book, one user may consider a
book to be published after 1970 if some sources say so, while another may require that all sources
say so. Conflict resolutions on title and category can be performed only for books that qualified as
“published after 1970”. Conflicts on Books.year is not resolved, but rather tolerated by the system
during query processing. This approach of instance level conflict handling is referred to as conflict

tolerant querying.

Conflicts
Statically Resolved | Tolerated
Query Evaluation
On Materialized Data 1 3
On Virtual Data 2 4

Table 5.1: Querying Integrated Data

Depending on whether integrated data are materialized, and how instance level conflicts are
handled, there are 4 cases of querying integrated data, as shown in Table 5.1. Cases 1 and 2 raise
no new issues in query semantics; these are well-studied domains. Case 1 requires maintenance of

materialized data. Query optimization issues in case 2 have been studied [21, 15]. In AURORA,
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the conflict tolerant query model, the CT query model, is defined for use in cases 3 and 4. A
framework for reducing redundant data retrieval is developed for use in case 4. Optimizing queries
on materialized data in case 3 leverages existing techniques, and is not discussed.

The CT query model enables users to resolve instance level conflicts to a desired degree and let
the system “tolerate” the rest; it allows flexible conflict handling and better query performance for
users who do not require static resolutions. Consider the following CT query:

Qo = select ISBN, titlefANY], year{ANY], category[DISCARD]

from Books
where year > 1970 with HighConfidence

HighConfidence in the with clause specifies that if inconsistent year values exist. a book qualifies
as year > 1970 only if all sources say so. After a book qualifies, if there is conflict on title. year. or
category, the functions ANY, ANY, and DISCARD, respectively, are used to remove these conflicts
to produce a conflict-free query answer. Given a set of values S, function ANY returns a random
value from S; function DISCARD returns a null value if S contains more than one distinct value,
otherwise it returns the only value in S. These resolutions do not affect predicate evaluation; they
are used only to produce conflict-free query results. If all sources record that the book “Meditation”
is published before 1970, then it does not have to be retrieved even if there is conflict on its year.

The framework described in Section 5.3 enables such optimized processing.

5.1.2 Instance Level Conflicts and Resolutions

In Figure 4.10, Fragment 1 records that the book “Meditation” is published in 1972 while Fragment
4 indicates that the same book is published in 1974. This conflict is reflected in Figure 4.11 as a
violation of key constraint, since there is more than one tuple with ISBN 003; these tuples form the

alternative tuple set for 003.

DEFINITION 5.1.1 [Alternative Tuple Set.] Consider a relation R and a PID value k. The alternative

tuple set of R for k, ATset(R, k), is defined as:
ATset(R, k) ={t|{t € R,t.PID =k}
O

For example, in Books relation given in Figure 4.11, the following can be found:
AT set(Books, 001) = {t]_}, AT set(Books, 002) = {tg, t3,t4,t5}, AT set(Books, 004) = {t14,t15}

AT sets containing more than one tuple indicate conflicts, as defined below.

DEFINITION 5.1.2 [Conflicts and CA-Relations.] Given a global relation R and a PID value &, if
|AT set(R, k)| > 2, then there is a conflictin R at k. Relations that may contain conflicts are called

conflict-accormmodating relations, or CA-relations. O
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Global relations derived according to Definition 4.3.3 are CA-relations, in that they potentially
contain conflicts. Formally, conflicts are caused by inconsistencies among registered fragments.
Consider two fragments F;, F; of relation R, both supporting a non-PID attribute A. If 3¢t; €
Fi,t; € F;, t;.PID = t;.PID = k but t;.4 # t;.4, then by Definition 4.3.2. 3t;.¢> € R. such that
t1.PID =t3.PID =k, t; . A # t2.A. That is, |AT set(R, k)| > 2. AT set describes conflicts at tuple

level. Definition 5.1.3 below describes conflicts at attribute level.

DEFINITION 5.1.3 [Conflicts over attributes.] Given global relation R, non-PID attribute 4, and
PID value k, there is a conflict on R.4 at k if |AT set(wprp,a(R)), k)| > 2. O

Tuple level conflicts result from attribute level ones; resolutions can be performed at both levels. As

defined below, a resolution in either case is a function with an appropriate signature.

DEFINITION 5.1.4 [Attribute/Tuple Conflict Resolution.] Given a global relation R and its attribute
A, an attribute conflict resolution on R.A is a function f:setof(T) — T, where T is the type of R.4.
A tuple conflict resolution on R is a function g such that, given a set of tuples S = {¢1,....4,} C R,
t;.PID =k for 1 <i<n,g(S) =t where ATTR(t) = ATTR(R),t = null or t. PID = k. O

AURORA provides common functions such as SUM, AVG, MAX, MIN, ANY. DISCARD. burt
also allows user-defined functions. If conflicts on all attributes are resolved, then effectively a tuple
conflict resolution has been performed. This relationship between the two types of resolutions is

captured by the concept of equivalent tuple conflict resolution (ETCR) given below.

DEFINITION 5.1.5 [Equivalent tuple conflict resolution (ETCR)] Let R be a global relation and .X
= {4,,...,An} be all the non-PID attributes of R over which there may be conflicts. Let fi,..., fa
be attribute conflict resolutions on Ay, ..., A,, respectively. Let S be a set of tuples of R that have
the same PID value. A tuple conflict resolution of R, g, is the equivalent tuple conflict resolution of
fis-- fn, denoted as g = ETCR(f1,..., fa), if for any set of R-tuples with a common PID value, S,
g(S) = t where t satisfies the following:

1. Vi,1<i<n, t.A4; = fi(S;) where S; = {v|3r € S,7.4; =v}; and

2. VBe ATTR(R)— X, t.B =r,.B, wherer; € 5.

Definitions 5.1.6 and 5.1.7 define AURORA’s conflict resolution operators: RAC and RTC.

DEFINITION 5.1.6 [Operator RAC] Let R be a CA-relation and fi, ..., f, be conflict resolutions on
non-PID attributes A4, ..., A,. Operator Resolve Attribute Conflict, RAC, is defined as
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RAC(R, Ar:f1, - Anifn) = {t'| 3k,t,t€R, t.PID =k, t'.PID =k,
Vi,1<i<n, t'4; = fi(S(R, 4;,k)),
VB,B € ATTR(R) — {A¢,..., A}, t'.B =t.B}

where S(R,A,k) = {a| <k,a >€mprp a(R)}.- O

DEFINITION 5.1.7 [Operator RTC] Let R be a CA-relation and F be a tuple conflict resolution of
R. Operator Resolve Tuple Conflict, RTC, is defined as:

RTC(R,F) = {t| 3k,t = F(ATset(R,k))}

Intuitively, RAC removes conflicts on attributes 4,, ..., A, of R using functions fi, ..., fn; RTC
removes tuple level conflicts using function F. These operators are illustrated in Figures 5.1 and
3.2. Given C, a set of conflict resolution functions for all the non-PID attributes of R over which

there may exist conflicts, RTC(R, ETCR(C)) = RAC(R,C).

ISBN title year | oprah- | best- category NYT- avg- price
Club Seller review | Review
001 “Florida 1960 No No “Travel and 1 12 26
Adventure”
002 “China” 1966 No null “Travel and 5 7 47
Adventure”
003 “Meditation” | 1972 Yes null “Alternative” 8 7 16
004 “Dreams” 1970 Yes Yes *Alternative” 9 3 1i
005 “TCP/TP” 1992 Yes Yes “Computer and 15 15 23
Internet”
006 “HTML" 1974 null No “Computer and 16 2 20
Internet”
007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young 10 14 7
Readers”
010 “Pooh™ 1986 null No “Young 10 14 s
Readers” |

Figure 5.1: RAC ( Books, year-MIN, oprahClub:ANY, bestSellerDISCARD)

Choice of the strategy for conflict handling is significant. For applications, this strategy impacts
on the quality of the data service they receive; it is desirable to have control over this quality.
For the mediator, data services of varying qualities incur varying cost; it is desirable to optimize
accordingly. In the next section, the Conflict Tolerant (CT) query model - a new approach towards
conflict handling - is described. In contrast to previous approaches that either ignore conflicts or
require static resolutions, this query model works with CA-relations, but generates conflict-free query

results and thus provides conflict tolerance.
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ISBN title year | oprah- | best- category NYT- avg- price
Club Seller review | Review
001 “Florida 1960 No No “Travel and 1 12 26
Adventure”
002 “China” 1966 No No “Travel and 5 7 47
Adventure”
003 “Meditation” 1972 Yes No “Alternative” 8 7 16
004 “Dreams” 1970 ‘es Yes “Alternative” 9 3 11
005 “TCP/TP” 1992 Yes Yes “Computer and 15 15 23
Internet”
006 “HTML” 1974 null No “Computer and 16 2 20
Internet”
007 “Pens” 1986 null No “Hobbies” 10 14 42
008 “Quilts” 1986 null No “Hobbies” 10 14 21
009 “Micky” 1986 null No “Young 10 14 7
Readers™
010 “Pooh” 1986 null No “Young 10 14 H)
Readers”

Figure 5.2: RTC(Books, ANY)

5.1.3 Conflict Tolerant Query Model

The semantics of single relation CT queries is defined in this section. A CT query over global relations
Ry, ..., Ry is semantically equivalent to a single relation CT query over relation Rp = i) x ... x R,.
The PID of Rq includes PIDs of all involved relations. Single relation CT queries are in the following

form:

Qcr = select L
from R
where p with ¢

where L is in one of the following forms:
1. L= El, ...,Em where Ei = R.Bi (1 S_ z S m) ifBi = PID(R), Ei = R‘Bi[di] if Bi # P[D(R)

d; is an attribute conflict resolution for R.B;.

2. [DIR.By, ..., R.By, where D is a tuple conflict resolution for mp;p(r),5,,...,8. (R)-

c1 is called the predicate evaluation parameter, or PE-parameter, ¢; € {HighConfidence, Ran-
domEvidence, PossibleAtAll}; it controls how conflicts are handled during predicate evaluation. d;’s
and D specify how conflicts are removed to produce a conflict-free query answer. @; and Q; are

example CT queries with two forms of select clauses:

Q1 Q2:
select  ISBN, title{ANY], year{ANY], select [ANY] ISBN, title,
category[DISCARD] year, category
from Books from Books
where year > 1970 where year > 1970
with HighConfidence with RandomEvidence
84
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Both queries retrieve ISBN, title, year and category of books published after 1970. When there is
conflict on year, @, selects books for whom all year values available are >1970, while Q2 randomly
samples one year value and if it is >1970, then the book is selected. After a book qualifies as year
> 1970, there may still be conflicts on title, year or category; these conflicts are resolved using the
resolutions specified in the selection clause. Q; resolves conflicts on attribute level while Q» does it
on tuple level. The semantics of CT queries is defined in Definitions 5.1.8 and 5.1.10.

A few default forms of L are supported. L = A4;, ..., 4,, where 4;s are attributes, is the same
as L = [ANY]A4,,...,4,. If at least one attribute resolution is specified in L, the default resolution
for all other non-PID attributes with no specified resolution is ANY. Fundamentally, no matter
which form L takes, it specifies a tuple conflict resolution, DE(L), referred to as the data extraction
parameter (the DE-parameter). If L is in form 2, DE(L) = D. A form 1 select clause can
be rewritten into form 2 with D = ETCR(d,,...,dm). From now on, only form 2 select clause is

considered.

DEFINITION 5.1.8 [Contributing PID Set.] Given a CA-relation R, a predicate p and a PE-
parameter c,, the contributing PID set of R in regard to p under ¢, CSET(R, p, ¢1), is defined as

follows:

1. For any k € R{PID} such that |ATset(R, k)| =1, k € CSET (R, p, ¢;) if and only if p(t) =
true, where t € AT set(R, k).

2. For any k& € R{PID} such that [ATset(R. k)| > 2:

¢ If ¢; = RandomEvidence, & € CSET(R, p, c1) if and only if p(¢) = true, where ¢t €
AT'set(R, k) is selected by a function at query evaluation time.

e If ¢; = PossibleAtAll, k € CSET(R, p, c¢) if and only if 3t € ATset(R, k), p(t) = true.
e If ¢; = HighConfidence, kK € CSET(R,p,c;) if and only if Vt € AT set(R, k), p(t) = true.

A CSET contains PIDs identifying tuples that satisfy a predicate under a given PE-parameter;
these tuples will contribute to the query result. When the PE-parameter is RandomEvidence, the
value of CSET depends on the run-time function used to choose a tuple from an AT set, based on

which the query predicate is evaluated. Such variations are captured by the following definition.

DEFINITION 5.1.9 [Valid CSET] Let R be a CA-relation, p a predicate, and ¢ a PE-parameter. A
set of PID values C is a valid value for CSET(R,p,c) if:

e ¢ # RandomEvidence and C = CSET(R,p,c); or
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s ¢ = RandomEvidence and for any k € C, such that k£ ¢ CSET(R, p, HighConfidence), there
exist tuples ¢;,t2 € R, such that t,.PID = t,.PID =k, p(t;) = false, p(tz) = true.

O

Example 5.1.2 Examine relation Books in Figure 4.11, the following can be found:

CSET(Books, “year>1973", PossibleAtAll) = {003, 004, 005. 006. 007. 008. 090. 010}
CSET (Books, “year>1973", HighConfidence) = {0035, 006, 007, 008, 090, 010}
CSET(Books, “year>1973", RandomEvidence) = {004, 005, 006, 007, 008, 090, 010}
CSET (Books, “year>1973", RandomEvidence) = {003, 004, 005, 006, 007, 008, 090, 010}
The last two CSET's given above are both valid. 003 does not satisfy year > 1973 under HighCon-
fidence because there is evidence in relation Books that the book 003, “Meditation”, is published in

1972. O
DEFINITION 5.1.10 [Answer Set.] The answer to query Qcr given earlier is defined as:

B.[RTC(R™Mprp CSET(R,p,c1), DE(L))]

.....

Tables 5.2 and 5.3 show 12 CT queries and results. These queries vary in PE-parameter and
DE-parameter. Two DE-parameters are illustrated: ANY and DISCARD. The attributes in the
select clause are also varied to demonstrate how the CT query model tolerates conflicts. Results of
queries involving RandomEvidence or ANY may vary with the selection function used at run-time.

By specifying these parameters, one accepts such variations.

Example 5.1.3 First examine @1-Q¢ and their results shown in Table 5.2, and observe how various
conflict handling policies impact on the query results. The most rigorous control appears in Q.
This query has the smallest CSET and one of the smallest results. Next, observe that queries in
Table 5.3 often have larger results. For example, Q4 has a larger result than Q4 because relation
Books contains no conflicts over title but it contains conflicts over year. This shows that when a
query retrieves only conflict-free attributes, conflicts on other attributes are well tolerated by the

system and are often hidden from the users. O

5.2 Primitive Evaluation of Conflict Tolerant Queries

Algorithm CT-QP-NoOpt is an unoptimized algorithm that directly implements the CT query se-

mantics given in Definitions 5.1.8 and 5.1.10. Correctness of this algorithm is straightforward.

ALGORITHM CT-QP-NoOpt (R, QcT, Fi,..., Fr)
input:

R: Global relation involved in the query.
Qcr: Qer = select L from R where p with c;.
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[ Query Answer
Qr:
select [ANY] title, year < “Meditation”, 1972 >
from Books < “Dreams”, 1980 >
where 1967 < year < 1985 < “HTML”, 1984 >
with HighConfidence
Q2:
select [DISCARD] title, year
from Books
where 1967 < year < 1985 < “HTML”, 1974 >
with HighConfidence
Qs:
select  [ANY] title, year < “China”, 1968 >
from Books < “Meditation”, 1972 >
where 1967 < year < 1985 < “Dreams”, 1980 >
with PossibleAtAll < “HTML”,1974 >
Qs :
select [DISCARD] title, year
from Books
where 1967 < year < 1985
with PossibleAtAll < “HTML”, 1974 >
Qs :
select [ANY] title, year
from Books < “Meditation”, 1974 >
where 1967 < year < 1985 < “Dreams”, 1980 >
with RandomEvidence < “HTML", 1974 >
Qs :
select [DISCARD] title, year
from Books
where 1967 < year < 1985
with RandomEvidence < “HTML", 1974 >

Table 5.2: Example Queries and Answers

Fi's: All the fragments registered with R, Fi, ..., F.

output: A: the query answer.
begin

1. R=n, MJ(PID(R), ATTR(R), F1,..., Fy), where L, = {PID(R)} U ATTR(p) U ATTR(L).
2. C = ComputeCSET(R,p,c1), where ¢ is the PE-parameter of Qcr.
3. A =marrr)[RTC(maTTr(L)uiPID}(RXpPrp C), DE(L)));

end of algorithm.

In step 1, CT-QP-NoOpt retrieves all fragments and performs a match join. This can be expen-
sive when fragments are large and numerous. When query selectivity is low, a large portion of the
retrieved data is discarded in step 2, where CSET is computed with the algorithm given below: it
is desirable to not retrieve these data in step 1. In step 3, operator RTC is applied to produce a

conflict-free result. RT'C is a direct implementation of Definition 5.1.7 and is not given here.

ALGORITHM ComputeCSET(R, p, c1)
input:

R: A CA-relation, sorted on PID(R).
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( Query | Answer ]

Qi:

select [ANY] title < “Meditation” >
from Books < “Dreams” >
where 1967 < year < 1985 | < “HTML” >
with HighConfidence

Q:

select [DISCARD] title < “Meditation” >
from Books < “Dreams” >
where 1967 < year < 1985 | < “HTML"” >
with HighConfidence

Qs :

select [ANY] title < “China” >
from Books < “Meditation” >
where 1967 < year < 1985 | < “Dreams” >
with PossibleAtAll < “HTML” >
Qi

select [DISCARD] title < “China” >
from Books < “Meditation” >
where 1967 < year < 1985 | < “Dreams” >
with PossibleAtAll < “HTML” >

Qs :

select [DISCARD] title

from Books < “Meditation” >
where 1967 < year < 1985 | < “Dreams” >
with RandomEvidence < “HTML" >

Qs :

select [DISCARD] title < “China” >
from Books < “Meditation™ >
where 1967 < year < 1985 | < “Dreams” >
with RandomEvidence < “HTML" >

Table 5.3: Example Queries and Answers

p: A predicate.
c1: A PE parameter.
output: C: CSET(R,p,c1).
begin
1. Let R’ =0o,(R).
2. If i = RandomEvidence or ¢; = PossibleAtAll, then C = wprp(R’).
3. If ¢c; = HighConfidence, then C = wp;p(R’') — wpip(R — R').
end of algorithm.
In the next section, techniques are established to use query predicate p to derive conditions
based on which enough data are retrieved from fragments to guarantee correct query evaluation,
but data that do not contribute to the query result are not retrieved. This technique reduces both

communication cost and the volume of data manipulated at the mediator.
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5.3 Optimized Processing of Conflict Tolerant Queries

For any predicate p over a global relation R and a given fragment of R, F', if ATTR(p) C ATTR(F),
then p is applicable to F. The goal of CT query optimization is to use applicable predicates to

reduce the volume of fragment data retrieved while preserving query semantics.

5.3.1 CT Query Optimization: an Overview

Let p be a predicate over R and let p = p; A ... A p, be its conjunctive normal form. Given a
registered fragment of R, F, the question is: if p-{1 < z < m) is applicable to F, can one retrieve
only o, F into the mediator and still evaluate CSET(R,p,c) correctly?

Consider the fragments shown in Figure 4.10 and C = CSET (Books, “year > 1973”7, c). Assume
that only the following is retrieved into the mediator: oyeqr>1973 (Fragment 1) and oyear>1973
(Fragment 4). tmeditation = (003, “Meditation”, 1972, Yes) in Fragment 1 will not be retrieved.
This potentially excludes 003 from C. If ¢ = RandomEvidence, it is valid to exclude 003 from C.
according to Definition 5.1.9. If ¢ = HighConfidence and if 003 is excluded from C then it is correcr.
However, the mediator will retrieve tneditation2 = (003, “Meditation”, 1974, 8, 7) from Fragment 4,
and algorithm ComputeCSET would include 003 in C. This is incorrect. To solve this problem, one
can send 003 to the site of Fragment 1 to verify that the book “Meditation” indeed has year > 1973.
In our example, the verification fails and 003 is removed from C. This process is referred to as
PID wverification. Obviously, when year is supported by only one fragment, PID verification is not
needed. Assume that ComputeCSET derives a temporary CSET value C' from reduced fragments,
PID verification can be performed by sending the following queries to the sites of Fragment 1 and
4, respectively:

01 = C' N mrspNOTyear<iors(Fragment 1); &3 = C' N7 1sBNOTyear<iors(Fragment 4)
PID values in 6; or é; must be removed from C’. The cost of this approach is low when (1) query
selectivity is low resulting in a small C’; and (2) Conflict rate is low resulting in small ds. When
no conflict exdsts, all ds are empty. When C’ is large, the cost of PID verification may defeat the
savings achieved by pushing selections onto fragments; a cost model is needed for strategy selection.

If ¢ = PossibleAtAll, C can be computed by ComputeCSET correctly from reduced fragments.
However, pushing predicates that involve more than one attribute is not as straightforward. Consider
C1 = CSET(Books, “oprahClub = bestSeller”, PossibleAtAll). In Figure 4.10, Fragment 2 contains
tuple (003, “Meditation”, No, Yes). If only CoprahClub=bestSeller (Fragment 2) is retrieved, 003 will
be excluded from C,. This is incorrect, since combining Fragments 1 and 2, it is possible that the
book “Meditation” is both an Oprah’s club book and a best seller. Generally, pushing a multi-
attribute predicate p onto a fragment F' is possible only if no fragments other than F' support any

of the attributes involved in p.
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CT query optimization possibilities are summarized in Table 5.4. In the rest of this section, the
above described optimization strategies are formally established. When ¢ = HighConfidence, a cost
model is needed to determine whether the strategies devised here actually reduce cost. This is a

future research issue; for now the validity of the strategies is established.

