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Abstract

A numerical approach combining finite element modeling and machine learning is used to
inform the material performance of an alumina ceramic tile undergoing high-velocity im-
pact. In this study, the alumina ceramic tile is simulated by incorporating a user-defined
Johnson-Holmquist-Beissel (JHB) material model within the framework of smoothed par-
ticle hydrodynamics (SPH) in LS-DYNA finite element software. The implementation
of the JHB model is verified by comparing equivalent stress-pressure responses through
a single element simulation test. After implementation, the computational framework is
simulated across our chosen range of conditions by matching the results from both plate
impact experiments and ballistic testing from the literature. The computational model is
then used to generate training data sets for an artificial neural network (ANN) to predict
the residual velocity and projectile erosion for an alumina ceramic tile undergoing high-
velocity impact in the SPH framework. The ANN is then used to perform a sensitivity
analysis involving exploring the effect of mechanical properties (e.g., strength and shear
modulus) and impact simulation geometries (e.g., thickness of ceramic tile) on material
performance (i.e., residual projectile velocity and erosion). Overall, this study shows the
capability of the FEM-ANN approach in studying the high-velocity impact on ceramic
tiles and is applicable to guide the structural-scale design of ceramic-based protection
systems.
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1. Introduction

Advanced ceramics, such as alumina, have been incorporated into the design of various
armor systems as frontal layers, mainly owing to their relatively high strength, hardness,
and low cost-to-performance ratio [1–3]. To make efforts towards designing and improv-
ing armour systems, many experimental and numerical studies have sought to understand5

the role of mechanical properties and geometries on the dynamic ballistic performance of
ceramics [4–7]. Comparing with experimental approaches, numerical approaches enable
a wider range of material constants and design parameters to be explored, with improved
temporal and spatial resolutions, especially under extreme loading conditions where ex-
perimentation and field testing are difficult and costly (e.g., ballistic impact [8], laser10

shock [9]). For example, ballistic testing in the literature are often conducted within
a rather narrow impact velocity range [10], which limits the systematic study of both
ballistic (e.g., dwell and penetration [11, 12]) and material responses (e.g., change of
mechanisms). Hence, future design strategies and materials development will be largely
guided by advancements in numerical approaches after careful verification and validations15

[13–16], and these will be pursued in this study.
Numerical simulations informed and validated by experiments is a powerful engi-

neering tool for the optimization and design of structures subjected to complex loading
conditions (e.g., impact loads [17]). The choices of the material model and the numerical
framework plays a key role in the accuracy of predictive results [16]. In the literature,20

phenomenological models have been extensively implemented to study the behavior of
ceramics under the high-velocity impact, such as the Johnson-Holmquist models which
considers the strain rate, pressure, bulking, and phase change effects (JH1, JH2, and JHB)
[18–20]. A recent study conducted by Islam et al.[21] compared these three models for sil-
icon carbide under ballistic simulations, and it was found that the JHB model resulted in25

a better prediction of the response of the ceramic than two others (e.g., crack propagation
and the cone fracture zone). The improved accuracy by using the JHB model stems from
two perspectives: 1. it combines the characteristics of the JH1 and JH2 models in de-
scribing material behaviors with consideration of how the material strengths softens from
intact state to failed state [20];2. it enables a better characterization on catastrophic30

failure of ceramics by constituting a piece-wise strength-pressure and damage-pressure
envelope leading to a more realistic representation of the response of ceramics subject
to impact loading [21, 22]. Accordingly, to better simulate the failure and catastrophic
response of ceramics within a computational scheme, this study implements the JHB
material model as a user-defined subroutine into the finite element code of LS-DYNA in35

literature to simulate the response of alumina ceramic tiles under high-velocity impact.
Next, selecting an appropriate physics-based numerical framework is crucial because

it can better approximate the system solution and reasonably simulate the crack initia-
tion, propagation, and coalescence in ceramics [16, 23]. Mesh-free methods provide an
alternative to the traditional finite element method (FEM) for ballistic impact problems,40

and theses have been implemented by many researchers in the literature [17, 24, 25].
For example, smoothed particle hydrodynamics (SPH) is suited for large deformation
problems as they are able to overcome limitations caused by element distortion existing
in FEM due to their mesh-less discretization feature [10, 26, 27]. In conjunction to the
proper numerical framework, a comprehensive parametric study and sensitivity analysis45

of numerical settings in SPH is critical to enhance the simulation accuracy when mod-
elling impacts of brittle solids [28–30]. Large sensitivity of the SPH parameters on impact
simulation results have been noted before but not comprehensively studied [21, 28, 31],
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such as particle spacing [17], artificial viscosity coefficients [28], and constant applied to
smooth length [24]. In this work, parametric studies of these SPH settings are conducted.50

In addition, given the considerable computational cost associated with the increas-
ingly sophisticated numerical models and boundary conditions, machine learning (ML)
techniques have been employed recently to improve the computational efficiency, and
more importantly, enable the possibility of statistical analysis of the behavior of mate-
rials across large amounts of input conditions [32, 33]. To the authors’ best knowledge,55

there have been limited impact-related studies to date where artificial computer analy-
sis techniques are used to develop statistical models for describing the performance and
properties of materials [34, 35]. Among various techniques (e.g., Bayesian’s regression
[36] and deep learning [37]), the multilayer perceptron (MLP) approach is the most com-
monly applied neural network in the field of mechanics [38, 39]. More recently, in the60

field of impact mechanics, Liu et al. [40] used MLP in combination with a conjugate
gradient method to optimize the design of functionally graded metal/ceramic materials.
They showed that the neural network possessed good capacity in describing and handling
the non-linearity between the design parameters and objective optimization parameter
(e.g., depth of penetration) [40]. In a separate study, Bobbili et al. [39] developed a pre-65

dictive tool based on the MLP method to determine the residual velocity of a projectile
impacting an aluminum 1100-H12 thin plate, and they found a good agreement between
the experimental and MLP results. Motivated by these limited studies are numerically
studying and linking the property and geometrical variables to material performance
[39, 40], the present work explores the use of a predictive MLP model coupled with SPH70

impact simulations to inform the effect of mechanical properties and geometries on impact
performance of alumina ceramic tiles, which can then serve as a computationally-efficient
tool for material and system design.

In the present study, we first develop a computational framework by combining the
user-defined JHB material model and SPH method in LS-DYNA. The computational75

code was verified through single-element simulation, and the computational framework
was simulated by comparing with the experiment’s results of plate impacts and bal-
listic impacts for an alumina ceramic tile [22, 41]. Then, the sensitivity of numerical
settings of the SPH method on predicted results (e.g., particle velocity, residual veloc-
ity and mass of projectile) are investigated through parametric studies. The results are80

then used to guide the selection of parameters values for the fully validated and verified
models. Lastly, we train an artificial neural network (ANN) with the training datasets
obtained from ballistic simulations, which is then applied to study the ballistic perfor-
mance (e.g., residual projectile velocity) of single alumina ceramic tiles considering both
material variation (e.g., strength) and geometry (e.g., tile thickness). The contributions85

of this work are re-articulated within the following sections: 1. A comprehensive and ro-
bust implementation of the JHB material model within the SPH framework in LS-DYNA
and the determination of corresponding material constants for alumina are demonstrated
(Section 2), followed by verifying the model implementation with a single-element test
simulation (see Appendix B). As far as we are aware, this is the first time in the liter-90

ature where the JHB has been implemented via user subroutine in LS-DYDA. We will
make the sub-routine accessible in the supplementary files, thus contributing to future
usage [10, 42, 43] and modification in the LS-DYNA solver [10, 17, 44]. 2. Parametric
studies on the SPH numerical settings reveal the sensitivities of the settings on key model
performance metrics (e.g., residual velocity) (Section 3.1). 3. Structural-scale simulation95

cases, including plate impact experiments [22] and ballistic testing [41] are conducted
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and shown to be in good agreements with the literature (Section 3.2). Finally, an MLP
algorithm is then constructed and coupled with the JHB material model to investigate
the sensitivity of both material properties and geometries on ballistic performance of
alumina tiles undergoing high-velocity impact (Section 4), followed by discussions of the100

implications for the current study (Section 5).
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2. Determinations of material constants

The detailed descriptions of the used Johnson-Holmquist-Beissel (JHB) material model
is provided in the Supplementary Material (see Appendix A). Table 1 summarizes all the
JHB model parameters for the alumina material used in this work. Specifically, the105

model constants for alumina are obtained based on the existing experimental data in the
literature [45, 46], and calibrated against the shock and ballistic impact validation data
(Section 3.2). The initial density, shear modulus, and bulk modulus are obtained from
Scazzosi et al. [10], Alexander et al. [45], and Simons et al. [47]. For pressure constants,
Alexander et al. [45] examined the dynamic response of alumina under shock loading110

and generated the test data of pressure vs. relative volume, as shown in Figure 1 (a).
The fitted pressure parameters k1= 265.5 GPa, k2=181.6 GPa, and k3= 171.4 GPa are
extracted from the fitted curves of the experimental data following the equation noted
in the sub-figure and from Equation (8). According to the description in Johnson et
al. [20], materials that exhibit phase change shows three distinct response regions under115

shock loading in their pressure-volume relationship, where the phase transition manifests
at a relatively low-pressure state. Figure 1 (a) indicates that the alumina ceramic does
not undergo the phase change subjected to high-shocked pressures up to 100 GPa, and
as noted by Alexander et al. [45]. As an outcome, the phase change effects are not
considered in this work.120

For strength constants, Subhash, et al. [46] provided the testing data on a variety of
brittle materials that employed a wide range of confinement conditions beyond the HEL
(i.e., shock, triaxial compression, and impact experiments). The test data of alumina
ceramic are extracted from their work [45] and re-fitted with the constitutive law of
the JHB model in Figure 1 (b) using the gradient decent algorithm in Matlab. The125

values of the intact strength model parameters are determined from the fitted curve:
T= 0.20 GPa, σi=1.82 GPa, Pi=2.23 GPa, and σmax= 6.83 GPa. The values of the
failed strength model parameters are directly extracted from the JH2 curve provided by
Bavdekar et al. [46] and then calibrated as: Pf=1.35 GPa, σf=1.35 GPa, and σf

max= 2.7
GPa. The damage constants are provided by Toussaint et al.[17] and then calibrated as130

D1=0.03 and n=1. More importantly, to illustrate the improvements in the JHB model,
the JH2 intact strength model [18] is also re-plotted in Figure 1 (b). It is observed that
the gradually increasing JH2 strength model (i.e., assuming the plot begins at T= 0.20
GPa) deviates from the data points when the stress exceeds the HEL, while the JHB
model traces the data points in much better agreement. In summary, the selection of135

the JHB model describes the three stages of material strength-pressure response with a
single curve: 1. linearly at low pressure; 2. non-linearly at higher pressures up to the
HEL; and 3. pressure-independent beyond the HEL.
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Figure 1: Experimental data from literature [45, 46] with noted curve fits for obtaining the pressure and
strength constants of alumina ceramic for the JHB model. (a) Pressure vs. volumetric strain with curve
fits for JHB model parametrizations (solid purple) [46], and (b) Equivalent strength vs. hydrostatic
pressure with JHB (solid purple) and JH2 (dashed pink) curves fit, demonstrating noted differences
between the two models [45].
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Table 1: Johnson-Holmquist-Beissel material constants for alumina ceramic.

Model Parameters Notation Value

Density (kg/m3) ρ 3890 [48]
Shear modulus (GPa) G 152 [10]
Bulk modulus (GPa) K 265 [48]
Elastic modulus (GPa) E 360 [47]
Hydrostatic tensile strength (GPa) T 0.2 [17]
Intact strength constant (GPa) σi 1.816 [45]
Intact pressure constant (GPa) P i 2.228 [45]
Max intact strength σmax 6.83 [45]
Strain rate coefficient (s−1) C 0.0665 [47]
Failure strength constant (GPa) σf 1.35 [45]
Failure pressure constant (GPa) P f 1.35 [45]
Max failure strength σf

max 2.7 [45]
Reference strain rate (s−1) ϵ0 1 [49]
Bulking factor B 1 [49]
Elastic bulk modulus (GPa) K 1 265 [45]
Coefficient for 2nd degree term in EOS (GPa) K 2 181.6 [45]
Coefficient for 3rd degree term in EOS (GPa) K 3 171.4 [45]
Damage coefficient D1 0.03 [49]
Damage exponent n 1 [49]

3. Simulation results and discussions

This section provides the parametric studies on the effects of the numerical settings140

of SPH within the context of both plate impact (see Figure 2) and ballistic (see Figure 3)
testing cases, including the particle spacing, applied constant to smooth length, and
artificial viscosity parameters. A better evaluation of these parameters is important
given their noted sensitivities in the literature to simulations of various problems [21, 28],
and our desire to guide other researchers in the future. The best combinations of SPH145

parameters for each testing case are identified by matching experimental results in the
literature [22, 41], the detailed discussions on a quantitative and qualitative comparison
with the experimental data provided in Section 3.2.
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Figure 2: Configuration of the compressive plate impact experiment with an alumina plate impacting on
the alumina sample backed by a lithium fluoride block. This configuration is used to conduct parametric
studies of SPH numerical settings and parameterize the Johnson-Holmquist-Beissel model by comparing
the shock response measured at point B at the center of the back surface of sample. The geometry in this
study follows the work by Grady and Moody [22]. Note that the dimensions of the impactor, sample,
and block is varied in our simulations based on the ones reported in Grady and Moody [22].
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Figure 3: Configuration of the simulation setup of a tungsten long rod impacting on an alumina ceramic
tile. The geometries and dimensions of the setup follow the study by Nemat-Nasser et al. [41].

3.1 Parametric studies of the smoothed particle hydrodynamics numerical
settings150

3.1.1 The effects of particle spacing

Known from literature [26], the shock profile predicted by SPH (particle velocity) is
affected by the particle spacing when the applied constant to smooth length (CSLH) is
fixed because the history variables at a particle (e.g., stress, strain, pressure, and particle
velocity) are averaged based on the particle approximation. Figure 4 (a) shows the155

effects of particle spacing (pc) on the particle velocity profile, with pc selected between
0.3 and 1.0 mm. The minimum particle spacing is limited to 0.3 mm considering the
exponentially increase in computational time when using a particle spacing of 0.2 mm
or smaller. In Figure 4 (a), the particle spacing of 0.4 mm shows the closest prediction
to the experimental measurement when compared to the lower and higher values. The160

maximum deviations at the peak velocity for pc = 0.3 mm, pc = 0.4 mm, pc = 0.6
mm, pc = 0.8 mm and pc = 1 mm from the experimental result, are 0.5%. 0.1%, 7%,
17%, and 18%, respectively. Without considering the computational efficiency, a finer
particle spacing trend results in a more accurate prediction of the particle velocity, which
is consistent with other studies [21]. From Figure 4 (a), it is also observed that a larger165

particle spacing tends to shift the overall shock velocity profile towards the left, indicating
a delay of the particle response. As a result, the obtained particle velocity is affected by
the size of particle spacing with a fixed CSLH. To better illustrate the influence of the
CSLH on the shock profile response, the observed trend for CSLH is shown in Figure 4
(b) with a fixed particle spacing of 0.4 mm. Figure 4 (b) shows the shock profile response170

is slightly affected by the CSLH at the Hugoniot state when the values of smooth length
is less than 1.2. Lastly, it is noted that there is a seven times increase in computational
time when the particle spacing decreases from 1 mm to 0.3 mm, as shown in Figure 4 (c).

