LOCALLY PIECEWISE AFFINE FUNCTIONS

by
Samer Adeeb

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science
in

Mathematics

Department of Mathematical and Statistical Sciences
University of Alberta
(C) Samer Adeeb, 2014

Abstract

Piecewise affine functions as defined in [1] and denoted by the set S are those functions in $C\left(\mathbb{R}^{m}\right)$ that agree with a finite number of affine functions. In this thesis, we extend their study by introducing the set of locally piecewise affine functions denoted by $S_{l p}$. Unlike piecewise affine functions, a locally piecewise affine function could possibly agree with an infinite number of affine functions on \mathbb{R}^{m}. We discuss the relationship between the two sets under the umbrella of order theory. In order to define the set of locally piecewise affine functions we first define piecewise affine functions on arbitrary subsets of \mathbb{R}^{m} and discuss the conditions that guarantee the natural extension of a piecewise affine function on arbitrary sets to a piecewise affine function on the whole space. We then define the set of locally piecewise affine functions and discuss how the properties of piecewise affine functions that have been studied previously [1] can be extended to the new set.

The literature of vector lattices contains the study of the equivalence or lack thereof of three main definitions for order convergence. However, this problem has not been studied in $C\left(\mathbb{R}^{m}\right)$. In this thesis we utilize the results by Anderson and Mathews [2] to study this problem. In doing so, we investigate if $C\left(\mathbb{R}^{m}\right)$ possesses the countable sup property which allows us to show that for bounded nets, two main definitions of order convergence in the literature coincide.

We also study S and $S_{l p}$ as sublattices of $C\left(\mathbb{R}^{m}\right)$ and we show that both S and subsequently $S_{l p}$ are order dense minorizing sublattices in $C\left(\mathbb{R}^{m}\right)$. We then study the relationship betwen S and $S_{l p}$ by introducing the definition of locally finite sets of functions. This definition allows us to show that any locally finite set of functions in S has a supremum and an infimum both of which are in $S_{l p}$. In addition, we show that any function in $S_{l p}$ can be expressed as the difference of the supremums of two locally finite sequences of functions in S.

The Stone-Weierstrass theorem can be directly applied to show that piecewise affine functions can uniformly approximate continuous functions on compact sets. However, piecewise affine functions cannot be used to uniformly ap-

proximate functions in $C\left(\mathbb{R}^{m}\right)$. In this thesis, we show that the set of locally piecewise affine functions can be used to uniformly approximate continuous functions in $C\left(\mathbb{R}^{m}\right)$.

Acknowledgements

I would like to express my sincere gratitude to the continuous support provided by my supervisor Dr. Vladimir Troitsky. Dr. Troitsky's meticulous attention to detail, his patience, and his mentorship have made the production of this work possible. I have learnt an immense deal about Mathematics and many other aspects of life from him.

My sincere thank you also goes to the rest of my supervisory committee: Dr. Foivos Xanthos and Dr. Adi Tcaciuc. I greatly appreicate their constructive comments that helped develop this work. I would like to also acknowledge the quality of the courses and professors of the Masters of Science program in Mathematics at the University of Alberta.

I wish to also express my profound gratitude to Dr. Alexander Litvak who taught me the first Mathematics course in my journey to study Mathematics. I would like to thank him for teaching me for the first time that defining the question is more important than answering it.

Finally, I would like to thank my wife Lindsey Westover for her continuous support and for patiently agreeing to proofread anything and everything that I write.

Table of Contents

1 Introduction 1
1.1 Thesis Objective and Outline 1
1.2 Order Structure 2
1.3 Vector Lattices 5
2 Piecewise Affine Functions 10
2.1 One Dimensional Piecewise Affine Functions 10
2.2 Multivariate Piecewise Affine Functions 16
3 Locally Piecewise Affine Functions 25
3.1 Motivation and Definitions 25
3.2 Properties of $S_{l p}$. 28
4 Order Convergence and Order Structures for Piecewise Affine Functions 36
4.1 Order Convergence 36
4.2 Order Structure for S and $S_{l p}$ 42
5 Conclusion 55
Bibliography 57

Chapter 1

Introduction

1.1 Thesis Objective and Outline

The concepts of ordered vector spaces and lattices have been shown to be important to many applications in engineering and economics. In particular, multivariate piecewise affine functions in the context of order vector spaces have been shown to be important tools in economic theory [3]. Aliprantis and Tourky [1] present a comprehensive study of the space of multivariate piecewise affine functions in $C\left(\mathbb{R}^{m}\right)$ in which they show that the subspace of piecewise affine function is equivalent to the sublattice generated by the affine functions. Their work, however, is limited to multivariate piecewise affine functions with finite number of components. While multivariate piecewise affine functions with finite number of components can uniformly approximate any function in $C(K)$ where K is a compact subset of \mathbb{R}^{m}, however, such functions cannot be used to uniformly approximate many functions in $C\left(\mathbb{R}^{m}\right)$.

The objective of this thesis is to extend the work by Aliprantis and Tourky [1] to define a new class of multivariate piecewise affine functions with infinite components that agree with the multivariate piecewise affine functions defined by Aliprantis and Tourky [1] on compact sets. We call these functions locally piecewise affine functions. We then study the relationship between the two classes of functions in the context of order convergence.

In the first chapter of this thesis, we present the basic structure of partially ordered sets followed by the structure of ordered vector spaces and lattices. We only present the tools needed for our analysis of the space $C\left(\mathbb{R}^{m}\right)$.

In the second chapter of this thesis, we introduce the sets of one dimensional and multivariate piecewise affine functions as presented in Chapter 7 of the book by Aliprantis and Tourky [1].

In the third chapter of this thesis, we introduce the set of locally piecewise affine functions. In addition we present sufficient conditions on a subset $U \subset$ \mathbb{R}^{m} that guarantees that a piecewise affine function on U can be naturally extended to a piecewise affine function in $C\left(\mathbb{R}^{m}\right)$. This result is useful on its own and in the study of the relationship between the piecewise affine functions and the locally piecewise affine functions. We then discuss the properties of the locally piecewise affine functions and show that in most cases, they are similar to the properties of piecewise affine functions.

In the fourth chapter of this thesis, we study how piecewise affine functions and locally piecewise affine functions approximate functions in $C\left(\mathbb{R}^{m}\right)$. In doing so, we first present the various definitions of order convergence in partially ordered sets and vector lattices and study their agreement or lack theroff on the lattice $C\left(\mathbb{R}^{m}\right)$. We then show our original result that two definitions of order convergence agree on $C\left(\mathbb{R}^{m}\right)$. We then present three different definitions for "order dense" subspaces and study under these definitions how piecewise affine functions and locally piecewise affine function approximate $C\left(\mathbb{R}^{m}\right)$. We then present a new class of sets that we call: "locally finite sets of functions". Using this definition we show that a locally piecewise affine function can be written as the difference between the supremums of two locally finite sequences of piecewise affine functions. Finally, we present our original result that locally piecewise affine functions uniformly approximate functions in $C\left(\mathbb{R}^{m}\right)$.

1.2 Order Structure

In this section we present the traditional definitions of order structure and ordered sets. We follow a convention similar to that presented in Aliprantis and Tourky [1].

Definition 1.2.1: Partial Order Relation: Let S be a set. A relation " $\leq "$ is called a partial order if it satisfies the following three properties:

1. Reflexivity: $\forall x \in S: x \leq x$.
2. Antisymmetry: $\forall x, y \in S: x \leq y$ and $y \leq x \Rightarrow x=y$
3. Transitivity: $\forall x, y, z \in S: x \leq y$ and $y \leq z \Rightarrow x \leq z$

In this case, S is called a partially ordered set. If $\forall x, y \in S: x \leq y$ or $y \leq x$, then the relationship is called a total order and S is called a totally ordered set. We write

- $x \geq y$ if $y \leq x$
- $x<y$ if $x \leq y$ and $x \neq y$
- $y>x$ if $x<y$

Definition 1.2.2: : Directed Set: A partially (or totally) ordered set Γ is called an upward-directed set if $\forall \alpha, \beta \in \Gamma: \exists \gamma \in \Gamma$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$. Similarly, Γ is called a downward-directed set if $\forall \alpha, \beta \in \Gamma: \exists \gamma \in \Gamma$ such that $\alpha \geq \gamma$ and $\beta \geq \gamma$. For example: \mathbb{N} with the natural order is an (upward- and downward-) directed set. Directed sets, can be used to generalize the concept of sequences as follows:

Definition 1.2.3: Net: Let Γ be an upward-directed set, X be another set. A function $x: \Gamma \rightarrow X$ is called a net and is written: $\left\{x_{\alpha}\right\}_{\alpha \in \Gamma}$ or just $\left\{x_{\alpha}\right\}$. If X is endowed with a partial (or total) order, then a net is increasing if $\forall \alpha, \beta, \gamma \in \Gamma$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$ then $x_{\alpha} \leq x_{\gamma}$ and $x_{\beta} \leq x_{\gamma}$. We write $x_{\alpha} \uparrow$ to indicate an increasing net. Similarly, a net is decreasing if $\forall \alpha, \beta, \gamma \in \Gamma$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$ then $x_{\alpha} \geq x_{\gamma}$ and $x_{\beta} \geq x_{\gamma}$. We write $x_{\alpha} \downarrow$ to indicate a decreasing net. For example, a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ is a net $x: \mathbb{N} \rightarrow \mathbb{R}$.

Definition 1.2.4: Supremum and Infimum: Let S be a partially ordered set. Let $A \subset S$. If $\exists a \in S$ such that $\forall x \in A: x \leq a$, then a is an upper bound of A. If $a \in A$ then, a is also the greatest element of A. Simiarly, if $\exists b \in S$ such that $\forall x \in A: x \geq b$, then b is a lower bound of A. If $b \in A$ then, b is also the least element of A. Let $B \subset S$. If the set of upper bounds of B has a least element, then this least element is called the supremum (or the least upper bound) of B. If it exists, we write $\sup B$ to indicate the supremum of B. Similarly, if the set of lower bounds of B has a greatest element, then this greatest element is called the infimum (or the greatest lower bound) of B. If it exists, we write $\inf B$ to indicate the infimum of B.

If $x, y \in S$, we write $x \vee y$ to indicate $\sup \{x, y\}$ and $x \wedge y$ to indicate $\inf \{x, y\}$ if they exist.

If an increasing net $\left\{x_{\alpha}\right\}$ has a supremum a, then we write: $x_{\alpha} \uparrow a$. Similarly, if a decreasing net $\left\{x_{\alpha}\right\}$ has an infimum b, then we write: $x_{\alpha} \downarrow b$.

Definition 1.2.5: Lattice: A partially ordered set S is called a lattice if $\forall x, y \in S: x \vee y$ and $x \wedge y$ exist. If $A \subset S$, we define $A^{\wedge}=\left\{x_{1} \wedge x_{2} \wedge \cdots \wedge\right.$ $\left.x_{n} \mid n \in \mathbb{N}, \forall i \leq n: x_{i} \in A\right\}, A^{\vee}=\left\{x_{1} \vee x_{2} \vee \cdots \vee x_{n} \mid n \in \mathbb{N}, \forall i \leq n: x_{i} \in A\right\}$. It should be noted that $A^{\vee \wedge} \neq A^{\wedge \vee}$. For example, consider the lattice $S=\{a, b, x, y, z, e, f\}$ shown in Figure 1.1. A straight arrow between two elements indicate that they are related and define the order. For example, $a<f, a$ is not related to b, and $a \vee b=f$. Let $A=\{a, b, d, e\}$. Then: $A^{\vee \wedge}=\{a, b, c, d, e, f, g, h, z\}$ while $A^{\wedge \vee}=\{a, b, d, e, f, g, h, z\}$.

Figure 1.1: $S=\{a, b, c, d, e, f, g, h, z\}$ is a lattice, $A=\{a, b, d, e\} . A^{\vee \wedge} \neq A^{\wedge \vee}$

Definition 1.2.6: Order Completeness: A partially ordered set S is called order complete, if every non-empty bounded above subset of S has a supremum. This is equivalent to the statement that every non-empty bounded below subset of S has an infimum. To see this consider an order complete partially ordered set S. Let $T \subset S$ be a bounded below set. Consider the set T^{\downarrow} of lower bounds of T, namely $T^{\downarrow}=\{t \mid t \leq T\}$. T^{\downarrow} is bounded above, therefore, it has a supremum, say a. Therefore, a is the least element in the set of upper bounds of T^{\downarrow} which is denoted by $T^{\downarrow \uparrow}$. But $T \subset T^{\downarrow \uparrow}$ therefore, $a \leq T$. Therefore, $a \in T^{\downarrow}$ is the greatest element. Therefore, $\inf T=a$.

In this thesis we are dealing with piecewise affine functions as subsets of the space of continuous functions $C\left(\mathbb{R}^{n}\right)$ which is NOT order complete. To see this consider the example of the sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty} \subset C(\mathbb{R})$ defined as:

$$
f_{n}(t)= \begin{cases}0, & t \leq 0 \\ \sqrt[n]{t}, & 0 \leq t \leq 1 \\ 1, & 1 \leq t\end{cases}
$$

Clearly, f_{n} is increasing, however, on the positive part of $\mathbb{R}: f_{n}$ is bounded above by 1 while it is bounded above by 0 on the negative part of \mathbb{R}. There is no continuous function that would be the least upper bound of f_{n}.

1.3 Vector Lattices

In this section we introduce the structure of vector lattices along with some important vector lattices operations and properties.

Definition 1.3.1: Ordered Vector Space: A vector space E is said to be an ordered vector space if it is a partially (or totally) ordered set such that

- $\forall x, y, z \in E: x \leq y \Rightarrow x+z \leq y+z$.
- $\forall x, y \in E$ and $\forall \lambda \in \mathbb{R}^{+}: x \leq y \Rightarrow \lambda x \leq \lambda y$.

Definition 1.3.2: Vector Lattice and its Subspaces: An ordered vector space E that is also a lattice is called a vector lattice. $A \subset E$ is a lattice subspace if it is a vector subspace and a lattice under the order induced from $E . A$ is a sublattice if it is closed under the lattice operations.

Definition 1.3.3: Archimedean Vector Lattice: A vector lattice E is Archimedean if $\forall x \in E$ then: the set $\{n x \mid n \in \mathbb{N}\}$ is bounded above implies $x \leq 0$. An equivalent definition is that E is Archimedean if $\forall x \in E^{+}$: if $\exists y \in E^{+}$such that $\forall n \in \mathbb{N}: n x \leq y$ then $x=0$. Roughly speaking the Archimedean property is that of having no infinitely large or infinitely small elements.

Proposition 1.3.4: Let E be a vector lattice, then we have the following identities $\forall x, y, z \in E, \forall \lambda \in \mathbb{R}^{+}$:

1. $-(x \wedge y)=(-x) \vee(-y)$ and $-(x \vee y)=(-x) \wedge(-y)$.
2. $x+y=x \vee y+x \wedge y$.
3. $x+y \wedge z=(x+y) \wedge(x+z)$ and $x+y \vee z=(x+y) \vee(x+z)$.
4. $\lambda(x \vee y)=(\lambda x) \vee(\lambda y)$ and $\lambda(x \wedge y)=(\lambda x) \wedge(\lambda y)$.
5. $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

Proof. The first identity can be shown as follows: $x \wedge y \leq x \Rightarrow-x \leq-(x \wedge y)$. Similarly, $x \wedge y \leq y \Rightarrow-y \leq-(x \wedge y)$. Therefore, $-(x \wedge y)$ is an upper bound for both $-x$ and $-y$. Therefore, $(-x) \vee(-y) \leq-(x \wedge y)$.

To show the opposite inequality: $-x \leq(-x) \vee(-y) \Rightarrow-((-x) \vee(-y)) \leq x$ and $-y \leq(-x) \vee(-y) \Rightarrow-((-x) \vee(-y)) \leq y$. Therefore, $-((-x) \vee(-y))$ is a lower bound for both x and y. Therefore, $-((-x) \vee(-y)) \leq x \wedge y \Rightarrow$ $-(x \wedge y) \leq(-x) \vee(-y)$. Therefore, $-(x \wedge y)=(-x) \vee(-y)$. The identity $-(x \vee y)=(-x) \wedge(-y)$ can be shown similarly.

The third identity can be shown as follows: $y \wedge z \leq y \Rightarrow x+y \wedge z \leq x+y$ and $y \wedge z \leq z \Rightarrow x+y \wedge z \leq x+z$. Therefore, $x+y \wedge z \leq(x+y) \wedge(x+z)$. For the opposite inequality: $(x+y) \wedge(x+z) \leq x+y \Rightarrow-x+(x+y) \wedge(x+z) \leq y$ and $(x+y) \wedge(x+z) \leq x+z \Rightarrow-x+(x+y) \wedge(x+z) \leq z$. Therefore, $-x+(x+y) \wedge(x+z) \leq y \wedge z \Rightarrow(x+y) \wedge(x+z) \leq x+y \wedge z$. Therefore, $x+y \wedge z=(x+y) \wedge(x+z)$. The identity $x+y \vee z=(x+y) \vee(x+z)$ can be shown similarly.

The second identity can be shown using both the first and the third as follows: Using the third identity we have: $-x+(x \wedge y)=(-x+x) \wedge$ $(-x+y)=0 \wedge(y-x)$. Using the first and then the third identity we have: $y-(x \vee y)=y+(-x) \wedge(-y)=(y-x) \wedge(y-y)=(y-x) \wedge 0$. Therefore, $-x+(x \wedge y)=y-(x \vee y)$. Therefore, $x+y=x \vee y+x \wedge y$.

The fourth identity is straightforward: $\lambda(x \wedge y) \leq \lambda x$ and $\lambda(x \wedge y) \leq \lambda y$. Therefore, $\lambda(x \wedge y) \leq(\lambda x) \wedge(\lambda y)$. For the opposite inequality we have: $(\lambda x) \wedge(\lambda y) \leq \lambda x \Rightarrow \frac{1}{\lambda}((\lambda x) \wedge(\lambda y)) \leq x$ and similarly, $\frac{1}{\lambda}((\lambda x) \wedge(\lambda y)) \leq y$. Therefore, $\frac{1}{\lambda}((\lambda x) \wedge(\lambda y)) \leq x \wedge y \Rightarrow(\lambda x) \wedge(\lambda y) \leq \lambda(x \wedge y)$. Therefore, $\lambda(x \wedge y)=(\lambda x) \wedge(\lambda y)$. The identity $\lambda(x \vee y)=(\lambda x) \vee(\lambda y)$ can be shown similarly.

For the fifth identity, one inequality is true for every lattice as follows:
$x \wedge y \leq x$ and $x \wedge y \leq y \leq y \vee z$. Similarly, $x \wedge z \leq x$ and $x \wedge z \leq$ $z \leq y \vee z$. Therefore, $(x \wedge y) \vee(x \wedge z) \leq x \wedge(y \vee z)$. The opposite inequality is true only for vector lattices: Using the second identity above $y=x \vee y+x \wedge y-x \leq x \vee y \vee z+(x \wedge y) \vee(x \wedge z)-x$ and $z=x \vee z+x \wedge z-x \leq$ $x \vee y \vee z+(x \wedge y) \vee(x \wedge z)-x$. Therefore, $y \vee z \leq x \vee y \vee z+(x \wedge y) \vee(x \wedge z)-x \Rightarrow$ $x+y \vee z-x \vee y \vee z \leq(x \wedge y) \vee(x \wedge z) \Rightarrow x \wedge(y \vee z) \leq(x \wedge y) \vee(x \wedge z)$. Therefore, $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$. The other identity $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ can be shown similarly.

Proposition 1.3.5: Let E be a vector lattice, $A \subset E$, and $x \in E$. Therefore,

1. $x+\sup A=\sup \{x+a \mid a \in A\}$ and $x+\inf A=\inf \{x+a \mid a \in A\}$.
2. $x \wedge \sup A=\sup \{x \wedge a \mid a \in A\}$ and $x \vee \inf A=\inf \{x \vee a \mid a \in A\}$.

In the first identity, the existence of the supremum or infimum on either side, guarantees the existence of the supremum or infimum on the opposite side. In the second identity, the existence of the supremum or infimum on the left side guarantees the existence of the supremum or infimum on the right side.

Proof. For the first identity, assume $a_{0}=\sup A$ exists. Therefore, $\forall x \in$ $E, \forall a \in A: a \leq a_{0} \Rightarrow x+a \leq x+a_{0}$. Therefore, $x+a_{0}$ is an upper bound for $\{x+a \mid a \in A\}$. To show that it is the least upper bound, assume t to be another bound, i.e., $\forall a \in A: t \geq a+x$. Therefore, $t-x \geq a \Rightarrow$ $t-x \geq a_{0} \Rightarrow t \geq x+a_{0}$. Therefore, $x+a_{0}=\sup \{x+a \mid a \in A\}$. Now assume $a_{1}=\sup \{x+a \mid a \in A\}$ exists. Therefore, $\forall x \in E, \forall a \in A: x+a \leq a_{1} \Rightarrow$ $a \leq a_{1}-x$. Therefore, $a_{1}-x$ is an upper bound for A. To show that it is the least upper bound, let t to be another bound, i.e., $\forall a \in A: t \geq a$. Therefore, $t+x \geq a+x \Rightarrow t+x \geq a_{1} \Rightarrow t \geq a_{1}-x$. Therefore, $x+\sup A=a_{1}$. The same proof applies to the identity: $x+\inf A=\inf \{x+a \mid a \in A\}$.

The second identity can be shown similarly. Assume $a_{0}=\sup A$ exists. Then, $\forall x \in E, \forall a \in A: x \wedge a \leq x \wedge a_{0}$. Therefore, $x \wedge a_{0}$ is an upper bound for $\{x \wedge a \mid a \in A\}$. To show that it is the least upper bound, let t be another upper bound. I.e., $\forall a \in A: t \geq x \wedge a=x+a-x \vee a \geq-x \vee a_{0}+x+a \Rightarrow$ $t+x \vee a_{0}-x \geq a \Rightarrow t+x \vee a_{0}-x \geq a_{0} \Rightarrow t \geq x+a_{0}-x \vee a_{0}=x \wedge a_{0}$. Therefore, $x \wedge a_{0}=\sup \{x \wedge a \mid a \in A\}$. It is worth mentioning that the existence of $\sup \{x \wedge a \mid a \in A\}$ does not guarantee the existence of $\sup A$.

