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ABSTRACT 

This study presents a wide range of numerical investigations on partially encased 

composite (PEC) columns based on finite element analysis. The PEC columns studied 

herein are fabricated from thin-walled built-up H-shaped steel sections with links 

provided between the opposing flanges to improve the resistance to local buckling. The 

regions between the flanges and web are filled with concrete. Prediction of the 

behaviour of this relatively new composite system by finite element modelling presents 

a challenging problem due to local buckling of the thin steel flange plates and crushing 

of the concrete near the ultimate load. These challenges were overcome in the current 

finite element model through the implementation of a dynamic explicit formulation 

along with a damage plasticity model for concrete and a contact pair algorithm at the 

steel–concrete interface.  

The model was applied successfully to simulate the behaviour of 34 PEC columns from 

five experimental programs. The model was able to trace a stable and complete load–

strain history accurately for PEC columns with small and large cross-sections, with 

different link spacings, constructed with normal strength, high strength and steel fibre 

reinforced high strength concrete, and tested under concentric and eccentric axial loads. 

The model reliably reproduced the peak load, axial deformation at the peak load, the 

post-peak behaviour and the failure mode observed in the tests. 

Studies were performed to quantify the effects of local imperfections and residual 

stresses on the capacity of these columns using the developed model. The results 

revealed that the ultimate capacity of the column was not affected significantly by the 



presence of local imperfections and residual stresses in the steel section. Finally, a 

comprehensive parametric study was carried out by varying the overall column 

slenderness ratio, load eccentricity, link spacing, slenderness ratio of the steel flange 

plate and concrete strength to explore the behaviour of these columns under the 

combined effect of axial compression and bending about the strong axis.  
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1. INTRODUCTION 

 

1.1 Foreword 

The effective use of a combination of steel with materials such as concrete can 

substantially improve the behaviour and cost efficiency of columns used in the 

construction of mid-rise and high-rise buildings, as compared to using steel-only 

columns. Two types of composite columns commonly used in North America are: 

concrete filled tubes (CFT) and fully encased composite (FEC) columns (Figure 1.1). 

Both of these composite systems have limitations such as limited cross-sectional 

dimensions of standard shapes (CFT), although large diameter tubes have occasionally 

been used, requirement of extensive formwork and additional reinforcing steel (FEC 

columns) and complex beam-to-column connections. These limitations have indirectly 

imposed restrictions on the use of composite columns. 

 

In 1996, the Canam Group in Canada took the initiative to propose a new type of 

composite column consisting of a thin-walled, welded H-shaped steel section, built-up 

from hot-rolled steel plate, with concrete infill cast between the flanges, as shown in 

Figure 1.2. Transverse links are provided between the flanges at regular intervals to 

improve the resistance to local buckling. This new system has been termed the “partially 

encased composite (PEC) column,” since the steel section is only partially encased by the 

concrete. Additional reinforcement consisting of longitudinal rebars and transverse 

U-shaped stirrups can be provided to improve the ductility of these columns somewhat 

under cyclic loading, but in general additional reinforcement is not required. The intent is 

that the steel column alone is used for erection of the building and resisting all 

construction loads and the concrete is provided to assist in resisting the service loads. The 

concrete is simply cast with the floor slab above, resulting in significant economies 

related to the construction schedule and, therefore, project financing. 

 

Although apparently similar, the new PEC column is significantly different from that 

developed in Europe in the early 1980s, which was constructed with hot-rolled standard 

1 



wide flange shapes (Figure 1.3), not susceptible to local buckling. The cross-sectional 

size can exceed the outer dimensions of standard rolled W-shapes and can easily be 

customized to the needs of the project. Moreover, the steel sections are relatively light, 

easing handling considerations. On the other hand, the steel section of the Canam-type of 

PEC column features very slender plates that exceed the width-to-thickness ratio limits 

for Class 3 sections where local instability is one of the governing failure criteria. This 

requires the addition of links between the flanges. 

 

As explored by Vincent (2000), this new PEC column system takes advantage of: 

� In-plant prefabrication of steel; 

� Economic compressive load carrying capacity of concrete; 

� Standard connections to the steel flanges; 

� Fire resistance improved due to the presence of the concrete; 

� Simple installation and removal techniques of the formwork for concrete; 

� Speed of erection of steel structures; and 

� Less crane capacity required to erect the columns due to a much lighter steel section. 

 

Extensive experimental research has been performed in Ecole Polytechnique de Montréal 

(Tremblay et al. 1998; Chicoine et al. 2000, 2003; Bouchereau and Toupin 2003) on 

small- and large-scale PEC column specimens under various conditions of loading. The 

influences of high performance materials on the behaviour of these columns have also 

been investigated experimentally by Prickett and Driver (2006) at the University of 

Alberta. Additional experimental research is currently being conducted to study the 

behaviour of this new composite system as a part of lateral load resisting systems such as 

braced steel frames and steel plate shear walls. A finite element model capable of 

reproducing the test results of concentrically loaded short column specimens was 

developed by Chicoine et al. (2001). The researchers identified significant challenges in 

modelling the triaxial behaviour and the rapid volumetric expansion of the encased 

concrete near and beyond the peak load. As a result, the model did not trace the post-peak 

behaviour or predict the residual capacities after buckling of the steel and crushing of the 

concrete had taken place. The researchers recommended that additional research be 
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performed to capture the complex behaviour near and beyond the peak capacity 

(Chicoine et al. 2001). Moreover, the effect of initial imperfections on the capacity of 

these columns has not been studied in detail. As a part of a lateral load resisting system, 

these columns will be subjected to the combined effect of axial and bending stresses. The 

behaviour under the combination of bending moment and axial load has not yet been 

explored numerically for this new composite system. 

 

1.2 Objectives and Scope of the Study 

The primary objective of this study was to develop a complete finite element model that 

can be applied for a variety of geometries of PEC columns, subjected to various loading 

conditions, and provide accurate simulations of behaviour without numerical difficulties 

well into the post-peak regime. The model, therefore, is to be capable of simulating 

numerically the full behavioural history including the peak and residual post-peak 

capacities and the failure mode caused by local buckling of the steel plates and/or 

crushing of the concrete. A concrete damage plasticity model and dynamic explicit 

solution strategy were chosen to model the behaviour using the ABAQUS/Explicit (HKS 

2003) finite element software. The performance of the damage model needed to be 

verified for its ability to predict the concrete behaviour under uniaxial, biaxial and triaxial 

stress conditions with various levels of lateral confinement.  

 

To evaluate the accuracy of the finite element model in predicting the overall behaviour 

of PEC columns, simulations were carried out on tests of 31 short and three long (i.e., 

slender) PEC specimens, as reported in the literature. The short columns, having lengths 

equal to five times the total depth, d, of the column cross-section, varied in cross-

sectional size from 300 mm × 300 mm to 600 mm × 600 mm. The long PEC column test 

specimens, with a 450 mm × 450 mm cross-section, had lengths equal to 20d. The test 

specimens had a variety of link spacings (0.3d to 1.0d) and link diameters and a range of 

flange plate slenderness ratios, b/t, (from 23 to 35). (Note that the standard notation for 

the cross-sectional geometric properties of PEC columns is shown in Figure. 1.2 (a).) 

Three different types of concrete were used in the test columns: normal strength concrete, 
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high strength concrete and steel fibre reinforced high strength concrete. The columns 

simulated using the finite element model were tested under either monotonic concentric 

axial loading or monotonic eccentric axial loading with a variety of eccentricities.  

 

This study also aimed to investigate the effects of local flange imperfections and residual 

stresses on the capacity of PEC columns. This would help to identify the importance of 

including these features, which add to the modelling complexity, in numerical 

simulations of PEC column behaviour.  

 

Another objective of this study was to conduct a parametric analysis with a view to 

investigating the effect of a range of parameters on the behaviour of PEC columns, 

particularly when loaded eccentrically. The variables include the overall column 

slenderness ratio, L/d, where L is the overall length of the column, load eccentricity, e, 

link spacing, s, flange plate slenderness ratio, b/t, and compressive strength of concrete. 

The effects of these parameters were studied on 450 mm × 450 mm cross-section. The 

parametric columns were analysed under monotonic loading conditions with bending 

about the strong axis.  

 

1.3 Organization of the Thesis 

The thesis consists of seven chapters. Chapter 1 introduces the type of composite column 

studied herein and presents the objectives and scope of the research work. Chapter 2 

presents a short review on the literature related to PEC columns with standard steel 

sections and explores in relative detail the experimental and numerical research works 

carried out on PEC columns with thin-walled built-up steel sections. The PEC column 

design requirements included in CSA standard S16–01 (CSA 2001) are also presented in 

this chapter. Chapter 3 includes the description of the concrete constitutive behaviour and 

discusses the performance of the damage plasticity model in predicting the compressive 

behaviour of concrete under different levels of confinement.  
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The detailed description of the finite element model for the PEC column, along with the 

properties of the reference test specimens, are given in Chapter 4. The selected element 

types, mesh configuration, material mechanical properties for steel and concrete, 

modelling of steel–concrete interactions at their common interfaces and the solution 

strategy implemented in the finite element model are presented. This chapter also 

describes the technique of modelling local and global imperfections in the numerical 

model for PEC columns.  

 

The results of the numerical simulations of the test specimens used to validate the 

developed finite element model under concentric and eccentric loading conditions are 

presented in Chapter 5. Discussions are included on the comparison between the 

experimental and numerical failure modes, peak axial loads, average axial strains at peak 

load, load versus average axial strain curves, and load versus moment curves for different 

test groups. The effects of local imperfections and residual stresses on the column 

behaviour are also presented. In addition, the effects of link spacing on the column 

behaviour and the contributions of steel and concrete individually on the overall load 

carrying capacity of this composite system are demonstrated. 

 

Chapter 6 presents the detailed parametric study conducted with the developed finite 

element model to cover the range of several geometric and material parameters on the 

behaviour of PEC columns. The findings of this parametric study are demonstrated and 

discussed.  

 

A summary of the methodology and conclusions regarding the achievements of this 

research work are included in Chapter 7, along with recommendations for future research.  
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Figure 1.1 Common types of Composite Columns,  

(a) Concrete Filled Tubes, (b) Fully Encased Composite Column  
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Figure 1.2 Partially Encased Composite Column with Thin-Walled Built-Up Steel 

Section, (a) Column Cross-Section and (b) 3D view of the Steel Configuration 

 

 

 

 

Figure 1.3 Partially Encased Composite Column with Compact Standard Steel 

Section 
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2. LITERATURE REVIEW 

 

2.1 Introduction 

A partially encased composite (PEC) section refers to an H–shaped steel section with 

concrete infill between the flanges. In Europe, in the early 1980s, PEC columns and 

beams were introduced using standard-sized rolled steel sections. In 1996, the Canam 

Group in North America proposed a PEC column section constructed from a thin–walled 

built–up steel shape with transverse links provided at regular intervals to restrain local 

buckling. Using a built–up steel section instead of a standard shape provides the designer 

with more flexibility when sizing the column cross-section. Moreover, thin steel plates 

were intentionally specified to obtain a more cost effective column by increasing the 

contribution of concrete in the load carrying capacity of the column. These factors have 

made PEC columns constructed with built-up shapes more attractive than those 

constructed with standard sections. However, thin–walled steel sections are susceptible to 

local buckling of the flanges and this needs to be accounted for in the design of these 

columns. To better understand the behaviour of the PEC column with a thin–walled steel 

section, on which the current study is being conducted, a review of the experimental and 

analytical investigations related to this composite system is presented in this chapter. A 

brief review on the literature on PEC columns with standard shapes is also included to 

compose a complete picture of the works on this type of composite section.  

 

2.2 PEC Columns Fabricated with Standard Steel Sections 

Several experimental investigations have been carried out on PEC beam-columns with 

fabricated shapes, typically used in Europe, subjected to static, cyclic and earthquake 

loading. The conventional form of this composite column consists of a compact steel 

section with longitudinal and tie reinforcements in the encased concrete. Elnashai et al. 

(1991) modified the conventional section by adding transverse bars linking the two 

flanges to prevent local buckling at large displacements and to increase the interaction 

between steel and concrete. From experimental investigations, the researchers reported 
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significant improvements in the seismic behaviour of these columns due to the addition 

of these bars. Elnashai and Elghazouli (1993) proposed a numerical model for this type of 

PEC column using the nonlinear static and dynamic analysis program ADAPTIC. The 

numerical model was calibrated against and compared with the experimental results 

(Elnashai et al. 1991). Elasto–plastic cubic elements were used to represent the test 

specimen and a uniaxial cyclic material model was employed to represent the concrete 

material behaviour. This model allowed for variable confinement across the 

cross-section, including concrete that is unconfined between the open face and the 

transverse links, fully-confined near the web of the steel shape, and partially confined 

between the two other confinement regions. The local imperfections in the steel section 

and the effect of residual stresses were not accounted for in the numerical model. 

Elghazouli and Elnashai (1993) carried out a detailed parametric study using the 

analytical model on the modified configuration of PEC columns with standard sections 

developed and tested by Elnashai et al. (1991). The main purpose of the study was to 

asses the capacity and ductility of PEC members and their sensitivity to a number of 

parameters such as axial load, steel characteristics, concrete confinement, flange 

slenderness and member slenderness. The study was limited to flexural members 

subjected to uniaxial bending and axial loads. They found that concrete confinement had 

no effect on the yield moment, but the ultimate moment was affected to some extent. It 

was demonstrated that substantial ductility could be attained by properly detailed 

members, particularly the modified section that includes transverse links. Later on, this 

modified PEC column was improved by removing the longitudinal and tie rebars in the 

concrete, with a view to easing the construction process and minimizing the cost.  

 

Elnashai and Broderick (1994) carried out an experimental investigation on the improved 

section consisting of a compact steel shape and transverse links, in a context of seismic 

resistance. The tests included severe cyclic and pseudo-dynamic loading with varying 

levels of axial force. The results demonstrated that the link-only PEC columns were able 

to retain the earthquake–resistant capabilities of the modified section (PEC columns with 

links and additional rebars), thus making it a more attractive alternative. An analytical 

study was carried out by Broderick and Elnashai (1994) on this type of PEC column 
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using the program ADAPTIC. Most of the features of the numerical model were similar 

to those used by Elnashai and Elghazouli (1993) in their analytical models for the 

modified section of PEC columns. The model was able to predict the displacement and 

rotation ductility and the ultimate moment of the test specimens of Elnashai and 

Broderick (1994) with good accuracy. The superior earthquake–resistant capabilities of 

this composite system were also revealed from the analytical study.  

 

Hunaiti and Fattah (1994) investigated the load carrying capacity of PEC columns 

subjected to monotonic eccentric axial load. Instead of using transverse links in the steel 

section, they used intermittent batten plates welded at the flange tips of the column. They 

also studied the effect of shear connectors to evaluate the effect of improving bond on the 

behaviour of these columns. The variables studied included eccentricity of the applied 

load with equal and unequal eccentricities at the column ends and concrete strength. The 

results demonstrated that the columns failed by yielding of steel and crushing of concrete, 

accompanied by large deflections. No signs of local or overall buckling were reported, 

which indicates that the columns tested developed the full flexural strength of the section 

(Hunaiti and Fattah 1994). All of the test columns—with and without batten plates and 

with shear connectors—behaved in a somewhat similar manner. Therefore, the 

researchers concluded that batten plates and shear connectors are not required for this 

type PEC column to achieve full composite behaviour between the infilled concrete and 

the steel section. However, to account for the effect of several factors in a real structure 

that could cause deterioration of the bond between the steel and concrete, they 

recommended that the mechanical shear connectors be included in the composite section.  

 

2.3 PEC Columns Fabricated with Thin-Walled Built-Up Sections 

2.3.1 Experimental Investigations 

Extensive experimental research has been conducted on thin-walled PEC columns with 

built–up sections by several research groups (Fillion 1998; Tremblay et al. 1998; 

Chicoine et al. 2000; 2003; Muise 2000; Bouchereau and Toupin 2003; Prickett and 

Driver 2006) to investigate the behaviour of this type of PEC column under various 
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loading conditions. A large number of tests have been performed on short PEC columns 

constructed with normal strength concrete subjected to concentric and eccentric axial 

loads, including static and cyclic conditions. Short PEC columns with high performance 

concrete have also been tested under pure axial compression as well as combined axial 

and flexural compression. A few long column tests were carried out using normal 

strength concrete under static loading. Furthermore, tests of beam–to–column 

connections were performed for beams framing into the weak axis of the composite 

column. Descriptions of these experimental investigations along with the findings are 

presented in the following sections.  

 

2.3.1.1 Short Columns Constructed with Normal Strength Concrete 
 
2.3.1.1.1 Columns Under Concentric Axial Loading 

The first series of tests on short PEC columns was performed by Fillion (1998) and 

Tremblay et al. (1998) on specimens with 300 mm × 300 mm and 450 mm × 450 mm 

cross–sections. The specimens had a length of five times the cross-section dimension and 

were loaded under axial compression. The test program included ten tests on bare steel 

columns and seven tests on composite columns with different transverse link spacings 

and flange slenderness ratios. The bare steel columns were examined to study the 

behaviour of the column under construction loading, prior to the composite action. To 

study the possible size effect on the behaviour of short PEC columns, Chicoine et al. 

(2000) tested five 600 mm×600 mm concentrically loaded columns and compared them 

with the first series of tests on short PEC specimens. They also varied the transverse link 

spacing and the flange slenderness ratio to study their influences on the column 

behaviour. One of the five composite specimens had additional reinforcements in the 

form of longitudinal and transverse rebars in the concrete. Local flange imperfections 

between the transverse links (out of the plane of the flange) were measured on the steel 

section of these test specimens. It was observed that the inward imperfection 

measurements outnumbered the outward ones with a ratio of 18:1 on the 600 mm 

specimens and no outward imperfections were found on the 300 mm and 450 mm 

specimens (Tremblay et al. 1998; Chicoine et al. 2000). The tendency of the flange to 
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bow inward was attributed to the fabrication process used for the specimens, which is 

influenced by the shrinkage of the web-to-flange welds. The maximum amplitude of the 

measured local imperfections in these test specimens varied from 0.39 mm (s/870) to 

2.02 mm (s/335). The residual stresses in the steel plates of these test specimens were 

also measured before the tests. 

 

The results of these tests showed that the bare steel PEC columns failed due to local 

buckling in the flanges and the web, while the failure of the composite columns occurred 

by a combination local buckling of the steel flanges between the transverse links, yielding 

of the steel and crushing of the concrete. Usually local buckling occurred at or near the 

peak load, depending on the slenderness of the flange plates and the link spacing. For 

columns with relatively wider link spacings (e.g., s = d), local buckling was observed to 

occur between 75% and 80% of their ultimate loads.  

 

The load versus deformation response was studied for the test specimens to evaluate the 

influence of column size, plate slenderness ratio, link spacing and additional 

reinforcements. The test results on 300 mm, 450 mm and 600 mm short column 

specimens with equal plate slenderness and link spacing, demonstrated that the 450 mm 

and 600 mm specimens behaved in a similar manner while the 300 mm specimens 

exhibited a more gradual failure with the same post-peak response (Chicoine et al. 

2002a). It was also reported that the specimens with higher b/t and s/d ratios exhibited a 

faster degradation of post-peak strength than columns with lower b/t ratios and smaller 

link spacings. However, the load versus deformation response before the ultimate load 

did not vary much from one specimen to another since it remained elastic until near the 

peak. The additional rebars had a negligible impact on the ultimate capacity of the 

column, but significant improvements were observed in the ductility of the post-peak 

response (Chicoine et al. 2002a). During the tests, the longitudinal and transverse strains 

in the steel shape and transverse links were measured from which the corresponding 

stresses were calculated. The strain measurements in the flanges indicated that the flanges 

were bending outwards slightly between the links and the web. However, the transverse 

stresses in the flanges and web of the steel shape due to the lateral expansion of concrete 
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were found to be small and did not affect the axial capacity of the column. On the other 

hand, the lateral expansion of concrete was observed to induce high tensile stresses in the 

transverse links. The stresses in the links were observed to be doubled when the link 

spacing was halved, as a result of better confinement of the concrete near the exposed 

face. Chicoine et al. (2000) reported weld failure between the transverse links and the 

flanges in three of the composite test specimens. It was recommended that the links be 

welded to the flanges to develop their full yield capacity.  

 

Chicoine et al. (2003) investigated the effects construction loading sequence and long-

term loading (such as the effects of shrinkage and creep of concrete) on the behaviour of 

PEC columns by testing seven short composite columns with 300 mm × 300 mm and 

450 mm × 450 mm cross–sections. Four of these specimens were loaded for 150 days, 

following a typical construction sequence. The rest were without any long-term loading 

since they were used to assess the effect of shrinkage strains in the steel and the concrete. 

The specimens under long-term loading showed similar behaviour to that observed in the 

short-term loading tests (Chicoine et al. 2000; Tremblay et al 1998). The stress conditions 

before loading to failure were observed to have no influence on the ultimate capacity and 

failure mode of these columns.  

 

2.3.1.1.2 Columns Under Combined Axial and Flexural Loading  

Bouchereau and Toupin (2003) conducted tests to investigate the behaviour of short PEC 

columns subjected to axial compression and bending under monotonic and cyclic loading 

conditions. A total of 22 tests on 2250 mm long columns and two tests on 5000 mm long 

beams (as an upper bound to the moment-to-axial-force ratio) were performed. Two types 

of specimens were used, one without additional reinforcement and the other with 

reinforcing steel in the form of longitudinal (0.06%) and transverse rebars. Both types 

had a square cross-section of 450 mm × 450 mm × 9.53 mm where the first two numbers 

indicate the depth and width of the cross-section and the third number is the thickness of 

the steel plates. A link spacing of 300 mm was used in all the test columns. The loading 

conditions imposed in the tests were selected based on the flexural demand on  PEC 

columns when used in concentrically braced structures subjected to design level 
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earthquake motions. To evaluate this demand, a nonlinear seismic dynamic analysis was 

carried out by the researchers on a 16- and a 24-storey braced frame building. The results 

of this study revealed limited flexural demand on gravity columns with considerably 

larger bending moments on the columns of the bracing bents (Tremblay 2003). The test 

program (Bouchereau and Toupin 2003) was mainly designed to simulate the conditions 

of a column of the bracing bents subjected to monotonic and cyclic eccentric axial loads. 

In each case the effect of strong and weak axis bending was investigated for two different 

values of load eccentricity. The effect of cyclic lateral loading with monotonic axial load 

on PEC columns was also explored for both strong and weak axis. In addition, two 

columns were tested under monotonic concentric loading only, the results of which were 

used as reference values for other tests performed by Bouchereau and Toupin (2003).  

 

The short PEC columns with normal strength concrete subjected to both monotonic and 

cyclic eccentric loading demonstrated similar failure modes to those observed by 

Tremblay et al. (1998) in similar columns under concentric axial loading only. However, 

Bouchereau and Toupin (2003) reported that the occurrence of local buckling and 

concrete crushing was essentially simultaneous in all of the eccentrically loaded test 

specimens. The specimens with weak axis bending exhibited brittle and explosive failures 

as compared to other specimens. However, the presence of additional reinforcement in 

the specimens under weak axis bending was observed to improve the behaviour of these 

columns significantly. The additional reinforcements also increased the ultimate capacity 

of the PEC columns by an average of 8%, as observed by Bouchereau and Toupin (2003).  

 

Comparing the results of the cyclic tests to corresponding monotonic tests, no significant 

differences in the column behaviour were observed. Bouchereau and Toupin (2003) 

reported that the cycles of loading did not have a deleterious effect on the ultimate 

capacity; rather, it improved the capacity obtained under monotonic loading conditions 

by about 4%. No significant difference was observed in the post-peak load versus 

displacement response between cyclically and statically loaded PEC columns. 

Bouchereau and Toupin (2003) also constructed load–moment interaction diagrams for 

PEC columns with normal strength concrete and validated the curves against the test 
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results. The interaction diagrams were developed using the methods typically adopted for 

reinforced concrete columns, assuming a linear strain distribution across the cross-

section. Bouchereau and Toupin (2003) did not include the effect of local flange 

buckling, residual stresses in the steel section or confinement of concrete in calculating 

the load–moment interaction diagrams for PEC columns with normal strength concrete. 

Very good agreement was observed between the test and predicted capacities. However, 

the capacities of the two test columns with weak axis bending without additional rebars 

were lower than that predicted from the interaction diagram by 10 to 15%. Bouchereau 

and Toupin (2003) explained this inconsistency by noting the sensitivity of these columns 

to unexpected test conditions such as accidental eccentricity, improper installation or 

defects during the fabrication process. However, the researchers recommended that 

modifications to the load–moment interaction diagram be developed that consider the 

local buckling of the flanges, residual stresses, concrete confinement and transverse 

stresses in the steel. 

 

2.3.1.2 Short Columns Constructed with High Performance Concrete 

Prickett and Driver (2006) conducted a comprehensive experimental research project to 

study the behaviour of thin-walled PEC columns made with high performance concrete. 

The study included 11 short PEC columns measuring 400 mm × 400 mm × 2000 mm, 

with the primary variables being the concrete type, link spacing and load eccentricity. 

The plate slenderness ratio was kept constant (b/t = 25) for all of the test columns. The 

specimens were divided into two groups. The first group consisted of seven specimens 

subjected to axial compression only. Three different link spacings and three types of 

concrete (normal strength, high strength and high strength steel fibre reinforced concrete) 

were used in these specimens. Two normal strength concrete columns with different link 

spacings were used as reference specimens. Steel fibres were used to observe potential 

improvement in the failure mode of PEC columns with high strength concrete. Four 

identical PEC columns constructed with high strength concrete and subjected to axial 

compression and bending were tested in the second group of specimens by Prickett and 

Driver (2006). Bending axis and the amount of load eccentricity were varied to determine 

 15



the effects of these parameters on the column behaviour. Initial local imperfections in the 

flange plate were measured at several locations in the steel section for all 11 test 

specimens. The local imperfections in the flanges were observed to be inwards in most 

locations, with an average maximum amplitude of approximately 1.5 mm (s/375). 

Additional measurements of the local flange imperfections were performed after the 

columns had been cast and no significant differences were observed. 

 

The column behaviour was examined by considering the failure mode, load versus strain 

response and the transverse stresses in the steel plates. The high strength concrete PEC 

columns failed in a similar manner to the PEC columns with normal strength concrete: 

concrete crushing combined with local flange buckling. However, the failure of a high 

strength concrete column was observed to be sudden as compared to an equivalent PEC 

column with normal strength concrete. Addition of steel fibres in the high strength 

concrete was found to improve the failure mode of the columns somewhat. Prickett and 

Driver (2006) reported no local buckling prior to the peak load in any of the 

concentrically loaded test specimens, even for the specimen with a link spacing equal to 

the depth of the column. However, one of the eccentrically loaded specimens experienced 

local buckling at 90% of the peak load. The effect of confinement, as revealed by 

transverse stresses in the steel section, on the capacity of the high strength concrete PEC 

columns was similar to that observed for the normal strength concrete PEC columns. 

However, the steel section of columns with high strength concrete yielded sooner relative 

to the peak load as compared to the steel section of the columns with normal strength 

concrete. The axial capacity of the high strength concrete PEC columns was not 

significantly affected by the confinement of the concrete and therefore Prickett and 

Driver (2006) recommend that confinement not be accounted for in the design of these 

columns. The maximum stresses in the links were well below the yield stress and 

therefore it was recommended by the researchers that the current design requirements for 

link cross-sectional area and welding in CSA standard S16-01 (CSA 2001) are 

satisfactory for high strength concrete PEC columns under concentric and eccentric 

loading conditions.  
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Prickett and Driver (2006) also studied the moment versus curvature response and 

developed load versus moment interaction diagrams for the eccentrically loaded 

specimens. The moment versus curvature curves for specimens with strong axis bending 

showed a gradual decline of the peak moment as compared to the sudden decline 

observed in the specimens with weak axis bending. To predict the capacity of the 

eccentrically loaded columns, the load versus moment interaction diagrams were 

developed using the methods used for reinforced concrete columns. The effect of local 

flange buckling was included by using an effective area of the steel flange in the 

compression zone. In general, the interaction curves provided a good and conservative 

estimate of the ultimate cross-sectional capacities of the eccentrically loaded PEC 

columns obtained from the tests. For columns with strong axis bending the capacities 

obtained from the test exceeded the predicted capacities by 17 to 27%, whereas for 

columns with weak axis bending the predicted capacities were exceeded by only 4 to 9%. 

Prickett and Driver (2006) attributed this discrepancy to the fact that the concrete 

confinement, which was neglected in predicting the column capacities, had a more 

pronounced effect on the columns under strong axis bending than on those under weak 

axis bending. The presence of a steel flange on the face that experiences maximum 

compression, provides more favourable confinement conditions than either columns 

under weak axis bending or those loaded concentrically. 

 

2.3.1.3 Long Columns Constructed with Normal Strength Concrete 

Four long PEC columns with a length-to-depth ratio of 20 were tested to study the overall 

buckling behaviour of these columns under monotonic loading (Chicoine et al 2000). In 

this test program, one bare steel column and three composite columns were tested with 

two different link spacings. All columns had a square cross-section of 450 mm × 450 mm 

and a flange slenderness ratio of 23. Additional reinforcements in the form of 

longitudinal and tie bars were provided in one of the composite specimens. Both local 

and global geometric imperfections were measured in all specimens before the tests took 

place. The flanges of these specimens were observed to have outward local imperfections 

(between links), with maximum amplitudes less than 1 mm (s/600). The global 

out-of-straightness was measured about the weak axis and was also found to be small, 
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representing typically about 1/3000 of the total height of the columns. The long columns 

were tested under concentric loading, except for one, which was tested with an 

eccentricity of 0.06d about the weak axis. However, Chicoine et al. (2000) reported the 

presence of significant bending moment in all specimens about both the strong and weak 

axes caused by accidental eccentricity or uneven end bearing. Equivalent strong and 

weak axis eccentricities were, therefore, calculated for each specimen at the bottom, mid-

height and top elevations using elastic theory. Chicoine et al. (2000) recommended that 

these computed values of eccentricity be included in the finite element analysis of these 

test specimens.  

 

The test results demonstrated the brittle and explosive failure modes of the long 

composite specimens that consisted of global flexural buckling along with local buckling 

and concrete crushing between two links. The steel-only specimen was observed to fail 

by global buckling followed by local buckling at several link intervals. As reported by 

Chicoine et al (2000), no welds of the transverse links failed during the tests. The 

ultimate capacities of the slender columns were observed to be about 80% of those of 

short columns with similar cross–sections and link spacings. The initial weak axis 

eccentricity of 0.06d applied in one of the tests decreased the column capacity by 20% 

when compared with the specimen having similar geometric and material properties. The 

transverse stresses on the flange plates were observed to be higher on the compression 

side and lower on the tension side, with intermediate values in the web. The additional 

reinforcement was observed to provide no improvement in the ductility of the long 

composite column, as opposed to the beneficial effect observed in the short composite 

columns. However, a direct comparison between the two long specimens with and 

without additional reinforcements was not possible due to the presence of accidental 

eccentricity in the test specimens. 

 

2.3.1.4 Beam-to-Column Connections 

In structures with PEC columns, beams framing into the column flange faces would 

typically be connected using standard shear connection details. On the other hand, the 

weak axis connection is made to a plate spanning between the flange tips rather than 
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connecting the beam directly to the column web as would normally be done in 

conventional steel construction. Muise (2000) examined the behaviour of 

beam-to-column connections to the weak axis of thin-walled PEC columns by conducting 

14 full-scale tests under both bare steel and composite conditions. The columns were 

loaded through floor beams connected to flange tip connection plates. The column sizes 

varied between 450 mm and 600 mm. The variables included the length of the flange tip 

connection plate as well as its thickness. Different types of floor beam connections 

welded to the connection plates were also studied, including short and long double angle 

connections, one sided shear plates and stiffened and unstiffened seat angles. Shear studs 

were added to the back of some connection plates to assess their contribution.  

