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Abstract

LiINEAR OBJECTS (LO) of Andreoli and Pareschi is the first proposal to integrate object-oriented
programming into logic programming based on Girard’s Linear Logic (LL). In LO each object is repre-
sented by a separate open node of a proof tree. This “insulates” objects from one another which allows
the attributes of an object to be represented as a multiset of atoms and thus facilitates easy retrieval
and update of attributes. However this separation hinders communication between objects. Communi-
cation in LO is achieved through broadcasting to all objects which in our opinion is infeasible from a
computational viewpoint.

This paper proposes a refined communication mechanism for LO which uses explicit communication
channels specified by the programmer. We name it TCLO which stands for “Targeted Communication
in LO”. Although channel specification puts some burden on the programmer, we demonstrate that the
language is expressive enough by redoing some of the examples given for LLO. Broadcasting can be done
in a controlled manner. LO can be seen as a special case of TCLO where only one global channel (the
forum) is used.

Keywords LINEAR OBJECTS, communication, broadcasting, objects and logic, linear logic.

1 Introduction

The integration of Object-Oriented Programming (OOP) and Logic Programming (LP) is a long-standing
goal of both the OOP and the LP research communities. The benefits of such an integration for both
paradigms are apparent: OOP brings to LP the techniques of modern software engineering, while LP brings
to OOP declarativity to replace the prevalent procedural languages of today. Seemingly the LP community
has been more active in this effort. For a survey see [Dav92].

One of the hardest obstacles to an integration of OOP and LP is state change which is inherent in OOP
but (up to until recently) was hard to express logically [Ale93]. Probably the most promising development
in this area is Girard’s Linear Logic (LL) [Gir87]. LL has proved useful in many areas of computation
[Ale94], most notably concurrency and resource-based reasoning. (Another promising approach to state
representation is Meseguer and Marti{-Oliet’s Rewriting Logic [Mes92, MOM93].)

LINEAR OBJECTs (LO) of Andreoli and Pareschi is the first proposal for integration of OOP and LP
based on LL. Technically LL bears similarity to an earlier proposal [Con88] in that both approaches allow
multiple atoms in the head of the clauses. The novelty of LL 1s its firm foundation in LL, which provides
both a standard model-theoretic semantics based on phase spaces [AP91a, Section 2.4] (see also [CC94]) and
proof-theoretical insights for the design of the language. As an example of the latter, the logic connective &
is interpreted as object cloning (see Section 2 for details).

LO represents objects as separate open leaf nodes of the proof tree being constructed. The attributes
of the object are atoms in the multiset context of the node. This allows easy access to the attributes for
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consumption and addition by the methods of the object and makes possible compositional (“built-in”) inher-
itance. However the separation of objects hinders communication. Indeed, the only communication mode in
LO is broadcasting.’ Broadcasting is a powerful communication abstraction, but we deem it computationally
infeasible and not scalable (see Section 2.1 for discussion). We propose a refined communication mechanism
for LO which we name TCLO.

This paper is organized as follows. Section 2 gives an overview of LO and explains the disadvantages
of broadcasting. Section 3 describes the proposed extension of LO. Section 4 re-does some of the example
programs given by Andreoli and Pareschi to demonstrate that the TCLO style of programming does not
suffer a loss of expressive power. Section 5 concludes the paper.

2 LINEAR OBJECTS

The syntax of LO is defined over a set of atomic formulas A constructed from predicate names P = {a, b, ...}
and terms in the usual way.

A = P({term),...) Atomic formulas

G = A | T | G178G2 | Gl&Gz Goals

V o= A|TA|WNAV, Views (clause heads)
M = VoG Methods (clauses)

A context I' is a multiset of goals. A program P is a set of methods. Since the program remains the same
in every node of a proof tree, we abbreviate the LL sequent &P T to simply T' (here &P denotes the
modalized additive conjunction of the elements of P).

The operational semantics of LO corresponds almost completely to bottom-up proof construction in
Linear Logic [Gir87] (LL) (with the exception of the broadcast operator ~A):

T, Termination (success)

T,
Gq,Go, T . G, I' Go, T .
NG, T %, Decomposition &G, T &, Cloning
G,T . .
VT If (Vo—G) € P  Resolution (propagation)

The root node in the proof tree of a LO execution is I',C where I' is the initial state of the system and C is
an unspecified context called the forum and used for communication. The proof tree grows from the root up
and it can contain open (not completed) leaf nodes. Computation proceeds according to the following rules:

1. Pick an open node (or work in parallel on more than one open node).
2. Termination. If the context of the node contains T, close the node according to the T rule.