For example, considering \mathbb{R}^{2} with its conventional order. Let $x=(1,0)$ and $A=\{(0, n) \mid n \in \mathbb{N} \backslash\{0\}\}$. Then, $\sup \{x \wedge a \mid a \in A\}=(0,0)$ while $\sup A$ does not exist. The same proof and argument apply to the identity: $x \vee \inf A=\inf \{x \vee a \mid a \in A\}$.

Proposition 1.3.6: Let E be a vector lattice, $A \subset E$ is a subspace. Then, $A^{\vee \wedge}=A^{\wedge \vee} . A^{\vee \wedge}$ is the sublattice generated by A, namely the smallest sublattice containing A.

Proof. Clearly, $A \subset A^{\vee}$. Therefore, $A^{\wedge} \subset A^{\vee \wedge}$. Let $y \in A^{\wedge \vee}$. Therefore, $\exists m \in \mathbb{N}$ and $\forall i \leq m: \exists n_{i} \in \mathbb{N}$ such that

$$
\begin{aligned}
y= & \left(a_{11} \wedge a_{12} \wedge \cdots \wedge a_{1 n_{1}}\right) \vee\left(a_{21} \wedge a_{22} \wedge \cdots \wedge a_{2 n_{2}}\right) \vee \cdots \\
& \vee\left(a_{m 1} \wedge a_{m 2} \wedge \cdots \wedge a_{m n_{m}}\right) \\
= & \bigvee_{i=1}^{m}\left(\bigwedge_{j=1}^{n_{i}} a_{i j}\right)
\end{aligned}
$$

The identities in Proposition 1.3 .4 can be used to show that

$$
\begin{aligned}
y= & \left(a_{11} \vee a_{21} \vee \cdots \vee a_{m 1}\right) \wedge\left(a_{11} \vee a_{21} \vee \cdots \vee a_{m 2}\right) \wedge \cdots \wedge\left(a_{1 n_{1}} \vee a_{2 n_{2}} \vee \cdots\right. \\
& \left.\vee a_{m n_{m}}\right) \\
= & \bigwedge_{t_{1}=1}^{n_{1}} \bigwedge_{t_{2}=1}^{n_{2}} \cdots \bigwedge_{t_{m}=1}^{n_{m}}\left(a_{1 t_{1}} \vee a_{2 t_{2}} \vee \cdots \vee a_{m t_{m}}\right)
\end{aligned}
$$

Therefore, $y \in A^{\vee \wedge}$ and $A^{\wedge \vee} \subset A^{\vee \wedge}$ Similarly, $A^{\vee \wedge} \subset A^{\wedge \vee}$. Therefore, $A^{\vee \wedge}=A^{\wedge \vee}$.

Let $B \subset E$ be a sublattice such that $A \subset B$. Clearly, $\forall y \in A^{\vee \wedge}: y \in B$. Therefore, $A^{\vee \wedge} \subset B$. Therefore, $A^{\vee \wedge}$ is the smallest sublattice containing A.

Definition 1.3.7: Positive Part, Negative Part and Modulus: Let E be a vector lattice and $x \in E$. Then, the positive part, negative part, and modulus of x respectively are: $x^{+}=x \vee 0, x^{-}=(-x) \vee 0$, and $|x|=$ $x \vee(-x)$. Proposition 1.3.4 and Definition 1.3.7 can be used to show
that the operations $\forall x, y \in E: x \vee y, x \wedge y,|x|, x^{+}, x^{-}$can be expressed via each other. Therefore, it is enough to show that one operation is well defined to show that an ordered vector space is a lattice. Notice as well that $x=x+0=x \vee 0+x \wedge 0=x^{+}-(-x) \vee 0=x^{+}-x^{-}$.

The vector space $C\left(\mathbb{R}^{m}\right)$ is an ordered set with the partial order defined as $\forall f, g \in C\left(\mathbb{R}^{m}\right): f \leq g \Leftrightarrow \forall x \in \mathbb{R}^{m}: f(x) \leq g(x)$. Clearly, this order satisfies the properties of ordered vector spaces. In addition, $C\left(\mathbb{R}^{m}\right)$ is a lattice since the function:

$$
g(x)=\max \{f(x), 0\}
$$

satisfies $g=f \vee 0$ and $g \in C\left(\mathbb{R}^{m}\right)$. In addition, $C\left(\mathbb{R}^{m}\right)$ is Archimedean since if $h, k \in C\left(\mathbb{R}^{m}\right)^{+}$are such that $\forall n \in \mathbb{N}: n h \leq k$, then $\forall x \in \mathbb{R}^{m}$: $n h(x) \leq k(x)$. Since $h(x)$ and $k(x)$ are positive real numbers, then $h(x)=0$ therefore, $h \equiv 0$.

Chapter 2

Piecewise Affine Functions

This chapter is based on Chapter 7 of the book by Aliprantis and Tourky [1].

2.1 One Dimensional Piecewise Affine Functions

Definition 2.1.1: Affine Functions: $f: \mathbb{R} \rightarrow \mathbb{R}$ is called an affine function if $\exists b, m \in \mathbb{R}$ such that $\forall t \in \mathbb{R}: f(t)=m t+b$.

Definition 2.1.2: Piecewise Affine Functions: $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a piecewise affine function if $\exists\left\{a_{i}\right\}_{i=0}^{n} \subset \mathbb{R},\left\{\left(m_{i}, b_{i}\right)\right\}_{i=0}^{n+1} \subset \mathbb{R}^{2}$, with $n \in \mathbb{N}$, and $\forall 0<i \leq n: a_{i-1}<a_{i}$ such that:

$$
f(t)= \begin{cases}m_{0} t+b_{0}, & t \leq a_{0} \\ m_{i} t+b_{i}, & a_{i-1} \leq t \leq a_{i} \\ m_{n+1} t+b_{n+1}, & a_{n} \leq t\end{cases}
$$

The sets of parameters $\left\{a_{i}\right\}_{i=0}^{n}$ and $\left\{\left(m_{i}, b_{i}\right)\right\}_{i=0}^{n+1}$ are called the representation of f while the functions $\left\{f_{i}(t)=m_{i} t+b_{i}\right\}_{i=0}^{n+1}$ are called the components of f.

Similarly, the function $f:\left[a_{0}, a_{n}\right] \rightarrow \mathbb{R}$ is called a piecewise affine function if $\exists\left\{a_{i}\right\}_{i=0}^{n} \subset \mathbb{R},\left\{\left(m_{i}, b_{i}\right)\right\}_{i=1}^{n} \subset \mathbb{R}^{2}$, with $n \in \mathbb{N}$, and $\forall 0<i \leq n: a_{i-1}<a_{i}$
such that:

$$
f(t)=m_{i} t+b_{i}, \quad a_{i-1} \leq t \leq a_{i+1}
$$

Remarks:

- The way picewise affine functions were defined ensures their continuity.
- The spaces of piecewise affine functions defined as:

$$
\begin{aligned}
S_{[a, b]} & =\{f:[a, b] \rightarrow \mathbb{R} \mid f \text { is a piecewise affine function }\} \\
S & =\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { is a piecewise affine function }\}
\end{aligned}
$$

are linear vector spaces and $S_{[a, b]} \subset C[a, b]$ where $C[a, b]$ is the space of continuous functions on the interval $[a, b]$. Similarly, $S \subset C(\mathbb{R})$.

- S and $S_{[a, b]}$ are vector lattices. This can directly deduced from the fact that if we have $f_{1}(t)=m_{1} t+b_{1}$ and $f_{2}(t)=m_{2} t+b_{2}$ defined on the interval $\left[a_{i-1}, a_{i}\right]$, then $f_{1} \wedge f_{2}$ is a piecewise affine function defined on the same interval.
- Let $V=\{g: \mathbb{R} \rightarrow \mathbb{R} \mid g \text { is an affine function }\}^{\wedge \vee}$ and $V_{[a, b]}=\{g:[a, b] \rightarrow$ $\mathbb{R} \mid g$ is an affine function $\}^{\wedge \vee}$. Clearly, $V \subset S$ and $V_{[a, b]} \subset S_{[a, b]}$. We will later show that $V=S$ and $V_{[a, b]}=S_{[a, b]}$.
- When it is clear from the context, we will use the symbol S to represent both S and $S_{[a, b]}$ and similarly will be the case for the symbol V.

Lemma 2.1.3: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a piecewise affine function, then $\forall a \leq b \in \mathbb{R}$ the restriction $\left.f\right|_{[a, b]}$ is a piecewise affine function. Also, if $f:[a, b] \rightarrow \mathbb{R}$ is a piecewise affine function, then it can be extended (in many ways) to a piecewise affine function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Proof. This is straightforward. See Lemma 3.1.3.
Lemma 2.1.4: Real functions on compact sets can be uniformly approximated with piecewise affine functions. Namely, S is uniformly dense in $C[a, b]$.

Proof. Since the unit function $f \equiv 1$ and the function $g(t)=t$ which separates points in $[a, b]$ are both elements of S, then by the lattice version of the Stone-Weierstrass approximation theorem (see Theorem 11.3 page 88 in [4]), S is uniformly dense $C[a, b]$.

We can also show this directly using the uniform continuity of functions in $C[a, b]$. Let $f \in C[a, b]$. Fix ε, then $\exists \delta$ such that $\forall x \in[a, b], \forall y \in B(x, \delta)$ we have $f(y) \in B(f(x), \varepsilon)$. Divide the interval $[a, b]$ into n subintervals with end points $a=a_{0}<a_{1}<\cdots<a_{n}=b$ such that $\forall 0<i \leq n: a_{i}-a_{i-1}<\delta$. Let $f_{i}(t)=f\left(a_{i-1}\right)+\frac{f\left(a_{i}\right)-f\left(a_{i-1}\right)}{a_{i}-a_{i-1}}\left(t-a_{i-1}\right)$. Let

$$
g(t)=f_{i}(t) \quad a_{i-1}<t \leq a_{i}
$$

Clearly, $g \in S$. Let $t \in\left[a_{i-1}, a_{i}\right]$, therefore, $|g(t)-f(t)|=\left|f_{i}(t)-f(t)\right| \leq$ $\left|f_{i}(t)-f_{i}\left(a_{i-1}\right)\right|+\left|f_{i}\left(a_{i-1}\right)-f(t)\right| \leq\left|f_{i}\left(a_{i}\right)-f_{i}\left(a_{i-1}\right)\right|+\left|f_{i}\left(a_{i-1}\right)-f(t)\right| \leq$ $\varepsilon+\varepsilon=2 \varepsilon$. Therefore, $\sup _{t}|g(t)-f(t)| \leq 2 \varepsilon$.

Lemma 2.1.5: $S_{[a, b]} \subset V_{[a, b]}$. Moreover, $\forall f \in S_{[a, b]}: f(t)=c+\sum_{i=1}^{n} c_{i}\left(f_{i}(t) \vee\right.$ $0)=c+\sum_{i=1}^{n} c_{i}\left(t-a_{i-1}\right)^{+}$where $\forall i \leq n: c_{i}, c \in \mathbb{R}, a=a_{0}<a_{1}<\cdots<$ $a_{n}=b$, and $f_{i}(t)=t-a_{i-1} \in V$.

Proof. Fix $f \in S_{[a, b]}$ and let $\left\{a_{i}\right\}_{i=0}^{n}$ and $\left\{\left(m_{i}, b_{i}\right)\right\}_{i=1}^{n}$ be the representation of f as in Definition 2.1.2. Set $c=b_{1}+m_{1} a_{0}, c_{1}=m_{1}, \forall i>1: c_{i}=m_{i}-m_{i-1}$. Let

$$
g(t)=c+\sum_{i=1}^{n} c_{i}\left(t-a_{i-1}\right)^{+}
$$

Note that by the continuity of f we have: $m_{i} a_{i}+b_{i}=m_{i+1} a_{i}+b_{i+1}$. Then: For $a_{0} \leq t \leq a_{1}$:

$$
g(t)=b_{1}+m_{1} a_{0}+m_{1}\left(t-a_{0}\right)=b_{1}+m_{1} t=f(t)
$$

For $a_{i-1} \leq t \leq a_{i}$:

$$
\begin{aligned}
g(t) & =b_{1}+m_{1} a_{0}+\sum_{j=1}^{j=i} c_{j}\left(t-a_{j-1}\right)^{+} \\
& =b_{1}+m_{1} t+\sum_{\substack{j=2 \\
j=i}}\left(m_{j}-m_{j-1}\right)\left(t-a_{j-1}\right) \\
& =b_{1}+m_{i} t+\sum_{j=2}^{j=i}\left(m_{j}-m_{j-1}\right)\left(-a_{j-1}\right) \\
& =b_{1}+m_{i} t+\sum_{j=2}^{j=i}\left(b_{j}-b_{j-1}\right) \\
& =b_{i}+m_{i} t=f(t)
\end{aligned}
$$

Therefore, $g \equiv f$. This shows that $f \in S_{[a, b]}$ has the representation $f(t)=$ $c+\sum_{i=1}^{n} c_{i}\left(t-a_{i-1}\right)^{+}$. Therefore, f can be written as the finite sum of sups of functions in $V_{[a, b]}$, i.e., $f \in V_{[a, b]}$. Therefore, $S_{[a, b]} \subset V_{[a, b]}$.

Lemma 2.1.6: $S \subset V$. Moreover, $\forall f \in S: f(t)=b_{0}+m_{0} t+\sum_{i=1}^{n+1} c_{i}\left(f_{i}(t) \vee\right.$ $0)=b_{0}+m_{0} t+\sum_{i=1}^{n+1} c_{i}\left(t-a_{i-1}\right)^{+}$where $\forall 0<i \leq n+1: c_{i}, b_{0}, m_{0} \in \mathbb{R}$, $a_{0}<a_{1}<\cdots a_{n} \in \mathbb{R}$, and $f_{i}(t)=t-a_{i-1} \in V$.

Proof. Fix $f \in S$ and let $\left\{a_{i}\right\}_{i=0}^{n}$ and $\left\{\left(m_{i}, b_{i}\right)\right\}_{i=0}^{n+1}$ be its representation as in Definition 2.1.2. Set $\forall i \geq 1: c_{i}=m_{i}-m_{i-1}$. Let

$$
g(t)=b_{0}+m_{0} t+\sum_{i=1}^{n+1} c_{i}\left(t-a_{i-1}\right)^{+}
$$

Note that by the continuity of f we have: $m_{i} a_{i}+b_{i}=m_{i+1} a_{i}+b_{i+1}$. Then:
For $t \leq a_{0}$:

$$
g(t)=b_{0}+m_{0} t=f(t)
$$

For $a_{i-1} \leq t \leq a_{i}$:

$$
\begin{aligned}
g(t) & =b_{0}+m_{0} t+\sum_{j=1}^{j=i} c_{j}\left(t-a_{j-1}\right)^{+} \\
& =b_{0}+m_{0} t+\sum_{\substack{j=1 \\
j=i}}\left(m_{j}-m_{j-1}\right)\left(t-a_{j-1}\right) \\
& =b_{0}+m_{i} t+\sum_{j=1}^{j=i}\left(m_{j}-m_{j-1}\right)\left(-a_{j-1}\right) \\
& =b_{0}+m_{i} t+\sum_{j=1}^{j=i}\left(b_{j}-b_{j-1}\right) \\
& =b_{i}+m_{i} t=f(t)
\end{aligned}
$$

For $a_{n} \leq t$:

$$
\begin{aligned}
g(t) & =b_{0}+m_{0} t+\sum_{j=1}^{j=n+1} c_{j}\left(t-a_{j-1}\right)^{+} \\
& =b_{0}+m_{0} t+\sum_{j=1}^{j=n+1}\left(m_{j}-m_{j-1}\right)\left(t-a_{j-1}\right) \\
& =b_{0}+m_{n+1} t+\sum_{j=1}^{j=n+1}\left(m_{j}-m_{j-1}\right)\left(-a_{j-1}\right) \\
& =b_{0}+m_{n+1} t+\sum_{j=1}^{j=n+1}\left(b_{j}-b_{j-1}\right) \\
& =b_{n+1}+m_{n+1} t=f(t)
\end{aligned}
$$

Therefore, $g \equiv f$. This shows that $f \in S$ has the representation $f(t)=$ $b_{0}+m_{0} t+\sum_{i=1}^{n+1} c_{i}\left(t-a_{i-1}\right)^{+}$. Therefore, f can be written as the finite sum of sups of functions in V, i.e., $f \in V$. Therefore, $S \subset V$.

Corollary 2.1.7: $S_{[a, b]}=V[a, b]=\operatorname{span}\left\{1, t,(t-\alpha)^{+} \mid \alpha \in[a, b]\right\} \subset C[a, b]$ and $S=V=\operatorname{span}\left\{1, t,(t-\alpha)^{+} \mid \alpha \in \mathbb{R}\right\} \subset C(\mathbb{R})$.

Proof. This is a direct consequence of Lemma 2.1.5 and Lemma 2.1.6.
Lemma 2.1.8: Let $f \in S_{[a, b]}$ and $m=\frac{f(b)-f(a)}{b-a}$. Then $\exists i \leq n, t_{0} \in\left[a_{i-1}, a_{i}\right]$,
and $m_{i} \geq m$ such that $f\left(t_{0}\right)=f(a)+m\left(t_{0}-a\right)$.

Proof. Assume not, then $\forall m_{i} \geq m, \forall t \in\left[a_{i-1}, a_{i}\right]: f(t) \neq f(a)+m(t-a)$.
For $t \in\left[a_{0}, a_{1}\right]$: Since $f(a)=f(a)+m(a-a)$, then $m_{1}<m$ and $\forall t \in$ $\left(a_{0}, a_{1}\right]: f(t)=b_{1}+m_{1} a+m_{1}(t-a)<f(a)+m(t-a)$ and in particular $f\left(a_{1}\right)<f(a)+m\left(a_{1}-a\right)$.

For $t \in\left[a_{1}, a_{2}\right]:$

$$
\begin{align*}
f(t) & =b_{2}+m_{2} t=b_{2}+m_{2}\left(t-a_{1}\right)+m_{2}\left(a_{1}\right) \tag{2.1}\\
& =m_{2}\left(t-a_{1}\right)+f\left(a_{1}\right)
\end{align*}
$$

If $m_{2}<m$ then: $f(t)=m_{2}\left(t-a_{1}\right)+f\left(a_{1}\right)<m\left(t-a_{1}\right)+f(a)+m\left(a_{1}-\right.$ $a)=m(t-a)+f(a)$. And if $m_{2} \geq m$, then by assumption and using the intermediate value theorem, $f(t)<f(a)+m(t-a)$ and in particular $f\left(a_{2}\right)<f(a)+m\left(a_{2}-a\right)$.

Proceeding inductively, $f(b)<f(a)+m(b-a)$ which is a contradiction.

Corollary 2.1.9: Let $f \in S_{[a, b]}$. Let $m=\frac{f(b)-f(a)}{b-a}$. Then $\exists i \leq n$ and m_{i} such that $f(a) \geq m_{i} a+b_{i}$ and $f(b) \leq m_{i} b+b_{i}$.

Proof. Let i and $t_{0} \in\left[a_{i-1}, a_{i}\right]$ be as in Lemma 2.1.8, then:

$$
f\left(t_{0}\right)=f(a)+m\left(t_{0}-a\right)=m_{i}\left(t_{0}\right)+b_{i}
$$

Since $f(a)=f(b)-m(b-a)$, we also have:

$$
f\left(t_{0}\right)=f(b)+m\left(t_{0}-b\right)=m_{i}\left(t_{0}\right)+b_{i}
$$

Since $t_{0} \geq a$ and $m \leq m_{i}$ we have:

$$
\begin{aligned}
f(a)=f\left(t_{0}\right)-m\left(t_{0}-a\right) & \geq f\left(t_{0}\right)-m_{i}\left(t_{0}-a\right) \\
& \geq m_{i}\left(t_{0}\right)+b_{i}-m_{i}\left(t_{0}-a\right) \\
& \geq b_{i}+m_{i} a
\end{aligned}
$$

And since Since $t_{0} \leq b$ and $m \leq m_{i}$ we have:

$$
\begin{aligned}
f(b)=f\left(t_{0}\right)-m\left(t_{0}-b\right) & \leq f\left(t_{0}\right)-m_{i}\left(t_{0}-b\right) \\
& \leq m_{i}\left(t_{0}\right)+b_{i}-m_{i}\left(t_{0}-b\right) \\
& \leq b_{i}+m_{i} b
\end{aligned}
$$

2.2 Multivariate Piecewise Affine Functions

In this section we introduct the multivariate affine and piecewise affine functions. We follow a convention similar to Section 2.1.

Definition 2.2.1: Affine Functions: $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called an affine function if $\exists v \in \mathbb{R}^{m}$ and $b \in \mathbb{R}$ such that $\forall x \in \mathbb{R}^{m}: f(x)=v \cdot x+b$. We will denote $A=\{f \mid f$ is an affine function $\}$ and $V=A^{\vee \wedge} . V \subset C\left(\mathbb{R}^{m}\right)$ where $C\left(\mathbb{R}^{m}\right)$ is the space of continuous functions defined on \mathbb{R}^{m}.

Lemma 2.2.2: Let $f, g \in A . f \equiv g$ if and only if there is a nonempty open subset $U \subset \mathbb{R}^{m}$ such that $\left.f\right|_{U}=\left.g\right|_{U}$.

Proof. Assume $f(x)=v_{f} \cdot x+b_{f}$ and $g(x)=v_{g} \cdot x+b_{g}$. Let U be nonempty and open subset of \mathbb{R}^{m} and $\left.f\right|_{U}=\left.g\right|_{U}$. Then, $\exists \delta>0$ and $x_{0} \in U$ such that $\forall y \in B\left(x_{0}, \delta\right): f(y)=g(y) \Rightarrow\left(v_{f}-v_{g}\right) \cdot y+\left(b_{f}-b_{g}\right)=0$. If $v_{f}=v_{g}$, then $b_{f}=b_{g}$ and $f \equiv g$. Otherwise, let $y_{1}=x_{0}+\frac{\delta\left(v_{f}-v_{g}\right)}{2\left\|v_{f}-v_{g}\right\|}$. Since $y_{1} \in B\left(x_{0}, \delta\right)$ we have: $\left(v_{f}-v_{g}\right) \cdot x_{0}+b_{f}-b_{g}+\left(v_{f}-v_{g}\right) \cdot \frac{\delta\left(v_{f}-v_{g}\right)}{2\left\|v_{f}-v_{g}\right\|}=0$ Therefore: $\left(v_{f}-v_{g}\right) \cdot \frac{\delta\left(v_{f}-v_{g}\right)}{2\left\|v_{f}-v_{g}\right\|}=0 \Rightarrow\left\|v_{f}-v_{g}\right\|=0 \Rightarrow v_{f}=v_{g} \rightarrow b_{f}=b_{g} \Rightarrow f \equiv g$.

Multivariate piecewise affine functions can be defined in a manner similar to one dimensional piecewise affine functions. Here we will introduce this definition after which we will show that the definition ensures the continuity of the piecewise affine functions. Then, we will introduce a theorem that shows that piecewise affine functions can be defined as continous functions that agree with a finite number of affine functions.

Definition 2.2.3: Piecewise Affine Functions: $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called a piecewise affine function if $\exists n \in \mathbb{N}$, distinct affine functions $\left\{f_{i}\right\}_{i=1}^{n} \subset A$, and subsets $\left\{S_{i} \subset \mathbb{R}^{m}\right\}_{i=1}^{n}$ such that:

1. $\forall i: \operatorname{Int}\left(S_{i}\right) \neq \emptyset$ and $S_{i}=\overline{\operatorname{Int}\left(S_{i}\right)}$
2. $\forall i \neq j: \operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right)=\emptyset$
3. $\bigcup_{i=1}^{n} S_{i}=\mathbb{R}^{m}$
4. $\left.\left.f\right|_{S_{i}} \equiv f_{i}\right|_{S_{i}}$

The sets $\left\{f_{i}\right\}_{i=1}^{n},\left\{S_{i}\right\}_{i=1}^{n},\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{n}$ are called the components, regions, and characteristic pairs of f, respectively. We denote

$$
S=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} \mid f \text { is a piecewise affine function }\right\}
$$

Lemma 2.2.4: $S \subset C\left(\mathbb{R}^{m}\right)$.

Proof. We will argue by contradiction. Let $f \in S$ but is not continuous, then $\exists x_{n} \xrightarrow{n \rightarrow \infty} x$ while $f\left(x_{n}\right) \nrightarrow f(x)$. Passing to a subsequence, $\exists \varepsilon>0$ such that $\forall n:\left|f\left(x_{n}\right)-f(x)\right|>\varepsilon$. Since the number of regions is finite, there is a further subsequence y_{n} such that $\forall n: y_{n} \subset S_{i}$ for some i. Since S_{i} is closed, $y_{n} \rightarrow y=x \in S_{i}$ and $\varepsilon<\left|f\left(y_{n}\right)-f(x)\right|$. However, $\left.f\right|_{S_{i}}=\left.f_{i}\right|_{S_{i}}$ and f_{i} is a continous function by definition which is a contradiction. Therefore, f is continuous.

Lemma 2.2.5: Let $f \in C\left(\mathbb{R}^{m}\right)$ such that $\exists n \in \mathbb{N}$ and a subset $\left\{f_{i}\right\}_{i=1}^{n} \subset A$ such that $\forall x \in \mathbb{R}^{m}: \exists i \leq n$ with $f(x)=f_{i}(x)$. Then, $\forall V \subset \mathbb{R}^{m}$ that is open and nonempty, $\exists W \subset V$ that is open and nonempty such that $\forall y \in W$: $f(y)=f_{j}(y)$ for some j.

Proof. Assume V as in the statement of the lemma. We will argue by contradiction, i.e., $\exists x_{1} \in V$ such that $f\left(x_{1}\right) \neq f_{1}\left(x_{1}\right)$. Pick $\delta=\frac{\left|f\left(x_{1}\right)-f_{1}\left(x_{1}\right)\right|}{3}$. Therefore, $B\left(f\left(x_{1}\right), \delta\right) \cap B\left(f_{1}\left(x_{1}\right), \delta\right)=\emptyset$. Let $V_{1}=f^{-1}\left(B\left(f\left(x_{1}\right), \delta\right)\right) \cap$ $f_{1}^{-1}\left(B\left(f_{1}\left(x_{1}\right), \delta\right)\right) \cap V$. Since f, f_{1} are continuous then V_{1} is open. In addition, $x_{1} \in V_{1}$ so, V_{1} is not empty and $\forall x \in V_{1}: f(x) \neq f_{1}(x)$. By repeating the argument, $\exists x_{2} \in V_{1}$ such that $f\left(x_{2}\right) \neq f_{2}\left(x_{2}\right)$ and we can similarly construct $V_{2} \subset V_{1} \subset V$ that is open and not empty and $\forall x \in V_{2}: f(x) \neq f_{2}\left(x_{2}\right)$.

Therefore, by induction $\exists V_{n} \subset V$ such that $\forall i, \forall x \in V_{n}: f(x) \neq f_{i}(x)$ which is a contradiction.

Alternatively, the above argument can be rewritten as follows. Let V be as in the statement of the lemma. Set $V_{1}=V$. If $\left.f\right|_{V_{1}}=\left.f_{1}\right|_{V_{1}}$ then the lemma is true. Otherwise, set $V_{2}=V_{1} \backslash\left\{x \mid f(x) \neq f_{1}(x)\right\}$. V_{2} is nonempty and is open. If $\left.f\right|_{V_{2}}=\left.f_{2}\right|_{V_{2}}$ then the lemma is true. Otherwise, set $V_{3}=V_{2} \backslash\left\{x \mid f(x) \neq f_{2}(x)\right\}$ which is again nonempty and open. Continuing in this manner, if none of the sets $i \leq V_{i}$ satisfy the lemma, then let $V_{n+1}=$ $V_{n} \backslash\left\{x \mid f(x) \neq f_{n}(x)\right\}$ which is nonempty and open. f is different from $f_{1}, f_{2}, \cdots, f_{n}$ on $V_{n=1}$ which is a contradiction.

Theorem 2.2.6: $f \in S \Leftrightarrow f$ is continuous and agrees with a finite number of affine function. I.e., $\exists n \in \mathbb{N}$ and a subset $\left\{f_{i}\right\}_{i=1}^{n} \subset A$ such that $\forall x \in \mathbb{R}^{m}$: $f(x)=f_{i}(x)$ for some i.

Proof. By Definition2.2.3 and Lemma 2.2.4 a piecewise affine function is continuous and agrees with a finite number of affine functions.

For the opposite direction, and using Lemma 2.2.5 $\forall V \subset_{\text {open }} \mathbb{R}^{m} \exists \mathrm{a}$ non-empty open subset $W \subset V$ such that $f(x)=f_{j}(x)$ for some j. Let $O_{i}=\bigcup\left\{\left.U\left|U \subset_{\text {open }} \mathbb{R}^{m}, f_{i}\right|_{U} \equiv f\right|_{U}\right\}$. If $O_{i}=\emptyset$ for some i, then remove O_{i} and f_{i} from the list and renumber and note that by Lemma 2.2.5 and setting $V=\mathbb{R}^{m}$, there is at least one $O_{i} \neq \emptyset$. Set $S_{i}=\overline{O_{i}}$. We will show that $\left\{S_{i}\right\}_{i=1}^{n}$ satisfy the conditions of Definition 2.2.3 of the regions of a piecewise affine function. Condition 4 is satified since both f and f_{i} are continuous and $S_{i}=\overline{O_{i}}$, therefore: $\left.\left.f\right|_{S_{i}} \equiv f_{i}\right|_{S_{i}}$. For condition 1 we have $O_{i} \subset \operatorname{Int}\left(S_{i}\right)$ and since $\left.\left.f\right|_{\operatorname{Int}\left(S_{i}\right)} \equiv f_{i}\right|_{\operatorname{Int}\left(S_{i}\right)}$ and $\operatorname{Int}\left(S_{i}\right)$ is open, then $\operatorname{Int}\left(S_{i}\right) \subset O_{i}$. Therefore, $O_{i}=\operatorname{Int}\left(S_{i}\right) \neq \emptyset$ and $\overline{O_{i}}=\overline{\operatorname{Int}\left(S_{i}\right)}=S_{i}$. Condition 2 is satisfied as follows: Let $U=O_{i} \cap O_{j}$. Since O_{i} and O_{j} are open, then U is open and $\left.\left.f_{i}\right|_{U} \equiv f_{j}\right|_{U}$. Then, by Lemma 2.2.2 $f_{i} \equiv f_{j}$. Finally, for condition 3 we have $\bigcup_{i=1}^{n} S_{i} \subset_{\text {closed }} \mathbb{R}^{m}$. Therefore, $V=\mathbb{R}^{m} \backslash \bigcup_{i=1}^{n} S_{i}$ is open and by Lemma 2.2.5, $\exists W \subset_{\text {open }} V$ such that $\left.\left.f\right|_{W} \equiv f_{j}\right|_{W}$ for some j which contradicts the maximality of O_{j}. Therefore, $\bigcup_{i=1}^{n} S_{i}=\mathbb{R}^{m}$.

Corollary 2.2.7: S is a vector lattice.

Proof. Assume $f, g \in S$. Therefore, f is continuous and agrees with $\left\{f_{i}\right\}_{i=1}^{n} \subset$ A, and g is continuous and agrees with $\left\{g_{i}\right\}_{i=1}^{k} \subset A$. Therefore, $f \vee g$ is continuous and agrees with $\left\{f_{i}\right\}_{i=1}^{n} \cup\left\{g_{i}\right\}_{i=1}^{k} \subset A$, i.e., $f \vee g \in S$. Therefore, S is a vector lattice.

Corollary 2.2.8: $V \subset S$.

Proof. Since S is a vector lattice and $A \subset S$ then $V=A^{\vee \wedge} \subset S$.
Definition 2.2.9: Hyperplane: A hyperplane is a subset $H \subset \mathbb{R}^{m}$ of the form $H=\left\{x \in \mathbb{R}^{m} \mid v \cdot x+b=0\right\}$ where $0 \neq v \in \mathbb{R}^{m}$ and $b \in \mathbb{R}$. Clearly H is closed and has a Lebesque measure zero. Also, H has an orientation since H divides \mathbb{R}^{m} into H and the positive part $H_{1}=\left\{x \in \mathbb{R}^{m} \mid v \cdot x+b>0\right\}$ and the negative part $H_{2}=\left\{x \in \mathbb{R}^{m} \mid v \cdot x+b<0\right\}$. This orientation is reversible since $H=\tilde{H}=\left\{x \in \mathbb{R}^{m} \mid-v \cdot x-b=0\right\}$ while $\tilde{H}_{1}=H_{2}$ and $\tilde{H}_{2}=H_{1}$.

Lemma 2.2.10: The set where two distinct affine functions agree is either empty or a hyperplane.

Proof. Let $f \neq g \in A$ such that $\forall x \in \mathbb{R}^{m}: f(x)=v_{f} \cdot x+b_{f}$ and $g(x)=$ $v_{g} \cdot x+b_{g}$ with $v_{f}, v_{g} \in \mathbb{R}^{m}$ and $b_{f}, b_{g} \in \mathbb{R}$. Set $H_{f g}=\{x \mid f(x)=g(x)\}=$ $\left\{x \mid\left(v_{f}-v_{g}\right) \cdot x+b_{f}-b_{g}=0\right\}$. If $v_{f}=v_{g}$ then $H_{f g}=\emptyset$. Otherwise, $H_{f g}$ is a hyperplane.

Lemma 2.2.11: The boundaries of the regions of a piecewise affine function are subsets of hyperplanes and the regions only intersect on their boundaries. In other words: Let $f \in S$, then $\forall i: \partial S_{i}=\bigcup_{j \neq i} S_{i} \cap S_{j}$.

Proof. Using Lemma 2.2.10, and since the boundaries of the regions are the locations where affine functions agree, therefore, the boundaries are subsets of hyperplanes. Let $x \in \partial S_{i}$, then $\forall k \in \mathbb{N}: B\left(x, \frac{1}{k}\right) \cap \mathbb{R}^{m} \backslash S_{i} \neq \emptyset . \forall k$ pick $x_{k} \in B\left(x, \frac{1}{k}\right) \cap \mathbb{R}^{m} \backslash S_{i}$. Since $x_{k} \rightarrow x$ and $\left\{x_{k}\right\}_{k=1}^{\infty} \subset \bigcup_{r \neq i} S_{r}$ there is a subsequence and an index $j \neq i$ such that $\left\{x_{k}\right\}_{k=1}^{\infty} \subset S_{j}$. Since $x_{k} \rightarrow x$ and S_{j} is closed, we have $x \in S_{j}$. Therefore, $x \in S_{i} \cap S_{j}$.

For the other inclusion, let $x \in S_{i} \cap S_{j}, i \neq j$. We will argue by conatrdiction by assuming that $x \notin \partial S_{i}$ but $x \in \operatorname{Int}\left(S_{i}\right)$. Therefore, $\exists \delta>0$ such that $B(x, \delta) \subset \operatorname{Int}\left(S_{i}\right)$. Since $\operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right)=\emptyset$, then $x \in \partial S_{j}$, therefore,
$B(x, \delta) \cap \operatorname{Int}\left(S_{j}\right) \neq \emptyset \Rightarrow \operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right) \neq \emptyset$ which is a contradiction. Therefore, $x \in \partial S_{i}$.

Lemma 2.2.12: The characteristic pairs of piecewise affine functions are uniquely defined up to reordering.

Proof. Let $f \subset S$ and let $\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{n}$ and $\left\{\left(\tilde{S}_{j}, \tilde{f}_{j}\right)\right\}_{j=1}^{k}$ be two sets of characteristic pairs for f. Fix i and consider $\operatorname{Int}\left(S_{i}\right)$. By Lemma 2.2.5 $\exists W \subset_{\text {open }}$ $\operatorname{Int}\left(S_{i}\right)$ such that $\left.\left.f_{W} \equiv \tilde{f}_{j}\right|_{W} \equiv f_{i}\right|_{W}$ for some $j \leq k$. By Lemma 2.2.2 $f_{i}=\tilde{f}_{j}$ and therefore $S_{i}=\tilde{S}_{j}$. Since the components are distinct, then the characteristic pairs are uniquely defined up to reordering.

Corollary 2.2.13: Definition 2.1.2 and Definition 2.2.3 are equivalent for one dimensional piecewise affine functions.

Proof. Let f be a one dimensional piecewise affine function defined according to Definition 2.1.2. Then, the sets $S_{1}=\left(-\infty, a_{0}\right], \forall 2 \leq i \leq n+1: S_{i}=$ [$\left.a_{i-2}, a_{i-1}\right]$, and $S_{n+2}=\left[a_{n}, \infty\right)$ satisfy the conditions of Definition 2.2.3, with $n+2$ components. If the components are not distinct, i.e. $\exists i<j$ such that $f_{i} \equiv f_{j}$, then by renumbering the components and setting $S_{i}=S_{i} \cup S_{j}$ then the resulting renumbered components are distinct.

For the opposite direction, let f be a one dimensional piecewise affine function defined according to Definition 2.2.3. By Lemma 2.2.11 $\partial S_{i}=$ $\bigcup_{j \neq i} S_{i} \cap S_{j} \subset \bigcup_{j \neq i}\left\{x \mid f_{i}(x)=f_{j}(x)\right\}$. However, the set $\bigcup_{j \neq i}\left\{x \mid f_{i}(x)=\right.$ $\left.f_{j}(x)\right\}$ is a finite set of points as it is the union of a finite number of hyperplanes in \mathbb{R} and each hyperplane in \mathbb{R} is a set of one point. Therefore, ∂S_{i} is a finite set. Since $\operatorname{Int}\left(S_{i}\right) \neq \emptyset$, therefore, $\operatorname{Int}\left(S_{i}\right)$ is a union of pairwise disjoint open intervals whose end points are in ∂S_{i}. Therefore, f is a piecewise affine function according to Definition 2.1.2.

Cells Induced by Hyperplanes formed by the Components of Piecewise Affine Functions: Let $k \in \mathbb{N}$ and $\left\{H_{e}\right\}_{e=1}^{k}$ be a family of hyperplanes such that $\forall e \leq k: H_{e}=\left\{x \in \mathbb{R}^{m} \mid v_{e} \cdot x+b_{e}=0\right\}$ where $0 \neq v_{e} \in \mathbb{R}^{m}$ and $b_{e} \in \mathbb{R}$. Let $H_{e 1}$ and $H_{e 2}$ be the positive and negative parts according
to Definition 2.2.9 respectively. Consider the set $D=\{+1,-1,0\}^{k}$. Let $\sigma: \mathbb{R}^{m} \rightarrow D$ be such that $\forall x \in \mathbb{R}^{m}: \sigma(x)=\left\{\operatorname{sgn}\left(v_{e} \cdot x+b_{e}\right)\right\}_{e=1}^{k}$. Denote $M=\operatorname{Range}(\sigma)$. Denote a vector $T=\left\{T_{e}\right\}_{e=1}^{k} \in M$ satisfying $\forall e: T_{e} \neq 0$ by a tope of M. Clearly, the set of topes is finite because D is finite. Additionally, the set of topes is not empty because: $\bigcup_{e=1}^{k} H_{e} \neq \mathbb{R}^{m}$, therefore, $\exists x \in \mathbb{R}^{m} \backslash \bigcup_{e=1}^{k} H_{e}$ and therefore $\sigma(x)$ is a tope of M. Let J be the cardinality of the topes of M and let $\left\{T_{j}\right\}_{j=1}^{J}$ be an enumeration. The sets $K_{j}=\left\{x \in \mathbb{R}^{m} \mid \sigma(x)=T_{j}\right\}$ define cells in \mathbb{R}^{m} induced by the family of hyperplanes independent of the orientation. Each cell K_{j} is not empty, convex and open because it is the intersection of a finite number of open and convex sets of the form $H_{e 1}$ and $H_{e 2}$. In addition, $\bigcup_{j=1}^{J} K_{j}=\mathbb{R}^{m} \backslash \bigcup_{e=1}^{k} H_{e}$. Since the number of cells J is finite, then $\overline{\bigcup_{j=1}^{J} K_{j}}=\bigcup_{j=1}^{J} \overline{K_{j}}=\mathbb{R}^{m}$.
Let $\left\{f_{i}\right\}_{i=1}^{n} \subset A$. By Lemma 2.2.10, the sets where these functions agree with each other are either empty or hyperplanes. Let $H_{l m}=\{x \in$ $\left.\mathbb{R}^{m} \mid f_{l}(x)=f_{m}(x)\right\}$ and let k be the cardinality of $E=\left\{(l, m) \mid H_{l m} \neq \emptyset\right\}$. As defined above, let J be an enumeration of the topes and let $\left\{K_{j}\right\}_{j=1}^{J}$ be the cells induced by the family of hyperplanes $\left\{H_{e}\right\}_{e \in E}$. These cells, by definition, are locations where the affine functions do not agree.

Lemma 2.2.14: Let $f \in S$. Let $\left\{K_{h}\right\}_{h=1}^{J}$ be the cells induced by the components of $\left\{f_{i}\right\}_{i=1}^{n}$. Then, $\forall i, h, \forall x \in K_{h}$:

1. If $f(x)=f_{i}(x)$, then $\forall y \in K_{h}: f(y)=f_{i}(y)$.
2. If $f(x)<f_{i}(x)$, then $\forall y \in K_{h}: f(y)<f_{i}(y)$.
3. If $f(x)>f_{i}(x)$, then $\forall y \in K_{h}: f(y)>f_{i}(y)$.

Moreover, $\forall K_{h}: \exists!i_{h}$ such that $\forall x \in K_{h}: f(x)=f_{i_{h}}(x)$.
Proof. The moreoever part is a trivial outcome of the statement and the fact that the components are unique and do not agree on any cell K_{h}.
Let $x \in K_{h}$ be such that $f(x)=f_{i}(x)$ for some i. Claim: $\exists \delta>0$ such that $\forall z \in B(x, \delta) \subset K_{h}: f(z)=f_{i}(z)$. Proof: Let $j \neq i$, therefore $f_{j}(x) \neq$ $f_{i}(x)=f(x)$. Let $\varepsilon=\frac{\left|f_{j}(x)-f(x)\right|}{3}$. Therefore, $B\left(f_{j}(x), \varepsilon\right) \cap B(f(x), \varepsilon)=\emptyset$. Since f, f_{j} are continuous, then $f^{-1}(B(f(x), \varepsilon)) \cap K_{h} \cap f_{j}^{-1}\left(B\left(f_{j}(x), \varepsilon\right)\right)$ is open and not empty. Therefore, $\exists \delta_{j}$ such that $\forall z \in B\left(x, \delta_{j}\right): f(x) \neq f_{j}(x)$. Repeating $\forall j \neq i$ and setting $\delta=\min _{j \neq i} \delta_{j}$, the claim is proved.

We will argue by contradiction, let $y \in K_{h}, x \neq y$ be such that $f(y) \neq$ $f_{i}(y)$. Since K_{h} is convex, the interval $\{x+t(y-x) \mid 0 \leq t \leq 1\} \subset K_{h}$. Let $t_{0}=\inf _{t}\left\{x+t(y-x) \mid f(x+t(y-x)) \neq f_{i}(x+t(y-x))\right\}$. Clearly $0<t_{0}<1$ (If $t_{0}=1$, then by continuity, $f(y)=f_{i}(y)$ which is a contradiction while $t_{0}>0$ is a result of the claim above). Therefore, $\exists j \neq i$ such that $f_{j}\left(x+t_{0}(y-x)\right)=f\left(x+t_{0}(y-x)\right)$. By applying the claim to $f_{j}, \exists \delta>0$ such that f agrees with f_{j} on $B\left(x+t_{0}(y-x), \delta\right)$. Therefore, $f\left(x+\left(t_{0}-\frac{\delta}{3\|y-x\|}\right)(y-x)\right)=f_{j}\left(x+\left(t_{0}-\frac{\delta}{3\|y-x\|}\right)(y-x)\right)$ which contradicts that t_{0} is the infimum. Therefore, $\forall y \in K_{h}: f(y)=f_{i}(y)$.
Let $x \in K_{h}$ be such that $f(x)>f_{i}(x)$. By the first part of the proof, $\exists j \neq i$ such that $\forall y \in K_{h}: f_{j}(y)=f(y)$. Since $f_{j}(x)>f_{i}(x)$, therefore, $K_{h} \subset\left\{z \mid f_{j}(z)>f_{i}(z)\right\}$. Therefore, $\forall y \in K_{h}: f_{j}(y)=f(y)>f_{i}(y)$. The same holds if $f(x)<f_{i}(x)$.

Theorem 2.2.15: Let $f \in S$ with n distinct components. Let $\left\{K_{h}\right\}_{h=1}^{J}$ be the cells generated by the components. Let $O_{i}=\bigcup\left\{\left.K_{h}|f|_{K_{h}} \equiv f_{i}\right|_{K_{h}}\right\}$. Let $S_{i}=\overline{O_{i}}$. Then, $\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{n}$ are exactly the characteristic pairs of f.

Proof. First notice that if O_{i} is empty, then we can remove f_{i} and renumber the components. We will show that $\left\{S_{i}\right\}_{i=1}^{n}$ satisfy the conditions of Definition 2.2.3. Indeed, the fourth condition is satisfied by the continuity of f and f_{i} so $\left.\left.f\right|_{S_{i}} \equiv f_{i}\right|_{S_{i}}$. Using the result of Lemma 2.2.14: $\forall h: \exists!i_{h}$ such that $\left.\left.f\right|_{K_{h}} \equiv f_{i_{h}}\right|_{K_{h}}$. For condition 3, $\bigcup_{i=1}^{n} S_{i}=\bigcup_{h=1}^{J} \overline{K_{h}}=\mathbb{R}^{m}$. For condition $1, O_{i} \neq \emptyset$ and therefore $\operatorname{Int}\left(S_{i}\right) \neq \emptyset$. Also, O_{i} is open so $O_{i} \subset \operatorname{Int}\left(S_{i}\right)$, therefore, $S_{i} \subset \overline{O_{i}} \subset \overline{\operatorname{Int}\left(S_{i}\right)} \subset S_{i} \Rightarrow \overline{\operatorname{Int}\left(S_{i}\right)}=S_{i}$. For condition 2, if $x \in \operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right)$, then $f(x)=f_{i}(x)=f_{j}(x)$ and $\exists \delta_{i}$ and δ_{j} such that $\forall y \in B\left(x, \min \left\{\delta_{i}, \delta_{j}\right\}\right): f(y)=f_{i}(y)=f_{j}(y)$. Therefore, by Lemma 2.2.2 $f_{i} \equiv f_{j}$ and $S_{i}=S_{j}$. By Lemma 2.2.12 $\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{n}$ are exactly the characteristic pairs of f.

Lemma 2.2.16: Let $f \in S$ with n distinct components. Then, $\forall a, b \in$ $\mathbb{R}^{m}, \exists i \leq n$ such that $f_{i}(a) \leq f(a)$ and $f_{i}(b) \geq f(b)$.

Proof. Let $h:[0,1] \rightarrow \mathbb{R}^{m}$ be such that $\forall t \in[0,1]: h(t)=a+t(b-a)$. Let $g=f \circ h$, i.e., $g(t)=f(a+t(b-a)) . \forall i: g_{i} \equiv f_{i} \circ h$ is an affine function, indeed: $f_{i}(a+t(b-a))=v_{i} \cdot a+t\left((b-a) \cdot v_{i}\right)+b_{i}=m_{i} t+c_{i}$ where $m_{i}=(b-a) \cdot v_{i}$ and $c_{i}=b_{i}+v_{i} \cdot a$. Therefore, $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function and agrees with the affine functions $\left\{g_{i}\right\}_{i=1}^{n}$. Then, by Theorem 2.2.6 and Corollary 2.2 .13 , g is a piecewise affine function. By Corollary 2.1.9 $\exists i \leq n$ such that $g_{i}(0)=f_{i}(a) \leq g(0)=f(a)$ and $g_{i}(1)=f_{i}(b) \geq g(1)=f(b)$.

Theorem 2.2.17: $S \subset V$.

Proof. Let $f \in S$. Let $\left\{K_{h}\right\}_{h=1}^{J}$ be the cells generated by the components $\left\{f_{i}\right\}_{i=1}^{n}$ of f. Using Lemma 2.2.14, we can define the set of indices of the components that are larger than or equal to f on the cell K_{h}. I.e.,

$$
\forall h \leq J: E_{h}=\left\{i \leq n|f|_{K_{h}} \leq\left. f_{i}\right|_{K_{h}}\right\}
$$

For each h define the function $g_{h}=\bigwedge_{i \in E_{h}} f_{i}$. Then, $\forall x \in K_{h}: g_{h}(x) \geq$ $f(x)$. Using Lemma 2.2.14, there exists a unique index i_{h} in E_{h} such that $f_{i_{h}}(x)=f(x)$, therefore, $g_{h}(x)=f(x)$.

Fix h. Fix $x \in K_{h}$ and $y \in K_{k}$ with $k \neq h$. By Lemma 2.2.16: $\exists i$ such that $f_{i}(x) \leq f(x)$ and $f_{i}(y) \geq f(y)$. In particular, $i \in E_{k}$, therefore $g_{k} \leq f_{i}$. We also have $g_{k}(x) \leq f_{i}(x) \leq f(x)=g_{h}(x)$. This is true $\forall k \neq h$, therefore, $f(x)=\bigvee_{k \leq J} g_{k}(x)$.

Therefore, $\forall z \in \bigcup_{h \leq J} K_{h}$:

$$
f(z)=\bigvee_{h \leq J} \bigwedge_{i \in E_{h}} f_{i}(z)
$$

Since f is continuous and $\overline{\bigcup_{h \leq J} K_{h}}=\mathbb{R}^{m}$, therefore the equality holds $\forall z \in \mathbb{R}^{m}$. Therefore, $f \in A^{\vee \wedge}=V$.

Theorem 2.2.18: $S=V$.

Proof. Using Theorem 2.2.17 and Corollary 2.2.8, then, $S=V$.

Chapter 3

Locally Piecewise Affine Functions

3.1 Motivation and Definitions

The motivation for this chapter is to introduce a new class of piecewise affine functions that have infinitely many distinct components since Definition 2.2.3 is restricted to functions with finitely many components. In addition, Theorem 2.2 .6 cannot be naturally extended to functions with countably many components. Moreover, it is not clear when a piecewise affunction on a subset of \mathbb{R}^{m} can be extended to a piecewise affine function on \mathbb{R}^{m}. As per the previous chapter, the affine functions are denoted by $A=\{f$: $\mathbb{R}^{m} \rightarrow \mathbb{R} \mid f$ is an affine function $\}$ and $V=A^{\vee \wedge}$, in addition the space of multivariate piecewise affine functions is denoted by S.

Definition 3.1.1: Piecewise Affine Functions on Arbitrary Subsets: Let $U \subset \mathbb{R}^{m}$ such that it is the union of at most finite number of connected sets. $f: U \rightarrow \mathbb{R}$ is called a piecewise affine function if f is continuous and f agrees with $\left\{f_{i}\right\}_{i=1}^{n} \subset A$ on U.

Definition 3.1.2: Locally Piecewise Affine Function: $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called a locally piecewise affine function if $\forall x \in \mathbb{R}^{m}: \exists$ an open neighbourhood U of x such that U is the union of at most finite number of connected sets and $f: U \rightarrow \mathbb{R}$ is piecewise affine. We denote the space of locally
piecewise affine functions by:

$$
S_{l p}=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} \mid f \text { is locally piecewise affine }\right\}
$$

Remarks:

- $\forall f \in S_{l p}: f$ is locally continuous, therefore continuous. I.e., $S_{l p} \subset$ $C\left(\mathbb{R}^{m}\right)$.
- $S \subset S_{l p}$.
- Definition 3.1.1 is restricted to subsets that are the union of at most finite number of connected sets to exclude examples similar to the function: $f: \mathbb{N} \subset \mathbb{R} \rightarrow \mathbb{R}$ defined as:

$$
f(n)= \begin{cases}n, & n \text { is even } \\ 2 n, & n \text { is odd }\end{cases}
$$

f as defined agrees with 2 affine functions, but it cannot be naturally extended to a piecewise affine function on \mathbb{R}.

- Another example of a piecewise affine function as per Definition 3.1.1 that cannot be extended to a piecewise affine function on \mathbb{R} is the function $f:[0,2] \backslash\{1\} \rightarrow \mathbb{R}$ defined as:

$$
f(t)= \begin{cases}1, & t \in[0,1) \\ 2, & t \in(1,2]\end{cases}
$$

Here we list some lemmas that offer some conditions on the form of the proper subsets $U \subset \mathbb{R}^{m}$ that allow the natural extension of a piecewise affine function on U to a piecewise affine function on \mathbb{R}.

Lemma 3.1.3: Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function that agrees with a finite number of affine functions on $[a, b]$. Then, $f \in S_{[a, b]}$ and can be extended (in possibly many ways) to a function $\tilde{f} \in S$.

Proof. Assume $f(a)=f_{1}(a)$ and $f(b)=f_{n}(b)$ where $f_{1}, f_{2} \in A$. Let

$$
\tilde{f}= \begin{cases}f_{1}(t), & t \leq a \\ f(t), & a \leq t \leq b \\ f_{n}(t), & b \leq t\end{cases}
$$

$\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that agrees with a finite number of affine functions. Therefore by Theorem 2.2.6 and Corollary 2.2.13, $\tilde{f} \in S$ and its restriction on $[a, b]$ is $f \in S_{[a, b]}$.

Lemma 3.1.4: Let $U \subset \mathbb{R}^{m}$ be closed and convex and let $f: U \rightarrow \mathbb{R}$ be a piecewise affine function. Then, f can be extended (possibly in many ways) to a piecewise affine function $\tilde{f} \in S$.

Proof. Assume $\operatorname{Int}(U) \neq \emptyset . U$ is closed and convex, then $\overline{\operatorname{Int}(U)}=U$. Also, if $\operatorname{Int}(U)=\emptyset$, then U can be considered as a convex subset with non-empty interior of \mathbb{R}^{l} for some $l<m$ and the lemma can then be applied. A piecewise affine function on \mathbb{R}^{l} can be trivially extended to \mathbb{R}^{m}. So, without loss of generality $\operatorname{Int}(U) \neq \emptyset$.

Consider the cells $\left\{K_{h} \subset \mathbb{R}^{m}\right\}_{h=1}^{J}$ generated by the distinct components $\left\{f_{i}\right\}_{i=1}^{n} \subset A$. It is possible that the components of f do not agree anywhere and the set of cells is empty. This is possible because some of the components might not be actually used in f. In that case, set $J=1$ and $K_{1}=\mathbb{R}^{m}$. In any case, there is at least one cell K_{i} such that $\operatorname{Int}(U) \cap K_{i} \neq \emptyset$. Let $E=\left\{i \leq J: K_{i} \cap \operatorname{Int}(U) \neq \emptyset\right\}$.

Claim 1: $\forall i \in E$, fix $x \in K_{i} \cap \operatorname{Int}(U):$ (1) Assume $f(x)=f_{j}(x)$ for some j, then $\forall y \in K_{i} \cap \operatorname{Int}(U): f(y)=f_{j}(y),(2)$ Assume $f(x)<f_{j}(x)$ for some j, then $\forall y \in K_{i} \cap \operatorname{Int}(U): f(y)<f_{j}(y)$, (3) Assume $f(x)>f_{j}(x)$ for some j, then $\forall y \in K_{i} \cap \operatorname{Int}(U): f(y)>f_{j}(y)$.

Proof: (1) U and K_{i} are convex, therefore, $K_{i} \cap \operatorname{Int}(U)$ is convex. Therefore, the line $\{x+\alpha(y-x) \mid 0 \leq \alpha \leq 1\} \subset\left(K_{i} \cap \operatorname{Int}(U)\right)$. We will argue by contradiction. Assume that $f(x)=f_{j}(x)$ and $f(y) \neq f_{j}(y)$. Consider the function $g:[0,1] \rightarrow \mathbb{R}$ defined by $g(t)=f(x+t(y-x)) . g$ is piecewise affine with at least two distinct components g_{1} and g_{2}, then, $\exists 0 \leq \beta \leq 1$ such that
$g_{1}(\beta)=g_{2}(\beta)$. Therefore, $x+\beta(y-x) \notin K_{i}$ which is a contradiction. (2) and (3) are straightforward as in Lemma 2.2.14.

Claim 2: $\forall a, b \in U, \exists i \leq n$ such that $f_{i}(a) \leq f(a)$ and $f_{i}(b) \geq f(b)$.
Proof: As in Lemma 2.2.16, let $t \in[0,1]$ and let $h:[0,1] \rightarrow \mathbb{R}^{m}$ be such that $\forall t \in[0,1]: h(t)=a+t(b-a)$. Let $g=f \circ h$, i.e., $g(t)=f(a+t(b-a))$. Since U is convex, then g is well defined. The result follows as in Lemma 2.2.16.

The rest of the proof follows as in Theorem 2.2.17. Define $\forall i \leq J: \tilde{K}_{i}=$ $K_{i} \cap \operatorname{Int}(U)$ and let $E_{i}=\left\{j \mid \forall x \in \tilde{K}_{i}: f(x) \leq f_{j}(x)\right\}$. Define $g_{i}=\bigwedge_{j \in E_{i}} f_{j}$. Then, $\forall x \in \tilde{K}_{i}: g_{i}(x)=f(x)$. Using claims 1 and 2 above and following the proof in Theorem 2.2.17 we have: $\forall k \neq i, \forall x \in \tilde{K}_{i}: g_{k}(x) \leq g_{i}(x)$. Therefore, $\forall z \in \bigcup_{h \leq J} \tilde{K}_{h}$:

$$
f(z)=\bigvee_{h \leq J} \bigwedge_{i \in E_{h}} f_{i}(z)
$$

Since f is continuous and $\overline{\bigcup_{h \leq J} \tilde{K}_{h}}=U$ then the equality holds $\forall z \in U$. Let $\tilde{f}=f$ then $\tilde{f} \in S$ and is a natural extention for f to \mathbb{R}^{m}.

Conjecture

Let $U \subset \mathbb{R}^{m}$ be open, bounded, connected and $\partial U=\bar{U} \backslash \operatorname{Int}(\bar{U})$. Let $f: U \rightarrow \mathbb{R}$ be a piecewise affine function. Then, f can be extended possibly in many ways to a piecewise affine function $\tilde{f} \in S$.

3.2 Properties of $S_{l p}$

Lemma 3.2.1: $f \in S_{l p}$ if and only if $\forall \delta>0, \forall x \in \mathbb{R}^{m}, f: B(x, \delta) \rightarrow \mathbb{R}$ is piecewise affine.

Proof. Assume $f \in S_{l p}$. Fix $x \in \mathbb{R}^{m}$ and $\delta>0$. Therefore, $\overline{B(x, \delta)}$ is compact. $\forall y \in B(x, \delta): \exists U_{y} \subset_{\text {open }} \mathbb{R}^{m}$ such that $f: U_{y} \rightarrow \mathbb{R}$ is continuous and agrees with a finite number n_{y} of affine functions on U_{y}. The open neighbourhoods
U_{y} form an open cover for $\overline{B(x, \delta)}$ so it admits a finite subcover $U_{y_{i}}$ with $i \leq$ $m \in \mathbb{N}$. Therefore, $f: \bigcup_{i=1}^{m} U_{y_{i}} \rightarrow \mathbb{R}$ is continuous and agrees with a finite number of affine functions on $\bigcup_{i=1}^{m} U_{y_{i}} \supset \overline{B(x, \delta)}$, therefore, $f: \overline{B(x, \delta)} \rightarrow \mathbb{R}$ is piecewise affine.

The opposite direction is straightforward from Definition 3.1.2.

Lemma 3.2.2: $f \in S_{l p}$ if and only if $\forall C \subset \subset_{\text {compact }} \mathbb{R}^{m}$ and C is the union of at most finite number of connected sets: $f: C \rightarrow \mathbb{R}$ is piecewise affine.

Proof. For one direction, assume $f \in S_{l p}$. Consider a compact set C that is the union of at most finite number of connected sets. Then $\forall x \in C: \exists V_{x} \subset_{\text {open }}$ \mathbb{R}^{m} such that $f: V_{x} \rightarrow \mathbb{R}$ is continuous and f agrees with a finite number n_{x} of affine functions on V_{x}. The open neighbourhoods V_{x} form an open cover for C. Since C is compact, C admits a finite subcover $V_{x_{i}}$ with $i \leq k \in \mathbb{N}$ (k is the cardinality of the subcover). $C \subset \bigcup_{i=1}^{k} V_{x_{i}} . f: \bigcup_{i=1}^{k} V_{x_{i}} \rightarrow \mathbb{R}$ is continuous and agrees with a finite number of affine functions on $\bigcup_{i=1}^{k} V_{x_{i}}$ therefore $f: C \rightarrow \mathbb{R}$ is piecewise affine.

The opposite direction is straightforward from Lemma 3.2.1.

Lemma 3.2.3: $S_{l p}$ is a vector lattice.
Proof. Clearly $S_{l p}$ is a vector space. Assume $f, g \in S_{l p}$. Consider $x \in \mathbb{R}^{m}$ and $\delta>0$. By Lemma 3.2.1, f and g are continuous and agree with $\left\{f_{i}\right\}_{i=1}^{n} \subset A$ and $\left\{g_{j}\right\}_{j=1}^{m} \subset A$ on $\overline{B(x, \delta)}$. Therefore, $f \vee g$ is continuous and agrees with $\left\{f_{i}\right\}_{i=1}^{n} \cup\left\{g_{j}\right\}_{j=1}^{m} \subset A$ on $\overline{B(x, \delta)}$. Then, by Lemma 3.2.1, $f \vee g \in S_{l p}$.

Lemma 3.2.4: Let $f \in S_{l p}$. Then $\forall V \subset_{\text {open }} \mathbb{R}^{m}, \exists W \subset_{\text {open }} V, W \neq \emptyset$ such that $\forall x \in W: f(x)=f_{j}(x)$ where $f_{j} \in A$.

Proof. Let $V \subset_{\text {open }} \mathbb{R}^{m}$. Let $x \in V$. Then, $\exists \delta>0$ and $\overline{B(x, \delta)} \subset V$ such that $f: \overline{B(x, \delta)} \rightarrow \mathbb{R}$ is piecewise affine. Let $\left.g \equiv f\right|_{\overline{B(x, \delta)}}$. Since $\overline{B(x, \delta)}$ is closed and convex and using Lemma 3.1.4, $\exists \tilde{g} \in S$ such that $\left.\tilde{g}\right|_{\overline{B(x, \delta)}} \equiv$ $\left.\left.g\right|_{\overline{B(x, \delta)}} \equiv f\right|_{\overline{B(x, \delta)}}$. Applying Lemma 2.2.5 to \tilde{g} and $B(x, \delta) \subset V$, the result is obtained.

Lemma 3.2.5: $f \in S_{l p}$ if and only if \exists distinct affine functions $\left\{f_{i}\right\}_{i=1}^{\infty}$ and subsets $\left\{S_{i} \subset \mathbb{R}^{m}\right\}_{i=1}^{\infty}$ such that:

1. $\forall i: \operatorname{Int}\left(S_{i}\right) \neq \emptyset . \overline{\operatorname{Int}\left(S_{i}\right)}=S_{i}$.
2. $\forall \delta>0: \forall x \in \mathbb{R}^{m}: E_{x, \delta}=\left\{j \in \mathbb{N}: S_{j} \cap B(x, \delta) \neq \emptyset\right\}$ is finite.
3. $\forall i \neq j: \operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right)=\emptyset$.
4. $\bigcup_{i=1}^{\infty} S_{i}=\mathbb{R}^{m}$.
5. $\left.\left.f\right|_{S_{i}} \equiv f_{i}\right|_{S_{i}}$.

Similar to the previous definitions, The sets $\left\{S_{i}\right\}_{i=1}^{\infty}$ are called the regions of f and $\left\{f_{i}\right\}_{i=1}^{\infty}$ are called the components of f. The pairs $\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{\infty}$ are called the characteristic pairs of f.

Proof. For one direction: assume that f satisfies the conditions listed in the lemma. If $x \in \operatorname{Int}\left(S_{i}\right)$ for some i then $\exists \delta_{x}$ such that $V=B\left(x, \delta_{x}\right) \subset S_{i}$ and $\left.f_{V} \equiv f_{i}\right|_{V}$ and thus V is an open neighbourhood of x with f being continuous on V and agreeing with a finite number (only one) of affine functions. If $x \in \partial S_{i}$ for some i, then, by condition 2: Fix $\delta>0 \Rightarrow$ $B(x, \delta) \subset \bigcup_{j \in E_{x, \delta}} S_{j}$. We need to show that f is continuous on $B(x, \delta)$ and that f agrees with a finite number of affine functions. Indeed, since $E_{x, \delta}$ is finite, then f agrees with a finite number of affine functions. Additionally, arguing by contradiction we will show that f is continuous at x. Consider a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B(x, \delta)$ such that $x_{n} \rightarrow x$ and $f\left(x_{n}\right) \nrightarrow f(x)$. Since $E_{x, \delta}$ is finite, then, we can pass to a subsequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset S_{j}$ for some j satisfying $\left|f\left(x_{n}\right)-f(x)\right|>\varepsilon$ for some $\varepsilon>0$. But since S_{j} is closed and f_{j} is continuous, then $f\left(x_{n}\right)=f_{j}\left(x_{n}\right) \rightarrow f_{j}(x)=f(x)$ which is a contradiction. Therefore, f is continuous at x. Since $x \in \partial S_{i}$ was chosen arbitrarily, therefore, f is continuous on $B(x, \delta) \cap\left(\bigcup_{j \in E_{x, \delta}} \partial S_{j}\right)$. From the first part, f is also continuous on $B(x, \delta) \cap\left(\bigcup_{j \in E_{x, \delta}} \operatorname{Int}\left(S_{j}\right)\right)$. Therefore, f is continuous on $B(x, \delta)$ and agrees with a finite number of affine functions. Therefore, f is locally piecewise affine.

For the opposite direction, assume that $f \in S_{l p}$, and recall that $\mathbb{R}^{m}=$ $\bigcup_{m=1}^{\infty} B(0, m)$. Using Lemma 3.2.1: $\forall m: f$ is piecewise affine on $\overline{B(0, m)}$, and therefore, \exists a finite number $n_{m} \in \mathbb{N}$ of affine functions $\left\{f_{j}\right\}_{j=1}^{n_{m}}$ with which f agrees. By collecting the distinct affine functions associated with
each open ball $B(0, m)$ then f agrees with a countable (infinite) set of distinct affine functions $\left\{f_{i}\right\}_{i=1}^{\infty}$. Let $O_{i}=\bigcup\left\{U \mid U \subset\right.$ open $\left.\mathbb{R}^{m},\left.\left.f_{i}\right|_{U} \equiv f\right|_{U}\right\}$. If $O_{i}=\emptyset$ for some i then remove O_{i} and f_{i} from the list and renumber. Note that by setting $V=\mathbb{R}^{m}$ in Lemma 3.2.4, then at least one $O_{i} \neq \emptyset$. Thus, $\forall i: O_{i} \neq \emptyset$ and $\left\{f_{i}\right\}_{i=1}^{\infty}$ are distinct. Let $S_{i}=\overline{O_{i}}$. We will show that $\left\{S_{i}\right\}_{i=1}^{\infty}$ satisfy the conditions in the lemma. Condition 5 is satisfied trivially: Since $\left.\left.f\right|_{O_{i}} \equiv f_{i}\right|_{O_{i}}$ and both f and f_{i} are continuous, then, $\left.\left.f\right|_{S_{i}} \equiv f_{i}\right|_{S_{i}}$. For condition 1: Since $O_{i} \subset \operatorname{Int}\left(S_{i}\right)$, therefore, $\operatorname{Int}\left(S_{i}\right) \neq \emptyset$. Also since f agrees with f_{i} on $\operatorname{Int}\left(S_{i}\right)$ which is open we have: $\operatorname{Int}\left(S_{i}\right) \subset O_{i}$. Therefore, $O_{i}=\operatorname{Int}\left(S_{i}\right) \neq \emptyset$ and $\overline{O_{i}}=\overline{\operatorname{Int}\left(S_{i}\right)}=S_{i}$. Condition 3 is satisfied as follows: Let $U=O_{i} \cap O_{j}$. Since O_{i} and O_{j} are open, then U is open and $\left.\left.f_{i}\right|_{U} \equiv f_{j}\right|_{U}$. Then, by Lemma 2.2.2, $f_{i} \equiv f_{j}$. Condition 2 is satisfied as follows: Let $\delta>0, x \in \mathbb{R}^{m}$. By Lemma 3.2.1 f is piecewise affine on $\overline{B(x, \delta)}$. Therefore, $\left.f\right|_{B(x, \delta)}$ agrees with a finite number of affine functions. Therefore, $E_{x, \delta}=\left\{j \in \mathbb{N}: S_{j} \cap B(x, \delta) \neq \emptyset\right\}$ is finite. Condition 4 is satisfied as follows: We will argue by contradiction. Assume $\exists x \in \mathbb{R}^{m} \backslash \bigcup_{i=1}^{\infty} S_{i}$. Let $\delta>0$. By condition 2, $E_{x, \delta}$ is finite, therefore, $V=B(x, \delta) \backslash \bigcup_{j \in E_{x, \delta}} S_{j}$ is open and by Lemma 3.2.4, $\exists W \subset_{\text {open }} V$ such that $\forall y \in W: f(y)=f_{k}(y)$ for some affine function f_{k}. Therefore, $x \in W \subset S_{k}$ which is a contradiction. Therefore, $\bigcup_{i=1}^{\infty} S_{i}=\mathbb{R}^{m}$.

Lemma 3.2.6: The characteristic pairs of locally piecewise affine functions are uniquely defined up to reordering.

Proof. Let $f \subset S_{l p}$ and let $\left\{\left(S_{i}, f_{i}\right)\right\}_{i=1}^{\infty}$ and $\left\{\left(\tilde{S}_{j}, \tilde{f}_{j}\right)\right\}_{j=1}^{\infty}$ be two characteristic pairs for f. Fix i and consider $\operatorname{Int}\left(S_{i}\right)$. By Lemma 3.2.4 $\exists W \subset_{\text {open }} \operatorname{Int}\left(S_{i}\right)$ such that $\left.\left.f_{W} \equiv \tilde{f}_{j}\right|_{W} \equiv f_{i}\right|_{W}$ for some j. By Lemma 2.2.2 $f_{i}=\tilde{f}_{j}$ and therefore $S_{i}=\tilde{S}_{j}$. Since the components are distinct, then the characteristic pairs are uniquely defined up to reordering.

Lemma 3.2.7: The boundaries of the regions of a locally piecewise affine function are subsets of hyperplanes and the regions only intersect on their boundaries. In other words: Let $f \in S_{l p}$, then $\forall i: \partial S_{i}=\bigcup_{j \neq i} S_{i} \cap S_{j}$.

Proof. Using Lemma 2.2.10, and since the boundaries of the regions are the locations where affine functions agree, therefore, the boundaries are subsets
of hyperplanes. Let $x \in \partial S_{i}$, then $\left.x \in S_{i} \cap \overline{\left(\mathbb{R}^{m} \backslash S_{i}\right.}\right)$, then $\forall k \in \mathbb{N}$: $B\left(x, \frac{1}{k}\right) \cap \mathbb{R}^{m} \backslash S_{i} \neq \emptyset . \quad \forall k$ pick $x_{k} \in B\left(x, \frac{1}{k}\right) \cap \mathbb{R}^{m} \backslash S_{i} . \quad$ By Lemma 3.2.5, $E_{x, 1}$ is finite. Since $x_{k} \rightarrow x$ and $\left\{x_{k}\right\}_{k=1}^{\infty} \subset \bigcup_{r \in E_{x, 1} \backslash\{i\}} S_{r}$ there is a subsequence and an index $j \neq i$ such that $\left\{x_{k}\right\}_{k=1}^{\infty} \subset S_{j}$. Since $x_{k} \rightarrow x$ and S_{j} is closed, we have $x \in S_{j}$. Therefore, $x \in S_{i} \cap S_{j}$.

For the other inclusion, let $x \in S_{i} \cap S_{j}, i \neq j$. We will argue by conatrdiction by assuming that $x \notin \partial S_{i}$ but $x \in \operatorname{Int}\left(S_{i}\right)$. Therefore, $\exists \delta>0$ such that $B(x, \delta) \subset \operatorname{Int}\left(S_{i}\right)$. Since $\operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right)=\emptyset$, then $x \in \partial S_{j}$, therefore, $B(x, \delta) \cap \operatorname{Int}\left(S_{j}\right) \neq \emptyset \Rightarrow \operatorname{Int}\left(S_{i}\right) \cap \operatorname{Int}\left(S_{j}\right) \neq \emptyset$ which is a contradiction. Therefore, $x \in \partial S_{i}$.

Cells Induced by Hyperplanes formed by the Components of Locally
Piecewise Affine Functions: As shown in the previous chapter, there are finite number of cells induced by hyperplanes formed by the components of a piecewise affine function. In the case of locally piecewise affine functions, there are infinitely many cells and these cells are not necessarily open. Let $\left\{H_{e}\right\}_{e=1}^{\infty}$ be a family of countably (infinite) many hyperplanes such that $\forall e: H_{e}=\left\{x \in \mathbb{R}^{m} \mid v_{e} \cdot x+b_{e}=0\right\}$ where $v_{e} \in \mathbb{R}^{m}$ and $b_{e} \in \mathbb{R}$. Let $H_{e 1}$ and $H_{e 2}$ be the positive and negative parts according to Definition 2.2.9 respectively. Consider the set $D=\{+1,-1,0\}^{\infty}$. Let $\sigma: \mathbb{R}^{m} \rightarrow D$ be such that $\forall x \in \mathbb{R}^{m}: \sigma(x)=\left\{\operatorname{sgn}\left(v_{e} \cdot x+b_{e}\right)\right\}_{e=1}^{\infty}$. Denote $M=\operatorname{Range}(\sigma)$. Denote a vector $T=\left\{T_{e}\right\}_{e=1}^{\infty} \in M$ satisfying $\forall e: T_{e} \neq 0$ by a tope of M. The set of topes is not empty because each hyperplane is nowhere dense. Therefore, $\bigcup_{e=1}^{\infty} H_{e}$ is a meagre set and thus, using Baire Category Theorem, has empty interior implying that $\bigcup_{e=1}^{\infty} H_{e} \neq \mathbb{R}^{m}$. Therefore, $\exists x \in$ $\mathbb{R}^{m} \backslash \bigcup_{e=1}^{\infty} H_{e}$ and $\sigma(x)$ is a tope of M. Let M_{T} be the set of topes of M. Unlike the finite case, the set of topes is not necessarily finite. Since the set of hyperplanes is countably infinite, then, the cardinality of M_{T} is at most equal to the cardinality of the real numbers and by chosing an adequate ordering of the topes, then M_{T} can be viewed as a subset of \mathbb{R}. Let $\left\{T_{r}\right\}_{r \in M_{T}}$ be a representation of the topes. The sets $K_{r}=\left\{x \in \mathbb{R}^{m} \mid \sigma(x)=T_{r}\right\}$ define cells in \mathbb{R}^{m} induced by the family of hyperplanes independent of the orientation. Each cell K_{r} is not empty, convex but unlike the finite case, it is not necessarily open because it is the intersection of countably infinite
open and convex sets of the form $H_{e 1}$ and $H_{e 2}$. In addition, $\bigcup_{r \in M_{T}} K_{r}=$ $\mathbb{R}^{m} \backslash \bigcup_{e=1}^{\infty} H_{e}$ and $\overline{\bigcup_{r \in M_{T}} K_{r}}=\mathbb{R}^{m}$. Let $\left\{f_{i}\right\}_{i=1}^{\infty} \subset A$. By Lemma 2.2.10, the sets were these functions interest are either empty or are hyperplanes. Let $H_{l m}=\left\{x \in \mathbb{R}^{m} \mid f_{l}(x)=f_{m}(x)\right\}$ and let $E=\left\{(l, m) \mid H_{l m} \neq \emptyset\right\}$. Note that E is countable since if $f_{1}, f_{2}, f_{3}, \ldots$ are the affine functions, then the set made of the elements $H_{1,2}, H_{1,3}, H_{2,3}, H_{1,4}, H_{2,4}, H_{3,4}, H_{1,5}, H_{2,5}, H_{3,5}, H_{4,5}, \ldots$ is also countable. Define a representation for the topes and let $\left\{K_{r}\right\}_{r \in M_{T}}$ be the cells induced by the family of hyperplanes $\left\{H_{e}\right\}_{e=1}^{\infty}$ as defined above. These cells, by definition, are locations where the affine functions do not agree.

Lemma 3.2.8: Let $f \in S_{l p}$. Let $\left\{K_{r}\right\}_{r \in M_{T}}$ be the cells induced by the components $\left\{f_{i}\right\}_{i=1}^{\infty}$. Then, $\forall i \leq \infty, \forall r \in M_{T}, \forall x \in K_{r}$:

1. If $f(x)=f_{i}(x)$, then $\forall y \in K_{r}: f(y)=f_{i}(y)$.
2. If $f(x)<f_{i}(x)$, then $\forall y \in K_{r}: f(y)<f_{i}(y)$.
3. If $f(x)>f_{i}(x)$, then $\forall y \in K_{r}: f(y)>f_{i}(y)$.

Moreover, $\forall K_{r}: \exists!i_{r}$ such that $\forall x \in K_{r}: f(x)=f_{i_{r}}(x)$.

Proof. The moreoever part is a trivial outcome of the statement and the fact that the components are unique and do not agree on any cell K_{r}.

Let $x, y \in K_{r}$ be such that $f(x)=f_{i}(x)$ and $f(y)=f_{j}(y)$ for some $i \neq j$. Unlike Lemma 2.2.14, K_{r} is not necessarily open. Since the cell K_{r} is a set where none of the functions agree, then $f_{i}(x) \neq f_{j}(x)$ and $f_{i}(y) \neq f_{j}(y)$. Consider the set $C=\{x+\alpha(x-y) \mid 0 \leq \alpha \leq 1\} \subset K_{r} . C$ is compact and connected. By Lemma 3.2.2, $\left.f\right|_{C}$ agrees with a finite number of affine functions. Without loss of generality, we can assume that $\left.f\right|_{C}$ agrees with the two distinct functions f_{i} and f_{j}, otherwise, we can pick another point y close enough to x. Consider the function $g:[0,1] \rightarrow \mathbb{R}$ defined as $g(t)=f(x+$ $t(x-y)) . g(t)$ is a piecewise affine function with two distinct components $g_{1}(t)=f_{i}(x+t(x-y))$ and $g_{2}(t)=f_{j}(x+t(x-y))$ such that $f(x)=g_{1}(0)=$ $f_{i}(x) \neq g_{2}(0)=f_{j}(x)$ and $g_{1}(1)=f_{i}(y) \neq g_{2}(1)=f_{j}(y)=f(y)$. Therefore, $\exists 0<t<1$ such that $g_{1}(t)=g_{2}(t)=f_{i}(x+t(x-y))=f_{j}(x+t(x-y))$ which contradicts the fact that $\forall x \in K_{r}, \forall i \neq j: f_{i}(x) \neq f_{j}(x)$.

Let $x \in K_{r}$ be such that $f(x)>f_{i}(x)$. By the first part of the proof,
$\exists j \neq i$ such that $\forall y \in K_{r}: f_{j}(y)=f(y)$. Since $f_{j}(x)>f_{i}(x)$, therefore, $K_{r} \subset\left\{z \mid f_{j}(z)>f_{i}(z)\right\}$. Therefore, $\forall y \in K_{r}: f_{j}(y)=f(y)>f_{i}(x)$. The same holds if $f(x)<f_{i}(x)$.

Theorem 3.2.9: Let $f \in S_{l p}$ with components $\left\{f_{i}\right\}_{i=1}^{\infty}$. Let $\left\{K_{r}\right\}_{r \in M_{T}}$ be the cells generated by the components. Let $A_{i}=\bigcup\left\{K_{r} \mid \forall x \in K_{r}: f(x)=f_{i}(x)\right\}$. Let $O_{i}=\operatorname{Int}\left(\overline{A_{i}}\right)$. Then, $\left\{\left(\overline{O_{i}}, f_{i}\right)\right\}_{i=1}^{\infty}$ are exactly the characteristic pairs of f.

Proof. First notice that if O_{i} is empty, then we can remove f_{i} and renumber the components. By setting $V=\mathbb{R}^{m}$ in Lemma 3.2.4 then $\exists \delta>0, x \in \mathbb{R}^{m}$, and f_{i} such that $\left.\left.f\right|_{B(x, \delta)} \equiv f_{i}\right|_{B(x, \delta)}$. Therefore, $B(x, \delta) \subset A_{i} \cup \bigcup_{e=1}^{\infty} H_{e}$ and since $\bigcup_{e=1}^{\infty} H_{e}$ is a meagre set, therefore, $O_{i} \neq \emptyset$. We need to show that $\overline{O_{i}}$ as defined here satisfy the five conditions of Lemma 3.2.5, implying that $S_{i}=\overline{O_{i}}$.

Condition 5 is straightforward since f and f_{i} are continuous, so $\left.\left.f\right|_{\overline{O_{i}}} \equiv f_{i}\right|_{\overline{O_{i}}}$. For condition 1 , by construction $O_{i} \neq \emptyset$, therefore $\forall i: \operatorname{Int}\left(\overline{O_{i}}\right) \neq \emptyset$. Since O_{i} is open, then $O_{i} \subset \operatorname{Int}\left(\overline{O_{i}}\right)$ and therefore, $\overline{O_{i}} \subset \overline{\operatorname{Int}\left(\overline{O_{i}}\right)} \subset \overline{O_{i}}$. For condition 2 , since f is a locally piecewise affine function, then f agrees with a finite number of components say $\left\{f_{k}\right\}_{k=1}^{m}$ on every compact set $\overline{B(x, \delta)}$ and the corresponding sets $\left\{A_{k}\right\}_{k=1}^{m}$ are dense in $\overline{B(x, \delta)}$. Therefore, $E_{x, \delta}=\{j \in$ $\left.\mathbb{N} \mid \overline{O_{i}} \cap B(x, \delta) \neq \emptyset\right\}$ is finite and not empty. For condition 3, notice that the set $A=\operatorname{Int}\left(\overline{O_{i}}\right) \cap \operatorname{Int}\left(\overline{O_{j}}\right)$ is open. Let $x \in A$. Therefore, $\exists \delta>0$ such that $\forall y \in B(x, \delta): f(y)=f_{i}(y)=f_{j}(y)$. By Lemma 2.2.2, therefore, $f_{i} \equiv f_{j}$ and $\overline{O_{i}}=\overline{O_{j}}$. For condition 4 , we will argue by contradiction. Assume that $\exists x$ such that $\forall i: x \notin \overline{O_{i}}$ which means $\forall i: \exists \delta_{i}$ such that $B\left(x, \delta_{i}\right) \cap O_{i}=\emptyset$. Pick $\delta>0$ then $E_{x, \delta}$ is finite and clearly not empty. Therefore, \exists at most $m \in \mathbb{N}$ with $m>0$ such that $\forall i \leq m: B(x, \delta) \cap O_{i} \neq \emptyset$. Pick $\delta_{0}<\min _{1 \leq i \leq m}\left\{\delta_{i}\right\}$ then $\forall j \in \mathbb{N}: B\left(x, \delta_{0}\right) \cap O_{j}=\emptyset$. By setting $V=B\left(x, \delta_{0}\right)$ in Lemma 3.2.4, $\exists \delta_{s}>0, \delta_{s} \leq \delta_{0}, y \in B(x, \delta)$, and f_{i} such that $\left.\left.f\right|_{B\left(y, \delta_{s}\right)} \equiv f_{i}\right|_{B\left(y, \delta_{s}\right)}$. Therefore, $B\left(y, \delta_{s}\right) \subset A_{i} \cup \bigcup_{e=1}^{\infty} H_{e}$, therefore, $B(x, \delta) \cap O_{i}=B(x, \delta) \cap \operatorname{Int}\left(\overline{A_{i}}\right) \neq \emptyset$ which is a contradiction.

Lemma 3.2.10: Let $f \in S_{l p}$ with components $\left\{f_{i}\right\}_{i=1}^{\infty}$, then $\forall a, b \in \mathbb{R}^{m}, \exists i$ such that $f_{i}(a) \leq f(a)$ and $f_{i}(b) \geq f(b)$.

Proof. Let $h:[0,1] \rightarrow \mathbb{R}^{m}$ be such that $\forall t \in[0,1]: h(t)=a+t(b-a)$. Let $g=f \circ h$, i.e., $g(t)=f(a+t(b-a))$. Since the set $C=\{a+t(b-$ $a)) \mid 0 \leq t \leq 1\}$ is compact, therefore, $f: C \rightarrow \mathbb{R}$ is a piecewise affine function (continuous and agrees with a finite number of affine functions $\left\{f_{i}\right\}_{i=1}^{k}$ on $\left.C\right)$. Therefore, $\forall i: g_{i} \equiv f_{i} \circ h$ is an affine function, indeed: $f_{i}(a+t(b-a))=v_{i} \cdot a+t\left((b-a) \cdot v_{i}\right)+b_{i}=m_{i} t+c_{i}$ where $m_{i}=(b-a) \cdot v_{i}$ and $c_{i}=b_{i}+v_{i} \cdot a$. Therefore, $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function and agrees with the affine functions $\left\{g_{i}\right\}_{i=1}^{n}$. Then, by Theorem 2.2.6 and Corollary 2.2.13, g is a piecewise affine function. By Corollary 2.1.9 $\exists i \leq n$ such that $g_{i}(0)=f_{i}(a) \leq g(0)=f(a)$ and $g_{i}(1)=f_{i}(b) \geq g(1)=f(b)$.

Remark:

In Theorem 2.2.17, it was shown that piecewise affine functions are elements of the lattice generated by the components. Extending this theorem to locally piecewise affine functions requires taking infinite pointwise supremums and infimums of affine functions. In general, taking infinite pointwise sups and infs is not guaranteed to give continuous functions since $C\left(\mathbb{R}^{m}\right)$ is not Dedekind complete! At the same time, it is trivial to show that any continuous function is the pointwise supremum and/or infimum of affine functions. Therefore, no useful extension to Theorem 2.2.17 was found for locally piecewise affine functions.

Chapter 4

Order Convergence and Order Structures for Piecewise Affine Functions

In the first part of this chapter, the various definitions of order convergence that exist in the literature are investigated. Then, it is shown that two definitions agree on the space of continuous functions $C\left(\mathbb{R}^{m}\right)$. In the second part, the order structure of S and $S_{l p}$ as subspaces of $C\left(\mathbb{R}^{m}\right)$ and with respect to each other is investigated.

4.1 Order Convergence

Definition 4.1.1: Order Convergence I in Partially Ordered Sets: Let E be a partially ordered set and let $\left\{f_{\alpha}\right\} \subset E$ be a net, we say that f_{α} converges in order (I) to $f \in E$ and write $f_{\alpha} \xrightarrow{o 1} f$ if $\exists\left\{h_{\beta}\right\},\left\{g_{\gamma}\right\} \subset E$ such that $h_{\beta} \downarrow f, g_{\gamma} \uparrow f$, and $\forall \beta, \gamma: \exists \alpha_{0}(\beta, \gamma)$ such that $\forall \alpha \geq \alpha_{0}$ we have $g_{\gamma} \leq f_{\alpha} \leq h_{\beta}$.

Proposition 4.1.2: Order Convergence I in Vector Lattices: Let E be a vector lattice and let $\left\{f_{\alpha}\right\} \subset E$ be a net, then $f_{\alpha} \xrightarrow{o 1} f$ if and only if $\exists\left\{k_{\beta}\right\} \subset E$ such that $k_{\beta} \downarrow 0$ and $\forall \beta: \exists \alpha_{0}(\beta)$ such that $\forall \alpha \geq \alpha_{0}$ we have $\left|f_{\alpha}-f\right| \leq k_{\beta}$.

Proof. For the first direction, assume $f_{\alpha} \xrightarrow{o 1} f$. Therefore, $\exists\left\{h_{\beta}\right\},\left\{g_{\gamma}\right\} \subset E$ such that $h_{\beta} \downarrow f$ and $g_{\gamma} \uparrow f$ and $\forall \beta, \gamma: \exists \alpha_{0}(\beta, \gamma)$ such that $\forall \alpha \geq \alpha_{0}$ we have $g_{\gamma} \leq f_{\alpha} \leq h_{\beta}$. Let $x_{\beta}=\left(h_{\beta}-f\right), y_{\gamma}=\left(f-g_{\gamma}\right)$, and $k_{\beta, \gamma}=x_{\beta} \vee y_{\gamma}$. Clearly, $0 \leq k_{\beta, \gamma}$ and $\forall \beta: k_{\beta, \gamma} \downarrow$ and $\forall \gamma: k_{\beta, \gamma} \downarrow$. Claim: $0=\inf _{\beta, \gamma}\left\{x_{\beta} \vee y_{\gamma}\right\}$. Proof: Using the vector lattice identities: $\forall \beta, \gamma: 0 \leq x_{\beta} \vee y_{\gamma},-\left(x_{\beta} \wedge y_{\gamma}\right) \leq 0$, and $x_{\beta}+y_{\gamma}=x_{\beta} \vee y_{\gamma}+x_{\beta} \wedge y_{\gamma}$. Let t be another lower bound of $x_{\beta} \vee y_{\gamma}$, i.e., $\forall \beta, \gamma: t \leq x_{\beta} \vee y_{\gamma} \leq x_{\beta}+y_{\gamma}-x_{\beta} \wedge y_{\gamma} \leq x_{\beta}+y_{\gamma}$. Therefore, $\forall \beta, \gamma: t-x_{\beta} \leq$ $y_{\gamma} \Rightarrow t-x_{\beta} \leq 0 \Rightarrow t \leq x_{\beta} \Rightarrow t \leq 0$ and the claim is proved.

Fix β, γ, then $\forall \alpha \geq \alpha_{0}:\left(f_{\alpha}-f\right) \leq x_{\beta}$ and $\left(f-f_{\alpha}\right) \leq y_{\gamma}$, therefore, $\left|f_{\alpha}-f\right| \leq k_{\beta, \gamma}$. We can combine the net with indices β and γ such that we have one net with index $\lambda=(\beta, \gamma)$ with the natural partial order of \mathbb{R}^{2}. Therefore, $k_{\lambda} \downarrow 0$ and the first direction is proved.

For the opposite direction, assume $\exists\left\{k_{\beta}\right\} \subset E$ such that $k_{\beta} \downarrow 0$ and $\forall \beta$: $\exists \alpha_{0}(\beta)$ such that $\forall \alpha \geq \alpha_{0}$ we have $\left|f_{\alpha}-f\right| \leq k_{\beta}$. Let $h_{\beta}=k_{\beta}+f$ and $g_{\beta}=-k_{\beta}+f$ we have $\forall \alpha \geq \alpha_{0}(\beta): f_{\alpha}-f \leq k_{\beta} \Rightarrow f_{\alpha} \leq k_{\beta}+f=h_{\beta}$ and $f-f_{\alpha} \leq k_{\beta} \Rightarrow-k_{\beta}+f \leq f_{\alpha}$. Therefore, $g_{\beta} \leq f_{\alpha} \leq h_{\beta}$ with $g_{\beta}=-k_{\beta}+f \uparrow f$ and $h_{\beta}=k_{\beta}+f \downarrow f$. Therefore, $f_{\alpha} \xrightarrow{o 1} f$.

Remark:

It is important to note that we have two different index sets for f_{α} and k_{β} so that convergence wouldn't be altered if we add more terms at the beginning of the net f_{α} [5]. See [5] for examples showing that Definition 4.1.1 allows for adding more terms at the beggining of the net f_{α} without altering convergence. The following is another "stronger" definition for order convergence according to [6]:

Definition 4.1.3: Order Convergence II in Partially Ordered Sets:

Let E be a partially ordered set and let $\left\{f_{\alpha}\right\} \subset E$ be a net, we say that f_{α} converges in order (II) to $f \in E$ and write $f_{\alpha} \xrightarrow{o 2} f$ if $\exists\left\{h_{\alpha}\right\},\left\{g_{\alpha}\right\} \subset E$ such that $h_{\alpha} \downarrow f, g_{\alpha} \uparrow f$, and $\forall \alpha$ we have $g_{\alpha} \leq f_{\alpha} \leq h_{\alpha}$.

Proposition 4.1.4: Order Convergence II in Vector Lattices: Let E be a vector lattice and let $\left\{f_{\alpha}\right\} \subset E$ be a net, then $f_{\alpha} \xrightarrow{o 2} f$ if and only if
$\exists\left\{k_{\alpha}\right\} \subset E$ such that $k_{\alpha} \downarrow 0$ and $\forall \alpha$ we have $\left|f_{\alpha}-f\right| \leq k_{\alpha}$.

Proof. The proof is analogous to that of proposition 4.1.2.

Clearly from the definitions, order convergence II leads to order convergence I. In addition, [7] showed that there are two conditions that guarantee that order convergence I and order convergence II are equivalent. The first condition is that f_{α} has to be bounded and the second is that the set E has to be Dedekind complete. The importance of the boundedness of the net f_{α} is crucial as can be shown when considering $E=C(\mathbb{R})$. Consider the sets $A_{1}=\{(x, 0) \mid x \in \mathbb{N}\}$ and $A_{2}=\{(0, y) \mid y \in \mathbb{N}\}$. Consider the set $A=A_{1} \cup A_{2}$ with the dictionary (lexicographical) order. A is a directed set. Consider the net $\left\{f_{(x, y) \in A}\right\} \subset C(\mathbb{R})$ such that $f_{(x, y)} \equiv y$. Clearly, $f_{(x, y)}$ does not order converge (II) since the beginning of the net is unbounded. However, the net order converges (I) to the function $f \equiv 0$. Some authors [5] and [2] use the following modified version of order convergence II to allow for the exclusion of the "beginning" of a net:

Definition 4.1.5: Modified Order Convergence II in Partially Or-

 dered Sets: Let E be a partially ordered set and let $\left\{f_{\alpha}\right\} \subset E$ be a net, we say that f_{α} converges in order (mII) to $f \in E$ and write $f_{\alpha} \xrightarrow{\text { mo2 }} f$ if $\exists\left\{h_{\alpha}\right\},\left\{g_{\alpha}\right\} \subset E$ such that $h_{\alpha} \downarrow f, g_{\alpha} \uparrow f$, and $\exists \alpha_{0}$ such that $\forall \alpha \geq \alpha_{0}$ we have $g_{\alpha} \leq f_{\alpha} \leq h_{\alpha}$.
Proposition 4.1.6: Modified Order Convergence II in Vector Lattices:

Let E be a vector lattice and let $\left\{f_{\alpha}\right\} \subset E$ be a net, then $f_{\alpha} \xrightarrow{m o 2} f$ if and only if $\exists\left\{k_{\alpha}\right\} \subset E$ such that $k_{\alpha} \downarrow 0$ and $\exists \alpha_{0}$ such that $\forall \alpha \geq \alpha_{0}$ we have $\left|f_{\alpha}-f\right| \leq k_{\alpha}$.

Proof. The proof is analogous to that of proposition 4.1.2.

Note that for bounded nets, modified order convergence (II) is equivalent to order convergence (II). [5] proved that if $f_{\alpha} \xrightarrow{o 1} f$ in a vector lattice E, then $f_{\alpha} \xrightarrow{m o 2} f$ in E^{δ} where E^{δ} is the order completion of E. Notice as well that in the above example, $f_{(x, y)} \xrightarrow{m o 2} 0$.

There are examples given by [5] and [2] that show that modified order convergence (II) and order convergence (I) are not equivalent, i.e., even for bounded nets, order convergence (II) and order convergence (I) are not necessarily equivalent. However, [2] proved that order convergence (I) and modified order convergence (II) are equivalent when the partially ordered set E possess a special property which they named: "Property B". A more modern term is: "Countable Sup Property" as defined by [8] for vector lattices. We will use the modern term for the definitions.

Definition 4.1.7: Countable Sup Property in Partially Ordered Sets:
Let E be a partially ordered set. E possesses the countable sup property if and only if:(a) if $\emptyset \neq M \subset E$ is increasing, with $\sup M=y$, then, $\exists J \subset M$ such that J is increasing, countable and $\sup J=y$, and (b) if $\emptyset \neq M \subset E$ is decreasing, with $\inf M=y$, then, $\exists J \subset M$ such that J is decreasing, countable and inf $J=y$.

Proposition 4.1.8: Countable Sup Property in Vector Lattices: Let E be a vector lattice. E possesses the countable sup property if and only if for every net $\left\{x_{\alpha}\right\} \subset E$ with $x_{\alpha} \uparrow x \in E$, there exists a subsequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset E$ such that $x_{n} \uparrow x$.

Proof. The proof is straightforward using the definitions.
Note that the set \mathbb{R} as a vector lattice has the countable sup property. If $\left\{x_{\alpha}\right\} \uparrow x \in \mathbb{R}$, then $\forall n \in \mathbb{N}: \exists x_{n} \in\left\{x_{\alpha}\right\}$ such that $x-\frac{1}{n}<x_{n} \leq x$ and $x_{n} \geq x_{n-1}$. The following Theorem (Theorem 8.22 in [9]) is important in identifying spaces that have the countable sup property.

Theorem 4.1.9: If a vector lattice E admits a strictly positive linear functional, then E is Archimedean and has the countable sup property.

Proof. Let f^{*} be a strictly positive linear functional on E. Let $a, b \in E$ be such that $a \neq 0$ and $\forall n: 0 \leq b \leq \frac{a}{n}$. Therefore, $0 \leq f^{*}(b) \leq \frac{f^{*}(a)}{n}$. Since \mathbb{R} is Archimedean, therefore, $f^{*}(b)=0$ and since f^{*} is strictly positive, we have $b=0$. Therefore, E is Archimedean.

Let $\left\{x_{\alpha}\right\} \subset E$ be an increasing net with $x_{\alpha} \uparrow x \in E$. Since f^{*} is strictly positive, we have $f^{*}\left(x_{\alpha}\right) \uparrow$ and bounded by $f^{*}(x)$. Since $\left\{f^{*}\left(x_{\alpha}\right)\right\}$ is a
bounded increasing net in \mathbb{R}, then it has a least upper bound. Let $s=$ $\sup _{\alpha}\left\{f^{*}\left(x_{\alpha}\right)\right\}$. Since \mathbb{R} has the countable sup property, then $\exists\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $f^{*}\left(x_{n}\right) \uparrow s$ and $x_{n} \uparrow$. Note that $\forall \alpha, \forall n: f^{*}\left(x_{\alpha}\right) \vee f^{*}\left(x_{n}\right) \leq f^{*}\left(x_{\alpha} \vee x_{n}\right)$ and since $x_{\alpha} \vee x_{n} \subset\left\{x_{\alpha}\right\}$ we have $\sup _{n}\left\{f^{*}\left(x_{\alpha} \vee x_{n}\right)\right\}=s$. We claim that $x_{n} \uparrow x$. Indeed, let $x_{n} \leq g \in E$. Therefore, $f^{*}\left(x_{n}\right) \leq f^{*}(g)$. Also, $\forall \alpha: 0=$ $f^{*}(0) \leq f^{*}\left(\left(x_{\alpha}-g\right) \vee 0\right) \leq f^{*}\left(\left(x_{\alpha}-x_{n}\right) \vee 0\right)=f^{*}\left(x_{\alpha} \vee x_{n}\right)-f^{*}\left(x_{n}\right) \xrightarrow{n \rightarrow \infty}$ $s-s=0$. Since f^{*} is strictly positive, therefore, $\left(x_{\alpha}-g\right) \vee 0=0$. i.e., $x_{\alpha} \leq g$. Therefore, g is also an upper bound for $\left\{x_{\alpha}\right\}$, therefore, $g \geq x$. Therefore, $x_{n} \uparrow x$.

Corollary 4.1.10: Let $x_{1}<x_{2} \in \mathbb{R}$. Then, $C\left(\left[x_{1}, x_{2}\right]\right)$ possesses the countable sup property.

Proof. Since the Rieman integral operator is a strictly positive functional on $C\left(\left[x_{1}, x_{2}\right]\right)$, then by Theorem 4.1.9, $C\left(\left[x_{1}, x_{2}\right]\right)$ possesses the countable sup property.

Now that we have shown that $\forall x_{1}<x_{2} \in \mathbb{R}: C\left(\left[x_{1}, x_{2}\right]\right)$ possesses the countable sup property, we wish to extend this to show that $C(\mathbb{R})$ also possesses the countable sup property.

Lemma 4.1.11: Let $\left\{f_{\alpha}\right\}_{\alpha \in \Gamma} \subset C\left(\mathbb{R}^{m}\right)$ be an increasing net with $\sup _{\alpha}\left\{f_{\alpha}\right\}=$ $f \in C\left(\mathbb{R}^{m}\right)$. Let $n \in \mathbb{N}$ and consider the interval $I_{n}=[-n, n]$ and $K=$ $\left(I_{n}\right)^{m}$. The restriction of the continuous functions $\left\{f_{\alpha}\right\}$ on $C(K)$ satisfy $\sup _{\alpha}\left\{\left.f_{\alpha}\right|_{K}\right\}=\left.f\right|_{K}$ where $\sup _{\alpha}\left\{\left.f_{\alpha}\right|_{K}\right\} \in C(K)$.

Proof. We will argue by contradiction. Assume $\exists g \in C(K)$ such that $\sup _{\alpha}\left\{\left.f_{\alpha}\right|_{K}\right\}=$ $\left.g\right|_{K}$ and $\left.g\right|_{K}<\left.f\right|_{K}$. If $\left.g\right|_{\partial K}=\left.f\right|_{\partial K}$ then the function:

$$
\tilde{g}(x)= \begin{cases}g(x), & x \in K \\ f(x), & \text { Otherwise }\end{cases}
$$

is such that $\tilde{g} \in C\left(\mathbb{R}^{m}\right), \tilde{g}<f$ and is an upper bound for $\left\{f_{\alpha}\right\}$ which is a contradiction.

Assume then that $\exists x_{0} \in \partial K$ such that $g\left(x_{0}\right)<f\left(x_{0}\right)$. Let $\varepsilon=f\left(x_{0}\right)-$ $g\left(x_{0}\right)$. Since both g and f are continuous, $\exists \delta_{0}>0$ such that $\forall x \in B\left(x_{0}, \delta_{0}\right) \cap$
$K:\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon / 4,\left|g(x)-g\left(x_{0}\right)\right| \leq \varepsilon / 4$, and therefore, $f(x)>g(x)$. Since $x_{0} \in \partial K$, then $B\left(x_{0}, \delta_{0}\right) \cap \operatorname{Int}(K) \neq \emptyset$, therefore, $\exists \delta_{1}>0, x_{1} \in$ $B\left(x_{0}, \delta_{0}\right) \cap \operatorname{Int}(K)$ such that $B\left(x_{1}, \delta_{1}\right) \subset B\left(x_{0}, \delta_{0}\right) \cap \operatorname{Int}(K)$. Notice that $\forall x \in B\left(x_{1}, \delta_{1}\right), \forall \alpha: f(x)>g(x)>f_{\alpha}(x)$. Consider the function:

$$
\tilde{g}(x)= \begin{cases}g(x)-\frac{\left\|x-x_{1}\right\|}{\delta_{1}}(g(x)-f(x)) & x \in B\left(x_{1}, \delta_{1}\right) \\ f(x), & \text { Otherwise }\end{cases}
$$

$\tilde{g} \in C(\mathbb{R}), \tilde{g}<f$ and is an upper bound for $\left\{f_{\alpha}\right\}$ which is a contradiction.

Theorem 4.1.12: $C(\mathbb{R})$ possesses the countable sup property.

Proof. Let $\left\{f_{\alpha}\right\} \subset C(\mathbb{R})$ be a net such that $f_{\alpha} \uparrow f \in C(\mathbb{R})$. By Lemma 4.1.11 $\sup _{\alpha}\left\{\left.f_{\alpha}\right|_{I_{n}}\right\}=\left.f\right|_{I_{n}}$. By Corollary 4.1.10, there exists a countable sequence $\left\{\left.f_{n_{m}}\right|_{I_{n}}\right\}_{m=1}^{\infty}$ such that $\left.\left.f_{n_{m}}\right|_{I_{n}} \uparrow f\right|_{I_{n}}$. Since \mathbb{R} is a countable union $\mathbb{R}=$ $\bigcup_{n=1}^{\infty} I_{n}$ then we can construct a sequence of functions $\left\{f_{\beta_{i}}\right\}_{i=1}^{\infty}$ such that $f_{\beta_{i}} \uparrow f$ as follows: Let $f_{\beta_{1}}=f_{1_{1}}$. Let $f_{\beta_{2}}$ be such that $f_{\beta_{2}} \geq\left\{f_{1_{2}}, f_{2_{1}}, f_{\beta_{1}}\right\}$. Let $f_{\beta_{n}}$ be such that $f_{\beta_{n}} \geq\left\{f_{1_{n}}, f_{2_{n-1}}, f_{3_{n-2}}, \ldots, f_{n_{1}}, f_{\beta_{n-1}}\right\}, \ldots$ etc. Clearly, $f_{\beta_{i}} \uparrow f$ otherwise, there is another continuous function $f_{2}<f$ such that it is an upper bound of $f_{\beta_{i}}$. However, for every interval $I_{n}=[-n, n]:\left.f_{\beta_{i}}\right|_{I_{n}} \uparrow f_{I_{n}}$ which contradicts that $f_{\beta_{i}} \leq f_{2}<f$.

Corollary 4.1.13: Let $\left\{f_{\alpha}\right\} \subset C(\mathbb{R})$ be a net and $f \in \mathbb{C}(\mathbb{R})$. Then $f_{\alpha} \xrightarrow{o 1}$ $f \Leftrightarrow f_{\alpha} \xrightarrow{m o 2} f$.

Proof. By Theorem 4.1.12, $C(\mathbb{R})$ possesses the countable sup property. Therefore, using the main result of [2], order convergence (I) and modified order convergence (II) are equivalent on $C(\mathbb{R})$.

Corollary 4.1.14: Let $\left\{f_{\alpha}\right\} \subset C(\mathbb{R})$ be a bounded net and $f \in \mathbb{C}(\mathbb{R})$. Then $f_{\alpha} \xrightarrow{o 1} f \Leftrightarrow f_{\alpha} \xrightarrow{o 2} f$.

Proof. By Theorem 4.1.12, $C(\mathbb{R})$ possesses the countable sup property. Therefore, using the main result of [2], order convergence I and modified order
convergence (II) are equivalent on $C(\mathbb{R})$, but since the net is bounded, then, modified order convergence (II) is equivalent to order convergence (I).

Remark:

Corollary 4.1.10 can be extended naturally to $C\left(I_{1} \times I_{2} \times I_{3} \times \cdots \times I_{m}\right)$ where $\forall i \leq m: I_{i}=\left[x_{i 1}, x_{i 2}\right] \subset \mathbb{R}$. In addition, Theorem 4.1.12 and Corollaries 4.1.13 and 4.1.14 can be extended naturally to $C\left(\mathbb{R}^{m}\right)$ by considering the compact sets $K=I_{n} \times I_{n} \times \cdots \times I_{n}=\left(I_{n}\right)^{m}$ with $I_{n}=[-n, n]$.

4.2 Order Structure for S and $S_{l p}$

In this section we present three different definitions available in the literature for order dense subspaces in a vector lattice. Since we are concerned with $C\left(\mathbb{R}^{m}\right)$, the definitions given here, when applicable, will utilize the modified order convergence (II) in vector lattices as per Definition 4.1.6. We will then investigate S and $S_{l p}$ with respect to each other and as as subspaces of $C\left(\mathbb{R}^{m}\right)$.

Definition 4.2.1: Toplogically Order Dense: Let $A \subset E$ where E is a vector lattice. A is topologically order dense in E if $\forall x \in E: \exists\left\{y_{\alpha}\right\} \subset A$ such that $y_{\alpha} \xrightarrow{m o 2} x$.

Definition 4.2.2: Order Dense Minorizing Sublattice: Let A be a sublattice of a vector lattice $E . A$ is an order dense minorizong sublattice in E if $\forall x \in E^{+}, \exists y \in A$ such that $0<y \leq x$.

Definition 4.2.3: Interval Order Dense: Let $A \subset E$ where E is a vector lattice. A is interval order dense in E if $\forall x<y \in E, \exists z \in A$ such that $x<z<y$. This definition is motivated by the fact that an order on a partially ordered set E is termed a "dense order" if $\forall x<y \in E: \exists z \in E$ such that $x<z<y$.

Remarks:

- S is not interval order dense in $C(\mathbb{R})$. Consider the functions $f_{1}(x)=$ $\sin x$ and $f_{2}(x)=0.9 \sin x$. Obviously, it is not possible to fit a piecewise affine function between the two curves due to the periodic nature of the functions.
- $S_{l p}$ is not interval order dense in $C(\mathbb{R})$. Consider any two functions $f_{1}<f_{2}$ that are nonlinear and equal on $\mathbb{R} \backslash I$, where I is a compact interval and $\left.f_{1}\right|_{I}<\left.f_{2}\right|_{I}$. Then, it is not possible to fit a locally finite piecewise affine function between the two curves on the portion where $f_{1}=f_{2}$.

Lemma 4.2.4: Interval order dense is a stronger condition than order dense minorizing sublattice. In other words, let A be a sublattice of a vector lattice E. Assume A is an interval order dense set, then A is an order dense minorizing sublattice in E.

Proof. Assume A is an interval order dense set. Therefore, $\forall 0<x \in E^{+}$: $\exists z \in A$ such that $0<z<x$. Therefore, A is an order dense minorizing sublattice.

Lemma 4.2.5: (From problem 6: page 66. in [7]): Assume E is an Archimedean vector lattice. A is a sublattice. A is an order dense minorizing sublattice in E if and only if $\forall x \in E^{+},\{y \in A \mid 0<y \leq x\} \uparrow x$.

