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\.A.two-dlmenszonal numerxcal model is developed to
. .

predzct the temperature and w1nd f1elds w1th1n a small
axxally symmetrxc valley cross sectlon The thermodynamlc'

equat1gn coupled w1th the vort1c1ty equat1on,~1s solved

.

-

rate whlch is constant for else dependent on radlatlve

+ . " 1

transfer ‘processes, follow1ng Brunt (1934) The coollng

u51ng f1n;te-dlfferenczz/subject to e1ther a surface coolxng

’ 7

rates were obta1ned from exper1ments perforﬁ%d 1n 1977 -

1978 w1th1n the North Saskatch@wan szer valley in Edmonton,
\ e
Alberta, durlng clear sky and 11ght wlnd 1nver51on ~

cond1t1ons in whlch downslope mlnds developed Advectlon,w
&

turbmlent dlffu51on and radiation processes are 1ncorporated

fhto the heat transfer equatlon T K- theory is used to -
‘ :

approxlmate the latter two /Integratlons are performed us1ng

the Dufort Frankel formulatlon for the dlffu51on terms -but,

-

due to 1nherent numerical problems, a forward tlme,
“centered-space method is proved super1or in this e
appllcatzon. A forward t1me, upstream space formulat1on is
used to est1mate the advectlon terms. Llebmann sequentlal
relaxatlon is used to determlne the streamfunctlon field.
The model predicts attainment of quas1-steadyfstate

conditions within'about 20 minuteS‘of‘integratiOn time with

“the development of downslope W1nd speeds of = 0.8 m s”'., The
relat1ve cdntr1but1ons whlch adVEctsv\_ dlffu51ve, and |

radiative processes make are 1llustrated 1n dlfferent

conditions and varlous tjlley locations. In the early stages
. \ - . .

<
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(after 200 seconds? rad1at1ve transfer domlnates at ‘low
;leVels. Ks the slope ulnds deveiop, advect1on processes
]become 1ncrea51ngly 1mportant and,:after 1600 seconds, cool-f
1ng rates due to advectlon of -4 x 10" C°r‘f' ‘are predlcted
g~4 m above the slope, about twlce those due to d1ffus1on or ,4
»rad1atzon. However, when only radlatzve transfer is - .
perm1tted which is sxmulated in this study as a d1f£u51ve
process,‘lt 1s able to account for most of the observed tem-
perature changes alone at low 1eVElS+ The predlcted
_‘;ow—level temperaturekvar_at ns. w1th helght and the maxxmum"
A;slopefkinds“agree extreme%y"well with the observatlons.
‘?ténsft}@ity of the'resuits“to tnevlocation ofvthe‘upper'
" boundary of the model and'to‘the presence orfabsence of_e
~flat‘va‘l.‘_ley bottom is small ¢lose to the slope. 3
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Chapter 1 S

. INTRODUCTION

1.1 Mountain and'Valley Winds
The phenomenon of mountain and valley winds has been

1nvestlgated by many authors in the past Wagner, during the
1930's, publlshed a number of papers giving falrly exten51ve
explanatlons of the theory of such local c19€ulatlons. Based
on obserglrlons conducted withln the valleys of the Alps, he
- concluded that a pressure gradlent was created between air
over the inclined mountain slope and air at the same height

4 .
over the center of the valley as a result of differences in

the temperature_;egimes‘at these two locations. He
' postdlated‘the existence of a dooble“vortex;type'of_circula—
tion,‘withgveak'downslope or drainage winds, ascent above
" the valley\floor, and a generally downvalley wind close to
‘the valley floor. ThlS latter component was fed partly from
‘%he side slopes, and also resulted partly from the pressure\
dlfference b;;;:jg the mountain and the pla1n.

Defant schematicallv illustrated the successive

stages in the diurnal cycle of the mountainrvalleyfVind
systen..This is reproduced in Figure f.1. In ka); at
sunrise, .upslope winds begih but the valley is still colder
than the plalns above, and the downvalley wlnds ate>still
blowlng, fed by the return czrculatlon from the slopés.vft
soon d1es out with further heatlng In (b), the forenoon

[y

slope w1nds are strong, and a trans1tlon from downvalley to






‘upvalley wind is occurr1ng wlth ‘the vigley and plalns tem- )
petature approxlmately equal In (c) ‘at noon or early after-
’ noon, the slope ‘'winds are d1m1nrsh1ng, the upvalley wind
1s fully developed and the valley becomes warmer than the.
plaans. By~(d) -late afternoon, the slopezwinds cease, the.
upvalley w1nd cont1nues, and the valley rema1ns warmer than
‘the plalns. Durlng (e), evenlng, downslope wlnds beg;n, the
upvalley winds diminish, and the valley remains only sllghtly
'warmer than the plains.'By (f), early night, the downslope
winds become fully developed, with the valley at the'same
temperature . as the plains. Duriné‘(g), the middle of the
night the downvelley wind is fully developed, witn the valley
belng colder than the plains. The downslope valley windk )
cont;nues, In (h), late night, the dovnslope wind has
,ce;sed;'vlth the downvalley wind'filling the valley
iooﬁplétely, and the vélley‘remaining colder than the plains.
| ThlS progression can be 1nterrupted or altered under
various condltlons. Development of cloud cover tends to slow
the cooling experienced at the ground and greatly weakens
the valley”inyegslon. This can then result in vety low or
non-exfstent slope winds:'lnteraction;between the
large-scale prevailing flow and.the»thermally induced slope
‘tvdndwcirculatlonvhas been investigated /by Tang (1976). He
"f;showed that a separated cell vould form on the lee slope
durlng the day, and that one would form on the w1ndward side
at nlghtt1me Very strong synoptic scale c1rcu1atlon is able

to mask the local mountaln and valley wind system completely.



1 2 Micrometeorology of the N, Saskatchewan River Valley
| The North Saskatchewan River valley bisects ‘the c1ty of
Edmonton, Alberta (located at 53° 33 -latitude, 113° 30" W

~

longitude) TypiCally, it is 50 m dn~depth'and varies from 1
-~ 1.5 km across. Along 1ts meandering course- (see Figure-
1.2) are both_steepf51ded valley walls as well as more
,gentle flood plains. Within the city limits,.the:valley‘is‘
fairly well covered by. wooded -areas.

Therearl}est micrometeorological observations within
the North Saskatchewan‘River.valley were made in 1958‘-
1959.’Klassen (1962) found distinct regimes to exist én the
plain, in the ravines, and in the main river valley, which
resembled those suggested by Defant (see Section 1. ) Lower
surface temperatures and stronger inversions were found to
.Toccur WIthln the valley at night. Under clear,skies and
light*;:nds (less than 5 m s™'), downslope andgdownvalley
winds were generally observed. The speed and depth of the
wind down the ravines usually increased to their,maximum

values (1.8 m s ' and the ravine depth, respectively) withinjw,

less than two hours after sundown. Trajectories of fog and

-~

. -
smoke showed ascending motions above the river and a return

.

flow to the valley slopes, in a helical fashion.

In 1977 and 1978, thirteen field experlments were
carried out by Hage (1979) in order to study the 1nfluence
of a small urban valley on air pollutant concentrations. As.

part of the program, air temperatures, winds (and some ver-

tical profiles of each) ‘were obtained at various valley
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1

locat1ons, as well as measurements of carbon monoxlde. These

were supplemented by data from the varlous rural‘and urban.
, -
' alrpOrts in the v1c1n1ty Analyses of the observatlons, . Q

espec1ally under condxtlons of clear skies and light wi ds,

clearly suggest the existence of a valley mlcro-cl;mate‘S\k_

' [

- distinct from that of the city. The‘general characteristics .

(" s

 “rare summarized below. '

In'early evening, shortly before'sunset\ cooling’bégan
'as the radlatlon rece1ved at the ground dropped Usually, "
the. valley became 1sothermal earlier- than the air over the
city. Inver51ons developed oqer both valley slopes and were

' usually more 1ntense than above the urban plalns.vThat slope
"which was. shaded flrst (north- or. east fac1ng slope) |
developed an earller and stronger 1nver51on (from 8 to 18

”K° (100 m)") ﬁlfferences in temperature ogf4 to 6 K°‘were'

~ common between the rldge and trough of the valley,‘w1th the
'1atter locatlon being 51m11ar to the rural airport (Hage
,1972) . -

Downslope winds with typical speeds of 0.4 to 0. d.m s
commencEd shortly after the inversion formed Slope wind
speed was found to be highly correlated wlth the vertical
temperature gradient (and corresponding hori;ohtal tempera-
ture gradient) and must be assoclated.with large‘pressure
gradient forces. The slope windvmaximum?was'ohserved,to
occur about 2 to 4 m,above“the slope, ahd, as the inversion

- deepened, it dropped below 0.7 m, the lowest measurement
. level..Above the ridge, a normalmincrease in wind‘speed wlth

- ." .
LEEN



ljhexght was obServed .
A second even1ng‘max1mum in pollutant (CO)
-concentrat:on was observed over the city and espec1all$ v
wzthin the valley Th1s 1s due to the development of the
surface based 1nver51on. The 1ncreased stab111ty produces‘
much decreased vertlcal d11ut1on and can Qvercompensate for
the lower pollutant emxssxon rates beyond the rush hour
. ltrafflc peak Rec1rculat10n of air in organ1zed cells-may T
also contr1bute to the h1gh‘even1ng concentration within the

i

valley.

1.3 Object1ves of the Study Lo ' ':°f
Almost all prev1ous numerlcal work in this area has
‘been aamed at the descr1ptlon of local mountaln valley w1nd

c1rculat10ns of a phy51cal scale whlch greatly exceeded the

w

d1mens1ons of ‘the valley under con51deratlon. It was
‘therfore "deemed deslrable to 1nvestlgate'thévvalley circulaf.
tion lnduced'by cooling along a'relatively shallbv'slope
(0. 1== 0. 2) of a smalllurban valley (with a depth of about"
50 m) by the use of a numerical model The observat1onal
‘lédata already avallable would be useful not onlf&;n model
ver1f1catlon but also as h1nts ‘to model development. |

| Thzs thes1s contrlbutes to a three-part study of the
m1crometeorology of -the North Saskatchewan Rlver valley A
one- dlmen51onal radlatlve conductlve model has been
":developed by di Cenzo (1979) to descr1be the evolution of‘“

“temperature prof1les in dxfferent parts of the valley He
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concludea thet'the inclusicn of eduectiue processes woulq .f;
‘prcduce a major 1mprovement 1n the results. This leads
naturally into. the need for pred1ct1on of wlnd flelds -
con51stent with the surface temperature changes wh1ch occur
~:“"”’as the evening progresses. The thermodynam1c variables and-
the co;respondlng c1rcu1atlon_are 1nt1mately;re1ete§_ehq L
oniy limited succeeS'is to be expected ff treated |
1ndependently. HOwever, the use of 51mp11f1ed var1at1ons in
the thermal characterlstlcs of the valley can provzde some ~
1nnght into these 1nter-relatlonsh1ps. Rudolph (1980)
:Qéyeioped a pollutant»transpott:medel-with an assumed
’dcugie-vorte;hwihd ffeid within a 'Vishaped' valley and o
aisﬁereicn of pollutants-by turbulent‘diffusion. Again, in:
orde}cfor such a model to predict concentrations accurately,
the spatfal and'tempotal’vatiatiOns_in_the thermodynamic and
wind fieldstmust be:incorporated; This'theeis describee the.'
development of a. model capable of predjcting such fields

iwlthln ar two dlmen51onal axlally symmetrlL valley cross-

. sectlon. The thermodynamlc equatlon, coupled with the

vort1c1ty equatlon is solved us1ng f1n1teﬁd1fferences
'sub]ect to either a constant surface cooling rate or ome
whichjis5dependent”on,tadiative transfer processes.

.

[



Chapter 2

THE THEORETICAL "MODEL A

2 1 Introductxon'

This Chapter glves details of the valley wind model
developed Assumpt1ons, initial and boundary conditions
required by the model are outlined. Numerical aspects
vare eonsidered in Chapter 3. ‘

lIdeally, a valley wind model should provide the three
velocity components and the temperature, pressure and | - /
density fields w1th1n the valley, over it, and above the /
adjacent plalns, all as functions of space and time. The
initial conditions of geographical loeation; topography,
type of ground sdrface, the radiation away from-it as a
function of_positionland time (or insolation onto the sur-
face in the case of daytime heating)v and the'prevailing
atmospherlc cond;tzons such as the synoptlc scale flow,
.stablllty, humidity and cloud presence all influence the
development-of the slope wlndrln_a,very complex manner.

: G1ven th1s 51tuat10n, it is des1rable tefsgncentrate on the

- most fundamental features of the phenomenon> To this end

the model does not possess a detalled.boundary_laYer, nor

- the inclusion of moist processes (otherithanlassumptiens-»,:

nvelv1ng rates -pf heat loss, at the surface ggyen clbud free .

. - - . i . : P
S Tee DLW .- s, A [ “. , e L J. "'0’“
skles) N AR R '

B P e i

ﬁlthough computers ‘impose ) mUCh 1ess of-ar restrﬁttion on

_modelllng efforts than at one t1me, 51gn1f1cant increases 1n"'
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1

. running costs and stpragé amounts would be expected in going
from“tﬁb to three,sééce dimEnSions, or in goingﬁffom'simple
to real ﬁerfaih,.Checks on the basic method of calculation
cén bé made at this simplé stage prior té extension into
more complex regions. As well, the inferpretqtion of results
generally increases in difficulty as the model complex1ty
1ncreases. The likelihood of encounterlng new nmumerical
‘errors, which are also difficult to 1dent1fy and 1nterpret
increases with complex1ty ¢

With the above simplifications, it is hoped that the
flow patterns obtained can provide some understanding of the
transfer processes involved. This understanding can then
serve as a R?sis for analyzing data alreadylavailable and
those from fﬁture field experiments, as well as for
understanding more sophisticated models.;

Advection processes are of great importance in the cir-
culation being studied and,.therefore, the complications
induced by the non—l%nearigy of the equations governing tem-
perature qnd_velocity‘changes_are'necessary” Thus, a numeri-
cal approach to the problem is required. A’finife-difference’
grid model was developed in order to predict the flow &nd.
thermodynamic fields as a function of space and time.

_The model is 1n1tlated with the atmosphere at rest,

i-under a varlegf of stablllty reglmes. A dlsturbance is

. ‘1ntroduced by coollng the air at. the surface and the

governlng equatlons are solved numerlcally
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2.2 The Governing Equations ‘

The basic_quationé used were the équati§nsiof motion,
ﬁh; éhermodynamic eqUation,'and the continﬁitf equation,
‘along with thé'eqﬁatiqn of state gnd*Poisspn's equation.

These eQuations can be expressed, respectively, as

W @ Tee L8 i 2 BxTaes 2o av_ |
at-f-(V v 5 VP gk 201V+61j axj {(ij axi] (2.2.1)
3_9_ '-’:’ - L BL
T :+ (V-9) 0 =5, =y [(&I)j ?"1} ‘(2.2.2)
Sy.l2,1 57 | -
TV - (T (2.2.3)
p=pRT (2.2.4)
' ~R/C ” B
%-[L) P (2.2.5)
pO

where the last term in (2.2.1) represents the turbulent flux
of momentum usihg‘K-theory-in'whiCh turbulent transfer'of
momentum is considered in the same manner as molecular dif-
fusion (which is neglected here). ﬁepeated indices imply a
summation with respect to that index. Note §,;=0 if i#j and
§,;=1 if i=j. All other symbols have their usual |
meteorological meanings.

Tgo—dimensiohal flow'fields were tteated in this study

(in the vertical (z) and cross-yalley (y) éirectionsfx\with'
¢

L3
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fhé‘down-valley flow (u) equal to aepo. As a result, the
y-component of (2 2.1) is eliminated. As the. veloe1t1es to
be considered are small the coriolis acceleratlons wete
negllglble compared to other terms in the equatqons of
motion. Therefore, ax1a1 symmetry was assumed and only the
fields of one-half the valley cross-section were computed.
HoweVer, differences in topography, slope aspect, etc. must
be taken ‘ifito account when comparlng the south fac1ng and
north~fac1ng slopes and:their respective. c1rculat10n
regimes. ' p) |

As fn early treatments of the planetary boundary layer,
the turbulent flux of momentum was considered to be
analagous to molecular diffusion, using an eddy viscosity
coefficient, K,. Just as random motion of moleculee over
gome mean.free path leads to a transport ot momentum on a -
small scale,,irregular turbulent motions over some mixing
length will also cauee such a t}ansport. The essential.
difference, howevet, is that the molecular coefficients are
known funetions of state whereas the eorresnonding turbulent
exchange coefficients depend not only on the characteristics

~

of the fluid but especially on the characteristics of: the
~flow. Except in a millimeter thin aner at the ground, the
exchange processesuat the'moleeular‘level,can‘be effectively
disregarded. | |

In magnitudey.the eddy momentum and heat diffusivities
are much larger than the oorresponding molecular}values.'Tﬁe

exact nature of thelappropriate eddy values is typically a°
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@,.compl1cated funct1on of ‘height above the ground andathe"'
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[

ﬂtloc1ty and temperature profiles. The helght above ground

is 1mportant in- the de£1n1t1on of an eddy . m1x1ng length

Close to the ground the eddy 51ze 1s-phys1cally limited by
1ts d1stance from the ground Furtheb aloft a free atmos¥
phere eddy m1x1ng length can be used whlch is no longer

constrained .by surface £r1ctlon effectst Mechanlcal

'turbulence or: forced convectlon is 1ncreased when the verti-

cal wind proflle indicates large amounts of shear. As the

>~shear 1ncreases, a flow whlch may have been lamlnar 1n1-'

‘t1ally will- become- unstable and develop large eddles whlch

‘can - transport heat and: momentum qu1ckly However, when the

atmosphere is’ stable, any vertlcal dlsplacements WIll be

' suppressed, and the mechanlcal turbulence weakened ‘On the

other hand an unstable boundary layer acts to enhance the

.~ A"\.‘"u"'“uyq <t e

R e N

From the turbulent k1net1c energy equatlon, the terms

descrlblng productlon of kinetig energy through buoyancy and

shear can be written as g6’w /9°~and»7UquuaU/aZ¢ respect:;j‘

ively. All terms have ‘their usual meteorological meanings
with 6, representing the potential temperature of some

reference atmosphere. The flux Richardson number, Rf, is
defined as the ratio of the buoyancy and shear production

terms, and is given by

, .
R = —B ¥ | . (2.2.6)
eo u'w' 3u/dz

Vo

R TR IF S e

T”thermal turbulence through buoyancy fotces.” & T -~ ”__4“7f”;
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If the heat transfer is. upward (9 w7 > 0), is

negatlve because-u w' < 0 if au/az > 0 Th1s 1mp11es an

\

increase in the turbulent fﬁnetlc energy Upward heat flux

- “‘_—‘*\/\

usually corresponds to ae/az < 0, as in an unstable atmos-

’

phere. If the;heat transfer 1s*downward (57;—'<‘0); then Ry
is positiVe and the buoyant production is negative,
indicating that kinetic energy is.!ostr Negative values of
5737 typically correspond to positive yalues of 36/3z, as in
a stable atmosphere. If a p051t1ve ‘value of Ry becomes very
‘large,. all turbulence becomes suppressed.

The d1urnal changes in solar radiation create- dlfferent
_w1nd and temperature reglmes dUrlng varlous parts of the-

day Just after sunr&se, the heat rece1ved at’ the ground 1s
transferred upwards in many ways. In a very th1n layer above

the ground, heat is transferred by molecular conductlon

along a very large temperature gradlent Above thlS, heat lS

EX TN <.

"l_transported almost entlrely by forced convectlon. At even -

Q.larger dlstances, a free- convect1on layer beglns to form in

.

which buoyancy productlon domlnates. In order for the tem-:fyi
f”perature of the air to rlse, the heat flux (whzch ls f ; *®
directed upwards so that 6 w > 0) must decrease with
height. According to Businger (1973),'the heat flux at the
.surface and the height at ;hich the flux is zero generally
‘increase untll mldday, ult1mately result1ng in a constant
flux layer up to 100 m or so. Much later in the day, as the

ground’ beglns to cool through radlatlonal losses, a downward

heat flux exists and a stable layer forms close to the



ground. This represents:the time of interest in this study.

Near the ground the flux R1chardson number 1s usually small

L3

due to the large shear in the w1nd " and 1ncreases ‘from the: .

surface up to some maximum. In the upper ‘part of the boun-
dary layer, 1nstab111ty persists, resultlng in a small or‘
negatiye Rf; The critical‘Rf is reached'first at.the”height'
of the maximum 'and there.a-laminar layer forms, effectively-
upreventlng further exchange of heat or momentum across. thlS
'layer. Temperatures near the ground decrease even faster as

. the downward heat flux is eliminated. Fr1ct10n wlth the

.y

ground acts to slow down the air below the lam1nar layer and._”

the assoc1ated reduct1on in shear causes R to exceed its
cr1t1cal~value, suppressxng turbulence everywhere}‘Verticalf
~transferedrops‘to;near3zero,as a reSult,' | |
'¢Theitime.ofninberest:inxthisagtud§ﬁfsiafterﬁsunsetf‘
when the inversion is‘present throughoutjthe ualley'and
':-slope winds are beg1nn1ng to develop. For the reasons R
Hdoutllned prev1ously, the vertical fluxes of heat and
momentum are quite small.durlng‘thls‘perlod._As a result, .,
the vertical transfer.coefficients were set to zero in.model
'1ntegrat10ns attemptlng to simulate realistic valley
cond1t1ons. On: ocgasion, the model 1s ‘executed" using neutral

