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Abstract

In the ever-evolving field of high-intensity laser interactions with matter, many ap-

proaches have been taken to control and enhance laser-plasma interactions. An al-

ternative, and potentially beneficial approach to further controlling laser-plasma in-

teractions comes from spatial structuring of the laser phase.

In this thesis, we explore high intensity (> 1× 1018Wcm−2) structured light that

carries orbital angular momentum (OAM) via a helical wavefront, also known as an

optical vortex (OV). These beams have the unique property of carrying unprecedented

amounts of angular momentum, even when linearly polarized. Coupling of this OAM

to a plasma is of great interest for the generation of strong axial magnetic fields,

particle guiding, enhanced radiation, and gaining an additional control parameter in

the laser plasma interactions.

We introduce the concept of an off-axis spiral phase mirror for the mode conversion

of ultra-fast high-intensity laser systems, and demonstrate the highest intensity OAM

optical vortices to date. Diffraction models of the high-intensity OV’s are developed

analytically and then approximated using Laguerre-Gaussian basis functions for both

symmetric and asymmetric modes. The interaction of high-intensity OV’s with single
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electrons and plasma is explored analytically, numerically and experimentally.

We show that linearly polarized OAM coupling to single electrons and plasma

occurs from nonlinear mechanisms, and can be used to accelerate particles and en-

hance the laser-plasma interactions. We explore both numerically with particle in cell

(PIC) simulations and experimentally new modes of relativistic self-focussing, wake-

field acceleration, betatron radiation, and magnetic field generation in the presence

of an OAM pulse. We find that angular momentum is indeed coupled to the electrons

and that the critical energy of the emitted betatron spectrum is increased with an

increase in beam OAM. Additionally, we demonstrate in realistic full scale 3D PIC

simulations kilo-Tesla magnetic field generation from the inverse Faraday effect and

characterize the spatial extent and temporal duration of these fields.
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Chapter 1

Introduction

Probably the greatest problem facing human civilization today is the energy problem.

Carbon dioxide emissions from power plants, transportation, and manufacturing has

reached an all time high [2], with compelling evidence to suggest these emissions are

accelerating the melting of the polar ice caps, permafrost, and glaciers that have

been present since the last ice age. It is the responsibility of the current generation of

scientists, engineers, and politicians to tackle this problem and avert the catastrophe

of an increased global temperature.

The problem is not new, and many solutions have already been developed for zero

carbon-dioxide energy emissions such as hydroelectricity, solar energy, wind turbines

and nuclear fission energy to name just the primary contenders. However, there is no

silver bullet to the problem, and each of the aforementioned solutions have advantages

and disadvantages.

For instance, hydroelectric dams can only be built where there is a river of suf-

ficient flow rate and volume, and energy losses from transmission lines to distant

cities and villages can be high [19]. Additionally, the environmental impact of large

hydroelectric dams has often been a source of controversy [42]. Wind turbines can be

built almost anywhere that has a consistent wind flow, and also have long working

lifetimes, but their intermittent power must be supplemented by a another power

source, or a large energy storage facility.

Solar energy has increased in popularity dramatically over the past few decades

due to large reductions in manufacturing and installation costs [28], and with high

capacity battery systems being introduced by companies like Tesla [154], it is possible

for houses to run off-the-grid almost entirely. However, it would be difficult to con-
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vince a Canadian to convert there house entirely to solar when winter-time daylight

hours are reduced to less than 6, outside temperatures plummet below -30◦C, and

there are several inches of snow covering the solar panels. There is also the problem

of the limited working lifetime of silicon solar panels of roughly 25 years, and they

degrade in efficiency slowly over time [77].

The discovery of nuclear fission in 1938 brought hope to an almost unlimited power

source releasing far more energy per gram of material than any chemical burning re-

action. By the 1960’s, nuclear fission energy had been developed from the prototype

200W graphite moderator built be Fermi in 1942 [134], to widespread deployment of

giga-watt (GW) nuclear power stations primarily using enriched uranium fuel rods.

Many variations of fission reactors for burning different fuels and in different decay

chains were developed including the heavy-water moderator CANDU reactors devel-

oped in Canada which required less-enriched uranium, and could even use spent fuel

from other nuclear power plants [87]. However, with mounting concerns of waste

material disposal, ever increasing costs to build reactors [1], and lack of public trust

in the safety of the reactors following (but not limited to) the infamous Chernobyl

accident, the three-mile accident and the recent incident in Fukushima, very few new

nuclear fission power stations are being built. Currently, there is increasing interest

to build small-modular-reactors (SMR’s) which offer potentially safer, smaller nuclear

reactors built at a factory rather than on site. These SMR’s are expected to cost a

fraction of a full scale GW plant, and are easily expanded to meet power needs [125].

Probably the biggest roadblock for fission reactors currently is their waste, and its

corresponding storage and disposal which typically takes on the order of thousands

of years. An alternative idea to that of splitting atoms through fission, is to combine

them using fusion, the same process found with in stars. To fuse two nuclei together,

they must be close enough together to overcome their Coulomb repulsion which re-

quires significant forces to do so. The cross section for fusion (σ) varies depending

on each nucleus and also scales as a function of particle energy [31]. Of the fusion of

light elements and particles, the highest cross sections are found with the deuterium

and tritium isotopes of hydrogen,

2
1H + 2

1H → 3
2He+ n+ 3.27MeV (1.1)

2
1H + 2

1H → 3
1H + p+ 4.03MeV (1.2)
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2
1H + 3

1H → 4
2He+ n+ 17.62MeV (1.3)

Here we see that the thermal energy released in the fusion of deuterium and

tritium (D-T) is 17.62MeV , which also has the highest fusion cross section when

the particles have a temperature of approximately 10keV . For a fusion reactor using

D-T fuel, it only requires 91kg of fuel for 1GWy of energy. Unlike fission, fusion

does not occur terrestrially, and as a result it is much more difficult to sustain fusion

reactions suitable for power generation. Yet the advantages of using fusion energy are

numerous, most notably the lack of radioactive waste. In fact, the helium produced

in D-T and D-D fusion is a very useful resource.

Another advantage of fusion energy is the abundance of fuel on earth, with 0.015%

of all natural hydrogen being a deuterium isotope. This is in stark contrast to the

limited availability of U235 (0.72% isotope abundance) requiring large calutrons and

centrifuges to separate it from uranium ore.

Given that the particles need to have energies upwards of 20keV , they are in a

plasma state. For fusion of the elements to occur, the Lawson criteria states that the

product of plasma density and confinement time must exceed a given value depending

on the plasma species and temperature. For a deuterium-tritium fusion at 26keV , it

is found that [31],

nτ ≥ 1.5× 1014 s

cm3
(1.4)

where τ is the energy confinement time, and n is the plasma density.

There are several methods of plasma confinement that can potentially meet this

criteria, including of course gravitational confinement as found in stars. Unfortu-

nately, the use of gravity to confine a plasma is not possible with current, or probably

future technology. A suitable candidate instead of gravity is magnetic confinement

through the use of tokamaks, spheromaks, and stellerators [65]. These large plasma

containment devices use strong magnetic fields to confine the plasma into a torus

shape and typically can confine the plasma on the order of ms to upwards of 300s

with the new ITER project [73]. The resulting plasma density according to the Law-

son criteria is typically low requiring n ≈ 1× 1014cm−3.

The compressing and containment of plasma using magnetic fields is often com-

pared with using rubber bands to compress a balloon, and the engineering of device

to do this is not without problems. An alternative to magnetic field confinement is to

use lasers from multiple angles to compress, and heat plasma in a fraction of the time.
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Using Nd:glass laser systems packing mega-joules of energy into a few nanoseconds,

inertial confinement fusion is a promising alternative that has already been able to

release more energy than that used to confine and heat the fuel in a small ignition

spot within the plasma (Q > 1) [71].

1.1 Inertial Confinement Fusion

In a similar fashion to magnetic confinement devices, there are several configurations

that can be used for inertial confinement fusion. The direct-drive fusion approach,

such as that used at the Laboratory for Laser Energetics in Rochester, NY [102],

uses 60 frequency tripled lasers to directly compress a small plastic spherical target

(≈ 1mm diameter) filled with D-T mixture to densities of roughly 1000 times that of

solid density. This results in a plasma density of order 1026cm−3, corresponding to a

confinement time τ of roughly 100ps - much shorter than the nanosecond timescale

of the laser pulse. This gives great promise for fusion ignition, but so far efforts have

fallen slightly short of achieving ignition and complete burning of the fuel.

Primary reasons for this are found due to two major factors, inhomogeneities

in the laser wavefront, and surface roughness on the target surface. These factors

seed instabilities such as the Rayleigh-Taylor (RTI), Richtmeyer-Meshkov (RMI),

and Kelvin-Helmholtz instabilities (KHI) that ultimately become detrimental to the

symmetry of the implosion.

One possible improvement to the direct-drive scheme is that of an indirect-drive

scheme like that used at the National Ignition Facility (NIF) at Lawrence Livermore

National Laboratory (LLNL) in California [71]. In this scheme, the spherical D-T fuel

capsule is suspended within a gold cylinder with openings on either end. At the NIF,

192 laser beams of kJ, ns class are focussed on the inside walls of the the gold cylinder,

also known as a hohlraum, which converts the incoming laser light into an x-ray oven

with a near Planckian emission spectrum. The primary advantage in this scheme is

the dramatic increase in radiation uniformity as compared to direct-drive schemes,

however large scale non-uniformities such as the non spherical cylindrical x-ray source,

target support structures and, target imperfections can still drive aforementioned

instabilities.

In an ideal implosion, a central hot spot is generated at the centre of the com-

pressed fuel with enough energy to ignite the fusion reaction. However instabilities in
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the compression have prevented ignition requiring alternative approaches to igniting

the fuel. A recent approach that increased the yield to beyond unity (energy incident

into the ignition hot spot was less than that released) used a high foot laser pulse to

drive the implosion [71]. In this scheme, the laser pulse is shaped temporally in an

attempt to mitigate the RTI [36].

Another alternative is the fast-ignition approach in which the compression and

ignition processes are decoupled [152]. In this process, the conventional ICF com-

pression is used to compress the fuel, but is done in such a way that a central hot

spot is not formed. A second energy source is then used to ignite the fuel through

use of either photons or a particle beam. The advantage of this method is that the

total laser energy threshold for ignition is lowered, it yields a higher gain, and the

sensitivity to hydrodynamic instabilities is lower.

A typical fast ignition scheme would use a PW class high intensity laser to produce

electrons in the surrounding plasma of the compressed core with a suitable energy

spectrum such that they deposit their energy at the central hot spot of the fuel

at the end of their energy range. The major problem in this scheme comes from

filamentation, resistive effects and resultant electron beam divergence. Recent studies

have shown that when a strong magnetic field (2kT ) is imposed across the target, the

electrons can be guided by this field and the coupling efficiency of the hot electron

energy to the hot spot can be increased sevenfold up to 14% [169, 152, 80, 155, 143,

17, 149, 139].

This is superior to previous fast ignition schemes that have utilized a cone inserted

into the hohlraum causing anisotropy and uneven compression of the fuel. It is

believed that the additional large magnetic field can effectively collimate and guide

hot electrons to the hotspot. Previous studies have shown an electron beam divergence

of around 50◦ half angle, so any collimation of this beam can significantly increase

coupling efficiency [149, 139].

Generating magnetic fields of this strength in these conditions is no trivial mat-

ter, and methods for doing this are actively being investigated [171]. One goal of this

thesis is to investigate magnetic fields generated from structured laser pulses carry-

ing angular momentum, particularly the so called called orbital angular momentum

(OAM) pulses. The absorption of angular momentum by plasma, also known as the

inverse Faraday effect [64, 5], is potentially capable of generating ≈ 10kT magnetic

fields using lasers available today. However this effect is only understood using ideal
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analytic models for structured light, and needs both numerical and experimental

confirmation. This thesis will explore the numerical verification of these fields for

underdense plasmas and present some preliminary experimental investigation of the

interaction of OAM pulses with underdense targets at high intensities.

1.2 Laser Driven Particle Accelerators

The development of high peak power, high-intensity lasers (> 1 × 1018Wcm−2) over

the past 30 years has led to the application of lasers to many interesting high-energy

areas beyond that of fusion energy discussed in the previous section. Of them, one

of the most promising is that of table-top particle acceleration, in particular, the

acceleration of protons, neutrons, positrons, and electrons.

Conventional microwave and radio-frequency accelerators like the past Large Electron-

Positron (LEP) collider and the current Large-Hadron collider (LHC) typically op-

erate with a maximum electric field gradient of 150MV/m requiring many meters to

accelerate electrons to even GeV energies [39]. It is possible to accelerate protons and

ions to TeV energies in circular accelerators as the energy losses due to synchrotron

radiation scales as [mass]−4 [75], whereas electrons are currently limited to energies

of around 100GeV . Circular accelerators like the LEP at CERN, and the linear accel-

erator at SLAC are able to accelerate electrons to 100’s (10’s) of GeV ′s, but in doing

so, require 27 kilometers of circumference or a 3 kilometer straight line respectively.

If we instead consider the electric field of an intense laser pulse, we find that

the peak electric field is much greater, for instance, a laser with peak intensity 1 ×
1019Wcm−2 has a peak electric field of

E =

√
2I

cε0
≈ 1TV/m (1.5)

This is clearly many orders of magnitude greater than the electric field strength of

conventional accelerators, but the electric field is sinusoidal and any material brought

into contact with it is ionized and changes to a plasma state. Plasma waves can

sustain a maximum electric field of

E0(V/m) ≈ 96
√
ne(cm−3) (1.6)

before wave breaking. For instance, a plasma with electron density ne = 1×1019cm−3
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can sustain a peak accelerating field of 300GV/m, more than 3 orders of magnitude

greater than that of a conventional accelerator. In theory, using plasma to accelerate

particles instead of RF waves in vacuum could reduce the accelerator from kilometer

lengths to meter lengths.

By exciting nonlinear plasma waves - past the wave breaking limit of Eq.1.6, it is

possible to accelerate particles with yet higher electric field gradients - on the order

of 1TV/m [39]. To excite a nonlinear plasma wave, a high-intensity laser pulse is

used to drive a laser wakefield [153, 40] that trails behind the laser pulse with a group

velocity equal to the laser pulse in the plasma. Electrons caught in this wake are

accelerated to GeV energies on scale lengths of millimeters, and eventually outrun

the laser pulse and wake once their energy becomes highly relativistic. Currently,

laser driven wakefield accelerators (LWFA) have achieved peak electron energies of

approximately 8 GeV using a pre-ionized plasma channel of length ≈20 cm [57].

There are some schemes in place that could potentially accelerate the electrons in

a single stage to beyond this energy towards the 100GeV energy scale, such as the

AWAKE experiment at CERN that uses a proton bunch to drive the wakefield as

opposed to light pulses [63].

In addition one can cascade acceleration stages in series such as the Bella ac-

celerator proposal of Lawrence Berkeley National Laboratory to use 100 stages of

acceleration of 10 GeV each to achieve a TeV particle accelerator [163].

In addition to producing high energy, low divergence electron beams, high bright-

ness and spatially coherent x-ray beams can be emitted from the interaction. Betatron

radiation is a result of the electrons accelerated in the wakefield oscillating in radial

electric fields and azimuthal magnetic fields generated in the so-called bubble regime

of LWFA [4]. These betatron x-rays are of great interest as their pulse duration is

short - on the order of the pulse duration (≈ 30fs), and comparable in brightness

to current high brightness x-ray sources [129]. A review of the physics of wakefield

acceleration, and betatron radiation will be given in Chapter 4.

1.3 Higher Order Laser Modes

When we talk about high peak-power laser systems, we are usually referring to peak

powers greater than 1 TW . To achieve these very high powers, many techniques are

used including multi-pass amplifiers, chirped pulse amplification, and optical para-
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metric amplifiers [150].

Typically, the high powered lasers used to drive ICF compression, fast ignition

and wakefield accelerators have been linearly polarized fundamental laser modes -

typically focussed to Gaussian or Airy focal spots. There are multiple reasons for

this, the first of which is that most often researchers want the highest peak intensity

which is achieved using the fundamental laser mode (single Gaussian spot).

Another reason is inherent in the design of the laser amplifiers for high-power laser

systems which are typically large slabs of lasing glass or crystals. This glass is often

illuminated using pump lasers with a transverse profile designed to make optimal use

of the glass shape. Given that the amplifiers are typically cylindrical, or square, the

ejected beam typically is a super-Gaussian profile that is convolved with the shape of

the amplifying glass. The wavefront of the ejected beam is flat, and often corrected

after pulse compression using deformable mirrors to ensure this wavefront flatness

[175]. Modification of a high-power laser system to change the laser mode is typically

not desirable as the lasers are designed to operate within tight specifications and

damage thresholds.

For smaller, low-power laser cavities it is possible to manipulate the ejected laser

mode such that higher order lasers modes can be generated [145]. This can be done

through several methods such as spot defect mirrors [74], curved mirrors, or a phase

plate within the cavity. To mode convert a high-power laser, alternative methods

external to the laser cavity are needed.

Using higher order laser modes and alternative polarization states to drive high-

intensity laser-plasma interactions is an area of growing interest. While there has

been little work done experimentally in this area due to challenges associated with

generating higher order modes at high-intensity [24, 113, 86], there is a significant

amount of theoretical and simulation work done to explore possible advantages of

using higher order modes to drive laser-plasma interactions [165, 164, 105, 106, 117,

116, 21, 168, 141]. Primarily, the interest in using higher order laser modes is in using

modes that carry an angular momentum, unlike that of linearly polarized Gaussian

modes.

The angular momentum carried by a laser pulse can come from two sources -

either spin angular momentum (polarization) or orbital angular momentum (spatial

structure in the wavefront). Spin angular momentum (SAM) is limited to one ~ unit

of angular momentum per photon in a given beam as a result of photons being spin-1
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bosons [62]. On the other hand, orbital angular momentum (OAM) is essentially

unlimited in the angular momentum a beam can carry, however as OAM is increased

in the beam, its peak intensity decreases [6]. Coupling of laser angular momentum

to plasma is of great interest as it gives us an additional control parameter in the

interaction.

If angular momentum is transferred to a plasma, then the plasma may begin to

rotate about the laser axis. The primary phenomenon expected to occur is magnetic

field generation as electrons orbit about the axis like a plasma solenoid. This has

been explored analytically [5, 64], but little work has been done in the numerical

and experimental verification into this mechanism for linearly polarized OAM beams.

Axial magnetic field generation in a laser plasma interaction is of particular interest

to the ICF community as it could be used to guide and focus electron beams for fast

ignition, or for magnetically assisted fusion [146]. Additionally, it could be used to

enhance the betatron critical energy from laser driven wakefield acceleration due to

the dependence on the electron oscillation radius on magnetic fields.

1.4 Goal and Outline of Thesis

The goal of this thesis is to explore the generation and interaction of high intensity

orbital angular momentum laser beams with free electrons and plasma theoretically,

numerically, and experimentally extending models currently used for Gaussian beams

to the new family of OAM modes. Specifically, we are interested in how to mode

convert high-power lasers efficiently and economically, and to fully characterize the

generated OAM beams at focus. Once the high-intensity OAM beam is generated, we

aim to investigate how this angular momentum can be transferred to free electrons,

and plasma using analytic, numerical, and experimental methods.

Single particle relativistic electrodynamics and scattering will be explored using a

code developed in MATLAB, while the dynamics of relativistic self-focussing, wake-

field acceleration in the blow-out regime, and betatron radiation in linearly polarized

Laguerre-Gaussian modes will be explored using the EPOCH particle-in-cell code [8].

We also aim to verify the generation of magnetic fields in plasma from linearly po-

larized OAM modes via the inverse Faraday effect numerically, and develop plasma

parameters suitable for studying the phenomenon experimentally.

To verify the simulations, we will compare the results to experimental data ac-
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quired at the CLPU laser facility from a 2018 campaign. This is the first time an

extensive study covering both the theoretical and experimental aspects of linearly

polarized OAM beams has been performed. The thesis chapters are summarized

below.

Chapter 2 - The Orbital Angular Momentum of Light

In this chapter we review the angular momentum carried in electromagnetic waves,

and the concept of orbital angular momentum (OAM). We then derive a general-

ized formula for the Fraunhofer diffraction of azimuthally symmetric beams carrying

OAM. The far-field diffraction of lasers carrying OAM is then found for high-power

lasers with Gaussian, super-Gaussian and flat-top near field profiles. These far-fields

are then approximated for the first time using two methods with waist-optimized

Laguerre-Gaussian basis functions. These fitted functions provide an improved basis

for accurate modelling of high-power optical vortices in numerical simulations and for

comparing to experimental results.

Chapter 3 - Relativistic Electrodynamics of Optical Vortices

In this chapter we review the fundamental single-particle electrodynamics in rela-

tivistic plane waves including the concepts of the ponderomotive force, relativistic

effects, and the Lawson-Woodward theorem. We derive the fully symmetric paraxial

field equations of generalized Laguerre-Gaussian modes and model relativistic single

particle dynamics within the fields. The simulation results are used to verify for the

first time angular momentum transfer to electrons scaling with the absorption.

The physics and simulation of relativistic Thomson scattering from free electrons

is also derived and demonstrated for plane waves. The simulations are then post-

processed to give the detailed spatial and spectral distributions as a function of

intensity. While we do not demonstrate it in this thesis, we have developed capa-

bilities to model nonlinear Thomson scattering from arbitrary LG modes, and plan

to implement this into future work.

Chapter 4 - Under-Dense Plasma Interactions with Optical Vortices

Chapter 4 explores the interaction of high-intensity optical vortices with under-dense

plasma numerically. We review the physics of plasma wakes and electron acceleration.
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We then explore the relativistic self-focussing of an optical vortex and discuss the two

modes of self-focussing that were observed. Wakefield acceleration in the blow-out

regime is discussed comparing scaling laws associated with electron energy gain and

bubble size for Gaussian driven wakefields and extending these models to Laguerre-

Gaussian wakefields.

Chapter 5 - Generation of High Intensity Optical Vortices

In this chapter the current methods of generating low power OAM beams in laser

systems is reviewed and a novel method for generating such modes in high power laser

systems is presented. We investigate the mode conversion efficiency of stepped spiral

phase optics and develop the off-axis spiral phase mirror (OASPM) as a new method

to generate OAM modes. The implementation of the OASPM is demonstrated in a

low power laser system, and then in a high-power laser system yielding the highest

intensity optical vortices produced in the lab to date. A perturbative model is also

developed for the numerical modelling of realistic, asymmetric optical vortices.

Chapter 6 - Wakefield Acceleration with Optical Vortices

Chapter 6 discusses the 2018 CLPU experimental campaign aimed at driving wakefield

acceleration with optical vortices for the first time. The experimental setup and the

CLPU VEGA2 laser is discussed. A review of the diagnostics used for measuring

electron energy and divergence, as well as betatron x-ray energy and divergence is

given. The results are discussed and compared to numerical simulations using realistic

beam profiles.

Chapter 7 - Linearly Polarized Optical Vortices and the Inverse Faraday

Effect

In Chapter 7, we investigate numerically the generation of magnetic fields from the

coupling of linearly polarized OAM modes to plasma electrons. These fields are

compared to analytic models, using both ideal symmetric OAM beams and realistic

asymmetric OAM beams and regimes are found where fields of the order of 1000T

can be generated.
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Chapter 2

The Orbital Angular Momentum

of Light

In this chapter, we introduce the notion of electromagnetic waves carrying angular

momentum in two forms; spin and orbital angular momentum (OAM). We then review

beams carrying well defined orbital angular momentum through scalar diffraction

theory and in the paraxial basis of Laguerre-Gaussian modes.

By approximating the actual diffraction of OAM beams at focus with best fit stan-

dard Laguerre-Gaussian modes, we find simple models for describing high intensity

OAM beams at focus for analytic and numerical models. This is done in two methods

and the advantages and disadvantages of each are compared and allows much more

accurate descriptions of the focal spot intensity than has been done to date so far.

This work has been summarized in two publications, the first describes the de-

composition of Gaussian OAM beams into Laguerre Gaussian function that have

been optimized for energy. The paper also consider mode conversion of OAM beams

generated with stepped spiral phase optics, and lasers with broad bandwidth [93].

The second paper considers the generation of OAM beams with high intensity lasers,

specifically the various near-fields common to the lasers, and then fits the optimal

Laguerre-Gaussian mode to each of the cases [94].

2.1 Electromagnetic Waves

The classical interplay between the electric and magnetic field can be completely

described using a set of four symmetrical equations known formally as Maxwell’s
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equations [75],

∇ ·E =
ρ

ε0
(2.1)

∇ ·B = µ0ρm (2.2)

∇×E = −∂B
∂t
− µ0Jm (2.3)

∇×B = µ0ε0
∂E

∂t
+ µ0J (2.4)

Here, E gives the 3D electric field vector, ρ gives the electric charge density, and

ε0 gives the permittivity of free space as defined in the list of constants in this thesis.

The current density vector J gives the flux of charge per unit time per unit area. In

vacuum the presence of charges and sources are assumed zero and thus, ρ and J are

assumed zero.

By symmetry, we define the magnetic field vector B, the magnetic charge density

ρm, and the permeability of free space µ0. At the present time, the magnetic charge

has yet to be observed and thus its non-existence is assumed. If the magnetic charge

density is zero, then the corresponding magnetic current density Jm is also zero.

Setting both ρ and ρm equal to zero results in the vacuum Maxwell equations.

Maxwell’s equations are linear in vacuum for electric field strengths much less

than the Schwinger field; ES = 1.32×1018V/m [23]. Close to and beyond this electric

field strength, the electromagnetic field becomes nonlinear and new phenomena can

arise. Of interest to the high-intensity laser community is the observation of vacuum

birefringence, the effect where virtual electron-positron pairs are generated at the

Schwinger field intensity in vacuum. The observation of vacuum birefringence and

other nonlinear processes are hoped to be explored with the next generation of lasers

that may drive intensities over 1× 1023Wcm−2 [67].

Some algebraic manipulation of Maxwell’s equations in vacuum allows us to rewrite

the four first order partial differential equations as two second order partial differential

equations. Taking the curl of Eq’s.2.3 and 2.4, using the identity

∇×∇×A = ∇(∇ ·A)−∇2A (2.5)

and noting that in vacuum, ∇ ·E = 0 and ∇ ·B = 0, we can write;
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µ0ε0
∂2E

∂t2
−∇2E = 0 (2.6)

µ0ε0
∂2B

∂t2
−∇2B = 0 (2.7)

We note that these are simply wave equations that propagate at speed,

c =
1

√
µ0ε0

= 2.99792× 108m/s (2.8)

the speed of light in vacuum.

The solutions of these equations are dependant on initial and boundary conditions.

Due to the linearity of Maxwell’s equations, we can use the superposition principle to

construct complicated solutions from a set of fundamental solutions. A non-trivial,

fundamental solution suitable for describing propagating electromagnetic beams is

that of an infinite plane wave,

E = E0exp (i(k · r − ωt)) ê1 (2.9)

B = B0exp (i(k · r − ωt)) ê2 (2.10)

Here, we define the angular frequency of the electromagnetic wave as ω, and

the wave-vector k = ê32π/λ where λ is the wavelength of the wave. We use r as a

general position vector and an orthogonal unit vector êk. If we assume our wave to be

propagating in the ẑ direction, then it is easy to show via Eq.2.4 that for plane waves

in vacuum, there can be no electric or magnetic fields in the direction of propagation

and they must be orthogonal to each other. If the electric field is polarized in the x̂

direction, then the corresponding magnetic field must be polarized in the ŷ direction.

Direct substitution of the time-independent plane wave solutions into the electro-

magnetic wave equations yields the Helmholtz equation,

(∇2 + k2)E,B = 0 (2.11)

This solution generally describes any propagating wave comprised of plane waves.

Due to the linearity of Maxwell’s equations in vacuum, it is possible to compose a

solution of Maxwell’s equations and the Helmholtz equation as a superposition of

plane waves. We will look for specific scalar solutions to the Helmholtz equation

relevant to this thesis in section 2.3.
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2.2 Angular Momentum of Electromagnetic Waves

Electromagnetic waves carry energy and momentum. The wave energy propagated

per unit time, per unit area is given by the Poynting vector [75, 61].

S =
1

µ0

E ×B (2.12)

The linear momentum density carried by a classical electromagnetic wave can then

be given as,

℘ = µ0ε0S = ε0(E ×B) (2.13)

As an extension to classical mechanics, it is not surprising that it is possible for an

electromagnetic wave to carry angular momentum, the density of which can be given

by,

j = r × ℘ = ε0[r × (E ×B)] (2.14)

Not all waves carry angular momentum, but all waves propagate with a linear momen-

tum. For example a linearly polarized plane wave given by Eq.2.9 propagates with a

time-averaged linear momentum density of E2
0/(2µ0c) but does not carry an angular

momentum. The combination of two plane waves with a phase and polarization shift

can carry angular momentum. Consider two plane waves given by the following,

E1 = E0exp (i(kz − ωt)) x̂ (2.15)

E2 = E0exp (i(kz − ωt+ δ)) ŷ (2.16)

where δ is an arbitrary phase. If δ is set to zero, then the sum of the two waves

E = E1 +E2 will produce a linearly polarized plane wave 45◦ relative to the x̂ axis.

However if δ is set an arbitrary value that is not equal to 0 or nπ, then the wave

can carry an angular momentum in the form of a rotating electric field vector, i.e.

circular or elliptical polarization. An illustration of circular polarization is given in

Fig.2.1.
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Figure 2.1: Electric field vectors for a linearly polarized beam (left), and a circularly

polarized beam (right). Images reproduced with permission from [174]

It is a natural step to further consider that electromagnetic angular momentum

may consist of two vector components, much like in classical mechanics. Consider

the example of the Earth orbiting the sun which possesses a total angular momentum

vector J - not to be confused with the current density. This angular momentum may

be broken into its components of the spin angular momentum from the Earth rotating

on its axis S, and the orbital component of the Earth orbiting the Sun L. The total

angular momentum of the Earth orbiting the sun is simply the vector sum of the spin

and orbital components.

J = L+ S (2.17)

Electromagnetic waves can also be broken into spin and orbital angular momentum

and add in the exact same way. As shown in Fig 2.1, the spin component arises

from the rotation of the electric field vector about a point, typically arising from the

combination of two orthogonal plane waves shifted in phase and polarization plane.

The orbital angular momentum on the other hand may arise classically from a spatial

variation in the phase of the beam which could be introduced by writing δ(x, y, z).

To prove this, we examine Eq.2.14, where it is possible to expand out the cross

product into its constituent terms of spin and orbital angular momentum. We start

16



by introducing the magnetic vector potential A defined as

B = ∇×A (2.18)

and,

E = −∂A
∂t
−∇ϕ (2.19)

where ϕ is some scalar potential set depending on the gauge. The magnetic vector

potential is a powerful way of representing an electromagnetic wave as we can move

the vector potential to a gauge that is more natural for describing waves. A useful

gauge to do this is the Lorenz gauge given by,

∂µAµ = ∇ ·A+
1

c2

∂ϕ

∂t
= 0 (2.20)

Here, we introduce the 4-dimensional derivative ∂µ, and the scalar potential ϕ freely

chosen to satisfy the gauge condition. This is in contrast to Maxwell’s equations as

the divergence of the electric field which must always be zero as given in Eq.2.1. The

use of a scalar potential removes this condition and we can write the full magnetic

vector potential without loss of generality of an EM wave in a much simpler form,

A = <
[
ψ(x, y, z)ei(kz−ωt)ê

]
(2.21)

Here, we introduce a scalar wavefunction ψ(x, y, z) and a generalized polarization

vector ê. Eq.2.21 is a full description of a linearly polarized of arbitrary spatial shape

and requires no additional terms to make it Maxwell consistent. A time harmonic

magnetic vector potential can then be used to write the electric field in the Lorenz

gauge as [66],

E = iω

[
A+

1

k2
∇(∇ ·A)

]
(2.22)

Using the above definitions of the electric and magnetic field, it is possible to write

Eq.2.14 in the following form [12].

j = ε0

[∑
j

Ej(r ×∇)Aj − r ×∇j(EjA)

]
(2.23)

By inspection we see the right hand operator r × ∇ is reminiscent of the orbital

angular momentum operator in quantum mechanics [25], while the second term can
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be written assuming the fields drop off sufficiently quickly as E×A [12]. Integrating

over all space gives the total angular momentum of a time harmonic electromagnetic

wave as [12],

J = ε0

∫ [∑
j

Ej(r ×∇)Aj +E ×A

]
dV (2.24)

With the orbital angular momentum defined as,

L = ε0

∫ ∑
j

Ej(r ×∇)AjdV (2.25)

and the spin angular momentum as,

S = ε0

∫
E ×AdV (2.26)

It is possible for an EM wave to carry OAM by having a simple phase tilt or

any anisotropic structure in its phase, however these can be difficult to define and in

general, are not of interest.

A simple way for an electromagnetic wave to carry a well defined orbital angular

momentum (OAM) is by imprinting the wavefront to contain a helix centred about

the laser axis. The pitch of the helix Q can be written in terms of the wavelength

as Q = λL. The topological charge L of the beam can be any number, but for now

we will assume it is equal to an integer such that we can define the azimuthal mode

number ` = L. In doing this, we can write the scalar wave amplitude as a function

of `,

ψ(r, θ, z) = ψ(r, z)ei`θ (2.27)

where θ and r are the polar coordinates in the transverse plane. Here, we have

assumed that the wavevector is independent of θ and as such has an azimuthally

symmetric amplitude profile short of the helical phase. While this may seem restrict-

ing as there are many laser modes that are not azimuthally symmetric, we shall see

that the laser modes carrying a well defined OAM are azimuthally symmetric. A

beam carrying OAM via a helical phase is illustrated in Fig.2.2.
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Figure 2.2: Helical wavefronts for beams with various orbital angular momentum. a).

` = 0, b). ` = 1, c). ` = 2, and d). ` = 3. Images reproduced with permission from

[174]

It was shown in the seminal paper by Allen et al.[6] that the angular momentum

density in the propagation direction carried by a wave with both spin and orbital

angular momentum in the form of a helical wavefront can be given by,

jz =
`

ω
|ψ|2 +

σzr

2ω

∂|ψ|2

∂r
(2.28)

Here, we use σz to denote the polarization state of the beam; +1 for right hand

circular polarization, −1 for left, and 0 for a linearly polarized beam. Other values

between 1 and −1 compose an elliptically polarized beam.

Eq.2.28 gives deep insight into the nature of electromagnetic angular momentum.

For instance, integrating over all space and utilizing the fact that each photon carries

~ω energy, we reach the famous result for the total angular momentum per photon,

Jz = (`+ σz)~ (2.29)

The spin angular momentum of a photon is well known to be σz~ as photons are spin

1 bosons [62]. However, the surprising result is that a single photon may contain an
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additional intrinsic angular momentum in the form of an orbital component equivalent

to `~. This notion is counter intuitive as classical OAM is associated with something

rotating around an axis or point. We know that photons are mass-less, and charge-

less, so what are they rotating around as there can be no binding force?

It is well understood that the spin of a photon is an intrinsic property of the

photon and there is no classical analogue. Considering many spin 1 photons in a

beam comprises a circularly polarized beam with a rotating electric field vector.

Similarly, we find that the OAM of a single photon is an intrinsic property and

arises in the form of a helical phase in the photon wavefunction. Much like the intrinsic

spin of a photon, there is no classical analogue to the intrinsic OAM of a photon, and

its interpretation is dependant on the interpretation of quantum mechanics.

A remarkable feature of this is result is the allowed range of values of `. In

theory, ` is unbounded as we can make the pitch of the helix infinitely tight (perhaps

limited to the Planck length), and therefore a single photon could in theory carry a

massive amount of intrinsic orbital angular momentum. This has been demonstrated

experimentally for values fo ` up to 10000 [46], and is being widely researched as a

method to enhance communication bandwidth in optical, infra-red, microwave, and

radio frequencies [112].

2.3 The Paraxial Approximation and Laguerre-Gaussian

Modes

A useful property of the Lorenz gauge is that if a vector potential satisfies the gauge

condition, then it also satisfies the wave equation,

∂µ∂µA
µ = 0 (2.30)

where ∂µ∂µ = µ0ε0∂tt−∇2. Direct substitution of the time harmonic vector potential

into Eq. 2.30 yields,
∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2ik

∂ψ

∂z
+
∂2ψ

∂z2
= 0 (2.31)

In general, this partial differential equation is difficult to solve analytically and

typically requires a numerical solution. However, if we can make the assumption that

the laser is not diverging with a large angle, then the beam will satisfy the paraxial

20



approximation, ∣∣∣∣∂2ψ

∂z2

∣∣∣∣� ∣∣∣∣k∂ψ∂z
∣∣∣∣ (2.32)

such that we can drop the second derivative in z. Rewriting Eq. 2.31 in polar

coordinates under the paraxial approximation yields the following,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
+ 2ik

∂ψ

∂z
= 0 (2.33)

The solution of this equation can be given by the well-known Laguerre-Gaussian

modes [6],

ψ`,p(r, θ, z) =

√
2p!

π(p+ |`|)!
1

w(z)

[
r
√

2

w(z)

]|`|
exp

(
−r2

w(z)2

)
L|`|p

(
2r2

w(z)2

)
exp

[
i`θ − ik r2z

2 (z2
0 + z2)

− iΨ(z, p, `)

] (2.34)

Here we introduce the azimuthal and radial mode numbers ` and p respectively, and

the generalized Laguerre polynomial

L|`|p (x) =

p∑
n=0

(−1)n
(p+ |`|!)

(p− n)!(|`|+ n)!n!
xn (2.35)

The Rayleigh range is the distance at which the beam width increases its radius by√
2 as shown in Fig.2.3 and is given by the formula z0 = kw2

0/2 where w0 is the

Gaussian beam waist for the fundamental mode.
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Figure 2.3: Illustration of a Gaussian beam close to focus with w0 = λ. The solid

black lines represent the radius at w(z) while the dashed black lines represent the

diffraction-less solution of a beam focussing to a singularity at z = 0. The dashed

red lines represent the wavefront curvature ignoring the phase shift due to the helical

phase.

The beam waist at any given point along the propagation axis is given by,

w(z) = w0

√
1 +

z2

z2
0

(2.36)

Additionally, we define the Gouy phase is given as,

Ψ(z, p, `) = (2p+ |`|+ 1) tan−1

(
z

z0

)
(2.37)

The solutions for the first few azimuthal and radial modes are plotted in Fig.2.4

indicating both the field amplitude, time averaged intensity, and the phase of a few-

low order modes.
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Figure 2.4: From left to right; instantaneous amplitude, phase, and time averaged

intensity of various low order Laguerre-Gaussian modes ψ`,p at z = 0 according to

Eq.2.34.

Combining the field amplitudes of Eq.2.34 with the magnetic vector potential given

in Eq.2.21 yields a complete description of the electric and magnetic fields of the OAM

beam close to focus within the paraxial approximation. Analytic expressions of these
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fields is given in section 3.3.1.

While this model has been employed extensively in the literature both in theoret-

ical and numerical models of OAM beams, it is not necessarily a good representation

of realistic OAM beams. For realistic descriptions of OAM beams, we need to ver-

ify that the LG modes match the results of diffraction theory, or find modes that

represent the diffraction theory accurately.

2.4 Scalar Diffraction of Optical Vortices

While the Laguerre-Gaussian modes are valid solutions to the wave equation in the

paraxial approximation and the Helmholtz equation, they do not completely describe

OAM beams at focus in their given form.

Scalar diffraction allows for the electric and magnetic fields to become decoupled in

the Helmholtz equation if the following conditions are met; the propagation medium

is linear, isotropic, homogeneous, non-dispersive, and non-magnetic, as is vacuum

[121]. From the vector Helmholtz equation given in Eq. 2.11, we write the scalar

Helmholtz equation as,

(∇2 + k2)U(x) = 0 (2.38)

where U(x) is some scalar field that describes the wave amplitude. The problem

we are interested in solving is the far-field diffraction of an OAM beam for a given

near-field profile. This is illustrated in Fig.2.5.
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Figure 2.5: Propagation geometry from source plane U1(x′, y′) to a parallel observa-

tion plane U2(x, y)

If we take the amplitude in the source plane as U1(x′, y′), it is possible to write

the amplitude in a second plane U2(x, y) some distance z away by the Rayleigh-

Sommerfeld diffraction solution [121],

U2(x, y) =
z

iλ

∫∫
Σ

U1(x′, y′)
exp(ikr12)

r2
12

dx′dy′ (2.39)

where Σ defines the limits of the integrals by some aperture function. We use the

variable r12 to denote the distance between any two points on the two planes. Formally

we can define this distance by,

r12 =

√
z2 + (x− x′)2 + (y − y′)2 (2.40)

In essence, this is a statement of Huygen’s principle; every point on the aperture

acts a spherical source of waves which are then summed at the observation point U2

allowing for the effects of constructive and destructive interference to take place. If

the two planes containing U1 and U2 are parallel, then Eq.2.40 becomes a convolution
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integral written as [58],

U2(x, y) =

∫∫
U1(x′, y′)h(x− x′, y − y′)dx′dy′ (2.41)

where h(x, y) is the impulse response. In this case the Rayleigh-Sommerfeld impulse

response can be written as,

h(x, y) =
z

iλ

exp(ikr)

r2
(2.42)

with r =
√
x2 + y2 + z2. Using the Fourier covolution theorem, we can rewrite

Eq.2.41 as,

U2(x, y) = =−1 [={U1(x, y)}={h(x, y)}] (2.43)

Here we denote the Fourier transform and inverse Fourier transform as = and =−1

respectively.

Eq.2.43 is the basis for Fourier optics, and in simple cases can be solved exactly.

The Fourier transform of Eq.2.42 is analytic and yields the Rayleigh-Sommerfeld

transfer function,

H(fx, fy) = exp

(
ikz

√
1− (λfx)

2 − (λfy)
2

)
(2.44)

where fx, fy are the coordinates in k space.

2.4.1 Near-field and Far-field Diffraction

The inverse Fourier transform of Eq.2.43 is in general not solvable and must be com-

puted by numerical methods such as the Fast Fourier Transform (FFT). However, we

can take two limits of Eq.2.43 to obtain the near-field and far-field diffraction approx-

imations. The first approximation to obtain the near-field solution, often referred to

as the Fresnel approximation, can be used when the Fresnel number F is greater than

one.

F =
R2

0

zλ
(2.45)

Here we introduce the characteristic size of the aperture R0 or the radius of the beam

being focussed, and z is the distance of propagation from the source plane. Clearly

for F to be greater than 1; z < R2
0/λ. In this region, we can take the approximation
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that the beam has not diverged significantly and as such z ≈ r. Taylor expanding

Eq.2.40 then yields,

r = z

√
1 +

(x− x′)2 + (y − y′)2

z2
≈ z

[
1 +

(x− x′)2 + (y − y′)2

2z2
+ ...

]
(2.46)

Plugging this into Eq.2.39 gives the Fresnel diffraction formula,

U2(x, y) =
eikz

iλz

∫∫
Σ

U1(x′, y′)exp

{
i
k

2z

[
(x− x′)2 + (y − y′)2

]}
dx′dy′ (2.47)

This simplifies the Fourier transforms drastically as the impulse response is now

simply a Gaussian function,

h(x, y) =
eikz

iλz
exp

{
i
k

2z

[
(x− x′)2 + (y − y′)2

]}
(2.48)

from which we can write the transfer function,

H(fx, fy) = eikzexp
[
−iπλz

(
f 2
x + f 2

y )
)]

(2.49)

The Fresnel approximation is therefore useful for modelling beams close to the source

plane, and can be computed for many cases as an analytical inverse Fourier transform

problem.

After a collimated beam passes through an achromatic lens (or off-axis parabola),

it is focussed to a finite diffraction-limited size some distance f away from the lens,

where f is the focal length of the lens. It is possible to show, although not done

here, that focussing a collimated beam to a focal spot is equivalent to modelling the

beam very far from its source plane where the Fresnel number is much less than 1.

This region, often referred to as Fraunhofer diffraction, can be modelled via another

approximation.

In the Fraunhofer approximation, we assume the beam has propagated sufficiently

far such that the wavefronts are effectly planar - much like they are in the focal plane

of a lens. As such, we can make the approximation in the phase of the Rayleigh-

Sommerfeld formula,

exp

[
i
k

2z
(x′2 + y′2)

]
≈ 1 (2.50)

27



Plugging this into Eq.2.39 yields the Fraunhofer diffraction integral,

U2(x, y) =
exp(ikz)

iλz
exp

[
i
k

2z
(x2 + y2)

]
∫∫

U1(x′, y′)exp

[
−i2π
λz

(xx′ + yy′)

]
dx′dy′

(2.51)

We note that the Fraunhofer diffraction integral is simply the inverse Fourier trans-

form of the initial profile U1 over the aperture function. We can further generalize

this formula for lenses by replacing the variable z with the focal length of the lens f .

The irradiance in the image plane is more useful for practical use as in principle

it is generally not possible to directly measure the electric or magnetic field of an

electromagnetic wave at optical frequencies as modern electronics are typically limited

to GHz frequencies. CCD and CMOS cameras can measure the irradiance of the beam

given by I = U∗U where U∗ is the complex conjugate of the field amplitude. The far-

field irradiance of an electromagnetic wave from a lens of focal length f is therefore

given by,

I(x, y, z = f) =

∣∣∣∣∫∫ U1(x′, y′)

λf
exp

[
−i2π
λf

(xx′ + yy′)

]
dx′dy′

∣∣∣∣2 (2.52)

Using this formula to compute the far-field diffraction patterns for some given near-

field amplitude function imprinted with OAM will allow us to compare the paraxial

solutions of the Helmholtz equation to the diffraction theory.

