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In God we trust. All others must bring data. 
-  Robert Hayden

Statistics are like a bikini. 
W hat is revealed is interesting, 

what is concealed is crucial.
-  Aaron Levenstein

The purpose of models is not to fit the data but to sharpen the questions.
-  Samuel Karlin
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Abstract

This thesis concerns with the modelling of ordinal categorical data. Ordi­

nal response data are commonly observed in health and medical investigations 

tha t include several items. The qualitative nature of such data, which are 

ordinal and not equally spaced, has generated much concern when a quanti­

tative analytic tool is employed to analyze them. The Rasch model approach 

and its generalizations have been given much attention and are widely used in 

modelling item response data.

We first developed an improved conditional maximum likelihood estima­

tion procedure for the Rasch model with item response data. Based on the 

conditional maximum likelihood method, we implemented a simultaneous es­

timation method that can estimate the Rasch parameters more efficiently. We 

then obtained the asymptotic properties of these estimators and developed the 

conditional likelihood ratio test for the goodness-of-fit of the model. The im­

proved performance of our estimators was demonstrated by comparing it to 

tha t of the current conditional method known as the CON procedure, where it 

outperformed CON in both model fit and the precision of the Rasch estimators.

Second, we developed a method to account for the inter-item correlations
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in the Rasch Models. The polychoric correlation coefficient uses the concept 

of latent variables. W ith the assumption of a common polychoric correlation 

coefficient among items, we advocated the theory of generalized estimation 

equations approach to obtain consistent estimators of the parameters in the 

Rasch model.

Then, we discussed techniques used for missing data analysis. In item 

response data, we often encounter missing observations due to various rea­

sons. We are particularly interested in the implications of various missing data 

strategies and those of various missing data mechanisms in Rasch models. The 

bootstrap under hot deck imputation was suggested to be the best approach 

in producing consistent estimators and variances in various situations.

The utility of our methods developed in this thesis was demonstrated by 

using the data on a study of families of lung cancer patients. We considered 

fitting the Rasch model to each family health and care variable to obtain Rasch 

scores of person ability parameters adjusted by item difficulty for each subject. 

Comparisons are then made to show the advantage of using our methods over 

other approaches such as the average scoring method, and the traditional Rasch 

method.
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Chapter 1

Introduction

1.1 Background of the Thesis

This thesis deals with the modelling of ordinal categorical data. Ordinal 

response data are commonly observed in health and medical investigations that 

include several items. They include binary data ( “yes” or “no”), Poisson counts 

(number of successes), rating scales ( “disagree” , “neutral” , and “agree” etc.), 

partial credit (awarding partial credit on intermediate levels of performance), 

and other ordinal categorical data. For example, a symptom distress scale 

(SDS) has been used to obtain information about the health of lung cancer 

patients (Kristjanson et. ah, 1997). This scale includes 13 relevant symptom 

distress questions and uses 5-point scale to obtain qualitative data (l=normal,

1
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CHAPTER 1. INTRODUCTION  2

2=occasional, 3=frequent, 4=usual, or 5=constant distress). The qualitative 

nature of such data, which are ordinal and not equally spaced, has generated 

much concern when a quantitative analytic tool is employed to analyze them.

The primary goal in the modelling of item response data is to find a unique 

measurement of the person’s abilities and of the item difficulties that satisfies 

the properties of the fundamental measurement, which include sufficiency, di­

visibility, unidimensionality, linearity, abstraction, invariance, sample-free cal­

ibration, test-free measurement, and conjoint transitivity (Wright, 1997).

The common practice has been to simply obtain an average score for each 

person or item, and analyze it using standard analytic tools. However, the 

item or person scores obtained from Likert scale data often do not fulfill these 

properties of fundamental measurement. This fact casts doubt on the validity 

of the findings and conclusions based on the assumption that the simple average 

scores are accurate reflections of the person.

One analytic method in item response theory that does not require much 

of these unverifiable assumptions is the Rasch measurement, which is a way to 

convert ordinal observations into linear measures while satisfying the properties 

mentioned above. Rasch (1960) proposed the analytic method, known as the 

Rasch model, which avoids the limitations of averaging scores and satisfies the 

requirement for basic measurement properties. The Rasch model approach 

and its generalizations have been given much attention and are widely used in
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CHAPTER 1. INTRODUCTION  3

modelling item response data.

In this thesis, we will discuss the estimation and inference issues that arise 

from the Rasch analysis. First, we consider an improved estimation method by 

removing the independent assumption on the model parameters in the current 

approach. Then we discuss a method for the Rasch model to account for the 

inter-item correlations. We will also consider missing data analysis techniques 

under various missing data mechanisms. The lung cancer study on family 

satisfaction is used to illustrate the methods proposed in the thesis, and to 

compare with other methods currently being used.

1.2 Thesis Overview

This thesis is organized in the following manner:

Chapter 2 gives a general review of the literature on the Rasch model. 

We give an overview of the Rasch Model to review its history and current 

methodologies and to discuss current estimation and inference tools on the 

model. Some issues on missing data analysis are also reviewed.

Chapter 3 develops an improved conditional maximum likelihood estimation 

procedure for the Rasch model with item response data (Sheng and Carriere, 

2002). Based on the conditional maximum likelihood method, we implement a
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C H APTER 1. INTRODUCTION  4

simultaneous estimation method that can estimate the Rasch parameters more 

efficiently. We then obtain the asymptotic properties of these estimators and 

develop the conditional likelihood ratio test for the goodness-of-fit of the model. 

The improved performance of our estimators is demonstrated by comparing it 

to tha t of the current conditional method known as the CON procedure (Wright 

and Masters, 1982). We conclude that our estimation method outperforms 

CON in both model fit and the precision of the Rasch estimators.

Chapter 4 recognizes the inter-item correlation, known as the polychoric 

correlation, that may not be negligible and develop a method to account for 

them in the Rasch Models. The polychoric correlation coefficient uses the con­

cept of latent variables, which are usually continuous although unobservable, 

giving rise to the apparent complexity of the data. With the assumption of 

a common polychoric correlation coefficient among items, we advocated the 

theory of generalized estimation equations approach to obtain consistent esti­

mators of the parameters in the Rasch model.

Chapter 5 discusses techniques used for missing data analysis in Rasch 

model. In item response data, we often encounter missing observations due 

to various reasons. We are particularly interested in the implications of vari­

ous missing data strategies (a method deleting missing observations, a simple 

hot deck imputation, and the bootstrap technique) and those of various miss­

ing data mechanisms (missing completely at random, data missing at random,
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CHAPTER 1. INTRODUCTION  5

and nonignorable missing data). The bootstrap under hot deck imputation was 

suggested to be the best approach in producing consistent estimators and vari­

ances in various situations (Shao and Sitter, 1996). Large sample behaviors of 

the estimators are examined in a simulation study to evaluate the comparative 

performances under various settings.

Chapter 6 demonstrates the utility of our methods proposed in this the­

sis using the data on a study of families of lung cancer patients. The data 

set was collected on an ordinal scale for relevant family health and care ques­

tions, and presents many analytic challenges stated above, including missing 

data problems. We consider fitting the Rasch model to each family health 

and care variable to obtain Rasch scores in a linear scale, i.e. person ability 

parameters adjusted by item difficulty, for each subject. Comparisons are then 

made to show the advantage of using our proposed methods over conventional 

approaches such as average scoring method, or the traditional Rasch method.

Finally, Chapter 7 summaries the main contributions of the thesis, and 

suggests possible future research to further improve on the methodologies sug­

gested in this thesis.
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Chapter 2

R eview  of Literature

2.1 The D ata Structure

Suppose there are I  multiple-choice questions given to N  subjects. For 

question i, subject j  has to choose Xij from one out of several possible choices, 

divided into m  + 1 mutually exclusive categories. We denote these categories 

to have integer values so that X ^ takes a data point 0 ,1 , . . .  ,m. Denote the 

person response vectors of length I

x 3 = ( X l j , X 2j, . . . , X Ij)', (j — 1, . . .  ,N) ,

6
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CH APTER 2. RE VIE W  OF LITERATU RE

and the item response vectors of length N

7

X i  —  (Xji j Xi2 j • ■ • i XiN~) , if 1 ,  .

The data matrix X is obtained as in Table 2.1.

The scores for subject j  and item i are defined as

0 < r j  =  X , j  < I m , 0 < Si =  Xi. < N m ,

where X  j =  and XT =

2.2 Overview of Rasch M odels

2.2.1 The polytom ous R asch m odel

The general term we deal with here is the fundamental measurement, which 

includes the following properties: sufficiency, divisibility, unidimensionality, lin­

earity, abstraction, invariance, sample-free calibration, test-free measurement, 

and conjoint transitivity (Wright, 1997).

The usual method of analysis has been to simply take the average among 

the items to obtain a score for each person, or average among the persons to
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CHAPTER 2. RE VIEW  OF LITERATURE 8

obtain a score for each item. The item or person scores obtained from Likert 

scale data often do not fulfill these properties of fundamental measurement. 

This fact casts doubt on the validity of the findings and conclusions based on 

assumptions that the scores are accurate reflections of the study subject.

Solutions to these problems did not emerge until George Rasch implemented 

a measurement model known as the Rasch model to convert the Likert scale 

data to a continuous measurement data. Originally Rasch (1960) developed 

the multidimensional dichotomous Rasch model which is designed to measure 

separate latent traits for each response category k, k = 0, . . .  ,m.  The function 

specifies the multiplicative definition of fundamental measurement for each 

dichotomous observations as:

where Pij is the probability of a correct solution for subject j  on item i, to be 

determined by a measure of person ability and a calibration of item difficulty

Over the last four decades, several generalizations have been developed. 

These models commonly use the threshold approach (Andrich, 1978d) in that 

the dichotomous Rasch model is assumed to hold with the probability of passing 

the thresholds between two neighboring response categories k — 1 and k, given

1 +  exp (fa -  Si)
exp{fij -  5i)

(2 .1 )
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CHAPTER 2. REVIEW  OF LITERATU RE 9

as:

p(x,1 = k\x,,e{k - i , k } )= l^ T - A L  (2.2)

where (5j is the person ability of person j ,  5ik is the item difficulty of step k +  1 

in item i.

The models differ in the way they treat the threshold parameters Sik. All 

models decompose them into linear components, but the basic difference lies 

in the assumption about threshold distances on a continuum.

Among these threshold approaches, the least restrictive one is the partial 

credit model (Masters, 1982):

^  exP ^ ' = o ( f t ~ f e )  _  exp(fc/3j — Uik)
T̂ ijk "v

«*> Z Z M  -  W  -  «*■)
(2.3)

where Uik is a cumulative threshold parameter defined as crifc =  Ylk'=o^ik'- 

Because of its generality, this model is referred to as the po ly to m o u s R asch  

m odel.

2.2.2 Special Cases and E xtensions of th e Rasch M odel

There are several generalizations of the Rasch Model proposed and adopted 

by various investigators since Rasch proposed it in 1960.
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CH APTER 2. RE VIE W  OF LITERATU RE  10

1. Dichotomous Rasch model (Rasch, 1960).

Under this model, the response is binary, for example, “true” or “false” , 

“fail” or “pass” , “dead” or “alive”. This is simply a special case of the 

polytomous Rasch Model. In these examples, the response variable only 

takes value 0  or 1 :

1 +  exp(/3,- -  Si)

2. Polytomous Rasch model.

This is the general Rasch model with polytomous responses, any nominal 

or ordinal unidimensional responses from 0 to m. Unidimensionality 

means that the measurement of any object or entity describes only one 

attribute of the object measured. This is a universal characteristic of all 

measurement (Thurstone, 1931). The model is presented as follows:

P( Xi j  =  *) =  exp{kl3> ~  ^
E™'=o exP( k"f 3 j -  a ik» )

There are various special models proposed, depending upon the data 

types.

(a) Partial Credit model (PCM, Masters, 1982).
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CHAPTER 2. R E V IE W  OF LITERATU RE 11

This is a simple extension of dichotomous response to more interme­

diate levels of responses. In consequence, partial credit is given to 

get these intermediate levels. For example, students are given par­

tial credits when they choose a reasonable but not perfect answer. 

The model is

(b) Rating Scale model (Andrich, 1978c, 1978d, 1979).

This is the most commonly seen in survey questionnaire data. The 

study participant is asked to choose the attitude level among a fixed 

set of rating points, ranging from, for example, “strongly disagree” , 

“disagree” , “neutral” , “agree” , and “strongly agree” . The 5-point 

scale data on symptom distress questions studying the health of lung 

cancer patients fits into this category of data type. Because the same 

set of rating points is used with every item, it is usually assumed 

that the relative difficulties of the steps in each item should not vary 

from item to item. This then can be incorporated into the Partial 

Credit model by resolving each item step into two components so

P ( X {j = k ) = exp{k(3j -  Efc'=o^fe')
exp(fc"/3,- -  Efc'Lo M
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that 5ik =  Si +  Tk, and therefore

P {X {j =  k) = exp(kPj -  kSi -  J2k’=oTk')

(c) Binomial Trials (Rasch, 1972, Andrich, 1978a, 1978b).

This model is appropriate when the outcome is the number of suc­

cesses in an independent trial. Such data are special cases of rating 

scale data with relative difficulties between two neighboring cate­

gories being fixed for all items 5^ =  5i +  log mi_fc+1 • The model 

becomes

(d) Poisson Counts (Rasch, 1960).

In some testing situations, there is no clear upper limit on number of 

trials that might be observed and counted. For example, the number 

of successes in a fixed period of time is the data of this type. Here 

5ik = ^  + log k, and

P  (Xy = k )  =
exp (k/3j — kSi)/k\
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3. Two- and Three- Parameter Logistic Models.

The above polytomous Rasch models are known as the one-parameter 

logistic (1-PL) model. It contains only one parameter <5̂  per category 

per item. Birnbaum (1968) extended it to two- and three-parameter 

logistic models.

Birnbaum’s main contribution was his proposal of the two-parameter 

logistic (2-PL) model or Birnbaum, Model:

ex.p{a,j(Pj - b ik)}
1 +  ex'p{ai ((5j -  bik)}V(Xl0 =  k\Xij G { k - l , k } ) =  , t y± Z j/a I  \T (2-4)

where bik is the item difficulty parameter, the point on the person ability 

scale where a person has a probability of success 0.50 on step k in item 

i\ whereas the value of a, is proportional to the slope of the tangent to 

the response function at this point. If b^ increases, the response function 

moves to the right, and a higher ability is needed to produce the same 

probability of success on this step of the item. Also, the larger the value of 

dj, the better the item discriminates between the probabilities of success 

of persons with abilities below and above j3j = bik. For this reason, (p is 

called the discrimination parameter (Birnbaum, 1968).

Birnbaum (1968) also proposed a third parameter for inclusion in the
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model to account for the non-zero performance of persons with low-ability 

on multiple choices. This non-zero performance is due to the probability 

of guessing correct answers to multiple-choice items. The model takes 

the form

piXij -  k \X{j E {k 1 ,k})  Ci +  (1 a)  x +  ^  (2.5)

Equation (2.5) follows immediately from the assumption that the person 

either knows the correct response with a probability described by Equa­

tion (2-4) or guesses with a probability of success equal to the value of 

Cj. It is clear that the parameter c* is the height of the lower asymptote 

of the response function. Although Equation (2.5) no longer defines a 

logistic function, the model is called as the three-parameter logistic (3- 

PL) model. The c-parameter is sometimes referred to as the guessing 

parameter, since its function is to account for the performance of persons 

with low-ability in responding to the test items (Birnbaum, 1968).

4. Other Extensions of the Rasch model.

There are various extensions of the model presented in previous sections. 

We give some of them here.

(a) Multidimensional Rasch model.
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Stegelmann (1983) expanded the Rasch model to a general model 

that person ability parameters have more than one dimension in 

each category k.

(b) Linear Rating Scale model.

Fischer and Parzer (1991) extended the rating scale model in such a 

way that the item parameters are linearly decomposed into certain 

basic parameters, thus allowing incorporation of covariates. This ex­

tended model is denoted as the Linear Rating Scale model. Suppose 

we have P-dimensional covariates ap, p =  1 , . . . ,  P, then

where Si =  ]Cp Wipap +  c, WiP are weights for the item parameter Si 

associated with covariates ap.

(c) Linear Partial Credit model.

Fischer and Ponocny (1994) extended the PCM under the assump­

tion of a certain linear decomposition of the item-category parame­

ters into basic parameters. This model is referred to as the Linear

exp (Pjk -  aik)

X]fc" = 0  exP(A;fc" Cik")

P{Xij = k ) =
exp(kPj -  k5i -  o Tk>)
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Partial Credit model. Similar to that in the Linear Rating Scale 

model, given the P-dimensional covariates ap, p = 1 , . . . , P ,  we 

have

associated with covariates ap.

(d) Multidimensional Polytomous Latent Trait (MPLT) model.

Kelderman and Rijkes (1994) further generalized the multidimen­

sional Rasch model to a Multidimensional Polytomous Latent Trait 

model for polytomously scored items.

Table 2.2 summarizes the special cases of the polytomous Rasch model as 

well as some of their extensions.

exp(k(3j — Ylk!=o^ik')
„   ,  Utt / ini a

where aik =  Y X '=o — E P Wikp®P +  kc, wikp are weights for 5ik

P(Xij = k) =
exP J2j= 1 aijk{{3j -  8ik)
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2.3 Estim ation and Inference for the Rasch 

M odel

Various estimation strategies for the Rasch model have been proposed. 

Linacre (1999) provided an overview of currently available estimation proce­

dures and software. Some are non-iterative, while many others are iterative 

methods. Non-iterative methods include graphical methods and normal ap­

proximation. Iterative methods include datum-by-datum method, marginal 

estimation methods with and without distributional assumptions. There are 

common software that incorporate these iterative methods. For example, PAIR 

is based on datum-by-datum method, JMLE, CIVILE and log-linear models are 

marginal methods without distributional assumptions about the model pa­

rameters, while MMLE and PROX are marginal methods with distributional 

assumptions about the model parameters. Also, there is CON, which is based 

on the conditional likelihood method. After examining these popular software, 

Linacre (1999) concluded that the various Rasch estimation methods produced, 

in general, statistically equivalent results, although each has its own strengths 

and shortcomings.

Fisher (1934) showed that parameter separability is the necessary and suf­

ficient condition for sufficient statistics. This leads to two main methods of es­
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timation for the parameters: conditional maximum likelihood (CML) method 

and unconditional maximum likelihood (UML) method (Lehmann and Casella, 

1996). The CML method takes full advantage of parameter separability by 

keeping the person parameters out of the calibration procedure entirely, while 

the UML method estimates the person parameters simultaneously with the 

item parameters.

