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Abstract

Learning auxiliary tasks, such as multiple predictions about the world, can

provide many benefits to reinforcement learning systems. A variety of off-

policy learning algorithms have been developed to learn such predictions, but

as yet there is little work on how to adapt the behavior to gather useful data

for those off-policy predictions. In this thesis, we investigate a reinforcement

learning system designed to learn a collection of auxiliary tasks, with a behav-

ior policy that learns to take actions to improve the auxiliary predictions. We

highlight the inherent non-stationarity in this continual auxiliary task learning

problem, for both prediction learners and the behaviour learner. We develop

an algorithm based on successor features that facilitates tracking under non-

stationary rewards and propose how behaviour can be specialized to learn

areas of interest for a prediction learner. We conduct an in-depth study into

the resulting multi-prediction learning system.
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My thesis is based on my joint paper (McLeod et al., 2021) which is currently

under review for NeurIPS 2022. The experiments shown in this thesis are
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Chapter 1

Introduction to Multiple
Prediction Learning

Determining which algorithms best support an agent in learning auxiliary tasks

and how an agent can adapt its behaviour to enhance its learning is an under

researched problem in reinforcement learning. Building our understanding of

this area is important to reinforcement learning for two reasons. In many cases

agents are improved by learning auxiliary tasks. Moreover, an agent’s ability

to learn many auxiliary tasks in parallel holds promise in representing an

agent’s general purpose knowledge since auxiliary tasks are an expressive way

to capture their knowledge. The following introductory paragraphs explain

these two reasons in more detail and summarize my contributions.

There are a plethora of uses for agents learning information beyond what is

described by the rewards the agent is receiving. In deep reinforcement learn-

ing, there are many self-supervised signals that can be leveraged by an agent.

Jaderberg et al. (2017) found that allowing an agent to predict the sign of the

reward that it would experience improved its efficiency in learning and added

robustness to its hyperparameters across a range of Atari environments. Pre-

dicting terminal states is another domain independent signal that an agent

can learn. Kartal et al. (2019) found that having an agent make terminal

predictions dramatically improved its performance in some video game envi-

ronments. Mirowski et al. (2017) formulated additional tasks involving depth

prediction for an agent which resulted in improved navigation policies for an

agent’s main task. Passively learning auxiliary tasks can improve an agent’s
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performance even if the final predictions are not used.

Auxiliary tasks forming a predictive model of the environment can guide

an agent’s exploration of large environments because the predictions can be

used to identify novel or interesting states (Burda, Edwards, Pathak, et al.,

2019; Burda, Edwards, Storkey, et al., 2019; Pathak et al., 2017; Stadie et al.,

2015). Predictions by an agent can also be used as part of state represen-

tation itself. This can improve the generalization (Schaul & Ring, 2013) as

well as performance of an agent on partially observable problems (Schlegel

et al., 2021). An agent uses successor representation to efficiently transfer

knowledge between tasks and dynamically synthesize complex new behaviours

(Barreto et al., 2019; Barreto et al., 2018; Barreto et al., 2017; Barreto et al.,

2020). Successor representation enables an agent to accomplish this in part by

learning many different prediction tasks that model future feature visitations.

Riedmiller et al. (2018) shows an agent can leverage a given set of auxiliary

tasks and policies to efficiently explore the environment and learn complex

behaviours.

Auxiliary tasks can generally be formulated as general value functions

(GVFs). GVFs enable the agent to formulate and answer specific questions

about their environment. Capturing a large body of knowledge in an agent’s

GVFs will likely require the agent to learn GVFs efficiently. For example, Mo-

dayil et al. (2014) studied a robot that follows a fixed data collection policy

and learns about its future experiences. The robot learns through short term

predictions about its future sensorimotor experience ranging from 0.1 seconds

to 8 seconds into its future. Thinking more broadly, Mark (2016) outlines

an architecture for a generally intelligent agent in a thought experiment. In

his thought experiment, the agent becomes generally intelligent by building

layers of abstraction beginning with basic GVF questions and progressing to-

wards ever more complex questions about its environment. The efficiency of

learning GVFs in parallel will undoubtedly play an important role in future

developments.

Recognizing the growing need for agents to be able to effectively adapt

their behaviour to learn auxiliary tasks, we address this problem in the multi-
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prediction setting. We build off of the work of Linke et al. (2020) who studied

the multi-prediction problem in the bandits setting. We use their framing of

the problem where each auxiliary task learner generates an intrinsic reward

approximating their learning progress. By having a behaviour that maximizes

the intrinsic reward, we can have a learner that adapts its behaviour to com-

plement parallel auxiliary task learning. We leverage the key finding in Linke

et al. (2020) that simple intrinsic rewards like absolute weight change can be

effective if the auxiliary task learners are introspective. We build on this work

by moving beyond the bandits setting and addressing the challenges that are

raised in Markov Decision Processes (MDPs).

The combination of off-policy learning, function approximation, non-stationary

rewards, multiple learners, intrinsic rewards and the dilemma of exploration

versus exploitation are challenging problems that have interacting effects. This

work highlights the importance of building and analyzing complete reinforce-

ment learning systems. The contributions of this thesis are:

1. The identification of how successor features can address the non-stationary

problems faced by a multi-prediction system.

2. An interest reweighting scheme to allow specificity in which regions of

the environment are valuable to learn for each auxiliary task.

3. An empirical evaluation across a range of environments to test the ideas

presented.

4. The first demonstration of a multi-prediction learning system where the

agent’s objective is to adapt its behaviour to improve parallel prediction

learning in the MDP setting under function approximation.

This thesis is organized into nine chapters. Chapter 1, our introduction,

provides motivation and outlines the contributions of this thesis. Chapter

2 reviews the necessary concepts to understand the work discussed in this

thesis. Chapter 3 formalizes the multi-prediction problem and offers a high

level approach to the solution method. Chapter 4 discusses the related works.
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Chapter 5 discusses the inherent non-stationarities in learning faced by an

agent in multi-prediction learning. It also highlights strategies to mitigate the

negative repercussions of these non-stationarities. Chapter 6 gives a detailed

description of the different environments. Chapter 7 demonstrates the exper-

imental results central to this thesis. Chapter 8 discusses extensions of the

ideas outlined to make our approach more practical in a larger scale system.

Chapter 9 provides a summary of contributions and possible future research

directions to take this work.
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Chapter 2

Background on Reinforcement
Learning

2.1 Basics of Reinforcement Learning

Reinforcement learning is a framework where the decision maker learns in an

environment through trial and error. The decision maker typically attempts

to maximize a reward signal found in the environment. Its learning process

is formalized by considering the environment as a Markov Decision Process

(MDP). The decision maker, commonly referred to as an agent, learns to

interact with the environment over a set of discrete timesteps, t ∈ N. An

MDP is described by (S,A,R,p): S is the set of possible states the agent may

find itself in, A is the set of possible actions the agent may take, R is the set

of rewards the agent may receive, and p governs the dynamics of how one state

leads to another.

The agent learns as it interacts with its environment by taking action

At ∈ A in state St ∈ S at timestep t and receiving a reward Rt+1 ∈ R. The

probability of taking action At in state St is governed by the policy π(s, a),

where π : S ×A → [0, 1] and
∑

a∈A π(s, a) = 1, ∀s ∈ S. After the agent takes

action At, the agent receives a reward Rt+1 and the environment transitions

to St+1 according to p : S ×A×R×S → [0, 1] where p(s′, r|s, a) = Pr{St+1 =

s′, Rt+1 = r|St = s, At = a}. The Markov property asserts that the conditional

probability distribution of the next state and reward only depends on the

current state and action. The dynamics can be fully summarized by p(s′, r|s, a)
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because no additional information can be gained from previous states and

actions. The reward is a signal provided by the environment and relates to

the goal that the agent is trying to accomplish. Often, the agent attempts

to maximize the reward signal according to some transition-based discount

function γ : S ×A× S → [0, 1] (Martha, 2017). The sum of rewards received

by the agent and weighted by the transition-based discount function is called

the return and is defined as,

Gt
def
=

∞∑
k=0

(
k−1∏
i=0

γ(St+i, At+i, St+i+1)

)
Rt+k+1.

For the ease of readability, we will shorten γ(St, At, St+1) to γt+1. The

transition-based discounting function reflects the trade-off in value of receiving

a reward immediately or at some time in the future. The expected discounted

return is the value function,

vπ(s)
def
= Eπ[Gt|St = s].

The value function is conditioned on the agent taking actions according to

policy π from state St. The value function gives an estimate of how beneficial

it is for the agent to be in a state. States that have a higher expected return

are more beneficial to the agent. The value function does not tell the agent

which action to take to reach high value states. The action-value function

enables the agent to learn the expected return based on taking an action At

and subsequently following policy π. This helps the agent determine which

action to take by allowing the agent to select the action with the highest

state-action value. The state-action value function is defined as,

qπ(s, a)
def
= Eπ[Gt|St = s, At = a].

2.2 Linear Function Approximation

In Section 2.1, we did not consider the particulars of how the value function is

estimated. This is an important consideration that has theoretical and prac-
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tical implications. The simplest case is to uniquely represent every state and

learn the value function for each state. This is called a tabular representation

and can be visualized as though the value estimate for each state can be di-

rectly looked up in a table. Tabular representation is not suitable for large

or continuous MDPs as generalization between states is required in order to

have estimates across the state space. Function approximation for the value

estimate is a way to induce generalization across states. A state is represented

by a feature vector x(St) ∈ Rd, where d is the number of features. In the

case of learning action values, the feature vector may be a state-action feature

vector x(St, At) ∈ Rd. Linear function approximation enables generalization

by calculating the value estimate, vπ(s), as a linear combination of the feature

vector for a state. The weights, w ∈ Rd, are parameters learned by the agent to

perform the linear transform of the state feature vector to the value estimate.

The value function is estimated as v̂(s,w)
def
= 〈x(s),w〉. Correspondingly, the

action value function is estimated as q̂(s, a,w)
def
= 〈x(s, a),w〉. For simplicity

in the algorithm updates, we will not show the weight vector as an inputted

argument to the value function estimate or action-value function estimate as

it is understood that the weights, w, are used in value estimation in the linear

setting.

2.3 Tile Coding

Tile coding is a method for feature construction from a multi-dimensional

continuous observation. The observation space is partitioned into individual

receptive fields called tiles. If the observation is within the receptive field,

the corresponding feature is considered active and has a value of 1. Each

of these partitions of tiles is called a tiling. When only one tiling is used

for feature construction, this is called state aggregation as many observations

are clustered into a single feature that is represented with one active unit.

The strength of tile coding is when multiple tilings are offset by one another.

This allows generalization in the feature representation and specificity in the

representable functions. Figure 2.1 shows a sample tile coding visualization
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Figure 2.1: Sample tile coding of a 2D circle with two tilings. The red dot is
the agent location and the bolded square boxes around the agent demonstrates
the active tiles in each tiling.

where the environment is the shaded grey circle and two tilings are used to

build the feature representation.

2.4 Temporal-Difference Learning

To get an estimate of Gt, we do not need to wait for the trajectory to end.

Instead, we can make use of temporal difference (TD) learning where the

estimate of Gt is completed by using value estimates in other states. The use

of updating value estimates by their successor states is called bootstrapping.

Bootstrapping can enable learning at each time step since the return can be

estimated by the reward of the transition and value estimate of the successor

states. The estimated return is called the TD target. The error between TD

target and current value estimate is called the TD error and is,

δt
def
= Rt+1 + γt+1v(St+1)− v(St)

and the case of action values,

δt
def
= Rt+1 + γt+1q(St+1, At+1)− q(St, At).

In this thesis, we will show the algorithm updates under the linear function

approximation setting. The reduction of algorithm updates to the linear func-

tion approximation setting is done since all of the environments studied were
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either in the tabular setting or linear function approximation setting. The

algorithm updates for the tabular setting can be trivially retrieved from the

linear function approximation updates by considering the state feature vector

x(St) as a one hot encoding of the state space, where the active feature is the

current state.

TD(0) is a learning algorithm that uses the TD error to learn per time

step.

Algorithm 1 Linear TD(0) Update

δt = Rt+1 + γt+1v̂(St+1)− v̂(St)
wt+1 = wt + αδtx(St)

While this algorithm converges to the TD fixed point, it is biased by the

use of bootstrapping (Sutton & Barto, 2018). Instead of backing up our TD

target from the immediate next state, we can backup from a return estimate

that uses a mix of the Monte Carlo return and the bootstrapped return. The

trace parameter λ : S × A → [0, 1] assigns the amount of bootstrapping in

the return estimate per state and action. For the simplicity of notation, let

λt
def
= λ(St, At). The λ-return, Gλ

t , is the weighted return with the recursive

relationship,

Gλ
t

def
= Rt+1 + γt+1

(
(1− λt+1) v̂(St+1) + λt+1G

λ
t+1

)
.

In the case of an action value return estimate in Expected Sarsa (ESARSA)

form,

Gλ,a
t

def
= Rt+1 + γt+1

(
(1− λt+1)

∑
a′∈A

π(a′|St+1)q̂(a
′|St+1) + λt+1G

λ,a
t+1

)
.

.

To enable learning at every time step, we can use an eligibility trace vector,

zt. The eligibility trace maintains a decaying history of past gradients to enable

the agent to approximate the λ-return such that the final weights updated

through eligibility trace approximate the final weights by updating with the

λ-return.
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The TD(λ) algorithm uses the eligibility trace parameter and is shown

below.

Algorithm 2 Linear TD(λ) Update

zt = γtλtzt−1 + x(St)
δt = Rt+1 + γt+1v̂(St+1)− v̂(St)
wt+1 = wt + αδtzt

ESARSA(λ) is an online learning algorithm that uses the λ-return and

eligibility traces to learn the state-action values.

Algorithm 3 Linear ESARSA(λ) Update

zt = γtλtzt−1 + x(St, At)
δt = Rt+1 + γt+1

∑
a′∈A π(a′|St+1)q̂(a

′|St+1)− q̂(St, At)
wt+1 = wt + αδtzt

The algorithms discussed so far learn the value function for the reward

provided by the environment. The reward is derived from a source external

to the agent, and can appropriately be called the extrinsic reward, rext. An

intrinsic reward, rint, is a scalar reward that is generated by a process of the

agent itself. The usage of the two reward signals are not mutually exclusive

and can be incorporated into any value function learning method by adding

the two rewards Rt = Rext,t+βRint,t, where β is an optional scaling parameter.

2.5 Off-Policy Learning Algorithms

The agent may want to learn value functions conditioned on a policy that

the agent is not acting on. Off-policy learning addresses this restriction by

letting the agent learn about a policy different than the one being enacted.

The policy the agent acts on is called the behaviour policy, denoted by b(s, a) :

S × A → [0, 1], and the policy that is different than the behaviour policy is

called a target policy, denoted by π(s, a) : S × A → [0, 1]. The two policies

can be unrelated as long as the behaviour policy has coverage over the target

policy; i.e: b(s, a) > 0 ∀s ∈ S if π(s, a) > 0.

While we can easily substitute the target policy for the behaviour policy

in the updates, we still need to correct for the action distribution according
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to the expectation of the value function. This correction is called a poste-

rior correction and it is commonly done through importance sampling. The

importance sampling ratio, ρt for the transition (St,At,Rt+1, St+1) is

ρ(At|St)
def
=
π(At|St)
b(At|St)

.

The TD(λ) learning algorithm can be converted into an off-policy learning

algorithm by scaling the eligibility trace by the importance sampling ratio

(Sutton & Barto, 2018).

Algorithm 4 Off-Policy Linear TD(λ) Update

zt = ρt(γtλtzt−1 + x(St))
δt = Rt+1 + γt+1v̂(St+1)− v̂(St)
wt+1 = wt + αδtzt

In this thesis, we use three off-policy learning algorithms; Tree-Backup(λ)

(TB(λ)), a variation on Emphatic TD(λ) that uses TB(λ) updates instead of

the traditional TD(λ) updates, and a variation on Least Squares TD(λ) called

LSTB(λ) which uses a Tree Backup(λ) update. We will present each algorithm

in the linear function approximation setting.

Tree-Backup(λ) is an off-policy learning algorithm that does not use im-

portance sampling directly (Precup, 2000). This can help ensure the variance

updates are not too large. Algorithm 5 shows the learning update.

Algorithm 5 Linear TB(λ) Update

zt = γtπ(At|St)λzt−1 + x(St, At)
δt = Rt+1 + γt+1

∑
a′ π(a′|St+1)q̂(St+1, a

′)− q̂(St, At)
wt+1 = wt + αδtzt

The ETB(λ) algorithm is from Sutton et al. (2016) but modified to use

TB(λ) instead of TD(λ). The strategy to derive this is to rely on the cor-

respondence between TB and TD, where TB is simply a version of TD with

variable trace parameter, λt = b(at|st)λ, as highlighted in Mahmood et al.

(2017). Here, we use the same replacement of λt in ETD(λ) to get ETB(λ).

F0 is initialized to 0 at the start of an episode.
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Algorithm 6 Emphatic Linear TB(λ) Update

Ft = ρt−1γtFt−1 + It(St, At)

Mt = ρt

[
λb(At|St)It(St, At) +

(
1− λb(At|St)

)
Ft)
]

zt = γtπ(At|St)λzt−1 +Mtx(St, At)
δt = Rt+1 + γt+1

∑
a′ π(a′|St+1)q̂(St+1, a

′)− q̂(St, At)
wt+1 = wt + αδtzt

The Least Squares TD(λ) (LSTD(λ)) algorithm works a bit differently than

the TB(λ) or ETB(λ) algorithm. Instead of iteratively applying a gradient

estimate to converge to the TD fixed point, LSTD(λ) directly computes the

TD fixed point from the set of data experienced over the lifetime of the agent

(Sutton & Barto, 2018). We use the linear LSTD(λ) algorithm (Bradtke &

Barto, 1996) for off-policy learning that uses the Tree-Backup estimate rather

than TD.

Algorithm 7 LSTD(λ) with TB trace updates

ρ← π(St, At)
z← γtλtρz + x(St, At)
b← b + 1

t+1
(Rt+1z− b)

u←
∑

a′∈A π(St+1, a
′)x(St, a

′)

v←
(

(x(St, At)− γt+1u)T A−1
)T

A−1 ← t
t−1

(
A−1 + A−1zvT

t−1+vT z

)
wt+1 ← A−1b

2.6 General Value Functions

GVFs are an abstraction of the traditional value function found in reinforce-

ment learning. GVFs separate the learning of a value function from the envi-

ronment’s reward and discount function (Sutton et al., 2011). The abstraction

from value function to GVFs requires three components: a termination func-

tion, a target policy and a cumulant. These components do not need to be

related to the task of the main problem so that an expressive range of predic-

tions can be formulated. This section shows how the components of a value

function are abstracted to create GVFs.
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A value function tries to estimate the expected sum of discounted rewards

from a given state. This definition prevents the agent from learning any aux-

iliary variable found in its sensorimotor experience because it is tied to the

environment reward. A GVF extends the idea of reward in a value function

to being any signal found in the agent’s sensorimotor experience. In GVFs,

the value function can be an expected discounted sum of any function of the

sensorimotor experience based on the state transition (St, At, St+1). This of-

fers versatility in what the agent can learn. The signal that is being learned

is called a cumulant. A cumulant, c : S ×A× S → R, maps state transitions

to a scalar value, where Ct+1
def
= c(St, At, St+1).

The modified value function is still unnecessarily restricted to the base

problem’s termination function. In order to express a larger set of learnable

functions, we can relax this restriction by defining a termination function,

γ : S × A × S → [0, 1] specific to the GVF. The termination function of the

GVF is not constrained by the base problem’s discount function. It retains

the same subscript notation with γt+1
def
= γ(St, At, St+1). To completely shift

to GVFs, the policy should not be constrained by the behaviour of the agent.

With π being the target policy of the GVF, the value function the GVF is

learning is,

vπ,c,γ(St)
def
= Eπ

[
∞∑
k=0

(
k∏
i=1

γt+i

)
Ct+k+1|St = s, At:∞ ∼ π

]
. (2.1)

2.7 Successor Features

A value function expresses the discounted sum of rewards from the states vis-

ited according to policy π. The core idea of successor features is to disentangle

the return estimate of a value function into an estimation of the rewards from

a state and the expected future state visitations. While the end goal is to

estimate a value function, separating this knowledge can be a powerful tool.

Successor representation was first proposed by Dayan (1993) for the tabular

setting and was extended into the function approximation setting (Barreto et

al., 2017). The successor features ψ(s, a) are the expected discounted sum of
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the feature vector φ(s, a, s′) that the agent will experience according to policy

π. Any TD learning method can be used to learn ψ(s, a). Expressing ψ(s, a)

recursively shows the connection to TD learning methods as follows,

ψ(s, a) = Eπ[φ(St, At, St+1) + γt+1ψ(St+1, At+1)|St = s, At = a].

To use successor features in estimating value functions, the reward needs to

be estimated for a given state. Let r(s, a, s′) be the reward from transition

s to s′, then the estimation of the expected reward from state φ(s, a, s′) is

r(s, a, s′) = 〈φ(s, a, s′),w〉, where w is the learned weights through any su-

pervised learning method. To estimate the value function at φ(s, a, s′), it is

calculated as: Q(s, a) = 〈ψ(s, a),w〉. If parts ψ(s, a) and w are well learned,

it is equivalent to Q(s, a). For convenience of notation, let φt
def
= φ(St, At, St+1)

and ψt
def
= ψ(St, At). The equivalence to Q(s, a) can then be shown as,

〈ψ(s, a),w〉 = Eπ[〈φt,w〉|St = s, At = a] + Eπ[γt+1〈ψt+1,w〉|St = s, At = a]

= r(s, a, s′) + Eπ[γt+1〈φt+1,w〉|St = s, At = a] + Eπ[γt+1γt+2〈ψt+2,w〉|St = s, At = a]

= r(s, a) + Eπ[γt+1rt+1|St = s, At = a] + Eπ[γt+1γt+2〈ψt+2,w〉|St = s, At = a]

= . . . = Eπ[r(s, a) + γt+1rt+1 + γt+1γt+2rt+2 + . . . |St = s, At = a] = Q(s, a).

Therefore, the value function can be expressed through the reward weights,

w, and the successor features, ψ. There are two things to highlight. Firstly,

the successor features can be a function of s′ as that is a quantity known

during learning. Secondly, φt is a feature vector for estimating the reward. A

different feature representation can be used to estimate ψ(s, a).

2.8 Step Size Adaptation

Many learning algorithms work by receiving a gradient sample of the objective

they are trying to minimize or maximize. The learning occurs as parameters

are adjusted according to the sampled gradient. A prototypical example is

semi-gradient TD(0) update shown in Algorithm 1.The step size α directly

scales the magnitude of the change of the weights.

14



A simple choice for α is to use a fixed step size for all features over the

entire learning process. However, we can do better if we allow the step size to

change over time. Meta-descent methods adjust the step size in order to further

improve performance. Jacobsen et al. (2019) showed the effectiveness of meta-

descent methods in the linear function approximation setting. A key insight

gained from Linke et al. (2020) is that step size adaptation in the GVF learners

can be essential for enabling learners to be more introspective. In Linke et al.

(2020), they use a meta-descent method called Auto for the bandits setting.

The Auto algorithm, shown in Algorithm 8, is an iteration of the Autostep

algorithm by Mahmood et al. (2012) that is adapted to the reinforcement

learning setting. The modifications from the Autostep algorithm are from

personal communications with an author of the original work Mahmood et al.

(2012) and are not a contribution of this thesis.

Algorithm 8 Auto Update

n = n + 1
τ
α |φ| · (|h · δφ| − n)

for all i such that φi 6= 0 do

4βi = clip

(
−M4,

∣∣∣∣hiδφini

∣∣∣∣)
αi = clip(κ, αie

µ4βi ,
1

|φi|
)

end
if αTz > 1

∀i such that zi 6= 0: αi = min(αi,
1

|z|1
)

end
θ = θ + α · δφ
h = h(1− α · |φ|) + α ˙δφ

where:

• µ is the meta-step size parameter.

• α is the step sizes.

• δ is the scalar error.

• φ is the feature vector.

• z is the step-size truncation vector.

• θ is the weight vector.
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• h is the decaying trace.

• n maintains the estimate of |h · δφ|.

• τ is the step size normalization parameter.

• M4 is the maximum update parameter of αi.

• κ is the minimum step size.

In all experiments, M4 = 1, τ = 106, κ = 10−6. To use for the reinforce-

ment setting, φ is the eligibility trace, δ is the td error of the algorithm and z

is the overshoot vector calculated as |e| ·max(|e| , |xt − γxt+1|).
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Chapter 3

Problem Formulation and
Solution Approach

3.1 Problem Formulation

We formalize the multi-prediction problem as the following setting: an agent

acts in an MDP to more accurately learn N predictions. Each prediction is

a GVF with a fixed policy as described in Sutton et al. (2011) and explained

in Section 2.6. The error of the GVF learner is quantified by a weighted

root mean-squared value error (RMSVE) across all states. The weighting

distribution is according to some state distribution d(S,A). At each timestep,

the GVF learner, j, can be evaluated by the RMSE as,

RMSVE(Q̂(j), Q(j))
def
=

√∑
s∈S

∑
a∈A

d(j)(s, a)(Q̂(j)(s, a)−Q(j)(s, a))2. (3.1)

The total error (TE) across all GVF learners is then,

TE
def
=

t∑
i=1

N∑
j=1

RMSVE(Q̂
(j)
i , Q

(j)
i ). (3.2)

The goal of the agent is to minimize the TE by sculpting a stream of

experiences that benefits the learning of the GVF learners in aggregate. The

best agent is one that minimizes the TE by the last 10% of the steps.

In order to evaluate the agent on the TE, we calculated the true value for

states offline using thousands of Monte Carlo rollouts. While there are ways

to get accurate value estimates offline in complex environments (Sajed et al.,
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2018), scaling the calculation of TE to complex environments that are difficult

to simulate remains as future work.

3.2 Solution Method

The agent’s goal is to have a data collection policy that results in the lowest TE.

Creating a data collection policy from strictly following the GVF policies may

not be good. Simply following the target policy of the GVF is insufficient for

ensuring the value function is well learned. To understand why this would not

work, imagine a long vertical hallway where the policy of the GVF is to always

move forwards. If the agent starts in the middle of the hallway, it never learns

what is behind it. Additional actions beyond what are in the GVF policy are

required to learn the value function. Using the GVF directly by maximizing

the cumulant of the GVF is also an unrealistic solution as it requires changing

the policy in a way that may not result in informative behaviour. Consider a

GVF predicting how many timesteps it will take to reach a wall by producing

a cumulant value of 1 if the agent is touching the wall and a cumulant value of

0 if it is not touching the wall. If we attempt to maximize the cumulant, the

agent will stay glued to a wall without learning how many timesteps it will

take to reach a wall from states not touching it. Therefore, maximizing the

cumulant could deliver an uninformative and inefficient data collection policy.

The problem becomes harder when the parallel learning of many GVFs is

required. Some GVFs may be easier to learn and require fewer observations

to get an accurate value estimate while some GVFs are more difficult and

require more observations. The data collection policy will need to balance the

needs of the different prediction learners. Another consideration for the data

collection policy is that some actions may be informative for a larger number of

GVFs. In order to have an efficient multi-prediction system, the data collection

policy should be aware of actions that benefit the learning of multiple GVFs.

Lastly, there may be non-stationarities in the GVFs that result in an accurate

value estimate no longer being accurate. The possible non-stationarities are

described further in Section 5.1. The data collection policy needs to be able
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recognize when learning is possible again for the prediction learners and adjust

accordingly.

If the learning progress across the prediction learners can be quantified

in an intrinsic reward, then the data collection policy can be the policy that

maximizes the intrinsic reward. This fits neatly into the reinforcement learning

framework and addresses the problems raised earlier on how an agent should

behave to learn the value function of a policy. A possible intrinsic reward is the

negative TE after the agent takes an action At in state St and transitions to S ′.

This rewards the agent for directly reducing the TE. Unfortunately, the total

error is unknown to the agent because it requires the true value function to

compute. Linke et al. (2020) performed a survey of possible intrinsic rewards in

the bandits setting for multi-prediction learning and found the l1−norm in the

change of weights is an effective intrinsic reward if the prediction learners are

introspective. Introspective learners are capable of autonomously modulating

their rate of learning depending on the possible learning progress. In our

research, we leverage this finding and use weight change as the intrinsic reward.

In order to extend weight change to the MDP setting, we associate the intrinsic

reward induced by the tuple (St,At,St+1) to state St.

The intrinsic reward can be calculated as,

rint,t+1 =
N∑
j=1

‖w(j)
t+1 − w

(j)
t ‖1. (3.3)

In equation 3.3, w(j) are the weights parameterizing the GVF learner j.

For the experiments in this thesis, we calculate the intrinsic reward accord-

ing to equation 3.4 where a small value of ε is used to encourage the agent to

seek out new experiences,

rint,t+1 =
N∑
j=1

‖w(j)
t+1 − w

(j)
t ‖1 − ε. (3.4)

The final agent architecture is a behaviour learner learning a policy that

maximizes the intrinsic reward of weight change generated by the N prediction

learners. We use the Auto optimizer to encourage our agents to be more
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introspective. A summary of our multi-prediction agent architecture is shown

in algorithm 9.

Algorithm 9 Multi-Prediction Learning System
Input: N GVF questions

Initialize behavior policy parameters θ0
and GVF learners w

(1)
0 , . . . , w

(N)
0

Obtain initial observation S0

for t = 0, 1, . . . do
Choose an action At according to πθt(·|St)
Observe next state vector St+1 and γt+1

// Update predictions with new data
for j = 1 to N do
c← c(j)(St, At, St+1)
γ ← γ(j)(St, At, St+1)

Update w
(j)
t with (St, At, c, St+1, γ)

// Compute intrinsic reward, update behavior
r ← 0
for j = 1 to N do
r ← r + ‖w(j)

t+1 − w
(j)
t ‖1 − ε

Update θt with (St, At, r, St+1, γt+1)

3.3 Summary

In this chapter we formalize the multi-prediction problem as the setting where

there are N independent prediction learners. The goal of the agent is to reduce

the TE, which is the sum of RMSVE across GVFs. We leverage the findings

of Linke et al. (2020) who studied this problem in the bandits setting. We use

their approach and cast it as a behaviour learning problem where the intrinsic

reward is a proxy for learning progress. We rely on the conclusion of Linke

et al. (2020) that weight change is an effective intrinsic reward if the N GVF

learners are introspective. We present the general layout for a multi-prediction

learning system in algorithm 9.
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Chapter 4

Related Works

Linke et al. (2020) studied the multi-prediction problem in the bandits setting.

Their agent consists of N learners estimating the value of a possibly non-

stationary arm. The behaviour learner selects which arm to pull based on the

intrinsic reward generated by the learners. Their work performed an extensive

study of intrinsic rewards on different cumulant schedules. Linke et al. (2020)

use several of their key findings (discussed in Section 3.2) and extend the

problem setting to MDPs.

In the playground experiments of Chentanez et al. (2005), the agent creates

and learns options in parallel through intrinsic reward. The intrinsic reward is

a hand-crafted intrinsic reward signal specialized for the tabular environment.

The agent moves in the playground and plays with different items and is

evaluated on if it learns to perform a complex set of actions. The behaviour of

the agent is guided by the intrinsic reward in addition to the extrinsic reward.

Riedmiller et al. (2018) proposes an agent based on scheduled auxiliary

control (SAC) that utilizes GVFs to efficiently explore the environment in the

sparse reward setting. A scheduler chooses which GVF should be the priority

for learning over some time period. The agent acts to maximize the cumulant

of the specific GVF until a new GVF is chosen. The scheduler chooses the

GVF based on the extrinsic reward generated while learning the policy for the

GVF.

Veeriah et al. (2019) develops an agent that discovers and answers GVF

questions. While the agent acts to maximize the extrinsic reward, the agent
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also learns on-policy GVFs and their associated predictions. The efficacy of

the learned GVFs are evaluated based on the state representation they help

craft for the behaviour of the agent.

Universal value function approximators (UFVA) take a different approach

to learning many predictions in parallel (Schaul et al., 2015). Instead of explic-

itly learning a different value function per learner, the responsibility of learn-

ing different value functions is placed on the function approximator itself. If

the different tasks can be parameterized by a vector, then the parameterized

task can be used as part of the input space to the function approximator. The

function approximator learns the different tasks and how to generalize between

parameterized tasks, thereby effectively learning many different auxiliary tasks

and allowing the interpolation of tasks never seen before.

Learning a model of the world around the agent can be viewed as an

auxiliary task learning problem. In Kim et al. (2020), the agent learns a world

model by rotating and observing the world around itself. The learning of the

world model generates an intrinsic reward and the behaviour acts to maximize

this signal. The intrinsic reward generated by the learning of a world model

can also be used in conjunction with the extrinsic reward to aid in exploration

(Burda, Edwards, Pathak, et al., 2019; Burda, Edwards, Storkey, et al., 2019;

Pathak et al., 2017; Stadie et al., 2015).
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Chapter 5

Non-Stationarity in a
Multi-Prediction Setting

The world the agent finds itself in can be large and complex. In order to be

an effective multi-prediction learning system, the agent needs to be capable of

adapting to the non-stationarity that occurs throughout the system. In this

chapter, we will highlight where sources of non-stationarity occur, why they

pose a problem and provide strategies to mitigate their effects.

5.1 Sources of Non-Stationarity

There are many sources of non-stationarity found in a multi-prediction setting.

In this section, we detail three of these sources: non-stationarity in the intrinsic

rewards, cumulants, and state distribution faced by GVF learners.

The behaviour learner faces non-stationarity in the intrinsic rewards. To

demonstrate this, let us consider the reward stream experienced by the be-

haviour learner and what it means for an intrinsic reward to be based on

learning progress. In order for the rewards of the behaviour learner to be

stationary, the distribution of rewards the agent receives remains the same

for the agent’s lifetime. An intrinsic reward based on learning progress is

non-stationary as it depends on the agent’s knowledge and environment. The

non-stationarity of an intrinsic reward system based on learning progress is

evident when the intrinsic reward is weight change. For example, let’s con-

sider an agent in a tabular grid world with a GVF learner learning a constant
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cumulant. At first, the GVF learner changes its weights significantly because

the prediction error is high. This results in a large intrinsic reward. Over time,

the GVF learner learns to fully express the value function. Once this happens,

there will be no more intrinsic reward or weight change. This shows that the

reward distribution for a given state has inherently changed for the agent over

time. If the agent is unable to adapt to this non-stationarity, it will continue

to visit areas that are not informative anymore to the GVF learners. We want

an agent that can effectively adapt its behaviour to maximize learning, so it

is critical that the behaviour learner can handle this kind of non-stationarity

in intrinsic rewards.

Another source of non-stationarity are the cumulants the GVF learners are

trying to learn. Cumulants can be non-stationary due to their nature or can

appear non-stationary because they depend on a hidden variable. Consider

an animal living in the desert with a GVF learner modelling the amount of

water in an oasis. The cumulant is the amount of water in the oasis. Due to

evaporation or other animals drinking the water, water levels gradually change.

The agent would not observe the animals drinking water, so the water in the

oasis is a non-stationary target. Shifts in the underground water sources are

a hidden variable that could also affect water levels. For a large scale system,

it is important that the GVF learners themselves can adapt properly to a

non-stationary cumulant.

An additional source of non-stationarity faced by the GVF learners is

caused by behaviour policy changes (Patterson et al., 2021). In off-policy

reinforcement learning, there are many common algorithms that weight their

learning objective by the behaviour state distribution. Some of these algo-

rithms include off-policy TD(λ), TB(λ) and GTD(λ) (Patterson et al., 2021).

Recall that the mean squared projected bellman error (MSPBE) can be written

as,

MSPBE(w) = Eb[(v̂π(w)−
∏

T v̂(w))2]. (5.1)

In equation 5.1,
∏

is the projection operator which projects any value function

to the nearest value function representable by the function approximator. The
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Bellman operator, T , calculates the backup value estimate R+γP V̂ (w) where

P summarizes the transition dynamics in matrix form. Notice that since the

updates are according to state distribution db, the off-policy learner is learning

an objective weighted by the behaviour state distribution. In the tabular

setting, this is not an issue since any value function can be representable. In the

function approximation setting, this leads to a non-stationarity in which the

optimal solution is within the set of learnable functions. Different weightings

on value estimates can change the optimal solution. In fact, Kolter (2011)

found that weightings placed on the learning objective due to the behaviour

state distribution can induce arbitrarily high value error. This occurs when

there is a significant mismatch between the behaviour state distribution and

the state distribution induced by the target policy. Since there are many off-

policy learners in multi-prediction learning, it is important to consider the

state distribution weighting the objective and the desired state distribution of

the GVF learner.

In summary, we identify three sources of non-stationarity for our multi-

prediction agent. The first is the non-stationarity inherent in an intrinsic

reward representing learning progress. The second is that non-stationarity in

the cumulants is a reasonable problem to occur. The third is that changing

state distributions alters the learning objective of the off-policy learners.

5.2 Addressing Non-Stationarity in the Cu-

mulants

To address the non-stationarity of the cumulants, we use successor features.

As described in Section 2.7, successor features separate the learning of the

cumulant estimate and the future state visitations according to policy π. This

separation provides two distinct advantages.

Firstly, the successor features ψ(s, a) only need to be learned once as they

summarize the transition dynamics of the MDP according to policy π. As

long as there are no changes to the underlying dynamics of the MDP or the

policy π on which ψ(s, a) is conditioned on, the successor features are reusable
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regardless of changes to the reward or cumulant. This reusability is a primary

reason successor features effectively transfer knowledge between tasks (Barreto

et al., 2019). Successor features remain relevant for an entire experiment so

they can be learned to a high accuracy.

The second advantage of successor features is that the effects of the cumu-

lant distribution changing is isolated to updating the estimate for the imme-

diate 1-step cumulant value. Generally, a small change in the cumulant can

have a significant effect on the value estimate across the MDP. With succes-

sor features, change is localized to the specific states and is estimated by a

regression problem. While the value estimate still changes across the MDP,

isolating the non-stationarity into a supervised learning problem makes it an

easier problem for tracking with faster convergence rates (McLeod et al., 2021).

This also enables us to use optimizers designed for the supervised learning set-

ting. Supervised learning setting is a large field of research which may provide

additional performance increases to the updating of the cumulant estimate.

We clarify in algorithm 10 how successor features can be used for the non-

stationary setting. We call this algorithm Successor Features for Nonstationary

Rewards (SF-NR).

Algorithm 10 Successor Features for Nonstationary Rewards (SF-NR)

Input:(St,At,St+1,Ct+1,γt+1),π,wψ,wc

φ← φ(St, At)
ψ̂ ← ψ̂(St, At;wψ)

ψ̂′ ←
∑

a′ π(a′|St+1)ψ̂(St+1, a
′;wψ)

∆← 0
for m = 1 to d do
δm ← xm + γt+1ψ̂

′
m − ψ̂m

∆← ∆ + δm∇ψ̂m
wψ ← wψ + α∆
wc ← wc + α(Ct+1 − 〈φ,wc〉)φ
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5.3 Addressing Non-Stationarity in the Behaviour

Learner

Successor features for non-stationary rewards is a promising way to combat

non-stationarity in the cumulants or rewards for policy evaluation. To extend

SF-NR for control, we apply General Policy Improvement (GPI) (Barreto et

al., 2017). GPI works by greedifying over policies rather than over the actions

of a specific policy. The set of policies for the behaviour can come externally

or from the policies of the GVF learners themselves. Given a set of policies

Π = {π1, . . . , πN}, we learn the associated successor features for each policy,

ψ̂(s, a;w
(j)
ψ ), where j is the jth policy. We learn the weights wr ∈ Rd such

that 〈φ(St, At, St+1), wr〉 ≈ E[Rt+1|St = s, At = a] where Rt+1 is the intrinsic

reward for that timestep. This allows the action value function for policy j

at state s to be evaluated as Q(j)(s, a) = 〈ψ̂(s, a;w
(j)
ψ ), wr〉. On each step, the

behaviour policy takes the greedy action across policies,

πb(s) = argmax
a

max
j∈{1,...,N}

Q̂(j)(s, a) = argmax
a

max
j∈{1,...,N}

〈ψ̂(s, a;w
(j)
ψ ), wr〉.

The policy created by following this greedification across policies is guaranteed

to be at least as good as any policy in the set of policies (Barreto et al., 2017).

By using successor features for the policy evaluation, we leverage the finding

that successor features enable faster convergence for non-stationary rewards.

The intrinsic rewards are non-stationary, so the improved estimation is likely

to facilitate more accurate value estimates.

5.4 Addressing Non-Stationarity Due To Chang-

ing State Distribution

We can use prior corrections to address the non-stationarity that changing

behaviour policy induces in the GVF learners. Without prior corrections,

the MSPBE learning objective is weighted by the behaviour distribution,

db(s, a) and is shown in Equation 5.1. This weighting happens because the

behaviour state distribution governs the frequency of updates for the states.
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If we reweight the updates, we can change the distribution by which the ob-

jective is weighted by. Alternative Life TD(λ), a type of prior corrections,

reweights the updates by likelihood of reaching the state from the beginning

of the episode under the target policy (Patterson et al., 2021). This completely

removes the non-stationarity induced by the changing behaviour distribution

because the MSPBE objective is now weighted by the state distribution in-

duced by the target policy. In practice, this is not used as the updates are

often zero or near zero when there are differences between target policy and

behaviour policy. Emphatic methods are another approach that provides a

third type of state distribution for the objective to be weighted by. While

emphatic methods do not completely eliminate the non-stationarity, they may

help reduce its effects because they include information of the target policy

in their updates. Through prior corrections, emphatic methods weight the

objective by the state distribution induced by target policy π with a starting

distribution of states according to db(s, a).

Reweighting the GVF learner updates according to distributions enables

a direct relationship between the magnitude of the intrinsic reward and the

distribution of interest. This has broad implications for how the learning of

GVFs can be further specialized, which is discussed in Section 8.1. Emphatic

methods use an interest function to guide the magnitude of the weight updates

implicitly through the follow-on trace. In this thesis, we explore more directly

manipulating the magnitude of the updates by explicitly using an interest

function I(St, At) to scale the update. This approach specifies the interest the

GVF learner places on getting the value estimate correct. For convenience, we

let It
def
= I(St, At). The following algorithm demonstrates how TB(λ) can be

adapted to use an interest function.

Algorithm 11 Linear TB(λ) with Interest Update

zt = γtπ(At|St)λtzt−1 + I(St, At)x(St, At)
δt = Ct+1 + γt+1

∑
a′ π(a′|St+1)q̂(St+1, a

′)− q̂(St, At)
wt+1 = wt + αδtzt

Similar to off-policy TD(λ) or TB(λ), this update rule is not guaranteed
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to converge in the function approximation setting with bootstrapping.

The derivation for online updating follows the same procedure used by

Sutton and Barto (2018) to derive the TB update. This ignores the changes

in approximate value function and can be written as,

Gt ≈ q̂(St, At,wt) +
∞∑
k=t

δk

k∏
i=t+1

γiλiπ(Ai|Si). (5.2)

A forward view update that considers the interest at each time-step can be

written as,

wt+1 = wt + αIt(Gt − q̂(St, At,wt))∇q̂(St, At,wt).

Substituting Equation 5.2 for Gt, we get

wt+1 ≈ wt + αIt

∞∑
k=t

δk

k∏
i=t+1

γiλiπ(Ai|Si)∇q̂(St, At,wt).

The sum of forward view update over time is,

∞∑
t=1

(wt+1 −wt) ≈
∞∑
t=1

∞∑
k=1

αItδk∇q̂(St, At,wt)
k∏

i=t+1

γiλiπ(Ai|Si)

=
∞∑
k=1

k∑
t=1

αIt∇q̂(St, At,wt)δk

k∏
i=t+1

γiλiπ(Ai|Si)

=
∞∑
k=1

αδk

k∑
t=1

It∇q̂(St, At,wt)
k∏

i=t+1

γiλiπ(Ai|Si).

This can be a backward-view TD update if the entire expression from the

second sum can be estimated incrementally as an eligibility trace. This results

in the eligibility trace being written as,

zk =
k∑
t=1

It∇q̂(St, At,wt)
k∏

i=t+1

γiλiπ(Ai|Si)

=
k−1∑
t=1

It∇q̂(St, At,wt)
k∏

i=t+1

γiλiπ(Ai|Si) + Ik∇q̂(Sk, Ak,wk)

= γkλkπ(Ak|Sk)
k−1∑
t=1

It∇q̂(St, At,wt)
k−1∏
i=t+1

γiλiπ(Ai|Si) + Ik∇q̂(Sk, Ak,wk)

= γkλkπ(Ak|Sk)zk−1 + Ik∇q̂(Sk, Ak,wk).
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Changing the index from k to t, the accumulating trace update can be written

as,

zt = γtλtπ(At|St)zt−1 + It∇q̂(St, At,wt).

Since we are considering the linear case, ∇q̂(St, At,wt) = x(St, At), the in-

cremental update for estimating wt+1 reduces to what is shown in Algorithm

11.

5.5 Summary

In this chapter, we highlight three sources of non-stationarity faced by a multi-

prediction system. The non-stationarity in the cumulants can be mitigated by

using the SF-NR algorithm for GVF learning. Using the SF-NR algorithm,

we can develop a control policy using GPI that addresses the non-stationarity

inherent in the intrinsic reward of weight change. Lastly, we discuss that a

changing behaviour state distribution induces non-stationarity in the optimal

weight vector for the GVF learners in the function approximation setting. We

explain why emphatic methods could be used to limit this effect.
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Chapter 6

Environments

In this chapter, we explain the environment dynamics and the GVF specifi-

cations. Tabular TMaze and Continuous TMaze are used to test the multi-

prediction learning system for a fixed behaviour policy and a learned behaviour

policy. The mountain car is used as an environment not specifically designed

for our experiments and is intended to demonstrate that complex behaviour

policies can be learned as a byproduct in a multi-prediction setting. The Open

2D World is a large 2D open space that has similar GVFs to the Continuous

TMaze.

6.1 Tabular TMaze

Tabular TMaze is a deterministic tabular gridworld with four actions: up,

down, left and right. The state representation is a tabular representation for

each cell block shown in Figure 6.1. The agent begins at the bottom of the

maze, which is depicted in Figure 6.1.
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Figure 6.1: Tabular TMaze with 4 GVFs, with cumulants of zero except in
the goals. The right plot shows the cumulants in the goals. G2 and G4 have
constant cumulants, G1 has a distractor cumulant and G4 a drifter.

There are four GVFs being learned by the agent in this environment. Each

of these GVFs has one of three possible cumulants schedules: drifter, distractor

or constant. The constant cumulant is 0 everywhere except for at the goal

state. At the goal state, it takes on a constant value uniformly selected between

[−10, 10]. This value is randomized at the start of each run. In Figure 6.1,

the cumulants corresponding to the lower left goal and lower right goal are

constant goals. The drifter cumulant is 0 everywhere except for at the goal

state. Starting at a value of 1.0 at the goal state, it drifts by a value of

N(µ = 0, σ2 = 0.01) at each timestep for the duration of the run. At the end

of a run, it is reset back to 1. The drifter is located at the top right goal, G3, as

depicted in Figure 6.1. The drifter cumulant value and the distractor cumulant

value are capped between [-50,50]. The distractor cumulant is 0 everywhere

except for at the goal state. At the goal state, the distractor cumulant is

sampled from a normal distribution N(µ = 1, σ2 = 25). The distractor goal

is the top left goal as depicted in Figure 6.1. The following summarizes the

cumulant schedules at the goal state for each GVF.

• Constant: Ct
i = Ci

• Distractor: Ct
i = N(µi, σi)

• Drifter: Ct
i = Ct−1

i +N(µi, σi), C
0
i = 1
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To define a GVF, we also need to specify the policy and the termination

function. The policy for the GVF is the shortest path to the GVF’s corre-

sponding goal. The termination function is 0.9 for all transitions to non-goal

states and 0 for all transitions to goal states.

In addition to the state representation, the SF-NR algorithm requires a

feature representation that is used for estimating the cumulant values. In

the Tabular TMaze, this feature representation is the same as the tabular

representation.

6.2 Continous TMaze

The Continuous TMaze follows a similar design as the Tabular TMaze and

is depicted in Figure 6.2. The GVFs are defined similarly in the Continuous

TMaze as they were in the Tabular TMaze. The GVF cumulant schedules for

each GVF are the same and the goals are in the matching corners. The policy

is the shortest path to the GVF’s respective goal. The termination function is

0.9 for all transitions to non-goal states and 0 for all transitions to goal states.

Figure 6.2: Continuous TMaze with 4 GVFs, with cumulants of zero except in
the goals. G2 and G4 have constant cumulants, G1 has a distractor cumulant
and G4 a drifter cumulant.

One major difference between the TMazes is that the Continuous TMaze

is embedded in a continuous 2D plane between 0 and 1 on both axes. Each
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hallway is a line with no width, allowing the agent to go along the hallway but

not perpendicular to it. The main vertical hallway spans between [0, 0.8] on

the y-axis and is located at x = 0.5. The main horizontal hallway spans [0, 1]

on the x axis and is located at y = 0.8. Finally, the two vertical side hallways

span between [0.6, 1.0] on the y-axis and are situated at x = 0 and x = 1

respectively. To switch between junctions, the agent must be within ±0.05

unit distance from the junction. For example, to begin moving up or down on

the left vertical hallway at x = 0, the agent must be in the left vertical hallway

or within 0.05 units along the x-axis.

The goal states for each GVF match the corresponding corners of the Tab-

ular TMaze. Goal 1 is at coordinates [0,1], goal 2 is at coordinates [0,0.6],

goal 3 is at coordinates [1,1] and goal 4 is at coordinates [1,0.6]. Similar to the

junctions, the agent must be within 0.05 unit distance from the (x,y) coordi-

nates in order for them to be considered goal state. The agent’s actions (up,

down, left or right) moves the agent 0.08±Uniform(−0.01, 0.01) units in the

direction of the corresponding action.

Due to the Continuous TMaze being a continuous MDP, the feature repre-

sentations are different between TMazes. The state feature is constructed with

a tilecoder of 2 tilings of 8 tiles applied to the (x,y) coordinates of the agent.

The feature representation for cumulant estimation is an indicator function

for if s′ ∈ Gi from the tuple (s, a, s′). The reward feature vector is four dimen-

sional since the Continuous TMaze has 4 goals. The reward feature vector is

a reasonable feature vector because it is related to rewarding transitions. For

the behaviour learner using SF-NR with GPI, it is unclear what is a reward-

ing transition apriori. Therefore, we take a state aggregation approach. The

reward feature is the state-action vector of state-aggregation applied to the

Continuous TMaze. Each line segment described above for the Continuous

TMaze is broken up into thirds for state aggregation.
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6.3 Open 2D World

The Open 2D World is an open continuous grid world with the dimensions 10×

10 and is depicted in Figure 6.3. The GVF goals are located in each of the four

corners and follow schedules similar to those used in the TMaze experiments.

While the constants remain the same, the drifter parameters and the distractor

parameters are different. In the Open 2D World, the cumulant values at the

goal state are sampled by the distribution N(µ = 1, σ2 = 1). The drift rate of

the drifter is parameterized by the distribution N(µ = 0, σ2 = 0.005). On each

step, the agent can select between the four compass actions (up, down, right

and left) and move 0.5 in the chosen direction with uniform noise [−0.1, 0.1].

A uniform [−0.001, 0.001] orthogonal drift is also applied to each movement.

The goals are squares in the corners with a size of 1×1. Similar to the TMaze

variants, the GVF policies are defined as the shortest path to their respective

goal. In the Open 2D World, there may be multiple actions that are part of

the shortest path. These actions are weighted with equal probability in the

target policy. The termination for the GVFs is γ = 0.95 for all transitions to

non-goal states and 0 for transitions to goal states.

Figure 6.3: Open 2D World with 4 GVFs, with cumulants of zero except in
the goals. G2 and G4 have constant cumulants, G1 has a distractor cumulant
and G4 a drifter cumulant.

The state feature representation used by the agent is a tilecoded represen-
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tation of 16 tilings of 2 tiles applied to the (x,y) coordinates of the agent. The

reward features for the GVFs using successor features are defined similarly to

the Continuous TMaze. The ith reward feature is an indicator function for

if s′ ∈ Gi. For the behaviour learner using successor features, it is unclear

apriori what an optimal feature representation for estimating intrinsic rewards

would be. We opt for a tilecoded representation of 8 tilings of 2 tiles on the

(x,y) observation.

6.4 Mountain Car

In the mountain car environment, a car is situated at the bottom of a valley

between two hills. Situated on each hill is a wall. The wall on the right hill

is situated higher up the hill than the wall on the left hill. Therefore, an

interesting aspect of the environment is that the car’s throttle forwards action

does not provide enough torque to reach the top of the right side of the hill.

Thus, the car must build up momentum to successfully reach the right hilltop.

The dynamics of the mountain car environment used in this experiment are

from Sutton and Barto (2018) and are summarized below,

ẋt+1 = ẋt + 0.001At − 0.0025 cos(3xt)

xt+1 = xt + ˙xt+1.

The state can be described by a 2 dimensional representation, where x is the

position of the car and ẋ is its velocity. There are three actions available to

the agent,

At ∈ [Reverse = −1,Neutral = 0,Throttle = 1]

. At the start of each episode, the agent begins in a position between [-0.2,0.2]

and a velocity between [-0.04,0.04]. An episode terminates when the agent

reaches the right wall located at 0.5. The left wall is located at the position

of −1.2.

In the mountain car environment, we define two GVFs. The first GVF

receives a cumulant value 1 when the agent reaches the left wall and is other-

wise zero. It has a discount γ = 0.99, which terminates when the left wall is
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touched. The second GVF is similar, but receives a cumulant value of 1 when

reaching the top of the hill (i.e. the typical goal state). For each GVF, the

policy is learned offline with ESARSA(λ) and an epsilon greedy policy with

ε = 0.1. It runs for 500k steps on a transformed problem where the cumulant

is −1 per step. This results in a denser reward signal that enables learning

a high quality policy. Note that the optimal policy that maximizes a cumu-

lant of −1 per time step for all states is the same policy that maximizes the

cumulant of the GVFs. The state representation used for these policies is an

independent tile coder of 16 tilings of 2 tiles. The final policy that the GVFs

are conditioned on is greedy with respect to the learned offline action values.