3. Decomposition and Cloning. If the context of the node contains formulas with main connectives %
or & decompose them to atoms using repeatedly rules % and &. This may generate more than one
successors of the current node.

4. Resolution. When the context contains only atoms and if the multiset of atoms is a superset of a clause
head V', rewrite the occurrence of V in the context with the clause body G.

5. Broadcasting. If in the previous case V contained some broadcast atoms ~A then add these atoms to
all non-closed (open or internal) nodes but the current one. In other words, replace the forum C with
A, C’, thus reducing the indeterminacy of the forum.

1Tt is also possible to do term-level (as opposed to formula-level) stream-based communication as in the earlier proposals
based on concurrent PROLOGs (see [ST83]), but the inconveniences of this approach are well-known.



All of the above cases 1-4 correspond directly to inference rules of LL and expand the proof tree by changing
an open node locally. However case 5 (the broadcasting rule) changes the proof tree globally by instantiating
C and thus cannot correspond to an inference rule since these always act locally.

2.1 The Shortcomings of Broadcasting

The initial version of LO [AP91b] did not include broadcasting and the authors used stream-based (term-
level) communication similar to the one in concurrent PROLOG implementations of OOP [ST83]. Andreoli
and Pareschi introduced broadcasting in [AP91a] and described in great detail its expressive power for
modeling inter-object communication. However it is our opinion that broadcasting is not a plausible concept
for the modeling of large distributed systems and 1t does not scale well:

e Broadcasting is expensive. Its naive implementation leads to slow execution, and an efficient imple-
mentation is hard to achieve (see [BAP92, BAP94] for a discussion).

e Broadcasting destroys the locality of interaction (e.g. [BAP94, Sec. 9] uses a central entity to implement
broadcasting), which is a very important principle for large systems of independent agents.

e Broadcasting leads to message name clashes. Since every agent sees all messages, one has to use
different names for different messages, even if the messages are semantically similar (e.g. “get” sent to
a list and “get” sent to a stack).

e Broadcasting makes it hard to partition the program because every method is potentially applicable
to every object: even if a method is not currently applicable to an object, the object may receive in
the future enough messages to make the method applicable. In fact not only LO, but all LL-based
OOLP proposals that we know of, treat the program as a monolithic entity. We see this problem as a
promising research direction.

e Although only a small percent of the broadcasted messages are relevant to any given agent, all agents
receive all messages and have to store them in their contexts. This leads to “context saturation”
(maybe more aptly named “context garbaging”). Andreoli and Pareschi propose to solve this problem
using abstract interpretation [AP92, APC93], but it is better not to allow it in the first place.

3 Targeted Communication in LO

We propose to extend LO with explicit channels in order to solve the problems described above. We call the
proposed extension TCLO.

In addition to the set of predicate names P, TCLO features a set of channel variables X = {x,y,...}
(denoted by bold face). These variables are similar to (but not the same as, see Section 3.3) second-order
logic variables. We allow atomic formulas to include channels at the term level, e.g. a(x) is a valid formula.
Unlike predicate names, channels cannot bear arguments (e.g. a(?) is a valid formula, but x(¢) is not). Since
any atomic formula can be sent along a channel, it would be superfluous to allow channels to bear arguments.
We modify the definitions of goals and views (Section 2) as follows:

A o= P({term) | X, .. ) Atomic formulas

G = A | X | T | G178G2 | Gl&Gz Goals

S = A|X| 5105, Simple views (no sending)
V o= A|X"S WAV, Views

M = VoG Methods (clauses)

Thus we replace broadcasting ~A with message sending along a channel, X"S. The extension of sending
simple views and not plain atoms is needed to allow renewed communication (see the next section).