2.3.1 U nconditional M axim um  Likelihood E stim ation

Wright and Masters (1982) used unconditional maximum likelihood method 

to estimate the Rasch parameters. The likelihood function based on the full 

data set is

C ( / 3 J ; X ) = l H l P ( X „ = k „ )
N  I

e x p E ^ i E l r E t o ^ - ^ )
T -r f ^
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The log-likelihood function is

N  I  N  I  &ij

1(0 , 6 ; X )  = E E fc« f t ~ E E X >
j = 1 i —1 i = l  i= l  fc=0

IV I  m  k"

- E E  log( s  exp -  ^ ' ) )
j = 1 fc'=0

N  I  m

=

j = l  j= l fc=0

IV /  m fe"

~'HJ2 lo g ( Y1exp (2 -6 )
j = l  i = 1 fc"=0 fc'=0

where iV** is the number of persons responding on or above category k + 1 to 

item i so tha t X ^ x  X £ 0<^ =  E E o 7̂ ^ -  

It can be shown that

di°e(EtEo exP Ww, ~ W ) = EtEo fc"exP Ef-o(ft -  ht,)
E?-.o<=xpEf.o(/3) ~ f e )

m
^   ̂krtijk 
fe=o

dlog(EfcE0 exp Efc"=o(A' ~ M )  = -  EfcEfc exP Efc>=o(/?? ~ M  
^  E ^ e x p E j l o ^ - M

m

~  ~  53 'KiA ‘
fc'=fe

in which the item difficulty parameter Sik of category k +  1 appears only in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. RE V IE W  OF LITERATU RE  20

those terms for which k' > k, so that the derivative of Y2w=o resPecf

to 5ik truncates the summation from J2T'=o Ylk>=k-

Therefore, the first derivatives of the log-likelihood with respect to f3j and 

8ik are

91(P,5) I m
ijk

dl{@,6)  , ,  i W t  ( ^ 7 )

° ° ik j =1 fc'=fc

for j  =  1, . . .  , iV; i — 1 , . . . ,  /;  k =  1 , . . . ,  m. This is the estimation equation for 

Pj and 5lk.

The second derivative are

d2l(/3, S) i,2 /\T^ h \2\

i=l fe= 0  fc=0

N  m  md2l{/3,8) _
— /  X  /  y 71 i j k ’ ( /  , T^ijk’ )

851ik  j =0 k ’= k  k ’= k

respectively for /3j and <5̂ .

Estimators of these parameters may be obtained iteratively using, for exam­

ple, the Newton-Raphson method. The iterative procedure gives the following
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formula:

$ t+1) =  (3 , -i(i)

where fr.-̂  (r) is the estimated probability of a person with a score r  responding

in category k + 1 to item i after t  iterations, and N(r)  is the number of persons 

with score r.

Asymptotic standard errors can be estimated from the denominator of the 

last iteration:

The UML method is relatively easy to program, and for this reason it is 

widely used in practice. However, the estimates are inconsistent for N  —» oo 

with I  and m  fixed, although consistency does hold in some cases, for example 

N, I, N / I  —> oo for dichotomous responses (Anderson, 1973a). In some cases, 

e.g. fixed I, the estimators may be biased, although the bias can be effectively 

removed in the dichotomous case by multiplying the estimates by (I ~  1 ) / /

I  m mm

i=l k=0

Im~~ 1 m m
SE(5 ik) =  [ N (r ) ( ]T  7r^(r) -  ^ ( r ) ) 2)] 1/2

r = l k'—k
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(Wright and Douglas, 1977). It also suggests that the same correction may be 

appropriate for reducing the bias even in the polytomous response cases.

2.3.2 Conditional M axim um  Likelihood E stim ation

Among the estimation methods for the Rasch models, the conditional max­

imum likelihood method, despite its computational difficulty, has enjoyed pop­

ularity due to such desirable features as consistency and well-defined standard 

errors. It can be shown (Masters, 1982) that the conditional probability of 

response vector xj given the score rj — r for person j  is a function of the item 

parameters 5 only:

exP(~Ei=i EfcU f̂c) 
E XjG-R e x p (-E L i E t o ^ )

P (X W =  h ,  . . . , X Ij = k!\r3 =  r) =  ^  ^  (2g)

where 77 =  {xj : rj = r}.

Similarly the conditional probability of response vector X; given the item 

score for m  +  1 categories s: =  s =  (si0, . . .  , sirn)' is a function of the person 

parameters (3 only:

P ( X a = k l t . . . , X iN = kN |Si =  s) =  —-------— (2.9)
exp(~ E jti fyPj)

E Xi€5 exp ( -  E jL  i kjfy)
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where S  =  {x; : Sj — s}.

The above two equations demonstrate the separability of the parameters in 

the Rasch model. This leads to the conditional maximum likelihood (CML) 

estimation method for the parameters.

It follows that the conditional probability of responding to category k + 1 

in item i given score rj =  r  is

ftijk(r) =  P(Xij = k\rj =  r)

= e*P(- E E o Ex-er exp( -  E ^  Efco M
E^=o{exp(- E£E> M  E x .i€r exp ( - E ^  E f c  **)}

(2 .10)

where Ex_-er sum over response vectors X 2 which exclude item i and 

produce the score r — k.

We can then write the conditional likelihood over all N persons. On dif­

ferentiating it with respective to <5̂ , we have the estimation equation for Sit- 

The ability parameters (3j then can be estimated by maximizing the likelihood 

with estimators of item difficulty parameters inserted. Estimators may be ob­

tained iteratively using, for example, Newton-Raphson method. Asymptotic 

standard errors can be estimated from the denominator of the last iteration. 

This method is known as the CON procedure (Wright and Masters, 1982).
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Fischer (1981) and Jacobsen (1989) gave necessary and sufficient conditions 

for the existence and uniqueness of the CML estimators in the dichotomous 

and polytomous Rasch models, respectively. Generally, CML estimators are 

consistent under regularity conditions (Rao, 1965, p. 299). Anderson (1973b) 

also assumed that the distribution of the CML estimators in the dichotomous 

Rasch model is asymptotically normal.

2.3.3 G oodness-of-fit Test

Tests of how well the data fit the Rasch model were conducted at several 

different levels. Tests of how well the items fit the Rasch model can identify 

problematic items: these may be items that differ qualitatively from others, 

or that are ambiguous or flawed. Tests of how well the person measures fit 

the model can identify persons with responses that do not follow the general 

pattern. Example of these tests can be found in Wright and Masters (1982).

2.3.4 C onditional Likelihood R atio  Test

Tests of global goodness-of-fit indicate the overall fit of a set of data to 

the model. Based on the CML method of parameter estimation, we have the
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conditional likelihood ratio test. The ratio statistic A is defined as the ratio 

of the over-all conditional likelihood over the restricted likelihood function for 

all persons. Small values of A indicates deviations from the model. It can 

be shown that in dichotomous case the statistic G2 = —2 log A has a limiting 

X(/m—i)(7m—2) distribution as N(r)  —> oo from the asymptotic properties of 

CML estimates (Anderson, 1973b).

2.4 M issing D ata A nalysis

Missing values are common in many experiments or surveys that involve 

human subjects. In most such studies, the unobserved data are treated as 

missing, in the sense that there are true underlying values that would have been 

observed if the data collection techniques had been better. However, treating 

the unobserved data as missing can sometimes lead to a serious estimation 

bias, depending on how the data have become unobservable and missing. We 

review several possible types of missing data situation and strategies to deal 

with them in this section. Our discussion is limited to the case of missing data 

on the outcome variable.
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2.4.1 T ypes o f M issing D ata

26

The most appropriate way to handle missing or incomplete data depends on 

how data points became missing. Little and Rubin (1987) define three unique 

types of missing data mechanisms.

1. Data Missing Completely at Random (MCAR).

This is when cases with complete data are indistinguishable from cases 

with incomplete data. Heitjan (1997) provides an example of data with 

MCAR, when a research associate shuffles raw data sheets and arbitrar­

ily discards some of the sheets. In another example, data with MCAR 

can arise when an investigator randomly assigns research participants to 

complete only some portion of a survey instrument for some particular 

reasons, such as to save time and cost. Graham, Hofer, and MacKinnon 

(1996) illustrate the use of planned missing data patterns of this type 

to gather responses on more survey items from fewer research partici­

pants than those ordinarily obtainable from the standard survey study 

paradigm, in which every research participant receives and answers every 

survey question.

2. Data Missing at Random (MAR).

This occurs when the cases with incomplete data differ from the cases
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with complete data, but the pattern of missing data is traceable or pre­

dictable from other variables in the database rather than the specific 

variable on which the data are missing. For example, if research par­

ticipants with low self-esteem are less likely to return for follow-up ses­

sions in a study tha t examines anxiety level over time as a function of 

self-esteem, and the researcher has self-esteem at the initial session avail­

able, then self-esteem is related to the values of the incomplete data at 

follow-up sessions. Another example is a test on reading comprehension: 

Investigators administers a reading comprehension test at the beginning 

of a survey administration session, and finds tha t research participants 

with low reading comprehension scores may be less likely to complete the 

entire survey. In both of these examples, we recognize that the actual 

variables where data are missing are not the cause of the incomplete data. 

Rather, the cause of the missing data is in some other external influence, 

clearly distinguishable from the case of data with MCAR.

3. Nonignorable Missing Data.

There are situations where the pattern of missing data is not completely 

random nor is predictable from other variables in the database. If a 

participant in a weight-loss study does not attend a weigh-in due to 

concerns about his weight loss, the response on this subject is missing
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due to nonignorable factors. In contrast to the MAR situation outlined 

above where the missing data pattern is explainable by other measured 

variables in a study, nonignorable missing data arise when the reason 

for the missing data is explainable, but unmeasurable, because the very 

variable (s) on which the data are missing are unobservable.

In practice, it is often difficult to make the MCAR assumption. There is 

often some degree of relationship between the missing values and other observed 

data. Therefore, the pattern of MAR is an assumption tha t is most often, but 

not always, tenable.

2.4.2 M ethods o f H andling M issing D ata

In this section, we review how various researchers developed strategies to 

deal with missing data (Little and Rubin, 1987). Some commonly used methods 

for handling missing data are listed below, covering those widely recognized 

approaches to handling data with incomplete cases.

1. Deletion method

Here, the missing data will be simply discarded. There are two data 

deletion methods used often, typically when using standard statistical 

software.
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(a) List-wise or case-wise data deletion.

In this case, when a record for a subject contains missing data for 

any variable, his/her entire record is removed before the analysis.

(b) Pairwise data deletion.

This is possible for certain computations. For example, in calculat­

ing bivariate correlations or covariances, the available pairwise data 

are used, discarding only the incomplete pairs.

2. Imputation method

In this approach, each missing value will be estimated and treated as if 

it is an actual observation in the analysis.

(a) Mean substitution.

For a variable with missing data in some records, that variable’s 

mean value, computed from complete cases, is substituted for all 

missing values.

(b) Regression methods.

In this approach, a regression equation is constructed based on com­

plete subset data. Then, for cases where Y  is missing, their missing 

values are imputed using the predicted values from the regression 

equation and they are used in the subsequent analysis. An improve-
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ment to this method involves adding uncertainty to the imputed 

values of Y  so that the mean response value is not always the one 

to be imputed, given by the multiple imputation method, described 

below.

(c) Multiple imputation.

This is similar to the maximum likelihood estimation method for 

the missing values. However, the multiple imputation generates 

several values suitable for filling in for each of the missing data. 

Typically, 2 to 5 data sets are created in this fashion with 2 to 5 dif­

ferent imputed values for each of the missing data. The investigator 

then analyzes these multiple data sets using an appropriate statisti­

cal analysis method, treating them as if they were actual complete 

data. The results from these analysis are then combined into a single 

summary report. Huang (2001) discussed that the extra resources 

required for analyzing multiple data sets appeared unnecessary if 

simple imputation is done informatively.

(d) Hot deck imputation.

Here, the investigator will identify the most similar case to the case 

with a missing value and substitute the case’s Y  value for the miss­

ing case’s Y  value. Disadvantage in this approach is that the dis-
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tribution of the data may not be preserved by repeated use of the 

available data.

3. Expectation Maximization (EM) approach.

This is an iterative procedure that proceeds in two discrete steps. First, 

in the expectation (E) step, the expected value of the complete data 

log likelihood is computed. In the maximization (M) step, the expected 

values obtained from the E step is substituted for the missing data, fol­

lowed by maximizing the likelihood function to obtain new parameter 

estimates as if no data were missing. The procedure iterates through 

these two steps until convergence is reached.

4. Maximum likelihood method.

This method use all available data to generate maximum likelihood-based 

sufficient statistics. Usually these consist of a covariance matrix of the 

variables and a vector of means. This technique is also known as Full 

Information Maximum Likelihood (Wothke, 1998). Carriere (1994) dis­

cussed that a simple and non-iterative but valid technique is possible 

for small sample repeated measures data. Carriere (1999) also reported 

two important findings relevant to all small sample studies tha t (1 ) non­

iterative, simple, efficient and valid technique is possible for missing data; 

and (2 ) even with small sample data, for which various covariance models
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may be indistinguishable, the empirical size and power are sensitive to 

misspecified assumptions about the covariance structure.

5. Re-sampling Method: Jackknife and bootstrap method.

Jackknife is an estimating method by deleting one datum each time from 

the original data set and re-calculating the estimator based on the rest of 

the data. Bootstrap utilizes all 2" — 1 nonempty subsets of a data set of 

size n. Both of these re-sampling methods can be used for missing data 

analysis.

Little and Rubin (1987) and Wothke (1998) review these methods and con­

clude that list-wise, pairwise, and mean substitution missing data handling 

methods are inferior when compared with likelihood based methods such as 

incomplete maximum likelihood or multiple imputation. Regression methods 

are somewhat better, but not as good as hot deck imputation or maximum 

likelihood approaches. The EM method falls somewhere in between; it is gen­

erally superior to list-wise, pairwise, and mean substitution approaches, but 

it lacks the ability to accommodate the uncertainty that is possible with the 

incomplete maximum likelihood and multiple imputation methods.
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Table 2.1: The data matrix

I tem Subject
1 .. j  .. N item score

1 X u .. x Xj .. x 1N Sl

i X a . .  Xij  . . XiN Si

I X n .. X t j  .. X IN si
subject score n . . Tj 1"N
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Table 2.2: Various Rasch models and their extensions

Response data type P(Xij  =  k) oc

Dichotomous 0  or exp(f3j — dp
Unidimensional Rasch exp(kpj -  (jik)
Partial Credit exp(fc/3, -  E t= o < M
Rating Scale exp {bp, -  kSi -  o t v )
Binomial Trials exp{k(3j kSi)/ (m, }
Poisson Counts exp (k(3j — k5i)/k\
2-PL Model exp(kai(Ij -  oik)
Linear Rating Scale exp(k/3j -  (k J2P wipaP + k c+  J2t'=o Tk'))
Linear Partial Credit exp(k/3j -  (J2Pwikp®P + kc))
Multidimensional Rasch exp(Pjk -  oik)
MPLT CXp ^ > 7  —1 &ik)
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Chapter 3

An Improved CML Estim ation  

Procedure

3.1 In trod u ction

Consider the response data in Chapter 2, where I  multiple-choice questions 

are given to N  subjects. For question i (i = 1 and subject j  (j  —

1, . . . ,  N),  we obtain Xij,  which takes a value k (k =  0 , . . .  , m); there are m + 1  

possible values (categories) for each question.

In the Rasch estimation method used today, the parameters are thought 

to be independent and unrelated; they are estimated separately and indepen­

dently of one another. Now we consider improving the CON procedure (Wright

35
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and Masters, 1982) to implement a simultaneous estimation method for the 

polytomous Rasch model, based on the conditional maximum likelihood. We 

also derive the asymptotic properties of the CML estimators and then develop 

a conditional likelihood ratio test for the goodness-of-fit of the model. Finally, 

simulation studies were used to assess the performance of our approach, as 

compared to the CON procedure.

3.2 M odified CML Estim ation

Consider the unidimensional polytomous Rasch model (2.3) in Chapter 2:

e*P E L o ( &  ~  M

E ^ e x p E ^ i - M

exp(kfij -  aik)
E£''=o exp(fc"/3j -  a lk n )

7rijk =  P{Xij =  k) =

We will now discuss how we propose to modify the estimation method used 

in the CON procedure, which is based on the conditional likelihood function 

(Sheng and Carriere, 2002). To define the conditional likelihood function, we 

will first consider the elementary symmetric function, known as the y-function 

(Wright and Masters, 1982), which is used in almost every step of the numerical 

calculation. Define a subject score rj =  E i= i and a y-function with score
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r  as:
I Xu

l(r )  =  exP(~ ^ ' )  (3-1)
-i=l

where ^ Xjg7? is the sum over the permutation of response vectors X j  with score 

r. Note that 7 (r) is one component in the model (2.3), based on which the 

conditional likelihood estimation will be formulated as in (2.10). We then ex­

tend some properties of the 7 -functions to polytomous data as given in Lemma

3.1.

L em m a 3.1 The first and second derivatives of the ^-functions are:

^7(r)
dSik

^ ( e x p ( - c r ifc/)7 _i(r -  k'))
k'=k

d2j ( r
=  ^ (ex p (-£ 7 fc0 7 -i(r  ~  k '))

7̂ —I t -  =  i t ,  (ex p (-a iv ) e x p (-a pv)7 (-t,-P)(r -  k ’) )  
aoikoopq k,=max[Kq)

(i 7  ̂p or k =£ q)

where 7 _i(r — k) is the “reduced” 7 -function that excludes item i and produces 

score r — k.