Can p; be used for fragment reduction?
¢ = RandomEvidence | YES

¢ = PossibleAtAll YES (Conditional)

¢ = HighConfidence YES (with PID verification)

Table 5.4: Fragment Reduction with Selections

5.3.2 A Theory of Conflict Tolerant Query Processing

The main theorems of our theory are Theorems 5.3.1 and 5.3.2, which allow us to push selections

across MJ onto fragments, to various degrees, according to the PE-parameter.

THEOREM 5.3.1 Let R be a CA-relation. Let p = py Apa A ... A p: be a predicate over R in
conjunctive normal form. Let F,...,F, be all fragments registered with R that contain no null
values. Let p' = pi A ... Ap., where pi € {p1,...p:},1 < j < s: is applicable to F;. Let
Fi=0p(F:),1<i<n. Let Ty =0-p:(F;),1<i<n. Let W=T{PID}U..UT,{PID}. Let
R' = MJ(PID(R),ATTR(R), Fy, ..., Fl). Then the following is true:

1. CSET(R', p, RandomEvidence) is a valid value for CSET(R, p, RandomEvidence):
2. CSET(R, p, HighConfidence) = CSET(R', p, HighConfidence) — W.

Note that point 2 of Theorem 5.3.1 says that CSET (R, p, HighConfidence) can be computed from
reduced fragments, but one must verify that the PID values thus selected are not in any T,. This

process is called PID verification.

THEOREM 3.3.2 Let R be a CA-relation. Let p = py Apa/\...Ap. be a predicate over R in conjunctive

normal form. Let Fi, ..., Fy, be all fragments registered with R. Fis do not contain null values. Then
CSET(R,p, PossibleAtAll) = CSET(M J(R, FY, ..., F}), p, Possible AtAll)

where Vi,1<i<n, F{ =0,(F;), p' =piA...AD.. p-7 € {p1,--2Pz},1 < j < s;; p' satisfies the
following:

1. ATTR(p") = {PID} or ATTR(p') = ATTR(p) N ATTR(F); and

2. p;'.(l < j < s;) tnvolves at most one non-PID attribute, or no registered fragment of R other
than F; supports any of the non-PID attributes in ATTR(pj-).
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In the rest of this section, the proofs of the above theorems are presented. First, 5 theorems on basic

properties of the MJ operator are given. Proof of these theorems are mostly by definition.

THEOREM 5.3.3 Let R be a global relation and Fi, ..., F, be all the fragments registered with R. Let
L be a list of attributes such that PID(R) € L. Then:

wr(R) = MJ(PID(R),L,wr,(£1), ...y 7L, (Fn))
where L; = LN ATTR(F;),1<i<n.

This theorem allows us to push projections onto fragments. The projection list must include the

PID.

THEOREM 5.3.4 Let R= MJ(P,S,Y) where Y = {F1,....,Fa}, S = {A1,....,4Am}, and P is the
common PID of all fragments in Y. Then:

R{P} = Fi{P}U...U F.{P} = VALset(4;|Y){P} U ..U VALset(A|V){P}

This theorem describes the relationship among the PID values in a CA-relation. those in the frag-

ments, and those in the value sets; this relationship is used to prove later theorems.

THEOREM 5.3.5 Let R=MJ(P,5,Y) and let S; C S be a set of attributes, S1 = {4;,..., A4}, and
P is the common PID of all fragments in Y. Let ay,...,aq be a set of non-null values and let k be a

PID value. Then the following two statements are equivalent:
1. 3t € R such that t.P =k, t.A;j =a;,1<j<d
2.V5,1<j<d, if A;j # P, then <k.a; >€ VALset(4;]Y).

This theorem describes the relationship between the content of the value sets and tuples in the global

relation computed using these value sets; this relationship is used to prove later theorems.

THEOREM 5.3.6 Let R= MJ(P,S, Fi,...,Fp), where P is the common PID of fragments F;(1 <
i<n). Let R\ = MJ(P,S, 1 — T, Fn — Ty) where T; C F;. Let W =T\ {P}U..UT,{P}.
For any PID value k' € (R{P} - W), k' € R'{P} and ATset(R,k') = ATset(R'.k").

This theorem says that if one does not retrieve a portion of each fragment, the T;s, before performing

MJ, the data related to PID values in R{P} — W are not affected.

THEOREM 5.3.7 Let R= MJ(P,S, F,...,F,), where P is the common PID of fregments F;(1 <
i <n), and let T; C F;(1 <1< n). Given a predicate p and a tuple t' € MJ(P,S,Fy —T1,.... Fp —
T.), if YA€ ATTR(p),t'.A # null, then 3t € R such that t.P =t .P and p(t) = p(t').
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This describes a condition that is weaker than the following:
MJP,S,Fy —Ty,...Fp —T,) CMJ(P,S,Fy, ..., Fy)
which is in fact not always true.

DEFINITION 5.3.1 [Images.] Let R be a CA-relation with PID, P, and F be a registered fragment
of R. Given attribute set S C ATTR(F), and tuple ty € F, t € R is an image of tf over S.
denoted as t € imagesOf(ts, S, F, R), if:

1. S={P}and t.P=ts.P;or
2. t.P = ty.P and there exists a non-PID attribute 4 € S, such that ¢t.4 =t¢y.4.

0

Images of a given source tuple ¢y are all the tuples in the global relation that ¢ty may contribute to. For
example, let tf be tuple 004 in Fragment 1 in Figure 4.10, then: tmagesO f(tf,{ “ISBN"},“Fragment
17,Books) = {t14,t15}, imagesOf(tys,{ “year”},“Fragment 1” ,Books) = {t14}

DEFINITION 5.3.2 [Irrelevant Source Tuples.] Let R be a CA-relation and F be a fragment registered
with R, p be a predicate. t. € F is an irrelevant source tuple of R in regard to p if 3t € R, such
that ¢t.PID =t¢,..PID and p(t) = false. O

DEFINITION 5.3.3 [Negative Source Tuples.] Let R be a CA-relation and F be a fragment reg-
istered with R, p be a predicate. ty € F is a negative source tuple of R in regard to p if

Vt € imagesO f(t,, ATTR(p), F,R), p(t) = false. O

Intuitively, not retrieving the irrelevant tuples does not impact on the correctness of CT query
processing. Negative source tuples are those that definitely will not contribute to the final query

result and hence should never be retrieved.

THEOREM 5.3.8 Let R be a CA-relation and F, ..., F,, be fragments registered with R. Let T3, ...,T,
be sets of irrelevant source tuples in regard to p, T; C F;. Let R' = MJ(PID(R),ATTR(R),F\ —
T1y ey Fn — Tn). Then:

1. CSET(R',p, RandomEvidence) is a valid value for CSET(R,p, RandomFEvidence).

2. CSET(R,p,HighConfidence) = CSET( R’, p, HighConfidence) - W, where W = {k| 3i,k €
T{PID(R)}}.

Proof: Consider C, a valid value for CSET(R',p, RandomEvidence) and & € C, k ¢ CSET(R,
p, HighConfidence). Since k € C, 3t € MJ(PID(R), ATTR(R), F, — T\,..., Fn — Ty), such that
t.PID = k, p(t) = true. By Theorem 5.3.7, 3t; € R, such that ¢; . PID = k and p(t,) = true. Since
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k ¢ CSET(R, p, HighConfidence), 3t» € R such that to.PID = k and p(¢2) = false. By Definition
5.1.9, C is a valid value for CSET(R, p, cj.

Consider k € CSET(R, p, HighConfidence) — W. By Theorem 5.3.6, since £ ¢ W, AT set(R.k)
= ATset(R' k). By definition, £ € CSET(R’, p, HighConfidence) — W. Thus CSET(R, p, High-
Confidence) — W C CSET(R', p, HighConfidence) — W. However, Vk € W, 3t; € T; such that
t;.PID = k and ¢; is an irrelevant source tuple in regard to p. By definition, 3t € R, t.PID = k,
p(t) = false. Thus k ¢ CSET(R, p, HighConfidence). Thus CSET(R, p, HighConfidence) — W =
CSET(R, p, HighConfidence). Thus,

CSET(R, p, HighConfidence) C CSET(R’, p, HighConfidence) — W
Now consider & € CSET( R', p, HighConfidence) — W. Since £k ¢ W, from Theorem 3.3.6.
ATset(R',k) = ATset(R,k). Hence k € CSET(R, p, HighConfidence). Thus,

CSET( R', p, HighConfidence) — W C CSET(R, p, HighConfidence)

Theorem is proven. W

THEOREM 5.3.9 Let R be a CA-relation and F\, ..., F, be fragments registered with R. Let T\.....T,

be sets of negative source tuples in regard to predicate p, T; C F;. Let
R' = MJ(PID(R),ATTR(R),F1 = T\, ... Fn — Ty)

Then,
CSET(R,p, PossibleAtAll) = CSET(R', p, PossibleAtAll)

Proof: Denote Y = {F\,..,Fp.}, Yr = {T\, ..., Tn}, Y' = {F, =T, ..., F, = Tx}. Obviously, Y{PID}
— Yr{PID} C Y'{PID}. Consider k € CSET(R, p, PossibleAtAll) and show that k € CSET(R/,
p, PossibleAtAll). By definition, 3 ¢t € R, t.PID =k, p(t) = true. Let ATTR(p) = {41,...., A} and
let aj =¢.4;,1<j <m,a; #null. If 4; = PID(R), then a; = k. First show that k € Y'{PID}
and that Vj,1 < j <m, 4; = PID(R) or <k,a; >€ VALset(4;Y’). Consider two cases:

case 1. ATTR(p) = {PID(R)}, by theorem assumption, V¢’ € R such that 3i,t'.PID €
T:(PID(R)), p(t') = false. Hence ¥k € Y{PID} —Yr{PID}. Since Y{PID} — YT{PID} C
Y'{PID}, k € Y'{PID}.

case 2. ATTR(p) includes a non-PID attribute A.(1 < z < m). Consider <k, a, >. Since p(t)

= true, by theorem assumption, ¢ is not an image of any tuple in any T; over ATT R(p). Hence
<k, ar >€ VALset(A:|Y) — VALset(A:|YT)
Since VALset(Az|Y) — VALset(A,|Yr) C VALset(A:|Y'), the following holds:

<k, ar >€ VALset(A.|Y')
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Hence, kK € Y'{PID}. By Theorem 5.3.5, 3t' € R' such that Vj,1 < j < m, t/4; = a; =
t.A;,t'.A; # null. Obviously, p(t') = p(t) = true. Hence, k € CSET( R’', p, PossibleAtAll). So
it is shown that CSET(R, p, PossibleAtAll) C CSET( R', p, PossibleAtAll). Now consider k €
CSET(R', p, PossibleAtAll). 3t € R’ such that t.PID =k, p(t) = true. By Theorem 5.3.7, 3t' € R,
such that ¢.PID =k, p(t') = p(t) = true, hence k¥ € CSET(R, p, PossibleAtAll). So it is shown
that CSET (R', p, PossibleAtAll) C CSET(R,p, PossibleAtAll). Theorem proven.

|

Proof of Theorem 5.3.1

Proof: For any i,1 < ¢ £ n, since F; contains no null values, F} = F; — T;. Now show that all
tuples in T are irrelevant source tuples in regard to p by showing that 3¢tz € R such that tg.PID =
t.PID, p(tr) = false. The rest of the theorem follows from Theorem 5.3.8.

Consider t; € T3, p(t) = false. Let ATTR(p') = {Bi,...,Bz}, k = t;.PID and b; = t;.B;,
by # null,1 < j < z. Since T; C F;, k € R{PID}. By Theorem 5.3.5, 3tg € R tg.PID =k,
tr-B; = t;.B;,1 < i < z. Obviously, pi(tr) = p*(t:) = false. Thus, p(tr) = false, and ¢; is an
irrelevant source tuple in regard to p. Theorem proven.

Proof of Theorem 5.3.2
Proof: Let T; = o,:(F;), i,1 <i < n, since F; contains no null values, F! = F; — T;. Now show
T; is a set of negative source tuples in regard to p by showing that Vtg € R,Vt; € T;, such that
tr € tmagesO f(t;, ATT R(p), F;, R), p(tr) = false. The rest of the theorem follows from Theorem
5.3.9. Let t; € T; and consider the following cases:

case 1. ATTR(p') = {PID}. If tg is an image of t; in R, tr.PID = t;.PID. p'(tp) = p'(t;) =
false.

case 2. ATTR(p') involves non-PID attributes, but ATTR(p’) = ATTR(p) N ATTR(F;).
Consider an image of ¢;, tp € R over ATTR(p). By Definition 5.3.1, tg.PID = t;.PID, and
dB € ATTR(p) N ATT R(F;), such that tg.B = t;.B. Since ATTR(p') = ATTR(p) N ATTR(F;:), B
€ ATTR(p'), that is, 35,1 < j < s;, B € ATTR(p%). Consider two cases:

1. p; involves only one non-PID attribute, B. pj—(ta) = pj(ti) = false. Hence p(tr) = false.

2. pj- involves more than one non-PID attribute B, By, ..., By, but no fragments other than F;
support any of them. Vi,1 << < y,tg.B; = ¢;.B;. Thus, pj-(tg) =p§(ti) = false. Thus, p(tr)

= false.

Theorem proven. §i
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5.3.3 Optimized Conflict Tolerant Query Evaluation Algorithms

The following algorithm is directly based on Theorems 5.3.1 and 5.3.2.

ALGORITHM Optimized-CT-QP (R, Qcr, Fi, .-y Fn)
input:

R: Global relation R involved in the query.
Qcr: Qecr = select L from R where p with ci.

Fy’s: All the fragments registered with R.

output: A: the query answer.
begin

Compute CSET:
- Let Ly = ATTR(L)U {PID(R)} U ATTR(p). Write p into conjunctive normal form p = p; N ...Np;.
Let Xp = {p1, .-, P=}-
Fori=1,ndo:
- if c1 # Possible AtAll then let 'p" be the conjunction of all predicates in X that are applicable
to Fi. If no such p' is found, p* = true;

- if ¢; = PossibleAtAll then let p* be the conjunction of all predicates in X, such that (1) it
involves at most one non-PID attribute; or (2) No fragments other than F; supports any of the
non-PID attributes involved. If ATTR(p') # ATTR(p) N ATTR(F.), p' = true.

S1 F| =wL,narTr(F)0p (Fi).
- R’ = MJ(PID(R), L\, F.,....,F.);
- C = ComputeCSET(R', p, c1);
PID Verification:
- If ey = HighConfidence or DE(L) # ANY then
- Let Lo = ATTR(L) U {PID(R)}.

- For i =1,n do:

S2 Let §i = TL,nATTR(F:)T-pi (Fi Mprpry C);
- if ¢; = HighConfidence
C = C —6:;(PID(R)); §: = 0;

- R = R' Xp;pr) C;
Data Completion:

- if DE(L) # ANY then B’ = MJ(PID(R), L2, R', 61, ..., 6x);
Data Extraction:

- A = marrr)[RTC( R Wprpery C, DE(L))].
end of algorithm.

Steps S1 and S2 are where queries are sent to the data sources that provide the respective
fragments. These steps follow directly from Theorems 5.3.1 and 5.3.2. When the number of sources
involved is large and data volume is large, cutting down on data retrieval at S1 and S2 improves
query performance. Moreover, the following observations can be made:

Optimized-CT-QP is a 1- or 2-phase algorithm. The first phase retrieves enough data to
compute CSET. Depending on the PE- and the DE-parameter, a second phase retrieves extra data
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for PID verification and/or data completion. PID verification is needed only if the PE-parameter is
HighConfidence. Data completion is not needed when the DE-parameter is ANY.

Performance perspectives of Optimized-CT-QP. Step S1 is obviously a good move towards
saving communication cost. At step S2, one could send the content of the computed CSET, C, to
relevant data sources. This works well when C is small due to a low query selectivity, but may get
expensive when C is large. A simple computation can be applied to restrict this cost. Consider
performing step 52 against a data source supporting a fragment F;. The purpose of sending a query
to compute W; is to retrieve data related to PIDs in F; that are in C, but have not been retrieved
in step S1. Thus, one can compare the volume of @p,na7TR(F,)T-p: (Fi) With the volume of C. If
the former is smaller, it is simply retrieved without sending C to the relevant data source, and the
process continues normally.

Optimized-CT-QP performs better when conflict rate is low. When conflict rate is low,
the ¢;’s will be empty or very small. This means the cost of PID verification and Data Completion

becomes low. Therefore, Optimize-CT-QP is expected to be most efficient against low conflict data.

F{ = ®1sBN title.year.oprahClubTyear>1973{F1) Fj = 7158 N title,oprahClub,best Seller
GoprahClub=bestSeller {F2)
ISBN title year oprahClub ISBN title oprahClub | bestSeller
004 “Dreams” Yes Yes
005 “TCP/IP” Yes Yes
F3 = w1sBN titie bestSeller (F3) Fy = T1SBN title.year, NY Treview,avg Review
Oyear>1973ANY Treview>avgReview (F4 )

ISBN title bestSeller ISBN title year NYTreview | avgReview
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “Meditation” No 005 “TCP/IP” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “TCP/IP” Yes
006 “HTML” Yes
007 “Pens” No
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

| R = MJ(PID,L,F|, F}, F}, FY)

ISBN title year oprahClub bestSeller NYTreview avgReview
002 “China” null null No null null
003 “Meditation” 1974 null No 8 7
004 “Dreams” 1980 Yes Yes 9 3
005 “TCP/IP” 1992 Yes Yes 15 15
006 "HTML” 1974 null Yes 16 2
007 ¥ Pens” null null No null null
008 " Quilts” null null No null null
009 ? Micky” null null No null null
010 ”Pooh” null null No null null

Figure 5.3: Compute CSET and content of R’ when ¢; = RandomEvidence or HighConfidence
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3
[ Fi = wrsBN,titte.year,oprahClub(F1)

7
| F3 = m1sBNoprahClus,bestsetter(F2)

|

ISBN title year oprahClub ISBN title oprahClub | bestSeller
001 “Florida” 1960 No 002 “China” No Yes
002 “China” 1966 No 003 “Meditation” No Yes
003 “Meditation” 1972 Yes 004 “Dreams” Yes Yes
004 “Dreams” 1970 Yes 005 “TCP/IP” Yes Yes

Fé = TWISBN,title bestSeller (F3) F‘; = TWI[SBN,title,year,NY Treview,avgReview

Oyear>197T3ANY Treview>avgReview (F4 )

ISBN title bestSeller ISBN title year NYTreview | avgReview
001 “Florida” No 003 “Meditation” 1974 8 7
002 “China” No 004 “Dreams” 1980 9 3
003 “Meditation” No 005 “TCP/IP” 1992 15 15
004 “Dreams” Yes 006 “HTML” 1974 16 2
005 “TCP/IP” Yes
006 “HTML” Yes
007 “Pens” No
008 “Quilts” No
009 “Micky” No
010 “Pooh” No

[ R =MJ(PID,L,F|,F;, F3, F})

ISBN title year oprahClub bestSeller NYTreview avgReview
001 “Florida” 1960 No null null null
002 “China” 1966 No No null null
002 “China” 1966 No Yes null null
003 “Meditation” 1972 Yes Yes 8 7
003 “Meditation” 1972 Yes No 8 7
003 “Meditation” 1972 No Yes 8 7
003 “Meditation” 1972 No No 8 7
003 “Meditation” 1974 Yes Yes 8 7
003 “Meditation” 1974 Yes No 8 7
003 “Meditation” 1974 No Yes 8 7
003 “Meditation” 1974 No No 8 7
004 “Dreams” 1970 Yes Yes 9 3
004 “Dreams” 1980 Yes Yes 9 3
005 “TCP/IP”" 1992 Yes Yes 15 15
006 "HTML” 1974 null Yes 16 2
007 ” Pens” null null No null null
008 P Quilts” null null No null null
009 ? Micky” null null No null null
010 ”Pooh” null null No null null
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Figure 5.4: Compute CSET Phase for PossibleAtAll
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¢1 = HighConfidence c1 = RandomEvidence c1 = PossibleAtAll

01 = < 004, “Dreams”, 1970 > | 41 = < 004, “Dreams”, 1970 > | 6, =0

69_=0 52=Q 62=@
o3 =0 03 =10 o3 =0
s =10 =0 9y =

Figure 5.5: Value of §;’s with d = DISCARD

c1 = HighConfidence ¢ = RandomEvidence c1 = PossibleAtAll

<005,"TCPB/IP",1992> | <004, Dreams”,1980>, | <003,"Meditation”,1984>,
d=ANY <005,“TCP/IP”,1992> | <004,“Dreams”.1980>.
<005,“TCP/IP",1992>

d=DISCARD | <005,“TCP/IP”,1992> | <005,“TCP/IP",1992> | <005,“TCP/IP",1992>

Figure 5.6: Query Results

Example 5.3.1 This example demonstrates using the algorithms given above to evaluate the fol-
lowing 6 queries that retrieve the title and year of publication of books published after 1973, and
which are on both Oprah’s Club list and the best seller list, or on none of them, and have a higher

rating by the New York Times review than the average customer review.

select [d]ISBN, title, year

from Books
where year > 1973 and oprahClub=bestSeller and NY Treview > avgReview
with ¢

where ¢; € {RandomEvidence, HighConfidence, PossibleAtAll} and d € {ANY. DISCARD}. Figure
5.3 shows the predicates pushed onto F;'s to compute F}’s(i = 1...4) in the case of HighConfidence
and RandomEvidence. It also shows the result of the match join producing R', from which one
gets: CSET (Books, p, RandomEvidence) = {004,005}. PID verification is performed based on this
result. The d}s are computed when ¢; = HighConfidence or d = DISCARD, shown in Figure 5.3.
Based on this result: CSET(Person, p, HighConfidence) = {005}, Figure 5.4 shows the predicates
pushed onto Fis to compute Fjs(¢ = 1...4) in the case of ¢c; = PossibleAtAll. It also shows the
result of the match join producing R’, from which one gets: CSET(Person, p, PossibleAtAll) =
{003,004,005}. Final results of the 6 queries are given in Figure 5.6. O
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5.4 AURORA-RH Query Processing

As shown in the previous section, AURORA-RI sends subqueries to various sources to fetch part or
all of fragments. These subqueries are posed against homogenizing views of data sources maintained
by respective AURORA-RH mediators, which are responsible for processing the subqueries and
shipping the results back to the AURORA-RI mediators.