The operational semantics of TCLO 1s defined by modifying the Resolution and Broadcasting rules of
LO.



e Resolution. If the context is flat (contains no LL connectives) and a clause head matches V, rewrite the
occurrence of V in the context with the clause body G. A message send x m in V can be matched either
if a channel variable appears in the context at the outer level (the variable name need not be the same,
e.g. y would match x), or else if the channel is specified explicitly using unification, e.g. V = ¢(x) ¥ x"a
will match a context containing ¢(y) (and identify x and y) but not one containing y only at the outer
level. Resolution does not look inside the messages that V sends, e.g. V = ¢(x) ¥ x"(m?%y) requires
the presence in the context of a channel ¢(z) but does not care about m nor y.

e Message Send. If in the previous case V contained some message sends X5, replace X everywhere in
the proof tree by S. The occurrence of X in the current node was consumed by the Resolution rule; so
the current node will not receive a copy of the message it sends. However, if the node contained more
than one occurrence of X, the remaining occurrences will be replaced by the message 5.

The occurrence of a channel X in a context can either be consumed by a message-sending Resolution or
replaced with the message body S during a send initiated by another agent.

3.1 Communication Patterns in TCLO

Here we describe various communication patterns that occur commonly in TCLO.

Multidirectionality TCLO channels are multidirectional: any agent having an occurrence of the channel
variable can write to it. This can be either useful or inconvenient depending on th setting.

Many-to-One Communication If an agent contains more than one channel at the top level of its context,
it can receive messages along these channels without any interference between them. Thus unlike OOLP
based on concurrent PROLOG languages [ST83], no message merging elements are needed. This is due
to the fact that channels are at the logic level, not at the term level.

One-to-Many (Group) Communication All the agents connected to a channel will receive the data
placed on it. Arranging various communication topologies is as simple as passing the channel name
to another agent. During Cloning the channels known to the parent are passed to both children
automatically (or if Cloning splits a formula containing channels, they are distributed between the two
children). If we regard the children open nodes of a given node as a “process group” and if the parent
node has a channel shared among all children, we can easily achieve group communication by writing
to this channel.

Named vs Unnamed Channels If an agent needs only one channel (that is, it communicates with only
one agent group), it can use the channel at outer level in its context. However, if an agent has more
than one outgoing channels, it needs to label them with distinct names. For example, an agent may
have two named channels ¢(x), d(y) and send messages using clauses like

c(x) B x"m o— (new state)
d(y) ¥y n o— {new state)
Incoming channels are usually unnamed to allow easy merging of message streams.

Renewable Communication Often a channel is needed to deliver more than one message. While the
clause
s®x"mo— s

corresponds to a sender s using channel z for a one-shot communication m, the channel can be renewed
using
~ /
s W x"(mBy)o—s'Ay.

Responses Usually no separate channel is needed to carry the response to a request. Since the channel is
bidirectional, the response can be sent along the renewed channel, similar to the use of first-order logic
variables to return answers from function-like predicates.



3.2 LO as a special case of TCLO

It is easy to see that LO is a special case of TCLO that uses only one channel, the forum. A LO broadcasting
clause

VA Ao— G

is replaced by the TCLO clause
VA x (ADy) o— GRy.

The initial state of the LO program I' is replaced by I'Fx. Thus, what Andreoli and Pareschi call “the
unspecified part of the context”, we represent explicitly as an unnamed channel.
In terms of the “group communication” described in the previous section, LO can be seen to consider
the whole concurrent system as consisting of one communication group, generated by the root node.
Although TCLO is an extension of LO, from a practical viewpoint its programming style is a restriction
of the one of LO since the programmer is required to specify explicitly the communication channels and to
take care of distributing them among agents. Section 4 suggests that this restriction is not a severe one.

3.3 TCLO and Second-Order LL

Although TCLO channel variables are similar to second-order variables in linear logic, the two are not the
same. We tried to describe TCLO communication as second-order unification (that is to say, existential
introduction under the bottom-up reading), but found it impossible to do so. Unfortunately TCLO suffers
from the same impossibility to ascribe true logical rules to its communication as LO, and for the same reason:
while every logical rule acts locally on an open node, TCLO communication involves “distant action” in
separate branches of the proof tree.

On the other hand, channel variables are used rather restrictively compared to the possible uses of second-
order variables. This obviates the need for full second-order unification and simplifies implementation.

4 Programming Examples

In this section we redo some of the examples given for LO in order to demonstrate that TCLO-style pro-
gramming suffers no loss of expressive power. In fact we find that the non-directed nature of broadcasting is
sometimes confusing to the programmer (Won’t my message cause any adverse interference in other objects?)
and to the reader of a program (Where is this message going to?).

4.1 The Optimal Path Problem
This example is taken from [APB91, Section 3]. The problem is

Given a weighted-edge acyclic directed graph with a distinguished source s and target ¢ (a net-
work), find a path from s to ¢ with the smallest possible weight.

