
Targeted Communication in Linear Objects
�

University of Alberta TR �����

Vladimir Alexievy

�vladimir�cs�ualberta�ca�

November ����

Abstract

Linear Objects �LO� of Andreoli and Pareschi is the �rst proposal to integrate object�oriented
programming into logic programming based on Girard�s Linear Logic �LL�� In LO each object is repre�
sented by a separate open node of a proof tree� This �insulates� objects from one another which allows
the attributes of an object to be represented as a multiset of atoms and thus facilitates easy retrieval
and update of attributes� However this separation hinders communication between objects� Communi�
cation in LO is achieved through broadcasting to all objects which in our opinion is infeasible from a
computational viewpoint�

This paper proposes a re�ned communication mechanism for LO which uses explicit communication
channels speci�ed by the programmer� We name it TCLO which stands for �Targeted Communication
in LO�� Although channel speci�cation puts some burden on the programmer� we demonstrate that the
language is expressive enough by redoing some of the examples given for LO� Broadcasting can be done
in a controlled manner� LO can be seen as a special case of TCLO where only one global channel �the
forum� is used�
Keywords Linear Objects� communication� broadcasting� objects and logic� linear logic�

� Introduction

The integration of Object�Oriented Programming �OOP� and Logic Programming �LP� is a long�standing
goal of both the OOP and the LP research communities� The bene�ts of such an integration for both
paradigms are apparent� OOP brings to LP the techniques of modern software engineering	 while LP brings
to OOP declarativity to replace the prevalent procedural languages of today� Seemingly the LP community
has been more active in this e
ort� For a survey see �Dav���

One of the hardest obstacles to an integration of OOP and LP is state change which is inherent in OOP
but �up to until recently� was hard to express logically �Ale��� Probably the most promising development
in this area is Girard�s Linear Logic �LL� �Gir��� LL has proved useful in many areas of computation
�Ale��	 most notably concurrency and resource�based reasoning� �Another promising approach to state
representation is Meseguer and Mart���Oliet�s Rewriting Logic �Mes��	 MOM����

Linear Objects �LO� of Andreoli and Pareschi is the �rst proposal for integration of OOP and LP
based on LL� Technically LL bears similarity to an earlier proposal �Con�� in that both approaches allow
multiple atoms in the head of the clauses� The novelty of LL is its �rm foundation in LL	 which provides
both a standard model�theoretic semantics based on phase spaces �AP��a	 Section ��� �see also �CC��� and
proof�theoretical insights for the design of the language� As an example of the latter	 the logic connective �
is interpreted as object cloning �see Section � for details��

LO represents objects as separate open leaf nodes of the proof tree being constructed� The attributes
of the object are atoms in the multiset context of the node� This allows easy access to the attributes for

�Submitted to AMAST���� Comments are welcome�
yDepartment of Computing Science� ��� GSB� University of Alberta� Edmonton� Alberta� T�G �H�� Canada

�

consumption and addition by the methods of the object and makes possible compositional ��built�in�� inher�
itance� However the separation of objects hinders communication� Indeed	 the only communication mode in
LO is broadcasting �� Broadcasting is a powerful communication abstraction	 but we deem it computationally
infeasible and not scalable �see Section ��� for discussion�� We propose a re�ned communication mechanism
for LO which we name TCLO�

This paper is organized as follows� Section � gives an overview of LO and explains the disadvantages
of broadcasting� Section � describes the proposed extension of LO� Section � re�does some of the example
programs given by Andreoli and Pareschi to demonstrate that the TCLO style of programming does not
su
er a loss of expressive power� Section � concludes the paper�

� Linear Objects

The syntax of LO is de�ned over a set of atomic formulas A constructed from predicate names P � fa� b� � � �g
and terms in the usual way�

A ��� P �htermi� � � �� Atomic formulas
G ��� A j � j G�PG� j G��G� Goals
V ��� A j �A j V�PV� Views �clause heads�
M ��� V ��G Methods �clauses�

A context � is a multiset of goals� A program P is a set of methods� Since the program remains the same
in every node of a proof tree	 we abbreviate the LL sequent ��P � � to simply � �here ��P denotes the
modalized additive conjunction of the elements of P��

The operational semantics of LO corresponds almost completely to bottom�up proof construction in
Linear Logic �Gir�� �LL� �with the exception of the broadcast operator �A��

���
�� Termination �success�

G�� G���
G�PG���

P� Decomposition
G��� G���
G��G���

�� Cloning

G��
V��

If �V ��G� � P Resolution �propagation�

The root node in the proof tree of a LO execution is �� C where � is the initial state of the system and C is
an unspeci�ed context called the forum and used for communication� The proof tree grows from the root up
and it can contain open �not completed� leaf nodes� Computation proceeds according to the following rules�

�� Pick an open node �or work in parallel on more than one open node��

�� Termination� If the context of the node contains �	 close the node according to the � rule�

�� Decomposition and Cloning� If the context of the node contains formulas with main connectives P
or � decompose them to atoms using repeatedly rules P and �� This may generate more than one
successors of the current node�

�� Resolution� When the context contains only atoms and if the multiset of atoms is a superset of a clause
head V 	 rewrite the occurrence of V in the context with the clause body G�

�� Broadcasting� If in the previous case V contained some broadcast atoms �A then add these atoms to
all non�closed �open or internal� nodes but the current one� In other words	 replace the forum C with
A� C�	 thus reducing the indeterminacy of the forum�

�It is also possible to do term�level 	as opposed to formula�level
 stream�based communication as in the earlier proposals
based on concurrent Prologs 	see �ST��
� but the inconveniences of this approach are well�known�

�

All of the above cases ��� correspond directly to inference rules of LL and expand the proof tree by changing
an open node locally� However case � �the broadcasting rule� changes the proof tree globally by instantiating
C and thus cannot correspond to an inference rule since these always act locally�

��� The Shortcomings of Broadcasting

The initial version of LO �AP��b did not include broadcasting and the authors used stream�based �term�
level� communication similar to the one in concurrent Prolog implementations of OOP �ST��� Andreoli
and Pareschi introduced broadcasting in �AP��a and described in great detail its expressive power for
modeling inter�object communication� However it is our opinion that broadcasting is not a plausible concept
for the modeling of large distributed systems and it does not scale well�

� Broadcasting is expensive� Its naive implementation leads to slow execution	 and an e�cient imple�
mentation is hard to achieve �see �BAP��	 BAP�� for a discussion��

� Broadcasting destroys the locality of interaction �e�g� �BAP��	 Sec� � uses a central entity to implement
broadcasting�	 which is a very important principle for large systems of independent agents�

� Broadcasting leads to message name clashes� Since every agent sees all messages	 one has to use
di
erent names for di
erent messages	 even if the messages are semantically similar �e�g� �get� sent to
a list and �get� sent to a stack��

� Broadcasting makes it hard to partition the program because every method is potentially applicable
to every object� even if a method is not currently applicable to an object	 the object may receive in
the future enough messages to make the method applicable� In fact not only LO	 but all LL�based
OOLP proposals that we know of	 treat the program as a monolithic entity� We see this problem as a
promising research direction�

� Although only a small percent of the broadcasted messages are relevant to any given agent	 all agents
receive all messages and have to store them in their contexts� This leads to �context saturation�
�maybe more aptly named �context garbaging��� Andreoli and Pareschi propose to solve this problem
using abstract interpretation �AP��	 APC��	 but it is better not to allow it in the �rst place�

� Targeted Communication in LO

We propose to extend LO with explicit channels in order to solve the problems described above� We call the
proposed extension TCLO�

In addition to the set of predicate names P 	 TCLO features a set of channel variables X � fx�y� � � �g
�denoted by bold face�� These variables are similar to �but not the same as	 see Section ���� second�order
logic variables� We allow atomic formulas to include channels at the term level	 e�g� a�x� is a valid formula�
Unlike predicate names	 channels cannot bear arguments �e�g� a�i� is a valid formula	 but x�i� is not�� Since
any atomic formula can be sent along a channel	 it would be super�uous to allow channels to bear arguments�
We modify the de�nitions of goals and views �Section �� as follows�

A ��� P �htermi j X� � � �� Atomic formulas
G ��� A j X j � j G�PG� j G��G� Goals
S ��� A j X j S�PS� Simple views �no sending�
V ��� A j X�S j V�PV� Views
M ��� V ��G Methods �clauses�

Thus we replace broadcasting �A with message sending along a channel	 X�S� The extension of sending
simple views and not plain atoms is needed to allow renewed communication �see the next section��

The operational semantics of TCLO is de�ned by modifying the Resolution and Broadcasting rules of
LO�

�

� Resolution� If the context is �at �contains no LL connectives� and a clause head matches V 	 rewrite the
occurrence of V in the context with the clause body G� A message send x�m in V can be matched either
if a channel variable appears in the context at the outer level �the variable name need not be the same	
e�g� y would match x�	 or else if the channel is speci�ed explicitly using uni�cation	 e�g� V � c�x� P x�a
will match a context containing c�y� �and identify x and y� but not one containing y only at the outer
level� Resolution does not look inside the messages that V sends	 e�g� V � c�x� P x��mPy� requires
the presence in the context of a channel c�z� but does not care about m nor y�

� Message Send� If in the previous case V contained some message sends X�S	 replace X everywhere in
the proof tree by S� The occurrence of X in the current node was consumed by the Resolution rule	 so
the current node will not receive a copy of the message it sends� However	 if the node contained more
than one occurrence of X	 the remaining occurrences will be replaced by the message S�

The occurrence of a channel X in a context can either be consumed by a message�sending Resolution or
replaced with the message body S during a send initiated by another agent�

��� Communication Patterns in TCLO

Here we describe various communication patterns that occur commonly in TCLO�

Multidirectionality TCLO channels are multidirectional� any agent having an occurrence of the channel
variable can write to it� This can be either useful or inconvenient depending on th setting�

Many�to�One Communication If an agent contains more than one channel at the top level of its context	
it can receive messages along these channels without any interference between them� Thus unlike OOLP
based on concurrent Prolog languages �ST��	 no message merging elements are needed� This is due
to the fact that channels are at the logic level	 not at the term level�

One�to�Many �Group� Communication All the agents connected to a channel will receive the data
placed on it� Arranging various communication topologies is as simple as passing the channel name
to another agent� During Cloning the channels known to the parent are passed to both children
automatically �or if Cloning splits a formula containing channels	 they are distributed between the two
children�� If we regard the children open nodes of a given node as a �process group� and if the parent
node has a channel shared among all children	 we can easily achieve group communication by writing
to this channel�

Named vs Unnamed Channels If an agent needs only one channel �that is	 it communicates with only
one agent group�	 it can use the channel at outer level in its context� However	 if an agent has more
than one outgoing channels	 it needs to label them with distinct names� For example	 an agent may
have two named channels c�x�� d�y� and send messages using clauses like

c�x� P x�m �� hnew statei

d�y� P y�n �� hnew statei

Incoming channels are usually unnamed to allow easy merging of message streams�

Renewable Communication Often a channel is needed to deliver more than one message� While the
clause

s P x�m �� s�

corresponds to a sender s using channel x for a one�shot communicationm	 the channel can be renewed
using

s P x��mPy���s�
Py�

Responses Usually no separate channel is needed to carry the response to a request� Since the channel is
bidirectional	 the response can be sent along the renewed channel	 similar to the use of �rst�order logic
variables to return answers from function�like predicates�

�

��� LO as a special case of TCLO

It is easy to see that LO is a special case of TCLO that uses only one channel	 the forum� A LO broadcasting
clause

V P �A �� G

is replaced by the TCLO clause
V P x��APy� �� GPy�

The initial state of the LO program � is replaced by �Px� Thus	 what Andreoli and Pareschi call �the
unspeci�ed part of the context�	 we represent explicitly as an unnamed channel�

In terms of the �group communication� described in the previous section	 LO can be seen to consider
the whole concurrent system as consisting of one communication group	 generated by the root node�

Although TCLO is an extension of LO	 from a practical viewpoint its programming style is a restriction
of the one of LO since the programmer is required to specify explicitly the communication channels and to
take care of distributing them among agents� Section � suggests that this restriction is not a severe one�

��� TCLO and Second�Order LL

Although TCLO channel variables are similar to second�order variables in linear logic	 the two are not the
same� We tried to describe TCLO communication as second�order uni�cation �that is to say	 existential
introduction under the bottom�up reading�	 but found it impossible to do so� Unfortunately TCLO su
ers
from the same impossibility to ascribe true logical rules to its communication as LO	 and for the same reason�
while every logical rule acts locally on an open node	 TCLO communication involves �distant action� in
separate branches of the proof tree�

On the other hand	 channel variables are used rather restrictively compared to the possible uses of second�
order variables� This obviates the need for full second�order uni�cation and simpli�es implementation�

� Programming Examples

In this section we redo some of the examples given for LO in order to demonstrate that TCLO�style pro�
gramming su
ers no loss of expressive power� In fact we �nd that the non�directed nature of broadcasting is
sometimes confusing to the programmer �Won�t mymessage cause any adverse interference in other objects��
and to the reader of a program �Where is this message going to���

��� The Optimal Path Problem

This example is taken from �APB��	 Section �� The problem is

Given a weighted�edge acyclic directed graph with a distinguished source s and target t �a net�
work�	 �nd a path from s to t with the smallest possible weight�

The solution is based on dynamic programming and is easily adapted from �APB��� For simplicity	 we
restrict the solution to use only one representation of the network �every node stores the set of its outgoing
edges�	 we implement only �forward chaining� algorithm	 and we destructively modify the network represen�
tation during the path search� Also	 our example network is smaller than the one in �APB�� �see Figure ���
Each edge is labeled with its weight and the channel variable corresponding to the edge �see below�� The
optimal path is drawn bold�

We represent the network as follows�

network ��
�node�s� P in��� P e���A�� P e�	�B�� P e�
�C��� �
�node�a� P in��� P A� P e���D�� P e���E��� �

�

s

a

b

c

d

e t

f

3,E2

2,D1

1,D2 2,T1

1,T2

2,T3

1,F1

6,B1

4,E3

5,A1

4,C1

5,E1

Figure �� Example of a Weighted�Edge Network

�node�b� P in��� P B� P e���D�� P e��E��� �
�node�c� P in��� P C� P e�
�E�� P e���F��� �
�node�d� P in��� P D� P D� P e���T��� �
�node�e� P in�� P E� P E� P E� P e���T��� �
�node�f� P in��� P F� P e���T��� �
�node�t� P in��� P T� P T� P T���

Every node is represented as a separate agent �expressed by � above�� For every node we store its name
node���� Unlike the LO solution	 these names are included only for the purpose of printing the found path
in readable form	 and not for communication between nodes� We record the node�s input arity and for
every incoming edge create a separate channel �denoted by uppercase�� The outgoing edges are represented
by the atoms e�W�C� storing their weights and a channel to the destination node� Please note that the
incoming channels are represented at the higher �formula� level	 while outgoing channels are hidden at the
lower �term� level� This allows an agent to have easy uniform access to all its incoming messages yet to
di
erentiate between its outgoing channels�

The agents work through two phases� selection and spreading� These phases occur asynchronously in
the network	 forming a �wave front� moving from s to t�

�� During the select phase	 the agent receives best�path o
ers from each of its predecessors in the form
of atoms path�C�P� where C is the cost of the path and P is a list of the nodes comprising the path�
The agent discards all but the best o
er�

select P in�I� P path�C��P�� P path �C��P�� P fC���C�g ��
select P in�I��� P path�C��P��� � discard suboptimal offers

select P in��� �� spread� � move to the next phase

�� During the spread phase the agent propagates this best path to all its successors	 adding its name and
the weight of the outgoing edge to the path�

spread P path�C�P� P node�M� P e�W�N� P N�path�C�W�P��M� ��
spread P path�C�P� P node�M�� � send message� �� is append

The program is started by a goal of the form

�� network P source�s� P target�t� P output�O� P select�

All of the atoms source	 target	 output and select are delivered to all agents ���components of network�	
although only the source and target nodes make use of the �rst three� The special clauses for the source and
target nodes are

node�S� P source�S� P select �� node�S� P path������ P spread�

node�T� P target�T� P path�C�P� P spread P output�O�

O�path�C�P��T� �� �� � output result and terminate

��� Distributed Active Parsing

In �AP��a	 Section ��� Andreoli and Pareschi describe an LO implementation of active parsing for context�
free �and possibly ambiguous� grammars� The term �active� refers to the feature that incomplete phrasal
trees are considered active agents which look for and consume complete trees� The parser is composed of
the agents shown on Figure �	 adapted from �AP��a� We renamed the agent create tree to dispatcher

itree

entry

scanner

agent CH

message send

Legend:

create

seek
rule

target

new ctree

pos word

createcreator R

grammar dictionary

dispatcher

bboard

mbox C,I

B

P

G D

subscribe

itree
answer

O
ctree,

Figure �� Distributed Active Parser� Agents and Flow of Information

and added the agents bboard	 creator	 mbox	 and some messages� The bold letters denote typical channel
variables used to talk to a particular agent�

The distinction between agents and messages is mainly a conceptual one	 because both are represented by
atoms� However while every method referencing an agent atom in its head reinstates it in its body	 message
atoms are not reinstated and are thus consumed� Thus agents are relatively long�lived and messages are
short�lived�

This example is more involved both for the reader to understand �it is more complex�	 and for the
programmer to create �it uses generative communication �Gel�� which we have to represent using targeted
communication�� Our program is shown below�

�� parse�Input�Symbol�O� ��
�� �scanner�Input���Symbol�O�P��G��D�� �
� �grammar�P��PG�PG�� �

� �dictionary�B��PD� �
�� �dispatcher�G��B��PP�PP�� �
	� �bboard�R�PB�PB�� �

�

�� �creatorPR��

�� scanner����N�S�O�P�G�D� P

�� G�seek���S� P

��� P�target�O�N�S� �� ��
��� scanner��W�I��N�S�O�P�G�D� P

��� G��pos�N�PG�� P
�� D��word�W�N�PD�� ��
�
� scanner�I�N���S�O�P��G��D���
��� grammar�P� �� replicate�P� P
�	� rule�s��np�vp�� P rule�np��det�n�� P rule�np��pn�� P