\

stablllty conditions 1n1t1ally,-and, in th1s case, the ver-

(,:titai'transfer should be_ non-zero.uHowever, deflnttaon of a

~~~~~~~

T

fvertxcal transfer coeff1c1ent wh1ch is a functlon of -fff'fr“

- stablllty was precluded in thls study due to 1ack of t1me

and lack of proper knowledge of 1ts-var1atlon vlthln;small
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valleys. This is left fotka'later study.

T2. 3 The Assumptxon of Incompressxb111ty _ ‘

The assumptlon of 1ncompressib111ty of the flow Is made
(dp/dtv=vO)y.resultxngoln-s;mpllflcatioh of the equatlon of
‘ _cohtinhity,b(2.2;3); Accofding_tohﬁatchelor (1967), the
'fdiio@iﬁé &hfée cohditions are necessary in order for air to

behave as 1f 1ncompre551ble.

e oL WP ee 1, (253419
A a212/e << 1, (2.3.2) .
L LT B . .
- . ng/yp <«< 1 y e (2 3. 3)4,

where cﬂa.speed of sound n 4 measure of the’ domlnant-
frequency of osczllat1ons in the flow field, v = cp/cv.
i Spatial variations of V are.characcerrzed by some lehgth
h.:scaleubiaﬁd;vafiations*ih~£he:magnitude'of‘V with respect to- - -
‘position and time have the magnftﬁde, U;-‘i . |

’

The flrst equatlon, (2.\ 1), states that the flow vel-

o 5 - Lo .
o a

.oc1ty must be small compared to the speed of sound For alro
.at 1% °C and‘1 atmosphere pressure, c = 340.6 m s-', and
therefore (2.3.1) was satisfied for all flows_considered.in‘
thisbstudy (where U is about 1 m s-'), The‘second equation,
(2.3.2), states that the~frequency'of’any oscillatory motion
in the air must be small ‘compared to the frequency.of-sound.
The hlghest frequency resolvable in'a f1n1te dlfference gr1d>:'

model is'n = 1/2At and ‘in the cases con51dered At was of

: the.order—of second Thus, (2. 3 2) was always satlsfled
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_ Eouation.(2.3.3) restnicts vertical scales”o{,motion of
the airTQQmech,léss than-the"5cale heiéhtf;_H, of the at-

- mosphere, Vhﬁ?b,is the.vertiCal distance over which pressure
and density diminish‘by a factor of 1/e, and is equal to
p/pg For a1r at 0 °C H =8.0 km. Even when the temperature o
is-not un1form,'1t is ev1dent that th1s cond1tlon w111 be
satzsf1ed for all mot1ons occurrlng in layers of the atmos-

.phere not exceed1ng a few hundred meters 1n depth.‘From the -

appllcatlon of Batchelor s cr1ter1a 1t can be seen that‘thej

-assumptlon of 1ncompress;b111ty i reasonable. Equatlon Pl

i -

"{2.2.3) can now-be- tewritten as

-

o R T IE W

2. 4 The Vortlcxty Equatxon R L e

o

As is customary,'theqvector equatlon of motlon 1s

replaced by a scalar equatlon known as the vorticity

~ equation, by taking the curl of (2.2.15, or equivalently'by
taking appropriate spatial derivatives of the tvo_scalar
component e&uations of motion. The latter derivation is
presented here. The component equatlons of motlon for v
(cross valley wxnd component rn y d1rect10n) ané w- (vertacal
w1nd component 1n z- d1rect1on) can. be written as “the ‘
following, after the previously mentloned assumptlons have

oo

been made to (2 2 1 ";,VQ:F;

av .. . av R ,av«“‘ ,1. oot g azv | 2‘; . ! .
| L | ot . . . T )
»at'+"3§*'w'55 . %%gfxy.&775+3*7) (2 e l”“:A

Ao ¥4

y 2z

.

9.‘ .-
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ow éw‘ - Bw 132 ‘ (3% 32‘;), . ’.'»(2"-;’ 44"72)
. ETRe oy T p 3z ~ 8% X, {—_2 * 3%7'1 -
where K, = horizontal dszhs1on coeff1c1ent and K, = verti-

cal diffu51onvcoeff1c1ent. D1fferent1at1ng (2.4.2) with

respect to y, and.(2.4.1) with respect to z, and subtracting

'yields "‘ -
v BBl L R R B, B
where ... ... o Y
| e E-x L e

¢ being the'vorticity component ‘along the down-valley axis
‘(f‘ﬂ 0 for clockwise flow and vice versa). Using the
contihuity equation approximation for an incompreséible_

. ‘fluid, (2.3.4),,0one.obtains « .~

3, 2, 38 _1 [ep.3p, 3 2p _gaz." a2
at TV ay YV ez T o7 oy 3z T 3z 3y ML T S (2.4.4),
’ »

Therefore, in this model, the local change in vorticity,
must be a balance between advective changes in vorticity,
the so-called 'solenoid term' given by

1/p (ap/ay ap/az - ap/az ap/Qy) and dlﬁfusaon of yorticitys -

At thls po1nt the solenoxd term‘wlll be dzscussed in’

terms of how it is able to alter the vort1c1ty values. Such

Y- con51derat10n may .shed some ‘light. on ‘the -kindg of alrflow'~

”or c1rc§iatxon expected to occur within. the valley In a
barotroplc atmosphere, p = p(p only) and there Wlll be no
contrlbutlon to (2 4. 4) through th1s term ThlS can be seen .

by cons;der1ng thé definition of circulat1on, C, in a :Luld
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" as given-below s .
C= f v dy + w dz et

where £ = C per unit area. It then follows thapf‘

dC  , dv dw
\/’dt . dtd +qu

If only the terms involving pressure gréaieﬁts are retained

@}

in the expressions for dv/dt. and dw/dt, one obtains

‘

dc _ _slfwg, _3pg)o_g1 "
dt ';9(31;7‘15' azdz] fpdp (2.43.5)

With p = p(p), this becomes the closed line integral of an

‘exact differential and as such is zero.

In general, density is nor—determ}ned simply from the

pressure (in which case the atmosphere is called baroclinrc)
eno the isooaric surfaces (dp = 0) and .the isosteric surJ
faces (dp = b) intersect each other. Coosider the baroclinic
fluid showo iﬁ Figure 2.1. Evaluating (2.4.5) around the

i

' path indicated results in

Z——2-+o-v——11+o
dt ]
' l-:? v IV

- . ——— o . @ o
. g

fThls results in growth in c1rculat10n in the negatlee
;(clookwlse) sense about the cbrve, 7be,”1n such 2 dlrectron
‘ias to let denser flu1d sink whlle l1ghter fluzd rises.,
The dlrectlon of the c1reuiatlon whxch4grows from a
state of rest as a result of baroc11n1c1ty turns the '
1sosteres more nearly parallel to the isobars by moving the
dense f1u1d gowards high pressure and the llghter flu1d

towarés low pressure. Thls process acts to convert potentlal



' Flgure 2.1 Relation between 1sobars and 1sosteres in a'

baroc11n1c flu1d =

20 .
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energy of the massudxstrabut1on of the f1u1d 1nto k1net1c'
o ke i
"energyvof cxrqulat1on, thereby m1n1m121ng the potent1al
' energy.if“égn;ffu?f;iﬂf,‘,? Tjgj'{;~f{u, . - ~~?:,~;gi.f1f
In th1s model of the boundary layer,fas%1ﬁ*many~others,
e - T oW
e. g. Malkus *and” wltt (1959) Thyer (?966) and 0rv1lle v j
-(1964) the soleno1d term was approx;mated to be. (g/6 ae/ay) R
' The equatlon of state, (2»2 4) by . tak1ng logarzthms and
’ d1fferent1at1ng, can be rewrltten as '1 o ',. 7_§
L3 _12p_ 13T
p3 pdy Tay - : . 5
~ and 13 125 13T 7 " o
’ p 3z poa3z T oz S e

13p (12p 127} 13p [L3p_ 1ot
- p oz {pdy Ty p ay p 9z T 9z
Addrng and subtractlng g/e ae/ay w1th
e . imoamoafy
63y TOoy Cp pP. 9y
‘from the Poisson equation, (2:2.5), and simplifying, results
_l._r..?.. 1 %p 3T g0 . 13T R 13p}
pT 3z 3y T oT 3y 9z 0.3y B [T % G Py
e AT | '

. Letting Y= - 57 = ambient ~1apse rate (2.4.6)-
- and B yd'is-—-dry adiabatic lapse ratel"v (2 4. 7)
one obta1ns, after comb1n1ng terms,-that the solenozd term

<

Y

‘These, are used to rewrite the solenoid term as

can be expressed as
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. (Rough est1ma§es of the magn1tudes of the terms in-

—_~
3

(2 4 8) can be made by cons1der1ng the horlzontal and vert1~'h

'cal preSSure grad1ents wh1ch exlst w1th1n-a.r1yer valley *

—vsuch as the one being cons1dered in this study. Up to this
;pornt; no mentlon;pasybeenymade of the hydrostatic

- .assumption,

. By . . R o
B WBER ey ® e o syl = - gx Bw v s Se am PR (*2 3 9) =
3z RT ) T

®

obtained from the third equation of motion, (2.4.2), when

o~

vertical. acceleratlons and dlffu51on ‘are neglected The
questlon of valldlty of this approxlmatxon can be found in
compar1ng_the magnltudes of typ;cal.nydrostatlc and
non-hydrostatic pressures. .

First, hydrostatlc pressures :are computed at two Polnts
w1th1n the valley where dlfferences‘are expected to be T
- largest. The hydrostatic equation above, (2;4.9), canjbe
used to 1ntegrate downwards to estlmate the pressures
}result1ng from various temperature reg;mes in different
parts of the valley: uszng |

1 A

ot s @
1 Py R T . (2.4.10)

e v : P : z
- The assumption is made that at z = z°, the temperature, T ,

and pressure, p , are constant. :
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Based on observat1ons w1th1n the North Saskatchewan'
“River’ valley on 21 22 choben,.1977 horgzontal temperature(
dlfferenceS‘between~the-slope-and~the free»alr,of~closeuto-
1 C° were recorded over a distance of 1;5 m (Paterson
-(1978)) These values were obtained from a thermograph '
'located on the slope 26 m above -the- valley floor (statlon
‘#2) and‘from averages of thermocouple readings obtalned in
the free air at heights of about 30 m (station #4b) and 22 m
(station #4c)‘above\grouhd. Thé latter were suspended from a
bridge which spans the valley The locations of the g
_1nstruments are shown in Figure 2 2. Some assumed tempera-

* tfures and correspoﬁdlng lapse rates ‘(which were coénstant
with height) were used to 51mulate the above observations.
_The pressure and temperature at the top of the model

(z" = 108 m) were assumed to be 917 8 mb - and 278.632 °£}
respectively, as assumed in thevstandard run - see Chapter
4. The variation in temperature with height g given by T(z)
=T  + y(108 - z(m)). Figure 2.3 illustrates these* |
assumptions. At location A, (2.4.10) becomes

' 4108 , 108 . o .
r.&.-aj '%"3J T+'%m&n
P 26 26 Y |

PA
T ) ™
,ﬁhere the integration onfthevright'hand side has been -
iperformed using a change of variable techleue. Evaluatrng

the above, using a horizontal temperature gradient of 1 C°

per 200 m, one obtains p, = 927.097 mb and p_ = 927.079 mb.



24

- 60
. : N - d 50
High Level Bridge /- “
N AR —* v :. DY & & . '-;zno:ﬁfl;A‘." ¢ 'ﬂ‘“’
g
l—100m —| =~
- 4b 172
2
.AC - - 20
\ ~4 10
Cour North 0 «

Figure 2.2 Location of instruments used to estimate horizon-
tal temperature differences within the North Saskatchewan
River valley ' -
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Figure 2.3 Assumed température"s and lapse rate} used to
estimate hydrostatic pressures at A-and B
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- of- 9"x‘¥’0¥’ mb m«»’ or:9- xo10p Pa .-',. mepeat;ns thzs_ T
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calculatlon for a Borlzontaf temberature dlfference of

10 c°, where T, = 267 992 °K, and 'r = 277,972 %R ‘e o “
A : A

= -0.130 C° m" and 78 = -0 008 C° “'7,results 1n a horpzon—

tal hydrostaé%L p:essure grad1ent of 6 x 10’z Pa m" . This -

ls_egpected to be an overestxmate of the real gradlents A

-

?

1nvolved
Secondly, the non-hydrostatic pressures at these same
© two poxnts are con51dered "Equation (2.4.2) can be

,approx1mated as

- . LN

B R .
o 9 T 99z 8

-
L . @

dt

neglectlng dlffu51on. By consideration of the typical
accelerations 1nvolved at the p051t10ns ‘under. cons1deratlon,
A" and B-in Flgure 2.3, estlmates of pnhcan be made. Close t;
fthe .slope, downslope w1nds‘up to 0.5 m §-" are typical in _ L;
ﬁthe North Saskatchewan River- valley Assumlno the angle of . - .
the sloplng ground to be 0 1 radlans, a vert1cal veloc;ty
\Q;component of about 0.05 m s-' results. Thus, w undergoes
some deceleratlon fromwb 05 m S" at m1d slope - (say, z = 25
m) to 0.0 at the horizontal valley floor. This occurs over &
- time ‘interval ejudl to about 500 seconds. (the downslope
’w1nd hav1hg Sp! eds of 0.5 m s":‘covers 250 m - m1d slope
to valley floor J\Qn about 500 seconds) Subst1tut1ng this.
estlmate of dw/dt, and 1ntegrat1ng dw/dt f‘-l/p apnh/aihfrom

z =0 to z = 25 m, one obtains L
\ | T
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wlthan the free a1r, assumlng w accel rates from O 0 at €he

ualley floor to about 0 005 ms-t at z = 25'm 1n 5000 sec?
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onds txme, result 1n pnﬁ] - +3 RS 10“' mb These rough .
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—_calculatlons reveaI that the non- hydrostat1c~pressures are- - -

“'much- smaller than the hydxqstatrc ones,.and as a“!gglt'sfif;“'

'the presSures 1nvolved 1n the study are clearly pr1nc1pally
statlc pressure, Whlch may contr1bute to hor1zontal
"acceleratlons through equatlon (2. 4 1), are found to be very

small as well

Returning:ndufto the-eyaluatjpn df~the-termsfcomprising__.

9'=the selen01d term"wg;ven by (2.4.8), one finds that term B
is 1dent1cally zero 1f.theapressure is assumed“hydrostatlc
Terms A and C can be estimated based'on the rough
calculatlons g1ven above.‘Term C depends on the horlzontal

| pressure gradient as well as ‘the stab111ty of the air. Table
2.1 indicates the relative magn1tudes of-these terms for the

‘ﬂtwo cases con51dered above, assum1ng P = p.: 1.) a hbrizonj
tal -temperature. dlfference of 1 ¢ce over 200 m,‘2.) a’ hori-
zontal temperature difference of 10 C° over 200 m. Potential
temperatures,required for term A are computed from'the
assumed temperatures and hydrostatlcally derived pressures,
From the Table, it 1s clear that term c is much smaller than

term A, and therefore 1s neglected in the model

Finally, the vort1c1ty equation, (2.4.4), can be

expressed as
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~‘Table 2.1 Estimates of magnitudés of term A (g/6 96/3y) and.

.term.

term.C (3p/3y R/p 9/C, (1=v/74)) comprising the solencid e

e T j_ﬁ-llﬂﬁfi}A—ﬁ}iwﬂ_<v e n e
- i B 4 E ) K
— ‘ ‘ , .
term A _ ' . tem C g

| meutral (y=+.01 c°/m) "~ | " 0
-2x107% 572 | gtable (y=-.004 C%/m) | +4x10~7.g72

very stable (y=-.04 C°/m) ) #1x107° s

BT/éy“;floc°]zdom B

2

term A f | o
" peutfal (y=+.01 ¢°/m) | Ty
_2x10'3 s-z ‘stable (y=-.004 C°/m) +3x10'6 3'2

| very stable (y=-.04 c°/m) f9x19-§-8:2-
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= 2~5 Use of Streamfunctxons and Related Boundary Condxtzons

.

cea

*fﬂf"‘ For twd dimensional 1ncompress1ble flow f1e1ds,_;hef.;ef'd

1

-
~~~~~~~~

,,“_non d1vergent velocity fxeldq<V R k ‘where' j and- k
V- are un1t vectors in the y and z dlrectlons,'gespectlyelyT-
can be expressed us1ng a streamfunctlon ¢y. In this case,

the velocity, streamfunction and vorticity fieids are

related by _ , i AR
| | v =il (2.5.1)
9z .
\
e \‘ .-
—_—1 : (2.5.2)
oy
and

'These three dlagnostlc equatlons were used\to obtaln the

\

velocity components, v:and w, from the 70rt§c1ty values

£

predicted by (2.4:11). . 0T 1T

\

In order to satisfy certain veloc1ty boundary condi-

the streamfunct1on, v. The relatlons

}\ -

and streamfunctlon may be better un&erstood by wr1t1ng V as .

tions, corresponding boundary condltZ\As must be 1mposed on

p between velocities

; i x.Vw, where i is'a unit :ettor 1n\l e x dzrectlon. If Vw
happens to be in the y-dizection; then g\is in the
z-direction, and vice yeréai in other words;;? is parallel
to e;surfacevof constant V. As wvell, if 6¢4= 0,m¢hen.V = 0:

o



Since axial symmetry was assumedf(abOUt“the vertical
'lines:bordering the valley atossfseotion briefly described
,preuiously)' the horizontai\velocity comoonent was required
to be zero. Equ1valently, ‘this 'disalloved outflow or 1nflow ‘
along these lateral boundarles. Therefore, aw/az = 0 or ¢ 1s
constant wtth hexght there.;'f'“”

| Us1ng s1m11ar .arguments -for- the upper and loner
boundarles, ¥ was requ1red to be a constant everywhere along
the cross-section boundary Since ¢ occUrred only in the
—form of der1vat1ves 1n the equatlons, this constant was
arbltrary and set to zero for 51mp11c1ty Flon,everywhere ‘

_ parallel to the boundary ('free-slip') was guaranteed

through these boundary conditions on the streamfunction.’

. 2.6 Potentia; Temperature Boundareronditions at the Ground-
S The diurnal temperature,change.af*tﬁedgurfacewis the
driving force for the valley wind development. Cooling along
_tbe valley .slopes creatés a non-zero horizontal potential
temperature gradient, and this in turn is responsible’ for
the creation’ of vorticity (through the solenoid.term)

' Follow1ng the approach of Thyer (1966), t' surface
temperature boundary condition was 1n1tlally determined
through a requirement that the temperature gradient at the
ground surface be con51stent with the rate of heat flow and
the eddy conductlvity. Assumlng some rate’ of heat loss per
unit area, Qo,,the.outgoing-energy from the sloping syrface B

is Qo cos (a), where a is the"angle the s1bping'§roundemakes'
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w1th ‘the horlzontal. In qrder for thlS heat loss to be
completely balanced by conduct1on from the air with some

eddy conduct1v1ty,$KT, a certain vert1ca1 temperature grad1~t'”

ent must exlst wh1ch satlsfles__:

i - 30 ‘ .
Q0 cos (c? ~=-K.pC = IR (2.6.1)

op 9z

‘basedbén'the heat conduction. eguation.
T. Such constraints, however, prov1ded 1nappropr1ate ‘cool-
ing rates at the surﬁace. In reality, surface temperatures
are altered through radiation effects, advection, andgdiffu-
sion processeé; and this early approach was soon abandoned
in favour of simply, prescribing a rate of surfac?'tempera—

ture change.

Some observations of surface temperature changes within
valleyseare available. Orville.(f964) chose to model the
diurnal trend in temperaturi in mountainous terrain as
reported in Geiger (1957). In his modei,”e sinusocidal pet=~::
ential temperature’ change at the Eurtéce was used, having a
period of 24 hours and an amplitude of 7 C° at the valigy
bottom and decreasing linearly with height to 3 C° at the
top (1 km above). }

Rao end Snodgrass (1981) attempted to determine a (
steady state drainage flow, and they used a constant cooling
rate of 2 C per hour for the first hour. Subsequently,‘\he
surface temperature was unchanglng Steady drainage flow was

1attained "in a few hours .. The " specxfled cooling rate" was

il

rather arbitrary, and the time scale of the evolut}on of the
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.- - -frow was -interpreted simply as an indicator of the
‘cor:esponding surface temperaMure deficit. L e in“iT'"'

'In most valley model 1ntegratlons in this study, which
'lasted'well under an hour, a constant surface coollng rate
hof 2 C° per hour was used Rﬁl the sen51t1v1ty analyses were
- performed under these condltlons. A radlatlve approach’ to’
the problen of heat transfer in the lower layers of the at-
-mosphere was used by Brunt (1934). He showed that radiative
transfer of heat could bé approximated as a diffusion
process, with a constant exchange coefficient, K, called
the radiatixe diffSSivity, i.e.

, .
KRB_g (2.6.2)

This is based cn the absorption spectrum‘of water vapour ;
long-wave radiation emitted by the surface of the earth is
partly absorbed by the water vapeur in the atmosphere and
reradiated. The numerical yalue'of Kp vas a functiqn of tem-
perature, the distribution;ofdvapeur'pressure-with'height,
c. but by using typical vaiues, Brunt suggested that
Kqp = 0.13 m* s°', Anfossi et al. (1976) experimentally
determined a value of 0.3 m? s-' under conditions favourable
fbr radiative inversions. The use of a dlffu51on process to
mddel the radlatlve heat transfer near the ground was
attractive and eas1ly‘1mplemented into the model under
development simply by modifying (K 1), in (2.2, 2)
leferentlatlng (2.6.2) once with respect to z, and

replacing 3T/3z by the thermal flux, f, one obtains

-
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T 2 | (2.6.3)

The sblution torthis differential equation was obtained by
Brunt<ih order .to predict nighttime minimum temperatures,
resulting from radi?ti;e cdolihg at ﬁhe ground alone with a
constant heat flux,‘fo = 9T/3Z|,-0. In other words, it was
aséumed ;hat the netiloss of heaﬁ'by_radiation from the
ground to the atmosphere, RN, was cdnstant. From (2.6.2),"""“‘RN
can §e expresséd as Kg p Cp aT/azI,io. By integrating the
solution to (2.6L3), f(z,t), the briginal variable, T(z,t),

was determined to be
v HI 2 RN - "“ !i 2 z .CD . 2 ) N
T(z,t)=T(0,0)~ —— (th) exp(-z /AKRt) -—1 . . exp (-u“) du
3 2
wn pC KR : N
P , iy
’ "Z(KRt)

(2.6.4)

Therefore, the surface temperature, T(0,t), is expressed
simply as |
| ZRNt}i’

T(0,t) = T(0,0) - L
(wKR) pCp .

(2.6.5)

In Chapter 4, the results of an'integration using (2.6.8) as

the surface temperature boundary condition are given.

[

2.7 Initial Conditions

For the initial conditions of a statevof cdmplete,rest,
the vdrticity, velocity componeﬁts, and streamfunction were
‘all set to.gerg.'The only other quantity which required ini--
tializétién was the potential temperature. Given an initial

lapse rate and the temperature and préssure at the lowest
) : :



level, the poteﬁtial‘temperature field éverywhere in the
'valley cross-section’ was computed u51ng P01sson s equation;
(2.2.5), the hydrostatlc equat;on, (Z 4.9), and the equation
of state, (2.2.4). 901sson S equation can be written in

logarithmic form as

d 1n6 = d 1oT - ¢ d lop
. P

Substitwting (2.2.4) and simplifying.results in

‘ .42 {dT g
d 1lné T [dz + Cp}

Using the lapse rates defined by (2.4.6) and (2.4.7), one

obtains

1m0~ £2 (v oy )

d (2.7.1)

The potentlal temperature at the valley trough can be
computed using (2.2.5) given the trough temperature and
pressure. A surface pressure of 930 mb was used for
E&honton The potentlal temporature at any helqht Zz above
the valley floor is computed using (2 7. 1) and by
?integrating'upqards from the .ground surface. The actual tem-
peréture, T, is rbquire¢ for this computation but it”can be
found from the known constant lapse rate. The fééntropic
(constant potential temperature) surfaces are assumed
constant. with héight initially everywhere within the valley.

.
.

S



A )
e L RL IR 'y 35
. A 2 hd
¥ ) s ,;,"”' 4 " L
* 2 8 §hmmary - Pz?gnostxc and Dxagnostxc Equat1ons N
: The s;mpl1fied pred1ctlon equat1ons whzch descr1be the

=z,

g thqrmodgnaqus aqg_q1r¢qlatlon_arg

| T e e ae '_ 20~ 3% 220 a ..
LTV TR R e (20D
S0 e . _

S,

leen 1n1b1al and boundarj condli‘ons,'theSé-equationsfkg:e
' solved numerlcally. From ‘the £ f1eld so der1ved the

tollow1ng d1agnost1c equations vere used to solve for the

CRES

‘ correSpondlng veloc1ty components s ' | ::-? -
; Lo - ) o B - a 7 ' “, . . .
5 ~ . i v 3%: e (2.8:03)
AU , , .v: By o | _:..:(?‘.‘.5.;1)'
S E=- vy . (2.5.2)

~



' v Chapter 3
e o . NUMERICAL ASPECTS OF THE. COMPUTER MODEL
Lo
3.1 Introduction

As prev1ously indicated, the n?n linear characte: ‘of

the system of equatlons to be solved necess1tates the usé of"

numer1cal'metheds, since general analytlcal solut1ons are

not avallable. To this end, the relevant'equations”here set

-
up 1n f1n1te dlfference representat1ons in t1me and space

The rumerical method descrlbed is, in pr;nc1ple, appllcable
to three space dimensions as well as to two. However, the
‘actual computat1ons are two- dlmen51onal in- order to make
computer storage and run- tlme costs feasible, Accordlng to
" the Eulerian system of equatlons, time (t) and two space
co-ordlnates-&y ‘and z) were chosen as 1ndependent variables.
BoundafY’Conditions apprOpriate to the chosen finite-diff-
‘erence formulat1on of the equatlons are requ1redk
Approxzmate finite- difference formulae to\the equatlons
under conszderatlon may ‘be obtained by varlous methods.
However, each £ormulat10n possesses certain levels of
accuracy, con51stency, stablllty, cpnvergence and
vefficiency ‘ |

| The. accuracy of. a g1ven f1n1te dlfference formulatlon
is determined. by est1mat1ng‘the truncatlon error 1nvolved in
'esﬁlmatlngka derivatzve, say,. by some grld po1nt
‘approximation. For such_an approg1mat1on tO'be considered:
‘consistent, itashould~apprqaCh the deriVaiivefas the grid

‘Q’,

T g Bk o AT Wt



. 1

_interval approaches zero.‘Given tnat-the'trUetSolution’is
bounded,. a finite—difference formulation-is termed stable if

s

the dlfference between the numer1ca1 solution and the true
v 3
solutlon remalns bounded - w1th time. Typlcally, some
lconstralnt on the t1me step, At, is requ1red» in order.for
the method to remain stable. If the error approaches zero as
both the grid>siee‘and time'step are decreased zhen the
solut1on 1s called convergent For properly posed 1n1t1al L
boundary value problems described by partial dlfferentlal
leguatlons with c0051stent f1n1te-d1fference formulatlons,,
stab111ty is the necessary and sufficient condltlon for
_convergence Flnally, computer storage and costs must be
con51dered in the. selectlon of a numer1ca1 scheme. For a
'51mple problem with a small number of varlables, little
computer time is requ1red and a sophlstlcated scheme of
hlgh—order accuracy may be used, whereas for a system-of
many variables, accuracy must be compromised.in the
1nterests of eff1c1ency Whether a. glven scheme 1is exp11c1t
or 1mpl1c1t comes 1nto consideration in thzs regard ' For an
excellent discussion of numerlcal methods . for atmos;herzc,
studies, see Mesinger and Arakawa (1976) or for a more
mathematical'dlscuSSion see Potter (1973). |
- : . ‘ . _
In order to compare the numerical:solutions,obtainedI."
frOm-varioussflnite—difference'formulations.for'diffusion
type terms, a 51mple equation for whlch the analyt1cal

‘solutlon was avallable, vas USed. Thls was the one- dlmen—

s1onal heat conductlon egua&ion, subject to certaln relevant

e et g A AL T T T T S T 4 e



initial and bbﬁndarynbonditionsbgln this chapter, various
numer1ca1 solutlons to th1s equétlon are presented along
w1th the analytrcal ones derzved In the eaﬁ;y stages of the

valley model 1ntegrat1on,.vert1¢al d1ffus1on processes

dom1nate, and, as‘a;result, the solut1ons obtained. from the

;o

one-dimensional1diffusloh‘eQuation:with the same initial and

bounddry conditions are verylsimilar‘to those of the valley

.\ model equations. This provide5<a~eheck on the early stages

\{f the evolution of the the;modynamic fields. Finally, in

his-chapter,'a technique for solving an elliptic Poisson

equation is outlined. It was used to obtain the streamfunc-

tion field, given vorticity values, through equation (2.5.3)
and is termed Liebmann Sequential relaxation.
. ( .