Proof:
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The first order derivative of a 7 -function with respect to 8^ is

dl(r)  _  ® SxjeTC exP(— Xw=i Sfc'io $ik)
d5ik

E <9exp(— J2 i= i E J = 0 $'ik

x,ew d5ik

Note that only the terms (Xij > k) contain Sik in their expression, and therefore 

we have

<9 7 ( 7
Xiij

= J 2  - h x ^ k ) e x p ( - s* k ' 5i'k’}38ih „xjen \ kr~o k' = 0

m
= -  Y 2 ( exP ( - aik 'h- i{r  -  k'))

k'=k

for an indicator function /(.), because the second part of the exponent is inde­

pendent of Sik-

The second order derivative with respect to Sik is

S27(r) = g ( d £ ) ] / g g i k
dS% V dSik
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Using the first derivative obtained above, we find

<3 27 (r) 9  E X j exP( ~ E j= o  fo ' “  E i '#  E & o  <W))_____ = _ _

= 5 3  ( hxij>k) exp (- $ik' -  5 3  5 3
Xj€^ Y fc'= 0

m
= 5 3 ( e x p ( - a ^ ) 7 - t( r - ^ ) )

k ’= k

The second order derivative with respect to the parameters 5ik and <5pi? is

d2j{r) f  dj (r )
d8lkd8pq V 95.

d / 95
ik

Jvq

9 E x j£K ( ~ h x i3>k) exp(— Efc'=o sik' -  E i '^ i E ?= o  <W))
d5pq

Since only those terms (X iq > k b  X Pj > q) contain both 8ik and 8pq, we 

therefore have

^~ d 5 ^q = E  (h ^ > k x V3>q) exp(- 53^  -  53 v  -  53 535i,k'
V k '—Q k '—Q k '—Q

m
53 ( e x P ( ~ a ik’) e x p ( - a pfc 0 7 ( - i ,- P) ( r  -  & '))

fc '= m ax(/c ,ij)

for * 7  ̂p or k  ^  q.
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□

A simple combinational argument gives the recursive formula (Wright and 

Masters, 1982):
m

l{ r )  -  y% xp(-o -q .)7 _i(r -  k) (3.2)
k=0

for i =  1 , . . . ,  J, which also applies to the reduced 7 -function, 7 _j(r). That is,

for i =  1 . . . .  ,1, we can obtain the recursive formulae used in the calculation

of the CML method:

m

7 (- i,-2,...,-(i-i))(r) =  Y  e x p ( - ffifc)7 ( - i , - 2,...,-i)(r -  fc) (3.3)
k=0

These recursive formulae given in (3.2) and (3.3) play a very important 

role, as they are used to reduce the heavy loading of computing time in itera­

tion. Using these functions, we obtain the following conditional probability, as 

summarized in Lemma 3.2.

Lem m a 3.2 The conditional probability of subject j  responding to category 

k +  1 on item i, given score 77 — r, is

exp(-<Tifc)7 _i(r -  k)
n M o  =  r) = ---------- ^ -----------
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Proof:

Let E x ^ e r  denote the sum over the permutations of response vectors Xj 

that exclude item i and produce the score r — k. Then, by definition,

7Tijk{rj =  r) = P{Xij = k\rj =  r)

which is equivalent to

nijk(rj = r) =  P(Xij  =  fc, ^  Xj/j = r -  k)
i’+i

This is just one case in which the response vector X j produces score r. By 

including all permutations of such cases, it follows that the probability

K i j k ( r j  =  r) =
exP(~ E t - o  M  ex p (- ^  E f c o  <W)

E ^ = 0 {exp(- L E U  M  E x _ iSr e x p (- ^  E &  <W)}

exp(—<7 jfc)7 _i(r -  k)
E E o  exp(-<7ife)7_i(r -  k )

by the definition of y-functions. Then, from the recursive formula in Equations 

3 and 4, we have

exp(-crik) j - i (r  -  k)
=  r) =  ^ (r)

□
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Therefore, using Lemma 3.2, we can write the conditional likelihood of the 

item difficulty parameters 5 over all N  subjects as

C{S } =
AA 7 (r )

ex p (- Z)£Li E l i  ElSto M (3.4)
n ^ ( 7 ( r ) ) wW

where N(r)  is the number of subjects with score r. The log-likelihood is then

I m ~  1

1(6; r) = -  NihSik ~  5 1  N {r)\og~/(r), (3.5)
i = l  k = 0  r = l

because E j iE /E o < W  =  E Z o  Nik&k, where is the number of subjects 

responding on or above category k + 1 to item i (i.e. Xij = k).

The first derivative of the log-likelihood with respect to <5̂  is

?A r) = N 'y .» ; |ri8l0» M
dS« i dS*r —1

= _ ^  +  ' g , JV(r) ^ 2 5 ( z 2 £ h d t z m i ,  (3 .6 )
P i  P  I 'M

which gives the estimation equation for Note that the summation of the 

latter quantity is just Ew=k the probability of responding to k or larger,

given a score of r.
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The Rasch model estimators can now be obtained via an iterative technique, 

for example, the Newton-Raphson method. Note that the CON procedure does 

not consider the second order partial derivatives with respect to two different 

parameters. It assumes them to be simply zero, which is to assume that the 

Rasch parameters are mutually independent. In contrast, we allow interdepen­

dence among the parameters, a condition that is common and rather realistic. 

The Hessian matrix given in Theorem 3.3 below is the results upon applying 

Lemma 3.1 to log7 (r).

Theorem  3.3 Let the (I *m) x  ( /  *m) matrix H(r,8) be given by the Hessian 

matrix, the second derivatives of log ^(r),  with its elements given by

d2 logy(r) _  ( exp(—o~jfc/)7 _i(r -  k') _  / exp(-crifc')7 - t( r  -  k ') \  2\

dSik ~~ \  7 (0  \  7 (0  J J

and

d 2 log 7 ( 0  _  EfcUnoxfog) e x p (-g ifc>) exp(—o~pfc/)7 (_j;_p)(r -  k')
dbikdSpq 7  (r)

Ey=fc(exP ( - g<fc,)7-i(y -  *0 ) E E E exP (~ cw )7 -P0  ~ 0 ))
(7 (0 ) 2

(i ^  p or k ^  q). (3.7)
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Proof:

First, note that

31og7(r) d j (r ) /d S ik
d8ik 7 (r )

Now, the diagonal elements of the Hessian matrix are

S 2lo g 7(r) _  a / d lo g -y (r ) \  / 3 S '

Using the basic rules for derivatives, we have 

<9 2 log7 (r) d2j (r ) /d52k f  d'y(r)/d§ik
d52k 7 (r) V l i r )

E f  exp(—crik')'Y-i(r -  k') f  exp(—(Tifc')7 _t(r -  k’)

„ _A 7̂   ̂ 7̂
The last step follows from Lemma 3.1.
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Similarly, the off-diagonal elements of the Hessian matrix are

d2 logy(r) _  f  8 j (r ) /85 ik\  
85ik85pq ^ 7  (r) 1 '  m

ddik85.PQI 85ik 85,pq

E 7 ’= m a x ( k , q) eM-Vik') exp (-gpfcQ7(-i,-p)(y -  k 1) _
7 (r)

£™=fc(exp(-^fc 'b-i(r ~ k')) E ^= ?(exP{-Vpq’h - p T  “  ?'))
(7(r))2

{i p or k ^  g)

□

Further, define H(5) =  Er=i_1 N(r)H(r,S).  Then, the iterative estimation 

procedure updates the estimates at each iteration as

t — 1, . . .  .T. (3.8)

The asymptotic covariance matrix of 5 can be estimated as ') after the

last iteration T. The ability parameters (3 can then be estimated, using the 

usual unconditional maximum likelihood method, by maximizing the complete 

likelihood as a function of the estimated item difficulty parameters.
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3.3 Properties of the New  Estim ators

CML estimators are consistent under regularity conditions (Rao, 1965, p. 

299) when a minimal sufficient statistic exists (Anderson, 1970). In the Rasch 

model, the minimal sufficient statistic is the subject score r,- for the ability 

parameter (3j for subject j .  We will now consider asymptotic properties of the 

CML estimators of the item difficulty parameters 8. Let 8x.<=.ti be the restricted 

CML estimators, and let 5o be the true value of the parameter.

T h eo rem  3.4 (Consistency of CML estimators)

* p ~
1. When N(r)  —> oo, then £Xj6 7j — > <50, and furthermore 5x.€tz is asymp­

totically normally distributed, with mean So and asymptotic covariance 

matrix H ~ 1(r,S0) /N(r) ,  i.e. 8x.en ~  A N (80, H ~ 1(r,80)/N(r)).

P2. When N(r) —> oo, N ( r ) / N  exists for all r, then 8 — > So, that is, the 

overall CML estimators for 8 are consistent, and 8 is also asymptotically 

normally distributed, with mean So and asymptotical covariance matrix 

H - l {8o), i.e. AN{80, H - 1 {So)).

Proof:

For the dichotomous case, see Anderson (1973b). We will now sketch the 

proof for the polytomous case.
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1 . The first part of the proof follows immediately from the estimation 

results of maximizing the conditional likelihood function because the response 

vector X j’s  are i.i.d. random vectors.

2. The overall CML estimation equation and the restricted CML estimation 

equation are connected by

It follows from the first part above that the unique solutions to each term 

on the right side converge in probability to the same vector <5o- Continuity 

arguments show that the solutions to the left side must converge in probability 

to So as well.

To prove the asymptotic distribution, we will now consider a Taylor expan­

sion of dl(8; v)/d8  around 6. Since 8 satisfies dl{8\ r) /d5  =  0, we get

dl{8] r) jd8  =  N(r)H(r ,  8*) (8 -  80)

where ||<P — 6 o|| <  ||£ — £o||-

A P  PFrom the first part of the second proof, 8 -— >• <50, hence, 8* — »• 50 as
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N(r)  —> oo for all r. Then the right side has the same limiting distribution as

(
I m - l  \£jV(r)H(r,So)J(S-So),

i.e.

( S - S o ) ^ H ~ 1(So)D(S0)

where D(8) denotes the vector dl(8;r)/dS.

For each r, lXjen(8;r) is the likelihood function of N(r)  i.i.d. random 

vectors. Hence, from the maximum likelihood estimation result, we get

D XjeKM o )  -  A N (0 ,N (r )H (r ,8 0)).

However, since D(50) =  D XjeR(^,^o), it follows immediately that

D(80) ~ A N ( 0 , H ( 8 0)).

Therefore, (8 — So) has a limiting normal distribution with mean 0 and 

covariance matrix

H  (8o)H(8o)H (80) =  H^iSo).

□
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In consequence of Theorem 3.4, we can make more accurate inferences about 

these parameters than it was possible using the current procedure. For exam­

ple, suppose we want to test whether two items are of the same “difficulty” . 

The test statistic is obtained as a linear combination of <5’s. Using Theorem

3.3 and Theorem 3-4-2, we can obtain the estimated asymptotic variance of 

the test statistic, which is asymptotically normal under the null hypothesis. 

Therefore, we can use standard tools to test the hypotheses concerning the 

difficulty of items. Similarly, we can make more accurate inferences about (3 

as a function of S.

Since the CML method maximizes the conditional likelihood, not the full 

likelihood, this implies loss of information, thus, in general the estimates are 

not efficient. Anderson (1970), however, shows the efficiency holds if the suf­

ficient statistic r  is “weakly” ancillary with respect to the ability parameter 

/3. Later Anderson (1973a) shows this indeed holds for the Rasch model. The 

conclusion is tha t when N(r)  —> oo for all r, the proposed CML estimates are 

asymptotically efficient, and that loss of information becomes negligible.

3.4 Conditional Likelihood Ratio Test

The conditional likelihood ratio test is intimately related to the CML
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method of parameter estimation. The conditional likelihood ratio is defined 

as

A =  , C& Tl ---------- (3.9)

where C(S; r) is the full conditional likelihood and £ Xje7̂ (5 ; r) is the restricted 

likelihood function for subjects with score r. Since

/ to—1

£(<5;r) =  J J  £ Xj€7i (<5;r),
r = l

it is obvious tha t A < 1. Small values of A indicate deviations from the model. 

Consider the test statistic

l m ~  1

G2 -  - 2  log A =  2 ] T  -  21& r) (3.10)
r = 1

and we have the following Theorem 3.5 for the limiting distribution of G2.

T heo rem  3.5 When N(r)  —* oo for all r, the statistic G2 =  —2 log A has a 

limiting x 2 distribution with degrees of freedom (I m  — 1 )(/m  — 2 ).

Proof. Anderson (1973b) gave a proof of Theorem 3.5 for the dichotomous 

case, a proof that can be easily extended to polytomous cases as following.
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Since 1(8) = Y l l - i 1 ^& n(8), we may rewrite G2 as

f l m —1 7 m —1 \

G2 =  2  (/(50) - / ( * ) )  - 2  -  E  ^ ( 5 x jeK)
V r = l  r=l /

Now let us expand l(8o) around 5, and 1X}(zti(8q) around 8x.e-ji, we get

G2 = - ( 8 - 8 0)TH(8*)(8-8o)
I m —1

+  E  -  S0)T N(r)H(r,8*x.€n)(8XjGn -  80)
r —1

where ||<T -  <S0|| < ||5 -  <S0|| and ||£*.ere -  <f0|| < -  <MI-
A PWhen N(r)  —» oo for all r, from Theorem 3-4 we know that 8 — -> 8q and

P  P  P  r,
<5Xj£ft — > 80, so 8* -—-> 80 and <5*,en — ► 8q. Therefore, G has the same 

limiting distribution as

I r n —l

- ( 8 -  8 0 ) T H ( 8 0 ) ( 8 - S 0 ) +  E  -  S o ) T N ( r ) H ( r , 8 0 ) ( 8 Xj z n  -  8 0 )
r —1

From the proof of Theorem 3-4, we know that

( 8 - 8 o ) ^ H - 1(80)D(80),

and similarly

(8X}en -  So) ~  ( N ^ H ^ S o ^ D ^ n i S o ) .
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Hence,

G2  D t (S0)H(S0) - 1D(So)
I m —1 

r = 1

Now define vector D*(<$) =  (D^.e l (8) , .. •, D^.6 (/m_1)(<5))T, two { I m - l f  x 

(/m  — l ) 2 matrices H*{8) — diag{(N(1)H (1,8))-1, . . . ,  ( N ( I m  — 1 ) H ( I m — 

l ^ ) ) - 1} and =  1  d ia g {H ~ \8 ) , . . . ,  # -1(*)} 1T, then

G2 -  D*(5o)r (H*(J0) -  H**(^o))D*(f50)

Since D j.6 l (<S),. . . ,  D^.e(/m_1) (5) are independent to each other and asymp­

totically normal, applying a condition given by Rao (1965, P. 152, Eq(3b.4.6)), 

G2 is asymptotically x 2 if

(H*(80) -  H**(5o))(H*(50) ) - 1(H*(5o) -  H**(80)) =  fT (£ 0) -

or equivalently,

-which is obvious from the definition of H**(8) and H*(8). The degrees of
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freedom of the x 2 distribution is equal to 

rank(H*(80) -  H**(80)) = rank((H*(80) -  iT*(<S0) ) ( f r  (^g))”1) 

=  trace((H*(50) -  H**(80))(H*(80))~l) 

= trace(I -  H**(80)(H*(80))~1)

=  (I m  — l ) 2 — ( Im  — 1 )

=  ( Im  — l ) ( Im  — 2)

□

3.5 Simulation R esults

We shall now assess, via computer simulation, the performance of our esti­

mation method in dichotomous and polytomous Rasch models, thus verifying 

the theoretical results that we obtained in the previous sections. We will also 

show that our simultaneous approach outperforms that based on the CON pro­

cedure in the Rasch models. We replicated the simulation 1000 times to obtain 

the empirical distribution of the CML estimators and that of the conditional 

likelihood ratio test statistic G2. We then compared our results with those 

obtained from the CON procedure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. A N  IMPROVED CML ESTIM ATION PROCEDURE  54

3.5.1 D ichotom ous R asch M odel

In this case, the response data are binary (m =  1). First, we generated data 

for N  = 100 subjects for /  =  4 items from a given distinct set of parameters 

for the ability of persons

0  = (0,0.25,0.5,0.75,1)

and for the difficulty of items

/  \
0 -0 .3

0  - 0.1
<5 =

0 0.1

y 0 0.3 J

with l ' 8 l  =  0 for identifiability (see Wright and Masters, 1982).

Figure 3.1 shows the Q-Q plot of G2 versus quantiles from the y 2 distribu­

tion with 6  degrees of freedom, using our modified approach and the conven­

tional CML approach, respectively. Here, we used the empirical distribution of 

the parameters to estimate the true distribution upon verifying the normality 

assumption. The plot shows that our approach using G2 is indeed approx­

imately distributed as x 2 with 6  degrees of freedom, with a few exceptions
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at large quantiles, whereas results from the CON procedure deviate from the 

assumed distribution. Consistent with the mean and variance of the x l  distri­

bution, our approach had a mean of 6.368 and a variance of 11.74. The results 

for the CON procedure were 10.25 and 21.59, respectively, which almost double 

the numbers expected under the assumed distribution.

Table 3.1 shows the ratios of variances and MSEs of estimators of /? us­

ing our procedure, divided by those using CON. The inestimable parameters 

(Linacre, 1999) of (3 =  0 and (3 — 1 were not included. Our approach produced 

smaller biases, variances, and MSEs than those of CON. In both approaches, 

the biases of the estimators proved to be negligible. Comparison of 8 (available 

from the authors) resulted in much the same conclusion.

3.5.2 P olytom ous Rasch M odel

We also considered the polytomous Rasch model with multinomial response 

data, with m  =  2. As in the previous simulation, we generated data for 

N  =  100 subjects using 7 =  4 items for a distinct set of parameters for the 

ability of persons

/3' = (0,0.25,0.5,0.75,1,1.25,1.5,1.75,2)
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and for the difficulty of items

( \
-0.2962 0.2185

-0.4270 0.4717

-0.3885 0.6263

-0.3852 0.1803

with l ' 8 l  — 0 for identifiability (see Wright and Masters, 1982).

Again, we carried out 1000 simulations to observe the empirical performance 

of the estimators. Figure 3.2 shows the Q-Q plot of G2 versus quantiles from 

the Xi2 - The plot clearly shows that G2 is approximately distributed as xh-  

Our approach had a mean of 45.53 and a variance of 91.05, again consistent 

with those of the X42 distribution. The CON procedure resulted in 54.30 and 

191.4, respectively.

Table 3.2 shows the ratios of variances and MSEs of the estimators of /3 

using our procedure, divided by those using CON. In general, the results were 

unbiased or manifested very little bias. The variances and MSEs obtained 

using our approach were smaller than those from the CON procedure, with 

some exceptions at extreme values of r ’s.
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3.5.3 G eneralization

To draw an overall conclusion and to appreciate the effect of increasing 

the size of items, the number of categories, and the number of subjects, we 

expanded the scope of the simulation studies. Table 3.3 shows the summary 

of these further analysis. When the number of subjects increases, more precise 

estimators are obtained, with smaller variances and MSEs, as was anticipated. 