To assess the effects of particle spacing on the predicted results of ballistic simulations,
a series of particle spacing values covering the recommended range of 0.4 mm to 1.2175
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(a)

(b)
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(c)

Figure 4: Sensitivity analysis of particle spacing and constant applied to smooth length and compu-
tational cost analysis of particle spacing used in the SPH framework for the impact configuration of
Figure 3 at the striking plate velocity of 1070 m/s. (a) Sensitivity analysis on particle spacing with
fixed CSLH=1.2: 0.3 0.4, 0.6, 0.8, and 1 mm. (b) Sensitivity analysis of constant applied to smooth
length. (c) Computational cost for varying particle spacing with fixed CSLH=1.2. Experimental results
are taken from Grady and Moody [22].

mm [17] are used with a fixed CSLH of 1.2. Figure 5 (a) shows the effect of particle
spacing on the predicted residual mass and velocity of the projectile in ballistic impact
simulations. In Figure 5 (a), the associated error bar at each particle spacing reflects
the difference between the simulated and experimental results. Figure 5 (a) confirms
that a reasonable prediction of residual velocity and mass of projectile can be reached180

when using a particle spacing between 0.4 mm and 1.2 mm, where a particle spacing of
1.0 mm gives the most accurate prediction with an associated error bar of 0.2%. The
maximum deviations of the velocity for pc = 0.4 mm pc = 0.5 mm, pc = 0.8 mm, pc = 1
mm, and pc = 1.2 mm from the experimental results, are 15.2% 13.5%, 5.4%, 0.2%, and
0.8% for the residual velocity prediction, respectively, and 11%, 10%, 8%, 0.3% and 0.7%185

for residual mass prediction, respectively. Generally, the trend demonstrates that the
predicted projectile residual velocity and mass decrease with increasing particle spacing,
and this trend is consistent with observations in other FEM simulations from the literature
[17]. In previous simulations performed in an FEM framework, the mesh sensitivity
has been mainly attributed the strain softening behavior which is widely observed in190

brittle materials [50, 51]. Such strain softening behavior leads to the strain and damage
localization in a reduced volume after the mesh is refined [19]. In the SPH framework,
the non-local effect is reduced with decreasing particle spacing, which leads to the strain
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and damage becoming more localized, resulting in less global damage and resistance of
the projectile penetration. This is evident in Figure 5 (a) where decreasing the particle195

spacing results in an increased residual velocity and mass of the projectile. A similar trend
is observed for the CSLH where a decrease in the CSLH constant results in an increased
residual velocity and mass of the projectile by fixing the particle spacing at 1.0 mm (see
Figure 5 (b)). Finally, a trade-off should be often sought between computational efficiency
and accuracy when choosing an appropriate particle spacing. For example, a twenty times200

increase in computational time is recorded when the particle spacing decreases from 1.2
mm to 0.4 mm (see Figure 5 (c)).
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(a)

(b)
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(c)

Figure 5: Sensitivity analysis of particle spacing and constant applied to smooth length and computation
cost analysis of particle spacing used in the SPH framework for the impact configuration of Figure 4 at
the projectile at an impact velocity of 901 m/s. (a) Sensitivity analysis on particle spacing with fixed
CSLH=1.2: 0.4 0.5, 0.8, 1.0, and 1.2 mm. (b) Sensitivity analysis of constant applied to smooth length
with fixed particle spacing of 0.4 mm=1.0, 1.2, 1.1, 1.3, 1.4, and 1.5. (c) Computational cost for varying
particle spacing with fixed CSLH=1.2. Experimental results are taken from Nemat e t al . 2002 [41] .

3.1.2 The effects of artificial viscosity

Known from literature [26, 28], the predicted results are effected when strong discon-
tinuities occur under the shock loading process. In SPH framework, artificial viscosity205

terms are introduced into the momentum and energy governing equations to prevent
large unphysical oscillations and numerical instability under shock loading conditions
[26]. Thus, the magnitude of artificial viscosity can affect the final simulation solution.
In the current study, the effect of artificial viscosity on the numerical solution stability
is investigated in the context of the plate impact simulations, with experimental data210

taken from Grady and Moody [22]. In the SPH framework, the artificial viscosity is
defined as two terms: (1) the quadratic artificial viscosity term, Q1, which is primarily
introduced to handle shocks generated at high Mach numbers [28], and (2) the linear
artificial viscosity term, Q2, which is used to handle low gradient regions in the SPH
simulations [28]. In this work, various combinations of Q1 and Q2 around the default215

LS-DYNA values (i.e., Q1 =1.5 and Q2 =0.06) are explored by fixing one value while
varying the other to examine their effects on the plate impact simulations. Figure 6 (a)
and (b) show the effects of Q1 and Q2 on the simulated shock profiles. It is observed that
the simulated particle velocity is more sensitive to the Q2 values. The Q1 values only
become dominant when the shock velocity becomes significantly large when compared to220
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(a)

(b)
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(c)

Figure 6: Sensitivity and computation cost analysis of artificial viscosity terms used in the SPH framework
for the impact configuration of Manuscript Figure 3 at the striking plate velocity of 1070 m/s. (a)
Sensitivity study on artificial viscosity Q1 parameters: 0.8, 1.0, 1.2, 1.5, 1.6, and 1.8 with fixing Q2 at
0.06 (default value in LS-DYNA). (b) Artificial viscosity Q2 parameters: 0.4, 0.8, 1.2, 1.5 with a fixed Q1
of 1.5 (default value in LS-DYNA). (c) Computation cost for varying Q2 with fixed Q1=1.5.Experimental
results are taken from Nemat et al . 2002 [41]

sound speed in material, where the current simulations have a peak velocity range from
800 m/s to 1300 m/s in comparison with the sound speed of 10740 m/s [52, 53]. It is also
noted that the computational time increase three times when changing Q2 from 0.06 to 2
(with Q1 fixed), and hence, a trade-off must be sought between computational efficiency
and accuracy (see Figure 6 (c)).225

A similar approach is used to examine the sensitivity of the artificial viscosity terms
for the ballistic impact simulations (see Figure 7a). It is observed that the results for
an impact velocity of 901 m/s have less than 4.4% of difference when varying Q1 from
0.4 to 1.5, where varying Q2 from 0.06 to 1.4 results in a difference up to 26.6% for
both residual velocity and mass prediction. This confirms that the effect of artificial230

viscosity on both residual velocity and mass is greater affected by the linear artificial
viscosity term Q2. For residual velocity, the simulated projectile residual velocity tends
to decrease as Q2 increases (black curve with triangle on it in Figure 7a), where Q2 of 0.06
gives the most accurate prediction when compared to the experimental result [41] with an
associated error of 0.5%. This trend is attributable to a enhancement of strength when Q2235

increases, leading to more energy been dissipated, and resulting in a decreasing residual
velocity [26]. For residual mass, the projectile residual mass increases with increasing
Q2, and this is consistent with the trend observed in Xiao et al. [24], where the residual
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mass tends to increase as Q2 increases. Overall, these observed trends demonstrate that
projectile erosion is a complicated process and the ability for the material to erode the240

projectile may be related with fragment morphology [54, 55], friction between projectile
and plate [54], and material strength [56, 57], and some of these link to energy dissipation.
Finally, the computational time increase four times when changing Q2 from 0.06 to 2 (with
Q1 fixed), and hence, a trade-off must be sought between computational efficiency and
accuracy (see Figure 7b).245
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(a)

(b)

Figure 7: Sensitivity and computation cost analysis of artificial viscosity terms used in the SPH framework
for the impact configuration of Figure 4 at the projectile at an impact velocity of 901 m/s. (a) Sensitivity
study on artificial viscosity Q1 parameters: 0.8, 1.0, 1.2, 1.5, 1.6, and 1.8 with fixing Q2 at 0.06 (default
value in LS-DYNA). (b) Artificial viscosity Q2 parameters: 0.4, 0.8, 1.2, 1.5 with a fixed Q1 of 1.5 (default
value in LS-DYNA). (c) Computation cost for varying Q2 with fixed Q1=1.5.Experimental results are
taken from Nemat et al . 2002 [41].
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3.2 Plate impact and ballistic impact simulations

The plate impact test is an experimental technique used to study the shock response
of ceramics and inform the values of the Hugoniot elastic limit (HEL), spallation strength,
and equation of state (EOS) parameters [45, 52, 58, 59]. Figure 2 shows the simulation
setup of a typical plate impact test, following the configuration provided in Grady and250

Moody [22], with dimensions varying in our simulations according to Grady and Moody
[22] in order to generate different shock velocities. In this study, a particle spacing of 0.4
mm is used in our simulations (e.g., 2015254 particles involved when impact velocity is
1070 m/s), where this value is chosen based on the results from sensitivity studies (see
Section 3.1.1 for details). Here, the responses of the alumina impactor and target are255

characterized using the same material constants of the JHB model as shown previously
in Table 1. The response of the lithium fluoride (LiF) block is defined using a Steinberg-
Guinan material model and Mie-Grüneisen EOS [15]. In the Steinberg-Guinan model,
the reference yield strength (As) and the shear modulus (Gs) of the lithium floride block
was chosen as As=0.36 GPa, and Gs=49 GPa at Ts = 300 K, Ps = 0 GPa, and ϵpls =260

0, where the subscript S is added because of repeated notations. The other material
constants of LiF and computational parameters are provided by Sukanta et al.[60], and
these are summarized in Table 2.

Table 2: Steinberg-Guinan material model constants for lithium fluoride window block in plate impact
simulation [60].

Model Parameters Notation Value

Density (kg/m3) ρl 3890
Bulk modulus (GPa) K l 265
Strength parameter (GPa) dG/dp 2.45
Strength parameter (GPa) dG/dT 0.0303
Melting temperature (K) Tml 1480

EOS Parameters

Gruneisen coefficient Gc 1
Linear Hugoniot slope coefficient S 1 0.005
Bulk speed of sound (m/s) C 1 5150

Figure 8 shows the comparisons between the experimental and simulated plate impact
results with striking plate velocities of 1070 m/s, 1551 m/s, 1573 m/s, and 1911 m/s.265

The plate impact experimental results are provided by Grady and Moody [22], and three
different geometric configurations of the experimental setup are investigated in this study
(configurations denoted in the caption of Figure 8). Figure 8 (a) labels the critical stages
of the typical material response during a plate impact experiment: (1-2) elastic response
up to HEL; (3-4) inelastic response up to the Hugoniot state, where the Hugoniot state270

describes the locus of all final shocked states (pressure–volume relationship) in a material
for various maximum pressure values [61]; and (4-5) the shock release undergoes unloading
where tensile stress are built up during the elastic unloading, leading to spalling of the
material [61]. From Figure 8 (a)-(d), it is observed that the model reasonably captures
the shock profile from Grady and Moody [22], with some differences noted in the stage275

(1-2) up to HEL and the plateau at peak velocity, where differences likely stem from the
numerically-introduced artificial viscosity in the SPH framework [27]. The experimental
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results are reasonably validated when compared with other such approaches made in the
literature [21], where it has been observed that impact velocity does not greatly affect
the HEL [62, 63], and increasing impact velocity results in greater amplitude and slope280

of the plastic front [62, 63].

Figure 8: Comparisons between experimental and simulated plate impact results : histories of the particle
velocity captured at Point B (see Figure 2) for the striking plate velocity = 1070 m/s (a), 1551m/s (b),
1573 m/s (c), and 1911 m/s (d) based on JHB model. The experimental data is taken from Grady and
Moody [22]. (a,b): alumina sample D: 76.2 mm, T: 10 mm, alumina impactor D: 87.5 mm, T: 5 mm,
lithium fluoride window block D: 50.8 mm, T: 25.4 mm, (c): alumina sample D: 76.2 mm, T: 4.762 mm,
alumina impactor D: 76.31 mm, T: 2.475 mm, lithium fluoride window block D: 38.1mm, T: 25.4 mm.
(d): alumina sample D: 76.3 mm, T: 2.478 mm, alumina impactor D: 76.2 mm, T: 2.477 mm, lithium
fluoride window block D: 38.1mm, T: 25.4 mm.

In addition, the implementation of the Johnson-Holmquist-Beissel model along with
the best combination of SPH parameters is also quantitatively and qualitatively matched
and compared with ballistic impact data from the literature [41]. Specifically, the quan-
titative data is in the analysis of the residual velocity and mass of the projectile after285

penetration, while the qualitative comparisons are performed by matching time resolved
X-ray images provided in Nemat-Nasser et al. [41]. Figure 3 shows the configuration
of the SPH-based model corresponding to the ballistic experiment performed by Nemat-
Nasser et al. [41] involving a tungsten alloy long rod impacting on a single alumina tile.
In this setup, the ceramic tile is made of 99.5% purity alumina and has dimensions of290

101.6 mm×101.6 mm×12.7 mm. The tungsten heavy alloy projectile has a diameter of
6.14 mm and a length of 20.86 mm (see the front view in Figure 3), and the impact veloc-
ities of the projectile are 901 and 904 m/s. The alumina tile is described using the same
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JHB model parameters provided in Table 1. The Johnson-Cook strength and damage
model constants of the projectile are provided in Table 5 [42] (See Appendix A).295

Table 3 summarizes the results of the simulated and experimental impact data, in-
cluding the residual velocities of projectile, the mass, and relative error between the sim-
ulation results and experimental measurements. The residual velocity of the projectile in
the simulation is taken at the resultant rear center node of the projectile. The residual
mass of the projectile in the simulation is calculated as the difference between the initial300

projectile mass and mass of the fully damaged projectile particles upon penetration. The
damaged projectile particles are simulated by setting (EROD=2) in the (*CONTROL_SPH*)
card of LS-DYNA. Here, the “smooth” option is selected in LS-DYNA PrePost to distin-
guish between the activated and deactivated particles. From Table 3, for both impacting
velocities, the model predictions show good agreements with the experimental results by305

Nemat-Nasser et al. [41], with relative errors within 6% for both residual velocities and
masses. The proposed model performs significantly better than those reported in the
literature for similar impact conditions [42], where most of them showed relative errors
of greater than 20% for the residual mass prediction [42]. For example, Bresciani et al.
[42] showed 33% error against experimental results with a cohesive model for the same310

impact case.

Table 3: Comparisons between experimental results from Nemat-Nasser et al. [41] and simulated results
in predicting the residual velocity and residual mass for the projectile impacting an alumina tile with
the implemented Johnson-Holmquist-Beissel model [20]

Experiments Impact velocity
(m/s)

Residual velocity
of the projectile
(m/s)

Residual mass of
the projectile (g)

Experiment 1 [41] 901 671 6.49
LS-DYNA 901 686 6.11
Error (%) 2.23 5.84

Experiment 2 [41] 904 682 6.42
LS-DYNA 904 689 6.1
Error (%) 1.02 4.98
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Furthermore, the nature of the mesh-less feature of the SPH method allows to simulate
severe deformations and fragmentation of both the projectile and ceramic tile without
defining element erosion [42, 47] and the use of cohesive elements [42]. In turn, these
advantages of the SPH method allow more accurate qualitative replication of the ballistic315

events (e.g., debris cloud [47] and back-face spallation [64]). Figure 9 (a) shows the sim-
ulated residual velocity vs. time curve for the impact condition of initial velocity of 901
m/s with times denoting selection of still frames from experiments by Nemat-Nasser et
al. [41](X-ray images) and models shown in: Figure 9(b) for 7 µs with a residual velocity
of 840 m/s, and Figure 9(c) for 15 µs with a residual velocity of 779 m/s. Overall, the320

computational framework implemented in this work can reasonably capture the damage
evolution process and failure modes when the projectile penetrates the ceramic target.
For example, deformation and erosion of the projectile, target spallation, material pulver-
ization into fine powder, and ejection of the debris cloud occurs from both front and rear
target surfaces. More simulated damage evolution images of ceramic tile and projectile325

are provided in Figure 15 of the Supplementary Material section.

Figure 9: Comparisons between the simulated results and time-resolved experimental flash X-ray images
[41] during a long rod impact at 901 m/s. Plot of the residual velocity of projectile vs. time with noted
time points identified for comparing simulation and experimental results of the tile and projectile are
compared at: (b) 7 µs and (c) 15 µs.

4. Multi-layer perceptron model and sensitivity analysis

In this section, a multi-layer perceptron (MLP) model has been developed to statis-
tically explore the non-linear relationships between inputs (e.g., shear modulus, material
strength, thickness, and impact velocity) and performance (i.e., residual velocity and330

mass of the projectile) in the situation of a projectile impacting a single alumina tile.
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Here, the residual mass and velocity are two common performance metrics used in litera-
ture [10, 42, 43, 65]. Other performance metrics such as dwell and penetration may also
be used, although the literature is much more limited [56, 66].

4.1 Architecture of the neural network335

The topology of the proposed MLP model (see Figure 10) is characterized by group-
ing neurons in the input layer (1), hidden layers (4), and output layer (1) following the
work by Parsazadeh et al.[67]. The input layer consists of the most influential variables
which are thought to have significant effects on the material performance during ballistic
impact events (e.g., tensile strength), and this will help gain a better understanding of340

the physical phenomenon during impact. Specifically, important characteristics such as
the thickness of the ceramic tile, impact velocity of the projectile, and material strength
parameters for both ceramic and projectile that may affect the ballistic performances
(i.e., residual mass and velocity) are included in the training of the MLP model. For
geometries (e.g., thickness of ceramic tile, impact velocity of projectile), these represent345

simple and standard considerations based on literature [66, 68, 69]. Additional geomet-
ric variables could be considered for the target (e.g., hexagonal geometries [70], spatial
arrangements [7], lattice structures [71, 72]) and projectile (e.g., nose and fin geometries
[73], sphere [74] vs. rod [42]) in future works. For mechanical properties (e.g., compressive
and tensile strength of ceramic, shear modulus), these represent simple and physically sig-350

nificant choices that have been studied previously in the literature [68, 69, 75]. Additional
properties could be considered (e.g., Poisson’s ratio, damage constants [19, 20]), includ-
ing those that are dependent on the FEM scheme of choice (e.g., fracture toughness in
discrete-element framework [76], defect populations and crack speeds in micro-mechanical
models [77]). Each input parameter has a range associated with them, which is surveyed355

from literature and demonstrates both the material variability in properties (e.g., max
intact strength) and typical configurations of ballistic impact experiments (e.g., impact
velocity) [78]. Figure 10 illustrates a complete list of the inputs and Table 4 summarizes
the references for the ranges. Four hidden layers with 32 neurons at each layer have
been determined through the trial-and-error approach given the accurate prediction and360

then assigned to the ML model [67]. In this study, the MLP model is trained using the
forward and backward propagation algorithms. The Relu function is adopted in the for-
ward algorithm as the activation function to output the non-linearity at each layer. The
Relu function is chosen because of the nature of its differentiation form which allows the
computation to overcome the vanishing gradient problem by keeping high computational365

efficiency [79]. In conjunction with forward propagation, the Bayesian regularization
back-propagation is used for computing the gradient in the weight space of the MLP
model with respect to a loss function [79]. Finally, the RMS-propagation algorithm is
then used to minimize the error by updating the weight and bias values of the MLP
model [80]. Relevant equations for the MLP were described previous in Appendix A.370
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Table 4: Input variables for MLP model associated with a range that is identified from the literature.

Model Parameters Notation Value Range

Ceramic thickness (mm) t 7 to 23 [17, 48]
Impact velocity (m/s) Vi 700 to 1000 [10]
Tensile strength of ceramic (GPa) T 0.2 to 0.6 [64, 81]
Maximum intact strength (GPa) σmax 3 to 12 [47, 82]
Shear modulus (GPa) Gp 90 to 140 [17, 64]
Initial mass of projectile (g) mi 7.51 to 35.1 [42]
Projectile length (mm) l 15 to 24.5 [42]
Projectile diameter (mm) Dp 6.14 to 15 [42]
Yield strength of projectile (GPa) A 1.2 to 1.6 [24, 83]
Rate dependent hardening coefficient of projectile (GPa) Bp 0.14 to 0.171 [24, 83]

4.2 Training, validation, and testing of the multi-layer perceptron neural
networks

Next, we train, validate and test the MLP model within the Python environment.
The sample size covers the ranges shown in Table 4. The required number of samples for
training, validation, and testing is determined through a trial-and-error approach until375

the prediction variation is less than 10% for convergence. The total required sample size
for training, validation, and testing started with 188 samples with bad prediction per-
formance for interesting ranges of input parameters. We gradually increased the sample
size to 320 and a good prediction performance was obtained because of the generalization
of sample size. The sample size of 320 is generated to train, validate and testing the380

MLP model using the validated SPH model by randomly varying any input parameters
while keeping others fixed within the defined ranges shown in Figure 10. This approach
is common in literature [38, 39, 84]. Then, the generated data are randomly assigned
into training, validation and testing sets by following the training-validation-testing split
method with a ratio of 80:10:10 [84]. The training-validation process uses the Mini-Batch385