2.4.2 Fraunhofer Diffraction of Optical Vortices

Assuming the laser near-field profile is cylindrically symmetric and collimated - a good

approximation for almost all real lasers, we can write the near-field amplitude as a

function of radius U(r) alone. If we imprint a perfect helical wavefront of topological

charge ` into the near-field by some method that will be described later, we can write

the near-field amplitude of the laser as,

U(r, θ, `) = U(r)ei`θ (2.53)

Here, r and θ represent the radius and azimuthal angle in the near-field (source)

plane. If the beam has a central wavelength λ and is focussed by an achromatic optic
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of focal length f , the intensity profile in the far-field can be found via the Fraunhofer

approximation utilizing the 2D Fourier transform in polar coordinates,

I(ρ, φ, `) ∝
∣∣∣∣∫∫ U(r)

λf
exp

(
−i2π
λf

rρ cos(θ − φ) + i`θ

)
rdrdθ

∣∣∣∣2 (2.54)

This equation is found simply by substituting x′ = r cos θ, x = ρ cosφ, y′ = r sin θ,

and y = ρ sinφ into Eq.2.52. We use the variables ρ and φ to denote the polar co-

ordinates in the far-field. The standard procedure to integrate this function is to start

with the azimuthal integral. We first make a change of variables such that ψ = θ− φ
as we can then rewrite the azimuthal integral as,

ei`φ
∫ 2π

0

exp

(
−2π

λf
rρ cos(ψ) + i`ψ

)
dψ (2.55)

This allows us to make use of the definition listed in the identities section of the first

order Bessel function of the `th kind [22]:

J`(a) =
i−`

2π

∫ 2π

0

e−iacos(ψ)+i`ψdψ (2.56)

We then write the far-field diffraction in the following form,

I(ρ, `) ∝
∣∣∣∣2πλf

∫ ∞
0

U(r)J|`|

(
2πrρ

λf

)∣∣∣∣2 (2.57)

This result is the Hankel transform of order ` and scaling factor 2πρ/λf of the laser

near-field. This powerful result allows use to calculate to intensity profile of an arbi-

trary OAM beam from almost any laser system. We shall explore the intensity profile

generated by the three most common cylindrically symmetric laser near-fields.

2.4.3 Gaussian Optical Vortices

The simplest case to consider is that of a Gaussian near-field, common to laboratory

lasers such as the helium-neon gas laser, small titanium:sapphire systems and most

fiber based lasers. We can describe the Gaussian near-field of a laser by the following,

U(r) = U0exp

(
− r

2

R2
0

)
(2.58)
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Here, R0 is the characteristic near-field beam radius and U0 is an arbitrary near-field

amplitude. The power contained within the near-field can be computed as,

P ∝
∫∫

U∗(r)U(r)rdrdθ =
|U0|2πR2

0

2
(2.59)

In the following sections, we assume that the laser near-field and far-field all contain

the same power, regardless of beam near-field shape. If the beam was not imprinted

with a helical wavefront (` = 0) and we assume the beam focusses with no power lost,

the Hankel transform can be computed analytically to give the well known Gaussian

focal spot:

I(ρ, ` = 0) = I0e
−2ξ2 (2.60)

Here, I0 is the peak intensity which is maximal on axis, ξ is the normalized radius

ξ = ρ/w0 where w0 is the Gaussian beam waist defined as:

w0 =
λf

πR0

(2.61)

This result is shown in Fig.2.6 indicated by the solid blue line.

Figure 2.6: Fraunhofer diffraction of a near-field Gaussian beam carrying OAM for

the first four topological charges.
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Table 2.1: Properties of Gaussian and flat-top driven OAM beams; column 1). OAM
content of beam `, column 2). Peak intensity relative to I0 for Gaussian near-field
OAM beams, column 3). Normalized radial position of peak intensity for Gaussian
near-field beams, column 4). Peak intensity relative to I0 for flat-top near-field beams,
column 5). Normalized radial position of peak intensity for flat-top driven beams.

` IGp/I0 ξGp IFp/I0 ξFp
0 1.000 0.000 0.500 0.000
1 0.199 0.845 0.129 1.228
2 0.089 1.337 0.073 1.967
3 0.049 1.798 0.049 2.632
4 0.030 2.250 0.036 3.271
5 0.020 2.711 0.028 3.885

It is possible to solve the `th order Hankel transform of Eq.2.58 analytically using

the identity [60],∫ ∞
0

e−ar
2

J`(βr)rdr =

√
πβ

8α3/2
exp

(
−β2

8α

)[
I `−1

2

(
β2

8α

)
− I `+1

2

(
β2

8α

)]
(2.62)

where In(x) is the modified Bessel function of the first kind as given in the identities

section. After some algebra, we can now write the analytical expression for the

intensity distribution at focus,

I(ρ, `) = I0
π

4
ξ2e−ξ

2

[
I |`|−1

2

(
ξ2

2

)
− I |`|+1

2

(
ξ2

2

)]2

(2.63)

This result has been normalized such that it contains the same total power in the

focal spot as the result given in Eq.2.60. As a result, the value of I0 is identical in

both cases.

As the value of ` increases, the radius at the peak intensity is increased. As a

result of this, the peak intensity of the ring must decrease to conserve total power in

the focal spot. The first three non-zero intensity profiles are given in Fig.2.6. The

decrease in peak intensity is clear as the ` number of the near-field is increased. The

ratio of the peak intensity for the first four ` modes as compared to the ` = 0 mode

are given in column 2 of Table 2.1 and their corresponding radial positions are given

in column 3. The subscript of G inidcates that the beam were driven with a Gaussian

beam. These results will be compared to the Laguerre-Gaussian modes in section 2.5.
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2.4.4 Flat-top Optical Vortices

Another common model for a laser near-field is that of a flat-top beam. In this model,

the intensity is constant across the near-field profile until it reaches some radius R0

at which it immediately drops to zero. While it is impossible to generate a laser

near-field like this in practice, it is actually a good approximation to super-Gaussian

lasers which behave more like a flat-top beam than they do a Gaussian beam.

We write the near-field profile of a flat-top beam in the following form,

U(r) =
U0√

2
circ

(
r

R0

)
(2.64)

where the circ function is defined as,

circ

(
r

R0

)
=

1, r < R0

1
2
, r = R0

0, r > R0

 (2.65)

The circ function can be easily implemented by making the radial boundary of the

Hankel transform finite. The near-field is normalized to contain the same power as in

the previous case and as a result, the value of R0 and U0 are the same. As before, we

first consider a beam without OAM to obtain the classical result. The ` = 0 Hankel

transform of Eq.2.64 yields the well known Airy spot at focus given by,

IF (ρ, ` = 0) =
I0

2

[
J1(2ξ)

ξ

]2

(2.66)

The normalization factor of 1/2 ensures the power is consistent with the result

in Eq.2.60 and as a result, the peak intensity of the focus is half of what is found

when using a Gaussian near-field with the same parameters. This reduction of peak

intensity comes as a result of additional laser power in surrounding Airy rings. The

fundamental Airy focus is plotted in Fig.2.7 and indicated by the blue line.
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Figure 2.7: Fraunhofer diffraction of a near-field flat-top beam carrying OAM for the

first four topological charges.

A solution of the `th order Hankel transform of Eq.2.64 becomes more challenging,

for which analytical solutions only exist when ` is even. In general, there seems to

be no closed form to the integral, but it is possible to represent the solution as a

generalized hypergeometric function 1F2(a; b, c; z):

IF (ρ, `) =
I0

2

∣∣∣∣∣∣ ξ|`|

|`|!
(
|`|
2

+ 1
)1F2

(
|`|
2

+ 1; |`|+ 1,
|`|
2

+ 2;−ξ2

)∣∣∣∣∣∣
2

(2.67)

Again, the result is normalized to ensure the total power is conserved and hence the

value of I0 remains the same. The results of the first 3 non-zero ` modes are given

in Fig.2.7. We note that compared to the Gaussian near-field, the flat-top driven

OAM focal spots have a higher peak intensity relative to the ` = 0 focal spot. These

relative intensities are summarized in column 4 of Table 2.1 and their corresponding

normalized radii in column 5. This is likely a result of the donut modes overlapping

with the Airy rings, and due to the increased power at larger radii in the laser near-

field leading to better matching to higher ` modes with larger radii.
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2.4.5 Super-Guassian Optical Vortices

In reality, high-power laser’s have neither a flat-top beam or a Gaussian near-field

beam. Rather, a convolution of the two resulting in the well known super-Gaussian

beam. By generalizing the previous two near-fields, it is possible to construct a near-

field profile for the super-Gaussian mode,

U(r) = U0

√
21/nn

2Γ(1/n)
exp

[
−
(
r

R0

)2n
]

(2.68)

Here, we introduce the super-Gaussian integer n, and the gamma function Γ(x).

Again, this result is normalized such that it contains the same power as the previous

near-fields. This is possible to see if one takes the limit as n → ∞, we retrieve the

flat-top case and if we set n = 1, we retrieve the Gaussian case.

In general there is no known analytical solution to the Hankel transform of Eq.2.68,

so we must restrict this near-field to a numerical study only. Based on previous

expressions that we derived, we maintain representing the far-field intensity pattern

with the dimensionless variable ξ. The results for the first few values of n including

both the n = 1 and n =∞ case are shown in Fig’s.2.8 and 2.9 for the ` = 0 and ` = 1

modes respectively.

From the figures, the evolution of the focal spot as it transforms from a Gaussian

near-field to a flat-top near-field is well illustrated. For the ` = 0 case, we see the focal

spot broadening as n increases until about n = 4 when the results quickly converge

to that of a flat-top driven beam. This highlights the point made earlier in that a

flat-top beam is well representative of a super-Gaussian beam of n > 3. Typical high-

power lasers have a super-Gaussian parameter of order n = 4 [166]. For the ` = 1

case as shown in Fig.2.9, we find good agreement between the n = 3 super-Gaussian

beam and the flat-top beam.
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Figure 2.8: The first 5 super-Gaussian focal spots for an ` = 0 beam. The dashed

black line represents a flat-top driver. The blue line corresponds to a Gaussian driver.

Figure 2.9: The first 5 super-Gaussian focal spots for an ` = 1 beam. The dashed

black line represents a flat-top driver. The blue line corresponds to a Gaussian driver.
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2.5 Optimal Descriptions of Optical Vortices

In the previous section, we used diffraction theory to derive the far-field intensity

patterns of OAM modes driven by various laser near-field profiles. While we were

able to describe these beams by (mostly) analytic formulae, the formulae themselves

use complicated functions such as the modified Bessel functions, or hypergeometric

functions. If we wish to model these beams either analytically or numerically, these

forms are not suitable as they can add computational overhead, or difficult expressions

to differentiate or integrate. We therefore return to the Laguerre-Gaussian modes as

these are much simpler to work with, and look for approximate LG modes to best

represent this complicated diffraction solutions.

We start by first restating the intensity of the LG modes in the focal plane in a

modified form,

ILG(ρ, `, p) = I0
ηp!

(p+ |`|)!

(
w0

wLG

)2
(
ρ
√

2

wLG

)2|`|

exp

(
−2ρ2

w2
LG

)[
L|`|p

(
2ρ2

w2
LG

)]2

(2.69)

where we have introduced two new variables; the mode conversion efficiency parameter

η, and the modified LG beam waist parameter given by,

w0 = γwLG (2.70)

The value of γ is optimally chosen such that the LG mode best fits the diffraction

result of a given near-field. The value of η is then chosen to scale the mode energy.

Throughout the literature, the equivalent values of γ and η have been mostly left as

unity.

We can approach the problem of optimizing the value of η and γ in two different

ways. The first of which is through a mode converter, where we decompose the

near-field imprinted with a helical phase into LG modes. We can then optimize

the energy into a single mode by varying the beam waist parameter. The second

approach is slightly simpler in that we simply fit the LG mode to the focal spot

intensity distribution and tabulate the results from numerical fits. While this is not

as rigorous as the first method, it is more robust in getting a first-order approximation

of the diffraction theory result and can be applied to any function.
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2.5.1 Energy Optimized Laguerre-Gauss Beams

The conversion efficiency from one orthogonal mode to another through the use of a

transmission operator T can be given by the modal decomposition inner product,

η`p = |〈ψ`p |T |ψmn〉|2 (2.71)

Here, we denote the orthogonal modes as `, p of the output beam and m,n of the

input beam, and ψ is given by Eq.2.35. For a perfect helical phase imprinted on the

beam, we find the transmission operator to be given by,

T = e−iLφ (2.72)

where L is the topological charge of the beam. For now, we will assume L = `, but

we will later show that this is not necessarily the case and explore solutions for the

non-integer case. We first explore the case of a fundamental Gaussian input beam

where m = n = 0. This yields the equation in the focal plane as,

〈ψ`pTψ00〉 =

√
p!

(p+ |`|)!
γ

w2
0

∫∫ (
ρ
√

2γ

w0

)|`|
exp

[
−r

2(1 + γ2)

w2
0

]
L|`|p

(
2r2γ2

w2
0

)
ei(`−L)φρdρdφ

(2.73)

We can separate this integral into two products; the radial integral and the az-

imuthal integral. Using the definition of the generalized Lagurre polynomial given in

Eq.2.36, we can write the radial integral as,

R|`|p =

√
p!

(p+ |`|)!
2|`|/2γ|`|+1

w
|`|+2
0∫ ∞

0

ρ|`|+1e−βρ
2

p∑
m=0

(−1)m(p+ |`|)!
(p−m)!(|`|+m)!m!

(√
2ργ

w0

)2m

dρ

(2.74)

where,

β =
1 + γ2

w2
0

(2.75)
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To integrate this function, we make use of the identity [60],∫ ∞
0

xnexp
(
−axb

)
dx =

1

b
a−1/b(n+1)Γ

(
n+ 1

b

)
(2.76)

Pulling the sum out of the integral makes this expression straight-forward to integrate.

The azimuthal integral is trivial to solve for the case of L = `,

Φ`L =

∫ 2π

0

exp [i(`− L)φ] dφ = 2π|`=L (2.77)

Finally, combining the two integrals and solving them, we obtain the result,

η`p =
∣∣R|`|pΦ`=L

∣∣2 = 2|`|+2p!(|`|+ p)!γ2

∣∣∣∣∣
p∑

m=0

(−2)mΓ(µ)

(p−m)!(|`|+m)!m!(1 + γ2)µ

∣∣∣∣∣
2

(2.78)

where we define µ = m+ |`|/2 + 1.

If we consider an OAM beam with L = ` = 1, we can plot the conversion efficiency

as a function of the beam waist ratio for the first few LG p modes as shown in Fig.

2.10. One may note that the maximum conversion efficiency to a single LG mode

exists when γ 6= 1. We also note that where the maximum beam waist ratio occurs,

the conversion efficiency to some odd p modes also goes exactly to zero. This is true

for any integer value of L.

It is possible to analytically differentiate and optimize Eq.2.78. As we are inter-

ested in representing our diffraction spot in the minimum number of LG modes, we

look primarily at the p = 0 case. In doing so, we find the optimal beam waist to

maximize the energy in the first ` LG mode is given by,

γ =
1√
|`|+ 1

(2.79)

Plugging this value of γ into Eq.2.78, we find that a maximal conversion efficiency

of η = 0.9308 is possible for the ` = 1 mode. This is a vast improvement on using

the default value of γ = 1 in which a maximal conversion efficiency of η = 0.785 is

possible. The remaining 7% of the focal spot energy is found in higher order radial p

modes. We find that as the topological charge of the beam increases, the conversion

efficiency to maximize the focal spot energy into a single mode decreases. This is

illustrated for the first 6 p modes in Fig. 2.11.
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Figure 2.10: Mode conversion efficiency of an OAM beam with topological charge

L = ` = 1 for the first five LG p modes. The peak of the LG10 mode is located at

γ = 1/
√
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Figure 2.11: Conversion efficiency for various topological charges L to the first non-

trivial p modes using optimal beam waists.

We find that for L = ` > 11, the conversion efficiency to a single LG mode
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becomes less than 50%. This become problematic for modelling OAM beams as now

we need many LG p modes to accurately describe the focal spot intensity distribution.

We thus seek an alternate method describe OAM beams that are non-integrable, and

require less p modes to accurately describe OAM beams of large topological charge.

We summarize the quality of the fits found by this method in Fig. 2.12. We note

that as ` increases, the accuracy of the energy optimized fit becomes worse - this is

due to less energy being contained with the mode as ` increases. We also note that

there is a large discrepancy between the peak intensity value of the LG mode and the

diffraction result, aswell as the the radial position of this peak. We do note however

that while these fits may not be exact, the modes are more optimal as opposed to

leaving the LG mode with unity value of η and ` as can be seen by the blue dash-dot

line in Fig.2.12.

Figure 2.12: Laguerre-Gaussian beams fitted to the diffraction results via energy

optimization. The diffraction results are indicated by dashed lines. The dash-dot

blue line represents a non-optimized LG mode.
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2.5.2 Intensity Optimized Laguerre-Gauss Beams

The second approach in which we seek to fit LG modes directly to the OAM focal

spots is somewhat more straight-forward. We note that the peak intensity radial

position and magnitude of the diffraction results are listed in Table 2.1, from which

we can match a p = 0 LG modes of equivalent topological charge to. The peak

intensity of an LG mode as given by Eq.2.69 is given by,

rmax
w0

= ξmax =

√
|`|
2γ2

(2.80)

while the peak intensity of the p = 0 LG mode is directly proportional to the mode

conversion efficiency given by,

ILG(ξmax, `)

I0

=
|`||`|e−|`|γ2η

|`|!
(2.81)

The radial position of the peak of the LG mode is then matched to the radial

position of the peak of the diffraction solutions in Eq’s.2.63 and 2.67. The conversion

efficiency, or in this case scaling factor, is then found by matching the peak intensity

value of the LG mode to the peak intensity of the diffraction solution. This is found

by using the formula,

η =
I(ξmax, `)|`|!
|`|`e−|`|γ2

(2.82)

where I(ξmax, `) is the peak intensity of the diffraction solution. The peak intensity

and its corresponding radial position of the diffraction solutions cannot be found

analytically and thus we use a numerical root finding solution accurate to 3 decimal

places. The results of η and γ by fitting LG modes to the first 5 ` modes are given

in Tables 2.2 and 2.3. We remark that the values of n correspond to all 3 near-field

profiles studied; n = 1 represents a Gaussian near-field, n = ∞ represents a flat

top near-field, and we also calculate γ and η values for useful super-Gaussian beams.

These tables therefore summarize the results of the near-fields entirely.

We first examine the results of the Gaussian near field fitted with the LG modes in

Fig. 2.13. It is clear to see that a non-optimized LG mode (shown in dash-dot blue)

is a poor representation of the OAM modes at focus. The solid green line shows a

very good approximation to the blacked dashed line which gives the diffraction result.
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Table 2.2: Optimal beam waist ratios γ of the first 6 ` numbers for Gaussian (n = 1),
flat-top (n =∞), and useful super-Gaussian mode numbers.

`\n 1 2 3 4 5 10 ∞
0 1.000 0.797 0.766 0.758 0.756 0.759 0.771
1 0.837 0.622 0.584 0.574 0.569 0.568 0.576
2 0.746 0.554 0.519 0.508 0.504 0.503 0.508
3 0.680 0.508 0.477 0.466 0.460 0.459 0.465
4 0.629 0.475 0.443 0.434 0.430 0.426 0.432
5 0.583 0.447 0.418 0.409 0.404 0.401 0.407

Table 2.3: Optimal conversion efficiencies η of the first 6 ` numbers for Gaussian
(n = 1), flat-top (n =∞), and useful super-Gaussian mode numbers.

`\n 1 2 3 4 5 10 ∞
0 1.000 0.986 0.960 0.939 0.924 0.885 0.841
1 0.772 1.023 1.094 1.110 1.116 1.101 1.061
2 0.589 0.892 1.001 1.046 1.062 1.070 1.047
3 0.472 0.778 0.908 0.970 1.005 1.035 1.010
4 0.391 0.680 0.828 0.901 0.939 0.996 0.980
5 0.338 0.603 0.756 0.837 0.882 0.952 0.946

Beyond the radius of the peak intensity the fit deviates from the diffraction result.

We find this as a result of reduction of power in the focal spot due to the fit.

By integrating over all space of Eq.2.69, we find that the total power (or energy)

in the laser focus is directly proportional to η:

P ∝
∫ 2π

0

∫ ∞
0

ILGρdρdφ =
I0ηπw

2
0

2
(2.83)

Because the value of η was less than 1 for our fits to diffraction result in Fig.2.13,

the power in each focal spot was reduced, hence the reduction in intensity for radii

greater than the peak intensity radii.
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Figure 2.13: Laguerre-Gaussian beams fitted to the exact diffraction result (dashed)

for OAM beams driven by Gaussian near-field beams for both ` = 1 and ` = 2

topological charges. The dash-dot blue line represents a non-optimized LG mode.

If we instead consider the results of the flat-top driven OAM beams given in

Fig.2.14, we find even better fits, with the additional energy in the fitted LG beams

for ` > 0 as a result of the value of η being greater than unity. We have also fitted

the Airy focal spot for ` = 0 with an LG00 mode with non-unity η and ` values.

This was done by matching the beam waist position of the LG mode with that of

the diffraction solution. This result itself is useful for when modelling Airy foci in

numerical models that we will later explore.
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Figure 2.14: Laguerre-Gaussian beams fitted to the exact diffraction results (dashed)

for OAM beams driven by flat-top near-field beams for ` = 0, ` = 1, and ` = 2

topological charges.

We have summarized some of the LG fits to the diffraction result of the super-

Gaussian driven OAM beams in Fig.2.15. We find an almost exact agreement with

the fitted LG modes to the diffraction theory of the n = 2 driven super-Gaussian

beams. This is emphasized by the close to unity values of η for OAM beams driven

by super-Gaussian beams with n = 2, 3 as shown in Table 2.3.
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Figure 2.15: Laguerre-Gaussian beams fitted to the exact diffraction results (dashed)

for OAM beams driven by n = 2 super-Gaussian near-field beams for ` = 0, ` = 1,

and ` = 2 topological charges.

It is quite clear to see that while the energy optimized LG modes are a rigorous

method for describing the OAM beam at focus, the result is not suitable as a first

order approximation. This is clear from examining Fig. 2.12. We therefore opt for

the intensity fit LG modes for the rest of the thesis as these represent the diffraction

solution reasonably well from the laser axis to some distance beyond the peak inten-

sity. As we will see in the next chapters, this is primarily the region of interest when

an OAM beam interacts with matter.

In this chapter, the proper diffraction intensity distribution at focus for OAM

beams has been investigated with exact results given for Gaussian and flat top beam

profiles. However in order to more conveniently calculate the actual interactions in

the focal region, novel best fit LG mode solutions are found which can readily be

applied in analysis of laser plasma interactions.
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2.6 Conclusions

In this chapter, we reviewed the origins of spin and orbital angular momentum in

electromagnetic waves. We explored the diffraction theory of OAM beams generated

by high power laser systems, and the beam near-field profiles typically associated with

them. We found that the far-field diffraction patterns produced by various near-field

beams feature different relative intensity and spot sizes relative to one another.

Given the complex formulas to describe the diffraction theory far-fields, we ex-

plored two different methods of fitting paraxial Laguerre-Gaussian modes to the far-

field diffraction patterns. The Laguerre-Gaussian modes offer a simpler alternative to

the diffraction result and can be used for analytic and numerical modelling purposes.

The fitting parameters of low-order LG modes to the far-field diffraction results for

Gaussian, super-Gaussian and flat top lasers are given in Tables 2.2 and 2.3.
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Chapter 3

Relativistic Electrodynamics of

Optical Vortices

The interaction of electromagnetic waves with matter is largely dominated by its in-

teraction with electrons, either as free electrons in a metal or as bound electrons in

a gas or dielectric material. To understand the nature of the interaction of intense

electromagnetic radiation with electrons - both bound and unbound, it is also impor-

tant to understand the ionization of electrons from atoms and then how these ionized

electrons respond to intense electromagnetic waves.

In this chapter, we approach this problem from a classical viewpoint where we treat

the electrons as massive point-like charged particles and the incident radiation as a

wave rather than a set of discrete photons. The quantum mechanics of the interaction

of photons, specifically those carrying both spin and orbital angular momentum, with

atoms and free electrons is beyond the scope of this work. There is a significant

amount of literature on the problem of the interaction of OAM photons with bound

and free electrons [123], and more recently on exploring the relativistic quantum

electrodynamics of OAM photons with electrons [10, 20].

We review some of the literature on current models of electric and magnetic

fields at focus, and then derive the symmetric first order paraxial fields of a gen-

eral Laguerre-Gaussian mode at focus for the first time. We then study the trapping

of electrons within these fields due to the ponderomotive force, and the subsequent

scattering and net angular momentum transfer in the nonlinear regime. In addition,

a calculation of relativistic Thomson scattering is given which can be extended to the

case of OAM modes in the future.
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The work in this chapter has not yet been published, however it has formed much

of the basis for an experimental study of relativistic Thomson scattering of electrons

from high intensity Gaussian beams published in 2019 [67]. Future work hope to

extend this work to include beams carrying OAM as outlined in this chapter.

3.1 Electrodynamics of Plane Waves

We begin by reviewing the well-understood interaction of an infinite plane-wave with

a free electron as outlined in almost every laser-plasma physics textbook.

We define the electric and magnetic fields of an elliptically polarized infinite plane

wave by a magnetic vector potential propagating in the ẑ direction in the Lorenz

gauge,

a = a0

[
(1− δ2)1/2 sin(ωt− kz)x̂+ δ cos(ωt− kz)ŷ

]
(3.1)

Here we introduce the normalized wave amplitude a0,

a0 =
eA0

mec
=

eE0

mecω
(3.2)

and the polarization parameter δ such that when δ = (±1, 0) the wave is linearly

polarized, and for δ = ±1/
√

2, the wave is circularly polarized. We also introduce

the electron mass me, and the peak laser electric field strength E0.

The primary force acting on a charged particle in an electromagnetic field is given

by the relativistic Lorentz force equation,

dp

dt
= q(E + v ×B) (3.3)

where v is the instantaneous particle velocity, q is the particle charge, and p is the

relativistic momentum vector:

p = γm0v =
m0v√
1− v2

c2

(3.4)

where γ is the Lorentz factor for relativistic motion, not to be confused with optimal

beam waist parameter from the last chapter. Additionally, it is possible to show that

the time evolution of the energy of a charged particle in an electromagnetic wave may

48



be given by [84],
d

dt
(γm0c

2) = q(v ·E) (3.5)

We define the mass of the particle as m0 so not to be confused with the relativistic

mass m = γm0.

Using the relation from Eq.2.18 and the plane wave relation E = −∂A/∂t, we

can rewrite the perpendicular Lorentz force in terms of the magnetic vector potential

for a linearly polarized plane-wave,

dp⊥
dt

= q
∂A

∂t
+ qvz

∂A

∂z
(3.6)

Noting that the Eulerian derivative can be given by,

d

dt
=

∂

∂t
+ v · ∇ (3.7)

we can write the first constant of motion:

d

dt
(p⊥ − qA) = 0 (3.8)

This result is also true for elliptical and circular polarization. A similar method can

be applied to the longitudinal motion of a charged particle by subtracting Eq.3.5 from

Eq.3.3 to yield the second constant of motion,

d

dt
(pz − γm0c) = 0 (3.9)

These results are fundamental to the general study of charged particles in plane waves,

however the results can be extended to more general waves that can be treated locally

like plane waves - that is, the spatial variation of the electric field strength is much

larger than the oscillation length of the electron.

If we consider the solutions of the constants of motion for an electron, it is possible

to write the momentum in an elliptically polarized plane electromagnetic wave as [56],

p⊥
mec

= a0

[
δ cos(ωt− kz)x̂+

(
1− δ2

)1/2
sin(ωt− kz)ŷ

]
(3.10)

and,
pz
mec

=
a2

0

4

[
1 +

(
2δ2 − 1

)
cos(2(ωt− kz))

]
(3.11)
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These equations are then simply integrated over time to obtain the position as a

function of time in the laboratory frame,

kx = δa0 sin(ωt− kz) (3.12)

ky = −
(
1− δ2

)1/2
a0 cos(ωt− kz) (3.13)

kz =
a2

0

4

[
(ωt− kz) +

2δ2 − 1

2
sin(2(ωt− kz))

]
(3.14)

While the transverse oscillations are a direct result of the charged particle inter-

acting with the electric field of the laser, the forward velocity of the particle is a result

of the magnetic field term in the Lorentz force. Time averaging Eq’s.3.10 and 3.11

over one laser period yields no net momentum in the transverse direction, however

we find a forward drift velocity of the electron,〈
pz
mec

〉
=
a2

0

4
(3.15)

These results are summarized in Fig.3.1. Here, Fig.3.1 a), gives the evolution of

the particle position in the polarization plane of a linearly polarized beam. The

momentum in the transverse plane in summarized in the phase space given in Fig.3.1

c) which shows a closed loop indicating no net momentum gain or loss over one laser

cycle. The z momentum phase space is give in Fig.3.1 e) where the red dotted line

gives the average drift velocity.

The right hand side panel in Fig.3.1 (b,d,e) give similar plots but for an electron in

a circularly polarized laser field carrying spin angular momentum. The trajectory of

the electron is fundamentally different following orbits around an axis of radius kδa0.

Just like the case of a linearly polarized wave, the electron gains no net momentum in

the transverse direction, but does still retain an average drift velocity forward from the

Lorentz force. In addition, the electron gains an orbital angular momentum. While

the electron does have a spin angular momentum of ~/2, we do not consider the spin-

orbit interaction here and are only concerned with the orbital angular momentum the

electron gains. Using the definition of orbital angular momentum given in Eq.2.14 we

find the value to be given by,

Lz

(
δ =

1√
2

)
= (r × p)z =

a2
0mec

2k
=
a2

0mec
2

2ω
(3.16)
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a).  b).  

f).  

d).  

e).  

c).  

Figure 3.1: Phase space diagrams for an electron in a linearly polarized plane wave
(left-blue), and in a circularly polarized plane wave (right-red).
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Each photon in the incident wave carries an energy of ~ω, and a spin angular mo-

mentum of ±~. Relating the wave vector k of the incoming beam to each photons

energy allows us to estimate the angular momentum absorption of the incoming beam

per electron. For instance, if we consider a laser with wavelength 800nm and a peak

intensity of a0 = 1, we find the total orbital angular momentum absorbed by the

electron is,

Lz(800nm, a0 = 1) = 1.739× 10−29kgm
2

s
≈ 164859~ (3.17)

or roughly, it absorbs 164859 photons. We can compare this number of photons

absorbed with the estimate given by the energy absorbed by the electron. The peak

kinetic energy the electron reaches is found from,

U = (γ − 1)mec
2 (3.18)

where γ is found from Eq.3.9. Taking the the phase of the plane wave to be zero;

ωt− kz = 0, we find the peak kinetic energy of the electron in the same laser to have

a similar form to the result in Eq.3.16 bar a factor of ω,

U(800nm, a0 = 1) =
a2

0

2
mec

2 = 4.094× 10−14kgm
2

s2
≈ 164859~ω (3.19)

The electron therefore absorbs both energy and spin angular momentum from the

photons at the same rate. It is therefore possible for an electron in a plane electro-

magnetic wave to absorb energy, linear momentum, and angular momentum.

From the given relations, the value of a0 can be seen to have an important effect

on the motion of electrons in an electromagnetic wave. By its definition, we find that

the value of a0 corresponds to the value of A0 normalized to the rest-mass energy

of an electron (in the Gaussian unit system). In this sense, we understand that an

electromagnetic field of strength a0 ≈ 1 can accelerate an electron from rest, to its

rest mass energy in half a laser cycle. We therefore say that a beam with a0 ≥ 1 is

relativistic. A beam where the opposite is true; a0 < 1, is non relativistic. A useful

formula for determining the strength of a laser field is given by [97],

a0 = 0.85

(
Iλ2

µm

1018Wcm−2

)1/2

(3.20)

For instance, a titanium:sapphire laser typically lases with a wavelength of 0.8µm,

52



and can produce laser intensities above 1021Wcm−2 [132]. To obtain an a0 of 1, the

peak intensity should be no less than 2.16×1018Wcm−2 which is certainly obtainable

on many large scale titanium:sapphire laser systems. At relativistic intensities, the

contribution from the magnetic field also becomes important as can be seen by Eq.3.15

due to the squaring of the a0 parameter.

One issue with our model so far is that it assumes infinite plane waves. We have

already argued that plane waves can be useful to approximate a laser beam if the

transverse spatial extent of the laser and its associated gradients are much larger than

the oscillation range of the electron, such that we can model laser beams reasonably

accurately as plane waves. However we are still assuming that the laser is infinite in

is longitudinal extent - that is it is a continuous beam. In order for a laser to obtain

these relativistic intensities, it is necessary for the laser to be pulsed such that the

peak power of the laser can reach the multi-terawatt level. Typically, the laser pulses

emitted from an amplifier are Gaussian in shape but can in principle be shaped to

any temporal profile desirable.

We introduce a temporal envelope to the continuous laser by convolving the nor-

malized temporal pulse shape to the magnetic vector potential,

A = a0g(t) cos(ωt− kz) (3.21)

where g(t) is the temporal envelope. While this is a simple method of shaping the

pulse for analytic models, it is not adiabatic if the pulse shape is comparable to the

laser frequency. For the pulse shape to satisfy the adiabatic approximation, the pulse

shape must change slowly relative to the laser frequency,

dg(t)

dt
� ωg(t) (3.22)

Assuming the laser pulse temporal shape can be given by,

g(t) = exp

(
− t2

w2
t

)
(3.23)

and taking the point of steepest gradient,

d2g(t)

dt2
= 0 (3.24)
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we find the fastest changing point in the Gaussian shape to be at t = wt/
√

2. Plugging

this value of time into Eq. 3.22, we find the relation,

√
2� ωwt (3.25)

For a Gaussian temporal pulse shape in the optical frequency, we typically find the

temporal beam waist 2wt ranging from roughly 30 femtoseconds up to and beyond

nanoseconds. For an 800nm beam, we find the product of wtω ≈ 35 �
√

2, such

that the adiabatic approximation is satisfied for the pulse duration’s common to the

methods presented in this thesis.

To simulate the evolution of the electron in a short laser pulse and to test the

adiabatic approximation, we integrate the Lorentz force numerically using an adaptive

Runge-Kutta algorithm developed in MATLAB. Fig.3.2 shows the evolution of an

electron through a pulsed, linearly polarized plane wave of duration 30fs. It is clear

to see the electron gains energy according to Eq.3.19 in tile b), but as the electron

leaves the laser pulse, it gives the energy back to the laser and there is no net transfer

of energy to first order. We also observe the phase space of the electron in tile c) to

be no longer confined to a circle as in Fig. 3.1. The electron slowly gains momentum

as the laser intensity increases, and as such, the phase space radius increases. As the

electron gives its energy back to the laser, the radius decreases and the electron closes

the loop. As expected, tile d). shows the electron gains no angular momentum while

interacting with a linearly polarized plane wave.
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a). 

d). 

b). 

c). 

Figure 3.2: Phase space diagrams for an electron in an 800nm, linearly polarized

plane wave with a Gaussian temporal shape and a full-width half maximum of 30fs.

The axes have been normalized to the relevant parameters in the given equations.
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a). 

d). 

b). 

c). 

Figure 3.3: Phase space diagrams for an electron in an 800nm, circularly polarized

plane wave with a Gaussian temporal shape and a full-width half maximum of 30fs.

The axes have been normalized to the relevant parameters in the given equations.

If we examine the case of a finite circularly polarized plane wave, we find the

electron behaves as expected and follows a helical motion as shown in tile a) of

Fig.3.3. The peak energy acquired by the electron in tile b) is half of that of a

linearly polarized pulse but does not oscillate as the case before. Most interestingly

is tile d) which shows the orbital angular momentum of the electron as a function

of time. Here we see good agreement with the peak value of the orbital angular

momentum given by Eq. 3.17.
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We find that in both linear and circular polarization cases, the energy of the elec-

tron before and after interacting with the laser pulse remains zero in agreement with

the adiabatic approximation. We note that the initial conditions for the simulation

require that the electron be at rest and sufficiently far from the laser. If this were not

the case, and the electron were born in the laser - perhaps through ionization, then

the final energy of the electron will be non-zero.

The phenomenon that an electron given the right initial conditions cannot gain

energy from a laser pulse has stirred controversy in the literature over the years, and

many schemes have been put forward to develop direct-laser acceleration schemes that

circumvent this. For instance, an 800nm laser with a0 = 1 has an electric field strength

of ≈ 4TV/m, much greater than that of a conventional accelerator (≈ 100MV/m). If

this electric field could be exploited directly, the size and cost of accelerators could be

reduced greatly. In the next section we explore the governing physics of this problem

and some of the proposed solutions.

3.1.1 Lawson-Woodward Theorem

Perhaps one of the most important results of single particle electrodynamics is the

Lawson-Woodward theorem [85]. In essence, it is a simple proof that shows that there

can be no net energy transferred to an electron from a finite laser pulse. While we

omit the proof here, there is a great deal of literature exploring the subject [41]. In

summary, the Lawson-Woodward theorem states that there can be no net transfer of

energy to an electron if the following conditions are met [56, 41];

1. the laser field is in vacuum, with no interfering walls or boundaries,

2. the electron is highly relativistic along the acceleration path,

3. no static electric or magnetic fields are present,

4. the interaction region is infinite,

5. ponderomotive forces are neglected.

Of course, it is clear on how we can break some of rules with ease, some being more

effective than others. We will address point 5 in the next section, but the other points

will be discussed here.
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In order to accelerate an electron directly from the laser electric field, we can

consider firstly that the laser could be propagating in a media, perhaps a dielectric

in which we would violate the first point. When a laser reaches high intensities,

particularly above 1 × 1014Wcm−2, it is able to ionize material and as such cannot

propagate through the media without turning it into a plasma. Alternatively one

could consider reflecting a high intensity laser from an ionizable surface like a dielectric

or metallic mirror. In this case electrons can be ionized and injected into the laser

pulse close to the peak intensity and as a result be accelerated to high energy breaking

both rules 1 and 4. The final energy of the electron is however sensitive to the phase

of the laser and can lead to a large bandwidth in the ejected electron energies [156].

This is illustrated by injecting an electron into various phases of the laser in Fig.3.4.

It is clear to see that the optimal injection point into the pulsed plane wave is found

to be at z0 = λ/4. Increasing the injection point beyond this position only decreases

the final electron energy but is not shown here.

a).  b).  

Figure 3.4: Electron position (a) and energy (b) for various injection points (z0) into

a linearly polarized plane wave 30fs laser pulse. Here, z0 corresponds to cos(φ) = 1,

and the field is maximal.

Of the other items on the list, point 3 holds large potential for accelerating elec-

trons to very high energies. In this scenario, a background static electric or magnetic

58



field is imposed on the interaction region breaking the symmetry of the laser pulse

electric and magnetic fields. This could be imposed in many different ways, either

with some high voltage plates around the interaction region to generate the desired

electric field, or by some method to generate a strong axial magnetic field such as a

high current coil.

An interesting case is that of a static magnetic field aligned along the laser prop-

agation axis. The magnetic field strength is tuned such that the electron cyclotron

frequency is matched to that of the laser frequency,

ωL = ωc =
eB

γme

(3.26)

where ωL is the laser frequency. Assuming that the electron is initially non-relativistic

(γ = 1), we can write the required magnetic field strength for the laser cyclotron

heating of an electron,

B =
2πmec

eλ
(3.27)

For a laser wavelength of 800nm, we find a required magnetic field of ≈13387T

which is far above what is currently available in the laboratory. The energy as a

function of time for the electron in this case is given in Fig.3.5 for various laser

intensities. A surprising result is that an electron will acquire more energy from a

lower intensity than than one at relativistic intensity. As one can see from the tile

a) in Fig.3.5, the electron becomes relativistic quickly and the matching condition

of Eq.3.27 is no longer valid. As the electron acceleration is lower with the lower

intensity, it can maintain its phase with the laser for a longer period of time, and gain

an overall increase in energy.
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a).  b).  

Figure 3.5: Electron position (a) and energy (b) for various laser intensities in a

30fs linearly polarized plane wave of wavelength 800nm and axial magnetic field of

Bz = 13387T .

This is all assuming that the laser be infinitely wide and as we go to finite sized

pulses, we will find that other effects such as ponderomotive forces can eject the elec-

tron from the laser before it has had sufficient time to gain energy. This is overcome

by simply focussing the laser to a larger spot size. Another key challenge in laser-

cyclotron resonance acceleration is the high B-field requirement. As one can clearly

see, the magnetic field required for an 800nm beam is currently beyond the capa-

bilities of laboratory magnetic fields. Noting the required magnetic field is inversely

proportional to the laser wavelength, we could lower the B-field requirement signif-

icantly by using a longer wavelength. A carbon dioxide laser for instance typically

lases at 10.6µm requiring a magnetic field of 1010T which is obtainable with today’s

technology [142]. Current research is also exploring the use of THz radiation to drive

electron cyclotron acceleration which would only require a B field on the order of

10’s of Tesla which is certainly obtainable using superconducting magnets and pulsed

power coils.

Most direct laser acceleration schemes with the exception of laser cyclotron heating

involve injecting the electron somehow into the laser beam through an ionization
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process that allows the electron to be born at the optimal point. Once inside the

laser, the laser electric and magnetic fields can accelerate the electron to relativistic

speeds typically by the transverse electric field.

As we will show in section 3.3, a finite laser pulse and more so, a tightly focussed

laser pulse can have a large axial electric field component. The shape and size of

this axial electric field depends on many parameters, including the mode of the laser.

Higher order laser modes, like the Laguerre-Gaussian modes can have structured axial

electric fields, some of which can be useful for direct laser acceleration. Of particular

interest is the axial fields of a radially polarized Laguerre-Gaussian mode which look

to be the most promising candidate for direct laser acceleration due to their long

non-oscillating axial electric field [41]. Alternatively, people have looked at beating

two modes together [41] which may be simpler than generating high intensity radially

polarized beams in the lab.

3.2 Relativistic Ponderomotive Force

Contrary to the conclusion of the Lawson-Woodward theorem, it is in fact possible

to transfer energy to electrons while obeying the first 4 criteria from the last section.

The radiation pressure of a light wave can be thought of as the exchange of photon

momentum (p = ~k) when reflecting from a surface. Due to the conservation of

momentum, an equal and opposite momentum must be imposed on the reflecting

surface and given the number of photons in a high-power laser can be on the order of

1020photons, there can be a significant momentum transferred to the reflector.

The ponderomotive force is similar but rather a result of gradient of the electric

field instead. Consider a tightly focussed Gaussian beam with an electron oscillating

close to the axis of the laser. The symmetry of the electric field in the laser pulse is

broken due to the decrease in electric field strength as the radius increases. As the

electron oscillates back and forth in this field, it will see a stronger electric field on

one half of its oscillation than the other. This will in turn cause the electron to drift,

and in fact be accelerated away from the region of high field. As the ponderomotive

force is a function of the shape of the electric field, it changes for higher order laser

modes and as such it is fundamentally different to a Gaussian mode.

As we have shown in the last chapter, non-planar solutions to the Helmholtz

equation that do not constitute an infinite amount of energy have a finite spatial
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extent both radially, and temporally. If we consider a non-relativistic beam (a0 � 1)

that is polarized in the x̂ direction, then a good approximation to the particle motion

can be given purely by the electric field term of the laser,

dpx
dt

= qEx(r) (3.28)

where r denotes the radial dependence of the electric field shape,

Ex(r) = E0(r) cos(kz − ωt) (3.29)

If we Taylor expand the electric field in one dimension (x), then we can rewrite the

electric field as,

Ex(r) ≈ E0(x) cos(kz − ωt) + x
∂E0(x)

∂x
cos(kz − ωt) + ... (3.30)

To first order, we can write the momentum of the electron as,

p(1)
x = −vos sin(kz − ωt) (3.31)

where vos = a0c, and the electron position is given as,

x(1) =
vos
ω

cos(kz − ωt) (3.32)

Plugging these results back into Eq.3.28, we find the second order correction to the

Lorentz force as,

dp
(2)
x

dt
= − e2

meω2
E0
∂E0(x)

∂x
cos2(kz − ωt) (3.33)

Time averaging over one laser cycle we find the non-relativistic ponderomotive force

for an electron,

Fp = − e2

4meω2

∂

∂x
|E0(x)|2 (3.34)

This can be further generalized to 3 dimensions,

Fp = − e2

4meω2
∇ |E|2 = −mec

2∇
∣∣∣a
2

∣∣∣2 (3.35)

Extending this to include relativistic field intensities is not trivial and is quite
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involved as the magnetic v ×B term has to be included [56]. As such we just state

the relativistic result here [97],

Fp =
dps
dt

= −mec
2∇
(√

1 + 〈a2〉 − 1
)

(3.36)

where ps is the slow (non oscillatory) motion of the electron and 〈a2〉 = a2
0/2. There

are alternate formulations of this result such as that in Quesnel [126]. In general, we

find the electron gains a maximal velocity equal to,

ps
mec

=
a2

0

4
(3.37)

which is the same result we found in Eq.3.15. As one can see, the force is dependant

on the gradient of the electric field squared, or the intensity. Given the nature of

an OAM beam with an intensity null on axis, it becomes possible to trap and guide

particles within the beam. We will explore this trapping in section 3.4, but we must

first determine the electric and magnetic fields of the OAM modes.

3.3 The Electric and Magnetic Fields of a Laguerre-

Gaussian Mode

While the electric and magnetic fields of the plane wave can be written down simply

as a single polarization component, it is not clear as to what the full field equations of

a laser beam are at this point. It is a simple proof to show that any beam containing

a transverse dependence cannot satisfy Maxwell’s equations with a single polarization

component. For instance if we consider a beam with some radial dependence polarized

only in one direction,

E = E0f(r, θ)ei(kz−ωt)x̂ (3.38)

We find that the divergence of the electric field cannot be satisfied in vacuum,

∇ ·E =
∂Ex
∂x

= E0e
i(kz−ωt)∂f(r, θ)

∂x
6= 0 (3.39)

In general, for any beam of finite radius there must be more than one component of

the electric field in order to satisfy Maxwell’s equations in vacuum. As previously

shown, we know that a beam must satisfy the Helmholtz equation (Eq.2.11). In the
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paraxial Helmholtz equation (Eq.2.34), we found cylindrical scalar solutions in the

form of the Laguerre-Gaussian basis set, but we have not yet given the polarization

components of the fields required to satisfy Maxwell’s equations.