Further, the more items or categories there are, the less precisely we can esti­

mate the parameters using our approach as compared to the CON procedure. 

One unusually large ratio presented in the case of 20 items, 3 categories and 

2000 subjects was caused by an estimate in one of the simulations from the 

CON procedure that produced extremely large bias, and thus large MSE.

3.6 Summary

In this study, we implemented a simultaneous CML estimation method 

for dichotomous and polytomous Rasch models and derived their asymptotic 

properties. The advantage to this approach of carrying out the simultaneous 

estimation method was rather substantial in both the polytomous and dichoto­

mous Rasch models. The improvement in results, as compared to those of the
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currently used conditional approach, were especially apparent for intermediate 

values of the ability parameters. In our approach, we did not assume the inde­

pendence of the Rasch model parameters. This approach is also useful when 

testing hypotheses concerning some functions of these parameters, for example, 

the linear contrast of several selected parameters of interest.

The simultaneous estimation method also had a huge impact on the model 

fit. We constructed the conditional likelihood ratio test for the goodness-of-fit 

of the model. The test statistic was shown to be distributed according to the 

assumed asymptotic y 2 distribution. This was as expected. On the other hand, 

the corresponding result based on the current conditional approach deviates 

significantly from the expected distribution. The asymptotic distribution of 

the statistic using the current method should be a y 2, if the Rasch parameters 

are indeed independent to each other. However,, because the Rasch parameters 

are naturally correlated, we were not able to verify its asymptotic distribution 

in simulation.

In summary, our conclusion is that the current approach has shortcomings 

in not considering correlations implicit in the Rasch model parameters. Our 

implementation, based on a conditional likelihood function, improved the fit of 

the data, as well as the precision of the estimators in comparison with those of 

the other CML method known as CON. In light of the recent review (Linacre, 

1999) of various estimation methods for the Rasch model, which found all to
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be statistically identical, we suggest that our method is superior to all others 

currently available.
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Figure 3.1: Q-Q plot of G2 vs quantiles of the x 2 distribution in the dichoto- 
mous model ( /  =  4, m  =  1, N  — 100)
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Note: Shown are the quantiles from the respective x 2 distributions (solid line), the 
G2 statistic from the CON procedure (indicated with dots), and the G2 statistic 
from the proposed procedure (indicated with small circles).
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Figure 3.2: Q-Q plot of G2 vs quantiles of the x 2 distribution in the polytomous 
model (I — 4, m  =  2, N  =  100)
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ChiA2(42)

Note: Shown are the quantiles from the respective x 2 distributions (solid line), the 
G2 statistic from the CON procedure (indicated with dots), and the G2 statistic 
from the proposed procedure (indicated with small circles).
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Table 3.1: Comparison of the two estimation procedures for /3 in the dichoto- 
mous model ( /  =  4, m  =  1, N  =  100)

p Var(P) M S E 0 )
0.25 0.3431 0.3428
0.50 0.0073 0.0073
0.75 0.3028 0.3282

overall 0.2092 0.2087

Note: The entries are ratios of variances and MSEs based on the CON procedure 
divided by those of the proposed method in this chapter. The row for ‘overall’ 
corresponds to that of the trace of the variance and MSE matrices. Ratios smaller 
than 1 indicate improvement via our method.
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Table 3.2: Comparison of the two estimation procedures for (3 in the polyto- 
mous model (I  =  4, m  — 2, N  =  100)

p Var(f3) MSE(j3)
0.25 3.7175 3.7594
0.50 0.8163 1.0320
0.75 0.1639 0.2734
1 .0 0 0.0166 0.0195
1.25 0.1657 0.2248
1.50 0.8842 1.0858
1.75 3.7879 3.8760

overall 0.8078 0.9058

Note: The entries are ratios of variances and MSEs based on the current method 
compared to those of the proposed method in this chapter. The row for ‘overall’ 
corresponds to that of the trace of the variance and MSE matrices. Ratios smaller 
than 1 indicate improvement via our method.
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Table 3.3: Summary comparisons of the two estimation procedures

(.I , m , N ) Var(ft) M SE(f t )
(4, 1, 100) 0.2092 0.2087
(4, 1, 2000) 0.1152 0.1303
(4, 2, 100) 0.8078 0.9058
(4, 2, 2000) 0.6803 0.7077
(2 0 , 1 , 1 0 0 ) 0.6083 0.5721
(2 0 , 1 , 2 0 0 0 ) 0.9183 0.3744
(2 0 , 2 , 2 0 0 0 ) 0.4072 0.0094

Note: The entries are ratios of total variances and total MSEs of the estimated ft 
(i.e., trace of the variance and MSE matrix), based on the CON procedure divided 
by those of the proposed method in this chapter. Ratios smaller than 1 indicate 
improvement via our method.
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Chapter 4

Accounting for the Polychoric 

Correlation Am ong Item s in the  

Rasch M odel

4.1 Introduction

In the previous chapter, we presented some important improvements on 

the current Rasch analysis method. In this chapter, we consider another im­

provement, recognizing that in these investigations, the questionnaire items are 

inter-correlated. For example, in a study using items that measure symptom 

distress on a scale, many of the items are closely correlated. If one complains

65
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about frequency of chest pains, he/she will most likely also complain about 

their intensity. As another example, consider a clinical trial of patients in a 

hospital. If one complains severe cough problems, he/she usually develops sore 

throat. The correlation between these items has not been taken into consid­

eration in the development of methodology for Rasch models. As evident in 

the literature (for example, Liang and Zeger, 1986), ignoring the presence of 

significant correlations can lead to a loss of efficiency and serious bias in the 

study conclusions.

In this chapter, we develop a method of accounting for inter-item correla­

tion. Correlation among items that are measured on an ordinal scale is called 

the polychoric correlation (Olsson, 1979). The polychoric correlation coefficient 

is formulated using the concept of latent variables, variables tha t are usually 

continuous, although unobservable, giving rise to the apparent complexity of 

the data (Miller et al. 1962). We use the generalized estimation equations 

approach (GEE) to obtain consistent estimates of the parameters of the Rasch 

model. Simulation study demonstrates the relative of these estimates efficiency 

over those obtained without considering the inter-item correlation.
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4.2 Polychoric Correlation for Ordinal Ran­

dom Variables

As this thesis deals with ordinal data, we first discuss how to estimate the 

dependency in these data. Suppose we observed two ordinal random variables 

x and y, and consider the threshold approach to the analysis. That is, we 

assume that there exist corresponding latent variables £ and y so that x — i 

if and only if a*_i < £ < a*, and y = j  if and only if < 77 <  bj, for 

(i, j)  € {0 , . . .  ,m }  where m  is the number of categories x  and y take, and cii 

and bj are threshold parameters.

When considering dependency among ordinal categorical data, use of the 

ordinary Pearson correlation is not recommended. Olsson (1979) showed that 

using the Pearson correlation leads to biased estimates. Instead, one should 

use the polychoric correlation, i.e. the correlation among the underlying latent 

random variables £ and rj.

Poon and Lee (1987) developed the most general model for estimating the 

polychoric correlation. The full maximum likelihood estimates of the poly­

choric correlation coefficient and threshold parameters were obtained via the 

Fletcher-Powell algorithm. A computationally more efficient approach, called 

“the partition maximum likelihood method,” was also proposed by Poon and
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Lee (1987). However, the asymptotic properties of the estimates obtained us­

ing this method were not investigated. Poon, Lee, and Bentler (1990) used 

a pseudo maximum likelihood approach, which is computationally more effi­

cient than the full maximum likelihood approach, and discussed the asymptotic 

distribution of the estimates.

Ronning and Kukuk (1996) compared the efficiency of the estimators from 

a joint likelihood against those of a conditional likelihood for measuring the 

association of two ordinal variables. The maximum likelihood estimators of 

the correlation and threshold parameters are consistent in both approaches; 

however, estimators from the conditional model are less efficient.

In the Rasch analysis, the threshold parameters are related to the model 

specification. We used a method similar to the full maximum likelihood method 

to obtain an estimate of the polychoric correlation coefficient in the context of 

Rasch models, and we used the GEE method to obtain estimates of the Rasch 

model parameters.

4.3 Generalized Estim ation Equations

In this section, we review the GEE method, as we will be using this tech­

nique to estimate the parameters in the Rasch model. Consider a response
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variable yij, not necessarily measured independently, which belongs to an ex­

ponential family where the marginal distribution is

= exp{(yijdij -  a(&ij) + b{yij))4>)

where 0 is a common scale parameter. This property allows the analyst to use 

the usual maximum likelihood approach to estimate the parameters

Liang and Zeger (1986) proposed the Generalized Estimation Equations 

(GEE) method for longitudinal data. For each respondent yj, they assumed 

a “working” correlation matrix Rj (a), which is fully specified by a vector of 

unknown parameters a. The “working” covariance matrix is then given by

where A j is an rij x rij diagonal matrix with the diagonal elements being 

functions of with a common scale parameter <f>.

The generalized estimation equations proposed by Liang and Zeger (1986)

are

j=i

where sj =  yj —jij and Dj =  dfij/dB. They showed that the GEE method gives 

consistent estimates of the model parameters and of their variances under weak

Vj = A f  Rj(a)A‘/2/<P

(4.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. POLYCHORIC CORRELATION AMONG ITEM S  70

assumptions about the joint distribution, when consistent estimators of a  and 

4> are given. It does not require specifying a form for the joint distribution of 

the repeated measurements, only the first moment fij and the correct structure 

of correlation Rj(o:). This approach thus provides a general estimation method 

that can be used even for non-normal response variables.

4.4 Polychoric Correlation in the Rasch M odel

Now we discuss the implemetation of the polychoric correlation on the 

Rasch model. Consider the unidimensional polytomous Rasch model (2.3) in 

Chapter 2:

= P {X„  =  k) =
E £ E o  exP £fe'=oWj ~  M

=  exp{k/3j -  Oik)
E ^ '= o  exP(k"Pj -  Oik")

We show that this model can also be derived from the concept of a latent 

variable approach, if the cut-off threshold parameters are chosen appropriately. 

Corresponding to the ordinal data W j, we assume the existence of a continuous 

random variable W i j  such that — k if and only if W i j  G where
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k =  0 , . . . ,  m  with Cij,-i — ~oo and Cyi7n =  oo. For k = 0 , . . . ,  m  — 1, let

where $  1 (a) is the upper 1 0 0 ( 1  — a)% point of an assumed distribution. 

Immediately, we get

This is the Rasch model (2.3), from a latent variables point of view. If we 

assume a normal distribution for IVij, we take Cijik =  $ ~ 1(.), where 4>_1(a:) is 

the upper 1 0 0 ( 1  — a)% point of the standard normal distribution.

We can extend this idea to a multi-item case, where there can be more 

than one response items. Suppose W j =  (W Xj , . . . ,  Wij)'  is the latent response 

vector corresponding to the j - th  individual. We assume that W j follows a 

multivariate distribution with a joint c.d.f. such that each has the

EfcLo exP(k'Pj -  aik:)
(4.2)

P(Xij  = k) = P{clj<k_i < < cijtk)

=  $  (Cy,*) -  y (c ijtk^ )

Efc'=o exP(k'pj -  g-ifc') _  E t i o  exP(k'Pj -  Oik’) 
E*Lo exP -  °ik>) EE=o exP(k’Pj -  Oik’)

exp(k(3j -  aik)
(4.3)

E™=o exp(/c//3j -  a ik>)
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marginal c.d.f. Tjj. Again, take d j tk to be

. _ ^ - 1  ( Y l ' = a  exP( k 'P j ~ g-ffcO
cV,k *ij â ( y R . _ rr. , \EkLo e x p ( k ' { 3 j  -  a i k >)

(4.4)

We observe tha t the Rasch model (2.3) holds for each component Xij. Moreover 

they now have dependency according to the specification of t&j.

Intuitively, we treat the correlation between any two items as if it is same 

for all individuals. Thus one immediate choice of the joint distribution is <f>, 

the /-dimensional multivariate normal distribution with mean 0 and a variance 

matrix with compound symmetry structure and an equal correlation p among 

items:

where I is the /-dimensional identity matrix. Then the joint probability that 

the j- th  individual has the response /q on the i-th item (i = 1 , . . . , / ) ,  is

In the simple special case of bivariate normal situation where I  — 2, or for

£  =  (1 -  p)I +  p l l

7Rl,...,I) ,j (&1 ; • • • j &/) P ( X Xj fci, . . . ,  Xj j  — / / )

(4.5)
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any two items within a multi-item framework, we have

= P ( X y  = k , X i'j  = k')

$ ( Q j , C i ' j ^ i ^ C i j :k j C i ' j ~ l ' )

^ ( . G j , k —1 1 Cj'jjfc') “t~ ® ( C i j , k —1 1 Cj'yfc'—l ) • (^ ‘®)

for i ^  3'.

4.5 Estim ation and Inference

in the Rasch M odel w ith Correlated Item s

In this section, we will discuss the estimation and inference procedures in 

the extended Rasch model for the correlated data using the latent variable 

approach. The parameters to be estimated are (3 (which includes I  * m  — 1 

distinct values of /3/s), 6 , and p. Denote 6 as the collection of /3 and S, all 

together with p — ( ( /  * m — 1 ) +  /  * m) =  2 /  * m — 1 parameters, and 0P is the 

collection of 6 and p.
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4.5.1 E stim ation  o f th e  Polychoric C orrelation Coeffi­

cient

Given the values of 0, we can find the maximum likelihood estimator of p{6) 

in the following manner. This method is similar to the full maximum likelihood 

(Poon and Lee, 1987), with consideration of the Rasch model in constructing 

the threshold parameters, as described in the previous section.

Given any two correlated items x; and x̂ , € {1 , . . . , / } ,  the full

likelihood for p is:

^ ■ n n w w r
j k,k'

where I(j ,  k, k') is an indicator function of whether the j- th  subject responds 

to categories k and k' to the respective two items, and n(i,i>)j{k, k') is given as 

in (4.6). Note that the likelihood function is not shown as a direct function of 

p. but through the expression of 7T(t,i')j(fc, k1). The log-likelihood is

lp(0) =  log Cp{6) =  EE I ( j ,k ,k ' )  log(TT(iti>)j(k, k'))
j k,k>
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Then the estimating equation for p is

where

and 4>{.) is the density function of a bivariate standard normal distribution 

with correlation coefficient p.

We can plug in an initial estimate of 0 into (4.7) to get an estimate of p 

through an iterative method. The second-order derivative of the log-likelihood 

function with respect to p is:

(4.8)
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where

rf is ')Ak > k')
d2TT{iy)j (k ,k ')

dp2

4* C’i'jjk' — l)

4* 1 )  4* ( Q j , f c — 1 >  Ci'jjk' — l;

and

. 1 — p2 (1 — p2)2

Therefore, the iterative equation gives

(̂*) =  p - L  + \d%(ey - l ~dip(ey
dp2 dp J 5(t—i)

(4.9)

at some T.

This is how the polychoric correlation coefficient p^/ between any two items 

i, i' is estimated. Based on the estimators of piti> for all (1(1 — l)/2 ) item pairs, 

the common p for all /  items can be estimated by taking the average of these 

Piy as follows:

O-10)

It follows from the general results of the maximum likelihood estimators
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tha t if the initial estimate of 6 is consistent given the true value of p, then p is 

consistent and asymptotically normal with mean p and variance estimated by

4.5 .2  E stim ation  o f th e R asch Param eters

For (i , i') € {1, . . . ,  I},  let us define

P i j

The estimating equation for 6 is

N

U (B) =  0, (4.11)
j = i

where

Xj  =  (Nij , . . . ,  Xjj) , p,j =  (pij , . . . ,  pij ) ,

E r= o fcexp -  aik)-  E(X,j)  =  g  ex p (tft _  ajk)

m
V a r ( X i j )  ^   ̂L  ^ i j k  P^j

fe=o

Covi^X- i j*  X { ' j ) ^  7T̂ i j ( / b ? A.’ ) p i j j .

jfc,fc'=0
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Qj  is the variance-covariance m atrix of Xj:

/  \
C(i,i ),j ■ ■ ■

and the /  x p  m atrix  Dj is given by

D = ^
J 86

T h eo rem  4.1 The elements of Dj are given by

d̂ ij _  E £ = o  k^expik' fy  -  alkr)

dfj,.'V
8(3f

dfiij
ik

8 j-iij
85i'k

E fcU  exp(£//3j -  a iJfc,)

EfcLofc'expjk’Pj -  alk' )  ̂ 2 
E£=o exP W j  “

=  0 ( f  ^  j )

EHU, fc' exp(k'(3j -  
E k L o  exp(fc,/3J -  crifc/)

, -  f7̂ '))(E P = fcexp(/c,/3i -  t̂fcO)
(EaEo ex.p(k'Pj -^ifc' ) )2

(4.12)
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Proof:

These follow directly from the rule of derivatives for quotients and the 

relation cr^ =  X)fc'=o Note that only the terms (k' > k) contain <5̂  in 

the expression of \ij. Therefore only the terms {IP >  k) remain when taking 

derivatives.

□

The estimating equation (4.11) differs from the GEE in that it does not 

have a “working” covariance matrix. Instead, f lj is the true covariance matrix. 

Let us re-write the estimating equation (4.11) in the following way:

u (« , m )  =  E  w  = °. (41 3 >

where p(0) is a consistent estimator given 0. The estimates 0 are solutions to 

(4.13), and have the following asymptotic properties.

T heo rem  4.2 Under mild regularity conditions, and given that p is consistent 

given the true parameter 0, N 5 ( 0 - 0 )  is asymptotically normally distributed 

with covariance matrix given by

/ E . D j l V ' D j V 1 
V a r (N ' i (0 - 0 ) )  = h m N^ 00{ —-— — j (4.14)

as N  oo.
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Proof:

Upon expanding U (9,p(&)) around the true value of the parameter 9, we 

obtain the following:

u ( o ,  p(»j) +  A P L E E y  _  e) =  0

By rearranging the terms, N l!2{9 -  0) can be expressed as 

We will show that

1 d\J(9J(8)) P E . D j '^ r 'D j  
Ar d9 * Ar

and

^ U ( 0 ,p ( 0 ) ) ~ A A T  0>^ L ^ L

Therefore by the Slutsky’s Theorem (Cramer, 1946), N l/2(8 -  0) is asymptot­

ically normally distributed with mean 0 and asymptotical covariance matrix 

given by

iV / I JV \ N
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£,■ D j ^ y D j
N

First, we note that

1 i V { e , m )  1 ( d v y . m )  , 8 U ( e , m )  8p(e)\ 
n  m  n \  m  dp(6) ' ae  )

However, as IV —>■ oo,

1 1 {e,p{B))
N  dd N  88

N

On the other hand, dp(9)/d6 =  Op(l), and 

dU (0,p(O))
a m  d m = Op(N)

(4.15)

since <9Uj(0, p(9))/dp{9) are linear functions of random variables with mean 0. 