 

Muise (2000) reported that the predicted capacity was exceeded in all the connection 

tests, with yielding being observed in several of the connections within the range of the 

design load. The connection type was observed to influence the rotational stiffness. 

Larger rotational flexibility was observed in double angle connections as compared to the 

other connections investigated. The one-sided shear plates were found to provide higher 

stiffness by enhancing the force transfer between steel and concrete. The length of the 

connection plate was also observed to have a significant effect on the force transfer, with 

longer connections resulting in a more uniform stress gradient below the connections. 

The presence of shear studs was found to improve the force transfer to the concrete, 

however it was recommended that the pullout forces that can develop at the shear studs 

be considered in connection design.  

 

In the testing of the steel connections, the unbalanced connection load was observed to 

have a pronounced effect on the axial load carrying capacity of the column. As reported 

by Muise (2000), the connection load introduced at a single side of the column created a 

stress gradient in the column and initiated buckling in the column flange, immediately 

under the loaded endplate, at total axial loads less than those experienced in the 

concentric tests by Tremblay et al. (1998). 
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2.3.2 Numerical Investigations 

A finite element model of PEC columns with thin–walled built–up sections was first 

developed by Maranda (1998), using the computer program MEF, to simulate the series 

of tests on PEC stub columns performed by Tremblay et al. (1998). Only a quarter cross–

section was modelled using shell elements for the steel plate, solid elements for the 

concrete and beam elements for the transverse links. Contact elements were used at the 

steel–concrete interface to represent interaction between these two materials. The model 

included local imperfections of the steel flange by scaling the displacements obtained 

from the buckled elastic shape. The yield plateau of the steel stress–strain curve was 

modified to include the effect of residual stresses in the steel plates. Good agreement was 

observed between the numerical and the experimental results, with an average ratio of 

experimental-to-numerical peak loads of 0.95 and a standard deviation of 0.03. However, 

the model developed by Maranda (1998) was not capable of predicting the post-peak 

responses of the test specimens. In some cases the model exhibited positive stiffness at 

the last converged solution point, indicating that the ultimate point had not been reached. 

Moreover, local imperfections were modelled outwards as opposed to the inward 

imperfections measured in the test specimens.  

 

Chicoine et al. (2002b) performed a finite element analysis using ABAQUS/Standard 

(HKS 2003) to reproduce numerically the behaviour of the composite column near the 

peak load, modes of failure, and stresses in the web of the steel shape and in the 

transverse links. The model was verified and calibrated against the experiments 

performed on short term load tests on short PEC columns subjected to gravity loading 

only (Tremblay et al. 1998; Chicoine et al. 2002a). The researchers also studied the 

effects of loading sequence and long term loading on the PEC column using the 

numerical model by simulating the long-term tests on short PEC columns (Chicoine et al. 

2003). Similar to the numerical study performed by Maranda (1998), Chicoine et al 

(2002b) also modelled a quarter of the column cross–section with a length of one link 

spacing. The finite element model was developed using S8R shell elements for the steel 

section, C3D20R brick elements for concrete and B32 beam elements for the transverse 

links. Two node spring elements were used to represent the interaction between steel and 
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concrete at their common interface. The stiffness of these elements were adjusted to 

simulate the local buckling of the flange and the separation between steel and concrete as 

the load progresses. Very high compressive stiffness was defined for the springs to 

prevent inward buckling of the flange plate due to the presence of the concrete. On the 

other hand, very low tensile stiffness was given to allow the flange to buckle freely in the 

outward direction. To simulate perfect bond between the transverse link and concrete, all 

nodes of the link were coupled to the adjacent concrete nodes in the axial direction of the 

link.  

 

Steel material behaviour was represented by a bilinear stress–strain curve based on the 

typical stress–strain curves obtained from tension coupon tests of the plates used in the 

column specimens (Chicoine et al 2000). The mechanical properties of concrete were 

defined using an effective compressive strength, fcue and an effective elastic modulus, 

Ece , given by: 

 

 cucue ff ψ92.0=  (2.1) 

 cce EE ψ92.0=  (2.2) 

 

where fcu and Ec
 are the compressive strength and elastic modulus obtained from cylinder 

tests at the day of column testing. The strength reduction factor 0.92ψ was proposed by 

Chicoine et al (2002a; 2002b), where 0.92 accounts for the lower quality of structural 

concrete in the test specimens as compared to the test cylinders and was selected to 

obtain a better fit between the experimental data and the results obtained from the 

numerical analysis by Chicoine et al (2002b). The factor ψ accounts for the size effect on 

cross-sectional strength and is expressed as: 
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Here, b is half of the flange width of the column in mm.  
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The cracking model in ABAQUS/Standard was used by Chicoine et al (2002b) to 

represent the concrete material behaviour in PEC columns. The local imperfections were 

included by applying a deformed shape corresponding to the first buckling mode obtained 

from an eigenvalue buckling analysis on the bare steel section with a length of one link 

spacing. The model also includes the residual stresses defined as initial conditions in the 

steel plates. Chicoine et al. (2002b) used the Riks displacement control technique to 

simulate the applied loading conditions in the test specimens. Therefore, an implicit 

solution strategy was implemented to trace the overall column behaviour throughout the 

applied displacement history. To model the sequence of loading in the long-term test 

series (Chicoine et al 2003), the entire composite section was defined initially. The 

concrete elements were then removed and the steel section was loaded to match the 

construction-induced stresses. Finally, the concrete elements were reinstated and the load 

was applied to the composite section. The long-term deformations were included by 

adding the increase in stress measured in the steel during the tests by Chicoine et al. 

(2003). 

 

The finite element model developed by Chicoine et al. (2002b) provided a very good 

representation of the ultimate capacity and load versus displacement response of short 

PEC test specimens up to the ultimate load. The mean experimental-to-numerical peak 

load ratio was observed to be 1.0 with a standard deviation of 0.03. The numerical model 

overestimated the experimental strain at peak load by about 5% on average. The post-

peak response of the columns was obtained only over a short deformation range due to 

convergence problems experienced by the numerical model. This can be attributed to the 

inadequacy of the implicit solution method for representing the highly nonlinear 

post-peak behaviour. However, the ultimate point was observed to be passed successfully 

since the post-peak stiffness in all the analyses was negative (Chicoine et al. 2002b). The 

numerical failure mode in axial compression was identical to the experimental one, with 

local buckling of the flange occurring outwards in a single wave between links. However, 

the model was incapable of predicting the proper failure mode with the inwards 

imperfection. Chicoine et al. (2002b) reported that if the imperfections were modelled 
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inwards as measured in the tests, the mode of failure of the numerical model showed the 

flange buckling occurring in two waves between the transverse links. This failure mode 

was not observed experimentally. Moreover, inwards imperfections also tend to give 

higher values of the ultimate loads (Chicoine et al. 2002b). For these reasons, Chicoine 

et al. (2002b) included outwards local imperfections (which is contradictory to 

experimental observations) in the finite element model of the test specimens.  

 

Chicoine et al. (2002b) also studied the stresses in the steel plates and concrete of this 

composite system at the peak load using the numerical model. The average stresses 

carried by the flanges and the web at the peak load point were reported to be 0.88Fy and 

0.93Fy , respectively. Buckling, along with initial imperfections and high tensile residual 

stresses near the welds, were responsible for the reduction in the flange capacity 

(Chicoine et al. 2002b). The reduction of the web capacity was attributed to the combined 

effects of tensile residual stresses near the welds and the tensile transverse stresses that 

developed due to the rapid expansion of concrete near the ultimate load. Chicoine et al. 

(2002b) also reported that the increase in concrete strength due to confinement effects is 

1% of its uniaxial compressive strength and, therefore, can be neglected in design. The 

numerical model was also used to represent the stresses in the transverse links and 

transverse stresses in the web plate. A good representation of the link stresses was 

obtained which was found to be affected by the transverse expansion of concrete. At peak 

load, the numerical model generally underestimated the link stress due to the limitations 

of the concrete model used by Chicoine et al (2002b) in representing the concrete 

material behaviour. The numerical transverse stresses in the web were observed to be 

compressive at the beginning of the analysis and tensile at peak load due to the variation 

of the concrete Poisson’s ratio. Similar observations were found in the experiments 

(Chicoine et al. 2000).  
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2.3.3 Prediction of PEC Column Capacity 

2.3.3.1 Columns Under Concentric Axial Loading 

The experimental and numerical investigations on PEC columns with built-up sections 

led to the development of a capacity prediction model for these columns. In this model 

the compressive cross-sectional strength of the PEC column is calculated using the 

following expression proposed by Tremblay et al. (2000a), with modifications from the 

work of Chicoine et al. (2002a; 2002b):  

 

 ( )yrcuy FfF rcser AA92.0AC ++= ψ  (2.4) 

 

where Ase is the effective area of the steel shape as defined by Equation (2.5), Fy is the 

yield strength of the steel plate, Ac is the cross-sectional area of concrete, fcu is the 

concrete cylinder strength and Ar and Fyr are the area and yield strength of the 

longitudinal rebars.  

 

The effective steel area, Ase , in Equation (2.4) is determined as: 

 

 )t2b2t(dA ese +−=  (2.5) 

 

where d is the overall depth of the cross-section, t is the thickness of the steel plates and 

be is the total effective width of the flange. To account for the effect of local buckling in 

the column capacity, be is expressed as a function of flange slenderness ratio (b/t) and the 

aspect ratio of the unsupported flange panel (s/b): 
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Equation (2.6) was adapted from the column design curve expression proposed by 

Loov (1996). In this equation, bf is the full width of a flange plate and λp is a slenderness 

parameter calculated using Equation (2.7). Es and νs in Equation (2.7) are the elastic 

modulus and Poisson's ratio, respectively, of steel. The plate buckling coefficient, k, in 

Equation (2.7) was originally to be calculated using Equation (2.8), as proposed by 

Tremblay et al (2000) based on energy conservation methods, to represent the local 

buckling capacity of the flange panel between adjacent links. However, Chicoine et al 

(2001) reported that Equation (2.8) does not give capacities consistent with the 

experimental and numerical results and therefore proposed that it be modified to (and 

recast in terms of the full flange width, bf for convenience): 
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Equation (2.9) was derived empirically from a series of elastic buckling analyses of the 

unsupported steel flange panel of the column using the finite element method and it 

resulted in a better fit with the existing pool of PEC column data.  

 

The value of the factor n in Equation (2.6) is taken as 1.5, as proposed by Chicoine et al 

(2002b). (Initially, a value of n = 1.0 was used by Tremblay et al. (2000a), which resulted 

in a good fit for the experimental data on small and large scale specimens under short 

term loading. Later, Chicoine et al (2002b) obtained an average value of test-to-predicted 

ratio of 1.00, with a standard deviation of 0.03, using n = 2.0 for the ultimate capacity of 

all columns including those under long term loading. However, in order to account for the 

likelihood that flange imperfections in actual columns would be closer to the fabrication 

tolerances permitted by CSA G40.21 (CSA 2004b) than those measured in the reference 

test columns, a value of n = 1.5 was recommended for design.) The use of n = 1.5 results 
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in a mean test-to-predicted load ratio of 1.03, with a standard deviation of 0.03, and 

provides a margin to account for the imperfect conditions in a real column.  

 

Equations (2.4) to (2.7) and (2.9, but without the restrictions on s/bf) are included in CSA 

S16-01 (CSA 2001) for determining the design capacity of axially loaded PEC columns 

with built-up thin-walled shapes, but with a slight modification in the concrete strength 

reduction factor. For simplicity, the strength reduction factor 0.92ψ in Equation (2.4) was 

replaced by 0.8 in CSA S16–01. However, these design equations are subjected to certain 

limitations on geometric and material parameters imposed by the scope of the 

experimental and numerical programs performed by Tremblay et al. (1998) and Chicoine 

et al (2002a, 2002b). The yield strength of the steel plate and reinforcing bars is limited to 

no greater than 350 MPa and 400 MPa, respectively, and concrete strengths only up to 

40 MPa are allowed (normal density). The flange width, bf , must be within 0.9 to 1.1 

times the section depth, d, and have a slenderness ratio, bf/2t, not greater than 32. The 

thickness of the web plate must be equal to the thickness of the flanges and the 

connections between them must be provided by continuous fillet welds designed to 

develop the shear yield capacity of the web. The spacing of the transverse links is limited 

to the lesser of 500 mm or 0.67d and the area of a link must be at least the greatest of 

63 mm2, 0.01bft and 0.5 mm2 per mm of link spacing. The maximum amplitude of local 

flange imperfection should not exceed 0.5% of the link spacing. Finally, the equations are 

applicable only to concentrically loaded columns with a clear height-to-depth ratio less 

than 14.  

 

As reported by Prickett and Driver (2006), the design equations for concentrically loaded 

columns provide conservative estimations of the axial capacity of PEC columns with high 

strength concrete. Therefore, it was recommended that the current upper limit for the 

strength of concrete be increased from 40 to 70 MPa. Although Prickett and Driver 

(2006) obtained good estimates of the axial capacity of these columns using the methods 

of CSA S16–01 along with the full steel area (consistent with the observed occurrence of 

local buckling after the peak load), they proposed that the use of a reduced steel area, as 

given in the design standard (Equation 2.5), be retained until additional tests are 
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completed on high strength concrete PEC columns with a bf/2t ratio greater than 25, 

which was used in their test specimens. They also suggested using a concrete strength 

reduction factor of 0.9 for high strength concrete, instead of the factor 0.8 used in CSA 

S16–01 (CSA 2001) for normal strength concrete, since the coefficient 0.8 resulted in 

overly conservative predictions of the column capacity of the test specimens constructed 

with high strength concrete.  

 

2.3.3.2 Columns Under Combined Axial and Flexural Loading  

Bouchereau and Toupin (2002) and Prickett and Driver (2006) predicted the capacity of 

eccentrically loaded columns from load–moment interaction diagrams constructed using 

a procedure commonly adopted for reinforced concrete columns. However, Prickett and 

Driver (2006) used the reduced steel area in calculating the design capacity to account for 

the local buckling of the flanges, since local buckling was observed in a few eccentrically 

loaded columns shortly before the peak load. A linear strain distribution along the cross-

section, based on observations from the strain measurements taken during the test, was 

implemented for the construction of this diagram. The extreme compressive strain was 

set at 3500 µε (considered to be the crushing strain of concrete), whereas the extreme 

tensile strain was varied from 0 to 10 times the yield strain of the steel. For each strain 

gradient the ultimate load and moment capacities were calculated from the material and 

geometric properties of the composite cross-section. The compressive force in the 

concrete, Cc , was calculated using the following expression, assuming a rectangular 

stress block:  

 

cbC 1c1c βα cuf=  (2.10) 

 

where bc is the net width of the concrete block (i.e., excluding the web thickness for 

strong axis bending and excluding the flanges for weak axis bending), c is the distance 

between the extreme compression fibre and the neutral axis and the factors α1 and β1 are 

expressed as (CSA 2004b), 
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67.00015.085.01 ≥−= cufα  (2.11) 

67.00025.097.01 ≥−= cufβ  (2.12) 

 

To calculate the contribution of the steel to the capacity of the composite column, the 

section was discretised in such a way as to have effectively uniform strain in each 

individual piece. For strong axis bending, the flanges were considered to be one piece, 

whereas the web was divided into ten pieces. On the other hand, for weak axis bending 

the web was considered as one piece and each flange was discretised into ten pieces 

(Prickett and Driver 2006). The resultant force for each individual piece was calculated 

by multiplying the area of the piece by its average strain and by the elastic modulus of 

steel. (However, if the strain in the individual piece exceeded the yield strain the force 

resultant is determined by multiplying the area of that piece by the yield stress.) In 

calculating the area of a flange piece in compression, the effective width (using 

Equation (2.6) with n = 1.5) was used by Prickett and Driver (2006). Finally, the total 

load capacity of the composite column was determined by adding the force resultants for 

concrete and steel and the moment capacity were obtained from the summation of each 

force multiplied by its distance from the centreline of the column cross-section.  

 

2.4 Conclusions 

The research on PEC columns with thin-walled sections reviewed in this chapter reveals 

that the behaviour of this composite system with normal and high performance materials 

have become relatively well understood from the full scale experimental investigations 

for monotonic concentric and eccentric axial loading conditions. However, it is not 

possible to obtain a complete understanding of the influences of various components 

from experimental investigations only due to the high cost and time requirement for full 

scale testing. The finite element model developed thus far for this new composite system, 

modelling only a small segment of the column, can adequately represent the local 

buckling behaviour and ultimate loads for axially loaded short columns, although post-

peak behaviour could not be reproduced. The effect of initial imperfections on the 

capacity of these columns has not been studied as the existing model failed to predict the 
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actual failure mode with inward local imperfections of the thin flange plates. No finite 

element study has yet been performed to explore the behaviour of these columns under 

the combined action of axial and flexural loads. In this regard, a finite element model 

including the complete cross-section needs to be formulated that can accurately represent 

the peak and post-peak behaviour of these columns, as well as simulating the proper 

failure modes, even with inwards initial imperfections, under various loading conditions. 

Moreover, the influences of several key parameters, which could not be covered by the 

experimental programs, on the behaviour of these columns under axial compression and 

bending, need to be investigated using the finite element model.  
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3. CONCRETE MATERIAL MODEL 

 

3.1 Introduction 

In partially encased composite (PEC) columns the concrete blocks are surrounded by the 

steel plates on three sides and partially supported by the transverse links on one side. This 

system is expected to provide low levels of passive confinement to the concrete. Previous 

research work on numerical modelling of PEC columns (Chicoine et al. 2001), although 

able to simulate the pre-peak behaviour relatively well, was unsuccessful in representing 

the triaxial behaviour of concrete in these columns near and beyond the ultimate load. An 

attempt has been made in the current study to eliminate this limitation of the finite 

element model by using the damage plasticity model that is implemented within 

ABAQUS to represent the concrete material behaviour in this composite system. A brief 

description of the damage plasticity model and its ability to predict the uniaxial, biaxial 

and triaxial behaviour of concrete under various levels of lateral confinement is included 

in this chapter. Also presented are the uniaxial compressive and tensile stress–strain 

relationships of plain and steel fibre reinforced concrete used in the PEC test specimens. 

Complete stress–strain curves for concrete under uniaxial compression and tension are 

necessary to predict the structural response of the composite column from the nonlinear 

finite element analysis using the damage plasticity model for concrete. 

 

3.2 Stress–Strain Relationship of Concrete in Compression 

3.2.1 Plain Concrete 

There have been many attempts (Desayi and Krishnan 1964; Popovics 1973; Wang et al. 

1978; Carreira and Chu 1985; Tsai 1988; CEB 1990; Hsu and Hsu 1994a; Almusallam 

and Alsayed 1995; Gysel and Taerwe 1996; Wee et al. 1996; Barr and Lee 2003) to 

develop analytical formulations to represent the stress–strain relationships for normal and 

high strength concrete in uniaxial compression. A review of these models is performed to 

select a simple formulation that can adequately represent the strain-softening behaviour 
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of normal and high strength concrete in uniaxial compression. Some of these models are 

complex (CEB 1990; Almusallam and Alsayed 1995) or require cumbersome 

computations (e.g., Wang et al. 1978) to evaluate the key parameters used in the 

formulation. A number of models use two separate expressions (e.g., CEB 1990; Hsu and 

Hsu 1994a; Gysel and Taerwe 1996) to represent the complete stress–strain curve, which 

adds to the complexity of the model. Some models require fitting parameters (e.g., Hsu 

and Hsu 1994a; Almusallam and Alsayed 1995; Gysel and Taerwe 1996) derived via 

curve fitting methods, which make them dependent upon testing conditions such as the 

rate and duration of loading, type of testing machine, size and shape of specimen, size 

and location of strain gages, number of load repetitions, boundary conditions, etc. 

(Popovics 1970; Gysel and Taerwe 1996; Wee et al. 1996). Since the strain softening 

behaviour of plain concrete is greatly affected by these factors, the analytical models 

developed primarily on the basis of curve fitting sometimes give conflicting results for 

the descending branch of the curve, particularly for high strength concrete.  

 

Most common stress–strain models (Hognestad 1951; Desayi and Krishnan 1964; 

Popovics 1973; Carreira and Chu 1985; Tsai 1988; CEB 1990; Gysel and Taerwe 1996; 

Barr and Lee 2003) cannot adequately represent the strain softening behaviour and the 

post–peak residual strength for high strength concrete, with the exception of the model 

proposed by Wee et al. (1996). However, the Barr and Lee (2003) formulation can 

adequately predict the strain softening behaviour of normal strength concrete with an 

ability to control the steepness of the descending branch (i.e., level of brittleness) with a 

single parameter. In the numerical model for PEC columns the stress–strain relationships 

for normal strength and high strength concrete are generated using the formulations 

proposed by Barr and Lee (2003) and Wee et al. (1996), respectively, because of their 

simplicity, computational efficiency and adequacy in representing the strain softening 

behaviour of concrete in uniaxial compression. At the initial stage of the study, while 

verifying the suitability of the damage plasticity model itself in predicting the concrete 

material behaviour, the model of Tsai (1988) was implemented primarily because of its 

simplicity. The stress–strain curves generated by all three of the models used in this 

research are based on the values of uniaxial compressive strength, fcu , strain at ultimate 
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strength, εcu , and modulus of elasticity of concrete, Ec . Stress–strain curves for normal 

and high strength concrete used in the numerical analyses of PEC columns included in 

the parametric study (presented in Chapter 6) are shown in Figure 3.1. A brief description 

of the formulations used in this study are presented in the following sections. 

 

3.2.1.1 Formulation Proposed by Tsai (1988) 

Tsai (1988) proposed the following stress–strain relationship for concrete under uniaxial 

compression: 
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where m is the ratio of the initial tangent modulus to the scant modulus at  and n is a 

factor to control the steepness of the descending portion of the stress–strain curve. The 

slope of the ascending portion is controlled by the parameter m. The values of m and n 

can be calculated using the following expressions (Tsai 1988): 

cuf

 

cuf
m 9.171+=   ( f  in MPa)   (3.2) cu

185.1
68.6

>−= cuf
n  ( f  in MPa)   (3.3) cu

 
 
The proposed stress–strain formulation was verified against the test results of Wang et al. 

(1978) and was observed to fit the test results well for normal strength concrete. 

However, for high strength concrete this model underestimates the residual strength in 

the post-peak region of the stress–strain curve.  
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3.2.1.2 Formulation Proposed by Barr and Lee (2003) 

Barr and Lee (2003) developed a simple descriptive formulation for the constitutive 

behaviour of plain concrete using a single continuous function. The formulation is called 

a “double exponential model” since it results from the superposition of two exponential 

functions as follows: 

 

( ) )( 32
1

εεε cc
c eecf −− −=     (3.4) 

 

where c1, c2 and c3 are constants controlling the shape of the stress–strain curve. The first 

exponential term in this expression controls the descending branch of the stress–strain 

curve, whereas the initial part of the curve is influenced by the second exponential 

expression. The relative values of the two components determine the overall shape of the 

curve.  

 

Barr and Lee (2003) observed that by varying the three model parameters—c1, c2 and 

c3—a wide range of stress–strain curves can be developed. It was also reported that the 

model parameter c1 accounts for the nominal strength of plain concrete, whereas the 

parameters c2 and c3 influence the post-peak region and the initial part, respectively, of 

the stress–strain curve. A parametric analysis was carried out by Barr and Lee (2003) to 

investigate the sensitivity of the model to these parameters, which led to the following 

relationships between the parameters and the values of stress and strain at the ultimate 

stress, fcu and εcu: 
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Here, 23 cc=α and can be calculated using the following equations: 
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where, 
cuf2.0ε is the strain corresponding to a stress of 20% of uniaxial compressive 

strength, , in the post–peak regime of the stress–strain curve. Barr and Lee (2003) 

showed that for a given uniaxial compressive strength, , and corresponding strain, 

cuf

cuf cuε , 

the ratio α  (= 23 cc ) can be varied in the model to represent a range of responses 

varying from a brittle to an elastic–plastic material behaviour. (An elastic–plastic 

response is obtained as →∝α  and the model exhibits a very steep post–peak softening 

as 1→α .) Therefore, the level of brittleness, i.e., the slope of the post–peak descending 

branch of the stress–strain curve, of plain concrete can be controlled by this single 

parameter.  

 

To calculate the parameter α  using Equation (3.8), the strain value at 20% of the 

ultimate strength after failure, 
cuf2.0ε , is required, which cannot easily be obtained from a 

uniaxial compressive test on concrete cylinders. Therefore, for simplicity, this study 

assumes a value of α  rather than assuming the value of 
cuf2.0ε . Several numerical 

analyses were performed on ten PEC test specimens (Tremblay et al 1998 and Chicoine 

et al 2002a) to determine a suitable value of this parameter that provides the best 
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representation of the experimental post-peak response of the test columns. The value used 

in this study is 10, which is applied for all PEC test specimens constructed with normal 

strength concrete.  

 

Barr and Lee (2003) verified the model against experimentally obtained load–

deformation responses for normal strength and high strength concrete. Satisfactory results 

were obtained from this model in predicting the behaviour of normal strength concrete. 

However, it was less successful in modelling the brittle response of high strength 

concrete. Therefore, the double exponential model is more appropriate for materials that 

do not exhibit significantly brittle behaviour and was therefore used only for normal 

strength concrete in the current research.  

 

3.2.1.3 Formulation Proposed by Wee et al. (1996) 

Wee et al. (1996) proposed a simple model to generate the complete stress–strain 

relationships particularly for high strength concrete (ranging from 50 to 120 MPa). They 

used the equation proposed by Carreira and Chu (1985) with two correction factors to 

better represent the post-peak descending branch for high strength concrete. The 

ascending branch of the stress versus strain response is represented by the following 

equation (Carreira and Chu 1985): 

 
 





























+−










= β

ε
εβ

ε
εβ

cu

cu
cuc ff

1

 (3.9) 

 
 
where β  is a material parameter that depends on the shape of the stress–strain diagram. It 

is given by: 
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Here, is the initial tangent modulus of concrete. Several researchers (Wee et al. 1996; 

CEB 1990; Carriera and Chu 1985) proposed relationships between E

itE

it and fcu based on 

experimental investigations of uniaxial compressive behaviour of concrete. The initial 

tangent modulus, Eit , is not normally available from standard tests. Therefore, a 

simplified expression for β  as a function of  only, proposed by Popovics (1973), is 

used:  

cuf

 
0.1058.0 += cufβ   ( cuf  in MPa)   (3.11) 

 

The residual strength of high strength concrete at high strains becomes nearly zero if the 

same β  (calculated from Equation (3.11)) is used for the descending branch of the 

stress–strain curve. Therefore, a value of β  = 3, which was also used by Tulin and 

Gerstle (1964), is assumed to define the descending branch of the stress–strain curve for 

high strength concrete in the current research.  

 

Wee et al. (1996) reported that Equations (3.9) to (3.11) give good prediction of the 

ascending portion of the stress–strain curves for normal and high strength concretes. 

However, for high strength concrete the descending branch and the post-peak residual 

strength at high strains are not adequately represented by the Carreira and Chu model. 

Therefore, two modification factors,  and k , were introduced into Equation (3.9) by 

Wee et al. (1996) for modelling the descending branch of the stress–strain response. The 

expression for the descending branch becomes: 

1k 2
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The factors  and k  were determined empirically by Wee et al (1996) based on their 

experimental investigations of high strength concrete behaviour (with f
1k 2

cu ranging from 50 

to 120 MPa):  
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Therefore, for a given concrete strength, , and corresponding strain, cuf cuε , the complete 

stress–strain curve for high strength concrete can be generated by Equations (3.9) to 

(3.13). 

 

3.2.2 Steel Fibre Reinforced High Strength Concrete 

The stress–strain models developed to predict the compressive behaviour of plain 

concrete are, in general, not suitable for steel fibre reinforced concrete because the 

addition of steel fibres improves the post-cracking behaviour of plain concrete leading to 

increased ductility and toughness of the material. Based on uniaxial compression tests on 

steel fibre reinforced high strength concrete, Fanella and Naaman (1985), Taerwe (1992), 

Hsu and Hsu (1994b), Mansur et al (1999) and Neves and Almeida (2005) reported a less 

steep descending branch in the stress–strain curve of steel fibre reinforced high strength 

concrete than plain concrete. These researchers also proposed formulations to generate 

the complete stress–strain response curve of steel fibre reinforced concrete. Among these 

models, the one proposed by Neves and Almeida (2005) is implemented in the current 

study to generate the stress–strain curve (as shown in Figure 3.1) of steel fibre reinforced 

high strength concrete.  
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Neves and Almeida (2005) used the following expression, which was originally proposed 

by Vipulanandan and Paul (1990) for polymer concrete behaviour, to represent the 

stress–strain curve of fibre reinforced high strength concrete: 
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in which the parameters p and q are related to material deformability and can be 

determined from the following equations (Neves and Almeida 2005): 

 
( )[ ]20013.085.01 fff dlV

cufp ×−×−=   (3.15) 

cuc

cu

E
f

qp
ε

−=+ 1   (3.16) 

 
Here, Vf is the volumetric ratio of steel fibres in percentage, and lf and df are the fibre 

length and diameter, respectively, in mm. The proposed model is suitable for predicting 

the compressive behaviour of plain and steel fibre reinforced concrete with strengths and 

fibre volumes up to 60 MPa and 1.5%, respectively. The stress–strain curve for steel fibre 

reinforced concrete shown in Figure 3.1 has a strength of 60 MPa with 1% steel fibres by 

volume.  

 

3.3 Stress–Displacement Relationship of Plain and Steel Fibre 

Reinforced Concrete in Tension 

For nonlinear finite element analysis, the stress–displacement relationship for concrete 

members in the cracked state under uniaxial tension is required. In an uncracked state, the 

stress–strain relationship under uniaxial tension can be expressed with a linear function 

(Hillerborg et al. 1976; Foote et al. 1986). After cracking, the stress versus crack width 

response is more appropriate for representing the material behaviour under uniaxial 

tension, since no unique stress-strain relationship exists in the post-peak softening region 

(Gopalaratnam and Shah 1985).  
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Numerous expressions are available in the literature (e.g. Hillerborg et al. 1976; 

Gopalaratnam and Shah 1985; Foote et al. 1986; Zhen-hai and Xiu-qin 1987; Liaw et al. 

1990; Du et al. 1992; Marzouk and Chen 1995; Li and Ansari 2000; Li et al 2002) to 

represent the stress versus crack width relationship of concrete in uniaxial tension. These 

expressions vary from simple linear functions (Hillerborg et al. 1976) to sophisticated 

trilinear models (Liaw et al. 1990). However, most researchers (Gopalaratnam and Shah 

1985; Foote et al. 1986; Du et al. 1992; Li and Ansari 2000; Li et al. 2002) used 

exponential functions to represent the post-cracking behaviour of concrete.  

 

The current study uses the model proposed by Li et al. (2002), Equation (3.17), for 

normal strength concrete and that proposed by Li and Ansari (2000), Equation (3.18), for 

high strength concrete. In each model the post-peak response is represented as an 

exponential function of the ratio of crack width, w, to final crack width, wf : 
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These two expressions were developed through regression analyses to best fit the results 

of uniaxial tension tests performed on normal and high strength concrete test specimens, 

respectively. While modelling the PEC columns in the current research, the values of 

final crack width are chosen in such a way that consistent fracture energy values for 

concrete as reported in the literature (Gopalaratnam and Shah 1985; Zhen-hai and Xiu-

qin 1987; Marzouk and Chen 1995; Li and Ansari 2000; Li et al. 2002) are obtained. The 

resulting tensile relationships are shown in Figure 3.2. 
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Addition of steel fibres to plain concrete can significantly improve its tensile behaviour, 

as observed by several researchers (Song and Hwang 2004; Lee and Barr 2004; Kützing 

and König 1999). Fibres act to inhibit crack growth, thus increasing the required energy 

for crack propagation. In the current study, two out of 34 test columns modelled 

numerically were constructed with steel fibre reinforced high strength concrete. To 

represent the tensile stress versus crack width response for this concrete a simple trilinear 

curve is assumed, as shown in Figure 3.2. The points on the curve are defined based on 

the results of uniaxial tension tests performed on concrete with a design strength of 

60 MPa and with 80 kg/m3 of steel fibres in the mix (Kützing and König 1999), 

parameters that are nominally identical to those of the fibre reinforced high strength 

concrete of the PEC columns modelled. For other concrete mixes with steel fibres, more 

sophisticated expressions (Lee and Barr 2004) are available.  