The solution is based on dynamic programming and is easily adapted from [APB91]. For simplicity, we
restrict the solution to use only one representation of the network (every node stores the set of its outgoing
edges), we implement only “forward chaining” algorithm, and we destructively modify the network represen-
tation during the path search. Also, our example network is smaller than the one in [APB91] (see Figure 1).
Fach edge is labeled with its weight and the channel variable corresponding to the edge (see below). The
optimal path is drawn bold.

We represent the network as follows:

network o—
(node(s) &% in(0) & e(5,A1l) % e(6,B1) &% e(4,Cl1)) &
(node(a) &% in(1) &% Al &% e(2,D1) &% e(5,E1)) &
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Figure 1: Example of a Weighted-Edge Network

(node(b) &% in(1)
(node(c) & in(1)
(node(d) % in(2)
(node(e) #% in(3)
(node(f) % in(1)
(node(t) &% in(1)

¥ B1 ® e(1,D2) ¥ e(3,E2)) &
¥ Cl % e(4,E3) ¥ e(1,F1)) &
% D1 % D2 % e(2,T1)) &
¥ E1®E2%E3% (1,T2)) &
¥ F1 % «(2,T3)) &
¥ TL % T2 % T3).
Every node is represented as a separate agent (expressed by & above). For every node we store its name
node(_). Unlike the LO solution, these names are included only for the purpose of printing the found path
in readable form, and not for communication between nodes. We record the node’s input arity and for
every incoming edge create a separate channel (denoted by uppercase). The outgoing edges are represented
by the atoms e(W,C) storing their weights and a channel to the destination node. Please note that the
incoming channels are represented at the higher (formula) level, while outgoing channels are hidden at the
lower (term) level. This allows an agent to have easy uniform access to all its incoming messages yet to
differentiate between its outgoing channels.

The agents work through two phases: selection and spreading. These phases occur asynchronously in
the network, forming a “wave front” moving from s to t.

1. During the select phase, the agent receives best-path offers from each of its predecessors in the form
of atoms path(C,P) where C is the cost of the path and P is a list of the nodes comprising the path.
The agent discards all but the best offer.

select % in(I) & path(C1,P1) % path (C2,P2) & {C1<=C2} o
select % in(I-1) % path(C1,P1). ; discard suboptimal offers
select & in(1) o— spread. ; move to the next phase

2. During the spread phase the agent propagates this best path to all its successors, adding its name and
the weight of the outgoing edge to the path.

spread % path(C,P) % node(M) % e(W,N) % N-path(C+W,P::M) o—
spread % path(C,P) % node(M). ; send message. :: is append

The program is started by a goal of the form

o— network % source(s) W target(t) % output(O) ¥ select.



All of the atoms source, target, output and select are delivered to all agents (&-components of network),
although only the source and target nodes make use of the first three. The special clauses for the source and
target nodes are

node(S) % source(S) B select o— node(S) % path(0,[1) @ spread.
node(T) % target(T) ¥ path(C,P) % spread ¥ output(O)
O-path(C,P::T) o— T. ; output result and terminate

4.2 Distributed Active Parsing

In [AP91a, Section 3.2] Andreoli and Pareschi describe an LO implementation of active parsing for context-
free (and possibly ambiguous) grammars. The term “active” refers to the feature that incomplete phrasal
trees are considered active agents which look for and consume complete trees. The parser is composed of
the agents shown on Figure 2, adapted from [AP91a]. We renamed the agent create_tree to dispatcher

oD scanner Cord

grammar G dictionary D
target
rule entry
Legend:
‘ create |
—

new dispatcher P Ctré agent CH

o) | 3

J

itree

Figure 2: Distributed Active Parser: Agents and Flow of Information

and added the agents bboard, creator, mbox, and some messages. The bold letters denote typical channel
variables used to talk to a particular agent.

The distinction between agents and messages 1s mainly a conceptual one, because both are represented by
atoms. However while every method referencing an agent atom in its head reinstates it in its body, message
atoms are not reinstated and are thus consumed. Thus agents are relatively long-lived and messages are
short-lived.

This example is more involved both for the reader to understand (it is more complex), and for the
programmer to create (it uses generative communication [Gel85] which we have to represent using targeted
communication). Our program is shown below.

