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Abstract

Piecewise affine functions as defined in [1] and denoted by the set S are

those functions in C(Rm) that agree with a finite number of affine functions.

In this thesis, we extend their study by introducing the set of locally piecewise

affine functions denoted by Slp. Unlike piecewise affine functions, a locally

piecewise affine function could possibly agree with an infinite number of affine

functions on Rm. We discuss the relationship between the two sets under

the umbrella of order theory. In order to define the set of locally piecewise

affine functions we first define piecewise affine functions on arbitrary subsets

of Rm and discuss the conditions that guarantee the natural extension of a

piecewise affine function on arbitrary sets to a piecewise affine function on the

whole space. We then define the set of locally piecewise affine functions and

discuss how the properties of piecewise affine functions that have been studied

previously [1] can be extended to the new set.

The literature of vector lattices contains the study of the equivalence or

lack thereof of three main definitions for order convergence. However, this

problem has not been studied in C(Rm). In this thesis we utilize the results by

Anderson and Mathews [2] to study this problem. In doing so, we investigate

if C(Rm) possesses the countable sup property which allows us to show that

for bounded nets, two main definitions of order convergence in the literature

coincide.

We also study S and Slp as sublattices of C(Rm) and we show that both

S and subsequently Slp are order dense minorizing sublattices in C(Rm). We

then study the relationship betwen S and Slp by introducing the definition

of locally finite sets of functions. This definition allows us to show that any

locally finite set of functions in S has a supremum and an infimum both of

which are in Slp. In addition, we show that any function in Slp can be expressed

as the difference of the supremums of two locally finite sequences of functions

in S.

The Stone-Weierstrass theorem can be directly applied to show that piece-

wise affine functions can uniformly approximate continuous functions on com-

pact sets. However, piecewise affine functions cannot be used to uniformly ap-
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proximate functions in C(Rm). In this thesis, we show that the set of locally

piecewise affine functions can be used to uniformly approximate continuous

functions in C(Rm).
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Chapter 1

Introduction

1.1 Thesis Objective and Outline

The concepts of ordered vector spaces and lattices have been shown to be

important to many applications in engineering and economics. In particular,

multivariate piecewise affine functions in the context of order vector spaces

have been shown to be important tools in economic theory [3]. Aliprantis and

Tourky [1] present a comprehensive study of the space of multivariate piecewise

affine functions in C(Rm) in which they show that the subspace of piecewise

affine function is equivalent to the sublattice generated by the affine functions.

Their work, however, is limited to multivariate piecewise affine functions with

finite number of components. While multivariate piecewise affine functions

with finite number of components can uniformly approximate any function in

C(K) where K is a compact subset of Rm, however, such functions cannot be

used to uniformly approximate many functions in C(Rm).

The objective of this thesis is to extend the work by Aliprantis and Tourky

[1] to define a new class of multivariate piecewise affine functions with infinite

components that agree with the multivariate piecewise affine functions defined

by Aliprantis and Tourky [1] on compact sets. We call these functions locally

piecewise affine functions. We then study the relationship between the two

classes of functions in the context of order convergence.

In the first chapter of this thesis, we present the basic structure of partially

ordered sets followed by the structure of ordered vector spaces and lattices.

We only present the tools needed for our analysis of the space C(Rm).
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In the second chapter of this thesis, we introduce the sets of one dimensional

and multivariate piecewise affine functions as presented in Chapter 7 of the

book by Aliprantis and Tourky [1].

In the third chapter of this thesis, we introduce the set of locally piecewise

affine functions. In addition we present sufficient conditions on a subset U ⊂
Rm that guarantees that a piecewise affine function on U can be naturally

extended to a piecewise affine function in C(Rm). This result is useful on its

own and in the study of the relationship between the piecewise affine functions

and the locally piecewise affine functions. We then discuss the properties of

the locally piecewise affine functions and show that in most cases, they are

similar to the properties of piecewise affine functions.

In the fourth chapter of this thesis, we study how piecewise affine functions

and locally piecewise affine functions approximate functions in C(Rm). In do-

ing so, we first present the various definitions of order convergence in partially

ordered sets and vector lattices and study their agreement or lack theroff on

the lattice C(Rm). We then show our original result that two definitions of

order convergence agree on C(Rm). We then present three different definitions

for ”order dense” subspaces and study under these definitions how piecewise

affine functions and locally piecewise affine function approximate C(Rm). We

then present a new class of sets that we call: ”locally finite sets of functions”.

Using this definition we show that a locally piecewise affine function can be

written as the difference between the supremums of two locally finite sequences

of piecewise affine functions. Finally, we present our original result that locally

piecewise affine functions uniformly approximate functions in C(Rm).

1.2 Order Structure

In this section we present the traditional definitions of order structure and

ordered sets. We follow a convention similar to that presented in Aliprantis

and Tourky [1].

Definition 1.2.1: Partial Order Relation: Let S be a set. A relation ”≤”

is called a partial order if it satisfies the following three properties:

1. Reflexivity: ∀x ∈ S : x ≤ x.
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2. Antisymmetry: ∀x, y ∈ S : x ≤ y and y ≤ x⇒ x = y

3. Transitivity: ∀x, y, z ∈ S : x ≤ y and y ≤ z ⇒ x ≤ z

In this case, S is called a partially ordered set. If ∀x, y ∈ S : x ≤ y or y ≤ x,

then the relationship is called a total order and S is called a totally ordered

set. We write

• x ≥ y if y ≤ x

• x < y if x ≤ y and x 6= y

• y > x if x < y

Definition 1.2.2: : Directed Set: A partially (or totally) ordered set Γ is

called an upward-directed set if ∀α, β ∈ Γ : ∃γ ∈ Γ such that α ≤ γ and

β ≤ γ. Similarly, Γ is called a downward-directed set if ∀α, β ∈ Γ : ∃γ ∈ Γ

such that α ≥ γ and β ≥ γ. For example: N with the natural order is

an (upward- and downward-) directed set. Directed sets, can be used to

generalize the concept of sequences as follows:

Definition 1.2.3: Net: Let Γ be an upward-directed set, X be another set.

A function x : Γ→ X is called a net and is written: {xα}α∈Γ or just {xα}.
If X is endowed with a partial (or total) order, then a net is increasing

if ∀α, β, γ ∈ Γ such that α ≤ γ and β ≤ γ then xα ≤ xγ and xβ ≤ xγ.

We write xα ↑ to indicate an increasing net. Similarly, a net is decreasing if

∀α, β, γ ∈ Γ such that α ≤ γ and β ≤ γ then xα ≥ xγ and xβ ≥ xγ. We write

xα ↓ to indicate a decreasing net. For example, a sequence {xn}∞n=1 ⊂ R is

a net x : N→ R.

Definition 1.2.4: Supremum and Infimum: Let S be a partially ordered

set. Let A ⊂ S. If ∃a ∈ S such that ∀x ∈ A : x ≤ a, then a is an upper

bound of A. If a ∈ A then, a is also the greatest element of A. Simiarly, if

∃b ∈ S such that ∀x ∈ A : x ≥ b, then b is a lower bound of A. If b ∈ A
then, b is also the least element of A. Let B ⊂ S. If the set of upper bounds

of B has a least element, then this least element is called the supremum (or

the least upper bound) of B. If it exists, we write supB to indicate the

supremum of B. Similarly, if the set of lower bounds of B has a greatest

element, then this greatest element is called the infimum (or the greatest

lower bound) of B. If it exists, we write inf B to indicate the infimum of B.
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If x, y ∈ S, we write x ∨ y to indicate sup{x, y} and x ∧ y to indicate

inf{x, y} if they exist.

If an increasing net {xα} has a supremum a, then we write: xα ↑ a. Simi-

larly, if a decreasing net {xα} has an infimum b, then we write: xα ↓ b.

Definition 1.2.5: Lattice: A partially ordered set S is called a lattice if

∀x, y ∈ S : x ∨ y and x ∧ y exist. If A ⊂ S, we define A∧ = {x1 ∧ x2 ∧ · · · ∧
xn|n ∈ N,∀i ≤ n : xi ∈ A}, A∨ = {x1∨x2∨· · ·∨xn|n ∈ N, ∀i ≤ n : xi ∈ A}.
It should be noted that A∨∧ 6= A∧∨. For example, consider the lattice

S = {a, b, x, y, z, e, f} shown in Figure 1.1. A straight arrow between two

elements indicate that they are related and define the order. For example,

a < f , a is not related to b, and a ∨ b = f . Let A = {a, b, d, e}. Then:

A∨∧ = {a, b, c, d, e, f, g, h, z} while A∧∨ = {a, b, d, e, f, g, h, z}.

Figure 1.1: S = {a, b, c, d, e, f, g, h, z} is a lattice, A = {a, b, d, e}. A∨∧ 6= A∧∨

Definition 1.2.6: Order Completeness: A partially ordered set S is called

order complete, if every non-empty bounded above subset of S has a supre-

mum. This is equivalent to the statement that every non-empty bounded

below subset of S has an infimum. To see this consider an order complete

partially ordered set S. Let T ⊂ S be a bounded below set. Consider the

set T ↓ of lower bounds of T , namely T ↓ = {t|t ≤ T}. T ↓ is bounded above,

therefore, it has a supremum, say a. Therefore, a is the least element in the

set of upper bounds of T ↓ which is denoted by T ↓↑. But T ⊂ T ↓↑ therefore,

a ≤ T . Therefore, a ∈ T ↓ is the greatest element. Therefore, inf T = a.

4



In this thesis we are dealing with piecewise affine functions as subsets of

the space of continuous functions C(Rn) which is NOT order complete. To

see this consider the example of the sequence of functions {fn}∞n=1 ⊂ C(R)

defined as:

fn(t) =


0, t ≤ 0

n
√
t, 0 ≤ t ≤ 1

1, 1 ≤ t

Clearly, fn is increasing, however, on the positive part of R : fn is bounded

above by 1 while it is bounded above by 0 on the negative part of R. There

is no continuous function that would be the least upper bound of fn.

1.3 Vector Lattices

In this section we introduce the structure of vector lattices along with some

important vector lattices operations and properties.

Definition 1.3.1: Ordered Vector Space: A vector space E is said to be

an ordered vector space if it is a partially (or totally) ordered set such that

• ∀x, y, z ∈ E : x ≤ y ⇒ x+ z ≤ y + z.

• ∀x, y ∈ E and ∀λ ∈ R+ : x ≤ y ⇒ λx ≤ λy.

Definition 1.3.2: Vector Lattice and its Subspaces: An ordered vector

space E that is also a lattice is called a vector lattice. A ⊂ E is a lattice

subspace if it is a vector subspace and a lattice under the order induced

from E. A is a sublattice if it is closed under the lattice operations.

Definition 1.3.3: Archimedean Vector Lattice: A vector lattice E is

Archimedean if ∀x ∈ E then: the set {nx|n ∈ N} is bounded above implies

x ≤ 0. An equivalent definition is that E is Archimedean if ∀x ∈ E+ : if

∃y ∈ E+ such that ∀n ∈ N : nx ≤ y then x = 0. Roughly speaking the

Archimedean property is that of having no infinitely large or infinitely small

elements.