There are multiple methods available to derive the components of the fields, each

with their advantages and disadvantages. Fortunately for the work completed in this

thesis, we are mostly concerned with beams that are paraxial and do not require

the high-order accuracy of non-paraxial solutions that usually consist of non-analytic

integrals and Hankel transforms.

3.3.1 Paraxial Fields

As previously discussed, the paraxial approximation is satisfied when the beam is not

tightly focussed which is implied from Eq.2.32. A good rule of thumb is that a beam

focussed with an f-number of f/# ≥ 4 can be treated as paraxial, where the f-number

is given by,

f/# ≈ f

2w0

(3.40)

where f is the focal length of the optic.

If we use the Lorenz gauge such that,

∂µAµ = 0 (3.41)

then we can define a vector potential that satisfies the Helmholtz equation, Maxwell’s

equations, and the gauge condition with one polarization component,

A = ψ(x, y, z)ei(kz−ωt)x̂ (3.42)

The magnetic field is then easily found from the curl of the vector potential to give

the full 3D polarization components,

B = ∇×A =
∂Ax
∂z

ŷ − ∂Ax
∂y

ẑ (3.43)

If we ignore ∂ψ/∂z compared to the kψ term, we are left with a simple but elegant

formula [66],

B = B0

[
ŷ +

iẑ

k

∂

∂y

]
ψ(x, y, z)ei(kz−ωt) (3.44)
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This is valid for any wavefunction ψ that satisfies the paraxial Helmholtz equation.

Moving on to solve for the electric field becomes a little more difficult due to the

multiple vector calculus operators in Eq.2.22,

E = iω

[
A+

1

k2
∇(∇ ·A)

]
= iω

[
Ax +

1

k2

(
x̂
∂2

∂x2
+ ŷ

∂2

∂x∂y
+ ẑ

∂2

∂x∂z

)
Ax

]
(3.45)

On inspection, we see an issue with the fields being anti-symmetric - the B field has

components in ŷ and ẑ, whereas the electric field has components in x̂, ŷ, and ẑ.

This is due to the choice of the vector potential only existing in one polarization

plane. Upon simplifying Eq.3.44, we find the asymmetric terms to be small and the

remaining field can be approximately written as,

E = E0

[
x̂+

iẑ

k

∂

∂x

]
ψ(x, y, z)ei(kz−ωt) (3.46)

Using these two simple formulas, we can obtain the first order fields of the paraxial

approximation given ψ. The derivatives are first order and are mostly analytical.

Some efforts have been made to add higher order terms to these expressions which

has been well summarized in the paper by Peatross [122]. In this paper, Peatross takes

the Ignatovsky diffraction model in which the fields are computed at focus using vector

diffraction theory from the parabola, and compares it to various paraxial models. Of

the methods presented, the model adopted by Erikson and Singh [38] appears to have

the best reproduction of the Ignatovsky result, and luckily is one of the simplest

models.

The Erikson and Singh model adds only one extra term to the previous model

and is of second order,

E = E0

[
x̂+

ŷ

2k2

∂2

∂x∂y
+
iẑ

k

∂

∂x

]
ψ(x, y, z)ei(kz−ωt) (3.47)

B = B0

[
x̂

2k2

∂2

∂x∂y
+ ŷ +

iẑ

k

∂

∂y

]
ψ(x, y, z)ei(kz−ωt) (3.48)

The second derivative adds some considerable complexity to the calculation but it

remains an analytic formula. The existence of ŷ component to the electric field for

a laser polarized in the ẑ may seem a little confusing. This can be understood as

a component that emanates from the focussing of the laser, and as we shall see, is
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a small fraction of the intensity of the main polarization component. A useful tool

introduced by Peatross for calculating these fields is to introduce the complex beam

parameter,

Z = z0 + iz (3.49)

This allows us to separate the r and z dependence in Eq.2.34, yielding the Laguerre-

Gaussian mode in the modified (elegant) form [11],

ψ`,p(r, θ, z) = C

(
r
√

2

w(z)

)|`| (z0

Z

)2p+|`|+1

exp

(
−kr

2

2Z

)
L|`|p

(
kr2

Z

)
ei`θ (3.50)

where C is a normalization constant. In order to solve the analytic expressions of the

electric and magnetic fields above, we need to solve three differentials; ∂x, ∂y, and

∂xy.

We derive the the following differentials,

∂ψ

∂x
= ψ

[
|`| cos(θ)

r
− i` sin(θ)

r
− kx

Z
− 2kx

Z
L1

]
(3.51)

∂ψ

∂y
= ψ

[
|`| sin(θ)

r
+
i` cos(θ)

r
− ky

Z
− 2ky

Z
L1

]
(3.52)

∂2ψ

∂x∂y
=

[|`| sin(2θ) + i` cos(2θ)]

[
|`| − 1

r2
− k(1 + 2L1)

Z

]
+
k2xy

Z2
[1 + 4(L1 + L2)]

(3.53)

where,

L1 =
L
|`|+1
p−1

(
kr2

Z

)
L
|`|
p

(
kr2

Z

) (3.54)

L2 =
L
|`|+2
p−2

(
kr2

Z

)
L
|`|
p

(
kr2

Z

) (3.55)

Plugging the differentials into Eq ’s.3.46 and 3.47 allows us to give analytic formu-

las for the electric and magnetic field to second order in the paraxial approximation.
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Setting the normalization constant as,

C =

√
ηp!γ̄2

(p+ |`|)!
(3.56)

allows us to use the modified Laguerre-Gaussian basis set given in Eq.2.69 which has

been scaled to the diffraction result. Note that here, γ̄ is the beam waist parameter

and not the Lorentz factor and as such has been denoted with a bar. For completeness,

we will write the full electric and magnetic fields of a Laguerre Gaussian mode here,

E = E0



x̂

ŷ
[
|`| sin(2θ)

2
+ i` cos(2θ)

2

] [
|`|−1
k2r2
− (1+2L1)

kZ

]
+ xy[1+4(L1+L2)]

2Z2

ẑ
[
` sin(θ)
kr

+ i|`| cos(θ)
kr

− ix
Z

(1 + 2L1)
]


ψei(kz−ωt) (3.57)

B =
E0

c



x̂
[
|`| sin(2θ)

2
+ i` cos(2θ)

2

] [
|`|−1
k2r2
− (1+2L1)

kZ

]
+ xy[1+4(L1+L2)]

2Z2

ŷ

ẑ
[
− ` cos(θ)

kr
+ i|`| sin(θ)

kr
− iy

Z
(1 + 2L1)

]


ψei(kz−ωt) (3.58)

We note that the beam waist in Z and in ψ`,p is the modified beam waist as given by

Eq. 2.70. The fields are plotted in Fig.3.6 for the three polarization components for

the z = 0 position and also plotted in Fig.3.7 for the z = λ/4 position.

These fields are in good agreement with the results of 3D PIC simulations using

second order Maxwell solvers and will be discussed later. For the first time, we have

developed analytic formulas that are in good agreement with the paraxial approxi-

mation to second order. A subtle result also mentioned in [122], is that the Erikson

and Singh model is accurate to f-numbers below f/2 making this model also suitable

for analytically modelling tightly focussed LG modes.
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Figure 3.6: Electric field distributions various LG modes ψ`,p for z = 0. From left to
right; Re(Ex), Re(Ey), and Re(Ez). Colourbars are relative.
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Figure 3.7: Electric field distributions various LG modes ψ`,p for z = λ/4. From left
to right; Re(Ex), Re(Ey), and Re(Ez). Colourbars are relative.
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3.3.2 Non-Paraxial Fields

To go one step further and calculate the non-paraxial fields, we take the approach of

using the angular spectrum representation of plane waves [58, 126]. In this method, we

transform the Laguerre Gaussian mode into the spectral space via a Fourier transform.

Maxwell’s equations become much easier to manipulate in k space, and the complex

spatial derivatives become multiplication operations. An inverse Fourier transform

then brings the fields back to real space to propagate the field in the focal plane to

any z position for all components.

This is easily seen by Maxwell’s vacuum equations in k space,

∂Ẽ

∂t
= c2ik̃ × B̃ (3.59)

∂B̃

∂t
= −ik̃ × Ẽ (3.60)

ik̃ · Ẽ = 0 (3.61)

ik̃ · B̃ = 0 (3.62)

Where the tilde denotes the Fourier transformed variable. If we assume a linearly

polarized Laguerre Gaussian mode that is purely an ` mode, we can write a simplified

expression for the electric field in the z = 0 plane as,

Ex = C

(
r

w0

)|`|
exp

(
−r2

w2
0

)
ei`θ (3.63)

where C is a normalization constant. Using the Fourier field allows us to propagate

the solution in the focal plane to any point along z assuming the field is time harmonic.

To do this, we first normalize the k vector such that,

k = k(pk̂x + qk̂x + wk̂z) (3.64)

where k is the wavevector magnitude. The Fourier transform in Cartesian coordinates

is then given as,

Ẽx(p, q) =
1

λ2

∫∫
Ex(x, y, 0)e−ik(px+qy)dxdy (3.65)
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however the Fourier transform is more suitably calculated using the polar form of

the Fourier transform as given in Eq.2.54. Using our previous integration methods,

and the Fourier polar coordinates, p = ρ cos(φ) and q = ρ sin(φ) we then yield the

following integral,

Ẽx(ρ, φ) =
C2πi`

λ2w
|`|
0

ei`φ
∫ ∞

0

r|`|+1exp

(
−r2

w2
0

)
J` (krρ) dr (3.66)

The integral has an analytical solution given by [60],∫ ∞
0

xν+1e−αx
2

Jν(βx)dx =
βν

(2α)ν+1
exp

(
−β

2

4α

)
(3.67)

Solving the integral and simplifying, we find the Laguerre-Gaussian field in the Fourier

plane,

Ẽx(ρ, φ) =
Ci`

4πε2
ei`φ

( ρ
2ε

)|`|
exp

(
− ρ2

4ε2

)
(3.68)

where ε is given by,

ε =
1

kw0

(3.69)

Propagating the field in the z direction and then taking the inverse Fourier transform,

Ex(r, θ, z) =

∫∫
Ẽx(ρ, φ)eikrρ cos(θ−φ)eikw(ρ)zρdρdφ (3.70)

gives the x̂ component of the electric field in all space. Here, w(ρ) is the aperture

function defined as,

w(ρ) =

(√
1− ρ2 if ρ2 ≤ 1

i
√
ρ2 − 1 if ρ2 > 1

)
(3.71)

As we are only interested in the real field and not the evanescent solutions, we dis-

regard solutions where ρ2 > 1 and set them equal to zero. Again using the same

method of integrating over the azimuthal coordinate first, we derive the following

Hankel transform,

Ex(r, θ, z) =
Cei`θ

2ε2

(
1

2ε

)|`| ∫ 1

0

J`(krρ)exp

(
− ρ2

4ε2

)
eik
√

1−ρ2zρ|`|+1dρ (3.72)

Clearly this is a non-analytic Hankel transform and must be computed numerically.

However, we could use the paraxial approximation here and check we get the paraxial
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result as in Eq.3.56. The paraxial equation in k space can be given as [115],

w(ρ) =
√

1− ρ2 ≈ 1− ρ2/2 (3.73)

The integral then becomes analytic using Eq.3.66 and results in the same equation

as in Eq3.57.

The orthogonal components of the electric field in k space in the z = 0 plane can

be easily found from Maxwell’s equations for a linearly polarized beam,

Ẽz(ρ, φ, 0) = −kx
kz
Ẽx(ρ, φ, 0) (3.74)

The Ez field can then be given as [126],

Ez(r, θ, z) =
i

k

∂

∂x

∫∫
Ẽx(ρ, φ, 0)

eikrρ cos(θ−φ)eikw(ρ)z√
1− ρ2

ρdρdφ (3.75)

which is clearly a non-analytic integral. The paraxial approximation could be applied

here, but the algebra is challenging and will result in what we have already found in

Eq.3.57.

As before, we have a problem with symmetry in this solution as we assumed that

there was no ŷ component in Eq.3.73 even though we have previously shown that

this is a requirement for symmetric fields. The solution to this using the angular

spectrum method is to compute the E and B fields from a known Ex field at focus,

and then again from a known By field at focus. The average of each field is then

taken to obtain the 6 vector field components.

Given the complexity, and little advantage in having non-paraxial solutions for

our problems, we do not pursue this any further. The fields must be computed via

a numerical Hankel transform, and while there are fast algorithms for this [144], the

additional computational overhead when computing 1000’s of time steps can be too

much. One approach could be to compute the fields at regular nodes in 3D space,

and then interpolate the fields in between, but the fields must be pre-computed and

will only be valid within the initial boundaries computed.
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3.4 Trapping Within an Optical Vortex

We have now derived the analytic second order paraxial field equations for an arbitrary

Laguerre-Gaussian mode, giving us the necessary tools to model how an electron will

move through these fields. Given the form of Eq’s 3.57 and 3.58, it is not possible to

integrate these fields in the Lorentz equations analytically. We must therefore use an

adaptive Runge-Kutta algorithm developed in MATLAB as outlined in the appendix.

As a result, the physics of the ponderomotive force is implicit in the solutions and

as such we can start to explore the fundamental differences between a Gaussian and

Laguerre-Gaussian beam.

Given the donut shape of the LG mode as shown in Fig.2.4, particularly the p = 0

modes, it is unsurprising that the ponderomotive force acts radially inwards inside of

the peak intensity radius rpeak = w0

√
|`|/2. If we take the simplified x̂ component of

the electric field of a p = 0 laser as,

Ex = E0

√
1

|`|!

(
r
√

2

w0

)|`|
exp

(
− r

2

w2
0

)
ei`θ (3.76)

we can derive the radial ponderomotive force associated with this beam as,

Fp(r) = − e2

4meω2
|Ex(r)|2

(
2|`|
r
− 4r

w2
0

)
(3.77)

The normalized radial ponderomotive force for the |`| = 0 and |`| = 1 modes are

given in Fig.3.8 and emphasize the change in the sign of the force as a function of

radius.

Electrons that are in the negative ponderomotive force radius bounded at r =

w0

√
|`|/2, will oscillate in the laser field but will also drift towards the laser axis.

As the electrons oscillate back and forth, they will accelerate to a peak transverse

momentum proportional to the laser intensity parameter a0 according to Eq.3.10, but

will also drift forward with the laser pulse at an average velocity given by (Eq.3.15),

βzγ =
a2

0

4
(3.78)

where βz = vz/c. In a Gaussian laser, as the ponderomotive force is acting always

radially outward, few electrons experience the peak a0 of the laser as they are swept
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a). b). 

Figure 3.8: Normalized ponderomotive force for an electron in a), an ` = 0 Gaussian
mode and b), an |`| = 1, p = 0 Laguerre Gaussian mode.

away from the areas of high intensity. In the Laguerre-Gaussian mode however, the

electrons are confined radially but often slip through the “hole” of the donut mode

and dephase as the laser pulse outruns them. If the laser intensity were sufficiently

high such that the forward drift velocity is close to c, then the electrons are not only

trapped radially in the laser pulse, but are also pushed forward close to the laser

group velocity such that they can potentially extract more energy.

Rewriting Eq. 3.78 as,
vz
c

=
a2

0√
a4

0 + 16
(3.79)

we find that for the electron to be accelerated to an average velocity of v/c = 0.9, we

require a0 ≈ 2.8. If we require that the peak laser intensity is 10 times this such that

the majority of the laser field within the peak intensity radius is above this criteria,

we find a peak intensity of roughly 1 × 1021Wcm−2. While this intensity is high,

it is obtainable with modern high power laser systems using the optics outlined in

Chapter 5.

To test the trapping theory, we first look at solutions to the numerical simulations

run in the MATLAB integrator. We start with a single electron at rest at a point in

space: x = w0/2, y = 0, z = 0 far from the laser. The laser has a Gaussian temporal

function and a full-width half-maximum of 100fs, it is polarized in the x̂ plane and is

initialized 1ps away.

74



a). b). 

c). d). 

Figure 3.9: Phase space plots for an electron scattered from a linearly polarized
Gaussian laser pulse with peak intensity 5×1021Wcm−2, or a0 = 60.1, pulse duration
100fs, and a beam waist of w0 = 10µm.
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Two lasers are considered, the first is a 1µm linearly polarized Gaussian (` = 0)

with peak intensity 5 × 1021Wcm−2 = 60.1 and a beam waist of w0 = 10µm. The

phase space for the Gaussian case is given in Fig.3.9. As is clear from tile a), the

electron is kicked sideways away from the laser axis. The ejected energy is found to

be ≈ 1.5MeV which is considerable given the spatial extent of the interaction. As

expected, the laser gains no angular momentum as shown in tile d).

The second laser is a linearly polarized Laguerre-Gaussian pulse of equal pulse

duration and equal energy. As a requirement to contain the same energy, the laser

beam waist and intensity should be scaled according to Table’s 2.2 and 2.3. If we

assume a Gaussian near-field, then η = 0.772 and γ̄ = 0.837. This results in a beam

waist of w0 = 11.94 and a peak intensity of 1 × 1021Wcm−2, or a0 = 26.9. The

results for the same initial electron is given in Fig.3.10 in which it is clear to see

that the electron is initially kicked inwards towards the laser axis as expected. The

electron then rebounds from the opposite wall and oscillates back and forth in the

laser channel until it finally escapes from the laser and is ejected with significantly

more energy than the Gaussian case.

The final energy ejected from the electron is given in tile b) and converts to

roughly 15MeV , or 10 times the energy of a Gaussian laser with the same energy.

The electron also gains considerable angular momentum as can be seen from tile d).

Increasing the pulse duration could extend the interaction length before the laser

passes the electron and in theory increase the energy, however this is not the case. As

the pulse length is increased, the ponderomotive force associated with the temporal

shape of the laser decreases, and as a result the ejected electron energy is decreased.

For an electron in the same initial position, but for a Laguerre-Gaussian laser with a

1ps duration, the ejected energy is reduced to roughly 0.5MeV . However, if the pulse

duration is decreased to 30fs, the ejected energy increases to roughly 51MeV .

However, these results are quite unrealistic as the electron is placed at a specific

place, something we cannot do in the laboratory. Rather we must consider an en-

semble of non-interacting electrons that are randomly placed in a given distribution.

We therefore consider a spherical distribution of 2000 electrons with zero initial en-

ergy. The electrons are normally distributed with a Gaussian width of w0/2 around

x = y = z = 0 and the laser is initialized 1ps away.

Again, two lasers will be used of the same energy, but now a 30fs pulse duration

to maximize scattered electron energy. The results for the Gaussian case are given
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a). b). 

c). d). 

Figure 3.10: Phase space plots for an electron scattered from a linearly polarized
Laguerre-Gaussian (` = 1) laser pulse with peak intensity 1 × 1021Wcm−2, or a0 =
26.9, pulse duration 100fs, and a beam waist of w0 = 11.94µm.
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a). b). 

c). d). 

Figure 3.11: Ejection plots for 2000 electrons from a 30fs linearly polarized Gaussian
laser pulse, a0 = 60.1. Tile a) gives the ejected energy as a function of initial radius
from the laser axis, b) gives the spectral distribution of the ejected electron, c) the
ejected divergence angle of the electrons as a function of initial radius from the laser
axis, and d) the average electron angular momentum as a function of time for the
ensemble.
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in Fig.3.11. Tile a) plots the ejected energy as a function of initial radial position

showing strong acceleration for electrons close to the laser axis and rapidly decaying as

the radius is increased. It was found that the initial z position played little role in the

scattering energy as expected. Tile b) gives the histogram of electron energy showing

that the majority of scattered electrons are scattered with an energy of approximately

10MeV and cutoff at roughly 50MeV with a few outliers beyond 50MeV . Tile c)

shows the ejected divergence as a function or initial radius and is colour coded to

show the final energy of the electron. It is clear that there is a small cross section for

the electron to be accelerated to high energy with most electrons being scattered into

a large cone angle with little energy. This indicates that the Gaussian beam would

be inefficient at generating high energy electrons in a small cone angle. Tile d) gives

the average angular momentum of the electrons as a function of time, remaining zero

throughout the interaction as expected.

The results of the ` = 1 Laguerre-Gaussian pulse are given in Fig.3.12, where the

laser intensity and beam waist have been scaled by the parameters η and γ̄ to satisfy

the requirements found in Chapter 2. Tile a) gives the ejection energy as a function of

initial electron radius. Electrons within the peak intensity radius of the beam have a

high probability of being accelerated to high energy and the effective cross section for

electron acceleration is increased. This is also seen in tile b) where the total number

of electrons accelerated to energies greater than 50MeV is much greater than that

of the Gaussian case. Tile c) shows the divergence of the electrons as a function of

input radius and are colour coded to ejection energy. It is possible to see that there

is a wide range of initial radii that the electrons can be injected in and be accelerated

forward with a minimal divergence angle. Therefore the Laguerre-Gaussian mode

could be more optimal for vacuum particle acceleration due to its increase in high

energy electron flux, and the minimal divergence of the electrons.

For a particle accelerator to be of use, it is ideal if the electron source is collimated,

which is certainly not the case here. However, due to the finite size of the electron

source, effectively a point source, it would be possible to use a quadrupole electron

lens to re-image the high energy electrons onto a target or sample. Tile d) shows the

interesting result of a finite orbital angular momentum transferred to the electrons.

We find the average angular momentum transferred to the electrons roughly 10% of

the result in Fig.3.3. This is due to the range of a0’s over which the electrons interact,

while rarely interacting with the peak intensity directly.
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a). b). 

c). d). 

Figure 3.12: Ejection plots for 2000 electrons from a 30fs linearly polarized Laguerre
Gaussian laser pulse, a0 = 26.9. Tile a) gives the ejected energy as a function of initial
radius from the laser axis, b) gives the spectral distribution of the ejected electron, c)
the ejected divergence angle of the electrons as a function of initial radius from the
laser axis, and d) the average electron angular momentum as a function of time for
the ensemble.
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To estimate the angular momentum absorbed per electron, we compare it to the

energy absorbed per electron as shown in Fig.3.13. Tile a) and b) show the average

energy and angular momentum as a function of time for an LG pulse with the previous

intensity and beam waist, and with a topological charge of ` = 1. The y axes have

been both normalized such that they correspond to the average number of photons

absorbed per electron. The final value for each is found to be roughly the same

(≈ 7000) photons per electron indicating that like spin angular momentum, orbital

angular momentum is absorbed at the same rate as the energy of the photons.

Tiles c) and d) show the same results, but rather for a laser with the opposite topo-

logical charge (` = −1). Here, we see essentially the same result in average ejected

energy of the electrons as expected, however as the electrons are placed randomly,

there is a small discrepancy of the total energy absorbed by the electrons when com-

pared to the ` = 1 result. The main difference is the absorbed angular momentum

and is equal, but opposite in direction as expected. This indicates that indeed, the

orbital angular momentum is coupling to the electrons.

3.5 Relativistic Radiation and Nonlinear Thom-

son Scattering

As shown, charged particles respond to electromagnetic waves given by the Lorentz

equation (Eq.3.3), however this is not yet the full picture. Electrons in motion can

generate electromagnetic waves, particularly if they are accelerating. In the classical

picture, we can analyze the motion of an electron as a current source in Maxwell’s

equations and omit any presence of background electromagnetic fields that may be

driving the particle. From this one can derive the Lienard-Wiechert four-potentials

of the emitted radiation given by,

Φ(r, t) =

[
e

(1− β · n)R

]
ret

(3.80)

and,

A(r, t) =

[
eβ

(1− β · n)R

]
ret

(3.81)

where R is the distance from the electron to the the detector, n is the unit vector in

the direction of R, and ret indicates that the computations should be performed in
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a). b). 

c). d). 

Figure 3.13: Average energy and angular momentum of per electron of 2000 electrons
in two oppositely charged Laguerre-Gaussian modes. a) and b), average energy and
angular momentum in an ` = 1 mode respectively. c) and d), average energy and
angular momentum in an ` = −1 mode respectively.
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the retarded time.

Using these potentials and Maxwell’s equations, it is possible to write the radiated

electric field from an electron in motion as [75],

E(r, t) =
e

4πε0

[
n− β

γ2(1− β · n)3R2

]
ret

+
e

4πcε0

n×
(

(n− β)× β̇
)

(1− β · n)3R


ret

(3.82)

This formula is often re-written in the more enlightening Heaviside-Feynman formula

[45],

E(r, t) =
e

4πε0

[
R̂

R2
+
R

c

∂

∂t

(
R̂

R2

)
+

1

c2

∂2

∂t2
R̂

]
(3.83)

From this formula, we can see the three components of the source of radiation.

The first term corresponds to the source for the electrostatic fields, the second term

corresponds to the velocity of the electron and is responsible for magnetostatic fields,

while the third term is the acceleration term and gives rise to radiated electromagnetic

waves. As we are interested in the radiated power from an electron, we are only

concerned with the acceleration (second) term in Eq.3.82. As shown in Eq.2.12, the

energy radiated per unit time is given by the Poynting vector in the retarded time,

[S · n]ret =
e2

16π2ε0c

 1

R2

∣∣∣∣∣∣
n×

(
(n− β)× β̇

)
(1− β · n)3

∣∣∣∣∣∣
2

ret

(3.84)

In our previous numerical calculations using MATLAB, we were able to calculate

the trajectory of the electron in its time t′ with a time-step ∆t′. Integrating over a

infinitesimal time-step and changing from retarded time to electron time, we find the

instantaneous power radiated per steradian as,

dP (t′)

dΩ
=

e2

16π2ε0c

∣∣∣n× ((n− β)× β̇
)∣∣∣2

(1− n · β)5
(3.85)

where Ω is the solid angle.

From Eq.3.85, it is possible to calculate the scattered power in any given direction

of an electron. If the electron is oscillating in the field of a plane wave of a given

power, then it is possible to calculate the scattering cross section of the electron in

a plane wave. We define the scattering cross section as the ratio of the number of
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photons scattered per unit solid angle to the number of incident photons per unit

area. This is given [75] for a low intensity (a0 � 1) linearly polarized plane wave as,

dσ

dΩ
=

(
e2

4πε0mec2

)2
1 + sin2 Θ

2
(3.86)

Where Θ is the scattering angle relative to the oscillation axis. This is integrated

over all area to give the Thomson scattering cross section,

σT =
8π

3

(
e2

4πε0mec2

)2

= 0.665× 10−24cm2 (3.87)

where e2/4πε0mec
2 is the classical electron radius. This is valid for incident photons

with energies sufficiently smaller than that of the rest mass of the electron, ~ω �
mec

2, otherwise the Compton scattering formulas must be used.

The cosine squared dependence of the Thomson scattering cross section gives

some indication of the radiation pattern. We verify this relationship by adding in

a radiation post-processor script to the MATLAB particle integrator. As the code

cannot compute infinitely small differential areas or time steps, it calculates the power

radiated on a dynamic time-step basis. The radiation is calculated per steradian on

a spherical grid with cell sizes ∆φ and ∆θ for the azimuthal and polar coordinates

respectively. While the code can compute instantaneous power, it is computed over a

finite time step creating a discrepancy, so instead we look to find the total scattered

energy by integrating over time. The total energy scattered per electron is then

calculated as,

Utotal =

∫∫∫
dP (t′)

dΩ
sin(θ)dθdφdt′ ≈

∑
i,j,k

∆Pi,j,k
∆Ω

cos(θ′j)∆φi∆θj∆t
′
k (3.88)

where them sums are computed as trapezoidal sums to minimize error. We remark on

the change from the sin(θ) used commonly in physics standard definitions of spherical

Jacobian’s, to cos(θ′) as used in mathematics standards and also in MATLAB. In this

case, we find that θ′ = θ + π/2.

The radiation pattern of a single electron oscillating in a low intensity linearly

polarized plane wave of wavelength 800nm and Gaussian pulse duration 100fs is given

in Fig.3.14. Tile a) gives the true spherical mapping of the radiation detected 1
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a). b). 

 

Figure 3.14: Thomson scattered radiation from an electron in a 1×1010Wcm−2 infinite
plane wave of pulse duration 100fs. The laser is propagating in the z direction and is
polarized in the x direction.

meter from the interaction region, whereas tile b) gives the mercator projection of

the radiation onto a 2D plane. Here, φ denotes the azimuthal coordinate from the

polarization plane (x̂), while θ denotes the polar coordinate measured from the laser

k vector in the ẑ direction. In the far-field it is clear that the radiation emitted

appears to be very similar to that of a dipole antenna oriented along the x̂ axis. The

intensity null on the poles of the dipole antenna are in agreement with the sine-squared

radiation law.

From Eq.3.85, we see that there is some relativistic dependence to the direction of

the Thomson scattering. This is found from the denominator with the n ·β term. For

electron speeds much less than c (β ≈ 0), the denominator plays little role. As the

electron becomes relativistic, the denominator tends towards infinity in the direction

of β which bends forwards as the laser becomes more relativistic.

Increasing the beam to relativistic intensities causes the radiation to “bend” in the

direction of laser propagation. Fig.3.15 shows the result for an electron in a linearly

polarized 800nm plane wave of intensity a0 = 0.83 with pulse width 100fs.

Further increasing the laser intensity to more extreme values results in further

bending of the radiation to the laser propagation direction. Fig.3.16 shows the more

extreme case of nonlinear Thomson scattering with quite extreme bending towards

the propagation axis. This was computed with a 100fs laser pulse and peak intensity
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a). b). 

 

Figure 3.15: Thomson scattered radiation from an electron in an infinite plane wave
of intensity a0 = 0.83 and pulse duration 100fs. The laser is propagating in the z
direction and is polarized in the x direction.

a). b). 

 

Figure 3.16: Thomson scattered radiation from an electron in an infinite plane wave
of intensity a0 = 4.81 and pulse duration 100fs. The laser is propagating in the z
direction and is polarized in the x direction.
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of a0 = 4.81. While it is clear there is some spatial dependence to the radiation

far-field as a function of the laser intensity, we still have to analyze the spectrum of

the radiation.

If we know the power delivered to a point in space as a function of time, then it is

straight-forward to find the corresponding frequency of the emitted beam by means

of a Fourier transform. Given the relation [75],

dP (t)

dΩ
= |A(t)|2 (3.89)

we can find the frequency spectrum of the emitted radiation as,

A(ω) =
1√
2π

∫
A(t)eiωtdt (3.90)

From this we can write the energy emitted per unit steradian as,

dU

dΩ
=

∫
|A(ω)|2dω (3.91)

where,

A(ω) =

√
e2

32π3ε0c

∫
eiωt

n×
[
(n− β)× β̇

]
(1− β · n)3


ret

dt (3.92)

We can transform this to the frame of the particle where the trajectory in the particle

time is computed by the MATLAB code,

A(ω) =

√
e2

32π3ε0c

∫
eiω(t′−n·R(t′)/c)

n×
[
(n− β)× β̇

]
(1− β · n)2

dt′ (3.93)

This is the standard radiation spectrum integral in most texts, however it is not

suitable for the task at hand. One may notice that Eq.3.92 is a perfect Fourier trans-

form for which the fast Fourier transform (FFT) is a suitable technique for calculating

this quickly and with minimal error. Eq.3.93 on the other hand is a difficult integral

to compute numerically and the FFT cannot be applied. This can lead to massive

computational requirements and overall time increase in the calculation. We there-

fore opt to compute the radiation spectra in the retarded time of the particle which
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requires an interpolation of the particle time to the retarded time. This is given by,

tret = t′ +
R(t′)

c
(3.94)

where t′ is the particle time.

The energy radiated per unit solid angle per unit frequency is then given as,

d2I

dωdΩ
=

e2

16π3ε0c

∣∣∣∣∣∣
∫
eiωt

n×
[
(n− β)× β̇

]
(1− β · n)3

dt

∣∣∣∣∣∣
2

ret

(3.95)

It is more useful however to convert this equation into radiation per unit wave-

length as opposed to frequency which is difficult to directly measure in the lab. We

therefore make a change of variables taking care with the differential of the frequency

to yield,

d2I

dλdΩ
=

e2

8π2ε0λ2

∣∣∣∣∣∣
∫
eiωt

n×
[
(n− β)× β̇

]
(1− β · n)3

dt

∣∣∣∣∣∣
2

ret

(3.96)

We could also rewrite the equation such that it gives the yielded energy in terms of

number of photons in a frequency band but it will not be shown here. In the form of

Eq.3.96, it is possible to discretize the formula such that it is suitable for use in the

numerical MATLAB code. This allows us to pick any point on the previous figures

and plot the frequency spectrum for it.

The result for the low intensity, linear Thomson scattering spectrum in a 100fs

duration, infinite width plane wave of intensity 1 × 1010Wcm−2 is given in Fig.3.17.

Tile a) gives the total radiation spatial distribution which is sampled at two points

indicated by the blue and black squares. The black square indicates the radiation

emitted in the polarization which we expect to be essentially zero, however due to its

finite size, and the small effects from the field strength, we find it to be roughly 300

times weaker than the radiation emitted in the blue square. The blue square is located

on the φ = π/2 position and measures the strongest linear Thomson scattering.

At low intensity (a0 � 1), we find that the radiation scattered in tile b) is almost

entirely at the laser central frequency. There is a bandwidth associated with the

scattered radiation that matches the bandwidth of the laser pulse exactly. Using a

log scale, although not shown, we find an extremely weak 2nd harmonic of the laser
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a). 

b). 

Figure 3.17: Linear Thomson scattering of an electron in an infinite plane wave of
duration 100fs and peak intensity 1×1010Wcm−2. Tile a) gives the spatial distribution
of the radiation and shows the two spectral sample points in the black and blue
squares. Tile b) gives the radiation spectra for these points with the colours of the
lines corresponding to the colour of the boxes in tile a). The scales in tile b) are
relative arbitrary units.

radiation at 400nm in the polarization direction.

Increasing the intensity to relativistic levels makes this second harmonic, and many

others appear quite strong, and in fact can become stronger than the first harmonic

emission. Fig.3.18 gives the nonlinear Thomson spectra of an electron in an infinite

plane wave of strength a0 = 0.96 in the two perpendicular planes as described before.

It is clear to see the drastic change in the spectra, the black (laser polarization plane)

shows many red shifted harmonics. Using a log scale shows the FFT is capable of

resolving down to the 17th harmonic using a 167as time-step. A finer time-step could

be used but at great cost to the computational time. The minimum frequency that

can be resolved is calculated from the Shannon-Nyquist theorem. Interestingly, the
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a). 

b). 

Figure 3.18: Nonlinear Thomson scattering of an electron in an infinite plane wave
of duration 100fs and peak field amplitude a0 = 0.96. Tile a) gives the spatial
distribution of the radiation and shows the two spectral sample points in the black
and blue squares. Tile b) gives the radiation spectra for these points with the colours
of the lines corresponding to the colour of the boxes in tile a). The scales in tile b)
are relative arbitrary units.
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radiation emitted in the perpendicular (blue) direction is red-shifted all the way out

to 1000nm. The red shift is due to special relativity and can be described quite

qualitatively as follows. Much like the space-time invariant, the phase of the laser is

invariant under a Lorentz transform,

Φ = ωt− kz (3.97)

If the time the electron experiences is the proper time τ = t/γ then for the phase

to be invariant, the frequency of the laser must be red shifted to account for this.

Similarly, the z distance is Lorentz contracted causing an increase in the wavevector k

to compensate. Thus the electron sees a red-shifted laser. Upon scattering the light,

the relative motion of the electron to the observer is also Lorentz transformed and

further red-shifted again. If the laser intensity were to keep increasing, the harmonics

would be red shifted so much that they would overlap with each other.

While it is possible to derive analytic models for the radiation scattered from

electrons in infinite plane waves as we have shown [135], it is not necessarily an

accurate representation of the nonlinear Thomson scattering from a real laser beam

with multiple electric field components, ponderomotive forces, and electron trapping

properties. Nonlinear Thomson scattering can give a rich amount of information

about the laser field when scattered from single electrons, or plasma parameters such

as electron temperature and density if the laser is scattering from a plasma.

These techniques developed have been used for multiple applications in my re-

search, including the characterization of laser intensity with relativistic Thomson

scattering [67] in Gaussian and Laguerre-Gaussian modes. We do not present this

work here however as it is still in early stages, and needs more work. The second use

for this code is in estimating radiation from laser driven plasma accelerators discussed

in the next chapter.

3.5.1 The Lorentz-Abraham-Dirac Equation

Eq. 3.3 is valid for scenarios where the intensity of the laser is relativistic, but only

to intensities of roughly 1× 1022Wcm−2. After this intensity, the nonlinear Thomson

scattered light starts to emit harmonics that extend into the UV and even x-ray

range. It is common to find scenarios such as in synchrotron accelerators where the

electron is accelerated such that it emits x-ray photons with energies approaching the
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rest mass energy of an electron (511keV ). At these energies, the photons that are

scattered, or radiated away can cause a recoil on the electron modifying its trajectory.

We therefore need to add an additional force term to the Lorentz equation in

the form of a radiation damping (or reaction) term. Writing the Lorentz equation

in covariant form allows us to write the Lorentz-Abraham-Dirac (LAD) equation as

[84],
dpµ
dτ

= eFµνu
ν +

1

4πε0

2e2

3mec3

[
d2pµ
dτ 2

+
pµ
m2
ec

2

(
dpν
dτ

dpν

dτ

)]
(3.98)

where pµ and uν are the momentum and velocity four vectors respectively, and Fµν

is the field strength tensor given by [75],

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 (3.99)

The LAD equation has been the source of much controversy for some time includ-

ing its non-relativistic case. Eq.3.98 admits non-physical and paradoxical solutions

such as the electron reacting to the emission of the photon before it was emitted

breaking causality. There have been many attempts to address these issues [167], but

none have been entirely satisfactory.

As it turns out, the approximations and possible solutions of Eq.3.98 depend on

the quantum-electrodynamical (QED) strength parameter χ defined as,

χ =
γ

Es

∣∣(β ·E)2 − (E + v ×B)2
∣∣1/2 (3.100)

where Es is the Schwinger field strength given at the beginning of Chapter 2 as

Es = 1.32×1018V/m. As the strength parameter χ approaches 1, the emitted photons

are on the order of the rest mass energy of the electron and relativistic quantum

mechanics is required to solve the problem. Typically this is done numerically using

a Monte-Carlo algorithm with some pre-populated tables of scattering cross sections.

For the parameters accessible with lasers in the laboratory today, the values of χ is

typically small when interacting with low energy electrons, and is often on the order

of 10−3 − 10−2 for a0’s between 10 and 100.

In this case, it is possible to use the Landau-Lifshitz approximation to Eq.3.98
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given by [84],

dpRR
dt

=
2e3

3mec3

[
γ

(
dE

dt
+ v × dB

dt

)]
+

2γe4

3m2
ec

4

[
E ×B +B × (B × v) +E(v ·E)− v

(
(E + v ×B)2 − (E · v)2

)] (3.101)

where d/dt is the material derivative. For lasers of many frequency cycles and a

large beam waist, it is possible to drop the material derivatives and compute the

reduced Landau-Lifshitz equation as used in PIC codes like OSIRIS [48]. Including

the reduced Landau-Lifshitz correction to the Lorentz equation, and normalizing the

variables, we have the equation of motion given by,

dp

dt
=

(
E +

p

γ
×B

)
+α

[
E ×B +B ×

(
B × p

γ

)
+E

(
E · p

γ

)]
−

αγp

[(
E +

p

γ
×B

)2

−
(
p

γ
·E
)2
] (3.102)

where,

α =
1

4πε0

2e2ω

3c3me

(3.103)

and the variables are normalized such that, E = eE/ωmec, B = eB/ωme, x = kx,

p = p/mec = γv/c, and t = ωt. This normalization ensures that the variables are all

similar in terms of magnitude which minimizes numerical rounding errors.

The form of Eq.3.102 may appear daunting and is certainly difficult to analytically

integrate for almost any scenario, but it is simple to implement in the Runge-Kutta al-

gorithm and while is mostly not needed for the laser intensities used in the laboratory

throughout this thesis, it is a first order correction that is easily introduced.

The effects of radiation damping can be subtle, and its effect can become important

in high intensity interactions, or when there is a strong magnetic field present in which

case the electron will experience magnetic braking. In this scenario, the electron is

strongly bending in the magnetic field emitting high energy photons in the process.

This radiation of x-rays, while in a strong static magnetic field leads to an eventual

decrease in the electron energy, hence the term magnetic breaking [167].
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3.6 Ionization and Electron Injection

To this point, we have largely been concerned with electrons “placed” at a given

point and time from which we have then studied the evolution of the electron in a

laser field given the exact initial conditions. Physically this can’t be the case as we

cannot manipulate electrons to this level of precision. If we were to place an electron

at an exact place and time, then according to the Heisenberg uncertainty principle

the electron would have an infinite momentum [62].

Experimentally, electrons must first be ionized from their binding atom either

by collisions, photon absorption, or by tunneling. For ultrafast lasers (< 1ps), in

low density (≈ 1 × 1019cm−3) plasma as used throughout this thesis, the collision

times associated with plasmas are much longer than the pulse duration as will be

discussed in the next chapter. We are then left with two major ionization processes

present - photoionization and tunnel-ionization. Of these two processes, the dominant

mechanism is usually characterized by the Keldysh parameter [56],

γK = ω

√
2Uion
I(r, t)

≈ ω

√
Uion
Φp

(3.104)

where Eion is ionization potential of the atom and electron of interest, I(r, t) is the

intensity of the incident laser and Φp is the ponderomotive potential given in Eq.3.34

and rewritten here as,

Φp =
e2|I(r, t)|2

4meω2
(3.105)

If γK > 1, then the atom is most likely to be ionized through photoionization in

which one, or multiple photons are absorbed by the atom and ionize the electron in

the process. To ionize the electron, the total energy of the photons absorbed must

be equal to, or exceed the binding potential of the electron. The binding energy

of electron can be calculated for simple single and double electron atoms using the

Schrodinger equation [62], but the problem becomes intractable for atoms with many

electrons. The values are then usually measured experimentally and empirically and

can be accessed in databases such as that used by NIST [147]. Ionization potentials

relevant to this thesis are given in column 2 of Table 3.1.

If we consider a laser with a wavelength of 800nm, then each photon has an

energy (not including laser bandwidth) of roughly 1.55eV . From Table 3.1, it is clear

to see that no single photon can ionize an electron of the given elements, and many
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Table 3.1: Ionization potentials and equivalent appearance laser intensities required
for tunneling ionization for gases used in this thesis.

Ion Uion[eV ] Iapp[W/cm
2]

H+ 13.61 1.4× 1014

He+ 24.59 1.4× 1015

He2+ 54.42 8.8× 1015

N+ 14.53 1.8× 1014

N2+ 29.60 7.7× 1014

N3+ 47.45 2.3× 1015

N4+ 77.47 9.0× 1015

N5+ 97.89 1.5× 1016

N6+ 552.07 1.0× 1019

N7+ 667.05 1.6× 1019

photons must therefore be required. For hydrogen to be ionized via multi-photon

ionization, at least 9 photons must be simultaneously absorbed. The cross section

for this interaction is quite small and a large laser intensity is required for this to be

feasible.

For the laser intensities used throughout this work, we are often working at rela-

tivistic intensities in which the Keldysh parameter becomes much less than 1. In this

case, electrons tunnel through the potential trapping barrier. This is made possible

by the presence of a strong laser field where the electric field acts to “tilt” the poten-

tial barrier such that it has a barrier of finite width. Fig.3.19 shows the two cases of

an electron trapped within the potential well of a singly charged atom. Tile a) shows

the electron with the presence of an electric field indicated by its potential energy

with the black dotted line. The only way for the electron to escape in this case is

by the absorption of energy through either a photon or a collision. Tile b) shows the

potential barrier of the atom in the presence of a strong electric field indicated by the

dotted red line. The potential is tilted to one side creating a finite barrier width. It

is now possible for the electron to tunnel through this barrier (indicated by the green

dashed line) to which the electron can then escape.
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a). b). 

Figure 3.19: Over the barrier ionization illustration. Tile a) shows the potential well

of an isolated atom and the binding energy of an electron trapped within given by

the black dotted line. Tile b) shows the same potential perturbed by a strong laser

electric field given in red. The bound electron is now able to tunnel through the finite

barrier indicated by the green dashed line, or is able to escape if the barrier is reduced

to a potential lower than the potential energy of the electron.

If we define the trapping potential for a simple hydrogen like electron as,

V (x) =
−Ze2

4πε0x
(3.106)

where Z is the charge is the ion [25], we can apply the electric field of a laser as

VL(x) = eεx indicated by the red dotted line in Fig.3.19. It is possible to find the

local maximum of the potential in the presence of the laser by simply differentiating

the potential and equating to zero. Setting this peak potential equal to the value

of the bound energy potential gives threshold electric field value for over the barrier

ionization. At this intensity it is possible for the electron to effectively “leak” out of

the side of the potential. The intensity of the laser required to do this can be given

by [56],

Iapp = 4× 109

(
Uion
eV

)4

Z−2Wcm−2 (3.107)

A few values for relevant ion states are given in column 3 of Table3.1. It is clear that
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even a moderate laser intensity of 1014Wcm−2 can ionize an atom through barrier

suppression ionization. Ionization of inner shell electrons becomes more difficult and

for nitrogen can require laser intensities over 1 × 1019Wcm−2 to ionize the 6th and

7th electrons.

Further suppression of the electron binding potential further increases the ion-

ization probability. The physics behind the ionization probability can become quite

complex and involves solving the time-dependant Schrodinger equation, something

that is not suitable to do in numerical codes where there can be millions to billions

of electrons present.

Instead, we opt to use a simple ionization probability model as suggested by L.

Roso. In this model, the electron cannot be ionized until the laser reaches an intensity

that satisfies Eq.3.107. At this intensity, the probability to ionize the electron is still

0, however there is now a linear increase in probability to ionize the electron until

the laser reaches an electric field strength of 2Eapp, after which the probability of

ionization is 1. By randomly generating a number between zero and one, we can

estimate the ionization process using a Monte Carlo algorithm, which finds the time

at which the electron is injected according to the random number value.

The cumulative distribution function of this process is given by,

F (X) =

 0 X < 1

X − 1 1 ≤ X ≤ 2

1 X > 2

 (3.108)

where X = Elaser/Eapp. This is summarized in Fig.3.20 where the probability of

ionization is given as a function of laser electric field strength over the appearance

electric field strength.

The barrier suppression ionization model has been implemented into the Runge

Kutta MATLAB algorithm for providing more accurate results of electron injection

and accelerating from the beam. We have now generated a MATLAB code that is

capable of simulating the injection, radiation, and acceleration of electrons (or any

charged particle) in a generalized Laguerre-Gaussian mode on a single particle basis.

While the code is not sufficient to solve more complicated problems with plasmas that

involve the interaction of electrons within the laser field, the code is extremely useful

for studying the fundamental physics of angular momentum transfer, radiation, and

acceleration of electrons in high order laser modes.

97



Figure 3.20: Cumulative distribution function of the barrier suppression ionization

probability for an electron in a high intensity laser field.

3.7 Conclusions

In this chapter, we explored the already known electrodynamics of free electrons in

plane waves. This was then extended to free electron motion in LG modes using

a newly-derived paraxial equation based on the model of Erikson and Singh [38].

From this model, we were able to show that in addition to the energy gained by a

scattering electron from the ponderomotive force, an angular momentum was gained

with a direct scaling to the ponderomotive scattering.

The trapping of electrons for energy gain within the optical vortex was also inves-

tigated indicating that electrons may be optimally accelerated from a wide variety of

initial radii within the peak intensity ring of the donut.
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Chapter 4

Under-Dense Plasma Interactions

with Optical Vortices

In this Chapter, we begin to study the interaction of optical vortices with plasma. In

itself, the physics of laser-plasma interactions is difficult to study analytically at higher

intensities due to the nonlinear partial differential equations governing more than 1019

electrons, and thus often requires numerical simulations. In this case, particle in cell

(PIC) simulations are employed and the problems of propagation, self focussing and

wakefield acceleration of electrons are investigated for Laguerre-Gaussian modes. The

results are compared to some analytical scaling laws also.

While no publications have yet been made with the material in this Chapter, the

results of Laguerre-Gaussian self focussing in plasma, the scaling of electron energies

in laser wakefield accelerators and the subsequent radiation emission will be published

shortly after this thesis is published. The wakefield theory and simulations are used

to support the results of Chapter 6, while the inverse Faraday effect theory is used to

support the numerical simulations in Chapter 7.

4.1 Plasma Characteristics

We begin this chapter with a brief review of basic plasma parameters and how we

can use them to study the interactions of interest correctly and effectively. A plasma

is often defined as an ensemble of electrons and ions - typically charge neutral, that

exhibits a collective behaviour. While plasma’s can exist in a variety of conditions,

it is defined primarily by its temperature and density.
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The concept of temperature can be related to the average energy of a particle

in an ensemble. For simplicity, we will assume that our ensemble of electrons is

in thermodynamic equilibrium and the electron velocity can be described by the

Maxwell-Boltzmann distribution [29]. The distribution of electron velocities in 3D

can then be given by,

f(vx, vy, vz) = ne

(
me

2πkBT

)3/2

exp

[
−
me

(
v2
x + v2

y + v2
z

)
2kBT

]
(4.1)

where kB is the Boltzmann constant, and T is the electron temperature. The number

density ne is found via,

ne =

∫ ∞
−∞

f(v)dv (4.2)

The expectation value of an operator on an ensemble is given by [120],

〈A〉 =

∫
Af(v)dv∫
f(v)dv

(4.3)

The mean non-relativistic kinetic energy of the electron ensemble (in 3D) can then

be given by,

〈KE〉 =

∫
1/2me|v|2f(v)dv∫

f(v)dv
=

3

2
kBT (4.4)

We then can define the thermal velocity of a (1D) plasma as,

vth =

√
2kBT

me

(4.5)

Typical plasmas created in the laboratory in high intensity laser-plasma interactions

can have temperatures from a few eV to tens of keV required for inertial confinement

fusion. Here we note that 1eV ≈ 11600K. This corresponds to thermal electron

velocities on the order of 0.002c − 0.2c, indicating that the Maxwell-Boltzmann dis-

tribution is sufficient to describe the plasma without having to implement the more

complicated relativistic Maxwell-Jüttner distribution.

Given the temperature of the plasma and the ionization potential of the element

of interest Uion, it is possible to estimate the ratio of ions (ni) to the total number of
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neutral atoms (nn) in thermodynamic equilibrium via the Saha equation [29],

ni
nn

=
3× 1027

ni[m3]
(T [eV ])3/2exp

(
−Uion[eV ]

T [eV ]

)
(4.6)

We find that for the simple case of hydrogen at atmospheric pressure, the atoms are

almost entirely ionized with a temperature of roughly 3eV .

A second parameter that arises as a function of the electron temperature and

density is the Debye length given by [29],

λD =

(
ε0kBT

nee2

)1/2

(4.7)

The Debye length describes the sheath distance in a plasma. If a positive charge

was placed in a plasma, the electrons would arrange such to shield and mitigate

the distance this charge’s potential can be felt. The distance places an effective

scale length on the plasma which may or may not need to be resolved numerically

depending on the problem and the physics of interest. For instance, the Debye length

of a 1eV plasma at a density of 1 × 1019cm−3 - a typical density used in wakefield

acceleration experiments, is approximately 2.35nm. If the plasma was to be simulated

over a large region - on the order of 100’s of microns, the number of cells required

would be on the order of 100,000 which is certainly computational demanding. The

problem becomes more difficult if you are required to simulate in 3D. Increasing the

plasma temperature in the simulation to 100’s if not 1000’s of eV’s will increase the

Debye length and decrease the numerical load.

The Debye length becomes very small as the plasma approaches solid density.

For instance, a plasma of temperature 1eV and density 1 × 1022cm−3, we find a

Debye length of 0.074nm. This is beyond the resolution capability of many particle-

in-cell (PIC) codes which are the primary tool for studying underdense plasmas.

Modelling high density, solid target plasma’s can be studied via other techniques

such as modelling the plasma as a fluid, using a kinetic code modelling the evolving

spatially dependant distribution function in time, or using hybrid codes implementing

dynamic meshes and that can choose between the particle-in-cell solver or a fluid

solver.

The next parameter we must investigate is how the plasma responds to an electro-

magnetic wave of frequency ω0. If we consider the plasma as a ensemble of electrons
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that collectively move together in the field of a laser, we can think of each electron

using the simple mass on a spring oscillator model. If an electron is perturbed in

position by a time harmonic electric field we can write Newton’s second law for the

electron as [49],

me
d2x

dt2
+meΓ

dx

dt
= −eE0e

−iωt (4.8)

where we have added a damping term to the electron of strength Γ. As with any

driven ODE of this form, we assume a solution of the form x = x0e
−iωt. Plugging

this in, we find the displacement of the electron in the EM wave as,

x =
eE0e

−iωt

me(ω2 + iΓω)
(4.9)

The polarizability of the plasma is given by P = −neex, and when related to the

electric displacement, we can find the relative permittivity of the plasma,

D = εrε0E = ε0E + P (4.10)

We therefore find the relative permittivity of the plasma as,

εr(ω) = 1− nee
2

ε0me

1

ω2 + iΓω
(4.11)

If the plasma has zero damping, we then find the permittivity in a useful form,

ε0(ω) = 1−
ω2
p

ω2
(4.12)

where ωp is the plasma frequency,

ωp =

(
nee

2

ε0me

)1/2

(4.13)

The plasma frequency is one of the most important characteristics of a plasma

and is purely a function of the plasma density. Much like a capacitor, electromagnetic

waves with a frequency above the plasma frequency are able to penetrate and propa-

gate through the plasma, whereas electromagnetic waves with a frequency below the

plasma frequency are reflected strongly, and any wave penetrating into the plasma is

strongly damped.
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An interesting case arises when the laser frequency matches the plasma frequency.

In this case, it is possible to derive the critical density at which this occurs by setting

the laser frequency equal to the plasma frequency,

nc =
ω2ε0me

e2
(4.14)

Plasma densities below this critical density are considered to be underdense and allow

for the propagation of EM waves through the medium. Plasma densities above this

density are considered to be overdense and do not permit EM waves to propagate

through them. The physics of laser absorption, and particle acceleration is quite

different for both cases.

This thesis is focused on coupling of OAM to plasma, in particular in underdense

regimes. In the following sections, we will focus mostly on underdense interactions.

4.2 Underdense Propagation

In this section, we will briefly review some of the fundamental concepts of nonlin-

ear propagation of a beam in an underdense plasma, and its application to particle

acceleration, magnetic field generation and as a light source.

To first order, when an electromagnetic wave interacts with an underdense plasma,

the electrons collectively oscillate in the laser field driving electron plasma waves.

The waves can be large in amplitude far surpassing the electric field strengths of

conventional accelerators [136]. In the linear regime, the maximum electric field of

the electron plasma wave before wave breaking can be given by,

E0[V/m] = 96
√
ne[cm−3] (4.15)

For instance, a plasma with a density of roughly 1% critical density has an electron

density of 1 × 1019cm−3 which corresponds to an electric field of 3 × 1011V/m. If

the laser field is increased in strength to where a0 approaches 1, the plasma wave

can become nonlinear and forces like the ponderomotive force can become dominant.

In this case, the electrons initially oscillate in the laser electric field but are quickly

expelled from the high intensity regime by the ponderomotive force as we saw in the

previous chapter.

In the case of a Gaussian pulse, the electrons are swept out radially leaving a void
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(or bubble) in the wake of the laser pulse, until the electrons are able to eventually fill

the void some time later. The void of electrons behind the laser pulse in the nonlinear

regime can lead to a very high potential accelerator with acceleration gradients of

multiple TeV/m. These acceleration gradients have been the focus of much study [4,

40, 39], and show alot of promise in delivering a table-top scale particle accelerator.

While we do not expect the acceleration gradients of OAM driven plasmas to be

increased due to the decrease in laser intensity for the same pulse power, we do ex-

pect a change in the laser wakefield structure. In the previous chapter, we already

demonstrated that laser OAM can couple to electrons through ponderomotive-like

interactions, and as such we expect the OAM to couple to the plasma when the pon-

deromotive force becomes dominant. Diagnosing a nonlinear plasma interaction is not

trivial however as the interactions are extremely chaotic and noisy both in simulations

and in the laboratory. We therefore look for global changes in the interaction that

can possibly be measured in the lab and verified by particle in cell simulations. These

changes could be in the shape of the wakefield bubble, orbital motions of electrons

driving magnetic fields, and possible changes in the betatron radiation emitted from

the interaction.

4.3 Self-Focussing

From the previous section, we were able to derive the permittivity of the plasma given

by Eq.4.11. From optical theory, it is possible to the show that the complex index of

refraction of a material is given by η =
√
εr [49]. For the case where Γ = 0, we find

the non-relativistic plasma index as

η =

√
1−

ω2
p

ω2
(4.16)

As the plasma frequency is a function of electron density, this simple relationship

turns out to be quite formidable. If the electron density is perturbed by strong

electric fields and the ponderomotive force, as well as electrons being ionized into the

laser, the problem is complicated to solve in general and typically needs a numerical

method such as a PIC code, or a split-step Fourier transform code.

Employing a simple model by only including the effects of density modification
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a). b). 

Figure 4.1: Plasma index of refraction for a Gaussian (blue) and an ` = 1 Laguerre
Gaussian (red) for ωp/ω = 0.1. Tile a), a0 = 1. Tile b), a0 = 10.

due to the presence of a laser, we can write the refractive index as approximately [56],

η(r) ≈ 1−
ω2
p

ω2

ne(r)

n0γ(r)
(4.17)

where γ ≈
√

1 + a(r)2 and n0 is the initial unperturbed electron density. Much like

a variable index lens, the plasma index response can be used to focus (or defocus)

the beam. The index of refraction for both a Gaussian (blue) and an ` = 1 LG beam

(red) are plotted in Fig. 4.1 assuming ne(r) is constant and assuming the beams

contain the same energy. Tile a) gives the result for the slightly relativistic a0 = 1

case whereas tile b) gives the very relativistic a0 = 10 case. It is clear to see there is

a vast difference between the two intensities where the a0 = 1 case indicates a similar

refractive index to the intensity shape of the laser, where as the a0 = 10 case gives a

highly modified refractive index profile.

The slope of the index as a function of radius indicates where the focussing and

defocussing properties of the plasma will predominantly occur. If dη(r)/dr < 0 then

the beam will focus, and if dη(r)/dr > 0 then the beam will defocus. From Fig. 4.2

tile a), it is clear to see that the Gaussian (blue) beam always has a focussing plasma

profile, whereas the Laguerre-Gaussian beam (red) alternates between a focussing

and defocussing index gradient. What this indicates is that for relativistic intensities
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(a0 ≥ 1), we expect the Gaussian beam to self-focus in the plasma, whereas the LG

case will instead “pinch” into a tighter ring.

The LG beam also has an odd feature that the slope of the intensity is not sym-

metric about the peak intensity radius, that is, the slope of the intensity inside the

peak intensity radius is different to that outside of the peak intensity. This contrasts

the Gaussian beam which clearly has a symmetric intensity profile about its peak

intensity at r = 0. From this, we could expect that the LG beam will have much

more dynamic and complex self focussing properties than the Gaussian case.

a). b). 

Figure 4.2: Rate of change of plasma index of refraction for a Gaussian (blue) and

an ` = 1 Laguerre Gaussian (red) for ωp/ω = 0.1. Tile a), a0 = 1. Tile b), a0 = 10.

In vacuum, according to to Fig. 2.3, the laser will focus to a finite beam waist,

and then diffract in a cone angle proportional to the f-number of the focussing optic

regardless of the laser mode. We can write the general diffraction half angle as,

θD =
2

kw0

(4.18)

In the case of the Gaussian beam, it is possible to maintain a balance between the

vacuum diffraction of the laser, and the relativistic self focussing in the plasma. By

matching the focussing angle of the plasma to the diffraction angle of the beam in

the plasma, the minimum power of a Gaussian laser to balance diffraction with self
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focussing is found to be [39],

Pc[GW ] = 17.4

(
ω

ωp

)2

= 17.4
nc
ne

(4.19)

For a standard case of ω/ωp = 10, we find the critical power for self focussing to be

roughly 1.74TW. The laser energy for an ultrashort laser pulse to obtain this turns

out to be quite low (60mJ for 30fs) indicating this can be done on smaller scale lasers.

For large multi-terawatt lasers, their power is far beyond this level (100TW+). When

we consider a p = 0 LG beam, the critical power for self focussing is modified and

given by the following [133, 83],

Pc`[GW ] = 17.4
nc
ne

4|`|
|`|!(|`|+ 1)!

(2|`|)!
(4.20)

For an LG beam of charge ` = ±1, we find the critical power is 4 times higher than

the Gaussian case, while the ` = ±2 is 8 times higher. This is relative agreement with

our diffraction model from Chapter 2 which shows that for the same laser power, the

intensity of the LG ` = 1 is approximately 4 times less than the Gaussian case and 8

times less for the ` = 2 case.

This model of critical power assumes no modification to the plasma density as

a result of the presence of the laser pulse and its inclusion is difficult. In the low

intensity limit, we can estimate the refractive index to be [39],

η(r) ≈ 1−
ω2
p0

2ω2

(
1− a2

2
+

∆np
n0

+
δn

n0

)
(4.21)

where δn is the plasma wave density response, and ∆n is the response due to an

initial plasma density profile before interaction.

To explore the self focussing of OAM beams at relativistic intensities, two 3D

simulations have been run using the particle in cell code EPOCH [8]. The details

of the input parameters used are given in the appendix. However we will state the

relevant parameters in Table4.1.
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Table 4.1: Simulation parameters used to compare self-focussing between Gaussian

and Laguerre Gaussian beams in underdense plasma.

Parameter Gaussian Drive Laguerre Gaussian Drive

Temporal FWHM 100fs 100fs

Peak Intensity 2.5× 1019Wcm−2 2.5× 1019Wcm−2

a0 4.25 4.25

w0 8µm 9.6µm

` 0 1

Peak Power [TW ] 25 97

U [J ] 2.7 9.0

λ[nm] 1000 1000

n0 3× 1019cm−3 3× 1019cm−3

Pc[TW ] 0.58 2.3

Polarization Linear (ŷ) Linear (ŷ)

A pre-ionized helium plasma was initialized on a gird of 150µm by 40µm by 40µm

with 4000 × 500 × 500 cells respectively. This gave the simulation a grid resolution

of 37.5nm in the propagation (x̂) direction, and 80nm per cell in the transverse (ŷ, ẑ)

directions. As the lasers are propagating at the group velocity in the plasma at

roughly c/η, we employ a tracking window to follow the evolution of the laser pulse

until 850fs after which the window stops and we study the evolution of the residual

magnetic fields in the plasma after the laser pulse leaves. This will be studied in more

detail in Chapter 7.

The electron density in the helium plasma was initialized to ramp up to the

maximal value using a super-Gaussian profile of width 600µm and super-Gaussian

parameter n = 10,

ne(x) = ne0exp

[
−
(
x− 350µm

300µm

)10
]

(4.22)

This was chosen to mimic the density profile given by a gas jet in the laboratory as

outlined in Chapter 6. Using this profile, the laser is initially launched into vacuum

from the x = 0 boundary from which the plasma density ramps up to peak value

over roughly 100µm. This also enables us to mimic how the laser, and accelerated

electrons are ejected on the plasma density down ramp. We have chosen for this

study to use an electron density of 3× 1019cm−3 ≈ 0.03nc. This gives a linear plasma
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wavelength of λp ≈ 6µm or roughly 20.33fs ∗ c. This is five times shorter than the

100fs of the laser pulse we are injecting and so it should be possible to observe the

effects of self focussing.

To resolve the Debye length in the simulation, we initialize the electrons with a

temperature of 3×107K ≈ 2.6keV . This results in a Debye length of 120nm, which is

larger than our grid resolution. While it may not be important to resolve the Debye

length now, it will be necessary later when we study magnetic field generation in

plasma. This electron temperature is hotter than the bulk plasma temperature we

may generate in the lab, but the electrons that are accelerated in the laser field will

surpass this temperature as they are accelerated to relativistic speeds with energies

of over 511keV . The helium ions are assumed frozen (0keV ) as their inertia is much

larger than the electrons. On the time scale of an ultrafast laser, this assumption of

“immobile” ions is often made.

Fig. 4.3 shows the initial launched Gaussian laser shortly after it starts to interact

with the plasma at time 267fs. The peak electric field in the polarization direction is

found to be roughly 1.6 × 1013V/m which is equivalent to 3.4 × 1019Wcm−2. After

propagating through the plasma for another 367fs, we find the peak intensity to

increase due to the relativistic self focussing to a maximal value of roughly 5.8 ×
1013V/m or 4.5 × 1020Wcm−2 as shown in Fig. 4.4. We also find the beam waist to

be much smaller at roughly 3− 4µm.
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Figure 4.3: Initial electric field slice of a linearly polarized Gaussian laser pulse

launched in a 3D PIC simulation. The time stamp for this frame is 267fs after

simulation start.

Figure 4.4: Relativistic self focussing of a linearly polarized Gaussian laser pulse

launched in a 3D PIC simulation. The time stamp for this frame is 634fs.

Theoretically, under the self-guiding condition, we expect the peak intensity of

the laser to scale as [96],

a0 ≈ 2

(
P

Pc

)1/3

(4.23)
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Given the input parameters of the simulation, we find Pc ≈ 580GW . The correspond-

ing peak power of a laser can be computed via [94],

P ≈ I0πw
2
0

2
(4.24)

For the Gaussian case, the peak power of the laser is found to be roughly 25TW .

According to the Eq.4.23, we find a0 ≈ 7 which corresponds to a peak intensity of

6.8 × 1019Wcm−2. While this is significantly lower than the result we observed, we

note that the result in Fig.4.4 is the peak intensity reached during self focussing and

is not necessarily the steady state result that Eq.4.23 is based on.

Fig.4.5 shows the same time frame as Fig.4.3 (267fs), however this time we have

launched a Laguerre-Gaussian ` = 1 beam. As we are taking a slice through a 3D

simulation, we see the cross section of the donut mode, and the corresponding zero on

axis. The peak electric field in this case is 1.6×1013V/m, similar to the Gaussian case.

This is because they were launched with the same intensity, but the LG mode has

roughly 4 times the total power in order to achieve this same intensity. Thus the ratio

of power to the critical power for the ` = 1 mode given by Eq.4.20 is approximately

the same as the Gaussian case.

Letting the beam propagate to the same time frame (634fs) as in Fig.4.4, we find

that as was expected, the LG mode “pinches” as shown in Fig.4.6. The peak intensity

the beam reaches is however much less than the Gaussian case with a peak electric

field of 2.9 × 1013V/m ≈ 1.1 × 1020Wcm−2. The reason for this reduction in peak

intensity is that the intensity is distributed around the ring. In Gaussian case, the

energy is all flowing towards the centre of the beam, from all directions converging

on the central axis. In the LG case, the energy is essentially flowing inward, but to a

different point in space around the ring. It is possible to examine Fig.4.6 to see that

while the LG beam ring pinched tighter, the peak intensity radius of the ring does

not appear to change in average radius by very much.

111



Figure 4.5: Initial electric field slice of a linearly polarized Laguerre Gaussian ` = 1

laser pulse launched in a 3D PIC simulation. The time stamp for this frame is 267fs

after simulation start.

Figure 4.6: Relativistic self pinching of a linearly polarized Laguerre Gaussian ` = 1

laser pulse launched in a 3D PIC simulation. The time stamp for this frame is 634fs.

Using the modified self-focussing power for the LG mode in Eq.4.24, we find

Pc` = 2.32TW for the ` = 1 mode. The power contained within the LG mode is

found to be P ≈ 97TW giving a predicted peak intensity from Eq.4.24 of roughly
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a0 ≈ 7. This corresponds to a peak intensity of 6.8 × 1019Wcm−2 which is still an

under-estimate of our result, but is closer.

Letting the beam propagate even further, we find that this ring collapses inwards

with a decreasing average radius. We call this second mode the “ring collapse”. This

is shown at time 934fs in Fig.4.7 where the electric field has further increased slightly

to roughly 3.1 × 1013V/m ≈ 1.3 × 1020Wcm−2. This is roughly one quarter of the

peak intensity of the Gaussian case. The increase in electric field is moderated by the

ring spreading over a larger range of radii. Further propagation sees filamentation

and break up of the beam and phase. This late time breakup, in part, may be due

to boundary effects propagating into the centre of the beam.

Figure 4.7: Relativistic ring collapse of a linearly polarized Laguerre Gaussian ` = 1

laser pulse launched in a 3D PIC simulation. The time stamp for this frame is 934fs.

4.3.1 Plasma Channels

An interesting concept introduced to help with guiding of Gaussian beams and to

further the interaction distance is through the use of a preformed plasma channel.

Theoretically, this is just a plasma with a transverse parabolic plasma density profile

with the lower density on axis and higher density radially outward acting as a positive

lens. This corresponds to the ∆n term in Eq.4.21. A parabolic plasma channel then

takes the form,
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n(r) = n0 + ∆n
r2

w2
0

(4.25)

where in order to have stable propagation with beam radius w0, ∆n can be found to

have an optimal value given by [39],

∆n =
1

πrew2
0

(4.26)

where re is the classical electron radius as described in Eq.3.87. Using this chan-

nel density profile, the Gaussian beam can propagate over many Rayleigh lengths.

By extending the interaction length, the acceleration of electrons through wakefield

acceleration can be enhanced reaching energies as high as 8 GeV [57].

Experimentally a plasma channel like this can be introduced using a pre-pulse from

the laser (or a different laser) to pre-ionize the plasma and creating a cylindrically

expanding blast wave with a density depression along the laser axis. Alternatively

one could consider a discharge tube with an intense electrical discharge through gas

as is done in some laboratories today [57].

If we consider the plasma channel required to extend the propagation for the

Laguerre-Gaussian mode, we find that a parabolic plasma channel may not be the

optimal choice in the nonlinear regime. While we don’t pursue this problem in this

thesis, we hypothesize that the solution could resemble a cylindrical channel with

high density on axis, low density where the peak of the LG beam will be, and a high

density outside of this region. Making the assumption that the optimal Gaussian

solution would work for the LG beam due to its independence of laser intensity, we

simply write the plasma channel density profile as,

n(r, `) = n0 + ∆n

(
r − w0

√
|`|
2

)2

w2
0

(4.27)

where w0

√
|`|/2 is the location of the peak intensity of a p = 0 Laguerre-Gaussian

mode. These plasma channel profiles are plotted in Fig.4.8. This plasma density pro-

file for the LG beam could be suitable for maintaining the “ring pinch” self focussing

mode and could suppress the collapse of the self focussing.

Generating such a plasma density profile in the laboratory could be done by first

passing a lower powered LG mode through the plasma, similar to what is done in the
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Figure 4.8: Plasma density profiles suitable for guiding a Gaussian (blue), and a
Laguerre Gaussian |`| = 1 beam (red).

Gaussian case. The solution is however hypothetical and needs to be studied quite

extensively using numerical solutions to the nonlinear Schrodinger equation. Creating

such an optimal plasma channel profile for the LG beams experimentally could be

challenging.

One issue as already mentioned is that the LG intensity profile is not symmetric

about the peak intensity point in the beam, that is, the slope of the intensity on the

outside radius is not the same as that of the inner radius. This is further complicated

when the beam self-pinches and collapses. We do not pursue plasma channels further

in this thesis, and instead indicate a route for further study as a method for extending

the effects we are about to describe.

4.4 Wakefield Acceleration

Probably one of the must successful applications of underdense laser plasma interac-

tions is the wakefield accelerator first described by Tajima and Dawson in 1979 [153].

In this scheme, a (typically) short laser pulse of pulse duration cτ ≈ λp interacts

with an underdense plasma driving plasma waves that have a phase velocity close

to c. Electrons can be trapped (or injected) into these plasma waves accelerating to

relativistic energies. If the laser is low intensity, it excites sinusoidal plasma waves
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propagating along the laser axis given by,

δne = ne sin(kpz − ωpt) (4.28)

from which we use Poisson’s equation to find an axial electric field,

E(z, t) =
nee

kpε0
cos(kpz − ωpt)ẑ (4.29)

where kp is the plasma wavenumber, kp = 2π/λp and ne is the electron density. The

strength of this electric field in the linear regime is limited to E0 as given in Eq.4.15,

but can be surpassed in the nonlinear regime.

We do not intend to review the detailed theoretical analysis behind this interaction

and refer the reader to some of the many works on the subject [56, 97, 39]. Instead

we aim to give a review of some of the scaling laws, and the associated variations in

these laws for when transitioning to higher order laser modes.

In the linear 3D regime, the plasma wakefield is often derived from the cold fluid

equations; the Poisson equation,

∇ ·E = e
δne
ε0

(4.30)

the continuity equation,
∂ne
∂t

+∇ · (neu) = 0 (4.31)

and the momentum equation,

mene

[
∂u

∂t
+ (u · ∇)u

]
= −ene(E + u×B)−∇ · P̄ (4.32)

where u is the electron fluid velocity, and P̄ is the plasma pressure tensor.

From these equations, it is possible to derive an initially uniform plasma wave

driven by a low intensity laser (a2 � 1) as [39],(
∂2

∂t2
+ ω2

p

)
δne
n0

= c2∇2

(
a2

2

)
(4.33)

and, (
∂2

∂t2
+ ω2

p

)
φ = ω2

p

a2

2
(4.34)
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where φ is the electrostatic wake potential and δne/n0 = (ne − n0)/n0. For small

density perturbations |δne/n0| � 1, we find the electron density perturbation as,

δne
n0

=
c2

ωp

∫ t

0

sin (ωp(t− t′))∇2

(
a2(r, t′)

2

)
dt′ (4.35)

and the axial electric field as,

E

E0

= −c
∫ t

0

sin (ωp(t− t′))∇
(
a2(r, t′)

2

)
dt′ (4.36)

Here, E0 represents the cold non-relativistic wave-breaking field given by E0 =

mecωp/e identical to the result given in Eq.4.15. These solutions are only valid in the

linear regime where E � E0. Upon first glance, it is clear that the plasma density

perturbation and the plasma electric field are functions of a2 which is proportional

to the laser intensity. Therefore, to first order, we do not expect there to be any

immediate contribution from the helical phase of an OAM beam driving a wake-

field accelerator. However, we do expect that the electron density perturbation and

accelerating electric field will have a different shape.

Solutions to Eq’s 4.33 and 4.34 indicate that the optimal pulse length for efficiently

generating wakefields occurs when the pulse duration matches the plasma wavelength,

cτ = λp [39]. Due to the requirement that self-focussing occurs when cτ > λp, pulse

duration’s are usually chosen such that self focussing can occur, but are sufficiently

close to the plasma wavelength for efficient wakefield generation.

In addition to the axial electric field generated in Eq.4.36, we find that for fields

with a Gaussian transverse spatial profile there are transverse fields generated in the

radial and azimuthal directions, Er and Bθ. These transverse fields are related to the

axial electric field by the Panofsky-Wenzel theorem [79],

∂Ez
∂r

=
∂(Er − cBθ)

∂(z − ct)
(4.37)

Therefore for a particle accelerating along the plasma axial electric field, it will expe-

rience a radial force proportional to Wr = q(Er−cBθ). This force can be be focussing,

or defocussing and can be tailored based on the mode of the laser. For instance, it was

shown that for a wakefield driven by a Laguerre-Gaussian OAM mode, a focussing

force suitable for guiding positrons can be created [164]. Typically what is found for
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electrons is that the force will be radially towards the axis where the laser intensity

is maximal. In the case of a Gaussian laser, this is the laser axis and electrons ac-

celerating in the laser wakefield will oscillate about the laser axis as a result of the

transverse force. In the Laguerre-Gaussian case, the peak laser intensity is off axis

such that the electrons still oscillate, but the oscillation takes place all around the

peak intensity ring [177, 13].

Until this point, we have assumed an a0 � 1 such that the plasma waves driven by

the laser are linear. If the laser intensity becomes relativistic (a0 ≥ 1), then the plasma

waves become nonlinear. As one might expect, the waves in the nonlinear regime are

strongly dependant on the laser pulse strength and pulse duration of which many

regimes have been identified [39]. For this thesis, we are concerned mostly with single

pulse excitation with laser pulses on the order of the plasma wavelength (≈ 30fs),

and as such we are mostly concerned with laser wakefield acceleration, wave-breaking,

and the blow-out regime. We do not consider plasma wakefield acceleration (wakefield

driven by particles as opposed to light), or self-modulated wakefield’s where the laser

pulse is much longer than the plasma wavelength, beat-wave accelerators driven by

two overlapped pulse of frequency ω0 − ω1 = ωp, or colliding pulses [107].

4.4.1 Blow-Out Regime

Of interest to this thesis is the intensity range of 1 < a0 < 5 which represents

intensities which are obtainable on many laser systems worldwide. In this intensity

range, the linear sinusoidal wakefield steepens and the period lengthens by a factor of

[96] λNp ≈
√
a0λp, such that the plasma wave can break - much like a wave breaking

on the ocean shore. In this case, the electric field of the plasma wave surpasses that

of the cold wavebreaking limit E0 and can be given through a 1D relativistic analysis

as [39],
EWB

E0

=
a2

0/2√
1 + a2

0/2
(4.38)

Corrections for the 3D relativistic amplitude can be found to be approximately equal

to Emax ≈
√
a0E0 [96].

In addition to the wave steepening, the laser ponderomotive force can become

strong enough to completely expel electrons from the high intensity region while the

heavy immobile ions remain in place. This expulsion creates a void of electrons in

and behind the laser pulse resulting in a charge imbalance. The radius of this void
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or “bubble” can be quite complex analytically depending on the plasma density and

laser intensity, however it is often assumed in the intensity range we are working that

the radius of the bubble can be approximated by [164, 96],

kprB ≈ 2
√
a0 (4.39)

In the case of our example plasma of density 1 × 1019cm−3 and a laser intensity of

2.5×1019Wcm−2, we find a bubble radius for a Gaussian drive beam of roughly 6µm.

Using the same plasma density profile as in the self-focussing section and as shown

in Fig.4.9, two 3D PIC simulations were run for a Gaussian beam and a Laguerre

Gaussian beam of the same intensity and same pulse duration. The simulation box

was reduced in longitudinal size to 100µm giving a slightly higher grid resolution in

x̂, but was widened in the transverse directions to minimize the effects of boundary

conditions on the simulation.

Figure 4.9: Electron density distribution used in numerical simulations of wakefield

acceleration. The distribution is described by a super Gaussian shape of width 300µm

and super Gaussian parameter 10. The red dotted line indicates the detection screen

for the electrons and photons, while the solid red triangle represents the laser and its

focal plane located at x = 90µm.

These two runs will be explored over the next few pages to identify major differ-

ences between the Gaussian and Laguerre Gaussian driven wakefields. The simulation

parameters have been listed in Table. 4.2.
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Table 4.2: Simulation parameters used to compare wakefields between Gaussian and

Laguerre Gaussian beams.

Parameter Gaussian Drive Laguerre Gaussian Drive

Temporal FWHM 30fs 30fs

Peak Intensity 2.5× 1019Wcm−2 2.5× 1019Wcm−2

a0 3.4 3.4

w0 8µm 9.6µm

` 0 1

Peak Power [TW ] 25 97

U [J ] 0.64 2.36

λ[nm] 800 800

n0 1× 1019cm−3 1× 1019cm−3

Pc[TW ] 2.7 10.9

Polarization Linear (ŷ) Linear (ŷ)

Fig.4.10 a) gives the electron density perturbed by the Gaussian pulse after the

laser had propagated in the plasma for roughly 1ps. From the figure it is clear to

see the bubble behind the laser pulse, with many bubbles following behind that as

the plasma wave continues to oscillate after the laser has passed. The first bubble

radius appears to agree quite well with the predicted 6µm. Tile b) shows the time

averaged axial electric field that has been averaged over each 26.7fs output dump.

The peak strength of accelerating field is normalized to the cold-wavebreaking limit E0

and is found to be roughly 2.6 which is in reasonable agreement with the theoretical

value of
√
a0E0 ≈ 1.8E0. Using Eq.4.38, we actually find a better agreement where

E/E0 = 2.2.

If instead we consider the case of the Laguerre-Gaussian pulse where p = 0, we

find that the bubble is modified to a donut as expected. As we did with the analysis

of the plasma channel, we take a 2D slice through the LG mode and find two lobes

that are symmetric about the laser axis shown in Fig.4.5. To first order, we can say

that each of the lobes in 2D can be approximated by a Gaussian shape and as such

each will create a bubble of radius rB ≈ 2
√
a0/kp about the peak intensity axis radius

located at rmax = wLG
√
|`|/2. We can therefore write to first order the inner and
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a). 

b). 

Figure 4.10: Laser wakefield acceleration with a 30fs 2.5 × 1019Wcm−2 Gaussian
pulse with beam waist 8µm in 1× 1019cm−3 plasma. Tile a) shows the a 2D slice of
the electron density normalized to the initial electron density of the plasma at time
t = 1ps. Tile b) shows the a 2D slice of the axial electric field normalized to the cold
wave-breaking field E0 at time t = 1ps.
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outer approximate bubble radii as,

rB` ≈ wLG

√
|`|
2
±

2
√
a0

kp
(4.40)

where the + solution gives the outer radius of the bubble, while the − solution gives

the bubble inner radius. In 3D this leads to a “donut bubble” from which electrons

are accelerated in a ring behind the laser pulse [13]. The cross section of this donut

bubble is given in Fig.4.11 a) where the electron density is normalized to the initial

electron density of n0 = 1 × 1019cm−3. Using our model of the bubble radius, we

find the predicted outer and inner bubble radii are approximately 13µm and 1µm

respectively. According to Fig.4.11, we find good agreement with the outer bubble

radius, but some slight discrepancy with the bubble inner radius. This could be a

result of excess charge build up at the centre of the donut.

Unlike the Gaussian case, we find that the trailing donut bubbles are unstable, and

tend to collapse to a single bubble on axis after 4 or 5 plasma periods. This instability

has been found to be dependant on both the laser intensity and density from numerical

simulations. For lower intensity lasers, where the plasma waves driven become more

linear, we find the donut bubbles to be much more stable and persist for the length of

the simulation box. In addition we find the interesting result in this highly nonlinear

regime where there is a charge build up on the laser axis at the centre of the donut

bubble in Fig.4.11 a) at x ≈ 220µm. Unlike the Gaussian case, the cross-section of

the donut bubble is asymmetric resulting in an asymmetric around its centre point

transverse current on the rear of the bubble. This net transverse current is moving

radially inward and collects on the laser axis forming a small electron bunch moving

with the group velocity of the laser. Much like plasma-wakefield acceleration, these

electrons are able to drive wakefields on the laser axis and if strong enough, these

plasma wakefields interact with the laser wakefield donut bubble. This eventually

destroys the donut ring bubble and we are left with the single bubble on axis as

previously described.

While this mechanism has not been theoretically pursued in this thesis, we be-

lieve that it exists and intend to follow up with this transition from laser to plasma

wakefield in further studies.

Tile b) of Fig.4.11 shows the time-averaged axial accelerating electric field gen-

erated in the wake of the LG mode. The time averaging takes place over 26.7fs
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a). 

b). 

Figure 4.11: Laser wakefield acceleration with a 30fs 2.5 × 1019Wcm−2 Laguerre
Gaussian ` = 1 pulse with beam waist 9.6µm in 1× 1019cm−3 plasma. Tile a) shows
the a 2D slice of the electron density normalized to the initial electron density of
the plasma at time t = 1ps. Tile b) shows the 2D slice of the axial electric field
normalized to the cold wave-breaking field E0 at time t = 1ps.
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between each output dump. Here we see the distinct donut accelerating field fol-

lowing the laser pulse with a peak strength of roughly 1.8E0. Given the scaling law

of Emax ≈
√
a0E0, we predict a peak accelerating field of approximately 1.8E0 in

good agreement with the numerical simulation. Following the first bubble are plasma

waves generated from the initial density perturbation. As previously described, the

laser driven donut wakefield plasma is not maintained in this regime with the donut

bubble collapsing to the plasma-wakefield bubble on axis. This is clearly seen in the

last bubble of the axial accelerating field in tile b).

An interesting difference when using an LG mode to drive a wakefield is the

focussing force as described in Eq.4.37. We re-write this equation as,

Fr
q

= Er − cBθ (4.41)

where q is the charge of the particle. This highlights that the force is simply the

radial component of the Lorentz force and is charge-sign dependant. The force will

be focussing for positive charges when the force is negative, and de-focussing when the

force is positive. Plotting the force normalized to the charge of the particle is given

in Fig.4.12. Tile a) shows the focussing force for a Gaussian drive laser, where we can

see the force is zero on axis, and positive towards the inside edges of the bubble. For

an electron, this force is focussing inwards causing the electron to oscillate about the

laser axis with an oscillation frequency of [177],

ωβ =
ωp√
2γ

(4.42)

In the case of the Laguerre-Gaussian drive beam as seen in Fig.4.12, we find a

similar result, but now the centre of focussing is off axis. As a result, we find that

the electrons not only oscillate about the high intensity radius, but they are free to

spiral around the donut bubble. If the radius of the wakefield bubble is set to match

that of the peak intensity radius, such that 2
√
a0/kp = wLG

√
|`|/2 we find that there

is no longer a force-null on the axis, and positive particles are strongly focused there

[164]. This mechanism has been proposed as a method to focus and collimate positron

particles [164].
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a). 

b). 

Figure 4.12: Radial forces inside the wakefield accelerator normalized to the charge
of the particle. a). Radial forces found in a wakefield driven by a 30fs Gaussian laser
with a0 = 3.4, and w0 = 8µm. b). Radial forces found in a wakefield driven by a 30fs
Laguerre-Gaussian laser with a0 = 3.4, and w0 = 9.6µm.
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4.4.2 Electron Injection and Ejection

For an electron to take advantage of these large amplitude nonlinear waves, it must be

first injected into this void through some mechanism. As can be seen from Fig.4.10

and 4.11 the electrons tend to bunch up on the rear side of the bubble. If the

electrons in this bunch have sufficient forward momentum, they are able to catch up

with the wake and self-inject. To enable this, the bubble radius needs to be sufficiently

large such that the electrons on the sheath of the bubble gain enough longitudinal

momentum to move forward with a speed close to c to match the velocity of the

tail of the bubble. This longitudinal momentum is obtained by the interaction of

the electrons with the electric and magnetic fields on the sheath of the bubble. The

crossing of the electrons on the rear of the bubble gives rise to a narrow sheath that

can inject electrons into the rear of the bubble.

For this mechanism to work, the laser needs to have an a0 of between 3 and

4 to reach the threshold required for self injection [96, 160, 53]. Plugging this into

Eq.4.39 we find that the minimum bubble radius required for self injection is therefore

kprB ≈ 3− 4.

The self injection of electrons into Laguerre-Gaussian modes has been studied

quite extensively [107, 177, 13, 47, 106] and can become quite complicated. One

reason for this is that the donut bubble cross section is asymmetric as can be seen

in Fig.4.11. This asymmetry can lead to poor electron self injection as the electrons

tend to drift towards the laser axis. As we will soon see, self injection in a Laguerre

Gaussian driven wakefield is not efficient, however other electron injection methods

are still suitable.

The second electron injection mechanism of interest to this thesis is that of ion-

ization injection [103, 119]. In this mechanism, electrons are ionized close to the peak

intensity of the laser via barrier suppression ionization as discussed in Chapter 3.

Initially the front end of the laser pulse with lower intensity ionizes and sweeps the

majority of the outer shell electrons out of the way of the laser pulse before they are

able to interact with the higher intensity part. However, some inner shell (k-shell)

electrons could remain non-ionized depending on the laser intensity. For instance,

the inner shell nitrogen electrons (6+ and 7+) do not ionize until the laser surpasses

1× 1019Wcm−2 according to Table 3.1.

If the peak laser intensity is carefully selected, and a suitable molecule is injected

into the bulk ionizable material, then electrons can be injected into the laser wakefield
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with intensity thresholds as low as a0 = 1.6 [119, 103]. In a typical wakefield experi-

ment, a background gas of helium is often used due to its low ionization appearance

intensities of ≈ 1−10×1015Wcm−2. A second gas such as nitrogen is then introduced

in small quantity, often on the order of 1% of the mixture to supply the wakefield

with ionizable electrons close to the peak intensity of the laser.

As these electrons are born within the high intensity laser potential region, they

are also accelerated with a large ponderomotive force and can be ejected backwards

into the void of the bubble. They are born however with essentially zero initial energy

through the barrier suppression mechanism, but as they slip back through the laser

into the bubble, they feel the longitudinal accelerating gradient of the bubble. They

can then be efficiently accelerated in the bubble to match the group velocity of the

laser, and eventually surpass it.

While experimentally it is not possible to determine the source of the electrons,

whether it is ionization injection or self injection, it is possible numerically. As before,

we use a super-Gaussian electron distribution to accurately represent what is used in

the experiment, but now we will also introduce a detection screen as shown in Fig.4.9

indicated by the red dotted line after the bulk plasma. In this figure, the electron

density (blue) has been normalized to the peak density value n0 of 1× 1019Wcm−2.

The plasma in the simulation is composed of a mixture of helium and nitrogen.

The helium has been pre-ionized to reduce computational load, while the nitrogen

has been pre-ionized to the fourth electron only. The inner 3 electrons are still bound

to the nucleus and must be ionized in the simulation to be injected into the wakefield.

For these simulations, we use the default ADK ionization routine in the EPOCH code

[7, 8].

The detection screen records the momentum and position of each electron that

strikes it allowing us to estimate the energy spectrum of the electron beam, as well

as the beam divergence as a function of energy and the ejected angular momentum

of the electrons. Experimentally, we cannot place a detector this close to the laser-

plasma interaction as it would be destroyed. Instead any electron detectors are placed

sufficiently far away such that the laser diverges to a lower fluence and does not

destroy them. To first order, we can assume the electrons are ballistic and take the

position and momentum of each electron from the detection plane in the simulation

and propagate it to a second screen 10’s of centimeters away as is in the physical

experiment.
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Fig.4.13 a) shows the ejected energy of electrons from a wakefield acceleration

driven by the Gaussian pulse used in the previous section. The bin widths were taken

to be dE = 1MeV . The electrons that are self injected are given in blue, while the

ionized electrons are shown in red. We see that both the ionized and self-injected

electrons are accelerated to roughly the same energy of 450MeV . We also note that

the spectrum is quite broad and not mono-energetic as some wakefield schemes can

be [161, 128, 98, 54, 43]. One of the reasons for this is the restriction in propagation

distance in the simulation to < 1mm for stability and numerical reasons.

Tile b) of Fig.4.13 gives the electron spectra for a wakefield driven with the

Laguerre-Gaussian pulse. Here we see a clear difference in the cut-off electron en-

ergy when comparing the electrons that are self injected to those that are injected via

ionization injection. This is in agreement with our previous conjecture that there is

poor self injection in the Laguerre-Gaussian case due to the bubble asymmetry. We

find that the peak energy of the self injected electrons is roughly half of that from

the ionized electrons which are peaked at roughly 300MeV .

In addition to the energy spectrum of the electrons, of importance is the cone

angle of the ejected electron beam. A highly divergent beam would not be of use if

it was highly chromatic as any attempt to refocus the electron beam would result in

a large electron spot in the image plane. Fortunately, the cone angle of the electrons

emitted from the wakefield accelerator is small and often refocusing is not required.

Experimentally, the values of the divergence angles are often found between 1 −
10mrad [98, 43, 54]. The divergence of the electron beam can be complicated to

estimate analytically and is often determined by numerical simulations.
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a). 

b). 

Figure 4.13: Electron spectra as detected on the detector plane. The electrons are
separated into each source; the self injected electrons in blue, and the ionization
injection electrons in red. Tile a) shows the results when driven by a 2.5×1019Wcm−2

Gaussian laser pulse. Tile b) shows the results when driven by an ` = 1, 2.5 ×
1019Wcm−2 Laguerre Gaussian laser pulse.

129



a). b). 

Figure 4.14: Electron spatial distributions on the near-field detector (red dotted line

in Fig.4.9). The electrons are colour coded to their ejection energy according to the

colourbar. a) Electron spatial distribution ejected from a Gaussian driven wakefield.

b) Electron spatial distribution ejected from an ` = 1 Laguerre Gaussian driven

wakefield.

We begin by plotting the electron spatial distribution in Fig.4.14 in the near-

field (the detector placed immediately after the plasma). Tile a) gives the near-field

electron distribution when driven by the Gaussian beam, and colour coded to each

electron ejection energy, while tile b) shows the near-field spatial distribution driven

by the Laguerre-Gaussian beam. The difference between the two is quite clear with

the electron ring generated in the Laguerre-Gaussian case. It is also clear to see

the effects of the boundary conditions on the low energy electrons at larger radii

producing the hard straight edges observed in Fig.4.14 b).

Taking each electron in Fig.4.14 and plotting the histogram of their divergence

angles enables us to estimate the far-field spot size. Fig.4.15 shows the result for

the Gaussian driven case where the self injected electrons are plotted in blue, while

the ionization injection electrons are plotted in red. We find that the self injected

electrons have a more collimated divergence than the ionization injection electrons.

In the case of the self injected electrons, we find a peak half angle divergence of

approximately 5mrad whereas the self injected electrons have a half angle divergence

or approximately 10mrad. Both values are in agreement with the observed values

mentioned in the references above.
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Figure 4.15: Electron divergences as found on the detector plane from a Gaussian
driven wakefield acceleration. The bin-widths are found to be dθ = 0.1mrad. The
blue line indicates electrons that are self injected into the wake, whereas the red line
indicates electrons that are injected into the wake through ionization injection.

If we instead consider the ` = 1 Laguerre Gaussian driven case in Fig.4.16, we find

that the divergence of the electrons is greatly increased in both cases. We first find

that the smaller divergence beam is now instead the ionization injection electrons,

whereas the self injected electrons now have a peak half angle divergence at roughly

40mrad - almost 10 times larger. The increase in the ionization injection divergence

is not as drastic, but the peak of the half angle divergence is now quite broad ranging

from 15 − 30mrad. This could likely be a result of the ability for the electrons to

travel azimuthally around the donut wakefield. This is not the case in the Gaussian

driven case as the electrons are always focussed radially inwards to the beam axis.
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Figure 4.16: Electron divergences as found on the detector plane from a Laguerre

Gaussian (` = 1) driven wakefield acceleration. The bin-widths are found to be dθ =

0.1mrad. The blue line indicates electrons that are self injected into the wake, whereas

the red line indicates electrons that are injected into the wake through ionization

injection.

Projecting the electrons onto a far-field screen using ballistic trajectories, we can

plot the spatial distribution as would be detected by a screen. The screen is placed

at 287mm away in the x̂ direction. The results are plotted in Fig.4.17.

Tile a) shows the far-field spatial distribution for both species electrons driven by

the Gaussian pulse. Here we see a tight spot of electrons with a radius of roughly

5mm. The high energy electrons are all located close to the axis and as the electron

divergence increases, the energy decreases. Tile b) shows the results for the Laguerre-

Gaussian driven case clearly showing the larger overall divergence of electrons. We do

see however that the highest energy electrons are located in a ring on the screen, but

there is no null on the screen axis. What we find is that there is little to no azimuthal

dependence on the distribution of electrons so we are able to bin the radius of the

electrons in a histogram.
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a). b). 

Figure 4.17: Far-field electron divergence on a screen placed 287mm away. Both plots
are colour coordinated to the energy of the electrons striking the screen. Tile a) gives
the result for the Gaussian driven case. Tile b) gives the result for an ` = 1 Laguerre
Gaussian driven case.

Figure 4.18: Far-field electron histogram distribution for electrons accelerated in the

Gaussian driven wakefield accelerator. The bin width is taken to be dR = 25µm.

The blue line indicates the self injected electrons, whereas the red line indicates the

electrons injected through ionization injection.

To do this, the electrons are binned as a function of RdR to account for the
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polar Jacobian. Fig.4.18 gives the radial distributions for both the self injected and

ionized electrons in the Gaussian driven wakefield. Again, we see the increase in

radial position of the ionization injection electrons due to their larger divergence.

Figure 4.19: Far-field electron histogram distribution for electrons accelerated in the

` = 1 Laguerre Gaussian driven wakefield accelerator. The bin width is found to be

dR = 25µm. The blue line indicates the self injected electrons, whereas the red line

indicates the electrons injected through ionization injection.

In the case of the Laguerre-Gaussian beam, given in Fig.4.19, we find that the

distribution of self injected is peaked at roughly 12mm noting that the scale for the

self injected electrons is 2 orders of magnitude less than the ionized electron case.

The electrons injected via ionization are sharply peaked on axis, which is a surprising

result given their divergence in Fig.4.16. This is in part due to the weighting of 1/R,

but also a result in the different scales used in Fig.4.16. One thing to note is that

Figs.4.17 and 4.14 are scatter plots, where the highest energy electrons are placed

on top of the lower energy ones. To illustrate the true detection signal, a bivariate

histogram is needed.

Fig. 4.20 gives the bivariate histogram distributions of the electrons in the far-field

with energies greater than 50MeV . The bin width is selected such that dy = dz =

100µm. Tile a) gives the far-field distribution for the Gaussian driven wakefield. Due

to the very limited number of electrons outside the 10mm radius, the axes have been

cropped from those shown in Fig.4.17. Tile a) gives the electron far-field distribution
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a). b). 

Figure 4.20: Bivariate histograms of the electron depositions on the far-field grid with
energy greater than 50MeV . The colourbars are in units of d2Q/dydz [pC/(100µm)2]
where dy = dz = 100µm. Tile a) gives the result for the Gaussian driven wakefield.
Tile b) gives the case of the Laguerre-Gaussian driven wakefield.

as driven by the Gaussian beam showing a tight, low divergence electron spot. Tile

b) gives the result for the Laguerre-Gaussian case showing a much broader electron

far-field distribution. We find the electrons are spread along a line orientated along

the laser polarization plane with a slight twist counter-clockwise. In the next section

we will show that the direction of this twist changes when the sign of ` is changed.

Another variable that is detected in the plane placed after the plasma in the

simulation is the particle angular momentum. Given that the Gaussian beam is

linearly polarized, and has no orbital angular momentum, we expect there to be no

net angular momentum transferred to the plasma. Fig.4.21 gives the ejected angular

momentum of each electron binned on a histogram with a logarithmic y axis. The

angular momentum has been normalized to units of ~. It is clear to see the symmetry

of the plot about Lx = 0 indicating that very little angular momentum was transferred

to the electrons.

The angular momentum transferred to the electrons in the Laguerre-Gaussian

beam is shown in Fig.4.22. The axis scales have been kept the same to emphasize the

increase of angular momentum transfer. Starting with the self-injected electrons, we

find that there is a slight asymmetry in the angular momentum absorbed. More so is

the case of the ionized electrons which show a large angular momentum absorption
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Figure 4.21: Angular momentum histogram for electrons accelerated by a linearly
polarized Gaussian driven wakefield. The blue line indicates electrons that are self-
injected, whereas the red line indicates electrons that were injected via ionization.

Figure 4.22: Angular momentum histogram for electrons accelerated in a wakefield
driven by a linearly polarized Laguerre-Gaussian beam with ` = 1. The blue line
indicates electrons that are self-injected, whereas the red line indicates electrons that
were injected via ionization.
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peaked close to 0.7~× 109.

4.4.3 Pump Depletion and Maximum Energy Gain

Once the electrons are injected into the bubble, they will accelerate due to the axial

electric field. The maximum energy the electrons can gain is however limited by

several factors including but not limited to, laser diffraction, electron phase detuning,

pump depletion, and laser-plasma instabilities [40].

To first order, we can say that the energy gained by an electron in a wakefield is

simply the product of the acceleration length, and the average electric field,

∆W ≈ eLaccEx (4.43)

At this point, we could naively take the acceleration length as the length of the

plasma in the simulation ≈ 600µm, and the peak accelerating fields of the Gaussian

and Laguerre Gaussian fields in Figs.4.10 and 4.11. For the Gaussian case, we find

a peak electric field of roughly 2.6E0 which gives a peak electron energy of 474MeV

- a result that is remarkably close to the observed result in Fig.4.13. If we instead

consider the Laguerre Gaussian case, we find the same scale length, but a reduced

electric field of 1.8E0 resulting in a peak expected energy of 328MeV which is also

very close to the observed value of the electrons injected by ionization.

One issue with the simulations above is that they are quite short in plasma length

- of the order of 600µm which is considerably shorter than the 5 − 10mm found in

the laboratory experiments. If the laser were propagating in vacuum, its acceleration

length would be essentially limited to its Rayleigh range,

Lv = πz0 =
πkw2

0

2
(4.44)

Given the parameters of our simulations, we find the resultant estimated vacuum

energy gain length to be 790µm. As already discussed however, this length can be

greatly enhanced if the laser self focuses, and if a suitable plasma channel is used.

If we were able to simulate the plasma over longer spatial extent, we would find

the maximum acceleration length would be increased from the Rayleigh range to one

of two lengths, the dephasing length, and the pump depletion length.

From Fig’s.4.10 and 4.11 we find that the electron is accelerated in the negative
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(red) regions, however it can decelerate once the positive (blue) field gradient becomes

negative. After this distance of positive acceleration, the electrons are said to dephase

with the accelerator as they outrun the group velocity of the wakefield itself. This

length is found to be [96],

Ld ≈
4

3

nc
ne

√
a0

kp
(4.45)

where a0 is the peak intensity after self focussing.

The second scale length is the pump depletion length which is effectively the length

it takes for the laser to be absorbed by the plasma. This is given as [96],

Lpd ≈
nc
ne
ωpτ (4.46)

where τ is the pulse duration. For our given simulation, we find the dephasing length

to be roughly, 717µm and the pump depletion length to be 1406µm. Clearly the pump

depletion length in this case is much longer than the plasma length in the simulation

indicating that a large fraction of laser energy is transmitted through the interaction

region as observed in the simulation. Thus it is expected that the dephasing length

will govern the maximum energy gain in the present case.

If the electron energy gain is limited purely by the dephasing length, we can

calculate the maximum energy gain of the particle as [96],

∆Wmax[GeV ] ≈ 1.7

(
P [TW ]

100

)1/3(
1018

ne[cm−3]

)2/3(
0.8

λ[µm]

)4/3

(4.47)

While this form of the energy gain is useful considering experimental laser parameters,

it is not useful for when considering the Laguerre-Gaussian modes which clearly have

a lower electron ejection energy than the Gaussian beam. It is possible to rewrite

Eq.4.47 in terms of the critical power of the beam as,

∆W [GeV ] ≈ 3.8

(
P

Pc

)−2/3
P [TW ]

100
(4.48)

Using our previous formulas, we find the critical power for the Gaussian and Laguerre

Gaussian beams to be 2.72TW and 10.88TW respectively. The corresponding laser

power of each simulation was 25TW and 97TW .

Plugging these values into Eq.4.48 yields the peak electrons energies as 217MeV

and 857MeV for the Gaussian and Laguerre Gaussian beams respectively. Clearly
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both of these values are incorrect, as we find numerically that the ejected electron

energy is roughly double this in the Gaussian case. This is likely due to the fact that

Eq.4.47 assumes that the laser has propagated to the point of electron dephasing

which may not be the case in the simulations. In addition, the assumptions made in

[96] require a plasma density that has been optimized for laser guiding, and is less

than the value used in these simulations.

The result for the Laguerre-Gaussian is roughly 3 times the predicted energy

ejected from the simulations. This is in part because of the increase in critical power

with the LG beam. Another reason is that Eq.4.48 assumes that the LG mode self

focuses in a similar manner to the Gaussian which from the previous section is clearly

not the case. A more in-depth analysis into the scaling laws of electron acceleration

in OAM-driven wakefields is therefore required, but is not explored in this thesis.

4.5 Betatron Radiation

Electrons accelerating through the wakefield channel feel both an accelerating force,

but also a transverse focussing force according to Eq.4.37. As a result of the transverse

focussing forces, the electrons will oscillate about the laser axis as they are accelerated

forward. Much like in the case of a single electron emitting radiation in a laser field,

the electrons oscillating in the wakefield will emit radiation. If we approximate their

trajectories as circular at each instant in time with an appropriate radius of curvature,

we may solve Eq’s.3.85 and 3.95 analytically to obtain the radiation spatial and

spectral information.

From standard electrodynamic theory, we find the spatial distribution of radiation

emitted from a charge in instantaneous circular motion as [75],

dP (t′)

dΩ
=

e2

16π2ε0c3

|v̇|2

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
(4.49)

where θ is the angle between the observation vector and β, while φ is the angle between

the observation vector and β̇. Similarly, we find the emitted radiation spectra given

by,

d2I

dωdΩ
=

e2

12π3ε0c

(ωρ
c

)2
(

1

γ2
+ θ2

)2 [
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

]
(4.50)
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where ρ is the radius of the circular trajectory, Kn(x) is the modified Bessel function

of the second kind and ξ is given by,

ξ =
ωρ

3c

(
1

γ2
+ θ2

)3/2

(4.51)

The first term in the square bracket of Eq.4.50 corresponds to radiation polarized in

the plane of the orbit, while the second term is radiation polarized perpendicular to

that. From this we can define the critical frequency at which half the emitted energy

is above, and half the emitted energy is below. In the direction of propagation θ = 0,

we define the critical frequency as ξ = 1/2 leading to the result [75],

ωc =
3

2
γ3

(
c

ρ

)
(4.52)

Integrating over all angles of Eq.4.50 we can derive the simpler result,

dI

dω
=

√
3

4πε0

e2

c
γ
ω

ωc

∫ ∞
ω/ωc

K5/3(x)dx (4.53)

While this form of the radiation emission is not so useful for analyzing a plasma

wakefield, it is possible to convert the critical frequency to a critical energy in terms

of the electron density, and the circular trajectory radius [3] assuming the strength

parameter K is large,

Ec[keV ] ≈ 5× 10−24γ2ne[cm
−3]ρ[µm] (4.54)

Additionally, we can derive the betatron strength parameter given by,

K =
γρωβ
c

= 1.33× 10−10
√
γne[cm−3]ρ[µm] (4.55)

where ωβ is the betatron oscillation frequency ωβ = ωp/
√

2γ. Given the critical energy

of the radiation, and the betatron strength parameter allows us to characterize the

radiation. For instance, the half opening of spatial distribution of the radiation

is given by θ ≈ K/γ. From Eq.4.54 we can estimate for a plasma with density

1× 1019cm−3, and estimating the electron to be accelerated to an energy of 50MeV

such that γ = 100 and the radius to be equal to the bubble radius, we find a critical

energy to be 3keV which is an x-ray photon. We also find the betatron parameter
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for the same parameters as K ≈ 25. Because K is larger than unity, we can treat the

radiation emission to be equivalent to that of a wiggler light source similar to those

found in synchrotron’s.

Fig.4.23 gives the analytic spectrum of an electron in circular motion with energy

γ = 100 and radius ρ = rB = 6µm. Tile a) shows the spatial distribution leading to a

“lighthouse” effect as the electron circulates about its axis. In this case, the radiation

emission agrees well with the synchrotron theory in that the half angle of radiation

should be θ ≈ 1/γ = 0.01rad. The colour bar is equal to dP/dΩ|v̇|2.

a) b) 

Figure 4.23: Radiation emission for an electron in instantaneous circular motion. a)

Spatial radiation distribution showing the tight beam of radiation in θ. The colour bar

units are dP/dΩ|v̇|2. b) Spectral distribution of radiation integrated over all angles.

The red dotted line indicates the critical radiation energy. These were computed

using γ = 100, rB = 6µm.

Tile b) gives the radiation spectrum integrated over all angles normalized to ~
giving the average number of photons emitted in each frequency band. We find the

critical energy, indicated by the red dotted line, is roughly 3keV , and the radiation

spectral tail extends out to photons beyond 15keV .

As the electrons in a wakefield accelerator will not be undergoing a constant

circular trajectory, we expect to find a deviation from Fig.4.23 a). Using the methods

outlined in Chapter 3, we use the MATLAB single particle integrator as a radiation

post-processor to EPOCH PIC simulations. In this instance, we can extract the time
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history of electrons position and momentum for electrons that are above a certain

cutoff energy. Given the large number of electrons and the requirement to store

their time histories over a long time, we opt to just analyse electrons that have been

injected through ionization injection and that have a minimum energy greater than

200MeV . The trajectories are saved every femtosecond.

Figure 4.24: 500 sample electron trajectories injected into a Gaussian driven wakefield

via ionization with energy greater than 200MeV .

The trajectories of 500 sample electrons with energy greater than 200MeV in a

Gaussian driven wakefield are given in Fig.4.24. Here, it is clear to see the electrons

defocusing and refocusing in the wakefield bubble before being ejected out. One
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should note the different relative scales of the x̂ to the ŷ and ẑ axes indicating that

if on the same scales, the electron beams actually appear very collimated.

Figure 4.25: 500 sample electron trajectories injected into a Laguerre Gaussian driven

wakefield via ionization with energy greater than 200MeV .

Considering the ` = 1 Laguerre-Gaussian driven electrons, we find the expected

result that the electrons are formed into a ring around the donut bubble as shown in

Fig.4.25. We note that the oscillation amplitude of the electrons is smaller than the

Gaussian case. We also note that while the electrons are free to move azimuthally

around the donut bubble, the high energy electrons are accelerated primarily forward.

Finally we remark on the divergence of the electrons which is clear in the figure. As

143



they propagate, the average radius of the electrons is increasing as a result of a

diverging wakefield.

Taking the trajectories of 1000 random electrons from both the Gaussian and

Laguerre Gaussian simulations, it is possible to project the radiation of the electrons

into the far-field. This is done incoherently using Eq.3.85 at each 1fs timestep. The

value of β̇ is calculated by a simple first order backward step differential. The results

are given in SI units in Fig.4.26 where the laser is polarized in the φ = 0◦, 108◦

directions.

Figure 4.26: Spatial distribution of betatron radiation emitted from 1000 electrons

in a wakefield accelerator driven by a) a Gaussian beam, and b) a Laguerre Gaussian

beam. Both lasers are linearly polarized in the φ direction. The colourbar scale is

in units of W/sterad, however is an underestimate considering the small number of

electrons sampled.

Fig.4.26 a) gives the result for the Gaussian driven wakefield. Here we see the

classic elliptical result [4] with the long axis aligned along the laser polarization di-

rection. The major axis has a divergence of roughly 20mrad, while the minor axis

has a divergence of roughly 10mrad. If we compare this to the expected divergence

from the analytic model given by θ ≈ K/γ and noting that we are only counting the

contribution from electrons with energy greater than 200MeV, γ ≈ 400 we find an

expected divergence of roughly 20mrad. This is assuming that the radius of curvature

of the electrons is roughly 1µm as observed in Fig.4.24.
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If we instead consider the Laguerre-Gaussian driven case, we find the odd result

that instead of the betatron forming a ring in the far-field, we instead find two-

lobes. Each lobe has a similar characteristic spot divergence to the Gaussian case,

and are separated along the laser polarization plane. While we do see there is a

background “ring” of lower intensity, it is largely dominated by the two lobes along

the polarization plane. This is due to the linear polarization of the laser and the

influence of the electric field of the laser on the betatron. If the laser were circularly

polarized, we might expect the radiation to be more symmetric about the ring.

Similarly to the ejected electron beam in the previous section, we notice a slight

twist in the emitted radiation beam counter-clockwise about the laser axis. If we run

instead the opposite handed LG mode with ` = −1, we find that both the ejected

electrons and the ejected radiation are twisted in the other direction. This is shown

in Fig.4.27 with the radiation now twisted an equal but opposite rotation clockwise.

a). b). 

Figure 4.27: a) Bivariate histogram of electrons emitted from an ` = −1 Laguerre-

Gaussian driven wakefield. The colourbar scale is in [pC/(100µm)2] b) Spatial dis-

tribution of betatron radiation emitted from 1000 electrons in a wakefield accelerator

driven by an ` = −1 Laguerre Gaussian beam. The colourbar scale is in units of

W/sterad, but again a gross underestimate due to low sampling numbers of the elec-

trons.

The radiation emitted from an OAM driven wakefield has been studied numerically

in a few cases prior [100, 168, 138], however none of these have addressed directly the
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predicted far-field radiation of a linearly polarized Laguerre Gaussian wakefield, nor

the phenomenon of the twisting of the emitted beam.

To calculate the radiation spectra of each drive beam becomes more challenging.

While EPOCH has a built in algorithm for calculating the energy of each photon

emitted when in the QED regime [37], it is not suitable for calculating photon emission

from wakefield accelerators. Using the Fourier transform algorithm from Eq.3.96, we

are essentially limited in an lower photon wavelength of about 600nm according to

the Shannon-Nyquist limit using a 1fs timestep. We could try and interpolate the

electron trajectory to a finer timestep, but would result in massive FFT’s to calculate

resulting in a long computation time.

We are therefore left with a gap of radiation emission that is computationally

difficult to solve, from roughly 100nm to 0.1nm. Some algorithms are available for

computing the radiation emission in this regime using models that fit either parabolas

to the electron trajectory and integrate the radiation analytically [157], or by brute

force integration using super computers [101]. We are developing an algorithm to

analyze this spectral emission simply by fitting the electron trajectories with piece

wise circles and then integrating analytically. However it is not complete at the time

of writing and is therefore not included here.

4.6 Inverse Faraday Effect

One of the primary motivations behind this thesis lies in the generation of magnetic

field and the inverse Faraday effect. In this section we review the background theory

of the inverse Faraday effect as outlined in [64, 5], as a basis for a numerical study

in Chapter 7. While there have been many approaches on the subject [117, 116, 173,

92, 35, 69, 21, 88, 165, 105, 141, 114, 140, 68, 113], we find the work of [64, 5] to be

quite straightforward and making minimal assumptions.

In essence, the Faraday effect [44] is the observed coupling between electromag-

netic waves and magnetic fields in mediums with a Verdet constant [49, 32]. In the

classical Faraday effect experiment, a linearly polarized laser is passed through a ma-

terial, usually a glass that has a background magnetic field orientated to be aligned

with the propagation direction of the laser (an axial field). The plane of polarization

of the laser will rotate depending on the strength of the magnetic field B, the Verdet
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constant V , and the propagation distance d [49],

θ = V Bd (4.56)

Typical Verdet constants are on the order of 5 − 10rads/T/m [78]. Plasmas do not

have a Verdet constant but the Faraday effect can still be observed. This is a result

of the change of relative index of refraction for the “R” and “L” plasma waves given

by [29],

η̃2
R = 1−

ω2
p/ω

2

1− ωc/ω
(4.57)

and,

η̃2
L = 1−

ω2
p/ω

2

1 + ωc/ω
(4.58)

respectively, where ωp is the plasma frequency, and ωc is the non-relativistic cyclotron

frequency,

ωc =
eB

me

(4.59)

The “R” and “L” solutions compose right and left circularly polarized waves

respectively and can be summed together vectorally to give a linearly polarized wave.

If a magnetic field is present such that “R” and “L” waves can propagate, their

relative phase shift will cause a rotation in the linearly polarized beam that the sum

of the two create. The phase shift, or rotation angle of the linearly polarized sum of

the two can be given as [69],

φ[deg] = 3.02λ[µm]2
∫ d

0

ne[cm
−3]B[MG]

1021
√

1− ne/nc
dx[µm] (4.60)

We note that both the wavelength of the laser, and the critical density given in this

equation represent the beam used to probe the magnetic field, and not necessarily the

one used to drive it. We will explore further the Faraday effect in plasma in Chapter

6 when we review the experimental methods for measuring magnetic fields in plasma.

We now consider the inverse process of the Faraday effect in which the absorption

of lights angular momentum can used to generate an axial magnetic field. Previ-

ously, this was thought to be due to the motion of the electrons induced by direct

interaction with a laser’s electric and magnetic fields [140], similar to the motion of a

single electron in a circularly polarized laser as discussed in Chapter 3. However, the
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process can become much more complicated and we need to consider the motion of

the electrons responding to the laser, the resultant torque on the ions, and the effect

of electrons opposing the change in magnetic field in the plasma. A simple method

to do this is by considering the angular momentum conservation in the plasma and

laser. If we assume the plasma initially has net zero angular momentum, and a laser

interacts with it carrying an angular momentum density jz as given in Eq.2.28, then

at any given time, the net angular momentum of the system must be equal to that of

the laser. We therefore write the electron angular momentum conservation equation

as [5],

mener

(
d

dt
+ νei

)
uθ = −ener (Eθ + uzBr − urBz)−

djz
dt

(4.61)

where u is the electron fluid velocity, and νei is the electron-ion collision frequency.

We recall the angular momentum density of a laser pulse of frequency ω carrying

both orbital angular momentum and spin angular momentum as (Eq.2.28) [6],

jz =
`

ω
|ψ|2 +

σzr

2ω

∂|ψ|2

∂r
(4.62)

where ψ is a solution of the Helmholtz equation.

Given the timescales of interest (< 1ps), and the fact the plasma of interest is

underdense we can make some assumptions and simplify Eq.4.61. We first assume

that the electron-ion collision frequency is zero which is often assumed in plasma

of this density, and pulse duration. In this time scale, we will assume that the

electrons have had time to reach steady state such that we can also assume that

dtuθ = 0. Considering the remaining terms of the axial electric field and the laser

angular momentum density, we find,

enerEθ ≈ −
djz
dt

(4.63)

Using Faraday’s law (Eq.2.3), we are able to write the axial magnetic field as,

− 1

r

∂

∂r
rEθ ≈

∂Bz

∂t
(4.64)

allowing us to write,

Bz =
1

ener

∂

∂r

d

dt

(
`I

ωc
+
σzr

2ωc

∂I

∂r

)
(4.65)
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where we have used the relation,∫ 2π

0

∫ ∞
0

jzrdrdθ =
(`− σz)P

ωc
(4.66)

with P being the total power of the laser. Integrating over time from 0 to t, we can

derive the magnetic field as a function of absorbed power from the laser as [5],

Bz = − fabs
reneωc

[
`
∂I

∂r
+
σz
2

∂

∂r

(
r
∂I

∂r

)]
(4.67)

We remark that in this derivation, the notion of the electron density changing as

a function of laser intensity has been ignored which could contribute strongly to the

magnetic field generation. As we saw previously, the change in electron density as a

function of laser intensity can become quite formidable in the nonlinear interaction

region.

The value of fabs varies depending on the laser-plasma interaction. In the paper

by Ali, et. al. [5], they simply associate the fraction of absorbed laser energy with ab-

sorption due to inverse bremsstrahlung. Given that inverse bremsstrahlung is derived

from the collisions in the plasma, we do not expect to see absorption by this mecha-

nism at the densities in which we are working. There are many other mechanisms for

laser absorption in low density plasmas such as stimulated Raman scattering (SRS),

filamentation, and ponderomotive scattering. General formulas for these absorption

mechanisms can be challenging to derive, particularly for a broad range of intensities

and plasma densities. We therefore will measure the fraction of absorbed laser energy

numerically in Chapter 7.

Given the intensity profile of an OAM mode in Eq.2.69 and assuming we are

working with the p = 0 mode, we can derive the axial magnetic field as,

Bz = − 2fabs
eneωcw2

LG

I(r, `)

[
`

(
w2
LG|`|
r2

− 2

)
+ σz

(
|`|2w2

LG

r2
− 2− 4|`|+ 4r2

w2
LG

)]
(4.68)

where we re-write for completeness,

I(r, `) = I0
ηγ̄2

|`|!

(
r
√

2

wLG

)2|`|

exp

(
−2r2

w2
LG

)
(4.69)

The values of γ̄ and η are given in table’s 2.2 and 2.3.
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To compute the expected magnetic field in plasmas and laser powers of relevance

to this thesis, we assume the following laser and plasma parameters; All lasers will

contain the same peak power of 100TW. They also will all have the same Gaussian

pulse duration of FWHM = 100fs and the same wavelength of λ = 1µm. The initial

plasma density will be assumed to be 3× 1019cm−3. For now we will assume that the

laser is entirely absorbed into the plasma and as such, fabs = 1. We will assume a

Gaussian near-field in the laser and as such, we will use values of η and γ̄ from column

two (n = 1) of Tables 2.2 and 2.3. The beam waist of the fundamental Gaussian beam

will be 8µm and modified by the value of γ̄ in the Laguerre-Gaussian cases.

Fig. 4.28 gives the intensity profile of a circularly polarized, fundamental Gaussian

beam overlaid with the corresponding axial magnetic field predicted by Eq.4.68. It is

clear to see that the magnetic field shape follows from the Gaussian pulse shape and

has a peak field strength of over 20kT . We note that the magnetic field is minimum

when r = w0 and while it may appear that the magnetic field is not divergence-free,

integrating over the disc finds that the total magnetic field generated is zero.

Figure 4.28: Intensity and generated magnetic field profiles of a circularly polarized

(σz = 1) Gaussian laser exhibiting the inverse Faraday effect. The relevant plasma

and laser parameters are given in the text.

If we instead consider the generated magnetic field from a linearly polarized

Laguerre-Gaussian laser as shown in Fig.4.29, we find that the generated magnetic

field also has a Gaussian-like shape. We find that for a laser with the same power, the
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peak magnetic field strength is reduced drastically to roughly 9kT assuming fabs = 1.

This is due to two factors; the reduction of peak laser intensity due to the donut

mode, and also due to the increase in beam waist due to the diffraction effects.

Figure 4.29: Intensity and generated magnetic field profiles of a linearly polarized

(σz = 0) Laguerre-Gaussian laser with OAM (` = −1) exhibiting the inverse Faraday

effect. The relevant plasma and laser parameters are given in the text.

Given that Eq.4.68 has `2 terms, we may be tempted to think that increasing the

OAM in the beam may increase the magnetic field strength but we find this is not the

case. Fig.4.30 gives the magnetic fields generated by the first five topological charges

for linearly polarized beams all for the same total laser power of P = 100TW . The

relevant beam fitting parameters and topological charges are given in the legend.
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Figure 4.30: Various magnetic fields generated by the inverse Faraday effect from

linearly polarized OAM beams. The topological charges 0,−1,−2,−3,−4 are repre-

sented by the blue, red, yellow, purple, and green lines respectively. The beam fitting

parameters are given in the legend.

We find that unsurprisingly the magnetic field generated by the linearly polarized

` = 0 beam generates no magnetic field. The red line shows the ` = −1 mode with

the identical result to Fig.4.29. As the OAM of the beam is increased to −2,−3 and

−4, we find that the peak magnetic field strength quickly decreases, while increasing

its radius. We also find the interesting result that the generated magnetic field is

no longer Gaussian in shape and instead follows the Laguerre-Gaussian shape. The

reason for this deviation can be seen in Eq.4.68 with the 1/r2 terms. If |`| > 2, this

divergent term is cancelled out, but it is not in the |`| = 1 case resulting in the strong

magnetic field on axis.

If we instead consider the effect of having a beam with both spin and orbital

angular momentum, we can see both their constructive and the destructive nature. If

we recall Eq.2.31, we can see that the total integrated angular momentum of the beam

can be zero if the SAM and OAM are destructive, but the two can be constructive

if the signs are alike. Fig.4.31 shows the result of a destructive OAM-SAM beam

where the spin has been set to σz = 1, and the OAM has been set to values of

` = 0,−1,−2,−3,−4.
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Figure 4.31: Various magnetic fields generated by the inverse Faraday effect from

circularly polarized (σ = 1) OAM beams. The topological charges 0,−1,−2,−3,−4

are represented by the blue, red, yellow, purple, and green lines respectively.

As expected, we find no change to the ` = 0 case, but we find the ` = −1 case

has been greatly damped close to the axis. The magnetic field no longer has a peak

on axis and now resembles the Laguerre-Gaussian shape that one expects according

to the higher order modes. We find that the higher order ` modes have also been

significantly damped but still retain the same shape.

Fig.4.32 gives the result for the constructive interference case where σz = −1 and

` = 0,−1,−2,−3,−4. Here we can see the enhanced result where the ` = −1 mode

almost matches the peak field strength of the ` = 0 driven case. What is of interest

here is that the predicted directions of the fields is in opposite directions even though

they are both circularly polarized in the same direction.
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Figure 4.32: Various magnetic fields generated by the inverse Faraday effect from

circularly polarized (σ = −1) OAM beams. The topological charges 0,−1,−2,−3,−4

are represented by the blue, red, yellow, purple, and green lines respectively.

Considering the higher order ` modes, we find that there is some enhancement in

their peak field strengths, but they retain the same shape and the corresponding null

on axis. From this analytic model, it is clear that if one was to generate a magnetic

field using a linearly polarized laser, then the optimal OAM beam to choose would

the |`| = 1 beam. By changing the sign of `, we can control in which direction the

magnetic field will point.

To verify this simple analytic model, we need to utilize full 3D PIC simulations.

These simulations would be able to calculate the value of fabs, variations in the

plasma density due to ponderomotive effects, non-steady state electron velocities and

other effects that were neglected in the analysis here. In addition, we will be able to

investigate the axial length of the generated magnetic field, and most importantly,

its lifetime in the plasma.

4.7 Conclusions

In this chapter, we explored the interaction of LG modes with under-dense plasma

utilizing the 3D PIC code EPOCH. Using the resources at ComputeCanada, we were

able to study for the first time large volume interactions of paraxial OAM beams with
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plasma investigating self-focussing, electron acceleration and some radiation emitted

in the process.

We found that the relativistic self-focussing of an OAM beam can have complex

dynamics as we identified two new self focussing phenomena, namely the ring pinch

mode, and the ring collapse mode. We have yet to explore the stability and criteria

of each of these modes. We further explored the use of using OAM modes to drive

wakefield acceleration of electrons, and found that the energy distribution, and the

spatial distribution of the ejected electrons decrease. Further study is needed to

explore the interaction of the laser pulse in the plasma over much longer distances

that are realistic (≈ 5mm), which may be difficult to do with fully 3D simulations.

The change in electron energy did not agree with the analytic models derived

for Gaussian driven wakefields, even with adjusting the corresponding parameters

of the interaction. This indicates a need for new analytic and empirical models for

OAM driven wakefield scaling. Modelling of the betatron spatial distribution was

performed, and found a splitting of the emitted radiation spots due to the linearly

polarized donut ring. The modelling of the spectral distribution of the emitted x-rays

is an ongoing task given the difficulty of modelling radiation emission between 100eV

and 10keV .
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Chapter 5

Generation of High Intensity

Optical Vortices

Until this point, the work presented in this thesis has been purely theoretical and

numerical. In this chapter we review the experimental results of high intensity op-

tical vortex generation at the Centros Laseres Pulsados Ultraintensos (CLPU) in

Salamanca, Spain.

We begin by reviewing current technology and methods for generating OAM

beams in low power laser systems. We then introduce the original concept of an

off-axis spiral phase mirror developed and manufactured at the University of Alberta

nanoFAB centre. We review some of the more detailed theory extending from the

work we did in Chapter 2 to include manufacturing perturbations. We then review

the implementation of this device in a low power system built in the University of

Alberta laboratory, and also its deployment in two separate high intensity campaigns

at CLPU. Finally, we discuss a more accurate modelling of more realistic asymmetric

OAM beams at focus using a perturbation expansion into multiple LG modes.

The work in this chapter has resulted in two publications, [93, 95] and a two-year

provisional patent was put in place while commercial interest in the off-axis spiral

phase mirror was explored: A. Longman, and R. Fedosejevs, “Off-Axis Spiral Phase

Mirror”, U.S. Provisional Patent #62/508,222 (2017-2019). A further publication on

the perturbation modelling methods is expected in the near future.
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5.1 Low Intensity Optical Vortex Generation

To generate an optical vortex from a plane wave, the phase of the beam must be

manipulated in some manner, most often in the laser near-field. There are many

methods to do this of which we will review some of the most common here. We

focus on linearly polarized input and output beams and omit spin-orbit coupling

mechanisms as this is outside the scope of this thesis [99].

Laser Cavities

Given that the Laguerre Gaussian modes are a solution to the Helmholtz equation in

cylindrical coordinates, we first look for methods of generating the higher order LG

modes in the laser cavity itself. It is usually most desirable to operate a laser cavity

in its fundamental Gaussian (or flat-top) mode as this allows for the amplifier crystals

to be used efficiently in space, and to be efficiently cooled. It is however possible to

design the laser cavity to support other modes by using curved mirrors, or by using

mirrors with holes or spot-defects on them to suppress the fundamental mode [74].

To generate a Laguerre Gaussian mode using this method, the end mirrors of the

cavity must be spherical, and often a hole or defect is placed on the centre of the

mirror. While this mode is capable of produced high quality laser modes, it is often

not of interest due to issues pumping and cooling the lasing crystals for higher order

modes as previously mentioned. The degree of control of this method can be limited

as there is no way to specify the handedness of the LG output mode, and as a result,

both modes can be generated in the cavity.

Modification of the laser cavity can also be very-undesirable in large laser systems

as it can risk damaging the amplifiers and optics in the laser system if not properly

executed. Most commercial and research laser facilities do not allow modification

of the laser cavity for this reason and so any mode conversion must be performed

external to the laser cavity.

Cylindrical Mode Converters

One of the first methods used to convert laser modes into OAM beams was to use

cylindrical lenses [6, 174, 15]. In this method, cylindrical lenses are used to transform

a Hermite-Gaussian (HG) beam into a Laguerre-Gaussian beam by phase shifting one

of the axes. While the Laguerre-Gaussian modes can be derived from the paraxial
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Helmholtz equation using cylindrical coordinates, the Hermite-Gaussian modes are

solutions when using Cartesian coordinates.

We find that the Laguerre-Gaussian solutions can be represented by Hermite-

Gaussian solutions using the following [15],

ψLG(`, p) =
N∑
k=0

ik

√
(N − k)!k!

2N`!p!
ψHG(N − k, k)

1

k!

dk

dtk
[
(1− t)`(1 + t)p

]
t=0

(5.1)

where the Hermite-Gaussian modes are given by,

ψHG(m,n) = Cmn
1

w(z)
exp

(
− r2

w2(z)

)
Hn

(
x
√

2

w(z)

)
Hm

(
y
√

2

w(z)

)

exp

[
−i
(
kr2

2R
+ (n+m+ 1)Ψ

)] (5.2)

with R being the radius of curvature, Ψ being the Gouy phase (Eq.2.37), and Cmn

being a normalization constant. We note that the the HG mode is equivalent to

m = N−k in Eq.5.1. We also introduce the Hermite polynomial Hn(x). For example,

a linearly polarized ` = 1, p = 0 LG mode can be decomposed as [115],

LG10x̂ = HG10x̂+ iHG01x̂ (5.3)

where we note that the constituent HG modes are phase shifted by π/2.

If we rotate an HG10 mode by 45◦ in the transverse plane relative to the x̂ axis,

then the HG mode may be decomposed into two orthogonal HG10 and HG01 modes.

Phase shifting one of these modes can be achieved using two cylindrical lenses as

shown in Fig.5.1.
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a) b) 

√2 f 2 f 

Figure 5.1: Phase shift configurations for cylindrical lenses. a) π/2 phase shift con-

figuration. b) π phase shift configuration.

If the two cylindrical lenses are aligned such that the distance between them is√
2f , the lenses will shift one mode π/2 radians relative to the other mode giving the

the required i in Eq.5.3. This is illustrated in tile a) of Fig.5.1. Tile b) on the other

hand shows the configuration where the lenses are placed 2f from each other giving

a π phase shift between the ejected modes.

The cylindrical mode converter is a high efficiency converter such that the only

ejected mode is the solution of Eq.5.2. It is also economical in that it can be con-

structed with two inexpensive cylindrical lenses. However the requirement of a high

purity HG mode puts large restriction on the system as most lasers do not output a

higher order HG mode. It is possible to generate HG modes in the lab using stepped

phase plates, or a half mirror, but as we shall see in the next section, it is more

reasonable to convert directly to an OAM mode in this case.

If we are to consider high-power, ultrafast pulses (30fs), we find that the cylindrical

mode converter is further limited due to the damage threshold in the glass, and

nonlinear effects on the ultrashort pulse such as group-velocity dispersion, B-integral,

and self focussing in the glass [23].
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Diffractive Holograms

Probably one of the most popular methods for generating OAM beams, as well as

many other exotic phased beams is to use a spatial light modulator (SLM) [172]. The

SLM is essentially a liquid crystal display (LCD) screen programmed to contain an

image that either transmits or reflects an incoming beam. The image on an SLM can

be programmed to any pattern desired, including holograms and diffraction patterns

used for generating OAM beams.

The diffraction pattern on the SLM is derived by interfering a tilted planar wave-

front with a helical wavefront. If we first consider a generalized tilted plane wave, we

can write the electric field as,

E1 = E0e
i(kxx+kyy)x̂ (5.4)

where the wavevector kx and ky determine the tilt of the wavefront in the correspond-

ing directions. This is illustrated in Fig.5.2 a) where the values of kx = 2 and ky = 0

have been assigned. As we have seen before, the helical wavefront can be introduced

into the plane wave as,

E2 = E0e
i`θ (5.5)

The result for ` = 1 is given in Fig.5.2 b).

a) b) c) 

Figure 5.2: Wavefront maps for a) tilted planar wavefront, b) helical wavefront, and

c) the combination of both a tilted planar wavefront and a helical wavefront.
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Interfering the two wave fronts is found from their vector product [22],

E2
3 = E2

1 +E2
2 + 2E1 ·E2 (5.6)

and the result is given in Fig.5.2c). From this figure, it is clear to see the “fork”

structure in the interference pattern. The number of forks in this pattern is indicative

of the charge of the OAM beam and is often used as a method to decode OAM beams

carrying information [172].

Given that the diffraction pattern cannot imprint a specific phase into the beam,

we find that instead it imprints a binary phase pattern onto the laser near-field.

Examples of these binary phase masks for the first 3 OAM beams are given in Fig.5.3.

a) b) c) 

Figure 5.3: Binary diffraction masks for various OAM beams. a) |`| = 1, b) |`| = 2,

and c) |`| = 3. The beam is highly absorbed where the mask is black, and transmitted

where the mask is white.

We find that the case of |`| = 1 is symmetric about the x-axis, and therefore the

phase mask has no preference over which state of OAM it will produce. Therefore

both the ` = 1 and the ` = −1 mode are diffracted from the mask in opposite

directions. Additionally, the ` = 0 mode is produced and remains on axis to the

incoming beam. Fig.5.3 tiles b) and c) show the corresponding phase masks for the

|`| = 2 and |`| = 3 modes respectively.

This highlights one of the fundamental issues with diffractive optics - the efficiency

is low. If we consider the transmissive phase mask above, we find that approximately
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half of the light is not transmitted. the half that is transmissive is diffracted into the

corresponding modes, of which there are at least 3. Therefore a standard diffractive

phase mask is of the order of 16% efficient to a single ` mode.

We find additional problems with phase masks and SLM’s in high power laser

systems. High-power laser systems have large diameter beams to reduce the impact

of the laser fluence on the optics, and as a result the SLM must also be large. Typical

SLM’s are on the order of a cm in diameter and the cost of even a small device can

be very high. Scaling up to large diameter SLM’s would be too costly using current

technology. We also consider that if one were to simple make a static mask for the near

field which has been done before [34]. We find that in this situation, significant laser

fluence on the mask could damage it, and as already mentioned, there is a significant

loss of energy through the diffraction process into the adjacent modes. From [34], we

find that the ` modes are roughly 33% of the laser intensity of the diffracted ` = 0

mode. With this, we estimate a mode conversion efficiency of roughly 10%.

5.2 Spiral Phase Plates

Probably the simplest, and most efficient method of converting a laser mode to an

OAM mode external to the laser cavity is to use a transmissive spiral phase plate

(SPP) [16, 93, 130, 131]. The spiral phase plate imprints a helix directly into the

wavefront of the laser by means of a helical piece of glass. The surface of a spiral

phase plate is shown in Fig.5.4 a). The helix is usually machined into the surface of

a piece of glass with known index n. The height (pitch) of the spiral H is given by,

H(n− 1) = Lλ (5.7)

where L is the topological charge of the spiral phase plate. In chapter 2, we explored

solutions where L is an integer such that the ejected mode could be represented by a

single Laguerre-Gaussian azimuthal mode number `. It is possible for L to be any real

number and often is mismatched to an integer value due to manufacturing defects.
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a) b) 

Figure 5.4: Spiral phase plates showing helical structure on the surface. a) continuous

spiral phase plate. b) stepped spiral phase plate.

One issue with spiral phase plates is that the spiral can be difficult to machine

into the glass surface over the size required and at the phase singularity on axis. For

instance, if we consider quartz glass that has a refractive index at 800nm of n ≈ 1.45.

This gives a spiral phase plate height of approximately 1778nm. This can be difficult

to manufacture, especially if the phase plate is of large diameter (> 1”) making spiral

phase plates very expensive.

A much simpler approach to manufacturing SPP’s has since been employed [151].

In this approach, the helical surface is discretized into steps yielding a stepped spiral

phase plate as shown in Fig.5.4 b). This simplifies the manufacturing of the phase

plate as the steps can be deposited onto a substrate via a nano-fabrication technique

such as sputtering or electron beam evaporation. There is a reduction in the mode

conversion efficiency however and will be explored in section 5.3.

After the laser passes through the spiral phase plate, a helical wavefront is im-

printed in the beam as shown in Fig.5.5. The helicity that is imprinted into the beam

is opposite to that of the SPP due to the thicker sections of the SPP retarding the

phase the most.
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Figure 5.5: OAM mode generation illustration through a spiral phase plate. The

handedness of the OAM beam is illustrated to show the opposite charge on the trans-

mitted beam.

As the ejected beam from the spiral phase plate is not diffracted into multiple

modes, we find the conversion efficiency of a SPP to be very high. From chapter 2

Eq.2.78, we find that choosing an optimal LG beam waist, the conversion efficiency

for an L = ` = 1 mode can be as high as 93.08% [93]. For higher order modes, we

find that the conversion efficiency decreases to a single LG mode and higher order

radial p modes are additionally generated.

Furthermore, we find that in a similar manner to the cylindrical mode converters,

SPP and stepped-SPP have limitations for use in high-power and ultra-short beams

due to damage and other non-linear effects. If we consider an ultra-short laser pulse

with a significant bandwidth (> 10nm), we find that in most transparent media,

the pulse will stretch due to group-velocity dispersion [23]. To compensate for this,

the pulse can be chirped initially such that the phase plate acts a pulse-compression

medium, but in doing this we find that we introduce other unwanted nonlinear effects.

If the laser pulse is of sufficient intensity in the phase plate, we can introduce

self-phase modulation into the beam in which the wavefront of the laser will curve

due to the intensity dependant refractive index [23],

n(I) = n0 + n2I(r, t) (5.8)
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where n0 is the linear refractive index, and n2 is the second order nonlinear refractive

index. This wavefront curvature can cause the laser to self focus inside the medium

and reaching much higher intensities causing significant damage to the optic. Addi-

tionally, we may find the a similar effect along the propagation direction in the form

of a B-integral,

B =
2π

λ

∫
n2I(z)dz (5.9)

This nonlinear effect can cause significant shift in the phase of the laser in the high

intensity areas as compared to the low intensity areas. These nonlinear effects can

be removed from the optic entirely if we can instead reflect the beam from the SPP

instead of transmitting it through it.

5.2.1 Spiral Phase Mirrors

An extension to SPP and stepped-SPP was introduced by converting the transmission

based optic to one that instead reflects in the form of a spiral phase mirror (SPM)

[27, 55]. In this case, the step height H is set to,

H =
Lλ

2
(5.10)

The spiral phase mirror is capable of generating high quality OAM modes without

nonlinear effects. If the SPM is used in a retro-reflecting configuration, we find that

there is significant risk of laser energy being reflected back into the compressor and

amplifier. This is of major concern to high-power lasers in which any laser retro-

reflection could significantly damage the laser. It is possible to use optics to ensure

the laser is not retro-reflected back into the laser such as Pockel’s cells, and wave-

plates, but these are all transmission based and will re-introduce the issues we seek

to remove with the regular spiral phase plates.

While there have been a few attempts to generate high-intensity OAM beams

[24, 34, 86, 162], there have been none to address the problems of generating OAM

beams at high intensity without significant distortion to the laser pulse. In [24], a

SPP was inserted in the front end of the laser before amplification and compression.

This produced an asymmetric OAM beam at focus somewhat similar to a Hermite

Gaussian mode as opposed to a Laguerre-Gaussian mode. The peak intensity was

estimated to be on the order of 1× 1019Wcm−2 with a pulse duration of 650fs.
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Mode converting after amplification and compression was performed in [34] using

both a transmission fork grating, and a large 8-step spiral phase plate. Using this

method they were able to obtain a peak intensity of approximately 1 × 1019Wcm−2

in 25fs.

5.3 Mode Conversion Efficiency of Stepped Spiral

Phase Plates

One could argue that introducing steps into the spiral phase optic surface could

degrade the generated OAM mode significantly at focus, or that having a laser with

a broad bandwidth would lead to a poor conversion efficiency. We now address these

issues analytically to prove that in fact this is not the case. We start by considering a

stepped spiral phase optic, with a total number of steps N . The transmission operator

in Eq.2.72 is modified to give a stepped profile,

T = exp

(
−iL2πn(θ)

N

)
(5.11)

where n(θ) refers to the individual step number for a given angle. As this transmission

operator is purely a function of azimuthal position, we find that Eq.2.74 remains

unchanged and we instead only have to compute Φ in Eq.2.77. Including steps into

the calculation of Φ, we find [93],

Φ`LN =
N−1∑
n=0

∫ 2π(n+1)/N

2πn/N

exp

[
i

(
`θ − L2πn

N

)]
dθ (5.12)

If the topological charge is an integer, and the output mode is set to be equal to

the topological charge (` = L), we find that this integral and sum can be compute

analytically to give,

ΦLN =
−iN
L

[
exp

(
iL2π

N

)
− 1

]
(5.13)

If for instance we had a mirror with N = 16 steps, and a topological charge of one,

the mode conversion efficiency is decreased from η = 0.9308 to η = 0.9189. We

find that after the phase plate has been imprinted with N = 16L steps, there is a

negligible return in OAM mode conversion efficiency. This is illustrated for the first 3
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Table 5.1: Conversion efficiencies from a TEM00 mode to various LG modes for
given spiral phase optic (SPO) step numbers N . The N = ∞ case corresponds to a
continuous SPO.

SPO, Waist Ratio L = 1, γ = 1/
√

2 L = 2, γ = 1/
√

3
η`p η10 η11 η12 η20 η21 η22

N = 8 0.8840 0 0.0327 0.6839 0 0.0641
N = 16 0.9189 0 0.0340 0.8013 0 0.0751
N = 32 0.9279 0 0.0344 0.8330 0 0.0781
N =∞ 0.9308 0 0.0345 0.8437 0 0.0791

topological charges in Fig.5.6. The conversion efficiencies to the first 3 radial modes

for an ` = L = 1, 2 stepped spiral phase optic is given in Table 5.1. We find that when

γ is optimally chosen, there are no p = 1 modes generated as observed in chapter 2.

Figure 5.6: Multiplicative scaling factor |ΦLN |2 as a function of the total number of

stepped spiral phase optic steps N for the ` = L = 1, 2, 3 cases normalized to 4π2.

If there is a mismatch in the topological charge number with the output mode

number (` 6= L), we find that it is still possible to solve Eq.5.12 analytically,

Φ`LN =
−i
`

[
exp

(
i`2π

N

)
− 1

]
exp (i2π(`− L))− 1

exp (i2π(`− L)/N)− 1
(5.14)
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and if we take the limit where N →∞, we find the result,

lim
N→∞

Φ`LN =
−i
`− L

[exp(i2π(`− L))− 1] (5.15)

This allows us to estimate the sensitivity of the stepped spiral phase optic relative to

manufacturing defects creating a mismatch in ` and L. Fig.5.7 plots the conversion

efficiency scaling factor as a function of the charge of the SPO.

Figure 5.7: Multiplicative scaling factor |ΦLN |2 as a function of intrinsic topological

charge L of the spiral phase optic to the ` = 1 mode. Inset into the image is a wider

field of view showing the behaviour away from (` = L = 1).

From Fig.5.7 we find that the scaling factor remains above 95% if the charge of

the SPO remains within roughly 10% of the centre value of the SPO. For instance,

if we have a SPO designed to operate at 800nm, and the SPO is being used in a

reflective configuration such that the step height H = 400nm, then the step height

can fluctuate as much as 40nm and still have a conversion efficiency close to 90%.

If the spiral phase optic does have a non-integer topological charge, we find that

a spectrum of ` and p LG modes are produced. Fig.5.8 gives some of the spectral

components produced from a L = 1.2 SPO, decomposing into modes with a beam

waist ratio of γ = 1/
√

2.
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Figure 5.8: Laguerre-Gaussian mode spectrum (LG`i,p) generated from a continuous

L = 1.2 spiral phase optic.

While we have shown that it is possible to use a stepped spiral phase optic with

minimal reduction in conversion efficiencies when using N = 16L, and we have shown

that the SPO’s are not very sensitive to manufacturing defects, we still have to an-

swer the question of how laser bandwidth plays a role in mode conversion efficiency.

Ultra-short laser pulses generated from titanium sapphire lasers can have significant

bandwidth [9, 166]. For example, titanium sapphire has a bandwidth of almost 200nm

and laser pulses generated in titanium sapphire laser systems can have bandwidths

in excess of 100nm. The VEGA 2 laser in CLPU in Spain which produces 30fs pulses

for instance has a bandwidth of approximately 80nm [166].

To model the laser bandwidth in the conversion efficiency calculations, we intro-

duce a new frequency dependant transmission operator as,

T = exp

[
−iL

(
2πnν

Nν0

)]
(5.16)

where ν is the frequency of interest and ν0 is the central laser frequency. Using this

transmission function, we can convolve it with a Gaussian distribution of frequencies
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of standard deviation σ. This give the following formula [93],

|Φ`LNν |2 =

∫ ∞
−∞

1

σ
√

2π
exp

[
−1

2

(
ν − ν0

σ

)2
]

∣∣∣∣∣
N−1∑
n=0

∫ 2π(n+1)/N

2πn/N

exp

[
i

(
`θ − L2πnν

Nν0

)]
dθ

∣∣∣∣∣
2

dν

(5.17)

As before, we are able to solve the sum and inner integral analytically, but the integral

over frequency space must be computed numerically,

|Φ`LNν |2 =

∫ ∞
−∞

1

σ
√

2π
exp

[
−1

2

(
ν − ν0

σ

)2
]

∣∣∣∣∣∣−i`
[
exp

(
i`2π

N

)
− 1

] exp
(
i2π(`− L ν

ν0
)
)
− 1

exp
(
i2π(`− L ν

ν0
)/N

)
− 1

∣∣∣∣∣∣
2

dν

(5.18)

We can relate the standard deviation of the frequency bandwidth to the full-width

half maximum (FWHM) through the relation, FWHM = 2
√

2 ln 2σ.

The mode conversion efficiency was calculated for a broad range of value of band-

widths for 4 laser wavelengths that are often found in the laboratory are given in

Fig.5.9. If we consider the case of the CLPU laser with 80nm of bandwidth at

800nm, we find the mode conversion scaling factor is roughly 0.99 indicating that the

bandwidth plays very little role in the mode conversion.

This surprising result can be interpreted as such; given that the we assumed the

bandwidth of the laser has a Gaussian shape, the strongest components are close

to the central wavelength of the laser and contribute the most to the output mode.

Given that the bandwidth of the laser is roughly 10% of the central wavelength, we

expect the topological charge of the SPO will be modified by roughly a factor of 0.1

for the wavelengths far from the central wavelength. From Fig.5.7, we found that even

a 10% error in the topological charge still leads to a very high conversion efficiency

|Φ|2 ≈ 0.96.
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Figure 5.9: Multiplicative scaling factor |ΦLN |2 as a function of laser bandwidth in

nanometers for the case of L = 1 and N = ∞. Four central laser wavelengths are

plotted from top to bottom: 1064nm, 800nm, 532nm, and 400nm in dashed grey,

dotted red, dash-dot green and solid blue respectively.

5.4 Off-Axis Spiral Phase Mirrors

As was previously discussed, an optimal solution for generating ultrafast, high-power

OAM modes is to use the spiral phase mirror due to its mitigation of nonlinear effects

introduced by transmitting the beam through a transparent media. The problem with

spiral phase mirrors is that the can only be used in a retro-reflecting configuration

risking damage to the laser amplifier and compressor. In this section, we introduce

the concept of an off-axis (or oblique-axis) spiral phase mirror (OASPM).

5.4.1 Theory

To convert a spiral phase mirror to the off-axis case, we utilize the example of a

stepped spiral phase mirror (SSPM) as illustrated in Fig.5.10 a) and c). In tile a) we

see a laser beam being retro-reflected from a 16 step SSPM from the top view while

tile c) shows the SSPM face on. From tile c we see the circular imprint of the laser

in red with an equal area of the beam on each step face. The angle of each step is

171



given by the simple formula,

∆φ =
2π

N
rad (5.19)

The values of the step angles measured from the horizontal axis is given in the Figure.

The area shaded by the laser on each step is the same such that the reflected beam

carries a 16-fold symmetric wavefront. If the laser is not well centred in the mirror

such that some steps reflect more light than others, the resultant beam at focus could

be an asymmetric OAM focal spot.

If we instead consider the oblique angle of incidence as shown in Fig.5.10 b) and

d), we find that the laser spot imprinted in the mirror is now stretched along the

incidence plane into an ellipse. As we still require that the beam is equally divided

into N steps, the laser beam area imprinted onto each step must remain the same.

a).  

c).  

SPM OASPM 

 θi   

0º AOI   45º AOI   

b). 

d).  

  β   

0º   

  ϕ   

0º   

Figure 5.10: a) Retro-reflecting configuration of a normal incidence SPM; b) oblique

angle of incidence to an OASPM shown here at 45◦; c) front view of a stepped SPM

indicating the step angle φ from horizontal and the circular laser beam outline in

red; d) front view of a stepped OASPM indicating the step angle β relative to the

horizontal plane and the elliptical laser beam outline in red.
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By integrating over each sector area on the OASPM in tile d), we find that the

sector angle relative to the incident plane can be related to the incidence angle of the

laser θi by [95],

β = arctan (cos(θi) tan(φ)) (5.20)

where φ is the angle of each step relative to incidence plane in the normal incidence

case, and θi is the incidence angle of the oblique case. Example values of β are

given in Fig.5.10 d) for an incidence angle of 45◦. Implementation of a variable step

angle can be employed straight-forwardly when manufacturing stepped spiral phase

mirrors, but may become more challenging when manufacturing continuous spiral

phase mirrors as will be discussed in the next section.

In the normal incidence case, we find that each individual step height is given by

H/N such that,

h =
H

N
=
λL

2N
(5.21)

where the factor of 2 represents the fact that the laser is retro-reflected and essentially

double passes the helical surface. Considering instead the off-axis case, we find that

Eq.5.20 must be modified to incorporate the wavefront shift according to the Bragg

condition,

h =
λL

2N cos(θi)
(5.22)

Fig.5.11 shows the azimuthal cross-section of an OASPM with N = 12, in polar

coordinates. Here, a continuous OASPM is indicated by the green dotted line, and

the red dotted line indicates an incident laser. The figure allows us to identify a

region where the incident beam is shadowed from interacting with the step adjacent

to the 2π phase step. This can be mitigated by manufacturing the OASPM such that

the 2π phase step is parallel to the plane of incidence. The maximum shadowing

is expected to then be from the individual steps that are on the order of λ/N in

height. At θi = 45◦, we expect the shadowed area to be equal to the step height and

is therefore negligible compared to the wavelength.
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Figure 5.11: Illustration of an L = 1, N = 12 stepped OASPM in φ− z coordinates.

The green dotted line represents a continuous OASPM (N → ∞), and the red lines

indicate light rays at a given incidence angle θ.

An additional limitation of the stepped OASPM is diffraction from the step edges

depending on the manufacturing technique and the step edge width. Through fabri-

cation of the OASPM via electron beam evaporation, we found the step edge width

to be on the order of 100µm primarily as a result of mask position uncertainty as

masks are interchanged. The corresponding area of the step edges relative to the

total surface area of a large diameter beam (> 100mm) is around 1% and assumed

to have a negligible effect on the focal spot. Much sharper edges could be produced

using microelectronic lithographic techniques and would be required for microscale

OASPM’s. Sharp step edges may, however, generate high local electric fields that

can either heat or damage the OAPSM surface with higher laser fluences. This could

be mitigated through the use of high-reflectivity dielectric coatings or by grading the

step edges over several wavelengths reducing any sharp electric field spikes while still

contributing to only very small diffraction losses at the steps. An illustration of the

OASPM in use is given in Fig.5.12
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Figure 5.12: Illustration of the OASPM mode converting an off-axis beam. Unlike

an SPP, the handedness of the ejected beam matches the handedness of the OASPM

helix.

5.4.2 Manufacturing

Several prototype OASPM’s were manufactured at the University of Alberta’s nanoFAB

centre using electron-beam evaporation techniques. This included 2 inch diameter

mirrors for use in the low power laser systems, as well as 5 inch mirrors for use in the

CLPU laser system. The processes and measurements of manufacturing are described

in the appendix.

5.5 Experimental Implementation

To test the capability of the 2” OASPM’s, a small scale setup was developed at the

University of Alberta for low power OAM beam generation. Following successful

tests of the OASPM at low power, three 5” OASPM’s were fabricated and used at

the CLPU VEGA2 laser which will be reviewed here.

5.5.1 Low Power OAM Generation

A bench-top setup was developed at the University of Alberta for generating and

diagnosing OAM beams using low power lasers of various wavelengths. It was de-

signed such that a variety of beams and wavelengths can be introduced and analyzed
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through near-field and far-field imaging diagnostics, as well as interferometry. The

experimental setup is illustrated in Fig.5.13.

In this setup, a laser is introduced and aligned to the setup axis using the first

three alignment mirrors m. The beam is then expanded into a collimated beam of

diameter ≈ 25mm. This then passes through 2 lenses f1 separated by distance 2f1,

the focal plane of which is cleaned by a spatial filter pinhole of diameter 100µm. This

converts the incoming laser mode to an Airy ring in the near-field with a central lobe

diameter of roughly 1cm. The outer Airy rings are then removed in the near-field

using the near-field aperture i.

After cleaning the near-field at i, the beam is split in two using a 50:50 beam-

splitter b. The laser that passes through the beam-splitter interacts with the OASPM

a with an incidence angle θi = 45◦. The beam is then reflected from a flat aluminum

mirror m before passing the second beam-splitter and being focused by f2 to the

far-field camera. The focal spot of the laser is then re-imaged by the 4x microscope

objective into the CCD.
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Figure 5.13: Low power OAM beam experimental setup. Key: a - OASPM, b -

50:50 beamsplitter, c1 - far-field CCD, c2 - near-field/interferometry CCD, e - 10x

variable beam expander, f1 - 1m plano-convex lens, f2 - 750mm plano-convex lens,

f3 - 300mm plano-convex lens, i - near-field aperture, m - λ/10 aluminum mirror,

o - 4x microscope objective, s - spatial filter, t - Mach-Zehnder interferometer delay

translation stage.

We find that the expected intensity distribution at focus is best represented in

the near-field with a Gaussian beam with a waist of R0 = 4.5mm. This is a good

approximation to the apertured Airy focal spot in the experiment. From chapter 2,

we find the expected intensity distribution to have the following profile,

I(r, `) = I0
π

4
ξ2e−ξ

2

∣∣∣∣I |`|−1
2

(
ξ2

2

)
− I |`|+1

2

(
ξ2

2

)∣∣∣∣2 (5.23)

where ξ = r/w0 and In(X) is the modified Bessel function of the first kind. Consider-

ing a helium-neon (HeNe) gas laser of wavelength 632.8nm, and a Gaussian near-field

waist of r0 = 4.5mm, we find the expected far-field intensity distributions in Fig.5.14

a) and c) for the ` = 0 and ` = 1 beams respectively. Tiles b) and d) show the

experimental results for both cases where we see good general agreement between

spot size, shape, and intensity.
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Figure 5.14: Focal spots of a Gaussian L = 0, and an L = 1 OAM beam generated

from a collimated R0 = 4.5mm Gaussian near field HeNe beam with a 750mm focal

length lens. The theoretical spots are given in tiles a) and c) for the ` = 0 and ` = 1

modes respectively. The experimental results are given in tiles b) and d) with L = 0,

and L = 1 respectively.

The focal spot images were processed using an algorithm that removes the back-

ground, and removes any hot pixels in the image. An adaptive Wiener filter is then

used to minimize any remaining noise in the image with its parameters set to min-

imize the standard deviation of the image whilst maintaining the pixel mean value

[170]. The intensity is then calculated by summing over all pixels in the image and

normalizing the sum to the theoretical result. This is equivalent to setting the laser

power to the same value in both images and is of arbitrary units as the laser is con-

tinuous. Finally, the image is up-scaled to a higher resolution using a cubic spline

interpolation method.
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If we consider the Mach-Zehnder beam path in Fig.5.13, in which the delay arm

t is used to match the path lengths of the interferometer arms, we can find the

beam’s angular momentum content. As the delay arm is only reflecting from flat

mirrors, we expect to find an interference pattern between the OAM beam and the

flat wavefront beam to be similar to what was found in Fig.5.2. To produce the tilted

planar wavefront, the final turning mirror of the delay arm is finely adjusted until an

interference pattern with suitable fringe widths is found.

An imaging lens (f3) is used to image the OASPM onto the near-field camera

c2. This allows us to see the surface of the OASPM overlapped with the interference

pattern as shown in Fig.5.15. The final turning mirror on the delay line was adjusted

in both the θ and φ tilts such that both vertical and horizontal patterns were found

in tiles a) and b) respectively. In tile a) we find the classic vertical fork pattern as

shown in Fig.5.2. We note that there is only one split in the fork indicating that there

is ±1 OAM charge in the beam. This is made more clear in tile b) where the fringes

have been rotated to be horizontal and shows the 2π phase discontinuity on the upper

vertical step resulting in a phase shift of the fringe by exactly one wavelength. This

is clear as the interference line “jumps” down the step edge and lines up perfectly

with the next interference line.

a) b) 

Figure 5.15: Interference patterns of an L = 1 OAM beam with a tilted plane wave.

a) interference with a plane wave tilted in the horizontal plane, b) interference with

a plane wave tilted in the vertical plane.
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We note that the because we are imaging the OASPM directly, we are able to see

some of the step edges directly on the camera, particularly the vertical, horizontal,

and two 45◦ edges. There are 16 steps in the OASPM but the imaging system cannot

resolve the smaller step edges as easily.

5.5.2 High Power OAM Generation

Testing of the OASPM at high power and high intensity was performed at the CLPU

VEGA2 laser in Salamanca, Spain. This was done in two separate experimental

campaigns in 2018 and 2019 utilizing the longer f/13 off-axis parabola and the short

f/4 off axis parabola respectively.

The VEGA2 laser at CLPU is a titanium sapphire laser capable of amplifying

laser pulses to 6J of energy [166]. The pulses are compressed to a Gaussian shaped

pulse with a full width half maximum of approximately 30fs. The laser is centred at

800nm with a bandwidth of approximately 80nm. The compressed laser pulse has a

near-field width of roughly 100mm and is characterized by a super-Gaussian shape

with n = 4 according to Eq.2.68. After compression and beam transport, we find that

typically 50% of the beam energy makes it to the focal spot in the target chamber.

For intensity estimates used in the following figures, we assume that the laser has a

total energy of 3J at focus and is compressed to 30fs.

The beam is reflected from multiple mirrors for transport with a mix of dielectric

and gold mirrors in the beam line before finally being focused by an off axis parabola.

In a 2018 campaign, we opted to use the f/13 off axis parabola to maximize the

Rayleigh range of the laser for wakefield interaction. The layout of the mirror ar-

rangement and general geometries of the parabola chamber is given in Fig.5.16. The

main beam is injected from the top of the figure and reflected from a gold mirror,

where leakage light is then collected and focused through a 2m lens (f1) onto a far-

field imaging camera c1. This is primarily used for alignment purposes. The reflected

light from the mirror is then reflected from the OASPM (a) with an incidence angle of

θi = 17.8◦. The beam reflected from the OASPM is then focused using a 30◦ off-axis

parabola to a point 1300mm away.
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Figure 5.16: f/13 focus layout using the VEGA2 laser at CLPU. a - off-axis spiral

phase mirror designed for use at θi = 17.8◦, c1 - alignment CCD, c2 - magnified focal

spot CCD, c3 - direct focal spot imaging CCD, f1 - 2000mm lens, m - gold mirror, o

- 10x infrared microscope objective, p - 30◦ 1300mm off-axis parabola, t - translation

stage

Using a pick off mirror for imaging was necessary to reduce the intensity such that

the objective would not get damaged. The on axis CCD c3 was used to calibrate the

focal spot size of the laser and was heavily attenuated to avoid damage. A total of

three OASPM’s were used in the experiment giving rise to four topological charges

- L = 0,±1, and +2. The results of these are compared to the theoretical spots as

shown in Fig.5.17.
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Figure 5.17: Focal spots generated using an f/13 off-axis parabola. Theoretical spots

are given, a) ` = 0, c) ` = 1, e) ` = 2. Experimental spots generated with OASPM’s

of topological charge b) L = 0, d) L = 1, f) L = 2.

To calculate the theoretical focal spot size, a near-field beam radius of R0 = 3cm

was used as this was found to best represent the results. This was then used in our
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previous far-field OAM focal spot formula from Eq.2.67 given as,

IF (r, `) =
I0

2

∣∣∣∣∣∣ ξ|`|

|`|!
(
|`|
2

+ 1
)1F2

(
|`|
2

+ 1; |`|+ 1,
|`|
2

+ 2;−ξ2

)∣∣∣∣∣∣
2

(5.24)

where 1F2(a; b, c; d) is the generalized hypergeometric function. In reality, the beam

is bigger with an R0 closer to 5cm, however due to beam aberrations and focussing

aberrations, it is difficult to obtain a diffraction limited result.

In Fig.5.17 a), we find the expected peak intensity of the spot should be on the

order of 2.5 × 1019Wcm−2 if 3J of energy in 30fs is delivered to the focal spot. In

reality as we find in tile b), this is not the case an our peak intensity for the L = 0

case is approximately 8× 1018Wcm−2. This is due primarily to the large amount of

energy outside of the central Airy lobe. We also find significant aberration in the

focal spot as a result of astigmatism, coma, and trefoil [118]. Increasing the OAM in

the beam to L = 1, we find the experimental result forms a ring that is modulated

azimuthally, with the peak to trough ratio of roughly 3:2. This asymmetry is likely

from the aberrations mentioned above, but also due to partial misalignment of the

OASPM - perhaps it was not correctly centred on the beam. Given the physical

setup of the mirror, it was not possible to adjust the height of the mirror in the beam

restricting true centring on the mirror.

The L = 2 result is given in tiles e) and f) of Fig.5.17, where we find a very

asymmetric focal spot. As the L = 2 mirror only had N = 16 steps, it yielded a poorer

conversion efficiency as N/L = 8 instead of the preferred N/L = 16. According to

Fig.5.6, this will cause a reduction in conversion efficiency to the ` = 2 mode by at

least 5%. As we will see in the next section, a 5% reduction in conversion efficiency

can cause a significant reduction in mode quality at focus. However it is observed

that for the larger size L = 1 and L = 2 modes the peak intensities are closer to the

theoretical values due to the incorporation of more energy from outside the original

central spot.

Taking what was learnt from the 2018 campaign, a second campaign in 2019 looked

to improve the OAM focal spots as one of its goals while also using a shorter focal

length f/4 off axis parabola. The schematic of this layout is given in Fig.5.18.
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Figure 5.18: f/4 focus layout using the VEGA2 laser at CLPU. a - off-axis spiral

phase mirror designed for use at θi = 17.8◦, c1 - alignment CCD, c2 - magnified focal

spot CCD, f1 - 2000mm lens, m - gold mirror, o - 20x infrared microscope objective,

p - 40◦ 400mm off-axis parabola, t - translation stage

The setup is similar to that of the f/13 campaign, however given the short focal

length of the off axis parabola f = 400mm, the OAP is now located in the main

target interaction chamber. Given the shorter Rayleigh length of the parabola, it

was possible to directly image the focal spot through the 20x infrared microscope

objective using some neutral density filters. As the same OASPM’s were used from

2018 in the 2019 experiment, the configuration was left as before.
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Figure 5.19: Focal spots generated using an f/4 off-axis parabola. Theoretical spots

are given, a) ` = 0, c) ` = 1, e) ` = 2. Experimental spots generated with OASPM’s

of topological charge b) L = 0, d) L = 1, f) L = 2.

The results are given in Fig.5.19 where we find much improved donut modes and

much higher intensities. For the L = 0 mode, we still find in tile b) that a significant

amount of energy lies outside of the central Airy spot, thus reducing the peak intensity

from a theoretical value of ≈ 2× 1020Wcm−2 to around 7× 1019Wcm−2. The beam
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aberrations however have been improved in the second campaign resulting in a much

more symmetric focal spot. If we consider the L = 1 beam in tile d), we find that the

beam is now much more symmetric and donut-like. The resulting peak intensity of

the OAM focal spot is found to be ≈ 3× 1019Wcm−2 which is at least 3 times higher

than any previous OAM generated in the literature [24, 34]. The L = 2 focal spot

has been significantly improved now resembling a donut ring as opposed to a single

spot before. There is still some azimuthal modulation in the beam, likely a result

of trefoil, and a result of N/L = 8. The peak intensity of the L = 2 mode is quite

close to the theoretical value of 3 × 1019Wcm−2. This is a result of the OAM mode

overlapping the aberrations in the focal spot, but also due to intensity modulations

in the ring. There have been no high intensity L = 2 beams in the literature to date,

indicating that this is the first relativistic ` = 2 LG mode ever produced in the lab.

5.6 Numerical Modelling of Asymmetric Vortices

It is clear from the experimental results above that generating a perfect donut mode

at high intensity is no easy task and is often degraded due to beam inhomogeneities,

beam aberrations, focussing aberrations, and manufacturing defects in the OASPM.

It is therefore necessary to study the effects of such aberrations and to model the

beams that we can produce in the lab. Currently, almost the entirety of the litera-

ture investigating high intensity OAM-plasma interactions uses perfectly symmetric

OAM donut modes, leading to results that may not be properly representative if an

asymmetric beam is actually generated.

In this section, we seek to model asymmetric OAM beams similar to those found

in the experimental results. To do this, we first take a standard LG mode with p = 0,

and perturb it by an azimuthally varying amplitude transmission function,

T = 1 + δ cos(mθ) (5.25)

where δ is a small perturbation parameter, and m is the order of the azimuthal

perturbation we want to apply. If we multiply this perturbation with a simplified LG

mode, we get a perturbed wavefunction,

ψ(r, L)P =
2√
α|L|!

1

w0

(
r
√

2

w0

)|L|
eiLθexp

(
− r

2

w2
0

)
(1 + δ cos(mθ)) (5.26)
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where the P subscript indicates that it is the perturbed wavefunction. We normalize

the mode such that,

1 = 〈ψP |ψP 〉 (5.27)

and find the normalization factor to be given by,

α = 2π + πδ2 +
δ

2m
sin(2πm) [δ cos(2πm) + 4] (5.28)

It is clear from the normalization constant that if m is an integer, the constant

becomes much simpler. While in principle m could be any value, we restrict it to be

an integer for reasons discussed shortly.

Fig.5.20 gives some example focal spot distributions of the wavefunction for var-

ious value of L, δ, and m. By varying the parameters of δ and m, it is possible to

generate a large variety of focal spots that can be used to represent the focus found

in the experiment realistically. For instance, if we consider tile a) in Fig.5.20, we find

that this qualitatively represents the result found in tile d) of Fig.5.17.

We find suitable perturbation parameters for ψP for each of the experimental

focal spots in Fig.5.17. These are given in Fig.5.21, and although not a perfect

model, it is a first order approximation to modelling the beam asymmetries. We find

that the model for the f/13 result in tiles a) and b) works well and utilizes a small

perturbation strength of δ = 0.1 and an azimuthal variation of m = 1. We find that

the same perturbation parameters are also suitable for modelling the f/4 focused

L = −1 beam as shown in tiles c) and d).

The beam asymmetries in the f/4, L = 2 focal spots has a 3-fold symmetry so

we opt to set m = 3. To obtain the azimuthal modulation, we set δ = 0.15 as shown

in tiles e) and f). We find the perturbed solution resembles the experimental result

remarkably well, and now examine on how to implement these into simulations.
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a) 

e) f) 

d) c) 

b) 

Figure 5.20: Perturbed Laguerre-Gaussian modes by the function T = 1 + δ cos(mθ).

The relevant beam parameters are given in the title of each tile.
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a) 

e) f) 

d) c) 

b) 

Figure 5.21: Experimental OAM focal spots (a,c,e) and suitable perturbed Laguerre-

Gaussian modes (b,d,f) for modelling the focal spot. The relevant experimental and

perturbation parameters are listed above each tile.

Clearly, if δ 6= 0 and m 6= 0, the wavefunction ψP is not a valid solution to the

Helmholtz equation and do not represent modes that preserve their shape as they

propagate in free space. We therefore must decompose the perturbed wavefunction
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into a linear superposition of modes that do satisfy the Helmholtz equation. To do

this, we use a similar method to that in chapter 2 and decompose the perturbed wave-

function into adjacent Laguerre Gaussian ` modes. The mode conversion efficiency

of each adjacent mode is then given by,

η = |〈ψ`|ψP 〉|2 (5.29)

As before, we separate the integral into two components: the radial integral and

the azimuthal integral. The radial integral is similar to that in Eq.2.74, but the

azimuthal integral is slightly more complicated. As we are decomposing a perturbed

Laguerre Gaussian mode into normal Laguerre Gaussian, we find that it is most

efficient to match the beam waists of the LG modes from the perturbed wavefunction

into the regular LG modes. In other words win = wout and we omit the need of an

optimal beam waist ratio.

The conversion efficiency to the `th mode is then given by,

√
η =

Γ(µ)√
2π|`|!|L|!α

∫ 2π

0

(1 + δ cos(mθ)) ei(L−`)θdθ (5.30)

where µ is given by,

µ =
|`|
2

+
|L|
2

+ 1 (5.31)

If we substitute the value of H = L − `, we find that the azimuthal integral can be

solved analytically,∫ 2π

0

(1 + δ cos(mθ)) ei(L−`)θdθ =

iδ
[
H + ei2πH(−H cos(2πm) + im sin(2πm))

]
(H −m)(H +m)

+
i

H

(
1− ei2πH

) (5.32)

We find that there are an infinite number of solutions if m,L 6∈ Z, but if we confine

our perturbation such that L,m ∈ Z, then there are only 3 non-trivial solutions to

the integral.

If H = L− ` = 0, then the mode conversion efficiency can be given as,

ηH=0 =

(
1 +

δ2

2

)−1

(5.33)
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Table 5.2: Mode conversion efficiencies to Laguerre Gaussian modes from a perturbed
Laguerre Gaussian function with perturbation (1 + δ cos(mθ))

L,m, δ `1, η1 `2, η2 `3, η3

∑
η

1, 1, 0.1 1, 0.995 0, 0.002 2, 0.002 0.999
2, 3, 0.15 2, 0.989 −1, 0.005 5, 0.003 0.997
1, 3, 0.25 1, 0.970 −2, 0.013 4, 0.007 0.990
1, 5, 0.5 1, 0.889 −4, 0.026 6, 0.010 0.925
4, 4, 0.2 4, 0.980 0, 0.002 8, 0.005 0.987

where as if |H| = |m|, we find,

η|H|=|m| =
Γ2 (µ)

2|L|!|`|!

(
1 +

2

δ2

)−1

(5.34)

and η = 0 if the above conditions on H are not met.

Therefore, if m = 1 and L = 1, we find the 3 LG modes required to model the

focal spot are ` = 0, 1, 2. It is interesting to note that the conversion efficiency is

independent of m. Table 5.2 gives some example conversion efficiencies for small δ

and m values. Column 1 gives the perturbation values, while columns 2-4 give the

required modes to compose the perturbed solution. The fifth column gives the sum

of the conversion efficiencies.

Although we have been able to convert to just 3 ` modes, the sum of the modes

energy does not equate one as seen in column 5. This is due to energy lost to higher

order p modes not included in the calculation. If δ is small (/ 0.5), we find that the

90% of the energy is accounted for in the 3 ` modes which should be sufficient for

modelling. From Fig.5.21, we find that the value of δ needed to model the beams is

typically small ≈ 0.15, so almost all the energy is accounted for.

To construct the modes, they are summed together, and then squared to find

the intensity profile of the beam. This is shown in Fig.5.22 where the left tiles

show the perturbed LG mode, and the right panels show the constructed LG mode

representations. In tiles a) and b) we find an almost exact representation of the focal

spot with the summed LG modes, and the peak intensity is well matched between

the two.

However as we increase either m or δ, we find that the the discrepancy between

the perturbed wavefunction and the summed LG modes gets worse. Tiles c) and

d) show the perturbed wavefunction and summed wavefunction for the model of the
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L = 2 experimental result. While we find a good recreation of the focal spot, its clear

that it is not exactly the same and there is a significant decrease in the peak intensity

of the beam. Tiles e) and f) show the extreme case of δ = 0.25 and m = 3 were we

see the perturbed wavefunction gives a lobed focal spot. The LG reconstruction of

this focal spot is slightly different and has a significantly weaker peak intensity.

Given the 3 LG modes required to mode an asymmetric focus, it is possible to

import the wavefunctions into PIC code simulations like EPOCH and model how the

asymmetry affects laser-plasma interactions and the coupling of angular momentum.

Given that the m = 1, δ = 0.1, L = 1 case can be represented by an LG mode

with 99.5% of its original energy, we dont expect there to be a significant change

to the interaction. However, things like self-focussing and electron self injection into

a wakefield may be enhanced due to the asymmetry. We will explore the effect of

asymmetric OAM modes numerically when analyzing experimental results in the next

2 chapters.

5.7 Conclusions

In this chapter, we introduced the concept of the off-axis spiral phase mirror, our

solution to the problem of generating high intensity OAM beams with ultra-fast

lasers. We demonstrated that the OASPM was a cost effective optic producing high

quality OAM beams, and yielded the highest intensity OAM focal spots to date for

the both the ` = 1 and ` = 2 modes.

Like previous results in generating high-intensity OAM modes, the modes are not

perfectly symmetric around the ring, and instead often have one or more hot-spots.

These hot-spots are thought to be a result of spatial inhomogeneities in the laser

near-field wavefront and intensity profile, defects in the mirror from manufacturing,

and due to focussing aberrations such as astigmatism, coma, and trefoil.

To model the asymmetric donut modes, a perturbative model was developed.

This model decomposes an asymmetric donut mode into three constituent LG modes,

which can be easily implemented into numerical modelling.
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a) 

e) f) 

d) c) 

b) 

Figure 5.22: a) c) and e), perturbed wavefunctions with perturbation parameters

given in the title. b) d) and f), composed Laguerre Gaussian modes to represent the

perturbed wavefunctions.
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Chapter 6

Wakefield Acceleration with

Optical Vortices

Now that we have been able to demonstrate the successful generation of OAM modes

at high power, we seek to investigate how they can be used experimentally and nu-

merically to possibly enhance laser plasma interactions over the next two chapters.

In a 2018 campaign at CLPU using the VEGA2 200TW laser [166], we used var-

ious OAM modes to drive wakefield accelerated electrons observing changes in the

electron spectrum and divergence, and the betatron spectrum and divergence. To

our knowledge, this was the first time OAM modes had been used to drive wakefield

acceleration.

In this chapter, we first discuss the experimental setup and diagnostics used in

the experiment. We then give some results of the experiment and compare to sim-

ulation predictions. Given that this was the first experiment of its kind performed,

a second follow up experiment with improved diagnostics is required to confirm the

observations made.

The work in this chapter has not yet been published in a peer reviewed jour-

nal, however it has been presented at multiple international conferences including the

American Physical Society Division of Plasma Physics conference in 2018, the Confer-

ence on the Frontiers of Plasma Physics and Technology in 2019, and the Conference

on Laser Interaction with Matter in 2018. Results of the betatron radiation and the

numerical simulations are planned to be published in the near future.
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6.1 Introduction

As discussed in chapter 4, wakefield acceleration of electrons from high intensity, ul-

trafast lasers is an area of intense research given the potential applications of the

generated electron beams and betatron radiation [4]. Many schemes have been in-

troduced to enhance the electron energies, for example by extending the interaction

length using plasma channels [57]. Alternatively the interaction could be enhanced

by modifying the wakefield regime from the previously discussed blow-out regime to

self-modulated wakefields [90] or using direct laser acceleration schemes [137] which

have been shown to enhance the brightness and energy spectrum of the emitted x-ray

pulses. As the x-ray pulses are ultrafast, they can be used for many applications such

as probing of warm-dense matter [109, 110, 108], or high resolution imaging [14, 72],

to name a few.

Using OAM modes to drive the interaction can have some advantages over driving

wakefields with Gaussian and Airy beams, such as focussing and guiding positrons

[164], and for the generation of twisted radiation [177, 106]. To quantitatively verify

that an OAM beam can generate stable wakefield donut bubbles and propagate in a

plasma without breakup can be difficult experimentally given the spatial scales and

duration of the interaction. We can however look to use diagnostics that can be used

to infer processes taking place in the interaction. To do this, we have implemented an

electron spectrometer that doubles as a device to measure electron far-field divergence.

We also used an x-ray CCD camera with a stepped x-ray attenuation filter to estimate

the x-ray brightness and its critical energy. A low noise CCD imaging a lanex screen

was used to measure the x-ray divergence in addition to a second x-ray CCD with a

larger CCD chip to observe off-axis x-ray emission. A Faraday probe was also used

utilizing the second harmonic of the VEGA2 probe beam on a delay line to measure

any axial magnetic field generated.

6.2 Experimental Setup

6.2.1 VEGA2 Laser System

The VEGA2 laser at the CLPU is a 200TW titanium sapphire laser producing 6J

laser pulses before compression with a diameter of approximately 100mm. The beam

has an 80nm bandwidth allowing for it to be compressed to approximately 30fs in
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duration. After compression the beam is transported to the main interaction chamber

where we find that approximately 42% of the laser energy is delivered to the focus of

the laser. These energy losses can be attributed to the compressor efficiency (≈ 70%),

10% lost in the probe beam splitter, and losses on the gold coated optics which vary

in reflectivity due to various incidence angles, that are of order 98% reflective each.

The energy at the focal spot of the laser was measured using a Standa 11QE95 laser

energy detector and compared to various other points in the laser beam line. These

measurements were done at a reduced laser power level for safety precautions.

The primary interaction chamber used in the VEGA2 laser system at CLPU has

a diameter of 1200mm with various ports for access in the laser plane and above the

laser plane looking to the target chamber center. A f = 1300mm off-axis parabola

is used to focus the laser with an f/# of approximately 13. This results in a long

Rayleigh range (≈ mm) suitable for wakefield acceleration. Self focussing and guiding

of the laser pulse extends this interaction length over many millimeters enhancing

the electron energy gain. An illustration of the laser geometry, and the diagnostics is

given in Fig.6.1. Additional details like the beam splitter for the probe, and vacuum

chambers have been omitted for clarity. It is noted that the vacuum chamber housing

the OASPM, and the off-axis parabola can be isolated from the main interaction

chamber allowing it to be pumped and vented separately. This was necessary so that

the OASPM could be interchanged quickly during the day and only causing a 30-60

minute downtime of the system.
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Figure 6.1: Wakefield experimental setup: a) OASPM mirror on fast exchange mount,

b) laser block, c1) alignment camera, c2) focal spot imaging camera, c3) Faraday

rotation imaging camera, c4) electron spectrometer imaging, c5) Greateyes X-ray

CCD and filter stack, e) electron beam, f1) 2000mm lens, f2) 1000mm lens, f3) 50mm,

f/2.8 camera objective, g) ejected laser/x-ray beam, j) gas jet on 3 axis translation

stage, l) light-tight electron spectrometer housing with lanex screen attached at the

front (indicated in green), m1) gold mirror, m2) 400nm dielectric mirror, ma) 1.2T

magnet, o) 10x microscope objective, p) f/13, 30◦ off-axis parabola, rw) Wollaston

prism in rotational mount, s) second harmonic probe beam, t) translation mount, w)

Wollaston prism, x) betatron X-ray beam

Fig.6.1 is an extension to Fig.5.17, but now the laser is focussing into a gas jet

instead of an imaging camera. The gas jet injects high pressure bursts of helium

mixed with traces of nitrogen from which the laser can generate plasma with electron

densities up to approximately 1 × 1019cm−3. The mixture ratio of the helium and

nitrogen is set at roughly 99:1. This allows for some electrons to be injected through

ionization injection via the inner shell electrons in nitrogen. Any laser light not

absorbed in the interaction is absorbed or reflected from an aluminum foil beam block

b as shown in Fig.6.1. The accelerated electrons are separated from the betatron x-

rays by using a 1.2 Tesla permanent magnet that spectrally disperses them onto a
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lanex fluorescence screen, which is then imaged by a low noise sCMOS Andor Zyla

camera.

The probe line of the VEGA2 uses approximately 10% of the main beam energy

via a beamsplitter, reduced in spot size to roughly 1cm and frequency doubled using a

beta-barium borate (BBO) crystal. The temporal overlap of the probe with the main

laser pulse at focus is adjusted using the retro-reflecting mirrors on the translation

stage. The probe is orientated such that its k-vector is as close to a collinear with

main beam as possible with a crossing angle of ≈ 1◦.

6.2.2 Gas Nozzles

Gas was injected into the vacuum chamber using a Parker solenoid valve fitted with

a conical nozzle machined from brass. The conical nozzle is machined with a conical

expansion section and a throat diameter of 800µm expanding to 5mm allowing for the

gas flow to become supersonic. This supersonic flow gives the advantage of producing

a hard density edge in vacuum for regions close to the nozzle exit.

Using a simple model, we can estimate the Mach number of the flow inside and

outside of the nozzle given the heat capacity ratio of the gas being injected γc. For a

supersonic nozzle of throat area A∗, we find the Mach number M can be determined

by,

A

A∗
=

1

M

[
2 + (γc − 1)M2

γc + 1

] γc+1
2(γc−1)

(6.1)

where A is the cross sectional area in the plane of interest. If we want to consider the

gas flow outside of the nozzle into the vacuum, we can estimate the cross-sectional

area by assuming the gas will expand into a cone of half-angle,

sin(α) =
1

M
(6.2)

Knowing the Mach number for regions close to the nozzle exit allows us to estimate

the density by the formula,

ρ

ρ0

=

[
1 +

γc − 1

2
M2

]− 1
γc−1

(6.3)
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where the initial density is calculated at the nozzle throat using the ideal gas law,

ρ0 =
P0

kBT0

(6.4)

where we assume the gas is initially at room temperature (T0 ≈ 300K), kB is Boltz-

mann’s constant and P0 is the pressure of the gas in the valve. Depending on the

gas, we find that the density and Mach number as it expands into vacuum can vary.

This is due to the ratio of specific heats changing from monatomic gases to diatomic

gasses. In the experiment at CLPU, a mixture of helium and nitrogen was used with

a mix ratio of approximately 99:1 respectively. The ratio of specific heats for helium

is found to be γc = 5/3, while for nitrogen molecules it is found to be γc = 7/5.

The nozzles used in the experiment had a nozzle conical half angle of 11.31◦

and an exit diameter of 5mm. Using these values, and a range of backing pressures

used in the experiment from 5-50Bar, we are able to estimate the gas density in the

interaction region of interest. Figure 6.2 shows the estimated gas number density

profile for a pressure of 50Bar at room temperature in the nozzle throat, and the

predicted electron number density as a function of height above the gas nozzle for a

mixture of 99:1 helium and nitrogen.

From an experimental imaging system, the laser was determined to be interacting

with gas approximately 1.7mm above the nozzle exit. Fig. 6.3 gives the estimated

electron density as a function of nozzle throat pressure at 1.7mm above the nozzle

exit.
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a) b) 

Figure 6.2: Analytic estimates for a) molecular gas density, and b) the total electron

density from the gas jet assuming complete ionization of both helium and nitrogen

for a backing pressure of 50Bar.

Figure 6.3: Estimated electron density 1.7mm above the gas nozzle exit as a function

of backing pressure.

The assumptions made in the model requires knowing the actual pressure at the

nozzle throat, and assumes a perfectly smooth surface inside the nozzle which is not

the case for the real nozzle. We must therefore look to compare the analytic model
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to measurements in the lab. Measurements of the gas density were made using a

Mach-Zehnder interferometer using pure nitrogen given its higher refractive index.

The density of the gas is then inferred using an Abel transform [59] performed by C.

Salgado at CLPU. Assuming the gas jet to be axially symmetric, we can use a radial

Abel inversion to predict the refractive index of the gas given by,

Φ(x) =
4π

λ0

∫ r0

x

(ηr(r)− 1)rdr

(x2 − r2)1/2
(6.5)

where Φ(x) is the phase shift, x is the transverse coordinate, and ηr(r) is the refractive

index of the gas as a function of pressure (radius). From the refractive index, it is

possible to infer the molecular density using measured values [18]. Measurements

were made for a range of backing pressures for nitrogen gas, with an example density

map given in Fig.6.4 a). Here we find the gas density to be vertically stratified due

to the uncertainty of the density from the Abel inversion. As the uncertainty of the

Abel inversion is inversely proportional to the radius, we are mostly concerned with

the density gradient towards the edge of the gas plume. There are high density gas

regions at the outer edges of image and are thought to be due to aberrations in the

imaging system.

A lineout of the gas density at y = 1.7mm (red dashed line in tile a) is taken and

plotted in blue in tile b) of Fig.6.4. A super Gaussian density profile is fitted to this

lineout weighted as a function of radius, this ensures that the fit is weighted to the

areas of higher precision. We find that for 30Bar of backing pressure, the gas plume

is suitably described by the equation,

n = n0exp

(
− x14

[2700µm]14

)
(6.6)

where n0 is the maximum gas density, found to be 1.3×1018cm−3 for a 30Bar backing

pressure.
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a) 

b) 

Figure 6.4: a) Measured nitrogen density with 30Bar backing pressure. Density is

measured from the top of the nozzle. b) Lineout of gas density (blue) located at

1.7mm (red dashed line in a). The red line represents a weighted fit to the data using

a super-Gaussian.

Using pure nitrogen molecules in our analytic model, we find that for the same

backing pressure of 30Bar, the estimated gas pressure is much higher - about 4.0 ×
1018cm−3 which is roughly 3 times higher than that measured. The reason for this

discrepancy is due to assuming the nozzle throat pressure is equal to the backing

pressure, uncertainties in the orifice diameter, and surface roughness inside the nozzle

walls. We therefore assume that the density of helium is also roughly 3 times less
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than the analytic model, although this has not been confirmed experimentally yet.

Assuming that after self focussing the laser intensity surpasses 1 × 1019cm−3, we

can estimate the electron density to be 2.12 times greater than the molecular density

of a mixture of 99:1 helium-nitrogen. Using the values of the peak gas density in the

measured profiles, we plot the electron density as a function of backing pressure in

Fig.6.5. Here we find a linear increase in electron density as a function of backing

pressure as predicted in Fig.6.3. The estimated electron density in the interaction

region 1.7mm above the nozzle is then found to be,

ne[cm
−3] = P [Bar] · 8.112× 1016 + 5.783× 1017 (6.7)

This is then combined with Eq.6.6 to give a first order estimate of the electron density

in the interaction.

Figure 6.5: Estimated electron density as a function of backing pressure for a 99:1

helium-nitrogen mixture. The red dashed line gives a linear fit with parameters given

in legend.

6.2.3 Focal Spots

The focal spots obtained by the 10x objective have been given previously in Fig.5.18.

While we do not show the spots again here, we plot the cumulative energy distribution

as a function of radius given in Fig.6.7. Here the diffraction limited spots are plotted

with dashes, while the experimental data is plotted as solid lines. All profiles have
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assumed the same total power (100TW) reaches focus, and hence all tend to the same

value as r →∞. The solid red line indicates the 50% energy point radius. The values

of the 50% energy radius are given in Table 6.1

Figure 6.6: Cumulative energy distributions for the focal spots found in Fig.5.18.

The dashed lines indicate the diffraction limited spots, while the solid lines give the

experimental results. The solid red line represents the 50% energy cutoff.

Given the vacuum parameters in Table 6.1, and assuming the only power that

contributes to self-focussing comes from within the first Airy null, it is possible to

estimate the peak intensity, and beam waist of the laser after self focussing in plasma.

If we assume a plasma density of 3.5× 1018cm−3, slightly more than estimated from

Fig.6.5, we can calculate the critical power for self focussing in the plasma using

Eq.4.20. The peak intensity of the beam is then estimated using Eq.4.23 and converted

to Wcm−2. These values are given in Table 6.1.

Assuming the beams are generated by Gaussian near-field beams, we can use

the values of γ̄ and η from Table’s 2.2 and 2.3 to calculate the beam waist that

would ensure that both the peak intensity is maintained, and the radius ensures the

correct amount of energy in the beam according to Table 6.1. We note that given
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Table 6.1: Vacuum and self-focussed parameters of the beams given in Fig.5.18.
Parameter L = 0 L = 1 L = 2

Peak Intensity (Vacuum) [Wcm−2] 8× 1018 2.5× 1018 1.5× 1018

50% Energy Radius [µm] 29 34 38.5
1st Airy Null Radius [µm] 16.5 28 29

Laser Power within First Null [TW ] 29 41 35
Critical power (@3.5× 1018cm−3) [TW ] 7.77 31.07 62.14

a0 (self-focussed) 3.10 2.19 1.65
Isf [Wcm−2] 2.08× 1019 1.04× 1019 5.89× 1018

w0−sf [µm] 9.4 9.4 10.1
m, δ 0, 0 1, 0.1 1, 0.3
`1, η1 0, 1 1, 0.995 2, 0.957
`2, η2 N/A 0, 0.002 1, 0.019
`3, η3 N/A 2, 0.002 3, 0.019

the parameters of beam waist in Table 6.1, it is possible to simulate the L = 0 mode

and the L = 1 mode using the EPOCH simulation deck that we have been previously

using. However we find that with the increased beam radius and the increase in ring

size due to additional OAM, simulating the L = 2 mode becomes difficult due to

strong interactions of the OAM mode with the boundary conditions.

To simulate asymmetric OAM beams, we estimate the perturbation parameters

δ,m, as given in Table 6.1, similar to what was found in Fig.5.21. The modal de-

composition of the perturbed LG modes is performed and given at the end of Table

6.1. Simulations using both perturbed and non-perturbed LG10 modes were per-

formed using a shortened super Gaussian electron density profile with peak density

of 3.5 × 1018cm−3 and width 700µm. The simulations results will be presented and

compared to the experimental results in the results section of this chapter.

6.3 Diagnostics

6.3.1 Electron Spectrometer

After the electrons are accelerated through the wakefield within the gas jet plume,

they are ejected with the laser beam and the betatron X-rays. To measure the

electron energy, we utilize a simple 1.2T permanent dipole magnet with the magnetic

field oriented perpendicular to the electron beam velocity vector. The magnetic field

disperses the electrons according to their energy, after which they strike a Kodak
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medium grade Lanex screen which is activated by the electrons and fluoresces at

546nm, as illustrated in Fig.6.1. The Lanex screen has been previously calibrated

by another group using a known electron source allowing for the conversion of the

emission brightness of the film to electron charge per unit area [26]. The 546nm light

is then re-imaged onto a high sensitivity sCMOS camera through which the losses due

to vacuum chamber windows, imaging systems, and the camera quantum efficiency

are accounted for.

Modelling of the electron trajectories through a magnetic field can be calculated to

first order assuming a constant, homogeneous magnetic field throughout the magnet

and assuming no fringing fields at the magnet edges. While this is useful to compute

as a first order approximation, a detailed analysis including magnetic field gradients,

and fringing fields outside of the magnet should be carried out for an accurate estimate

of the spectrometer dispersion relation, and the corresponding resolution.

The magnetic field of the permanent magnet is scanned using a Hall probe, and

tabulated into a 2D map, as shown in Fig.6.7. To account for an electron passing

through a magnetic field gradient, it is necessary to integrate its trajectory numeri-

cally, similar to what was done with the single particle integrator in Chapter 3. This

also allows for more complex, and divergent trajectories to be simulated through the

spectrometer allowing estimates to be made on the spectrometer resolution.

Figure 6.7: Magnetic field map of the magnetic electron spectrometer at CLPU. The

electron enters from the left at position (0,0).
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The magnet was eventually rotated 30 degrees about the laser axis to deflect elec-

trons downwards towards the ground rather than into the walls to reduce bremsstrahlung

radiation and neutron generation. This rotation turned the essentially 2D spectrom-

eter mapping problem into a 3D problem. Additionally, the lanex detection screen

was mounted 22.5degrees relative to the perpendicular of the laser axis as shown in

Fig.6.1 and Fig.6.8. Accounting for these geometries, the electron trajectories can

be computed, and their displacement from the laser axis on the lanex screen deter-

mines their energy. The 2D geometries are plotted in Fig.6.8 with the dipole magnet

placement in yellow and the lanex shown in green.

B 

Figure 6.8: Sample trajectories of electrons with half angle divergences up to 10mrad

passing through the magnetic spectrometer and striking the green lanex screen on

the right.
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Figure 6.9: Electron displacement maps as seen by the Lanex screen. 1000 electrons

are randomly assigned energies within a divergence angle cone of half angle 10mrad.

The colorbar indicates the initial energy of each electron.

If instead we plot the lanex screen as seen by the camera, we can see the electrons

scattered as a function of their energy as shown in Fig.6.9. Here, 1000 electrons are

injected into the simulation with a random energy, and a random divergence within a

cone of half angle 10mrad. It is clear to see some of the limitations of the resolution

of the spectrometer, particularly for high energy electrons. To model the electron

energy, several simulations were run for various divergence angles. The dispersion

relation was found for the electrons with zero initial divergence, while upper and

lower bounds on the dispersion relation were found for 10mrad divergence electrons.

Theses results are summarized in Fig.6.10.
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Figure 6.10: Electron spectrometer dispersion relation, with resolution indicated in

yellow for a 10mrad divergence beam.

The dispersion relation was found to be,

E[MeV ] =
4846

∆y[mm]− 0.049
(6.8)

while the resolution for a 10mrad beam is given by,

δE[MeV ] =
4846

∆y[mm]− 0.049
− 4797

∆y[mm]− 2.900
(6.9)

This resolution is indicated in Fig.6.10 by the yellow shaded area. Further corrections

can be made to resolution if one was to include the energy dependence on divergence,

but here we assume the divergence is independent of electron energy.

In order to determine the uncertainty in energies determined by the electron spec-

trometer, we must determine the shot to shot variations in the electron beam point-

ing. This is estimated from the standard deviation of the mean of the centre point

of electron beams driven by a TEM mode. Experimentally, it was found that the

electron beam pointing variation of roughly δy = 2.4mm, yielding the uncertainty of

the electron energy,

δE[MeV ] =
11630

(∆y[mm]− 0.049)2
(6.10)
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Figure 6.11: Example electron spectra for 10 shots from an LG10 drive beam. The

red dotted line indicates the electron temperature, and the black dash-dot represents

the 5% of max dQ/dE cutoff. The total charge detected is given in the legend.

To measure the electron energy from the spectral plots, the image is post pro-

cessed to remove background and x-ray noise, and then interpolated using Eq.6.8.

An example electron spectrum driven by an LG10 mode with electron density ne ≈
1× 1018cm−3 averaged over 10 shots is given in Fig. 6.11. Here, an electron temper-

ature has been fitted to the spectra using the formula,

dQ

dE
∝ e

− E
kBT (6.11)

We find for the shots in Fig.6.11, the average electron temperature is ≈ 215MeV . The

total charge from the shot is estimated by integrating over the spectrum, in which we

find the estimated charge is approximately 6.13nC. The error in the charge is found

from the lanex calibration [26], the lanex imaging system errors and background

subtraction uncertainty which are estimated to be on the order of 35%. To estimate

the peak electron energy, the electron energy is taken at the point where it is found

to be roughly 5% of the peak electron dQ/dE. For Fig.6.11, this is found to be

633 ± 198MeV . The cutoff energy for various operating conditions is found and

compared in the results section.
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6.3.2 Electron Divergence

The electron divergence is measured using the same system as the electron spec-

trometer, except the spectrometer magnet is removed and the lanex is moved into

the direct path of the laser using a remote control translation stage. The imaging

system onto the lanex screen, and hence the relative calibrations remain the same.

To compare the electron divergence to simulations, we are interested in measuring

several components - this includes the electron beam spot size, the spot shape, and

how many electron spots are present on the detection screen.

We can do this in one of two ways, the first of which is to overlap consecutive

shots without modification. This gives a good estimate of the electron beam pointing

stability, and overall divergence. The second is to overlap shots by aligning the peaks

of electron spots over the top of each other. While this method removes the true

nature of the shot to shot divergence, it allows us to estimate an average spot size

and shape for the electron beam which may be more comparable to simulations.

Fig.6.12 shows the results for 10 shots driven by an LG−10 drive beam with an

electron density of approximately 1 × 1018cm−3. The raw overlap of several spots

is shown in tile a). Here we find multiple electron spots spread out in space, both

from shot to shot pointing variation, but also from multiple electron spots arising

from the interaction - likely due to filamentation and break up of the laser wakefield

into smaller beamlets. By selecting the centre point of each electron spot, or the

centroid of multiple electron spots, we can overlap them. This removes any shot to

shot variation in the electron spots and makes them more suitable for a quantitative

analysis. This can be seen in tile b) where we have been able to reduce the electron

spot to a single spot with some outside noise as opposed to three spots.
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a) b) 

c) 

Figure 6.12: Example electron spot measurements. a) Raw output spots from 10

shots. b) Overlapped spot centroids, the red dash-dot lines indicate the lineout posi-

tions. c) Horizontal and vertical line-outs of b) fitted with Gaussian profiles.

Line-outs are then taken in both the vertical and horizontal directions of the

electron spot as indicated by the red dash-dot lines in tile b). These are then plotted

in tile c) in the solid lines and identified in the legend. Gaussian profiles are then fitted

to each of the line-outs in order to estimate the full-width-half-maximum (FWHM) in

each direction. For the Gaussian fits in Fig.6.12, we find FWHM values of 11.52mrad

and 6.55mrad for the horizontal and vertical directions respectively. Also computed

for each set of shots is the average number of electron spots observed, standard
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deviation of the mean of the position of the electron spot centroid, and any rotation

angle observed in the matched centroid spot. This is achieved by fitting an elliptical

Gaussian to tile b).

6.3.3 X-ray detection

The betatron x-rays generated were measured using several diagnostics included x-ray

CCD’s and a lanex screen being imaged by an intensified CCD camera. However the

only diagnostic to yield results with a good signal-to-noise ratio was the Greateyes x-

ray CCD camera with a stepped filter. This diagnostic allowed for the determination

of the betatron brightness, and the x-ray critical energy.

From chapter 4.5, we discussed the theory of betatron radiation emission and

described the critical energy given by Eq’s 4.52 and 4.54. The textbook synchrotron

spectrum was plotted in Fig.4.23 b) showing the critical energy point in the emitted

spectrum. Measuring an x-ray spectrum can be done in multiple ways including

reimaging the x-rays onto a Bragg-crystal using a Kirkpatrick-Baez microscope [176,

52, 81], using zonal plates[76], or by using its transmission value through various

thicknesses of a material such as aluminum.

In this experiment we use the latter technique using sheets of aluminum shielding

of varying thickness. This is shown in Fig.6.13 tiles a) and b). Here, tile a) gives an

exploded view of the filter stack placed in front of the x-ray CCD chip χ. The outer-

most layer, namely layer α is a 25µm sheet of aluminum mounted on a 4µm sheet of

mylar, it covers the entire CCD and ensures no laser-light can reach the chip. The

second layer β is a 180µm thick aluminum sheet and covers the left half of the chip.

The third layer γ is made of vertical strips of aluminum of thickness 180µm. The last

layer δ is a horizontal strip of aluminum of thickness 90µm. The layers stacked on

top of one another creates a filter stack with 6 unique channels. This can be seen in

tile b) of Fig.6.13. The corresponding layers as indexed in the figure are found to be

4µm of mylar plus the following thicknesses of aluminum: 1 = 385µm, 2 = 205µm,

3 = 475µm, 4 = 295µm, 5 = 205µm, 6 = 25µm, 7 = 295µm, 8 = 115µm.
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Figure 6.13: X-ray CCD filter stack diagram. a) Exploded diagram showing various

layers of the filter: α = 25µmAl + 4µm Mylar, β = 180µm Al, γ = 180µm Al,

δ = 90µm Al, and χ is the x-ray CCD. Tile b) gives the front view of the filter

showing the different regions of thickness, each area thickness is given in the text.

The transmission of the betatron through each thickness of aluminum and My-

lar is computed using Beer’s law [49] and using the mass attenuation coefficient of

aluminium [148]. Convolving the transmission spectra of aluminum with the trans-

mission spectra of Mylar and the response function of the x-ray CCD allows us to

derive a response curve for a given critical energy of the x-rays, and for the thickness

of aluminum. For a given critical energy, the ratio of the mean signal in one channel

in the filter to a reference channel (say the 25µm channel) is well defined and unique.

Given that we have 6 channels on the filter, we can estimate the critical energy of a

bunch of x-ray photons by comparing the mean signals in each channel to a reference

channel and then comparing it to an analytic spectrum. Details of this method are

given in the appendix.

From the critical energy of the x-ray beam and the number of counts in a given

channel, it is possible to estimate the peak brightness of the beam. Typical units of

brightness of a synchrotron x-ray source is given by,

brightness =

(
photons

0.1%BW · srad

)
peak

(6.12)
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where 0.1%BW indicates the number of photons within a bandwidth of 0.1% of the

critical x-ray energy.

6.3.4 Faraday Rotation

As shown in Fig.6.1, a second harmonic probe beam was used to measure any axial

magnetic fields generated within the interaction via Faraday rotation. The probe was

injected close to collinear to the main beam using a small mirror to ensure that it

measured the axial magnetic field. The probe was focussed using two long focal length

lenses ensuring a large focal spot. A fixed Wollaston prism was used upstream from

the interaction area, while one in a remote controlled rotational mount as indicated

by rw in Fig. 6.1. The prism in the rotational mount is adjusted such that the probe

beam is maximally extinguished.

If the probe passes through a magnetic field within the plasma, the plane of

polarization will rotate according to Eq. 4.60 that we will restate here,

φ [deg] = 3.02λ[µm]2
∫ d

0

ne[cm
−3]B[MG]

1021
√

1− ne/nc
dx[µm] (6.13)

We can estimate the rotation of the probe by using a few estimated numbers. For ex-

ample, we can use the laser wavelength of 800nm, a plasma density of 3.5×1018cm−3,

and an interaction length of approximately 1mm. Using the model of the inverse Fara-

day effect from chapter 4, we can estimate the magnetic field generated by the laser

of peak intensity 1× 1019Wcm−2 and ` = 1 with a self focussed beam waist of 9.4µm

as given in Table 6.1. If we assume that the laser energy absorbed is on the order of

4%, we find a peak magnetic field strength of 160T on the laser axis. Plugging this

into Eq.6.13, we find a polarization rotation angle of approximately 11deg per mm of

interaction length. As the polarization is rotated by the Faraday effect, light can now

be transmitted through the second Wollatson prism and be imaged into a camera.

While this polarization rotation angle is quite easy to measure, it assumes a con-

stant magnetic field and a constant electron density throughout the interaction which

is a poor assumption given dynamics of the laser wakefield. For a more suitable mea-

surement, precise details of the interaction length, plasma density in the generated

magnetic field regions, and good knowledge of the magnetic field shape are required.

The plasma density and interaction length could be estimated using a high resolution

interferometer imaging the plasma density. In reality the crossing angle of approxi-
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mately 50 mrad between the Faraday probe and the wakefield plasma would limit the

interaction length with a 20 µm diameter magnetic field column to approximately 400

µm. The actual magnetic field shape and length would need to be estimated using

simulation data, and likely a second diagnostic such as a spectrometer looking for

splitting of the spectral lines from the Zeeman effect might be useful [124].

Alternatively, the probe could be made to be less collinear with the main drive

laser - perhaps at a 45deg angle of incidence. This has the advantage of having a

smaller sampling range in the propagation direction so may be less susceptible to

chaotic magnetic fields as the plasma density ramps up and down, and in regions

where the wakefield is unstable. However, the probe will sample both the axial

magnetic field, and the radial/azimuthal magnetic fields in the plasma which would

need to be de-convolved to obtain just the axial field. As the radial and azimuthal

magnetic fields are typically asymmetric about the laser axis, this could be done by

simply looking for a DC component of the polarization rotation.

While the Faraday probe was set up in the experiment, it did not result in any

data in the end due to technical difficulties with the probe - mostly alignment and

timing overlap issues.

6.3.5 Pulse Duration

A commercial second harmonic autocorrelator [159], was used to adjust the laser

compressor to best compress and measure the laser pulse once in the morning and

once in the afternoon before shots were taken. Ideally, the adjustment in the laser

compressor between morning and afternoon should be small, however a drift was

found day-to-day in the optimal compression position of the gratings. This drift is

likely due to variations in temperature, humidity, and air pressure in the lab.

While we were able to measure and compress the laser optimally once in the morn-

ing and once in the afternoon, the optimal grating position was adjusted throughout

the day based on the inferred drift direction, and the observed electron energies and

total charge. The pulse duration was then estimated based on the relative distance

between the gratings compared to the optimal separation. The optimal position of

the gratings was estimated based on a linear fit of the best grating position as a

function of time based on the morning and afternoon data points. The error in pulse

duration using this method is estimated to be on the order of 30%.
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6.4 Results

6.4.1 Electron Spectrum

Electron spectra was measured for a variety of backing pressures for four different

OAM modes throughout the course of the experimental campaign. It was found that

the results of the L = −1 mirror were not useful due to a defect in the mirror causing

issues with the focal spot and the corresponding data. Given the size of the error

bars, they will be omitted from the following plots as they obstruct information.

Figure 6.14: Peak electron ejection energies as a function of electron density for the

Gaussian mode (blue), the Laguerre-Gaussian ` = 1 mode (red), and the ` = 2 mode

(yellow). Error bars have been removed for clarity.

Fig.6.14 gives the results of the peak electron energy as defined in Fig.6.11 as a

function of electron density for the L = 0, 1 and 2 modes. Here we find a consistent

decrease of peak electron energy as the OAM of the beam is increased at densities

above 1.5 × 1018cm−3. When the density is approximately 1.4 × 1018cm−3 we find

the same cutoff electron energy for each of the modes. It is not clear at this stage

why they all have an equivalent peak ejection energy at this density, but we could

speculate that this density is the optimal density for laser guiding in the plasma for all

the modes. In other words, it is likely due to extended propagation distances where

we find a good balance between laser diffraction, and self-focussing in the plasma.
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An issue with plotting the ejection energy as a function of density alone is that

it ignores the fluctuations in the laser pulse duration and peak intensity. If we take

the peak vacuum intensity of the laser from Table 6.1, and incorporate fluctuations

in the laser pulse duration, and laser energy, we can estimate the peak intensity of

the laser from shot to shot. Plotting the peak electron ejection energy as a function

of the product of electron density and intensity shows a linear relationship for the

three modes as shown in Fig.6.15. The lines of best fit to each of the electron ejection

energies can be given by,

E[MeV ]TEM = −1.2213× 10−35neIpk[Wcm−5] + 856.72 (6.14)

E[MeV ]LG10 = −6.1809× 10−35neIpk[Wcm−5] + 869.02 (6.15)

E[MeV ]LG20 = −2.1029× 10−34neIpk[Wcm−5] + 1135.7 (6.16)

Figure 6.15: Peak electron ejection energies as a function of the product of electron

density and peak laser intensity for the Gaussian mode (blue), the Laguerre-Gaussian

` = 1 mode (red), and the ` = 2 mode (yellow).

While these linear fits made to the peak electron energy are useful to estimate the

scaling of electron energy for the various LG modes, they are only valid for a small

region, and for the intensities used in this experiment. If the intensity is drastically

changed from the values in Table 6.1, the operating regime of the wakefield accelerator
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will change and the scaling laws will no longer be valid. Similarly, we notice there is

a sharp drop off of peak electron energy as the density is further decreased past the

optimal value of 1.4×1018cm−3. This is likely due to the laser no longer self focussing

effectively in the plasma and diffracting quickly.

We can estimate the critical power for self focussing in plasma at 1.4× 1018cm−3

using,

Pc = 17

(
nc
ne

)
4|`|
|`|!(|`|+ 1)!

(2|`|)!
[GW ] (6.17)

From this we find the critical power for the ` = 0, 1, 2 modes as 19, 76, and 151TW re-

spectively. It is clear to see that while the estimated power available for self focussing

is met for the ` = 0 mode with the available power in the first Airy ring according to

Table 6.1, we fall drastically short for the ` = 1 and 2 modes, yet we are still able to

accelerate electrons to the same energy as the ` = 0 mode.

One possible explanation for this is that the asymmetry in the OAM modes is

causing the threshold for self focussing to change from that estimate by Eq.6.17. To

explore this further, three 3D simulations were run using the EPOCH PIC code and

the parameters in Table 6.1 at a density of 3.5× 1018cm−3. The simulations are very

similar to those in Chapter 4 with a super-Gaussian plasma density to emulate the

gas jet profile, albeit much shorter to reduce computational time. Additionally, the

laser beam waist w0 and the peak laser intensity have been set to the estimated self

focussed value in Table 6.1.

Fig.6.16 gives a comparison between the simulated and measured spectra for elec-

tron densities at 3.5 × 1018cm−3 when driven by a Gaussian laser. Here we find an

experimental electron energy cutoff of 723 ± 259MeV (as defined in Fig.6.11 as the

5% of peak dQ/dE), while the numerical estimate for the cutoff is approximately

300MeV . The simulation value disagrees within the error of the experimental result,

likely as an underestimate from the simulation. The total charge is calculated by

integrating under each curve and is found to be 6.8 ± 2.2nC for the experimental

value, and 3.9nC for the simulated value. While these values are slightly outside of

the errorbars of each other, we argue that the simulation is likely an underestimate

in both electron energy and flux due to the limited spatial length of the simulation.

2D simulations could be run over much longer interaction lengths resulting in better

estimates of the electron energy and flux, but these cannot be done for the OAM

modes as the helical wavefront will not be resolved in 2D.
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Figure 6.16: Simulated (blue) and experimental (red) electron spectra driven by a

TEM Gaussian beam in a plasma density of 3.5× 1018cm−3.

If we compare these electron energy values to the estimate found in Lu et.al. [96],

we find an estimate for the peak electron energy of 737MeV assuming 100TW at

focus, almost perfect agreement with the experimental result. If we consider the total

power at focus available for self focussing to be 29TW as suggested in Table 6.1,

we find an estimate of peak electron energy to be 488MeV , closer to the simulated

estimate. We conclude that a peak measured electron energy of 723 ± 259MeV is

therefore not unreasonable and in good agreement with analytic estimate, the simu-

lated value of 300MeV is likely an underestimate. Larger 3D simulations are therefore

needed to effectively simulate the TEM driven wakefield and to encapsulate all the

100TW of power at focus. Alternatively, 2.5D simulations [89] could be used that

can effectively represent both the TEM and LG10 modes in a less computationally

expensive simulation.

If we instead consider the comparison between experiment and simulation for the

LG driven wakefield, we find a larger deviation as shown in Fig.6.17. Here we find

the experimental electron cutoff energy to be 623 ± 192MeV , while the simulated

spectra cuts off at approximately 80MeV . Clearly this is a large discrepancy, and

given the results from the TEM mode, we can infer that it is likely the simulations

causing the discrepancy rather than the experimental data. If we instead consider

the total charge in the electron beam, we find that the experimental value is found

to be 5.3± 1.7nC while the simulation value is found to be 2.7nC.
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Figure 6.17: Simulated (blue) and experimental (red) electron spectra driven by a

LG10 Laguerre Gaussian beam in a plasma density of 3.5× 1018cm−3.

One reason for this discrepancy could be that the OAM mode is asymmetric as

can be seen in Fig.5.17. A third simulation was run that emulated an asymmetric

LG beam using the perturbation parameters given in Fig.5.21 tile b). The electron

spectra from the symmetric and asymmetric OAM beams is given in Fig.6.18. Here

we find a slight enhancement in the ejected electron energy for the asymmetric case

increasing the ejected energy to roughly 90MeV . While this is still a fraction of the

measured electron energy, it does indicate that if the beam is asymmetric, the electron

energy can be enhanced.
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Figure 6.18: Comparison of electron spectra between a symmetric OAM beam (blue)

and an asymmetric OAM beam (red) with perturbation parameters δ = 0.1,m = 1.

The primary issue that we currently face with modelling how OAM beams can

drive wakefield acceleration and other phenomena is how they relativistically self-

focus, particularly if they are asymmetric. If the resultant self-focussed asymmetric

beam is highly asymmetric it may be more suitable to describe it locally as a Gaussian

beam near the hot spot.
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Figure 6.19: Total ejected charge from the wakefield as a function of electron den-

sity. The charge ejected from the Gaussian TEM mode are indicated in blue, while

the charge ejected from the L = 1 and L = 2 modes are shown in red and yellow

respectively.

If we consider the total charge ejected from the experimental wakefields as a

function of density as found in Fig.6.19, we find that generally there is more charge

ejected from the wakefield for the L = 1 beam as compared to the L = 0 beam. This

is likely the result of having a larger accelerating cross sectional area for the OAM

mode, while the asymmetry in the beam aids with injection into the wakefield bubble.

The results from the L = 2 are not enhanced however, likely due to a lower intensity

and a greater asymmetry than the L = 1 beam.

6.4.2 Betatron Spectrum

While we were unable to measure the betatron divergence during the campaign due

to a poor signal-to-noise ratio and larger beam size than the on axis x-ray camera,

we were able to measure the betatron brightness and critical energy of the spectrum.

Fig.6.20 shows the critical betatron energy plotted as a function of the product of

electron density and peak laser intensity.
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Figure 6.20: Betatron critical energy as a function of the product of the electron

density and peak laser intensity. The Gaussian TEM driven betatron is shown in

blue, while the betatron driven by the L = 1 and L = 2 beam are shown in red and

yellow respectively.

Here we see a clear enhancement of betatron critical energy as the OAM of the

laser is increased. The reasons for this increase in betatron critical energy is currently

unknown, but is likely due to the presence of a background magnetic field generated

by the inverse Faraday effect, or additional azimuthal magnetic fields in the ring

bubble. As estimated in section 6.3.4, a background magnetic field of approximately

160T may have been generated from the L = 1 beam. According to the basic formula

for the critical frequency of the synchrotron spectrum given in Eq.4.52 and [75],

ωc =
3

2
γ3

(
c

ρ

)
(6.18)

the critical energy is inversely proportional to the electron orbit radius ρ, which in

turn is inversely proportional to the magnetic field. Therefore the critical frequency

is proportional to the magnetic field within bubble ωc ∝ B [104]. It is clear that

the enhancement in critical energy must be a result of additional magnetic field, as

we know that the average particle energy γ is overall lower for the OAM modes as

observed in Fig.6.14.

While we find that the spectrum of the betatron is enhanced, we find that the

total brightness of x-ray photons are reduced as the OAM in the beam is increased.
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This is shown in Fig. 6.21 where the y-axis units are given as number of photons per

0.1% bandwidth per unit steradian. while the total charge is relatively comparable

from each electron bunch according to Fig.6.19, we estimate that the total number of

electrons available for betatron oscillations, and the total length for the electrons to

oscillate may be decreased. Additionally, it could also be that the total divergence of

the betatron emission increases with the OAM modes.

Figure 6.21: Peak betatron brightness as a function of the product of electron density

and peak laser intensity. The Gaussian TEM driven betatron is shown in blue, while

the betatron driven by the L = 1 and L = 2 beam are shown in red and yellow

respectively.

The total number of photons emitted in a Gaussian driven wakefield can be esti-

mated to be [82],

Nph ≈ Ne
2π

9

e2

~c
N0 (6.19)

where Ne is the total number of electrons available for betatron oscillations and N0

is the number of betatron oscillations each electron will undergo. In the 3D bubble

regime, this can be estimated to be [111],

N0 ≈
√

2a0

3π
√
γ

(
nc
ne

)
(6.20)

Here we find that the total number of betatron oscillations is proportional to the

225



peak laser intensity,
√
a0. This implies that the number of x-ray photons scales as

Nph ∝ I1/4. In vacuum, we find that the peak intensity of the laser for an L = 1

beam is approximately 20% of a Gaussian beam and 9% for the L = 2 beam. This

corresponds to a reduction in brightness of 67% and 55% respectively. After self

focussing, the ratios of laser intensity may be different.

We find from Fig.6.21 that the peak brightness of the L = 1 beam and the L = 2

beam compared to the L = 0 beam is approximately 38% and 18% respectively. In

addition to the reduction in betatron brightness from the reduced number of betatron

oscillations N0, the total number of electrons was likely reduced due to asymmetries in

the beam. In this case, electrons on one side of the OAM ring may perform betatron

oscillations where the laser intensity is larger, whereas on the opposite side, the bubble

may be weaker and the corresponding number of electrons injected into the bubble

may be less. While we did observe that the charge ejected from the wakefield was

similar for the three modes, the average electron energy of each of the beams was

different as indicated by Fig.6.14.

6.4.3 Electron Divergence

From the simulations in Chapter 4, we predicted that the ejected electron beam from

the Gaussian drive beam should be a single electron spot with a narrow divergence.

The electron beam from the L = 1 mode was slightly more complicated as shown in

Fig.4.20b) with multiple spots and a very divergent beam in comparison to the Gaus-

sian driven result. Experimentally, this was not always the case with the Gaussian

driven wakefield often producing multiple electron spots and sometimes the OAM

driven wakefield only producing a single electron spot.

Fig.6.22 gives the average number of electron spots found for each set of shots

with error bars determined by the standard deviation of the mean of the number of

spots. Here, we find that the L = 2 beam produced on average the most electron

spots, while on average, the L = 1 beam produced a similar number of electron

spots to the L = 0 drive. This was likely the result of beam filamentation and

breakup in the plasma causing multiple electron spots in the L = 0 case and beam

asymmetries in the OAM driven cases. The filamentation is primarily a result of a

laser power significantly greater than the critical power in the plasma, but also as

a result of inhomogeneities in the laser wavefront. These wavefront inhomogeneities

can be a result of aberrations of the incoming laser wavefront after amplification and

226



compression, as well as focussing aberrations such as astigmatism and coma in the

beam.

Figure 6.22: Averaged number of ejected electron spots as a function of electron

density. The Gaussian TEM driven wakefield is shown in blue, while the wakefield

driven by the L = 1 and L = 2 beam are shown in red and yellow respectively.

Given the multiple electron spots produced in each shot, and shot to shot electron

pointing variation, it is possible to estimate the divergence of the spots relative to one

another and give an root-mean-square (RMS) spread of the spots. This is useful for

determining the repeatability of the wakefield, but doesn’t give us information about

the change in divergence and the distribution of the electron beams that results

from the presence of OAM. While this shot to shot variation is of interest for a

high repetition laser wakefield accelerator, it is not so useful in determining major

differences in the electron divergence between Gaussian and OAM modes.

To try and better understand the divergence of the spots produced, we can overlap

the centroids of each set of electron spots, which in theory could tell us the change

in divergence of each set of electron spots as a result of OAM in the beam. We find

that overlapping the electron centroids, as shown in Fig.6.12 b), can result in single

electron spots, or multiple spots. We take both a horizontal or a vertical lineout of

the spots and fit it with a Gaussian function. We opt however to primarily use the

vertical Gaussian as it was found there was a significant electron tail to the right

of the electron spot as a result of a fringing magnetic field from the spectrometer
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magnet.

Figure 6.23: Full-Width-Half-Maximums (FWHM) of vertical lineouts of electron

spots. The Gaussian TEM driven wakefield is shown in blue, while the wakefield

driven by the L = 1 and L = 2 beam are shown in red and yellow respectively.

The full-width-half maximum (FWHM) values from the vertical lineouts are plot-

ted in Fig.6.23. If we consider the TEM driven wakefield where filamentation was not

observed according to Fig.6.22, ie. at 2×1018cm−3, we find the average FWHM to be

on the order of 40mrad. This is in good agreement with the result found the simula-

tions with an electron density of 3.5×1018cm−3 as shown in Fig.6.24. The simulations

of a Gaussian driven wakefield did not produce multiple spots as the wavefront used

in the simulation was perfectly flat. The breakup and filamentation of the Gaussian

beam is in agreement with other observations [91, 70].
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a) b) 

Figure 6.24: a) Simulated electron divergence driven by a Gaussian laser. b) Simu-

lated electron divergence driven by a symmetric LG10 laser. Both simulations were

run at an electron density of 3.5× 1018cm−3 using the parameters in table 6.1.

The simulation result of a symmetric L = 1 driven wakefield is given in Fig.6.24

b). Here we see that the overall divergence of the beam is on the order of 60−70mrad.

This spot was not observed experimentally however, as the average FWHM of each

electron spot observed was on the order of 20 - 40mrad. To simulate this, two further

simulations were run using asymmetric LG beams with perturbation parameters δ =

0.1 and m = 1. The results for the asymmetric LG10 and LG−10 are given in Fig.6.25

a) and b) respectively.
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a) b) 

Figure 6.25: a) Simulated electron divergence driven by an asymmetric LG10 beam. b)

Simulated electron divergence driven by an asymmetric LG−10 laser. Both simulations

were run at an electron density of 3.5× 1018cm−3 using the parameters in table 6.1.

Here we find that the large divergent spot from the symmetric driven wakefield

breaks into two smaller spots, rotated one way or the other depending on the handed-

ness of the OAM beam. This indicates two phenomena - clearly there is some coupling

of OAM to the plasma as the rotation of the spot changes with the handedness of

the beam, but also that the beam filaments due to the asymmetry in the intensity of

the beam. We find that the divergence of the larger electron spot is on the order of

30− 40mrad, in agreement with the result found in Fig.6.23.

While in the simulations we found that the asymmetry in the OAM beam only

broke the electron beam into two spots, it indicates that a beam with a larger mod-

ulation parameter in the perturbation (m ≥ 2) could result in more electron spots

being generated as seen in the experiment.

6.5 Conclusions

In conclusion to the experimental investigation of OAM driven wakefield, we have

found that overall electron ejection energy and divergence are not improved when

increasing the OAM in a laser beam as expected from the PIC simulations in chapter 4.

We did find however that the betatron critical energy was enhanced in the interaction
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when increasing OAM content. We find this to be likely a result of an increased

background magnetic field in the wakefield bubble. While we have not been able to

show this increase in critical energy in simulations yet, we plan to pursue exploring

the mechanism behind this enhancement in future work. This could possibly be done

by implementing a new post processing routine for the radiation where the trajectory

of electron is treated as either a set of circles, or as a set of parabolic arcs [157]. The

radiation integrals could then be carried out analytically for each time step of the

electron trajectory.

Although there was a slight increase in the critical energy of the betatron radiation,

the overall flux of photons was however decreased possibly due to the reduction in

intensity of the LG beams, an increase in betatron divergence, and due to the decrease

of electrons contributing to the betatron radiation.
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Chapter 7

Linearly Polarized Optical Vortices

and the Inverse Faraday Effect

In this final chapter, we explore numerically one of the most interesting applications

of OAM driven plasmas - the so called inverse Faraday effect. While we have briefly

discussed the analytic model in Chapter 4, numerical simulations are required to

verify the existence of an OAM driven axial magnetic field, and to characterize its

spatial extent and temporal persistence.

We carry out some of the largest scale 3D PIC simulations to date to investigate

the generation of large axial magnetic fields in the interaction of linearly polarized

OAM modes with underdense plasma. It is shown that indeed large fields up to the

order of 800T can be generated under suitable interaction conditions.

The material in this chapter has not yet been published, but has been presented

in a seminar at Lawrence Livermore National Laboratory, as well as the upcoming

American Physical Society Division of Plasma Physics Conference in 2020. A peer

reviewed publication of the findings is expected shortly after completion of the thesis.

7.1 Introduction

While it has been studied in some detail analytically [5, 64, 88], and in the case of a

circularly polarized beam experimentally [113], the inverse Faraday effect has yet to

be demonstrated numerically or experimentally with linearly polarized laser pulses.

It has been numerically studied for some exotic polarization OAM states (azimuthal

and radial polarization) [117, 116, 21], with multiple overlapped OAM modes [141,
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165], and with seeded magnetic fields [173] to name a few examples.

The primary reason for a lack of numerical verification of linearly polarized light

driving the inverse Faraday effect is that the simulations need to be 3D, and have

large spatial extents to effectively estimate interaction lengths, and persistence of the

magnetic field. Another reason for this lack of observation is that in the equation

derived in chapter 4 (Eq.4.68),

Bz = − 2γ̄2fabs
eneωcw2

0

I(r, `)

[
`

(
w2

0|`|
γ̄2r2

− 2

)
+ σz

(
|`|2w2

0

γ̄2r2
− 2− 4|`|+ 4γ̄2r2

w2
0

)]
(7.1)

is a function of the fraction of the laser intensity absorbed per unit length fabs.

It has been shown to first order that the a linearly polarized beam can transfer

OAM to electrons, but when integrating over one laser cycle, the net angular momen-

tum of the electrons is zero [116]. However, if the equations of motion are integrated

numerically, it was shown in Chapter 3 that the absorption of OAM scales linearly

with the energy absorbed by an electron via the ponderomotive scattering potential

(Eq.3.19),

U =
a2

0

2
mec

2 (7.2)

This infers that the OAM absorption should scale as a function of a2
0 and become

a dominant mechanism of OAM absorption at relativistic intensities, independent of

polarization state. This has been recently remarked by others [158].

There are many scaling laws to explore, including investigating OAM absorption

both as a function of laser intensity and density, the scaling of magnetic field strength

as a function of beam waist and OAM content, and to explore the extent and per-

sistence of the magnetic field for each case. We are limiting ourselves at this point

however to investigating the magnetic field spatial extent and persistence to a single

density and single intensity for three linearly polarized OAM modes; the ` = 0, 1

and 2 cases. Future work will explore the validity of Eq.7.1 as functions of the laser

intensity and plasma density.

To explore the magnetic field generation, several sets of simulations were run using

the EPOCH PIC code [8]. The simulation parameters having been summarized in

Table 7.1 and are identical to the self-focussing simulations run in Chapter 4 and

in Table 4.1. The simulation used a Lagrangian tracking box with a total length of

150µm, and transverse size 40µm×40µm. This ensured that interaction between the

laser and the boundary conditions was minimal. The grid resolution was 37.5nm in
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Table 7.1: Simulation parameters used for inverse Faraday effect.
Parameter Value

Peak Intensity [Wcm−2] 2.5× 1019

ne cm
−3 3× 1019

tFWHM [fs] 100
wLG [µm] 9.6
λ [µm] 1
Te [keV ] 2.6

the propagation direction and 80nm in the transverse directions. The bulk helium

electron temperature was then set to 2.6keV such that the Debye length would be

70nm. While this is slightly lower than the transverse grid resolution, once the

electrons interact with the laser pulse they will heat and the Debye length should

be resolved. Tests of increasing the electron temperature found little change to the

simulation result. It was found however that not resolving the Debye length in the

simulation resulted in a reduction of the generated magnetic field. 2 particles per cell

were used in the simulations resulting in a total number of 2 billion particles in the

simulation.

Two sets of simulations were run, one with symmetric OAM modes, and the other

with an asymmetric mode to test the stability of magnetic field generation in the

presence of a realistic laser pulse.

7.2 Symmetric Drive Beams

To explore the validity of Eq.7.1, we have run two simulations using the parameters

in Table 7.1 and Table 4.1 using linearly polarized beams with charges ` = 1, 2.

Simulations for ` = 0 were run, but yielded no axial magnetic field as expected.

Given the parameters in Table 7.1 we are able to compute the generated magnetic

field if we know the laser energy absorbed per unit length. This variable can vary

greatly depending on the electron density, intensity and OAM content in the beam.

Fig.7.1 gives the laser absorption as a function of time, from which the absorption

per unit length can be estimated for the symmetric ` = 1 and ` = 2 modes.
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Figure 7.1: Fraction of laser energy absorbed verses time for the symmetric ` = 1

(blue) OAM beam and the ` = 2 (red) OAM beam

The simulation is set up such that the Lagrangian window tracks the laser pulse for

850fs, after 850fs the Lagrangian window is frozen and the laser leaves the tracking

box. The evolution of the magnetic field in the plasma and its subsequent decay can

then be observed at that position. From Fig.7.1, we find that for the ` = 1 mode,

6% of the laser energy was absorbed by the plasma until the laser left the simulation

window, while for the ` = 2 mode, 6.4% of the energy is absorbed. The length of

the box was 150µm giving a temporal window of 500fs for laser absorption. Given

that the time of laser absorption starts at approximately 300fs, we assume that the

6% of absorbed laser energy accounts for the entirety of the magnetic field generated

within the Lagrangian box.

Fig.7.2 shows the generated magnetic field from the ` = 1 mode at 1ps of sim-

ulation time, almost immediately after the laser pulse left the simulation window.

Here we see a long cylindrical magnetic field with an average peak strength upwards

of 1000T . Remarkably, the length of the magnetic field is on the order of 100µm,

at least 10 times that found in previous simulations [88, 173, 141, 117] and in good

agreement with that found in the experimental findings of circular polarization driven

inverse Faraday effect [113]. If we follow the laser in the Lagrangian window, instead

of stopping to see the magnetic field evolve as in Fig.7.2, we find that the mag-

netic field generation slows and stops after the laser propagates further and starts to
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diffract.