1: parse(Input,Symbol,O) o—

2: (scanner (Input,0,Symbol,0,P2,G2,D)) &
3: (grammar (P1)AG1NG2) &

4: (dictionary(B2)¥D) &

5: (dispatcher(G1,B1)FP19¥P2) &

8 (bboard(R)FB1%¥B2) &



(creatordR).
scanner([]1,N¥,s,0,P,G,D) %

G-seek(0,S) &

P-target(O,N,S) o— T.

: scanner([W|I],N,S,0,P,G,D) &%

G~ (pos(M)HG1) X
D~ (word(W,N)®¥D1) o—
scanner(I,N+1,5,0,P1,G1,D1).

: grammar(P) o— replicate(P) %

rule(s, [np,vpl) & rule(np,[det,n]) & rule(np,[pnl) &
rule(np, [np,ppl) ¥ rule(vp,[tv,npl) ¥ rule(vp,[vp,ppl) ¥
rule(pp, [prep,npl).

: replicate(P) @ rule(S,Ss) %

P (P1B¥P2) o
replicate(P1) & rule(S,Ss,P2).

: rule(S,Ss,P) & seek(lN,S) & pos(N) &

P~ (new(N,N,S,Ss,S)®¥P1) o— rule(s,Ss,P1).

: dictionary(B) o— replicate(B) %

entry(a,det) ¥ entry(robot,n) % entry(telescope,n) %
entry(terry,pn) % entry(saw,tv) % entry(with,prep).

: replicate(B) @& entry(W,s) %

B~ (B1%¥B2) o
replicate(B1l) & entry(W,S,B2).

: entry(W,S,B) ¥ word(W,N) &%

B~ (message(N,S,ctree(N,N+1,5,5-W)W¥B1)) o— entry(W,S,B1).

: dispatcher(G,B) % new(0,N,S,[1,T) ¥ target(O,N,S) &

O~ (answer(T)¥01) o
dispatcher(G,B) 4 target(O1,N,S).

: dispatcher(G,B) &% new(M,N,S,[1,T) &

B~ (message(M,S,ctree(M,N,S,T))¥B1) o—
dispatcher(G,B1).

: dispatcher(G,B) % new(M,N,S,[S1[Ss],T) @

G~ (seek(N,S1)%G1) &
B~ (message(N,S1,itree(M,N,S,51,Ss,T,P))®¥B1) o
dispatcher (G1,B1)3P.

: itree(M,N,S,S1,Ss,T,P) &% ctree(N,P,S1,T1) &

P~ (new(M,P,S,Ss,T-T1)3P1) o
itree(M,N,S,S1,Ss,T,P1).

: bboard(R) % ctree(M,N,S,T) % mbox(M,s,C,I) &

C~(ctree(M,N,S,T)BC1) o
bboard(R) % mbox(M,S,C1,I).

: bboard(R) % itree(M,N,S,S1,Ss,T,P) % mbox(N,S1,C,I) &

I"subscribe(itree(M,N,S,S81,Ss,T,P),I1) o
bboard(R) % mbox(N,S,C,I1).

: bboard(R) % message(N,S,Msg) % mbox(N,S,C,I) o—

bboard(R) 4 Msg % mbox(N,S,C,I).

: bboard(R) % message(N,S,Msg) &

R create(C,I,R1) o
bboard(R) 4 Msg % mbox(N,S,C,I).

: creator % create(C,I,R) o—

(creatordR) & (mboxBCHI).



58: mbox % subscribe(ITree,I) o—
59: (mbox?®I) & ITree.

We describe the computation and communication aspects of the parser separately in the following two
sections. The section on computation is sketchy since the algorithm is essentially the same as the one in

[AP91a]. We put the emphasis on interconnecting the agents, thus the section on communication is more
detailed.

4.2.1 Computation

The agents bboard, creator and mbox have only communication functions, so we describe them in the next
section. In this section we generally omit channel variables. Numbers in parentheses refer to program lines.

parse The program is started by a goal of the form parse(Input,Symbol, O) specifying the input list (e.g.
[terry, saw, a, robot, with, a, telescopel), the target (initial) non-literal symbol (e.g. s for
“sentence”) and the output channel. Parse (1) creates the “static” agents of the parser (2-7) and
interconnects them.