Proposition 1.3.4: Let E be a vector lattice, then we have the following

identities ∀x, y, z ∈ E,∀λ ∈ R+:
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1. −(x ∧ y) = (−x) ∨ (−y) and −(x ∨ y) = (−x) ∧ (−y).

2. x+ y = x ∨ y + x ∧ y.

3. x+ y ∧ z = (x+ y) ∧ (x+ z) and x+ y ∨ z = (x+ y) ∨ (x+ z).

4. λ(x ∨ y) = (λx) ∨ (λy) and λ(x ∧ y) = (λx) ∧ (λy).

5. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Proof. The first identity can be shown as follows: x∧y ≤ x⇒ −x ≤ −(x∧y).

Similarly, x ∧ y ≤ y ⇒ −y ≤ −(x ∧ y). Therefore, −(x ∧ y) is an upper

bound for both −x and −y. Therefore, (−x) ∨ (−y) ≤ −(x ∧ y).

To show the opposite inequality: −x ≤ (−x)∨(−y)⇒ −((−x)∨(−y)) ≤ x

and −y ≤ (−x) ∨ (−y)⇒ −((−x) ∨ (−y)) ≤ y. Therefore, −((−x) ∨ (−y))

is a lower bound for both x and y. Therefore, −((−x) ∨ (−y)) ≤ x ∧ y ⇒
−(x ∧ y) ≤ (−x) ∨ (−y). Therefore, −(x ∧ y) = (−x) ∨ (−y). The identity

−(x ∨ y) = (−x) ∧ (−y) can be shown similarly.

The third identity can be shown as follows: y ∧ z ≤ y ⇒ x+ y ∧ z ≤ x+ y

and y∧z ≤ z ⇒ x+y∧z ≤ x+z. Therefore, x+y∧z ≤ (x+y)∧(x+z). For

the opposite inequality: (x+y)∧(x+z) ≤ x+y ⇒ −x+(x+y)∧(x+z) ≤ y

and (x + y) ∧ (x + z) ≤ x + z ⇒ −x + (x + y) ∧ (x + z) ≤ z. Therefore,

−x+ (x+ y) ∧ (x+ z) ≤ y ∧ z ⇒ (x+ y) ∧ (x+ z) ≤ x+ y ∧ z. Therefore,

x+ y ∧ z = (x+ y)∧ (x+ z). The identity x+ y ∨ z = (x+ y)∨ (x+ z) can

be shown similarly.

The second identity can be shown using both the first and the third as

follows: Using the third identity we have: −x + (x ∧ y) = (−x + x) ∧
(−x+ y) = 0∧ (y− x). Using the first and then the third identity we have:

y − (x ∨ y) = y + (−x) ∧ (−y) = (y − x) ∧ (y − y) = (y − x) ∧ 0. Therefore,

−x+ (x ∧ y) = y − (x ∨ y). Therefore, x+ y = x ∨ y + x ∧ y.

The fourth identity is straightforward: λ(x ∧ y) ≤ λx and λ(x ∧ y) ≤ λy.

Therefore, λ(x ∧ y) ≤ (λx) ∧ (λy). For the opposite inequality we have:

(λx) ∧ (λy) ≤ λx ⇒ 1
λ
((λx) ∧ (λy)) ≤ x and similarly, 1

λ
((λx) ∧ (λy)) ≤ y.

Therefore, 1
λ
((λx) ∧ (λy)) ≤ x ∧ y ⇒ (λx) ∧ (λy) ≤ λ(x ∧ y). Therefore,

λ(x ∧ y) = (λx) ∧ (λy). The identity λ(x ∨ y) = (λx) ∨ (λy) can be shown

similarly.

For the fifth identity, one inequality is true for every lattice as follows:
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x ∧ y ≤ x and x ∧ y ≤ y ≤ y ∨ z. Similarly, x ∧ z ≤ x and x ∧ z ≤
z ≤ y ∨ z. Therefore, (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z). The opposite

inequality is true only for vector lattices: Using the second identity above

y = x∨y+x∧y−x ≤ x∨y∨z+(x∧y)∨(x∧z)−x and z = x∨z+x∧z−x ≤
x∨y∨z+(x∧y)∨(x∧z)−x. Therefore, y∨z ≤ x∨y∨z+(x∧y)∨(x∧z)−x⇒
x+y∨z−x∨y∨z ≤ (x∧y)∨(x∧z)⇒ x∧(y∨z) ≤ (x∧y)∨(x∧z). Therefore,

x∧(y∨z) = (x∧y)∨(x∧z). The other identity x∨(y∧z) = (x∨y)∧(x∨z)

can be shown similarly. �

Proposition 1.3.5: Let E be a vector lattice, A ⊂ E, and x ∈ E. Therefore,

1. x+ supA = sup{x+ a|a ∈ A} and x+ inf A = inf{x+ a|a ∈ A}.
2. x ∧ supA = sup{x ∧ a|a ∈ A} and x ∨ inf A = inf{x ∨ a|a ∈ A}.

In the first identity, the existence of the supremum or infimum on either side,

guarantees the existence of the supremum or infimum on the opposite side.

In the second identity, the existence of the supremum or infimum on the left

side guarantees the existence of the supremum or infimum on the right side.

Proof. For the first identity, assume a0 = supA exists. Therefore, ∀x ∈
E,∀a ∈ A : a ≤ a0 ⇒ x + a ≤ x + a0. Therefore, x + a0 is an upper

bound for {x+ a|a ∈ A}. To show that it is the least upper bound, assume

t to be another bound, i.e., ∀a ∈ A : t ≥ a + x. Therefore, t − x ≥ a ⇒
t−x ≥ a0 ⇒ t ≥ x+a0. Therefore, x+a0 = sup{x+a|a ∈ A}. Now assume

a1 = sup{x + a|a ∈ A} exists. Therefore, ∀x ∈ E, ∀a ∈ A : x + a ≤ a1 ⇒
a ≤ a1−x. Therefore, a1−x is an upper bound for A. To show that it is the

least upper bound, let t to be another bound, i.e., ∀a ∈ A : t ≥ a. Therefore,

t + x ≥ a + x⇒ t + x ≥ a1 ⇒ t ≥ a1 − x. Therefore, x + supA = a1. The

same proof applies to the identity: x+ inf A = inf{x+ a|a ∈ A}.

The second identity can be shown similarly. Assume a0 = supA exists.

Then, ∀x ∈ E,∀a ∈ A : x∧ a ≤ x∧ a0. Therefore, x∧ a0 is an upper bound

for {x∧a|a ∈ A}. To show that it is the least upper bound, let t be another

upper bound. I.e., ∀a ∈ A : t ≥ x ∧ a = x+ a− x ∨ a ≥ −x ∨ a0 + x+ a⇒
t + x ∨ a0 − x ≥ a ⇒ t + x ∨ a0 − x ≥ a0 ⇒ t ≥ x + a0 − x ∨ a0 = x ∧ a0.

Therefore, x ∧ a0 = sup{x ∧ a|a ∈ A}. It is worth mentioning that the

existence of sup{x ∧ a|a ∈ A} does not guarantee the existence of supA.
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For example, considering R2 with its conventional order. Let x = (1, 0)

and A = {(0, n)|n ∈ N \ {0}}. Then, sup{x ∧ a|a ∈ A} = (0, 0) while

supA does not exist. The same proof and argument apply to the identity:

x ∨ inf A = inf{x ∨ a|a ∈ A}. �

Proposition 1.3.6: Let E be a vector lattice, A ⊂ E is a subspace. Then,

A∨∧ = A∧∨. A∨∧ is the sublattice generated by A, namely the smallest

sublattice containing A.

Proof. Clearly, A ⊂ A∨. Therefore, A∧ ⊂ A∨∧. Let y ∈ A∧∨. Therefore,

∃m ∈ N and ∀i ≤ m : ∃ni ∈ N such that

y =(a11 ∧ a12 ∧ · · · ∧ a1n1) ∨ (a21 ∧ a22 ∧ · · · ∧ a2n2) ∨ · · ·

∨ (am1 ∧ am2 ∧ · · · ∧ amnm)

=
m∨
i=1

(
ni∧
j=1

aij

)

The identities in Proposition 1.3.4 can be used to show that

y =(a11 ∨ a21 ∨ · · · ∨ am1) ∧ (a11 ∨ a21 ∨ · · · ∨ am2) ∧ · · · ∧ (a1n1 ∨ a2n2 ∨ · · ·

∨ amnm)

=

n1∧
t1=1

n2∧
t2=1

· · ·
nm∧
tm=1

(a1t1 ∨ a2t2 ∨ · · · ∨ amtm)

Therefore, y ∈ A∨∧ and A∧∨ ⊂ A∨∧ Similarly, A∨∧ ⊂ A∧∨. Therefore,

A∨∧ = A∧∨.

Let B ⊂ E be a sublattice such that A ⊂ B. Clearly, ∀y ∈ A∨∧ : y ∈ B.

Therefore, A∨∧ ⊂ B. Therefore, A∨∧ is the smallest sublattice containing

A. �

Definition 1.3.7: Positive Part, Negative Part and Modulus: Let E

be a vector lattice and x ∈ E. Then, the positive part, negative part, and

modulus of x respectively are: x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| =

x ∨ (−x). Proposition 1.3.4 and Definition 1.3.7 can be used to show
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that the operations ∀x, y ∈ E : x ∨ y, x ∧ y, |x|, x+, x− can be expressed

via each other. Therefore, it is enough to show that one operation is well

defined to show that an ordered vector space is a lattice. Notice as well that

x = x+ 0 = x ∨ 0 + x ∧ 0 = x+ − (−x) ∨ 0 = x+ − x−.

The vector space C(Rm) is an ordered set with the partial order defined

as ∀f, g ∈ C(Rm) : f ≤ g ⇔ ∀x ∈ Rm : f(x) ≤ g(x). Clearly, this order

satisfies the properties of ordered vector spaces. In addition, C(Rm) is a

lattice since the function:

g(x) = max{f(x), 0}

satisfies g = f ∨ 0 and g ∈ C(Rm). In addition, C(Rm) is Archimedean

since if h, k ∈ C(Rm)+ are such that ∀n ∈ N : nh ≤ k, then ∀x ∈ Rm :

nh(x) ≤ k(x). Since h(x) and k(x) are positive real numbers, then h(x) = 0

therefore, h ≡ 0.
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Chapter 2

Piecewise Affine Functions

This chapter is based on Chapter 7 of the book by Aliprantis and Tourky [1].

2.1 One Dimensional Piecewise Affine Func-

tions

Definition 2.1.1: Affine Functions: f : R→ R is called an affine function

if ∃b,m ∈ R such that ∀t ∈ R : f(t) = mt+ b.

Definition 2.1.2: Piecewise Affine Functions: f : R → R is called a

piecewise affine function if ∃{ai}ni=0 ⊂ R, {(mi, bi)}n+1
i=0 ⊂ R2, with n ∈ N,

and ∀0 < i ≤ n : ai−1 < ai such that:

f(t) =


m0t+ b0, t ≤ a0

mit+ bi, ai−1 ≤ t ≤ ai

mn+1t+ bn+1, an ≤ t

The sets of parameters {ai}ni=0 and {(mi, bi)}n+1
i=0 are called the represen-

tation of f while the functions {fi(t) = mit + bi}n+1
i=0 are called the com-

ponents of f .