Assume that the source database B has been homogenized into the target view H. Let Q be a
relational query against H. AURORA-RH’s query processor, AQP, translates this query into a set
of queries over the source database, sends the queries for execution, and assembles the answer to @,
using the data returned. As shown in Figure 4.4, AQP consists of a query execution engine, a query

rewriter, and a query optimizer.

5.4.1 AQP Query Execution Engine and QEPs

Ultimately, AQP executes a query based on a query execution plan (QEP) generated by the query
rewriter and optimizer. Such QEPs are similar to the QEPs used by a query processor of a DBMS
except they involve mediation enabling operators. The algebraic-based and cost-based manipulations
of these QEPs will also be different from those in a traditional query processor. Algebraic-based
manipulation of QEPs will be discussed later in this section. Cost-based manipulation of QEPs are
not discussed in this thesis. However, cost-based mediator query optimization is an active area of
research, as reviewed in Section 2.6.3.

In the context of AURORA-RH query processing, QEPs are expressions that involve only source
relations - relations that reside in the underlying data source. A QEP can be depicted as an operation
tree whose nodes are annotated with an operator name and an argument list. A non-leaf node of
the tree is either an AURORA-RH primitive, retrieve, rename, pad, or deriveAttr, or a relational
operator. The leaf nodes of the tree are source relations. The AQP query execution engine evaluates

QEP trees bottom up.

5.4.2 Query Rewriting

In this section, mediator queries in the form of wpo,(M) are considered, where L is a list of attributes
in M and p is a predicate. The rewriting algorithm given below can be adapted for join queries. Via
MAT-RH, the derivation of M is captured as transformations, such as RELmat and ATT Rmat.
and domain mappings, such as Domain Structural Functions (DSFs) and Domain Value Functions

(DVFs) in the View Definition Repository. The purposes of query rewriting are the following:
1. To modify a mediator query so that it only references source relations, not view relations.

2. To replace special transformations, such as RELmat and ATT Rmat, with their definitions in
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MEA-RH. For instance, the rewriting algorithm will replace
RELmat(D®, A)

with .
| pad(R;, A, RELname(R))

=l
The algorithm AQPrewriteQuery performs query rewriting.
Algorithm. AQPrewriteQuery

Input: Q = wrop(M).
Output: A QEP for Q

Repeat until all the relations referenced in @ are source relations:

1. Replace any derived relation reference by Q with its definition stored in the View Defini-
tion Repository.

2. Replace RELmat and ATT Rmat transformations with their definition.
|
The above algorithm modifies a query expression repeatedly until all relations referenced are source
relations, and all RELmat and ATT Rmat transformations are replaced with the equivalent MEA-
RH expressions. The resulting expression is a QEP.

To make the presentation cleaner, MEA-RH expressions are given as operation trees, rather than
as long formulas. An operation tree is like 2 QEP except its leaf nodes may reference view relations.
An operation tree that does not reference view relations is a QEP. Therefore, an operation tree can
be rewritten into a QEP by repeatedly replacing the view relations with their derivations, as shown

in the following example.
Example 5.4.1 Consider query:
Q = TISBN,title,priceC price<45Tcategory=*Travel and Adventure” (BOOICS)

that retrieves the JSBN, title and price of books of the category of “Travel and Adventure” that
cost less than 45 US dollars. This query is posed against the homogenizing view as shown in Chapter
4. A graphical representation of this query is shown on the left of Figure 5.7. Rewriting of this

query is performed as follows:

1. As shown in Example 4.2.8 of Section 4.2.5 , Books is a view relation with the following

derivation:
Books = derive Attr{Books,, {price}, price, fBooxs.price: {Category}, category, fBooks.category)

Replacing Books in @ with the above expression gives @), shown on the right of Figure 5.7.
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TT. ISBN.,title,price 7T ISBN,title,price

o: price < 45 and G: price < 45 and
*  category = *Travel and ‘ category = "Travel and Adventure”
Adventure”
i
. _{price}, price, f¥(Books.price}
Books deriveAttr: {category}, category, fv(Books.category}
Booksy

Figure 5.7: Query Rewriting: @,

2. Asshown in Example 4.2.7 of Section 4.2.5, relation Books, is a view relation with the following
derivation:
Booksy = T®ISBN title,category,bestSeller,price
(derive Attr(Booksy, {price, deduction}, price, f3,ors price))

Replacing Books, in @1 with the above derivation gives @», shown in Figure 5.8.
3. As shown in Example 4.2.4, relation Books, is a view relation with the following derivation:
Books, = RELmat(D?%, category)

where DR = {Travel, NewAge, Computer, Hobbies, Children}. Replacing Books, in Q2 gives
@3, shown in Figure 5.9. The transformation RELmat in @3 must be replaced with its
definition as given below:
RELmat(D®, category) = pad(Travel,category, “Travel”)U

pad(Travel, category, “NewAge”)U

pad(T'ravel, category, “Computer” )U

pad(Travel, category, “Hobbies” )U

pad(Travel, category, “Children”)

Replacing the RELmat transformation in Q3 with the above definition gives @4, shown in

Figure 5.10.

4. All the leaf nodes in @4 are still view relations, as discussed in Example 4.2.3 (Section 4.2.5).

For instance, view relation Travel has derivation
Travel = retrieve(Travel)

Replacing all view relations in @4 with their derivations gives @5, shown in Figure 5.11.
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TC: ISBN, title,price

. price <45 and
° category = "Travel and Adventure"

o ) {price}, price, fV(Books.pn’ce}
deriveAttr:  rcategory}, category, f' (Baoks.category}

TT. ISBN,title,price,bestSeller, category

deriveAttr: {price, deduction}, price, fs(aooks.pnce}

i

Booksp
Figure 5.8: Query Rewriting: Q>

Qs is a QEP since it only involves source relations and MEA-RH operators. O

5.4.3 AQP Query Optimization

The AQP query optimizer maximizes the number of relational operations performed by the source
DBMS so as to leverage the query optimization capability of the source, and reduce the amount of
data fetched into the AURORA-RH mediator. In a QEP, the retrieve nodes represent queries to
be sent to the source DBMS for execution. The goal of query optimization in AURORA-RH is to
transform the QEPs generated by query rewriting to enlarge the queries submitted to the source
DBMS. As retrieve is the only operator that submits queries, the optimizer pushes as many as
possible relational operators into retrieve. In order to achieve this goal, the AQP query optimizer

performs two type of query modifications:

1. Relational operator push-downs. This type of modification pushes relational operators across
MEA-RH operators towards the leaf nodes. Algebraic transformation ruies are required for

performing this modification.

2. Predicate modification. A relational operator can be pushed into retrieve if it is acceptable
to the source query facility. Selections whose predicates involve functions that are not built-
in in the source query facility do not exchange with retrieve. This potentially increases the

amount of data fetched from the source. Predicate modification is a mechanism of eliminating
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TC: ISBN,title,price

price < 45 and
category = “Travel and Adventure®

.. {price}, price, f(Books price}
deriveAltr:  (category}, category, fV {Books.category}
i
;

TC: ISBN.title,price,bestSeller, category

deriveAttr: {price, deduction}, price, fSigooks.price}

RELmat: DR, category
Figure 5.9: Query Rewriting: Q3
user-defined functions from predicates so as to increase the chances of these predicates being
pushed into a retrieve node. For example, if a predicate is in the form of
CDNtoUSD(price) > 45

and if the query processor “knows” that CDNtoUSD is a monotone increasing function with

inverse USDtoC DN, it could rewrite this predicate into
price > USDtoC DN (45)
It can then evaluate the right hand side of the predicate to produce
price > 68

assuming that 45 US dollars is worth 68 Canadian dollars. This modified predicate can be

pushed into a retrieve node easily.

Table 5.5 gives transformation rules for exchanging relational operators with pad, rename,
and deriveAttr; these rules facilitate relational operator push-downs. For simplicity, the rules for
deriveAttr are given only for cases where there is one derived attribute. Extensions can be easily
made to allow multiple derived attributes. These rules are mostly self-explanatory. Proof of rules
for deriveAttr is given in [96]. In Table 5.5, p™¥ % denotes the predicate obtained from p by substi-
tuting all appearances of N with X . If p does not involve N, pV“* = p. Ly denotes the list of

attributes obtained from L by replacing attribute V with A. If L does not involve N, Ly 4 = L.
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7C. ISBN,title,price

. price <45 and
° category = "Travel and Adventure"

. {price}, price, (gooks.price}
deriveAttr: reataqory}, category, ¥ Books.category}

7U: ISBN title,price,bestSeller, category

deriveAttr: {price, deduction}, price, fSgooks.price}

U

pad: pad: pad: pad: pad:

*Travel* *NewAge" “Computer® "Hobbies® “"Children”
1 B ) '
: i

1
'

Travel NewAge Computer Hobbies Children
Figure 3.10: Query Rewriting: @,

A control strategy selects the next transformation rule to be applied. Currently AQP pushes
relational operators across AURORA-RH primitives towards the leaves using the rules in Table 5.5,
whenever and wherever applicable, in no particular sequence, until no rules are applicable. After
each rule is applied successfully and if there are any changes to the predicates, AQP performs the
predicate modification algorithm as given below. More sophisticated strategies to speed up opti-

mization are a topic for future research.

Algorithm. PredicateModification ( Q )
input: A QEP Q.
output: A modified QEP Q.

BEGIN.

Repeat until no modification can be made:
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7T ISBN,titie,price

price < 45 and
category = "Travel and Adventure”

deri " {price}, price, M(Books.price}
eriveAttr: {category}, category, fv(aooks.wtegory)

TT: ISBN title,price,bestSeller, category

deriveAttr: {price, deduction}, price, fS{geoks.price}

|

U
pad%':pmd\:pad:
"Travel' *NewAge" “*Computer* “Hobbies® .‘Children'
retrieve retrieve retrieve  retrieve retrieve
Travel NewAge Computer Hobbies Children

Figure 5.11: Query Rewriting: Q3

For each subexpression in each predicate appearing in @ in the form of f(E,)8f(£>) or

f(E3)6c, where Ey, E; and Ej3 are expressions, ¢ is a constant, § € {=,>,<}, and f is

1

a function which has an inverse f~!, if f is strictly monotonic or § is “=", replace this

subexpression with E;0F, or E3fc’, respectively, where ¢/ = f~1(c).
[

Example 5.4.2 This example is a walk-through of the optimization of the QEP shown in Figure
5.11.

1. First try to push the select, o, operation near the top of the QEP tree across the deriveAttr
operator beneath it, using rule Tyeriveaser[3]. This produces the QEP shown in Figure 5.12.
Apply algorithm PredicateModification on this QEP, predicate

CNDtoUSD(price) < 45
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Transformation rules for pad

Toaall]. 7L(ad(R, N,s)) = n2(R), L C ATTR(R), N & ATTR(R).
Tpaal2]- wr(pad(R, N, 3)) = pad(wr_(ny(R), N,s), L C {N}U ATTR(R), N € L.
Tpaa[3]- op(pad(R, N, s5)) = pad(o,~—.(R), N, s).
Tpad[4]- R ™, pad(R:1, N1, s1) = pad(R Np:\rl —sy Ry, N1, 81).
Tpad[5]- pad(Ry, N1, s1) X, pad(R2, N2, s2) = pad(pad(R, M Ny - Na s Ra, N1, s1), N2, s2).
Transformation rules for rename
Tremamelll.  #L(rename(R, 4, N)) = n(R), L C ATTR(R), N € ATTR(R).
Trename[2]- L (rename(R, A, N)) = rename(wr,y_ (R), A, N),
L C {N}UATTR(R) — {A}.
Trename[3]- op(rename(R, A, N)) = rename(o,~v—a(R), 4, N).
Trename[4] R M, rename(R1, A1, N1) = rename(R M~ —a, Ri, 41, N1).
Trename[3]- rename(Ry, A1, N1) M, rename(Ra2, 42, N2)

= rename(rename(Ry M Ny —a1.No—ay Ra, A, N1), Ao, No).
Transformation rules for deriveAttr
Tacriveacer 1], 7L(derivedttr(R, L1, NV, f)) = 7s(R), L C ATTR(R), N € ATTR(R).
Tderiveatsr(2]-  mo(deriveAttr(R, Ly, N, f)) = wr(derive Attr(mp_nyor, (R), L1, N, f)),
LC{N}UATTR(R),N€ L.
Taeriveater[3]-  op(derivedttr(R,L. N, f)) = deriveAttr(o,~—sw)(R), L, N, f).
TdcriueAttr[4]- R Np deriveAttr(R;, L, , Ny y f1) = derive.-’lttr(R Npé"l —f(Ly) Rl, Ly, Ny, f1 ),
ATTR(R)N ATTR(R:) = ¢, Ny ¢ ATTR(R).
Tderivg,‘ttr[slv derive.—’lttr(Rl, L1 y .’VL, f],) Np derive.4ttr(Rg, L'_!, .’Vg, f).)
= derive Attr(derive Attr (R, anrl —f1(L1) Na—fa(La) B2, L1, N1, f1), La, N2, fa),
ATTR(R2) = ¢, N1 ¢ ATTR(R2), N2 ¢ ATTR(R1), N1 # Na, N2 & Lo.

Table 5.5: Transformation Rules for pad, rename and deriveAtir

can be modified to

price < 68

and predicate

category = “Travel and Adventure”

can be modified to

category = “Travel”
Also, apply rule T geriveattr[1] to the projection operator on top of the QEP and the deriveAttr
beneath it, derivation of one of the attribute, category, can be eliminated. QEP after these

modifications is shown in Figure 5.13.

2. Examine the o operator and push it across the projection beneath it and then try to push
it across the deriveAttr operator lower in the tree, using rule Tyerivease~[3]- Then push the
projection on top of the tree across the deriveAttr beneath it and merge it with the projection

operation under the deriveAttr. The QEP after these modifications is shown in Figure 5.14.

3. Push the predicate category = “Travel” across the U operator and across the pad operator

beneath it, using rule Tp.q[3]. Many of the branches are eliminated. For instance,

Ocategory=Travel” Pad(Computer, category, “Computer”)
= pad(o'“Computer”=“Tra.vel" Computer, category, “Computer”)

= 0
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. _ {price}, price, (Books.price}
deriveAttr:  reategory}, category, ¥ (Baoks.category

CDNtoUSD(price) < 45 and
categoryMap(category) =
"Travel and Adventure"

7C. ISBN,title,price,bestSeller, category

%
deriveAttr: {price, deduction}, price, {Sgsoks price}

U
pad: pad: pad: pad: pad:

“Travel® *NewAge" “"Computer* “Hobbies® “Chiidren®
: : : ;

; | i
i ! i

retrieve retrieve retrieve retrieve retrieve

Travel NewAge Computer Hobbies Children
Figure 5.12: Query optimization example: first modification

The QEP after these modifications is shown in Figure 5.15.

4. Pushing the second projection operator down all the way to meet the pad operator and use
rule Tpeq[1]. The QEP after this modification is shown in Figure 5.16.

5. Finally, push the projection above the retrieve into it to get the final QEP, as shown in Figure
5.17.

The optimization has cut down the number of source relations involved from 3 to 1. O

5.5 Related Work

In (15, 21}, algebraic rules for pushing selections across aggregation functions are studied under
the assumption that schema integration is performed by an integration specification which resolves

all potential instance level conflicts, using various aggregation functions. AURORA integration
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TC: ISBN,title,price

deriveAttr: (price}, price, f(Books price}

G: price < 68 and
* category = "Travel"

TT. ISBN,title,price,bestSeller, category

deriveAttr: {price, deduction}, price, fS(gooks.price}

U

pad: pad: pad: pad: pad:

“Travel® *‘NewAge" “Computer” “Hobbies® “Children®
|
retrieve retrieve retrieve  retrieve retrieve

Travel NewAge Computer Hobbies Children
Figure 5.13: Query optimization example: second modification

mediators do not keep integration specifications; sources participate in the data service by registering
with the mediator the data they can contribute. Conflicts are not resolved at schema integration
time but rather tolerated at query time and resolved only upon returning of query results. In
general, AURORA’s approach towards instance level conflict handling offers a new way of querying
potentially inconsistent data and new techniques for processing such queries efficiently.

The flexible relation model {23, 83] is designed to deal with instance level conflicts, but it requires
the applications to use a non-standard data model for data access. This approach only deals with
conflicts at predicate evaluation time and the tolerance mode is always HighConfidence. Conflicts
in query results are not removed. Multiplex [68] deals with instance level conflicts in the context of
answering queries using given materialized views. Conflicts arise when the materialized views overlap
and the same query can be evaluated in multiple ways, resulting in multiple answers. A mechanism
is proposed to derive an approzimate query answer using these candidate answers. However, without

any object matching assumption, it is not clear how conflicts can be detected.
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Tt ISBN,title,price

deriveAttr: {price}, price, f¥(gooks.price

TC. ISBN,title,price,category

deriveAttr: {price, deduction}, price, fSgooks. price}

G: [BBooks pricej(Price, deduction) < 68 and
" category = "Travel®

U
pad: pad: pad: pad: pad:

"Travel” *‘NewAge” “Computer® "Hobbies® “Children®

retrieve retrieve retrieve  retrieve retrieve

Travel NewAge Computer Hobbies Children
Figure 5.14: Query optimization example: third modification

[41] identifies domain mappings for resolving domain and schema mismatches. Resolutions for
individual mismatches are demonstrated using an object-oriented database programming language.
[41] does not provide a mediation methodology, nor does it explore query optimization techniques
in the presence of the new language constructs. [42] provides a comprehensive classification of
mismatches and conflicts. Resolutions for individual conflicts are given. New language constructs
are proposed but query rewriting and optimization methods for these constructs are not given. [31]
uses ontology to detect and resolve mismatches due to different units of measure. It is not clear how
[31] handles other types of schematic mismatches.

Disco [89] extends ODMG ODL for mediation and proposes to use Volcano for query optimization.
It introduces a logical operator submit and gives rules for exchanging relational operators with it.
The cost model used is unclear. [25, 56] describe approaches that collect/establish statistics to build
mediator query cost models. Query optimization in AURORA-RH focuses on single-source query

modification techniques to leverage the source query optimization capability; a mediator query cost
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deriveAttr: {price}, price, Y(gooksprice}

TT: ISBN,title,price

deriveAttr: {price, deduction}, price, {S{gooks.price}

G: fS{80oks.pricej(Price, deduction) < 68

pad: category,
“Travel®

retrieve

Travel
Figure 5.15: Query optimization example: fourth modification

model is not necessary. However, mediator query cost model is an interesting research topic.

5.6 Summary

The CT query model and related processing techniques are a new approach to handling instance
level conflicts. Unlike previous approaches, conflicts are not resolved at schema integration time with
aggregation functions, but are dealt with at query time. With the CT query model, instance level
conflicts are tolerated to a degree acceptable to the applications. The advantage of this approach
is that applications gain more contre!l of the quality of the data access service they receive, and
the mediators gain more room for query optimization. Techniques for optimized processing of CT
queries have also been studied. In large scale data integration systems, the ability of optimizing
query processing according to applications’ requirements for data service quality is a significant

factor in deployment.
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TC: ISBN,title,price

deriveAttr: {price}, price, f¥(gooks.price}
!

7T. ISBN,title,price

deriveAttr: {price, deduction}, price, S{geaks.price}

G: fSiBooks.price}(Price, deduction) < 68

7U. ISBN,title,price,deduction
retrieve

Travel
Figure 5.16: Query optimization example: fifth modification

AURORA-RH query processing and optimization are based on the MEA-RH algebraic frame-
work, which allows the query processor to use knowledge gathered from the mediator author during
homogenization, in order to build efficient QEPs. Homogenization is different from building a rela-
tional view in that it requires more sophisticated structural and semantic transformations of data.
Fundamentally, MEA-RH allows the impact of the homogenization process on query processing ef-
ficiency to be studied. As demonstrated in this section, algebraic optimization of mediator queries
can significantly reduce the volume of data retrieved into, and manipulated by, the mediator.

Future research in CT querying involves development of a cost model for strategy selection and
a detailed performance study of the query optimization techniques presented here. Since query pro-
cessing is a mul ti-phase procedure, apart from the major transformations that have been developed
in this chapter, many smaller techniques for smart reuse of data retrieved in previous phases can be

explored. These are engineering issues but may improve performance further.
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Figure 5.17: Query optimization example: sixth modification

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Object-Oriented Mediation

Framework

When the service view is based on an object data model, a mediation framework is needed for ho-
mogenizing and integrating data represented as objects that reside in various participating sources.
This chapter describes AURORA’s object-oriented mediation framework. As in the relational con-
text, there are two mediators: object-oriented homogenization mediator, AURORA-OH, and object-

oriented integration mediator, AURORA-OI.

6.1 The Service View

A service view is a schema written in ODMG ODL [14] that satisfies the following syntactical

constraints:
1. Each object class must define a method with the following signature:
PID: 0 —=T

where T is a Pure Literal Type (PLT). PID stands for Plug-in Identifier. Intuitively, the
PID method returns a value that is required by the integration mediator for object-matching
and oid generation; sources that wish to contribute data towards a global class in the service

view must be able to perform the PID method of this class.

2. Class/interface specifications contain only methods: no attributes, relationships, types, con-

stants, or exceptions.
3. Exports of parameters in methods are either in or out, not inout.

4. The parameter types and return types of methods are restricted to the following:

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) Pure literal types.
(b) Object types in the service schema.

(c) set < T > where T is an object type in the service schema.

This constraint says that the service view does not involve randomly complex types. This is
because complicated structures with oids buried deep inside cannot be exported or interpreted
easily; oids lose their validity once they leave the system where they are created. It is possible
to devise a mechanism to exchange randomly complex values involving oids but this is not
the focus of this research. This constraint is posed to simplify the initial development of the

integration framework; it will eventually be removed.