 

3.4 Concrete Damage Plasticity Model 

3.4.1 Description of the Model 

The damage plasticity model in ABAQUS/Explicit (HKS 2003) provides a general 

capability for modelling concrete and other quasi-brittle materials in all types of 

structures. The model is a continuum, plasticity-based damage model (Lubliner et al. 

1989) that can predict both compressive and tensile behaviour of concrete under low 

confining pressures, i.e., less than four or five times the uniaxial compressive strength of 

concrete (HKS 2003). The model is capable of taking into consideration the degradation 

of elastic stiffness (or “damage”) induced by reversible cycles as well as high 

temperatures both in tension and compression. The concrete damage plasticity model 

uses a non-associated plastic flow rule in combination with isotropic damage elasticity. 

The Drucker–Prager hyperbolic function is used to define the plastic flow potential. The 

dilation angle defines the plastic strain direction with respect to the deviatoric stress axis 

in the meridian plane. The volumetric expansion of concrete can be controlled by varying 

the dilation angle. In this study, a value of 15 degrees is used for the dilation angle, as 

recommended by Lubliner et al. (1989) for low-confined concrete material modelling.  
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The model uses the yield function of Lubliner et al. (1989), with modifications proposed 

by Lee and Fenves (1998) to account for a different evolution of strength under tension 

and compression using multiple hardening variables. The two hardening variables used to 

trace the evolution of the yield surface are the effective plastic strains in compression and 

in tension, εc
~pl and εt

~pl, respectively. The start of compressive yield in a numerical 

analysis using this model occurs when εc
~pl > 0, whereas when εt

~pl > 0 and the principal 

plastic strain is positive, it indicates the onset of tensile cracking.  

 

The uniaxial compressive and tensile responses (Figures 3.3(a) and 3.3(b), respectively) 

of concrete used in this model are somewhat simplified to capture the main features of 

the response. Under uniaxial compression, the stress–strain response (as shown in 

Figure 3.3(a)) is assumed to be linear up to the initial yield stress, which is assumed to be 

0.30fcu in the current study. The plastic region is characterized by stress hardening, 

followed by strain softening after reaching the ultimate strength, fcu. The uniaxial 

compression hardening curve is defined in terms of the inelastic strain, εc
~in, which is 

calculated using Equation (3.19). The damage plasticity model automatically calculates 

the compressive plastic strains, εc
~pl, Equation (3.20), using a damage parameter, dc , that 

represents the degradation of the elastic stiffness of the material in compression.  
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Since, the current study includes only monotonic loading conditions, no stiffness 

degradation or recovery is considered. Hence, the plastic strain expression becomes: 
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Figure 3.3(b) shows the uniaxial tensile behaviour of concrete used in the damage 

plasticity model. The stress–strain curve in tension is assumed to be linearly elastic until 

the failure stress, ftu , is reached. After this point strain softening represents the response 

of the cracked concrete that is expressed by a stress versus cracking displacement curve 

(as described in section 3.3). The values of the plastic displacements calculated by the 

damage model are equal to the cracking displacements since the tensile damage 

parameter, dt , is zero for current study.  

 

3.4.2 Performance of the Model in Predicting Compressive Behaviour of 

Concrete 

Before implementing the damage plasticity model to represent the concrete material 

behaviour in the numerical model of PEC columns, a study was conducted to observe the 

performance of this model under three distinct conditions of loading: uniaxial, biaxial and 

triaxial compression. For uniaxial and biaxial compression the test results of Kupfer et al 

(1969) are reproduced using the damage model. The triaxial compression tests performed 

by Sfer et al (2002) under different levels of confining pressures (ranging from 0% to 

30% of the uniaxial compressive strength) are simulated to observe the performance of 

this model in predicting the triaxial behaviour of concrete. In the numerical simulations 

of these tests, the uniaxial concrete compression hardening curves are calculated from the 

given uniaxial compressive strength of concrete using the material model developed by 

Tsai (1988) and described in Section 3.2.1.1. The tension softening behaviour is defined 

in terms of the tensile stress as a function of the cracking displacement (Li et al. 2002). 

 

3.4.2.1 Uniaxial and Biaxial Compression 

Kupfer et al. (1969) tested square concrete plates of 200 mm × 200 mm × 50 mm under 

uniaxial and biaxial stresses, as shown in Figure 3.4. The uniaxial compressive strength 

of the concrete was 32.8 MPa at a strain of 2200 µε, with an elastic modulus of 

27 000 MPa. For biaxial compression, the ratios of the transverse to the longitudinal 

stresses, f22/f11 , used were 0.52 and 1.00 and they were kept constant throughout the test. 
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The load was applied through brush-like bearing platens, instead of solid bearing platens 

of conventional testing machines, to minimize the effects of end restraint (tangent to the 

platen surfaces) on the stress–strain behaviour of the concrete. In the numerical 

simulations of these tests, the square concrete plate is modelled with eight-node C3D8R 

solid elements using a 4 × 4 mesh with one element through the thickness. In simulating 

the boundary conditions of the test specimens, free movement is permitted parallel to the 

loading surfaces. The load is applied through displacement control in two directions 

(directions 1 and 2, as shown in Figure 3.4) at f22/f11 ratios of 0.0 (uniaxial loading in 

direction 1), 0.52 and 1.00.  

 

The normalised longitudinal stress versus longitudinal (direction 1) and transverse 

(directions 2 and 3) mean strain curves from the numerical analyses are compared with 

the corresponding experimental curves in Figure 3.5. For uniaxial compression 

(Figure 3.5(a)), the normalized stress versus longitudinal and transverse strain curves 

obtained numerically coincide well with the corresponding experimental curves. 

Figures 3.5(b) and (c) represent the numerical and experimental responses for biaxial 

compression with f22/f11 ratios of 0.52 and 1.00, respectively. In general, good agreement 

is obtained between the numerical and experimental curves, except in the longitudinal 

strain, ε1 , values near the ultimate point. The numerical strains at the ultimate 

longitudinal stress are 2130 µε  and 1980 µε  for f22/f11 = 0.52 and 1.00, respectively, 

which underestimate the corresponding experimental strains by 29 % and 17 %, 

respectively. However, the numerical curves show accurate predictions of the 

experimental ultimate strength in both cases of biaxial compression. For f22/f11 = 0.52, the 

uniaxial compressive strength of concrete is increased by 27%, which was obtained both 

experimentally (Kupfer et al 1969) and numerically. This increase in strength is 

approximately 16% for equal compressive stresses in the two loaded directions (i.e., 

f22/f11 = 1.0).  
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3.4.2.2 Triaxial Compression 

Sfer et al. (2002) studied the confined compression behaviour of concrete using standard 

150 mm × 300 mm cylindrical specimens subjected to hydrostatic pressure and axial 

load. Several levels of confining pressure were used in order to study the brittle–ductile 

transition of the response: 0.0, 1.5, 4.5, 9.0, 30.0 and 60.0 MPa. These pressures 

correspond approximately to lateral pressures, σL , of 0.0, 0.05fcu , 0.15fcu , 0.30fcu , 1.0fcu 

and 2.0fcu , respectively, where fcu is the ultimate strength of the concrete when loaded 

uniaxially. In these tests the prescribed hydrostatic pressure was applied first in a triaxial 

cell and then the axial load was increased monotonically. The damage plasticity model in 

ABAQUS/Explicit was used to simulate the concrete behaviour in these tests by 

modelling the cylindrical specimen using four-node axisymmetric solid elements. The 

test specimen and the 2D finite element mesh from which the axisymmetric elements are 

generated are shown in Figure 3.6.   

 

In the actual specimens, the axial load was applied through steel loading platens placed at 

the flat ends. The boundary conditions were not well defined by Sfer et al. (2002), so for 

simplicity fixed boundary conditions were assumed at the end surfaces of the test 

cylinder. The load was applied in two steps: first the confining pressure was applied in 

the radial direction of the cylinder and in the second step the axial compression was 

applied through displacement control. Since it was reported (Chicoine et al. 2000; 

Prickett and Driver 2006) that the levels of concrete confinement in PEC columns are 

generally negligible, numerical simulations of the triaxial cylinder tests were performed 

for only four confining pressure levels ranging from 0 to 0.30fcu.  

 

Figure 3.7 presents the numerical and corresponding experimental axial stress–strain 

responses for the specimens modelled. The numerically generated stresses are taken from 

the middle zone of the cylinder and for the tests themselves they are simply the axial load 

divided by the original cross-sectional area. The strains are taken from the middle zone in 

both cases, although in the tests after the peak they are derived from the overall 

shortening of the cylinder with a correction factor introduced to account for the different 

behaviour in the end regions, which introduces some uncertainty. For σL = 0 (i.e., the 
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uniaxial loading condition) and 0.05fcu , the numerical curves by and large coincide with 

the corresponding experimental curves. However, the numerical peak axial stress for 

σL = 0.5fcu is slightly lower than the experimental peak stress, with an 

experimental-to-numerical ratio of 1.08.  

 

The numerical model accurately predicts the increase in axial compressive strength for 

σL = 0.15fcu , as shown in Figure 3.7 (c). For this level of confining pressure the axial 

strains near the peak stress are observed to be underestimated by the model, with an 

experimental-to-numerical axial strain at the peak stress of 1.17. However, for 0.30fcu the 

numerical stress–strain curve does not match well with the experimental one, as shown in 

Figure 3.7(d). The ratios of the experimental-to-numerical peak stress and corresponding 

strain are 0.83 and 1.73, respectively.  

 

3.5  Summary 

Stress–strain response models for concrete under uniaxial compression and tension that 

have been proposed by several researchers have been assessed critically, and the models 

that are both simple and able to predict the strain softening behaviour of concrete 

accurately have been implemented in the numerical model used for the analysis of PEC 

columns. The damage plasticity model in ABAQUS, which has been selected to represent 

the nonlinear material behaviour of concrete in PEC columns, is observed to predict the 

uniaxial, biaxial and triaxial response of concrete under low levels of lateral confinement 

with satisfactory performance. However, as the confining pressure increases, the 

accuracy of the model in predicting the axial strain near the ultimate point declines. In the 

triaxial state with hydrostatic pressure of 0.30fcu , the differences between the 

experimental and numerical results are significant. This level of passive confining 

pressure is, however, unlikely to develop within PEC columns, as observed by Chicoine 

et al. (2000) and Prickett and Driver (2006). 
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Figure 3.1 Stress–Strain Curves for Concrete in Uniaxial Compression  
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Figure 3.2 Stress–Crack Width Curves for Concrete in Uniaxial Tension 

 
 

 46



Ec 
(1-dc)Ec 

εc
~pl εc

el

 fco 

 fcu 

Strain, εc  

Stress, fc 

(a) Uniaxial Compression 

 47 47

 

 
Figure 3.3 Uniaxial Compressive and Tensile Behaviour of Concrete Used by 

Damage Plasticity Model in ABAQUS (after HKS 2003) 
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Figure 3.4 Square Concrete Plate Tested by Kupfer et al. (1969) in Uniaxial and 
Biaxial Compression 
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Figure 3.5 Performance of Concrete Damage Plasticity Model in Uniaxial and 

Biaxial Compression (test data from Kupfer et al. 1969)
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Figure 3.5 (cont.) Performance of Concrete Damage Plasticity Model in Uniaxial 

and Biaxial Compression (test data from Kupfer et al. 1969) 
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Figure 3.6 (a)Standard Concrete Cylinder (150 mm×300 mm) Tested by Sfer et al. 

(2002) under Triaxial Compression and (b)Finite Element Mesh using 

Axisymmetric Elements 
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Figure 3.7 Performance of Concrete Damage Plasticity Model under Triaxial 

Compression for Confining Pressures, σL , of: (a) 0; (b) 0.05fcu ; (c) 0.15fcu ; and 

(d) 0.30fcu (test data from Sfer et al. 2002)
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Figure 3.7 (cont.) Performance of Concrete Damage Plasticity Model under Triaxial 

Compression for Confining Pressures, σ of: (a) 0; (b) 0.05f  ; (c) 0.15 fcu ; and 

(d) 0.30fcu (test data from Sfer et al. 2002) 
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4. FINITE ELEMENT MODEL OF PEC COLUMNS 

 

4.1 Introduction 

Due to the relatively high cost of large-scale experimental research, a means of modelling 

PEC columns accurately using computer-aided methods is needed to broaden the current 

knowledge about the behaviour of these columns and improve the understanding of the 

influences of the various components. The primary objective of this chapter is to develop 

a complete finite element model that can be applied for a variety of geometries of PEC 

columns, subjected to various loading conditions, and provide accurate simulations of 

behaviour without numerical difficulties well into the post-peak regime. The model, 

therefore, is to be capable of simulating numerically the full behavioural history 

including the peak and residual post-peak capacities and the failure mode caused by local 

buckling of the steel plates and crushing of the concrete.  

 

A concrete damage plasticity model (as described in Chapter 3), which is capable of 

predicting both compressive and tensile failures, is used to model the concrete material 

behaviour. The steel–concrete interface in the composite column is modelled using the 

contact pair algorithm in ABAQUS. A friction-type simple master–slave contact is 

assumed at the interface of the steel flange and concrete infill. Nonlinear material 

behaviour as well as the geometric nonlinearities due to large rotations are accounted for 

in the numerical model. A dynamic explicit solution strategy is used to trace a stable 

post-peak response of the composite system up to failure. To validate the model, 

simulations are conducted for both concentrically and eccentrically loaded column test 

specimens from five experimental programs, encompassing a wide variety of geometries 

and material properties. Detailed descriptions of the test specimens are provided in the 

following section. This is followed by a description of the finite element model geometry 

used to simulate the various tests, the material model parameters, as well as the loading 

program.  
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4.2 Properties of Reference Test Specimens 

4.2.1 Short PEC Column Test Specimens with Normal Strength Concrete 

A total of 22 short PEC columns constructed with normal strength concrete under 

different loading conditions are modelled for finite element analysis. The lists of these 

specimens, along with their geometric properties, are given in Table 4.1. (Plate 

thicknesses presented in the tables in this chapter are measured values where available; 

otherwise, nominal values have been used.) Figure 4.1 shows the cross-sections and steel 

side elevations of typical test columns. Specimens C-1 to C-7 were tested during the 

initial phase of the research program by Tremblay et al. (1998) to study the behaviour of 

these columns under concentric gravity loading. Specimen C-1 is not included in the 

numerical analysis because it is a prototype column having different characteristics. In 

this specimen, stiff bent bars were used as transverse links instead of straight bars that are 

usually used in Canam-type PEC columns. Specimens C-2 to C-7, which were modelled 

numerically, had square cross-sections of 300 mm × 300 mm and 450 mm × 450 mm, and 

a length equal to 5d, where d is the depth of the cross-section. The flange plate 

slenderness (b/t) ratio varied between 23 and 35. Round mild steel bars of 12.7 mm 

diameter were used as transverse links in these columns, except specimen C-5 had larger 

bars of 22.2 mm diameter. Three different link spacings—0.5d, 0.75d and 1.0d—were 

used in these columns. Specimens C-8 to C-11, tested by Chicoine et al. (2000), also 

under axial compression, were larger in their cross–sectional dimensions 

(600 mm×600 mm) as compared to the previous test specimens. As shown in Table 4.1, 

most of the geometric properties for these specimens were similar, except specimen C-10, 

which had a link spacing of 0.5d and specimen C-11, which had a b/t ratio of 31.  

 

Bouchereau and Toupin (2003) performed 24 tests on 450 mm × 450 mm columns, with 

and without additional reinforcement, subjected to concentric, eccentric and lateral 

loading under both monotonic and cyclic conditions. Only the ten tests performed using 

an axial load only under static conditions from these researchers (as shown in Table 4.1) 

are selected for the analysis with the finite element model. All of these test columns were 

fabricated with 9.53 mm thick steel plates (b/t ratio of 23.6), a length of 2250 mm and 
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16 mm diameter links spaced at either 0.5d or 0.67d. Specimens with designations 

starting with B2 had additional longitudinal and transverse reinforcement (Figure 4.1 (b)) 

in the concrete.  

 

Among these test columns, specimens B1-AX and B2-AX were tested under concentric 

gravity loading only. Four columns (B1-X1, B2-X1, B1-X3 and B2-X3) were loaded 

with an eccentricity that resulted in strong axis bending and the rest (B1–Y1, B2–Y1, 

B1–Y3 and B2–Y3) were subjected to weak axis bending. Two different values of 

eccentricity were applied relative to each axis of bending, as described in Table 4.1.  

 

Specimens H1 and H2, described in Table 4.1, are from the series of tests performed by 

Prickett and Driver (2006). These columns were 2000 mm long and had a cross-section 

of 400 mm × 400 mm with a flange width to thickness (b/t) ratio of 25. Two different 

values of link spacing were used in these specimens: 0.5d in column H1 and 1.0 d in 

column H2. The link diameter was 12.7 mm in column H1 and 16 mm in column H2, 

both satisfying the requirements of CSA S16-01 Clause 18.3.1 (CSA 2001).  

 

The material properties for steel and the test region concrete used in these PEC columns 

are given in Table 4.2. All these columns were fabricated with CSA-G40.21-350W grade 

steel plate, and were cast with normal strength concrete, ranging from 28 to 34 MPa. As 

shown in Figure 4.1 (c), the test region, where failure is forced to take place, is the central 

three–fifths region of the short PEC test specimens. High strength concrete and a closer 

link spacing were used at the end regions of the columns to avoid local failure in those 

regions. Tremblay et al. (1998), Chicoine et al. (2000) and Bouchereau and Toupin 

(2003) used 60MPa (nominal strength) and Prickett and Driver (2006) used 80MPa 

(nominal strength) concrete at the end regions.  

 

4.2.2 Short PEC Column Test Specimens with High Strength Concrete 

Nine short PEC columns, designated H3 to H11 as listed in Table 4.3, constructed with 

high strength concrete were tested by Prickett and Driver (2006) under concentric and 
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eccentric axial loading conditions. These columns had a cross-section of 

400 mm × 400 mm with a b/t ratio of 25. Three different link spacing values—0.3d, 0.5d 

and 1.0d—were provided in columns H3 to H7, which were subjected to axial 

compression only. On the other hand, a link spacing of 0.6d was used in the eccentrically 

loaded columns (H8 through H11) to just meet the spacing requirement currently in S16. 

These four specimens were designed to have identical geometric properties. The 

parameters that varied for H8 through H11 were the load eccentricity and the column 

orientation. Columns H8 and H9 were loaded at 23 mm and 100 mm eccentricities, 

respectively, inducing bending about their strong axes. Columns H10 and H11 were 

loaded to have weak axis bending at 25 mm and 74 mm eccentricities, respectively.  

 

Table 4.4 provides the mechanical properties for the steel section and the test region 

concrete in these specimens. The steel section was fabricated with CSA-G40.21-350W 

grade steel plate. High strength concrete of 60 MPa (nominal strength) was used in the 

test region of these specimens. However, two of the nine specimens (H6 and H7) had 1% 

steel fibres by volume (i.e., 80 kg/m3 density) in the high strength concrete. The end 

regions of columns H3 to H11 had very high-strength concrete (nominally 80 MPa) to 

restrict failure to the test zones.  

 

4.2.3 Long PEC Column Test Specimens with Normal Strength Concrete 

Three 9.0 m long PEC columns with a cross–section of 450 mm × 450 mm × 9.75 mm 

tested by Chicoine et al. (2000) are selected for finite element simulation to study the 

ability of the current model to predict the global buckling behaviour. The geometric and 

material properties of these specimens are presented in Tables 4.5 and 4.6, respectively. 

An elevation of a typical long PEC test column is shown in Figure 4.1 (d). In the test 

region of these columns, two types of links spacings were used: 1.0d in specimens CL-1 

and CL-2, and 0.5d in specimen CL-3. Additional reinforcements were provided only in 

specimen CL-3, as described in Table 4.5. Among these three specimens, one (specimen 

CL–2) was intended to have eccentric loading, where the load was applied at an 

eccentricity of 28 mm, resulting in bending about the weak axis. Though specimens CL-1 
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and CL-3 were loaded concentrically, Chicoine et al. (2000) reported the presence of 

bending moments in these tests, possibly caused by uneven end plates, alignment 

problems or accidental eccentricity. To represent these bending moments, both strong and 

weak axis equivalent eccentricities were calculated from the longitudinal strain gauge 

readings for all three specimens. Chicoine et al. (2000) proposed that these eccentricities 

should be included in the finite element analysis of long columns since the corresponding 

bending moments can significantly affect the global buckling behaviour of these 

columns. Two sets of numerical analyses were, therefore, performed for each of the long 

test columns, one using the applied eccentricity and the other using the measured 

eccentricity about the weak axis reported by Chicoine et al. (2000). The eccentricities 

listed in Table 4.5 for these long columns are the eccentricities applied at the beginning 

of the test. The deduced values of weak axis eccentricity used in the numerical analysis of 

specimen CL-1 were 20 mm at the top and 10 mm at the bottom end of the column. For 

specimen CL-2, these values were 45 mm and 35 mm at top and bottom end of the 

column, respectively, and 35 mm and -5 mm at top and bottom end, respectively, of 

column CL-3.  

 

These columns were also fabricated from CSA-G40.21-350W grade steel plate. Normal 

strength concrete (nominally 30 MPa) was used in the test region of these columns. To 

strengthen the end regions of these test specimens, high strength concrete of 60 MPa 

nominal strength was used along with the closer link spacings provided in these zones.  

 

4.3 Geometric Properties of the Finite Element Models 

At the preliminary stage of this research, a segment of the column extending only from a 

link location to half way to the next link (as shown hatched in Figure 4.2 (a)) was 

modelled by Begum et al. (2004) to study the performance of the concrete damage 

plasticity model and contact algorithm in modelling the steel–concrete interface. This 

model is referred to herein as the “small” model (Figures 4.2 (b) and (c)). The height of 

this model was selected based on the observed failure mode in the experiments on 

concentrically loaded specimens.  
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In subsequent work (Begum et al. 2005) the “small” model was extended to half the total 

height of the column to include the effect of different geometric and material properties 

along the height of the test specimens. The segment of the column on the right hand side 

of line a-b-c in Figure 4.2 (a) defines this model. This “extended” model was used to 

capture the overall behaviour of the column. For both models, only one-quarter of the 

composite cross-section was included since the cross–section of a perfect PEC column 

can be considered as doubly symmetric. Comparisons between the small and extended 

models applied to ten concentrically loaded PEC column tests performed by Tremblay 

et al. (1998) and Chicoine et al. (2000) are presented in Chapter 6.  

 

Finally, a “full” model including the entire length and cross–section of the column is 

developed to capture, as accurately as possible, the behaviour of PEC columns under the 

combined action of axial load and flexure, which is the primary objective of the current 

study. This model is verified against both concentrically and eccentrically loaded test 

specimens carried out by Bouchereau and Toupin (2003) and Prickett and Driver (2006). 

Three long PEC column specimens (Chicoine et al. 2000) are also simulated using the 

full model to study the ability of the model to capture the global buckling behaviour of 

long columns.  

 

Descriptions of the mesh and elements used in the finite element models of the test 

specimens, along with the boundary conditions—including steel–concrete interactions—

are presented in the subsequent sections.  

 

4.3.1 Element Selection 

The steel section in the PEC column is constructed with thin plates, which are susceptible 

to local buckling. As reported in Chapter 2, the stub PEC columns reach their ultimate 

capacity at the simultaneous occurrence of local buckling of the thin flanges and crushing 

of the encased concrete. In order to capture this behaviour, finite strain S4R shell 

elements were used to model the steel plates and eight-node solid elements were used to 

model the concrete.  
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Each node of the S4R shell element has six degrees of freedom—three translations and 

three rotations. This element uses one integration point on its mid-surface to form the 

element internal force vector. The default number of integration points through the 

thickness of this element is five, which is considered sufficient for modelling the 

nonlinear material behaviour of the current problem under monotonic loading. The 

C3D8R element selected to model the encased concrete blocks between the flange plates 

and the web of the composite section is an eight-node reduced integration brick element 

with three translational degrees of freedom at each node.  

 

All continuum and plate elements in ABAQUS/Explicit are based on an updated 

Lagrangian formulation (HKS 2003). This formulation is useful for the current problem 

because the elements experience considerable shape changes resulting from large 

rotations due to local buckling of the flange plates. To account for the shape change, the 

nodal coordinates are updated at the beginning of each increment to reflect current 

positions in space and all the shape functions and derivatives are re-evaluated using the 

updated nodal coordinates.  

 

Chicoine et al (2000) reported that the bending effect in the links of concentrically loaded 

PEC column test specimens were negligible. Prickett and Driver (2006) also observed 

negligible flexural effects in the links of both concentrically and eccentrically loaded 

PEC columns. Initially, therefore, T3D2 three dimensional truss elements were used to 

model the links. However, later in the study the truss elements in the links were replaced 

by B31 beam elements for ease of modelling the contact boundary conditions between 

the steel flanges and concrete. The B31 element is a two-node three-dimensional beam 

element, which has six degrees of freedom at each node: three translational and three 

rotational. The additional longitudinal and tie rebars in some PEC column specimens 

were modelled using T3D2 truss elements.  
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4.3.2 Mesh Description 

The mesh configuration for the small model is shown in Figures 4.2(b) and (c) for two 

different link spacings, s: 1.0 d and 0.5 d. Seven elements are defined along the 

half-width of the web and flange plates of a specimen. Along the height of the small 

finite element model, six elements are used for specimens with s = 1.0d or 0.75d, whereas 

this number is reduced to three for specimens with s = 0.5d. A sensitivity analysis was 

performed with S4R elements to optimize the mesh in order to produce proper 

representations of local buckling of the steel flange, while maintaining reasonable 

computing economies. For all the elements except the elements defined at the web-flange 

corner, the aspect ratio was close to 1.0. At the corner where the plates meet, narrow 

elements with a width equal to one-half the thickness of the plates are defined to match 

the mesh of the steel plates with that of the concrete. The concrete infill is modelled with 

C3D8R solid elements using a 6 × 6 mesh over the quarter cross–section. The number of 

solid elements in the longitudinal direction is equal to the number chosen for the steel 

plates. The transverse steel link is meshed in such a way so as to match the nodes of the 

concrete elements of the column.  

 

The extended model of the column is constructed initially in several parts, each with a 

unique link spacing and compressive strength of concrete. The parts are then assembled 

to produce the model in Figure 4.3 using the “part,” “instance” and “assembly” options in 

ABAQUS. The mesh configuration in a typical part between two consecutive links in the 

test region of the column is similar to that of the small model. At the common interface 

between two adjacent parts in the model, the corresponding nodal degrees of freedom are 

linked using multi-point constraints to ensure compatibility. Figure 4.3 (a) shows the 

extended model, displaying the boundaries of the individual parts in the model and the 

positions of the transverse links. The entire model mesh is displayed in Figure 4.3 (b).  

 

In the full finite element model the entire length and cross–section of the test specimens 

are modelled. Most of the features of this model are similar to those of the small and 

extended models. However, the number of elements is reduced in the full model to 

minimize the solution time, while maintaining a proper representation of local buckling 
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of the steel flange. Similar to the extended model, the full model is also constructed in 

individual parts between two successive transverse links. Figure 4.4 (a) shows the full 

model for a short PEC test column with s = 0.5d. This figure displays the boundaries of 

different parts of the column. The mesh description is shown in Figure 4.4 (b) for a 

typical part in the test region of the column. The end plates used in the test specimens are 

represented in the full model by rigid body surfaces and are fixed to the adjacent nodes of 

the end surfaces of the column. The additional rebars in five of the test columns are 

modelled using truss elements, the nodes of which are different than the nodes used for 

the concrete elements. Therefore, to ensure bonding between the concrete and the 

reinforcing bars, the rebars are defined as “embedded” reinforcement in the infill 

concrete blocks, which effectively couples the longitudinal behaviour of the rebar with 

that of the adjacent concrete. 

 

4.3.3 Modelling of Steel–Concrete Interactions 

One of the most challenging aspects of this study was to model successfully the steel–

concrete interaction at their interfaces with a contact algorithm. Contact conditions are a 

special class of discontinuous constraint in a numerical analysis. They allow forces to be 

transmitted from one part of the model to another only when the surfaces are in contact. 

When the surfaces separate, no constraint is applied. ABAQUS/Explicit provides two 

algorithms for modelling contact: a general contact algorithm and a contact pair 

algorithm. The general contact algorithm is more powerful and allows for simpler contact 

definitions. However, the contact pair algorithm is useful in cases where more specialized 

contact features are required such as in the current problem.  

 

In PEC columns, initially there is contact between the steel plates and the adjacent 

surfaces of the concrete infill. As the loading progresses, the flanges of the steel section 

between two consecutive links may experience local buckling resulting in a separation 

between the flange and the concrete blocks. However, neither local buckling of the web 

nor separation between the web plate and concrete block was observed (Tremblay et al. 
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1998, Chicoine et al. 2000, Bouchereau and Toupin 2003, Prickett and Driver 2006). 

Therefore, a contact algorithm was used only at the interior flange surfaces. 

 

The contact pair algorithm in ABAQUS/Explicit was used to model the interaction 

between the flange and the adjacent concrete surface. First, the two contact surfaces are 

defined geometrically. The steel plate surface is defined as the master surface, whereas 

the concrete surface in contact is defined as the slave surface. As long as the two surfaces 

are in contact, they transmit shear and normal forces across the interface. However, the 

tensile bond between the contact surfaces is assumed to be zero. A mechanical interaction 

model, including friction, is defined to model this interaction between the steel and 

concrete surfaces. The basic Coulomb friction model is used in ABAQUS to formulate 

the tangential and normal forces using the coefficient of friction. The value of the 

frictional coefficient used in this study was 0.1 as recommended by Gorst et al. (2003) as 

the minimum value of static friction between steel and concrete surfaces. However, finite 

element analyses were performed for frictional coefficients ranging from 0.1 to 0.3 and 

the behaviour of the PEC columns were observed to be insensitive to this parameter. The 

following paragraphs describe the constraint enforcement method, the sliding formulation 

and contact surface weighting for the friction-type contact applied in the current problem.  

 

The contact constraints in the contact pair algorithm can be enforced either using the 

kinematic method or the penalty method. The kinematic method uses a 

predictor/corrector contact algorithm to enforce contact constraints strictly (HKS 2003). 

The increment at first proceeds under the assumption that contact does not occur. If at the 

end of the increment there is an “overclosure” (overlap), the acceleration is modified to 

obtain a corrected configuration in which the contact constraints are enforced. On the 

other hand, the penalty method searches for node-into-face and edge-into-edge 

penetrations in the current configuration (HKS 2003). At the penetration points, equal 

and opposite contact forces with magnitudes equal to the penalty stiffness times the 

penetration distance are applied to the master and slave nodes. The kinematic constraint 

method was implemented initially in the current study for modelling the contact, 

primarily for its computational efficiency (Begum et al. 2004).  
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In developing the extended model (Begum et al. 2005) and the full model (Begum et al. 

2007), geometric kinematic constraints (MPC option in ABAQUS) were used to ensure 

continuity between different parts in the model. When kinematic contact is used, some of 

the nodes at the bottom and top of each part are included in both the geometric kinematic 

constraints and the kinematic contact constraints. At such nodes the contact constraint 

most often overrides the geometric constraint. As a result, the continuity between parts of 

the extended and full models is lost. Therefore, the penalty method (though 

computationally less efficient) was chosen for the constraint enforcement at the steel–

concrete interface of the PEC columns. The penalty contact algorithm introduces 

numerical softening through the use of penalty springs and does not interfere with 

geometric kinematic constraints.  