scanner The agent scanner is of the form scanner(I,N,S) where I is the remainder of the input list, ¥
is the current input position and S is the initial non-terminal. Scanner decomposes (11) the input
list to a series of pos(N) (12) and word(W,N) (13) messages which it sends to the grammar and the
dictionary respectively. When the input list is exhausted (8), scanner sends a “seeding” message
seek(0,S) to the grammar (9) meaning “Try to parse non-terminal S starting at position 0”, and
informs the dispatcher about the target channel and non-terminal and the final position (10).

grammar The grammar (15) is a set of rules(S,Ss) (16-18) specifying that the non-terminal S can be
replaced with the list Ss. Every rule responds to seek(N,S) messages (22) by requesting the creation
of a new incomplete tree using the new(N,N,S,Ss,S) message (23). The “side condition” pos(N)
ensures that the rule will fire no more than once for every position.

dictionary The dictionary (24) is a set of entries(W,S) (25-26) specifying that word W is of category S.
Every entry responds to word(W,N) messages (30) by producing a complete (although very simple)
one-node phrasal tree over that word and then submitting that ctree(N,N+1,5,S-W) to the bboard
(31) for further processing. (For a reason explained later, this message has to be wrapped in a message
atom.)

dispatcher The dispatcher (32-41) handles tree creation requests of the form new(M,N,S,Ss,T) where
the tree T is rooted at non-terminal S, the known part of the tree spans input positions M...N, and the
unknown part of the tree starts at position N and consists of the “concatenation” of trees rooted at the
elements of the list Ss. The dispatcher distinguishes between three cases:

1. Tf the unknown part is not empty (38, the pattern [S1|8s]), an incomplete tree itree(M,N,S,S1,Ss,T)
is produced (40). Also, seek(N,S1) is sent to the grammar (39) to initiate parsing the incomplete
part.

2. If the unknown part is empty (35, [1) then a complete tree ctree(M,N,S,T) is produced (36). The
arguments mean that there is a phrasal tree T rooted at the non-terminal symbol S and spanning
input positions M...N. Together with the “primitive” ctrees produced by the dictionary (31),
these play the role of building blocks that are put together by itrees (see below).

3. If the unknown part is empty and the tree spans the whole input and the tree is rooted at the
target non-terminal S (32), then dispatcher puts the tree at the output channel (33). Since
this case is a specialization of the previous one, it is possible that method (35) will fire instead
of method (32). Aside from being inefficient, this will do no harm because the ctree will travel
the loop dispatcher - bboard - mbox - itree and come back to dispatcher (see Figure 2).



Under some fairness assumptions, (32) will eventually fire and spit the ctree out, thus breaking
the loop.

itree If we compared ctrees to building blocks, we should compare itrees to masons. An itree(¥,N,S,S1,Ss,T)
(42) consumes ctrees that “mesh” with it, meaning that they start in the input position where the
itree ends, and are rooted at the required non-terminal S1, i.e. are of the form ctree(N,P,S1,T1).
Then the itree attaches this ctree to itself (43) by joining the ranges M...N and N...P to M...P, and
connecting the trees T and T1 using the constructor ‘-’2, to form T-T1. The result is sent back to
dispatcher for further dispatching.

4.2.2 Communication

We refine the algorithm in [AP91a] by establishing channels between agents, i.e. making explicit the flow
of information depicted on Figure 2. Some of the interconnection techniques we use are “standard” and we
already described them in Section 3.1.

One-to-One Communication For example, program lines (2-7) interconnect the static agents using the
same technique as in Section 4.1, namely incoming channels at the formula level and outgoing channels
at the term level.

One-to-Many Communication All rules (resp. entries)receive messages through their parent, grammar
(resp. dictionary). This is achieved by including the channel in the context cloned by & (line 21,
resp. 29).

Many-to-One Communication Every rule needs to talk to the dispatcher (resp. every entry needs to
talk to the bboard). To avoid contentions, the channel must be replicated (lines (20), resp. (28)).

In addition to these “standard” optimizations, we exploit the fact that every itree only cares about
ctrees that “mesh” with it (see the end of the previous subsection and line (42)). We refine communication
to itree so that every itree receives only relevant ctrees.® The agents bboard, mbox and creator came
into existence due to this optimization. We describe them below.

mbox There is a “mail box” mbox* (58) for every combination (M,S) of starting position ¥ and root symbol
S (these being the ctree-itree “meshing” parameters) that occurs during parsing. To each mbox are
attached a number of itrees that we call subscribed to the mbox. In fact, the mbox creates® these
itrees using cloning (59). Every one of these itrees sees every ctree message sent to the mbox,
including the ones sent after its creation. Conversely, a newly created itree will inherit all the ctree
messages already sent to the mbox.

bboard The agent bboard (45-55) (“bulletin board”, or “billboard”, or “blackboard”) manages the access
to and creation of mboxes.