These constraints do not restrict what can be represented in a service view; it only restricts how to
represent them. For instance, a service view does not contain attributes but an attribute can be
represented by a get method and a set method. Since the service view is read-only, a gef method would
represent an attribute completely. However, by restricting properties to methods, the integration
mechanism of AURORA-OI is greatly simplified.

There are two ways of maintaining the extents of classes in the service view: as a materialized
collection of oids; or as a virtual collection of oids. When dealing with a large number of sources that
participate and withdraw from service views dynamically, materialized extents would be difficult to
maintain. In AURORA, all extents in the service view are virtual, materialized only at run-time to
entertain queries. It is the responsibility of the integration mediator to (partially} populate these
virtual extents at run-time with integrated objects “manufactured” using objects exported by sources
participating in the service view. Object classes in a service view are referred to as the global classes.
Objects of global classes are referred to as the global objects.

Notations. The signature of a method defined on a class is in the following form:
N:eT) x...xex:Th = To

where IV is the method name, Ty is the return type, T; and e; are the type and export of the i-th
parameter, respectively, e; = in/out/inout. A pure literal type (PLT) is a literal data type that

involves no object types; it is a type of pure value.

6.2 Data Sources and Wrappers

Wrappers must support an interface known to AURORA, as discussed earlier in Section 3.2.1. An
AURORA-OH mediator must be able to access either ODMG sources or relational sources. To access
a relational source, an AURORA-OH mediator must have the ability to “understand” data in the

form of relations. Since AURORA-OH is based on the ODMG object model, relations can be viewed
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as sets of “structs” and can be manipulated within the ODMG object model accordingly. This means
that AURORA-OH mediators must provide a mapper which translates relations into sets of structs,
and translates OQL queries over these sets of structs into SQL queries over relations. Construction
of this mapper is an implementation issue and is beyond the scope of this dissertation. Generally,
to participate in an object-oriented service view, data sources must be covered with a wrapper that
facilitates accessing of the sources through an ODMG interface or a relational interface, whichever

is most easily generated.

6.3 Overview of the Homogenization Framework

In the object-oriented context, a data source contributes data to a target service view by describing
the data it provides as a set of class fragments of the global classes. Consider a service view containing
three global classes: class People with methods name(), age(). and phoneNumber(): class Doys with
methods name(), pedigree() and breed(); and class Cats with method longHaired(). A class fragment
of class People could be a class SomePeople defining methods name(), phoneNumber() and address().
A class fragment of class Dogs could be a class SomeDags defining methods name() and pedigree().
A source may describe itself as being able to provide two classes, SomePeople and SomeDogs. Notice
that this source does not contribute data towards Cats, nor does it contribute data on people’s age
or the breeds of dogs. Also notice that SomePeople is able to provide data on addresses of people
although this information is not of interest to the service view. Nevertheless, SomePeople is a class
fragment of People. Generally speaking, data sources contribute data on some aspects of some

objects in a target service view.

6.3.1 The Homogenization Scenario

Homogenization is carried out by a mediator author, who designs an object-oriented homogenizing
view. Some, usually not all, classes in this view are marked as class fragments of global classes:
these classes are called the homogenizing classes. For instance, a homogenizing view of a data
source may contain 5 classes arranged in some inheritance hierarchy. Among these classes are
SomePeople, marked as a class fragment of global class People, and SomeDogs, marked as a class
fragment of global class Dogs. A detailed discussion of homogenizing views is given in Section 6.3.2.
Homogenizing views are derived by the mediator using an AURORA-OH mediator. Once the class
fragments are explicitly marked, the homogenizing view and its relationship to the service view will
be automatically understood by the target AURORA-OI integration mediator. This knowledge is
used at run-time for combining source data to provide data to the applications.

In terms of semantics, a source class S is a fragment of a global class G if they describe the same

application entity, although S may describe some, not all, aspects that are of interest to G. In this
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case, objects of S and G have the same semantic intension. Semantic intension of homogenizing
classes in relation to global classes is determined by mediator authors; it is an important piece of
semantic knowledge provided to the integration mediator. This knowledge is used by the integration
mediator for object-matching - the process of identifying objects from various sources that describe
the same application entity. Usually, several source objects describe the same global object. and
these source objects are able to perform various methods; AURORA’s integration mechanism is

responsible for dispatching methods to the source objects that are able to perform them.

6.3.2 Homogenizing Views

It is the responsibility of the mediator author to design homogenizing views by determining which
class fragments the underlying data source is able to provide, and which methods these class frag-
ments are able to perform; these are semantic decisions that AURORA mediators do not automati-
cally make - mediators only provide facilities for the mediator author to derive homogenizing classes
as virtual classes. However, homogenizing view is a more relaxed notion than the usual object views

[1, 81] for the following reasons:

1. Homogenizing classes may contain methods that are not related to the service view; these
methods will not be used for integration purpose, but their presence does not impact on the
data integration process. AURORA-OH does not provide facilities for “hiding™ a method from

a class. This makes type inferencing of derived classes much simpler.

2. Homogenizing view may contain classes that are not related to the service view: these classes
will not be queried for integration purpose, but their presence does not impact on the data

integration process. This also makes type inferencing of derived classes much simpler.

In general, AURORA-OH does not provide facilities to hide methods from classes or to hide classes
from class hierarchies. The mediator author derives a homogenizing view and exposes some classes
to the target integration mediator by marking these classes as fragments of respective global classes;
these marked classes are the homogenizing classes. A method defined on a homogenizing class is
eéxposed to the integration mediator only if its name and signature matches those of a method defined
by G. These methods are referred to as the ezport methods. Methods that are not intended to be
exposed to the integration mediator in this way must be renamed appropriately. AURORA-OH

provides facilities for method renaming.

6.3.3 The Homogenization Facilities
Once the homogenizing view is designed, the mediator author uses an AURORA-OH mediator to

derive it from the source schema by deriving the classes in the homogenizing view as virtual classes
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on top of the source schema. In addition to the homogenizing classes, virtual classes are some-
times derived as an intermediate step towards the derivation of desirable homogenizing classes.
AURORA-OH mediators, similar to their relational counterparts, provide Mediation Enabling Op-
erators (MEOs) to facilitate these derivations. MEQs support the following types of derivations:

1. Regrouping of existing classes, either by taking the the union of existing classes or by selecting
objects from an existing class based on a condition. For instance, one should be able to combine
classes Student and Employee to form a new class Person. One should also be able to select
all students older than 50 to form a new class SeniorStudent. With AURORA-OH, Person
can be derived using the operator of generalization; SeniorStudent can be derived using the
operator of specialization. These operators do not generate new objects; objects in Person or

SeniorStudent already exist in the source. Such operators are said to be object-preserving.

2. Restructuring of existing classes. For example, one may want to derive a class Specialist with
method yearsInPractice() and specialization() from class Pediatrician, defining only method
yearsInPractice(). In this case, one should be able to declare a virtual method on class Pediatri-
cian, specialization(), which returns a constant “Pediatrician”. This operation restructures the
Pediatrician class into a Specialist class by adding a new method to it. AURORA-OH provides

an operator, deriveOP, for specifying virtual methods. This operator is object-preserving.

3. Merging/splitting of existing classes to generate new classes. For instance, one may want
to derive the Employee class from a Company class that maintains an employee directory;
this requires “splitting” a Company object into = Employee objects where z is the number of
employees in the company. Or, one may need to derive Department objects from Employee
objects, which requires merging of the Employee objects who work in the same department.
Both of these operations can be expressed with MEO OBJGEN in AURORA-OH. In both
cases, objects in the derived classes do not exist in the source but only exist in the homogenizing
view; they are imaginary objects. Operators that produce imaginary objects are said to be

object-generating. OBJGEN is the only object-generating operator in AURORA-OH.

4. Method mapping. Assume class Employee defines methods salarylnCDN(), bonusinCDN{),
manager(), and phoneNumber(). Also assume that for homogenization purposes, a method
totallncomenUSD(), which returns the total income of an employee including bonus, in US
dollars, and a method managerPhone(), which returns the phone number of the employee’s
manager, must be derived. Method mapping should allow a mediator author to specify func-
tions for converting Canadian dollars to US dollars and for deriving total income from salary
and bonus. It should also allow specification of method managerPhone() as a path expression
Employee.manager().phoneNumber(). In AURORA-OH, method mapping is supported by the

operator of deriveOP which is an object-preserving operator.
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The collection of homogenization MEQOs provided by AURORA-OH overlaps with the operators
previously proposed for constructing object views [1]. However, operators for hiding or importing of
methods or classes are not needed. Rather, a more sophisticated mechanism for method mapping is

required:

1. A framework needs to be defined for specifying, using user-defined functions. value conversions
on in- and out- parameters, and the return values of methods. This framework should serve
as a skeleton onto which the mediator author can “hang” her conversion functions so as to
avoid reprogramming the methods themselves to incorporate such conversions. Consider the
salary example again. The methods salary/mCDN and bonusInCDN may involve complicated
calculations based on various business rules- To support method totallncomelnUSD, the me-
diator author should not have to repeat these calculations. Instead, it should be possible to
specify that totallncomelnUSD is to be performed by an Employee object by performing CD-
NtoUSD(SalaryAddBonus(THIS.salaryInCDN), THIS.bonusInCDN())). Therefore, all that
mediator author has to do is to provide two conversion functions, CDNtoUSD and SalaryAd-
dBonus, and to instruct the Employee objects on how to use these functions to perform total-

IncomelnUSD.

2. A framework is required for declarative specification of virtual methods so as to exploit existing
capabilities of objects and avoid the need to write new code. For instance, the mediator author
should be able to specify managerPhone as a virtual method of Employee by specifying that

each Employee object performs this method by performing THIS.manager().phoneNumber().

Sources export information to the best of their capabilities. The only requirement is that if a source
exports a class as a fragment of a global class, it must make sure that the class is able to perform
the PID method defined by the global class. Currently, cases where a new method is coded are not

considered; this facility will be added as future work.

6.3.4 Homogenization Methodology

AURORA-OH homogenization methodology and MEOs are closely related facilities. The homog-
enization methodology mandates that homogenization be performed in well-defined steps; in each
step, only certain MEOs can be applied. A homogenizing class C is derived in 2 steps: object
prototyping followed by method mapping, as illustrated in Figure 6.1. Intuitively, object pro-
totyping creates an object class C, that is capable of performing each of the methods defined on C;
this capability is a semantic notion that only the maediator author understands. Moreover, there is a
one-to-one mapping between C, objects and C ob jects, such that the corresponding objects model
the same application entity, with possibly differerxt representations. Cp is called a prototype of C'.

For instance, object class Employee with methods employeeNo(), salaryInCDN(), bonusInCDN().
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manager(), and phoneNumber() is a prototype of homogenizing class Employee2 with methods em-
ployeeNo(), totallncomemUSD(), managerPhone(),..., because each Employee object corresponds tc
the Employee2 object that has the same Eno, and is capable of performing all the methods defined
by Employee2 - although how exactly an Employee object performs these methods is yet to be speci-
fied. AURORA-OH supports object prototyping by providing facilities for regrouping, restructuring,

merging, and splitting of object classes.

Object Prototyping

Method Mapping

Figure 6.1: A Homogenization Methodology

Given any method m defined by class C, a prototype class of C, Cp, must be able to per-
form m, that is, it is able to “do the same thing” as m; so far this ability is determined by and
known only to the mediator author. The goal of method mapping, the second step of homogeniza-
tion, is to allow the mediator author to express this semantics as a specification of exactly how
Cp objects perform m. To do so, the mediator author must derive m as a virtual method of class
Cp by using the method mapping facilities provided by AURORA-OH. For instance. the mediator
author can specify that an Employee object, e, performs totallncomelnUSD() by invoking CD-
NtoUSD(SalaryAddBonus(e.salaryInCDN(), e.bonusInCDN())), where CDNtoUSD and SalaryAd-
dBonus are functions provided by the mediator author. Once method mapping is complete for every

method defined on C, Cp, indeed becomes C. Thus the derivation of class C is completed.
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6.3.5 AURORA-OH MEOs

AURORA-OH provides six Mediation Enabling Operators (MEOs):

Generalization

Generalization creates a virtual class as the superclass of existing classes. This is supported by the
MEOs Gen and BGen. Operator Gen creates a class as the common superclass of a given set of
classes. Operator BGen creates a class as the common superclass of a set of classes that support a

given set of methods. These MEOs derive a new class and are in the following forms:
Chew = Gen(C, ...,Chr)
where C1, ..., C, are existing classes; and
Chew = BGen(Cy,...,Cr, Sr)

where C},...,C, are existing classes and S; is a set of method signatures. For example, one can

derive class People as a generalization of Student and Professor as follows:
People = Gen(Student, Professor)

Class People, thus derived, defines all the methods that are commonly defined by Student and
Professor. The extent of People is the union of those of Student and Professor. One can also derive

class Printables as a behavioral generalization of classes AsciiFiles, Email, HtmlFile, as follows:
Printable = BGen(AsciiFiles, Email, HtmlFiles, {print()})
Class Printable, thus derived, defines a single method print(). The extent of Printable is the union

of all classes in the parameter list that define method print()-

Specialization
Specialization creates a virtual class as the subclass of an existing class by selecting existing objects

in this class with an OQL query. This is supported by the MEO of Spe, in the following form:
Chew = SPC(C, Q)

where C is an existing class and Q is an OQL query that produce a set of objects in the extent of

C. For instance, once can create class SeniorStudent from class Student as follows:
SeniorStudent = Spe(Student, “select s from students s where s.Age() > 657)

Object Generation

This operation allows joining and splitting of existing classes to create new virtual classes. This is
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supported by the MEO of OBJGEN, in the following form:
Chew = OBJGEN(Q, f)

where Q is an OQL query that generates a set of tuples and f is an identifier function that maps
each element in the result of Q to a unique value; the system then maintains a one-to-one mapping

between this value and a unique oid. For instance, let Q; be the following:

Q1 = select DeptNo
from Employees e
group by DeptNo: e.DeptNo

and let f, be a function that maps an element in the result of Q;, v =< DeptNo : d, partition : >

to d, that is, fi(v) = d, then the following operation
Department = OBJGEN(Q, f1)

generates an object class Department that defines two methods: DeptNo() and partition(). For
each distinct DeptNo()} value of employees, d, a unique object of class Department, oy, is created.
Moreover, oq4.DeptNo() = d, og.partition() = z if and only if < d,z >€ Q. For another example,
consider object class Company that has a method employeeDirectory which returns a collection of
tuples in the form of < Eno : string, SIN : string,name : string, phoneNumber : string >. To

derive class Employee, Company objects must be “split”. First, the following query is specified:

Q> = select empData
from  companies ¢, empData in c.employeeDirectory

and let f, be a function that maps a tuple < Eno : e,SIN : s,name : n,phoneNumber : p > to
s, that is, fo(< Eno :e,SIN : s,name : n,phoneNumber : p >) = s. Then class Employee can be

derived as follows:
Employee = OBJGEN(Q>, f-)

Renaming methods

This is achieved by the MEO of Rename in the following form:
Rename(C, Noid, Nnew)

The above operation renames the existing method N, in class C, and in all its subclasses, t0 N eq-

Defining virtual methods
AURORA-OH allows definition of virtual methods on virtual or base classes, and translations of
parameters and return values of (virtual) methods using user-defined functions, path expressions,

and OQL queries. This is supported by the MEO of deriveOP, that has the following form:

deriveOP(C', SN, E, Miny Mout)
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This operator defines a virtual method on C and all its subclasses. Sy is the signature of the virtual
method to be defined. E is a navigation method. The concept of navigation method is a powerful
one but for the current purpose it can be assumed to be a path-expression like specification. M;,
specifies in-parameter translation. M, specifies out-parameter and return value translation. These
specifications, called parameter translation maps, allow mediator authors to specify value conversions
using user-defined functions as well as path expressions. For example, the following operation derives
method managerPhone() on class Employee:

deriveQO P(Employee, manager Phone, T HIS manager.phone Numer,

0, {Go = compactFormat(P,)})
The above operation specifies that virtual method managerPhone is to be performed by an Employee
object by invoking method manager on itself, and then invoking phoneNumber on the returned
object. The last parameter says that the return value of managerPhone of an employee, e, is derived
by translating e.manager().phoneNumber() from the format of “(123) 456-7890" to the format of
1234567890 using a user-provided function compactFormat. Gy specifies that it is a conversion map
for the return value, considered to be the 0-th out parameter. Generally, M;, and M, provide the
mediator author with a framework for “hanging” various conversion functions. As another example,
the following operation derives method totallncomelnUSD from salaryInCDN and bonusinCDN:

deriveO P{Employee, totallIncomeInUSD, null, null,

{Go = CDNtoUSD(SalaryAddBonus(THIS.salaryInCDN(), THIS.bonusInCDN())})

6.3.6 A Compact Homogenization Example

In this section, a walk-through of an example is given to demonstrate the facilities AURORA-
OH provides for homogenization. This example requires restructuring of object classes as well as
generation of object classes whose extent contains imaginary objects. Assume that the class on the

right is to be derived from the source class on the left:

class Sales class ProductSales
( extent salesRec ) (extent productSalesRec )

{ {
short month(); — string productType();
integer desktop(); short month();
integer laptop(); integer sales();
integer printer(); h

h
The number of objects in class ProductSales is 3 times as great as that in class Sales; each Sales
object must be split into 3 ProductSales objects. To derive class ProductSales, one first derives 3
classes: desktopSales, laptopSales, and printerSales, using the object generation operator OBJGEN.
To derive class desktopSales, an OQL query is first specified:
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QdesktopSates = Select struct(salesObj:s, productType: “desktop”)
from  salesRec s
And let f be an identity function on type struct(salesObj : Sales,productType : string). Class
desktopSales can then be derived by the following:

desktopSales = OBJGEl\"(QdesktopSales . f)

The desktopSales class has two methods: salesObj() : @ — Sales and productType : B — string.
Moreover, for any object o in this class, o.productType() = “desktop”. The methods of month and
sales on desktopSales are then derived as follows:

deriveOP(desktopSales, month, THIS.salesObj.month,0,{Go = Py })

deriveOP(desktopSales, sales, THIS.salesObj.desktop,d, {Ga = Py }).
The first formula above says that to perform method month, a desktopSales object should first
invoke method salesObj on itself, and then invoke method month on the returned result. The last
parameter contains an out-parameter translation map, Go, where G indicates it is a translation map,
and 0 indicates that the map is for the Oth out parameter of month, the return value. This map
says that the return value of the new method month is the same as the Oth out-parameter (FP,) of
THIS.salesObj().month(). The second deriveOP formula can be interpreted in a similar manner.

Similar to the specification of class desktopSales, classes laptopSales and printerSales can be
derived. Once these classes are derived, the class of ProductSales can be derived as the generalization

of these classes as follows:
ProductSales = Gen(desktopSales, laptopSeales, printerSales)

Most operators used in the above example have their precursors in previously proposed constructs
for object views [1], except the operator of deriveOP. Since the use of these operators has been
illustrated in the above example, it will not be illustrated elaborately again but will be defined
formally in AURORA terms.

The above example does not require complicated method mappings, for which AURORA-OH
provides a richer and more elaborate framework than the object view systems [1]. Therefore, another
example is designed as the running example to demonstrate the method mapping techniques of
AURORA-OH. This example, described in Section 6.5.1, requires less regrouping, restructuring,
and merge/split of objects, but requires sophisticated method mapping that will be carried out

throughout the rest of this chapter.

6.3.7 MEOs and the Homogenization Methodology

All MEOs described can be used for object prototyping but only two MEQOs can be used in the

step of method mapping: Rename and dertveOP. When Rename and deriveOP are used for object-
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prototyping, they facilitate restructuring of objects; when they are used for method mapping, they

facilitate sophisticated translation of parameters, return values, and semantics of methods.

6.4 An Overview of the Object-Oriented Integration

In contrast to homogenization, which is a semi-automatic procedure that requires mediator au-
thors’ intervention and guidance in transforming individual sources, integration in AURORA is a
fully automatic process dealing with a large number of participating sources through respective
AURORA-OH mediators. The integration mediator, AURORA-OI, supports a fixed service view
and is responsible for answering OQL queries posed against this view. To do this. AURORA-OI
must be able to manufacture global objects using the objects provided by participating sources. This

in turn requires AURORA-OI to do the following:

1. AURORA-OI must be able to access objects from multiple sources in a uniform manner.

It is unlikely that AURORA-OI can access source objects using the oids assigned to these
objects in their native sources. To use these oids as access handles, AURORA-OI must be
linked with specific libraries and modules for each type of source. Integration would not scale,
since access programs must be updated each time a new source is included. AURORA-OI uses
run-time agents called prozies to access objects residing at various sources. A proxy represents
one source object, but a source object may have any number of proxies. Proxies are the only
type of handle used by AURORA-OI for accessing source objects; they are also responsible
for facilitating the exchange of oids in a meaningful way across system boundaries, as param-
eters and as return values of methods. Proxies are generated at run-time by AURORA-OH

mediators.

In contrast, AURORA-OH mediators do not face the problem of dealing with objects from
multiple sources as AURORA-OI mediators do. Generally, AURORA-OH is capable of ma-
nipulating objects using their source oids. This is why proxies are needed by AURORA-OI
mediators, not AURORA-OH mediators. However, AURORA-OH mediators are where proxies
are generated. All object exchanges between AURORA-OI and AURORA-OH must be done

using proxies.

2. Given global class Cy, AURORA-OI must be able to combine objects from source classes
registered as fragments of C, to create objects of Cy. Often multiple source objects represent
various portions of the same global object; such source objects are identified by object-matching.
A set of matching source objects, S, gives rise to a global object og; objects in S are referred
to as the contributing source objects of os. Each object in S is capable of performing some, but

usually not all, of the methods defined by C,. os performs any given method m defined by C,
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by dispatching it to a source object in S that is capable of performing it. Since source objects
are represented by proxies, object-matching is performed using proxies. Global objects are
manufactured by operator Prozy Match Join (PMJ), which matches proxies from all relevant

sources to produce integrated objects.