Similarly, the function f : [a0, an]→ R is called a piecewise affine function

if ∃{ai}ni=0 ⊂ R, {(mi, bi)}ni=1 ⊂ R2, with n ∈ N, and ∀0 < i ≤ n : ai−1 < ai

10



such that:

f(t) = mit+ bi, ai−1 ≤ t ≤ ai+1

Remarks:

• The way picewise affine functions were defined ensures their continuity.

• The spaces of piecewise affine functions defined as:

S[a,b] = {f : [a, b]→ R|f is a piecewise affine function}

S = {f : R→ R|f is a piecewise affine function}

are linear vector spaces and S[a,b] ⊂ C[a, b] where C[a, b] is the space of

continuous functions on the interval [a, b]. Similarly, S ⊂ C(R).

• S and S[a,b] are vector lattices. This can directly deduced from the fact

that if we have f1(t) = m1t + b1 and f2(t) = m2t + b2 defined on the

interval [ai−1, ai], then f1 ∧ f2 is a piecewise affine function defined on

the same interval.

• Let V = {g : R → R|g is an affine function}∧∨ and V[a,b] = {g : [a, b] →
R|g is an affine function}∧∨. Clearly, V ⊂ S and V[a,b] ⊂ S[a,b]. We will

later show that V = S and V[a,b] = S[a,b].

• When it is clear from the context, we will use the symbol S to represent

both S and S[a,b] and similarly will be the case for the symbol V .

Lemma 2.1.3: If f : R → R is a piecewise affine function, then ∀a ≤ b ∈ R
the restriction f |[a,b] is a piecewise affine function. Also, if f : [a, b] → R
is a piecewise affine function, then it can be extended (in many ways) to a

piecewise affine function f : R→ R.

Proof. This is straightforward. See Lemma 3.1.3. �

Lemma 2.1.4: Real functions on compact sets can be uniformly approximated

with piecewise affine functions. Namely, S is uniformly dense in C[a, b].

Proof. Since the unit function f ≡ 1 and the function g(t) = t which separates

points in [a, b] are both elements of S, then by the lattice version of the

Stone-Weierstrass approximation theorem (see Theorem 11.3 page 88 in

[4]), S is uniformly dense C[a, b].
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We can also show this directly using the uniform continuity of functions in

C[a, b]. Let f ∈ C[a, b]. Fix ε, then ∃δ such that ∀x ∈ [a, b], ∀y ∈ B(x, δ)

we have f(y) ∈ B(f(x), ε). Divide the interval [a, b] into n subintervals with

end points a = a0 < a1 < · · · < an = b such that ∀0 < i ≤ n : ai − ai−1 < δ.

Let fi(t) = f(ai−1) + f(ai)−f(ai−1)
ai−ai−1

(t− ai−1). Let

g(t) = fi(t) ai−1 < t ≤ ai

Clearly, g ∈ S. Let t ∈ [ai−1, ai], therefore, |g(t) − f(t)| = |fi(t) − f(t)| ≤
|fi(t)− fi(ai−1)|+ |fi(ai−1)− f(t)| ≤ |fi(ai)− fi(ai−1)|+ |fi(ai−1)− f(t)| ≤
ε+ ε = 2ε. Therefore, supt |g(t)− f(t)| ≤ 2ε. �

Lemma 2.1.5: S[a,b] ⊂ V[a,b]. Moreover, ∀f ∈ S[a,b] : f(t) = c+
∑n

i=1 ci(fi(t)∨
0) = c +

∑n
i=1 ci(t − ai−1)+ where ∀i ≤ n : ci, c ∈ R, a = a0 < a1 < · · · <

an = b, and fi(t) = t− ai−1 ∈ V .

Proof. Fix f ∈ S[a,b] and let {ai}ni=0 and {(mi, bi)}ni=1 be the representation of

f as in Definition 2.1.2. Set c = b1+m1a0, c1 = m1,∀i > 1 : ci = mi−mi−1.

Let

g(t) = c+
n∑
i=1

ci(t− ai−1)+

Note that by the continuity of f we have: miai + bi = mi+1ai + bi+1. Then:

For a0 ≤ t ≤ a1:

g(t) = b1 +m1a0 +m1(t− a0) = b1 +m1t = f(t)
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For ai−1 ≤ t ≤ ai:

g(t) = b1 +m1a0 +

j=i∑
j=1

cj(t− aj−1)+

= b1 +m1t+

j=i∑
j=2

(mj −mj−1)(t− aj−1)

= b1 +mit+

j=i∑
j=2

(mj −mj−1)(−aj−1)

= b1 +mit+

j=i∑
j=2

(bj − bj−1)

= bi +mit = f(t)

Therefore, g ≡ f . This shows that f ∈ S[a,b] has the representation f(t) =

c+
∑n

i=1 ci(t− ai−1)+. Therefore, f can be written as the finite sum of sups

of functions in V[a,b], i.e., f ∈ V[a,b]. Therefore, S[a,b] ⊂ V[a,b]. �

Lemma 2.1.6: S ⊂ V . Moreover, ∀f ∈ S : f(t) = b0 +m0t+
∑n+1

i=1 ci(fi(t)∨
0) = b0 + m0t +

∑n+1
i=1 ci(t − ai−1)+ where ∀0 < i ≤ n + 1 : ci, b0,m0 ∈ R,

a0 < a1 < · · · an ∈ R, and fi(t) = t− ai−1 ∈ V .

Proof. Fix f ∈ S and let {ai}ni=0 and {(mi, bi)}n+1
i=0 be its representation as in

Definition 2.1.2. Set ∀i ≥ 1 : ci = mi −mi−1. Let

g(t) = b0 +m0t+
n+1∑
i=1

ci(t− ai−1)+

Note that by the continuity of f we have: miai + bi = mi+1ai + bi+1. Then:

For t ≤ a0:

g(t) = b0 +m0t = f(t)
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For ai−1 ≤ t ≤ ai:

g(t) = b0 +m0t+

j=i∑
j=1

cj(t− aj−1)+

= b0 +m0t+

j=i∑
j=1

(mj −mj−1)(t− aj−1)

= b0 +mit+

j=i∑
j=1

(mj −mj−1)(−aj−1)

= b0 +mit+

j=i∑
j=1

(bj − bj−1)

= bi +mit = f(t)

For an ≤ t:

g(t) = b0 +m0t+

j=n+1∑
j=1

cj(t− aj−1)+

= b0 +m0t+

j=n+1∑
j=1

(mj −mj−1)(t− aj−1)

= b0 +mn+1t+

j=n+1∑
j=1

(mj −mj−1)(−aj−1)

= b0 +mn+1t+

j=n+1∑
j=1

(bj − bj−1)

= bn+1 +mn+1t = f(t)

Therefore, g ≡ f . This shows that f ∈ S has the representation f(t) =

b0 +m0t+
∑n+1

i=1 ci(t− ai−1)+. Therefore, f can be written as the finite sum

of sups of functions in V , i.e., f ∈ V . Therefore, S ⊂ V. �

Corollary 2.1.7: S[a,b] = V [a, b] = span {1, t, (t− α)+|α ∈ [a, b]} ⊂ C[a, b]

and S = V = span {1, t, (t− α)+|α ∈ R} ⊂ C(R).

Proof. This is a direct consequence of Lemma 2.1.5 and Lemma 2.1.6. �

Lemma 2.1.8: Let f ∈ S[a,b] and m = f(b)−f(a)
b−a . Then ∃i ≤ n, t0 ∈ [ai−1, ai],
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and mi ≥ m such that f(t0) = f(a) +m(t0 − a).

Proof. Assume not, then ∀mi ≥ m, ∀t ∈ [ai−1, ai] : f(t) 6= f(a) +m(t− a).

For t ∈ [a0, a1]: Since f(a) = f(a) + m(a − a), then m1 < m and ∀t ∈
(a0, a1] : f(t) = b1 + m1a + m1(t − a) < f(a) + m(t − a) and in particular

f(a1) < f(a) +m(a1 − a).

For t ∈ [a1, a2] :

f(t) = b2 +m2t = b2 +m2(t− a1) +m2(a1)

= m2(t− a1) + f(a1)
(2.1)

If m2 < m then: f(t) = m2(t − a1) + f(a1) < m(t − a1) + f(a) + m(a1 −
a) = m(t − a) + f(a). And if m2 ≥ m, then by assumption and using

the intermediate value theorem, f(t) < f(a) + m(t − a) and in particular

f(a2) < f(a) +m(a2 − a).

Proceeding inductively, f(b) < f(a)+m(b−a) which is a contradiction. �

Corollary 2.1.9: Let f ∈ S[a,b]. Let m = f(b)−f(a)
b−a . Then ∃i ≤ n and mi such

that f(a) ≥ mia+ bi and f(b) ≤ mib+ bi.

Proof. Let i and t0 ∈ [ai−1, ai] be as in Lemma 2.1.8, then:

f(t0) = f(a) +m(t0 − a) = mi(t0) + bi

Since f(a) = f(b)−m(b− a), we also have:

f(t0) = f(b) +m(t0 − b) = mi(t0) + bi

Since t0 ≥ a and m ≤ mi we have:

f(a) = f(t0)−m(t0 − a) ≥ f(t0)−mi(t0 − a)

≥ mi(t0) + bi −mi(t0 − a)

≥ bi +mia

15



And since Since t0 ≤ b and m ≤ mi we have:

f(b) = f(t0)−m(t0 − b) ≤ f(t0)−mi(t0 − b)

≤ mi(t0) + bi −mi(t0 − b)

≤ bi +mib

�

2.2 Multivariate Piecewise Affine Functions

In this section we introduct the multivariate affine and piecewise affine func-

tions. We follow a convention similar to Section 2.1.

Definition 2.2.1: Affine Functions: f : Rm → R is called an affine function

if ∃v ∈ Rm and b ∈ R such that ∀x ∈ Rm : f(x) = v · x+ b. We will denote

A = {f |f is an affine function} and V = A∨∧. V ⊂ C(Rm) where C(Rm) is

the space of continuous functions defined on Rm.

Lemma 2.2.2: Let f, g ∈ A. f ≡ g if and only if there is a nonempty open

subset U ⊂ Rm such that f |U = g|U .

Proof. Assume f(x) = vf · x + bf and g(x) = vg · x + bg. Let U be nonempty

and open subset of Rm and f |U = g|U . Then, ∃δ > 0 and x0 ∈ U such

that ∀y ∈ B(x0, δ) : f(y) = g(y) ⇒ (vf − vg) · y + (bf − bg) = 0. If

vf = vg, then bf = bg and f ≡ g. Otherwise, let y1 = x0 +
δ(vf−vg)

2‖vf−vg‖
. Since

y1 ∈ B(x0, δ) we have: (vf−vg)·x0+bf−bg+(vf−vg)· δ(vf−vg)

2‖vf−vg‖
= 0 Therefore:

(vf − vg) · δ(vf−vg)

2‖vf−vg‖
= 0⇒ ‖vf − vg‖ = 0⇒ vf = vg → bf = bg ⇒ f ≡ g.

�

Multivariate piecewise affine functions can be defined in a manner similar

to one dimensional piecewise affine functions. Here we will introduce this

definition after which we will show that the definition ensures the continuity

of the piecewise affine functions. Then, we will introduce a theorem that

shows that piecewise affine functions can be defined as continous functions

that agree with a finite number of affine functions.
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Definition 2.2.3: Piecewise Affine Functions: f : Rm → R is called a

piecewise affine function if ∃n ∈ N, distinct affine functions {fi}ni=1 ⊂ A,

and subsets {Si ⊂ Rm}ni=1 such that:

1. ∀i : Int(Si) 6= ∅ and Si = Int(Si)

2. ∀i 6= j : Int(Si) ∩ Int(Sj) = ∅
3.
⋃n
i=1 Si = Rm

4. f |Si ≡ fi|Si
The sets {fi}ni=1, {Si}ni=1, {(Si, fi)}ni=1 are called the components, regions,

and characteristic pairs of f , respectively. We denote

S = {f : Rm → R|f is a piecewise affine function}

Lemma 2.2.4: S ⊂ C(Rm).

Proof. We will argue by contradiction. Let f ∈ S but is not continuous, then

∃xn
n→∞−−−→ x while f(xn) 9 f(x). Passing to a subsequence, ∃ε > 0 such

that ∀n : |f(xn)− f(x)| > ε. Since the number of regions is finite, there is a

further subsequence yn such that ∀n : yn ⊂ Si for some i. Since Si is closed,

yn → y = x ∈ Si and ε < |f(yn) − f(x)|. However, f |Si = fi|Si and fi is

a continous function by definition which is a contradiction. Therefore, f is

continuous. �

Lemma 2.2.5: Let f ∈ C(Rm) such that ∃n ∈ N and a subset {fi}ni=1 ⊂ A

such that ∀x ∈ Rm : ∃i ≤ n with f(x) = fi(x). Then, ∀V ⊂ Rm that is open

and nonempty, ∃W ⊂ V that is open and nonempty such that ∀y ∈ W :

f(y) = fj(y) for some j.

Proof. Assume V as in the statement of the lemma. We will argue by con-

tradiction, i.e., ∃x1 ∈ V such that f(x1) 6= f1(x1). Pick δ = |f(x1)−f1(x1)|
3

.

Therefore, B(f(x1), δ) ∩ B(f1(x1), δ) = ∅. Let V1 = f−1 (B(f(x1), δ)) ∩
f−1

1 (B(f1(x1), δ)) ∩ V . Since f, f1 are continuous then V1 is open. In addi-

tion, x1 ∈ V1 so, V1 is not empty and ∀x ∈ V1 : f(x) 6= f1(x). By repeating

the argument, ∃x2 ∈ V1 such that f(x2) 6= f2(x2) and we can similarly con-

struct V2 ⊂ V1 ⊂ V that is open and not empty and ∀x ∈ V2 : f(x) 6= f2(x2).
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Therefore, by induction ∃Vn ⊂ V such that ∀i, ∀x ∈ Vn : f(x) 6= fi(x) which

is a contradiction.

Alternatively, the above argument can be rewritten as follows. Let V

be as in the statement of the lemma. Set V1 = V . If f |V1 = f1|V1 then

the lemma is true. Otherwise, set V2 = V1 \ {x|f(x) 6= f1(x)}. V2 is

nonempty and is open. If f |V2 = f2|V2 then the lemma is true. Otherwise, set

V3 = V2 \ {x|f(x) 6= f2(x)} which is again nonempty and open. Continuing

in this manner, if none of the sets i ≤ Vi satisfy the lemma, then let Vn+1 =

Vn \ {x|f(x) 6= fn(x)} which is nonempty and open. f is different from

f1, f2, · · · , fn on Vn=1 which is a contradiction. �

Theorem 2.2.6: f ∈ S ⇔ f is continuous and agrees with a finite number of

affine function. I.e., ∃n ∈ N and a subset {fi}ni=1 ⊂ A such that ∀x ∈ Rm :

f(x) = fi(x) for some i.

Proof. By Definition2.2.3 and Lemma 2.2.4 a piecewise affine function is

continuous and agrees with a finite number of affine functions.

For the opposite direction, and using Lemma 2.2.5 ∀V ⊂open Rm ∃ a

non-empty open subset W ⊂ V such that f(x) = fj(x) for some j. Let

Oi =
⋃
{U |U ⊂open Rm, fi|U ≡ f |U}. If Oi = ∅ for some i, then remove

Oi and fi from the list and renumber and note that by Lemma 2.2.5 and

setting V = Rm, there is at least one Oi 6= ∅. Set Si = Oi. We will

show that {Si}ni=1 satisfy the conditions of Definition 2.2.3 of the regions

of a piecewise affine function. Condition 4 is satified since both f and

fi are continuous and Si = Oi, therefore: f |Si ≡ fi|Si . For condition 1

we have Oi ⊂ Int(Si) and since f |Int(Si) ≡ fi|Int(Si) and Int(Si) is open, then

Int(Si) ⊂ Oi. Therefore, Oi = Int(Si) 6= ∅ and Oi = Int(Si) = Si. Condition

2 is satisfied as follows: Let U = Oi ∩ Oj. Since Oi and Oj are open, then

U is open and fi|U ≡ fj|U . Then, by Lemma 2.2.2 fi ≡ fj. Finally, for

condition 3 we have
⋃n
i=1 Si ⊂closed Rm. Therefore, V = Rm\

⋃n
i=1 Si is open

and by Lemma 2.2.5, ∃W ⊂open V such that f |W ≡ fj|W for some j which

contradicts the maximality of Oj. Therefore,
⋃n
i=1 Si = Rm.

�

Corollary 2.2.7: S is a vector lattice.
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Proof. Assume f, g ∈ S. Therefore, f is continuous and agrees with {fi}ni=1 ⊂
A, and g is continuous and agrees with {gi}ki=1 ⊂ A. Therefore, f ∨ g is

continuous and agrees with {fi}ni=1∪{gi}ki=1 ⊂ A, i.e., f ∨ g ∈ S. Therefore,

S is a vector lattice. �

Corollary 2.2.8: V ⊂ S.

Proof. Since S is a vector lattice and A ⊂ S then V = A∨∧ ⊂ S. �

Definition 2.2.9: Hyperplane: A hyperplane is a subset H ⊂ Rm of the

form H = {x ∈ Rm|v ·x+ b = 0} where 0 6= v ∈ Rm and b ∈ R. Clearly H is

closed and has a Lebesque measure zero. Also, H has an orientation since

H divides Rm into H and the positive part H1 = {x ∈ Rm|v ·x+ b > 0} and

the negative part H2 = {x ∈ Rm|v ·x+ b < 0}. This orientation is reversible

since H = H̃ = {x ∈ Rm| − v · x− b = 0} while H̃1 = H2 and H̃2 = H1.

Lemma 2.2.10: The set where two distinct affine functions agree is either

empty or a hyperplane.

Proof. Let f 6= g ∈ A such that ∀x ∈ Rm : f(x) = vf · x + bf and g(x) =

vg · x + bg with vf , vg ∈ Rm and bf , bg ∈ R. Set Hfg = {x|f(x) = g(x)} =

{x|(vf − vg) · x + bf − bg = 0}. If vf = vg then Hfg = ∅. Otherwise, Hfg is

a hyperplane. �

Lemma 2.2.11: The boundaries of the regions of a piecewise affine function

are subsets of hyperplanes and the regions only intersect on their boundaries.

In other words: Let f ∈ S, then ∀i : ∂Si =
⋃
j 6=i Si ∩ Sj.

Proof. Using Lemma 2.2.10, and since the boundaries of the regions are the

locations where affine functions agree, therefore, the boundaries are subsets

of hyperplanes. Let x ∈ ∂Si, then ∀k ∈ N : B(x, 1
k
) ∩ Rm \ Si 6= ∅. ∀k pick

xk ∈ B(x, 1
k
) ∩ Rm \ Si. Since xk → x and {xk}∞k=1 ⊂

⋃
r 6=i Sr there is a

subsequence and an index j 6= i such that {xk}∞k=1 ⊂ Sj. Since xk → x and

Sj is closed, we have x ∈ Sj. Therefore, x ∈ Si ∩ Sj.

For the other inclusion, let x ∈ Si∩Sj, i 6= j. We will argue by conatrdiction

by assuming that x /∈ ∂Si but x ∈ Int(Si). Therefore, ∃δ > 0 such that

B(x, δ) ⊂ Int(Si). Since Int(Si) ∩ Int(Sj) = ∅, then x ∈ ∂Sj, therefore,
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B(x, δ) ∩ Int(Sj) 6= ∅ ⇒ Int(Si) ∩ Int(Sj) 6= ∅ which is a contradiction.

Therefore, x ∈ ∂Si. �

Lemma 2.2.12: The characteristic pairs of piecewise affine functions are

uniquely defined up to reordering.

Proof. Let f ⊂ S and let {(Si, fi)}ni=1 and {(S̃j, f̃j)}kj=1 be two sets of charac-

teristic pairs for f . Fix i and consider Int(Si). By Lemma 2.2.5 ∃W ⊂open
Int(Si) such that fW ≡ f̃j|W ≡ fi|W for some j ≤ k. By Lemma 2.2.2

fi = f̃j and therefore Si = S̃j. Since the components are distinct, then the

characteristic pairs are uniquely defined up to reordering. �

Corollary 2.2.13: Definition 2.1.2 and Definition 2.2.3 are equivalent for

one dimensional piecewise affine functions.

Proof. Let f be a one dimensional piecewise affine function defined according

to Definition 2.1.2. Then, the sets S1 = (−∞, a0], ∀2 ≤ i ≤ n + 1 : Si =

[ai−2, ai−1], and Sn+2 = [an,∞) satisfy the conditions of Definition 2.2.3,

with n+ 2 components. If the components are not distinct, i.e. ∃i < j such

that fi ≡ fj, then by renumbering the components and setting Si = Si ∪ Sj
then the resulting renumbered components are distinct.

For the opposite direction, let f be a one dimensional piecewise affine

function defined according to Definition 2.2.3. By Lemma 2.2.11 ∂Si =⋃
j 6=i Si ∩ Sj ⊂

⋃
j 6=i{x|fi(x) = fj(x)}. However, the set

⋃
j 6=i{x|fi(x) =

fj(x)} is a finite set of points as it is the union of a finite number of hyper-

planes in R and each hyperplane in R is a set of one point. Therefore, ∂Si

is a finite set. Since Int(Si) 6= ∅, therefore, Int(Si) is a union of pairwise dis-

joint open intervals whose end points are in ∂Si. Therefore, f is a piecewise

affine function according to Definition 2.1.2.

�

Cells Induced by Hyperplanes formed by the Components of Piece-

wise Affine Functions: Let k ∈ N and {He}ke=1 be a family of hyper-

planes such that ∀e ≤ k : He = {x ∈ Rm|ve · x+ be = 0} where 0 6= ve ∈ Rm

and be ∈ R. Let He1 and He2 be the positive and negative parts according
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to Definition 2.2.9 respectively. Consider the set D = {+1,−1, 0}k. Let

σ : Rm → D be such that ∀x ∈ Rm : σ(x) = {sgn (ve · x+ be)}ke=1. Denote

M = Range(σ). Denote a vector T = {Te}ke=1 ∈ M satisfying ∀e : Te 6= 0

by a tope of M . Clearly, the set of topes is finite because D is finite. Ad-

ditionally, the set of topes is not empty because:
⋃k
e=1He 6= Rm, therefore,

∃x ∈ Rm \
⋃k
e=1He and therefore σ(x) is a tope of M . Let J be the car-

dinality of the topes of M and let {Tj}Jj=1 be an enumeration. The sets

Kj = {x ∈ Rm|σ(x) = Tj} define cells in Rm induced by the family of hy-

perplanes independent of the orientation. Each cell Kj is not empty, convex

and open because it is the intersection of a finite number of open and convex

sets of the form He1 and He2. In addition,
⋃J
j=1Kj = Rm \

⋃k
e=1He. Since

the number of cells J is finite, then
⋃J
j=1 Kj =

⋃J
j=1Kj = Rm.

Let {fi}ni=1 ⊂ A. By Lemma 2.2.10, the sets where these functions

agree with each other are either empty or hyperplanes. Let Hlm = {x ∈
Rm|fl(x) = fm(x)} and let k be the cardinality of E = {(l,m)|Hlm 6= ∅}.
As defined above, let J be an enumeration of the topes and let {Kj}Jj=1

be the cells induced by the family of hyperplanes {He}e∈E. These cells, by

definition, are locations where the affine functions do not agree.

Lemma 2.2.14: Let f ∈ S. Let {Kh}Jh=1 be the cells induced by the compo-

nents of {fi}ni=1. Then, ∀i, h,∀x ∈ Kh:

1. If f(x) = fi(x), then ∀y ∈ Kh : f(y) = fi(y).

2. If f(x) < fi(x), then ∀y ∈ Kh : f(y) < fi(y).

3. If f(x) > fi(x), then ∀y ∈ Kh : f(y) > fi(y).

Moreover, ∀Kh : ∃!ih such that ∀x ∈ Kh : f(x) = fih(x).

Proof. The moreoever part is a trivial outcome of the statement and the fact

that the components are unique and do not agree on any cell Kh.

Let x ∈ Kh be such that f(x) = fi(x) for some i. Claim: ∃δ > 0 such

that ∀z ∈ B(x, δ) ⊂ Kh : f(z) = fi(z). Proof: Let j 6= i, therefore fj(x) 6=
fi(x) = f(x). Let ε =

|fj(x)−f(x)|
3

. Therefore, B(fj(x), ε) ∩ B(f(x), ε) = ∅.
Since f, fj are continuous, then f−1(B(f(x), ε)) ∩Kh ∩ f−1

j (B(fj(x), ε)) is

open and not empty. Therefore, ∃δj such that ∀z ∈ B(x, δj) : f(x) 6= fj(x).

Repeating ∀j 6= i and setting δ = minj 6=i δj, the claim is proved.
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We will argue by contradiction, let y ∈ Kh, x 6= y be such that f(y) 6=
fi(y). Since Kh is convex, the interval {x + t(y − x)|0 ≤ t ≤ 1} ⊂ Kh.

Let t0 = inft{x + t(y − x)|f(x + t(y − x)) 6= fi(x + t(y − x))}. Clearly

0 < t0 < 1 (If t0 = 1, then by continuity, f(y) = fi(y) which is a con-

tradiction while t0 > 0 is a result of the claim above). Therefore, ∃j 6= i

such that fj(x + t0(y − x)) = f(x + t0(y − x)). By applying the claim to

fj, ∃δ > 0 such that f agrees with fj on B(x + t0(y − x), δ). Therefore,

f
(
x+ (t0 − δ

3‖y−x‖)(y − x)
)

= fj

(
x+ (t0 − δ

3‖y−x‖)(y − x)
)

which contra-

dicts that t0 is the infimum. Therefore, ∀y ∈ Kh : f(y) = fi(y).

Let x ∈ Kh be such that f(x) > fi(x). By the first part of the proof,

∃j 6= i such that ∀y ∈ Kh : fj(y) = f(y). Since fj(x) > fi(x), therefore,

Kh ⊂ {z|fj(z) > fi(z)}. Therefore, ∀y ∈ Kh : fj(y) = f(y) > fi(y). The

same holds if f(x) < fi(x).

�

Theorem 2.2.15: Let f ∈ S with n distinct components. Let {Kh}Jh=1 be

the cells generated by the components. Let Oi =
⋃
{Kh|f |Kh ≡ fi|Kh}. Let

Si = Oi. Then, {(Si, fi)}ni=1 are exactly the characteristic pairs of f .

Proof. First notice that if Oi is empty, then we can remove fi and renumber the

components. We will show that {Si}ni=1 satisfy the conditions of Definition

2.2.3. Indeed, the fourth condition is satisfied by the continuity of f and

fi so f |Si ≡ fi|Si . Using the result of Lemma 2.2.14: ∀h : ∃!ih such that

f |Kh ≡ fih|Kh . For condition 3,
⋃n
i=1 Si =

⋃J
h=1Kh = Rm. For condition

1, Oi 6= ∅ and therefore Int(Si) 6= ∅. Also, Oi is open so Oi ⊂ Int(Si),

therefore, Si ⊂ Oi ⊂ Int(Si) ⊂ Si ⇒ Int(Si) = Si. For condition 2, if

x ∈ Int(Si) ∩ Int(Sj), then f(x) = fi(x) = fj(x) and ∃δi and δj such that

∀y ∈ B(x,min{δi, δj}) : f(y) = fi(y) = fj(y). Therefore, by Lemma

2.2.2 fi ≡ fj and Si = Sj. By Lemma 2.2.12 {(Si, fi)}ni=1 are exactly the

characteristic pairs of f .

�

Lemma 2.2.16: Let f ∈ S with n distinct components. Then, ∀a, b ∈
Rm,∃i ≤ n such that fi(a) ≤ f(a) and fi(b) ≥ f(b).
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Proof. Let h : [0, 1] → Rm be such that ∀t ∈ [0, 1] : h(t) = a + t(b − a).

Let g = f ◦ h, i.e., g(t) = f(a + t(b − a)). ∀i : gi ≡ fi ◦ h is an affine

function, indeed: fi(a + t(b − a)) = vi · a + t((b − a) · vi) + bi = mit + ci

where mi = (b − a) · vi and ci = bi + vi · a. Therefore, g : [0, 1] → R is

a continuous function and agrees with the affine functions {gi}ni=1. Then,

by Theorem 2.2.6 and Corollary 2.2.13, g is a piecewise affine function.

By Corollary 2.1.9 ∃i ≤ n such that gi(0) = fi(a) ≤ g(0) = f(a) and

gi(1) = fi(b) ≥ g(1) = f(b).

�

Theorem 2.2.17: S ⊂ V .

Proof. Let f ∈ S. Let {Kh}Jh=1 be the cells generated by the components

{fi}ni=1 of f . Using Lemma 2.2.14, we can define the set of indices of the

components that are larger than or equal to f on the cell Kh. I.e.,

∀h ≤ J : Eh = {i ≤ n|f |Kh ≤ fi|Kh}

For each h define the function gh =
∧
i∈Eh fi. Then, ∀x ∈ Kh : gh(x) ≥

f(x). Using Lemma 2.2.14, there exists a unique index ih in Eh such that

fih(x) = f(x), therefore, gh(x) = f(x).

Fix h. Fix x ∈ Kh and y ∈ Kk with k 6= h. By Lemma 2.2.16: ∃i such

that fi(x) ≤ f(x) and fi(y) ≥ f(y). In particular, i ∈ Ek, therefore gk ≤ fi.

We also have gk(x) ≤ fi(x) ≤ f(x) = gh(x). This is true ∀k 6= h, therefore,

f(x) =
∨
k≤J gk(x).

Therefore, ∀z ∈
⋃
h≤J Kh:

f(z) =
∨
h≤J

∧
i∈Eh

fi(z)

Since f is continuous and
⋃
h≤J Kh = Rm, therefore the equality holds

∀z ∈ Rm. Therefore, f ∈ A∨∧ = V .

�

Theorem 2.2.18: S=V.
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Proof. Using Theorem 2.2.17 and Corollary 2.2.8, then, S = V . �
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Chapter 3

Locally Piecewise Affine

Functions

3.1 Motivation and Definitions

The motivation for this chapter is to introduce a new class of piecewise affine

functions that have infinitely many distinct components since Definition

2.2.3 is restricted to functions with finitely many components. In addition,

Theorem 2.2.6 cannot be naturally extended to functions with countably

many components. Moreover, it is not clear when a piecewise affunction

on a subset of Rm can be extended to a piecewise affine function on Rm.

As per the previous chapter, the affine functions are denoted by A = {f :

Rm → R|f is an affine function} and V = A∨∧, in addition the space of

multivariate piecewise affine functions is denoted by S.

Definition 3.1.1: Piecewise Affine Functions on Arbitrary Subsets:

Let U ⊂ Rm such that it is the union of at most finite number of connected

sets. f : U → R is called a piecewise affine function if f is continuous and

f agrees with {fi}ni=1 ⊂ A on U .

Definition 3.1.2: Locally Piecewise Affine Function: f : Rm → R is

called a locally piecewise affine function if ∀x ∈ Rm : ∃ an open neighbour-

hood U of x such that U is the union of at most finite number of connected

sets and f : U → R is piecewise affine. We denote the space of locally
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piecewise affine functions by:

Slp = {f : Rm → R|f is locally piecewise affine}

Remarks:

• ∀f ∈ Slp : f is locally continuous, therefore continuous. I.e., Slp ⊂
C(Rm).

• S ⊂ Slp.

• Definition 3.1.1 is restricted to subsets that are the union of at most

finite number of connected sets to exclude examples similar to the func-

tion: f : N ⊂ R→ R defined as:

f(n) =

n, n is even

2n, n is odd

f as defined agrees with 2 affine functions, but it cannot be naturally

extended to a piecewise affine function on R.

• Another example of a piecewise affine function as per Definition 3.1.1

that cannot be extended to a piecewise affine function on R is the func-

tion f : [0, 2] \ {1} → R defined as:

f(t) =

1, t ∈ [0, 1)

2, t ∈ (1, 2]

Here we list some lemmas that offer some conditions on the form of the proper

subsets U ⊂ Rm that allow the natural extension of a piecewise affine func-

tion on U to a piecewise affine function on R.

Lemma 3.1.3: Let f : [a, b] → R be a continuous function that agrees with

a finite number of affine functions on [a, b]. Then, f ∈ S[a,b] and can be

extended (in possibly many ways) to a function f̃ ∈ S.
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Proof. Assume f(a) = f1(a) and f(b) = fn(b) where f1, f2 ∈ A. Let

f̃ =


f1(t), t ≤ a

f(t), a ≤ t ≤ b

fn(t), b ≤ t

f̃ : R→ R is a continuous function that agrees with a finite number of affine

functions. Therefore by Theorem 2.2.6 and Corollary 2.2.13, f̃ ∈ S and

its restriction on [a, b] is f ∈ S[a,b]. �

Lemma 3.1.4: Let U ⊂ Rm be closed and convex and let f : U → R be a

piecewise affine function. Then, f can be extended (possibly in many ways)

to a piecewise affine function f̃ ∈ S.

Proof. Assume Int(U) 6= ∅. U is closed and convex, then Int(U) = U . Also,

if Int(U) = ∅, then U can be considered as a convex subset with non-empty

interior of Rl for some l < m and the lemma can then be applied. A

piecewise affine function on Rl can be trivially extended to Rm. So, without

loss of generality Int(U) 6= ∅.

Consider the cells {Kh ⊂ Rm}Jh=1 generated by the distinct components

{fi}ni=1 ⊂ A. It is possible that the components of f do not agree anywhere

and the set of cells is empty. This is possible because some of the components

might not be actually used in f . In that case, set J = 1 and K1 = Rm.

In any case, there is at least one cell Ki such that Int(U) ∩ Ki 6= ∅. Let

E = {i ≤ J : Ki ∩ Int(U) 6= ∅}.

Claim 1: ∀i ∈ E, fix x ∈ Ki ∩ Int(U): (1) Assume f(x) = fj(x) for some

j, then ∀y ∈ Ki ∩ Int(U) : f(y) = fj(y), (2) Assume f(x) < fj(x) for some

j, then ∀y ∈ Ki ∩ Int(U) : f(y) < fj(y), (3) Assume f(x) > fj(x) for some

j, then ∀y ∈ Ki ∩ Int(U) : f(y) > fj(y).

Proof: (1) U and Ki are convex, therefore, Ki∩Int(U) is convex. Therefore,

the line {x + α(y − x)|0 ≤ α ≤ 1} ⊂ (Ki ∩ Int(U)). We will argue by

contradiction. Assume that f(x) = fj(x) and f(y) 6= fj(y). Consider the

function g : [0, 1]→ R defined by g(t) = f(x+ t(y−x)). g is piecewise affine

with at least two distinct components g1 and g2, then, ∃0 ≤ β ≤ 1 such that
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g1(β) = g2(β). Therefore, x + β(y − x) /∈ Ki which is a contradiction. (2)

and (3) are straightforward as in Lemma 2.2.14.

Claim 2: ∀a, b ∈ U,∃i ≤ n such that fi(a) ≤ f(a) and fi(b) ≥ f(b).

Proof: As in Lemma 2.2.16, let t ∈ [0, 1] and let h : [0, 1] → Rm be such

that ∀t ∈ [0, 1] : h(t) = a+ t(b−a). Let g = f ◦h, i.e., g(t) = f(a+ t(b−a)).

Since U is convex, then g is well defined. The result follows as in Lemma

2.2.16.

The rest of the proof follows as in Theorem 2.2.17. Define ∀i ≤ J : K̃i =

Ki ∩ Int(U) and let Ei = {j|∀x ∈ K̃i : f(x) ≤ fj(x)}. Define gi =
∧
j∈Ei fj.

Then, ∀x ∈ K̃i : gi(x) = f(x). Using claims 1 and 2 above and following

the proof in Theorem 2.2.17 we have: ∀k 6= i,∀x ∈ K̃i : gk(x) ≤ gi(x).

Therefore, ∀z ∈
⋃
h≤J K̃h:

f(z) =
∨
h≤J

∧
i∈Eh

fi(z)

Since f is continuous and
⋃
h≤J K̃h = U then the equality holds ∀z ∈ U .

Let f̃ = f then f̃ ∈ S and is a natural extention for f to Rm. �

Conjecture

Let U ⊂ Rm be open, bounded, connected and ∂U = U \ Int(U). Let f : U → R
be a piecewise affine function. Then, f can be extended possibly in many

ways to a piecewise affine function f̃ ∈ S.

3.2 Properties of Slp

Lemma 3.2.1: f ∈ Slp if and only if ∀δ > 0,∀x ∈ Rm, f : B(x, δ) → R is

piecewise affine.

Proof. Assume f ∈ Slp. Fix x ∈ Rm and δ > 0. Therefore, B(x, δ) is compact.

∀y ∈ B(x, δ) : ∃Uy ⊂open Rm such that f : Uy → R is continuous and agrees

with a finite number ny of affine functions on Uy. The open neighbourhoods
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Uy form an open cover for B(x, δ) so it admits a finite subcover Uyi with i ≤
m ∈ N. Therefore, f :

⋃m
i=1 Uyi → R is continuous and agrees with a finite

number of affine functions on
⋃m
i=1 Uyi ⊃ B(x, δ), therefore, f : B(x, δ)→ R

is piecewise affine.

The opposite direction is straightforward from Definition 3.1.2.

�

Lemma 3.2.2: f ∈ Slp if and only if ∀C ⊂compact Rm and C is the union of

at most finite number of connected sets: f : C → R is piecewise affine.

Proof. For one direction, assume f ∈ Slp. Consider a compact set C that is the

union of at most finite number of connected sets. Then ∀x ∈ C : ∃Vx ⊂open
Rm such that f : Vx → R is continuous and f agrees with a finite number nx

of affine functions on Vx. The open neighbourhoods Vx form an open cover

for C. Since C is compact, C admits a finite subcover Vxi with i ≤ k ∈ N
(k is the cardinality of the subcover). C ⊂

⋃k
i=1 Vxi . f :

⋃k
i=1 Vxi → R is

continuous and agrees with a finite number of affine functions on
⋃k
i=1 Vxi

therefore f : C → R is piecewise affine.

The opposite direction is straightforward from Lemma 3.2.1.

�

Lemma 3.2.3: Slp is a vector lattice.

Proof. Clearly Slp is a vector space. Assume f, g ∈ Slp. Consider x ∈ Rm and

δ > 0. By Lemma 3.2.1, f and g are continuous and agree with {fi}ni=1 ⊂ A

and {gj}mj=1 ⊂ A on B(x, δ). Therefore, f ∨ g is continuous and agrees with

{fi}ni=1 ∪ {gj}mj=1 ⊂ A on B(x, δ). Then, by Lemma 3.2.1, f ∨ g ∈ Slp. �

Lemma 3.2.4: Let f ∈ Slp. Then ∀V ⊂open Rm,∃W ⊂open V,W 6= ∅ such

that ∀x ∈ W : f(x) = fj(x) where fj ∈ A.

Proof. Let V ⊂open Rm. Let x ∈ V . Then, ∃δ > 0 and B(x, δ) ⊂ V such

that f : B(x, δ) → R is piecewise affine. Let g ≡ f |B(x,δ). Since B(x, δ)

is closed and convex and using Lemma 3.1.4, ∃g̃ ∈ S such that g̃|B(x,δ) ≡
g|B(x,δ) ≡ f |B(x,δ). Applying Lemma 2.2.5 to g̃ and B(x, δ) ⊂ V , the result

is obtained. �
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Lemma 3.2.5: f ∈ Slp if and only if ∃ distinct affine functions {fi}∞i=1 and

subsets {Si ⊂ Rm}∞i=1 such that:

1. ∀i : Int(Si) 6= ∅. Int(Si) = Si.

2. ∀δ > 0 : ∀x ∈ Rm : Ex,δ = {j ∈ N : Sj ∩B(x, δ) 6= ∅} is finite.

3. ∀i 6= j : Int(Si) ∩ Int(Sj) = ∅.
4.
⋃∞
i=1 Si = Rm.

5. f |Si ≡ fi|Si.

Similar to the previous definitions, The sets {Si}∞i=1 are called the regions of f

and {fi}∞i=1 are called the components of f. The pairs {(Si, fi)}∞i=1 are called

the characteristic pairs of f.

Proof. For one direction: assume that f satisfies the conditions listed in the

lemma. If x ∈ Int(Si) for some i then ∃δx such that V = B(x, δx) ⊂ Si

and fV ≡ fi|V and thus V is an open neighbourhood of x with f being

continuous on V and agreeing with a finite number (only one) of affine

functions. If x ∈ ∂Si for some i, then, by condition 2: Fix δ > 0 ⇒
B(x, δ) ⊂

⋃
j∈Ex,δ Sj. We need to show that f is continuous on B(x, δ) and

that f agrees with a finite number of affine functions. Indeed, since Ex,δ is

finite, then f agrees with a finite number of affine functions. Additionally,

arguing by contradiction we will show that f is continuous at x. Consider

a sequence {xn}∞n=1 ⊂ B(x, δ) such that xn → x and f(xn) 9 f(x). Since

Ex,δ is finite, then, we can pass to a subsequence {xn}∞n=1 ⊂ Sj for some j

satisfying |f(xn)− f(x)| > ε for some ε > 0. But since Sj is closed and fj is

continuous, then f(xn) = fj(xn) → fj(x) = f(x) which is a contradiction.

Therefore, f is continuous at x. Since x ∈ ∂Si was chosen arbitrarily,

therefore, f is continuous on B(x, δ)∩
(⋃

j∈Ex,δ ∂Sj

)
. From the first part, f

is also continuous on B(x, δ)∩
(⋃

j∈Ex,δ Int(Sj)
)

. Therefore, f is continuous

on B(x, δ) and agrees with a finite number of affine functions. Therefore, f

is locally piecewise affine.

For the opposite direction, assume that f ∈ Slp, and recall that Rm =⋃∞
m=1 B(0,m). Using Lemma 3.2.1: ∀m : f is piecewise affine on B(0,m),

and therefore, ∃ a finite number nm ∈ N of affine functions {fj}nmj=1 with

which f agrees. By collecting the distinct affine functions associated with
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each open ball B(0,m) then f agrees with a countable (infinite) set of dis-

tinct affine functions {fi}∞i=1. Let Oi =
⋃
{U |U ⊂open Rm, fi|U ≡ f |U}. If

Oi = ∅ for some i then remove Oi and fi from the list and renumber. Note

that by setting V = Rm in Lemma 3.2.4, then at least one Oi 6= ∅. Thus,

∀i : Oi 6= ∅ and {fi}∞i=1 are distinct. Let Si = Oi. We will show that

{Si}∞i=1 satisfy the conditions in the lemma. Condition 5 is satisfied triv-

ially: Since f |Oi ≡ fi|Oi and both f and fi are continuous, then, f |Si ≡ fi|Si .
For condition 1: Since Oi ⊂ Int(Si), therefore, Int(Si) 6= ∅. Also since f

agrees with fi on Int(Si) which is open we have: Int(Si) ⊂ Oi. Therefore,

Oi = Int(Si) 6= ∅ and Oi = Int(Si) = Si. Condition 3 is satisfied as fol-

lows: Let U = Oi ∩ Oj. Since Oi and Oj are open, then U is open and

fi|U ≡ fj|U . Then, by Lemma 2.2.2, fi ≡ fj. Condition 2 is satisfied

as follows: Let δ > 0, x ∈ Rm. By Lemma 3.2.1 f is piecewise affine on

B(x, δ). Therefore, f |B(x,δ) agrees with a finite number of affine functions.

Therefore, Ex,δ = {j ∈ N : Sj∩B(x, δ) 6= ∅} is finite. Condition 4 is satisfied

as follows: We will argue by contradiction. Assume ∃x ∈ Rm \
⋃∞
i=1 Si. Let

δ > 0. By condition 2, Ex,δ is finite, therefore, V = B(x, δ) \
⋃
j∈Ex,δ Sj is

open and by Lemma 3.2.4, ∃W ⊂open V such that ∀y ∈ W : f(y) = fk(y)

for some affine function fk. Therefore, x ∈ W ⊂ Sk which is a contradiction.