Therefore,

i < m m  _  ? i n v n  + i ,
N  d& N  N

” N
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Second, for a fixed d, expansion of U(6, p{6)) around the true value of p

gives

N V  2 1 ' U(0,p(6))+ dV{^ ' p)dp ( p - p )  + op(p -  p)

( i  E ^ u # , P) 
I N  dp

p*

( N 1/2(p -  p)) + op{ 1)

(4.16)

for some p* falling between p and p.

Now (Arl-/2(p — p)) — Op( 1) under the given conditions stated, and we have

i E ^ U j( 0 ,p )  
N  dp

because (dUj(0, p)/dp) \p* is a linear function of random variables with mean 

0, and thus the second term on the right side of (4.16) is also op(l).

Therefore, by the Central Limit Theorem, A  U j(0 ,p (0 )) is asymptoti-
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cally normal with mean 0 and an asymptotical covariance matrix

Now -TjjjzJJ (8, p(d)) is also asymptotically normal:

N 1/2
U(0,p(0)) ~  A N  0,

E j D / n r 1̂
N

This completes the proof.

' N - l ' N

E DJ,fir ‘Dj , f =  l , . . . , T .
- i = i .j = l p - 1)

The solution to (4.11) may also be obtained iteratively:

em = e“- A

at some T.

4.5.3 T w o-Step  Iteration  M eth od

□

(4.17)

Given some initial values, we can use (4.9) and (4.17) alternatively to get
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the estimates of 8 and p. That is, at each step of the iteration, we solve 

for (4.9) to obtain an estimator of p, and then given the updated value of p, 

solve for (4.17) to obtain an estimator of 8. We repeat this procedure until we 

reach convergence. Since, given any initial consistent estimators, the estimators 

obtained from (4.9) or (4.17), are consistent after the first step (Lehmann 

and Casella, 1998), the final estimators from this two-step iteration method 

(Olsson, 1979) after the last step T  are also consistent and asymptotically 

normal. This method also allows us to compute a consistent estimator of its 

asymptotic variance matrix. The fact that in each of the two steps a portion 

of the parameters 8p is replaced by its consistent estimator implies some loss 

of efficiency. However, this loss is minor and negligible (Olsson, 1979).

Therefore, estimator pP'J obtained in (4.9) after the last iteration at step 

T  is asymptotically normal with mean p and variance Var(pi^),  which can be 

estimated by

where the right-hand side is evaluated at p f )  after the last iteration step T.

~(T)
Also 8 finally obtained in (4.17) is asymptotically normal with mean 8 and

variance matrix Var(8), which can be estimated by
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~(T)
when the right hand side is evaluated at 9 after the last iteration step T.

4.6 E fficiency Considerations

We now show the performance of our strategy in a computer simulation. 

Similarly as in the previous chapter, we replicated the simulation 1000 times 

to obtain the empirical distribution of the CML estimators.

4.6.1 D ichotom ous Rasch M odel

In this case, the response data are binary (m  =  1). First, we generated 

the latent variable for N  =  100 subjects for I  =  4 items from a multivariate 

normal distribution. The correlation parameter p is chosen to be 0, 0.3, and 

0.7 respectively. Then the ordinal response data are obtained according to the 

latent traits as generated, with a given distinct set of parameters for the ability 

of persons

0  = (0,0.25,0.5,0.75,1)
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and for the difficulty of items

/ \
0 -0 .3

0 - 0.1
6 =

0 0.1

y 0 0.3

with l ' 8 l  =  0 for identifiability (see Wright and Masters, 1982).

Figure 4-1 gives the Q-Q plots of p when the true polychoric correlation co­

efficient is 0,0.3,0.7 respectively. We can see that the estimators closely follow 

a normal distribution. Table 4-1 reports the performance of our estimators of 

p in simulation. Both bias and variance increase with increasing values of p.

Figures 4-2-4-4 show the behavior of the estimates of /? for various correla­

tion settings (p—0, 0.3, and 0.7 respectively). From the Q-Q plots, we can see 

that all closely follow a normal distribution, with a slight departure for some 

extreme values. The smaller the polychoric correlation, the smaller the vari­

ance of the estimators. We can also see that the estimators of middle values 

of (3 (f3—0.5) follow the normal distribution more closely than those of the two 

end points (/3 =  0.25, and 0.75).

Table 4-2 shows the relative efficiencies of the estimators for /3 with inter­

item correlation over those assuming independence between items. When the
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true correlation is moderate, for example p =  .3, there is little improvement 

in efficiency between the estimators obtained by recognizing the correlation 

among the items and those obtained under the independence assumption. The 

relative efficiencies are very close to 1. However, when the correlation is high, 

for example, p =  0.7, estimators based on recognizing the correlation gain a 

significant efficiency as compared to the traditional Rasch model, which as­

sumes independence. The relative efficiencies could be as low as 0.75, and at 

most 0.83.

The result of 8 also gives a similar conclusion. Therefore, for the sake of 

brevity we have omitted the presentation of results on 8.

4.6.2 P olytom ous R asch M odel

We also considered the polytomous response data. As in the previous sim­

ulation, the latent variables were generated for N  =  100 subjects for 7 =  4 

items from a multivariate normal distribution. The correlation parameter p 

are again chosen to be 0, 0.3, and 0.7 respectively. Then the ordinal response 

data are obtained according to the latent trait generated, with a given distinct 

set of parameters for the ability of persons

/?' =  (0,0.25, 0.5,0.75,1,1.25,1.5,1.75,2)
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and the difficulty of items

/ \
0 -0.2962 0.2185

0 -0.4270 0.4717
8 =

0 -0.3885 0.6263

^  0 -0.3852 0.1803

with V81 =  0 for identifiability (see Wright and Masters, 1982).

Figure 4-5 gives the Q-Q plots of p in a polytomous Rasch Model when the 

true polychoric correlation coefficients are 0, 0.3, 0.7 respectively. We can see 

that the estimates follow very closely the assumed normal distribution. Table 

4-3 shows tha t the bias in estimation in the polytomous model is reduced, but 

the variance is nearly tripled, and it increases with an increasing level of p.

Figures 4-6~4-8 give the normal Q-Q plots of selected estimates of (3 (two 

extreme values of ,0=0.25, 1.75, and one middle value of ,0=1) for various 

correlation settings (p=0, 0.3, and 0.7 respectively). From the Q-Q plots, 

again we can see that the estimators follow normal distributions, with slight 

departure at extreme values. Smaller polychoric correlation leads to estimators 

with smaller variances. The variances of the estimators of f3 tend to be larger 

than those from the corresponding dichotomous case. Similar to what we 

observed in the dichotomous case, estimators of middle values of parameters
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(around 1) are better than those of the end points (/3 close 0 or 2).

Table 4-4 shows the relative efficiencies of the estimators for f3, adjusting for 

the inter-item correlation as compared to the traditional Rasch model that as­

sumes independence between items. We observe that the results have a similar 

pattern to the dichotomous case. When the true correlation is moderate, for 

example p — .3, there is little improvement in efficiency between the estimators 

obtained by recognizing the correlation among the items and those obtained 

under the independence assumption. The relative efficiencies are close to 1 for 

all situations. However, when the correlation is high, for example, p =  0.7, 

the improvement in efficiency for recognizing the dependency becomes notice­

able as compared to that under the assumption of independence. The highest 

relative efficiency was only about 0.83, as compared to the traditional Rasch 

model approach.

4.7 Summary

We have proposed a latent variable approach to the Rasch model in this 

chapter. Using the generalized estimating equations method, we developed an 

estimation method for the Rasch model parameters under item-to-item corre­

lations. A simulation study has shown the relative efficiency of the estimators
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when inter-item correlation is considered. Generally, we observed normally dis­

tributed estimators for the parameters, and the efficiency loss of the estimates 

increased, as the level of polychoric correlation becomes high.

This method depends heavily on the performance of computing techniques. 

It may take a long time for the iteration procedure to converge, and sometimes 

it even diverges. Better numerical methods are needed to increase efficiency of 

the estimation. Further, a more general correlation pattern might be necessary 

to include unequal correlations between different item pairs.
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Figure 4.1: Q-Q plots of p vs standard normal quantiles in the dichotomous 
model (I = 4, m  =  1, N  =  100)
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Figure 4.2: Q-Q plots of 0  vs standard normal quantiles in the dichotomous 
model (p =  0, /  == 4, m  =  1, N  =  100)
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Figure 4.3: Q-Q plots of $  vs standard normal quantiies in the dichotomous 
model (p =  0.3, 1 =  4, m  = 1, N  =  100)
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Figure 4.4: Q-Q plots of j3 vs standard normal quantiies in the dichotomous 
model (p = 0.7, /  =  4, m  — 1, Ar =  100)
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Figure 4.5: Q-Q plots of p vs standard normal quantiies in the polytomous 
model ( I  =  4, m  = 2, N  =  100)
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Figure 4.6: Q-Q plots of selected 0  vs standard normal quantiies in the poly­
tomous model (p = 0 , 1 =  4, m  =  2, N  =  100)
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Figure 4.7: Q-Q plots of selected j3 vs standard normal quantiies in the poly­
tomous model (p =  0.3, 1 =  4, m =  2, N  =  100)
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Figure 4.8: Q-Q plots of selected /? vs standard normal quantiies in the poly­
tomous model (p = 0.7, 1 =  4, m  — 2, N  =  100)
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Table 4.1: Summary of estimates of p in the dichotomous model (I =  4, m  = 
1 , N  =  100)

p M  ean(p) Var(p) MSE(p)
0.0 0.0289 0.0096 0.0104
0.3 0.2516 0.0178 0.0201
0.7 0.7511 0.0301 0.0327

Note: The entries show the average, variance, and MSE of the estimated p in 1000 
simulations.
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Table 4.2: Relative efficiencies of the estimators for p  in the dichotomous model 
(I  =  4, m  =  1, Ar =  100)

p p= 0 p = 0.3 p=0.7
0.25 1.000 0.9763 0.8250
0.50 1.000 0.9847 0.7502
0.75 1.000 0.9755 0.7958

overall 1.000 0.9794 0.7994

Note: The entries are relative efficiencies of the estimators for /?, based on empirical 
distributions, and adjusted by the inter-item correlation compared to models assum­
ing the independence of items. The row labelled ‘overall’ corresponds to those of the 
trace of the variance matrix. Ratios of less than 1 indicate improvement produced 
by taking inter-item correlation into consideration.
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Table 4.3: Summary of estimates of p in the polytomous model ( /  =  4, m =  
2 , N  = 100)

p Mean(p) Var(p) M SE(p)
0.0 0.0203 0.0397 0.0402
0.3 0.3242 0.0740 0.0746
0.7 0.7309 0.1185 0.1195

Note: The entries show the average, variance, and MSE of the estimated p  in 1000 
simulations.
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Table 4.4: Relative efficiencies of the estimators for /? in the polytomous model 
( /  =  4 ,m  =  2,JV =  100)

0 p= 0 0.3 p=0.7
0.25 1.000 0.9459 0.7455
0.50 1.000 0.9635 0.7196
0.75 1.000 0.9545 0.8259
1.00 1.000 0.9293 0.7403
1.25 1.000 0.9777 0.7993
1.50 1.000 0.9329 0.7587
1.75 1.000 0.9798 0.8149

overall 1.000 0.9687 0.7769

Note: The entries are relative efficiencies of the estimators for /3, based on empirical 
distributions, and adjusted by the inter-item correlation compared to models assum­
ing the independence of items. The row labelled ‘overall' corresponds to those of the 
trace of the variance matrix. Ratios of less than 1 indicate improvement produced 
by taking inter-item correlation into consideration.
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Chapter 5 

A nalysis of M issing Item  

R esponse D ata

5.1 Introduction

In the item response data, there often exist missing responses in some of 

the items. This could be caused by many reasons. For example, patients may 

be unable to respond to some questions in clinical trial settings because of 

sickness, unconsciousness, or other reasons. In a household survey, one could 

refuse to answer certain sensitive questions, such as questions related to income 

or family violence for privacy or confidential reasons.

Some missing data are ignorable, while others are not. As reviewed in

103
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Chapter 2, ignoring the missing observations and missing data mechanisms 

could lead to serious estimation bias. Little has been done to date about 

missing data problems in item response theory, especially in connection with 

the Rasch models, except in some special situations. De Gruijter (1988) dealt 

with missing data by tailoring test items in a Rasch model. Patz and Junker 

(1999) described a general Markov Chain Monte Carlo strategy for Bayesian 

inference in complex item response theory settings, which addresses the non­

response issue. Huisman and Molenaar (2001) compared several imputation 

techniques of missing scale data in item response models when the pattern and 

the reason for the non-response data are ignorable.

However, these research are rather limited in th a t either they only deal 

with specific situations, or they use techniques that are applicable only when 

certain conditions are satisfied. Further, no work has been done to resolve 

general missing data problems, arisen under various missing data mechanisms. 

In particular, we are interested in the implications of various missing data 

strategies, when applied to the Rasch models based on item response data.

In this chapter, we discuss the bootstrap technique applied to the Rasch 

models when missing data are present. We focus on the method of bootstrap 

under imputation. Large sample behavior of the bootstrap estimators is estab­

lished and compared to those of other methods including simple imputation 

methods, as described in Chapter 2.
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5.2 B ootstrap for Im puted D ata

Imputation for missing data is widely used for statistical inference about 

the population characteristic. Consider a simple example: suppose yl is the 

response variable in a sample S.  Let Yr  = {pi '■ i £ S-r}, and y M — {jji : i £ 

<Sa/}, where S r  and Sm  are subsets of S  corresponding to respondents with 

full observations and non-respondents with missing observations. In case of 

no missing values, 6 =  9{y), a function of y, is used to estimate an unknown 

population parameter 9. When some data are missing, we often use Y r  to 

obtain imputed values rji for i £ Sm and then treat these imputed data as if 

they were true observations, and use 9j =  9{yi) to estimate 9 where y / =  {yt : 

i £ S r }  C {rji : i £ <Sa/}.

If the imputation method is well defined and true to the actual situation, 

then the estimator 9j  is asymptotically valid, although not as efficient as 9. 

However, in general such cannot be assumed and treating the imputed values 

as if they were true observations could lead to serious underestimation of the 

variance of 9j as well as biased estimation of 9, especially when the proportion 

of missing data is rather large (Rubin, 1978).

Bootstrap (Efron, 1979, 1994) is an extremely useful tool of obtaining the 

sampling properties of random variables. In the case of no missing values,
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Efron’s bootstrap method can be described as follows. Let P  be the statistical 

model th a t generates the data y and let P  be an estimate of P  based on the 

generated data y. Let y* be the bootstrap sample generated from P. The spirit 

of the bootstrap method, summarized in Figure 6.1 (Efron and Tibshirani, 

1986), is to mimic the sampling behavior of (P , y, 6) by using the conditional 

(given y) sampling behavior of (P , y*, 6*). where 9* = 9(y*) is the bootstrap 

analog of 6.

In bootstrap analysis, we are mainly interested in the variance and the 

distribution of the bootstrap estimator 6*. According to Efron and Tibshirani 

(1986), the bootstrap estimator of Var{6) is

v b (y ) =  Var*(9*) (5.1)

where Var* is the conditional variance with respect to y*. given y. Also the 

bootstrap estimator of the distribution of 6 — 9, denoted by Hg,  is

u B {y) = h ; ._ s (5.2)

where H* is the conditional distribution, given y.

If vg(y) or Hg{y) has no explicit form, then one may use the Monte Carlo
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point x. See Efron and Tibshirani (1986) for details.

5.3 B ootstrap under Im putation

When imputation is used for missing values, naive bootstrap estimators are 

obtained by applying the standard bootstrap formulas (5.1)—(5.2) and treating 

y / as y. However, vB{y/) does not capture the inflation in variance due to 

im putation and/or missing da ta  and may lead to serious underestimation, and 

therefore as a result, both v b { Y i ) and H b {Yi) can be inconsistent (Rubin, 

1978). Ideally, the bootstrap da ta  sets should also be imputed in the same way 

as the original data set was imputed (Shao and Sitter, 1996). The procedure 

is as follows:

1. Draw a random sample y* =  {y* : i =  1, . . .  ,n} with replacement from

approximation

(5.3)

and

(5.4)

with 61 — 6(yl), where y£, b — 1, , B,  are independent bootstrap data sets 

generated from P, 6* =  @b/B, and Sx is the distribution degenerated at
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the original data set y, according to the sampling scheme to obtain y.

2. Apply the same imputation procedure used in constructing y / to the 

units in the bootstrap sample y*, to form y j, the bootstrap analog of y /.

3. Obtain the bootstrap analog 6} of 6j, and apply standard bootstrap for­

mulas or their Monte Carlo approximations to obtain the variance and 

distribution for the bootstrap estimators for §}, based on the imputed 

bootstrap data set y}.

According to Shao and Sitter (1996), this method is the only method thus 

far tha t works irrespective of the sampling design (single stage or multistage, 

simple random sampling or stratified sampling), the imputation method (ran­

dom or non-random, proper or improper), or the type of 6 (smooth or non­

smooth). However, whether this superiority would hold under any missing data 

mechanisms is not yet known.

5.4 B ootstrap  under Im putation: Im plem en­

tation  in Rasch M odels

We now consider the bootstrap procedure under imputation to ordinal item 

response data with missing values in the context of the Rasch Model analysis.
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We consider the data structure X  introduced in Chapter 2. Assume that the 

data set carries identification flags Wij indicating whether X tj is a respondent 

(Wij—0) or not (Wy—1).

For the imputation method, we choose the hot deck imputation method, 

which imputes missing values for X A/ with a random sample from X r .  Using 

such a random imputation method may introduce more variation in estimating 

the population characteristics. However this increment in variation is relatively 

small when Monte Carlo method is used, compared to the variation caused 

from randomness of choosing a bootstrap sample (Shao and Sitter, 1996). The 

disadvantage of deterministic imputation techniques such as ratio or regression 

imputation methods lies in th a t they may not preserve the distribution of the 

data  (Shao and Tu. 1995). Therefore they are not ideal for situations when the 

parameter of interest is a function of the population distribution, for example, 

the population median.