Figure 7.2: 2D slice of the axial magnetic field generated from the inverse Faraday

effect while driven by an ` = 1 OAM mode at time 1ps.

We find that the Rayleigh length, given by z0 = kw2
0/2 is on the order of 200µm

for a wavelength of 1µm and a beam waist of 8µm as given as the starting parameter

for the entering laser beam in the simulation. This length is similar to the range

over which the magnetic field was formed within the plasma. This indicates that the

length of magnetic field may be limited to the range of self-focussing in the plasma,

and may be extended using a plasma channel, or by fine tuning of the plasma density

such that the laser self-guides over longer distances.

If we instead use a 3D isosurface to visualize the magnetic field, we can infer

its overall shape and any features that may be present. Fig.7.3 gives the −300T

isosurface of the axial magnetic field at time 1ps. It is clear to see the cylindrical

structure of the field, but now we can see a slight twisting of the field due to a forward

drift of the electrons as they orbit behind the laser pulse.
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Figure 7.3: Axial magnetic field isosurface of value −300T driven by an ` = 1 mode

at 1ps.

The motion of the electrons to cause this corkscrew magnetic field must have both

an azimuthal current density Jθ and a forward current density Jx. The Jθ component

is clearly due to the OAM transfer to the electrons, while the Jx component likely

comes from the laser ponderomotive force and wakefield acceleration. This corkscrew

motion of the electrons and the magnetic field generation can lead to a screw pinch

instability [51]. The screw pinch is essentially a hybrid of combining both the θ

pinch and Z pinch configurations. Further work is needed to characterize this pinch

generation in a laser driven plasma, and determine its dependence on OAM mode

charge, plasma density, and laser intensity.

To compare the magnetic field strength to analytic calculations, we need to take

radial line-outs of the magnetic field. Given the asymmetries in the magnetic field, we

chose to average azimuthally each point along the radius, and then take the longitu-

dinal average of the field between x = 156µm and x = 206µm. Plotting the magnetic

field profile as a function of radius over this range is given in Fig.7.4 in blue. Here we

find good agreement between the theory shown by a red dashed line, and numerical

result with the analytic result being a slight underestimate of the simulation.

This discrepancy is likely due to several factors, the first being the assumption

that the electron density is not modified during the interaction in the analytic model.

It is found from the simulations that often the electron density can be reduced by

more than 50% due to the ponderomotive force sweeping the electrons away from the

237



interaction. Another reason is that the laser intensity likely self focussed to a higher

intensity in the plasma. Both of these mechanisms would account for a stronger

magnetic field according to Eq.7.1.

Figure 7.4: Comparison between the analytic and numerical model for the inverse

Faraday effect driven by an ` = 1 OAM mode at 1ps. The numerical magnetic field

is azimuthally averaged over 2π radians and longitudinally averaged between 156µm

and 206µm according to Fig.7.2.

After the laser has left the simulation box, the magnetic field evolves in time.

Fig.7.5 gives the magnetic field measured at 2.34ps in the simulation time. Here we

see the magnetic field has lost significant strength compared to the values shown in

Fig.7.2. Additionally, we find that the magnetic field now has kinks in it, likely a

result from an instability in the screw pinch.
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Figure 7.5: 2D slice of the axial magnetic field generated from the inverse Faraday

effect while driven by an ` = 1 OAM mode at time 2.34ps.

Figure 7.6: Axial magnetic field isosurface of value −300T driven by an ` = 1 mode

at 2.34ps.

Imaging the isosurface of the magnetic field at 2.34ps is shown in Fig.7.6 and

highlights the corkscrew kinking in the fields. Taking the average radial lineout of

the magnetic field as before, and plotted in Fig.7.7, we find that the average peak

magnetic field strength has decayed from a peak strength of −800T to −400T in a
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time of 1.34ps.

Figure 7.7: Comparison between the analytic and numerical model for the inverse

Faraday effect driven by an ` = 1 OAM mode at 2.34ps. The numerical magnetic

field is azimuthally averaged over 2π radians and longitudinally averaged between

156µm and 206µm according to Fig.7.2.

Plotting the peak average magnetic field strength on axis as a function of time

is given in Fig.7.8. We note that the peak field strength does not decay following a

smooth curve but rather a noisy curve, likely a result of the magnetic field kinking

from an instability. We have fitted an exponential decay curve to the peak field

strength, and found a decay time on the order of 1.25ps.
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Figure 7.8: Peak average magnetic field at r = 0 as a function of time after the laser

has left the simulation box. The red dotted line indicates the exponential decay fit

with the constant given in the legend.

To explore the source of the magnetic field decay, we calculate the magnetic field

diffusion time scale in the plasma using a simple first order estimate. Taking the

magnetic field diffusion in the plasma [29],

∂B

∂t
=

η

µ0

∇2B (7.3)

where η is the resistivity of the plasma. Approximating the Laplacian operator as a

length scale squared L2, we can rewrite Eq.7.3,

∂B

∂t
≈ η

µ0L2
B (7.4)

Integration of Eq.7.3 is then trivial giving an exponential decay of the magnetic

field strength given by,

B = B0e
±t/τ (7.5)

where τ is the decay time given by,

τ =
µ0L

2

η
(7.6)
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We can estimate the resistivity using the Spitzer model [29],

η ≈
πe2√me

(4πε0)2(kbT )3/2
ln Λ (7.7)

where ln Λ ≈ 10 is the Coulomb logarithm and assuming a starting temperature of

2.6keV . Using the scale length L ≈ w0, we find the decay time to be on the order

of 10ns. If we compare this to the value found in the simulation given in Fig.7.8,

we find the numerical decay time is roughly 4 orders of magnitude faster than that

of the magnetic field diffusion time. This could be due to several reasons, primarily

that the electrons in orbital motion are extremely energetic with relativistic velocities

and are not governed by normal thermal diffusion. The decay of the field could thus

be accelerated as the electrons leave the simulation boundary. The screw instability

may also cause of faster decay of the magnetic field through mixing and dissipation

of the magnetic fields.

A simple way to explore this decay could be through plotting the energy stored in

the magnetic fields as a function of time instead of using the peak field on axis. To

estimate the energy stored in the magnetic field, we sum the square of the magnetic

field in each cell in the simulation, and multiply it by necessary constants,

UB =
∑
i,j,k

B2
i,j,k

2µ0

∆xi∆yj∆zk (7.8)

This formula can only be used to estimate the magnetic field energy generated after

the laser has left the simulation, and so is plotted from 1ps on in Fig.7.9. Here we

find a much smoother decay in the magnetic field energy in the simulation, with a

decay constant of slightly under 1ps. Additionally we can estimate what fraction of

the laser energy was converted into magnetic field energy. In this given simulation,

approximately 9J was injected into the simulation of which slightly more than 0.1%

is converted into magnetic field energy.
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Figure 7.9: Total magnetic field energy in the simulation as a function of time driven

by the ` = 1 OAM beam.

We recall that only 6% of the laser energy was absorbed by the plasma in this

given situation. Therefore, of the laser energy absorbed, roughly 1.7% was converted

into magnetic field energy.

If we instead consider the case where the laser has twice the angular momentum,

namely the ` = 2 case, we find as expected, that for the same peak intensity the

strength of the field is decreased. Fig.7.10 gives the 2D slice of the magnetic field

driven by a ` = 2 beam with peak intensity 2.5 × 1019Wcm−2. We note that even

though the total laser energy is higher (12J) to account for the decreased relative

intensity of the ` = 2 mode, the peak magnetic field is not as strong as that found in

Fig.7.2.

Imaging the initial magnetic field at 1ps using a 3D isosurface is given in Fig.7.11.

We again see the twisting of the magnetic field, but we do not see twice the number

of twists per unit length from the topological charge of the laser as one might expect.
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Figure 7.10: 2D slice of the axial magnetic field generated from the inverse Faraday

effect while driven by an ` = 2 OAM mode at time 1p

Figure 7.11: Axial magnetic field isosurface of value −300T driven by an ` = 2 mode

at 1ps.

Plotting average lineouts of the magnetic field as discussed previously from x =

156µm to x = 206µm and comparing to theory for the initial field at 1ps is given

in Fig.7.12. Here we see good agreement between the theory and the simulations for

radii larger than 10µm. The theory predicts that for r = 0µm, the magnetic field
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should be zero, however this was not found in the simulations. It was found that the

magnetic field is reduced on axis, but does not go exactly to zero. The reason for

this is likely due to the magnetic field evolving in space and time after its creation,

essentially washing out some of the expected features. If one looks at Fig.7.10 between

x = 140µm and x = 160µm, we find the field does go to zero on axis, but in regions

where the field is stronger, the null is not as prominent.

We also find that the peak magnetic field strength at roughly r = 5µm is not as

strong as theory would suggest. This is also likely due to some washing out the fields

towards the axis, possible driven by an inward radial current as a result of charge

separation from the ponderomotive sweeping out of the electrons.

Figure 7.12: Comparison between the analytic and numerical model for the inverse

Faraday effect driven by an ` = 2 OAM mode at 1ps. The numerical magnetic field

is azimuthally averaged over 2π radians and longitudinally averaged between 156µm

and 206µm according to Fig.7.10.

Progressing the simulation in time to 2.34ps, we again plot the 2D slice of the

magnetic field in Fig.7.13. We find as before, the magnetic field has decayed, but this

time the relative decay has been much less than for the ` = 1 case.
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Figure 7.13: 2D slice of the axial magnetic field generated from the inverse Faraday

effect while driven by an ` = 2 OAM mode at time 2.34ps

Figure 7.14: Axial magnetic field isosurface of value −300T driven by an ` = 2 mode

at 2.34ps.

The isosurface of the magnetic field in Fig.7.14 at 2.34ps shows the breaking up

of the magnetic field, and some twisting of the field towards the front. Plotting the

average radial lineouts of the magnetic field again from 156µm to 206µm can be seen

in Fig.7.15. It is quite clear that the magnetic field has smoothed out considerably
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with any features predicted by the model now washed out, and we are essentially left

the result expected from an ` = 1 driven magnetic field.

Figure 7.15: Comparison between the analytic and numerical model for the inverse

Faraday effect driven by an ` = 2 OAM mode at 2.34ps. The numerical magnetic field

is azimuthally averaged over 2π radians and longitudinally averaged between 156µm

and 206µm according to Fig.7.13.

Interestingly, the peak strength of the magnetic field has not decayed at all, but

rather translated and confined itself to the axis. While the peak magnetic field

strength has remained almost constant as time has progressed, the energy within

the magnetic field must have decreased as the effective area of the field has shrunk

as the radius gets smaller. While we could plot the peak magnetic field strength as

a function of time, this may not be the best variable to track as the peak field may

not be changing over some periods of time, however the total energy in the fields is

continuously decaying.

We therefore plot the total magnetic field energy in the simulation as a function

of time in Fig.7.16. Fitting the decay using a exponential as we did in Fig.7.9, we

find the decay time has been more than doubled from 0.91ps for the ` = 1 case to

2.31ps for the ` = 2 case. The reason for this increase in magnetic field persistence

is not currently clear, but likely could be related to less kinking from the screw type

instability reducing the scattering of electrons and mixing of the field components.
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Figure 7.16: Total magnetic field energy in the simulation as a function of time driven

by the ` = 2 OAM beam.

It has been shown previously that in θ-pinch configurations, an increase in the

azimuthal mode number leads to an increase in the instability threshold [50]. In

this work, the ` = 1 wobble instability is observed in the θ pinch configuration, but

appears to be more suppressed for ` = 2. In this case, using an ` = 2 mode to drive

magnetic fields may be more suitable if longer lived fields are desired, even though

the peak magnetic field strength is weaker.

7.3 Asymmetric Drive Beams

Another important question regarding magnetic field generation driven by donut

OAM modes is if the mechanism still works for real, asymmetric beams like those

generated in Chapter 5. To do this, a single simulation using a perturbed LG10 beam

was used with perturbation parameters δ = 0.1,m = 1. Decomposing this perturbed

OAM mode into 3 LG modes, we find the constituent modes are composed of an

` = 1 mode comprising 99.5% of the energy, an ` = 2 mode accounting for 0.2% of

the energy and an ` = 0 mode also accounting for 0.2% of the energy. The missing

0.1% is accounted for from rounding errors and additional LG p modes.

To first order, we can assume that each of the constituent modes couple to the

plasma independently of each other and each generate their own independent mag-
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netic field. In this sense, we expect the reduction of the magnetic field generated

in Fig.7.4 to only be reduced by 0.5%. Considering the null contribution from the

` = 0 mode and the zero magnetic field on axis from the ` = 2 mode, there should

essentially be no change to the magnetic field. This assumption may be valid if the

perturbation is small, but for larger values of δ and m, we may expect more drastic

modification of the magnetic field.

Fig.7.17 gives the laser energy absorbed by the plasma as a function of time for the

symmetric ` = 1 (blue) and asymmetric ` = 1 (red) modes. We see a slight difference

between the two, with the energy absorbed by the plasma from the asymmetric mode

about (≈ 0.05%) less than the symmetric case.

Figure 7.17: Fraction of laser energy absorbed per unit time for the symmetric ` = 1

(blue) OAM beam and the asymmetric ` = 1 (red) OAM beam

Plotting the 2D slice of the magnetic field at 1ps highlights a slight bend down-

wards of the magnetic field not present in Fig.7.2. We do however note the the peak

magnetic field strength looks similar, if not the same as the symmetric driven case.
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Figure 7.18: 2D slice of the axial magnetic field generated from the inverse Faraday

effect while driven by an asymmetric ` = 1 OAM mode at time 1ps.

Figure 7.19: Axial magnetic field isosurface of value −300T driven by an asymmetric

` = 1 mode at 1ps.

The isosurface of the −300T magnetic field at 1ps is plotted in Fig.7.19 yielding

an almost identical result to that in Fig.7.3. Plotting the average radial lineout is

given in Fig.7.20 and compared to the symmetric case. Here, the blue line represents

the magnetic field lineout of the symmetric case, the red is the asymmetric case and
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the yellow dashed line is the analytic model.

Figure 7.20: Comparison between the analytic and numerical models for the inverse

Faraday effect driven by a symmetric ` = 1 OAM mode (blue), and an asymmetric

` = 1 OAM mode (red) at 1ps. The numerical magnetic field is azimuthally averaged

over 2π radians and longitudinally averaged between 156µm and 206µm according to

Fig.7.18.

We find that the two numerical magnetic field lineouts overlap almost exactly with

the asymmetric case being slightly stronger on axis. This is a good verification that

to first order, the asymmetric beams created in the lab can create strong magnetic

fields with little to no hindrance to the field.

While it was found that increasing the ` number of the OAM beam increases its

decay time, we do not expect a significant change in the magnetic field decay time

when using an asymmetric mode. Fig.7.21 gives the decay curve of the field and

has been fitted with an exponential fit. Here, we find the field has a decay time of

1.14ps, slightly shorter than the fit of 1.26ps found in Fig.7.8. We do however find

that the decay of the field in the simulation is much less noisy as compared to the

symmetric driven case. This could be a reason for the discrepancy in the decay times,

and is likely due to less severe pinching from the wobble instability [50], which may

be suppressed by the asymmetric mode.
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Figure 7.21: Peak average magnetic field at r = 0 as a function of time after the laser

has left the simulation box for an asymmetric driven OAM mode. The red dotted

line indicates the exponential decay fit with constant in the legend.

Figure 7.22: Total magnetic field energy in the simulation as a function of time driven

by the asymmetric ` = 1 OAM beam.

If we instead compare the decay time found from the magnetic field energy in

the simulation as shown in Fig.7.22, we find a much smaller discrepancy between the

two with the asymmetric time found at 0.94ps and the symmetric case being slightly
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shorter at 0.91ps. This value is in good agreement with value found using the value

of peak magnetic field strength.

7.4 Conclusions

In this Chapter, we have shown that the analytic models found in Haines [64], and Ali

et al, [5], are in good agreement with the results found from PIC simulations. This is

the first time that the analytical models have been verified by a full 3D simulation.

In addition to demonstrating the validity of the analytical models, we have also

shown that the spatial extent can be long - at least on the order of 100µm and likely

extending out to the mm scale if plasma channels can be utilized to guide the laser

pulse. The extent of these fields is at least an order of magnitude greater than that

shown in other works [88, 116, 117], in which tightly focussed laser pulses were used

with very short pulse duration’s.

It was found that the magnetic fields do not decay by diffusion into plasma alone,

and decays much faster due to hot electrons with a radial component to their current

density. The decay time was found to roughly double when increasing the OAM mode

number from ` = 1 to ` = 2. A possible explanation for the increase in decay time is

the mitigation of the wobble instability due to the corkscrew pinch.

While these are significant findings in the dynamics of magnetic fields generated

by linearly polarized lasers, there is still some work to be done. In particular, we

are interested in the role of laser pulse duration as shorter laser pulses (≈ 30fs) have

been found in the simulations to not produce significant magnetic fields. Additionally,

verifying the inverse relationship of the electron density, and linear relationship of laser

intensity would provide even stronger verification of the magnetic field generation

model.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The goal of the thesis was to explore the coupling of linearly polarized orbital angu-

lar momentum (OAM) beams to underdense plasma theoretically, numerically, and

experimentally. To successfully achieve this, the generation and characterization of

OAM beams in high-power and high-intensity laser systems was investigated. This

resulted in the publication of two peer-reviewed papers on the diffraction theory of

OAM beams, and a third paper on the experimental demonstration of the highest

intensity OAM beams for both the ` = 1 and ` = 2 modes to date.

The off-axis-spiral phase mirror (OASPM) was the key tool developed for mode

converting high power laser systems, and since its introduction has gained large in-

terest from major universities and research facilities. Until the introduction of the

OASPM, mode conversion of high-power lasers was difficult requiring expensive op-

tics, and typically could not be done with ultrafast laser systems. We demonstrated

that the OASPM was a cost effective optic producing high quality OAM beams yield-

ing the highest intensity OAM focal spots to date. The OASPM has now unlocked a

new area of research into experimental OAM-plasma interactions at high intensities,

and as such, the OASPM could become a standard optic in high-power laser facilities.

The diffraction of OAM beams generated by high power laser systems, and formu-

las for the far-field intensity distributions produced by these various near-field beams

were developed. Given the complex formulas to describe the far-fields, we explored

two methods of fitting Laguerre-Gaussian (LG) modes to these results. LG modes

offer a simpler alternative to the exact far-field diffraction result and can be used for
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analytic and numerical modelling purposes. The fitting parameters of low-order LG

modes to the far-field diffraction results for Gaussian, super-Gaussian and flat top

lasers have been developed. In addition, to model more realistic asymmetric OAM

modes, a perturbative model was developed. This model decomposes an asymmet-

ric OAM mode into three constituent modes, which can be easily implemented into

numerical modelling.

In addition to developing high intensity OAM modes in the lab, we explored the

interaction of high intensity OAM modes with single particles and a plasma.

The electrodynamics of free electron motion in LG modes was explored using a

newly-derived paraxial equation based on the model of Erikson and Singh [38]. From

this model, we were able to show that in addition to the energy gained by a scattering

electron from the ponderomotive force, an angular momentum is also gained with a

direct scaling to the ponderomotive scattering. The trapping of electrons for energy

gain within the optical vortex was also investigated indicating that electrons may be

optimally accelerated from a wide variety of initial radii within the peak intensity

ring of the OAM ring.

Using the 3D PIC code EPOCH, we found that the relativistic self-focussing of

an OAM beam can have complex dynamics as we identified two new self focussing

phenomena, namely the ring pinch mode, and the ring collapse mode. We have yet to

explore the stability and criteria of each of these modes. We further explored using

OAM modes to drive wakefield acceleration of electrons, and found that the peak

energy of the electrons decreases and the divergence increases using OAM modes.

Further study is needed to explore the interaction of the laser pulse in the plasma

over much longer distances (≈ 5mm) that currently are difficult to do with fully 3D

simulations.

The change in ejected electron energy from OAM driven LWFA did not agree with

the analytic models derived for Gaussian driven wakefields with simple adjusting of

the corresponding parameters of the interaction. This indicates a need for new ana-

lytic and empirical models specifically for OAM driven wakefield scaling. Modelling

of the betatron spatial distribution was performed, and a splitting of the emitted

radiation spots was found due to the linearly polarized OAM ring with a slight twist

from the polarization axis depending on the handedness of the OAM mode. The

modelling of the spectral distribution of the emitted x-rays is an ongoing task given

the difficulty of accurate modelling of radiation emission between 100eV and 10keV .
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By showing that the angular momentum transferred from the laser to the electrons

scaled as a2
0, much like the ponderomotive force, we were able to justify OAM transfer

to the plasma in high intensity interactions. OAM beams of charge ` = 1 and ` =

2 were simulated and the axial magnetic fields found agreed almost exactly with

the analytic results that give the radial distribution of the magnetic field and the

corresponding strength.

In addition, we found decay times of the magnetic fields to be on the order of

1ps for the ` = 1 mode, and roughly 2ps for the ` = 2 mode. We also were able

to show that the magnetic fields produced were at least on the order of 100µm,

suitable for fast ignition related use. It is likely that the magnetic field length could

be increased through the use of a plasma channel so that the laser self guides, but

requires further work in understanding the self focussing properties of LG modes in

under dense plasma.

To verify the generation and application of OAM modes experimentally, a 4 week

campaign at the CLPU in Salamanca, Spain utilized the 200TW VEGA 2 laser to

drive wakefield acceleration with varying OAM modes. Generation of ` = 0, 1 and

2 modes was successful using the OASPM, and we were able to accelerate electrons

successfully. While there was no significant enhancement in electron energy or diver-

gence due to an increase in beam OAM, the fact that similar electron energies could

be obtained at the significantly lower peak intensities is in itself remarkable. There

was also an increase in betatron x-ray critical energy, perhaps due to the presence of

additional magnetic fields.

In the near future we plan to publish the work done on single particle electrody-

namics in OAM modes and the scattering of electrons from pulses, the experimental

results from the CLPU campaign showing the enhancement of betatron critical energy,

and the numerical verification of the inverse Faraday effect with linearly polarized

OAM modes.

8.2 Forward

The work performed in this thesis has opened up the way to generate high intensity

OAM laser pulses and apply them to the study of laser plasma interactions. While

the present thesis carries out a preliminary study of such interactions, there is much

work to be done in all areas of study.
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Probably the first area is the understanding and modelling of self-focussing in un-

derdense plasma. Without this, understanding of wakefield energy scaling, magnetic

field generation and laser propagation will be difficult to move forward. This could

also lead to a better understanding of the necessary shape of plasma channels required

for longer propagation of the OAM modes for enhanced magnetic field generation and

electron energy gain.

To do this, larger simulations over longer duration’s are required which will be

difficult using a fully 3D code given the massive output files (currently ≈ 30TB).

Instead one could look to using a 2.5D code that uses cylindrical coordinates and

decomposes the azimuthal coordinate into adjacent modes of a Bessel function [89].

Larger scale simulations would also allow a more complete and accurate simulation of

the LWFA of electrons and perhaps help address the differences between the current

simulation and experimental results in terms of electron energy spectra observed. In

addition work in modelling the spectrum of the emitted betatron radiation is also

required and is currently underway.

The generation of axial magnetic fields using OAM pulses and scaling with pulse

duration and plasma conditions is a major area of future exploration both with nu-

merical simulations and experimental measurements. Such fields could potentially be

measured by a variety of techniques such as Faraday rotation, Zeeman spectroscopy

and proton radiography.

The actual exploitation of the hollow centre channel of OAM modes is another

future area of investigation both for enhanced trapping, acceleration, and guiding of

electrons but also for the wakefield acceleration of positrons as predicted in published

simulations.

While not included in this thesis, a second campaign using OAM beams at the

CLPU in Salamanca was conducted in 2019 interacting with solid targets. In this cam-

paign, high-intensity OAM beams were used to drive target-normal-sheath-acceleration

(TNSA) in solid aluminium targets producing proton and ion beams. Work is still

underway in the analysis of the results with the generation of magnetic fields and

potential enhanced guiding of electrons and protons is yet another major area of

application of OAM pulses.

Overall the present work is a first step towards a whole new regime of high intensity

interaction physics employing the new tool of orbital angular momentum.
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Appendix A

Single Particle Integration in

MATLAB

Ionization and Particle Evolution

To solve the equations of motion of an electron in general electric and magnetic

fields that are functions of both space and time, we used an algorithm developed in

MATLAB. In this algorithm, we utilize the MATLAB ODE113 function which utilizes

a variable-step, variable-order Adams-Bashforth-Moulton solver of orders 1 to 13.

The equations of motion are solved using the relativistic momentum of the particle

using normalized values given by, p = p/mec, v = v/c, x = kx, t = ωt, E =

eE/mecω, and B = eB/meω. This allows us to write the equations in a reduced

form as,

γ =
√

1 + p2 (A.1)

p = v/γ (A.2)

dp

dt
=

(
E +

p

γ
×B

)
+α

[
E ×B +B ×

(
B × p

γ

)
+E

(
E · p

γ

)]
−

αγp

[(
E +

p

γ
×B

)2

−
(
p

γ
·E
)2
] (A.3)

where,

α =
1

4πε0

2e2ω

3c3me

(A.4)

The electric and magnetic fields of the lasers are used from the modified version of
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the Erikson-Singh model as described in chapter 3.

Before the motion of the electron can be computed, its initial space-time coor-

dinate is calculated. Each electron is initialized in space either as a free standing

electron or as an electron bound to an atom. Typically this is done by assuming

some volume and randomly distributing electrons or atoms within the volume, but in

theory can be done in any number of ways. If the electrons are ionized from atoms

or ions, their position in space and time of where and when they will appear in the

laser pulse is calculated using the ionization routine discussed in chapter 3.

Once the initial coordinates of the electron are chosen, the evolution of the electron

is computed using the ODE113 function. This is written using MATLAB’s parallel

processing toolbox to take advantage of multiple processors, and is in theory saleable

to super computers. The code outputs for each electron its position and momentum

vectors as a function of time in the rest laboratory frame.

Radiation

From the particle motion as a function of time, we are interested in the scattered

radiation from the electron - both its power and spectrum in any given direction. We

start by specifying a grid in which the radiation will be calculated, the grid is set by a

number of grid points N , and a surface area defining the position of each grid point.

The power emitted in any given direction at any given time by the particle is given

by [75],

dP (t′)

dΩ
=

e2

16π2ε0c

∣∣∣n× ((n− β)× β̇
)∣∣∣2

(1− n · β)5
(A.5)

where n is the unit vector between the position of the particle and the detector grid

point coordinate. β is found directly from the integrator output, and β̇ is calculated

using a first order backward differentiator,

β̇i(tj) ≈
βi(tj)− βi(tj−1)

tj − tj−1

(A.6)

While a first order differentiator may seem insufficient for the problem, we remark that

this estimate is not being used to advance the timesteps in the code, and only used an

approximate in the radiation calculation. We also note that given the dynamic steps

in the integrator which are finer in areas of where β̇ is large. Given that Eq.A.5 can

all be calculated in the lab frame, we can calculate Eq.A.5 directly from the results
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of the integrator. Examples of the radiation emitted from this equation are given in

Fig’s.3.14,3.15, and 3.16.

Typically, the calculation of power radiated per unit steradian is fast, and can be

computed with a resolution of 100x100 pixels reasonably quickly for a single electron

(≈ 100 seconds), and so many electrons can be used to calculate the radiation.

The calculation of radiation spectrum is however much more challenging compu-

tationally. From Eq.3.96, we find the radiation emitted from the electron over a given

time t,

d2I

dλdΩ
=

e2

8π2ε0λ2

∣∣∣∣∣∣
∫
ei2πct/λ

n×
[
(n− β)× β̇

]
(1− β · n)3

dt

∣∣∣∣∣∣
2

ret

(A.7)

As discussed in chapter 3, using Eq.3.93 is challenging, despite working in the

laboratory frame. We therefore opt to use Eq.A.7, but now have to transform the lab

time of the particle to its retarded time. To do this, we interpolate the position of

the particle in the lab time with the position of the particle in the retarded time,

tret = interp

(
t′ +

R(t′)

c
, t′
)

(A.8)

This is done using a constant time step dt such that the maximum frequency resolved

can be set according to the Shannon-Nyquist theorem. Fig.A.1 gives a simple relation

between the retarded observer time, and the particle time for a highly relativistic

electron in circular motion.
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Figure A.1: Particle time as a function of the retarded observer time

By using the retarded time of the particle, we can then interpolate its position

and momentum into the retarded time also for calculations. The reason we use the

retarded time is that Eq.A.7 is a direct Fourier transform and we can therefore utilize

the fast Fourier transform algorithm (FFT). This has proven to be extremely fast

and accurate. Calculating the FFT of a typical electron trajectory in a laser field, we

find that each grid point takes on the order of 20 seconds to compute per electron.

While not as fast as the power calculation, we remark that this is still very fast and

accurate typically up to 100nm wavelengths. Beyond this, the FFT takes longer to

compute (scales as O(NlogN)).

Visualizing the accuracy of the FFT, we find that it is accurate all the way up to

the 17th laser harmonic for a simple electron oscillating in a relativistic laser pulse.

This is shown in Fig.A.2. This also indicates the dynamic range of the FFT which in

this particular case is roughly 8 orders of magnitude.
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Figure A.2: Frequency spectrum emitted from a single electron in a relativistic laser

pulse. The first harmonic is the peak on the left.

A separate package for visualizing the data was also written using MATLAB. This

was able to run locally given the output files from the electrons were typically small

as certain values were averaged over the ensemble.
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Appendix B

Particle in Cell (PIC) Codes

The particle-in-cell (PIC) method is a powerful tool for modelling laser-plasma inter-

actions, particularly in regions where the density is close to or less than the critical

density. Given the complexity of PIC codes, and the need for optimized program-

ming, we opt to use the already available open source code EPOCH developed by the

team at the University of Warwick in the UK [8].

The PIC code basically works by the discretization of space into a grid at which the

electric and magnetic fields are computed at each grid point using the finite difference

time domain solver, although some new PIC codes take advantage of spectral solutions

[89]. The current density at each point is computed from electrons and ions on the

grid, from which the electric and magnetic fields can also be computed. The electrons

and ions are free to move about the grid under the constraints of the electric and

magnetic fields at each point they pass. It is important that the electrons and ions

interact with each grid point they pass, otherwise the solutions become non-physical

and so the timestep of the simulation is usually determined via the Courant-Friedrichs-

Lewy condition [33].

Due to the density of plasmas typically being high (> 1016cm−3), we find that it

is often too computationally expensive to represent electrons and ions as individual

particles. Instead, they are typically weighted into macro-particles that represent

10000 or so real particles. These macro particles maintain the same charge-mass

ratio and as thus, their dynamics in the Lorentz force is unchanged. Things get more

complicated however when calculating the effects of radiation reaction which scales

as e2/me.

Physics can be turned on or off for various needs, usually at the cost of compu-
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tational time. Often we use ionization routines to model ionization injection into

the wakefield, or if the plasma is sufficiently dense, we may want to enable collisions.

These additional physics packages usually add great complexity to the code, requiring

many hours of work to ensure they are properly implemented.

Injection of a laser field into the simulation can be done in many ways, of which

EPOCH utilizes an antenna model for the generation of EM waves into the simulation

and so laser parameters must be specified on the boundary condition. This can

become complicated for Laguerre-Gaussian modes due to the helical phase, and as

such, a custom version of EPOCH was written in which I implement new diagnostic

functions (field angular momentum, and particle angular momentum diagnostics),

and new math functions (atan2).

In addition, the outputting of data, and visualization of data can be cumbersome

given the multi terabyte files the are written in 3D simulations. The majority of

visualization was performed using the VisIt package developed at LLNL [30]. For

more detailed plots, the EPOCH output was down-sampled and visualized using

custom MATLAB routines.

While we do not review the details of PIC codes here, we instead summarize the

parameters used for the simulations in this thesis. Further details on the EPOCH

code can be found in the user and developers manuals [8].

Self focussing and inverse Faraday simulations

For these simulations, we opted to use a longer, narrower box that resolved the Debye

length. Most physics was switched off including ionization and collision routines. A

moving window was employed to track the laser pulse, but was stopped at 850fs -

the time at which the magnetic field generated was most collimated and cylindrical.

After this time the laser was found to diffract and filament in the simulation such

that no magnetic field was generated.

The output of the simulation was typically divided into two files, the first of which

contained all the axial magnetic field information. This was then down-sampled

using MATLAB and then visualized. The other output contained information on the

absorption, angular momentum, and current densities in the plasma.

Some example simulation parameters are given below in Table B.1. Parameters

not mentioned here are given in the main text in Tables 4.1 and 7.1.
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Table B.1: Simulation parameters used for self focussing and the inverse Faraday

effect.
Parameter Value

nx, ny, nz 4000, 500, 500

npart 2 ∗ nx ∗ ny ∗ nz
Field Ionization F

Tend 2.5ps

x, y, z [µm] 150, 40, 40

Solver Second Order Maxwell

Boundaries Open

Species 1,fraction Electrons,2/3

Species 2,fraction Helium 2+,1/3

Wakefield acceleration simulations

In the wakefield simulations, a slightly different setup was used. We opted for a shorter

box as the laser pulse was a third of the duration of that in the previous simulations.

We opted for field ionization to be switched on allowing for the ionization injection of

nitrogen 5,6, and 7 electrons into the wakefield simulations. In addition, the EPOCH

quantum electrodynamics package was turned on allowing for high energy photon

emission from electron oscillations.

To account for direct laser acceleration of electrons, the field solver in EPOCH

was switched to use the Lehe solver [89], in which the magnetic field is interpolated

onto particle position. It was shown previously that not accounting for this magnetic

field interpolation, electron energies can be over estimated [137].

The outputs used in this simulation featured a detector plane at the end of the

super-Gaussian plasma distribution which registered electrons with energies greater

than 1MeV , and X-ray photons generated from the betatron. The detector recorded

both the ejected position of the particle, and its corresponding momentum. A second

output recorded the time history of electron position and momentum every femtosec-

ond for electrons with energy greater than 50MeV . Additionally, the electron density,

field information, and angular momentum information was also captured at 30fs time

intervals.

Some example simulation parameters are given below in Table B.2. Parameters

not mentioned here are given in the main text in Table 6.1.
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Table B.2: Simulation parameters used for wakefield acceleration.

Parameter Value

nx, ny, nz 4000, 500, 500

npart 2 ∗ nx ∗ ny ∗ nz
Field Ionization T

Tend 2.75ps

x, y, z [µm] 100, 50, 50

Solver Lehe, 0.96 dt multiplier

Boundaries Open

Species 1,fraction electrons,101/151

Species 2,fraction Helium 2+,99/302

Species 3,fraction Nitrogen 4+,1/302

Species 4,fraction Ionizable Electrons,0

Species 5,fraction QED Photons,0

QED, Radiation Reaction T, T

QED Start time 100fs
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Appendix C

Manufacturing Techniques of an

OASPM

Several prototype OASPM’s were manufactured at the University of Alberta’s nanoFAB

centre using electron-beam evaporation techniques. Originally, sputtering deposition

was used but it was later found that this was not suitable as the sputtering process

is not directional enough leading to bleeding under manufacturing mask edges.

Using the electron-beam evaporation method, the spiral staircase is built up in

layers by using a set of masks. To first order, if we have 16 steps in our staircase, we

would think that we would need 16 masks to build the staircase. However, using a

method similar to that in Sueda [151], a 16 step staircase can be constructed using

as few as 5 deposition layers. To illustrate this, we show 5 example masks used to

construct a 16 step staircase in Fig. C.1.

N=0 N=2 N=4 N=16 N=8 

Figure C.1: Consecutive mask layers for manufacturing a 16 step OASPM.

The process occurs in 5 stages from left to right in Fig.C.1. The first layer, namely

N = 0 is used to create a highly reflective surface across the mirror substrate to ensure
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a good reflectivity throughout, however this may not be necessary depending on the

substrate. Through our development, two substrates were used, the first was a 2 inch

Thorlabs unprotected gold mirror with flatness λ/10 (PF20-03-M03). As the mirror

was pre-coated with a thick layer of gold, it was unnecessary to deposit the N = 0

layer. The second substrate was a 5 inch CVI mirror blank with λ/10 flatness. As

this mirror blank was un-coated, a 25nm layer of titanium was first deposited onto

the substrate as an adhesion layer, followed by approximately 200nm of gold. It is

important that the thickness of gold deposited is many times the thickness of the

optical penetration depth of gold at the laser wavelength.

The optical penetration depth δp through a material can be calculated by the

Beer-Lambert law [49],

I(z) = I0e
−z/δp (C.1)

where I(z) is the intensity of the laser after propagating a distance z through the

material, and initial intensity I0. The optical penetration depth is related to the

wavelength of the laser and the complex index of refraction κ of the material by,

δp =
λ

4πκ
(C.2)

For gold at 800nm, we find κ = 4.705 [127], thus the penetration depth is approx-

imately 13.5nm. Coating the mirror with 200nm as a base layer ensures that the

mirror is then only limited by the reflectivity of gold at 800nm (R = 96.8%).

The second mask labelled N = 2 in Fig.C.1, creates the first 2 steps on the

OASPM. The deposition thickness of gold on this mask is computed from Eq.5.22

using N = 2. For instance, if we are using an 800nm laser, with an incidence angle

of 45◦ and a topological charge of L = 1, we find that the first mask thickness needs

to be 282.8nm. If we were to use a higher topological charge, this mask would not be

necessary. We find that the masks are only necessary if L < N for each mask.

As previously found, it is not necessary for the deposition thickness to be exact

and the tolerance in this deposition is on the order of 1%. However, if a high precision

deposition can be made onto the substrate, then this is preferable as it will minimize

any asymmetry in the focal spot. To monitor the deposition thickness of gold during

electron beam evaporation, a piezo crystal monitor was used and calibrated using a

Zygo white-light profilometer.

Subsequent mask layers are added including the N = 4, 8, 16 masks, with depo-
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sition thicknesses (for an 800nm, L = 1, θi = 45◦) beam as 141.4nm, 70.7nm, and

35.4nm respectively. One issue with the masks was found that as the number of steps

increases, the inside angle of the mask becomes sharper. This is problematic as it

becomes difficult to manufacture small angles in the masks. The masks used were cut

from aluminum sheet using a CNC waterjet with a kerf of approximately 1mm. To

overcome this restraint, for the N = 8, 16 masks, two masks were aligned on top of

each other, each with half the mask spokes missing at the centre. This is illustrated

in Fig.C.2.

Figure C.2: Pairs of N = 8, 16 masks for a 2” OASPM. Note half the spokes have

been removed on each mask. Overlapping the masks produces a high quality mask

close to axis.

For the masks to line up correctly, the masks are aligned using the holes at the

outer edge. Tight fitting screws hold the masks to the substrate holder roughly
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500µm above the substrate surface. One of the holes is offset such to key the masks

orientation so they are always correctly aligned. These offset holes are the lower

alignment holes in Fig.C.2. Flipping the masks upside down allows the use to create

either ` = + or ` = − masks depending on the orientation.

2 inch prototype OASPM’s were manufactured for use at 45◦ for 632, 800 and

1030nm beams - the primary wavelengths used in the university laboratory and all

manufactured with N = 16. The masks used to generate these OASPM’s are shown

in Fig.C.3 and were cut from 1/16” aluminum sheet.

Figure C.3: Aluminum masks for 2” OASPM manufacturing. The masks have been

CNC waterjet cut from 1/16” aluminum sheet.

The substrate is mounted in an aluminum holder and held upside down above

the electron beam evaporator. It is centred above the gold crucible using a custom

machined plate as shown in Fig.C.4 to ensure that the deposited gold is isotropic

and does not cause asymmetric bleeding under the mask edges. From the figure, it

is also possible to see the key-holes for selecting positive or negative topology on the

OASPM.
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Figure C.4: Substrate holder with keyed holes, mounted on a centering plate for the

Gomez electron beam evaporation system at the University of Alberta nanoFAB.

Larger 5” OASPM’s were manufactured for use in the CLPU VEGA2 laser beam

line. These masks were machined from thicker 1/8” aluminum sheet and were de-

signed for an incidence angle of 17.8◦ beamline mirror in the laser system. The masks

are shown in Fig.C.5 where it is possible to see the change in sector angle.
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Figure C.5: Aluminum masks for 5” OASPM manufacturing. The masks have been

CNC waterjet cut from 1/8” aluminum sheet.

The OASPM’s were manufactured using the University of Alberta’s nanoFAB

electron beam evaporator named Gomez. Given the design and size of Gomez, we were

essentially limited in manufacturing capabilities to mirrors of 5” or less. Fabrication

of larger mirrors would require a larger machine and could likely be commissioned

to a commercial manufacturer. The 5” mirrors were sufficient for use in the VEGA2

laser at CLPU, but would not be suitable for beams larger than 4” in diameter. An

additional limitation of Gomez is the anisotropy in deposition thickness, and it was

found via profilometry that the deposition thickness was approximately 5nm less than

that deposited in the centre of the mirror. This is however within the tolerances of

the of the calculations performed in the previous section, and will likely lead instead

to a slight defocussing in the beam leading to a change in the focal spot location.

To verify the step deposition height and shape, a Zygo optical profilometer was

used to images the centre of the staircase and also at select positions along the step

edges. The field of view of the profilometer was limited to approximately 2mm x 2mm,

and so many images were taken to sample and measure the deposition thickness and

standard deviation. An image of the centre of an L = −1 OASPM designed for a

632nm beam at 45◦ taken using the Zygo is given in Fig.C.6. From this image, the

spiral staircase is clear, Although it is also clear to see the error in the placement,

and bleeding under the masks causing some unclean edges.
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0nm 

429.5nm 

Figure C.6: 3D image of the centre of an L = −1, 632nm, θi = 45◦ OASPM taken on

a Zygo optical profilometer. The spatial size of the sample is 2mm x 2mm

Here we find that the step edge width is on the order of 100µm with values up

to 200µm have been observed as a result of two sources of error. The first source of

error comes from bleeding under the mask edge, but given the distance between the

gold crucible and the mask (≈ 1m), and the mask-mirror gap to be 500µm, we find

that in a worst case the gold will bleed approximately 35µm under the mask.

The second source of edge width comes from uncertainty in the placement of

successive masks. This is clear in Fig.C.7 a) where the step edge in blue is found to

be approximately 200µm across as shown in tile b). There were no precision alignment

pins used in holding the masks and instead we relied on tight-fitting screws to centre

the masks. This seems to be accurate to roughly 100µm, but is certainly the largest

source of step edge width and would be a trivial improvement to the manufacturing

method in the near future.

A cross section of Fig.C.7 a) is highlighted by the diagonal line in the tile and

is given in tile b). The blue and orange dashed orange lines are used for inspecting

step edge heights in the Zygo software. Here we find the height between the orange

and the green step to be approximately 26nm, and the calculated value from Eq.5.22

is found to be approximately 28nm. This discrepancy leads to a 7% error in the

287



deposition thickness in this particular instance. According to Fig.5.7, this will lead

to a 2% reduction in the ` = −1, p = 0 mode at focus.

a) 

b) 

85.13nm 

0nm 

Figure C.7: a) top-down view of a segment of an L = −1, 632nm, θi = 45◦ OASPM

highlighting an mask edge misalignment in blue. b) Cross section of a) through the

diagonal line on the image. The spatial size of the sample is 2mm x 2mm
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Appendix D

Determining Critical X-ray Energy

from a Stepped Filter

In determining the critical x-ray energy from the betatron radiation, we employed a

step filter as described in chapter 6 and Fig.6.13. To do this, we used the expected

betatron spectrum as a function of critical energy,

dI

dE
∝ E

Ec

∫ ∞
E/Ec

K5/3(x)dx (D.1)

Figure D.1: Betatron energy spectras for various critical energies. Values of the

critical energies in the legend are given in keV .
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Some example betatron spectras given for various critical energies are given in

Fig.D.1. Here we see a clear shift in the peak of the curve as a function of the critical

energy.

It is possible to use the shift in spectra to estimate the critical energy using

stepped filters. To do this, we first determine what the spectra will look like through

different aluminum filters of varying thickness. As the absorption of x-ray photons

changes depending on the energy of the photon, the ratio of the transmissions for

each thickness of aluminum will change.

For instance, if we integrate over the spectra with no attenuation, and also with

a 25µm aluminum filter in front, we find the ratio of the two values changes as a

function of critical energy,

R =

∫
dI
dE

(25µm) dE∫
dI
dE

(0µm) dE
(D.2)

For example, if the critical energy is 10keV , then the value of R is found to

be 0.131. If the value of Ecrit is increased to 12.5keV , then the ratio decreases to

0.126, and 0.122 for Ecrit = 15keV . Using this approach, we can estimate the ratios

for multiple channels to a reference channel. According to Fig.6.13, the thinnest

reference channel is the 25µm aluminum with 4µm of mylar.

Figure D.2: Ratios of integrated spectrums with transmission filters given in the

legend.
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The ratios of the total integrated spectrums convolved with different thickness

aluminum filters is given in Fig.D.2. The ratios are all taken with respect to 25µm

aluminum and a 4µm mylar layer. To get these spectra ratios experimentally, we find

the average number of counts in each channel, and find the ratios between each of

the channels. This is performed after any background gradient or noise is removed

from the image.

Once the ratios of several channels (typically three) are found from the experi-

mental data, they are fit to the curves in Fig.D.2 using a least squares analysis. From

this we can determine the critical energy of the shot, or averaged set of shots.

After estimating the critical energy of the shot, it is possible to estimate the peak

number of photons per 0.1% bandwidth, per unit steradian. After some algebra and

incorporating the solid angle of the pixel of the x-ray CCD, we are able to estimate

the betatron brightness from the formula,

photons

0.1%BW/srad
≈ 〈Ci〉

75455.75Ecrit(keV )Ri

(D.3)

where Ci is the count value in a given channel, and Ri is the ratio of the counts in

that channel to the full unattenuated spectrum.
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