Therefore,
⋃∞
i=1 Si = Rm. �

Lemma 3.2.6: The characteristic pairs of locally piecewise affine functions

are uniquely defined up to reordering.

Proof. Let f ⊂ Slp and let {(Si, fi)}∞i=1 and {(S̃j, f̃j)}∞j=1 be two characteristic

pairs for f . Fix i and consider Int(Si). By Lemma 3.2.4 ∃W ⊂open Int(Si)

such that fW ≡ f̃j|W ≡ fi|W for some j. By Lemma 2.2.2 fi = f̃j and

therefore Si = S̃j. Since the components are distinct, then the characteristic

pairs are uniquely defined up to reordering. �

Lemma 3.2.7: The boundaries of the regions of a locally piecewise affine

function are subsets of hyperplanes and the regions only intersect on their

boundaries. In other words: Let f ∈ Slp, then ∀i : ∂Si =
⋃
j 6=i Si ∩ Sj.

Proof. Using Lemma 2.2.10, and since the boundaries of the regions are the

locations where affine functions agree, therefore, the boundaries are subsets
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of hyperplanes. Let x ∈ ∂Si, then x ∈ Si ∩ (Rm \ Si), then ∀k ∈ N :

B(x, 1
k
) ∩ Rm \ Si 6= ∅. ∀k pick xk ∈ B(x, 1

k
) ∩ Rm \ Si. By Lemma

3.2.5, Ex,1 is finite. Since xk → x and {xk}∞k=1 ⊂
⋃
r∈Ex,1\{i} Sr there is a

subsequence and an index j 6= i such that {xk}∞k=1 ⊂ Sj. Since xk → x and

Sj is closed, we have x ∈ Sj. Therefore, x ∈ Si ∩ Sj.

For the other inclusion, let x ∈ Si∩Sj, i 6= j. We will argue by conatrdiction

by assuming that x /∈ ∂Si but x ∈ Int(Si). Therefore, ∃δ > 0 such that

B(x, δ) ⊂ Int(Si). Since Int(Si) ∩ Int(Sj) = ∅, then x ∈ ∂Sj, therefore,

B(x, δ) ∩ Int(Sj) 6= ∅ ⇒ Int(Si) ∩ Int(Sj) 6= ∅ which is a contradiction.

Therefore, x ∈ ∂Si. �

Cells Induced by Hyperplanes formed by the Components of Locally

Piecewise Affine Functions: As shown in the previous chapter, there

are finite number of cells induced by hyperplanes formed by the components

of a piecewise affine function. In the case of locally piecewise affine functions,

there are infinitely many cells and these cells are not necessarily open. Let

{He}∞e=1 be a family of countably (infinite) many hyperplanes such that

∀e : He = {x ∈ Rm|ve · x + be = 0} where ve ∈ Rm and be ∈ R. Let He1

and He2 be the positive and negative parts according to Definition 2.2.9

respectively. Consider the set D = {+1,−1, 0}∞. Let σ : Rm → D be

such that ∀x ∈ Rm : σ(x) = {sgn (ve · x+ be)}∞e=1. Denote M = Range(σ).

Denote a vector T = {Te}∞e=1 ∈ M satisfying ∀e : Te 6= 0 by a tope of

M . The set of topes is not empty because each hyperplane is nowhere

dense. Therefore,
⋃∞
e=1 He is a meagre set and thus, using Baire Category

Theorem, has empty interior implying that
⋃∞
e=1 He 6= Rm. Therefore, ∃x ∈

Rm \
⋃∞
e=1He and σ(x) is a tope of M . Let MT be the set of topes of

M . Unlike the finite case, the set of topes is not necessarily finite. Since

the set of hyperplanes is countably infinite, then, the cardinality of MT is at

most equal to the cardinality of the real numbers and by chosing an adequate

ordering of the topes, then MT can be viewed as a subset of R. Let {Tr}r∈MT

be a representation of the topes. The sets Kr = {x ∈ Rm|σ(x) = Tr}
define cells in Rm induced by the family of hyperplanes independent of the

orientation. Each cell Kr is not empty, convex but unlike the finite case,

it is not necessarily open because it is the intersection of countably infinite
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open and convex sets of the form He1 and He2. In addition,
⋃
r∈MT

Kr =

Rm \
⋃∞
e=1 He and

⋃
r∈MT

Kr = Rm. Let {fi}∞i=1 ⊂ A. By Lemma 2.2.10,

the sets were these functions interest are either empty or are hyperplanes.

Let Hlm = {x ∈ Rm|fl(x) = fm(x)} and let E = {(l,m)|Hlm 6= ∅}. Note

that E is countable since if f1, f2, f3, ... are the affine functions, then the set

made of the elements H1,2, H1,3, H2,3, H1,4, H2,4, H3,4, H1,5, H2,5, H3,5, H4,5, ...

is also countable. Define a representation for the topes and let {Kr}r∈MT

be the cells induced by the family of hyperplanes {He}∞e=1 as defined above.

These cells, by definition, are locations where the affine functions do not

agree.

Lemma 3.2.8: Let f ∈ Slp. Let {Kr}r∈MT
be the cells induced by the compo-

nents {fi}∞i=1. Then, ∀i ≤ ∞,∀r ∈MT ,∀x ∈ Kr:

1. If f(x) = fi(x), then ∀y ∈ Kr : f(y) = fi(y).

2. If f(x) < fi(x), then ∀y ∈ Kr : f(y) < fi(y).

3. If f(x) > fi(x), then ∀y ∈ Kr : f(y) > fi(y).

Moreover, ∀Kr : ∃!ir such that ∀x ∈ Kr : f(x) = fir(x).

Proof. The moreoever part is a trivial outcome of the statement and the fact

that the components are unique and do not agree on any cell Kr.

Let x, y ∈ Kr be such that f(x) = fi(x) and f(y) = fj(y) for some i 6= j.

Unlike Lemma 2.2.14, Kr is not necessarily open. Since the cell Kr is a

set where none of the functions agree, then fi(x) 6= fj(x) and fi(y) 6= fj(y).

Consider the set C = {x + α(x − y)|0 ≤ α ≤ 1} ⊂ Kr. C is compact

and connected. By Lemma 3.2.2, f |C agrees with a finite number of affine

functions. Without loss of generality, we can assume that f |C agrees with the

two distinct functions fi and fj, otherwise, we can pick another point y close

enough to x. Consider the function g : [0, 1] → R defined as g(t) = f(x +

t(x − y)). g(t) is a piecewise affine function with two distinct components

g1(t) = fi(x+t(x−y)) and g2(t) = fj(x+t(x−y)) such that f(x) = g1(0) =

fi(x) 6= g2(0) = fj(x) and g1(1) = fi(y) 6= g2(1) = fj(y) = f(y). Therefore,

∃0 < t < 1 such that g1(t) = g2(t) = fi(x + t(x − y)) = fj(x + t(x − y))

which contradicts the fact that ∀x ∈ Kr,∀i 6= j : fi(x) 6= fj(x).

Let x ∈ Kr be such that f(x) > fi(x). By the first part of the proof,
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∃j 6= i such that ∀y ∈ Kr : fj(y) = f(y). Since fj(x) > fi(x), therefore,

Kr ⊂ {z|fj(z) > fi(z)}. Therefore, ∀y ∈ Kr : fj(y) = f(y) > fi(x). The

same holds if f(x) < fi(x). �

Theorem 3.2.9: Let f ∈ Slp with components {fi}∞i=1. Let {Kr}r∈MT
be the

cells generated by the components. Let Ai =
⋃
{Kr|∀x ∈ Kr : f(x) = fi(x)}.

Let Oi = Int(Ai). Then, {(Oi, fi)}∞i=1 are exactly the characteristic pairs of

f.

Proof. First notice that if Oi is empty, then we can remove fi and renumber

the components. By setting V = Rm in Lemma 3.2.4 then ∃δ > 0, x ∈ Rm,

and fi such that f |B(x,δ) ≡ fi|B(x,δ). Therefore, B(x, δ) ⊂ Ai ∪
⋃∞
e=1 He and

since
⋃∞
e=1 He is a meagre set, therefore, Oi 6= ∅. We need to show that Oi

as defined here satisfy the five conditions of Lemma 3.2.5, implying that

Si = Oi.

Condition 5 is straightforward since f and fi are continuous, so f |Oi ≡ fi|Oi .
For condition 1, by construction Oi 6= ∅, therefore ∀i : Int(Oi) 6= ∅. Since Oi

is open, then Oi ⊂ Int(Oi) and therefore, Oi ⊂ Int(Oi) ⊂ Oi. For condition

2, since f is a locally piecewise affine function, then f agrees with a finite

number of components say {fk}mk=1 on every compact set B(x, δ) and the

corresponding sets {Ak}mk=1 are dense in B(x, δ). Therefore, Ex,δ = {j ∈
N|Oi ∩ B(x, δ) 6= ∅} is finite and not empty. For condition 3, notice that

the set A = Int(Oi) ∩ Int(Oj) is open. Let x ∈ A. Therefore, ∃δ > 0 such

that ∀y ∈ B(x, δ) : f(y) = fi(y) = fj(y). By Lemma 2.2.2, therefore,

fi ≡ fj and Oi = Oj. For condition 4, we will argue by contradiction.

Assume that ∃x such that ∀i : x /∈ Oi which means ∀i : ∃δi such that

B(x, δi) ∩ Oi = ∅. Pick δ > 0 then Ex,δ is finite and clearly not empty.

Therefore, ∃ at most m ∈ N with m > 0 such that ∀i ≤ m : B(x, δ)∩Oi 6= ∅.
Pick δ0 < min1≤i≤m{δi} then ∀j ∈ N : B(x, δ0) ∩ Oj = ∅. By setting

V = B(x, δ0) in Lemma 3.2.4, ∃δs > 0, δs ≤ δ0, y ∈ B(x, δ), and fi such

that f |B(y,δs) ≡ fi|B(y,δs). Therefore, B(y, δs) ⊂ Ai ∪
⋃∞
e=1 He, therefore,

B(x, δ) ∩Oi = B(x, δ) ∩ Int(Ai) 6= ∅ which is a contradiction. �

Lemma 3.2.10: Let f ∈ Slp with components {fi}∞i=1, then ∀a, b ∈ Rm,∃i
such that fi(a) ≤ f(a) and fi(b) ≥ f(b).
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Proof. Let h : [0, 1] → Rm be such that ∀t ∈ [0, 1] : h(t) = a + t(b − a).

Let g = f ◦ h, i.e., g(t) = f(a + t(b − a)). Since the set C = {a + t(b −
a))|0 ≤ t ≤ 1} is compact, therefore, f : C → R is a piecewise affine

function (continuous and agrees with a finite number of affine functions

{fi}ki=1 on C). Therefore, ∀i : gi ≡ fi ◦ h is an affine function, indeed:

fi(a+t(b−a)) = vi ·a+t((b−a) ·vi)+bi = mit+ci where mi = (b−a) ·vi and

ci = bi + vi · a. Therefore, g : [0, 1]→ R is a continuous function and agrees

with the affine functions {gi}ni=1. Then, by Theorem 2.2.6 and Corollary

2.2.13, g is a piecewise affine function. By Corollary 2.1.9 ∃i ≤ n such that

gi(0) = fi(a) ≤ g(0) = f(a) and gi(1) = fi(b) ≥ g(1) = f(b).