The bootstrap procedure is as follows, taking into account the imputation 

effect, applying the method described in the previous section.

1. Draw a random sample X* =  { x j , . . . ,  x^} with replacement from the 

original data set X  =  {x i , . . . ,  Xjv}, according to the sampling scheme to 

obtain X.

2. Use the identification flags W  to obtain respondents and non-respondents
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in X*. Let =  {X*- : W {j =  1} and X*M = {X*- : W%j = 0} denote the 

set of respondents and non-respondents in the bootstrap sample.

3. Applying the hot deck imputation procedure used in constructing X / to 

impute X*M using ~X*R, i.e., for each item i, i =  1, . . . , / ,  draw a ran­

dom sample from x ^ ,  the set of respondents, to fit in X;*v /, the set of 

respondents for item i. Denote the bootstrap analog of X / by X;.

4. Obtain the bootstrap analog 5) of <5/, and the bootstrap analog (3} of /3/, 

using the improved CML method introduced in Chapter 3, based on the 

imputed bootstrap data set X}.

5. Apply the bootstrap formulas (5.1)—(5.2) to obtain the variance and dis­

tribution of the bootstrap estimators 8} and (3j, using 8} in place of <5* 

and j3j in place of (3*.

6. If necessary, repeat steps 1-5, and use Monte Carlo approximations as 

given in (5.3)-(5.4).

It follows from Shao and Sitter (1996) that the bootstrap estimators de­

scribed above are consistent as far as the imputation method provides consis­

tent estimators for the population parameter.
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5.5 Sim ulation R esults

In this section, we evaluate the performance of our implementation of miss­

ing data analysis strategy for item response data under Rasch models in com­

puter simulation. We generate missing data patterns using the three types: 

data  missing completely at random, data missing at random, and data miss­

ing with nonignorable reasons, as descried in Chapter 2. In each situation, 

two missing proportions are used: 20% and 50%. We will compare the perfor­

mance of estimators obtained by means of four different approaches: using the 

complete data as generated initially (no missing values), using the complete 

data subset (removing subjects with missing values), using the standard hot 

deck imputation method, and using the bootstrap method under the hot deck 

imputation.

5.5.1 C ase 1: D ata  M issing C om pletely  at R andom

When some data are missing completely at random, we can use a random 

number generator, independent of the process that generated the data, to ran­

domly choose a portion (20% and 50%) of the observations that will be assumed 

missing.
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For the dichotomous case, we use the same given distinct set of parameters 

for the ability of persons

0  =  (0,0.25,0.5,0.75,1)

and the difficulty of items

/ \ 
0 -0 .3

0 - 0.1

0 0.1

V0 0.3 /

as in the previous chapters. For details on the simulated data, please see 

Chapter 3.

Table 5.1 gives the results for /3 of the three methods when the missing 

proportion is 20%. We can see that the bootstrap technique and the imputa­

tion method produce almost identical results to that using the complete original 

data with no missing values. There were also no discernible differences between 

the bootstrap result and that using complete data. On the other hand, remov­

ing subjects with missing data and analyzing only the complete subset data 

reduces the accuracy of the estimates and increases their variances. Results 

for 6 again give similar conclusion, and will be omitted in this presentation.
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Table 5.2 gives the results for /? when the missing proportion is 50% to 

evaluate the impact of an increased missing data proportion. We can see that 

despite for the fact tha t the proportion of missing data increases, the bootstrap 

technique still produces results that are nearly identical to those using the 

complete original data. The standard hot deck imputation method also gives 

a similar result, but the efficiency is not as good as that using the bootstrap 

method. This indicates tha t the bootstrap method combined with the hot deck 

imputation is the best strategy, especially in situations when the proportion 

of missing data is large and the data are missing completely at random. The 

analysis based on the complete subset data was the the least efficient method of 

analysis, similarly as before and as others have demonstrated (Carriere, 1994, 

1999).

For the polytomous case, we use the set of true parameters as follows: the 

distinct set of parameters for the ability of persons is

/3' =  (0,0.25,0.5,0.75,1,1.25,1.5,1.75, 2)
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and the difficulty of items is

/ \0 -0.2962 0.2185

0 -0.4270 0.4717 

0 -0.3885 0.6263 

0 -0.3852 0.1803

Table 5.3 and Table 5-4 give the results for (3 when the missing proportions 

are 20% and 50%, respectively. We obtain similar conclusions with the poly-

tomous case as in the dichotomous case in these two situations. That is. the

bootstrap method under imputation outperforms that of the standard impu­

tation and the analysis based on the complete subset data is not efficient and 

suffers from large bias in estimation. One notable finding is that bias of the 

estimators are quite small in the polytomous case, especially when the missing 

data proportion is moderate at 20%.

5.5.2 C ase 2: D ata  M issing at R andom

In this section, we evaluate the estimation strategy when some data are 

missing at random. Here the variables where data are missing are not the 

cause of the incomplete data. Instead, the cause of the missing data is due
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to some other external influences. We generate the “externaF influence in the 

simulation in the following manner. We let the first several items in the data to 

be the “external" influence, and remaining items are simulated to be missing 

or non-missing according to the outcome of the generated external influence. 

To see this as a reasonable generation of data missing at random, consider a 

health survey. Patients with severe throat problems may not be able to speak. 

Then the speech ability of this patient cannot be measured, and therefore the 

response to tha t item is missing, although the response to the throat problem 

is available.

In our study, we simulate this missing data pattern according to the raw 

score of the first half items. If they are some extremely large or small, then 

the outcomes of remaining items are set to be missing; the cut-off points are 

determined by the lower 100(a/2)% and upper 100(1 — a/2)%  quantiles with 

the missing proportion set to a . For the two situations with low (20%) and 

high (50%) missing proportion, the quantiles are (0.1, 0.9) and (0.25, 0.75) 

respectively. In this simulation, we only consider the polytomous Rasch Model, 

because in a dichotomous model, using the above missing mechanism generates 

either too many or too few missing observations because of rounding error. The 

same set of true parameter values as in the previous section is used.

Table 5.5 and Table 5.6 give the results for /3 when the missing proportions 

are 20% and 50%, respectively. From the tables, we see that bias is small no
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m atter which method is used. Bootstrap method generally gives smaller MSE 

than  the standard imputation method does, except for a few extreme cases 

when both perform similarly. However, as the missing proportion increases, 

the bootstrap method becomes much better (in terms of MSE, since bias are 

small in all situations) than the other two methods.

5.5 .3  Case 3: N onignorable M issing D ata

Missing data can arise due to the nature of questions being asked or the 

treatm ent being administrated. In other words, the data are missing with 

reasons that can be explained but are unmeasurable. In our simulation, we 

generate such situations by setting a fraction of observations to be missing, if 

the raw score of a subject is larger than 100(1 — a/2)%  quantile or less than 

100(a/2)% quantile with a missing proportion a . This is tenable in reality 

for persons in extreme situations not to participate in the study any further. 

For example, persons with a very low or high gross income may refrain from 

reporting their actual income. Similar scenarios can be constructed in a family 

violence survey. Again we focus on the polytomous Rasch Model only. We use 

the same set of true parameters as in the previous sections. The results are 

summarized in Table 5.7.
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From Table 5.7, we see the clear advantage of the bootstrap method in this 

situation. Even when the missing proportion is only 20%, this method gives 

much more efficient estimates than those given by the standard imputation 

method alone. The method that uses only the complete subset data is the 

worst of all. It does not give any consistent estimates, producing large bias 

overall.

When the missing proportion is high at 50%, none of the methods gives 

reasonably consistent estimates of the parameters. This may be explained by 

the nonignorable missing data mechanism with too many data missing to draw 

on information independently in our simulation. In practice, however, there 

may be more information available to draw on about the missing data tha t 

are nonignorable. Further, it is highly unusual to have over 50% of the data 

missing with nonignorable reasons. Therefore, our overall conclusion is tha t 

the bootstrap under imputation method is the best strategy.

5.6 Sum m ary

In this chapter, we investigated several missing data analytic strategies 

in a Rasch model with item response data. Among several imputation and 

re-sampling methods used for missing data analysis, the bootstrap under im-
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put at ion method is found to be the best method overall in its accuracy and 

precision of estimating the true parameters. This was true whether the missing 

data occurred completely at random, at random, or with nonignorable reasons.
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Figure 5.1: Bootstrap method (Efron and Tibshirani, 1986)

P  — > y  =4> P  — ► y*

\  /  \  /
0(y) 6{y*)
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Table 5.1: Comparison of estimates of /? when 20% of the data is missing 
completely at random in the dichotomous model (I  =  4. m  =  1, N  = 100)

(3 Method P Bias (%) M S E ( B)
0.25 Complete 0.2460 -1.60 0.00152

Complete subset 0.2425 -3.00 0.00227
Imputation 0.2443 -2.28 0.00152
Bootstrap 0.2457 -1.72 0.00152

0.50 Complete 0.5006 0.12 0.00113
Complete subset 0.5034 0.68 0.00344
Imputation 0.5012 0.24 0.00152
Bootstrap 0.5007 0.14 0.00112

0.75 Complete 0.7543 0.57 0.00151
Complete subset 0.7593 1.24 0.00441
Imputation 0.7549 0.65 0.00152
Bootstrap 0.7546 0.61 0.00151

Note: Shown are estimates of (3, biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).
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Table 5.2: Comparison of estimates of /3 when 50% of the data is missing 
completely at random in the dichotomous model (J =  4. m  =  1. N  =  100)

p Method P Bias (%) MSE( p)
0.25 Complete 0.2460 -1.60 0.00152

Complete Subset 0.2313 -7.48 0.00403
Imputation 0.2469 -1.24 0.00152
Bootstrap 0.2475 -1.00 0.00151

0.50 Complete 0.5006 0.12 0.00113
Complete Subset 0.5038 0.76 0.00594
Imputation 0.5014 0.28 0.00152
Bootstrap 0.5009 0.18 0.00112

0.75 Complete 0.7543 0.57 0.00151
Complete Subset 0.7637 1.83 0.00593
Imputation 0.7568 0.91 0.00152
Bootstrap 0.7562 0.83 0.00150

Note: Shown are estimates of /3, biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).
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Table 5.3: Comparison of estimates of 0  when 20% of the data is missing 
completely at random in the polytomous model ( /  =  4, m  — 2, N  =  100)

0 Method 0 Bias (%) MSE{0)
0.25 Complete 0.2484 -0.66 0.13446

Complete Subset 0.2518 0.72 0.24501
Imputation 0.2482 -0.70 0.15142
Bootstrap 0.2484 -0.65 0.13133

0.50 Complete 0.4992 -0.16 0.05204
Complete Subset 0.5014 0.27 0.15557
Imputation 0.4991 -0.17 0.06316
Bootstrap 0.4992 -0.16 0.05343

0.75 Complete 0.7500 -0.01 0.01412
Complete Subset 0.7508 0.11 0.06698
Imputation 0.7499 -0.01 0.01838
Bootstrap 0.7499 -0.01 0.01457

1.00 Complete 1.0005 0.05 0.00933
Complete Subset 1.0002 0.02 0.01832
Imputation 1.0005 0.05 0.00901
Bootstrap 1.0005 0.05 0.00851

1.25 Complete 1.2509 0.07 0.02563
Complete Subset 1.2495 -0.04 0.02885
Imputation 1.2509 0.07 0.02652
Bootstrap 1.2508 0.07 0.02532

1.50 Complete 1.5010 0.07 0.05777
Complete Subset 1.4987 -0.09 0.13224
Imputation 1.5011 0.07 0.06785
Bootstrap 1.5010 0.07 0.05283

1.75 Complete 1.7509 0.05 0.10503
Complete Subset 1.7480 -0.12 0.37368
Imputation 1.7510 0.06 0.13094
Bootstrap 1.7510 0.06 0.11244

Note: Shown are estimates of 0,  biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. ANALYSIS OF MISSING ITEM  RESPONSE DATA 123

Table 5.4: Comparison of estimates of 0  when 50% of the data is missing 
completely at random in the polytomous model ( /  =  4, m  = 2, Ar =  100)

0 Method 0 Bias (%) M S E 0 )
0.25 Complete 0.2423 -3.06 0.67098

Complete Subset 0.2400 -3.99 1.05244
Imputation 0.2414 -3.44 0.76753
Bootstrap 0.2416 -3.34 0.70010

0.50 Complete 0.4950 -1.01 0.29003
Complete Subset 0.4937 -1.25 0.41759
Imputation 0.4944 -1.11 0.32358
Bootstrap 0.4947 -1.07 0.28969

0.75 Complete 0.7476 -0.32 0.06762
Complete Subset 0.7474 -0.35 0.07682
Imputation 0.7474 -0.34 0.07129
Bootstrap 0.7476 -0.32 0.06153

1.00 Complete 1.0002 0.02 0.00328
Complete Subset 1.0007 0.07 0.00527
Imputation 1.0003 0.03 0.00415
Bootstrap 1.0004 0.04 0.00481

1.25 Complete 1.2527 0.22 0.08476
Complete Subset 1.2538 0.30 0.15019
Imputation 1.2531 0.25 0.10073
Bootstrap 1.2531 0.24 0.09483

1.50 Complete 1.5051 0.34 0.29734
Complete Subset 1.5066 0.44 0.45324
Imputation 1.5057 0.38 0.33726
Bootstrap 1.5055 0.37 0.30558

1.75 Complete 1.7574 0.42 0.62523
Complete Subset 1.7590 0.51 0.86067
Imputation 1.7581 0.46 0.69021
Bootstrap 1.7578 0.44 0.61303

Note: Shown are estimates of 0 : biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).
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Table 5.5: Comparison of estimates of 0  when 20% of the data is missing at 
random in the polytomous model ( /  =  4, m  =  2, N  = 100)

P Method P Bias (%) M S E 0 )
0.25 Complete 0.2490 -0.42 0.03376

Complete Subset 0.2495 -0.19 0.04234
Imputation 0.2482 -0.71 0.03312
Bootstrap 0.2485 -0.58 0.04062

0.50 Complete 0.4998 -0.03 0.00258
Complete Subset 0.5001 0.03 0.01348
Imputation 0.4998 -0.04 0.00506
Bootstrap 0.4997 -0.07 0.00624

0.75 Complete 0.7503 0.05 0.00225
Complete Subset 0.7505 0.06 0.00641
Imputation 0.7507 0.10 0.00521
Bootstrap 0.7503 0.04 0.00418

1.00 Complete 1.0006 0.06 0.00759
Complete Subset 1.0005 0.05 0.01675
Imputation 1.0011 0.11 0.01192
Bootstrap 1.0007 0.07 0.00825

1.25 Complete 1.2506 0.05 0.00967
Complete Subset 1.2504 0.03 0.01768
Imputation 1.2511 0.08 0.01139
Bootstrap 1.2508 0.06 0.01029

1.50 Complete 1.5005 0.03 0.00797
Complete Subset 1.5001 0.01 0.01504
Imputation 1.5007 0.05 0.01595
Bootstrap 1.5007 0.05 0.01112

1.75 Complete 1.7503 0.02 0.00594
Complete Subset 1.7498 -0.01 0.03272
Imputation 1.7503 0.02 0.01226
Bootstrap 1.7505 0.03 0.01491

Note: Shown are estimates of /3, biases in relative frequency, and MSEs. based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).
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Table 5.6: Comparison of estimates of 0  when 50% of the data is missing at 
random in the polytomous model (I  — 4 ,m  =  2, N  =  100)

0 Method 0 Bias (%) M S E 0 )
0.25 Complete 0.2486 -0.55 0.05094

Complete Subset 0.2491 -0.36 0.09447
Imputation 0.2485 -0.58 0.05032
Bootstrap 0.2483 -0.66 0.04399

0.50 Complete 0.4995 -0.09 0.01157
Complete Subset 0.5000 -0.04 0.03404
Imputation 0.4996 -0.08 0.00965
Bootstrap 0.4994 -0.11 0.00729

0.75 Complete 0.7501 0.02 0.00238
Complete Subset 0.7505 0.06 0.01142
Imputation 0.7502 0.03 0.00264
Bootstrap 0.7502 0.02 0.00230

1.00 Complete 1.0005 0.05 0.00440
Complete Subset 1.0006 0.07 0.00650
Imputation 1.0006 0.06 0.00406
Bootstrap 1.0006 0.06 0.00410

1.25 Complete 1.2507 0.05 0.00972
Complete Subset 1.2506 0.05 0.01383
Imputation 1.2507 0.06 0.01082
Bootstrap 1.2508 0.06 0.00921

1.50 Complete 1.5007 0.05 0.01675
Complete Subset 1.5004 0.02 0.03666
Imputation 1.5007 0.05 0.01554
Bootstrap 1.5009 0.06 0.01198

1.75 Complete 1.7507 0.04 0.02807
Complete Subset 1.7506 0.04 0.08208
Imputation 1.7506 0.04 0.02276
Bootstrap 1.7508 0.05 0.01568

Note: Shown are estimates of /3, biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).
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Table 5.7: Comparison of estimates of 0  w ith 20% nonignorable missing data 
in the polytomous model (I  — 4, m  = 2, N  =  100)

p Method P Bias (%) m s e Cp )
0.25 Complete 0.2495 -0.22 0.01953

Complete Subset 0.2549 1.95 0.68244
Imputation 0.2495 -0.19 0.06606
Bootstrap 0.2492 -0.30 0.02324

0.50 Complete 0.5000 0.01 0.00239
Complete Subset 0.5036 0.72 0.36095
Imputation 0.5001 0.03 0.02581
Bootstrap 0.5000 -0.00 0.00210

0.75 Complete 0.7503 0.05 0.00208
Complete Subset 0.7521 0.28 0.12523
Imputation 0.7504 0.06 0.01051
Bootstrap 0.7504 0.05 0.00267

1.00 Complete 1.0004 0.04 0.00462
Complete Subset 1.0005 0.05 0.00677
Imputation 1.0005 0.05 0.00580
Bootstrap 1.0005 0.05 0.00619

1.25 Complete 1.2503 0.03 0.00558
Complete Subset 1.2487 -0.11 0.04918
Imputation 1.2504 0.03 0.00931
Bootstrap 1.2505 0.04 0.00698

1.50 Complete 1.5002 0.01 0.00518
Complete Subset 1.4966 -0.23 0.31622
Imputation 1.5001 0.01 0.02575
Bootstrap 1.5003 0.02 0.00565

1.75 Complete 1.7504 -0.02 0.00513
Complete Subset 1.7444 -0.32 0.88419
Imputation 1.7498 -0.01 0.06328
Bootstrap 1.7500 0.00 0.00454

Note: Shown are estimates of 0,  biases in relative frequency, and MSEs, based on 
the complete with no missing data (Complete), the complete data subset removing 
the subject with missing observations (Complete Subset), the standard hot deck 
imputation method (Imputation), and the bootstrap technique under the hot deck 
imputation (Bootstrap).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 6

N um erical Example: Study on 

Fam ily H ealth of Lung Cancer 

P atien ts

6 .1  In tro d u ctio n

In this chapter, we will illustrate the methods described in previous chapters 

using the da ta  from a study of family health of lung cancer patients. The study 

was designed by Kristjanson et. al. (Kristjanson et. al., 1997).

The impact of lung cancer on the patient and the family members is espe­

cially devastating because of its rapid course and grave prognosis -  less than

127
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15% of lung cancer patients will survive over five years following diagnosis. 

As families care for the patient, they witness his/her rapid physical deterio­

ration and symptom distress. Family members experience both mental and 

physiological health changes during a cancer illness in the family and in the 

bereavement period, which may affect their abilities to function productively. 

All these demand rapid adjustment in work, marriage, family roles, and social 

activities on both part of patients and family members.

This study is undertaken to examine family care characteristics (family care 

expectations, perceptions, care satisfaction) and family health status across 

the illness trajectory. The objective is to understand the level of “family care 

satisfaction” in association with other family health and care measures.

All of the family health and care variables are measured using a rating scale. 

In this chapter, we will demonstrate the utility of our methods developed in 

this thesis by comparing (1) the approach of simply analyzing the average 

scores in a model, (2) using the scores obtained from the traditional Rasch 

method, (3) using those obtained from our improved CML approach, and (4) 

using those obtained from the GEE along with the consideration of the inter­

item correlation in a chosen statistical analysis model. For this purpose, wre 

use the initial response only. The full longitudinal data shall be analyzed upon 

development of an appropriate longitudinal Rasch model, planned for a future 

research.
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The data are ordinal responses. We consider fitting the Rasch model for 

each of these variables to obtain Rasch scores, i.e. person ability parameters, 

for each subject.

6.2 The D ata

There were 117 patients included in the study. For each patient, the patient 

and their family member’s information were collected at the first time when 

the patient entered the study. Other family health and care variables were 

repeatedly measured using the study questionnaires at various times in up to 

twelve different occasions.

Before we attem pt Rasch modelling and statistical analysis with the lung 

cancer data, we cleaned up the data for consistency in the scale and regroup 

some variables to facilitate interpretation in the analysis results, as follows.

The study collected the following demographical information: marital s ta­

tus, age, sex, educational level, occupation, income, ethnicity, religion, and the 

relationship of family member to the patient. To facilitate interpretation, we 

simplified these variables as follows, with baseline set to be the first category 

(with the assigned category number of 0):

1. Marital Status: married (=0) (“married” or “common-law”) or not mar-
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ried (=1) (“divorced” , “never married” or “widowed”).

2. Age: “18-50” (=0), “51-65” (=1) or “65 or older” (=2).

3. Sex: male (=0) or female (=1).

4. Educational Level: less than high school (=0), high school graduates

(=1) or higher than high school education (=2).

5. Occupation: not working (=0) or working (=1).

6. Income: less than $20,000 ( -0 ) , $20,000 -  $40,000 (=1) or higher than

$40,000 (=2).

7. Ethnicity: non-European (=0) or European (=1).

8. Religion: Christian (=0) or non-Christian (=1).

9. Relationship of family member to the patient: spouse (=0) or non-spouse 

( = ! ) ■

Table 6.1 shows the frequencies for each level of these demographical vari­

ables from the patients and their family members.

We also have the following family health variables: SDS (symptom distress 

scale with 13 items; 1-normal, 2-occasional distress, 3-frequent distress, 4-usual 

distress, 5-constant distress), QOLR (current quality of life rating, ranging 

from 1 =  poor to 10=excellent), QOLS (satisfaction with current quality of
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life, ranging from l = “not at all” to 10= “very satisfied”), FAMCAR (family 

care satisfaction with 20 items; l=very satisfied, 2=satisfied, 3=undecided, 

4=dissatisfied, 5=very dissatisfied), SOS (symptom of stress scale with 94 

items; 0=never, 1 in frequen tly , 2=sometimes, 3=often, 4=very frequently), 

FAD (family assessment device with 12 items; l=strongly agree, 2=agree, 

3=disagree, 4=strongly disagree).

The family care variables include: FEXP (family expectations scale with 

16 items, ranging from 0= “not at all important to me” to 10= “very important 

to me”) and FPER (family perceptions scale with 21 items; l=strongly agree, 

2=agree, 3=uncertain, 4=disagree, 5=strongly disagree).

The first three variables, SDS, QOLR, and QOLS, were measured from 

patients themselves and the remaining variables were observed from their fam­

ily members. The outcome variable of interest is the family care satisfaction, 

FAMCAR, explained by others conditionally.

The variables QOLR (current quality of life rating) and QOLS (satisfaction 

with current quality of life) were rearranged to binary response: 0= “negative 

rating or not satisfied”, 1= “positive rating or satisfied” . All other family health 

and care variables were similarly rearranged from 0 to m  (m + 1 is the number 

of categories in tha t variable) so that high values represent positive attitudes. 

For example, for FAMCAR, before the rearrangement, 1 stood for “very satis­

fied” , and 5 meant “very dissatisfied” . After the rearrangement, 0 now stands
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for “very dissatisfied” , and 4 for “very satisfied” , consistently with others to 

indicate th a t a high score means a high degree of satisfaction expressed. The 

frequencies of the 20 FAMCAR items are shown in Table 6.2.

6.3 Prelim inary A nalysis

In this section, we consider several possible ways to analyze the given data. 

As the family health and care variables are rating scale data, there are a number 

of ways one can measure a score for each study subject on a linear scale, suitable 

to be used in a statistical model. We first recognize that there are statistical 

issues to deal with such correlated items and missing values in the data.

First, w'e deal with the missing data issue. As discussed in Chapter 5, 

we will use the hot deck imputation method with or without the bootstrap 

technique. Second, to account for the correlations among items, we will use 

the two-step iteration method (4.9) and (4.17) for the Rasch model and obtain 

the person ability parameters for each subject adjusted for these polychoric 

correlations among items. We do this for each of the family health and care 

variables measured in a rating scale.

Table 6.3 gives the estimates of the polychoric correlations among items on 

the basis of three competing missing data methods. The correlations among
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family assessment device items (FAD), family expectation items (FEXP), and 

symptom distress scale (SDS) items do not vary greatly by different methods, 

mainly because of a very small proportion of missing values (3.65%, 3.09%, and 

8.06% respectively). The correlations among family care satisfaction (FAM­

CAR) items, family perceptions (FPER) items, and symptom of stress (SOS) 

items were changed slightly from using the complete data subset to using the 

imputed data, due to increased missing proportions compared to the others 

(12.87%, 16.13%, and 16.08% respectively). The larger the missing propor­

tion in a variable, the larger the discrepancy between the correlation from 

complete data subset and that from imputed data. The latter two methods 

produced nearly identical estimates, while the complete subset data estimated 

them slightly higher than the other two.

However, overall there were no appreciable amount of variation in the level 

of correlations estimated. This is also consistent with our findings in chapter 

5, where we found that the three approaches to missing data did not result in 

any substantial differences, when the missing proportions are not large (overall 

proportion about 10% in this example). Therefore, we shall not present results 

from all three methods, but only that from the bootstrap under hot deck impu­

tation method, which was found to the best under all missing data structures 

considered.

We note that some of the correlations are quite high. For example, the
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correlation among the family expectation items is greater than 0.85. That 

among the family assessment device items is also close to 0.5. regardless which 

method is used. Ignoring the existence of such high correlations can lead to 

misleading conclusions.

6.4 O btaining Linear Scores

We will demonstrate the utility of our research by contrasting the following 

four approaches in the analysis: (1) an average scoring which takes a simple 

summary score for each subject on a number of given items; (2) the tradi­

tional Rasch method using the CON procedure (Wright and Masters, 1982), 

which assumes no dependency among items or parameters; (3) the simultane­

ous method with the improved CML procedure (Sheng and Carriere, 2002), 

with dependency among parameters incorporated but not among items; and 

(4) the simultaneous Rasch method with polychoric correlation incorporated.

As an example, Table 6 . 4  gives the estimates of distinct set of person ability 

parameters /5, adjusted for item difficulty, for the family assessment device 

variables, by the average scoring and the three Rasch methods. We observe 

tha t average scores take positive values only (range from 0 to m), while Rasch 

scores adjusted by item difficulty differences can take both positive and negative
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values. The person ability parameters with consideration of the polychoric 

correlation have the smallest range (-0.8 to 2.2), followed by those from the 

independent assumption of items (-1.4 to 2.4), and those by the traditional 

Rasch method (-2.2 to 2.9). The estimates of /5 for other family health and 

care variables are obtained in a similar way, as well as the item difficulty 

parameters 6.

Given the values of person ability and item difficulty parameters, the prob­

ability 7Tijk of any subject j  responds on category k to item i can be easily 

calculated. As an example, Tables 6.5 -  6.1 give selected estimates of 7r^jt 

from the three Rasch approaches for the family assessment device variable. 

We can see th a t the entries to the same category for each item are decreasing 

gradually as the subject raw scores increases; however, due to too many cate­

gories, there is no substantial difference between the two subjects with adjacent 

raw scores. The probabilities of subjects with the same raw score responding 

to the same category for each item are quite different from one method to the 

others. The difference is particularly large for those with extreme raw scores 

(close to 0 or I  * m ), since the person abilities vary greatly according to the 

methods used. Estimates of 7 from other variables are not presented, but 

exhibit the similar pattern.
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6.5 U sing the Person Scores 

in Regression Analysis

136

After obtaining the Rasch scores for each subject, i.e., the estimates for the 

person ability parameters adjusted by the item difficulty, investigators often 

use them in regression studies to describe the relationship between family care 

satisfaction and other family health and care measures. The purpose of this 

section is to demonstrate varying degree of conclusions possible by different 

linearizing methods using the regression analytic method, a typical method of 

analysis by practioners. For each family health and care variable, we created 

one score for each subject, upon accounting for item difficulty.

We also created a new variable upon requests by the primary investigators 

of the family care study project. It is named “discrepancy” (DIS), which de­

scribes the discrepancy between the family expectations scale and the family 

perceptions scale for each subject. This variable will be used in the subsequent 

analysis in lieu of the two variables, “family expectations” and “family percep­

tions” . The investigators also strongly believe that there exists a relationship 

between family care satisfaction scale and the quadratic term of the discrep­

ancy, and this is verified graphically. That is, the level of satisfaction rises 

rapidly when DIS is negative with higher health perceptions than expected,
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but the rate of growth tapers down as DIS becomes positive with higher health 

expectation than perceived.

Table 6.8 gives the result of these models using person scores from the four 

approaches in the regression analysis of the family care satisfaction score on 

the other covariates. The full model includes all covariates in the regression 

model, and the reduced model only includes significant ones. After fitting 

the regression model, we assessed the model assumptions such as normality, 

linearity and equal variance in the data and confirmed these to be satisfactory. 

Figure 6.1-6-4 show the relevant plots of the results from the four reduced 

models. Other than a few points from the data set of 117 patients, we see that 

these model assumptions are basically satisfied by the fitted model. Although 

the residuals are a little skewed to the right, the departure from normality 

appeared to be moderate. The regression coefficients and their standard errors 

are robust against slight non-normality (Ramsay and Schafer, 1996).

The results from the average scoring method and the traditional Rasch 

method (based on CON procedure) are worse than the two competing meth­

ods that consider simultaneous estimation of parameters and incorporate the 

polychoric correlation among items: the first two have larger MSEs and much 

smaller R? values that implies large variation left unexplained by the respec­

tive models. In the reduced model, although the MSEs are similar for all ap­

proaches, the R 2 values from the latter two approaches are much better than
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those from the first two methods. Here we conclude that the simple average 

scoring method has relatively poor fitting, and the traditional Rasch method is 

not satisfactory. Even the improved CML is not perfect, as it does not account 

for the polychoric correlations among items, especially those that are too large 

to be ignorable. This will have big impact in the evaluation of each individual 

covariate’s contribution to the significant results.

Table 6.9 displays the ordinary least squares estimates of all significant co­

efficients (P  < 0.05) in the reduced model. Each model contains a different set 

of significant covariates. The following variables are common in all four mod­

els: the family member’s age, the family assessment device level, the symptom 

distress scale, discrepancy score, and the squared discrepancy score. Among 

them, the symptom distress score and the family member’s age (51-65) are 

moderately significant, while the family assessment device level and discrep­

ancy level (both the linear and quadratic terms) are highly significant with one 

exception th a t the linear effect of the discrepancy score is not significant in 

the average scoring method. When the family members are between 51 and 65 

years old and have poor family environment measured by FAD, they are less 

satisfied with health care. When the patients develop less symptom distress, 

the family care satisfaction level tended to be higher.

The use of Rasch scores revealed a few more covariates being significant in 

addition to the above.
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In the model using the traditional Rasch method, the patient’s age and 

education level and the family member’s ethnic background are also found 

to be significantly related to family care satisfaction level. The family care 

satisfaction level is positively associated with middle-aged patients, European 

family background, and higher than high school education of the patients.

According to the model using the improved CML method, the patient and 

family member’s education level are also relevant. Those who have higher 

than  high school education tend to have higher satisfaction level than those 

who have less than high school education.

In the model using the simultaneous Rasch method with the polychoric 

correlation, the patient’s education and the family member’s ethnic background 

have significant relationships with the family satisfaction level. The family care 

satisfaction level is positively associated with higher than high school education 

of the patients and their European family background.

In summary, the directions and the levels of association between family 

health and care variables remained consistent among different scoring methods. 

However, the significance levels and the key variables identified were not the 

same, as discussed above. Overall, use of the Rasch methods produced results 

with higher precision than the simple average scoring method. As pointed 

out numerously throughout in this thesis, clearly the first three approaches 

have some limitations, either unfulfilling the properties of the fundamental
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measurement (the average scoring method), assuming independence of related 

parameters (the traditional Rasch method), or assuming independence of the 

inter-related questionnaire items. On the other hand, the method based on 

GEE with the polychoric correlation incorporated rectifies all these limitations 

in the first three methods. Therefore, we conclude based on the latter method 

th a t the family’s ethnic background do m atter in their family care satisfaction 

with the patient care -  people of European descent tend to be happier with the 

family health care. Patients who had some college education seem to manage 

better, leading to generally positive attitude by family members about the 

patient care.
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Table 6.1: Frequency table of all demographical variables

Variable 0 1 2 Missing
Family Member:

Marital Status 100 14 3
Age 36 40 38 3
Sex 32 81 4

Education 55 27 31 4
Income 22 44 34 17

Occupation 56 55 6
Ethnicity 49 65 3
Religion 104 10 3

Relationship 72 39 6
Patient:

Marital Status 89 26 2
Age 7 39 70 1
Sex 66 50 1

Education 79 19 17 2
Income 32 55 19 11

Occupation 79 37 1
Ethnicity 45 71 1

Religion 104 11 2

Note: Shown are frequencies in each level of the demographical variables from pa­
tients and their family members.
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Table 6.2: Frequency table of FAMCAR variables

Item 0 1 2 3 4 Missing
FAMCARl 54 162 55 17 3 98
FAMCAR2 32 197 89 47 12 12
FAMCAR3 37 203 86 35 8 20
FAMCAR4 38 201 73 27 8 42
FAMCAR5 73 186 25 14 3 88
FAMCAR6 64 129 25 11 5 155
FAMCAR7 43 175 69 46 12 44
FAMCAR8 54 219 45 32 7 32
FAMCAR9 64 212 55 23 5 30
FAMCAR10 68 240 38 6 3 34
FAMCARl 1 52 200 62 28 8 39
FAMCAR 12 56 172 65 5 1 90
FAMCAR13 41 247 44 18 4 35
FAMCAR14 55 186 50 56 18 24
FAMCAR 15 39 214 67 29 6 34
FAMCAR16 33 152 51 38 7 108
FAMCAR17 35 204 63 37 12 38
FAMCAR18 46 215 59 32 7 30
FAMCAR19 50 224 46 30 8 31
FAMCAR20 60 223 52 23 9 22

Note: Shown are frequencies in the rating scale of the 20 family care satisfaction 
items.
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Table 6.3: Polychoric correlations based on three missing data techniques: 
family health and care variables in lung cancer study

Polychoric Correlations

Method FAMCAR FAD FEXP FPER SDS SOS

Missing 
Proportion (%) 12.87 3.65 3.09 16.13 8.06 16.08

Complete Subset 0.418 0.496 0.866 0.341 0.270 0.369

Imputation 0.359 0.478 0.859 0.259 0.252 0.288

Bootstrap 0.352 0.477 0.857 0.255 0.253 0.284

Note: Shown are the missing proportions (first row’) for each of the family health 
and care variables, as well as the estimates of the polychoric correlations obtained 
from using the complete data subset removing the missing observations (Complete 
Subset), the standard hot deck imputation method (Imputation), and the bootstrap 
technique under imputation (Bootstrap).
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Table 6.4: Estimates of 0  for the family assessment device variables
r Average Score Traditional Improved CML With Correlation
1 0.0833 -2.2272 -1.4476 -0.8036
2 0.1667 -1.9944 -1.2840 -0.7659
3 0.2500 -1.9657 -0.9670 -0.5927
4 0.3333 -1.6836 -0.4151 -0.4748
5 0.4167 -1.5692 -0.4115 -0.2392
6 0.5000 -1.1232 -0.2989 -0.1820
7 0.5833 -0.8264 -0.1696 -0.1053
8 0.6667 -0.6455 0.0873 -0.0330
9 0.7500 -0.3960 0.1186 -0.0269