Object-matching is a large issue by itself and is not a focus of research in AURORA; a simple
matching assumption is employed: object-matching is based on PID values. Given source classes S}
and S, both registered as fragments of a global class Cy, objects 0; € S| and 0, € S, are considered
to be matching objects if they have the same PID value. This is why it is necessary that source
classes wishing to contribute data to a global class be able to perform the PID method defined on
this global class. PID values of global objects are the basis for maintaining unique and immutable

oids for global objects.

6.5 Basic Concepts in Object-Oriented Homogenization

This section describes the basic concepts of AURORA'’s object-oriented homogenization framework.
First, a running example is described. This example will be used for illustrating various concepts.
The rest of the section describes two concepts that support the functioning of AURORA-OH: (1)
an internal conceptual framework for describing object classes; and (2) the concept of navigation

methods.

6.5.1 A Running Example

A service view is shown at the top of Table 6.1; it contains a class “Doctor” and its subclass
“Specialist”. These classes have related extents and support a set of methods. The rest of Table 6.1
shows the homogenizing views of three sources: DS;, DS>, and DS3. These views are partial since
only the homogenizing classes are shown. The global classes of which these homogenizing classes
are fragments are indicated on the first line of the class specification. These homogenizing classes
are to be derived by homogenizing the respective data sources. For convenience, the population of
each of the homogenizing classes is also listed at the end of the class declaration. Table 6.2 shows
the source schema at data sources DS, DS, and DSj3, respectively. These are pre-existing schemas.

The population of each source class is also listed at the end of the declaration of each class.

6.5.2 A Framework for Describing Classes

To support the MEOs, AURORA-OH needs an internal framework for describing classes from the

source, as well as those derived. This section describes this framework.
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Service View
class Doctor ( extent doctors )
{
string PID();
string TelNo();
string ClinicAddress();
string Profile();
set<string> PatientHistory( in string PatientID,
out Doctor PreviousDoc, out date FirstAppt);
b
class Specialist extends Doctor ( extent specialists )
{
string Specialization();
short YearsAdvancedTraining();
b
Homogenizing View At DS
class MyDoctor ( extent myDoctors ) // fragment of: Doctor
{ // only methods of interest are listed.
string PID();
string ClinicAddress(};
string Profile();
J5 // Population: 01, (001)”Smith”, 012(002)”Jones”, 013 (003)”Hanks”.
Homogenizing View At DS
class Pediatrician ( extent pediatricians ) // fragment of: Specialist
{
string PID();
string TelNo();
string Profile();
string Specialization();
short YearsAdvancedTraining();
set<ConsultationRecord> PatientHistory( in string PatientID,
out FamilyPhysician PreviousDoc, out date FirstAppt);
b // Populaticn: 021 (001)”Smith”, 022 (004)” Low”
class FamilyPhysician ( extent familyDocs ) // fragment of: Doctor
{
string PID();
string TelNo();
string ClinicAddress();
}; // Population: 023(005)”Peters”
Homogenizing View At DS3
class Orthopedics ( extent docs ) // fragment of: Specialist
{
string PID();
string TelNo();
string Specialization();
short YearsAdvancedTraining();
set<string> PatientHistory( in string PatientID,
out Orthopedics PreviousDoc, out date FirstAppt);
}; // Population: o03;(002)”Jones”, 032(007)”Bond”

Table 6.1: Example Global Schema and Source Homogenizing Views
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Data Source DS ]

class MyDoctor (extent myDoctors ){
string ID();
Clinic clinic();
String bio();
} // Population: o011 (001)”Smith”, 012(002)”Jones”, 013(003)”Hanks”.
class Clinic ( extent clinics ){
string Name();
string Address();
b
[ Data Source DS> |
class Doctor (extent doctors ) {
string PID();
string Profile();
Patient FindPatient(in string PatientID);
H
class FamilyPhysician extends Doctor (extent familyPhysicians ){
string ClinicAddress();
h // Population: 023 (005)” Peters”
class Pediatrician extends Doctor (extent pediatricians ){
string TelNo();
string YearsOfTraining();
b // Population: 02, (001)”Smith”, 022(004)” Low”
class Patient ( extent patients ){
string SIN();
string GetConsultationRec(out Doctor LastDoc, out date FirstAppt):
}s
[ Data Source DS3 !
class Orthopedics (extent orthopedics ){
string PID();
string TelNo(};
string Experience();
short search(in string SIN, out Patient patient, out date FirstAppt);
} // Population: 031 (002)”Jones”, 032(007)” Bond”
class Patient ( extent patients ){
string SIN();
string GetConsultationRec(out Doctor LastDoc);
b
class Clinic ( extent clinics ) {
Orthopedics SpecialistInvolved();
string Address();
b

Table 6.2: Source schemas and populations
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Class Hierarchy in Homogenizing Views

The goal of homogenization is to derive a set of homogenizing classes that have the desirable extent,
interface, and semantics for the methods defined on the interface. Each MEOQ that derives a new
(virtual) class from given classes defines all these characteristics of the derived class, based on those of
the operand classes. One of the important characteristics of object classes is their position in a class
hierarchy. AURORA-OH does not keep a separate view hierarchy, as in [43]. Similar to [1], upon
initialization, an AURORA-OH mediator imports the subclass hierarchy from the underlying ODMG
source. This hierarchy is then modified as the mediator author derives new classes and methods
using MEQOs provided by AURORA-OH. Virtual classes are treated the same way as the classes
originally defined in the data source. As described in Section 6.3.2, derivation of a homogenizing
view does not require hiding methods from classes or hiding classes from the class hierarchy. This
means that evolving the class hierarchy is much simpler in AURORA-OH than in general purpose
object view systems such as those described in {1] and [81], where hiding of attributes. methods. and
classes is required.

Homogenization generates a homogenizing class hierarchy in which the homogenizing classes are
defined; this hierarchy is part of the homogenizing view. AURORA-OH does not export inheritance
hierarchy semantics; it is considered to be a local semantics that is not of interest to the integration
mediator. It is the responsibility of the AURORA-OH mediator to translate queries against the

homogenizing view into queries against the source schema.

Object classes

A distinction is made between logical schemas and implementation schemas. This distinction corre-
sponds to ODMG’s distinction between an ODL specification of a schema and the C++ header and
sources generated by the ODL preprocessor. Both specifications describe OODB schemas but the
former is on a logical level, while the latter is on an implementation level. A logical schema and its
implementation schema are shown in Figure 6.2.

An implementation schema contains application classes as well as system classes. In ODMG
databases, it is mandatory that all implementation classes be subclasses of a root object class,
d_Object, from which application objects inherit many system-provided functions for manipulating
database objects. Therefore, all database objects share system characteristics that are defined by
the root object class. These characteristics of the objects are not of interest in the AURORA-OH
framework. In contrast, logical schemas do not specify any system characteristics, or the object
root as the ultimate superclass of all classes; it only describes the logical characteristics of object
classes due to their application semantics, such as the interfaces of object classes, the semantics of
each method in these interfaces, and the sub-class relationship among object classes. AURORA-OH

describes objects on the logical level. As such, object classes may be shown without a superclass.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// Logical Schema of Class Professor //
class Professor ( extent professors )

{
string name () ;
unsigned short grant_tenure();

};

// Implementation Schema of Class Professor //
class Professor: public d_Object {

public:
d_String name () ;
d_UShort grant_tenure();
};
d_Extent<Professor> professors; // maintained by DBMS

Figure 6.2: Logical and Implementation Schemas of Class Professor

However, when these classes are implemented in an ODMG database, they’ll be the subclass of the
object root.

AURORA-OH views a class as a 4-tuple C = <[, E, SUP, SUB>. C.I is a set of methods,
called the interface method set, which includes all methods applicable to objects in class C, defined
directly by C, or inherited from superclasses of C. C.E is the extent of class C; it is the collection
of oids of all objects in class C. C.SUP is the set of immediate superclasses of C. and C.SU B is the
set of immediate subclasses of C. To define a class, all four aspects must be defined. In particular.
each method in the interface method set must be described by a method signature and a description
of the semantics, often given procedurally. Following the ODMG object model, methods in C.J
must have a unique name; overloading similar to function overloading in C++ is not considered.
Moreover, when a class X is a subclassof class Y, Y.JC X.J, X.E CY.E.

Generally, a property that is an attribute or relationship can be viewed as a pair of methods: one
that gets the value of the property and one that sets the value of the property. In AURORA-OH,
the gets method in this pair is of interest and an attribute/relationship property is viewed as a
0-parameter method with the name of the property as method name, and the type of the property
as the return type. In the rest of this chapter, only methods are discussed; all discussions apply to

attributes and relationships.

Virtual Classes and Imaginary Objects

Given an ODMG data source, all the classes that are already defined in this source are referred to as
base classes. A virtual class is a class with a derived interface method set and a derived, virtual extent

that can be (partially) materialized at query processing time. In AURORA-OH. virtual classes are
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specified by MEOs that regroup and restructure previously defined classes. These operators are the
subject of Sections 6.6.1 - 6.6.3. Once specified, a virtual class behaves exactly the same as a base
class; it can be queried by OQL and can be used to derive other virtual classes.

A base class has an extent that is a materialized collection of oids. Virtual classes always have
a virtual extent that is conceptually a collection of oids but the collection may not be physically
maintained by AURORA mediators. Moreover, depending on how a virtual class is created, its
extent may contain real objects or imaginary objects [1]. Real objects are objects that already exist
in a data source; they have a unique and immutable oid that is maintained by the source where they
reside. Imaginary objects exist only in the derived views, not in the data source. These objects are
maintained by AURORA-OH to allow data values to be accessed like objects; they have unique and

immutable oids, and they are materialized at run-time to entertain data access requirements.

6.5.3 Navigation Methods

Navigation method is a way of declaring virtual methods without writing code. Given a class C, the
methods in C.I are referred to as the base methods of C. Assume that method p defined on class
C returns an object of class C', which defines method p’. One can declare a new method on class
C, Myew, by asking objects of class C to first perform p on themselves, get an object of C' as the
result, invoke method p’ on this object, and return the result of this last invocation to the client.

This method can be declared as follows:
Mpew =THIS.p.D'

Muew is called a nevigation method. For instance, THIS.manager.phone is a navigation method
defined on class Employee.

Intuitively, a navigation method defined on a class provides objects in this class with a spec-
ification for navigating through the database to locate other objects and data values of interest.
An object, o, can reach an object or value, o', as the result of performing a method it is capable
of performing. As such, navigation methods can be specified as path ezpressions which serve as a
“map” for navigating. However, navigation methods in AURORA extend the usual concept of path

expression in two ways:

1. Objects can locate objects and values of interests via the out-parameters of method invocations.

This type of navigation is illustrated in Example 6.5.2.

2. Objects can locate objects and values of interest via directed relationships specified as ODMG

OQL queries or user-defined functions and mapping tables.

In the rest of this section, the concepts of directed relationships and navigation methods are formally

defined.
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DEFINITION 6.5.1 [Directed Relationships.] A directed relationship from object class C; to object
class or ODMG literal type 7> is a mapping M: C; — set < T >. Directed relationships exist in
two forms in AURORA-OH:

1. M = f, where f is a function f:C, — set < T >.

2. M = R4, 4, where Ris a (virtual) collection of structs of type struct(4,:C, 42:7>). R —a,

is a mapping such that R4, 4,(01) = {02 | < 01,02 >€ R}.

A directed relationship is many-to-1 if Vo, € Cy, |M(0;)| < 1, otherwise it is many-to-many. O

A directed relationship is a mapping that exists external to any object class, but is available to all

classes for constructing navigation methods. This concept is illustrated by the foliowing example.

Example 6.5.1 Consider DS; shown in Table 6.2. An Orthopedics object does not “know” its

clinic, a directed relationship can be specified to provide this missing link:

Q = select struct(Doc:d, clinic:c)
from orthopedics d, clinics ¢
where d in c.SpecialistsInvolved()

Q@ defines a virtual collection of structs of type struct(Doc: Orthopedics, clinic: Clinic) that link
orthopedics with the clinics they are involved with. @Qpoc—ciinic is a directed relationship from
Orthopedics to Clinie. If a doctor works at only one clinic, then @ poc—crinic 1S many-to-1, otherwise

it is many-to-many. O

A navigation method is constructed recursively, as described in Definition 6.5.2 below. Each step

of recursion defines a move of navigating forward. There are four ways of moving forward:

1. By invoking a method and returning the return value of this invocation.

[

. By invoking a method and returning an out-parameter used in this invocation.
3. By locating a relevant object/value through a many-to-1 directed relationship.
4. By locating a relevant set of object/value through a many-to-many directed relationship.

The following definition defines the signature of a navigation method thus constructed, and describes

the semantics of a navigation method procedurally.

DEFINITION 6.5.2 [Navigation Method.] THIS is a navigation method on class C with signature
THIS: 0 > C.VoeC,0THIS() =0. If X :e1:T1 X ... X €m:Trn = Treturn is @ navigation method

on C, then the following are also navigation methods on C:
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1. D = X.P, if Treturn is an object type and P : e}:T]| x ... x e},:T} — T is a base or navigation

method defined on it. The signature of D is:
X.P: e T) X ... X :Trn X out:Treturn X €1:T1 X ... X €,:Ty = To
VYo € C, 0.D(p1, -+ PmsPm+1: D1 ----: Dy) has the following semantics:

{Pm+1 =0.X(p1, .-, Pm); return pm41-P(pi,...,05);}

2. D = X.P[k], if Treturn is an object type and P : e}:T{ x...xe},:T;, — Tp is a base or navigation

method defined on Treturn, 1 < k < n, e = out or e, = inout. The signature of D is
X.Plk]: e1:Ty % ... X en: T X 0ut:Treturn X €1:T) X ... X ep,: T, x out:Tg — T},
Yo € C, 0.D(p1; s Pm; Pm+1,P1s -1 Pns Pny1) has the following semantics:

{Pm+1 = 0.X(P1; ., Pm); Ppt1 = Pm+1-P(P}, .-, P1y); return pi; }

3. D = X.M where M is a many-to-1 directed relationship from Treturn to C, the signature of
Dis XM : e;:T1 X ... x en: Ty X out:Treturn = Ci- Yo € C, 0.D(p1;---: Pm:Pm+1) has the

following semantics:
{Pms1 = 0.X(Py, s Pm); return element(M (pms1)); }

where element returns an element from a set value.

4. D = X.M where M is a many-to-many directed relationship from Ty e:urn to Cy. The signature
of Dis X.M : e1:T} X ... X eq:Tyn X out:Tretyrn — set < Cy >. Yo € C, 0.D(p1, .-, PmsPm+1)

has the following semantics:

{pm+1 =0.X(p1,.-sPm); return M(pms+1);}

a

Example 6.5.2 This example illustrates navigation methods using source DS» shown in Table 6.2:

- THIS.FindPatient. GetConsultationRec is a navigation method that returns a set of consulta-

tion records of a patient. This method has the following signature:

THIS.FindPatient. GetConsultationRec :  in:string x out:Patient x

out:Doctor x out:date — set < string >

- THIS.FindPatient.GetConsultationRec[1] is a navigation method that returns the previous
doctor of a given patient. This method has the following signature:
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THIS.FindPatient. GetConsultationRec[1] :  in:string x out:Patient x out:Doctor x

out:date x out: set < string >—+ Doctor

Now consider source DS3, shown in Table 6.2, and recall the directed relationship Q poc—ctinic
defined in Example 6.5.1. Assume that Q poc—ctinic is many-to-1. THIS.Q poc—clinic 1S @ navigation

method on class Orthopedics with signature
THIS.Q poc—sctinic : § — Clinic

This method returns the clinic an orthopedics is attached to. O

6.6 Mediation Enabling Operators for Homogenization

This section describes the mediation enabling operators provided in AURORA-OH for homogeniza-
tion. These MEOs are used to derive virtual classes to remove semantic and structural differences
between source classes and the global classes. These MEOs perform three types of transformations:

regrouping, object generation, and method derivation.

6.6.1 Regrouping MEOs

Generalization, specialization, and behavioral generalization are three object-preserving MEOs.
These MEOs create virtual classes whose populations consist of objects from existing base or virtual
classes. Interface methods of the virtual classes created by these operators include some or all of
the methods previously defined on the operand classes. These MEQOs are similar in semantics to the
view operators with the same name as defined in [1]. In this section, these operators are redefined

in AURORA terms.
DEFINITION 6.6.1 [Generalization.] The generalization of object class C,....C,
C = Gen(C,...,Cr)

is defined as follows:

—

.CI=C.In..nC,.I.
2. CE=C{.EU..UC,.E.
3. C.SUP = D, where D is the most specific common superclass of C,...,Ch.

4. C.SUB = {Cy,...,Cp}.
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Similar to [1], the most specific common superclass of a given set of classes C.....C, is a class D

such that:
1. Class D is an ancestor class of Cy, ...,Cn.

2. There exists no D’, a descendent class of D, such that D’ is an ancestor class of C1,...,Chp.

DEFINITION 6.6.2 [Specialization.] A specialization of object class C based on query @, which

returns a set of objects of class C,
C' = Spe(C,Q)

is defined as follows:
1. ¢'I=Cl
2. C'.E={o| o€ C.E,p(o) = true}.
3. C'"SUP=C. C'.SUB =0.

0

DEFINITION 6.6.3 [Behavioral Generalization.] Let L = {C},...,C,} be a set of object classes.
Let P = {pi1,...,pbm} be a set of method signatures. Vi,j5.1 < i,j < n. P C Ci.I. P C C,.I.
Ci.ENCj.E =0, the behavioral generalization of classes L by P

C = BGen(L, P)
is defined as follows:
1. C.I=P.
2. CE={0]3,1<i<n,0€C;.E,P CC;.I}.

3. C.SUP =0. C.SUB ={C'|C'eL,PCC".I}.

6.6.2 The MEO for Object Generation: OBJGEN

Sometimes objects must be merged or split to form new objects during homogenization. To do this,
an ODMG OQL query is first used to generate a set of values, called data containers, and then each
of these containers is translated into an object of a virtual class. For example, to derive an object

class Family from object class Person, a set of data containers, family, is first created:

family = select struct(Wife: w, Husband: h)
from persons w
where w.sez() = “F” and w.husband() = h
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Each element in family is a structure that holds all the “raw material” needed for generating Family
objects. The MEO of OBJGEN will do the rest of the work of generating class Family from family.

Objects generated by OBJGEN are imaginary objects. Like other objects, they must have oids
and must support a well-defined set of methods. OBJGEN must assign oids to the imaginary
objects it generates and also define the methods supported by them. Oid generation for imaginary
objects is a rather controversial issue because such oids can only be assigned based on values, but
an oid is by definition not value-based. AURORA's solution is described below.

The goal of OBJGEN is to assign unique and immutable oids to data containers and turn them
into objects. Uniqueness in this context can only be based on the assumption that there already
exists a way of distinguishing one data container from another. This means that for a set of data
containers, S, there exists an identifier function, f, an invertible function that maps a given data
container v. to a value f(v;) that uniquely identifies v, from S. That is, there exists no v, € S,
vl # v, such that f(v)) = f(v.). f(v.) is referred to as the core value of v.. For example, the
identifier function of family could be one that maps each element in family, < w,h > to a value
< 1,12 > where ¢; = w.PID(), and i, = h.PID(). Identifier functions must be provided by a
mediator author; it is a way for the mediator author to describe the identification semantics of the
data containers that have been created.

OBJGEN maintains a one-to-one mapping between the core values of data containers and the
oids assigned to the objects representing these data containers. Immutability of oids in this context
requires that “an oid always represent the same data container”. Since data containers are identified
by their core values, a data container remains the same as long as its core value is not changed.
By maintaining a one-to-one mapping between assigned oids and core values, OBJGEN supports
immutable oids. Change of core values gives rise to new imaginary objects and is equivalent to
deleting an old imaginary object and adding a new one, with a new oid.

Implementation techniques may vary in the way these functions and mappings are generated and
maintained. Conceptually, for each virtual class C derived by OBJGEN. an invertible function.

OIDc, as defined below, is maintained.

DEFINITION 6.6.4 [Function OID¢.] Let C be a virtual class created from a set S of data containers
of type T, and let f be an identifier function of S, f : T — T’, where T” is the type of the core
values of the data containers in S. The OID function of class C, OID¢, is an invertible function
with signature OID¢c : T' — C such that, for any value v of type 1", OID¢(v) returns the oid
assigned to the imaginary object generated from the value in S that is uniquely identified by v. O

DEFINITION 6.6.5 [MEO OBJGEN.] Let Q be an OQL query of type T = struct(A:T1, ..., An:Th)
and let f be an identifier function on the result of @, f : T — T, where T is the type of the core
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value of the data containers in @. Then
C =0BJGEN(Q, f)
creates a virtual class C as follows:
1. C.E = {OIDc(I,) | v € Q, I, = f(v)},

2. C.I ={PID,A,,...,Ap}. Method A;(1 < 7 < n) has signature 4; : @ — T;. Method PID
has signature PID : § — T". Vo € C.E, 0.PID() = OIDZ;'(0), 0.4:() = f~1(OIDZ"'(0))[4i],
1<:<n,

3. CSUP=0. CSUB=090.

a

Example 6.6.1 Consider the set of data containers family specified earlier in this section. Let
f be a function that maps a given value < Wife:w, Husband:h> to a value < WifelD:w.PIN(),
HusbandID:h.PIN()>. The following operation creates an imaginary class, Family:

Family = OBJGEN (family, f)

The extent of Family includes one object for each element of family. Family objects defines
3 methods: PID(), Wife() and Husband(). Assume that function OIDFamiry(v) is a program
that creates oids by concatenating the name “Family” with each element in v. Then a struct
< Wife : w,Husband : h >€ family where w.PIN() = “001” and h.PIN() = *“002” has oid
“Family-001-002”, and:

Family-001-002.PID()
Family-001-002. Wife()
Family-001-002. Husband()

<“001”, “002”>;

w;
h;

g

6.6.3 MEOs for Renaming and Deriving Methods

AURORA-OH supports derivation of a virtual method, M, as a “wrapper” method of an existing

method, My, base or navigation. Once derived, M, works as follows:
1. Derive each in-parameter of My from the in-parameters of A;.
2. Invoke M, with the above derived in-parameters.

3. Derive each out-parameter and return value of M from those returned from step 2, and return

them.
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It is the responsibility of the mediator author to specify the details of the derivations in steps 1
and 3, and to provide such specifications to the MEO of deriveOP, which facilitates the derivation
of virtual methods. By doing so, deriveOP provides the mediator author with a framework for
performing sophisticated parameter translation. AURORA-OH allows a mediator author to express

these translations with three constructs:

1. Parameter derivation ezpressions, PDEs. A PDE is a function that derives a value from a
given set of parameters using constants, user-defined conversion functions, as well as existing
methods. For instance, a PDE that applies a user-defined function f to the 1st parameter can

be expressed as f(P;). PDEs are defined in Definition 6.6.7.

2. Inward Parameter Translation Map, IPTM. An IPTM is a set of PDEs, one for each in-
parameter of My; these PDEs involve only the in-parameters of M;. Intuitively, these PDEs

are used to derive all the in-parameters of My from the in-parameters of ;.

3. Outward Parameter Translation Map, OPTM. An OPTM is a set of PDEs, one for each out-
parameter of M; and one for the return value of M. Each of these PDEs can involve only the
out-parameters and return value of My. Intuitively, these PDEs are used to derive the values

of out-parameters and the return value of Mj.

If a class already has a method with the same name as a target virtual method but is semantically

different from the latter, it must be renamed.

DEFINITION 6.6.6 [MEO Rename.] Let C be an object class and let N be a base or navigation
method of C that is not inherited from a superclass of C. The operator Rename(C, N, N1), where
N1 is a name that is not used by any method defined on C or any of C’s descendent classes. renames

the method N to N1 in C and all its descendent classes. O

DEFINITION 6.6.7 [Parameter Derivation Expression (PDE).] Let V : e;:T} x ... x e T, = To
be a method defined on class C. Let o be an object of C. Let V = < vp,.....un > be a value
of type < Tp,....Tn >. A parameter derivation ezpression(PDE) on N, G, its type, type(G), its
source parameter set, SPset(G), and its evaluation based on V and o, EVAL(G, V, 0), are defined

recursively as follows:
1. G=THIS,is a PDE. type(G) = C, SPset(G) =0, EVAL(G,V,0) = o.
2. G = ¢, where cis a constant, is a PDE. type(G) = type(c), SPset(G) =0, EVAL(G,V,0) = c.
3. G=PF;,0<Li<n,is a PDE. type(G) = T3, SPset(G) = {P;}, EVAL(G,V,0) = v;.

4. If G' is a PDE on N of object type T, p : €}:T] X ... X eh,:Th, — T} is a method defined on
T, and G; is a PDE on N of type T} (1 < i < m), then G = G'.p(Gy, ...,Gm) is 2 PDE on
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N. type(G) = T} SPset(G) = SPset(G') U SPset(G1) U ...U SPset(Gn), EVAL(G, V, 0) =
EVAL(G', V, 0).p(EV AL(G4,V,0), ..., EVAL(Gn, V, 0)).

5. If G’ is a PDE on N of object type T, p : e}:T{ x ... x el,:T} — T3 is a methed defined on
T, e}, = out, and G; is a PDE on N of type T} (1 <7 < m}, then G = G'.p(Gy,...,Gn)[k] isa
PDE on N. type(G) = Ti. SPset(G) = SPset(G') U SPset(G1)U...U SPset(Gn). EVAL(G.

V,0) has the following semantics:

EVAL(G',V,0).p(EVAL(G1,V,0),...EVAL(Gk-1, V,0),t, EVAL(Gk41, V,0), ..., EVAL(G., V, 0));
EVAL(G,V,0) = ¢;

6. Let f : in:T| x...xin:T, — T be a function and let Gy, ...,G; be PDEs on V of types T}, ..., T%,
respectively. G = f(G1,...,Gz) is a PDE on N. type(G) = T§, SPset(G) = SPset(G,)U...U
SPset(G;), EVAL(G,V, o) = f(EVAL(G1,V,0),..., EVAL(G:,V,0)).

O

Parameter mappings are specified as translation maps of two kinds: inward and outward.

DEFINITION 6.6.8 [Inward/Qutward Parameter Translation Maps ( IPTM and OPTM )] Let
N:eTy X ...xe: Ty = Tp

and

N AN o4 ot 1
D: e:T| x..xe, T, =T,

be two methods where N involves no inout parameters. The inward parameter translation map

(IPTM) from N to D is a list of PDEs on N, Lin = {Ginyy---sGin_}, where Vv,1 < v < z,1 <

!
ing "

in, <m, {e »€in, } are all the in/inout exports in D, type(Gin,) =T}, , SPset(Gin,) contains
only in-parameters in N. The outward parameter translation map ( OPTM ) from D to N is a
list of PDEs on D, Loyt = {Goutes---;Gout, }» Where outg = 0, Vw,1 < w < y,1 < outy, < n,
{eout,s---s€out, } are all the out exports in N, type(G,,,. ) = Tout., SPset(Goye,) contains only

return value and the out/inout parameters in D. O

Example 6.6.2 Assume that an Employee class defines method FindSalary as follows:

integer FindSalary{ in string Year,
out integer salary, out integer bonus, out Employee manager)
signature: FindSalary: in:string x out:integer X out:integer X out:Employee — integer

Now consider ( virtual ) method Salary2:

integer Salary2 ( in date Date, out string managerPhone)
signature:  Salery2: in:integer X out:string — inleger
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that returns the ssalary of an Employee object. Also assume that this returned value is the sum
of the salary and kbonus an employee receives in a given year, in US dollars, while both salary and
bonus returned as out-parameters in FindSalary are in Canadian dollars. The IPTM from Salary?2

to FindSalary is tthe following:
Lin = {Gin,}, Gin,=dateToYear(P,)

where dateT oY eam is a function that takes an in-parameter of type date and returns the year in
string form. Intuitively, this map specifies that there is only one in-parameter in FindSalary, the
first parameter. Whis parameter to FindSalary, in string Year, is to be derived by applying the
function dateTo Ye=ar to the first parameter of Salary2. The OPTM from FindSalary to Salary?2 is

the following:

Loy = {Goutoy Goutg};
Goutg = CNDtoUSD(SalaryAddBonus(Ps, P3));
Gouta = PaphoneNumber();

The above map specifies that there are two out-parameters in Salary2, parameter 0 (the return
value), and param-eter 2(out string managerPhone). The two PDEs, Gy, and Goue,, specify how
these two parameteers are to be derived from the out-parameters of FindSalary. Gy, specifies that
the return value off Salary? is to be derived by applying function SalaryAddBonus to parameters
2 and 3 of FindSalary. Goue, specifies that the 2nd parameter of Salary2, manager Phone, is to
be derived by takimg the 4th parameter of FindSalary and invoking method phoneNumber on it. O

DEFINITION 6.6.9 [MEOQO deriveOP.] Let C be an object class, N : e;:T} X ... x €,:T, — Tp be a
method involving mo inout parameters, and C or any of C’s descendent classes do not have a method
named IN. Let D toe a base or navigation method of C' with signature D : e{:T] x ... x e, ,: T}, — 1.

Let Lin = {Gin,)-—-- Gin, } be an IPTM from N to D and Lout = {Goutg; ----» Gout, } be an OPTM
from D to V. The- following operation

deriveOP(C,N,D, L;in, Lout)

adds an interface mmethod N to class C and all its subclasses. For any object o € C.E, the semantics

of 6.N{(p1, ..., pn) iss defined procedurally as follows:

1L.V5,1<j<m,leta; = EVAL(Ginj, < P1y--eesPn >,0) if e;- =1in or e;- = tnout, otherwise let

a; = null.
2. Let ap = 0.D (a1,...,am)-
3. Vk,0< k< mm, if k=0 or ex = out, let by = EVAL(G,,,, , < ao,---,am >,0). Return bo.
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Operator deriveOP derives a virtual operation N from a base or navigation method D using user-
provided parameter translation maps. The method N thus derived is a “wrapper” method of D. N
works as follows: it first derives all the in-parameters of D using the in-parameters of .V according
to the IPTM, L;,, provided as the 4th parameter to deriveOP. It then invokes D using the in-
parameters just derived. Finally, it derives its own out-parameters and return values using the
OPTM, Loy, provided as the 5th parameter of deriveOP. This operator is illustrated by the

following example.

Example 6.6.3 This example continues Example 6.6.2 to show how Salary2 can be derived from

FindSalary. To add a virtual method Salary2 on class Employee:
deriveOP(Employee, THIS . FindSalary, Lin, Loy;)
For any employee e, the semantics of e.Salary2(aDate, manager PH) is the following:
1. Let a; = dateT oY ear(aDate);
2. Let ap = e.FindSalary(a,, salary, bonus, manager);

3. bp = CNDtoUSD(SalaryAddBonus(salary, bonus)); managerPH = manager.phoneNumber();

return bg.

6.7 Homogenization with AURORA-OH

Homogenization is performed by mediator authors following a homogenization methodology. Each
step prescribed by the methodology requires a mediator author to derive virtual classes that are
closer to the target homogenizing classes in structure and semantics. These virtual classes are
derived using the operators described in Section 6.6. This section first describes the mediation
methodology of AURORA and then demonstrates how it can be used to homogenize the sources

shown in Table 6.2 to generate respective homogenizing views in Table 6.1.

6.7.1 A Homogenization Methodology

A homogenizing class, C, is derived in 2 steps: object prototyping followed by method mapping.
This process is illustrated in Figure 6.1. Object prototyping creates a prototype object class C',
that has the ability to perform each of the methods defined on C. This ability is determined by
the mediator author. That is, it is the mediator author’s responsibility to design and derive C".
However, there must be a one-to-one mapping between objects in C’ and those in C, in that the

corresponding objects model the same application entity, with possibly different representations.
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The goal of method mapping is for the mediator author to describe exactly how each method of C
can be performed by objects of C’. To do so, the mediator author must derive each method of C
as a virtual method of class C’. This step does not generate new classes or change the position of
the prototype (virtual) class in the inheritance hierarchy; it defines a new, virtual method that is
equivalent to a target method both syntactically and semantically. Once all the virtual methods are
defined, one can simply rename C’ to C, that is, C' becomes C.

The object-oriented homogenization methodology mandates the sequence in which transforma-
tions are performed. The transformations themselves are performed using AURORA-OH’s Mediation
Enabling Operators (MEOs), described in Section 6.6.

The object-oriented homogenization methodology is less elaborate than its relational counterpart;
it is not based on a detailed classification of mismatches and how to remove them systematically.
This is because the object-oriented data model is flexible and rich in semantics. An enumeration
of all possible mismatches would be large. It will be difficult to design an approach to identify
and resolve these mismatches systematically. In AURORA, it is expected that in an object-oriented
context, most, if not all, mismatches encountered in a data integration process are up to the mediator
authors to define, identify and resolve. AURORA provides a set of operators that are commonly
recognized as useful for deriving object views - such as generalization, specialization and object

generation - and provides a framework for deriving virtual methods using user-provided functions.

6.7.2 A Walk-Through of the Homogenization Example

This section gives a walk-through of the homogenization of DS;, DS», and DS3 as shown in Table
6.2 against the global schema, as shown in Table 6.1. The homogenizing views of the three sources
are also shown in Table 6.1. As shown below, this example does not require step 1 of the mediation
methodology to be performed. Generally, the object prototyping step requires regrouping, restruc-
turing of existing object classes, and/or generation of object classes; it can be a giant step in many
cases, but AURORA’s mediation methodology does not provide fine granularity guidelines in this
step. Various examples of the kind of transformations that could happen in this step are given in Sec-
tion 6.3.6 and Section 6.6. The rest of this section contains a walk-through of the method-mapping
step of the example shown in Tables 6.2 and 6.1.

At DS, class MyDoctor is already a prototype of the target class MyDoctor. In the step of

method mapping, specify the following:
deriveOP  (MyDoctor, PID, ID, ®, {Gouts = Po})
deriveOP  (MyDoctor, ClinicAddress, THIS.clinic. Address, 0, {Goutg = Po})
deriveOP  (MyDoctor, Profile, bio, 8, {Gouty = Po})

At DS,, classes FamtlyPhysician and Pediatrician are the prototypes of target classes with the

same names in the export view shown in Table 6.1. In the step of method mapping, specify the
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following:

deriveOP  (Pediatrician, YearsAdvancedTraining, YearsOfTraining, 0, {Gout, = Po})
deriveOP  (Pediatrician, Specialization, null, §, {G,y, = “Pediatrician™})
deriveOP  (Doctor, PatientHistory, THIS.FindPatient. GetConsultationRecord, {Gin, = P, },
{Gouto = P07 Goutg = P31 Goutg = P4})
Note that by specifying a virtual method PatientHistory on class Doctor, the same method is
specified for both Pediatrician and FamilyPhysician. The signature of the navigation method
THIS . FindPatient. GetConsultationRecord is given in Example 6.5.2. Also note the specification
of method Specialization, where the third parameter is null. In this case, deriveOP adds a virtual
method that returns a constant value, “Pediatrician”.
At DSj3, class Orthopedics is a prototype of the class with the same name in the homogenizing
view of DS3. In the step of method mapping, specify the following;:
deriveOP  (Orthopedics, YearsAdvancedTraining, Ezperience, 0, {Gouto = Fo})
deriveOP  (Orthopedics, Specialization, null, 8, {Gyus, = “Orthopedics™})
deriveOP  (Orthopedics, PatientHistory, THIS.search{2].GetConsultationRecord, {Gin, = P1}.
{Gouto = POv Goutg = P57 Gouta = P3})
By Definition 6.5.2, the navigation method THIS.search[2].GetConsultationRec on Orthopedics has

the following signature:

THIS.search[2].GetConsultationRec: in:string x out:Patient x out:date X out:shortx
out:Doctor — set < string >

It is easy to understand the last deriveOP formula above for specifying operation PatientHistory

on Orthopedics.

6.8 AURORA-OI: The Integration Mediator

The AURORA-OI mediator supports a service view by manufacturing global objects using relevant

objects exported by participating sources.

6.8.1 Oid Generation for Integrated Objects

Global objects manufactured by an AURORA-OI mediator are imaginary objects since they only
exist in AURORA-OI, not in any data sources. Similar to the approach described in Section 6.6.2,
AURORA-OI assigns unique and immutable oids to the generated objects by maintaining a one-to-
one mapping between the assigned oids and the PID values. This mapping is captured by function
GOID.

Function GOID. For each global class C in the service view, AURORA-OI maintains an
invertible function GOIDc : T§,p, — C, where TS, is the PID type of class C. For any PID
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value of Cy, v, GOIDc(v) is the oid assigned to the imaginary object in C identified by PID value
v. This function is similar to the function OID defined in Definition 6.6.4. This function is named

GOID to emphasize that it is used for maintaining oids of global objects.

6.8.2 Fragments and Registrations

Object classes exported by various sources, through respective AURORA-OH mediators, are referred
to as the source classes. Methods defined on these classes are referred to as the source methods.
Source classes can be registered as fragments of global classes. Once registered, these classes are
known to AURORA-OI as registered fragrnents. Semantic intension of the source classes, and the
semantics of the source methods, must be maintained by mediator authors. It is the responsibility
of the mediator authors working at various AURORA-OH mediators to guarantee that each source
class registered as a fragment of a global class indeed models the “same” entity of interest as the
global class, and that each source method with the same name as a global method “does the same
thing” as the global method. AURORA-OI imposes a few syntactical conditions on source classes
that are registered as fragments so that these classes can be interpreted correctly and automatically

by AURORA-OI. The following definition describes the kind of data exchange that is possible.

DEFINITION 6.8.1 [Portable and Applicable Types.] A source data type T is portable to a global
data type T, if

1. Both T and T, are pure literal types and Ty = Ty; or
2. T, is a registered fragment of T, or of a subclass, directly or indirectly. of Ty; or
3. Ts = set < Ty >, Ty = set < T,' >, and Ty is portable to Tj.

A global data type T, is aepplicable to a source data type T if
1. Both T and T, are pure literal types and Ts = T; or
2. T is a registered fragment of T, or of a superclass, directly or indirectly, of T,; or
3. Ts =set < T} >, T, = set < T," >, and T’ is applicable to T?.

0

There are two directions that data can be passed: from AURORA-OH to AURORA-OI and from
AURORA-OI to AURORA-OH,; different types of data can be passed in each direction so that the
data passed into an mediator can be interpreted properly. To distinguish the two directions in which
data are passed, AURORA-OH mediators are said to port data to AURORA-OI mediators and the
latter apply data to the former. The concepts of portable types and applicable types then define
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the kind of data passing that is possible in the two directions. AURORA-OH and AURORA-OI can
only exchange data values using portable types and applicable types.

If a source data type Ty is portable to a global data type T}, then a value of type Ts can be passed
by AURORA-OH to AURORA-OI, and this value can be interpreted by AURORA-OI as a type T,
value. According to the above definition, T and 7, must satisfy one of the following conditions: (1)
they are identical PLTs; or (2) the semantic intension of T is the same as that of T,. in which case
T, is a registered fragment of T; or it is a specialization of the semantic intension of T,. in which
case Ty is a registered fragment of a descendent class of Tj. Intuitively, T represents an entity that
is by semantics a kind of T,.

Similarly, if a global data type T, is applicable to a source data type T, then a value of type T,
can be passed by AURORA-OI to AURORA-OH and this value will be interpreted by the latter as
a value of type T,. According to the above definition, Ts and T, must satisfy one of the following
conditions: (1) they are identical PLTSs; or (2) The semantic intension of Ty, is the same as that of T,
in which case T is a registered fragment of T}; or it is a specialization of the semantic intension of
T, in which case T is a registered fragment of an ancestor class of T in the service view. Intuitively,

T, represents an entity that is by nature a kind of T.

DEFINITION 6.8.2 [Delegatable method.] A source method with signature N : e;:T) X ... X ep: T, —
To is a delegatable method of a global method Ny : e]:T{ x ... x e%,:T3, — T§ if:

1. Method N, has the same name as method NV and m = n.

2. Tp is portable to T§. Vi,1 < i < n, e; = e/. Moreover, if e; = in, then T? is applicable to T,

t

if e; = out, then T is portable to T7.
]

A delegatable method of a given global method is a source method whose signature qualifies to
execute the global method; it is the mediator authors’ responsibility to ensure that the source
method qualifies in semantics as well. In Table 6.1, PatientHistory in classes Pediatrician and

Orthopedics are both delegatable methods of the global method PatientHistory of Doctor.

DEFINITION 6.8.3 [Valid Fragments.]. A source class Cy is a valid fragment of global class Cj if
1. Cy has a PID method that is identical in signature to that of Cy’s; and

2. 3X, a set of methods defined on C,, such that Vf, € S, 3f defined on Cy such that fis a
delegatable method of f,.
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This definition says that a valid fragment of a global class must support the PID method of the
global class and should define delegatable methods for some of the methods defined in the global
class. In Table 6.1, source classes FamilyPhysicien, Pediatrician and Orthopedics are valid fragments
of global classes Doctor and Specialist.

A source class C can be registered as a fragment of global class Cy only if C is a valid fragment
of Cy, but not all valid fragments are registered fragments: which source class to register with which
global class is determined by the mediator authors at sources. For instance, the mediator authors
may decide to register FamilyPhysician with Doctor, Pediatrician and Orthopedics with Specialist,
and so on. A registered fragment of C, is said to be compatible with C, and all its super-classes.
Methods are registered implicitly. If C is a registered fragment of Cy, then a method of C that has
the same name as a method of Cj is a registered method. It is the mediator authors’ responsibility to
make sure that all registered methods are delegatable methods of the global methods they share the

same names with. All methods listed in the homogenizing views in Table 6.1 are registered methods.

6.8.3 Proxies

AURORA-OI

Global object

\J
GOID(-1) GOID

———————

Proxy

|
LOID LOID(-1)

source
object

AURORA-OH

Figure 6.3: Use of Proxy for Uniform Access

AURORA uses prozies, handles generated by various AURORA-OH mediators to enable uniform
access of source objects. Each proxy represents one source object but a source object may have any

number of proxies. Proxies exist to perform the following tasks:

1. To accept requests from a foreign client, pass this request to the source object it represents
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for execution, and return the results to the client.

2. To facilitate passing oids across system boundlaries. Methods on local objects often take oids

as in-parameters and return oids. Proxies must facilitate such exchange of oids in a meaningful

way.

Uniform access of source object using proxies is illustrated in Figure 6.3. Proxies run at various
AURORA-OH mediators and they accept PID values in place of oids as in-parameters for method
invocation. A proxy executes a method by translatimg the PID values passed as in-parameters into
local oids using a system function LOID, and uses the obtained oids as in-parameters to invoke
the corresponding method on the source object it xepresents. Upon returning of this invocation,
the proxy translates all returned oids, either as return value or as out parameters, into appropriate
PID values using the inverse of function LOID, and returns the obtained PID values to the client.
AURORA-OI accesses source objects through proxies. Global objects at AURORA-QOI invoke a
source method by first translating any in-parameters that are oids into PID values, using the inverse
of function GOID. Upon returning of a request to a proxy, the global object translates the returned
PID values into oids, using function GOID. Functiom GOID was defined in Section 6.8.1. Function
LOID is defined below.

Function LOIDc. For each class C registered, the AURORA-OH mediator where this class
resides must maintain a function LOID¢ : TS,p — €, where TS, is the PID type of C, that maps
a given PID value of C to the C object identified by v. That is, given PID value of class C, p,
LOIDc(p) = o if and only if 0.PID() = v.

Proxies of different source objects are able to hamdle different requests; this is defined by proxy

types. The semantics of methods on proxies is defined in Definition 6.8.5.

DEFINITION 6.8.4 [Proxy Type.] Let C be a registered fragment and F be all the registered methods
of C. The proxy type of C, PXY(C), is defined as follows: Vp € F' with signature N : e;:T} %
. X en: Ty = T, PXY(C) defines a method p’ with signature NV : e;:T] X ... X ,:T, — Ty where
Vi,0 < i < n, if T; is a pure literal type, T} = T;. Xf T; is an object type C’ or set < C' >, then
T} = Tpiqa or T} = set < Tpiq > respectively, where T4 is the PID type of object class C'. PXY(C)

does not define any other methods. O

PXY(C) defines a prozy method for each registered method of C. The signatures of the proxy

methods are modified from the original signature to accept and/or return PIDs in place of oids.