��� rule�np��np�pp�� P rule�vp��tv�np�� P rule�vp��vp�pp�� P

��� rule�pp��prep�np���

��� replicate�P� P rule�S�Ss� P

��� P��P�PP�� ��
��� replicate�P�� � rule�S�Ss�P���
��� rule�S�Ss�P� P seek�N�S� P pos�N� P

�� P��new�N�N�S�Ss�S�PP�� �� rule�S�Ss�P���
�
� dictionary�B� �� replicate�B� P
��� entry�a�det� P entry�robot�n� P entry�telescope�n� P

�	� entry�terry�pn� P entry�saw�tv� P entry�with�prep��

��� replicate�B� P entry�W�S� P

��� B��B�PB�� ��
��� replicate�B�� � entry�W�S�B���
�� entry�W�S�B� P word�W�N� P

�� B��message�N�S�ctree�N�N���S�S�W�PB��� �� entry�W�S�B���
�� dispatcher�G�B� P new���N�S����T� P target�O�N�S� P

� O��answer�T�PO�� ��

� dispatcher�G�B� P target�O��N�S��
�� dispatcher�G�B� P new�M�N�S����T� P

	� B��message�M�S�ctree�M�N�S�T��PB�� ��
�� dispatcher�G�B���
�� dispatcher�G�B� P new�M�N�S��S��Ss��T� P

�� G��seek�N�S��PG�� P

�� B��message�N�S��itree�M�N�S�S��Ss�T�P��PB�� ��

�� dispatcher�G��B��PP�

�� itree�M�N�S�S��Ss�T�P� P ctree�N�P�S��T�� P

� P��new�M�P�S�Ss�T�T��PP�� ��

� itree�M�N�S�S��Ss�T�P���

�� bboard�R� P ctree�M�N�S�T� P mbox�M�S�C�I� P

	� C��ctree�M�N�S�T�PC�� ��

�� bboard�R� P mbox�M�S�C��I��

�� bboard�R� P itree�M�N�S�S��Ss�T�P� P mbox�N�S��C�I� P

�� I�subscribe�itree�M�N�S�S��Ss�T�P��I�� ��
��� bboard�R� P mbox�N�S�C�I���
��� bboard�R� P message�N�S�Msg� P mbox�N�S�C�I� ��
��� bboard�R� P Msg P mbox�N�S�C�I��
�� bboard�R� P message�N�S�Msg� P

�
� R�create�C�I�R�� ��
��� bboard�R� P Msg P mbox�N�S�C�I��
�	� creator P create�C�I�R� ��
��� �creatorPR� � �mboxPCPI��

�

��� mbox P subscribe�ITree�I� ��
��� �mboxPI� � ITree�

We describe the computation and communication aspects of the parser separately in the following two
sections� The section on computation is sketchy since the algorithm is essentially the same as the one in
�AP��a� We put the emphasis on interconnecting the agents	 thus the section on communication is more
detailed�

����� Computation

The agents bboard	 creator and mbox have only communication functions	 so we describe them in the next
section� In this section we generally omit channel variables� Numbers in parentheses refer to program lines�

parse The program is started by a goal of the form parse�Input�Symbol�O� specifying the input list �e�g�
�terry� saw� a� robot� with� a� telescope��	 the target �initial� non�literal symbol �e�g� s for
�sentence�� and the output channel� Parse ��� creates the �static� agents of the parser ����� and
interconnects them�

scanner The agent scanner is of the form scanner�I�N�S� where I is the remainder of the input list	 N
is the current input position and S is the initial non�terminal� Scanner decomposes ���� the input
list to a series of pos�N� ���� and word�W�N� ���� messages which it sends to the grammar and the
dictionary respectively� When the input list is exhausted ���	 scanner sends a �seeding� message
seek���S� to the grammar ��� meaning �Try to parse non�terminal S starting at position !�	 and
informs the dispatcher about the target channel and non�terminal and the �nal position ��!��

grammar The grammar ���� is a set of rules�S�Ss� �� ���� specifying that the non�terminal S can be
replaced with the list Ss� Every rule responds to seek�N�S�messages ���� by requesting the creation
of a new incomplete tree using the new�N�N�S�Ss�S� message ����� The �side condition� pos�N�

ensures that the rule will �re no more than once for every position�

dictionary The dictionary ���� is a set of entries�W�S� ����� � specifying that word W is of category S�
Every entry responds to word�W�N� messages ��!� by producing a complete �although very simple�
one�node phrasal tree over that word and then submitting that ctree�N�N���S�S�W� to the bboard