Proof. : Assume $\forall x \in E^{+},\{y \in A \mid 0<y \leq x\} \uparrow x$. Therefore, $\exists y_{0} \in A$ such that $0<y_{0} \leq x$. Therefore, A is an order dense minorizong sublattice. For the opposite direction, assume A is an order dense minorizong sublattice in E. Let $C=\{y \in A \mid 0<y \leq x\}$. Therefore, $x \geq C$ and $C \neq \emptyset$. Assume that x is not the least upper bound of C, therefore, $\exists z<x$ such that $z \geq C$. Let $u=x-z$. Note that $x>u=x-z>0$. Therefore, $\exists v \in A$ such that $0<v \leq u=x-z<x$. Therefore, $v \in C$ and $v \leq z$. Therefore, $v+v \leq u+z=x$. The proof follows by induction. First fix n and assume $n v \leq x$. Therefore, $n v \in C$ and $n v \leq z$. We also have $v \leq u$. Therefore, $v+n v \leq u+z \leq x \Rightarrow(1+n) v \leq x$. Therefore, $\forall n: 0<n v \leq x$ and since E is Archimedean, $v=0$ which is a contradiction.

Lemma 4.2.6: In Archimedean spaces: Order dense minorizong sublattice is a stronger condition than topologically order dense. In other words, let A be a sublattice in an Archimedean vector lattice E. Assume A is an order dense minorizing sublattice of E, then A is topologically order dense in E.

Proof. Assume A is an order dense minozirong sublattice of E. By Lemma 4.2.5, $\forall 0<x \in E^{+}$the set $C=\{z \in A \mid 0<z \leq x\} \uparrow x$. Therefore, $\exists\left\{y_{\alpha}\right\} \subset A$ such that $y_{\alpha} \xrightarrow{m o 2} x$. Now let $x \in E$. Therefore, $x=x^{+}-x^{-}$. Therefore, $\exists\left\{y_{\alpha}\right\} \subset A$ and $\exists\left\{z_{\beta}\right\} \subset A$ such that $\left\{y_{\alpha}\right\} \uparrow x^{+}$and $\left\{z_{\beta}\right\} \uparrow x^{-}$. Therefore, $\left|y_{\alpha}-z_{\beta}-x^{+}+x^{-}\right| \leq\left|y_{\alpha}-x^{+}\right|+\left|z_{\beta}-x^{-}\right| \downarrow 0$, therefore, $y_{\alpha}-z_{\beta} \xrightarrow{m o 2} x$.

Remark

In general, an order dense minorizong sublattice is not equivalent to a toplogically order dense sublattice. As a counter example, consider the space $A=C[0,1]+G$ where $G=\{f:[0,1] \rightarrow \mathbb{R} \mid\{x \mid f(x) \neq 0\}$ is finite $\}(G$ is the set of real valued functions on $[0,1]$ with finite support), then $C[0,1]$ is a topologically order dense sublattice in A. However, it is not order dense minorizing since the function

$$
g(t)= \begin{cases}1, & t=\frac{1}{2} \\ 0, & \text { Otherwise }\end{cases}
$$

is such that $g \in A^{+}$but \exists no function $f \in C[0,1]^{+}$such that $f \leq g$. This last example shows that, in general, a topologically order dense sublattice is not necessarily an order dense minorizong sublattice. However, an interesting question is to check whether a toplogically order dense sublattice in $C\left(\mathbb{R}^{m}\right)$ is necessarily an order dense minorizinong sublattice. While we were not able to answer this question, here are some results regarding order convergence and topologically order dense sublattices in $C\left(\mathbb{R}^{m}\right)$.

Lemma 4.2.7: Let $D \subset C\left(\mathbb{R}^{m}\right)$ be a topologically order dense sublattice. Then, the set $A=\{x \mid \forall f \in D: f(x)=0\}$ is closed and nowhere dense.

Proof. A is closed is straightforward from the continuity of the functions in D since if $x_{n} \xrightarrow{n \rightarrow \infty} x$ where $x_{n} \in A$, then $\forall f \in D: f\left(x_{n}\right)=0 \xrightarrow{n \rightarrow \infty} f(x)$. Therefore, $f(x)=0$. Therefore, $x \in A$. To show that it is nowhere dense, we will argue by contradiction. Assume that $\operatorname{Int}(A) \neq \emptyset$. Therefore, $\exists \delta>0$ and $x \in \mathbb{R}^{m}$ such that $B(x, \delta) \in A$. Consider the function:

$$
g(t)= \begin{cases}1-\frac{\|t-x\|}{\delta}, & t \in B(x, \delta) \\ 0, & \text { Otherwise }\end{cases}
$$

Then, g is continuous. However, there is no sequence (or net) in A that would converge in order (modified order converge II) to g since $\forall f \in D$: $|f|_{B(x, \delta)}-\left.g\right|_{B(x, \delta)}|=g|_{B(x, \delta)}$.

Lemma 4.2.8: Let $f_{\alpha} \downarrow 0$ in $C\left(\mathbb{R}^{m}\right)$, be such that $\exists x \in \mathbb{R}^{m}$ such that $\inf _{\alpha} f_{\alpha}(x)>0$, then the function $g(y)=\inf _{\alpha} f_{\alpha}(y)$ is not continuous at x.

Proof. Since $f_{\alpha} \downarrow 0$, then, $\forall h \in C\left(\mathbb{R}^{m}\right)^{+}: \exists x_{h} \in \mathbb{R}^{m}$ and β such that $f_{\beta}\left(x_{h}\right) \leq$ $h\left(x_{h}\right)$. Let $\varepsilon=g(x)$. Consider the sequence of functions:

$$
g_{n}(t)= \begin{cases}\frac{\varepsilon}{n}\left(1-\frac{\|t-x\|}{\frac{1}{n}}\right), & t \in B\left(x, \frac{1}{n}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

then, $\forall n \in \mathbb{N}: \exists x_{n}$ and β_{n} such that $f_{\beta_{n}}\left(x_{n}\right) \leq g_{n}\left(x_{n}\right) \leq \varepsilon / n$. Therefore, $x_{n} \xrightarrow{n \rightarrow \infty} x$, however, $g\left(x_{n}\right)=\inf _{\alpha} f_{\alpha}\left(x_{n}\right) \leq f_{\beta_{n}}\left(x_{n}\right) \xrightarrow{n \rightarrow \infty} 0 \neq g(x)=$ $\inf _{\alpha} f_{\alpha}(x)=\varepsilon$.

Conjectures

- Let $B \subset C\left(\mathbb{R}^{m}\right)$ be a sublattice. Then, B is order dense minorizing if and only if B is topologically order dense.
- Let $f_{n} \downarrow 0$ in $C\left(\mathbb{R}^{m}\right)$, then the set $A=\left\{x \in \mathbb{R}^{m} \mid \inf _{n} f_{n}(x)>0\right\}$ does not contain an open ball.

Lemma 4.2.9: S is an order dense minorizing sublattice in $C(\mathbb{R})$.

Proof. Let $f \in C(\mathbb{R})$ be such that $f>0$. Therefore, $\exists x \in \mathbb{R}$ such that $f(x)=a>0$. Let $\varepsilon=\frac{a}{2}$, then $\exists \delta>0$ such that $\forall y$ with $|x-y| \leq \delta$ we have $f(y) \geq \frac{a}{2}$. Consider the compact interval $K=[x-\delta, x+\delta]$. Set $x_{1}=x-\delta$ and $x_{2}=x+\delta$. Consider the function

$$
g(h)= \begin{cases}\frac{a}{2\left(x-x_{2}\right)}\left(h-x_{2}\right) & x \leq h \leq x_{2} \\ \frac{a}{2\left(x-x_{1}\right)}\left(h-x_{1}\right) & x_{1} \leq h \leq x \\ 0, & \text { Otherwise }\end{cases}
$$

Then, $g \in S, g>0$, and $g<f$. Therefore, S is an order dense minorizing sublattice in $C(\mathbb{R})$.

Lemma 4.2.10: S is an order dense minorizing sublattice in $C\left(\mathbb{R}^{m}\right)$.

Proof. Let $f \in C\left(\mathbb{R}^{m}\right)$ be such that $f>0$. Therefore, $\exists x \in \mathbb{R}^{m}$ such that $f(x)=a>0$. Let $\varepsilon=\frac{a}{2}$, then $\exists \delta>0$ such that $\forall y \in B(x, \delta)$ we have $f(y) \geq \frac{a}{2}$. Without loss of generality, $x=0$. Let $\left\{e_{i}\right\}_{i=1}^{m}$ be the standard orthonormal basis set for \mathbb{R}^{m}. Let $\forall i \leq m: f_{i}(y)=\frac{a}{4}\left(1-\frac{4}{\delta}\left(e_{i} \cdot y\right)\right)$ and $g_{i}(y)=\frac{a}{4}\left(1+\frac{4}{\delta}\left(e_{i} \cdot y\right)\right)$. Consider the function $g=\bigwedge_{i}\left(\left(f_{i} \vee 0\right) \wedge\left(g_{i} \vee 0\right)\right)$. Let $C=\left\{y| | y_{i} \left\lvert\, \leq \frac{\delta}{4}\right.\right\} . C \subset B(0, \delta)$ and $\forall y \notin C: g(y)=0 \leq f(y)$. Also, $\forall y \in C: g(y) \leq \frac{a}{4}<f(y)$. Therefore, $0<g<f$ and $g \in S$. Therefore, S is an order dense minorizong sublattice in $C\left(\mathbb{R}^{m}\right)$.

Corollary $4.2 .11: S$ is topologically order dense in $C(\mathbb{R})$.

Proof. This is straight forward by Lemmas 4.2.6 and 4.2.9 and since $C(\mathbb{R})$ is Archimedean.

Corollary 4.2.12: S is topologically order dense in $C\left(\mathbb{R}^{m}\right)$.

Proof. This is straight forward by Lemmas 4.2.6 and 4.2.10 and since $C\left(\mathbb{R}^{m}\right)$ is Archimedean.

Lemma 4.2.9 and Corollary 4.2.11 are implied by Lemma 4.2.10 and Corollary 4.2 .12 but they were presented here since the ideas of the higher
dimensional space are clearer in the one dimensional case. Also, since $S \subset$ $S_{l p}$, then the results apply to $S_{l p}$, i.e., $S_{l p}$ is topologically order dense in $C\left(\mathbb{R}^{m}\right)$.

Another approach to show that S is topologically order dense in $C(K)$ where $K \subset \mathbb{R}^{m}$ relies on the Stone-Weierstrass approximation theorem and is presented here as well.

Lemma 4.2.13: Real functions on compact sets can be uniformly approximated with piecewise affine functions. In other words, let $K \subset \mathbb{R}^{m}$ be compact, S is uniformly dense in $C(K)$.

Proof. $g \equiv 1 \in S$. Let $a \neq b \in K$. Let $f(x)=(a-b) \cdot x$ be an affine function defined on $K . f(a)-f(b)=(a-b) \cdot(a-b) \neq 0$. Therefore, S separates points in K. Using the lattice version of the Stone-Weierstrass approximation theorem (see Theorem 11.3 page 88 in [4]), S is uniformly dense in $C(K)$.

Lemma 4.2.14: Let $K \subset \mathbb{R}^{m}$, K is compact. Then, S is topologically order dense in $C(K)$.

Proof. By Lemma 4.2.13, S is uniformly dense in $C(K)$, therefore, $\forall f \in$ $C(K): \exists f_{n} \in S$ such that $f_{n} \rightarrow f$ using the sup norm. By passing to a subsequence, $\forall x \in K:\left|f_{m}(x)-f(x)\right| \leq \frac{1}{m}$. Let $g \equiv 1 \in S$. Therefore, $\left|f_{m}-f\right| \leq \frac{1}{m} g$. Let $h_{m}=\frac{1}{m} g$. Clearly, $h_{m} \downarrow 0$, therefore, $f_{m} \xrightarrow{m o 2} f$.

Remarks:

One cannot uniformly approximate continuous (bounded or not) functions in $C(\mathbb{R})$ using piecewise affine functions. For example, consider the function $f \in C(\mathbb{R}): f(x)=\sin x$. Because piecewise affine functions have finite number of components, $f(x)$ cannot be uniformly approximated using piecewise affine functions. However, we will show that locally piecewise affine functions can approximate any function in $C(\mathbb{R})$ which is also a different approach to show that $S_{l p}$ is topologically order dense in $C(\mathbb{R})$. Note that the classical Stone-Weierstrass theorem cannot be used for $C(\mathbb{R})$
or for $C_{b}(\mathbb{R})=\{f \in C(\mathbb{R}) \mid f$ is bounded $\}$. Clearly, S separates points in \mathbb{R} and contains the unit function, yet it cannot approximate the function $f(x)=\sin x$, i.e., it is not uniformly dense in the Banach space $C_{b}(\mathbb{R})$.

Lemma 4.2.15: Functions in $C(\mathbb{R})$ can be uniformly approximated by functions in $S_{l p}$. In other words, $\forall \varepsilon, \forall f \in C(\mathbb{R}): \exists g \in S_{l p}$ such that $\sup |f-g| \leq$ ε.

Proof. Let $f \in C(\mathbb{R})$. Fix $\varepsilon>0$. Consider $I_{n}=[n-1, n] \in \mathbb{R}, n \in \mathbb{Z}$. Since f is continuous and I_{n} is compact, therefore, $\exists \delta_{n}$ such that $\forall x \in I_{n}: \forall y \in$ $\left[x-\delta_{n}, x+\delta_{n}\right]:|f(y)-f(x)|<\frac{\varepsilon}{2}$. Let $M_{n}=\left\lceil\frac{1}{\delta_{n}}\right\rceil, x_{0}=n-1, x_{i}=x_{0}+\frac{i}{M_{n}}$, $1 \leq i \leq M_{n}$. Define the function $g_{n}: I_{n} \rightarrow \mathbb{R}$:

$$
g_{n}(x)=\frac{f\left(x_{i+1}\right)\left(x_{i+1}-x\right)}{\left(x_{i+1}-x_{i}\right)}+\frac{f\left(x_{i}\right)\left(x-x_{i}\right)}{\left(x_{i+1}-x_{i}\right)}, \quad x_{i} \leq x \leq x_{i+1}
$$

Clearly, g_{n} is a piecewise affine function with a finite number of components and $\sup \left|\left(f-g_{n}\right)\right|_{I_{n}} \mid \leq \varepsilon$. Let $g: \bigcup_{n=-\infty}^{\infty} I_{n} \rightarrow \mathbb{R}$ such that $g(x)=g_{n}(x)$ whenever $x \in I_{n}$. Since, $\forall n: g_{n}(n)=g_{n+1}(n)$ and $g_{n-1}(n-1)=g_{n}(n-1)$. Therefore, the function g is well defined and is continuous. Also, clearly for every compact set C that is the union of at most finite number of connected components we have $g: C \rightarrow \mathbb{R}$ is piecewise affine, therefore, using Lemma 3.2.2, $g \in S_{l p}$ and $\sup |f-g| \leq \varepsilon$.

Lemma 4.2.16: $S_{l p}$ is topologically order dense in $C(\mathbb{R})$.
Proof. Let $f \in C(\mathbb{R})$. By Lemma 4.2.15, $\forall m \in \mathbb{N}: \exists f_{m} \in S_{l p}$ such that $\forall x \in \mathbb{R}:\left|f_{m}(x)-f(x)\right| \leq \frac{1}{m}$. Let $g \equiv 1 \in S_{l p}$. Therefore, $\left|f_{m}-f\right| \leq \frac{1}{m} g$. Let $h_{m}=\frac{1}{m} g$. Clearly, $h_{m} \downarrow 0$, therefore, $f_{m} \xrightarrow{m o 2} f$.
Alternatively, Corollary 4.2 .11 can be used to prove the lemma. Since $S \subset S_{l p}$ and using Corollary 4.2.11, then, $S_{l p}$ is topologically order dense in $C(\mathbb{R})$.

In the following part, we will attempt to describe $S_{l p}$ as the order closure of a class of sets termed: "locally finite" in S.

Definition 4.2.17: Locally Finite Set of Functions: Let $F \subset C\left(\mathbb{R}^{m}\right)$. F is termed a locally finite set of functions if $\forall A \subset \mathbb{R}^{m}$ where A is compact,
the set $E_{A}=\{f \in F \mid \exists x \in A: f(x) \neq 0\}$ is finite. If F is a sequence, then F is termed a locally finite sequence of functions. Clearly, any subset of a locally finite set of functions is another locally finite set of functions. Additionally, if $F \subset C\left(\mathbb{R}^{m}\right)$ is a locally finite set of functions, then F^{\vee}, F^{\wedge} and consequently $F^{\vee \wedge}$ are all locally finite sets of functions.

Lemma 4.2.18: Let $F \subset C\left(\mathbb{R}^{m}\right)$ be a locally finite set of functions. Then, $f_{a}=\sup F$ and $f_{b}=\inf F$ are well defined and $f_{a}, f_{b} \in C\left(\mathbb{R}^{m}\right)$.

Proof. Assume F is at least countably infinite, otherwise the statement is trivial. Let $A, B \subset \mathbb{R}^{m}$ be compact. Since E_{A} is finite, then $\exists g, h \in F$ such that $g(A)=0$ and $h(B)=0$. Let $f_{A}=\left(\left.\bigvee_{f \in E_{A}} f\right|_{A}\right) \vee 0 \in C(A)$. Similarly $f_{B} \in C(B)$. In addition, the function

$$
f_{A B}(x)= \begin{cases}f_{A}(x) & x \in A \\ f_{B}(x) & x \in B\end{cases}
$$

is continuous since if $x \in A \cap B$, then $f_{A}(x)=f_{B}(x)$. Since \mathbb{R}^{m} can be expressed as $\mathbb{R}^{m}=\bigcup_{i=1}^{\infty} A_{i}$ where A_{i} is compact, then, the function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $\forall i, \forall x \in A_{i}: g(x)=f_{A_{i}}(x)$ is well defined and continuous. In addition, $\forall i, \forall x \in A_{i}: f_{a}(x)=g(x)$. Therefore, $f_{a}(x) \in$ $C\left(\mathbb{R}^{m}\right)$. The same applies to f_{b}.

Lemma 4.2.19: Let $F \subset S \subset C\left(\mathbb{R}^{m}\right)$ be a locally finite set of functions. Then, $f_{a}=\sup F$ and $f_{b}=\inf F$ are such that $f_{a}, f_{b} \in S_{l p}$.

Proof. By Lemma 4.2.18, f_{a} and f_{b} are continuous function. Since on any compact set, f_{a} and f_{b} agree with a finite number of affine functions, then using Lemma 3.2.2, f_{a} and $f_{b} \in S_{l p}$.

Lemma 4.2.20: Given a hyperplane $H_{1}=\left\{x \mid a_{1} \cdot x+b_{1}=0\right\}$ where $a_{1} \in$ $\mathbb{R}^{m}, b_{1} \in \mathbb{R}$ and an affine function $f_{1}(x)=v_{1} \cdot x+t_{1}, v_{1} \in \mathbb{R}^{m}$ and $t_{1} \in \mathbb{R}$. Then, an affine function $f(x)=v \cdot x+t$, with $v \in \mathbb{R}^{m}$ and $t \in \mathbb{R}$ is such that $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$ if and only if $\exists \alpha \in \mathbb{R}$ such that $v=v_{1}-\alpha a_{1}$ and $t=t_{1}-\alpha b_{1}$. In that case f is uniquely determined by α.

Proof. One direction is straightforward. If $\exists \alpha \in \mathbb{R}$ such that $v=v_{1}-\alpha a_{1}$ and $t=t_{1}-\alpha b_{1}$. Therefore, $\forall x \in H_{1}: f(x)-f_{1}(x)=\left(v-v_{1}\right) \cdot x+t-t_{1}=$ $-\alpha\left(a_{1} \cdot x+b_{1}\right)=0$. Therefore, $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$.

For the opposite direction: assume that $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$. Therefore, $\forall x \in H_{1}$: $\left(v-v_{1}\right) \cdot x+t-t_{1}=0$. We will argue by contradiction, i.e., assume that $v-v_{1}$ and a_{1} are not linearly dependent. Let the orthogonal project of $v-v_{1}$ on a_{1} by αa_{1}, therefore, $\exists \alpha \in \mathbb{R}$ and $u \in \mathbb{R}^{m}, u \neq 0$ such that $v-v_{1}=\alpha a_{1}+u$ and $u \cdot \alpha a_{1}=0 \neq\left(v-v_{1}\right) \cdot u$. Since $a_{1} \cdot(x+u)+b_{1}=a_{1} \cdot x+b_{1}=0$, therefore $x+u \in H_{1}$. However, $\left(v-v_{1}\right) \cdot(x+u)+t-t_{1}=\left(v-v_{1}\right) \cdot u \neq 0$ which contradicts that $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$. Therefore, $\exists \alpha \in \mathbb{R}$ such that $v=v_{1}-\alpha a_{1}$. Showing that $t=t_{1}-\alpha b_{1}$ is straightforward.

Lemma 4.2.21: Given two hyperplanes $H_{1}=\left\{x \mid a_{1} \cdot x+b_{1}=0\right\} \neq H_{2}=\left\{x \mid a_{2}\right.$. $\left.x+b_{2}=0\right\}$ where $a_{1}, a_{2} \in \mathbb{R}^{m}$ and $b_{1}, b_{2} \in \mathbb{R}$. Given two affine functions $f_{1}(x)=v_{1} \cdot x+t_{1}, v_{1} \in \mathbb{R}^{m}, t_{1} \in \mathbb{R}$ and $f_{2}(x)=v_{2} \cdot x+t_{2}, v_{2} \in \mathbb{R}^{m}, b_{2} \in \mathbb{R}$. Then, there exists an affine function $f(x)=v \cdot x+t$ such that $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$ and $\left.f\right|_{H_{2}}=\left.f_{2}\right|_{H_{2}}$ if and only if $\exists \alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that $v_{1}-v_{2}=\alpha_{1} a_{1}+\alpha_{2} a_{2}$ and $t_{1}-t_{2}=\alpha_{1} b_{1}+\alpha_{2} b_{2}$. In this case $v=v_{1}-\alpha_{1} a_{1}=v_{2}+\alpha_{2} a_{2}$ and $t=t_{1}-\alpha_{1} b_{1}=t_{2}+\alpha_{2} b_{2}$. In addition, α_{1} and α_{2} are unique.