 

To account for the relative motion of the two surfaces forming the contact pair, finite 

sliding is used, which is the most general and allows arbitrary motion of the surfaces 

forming the contact pair. Initially, a small sliding formulation was defined in the contact 

formulation (Begum et al. 2004) since there is relatively little sliding between the contact 

surfaces of the steel flange and concrete. Moreover, the small sliding formulation is 

computationally less expensive. However, penalty contact enforcement, which is 

implemented in the extended and full numerical models, only allows the finite sliding 

formulation.  

 

Since geometric imperfections were not included in the finite element model for the PEC 

columns developed at the initial stage of the study, a pure master–slave surface weighting 

was successfully implemented in modelling the local buckling and separation of the steel 

flange from the concrete surface (Begum et al. 2004). However, while including inward 

local flange imperfections in the model, the steel surface (the master surface) was 

observed to penetrate the adjacent concrete surface (the slave surface) at the level of the 

transverse links (Begum et al. 2007). This might have occurred because in pure master–

slave weighting, only penetrations of slave nodes (concrete nodes) into master facets 

(steel flange) are prevented while penetrations of master nodes into the slave surface can 
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go undetected. To avoid this situation, a balanced master–slave contact was used, which 

simply applies the pure master–slave approach twice, reversing the surfaces on the 

second pass (HKS 2003). The acceleration corrections or forces are obtained by taking a 

weighted average of the two calculations. Hence, the balanced approach minimizes the 

penetration of the contacting bodies and provides an appropriate simulation of the 

interaction between the steel flange and concrete of an imperfect PEC column.  

 

Finite element analyses were performed without any constraint between the web and the 

adjacent concrete in the small and extended models. The results showed that the concrete 

elements expanded beyond the web plate, which is impossible in a real situation. The 

symmetry boundary conditions at the web plates did not provide constraint to the 

adjacent concrete nodes. Therefore, it is necessary in the small and extended models to 

fix the web plate with the adjacent concrete surfaces using geometric-type constraints. In 

the full model, no constraint is applied between the web and the adjacent concrete 

surfaces, as no separation was observed between the web plate and concrete in the test 

specimens.  

 

4.3.4 End Boundary Conditions 

Symmetry boundary conditions are applied along the planes of symmetry of the small 

and extended models. In addition, the rotations about axes 1 and 3 (Figure 4.2) are fixed 

at the top edge of the flange in the small model. Since the rigid end plates in the test 

specimens were not modelled in the small and extended models, the load is applied to the 

top surface of the model through a displacement control technique. In the extended 

model, no separation is permitted between the flange plate at the top segment of the 

column and the adjacent concrete surface to avoid local failure near the top of the 

column.  

The boundary conditions applied in the “full” model to simulate the end conditions for 

concentrically and eccentrically loaded specimens are shown in Figure 4.5. In 

concentrically loaded column tests, translations and rotations at both ends were fixed 

except the vertical displacement at the top. The same condition was applied through 
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reference nodes at the top and bottom rigid surfaces of the finite element model. The 

axial load was applied through the top rigid body reference node, which was defined at 

the centre of the column cross–section, using a displacement control technique. In the 

finite element model for eccentrically loaded test specimens, pinned–pinned end 

conditions were applied at the end eccentric points located on the end rigid planes. For 

strong axis bending, rotations about the strong axis were released at these points. 

Similarly, rotations about the weak axis were released for weak axis eccentricity. A rigid 

beam was defined between the eccentric points and the rigid body reference nodes on the 

end rigid planes, as shown in Figure 4.5. This was done to constrain the displacements 

and rotations of the reference nodes at the rigid surfaces to those of the corresponding 

eccentric nodes at the two surfaces. A smooth amplitude displacement was applied 

through the top eccentric point to simulate the applied loading condition in the test. 

 

4.3.5 Modelling of Residual Stresses 

The residual stresses in a PEC column occur mainly because of the welding of the steel 

plates to form the steel section. Since these stresses might have a significant effect in 

reducing the buckling capacity of the thin flanges in the composite column, they were 

included in the numerical model for all 34 PEC test columns. In the finite element model, 

the residual stresses in the steel plate were modelled as initial stresses in each element of 

the flange and web. It was assumed to be constant along the height of the numerical 

model. The residual stress distributions across the cross–section of the PEC columns 

were obtained from Tremblay et al. (2000b) and Chicoine et al. (2001). The residual 

stresses for specimens H1 to H11 (Prickett and Driver 2006), which had a cross–section 

of 400 mm × 400 mm × 7.98 mm, were not measured during the tests. Therefore, the 

distribution of residual stresses applied in the numerical models for these specimens were 

adopted from that of specimen C-2 (450 mm × 450 mm × 9.5 mm) which had cross–

sectional dimensions similar to those of specimens H1 to H11. Moreover, two sets of 

numerical analyses were performed on specimens H3 through H11 using the full column 

finite element model—including and excluding the residual stresses—to study the effect 
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of the residual stresses on the behaviour of PEC columns. The results are presented in 

Chapter 5. 

 

4.3.6 Modelling of Geometric Imperfections 

Initial geometric imperfections can play a significant role in the stability behaviour of 

PEC columns. The columns can have two types of geometric imperfections—local 

imperfections and global imperfections. Local imperfections are usually important for 

stub columns where local buckling is the governing failure mode. A study was performed 

using the numerical model to observe the sensitivity of the buckling behaviour of short 

PEC columns to local imperfections. The results of this study are presented in Chapter 5.  

 

Since the behaviour of the long columns can be affected significantly by global 

imperfections, they were included in the numerical models of the three long test columns. 

The description of the measured imperfections in the test PEC columns, along with how 

they were implemented in the finite element model, is presented in the following 

sections. 

 

4.3.6.1 Local Imperfections 

Local imperfections in a PEC column are defined as the out-of-straightness of the steel 

flange between two consecutive transverse links. Extensive measurements of all test 

specimens revealed that with very few exceptions the imperfection in the flange plate 

between any two links was inward (as shown in Figure 4.6(a)) due to the fabrication 

process (Chicoine et al. 2000, Prickett and Driver 2006). The inward imperfection of the 

flange plate was expected to improve the resistance of these columns to local buckling. 

On the other hand, if the imperfection were outwards, it would be expected to decrease 

the local buckling capacity of the flange. The finite element model developed by 

Chicoine et al. (2001) did not predict the proper failure mode with inward initial 

imperfections. However, the study reported here made an attempt to overcome this 

limitation by using the contact algorithm to define the interaction between the steel flange 

and concrete. Moreover, the effects of inward and outward imperfections on the capacity 
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of PEC columns were studied to evaluate the necessity of including the local 

imperfections in the finite element model.  

 

The imperfection sensitivity study was performed using the full model on specimen C-2 

(450mm×450mm×9.5 mm, with s = 0.5d), specimen C-8 (600mm×600mm×12.7 mm, 

with s = 1.0d) and specimen C-11 (600mm×600mm×6.35 mm, with s = 1.0d). These 

three specimens were selected to cover a range of flange thicknesses and link spacings, as 

well as including two different flange widths. The imperfection was applied by shifting 

the steel flange and the adjacent concrete nodes according to the idealized imperfect 

shape shown in Figure 4.6(b). The failure modes obtained for inward and outward 

imperfections for all three columns were consistent with those observed in the 

corresponding test specimens and, therefore, the imperfection shape was considered 

suitable for this study. The maximum (inward) amplitude of the measured initial 

imperfections in all the test specimens varied from 0.39 mm (C-2 and C-5) to 2.02 mm 

(C-9) and, as expected, tended to be larger for larger link spacings (Chicoine et al. 2001). 

In this study, imperfections with maximum amplitudes of ±2 mm and ±6 mm, as well as 

no imperfections, were modelled for specimen C-8 and C-11. The values used for 

specimen C-2, with the closer link spacing, were 0 mm, ±1 mm and ±3 mm. The 

imperfections are applied only at the middle segment of the column in between two links.  

 

4.3.6.2 Global Imperfections 

Global imperfections refer to the overall out-of-straightness of the column and can 

significantly affect the behaviour of slender columns. In this study, the global 

imperfection was modelled only for the slender test specimens performed by Chicoine 

et al. (2000). In the test the imperfections (as given in Table 4.5) were measured only in 

the direction of expected buckling, which was about the weak axis of the composite 

section. In the finite element analysis the imperfect shape of the column was assumed to 

be parabolic. The maximum amplitude of the global imperfection obtained from the 

experimental data was assumed to occur at the mid-height of the column. The 
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imperfection was defined by perturbation in the nodal coordinates of the perfect column 

using the “imperfection” option in ABAQUS/Explicit.  

 
 

4.4 Material Properties 

4.4.1 Steel 

The steel material properties for the plate and link were modelled with an elasto-plastic 

J2 model. The stress–strain relationship for steel is defined as a trilinear curve, as shown 

in Figure 4.7. Point A in the stress–strain curve is the yield point, point B refers to the 

onset of strain hardening and point C is the ultimate stress point. The material data used 

to define this trilinear curve for the steel plate material in the finite element analysis are 

listed in Tables 4.2, 4.4 and 4.6. These values are obtained from tensile tests on steel 

coupons from the test specimens (Tremblay et al. 1998; Chicoine et al. 2000; Bouchereau 

and Toupin 2003; Prickett and Driver 2006).  

 

Since the model formulation is based on the updated Lagrangian description, the true 

(Cauchy) stress and logarithmic strain are needed to describe the effective stress–

effective plastic strain. The stress and strain data obtained from the uniaxial tension tests 

are converted to true stress, σtrue , and logarithmic plastic strain, pl
lnε  , using the following 

relationships (Lubliner 1990): 

 

)1( nomnomtrue εσσ +=  (4.1) 

( )
s

true
nom

pl

E
σ

εε −+= 1lnln  (4.2) 

 
where, Es is the modulus of elasticity of steel, σnom is the nominal, or engineering, stress 

and εnom is the nominal, or engineering, strain obtained from material tests. The value of 

Poisson’s ratio for steel used in the numerical analysis is 0.3. 
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4.4.2 Concrete 

The damage plasticity model in ABAQUS was used to simulate the concrete material 

behaviour in the composite columns. The model was verified (Chapter 3) against 

published uniaxial, biaxial and triaxial compressive test results (Sfer et al. 2002) for 

normal strength concrete under various levels of lateral confinement and was observed to 

provide satisfactory results for low levels of confinement. The uniaxial compressive 

stress–strain response of both normal and high strength concrete was assumed to be linear 

up to 30% of its compressive strength. In the plastic regime, the effective stress–plastic 

strain function was described through a stress–strain function (compression hardening 

function) in uniaxial compression using the models described in Chapter 3. The material 

properties used to generate the concrete stress–strain curve for the test specimens are 

listed in Tables 4.2, 4.4 and 4.6. These data were obtained from standard cylinder tests 

performed at the test day on concrete in each test specimen.  

 

The compressive concrete strength, used to define the uniaxial compression curve for 

normal strength concrete in the numerical analysis, was reduced to its effective value, 

fcue . by multiplying the cylinder compressive strength, fcu , at test day by the factor 0.92ψ, 

as described in Section 2.3.3.1 of Chapter 2. 

 

In the numerical analysis of high strength concrete PEC columns, no reduction factor is 

applied to the compressive strength of the concrete. Analyses were initially performed 

with fcue = 0.92ψfcu and 0.92fcu . In both cases the numerical compressive strengths of the 

PEC columns were observed to be 10 to 15% lower than the experimentally obtained 

strengths. Hence, it was decided that since the reduction factor was in fact based on 

results of column tests using normal strength concrete and may therefore not apply to 

these columns, the actual compressive strength obtained from the standard cylinder test at 

the test day would be used to generate the stress–strain curve of high strength concrete 

with and without steel fibres.  

 

The uniaxial tensile strength of concrete, ftu , was set at 10% of the effective uniaxial 

compressive strength for the normal strength concrete and 5% for the high strength 
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concrete following the recommendations of Marzouk and Chen (1995). For steel fibre 

reinforced high strength concrete, the tensile strength was calculated according to an 

equation developed by Kützing and König (1999): 

 








 +×=
10

1ln12.2 cu
tu

ff   (4.3) 

 

In the damage model, the stress–strain response under uniaxial tension follows a linear 

elastic relationship until the tensile strength is reached. The post-cracking tensile 

properties for the concrete model are defined as a stress–displacement curve following 

the relationships described in Chapter 3.  

 

4.5 Dynamic Explicit Solution Strategy 

4.5.1 Advantages of Explicit Solution Method over Implicit Method 

The commercial finite element software ABAQUS has two analysis modules—

ABAQUS/Standard and ABAQUS/Explicit—that use different solution strategies for 

solving nonlinear quasi-static and dynamic problems. The ABAQUS/Explicit module 

determines the solution without iteration by explicitly advancing the kinematic state over 

small time increments, whereas ABAQUS/Standard uses an implicit strategy and must 

iterate to establish equilibrium in a nonlinear problem (HKS 2003). Each iteration in an 

implicit analysis requires solving a large system of linear equations and requires 

considerable computation effort, disk space, and memory. In some complex problems 

such as the current study, which exhibits highly nonlinear behaviour containing contact 

and frictional sliding features, convergence may not be possible using the implicit 

method, especially after the limit point.  

 

ABAQUS/Explicit uses the central difference rule to integrate the equations of motion 

explicitly through time. The kinematic conditions at the beginning of one increment are 

used to calculate those at the beginning of the next increment. The term “explicit” refers 

to the fact that the state at the end of the increment is based solely on the displacements, 
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velocities, and accelerations at the beginning of the increment. No iterations are 

necessary; hence, the convergence problems associated with implicit strategies do not 

apply. 

 

ABAQUS/Explicit contains extensive capabilities for modelling contact and surface 

interactions that are not available in ABAQUS/Standard. Contact conditions and other 

extremely discontinuous events are readily formulated in the explicit method and can be 

enforced on a node-by-node basis without iteration.  

 

Material degradation and failure often lead to severe convergence difficulties in implicit 

analysis programs. On the other hand, ABAQUS/Explicit allows the modelling of 

material degradation and failure, avoiding these difficulties by explicitly advancing the 

kinematic state. 

 

For the explicit method to produce accurate results, the time increments must be quite 

small so that the accelerations are nearly constant during an increment. As a result, 

analyses typically require many thousands of increments. Nevertheless, the analysis can 

still be more efficient in ABAQUS/Explicit if the same analysis in ABAQUS/Standard 

requires many iterations. 

 

4.5.2 Simulation of Quasi-Static Response with Explicit Dynamic Solution 

Strategy 

The explicit solution method was originally developed for dynamic problems in which 

inertia plays a prominent role in the solution. This method can be applied to quasi-static 

problems with some special considerations in the applied loading history. An accurate 

and efficient quasi-static analysis requires the loading to be as smooth as possible. 

ABAQUS/Explicit has a simple, built-in type of amplitude function, called ”smooth step” 

that automatically limits spurious oscillations. Defining the time–amplitude data pairs 

using this function allows ABAQUS/Explicit to connect each of the data pairs with 

curves, as shown in Figure 4.8(a). The first and second derivatives of this amplitude 
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curve are smooth with zero slopes at each data point. Hence, this type of loading 

amplitude allows a quasi-static analysis to be performed without generating waves due to 

discontinuities in the rate of applied loading.  

 

The central difference method, which is used in the explicit method to integrate the 

equations in time, is conditionally stable. The stable time increment is smaller than the 

time required for a sound wave to travel through the smallest element in the analysis. 

Since a static solution is, by definition, a long-time solution, it is often computationally 

impractical to analyze the simulation in its natural time scale, which would require an 

excessive number of small time increments (HKS 2003). To obtain an economical 

solution, the event must be accelerated in some way without affecting the state of static 

equilibrium; i.e., the inertial forces must remain insignificant. This can be achieved either 

by reducing the time period of the analysis (which in turn increases the loading rate) or 

by increasing the mass density of the whole or part of the model artificially, a method 

called “mass scaling.” An artificial increase in the material density decreases the wave 

speed, resulting in an increase in the stable time increment. As a consequence, fewer 

increments are required to perform the same analysis for the same time period resulting in 

less computing time to achieve the solution. However, it should be ensured that changes 

in the loading rate or mass density, and consequent increases in the inertial forces, do not 

alter the solution significantly.  

 

In this study, the load was applied using a smooth amplitude displacement history at rates 

that rendered the inertial effects negligible. The “small” model used a displacement rate 

of 1 mm/sec, whereas the “extended” model used a rate of 18 mm/sec. In the “full” model 

analysis, the displacement was applied at a rate of 8 mm/sec for both concentrically and 

eccentrically loaded specimens.  

 

Due to its complexity, a mass-scaling factor of 100 was applied to the full model to 

improve the efficiency of the solution time. The applied loading rates and the value of the 

mass-scaling factor for the numerical models were chosen through an iterative process to 

obtain a quasi-static response, as well as an economical solution time. To evaluate the 
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quality of quasi-static responses, the energy history was examined. In a quasi-static 

system, the work applied by the external forces should be nearly equal to the internal 

energy of the system, while the kinematic energy remains bounded and small. Both of 

these criteria were observed to be satisfied. The energy history of a typical explicit test 

specimen analysis is shown in Figure 4.8(b).  
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Table 4.1 Geometric Properties of Reference Test Specimens with Normal Strength Concrete       
Reference Specimen Plate size Length Plate  Link  Additional reinforcement  Eccentricity

 designation bf x d x t  slenderness Spacing Diameter Longitudinal Tie   
 ratio    rebars rebars

L b/t s s/d φ   ex y 
    (mm) (mm)   (mm)   (mm) (mm) (mm) (mm) (mm)
  C-2 450 x 450 x 9.70 2250 23.2 225 0.5 12.7 - -
 C-3 450 x 450 x 9.70 2250 23.2 337.5 0.75      

    
    
    
  
    

12.7 - -
Tremblay C-4 450 x 450 x 9.70 2250 23.2 450 1.0 12.7 - -
et al. 1998 C-5 450 x 450 x 9.70 2250 23.2 225 0.5 22.2 - -

 C-6 450 x 450 x 6.35 2250 35.4 337.5 0.75 12.7 - -
  C-7 300 x 300 x 6.35 1500 23.6 300 1.0 12.7 - -     
 C-8 600 x 600x 12.90 3000 23.2 600 1.0 15.9 - -

Chicoine C-9 600 x 600x 12.90 3000 23.2 600 1.0 15.9 -    
    
  
    

-
et al. 2002 C-10 600 x 600x 12.80 3000 23.2 300 0.5 15.9 - -

  C-11 600 x 600 x 9.70 3000 30.9 600 1.0 15.9 - -     
 B1-AX 450 x 450 x 9.53 2250 23.6 300 0.5 15.9 - -
 B2-AX 450 x 450 x 9.53 2250 23.6 300 0.5 15.9 #20 #10   
 B1-X1 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 -  

  

- 142 - 
Bouchereau  B2-X1 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 #20 #10 143 - 

and  B1-X3 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 - - 33 - 
Toupin 2003 B2-X3 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 #20 #10 33 - 
 B1-Y1 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 - - - 84 

 B2-Y1 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 #20 #10 - 91 
 B1-Y3 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 - - - 23 

  B2-Y3 450 x 450 x 9.53 2250 23.6 300 0.67 15.9 #20 #10 - 23 
Prickett and H1 400 x 400 x 7.98 2000 25 200 0.5 12.8 - - - -
Driver 2006 H2 400 x 400 x 8.00 2000 25 400 1.0 15.9 -   - - -

       
      e
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Table 4.2 Material Properties of Reference Test Specimens with Normal Strength Concrete 
Reference Specimen Properties of concrete in test region  Properties of steel plate 

 designation fcu E  ν  F  F  F  ε  εc εcu y sh u εy sh u 
(MPa) (MPa) (µε) (MPa) (MPa) (MPa) (%) (%) (%)

  C-2 32.7 28000 2250 0.18 370 370 519 0.19 1.87 15.20
 C-3           

           
           
           
           
            

32.4 27800 2250 0.18 370 370 519 0.19 1.87 15.20
Tremblay C-4 31.9 28000 2250 0.18 370 370 519 0.19 1.87 15.20
et al.1998 C-5 34.3 28800 2250 0.18 370 370 519 0.19 1.87 15.20

 C-6 33.1 28200 2250 0.18 374 374 519 0.19 1.87 15.20
  C-7 31.9 31500 2250 0.18 374 374 519 0.19 1.87 15.20
 C-8 34.2 27300 2000 0.18 360 360 519 0.19 1.87 15.20

Chicoine C-9           
           
           
            

34.2 27300 2000 0.18 360 360 519 0.19 1.87 15.20
et al. 2002 C-10 34.2 27300 2000 0.18 

 
360 360 519 0.19 1.87 15.20

  C-11 34.2 27300 2000 0.18 345 345 529 0.18 1.95 30.10
 B1-AX 33.8 28500 2250 0.18 358 358 549 0.27 1.15 9.15
 B2-AX           

           
            
            
            
            
            
            
            

            

33.8 28500 2250 0.18 
 

358 358 549 0.27 1.15 9.15
 B1-X1 34.1 28500 2250 0.18 358 358 549 0.27 1.15 9.15
 B2-X1 34.1 28500 2250 0.18 357 357 552 0.24 1.11 12.06

Bouchereau  B1-X3 34.1 28500 2250 0.18 358 358 549 0.27 1.15 9.15
and  B2-X3 34.1 28500 2250 0.18 357 357 552 0.24 1.11 12.06

Toupin 2003 B1-Y1 33.8 28500 2250 0.18 358 358 549 0.27 1.15 9.15
 B2-Y1 33.8 28500 2250 0.18 357 357 552 0.24 1.11 12.06
 B1-Y3 33.8 28500 2250 0.18 358 358 549 0.27 1.15 9.15

  B2-Y3 33.8 28500 2250 0.18 357 357 552 0.24 1.11 12.06
Prickett and H1 28.7 23300 2220 0.13 394 394 528 0.19 1.67 15.80
Driver 2006 H2           29.7 23300 2230 0.13 394 394 528 0.19 1.67 15.80
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Table 4.3 Geometric Properties of Reference Test Specimens with High Strength Concrete       

Reference Specimen Plate size Length Plate Link Additional reinforcement Eccentricity

designation bf x d x t  slenderness Spacing Diameter Longitudinal Tie 
ratio rebars rebars

L b/t s s/d φ ex y 
(mm) (mm) (mm)  (mm) (mm) (mm) (mm) (mm)

 H3  400 x 400 x 7.99 2000 25 120 0.3 12.8 - - - -
 H4 400 x 400 x 8.01 2000 25 200 0.5 12.8 -   

   
   
   
  
  
  
  

- - -
Prickett and H5 400 x 400 x 8.02 2000 25 400 1.0 15.9 - - - -
Driver 2006 H6 400 x 400 x 8.02 2000 25 200 0.5 12.8 - - - -

 H7 400 x 400 x 8.02 2000 25 400 1.0 15.8 - - - -
 H8 400 x 400 x 7.95 2000 25 240 0.6 12.8 - - 23 - 
 H9 400 x 400 x 7.98 2000 25 240 0.6 12.8 - - 100 - 
 H10 400 x 400 x 8.01 2000 25 240 0.6 12.7 - - - 25 
 H11 400 x 400 x 7.95 2000 25 240 0.6 12.7 - - - 74 

    
            
         e
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Table 4.4 Material properties of Reference Test Specimens with High Strength Concrete   

Reference Specimen. Properties of concrete in test region Properties of steel plate 
designation. fcu c εcu ν Fy sh u εy sh u 

(MPa) (MPa) (µε) (MPa) (MPa) (MPa) (%) (%) (%)
H3 60.0 28000 2880 0.16 394 394 528 0.19 1.67 15.80
H4 58.9 28800 2995 0.16 394 394 528 0.19 1.67 15.80
H5 61.7 28500 3165 0.16 394 394 528 0.19 1.67 15.80

Prickett and H6 49.3 24800 2490 0.15 394 394 528 0.19 1.67 15.80
Driver 2006 

 
H7 52.9 24800 2850 0.15 394 394 528 0.19 1.67 15.80
H8 62.4 29800 2900 0.17 394 394 528 0.19 1.67 15.80
H9 64.5 28600 3040 0.15 394 394 528 0.19 1.67 15.80

H10 65.7 29000 2745 0.15 394 394 528 0.19 1.67 15.80
H11 65.1 28700 3225 0.16 394 394 528 0.19 1.67 15.80

   E   F  F  ε  ε
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Table 4.5 Geometric Properties of Reference Long Test Specimens           

Reference Plate size   Length Link
Additional 

reinforcement Eccentricity

 

Specimen 

designa-

tion bf x d x t  

Global 

imper-

fection Spacing    Diameter Longitudinal Tie

Plate 

slender-

ness 

ratio rebars rebars
L δψ b/t s s/d φ ex y 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

CL-1 450 x 450 x 9.78 9000 1.46 23 450 1.0 12.7 - - - -

CL-2 450 x 450 x 9.78 9000 2.70 23 450 1.0 12.7 -  

  

- - 28 Chicoine   
et al. 2002 

CL-3 450 x 450 x 9.78 9000 1.01 23 225 0.5 12.7 #15 #10 - -

          
          e
        

    

 
 
 

Table 4.6 Material Properties of Reference Long Test Specimens 
Reference Specimen Properties of concrete in test region Properties of steel plate 

designation fcu c εcu ν Fy sh u εy sh u 
(MPa) (MPa) (µε) (MPa) (MPa) (MPa) (%) (%) (%)

CL-1 34.6 27900 2050 0.18 345 345 529 0.18 1.95 30.10

CL-2           

           

34.6 27900 2050 0.18 345 345 529 0.18 1.95 30.10Chicoine   
et al. 2002 

CL-3 34.6 27900 2050 0.18 345 345 529 0.18 1.95 30.10

   E   F  F  ε  ε
         

           

 
 
 

79 



Tie  
rebars

Longitudinal 
rebars 

t

t 

(b)  

(a)  

tWelded H  
steel shape 

Link 

 b

t 

 d = bf 

bf

Figure 4.1 Geometry of Typical PEC Test Columns, 

(a) Cross-section, (b) Cross-section with Additional Rebars, (c) Elevation 

of a Short Column, and (d) Elevation of a Long Column 

End region 
(with closer link 
spacing and high 
strength concrete)

Test region

Test region

s 

3d 

d 

d 

 End plate 

(c)  

s

18d 

d 

d

 End plate

(d) 

80 



 
 
 

L 

Experimental 
failure mode 

s  

b 

a 

c 3d 

d 

d 

 End plate 

(a)  

(b) 

(c) 

Concrete 
block

Link 

Flange 

Web 

h=s/2=d/2

h=s/2=d/4 

2

13

 
 

Figure 4.2 “Small Models”, (a) A Typical Column, (b) Mesh for s = d, and  

(c) Mesh for s = 0.5 d 

 
 
 
 

81 



 
 
 
 
 
 
 
 
 

 
 
 F
 
 
 
 

Flange 

2

13

h = 0.5L 
Link 

Concrete 

s 

Web 

(b) (a) 

igure 4.3 “Extended” Model, (a) Parts between Consecutive Links, and (b) Entire 

Model Mesh 

82 



 
 
 

Web 
Flange 

s = 0.5d

End 
region 

Test 
region 

End 
region 

(b) 

s 

Concrete 

Links 

Concrete

Web 

Flange 

Flange 

2

13

(a) 
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Figure 4.5 End Boundary Conditions in Full Finite Element Model

for Concentrically and Eccentrically Loaded PEC Test Columns 
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Figure 4.7 Stress–Strain Curve for Steel used in the Numerical Analysis 
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Figure 4.8 Simulation of Quasi-static Response of PEC Columns using Explicit 

Dynamic Solution Strategy 
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5. PERFORMANCE OF FINITE ELEMENT MODELS 

 

5.1 Introduction 

The finite element models developed in Chapters 3 and 4 are validated using simulations 

of 34 PEC column tests reported in the literature (Tremblay et al. 1998; Chicoine et al. 

2000; Bouchereau and Toupin 2003; Prickett and Driver 2006). The tests were performed 

on a wide variety of PEC columns with different geometric and material properties. The 

descriptions of the geometric and material properties of these test specimens have been 

presented in Chapter 4. From the finite element analysis of each of these test columns, the 

predicted load versus deformation response, peak load, peak axial strain and failure mode 

are obtained and compared with the corresponding experimental results. Moreover, for 

the eccentrically loaded short columns, comparisons are made between the numerical and 

experimental load versus second-order bending moment diagram. The axial and 

transverse stresses in the steel sections of the composite columns at failure are also 

investigated using the numerical model. In addition, a prediction of the individual 

contributions of steel and concrete to the total load carrying capacity of the PEC column 

throughout the loading history is presented for ten of the concentrically loaded test 

specimens. The finite element model is also used to study the effect of initial local 

imperfections, link spacing and residual stresses on the column behaviour and thus the 

sensitivity of the finite element results to these parameters. 

 

5.2 Performance of Small and Extended Models 

The small model, described in Chapter 4, was developed at the initial stage of this 

research with a view to studying the suitability of the concrete material model and contact 

boundary conditions in predicting the behaviour of these columns under concentric 

loading. Ten concentrically loaded specimens (C-2 to C-11) tested by Tremblay et al. 

(1998) and Chicoine et al. (2000) were analyzed using the small model. Among these test 

columns, specimens C-8 and C-9 had nominally identical size and link spacing, which 

was intended to check the test reproducibility; hence, a single numerical analysis was 
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performed for this configuration. The specimens (C-2 to C-11) were also analyzed using 

the extended model, also described in Chapter 4, which includes one-eighth of the 

volume of the PEC column. This model was developed to overcome the discrepancy in 

the peak and post-peak axial strain values in the load versus axial strain response 

obtained from the numerical analysis using the small model. In the subsequent sections, 

ultimate capacities and the strains at the peak load, overall axial load versus axial strain 

behaviours, and failure modes from both analyses are compared with the experimental 

results. The extended model is further used to study the contributions of steel and 

concrete to the load carrying capacity of these columns. 

 

5.2.1 Ultimate Capacity and Strain at Peak Load 

The ultimate capacities obtained from both the small and extended numerical models are 

compared with those obtained from the experiments in Table 5.1. For both models, the 

axial loads at the ultimate point are found to be very close to those observed in the 

experiments, except in the case of specimen C-10. However, this specimen behaved 

atypically during the test. Because the link spacing was half that of C-8 and C-9, the 

specimen should have failed at a load greater than that achieved by C-8 and C-9, as 

predicted by the numerical model. Instead, the specimen failed prematurely during the 

test. Excluding specimen C-10, the mean value of the experimental-to-numerical load 

ratios is 0.98, with a standard deviation of 0.02, from the analyses using the small model 

and 1.00, with a standard deviation of 0.03, from the analyses performed using the 

extended model. 

 

Table 5.1 also shows the axial strain values at the ultimate load for both models, along 

with the ratios of the experimental-to-numerical peak strains. For the small model, the 

numerically predicted strains at peak loads are found to be higher compared to the 

experimental values, with an average experimental-to-numerical ratio of 0.73. This low 

ratio is expected, and it occurs because the strains obtained from the small model are 

taken only in the failure zone over a height of one-half of the link spacing, whereas in the 

experiments the average strains were calculated over a gauge length of 2600 mm, 
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including parts of the end zones constructed with high strength concrete and a closer link 

spacing. Since these end zones are included in the extended model, numerically predicted 

axial strains at the ultimate load from this model become very close to the experimental 

values, with a mean experimental-to-numerical ratio of 1.01. However, the strains 

predicted using the small model are the actual localized strains at the failure zone of the 

column.  