10 0.8333 -0.3320 0.1346 0.1002
11 0.9167 -0.1350 0.2240 0.1907
12 1.0000 -0.1098 0.2332 0.2712
13 1.0833 -0.0137 0.3010 0.3005
14 1.1667 0.0295 0.3992 0.4068
1-5 1.2500 0.1265 0.4079 0.4738
16 1.3333 0.3729 0.4289 0.6081
17 1.4167 0.4407 0.4526 0.6342
18 1.5000 0.4890 0.4882 0.6351
19 1.5833 0.6978 0.6051 0.6585
20 1.6667 0.7190 0.6981 0.8042
21 1.7500 0.7831 0.7081 0.9467
22 1.8333 0.9824 0.7665 0.9710
23 1.9167 0.9853 0.8604 1.1032
24 2.0000 0.9979 0.9771 1.2064
25 2.0833 1.1314 1.0398 1.2152
26 2.1667 1.4012 1.0847 1.2591
27 2.2500 1.6472 1.1211 1.4537
28 2.3333 1.7013 1.1280 1.5116
29 2.4167 1.7186 1.3423 1.5958
30 2.5000 2.1179 1.4537 1.5989
31 2.5833 2.2911 1.4927 1.6972
32 2.6667 2.4414 1.6638 1.8264
33 2.7500 2.5280 1.9342 1.8833
34 2.8333 2.6141 1.9985 1.8972
35 2.9167 2.8927 2.2486 2.1036

Note: Entries are the estimates of /?, ordered by subject’s raw score r, from the 
simple average scoring method ( “Average Score”), the traditional Rasch method 
( “Traditional”), the improved CML procedure ( “Improved CML”), and simultaneous 
Rasch analysis with a polychoric correlation ( “With Correlation”).
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Table 6.5: Estimates of from the traditional Rasch method for the family 
assessment device variables, for selected subjects with raw score of r

Item Number
r  k ~  1 2 3 4 5 6 7 8 9 10 11 12
1 0 0.64 0.90 0.96 0.99 0.96 0.94 0.72 0.89 0.97 0.81 0.99 0.96

1 0.33 0.08 0.03 0.01 0.04 0.03 0.22 0.10 0.02 0.18 0.01 0.04
2 0.02 0.02 0.01 0.00 0.00 0.02 0.05 0.01 0.01 0.01 0.00 0.00
3 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

2 0 0.63 0.90 0.95 0.99 0.96 0.93 0.71 0.89 0.97 0.81 0.99 0.96
1 0.34 0.08 0.03 0.01 0.04 0.03 0.23 0.11 0.02 0.19 0.01 0.04
2 0.02 0.02 0.02 0.00 0.00 0.03 0.05 0.00 0.01 0.00 0.00 0.00
3 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

17 0 0.01 0.08 0.15 0.70 0.35 0.03 0.01 0.15 0.12 0.16 0.84 0.15
1 0.08 0.11 0.08 0.14 0.20 0.02 0.06 0.27 0.05 0.56 0.13 0.08
2 0.07 0.43 0.50 0.06 0.03 0.21 0.22 0.18 0.14 0.24 0.02 0.12
3 0.84 0.38 0.27 0.10 0.41 0.74 0.71 0.39 0.69 0.04 0.01 0.65

18 0 0.01 0.06 0.13 0.67 0.31 0.03 0.01 0.13 0.09 0.14 0.83 0.12
1 0.06 0.10 0.07 0.14 0.19 0.01 0.05 0.25 0.04 0.55 0.14 0.08
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.26 0.02 0.12
3 0.86 0.41 0.30 0.13 0.47 0.76 0.73 0.43 0.73 0.05 0.01 0.68

19 0 0.01 0.06 0.13 0.66 0.31 0.03 0.01 0.13 0.09 0.14 0.82 0.12
1 0.06 0.10 0.07 0.15 0.19 0.01 0.05 0.25 0.04 0.55 0.14 0.07
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.26 0.03 0.12
3 0.86 0.41 0.30 0.13 0.47 0.76 0.73 0.43 0.73 0.05 0.01 0.69

34 0 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00
1 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.12 0.16 0.00
2 0.01 0.13 0.19 0.07 0.01 0.04 0.04 0.06 0.03 0.39 0.21 0.03
3 0.99 0.87 0.81 0.90 0.98 0.96 0.96 0.93 0.97 0.49 0.50 0.97

35 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00
1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.09 0.00
2 0.01 0.09 0.14 0.05 0.01 0.02 0.03 0.04 0.02 0.32 0.19 0.02
3 0.99 0.91 0.86 0.94 0.99 0.98 0.97 0.96 0.98 0.61 0.67 0.98

Note: Entries are the estimates of 7 ^ . for subject j  with raw score of r ,  responding 
on category k  to item i, where subjects are ordered by their raw score r.
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Table 6.6: Estimates of 7ty*, from the improved CML Rasch procedure for the 
family assessment device variables, for selected subjects with raw score of r

Item Number
r  k 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0.33 0.71 0.84 0.97 0.91 0.73 0.39 0.74 0.89 0.61 0.97 0.88

1 0.45 0.16 0.07 0.03 0.09 0.07 0.32 0.22 0.06 0.36 0.03 0.08
2 0.08 0.11 0.08 0.00 0.00 0.13 0.19 0.03 0.03 0.03 0.00 0.02
3 0.14 0.02 0.01 0.00 0.00 0.07 0.10 0.01 0.02 0.00 0.00 0.02

2 0 0.32 0.70 0.83 0.96 0.90 0.71 0.37 0.73 0.88 0.60 0.97 0.87
1 0.45 0.16 0.08 0.04 0.09 0.07 0.32 0.23 0.06 0.37 0.03 0.09
2 0.08 0.12 0.08 0.00 0.00 0.14 0.20 0.03 0.03 0.03 0.00 0.02
3 0.15 0.02 0.01 0.00 0.01 0.08 0.11 0.01 0.03 0.00 0.00 0.02

17 0 0.01 0.09 0.17 0.73 0.39 0.04 0.01 0.17 0.14 0.17 0.85 0.17
1 0.08 0.11 0.08 0.13 0.21 0.02 0.07 0.29 0.05 0.57 0.12 0.09
2 0.08 0.44 0.49 0.05 0.03 0.22 0.23 0.18 0.15 0.22 0.02 0.12
3 0.83 0.36 0.26 0.09 0.37 0.72 0.69 0.36 0.66 0.04 0.01 0.62

18 0 0.01 0.07 0.14 0.68 0.32 0.03 0.01 0.14 0.10 0.15 0.83 0.13
1 0.07 0.10 0.07 0.14 0.20 0.02 0.06 0.26 0.04 0.56 0.13 0.08
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.25 0.03 0.12
3 0.85 0.40 0.29 0.12 0.45 0.75 0.72 0.42 0.72 0.04 0.01 0.67

19 0 0.01 0.06 0.12 0.66 0.30 0.02 0.01 0.12 0.09 0.14 0.82 0.11
1 0.06 0.09 0.07 0.15 0.19 0.01 0.05 0.25 0.04 0.55 0.14 0.07
2 0.07 0.43 0.-50 0.06 0.03 0.20 0.21 0.19 0.13 0.26 0.03 0.12
3 0.86 0.42 0.31 0.13 0.48 0.77 0.73 0.44 0.74 0.05 0.01 0.70

34 0 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.00
1 0.00 0.01 0.01 0.04 0.02 0.00 0.00 0.02 0.00 0.19 0.21 0.01
2 0.02 0.17 0.25 0.08 0.01 0.05 0.06 0.08 0.04 0.42 0.20 0.03
3 0.98 0.82 0.74 0.84 0.97 0.95 0.94 0.90 0.96 0.38 0.33 0.96

35 0 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.25 0.00
1 0.00 0.01 0.01 0.04 0.02 0.00 0.00 0.02 0.00 0.18 0.21 0.01
2 0.02 0.17 0.24 0.08 0.01 0.05 0.05 0.08 0.04 0.42 0.20 0.03
3 0.98 0.82 0.75 0.85 0.97 0.95 0.95 0.90 0.96 0.39 0.34 0.96

Note: Entries are the estimates of 7 for subject j  with raw score of r,  responding 
on category k  to item i ,  where subjects are ordered by their raw score r.
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Table 6.7: Estimates of from the simultaneous Rasch analysis with poly­
choric correlation for the family assessment device variables, for selected sub­
jects with raw score of r

Item Number
r k 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0.17 0.52 0.69 0.94 0.84 0.47 0.20 0.61 0.75 0.48 0.96 0.76

1 0.39 0.20 0.10 0.05 0.13 0.07 0.28 0.30 o.os 0.47 0.04 0.12
2 0.11 0.23 0.18 0.01 0.01 0.23 0.27 0.06 0.07 0.05 0.00 0.05
3 0.33 0.05 0.03 0.00 0.02 0.23 0.24 0.03 0.10 0.00 0.00 0.07

2 0 0.15 0.48 0.66 0.93 0.82 0.42 0.18 0.58 0.72 0.45 0.95 0.73
1 0.37 0.20 0.11 0.06 0.14 0.07 0.26 0.32 O.OS 0.48 0.05 0.13
2 0.11 0.25 0.20 0.01 0.01 0.25 0.28 0.06 0.08 0.06 0.00 0.05
3 0.37 0.07 0.03 0.00 0.03 0.26 0.27 0.04 0.12 0.01 0.00 0.09

17 0 0.01 0.07 0.13 0.68 0.32 0.03 0.01 0.13 0.10 0.15 0.83 0.13
1 0.07 0.10 0.08 0.14 0.20 0.02 0.06 0.26 0.04 0.56 0.13 0.08
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.25 0.03 0.12
3 0.85 0.40 0.29 0.12 0.45 0.75 0.72 0.42 0.72 0.04 0.01 0.67

18 0 0.01 0.07 0.13 0.68 0.32 0.03 0.01 0.13 0.10 0.15 0.83 0.13
1 0.07 0.10 0.08 0.14 0.20 0.02 0.06 0.26 0.04 0.56 0.13 0.08
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.25 0.03 0.12
3 0.85 0.40 0.29 0.12 0.45 0.75 0.72 0.42 0.72 0.04 0.01 0.67

19 0 0.01 0.06 0.13 0.67 0.32 0.03 0.01 0.13 0.10 0.15 0.83 0.12
1 0.07 0.10 0.07 0.15 0.19 0.01 0.06 0.26 0.04 0.56 0.14 0.08
2 0.07 0.43 0.50 0.06 0.03 0.20 0.21 0.19 0.14 0.25 0.02 0.12
3 0.85 0.41 0.30 0.12 0.46 0.76 0.72 0.42 0.72 0.04 0.01 0.68

34 0 0.00 0.00 0.01 0.15 0.02 0.00 0.00 0.01 0,00 0.03 0.50 0.01
1 0.01 0.02 0.02 0.09 0.05 0.00 0.01 0.06 0.01 0.32 0.24 0.01
2 0.03 0.26 0.36 0.11 0.02 0.08 0.09 0.12 0.06 0.43 0.13 0.05
3 0.96 0.72 0.61 0.65 0.91 0.92 0.90 0.81 0.93 0.22 0.13 0.93

35 0 0.00 0.00 0.01 0.10 0.02 0.00 0.00 0.01 0.00 0.02 0.44 0.00
1 0.01 0.02 0.01 0.08 0.03 0.00 0.01 0.04 0.01 0.29 0.24 0.01
2 0.02 0.24 0.33 0.11 0.02 0.07 0.08 0.11 0.05 0.43 0.15 0.05
3 0.97 0.74 0.6-5 0.71 0.93 0.93 0.91 0.84 0.94 0.26 0.17 0.94

Note: Entries are the estimates of for subject j  with raw score of r, responding 
on category k  to item i, where subjects are ordered by their raw score r.
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Figure 6.1: Plots from the reduced regression model using the simple average 
scoring method
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Note: Plotted are: residual versus fitted values, and the normal Q-Q plot of the 
residuals.
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Figure 6.2: Plots from the reduced regression model using the traditional Rasch 
method
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Note: Plotted are: residual versus fitted values, and the normal Q-Q plot of the 
residuals.
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Figure 6.3: Plots from the reduced regression model using the improved CML 
procedure
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Note: Plotted are: residual versus fitted values, and the normal Q-Q plot of the 
residuals.
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Figure 6.4: Plots from the reduced regression model using the simultaneous 
Rasch analysis with the polychoric correlation
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Note: Plotted are: residual versus fitted values, and the normal Q-Q plot of the 
residuals.
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Table 6.8: Result of regression models of family care satisfaction scores in the 
lung cancer study using person scores obtained from different methods

Full Model 
Root MSE R 2 F-stat

Reduced Model 
Root MSE R2 F-stat

Average Score 0.460 0.287 3.388 0.464 0.257 9.89
Traditional 0.455 0.298 4.776 0.455 0.270 12.02

Improved CML 0.437 0.513 5.209 0.452 0.369 13.62
W ith Correlation 0.415 0.606 5.511 0.442 0.438 14.19

Note: Shown are the regression models characteristics (Root MSE, R2, F-statistic) 
from the simple average scoring method (“Average Score”), the traditional Rasch 
method (“Traditional”), the improved CML procedure ( “Improved CML”), and the 
simultaneous Rasch analysis with the polychoric correlation (“With Correlation”). 
The significance levels of all F-statistics are less than 0.001.
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Table 6.9: Significant coefficients of reduced regression models of family care 
satisfaction scores in lung cancer study

Method 1 Method 2 Method 3 Method 4

(Int) 1.402(0.312) 1.303(0.175) 1.209(0.158) 1.397(0.154)

Fam ily m em ber:

A ge
51-65

65+
**-0.346(0.106)

-0.026(0,098)
***-0.210(0.058)

-0.041(0.061)
*-0.134(0.058)

0.000(0.06-5)
*-0.149(0.058)
-0.048(0.059)

Education
HighSch

College
N/S
N/S

N/S
N/S

0.003(0.064)
*0.143(0.064)

N/S
N/S

Ethnicity
European N/S **0.112(0.048) N/S *0.101(0.047)

FAD
DIS

DIS2

**-0.346(0.101)
-0.114(0.074)

***0.033(0.009)

***-0.254(0.051)
***-0.140(0.020)
***0.035(0.004)

***-0.230(0.051)
***-0.129(0.020)
***0.034(0.004)

***-0.268(0.052)
***-0.121(0.019)
***0.033(0.004)

P atient:

Age
51-65

65+
N/S
N/S

**0.273(0.105)
0.070(0.103)

N/S
N/S

N/S
N/S

Education
HighSch

College
N/S
N/S

-0.106(0.078)
*0.149(0.065)

-0.097(0.079)
**0.175(0.067)

-0.04-5(0.078)
*0.166(0.066)

SDS **0.211(0.071) *0.109(0.042) *0.104(0.042) *0.099(0.042)

Note: Shown are the estimates (standard errors) of coefficients with P  < 0.1 from 
regression models using the simple average scoring method (Method 1), the tradi­
tional Rasch method (Method 2), the improved CML procedure (Method 3). The 
simultaneous Rasch analysis with polychoric correlation (Method 4), with the level 
of significance is as indicated (*: P  < 0.05; **: P  < 0.01; ***: P  < 0.001; N/S: 
non-significant).
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Chapter 7

Conclusions

In this thesis, we discussed several statistical issues that could arise from 

the analyses of item response data upon recognizing the lack of appropriate 

methodologies to a number of realistic situations.

We implemented a simultaneous CML estimation method for dichotomous 

and polytomous Rasch models and derived their asymptotic properties in Chap­

ter 3. The advantage to this approach of carrying out the simultaneous estima­

tion method was rather substantial in both the polytomous and dichotomous 

Rasch models. The improvement in efficiency of the estimators, as compared 

to those of the currently used conditional approach, was especially apparent 

for intermediately valued person ability parameters. The simultaneous esti­

mation method also had a huge impact on the model fit. We constructed the

154
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conditional likelihood ratio test for the goodness-of-fit of the model. The test 

statistic was shown to be distributed according to the assumed asymptotic y 2 

distribution. On the other hand, the corresponding results based on the cur­

rent conditional approach deviates significantly from the expected distribution. 

In summary, our conclusion is that the current approach has shortcomings in 

not considering correlations implicit in the Rasch model parameters. Our im­

plementation, based on a conditional likelihood function, improved the fit of 

the data as well as the precision of the estimators in comparison to those of 

the other CML methods such as CON.

In Chapter 4, we developed a method to account for the inter-item corre­

lations, known as the polychoric correlation, among items that are measured 

on an ordinal scale. We proposed a latent variable approach to the Rasch 

model in this chapter. Using the idea of generalized estimating equations, we 

expanded the estimation method for the Rasch model parameters under item- 

to-item correlations. Generally, we observe consistent estimators for the Rasch 

model parameters and the polychoric correlation coefficient with normal distri­

butions. Simulation study shows the relative efficiency of the estimators when 

the inter-item correlation is considered. The efficiency loss of the estimators is 

shown to be worse as the polychoric correlation rises.

In Chapter 5, we discussed several methods to deal with missing observa­

tions under three missing data mechanisms. When data are missing completely
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at random, most imputation methods can adequately reduce the impact of the 

missing data, especially when a small proportion of data is missing. When data 

are missing at random, the bootstrap under hot deck imputation method is bet­

ter th an  the other imputation methods in terms of small MSE of estimators 

(with small bias from all methods). This becomes particularly apparent when 

the missing proportion is large. On the other hand, when the missing data 

are nonignorable, only the bootstrap under hot deck imputation method could 

produce efficient estimators. As expected, using the complete data subset did 

not give satisfactory results. It produced either very inefficient or biased esti­

mators. Overall, the bootstrap under hot deck imputation method is proven 

to be the most superior in producing efficiently consistent estimators and their 

variances, wrhen there are missing values present in the item response data.

In Chapter 6, we applied the methods discussed in the thesis to a real data 

set on the family satisfaction study involving lung cancer patients to demon­

strate the utility of our research contributions. Advantages of the methods we 

developed are clearly demonstrated. Comparison with other commonly used 

methods revealed that although overall qualitative results may be similar, there 

are important differences in the set of covariates being recognized as significant 

and in some key variables. We based the interpretation of the results on our 

methods, because ours accommodate simultaneous estimation of parameters, 

correlation among items and the most efficient missing data method.
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This thesis also identified a number of areas that needs further research. 

First, when we accounted for the inter-item correlation, we assumed that the 

polychoric correlations are the same among all items. This may not be neces­

sarily satisfied in the real world situations. Quite often, the correlations may 

be found to be similar among all subjects, but not so among items. Further 

research is needed that will include this possibility. Second, the methods devel­

oped here may be extended to accommodate longitudinal item response data 

th a t collect repeated measurements over time from the subjects. Further inves­

tigation is necessary to confirm this conjecture. Third, we used large sample 

simulation results to show the superior performance of the proposed methods 

over the others in dealing with missing data. However, the asymptotical be­

havior of the estimators has not been well established. We plan to develop 

it under either specific settings of Rasch models, or general situations of item 

response data.
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