Proof. One direction is straightforward. Let $f(x)=v \cdot x+t$ be as described. Then, $\forall x \in H_{1}: f(x)=\left(v_{1}-\alpha_{1} a_{1}\right) \cdot x+t_{1}-\alpha_{1} b_{1}=f_{1}(x)-\alpha_{1}\left(a_{1} \cdot x+b_{1}\right)=$ $f_{1}(x)$. Similarly, $\forall x \in H_{2}: f(x)=\left(v_{2}+\alpha_{2} a_{2}\right) \cdot x+t_{2}+\alpha_{2} b_{2}=f_{2}(x)+$ $\alpha_{2}\left(a_{2} \cdot x+b_{2}\right)=f_{2}(x)$.

For the opposite direction, assume that there exists an affine function $f(x)=v \cdot x+t$ such that $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$ and $\left.f\right|_{H_{2}}=\left.f_{2}\right|_{H_{2}}$. By Lemma 4.2.20 $\exists \alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that $v=\left(v_{1}-\alpha_{1} a_{1}\right)=\left(v_{2}+\alpha_{2} a_{2}\right)$ and $t=t_{1}-\alpha_{1} b_{1}=$ $t_{2}+\alpha_{2} b_{2}$. Therefore, we reach the following equation that dictates the possible values for α_{1} and α_{2} so that the two conditions $\left.f\right|_{H_{1}}=\left.f_{1}\right|_{H_{1}}$ and $\left.f\right|_{H_{2}}=\left.f_{2}\right|_{H_{2}}$ are simultaniously satisfied:

$$
\binom{v_{1}-v_{2}}{t_{1}-t_{2}}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
$$

If the underlying space is one dimensional $(m=1)$, and since $H_{1} \neq H_{2}$, therefore, $a_{1} b_{2}-a_{2} b_{1} \neq 0$ which means that there is a unique solution for α_{1} and α_{2}. Therefore, we can always find f, α_{1}, and α_{2} that satisfy the lemma. When $m>1$, then the above equation is an overconstrained system of equations ($m+1$ equations) with only two unknowns and if there are two constants α_{1} and α_{2} satisfying the $m+1$ equations, then, they are unique.

Lemma 4.2.22: Let $f \in S^{+} \subset C\left(\mathbb{R}^{m}\right)$ with components $\left\{f_{i}\right\}_{i=1}^{n}$, then, $\forall \varepsilon>$ $0: \exists k \in S$ such that $\left.f\right|_{K}=\left.k\right|_{K},\left.f\right|_{\mathbb{R}^{m} \backslash K}>\left.k\right|_{\mathbb{R}^{m} \backslash K}$ and $\left.k\right|_{\mathbb{R}^{m} \backslash\left(K \pm \varepsilon[0,1]^{m}\right)} \equiv 0$ where $K=[0,1]^{m}$.

Figure 4.1: $f, k \in S^{+} \subset C(\mathbb{R})$ satisfying Lemma 4.2.22

Proof. Figure 4.1 shows the construction for $m=1$. Let $\left\{K_{j}\right\}_{j=1}^{J}$ be the finite number of cells generated by the components of $f . \forall j \leq J: K_{j}$ is open and convex. Let $L_{j}=K_{j} \cap \operatorname{Int}(K)$. Therefore, L_{j} is open and convex. Fix j such that $L_{j} \neq \emptyset . \partial L_{j}$ is formed by a finite set of hyperplanes (either the hyperplanes generated by $\left\{f_{i}\right\}_{i=1}^{n}$ or the boundaries of K) associated with a finite number of neighbouring cells. By Lemma 2.2.14, $\exists i \leq n$ such that $\left.\left.f\right|_{L_{j}} \equiv f_{i}\right|_{L_{j}}$. Assume $f_{i}(x)=v_{i} \cdot x+t_{i}, v_{i} \in \mathbb{R}^{m}, b_{i} \in \mathbb{R}$. Let $h=\max _{x \in \overline{L_{j}}}\{f(x)\} . h$ is well defined since f is continous and $\overline{L_{j}}$ is compact. Let $h_{j} \equiv f_{i}-4 h$, i.e., $h_{j}(x)=v_{i} \cdot x+t_{i}-4 h$. Let $E_{j}=\left\{K_{i} \mid \overline{K_{i}} \cap \overline{L_{j}} \neq \emptyset\right\} . E_{j}$ is finite. Let $\left\{H_{i}=\left\{x \mid a_{i} \cdot x+b_{i}=0\right\}\right\}_{i=1}^{l}$ be the hyperplanes that form the boundaries of L_{j} such that $\forall i: L_{j} \subset\left\{x \mid a_{i} \cdot x+b_{i}<0\right\}$. Let $L_{j_{\varepsilon}}$ be a slightly larger cell whose boundaries are the hyperplanes $\left\{H_{i \varepsilon}=\left\{x \mid a_{i} \cdot x+b_{i}-\right.\right.$ $\left.\left.\varepsilon\left\|a_{i}\right\|=0\right\}\right\}_{i=1}^{l}$ where ε is chosen such that the following three conditions are satisfied $\overline{L_{j_{\varepsilon}}} \cap \bigcup_{K_{k} \notin E_{j}} \overline{K_{k}}=\emptyset,\left.h_{j}\right|_{L_{j_{\varepsilon}}}<0$, and $\varepsilon<\frac{1}{2}$. Since the number of
cells is finite, then, $\varepsilon>0$. Consider $H_{1}=\left\{x \mid a_{1} \cdot x+b_{1}=0, a_{1} \in \mathbb{R}^{m}, b_{1} \in \mathbb{R}\right\}$. Claim: $\operatorname{dist}\left(H_{1}, H_{1 \varepsilon}\right)=\varepsilon$. Proof: Let $x_{1} \in H_{1}$. Let $u \in \mathbb{R}^{m}$ be such that $x_{1}+$ $u \in H_{1 \varepsilon}$. Therefore: $a_{1} \cdot\left(x_{1}+u\right)+b_{1}-\varepsilon\left\|a_{1}\right\|=a_{1} \cdot u-\varepsilon\left\|a_{1}\right\|=0$. Therefore, $\|u\| \geq \varepsilon$. Picking $u=\varepsilon \frac{a_{1}}{\left\|a_{1}\right\|}$ shows that $\inf _{x_{2} \in H_{1 \varepsilon}}\left\{\left\|x_{1}-x_{2}\right\|\right\}=\varepsilon$. By applying Lemma 4.2.21 $\exists g_{1} \in A$ such that $\left.g_{1}\right|_{H_{1}}=\left.f_{i}\right|_{H_{1}}$ and $\left.g_{1}\right|_{H_{1 \varepsilon}}=\left.h_{j}\right|_{H_{1 \varepsilon}}$ and in this case $g_{1}(x)=\left(v_{i}-\delta a_{1}\right) \cdot x+\left(t_{i}-\delta b_{1}\right)$ where $\delta=\frac{4 h}{\varepsilon\left\|a_{1}\right\|}$. Similarly, we can construct $g_{2}, g_{3}, \cdots, g_{l}$ for the l hyperplanes that are boundaries of L_{j}. Let $\hat{g}_{j}=f_{i} \wedge g_{1} \wedge g_{2} \wedge \cdots \wedge g_{l}$. Claim 1: $\left.\left.f\right|_{L_{j}} \equiv \hat{g}_{j}\right|_{L_{j}}$. Proof: By construction: $\forall k \leq l:\left.\left.f_{i}\right|_{H_{k}} \equiv g_{k}\right|_{H_{k}}$ and $\left.f_{i}\right|_{H_{k \varepsilon}}>\left.\left.h_{j}\right|_{H_{k \varepsilon}} \equiv g_{k}\right|_{H_{k_{\varepsilon}}}$, therefore, $\left.g_{K}\right|_{L_{j}}>\left.f_{i}\right|_{L_{j}}$ and $\left.\hat{g}_{j}\right|_{L_{j}}=\left.f_{i}\right|_{L_{j}}=\left.f\right|_{L_{j}}$. Claim 2: $\left.\hat{g}_{j}\right|_{L_{j_{\varepsilon}} \backslash L_{j}}<\left.f\right|_{L_{j_{\varepsilon}} \backslash L_{j}}$. Proof: Let $x \in L_{j_{\varepsilon}} \backslash L_{j}$. Therefore, $x \in K_{k}$ for some $K_{k} \in E_{j}$ with $K_{k} \cap \partial L_{j_{\varepsilon}} \neq \emptyset$. Let $C=K_{k} \cap L_{j_{\varepsilon}}$. Since $\left.\hat{g}_{j}\right|_{\partial L_{j_{\varepsilon}}}<0$ therefore, $\left.\hat{g}_{j}\right|_{C}<$ $\left.f_{k}\right|_{C}=\left.f\right|_{C}$ where f_{k} is the affine function associated with the neighbouring cell K_{k}. Claim 3: $\left.\hat{g}_{j}\right|_{\mathbb{R}^{m} \backslash L_{j_{\varepsilon}}}<0$. Proof: This is straightforward from the fact that $\forall y \in \mathbb{R}^{m} \backslash L_{j_{\varepsilon}}: \exists i \leq l$ such that $y \in\left\{x \mid a_{i} \cdot x+b_{i}-\varepsilon\left\|a_{i}\right\|>0\right\}$ and $\exists x_{1} \in H_{i}, x_{2} \in H_{i \varepsilon}, \alpha>0$ such that $y-x_{2}=\alpha\left(x_{2}-x_{1}\right)$. Assume $g_{i}(x)=v_{g} \cdot x+b_{g}$. We also have, $g_{i}\left(x_{2}\right)-g_{i}\left(x_{1}\right)=v_{g} \cdot\left(x_{2}-x_{1}\right)<0$. Therefore, $g_{i}(y)-g_{i}\left(x_{2}\right)=v_{g} \cdot\left(y-x_{2}\right)=\alpha v_{g} \cdot\left(x_{2}-x_{1}\right)<0$. Therefore, $g_{i}(y)<0$. Therefore, $\left.\hat{g}_{j}\right|_{\mathbb{R}^{m} \backslash L_{j_{\varepsilon}}}<0$. From the three claims above we have: $0 \vee \hat{g}_{j} \leq f \vee 0=f$ where $0 \vee \hat{g}_{j}$ is equal to 0 outside of $L_{j_{\varepsilon}}$. Repeating this construction for every j such that $L_{j} \neq \emptyset$ and setting $k=\left(\bigvee_{j, L_{j} \neq \emptyset} \hat{g}_{j}\right) \vee 0$ we have: $\left.f\right|_{K}=\left.k\right|_{K},\left.f\right|_{\mathbb{R}^{m} \backslash K}>\left.k\right|_{\mathbb{R}^{m} \backslash K}$ and $\exists \varepsilon_{k}$ such that $\left.k\right|_{\mathbb{R}^{m} \backslash\left(K \pm \varepsilon_{k}[0,1]^{m}\right)}=0$.

Theorem 4.2.23: $\forall f \in S_{l p}^{+} \subset C\left(\mathbb{R}^{m}\right): f=\sup _{i}\left\{f_{i}\right\}$ where $\left\{f_{i}\right\}_{i=1}^{\infty}$ is a locally finite sequence of functions in S.

Proof. Consider the set $K=[0,1]^{m}$. By Lemma 4.2.22, there exists $k \in S$ such that $\left.f\right|_{K}=\left.k\right|_{K},\left.f\right|_{\mathbb{R}^{m} \backslash K}>\left.k\right|_{\mathbb{R}^{m} \backslash K}$ and $\exists \varepsilon_{k}$ as small as possible and $\left.k\right|_{\mathbb{R}^{m} \backslash\left(K \pm \varepsilon_{k}[0,1]^{m}\right)}=0$.
We can now divide \mathbb{R}^{m} into the countable union of translates of K such that $\mathbb{R}^{m}=\bigcup_{i=1}^{\infty} K_{i}$ where $K_{i}=K+v_{i}$ is a translate of K and $v_{i}=$ $\left\{n_{1}, n_{2}, \cdots, n_{m}\right\} \in \mathbb{R}^{m}$ and $\forall j \leq m: n_{j} \in \mathbb{Z}$. For each compact set K_{i} we can find the function k_{i} such that k_{i} is equal to f on K_{i} and equals to

0 outside an ε neighbourhood of K_{i}. Therefore, $\left\{k_{i}\right\}_{i=1}^{\infty}$ is a locally finite sequence of functions in S and $f=\sup _{i}\left\{k_{i}\right\}$.

Corollary 4.2.24: $\forall f \in S_{l p} \subset C\left(\mathbb{R}^{m}\right): f=\sup _{i}\left\{f_{i}^{+}\right\}-\sup _{j}\left\{f_{j}^{-}\right\}$where $\left\{f_{i}^{+}\right\}_{i=1}^{\infty}$ and $\left\{f_{j}^{-}\right\}_{j=1}^{\infty}$ are two locally finite sequence of functions in S.

Proof. This is straightforward by applying Theorem 4.2.23 to $f=f^{+}-$ f^{-}.

Theorem 4.2.25: $S_{l p}$ uniformly approximate functions in $C\left(\mathbb{R}^{m}\right)$. In other words, $\forall \varepsilon>0, \forall f \in C\left(\mathbb{R}^{m}\right): \exists g \in S_{l p}$ such that $\sup |f-g| \leq \varepsilon$.

Proof. Assume first that $f \in \mathbb{C}\left(\mathbb{R}^{m}\right)^{+}$. Fix $\varepsilon>0$. Consider $K=[0,1]^{m}$. Consider $\left.f\right|_{K} \subset C(K)$. By Lemma 4.2.13, $\exists f_{K} \in S$ such that $\forall x \in K: \mid f_{K}(x)-$ $f(x) \left\lvert\, \leq \frac{\varepsilon}{4}\right.$. Note that by Lemma 3.1.4 f_{K} can be naturally extended to \mathbb{R}^{m}. By Lemma 4.2.22 $\exists f_{K \delta} \in S$ such that $\left.f_{K}\right|_{K}=\left.f_{K \delta}\right|_{K},\left.f_{K}\right|_{\mathbb{R}^{m} \backslash K}>f_{K \delta} \mid \mathbb{R}^{m} \backslash K$ and $f_{K \delta} \mid \mathbb{R}^{m} \backslash\left(K \pm \delta[0,1]^{m}\right) \equiv 0$ where δ can be chosen as small as possible. In this case δ is chosen as small as possible such that the variation of the function f to be approximated close to the boundary of K is smaller than $\frac{\varepsilon}{4}$. I.e., $\forall x \in \partial K, \forall y \in\{x\} \pm \delta *[0,1]^{m}:|f(x)-f(y)| \leq \frac{\varepsilon}{4}$. This is guaranteed by the fact that $\partial K \pm \delta *[0,1]^{m}$ is a compact set and f is continuous. This construction can be repeated for a translate of K say $H=K+\{1,0,0, \cdots, 0\}$, therefore, $\exists f_{H} \in S, f_{H \delta} \in S$ as above. We claim that the function $g=$ $f_{H \delta} \vee f_{K \delta}$ is such that $\forall x \in K \cup H:|f(x)-g(x)| \leq \frac{\varepsilon}{2}$ (See Figure 4.2). Clearly, $\forall x \in\left(K \backslash\left(H \pm \delta *[0,1]^{m}\right)\right): g(x)=f_{K \delta}(x)$ and therefore, $|f(x)-g(x)| \leq \frac{\varepsilon}{4}$. Similarly, $\forall x \in\left(H \backslash\left(K \pm \delta *[0,1]^{m}\right)\right): g(x)=f_{H \delta}(x)$ and therefore, $|f(x)-g(x)| \leq \frac{\varepsilon}{4}$. Consider $x \in K \cap\left(H \pm \delta *[0,1]^{m}\right)$. If $g(x)=f_{K \delta}(x)$ then $|f(x)-g(x)| \leq \frac{\varepsilon}{4}$. However, if $g(x)=f_{H \delta}(x)$ then $\exists x_{1} \in \partial K \cap \partial H$ such that $x \in\left\{x_{1}\right\} \pm \delta[0,1]^{m}$ and by the construction in Lemma 4.2.22 $g(x) \leq f_{H \delta}\left(x_{1}\right)$. Therefore, $f_{K \delta}(x) \leq g(x) \leq f_{H \delta}\left(x_{1}\right) \Rightarrow$ $f(x)-\varepsilon / 4 \leq f_{K \delta}(x) \leq g(x) \leq f_{H \delta}\left(x_{1}\right) \leq f\left(x_{1}\right)+\frac{\varepsilon}{4} \leq f(x)+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}$. Therefore, $|f(x)-g(x)| \leq \frac{\varepsilon}{2}$. By assuming that \mathbb{R}^{m} is equal to the countable union of translates of K, i.e., $\mathbb{R}^{m}=\bigcup_{i=1}^{\infty} K_{i}$ where $K_{i}=K+v_{i}$ is a translate of K and $v_{i}=\left\{n_{1}, n_{2}, \cdots, n_{m}\right\} \in \mathbb{R}^{m}$ and $\forall j \leq m: n_{j} \in \mathbb{Z}$. For each compact set K_{i} we can find the function $f_{K_{i}}$ such that $f_{K_{i}} \in S$ and uniformly approximates f on K_{i}. In addition, $f_{K_{i}}$ equals to 0 outside a δ neighbourhood
of K_{i}. Therefore, $\left\{f_{K_{i}}\right\}_{i=1}^{\infty}$ is a locally finite sequence of functions in S and $g=\sup _{i}\left\{f_{K_{i}}\right\} \in S_{l p}$. In addition, g uniformly approximates f on every K_{i}.

Figure 4.2: Construction of $f_{K \delta}, f_{H \delta}$ and $g=f_{K \delta} \vee f_{H \delta} \subset C(\mathbb{R})$
Let $f \in C\left(\mathbb{R}^{m}\right)$ then $f=f^{+}-f^{-}$. Therefore, $\exists g^{+}, g^{-} \in S_{l p}^{+}, g=g^{+}-g^{-} \in$ $S_{l p}$ such that $\forall x \in \mathbb{R}^{m}:\left|f^{+}(x)-g^{+}(x)\right| \leq \varepsilon / 2$ and $\left|f^{-}(x)-g^{-}(x)\right| \leq \varepsilon / 2$, therefore, $|f(x)-g(x)| \leq\left|f^{+}(x)-g^{+}(x)\right|+\left|f^{-}(x)-g^{-}(x)\right| \leq \varepsilon$.

Chapter 5

Conclusion

In this thesis, we extended the concept of piecewise affine functions with finite components in $C\left(\mathbb{R}^{m}\right)$ by introducing the set of locally piecewise affine functions which could possibly have infinite components. We discussed the relationship between the two sets under the umbrella of order theory.

Our first original contribution was the definition of piecewise affine functions on arbitrary subsets of \mathbb{R}^{m} and the extension lemma (Lemma 3.1.4). In that lemma we proved that a piecewise affine function on a closed and convex set in \mathbb{R}^{m} can be naturally extended to a piecewise affine function on the whole space. We also introduced a conjecture that such an extension can also be achieved for any open, connected, bounded set whose closure is equal to the union of its its boundary and its interior.

Our second original contribution was the definition of locally piecewise affine functions and showing that this set of functions as a subset of $C\left(\mathbb{R}^{m}\right)$ is a vector lattice (Lemma 3.2.3). We also showed that the properties of the set S of piecewise affine functions can be naturally extended to the set $S_{l p}$ of locally piecewise affine functions.

Our third original contribution was the comparison of the various definitions of order convergence in $C\left(\mathbb{R}^{m}\right)$. We first showed that $C\left(\mathbb{R}^{m}\right)$ possesses the countable sup property which enabled us to show that for bounded nets, the two main defintions of order convergence in the literature coincide (Theorem 4.1.12 and the following corollaries and remark).

Our fourth original contribution was the study of S and $S_{l p}$ as sublattices of $C\left(\mathbb{R}^{m}\right)$. We first introduced three different definitions for order dense subsets of vector lattices (Definitions 4.2.1, 4.2.2, and 4.2.3). We showed that in Archimedean vector lattices an order dense minorizing sublattice is a stronger condition than a topologically order dense sublattice (Lemma 4.2.6). We introduced the conjecture that in $C\left(\mathbb{R}^{m}\right)$, order dense minorizing sublattices are equivalent to topologically order dense sublattices. We then showed that both S and subsequently $S_{l p}$ are order dense minorizing sublattices in $C\left(\mathbb{R}^{m}\right)$.

Our fifth contribution was the study of the relationship betwen S and $S_{l p}$ by introducing the definition of locally finite sets of functions (Definition 4.2.17). Then we showed that any locally finite set of functions in S has a supremum and an infimum both of which are in $S_{l p}$ (Lemma 4.2.18). In addition, we showed that any function in $S_{l p}$ can be expressed as the difference of the supremums of two locally finite sequence of functions in S. Our final result was to show that $S_{l p}$ uniformly approximates functions in $C\left(\mathbb{R}^{m}\right)$. While the result was straight forward when $m=1$ (Lemma 4.2.15), we utilized the definition of locally finite sets of functions to show the result for the general case (Theorem 4.2.25).

Bibliography

[1] Charalambos D. Aliprantis and Rabee Tourky. Cones and Duality. Number 84 in Graduate Studies in Mathematics. American Mathematical Society.
[2] R.F. Anderson and J.C. Mathews. A comparison of two modes of order convergence. 18:100-104.
[3] Charalambos D. Aliprantis, David Harris, and Rabee Tourkey. Riesz estimators. (136):431-456.
[4] C.D. Aliprantis and O. Burkinshaw. Principles of Real Analysis. Academic Press, 3rd edition edition.
[5] Y. Abramovich and G. Sirotkin. On order convergence of nets. 9:287-292.
[6] P. Meyer-Nieberg. Banach Lattices. Springer-Verlag.
[7] Y. Abramovich and C.D. Aliprantis. An Invitation to Operator Theory. Number 50 in Graduate Studies in Mathematics. American Mathematical Society.
[8] C.D. Aliprantis and O. Burkinshaw. Locally solid Riesz Spaces with Applications to Economics. Number 105 in Mathematica Surveys and Monographs. Second edition edition.
[9] C.D. Aliprantis and K.C. Border. Infinite Dimensional Analysis. A Hitchiker's Guide. Springer-Verlag.