 

5.2.2 Load versus Axial Strain Response 

Figure 5.1 shows the numerically and experimentally obtained axial loads plotted against 

the average longitudinal strain for ten of the concentrically loaded specimens 

(specimens C-2 to C-11). The numerical results obtained from both the small and the 

extended models are plotted. In general, for both models the initial portions of the 

numerical load versus strain curves match very well with the experimental ones, though a 

slight underestimation of the axial stiffness is observed in within the initial portions of the 

numerical curves for specimens C–3 to C–7. The small model also predicts strains 

significantly higher than those obtained experimentally, near and after the ultimate point 

on the load versus strain curve. The reason behind this is the exclusion of the end regions 

of the test specimens in the small model, as explained in the previous section. However, 

the finite element analyses using the extended model provide a better representation of 

the axial strains at the peak as well as in the post-peak descending branch of the 

experimental load verses axial strain curve. Moreover, in general this model gives a 

reasonable prediction of the residual capacities after buckling of the steel and crushing of 

the concrete have taken place, without any numerical difficulties. 

 

The post-peak descending branch of the numerical load versus strain curve obtained from 

the extended model is observed to be in good agreement with the experimental load 

versus strain response except for specimen C–6. The experimental response of 

specimen C–6 after the peak load was significantly different than that observed in other 

short PEC test specimens. However, this specimen had similar geometric properties to 

specimen C–3, except for the flange slenderness ratio. Specimen C–6 had the highest b/t 
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ratio, with a value of 35.4, among the PEC columns selected herein for the finite element 

investigation. No explanation regarding the dissimilar behaviour of specimen C-6 was 

reported by Tremblay et al. (1998); however, they reported an explosive failure mode in 

specimen C–6 as compared to the failures observed in other test specimens, which might 

have an effect on the deformation readings provided by the instrumentations at the test 

region of the column after failure.  

 

The ultimate capacities in the PEC columns coincide generally with the occurrences of 

local buckling and concrete crushing. Near the ultimate point, some fluctuations are 

observed both in the numerical and experimental responses. This is mainly due to the 

local buckling of the thin flanges followed by separation of the concrete and steel 

surfaces. This behaviour is more pronounced in specimens with larger link spacings and 

higher b/t ratios (e.g., specimens C-6 and C-11). In these specimens, local buckling was 

observed before the peak load was reached and failure was brittle and explosive, as 

reported by Chicoine et al. (2000).  

 

5.2.3 Contribution of Steel and Concrete to Load Carrying Capacity 

The finite element model is able to isolate the contributions of the steel and concrete in 

the total load carrying capacity of the PEC columns. The axial load versus strain 

behaviour of each of these materials in the composite section is shown in Figure 5.1 for 

specimens C-2 to C-11 (extended model only). In most of the specimens, the loads 

carried by the steel and concrete are nearly equal up to about the peak load except for the 

specimens with very thin plates such as specimens C-6 and C-11. These specimens had a 

b/t ratio greater than 30, which resulted in a reduced contribution of the steel plates to the 

load carrying capacity as compared to that of concrete. The steel sections of these two 

specimens also showed lower axial stiffness than the concrete sections in the ascending 

branch of the load versus average axial strain curves. For all specimens, after the ultimate 

load point the steel plates carry most of the load as the concrete softens quickly after 

reaching the crushing strength. However, the post-peak strength decline of the load 

versus axial strain curve for the PEC column is similar to that of the concrete material.  
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5.2.4 Failure Mode 

The observed failure modes in the numerical analyses with the small and extended 

models are shown in Figure 5.2. In the numerical analyses, the ultimate capacity was 

reached through local buckling between two transverse links followed by crushing of the 

adjacent concrete. In most cases, local buckling and concrete crushing occurred almost 

simultaneously. However, specimens C-6 and C-11 experienced local buckling before 

concrete crushing since they had higher b/t ratios and large link spacings. Similar 

behaviour was observed in the experiments. Figures 5.2 (a) and (b) show the local flange 

buckling for typical specimens with s = 1.0d (C-4) and s = 0.5d (C-2), respectively. 

Figures 5.2 (c) and (d) show the local buckling in a typical specimen (C-8) using the 

extended model with and without the mesh configuration, respectively. The accurate 

prediction of the failure mode by both finite element models indicates that the defined 

master–slave contact algorithm with frictional sliding features (as described in Chapter 4) 

at the interfaces of the steel flange and concrete infill were able to model successfully the 

separation of the flange and concrete block due to local buckling of the flange plate. 

However, in the numerical analyses using the small and extended models, no local 

buckling is observed to occur in the web plate since it is fixed with the adjacent concrete 

nodes using a tie type of surface constraint. This method of modelling was employed 

because in the experiments no local buckling was reported in the web plate (Tremblay 

et al. 1998; Chicoine et al. 2000).  

 

5.3 Performance of Full Model 

The full finite element model, including the entire length and cross-section of the column, 

was developed to predict the column behaviour under compression and bending. The full 

model has similar characteristics to the extended model. The only difference between 

them is in the end conditions. The end plates used in the test columns were not modelled 

in the extended model. They were included in the full model to simplify the load 

application technique for the eccentrically loaded test columns. The performance of the 

full model is studied through the reproduction of nine concentrically and 12 eccentrically 

loaded short PEC columns tested by Chicoine et al. (2000), Bouchereau and Toupin 
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(2003) and Prickett and Driver (2006). Three long (i.e., slender) PEC test specimens 

(Chicoine et al. 2000) are also analysed using this model. The results of all these analyses 

along with the experimental results are presented in the following sections.  

 

5.3.1 Ultimate Capacity and Strain at Peak Load 

The performance of the full model in predicting the peak axial load and the 

corresponding axial strain of the test columns is presented in Tables 5.2 to 5.4. The ratios 

between the experimental and numerical values for short PEC columns with normal 

strength concrete (under concentric and eccentric loading) are shown in Table 5.2. The 

numerical model provides a very good estimation of the peak axial load with 

experimental-to-numerical ratios ranging from 0.90 (specimen B1-AX) to 1.06 

(specimens B1-X1; B2-X1 and B2-Y1), with a mean value of 1.01 and a standard 

deviation of 0.05. The lower value of the experimental-to-numerical load ratio for 

specimen B1-AX can be attributed to the premature test failure, as reported by 

Bouchereau and Toupin (2003). Specimens B1-AX and B2-AX had more than 40 strain 

gauges embedded in the concrete in the test region of the column. The presence of the 

gauges and their connecting wires caused discontinuities in the column concrete resulting 

in premature failure at the location where the wires emerged from the concrete. In spite of 

the presence of the large number of strain gauges, specimen B2-AX behaved somewhat 

better than specimen B1-AX in the experiment because of the presence of the additional 

reinforcements in this specimen. 

 

Although the numerical axial capacity for specimen B2-AX matched very well with its 

experimental capacity (with experimental-to-numerical peak load ratio of 0.97), the 

experimental average axial strain at the peak load is underestimated by the numerical 

model (with experimental-to-numerical ratio of 1.31). The numerical model also 

underestimates the experimental axial strain at peak axial load for specimen B2-X1 that 

also had additional reinforcements in the concrete. This discrepancy in strain values may 

be attributed to the inability of the numerical model to predict the effect of additional 

longitudinal and tie reinforcements on the axial deformation of these columns. (In spite of 
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this, the model can accurately predict the increase in the ultimate capacity of these 

columns due to the addition of longitudinal and tie rebars.) On the other hand, the 

numerical model overestimated the average axial strain at peak axial load for 

specimens B1–Y1 and B1–Y3. The experimental-to-numerical strain ratios at peak load 

for these specimens are 0.52 (specimen B1–Y1) and 0.73 (specimen B1–Y3). These two 

specimens were loaded eccentrically with bending about the weak axis and did not have 

additional rebars. Bouchereau and Toupin (2003) reported brittle and explosive failure in 

these specimens during the tests as compared to that observed in identical specimens with 

additional rebars (i.e., specimens B2–Y1 and B2–Y3, respectively). Hence, the 

experimental results for these specimens are highly sensitive to imperfect test conditions, 

as indicated by Bouchereau and Toupin (2003), such as the presence of a slight error on 

the eccentricity, a manufacturing defect or an error in the installation technique. 

However, the mean ratio of the experimental-to-numerical average axial strain at peak 

load for all 12 specimens with normal strength concrete is 0.97, with a standard deviation 

of 0.20. The relatively high value of standard deviation results from the differences 

between the numerical and experimental strains for specimens B2-AX, B1-Y1 and B1-Y3 

as addressed in this section.  

 

The values of experimental and numerical peak loads and peak strains along with their 

ratios for PEC columns with high strength concrete are shown in Table 5.3. The results of 

specimens H6 and H7, which had steel fibre reinforced concrete in the test-region of the 

column, are included in this table for completeness but are excluded from the mean and 

standard deviation of the peak load and average strain ratios. The mean value of the peak 

load for the high strength concrete PEC columns is 0.99, with a standard deviation of 

0.03. This indicates the excellent performance of the finite element model in predicting 

the ultimate capacity of PEC columns with high strength concrete without applying any 

strength reduction factor to the material capacities obtained from standard cylinder tests, 

as discussed in Chapter 4. 

 

As shown in Table 5.3 the ratio of the experimental-to-numerical average axial strain at 

peak load ranged from 0.97 (specimen H11) to 1.28 (specimen H9), with a mean value of 
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1.09 and a standard deviation of 0.12. Although providing excellent estimates of the peak 

load, the numerical model is observed to underestimate the axial deformation at peak load 

by 18, 16 and 28%, respectively, for specimens H3, H8 and H9 with high strength 

concrete without steel fibres. The possible reason behind this could be the presence of 

larger confining pressures to the concrete as compared to the other specimens, exerted by 

closer link spacings in specimen H3 and by the compression flange of specimens H8 and 

H9, which had bending about the strong axis. This issue is discussed further in 

Section 5.3.2.1 while describing the load versus axial strain response for the test 

specimens.  

 

Table 5.4 shows the comparisons between the experimental and numerical results for the 

three long column specimens. The peak load and corresponding axial strain for each 

column for the two sets of numerical analyses (one using the applied eccentricity and the 

other using individual top and bottom eccentricities deduced through measured strain 

data) are presented. The axial capacities obtained from the numerical analyses of the long 

PEC test columns with the applied eccentricity were observed to greatly overestimate the 

experimentally obtained capacities for these specimens. The ratios of the experimental-

to-numerical peak load for the applied values of eccentricity for specimens CL-1 and 

CL-2 are 0.77 and 0.86, respectively. However, these values become close to unity (0.95 

for CL-1 and 0.99 for CL-2) when the specimens are analysed with eccentricities deduced 

from measured strains. In the case of specimen CL-3, both of the numerical analyses 

were observed to give higher peak loads than that obtained experimentally, although the 

estimate was improved somewhat using the deduced eccentricities. Specimens CL-3 and 

CL-1 had the same cross-section and were subjected to nominally concentric loading. 

However, these two specimens differed in their link spacings—CL-1 had a link spacing 

of s = 1.0d and CL-3 had s = 0.5d—and specimen CL-3 had additional reinforcement that 

was not present in CL-1. Therefore, specimen CL-3 would be expected to have a higher 

capacity than CL-1, but this was not observed in the test. Chicoine et al (2000) reported a 

premature failure in specimen CL-3 due to the presence of the accidental eccentricities 

about the weak axis resulting from the misalignment of the specimen prior to the test. 
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Had this not occurred, the experimental-to-nominal capacity ratio for this specimen 

would likely have been closer to unity. 

 

The axial strains at peak load for the long PEC columns (Table 5.4) were overestimated 

by the numerical model in both sets of analyses, with better prediction in the analyses 

including eccentricities deduced from measured strain data. The sudden and explosive 

failure mode observed for these specimens that occurs at a strain that is considered 

sensitive to any imperfect test conditions can result in lower values of experimental 

strains at failure.  

 

5.3.2 Load versus Axial Strain Response 

5.3.2.1 Short PEC Columns with Normal Strength Concrete 

Figure 5.3 shows the comparison between the experimental and numerical load versus 

average axial strain behaviours for four short, concentrically loaded PEC test columns 

(H1, H2, B1-AX and B2-AX) constructed with normal strength concrete (NSC). The 

numerical load versus average axial strain curves for specimens H1 and H2 are in 

excellent agreement with the experimental curves up to the peak load, and the prediction 

of the post-peak curve for specimen H2 is also excellent. The slight difference between 

the experimental and numerical peak regions of the load versus strain plot for 

specimen H2 (Figure 5.3 (b)) is attributed to the presence of a significant inward local 

flange imperfection, with a maximum amplitude of 1.20 mm, at the middle segment 

(between two consecutive links) of the column, as reported by Prickett and Driver (2006). 

As discussed in Chapter 4, the inward local imperfection is expected to improve the 

capacity of these columns by delaying the occurrence of local buckling. The differences 

between the experimental and numerical peaks and post-peak responses of 

specimen B1-AX (Figure 5.3 (c)) are due to the premature test failure, as discussed in 

Section 5.3.1. For specimen B2–AX, the numerical load versus strain curve, shown in 

Figure 5.6 (d), is observed to predict lower strains around and after the peak axial load, as 

compared to the test curve. This discrepancy could be due to the inability of the model to 
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simulate the confinement effect in the concrete due to the presence of additional 

reinforcements, also mentioned in Section 5.3.1.  

 

The results of the numerical analysis of eight eccentrically loaded short PEC columns 

with normal strength concrete are compared with the corresponding experimental results 

in Figure 5.4. The load versus strain curves for compressive, tensile and average strains 

are plotted. The numerical behaviours of the specimens subjected to strong axis bending 

(Figures 5.4 (a) to (d)) are observed to be in good agreement with the experimental 

responses, but often with somewhat lower strains at the corresponding load near and after 

the peak load. This difference is amplified in specimens with additional reinforcement 

(B2-X1 and B2-X3). Since the flanges in columns under strong axis bending undergo the 

maximum compression, the concrete in these columns is subjected to higher confinement 

from the surrounding steel section as compared to the concrete in columns under weak 

axis bending. The presence of additional rebars may also improve the confinement 

conditions. The study presented in Chapter 3 showed that the damage plasticity model 

implemented in the current research for modelling the concrete material behaviour can 

predict the axial deformation of concrete under triaxial compression very well under low 

confining pressures (0 to 5% of the uniaxial compressive strength). However, the model 

was found to underestimate the experimental strains near the ultimate point of the stress 

versus axial strain curve obtained from triaxial compression tests on concrete cylinders 

for a lateral pressure of 15% of the uniaxial compressive strength of concrete (see 

Figure 3.7 (c)). The results of Figures 5.4 (a) to (d) tend to indicate that pressures greater 

than 5% of the concrete strength may have been present. Negligible confining pressure in 

the concrete of PEC test specimens were reported by Chicoine et al (2000) and Prickett 

and Driver (2006), based on the transverse strain measurements on the steel flanges and 

web of the column. The researchers did not provide any value to quantify the confining 

pressure in the encased concrete of PEC columns based on their experimental 

investigations. Though the lateral pressure was not quantified in the numerical analysis, 

the increase in the uniaxial compressive strength of concrete was obtained. For 

concentrically loaded columns, the increase in the uniaxial compressive strength of 

concrete was found to be 4% and 1.4%, respectively, for column H1 (s = 0.5d) and 

 97



column H2 (s = 1.0d). On the other hand, for eccentrically loaded columns with strong 

axis bending, the increase in concrete strength ranged from a minimum of 6% 

(column B1-X3) to a maximum of 15% (column B2-X1), with a mean value of 11%, 

indicating a more highly confined environment for the concrete, particularly when rebars 

are added.  

 

The specimens subjected to weak axis bending showed very good agreement between the 

numerical and the experimental load versus strain responses, as shown in Figures 5.4 (e) 

to 5.4 (h). In these specimens the concrete on one side is subjected to maximum 

compression resulting in brittle failure responses, as observed in the tests. The slight 

differences between the numerical and experimental load versus axial strain curves for 

these specimens observed around the peak zone can be attributed to the high sensitivity of 

these tests to any imperfect test conditions, as mentioned in Section 5.3.1. 

 

5.3.2.2 Short PEC Columns with High Strength Concrete 

The experimental and numerical load versus strain responses for high strength concrete 

PEC columns (specimens H3, H4 and H5) subjected to axial compression are shown in 

Figure 5.5. The numerical models for specimen H4 and H5 predicted the experimental 

response with good accuracy both in the pre-peak and post-peak regions of the load 

versus average axial strain curves. These two specimens had transverse links of 12.8 mm 

diameter spaced at s = 0.5d and 15.8 mm diameter spaced at s = 1.0d, respectively. On 

the other hand, the numerical curve for specimen H3, which had 12.8 mm diameter links 

spaced at s = 0.3d, did not match well with the experimental curve around and after the 

peak. One possible explanation for this discrepancy is the less accurate performance of 

the material model in predicting axial strains of concrete confined under lateral pressures 

greater than 5% of the uniaxial strength of concrete as mentioned before. Among all the 

tests performed on PEC columns published in the literature, specimen H3 was the only 

column that had a link spacing of s < 0.5d. More tests on PEC columns with link spacings 

less than 0.5d are, therefore, required to propose a proper explanation of the disagreement 

between the numerical and experimental behaviours for specimen H3.  
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Figure 5.6 represents the performance of the finite element model in predicting the load 

versus strain behaviour for high strength concrete PEC columns (specimens H8 to H11) 

subjected to axial compression and bending. For all specimens, in general good 

agreement is obtained between the numerical and the experimental load versus strain 

behaviours. However, the axial strains around and after the peak of the load versus axial 

strain curves for specimens H8 and H9 are underestimated somewhat by the numerical 

model, which could be due to the reasons discussed in Section 5.3.2.1 for PEC columns 

with normal strength concrete under strong axis bending.  

 

5.3.2.3 Short PEC Columns with Steel Fibre Reinforced High Strength Concrete 

The numerical and experimental load versus average axial strain responses for specimens 

H6 and H7, which were constructed with high strength fibre reinforced concrete, are 

presented in Figure 5.7. The numerical behaviour for these two specimens is observed to 

coincide with the experimental behaviour in the pre-peak region of the load versus axial 

strain curve. Specimen H7 also shows excellent agreement in the post-peak descending 

branches of the numerical and experimental load versus axial strain plot (Figure 5.7 (b)). 

However, a slight underestimation of the experimental peak axial load along with a slight 

overestimation of the experimental residual strength is observed in the numerical 

behaviour for this specimen. On the other hand, for specimen H6, significant differences 

are found between the numerical and experimental peak load and the post-peak strength 

decline zone (Figure 5.7 (a)). The strengths of the test-region concrete used in the 

numerical analyses for these columns are 49.3 MPa (H6) and 52.9 MPa (H7), which are 

the test day strengths of the concrete used in these specimens (Prickett and Driver 2006). 

These values were observed to be lower than the 28-day strength values for the same 

concrete. In other high strength concrete PEC test specimens (H3 to H5 and H8 to H11), 

the test day strength was observed to be higher than the 28-day strength by an average of 

3.4%. Prickett and Driver (2006) reported that if a similar strength gain were observed in 

the concrete of specimens H6 and H7, the concrete strength values for these specimens 

would have been 55.4 MPa and 60.2 MPa, respectively. If the finite element analyses 
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were conducted with these speculated values it would result in a somewhat better 

representation of the peak zone in the curves shown in Figure 5.7, especially for 

specimen H6. However, more tests on PEC columns with high strength fibre reinforced 

concrete would be helpful to judge the suitability of the concrete model used in the 

numerical analysis in predicting the behaviour of these columns. 

 

5.3.2.4 Long PEC Columns with Normal Strength Concrete 

The numerical results of three long PEC column test specimens along with their 

experimental responses are shown in Figure 5.8. Normal strength concrete was used in 

the test region of these columns. As mentioned before, two sets of numerical analyses 

were performed for each of the long test columns, one using the applied eccentricity and 

the other using the eccentricities deduced from strains measured during the test. For 

specimens CL-1 and CL-2, the test load versus strain response is observed to be close to 

the numerical response using the deduced eccentricities. On the other hand, in case of 

specimen CL-3, neither of the two numerical analyses is observed to predict the 

experimental behaviour well, yet the response with the deduced eccentricities is much 

closer to the experimental response. However, for all three long columns the numerical 

model gave an accurate prediction of the initial axial stiffness observed in the 

experimental load versus strain curve. For all three specimens the axial strains at and 

after the peak load point are observed to be higher in the numerical models as compared 

to those obtained experimentally. The behaviour of the slender columns tends to be 

sensitive to loading and geometric imperfections present in the test. More tests on slender 

PEC columns are, therefore, required to explain the differences between the numerical 

and experimental results shown in Figure 5.8.  

 

5.3.3 Failure Mode 

In general the failure of all of the short PEC column specimens in the numerical analyses 

using the full model occurred due to concrete crushing combined with local buckling of 

the steel flanges between two transverse links. Figure 5.9 shows the failure modes for 

typical concentrically and eccentrically loaded specimens with strong and weak axis 
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bending. Since the column cross-section in the numerical model is perfectly symmetric, 

local buckling in a concentrically loaded column is observed to occur on all four sides of 

the unsupported flange (i.e., between two consecutive links) in the middle segment of the 

column. On the other hand, local buckling is observed in the flange plates on the 

compression side only of the eccentrically loaded columns. In all cases the failure mode 

matched well with that observed in the experiments, as shown in Figure 5.10.  

 

The occurrence of local buckling with respect to the peak load point is also studied with 

the numerical model for the test columns and compared with the experimental 

observations. Specimens H1, H2, B1–AX and B2–AX, which were all constructed with 

normal strength concrete and loaded under concentric axial compression, experienced 

local buckling at the peak axial load along with crushing of the concrete. Neither in the 

numerical analyses nor in the tests conducted on these specimens did local buckling 

occur before the peak load had been reached. The eccentrically loaded normal strength 

concrete PEC columns showed behaviour similar to the concentrically loaded columns 

both numerically and experimentally in that both local buckling and crushing of the 

concrete occurred at the peak axial load.  

 

The numerical model for concentrically loaded high strength concrete PEC test 

specimens (column H3 to H7, with b/t = 25 and link spacings ranging from 0.3d to 1.0d) 

tested by Prickett and Driver (2006) exhibited concrete crushing at the peak load 

followed by local buckling of the flanges. However, specimen H5, which had a link 

spacing of 1.0d experienced local buckling and concrete crushing simultaneously at the 

peak load. On the other hand, the peak load of the eccentrically loaded high strength 

concrete PEC columns was attained through crushing of concrete and local buckling took 

place after the peak load.  

 

In the numerical analyses using the full model, the web plate was also observed to 

experience local buckling eventually, which was not reported in the tests. However, in the 

test specimens it is not possible to see the web buckling unless all the concrete has been 

removed to expose the web plate. In all of the numerical analyses conducted on short 
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columns, local buckling in the web plate occurred only after the capacity had dropped to 

its residual strength. In the full model no constraint was imposed on the nodes in the web 

plate; the movement of the web plate is therefore restrained only by the adjacent concrete 

elements. However, after undergoing substantial crushing the concrete elements have 

insufficient stiffness to prevent the web plate from buckling locally in the numerical 

simulation. To examine the impact of this, additional finite element analyses were 

performed by fixing the web plate with the concrete in a similar way as applied in the 

small and extended models. This prevented the web from buckling locally but increased 

the capacity of the composite section significantly (around 10% of the strength obtained 

without applying the constraint). Again, contact constraints could have been defined at 

the interfaces of web and concrete, but this would make the model computationally very 

expensive. Since the local buckling of the web plate is not governing the behaviour of 

these columns at failure it was decided that no constraint would be applied to the web 

plate.  

 

In the numerical analysis of slender columns, failure occurred due to global bending of 

the column about the weak axis accompanied by local flange buckling and concrete 

crushing (see Figure 5.11 (a)). Similar behaviour, as shown in Figure 5.11 (b), was 

observed in the experiments. Moreover, in the test the failure was brittle and explosive as 

reported by Chicoine et al. (2000). The numerical model also experienced brittle failure 

as observed in the post-peak descending branch of the load versus strain curves (see 

Figure 5.8).  

 

5.3.4 Load versus Moment Response 

For the eccentrically loaded test columns the load versus moment diagrams are plotted 

from the numerical results and compared with the corresponding diagrams obtained from 

the experiments. Figure 5.12 shows the numerical load versus moment curves along with 

the experimental load capacity and concurrent moment for the eight columns (with 

normal strength concrete) tested by Bouchereau and Toupin (2003) under monotonic 

eccentric axial loading. The numerical moments are the applied load multiplied by the 
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sum of the initial load eccentricity and the lateral displacement at the column mid-height. 

However, this direct calculation could not be performed to determine the associated 

experimental moments for these columns. Bouchereau and Toupin (2003) measured the 

lateral displacements of only two test specimens out of the 22 tests performed on 

eccentrically loaded PEC columns. Of these, one (specimen B2–X2) had additional 

reinforcement and was subjected to eccentric cyclic loading with strong axis bending, and 

the other, (specimen B1–Y2) was subjected to eccentric cyclic loading with weak axis 

bending and did not have any additional reinforcements. However, these specimens were 

not analysed since the current study is confined to monotonic loading conditions only. 

Based on the lateral displacements obtained from those two test specimens, Bouchereau 

and Toupin (2003) reported that the lateral displacement at the mid-height of the column 

at the peak load corresponds to 6% of the initial load eccentricity. Since all the columns 

tested by Bouchereau and Toupin (2003) had nominally identical cross-sections and 

nearly identical material properties, they suggested using a lateral displacement of 0.06 

times the initial eccentricity to obtain the second order moment at the peak load for all 

test columns, as shown in Figures 5.12(a) to (d). Bouchereau and Toupin (2003) also 

considered a linear relationship between the load and the bending moment. If the actual 

lateral displacements at each load level were known the expected curvature in the 

experimental load versus moment responses would have been very similar to the 

numerical curves shown in Figure 5.12.  

 

Figure 5.13 presents the numerical and experimental load versus moment curves for short 

eccentrically loaded PEC columns with high strength concrete (specimens H8 to H11) 

tested by Prickett and Driver (2006) for both strong and weak axis bending. The lateral 

displacements of these test specimens were measured during the test and were added to 

the initial eccentricity to calculate the second order bending moment at each load level. 

The numerical moments also include the second order effects resulting from the lateral 

displacements at the column mid-height. For all four specimens, excellent agreement was 

observed between the numerical and the experimental load versus moment curves over 

the entire loading histories. This demonstrates the ability of the numerical model to 
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predict the behaviour of PEC columns accurately when they are subjected to both axial 

compression and flexure.  

 

5.4 Axial and Transverse Stresses in the Steel Section 

The axial stresses in the flanges and web plates and the transverse links, along with the 

transverse stresses in the steel plates, at or near the peak load are studied for the test 

specimens using the finite element model. In general, the flanges and web plate reached 

the yield strength at or shortly before reaching the peak load. The PEC test columns with 

larger link spacings or thinner flanges were observed to experience yielding of the steel 

plates earlier as compared to the columns with closer links or thicker flanges. No yielding 

of the transverse links was observed before the peak load had been reached. In the 

concentrically loaded columns, at the peak axial load, axial stress in the transverse links 

ranged from 51% (specimen C-8) to 79% (specimen H-7) of the yield stress. The link 

stresses in the eccentrically loaded columns where generally higher than those found in 

the concentrically loaded columns but were still observed to be less than 85% of the yield 

strength. The transverse stresses in the steel plates were negligible (less than 8% of the 

yield strength). All these findings are consistent with observations from the experimental 

investigations by Chicoine et al. (2000) and Prickett and Driver (2006). However, a 

detailed study of the stress history and stress distribution in the composite cross-section 

was not performed in the current study since the main interest was to examine the global 

behaviour of PEC columns with normal and high performance materials under various 

loading conditions.  

 

5.5 Effect of Local Flange Imperfections on Ultimate Capacity 

Numerical analyses using the full column model were performed on three test specimens 

(C-2, C-8 and C-11) to study the effect of both inward and outward local imperfections in 

the flange plates (described in Chapter 4) on the axial capacity of these columns. These 

three specimens were selected to observe this effect for different link spacings and flange 

slenderness ratios. The results are presented in Table 5.5. As observed for specimen C-2 

(b/t =23, s = 0.5d), inward imperfections with a maximum amplitude, δm, of 1 mm 
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increase the capacity by only 0.69 %, whereas the same amplitude of outward 

imperfection results in a 1.19 % reduction in the ultimate capacity. For specimen C-8, 

which has the same flange slenderness ratio as specimen C-2 but a link spacing of 

s = 1.0d, inward imperfections of 2 mm (which is analogous to 1 mm for the s = 0.5d 

spacing) results in a 0.36 % increase in capacity and the same amplitude of outward 

imperfection decreases the capacity by 2.03 %. The ultimate capacity of specimen C-11, 

which has the same link spacing as specimen C-8 but a higher flange slenderness ratio 

(b/t = 31), is decreased by 3.78 % for an outward imperfection of 2 mm. On the other 

hand, the same amount of inward imperfection increases the capacity of this specimen by 

only 0.53 %. The results using larger amplitudes of imperfection are also shown in 

Table 5.5 for comparison, although these are generally much larger than those measured 

on the test specimens. Specimens with a link spacing equal to the depth of the column 

and higher flange slenderness ratios are, therefore, more vulnerable to the effects of 

outward local imperfections. 

 

For all the three specimens, the increase in capacity arising from any reasonable inward 

imperfection is considered negligible. Moreover, since the local flange imperfections 

observed in the test specimens considered in this study (Chicoine et al. 2002), as well as 

those of other specimens (Prickett and Driver 2006), were nearly all inward, it is 

reasonable to exclude the modelling of these local imperfections from the finite element 

model of PEC columns. 

 

5.6 Effect of Link Spacing 

The spacing of the transverse links, which is also the unsupported length of the flange 

plates, has a significant effect on the behaviour of PEC columns, as reported by all PEC 

column researchers. It has been found from the experiments that the specimens with a 

link spacing equal to half of the column depth exhibited gradual failure as compared to 

those with a link spacing equal to the column depth. The same behaviour, as shown in 

Figure 5.14, is observed in the numerical analyses for concentrically loaded specimens 

with 1.0d and 0.5d link spacings. The comparisons between axial load versus strain 
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behaviour for specimens C-2 and C-4 and for specimens C-8 and C-10 are shown in 

Figures 5.14 (a) and (b), respectively. All the geometric and material properties for the 

specimens in each set are nominally identical except the link spacing. The link spacings 

in specimens C-2 and C-10 are half of those in specimens C-4 and C-8, respectively. 

 

The concrete behaviour near the peak load is slightly affected by link spacing, as shown 

in Figure 5.14. The strains in specimens C-4 and C-8 at the ultimate concrete load are 

lower than those in specimens C-2 and C-10 by 13% and 15%, respectively. This in an 

indication of a somewhat greater loss in confinement in the encased concrete (after the 

occurrence of local buckling in the thin plates) in PEC columns with s = 1.0d as 

compared to columns with s = 0.5d. The effect of link spacing is more apparent in the 

load versus axial strain plots for the steel sections of the composite columns. The steel 

sections for specimens C-2 and C-10 show a gradual drop in capacity as compared to the 

sudden loss observed in specimens C-4 and C-8. 