The state feature representation used by the agent is a tilecoded represen-

tation of 16 tilings of 2 tiles applied to the position and velocity of the agent.

The reward features for the GVFs using successor feature is an indicator func-

tion for if s′ ∈ Gi from the tuple (s, a, s′). The reward feature vector is two

dimensional since the Mountain Car environment has 2 goals.
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Chapter 7

Experiments

In this chapter, we experimentally validate a multi-prediction learning system.

This is the first system to adapt its behaviour to maximize learning in the

function approximation setting. We seek to demonstrate that it is possible to

adapt behaviour to improve multi-prediction learning. We aim to demonstrate

the theoretical findings in McLeod et al. (2021) that show SF-NR enables faster

correction to value estimates due to shifts in reward distributions. The use of

successor features in both the GVF learners and the behaviour learner should

each independently improve the agent.

A key component in evaluating a multi-prediction setting is to establish

the prediction problems. In the TMaze experiments, we use four prediction

problems. As discussed in Section 5.1, there may be non-stationarity in the

cumulants of the GVFs that our learners need to adapt to. Therefore, one

prediction problem includes a non-stationary cumulant. Since there are some

prediction problems that are easier for an agent to learn, it is important for

our agent to recognize its own competency and avoid focusing on familiar

prediction problems. Thus, two prediction problems include a constant cu-

mulant. In self-learning systems, the agent also needs to be able to recognize

when something is unlearnable or simply noise (Schmidhuber, 2008) to avoid

succumbing to the noisy-tv problem. As such, our final prediction problem

includes a noisy cumulant. These four cumulant schedules are from Linke et

al. (2020) and adapted into the MDP setting. Section 6.1 contains the details

of GVF learning problems. The drifter signal models the non-stationarity the
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agent must be able to adapt to, the distractor signal simulates the unlearnable

signal the agent must learn to ignore, and the constant cumulants represent

the easy to learn prediction tasks.

We also evaluate the full learning system where the behaviour is being

learned. It is important to consider what kind of behaviour the agent should

exhibit in this setting. The GVF learners for the constant cumulant should

be quickly learned and not revisited. For the distractor cumulant, the agent

should learn the mean of the Gaussian distribution and learn to ignore the

high error signal from that GVF learner. It should stop visiting the distractor

goal as it is unlearnable. Lastly, the agent should continue to visit the drifter

goal as it always presents a learnable signal. By the end of the experiment,

the agent should primarily visit the drifter goal.

7.1 Evaluating Off-Policy Learners

The purpose of this experiment is to evaluate the off-policy learners in the

TMaze environments to better understand their effectiveness under a reason-

able data collection policy. The data collection all agents follow is called the

fixed behaviour policy. The fixed behaviour policy involves the agent taking

the shortest path towards the closest goal. If two or more goals are the same

number of steps away but require a different action, the probability of taking

the respective actions is equally weighted. This only occurs at the three junc-

tions of the Tabular TMaze and Continuous TMaze. To ensure that all state

action pairs are visited, we use exploring starts. Except for the initial random

action due to exploring starts, each episode follows precisely one GVF policy

to termination and that all GVF policies are equally likely to be executed in

expectation.

The three different off-policy learners evaluated were TB(λ), LSTD(λ), and

SF-NR. TB(λ) was chosen to be a stand-in for a typical value based learner.

The LSTD(λ) learner was used to highlight how well the stationary targets

could be learned and show the detrimental effects of applying an assumption

of stationarity to the drifter cumulant. The SF-NR learner was the proposed
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method and was intended to perform better at tracking the drifter cumulant.

The RMSVE for each GVF learner was weighted according to the state dis-

tribution induced by the fixed behaviour policy. This was estimated offline by

performing a large number of rollouts and randomly selecting 500 state-action

pairs from the set of trajectories that were used as an evaluation set for cal-

culating the RMSVE. The true value of each state-action pair was calculated

by averaging over Monte Carlo rollouts starting from those state-action pairs.

The Auto optimizer described in Section 2.8 was used for the GVF learners.

For the Tabular TMaze environment, the metastep size parameter for the GVF

learners was swept over the range of [5−4, ..., 50]. The Auto optimizer also had

an initial step size parameter. We initialized with two different initial step

sizes: [0.1, 1.0]. A low initial step size of 0.1 represented the idea that it is

better for learning to start small and grow as the learning rate is adjusted

by the Auto optimizer. An initial step size of 1.0 represented the idea of

learning aggressively and letting the Auto optimizer tune down the learning

rate as needed. The optimal parameters in the tabular case was a metastep

size of 5−1 and an initial step size of 1.0 for both SF-NR learner and TB(λ)

learner. For the LSTD(λ) learner, the η parameter scaled the initialization of

the A matrix. The A matrix was swept along powers of 10 in the range of

[10−2, ..., 103]. The optimal η value was 103. When testing on the Continuous

TMaze, the initial step size of Auto took the range of values [0.01,0.1,0.2] and

then was scaled down by the number of tilings used in the representation. For

both TB(λ) learners and SF-NR learners, the optimal meta-step size was 5−2

and the initial step size was 0.2. For the LSTD(λ) learner, the η parameter

was swept along powers of 10 in the range of [10−2, ..., 103]. The optimal η

value was 101.

Figure 7.1 shows the TE of each agent averaged over 30 runs on the Tabular

TMaze and Continuous TMaze environments with the shaded region being the

standard error. While LSTD(λ) initially performs well, the TE plateaus by

the end of the experiment. Figure 7.2 shows the TE broken down into the

individual RMSE contribution per GVF learner of each agent. The top left

plot is the RMSVE of the GVF learner for the distractor cumulant, the bottom
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Figure 7.1: Total Error while following a fixed behaviour policy averaged over
30 runs with shaded region being standard error. RMSE weighting is the state
distribution induced by the fixed behaviour.

left plot is the RMSVE of the GVF learner for the drifter cumulant and the

two right side plots are for the RMSVE of the GVF learners for the constant

cumulants.

Of the three learners in the Tabular TMaze, the LSTD(λ) learner has the

highest TE and performs the worst on the constant GVFs in addition to the

drifter GVF. This is evident in Figure 7.2a. It is possible that it performs

poorly due to the hyperparameter selection reducing error across GVFs. The

optimal η value for the drifter GVF is unlikely to be the optimal η value for

the constant GVFs. The SF-NR learners perform significantly better than

the TB(λ) learners as demonstrated in Figure 7.1a. The SF-NR learners’

biggest advantage over the other learners is that they are significantly better

at tracking the drifter GVF. This aligns with the theory that value function

estimation with successor features should enable faster tracking if the successor

features are well learned. Extending to the function approximation setting is

critical for building any large scale system.

The findings remain consistent in the Continuous TMaze as shown in Figure

7.1b. The agent is able to learn accurate enough successor features so the SF-

NR learners can more effectively propagate the drifter value throughout the

MDP. Similar to the Tabular TMaze, the LSTD(λ) learners do not perform

well on the drifter GVF as shown in Figure 7.2b.
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(a) Tabular TMaze environment. (b) Continuous TMaze environment

Figure 7.2: RMSE error per GVF learner while following a fixed behaviour
policy averaged over 30 runs with shaded region being the standard error.
RMSE error weighting is the state distribution induced by the fixed behaviour.

7.2 Evaluating Learned Behaviour

In this set of experiments, we let the agent learn its own control policy from the

intrinsic reward of weight change in two environments: Tabular TMaze and

Continuous TMaze. In doing so, we aim to understand the effects that the

SF-NR learning algorithm has on the learning system as a whole; this includes

the effect that the SF-NR learning algorithm has as a GVF learner and the

effect of the SF-NR learning algorithm used in conjunction with GPI. These

experiments test two control algorithms; Expected Sarsa(λ) and GPI applied

to SF-NR learners. Expected Sarsa(λ) is a stand-in for a generic control algo-

rithm. GPI with successor features applies generalized policy improvement to

derive the control algorithm. How GPI with the SF-NR learning algorithm is

used as a control algorithm is explained in Section 5.3.

In this set of experiments, we combined the possible GVF learners with the

possible behaviour learners to test the effects of the SF-NR learning algorithm

on both learners. This resulted in four possible agents: GPI SF-NR learner

for control and SF-NR for the GVF learners, GPI SF-NR learner for control

and TB(λ) for the GVF learners, ESARSA(λ) for control and SF-NR learners

for the GVF learners, and ESARSA(λ) for control and TB(λ) for the GVF
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learners. For the remainder of Chapter 7, SF-NR learner refers to a GVF

learner that uses the SF-NR learning algorithm, and GPI SF-NR refers to

the control algorithm leveraging generalized policy improvement applied over

learned successor features.

For the experiment run in the Tabular TMaze and the experiment run in

the Continuous TMaze experiment, a hyperparameter sweep over the initial

step size and meta-step size was conducted. The behaviour learner and the

GVF learners shared the same initial step size and meta-step size parameters

in the sweep. For the Tabular TMaze environment, the meta-step size swept

was from [5−4, ..., 50] and initial step sizes were [0.1, 1.0]. All four agents had an

optimal meta-step size of 5−2. For agents using SF-NR learners, the optimal

initial step size was 1.0. For agents using the TB(λ) GVF learners, the optimal

initial step size was 0.1. For the Continuous TMaze experiment, the meta

step size parameter was swept over the range of [5−4, ..., 50]. The initial step

size was swept over [0.01,0.1,0.2] and divided by the number of tilings in the

representation. The optimal meta step size was 5−3 for the SF-NR learners

and 5−2 for the TB(λ) GVF learners. The optimal initial step size was 0.2

(then divided by the number of tilings) for agents using SF-NR learners and

0.1 for the agents using TB(λ) learners.

In these experiments, the behaviour learner was optimistically initialized

to ensure that the agent visited each of the four GVF goals at least once. To

the best of our knowledge, no one has studied optimistic initialization for suc-

cessor features. To perform optimistic initialization on successor features, we

initialized the wψ estimates to be 1
d
, where d was the state feature length. We

initialized the immediate reward estimates to be opt
m

, where m was the length of

the successor feature representation and opt was the optimistic threshold. This

initialization resulted in each successor feature having an expected discounted

value of 1 and the reward estimates scaled such that the final value estimate

was equal to opt. Since the intrinsic reward is based on weight change, there

was no maximum reward to calculate the appropriate optimistic initialization

required. Empirically, we found that opt = 10 is sufficient to ensure all goals

are visited. All behaviours applied ε-greedy policy with a fixed ε of 0.1. All
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plots were selected for the lowest TE on the last 10% of the runs. The small

penalty per step used in the intrinsic reward was 0.01.

Figure 7.3 shows the TE of each agent averaged over 30 runs on the Tabular

TMaze and Continuous TMaze environments with the shaded region being

the standard error. Figure 7.4 shows the TE broken down into the individual

RMSE contribution per GVF learner of each agent. Each plot per environment

contains four smaller plots. The top left plot is the RMSVE of the GVF learner

for the distractor cumulant, the bottom left plot is the RMSVE of the GVF

learner for the drifter cumulant and the two right side plots are for the RMSVE

of the GVF learners for the constant cumulants. Figure 7.5 shows the goal

visitation plots of the agent. For each environment, the top left plot is GPI

SF-NR with TB(λ) GVF learners, the top right is GPI SF-NR with SF-NR

learners, the bottom left is ESARSA(λ) with TB(λ) and the bottom left is

ESARSA(λ) with SF-NR learners.

The SF-NR learners consistently improve overall performance of the agent

for all behaviour learners across the Tabular TMaze and Continuous TMaze

environments. The added benefit of SF-NR aligns with the findings of the

fixed behaviour policy evaluation, where SF-NR learners perform significantly

better than TB(λ) learners across environments. Figure 7.4 demonstrates

that the agent using SF-NR has significantly lower error on the drifter GVF

in particular. This is likely due to the SF-NR learners themselves being more

efficient learners and more introspective learners. The efficacy of SF-NR learn-

ers is shown in the fixed behaviour policy experiments and supported by the

theoretical findings of McLeod et al. (2021). The idea that SF-NR learn-

ers are more introspective learners is supported by the stark difference in

behaviour between agents when SF-NR is used. Figure 7.5 shows the goal

visitation plots for the Tabular TMaze and Continuous TMaze. When the

SF-NR learner is substituted for TB(λ) learners, the distractor goal is ignored

much more quickly and the drifter goal is correctly identified as the only long

term source of reducing TE. As described in the introduction of Chapter 7

the agent should learn to prioritize visiting the drifter goal since it is only

cumulant with non-stationarity. While the agents with TB(λ) GVF learners
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trend in the direction of favouring the drifter, the SF-NR learners achieve this

desired behaviour more quickly and more consistently.

GPI SF-NR improves the agents as well. In the Tabular TMaze, the TE

is lower for TB(λ) learners when GPI SF-NR is used over the ESARSA(λ)

behaviour learner. Examining the goal visitation plot shown in Figure 7.5,

GPI with TB(λ) GVF learners visit the drifter goal more frequently than the

ESARSA(λ) behaviour learner. The negligible difference between the GPI

SF-NR behaviour learner and the ESARSA(λ) behaviour learner when the

SF-NR learners are used could be due to the tabular domain being too easy.

With the SF-NR learners, both behaviour learners quickly identify the drifter

and develop a near optimal behaviour policy. Thus, it is unlikely for the

two behaviour learners to have significantly different TEs. The Continuous

TMaze includes function approximation that makes the differences between

behaviour learners more pronounced. The GPI SF-NR learner results in lower

TE regardless of the GVF learners used. In addition, the overall behaviour

in the goal visitation plots is significantly different when GPI is used. The

GPI SF-NR learner results in persistent visitation to the drifter while the

ESARSA(λ) behaviour learner struggles to develop a similar policy throughout

the experiment. This suggests that the GPI SF-NR learner adapts to the non-

stationary rewards more quickly and isolates a source of persistent intrinsic

reward.
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(b) Continuous TMaze environment

Figure 7.3: TE of GVF learner for a learned behaviour averaged over 30
runs with shaded region being standard error. RMSE error weighting is the
uniform state distribution. Blue lines correspond to behaviour learned through
ESARSA(λ) while the pink lines correspond to behaviour learned through GPI
SF-NR. Solid lines are for the agents using SF-NR learners while the dashed
lines are using TB(λ) GVF learners.

(a) Tabular TMaze environment. (b) Continuous TMaze environment

Figure 7.4: TE of GVF learners for a learned behaviour averaged over 30
runs with shaded region being standard error. RMSE error weighting is the
uniform state distribution. Blue lines correspond to behaviour learned through
ESARSA(λ) while the pink lines correspond to behaviour learned through GPI
SF-NR. Solid lines are for the agents using SF-NR learners while the dashed
lines are using TB(λ) GVF learners.

46



(a) Tabular TMaze environment (b) Continuous TMaze environment

Figure 7.5: Goal visitations across 30 runs of 60k steps truncated at the short-
est number of episodes. For each environment, the top left plot is GPI SF-NR
with TB(λ) GVF learners, the top right is GPI SF-NR with SF-NR learners,
the bottom left is ESARSA(λ) with TB(λ) and the bottom right is ESARSA(λ)
with SF-NR learners.

7.3 Learning Complex Behaviours through In-

trinsic Rewards

Continuous TMaze and Tabular TMaze are environments specifically designed

to test our multi-prediction learning system. The GVF policies in both envi-

ronments have significant overlap of actions in reaching their respective goals

due to the narrow hallways. This results in experiences that are generally

useful to all learners. Through the mountain car environment, we test if an

agent is able to construct a policy to effectively learn its prediction tasks in

a more challenging environment not specifically designed for multi-prediction

learning.

The mountain car environment, described in section 6.4, is a common en-

vironment to test algorithms because of its dynamics. A complex policy of

building up momentum is required to gain enough kinetic energy to reach the

top right side of the hill. Thus, a random policy is highly unlikely to succeed

in reaching the top. The dynamics result in value functions where states with

only small differences in position or velocity can have a large effect. Mountain
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Figure 7.6: TE averaged over 30 runs with shaded region being the standard
error on the mountain car environment. The state distribution used is a uni-
form sampling across the state space.

car can be adapted to have auxiliary tasks by placing goal locations in the

environment.

To get a baseline, we ran a random behaviour policy with SF-NR GVF

learners. We evaluated two agents in this domain: GPI with SF-NR GVF

learners and ESARSA(λ) with SF-NR GVF learners. The behaviour learner

and GVF learner were optimized separately with stochastic gradient descent

and were swept over the range of [3−3, ..., 30]. For GPI SF-NR with SF-NR

learners, the GPI SF-NR learners’ best performing step size was 30 with the

SF-NR learners using a step size of 3−2. For the ESARSA(λ) agent with SF-

NR learners, the ESARSA(λ) used a step size of 30 while the SF-NR learners

used a step size of 3−2. The step size of the SF-NR learners for the random

behaviour policy was 3−1. For the two learned behaviour policies, a fixed ε-

greedy exploration strategy was swept with ε over the range of [0.1, 0.3, 0.5]

with ε = 0.1 being the best for both agents. The small penalty per step used

in the intrinsic reward was 0.01.

Figure 7.6 shows the TE for the agents averaged over 30 runs for the

250k timesteps with the shaded region being the standard error. Figure 7.7

summarizes the behaviour of the agent by showing a boxplot of the GVF goal

visits for the agent.

Both agents significantly outperform the random behaviour agent. This

48



(GPI), (SR) (Sarsa), (SR) (Random), (SR)

5000

7500

10000

12500

15000

17500

Le
ft 

Hi
ll 

Ps
eu

do
te

rm
in

at
io

n

(a) Left Wall Pseudo-terminations

(GPI), (SR) (Sarsa), (SR) (Random), (SR)
0

100

200

300

400

500

Ri
gh

t H
ill 

Ps
eu

do
te

rm
in

at
io

n

(b) Right Wall Pseudo-terminations

Figure 7.7: The goal visitation plot for the GVFs in the multi-prediction
learning system averaged over 30 runs. The horizontal line of the box plot
shows the median number of goal visits per algorithm. The whiskers are the
maximum or minimum number of GVF goal visits up to the 1.5 times the
inner quartile range.

is promising to the field because it demonstrates that an agent can actively

adapt its behaviour to enhance learning across GVF learners. Figure 7.7 high-

lights the difference between a behaviour learned through ESARSA(λ) and a

behaviour learned through GPI. Both behaviour learners are effectively able to

learn to reach the left wall as it is situated on a lower hill. Reaching the right

wall requires a more complex policy of energy pumping; only the GPI learner

is able to effectively reach this goal by the end of the run. This indicates

that the GPI SF-NR learner is able to more effectively learn from a series of

non-stationary rewards and learn policies for the multi-prediction setting.

7.4 Summary

In summary, we examined the effects of SF-NR learners on multi-prediction

learning by running three experiments. For a fixed behaviour policy, we find

that SF-NR learners significantly outperform TB(λ) learners and LSTD(λ)

learners. Their better performance is primarily due to their better estimate of

the drifter goal, a result that carries over from the Tabular TMaze to the Con-

tinuous TMaze. In the case of learned behaviour, SF-NR learners continue

to offer improvement over TB(λ) learners and each agent system is strictly

improved when the SF-NR learning algorithm is used in the TMaze environ-

ments. Due to the distinct differences in behaviour induced by SF-NR learners,
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we conclude that SF-NR learners are more introspective learners in the TMaze

environments. When successor features are used for control, the GPI SF-NR

behaviour learner improves the agent as a whole. The GPI SF-NR learner

offers mild improvements in the Tabular TMaze and larger improvements in

the Continuous TMaze. The lower TE and behavioural differences found in

the experiment suggest that the GPI SF-NR learner is able to more effectively

adapt to non-stationary intrinsic rewards. The GPI SF-NR behaviour learner

being more effective at adapting to non-stationary rewards is further supported

by the mountain car experiment. In the mountain car experiment, the GPI

SF-NR learner performs significantly better than the ESARSA(λ) behaviour

learner by reducing the TE and crafting a policy that consistently reaches both

goals of the GVFs. Both behaviour learners create a better policy than a ran-

dom policy for reducing the TE and reaching the GVF goals. An overarching

result is that an agent can adapt its behaviour to maximize learning across its

GVFs.
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Chapter 8

Extensions

In this chapter, we investigate two different ways to extend our work to address

more challenging problems. We explain why each extension is important and

provide preliminary experimental evidence supporting the ideas discussed in

each section. Section 8.1 discusses why we would want GVF learning to be

areas of interest. We propose methods to address this challenge and perform

a supporting experiment to test the efficacy. In Section 8.2, we discuss how

experience replay can be properly added to the SF-NR learning method and

perform a supporting experiment demonstrating its success.

8.1 Directing Areas of Interest

In the previous experiments, we valued the accuracy of an agent’s value esti-

mates in all states equally. There are circumstances where valuing the esti-

mates equally in all states may not be desired. For example, a general purpose

cleaning agent can have hundreds of different GVF learners modelling different

components of cleaning - not all of these GVFs are applicable to all cleaning

tasks. In vacuuming, for instance, an agent would not benefit from having a

GVF modelling the chances of the agent breaking a plate.

Since the agent will learn the value function in the desired area of inter-

est as a byproduct of learning it in all areas, it is tempting to overlook this

matter. This oversight could harm the effectiveness of the agent for a few

reasons. In large MDPs with a small area of interest, the agent is distracted

by learning the value estimate in areas outside of its interest and thereby re-
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duces its efficiency in learning. Another consequence of this oversight is due

to the limited capacity of our function approximators. As discussed in Sec-

tion 5.1, the objective that off-policy learners are optimizing is weighted by a

state distribution, usually the behaviour state distribution. We should have

the function approximator dedicate its resources to getting accurate value es-

timates in the states of interest rather than the estimator using its resources

on unimportant states. We could improve our value estimates for the states

of interest if we can inform our agents as to which states are important. Since

our intrinsic reward is weight change, rescaling the weight updates shapes the

intrinsic reward. If the updates are scaled down in uninteresting areas for the

GVF, then the behaviour learner will have less incentive to visit those areas.

The Open 2D World, described in Section 6.3, is a good environment to test

if an agent can leverage its knowledge of which states are important. Each

GVF is only interested in the closest one fourth of the MDP to the GVF’s

respective goal. The shaded region of Figure 8.1 shows the area of interest for

each GVF. The evaluation set used for calculating the total error reflects the

areas of interest for the respective GVF. Each GVF learner is evaluated on a

data set of randomly selected states within the shaded region. The true value

function is calculated by Monte Carlo rollouts according to the target policy

over a large number of iterations. Without an agent leveraging its knowledge of

which states are important, its function approximation resources will be more

constrained and the agent may waste time learning the action value function

for areas that are not important.

We evaluated three different agents in the Open 2D World. Each agent

used GPI SF-NR as the behaviour learner without any prior corrections on the

learning of its successor features. The agents used different prior corrections for

the GVF learners. The first agent did not use any prior corrections in the GVF

learners and was learning the entire MDP with the learning objective weighted

by the behaviour distribution. The second agent used Emphatic TB(λ) for

learning the successor features in the GVF learners. The interest function for

the emphatic method corresponded to 1 in the shaded region of interest and

was otherwise 0. We used an emphasis clipping of 10 to correct issues with the

52



Figure 8.1: The state distribution used in calculating the total error. The
shaded quadrant represents the state distribution used for each GVF learner.

variance of the updates. The last agent used Interest Reweighting as described

in Section 5.4. The interest function was 1 if the state-action pair was in the

shaded region and otherwise was 0.

All three agents used the Auto optimizer for the GVF learners and the

behaviour learner. The initial step size was 0.1 divided by the number of

tilings in the tile coded representation. The meta step size parameters were

swept over the range of [5−4, ..., 50]. This was done independently for the GVF

learners and the behaviour learner. The results were averaged over 30 runs

with the best hyperparameter being selected by the lowest TE on the last 10%

of the run. The small penalty per step used in the intrinsic reward was 0.005.

Figure 8.2 shows the TE averaged over 30 runs with the shaded region

being the standard error. ETB(λ) and Interest TB(λ) result in lower TE than

using TB(λ) with no update reweighting. Figure 8.3 breaks the TE down by

RMSVE per GVF. Lastly, Figure 8.4 summarizes the behaviour of the agents

by plotting the goal visitations.

ETB(λ) and Interest TB(λ) perform at the same level or better than TB(λ)

across the four GVFs. It is possible that the agents using interest learn more

accurate successor feature estimates for the areas of interest. This could be

due to the function approximator dedicating more resources to getting the
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Figure 8.2: Comparison in 2D Open World where the agent uses the same
behaviour learner but three different GVF learners. The red line is the agent
learning successor features with TB(λ), the blue is learning the successor fea-
tures with ETB(λ) and the orange is learning with Interest TB(λ)

successor feature estimate correct in those areas, or due to the intrinsic reward

shaping the behaviour relevant to learning the successor features. Further

investigation is needed to separate the corresponding effects. The results from

this experiment suggest that agents can leverage knowledge of which states

are of interest to improve their corresponding value estimates.

8.2 Enabling Replay

Experience replay is a common technique used in many state of the art rein-

forcement learning systems (Hessel et al., 2018). As the agent experiences the

world, it stores its experiences in a buffer called a replay buffer. The agent

periodically draws samples of experiences from its replay buffer to relearn on

them. Storing real experiences in the replay buffer ensures that the samples

are valid experiences that can be used to improve the agent’s value function

or policy (Lin, 2004). In the previous experiments, the agent has used online

learning with eligibility traces. In order to move to the deep reinforcement

learning setting, the agent will need to work with the more modern approach

of experience replay.
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Figure 8.3: RMSE per GVF learner averaged over 30 runs with shaded region
being the standard error.

A barrier to using a replay buffer for the multi-prediction setting is that

it is difficult to adapt to the non-stationarity faced by the GVF learners. To

understand this barrier, consider the effects of storing the drifter and distractor

cumulants. Updating the GVF learners from samples randomly drawn from

the buffer results in the estimate approaching the mean value stored in the

buffer. This is beneficial for the distractor cumulant as the mean value of

the buffer smooths out the noisy signal. This is detrimental for the drifter

cumulant since the most recent sample is the best estimate and the mean

value in the buffer is a lagging estimate. Figure 8.5 shows the detrimental

effect of applying replay with the ADAM optimizer to the TB(λ) learners.

Separating SF-NR learners into a stationary component (the learning of

successor features) and a potentially non-stationary component (the cumulant

estimates) enables us to apply experience replay with ADAM to the stationary

component of the learning problem without smoothing over the non-stationary

component. Algorithm 12 shows how replay can be introduced to the SF-NR
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Figure 8.4: Goal visitation plot averaged over 30 runs truncated at the run
with the shortest number of episodes. The top left plot is with the GVF
learners using ETB(λ) to learn the successor features. The top right plot is
with GVF learners using the proposed interest method applied to TB(λ) for
learning the successor features. The bottom left plot is for an agent using
TB(λ) for learning successor features.

algorithm.

In this experiment, we ran an agent using the fixed behaviour policy and

compared the effects of experience replay with ADAM against the baseline

agents using no experience replay and Auto optimizer. The buffer was set

to store the last 10000 experiences and the samples for replay updates were

randomly selected from the buffer. The number of replay updates per step

was swept from [20, ..., 24]. For the TB(λ) learners, the agent used the ADAM

optimizer to learn the value function. The SF-NR learners used the ADAM

optimizer to learn the successor features. We swept ADAM’s metastep size

over the range of 2−2n, with n ranging from [-10,...,0].

Figure 8.5 shows the TE of the algorithms using replay and overlays the

best performing online learning algorithms using Auto. The difference in per-
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Algorithm 12 Successor Features for Nonstationary Rewards (SF-NR) with
Replay

Input:(St,At,St+1,Ct+1,γt+1),π,wψ,wc

buffer ← St, At, St+1, Ct+1, γt+1

φ← φ(St, At, St+1)
ψ̂ ← ψ̂(St, At;wψ)

ψ̂′ ←
∑

a′ π(a′|St+1)ψ̂(St+1, a
′;wψ)

∆← 0
for m = 1 to d do
δm ← φm + γt+1ψ̂

′
m − ψ̂m

∆← ∆ + δm∇ψ̂m
wψ ← wψ + α∆
wc ← wc + α(Ct+1 − 〈φ,wc〉)φ
// Update predictions with new data
for n = 1 to batch size do
S,A, S ′, C ← buffer
φ← φ(S,A, S ′)
ψ̂ ← ψ̂(S,A;wψ)

ψ̂′ ←
∑

a′ π(a′|S ′)ψ̂(S ′, a′;wψ)
∆← 0
for m = 1 to d do
δm ← φm + γt+1ψ̂

′
m − ψ̂m

∆← ∆ + δm∇ψ̂m
wψ ← wψ + α∆
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Figure 8.5: Experienced Replay with dotted lines being the replay version of
the respective algorithm. Averaged over 30 runs with shaded region being the
standard error. The number following the algorithm is the number of replay
updates used.

formance between TB(λ) and its replay counterpart visually appears to in-

crease the further into the run. With SF-NR learners, the gap in performance

widens and then shrinks.

Experience replay harms the performance of the TB(λ) learners. This is

likely due to the poor performance on the drifter GVF since the buffer contains

out of date estimates for the drifter. This would explain why the difference in

performance is initially smaller and grows as the buffer contains out of date

samples. In contrast, the SF-NR GVF learners significantly improve their

early learning by applying replay and ADAM to their learning of successor

features. These results demonstrate how replay can be effectively used for

successor features in a non-stationary setting. The performance gap between

SF-NR learners and their replay counterparts fades away by the end of the

run. This is likely because by the end of the run, the online SF-NR learners

have adequately learned their successor features such that replay does not offer

any more significant learning advantages.
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8.3 Summary

In this chapter, we highlight two extensions necessary for moving to more

complex environments. In Section 8.1, we highlight that GVF learners should

be able to focus on learning a subset of states. We compare ETB(λ) and a

proposed Interest TB(λ) against TB(λ) (a method that does not incorporate

interest) on the Open 2D World environment. In the supporting experiment,

we show that rescaling the updates is a promising method for enabling GVFs

to specialize their learning in parts of the MDP. In Section 8.2, we demonstrate

how replay can be effectively applied in a non-stationary setting for successor

features and the limitations of applying it to TB(λ) learners.
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Chapter 9

Conclusions and Future Work

In this work, we study what kinds of learners are necessary for multi-prediction

learning and how the agent can adapt its behaviour to improve learning across

the learners. We highlight the non-stationarity faced by both auxiliary task

learners and the behaviour learner and identify how successor features are well

suited for this problem domain. We provide empirical evidence of the advan-

tage of successor features over other learning methods (TB(λ) and LSTB(λ))

for GVF learning and show how the same principles can be applied for control.

We demonstrate that complex behaviours can be learned as a byproduct of

the agent trying to maximize learning across its prediction tasks. In moving to

larger MDPs, it is likely that each auxiliary task may not need to be learned

accurately across the entire MDP. We propose an interest reweighting method

and demonstrate empirically that it can help the agent focus its attention to

specific sub-areas of the MDP. Finally, we highlight the issues of applying ex-

perience replay in a non-stationary setting and propose an alternative method

of using experience replay with successor features that improves learning.

There are many possible directions for future work in this area. The be-

haviour policy is an ε-greedy policy atop action values. This has a limitation

as this policy is ε deterministic and may not adapt well to situations where

a stochastic behaviour policy is needed. It is easy to imagine that as the

domains get more complicated, a stochastic behaviour policy will be more de-

sirable. It remains open as to what kind of behaviour learners would be good

in this setting and how successor features could be adapted to learn a stochas-
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tic behaviour policy. Another area for investigation is the incorporation of

planning. The extension with experience replay is a preliminary step for this

direction as experience replay can be seen as 1-step planning. It is an exciting

direction as the learning of a planner could be included as the set of auxiliary

tasks and it would be interesting to investigate these effects. Investigation

into making learners more introspective through optimizers or algorithms is

another research avenue. More introspective learners enhance the efficacy of

the multi-prediction system as a whole by providing more meaningful intrinsic

rewards. The scaling of this approach to more complex environments is sure

to reveal more research questions and is essential for being useful in modern

state of the art systems. Lastly, in our multi-prediction learning problems, we

only considered policy evaluation. It is unclear what are the effects on the

learning system if the GVF policies are allowed to be learned.

This thesis presents an early step towards enabling agents to effectively

learn about the world they find themselves in. The hidden journey behind this

work involved successive failures using classic algorithms in RL, like replay, and

discovering the utility in newer ideas. This work underscores the importance of

considering the complete reinforcement learning system where the interacting

components necessitate combining ideas across the field to create an effective

agent.
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