���� for further processing� �For a reason explained later	 this message has to be wrapped in a message
atom��

dispatcher The dispatcher ������� handles tree creation requests of the form new�M�N�S�Ss�T� where
the tree T is rooted at non�terminal S	 the known part of the tree spans input positions M� � �N	 and the
unknown part of the tree starts at position N and consists of the �concatenation� of trees rooted at the
elements of the list Ss� The dispatcher distinguishes between three cases�

�� If the unknown part is not empty ���	 the pattern �S��Ss��	 an incomplete tree itree�M�N�S�S��Ss�T�
is produced ��!�� Also	 seek�N�S�� is sent to the grammar ���� to initiate parsing the incomplete
part�

�� If the unknown part is empty ���	 ��� then a complete tree ctree�M�N�S�T� is produced �� �� The
arguments mean that there is a phrasal tree T rooted at the non�terminal symbol S and spanning
input positions M� � �N� Together with the �primitive� ctrees produced by the dictionary ����	
these play the role of building blocks that are put together by itrees �see below��

�� If the unknown part is empty and the tree spans the whole input and the tree is rooted at the
target non�terminal S ����	 then dispatcher puts the tree at the output channel ����� Since
this case is a specialization of the previous one	 it is possible that method ���� will �re instead
of method ����� Aside from being ine�cient	 this will do no harm because the ctree will travel
the loop dispatcher � bboard � mbox � itree and come back to dispatcher �see Figure ���

�

Under some fairness assumptions	 ���� will eventually �re and spit the ctree out	 thus breaking
the loop�

itree If we compared ctrees to building blocks	 we should compare itrees to masons� An itree�M�N�S�S��Ss�T�

���� consumes ctrees that �mesh� with it	 meaning that they start in the input position where the
itree ends	 and are rooted at the required non�terminal S�	 i�e� are of the form ctree�N�P�S��T���
Then the itree attaches this ctree to itself ���� by joining the ranges M� � �N and N� � �P to M� � �P	 and
connecting the trees T and T� using the constructor "���	 to form T�T�� The result is sent back to
dispatcher for further dispatching�

����� Communication

We re�ne the algorithm in �AP��a by establishing channels between agents	 i�e� making explicit the �ow
of information depicted on Figure �� Some of the interconnection techniques we use are �standard� and we
already described them in Section ����

One�to�One Communication For example	 program lines ����� interconnect the static agents using the
same technique as in Section ���	 namely incoming channels at the formula level and outgoing channels
at the term level�

One�to�Many Communication All rules �resp� entries� receive messages through their parent	 grammar
�resp� dictionary�� This is achieved by including the channel in the context cloned by � �line ��	
resp� ����

Many�to�One Communication Every rule needs to talk to the dispatcher �resp� every entry needs to
talk to the bboard�� To avoid contentions	 the channel must be replicated �lines ��!�	 resp� ������

In addition to these �standard� optimizations	 we exploit the fact that every itree only cares about
ctrees that �mesh� with it �see the end of the previous subsection and line ������ We re�ne communication
to itree so that every itree receives only relevant ctrees�� The agents bboard	 mbox and creator came
into existence due to this optimization� We describe them below�

mbox There is a �mail box� mbox� ���� for every combination �M�S� of starting position M and root symbol
S �these being the ctree�itree �meshing� parameters� that occurs during parsing� To each mbox are
attached a number of itrees that we call subscribed to the mbox� In fact	 the mbox creates� these
itrees using cloning ����� Every one of these itrees sees every ctree message sent to the mbox	
including the ones sent after its creation� Conversely	 a newly created itree will inherit all the ctree
messages already sent to the mbox�

bboard The agent bboard ������� ��bulletin board�	 or �billboard�	 or �blackboard�� manages the access
to and creation of mboxes�

Managing Mbox Access �����!� The bboard holds channels to every mbox in atoms mbox�
 and its
context looks like this at runtime�

bboard�R�� mbox�N��S��C��I��� � � �� mbox�Nn�Sn�Cn�In�

where n is the current number of mboxes	 R is a channel to the creator �see below�	 �N�S� is the
�key� of the mbox	 channel I is used to send itree messages to the mbox ����	 and channel C is
used for ctree messages �� �� We use two separate channels because we want all children itrees

�This is a convenient graphical notation for �cons�� it is not arithmetic minus�
�A similar consideration concerning rule and seek 	��
 could be exploited� We do not pursue it here� the case of itree and

ctree being more involved�
�Initially we called mboxes �channels� 	being inspired by Internet�s Inter Relay Chat
� but then we decided to change the

name in order to avoid con�ict with the predominant use of the word �channel� in this paper�
�More precisely� emancipates to the rank of agents�

�!

of a mbox to see all ctree messages sent to it	 but none of the itree messages� To this end the
mbox lets ctree messages go through transparently �it even does not have a method for handling
such messages�	 but appropriates the I channel before doing cloning ����	 so the ITree does not
get access to that channel� The renewal of C and I is also being done di
erently� �externally� for
C �� � and �by mutual consent� for I �����

Managing Mbox Creation ������� When a message�N�S�Msg�� is sent to bboard	 it has to create
a �N�S��indexed mbox i
 no such exists already� The method ���� works when the mbox exists by
simply unwrapping the message that will then be picked by either ���� or ����� The method ����
works when the mbox does not exist by asking creator to create it ���� and then unwrapping
the message as in the previous case� Unfortunately ���� can �re even if the mbox already exists	
unless the language implementation utilises a Most�Speci�c�First scheduling strategy� Unlike the
con�ict ��������� �see the description of dispatcher above�	 this con�ict ��������� is not harmless
because it creates spurious mboxes� Thus we assume that the implementation supports such a
scheduling strategy�

creator Finally	 creator �� � is a very simple agent that creates mboxes with nothing in the context but
two channels C and I ����� We cannot create mboxes directly from bboard because bboard carries
many atoms in its context that do not belong to the mbox being created�

� Concluding Remarks

We described TCLO	 a re�nement of LO with explicit channels� We have shown that LO is a specialization
of TCLO that uses only one channel� Our work can be seen as a less�ambitious approach to the problem of
e�ciency of LO since we provide language means to achieve what Andreoli and Pareschi purport to achieve
using compilation techniques �in particular	 abstract interpretation and partial evaluation��

��� Future Work

A CHAM�based semantics of TCLO �adapted from the one for LO	 �ALPT���CC��� is under development�
The exact relation of our channel variables to second�order variables	 and the non�linear properties of

channels should be investigated� For example	 channel replication calls for the use of contraction	 thus
exponentials�

We wonder what are the limits of abstract interpretation for the optimization of communication� For
example we doubt that the manual optimization we did with bboard�mbox can be achieved using abstract
interpretation�

All the LL�based OOLP approaches we are aware of deal with a constant program �the left sides of all
sequents are the same�� Modularization of the program into class�based units and OOP phenomena such as
method overriding should be investigated�

��� Related Work

TCLO is similar to Hewitt and Agha�s Actors �Agh� in that communication is capability �acquaintance�
based� Unlike Actors	 in TCLO the channels are not interpreted as identities �mailboxes�	 since an agent
can have more than one input channel and can create and drop channels dynamically�

To date	 there are only a few proposals for integration of OOP and LP based on Linear Logic� LO was the
�rst one� Saraswat and Lincoln proposed lcc �SL���Sar�� and independently Kobayashi and Yonezawa
proposed ACL �KY��a�KY��b� They recast the earlier renditions of Milner�s ��calculus as LL theories
�BS��	 Mil�� into the LP paradigm of �computation as proof search� �e�g� ACL is dubbed �process calculus
in logical form��� These languages contain two crucial ingredients of objects� state change �provided for by

�Here Msg is either ctree or itree�

��

linear logic� and message�based communication� However they are not speci�cally object�oriented because
they lack object attributes�

References

�Agh� Gul Agha� Actors� A model of concurrent computation� In Distributed Systems� MIT Press	
��� �

�Ale�� V� Alexiev� Mutable object state for object�oriented logic programming� A survey� Technical
Report TR�����	 University of Alberta	 August ����� Available from ftp�cs�ualberta�ca�

pub�TechReports�TR����	 �le TR�����ps�Z or TR�����a
�ps�Z�

�Ale�� V� Alexiev� Applications of linear logic to computation� An overview� Bul�
letin of the IGPL	 ���������!�	 March ����� Available from theory�doc�ic�ac�uk�

theory�forum�igpl�Bulletin�V���� Alexiev�ps�gz�Also University of Alberta TR�����	 De�
cember �����

�ALPT�� J��M� Andreoli	 L� Leth	 R� Pareschi	 and B� Thomsen� True concurrency semantics for a linear
logic programming language with broadcast communication� In Theory and Practice of Software
Development �TAPSOFT����	 pages �������	 �����

�AP��a J��M� Andreoli and R� Pareschi� Communication as fair distribution of knowledge� In Object�
Oriented Programming� Systems� Languages and Applications �OOPSLA����	 pages �������	
November ����� ACM SIGPLAN Notices	 � �����

�AP��b J��M� Andreoli and R� Pareschi� Linear objects� Logical processes with built�in inheritance� New
Generation Computing	 ��������������	 ����� Shorter version appeared in D�H�D� Warren and P�
Szeredi �eds�	 Intl� Conf� on Logic Programming �ICLP��	�	 Jerusalem	 Israel	 June ���!	 pages
������!�

�AP�� J��M� Andreoli and R� Pareschi� Associative communication and its optimization via abstract
interpretation� Submitted to TCS �but seems to never have appeared�	 �����

�APB�� J��M� Andreoli	 R� Pareschi	 and M� Bourgois� Dynamic programmingas multiagent programming�
Technical Report ECRC������	 ECRC	 M#unchen	 �����

�APC�� J��M� Andreoli	 R� Pareschi	 and T� Castagnetti� Abstract interpretation of linear logic program�
ming� In International Logic Programming Symposium �ILPS����	 pages �������� MIT Press	
�����

�BAP�� M� Bourgois	 J��M� Andreoli	 and R� Pareschi� Extending objects with rules	 composition and
concurrency� the LO experience� In OOPSLA��
 Workshop �Object�Oriented Languages� The
Next Generation	 ����� Also technical report ECRC����� �

�BAP�� M� Bourgois	 J��M� Andreoli	 and R� Pareschi� Concurrency and communication� Choices in
implementing the coordination language LO� In R� Guerraoui	 O� Nierstrasz	 and M� Riveill	
editors	 Proc� of the ECOOP��� Workshop on Object�Based Distributed Programming	 number
��� in LNCS	 pages �����	 �����

�BS�� G� Bellin and P�J� Scott� On the ��calculus and linear logic� Manuscript to be submitted to Proc�
MFPS �	 Oxford	 November �����

�CC�� S� Castellani and P� Ciancarini� Comparative semantics of LO� Technical Report UBLCS����
�	 University of Bologna	 April ����� Availabile by anonymous FTP from ftp�cs�unibo�it�

�pub�TR�UBLCS�SemanticsOfLO�ps�gz�

��

�Con�� John S� Conery� Logical objects� In Robert A� Kowalski and Kenneth A� Bowen	 editors	 Intl�
Conf� and Symp� on Logic Programming �ICLP����	 pages ��!����	 �����

�Dav�� A� Davison� A survey of logic programming�based object�oriented languages� Technical Report
��$�	 University of Melbourne	 January ����� Fourth revision% �rst published April �����

�Gel�� D�H� Gellernter� Generative communication in Linda� Transactions on Programming Languages
and Systems	 ������!����	 �����

�Gir�� J��Y� Girard� Linear logic� Theoretical Computer Science	 �!����!�	 �����

�KY��a N� Kobayashi and A� Yonezawa� Asynchronous communication model based on linear logic�
Formal Aspects of Computing	 ���	 ����� Short version appeared in Joint Intl� Conf� and Symp�
on Logic Programming �JICSLP��
�	 Washington	 DC	 November ����	 Workshop on Linear
Logic and Logic Programming�

�KY��b N� Kobayashi and A� Yonezawa� Typed higher�order concurrent linear logic program�
ming� Technical Report �����	 University of Tokyo	 July ����� Available by FTP from
camille�is�s�u�tokyo�ac�jp �pub�papers� TR�
����hacl�a
�ps�Z�

�Mes�� J� Meseguer� Multiparadigm logic programming� In G� Levi and H� Kirchner	 editors	 Third
Intl� Conf� on Algebraic and Logic Programming �ALP��
�	 number �� in LNCS	 pages �����!!	
Volterra	 Italy	 September �����

�Mil�� D� Miller� The ��calculus as a theory in linear logic� Preliminary results� In E� Lamma
and P� Mello	 editors	 Extensions of Logic Programming �ELP��
�	 ����� Also Univer�
sity of Pennsylvania technical report MS�CIS������	 available from ftp�cis�upenn�edu�

pub�papers�miller�pic�dvi�Z�

�MOM�� N� Mart���Oliet and J� Meseguer� Action and change in rewriting logic� Technical Report �to
appear�	 Computer Science Laboratory	 SRI International	 �����

�Sar�� V� Saraswat� A brief introduction to linear concurrent constraint programming	 April �����
Available from parcftp�xerox�com� pub�ccp�lcc�lcc�intro�dvi�Z�

�SL�� V� Saraswat and Patrick Lincoln� Higher�order	 linear	 concurrent constraint programming	 July
����� Available from parcftp�xerox�com� pub�ccp�lcc�hlcc�dvi�Z�

�ST�� Ehud Shapiro and Akikazu Takeuchi� Object�oriented programming in Concurrent Prolog�
New Generation Computing	 �������	 �����

��

