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Abstract

In quantum mechanics, the Schrödinger equation is the staple for investi-

gating and understanding quantum phenomena. Adjunct with the Schrödinger

equation, the mathematical and physical laboratory that are anharmonic os-

cillator potentials provide a powerful tool for modelling complex quantum

systems. In this work, we successfully apply the the double exponential Sinc-

collocation method (DESCM) to the classical anharmonic potential for the

numerical evaluation of energy eigenvalues. The DESCM was able to achieve

unprecedented accuracy even in the case of multiple wells. This great suc-

cess has lead us to our current research endeavours. In our current work,

we wish to adapt the DESCM to the rational-anharmonic potential as well

as the Coulombic-anharmonic potential. The rational-anharmonic potential

has several complex singularities which impede the convergence of the DE-

SCM. As a result, we investigate conformal mappings in order to relocate

these complex singularities accelerating the convergence of the DESCM. The

Coulombic-anharmonic potential has singularities at the end points of its do-

main which can affect the numerical stability of the DESCM. Subsequently,

we investigate methods to remedy these numerical problems. Additionally, we

wish to exploit the added symmetrical properties of the matrices generated by

the DESCM in the presence of even potentials. We have been able to show

that this added symmetry results in centrosymmetry. This added symmetry

can be exploited to reduce the complexity of the DESCM by half.
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and its asymptotic estimate given by (4.62) while figures (b), (d)

and (f) displays the absolute error between the alternate mesh
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Chapter 1

Introduction

1.1 The Schrödinger equation

In quantum physics, physicists describe the properties of a physical system

by an abstract function known as the wave function. Axiomatically, the wave

function of a particle denoted by Ψ should be a function of its space coordi-

nate r as well as time t. With this formulation, there is a need to generate the

wave function of more complicated particle systems. Analogous to Newton’s

laws in classical physics, the Schrödinger equation allows us to construct wave

functions for particle systems in the quantum world. Otherwise stated, the

Schrödinger equation is one of the fundamental equations of physics for de-

scribing quantum mechanical behaviour. The celebrated Schrödinger equation

for a particle moving in a potential V (r, t) was proposed by Ernest Schrödinger

in 1926. The Schrödinger equation is a linear complex valued partial differen-
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tial equation given by the following equation:

i~
∂

∂t
Ψ(r, t) = HΨ(r, t)

.
=

[
− ~2

2m
∇2 + V (r, t)

]
Ψ(r, t), (1.1)

where i is the imaginary unit, ~ ≈ 1.0546 × 10−34m2kg/s is h-bar, a famous

physical constant, V (r, t) is the potential, and H is the Hamiltonian operator.

Although there still exists some debate for the interpretation of the wave

function still ongoing today, the most popular interpretation in the physics

community was given by Max Born. Born won the 1954 Nobel Prize in physics

for his "fundamental research in quantum mechanics, especially in the statis-

tical interpretation of the wave function". Born postulated that, if a particle

is described by a wave function Ψ(r, t) normalized to unity over its domain of

existence, the probability of finding the particle at time t within the volume

element dr = dxdydz about the point r = (x, y, z) is given by:

P (r, t)dr = |Ψ(r, t)|2dr (1.2)

1.1.1 The time-independent Schrödinger equation

In the case where the potential function V does not depend on time, the

Hamiltonian operator H is time independent. As a result, equation (1.1)

simplifies considerably:

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r, t), (1.3)

2



In particular, we can show that a solution decomposes as a product of two

functions:

Ψ(r, t) = ψ(r)f(t). (1.4)

More generally, the full solution can be expressed as the sum of such a product.

Inserting the decomposition (1.4) into equation (1.1) in the case where V does

not depend on time, we obtain:

i~ψ(r)
∂f(t)

∂t
=

[
− ~2

2m
∇2ψ(r) + V (r)ψ(r)

]
f(t). (1.5)

Separating the variables, we obtain:

i~
1

f(t)

∂f(t)

∂t
=

1

ψ(r)

[
− ~2

2m
∇2ψ(r) + V (r)ψ(r)

]
. (1.6)

Since the left-hand side depends only on t and the right-hand side depends

only on r, both sides must be equal to a constant. This constant has units of

energy and as such is denoted by E. Therefore, we obtain the following two

equations:

i~
∂f(t)

∂t
= Ef(t), (1.7)

and

[
− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r). (1.8)
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Equation (1.7) can be solved directly since this equation is separable to obtain:

f(t) = Ce−iEt/~, (1.9)

for some constant C which without loss of generality can be set to one. Equa-

tion (1.8) is known as the time-independent Schrödinger equation. The time-

independent Schrödinger equation is a differential eigenvalue equation. If the

potiential V (r) is unbounded and diverge to infinity at the edges of its domain,

solving equation (1.8) gives us the following solution to equation (1.3):

Ψ(r, t) =
∑

n

ψn(r)e
−iEnt/~, (1.10)

where {(ψn(r), En)}∞n=0 are the eigenpairs solutions associated with equation

(1.8).

1.1.2 The time-independent Schrödinger equation in one

dimension

The time-independent Schrödinger equation in one dimension can be written

as follows:

[
− ~2

2m

d2

dz2
+ V (z)

]
ψ(z) = Eψ(z). (1.11)

To reduce the number of parameters of this equation the following change of

variables is often used:

x =

√
2m

~2
z. (1.12)
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Potential Form of V (x) Domain

Anharmonic Oscillator Potential V (x) =
m∑

i=1

cix
2i x ∈ (−∞,∞)

Rational Potential V (x) = ωx2m +

k∑

i=0

λix
i

1 +
2l∑

i=1

gix
i

x ∈ (−∞,∞)

Coulombic Potential V (x) =
m∑

i=−2

aix
i x ∈ (0,∞)

Table 1.1: Table of important one-dimensional potentials.

Using this change of variable, we obtain the following equation:

[
− d2

dx2
+ Ṽ (x)

]
ψ(x) = Eψ(x). (1.13)

In this thesis, we will focus on solving (1.13) for different types of potentials.

More specifically, the potentials we will tackle can be broken down into three

categories displayed in Table 1.1:

All potentials presented in table 1.1 can be seen as a perturbation from

the classical harmonic oscillator V (x) = x2. Despite the name of the first

potential in table 1.1, all three fall under the umbrella term of anharmonic

potentials i.e. potentials that deviate from harmonicity. As early as the

1950’s, one dimensional anharmonic oscillators have had multiple applications

in modern physics. Over 60 years ago, the quartic anharmonic oscillator was

of great interest to field theoreticians because it modeled complicated fields in

one-dimensional spacetime [22]. Quantum field theory concerns with the me-

chanical models of subatomic particles in particle physics and quasiparticles

5



in condensed matter physics. This particular field theory model involved no

space dimensions resulting in no asymptotic states and no particle scattering.

As a result, this theory was an adequate model for a universe which sits at one

point and oscillated. Despite its simplicity, this model predicted observed be-

haviours in more realistic field theory [93]. Hence, it was a great starting point

for studying such complexity. Application of these theories can and are still

found today [7, 93, 112, 137, 165]. With advances in mathematical techniques,

computer architecture, numerical analysis and asymptotic theories, higher or-

der anharmonic oscillators are being used to model higher dimensional fields.

Hence, a more complete overview of quantum anharmonic oscillators would

lead to a better understanding of the realistic analytic structure of field the-

ory.

Secondly, outside the realm of field theory, double-well anharmonic poten-

tials are among the most important potentials in quantum mechanics [85,95].

The wave functions for such potentials are known to be the linear superposition

of so called "classical states". This revelation is very important in the study

of quantum information theory or quantum computing. Concisely, quantum

information theory attempts to generalize the ideas of classical information

theory to the quantum world. Recently, systems of two particles in double well

potentials have been studied experimentally with ultracold atoms [11,178]. In

2009, it was theoretically proposed that neutral atoms held in double well po-

tentials could be used to create quantum logic gates to be used for quantum

information processing [78]. Recently, Murmann et al. demonstrated that

the quantum state of two ultracold fermionic atoms in an isolated double-well

potential was completely controllable [122]. They were able to control the in-

6



teraction strength between these two particles, the tilt of the potential as well

as their tunneling rates between the two wells. These experiments provide a

starting point for quantum computation with neutral atoms. Hence, further

investigations into quantum systems with multiple wells could be an asset in

constructing an efficient and reliable quantum computer.

Thirdly, other problems in quantum physics that are modelled with the help

of anharmonic potentials include the tunnelling of protons in hydrogen bonded

systems, quantum phase transitions in ion traps, the spectra of molecules such

as ammonia and hydrogen-bonded solids and quantum coherence in Josephson

junction superconductors [103, 136, 138]. The Josephson effect occurs when a

current flows without any voltage across two superconductors coupled by a

weak link. The weak link can take various forms from a thin insulating barrier

to a short section of non-superconducting metal or even a physical constriction

that weakens the superconductivity at the point of contact. Its applications

are very diverse and include superconducting quantum interference devices,

precision metrology, superconducting single-electron transistors, rapid single

flux quantum digital electronics and superconducting tunnel junction detec-

tors. Moroever, Josephson junctions are crucial in superconducting quantum

computing using qubits instead of classical bits.

Last but not least, one dimensional anharmonic oscillators also provides

an excellent approximation to more complicated quantum potentials near a

stable stationary point. Potential energy in quantum systems can be modelled

mathematically by complicated functions adjunct with differential equations.

In such models, particles prefer to settle themselves in stable stationary point.

Mathematically, this corresponds to the local minimums of the potential energy

7



function. It is known that every local minimum of a function can be approx-

imated by a much simpler quadratic function. In such case, we obtain the

famous well-studied harmonic oscillator. For a better approximation around

the stable stationary point, more polynomial terms or a rational function can

be added to the quadratic function. This simple yet powerful approximation

yields precisely the anharmonic oscillator potentials.
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Chapter 2

The Anharmonic Oscillator

This chapter has been published as:

P. Gaudreau, R.M. Slevinsky, and H. Safouhi. An asymptotic expansion for

energy eigenvalues of anharmonic oscillators. Annals of Physics, 337(0):261–

277, 2013.

Abstract.

In the present contribution, we derive an asymptotic expansion for the en-

ergy eigenvalues of anharmonic oscillators for potentials of the form V (x) =

κx2q + ωx2, q = 2, 3, . . . as the energy level n approaches infinity. The asymp-

totic expansion is obtained using the WKB theory and series reversion. Fur-

thermore, we construct an algorithm for computing the coefficients of the

asymptotic expansion for quartic anharmonic oscillators, leading to an effi-

cient and accurate computation of the energy values for n ≥ 6.
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2.1 Introduction

The quantum anharmonic oscillator energy eigenvalues have been studied ex-

tensively during the last three decades [21, 28, 33, 42, 70, 72, 100, 124, 150, 180,

183–186, 192]. For a quantum anharmonic oscillator, the Hamiltonian in the

time-independent Schrödinger equation is H = − d2

dx2 + V (x), where the po-

tential V (x) = ω x2 + κx2q with ω ∈ R, κ ∈ R+ and q ∈ N \ {1}. The

quartic anharmonic oscillator corresponds to q = 2, the sextic anharmonic os-

cillator corresponds to q = 3, and the challenging octic anharmonic oscillator

corresponds to q = 4.

In [22–24], a study of Rayleigh-Schrödinger perturbation series is presented

using techniques from the Wentzel-Kramers-Brillouin (WKB) method as well

as a difference equation method. The WKB method proved very useful in the

calculation of higher-order energy states as the convergence is quite rapid. We

refer the interested readers to [21] for an introduction of the WKB method

as well as several examples for potentials of the form V (x) = λx2m for m =

2, 3, . . . with λ > 0. In [2], an averaging method is proposed to calculate

energy eigenvalues for potentials of the form V (x) = λx2m for m = 2, 3, . . .

with λ > 0, V (x) = µx2 + λx4 + η x6 with η > 0 and V (x) = (a x3 + b x)2

using a supersymmetric WKB approach.

In [124], an asymptotic energy expansion is presented for potentials V (x) =
∑N

i=1 ai x
i +

∑M
j=1 cj x

−j. This method allows for an easier way to obtain

the symbolic coefficients for WKB expansions. As examples of application,

in [124] Nanayakkara derived explicit analytic expressions for the first seven

coefficients of the WKB expansion for the energy eigenvalues for the potentials

10



V (x) = x4 + ω x2 and V (x) = x6. Although this method is very efficient

for obtaining symbolic coefficients for WKB expansions, it is cumbersome to

obtain several terms in these expansions due to the complexity of the integrals

involved in the calculation. A considerably large number of terms are in fact

needed if one desires to obtain high accuracy particularly for low energy levels.

In the present work, we derive an asymptotic expansion for the energy

eigenvalues of anharmonic oscillators for potentials of the form V (x) = κx2q+

ω x2 for q = 2, 3, . . . using the WKB approach. This leads to an asymptotic

series relating the energy levels to their corresponding energy values. This form

is quite cumbersome from a numerical point of view as it would require the

use of a root finding method to compute the energy values. Therefore, using

series reversion theory, we revert this series to obtain an analytic expression

for the energy values in terms of their corresponding energy levels. This is

significantly more efficient as it requires only the summation of a series for

different values of n eliminating the need for a root-finding method. The

difficulty in evaluating the coefficients of the asymptotic expansion numerically

increases significantly as q increases. Nevertheless, we construct an algorithm

capable of obtaining a large number of the coefficients for quartic anharmonic

oscillators (see Table 2.2). The numerical results obtained using the proposed

method are in a complete agreement with those obtained using explicit analytic

expressions obtained in [124] and leads to a highly accurate computation of

the energy values for n ≥ 6.
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2.2 WKB for anharmonic oscillators

When a differential equation demonstrates dissipative or dispersive phenomena

characterized by exponential behavior, one can seek an approximation of the

solution of the form:

ψ(x) ∼ A(x) exp

(
S(x)

δ

)
as δ → 0+, (2.1)

where the solution has a boundary layer of thickness δ.

For the approximation ψ(x) in (2.1), which is known as the WKB approxi-

mation, to be valid we assume that the phase S(x) is non constant and slowly

varying in the breakdown region.

The form given by equation (2.1) is not ideal for deriving asymptotic ap-

proximations since both the amplitude and the phase functions A(x) and S(x)

depend implicitly on δ. To simplify this matter, it is best to expand A(x) and

S(x) as series in powers of δ and combine them into a single exponential power

series of the form:

ψ(x) ∼ exp

(
1

δ

∞∑

n=0

δnSn(x)

)
as δ → 0+. (2.2)

WKB approximations for the solution of 2nd order differential equations

are derived from equation (2.2).

Now, let us consider the time-independent Schrödinger equation which is

defined by the following equation:

Hψ(x) = E ψ(x) with H = − d2

dx2
+ V (x), (2.3)
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where the potential V is given by:

V (x) = κx2q + ω x2, (2.4)

where κ ∈ R+, ω ∈ R and q ∈ N \ {1}.

Equation (2.3) can be re-written as follows:

ψ′′ = Q(x)ψ with Q(x) = κx2q + ωx2 − E 6= 0. (2.5)

By perturbing the second derivative ψ′′ by a factor ε2, we obtain:

ε2 ψ′′ = Q(x)ψ. (2.6)

Inserting the expression of ψ given by (2.2) in the above equation and

simplifying the exponential factors, one can obtain :

ε2



(
1

δ

∞∑

n=0

δnS ′′
n (x)

)
+

1

δ2

( ∞∑

n=0

δnS ′
n (x)

)2

 = Q(x). (2.7)

Setting δ = ε, we obtain:

ε

∞∑

n=0

εnS ′′
n (x) +

( ∞∑

n=0

εnS ′
n (x)

)2

= Q(x). (2.8)

By equating both sides in powers of ε, we obtain the following recurrence
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relations [21]:





S ′
0
2 = Q(x)

2S ′
0S

′
1 + S ′′

0 = 0

2S ′
0S

′
n + S ′′

n−1 +
n−1∑

j=1

S ′
jS

′
n−j = 0 for n ≥ 2.

(2.9)

The use of the above recurrence relations has been prevented due to the

challenging calculations required to solve for the energy value E.

In 1932, Dunham found that the sum of the contour integrals of S ′
n around

the two turning points (real solutions of Q(x) = 0) was asymptotic to the

energy levels [55]:

1

2i

∮

C

1

ε

∞∑

k=0

εkS ′
k(z)dz ∼ nπ as ε→ 0+. (2.10)

Using the second relation 2S ′
0S

′
1 + S ′′

0 = 0 in (2.9), Dunham was able to

simplify further by noticing that:

S ′
1(z) = −1

4

d

dz
ln(Q(z)) ⇒ 1

2i

∮

C

S ′
1(z)dz = − 1

8i
(4πi) = −π

2
.

(2.11)

Moreover, since all S ′
i for i = 3, 5, 7, . . . are total derivatives by construction,

they do not contribute to the calculation of the eigenvalues. The expression is

therefore simplified to [55]:

1

2i

∮

C

1

ε

∞∑

k=0

ε2kS ′
2k(z)dz ∼

(
n+

1

2

)
π as ε→ 0+. (2.12)
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2.3 Properties of the functions S ′
k(z)

The following Theorem establishes a form for all S ′
k(z) and simplifies their

computation using a more efficient and simple recursive algorithm compared

with the algorithm that can be obtained from equations (2.9).

Theorem 2.3.1. If Q(z) = V (z) − E where V (z) is a polynomial of degree

l ≥ 2, then the functions S ′
k(z) have the following form:

S ′
k(z) =

fk(z)

(Q(z))
3k−1

2

for k = 0, 1, 2, . . . , (2.13)

where fk(z) are polynomials in z and deg(fk(z)) = k(l − 1). Moreover, the

polynomials fk(z) are given recursively by:





f0(z) = 1

k∑

j=0

fj(z)fk−j(z) = −Q(z) 3k−2
2

d

dz

(
fk−1(z)Q(z)

4−3k
2

)
,

(2.14)

which can be rewritten as:

fk(z) = −1

2
Q(z)

3k−2
2

d

dz

(
fk−1(z)Q(z)

4−3k
2

)
− 1

2

k−1∑

j=1

fj(z)fk−j(z). (2.15)

Proof. We will proceed by induction.

The property is true for k = 0 since we have:

S ′
0(z) =

√
Q(z)

=
f0(z)

(Q(z))
3(0)−1

2

. (2.16)
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We assume that the functions S ′
n(z) have the form given by (2.13) for

n = 1, 2, . . . , k. From this it follows that for n = 1, 2, . . . , k, we have:

S ′
n(z) =

fn(z)

(Q(z))
3n−1

2

. (2.17)

From the recurrence relations in (2.9), we have for k ≥ 1:

2S ′
0S

′
k+1 + S ′′

k +
k∑

j=1

S ′
jS

′
k+1−j = 0. (2.18)

Inserting equation (2.17) in equation (2.18) and isolating S ′
k+1(z), we ob-

tain:

S ′
k+1(z) = −

f ′
k(z)(Q(z))− fk(z)(

3k−1
2

)Q′(z)

(Q(z))
3k+1

2

+
k∑

j=1

fj(z)

(Q(z))
3j−1

2

fk+1−j(z)

(Q(z))
3(k+1−j)−1

2

2(Q(z))
1
2

.

(2.19)

Simplifying, we obtain:

S ′
k+1(z) =

fk+1(z)

(Q(z))
3(k+1)−1

2

, (2.20)

where:

fk+1(z) = −
(
f ′
k(z)

2

)
Q(z) + fk(z)

(
3k − 1

4

)
Q′(z)− 1

2

k∑

j=1

fj(z)fk+1−j(z)

= −1

2
Q(z)

3(k+1)−2
2

d

dz

(
fk(z)Q(z)

4−3(k+1)
2

)
− 1

2

k∑

j=1

fj(z)fk+1−j(z).

(2.21)
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Next, we will prove that deg(fk(z)) = k(l − 1) by induction.

It is obvious that the property is satisfied for f0(z) = 1.

We assume that deg(fn(z)) = n(l− 1) for n = 1, 2, . . . , k − 1. From this it

follows that:





deg(f ′
k−1(z)) = k(l − 1)− l

deg(fj(z)fk−j(z))) = (j(l − 1)) + ((k − j)(l − 1)) = k(l − 1).

(2.22)

Expanding expression (2.15), we obtain:

fk(z) = −
(
f ′
k−1(z)

2

)
Q(z) + fk−1(z)

(
3k

4
− 1

)
Q′(z)− 1

2

k−1∑

j=1

fj(z)fk−j(z).

(2.23)

From the above equation, it follows that:

deg(fk(z)) = max





deg(f ′
k−1(z)) + deg(Q(z))

deg(fk−1(z)) + deg(Q′(z))

deg(fj(z)fk−j(z))))





= k(l − 1). (2.24)

Proposition 2.3.2. If V(z) is an even function, then for k ∈ N0, f2k(z) are

even functions and f2k+1(z) are odd functions.

Proof. We will proceed by induction. Since f0(z) is constant, it is an even

function.

First, we notice that if V (z) is even then Q(z) is even. From this, it follows
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that:

f1(−z) = −1

4
V ′(−z) = 1

4
V ′(z) = −f1(z) ⇒ f1(z) is an odd function.

(2.25)

Assume that f2n(z) are even functions and f2n+1(z) are odd functions for

n = 1, 2, . . . , k − 1.

When fj(z) is an odd function, f2k−j is also an odd function and f2k+1−j

is an even function. Similarly, when fj(z) is an even function, f2k−j is also an

even function and f2k+1−j is an odd function. From this and (2.15), it follows

that:

f2k(−z) = −1

2
Q(−z) 6k−2

2
d

d(−z)
(
f2k−1(−z)Q(−z)

4−6k
2

)
− 1

2

2k−1∑

j=1

fj(−z)f2k−j(−z)

= −1

2
Q(z)

6k−2
2

d

dz

(
f2k−1(z)Q(z)

4−6k
2

)
− 1

2

2k−1∑

j=1

fj(z)f2k−j(z)

= f2k(z), (2.26)

f2k+1(−z) = −1

2
Q(−z) 6k+1

2
d

d(−z)
(
f2k(−z)Q(−z)

1−6k
2

)
− 1

2

2k∑

j=1

fj(−z)f2k+1−j(−z)

=
1

2
Q(z)

6k+1
2

d

dz

(
f2k(z)Q(z)

1−6k
2

)
− (−1)

2

2k∑

j=1

fj(z)f2k+1−j(z)

= −f2k+1(z). (2.27)

The following Theorem establishes the asymptotic behavior of the integrals

in (2.12) as E tends to infinity. It also demonstrates that we do not need to

know explicitly the solutions to Q(z) = 0 to evaluate the contour integrals
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involved in (2.12). As we shall see, all the zeros of Q(z) follow the same

pattern as E tends to infinity. Prior to this development, it would have been

impossible to deal with anharmonic oscillators where q ≥ 4 as it would have

been impossible to find explicit analytic expressions for the zeros.

Theorem 2.3.3. If V (z) is an even function as described in theorem 2.3.1

and V (±∞) = ∞, then:

1

2i

∮

C

S ′
2k(z)dz = O

(
E− (l+2)(2k−1)

2l

)
as E → ∞. (2.28)

Proof. Using equation (2.13), we obtain:

1

2i

∮

C

S ′
2k(z)dz =

1

2i

∮

C

f2k(z)Q(z)
1
2
−3kdz. (2.29)

We need to parametrize S ′
2k(z) around the two real zeros of Q(z). We can

do this by setting z = R(E)eit for α < t ≤ α+2π, α ∈ R. α is chosen according

to the branch cut of Q(z)
1
2
−3k. R(E) is the radius of the circle as a function

of E. Thus, we have:

1

2i

∮

C

S ′
2k(z)dz =

1

2i

∫ α+2π

α

R(E) i eit f2k(R(E) e
it) (Q(R(E)eit))

1
2
−3k dt.

(2.30)

The optimal choice for R(E) is (E
al
)
1
l where al is the non-zero coefficient of

the leading order term zl in V (z). This is due to the fact that all the solutions

of Q(z) = 0 (i.e. V (z) = E) tend to (E
al
)
1
l in modulus as E → ∞. This can

be demonstrated by a regular perturbation analysis.
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Making the substitution R(E) = (E
al
)
1
l in (2.30), we obtain:

1

2i

∮

C

S ′
2k(z) dz = E

1
l

∫ α+2π

α

1

2
a
− 1

l
l eitf2k

(
(a−1

l E)
1
l eit
)
Q
(
(a−1

l E)
1
l eit
) 1

2
−3k

dt.

(2.31)

Since deg(Q(z)) = l, we can extract E from Q
(
(a−1

l E)
1
l eit
)
. Moreover,

we can extract E
2k(l−1)

l from f2k

(
(a−1

l E)
1
l eit
)

since deg(f2k(z)) = 2k(l − 1).

From this, it follows that as E → ∞:

E
1
l

∫ α+2π

α

1

2
a
− 1

l
l eitf2k

(
(a−1

l E)
1
l eit
)
Q
(
(a−1

l E)
1
l eit
) 1

2
−3k

dt = O
(
E− (l+2)(2k−1)

2l

)

(2.32)

Theorem 2.3.4. For an anharmonic oscillator potential V (z) = κz2q + ωz2

of order q = 2, 3, . . . , we have:

1

2i

∮

C

S ′
2k(z)dz ∼ E− (q+1)(2k−1)

2q

∞∑

j=0

dj(k, q, κ, ω)E
− j

q as E → ∞. (2.33)

Proof. Using equation (2.31) with l = 2q, we obtain:

1

2i

∮

C

S′
2k(z)dz = E

1

2q

∫ α+2π

α

eit

2κ
1

2q

f2k(κ
− 1

2q E
1

2q eit)(κ(κ− 1

2q E
1

2q eit)2q + ω(κ− 1

2q E
1

2q eit)2 − E)
1

2
−3kdt

= E
1

2q
+ 1

2
−3k

∫ α+2π

α

eit

2κ
1

2q

f2k(κ
− 1

2q E
1

2q eit)

(
(e2qit − 1) +

ωE
1

q
−1

κ
1

q

e2it

) 1

2
−3k

dt.

(2.34)

Taking into consideration that f2k(z) is even for such a potential and expand-
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ing f2k
(
κ−

1
2qE

1
2q eit

)
into an asymptotic series in E, we obtain:

f2k(κ
− 1

2qE
1
2q eit) = E

k(2q−1)
q

2k(2q−1)∑

j=0

pj(k, q, κ, ω, e
it)E− j

q as E → ∞, (2.35)

where pj(k, q, κ, ω, eit) are polynomials in eit that depend on k, q, ω and κ.

Expanding
(
(e2qit − 1) + ωE

1
q−1

κ
1
q
e2it
)1/2−3k

into a binomial series, we ob-

tain:

(
(e2qit − 1) +

ωE
1
q
−1

κ
1
q

e2it

) 1
2
−3k

=
∞∑

m=0

(
1
2
− 3k

m

)
(e2qit − 1)

1
2
−3k−mωme2imt

κ
m
q E(1− 1

q
)m

=
∞∑

m=0

hmE
−(1− 1

q
)m, (2.36)

where:

hm = hm(k, q, κ, ω, e
it)

=

(
1
2
− 3k

m

)
(e2qit − 1)

1
2
−3k−mωme2imt

κ
m
q

. (2.37)

Using equations (2.35) and (2.36) along with (2.34) and letting E → ∞,

we obtain:

1

2i

∮

C

S ′
2k(z)dz ∼ E− (q+1)(2k−1)

2q

∞∑

m=0

2k(2q−1)∑

j=0

[∫ α+2π

α

hm pj(k, q, κ, ω, e
it)

eit

2κ
1
2q

dt

]
E− (q−1)m+j

q

(2.38)

= E− (q+1)(2k−1)
2q

∞∑

m=0

2k(2q−1)∑

η=0

τη,m(k, q, κ, ω)E
− (q−1)m+η

q , (2.39)

and by combining the two summation in the RHS of the above equation, we
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obtain:

1

2i

∮

C

S ′
2k(z)dz ∼ E− (q+1)(2k−1)

2q

∞∑

λ=0

dλ(k, q, κ, ω)E
−λ

q . (2.40)

Using (2.40), we obtain:

1

2i

∮

C

∞∑

k=0

S ′
2k(z)dz ∼

∞∑

k=0

(
E− (q+1)(2k−1)

2q

∞∑

λ=0

dλ(k, q, κ, ω)E
−λ

q

)

= E
q+1
2q

∞∑

k=0

∞∑

λ=0

dλ(k, q, κ, ω)E
−λ+(q+1)k

q ,

and here again, we combine the two summation in the RHS of the above

equation and we obtain:

1

2i

∮

C

∞∑

k=0

S ′
2k(z)dz ∼ E

q+1
2q

∞∑

j=0

βj(q, κ, ω)E
− j

q . (2.41)

By setting ε = 1 in (2.12) and using the above equation, we obtain:

E
q+1
2q

∞∑

j=0

βj(q, κ, ω)E
− j

q ∼
(
n+

1

2

)
π as n→ ∞. (2.42)

The difficulty in evaluating the integrals in (2.33) numerically stems from

the coefficients hm(k, q, κ, ω, eit) in equation (2.36). As q increases the number

of branch cuts in the term (e2qit − 1)
1
2
−3k−m also increases. For q = 2, we

derived an algorithm capable of computing the coefficients βj(q, κ, ω).

Equation (2.42) gives a direct correlation between the energy values E and

the energy levels n for all q ≥ 2. However, this expression is not practical from
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a computational point of view. In order to obtain the energy value E, one

would have to truncate the sum and use a root-finding method for each value

of n. It would be much more efficient if we could derive an analytic expression

for E in terms of n. This is the focus of the next section where we make use

of the theory of series reversion.

2.4 Asymptotic Series Reversion

The reversion of series is not a new topic in mathematical analysis. One of the

most famous Theorems published by Lagrange on the reversion of power series

dates back to 1770 [98]. Since then, several new discoveries have been made

in this field. In [61], Fabijonas and Olver used an asymptotic series reversion

to calculate the zeros of the Airy functions to high accuracy.

In the following section, we will be extending the Fabijonas and Olver

formula for the reversion of an asymptotic expansion [61] for a different type

of asymptotic series.

Now, we shall state two Theorems presented in [61, Theorem 2.1].

Theorem 2.4.1. [61, Theorem 2.1] Let f(z) be analytic at z = z0, f(z0) = ω0

and f ′(z0) 6= 0. The equation ω = f(z) has a unique solution z = F (ω) such

that F (ω0) = z0 and F (ω) is analytic at ω = ω0. �

Theorem 2.4.1 is a standard theorem of complex analysis and its proof can

be found in [45, Chapter 6] or [189, Chapter 7].

Theorem 2.4.2. [61, Theorem 2.3] Let f(z) be analytic in a domain that

includes a closed annular sector S with vertex at the origin and angle less than
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2π, and satisfy an asymptotic expansion of the form:

f(z) ∼ z +
∞∑

k=0

ak
zk

as z → ∞, (2.43)

in S uniformly with respect to ph z. Also, let S1 and S2 be closed annular

sectors with vertices at the origin, S1 being properly interior to S and S2 being

properly interior to S1.

(i) If the boundary arcs of S1 and S2 are of sufficiently large radius, the

equation ω = f(z) has exactly one root z = F (ω) say in S1 for each

ω ∈ S2.

(ii) F (ω) is analytic within S2.

(iii) As ω → ∞ in S2 , we have:

z ∼ ω −
∞∑

j=0

Fj

ωj
. (2.44)

�

The proof for (i) can be found in section 6 of chapter 1 in [131]. The proof

for (ii) comes from Theorem 2.4.1. Part (iii) is proved in section 8.4 of chapter

1 in [131].

Theorem 2.4.3. Let f(z) satisfy the same conditions as in Theorem 2.4.2

with an asymptotic expansion of the form:

f(z) ∼ zα
∞∑

k=0

ak
zδk

as z → ∞, (2.45)
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then as ω → ∞ in S2, we have:

z ∼
((

ω

a0

) δ
α

−
∞∑

j=0

Fj

ω
δj
α

) 1
δ

. (2.46)

Proof. We start by making the following substitutions in (2.45):

zδ =
1

x
and f(z) = ω =

1

y
α
δ

. (2.47)

Equation (2.45) then becomes:

1

y
α
δ

∼

∞∑

k=0

akx
k

x
α
δ

as x→ 0+ ⇒ y
α
δ ∼ x

α
δ

∞∑

k=0

akx
k

as x→ 0+

⇒ y ∼ x
( ∞∑

k=0

akx
k

) δ
α

= φ(x) as x→ 0+.

(2.48)

It can be shown that for all sufficiently small values of |x|, φ(x) is analytic

at x = 0. In addition:

φ(0) = 0 and φ′(0) = a
− δ

α
0 . (2.49)

By Theorem 2.1, when y lies in the neighbourhood Υ of the origin, the

equation φ(t) = y has a single root t = x such that:

(a) x = 0 when y = 0;
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(b) x is an analytic function of y.

Let C be a circle centred at the origin and within Υ. If |y| is sufficiently

small, then both x and y lie within C. Hence, by the residue Theorem, we

have:

1

2πi

∮

C

φ′(t)

t(φ(t)− y)
dt =

1

x
+

φ′(0)

φ(0)− y

=
1

x
− a

− δ
α

0

y
. (2.50)

The last quantity has a removable singularity at y = 0 and can therefore

be expanded in a series of the form:

1

x
− a

− δ
α

0

y
= −

∞∑

j=0

Fjy
j as y → 0+

⇒ z ∼
((

ω

a0

) δ
α

−
∞∑

j=0

Fj

ω
δj
α

) 1
δ

as ω → ∞. (2.51)

Now, we shall state a Theorem that will establish a relationship between

the coefficients of the initial series and those of the reversed series.

Theorem 2.4.4. For j = 0, 1, 2, 3, . . ., Fj are given by:





F0 =
δ

α

a1
a0

Fj =
1

j(j + 1)!

dj+1

dtj+1

( ∞∑

k=0

akt
k

) δj
α ∣∣∣∣

t=0

for j ≥ 1.

(2.52)

Proof. We will start by proving the equation for Fj for j = 1, 2, . . . in (2.52).
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Differentiating (2.50) and (2.51) and integrating by parts, we find that:

∞∑

j=1

jFjy
j−1 = − 1

2πi

∮

C

φ′(t)

t(φ(t)− y)2
dt

=
1

2πi

∮

C

1

t2(φ(t)− y)
dt. (2.53)

We can expand the last integrand in ascending powers of y:

∞∑

j=1

jFjy
j−1 =

1

2πi

∞∑

k=0

yk
∮

C

1

t2(φ(t))k+1
dt. (2.54)

Equating powers of y, we obtain:

jFj =
1

2πi

∮

C

1

t2(φ(t))j
dt

=
1

2πi

∮

C

( t
φ(t)

)j

tj+2
dt. (2.55)

By the Cauchy integral formula, we obtain for j ≥ 1:

jFj =
1

(j + 1)!

dj+1

dtj+1

(
t

φ(t)

)j ∣∣∣∣
t=0

⇒ Fj =
1

j(j + 1)!

dj+1

dtj+1

( ∞∑

k=0

akt
k

) δj
α ∣∣∣∣

t=0

.

(2.56)

We shall now prove the equation for F0 in (2.52). In fact, F0 is simply a
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limiting case of (2.52) as j → 0:

Fj(t) =
1

j(j + 1)!

dj+1

dtj+1

( ∞∑

k=0

akt
k

) δj
α

=
1

j(j + 1)!

dj

dtj


j δ
α

( ∞∑

k=0

akt
k

) δj
α
−1 ∞∑

k=1

kakt
k−1




=
δ

α

1

(j + 1)!

dj

dtj



( ∞∑

k=0

akt
k

) δj
α
−1 ∞∑

k=1

kakt
k−1


 . (2.57)

Taking the limit as j → 0, we obtain:

F0(t) =
δ

α



( ∞∑

k=0

akt
k

)−1 ∞∑

k=1

kakt
k−1


 ⇒ F0 =

δ

α

a1
a0
. (2.58)

Corollary 2.4.5. The analytic expression for the coefficients Fj given by (2.52)

can be simplified to:

Fj =
1

j(j + 1)!

dj+1

dtj+1

(
j+1∑

k=0

akt
k

) δj
α ∣∣∣∣

t=0

for j ≥ 1. (2.59)

Proof. We make use of the Faà di Bruno formula generalizing the chain rule

to higher order derivatives to prove the validity of the equation given in the

Corollary.

The Faà di Bruno formula is given by [52,53]:

dn

dtn
f(g(t)) =

n∑

i=0

f (i)(g(t))Bn,i(g
′(t), g′′(t), . . . , g(n−i+1)(t)), (2.60)
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where Bn,i are the Bell polynomials [18].

Applying the formula to Fj(t), we obtain:

Fj(t) =
1

j(j + 1)!

j+1∑

i=0

i∏

m=1

(
δj

α
−m+ 1

)( ∞∑

k=0

akt
k

) δj
α
−i

× Bj+1,i

[ ∞∑

k=1

akkt
k−1,

∞∑

k=2

akk(k − 1)tk−2, . . . ,

∞∑

k=j+2−i

ak

j+2−i∏

n=1

(k − n+ 1)tk−j−2+i

]
.

(2.61)

By setting t = 0, we obtain:

Fj =
1

j(j + 1)!

j+1∑

i=0

i∏

m=1

(
δj

α
−m+ 1

)
(a0)

δj
α
−iBj+1,i (a1, 2a2, . . . , (j + 2− i)! aj+2−i) .

(2.62)

As we can see, the Fj’s depend only on the coefficients a0, a1, . . . , aj+1.

We now have all the tools required to revert the series (2.42) obtained in

the previous section. By using Corollary 2.4.3 with z = E, ω =
(
n+ 1

2

)
π,

α = q+1
2q

and δ = 1
q
, we arrive at the following equation:

E = En

∼



(

(n+ 1
2
)π

β0(q, κ, ω)

) 2
q+1

−
∞∑

j=0

Fj(q, κ, ω)
(
(n+ 1

2
)π
) 2j

q+1



q

as n→ ∞. (2.63)

2.5 Numerical Discussion

In this section, we will discuss the numerical procedure used to calculate the

energy values for a quartic anharmonic oscillator V (z) = κz4 + ωz2. All the

numerical procedures were done using Maple with 20 decimal precision. The
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form of the S ′
k(z) proved in Theorem 2.3.1 greatly improves the efficiency and

simplifies considerably the calculations required by WKB. One will quickly

notice that the form of the S ′
k(z) in 2.3.1 and the recurrence relations (2.14) can

be generalized for any well defined potential V (z). Previously, the recurrence

relation (2.9) involved differentiating rational functions whereas the recurrence

relation for the numerator (2.14) involves only differentiation of polynomials.

Lastly, the general form found in Theorem 2.3.4 for any anharmonic oscillator

of order q and its reverted series found through Theorem 2.4.3, offer an efficient

method for computing the energy values without having to resort to root

finding methods.

Theorems presented in this work are useful in determining the general form

of the asymptotic expansions for potentials of the form V (z) = κx4 + ωx2.

However, the approach we used to compute the coefficients βj(2, κ, ω) differs

slightly from our theoretical development presented in the Theorems.

First, we use the symbolic programming language Maple to compute the

polynomials f2k(z) using the expression (2.15). Second, from the form of the

integrand S ′
k(z) in Theorem 2.3.1, it is very easy to create a list of integrands

S ′
2k(z) that are needed since we can simply divide the polynomials f2k(z) by

Q(z)
6k−1

2 which will be required in the asymptotic expansions presented in

equation (2.12). Next, we make a slightly different change of variable than

the one presented in the proof of Theorem 2.3.3. Instead of substituting z =
(
E
κ

) 1
2q eit into our integrands S ′

2k(z), we enlarge our radius by a constant C > κ,

say
(
E
κ

) 1
2q →

(
C E

κ

) 1
2q and take the real part after integrating S ′

2k(z) over

(−π, π]. This leads to a less cumbersome numerical integration for Maple.

The expansion of Q
((
C E

κ

) 1
2q eit

) 6k−1
2

using the binomial formula can be
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done in a similar fashion than the one presented in Theorem 2.3.4. Once,

this integration is done, we can simply collect the coefficients in front of the

powers of E presented in equation (2.42). These coefficients correspond to

the coefficients βj(2, κ, ω). If we uses 2n functions S ′
2k(z) in their expansion,

we would obtain 3(n + 1) coefficients βj(2, κ, ω). This relation was obtained

empirically.

Since only finitely many coefficients βj(2, κ, ω) can be calculated, we use (2.63)

and truncate the sum. To calculate the Fj(2, κ, ω) coefficients, we simply

use (2.63).

In [124], Nanayakkara presented explicitly the analytical expressions of the

first seven coefficients β(2, 1, ω) for the potential V (z) = z4 + ωz2. These

analytic expressions are given by:

β0 =

√
π Γ(1/4)

3 Γ(3/4)

β1 = −ω
√
π Γ(3/4)

Γ(1/4)

β2 =
ω2

√
π Γ(1/4)

32 Γ(3/4)

β3 = −
(
ω3

32
+

1

4

) √
π Γ(3/4)

Γ(1/4)
(2.64)

β4 = −
(

5ω4

6144
+

ω

192

) √
π Γ(1/4)

Γ(3/4)

β5 =

(
21ω5

10240
+

5ω2

128

) √
π Γ(3/4)

Γ(1/4)

β6 =

(
5ω6

65536
+

5ω3

2048
+

11

1536

) √
π Γ(1/4)

Γ(3/4)
.
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We used equation (2.63) to reverse the series and we obtain:

En(1, ω) ≈



(

(n+ 1
2
)π

β0(2, 1, ω)

) 2
3

−
5∑

j=0

Fj(2, 1, ω)
(
(n+ 1

2
)π
) 2j

3



2

, (2.65)

where:

F0 = −ω Γ (3/4)4

π2

F1 =
3
√
6ω2

(
π4 − 4 Γ (3/4)8

)

48π3Γ (3/4)4/3

F2 = −
3
√
36 Γ (3/4)4/3

(
3 π4ω3 + 12 π4 − 4 Γ (3/4)8 ω3

)

216π4

F3 =
ω
(
36 Γ (3/4)8 ω3 + 288Γ (3/4)8 + π4ω3 − 8 π4

)

576π Γ (3/4)4
(2.66)

F4 = −
3
√
6ω2

(
40 Γ (3/4)16 ω3 + 50Γ (3/4)8 π4ω3 + 600Γ (3/4)8 π4 + 7 π8ω3 − 50 π8

)

1080Γ (3/4)4/3 π6

F5 =

(
3
√
36
(
1680 Γ (3/4)16 π4 + 15 π12 + 1092 π8Γ (3/4)8 + 2240 Γ (3/4)24

)

62208Γ (3/4)
20
3 π7

)
ω6

+

(
5 3
√
36
(
56 Γ (3/4)16 + π8 − 14 Γ (3/4)8 π4

)

648π3Γ (3/4)
20
3

)
ω3 +

5 3
√
36π

(
11 π4 + 84Γ (3/4)8

)

1296Γ (3/4)
20
3

.

We used the analytic expressions (2.64) and (2.66) to compute the coef-

ficients βj(2, 1, 2) and Fj(2, 1, 2) and we examined the relative error between

these exact values with those obtained using our algorithm. These values are

listed in Table 2.1. In this Table, the relative errors are defined respectively
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by:

ρ(j) =

∣∣∣∣∣
βj(2, 1, 2)

] − βj(2, 1, 2)
†

βj(2, 1, 2)
]

∣∣∣∣∣ for j = 0, 1, . . . , 6 (2.67)

ε(j) =

∣∣∣∣∣
Fj(2, 1, 2)

] − Fj(2, 1, 2)
†

Fj(2, 1, 2)
]

∣∣∣∣∣ for j = 0, 1, . . . , 5, (2.68)

where βj(2, 1, 2)
] and Fj(2, 1, 2)

] are obtained using (2.64) and (2.66) and

βj(2, 1, 2)
† and Fj(2, 1, 2)

† are the values obtained using our algorithm.

From Table 2.1, it is clear that our numerical results are in complete agree-

ment with the values obtained using the analytic expressions (2.64) and (2.66).

Moreover, our algorithm is able to compute a large number of the coefficients

βj(q, κ, w) and Fj(q, κ, w). In Table 2.2, we list the first 32 coefficients β(2, 1, 2)

and the first 31 coefficients F (2, 1, 2) obtained using our algorithm.

Since only finitely many coefficients βj(2, κ, ω) can be calculated, we use

(2.63) and truncate the sum. To calculate the Fj(2, κ, ω) coefficients, we simply

use the corollary 2.4.5:

En(κ, ω,m) =



(

(n+ 1
2
)π

β0(2, κ, ω)

) 2
3

−
m−1∑

j=0

Fj(2, κ, ω)
(
(n+ 1

2
)π
) 2j

3



2

. (2.69)

To approximate the error of our energy values for each additional term

added to the series, we used the absolute error defined as:

εn(κ, ω,m) = |En(κ, ω,m)− En(κ, ω,m− 1)| for m ≥ 1. (2.70)

Figure 2.2 shows the absolute error of the energy values for n = 6, 9, 12, 15, 18, 21
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with κ = 1 and ω = 2. As one would suspect when dealing with an asymptotic

formula, the amount of accuracy increases significantly as n → ∞. In addi-

tion, it is clear from this figure that using only the first 6 explicit Fj(2, 1, 2)

coefficients would only yield to 6 significant digits for n = 6.

The authors struggled to derive any analytical and asymptotic properties

associated with either of the sequences {βj}j≥0 or {Fj}j≥1. Herein, we will try

to explain the difficulties that arise. The asymptotics of the sequence {βj}j≥0

are firmly rooted in the asymptotics of the {S ′
n(x)}n≥0, as their dominant

term will be related to the dominant contribution of the contour integrals, and

will therefore contribute to the sequence {βj}j≥0. One of the most powerful

techniques used in ascertaining the asymptotics of a sequence is to examine

the sequence’s generating function. It should come as no surprise that the

generating function for the sequence {S ′
n(x)}n≥0 indeed satisfies:

G(z, x) =
∞∑

n=0

S ′
n(x)z

n =⇒ z
∂G(z, x)

∂x
= G2(z, x)−Q(x). (2.71)

With z = 1, we quickly recover the Riccati equation for the logarithmic

derivative of the solution to the Schrödinger equation. Therefore, the gen-

erating function implies that ascertaining the asymptotics of the sequence

{S ′
n(x)}n≥0 is as complicated of a problem as the problem for which the se-

quence {S ′
n(x)}n≥0 is used to solve. This suggests that any analytical study of

the asymptotics found in this manuscript is probably hopeless.

Nevertheless, we are able to observe some heuristics on the growth of the

sequence {βj}j≥0. From Table 2, an alternating sign pattern of period two, i.e.

++−−++−− . . . appears to emerge. This suggests a governing oscillatory
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behaviour. In a numerical analysis of the ratios of successive coefficients, the

following leading-order approximation is obtained:

βj(2, 1, 2) ≈ c0 Γ(j + c1) c
j
2 sin

(π
2
j − π

4

)
as j → ∞, (2.72)

where:

c0 = 4.75× 10−7, c1 = 9.68 and c2 = 9.88× 10−2. (2.73)

This approximation is shown in Figure 2.1. While heuristic, this result suggests

that the series (41) may not converge for any value of E as the factors of

E− 1
q are but geometric and are dwarfed by the factorial growth. We also

note that the highly nonlinear process of reverting the series is somewhat

damaging to the alternations in sign and would provide yet another difficulty

in an analytical treatment of the sequence {Fj}j≥1.

2.6 Conclusion

The form of the S ′
k(z) proved in Theorem 2.3.1 greatly improves the efficiency

as well as reduces the amount of calculations required by WKB. By comparing

the exact values obtained using (2.64) and (2.66) and the numerical values

obtained using our algorithm, we showed that they agree completely. The

asymptotic behavior of the non-linear recurrence relations in (2.14) would allow

one to know the asymptotic behavior of the integrands S ′
k(z) which in turn

would lead to the asymptotic behavior of the coefficients βj(q, κ, ω). Only then,

could we find the form of the error of the non-inverted sum in equation (2.42).
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Figure 2.1: Heuristic asymptotics of the sequence {βj(2, 1, 2)}j≥0.

Furthermore, through the use of Corollary 2.4.5, it would be interesting to be

able to find how the form of the error changes once the series is reversed. This

would allow for a better understanding of the convergence of this algorithm.

Additionally, further knowledge of numerical complex integration would allow

for the computation of the coefficients βj(q, κ, ω) for q > 2. With numerical

estimates of these coefficients, one would simply have to use (2.63) to revert

the series and obtain an expression for any desired energy value.

A Graph and numerical tables
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Figure 2.2: The values on the abscissa represent the number of terms in the series.
The values on the ordinate represent the absolute error. This is the numerical cal-
culation of the absolute error for energy level n = 6, 9, 12, 15, 18, 21 for the potential
V (z) = x4 + 2x2.

Table 2.1: Relative error between the coefficients found using the exact formula
and numerical estimates.

j βj(2, 1, 2)
\ βj(2, 1, 2)

† ρ(j) (2.67)
0 1.7480383695280798736 1.7480383695280798735 8.1(-20)
1 -1.1981402347355922074 -1.1981402347355922074 3.3(-20)
2 0.6555143885730299526 0.6555143885730299525 5.5(-20)
3 -0.2995350586838980518 -0.2995350586838980518 6.7(-20)
4 -0.1229089478574431161 -0.1229089478574431161 4.5(-20)
5 0.1329186822909797605 0.1329186822909797605 9.7(-20)
6 0.1655856658634997536 0.1655856658634997536 9.5(-20)

j Fj(2, 1, 2)
] Fj(2, 1, 2)

† ε(j) (2.68)
0 -0.45694658104446362537 -0.45694658104446362540 1.1(-20)
1 0.28702969557805425191 0.28702969557805425191 3.5(-20)
2 -0.34408378420502949543 -0.34408378420502949539 1.4(-19)
3 0.23925667034870999927 0.23925667034870999925 5.6(-20)
4 -0.12467471923834294258 -0.12467471923834294260 8.2(-19)
5 0.35723759046141083291 0.35723759046141083283 2.4(-19)

\ Coefficients computed using equations (2.64). ] Coefficients computed using equa-
tions (2.66).
† Coefficients computed using the numerical algorithm presented in this work.
Numbers in parentheses represent powers of 10.
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Table 2.2: Computation of βj(2, 1, 2) and Fj(2, 1, 2) using the algorithm presented
in this work.

j βj(2, 1, 2) Fj(2, 1, 2)
0 1.7480383695280798736( 00) -4.5694658104446362537(-01)
1 -1.1981402347355922074( 00) 2.8702969557805425191(-01)
2 6.5551438857302995258(-01) -3.4408378420502949538(-01)
3 -2.9953505868389805184(-01) 2.3925667034870999925(-01)
4 -1.2290894785744311611(-01) -1.2467471923834294257(-01)
5 1.3291868229097976050(-01) 3.5723759046141083284(-01)
6 1.6558566586349975365(-01) -1.3214849643052383146( 00)
7 -2.0639837637437350134(-01) 2.0742620237808097990( 00)
8 -3.4369237595627648147(-01) 8.7661786242052607910(-01)
9 5.3512396506917389018(-01) -5.8027220848957686410( 00)

10 9.8826990293494178549(-01) -1.4527363727230401800( 01)
11 -1.7727104172802503849( 00) 8.1645013033374835214( 01)
12 -3.4603320054219551427( 00) 1.8888577144524697440( 01)
13 7.6250489841030361588( 00) -6.9761752532798225917( 02)
14 1.5996737098879811614( 01) -2.9730788039683265380( 01)
15 -3.8746606752926469393( 01) 8.0967218371063755555( 03)
16 -9.7718718838695330848( 01) 3.5047762978500328260( 03)
17 2.4658544977041937142( 02) -1.6557706930368463153( 05)
18 6.8127124140934458226( 02) 1.9451891117092241490( 05)
19 -1.9347776095320305941( 03) 2.3576379474121149423( 06)
20 -5.5917614279028342511( 03) -4.2674693742846836160( 06)
21 1.6946577183838210440( 04) -4.3029864503539416628( 07)
22 5.3740662904165215028( 04) 8.4840418648295838800( 07)
23 -1.7196455150728807293( 05) 1.1513747610584117254( 09)
24 -5.7154842554279465430( 05) -3.7947723566734150700( 09)
25 1.9947297545959578757( 06) -2.2471348739202700242( 10)
26 6.9774955493224775978( 06) 9.4247294262547014757( 10)
27 -2.5295885095113634269( 07) 6.4705017160340005390( 11)
28 -9.5582266340499649945( 07) -3.0328400791282728668( 12)
29 3.6243387414615841710( 08) -2.2096776597420553290( 13)
30 1.4161712974011493534( 09) 1.3816693658929721364( 14)
31 -5.7365962696111560159( 09) 5.3295402762012514065( 14)
32 -2.3384167179932367473( 10) ————————–

Numbers in parentheses represent powers of 10.
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Chapter 3

Sturm-Liouville Eigenvalue

Problems

This chapter has been published as:

P. Gaudreau, R.M. Slevinsky, and H. Safouhi. The Double Exponential Sinc

Collocation Method for Singular Sturm-Liouville Problems. Journal of Math-

ematical Physics, 57(4):1–19, 2016.

Abstract.

The double exponential transformation coupled with Sinc methods has

sparked a lot of interest in numerical analysis over the last two decades. In

the following paper, we introduce a method based on the double exponen-

tial transformation combined with the Sinc collocation method for comput-

ing eigenvalues of singular Sturm-Liouville problems. This method produces

a symmetric positive-definite generalized eigenvalue system. The theoretical

convergence rate of our algorithm is established and numerical examples are

presented comparing our method with the single exponential Sinc collocation
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method.

3.1 Introduction

The following chapter follows from our published work in [84]. Sturm-

Liouville equations are abundant in the numerical treatment of scientific and

engineering problems. For example, Sturm-Liouville equations describe the

vibrational modes of various systems, such as the energy eigenfunctions of a

quantum mechanical oscillator, in which case the eigenvalues correspond to the

energy levels. Sturm-Liouville problems arise directly as eigenvalue problems

in one space dimension. They also commonly arise from linear PDEs in several

space dimensions when the equations are separable in some coordinate system,

such as cylindrical or spherical coordinates. Classical methods for computing

the eigenvalues of singular Sturm-Liouville problems often rely on approxima-

tions of the differential equations using finite-difference techniques or Prüfer

transformations in order to obtain a matrix eigenvalue system [126]. Other

alternatives where coefficient functions of the given problem are approximated

by piecewise polynomial functions were also introduced [134]. Asymptotic

methods also surfaced as an efficient tool to evaluate higher order eigenval-

ues [135].

Recently, new algorithms based on collocation and spectral methods have

become increasingly popular and have shown great promise [16]. More specif-

ically, Sinc collocation methods (SCM) [8, 94] have been shown to yield ex-

ponential convergence. The SCM have been used extensively during the last
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30 years to solve many problems in numerical analysis. Their applications

include numerical integration, linear and non-linear ordinary differential equa-

tions, partial differential equations, interpolation, and approximations to func-

tions [155, 158]. The SCM consists of expanding the solution of a Sturm-

Liouville problem using a basis of Sinc functions. By evaluating the resulting

approximation at the Sinc collocation points, one arrives at a matrix eigen-

value problem or generalized matrix eigenvalue problem for which the resulting

eigenvalues are approximations to the eigenvalues of the Sturm-Liouville op-

erator.

In [56, 94], a method combining the SCM and the single exponential (SE)

transformation is introduced. This method, which will be referred to as

SESCM leads to an efficient and accurate algorithm for computing the eigen-

values for singular Sturm-Liouville problems. The SE transformation is a

conformal mapping which allows for the function being approximated by a

Sinc expansion to decay single exponentially at both infinities. In [56], Eggert

et al. introduced such a transformation where the resulting matrices in the

generalized eigenvalue problem are symmetric and positive definite. Moreover,

they were able to show that their method converges at the rate O(N3/2e−c
√
N)

where N refers to the index of the 2N + 1 collocation points.

Recently, combination of the SCM with the double exponential (DE) trans-

formation has sparked a great interest. The DE transformation is a conformal

mapping which allows for the function being approximated by a Sinc basis

to decay double exponentially at both infinities. Since its introduction by

Takahasi and Mori [166], many have studied its effectiveness in numerically

evaluating integrals [121, 163, 164]. As is stated in [164], the DE Sinc col-
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location method (DESCM) method yields the best available convergence for

problems with end point singularities or infinite sized domains.

It is well known that the DE enables the Sinc expansion to achieve a much

higher rate of convergence than the SE. However, it should be noted that

the assumption for DE convergence is more severe than the one for SE. A

key feature in Sinc numerical methods is the distance from the real axis for

which the function of interest is analytic. This strip is traditionally denoted by

Dd = {z ∈ C : | =(z)| < d} for some d > 0. For simplicity, the larger the value

of d, the better Sinc numerical methods typically performs. As in [129, 167],

we denote the class of functions for which SE is suitable by FSE and the class

of functions for which DE is suitable by FDE. Given the fact that FDE ( FSE,

there exist examples such that Sinc expansion with SE achieves its usual rate,

whereas it does not with DE [129, 167] and consequently the DESCM is not

better than the SESCM for functions in FSE\FDE. However, in [129, 167],

the authors present a theoretical convergence analysis for Sinc methods with

DE for functions in FSE\FDE for which DE does not achieve its usual rate of

O
(
e−κ1N/ log(κ2 N)

)
, and they were able to prove that DE still works for these

functions with errors bounded by O
(
e−κ3

√
N/ log(κ4N)

)
which is slightly lower

than the rate of SE; however, as stated in [129, 167] one can consider that

there is almost no difference between the two transformations. This result

also illustrates the great advantage of using DE over SE. Concrete examples

of functions belonging to FSE\FDE are presented in [129,167]. Such examples

present somewhat complicated functions which depend on several factors in-

volved in Sinc numerical analysis. For example, one function presented in [129]
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concerning numerical integration which belongs to FSE\FDE is given by:

f(t) =
2(1− t2)

cos(4arctanh t) + cosh(2)
, with

∫ 1

−1

f(t)dt = 0.7119438....

(3.1)

Applying the single-exponential variable transformation t = ψSE(x) = tanh
(x
2

)
,

results in the new integrand f(ψSE(x)) to have an infinite number of complex

poles at the points:

ζ =
(π
2
+mπ

)
± i, with m ∈ Z (3.2)

As we can see, this new function is analytic in the strip {z ∈ C : | =(z)| <

1}. However, applying the double-exponential variable transformation t =

ψDE(x) = tanh
(π
2
sinh(x)

)
, results in the new integrand f(ψDE(x)) to have

an infinite number of complex poles at the points:

ζ = arcsinh

[
1

π

{(π
2
+mπ

)
± i
}]

, with m ∈ Z (3.3)

As we can see, the complex poles go to zero as |m| → ∞. Hence, there exist

no strip in the complex plane around the real axis for which the function

f(ψDE(x)) is analytic. This lack of an analytic strip about the real axis is the

reason for f(t) ∈ FSE\FDE.

In the present work, we demonstrate that the DESCM leads to an extremely

efficient computation of eigenvalues of singular Sturm-Liouville problems. Im-

plementing the DESCM leads to a generalized eigenvalue problem where the

matrices are symmetric and positive definite. We also show that the conver-
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gence of the DESCM algorithm is of the rate O
(

N5/2

log(N)2
e−κN/ log(N)

)
where N

refers to the index of the 2N + 1 collocation points. Our convergence result

helps to explain the performance enhancement that Sinc collocation methods

receive when using variable transformations with DE decay instead of SE de-

cay. Three singular Sturm-Liouville problems are treated and comparisons

with the SE transformation are presented for each example clearly illustrating

the superiority of the DESCM. Lastly, we demonstrate through an example

how the conformal mapping presented in the Eggert et al.’s transformation [56]

can be used to improve convergence of the DESCM when the coefficients func-

tions of the Sturm-Liouville problem are not analytic.

3.2 Definitions and basic properties

The sinc function is defined by the following expression:

sinc(z) =
sin(πz)

πz
, (3.4)

where z ∈ C and the value at z = 0 is taken to be the limiting value sinc(0) = 1.

In figure 3.1, we display the sinc function over the interval (−10, 10).

For j ∈ Z and h a positive number, The Sinc function S(j, h)(x) by:

S(j, h)(x) = sinc
(x
h
− j
)
. (3.5)

It is possible to expand well-defined functions as series of Sinc functions.

Such expansions are known as Sinc expansions or Whittaker Cardinal expan-

sions.
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Figure 3.1: The following figure displays the sinc function over the interval
(−10, 10).

Definition 3.2.1. [155] Given any function v(x) defined everywhere on the

real line and any h > 0, the Sinc expansion of v(x) is defined by

C(v, h)(x) =
∞∑

j=−∞
v(jh)S(j, h)(x). (3.6)

Whenever, the above series converges, it is called the cardinal function of v.

The truncated Sinc expansion of v(x) is defined by

CM,N(v, h)(x) =
N∑

j=−M

v(jh)S(j, h)(x) for M,N ∈ N. (3.7)

The symmetric truncated Sinc expansion is obtained by taking M = N in the

above equation.

The Sinc functions form an interpolatory set of functions with the discrete

45



orthogonality property:

S(j, h)(kh) =





1 for j = k

0 for j 6= k

with j, k ∈ Z. (3.8)

In other words, C(v, h)(x) = v(x) at all the Sinc grid points xk = kh.

A class of functions for which the cardinal function of v, C(v, h)(x) con-

verges to v(x) is characterized in the following definition:

Definition 3.2.2. [108] Let h be a positive constant. The Paley-Wiener class

of functions W (π/h) is the family of entire functions v such that on the real

line, v ∈ L2(R) and in the complex plane, v is of exponential type π/h, that is

|v(z)| ≤ K exp
(

π|z|
h

)
for some K > 0.

Functions in the familyW (π/h) share many important properties for which

we will state a few bellow. This first theorem characterizes the convergence of

the cardinal function for function belonging to W (π/h).

Theorem 3.2.3. [108] If v ∈ W (π/h), then for all z ∈ C, we have v(z) =

C(v, h)(z).

The following corollary establishes a connection between cardinal expan-

sions and the trapezoidal rule.

Corollary 3.2.4. [108] If v ∈ W (π/h), and v ∈ L1(R), then

∫ ∞

−∞
v(t)dt =

h
∞∑

k=−∞
v(kh).

If a function v ∈ W (π/h), then the generalized Fourier series of v relative
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to the complete orthogonal set
{

S(k,h)(t)√
h

}∞

k=−∞
is given by

∞∑

k=−∞

ck√
h
S(k, h)(t)

where ck =
√
hv(kh), by Theorem 3.2.3.

In [155], a class of functions which are successfully approximated by Sinc

expansions is introduced. Now, we shall present the definition for this class of

functions.

Definition 3.2.5. [155] Let d > 0 and let Dd denote the strip of width 2d

about the real axis:

Dd = {z ∈ C : | =(z)| < d}. (3.9)

In addition, for ε ∈ (0, 1), let Dd(ε) denote the rectangle in the complex plane:

Dd(ε) = {z ∈ C : | <(z)| < 1/ε, | =(z)| < d(1− ε)}. (3.10)

Let B2(Dd) denote the family of all functions g that are analytic in Dd, such

that: ∫ d

−d

| g(x+ iy)| dy → 0 as x→ ±∞, (3.11)

and such that:

N2(g,Dd) = lim
ε→0

(∫

∂Dd(ε)

| g(z)|2 |dz|
)1/2

<∞. (3.12)

A figure of the strip Dd and the rectangle Dd(ε) is provided in figure 3.2.

The Sturm-Liouville (SL) equation in Liouville form is defined as follows:

Lu(x) = −u′′(x) + q(x)u(x) = λρ(x)u(x)

a < x < b u(a) = u(b) = 0, (3.13)
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Figure 3.2: Representive plot of the strip Dd and the rectangle in the complex
plane Dd(ε).

where −∞ ≤ a < b ≤ ∞. Additionally, the function q(x) is assumed non-

negative and the weight function ρ(x) is assumed positive. The values λ are

known as the eigenvalues of the SL equation. The SL equation (3.13) is classi-

fied as either regular or singular depending on the behaviour of q(x) and ρ(x)

at the endpoints a and b [193].

In [56], Eggert et al. demonstrate that when using Sinc expansion approx-

imations for solving the SL boundary value problem (3.13), an appropriate

change of variables results in a symmetric discretized system. The change of

variable they propose is of the form [56]:

v(x) =
(√

(φ−1)′ u
)
◦ φ(x) =⇒ u(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (3.14)

where φ−1(x) a conformal map of a simply connected domain in the complex

plane with boundary points a 6= b such as φ−1(a) = −∞ and φ−1(b) = ∞.

Examples of such conformal maps are given in Table 3.1, where conformal

maps inducing SE decay are given as φSE and DE decay as φDE.
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Table 3.1: Table of exponential variable transformations.

Interval φSE φDE

(0, 1)
1

2
tanh(t) +

1

2

1

2
tanh(sinh(t)) +

1

2
(0,∞) arcsinh(et) arcsinh(esinh(t))

(−∞,∞) t sinh(t)

Applying the change of variable (3.14) to (3.13), one obtains [56]:

L v(x) = −v′′(x) + q̃(x)v(x) = λρ(φ(x))(φ′(x))2v(x), (3.15)

where:

q̃(x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+ (φ′(x))2q(φ(x)). (3.16)

To apply the SCM method, one begins by approximating the solution

of (3.15) by the truncated Sinc expansion (3.7) where the terms v(jh) are

unknown scalar weights and h is a mesh size.

Inserting (3.7) into (3.15) and collocating at the Sinc points, we obtain the

following system:

LCM,N(v, h)(xk) =
N∑

j=−M

[
− d2

dx2k
S(j, h)(xk) + q̃(xk)S(j, h)(xk)

]
v(jh)

= µ

N∑

j=−M

S(j, h)(xk)(φ
′(xk))

2ρ(φ(xk))v(jh), (3.17)

where xk = kh for k = −M, . . . , N and µ is the approximation of the eigenvalue

λ in (3.15).
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If we let δ(l)j,k be the lth Sinc differentiation matrix with unit mesh size [157]:

δ
(l)
j,k = hl

(
d

dx

)l

S(j, h)(x)

∣∣∣∣∣
x=kh

, (3.18)

then we obtain equivalently:

N∑

j=−M

[
− 1

h2
δ
(2)
j,k + q̃(kh) δ

(0)
j,k

]
v(jh) = µ

N∑

j=−M

δ
(0)
j,k (φ

′(kh))2ρ(φ(kh))v(jh).

(3.19)

Equation (3.19) can be rewritten in a matrix form as follows:

LCM,N(v, h) = Av = µD2v =⇒ (A− µD2)v = 0, (3.20)

where the vectors v and CM,N(v, h) are given by:

v = (v(−Nh), . . . , v(Nh))T

CM,N(v, h) = (CM,N(v, h)(−Mh), . . . , CM,N(v, h)(Nh))
T . (3.21)

The entries Aj,k of the (N +M +1)× (N +M +1) matrix A are given by:

Aj,k = − 1

h2
δ
(2)
j,k + q̃(kh) δ

(0)
j,k with −M ≤ j, k ≤ N, (3.22)

and the entries D2
j,k of the (N +M + 1) × (N +M + 1) diagonal matrix D2

are given by:

D2
j,k = (φ′(kh))2ρ(φ(kh)) δ

(0)
j,k with −M ≤ j, k ≤ N. (3.23)
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To obtain nontrivial solutions for v, we set:

det(A−D2µ) = 0. (3.24)

To find an approximation of the eigenvalues of (3.15), one simply has to

solve this generalized eigenvalue problem. From this it follows that there is

no need to find the solution v(x) of (3.15) in order to find its eigenvalues.

However, most modern eigensolvers can give eigenvalues and eigenvectors at

the same time.

To implement SESCM, one needs to find a function φ for the substitu-

tion (3.14) that would result in the solution of (3.15) to decay single exponen-

tially. In [56], an upper bound for the error between the eigenvalues λ in (3.15)

and their approximations µ in (3.20) is obtained when |v(t)| ≤ C exp(−α|t|))

for some α > 0 on the real line. The upper bound is given by [56]:

|µ− λ| ≤ Kv,d

√
δλN3/2 exp(−

√
πdαN), (3.25)

where Kv,d is a constant that depends on v and d. The optimal step size h is

given by:

h =

(
πd

αN

)1/2

. (3.26)

In [56], Eggert et al. consider the case where |v(t)| ≤ C exp(−α|t|). For the

more general case where |v(t)| ≤ C exp(−α|t|ρ) for some ρ > 0, the optimal

step size is given by [163]:

h =

(
πd

(αN)ρ

) 1
ρ+1

, (3.27)
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and in this case equation (3.25) becomes [163]:

|µ− λ| = O
(
exp(−(πdαN)

ρ
ρ+1 )

)
as N → ∞. (3.28)

3.3 The double exponential Sinc collocation method

(DESCM)

In the DE transformation, the function v(x) decays double exponentially at

the endpoints of its domain.

Similarly to the SESCM, we approximate the solution v(x) of (3.15) by the

truncated Sinc expansion (3.7).

To analyse the convergence of the DESCM method, we need to consider the

error of the second derivative of the truncated Sinc expansion of the solution

v(x):
d2

dx2
(CM,N(v, h)(x)) =

N∑

k=−M

(
v(jh)

d2

dx2
(S(k, h)(x))

)
. (3.29)

A bound for this error is established in the following lemma. First, let us

denote by W (x) the Lambert W function which is defined as follows:

Definition 3.3.1. [46, Equation (1.5)] The Lambert W function denoted by

W (x) is defined implicitly by the solution of the following equation:

z = W (x)eW (x). (3.30)

In our case, we restrict the Lambert W function to be real valued with the ad-

ditional constraint W (x) ≥ −1. This additional constraint forces the Lambert
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W function to be single-valued. This branch is commonly denoted by W0(x).

For the numerical evaluation of the Lambert W function, we refer the readers

to [46].

Let us also denote by bxc the floor function, dxe the ceiling function, and

x+ = max{x, 0}. Let also || · ||2 denote the L2 norm for Lebesgue integrable

functions:

||f(x)||2 =
(∫

R

|f(x)|2 dx
)1/2

. (3.31)

Lemma 3.3.2. Let E
(2)
M,N(g, h)(x) denote the error of approximating the sec-

ond derivative of a function g by the second derivative of its truncated Sinc

expansion:

E
(2)
M,N(g, h)(x) =

d2

dx2
[g(x)]− d2

dx2
[CM,N(g, h)(x)] . (3.32)

Let:

|g(x)| ≤ A





exp(−βL exp(γL|x|)) for x ∈ (−∞, 0]

exp(−βR exp(γR|x|)) for x ∈ [0,∞),

(3.33)

where A, βL, βR, γL, γR > 0.

Moreover, assume that g ∈ B2(Dd) with d ≤ π

2γ
, where γ = max{γL, γR}.

If the mesh size h is given by:

h =
log(πdγn/β)

γn
, (3.34)
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where:





n =M, N =

⌈
γL
γR
M

(
1 +

log (βL/βR)

W (πdγLM/βL)

)⌉+
, β = βL if γL > γR

n = N, M =

⌊
γR
γL
N

(
1 +

log (βR/βL)

W (πdγRN/βR)

)⌋+
, β = βR if γR > γL

n =M, N =

⌈
M

(
1 +

log (βL/βR)

W (πdγLM/βL)

)⌉
, β = βL if γL = γR and βL ≥ βR

n = N, M =

⌊
N

(
1 +

log (βR/βL)

W (πdγRN/βR)

)⌋
, β = βR if γL = γR and βR ≥ βL,

(3.35)

then:

||E(2)
M,N(g, h)(x)||2 ≤ Kg,d

(
n

log(n)

)5/2

exp

(
− πdγn

log(πdγn/β)

)
, (3.36)

where Kg,d is a positive constant that depends on the function g and d.

Proof. To begin, we re-write the Sinc expansion of g as follows:

E
(2)
M,N(g, h)(x) =

(
g′′(x)−

∞∑

k=−∞
g(kh)S(k, h)′′(x)

)

+
∞∑

k=N+1

g(kh)S(k, h)′′(x) +
−M−1∑

k=−∞
g(kh)S(k, h)′′(x). (3.37)

The difference of the first two terms in (3.37) is known as the sampling

or discretization error while the sum of the last two terms corresponds to the

truncation error.
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Using the triangle inequality, we obtain:

||E(2)
M,N(g, h)(x)||2 ≤

∣∣∣∣∣

∣∣∣∣∣g
′′(x)−

∞∑

k=−∞
g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

+

∣∣∣∣∣

∣∣∣∣∣

∞∑

k=N+1

g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

+

∣∣∣∣∣

∣∣∣∣∣

−M−1∑

k=−∞
g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

. (3.38)

From [156], we have:

∣∣∣∣∣

∣∣∣∣∣g
′′(x)−

∞∑

k=−∞
g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

≤ Bg,d
exp(−πd/h)

h2
, (3.39)

where Bg,d is a constant that depends on g and d.

In the proof of [110], Lundin et al. derive the following result:

∣∣∣∣∣

∣∣∣∣∣

∞∑

k=N+1

g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

≤ Cg,d

h3/2

∞∑

k=N+1

|g(kh)|. (3.40)

for some constant Cg,d that depends on the function g and d.

Utilizing this result with the bound in (3.33), we show that:

∣∣∣∣∣

∣∣∣∣∣

∞∑

k=N+1

g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

≤ Dg,d h
−3/2

( ∞∑

k=N+1

A exp(−βR exp(γRkh))

)

≤ ADg,d h
−3/2

(∫ ∞

N

exp(−βR exp(γRkh))dk
)

≤ ADg,d h
−5/2

(
exp(−βR exp(γRNh))

γRβR exp(γRNh)

)

≤ Fg,d
exp(−βR exp(γRNh))

h5/2
, (3.41)
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where Fg,d is a constant that depends on g and d and similarly, we obtain the

following upper bound:

∣∣∣∣∣

∣∣∣∣∣

−M−1∑

k=−∞
g(kh)S(k, h)′′(x)

∣∣∣∣∣

∣∣∣∣∣
2

≤ Gg,d
exp(−βL exp(γLMh))

h5/2
, (3.42)

where Gg,d is a constant that depends on g and d.

Equating the exponential terms in (3.41) and (3.42) and solving for N or

M in N0, we obtain:





N =

⌈
γL
γR
M +

log (βL/βR)

γRh

⌉+
if γL > γR

M =

⌊
γR
γL
N +

log (βR/βL)

γLh

⌋+
if γR > γL

N =

⌈
M +

log (βL/βR)

γRh

⌉
if γL = γR and βL ≥ βR

M =

⌊
N +

log (βR/βL)

γLh

⌋
if γL = γR and βR ≥ βL.

(3.43)

As can be seen from (3.43), M and N depend upon the step size h.

Combining (3.39), (3.41) and (3.42), we obtain:

||E(2)
M,N(g, h)(x)||2 ≤ Bg,d

exp(−πd/h)
h2

+ (Fg,d +Gg,d)
exp(−β exp(γnh))

h5/2
,

(3.44)
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where: 



n =M, β = βL if γL > γR

n = N, β = βR if γR > γL

n =M, β = βL if γL = γR and βL ≥ βR

n = N, β = βR if γL = γR and βR ≥ βL.

(3.45)

Equating the exponential terms in the RHS of (3.44) and solving for h, we

obtain:

h =
W (πdγn/β)

γn
. (3.46)

Substituting this result in (3.43), we obtain equation (3.35).

The first term in the asymptotic expansion of the Lambert W function as

x→ ∞ is given by [46]:

W (x) ∼ log(x) as x→ ∞. (3.47)

Consequently the asymptotic value for the mesh size h as n→ ∞ is given by:

h ∼ log(πdγn/β)

γn
as n→ ∞. (3.48)

Substituting (3.48) into (3.44) and simplifying, we obtain equation (3.36).

We shall now state a theorem establishing the convergence of the eigenval-

ues of a discretized SL problem when the solution decays double exponentially.

Theorem 3.3.3. Let λ and v(x) be an eigenpair of the transformed differential

equation (3.15). Assume there exist positive constants A, βL, βR, γL, γR such
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that:

| v(x)| ≤ A





exp(−βL exp(γL|x|) for x ∈ (−∞, 0]

exp(−βR exp(γR|x|)) for x ∈ [0,∞).
(3.49)

If v ∈ B2(Dd) with d ≤ π

2γ
, where γ = max{γL, γR}.

If there is a constant δ > 0 such that q̃(x) ≥ δ−1 and if the optimal mesh

size h is given by:

h =
log(πdγn/β)

γn
, (3.50)

where n and β are given by (3.35).

Then, there is an eigenvalue µ of the generalized eigenvalue problem satis-

fying:

|µ− λ| ≤ Kv,d

√
δλ

(
n5/2

log(n)2

)
exp

(
− πdγn

log(πdγn/β)

)
as n→ ∞, (3.51)

where Kv,d is a constant that depends on v and d.

Proof. In general, SL differential equations and their transformed counterpart

(3.15) have an infinite number of eigenpairs {(λi, vi(x))}i∈N0 . Since the choice

of the eigenpair is arbitrary for the procedure of this proof, we will abstain

from using indices on the eigenvalues λ as well as on the eigenfunctions v(x).

First, we assume that the arbitrary eigenpair λ and v(x) of the transformed

differential equation (3.15) can be normalized as follows:

∫ ∞

−∞
v(x)2ρ(φ(x))(φ′(x))2dx = 1. (3.52)
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This is equivalent to normalization condition for the original system:

∫ b

a

u(x)2ρ(x)dx = 1. (3.53)

Applying (3.15) to the collocation points x = jh for −M ≤ j ≤ N leads

to:

Lv = λ diag(ρ (φ′)2)v = λD2v, (3.54)

where v is defined in (3.21), λ is the eigenvalue corresponding to the eigen-

function v(x) and the matrix D is given by:

D = diag(
√
ρ (φ′)). (3.55)

Taking the difference between (3.54) and (3.20), we obtain:

∆v = LCM,N(v, h)− Lv = (A− λD2)v, (3.56)

where the vector CM,N(v, h) is defined in (3.21).

Since A and D2 are symmetric positive definite matrices, there exist gen-

eralized orthogonal eigenvectors zi and generalized positive real eigenvalues

µ−M ≤ µ−M+1 ≤ . . . ≤ µN such that:

ZTAZ = diag((µ−M , . . . , µN)) (3.57)

ZTD2Z = I (3.58)

Azi = µiD
2zi. (3.59)
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The matrix Z is simply a matrix with the generalized eigenvectors zi as

its columns. Equations (3.57), (3.58) and (3.59) are analogous to the spectral

decomposition of one symmetric positive definite matrix, i.e. when D2 = I.

However, in this case D2 6= I and we are dealing with a generalized eigenvalue

problem with two symmetric positive definite matrices. It is important to note

that the matrices A and D2 generate N+M+1 generalized eigenvalues. Since

we are only interested in the generalized eigenvalue that approximates λ, N +

M of these generalized eigenvalues are not useful in this proof. The following

demonstration will determine a systematic way to discard these remaining

N +M eigenvalues. In other words, we will demonstrate that there exists a

sequence of generalized eigenvalues {µn}n∈N such that this sequence converges

to the eigenvalue λ.

Since all the eigenvectors {zi}Ni=−M are linearly independent, there exists

constants bi such that:

v =
N∑

i=−M

bi zi. (3.60)

Note that the values bi depend on the vector v and consequently on the

eigenfunction v(x).

Substituting (3.60) in the RHS of (3.56) and using (3.59), we obtain:

∆v =
N∑

i=−M

bi(µi − λ)D2zi. (3.61)

Multiplying both sides of (3.61) by zTj and utilizing (3.58), we obtain:

zTj ∆v = bj(µj − λ) for j = −M, . . . , N. (3.62)
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Moreover, by multiplying both sides of (3.60) by the matrix D2, and taking

the inner product of the resulting vector with v and using (3.59), we obtain:

||Dv||22 =
N∑

i=−M

b2i ≤ (N +M + 1) b2p, (3.63)

where:

bp = max
−M≤i≤N

{|bi|}. (3.64)

Note that the value of bp depends on the vector v and consequently on

the eigenfunction v(x) as can be seen from (3.60). Moreover, the index p

depends on the range (−M, . . . , N). Since v ∈ B2(Dd) and it satisfies the decay

condition (3.49), we have the following relation when applying the trapezoidal

quadrature rule to (3.52):

1 = h
N∑

k=−M

v(jh)2ρ(φ(jh))(φ′(jh))2 + ε(v,M,N)

= h||Dv||22 + ε(v,M,N). (3.65)

The assumptions on v(x) guarantee that |ε(v,M,N)/h| → 0 as M,N →

∞. From this it follows that there exist N > 0 and M > 0 such that

|ε(v,M,N)/h| ≤ 1/(2h), and this leads to ||Dv||22 ≥ 1/(2h). Combining this

with (3.63), we obtain a lower bound for bp:

(2(N +M + 1)h)−1/2 ≤ bp. (3.66)

Using the Rayleigh principle [12] and the assumption that there exists a
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constant δ > 0 such that q̃(x) ≥ δ−1 implies that:

δ−1 ≤ min
αj∈σ(A)

{αj}

= min
x 6=0

{
xTAx

xTx

}

≤ zTj Azj

||zj||22
, (3.67)

where σ(A) is the eigenspectrum of the matrix A and {αj}Nj=−M are its eigen-

values.

The equality in (3.57) indicates that zTi Azi = µi and when combined

with (3.67) leads to the following upper bound for ||zj||22:

||zj||22 ≤ δµj. (3.68)

Let θj be the angle between zj and ∆v in (3.62). Taking the absolute value

of (3.62) and expanding the inner product, we obtain:

|µj − λ| = ||zj||2||∆v||2| cos(θj)|
|bj|

. (3.69)

Since we are looking to minimize the left hand side of (3.69), we have to

select the index j such that we maximize the denominator of the right hand

side of (3.69). Choosing the same index l = p in (3.64) will certainly achieve

this goal given fixed N and M . Hence, replacing ||zp||2 by its bound in (3.68),

|bp| by its bound in (3.66) and taking into consideration that | cos(θp)| ≤ 1, we

obtain:

|µp − λ| ≤
√
δµp (2(N +M + 1)h)1/2 ||∆v||2. (3.70)
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In the following, we write µ instead of µp for simplicity.

We now have to consider two cases. For fixed N and M , we have:

|µ− λ| ≤ λ ⇒ µ = µ− λ+ λ ≤ |µ− λ|+ λ ≤ 2λ

|µ− λ| > λ ⇒ µ = µ− λ+ λ ≤ |µ− λ|+ λ ≤ 2|µ− λ|. (3.71)

Combining these inequalities with (3.70) leads to the following results:

|µ− λ| ≤ 2
√
δ|µ− λ| ((N +M + 1)h)1/2 ||∆v||2 when |µ− λ| > λ

|µ− λ| ≤ 2
√
δλ ((N +M + 1)h)1/2 ||∆v||2 when |µ− λ| ≤ λ.

(3.72)

Next, we will consider the quantity ||∆v||2. It is easy to show that:

|∆v(jh)| = |LCM,N(v, h)(x)− L v(x)||x=jh

=

∣∣∣∣
d2

dx2
CM,N(v, h)(x)−

d2

dx2
v(x)

∣∣∣∣
∣∣∣∣
x=jh

= |E(2)
M,N(g, h)(jh)|. (3.73)

Hence, using lemma 3.3.2 with:

h =
log(πdγn/B)

γn
, (3.74)

we can derive the following result:

||∆v||2 ≤ Fv,d

(
n

log(n)

)5/2

exp

(
− πdγn

log(πdγn/β)

)
, (3.75)
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where Fv,d is a constant that depends on v and d.

Combining (3.75) with (3.72), we obtain:

|µ− λ| ≤ Kv,d

√
δ|µ− λ| n5/2

log(n)2
exp

(
− πdγn

log(πdγn/β)

)
when |µ− λ| > λ

|µ− λ| ≤ Kv,d

√
δλ

n5/2

log(n)2
exp

(
− πdγn

log(πdγn/β)

)
when |µ− λ| ≤ λ,

(3.76)

where Kv,d is a constant that depends on v and d.

Simplifying, we obtain:

|µ− λ| ≤ K2
v,d δ

n5

log(n)4
exp

(
− 2πdγn

log(πdγn/β)

)
when |µ− λ| > λ

|µ− λ| ≤ Kv,d

√
δλ

n5/2

log(n)2
exp

(
− πdγn

log(πdγn/β)

)
when |µ− λ| ≤ λ.

(3.77)

The bounds in (3.77) demonstrate that for fixed n, one of the generalized

eigenvalues of the matrices A and D2 of size (N +M + 1) × (N +M + 1)

will approximate the eigenvalues λ. As n increases, we will create a sequence

of generalized eigenvalues that converge to the eigenvalue λ. Equation (3.77)

also indicates that |µ− λ| → 0 as n → ∞ for all eigenvalues λ. Moreover, as

n increases, the second case in (3.77) will take precedence since |µ − λ| ≤ λ.

Hence we obtain the following asymptotic error estimate:

|µ− λ| ≤ Kv,d

√
δλ

(
n5/2

log(n)2

)
exp

(
− πdγn

log(πdγn/β)

)
as n→ ∞.

(3.78)

Since this process can be done for any arbitrary eigenpair {(λi, vi(x))}i∈N0 ,
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it is clear from (3.78) that every eigenvalue λ will satisfy the error bound for

the appropriate sequence of generalized eigenvalues µ.

The dependence on the value of λ in the right-hand side of (3.78) demon-

strates that convergence for eigenvalues on the lower end of the eigenvalue

spectrum will be slightly faster. Nevertheless, the exponential term decreases

very rapidly to 0 as n→ ∞ regardless the value of λ.

3.4 Numerical Discussion

In the following section, we will investigate the convergence of the DESCM

compared with the SESCM for various equations. Before we proceed with the

examples, we would like to address the choice of the optimal mesh for the

DESCM. As shown in [175], the use of the mesh size in (3.46) instead of (3.34)

often leads to markedly superior results for intermediate values of N. Moreover,

both these formulas for the mesh size h will lead to the same asymptotic error

estimate in Theorem 3.3.3.

All calculations are performed using the programming language Julia [30]

in double precision. The eigenvalue solvers in Julia utilize the famous linear

algebra package LAPACK [13]. To produce our figures, we use the Julia pack-

age Winston [128]. The matrices A and D2 are constructed using (3.22) and

(3.23) respectively.

To measure the performance of the DESINC method when the generalized

eigenvalues of interest are known analytically, we use the absolute error as
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follows:

Absolute error = |µi(n)− λi| for n, i = 1, 2, . . . , (3.79)

where µi(n) is the nth approximation to the ith eigenvalue λi.

For the example 4.3, since the exact generalized eigenvalues are not known

analytically, we computed approximations to absolute errors as follows:

Absolute error approximation = |µi(n)− µi(n− 1)| for n, i = 1, 2, . . . ,

(3.80)

where µi(n) and µi(n− 1) are the nth and (n− 1)th approximations to the ith

eigenvalue λi respectively.

3.4.1 Bessel Equation

An important eigenvalue problem related to the Bessel equation in Liouville

form for n ≥ 1 is defined by: [193]

−u′′(x) + 4n2 − 1

x2
u(x) = λu(x), 0 < x < 1,

u(0) = u(1) = 0. (3.81)

The solutions of (3.81) are given by:

um(x) = x1/2Jn(x
√
λm) and λm = j2m,n for m = 0, 1, . . . , (3.82)

where jm,n are the positive zeros of the Bessel function Jn(x). In this case, the
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point x = 0 is a regular singular point. The solution u(x) has the following

asymptotic behavior near the endpoints:

u(x) ∼





a1x
n+1/2 as x→ 0

a2(x− 1) as x→ 1,

(3.83)

for some constants a1 and a2.

To implement the DE transformation, we use the first mapping in Table 3.1:

x = φDE(t) =
1

2
tanh(sinh(t)) +

1

2
∼





1

2
exp(− exp(−t)) as t→ −∞

1− 1

2
exp(− exp(t)) as t→ ∞.

(3.84)

Hence, the transformed equation (3.15) is given by:

−v′′(t) +
(
cosh2(t) +

1

4
− 3

4
sech2(t) +

(4n2 − 1) cosh2(t)

(e2 sinh(t) + 1)2

)
v(t)

= λ

(
cosh(t)

2 cosh2(sinh(t))

)2

v(t). (3.85)

The solution of (3.85) has the following asymptotic behavior near infinities:

v(t) ∼





α1 exp

(
t

2
− n exp(−t)

)
as t→ −∞

α2 exp

(
− t

2
− 1

2
exp(t)

)
as t→ ∞,

(3.86)

for some constants α1 and α2. Consequently, we can establish the following
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bound for v(t):

|v(t)| ≤ A exp(−n exp(| t|)) for t ∈ R, (3.87)

for some constant A.

Using (3.46) with γ = 1, β = n and d =
π

2
, we obtain:

h =
W (π2N/2n)

N
. (3.88)

Before we conclude this numerical example, we mention that nonsymmet-

ric Sinc expansions (M 6= N in the Sinc expansion) can provide numerical

efficiency in problems where the solutions to the transformed SL equation

(3.15) have different asymptotic behaviour at both infinities. To illustrate this

claim, we will compare the symmetric (M = N in the Sinc expansion) and

nonsymmetric Sinc expansions for this example.

For the transformed Bessel equation (3.85), using (3.35) with BL = n,

BR = 1/2, γL = 1 and γR = 1, we obtain the following equation for the

number of right collocation points:

N =

⌈
M

(
1 +

log (2n)

W (π2M/2n)

)⌉
. (3.89)

Using (3.46), we obtain:

h =
W (π2M/2n)

M
. (3.90)

Figure 3.3 displays the absolute error for the symmetric and nonsymmetric
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DESCM and SESCM for the first eigenvalue of (3.81) with n = 7 and λ1 ≈

122.9076002036162.

It is clear from Figure 3.3 that the symmetric DESCM outperforms the

SESCM and more importantly the nonsymmetric DESCM proves to be far

superior compared to both methods.

Absolute Error for energy level n = 0
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Figure 3.3: Plot of the absolute convergence of the SESCM as well as the symmetric
and nonsymmetric DESCMs for the first eigenvalue λ ≈ 122.9076002036162 of (3.81)
with n = 7.

3.4.2 Laguerre Equation

The Laguerre equation in Liouville form [193] for α ∈ (−∞,∞) is defined by:

−u′′(x) +
(
α2 − 1/4

x2
− α + 1

2
+
x2

16

)
u(x) = λu(x), 0 < x <∞

u(0) = u(∞) = 0. (3.91)
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Equation (3.91) has the following analytic eigenvalues independent of α:

λn = n− 1, n = 1, 2, . . . . (3.92)

We will consider the case α >
1

2
where the point x = 0 is a regular singular

point. The solution u(x) has the following behavior near the endpoints:

u(x) ∼





Axα+1/2 as x→ 0

Bx2λ+α+1/2 exp

(
−x

2

8

)
as x→ ∞,

(3.93)

for some constants A and B.

To implement the DE transformation, we use the second mapping in Ta-

ble 3.1:

x = φDE(t) = arcsinh(esinh(t)) ∼





exp

[
−exp(−t)

2

]
as t→ −∞

exp(t)

2
as t→ ∞.

(3.94)

Hence, the transformed equation (3.15) is given by:

−v′′(t) +
[
−3 cosh2(x)

16

(
tanh(sinh(x)) +

1

3

)2

+
cosh2(x)

3
+

1

4
− 3

4
sech2(x)

+

(
α2 − 1/4

arcsinh2(esinh(t))
− α + 1

2
+

arcsinh2(esinh(t))

16

)(
cosh2(t)

1 + e−2 sinh(t)

)]
v(t)

=

(
λ cosh2(t)

1 + e−2 sinh(t)

)
v(t). (3.95)

The solution of (3.95) has the following asymptotic behaviour near infini-
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ties:

v(t) ∼





A′ exp( t
2
− α

2
exp(−t)) as t→ −∞

B′ exp(t(α + 2λ)− 1
32
exp(2t)) as t→ ∞,

(3.96)

for some constants A′ and B′. Consequently, we can establish the following

bound for v(t):

|v(t)| ≤ Ã exp

(
− 1

32
exp(2| t|)

)
for t ∈ R, (3.97)

for some constant Ã.

Using (3.46) with γ = 2, β =
1

32
and d =

π

4
, we obtain:

h =
W (16π2N)

2N
. (3.98)

Since the solution to the transformed Laguerre equation (3.95) has differ-

ent asymptotic behaviour at both infinities, we can use a nonsymmetric Sinc

expansion. Using (3.46) with BL = α/2, BR = 1/32, γL = 1 and γR = 2, we

obtain the following equation for the number of left collocation points:

M = max

{⌊
2N

(
1− log (16α)

W (16π2N)

)⌋
, 0

}
. (3.99)

The step size in this case is given by (3.46) as:

h =
W (16π2N)

2N
. (3.100)
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Figure 3.4 displays the absolute error for the DESCM and SESCM for the

first eigenvalue of (3.91) with α = 3 and λ1 = 0. Here again, the nonsymmetric

case performs better than the symmetric case.
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Figure 3.4: Plot of the absolute convergence of the SESCM as well as the symmetric
and nonsymmetric DESCMs for the first eigenvalue of (3.91) with α = 3 and λ1 = 0.

3.4.3 Complex Singular equation

The following example illustrates the case where the coefficients q(x) and ρ(x)

might have complex singularities close to the real line. In such instances the

DESCM still outperforms the SESCM.

The singular equation that we consider is defined by the following:

−u′′(x) +
(
x2 +

tanh(x)

log(x2 + 1.1)

)
u(x) =

λ

x2 + cos(x)
u(x), −∞ < x <∞

u(−∞) = u(∞) = 0. (3.101)
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Equation (3.101) has several points where the coefficient functions are not

analytic. Firstly, the coefficient function:

q(z) = z2 +
tanh(z)

log(z2 + 1.1)
, (3.102)

has complex singularities at the points:

z = ±i
√
0.1 and z = iπ

(
n+

1

2

)
for n ∈ Z. (3.103)

Secondly, the weight function:

ρ(z) =
1

z2 + cos(z)
, (3.104)

has complex singularities at the points:

z ≈ ±1.621347946 i and z ≈ ±2.593916090 i. (3.105)

The solution u(x) has the following behavior near the boundary points:

u(x) ∼ A|x|−1/2 exp

(
−1

2
x2
)

as |x| → ∞, (3.106)

for some constant A.

Since this example is not treated in literature, we will present the imple-

mentation of the SE transformation. Since the solution already exhibits SE

decay, we use the third mapping in Table 3.1 x = φSE(t) = t to implement

the SE transformation. Consequently, the transformed equation (3.15) is ex-
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actly the same as (3.101). Moreover, we can obtain a bound for the solution

of (3.15), which is given by:

|v(t)| ≤ Ã exp

(
−1

2
t2
)

for t ∈ R. (3.107)

Due to the complex singularities in (3.103) and (3.105), the optimal value

for the strip width is d =
√
0.1. Hence using (3.27) with ρ = 2 and β =

1

2
, we

obtain:

h =

(
4π

√
0.1

N2

)1/3

. (3.108)

To implement the DE transformation, we use the third mapping in Ta-

ble 3.1:

x = φDE(t) = sinh(t) ∼





−exp(−t)
2

as t→ −∞

exp(t)

2
as t→ ∞.

(3.109)

Hence, the transformed equation (3.15) is given by:

−v′′(t) +
[
1

4
− 3

4
sech2(t) + sinh(t)2 +

tanh(sinh(t)) cosh2(t)

ln(sinh2(t) + 1.1)

]
v(t)

=

[
λ cosh2(t)

sinh2(t) + cos(sinh(t))

]
v(t). (3.110)

The solution of (3.110) has the following asymptotic behavior near infini-

ties:

v(t) ∼ A′ exp

(
−|t| − 1

8
exp(2|t|)

)
as |t| → ∞, (3.111)
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for some constants A′. Consequently, v(t) can be bounded as follows:

| v(t)| ≤ Ã exp

(
−1

8
exp(2|t|)

)
for t ∈ R. (3.112)

The conformal map φ(t) = sinh(t) moves the singularities in (3.103) and

(3.105) as follows. First, the coefficient function:

q̃(z) =
1

4
− 3

4
sech2(z) + sinh(z)2 +

tanh(sinh(z)) cosh2(z)

ln(sinh2(z) + 1.1)
, (3.113)

has complex singularities at the points:

± i arcsin
(√

0.1
)
, i
(π
2
+ nπ

)
and ±

(
arccosh

(π
2
+ πn

)
+
π

2
i
)
, n ∈ Z.

(3.114)

Second, the weight function:

ρ(sinh(z)) cosh2(z) =
cosh2(z)

sinh(z)2 + cos(sinh(z))
, (3.115)

has complex singularities at the points:

z ≈ ±
[
1.063876028 +

π

2
i
]

and z ≈ ±
[
1.606899463 +

π

2
i
]
. (3.116)

Due to the complex singularities in (3.114) and (3.116), the optimal value

for the strip width d is d = arcsin
(√

0.1
)
.

Using (3.46) with γ = 2, β =
1

8
and d = arcsin(

√
0.1), we obtain:

h =
W (16π arcsin(

√
0.1)N)

2N
. (3.117)
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As can be seen from the above analysis, the conformal map φ(t) = sinh(t)

requires the solution of (3.110) to belong to B2(Darcsin(
√
0.1)). However, we will

demonstrate that by choosing a conformal map of the form φ(t) = κ sinh(t)

for some parameter 0 < κ < 1, we ware able to create a solution to (3.110)

that belongs to the function space B2(Dπ
4
). Since arcsin(

√
0.1) < π

4
, by Theo-

rem 3.3.3 we expect eigenvalues of functions belonging to B2(Dπ
4
) to converge

faster. For more information on the use of conformal maps to accelerate con-

vergence of Sinc numerical methods, we refer the interested reader to [152].

To implement the double exponential transformation for (3.110), we use

the mapping:

x = φDE(t) = κ sinh(t) ∼





−κ exp(−t)
2

as t→ −∞

κ exp(t)

2
as t→ ∞

with 0 < κ < 1.

(3.118)

Hence, the transformed equation (3.15) is given by:

−v′′(t) +
(
1

4
− 3

4
sech2(t) + κ2 sinh(t)2 +

tanh(κ sinh(t))κ2 cosh2(t)

ln(κ2 sinh2(t) + 1.1)

)
v(t)

=

(
λκ2 cosh2(t)

κ2 sinh2(t) + cos(κ sinh(t))

)
v(t). (3.119)

The solution of (3.110) has the following asymptotic behavior near infini-

ties:

v(t) ∼ A′ exp

(
−|t| − κ2

8
exp(2|t|)

)
as |t| → ∞, (3.120)
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for some constants A′. Consequently, v(t) can be bounded as follows:

| v(t)| ≤ Ã exp

(
−κ

2

8
exp(2|t|)

)
for t ∈ R. (3.121)

The conformal map φ(t) = κ sinh(t) moves the singularities in (3.103) and

(3.105) as follows. Firstly, the coefficient function:

q̃(z) =
1

4
− 3

4
sech2(t) + κ2 sinh(t)2 +

tanh(κ sinh(t))κ2 cosh2(t)

ln(κ2 sinh2(t) + 1.1)
, (3.122)

has complex singularities at the points:

±i arcsin
(√

0.1

κ

)
, i
(π
2
+ nπ

)
and ±

(
arccosh

( π
2κ

+
πn

κ

)
+
π

2
i
)
, n ∈ Z.

(3.123)

Secondly, the weight function:

ρ(κ sinh(z))κ2 cosh2(z) =
κ2 cosh2(z)

κ2 sinh(z)2 + cos(κ sinh(z))
, (3.124)

has complex singularities at the points:

z ≈ ±
[
arccosh

(
1.621347946

κ

)
+
π

2
i

]
and z ≈ ±

[
arccosh

(
2.593916090

κ

)
+
π

2
i

]
.

(3.125)

By Theorem 3.3.3, the optimal value for the strip width d can be at most
π

4
. Hence, by choosing κ =

√
0.2, the closest singularities of (3.119) lie on the

lines y = ±iπ
4
. Consequently, using (3.46) with γ = 2, β =

0.2

8
and d =

π

4
,

we obtain:

h =
W (20π2N)

2N
. (3.126)
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Figure 3.5 displays the convergence rate of the DESCM and SESCM in

computing approximations of the the first eigenvalue λ ≈ 0.690894228848

of the singular equation (3.101). It is clear that the convergence is further

improved by using the adapted transformation φ(t) =
√
0.2 sinh(t).

Absolute Error Approximation for energy level n = 0
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Figure 3.5: Plot of the absolute convergence of the SESCM as well as the symmetric
and adapted DESCMs for the first eigenvalue λ ≈ 0.690894228848 of (3.101).

3.5 Conclusion

Computing the eigenvalues of singular Sturm-Liouville equations can be nu-

merically challenging. In this work, we compute the eigenvalues of such equa-

tions using the Sinc-collocation method coupled with double exponential vari-

able transformation. The implementation of the DESCM leads to a gener-

alized eigenvalue problem with symmetric and positive definite matrices. In

addition, we also show that the convergence of the DESCM is of the rate

O
(

N5/2

log(N)2
e−κN/ log(N)

)
for some κ > 0, as N → ∞ where 2N +1 is the dimen-
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sion of the resulting generalized eigenvalue system. Consequently, DESCM

outperforms SESCM proposed in [56]. We follow up this claim by conducting

numerical studies of several Sturm-Liouville eigenvalue problems using both

the SESCM and the DESCM. Finally, we also use adapted conformal map-

pings to accelerate the convergence of the DESCM to ensure the analyticity

of the transformed coefficient functions in a strip of maximal width. In all

our numerical examples, we were able to reach an unprecedented degree of

accuracy.

79



Chapter 4

The Anharmonic Oscillator

Revisited

This chapter has been published as:

P. Gaudreau, R.M. Slevinsky, and H. Safouhi. Computing energy eigenval-

ues of anharmonic oscillators using the double exponential Sinc collocation

method. Annals of Physics, 360:520–538, 2015.

Abstract.

A quantum anharmonic oscillator is defined by the Hamiltonian H =

− d2

dx2 + V (x), where the potential is given by V (x) =
∑m

i=1 cix
2i with cm > 0.

Using the Sinc collocation method combined with the double exponential

transformation, we develop a method to efficiently compute highly accurate

approximations of energy eigenvalues for anharmonic oscillators. Convergence

properties of the proposed method are presented. Using the principle of mini-

mal sensitivity, we introduce an alternate expression for the mesh size for the

Sinc collocation method which improves considerably the accuracy in comput-
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ing eigenvalues for potentials with multiple wells.

We apply our method to a number of potentials including potentials with

multiple wells. The numerical results section clearly illustrates the high ef-

ficiency and accuracy of the proposed method. All our codes are written in

Julia and are available upon request.

4.1 Introduction

The following chapter follows from our published work in [83]. The one dimen-

sional anharmonic oscillator is of great interest to field theoreticians because

it models complicated fields in one-dimensional space-time [22]. A complete

overview of quantum anharmonic oscillators would lead to a better under-

standing of the realistic analytic structure of field theory. Moreover, outside

the realm of field theory, the one dimensional anharmonic oscillator also pro-

vides an approximation to more complicated quantum potentials near a stable

stationary point. The study of quantum anharmonic oscillators as potentials

in the Schrödinger equation has been on the edge of thrilling and exciting

research during the past three decades [2, 4, 10, 20, 21, 24, 28, 33, 35, 39, 43, 50,

51,54,71,72,75,97,111,124,130,133,148–150,170,171,184,186,192,197]. With

advances in asymptotic analysis and symbolic computing algebra, the interest

in developing more efficient methods was renewed recently [17,19,82,179,180].

The Hamiltonian in the time-independent Schrödinger equation is given by

H = − d2

dx2 + V (x) for some potential function V (x). In the case of quan-

tum anharmonic oscillators, the potential V (x) is an even function of the form

V (x) =
∑m

i=1 cix
2i with cm > 0. Several approaches have been used for the nu-
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merical evaluation of the differential eigenvalue problem Hψ = Eψ. However,

the existing numerical methods are mostly case specific and lack uniformity

when faced with a general problem.

In [21,184,186], Rayleigh-Schrödinger perturbation series are used to eval-

uate the ground state energy for potentials of the form V (x) = x2 + βx2m

for β ∈ [0,∞) and m = 2, 3, 4. These summations are strongly divergent

for β 6= 0. To sum them efficiently, Padé approximants combined with non-

linear sequence transformations are used. In [192], Rayleigh-Schrödinger per-

turbation series are also used to evaluate energies of the ground state and

the first excited state for potentials of the form V (x) = x2 + βx4. In [133],

Rayleigh-Schrödinger perturbation series are used to evaluate energies of the

ground state and the first four excited states for the Hamiltonian of the form

H = −1
2

d2

dx2 +
1
2
x2+λx4 in the limits λ→ 0+ and λ→ ∞. In [35], exact soluble

models are used to construct Rayleigh-Schrödinger perturbation series for the

eigenvalues of the anharmonic potentials of the form V (A,E) = 1
2
Ax2 + Ex4.

In [10,20,24], a study of Rayleigh-Schrödinger perturbation series is presented

using the Wentzel-Kramers-Brillouin (WKB) method and a difference equation

method. In [2], an averaging method is proposed to calculate energy eigen-

values for potentials of the form V (x) = λx2m for m = 2, 3, . . . with λ > 0,

V (x) = µx2+λx4+ ηx6 with η > 0 and V (x) = (ax3+ bx)2 using a supersym-

metric WKB approach. Their method yields appreciable accuracy for a variety

of potentials and the accuracy increases as the energy level increases. In [50],

the first four terms of the asymptotic expansion for the energy eigenvalues of

the potential V (x) = ax2+ bx4+ cx6 as n→ ∞ and in the large coupling limit

c → ∞ are found. Since no exact energy values were available at the time,
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comparisons with the values obtained via the Hill determinant method are

shown. The values obtained using the asymptotic expansion agree with the

values obtained using the Hill determinant method and increase in accuracy

as the energy level increases. In [124], an asymptotic expansion is presented

for the energy values of potentials of the form V (x) =
∑N

i= aix
i +
∑M

j=1 cjx
−j.

This method allows for an easier way to obtain analytically the coefficients for

the leading terms in the WKB expansion, which normally would require com-

putation of a considerably large number of complicated contour integrals. As

an example of application, the first seven coefficients of the WKB expansion

for the energy eigenvalues of the potentials V (x) = x4+bx2 and V (x) = x6 are

presented. In [111], the WKB method and the Lanczos algorithm are used to

calculate energy eigenvalues of the potential V (x) = 1
2
x2 + λx2m with m from

two to six to a high accuracy. Using a starting energy value from a JWKB

analysis, their shifted Lanczos algorithm is able to achieve 33 correct digits in

three iterations or less for all energy states. In [130], the variational principle

is used to calculate the first n energy eigenvalues using a Rayleigh-Ritz matrix

for the perturbed Hamiltonian H = 1
2

d2

dx2 +
1
2
Ω2x2+ε[λx4+ 1

2
(ω2−Ω2)x2]. Uti-

lizing the non-linear parameter Ω, this method becomes applicable when the

parameter ω2 < 0. Moreover, this method is able to find eigenvalues for several

lower energy states even in deep double well potentials. In [33], a variational

approach is used to obtain the energies of the ground state and the first excited

state for potentials of the form x2 + λV (x), where V (x) is an even analytic

function. A numerical study is presented for V (x) = x2m for m = 2, . . . , 6 as

well as V (x) = x2 + λx4 + µx6 and the numerical results obtained agree quite

well with the values obtained using the Hill determinant method. In [51], an
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approximate analytic expression for the energy eigenvalues for the anharmonic

oscillator V (x) = Ax6 + Bx2 is introduced. These approximate solutions are

derived from particular analytic solutions which are valid when certain rela-

tions between the parameters A and B are satisfied. In [75], exact solutions

in the form of definite integrals are found for the anharmonic oscillator of the

form V (x) = 1
2
ω2x2 + 1

4
λx4 + 1

6
ηx6. Exact analytical energy eigenvalues are

derived when the coefficients ω, λ and η satisfy specific constraints.

The Hill determinant method as well as the Hill determinant method with a

variational parameter have also shown great promises [4,39,43,54,148,171,197].

To create a Hill determinant matrix, one starts by substituting a suitable

ansatz into the Schrödinger equation of the from ψ(x) = es(x)
∑∞

i=0 γix
2i+δ,

where s(x) is an even polynomial function that depends on the potential V (x)

and δ = 0 or 1 depending on the parity of the solution. With this substi-

tution, one obtains a recurrence relation for the coefficients γi. By rewriting

this recurrence relation in a matrix form and setting the determinant of this

matrix to zero, one can create a sequence of approximations for the energy

eigenvalues of the potential V (x). In [97], the discretization of the Hamilto-

nian operator using a finite difference technique is discussed to solve this type

of eigenvalue problem. The Riccati equation for the logarithmic derivative of

the wavefunction using Padé approximants or the Turbiner method has also

been used extensively. Further analysis of the Riccati equation solution leads

to a better understanding of the overall nature of the wavefunction and thus

its energy eigenvalues. In [71], a non-perturbative method utilizing the solu-

tion to the Riccati equation is proposed for finding energy eigenvalues. The

method is applied to the potential V (x) = x2 + λx4 and yields good estimates
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for lower energy values. In [28], a method utilizing the solution to the Riccati

equation for finding exact solutions to anharmonic oscillators is discussed. The

method is applied to the potential V (x) = x2+λx4 and energy eigenvalues are

computed for coupling constants ranging from λ = 0.002 to λ = 20000. In [72],

a method is introduced based on rational approximations to the solution of

the Riccati equation to obtain tight lower and upper bounds for the energy

eigenvalues of anharmonic oscillators.

Recently [82], an asymptotic expansion for the energy eigenvalues of the

potential V (x) = κx2q + ω x2, where κ ∈ R+, ω ∈ R and q ∈ N \ {1} as the

energy level n approaches infinity is derived using the WKB method and series

reversion. In [179,180], the potential V (x) = ax2 + λx4 with a < 0 and λ ≥ 0

is explored. Using asymptotic expansion of the Riccati equation solutions, an

approximate solution is found which yields 9 to 10 significant digits for energy

values. In [17], an asymptotic iteration method is used to calculate the energy

eigenvalues of potentials of the form V (x) = Ax2α +Bx2.

As can be seen by the numerous approaches which have been made to solve

this problem, there is a beautiful diversity yet lack of uniformity in its resolu-

tion. While several of these methods yield excellent results for specific cases, it

would be favorable to have one general method that could handle any anhar-

monic potential while being capable of computing efficiently approximations

of eigenvalues to a high pre-determined accuracy.

The Sinc collocation method (SCM) has been used extensively during the

last three decades to solve many problems in numerical analysis [9, 37, 57, 58,

107,115,153–155,158]. Their applications include numerical integration, linear

and non-linear ordinary differential equations, partial differential equations, in-
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terpolation and approximations to function derivatives. Recently, combination

of the SCM with the double exponential (DE) transformation has sparked great

interest [164,168]. The double exponential transformation, introduced in [166]

yields optimal accuracy for a given number of function evaluations when using

the trapezoidal rule in numerical integration [121]. Since its derivation in 1974,

many have studied its effectiveness in computing integrals [161,166].

In [84], we used the SCM and the DE transformation to solve efficiently

singular Sturm-Liouville eigenvalue problems. In the present work, we use this

method to compute energy eigenvalues of anharmonic oscillators to unprece-

dented accuracy. The double exponential Sinc collocation method (DESCM)

starts by approximating the wave function as a series of weighted Sinc func-

tions. By substituting this approximation in the Schrödinger equation and

evaluating this expression at several collocation points spaced equally by a

specified mesh size h, we obtain a generalized eigensystem which can be trans-

formed into a regular eigenvalue problem. For multiple-well potentials, the

existing expression for the optimal mesh size h turns out to be not very effec-

tive. In such a case, we introduce an alternate mesh size ĥ by minimizing the

trace of the resulting matrix using the principle of minimal sensitivity. After

conducting an asymptotic study of this minimizing problem, we obtain the

first order term in the asymptotic expansion of the alternate mesh size ĥ.

The proposed method has numerous advantages over the existing alterna-

tives. It can be applied to a large set of anharmonic potentials and is insensitive

to changes in the potential parameters. The method is now shown to be effi-

cient and accurate when dealing with multiple-well potentials. In addition, the

DESCM has a near-exponential convergence rate and the matrices generated
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by the DESCM have useful symmetric properties which simplify considerably

the computation of their eigenvalues.

4.2 General definitions and properties

The sinc function is defined by the following expression:

sinc (z) =
sin(πz)

πz
, z ∈ C. (4.1)

The Sinc function S(j, h)(x) for h ∈ R+ and j ∈ Z is given by:

S(j, h)(x) = sinc

(
x− jh

h

)
, x ∈ C. (4.2)

The discrete orthogonality of Sinc functions is given by:

S(j, h)(kh) = δj,k for j, k ∈ Z, (4.3)

where δj,k is the Kronecker’s delta function.

Similarly to Fourier series, we can expand well-defined functions as series

of Sinc functions. Such expansions are known as Sinc expansions or Whittaker

Cardinal expansions.

Definition 4.2.1. [155] Given any function v(x) defined everywhere on the

real line and any h > 0, the Sinc expansion of v(x) is defined by the following

series:

C(v, h)(x) =
∞∑

j=−∞
vj,hS(j, h)(x), (4.4)

87



where vj,h = v(jh).

The non-symmetric truncated Sinc expansion of the function v(x) is defined

by the following series:

CN(v, h)(x) =
M∑

j=−N

vj,h S(j, h)(x) for N,M ∈ N. (4.5)

The symmetric truncated Sinc expansion is obtained by taking M = N in the

above equation.

In [155], a class of functions which are successfully approximated by a Sinc

expansion is introduced. We present the definition for this class of functions

bellow.

Definition 4.2.2. [155] Let d > 0 and let Dd denote the strip of width 2d

about the real axis:

Dd = {z ∈ C : | =(z)| < d}. (4.6)

For ε ∈ (0, 1), let Dd(ε) denote the rectangle in the complex plane:

Dd(ε) = {z ∈ C : | <(z)| < 1/ε, | =(z)| < d(1− ε)}. (4.7)

Let B2(Dd) denote the family of all functions g that are analytic in Dd, such

that: ∫ d

−d

| g(x+ iy)| dy → 0 as x→ ±∞ (4.8)

and

N2(g,Dd) = lim
ε→0

(∫

∂Dd(ε)

| g(z)|2 |dz|
)1/2

<∞. (4.9)
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The time independent Schrödinger equation is given by:

Hψ(x) = E ψ(x), (4.10)

where the Hamiltonian is given by the following linear operator:

H = − d2

dx2
+ V (x),

where V (x) is the potential energy function.

In the case of anharmonic oscillators, the potential V (x) is given by:

V (x) =
m∑

i=1

cix
2i with cm > 0 and m ∈ N\{1}. (4.11)

The time independent Schrödinger equation (4.10) can be written as the

following boundary value problem:

− ψ′′(x) + V (x)ψ(x) = Eψ(x) with lim
|x|→∞

ψ(x) = 0. (4.12)

Equation (4.12) is similar to the Sturm-Liouville problem to which we

applied successfully the DESCM [84].

As we stated in [84], Eggert et al. [56] demonstrate that applying an appro-

priate substitution to the boundary value problem (4.12), results in a symmet-

ric discretized system when using Sinc expansion approximations. The change

of variable they propose is given by:

v(x) =
(√

(φ−1)′ ψ
)
◦ φ(x) =⇒ ψ(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (4.13)
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where φ−1(x) a conformal map of a simply connected domain in the complex

plane with boundary points a 6= b such that φ−1(a) = −∞ and φ−1(b) = ∞.

Applying the substitution (4.13) to (4.12), we obtain:

Ĥ v(x) = −v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x), (4.14)

where:

Ṽ (x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+(φ′(x))2V (φ(x)) and lim

|x|→∞
v(x) = 0.

(4.15)

4.3 The double exponential Sinc collocation method

(DESCM)

A function ω(x) decays double exponentially at infinities if there exist positive

constants A,B, γ such that:

|ω(x)| ≤ A exp(−B exp(γ| x|)) for x ∈ R. (4.16)

The double exponential transformation is a conformal mapping φ(x) which

allows for the solution of (4.14) to have double exponential decay at both

infinities.

To implement the DESCM, we begin by approximating the solution of (4.14)

by a truncated Sinc expansion (4.5).
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Inserting (4.5) into (4.14), we obtain the following system of equations:

ĤCN(b, h)(xk) =
N∑

j=−N

[
− d2

dx2k
S(j, h)(xk) + Ṽ (xk)S(j, h)(xk)

]
vj,h (4.17)

= E
N∑

j=−N

S(j, h)(xk)(φ
′(xk))

2vj,h for k = −N, . . . , N,

(4.18)

where the collocation points xk = kh and E is an approximation of the eigen-

value E in (4.14).

The above equation can be re-written as follows:

ĤCN(v, h)(xk) =
N∑

j=−N

[
− 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k

]
vj,h

= E
N∑

j=−N

δ
(0)
j,k (φ

′(kh))2vj,h for k = −N, . . . , N, (4.19)

where δ(l)j,k are given by [154]:

δ
(l)
j,k = hl

(
d

dx

)l

S(j, h)(x)

∣∣∣∣∣
x=kh

. (4.20)

Equation (4.19) can be represented in matrix form as follows:

ĤCN(v, h) = Hv = ED2v =⇒ (H− ED2)v = 0, (4.21)

where:

v = (v−N,h, . . . , vN,h)
T and CN(v, h) = (CN(v, h)(−Nh), . . . , CN(v, h)(Nh))

T .
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H is a (2N + 1)× (2N + 1) matrix with entries Hj,k given by:

Hj,k = − 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k with −N ≤ j, k ≤ N, (4.22)

and D2 is a (2N + 1)× (2N + 1) diagonal matrix with entries D2
j,k given by :

D2
j,k = (φ′(kh))2 δ

(0)
j,k with −N ≤ j, k ≤ N. (4.23)

To obtain nontrivial solutions for (4.21), we have to set:

det(H− ED2) = 0. (4.24)

To find an approximation of the eigenvalues of equation (4.14), one simply

has to solve the above generalized eigenvalue problem. The matrix D2 is

symmetric positive definite and the matrix H is symmetric. If there exits a

constant δ > 0 such that Ṽ (x) ≥ δ−1, then the matrix H is symmetric positive

definite.

In [84, Theorem 3.2], we present the convergence analysis of DESCM which

we state here in the case of the transformed Schrödinger equation (4.14). The

proof of the Theorem is given in [84].

Theorem 4.3.1. [84, Theorem 3.2] Let E and v(x) be an eigenpair of the

transformed Schrödinger equation:

− v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x), (4.25)
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where:

Ṽ (x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+(φ′(x))2V (φ(x)) and lim

|x|→∞
v(x) = 0.

(4.26)

Assume there exist positive constants A,B, γ such that:

|v(x)| ≤ A exp(−B exp(γ|x|)) for all x ∈ R, (4.27)

and that v ∈ B2(Dd) with d ≤ π

2γ
.

If there is a constant δ > 0 such that Ṽ (x) ≥ δ−1 and the selection of the

optimal mesh size h is such that:

h =
W (πdγN/B)

γN
, (4.28)

where W (x) is the Lambert W function.

Then, there is an eigenvalue E of the generalized eigenvalue problem satis-

fying:

|E − E| ≤ ϑv,d

√
δE

(
N5/2

log(N)2

)
exp

(
− πdγN

log(πdγN/B)

)
as N → ∞,

(4.29)

where ϑv,d is a constant that depends on v and d.

As we can see from the results obtained in Theorem 4.3.1, |E −E| → 0 as

N → ∞ for all energy eigenvalues E.
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4.4 Anharmonic oscillators

To implement the DE transformation, we choose a function φ which would

result in the solution of (4.14) to decay doubly exponentially. Since the an-

harmonic potential is analytic in C and grows to infinity as x → ±∞, the

wave function is also analytic in C and normalizable over R.

To find the decay rate of the solution to equation (4.12) with the anhar-

monic oscillator potential, we will use the WKB method. Substituting the

ansatz ψ(x) = eS(x) into equation (4.12) and simplifying, we obtain:

S ′′(x) + (S ′(x))
2 −

m∑

i=1

cix
2i + E = 0. (4.30)

Since m > 1, we have S ′′(x) = o (S ′(x)2) as |x| → ∞. Hence:

(S ′(x))
2 ∼ cmx

2m as |x| → ∞. (4.31)

Using the initial condition lim
|x|→∞

ψ(x) = 0, we obtain:

S(x) ∼ −
√
cm |x|m+1

m+ 1
as |x| → ∞. (4.32)

To find the second order term, we make the substitution:

S(x) = −
√
cm |x|m+1

m+ 1
+ C(x), (4.33)

in equation (4.30), where C(x) = o (|x|m+1) as |x| → ∞.
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After simplifying and keeping only the higher order terms, we obtain:

C ′(x) ∼ −m

2x
as |x| → ∞. (4.34)

Solving for C(x), we obtain:

C(x) ∼ ln
(
|x|−m/2

)
as |x| → ∞. (4.35)

From (4.32) and (4.35), it follows that ψ(x) has the following decay rate

at both infinities:

ψ(x) = O
(
|x|−m/2 exp

(
−
√
cm |x|m+1

m+ 1

))
as |x| → ∞. (4.36)

Away from both infinities, the wave function ψ(x) will undergo oscillatory

behavior.

As can be seen from (4.36), the wave function ψ(x) decays only single

exponentially at infinities.

By taking φ(x) = sinh(x), we have:

|v(x)| =
∣∣∣∣∣
ψ ◦ φ(x)√
φ′(x)

∣∣∣∣∣

≤ A| sinh(x)|−m/2| cosh(x)|−1/2 exp

(
−
√
cm| sinh(x)|m+1

m+ 1

)

≤ A exp

(
−

√
cm

(m+ 1)2m+1
exp((m+ 1)|x|)

)
, (4.37)

for some positive constant A.

From (4.37), it follow that the optimal mesh size according to Theo-

95



rem 4.3.1 is given by:

h =
W
(

2mπ2(m+1)N√
cm

)

(m+ 1)N
. (4.38)

As will be illustrated in our numerical study, the optimal mesh size h given

by (4.38) does not prove effective when dealing with multiple-well potentials.

In this case, we use the principle of minimal sensitivity [9] to obtain an alter-

nate mesh size, which we will denote by ĥ.

First, we start by simplifying the eigensystem (4.21) as follows. Applying

a Cholesky factorization to the symmetric positive diagonal matrix D2, leads

to:

D2 = DDT = DD. (4.39)

Using the above equation, we can re-write the eigensystem (4.21) as follows:

(D−1HD−1 − E I)z = 0 and z = Dv. (4.40)

The inverse matrix D−1 exists since D2 is a diagonal positive definite matrix.

Let us denote the new matrix in (4.40) by K = D−1HD−1. Therefore, K

is a (2N + 1)× (2N + 1) matrix with entries Kj,k given by:

Kj,k = −
(

1

h2φ′(jh)φ′(kh)

)
δ
(2)
j,k +

(
Ṽ (kh)

(φ′(kh))2

)
δ
(0)
j,k with −N ≤ j, k ≤ N,

(4.41)

where φ(x) = sinh(x) and Ṽ (x) is given by:

Ṽ (x) =
1

4
− 3

4
sech2(x) + cosh2(x)

m∑

i=1

ci sinh
2i(x). (4.42)
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Denoting the trace of a matrix by Tr(·), we have:

Tr(K)(h) =
2N∑

i=0

Ei(h), (4.43)

where {Ei(h)}i=0,...,2N are the 2N + 1 eigenvalues of the matrix K or equiva-

lently the generalized eigenvalues of the matrices H and D2. Note that the

eigenvalues depend strongly on the mesh size h. Since our goal is to obtain the

best approximations to these energy eigenvalues, by the principle of minimal

sensitivity [9], it seems logical to minimize their sum with respect to h. In

other words, this alternate mesh size is given as the solution of the following

optimization problem:

ĥ = arg min
h∈R+

{Tr(K)(h)}. (4.44)

As an example, in Figure 4.1, we plot Tr(K)(h) with N = 20 for the

potentials in (4.64) along with the absolute error obtained when approximating

energy eigenvalues.

To find this alternate mesh size, one would need to solve the minimization

problem in (4.44). To achieve this goal, we require the following theorem

establishing the existence of such a minimum.

Theorem 4.4.1. If K is a matrix with components defined by equation (4.41),

φ(x) is the inverse function of the conformal map φ−1(x) and (V (x), φ(x)) ∈ X
where X is defined as the following function space:

X =

{
(V (x), φ(x)) ∈ C(R)× C3(R) : lim

|x|→∞

Ṽ (x)

(φ′(x))2
= ∞ and φ′(x) > 0, ∀x ∈ R ∪ {±∞}

}
,

(4.45)
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Figure 4.1: Trace and absolute error vs. h for the potentials Vi(x) for i = 1, 2, 3, 4
given by equation (4.64) with φ(x) = sinh(x). Figure (a) shows the results for the
potential V1(x) = x2−4x4+x6 with exact eigenvalue E0 = −2. Figure (b) shows the
results for the potential V2(x) = 4x2−6x4+x6 with exact eigenvalue E1 = −9. Figure
(c) shows the results for the potential V3(x) = (105/64)x2− (43/8)x4+x6−x8+x10

with exact eigenvalue E0 = 3/8. Figure (d) shows the results for the potential
V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10 with exact eigenvalue E1 = 9/8.

then for N ≥ 1, ∃ ĥ ∈ (0,∞) such that ĥ = arg min
h∈R+

{Tr(K)(h)}.

Proof. The trace of the matrix K is given by:

Tr(K)(h) =
π2

3h2

N∑

k=−N

1

(φ′(kh))2
+

N∑

k=−N

Ṽ (kh)

(φ′(kh))2
. (4.46)

The function Tr(K)(h) is continuous on the interval (0,∞) because it is

composed of continuous functions and φ′(x) > 0 for all x ∈ R by assump-
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tion. In addition, the function Ṽ (x) is bounded when x = 0 using the same

assumption.

Taking the limit as h→ 0+, we obtain:

lim
h→0+

Tr(K)(h) = lim
h→0+

π2

3h2

N∑

k=−N

1

(φ′(kh))2
+ lim

h→0+

N∑

k=−N

Ṽ (kh)

(φ′(kh))2

= ∞× (2N + 1)

(φ′(0))2
+

(2N + 1)Ṽ (0)

(φ′(0))2

= ∞. (4.47)

Taking the limit as h→ ∞, we obtain:

lim
h→∞

Tr(K)(h) = lim
h→∞

N∑

k=−N

(
π2

3h2
1

(φ′(kh))2

)
+ lim

h→∞

N∑

k=−N

Ṽ (kh)

(φ′(kh))2

= 0 +
Ṽ (0)

ρ(φ(0))(φ′(0))2
+ N ×

(
lim
x→∞

Ṽ (x)

(φ′(x))2
+ lim

x→−∞

Ṽ (x)

(φ′(x))2

)

= ∞. (4.48)

Since:

lim
h→0+

Tr(K)(h) = lim
h→∞

Tr(K)(h) = ∞,

and the function Tr(K)(h) is continuous on the interval (0,∞), by the Weier-

strass extreme value theorem, ∃ ĥ ∈ (0,∞) such that ĥ = arg min
h∈R+

{Tr(K)(h)}.

Solving the optimization problem in equation (4.44) at every iteration cer-

tainly adds to the complexity of the DESINC algorithm. In the hopes of

reducing the computational cost, we present the following theorem which pro-

99



vides an asymptotic estimate of ĥ as N → ∞.

Theorem 4.4.2. Let K denote the matrix with components defined by equa-

tion (4.41). Let ĥ denote the solution to the optimization problem ĥ = arg min
h∈R+

{Tr(K)(h)}.

Then ĥ is asymptotic to the following function:

ĥ ∼
3W

(
2m

3

(
2mπN√
cm

)2/3
)

2mN
as N → ∞, (4.49)

where W (x) is the Lambert W function.

Proof. The trace of the matrix K is given by:

Tr(K)(h) =
N∑

k=−N

(
π2

3h2
sech2(kh) +

sech2(kh)

4
− 3

4
sech4(kh) +

m∑

i=1

ci sinh
2i(kh)

)
.

(4.50)

In order to find an asymptotic representation of the trace, we will use the

Euler-Maclaurin formula [15,47,117]:

b∑

n=a

f(n) ∼
∫ b

a

f(x)dx+
f(b) + f(a)

2
+

∞∑

k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
,

(4.51)

where B2k are the Bernoulli numbers.

We start by applying equation (4.51) to the function f(k) which is given

by:

f(k) =
π2

3h2
sech2(kh) +

sech2(kh)

4
− 3

4
sech4(kh), (4.52)
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as N → ∞, h→ 0 and Nh→ ∞, and we obtain:

N∑

k=−N

f(k) ∼ 2π2

3h3
− 1

2h
+e−2Nh

(
−4π2

3

∞∑

i=0

B2i4
i

(2i)!
h2i−3 +

4π2

3h2
+ 1−

∞∑

i=0

B2i4
i

(2i)!
h2i−1

)
.

(4.53)

Hence:

N∑

k=−N

(
π2

3h2
sech2(kh) +

sech2(kh)

4
− 3

4
sech4(kh)

)
=

2π2

3h3
+O

(
1

h

)
. (4.54)

Then, we apply (4.51) to the function g(k) which is given by:

g(k) =
m∑

i=1

ci sinh
2i(kh), (4.55)

as N → ∞, h→ 0 and Nh→ ∞, and we obtain:

N∑

k=−N

(
m∑

i=1

ci sinh
2i(kh)

)
∼ cme

2mNh

22m

(
1

mh
+ 1 +

∞∑

i=1

4iB2i

(2i)!
(mh)2i−1

)
.

(4.56)

Hence:

N∑

k=−N

(
m∑

i=1

ci sinh
2i(kh)

)
=
cme

2mNh

22mmh
+O

(
e2mNh

)
. (4.57)

Combining (4.54) with (4.57), we obtain:

Tr(K)(h) ∼ 2π2

3h3
+
cme

2mNh

22mmh
as N → ∞, h→ 0, Nh→ ∞. (4.58)

Taking the derivative with respect to h, simplifying and keeping only the
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higher order terms, we obtain:

d

dh
Tr(K)(h) ∼ −2π2

h4
+

2Ncme
2mNh

22mh
as N → ∞, h→ 0, Nh→ ∞.

(4.59)

Setting this equation to zero and solving for h, we obtain the desired re-

sult (4.49).

Since the wave function has the following decay rate:

|v(x)| ≤ A exp (−B exp(γ|x|)) , (4.60)

where:

B =

√
cm

(m+ 1)2m+1
and γ = m+ 1, (4.61)

and v ∈ B2(Dd) with d =
π

2γ
, we can rewrite equation (4.49) in terms of the

parameters B, γ, d and we obtain:

ĥ ∼
W

(
γ̃

(
dN

B

)2/3
)

γ̃N
where γ̃ =

2(γ − 1)

3
. (4.62)

To illustrate the efficiency of the asymptotic estimate, we present in Figure

4.2 the difference between ĥ and its asymptotic estimate (4.62) for the three

well potential V1(x) = x2 − 4x4 + x6 with exact eigenvalue E0 = −2, the five

well potential V (x) = T10(x)− 1 and the ten well potential V (x) = T20(x)− 1

respectively. The function Tn(x) corresponds to the nth Chebyshev polynomial.

As can be seen, the asymptotic estimate agrees quite well with the value

obtained by solving the optimisation problem in (4.44) but diminishes slightly
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in accuracy as the number of wells increases.

By construction, we already know that K is a symmetric matrix. However,

without loss of generality, we can also assume the matrix K to be positive

definite by the following demonstration.

Given a potential of the form in (4.11), it is possible to find a constant

Ω > 0 such that Ṽ (x) > −Ωcosh2(x) for all x ∈ R. Consequently, we can

rewrite (4.14) as follows:

−v′′(x) + Ṽ (x)v(x) = E cosh2(x)v(x)

=⇒ −v′′(x) + Ṽ (x)v(x) + Ω cosh2(x)v(x) = E cosh2(x)v(x) + Ω cosh2(x)v(x)

=⇒ −v′′(x) + (Ṽ (x) + Ω cosh2(x))v(x) = (Ω + E) cosh2(x)v(x)

=⇒ −v′′(x) + V̂ (x)v(x) = Ê cosh2(x)v(x), (4.63)

where V̂ (x) = Ṽ (x) + Ω cosh2(x) > 0 and Ê = Ω+ E.

Since V̂ (x) > 0 for all x ∈ R, the matrix H resulting from the DESCM

is positive definite. Consequently, the matrix K is also positive definite. All

the assumptions of Theorem 4.3.1 are satisfied, hence the eigenvalues of (4.40)

converge to the eigenvalues of (4.12).

4.5 Numerical discussion

In this section, we present numerical results for the energy values of anhar-

monic oscillator potentials.

All calculations are performed using the programming language Julia [30]

in double precision. The eigenvalue solvers in Julia utilize the linear algebra
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package LAPACK [13]. Unless otherwise stated, the mesh size h (4.38) is used

in the calculations.

The optimization problem in (4.44) is solved using the optimization Julia

package Optim is used [187]. The matrix K is constructed using (4.41).

In [39], Chaudhuri et al. presented several potentials which have known

analytic solutions for energy levels calculated using supersymmetric quantum

mechanics. These are given by:

V1(x) = x2 − 4x4 + x6 ⇒ E0 = −2

V2(x) = 4x2 − 6x4 + x6 ⇒ E1 = −9

V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10 ⇒ E0 = 3/8

V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10 ⇒ E1 = 9/8.

(4.64)

Using these exact values, we present Figure 4.3 to illustrate the convergence

of the DESCM.

Figure 4.3 shows the absolute error between the approximations obtained

for the eigenvalues using the proposed method and the exact values given

in (4.64). The absolute error is defined by:

Absolute error = |El(N)− Exact value| for l = 0, 1. (4.65)

As can be seen from Figure 4.3, the approximations obtained using DESCM

converge quite well.

In Tables 4.1 and 4.2, we present approximations of energies for the ground

state and first two excited states for two different potentials with unknown

energy eigenvalues. There appears to be convergence in all cases.
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Tables 4.3, 4.4, 4.5, and 4.6 display the ground state energy for various

potentials as well as an approximation to the absolute error. In these tables,

the approximation to the absolute error is given by:

εn(N) = |En(N − 1)− En(N)| for N = 2, 3, 4, . . . and n = 0, 1, 2, . . . .

(4.66)

Table 4.3 displays values obtained for the potential V (x) = c1x
2 + c2x

4

for different values of c1 and c2. Table 4.4 displays values obtained for the

potential V (x) = c1x
2 + c2x

4 + c3x
6 for different values of c1, c2 and c3. Table

4.5 displays values obtained for the potential V (x) = c1x
2+ c2x

4+ c3x
6+ c4x

8

for different values of c1, c2, c3 and c4. Table 4.6 displays values obtained for

the potential V (x) = c1x
2 + c2x

4 + c3x
6 + c4x

8 + c5x
10 for different values of

c1, c2, c3, c4 and c5.

In all four tables, we use ε0(N) < 5× 10−12 as a stopping criterion and the

numbers between parentheses represent powers of ten.

In general, the DESINC method performs well when using the optimal

mesh size h for low oscillatory potentials. However, as the number of oscil-

lations increase in the potential, the mesh size h performs significantly less

than ĥ. To illustrate this claim, we present in Figure 4.4 three potentials with

three, five and ten wells respectively. The first row in Figure 4.4 illustrates

the mesh sizes used and the convergence of the DESINC method for the three

well potential V2(x) = 4x2−6x4+x6 in (4.64) with exact eigenvalue E1 = −9.

The second row in Figure 4.4 displays the mesh sizes used and the convergence

of the DESINC method for the five well potential V (x) = T10(x) − 1, where

T10(x) is the 10th Chebyshev polynomial. Finally the third row in Figure 4.4

105



displays the mesh sizes used and the convergence of the DESINC method for

the ten well potential V (x) = T20(x)− 1, where T20(x) is the 20th Chebyshev

polynomial.

We would like to mention that even though the asymptotic estimate ob-

tained in Theorem 4.4.2 agrees quite well in absolute error with the mesh size

ĥ, it still under-performs in the case of multiple-well potentials compared to

ĥ obtained from the minimization problem (4.44). This would indicate that

more terms might be needed in the asymptotic expansion of the trace to im-

prove the accuracy in lower orders of N . Moreover, this numerical result also

reinforces the idea that the choice of the mesh size is crucial for convergence

when dealing with potentials with multiple wells.

In Figure 4.5, we implement the algorithm with the mesh size ĥ for the ten

well potential:

V (x) = T20(x)− 1, (4.67)

for N = 1, 2, . . . , 1000. Using the stopping criterion εn(N) < 5× 10−12, we are

able to find an approximation to 1353 eigenvalues of this ten well potential.

In [184], Weniger uses a Rayleigh-Schrödinger perturbation series and se-

quence transformations to evaluate the ground state of the potential V (x) =

x2+x4 to high accuracy. Weniger uses the exact rational arithmetics of Maple

with an accuracy of 300 decimal digits to obtain the following value:

E0 ≈ 1.392 351 641 530 291 855 657 507 876 609 934 184 600 066 711 9. (4.68)

We used Maple16TM to implement the algorithm for the same potential
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with an accuracy of 100 correct digits and we obtain:

E0 ≈1.392 351 641 530 291 855 657 507 876 609 934 184 600 066 711 220 834

088 906 349 323 877 567 431 875 646 528 590 973 563 467 791 759 121,

(4.69)

which is in excellent agreement with Weniger’s value.

4.6 Conclusion

Various methods have been used to calculate the energy eigenvalues of quan-

tum anharmonic oscillators given a specific set of parameters. While several

of these methods yield excellent results for specific cases, there is a beauti-

ful diversity yet lack of uniformity in the resolution of this problem. In this

work, we present a method based on the DESCM where the wave function

of a transformed Schrödinger equation (4.14) is approximated by as a Sinc

expansion. By summing over 2N + 1 collocation points, we construct a sym-

metric positive definite matrices K whose eigenvalues are approximations to

the energy eigenvalues of (4.10). The DESCM method has a convergence rate

of O
((

N5/2

log(N)2

)
exp

(
−κ N

log(N)

))
. The convergence is improved for potential

with multiple wells by using the alternate mesh size ĥ obtained by minimizing

the trace of the discretized Hamiltonian.

The numerical results obtained for a number of different potentials includ-

ing potentials with multiple wells, show clearly the efficiency and accuracy of

the proposed method.
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4.7 Tables and Figures
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Figure 4.2: Figures (a), (c) and (e) displays both the alternate mesh size ĥ and
its asymptotic estimate given by (4.62) while figures (b), (d) and (f) displays the
absolute error between the alternate mesh size ĥ and its asymptotic estimate for
the three well potential V1(x) = x2 − 4x4 + x6 with exact eigenvalue E0 = −2, the
five well potential V (x) = T10(x) − 1 and the ten well potential V (x) = T20(x) − 1
respectively.
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Figure 4.3: Absolute error between the approximations obtained for the eigenvalues
using the proposed method and the exact values for the potentials Vi(x) for i =
1, 2, 3, 4 given by (4.64) with φ(x) = sinh(x).
(a) V1(x) = x2−4x4+x6 with exact eigenvalue E0 = −2. (b) V2(x) = 4x2−6x4+x6

with exact eigenvalue E1 = −9. (c) V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10

with exact eigenvalue E0 = 3/8. (d) V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10

with exact eigenvalue E1 = 9/8.

109



Table 4.1: Energies for the ground state and first two excited states for V (x) =
−x2 + 3x4 − 2x6 + 0.1x10.

N E0(N) E1(N) E2(N)
5 -0.183054938746611 0.441479870018253 2.620487757023682

10 -0.0976947154532108 0.670920848438211 3.112803149372351
15 -0.0962838618463357 0.672983395806946 3.110900059783247
20 -0.0962939179110841 0.672989564944146 3.111020042497232
25 -0.0962917320927764 0.672993682058299 3.111022843861247
30 -0.0962919468261398 0.672993241672601 3.111022328272051
35 -0.0962919458832259 0.672993243476173 3.111022329656410
40 -0.0962919462260392 0.672993242754209 3.111022328736961
45 -0.0962919462302011 0.672993242746560 3.111022328725989
50 -0.0962919462309655 0.672993242745170 3.111022328724715

Table 4.2: Energies for the ground state and first two excited states for V (x) =
x2 + 100x8.

N E0(N) E1(N) E2(N)
3 3.18583889990311 12.1774056576440 25.9667305118017
6 3.18865215097014 12.1950090976147 26.0334131709351
9 3.18865434610824 12.1950219328947 26.0334583310462

12 3.18865434649856 12.1950219336715 26.0334583214430
15 3.18865434649231 12.1950219336306 26.0334583212540
18 3.18865434649241 12.1950219336298 26.0334583212524
21 3.18865434649213 12.1950219336305 26.0334583212523
24 3.18865434649426 12.1950219336305 26.0334583212539
27 3.18865434649200 12.1950219336299 26.0334583212526
30 3.18865434649236 12.1950219336314 26.0334583212516
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Table 4.3: The ground state energy for V (x) = c1x
2 + c2x

4.

c1 c2 N E0(N) ε0(N)
0.1 0.1 20 5.6694532770815997(-1) 1.6(-12)
0.1 1 18 1.0962243662319233( 0) 2.3(-12)

1 1 17 1.3923516415352821( 0) 2.5(-12)
1 10 17 2.4491740721179220( 0) 8.8(-14)

10 10 15 3.7029004216662731( 0) 4.0(-13)
-0.1 0.1 21 4.1046961591503783(-1) 2.6(-12)
-0.1 1 18 1.0238094432848113( 0) 4.7(-13)

-1 1 19 6.5765300518294945(-1) 5.4(-14)
-1 10 17 2.1128778980507850( 0) 7.1(-13)

-10 10 19 9.0479065692642441(-2) 1.7(-12)

Table 4.4: The ground state energy for V (x) = c1x
2 + c2x

4 + c3x
6.

c1 c2 c3 N E0(N) ε0(N)
0.1 0.1 0.1 23 7.6469531499643029(-1) 4.2(-13)

1 1 1 20 1.6148940820343036( 0) 1.6(-12)
0.1 1 10 19 2.1277742176946535( 0) 3.7(-12)

1 10 10 17 2.7940871778594101( 0) 3.3(-12)
10 10 10 16 3.8948206179865981( 0) 2.5(-12)

-0.1 0.1 0.1 23 6.6383017274207901(-1) 2.0(-12)
1 -1 1 23 1.2022669303165900( 0) 8.0(-13)

-0.1 -1 10 20 1.9385567907196897( 0) 2.7(-13)
-1 10 10 17 2.5157308558338656( 0) 2.3(-12)
10 -10 10 20 2.9588710692969618( 0) 1.9(-12)
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Table 4.5: The ground state energy for V (x) = c1x
2 + c2x

4 + c3x
6 + c4x

8.

c1 c2 c3 c4 N E0(N) ε0(N)
0.1 0.1 0.1 0.1 23 9.2287072386834434(-1) 3.0(-13)
0.1 1 10 10 21 2.3988345516957166( 0) 2.2(-12)

1 1 10 10 21 2.5285749972092857( 0) 2.2(-12)
1 10 10 10 20 2.9458972541841404( 0) 9.8(-13)

10 10 10 10 19 3.9840271957255702( 0) 3.1(-12)
-0.1 0.1 -0.1 0.1 27 6.9423980434904176(-1) 1.6(-12)
0.1 -1 10 10 22 2.2867765902246440( 0) 1.0(-12)
-1 -1 10 10 22 2.1181378732419969( 0) 1.4(-12)
1 10 -10 10 23 2.3756889547019138( 0) 3.9(-12)

-10 -10 -10 10 35 -9.7139097706403668( 0) 4.8(-12)

Table 4.6: The ground state energy for V (x) = c1x
2 + c2x

4 + c3x
6 + c4x

8 + c5x
10.

c1 c2 c3 c4 c5 N E0(N) ε0(N)
0.1 0.1 0.1 0.1 0.1 27 1.0520482472987258( 0) 4.9(-12)
0.1 0.1 1 1 1 24 1.5773348519927783( 0) 2.6(-12)

1 1 1 10 10 23 2.4237300030396556( 0) 3.1(-12)
1 10 10 10 10 21 3.0275420892666491( 0) 7.4(-13)

10 10 10 10 10 21 4.0329202866021152( 0) 1.6(-12)
-0.1 -0.1 0.1 0.1 0.1 29 9.2562395524222385(-1) 2.4(-12)
0.1 0.1 -1 -1 1 33 8.6187455263857027(-1) 4.4(-12)
-1 1 1 -10 10 35 1.3353894631528094( 0) 4.6(-12)
1 -10 -10 10 10 28 1.0275704201029547( 0) 2.8(-12)

-10 -10 -10 -10 10 52 -2.2446238129792420( 1) 2.7(-12)
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Figure 4.4: Figures (a), (c) and (e) display both the optimal and alternate mesh
sizes used when evaluating the absolute error of the DESINC method in figure (b),
(d) and (f) for the potentials V2(x) = 4x2−6x4+x6 with exact eigenvalue E1 = −9,
V (x) = T10(x)− 1 and V (x) = T20(x)− 1 respectively.
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Figure 4.5: Figure (a) displays an approximation for 1353 eigenvalues that achieved
a approximate absolute error less than 5 × 10−12 for the ten well potential V (x) =
T20(x) − 1 as shown in equation (4.67) with φ(x) = sinh(x). Figure (b) displays
the value of N needed for each eigenvalue in figure (a) to achieve an approximate
absolute error less than 5× 10−12.
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Chapter 5

Centrosymmetric Matrices in the

Sinc Collocation Method

for Sturm-Liouville Problems

This chapter has been published as:

P. Gaudreau and H. Safouhi. Centrosymmetric Matrices in the Sinc Col-

location Method for Sturm-Liouville Problems. EPJ Web of Conferences,

108(01004):1–12, 2016.

Abstract.

Recently, we used the Sinc collocation method with the double exponential

transformation to compute eigenvalues for singular Sturm-Liouville problems.

In this work, we show that the computation complexity of the eigenvalues

of such a differential eigenvalue problem can be considerably reduced when

its operator commutes with the parity operator. In this case, the matrices

resulting from the Sinc collocation method are centrosymmetric. Utilizing
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well known properties of centrosymmetric matrices, we transform the problem

of solving one large eigensystem into solving two smaller eigensystems. We

show that only 1
N+1

of all components need to be computed and stored in

order to obtain all eigenvalues, where 2N +1 corresponds to the dimension of

the eigensystem. We applied our result to the Schrödinger equation with the

anharmonic potential and the numerical results section clearly illustrates the

substantial gain in efficiency and accuracy when using the proposed algorithm.

5.1 Introduction

The following chapter follows from our published work in [81]. In science and

engineering, differential eigenvalue problems occur abundantly. Differential

eigenvalue problems can arise when partial differential equations are solved

using the method of separation of variables. Consequently, they also play an

important role in Sturm-Liouville (SL) differential eigenvalue problems [193].

For example, the solution of the wave equation in a bounded domain can

be expressed as a sum of standing waves. The frequencies of these standing

waves are precisely the eigenvalues of its corresponding Sturm-Liouville prob-

lem. Similarly, in quantum mechanics, the energy eigenvalues associated with

a Hamiltonian operator are modelled using the time-independent Schrödinger

equation which is in fact a special case of the Sturm-Liouville differential eigen-

value problem.

Recently, collocation and spectral methods have shown great promise for

solving singular Sturm-Liouville differential eigenvalue problems [16,38]. More

specifically, the Sinc collocation method (SCM) [94,172,173] has been shown to
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yield exponential convergence. During the last three decades the SCM has been

used extensively to solve many problems in numerical analysis. The applica-

tions include numerical integration, linear and non-linear ordinary differential

equations, partial differential equations, interpolation and approximations to

functions [155, 158]. The SCM applied to Sturm-Liouville problems consists

of expanding the solution of a SL problem using a basis of Sinc functions.

By evaluating the resulting approximation at the Sinc collocation points sep-

arated by a fixed mesh size h, one obtains a matrix eigenvalue problem or

generalized matrix eigenvalue problem for which the eigenvalues are approx-

imations to the eigenvalues of the SL operator. In [84], we used the double

exponential Sinc collocation method (DESCM) to compute the eigenvalues of

singular Sturm-Liouville boundary value problems. The DESCM leads to a

generalized eigenvalue problem where the matrices are symmetric and positive-

definite. In addition, we demonstrate that the convergence of the DESCM is

of the rate O
(

N5/2

log(N)2
e−κN/ log(N)

)
for some κ > 0 as N → ∞, where 2N + 1

is the dimension of the resulting generalized eigenvalue system. The DESCM

was also applied successfully to the Schrödinger equation with the anharmonic

oscillators [83].

In the present contribution, we show how the parity symmetry of the

Sturm-Liouville operator can be conserved and exploited when converting the

differential eigenvalue problem into a matrix eigenvalue problem. Indeed, given

certain parity assumptions, the matrices resulting from the DESINC method

are not only symmetric and positive definite; they are also centrosymmetric.

The study of centrosymmetry has a long history [36,44,48,88,101,123,127,144,

159,182]. However, the last two decades has stemmed much research focused on

117



the properties and applications of centrosymmetric matrices ranging from iter-

ative methods for solving linear equations to least-squares problems to inverse

eigenvalue problems [1,14,59,66,102,104–106,116,169,174,176,177,194–196].

Using the eigenspectrum properties of symmetric centrosymmetric matrices

presented in [36], we apply the DESCM algorithm to Sturm-Liouville eigen-

value problems and demonstrate that solving the resulting generalized eigen-

system of dimension (2N + 1)× (2N + 1) is equivalent to solving two smaller

eigensystems of dimension N ×N and (N + 1)× (N + 1). Moreover, we also

demonstrate that only 1
N+1

of all components need to be stored at every it-

eration in order to obtain all generalized eigenvalues. To illustrate the gain

in efficiency obtained by this method, we apply the DESCM method to the

time independent Schrödinger equation with an anharmonic potential. Fur-

thermore, it is worth mentioning that research concerning inverse eigenvalue

problems where the matrices are assumed centrosymmetric has been the sub-

ject of much research recently [177, 195]. Consequently, the combination of

these results and our findings could lead to a general approach for solving

inverse Sturm-Liouville problems.

All calculations are performed using the programming language Julia and

all the codes are available upon request.
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5.2 Definitions and basic properties

The sinc function valid for all z ∈ C is defined by the following expression:

sinc(z) =





sin(πz)

πz
for z 6= 0

1 for z = 0.

(5.1)

For j ∈ Z and h a positive number, we define the Sinc function S(j, h)(x)

by:

S(j, h)(x) = sinc
(
x− jh

h

)
for x ∈ C. (5.2)

The Sinc function defined in (5.2) form an interpolatory set of functions

with the discrete orthogonality property:

S(j, h)(kh) = δj,k for j, k ∈ Z, (5.3)

where δj,k is the Kronecker delta function.

Definition 5.2.1. [155] Given any function v defined everywhere on the real

line and any h > 0, the symmetric truncated Sinc expansion of v is defined by

the following series:

CN(v, h)(x) =
N∑

j=−N

vj,h S(j, h)(x), (5.4)

where vj,h = v(jh).

119



The Sturm-Liouville (SL) equation in Liouville form is defined as follows:

Lu(x) = −u′′(x) + q(x)u(x) = λρ(x)u(x)

a < x < b u(a) = u(b) = 0, (5.5)

where −∞ ≤ a < b ≤ ∞. Moreover, we assume that the function q(x) is

non-negative and the weight function ρ(x) is positive. The values λ are known

as the eigenvalues of the SL equation.

In [84], we applied the DESCM to obtain an approximation to the eigenval-

ues λ of equation (5.5). We initially applied Eggert et al.’s transformation to

equation (3.13) since it was shown that the proposed change of variable results

in a symmetric discretized system when using the Sinc collocation method [56].

The proposed change of variable is of the form [56, Defintion 2.1]:

v(x) =
(√

(φ−1)′ u
)
◦ φ(x) =⇒ u(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (5.6)

where φ−1(x) is a conformal map of a simply connected domain in the complex

plane with boundary points a 6= b such that φ−1(a) = −∞ and φ−1(b) = ∞.

Applying the change of variable (5.6) into equation (3.13), one obtains [56]:

L v(x) = −v′′(x) + q̃(x)v(x) = λρ(φ(x))(φ′(x))2v(x) with lim
|x|→∞

v(x) = 0,

(5.7)

where:

q̃(x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+ (φ′(x))2q(φ(x)). (5.8)
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To implement the double exponential transformation, we use a conformal

mapping φ(x) such that the solution to equation (5.7) decays double exponen-

tially. In other words, we need to find a function φ(x) such that:

|v(x)| ≤ A exp (−B exp (γ|x|)) , (5.9)

for some positive constants A,B, γ. Examples of such mappings are given

in [84,121].

Applying the SCM method, we obtain the following generalized eigenvalue

problem:

LCM(v, h) = Av = µD2v =⇒ (A− µD2)v = 0, (5.10)

where the vectors v and CM(v, h) are given by:

v = (v−N,h, . . . , vN,h)
T and CN(v, h) = (CN(v, h)(−Nh), . . . , CN(v, h)(Nh))

T ,

(5.11)

and µ are approximations of the eigenvalues λ of equation (5.7). For more

details on the application of the SCM, we refer the readers to [84].

As in [157], we let δ(l)j,k denote the lth Sinc differentiation matrix with unit

mesh size:

δ
(l)
j,k = hl

(
d

dx

)l

S(j, h)(x)

∣∣∣∣∣
x=kh

. (5.12)

The entries Aj,k of the (2N + 1)× (2N + 1) matrix A are then given by:

Aj,k = − 1

h2
δ
(2)
j,k + q̃(kh) δ

(0)
j,k with −N ≤ j, k ≤ N, (5.13)
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and the entries D2
j,k of the (2N+1)×(2N+1) diagonal matrix D2 are given by:

D2
j,k = (φ′(kh))2ρ(φ(kh)) δ

(0)
j,k with −N ≤ j, k ≤ N. (5.14)

As previously mentioned, Eggert et al.’s transformation leads to matrices

A and D2 which are symmetric and positive definite. However, as will be

illustrated in the next section, given certain parity assumptions, these matrices

yield even more symmetry.

5.3 Centrosymmetric properties of the matrices

A and D2

In this section, we present some properties of the matrix A and D2 that will be

beneficial in the computation of their eigenvalues. The matrices A and D2 are

symmetric positive definite matrices when equation (5.7) is discretized using

the Sinc collocation method. Additionally, given certain parity assumptions

on the functions q(x), φ(x) and ρ(x) in equation (5.7), the matrices A and D2

will also be centrosymmetric.

Definition 5.3.1. [34, Section 5.10] Let J denote the parity operator defined

by:

J f(x) = f(−x), (5.15)

where f(x) is a well defined function being acted upon by J .

Definition 5.3.2. An operator B is said to commute with the parity operator

122



J if it satisfies the following relation:

BJ f(x) = JBf(x). (5.16)

Equivalently, we can say that the the commutator between B and J is zero,

that is:

[B,J ] = BJ − JB = 0. (5.17)

Definition 5.3.3. [182, Definition 5] An exchange matrix denoted by J is a

square matrix with ones along the anti-diagonal and zeros everywhere else:

J =




0 1

. .
.

1 0



. (5.18)

Definition 5.3.4. [182, Definition 2] Let B be a matrix of dimension (2N +

1)× (2N +1) with components Bj,k for −N ≤ j, k ≤ N . B is centrosymmetric

if and only if B satisfies the following property:

BJ = JB, (5.19)

where J is an exchange matrix of dimension (2N + 1) × (2N + 1). Writing

equation (5.19) in a component wise form, we have the following relation:

B−j,−k = Bj,k for −N ≤ j, k ≤ N. (5.20)

We now present the following theorem establishing the connection between
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symmetries of the Sturm-Liouville operator and its resulting matrix approxi-

mation.

Theorem 5.3.5. Let L denote the operator of the transformed Sturm-Liouville

problem in equation (5.7):

L =
1

ρ(φ(x))(φ′(x))2

(
− d2

dx2
+ q̃(x)

)
. (5.21)

If the commutator [L,J ] = 0, where J is the parity operator, then the matrices

A and D2 defined by equations (5.13) and (5.14) resulting from the DESCM

are centrosymmetric.

Proof The commutator [L,J ] = 0 if and only if q(x) and ρ(x) are even

functions and φ(x) is an odd function.

If φ(x) is an odd function, then φ′(x) is even, φ′′(x) is odd and φ′′′(x) is

even. From this and equation (5.8), it follows that q̃(x) is even.

In order to show that the resulting matrices A and D2 are centrosymmet-

ric, we demonstrate that both these matrices satisfy equation (5.20). Before

doing so, it is important to notice that the lth Sinc differentiation matrices

defined in equation (5.12) have the following symmetric properties:

δ
(l)
−j,−k = hl

(
d

dx

)l

S(−j, h)(x)
∣∣∣∣∣
x=−kh

=





δ
(l)
j,k if l is even

−δ(l)j,k if l is odd.

(5.22)

Hence, the lth Sinc differentiation matrices are centrosymmetric if l is even.

It is worth noting that when l is odd, the Sinc differentiation matrices are skew-

centrosymmetric [176]. Consequently, investigating the form for the compo-
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nents of the matrix A in equation (5.13), we obtain:

A−j,−k = − 1

h2
δ
(2)
−j,−k + q̃(−kh) δ(0)−j,−k

= − 1

h2
δ
(2)
j,k + q̃(kh) δ

(0)
j,k

= Aj,k. (5.23)

Similarly, investigating the form for the components of the matrix D2 in

equation (5.14), we obtain:

D2
−j,−k = (φ′(−kh))2ρ(φ(−kh)) δ(0)−j,−k

= (φ′(kh))2ρ(φ(kh)) δ
(0)
j,k

= D2
j,k. (5.24)

Both matrices A and D2 satisfy equation (5.20). From this it follows that

A and D2 are centrosymmetric.

Theorem 5.3.5 illustrates that Sinc basis functions preserve the parity prop-

erty of the Sturm-Liouville operator when discretized. Hence, when the ma-

trices A and D2 are symmetric centrosymmetric positive definite matrices,

we can utilize these symmetries when solving for their generalized eigenvalues.

In [36], Cantoni et al. proved several properties of symmetric centrosymmetric

matrices. In the following, we will utilize some of these properties to facilitate

our task of obtaining approximations to the generalized eigenvalues of the ma-

trices A and D2. The following lemma will demonstrate the internal block

structure of symmetric centrosymmetric matrices.

Lemma 5.3.6. [36, Lemma 2] If H is a square symmetric centrosymmetric
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matrix of dimension (2N + 1)× (2N + 1), then H can be written as:

H =




S x CT

xT a xTJ

C Jx JSJ



, (5.25)

where S,C are matrices of size N×N , J is the exchange matrix of size N×N ,

x is a column vector of length N and a is a scalar. In addition, ST = S and

CT = JCJ.

The next lemma simplifies the calculation needed to solve for these eigen-

values.

Lemma 5.3.7. [36, Lemma 3] Let H be a square symmetric centrosymmetric

matrix as defined in lemma 5.3.6 and let V be a square matrix of dimension

(2N + 1)× (2N + 1) defined by:

V =




S− JC 0 0

0 a
√
2 xT

0
√
2 x S+ JC



, (5.26)

then H and V are orthogonally similar. That is, the matrices H and V have

the same Jordan normal form and thus the same eigenvalue spectrum.

Cantoni et al. use Lemmas 5.3.6 and 5.3.7 to prove the following theorem

concerning a standard eigenvalue problem where the matrix is centrosymmet-

ric.

Theorem 5.3.8. [36, Theorem 2] Let H be a square symmetric centrosym-

metric matrix as defined in Lemma 5.3.6, then solving the eigenvalue problem
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det(H− λI) = 0 is equivalent to solving two smaller eigenvalue problems:

det(S− JC− λI) = 0 and det







a
√
2 xT

√
2 x S+ JC


− λ




1 0

0 I





 = 0.

(5.27)

Since our problem consists of solving a generalized eigenvalue problem

where one matrix is a full symmetric centrosymmetric and the other is a di-

agonal centrosymmetric matrix, we propose the following theorem.

Theorem 5.3.9. Let H and W be square symmetric centrosymmetric matrices

of the same size, such that:

H =




S x CT

xT a xTJ

C Jx JSJ




and W =




diag (w) 0 0

0 w 0

0 0 Jdiag (w)J



,

(5.28)

then solving the generalized eigenvalue problem det(H−λW) = 0 is equivalent

to solving two smaller generalized eigenvalue problems:

det(S− JC−λdiag (w)) = 0 and det







a
√
2 xT

√
2 x S+ JC


− λ



w 0

0 diag (w)





 = 0.

(5.29)

Proof This proof relies on the unitary transformation matrix presented

in [36, Lemma 3]:

K =
1√
2




I 0 −J

0
√
2 0

I 0 J



, (5.30)
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where I is the identity matrix and J is the exchange matrix.

It is easy to verify that:

KHKT = V, (5.31)

where V is the matrix in lemma 5.3.7.

This result is analogous for the matrix W with a change in notation. Hence:

0 =det(H− λW)

= det(K) det(H− λW) det(KT)

= det(KHKT − λKWKT)

= det







S− JC 0 0

0 a
√
2 xT

0
√
2 x S+ JC



− λ




diag (w) 0 0

0 w 0

0 0 diag (w)







=det(S− JC− λdiag (w)) det







a
√
2 xT

√
2 x S+ JC


− λ



w 0

0 diag (w)





 ,

(5.32)

from which the result follows.

Theorem 5.3.9 is very useful when N is large since it is less costly to

solve two symmetric generalized eigensystems of dimensions N ×N and (N +

1)× (N +1) rather than one symmetric eigensystem of dimension (2N +1)×

(2N+1). Additionally, Lemma 5.3.6 also has large ramifications when it comes

to saving storage space. As is discussed in [157], the lth Sinc differentiation

matrices are symmetric Toeplitz matrices. Therefore, for a symmetric Toeplitz

matrix of dimension (2N + 1) × (2N + 1), only 2N + 1 elements need to be
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stored. Investigating the definition of the matrix A in equation (5.13), we

can see that A is defined as a sum of a symmetric Toeplitz matrix and a

diagonal matrix. Moreover, from Lemma 5.3.6 and theorem 5.3.9, using only

the antidiagonal and anti-upper triangular half of matrix C, the vector x, the

scalar a, the diagonal and lower triangular half of the matrix S, the vector

w and the scalar w, we can create all the elements needed to solve for the

generalized eigenvalues of the matrices A and D2. Hence, the ratio of elements

needed to be computed and stored at each iteration N in order to solve for

these eigenvalues is given by:

Proportion of Entries Needed =
(2N +N + 1) + (N + 1)

(2N + 1)2 + (2N + 1)
=

1

N + 1
.

(5.33)

Thus, only 1
N+1

of the entries need to be generated and stored at every

iteration to obtain all of the generalized eigenvalues.

In the following section, we will illustrate the gain in efficiency of these re-

sults by applying the DESCM to the Schrödinger equation with an anharmonic

oscillator.

5.4 The anharmonic oscillator

The time independent Schrödinger equation is given by:

Hψ(x) = E ψ(x) with lim
|x|→∞

ψ(x) = 0. (5.34)

In equation (5.34), the Hamiltonian is given by the following linear opera-
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tor:

H = − d2

dx2
+ V (x),

where V (x) is the potential energy function and E is the energy eigenvalue

of the Hamiltonian operator H. In our case, we are treating the anharmonic

oscillator potential V (x) defined by:

V (x) =
m∑

i=1

cix
2i with cm > 0 and m ∈ N\{1}. (5.35)

In [83], we successfully applied the DESCM to time independent Schrödinger

equation with an anharmonic potential. As we can see, the time independent

Schrödinger equation (5.34) is a special case of the Sturm-Liouville equation

with q(x) = V (x) and ρ(x) = 1. Applying Eggert et al.’s transformation

and the DESCM with φ(x) = sinh(x), we arrived at the following generalized

eigenvalue problem:

det(A− ED2) = 0, (5.36)

where E are approximations of the energy eigenvalues E.

The matrices A and D2 defined by equation (5.13) and (5.14) are given

by:

Aj,k = −
(

1

h2

)
δ
(2)
j,k + Ṽ (kh)δ

(0)
j,k with −N ≤ j, k ≤ N, (5.37)

where:

Ṽ (x) =
1

4
− 3

4
sech2(x) + cosh2(x)

m∑

i=1

ci sinh
2i(x), (5.38)
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and:

D2
j,k = cosh2(kh) δ

(0)
j,k with −N ≤ j, k ≤ N. (5.39)

Since the anharmonic potential V (x) defined in (5.35) is an even function,

the function ρ(x) = 1 is an even function and the conformal map φ(x) =

sinh(x) is an odd function, we know that theorem 5.3.5 applies. Hence, the

matrices A and D2 are symmetric centrosymmetric.

5.5 Numerical Discussion

In this section, we test the computational efficiency of the results obtained in

theorem 5.3.9. All calculations are performed using the programming language

Julia in double precision. The eigenvalue solvers in Julia use the linear algebra

package LAPACK.

In [39], Chaudhuri et al. presented several potentials with known analytic

solutions for energy levels calculated using supersymmetric quantum mechan-

ics, namely:

V1(x) = x2 − 4x4 + x6 ⇒ E0 = −2

V2(x) = 4x2 − 6x4 + x6 ⇒ E1 = −9

V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10 ⇒ E0 = 3/8

V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10 ⇒ E1 = 9/8.

(5.40)

Figure 5.1 presents the absolute error between our approximation and the
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exact values given in (5.40). The absolute error is defined by:

Absolute error = |El(N)− Exact value| for l = 0, 1. (5.41)

The optimal mesh size obtained in [83]:

h =
W
(

2mπ2(m+1)N√
cm

)

(m+ 1)N
, (5.42)

where W (x) is the Lambert W function, is used in the calculation.

As can be seen from Figure 5.1, using the centrosymmetric property im-

proves the convergence rate of the DESCM significantly.

5.6 Conclusion

Sturm-Liouville eigenvalue problems are abundant in scientific and engineer-

ing problems. In certain applications, these problems possess a symmetry

structure which results in the Sturm-Liouville operator to be commutative

with the parity operator. As was proven in theorem 5.3.5, applying the DE-

SCM will preserve this symmetry and results in a generalized eigenvalue prob-

lem where the matrices are symmetric centrosymmetric. The centrosymmet-

ric property leads to a substantial reduction in the computational cost when

computing the eigenvalues by splitting the original eigenvalue problem of di-

mension (2N + 1) × (2N + 1) into two smaller generalized eigensystems of

dimension N ×N and (N +1)× (N +1). Moreover, due to the internal block

structure of the matrices obtained using the DESCM, we have shown that
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Figure 5.1: Absolute error for the potentials Vi(x) for i = 1, 2, 3, 4 given by (5.40)
with φ(x) = sinh(x).
(a) V1(x) = x2−4x4+x6 with exact eigenvalue E0 = −2. (b) V2(x) = 4x2−6x4+x6

with exact eigenvalue E1 = −9. (c) V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10

with exact eigenvalue E0 = 3/8. (d) V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10

with exact eigenvalue E1 = 9/8.

only
1

N + 1
of all entries need to be computed and stored at every iteration in

order to find all of their eigenvalues. Numerical results are presented for the

time independent Schrödinger equation (5.34) with an anharmonic oscillator

potential (5.35). Four exact potentials with known eigenvalues are tested and

the results clearly demonstrated the reduction in complexity and increase in
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convergence.
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Chapter 6

A Numerical Treatment of Energy

Eigenvalues of Harmonic

Oscillators Perturbed by a

Rational Function

This chapter has been submitted as:

P. Gaudreau and H. Safouhi. A Numerical Treatment of Energy Eigenvalues

of Harmonic Oscillators Perturbed by a Rational Function, Journal of Math-

ematical Physics, 2016 (Submission number: MS # 16-1986).

Abstract.

In the present contribution, we apply the algorithm for the double expo-

nential Sinc-collocation method (DESCM) to the one-dimensional time inde-

pendent Schrödinger equation for a class of rational potentials of the form

V (x) = p(x)/q(x). This algorithm is based on the discretization of the Hamil-
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tonian of the Schrödinger equation using Sinc functions expansions. This

discretization results in a generalized eigenvalue problem where the eigenval-

ues correspond to approximations of the energy values of the corresponding

Hamiltonian. A systematic numerical study is conducted, beginning with test

potentials with known eigenvalues and moving to rational potentials of in-

creasing degree.

6.1 Introduction

Over the last three decades, the study of perturbed quantum harmonic oscil-

lators has been on the edge of thrilling and exciting new research. Numerous

methods have been developed to numerically evaluate the energy eigenval-

ues of the Schrödinger equation Hψ = Eψ. More specifically, the Hamiltonian

H = − d2

dx2+V (x), where V (x) is a rational function of the form V (x) = x2+ p(x)
q(x)

has been the subject of much interest. Historically, the potential:

V (x) = x2 +
λx2

1 + gx2
, (6.1)

with λ ∈ R and g > 0 was among the first rational potentials to manifest

interest in the scientific community. The Schrödinger equation with such a

potential is the analogue of a zero-dimensional field theory with a nonlinear

Lagrangian, which is still of interest in particle physics today [112, 118, 137,

165]. Additionally, outside the realm of field theory, double-well potentials are

among the most important potentials in quantum mechanics [85, 95]. Double

well potentials occur abundantly in the study of quantum information theory
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or quantum computing. Concisely, quantum information theory attempts to

generalize the ideas of classical information theory to the quantum world.

Recently, systems of two particles in double well potentials have been studied

experimentally with ultracold atoms [11, 178]. In 2009, it was theoretically

proposed that neutral atoms held in double well potentials could be used to

create quantum logic gates to be used for quantum information processing

[78]. Recently, Murmann et al. demonstrated that the quantum state of two

ultracold fermionic atoms in an isolated double-well potential was completely

controllable [122]. They were able to control the interaction strength between

these two particles, the tilt of the potential as well as their tunneling rates

between the two wells. These experiments provide a starting point for quantum

computation with neutral atoms. Hence, further investigations into quantum

systems with multiple wells could be an asset in constructing an efficient and

reliable quantum computer.

There is a rich and diverse collection of techniques and algorithms avail-

able in literature to compute the energy eigenvalues of the Schrödinger equa-

tion with the rational potential (6.1). Among others, the use of variational

methods, perturbation series, and perturbed ladder operators methods have

been readily used to approximate the energy eigenvalues of this potential

[26, 27, 29, 63, 118, 160]. To understand the innate structure of the potential

(6.1), several exact representations for the energy eigenvalues of this poten-

tial were found for specific relations between the parameters λ and g [25, 32,

41, 73, 74, 76, 77, 80, 87, 113, 139–142, 181, 188]. Moreover, the Hill determinant

method as well as the Hill determinant method with a variational parameter

have been used extensively to numerically calculate the energy eigenvalues of
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(6.1) [3, 60, 86]. Methods utilizing power series, Taylor series and Padé ap-

proximants have also been used frequently in literature [64, 65, 67, 90, 96, 99].

More general numerical techniques have also been studied and applied to the

potential (6.1) such as finite differences, numerical integration, Runge-Kutta

methods and transfer matrix methods [31,62,79,92,146,147,191].

Despite the amount of attention the potential (6.1) has received in litera-

ture, there have been some attempts to treat more general rational potentials.

In [49], the potential:

V (x) = x2 +
2gm−1x2m

1 + αgx2
where m ∈ Z+, α > 0 and g ≥ 0, (6.2)

is examined. A perturbation series is used to investigate the spectrum of

energy eigenvalues for this specific potential. A strong asymptotic condition

of order (m− 1) is proved and this series is also shown to be summable in the

sense of the Borel-Leroy method.

In [89], the potential:

V (x) = ω2x2 +
f(x2)

g(x2)
, (6.3)

where f(x2) and g(x2) are polynomials in x2 such that f(x2)
g(x2)

= o(x2) as x→ ∞,

is investigated. A method for obtaining quasi-exact solutions for the energy

eigenvalues is outlined.

In [125], asymptotic expansions for the energy eigenvalues of the potential:

V (x) = x2N +
λxm1

1 + gxm2
(6.4)
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with N,m1,m2 being arbitrary positive integers and real parameters λ and

g are derived. These asymptotic expansions are subsequently shown to be

related to the corresponding energy levels n. Numerical results are presented

for a variety of potentials of the form in equation (6.4). The numerical accuracy

of the proposed asymptotic estimates increase as their corresponding energy

levels increases.

In [145], a matrix-continued-fraction algorithm is introduced to calculated

the energy eigenvalues of rational potentials of the form:

V (x) = x2 +

M∑

m=1

λ2mx
2m

1 +
M∑

m=1

g2mx
2m

and V (x) = x2 +

2M∑

m=1

λmx
m

1 +
2M∑

m=1

gmx
m

. (6.5)

This method is based on an expansion of the eigenfunctions into complete

sets. In addition to the proposed method, numerical results are given only

for the nested potential in equation (6.1) as well as polynomial potentials (i.e.

gm = 0 ∀m ). The numerical results provided demonstrate a high accuracy

in comparison to previous results available in literature.

In [190], the energy levels of the one dimensional potentials:

V (x) = x2 +
λxN

1 + gx2
and V (x) = µx2I ± gx2N

1 + gαx2M
(6.6)

are evaluated using a finite difference approach. Numerical results are pre-

sented for a variety of parameters and they are in good agreement with other

results obtained in literature.

As can be seen by the numerous approaches which have been made to solve
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this problem, there is a lack of uniformity in its resolution. Moreover, the task

of evaluating energy eigenvalues for any general rational potential has only

been studied lightly. While several of these methods yield excellent results

for specific cases of rational potentials namely the potential in equation (6.1),

it would be favorable to have one algorithm capable of handling any rational

potential of the form V (x) = ωx2m + p(x)
q(x)

, which can deliver all eigenvalues at

any desired level of accuracy in an acceptable computational time. It is the

purpose of this research work to present such a general algorithm based on the

double exponential Sinc-collocation method presented in [84]. In this work, we

will begin by summarizing the algorithm based on the double exponential Sinc-

collocation method (DESCM). The DESCM starts by approximating the wave

function as a series of weighted Sinc functions. By substituting this approxi-

mation in the Schrödinger equation and evaluating this expression at several

collocation points, we obtain a generalized eigensystem where the generalized

eigenvalues are approximations to the energy eigenvalues. As will be shown

in this contribution, the more terms we include in our series of weighted Sinc

functions, the better the approximation to the energy eigenvalues becomes.

This method has numerous advantages over previous methods as it is insen-

sitive to large changes in the numerous parameters in addition to having a

near-exponential convergence rate. Moreover, the matrices generated by the

DESCM have very nice symmetric properties which make numerical calcula-

tions of their eigenvalues much easier than standard non-symmetric matrices.
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6.2 General definitions, properties and prelimi-

naries

The sinc function, analytic for all z ∈ C is defined by the following expression:

sinc(z) =





sin(πz)

πz
for z 6= 0

1 for z = 0

. (6.7)

The Sinc function S(j, h)(x) for h ∈ R+ and j ∈ Z is defined by:

S(j, h)(x) = sinc
(x
h
− j
)
. (6.8)

It is possible to expand well-defined functions as series of Sinc functions.

Such expansions are known as Sinc expansions or Whittaker Cardinal expan-

sions.

Definition 6.2.1. [155] Given any function v(x) defined everywhere on the

real line and any h > 0, the Sinc expansion of v(x) is defined by the following

series:

C(v, h)(x) =
∞∑

j=−∞
vjS(j, h)(x), (6.9)

where vj = v(jh). The symmetric truncated Sinc expansion of the function

v(x) is defined by the following series:

CN(v, h)(x) =
N∑

j=−N

vj S(j, h)(x) for N ∈ N. (6.10)

The Sinc functions defined in (6.8) form an interpolatory set of functions
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with the discrete orthogonality property:

S(j, h)(kh) = δj,k for j, k ∈ Z, (6.11)

where δj,k is the Kronecker delta function. In other words, CN(v, h)(x) = v(x)

at all the Sinc grid points given by xk = kh.

A major motivation behind the use of Sinc expansions stems from numer-

ical integration. As it happens, integration of Sinc expansions have a direct

connection with the the composite trapezoidal rule. It is well known from the

Euler-Maclaurin summation formula that the error in approximating the inte-

gral of a measurable function v defined on the interval (a, b) by the composite

trapezoidal rule is given by:

h
N−1∑

k=1

v(xk−1) + v(xk)

2
−
∫ b

a

v(x)dx ∼
∞∑

l=1

h2l
B2l

(2l)!

(
v2l−1(b)− v2l−1(a)

)
,

(6.12)

where B2l are the Bernoulli numbers and N is the number of points in the

interval of integration, from x0 = a to xN = b. Hence, for a periodic function

or a function for which v(n)(x) → 0 at the endpoints, the convergence is

faster than any power of h. This observation has lead to much research on

the use of conformal maps that decay to zero at infinities. Indeed, given a

conformal map φ−1(x) of a simply connected domain in the complex plane

with boundary points a 6= b such as φ−1(a) = −∞ and φ−1(b) = ∞ and a

Lebesgue measurable function v defined on the interval (a, b) we can derive
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the following elegant result using Sinc expansions:

∫ b

a

v(x)dx =

∫ ∞

−∞
(v ◦ φ)(y)φ′(y)dy

≈
∫ ∞

−∞

N∑

j=−N

ṽj S(j, h)(y)dy

=
N∑

j=−N

ṽj

∫ ∞

−∞
S(j, h)(y)dy

= h
N∑

j=−N

ṽj, (6.13)

where ṽj = (v ◦ φ)(jh)φ′(jh). As we can see, equation (6.13) is exactly the

trapezoidal rule.

In [155], Stenger introduced a class of functions which are successfully

approximated by a Sinc expansion. We present the definition for this class of

functions bellow.

Definition 6.2.2. [155] Let d > 0 and let Dd denote the strip of width 2d

about the real axis:

Dd = {z ∈ C : | =(z)| < d}. (6.14)

For ε ∈ (0, 1), let Dd(ε) denote the rectangle in the complex plane:

Dd(ε) = {z ∈ C : | <(z)| < 1/ε, | =(z)| < d(1− ε)}. (6.15)

Let B2(Dd) denote the family of all functions g that are analytic in Dd, such
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that:

∫ d

−d

| g(x+iy)|dy → 0 as x→ ±∞ and N2(g,Dd) = lim
ε→0

(∫

∂Dd(ε)

|g(z)|2|dz|
)1/2

<∞.

(6.16)

The time independent Schrödinger equation is given by the following ex-

pression:

Hψ(x) = E ψ(x), (6.17)

where the Hamiltonian is given by the following linear operator:

H = − d2

dx2
+ V (x), (6.18)

where V (x) is the potential energy function. The time independent Schrödinger

equation (6.17) can be written as the following boundary value problem:

− ψ′′(x) + V (x)ψ(x) = Eψ(x) with lim
|x|→∞

ψ(x) = 0. (6.19)

Equation (6.19) is similar to the Schrödinger equation with an anharmonic

oscillator potential to which we applied successfully the DESCM [83].

Eggert et al. [56] demonstrate that applying an appropriate substitution

to the boundary value problem (6.19), results in a symmetric discretized sys-

tem when using Sinc expansion approximations. The change of variable they

propose is given by:

v(x) =
(√

(φ−1)′ ψ
)
◦ φ(x) =⇒ ψ(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (6.20)
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where φ−1(x) a conformal map of a simply connected domain in the complex

plane with boundary points a 6= b such that φ−1(a) = −∞ and φ−1(b) = ∞.

Applying the substitution (6.20) to (6.19), we obtain:

Ĥ v(x) = −v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x) with lim
|x|→∞

v(x) = 0,

(6.21)

where:

Ṽ (x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+ (φ′(x))2V (φ(x)). (6.22)

6.3 The development of the method

A function ω(x) is said to decay double exponentially at infinities if there exist

positive constants A,B, γ such that:

|ω(x)| ≤ A exp(−B exp(γ| x|)) for x ∈ R. (6.23)

The double exponential transformation is a conformal mapping φ(x) which

allows for the solution of (6.21) to have double exponential decay at both

infinities.

In order to implement the DESCM, we start by approximating the solution

of (6.21) by a truncated Sinc expansion (6.10). Inserting (6.10) into (6.21),
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we obtain the following system of equations:

ĤCN(v, h)(xk) =
N∑

j=−N

[
− d2

dx2k
S(j, h)(xk) + Ṽ (xk)S(j, h)(xk)

]
vj

= E
N∑

j=−N

S(j, h)(xk)(φ
′(xk))

2vj for k = −N, . . . , N,

(6.24)

where the collocation points xk = kh and E is an approximation of the eigen-

value E in (6.21).

The above equation can be re-written as follows:

ĤCN(v, h)(xk) =
N∑

j=−N

[
− 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k

]
vj

= E
N∑

j=−N

δ
(0)
j,k (φ

′(kh))2vj for k = −N, . . . , N, (6.25)

where δ(l)j,k are given by [154]:

δ
(l)
j,k = hl

(
d

dx

)l

S(j, h)(x)

∣∣∣∣∣
x=kh

. (6.26)

Equation (6.25) can be represented in a matrix form as follows:

ĤCN(v, h) = Hv = ED2v =⇒ (H− ED2)v = 0, (6.27)

where:

v = (v−N , . . . , vN)
T and CN(v, h) = (CN(v, h)(−Nh), . . . , CN(v, h)(Nh))

T .
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H is a (2N + 1)× (2N + 1) matrix with entries Hj,k given by:

Hj,k = − 1

h2
δ
(2)
j,k + Ṽ (kh) δ

(0)
j,k with −N ≤ j, k ≤ N, (6.28)

and D2 is a (2N + 1)× (2N + 1) diagonal matrix with entries D2
j,k given by :

D2
j,k = (φ′(kh))2 δ

(0)
j,k with −N ≤ j, k ≤ N. (6.29)

To obtain non-trivial solutions for (6.27), we have to set:

det(H− ED2) = 0. (6.30)

In order to find an approximation of the eigenvalues of equation (6.21),

we will solve the above generalized eigenvalue problem. The matrix D2 is

diagonal and positive definite. The matrix H is the sum of a diagonal matrix

and a symmetric Toeplitz matrix. If there exits a constant δ > 0 such that

Ṽ (x) ≥ δ−1, then the matrix H is also positive definite.

In [84, Theorem 3.2], we present the convergence analysis of DESCM which

we state here in the case of the transformed Schrödinger equation (6.21). The

proof of the Theorem is given in [84].

Theorem 6.3.1. [84, Theorem 3.2] Let E and v(x) be an eigenpair of the

transformed Schrödinger equation:

− v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x), (6.31)
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where:

Ṽ (x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx
(
√
φ′(x))

)
+(φ′(x))2V (φ(x)) and lim

|x|→∞
v(x) = 0.

(6.32)

Assume there exist positive constants A,B, γ such that:

|v(x)| ≤ A exp(−B exp(γ|x|)) for all x ∈ R, (6.33)

and that v ∈ B2(Dd) with d ≤ π

2γ
.

Moreover, if there is a constant δ > 0 such that Ṽ (x) ≥ δ−1 and the

selection of the optimal mesh size h is such that:

h =
W (πdγN/B)

γN
, (6.34)

where W (x) is the Lambert W function.

Then, there is an eigenvalue E of the generalized eigenvalue problem satis-

fying:

|E − E| ≤ ϑv,d

√
δE

(
N5/2

log(N)2

)
exp

(
− πdγN

log(πdγN/B)

)
as N → ∞,

(6.35)

where ϑv,d is a constant that depends on v and d.

As we can see from the results obtained in Theorem 6.3.1, |E − E| → 0

as N → ∞ for all energy eigenvalues E. Moreover, it is important to notice

that the convergence rate of the DESCM is dependent on the strip width of

analyticity d.
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6.4 Application to Rational Potentials

In this section, we will apply the DESCM to the time independent Schrödinger

equation with a rational potential. The time independent Schrödinger equa-

tion is defined by the following equation:

[
− d2

dx2
+ V (x)

]
ψ(x) = E ψ(x), (6.36)

where the potential V (x) is given by:

V (x) = ωx2m +
p(x)

q(x)
with (ω,m) ∈ R>0 × N, (6.37)

where the functions p(x) and q(x) are polynomials in x. More specifically,

we will investigate a subset of rational functions
p

q
∈ Q ⊂ R(x), where Q is

defined by the following function space:

Q =





p

q
∈ R(x) :

∣∣∣∣∣∣∣∣∣∣∣∣∣

q(x) 6= 0, ∀ x ∈ R,

q(0) = 1,

p(x)

q(x)
= o(x2m) as |x| → ∞





. (6.38)

In (6.38), R(x) denotes the set of rational functions of x with real coefficients.

The first condition, q(x) 6= 0, ∀ x ∈ R is set in order for V (x) to be continuous

for all x ∈ R. However, this conditions automatically imposes that deg(q(x))

be even since any odd degree polynomial has at least one real root. The second

condition imposes a uniqueness on the potentials. For example, we can create
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the rational function:

p1(x)

q1(x)
=

2 + 2x+ 2x4

2 + 2x2
=

1 + x+ x4

1 + x2
=
p2(x)

q2(x)
. (6.39)

Although p1(x) 6= p2(x) and q1(x) 6= q2(x), we have p1(x)/q1(x) = p2(x)/q2(x).

The condition q(0) = 1 removes this ambiguity when defining new potentials.

The third condition specifies that for large x, the rational potential V (x) ex-

hibits behaviour similar to an anharmonic potential of the form ωx2m. Conse-

quently, the potential V (x) we will be investigating has the following general

form:

V (x) = ωx2m +

k∑

i=0

λix
i

1 +
2l∑

i=1

gix
i

with k − 2l < 2m, (6.40)

It is worth noting that this current form also encompasses even potentials

depending on the values of the coefficients {λi}ki=0 and {gi}2li=1. To implement

the DE transformation, we choose a function φ which would result in the

solution of (6.21) to decay doubly exponentially. Given the nature of the

potential (6.40), we know that the wave function will be analytic everywhere

in the complex plane except for the points z ∈ C where q(z) = 0. Since the

anharmonic potential in equation (6.40) is analytic in R and grows to infinity

as x → ±∞, the wave function is also analytic and normalizable over R.

To find the decay rate of the solution to equation (6.19) with the rational

potential, we can use a similar WKB analysis as the one presented in [83].
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In [83], we considered the anharmonic potential:

V (x) =
m∑

i=1

cix
2i = O(x2m) as |x| → ∞. (6.41)

As we can see, the anharmonic potential (6.41) has the same asymptotic growth

as the rational potential (6.40). Consequently, the function ψ(x) has the same

decay rate at both infinities:

ψ(x) = O
(
|x|−m/2 exp

(
−
√
ω |x|m+1

m+ 1

))
as |x| → ∞. (6.42)

Away from both infinities, the wave function ψ(x) undergoes oscillatory be-

haviour. From equation (6.42), we can see that the wave function ψ(x) decays

only single exponentially at infinities.

A possible choice for the conformal mapping is φ(x) = sinh(x) since:

|v(x)| =
∣∣∣∣∣
ψ ◦ φ(x)√
φ′(x)

∣∣∣∣∣

≤ A| sinh(x)|−m/2| cosh(x)|−1/2 exp

(
−
√
ω| sinh(x)|m+1

m+ 1

)

≤ A exp

(
−

√
ω

(m+ 1)2m+1
exp((m+ 1)|x|)

)
, (6.43)

for some positive constant A. However, as previously mentioned, Theorem

6.3.1 demonstrates that the convergence of the DESCM is dependent on the

strip of width 2d ≤ π

γ
for which the function v(x) is analytic. Since, we know

that our original wave function ψ(x) is analytic everywhere in the complex

plane except for the points z ∈ C where q(z) = 0; we wish to find a conformal

mapping which will result in the solution of the transformed wave equation,
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v(x), in (6.21) to be analytic up to the maximal strip width d =
π

2γ
. To choose

this optimal mapping φ, we will utilize a result presented in [152]. Slevinsky et

al. investigate the use of conformal maps for the acceleration of convergence

of the trapezoidal rule and Sinc numerical methods [152]. The conformal map

they propose is constructed as a polynomial adjustment to a sinh map, and

allows for the treatment of a finite number of singularities in the complex

plane. The polynomial adjustments achieve this goal by locating singularity

pre-images on the boundary of the widest allowable strip ∂D π
2γ

. The map they

propose has the form:

φ(x) = u0 sinh(x) +
n∑

j=1

ujx
j−1 with u0 > 0, (6.44)

for the (n + 1) coefficients {uk}nk=0 to be determined given a finite set of

singularities {δk ± εk}nk=1. Equation (6.44) still grows single-exponentially.

Hence, the transformed wave equation in (6.21) will still result in a double

exponential variable transformation. Indeed, using this conformal mapping,

we see that for all x ∈ R:

|v(x)| ≤ A exp

(
−

√
ω

m+ 1

(u0
2

)m+1

exp((m+ 1)|x|)
)
, (6.45)

for some positive constant A. From equation (6.45), we deduce that:

γ = m+ 1 and B =

√
ω

m+ 1

(u0
2

)m+1

. (6.46)

Concisely, the algorithm presented in [152] is as follows: Given a finite set

of singularities {δk ± εk}nk=1, we wish to solve the following system of complex
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equations:

φ

(
xk + i

π

2γ

)
= δk + iεk for k = 1, . . . , n. (6.47)

This is a system of n complex equations for the 2n+ 1 unknowns {uk}nk=0

and the real parts of the pre-images of the singularities {xk}nk=1. Since there

is one more unknown then equations, we can maximize the value of u0 which

is proportional to B in equation (6.46). By summing all n equations in (6.47)

and solving for u0, we obtain the following non-linear program:

maximize u0



=

n∑

k=1

{
εk −=

n∑

j=1

uj

(
xk + i

π

2γ

)j−1
}

sin

(
π

2γ

) n∑

k=1

cosh(xk)



, (6.48)

subject to φ

(
xk + i

π

2γ

)
= δk + iεk for k = 1, . . . , n.

For more information of the implementation of this algorithm, we refer the

readers to [152]. Implementing this algorithm guarantees that all complex

singularities of the potential in (6.40) will lie on the lines: ±i π
2γ

implying that

our transformed solution v(x) ∈ B2(D π
2γ
). Hence, the convergence rate of the

DESCM will now be given by:

|E−E| ≤ ϑv

√
δE

(
N5/2

log(N)2

)
exp

(
− π2N

2 log(π2N/2B)

)
as N → ∞, (6.49)

6.5 Numerical discussion

In this section, we present numerical results for the energy values for rational

potentials discussed in the previous section. All calculations are performed
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using the programming language Julia [30] in double precision. A double-

precision floating-point format is a computer number format that occupies 8

bytes (64 bits) in computer memory. In general, this corresponds to about

15-17 significant decimal digits on average. In the figures bellow, the satu-

ration effect observed in all figures is merely a consequence of this computer

number format resulting from rounding errors. The eigenvalue solvers in Julia

utilize the linear algebra package LAPACK [13]. In order to obtain the op-

timal conformal map in equation (6.44), the non-linear program in (6.48) is

solved using the package DEQuadrature [151]. The matrices H and D2 are

constructed using equations (6.28) and (6.29). To produce our figures, we use

the Julia package PyPlot.

In [25, 32, 41, 73, 74, 76, 77, 80, 87, 113, 139–142, 181, 188], several authors

presented exact solutions for potentials of the form:

V (x) = x2 +
λ(g)x2

1 + gx2
, (6.50)

where λ was dependant on g. A few examples are presented bellow:

λ1(g) = −2g(2 + g) ⇒ E0 = 5 + λ1(g)/g,

λ2(g) = −2g(2 + 3g) ⇒ E1 = 7 + λ2(g)/g,

λ3(g) = −g
(
7g + 6−

√
25g2 − 12g + 4

)
⇒ E2 = 9 + λ3(g)/g,

λ4(g) = −g
(
13g + 6−

√
49g2 − 4g + 4

)
⇒ E3 = 11 + λ4(g)/g.

(6.51)

Using these exact values as comparison, we present the following figures

showing the convergence of the DESCM. Figure 6.1, shows the absolute error

between our approximation and the exact values shown in equation (6.51). In
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this case, the optimal map can be derived analytically and is given by:

φ(t) =

(
2

g

)1/2

sinh(t) (6.52)

Explicitly, we define the absolute error as:

Absolute error = |En(N)− En| for n = 0, 1, 2, 3. (6.53)

As we can see from Figure 6.1, the proposed algorithm converges quite well.

We will now define an approximation to the absolute error as follows:

εn(N) = |En(N)− En(N − 1)| for





N = 1, 2, 3, . . .

n = 0, 1, 2, . . . .
(6.54)

We will now consider the general potentials of the form in equation (6.40).

V (x) = ωx2m +

k∑

i=0

λix
i

1 +
2l∑

j=1

gjx
j

with k − 2l < 2m, (6.55)

These potentials contains many free parameters. Indeed, we have 5 + k + 2l

free parameters. The free parameters include:

1. the exponent: m

2. the coefficient parameters: ω, λi and gj, i = 0, . . . , k and j =

1, . . . , 2l

3. the degrees of the polynomials in the numerator and denominator: k, 2l.
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It is important to mention that choosing the parameters gi, i = 1, . . . , 2l at

random such that q(x) 6= 0, ∀x ∈ R might at first seem problematic. However,

by the fundamental theorem of algebra, we are assured that q(x) may be

written as:

q(z) = 1 +
2l∑

i=1

giz
i =

l∏

i=1

(z − zi)(z − z̄i)

l∏

i=1

ziz̄i

, (6.56)

where {zi, z̄i}li=1 are the complex zeros of the strictly positive polynomial q(x).

In this cases, z̄i denotes the complex conjugate of zi. Hence, the polynomials

q(z) can be easily constructed by choosing values for {<{zi},={zi}}li=1 and

substituting them into equation (6.56).

To remove as much bias as possible in choosing these parameters, we let

these parameters represent random variables such that:

ω ∼ U(0, 10)

k ∼ U{0, 1, . . . , 2m+ 2l − 1}

λi ∼ U(−10, 10) i = 0, . . . , k (6.57)

<{zi} ∼ U(−5, 5) i = 1, . . . , l

={zi} ∼ U(0, 10) i = 1, . . . , l,

for fixed parameters m and l. We acknowledge that we have already used the

the symbol ” ∼ ” to denote the concept of asymptoticity. However, in equa-

tion (6.57), the symbol X ∼ f denotes the common statistics notation that the

random variable X follows the distribution f . In (6.57), U(a, b) denotes the
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continuous uniform distribution on the interval (a, b) and U{c, c+1, . . . , d} de-

notes the discrete uniform distribution for the integer support {c, c+1, . . . , d},

c, d ∈ N0.

In figure 6.2, we applied the DESCM to 100 randomly generated potentials

of the form in (6.40) according to (6.57) with m = 1, 2, 3, 4 and l = 1. In this

case, we can also find the optimal map analytically which is given by:

φ(t) =
[
={z1} csc

(π
4

)]
sinh(t) + <{z1}. (6.58)

As we can, the DESCM performs quite well for a wide variety of parameters

values.

In figure 6.3, we applied the DESCM to 100 randomly generated potentials

of the form in (6.40) according to (6.57) with m = 1, 2, 3, 4 and l = 2. Unlike

the previous examples, the optimal map cannot be found analytically for these

types of potentials. This would lead us to solve the non-linear program in

6.47 for every randomly generated potential. However, this is much harder

than anticipated because this non-linear program must be calibrated for any

potential. More explicitly, solving this non-linear program requires a user input

of two parameters, "obj_scaling_factor" which controls the scaling of the

objective function and "Hint" which controls the homotopy solution process

for the nonlinear program. Given the sensitivity of non-linear programming,

these parameters must be tuned for any arbitrary potential. As such, it is an

infeasible task to finely tune these parameters for any given list of randomly

generated potentials. However, to demonstrate the power of the DESCM,

figure 6.3 display the its implementation using the basic non-optimal φ(t) =
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sinh(t) conformal mapping. As we see, the DESCM still converges quite well

for a wide range of parameters.

6.6 Conclusion

Several methods have been used to evaluate the energy eigenvalues of per-

turbed harmonic oscillators. In this work, we present a method based on the

DESCM where the wave function of a transformed Schrödinger equation (6.21)

is approximated by as a Sinc expansion. By summing over 2N +1 collocation

points, the implementation of the DESCM leads to a generalized eigenvalue

problem with symmetric and positive definite matrices. In addition, we also

show that the convergence of the DESCM in this case can be improved to

the rate O
((

N5/2

log(N)2

)
exp

(
−κ′ N

log(N)

))
as N → ∞ where 2N + 1 is the

dimension of the resulting generalized eigenvalue system and κ′ is a constant

that depends on the potential. The convergence of this method can improved

by adding a polynomial adjustment to the typical sinh conformal mapping to

displace the complex singularities away from the real axis.

6.7 Tables and Figures
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Figure 6.1: Numerical evaluation of the relative error for the potentials V (x)
in equation (6.50) with λi(g) for i = 1, 2, 3, 4 as shown in equations (6.51) with
φ(x) = sinh(x). For all figures, we used the value g = 1. Figure (a) shows the
relative error for the potential with λ1(1) = −6 with exact eigenvalue E0 = −1.
Figure (b) shows the relative error for the potential with λ2(1) = −10 with exact
eigenvalue E1 = −3. Figure (c) shows the relative error for the potential with
λ3(1) = −13 +

√
17 with exact eigenvalue E2 = −4 +

√
17. Figure (d) shows the

relative error for the potential with λ4(1) = −12 with exact eigenvalue E3 = −1.
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Figure 6.2: Application of the DESCM for 100 randomly generated potentials of
the form

V (x) = ωx2m +

∑k
i=0 λix

i

1 + g1x+ g2x2
. Figure (a) corresponds to m = 1. Figure (b)

corresponds to m = 2. Figure (c) corresponds to m = 3. Figure (d) corresponds to
m = 4.
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Figure 6.3: Application of the DESCM for 100 randomly generated potentials of
the form

V (x) = ωx2m +

∑k
i=0 λix

i

1 + g1x+ g2x2 + g3x3 + g4x4
. Figure (a) corresponds to m = 1.

Figure (b) corresponds to m = 2. Figure (c) corresponds to m = 3. Figure (d)
corresponds to m = 4.
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Chapter 7

On the Computation of

Eigenvalues of the Anharmonic

Coulombic Potential

This chapter has been submitted as:

T. Cassidy, P. Gaudreau and H. Safouhi, On the Computation of Eigenvalues

of the Anharmonic Coulombic Potential, Journal of Mathematical Chemistry,

2016 (Submission number: JOMC-D-16-00316).

Abstract.

In this work, we propose a method combining the Sinc collocation method

with the double exponential transformation for computing the eigenvalues of

the anharmonic Coulombic potential. We introduce a scaling factor that im-

proves the convergence speed and the stability of the method. Further, we

apply this method to Coulombic potentials leading to a highly efficient and

accurate computation of its eigenvalues.
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7.1 Introduction

The Coulombic anharmonic oscillator potential, which is given by V (x) =

a−2

x2 + a−1

x
+
∑n

i=1 aix
i, has been of considerable interest in the study of the

Schrödinger equation. The potential describes the interaction between charged

particles and consistently arises in physical applications. These applications

include interactions in atomic, molecular and particle physics, and between

nuclei in plasma [132, 143]. The study of the Schrödinger equation involves

computation of the energy states, and many different methods have been pro-

posed for accurate and efficient calculation of the energy eigenvalues [40,69,91,

109,132]. In [40], the authors use the Hill determinant method to numerically

evaluate the Coulomb potential in N dimensions. They initially transform

the N dimension differential equation into a (2N − 4) dimensional problem.

This transformation produces the structure of a one dimensional Schrödinger

equation with a spherically symmetric potential. The authors then reduce the

dimension of the problem by transforming the Schrödinger equation into a

radial differential equation, leading to numerical approximations of the energy

eigenvalues. In [91], the authors use an appropriate ansatz to the wavefunction

and the Hill determinant method to find energy eigenvalues for the Coulomb

potential and the sextic oscillator problem. They also produce a relation be-

tween parameters leading to exactly solvable equations. However, the Hill

determinant method presents several limitations, including a lack of conver-

gence to higher order eigenvalues and the production of non physically realistic

results [170]. In addition, the method does not account for an important aspect

of the wavefunction, for instance, decay at the boundaries [170].
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Conversely, the Riccati-Padé method has been used in the calculation of

bound states and resonances in the Coulomb potential [69]. This method con-

sists of transforming the Schrödinger equation into a Riccati type equation for

the logarithmic derivative of the wavefunction. Analysis of the Riccati equa-

tion provides a deeper understanding of the overall nature of both the wave-

function and the energy eigenvalues. In [69], the method shows convergence

towards eigenvalues of the Schrödinger equation for bounded and unbounded

states. In a separate work [68], the Riccati-Padé method is combined with

Hankel determinants to find resonance states of the Coulomb potential. While

useful, the Riccati-Padé method can only produce bounds on the eigenvalues.

These bounds can give quite good approximations of the energy eigenvalues,

but can also be so large that they do not produce any meaningful informa-

tion [72]. Achieving acceptable error bounds on the eigenvalues requires an

increase in the dimension of the Hankel determinants. Further, the complex-

ity of the method increases with the complexity of the potential. Finally, the

method can also yield unwanted and unrealistic solutions [72].

The super symmetric quantum mechanic approach has also produced re-

sults with potentials of the form V (x) = α
r
+
∑

i=1 4pir
i. In [143], the authors

solved the equation using supersymmetric quantum mechanics. Their results

are mostly in agreement with exact values. Nevertheless, poor agreement

seems to arise when the potential has multiple wells or roots. There has also

been advancement in the combination of supersymmetric quantum mechanics

and perturbation theory. In [132], a combination of these techniques to find

exact solutions to the perturbed Coulomb potential is proposed. This method

can be expanded to include many other potentials and their excited states.
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However, the method requires constraints on the parameters of the potential

and these constraints differ for different eigenvalues [132].

In [109], the Sinc collocation method (SCM) have been used in a combina-

tion with the single exponential (SE) transformation to compute the energy

eigenvalues of the radial Schrödinger equation. The Sinc function and Sinc col-

location method have been used extensively since their introduction to solve

a variety of numerical problems [154, 155, 158]. The applications include nu-

merical integration, linear and non-linear ordinary differential equations as

well as partial differential equations [5, 6, 9, 37, 56–58, 83, 84, 153]. The sin-

gle exponential Sinc collocation method (SESCM) have been shown to offer

an exponential convergence rate and works well in the presence of singulari-

ties. The double exponential (DE) transform, introduced in 1974 [166], yields

near optimal accuracy when using the trapezoidal rule in numerical integra-

tion [121,163]. Since the introduction of the DE transform, its effectiveness has

been studied extensively [162,168]. While exponential convergence is produced

using the SESCM, it has been shown that the double exponential transforma-

tion provides an improved numerical convergence [120, 129, 167]. It should

be noted that the assumption for DE convergence is more severe than the

one for SE. Given the fact that FDE ( FSE, where FSE (respectively FDE)

denotes the class of functions for which SE is suitable (respectively DE is

suitable), there exist examples such that Sinc expansion with SE achieves its

usual rate, whereas it does not with DE [129, 167]. However, in [129, 167],

the authors present a theoretical convergence analysis for Sinc methods with

DE for functions in FSE\FDE for which DE does not achieve its usual rate of

O
(
e−κ1n/ log(κ2 n)

)
, and they were able to prove that DE still works for these
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functions with errors bounded by O
(
e−κ3

√
N/ log(κ4N)

)
which is slightly lower

than the rate of SE; however, as stated in [129, 167] one can consider that

there is almost no difference between the two transformations. This result

also illustrates the great advantage of using DE over SE.

The combination of SCM with the DE transformation was used to com-

pute eigenvalues of the anharmonic oscillator V (x) =
∑n

i=1 aix
2i [83] and to

Sturm-Liouville boundary value problems [84]. This method, referred to as the

DESCM, is shown to be highly accurate, efficient and stable for computing the

energy eigenvalues of the Schrödinger equation. In [83], an optimal mesh size

for potentials with multiple wells was derived leading to a substantial improve-

ment of the convergence of the method.

In this work, we provide a refinement for the DESCM and we apply the

metod to the anharmonic Coulombic potential. The improved method is capa-

ble of dealing with a vast variety of potentials efficiently. The DESCM approx-

imates the wavefunction with a series of weighted Sinc functions. By substitut-

ing the approximation into the Schrödinger equation, we obtain a generalized

eigensystem where the generalized eigenvalues are approximations to the ex-

act energy eigenvalues. We preform asymptotic analysis on the Schrödinger

equation with the anharmonic Coulombic potential. We use the asymptotic

solutions to produce optimized double exponential transformations. We also

present a numerical scaling that improves both the numerical convergence and

stability of the method. Finally, we compare the results of the refined DESCM

with the SESCM to illustrate the superiority of the proposed method.
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7.2 Definitions and properties

The sinc function is defined by the following expression:

sinc (z) =





sin(πz)

πz
for z ∈ C/{0}

1 for z = 0.

(7.1)

For k ∈ Z and h a positive number, we define the Sinc function S(k, h)(x)

by:

S(j, h)(x) = sinc
(
x− jh

h

)
. (7.2)

We also note the discrete orthogonality of the Sinc functions [158]. For

every k ∈ Z, we have:

S(j, h)(k h) =





1 if k = j

0 if k 6= j.
(7.3)

Definition 7.2.1. [155, Chapter 1] Given a function v: R → R and any h

positive, the Sinc expansion also known as the Whittaker Cardinal expansion

of v is defined as:

C(v, h)(x) =
∞∑

j=−∞
v(kh)S(j, h)(x). (7.4)

The symmetric truncated Sinc expansion given by:

CN(v, h)(x) =
N∑

j=−N

v(jh)S(j, h)(x) with N ∈ N. (7.5)
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In [155], Stenger proposed the following space of functions which are well

suited to Sinc approximations.

Definition 7.2.2. [155, Definition 3.1] Let 0 < d < π
2

and consider the set

Dd to be a strip of width 2d about the real axis defined as follows:

Dd =
{
z ∈ C : |=(z)| < d <

π

2

}
. (7.6)

We also define a rectangle in C such that, for ε ∈ (0, 1):

Dd(ε) = {z ∈ C : |<(z)| < 1/ε, |=(z)| < d(1− ε)} . (7.7)

Let B2(Dd) be the family of functions g that are analytic in Dd such that:

lim
|x|→∞

(∫ d

−d

|g(x+ iy)|dy
)

= 0 and N2(g,Dd) := lim
ε→0

(∫

∂Dd(ε)

|g(z)|2|dz|
) 1

2

<∞.

(7.8)

An analysis of the error induced when approximating a function in the

function space B2(Dd) using a Sinc expansion can be found in [155].
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7.3 The double exponential Sinc-Collocation method

The Schrödinger equation with semi-infinite zero boundary conditions is given

by:

Hψ(x) = E ψ(x) for 0 < x <∞

ψ(0) = ψ(∞) = 0, (7.9)

where the Hamiltonian operator is given by:

H = − d2

dx2
+ V (x), (7.10)

and where V (x) stands for the potential.

In [56], the authors proposed the following change of variable:

v(x) =
(√

(φ−1)′ ψ
)
◦ φ(x), (7.11)

where the conformal map φ(x) is defined according to the following definition.

Definition 7.3.1. [56] Let Ωd be a simply connected domain in the complex

plane with boundary points a and b. Define a conformal map, φ−1, from Ωd

onto the infinite strip Dd with φ−1(a) = −∞ and φ−1(b) = ∞. Denote the

inverse of φ−1 by φ.

The proposed transformation (7.11) produces a symmetric discretized sys-

tem when employing the Sinc collocation method on Sturm-Liouville problems.

Applying the transformation (7.11) to the Schrödinger equation (7.9) pro-
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duces the following equation:

− v′′(x) + Ṽ (x)v(x) = E (φ′(x))2v(x) with lim
|x|→∞

v(x) = 0, (7.12)

where:

Ṽ (x) = −
√
φ′(x)

d

dx

(
1

φ′(x)

d

dx

√
φ′(x)

)
+ (φ′(x))2 V (φ(x)). (7.13)

We note that for analytic V (x) the transformed differential equation has

analytic coefficients. Therefore, basic ordinary differential equation theory

assures us of the existence of an analytic solution.

To utilize the optimality of the double exponential transformation [163], we

search for a conformal mapping φ(x) that will result in the eigenfunction v(x)

involved in (7.11) to decay double exponentially. The function v(x) decays

double exponentially if there exists positive constants A, β, γ such that for all

x ∈ R, we have:

|v(x)| ≤ A exp(β exp(γ|x|)). (7.14)

To approximate the solution using the Sinc collocation method, we use the

truncated Sinc expansion (7.5) given by:

CN(v, h)(x) =
N∑

j=−N

vj S(j, h)(x) with vj = v(jh), (7.15)

and h is the mesh size and N ∈ N. In this case, the 2N+1 function values vj =

v(jh) are unknown. Consequently, we will proceed to find 2N + 1 equations

to solve for these unknown values.

170



Inserting the truncated Sinc expansion (7.5) into the differential equation

(7.12) and evaluating at the collocation points xk = kh, k = −N, . . . , N leads

to the following 2N + 1 equations:

N∑

j=−N

[
− 1

h2
δ
(2)
j,k + Ṽ (kh)δ

(0)
j,k

]
vj = E

N∑

j=−N

[
(φ′(jh))2δ

(0)
j,k

]
vj for k = −N, . . . , N,

(7.16)

where:

δ
(2)
j,k =





−π
2

3
if j = k

(−2)(−1)k−j

(k − j)2
if j 6= k

and δ
(0)
j,k =





1 if j = k

0 if j 6= k.

(7.17)

In (7.16), the value E is an approximation of the exact energy eigenvalue

E of the system (7.12).

Equation (7.16) can be re-writen in a matrix form as follows:

Av = E D2 v ⇒ (A− E D2)v = 0, (7.18)

where v = [v−N , ..., vN ]
T and the matrix A and the diagonal matrix D2 are

given by:

A =

[
− 1

h2
δ
(2)
j,k + Ṽ (jh)δ

(0)
j,k

]

j,k=−N,...,N

and D2 =
[
(φ′(jh))2δ

(0)
j,k

]
j,k=−N,...,N

.

(7.19)

As can be seen from (7.18), the eigenfunctions and eigenvalues of the dif-

ferential equation (7.12) can be approximated by the generalized eigenvalue

problem (7.18).
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Now, let us denote by W (x) the Lambert W function which is defined as

follows:

Definition 7.3.2. [46, Equation (1.5)]

The Lambert W function denoted by W (x) is defined implicitly by the so-

lution of the following equation:

z = W (x)eW (x). (7.20)

In our case, we restrict the Lambert W function to be real valued with

the additional constraint W (x) ≥ −1. This additional constraint forces the

Lambert W function to be single-valued. This branch is commonly denoted by

W0(x). For the numerical evaluation of the Lambert W function, we refer the

readers to [46].

Theorem 7.3.3. [83] Let (v(x), E) be an eigenpair of the transformed Schrödinger

equation given by:

− v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x) with lim
|x|→∞

v(x) = 0, (7.21)

where Ṽ (x) = −
√
φ′(x) d

dx

(
1

φ′(x)
d
dx

√
φ′(x)

)
+ (φ′(x))2 V (φ(x)). If

1. ∃A, β, γ > 0 such that: |v(x)| ≤ A exp (−β exp(γ|x|)),

2. v(x) ∈ B2(Dd) with d ≤ π

2γ
,

3. ∃ q > 0 such that Ṽ (x) ≥ q−1,

4. The mesh size h is chosen such that h =
W (πdγN/β)

γN
,
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where W (z) is the Lambert-W function, then the eigenvalue E obtained by

solving the system (7.18) satisfies the following asympotic bound with respect

to E:

|E − E| = O

[
√
qE

(
N

5
2

log(N)

)
exp

(
− πdγN

log(πdγN/β)

)]
as N → ∞.

(7.22)

Since this process can be done for any arbitrary eigenpair {(vn(x), En)}n,

it is clear from Theorem 7.3.3 that every eigenvalue E will satisfy the error

bound for the appropriate sequence of generalized eigenvalues E .

7.4 The Coulombic anharmonic potential

The Coulombic anharmonic potential V (x) is given by:

V (x) =
a−2

x2
+
a−1

x
+

n∑

i=1

aix
i

=
n∑

i=−2

aix
i with a−2 > 0, a0 = 0 and an > 0. (7.23)

The negative powers of x and the singularity at x = 0 are some of the

defining features of the anharmonic Coulombic potential. To utilize the Sinc

collocation method to compute eigenvalues of Coulombic potential, we search

for an appropriate double exponential transform as defined in Definition 7.3.1.

To find such a transformation, we must first perform an asymptotic analysis

of the differential equation (7.9).

As x → ∞, the potential is dominated by the term xn term and our
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differential equation becomes:

− ψ′′(x) + anx
nψ(x) ∼ 0 as x→ ∞. (7.24)

Making the substitution ψ(x) = eS(x) where S(x) is such that S ′′(x) =

o(S ′(x)2) as x→ ∞ leads to:

− S ′(x)2 + anx
n ∼ 0 as x→ ∞. (7.25)

Solving this equation and taking the negative root to satisfy the boundary

conditions, we obtain:

S(x) ∼ −2
√
an

n+ 2
x

n+2
2 as x→ ∞. (7.26)

Hence, we deduce the following bound for our wavefunction:

ψ(x) = O

(
exp

[
−2

√
an

n+ 2
x

n+2
2

])
as x→ ∞. (7.27)

Conversely, as x → 0+ the Coulomb potential is dominated by x−2 term.

We see that x = 0 is a regular singular point and the equation requires the use

of a Frobenius series type solutions. The solution is of the form ψ(x) = O(xr),

where r is a solution of the indicial equation:

− r(r − 1) + a−2 = 0 =⇒ r =
1±

√
1 + 4a−2

2
. (7.28)

The boundary condition ψ(0) = 0 leads us to reject the negative root,
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leading us to the following asymptotic bound as x→ 0+:

ψ(x) = O (xr) with r =
1 +

√
1 + 4a−2

2
. (7.29)

Finally, we notice that the wavefunction exhibits exponential decay at infin-

ity and algebraic decay at zero. Now, we search for a transformation φ(x) that

satisfies Definition 7.3.1 and produces double exponential decay at infinities.

We begin by using the transformation proposed in [168]:

φ(x) = log
[
esinh(x) + 1

]
∼





ex

2
as x→ ∞

exp

[
−e

−x

2

]
as x→ −∞.

(7.30)

From the definition of v(x) given by (7.11), our asymptotic bounds in (7.27)

and (7.29), as well as the asymptotic behavior of the conformal map in (7.30),

we can deduce the following asymptotic bounds for v(x):

v(x) =





O

(
exp

[
−

√
an

(n+ 2)2n/2
exp

(
n+2
2
x
)])

as x→ ∞

O

(
exp

[
−1 +

√
1 + 4a−2

4
exp (−x)

])
as x→ −∞.

(7.31)

From (7.31), we notice that the conformal map (7.30) indeed leads to a

double exponential decaying function v(x). In order for v(x) to belong to

the function space B2(Dd) as defined in Definition 7.2.2, given its asymptotic

behavior (7.31), proper attention must be given to the quantity N2(g,Dd). For

N2(g,Dd) to remain bounded, we require γ = max
{
n+ 2

2
, 1

}
=
n+ 2

2
.
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7.5 Numerical discussion

We use the DESCM to find energy eigenvalues of the anharmonic Coulomb

potential. The codes are written in double precision using the programming

language MATLAB [114] and are available upon request. A double-precision

floating-point format is a computer number format that occupies 8 bytes (64

bits) in computer memory. In general, this corresponds to about 15-17 signif-

icant decimal digits on average. In the Figures bellow, the saturation effect

observed in all Figures is merely a consequence of this computer number format

resulting from rounding errors in addition to numerical instabilities rcaused by

the increasing condition numbers of the matrices involved in the DESCM. The

matrices A and D2 are constructed using (7.19).

To evaluate the effectiveness of the DESCM, we define the relative error

between known eigenvalues E and numerical eigenvalues E as:

Relative Error =
|E − E|
|E| . (7.32)

When moving to higher order energy eigenvalues or potentials without known

analytic solutions, we use the following aproximation to the relative error:

Relative Error Approximation =
|Ei(N + 1)− Ei(N)|

|Ei(N + 1)| , (7.33)

where Ei(N +1) denotes the (N +1)th approximation of the ith energy eigen-

value.

To illustrate the convergence of our method, we compute the eigenvalues of
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potentials that have known analytic solutions [40, 109]. These potentials are:

V1(x) = 2
x2 − 16

x
+ 2x+ x2

16
=⇒ E0 = −59

4

V2(x) = 6
x2 − 24

x
+ 2x+ x2

16
=⇒ E0 = −57

4

V3(x) = 15
4x2 − 20

x
+ 2x+ x2

16
=⇒ E0 = −58

4

V4(x) = 35
4x2 − 28

x
+ 2x+ x2

16
=⇒ E0 = −14

V5(x) = 2
x2 + x2 =⇒ E0 = 5

V6(x) = 3
4x2 + x2 =⇒ E0 = 4

(7.34)

7.5.1 Refinement of the DESCM

We notice that we have a singularity at the left end point of the potential

at x = 0. Following the approach detailed in [119], we search for a general

transformation of the form:

φ(x) = log
[
exp

(
α1e

α2x − α3e
−α4x

)
+ 1
]

with αi > 0 for i = 1, 2, 3, 4.

(7.35)

We find that this transformation is ideal as it produces double exponential

decay at both boundaries and is suitable to Sinc expansion. In fact, we have

the following asymptotic behavior at both infinities:

log
[
exp

(
α1e

α2x − α3e
−α4x

)
+ 1
]
∼





α1e
α2x as x→ ∞

exp [−α3e
−α4x] as x→ −∞.

(7.36)

From the definition of v(x) given by (7.11), our asymptotic bounds in
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(7.27) and (7.29) in addition to the asymptotic behavior of the conformal map

in (7.36), we can deduce the following asymptotic bounds for v(x):

v(x) =





O

(
exp

[
−2
√
anα

n+2
1

n+ 2
exp

(
α2(n+ 2)

2
x

)])
as x→ ∞

O

(
exp

[
−(1 +

√
1 + 4a−2)α3

2
exp (−α4x)

])
as x→ −∞.

(7.37)

Similarly to what was mentioned before, by taking γ = max

{
α2(n+ 2)

2
, α4

}

and d =
π

2γ
, we ensure that v(x) ∈ B2(Dd) and is well suited to a Sinc ap-

proximation.

The matrices involved in the calculation become ill-conditioned. This is

to be expected as the Schrödinger equation produces eigenvalues that grow

unboundedly. We notice that the numerical blow ups correspond to the in-

creasing condition number.

As our transformation φ(x) = log [exp (α1e
α2x − α3e

−α4x) + 1] includes four

arbitrary positive parameters α1, α2, α3 and α4, we have more freedom in tai-

loring the transformation to our potential. We define our optimal parameters

to be those that increase our numerical stability. Our potential has an alge-

braic singularity at x = 0 resulting in a significant numerical instability.

We considered the potential V1(x) and define the optimal parameter set

{αi} as the parameter set that maximized the number of convergent eigen-

values found for N = 50 collocation points. Where two or more parameter

sets gave the same number of convergent eigenvalues, we chose the parameter

set requiring the least number of collocation points to converge to the ground
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state eigenvalue. We performed a systematic search of parameter space. We

began the search with α1 = α3 = 0.5 and α2 = α4 = 1. We began our search

of parameter space by incrementing parameter values by 0.1. This led to a

first optimal parameter set of α1 = 1, α2 = 1.3, α3 = 1.2 and α4 = 0.9.

We then iterated this process, taking the first optimal parameter set as an

initial guess and taking steps of 0.01 in parameter space.

We anticipate that further optimization of the transformation parameters

will produce further numerical stability. However, finding the optimal combi-

nation is quite costly, as we are optimizing a non-linear function with 4 input

values. Finding an efficient way to calculate the optimal parameters remains

an open question. In our calculations, we used α1 = 1.05, α2 = 1.30, α3 = 1.20

and α4 = 0.94. As can be seen from Figure 7.2, implementing the generalized

transformation improves considerably the numerical stability of the method.

To improve the stability of the method, we introduce a scaling factor lead-

ing to a considerable increase in convergence.

Corollary 7.5.1. Scaling the transformed energy eigenvalue problem using

x = τy with τ 6= 0 will transform the computed eigenvalues by E =
Ẽ

τ 2
where E

is the original eigenvalue and Ẽ is the energy eigenvalue of the scaled problem.

Proof. Consider the potential V (x) =
n∑

j=−i

ajx
j and the vector a := [a−i, a−i+1, ..., an]

consisting of the coefficients of the potential. Consider also the vector x =

[x−i, x−i+1, ..., xn]. Recognize that the energy eigenvalues are functions of the

coefficients of the potential. We can thus write E(a).
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We write the problem in the following form:

− ψ′′(x) + (a · x)ψ(x) = E(a)ψ(x). (7.38)

Implementing the change of variable x = τy with τ ∈ R and τ 6= 0, and

using:
d2

dx2
ψ(τy) =

1

τ 2
d2

dy2
ψ(y), (7.39)

leads to:
ψ′′(τy)

τ 2
+ (b · y)ψ(τy) = E(b)ψ(τy), (7.40)

where b = [τ−iai, τ
−i+1a−i+1..., τ

nan] and y = [y−i, y−i+1, ..., yn].

If we let c = [τ−i+2ai, τ
−i+2a−i+1...τ

n+2an], then (7.40) becomes:

− ψ′′(τy) + c · y = E(c)ψ(τy) = τ 2E(a)ψ(x). (7.41)

We can recover the energy eigenvalues corresponding to aj by noticing that:

E(a) =
E(c)

τ 2
, (7.42)

as desired.

The scaling vastly improves the number of convergent eigenvalues found

by the method. We fixed the matrix size at 201 × 201, and computed the

number of convergent eigenvalues with and without the scaling factor for each

transformation and we report the substantial increase in the number of conver-

gent eigenvalues found as can be seen from Table 7.1. In Figure 7.2, we used

1001×1001 matrix illustrating the increased stability of the method when the
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scaling factor is used.

In Table 7.1, we calculate the number of convergent eigenvalues in 100

iterations for the potentials V1, V2, V3 and V4. For higher order eigenvalues,

where the analytic solution is not known, we use the relative error threshold of

5 ·10−12. We consider a higher order eigenvalue to be found if the relative error

approximation is within the relative error threshold. Our choice of relative

error threshold is influenced by the accuracy of the eigensolvers in Matlab

as well as the presence of round off error. In this Table, the improvement

resulting from utilizing the generalized transformation and the introduction of

the scaling factor is obvious.

In Table 7.2, we plot the evolution of the convergence for increasing matrix

size for the potential V1. We see convergence towards the known ground state

eigenvalue as well as the convergence towards the first and second excited

states.

However, we would like to be able to compute arbitrarily many energy

eigenvalues. This will require dealing with matrices of increasingly large

size. Further, these matrices become more and more ill-conditioned as they

grow. In fact, for the potential V1, when using the transformation φ(x) =

log
[
esinh(x) + 1

]
, numerical blow ups occur for a 141× 141 matrix and higher.

We plot the condition number of the generalized eigenvalue problem, and no-

tice that the numerical blow ups occur as the condition number of the eigen-

value problem passes 1016. This increase in the condition number is to be

expected as the energy eigenvalues of the system grow without bound. The

scaling factor presents a simple way to improve stability of the method and is

evidenced in Figure 7.2. The Figure shows the improved convergence of the
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transformation φ2(x) = log [exp (α1e
α2x − α3e

−α4x) + 1] when compared with

φ1(x) = log
[
esinh(x) + 1

]
. We also see the vastly improved stability of the

scaled transformation.

The refined DESCM provides increased convergence speed when compared

with the SESCM presented in [109]. To compare the two methods, we imple-

ment the SESCM following the procedure in [109]. The improved convergence

speed offered by the refined DESCM is predicted in theoretical work done by

Sugihara and others [121,163,168]. As we have shown that the solution of the

Schrödinger equation is well suited to the DESCM, our results are remarkable.

The convergence of both methods is plotted in Figure 7.1. For the potentials

V5 and V6, we utilize the same single exponential transformation and step size

as proposed in [109]. Moreover, we show that the refinements presented in this

work also improve the convergence of the SESCM.

7.6 Conclusion

In this paper, we apply the DESCM method to the Schrödinger equation with

an anharmonic Coulombic potential. This potential presents several numerical

difficulties, including a singularity at x = 0. The DESCM proves to be a pow-

erful choice for computing the energy eigenvalues and produces convergence

towards known eigenvalues quickly. Further, we show that for the Coulombic

potential, the double exponential transformation is the optimal transforma-

tion for an accurate computation of the eigenvalues. Further, we introduced

an improvement of the numerical stability as well as the convergence of the

DESCM. The scaling factor that utilizes the symmetry of the eigenvalues is,
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to our knowledge, a novel suggestion that vastly improves stability and in-

creases convergence. Our numerical results imply that the instability is due to

the problem becoming ill-conditioned for large matrix sizes. Future work will

include implementing preconditioning methods in the generalized eigenvalue

problem as well as exploring other methods of increasing stability.

7.7 Numerical tables and figures
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Table 7.1: The numberof convergent eigenvalues computed in 100 itera-
tions for different transformations. φ1(t) = log(exp(sinh(t)) + 1), φ2(t) =
log [exp (α1e

α2x − α3e
−α4x) + 1]. The τ value denotes the scaling factor used in

the calculations.

Potential φ1(t) τ = 1 φ1(t) τ = 1.75 φ2(t) τ = 1 φ2(t) τ = 1.75
V1(x) 8 22 22 36
V2(x) 9 23 20 35
V3(x) 8 20 19 37
V4(x) 9 22 20 34

Table 7.2: Numerical calculations for the ground states and first two excited states
of the potential V1(x) Here we used the potential φ2 with the scaling factor τ = 1.00.

N Ẽ0(N) Ẽ1(N) Ẽ2(N)
10 -14.7499998222764 -4.09661939808125 1.13533983977096
15 -14.7499999935935 -4.09661597228020 1.13571953379622
20 -14.7499999989570 -4.09661597504977 1.13571957570939
25 -14.7499999997938 -4.09661597544138 1.13571957544272
30 -14.7499999999506 -4.09661597551624 1.13571957539198
35 -14.7499999999867 -4.09661597553405 1.13571957537878
40 -14.7499999999960 -4.09661597553543 1.13571957537729
45 -14.7500000000008 -4.09661597553923 1.13571957537739
50 -14.7499999999961 -4.09661597554020 1.13571957537189
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Figure 7.1: Comparison of the DESCM and the SESCM. (a) represents the conver-
gence of the DESCM and the SESCM towards known eigenvalues of the potential V5.
(b) represents the convergence of the DESCM and the SESCM towards the eigen-
values of the potential V6. The scaled plots correspond to the convergence diagrams
using the scaling factor τ . (a) uses a scaling factor of τ = 0.75. (b) uses a scaling
factor of τ = 0.55.
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Figure 7.2: The improved numerical stability of the DESCM for the potential
V1. (a) shows the convergence of the method with φ1(x) = log

[
esinh(x) + 1

]
and

φ2(x) = log [exp (α1e
α2x − α3e

−α4x) + 1] over 100 iterations. (b) compares the con-
dition numbers of the different transformation for the generalized eigenvalue problem.
(c) shows the convergence and stability of the generalized transformation following
the introduction of a scaling factor τ = 3.00 over 1000 iterations. (d) shows the
condition number of the scaled generalized transformation.
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Chapter 8

Concluding Remarks

In this thesis work, we investigated the solutions of the Schrödinger equation in

one dimension. Starting with asymptotic and WKB methods, we proposed an

algorithm for the evaluation of the energy eigenvalues of simple anharmonic

potentials. We derived an asymptotic expansion for the energy eigenvalues

of anharmonic oscillators for potentials of the form V (x) = κx2q + ω x2 for

q = 2, 3, . . . using the WKB approach. This leads to an asymptotic series

relating the energy levels to their corresponding energy values. Using series

reversion theory, we reverted this series to obtain an analytic expression for

the energy values in terms of their corresponding energy levels. This was

significantly more efficient as it only required the summation of a series for

different values of n eliminating the need for a root-finding method. Despite

the success of this method, more complicated potentials could not be tackled

efficiently using WKB methods.

Moving on the Sinc-collocation method, we were able to achieve much

higher accuracy for the resolution of a much broader class of anharmonic po-

187



tentials. However, to establish the convergence of the Sinc-collocation method

with a double exponential transformation for the Schrödinger equation, we

tackled a more general differential eigenvalue problem: the Sturm-Liouville

eigenvalue problems. Studying the convergence properties of this equation, we

found that the DESCM achieved an accuracy of O (exp (−κN/ log(N))) for

some κ > 0 and where N is proportional to the number of collocation points

involved in the DESCM.

After establishing the convergence of the DESCM, we retackled the classical

anharmonic potentials of the form:

V (x) =
m∑

i=1

cix
2i, m > 2, (8.1)

achieving unprecedented accuracy for a wide variety of coefficients ci. More-

over, we proposed an alternate method for computing an optimal mesh size h

in the DESCM when these types of potentials were highly oscillatory.

Upon studying the matrices involved in the DESCM when working with po-

tentials of the form in (8.1), we realized that an added symmetry was present

when the potentials where even. In fact, the matrices of the DESCM are

centrosymmetric when the potentials were even. This realization lead us to

discover that this symmetry was intrisincly linked to the commutativity of the

Sturm-Liouville differential operator with the parity operator. Additionally,

this discovery lead us to an improved algorithm which reduces the computa-

tional complexity of the DESCM by half.

The potentials in (8.1) are relatively well behaved since they do not have

any singularities on the real line or the complex plane. As such, we decided to
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tackle a more general type of rational potential of the form:

V (x) = ωx2m +

k∑

i=0

λix
i

1 +
2l∑

i=1

gix
i

with k − 2l < 2m. (8.2)

The position of the complex singularties present in (8.2) with respect to the

real line influence the convergence of the DESCM. To accelerate the conver-

gence for these types of potentials, we use tailored double exponential trans-

formation which move these singluarites away from the real line. As such, an

optimal convergence of the DESCM is achieved. We tested these tailored trans-

formations on a large variety of randomly generated potentials and achieved

an unprecendeted accuracy for all of them.

Lastly, we applied the DESCM to Coulombic potentials of the form:

V (x) =
n∑

i=−2

aix
i. (8.3)

The singularity at the origin, presented some numerical difficulties in comput-

ing the eigenvalues of such a potential. By using a scaling factor, we wer able

to reduce the condition number of the resulting matrices, leading to a better

convergence.

For future work, it would be interesting to apply the DESCM to the 2-

dimensional Schrödinger equation:

[−∇2 + V (x, y)]ψ(x, y) = Eψ(x, y), (x, y) ∈ Ω ⊆ R2 with ψ(x, y)|∂Ω = 0

(8.4)
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Complications might arise when trying to identify the asympotic behaviour of

the wave function ψ(x, y) at the border of its domain Ω in two dimensions. This

information would be important when trying to identify the optimal conformal

mappings given any potential V (x, y).
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