RMS-propagation algorithm [85] to achieve the best training stability and generalization
performance with normalized inputs and output. The batch size is defined as 32 [86],
along with epochs of 200. A batch size of 32 is commonly recommended in literature
because it is practically efficient in computing the matrix-matrix products over matrix-
vector products [86, 87]. The RMS-propagation algorithm run with default values of390

learning rate = 0.001, gradient moving average decay factor (rho) = 0.9 [86]. The train-
ing and validation performance is evaluated using the mean square error loss function [86].
An early stopping criterion is also considered during the training process for stopping the
ML model overfitting. The model will stop for training if a bad degraded performance is
observed (mean sqaure error goes up) during the validation process [86]. Figure 11 shows395

the results of training, validation, and testing capabilities of the proposed MLP model.
Figure 11 (a) and (b) shows the mean squared error vs. epochs plot for training and val-
idating the MLP model, with a continuous and rapid decrease in the mean square error
(MSE) close to zero for the predicted residual velocity and residual mass, respectively.
Both of these plots indicate a well trained and validated MLP model has been achieved400

[38]. Figure 11 (c) and (d) are predicted values vs. actual values plots showing the com-
parable accuracy of the MLP model to SPH simulation in predicting the residual velocity
and mass of projectile based on testing-split data (experimental and numerical data). In
the figures, the center diagonal line indicates a perfect match between the predicted and
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true values, and the more points close to the diagonal line indicates a better prediction.405

From the figure, it is observed that the proposed MLP model can predict both residual
mass and residual velocity with less than 7% of absolute percentage error compared to the
SPH model (purple dots), with simulation results of experimental data shown in green
(see Figure 11 (c) and (d)). The computational time for MLP prediction is only 800 ms,
and this is compared to approximately of two hours for the SPH simulations. The ob-410

served outliers in the plot (e.g., two points in Figure 11 (c) and three points in Figure 11
(d)) suggests further detailed error analysis on data-noise and model architecture needs
to be performed to improve model prediction. Altogether, the MLP model in the current
work showcases a clear path that can be used to develop such efficient machine learning
models for generating accurate predictions for a specific loading case encompassing wide415

ranges of conditions.

Figure 11: Training, validation, and testing of the multi-layer perceptron model. (a) The mean squared
error plot shows the well-trained and validated multi-layer perceptron model for the residual velocity. The
model is trained and validated through train-validation-split datasets with a ratio of 80:10:10. (b) The
mean square error plot shows the well-trained and validated multi-layer perceptron model for residual
mass. (c) A prediction vs. actual plot for the residual velocity shows the capability of the model in
predicting the residual velocity of projectile based on the testing-split dataset. (d) A prediction vs.
actual plot for the residual mass shows the capability of the model in predicting the residual mass of
projectile based on the testing-split dataset (the diagonal line represents an excellent match).
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4.3 Sensitivity analysis using multi-layer perceptron

Next, parametric studies are carried out to investigate the effects of mechanical proper-
ties (e.g., strength and shear modulus) and geometries (e.g., tile thickness) of the alumina
ceramic tile on its ballistic performance by using the well-trained MLP model. Typical420

parameters, including impact velocity of the projectile, thickness, tensile strength [88],
maximum intact strength [56, 57], and shear modulus [88] of the alumina ceramic tile
are selected to be analysed in this work because of their noted influences on ballistic
performance [56, 69].

Shown in Figure 12 are the results of the parametric studies on residual velocity425

(a) and residual mass (b) of projectile by varying the corresponding parameters over
the assigned range (see Table 5). Note that the inputs are normalized on the x-axis
based on the average of values for the ease of comparison. Data points are plotted
as averages with standard deviations from five simulations using the MLP model for
given parameters of interest. Trends in Figure 12 (a) demonstrates that the residual430

velocity decreases with the increase of thickness, maximum intact strength, and tensile
strength of the ceramic tile, with a higher sensitivity for the intact maximum strength and
thickness parameters. These trends and sensitivities are consistent with the experimental
results from literature (i.e, tensile strength [68, 75], intact maximum strength [69], and
thickness [88]). For example, the intact maximum strength (i.e., compressive strength)435

often plays an important role in the ballistic performance of ceramics because of the
compressive and shock waves generated failure during impact [61]. Similarly, Figure 12
(b) shows the sensitivity of residual mass to thickness, impact velocity, maximum intact
strength, shear modulus, and tensile strength. Residual mass is metric of projectile defeat
through erosion [89]. From the plot, a clear trend of decreasing residual mass is seen for440

an increasing impact velocity and thickness, which is consistent with the literature (i.e.
impact velocity [66] and thickness [66]. Note that a similar trend for the tensile strength is
observed for the residual velocity (see Figure 12 (a)) and residual mass (see Figure 12 (a)),
and further investigations are needed to identify the roles of possible physical phenomena
(e.g., the commonly denoted fracturing from the reflected tensile waves at the free surface445

of the ceramic tile [84]) and numerical effects. Regardless, the residual mass appears
to be less sensitive to tensile strength with no previous literature available to confirm
this observation. Finally, the shear modulus exhibits non-linear decreasing-increasing
trends for both the residual velocity (Figure 12 (a)) and mass (Figure 12 (b)), which
is either: (1) associated with the interplay between impact physics (e.g., dwell [11, 12],450

wave propagation [61], and damage accumulation [49, 89, 90]); (2) the constitutive model
construction (i.e., see Equation (11) in the JHB material model). Further experimental
data and explicit failure modeling of impact phenomena [91–93] are needed to unravel
individual effects of these input parameters.
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Figure 12: Sensitivity analysis for studying the effects of mechanical properties (tensile strength, max-
imum intact strength, and shear modulus) of the alumina ceramic tile and geometries (thickness and
impact velocity) on the: (a) residual velocity and (b) mass of the projectile by using the multilayer
perceptron model.
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5. Conclusions455

This study has developed a combined computational framework based on the smoothed
particle hydrodynamics (SPH) and machine learning algorithms for investigating impact
responses of an alumina ceramic, in which the Johnson-Holmquist-Beissel (JHB) ma-
terial model was implemented into the LS-DYNA through a user-defined subroutine to
account for high pressure, high strain rate, and damaged behavior during plate impact and460

ballistic loading. The implementation of the JHB model was verified by comparing the
equivalent stress-pressure plots through a single element simulation test. The JHB model
material constants were inferred and calibrated based on data from the literature. The
developed computational framework demonstrated a good agreement between the numer-
ical and experimental results, both quantitatively (e.g., particle velocity signal, residual465

velocity, and residual mass of the projectile) and qualitatively (e.g., debris, spall, cone,
mushrooming deformation, and erosion of the projectile). A comprehensive sensitivity
analysis on the SPH numerical settings was then conducted and revealed that the change
of particle spacing could result in 12% and 17.2% change in residual velocity and mass of
projectile, respectively, but with a six times increase in computational time. Lastly, the470

developed neural network model as an alternative to SPH model demonstrated that an
accelerated prediction and optimization of the performance characteristic for ballistic im-
pact case with reasonable accuracy. Overall, the proposed combined SPH-MLP approach
and the associated analysis provide an alternative path for high throughput identifica-
tion and insights into the property and performance relationships, which is applicable to475

structural-scale design of ceramic-based protection systems.
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Supplementary Material

This section provides the detailed descriptions of Johnson-Holmquist-Beissel model
(JHB) used in this work, material constants for Johnson-Cook material model, and a
flow chart used for defining the implemented computer code for the present study (see490

Appendix A). In addition, it also provides the results (see Appendix B), are including:
(1) a single element verification used fo checking the accuracy of the implementation of
the JHB material model into finite elemnt code in LS-DYNA. (2) a damage evolution
image for both the alumina ceramic tile and the projectile under ballistic impact velocity
of 901 m/s (see Figure 15).495

Appendix A: Numerical methods

In this work, a finite element model has been implemented in LS-DYNA software
within the framework of smoothed particle hydrodynamics (SPH) [24, 26] by adopting
the Johnson-Holmquist-Beissel (JHB) constitutive model for ceramics, the Johnson-Cook
(JC) material model, and Gruneisen equation of state for a tungsten long rod projec-500

tile. LS-DYNA software has been chosen in the present study as it is better suited for
large-scale dynamic simulations with consideration of inertia effects for dynamic impact
problems [94]. Even though LS-DYNA has a large variety of material models (e.g., ex-
plicit dynamic models) and contact algorithms (e.g., eroding contacts and tied surfaces
contacts) [94], the JHB model is currently not available in the LS-DYNA software and505

has to be written through a user-defined sub-routine. Hence, the proper implementation
and verification of the subroutine is essential before carrying out any impact simulations.
A flow chart used for defining the implemented computer code for the present study is
included (see Figure 13). Lastly, this section presents the structure of an artificial neural
network tool based on multilayer perceptron (MLP) method for predicting predicting and510

investigating the effect of mechanical properties and geometries on material performance.

Johnson-Holmquist-Beissel model for alumina ceramic

The Johnson-Holmquist-Beissel model (JHB) [20] has been selected to describe the
mechanical responses of the alumina ceramic in this work. The JHB model consists of
three main components: (1) a strength material model, (2) a damage model, and (3) an515

equation of state model that considers the phase change of materials [20, 21]. When com-
pared to the previous JH models [18, 19], the differences of the JHB model are [20]: (1)
a piece-wise strength-pressure and damage-pressure envelope is included, (2) the pres-
sure and strain-rate independent response beyond the Hugoniot elastic limit (HEL) is
included, and (3) phase change effects are considered. Experimental data for alumina520
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ceramics reported in the literature [82, 95–100] indicated that the material strength soft-
ening formulation in the JHB model is more representative of experiments when compared
to the JH1 and JH2 models by demonstrating a linear response at low pressures, non-
linear response at higher pressures up to HEL, and pressure and strain-rate independent
response when the pressure level drove the material over the its HEL (see Figure 1(b)).525

All these improvements over the previous JH models are important when modelling shock
and impact conditions, as we do in this study. A brief summary of the JHB model is
presented below, and a detailed explanation of parameterization is described later in Sec-
tion 3. The associated parameters and units of the JHB model are shown in Table 1, and
this will be revisited later.530

*JHB strength model
In the JHB model, the material strength is dependent on hydrostatic pressure, equiv-

alent strain rate, and the accumulation of damage in the material. In the JHB strength
model, the strength of the material is represented by a linear curve up to a pressure value
of P1 (intact strength constant), where the corresponding strength is σ1. Prior to P1, the535

equivalent material strength is σ = 0 at P = 0. After the P1, the intact strength of the
material is expressed in von Mises equivalent stress as [20]:

σeq,i = σ1 + (σmax − σ1) [1− e−α1(p−p1)] (1)

α1 =
σ1

(σmax − σ1)(P1 + T )
(2)

where σmax is the maximum intact strength of the material (i.e., compressive) and T
is the hydrostatic tensile strength. Similarly, the strength of the failed material (when
D=1) is expressed as [20]:

σeq,f = σ2 +
(
σmaxf − σ2

)
[1− e−α2(p−p2)] (3)

α2 =
σ1

P2(σmaxf − σ2)
(4)

Considering the strain rate effect on strength, the strength of the material is expressed
as [20]:

σeq = σeq,0[1 + c̃ln

(
ε̇

ε̇0

)
] (5)

where c̃ is the strain rate effect coefficient, ε̇ is the equivalent strain rate, and ε̇0 = 1 s−1

is the reference strain rate.
* JHB damage model540

The accumulation of damage in the material is represented by a form that is similar
to the Johnson-Cook fracture model [20]:

D =
∑

∆εp/εpf (6)

where ∆εp is the incremental equivalent plastic strain during a computational cycle, and
εpf = f(p) is the plastic strain at fracture and is defined as [20]:

εpf = D1 (P
∗ + T ∗)n (7)

where both D1 and n are material constants. P ∗ is the dimensionless pressure and
P ∗ = P/σmax. T ∗ is the dimensionless hydrostatic pressure and T ∗ = T/σmax. The
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εpf increases as P ∗ increases, and the material does not undergo any plastic strain at
P ∗ = −T ∗.

*JHB pressure-volume relationship with bulking545

It is worth noting that the phase change effect of alumina ceramic is not considered
in this work given the lack of proof in the literature of such phenomenon in alumina [45]
(see Section 3 for details). Without considering the phase change effect, the hydrostatic
pressure begins to accumulate before failure and is defined as [20]:

P = k1µ+ k2µ
2 + k3µ

3 (8)

µ =
ρ

ρ0
− 1 (9)

where k1 (bulk modulus), k2, and k3 are material constants. ρ and ρ0 is the current
density and reference density, respectively. For tensile stress states (µ < 0), Equation (8)
is replaced by P = k1µ.

The model [20] also considers the bulking effect when the material fails (D = 1) [20].
The effect of bulking results in an increase in the pressure and volume [101]. The bulking
effect is represented by having an incremental pressure ∆P adding to Equation (8) [20]:

P = k1µ+ k2µ
2 + k3µ

3 +∆P (10)

The bulking-induced pressure increment is determined from energy considerations. When
the material fails, the material strength decreases, and this corresponds to a decrease in
the deviatoric stresses, further resulting in a decrease in the incremental internal elastic
energy. The loss of incremental internal elastic energy is converted to potential hydro-
static energy by incrementally increasing ∆P . The general expression for the elastic
internal energy is [20]:

U =
σ2

6G
(11)

where G is the shear modulus of elasticity.
The incremental energy loss is computed as [20]:

∆U = Ui − Uf (12)

where Ui is the internal energy of the intact material before failure and Uf is the internal550

energy of the material when it is failed. The conversion between the pressure and elastic
internal energy is [20]:

∆Pµf +∆P 2/ (2k1) = β∆U (13)

where µf is the value of µ when the material is failed, and β is the fraction (0 ≤ β ≤ 1)
of the internal (deviator) energy loss converted to potential hydrostatic energy. The
first term

(
∆Pµf

)
is the approximate potential energy for µ > 0, and the second term(

∆P 2/ (2k1)
)
is the corresponding potential energy for µ < 0. The ∆P is given by [20]:

∆P = −k1µf +

√(
k1µf

)2
+ 2βk1∆U (14)

The bulking pressure is computed only for failure under compression
(
µf > 0

)
. Note that

∆P = 0 for β = 0 and that ∆P increases as ∆U increases and/or µf decreases.
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Johnson-Cook material model for tungsten alloy projectile555

In this study, the Johnson-Cook (JC) plasticity model is selected to define the mate-
rial behavior of the tungsten alloy projectile [42] (see Figure 3), and the corresponding
material constants are provided in Table 5. The JC model reasonably captures the ma-
terial response when subjected to high strain rate loading [42, 47]. In addition, the JC
model is commonly used in ballistic impact simulations due to its uncoupled approach in
calibrating material parameters [17, 102]. In this section, a brief summary of the model
is provided. *Johnson-Cook strength model The flow stress-equivalent plastic strain re-
lation of the JC model is given as [17]:

σy = (A+B(εp)n)(1 + C ln ε̇∗p)(1− TJC
m) (15)

where σy is the yield stress, εp is the equivalent plastic strain, ε̇p is the equivalent plastic
strain rate, and A, B, and C are the material constants. The ε̇∗p and TJC are obtained
from:

ε̇∗p =
ε̇p
ε̇0

(16)

TJC =
T − T0

Tmelt − T0

(17)

where ε̇0 is the reference strain rate, T is the current temperature, Tmelt is the melting
temperature, and T0 is the reference temperature.

Multi-layer perceptron neural networks

The multilayer perceptron (MLP) approach is a useful tool in solving non-linear clas-
sification and regression problems [103], and it has been employed in this work to develop
statistical models for impact performance optimization. The MLPs in this study are
trained using forward and backward propagation algorithms. In the forward algorithm,
a linear activation function is used to map the weighted inputs to the output of each
neuron, and each layer in the MLP is described mathematically as [104, 105]:

a
(l)
i = f

 n∑
j=1

a
(l)
i θ

(l)
ij + θ

(l)
0,j

 , 1 ≤ l ≤ L (18)

where the a
(l)
i is the activation of the ıth neuron in the lth layer, θ

(l)
ij represents the weight

that is used to send the input to the ith neuron, from the jth neuron in layer l, and θ
(l)
0,j560

represents the bias in lth layer.
The Relu function is chosen for nonlinear activation for this work, which is described

as [104, 105]:
f(x) = max(0, x) (19)

For the back-propagation training, all the weights and thresholds are updated using
the root mean squared propagation (RMS-prop) algorithm [104, 105]:

θi := θi +∆θi (20)

∆θi = −η
∂J(θ)

∂θi
(21)
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where η is the learning rate factor, and ∂J(θ)
∂θi

is the partial derivatives of the cost function
with respect to weights. The partial derivatives of the cost function with respect to all
of the parameters that feed into the current layer and the output layer δ(L − 1) are
computed as [104, 105]:

∂J(θ)

∂θ
(l)
ij

=
(
δ(l+1)

)T

a(l) (22)

∂J(θ)

∂θ
(L−1)
ij

=
(
δ(L)

)T

a(L−1) (23)

The error term δ for the output layer and the hidden layers are computed as [104, 105]:

δ(L) =
1

m

(
y − a(L)

)
f ′
(
a(L)

)
(24)

δ
(l)
j = f ′

(
a(l)

) n∑
i=1

δ
(l+1)
i θ

(l)
ij (25)

Finally, the overall performance of the MLP is measured by the mean squared error
(MSE) which is expressed by [104, 105]:

J(θ) =
1

2m∗

m∗∑
i=1

(
hθ

(
x(i)

)
− y(i)

)2

(26)

where m∗ is the number of training samples, hθ(x
(i)) is the vector of predicted values

based on the training samples, and y(i) labels the vector of actual values.565
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Table 5: Johnson-Cook material constants of the tungsten alloy long rod projectile that is taken from
Bresciani et al. [42].

Model Parameters Notation Value

Density (kg/m3) ρp 17600
Shear modulus (GPa) Gp 152
Elastic modulus (GPa) E p 314
Quasi-static tensile yield strength (GPa) A 1.6
Hardening exponent (GPa) Bp 0.1765
Thermal softening exponent C p 0.016
Strain rate sensitivity coefficient N 0.12
Temperature exponent M 1
Melting temperature (K) Tmelt 3695
Room temperature (K) T 0 291
Heat capacity (J/Kg*K) cp 384

Damage Parameters

Damage coefficient 1 D∗
1 0

Damage coefficient 2 D∗
2 1

Damage coefficient 3 D∗
3 -1.5

Damage coefficient 4 D∗
4 0.042

Damage coefficient 5 D∗
5 0

Equation of State Parameters

Gruneisen coefficient G2 1.67
Linear Hugoniot slope coefficient S 1 1.237
Bulk speed of sound (m/s) C 1 4030
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Appendix B: Results

Single element verification
The JHB material model has been implemented into the finite element code of LS-

DYNA through a user-defined subroutine. To demonstrate the accuracy of the code, a
single-element model has been developed and utilized to verify the implementation of570

the JHB material model in LS-DYNA following the approach outlined by Johnson et al.
[20], where the loading history of the element interrogates high deviatoric and hydro-
static pressures in this verification. The material constants used in the single element
simulations are based on the material constants provided in the original paper by Johnson
et al. [20] for aluminum nitride. The material constants for the alumina studied here575

are validated in Section 3 for plate and ballistic impact cases that exhibit the high strain
rate and high-pressure behavior. The single-element model is established in LS-DYNA
with the dimension of 1 m × 1 m × 1 m, as shown in Figure 14 (a). The confined
boundary conditions are employed to constrain the element to displace at four sides and
bottom (fixed), and thus, the element is only allowed to displace vertically along the z-580

direction. Next, the element is subjected to external load via displacement control on the
top surface. For each simulation, the element is compressed to a strain of nearly 14%, then
unloaded to allow recovery to its initial length. The verification of the subroutine codes
is achieved by comparing the equivalent stress-pressure curve provided in Johnson et al.
[20]. Figure 14 (b) shows the equivalent stress vs. pressure plot of the single element under585

loading and unloading conditions in comparison with the response reported in Johnson
et al. [20]. The main critical stages of the material under compressive loading followed
by tensile loading are identified on the plot with inserted numbers (Figure 14 (b)): (1-3)
the material undergoes elastic deformation up to yielding followed by plastic deformation
with damage accumulation; (3-4) the material failure lead to an abrupt increase in the590

pressure due to bulking, where the bulking phenomenon as a consequence of the decrease
in axial stress due to the decrease in the deviatoric stress (i.e., degradation in material
strength); and (4-8) the material undergoes phase transformation and reversal of loading.
Overall, it is observed that the resultant curves generated from the implemented code
in this work is in reasonable agreement with the one reported in the literature [20], as595

demonstrated in Figure 14(b), with slight deviations occurring at the end of the first
and third stages. These deviations are likely caused by the differences in software and
numerical algorithms between the studies.
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Figure 14: Verification of the implemented user-defined sub-routine of the Johnson-Holmquist-Beissel
model through a single element simulation under uniaxial loading-unloading condition, where the element
is constrained from displacing of sides and bottom with an external prescribed displacement acts on the
top surface. (a) Single element model configuration.(b) Predicted equivalent stress vs. pressure plot
compared to the numerical result published by Johnson et al. [20].

Figure 15 shows the damage evolution images for both the alumina ceramic tile and the
projectile under ballistic impact velocity of 901 m/s. In Figure 15, the conical damages600

starts to form on the front surface of the ceramic as it is impacted by projectile at 8
µs. Next, the fractured cone starts to develop in the ceramic from the contact surface
and propagates towards the back surface between 8 µs and 30 µs, and the completed
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perforation and erosion of projectile is observed at 72 µs.

Figure 15: Damage evolution in alumina ceramic tile undergoing penetration of tungsten long rod pro-
jectile at time of 1 µs, 8 µs, 30 µs, and 72 µs under ballistic impact.
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