3

3.2 The Grid

. . —

_In order to study the circulation within a small urban

river valley, it is necessary to define a ﬁhysicalvbouhdary

—

l}which is.realistie*but also fairly simple.»A nearly

Ld

'V-shaped' valley was used withwphysical dimensian-

resembling those of the North SaskatchewaneRiver valley. Due

to the meandering nature of the river, asymmetries in the

topogfaphy of the valley are evident. Flgure 3.1 indicates 'a

_tybical vertiéal chSstection'throughvthe velley, close to
the city center, at a p01nt where the rlver is allgned
-eaSt-west. The nprth-fac1ng, or south slope was modelled
in this study, using a much.s@mplified lower boundary

indicated by the dashed line.
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' Mest'simhlations, therefbre, oecupied a:two-aimensienai'
'feglon bounded by a lower surface con51st1ng of a ridge 52 m
high, and a hor1zonta1 valley floor 80 m wide. The slope of :
'thelground surface was approxlmated to be 0.1,_form1ng an
angieyva;_qg about 5.7°vwith the hori?ental yallengloor,
‘Some results -are also presehted in Chapter 4 for a slope;of'
0.2. Iﬁ o;der to associate érid points-at the boundary.with
the sﬁrface of the eerth, ;oﬁstrainﬁs are placed upon the
; héfizontél'and vertical grid Specinée permissible in that

region, Ay and Az,_fespectively such that:'

tan (a)-—ﬁ% S S (3.2.1)

e

Close to the ground 'surface, graaients in most
variables are large and higher resolution in terms of the
grid spacinf is reeded. A logarithmic grid was felt
difficult to‘ihplemeht'due to the geometry of the:afea being
considered A finite element approach0>whicﬁ ¢an incorporate
varlable grid spacings and is genetally well suited for.
complex terrain, is now becoming useful 1n mdteorologlcal
applications. However, it was notgcons1dered\at the tlme.
when mqdel developmeht_was begun. Use of tefrain-following
co-ordinates has much fb'offer in terms of reducing cbmplex
geometry to a simple rectangular‘regionvbut introduces many
otherucomblicetions once the equations have been |
transformed. gs ;pdicated earlier, a finite~difference
“technique was seiected to iﬁtegfate the equations numeri-

“cally. The gfid'length finally chosen was constent in the
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‘lower part.of the valley cross;section‘(Az1) ana ieréer;‘bﬁt‘
still constant in the upper regxon (Azz) where the varlablesv
are expected to change ‘more smoothly. A constant grid length
‘(Ay) was used in-the horizontal, or northﬁsouth, dlrectlon..
:'According to Thyer (1966), the height of the'%orizdntal
upper boundary éﬁoulé'be at least twice the ridge height, if
it is to include the entire region which such a circuiation
is likely'to‘occppy. In most runs, the height of the dpper
boundary was'chosen as 108 m but sensitivity to thié value
| is considered in Chapter 4. A schematlc diagram of the grid
r*§o1nt lattice is glven in F1gure 3 2
At any t1me t, any p01nt in the reglon‘can be referred
to by ; set of 1nd1ces (g, K n), the points being numbered
horizontally by J from the valley ax1;f(J = 1) to the rldge
line (J = JMAX) vertically~py K frpm the valley trough
(R = 1) Upward'to K =>KMAX, and a time index n’where
t =n At. This notetion‘will-be.used in subsequent sectien;
which deal with thelfinite—difterence'formulatiOns and boun-

dary conditions.

3.3 Initial and Boundary Conditions in Terms of Finite

Differences

3.3.1 Inxt1a1 Cond1t1ons

“

slnce the atmosphére is. assumed to be at rest ini-

tially, all_gr1d point values of‘vort1c1ty, £, streemtune- e

(R

‘tion, ¥, and velocity components, v and w, are set to zero :-
. ¥ ' . : ‘ &
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- t

E(J.K,O)‘- 0

v(J,K,0) = 0 1 £ J < JMAX, .

7
N

: (3.3.1)
V(J_:Koo) -O lsKxk M.‘ -

Y w(3,K,0) = 0

The potential teélerature at the valley trough, 6(1,1,0), is

easily obtained \from the initial temperature, T(1,1,0), and

"‘Apressure,,p(1,1,0);

sing'(2;2.5)J to be
‘ R N | R/Jc; : ‘
| 6(1.1.,:0,\) - ——-0—-—1,(1.1.0) | T(l,l,?) . (3.3.2)

e

‘13 Remember T(1 ,K,0) is specified by the valley trough tempera-

B gstugsa?T ,0), and the-knowaA"'MSe rate, & through
.»w ) ‘( "1 . -~
(2674 :8) .- Using (2.721% taéobta1n{ -wnotentlal temperature
& 4

field dlrectly above the valleybﬂrl by 1ntegrat1ng

upwards using centered dlffereﬁces, one obtalns
0(1,K,0) = exp{ln BEE-2,0 + vy - M) 2 A;/T(l-.;(-l,O)} o (3.3.3)

9

For the first interval a'bne;sfded differehce'formulation
must be used, u51ng the mean temperature for that layer

(T(1,1,0) + T(1,2 0))/2 as below,

5(1,2,0) = expila 8(1,1,0) + (v - v) b2/ , L
P A. (3.3.4)
(T(1,1,0) + T(1,2,0))/2) U

The isentropic surfaces are al%bborizontaizinitially, andg,

therefore,

e(J.x 0) = 8(J-1,K, 0),» i < J e JMAX . (3.3. 5)

and the ent1re potentlal temperature fleld is now spec1f1ed

P R & Sl iy ST O i t o

b



e e . S

S, N

3. 3 2 Latéral Boundary Condxtxons . ’
Accordlng to arguments outl1ned in Sect1o¥ 5 of Chapter
2, the flow must be purely vert;;al at the lateral
bouhdaries, J =-1 and J = JMAX. ?herefore,
) | v(1,K,n) = 0 1¢Ks KMAX,
- V(MAX,K,n) = 0 ) m > 0. - (3.3.6)
As well} thésevbohndaries form lines of symmetry, énd the
circulation on either 51de is assumed to be a mirror 1mage
of that computed within the valley cross- sectlon being
considered. Thus, the streamfunctlon values on one side of ‘a
- lateral ‘boundary are equal in magnitude but opposite in sign
to those on the other..See Figure 3.3. The vertical velocity
along.these.boundaries,’e.g. at the grid locatlon dénoted@&y
A on Figure 3.3, can be computed from (2.5.2), assuming
v(B) = - y(C); to be o
w(a) = - (y(C) - w(B))/ZAy = - y(C)/ay
'ﬁn general, then, .

w(1,K,n) = - $(2,K,0) /8y 1 s K s KMAX,

w(JMAX,K,n) -‘w(JMAx-l K,n)/8y. ). n 3 0. (3.3.7)

N Since aw/ay = O through symmétry and v = 0 as before,
the vort1c1é§ along the latetal boundarles must . also be
zero, through (2.4.3) Thus,
5(1&,)-0 1 § K s KMAX, .
f~ (3.3.8)
E,(JMAXQK)B) - 0 n > 0.

The streamfunction is constant and arbitrarily set to zero.

ST RLEm) = 0 f 15 K< RO, - (3.3.9)

¥ (IMAX,K,n) = 0J)a>s 0.

T A
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-

Hotizentalitemperature’gradients across the lateral

boundaries vanish through symmetry.

3.3.3 Lower BoUndary.Conditions

-

»

As ttee4slip boundary“cdhditions are applied at the
ground, veloc1t1es must be paraklel to the.lower surface. .
Along the horizontal® part therefore, w(a K,n) = 0, and v is

determ1ned from the yertical streamfunctlon gradlent using

one-sided dxfferences,'51nce streamfunctlons below the

ground are hot available. A one-sided formula, using two

points above the surface, is given by

3z - :
2 1y,xm) . (3.3.10)

- = {-3/2y(J,K,n)+2¢(J,K+1,n)~1/2¢(J,K+2,n) } /Az
This approximation is also used to obtain the vortlczty,

51nce E = - 3v/dz there, or

E(.J K,n) = -{< 3/2v(J K, n)+2v(J K+1 n)—l/2v(J K+2,n)}/8z . (3,3,.11)

—~
L]

Along the sloping ground surface, the magnltude of the
veloc1ty is computed from the streamfunctlon gradlents above~

the sleope {again, in 3 one- sided: fashlon) since. from- (2 5.4)

-

EN

V- (Bl {(aw/ay)2'+ (a¢/éz)2}% . (33012

The individual velocity componente are determlned u51ng

V=vi+wke=-(]T cosla)l j + |V sxn(a) k)' where
o« = angle of the sloping terrain. The minus 51gn¢appear5vdn
order to ensure downslope flow. In finite;differehce form,

then, - o
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_g_‘P_ I = {-3/2@(J,K,n)+21b(3-l;K,n)—l/2w(J-Z'.K,‘h)}/Ay R
¥ 1@3,k,n) :
B -3 K R, R D) -1/ 203, K42, 0) Ve,
z . , A :
(J,K,n) , . : ‘
. . . | ) ' . )
- 243
v(J,K,n) -{(3¢/3Y|(J K, )) + (aw/azl(_] K, )) 17 cos’ (u) .
‘ : B (3 3.13)
- 2+
w(L,K,n) =={@u/ay] ; x \)%+ (awazl(J X, )) }? sin (u)
‘See Eigurev3.4. The velocity components, at grid'points
which intersect the sloping surface, must satisfy
® ' 5%’%% = tan (a) = slope of ground (33 14)

and flow parallel to tbe materiql surface is tbereby
guaranﬁeed. Havlng obtained the aurface velocity components,
-the surface vor;iciﬁylis evaluated using (2.4.3), from
:done—sided‘differenoes.of the.velocityw%omponents, as usual
: £EWJ,K, n) - {-3/2w(d K, n)+2w(.l-i K,n)—1/2v(3—2 K- n)}/ay
e {-3/2v(J,K,n)+2v(J,K+1, n)—l/2v(J f+2 n)]/&z (3.(.3. 'S
Thelstreamfunctlon is set to zero on. grid p01nts

~intersecting the lower boundary. The potential temperature

.». 4s simply prescribed as some function of time, as alluded to

%L’earller
3 3 4 Upper Boundary Cond1t1ons

Con51stent w1th the upper boundary be1ng located above

the valley c1rculatlon, both velocxty components vanish
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along R = KMAX In add1t1on, the vortxé1ty and streamfunc-'ﬂ
tion values -are set to zZero.- The boundary cond1t1ons on ‘the
'ifflow‘are summar1zed in F1gure 3 5 The potent1a1 témperature:'
at the top of the reg1on 1s assumed constant, bezng far‘

enough away from the coollng surface.
‘3ti Fiﬂitehnifference,Formulation onPredictionvKﬁatiqns”'

3'. 3. 4 1 General

The 51mp11f1ed pred1ct1on equat1ons to be formulated

'--3us1ng flnzte d1fferences are

38 30 38, .. 328 3% . T
ot V3y ."v.-a,zj_."*: Ky""‘ay +_.szl—7‘a'z S o (2.2.2)
3 BE_ BE. . A% L 3% gde
T Vay Vet KYfE;%:+;K2‘3;§:+-9'3y-' _ ,(2.4,1j1):
© 0 -, advection A_’. diffésion”  other
: v (a) B : (b) S (c)

;jngyp1cally, 1t 1s posslgle to examine’ the stab111ty
propert1es of a glven numerzcal scheme only.when 1t is
applled to simple. types of d1fferentzal equatlons. Thls is .

L
oA

because 1t is only w1th s1mp1e equat;f“k{that the

‘mathematics 1nvolved become tractable. When an- equatlon
;,1nvolves more than one type of term (e g._advectzon and dlfer
.ej-fu51on, as in (2 2 2) and (2 4 11)) Mesxnger and Arakawa
'(1976) recommended the use of "d1f€erent schemes for the

:,,'dszerent types of terms For th1s reason, terms (a) (b)

;ffhand (c) were con51dered separately and the most approprxate

.,-_a L .
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* otie-sided differences

G vEE=¥=0,

/o= [V] costa), *

- = aw/dy —av/az, ' »

v=0

\ -

_ F1gure 3 5 Summary of boundary cond1t1ons on velocxty
; ccmponents, v. and w, vort1c1sy, £, and streamfunctzon, w

50 -
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nUmerical soheme ohosen for, each. As-it is difficult to
‘jdetermlne the stab111ty crlter;a for non linear equat1ons,
it was assumed that llnear stab1l1ty cr1ter1a would provide
a close approx1mat1on when applled to the predlctlon

v

equatlons, o R N

3.4.2;£dveCtion Terms (a)
A comparison ofhnumerical schemes available for solving

a one-dimensional advectibn equation,

3 38 ~
+C"'-‘ 0, c>0 ’ : (3.4.1)

R T ay

is‘given in Table 3.1, After exgmining theiadvantages and -
disaduantages of each, the foruard-time, upstream-sgace
formulatlon was chosen to determlne ‘the changes in vort1c1ty
. and potentlal temperature through advectlon. A51de from 1ts
expl1c1t two-level nature, this scheme was recognlzed to be
reasonable in a phy51cal sense, at least 1ntu1t1vely
Gradients in S upstream of the gr1d4p01nt under
consibd'er’.a.'t_ion are "a'dvv_e",cte"d towardsiﬁt grid point whereas:

_those downstream do not enter into «computation; This

. o

'_method has been rec0mmended by many authors such as Orv1lle
(1964 1965 1968) Molenkamp (1968), P:elke (1974), and.
Mesxnger and Arakawa (1976). Accord1ng to stab1lbty

»con51deratzons, the solutlon w1ll rem§1n stable if

,(»/I»C_l t‘e'l . o B
T sy . e

'_:HoweVer,_dampinéhpro’oqtjonal t?jwavelength-can occur and is

)
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most pronounced for waueiengths'of 2 Ay when |c| At/Ay
= 1/2. Further deta1ls can be found in. Appendzx A. The | "_"
‘ forward time, upstream space formulat1on, appl1ed to a
;: non linear. advectlon equat1on, ‘such as .
> .ii--vvlifi..,éi | (3.4.3) .
ot ay . 3z ' o
can be expressed as
EQLKmD) = EULK,R) + 8¢ (AWK} + B(J,Kom))
whete ( (. Kum) {S(J,K,n);;y's(J-I,K,n)}. v(J,E.n) > 0
"KCJ,K,n) - ’ _ IR : ‘ e
- : BT . .
h -v(J,K,n) {S(J+l,K,nzy- S(J,K,n)}" v(j,K,n) < 0'
| S
| N ~ .
- —~(J,K,0) {s(J,K,n) ZZ'S(J,K‘—l,n)} W(J,K'!h) 50
B(J,K,n) = IR (\ | ) o o
] _W(J_K"n,{ (J,k+1%n) - S(J,K,n)} o

‘. : ’ Az ' W(J,,FK,B) .

© 3.4.3 D1££us1on Terms aﬂs_
A compar1son of numerical" schemes avallable for solv1ng

-

a ohe.dzmen51onal-parabol1c‘d1ffuszon equat;on such as

"~ 2 v .
%--K%}-é-,o, o |  (3.4.4)

;15 ngen xn Table 3.2. Ihitially, the'DufortFFrankel'scheme

wasfb sen.. to evaluate the changes in 6 and ¢ due to hori-
»zontal and vert1ca1 d1ffus1on. Even though th1s scheme
- requ1res computer storage of the vort1c1ty and potentlal

temperature matr;;es at three time levels, the_extremely
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ojstable nature.of the solutlon warranted its-use.- Further
details can be found 1n Appendxx B. The Dufort- Ftankel
scheme has been wldely used in numerical modelllng of the‘
boundary ‘layer (e.g. Estogue (1963) and most. recently Kozo
(1982)), and is favourably promoted in mathema:1cal
discussions of numericalﬁtechniques for‘soluing parabolic
partial differential equations (e.g. Richtmeyer and Morton
(1957), Ame"sﬁ-(1969~)‘ and Mitchell and' Gfiffitzhs -(1980))"
If a centered- t1me, centeted~space formulatlon was
app11ed to a one- dlmen51ona1 d1ffus1on equatlon, such as

-

(3.4.4), it would be expressed as

S(J,n+2) - S(J;n) S(J+1 nt+l) - 25(J, n+4) + S(J-1, n+1)
25t 8y

"

(3.4.5)

where S(J,n) denotes the value of S at the Jth grid point at

time t = nAt. This scheme would lead'to numerically unstable’

solutions, as_noted‘in Table 3;2. However,‘replacéng
.S(J-n+i) on the right hand side‘of (3 4.5) by

(s(J,n) + S(J n+2))/2 results in the greater stablllty of .
the Dufort Frankel scheme. Even though terms 1nvolv1ng S at
t1me t + 2At appear on both sides of the equat1on, implying
an impiicit system, the‘term\on,che right'mayﬂbe't;ansposed
to the left - such .schemes are called semi-implicichor

pseudo- 1mp11c1tﬁs they may be rewntten in an exp11c1t

‘form. In thlS case, {(3.4.5) becomes

| S(3,n42) (1425} = {1-2r} 5(J,n) + 2r {5 ) + S+ 1(3.4.6)
where r = K At/Ay?. | |
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(24

~

Numerous d1ff1cu1t1es afose when thls method was
applaed_to the‘dlffus1qn‘terms (b) in (2.4.11). As the time -~
stép was feduCéd,'Qérigﬁs‘parametefs of the.éifculation
(e.g. the extremum of fﬁe.streamfunction field) were noted
ﬁo behave as if the truncationierror associated with the ’
scheme was very lafge. Note tha; the DQfort-Frankel scheme
‘has tfuncation error of O(th + Ay"f (at/ay)?).

To examine this more closely, another formulation was

’

applied which is only first order in time. This schédme uses
-a forward-time, centered-space finite-difference tech ique

and was applied to the prediction equations. In terms |of -

(3.4.4), it can be eXp#tSsed‘as"

S(J,n+l) - SWJ, n) g S(3+l,n) - 2st n) + §(J-1,n) (3.4.7)
At : Ay .
Agafh with r = K At/Ay2 this becomes .
S(J n+l) = r S(J-1,n) + {1-21'} S(J n) +r S(J+l n) . (3.4.8)

" The stablllty cr1ter;on for this representatlon,_as,noted in A
e < = .
Table 3.2, is

K At

2

1 .
: < - . - . (3.4.9)
. Ay 2 ' o ‘

As the time step was reduced using (3,4.8),'more consistent——
. . Y ’
results were obtained than with (3.4.6), even though the

lattér-wag second order in time. This revealed the existehce'
of a numeriCaltproblem wheh the Dufdrt-Frankel sche&é was
’1mp1emented and incited further explorat1on. For thls.
.purpose, ‘a s1mple one d1mens1ona1 heat dszu51on (or
conductlon) equ§t1on was con51dered, for whxch_analyticgiu

. .

4
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‘solutions were avallable. Initial amd boundary condltzonsv
similar to those of the valley ﬂodel under con51derat1on
were applled and numer1cal results u51ng both the Du-
?fort Frankel and the forward time, centered space schemes '
are presented\xn Section 3.5 for comparison. Further dls—‘
cussion at that time is ‘made reéarding the proper choice

4 , | . |
- of a diffusion scheme for the prediction equations.

AY

3.4.4 Other Term (c)

The solenoid term, denoted by (c) at the beginning of
this section,.expreSSeS'the non-linear dependence:ofvz and
6. The relat1onsh1p is such that a«theoretlcal investigation
of the behav1or of the various p0551ble numer1ca1 schemes. is
precluded. Accordingly, through,accuraiy-con51deratlons
aloner,the centered—time, centered-space formulation was
-ielected The truncat1on error for this scheme is
.afAt? + Ay?). This formulation was used by Thyer (1966) and
Orville (1964, t965, 1968) in their models of flow above

sloping- terrain and is recommended by Mesinger and Arakawa

(1976).
" An example of the finite-difference representation
applied to = - ‘ - oo {{
.. 23 . B3 : ‘ (3.4.10)
., ot 6 3y
“is : - ' B
_§(J,Kn+2) - EQJ,Kyn). g {6(J+l K,n+l) - 6(J-1,K, n+1L(3 4.11)
28t 8(J,K,o+1) . 28y - N

. e
Us1ng this scheme, changes 1n £ over the t1me perlod from t

to ¢t + ZAt are evaluated at ‘the mlddle of the 1nterval and



Lt g | . o . o I'.: .
—————— e : B C it mmeeellllll T R B : RPN TEEE, U TRt

. . . . ’ . 'g‘ .
' . 58

for this reason, it is often called the mid-point rule.

355»6ne-dim§nsional'neat Cbﬁdpétihntzquation“iA{i s
| - As indicated invSéctioﬁ‘3;4.3; analYtiéalyghd nﬁméfical
solutions to the one-diménéionai heaﬁ'cdnducffén;équati;ﬁ
_were-obtained in order to examine the accuracy of the numer-
ical solutions. This is the classical partial éiffeQénfial
equation of mathematical physics used to describe ﬁhé 
conduction of heat in a solid body. Here, it is app}iéd to
'ﬁredict the potential temperature, G(z,t),'determiﬁgd‘by
' diffusiﬁn'éway from a steadily eooling surface located at
z = 0..The top of the atmosphere;is'assumed to be at ‘a
-height 'z = H. The partial.éifferenqial equation governing

) : _
this transfer process can be written

- . -

38 _ 3% - |
3t K377 » 0szsH t>0 (3:5:1)

» X c ] B

It is assumed that the~temp¢;aturé at the top‘of the atmes-

phere remains cqﬁsgant, whereas that at the surface is a . -

linearly débreasiﬁg function of time. Thefefore,-the boun- -
- . ! ~ o,

dary conditions are
,‘ 8(H,t) =T, t>0 | . " (3.5.2)

8(0,t) = 6(0,0) - at,, t > O, (3.5.3)
ST ~ Y

where a« = constant surface cooling rate. Initially, some.

vertical distribution of temperature is assumed so that .

S (2,00 = £(2), OszsH C (3.5.4)

1
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,3 5.1 Analytxcal Solutxon ;‘1?

An analyt1ca1 solutlpn to (3.5. 1), subject to the
non-homogeneous-boundary'condltagns, (3r5,2),end,(3.5.3)}:
and initial condigions | _ | ‘v

8(z,0) = £(2) = (T_-‘-‘O(O,"O))z/}l + 08(0,8), 0szs H , (3.5.5).
is derived in Appendix C to be

&z,t) = Z {(~2H2a/ (n7) 3K) exp (-n?n2Kt/H2) sin(ﬁnz/H'}
n=1 .

a . ) - . S

+ — (23/68 - 22/2 - zH/3) + (8(0,0) - at) (1 - z/H) (3.5.6)
K N

. . . . ‘: °

+ zT/H, ’ 0<z¢g H‘,-‘"’c >0

Attempts at solut1on w1th 6(z,0) sat1sfy1ng the P01sson

eqpatlon, (2.2.5), as in the valley model farled and a
sihplé‘linear temperature prof1le was,aesnmeagae an ’
'epproximation. The two initial fields‘differed at most by
0.0008 C°. | B

The potential'temperature fields given by (3.5.6) are

plotted for various times in Figures 3.6.and 3.7. The

abscissa gives the total cooling relative to t'sho seéqnds;\

Here, the infinite series in (3.5.6) was truncated at 500
terms’ After 20,000 seconds or & 333 minutes, the tempera—
ture prof1le varied almost linearly from the cooléd surtace

HempeggtUre, e(o, t) = 6(0,0) - to the constant tempera—

ture at the upper boundary, 6(H,t) =T, At earller tlmes,“‘

“~

s
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.. Figure 3. 6 Potential temperature deviation from 1n1t1a1
7. state versus height for one- dimensional dlffuslon equat1on‘
(R = 1 0 m* s-') out to 1200 seconds :
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e.g; Figure'3.6, the non-linear variation'with height is
very ev1dent. Gradually the cool1ng spec1f1ed at the surface

'0

d1ffuses upwards to greater and greater helghts.A - |

Siz.qOmparison with Numerical Solution ‘ .
Generally, the two num\{icalcscheaes'examined (Du-

fort- ankel and forward time, centered-space) compared

\
favouraply with the- analytlcal results. A sample computat1on
is glven in Table 3.3, up to 20 m height atlt =*?000 sec-'
onds, using Az‘s 2 m, At ='O 5 seconds, and K =51~0 m? s-'.

tThese values’ satzsfy the stab111ty erter1on for the. e
forward tlme, centered space formulatlbn, (3.4. 9) Ae z ='6
. the numer&cal solutlons are exactly the analytical ones, as
N‘spec1f1ed by the boundary condltlon (3 5.3). For ‘a constanil
fgrld size, the numerlcal solutions tended to 0vershoot the
’ analytlcal ones, aS*much ot the 1naccuracy 15'1nvo;ved in
Az, the grid size.;Hoﬁeuer;eas both Q; and Az are reduced,
both numerical methods approach the true analytical She:;
Thus, .it appeared that either humerlcal scheme would: behave
satlsfactorlly when appl1ed to a simple purely dlffu51ona1
problem, .
.. At this point. the numerical‘and anaiytical results
were compared w1th the two- d;mensxonal valley mode1l results.‘
In1t1ally, temperature changes -are brought about, accordlng\‘
to'12.2.2), virtually as a result of vertical dlffusion from
the cool1ng ground surface alone, since both horlzontal dlf‘v

fuszon and advect1on are smalI The valley model predlcted

L ]



gsxonal d:ffus1on equatkgn wi
using Dufort-Frankel ‘and .for
.8 chemes after 2000 seconds :
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1 tical solutxon to one-dxmen-A.dﬁ _
{g numerxcal ‘solutions: obtained -
rd-time centered-spacevfﬁ -
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'ftemperature prof1le above the valley trough (J = 1) was
tﬁ‘gselected for comparzson S1nce th1s column is. most remote‘
‘”ifrom the sloprng«surface»and would thus, have the smallest"
'hcontrzbutlon from hor;zontal dlffu51on. Table 3.4 compares |
-the total coollng predzcted (relatxve to t = 0 seconds) out
"as far as 200 seconds from the varzous numer:cal dlffu51on' S
.schemes applzed to the valley model w1th the analyt1cal
one- d1menszonal solut1on. The valley model results shown are
‘::for an 1nteg;atxon with Ay = 40 m, Az = 4 m, and At = 2 sec-'d"
,.onds.- e R

These results are cons;stent ‘with those prevzously

"":descr1bed i. e..the var1ous numer1ca1 dlfoSlon Schemes

Zperform adequately when used on. a purely d1ffus1onal problem

"jfas in- the early stages of the evolutvon of the model when

o f,advect1on processes are qu1te small The vort1c1ty equat1on,

.'(2 4 11) however, 1s a- dlfferent matter. As soon as Surfacelii
:7cool1ng commences, the solen01d term (g/e ae/ay) becomes

fxmportant and the vort1c1ty changes are not solely the

'd.fresult of’ dszu51on of vort1c1ty. When the two d1fferent ny-

"'ﬁdlscrepanc1es arlse.w‘7

:ifhmer1cal d1ffus;on schemes are applled to (2:4. 11)"certa;n

&

In Tables 3 5 and 3 6, the grld p01nt values of £, )
"az/atI .¥ BE/atld ', and as/atl | are gzven for each of the g“

.“'gl'numer1cal schemes at gr1d poznts located 1n ‘a- vert1ca”§lzne

' w"txon out, to 20 seconds, w1th 1nput paramet'

,g¥m1dway up the slope. These are for a valley model I"tegra_j' L

s Y Tl

't-Az = 4 ‘m, and At = 4 seconds. The pattern’oflvort1c1ty

‘s of By = 40 m,
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.Table 3 4 Compar1son of amounts of- cooi1ng after 200 seconds*

. obtained from. analytzcal solution to 'the one-dimensional
diffusion eguation and. valley: model solutlons obtained using

».Dufort—Frankel and forward-txme, centered-space schemes '
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- Table 3.5 Vort1c1ty changes predxcted by varwus terms« in
the valley model out to 20 seconds usmg the - Dufort‘Frankel
scheme ‘ : ,
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.'Tablg.3}6 VortiCity”changes btédicted byﬁvafibus terms .in
- _the valley modelvou¥ to 20 seconds using the forward-time,
\centered+space_schemg" : o E ; s

> t|neignef £ | 2& | 28] | 2]

e @ |6
T

-r:‘.‘ﬁ‘

12

o o oolo o0 o

o
]Jo o ©
o

' R

\O
-

]

]

]

&H
|
~4
~5

o
O
I
o

- - |12 |
. ' 1 4 | -1s3] o+ f w0 29 |
120 & | o | = SR Cag

[
o

. d<<5 o
1 3
o

1 o p-asl -
f I R o

SN N L0 NS |
16 B 2 A B T ST N 1.3

Of

| o=ess - - R EENARE N
b1 4 =399 w0} w0 | s
SR 1] SR CE I I

12




o

B reasonAble d1ffus1on chagges over that t1me 1nterVﬁ&

-

&

'after’Only'zo seconds,

'changes due toddffEUSionVShows quite a difference between
the two schemes.vThe soleno10’terms, wh1ch depend only on

the temperature flelds, are very slm11ar as the two tempera-

turenevolutlons are not_drast1cally dlfferent. However,

the‘vorticity reSulting :rom.the;pu—‘
fort- Erankel formula

that resultlng from the forward*tlme, centered-space—scheme,

,~and 40 percent h1gher after only 52 seconds. Th15"

d1screpancy can be traced malnly to‘the dafferent teChniques

1nvolved in d1ffu51ng the vort1c1ty values.