 

5.7 Effect of Residual Stresses 

The effect of residual stresses in the steel plates on the peak load and average axial strain 

at peak load is presented in Table 5.6 for nine test specimens (H3 to H11). Two sets of 

analyses were performed on these specimens using the full column finite element model: 

including and excluding the residual stresses. The residual stress distribution 

implemented in the numerical model for these specimens (400 mm×400 mm×7.95 mm 

sections) was that of specimen C-2 (450 mm×450 mm×9.5 mm section) tested by 

Tremblay et al. (2000b). No significant change is observed in the ultimate axial capacity 

and axial strain at the ultimate point of these specimens due to the presence of residual 

stresses. The load versus axial strain behaviour is also unaffected by these stresses as 

shown in Figure 5.15 for two typical specimens (H4 and H7). Since local buckling of the 

thin plates and the load carrying capacity of the concrete infill mainly govern the 

behaviour of PEC columns, the residual stresses do not significantly affect the load 

versus deformation response. For this reason, residual stresses do not need to be included 

in the model to obtain accurate numerical simulations. 
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5.8 Summary 

The performance of the finite element models in predicting the behaviour of a variety of 

PEC columns tested under concentric and eccentric loading can be summarised as 

follows: 

� The small model, developed at the initial stage of the study was observed to predict 

the ultimate axial capacity and the failure mode of short PEC columns accurately. 

However, since the model only includes the failure zone of the test specimen, it 

overestimates the experimental peak and post-peak response of the load versus axial 

strain curve. The extended model was able to eliminate this discrepancy and was able 

to trace a stable, complete and fairly accurate load–strain history for this column 

under uniaxial compression.  

� The full finite element model, used to reproduce both concentrically and eccentrically 

loaded PEC test specimens, was able to reproduce the experimental behaviour with 

good accuracy. The peak load, axial deformation at the peak load, post-peak 

behaviour, axial load versus moment relationship and the failure mode observed in 

the tests are all predicted very well by this model.  

� The dynamic explicit solution strategy used in the finite element models made it 

possible to trace the full behavioural history of this composite column without any 

numerical difficulties.  

� The interaction between the steel and concrete and their separation at the common 

interface due to the local instability of the flange is successfully modelled with the 

contact pair algorithm.  

� The stress versus strain relationships used for normal and high strength concrete can 

satisfactorily predict the behaviour of short PEC columns under both concentric and 

eccentric loading.  

� No concrete strength reduction factor is required in the numerical material model for 

high strength concrete PEC columns and the factor recommended by Chicoine et al. 

(2000) provides good results for PEC columns with normal strength concrete. 
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� The effects of different link spacings on the behaviour of these columns are captured 

adequately in the finite element model.  

� The ultimate capacity of the column is not affected significantly by the presence of 

inward local imperfections. Since the measured imperfections were inward and small, 

they can be omitted from finite element models of these columns.  

� Residual stresses in the steel section of the composite column have a negligible effect 

on the column behaviour and can therefore be omitted from finite element models of 

these columns. 
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Table 5.1 Performance of Small and Extended Models      

Peak axial load Pexp/Pnum  Axial strain at peak load εexp/εnum 
Numerical Exp. Numerical Exp. 

Small 
model 

Extended 
model  

Small 
model 

Extended 
model  

Specimen 
designation 

Pnum P   ε  ε
          

          

num Pexp 

Small 
model 

Extended 
model 

εnum num exp 

Small 
model 

Extended 
model 

 (kN) (kN) (kN) (µε) (µε) (µε)
C-2 10300 10230 10100 0.98 0.99 2930 2270 2305 0.79 1.02
C-3          

          
          

          
          
          
          
          
          
           

9970 9920 9650 0.97 0.97 2620 1985 1920 0.73 0.97
C-4 9490 9190 9390 0.99 1.02 2545 1650 1695 0.67 1.03
C-5 10600 10350 10000 0.94 0.97 2935 2265 2330 0.79 1.03
C-6 8020 8100 7650 0.95 0.94 2330 1810 1765 0.76 0.97
C-7 4260 4110 4280 1.00 1.04 2790 2210 2140 0.77 0.97
C-8 17150 16540 16470 0.96 1.00 2655 1685 1845 0.70 1.10
C-9 17150 16540 16610 0.97 1.00 2655 1685 1770 0.67 1.05

C-10 18160 18030 16240 0.89 0.90 2630 2360 2255 0.86 0.96
C-11 14670 14280 14930 1.02 1.05 2655 1870 1810 0.68 0.97

Mean(a) 0.98 1.00 0.73 1.01
SD(a)           0.02 0.03 0.05 0.05

(a) Excluding specimen C-10 which failed prematurely 
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Table 5.2 Comparison of Numerical and Experimental Results of Columns with 
Normal Strength Concrete 

Eccentricity Peak axial load Avg. axial strain at 
peak load 

  Num.  Exp. Num. Exp. 

Specimen 
design. 

ex ey Pnum  Pexp  

Pexp/Pnum 

εnum εexp 

εexp/εnum 

  (mm) (mm) (kN) (kN)   (µε) (µε)   
H1 --- --- 7290 7383 1.01 2510 2770 1.10 
H2 --- --- 7355 7573 1.03 2013 2081 1.03 

B1-AX --- --- 9740 8800 0.90 2150 2000 0.93 
B2-AX --- --- 10350 10064 0.97 2335 3056 1.31 
B1-X1 142 --- 5350 5650 1.06 1840 1789 0.97 
B2-X1 143 --- 5560 5920 1.06 1920 2233 1.16 
B1-X3 33 --- 8320 8280 1.00 1862 1856 1.00 
B2-X3 33 --- 8730 9040 1.04 2075 2111 1.02 
B1-Y1 --- 84 5150 5130 1.00 1370 717 0.52 
B2-Y1 --- 91 5150 5460 1.06 1389 1300 0.94 
B1-Y3 --- 23 7970 7460 0.94 1840 1348 0.73 
B2-Y3 --- 23 8400 8710 1.04 1911 1856 0.97 
Mean       1.01   0.97 

SD         0.05     0.20 
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Table 5.3 Comparison of Numerical and Experimental Results of Columns with 
High Strength Concrete 

Eccentricity Peak axial load Avg. axial strain at  
peak load 

  Num.  Exp. Num. Exp. 

Specimen 
design. 

ex ey Pnum  Pexp  

Pexp/Pnum

εnum εexp 

εexp/εnum 

  (mm) (mm) (kN) (kN)   (µε) (µε)   
H3 --- --- 12450 12340 0.99 2890 3420 1.18 
H4 --- --- 12150 11860 0.98 2810 2835 1.01 
H5 --- --- 12160 12390 1.02 2890 2905 1.00 
H6 --- --- 11000 12180 1.11 2590 3005 1.16 
H7 --- --- 11200 11890 1.06 2700 2830 1.05 
H8 23 --- 10700 10920 1.02 2290 2650 1.16 
H9 100 --- 7160 7260 1.01 1590 2040 1.28 

H10 --- 25 10100 9740 0.96 1820 1895 1.04 
H11 --- 74 6840 6370 0.93 1330 1290 0.97 

Mean(b)       0.99   1.09 
SD(b)          0.03     0.12 

(b) Excluding specimens H6 and H7 with steel fibre reinforced concrete 
 
 
 
 
Table 5.4 Comparison of Numerical and Experimental Results for Long Columns 

Eccentricity(c) Peak axial load Avg. axial strain at 
peak load 

(about weak axis) Num. Exp. Num. Exp. 

Specimen 
design. 

etop ebottom Pnum  Pexp  

Pexp/Pnum

εnum εexp 

εexp/εnum 

  (mm) (mm) (kN) (kN)   (µε) (µε)   
0 0 9650 0.77 1770 0.67 CL-1  

20 10 7840 
7440 

0.95 1390 
1187 

0.85 
28 28 6610 0.86 1150 0.79 CL-2 
45 35 5770 

5700 
0.99 1020 

904 
0.89 

0 0 10300 0.65 1962 0.54 CL-3 
35 -5 7770 

6670 
0.86 1590 

1060 
0.67 

(c) Applied eccentricities listed first 
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Table 5.5 Effect of Local Imperfections on Ultimate Capacity

Specimen δm
(d) Pnum Increase in 

designation   strength 
    
  mm kN % 
  -3 10000 1.01 

C-2 -1 9970 0.69 
b/t=23 0 9900 0 

s=d/2=225 mm 1 9780 -1.19 
  3 9660 -2.48 
 -6 17360 0.59 

C-8 -2 17330 0.36 
b/t=23 0 17260 0 

s=d=600 mm 2 16910 -2.03 
  6 16570 -4.04 
 -6 15270 1.04 

C-11 -2 15190 0.53 
b/t=31 0 15110 0 

s=d=600 mm 2 14540 -3.78 
  6 14360 -4.96 
(d) Negative values indicate inward imperfections  
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Table 5.6 Effect of Residual Stress on Peak Axial Load and Average Axial Strain at Peak Load 

Peak axial load Pexp/Pnum Average axial strain at peak load εexp/εnum 

Numerical    Exp. Numerical Exp.
with 

residual 
stress 

without 
residual 

stress 

 with
residual 

stress 

 without 
residual 

stress  

Specimen 
design. 

Pnum P   ε  ε
          

           

num Pexp 

with 
residual 

stress 

without 
residual 

stress 

εnum num exp 

with 
residual 

stress 

without 
residual 

stress 

 (kN) (kN) (kN) (µε) (µε) (µε)
H3 12450 12475 12335 0.99 0.99 2890 2840 3420 1.18 1.20
H4           

           
           
           
           
           
           
           

12155 12180 11863 0.98 0.97 2810 2800 2835 1.01 1.01
H5 12160 12016 12388 1.02 1.03 2890 2730 2903 1.00 1.06
H6 10995 11040 12183 1.11 1.10 2590 2610 3003 1.16 1.15
H7 11200 11190 11891 1.06 1.06 2700 2600 2828 1.05 1.09
H8 10700 10790 10924 1.02 1.01 2290 2280 2652 1.16 1.16
H9 7160 7120 7259 1.01 1.02 1590 1540 2041 1.28 1.33

H10 10100 10400 9736 0.96 0.94 1820 1805 1893 1.04 1.05
H11 6840 6930 6369 0.93 0.92 1330 1330 1292 0.97 0.97

Mean       1.01 1.01       1.10 1.11 
SD       0.05 0.06       0.10 0.11 
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(a) Specimen C-2 (Tremblay et al. 1998) 
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(b) Specimen C-3 (Tremblay et al. 1998) 

 
Figure 5.1 Experimental and Numerical Load versus Axial Strain Behaviour Using 

Small and Extended Models 
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(d) Specimen C-5 (Tremblay et al. 1998)
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Figure 5.1 (cont.) Experimental and Numerical Load versus Axial Strain Behaviour 

Using Small and Extended Models
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Using Small and Extended Models
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Figure 5.1 (cont.) Experimental and Numerical Load versus Axial Strain Behaviour 
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Using Small and Extended Models
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Figure 5.1 (cont.) Experimental and Numerical Load versus Axial Strain Behaviour 

 

 

 117



 
 

Using Small and Extended Models 

 
Figure 5.1 (cont.) Experimental and Numerical Load versus Axial Strain Behaviour 
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(a)  

(b) (c)  (d) 

h 

h 

h 

 
 
 

Figure 5.2 Failure Modes, (a) Small Model (h=s/2=d/2); (b) Small Model 

(h=s/2=d/4); (c) Extended Model (h=2.5s=2.5d) and (d) Extended Model (without 

displaying the mesh).  
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Figure 5.3 Experimental and Numerical Load versus Strain Behaviour (using Full 
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(a) Specimen H1 (Prickett and Driver 2006) 

(b) Specimen H2 (Prickett and Driver 2006)

Model) for Concentrically Loaded Short PEC Columns with NSC
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Figure 5.3 (cont.) Experimental and Numerical Load versus Strain Behaviour (using 

Full Model) for Concentrically Loaded Short PEC Columns with NSC 
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(a) Specimen B1-X1 (Bouchereau and Toupin 2003) 

(b) Specimen B2-X1 (Bouchereau and Toupin 2003) 

 
Figure 5.4 Experimental and Numerical Load versus Strain Behaviour (using Full 

Model) for Eccentrically Loaded Short PEC Columns with NSC
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(d) Specimen B2-X3 (Bouchereau and Toupin 2003) 

 
Figure 5.4 (cont.) Experimental and Numerical Load versus Strain Behaviour (using 

Full Model) for Eccentrically Loaded Short PEC Columns with NSC
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Figure 5.4 (cont.) Experimental and Numerical Load versus Strain Behaviour (using 
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Full Model) for Eccentrically Loaded Short PEC Columns with NSC
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igure 5.4 (cont.) Experimental and Numerical Load versus Strain Behaviour (using 
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F

Full Model) for Eccentrically Loaded Short PEC Columns with NSC 
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Figure 5.5 Experimental and Numerical Load versus Strain Behaviour (using Full 
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Model) for Concentrically Loaded Short PEC Columns with HSC
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Figure 5.5 (cont.) Experimental and Numerical Load versus Strain Behaviour (using 

Full Model) for Concentrically Loaded Short PEC Columns with HSC 
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(a) Specimen H8 (Prickett and Driver 2006) 
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(b) Specimen H9 (Prickett and Driver 2006) 

 
Figure 5.6 Experimental and Numerical Load versus Strain Behaviour (using Full 

Model) for Eccentrically Loaded Short PEC Columns with HSC
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(c) Specimen H10 (Prickett and Driver 2006) 
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(d) Specimen H11 (Prickett and Driver 2006) 

Figure 5.6 (cont.) Comparison of Experimental and Numerical Load versus Strain 

Behaviour (using Full Model) for Eccentrically Loaded Short PEC Columns  

with HSC
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(a) Specimen H6 (Prickett and Driver 2006) 
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Figure 5.7 Experimental and Numerical Load versus Strain Behaviour (using Full 

Model) for Concentrically Loaded Short PEC Columns with HSFRC
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(a) Specimen CL-1 (Chicoine et al. 2000)  
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(b) Specimen CL-2 (Chicoine et al. 2000)  

Figure 5.8 Experimental and Numerical Load versus Strain Behaviour for Long 

PEC Columns with NSC 
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Figure 5.8 (cont.) Experimental and Numerical Load versus Strain Behaviour for 

Long PEC Columns with NSC
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(ii)  (i)  (c) (b) 
(a)  

 

Figure 5.9 Failure Modes Obtained from the Full Column FE Model for Short PEC 

Columns, (a) Concentric Load, (i) Numerical and (ii) Experimental (Prickett and 

Driver 2006); (b) Eccentric Load (strong axis bending) and (c) Eccentric 

Load (weak axis bending) 

 

  

      (i)    (ii) 
 

(b) (a)   

Figure 5.10 Comparison of Numerical and Experimental Local Buckling at Failure 

for Short PEC Columns, (a) Numerical; (b) Experimental (i) Chicoine et al. (2000) 

and (ii) Prickett and Driver (2006) 
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Figure 5.11 Comparison of Numerical and Experimental Failure Modes for Long 

PEC Columns, (a) Numerical and (b) Experimental (Chicoine et al. 2000) 
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Figure 5.12 Numerical and Experimental Load versus Moment Curves for Short 

PEC Columns with Normal Strength Concrete
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Figure 5.12 (cont.) Numerical and Experimental Load versus Moment Curves for 

Short PEC Columns with Normal Strength Concrete
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(b) Specimens H10 and H11 (Prickett and Driver 2006)  

 
Figure 5.13 Numerical and Experimental Load versus Moment Curves  
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Figure 5.14 Effect of Link Spacing on Load versus Strain Behaviour 
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Figure 5.15 Effect of Residual Stress on Load versus Axial Strain Behaviour 
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6. PARAMETRIC STUDY 

 

6.1 Introduction 

Most of the early research on partially encased composite (PEC) columns investigated 

concentrically loaded applications, i.e., they were intended for use as “gravity” columns. 

The range of application of these columns can be expanded significantly by incorporating 

them as part of lateral load resisting systems such as braced steel frames or steel plate 

shear walls. In these cases, the columns are subjected to the combined action of bending 

moment and axial force and in some cases the moments can be substantial. Design rules 

for PEC columns constructed with normal strength concrete and subjected to concentric 

gravity loading have been incorporated into CSA S16-01 (CSA 2001). Based on large-

scale experimental investigations, Prickett and Driver (2006) suggested that the design 

procedures in CSA S16-01 are also adequate for PEC columns made with high strength 

concrete, giving conservative predictions of strength. Prickett and Driver (2006) have 

also proposed design procedures for columns loaded under combined axial load and 

bending. They validated the design procedures against the test results of eccentrically 

loaded short PEC columns (L/d = 5), varying the initial load eccentricity and axis of 

bending. All of the PEC columns they tested had a flange b/t ratio of 25. Therefore, the 

researchers recommended that more tests should be performed on PEC columns having 

b/t ratios greater than 25, since this parameter is influential on local buckling of PEC 

columns. Moreover, the recommended design procedure for PEC columns under 

combined axial load and bending needs to be extended for columns with overall 

slenderness ratios, L/d, greater than 5. Experimental investigations are, however, time 

consuming and capital intensive, as well as being particularly cumbersome for long 

columns. Therefore, to extend the range of application of PEC columns constructed with 

both normal and high strength concrete subjected to axial compression and bending, a 

parametric analysis is required using a validated analytical model.  

 

This study uses the full finite element model developed in Chapter 5 to assess the 

influence of important geometric and material parameters on the behaviour of PEC 
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columns. The efficiency and accuracy of the model were demonstrated through 

comparisons between the experimental and numerical results of a large number of PEC 

column tests with an array of parameters, as presented in Chapter 5. The model was 

found to be capable of tracing a stable and complete load–strain history with good 

accuracy for PEC columns with small and large cross-sections, constructed with normal 

and high strength concrete, and tested under concentric and eccentric loading conditions. 

Moreover, the model was able to simulate the observed failure mode well. In this chapter, 

the finite element model is used to expand substantively the pool of data from previous 

experimental research programs and, thereby, to explore the influences of several key 

parameters on the behaviour of PEC columns. Due to the broad range of parameters 

considered, to keep the project manageable the parametric study is confined to columns 

subjected to strong axis bending only, since this is the type of loading condition that most 

often occurs when the columns are a part of lateral load resisting systems. (Similar 

studies of PEC columns under weak axis or biaxial bending are recommended for future 

research.) The selection of the variable parameters and design of the parametric study, 

along with a discussion of the results, are presented in subsequent sections.  

 

6.2 Design of Parametric Study 

6.2.1 Selection of Parameters 

For designing the parametric study, the geometric and material properties of PEC 

columns that can significantly affect their behaviour under axial compression and 

bending are identified as potential variables. Among these, the column cross-sectional 

dimensions, bf (or b) and d, length of the column, L, longitudinal spacing of the 

transverse links, s, thickness of the steel flange and web plates, t and initial load 

eccentricity, e, are identified as the most important geometric variables. The compressive 

strength of concrete used in the column is included as the only material variable, since the 

grade of structural steel used is unlikely to be varied much by designers. The geometric 

properties listed here are non-dimensionalised for comparison in order to reflect 

anticipated combined influences and also to reduce the number of individual analyses 
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required. The definition of each parameter, along with its selected range for this study, is 

presented in turn below.  

6.2.1.1 Overall Column Slenderness Ratio, L/d  

The global stability of the column is controlled by the overall slenderness ratio, which is 

defined as the ratio of the length of the column, L, to the depth of the column cross-

section, d. Three different slenderness ratios—5, 10 and 15—were employed in the 

parametric study to cover the range of short, intermediate and slender columns. Thereby, 

this study will help to fill the gap in the behaviour of PEC columns resulting from the 

paucity of experimental data for columns with L/d > 5. Although three tests on columns 

with L/d = 20 were used during the model verification exercises, it was decided to limit 

L/d in the parametric study to 15 until more experiments on slender columns are carried 

out. This upper limit slightly exceeds the limit prescribed by CSA S16-01 (CSA 2001) of 

14. 

 

6.2.1.2 Load Eccentricity Ratio, e/d  

The behaviour of a PEC column under bending induced by an eccentrically applied axial 

load is greatly affected by the initial load eccentricity ratio, which is obtained by dividing 

the initial eccentricity, e, of the applied axial load by the depth of the column 

cross-section, d. Higher e/d ratios increase flexural compression in the cross-section, 

resulting in reduced load carrying capacity of the column as compared to a concentrically 

loaded column. The load eccentricity ratios used in this study are 0.05, 0.15 and 0.30. 

The load eccentricity ratio of 0.05 is intended to represent an “accidental” eccentricity 

that might occur in a column that is nominally designed as a gravity column. The upper 

limit of 0.30 explores cases with substantial bending moments. 

 

6.2.1.3 Flange Plate Slenderness Ratio, b/t  

The flange plate slenderness ratio is defined as the ratio of the half-width of the flange, b, 

to its thickness, t. This parameter was varied between 25 and 35, with an intermediate 

value of 30. The ultimate capacity and failure mode of a PEC column is significantly 
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affected by this parameter, since it controls the occurrence of local instability in the 

flange plate of the column. In other words, the ductility of this composite system is 

greatly affected by the flange plate slenderness ratio. The upper limit of 35 slightly 

exceeds the limit prescribed for PEC columns by CSA S16-01 (CSA 2001) of 32. 

 

6.2.1.4 Link Spacing-to- Depth Ratio, s/d  

Local flange buckling in a PEC column takes place in the unsupported length of the 

flange plate, i.e., in the flange panel between two successive links. Therefore, link 

spacing is clearly an important parameter affecting the behaviour of these columns. The 

effect of the link spacing is studied by varying the ratio of link spacing, s, to the depth of 

the column cross-section, d. Two values of the s/d ratio—0.5 and 0.7—were used in the 

parametric study. For comparison, the prescribed upper limit in CSA S16-01 for the link 

spacing is 0.67 of the least dimension of the column or 500 mm, whichever is less. 

 

6.2.1.5 Concrete Compressive Strength  

Compressive strength of concrete plays an important role in increasing the load carrying 

capacity of concrete, thereby reducing the required column size, and perhaps the amount 

of steel required, for a particular load. However, limited experimental investigations have 

been performed, to date, on PEC columns with high strength concrete and no such results 

were available prior to the publication date of the current edition of CSA S16-01 (CSA 

2001). As a result, nominal concrete strengths greater than 40 MPa are currently not 

permitted in design. Thus, in the parametric study the concrete strength was varied from 

30 MPa to 60 MPa to investigate the influence of high strength concrete in combination 

with other parameters.  

 

6.2.2 Combinations of Parameters 

As presented in the previous section, four non-dimensional geometric and one material 

parameter were varied in the parametric study. In designing the columns for the study, the 

overall column slenderness ratio, L/d, was considered the primary parameter. Other 
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parameters were combined in an optimum and systematic way for each value of the 

primary parameter to obtain their individual effects and interrelationships. To facilitate 

this approach, three reference columns, designated ‘SN1’, ‘IN1’ and ‘LH1’ (as shown in 

Table 6.1), are designed, where “S”, “I” and “L” indicate short (L/d = 5), intermediate 

(L/d = 10) and long (L/d = 15) columns, respectively. The smallest value of each variable 

parameter is selected for SN1, the largest value of each for LH1, and intermediate values 

are used for IN1 in order to provide a broad perspective on the effects of the various 

parameters. To study the effect of each selected parameter, numerical analyses were 

performed by varying only that parameter for each of the reference columns. 

 

Additional analyses were performed to study the combined effect of flange slenderness 

ratio, b/t, and link spacing-to-depth ratio, s/d, since these two parameters together control 

the local flange stability and, thereby, the ductility of the composite column. A high value 

of b/t ratio combined with large link spacing can significantly limit the capacity and 

influence the failure of these columns. In this study, for each value of flange b/t ratio (i.e., 

25, 30 and 35) the s/d ratio was varied between 0.5 and 0.7 for each of the three reference 

columns.  

 

In total, 31 columns were analysed for the parametric study, the details of which are 

given in Table 6.1. The first letter in the column designation refers to the overall column 

slenderness ratio. To differentiate between the normal strength and high strength concrete 

columns, letters “N” and “H” are included in the column designation. The number used in 

the column designation is simply the serial number as they appear in the table. The 

geometric and material properties of the parametric columns that were fixed for all 

columns are given in the following section. 

 

6.3 Fixed Geometric and Material Properties of Parametric Columns 

All of the columns have a square cross-section with outer dimensions of 

450 mm × 450 mm. This is a moderate size for composite columns and might be suitable 

in the construction of mid-rise buildings. As a result of the fixed cross-sectional size, 
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each of the four non-dimensional geometric parameters were controlled by individually 

varying L, e, t and s. The transverse links used were of 12.7 mm diameter, which meets 

the requirements of CSA S16-01 (CSA 2001). For the two values of link spacing—0.5d 

and 0.7d—the transverse link arrangements along the height of the column are shown in 

Figures 6.1, 6.2 and 6.3 for short, intermediate and long columns, respectively. The links 

were distributed uniformly along the length of the columns for s = 0.5d for all three cases 

of the L/d ratio. However, for s = 0.7d, adjustments were required in the link spacing near 

the ends of the columns, as shown in the figures.  

 

The parametric columns were assumed to be fabricated from CSA-G40.21 grade 350W 

steel plate. The nominal yield strength, Fy , of 350 MPa, the highest permitted by CSA 

S16-01 (CSA 2001) for PEC columns, was used in the analyses, and with an assumed 

modulus of elasticity of 200 GPa the yield strain, εy , was taken as 0.00175 mm/mm. The 

ultimate strength of the steel plate is taken as 450 MPa and the corresponding strain is 

assumed to be 100 times the yield strain, i.e., 0.175 mm/mm. The point delineating the 

onset of strain hardening is also required to define the trilinear stress–strain curve for 

steel used in the finite element model. This point is defined at a stress value of 350 MPa, 

with a strain of 10εy . The Poisson’s ratio used for the steel is 0.30. 

 

Unlike the experimental columns, the parametric columns have uniform concrete strength 

along their entire length. Two types of concrete, with nominal strengths of 30 MPa and 

60 MPa, were used in the parametric study. To define the concrete stress–strain curves 

for the finite element analyses of these columns, the strain corresponding to the uniaxial 

compressive strength, the elastic modulus and the Poisson’s ratio are required. The strain 

at the ultimate compressive strength was calculated using the expression proposed by 

Almusallam and Alsayed (1995): 

 

( ) 41006.132.0 −×+= cucu fε  (6.1) 

 

which was developed based on experimental investigations of both normal and high 

strength concrete (up to 100 MPa). 
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The elastic moduli for the normal and high strength concrete were calculated using the 

following expression according to ACI 318-05 (ACI 2005): 

 

cuc fE 4730=  (6.2) 

 

In Equations 6.1 and 6.2, fcu is in MPa. The calculated values of elastic modulus and the 

strain at the ultimate compressive strength for concrete used in the parametric columns 

are listed in Table 6.1. The Poisson’s ratio for concrete was taken as 0.20, as reported by 

Rashid et al (2002) for concrete with strengths ranging from 20 to 120 MPa. In 

generating the stress–strain curve for normal strength concrete, the strength reduction 

factor discussed in Chapters 2 and 4 was applied to the nominal strength (i.e., 30 MPa) of 

the concrete. However, no reduction factor was applied to reduce the strength of the high 

strength concrete, as was found to be appropriate in the validation exercises.  

 

In the finite element model for the parametric columns, local imperfections in the flanges 

were not included since the axial capacity of PEC columns was found not to be affected 

significantly by the presence of local imperfections (see Section 5.5 of Chapter 5). 

However, global imperfections were included only in the slender columns (L/d = 15) with 

a maximum amplitude of L/2000 = 3.4 mm, considered to be a reasonable value that is 

somewhat lower than the codified limit. The imperfect shape was included in a similar 

way as implemented in the numerical model for long test specimens (as described in 

Chapter 4). The residual stresses in the steel plates of the parametric columns were also 

neglected based on the findings in Chapter 5 that the effect of residual stresses on the 

load–deformation response of PEC columns is negligible. The end conditions used for the 

parametric columns were similar to those used in the simulations for the eccentrically 

loaded columns with bending about the strong axis (as described in Chapter 4).  
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6.4 Results and Discussion 

This section presents the influence of each parameter on the behaviour of short, 

intermediate and long PEC columns in comparison to the three associated reference 

columns (i.e., SN1, IN1 and LH1, respectively) selected for the parametric study. The 

output parameters that have been extracted from the analysis results are: axial load, Pu , 

moment, Mu , average axial strain, εa,u , and lateral displacement, U3,u , at failure (i.e., at 

the peak axial load point). The term “moment” used in this section always refers to the 

total bending moment, i.e., including the second order effects. The axial load versus 

average axial strain, axial load versus lateral displacement, moment versus lateral 

displacement, axial load versus moment and moment versus curvature curves are also 

generated from the numerical analysis for each parametric column. 

 

The average axial strain is calculated by dividing the average total displacement in the 

axial direction by the length of the column. In most cases, local buckling is observed in 

the segment (between two links) that includes the cross-section at the mid-height of the 

column. However, in four cases local buckling occurred two to three segments away from 

mid-height. The moment and curvature calculations for all columns are performed at the 

critical segment where local buckling took place. However, to minimize the effect of 

highly localized distortions, the critical section was taken right at the link level closest to 

the column mid-height that is adjacent to the buckled segment. The lateral displacement 

is extracted at the same link level and is used to determine the second order moment.  

 

All the results obtained from the parametric analyses are organized and presented to 

highlight the individual effect of each parameter. To this end, the parametric columns that 

demonstrate the effect of a variable parameter for the three reference columns are divided 

into three sets: “Set 1”, “Set 2” and “Set 3”. “Set 1” includes the effect of the variable 

parameter on the short reference column, SN1, for which e/d=0.15, b/t=25 and s/d=0.5. 

“Set 2” demonstrates the effect on reference column IN1 (e/d=0.15; b/t=30; s/d=0.7). 

Finally, the effects of the variable parameter on the long reference column, 

LH1 (e/d=0.30; b/t=35; s/d=0.7), are included in “Set 3”.  
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The failure mode in each of the 31 parametric columns is studied using the numerical 

model. In general the columns reached the peak load by concrete crushing either 

preceded, followed or accompanied by local buckling of the flanges. The load level 

where the first sign of local buckling was observed is reported. This was done by plotting 

the axial load versus axial strain curves at the outside, inside and middle surfaces of the 

shell element of the flange plate where local buckling had taken place. Load versus strain 

plots for the flange in the reference columns only are shown in Figure 6.4. However, the 

Appendix includes the load versus axial strain curve at the buckled flange for all 31 

parametric columns. The ratio of the axial load at the initiation of local buckling to the 

peak load is given in Tables 6.2 to 6.5. Occurrence of local buckling before, at or after 

the attainment of the peak axial load is also reported in the tables. 

 

In the following sections, only the significant observations from the parametric study are 

reported, along with the relevant figures. However, all figures regarding the influence of 

each parameter on the load versus average axial strain response, load versus lateral 

displacement response, moment versus lateral displacement response, load versus 

moment response and moment versus curvature response are included in the Appendix.  

 

6.4.1 Effect of Overall Column Slenderness Ratio 

6.4.1.1 Peak Load and Corresponding Moment 

Table 6.2 shows the effect of the overall column slenderness (L/d) ratio on the selected 

output parameters at the peak load point. For Set 1 and Set 2, the effect of the L/d ratio 

has the same effect on the ultimate axial load and moment. For these columns, increasing 

the L/d ratio from 5 to 10 reduces the ultimate axial load capacity by 3%. On the other 

hand, increasing the L/d ratio to 15 results in an 8% reduction in the ultimate axial load. 

The moments at the peak load points for Sets 1 and 2 are increased by 9% and 31% for 

L/d ratios of 10 and 15, respectively, with respect to the moment for L/d = 5. The 

increase in the bending moment resulted from the increase in second order moments as 

the column gets increasingly slender.  
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The effect of the L/d ratio as observed in Set 3 is different than that observed in Sets 1 

and 2. The ultimate load of column SH2 is observed to reduce by 7% and 18%, 

respectively, for L/d of 10 and 15. However, the moment at the peak load point is 

increased by 5% and 10%, respectively, for L/d ratios of 10 and 15 with respect to that 

obtained for L/d = 5. This increase in the moment at the peak load point is significantly 

less than that observed for Sets 1 and 2 because the high load eccentricity (e = 0.3d) for 

columns included in Set 3 reduces the effect of the increase in the second order 

displacements, as L/d ratio increases, on the bending moment of these columns.  

 

6.4.1.2 Load versus Average Axial Strain Response 

Figures 6.5(a), (b) and (c) show the effects of L/d ratios on the axial load versus average 

axial strain responses for Sets 1, 2 and 3, respectively. In Set 1, column SN1 shows a 

flatter peak and more gradual post-peak strength decline as compared to columns IN2 

(L/d = 10) and LN2 (L/d = 15). These three columns had e/d = 0.15, b/t = 25, s/d = 0.5 

and were constructed with 30 MPa concrete. As shown in Figure 6.5 (b), for the Set 2 

analyses, no significant difference is observed in the load versus strain response of 

columns IN1 and LN3. However, column SN2 shows ductile behaviour as compared to 

the other two. These columns had e/d = 0.15, b/t = 30, s/d = 0.7 and were constructed 

with 30 MPa concrete. In Figure 6.5 (c), no significant difference is observed in the load 

versus average axial strain curves of columns SH2, IH2 and LH1, except in the peak 

zone. All three columns show steep decline from the ultimate axial capacity. The 

columns had e/d = 0.30, b/t = 35, s/d = 0.7 and were constructed with 60 MPa concrete.  

 

Although the longer columns exhibit lower capacity and ductility in all sets, as expected, 

the effect on axial strength is far more pronounced for the columns with slender flange 

plates, the more severe eccentricity, and high strength concrete (i.e., Set 3). In some 

cases, significant differences in the failure mode are also revealed by changing the 

column slenderness. The clear benefit of the stockier flange plates (Set 1) on the failure 

mode of short columns diminishes as the columns become more slender. The difference 

in the brittleness of the failure mode as a function of column length is less distinct when 

 149



the flange plates themselves are slender (Set 3), although this may have also been 

influenced by the different character of the high strength concrete. 

 

In the post-peak regions of the load versus strain responses undulations are observed, 

particularly for the intermediate and long columns. As presented in Chapter 4, a dynamic 

solution strategy was implemented in the numerical simulations of the quasi-static 

response of PEC columns. After the peak load, the steel plate experiences local instability 

in several locations along the column height as the applied displacement increases. 

Moreover, as the column gets slender global instability becomes significant at higher 

levels of applied displacement. The instability in the steel plates causes the inertial forces 

to be significant, resulting in spurious oscillations in the residual portion of the load 

versus deformation responses.  

 

6.4.1.3 Load versus Lateral Displacement Response 

The effect of the L/d ratio on the load versus lateral displacement response is shown in 

Figure 6.6. In all three sets, the pre-peak region of the load versus lateral displacement 

curves for the short columns (SN1, SN2 and SH2) show a steep slope and linear 

behaviour. As the slenderness ratio (L/d) increases, this region of the curve gets nonlinear 

with reduced initial slope. The nonlinear behaviour occurs due to the increased second 

order displacement in the slender columns. The short columns experience a sharp decline 

in the post-peak region of the load versus lateral displacement curve, whereas the long 

columns can withstand the peak axial load over a wide range of lateral displacement.  

 

In this case, the effect of increasing the slenderness ratio does not seem to be affected 

greatly by the other parameters. All three sets show a much more rapid accumulation of 

lateral displacement as the global slenderness increases. 

 

6.4.1.4 Load versus Moment Response 

Figure 6.7 presents the load versus moment curves for short, intermediate and long 

columns in each analysis set. In all three cases, the load versus moment curve for the 
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short columns represent essentially linear behaviour. However, as the L/d ratio increases, 

the curve shows nonlinear behaviour resulting from the effect of second order 

displacements. The effect of global slenderness on the load versus moment curves is 

similar for the three sets, although the effect is somewhat less pronounced when the 

initial eccentricity is larger (Set 3) because the second order displacement are, relative to 

the initial eccentricity, smaller. 

 

6.4.1.5 Failure Mode 

The points of occurrence of local buckling in the reference columns (SN1, IN1 and LH1) 

for different L/d ratios are shown in Table 6.2. For column SN1 (e/d = 0.15, b/t =25, 

s/d = 0.5), local buckling occurred shortly after the peak load. Increasing the L/d ratio is 

observed to delay the initiation of local buckling slightly.  

 

The local buckling in column IN1 (e/d = 0.15, b/t =30, s/d = 0.7) occurred after the 

crushing of concrete at 0.99 Pu . For this column, increasing the L/d ratio to 15 (column 

LN3) does not affect the failure mode. However, when the L/d ratio is reduced to 5 (i.e., 

column SN2), the local buckling was observed at the peak load accompanied by concrete 

crushing.  

 

On the other hand, for the long reference column LH1 (e/d = 0.30, b/t =35, s/d = 0.7), 

local buckling occurred after the crushing of concrete at 0.92 Pu and reducing the L/d 

ratio is observed to delay the local buckling somewhat. Although the long reference 

column, LH1, had the largest b/t ratio (i.e., 35) combined with the larger link spacing 

(i.e., 0.7d), it experienced local buckling well after the peak load. This column was 

constructed with high strength concrete and had a higher e/d ratio as compared to 

columns SN1 and IN1.  
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6.4.2 Effect of Load Eccentricity Ratio 

6.4.2.1 Peak Load and Corresponding Moment 

The influence of the load eccentricity ratio on the axial load capacity of the PEC columns 

is observed to be significant (Table 6.3). For Sets 1 and 2, the peak loads corresponding 

to e/d = 0.05 are reduced by approximately 20% and 40% when e/d ratio is increased to 

0.15 and 0.30, respectively. For Set 3, this reduction in capacity is even higher, with 

decreases of 25% and 49% for e/d =0.15 and 0.30, respectively.  

 

As observed in Table 6.3, for Set 1 and Set 2 the average value of the increase in the 

moment corresponding to the peak load was about 140% and 260% for e/d ratio of 0.15 

and 0.30, respectively. For Set 3, however, the increase in moment was observed to be 

lower: 91% and 124%, respectively, for e/d = 0.15 and 0.30. The columns in Set 3 were 

constructed with high strength concrete and had an L/d ratio of 15.  

 

6.4.2.2 Load versus Average Axial Strain Response 

Figure 6.8 shows the effect of the load eccentricity ratio on the axial load versus average 

axial strain curve for the three sets of analyses. No difference is observed in the initial 

portion of the load strain behaviour within each set. However, the variation in the e/d 

ratio affects the peak and post-peak region of the load versus average axial strain 

response. In Sets 1 and 2, a flatter peak followed by a slightly more gradual post-peak 

strength decline is observed as the e/d ratio increases. On the other hand, all three 

columns in Set 3 experienced a sharp decline in the post-peak region. This indicates a 

negligible effect of the increased bending moment (resulting from the increase in the e/d 

ratio) in the level of brittleness in the behaviour of these columns. Conversely, the axial 

strain at the peak is significantly affected in Set 3; a 17% and 42% reduction in the axial 

strain at the peak load is observed for increasing the e/d ratio from 0.05 to 0.15 and 0.30, 

respectively.  

 

The effect of increased bending moment on the axial capacity and corresponding axial 

strain is more pronounced as the column gets slender. The brittle failure mode of the long 
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reference column (which was constructed with high strength concrete and slender plates) 

is not affected at all by the e/d ratio. The capacities of the short and intermediate 

reference columns are reduced by 20% on an average, but with a better post-peak 

response, as the e/d ratio increases. These columns were constructed with normal strength 

concrete and had variations in plate slenderness and link spacing. 

  

6.4.2.3 Load versus Lateral Displacement and Moment versus Lateral Displacement 

Responses 

The effects of the load eccentricity ratio on the load versus lateral displacement response 

are presented in Figure 6.9. In all three sets, the lateral displacement at a particular load 

increases with an increase in the e/d ratio, as expected. The increase in lateral 

displacement is more pronounced in the cases of intermediate and long columns 

(Figures 6.9(b) and 6.9(c)) due to the lower flexural stiffness of the column. These 

figures also show that the peak region of the curve becomes relatively flat with a gradual 

drop in axial load capacity in the descending branch as the e/d ratio increases.  

 

As shown in Figure 6.10, the moment at the column mid-height increases significantly 

with the increase in the e/d ratio in all three sets due to the significant differences in the 

end eccentricity. The lateral displacement at the peak moment also increases with 

increasing e/d ratios, but this effect is far more evident in the long columns (Set 3) due to 

the more influential second order effects. However, the moment versus lateral 

displacement curves for long columns (with high strength concrete) show a sharper 

decline in the descending branch as compared to the short (Set 1) and intermediate (Set 2) 

PEC columns. 

 

6.4.2.4 Moment versus Curvature Response 

The moment–curvature relationships for the three sets of analysis are shown in 

Figure 6.11. The initial stiffness of the column is not affected by the load eccentricity 

ratio due the behaviour being relatively linear. As the moment increases into the inelastic 

region, columns with higher e/d ratios bend more, which in turn enhances the geometric 
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nonlinearity in the PEC column. Consequently, the formation of the plastic hinge 

becomes less gradual as the eccentricity increases. In each set, columns loaded at high 

eccentricity show slightly less ductile behaviour at failure as compared to the columns 

with low eccentricity. Nevertheless, the cross-section is able to maintain the maximum 

moment, or near the maximum moment, under large curvatures in all cases. 

 

6.4.2.5 Failure Mode 

For Set 1 that includes the short columns, the occurrence of local buckling is not affected 

by the load eccentricity ratio as shown in Table 6.3. For all three values of load 

eccentricity ratio, the short columns experienced local buckling shortly after the peak at 

an axial load of 0.99Pu . In the case of the intermediate reference column IN1 (e/d = 0.15, 

b/t =30, s/d = 0.7), reducing the load eccentricity accelerates the occurrence of local 

buckling, which is observed in column IN3. On the other hand, when the load 

eccentricity ratio is increased to 0.30 (column IN4) no change is observed in the load 

corresponding to the first sign of local buckling. The flanges of columns IN1 and IN4 

buckled at a load of 0.99Pu after reaching the peak, whereas column IN3 (e/d = 0.05) 

experienced buckling at 0.97Pu before reaching the peak load.  

 

In Set 3, the long reference column LH1 also experiences local buckling earlier as the e/d 

ratio reduces to 0.15 and 0.05, in comparison with that observed with e/d = 0.30. Among 

all the long columns analysed for the parametric study, only column LH3 experienced 

local buckling well before reaching the peak load. This long column was also the only 

one loaded at e/d = 0.05, which indicates the presence of higher axial compression and 

lower bending moment as compared to the columns with higher e/d ratios.  

 

For stockier flanges and closer link spacing, the occurrence of local buckling is not 

affected by the load eccentricity. For PEC columns with plate slenderness ratios of 30 

and 35 accompanied with larger a link spacing, local buckling occurred earlier as the e/d 

ratio decreases. For the e/d ratio of 0.05, which is the accidental eccentricity case, the 

columns with slender plates experienced local buckling before the peak load. This was 
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observed for both normal strength and high strength concrete and for L/d ratios of 10 and 

15. 

 

6.4.3 Effect of Flange Plate Slenderness Ratio  

6.4.3.1 Peak Load and Corresponding Moment  

In Table 6.4, for Set 1 and Set 2, nearly identical changes are observed for the peak load 

and corresponding moment when the b/t ratio is changed from 25 to 30 and 35 for each 

s/d ratio. For long columns, which are included in Set 3, the reductions in the peak load 

and moment due to the increase in b/t ratio are slightly lower than those observed in Set 1 

and Set 2.  

 

Increasing the b/t ratio from 25 to 30 causes a 6 to 8% reduction in the axial load capacity 

of the PEC columns in all three sets for the two link spacings. The average reduction in 

axial capacity is 7.5%. The L/d ratio and concrete strength seemed to have little or no 

effect on the reduction in axial capacity due to the increase in plate slenderness. The 

average reduction in capacity for b/t = 35 is 13%, ranging from 11% (long columns) to 

16% (short columns).  

 

The average reduction in the moment corresponding to the axial load is 7% and 13% 

respectively, for b/t ratios of 30 and 35, with respect to the moment for b/t = 25. The 

minimum reduction was observed in long columns, i.e., 5% for b/t = 30 and 10% for 

b/t = 35. On the other hand, the maximum reduction was observed for short columns, i.e., 

8% for b/t = 30 and 17% for b/t = 35. The variations in the link spacing seemed to have a 

negligible influence on these results.  

 

6.4.3.2 Load versus Average Axial Strain Response 

Figures 6.12, 6.13 and 6.14 present the effects of the plate slenderness, b/t, on the load 

versus average axial strain curves for short, intermediate and long columns, respectively, 

with two different link spacing. In the cases of short and intermediate columns, as the b/t 
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ratio increases the responses of the columns become less ductile as indicated by the 

flatness of the peak region of the curve. However, the b/t ratio has a more pronounced 

effect for s = 0.7d than s = 0.5d. As shown in Figures 6.12(b) and 6.13(b), columns SN8 

and IN6 which had plates with b/t = 35 and s = 0.7d, demonstrated sudden failure as 

observed through the sharp decline from the peak load.  

 

In the case of the slender columns, the plate slenderness ratio seemed to have no 

significant effect (see Figure 6.14) on the load versus average axial strain curve. This can 

be attributed to the fact that in these slender columns local buckling in the steel flanges 

occurred after the ultimate load point.  

 

The plate slenderness ratio is more influential in short columns with larger link spacings. 

As the column becomes slender, the advantage of using a stockier flange plate diminishes 

for both values of s/d ratios (0.5 and 0.7).  

 

6.4.3.3 Failure Mode 

As shown in Table 6.4, for three different values of b/t ratio (i.e., 25, 30 and 35) the short 

reference column (SN1) which had an e/d = 0.15 and s/d = 0.5, local flange buckling 

occurred at the same load level (0.99Pu) after reaching the peak load. When the same 

column is fabricated with links spaced at 0.7d, increasing the plate b/t ratios from 25 to 

35 accelerated the occurrence of local buckling in the flanges slightly. In column SN7, 

with b/t = 25 and s/d = 0.7, local buckling is observed at 0.99Pu after the crushing of 

concrete at the peak load. The same column when fabricated with plates having b/t ratios 

of 30 (column SN2) and 35 (column SN8), local buckling occurred with and before the 

crushing of concrete, respectively.  

 

In case of intermediate columns (included in Set 2) with links spaced at 0.5d and plate b/t 

ratios of 25, 30 and 35, designated as IN2, IN7 and IN8, respectively, local buckling took 

place shortly after the peak axial load. The plate slenderness ratio is observed to have no 

significant effect on the failure modes of these columns. However, among the 
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intermediate columns with a 0.7d link spacing, column IN6, with b/t = 35, showed local 

buckling before the peak load, whereas columns IN5 (b/t = 25) and IN1 (b/t = 30) did not 

experience local buckling before reaching the peak load.  

 

None of the long columns (Set 3) experienced local buckling before reaching the peak 

load, as shown in Table 6.4. Columns LH7 and LH1, which had the most slender plate 

(b/t = 35), experienced local buckling slightly earlier as compared to the columns with 

b/t = 25 and 30. All the longs columns in Table 6.4 were constructed with high strength 

concrete and were subjected to severe second order bending.  

 

The effect of the b/t ratio on local buckling is more prominent for link the spacing 

s = 0.7d. The chance of the occurrence of local buckling before the peak load, as the plate 

gets slender, reduces with increased L/d ratios.  

 

6.4.4 Effect of Link Spacing-to-Depth Ratio 

6.4.4.1 Peak Load and Corresponding Moment 

As shown in Table 6.5, changing the s/d ratio from 0.5 to 0.7 has no effect on the peak 

load and corresponding moment for short and intermediate PEC columns with b/t ratios 

of 25 and 30. When these columns are constructed with slender plates (b/t = 35), slight 

reductions in the peak load and moment (ranging from 1% to 4%) are observed for 

s/d = 0.7 with respect to s/d = 0.5. However, the axial capacities of the slender columns 

are not affected at all by the s/d ratios and the corresponding moments negligibly so.  

 

6.4.4.2 Load versus Average Axial Strain Response 

The load versus average axial strain curves for short columns (as shown in Figure 6.15) 

show increased ductility as the s/d ratio reduces from 0.7 to 0.5. However, this effect of 

link spacing is observed to become prominent for larger b/t ratios. For b/t ratios of 30 and 

35, the peak load is sustained to a larger strain for s/d = 0.5 as compared to that for 

s/d = 0.7. As shown in Figure 6.16, the columns in Set 2, i.e., the intermediate columns, 
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also show similar responses when varying the s/d ratio between 0.5 and 0.7. The b/t ratio 

is found to have essentially no effect at all on the load versus axial strain responses for 

the columns in Set 3 (Figure 6.17), which are long columns, constructed with high 

strength concrete and had largest e/d ratio selected in this study. 

 

Although the range of s/d ratio selected in this study does not affect the column axial 

capacity significantly for the b/t ratio ranging from 25 to 35, the load versus axial strain 

curves demonstrate more ductile response for lower s/d ratio. However, this effect is 

prominent in short columns with slender flanges and diminishes as the overall column 

slenderness increases.  

 

6.4.4.3 Failure Mode 

For b/t = 25, no change is observed in the failure mode of the short column by varying 

the link spacing from 0.5 to 0.7d. Both column SN1 (e/d = 0.15, b/t = 25, s/d = 0.5) and 

SN7 (e/d = 0.15, b/t = 25, s/d = 0.7) experienced local buckling at a load of 0.99Pu , after 

the crushing of concrete. On the other hand, when the plate slenderness ratio of the short 

reference column is increased to 30 and 35, increasing the link spacing from 0.5d to 0.7d 

accelerated the occurrence of local buckling. Column SN2 (e/d = 0.15, b/t = 30, s/d = 0.7) 

and SN8 (e/d = 0.15, b/t = 35, s/d = 0.7) failed by local buckling followed by concrete 

crushing at the peak load. When the link spacing-to-depth ratio of these columns is 

changed to 0.5 from 0.7, the failure is observed to take place by crushing of concrete at 

the peak and local flange buckling occurred afterwards. 

 

For the intermediate reference column (IN1), which had a b/t = 30, link spacings of 0.5d 

and 0.7d do not affect the failure mode significantly. For this column, local flange 

buckling occurred after reaching the peak axial load at load levels of 0.98Pu and 0.99Pu , 

respectively, for s = 0.5d and 0.7d. The failure mode of the intermediate column having 

b/t = 25, is also not affected significantly by varying the link spacing from 0.5d 

(column IN2) to 0.7d (column IN5). However, for the limiting b/t ratio, i.e. 35, changing 

the link spacing affects the failure mode as shown in Table 6.5. The failure of 
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column IN6 (e/d = 0.15, b/t = 35, s/d = 0.7) was initiated by local buckling, whereas 

column IN8 (e/d = 0.15, b/t = 35, s/d = 0.5) attained the peak load by concrete crushing 

and local buckling of the flanges followed. 

 

In the case of the long column LH1 constructed with b/t ratios of 25, 30 and 35, the two 

link spacings 0.5d and 0.7d did not affect the failure mode. In all six columns (Table 6.5), 

failure was initiated by concrete crushing. Local buckling occurred at loads ranging from 

0.87Pu to 0.92Pu , after reaching the peak capacity.  

 

The initiation of local buckling is affected by the link spacing for short and intermediate 

PEC columns with slender plates. However, for long PEC columns (L/d = 15) the link 

spacing does not affect the failure behaviour even for b/t = 35, since the failure of the 

long columns are mainly due to global flexural buckling. The high e/d ratio used in the 

long columns also added to the increased bending moment in these columns. 

 

6.4.5 Effect of Concrete Compressive Strength 

6.4.5.1 Peak Load and Corresponding Moment 

The effect of normal and high strength concrete with nominal strengths of 30 and 

60 MPa, respectively, is studied in Table 6.6. The ultimate axial load of column 

SN1 (e/d = 0.15, b/t = 25, s/d = 0.5), IN1 (e/d = 0.15, b/t = 30, s/d = 0.7) and 

LN1 (e/d = 0.30, b/t = 35, s/d = 0.7), which were constructed with 30 MPa concrete, are 

increased by 57%, 60% and 48%, respectively, when high strength concrete of 60 MPa is 

used instead. The moment at the peak load is also increased by 55% for columns SN1 and 

LN1 and 69% for column IN1. The average increase in the peak load and corresponding 

moment for all three columns with different e/d, b/t and s/d ratios are 55% and 57%, 

respectively.  
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6.4.5.2 Load versus Average Axial Strain and Moment versus Curvature Responses 

As expected, the behaviour of the PEC columns is greatly affected by the compressive 

strength of concrete for all three sets of analysis, as shown in Figure 6.18. The axial load 

versus average strain response for PEC columns with high strength concrete show steeper 

slopes in the initial portions of the curves due to the higher modulus of elasticity of high 

strength concrete. Columns SH1, IH1 and LH1 also demonstrate sharp post-peak strength 

declines as compared to columns SN1, IN1 and LN1, respectively. However, for the long 

columns (LN1 and LH1) the level of brittleness somewhat less affected by the concrete 

strength. This is because the brittle failures of the long columns are due to the effect of 

increased bending moment resulting from increased lateral displacements.  

 

The moment versus curvature plot shown in Figure 6.19 presents the ductile nature of the 

plastic hinge in columns SN1, IN1, and LN1 as compared to the columns SH1, IH1 and 

LH1, respectively. This effect gets less pronounced as the overall column slenderness 

increases.  

 

The axial load and moment capacities of PEC columns can be improved significantly by 

the use of high strength concrete. This is observed for a wide range of L/d, e/d and b/t 

ratios. However, the ductility of the column is observed to deteriorate significantly by the 

use of high strength concrete, which can be recovered to some extent by incorporating 

steel fibres in the concrete.  

 

6.4.5.3 Failure Mode 

The local flange buckling in column SN1 (e/d = 0.15, b/t = 25, s/d = 0.5) and 

IN1 (e/d = 0.15, b/t = 30, s/d = 0.7) occurred shortly after the crushing of concrete at a 

load of 0.99Pu , as indicated in Table 6.6. When high strength concrete is used in these 

columns—columns SH1 and IH1—local buckling is observed to be delayed significantly. 

The load corresponding to the first sign of local buckling in the flanges were 0.89Pu and 

0.94Pu, respectively, for columns SH1 and IH1. However, the concrete compressive 

strength did not affect initiation of local buckling in the flanges of the long column 
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(LH1), since the long column behaviour is governed by global bending. Both of the long 

columns (LN1 and LH1), which had e/d = 0.30, b/t = 35 and s/d = 0.7, experienced local 

buckling at 0.92Pu after reaching the peak axial load.  

 

6.5 Comparison between Numerical and Theoretical Load and 

Moment Capacities  

The theoretical interaction diagrams, as shown in Figure 6.20, for the three reference 

columns—SN1, IN1 and LH1—are calculated using the method proposed by Prickett and 

Driver (2006) (as described in Chapter 2). Two theoretical interaction diagrams are 

drawn, one using the effective steel area (Ase) and the other using the total cross-sectional 

area (As) of the steel plates. Although their tests indicated that the total steel area could be 

used conservatively, Prickett and Driver (2006) recommended using the effective steel 

area (to account for potential local buckling before failure) for design since the b/t ratios 

in the tests did not exceed 25. In Figure 6.20 the numerical moment versus bending 

moment curves are also plotted for each of the reference columns for various e/d ratios. 

The numerical load and moment capacities for these columns are compared with the 

theoretical capacities in Table 6.7. In this table the theoretical capacities are extracted 

from the location where the numerical load versus moment curve intersects the 

interaction diagram based on the effective steel area. For Set 1 (which includes the short 

columns with normal strength concrete), the ratio of the numerical-to-theoretical load and 

moment capacities varied from 1.02 to 1.05. For intermediate columns with normal 

strength concrete (i.e., Set 2), the ratio of the numerical-to-theoretical peak load ranged 

from 1.06 (e/d = 0.30) to 1.10 (e/d = 0.05), with an average value of 1.08. However, the 

ratio of the numerical-to-theoretical moment capacities for the intermediate column is 

around 1.15. For the long columns the numerical moment capacity is also observed to 

exceed the theoretical capacity with numerical-to-theoretical ratio ranging from 1.18 to 

1.36.  

 

The effects of concrete strength on the numerical-to-theoretical capacities are also 

studied, as given in Table 6.8. For all three sets shown in Table 6.8 the ratios between the 
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numerical and theoretical (based on Ase) capacities for high strength concrete PEC 

columns are higher (ranging from 1.08 to 1.28 with an average ratio of 1.16) than those 

observed in columns with normal strength concrete. Figure 6.21 also shows the effect of 

concrete strength on the columns included in the three sets of analyses.  

 

Using the total steel area in the calculation for the theoretical interaction diagrams is 

observed to reduce the differences between the theoretical and numerical capacities, 

especially for columns with high strength concrete (as shown in Figures 6.20 and 6.21). 

Although most of the parametric columns under axial compression and bending 

experienced local buckling after the peak load, the use of the effective steel area should 

be retained for design to account for the local buckling occurring before the peak load in 

PEC columns with the b/t ratio greater than 30 combined with the maximum allowable 

link spacing.  

 

6.6 Summary 

A comprehensive parametric analysis was performed to study the behaviour of PEC 

columns subjected to axial compression and bending about the strong axis. Four 

geometric and one material parameter were varied and their influences were 

demonstrated with respect to the peak axial load and corresponding moment, failure 

mode and overall column load–deformation responses. The important findings of the 

study presented in this chapter are summarized below. 

 

The axial capacity of a PEC column reduces as the overall slenderness ratio increases, 

particularly for columns with slender plates. The ductility of the normal strength concrete 

column reduces as the column gets slender. However, the level of brittleness at failure for 

high strength concrete PEC columns is not affected significantly by the overall column 

slenderness parameter.  

 

The presence of a higher bending moment (resulting from a high e/d ratio) reduces the 

column capacity significantly. The occurrence of local buckling is also affected by the e/d 
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ratio. The columns with lower e/d ratio experienced local flange buckling before or very 

shortly after the peak load.  

 

As the plate slenderness ratio increases, the axial capacity of the column reduces, as 

expected, with increased brittleness in the failure behaviour. These effects are more 

prominent in short columns with a larger link spacing. On the other hand, the brittle 

behaviour of long PEC columns is not affected by the b/t ratio. Thus, the advantage of 

using stockier flange plates diminishes as the column becomes slender.  

 

Varying the link spacing from 0.5d and 0.7d is found to have no significant effect on the 

capacity of the PEC column. Short and intermediate PEC columns with a flange b/t ratio 

of 35, when combined with the link spacing of 0.7d, experienced the most brittle and 

sudden failure among the parametric columns.  

 

The axial capacity of the PEC column, with a variety of L/d, e/d, b/t and s/d ratios, is 

greatly (average increase is 55%) improved by the use of high strength (60 MPa) concrete 

instead of normal strength (30 MPa) concrete. However, the load–deformation response 

of high strength concrete PEC columns exhibited brittle failure as compared to the 

normal strength concrete columns.  

 

The numerical capacities of 12 parametric columns were compared with the theoretical 

cross-sectional capacities and were observed to exceed the theoretical capacities in all of 

the 12 columns. For PEC columns with normal strength concrete, the numerical axial 

capacity exceeded the theoretical value by 2% (column SN1) to 10% (column IN3). For 

high strength concrete columns, the numerical capacity exceeded the theoretical capacity 

by 8% (column LH1) to 18% (column LH3). These numbers include the effect of the 

range of L/d, e/d, b/t and s/d ratios implemented in this study. Therefore, the theoretical 

interaction diagram based on the method used by Prickett and Driver (2006) for short 

PEC columns can be used for columns with L > 5d and the wide range of b/t and s/d 

ratios applied in this study.  
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Table 6.1 Details of the PEC Columns for Parametric Study 

Column L/d e/d b/t s/d Global fcu εcu Ec 
designation     imperfection    

     (mm) (MPa) (µε) (MPa) 
  SN1(a) 5 0.15 25 0.5 0.0 30 1900 25000 

SN2 5 0.15 30 0.7 0.0 30 1900 25000 
SN3 5 0.05 25 0.5 0.0 30 1900 25000 
SN4 5 0.3 25 0.5 0.0 30 1900 25000 
SN5 5 0.15 30 0.5 0.0 30 1900 25000 
SN6 5 0.15 35 0.5 0.0 30 1900 25000 
SN7 5 0.15 25 0.7 0.0 30 1900 25000 
SN8 5 0.15 35 0.7 0.0 30 1900 25000 
SH1 5 0.15 25 0.5 0.0 60 2500 32600 
SH2 5 0.3 35 0.7 0.0 60 2500 32600 

  IN1(a) 10 0.15 30 0.7 0.0 30 1900 25000 
IN2 10 0.15 25 0.5 0.0 30 1900 25000 
IN3 10 0.05 30 0.7 0.0 30 1900 25000 
IN4 10 0.3 30 0.7 0.0 30 1900 25000 
IN5 10 0.15 25 0.7 0.0 30 1900 25000 
IN6 10 0.15 35 0.7 0.0 30 1900 25000 
IN7 10 0.15 30 0.5 0.0 30 1900 25000 
IN8 10 0.15 35 0.5 0.0 30 1900 25000 
IH1 10 0.15 30 0.7 0.0 60 2500 32600 
IH2 10 0.3 35 0.7 0.0 60 2500 32600 
LN1 15 0.3 35 0.7 3.4 30 1900 25000 
LN2 15 0.15 25 0.5 3.4 30 1900 25000 
LN3 15 0.15 30 0.7 3.4 30 1900 25000 

  LH1(a) 15 0.3 35 0.7 3.4 60 2500 32600 
LH2 15 0.3 25 0.5 3.4 60 2500 32600 
LH3 15 0.05 35 0.7 3.4 60 2500 32600 
LH4 15 0.15 35 0.7 3.4 60 2500 32600 
LH5 15 0.3 25 0.7 3.4 60 2500 32600 
LH6 15 0.3 30 0.7 3.4 60 2500 32600 
LH7 15 0.3 35 0.5 3.4 60 2500 32600 
LH8 15 0.3 30 0.5 3.4 60 2500 32600 

 (a)Reference column 
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Table 6.2 Effect of Overall Column Slenderness (L/d) Ratio        

Set Column properties Magnitude of output parameters at  
peak load point 

Percent difference

 

Column 
designa- 

tion 
L/d     M  P  Me/d b/t s/d fcu Pu u εa,u U3,u u u 

Occurrence of local 
buckling 

            (MPa) (kN)      (kN-m) (µε) (mm) (%) (%)
    SN1(a) 5 0.15 25 0.5 30 6428 458 1382 3.7 0 0 after peak at 0.99Pu 

Set 1 IN2 10 0.15 25 0.5 30 6240 498 1213 12.3 -3 9 after peak at 0.97Pu 
  LN2 15 0.15 25 0.5 30 5922 601 1200 30.6 -8 31 after peak at 0.96Pu 
  SN2 5 0.15           30 0.7 30 5892 421 1370 3.9 0 0 at peak

Set 2    IN1(a) 10 0.15 30 0.7 30 5724 460 1202 12.9 -3 9 after peak at 0.99Pu 
  LN3 15 0.15 30 0.7 30 5410 551 1190 30.9 -8 31 after peak at 0.99Pu 
  SH2 5 0.30 35 0.7 60 6701 945 1184 6.0 0 0 after peak at 0.88Pu 

Set 3 IH2 10 0.30 35 0.7 60 6263 988 1008 22.8 -7 5 after peak at 0.91Pu 
    LH1(a) 15 0.30 35 0.7 60 5521 1036 904 49.3 -18 10 after peak at 0.92Pu 
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Table 6.3 Effect of Load Eccentricity (e/d) Ratio           

Set Column properties Magnitude of output parameters at 
peak load point 

Percent difference Occurrence of local 
buckling 

 