Managing Mbox Access (45-50) The bboard holds channels to every mbox in atoms mbox/4 and its
context looks like this at runtime:

bboard(R), mbox(N1,81,C1,I1), ..., mbox(lin,Sn,Cn,In)

where n is the current number of mboxes, R is a channel to the creator (see below), (N,S) is the
“key” of the mbox, channel I is used to send itree messages to the mbox (49), and channel C is
used for ctree messages (46). We use two separate channels because we want all children itrees

2This is a convenient graphical notation for “cons”, it is not arithmetic minus.

3 A similar consideration concerning rule and seek (22) could be exploited. We do not pursue it here, the case of itree and
ctree being more involved.

4Initially we called mboxes “channels” (being inspired by Internet’s Inter Relay Chat), but then we decided to change the
name in order to avoid conflict with the predominant use of the word “channel” in this paper.

5More precisely, emancipates to the rank of agents.
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of a mbox to see all ctree messages sent to it, but none of the itree messages. To this end the
mbox lets ctree messages go through transparently (it even does not have a method for handling
such messages), but appropriates the I channel before doing cloning (59), so the ITree does not
get access to that channel. The renewal of C and I is also being done differently: “externally” for
C (46) and “by mutual consent” for I (49).

Managing Mbox Creation (51-55) When a message(N,S,Msg)® is sent to bboard, it has to create
a (I, S)-indexed mbox iff no such exists already. The method (51) works when the mbox exists by
simply unwrapping the message that will then be picked by either (45) or (48). The method (53)
works when the mbox does not exist by asking creator to create it (54) and then unwrapping
the message as in the previous case. Unfortunately (53) can fire even if the mbox already exists,
unless the language implementation utilises a Most-Specific-First scheduling strategy. Unlike the
conflict (32)—(35) (see the description of dispatcher above), this conflict (51)—(53) is not harmless
because it creates spurious mboxes. Thus we assume that the implementation supports such a
scheduling strategy.

creator Finally, creator (56) is a very simple agent that creates mboxes with nothing in the context but
two channels C and I (57). We cannot create mboxes directly from bboard because bboard carries
many atoms in its context that do not belong to the mbox being created.

5 Concluding Remarks

We described TCLO, a refinement of LO with explicit channels. We have shown that LO is a specialization
of TCLO that uses only one channel. Qur work can be seen as a less-ambitious approach to the problem of
efficiency of LO since we provide language means to achieve what Andreoli and Pareschi purport to achieve
using compilation techniques (in particular, abstract interpretation and partial evaluation).

5.1 Future Work
A CHAM-based semantics of TCLO (adapted from the one for LO, [ALPT93][CC94]) is under development.

The exact relation of our channel variables to second-order variables, and the non-linear properties of
channels should be investigated. For example, channel replication calls for the use of contraction, thus
exponentials.

We wonder what are the limits of abstract interpretation for the optimization of communication. For
example we doubt that the manual optimization we did with bboard/mbox can be achieved using abstract
interpretation.

All the LL-based OOLP approaches we are aware of deal with a constant program (the left sides of all
sequents are the same). Modularization of the program into class-based units and OOP phenomena such as
method overriding should be investigated.

5.2 Related Work

TCLO is similar to Hewitt and Agha’s AcTors [Agh86] in that communication is capability (acquaintance)
based. Unlike AcToRrs, in TCLO the channels are not interpreted as identities (mailboxes), since an agent
can have more than one input channel and can create and drop channels dynamically.

To date, there are only a few proposals for integration of OOP and LP based on Linear Logic. LO was the
first one. Saraswat and Lincoln proposed lcc [SL92][Sar93] and independently Kobayashi and Yonezawa
proposed ACL [KY94a][KY94b]. They recast the earlier renditions of Milner’s w-calculus as LL theories
[BS92, Mil92] into the LP paradigm of “computation as proof search” (e.g. ACL is dubbed “process calculus
in logical form”). These languages contain two crucial ingredients of objects: state change (provided for by

SHere Msg is either ctree or itree.
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linear logic) and message-based communication. However they are not specifically object-oriented because
they lack object attributes.
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