The Dufort Frankel scheme is a'three level scheme in.

tlme, and as a result, the chipges at tlme t depend on- .

: values at t - At and t - 24t. If these values have<gs;:;1
| prev1ously been altered only through d1f proce A

) "

then reasonable re:\its are obtalned W1 the soleno1d term-

com1ng 1nto play at every t1me ste) however, the val&es at

: \ - .
the 1ntermed1ate time, £ - At, cause{; shock or’ d1sturbance

in the dlffu51on computatzon. The forward tlme, S o 7 6?'
[ centered space scheme, on the other hand con51ders only the

gleld at a szngle& prevxous tzme step and’ results in- v -

Slnce the problem 1s suggested to 11e in. the magnltude
8 -

of the t1me step, the schdme wh1ch is, most}nearly correct 153,“

'y B
expected to show the least dlfference when the t1me Step 1s

reduced Th1s turns out to favour the ﬁse of the

forward-tlme, centered-space formulatlon. Table 3.7 shows\.fi

o’
the vor51c1ty values pred:cted above the m;d-slope reg1on

W

68’

on is more than 28 percentdhigher than'
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Table 3. 7 VOtthlty values (s“) predzcted above md-slope
region after 200 ‘seconds using the Dufort-Frankel and
forward tzme, centered-space schemes and vanous tmie steps

,4@3';

Height|At=30s| At=15s| At=10s| Atm5s

@ | . DuFort-Frankel o ‘ ]. .
. x . *% . R " i : . : | § .
0 |-.0069] -.0048|-.0039| -.0028] -.0022|-. 0018 || - -.0018 fiizla

4 |-.0068| -.0048|-. 0038 -.0028| -.0022|-.0018 || -.0018|-

8  |+.0059|-.0043]-.0034 ~.0025|-.0019|~.0016 || -.0016|-.0016

‘12 |-.0046 -.0035 |- .0028| -. 0021 -. 0016 |-.0014 -.0013[-.0013 |
16 &.0032_a.ooéi‘-‘oozz'-.0617'l;oo13 -.0011 ‘-.OOIQ-;beIO
20 [-.0018 -.oqio -.0017{-.0012|-. 0010 -.06qa - -;0008_4;0008 -.:f;
24 - |-.0006|-.0014|-.0012| -. 0009 -.0007{-.0006 || - -.0006|-.0006
' .28 ”v--.odoo -.0009 -.oqda,-.Oobéfe.ooos -.0004 : -.0¢04;4.0004'
2 -‘oooo4-Looos -.0005] -.0004 |~.0003 - 0003 | {,ooosig.oboa
|36 |- ooool 0003 [-. 0003 -.0003 |-.0002 |-.0002 || " ~.0002|-.0002
' 740' - oood‘ .0001_—,0002'-60062;5.0091 e.0001"ﬁ ;;0001 -.0001

* based on lineat;iﬁtCtpolation,betuegni1801and\210 seconds

O ik based on liﬂca::iuterpplgtion between 195 and 210 seconds

e e b S T B T A R T o T 1S
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after 200 seconds u51ng the two- numer1ca1 schemes and
')
s

.;“var1ous txme steps. Clearly, as the txme step is reduced
.the results of ‘the Dufort-?rankel scheme seem to approach
Zthe results of~the forward—tlme, centered-space scheme,lasl
ﬁant1c1pated Th1s 15 also reflected 1n F1gure 4 1, whlch

- depicts: the evolutlon of the minimum streamfunct1on value

'wi”’ f«me for the two schemes. Based on these results,-the
I finite-difference formulat1on was chosen to
approx1mate the d1ffus1on terms in this model. Thls scheme

 was used by Plelke (1974) ) o - {

3.6 Lfebmann‘sequential Rela#ation Technique

A solutlon to the .equation. :elatlng the streamfunct1dn
»values, V(J,K,t), to’ the vo£t1c1ty values, ;(J,K,t),
(2.5, 3) was obta1ned'num rically using Liebmann”sequential
relaxat1on (Haltlner and W1llxams (1980)) Ftom (2. 4 l1)
the vOrt1c1ty f1eld was predlcted for all griad p01nts. At
each time step; the veloc1ty c mponents'were requlred by the
model (for use xn predlctlng cop rlbutlons to ae/at and
az/at through advect1on) and ‘these were obtaxnable from

’

(2.5.1) and (ﬁ 5.2), once thé,streamfunction field

correspond1ng to the:vorticity fieid.was known. Since the ‘QL
stréamfunction'value.everYwhere on'the'boundari was-set to

zerc,‘the_relaxatibn technzque was applzed only on the(_

intcrigr,Qf_thedgtid avay from the boundaryt Detalls of the

1]

| technique.fcllow. Co ! R
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Let the nth guess at. the streamfunctmon value at gr1d

o - ¢

~point (J,K) be yh (J K). Then,.’ .

R R A L CH S R € WP
A’where R" (JlK), called the re51dual is e measure of the
error of the: guess.;If VANG K) satisfies (2.5.3) exactly,

then R"(J,K) wxllﬂbe zero. Since a guess at W(J,K) is

unlikely: to Ee the.correct solution, the residual, R"(J,K),

will not be zero-at every point offthe grid 'if'athhere at -

‘all. However, successive estlmates of the streamfunctlon
f1eld are made, accgrd1ng to the algorithm bglow, untzl all
res1duals are less than some’ prea551gned tolerance level €.

Expandlng (3. 6 1) 1nto its centered f1n1te dlfference

representatlon y1elds

E(J.K) + {w (J+1, K)-Zw (J g)+w J-1, Kl}

" 13.6.2)

‘We wish to determine a new guesq' w“"(J K), wh1ch w111

reduce the residual to zZero. Therefore,'7’

EQ,K) + {w (.r+1,x)-2:k (J,K)ﬂa T(I-1, x)} S o
| N o : (3.6:3)
+ {U_{,m) 2% w® (J,x-m e
. Az . .

Subtractxng (3 6.3) from (3 6 2) ‘ﬁé solving for thefnew

igueSS, W"“(J K) .results in
L) gy m R a, K)+R(J x) g
(2/Ayz +. 2/Azz)

(3.6.4)

2.

- This shows that the (n+1)th guess of w(a x), wh1ch is

increased over the prevzous guess by the- quantxty
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R“(J,K)/(Z/Ay; + Z/Azi),rwill)reduce the residual'toéeero.at
that particular.grid po{;t.‘%ovever; such a correction at a
particolar point affects the residuals.at adjacent grid
‘ ooints. Nevertheless,feach guess made according to (3. 6 4)
represents overall progress in reduc1ng all the res1duals,
- and the method is guaranteed to converge towards the true
streamfunct1on values. '
. It has been noted that an overrelaxatlon technlque w111
result 1n faster convergence. In thlS case, a larger
correction than that g1ven py (3.6.4) is added to the old

guess, using |

(JK)'W(JK)'F QR(JK) .,
(2/Ay‘ + Z/Azl) . (3.6.5)

where « is an overreiaxation factor and usually 1< a'< 2.
.Theoretlcal estlmates of « héve been made based on the grid
h51ze but - numer1ca1 experlments are somet1mes used to /
determlne the optxmal.overrelaxatmon factor wh;ch‘produces'
fastest convergence. g r' .-S“‘ , ',._'L
S "The technigue of sequential or Liebmann relaxation vas
usUally;found'to converge'even:more,rapidly With this
‘,method, each new ‘guess made using (3.6.5) is 1mmed1ately 4’7“

3"1ncorporated 1nto the determxnat1o of the next new guess at

adjacent gr1d poxnts. As well, this scheme 1s more"
,' econom1ca!.&1th respect to codputerastorage. It is this

sdheme, With a = 1.2 (determined experimentally) wh1ch was:

o

used to solve for the streamfunct1on fleld ‘in thlS mod;é

.

. Lo . o - .
N . . - . e
- , . . - i o .
B . v . . . ' oh .
. L AT . . . . ..
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3.7 Summary of Methné_of Solution ‘
4A*snmmary”flowcpartvwhichvdescribes the nnmericai
schemes utilized in the vellef moéel is given:in'Figure-3‘8.
‘Certa1n pecul1ar1t1es not prev1ously mentioned should’ be
'noted For the f1r§t 1ncrement in t1me, forward. -or Euler
differencing must be used as ‘the’ values at the m1dpo1nt of-
the time 1nterval are unknown. Sub;equently, at least for
',the solen01d term, a three- level scheme is possible.
Accord1ng to the stablllty cr1ter1on for the
’forward ~time, upstream- space formulatlon of the advectlve
terms, (3.4.2), the time step used must satisfy
. e <& and At <-A£ ' e (3.7.1)
- . . v" . w : S .
.Ae v end‘w“chenge with éime, an estimate of their maxinum'
values is used in (3.7.1) to determlne the correspondlng
maximum -time step.'As the magnitude of the c1rculat1on .
1ncreases, provisions are made in the- computer code to
;ensure that (3.7.1) remalns satlsfled An.1nsurance factor
of 0. BQ was used so that the time step;requlred : . k\\
”oversatlsf1ed the ab ve 1nequa11ty. 1f the t1me steprpgcame
no longer sultable, 1t was ‘halved success1vely until both

. e

N

Ats&.:__éx/ Ind At_é_o;g_.A_! - . (3.7.2)"
. . . : . ¢
RS \\% ‘ . : x\\ o ' o
were true, The‘first-incremenf in time after such a . o

\ ‘
o reductxon would agaln fequ1re for!ard‘&lfferenc1ng as 1n the

}beg1nn1ng This procedure 15 illustrated 1n F1gure 3.9 for. a
. oL

caselwlthvan 1n1txa1¢t1me step of 5 §econds,jrt is

1
4 .
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" postulated that at t = 15 seconds, the t1me step must be ‘
;reduced to 2 5 seconds in order to satxsfy (3 7 2) and the '
'fappropr1ate type of dxfferenc1ng (elther forward or

centered) is 1ndgcated.



.Chapterﬂl'
,RESUBTS
i

4.1 Introduction

v -—In,tﬁis cnapter;;the;ree S_of‘nunerous valley model
1ntegrat10ns are;presentegﬁ“gittislly, the:input paramé@er
‘values fof a stenderg run are considered. Sensitivity ’
analyses are presented in which“several of these parameters
arefvaried} one at a time, ln order to determine the effectl
of each. Some aiscussion,'of a numerical nature, 1is given in
_regard to the choice of time step sultable for a partlcular
run, etc. along with the actual CPU costs.' \
.The results are presented in a 'variety of manners.-
two dimensional streamline plots, time and space. evoiutlon
of the ;treamllne center, development of slope wxnds with
t1me, coollng amounts at dlfferent heights in dlfferent

-

parts of the valley, relatlve contributions of’ad;ectlon End
dlffu51on,!etc. Varletxons in the geometry of the 3rid'
configuration (locatlon of upper boundary, presence of hori-
zontal valley floor versus 'V-shaped region, angle.of slope)-
'are con51dered Sensitivity- to the vertlcal diffusion
coeff1c1ent undetr an 1n1t1ally stable reglme is provided
through two 1ntegratlons with qu1te dlfferent values.'ﬁm
:Séveral'lnltlal stab111t1es are impiemented, with vertical
teﬁperature graéients ranging from -0.04 C°/m up to

+0.01 C°/m (the neutral.case)}

o
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Finally, the results from simulations in which values

most appropriate ' to the miiyoclimatoloéy of the river balley‘

. are presented. Limited toﬁparison'of the model with"

observations made within the valley is carried out.
4.2 The Standard Run - Run 1

N -

~ 4.2.1 General.

In this section, the results from what was considered a

standard run are presented. As Run 1 will be frequently used

*
for comparison with other model 1ntegratlons, analy51s of -

a

the results obtained is presented in greater detail than

for some subsequent runs. The 1nput~patameters used f:r '
the standard run_are given in‘Table 4.1. Those variables
'denoted“by‘an‘asterisk were alloued to vary as part of the
sensitivity analysesjand these results are shown in later
Sectiohsi An'initial valley trough'temperature, T(1,1,0), of
278.2'°K'was'used in thfs set of runs, along with an initial
‘valley trough pressure, P(1 ,0) of 930 mb. ‘Using these
tvalues and the various lapse rates, the 1n1t1al potential

,temperature profile was computedvaccording to Section 3.3.1

Under ,stable cond1tlons, isotherms were ‘agsumed to be hor1—

ontal w1th1n the valley cross section, as shown later 'in

Figure 4.7. Table‘4.2 provides-a~summary of parameter}veluesx

used in subsequent runs. /

Prellmlnary tests were conducted in order to determlne

!

the approprlate time step.'AS,an estimate of what the time

¢

step should be, the stability criteria for the various

1

-
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Table 4.1 Parameter values for valley model in the standard
run (Run 1) ' o ;

- 0Om2 -l
. an)y (KT)Y ‘ L 1.0m s |
- . N 2 -1 *
®), = &), 1.0a? s
vertiéd; grid size (below 72 m) 4m
N o 20
| ’ (above 72 m) 12 m : ~§é
‘ . \ . -
PHYSICAL GRID PROPERTIES|horizontal grid Fize 40 m *
'height of upper boundary * 108 m
- ' inclination of slope * .0997R=5.7°
’ _ ‘time sgﬁh * . 28
INITIAL CONDITIONS : o o
lapse rate * ~ |-.004 C"/m
BOUNDARY CONDITIONS surface cooling rate * 1 2 c®nr
% allowed ta vary.fdr sensitivity analysis A

Il

Table'4.f%Sggmary of parameter values for Runs 2 =~ 8
L4 e : :

Run 2 * except upper boundary at 144 m
, JRun 3 | * except V-shaped valley cross-section
JRun 4 * eicépt angle of inclination of slope (a)'= 0,2

- -k - ‘m2 g~

Bun 5 except (Km)z - (KT)z 0.0l m“ s

Run 6 * except initial lapse rate = g/Cp = +0.01 C°/m
Run 7 * except initial lapse rate = -0.04 c®/m

. f ) :
4/Run 8 * except initial lapse rate = g/Cp, surface cooling .

/ﬂ e ‘rate = 2.5 Cth;; (Km)z - (KT); = 0.0

* as in Run 1 (see Table 4.1) ‘ d s

v



nuneridel?%cnenes nere exemined éo;,the?edvective terms, a
t1me ste;/of”about 20 seconds or less was needed based on
(3.7.2) and cons1derat1ons outl;ned 1% Sectlon 3.7. The,d1f—s
fusion scheme chosen was more restrlctive, however, ‘at least
in terms of the. vertlcal gr1d spac1ng Subst1tut1ng into’
(3.4.9), and recall1ng that 1ntegrat1on was in a forward
sense over two t1me steps, revealed the requ1rement of a
time step of 4 seconds or less.~ _ ) - .

The location of the minimum streamfbnction value at a
given time showed little variation as the time step. was
reduced. Por’t§is reason; the magnitude of the streamfunc-
tron minimum; typically Jlocated somenhere‘ebove the sloping
ground, cou&d be compared under ‘the variods numerical
schemes and time steps 1mplemented In Figure 4.1, the mingj’
mum streamfunctlon value predicted is plotted versus t1me_
for various time steps. The problematic Dufort-Frankel
scheme is also presented for comparison. |

| The forward-time, centeredrspace diffusion scheme
appears'to converge consisrently to a single value, end, at
first glance, a time step of % seconds would.seem ]
sufficient. However, upon closer examination.,, an oscillation
. in sign appeared in the df&fusion changes predicred-at ver-
tical grid points above the vaiiey'trough when a time step
of 8 or 4 seconds was used. An example‘of this instsbi;ity
is shown in Figure 4.2, in which the amonnt of -cooling
predicted after various times is plotted versus height above
the valley'rrough'usingna time step of 4’seconds. A similar

b



81

MINIMUM STREAMFUNCTION (M2/8)

(AT=10S)

-}

~n

(AT=5S) ¢

/
(aT=28)
(AT=28)
. L (aT=48)
«~] D-F i DUFORT-FRANKEL SCHEME }
F-C'1 FORNARD-TINE, CENTERED-SPACE SCHEME "
- ' . . .
' ———- +— — Y ~ Y —
400 600 ‘ 800 1000 1200 ’ lm 1009

0 200
TIME (8)

‘)

e .

-
F1gure 4 ! Minimum streamfunction versus time for Run 1
u51ng various diffusion schemes and several time steps

i

~o
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Figure'4.2 Cooling predicted by valley ﬁodel versus height
using forward-time, centered-space

second time step

.

diffusion scheme and a 4 -



B osc1llat10n occurréﬁ at an earller time when a tlme step of

8 seconds was used agazn only above Ehe valley trough

Above the slop1ng sufTace, it d1d not appear and 15"

therefore not e01dent in Flgure'4‘1 With a t1me step of 2
.‘seconds, such an osc1llat1on did not- occur, at least ozt/to
'1ntegrat1on t;mes where'other d1f£1tult1es arose.andll as}l‘
: chos!h?for thls’reason. |

R A compromlsj-between the,cost of each 1ntegratlon u51ng.'*‘
a certain time step and ‘the results achleved was made. Thls
run, w1th_a teme step ‘of "2 seconds, requlred 1000 seconds of'
" CPU.time: 1n order’ to integrate out to 2000 seconds. A
51m11ar run, with a thp step of 4 seconds, required 408
'seconds of CPé?tlme to ‘reach 1508 seconds, 1nd1cat1ng the
'hnon llnear relatlonshlp between time step apd CPU
requ1rements. Most kf the CPU time is used up in the l
.relaxat1on process. W1th smaller time steps smaller changes

in the vorticity are produced and thus fewer relaxations are

.required ‘in order to achieve a certain accuracy.

[ 4

4.2.2 Circulation Deuelopment f

Initially, negative.vOrticit§ was generated close to &
the ground surface through the solenoid term, according to
'(2.4.9). This .resulted in a corresponding downslope flow
close to the sloping surface with a weaher return flow
aloft. Flgure 4.3 deplctsethé streamlines predlcted after
600, 1200,_and 1400 seconds. Mlnlmum streamfunction values

-
~and their location are noted. Out to an integration time of
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Figure 4.3 Streamfunction contours (Ay = 2.0 m? s-') at t = o
600, 1200, and 1400 seconds for the standard run (Run 1)
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- about 1250 seconds, the qual1tat1ve nature of the flow

o

pattern ﬂema1ned essent1§lly the same, Tgere was a

N -
well- developed downslope wind, which was confined to a thin

layer near the surface. A weak updra%tiex1sﬁed above the
valley trough which spread horizontally at s&ﬁe height. In
the uppej parts of the region, there egists this mainly hor-

izontal flow away from the trough, with weak downward motion

towards the ridge. A

. Figure 4.4 indicates the trajectory<;f the streamline

center obtained a.)from the available grid:point values, and

o

'b.) from a non-linear interpolation procedure.]this method,

although somewhat arbitrary, was felt to offer a significant

improvement in the eftimation of the location of the stream-

- line 'center. From this Figure, the streamline center .was

generally seen to move up the sloping surface at some height

S
above it (24 - 28 m). It-originated near the middle of the

.slope, strengthened’with time, and eventually moved up and

slightiy further away from the surface. Little movement of

the center occurred once the ridge height was reached.
Alang the sloping ground surface,dthe velocities

predlcted by the model were gquite uniform. The rate of

development of the ‘downslope wind appeared to_@ecrease

‘beyond about 1000 seconds of integration time, as it

approached a speed of about 50 cm s-', An illustration of
. ¢

the relationfhip between the streamfunction field and the

velocity components themselves is given in Figure 4.5,

Figure 4.5a consists of the isopleth contours of the



.

Figure 4.4 Trajectory of streamline center for the standard
run (Run.1) obtained from (a.) available.grid point' values

-and (b.) interpolation. Numeral indicates time in hundreds .
of seconds ' -
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Figure 4.5a Circulation predicted after 400 seconds for the
standard run (Rurt 1) - streamfunction (A¢ = 0.5 m? s-!,
dotted) and velocity (A|V¥| = 0.01 m s-', solid) contours
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F1gure 4.5b Circulation ptedlcted after 400 seconds for the-

standard run (Run 1) - horizontal velocity component
(Av = 0.01'm s-') contours j -
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Figure 4.5c Circulation predicted after 400 seconds for the
standard run (Run 1) - vertical velocity component
(Aw = 0,005 m s-') contours
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'streamfunctlon after 400 seconds, along Wlth contours of the |
speed of the correspond1ng flow g1ven by |V| = {v’+w’}°s
:Large veloc1t1es were present between the surface and the‘
‘ stream11ne center where the gradlents in streamfunctlon vere
h1gh Surface veloc1t1es at thxs t1me reached 11 cm s" |
Figures.4.5b and 4. ¢ 1llustrate the spatial pattern of the
‘two veloc1ty components, v and w, respectively. Flgure 4 5b
pls qu1te 51m11ar to Flgure 4. 5a as the vertlcal Veloc1ty d -
components were relatlvely small. Since the gradients in
temperature were large under'thls stable regime, however
these small Vettlcal veloc1t1es were able to alter the tem-
perature fields 51gn1f1cantly through vqrtlcal“advectlon.
Inltlally the max imum upward velocity occurred not along the
symmetry axis but rather several grid ‘points-to the
interior,zalong J = 3, abowe where the/sboping surface
intersected the horizontal valley bottom. Gradually, the
maximum vertical velocity moved towards the valley'trough'
boundary. | | | |

'4 2.3 Evolution of Thermodynamxc Flelds‘

The thermodynamlc f1eld is altered thrOUgh both ad-
vective and dlffu51ve/radlat1ve processes. The wlndsd
génerated act to bring warmer air down frdm above and vice
versa. Diffusion acts to mix the-cooled air near. the surgace
with the warmer air aloft. The relatlve magn1tudes of these
processes change with time and with posltlon in the valley

andtare given in Table 4.3 for a grid point 4 m above thé

o
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mzddle of the slope (at J = 8, K = 7) at’ 200 second . '.'éﬁ
1ntervals. Each term in (2.2. 2) was evaluated u51ng the |

varlous numerlcal schemes outl1ned in the previous chapter.