Column 
designa- 

tion 
L/d     M  P  Me/d b/t s/d fcu Pu u εa,u U3,u u u  

            (MPa) (kN)      (kN-m) (µε) (mm) (%) (%)
  SN3 5 0.05 25 0.5 30 7931 188 1547 1.2 0 0 after peak at 0.99Pu 

Set 1   SN1(a) 5 0.15 25 0.5 30 6428 458 1382 3.7 -19 144 after peak at 0.99Pu 
  SN4 5 0.30 25 0.5 30 4967 700 1334 5.8 -37 272 after peak at 0.99Pu 
  IN3 10 0.05 30 0.7 30 7268 195 1503 4.4 0 0 before peak at 0.97Pu 

Set 2    IN1(a) 10 0.15 30 0.7 30 5724 460 1202 12.9 -21 136 after peak at 0.99Pu 
  IN4  10 0.30 30 0.7 30 4287 678 1195 23.1 -41 247 after peak at 0.99Pu 
  LH3 15 0.05 35 0.7 60 10833 462 1546 16.8 0 0 before peak at 0.93Pu 

Set 3 LH4 15 0.15 35 0.7 60 8116 880 1288 37.6 -25 91 after peak at 0.97Pu 
    LH1(a) 15 0.30 35 0.7 60 5521 1036 904 49.3 -49 124 after peak at 0.92Pu 
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Table 6.4 Effect of Plate Slenderness (b/t) Ratio with Different s/d Ratios   

Set Column properties Magnitude of output parameters at 
peak load point 

Percent difference 

 

Column 
designa- 

tion 
L/d     M  P  Me/d b/t s/d fcu Pu u εa,u U3,u u u 

Occurrence of local 
buckling 

            (MPa) (kN)      
  

(kN-m) (µε) (mm) (%) (%)
  SN1(a) 5 0.15 25 0.5 30 6428 458 1382 3.7 0 0 after peak at 0.99Pu 

SN5   
   
   

5 0.15 30 0.5 30 5917 422 1371 3.8 -8 -8 after peak at 0.99Pu 
SN6 5 0.15 35 0.5 30 5548 395 1361 3.9 -14 -14 after peak at 0.99Pu 
SN7 5 0.15 25 0.7 30 6406 456 1383 3.7 0 0 after peak at 0.99Pu 
SN2            

   
   

5 0.15 30 0.7 30 5892 421 1370 3.9 -8 -8 at peak

 

SN8 5 0.15 35 0.7 30 5411 380 1119 2.7 -16 -17 before peak at 0.99Pu 
IN2 10 0.15 25 0.5 30 6240 498 1213 12.3 0 0 after peak at 0.97Pu 
IN7        

   
   

10 0.15 30 0.5 30 5743 462 1203 12.9 -8 -7 after peak at 0.98Pu 
IN8 10 0.15 35 0.5 30 5384 435 1193 13.3 -14 -13 after peak at 0.98Pu 
IN5 10 0.15 25 0.7 30 6224 497 1214 12.4 0 0 after peak at 0.98Pu 

  IN1(a) 10  
   
   

0.15 30 0.7 30 5724 460 1202 12.9 -8 -7 after peak at 0.99Pu 

Set 2  

IN6 10 0.15 35 0.7 30 5327 420 1100 11.4 -14 -15 before peak at 0.99Pu 
LH2 15 0.30 25 0.5 60 6200 1154 971 47.7 0 0 after peak at 0.88Pu 
LH8   

   
   

15 0.30 30 0.5 60 5814 1098 958 50.5 -6 -5 after peak at 0.88Pu 
LH7 15 0.30 35 0.5 60 5548 1041 904 49.3 -11 -10 after peak at 0.92Pu 
LH5 15 0.30 25 0.7 60 6200 1147 959 46.6 0 0 after peak at 0.87Pu 
LH6   

  
15 0.30 30 0.7 60 5797 1082 929 48.2 -7 -6 after peak at 0.87Pu 

Set 3 

  LH1(a) 15 0.30 35 0.7 60 5521 1036 904 49.3 -11 -10 after peak at 0.92Pu 

Set 1 
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(a)Reference column
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Table 6.5 Effect of Link Spacing-to-Depth (s/d) Ratio with Different b/t Ratios     

Set Column properties Magnitude of output parameters at 
peak load point 

Percent difference

 

Column 
designa- 

tion 
L/d     M  P  Me/d b/t s/d fcu Pu u εa,u U3,u u u 

Occurrence of local 
buckling 

            (MPa) (kN)       
   

(kN-m) (µε) (mm) (%) (%)
  SN1(a) 5 0.15 25 0.5 30 6428 458 1382 3.7 0 0 after peak at 0.99Pu 

SN7    
    

5 0.15 25 0.7 30 6406 456 1383 3.7 0 0 after peak at 0.99Pu 
SN5 5 0.15 30 0.5 30 5917 422 1371 3.8 0 0 after peak at 0.99Pu 
SN2           

    
5 0.15 30 0.7 30 5892 421 1370 3.9 0 0 at peak 

SN6 5 0.15 35 0.5 30 5548 395 1361 3.9 0 0 after peak at 0.99Pu 

 

SN8    
    

5 0.15 35 0.7 30 5411 380 1119 2.7 -2 -4 before peak at 0.99Pu 
IN2 10 0.15 25 0.5 30 6240 498 1213 12.3 0 0 after peak at 0.97Pu 
IN5    

        
10 0.15 25 0.7 30 6224 497 1214 12.4 0 0 after peak at 0.98Pu 

IN7 10 0.15 30 0.5 30 5743 462 1203 12.9 0 0 after peak at 0.98Pu 
  IN1(a) 10   

    
0.15 30 0.7 30 5724 460 1202 12.9 0 0 after peak at 0.99Pu 

IN8 10 0.15 35 0.5 30 5384 435 1193 13.3 0 0 after peak at 0.98Pu 

Set 2  

IN6    
    

10 0.15 35 0.7 30 5327 420 1100 11.4 -1 -3 before peak at 0.99Pu 
LH2 15 0.30 25 0.5 60 6200 1154 971 47.7 0 0 after peak at 0.87Pu 
LH5    

    
15 0.30 25 0.7 60 6200 1147 959 46.6 0 -1 after peak at 0.87Pu 

LH8 15 0.30 30 0.5 60 5814 1098 958 50.5 0 0 after peak at 0.88Pu 
LH6    

    
15 0.30 30 0.7 60 5797 1082 929 48.2 0 -1 after peak at 0.87Pu 

LH7 15 0.30 35 0.5 60 5548 1041 904 49.3 0 0 after peak at 0.92Pu 

Set 3 

  LH1(a) 15   0.30 35 0.7 60 5521 1036 904 49.3 0 0 after peak at 0.92Pu 

Set 1 

168

(a)Reference column 
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Table 6.6 Effect of Concrete Compressive Strength           
Set Column properties Magnitude of output parameters at 

peak load point 
Percent difference

 

Column 
designa- 

tion 
L/d     M  P  Me/d b/t s/d fcu Pu u εa,u U3,u u u 

Occurrence of local 
buckling 

            (MPa) (kN)      
    

(kN-m) (µε) (mm) (%) (%)
  SN1(a) 5 0.15 25 0.5 30 6428 458 1382 3.7 0 0 after peak at 0.99Pu Set 1 

SH1     
    

5 0.15 25 0.5 60 10100 712 1538 2.9 57 55 after peak at 0.89Pu 
  IN1(a) 10 0.15 30 0.7 30 5724 460 1202 12.9 0 0 after peak at 0.99Pu Set 2 

IH1     
     

10 0.15 30 0.7 60 9160 776 1430 17.3 60 69 after peak at 0.94Pu 
LN1 15 0.3 35 0.7 30 3736 667 926 40.2 0 0 after peak at 0.92Pu Set 3 

  LH1(a) 15    0.3 35 0.7 60 5521 1036 904 49.3 48 55 after peak at 0.92Pu 169 (a)Reference column 
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Table 6.7 Comparison of Numerical and Theoretical Capacities for the Reference 
Parametric Columns with Various e/d Ratios 

Set Column e/d Numerical Theoretical  Numerical/Theoretical
 designa-  Load Moment Load Moment  Load Moment 
  tion   (kN) (kN-m) (kN) (kN-m)    
 SN3 0.05 7931 188 7700 180  1.03 1.04 

Set 1   SN1(a) 0.15 6428 458 6300 435  1.02 1.05 
  SN4 0.30 4967 700  4850 675   1.02 1.04 
  IN3 0.05 7268 195 6630 170  1.10 1.15 

Set 2   IN1(a) 0.15 5724 460 5250 400  1.09 1.15 
  IN4 0.30 4287 678  4050 595   1.06 1.14 
 LH3 0.05 10833 462 9200 340  1.18 1.36 

Set 3 LH4 0.15 8116 880 7000 660  1.16 1.33 
    LH1(a) 0.30 5521 1036  5100 875   1.08 1.18 

(a)Reference column 
 
 
 
Table 6.8 Comparison of Numerical and Theoretical Capacities for the Reference 
Columns with Variable Concrete Strength 

Set Column e/d Numerical   Theoretical   Numerical/Theoretical
 designa-  Load Moment Load Moment  Load Moment 
  tion   (kN) (kN-m)  (kN) (kN-m)       

  SN1(a) 0.15 6428 458 6300 435  1.02 1.05 Set 1 
SH1 0.15 10100 712  9130 610   1.11 1.17 

  IN1(a) 0.15 5724 460 5250 400  1.09 1.15 Set 2 
IH1 0.15 9160 776  8200 605   1.12 1.28 
LN1 0.30 3736 667 3600 625  1.04 1.07 Set 3 

  LH1(a) 0.30 5521 1036  5100 875   1.08 1.18 
(a)Reference column 
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Figure 6.1 Link Arrangements in Short Parametric PEC Columns with:  

(a) s = 0.5d and (b) s = 0.7d 

 171



11 @ 315mm 
= 3465mm

2 @258.75m

2 @258.75mm
=517.5mm 

L = 4500mm  

 Rigid plate 

s = 225mm

L = 4500 mm 
(20 @ 225mm)  

 Rigid plate 

(a) (b) 

Figure 6.2 Link Arrangements in Intermediate Parametric PEC Columns with: 
(a) s = 0.5d and (b) s = 0.7d
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Figure 6.3 Link Arrangements in Long Parametric PEC Columns with: 

(a) s = 0.5d and (b) s = 0.7d 
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Figure 6.5 Effect of L/d Ratio on Load versus Average Axial Strain Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3 
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Figure 6.6 Effect of L/d Ratio on Load versus Lateral Displacement Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3
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Figure 6.7 Effect of L/d Ratio on Load versus Moment Curve, (a) Set 1, (b) Set 2  
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Figure 6.8 Effect of e/d Ratio on Load versus Average Axial Strain Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3 
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igure 6.9 Effect of e/d Ratio on Load versus Lateral Displacement Curve, (a) Set 1, 
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Figure 6.10 Effect of e/d Ratio on Moment versus Lateral Displacement Curve, 

(a) Set 1, (b) Set 2 and (c) Set 3 
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Figure 6.11 Effect of e/d Ratio on Moment versus Curvature Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3
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Figure 6.12 Effect of b/t ratio on Load versus Average Axial Strain Response for 
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Figure 6.13 Effect of b/t ratio on Load versus Average Axial Strain Response for 

 
 

Intermediate PEC Column (Analysis Set 2), (a) s = 0.5d and (b) s = 0.7d 
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Figure 6.14 Effect of b/t ratio on Load versus Average Axial Strain Response for 
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Figure 6.15 Effect of s/d Ratio on Load versus Average Axial Strain Response for 

Short PEC Column (Analysis Set 1), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35
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Figure 6.16 Effect of s/d Ratio on Load versus Average Axial Strain Response for 

Intermediate PEC Column (Analysis Set 2), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 
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Figure 6.17 Effect of s/d Ratio on Load versus Average Axial Strain Response for 

Long PEC Column (Analysis Set 2), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 

 

 187



0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000

Average axial s train (µε)

Lo
ad

 (k
N

)

 30 MPa (SN1)
 60 MPa (SH1)

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000
Average axial s train (µε)

Lo
ad

 (k
N

)

 30 MPa (IN1)

 60 MPa (IH1)

0

2000

4000

6000

8000

0 500 1000 1500 2000 2500 3000
Average axial s train (µε)

Lo
ad

 (k
N

)

 30 MPa (LN1)

 60 MPa (LH1)

(a) 

(b) 

(c) 

Figure 6.18 Effect of Concrete Compressive Strength on Load versus Average Axial 

Strain Curve, (a) Set 1, (b) Set 2 and (c) Set 3 
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Figure 6.19 Effect of Concrete Compressive Strength on Moment versus Curvature 

Curve, (a) Set 1, (b) Set 2 and (c) Set 3 
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Interaction Diagram for Column SN1
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Figure 6.20 Load–Moment Interaction Diagrams,  

(a) Column SN1, (b) Column IN1 and (c) Column LH1 
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Figure 6.21 Effect of Concrete Compressive Strength on the 

Theoretical-to-Numerical Ratios of the Ultimate Capacities, (a) Short Column, 

(b) Intermediate Column and (c) Long Column
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Figure 6.21 (cont.) Effect of Concrete Compressive Strength on the 

Theoretical-to-Numerical Ratios of the Ultimate Capacities, (a) Short Column, 

(b) Intermediate Column and (c) Long Column 
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary 

Extensive numerical investigations were conducted to study the behaviour of partially 

encased composite (PEC) columns, which consist of a thin-walled welded steel shape 

with concrete placed between the flanges. Transverse links are welded between the 

flanges at regular intervals to improve the resistance to local instability of the thin steel 

flange. Previously, only limited research had been performed to develop a finite element 

model to study the behaviour of this new composite system and only axial loads were 

considered. In that work, significant challenges were identified in simulating the local 

instability of the thin flanges and the triaxial behaviour of the partially confined concrete 

in the column. This study was able to overcome these difficulties in the numerical 

simulation of the behaviour of PEC columns using the commercial finite element 

software ABAQUS.  

 

The explicit module of ABAQUS finite element code was used to develop the numerical 

model for PEC columns. A dynamic explicit solution strategy was implemented in the 

numerical model to trace a stable post-peak response in the load–deformation curve. The 

steel–concrete interface in the composite column was simulated using a contact pair 

algorithm. To represent the concrete material behaviour under partial confinement, the 

damage plasticity model in ABAQUS was implemented. The performance of this model 

in representing the behaviour of concrete under various levels of lateral confinement was 

studied.  

 

A small segment of the composite column consisting of one-fourth of the column cross-

section was modelled initially to study the performance of the concrete material model 

and contact algorithm in modelling the steel–concrete interface. This model was then 

extended to establish a complete model for the PEC columns including the entire cross-
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section, which was further used to simulate the column behaviour under the combined 

action of axial compression and flexure.  

 

To validate the model, simulations were conducted for PEC column tests, reported in the 

literature, with normal strength concrete and high strength concrete with or without steel 

fibres. The short PEC columns constructed with normal strength concrete varied in cross-

sectional size from 300 mm × 300 mm to 600 mm × 600 mm, including a variety of link 

spacings and diameters, and a range of flange plate slenderness ratios. Some of the 

normal strength concrete columns had additional longitudinal reinforcing bars and ties, 

which were also included in the numerical model. High strength concrete column 

specimens that were modeled are 400 mm × 400 mm in cross-section, with different link 

spacings and diameters. The loading conditions in both the normal strength and high 

strength concrete PEC columns ranged from concentric to eccentric loading with strong 

and weak axis bending and with variable load eccentricities. Furthermore, numerical 

analyses on three 9 m long PEC test columns with a 450 mm × 450 mm cross-section 

were performed to investigate the ability of the finite element model to reproduce the 

global buckling behaviour. The numerical model for long columns included the global 

imperfect shape of the test specimens resulting from the fabrication process. However, 

the local flange imperfections were excluded from the numerical model for all test 

specimens after a study had been conducted that demonstrated that the effect of local 

imperfections on the behaviour of these columns was very small. The effect of residual 

stress on the overall column behaviour was also studied for a series of test specimens and 

found to be negligible. The finite element model was also used to predict the effect of 

different link spacings on the behaviour of the PEC columns as well as determining the 

individual contributions of the steel and concrete to the total load carrying capacity. 

 

A parametric study was conducted using the numerical model to investigate the effect of 

a full range of parameters on eccentrically loaded PEC columns subjected to strong axis 

bending. The parameters that were varied include the overall column slenderness ratio 

(L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), plate slenderness ratio 

(b/t) and concrete compressive strength (fcu). The overall column slenderness (L/d) ratio 
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was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were 

varied within each case of L/d ratio. The cross-section of the parametric columns was 

selected as 450 mm × 450 mm, which can be considered a typical size for a column used 

in medium to high–rise buildings. The effects of the selected parameters on the behaviour 

of PEC columns were studied with respect to the failure mode, the peak axial load, the 

axial load versus average axial strain curve, the axial load versus lateral displacement 

curve, the moment versus lateral displacement curve, the moment versus curvature curve 

and the load–moment interaction diagram. The load and moment capacities of the 

parametric columns obtained numerically were compared with theoretical capacities 

calculated based on the method used by Prickett and Driver (2006). 

 

7.2 Conclusions 

7.2.1 Performance of the Finite Element Model  

In general the finite element models for PEC columns developed in this study were able 

to simulate the full behavioural histories of a variety of PEC columns tested under 

concentric and eccentric loading, with very good accuracy. The interaction between the 

steel and concrete and their separation at the common interface because of the local 

instability of the flange was successfully represented in the finite element analyses of the 

test specimens using the small, extended and full models developed herein. The 

numerical models also provided good representations of the peak load, axial deformation 

at the peak load and load versus axial strain curve, including the post-peak behaviour of 

the test columns. The small model overestimated the strain near and after the peak in the 

load versus axial strain curves of the test columns because the model only included a 

small region of the column where failure was forced to occur, whereas the test specimen 

strains were averaged over the length of the column. The extended and full models were 

able to represent the experimental strains near and after the peak with very good 

accuracy.  

 

The full model, which is a complete model for PEC columns, was used to reproduce the 

test results of 12 normal strength, seven high strength and two steel fibre reinforced high 
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strength concrete PEC columns. The average experimental-to-numerical ratios of the 

peak load obtained were: 1.01, 0.99 and 1.08, respectively, for normal strength, high 

strength and steel fibre reinforced high strength concrete PEC columns with standard 

deviations all less than 0.05. Moreover, the numerical load versus axial strain responses 

for the test columns were in very good agreement with the experimental responses with 

only a few exceptions. Furthermore, the load versus moment curves obtained from the 

numerical analyses of the eccentrically loaded test columns represented the experimental 

curves with excellent accuracy, for strong axis bending as well as weak axis bending. 

 

The full model also represented the axial capacity of the three long PEC test specimens 

(L/d = 20) with good accuracy with an average experimental-to-numerical ratio of 0.98 

(excluding the specimen with premature failure). However, the numerical model 

overestimated the experimental strains around the peak region of the load versus axial 

strain curve.  

 

Studies regarding the sensitivity of the column capacity to local flange imperfections and 

residual stresses revealed that neither had significant effects on the column behaviour, 

and therefore they were omitted from subsequent investigations.  

 

7.2.2 Parametric Study  

7.2.2.1 Effect of Overall Column Slenderness Ratio 

For PEC columns constructed with normal strength concrete, higher L/d ratios resulted in 

brittle failure of the column. This behaviour was observed to be insignificantly affected 

by the plate slenderness ratio and link spacing. For PEC columns with high strength 

concrete, the L/d ratio seemed to have no significant effect on the level of brittleness of 

the failure mode of the column.  

 

The axial load capacity of the normal strength concrete short PEC columns was reduced 

by 3% and 8%, when the L/d ratio was increased from 5 to 10 and 15, respectively. The 

change in the flange plate slenderness ratio from 25 to 30, along with the change in the 
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link spacing from 0.5d to 0.7d, did not affect the percent reduction in capacity. On the 

other hand, the use of high strength concrete (60 MPa) instead of normal strength 

concrete (30 MPa) along with b/t = 35 and higher eccentricity resulted in 7% and 18% 

reductions in the axial capacity of the short column, for L/d ratio of 10 and 15, 

respectively. 

 

7.2.2.2 Effect of Load Eccentricity-to-Depth Ratio 

The ratio of the initial load eccentricity to the overall depth of the column cross-section 

was observed to increase the lateral displacement of the columns significantly and was 

more pronounced for columns with L/d ratios greater than 5. The normal strength 

concrete PEC columns (with L/d ratios of 5 and 10) demonstrated a flatter peak and 

gradual post-peak strength decline in the load versus axial strain responses as the e/d ratio 

increases. On the other hand, the sharp decline in the post-peak region of the load versus 

axial strain response of the long reference column (which was constructed with high 

strength concrete and slender plates) was not affected by the e/d ratio.  

 

The occurrence of local buckling in PEC columns was not affected much by increasing 

the e/d ratio from 0.15 to 0.30. However, an e/d ratio of 0.05, which is the accidental 

eccentricity case, causes local buckling before the peak load for PEC columns with 

slender plates (b/t = 30 and 35) and larger link spacing (s = 0.7d). The use of normal 

strength or high strength concrete does not affect this behaviour significantly. 

 

The peak axial load was affected significantly by the e/d ratio. The average reduction in 

the axial capacity was 22% and 42% for e/d ratios of 0.15 and 0.30, respectively, with 

respect to the capacity with e/d = 0.05. These results include the effects of various L/d, 

b/t and s/d ratios selected for the parametric study and is also applicable for normal 

strength as well as high strength concrete PEC columns.  
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7.2.2.3 Effect of Flange Slenderness Ratio and Link Spacing 

The parametric study was performed for flange slenderness ratios of 25, 30 and 35 in 

conjunction with the two values of link spacing: 0.5d and 0.7d. For all combinations of 

L/d, e/d and links spacing as well as concrete strength, the ductility of the PEC column 

reduces as the flange slenderness ratio increases. This effect is more prominent in short 

columns with a larger link spacing. However, the brittle failure behaviour of long PEC 

columns is not significantly affected by the b/t ratio.  

 

The axial capacity of the PEC column with stockier flanges (b/t = 25) was found to be 

reduced by 6 to 8% (average of 7.5%) when the flange b/t ratio was changed to 30. 

Again, increasing the b/t ratio to 35 resulted in 11 to 16% reductions, with an average 

value of 13%, in the capacity corresponding to b/t = 25.  

 

The axial capacity of the PEC column was observed to be nearly unaffected by the range 

of link spacings selected in the parametric study. However, the load versus axial strain 

curves for PEC columns demonstrate a more ductile response for lower values of link 

spacing. This effect is prominent in short columns with slender flanges and diminishes as 

the overall column slenderness increases.  

 

7.2.2.4 Effect of Concrete Compressive Strength 

The use of high strength (60 MPa) concrete in PEC column was observed to improve the 

capacity significantly, as expected, which was observed for a variety of PEC columns 

with the selected ranges of L/d, e/d, b/t and s/d ratios. The average increase in the axial 

capacity of the PEC column was found to be 55%, when the normal strength concrete 

with a nominal strength of 30 MPa is replaced by high strength concrete with a nominal 

strength of 60 MPa. However, the use of high strength concrete reduced the ductility of 

the failure mode of PEC columns, which can be improved somewhat by the use of steel 

fibres in the concrete. 
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7.2.2.5 Performance of the Theoretical Interaction Diagram 

The theoretical interaction diagram based on the method used by Prickett and Driver 

(2006) for short PEC columns was found to provide accurate predictions of the numerical 

capacities of PEC columns with normal strength concrete and conservative predictions 

for PEC columns with high strength concrete.  The method used to construct the 

theoretical interaction diagrams is similar to that frequently used by designers for 

reinforced concrete columns. Therefore, the use of the theoretical interaction diagram for 

PEC columns should be suitable for the wide range of L/d, b/t and s/d ratios applied in 

this study and for columns with normal strength concrete as well as high strength 

concrete, although additional comparisons with physical tests would be desirable.  

 

7.3 Recommendations for Future Research 

The finite element model developed herein was verified for monotonic loading conditions 

only. However, in high-rise structures when these columns are constructed as a part of a 

lateral load resisting systems, cyclic bending moments will occur due to wind and 

earthquake loading. A limited number of tests have been performed to date on normal 

strength concrete PEC columns to address the effect of cyclic bending moment. 

Therefore, large-scale experimental investigations are required to address the effect of 

high performance concrete in PEC columns subjected to cyclic loading and to validate 

the finite element model for PEC columns developed in this study against these test 

results.  

 

The accuracy of the design equation in CSA S16-01 for PEC columns with an L/d ratio 

greater than 5 has not been completely verified because of the lack of sufficient 

experimental investigations. The current study provided some information to this end. 

However, only three long columns tests were available to validate the model for L/d 

ratios greater than 5. Moreover, no experimental investigations have been performed to 

address the effect of using high performance concrete in PEC columns with L/d ratios 

greater than 5. Experimental investigations are therefore needed on PEC columns with 
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L/d ratios greater than 5 with normal strength and high strength concrete, the results of 

which will help to support the findings of the parametric study performed herein. 

 

The level of concrete confinement in these columns should be more systematically 

quantified and a study should be performed to observe the effect of link spacing and 

loading conditions on the confining pressure of the concrete. Thereby, the concrete 

material model can be modified to capture the axial strains more accurately for the 

maximum level of confining pressure that can occur in a PEC column. Moreover, in the 

numerical simulation of PEC columns the additional reinforcement bars should be 

modelled using beam elements instead of the truss elements used in the current study. 

This may improve the ability of the numerical model to capture the enhanced concrete 

confinement because of the representation of the flexural stiffness of the bars.  

 

A similar parametric study to the one conducted herein should be performed on PEC 

columns subjected to weak axis bending and biaxial bending to further extend the range 

of application of these columns in medium to high-rise buildings. In addition, the effects 

of cyclic bending moment with variable geometric and material properties need to be 

addressed. Finally, design guidelines should be proposed to include the effect of cyclic 

loading and high performance concrete in PEC columns.  
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APPENDIX 
 
 

The appendix presents the load versus longitudinal strain curves at the buckled flange for 

all 31 columns used for the parametric study as well as the influences of each variable 

parameter on the load versus average axial strain, load versus lateral displacement, 

moment versus lateral displacement, load versus moment and moment versus curvature 

responses. Some figures from Chapter 6 have been repeated here in order to provide a 

complete set of graphs in one location for convenience. 

 

The appendix is structured as follows: 

Figures A.x: Load versus Axial Strain at the Locally Buckled Flange of the Parametric 

Columns 

Figures B.x: Effect of L/d Ratio 

Figures C.x: Effect of e/d Ratio 

Figures D.x: Effect of b/t ratio 

Figures E.x: Effect of s/d Ratio 

Figures F.x: Effect of Concrete Compressive Strength 
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Figure A.1 Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns 
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns 
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 
Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns  
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Figure A.1 (cont.) Load versus Axial Strain at the Locally Buckled Flange of the 

Parametric Columns
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Figure B.1 Effect of L/d Ratio on Load versus Average Axial Strain Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3 
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Figure B.2 Effect of L/d Ratio on Load versus Lateral Displacement Curve, 

(a) Set 1, (b) Set 2 and (c) Set 3
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Figure B.3 Effect of L/d Ratio on Moment versus Lateral Displacement Curve, 

(a) Set 1, (b) Set 2 and (c) Set 3
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Figure B.4 Effect of L/d Ratio on Load versus Moment Curve, (a) Set 1, (b) Set 2 

and (c) Set 3
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Figure C.1 Effect of e/d Ratio on Load versus Average Axial Strain Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3
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Figure C.3 Effect of e/d Ratio on Moment versus Lateral Displacement Curve, 
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Figure C.4 Effect of e/d Ratio on Load versus Moment Curve, (a) Set 1, (b) Set 2 and 
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Figure C.5 Effect of e/d Ratio on Moment versus Curvature Curve, (a) Set 1, 

(b) Set 2 and (c) Set 3
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Figure D.1 Effect of b/t ratio on Load versus Average Axial Strain Curve for Short 

PEC Column (Analysis Set 1), (a) s = 0.5d and (b) s = 0.7d 
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Figure D.2 Effect of b/t ratio on Load versus Average Axial Strain Curve for 
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Intermediate PEC Column (Analysis Set 2), (a) s = 0.5d and (b) s = 0.7d
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Figure D.3 Effect of b/t ratio on Load versus Average Axial Strain Curve for Long 

0

2000

4000

6000

8000

0 500 1000 1500 2000 2500

Average Axial Strain (µε)

Lo
ad

 (k
N

)

b/t = 25 (LH2)
b/t = 30 (LH8)
b/t = 35 (LH7)

0

2000

4000

6000

8000

0 500 1000 1500 2000 2500

Average Axial Strain (µε)

Lo
ad

 (k
N

)

b/t = 25 (LH5)

b/t = 30 (LH6)

b/t = 35 (LH1)

(a) 

(b) 

PEC Column (Analysis Set 3), (a) s = 0.5d and (b) s = 0.7d

 232



 
 

0

100

200

300

400

500

0 5 10 15 20
Lateral displacement (mm)

M
om

en
t (

kN
-m

)

b/t = 25 (SN1)
b/t = 30 (SN5)
b/t = 35 (SN6)

0

100

200

300

400

500

0 5 10 15 20
Lateral displacement (mm)

M
om

en
t (

kN
-m

)

b/t = 25 (SN7)
b/t = 30 (SN2)
b/t = 35 (SN8)

(a) 

(b) 

 
Figure D.4 Effect of b/t ratio on Moment versus Lateral Displacement Curve for 

Short PEC Column (Analysis Set 1), (a) s = 0.5d and (b) s = 0.7d
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Figure D.5 Effect of b/t ratio on Moment versus Lateral Displacement Curve for 
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Figure D.6 Effect of b/t ratio on Moment versus Lateral Displacement Curve for 

Intermediate PEC Column (Analysis Set 2), (a) s = 0.5d and (b) s = 0.7d
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Figure D.7 Effect of b/t ratio on Moment versus Curvature Curve for Short PEC 

Column (Analysis Set 1), (a) s = 0.5d and (b) s = 0.7d
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Figure D.8 Effect of b/t ratio on Moment versus Curvature Curve for Intermediate 
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Figure D.9 Effect of b/t ratio on Moment versus Curvature Curve for Long PEC 
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Figure E.1 Effect of s/d Ratio on Load versus Average Axial Strain Response for 

Short PEC Column (Analysis Set 1), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35
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Figure E.2 Effect of s/d Ratio on Load versus Average Axial Strain Response for 
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Figure E.3 Effect of s/d Ratio on Load versus Average Axial Strain Response for 
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Figure E.4 Effect of s/d Ratio on Moment versus Lateral Displacement Curve for 

Short PEC Column (Analysis Set 1), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 
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Intermediate PEC Column (Analysis Set 2), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 
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Figure E.5 Effect of s/d Ratio on Moment versus Lateral Displacement Curve for 
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Figure E.6 Effect of s/d Ratio on Moment versus Lateral Displacement Curve for 

Long PEC Column (Analysis Set 3), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 
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Figure E.7 Effect of s/d Ratio on Moment versus Curvature Curve for Short PEC 

Column (Analysis Set 1), (a) b/t = 25, (b) b/t = 30 and (c) b/t = 35 
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Figure E.8 Effect of s/d Ratio on Moment versus Curvature Curve for Intermediate 
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Figure E.9 Effect of s/d Ratio on Moment versus Curvature Curve for Long PEC 
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Figure F.1 Effect of Concrete Compressive Strength on Load versus Average Axial 
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Figure F.2 Effect of Concrete Compressive Strength on Load versus Lateral 

Displacement Curve, (a) Set 1, (b) Set 2 and (c) Set 3 
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Figure F.3 Effect of Concrete Compressive Strength on Moment versus Lateral 

Displacement Curve, (a) Set 1, (b) Set 2 and (c) Set 3 
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Figure F.4 Effect o ersus Curvature 

Curve, (a) Set 1, (b) Set 2 and (c) Set 3 
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