DEFINITION 6.8.5 [Proxies.] Let o be an object of a registered fragment C and let F' = {f1,..., fa}
be all the registered methods of C where f; has signature f; : ei:T{ x ... x e} :T[* — Tj. A proxy of
0, PTY,, is an object of type PXY (C). The semantics of pzy,.fi(po, ---» Pr;) is defined procedurally

as follows:
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1. object import. For all j, 1 < j < k;, where e§ =1in, if TJ? is an object type C’, let p; =
LOIDc (p;); 1fTJ‘ = set < C' >, where C' is an object type, let p; = {LOIDc:(v) | Vv € p;}-

If T} is not an object type, let pj = p;.

2. method delegation. R' = o.f;(ph, -, Pl)-

3. object export. For all j, 1 < j < n, where e} = out, if TJ?' is an object type C’, let
p;j = p;.PID(), if T} = set < C' > where C' is an object type, let p; = {0.PID() | Yo € p};}.
If T¢ is an object type C’, let R = R'.PID(). If T{ = set < C' > where C' is an object type,
let R = {o.PID() |Vo € R'}.

4. return to client. Return R.

a

The code that implements proxy types with interfaces as described in Definition 6.8.4, and semantics

as described in Definition 6.8.5, must be generated by AURORA-OH mediators for all registered

classes.

Example 6.8.1 Consider the homogenizing view of DS as shown in Table 6.1. The proxy rype of

Pediatrician should have the following interface:

class PXY/(Pediatrician)

{

string PID();

string TelNo();

string Profile();

string Specialization();

short YearsAdvancedTraining();

setof(string) PatientHistory( in string PatientID,

out string PreviousDoc, out date FirstAppt);

J#

The only modification of interface from that of Pediatrician is in method PatientHistory; the proxy

type replaces the type of the second parameter with string, the PID type of Doctor. O

6.8.4 Proxy Match Join: AURORA’s Integration Operator

The goal of data integration in AURORA-OI is to use the proxies of the registered fragments of a
global class C, to construct C, objects. These constructed objects, called integrated objects, are really
distributed objects that delegate their methods for execution by appropriate proxies running at various
AURORA-OH mediators. To the applications running at AURORA-OI, integrated objects appear
to be usual objects that can be queried using OQL, and accessed using the programming language
of choice. This section defines the integration operator used by AURORA-OI for manufacturing

integrated objects. First, a few concepts must be presented.
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DEFINITION 6.8.6 [Intended Global Type.] Given a proxy p representing an object of source type
C registered as a fragment of global class C,, the intended global type of p, IGT (p) = Cy4. O

Intended global type is the semantic intension of a proxy. This information is used to select

proxies to delegate methods to.

DEFINITION 6.8.7 [Proxy Method Stub.] Let M : e;:T} X ... x en:T, — Tp be a method of global
class C,. Let p be a proxy of type PXY (C) where C is a registered fragment of C,. For a given
object o, € Cy, 0,.M is a prozy method stub of p.M if the semantics of R = o,.M (po. ..., pn). is

equivalent to that described procedurally as follows:
1. object export. Vj, 1 < j < n, where e; = in, if T; is an object type, let p; = p;.PID(); if
T; = setof(C'), where C' is an object type, let p} = {0.PID() | Vo € p;}. Otherwise, p; = p;.

2. method delegation to proxy. R’ = p.M(pg, ....p})-

3. object import. Vj, 1 < j < n, where ¢; = out, if T; is an object type C', let p; =
GOIDc:(pj); if T; = setof(C'), where C' is an object type, let p; = {GOIDc- (k) | Vk € p}}.
If R is an object type C’, let R = GOIDc:/(R'); if R’ is of type setof(C'), where C' is an
object type, let R = {GOID¢: (k) |Vk € R'}.

4. Return result. Return R.

(mi

Relating the above definition to Definition 6.8.5, one can see that proxy method stubs cooperate

with proxies to facilitate exchange of oids between AURORA-OH and AURORA-OI mediators.

DEFINITION 6.8.8 [Proxy Match Join.] Let C, be a global class. Let F\, ..., Fr, be all the registered
fragments of C,y or its descendent classes. Let Frniq,..., Fntn be all fragments registered with
ancestor classes of C,. Let X;(1 <7 < m + n) be a collection of proxies such that Yo € F,.Zp € \,.

p is a proxy of o. The extent of Cy, Cy.E, is computed by operator Prozy Match Join {PMJ)
Cy.E =PMJ(Cy,m, X1, ..., Xmin)
as defined below:

1. Cg.E = {o|3p € X1 U..UXn,0=GOIDc,(p.PID())}. Yp € X1 U ..U Xn4n, pis a
contributing prozy of object 0 € Cy.E if p.PID() = GOIDE: (0). CProzy(o) is used to denote

all contributing proxies of object o.

2. Vo € Cy.E and method M of C,, the semantics of o.M should be equivalent to that of a
proxy method stub of p.M if Ip € C Prozy(o), such that p supports M and there exists no
p' € CProzy(o), p' supports M but IGT(p') is a descendent of IGT (p). If no such p exists,

o.M is a null method.
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O

The PM J operator constructs an object for each PID value appearing in fragments registered with
C, or its descendents; these PIDs identify all objects in C,.E. Contributing proxies may represent
objects from fragments registered with C,’s ancestor classes as well as those registered with Cy and
its descendent classes. When multiple contributing proxies are able to perform a given method,
PMJ selects the proxy with the most specific semantic intension; this is similar to the concept
of late binding in object-oriented programming. AURORA-OI is responsible for generating an
implementation for each method M defined on C,; such generated implementation must ensure that
for any object 0o € Cy.E, o.M has this semantics specified in 2 of the above definition. Operator

PMJ is illustrated by the following example.

Example 6.8.2 Consider class Specialist shown in Table 6.1 and assume the following:

Y1 = {p11,p12, P13}, Ya1 = {p21,p22}, Yoo = {p23}, Y3 = {p31,p32}

where Y1, Yo1, Y22 and Y3 are collections of proxies of objects in fragments MyDoctor in DSy,
Pediatrician in DS», FamilyPhysician in DS,, and Orthopedics in DS3, respectively, p;; is a proxy
of object 0;; as shown in Table 6.1. Using the registration information in Table 6.1 and Definition
6.8.8:

specialists = PM J(Specialist,2,Y,,,Y3,Y;,Ya1)

For illustration purpose, assume GO Dspeciatist (k) = OI-Doctor-k, where Doctor is the most general
supertype of Specialist. For instance, the object in “specialists” with key 001 has oid Oi-Doctor-001.
By Definition 6.8.8, one gets:

specialists = {OI-Doctor-001, OI-Doctor-004, OI-Doctor-002, OI-Doctor-007, },
CProzy(OI-Doctor-001) = {pi1,pa1},

CProzy(OI-Doctor-004) = {p2-2},

CProzy(OI-Doctor-002) = {p31,p12},

CProzy(OI-Doctor-007) = {p32},

Behaviors of each object are derived using Definition 6.8.8. The details of OI-Doctor-001 “Smith”

are shown here. Two proxies, p;; and ps;, contribute to Smith. The behaviors of Smith are:

OI-Doctor-001.PID()
OI-Doctor-001.TelNo() p21-TelNo();
OI-Doctor-001.ClinicAddress() p11.ClinicAddress();
OI-Doctor-001.Profile = pa:.Profile();

“001”;

Both p;1 and ps; can perform method Profile, but ps; is chosen because it provides the profile of
Smith as a Specialist - a more specific description than the profile of Smith as a generic Doctorp;, pro-
vides. A related case is OI-Doctor-002.Profile(). 002 “Jones” is an orthopedics doctor but his profile

as an orthopedics doctor is not available. However, Jones as a general doctor has a Profile and object
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OI-Daoctor-002 will return this profile. This illustrates how objects registered with ancestor classes
are used to construct integrated objects. The semantics of OI-Doctor-001. PatientHistory(argl, arg2,

arg3) should be the following according to Definition 6.8.7:

returnValue = po;.PatientHistory(argl, tempString, arg3);

arg2 = GOIDpoctor(tempString);
Return returnValue;
a

6.9 Summary

This chapter described the object-oriented homogenization and integration framework of AURORA.
The homogenization framework overlaps with object-oriented view frameworks. without operators
for hiding properties from classes or hiding classes from inheritance hierarchies, and with an elaborate
method mapping mechanism provided by operator deriveOP and the concept of navigation methods.
The integration framework supports a simple object-matching assumption and manufactures global

objects that perform their methods by dispatching them to appropriate source objects.
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Chapter 7

Implementation of AURORA

Prototypes of AURORA's relational mediators (AURORA-RH and AURORA-RI) described in this
dissertation have been implemented. The implementation is on Windows NT platform using the
following tools: Microsoft Visual C++ 5.0 with Microsoft Foundation Classes (MFC), DB2/NT
version 2.1.2, OLE-DB, and COM/DCOM.

7.1 Choosing a Distributed Computing Framework

The AURORA approach calls for three types of software components: the wrappers. the homoge-
nization mediators, and the integration mediators. These components should cocoperate to perform

a mediation task. Implementation of AURORA is driven by two principles:

1. Distribution. To allow maximum flexibility, components should be allowed to run anytime,
anywhere. AURORA components must be able to communicate with one another in the same
way whether they reside on the same machine or not, and they should be able to activate

another component when they need its services.

2. Dynamic composition. Since AURORA is built to facilitate large-scale data integration,
the collection of AURORA components that makes up a data mediation system should ex-
pand/contract gracefully. Components should be allowed to join and leave the system freely;
they should also be allowed to evolve without impacting on other components and the function

of the system.

To support distribution, a distributed computing infrastructure is needed. To support dynamic
composition, an agent is needed to locate components by name or identity, and to facilitate access
to the components through pre-defined interfaces, so that the changes in a component do not impact

on the use of it as long as the interfaces are maintained.
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An obvious choice for an infrastructure that satisfies all the above requirements is a distributed
object computing (DOC) platform such as CORBA [70, 90] or COM/DCOM [61, 78]. These plat-
forms allow transparent identification, activation, and accessing of objects locally or remotely; a new
object supporting a known interface can join the mediation system simply by informing potential
clients of its identity. These platforms also support access to objects through interfaces, which are
contracts between objects and their clients; objects can evolve, but their clients will not have to
modify their code or recompile; they are protected from such changes as long as the interfaces of
the objects are maintained.

The choice of a DOC platform for AURORA implementation is not based on a detailed com-
parison of CORBA and COM. At a general level, it is clear that both CORBA and COM/DCOM
would satisfy the requirements of AURORA implementation. Hence the choice was made based on
availability of supporting technologies. COM/DCOM is chosen because in the COM/DCOM world,
the advance in OLE-DB technology {Section 7.2.3) provides a strong commercial basis for wrappers.
OLE-DB providers are COM components that provide uniform access to a variety of data sources.
As shown in Section 7.3.2, with OLE-DB, the current implementation of AURORA does not need
to build custom wrappers; commercial OLE-DB providers are available for a wide variety of data
sources, and these providers can be composed to form wrappers. There is nothing similar to OLE-
DB in the CORBA world. If CORBA is used as the base platform, custom wrappers for sources to
be integrated must be built. Since wrapper technology is not a focus of AURORA research, building
home-made wrappers would consume a significant amount of time without serving the purpose of

demonstrating AURORA technology.

7.2 An overview of COM/DCOM and OLE-DB Technology

7.2.1 What is COM/DCOM?

The Component Object Model, COM, is a specification; it provides a standard that components and
clients follow to ensure that they operate together. It specifies how to build components, also referred
to as servers, that can be dynamically replaced without breaking the client code. In particular, it
specifies what it means to be a COM component and how these components are accessed. The COM

platform as provided by Microsoft consists of the following two closely related facilities:

1. The COM Library, an API that provides component management services that are useful
for all clients and components. This library is written to guarantee that the most important
operations are done in the same way for all components, and to save developers time in dealing
with component management issues. Most of the COM library functions are built to provide

support for distributed or networked components, rather than the local components.
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2. Distributed COM (DCOM) facilities on Windows systems provide the code needed to commu-
micate with remote components. With DCOM, remote components can be accessed in exactly
the same way as local servers. DCOM is not yet another model or specification for building

components; it is the same as COM, but with a longer wire attached.

7.2.2 The COM Way of Building Systemnis

The COM provides a way to build a system as a collection of cooperative, possibly distributed,
components. First, it is necessary to know what it means to be a COM component.

A COM component consists of executable code distributed as Win32 dynamic linking libraries
(DLLs) or executables (EXEs). COM components must be written to meet all the requirements
prescribed by the COM specification. Programming details aside, on a higher level, these components

must satisfy the following requirements:

1. Dynamic linking. Components must be able to link at run time. This ensures that components

can evolve or be replaced without breaking the client code.

2. Encapsulation. Clients must be protected from the implementation details of the components;
components must maintain stable interface(s). This means that the components must satisfy

the following conditions:

(a) Clients should be able to use any components regardless of the programming languages

used to write the client or the component.
(b) Components must be shipped in binary form, compiled, linked, ready to use.
(c) Components must be upgradable without breaking client code.

(d) Components must be transparently reloccatable on a network; remote components should

be treated in exactly the same way as the local ones.

The COM library provides a variety of support for building components that satisfy the above re-
quirements. Numerous hooks must be built into the component programs. These hooks are easy to
build once the programmer understands how they work. Given below are high level descriptions of

various aspects of COM components and their relationship with the clients.

Identification and Activation of COM components

COM components are executables identified by Class Identifiers (CLSIDs), which are Globally
Unique Identifiers (GUIDs). A GUID is a 128-bit structure that is programmatically generated,
based on the computer on which it was created and the time at which it is generated. GUIDs
are globally unique, although they are generated without coordination with any central authority.

COM components are registered with the Window’s registry and can be launched by COM API
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functions. To gain access to a component, all a client needs is the CLSID of the components; COM
library functions and/or DCOM support on Windows are responsible for setting up the connection
and facilitating exchange of data. Construction and access of remote components can be done in
exactly the same way as local ones; the DCOM support on Windows makes the component location

transparent to the clients.

Accessing COM components

COM components support one or more interfaces. When a client connects to a component through
a COM API function, it must identify the interface to be used. If the connection is successful, then
the client gets back a pointer to the desired interface. The client can then use this interface pointer
to access the services of the component and to get access to any other interface the component
supports. Interfaces are identified by Interface identifiers (IIDs), which are also GUIDs. The client

wishing to use a particular interface must know its IID.

Interfaces

To a client, a component is a set of interfaces. The client can only access a component through
an interface. The client has little knowledge of a component as a whole, other than the interfaces
that provide the services of interest. A client is often not completely aware of all the interfaces
a component supports. Interfaces are described using the Interface Definition Language (IDL), a
C++-like language with extensions, and without implementation of any methods defined. Compiling
of an IDL file will produce code that provides both the client and the components with necessary
facilities to use or support all the interfaces described, including the IID of all the interfaces of
interest. Note that interfaces are not tied to any component: one interface might be implemented
by many components and one component can implement many interfaces. Interfaces can inherit
from other interfaces, but this inheritance does not imply any relationship between the components
that implement these interfaces. From the surface, this seems to stop code reuse, which is an
important feature of OO programming. However, COM allows code reuse through conteinment and
aggregation. These features will not be further discussed, since AURORA implementation does not

require them.

7.2.3 OLE-DB Technology

OLE-DB is a specification of the standard interfaces of a specific type of COM components, the
ones that provide access to a wide variety of data sources. Such interfaces range from those used
for connecting to a source, starting and closing a session, retrieving schema information, sending
queries, to those dealing with data as a set of rows. An OLE-DB provider is an implemented COM
component that supports some of the interfaces specified by the OLE-DB specification. OLE-DB
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specification states that certain interfaces are “mandatory”, that is, all OLD-DB providers must
support them. Often an OLE-DB provider allows access to a specific type of data source and
supports a subset of the interfaces specified by OLE-DB specification, depending on the capabilities
of the underlying data source. Example sources with OLE-DB providers are sources with an ODBC
driver, email archives, and spreadsheets. The advent of the OLE-DB technology is notable for two

impacts on the software industry:

1. It allows a broader range of data sources to be accessed through a standard interface. In
the past, the Open Database Connectivity (ODBC) was the omnipresent methodology for
providing access to data sources, but it typically only provides access to sources with database

capabilities.

2. It opens up data sources for access through COM/DCOM. An OLE-DB provider is just another
COM component and it can be accessed with all the convenience provided by the COM/DCOM

platform.

With the fast growing popularity of OLE-DB technology, an increasing number of data sources
are accessible through their OLE-DB providers. The rest of this section describes the OLE-DB
technology in more detail.

An OLE-DB provider is a COM component and hence is activated when a client requests it using
the CLSID of the provider. Upon activation, the provider first creates a data source object specified

by OLE-DB as below:

TDataSource {
{mandatory] interface IDBCreateSession;
[mandatory] interface IDBInitialize;
[mandatory] interface IDBProperties;
[mandatory] interface IPersist;
foptional]l interface IConnectionPointContainer;
[optional] interface IDBAsynchStatus;
[optional] interface IDBDataSourceAdmin;
[optional] interface IDBInfo;
(optional] interface IPersistFile;
[optional]l interface ISupportErrorInfo;

A data source object must support all the mandatory interfaces and may support some of the
optional ones. To get access to data, the client uses the IDBcreateSession interface to gain access

to a session object, which supports the following interfaces:
TSession {
{mandatory] interface IGetDataSource;
[mandatory] interface IOpenRowset;

[mandatory] interface ISessionProperties;
[optional]l] interface IDBCreateCommand;
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[optional]
[optionall
[optionall
[optional]
foptionall
[optionall
[optional]
(optional]
}

Depending on whether the data source is able to accept commands, the session object may or may
not support the IDBcreateCommand interface. If the underlying data source is an ODBC data source,
then this interface is supported and the client can use it for sending queries and getting the result
back. If a data source is not able to entertain queries, this interface is often not supported. In this

case, the client uses the IOpenRowset interface to access data in tabular form. Various scenarios of

interface
interface
interface
interface
interface
interface
interface
interface

IDBSchemaRowset;
IIndexDefinition;
ISupportErrorInfo;
ITableDefinition;
ITransaction;
ITransactionJoin;
ITransactionLocal;
ITransactionObject;

using an OLE-DB provider for data access are depicted in Figure 7.1.

Data Source

IDBcreateSession

Session
IDBcreateCommand
Command
IOpenRowset
ICommand

As shown above, all OLE-DB providers must be able to provide data in tabular form, as rowsets.
Indeed, rowsets are the central objects that enable all OLE-DB providers to expose data in tabular
form. Conceptually, a rowset is a set of rows in which each row has columns of data. Base table
providers present their data in the form of rowsets. Query processors present the result of queries

in the form of rowsets. Even schema information is provided as rowsets. The interfaces of rowsets,

Figure 7.1: Use of OLE-DB Interfaces and the Role of Rowsets

as specified by OLE-DB, are given below:

TRowset {

[mandatory] interface IAccessor;
[mandatory] interface IColumnsInfo;
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[mandatory] interface IConvertType;
[mandatory] interface IRowset;
[mandatory] interface IRowsetInfo;
{optional] interface IChapteredRowset;
(optional] interface IColumnsRowset;
[optional]l interface IConnectionPointContainer;
foptional]l interface IDBAsynchStatus;
foptional]l interface IRowsetChange;
[optional] interface IRowsetFind;
[optional] interface IRowsetIdentity;
foptional] interface IRowsetLocate;
[optional] interface IRowsetResynch;
[optional]l interface IRowsetScroll;
foptional] interface IRowsetUpdate;
[optional] interface IRowsetView;
[optional] interface ISupportErrorInfo;

The most basic rowset object exposes five interfaces: IRowset, which contains methods for fetching
rows in the rowset sequentially; IAccessor, which permits the definition of groups of column bindings
describing the way tabular data is bound to consumer program variables; IColumnsInfo, which
provides information about the columns of the rowset; and IRowsetInfo, which provides information
about the rowset itself. Using IRowset, a consumer can sequentially traverse the rows in the rowset,
including traversing backward if the rowset supports it. The interface IRowset includes the following
methods: AddRefRows, that adds a reference count to an existing row handle; GetData that retrieves
data from the rowset’s copy of the row; GetNextRows that fetches rows sequentially, remembering
the previous positicn; ReleaseRows that releases rows; RestartPosition that repositions the next

fetch position to its initial position - that is, its position when the rowset was first created.

7.3 AURORA Mediators as COM Components

AURORA components are implemented as COM components that cooperate across networked com-

puters, as shown in Figure 7.2. These components should support pre-defined interfaces.

7.3.1 Interfaces of AURORA Components

AURORA wrappers and mediators support pre-defined interfaces which describe the services offered.
Generally, all AURORA mediators support the following services:

1. Schema export service: this service should allow the schema supported by the mediator to
be accessed. Depending on the data model of the mediator, this schema can be relational or

object-oriented.

2. Query service: this service should accept queries posed against the schema of the mediator.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Depending on the data model of the mediator, the queries can be posed in SQL or OQL. Object-
oriented mediators should also support access via an object-oriented database programming
language.
3. Event notification service: this service notifies the clients of events of interest.
In the current implementation, interfaces of components are custom and are supported only by
demand of demonstrating the base technology of AURORA. In the future, these services should be

defined to standard, such as the OMG object services, and be fully supported. Currently supported

interfaces are described in Sections 7.4.1 and 7.4.2.

[ Application ’

yd AN

< COM/DCOM >

N s

AURORA Wi
AURORA-RI AURORA-RH (OLEDB providen.

Figure 7.2: AURORA Components as COM Components

7.3.2 OLE-DB Providers as AURORA Wrappers

Microsoft provides an OLE-DB provider for all sources with an ODBC driver. This OLD-DB
provider supports interfaces for connecting to a database, retrieving schema information, sending
SQL queries, and collecting query results as rowsets. This set of functions is sufficient for uniform
access of sources with SQL capabilities. For data sources without SQL query capabilities, there are
commercial middleware products (e.g., the ISG Navigator, which are OLE-DB providers themselves)
that add SQL query capabilities to any OLE-DB provider that does not support it. Such middleware
can be used as an “adaptor” that transforms non-SQL OLE-DB providers into an SQL provider.
In the current implementation, AURORA wrappers are OLE-DB providers supporting SQL
queries. As such, both OLE-DB providers for ODBC sources and OLE-DB providers for a middle-

ware such as the ISG Navigator can be used as wrappers. This wrapper strategy is illustrated in
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OLE-DB Provider with SQL support
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ODBC Driver ISG Navigator
... OLE-DB OLE-DB
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Sources with ODBC Drivers

Sources with OLE-DB provider but no SQL

Figure 7.3: The Making of AURORA Wrappers Using OLE-DB Providers

Figure 7.3. A directed line from A to B in this figure means “A can access B”. While these wrappers
do not support services to any standard, as described earlier, it will be easy to build a generic layer
on top of these wrappers to support interfaces to desired standard. More significantly, by employing
this wrapper strategy, the current implementation of AURORA is able to access a variety of data
sources without building custom wrappers. The focus of the implementation work is on the design

and implementation of AURORA-RH and AURORA-RI mediators.

7.4 Implementation of AURORA-RH and AURORA-RI

AURORA’s relational mediators, AURORA-RH and AURORA-RI, have been implemented to form
a framework for dynamic integration of data sources with QLE-DB providers. The canonical data
model supported by this implementation is the relational data model. These mediators are imple-
mented as components that cooperate through the COM/DCOM framework. It is necessary to look
at AURORA-RH and AURORA-RI together to show what they do, and why, and how they work
together. The current AURORA implementation is illustrated in Figure 7.4.

7.4.1 Implementation of AURORA-RH

As shown in Figure 7.4, implementation of AURORA-RH consists of two parts: (1) implementation
of MAT-RH; and (2) implementation of the AURORA-RH query server.
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Figure 7.4: Implementation of AURORA-R Mediators

MAT-RH

MAT-RH is built as a graphical user interface that allows mediator authors to connect to a data
source, browse its source schema, create 2 homogenizing view by specifying virtual relations and their
derivations, and finally, register some or all relations in the homogenizing view with an AURORA-RI

mediator. As shown in Figure 7.5, the top level menu consists of the following items:

1. Initialize. Selecting this item would activate a pop-up menu that allows the user to perform

the following tasks:

s Choosing the item Initialize allows initializing the AURORA-RH mediator to a named
data source. Upon initialization, the system retrieves the schema. of the data source and
allows the user to browse it. Internally, the system also creates a companion utility
database with a schema designed for storing mapping information. This database is later
used for storing derivations of the homogenizing view and for manipulating temporary
tables during query processing.

e Save To DB. Choosing this item would cause the mappings that are specified to be saved
into the companion utility database. This is usually performed after the homcgenizing

view has been constructed completely.

2. Import. Choosing this item will activate a pop-up menu that provides two options for import-

ing part or all of the source schema: Import whole schema and Import by query. Another
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item on the pop-up menu allows the imported schema to be browsed. This pop-up menu is

shown in Figure 7.6.

3. SME-1. Choosing this item will bring up the pop-up menu that provides various facilities for
resolving type 1 cross-over mismatch. As shown in Figure 7.7, the items on this pop-up menu

include the following:

e ViewDef with Pad. This item allows the use of the pad primitive for defining derived

relations. A dialog window will pop up to collect various parameters for a pad operation.
e ViewDef with Rename. This item allows renaming of relations.

e ViewDef with RELmat. This item allows the use of the RELmat transformation. Choos-
ing this item will bring up a dialeg window, as shown in Figure 7.8. The user fills up the

entries in this dialog and a view relation will be derived by MAT-RH.

e ViewDef with Query. This item allows the user to specify a view relation as a relational

query over all the relations derived so far.

e Display View Schema. This item allows the user to browse the schema that includes all

the view relations derived so far.
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4. SME-2. Choosing this item will start the pop-up menu that provides various facilities for
resolving type 2 cross-over mismatch. The items on this pop-up menu are similar to those on
SME-1 except that ViewDef with RELmat is replaced by ViewDef with ATTRmat. The dialog
window brought up by choosing ViewDef with ATTRmat is shown in Figure 7.9.

5. RLE. Choosing this item will start the pop-up menu that provides various facilities for relation

linking. As shown in Figure 7.10, this pop-up menu includes the following items:

e ViewDef with Query. This item allows derivation of view relations using relational

queries over all the relations derived so far.

e Select Prototype Relations. This item allows the user to mark existing relations as

the prototype relations.

e Display View Schema. After prototype relations have been specified, the view schema

will include only these relations and are often smaller than before.

6. DSE. Choosing this item will bring up the pop-up menu that provides facilities for resolving
domain structural mismatches by specifying domain structural functions (DSFs). The pop-up

menu includes two items:
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e Specify Domain Structural Functions. Choosing this item will bring up a sequence
of dialogs, shown in Figures 7.11 and 7.12, that allows the mediator author to specify
the list of attributes in a prototype relation that correspond to an attribute in the target
relation, and to declare a domain structural function of the appropriate signature. The
DSF's themselves must be provided by the user as a DLL. In the current implementation,

all such DLLs must be in a single file. In the future, this restriction will be removed.

e Display View Schema. Displays the current schema.

7. DUE. Choosing this item will bring up the pop-up menu that provides facilities for resolv-
ing domain element mismatches by specifying domain value functions (DSFs). The facilities
provided are similar to those in DSE, except the functions declared in this environment are
domain value functions, which are functions that take one in-parameter and return a value.

Inverses of these functions, if they exist, are also accepted by the system for later use.

8. Register. Choosing this item will bring up a sequence of dialogs, shown in Figures 7.13 and
7.14, which allow the user to register one source relation as a fragment of a target relation.
Ideally, the registration process should allow the mediator author to specify the name of

the target AURORA-RI mediator, and the target relation of which a source relation is a
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Figure 7.8: Dialog Window for the RELmat Transformation

fragment. In the current implementation, there is only one AURORA-RI mediator running
and its identity is hard-coded in the AURORA-RH mediators; hence the user does not choose
which AURORA-RI mediator to register data with. This restriction will be removed in the

future.

Usually a mediator author works with MAT-RH as follows. First, she connects to the data
source of interest. Then she invokes the 6 tools in sequence to remove various types of mismatches
by deriving view relations. This process is guided by the homogenization methodology. Once she
is satisfied with the homogenizing view derived, she must do two things before exiting MAT-RH.
First, she must save the homogenizing view and its derivation to the utility database. This is done
by choosing Initialize — Save to DB. Second, she must register some or all of the relations in
the derived view as fragments of relations in the target service view, supported by the AURORA-RI

mediator. This is done by using the registration facilities described earlier.

AURORA-RH Query Server: RH_QP

AURORA-RH query server is a COM server. It supports a single interface, IRHQuery, as shown
in the IDL specification below, IRHQuery consists of two methods: ExecQuery and GetNextRow.
ExecQuery accepts queries given as three strings: the select clause, the from clause, and the where
clause. GetNextRow returns a row of data in a buffer. This interface is used by AURORA-RI

mediators to send queries for execution and to retrieve query results.

//
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// RH_QP.idl

//

import "unknwn.idl" ;
//

// Interface IRHQuery
/7

C

object,

uuid (OSEDAE72-D6EA-11d1-A811-0004AC9592CC),
helpstring("Query Interface of AURORA-RH"),
pointer_default (unique)

]
interface IRHQuery : IUnknown
{
HRESULT ExecQuery ( [in, string] wchar_t* DataSourceName,
(in, string] wchar_t* selectClause,
(in, string] wchar_t* fromClause,
[in, string] wchar_t* whereClause
)
HRESULT GetNextRow ( [out] int* succ,
[out] wchar_t RowBuffer[1000]
)
};
//
// Component descriptions
//
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L
uuid (887365AD-D479-11d1-A811-0004AC9592CC) ,
version(1.0),
helpstring("RHQP 1.0 Type Library")
]
library RHQP_Lib
{
importlib("stdole32.t1lb") ;
C
uuid (O5EDAE74~-D6EA-11d1-A811-0004AC9592CC) ,
helpstring("AURORA-RH Query Processor Component")
]
coclass RHQP_CMPNT
{
[default] interface IRHQuery ;
};
};

Upon receiving a query against a data source D, RH_QP first loads the homogenizing view of source
D from the companion utility database of D. It then rewrites the query using view mappings loaded
from the utility database, to generate an initial QEP. This QEP is then transformed into a more
efficient QEP. Currently, RH_.QP is able to employ all the transformation rules shown in Table 3.5
that involve selection to optimize the initial QEP. Once the optimized QEP is generated, RH_.QP
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Figure 7.11: First Dialog for Specifying Domain Structural Functions

will evaluate the QEP bottom up. First, it sends subqueries to source D, then it assembles the
returned results to produce the final query result. Query results can be retrieved by the client using

the GetNextRow method in the IRHQuery interface supported by RH_.QP..

7.4.2 Implementation of AURORA-RI

AURORA-RI implementation includes two parts: the registration server, and the query server.
The registration server is a COM component supporting a single interface, IRTRegister, which
includes a single method, RegisterFragment. This method is invoked by MAT-RH for registering
source relations. It accepts five parameters: hostName, the name of the host that the AURORA-
RH mediator is running at; sourceDBName, the name of the source database; sorurceRelName, the
name of the source relation to be registered; targetRelName, the name of the global relation in the
service view of which the relation named by sourceRelName is a fragment; and fragmentScheme.

the scheme of the relation named by sourceRelName.

//

// RIREG.idl

//

import "unknwn.idl" ;
typedef struct

{
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int numColumns;
wchar_t cclumnName [50] [60] ;
int colType[50] ;
} XRelScheme;
//
// Interface IRIRegister
//
C
object,
uuid (SE900F31-DBAO-11d1-A81B-0004AC9592CC), // Apr 24 2:15pm
helpstring("Registration Interface of AURORA-RI"),
pointer_default(unique)
]
interface IRIRegister : IUnknown
{
HRESULT RegisterFragment ( [in, string] wchar_t=* hostName,
[in, string] wchar_t* sourceDBName,
[in, string] wchar_t=* sourceRelName,
[in, string] wchar_t=* targetRelnanme,
[in] XRelScheme fragmentScheme
);
};
//
// Component descriptions
//
L
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uuid (SE900F33-DBA0-11d1-A81B-0004AC9592CC),
version(1.0),
helpstring("RIREG 1.0 Type Library")

]
library RIREG_Lib
{
importlib("stdole32.tlb") ;
L
uuid (9E900F35-DBA0-11d1-A81B-0004AC9592CC),
helpstring("AURORA-RI Registration Server")
]
coclass RIREG_CMPNT
{
[default] interface IRIRegister ;
};
T

Upon receiving a registration, the AURORA-RI registration server will store the registration infor-
mation in a utility database. The content of this database will then be used by the AURORA-RI
query server to decide where and how to collect fragments when needed.

The AURORA-RI query server is currently a GUI driven program. The user launches the query

server and is presented with a GUI with which the supported service view can be browsed and queries
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can be posed. Upon receiving a query, the query server goes to the utility database to find out which
fragments are needed for query processing. Currently, there are no query optimization capabilities
implemented, so the query server always retrieves all the relevant fragments in full, performs a match

join to produce the relation(s), and then processes the query.

7.5 Observations and Experiences

Using a DOC framework is an elegant way of supporting distribution and dynamic composing of
AURORA components. Work done in order to ship the components as COM servers is limited: the
COM hooks in the client and server programs are mostly reusable. Generally, the amount of work
involved to use the COM platform is small in comparison to the work required for implementing the
logistics of the components.

Both AURORA-RH and AURORA-RI have a query engine. These engines do not implement
their own join, selection, buffer management etc., but rather use these facilities provided by a
commercial RDBMS, DB2/NT. This strategy works, but it requires creating temporary tables to
hold intermediate results during mediator query processing, which can be quite slow. It is probably
a much better idea to expand an existing query processor with operators in AURORA. This requires

access to and knowledge of a good, existing, query processor.
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Chapter 8

Conclusions and Future Work

This dissertation describes the AURORA project. Research in AURORA established new techniques
for building an integrated data access middleware system (IDAMS) based on the mediator archi-
tecture. A prototype system is built to demonstrate the paradigm and techniques developed. This

chapter summarizes the contributions and experiences of AURORA, and reviews future work.

8.1 Contributions

Research in AURORA has two main dimensions: (1) a 2-tiered mediation model, flexible data
model support, and mediation methodologies; and (2) Mediator query processing based on Mediation
Enabling Algebras (MEAs) and the conflict tolerant query model. The first dimension deals with the
general paradigm of a data mediation system, the second dimension focuses on developing enabling

techniques.

8.1.1 Mediation Model, Flexible Data Models, and Mediation Method-
ologies

A mediation model prescribes various tasks in the data integration process (also referred to as
data mediation) and the relationship among them. AURORA'’s 2-tiered mediation model prescribes
that data mediation be performed in two steps: homogenization followed by integration. This
mediation model enables a divide-and-conquer approach towards integration of a large number of
heterogeneous and autonomous data sources. It enables scaldble mediation, where adding and
removing data sources is easy. AURORA supports both relational and object-oriented data models:
mediators are available in both models. Consequently, AURORA mediators are function specific,
performing specific mediation tasks; and data model specific, supporting either the relational or the

object-oriented (ODMG) data model. This paradigm enables scalable integration of a wide range of
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data sources:

1. Wrapper construction work is reduced due to the flexible data model support in AURORA.
Data sources can be wrapped with a relational or an object-oriented interface, whichever is most
easily generated. As demonstrated in AURORA, relational wrappers can be composed using
commercial middleware systems. In general, the AURORA paradigm does not require data
sources to “upgrade” their data models and thus allows them to participate in the integration

scope without incurring major wrapper construction work.

2. The 2-tiered mediation model of AURORA divides the data integration task into pieces that
can be worked on independently and in parallel. The difficulties encountered in building large
scale data integration systems originate from two sources: semantics and scale. Working with
semantics is difficult, working with semantic differences among a large number of heterogeneous
sources is even more difficult. A general principle in building AURORA is “semi-automatic
homogenization, automatic integration”. Homogenization deals with a wide range of semantic
issues but concerns single sources, while integration deals with a small number of semantic is-
sues although the number of sources involved is large. Furthermore, homogenization mediators
in AURORA are equipped with a mediator author’s toolkit (MAT) that helps the mediator
authors to work with semantics. The basis of a MAT is a mediation methodology that guides
a mediator author to work with semantic issues systematically. MATs also provide various fa-
cilities to the mediator author. A MAT has been built as part of the AURORA-RH mediator

in the prototype system.

8.1.2 Scalability and Flexibility of the AURORA Approach

Scalability of the AURORA approach is enabled through the 2-tiered mediation model, which con-
trols the complexity of building a large-scale data integration system by prescribing a divide-and-
conquer approach. Adding and removing of data sources are easy. The complexity of the data
integration activity does not increase with the number of sources involved; large-scale integration
can be performed as easily as integration of a small number of sources.

Flexibility of the approach is enabled also by the 2-tiered mediation model and by the flexible data
model support provided with all the AURORA mediators. The 2-tiered mediation model prescribes
that adding and removing of data sources do not impact on the availability and validity of the service
view, or the participation of other data sources. Unavailable data sources can be treated as a source
that removed itself from the access scope voluntarily. Flexible data model support of AURORA
enables the applications and the data sources to consume/contribute data based on a data model

that is most comfortable; this greatly increases the practical appeal of a data integration system.
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8.1.3 Enabling Techniques

Enabling techniques are mainly in the area of processing mediator queries. Two types of techniques
have been proposed: query processing and optimization based on Mediation Enabling Algebras
(MEAs), and Conflict Tolerant (CT) query models.

Data manipulations that are specific to mediation systems, and are unknown to traditional
DBMSs, are captured in MEAs which are the basis for algebraic and cost-based mediator query
optimization and processing. Different mediators employ different MEAs. MEAs for all AURORA
mediators have been defined. In the relational mediators, query processing techniques based on
MEAs have also been established. With MIEAs, the impact of the mediation process on query
processing has been identified and taken into consideration during query processing.

The Conflict Tolerant (CT) query models are employed by AURORA integration mediators
for querying multi-source data. The CT query models represent a step away from the traditional
paradigm of querying data integrated from multiple sources. Rather than creating a single-source
illusion, conflicts are exposed to the applications in a controlled and manageable manner. The key
point in designing a CT query model is to provide enough levels of conflict tolerance to cater for most
application requirements, without overwhelming the applications with complicated choices in conflict
handling. This approach allows the applications more control over how conflicts are handled and
provides the mediation systems with more spa.ce for query optimization, especially when conflict rate

is low. Currently, only the CT query model employed by the AURORA-RI mediator is completed.

8.2 Experiences

The AURORA experience gives rise to two observations on research in IDAMSs. First, building
IDAMSs involves issues in both paradigms and techniques; adopting a new paradigm gives rise to
new technical problems. From a pragmatic view point, employing a paradigm that applications can
identify with is equally important as developing techniques to make the system function efficiently.
AURORA chose to employ a new paradigm and study the related technical problems. In terms of
research, a drawback is that the validity and applicability of the techniques developed depend on
that of the general paradigm employed; it is more difficuit to demonstrate their significance.

Second, choice of paradigms varies with target applications. The choice of the paradigm in
AURORA was not made based on an in-depth study of several classes of applications, but rather
based on one specific type of application - the electronic commerce application - and the potential
for producing technical results. In hindsight, a more thorough study of application scenarios may
provide more input into the design of the paradigm.

The current implementation of AURORA realizes the vision of using light-weight, specialized.

easy-to-use components to build increasingly sophisticated data mediation systems. With the ad-
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vances in Internet and distributed computing technology, monolithic mediation systems with a static
access scope will no longer be sufficient. Future mediation systems must be highly distributed and
must be able to expand/reduce their access scopes gracefully. The current prototype system demon-
strates that the AURORA approach allows such mediation systems to be constructed.

Two observations can be made after the implementation of the AURORA prototype. First,
making use of currently available software can reduce the workload tremendously. AURORA makes
use of commercial middleware systems, such as OLD-DB provides and the ISG Navigator, to form
wrappers, and hence avoids building custom wrappers while gaining access to a wide range of data
sources. Second, the efficiency of data exchange and manipulation of mediators requires more work.
Currently, the AURORA prototype system focuses on demonstrating the paradigm and the base
techniques; data exchange among, and data manipulation within, the mediators are inefficient. This

is an engineering issue and may require a detailed study of the state-of-the-art technology available.

8.3 Future Work

Future work on extending AURORA itself falls into the following categories:

1. Extending the flexible data model support in AURORA to include XML. This extension will
eventually allow Web pages to be treated as data sources. XML is regarded as the main
medium that allows Web data manipulation and exchange. Currently, considerable work is
going on in querying and managing XML data sources. Progress in this regard may provide

inspirations for building AURORA mediators based on XML.

2. Further establishing of the conflict tolerant querying facilities. The CT query model for object-
oriented integration mediator is not yet defined. Definition of the CT query model for relational
mediators requires extension. In particular, the CT query semantics may become unclear in
complicated queries such as nested queries, or queries involving aggregation functions. The
number of levels of tolerance can be reviewed in the future. The key is to offer adequate support
for the applications to deal with conflicts at run-time, without overwhelming the applications

with complicated handling of these conflicts.

3. To carry on with the idea of exposing instance level conflicts to the applications, rather than
hiding them at high system expenses, the CT query paradigm may be adapted to deal with
other types of conflicts, such as lineage and source credibility of data items. The challenge is

to design enough number of tolerance modes without leaving the applications overwhelmed.

Work that further establishes the AURORA approach on a more formal basis also gives rise to

interesting future research topics, as discussed below.
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Formal Semantics of the AURORA Approach.

As described in Section 3.2.3, the formal semantics of queries posed against a service view in AU-
RORA requires more work. Moreover, the introduction of CT queries may give rise to new issues
in completeness and soundness of a global database, as well as query semantics. Such work can be
carried out in a fashion similar to that of [33] and should provide insight into the value of systems
such as AURORA.

Criteria for Evaluating IDAMSs.

Choosing an IDAMS that work well can be a complex evaluation process since it involves issues such
as transformation and composition of application semantics, usability of the facilities, etc. Some
part of this evaluation may not have a formal basis. For now, a few criteria may be useful, including

the following:

1. Completeness of the range of mismatches and conflicts a system is capable of handling. The
question to be answered is: “Given any date integration scenario, is the system capable of

performing all required data conversion, matching and combination for integration purpose?”

2. Providence of mediation methodologies and their completeness. Most previous systems do
not provide a mediation methodology while AURORA does. However, AURORA’s mediation
methodologies do not have a formal basis and their completeness is yet to be established. The
ultimate question to be answered is the following: “Given any data integration scenario, do
the mediation methodologies provided enable the users to identify all differences and overlaps
among the data sources, and, resolve them correctly? Do the mediation methodology guarantee

a correct data integration?”.

3. Ease of use of the system, whether the users are provided with enough facilities to perform

manual data integration tasks.

4. Efficiency of data manipulation within the integration system, whether redundant data re-

trieval is minimized.

5. Safety of queries, whether the queries posed against the integrated (virtual) data have a well-

defined, deterministic semantics.

The first two criteria of the evaluation lead to a more fundamental issue: how do we formally
describe, compare, transform, and, merge multiple application models to produce a new application
model, required by a class of applications? To do this, a formal model is required for describing
the semantics of the source data as well as the semantics of the desirable target data. Once such
formal models are established, one can formally identify a complete range of mismatches that must

be handled by a good IDAMS. One can also formally establish the completeness of a mediation
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methodology, by proving that it mandates the removal of all possible mismaiches and guarantees a

correct data integration.
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