.

r' j Horizontal advect:on was found to always act as a
\
cool1ng process. The hor1zontal .wind component was always P

*

.-negatzve or directed avay from the cool1ng'slope; and
therefore acted to transport cool:r air. away- from the
surface. The vert1ca1 ‘component was ‘also negatlve and

‘approxlmately equal to 10 perggnt of ‘the horizontal

"component a@ this grid logation. The vertlcal temperature

'gradlent was. laTge and'posat1ve here,lresultlng in the -
.transport of warmer air from above towards the surface. At L .
t']all tlmes, the amount of vert1cal advectlon exceeded that . of
jhorxzontal - @ layer of warmlng through advectlon was the
overall result just above the surface. "': © . .
Referrlng again, to Table 4.3, both horiidntal.and-verr
tical.diffusion”terms,resulted.in cooling at this grldf,n

‘ locatiop;ogue to the latge cooling.rates»at'the‘surface._the‘

’Flltemperature gradient hetween the'surface;and this grid point

',‘eXCeeded-that between this grid peint and the nekt one away

qj,from the surface. Thus, the Laplacman in temperature L

(a/ay ae/ay + a/az ae/az) was clearly negat1ve.,slnce the

e et aiatrd s . .

horlzontal and vertlcal coeff1c1ents of dxffus;v1ty were

- -equal and Az was much smaller than Ay,-coollng through ver-

t1cal d1ffu51on greatly exceeded hor1zontal drffuszon.
Flgure 4, 6 1llustrates the relatlve contrlbutlons of

.,‘,.

'advect1on and d1ffu51on in var1ous parts of the valley after

-
v
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‘Table 4.3 Contnbutlons to 96/3t from advect;:.on and
: sion just- above m1d-slope (J-B K-?) for Run 1 at 200

econd 1ntervals o

91

>

el v | w | 2 | <2 v [k 228 [c228 | prr. [romad

. - 3y 0z yay<Z z3z? |
- (s)| @/s) [(a/s) | Ck/s) | Cxis) | Ok/s) | Cr/s) [Crrs) [Cris) [ (CrYs)
of o | o o | o 0 0 o | o

200}-.023 [<.002 | ~2x107>| +5x¥0™>| +3x10™> -5x1076[-sx107 -5x10"" -Sx(l)o\-l‘/‘
400/ -.090 |-.009 | ~1x1074| +2x107%|41x107 =7x107% ~6x107* _ex10™ ~sx107%
600-.181 |-.018 | ~3x107%| +5x107|+2x10™%| ~9x1078 | -710~% | ~7x107| -510™
800~ .274 |-.026 ~5x10™" +8x10™% |+3x107%| ~1x107% |-8x107% [-8x107% | 51074
|2000{-.367 |-.032 [ ~7x107%| +1x1073[+3x107%] ~2x2075|-8x1074 |-8x 1074 | ~5x107
|i200]-.392 |-.036 | “ox1074| +1x1073|+3x1074| ~2x10" ~8x10™"|-8x1074[-5x107%,
- {1400]-.393 |- 035 | ~sx1074{ +1x1073 {+3x1074| -1m10” ~8x10™*|~8x10~*|-sx10™
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400 seconds (F1gure 4 Ga) and after 1200 seconds (F1gure
4.6b). Generally, warmlng thpough sub51dence occurred along
the slope and above_the valley rrdge. Greater cooling
through diffusion occurred at these locations, hgwever, but
as the velocitfes increased with time the difference in the
magﬁ&fadés o ad;ection and diffusion diminished; Coo;ihg

through diffusion was a maximum just above the ridge surface

‘where cooling below and warmlng above together created large'

dlfferences in the vertlcal temperature gradlent

The actual potentlal temperature fields predicted can

-be examlned in a number of ways. A sequence in time of

»

two—dlmen51onal plots of potentlal temperature over the val-

ley cross-section are shown in‘Figure 4.7 at 400 second

intervals. Early in the model integration, distortion of the..

horizontal isotherms through cooling at the surface was very

euident; Above the ridge, slight packing of the isotherms .

appeared as a result of cooling frdm below aud warming
through subsidence from above. This acted to strengthen the
vertical temperatu;e gradient close to the groungd. The ver-
tical temperature:gradient was 0.014 C° m-' at t = 0 sec-

onds. After 1200 seconds, the potentdal temperature at the

- ridge surface had dropped to 284.046 °K; whereas that 32 m

above hadvincreased to 285.170 °K - a vertical temperature
gradient of 0,035 co m-* resulted over twice the initial
value. At the trough axls,,there was coollng at the surface
and: somewhat less cooling aloft - a vertical temperature

gradlentvof 0.022 C°\m"resulted after 1200 seconds. The

T e S sy
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Figure 4.7a Potential temperature field at t = 0 seconds for
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stability had increaSéd more at the ridge height than at the
trough level. | ‘ .

Ahother useful manner in which to examine the tempera-
ture éﬁaﬁgés.as functioghs of time'and position'is through
plots df.the‘vertical temperature profile in different parts

”of the valley cross-section for several times. Figures-4.8,
4.9, and 4.10‘illust:ate vertical profiles of the cboling
predicted as a fungtiqn of height at the .trough, mid-slope

and ridge positions, respectively. Comparing Figure

A

with Figure 3.6, in which the apoun; of cooling
pre ted through vertical diffus&gn‘alone is given, revealsl
the contributions which advectién and horizontal diffusion’
méke to the temperature deviation.‘Figure 4.11 provides such/
a comparison. The difference between the valley model

results gndrthe analytiéally d;rived one*diﬁensional

solution are given at se;eral';imes in this set of cques.

At early times (up to 200 - 360 seconds of infegration

time), there was very little éifierence between the two
solutions, indicgtiﬁg that the predicted valley model

changes occurred through vertical diffusion, as expected.

The difference between the two solutions was zero at the
upper and lower boundaries, where exactly the same boundary
copditions were specified in both cases. Close to the ground -
surface, vertical diffusion played a larger role in altefing
the temperatures than in'the atmosphere above, and so the
_ti&iiéiutions differed less and léss as the surface was’
épprd&%%éa. |

( f‘
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Figure 4.8 Potential temperature deviation from initial -
state versus height above trough boundary (J=1) for the
' standard run (Run 1) ‘ ¢
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Figure 4.11 Difference in cooling predicted by valley model
in Run 1 and b¥ one-dimensional vertical diffusion eguation
(R = 1.0 m* s-') as a function of height ‘
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Beybnd about 1260 Seconds,'the temperature profile
above thé trough, shown in Figure 4.8, began to exhibit some
unusual features. The source of this extreme warming aloft
was revealed upon re-examination of the circulatiqn regimes -
depicted in Figurei4.3 at.this time. A counterclockwise cell
had begun to develop vell above the valley floor just aftef
1200 seconds. This re;ulted in downward motion along the
trough boundary, with accompahying'warming throug£ subsi-
aence. The origin of thi; counterclockwise motion was the
larger ve:tical>velocit£es which occurred along J = 3
compared to those along J =~ 1, as:is evident in Figure 4.5c.
A maximum upwérd velocity of about 0.9 cm s-' existed along
J = 3 at 400 seconds.whe;eas the maximum along J = 1 (the
‘lateral bodndary) was abouf 0.8 ém s*' at that time. After
1200 seconds, these velocities had increased to 3.5 cm s '
and 1.9 cm s°' along J = 3 and J = 1, respectivély. The
resulting differential in the amounts of vertical advection
created a slightly cooler_aréa at some distance from the
boundafy. As the magnituée of the vertical belocity
increased, the amplitude of the wave in the temperatﬁre
field close to the trough increaseé. Through these
variations in the horizontal temperature gradient, the vor-
ticity eventually gained positive values well above the val-
ley trough and this corresponded to a counterclockw1se flow
in this area beyond 1260 seconds.

FiqpresiA.Q and 4.10 illustrate the vertical tempera-

‘\ \
ture profiles above the mid-slope region (J = 8) and ridge
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(J = 16), respectively. The general shape of the curves in
Figure 4.9 ¥s similar to those in Fiéug; 4.8, especially at

early'times. Later, warm advection along the slope acted to

' retard the effect of the cooling ground surface below. In

Figure 4.10, the increase in potential temperature at
heights of 30 m or more above the ground is clearly shbwn.
This was due to, as mentioned'previous;y, the'downward flow
above the ridge which created warming throughjsubsidence. At

low levels, cooling persists due to mixing of the air near

-

the cooled surface.

4.3 Efieét.of Location of Upper Boundary - Run 2

‘A 'second model integr;tioh was performed using the same
inpﬁt parameters as in Run 1 (listed in Table 4.1) except
that the uppe{ boundary was.located at a height of 144 m -
rather than 10§ m. Thus, a vertical grid spaciné of 4 m was

used from the surface uplto 72 m, and a ;pacing of 12 m from

72 m up to 144 m. An initial time step of 2 seconds was

again used, with integration out to 1400 ;;conds_reqUifing_f.

706 seconds of CPU ti-me.f o
The p?edicﬁéd streamfﬁﬁction fields were.fognd,to

éﬁﬁibit very similar prdperties to those of Run 1, at least

qualitatively. The return flow aloft reached to somewhat.

greater heighté but because of weaker vertical gradients

between the streamfunction center and the upper bouhdary,
smaller horizontal winds resulted. For examplke, at 600 sec-

onds, the maximum horizontal wind was about 5.1 mm s-' at a
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‘Beight of 72 m in Run 1 but was onlg about 3.6 mm s~ ' when

the f}ow was permitted to greater heights. Verti¢a1~winds AR
near the!trough boundary were slightly raised over those of )
Run 1, Qith the result that .the counterelockwise cell
appeared somewhat earlier follow1ng the reason1ng g1ven in
Section 4.2.} Development of downslope winds near the
'slopdng surface_was generally identical. The trajectqry,ot‘d'
ehe étreamline center appeared fo move fartaerrupgand away
from the slope than in Run 1, especialiy within the early
stages of the integration. Significanﬁ movemeat-oﬁfrhe >
center ceased once the helght of the rxdqe was reached as

1h Run 1. J"* e

The temperature profiles out to'lOOO»seconds pr SO were {
virtually identical to those for Run 1-for the valley region
'> Eelow'ridge height. Further above, the greaﬁer\heiéht df“the
upper boundary permitted temperatureés there to be altered
«ﬁrdugh both advection and diffusion although the'warming
or cooling pred1cfed was quite small. »Beyond about 1000 sec-
onds, large dlfferences existed between the two runs,

principally due to the cellular nature of the flow in the

second run by this time.

4.4 Efrect of Absence of Horizontal Valley Floor - Rdn 3
In order to determine the influence of 1nc1ud1ng a hor-

)1zontal valley floor, one.. 1ntegrat10n w1th1n a 'V-shaped'

valley cCross- sect1on was performed All 1nput parameters

.- ' were the same as in Runv], except'that'the two columnS'of

o adisateen Sarin
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gr1d QOInts above the flat valley bottom were el1m1nated

This effect1vely moved the Jateral trough bo:fdary over to

",swhere the sloplng grOUnd 1ntersected the previously 1ncluded

valley bottom. Agaln,.a 2 second time step was spec1f1ed
initially, and 506 seconds of CPU time were used in reachlng
1600 seconds of model time.

In tte earlier”stages'0£ this ruo,;out to about 1000
seconds of integration time, the,primary difference was
found close to the trough boundary, as expected. Maximum
vertical velocities above whereptpe s}oping ground met the
‘horizontal are given in Table 4.4 for Rug 1 (J = 3) and Run N
3 (3= 1). This_enables“the,same relative'positious with
respect to the.slopihg”groupd to“ge compared. The height at

which the maximum vertical velocity was fouhd} based on the
avai;abie grid pointsy 1s also proJided in this Table. In-

Run 3, the flow is forced to rise Very close to the slope, -

resultlng in larger horlzontal gradients in the streamfunc- \ »

tlogﬁﬁand thereforg,larger vertlcal_xeloc1t1es) in thlS \
area.

The potential temperature proflle above the valley
-trough reflected the larger vertlcal veloc1t1es as greater
coolrng through adiabatic expanszon_was evident. At a height
of 52 m, for example,.the results'forARun 3 indicated a pot-
ential temperature of 284.64 °K after 600 seconds whereas
Run 1 predicted 284.66 °K. After 1000 seconds, Run 3 and Run
1 predlcted temperatures of 284.46 °K and 284.50 6K, res-
pectlvely, at 52 m.-The mid-slope temperature proflles were

! . . L w e
o S o , S
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Table 4.4 Maximum vert1cal veloc1t1es above valley trough

for Run 1

(J=3) and for Run 3 (J=1).

Quant1ty in

parentheses denotes height at which maximum occurred

sy

Run 1 (J=3)

time Run. 3 (I=1)
(s) v (z(m) at wmx) w  (z(m) at wmx)
f‘ 00 o 0
z 200 o.oo?s (30) 0.5041 (28)
400 0.0087 (32) © 0.0132 (32)
"§00' 0.0158 (36) 0.0210 (34)
EP R 800 0.0224 (36) | 0.0271 (36)
i?oo o.oz?ﬁléss) 0.0312 (38)
1200 |  0.0357 (40) 0.0425 (42)
. - 1400 0.1064 - (48) 0.1692 (52)
R T ot S T SRR » « »~

e
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quite similar, however, with slightly less warming at low
levels, and slxghtly ‘more cooling at upper levels through
[]

advectzve d1fferences. ‘Above the rldge, little difference,

if any, was evident in the temperature‘profiles.

\
. .45 Effect.of Steeper Slope - Run ¢4

'In order to determine the efféct on the evolution of
the circulation of a lower boundary which was twice as steep
as that of the standard.rﬁn, a fourth integratiop was
performed. Apart from interest in discoverihg‘how the model .
\would behave under  such conditions,.thié run was felt to be
useful due to the asymmgtric topography of the North
SaskatcﬁeWah River valley. From Figure 3.1, it is evident

that the valley is much steeper on the north bank as the

river meanders eastward cutting into the bank on the outside

corner. Thérp, a slope angle of about tan-'(0.22) or 0.21
'radians would be mpre representative. For these reasqons, the
slope angle for Run 4 was set to tan"(0.20) or about 0.20
radians. As the perhigsible grid spacings are closely
‘related to ﬁﬁe slope-angle through (3.2.1), the horizontal
grid size, Ay, was reduced to 20 m for this run..Boph:Az,

and Az, remained 4 m and 12 m , respectively. The region

béing modelled»here is shaded.in Figuré"4'12’ and is shown

relative to- the region under consxderatlon 1n*the standard

R i
-

-

run. A time step of 2 seconds sufflced sance the vertlcal

“grxd»spaqigg,wwh;qhawgs%the llmgtlngvfactor~1nAthe,standand;l

ryn, remained unchanged. In order to reach 1400 seconds, 772

-~
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seconds of CPG;timé @ere‘required.
| The.inténsfty of the circulation as developmefit

‘proceeded can be obtained from Figure 4;13, in which the
variation of the streamfunction extremum and the maximum
downslope wind at the surface with time are given for botﬁ
the standard run and Run 4. The steeper slope resulted in
larger velocities close to the ground, and after about 800
seconds, downslope winds of about 0.40 m s-' were predicted.
Thereafter, a guasi-steady-state regime existéd in the cir-
culation while cooling proceeded at the ground. The term
quasi-steady-state is used here to indicate that the réte of
change of vorticity, 3t/3t, was close to zero at all grid
points. This méans that the three processes which can act to
alter the vorticity (advection, diffusion, and the solenoid
term) were in balance. For example, close to 800 seconds,
the solenoid term acfed to generate,negative vorticity just
above the mid-slope region; As well, the vorticity gradients
were such that transport by the'downslope wind acted to
decrease the wvorticity. However, changes due to diffusion
were positive and approximately balanced the two processes
above. In the standard run, however, a quasi-steady-state
period did not occur prior.to the formation of a counter-
clockwise cell above the trough as in Run 4.

Increased vertical velocities relative to the standard
run'resulteé in increased cooling above the valley trough.
Similarly, above the ridge, increaéed-warming through su?si-

dence was predicted fof Run 4 as the downward velocities

N

\

[}
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‘Figure 4.13a Minimum streamfunction versus time for the

standard run (Run 1) and for Run 4§
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Figure 4.13b Maximum surface downslope wind speed versus time

for‘the standard run (Run 1) and for Run ¢
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were expected to be 2 - 3 times larger than in Run 1. Since
the downsropewuxnds at a. g;ven tlme were only sllghtly
‘larger 1n Run 4 than 1n Run 1, the m1d slope temperature

— WL .

proflles were qu1te s1m11ar.

476‘Effect o£~Smaller Vertical Diffusion Coefficient - Run §
n order to examine the circulation development when a |
much smaller vertical transfer rate through'diffusion was
used, -a fifth?integration_waslexecuted. With |
<.8i}= 1072 m? s-' and Ky = 1.0 m? s%T; time steps up;to,400,f
seconds-would in- theory,'remaln stable accordlng to
crlterlq based on the: d1£fus1on terms (3 4. 9) Howeyer,’tme._i>
horlzontal advectlon term, (3.4.2), reguired a time_step of
20 seconds or less. For this integration, a time step of 10
seconds was . 1mp1emented ThlS meant‘that only 2£§we;c;5éé 5} -
CPU time were needed in order to reach 2000 seconds of model
time. o |
Through the much reduced vertical diffusion transfer,
relative to the standard run, the streamline center was kept
very close to the ground (4‘j 8 m away). As welI,-the rate-
at which the extreme streamfunction value increased with
time was much less than for Run 1. For example, after 1000
seconds, the streamfunction attained a valueé-of -2.63 m? s
and was found about 8 m from the slope.in‘Run 5 whereas
Figures 4.1 and 4.4 indicate an extreme streamfunction value

of -5.73 m* s-' to exist about 29 m from the'sldae in Run 1

at that time. However, large downslope winds were the result

-~ 3



at the surface due to the large vertical streamfunction gra-
. » v

A

éient formed tlose to the ground. Just above the ground
itselt, lower wind speeds than in Run 1 were found.

Table 4.5 indicates a quantitative"comparigon between
‘the relative-magnitudes of advection and diffusion just
above the mid-slope region. Referring again.to Table»4.3,
which is appropriate to Run 1, provides an interestlng
comparison. Horlzontal advectlon acted to cool the air above
the surface, as in Run 1, but was larger in magn1tude. The
tool air at the surface could not be transferred up ahd_away

as gquickly as in Run 1 because the vertical diffusion rates

specified were much smaller. Vertical advection was positive

(warmlland initially smaller than in Run 1 because the ver-

tical velpcities were smaller After about B00 seconds, the

ZVVertlcalfgradlent 1n temperaﬁﬂre was qu1te blg, resultlng 1n

!large p051t1ve vertlcal advect1ve changes. The sum of these

Aftwe components y1elded an overall negatlve change in potent-
Mlal temperature, or cpld ‘advection, since the horlzontal
component dominated. This‘is in contrast to the standard run
in which a layer of warm advection was produced near the
surface which was able te counteract the cooling through
‘diffusion. Horizontal diffusioh was small and negative at
this grid'lecation} but was typically an order of magnitude
larger than for the atandard run. This was due to the slower
transfer processes in the vertical which created large gra-
dient;fih the temperature gradient close to the slope.

. \ .
Vertical diffusion was negative and approximately an order

[ NP PPN



Table 4.5 Contributions to 36/3t from advection and
diffusion just above mid- slope (J=8,K=7) for Run 5 at .200
' second 1ntervals )

112

-
el v | v | 2 {28 fav. 232 x-a—zg DIF. |TOTAL
‘ oy 9z | "7 |Tydy zdz .
() |/s) | @/s) | Ck/s) [CK/s) |CK/) [Ck/e) |Ckis) [CH/e) [Cris)
of o 0 - 0 0 0 0 o 0 0
: 260. -.010|-.001 | -3x107 +2x107° |-1x107> |-6x10"" [-1x10"% |~1x10~ -1a<1_o"4
400 [~:048| 005 | ~2x107 | +1x1074[-1x107% -8x10"% | -8x107 | -2x10™ -3x107
600 ;.ils -.61-zl, ~6x10™* | 4ax107% |~ 261074 |-8x107% |-8x1075 |~ 2x10" -_4x10'l‘ '
800~.210(-.021 -13;i(j‘3 +1x10" " [-3x10 —-7><1Q—":_, ~7x107 | -1x1074| ~ax1074|
1000 (-.309|-.032 | ~2x1073[+2x1073|-3x107 [-7x1073] ~6x1073 | <1x16™| -ax10™4
{1200 =.390|-.040 | -3x107%|+3x1073|-3x107 |- 7x107%]<6x10"5 [-1x107} 4107
1460“-'.'&67 2,067 | '=4x107> +-t.x~10,'~3" _-.3<XlO".'?~—7x1.0T. -5x107>|-1x10"4[ ~4x10™%
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of magnitude smaller in Run 5 than in the standard run,

Overall,: smaller ‘cooling amounts occurred just above the

greund than in Run 1 even though advection was'a,genetaliy'

cooling influence. { »

4.7 Effect of Stability

l4 7.1 General e aa

Fleagle (1950) develepedba';ery simple model to ,
descr1be the motion of a compre551ble flu1d due to cool;ng
. - /7 .

at the bottom by contact with a radiating surface of unlform-.

slope and large extent. 'He showed that as the air
accelerated down the slope, adiabatic.heating resulted in a
~reqersal-in the preasuﬁﬁﬂgtaﬁiénty-which“tetatdea'thé flow.
As the air deeeierated~-friCtiCn deereaEed radiational
.coollng 1ncreased the pressure gradient and the cycle was N
repeated The exact nature of the analyt;cai solution |
depended on the form of the frictional term. If it was
assumed proportional to the speed, the mean velocity in the
layer close to the'ground varied periodically at first and
gradually became constant. The value of this unchanging

downslope wind was found to be a.) proportional to the net

,butgbdng.radiation b.) 1nversely proport;onal to the

'-?ﬂthlckness of the layer to. wh1ch cool1ng extends, and c.)

1nversely proportlonal to the slope of the ground
Tyson (1968) described observatlons made in

bietiermaritzburg; S. Africa, from 1961 - 1965, in which

R

f



downvalley flows up to 6.5 m s occurred'soohfafter sunset.
The'wind then steadlly weakened throughout the night as cool
Tair of marked stablllty filled the entire valley up to the
‘ghelght of the ridge. Thls showed the varlatlon in the
strength of the flow under different’ etabllltles.'
Petkovsek and Hocevar (1971), in an analytioallstudy,

also 1ncluded an ambient stratrf1cat1on and- were able . to'

e -
EE PO L

o

&demonstrate the 1mportance of strat1f1catlon in determ1n1ng !
the strength of dralnage flows. ‘They found that the more. the
;lapse ‘taté-in  the atmosphere out51de the cooled layer A
.differed from rsothermal and the closer it was to adlahatie,.

- the larger was the downslqgf velocity.

\ Mchder (1982) made a 51mple exten51on of Fleagle s
'twork in order to examine the impact of varlous' F
stratlflcatlons on the oscillatory nature of the resultant
flow. Thege results showed that the period of the
oscillation, as well as the strength of‘the flow, increased
with decreasing stability. The periods he foond varled from
20 - 90 minutes as the lapse rate decreased from 8 C° km"'
to 2 C° km~'. These perlods are somewhat larger than the
model 1ntegrat10n tlmes of ‘the valley model. presented in.

'thls theszs and are not considered here. The ‘mean downslope
flow varied from 0.06 m 's~' to 8.29 m s“»undeg,the same. ' .°

+

variatlohsuin stability, ‘above a slope of about 20 °.
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4.7.2 Neutral Case Initially - Run 6 . Con ®
In order to simulate neutral stability conditions ini-
tially, a model integration was performed using a dry
~adiabatic lapse rate. As a result, the potential temperature

field was constant everywhere initially. Accordingly, larger
/ N\ .

downslope velocities were ekpected since the effect of
decreasing etretification‘is to accelérate the drainege.
‘1_ﬁlqy}.The,stratificétibn within a valley can range fr5£7hesr
" adiabatic at sunset,~when drainage flows begin, to many
degrees per kilometer as cooi air p%ols within th; valley.
This neutral run required only 663 seconds of CPU time to
reech ZOOO'SeCQddsfdf;mgdel.t;me. .

Ih Run 6, uni-Cellular'flow was maintained out to 2000
seconds but some indication was ev1dent of the usual coun-
terclockwise cell above the-valley floor. The rate of
intensification of the streamfunction center with time is
plotted in Figure 4.14, along with the maximum downslope
.wind predicted. After about 1600 seconds, the extreme
streamfunction value tended to decrease slightly. Downslope

ebeeds.of 0.9 m s°' were obtained during this period. Up to

about 800 seconds, the predicted maximum slope wind in this

neutral case dig not d1ffer greatly from those of the stah-“‘“

>

dard run._By 1000 seconds, however the winds for Run 6 were

about 25 percent greater than for Run_1. The trajectory of

- ~the” streamllne center showed some tendency to move away from

"the slope at an earller t1me than in the standard run. From

1000 to 2000 seconds, little movement .of the center
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.occur%ed. sin;?f:from Figur¢'§:14, the'magﬁftude'df ;he
streamfunctioﬁ center continued to incf;;sé;'atbleast cut to
about 1600 séconds, increases in the vertical streamfunction
gradient (and, therefore, the horizontal velocity) were
shbstantial. | | N
- Table 4.6 gives the relative magniluées of the various
processes acting to alter the temperatures, valid‘at a grid
point which is located 4/m'above the slope (compare with
Table ¢.3 for Run 1), Horizoﬁtal advection of temperature
was negative andg approximaggly equalled that for Run 1 up to
700 seconds or so as the gradiénts and velocities involved
were about the same just above the surface, Latér, stronger
velocities pfodﬁced more cooling by horizontal advection,
relative to Run 1. Vertical temperature advection was |
positive at this grid locétion inISch cases, but was
smaller in the neutral case due to thé small temperature

-~

gradients. Total advection was a cooling process and a~ted

in the same direction as diffusion. Due to the smaller

température gradients in the horizontal and the vertical, "M

“both 6omponents of diffusion were smaller in the neutgi‘
case than in the initially stable one.fSligBtly faster cool-
" ing resulted overall. )
Differenées in the temperature profiles in the
mid-slope region were small ouf 20 800~§econds or so.
Slightly larger cooling amounts were found near fhe ground.

Aloft, less cooling was predicted in the neutral run as the

temperature gradients there were quite small. Along the
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trough boundary, much reduced coollng was found aloft

relatlve to the standard run, as well even.though the ver-

tlcal wlnd“speed~was‘substanblally larger...

¥ . g -
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"4%.7:3 More stabie“CaSé,Iﬁifially*i,Run 7o e e

4

tAnothermmodel.Lnteération;:thisftimefpnder ‘extremely

"stable cdnditions, was performed. The lapse rate used

-

“initially wae -0.04 C° m"', creating very large vertiéal

potentral temperature gradlents of about 0.05 C°m-'. In

thlS run however a- coUnterclockw1se cell developed above.

- EE QRN rrare B B o I DRI IR

. bhe valleyhfloor as in other runs after only 620 seconds,

due to the large amounts of cooilng there through vertical

‘advection. Useful examination of the results can be»made out

as far as this time, at_ieaEt; The evolution of the minimum
streamfunction value,'shown in Figure 4.14, shows clearly
that the stability has acted to retard the development of

the downslope flow (given that the streamline centerS‘were
located close togetnerf. After 600 seconds, for example, the

maximum horizontal wind speed at the sloping surface was

0.24, 0.22;.and O.1B'm s-' for the runs with initial lapse

‘rates of 0.01 C° m™' (Run 6), -0.004 C° m-' (Run 1), and

-0.04 C° m~' (Run 7), respectlvely o :
Horizontal ‘advection close to the ground was negative

and sllghtly smaller than for the less staE}e run (Run 1) as

a result of the somewnat lower wind speeds_predicted in Run

7. Vertical advection, on the other hand, was much greater

than for the lesssstable case and warm advection was the

~
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'overall'effec;: Changes throug?°d}§fu§i¢n‘were-ﬁegégigé-and;, R
yéégérally*soméwhét larger than in the standard rﬁn due to,
;”tpq_langg;wgradients involved. Overall, cooling slightly
’5 } df.fﬁé:highef:fatés of warm air advecﬁioq;- S S
7+ - -The Qariafién‘in vertical temperature gradient'with
time illustrates the differences in cooling amounts with
height in different parts of the valley. Table 4.7 gives the
ve;ticai poténtial temperature gradient at three different
Vallex locations (t;ough, mid-slope, and ridge) based on the
¢A£§m5ér5tﬁréshét;tﬁé~éréﬁna anhd” 32 m'ébobéi Results for §a¢H
of the three initial stability regimes considered in this
study are cited.VIn all cases, theqin?e;sion was stfongesg
along the ridge boundary where warming by.subsidence .
occﬁfred aloft aﬁd cooling ﬁhrough’diffusion near the ground
were t@e dominant factors. Along the trough bdﬁndary, céol-
ing occurred both near the surface and, to a leséer extent,
" further away. This caused some increase in the veftiéal tem-

perature. gradient with time, although it was not as large as

that above the ridge.

4.8 Comparison with Observations - Run 8 and others ‘
"The results presented in this section are included in

order to compare and contrast the predicted values and the

opserved. Various initial and boundéry conditions were

utilized, in accordance with the observations. Model

" verification was difficult since the total length of time of
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.Table 4.7 Vertical potential temperature gtédients (based on
-sucface temperatures and that 32 'm above) under different
lapse conditions for various locations in the valley

TROUGH

Initiai:I;pée rate | .t=0s . t-2068= t—&OOS: t=600s
(c®/m)
+0.010 (Run 6) 0  |+.0033 |+.0061 |+.0082
~0.004 (Run 1) | +.0140 |+.0173 |+.0198 |+.0211

~0.040 (Run 7) | +.0508 |+.0540 [+.0558 |+.0565

.. l. « . .. . « .. MID-SLOPE-

In¥tial lapse rate t=0s |t=200s |t=400s t-6Q6;
o (c°/m)
+0.010 (Run 6) | 0 8 +.0033 |[+.0062 |+.0085
"~0.004 (Run 1) +.0140 |+.0173 |+.0202 +.0225\

-0.040 (Run 7) +.0508 | +.0541 | +.0568 |+.0587

RIDGE

Tnitial lapse rate t=0s | t=200s t-aOOSV t=600s
(c®/m)
+0.010 (Run 6) 0 | +.0033 [ +.0063 | +.0090
~0.004 (Run 1) +.0140 | +.0174 | +.0208 | +.0243

~0.040 (Run 7) | +.0508 | +.0544 | +.0584 | +.0628
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integration was quite limited. As well, the data base was
somewhat sparse, in‘terms of the location and numbers of
observing stations (typically, three were available L both
yalley rims, plus profiles ;gcve some mid-slope region).

- However, some _useful comm;g@i\can be made.,
- The observed temperature‘and wind speed proflle'
variations were used to determlne the numer1cal values of
the many constants involved in: the model. For example, the

evolution of the hourly mean temperatures observed at the'p

Dawson Brldge 51te was used to extract surface cool1ng

LI R 4 oo ..

.-,a»u.,‘,, R R e_:l;.ua' “ > a<'u'-g‘.."

w‘rates These™ screen temperatures, obtained at 1.2 m above
the ground at the rim and mid-slope regions, are showh iu
?igure 4.15 for threevexperimental_days_ia.1?7$, The‘earlﬁer_
enset of‘cooliag along the slope, compared to the rim’ is
very evident. All seemed to indicate.hearly constant cooling
rates of 2 - 2.5 C° per hour.

During most observational evenings,‘the fluxﬂRichardsoq
_number 9u§ckly exceeéed.its critiZal limit. As discussed ia
Section 2 of Chapter»Z,’thistbrings about total suppression
of turbulent exchange in the vertical. As a result, (Km) -
was set to zero throughout these final m%del integrations.
Initially, while still under neutral cohditions, sucﬁ
exchange could be significant ju¥t as the surface-based

b . v ]
inversion is forming. In spite of this, a constant value was
used during the whole period. The vertical exchange of heat
through turbulence was effectively zero at mos&,t{mes as

well, However, a non-zero KT"was used here in order to
L3 .
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's1mulate rad1at1ve exchange processes as outl1ned 1n Sectlon

‘)‘h-‘b*o

6 of Chapter 2 A*valuevnﬁ 0.1 m gf‘; est1mated by Brunt

N
< b AR
e R 2 T A

(1934) was- used for KB L R

g . 3 "‘-vfw-,,,

. . N A

A prel1m1nary 1nvest19atlon 1nto the effect of -
~1~~e11m1nat1ng vert1cal d1ffu51on of momentum‘was made through
" a model - 1ntegrat1on hav1ng all parameters equal to those .of
Run 6 except that (Km)z was zero. Relatlve dlfferences 1n
the minimum streamfunctlon and maxlmum surface downslope
wind speed of about 10 per cent were found after 800 seconds
_of integration time. This was the hoped for result since
reasonable wind speeds and temperature changes had been\'-

obta1ned=1n Run06,bu$;hg_a‘yertacal exchange, coefficient of

1.0 m? s- ', '

Fimally, one.integration was performed using the most

approprlateuvalues of“(Km)y-f~(KT)y = 1.0 m? s-',

(K ) = (KT) = 0.0, Kp = 0.1 m? s ' and a constantAcoollng-‘

{ate of 2. 5 C° per hourﬂ'This run. was initiated under

neutral stablllty condltlons and a valley trough temperature

of 297.6 °K, and is denoted as Run 8 A counterclockw1se

cell developed high above the valley floor after about 1450

seconds,nas in the other runs. For-this reason, the amount

of eooling predicted'after only 1200 seconds‘l20 minutes)

was compared with that observed over similar time periods. et
" The reduct1on in the vertical heat transfer coeff1c1ent

((KT) + KR), resulted in small amounts of coollng away from

the surface. At the location of the m1d slope station, a

temperature proflle was obtained on three dates in 1978 at

)



(ﬂu he}ghas of up to -15. m, - dependlng on the partlcular
"t- experlment Based on the hourly" mean. temperatures,'cool1ng

[

amounts measured over the early even;ng hours from 1900 -
2100 MDT wereAcomputed Assumzng the coollng to be -
‘distributed uniformly over- this per1od one,can deriVefthe~'
) app;onanate amount of coollng in’ 1200 seconds for comparison. .
“*with. the model predlctlons. Flgure 4.16 1llustrates these
observed-mean cooling amounts at different he;gnts.alongf.
with that predicted in Run 8 above the mid-slope region.
Clearly, the agreement is'quite goodi (
At later times, after 2100 MDT, the amount of coolfng
'was.obsefved to decrease at higher levels, perhaps in
rsponse to effectlve mlxlng by the dowﬁ%lope w1nd This is
evident in the valley model results when the coollng amountﬂ
predicted at some height above the ground is examined as a
funetion'offtime: }o?'example[ the temperature change
predicted 8 m above tne mid-slope teoion.is 0:015, 0.047,
0.072, 0.090, 0.096, 0.083, 0.074 C° per 200 seconds based
Onftotal change over .successive 200 second intervals.
However, integration was not‘feasible much beyond 1200 sec-
onds.-
| In accotdance with the cooling being slowly transferred
upwards, the downslope'flow,was confined to-a relativelx'
thin layer, EOmpared to most other runst However; due to the
large horizontal temperature gradients close to the ground,

ccnsiderably'larger surface downslope wind speeds were -

predicted (with values up to about 0.9 m s-' after 1200
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seconds). It is believed that the earlier development of

127

’ .
A

stfong winds ‘accounted for the existence of a counterclock-

wise cell'aBOVe'EHe-trough through large amounts of

"'adiabatlc coollng‘there and the positive horizontal tempera-

‘ture ‘gradient thus created S T T

B4

< -

¥ .

The profile of the hor1zontal wind. component predlcted

in Run 8 above the m1d slope reglon is 1llustrated in Figure

4.17 (negative values are plotted for flow directed from the
valley ridge towerds the trough). The depth of the downslope

flow increased siightly as the wind speeds themselves

developed. Maximum speeds were predicted to occur at the

greund surface, under the 'free-slip' boundary conditions
imposed in this model. As well, the flow developed rather
quickly Comparlson with the mean observed wind shear from
the valley experlmentq is prov1ded in Figure 4. 8, Periods
during which R, was supercritical were chosen since there
would be little downward . transfer of momen t um from a
prevailing wind aloft during such times The slope wind was
measured at a height of 0. 8 m u51ng a very sensitive Gill

propeller anemometer. At heights of 1,7, 3.84, and 5.84 m,

however, Rimco cup anemometers were used to measure the hor-

izontal wind speed and these had a stall speed of about 0.25
m s°'. For this reason, only 30 minute intervals with )

average wind .speeds above this threshold were uséd. On’ the

‘two evenings considered, June 27 and July 4, 1978, mean

maximpum speeds of 0.73 and 0.57 m s-', respectively, were

found at the lowest level of measurement. The predicted
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shear above the slope region, whach is- very close to that
predlcted at the bottom of the slope where the observatlons
were made, agrees qu1te well with the 11m1ted observatlons
"shown in Flgure 4.18.

v A final model integ;ation was performed using (2.6.4), .
the eurface cooling rate based on radiational losses. A net
radiation loss per unit area pet unit time, Ry, of 40 W m-?
was used. A vertical heat transfer coefficient of 1.0 m? s '
was implemented in order to include some diffusionq} and
some radiational exchange, with Ky = 0.3 m? &-' as
determined empirically by Anfossi et al. (1976). With these
and other typical atmospheric values substituted into‘
(2.6.4), the surface cooling rate was specified to be

T(0,%) = T(0,0) - 0.075 ¢*
where t is in seconds, and T(z,t) is in °C. This curve is
plotted in Figere 4.19 out to 1200 seconds, along with the
cooling produced with the constant coocling rate of 2.5C°
per hour specified in Run B, Evidentiy, sizeable cooling is
specified by (2.6.4) at édarly integration times although it
falls off as t°*. In response to this large enforced cooling
rate initially, rapid development of the circulation
resulted in do@hé]ope wind speeds of about 1.5 m s°' after
only 600 =econds ef integration time. Shortly after this, at
about 760 seconds, a counterclockwise rell formed above the

\.
valley trough.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary
A two-dimensi~nal finite-difference grid model has. been
develored in order to simulate the observed downslope circu

Tati~n found to exist within the North Saskatchewan River

valles Grme gimplifications of the equations nf motion were
made, in-1Inding neglect of Coriolis force, use of ¥V-thenry

s
P~ de~: v ihe turbulent motions, and two-dimensional flow in a

vertiral cross section of the valley. The assumption of
incompressible non-divergent flow permitted the use of
streamfunction fields which aré ;asily related to the valley
components themselves. Tﬁe thermdd?namic equation, coupled
with the vorticity eguation, wés solved numerigally"to
predict the velocity and'temperature at each grid point.
Downslope w‘ndé are produced in direct response tg hor-
izontal pressure graaients created through specified'cooiing/

>

rates at the grouhd. Radiative heat transfer was

approximated in the thermodynamic equation as a diffusion

process, with a radiative diffusivity, K Thigs followeA

R
consideratiens involving long-wave absorption and
re-emission by water vapour and was introduced by Brunt in

the 1°930'sg, Two meanS‘of stipulatiag the surface boundary

R

T e
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was solved analyt1cally to predxct an equ1valed{ rate of
. s

-jtemperature change at the ground As thlS is the dr1v1ng force'

a

“for the development-of the valley c;rculataon, the exact nature |

of the temporal var1at1on of the ground temperature 1s most

[

. significant. . i _-__.” .

Much of the model development in' this study dealt

¢

w1th the. numerlcal aspects of the f1n1te dlfference
formulatlons of the terms in thengovernlng equat1ons~i

‘Due to problems 1nherent 1n the Dufort Frankel scheme,

vwhen applled to dxfiu51on terms 1n equatlons possess-
Q

-

ing several types of terms, its uSe was. finally abond-
oned in favour of a forwa:d-t1me, centered space |
formulatlon: Advectlve terms were handled by a forward- t1me,
upstream—space conflguratlon. Solutlon of the elllpt1c
‘partial'differential'equation relating streamfunction to'
..vortlcity was obtalned us1ng L1ebma2n sequentlal relaxatlon
Thls procedure consumed mdst of the CPU requ1rements.

Each 1ntegratobn was rnltlated wlth the atmosphere at
rest, As a result, turbulent d1f£u51on and radiation
processes dominated 1n the early :kages of each run._As\the‘
circulation developed,.advectlon became lncreasingly
'important,ldépgnding upon the particular‘application:fFor
example, one run with (Km); = (Ky)p = 1;0 m? sr‘predicted
rates ‘of change of - temperature by advectlon and’ diffus1on/rad-
1at1bn just above the slope of +3 x-10-" and ~8 x 10-* C° /s, j‘v

”respect1vely, whereas another w1th (Kp)e = (KT)z = 0 01 m? s~

.,resu%ted in values- of -3 X 10'f and -1.x 10" C—%s at long



133

integration timeSv(1200_seconds); This illustrated how ad--
vective and diffusive processes both‘str{ve’to\deStroy'any'
temperature anomalies present,'When diffusivehheatvtransfer
is hecessarily limited by the presence of marked stability,
advective prosesses_(vhose magnitudes depend partially oh
‘gradients preSent)fare proportionally increased.

The prediction ot,'or at least hint at the.eventual

. development of, aﬂcounterolookwiselflow high above the flat
valley'floor.was evident'in‘each integration. The timingfof
Jits aopearance varied from run to-run, however. This cell.
. resulted from‘differehces in vertical velocity (and thereby

amounts of cooling through ad1abat1c expan51on) -at the same

helght across the valley, with a. cooler area belng produced;

. close to the trough boundary. Through the solen01d term in

the vort1c1ty equatlon (which is proportional to the horl-
zontal gradlentlln potentlal.temperature), increasing vorti-
- city was produced, and evehtually oositive vorticity |
yalues were attalned 1n th1s rengn. A counterclockwlse‘
cell was the result. Under conditions of extreme

stability, th1s phenomenom occurred qu1te early (after
about 600 seconds) i.e. even- very low vertical w1nd

'speeds comblned with large vertical»temperature'gradients
could produce a d1fferent1a1 in coollng amounts at the same,
helght at. small 1ntegrat1on t1mes.

The sen51t1v1ty to the. part1cular geometry of the val—

~

T

ley cross- segtlon be1ng modelled was examlned In most runs,

- the upper bo ndary was,located at a helghtuof lOBAm,'close
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. to twice the valley depth. Hovever,;one'integration with a
lid at i44,m suggested thatmthe evolution of'the thermody—
namic and flow fields was not very much affected, atlleast
w1th1n the depth of the. valley. As well most‘integrations
were performed w1th1n a cross- sect1on which ,featured a flat

3valley bottom. When excluded, the flow was forced to rise
sharply at thefbase of.the slope and relatively.higher'ver_
-tical wind speeds r%fulted 'In this case, the counterclock-
wise cell developed somewhat earller. The conditions near
the sloplng surface and the rim were largely unaffected One
41ntegrat1on-was executed‘w;th the sloping surface‘at an
angle'of 0.197.radians‘(compared-with a usual value of 0.100
radians) In this case, downslope wlnds were up to 70 per
cent hlgher, dependlng upon time of comparlson. Howewver, this
difference was not maintained and, aiter 800 seconds, max imum

. surface slope winds of 0.37 m s-° were predicted along the
éteeper slope whereas in the‘standard run, they were 0.34 m s~ ',

The magnltudee of the downslope wind speeds under’a
variety of'lnitial stability reéimes were investigated. As
in other_studies'(both observational and modelling types),
the development of the valley circulation was severel;'
hindered in very stable situations. Detalled comparison wzth
experimental data obta1ned w1th1n the North Saskatchewan

'Rlver valley was difficult but generally good agreement was
found in the low 'level temperature proflles above the slope

and in the magnltudes of the slope w1nds themselves..The

' lexact time scale for the evolutlon of the valley wind and &\
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Ztemperatnre,regimes is hard to ascertain. The obsetnedswind
reversal (decreese in.speed‘ﬁitn height) was‘prediCted ; the
model (unéer conditions of 'free-slip' at the lower boun-
dary) produced_maxlmum wind speeds ceincident ﬁith.thev
ground eurface. Increased Stebility wae brought. abcnt at the
rim position, relative to the valley bbttpmy‘through
subsidence..
‘5.2 Conclusians R
The numerical model described some observed propert-
: iee of the micrometeoro}ogy of the North Saskatchewan
River valley. Alt56Ughbtotal integration times were
only 10 - 20‘m}nutes, useful conclusions regardlng the
develoément of the dewnslope'flow can be made. InéLg—
‘.rations were'catriea eut‘by.Thyer (1966) using a similar
finite-difference reprefentetion ot the'equations over
a simple_‘v-shaped'.regien'out to only 120 seeonds.j
The advent of ¢ mputational instability difficulties
may have precluzed longer integrations altheugh‘this‘was_
- not stated explicitly by the author. The 1nclu51on of a
'flat valley bottom 1nto the present model prov1des a
more ;eal1st1c 51mulathn_for applications to the North
Saskatchewen RiQer valley.
Investigations into the verious possible numerical
formulat1ons of the terms in the governing equatlons led to
the ch01ce of forward-time, upstream-space for the. advect1on

terms and centered-time, centered-space for the solenoid.

.
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térm in the“voxticity equation. The appropriate selection of

a -scheme to approximate the diffusion terms was more
d?fficult ; howeVer,:affer applying several schemes to a
51mple one-dimensional diffusion equatlon for which the
analytlcal solutlon wak derived, a two-level scheme in time

proved des1rable'1n this appllcation. This reeulted from the

‘presence of other terms in the eguations, which caused a

dlsturbance in the computatlon of diffusive changes through

_alterlng the values at intermediate times. _ !

Through var1atlons in initial stabllltles, surface
cooling rates, and vertlcal transfer coefficients, the
relative contributions of advection,pdiffusion, and
radiation could be estimated under several regimes. Résults
from one integration, which was meant to simulate observed

valley inversion conditions, clearly‘demonstrated the

importance of radiative cooling processes close to the

ground in the early stages of the slope wind development. At °

7
a location 4 m above the m1d slope region, for’ 1nstance,

radlatlonal cooling was at least an order of magnitude

larger than advectlonalrtoollng, at 200 seconds of integra-

tion time. Gradually, as the slope winds increased, changes

in temperature due to advection increased. Horizontal

advection acted to transport air away from the cooling
surface, whereas vertical advection brought down Qgrmer air
from aloft. At all times, the net result was'negative tem-
perature advection although the differences in the

. - L o
magnitudes of these two terms were small. Eventually, after
-
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1600'second$ of integration time, adveétive chéﬁges were s
about twice as large (-4 x 10 C° s-') as radiative or
4diffﬁsive'ones.

For comparlson, ‘the analytlcal scﬂutzon to the one-di-
men51onal vertical d1f£us1on equatlon, us1ng 2 d1ffus1v1ty
of 0.1 m?® s-' equal to that used in the above valley model
integration, predicted a vefy similar low—léviz:?ﬁgzeratuxe
profile.'Therefore, when adVection-processés wexe £t

included, larger'gradients resulted in increased ridiafive

4

'Y

r’cooling and it seems evident that ;adiatjve.heat tfansfer
4alone was éffective in this apblicatién.

The model predicted Quasi-steddy-state conditions
'w{thigb?bout 20 minutes of integration time with.

. development of downslope winécspeedspgfi;'6)8'm‘s“.‘Bothv
the predicted low—leQel temperature yariations with height
.and the maximum'slope winds agreed extremely well with the
limited observations made within the North Saskathewan River

valley in Edmonton,

‘5.3 Suggestions for Future Work

Due to the large amouﬁts of computer run-time and
storage costs, the number of model integrations was
obviously restricted. Expefimentation with various smaller
and larger grid 51zes was not feasible, and this may cast
some uncertainty on the validity of the results. As the.
relaxation procedure appeared-to consume the majority of the
"total cost for each integration, inGestigations into otﬁerb

v '/

P4
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numerical or analytical methodsvof solving elliptic partial
‘differential equations‘would prove extremely valuable. Even
. the Liebmann sequential relaxation technique used possesses
verious procedures by which the iteration process can be
speeded up. For example, Haltiner (1971) indicated that .
convergence was more rapid_over a N. Hemfsphere grid when
the sequence of points followed a pattern which beéan at the
outer boundary and spiralled inwards. Similar strategles may
have proven useful in this application. Also, the optimal
over-relaxation coefficient may have varied from run to run.

The use of Fickian diffusion (i.e; constant-in.space
and time) may be a major drawback in this study. The
appropriate values of K., and Ky are intimatelf related to
the varlatlons in the wind and temperature flelds, and these
contlnually evolve as the integration proceeds. Coefficients:
which depend on the local stability would be important in
this application. In addition, transfer propert.ies ciose to
the lower surface arehlikely to be much different- from those
well above tne,ground. The incorporation of radiative
transfer was 1n1t1ally considered to be beyond the scope of
the study, but a 51mp1e approxlmatlon by a d1ffuszon process
permitted its ultimate inclusion. * |

Provision of an erea‘of integration consisting of both
slopes which deflne a given valley, us1ng lower boundar;
cond1t10ns whlch simulate ear11er shading on: one slope than
ﬂon the opposite one,'would provide 1ns1ght into the

asymmetrlcal nature of the resultant flow The

&
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two?dimensionai treatment of the problem may also be
significant if the circulation pred{cted'in this study were
to be used as input ‘into a poliutant'tgansbort model such as
Ruddiph (1980). In this case, a downvalley’wind would cfeéte
a heliggl trajectory with recircuiagign of pbllutants_

possible if the source eitended up&alley some distahce.

e ¥
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APPENDiX A : STABILITY ANALYSIS FOR AbVECTION EQUKT!ON

.The forward-time, upsfream—space'finite-differehce

scheme is examined for'stability when?apﬁiied to a one-di-

i
S

mensional linear advection equation such as

ﬁ- -a—s ] ‘5"'/:’ - ’

The von Neumann or Fourier Series method is most ofteh‘used,
according to Mesinger and Arakawa' (1976). Letting
S(y=JAy,t=nAt) = S(J,n), (A.1) can be written using

finite—differences as

$(J,m+l) - SW,n) _ [S(LnL— SLJ-ZLLn)} v 0

At Ay '
OF 4 SU,nL) = (1-) S(I,m) +u S(J-1,n) , v >0 . (A.2)
where u=v At/Ay. .
Substituting a solution of the form
S$(J,n) = S(0,n) exp(iBJAy) R (A.3)
one obtains $(0,n+1) = (1-y) S(O0,n) + p S(O,n) exp (-1RAy) .. (A.4)

An amplification factor, A\, is defined such that
' 5(0,n+1) = [3] sO,0) . (A.5)

The ven Neumann criterion for stability can be stated as

2] <1 . (A.6)
Substitution of (A.5) into (A.4), and simplifiration, yields

A~ 1 -~y + p exp(~18Ay)

143
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|3]2 = (1 - u + u cos(BAy))2 + (-u sin(Bay))?’

3
a

A|2 =1 =200 =) Q- cos(BY) . (A.7)

Thus, von Neumann's criterion for stability becomés,-from
(A.6),

»

1.-2u(1 -u) (2 - cos(ﬁéY)) <1 . "(A.8)

~Since u > 0 and 1-cos(fAy) > 0, (A.8B) becomes simply
BEV o=l . ' (A.9)

This is the well4khodﬁ Céurant—Friedriehs—Lewy (C.F.L.)
criterion.

The von Neumann method of éxamining stability basgd on
?ourier Series, is valid only‘if'the coefffcient of the

difference equation (v in (A, 1)) is constant. The metbod can
be applied locaily»if the differencefgquation'has a variable
coefficient. Mitchell and Griffithg %1980) cite that thgre’
is much numerical evidence to support the contention that a
method will be stable if the von Neumann condition 15‘?
satlsfled at every point of tgé“fxgld even if derxved as
though the coefficients were consﬁant.

To obtain further 1nformatlon on .the behav1or of the
numerlcal solution, (A, %& c?%sbe examined in more detail. A
sketch of |>\|z versus u for‘ﬁarxous wave numbers is given in
Figure A.1, Within the spab;e region (|k|2:$‘1), this scheme

. 7

- - W
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‘is damping for all values of u'< 1 and the amount of damping.

%

depgnds*on the wavelength. In this derivation, however, the

true solution has a constant amplitude - this indi¢ates somfe
type of error due to the finife—difference representation.
These problems should be kept in min&fwﬁen'the results in

Chapter 4 are'considéred.

L

9 oo

f2]?2

oy

0.00 0.25 .0.50: . 0.78 1.00

)

Figure A.1 Amplification factor versus u using forward-time,
upstream-space scheme applied to advection eqguation



. APPENDIX B - STABILITY ANALYSIS FOR DIFFUSION EQUATION -

The'Dufdft*Frankel finite-differemce scheme is first

;exam1ned for stabmlity when applzed to a: -one- dlmen51onal

A

lifear d1£fus1on equation su&h as s

S
-

as K azs BRI S .
R T . (B.1)
f_The von Neumann method of stablllty analy51s is applled
fusxng the’ same notatlon ‘as 1n Append1x A, as given in an
“'fexerc1se in Mltchell and Grlffxths (1980) (B.1) can be
written in f1n1te—d1fference form as . |
- S(J’,n+l) a-+ Zr) = 2r {S(J+1 n) + s<J—1 n)} + (1 - 2r) s@J, n-l) (B 2)‘
»_where r.o= K At/Ay . Rewr1t1ng thls as a. two- level 9ystem, in
'vector form, one obta1ns SRS
s, || ‘(Zr/(1+2r.).')f_,D - @e2n)/(*2r) | | S@@,n)

QT(J,n+;)_'Z,‘,'..“‘ oo 0 T Tsm) |

, where D = centeted dlfference operator such that
 DisE,n) = 5@+, n) -s@-La) . . N
SubStztutlng a solﬂt1on of the form =f . e
| U(J,n)-U(O,n) exp(iBJAy) . . (B.4)
where L _ S
. o S
, U - P -."_.;».
TS
egndireﬁfifimgjéhe.geshyf_gibes“
© | @r/Q42r)) cos(Bay) . (1-zr>/<1+2r) ' o
S 0@,etl) = | S ; . U(O.n) (B;..,S).
B A T It ,{}0 ' <
" amplification matrix ..
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The elgenvalues, Ay, of the ampl1f1catzon matrlx above -
: Satlsfy IA -AI| = 0 and are found to be such that
‘ A 2 _ 4r cos(BAy) A - (1 2r)
: . -0
1+2r : l+2r
Solv1ng this quadratlc in- k., one obta1ns
2r c‘os.('BAy).i (-4r sin (Bay) +1_);"" ‘
.112‘ —— — - - N." . .
The von - Neumann necessary cond1t1on for stab111ty of a‘f"“""
two- level system is | o
| IA | < L ~ " (B.7)

AFrom (8.6) the maximum value of k, or A, is _seen, by
inspection to satlsfy (B 7)-£or all values of" r =K At/Ay
Thus, the Dufort Frankel scheme is uncond1t1onally stable
The forward t1me, centered space scheme Wlll be:
examlned in terms of stablllty also us1ng the von. Neumann

method This scheme, applled to (B.1), can be expressed a5>g :

S(J,n+l) = (1-21') S(J’,n) + r{S(J- .n) + S(J+1 n)} . B. 8)>' 1
where r =K At/Ay as.hefore.lsubst1tutlon of a solutloz of  '
.fthe form . B o . _'l‘f «
‘ © 5@n) = 5(0,) exp(iBJAy) o TV

‘results in, after s1mp11f1catzon,-‘

5(0,m) = 5(0,m) {(-26) + £ exp(-ishy) + expCtBay))  (A.4)
-U51ng the def1n1t1on of an ampl1f1cat1on factor given by
‘(A 5) y1elds A=1-2r+ r{up(—iaAy) + e.xp(iﬂAy)}

' Accord1ng to (A 6), nume91cal stab1l1ty results in

l"l" |1 - 4: .m?(sAy/Z)l ‘, R
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By insp_et:t”idn, this occurs with 0 S r s 1/(2_ sin’(lﬁAy);')
which leads to/the stability condition -
| | KAt 1 T
- ay? 2 ‘

r =



APPENDIX C - ANALYTICAL SOLUTION TO ONE-DIMENSIONAL
- DIFFUSION EQUATION

AN

In this aﬁpéndix, an analytical'solutiqc\fo the one-di-

mensional heat diffusion equation defined by

20 2%¢. - | S
—=K— ,0cz<H t>0 , - (3.5.1)
at 3z . S -

14

is derived, subject to the following boundary conditions.

0(H,t) = T, t > 0 ", | ) (3.5.2)

8(0,t) = 6(0,0) -=at, t >0 , (3.5.3)

and initial conditions.

8(2,0) = (T - 8(0,0)) z/H + 8(0,0), 0 € z < H

5 (3.5.5)
Following the methods for solving partial:diffeféntiai o
eguations wiﬁh non-homogeneous boundary'condi;iéhs suggestediﬁ
in Boyce and_di Prima (1965),'tﬁe foilowing transfbtmétion

is médé : o A(z,t) = 9(z,t) - B(z,t) ;. (c.1)

The differential eduation,'(3.5.1),yin terﬁs of A and B is

now
3A 3B . 324 32 , .
—+—-K——-K—=0, 0g2zg<H t>0 ’ - (c.2)
at 3t - az? ‘ 922 v

and the boundary cénditions; (3,5.2) and (3.5.3), are now

A(B,€) + B(E,0) =T, t >0 (e

/

A(0,t) + B(0,t) = 6(0,0) ~at, t >0 . (C.4)
The initial cpnditionS,"(3;5.5), becbmeﬁundér this

transformation . . ’
A(2,0) + B(2,0) = (T - 6(0,0))z/H + 8(0,0), 0 < z < H Ye.m

149
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It is now required to find some B(z,t) such t';hat B(H,t)"
‘= T and B(0,t) = 6(0,0) - at in order that the bbdndary con-
‘ditions, (C.3) and (C.4), become homogeneous. By inspection,

.this can be accom'plished if wetset -

B(z,t) = (6(0,0) - at) (1 - z/H) + zI/E .  (C.6)

With this cho1ce of B(z,t),

’ -:%-—u(l-zlﬂ) ’
 a%B
K—m= 0o - » )
. 222 : -
and so (C.2) becomes : ‘ N
2A 324 - - .
—-K—=a(l-2/B) =q(2), 0szsH, >0 (C.7)

ot 3z2

and as well, the bounda“ry» an_d,w,ini.tia} conditions ((C.3),

:"'Q(c._'g)_’, ~and (_C.S), respectively) become

» A(H,:)'- d, t>0 |, . (c.8)
A(0,t) - 0, t>0 , (C.9)

. I (C-10)

A(z,0) = 0, 05 z< H
Note that the above boundary conditions are now homogeneous

- as desire# Howe-vex", ‘the differeﬁtial e’qu’ation, (C.7), has

o

become non- homogeneous A second transformatlon is therefore

requ1red : C(z, t) = A(z t) - D(z) 2 | (C.H)

The dlfferentlal equatlon, (C.2), can now be written as

aC  32¢ . 32D ,‘, |
——K—<-K -q(z) . (C.12)

at 3z2 2z

By setting

9



151

a%b. : | o
-  =——— = q(z). 0_5 z<H t>0 s E (C.13)
] 322 S . . _
equation (C.12) becomes homogeneous as required, with the
& . .

" gicorresponding bouhda(y conditions.

b =0 o | (€.14)
Y D(0) = 0 . - | (C.15)
From (C.7), g(z) = a (1 - z/H), so (C.13) becomes
— (z/H - l) ’ o £z <H L (C-16)
3z2 K : C

The general solution to this, subject to (C.14) and (C.15),
is
a »

D(z) = — {23/6H - 22/2 + Hz/3} . (C.17)
K .

found by integrating (C.16) and evaluating the constants of
integration using the ‘boéindary conditions. Substituting this

back into (C.12) results in a homogeneous eguatiohJin C(z,t)

alone : 3C 32¢C L ’
— ~«K—=0,0sz<H t>0 , (c.18)-
3t 3z2 : ‘

with boundary conditions of

CH,e)=0,t>0 , = - (C.19)

" . C(0,t) =0, t>0 , : (C.20)
‘and inifial conditions of '
C(z,0) = A(2,0) - D(z) = - 2 (23/6H-22/2420/3) = p(z)  (C.21)

T : O<czgH
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The general solution using separation of variables
technique is found in any partial differential equations

textbook, to be

C(z,t) =} bn 'exp(-nz'nzl(t/nz) sin(anz/H) , 0O<z<H t>0 (C.22)

-~

n=]1

where 'bn = 2/H fgp(z) sin(nnz/H) dz

. |
- 2/H [::- ~ {23/6H - 22/2 - zH/3} dz
e .

= - 282/ (am) 3K
Backtransforming twice to return to the original variable,
6(z,t), using (C.22), (C.17), (C.11), {(C.6), and (C.1) gives
the general solutipn to (3.5.1) to Bé -

é(z,t) = Z {(-2H2q/(n1r)3l() exp(-nznzkt/ﬂz) _'sin(ﬁnz/H}'
- on=l :

+ — (23/6H - 2z2/2 - zH/3) + (8(0,0) - at) (1 - z/H) (3.5.6)

+ zT/H, O<sz<sH t>0
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APPENDIX D - SOURCE CODE FOR COMPUTER PROGRAM

-

Q‘;% 3

The'following source code was-developed by the author
for execut1on on the University of Alberta s AMDAHL 580/5860

computer, which operates under the Mpch1gan Termlnal System.
L

IMPLICIT REAL*8(A - H.0 - 2) .
DIMENSION THO(16.28), 20(16,28), VO(16.28), WO(16,28), TH1(16,28),
.Z1(16.28), Vv1(16,28), W1(16,28), PHI(16,28), A1(16,.28).
- A2(16,28), T(28); ZKM(16). TKM(16), A3(16,28),
Ad4(16,28), AS5(16,28), A6(16,28), FOR1(10), FOR2(10).
. ZKM2(16), TKM2( 16)
INTEGER TEND
REAL*B MAGNV, KHZ, KVZ, KHT, KVT
COMMON TTOT, FOR1, FOR2, KL, JEND, JCOR, KEND, KMID, Jus
COMMON /A/ KMZ, KVZ, KHT, KVT

“Uk)-b

c . .
c THE FOLLOWING ARRAYS ARE DEFINED OVER THE VALLEY CROSS-SECTION
- C THO - POTENTIAL TEMPERATURE AT PREVIOUS TIME STEP
c TH1 - POTENTIAL TMPERATURE AT PRESENT TIME STEP
! c . Z0 - VORTICITY AT PREVIOUS TIME STEP
c Z1 - VORTICITY AT PRESENT TIME STEP ,
c PHI ' - STREAMFUNCTION AT PRESENT TIME STEP
c VO - CROSS-VALLEY WIND SPEED AT PREVIOUS TIME STEP
C V1 - CROSS-VALLEY WIND SPEED AT PRESENT TIME STEP
c WO - VERTICAL WIND SPEED AT PREVIOUS TIME STEP
C. Wi - VERTICAL WIND SPEED AT PRESENT TIME STEP
c A1 - ADVECTIVE CHANGES TO POTENTIAL TEMPERATURE
c A2" - DIFEUSIVE CHANGES TQ POTENTIAL TEMPERATURE
R A4 - ADWECTIVE CHANGES TO VORTIGITY
C AS - DIFFUSIVE CHANGES TO VORTICITY
c A6 .- SOLENOID TERM . 1
c LOGICAL UNIT 5 : INPUT. .
c LOGICAL UNIT 6 : POTENTIAL TEMPERATURE, A1.A2
C LOGICAL UNIT 7 : STORES LAST TWO TIME STEPS FOR CONTINUATION OF
c RUN AT A LATER TIME
c LOGICAL UNIT 8 : VORTICITY, A4 A5, A6
C LOGICAL UNIT 9 : STREAMFUNCTION
¢} LOGICAL UNIT 10 : CROSS-VALLEY WIND SPEED .-
C LOGICAL UNIT 11 : VERTICAL WIND SPEED
C LOGICAL UNIT 12 : DATA FOR LAST TWO TIME STEPS WHEN RUN BEING
c CONTINUED AT A LATER TIME .
c
« CALL FREAD(S, ~'1.4R*8,21:', TEND. EPS, RAYPHA, T(1), DELTAT, KEND,
1 MAXITR) .
c . - : K
c TEND - FINAL INTEGRATION TIME DESIRED . '
C EPS - CRITERION USED TO STOP RELAXATION(PROCESSS
c RALPHA - OVER-RELAXATION COEFFICIENT
c T(1) - INITIAL SURFACE TEMPERATURE
c DELTAT - LENGTH -OF TIME STEP
c KEND - HEIGHT OF UPPER BOUNDARY (GRID. UNITS)
c MAXITR - MAXIMUM NUMBER OF RELAXAT!ON PASSES ALLOWED
c

CALL FREAD(S, '3R~a . DZ1 Dz2, ov)

bzt -~ VERTICAL GRID SIZE IN LOVER PART OF VALLEV CROSS-SECTION
DZ2 - VERTICAL GRID SIZE IN UPPER PART OF VALLEY CROSS SECTION
DY ~ HORIZONTAL GRID S12E EVERYWHERE . .

o000
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KMID =
JEND =
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KM1D
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(72.
(600.
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+.Dz1) / DI

+ DZ1) / D21
+ DY) / DY
1IRAT1O

(80. + DY) / DY

HEIGHT OF
HEIGHT AT
LENGTH OF

<

RIDGE (GRID UNITS)
WHICH VERTICAL GRID SIZE IS REDUCED (GRID UNITS)
HALF VALLEY CROSS-SECTION (GRID UNITS)

" 10

JCOR LENGTH OF

FLAT VALLEY FLOOR (GRID UNITS)

DATA G /9.806DO/. CP /1012.000/, RHO /1.200/.
ALPHA = DATAN(O.1DO)
CALL FREAD(S, ‘2R:’,

R /287.000/
GAMMA, COOLRY)

THE FOLLOWING ARE PHYSICAL CONSTANTS

G - ACCELERATION DUE TO GRAVITY (M/S/S)

CP - SPECIFIC HEAT OF AIR AT GONSTANT PRESSURE (J/KG/DEG C)
RHO - DENSITY OF AIR (KG/M/M/M)

R - GAS CONSTANT FOR DRY AIR (U/KG/DEG.C)

ALPHA - ANGLE OF SLOPING GROUND SURFACE, (RADIANS)

GAMMA - LAPSE RATE OF TEMPERATURE (C DEG/M)

COOLR - RATE OF COOLING AT SURFACE (C DEG/S)"

CALL FREAD(S. ‘21:’, KL.

‘READ (5,790) (FOR1(I).I=1
READ
CALL
ITPR

JuB)

, 10) .
(5,790) (FOR2(I).I=1,10) :
FREAD(S5, ‘I,2R*B:‘, KOPT,
= TPR

TPR, COPT)

KL. JuB - DETERMINE PORTION OF GRID TO BE PRINTED OUT BY S/R
ouUTPUT , o
KOPT - DIFFUSIVITIES ARE CONSTANT EVERYWHERE
DIFFUSIVITIES CAN BE DEFINED

USING S/R SUBK(JEND,KEND, JCOR,KVLY)

TPR - TIME INTERVAL AT WHICH MATRJCES ARE PRINTED OUT
COPT - IF,0 : INTEGRATION BEGINS T = O SECONDS

IF 1 INTEGRATION CONTIMUES ACCORDING TO LOGICAL UNIT 12

IF O
IF 1

CALL FREAD(S., ‘4R*8:’, KHZ, KVZ, KHT. KVT)
- KHZ -
kvz
KHT -
KVT -

DO 10 K =+, KEND
DO 10 J = 1, JEND = |

VO(J,.K) = 0.DO

WO(J.K) = 0.D0 -

Zo(J,K) = 0.D0 .

HL(J.K) = 0.DO

vi(\ . K) = 0.00 -

Wi(J,k) = 0.00 '

Z1(J.K) = 0.DO
CONT INUE
DD 20 U = 1,
IKM(J) = 0.D0
IF, (KOPT .EQ..
ITC = 0 -
IPY1 = © ‘
TTOT = 0.DO
GO TO 40 ~ , .
30 CALL SUBK(JEND, KEND, JCOR, KVLY) ‘

HORIZONTAL MOMENTUM DIFFUSIVITY
VERTICAL MOMENTUM DIFFUSIVITY . .
HORIZONTAL THERMAL DIFFUSIVITY
VERTICAL THERMAL DIFFUSIVITY :

JEND
20 :
1) GO TO 30 '
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>
TEMPERATURE ABOVE Tnoucu (INIT!ALLY)
IF (COPT EO 1) GO TO 130
DO 70 K = 2, KEND .
IF (K .GT. KMID .AND. (K - 1)/RATIO - (K - 1)/IRATIO .NE. 0.0) -
GO TO 70
IF (K .GT. KMID) GO TO SO
INC = 1 :
- GO TO 60 :
INC = IRATIO . -
T(K) = T(K - INC) - GAMMA * DZ1 * INC
CONT INUE
POTENTIAL TEMPERATURE ABOVE TROUGH - INITIAUWLY
Ct = G/ CP - GAMMA :
THO(1.1) = T(1) * (1000./930.) ** (R/CP)
Z = 0.00 ‘
. P = 1000. * (T(1)/THO(1,1)) ** (CP/R)
THO(1,2) = DEXP(DLOG(THO(1 1)) + C1*DZ1/((T(1) + T(2))/2.))
Z = D21
P = 1000. * (T(2)/THO(1 2)) ** (CP/R)
DO 100 K = 3, KEND
IF (K .GT. KMID .AND. (K - 1)/RATIO - (K ~ 1)/IRATIO .NE. 0.0)
GO TO 100 v
IF (K .GT. KMID) GO TO 80 . :
INC = ¢ <
DZ = DZ1 N
GO. TO 90 ' ‘
INC = IRATIO
DZ = D22

80

100

o
c
c

110
120

130

140

THO(1,K) = DEXP(DLOG(THO(1 K - INC*2)) + C1*DZ*2. /T(K - INC))
Z = (K*DZ1) - DZ1
P = 1000. * (T(K)/THO(1.K)) *+ (CP/R)

CONTINUE - . .

POTENTIAL TEMPERATYRE WITHIN VALLEY CROSS-SECTION

L

‘DO 120 K = 1, KEND

JFINAL = K - 1 + JCOR
IF (JFINAL .GE.. JEND) JFINAL = JEND
DO 110 U = 2, UFINAL - . o -
IF (K .GT. KMID. .AND. (kK - 1)/RATIO - (K - 1)/IRATIG .NE. 0.0)
) GO TO 120 , '
THO(J,K) = THO(U - 1,K) -
CONT INUE
CONT INUE
IUNIT = 6
WRITE (IUNIT,690) TTOT
CALL OUTPUT(IUNIT, THO)
IUNIT = 8 5
WRITE (IUNIT,730) TTOT
CALL OUTPUT(IUNIT, Z0)
GO TO 160 S
IUNIT = 12 : N
READ (IUNIT,850) ITC, TYOT, DELTAT )

JIF (ITC .EQ. 1) GO TO 1%0

READ (IUNIT,140) IDUM . y

‘FORMAT (I1) . N -

CALL. UNSAVE(IUNIT, THO) -

'READ (IUNIT, 140) 1DUM

CALL UNSAVE(IUNIT, 20)° L .
READ (IUNIT, 140) 1DUM
CALL UNSAVE(IUNIT PHE)
READ (IUNIT, 140) IDUM
CALL UNSAVE(IUNIT, VO) .
READ (IUNIT, 140) IDUM !
CALL UNSAVE(IUNIT, wO)

GO TO 160 >
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i 150

READ
CALL
READ
CALL
READ

CALL

READ
CALL

.READ

e NeNe]

160

-

1

170

180

200

CALL
READ
CALL
READ
CALL
READ
CALL
READ
CALL

-

(IUNIT, 140) IDUM
UNSAVE(IUNIT, THO)
(IUNIT, 140) 1DUM
UNSAVE(IUNIT, TH1)
(IUNIT, 140) IDUM
UNSAVE (IUNIT, 20)
. (JUNIT, 140) IDUM
UNSAVE (IUNIT, 21)
(IUNIT, 140) IDUM
UNSAVE(IUNIT, PHI)
- (IUNIT, 140) IDUM
UNSAVE(IUNIT, vO)
(IUNIT,140) IDUM
UNSAVE (IUNIT, V1)
(IUNIT, 140) IDUM
UNSAVE(IUNIT, wO)
(TUNIT, 140) I1DUM
UNSAVE (IUNIT, wi1)

CHANGES IN POTENTIAL TEMPERATURE AND VORTICITY

TTO07
ITTO
po 3

IF

JF
IF
IF
Dz
IN
GO
D2
IN
o]

= TTOT + DELTAT
T = TTOT
20 K = 9, KEND
(K .GT. KMID
GO TO 320
INAL = K + JUCOR - 1
(UFI G
(K .GE. KMID) GO TO 170
= D21 ’
C = 1
TO 180
= D22
C = IRATIO
310 U = 1,
IF (K .EQ.
IF (K .EQ.
IF (K .EQ. 1
IF (K _EQ.
IF (J .EQ. 1

.AND. (K -

JFINAL

.OR.

.OR. J

1)/RATIO - (K =

1)/IRATIO .NE 0.0)

.GT. JEND) JFINAL = JEND

KMID) ZKM(J) = ZKM2(J)
KMID) TKM(J) = TKM2(J) *
"EQ. J - UCOR

KEND) GO TO 220 -
.EQ. JEND) GO

+ 1) GO TO 200

T0. 230

r

INTERIOR OF REGION AWAY FROM BOUNDARIES - INITIALLY

IF (ITC .EQ. 1) GO TO’4190

DTHDY = (THO(J + 1.,K) ~ THO(J - 1,K)) / DY / 2.DO

CALL ADVEC(ZO(dﬁf 1.K). 20(J,.K), 20(J - 1 . K), DV,

HADV) :
CALL

VADV) .
A4(U.K) = -(HADV + vaDv)

DIFY = (ZO(JU - 1,K) - 2 DO*20(U.K) + 20{(y +

- -KHZ

DIFZ = (Z0(JU.k + INC) - Q'DO'ZO(d.K) + ZO(d;K -

DZ * KvZ
AS(J.K) = DIFY + DIF2

A6(J.K) = G / THO(U,K) * DTHDY
= ZO(J.K) + ‘DELTAT «~

Z1(J.K)

ZKM(J) = Z0(u.K)

ADVEC(20(u .,k + INC). 70(U.K). Z20(J.K - INC), DZ.

vo(J,K),

woldJy,x) .

t.KY) / DY / DY +
INC)) / D2 /
K

(M40 . K) + AS(U.K) + A6(U.K))

IF (K .EQ. KMID - IRATID) IKM2(J) = Z0(J,.K)

CALL ADVEC(THO(u +
_ HaDpv)

CALL ADVEC(THO(u,K + INC),
WO(JU,K), VADV)

A1(J,.K) = -(HADV + vapV)

DIFY = (THO(J -

DY * KHT

DIFZ = (THO(J.X -

/ DZ * KkvT .

A2(J.K) = DIFY+ DJF2

1,K),

THO(J . K),

THO(J - 1.K), DY, VvO(J.Kk),

THp(u.K)@HO(u.x -~ INC), DZ,

1.K) - 2.D0*THO(J.K) + THO(J + 1.K)) 7 DY 7 |

INC) - 2.DO*THO(J.K) + THO(J.K + INC)) / DZ

TH1(J,K) = THO(J,K) + DELTAT » (A%{J.K) + AZ(U.K))

TKM('J) = THO(U.K)
IF (K
GO YO 310

.EQ. KMID. - IRATID) TKM2 () ~=—FHO(dK)

156
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200

210

220

AT

‘AT

DTHDY = (TH1(J + 1,K)

CALL DIFFOR(ZO(u +

CALL DIFFOR(ZO(J.K + INC),

AS(JU.K) = DIFY + DIFZ

. A6(J,K) = G / TH1(JU,K)
CALL ADVEC(ZO(u + 1,K),

CALL ADVEC(ZO(J.K + INC),

Ad4(U,K) = -(HADV + VADV)

ZTEMP = 20(J.K)
Z0(J,K) = 21(J,K)

Z1(J,K) = ZTEMP + 2.DO * DE

)
ZKM(J) = ZTEMP

IF (K .EQ. KMID - FRATIO) ZKN?(J) = ZTEMP
CALL ADVEC(THO(JU + 1t.K),
CALL ADVEC(THO(JU.K + INC).

VADV)

A1(J.K) = -(HADV + VADV)
CALL DIFFOR{THO(JU + 1,K),
CALL DIFFOR(THO(JU,K + INC),
A2(J.K) = DIFY + DIFZ

THTEMP = THO(U,.K)
THO(J,K) = TH1(J,K)

TH1(J,K) ‘= THTEMP + 2.DO * DELTAT =

TKM(d) = THTEMP

IF (K .EQ. KMID - InATIO) Tknz(d) = THTEMP

GO TO 3t0

GROUND SURFACE - INITIALLY

IF (ITC .E®. 1) GO TO 210

ZKM(J) = ZO(J.K)

A4(J.K) = -9.999D0
A5(J.K) = -9.99900
A6(J,K) = -9.999D0

- THO(J -

* DTHODY
20(J,K),

L]

1.k)) / DY / 2.00
ZTEMP,
. ZKM(J) ,

ZTEMP,
., ZKM(J),

THTEMP, DV,

.. THTEMP.
THO(J.K) ,

et en

VO(J,K),
WO(J,K), VADV)

DZ, KVT,

e e R e e e
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INTERIOR OF REGION AWAY FROM BOUNDARIES - SUBSEQUENT TIMES

DIFY)
DZ, KVZ, DIFZ)

HADV)

LTAT * (A4(JU,.K) + AS5(U,K) + AG(U.K)

VO(d.K). HADV).

wo(J,.K),
KHT, oka)
DIFZ2)

-

(A1{JU.K) + A2(J.K)) -

THI(J,K) = THO(J,K) + DELTAf * COOLR

TKM(J) = THO(JU,K)
A1(J.K) = —s‘,sseoo
A2(J,K) = -9.999D0
GO TD.310

ZKM(J) = ZO(J.K)
A4(J,K) = -9.999D0
A5(J,K) = -9.999D0
A6(J.K) = -9.899D0
THTEMP = THO(J.K)
THO(U.K) = TH1(J.K)

TH1(J,K) = THTEMP + 2.DO * DELTAT * COOLR

TKM(J) = THTEMP
A1(J.K) = -9.999D0
A2(J.K) = ~9 99900
GO TO 310

TOP BOUNDARY OF REGION

A1(J.K) = 0.D0
A2(J,.K) ="0.DO.
A4(J.X) = 0.D0
AS(J.K) = 0.D0
A6(J,K) = 0.DO
2t(u.x) = 0.00

TH1(J,.K) = THO(J.K)
GO TO 310

M

GROUND SURFACE - SUBSEQUENT TIMES

e
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1280

260

270

280 .

290
300

310
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ABOVE TROUGH OR RIDGE - INITIALLY

IF (ITC .EQ. 1) GO TO 260 )

CALL ADVEC(ZO(J.,X + INC), ZO(JU.K), zxu(u) DZ, WO(JU,K), VABWV)

A4(J.K) = -VADV

DIFZ = (20(u.K -~ INC) - 2.D0%20(J. x) + 20(J,.K + xnc)) / D2 /

0Z * KVZ

DIFY = -2.DO * zo(u K) * KHZ / DY / DY

AS(J,K) = DIFY + DIFZ

A6(U.K) = 0.DO

Z1(J.K) = 20(J,K) + DELTAT * (A4(J.K) + Astu K))

ZKM(J) = 20(J,K) . X

IF (K .€EQ. KMID = IRATIO) ZKM2(J) = ZO(J.K)

CALL ADVEC(THO{J.,K + INC), THO(J,K), TKM(J).'DZ. WO(J.K),
VADV)

DIFZ = (THO(U.K - INC) - 2.DO*THO(uU.K) + THO(J K + INC)) / DZ

/ DZ * KkvT

IF (J .GT. 1) GO TO 240

DIFY = 2.00 * (THO(JU + 1.,K) - THO(JU.K)) / OY / DY * KHT

GO TD 250

DIFY = 2.D0 * (THO(J - 1,K) - THO(J K)) / DY / DY * KHT

A1(JU,K) = -vADV

A2(J,K) = DIFY + DIFZ

TH1(J,K) = THO(J.K) + DELTAT * (A1(J.K) +.A2(J.K))

TKM(d) = THO(J.K) )

IF (K .EQ. KMID - IRATIO) TKM2(y) = THO(J.K)

GO TO 310

ABOVE TRbUGH ORrR RIDGE - SUBSEQUENT TIMES

CALL onec(zo(d K + INC) Z0(J.K), zxu(u) DZ, wWO(u.K), VADV)
A4(u.K) = -vaADV

CALL OIFFOR(ZO(JU.K + INC), 2o(y, K), ZKM(J), DZ, KVvZ, DIFZ)

IF (J .GT. 1) GO TO 270
CALL DIFFOR(ZO(J + 1,K), ZO{J,K), -ZO(J + 1,K). DY, KHZ. DIFY)
GD 1O 280 . " ; : :

CALL DIFFOR(-ZTEMP, zo(
ZTEMP = Z0(J.K) '
AS(J.K) = DIFY + DIFZ
A6(J,K) = 0.DO
20(J,K) = 21(J,.K) : ’

Z1(JU,K) = ZTEMP + 2.DO * DELTAT + (A4(d K) + A5(d K))
ZKM(J) = ZTEMP

K). ZTEMP, ‘OY, KHZ. DIFY)

~IF (K .EQ. KMID - IRATIO) ZKM2(J) = ZTEMP e '
* CALL ADVEC(THO(U K+ INC) . THO(J,K), . TKM(J), DZ, WO(J.K),

‘NADV)

A1(u K) = -VADV :

CALL DIFFOR(THO(J,K *# INC}, THO(JU.K), TKM(J), DZ. KVT. DIFZ)

IF (U .GT. 1) GO TO 290 -

CALL DIFFOR(THO(U + 1.K), THO(U,K), THOCO™* 1.K), DY, KHT,
OIFY)

GO TO 300

CALL DIFFOR(THTEMP, THO(J.K), THTEMP, DY. KHT. DIF¥)

A2(J.K) = DIFY + DIFZ

THTEMP = THO(J.K)

. THO(JU.K) = TH1(J.K)

TH1(J,K) = THTEMP + 2.DO * DELTAT = (A1(d K) + A2(J.K))
TKM(J) = THTEMP® )
IF (K .EQ. KMID - IRATIOD) TKM2(J) = THTEMP .

CONTINUE

320 CONTINUE

IF (ITTOT/TPR ~ ITTOT/ITPR .NE. 0.0) GO TO 330 . , -
IUNIT = ¢ . ST
WRITE (IUNIT,800) : '

WRITE (IUNIT,L700) TTOT

CALL OUTPUT(IUNIT, A1)

WRITE (IUNIT,710) TTOT

CALL OQUTPUT(IUNIT, A2)

WRITE (IUNIT,6890) TTOT

CALL OUTPUT{IUNIT, TH1Y)
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-
"IUNIT = 8
WRITE (IUNIT,B800)
WRITE (IUNIT,770) TTOT
.. "CALL OUTPYT(IUNIT, A4)
¥ WRITE (IUNIT,780) TTOT
CALL OUTPUT(IUNIT, AS)
WRITE (IUNIT,B00)
WRITE (IUNIT,720) TTOT .
CALL OUTPUT(IUNIT, A6) ’ . .
c .
c RELAX TO OBTAIN STREAMFUNCTIONS
c

330 DO 380 I = .1,.MAXITR C
ERROR = 0.DD ]
00.370 K = 2, KENDMI : .
IF (K .GT..KMID .AND. (K - 1)/RATIO - (K - 1)/IRATIO .NE. 0.0)
1 . GO TO 370
JFINAL =K + JCOR - 2
JIF (JFINAL .GT. UEND - 1) UFINAL = JEND - 1
DO 360 U = 2, JFINAL : .
IF- (K .GE. KMID) GO TO 340 .
DZ = D21 o .
ING = 1 - . - ‘
GO TO 350 T K
340 0z = D22 ' e
INC = IRATIO | : , \
350 PMIOLD = PHI(U,K) ‘ . »
) _ RES = Z1(J.K) + (PHI(Y + 1.K) - 2.DO*PHI(U,K) + PHI(J - 1.K)
1 <) / py:/ oy : ~ , S . -
. RES = RES + (PHI(J,K + 1~c) = 2.DO*PHI(J=K) +. PHI(J.K - INC)
1 ) / b2 / b 2 -
: PHI(J,K) = PHIOLD + RES * RALPHA / (2. DO/DV/DY +;2.00/D02/D2)
PH = DABS(PHIOLD - PHI(J.K)) ’
IF (PH .LT. ERROR) GO TO 360
ERROR = PH ‘ .

@
JM = g . . e
A KM = K . . R
360 CONTINUE '
370 CONTINUE . : ‘ )
ITER = I : , . : .

IF (ERROR .LT. EPS) GO TO 390 »

380 CONTINUE - o .- ; -
390 IF (ITTOT/TPR - ITTOT/ITPR .NE. 0.0) GO TOD 400

IUNIT = 9 - :

IF (1Pt _EQ. O) WRITE ‘(IUNIT.810) TTOT. ITER. ERROR

IF (IP1 .EQ. 1) WRITE (IUNIT,800) - .

IF (IP1 EQ. 1) WRITE (IUNIT,740) TTOT. ITER. ERROR - . ’

CALL OUTPUT(IUNIT PHT) '

c - K
c VELOCITY FIELDS  ARE osntven FROM STREAMLINES
c .
400 DO 410 K = {1, KEND -
DO 410 U = 1, JEND »
. VO(JU.K) = Vi(J,K) ’ :

: WO(J.K) = Wi(J,K)
. 410 CONTINUE
N o VM = 0.D0
WM = 0.DO0
DO 610 K = 1, KEND . :
TF (X .GT. KMID .AND. (K - 1)/RATIO - (K - 1)/IRATIO .NE. 0.0)

1 . GO TO 510
dFINAL = K + JCOR - 1

IF (JUFINAL .GE. JEND) JFINAL = JEND‘ o -
DO 500 J = 1, JFINAL : :
’ IF (K .EQ. KEND) GO TO 460
IF (K .EQ. 1) GO TO 470 . . :
IF (K .€Q. J - JUCOR + {) GO TO 480 " ‘ s
IF (J .€EQ. 1 .OR. J .EQ. JEND) GO TO 440
IF (K .GE. KMID) GO TO 420 .

<

. . .
. : "
° . . . 4
. e

wue



pz=pz1 oo T .

ING = 1

GO, 70 430' s

INC = ,Iaarro
v1(a K) = (PHI(J K+ ch) --PHx(u K - INC)) / 2. oo 7/ Dz
Wi(JU,K) = -(PH:PJ + t,K) - PHI(V - 1,K})" / 2. Do / DY

. GO.TO0.480-

440 VI(J.K) = 0. o
. ' CI¥.(J .EQ: JUEND) GO TO 450 _ : T -
©OMA(Y, K) = -PH!(J * 1 k) / DY o L
. "GO-TO 490 - . . -
450 Wi(d,K) = PHI(J - 1,K) / Dv S : , .
GO TO 490 , o oy . T
460 vi(J,X) = 0.D0 . ';'- s - ' ‘
' Wi(J,K) = 0.D00 , ~ o L
or . G0 TO 500" ‘ , .«
. 470 SVI(J,K) = (2. DO'PHI(J K+ 1) -o0. soo-PHI(u K +2)) / 0zt 8
T IR (JLEQ. 1) V4(U,K) = 0.00 o
wi(J,K);= 0. 0o - - ; .
- GO0 TO' 490 .
- 2 480 . DPHIDY ‘= (2.DO*PHI(y - 1 x) - 0. soo-Pul(u - 2,«)),/ oY
. : : © ‘DPHIDZ = -(2.DO*PHI(J,K + 1) - 0.SDO*PHI(U.K + 2)) '/ D21 :
L s " MAGNV = DSQRT{DPHIDY*DPHIDY + DPHIDZ‘DPHIDZ) S o
' . N1(U,K) = -MAGNV *. DCOS(ALPHA). O ' I
T VIE (J . .EQ. JEND) V1(J,K) = 0. 00 . - -,
(MA(YIK) = ~MAGNV, * DSIN(ALPHA) - E
J71F (3 UEQ.. JEND) w1(u K).= PHI(d - 1.K) / uv
R < B £ 490 —
; 490 - IF (DABS(V1,(u, K)). GT VM). VM = DABS(V1(J,K))
) A B 1 2 (DABS(H!(J K)) LGT. WM) WM = DABS(W1(J.K)) = ..
2 %00 ° -Jconrxuus - o : N S .
' ‘%10 CONTINUE =~ 1 - ' . T e e
. : IF ¢ITTOT/TPR --ITTDT/ITPR* NE . o,o)-co,ro 520 ~
A o o CUIUNIT = 10 oL
A o 1F (1P EO -0) WRITE (IUNIT, 820) TTOT : ; S
: IF.(lpj} 1), WRITE (TUNIT,800) . o ‘
‘ S . CIF (IPY ;1) WRITE (IUNIT, 750) TtoT . :
N o " “CALL OUTPUT(IUNJT v1) ) »
S - JUNIT. & 11 - Bae : o
CIF (1P1 EO 0). wnxre (IUNxT aao) TTOT
IF (IPY ‘1) WRITE (IUNIT, 800) A . - ,
IF (IPY 1) WRITE (IUNIT,760) TT0T 4 ' ’ :
, CALL nu#ur(lumr w1) , oot
Cc. Ll : :
' c VORTIClTY AT SURFACE ' :
c . Lo T
826 21(1.1) =000 . . . - : : L .
U Z1(JVEND, KVLY) = 0.D00. : o s
. e DO 560 K = 1, 'KVLYM1
" : ‘" JBEGIN = 2 '
EA A < IF (K .GE. 2) UBEGIN = K - {1 + JUCOR . :
S - UFINAL =% = 1+ JCOR “ e o .
» o . .00 550 ¢ = JBEGIN, JFINAL : ‘ o
T ‘ - IF (3 .LT. JFINAL) .GP:TO $30 -
S e e <DWDY = (-1, 5oo~w1(u k) + 2. oq-w1(u -1 x) - 0. 5Do-w1(d - 2. K))
S B | AN A . . . 4
.. 77  GD TO %40 - : L ‘. . — -
'830 .- DWDY = O.DO - :
S40 - ' DVDZ = (- =1 soo-vl(d K) +2. DO*V1(y, x +1) -o0. soo~v1(d K+ 2)).
L R -/ DZY .. , .
N : _‘;“;zo(u K) = Z1(y, K) . ‘ L ; S
N T, 29(V.K) = owov - ovoz '
—\v e T 550 . .CONTINUE .
R T ;sso CONTINUE- -
& - TF (lTTOTfTPR -'!TTOT/ITPR NE o. 0) GO0 .TQ 570
S0 IUNIT =g : ‘ :
L ‘WRITE (IUNLT,730). TTOT _ ‘ PR "
L CAEL outpur(xuuxr z1) L o g
. ) fo - oo .




030 TM - TTOT - DTOLD 4

. WRITE (IUNIT,690) TM™ o -
CALL..SAVE(IUNIT, THO) ' o
. WRITE (IUNIY,690) TTOT L : o
CALL SAVE(IUNIT, TH1) : T o
" WRITE .(IUNIT,730) T™
CALL SAVE(IUNIT, ZO) - - . : : o
WRITE (I1UNIT,730) TTOT S ‘
'CALL. SAVE(IUNIT, 24) .- - C ’

_WRITE.(IUNIT, sso) TTOT, ITER, ERROR.

CALL SAVE(IUNIT, -PHI) c
WRITE (IUNIT,820) T™
CALL -SAVE(IUNIT, vO)
WRITE (IUNIT,820) TTOT
" CALL- SAVE(IUNIT, V1)
WRITE (IUNIT,830) TM - :
" CALL SAVE(IUNIT, wO) o
WRITE (IUNIT,830) TTOT. -

- CALL SAVE(!UNIT ‘W1)

. 870 STOP.
END -
SUBROUT INE ADVEC(ABO Anlo ABEL, D VEL, RES)

c- Fonwano TIME UPSTREAM-SPACE FORMULATION OF ADVECTION TERMS
IMPLICIT REAL'B(A - H,0 - z)
IF (VEL .GT. .0.D0) GO TO 10 S
‘RES "= VEL » (ABo - AMID) / o . . Y
'RETURN . .

10 RES = VEL * (AMID - ABEL) /D : :

_RETURN . L ;

END- ' o , .
SUBROUTINE DIFFOR(ABO Aulo kBEL D. AK, RES) ,
>c : FORVARQ tan CENTERED*SPACE FORMULATIQN OF DIFFUSION TERMS -

IMPLICIT REAL*8(A. - H.0 - 2) '
R = AK /0 /D iy '
‘RES = R = (ABEL - 2. DO'AMID + ABO)
RETURN . . -, ) , SN -
. 7\ ~END - - S '
{ SUBRDUTINE OUTPUT(IUNIT A) .
c -
c DATA xs wRITTEN ONTO VARIOUS LOGIGAL UNITS .

" IMPLICIT. REAL‘B(A - H,0 - z) o
‘DIMENSION A(16;28). FOR1(10), FDR2(1Q) )
“COMMON' TTQT, FOR{, FOR2, KL JEND. acon KEND, KMID., JJB
‘KK = KEND + 1 - KL . . .
J1 = -yuB. .
10 U1 = Ut + duB + 1. _
U3 .= gy + uua ST u“r\~.- sl e
J2 =ys L Celes -
"IF V2 .GT. JEND) u: - JEND TN
IF. (U1 .NEL 1) WRITE (IUNIT,20)
20 FORMAT ('1')

DO 70 K = KK, KEND . T ' S - N
. -KBACK. ‘= KENO S L ‘ R '
JIF (V1 C(KBACK =1 + ucow)) no Tp 7o

~1F (SUNIT _EQ. 6) GO TO 30
- “WRITE (1u~17 FORY)" (A(d xsacx) u-u1 uz) .

GO TO .50 . .
1F_(AC1, 1) GT 250, 0) GO’ TD 40 e . R
MR wefTe (runxr Font) (A(u Ksacx1 d-di g3y o
.. GO TO SO . a
.40 . WRITE (TUNIT.FOR2) (A(J, nsacx) u-u1 uz)‘

. 80 IF:(KBACK .GT. KMID) K = K + 2 * . .

IF (y2 - GT “{KBACK - 1 + JCOR)) U2 = KBACK - 1 + JCOR

30

4.0 IF (KBACK: .G'\' KNID) URITE (IUNIT 60)
£0 - FORMAT (’ 4 /)
70 CDNTINUE
IF. (\13 LT dEND) GO TO 10
. RETURN _ S e , o

;f; ol



o000

0000

fo0o

163

SUBROUT INE SAVE(IUNIT A) ' w

DATA 1S WRITTEN- ONTO - LOGICAL UNIT 7 FOR CONTINUATION OF RUN
AT A LATER TIME

IMPLICIT REAL*8(A = H.0 - 2)

DIMENSION A(16,28), FOR1(10), FOR2(10)

.-COMMON TTOT, FOR1, FOR2, KL, JEND, ucon KEND KMID uus

10

20

'IHPLICIT REAL*8(A - H, O -.2)

KK = KEND + 1 - P

Wi o=

DO 20 K * KK, KEND : ‘ : : o
KBACK = KEND + {1 - K : : : ?
W2 = KBACK =~ 1 + JCOR . S >

IF (Jy2 .aQ7. JEND) J2 = JEND .
WRITE (!UNIT 10) (a(v, KBACK) J=Jd1,J2)

FORMAT (1X, 16D23.15) S

IF (KBACK .GT, KMID) K = K +.2 o -
CONT INUE o
RETURN o v ‘
END, ’ _ -

SUBROBTINE UNSAVE{IUNIT, A)

DATA IS READ FROM LOGICAL UNIT 12 FOR CONTINUATION OF RUN
AT A LATER TIME . .

DIMENSION A(16,28), FOR1(10), FOR2(10) ' _
COMMON TTOT, FOR1. FOR2, KL. JEND, JCOR, KEND, Knlo Jus '
KK = KEND + 1 - KL

Jt1 =1

DO 20 K = KK, KEND”

10

20

REAL*8 KHZ, KVZ. KMT, Kyl W

KBACK = "KEND + 1 - K : . -
J2 = KBACK = 1. +:JCOR '

“IF (U2 .GT. JEND) J2. = JEND'

READ’ (IUN!T 10) (A(y, KBACK) ,J=y1, 02)

FORMAT (1X. 16D23.15) - 0
IF (KBACK .GT. KMID) K = K + 2 ' ' '

CONT.INUE

RETURN v o .

END; " : L ' ;

SUBROUT.INE SUBK(JEND ‘KEND, JCOR, KVLY) e

' DEFINES DIFFUSIVITIES (ALTER AS.DESIRED)

IF K = K(Z)~ HOHEVER GOVERNING EOUATIONS MAY CHANGE
o =g , i

IMPLICIT REAL‘B(A - H 0 L
b’% :

COMMON. /A/ KHZ, KVZ, KH??NKVT

"KHZ = 1.DO

KHT = 1.DO o : : :
KVZ = 0.D0 - « - - , _ ‘ -

KVT =-Q.DO O-"”

RETURN -
END



570

'~ 600

. 840

IS CFL CRITERION ‘SATISFIED ?

IF (IP1

S It w4

580
580

IP1 =0

€10

GO TO 580,

.

Q..1) GO TO %80

a

AP

IF (VM EQY b O .OR. VM LEQ. O. 0) GO 70 640
IF (VM. GT 4.0 .OR." WM .GT. 4. 0) GO TO 840

DELTY =
DELTZ "‘Uz

VM / 2.00.* 0.8D0

17w/ 2.00 * 0. 800

. DTOLD = DELTAT - .
IF (DELTAT .LT. DELTY .AND: DELTAT LT,

. DELTAT = DELTAT./ 2.DO - !

.WRITE (6,610)".DELTAT, TTOT

"DELTA T REDUCED TO', .F6.2,

" WRITE (IUNIT ,690) TTOT

O CALL” SAVE(IUNIT “THO)
.WRITE (IUNIT, 730) TTOT - T
CALL SAVE(IUNIT z0) . g

“WRITE: (IUNLT,810) TTOT,
GALL SAVE (TUNIZ,
. WRITE (IUNI%;820) TTOT | - s
‘CALL. SAVE( IUNIT. . VO)

ITER, ERROR- -
PHI) R

.0, WRITE (IUNIT,830) TTO0T . - ¥

CALL SAVE(IUNIT UO) #‘lv

. :60.T0 870 .

!6;;72).éo T0 620"

161

£

FORMAT (* -, ‘AT YIME =, F10.2)
IF (DELTAT .LT. 1.D0) GO- TO a4o S :
GO TO 600 : '
620  1F. (DELTAT -EQ.- DTOLD) o ToO sao B
TITC =0 :
DO 630 K = 1, KEND
/DO €30 J = 1, JEND
THO(J,K) = TH1(J,K)
e Z0(JLK) = Z1(J,K)
.t T VO(JLK) = vi(U,K)
¢ WOCJ,K):= W1(y,K)
€30 CONTINUE - : :
 IF (TTOT .GE. TEND) GO To0 840
GO TO 160 -
640 ITC .= 1, .
" IF. (TTOT .GE. TEND) GO TO aao )
o GO T0. 160 . - Cee S -
. 650 FORMAT (' ’.‘”HEIGHT(M,) PRES(MB.) _TEMP(DEG K) POT TEMP(D
© VEG K)7) ‘ : T '
660 FORMAT (2x, FS.1, 10X, FS.1, 2(6XF11.7)) '
670 FORMAT (’~, 'AFTER" 13, 'ITER., uax ERROR = 4, Fi2. 10
K} "+ AND ‘OCCURS AT (u K) = s ';'; 13, )
680 -FORMAT- (1) .
690 FORMAT ("1’ ‘POTENTIAL TEnPERATunE (THETA) AT TIME = *, F7.2)
700 -FORMAT (' ‘. ‘ADVECTION TERMS (THETA) AT TIME = ', F7.2) :
710 FORMAT. (“1’, ‘DIFFUSION.TERMS (THETA) AT. TIME =.’, F7.2)
720 FORMAT (' ‘-, . "BUOYANCY TERM (Z) AT TIME = *, F7. 2)
730 FORMAT (’1’. ‘VORTICITY (Z) AT TIME = /, ¥7.2)" . .
740 FORMAT_ (- ';-'STREAMFUNCTION'(PHI) AT TIME =, F7.2; * (AFTER /.,
1 -13,- " ITERATIONS,.ERROR = *, 'F12.10, ‘)’)
750 FORMAT (* , 'CROSS-VALLEY WIND SPEED (V) AT TIME = *, F7. 2)
760 FORMAT (‘ .  *VERTICAL WIND SPEED (W) AT TIME = /, F7.3) :
770 FORMAT (* ‘., ‘ADVECTION TERMS (2Z) AT TIME = ‘, .F7.2)
780 FORMAT (‘1”, ’DIFFUSION Tsnus (Z) AT TIME --f.«E7.2)
790 FORMAT (10A8) \ ‘ .
‘8OO FORMAT (/). ‘ . L
810 FORMAT (‘' 1’ 'STREAMFUNCTION (ﬁux) AT TIME = *, F7.2, * (AFTER ',
LT b 13, * ITERATIONS, ERROR = ', F12,40, ‘)}r)- o R
820. FORMAT (17, ‘CROSS-VAULEY WIND SPEED (V) AT’ TIME = *, F7.3):
830 FORMAT.(’'1‘, ‘VERTICAL UIND SPEED (w) AT TIME = MT2)
JIUNIT = 7, . S
S WRITE, (IUNIT 850) 17c, TTOT, DELTAT ﬂ-_;ﬂ._ - .
/850 FORMAT (11, 2F7.2) : . - ‘
o IF (ITC .EQ. 1)<GO.TO ‘860 ' .