�

Remark:

In Theorem 2.2.17, it was shown that piecewise affine functions are elements

of the lattice generated by the components. Extending this theorem to lo-

cally piecewise affine functions requires taking infinite pointwise supremums

and infimums of affine functions. In general, taking infinite pointwise sups

and infs is not guaranteed to give continuous functions since C(Rm) is not

Dedekind complete! At the same time, it is trivial to show that any continu-

ous function is the pointwise supremum and/or infimum of affine functions.

Therefore, no useful extension to Theorem 2.2.17 was found for locally

piecewise affine functions.
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Chapter 4

Order Convergence and Order

Structures for Piecewise Affine

Functions

In the first part of this chapter, the various definitions of order convergence

that exist in the literature are investigated. Then, it is shown that two

definitions agree on the space of continuous functions C(Rm). In the second

part, the order structure of S and Slp as subspaces of C(Rm) and with

respect to each other is investigated.

4.1 Order Convergence

Definition 4.1.1: Order Convergence I in Partially Ordered Sets: Let

E be a partially ordered set and let {fα} ⊂ E be a net, we say that fα

converges in order (I) to f ∈ E and write fα
o1−→ f if ∃{hβ}, {gγ} ⊂ E

such that hβ ↓ f , gγ ↑ f , and ∀β, γ : ∃α0(β, γ) such that ∀α ≥ α0 we have

gγ ≤ fα ≤ hβ.

Proposition 4.1.2: Order Convergence I in Vector Lattices: Let E be

a vector lattice and let {fα} ⊂ E be a net, then fα
o1−→ f if and only if

∃{kβ} ⊂ E such that kβ ↓ 0 and ∀β : ∃α0(β) such that ∀α ≥ α0 we have

|fα − f | ≤ kβ.
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Proof. For the first direction, assume fα
o1−→ f . Therefore, ∃{hβ}, {gγ} ⊂ E

such that hβ ↓ f and gγ ↑ f and ∀β, γ : ∃α0(β, γ) such that ∀α ≥ α0 we have

gγ ≤ fα ≤ hβ. Let xβ = (hβ−f), yγ = (f − gγ), and kβ,γ = xβ ∨yγ. Clearly,

0 ≤ kβ,γ and ∀β : kβ,γ ↓ and ∀γ : kβ,γ ↓. Claim: 0 = infβ,γ{xβ ∨ yγ}. Proof:

Using the vector lattice identities: ∀β, γ : 0 ≤ xβ ∨ yγ, −(xβ ∧ yγ) ≤ 0, and

xβ + yγ = xβ ∨ yγ + xβ ∧ yγ. Let t be another lower bound of xβ ∨ yγ, i.e.,

∀β, γ : t ≤ xβ ∨ yγ ≤ xβ + yγ−xβ ∧ yγ ≤ xβ + yγ. Therefore, ∀β, γ : t−xβ ≤
yγ ⇒ t− xβ ≤ 0⇒ t ≤ xβ ⇒ t ≤ 0 and the claim is proved.

Fix β, γ, then ∀α ≥ α0 : (fα − f) ≤ xβ and (f − fα) ≤ yγ, therefore,

|fα − f | ≤ kβ,γ. We can combine the net with indices β and γ such that

we have one net with index λ = (β, γ) with the natural partial order of R2.

Therefore, kλ ↓ 0 and the first direction is proved.

For the opposite direction, assume ∃{kβ} ⊂ E such that kβ ↓ 0 and ∀β :

∃α0(β) such that ∀α ≥ α0 we have |fα − f | ≤ kβ. Let hβ = kβ + f and

gβ = −kβ + f we have ∀α ≥ α0(β):fα − f ≤ kβ ⇒ fα ≤ kβ + f = hβ and

f−fα ≤ kβ ⇒ −kβ+f ≤ fα. Therefore, gβ ≤ fα ≤ hβ with gβ = −kβ+f ↑ f
and hβ = kβ + f ↓ f . Therefore, fα

o1−→ f .

�

Remark:

It is important to note that we have two different index sets for fα and kβ so

that convergence wouldn’t be altered if we add more terms at the begin-

ning of the net fα [5]. See [5] for examples showing that Definition 4.1.1

allows for adding more terms at the beggining of the net fα without alter-

ing convergence. The following is another ”stronger” definition for order

convergence according to [6]:

Definition 4.1.3: Order Convergence II in Partially Ordered Sets:

Let E be a partially ordered set and let {fα} ⊂ E be a net, we say that fα

converges in order (II) to f ∈ E and write fα
o2−→ f if ∃{hα}, {gα} ⊂ E such

that hα ↓ f , gα ↑ f , and ∀α we have gα ≤ fα ≤ hα.

Proposition 4.1.4: Order Convergence II in Vector Lattices: Let E

be a vector lattice and let {fα} ⊂ E be a net, then fα
o2−→ f if and only if
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∃{kα} ⊂ E such that kα ↓ 0 and ∀α we have |fα − f | ≤ kα.

Proof. The proof is analogous to that of proposition 4.1.2. �

Clearly from the definitions, order convergence II leads to order conver-

gence I. In addition, [7] showed that there are two conditions that guarantee

that order convergence I and order convergence II are equivalent. The first

condition is that fα has to be bounded and the second is that the set E has

to be Dedekind complete. The importance of the boundedness of the net fα

is crucial as can be shown when considering E = C(R). Consider the sets

A1 = {(x, 0)|x ∈ N} and A2 = {(0, y)|y ∈ N}. Consider the set A = A1∪A2

with the dictionary (lexicographical) order. A is a directed set. Consider

the net {f(x,y)∈A} ⊂ C(R) such that f(x,y) ≡ y. Clearly, f(x,y) does not order

converge (II) since the beginning of the net is unbounded. However, the net

order converges (I) to the function f ≡ 0. Some authors [5] and [2] use the

following modified version of order convergence II to allow for the exclusion

of the ”beginning” of a net:

Definition 4.1.5: Modified Order Convergence II in Partially Or-

dered Sets: Let E be a partially ordered set and let {fα} ⊂ E be a net,

we say that fα converges in order (mII) to f ∈ E and write fα
mo2−−→ f if

∃{hα}, {gα} ⊂ E such that hα ↓ f , gα ↑ f , and ∃α0 such that ∀α ≥ α0 we

have gα ≤ fα ≤ hα.

Proposition 4.1.6: Modified Order Convergence II in Vector Lattices:

Let E be a vector lattice and let {fα} ⊂ E be a net, then fα
mo2−−→ f if and

only if ∃{kα} ⊂ E such that kα ↓ 0 and ∃α0 such that ∀α ≥ α0 we have

|fα − f | ≤ kα.

Proof. The proof is analogous to that of proposition 4.1.2. �

Note that for bounded nets, modified order convergence (II) is equivalent

to order convergence (II). [5] proved that if fα
o1−→ f in a vector lattice E,

then fα
mo2−−→ f in Eδ where Eδ is the order completion of E. Notice as well

that in the above example, f(x,y)
mo2−−→ 0.
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There are examples given by [5] and [2] that show that modified order

convergence (II) and order convergence (I) are not equivalent, i.e., even

for bounded nets, order convergence (II) and order convergence (I) are not

necessarily equivalent. However, [2] proved that order convergence (I) and

modified order convergence (II) are equivalent when the partially ordered

set E possess a special property which they named: ”Property B”. A more

modern term is: ”Countable Sup Property” as defined by [8] for vector

lattices. We will use the modern term for the definitions.

Definition 4.1.7: Countable Sup Property in Partially Ordered Sets:

Let E be a partially ordered set. E possesses the countable sup property if

and only if:(a) if ∅ 6= M ⊂ E is increasing, with supM = y, then, ∃J ⊂ M

such that J is increasing, countable and sup J = y, and (b) if ∅ 6= M ⊂ E

is decreasing, with inf M = y, then, ∃J ⊂ M such that J is decreasing,

countable and inf J = y.

Proposition 4.1.8: Countable Sup Property in Vector Lattices: Let

E be a vector lattice. E possesses the countable sup property if and only

if for every net {xα} ⊂ E with xα ↑ x ∈ E, there exists a subsequence

{xn}∞n=1 ⊂ E such that xn ↑ x.

Proof. The proof is straightforward using the definitions. �

Note that the set R as a vector lattice has the countable sup property. If

{xα} ↑ x ∈ R, then ∀n ∈ N : ∃xn ∈ {xα} such that x − 1
n
< xn ≤ x and

xn ≥ xn−1. The following Theorem (Theorem 8.22 in [9]) is important in

identifying spaces that have the countable sup property.

Theorem 4.1.9: If a vector lattice E admits a strictly positive linear func-

tional, then E is Archimedean and has the countable sup property.

Proof. Let f ∗ be a strictly positive linear functional on E. Let a, b ∈ E be

such that a 6= 0 and ∀n : 0 ≤ b ≤ a
n
. Therefore, 0 ≤ f ∗(b) ≤ f∗(a)

n
. Since

R is Archimedean, therefore, f ∗(b) = 0 and since f ∗ is strictly positive, we

have b = 0. Therefore, E is Archimedean.

Let {xα} ⊂ E be an increasing net with xα ↑ x ∈ E. Since f ∗ is strictly

positive, we have f ∗(xα) ↑ and bounded by f ∗(x). Since {f ∗(xα)} is a
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bounded increasing net in R, then it has a least upper bound. Let s =

supα{f ∗(xα)}. Since R has the countable sup property, then ∃{xn}∞n=1 such

that f ∗(xn) ↑ s and xn ↑. Note that ∀α, ∀n : f ∗(xα) ∨ f ∗(xn) ≤ f ∗(xα ∨ xn)

and since xα ∨ xn ⊂ {xα} we have supn {f ∗(xα ∨ xn)} = s. We claim that

xn ↑ x. Indeed, let xn ≤ g ∈ E. Therefore, f ∗(xn) ≤ f ∗(g). Also, ∀α : 0 =

f ∗(0) ≤ f ∗((xα − g) ∨ 0) ≤ f ∗((xα − xn) ∨ 0) = f ∗(xα ∨ xn)− f ∗(xn)
n→∞−−−→

s − s = 0. Since f ∗ is strictly positive, therefore, (xα − g) ∨ 0 = 0. i.e.,

xα ≤ g. Therefore, g is also an upper bound for {xα}, therefore, g ≥ x.

Therefore, xn ↑ x. �

Corollary 4.1.10: Let x1 < x2 ∈ R. Then, C([x1, x2]) possesses the countable

sup property.

Proof. Since the Rieman integral operator is a strictly positive functional on

C([x1, x2]), then by Theorem 4.1.9, C([x1, x2]) possesses the countable sup

property. �

Now that we have shown that ∀x1 < x2 ∈ R : C([x1, x2]) possesses the

countable sup property, we wish to extend this to show that C(R) also

possesses the countable sup property.

Lemma 4.1.11: Let {fα}α∈Γ ⊂ C(Rm) be an increasing net with supα {fα} =

f ∈ C(Rm). Let n ∈ N and consider the interval In = [−n, n] and K =

(In)m. The restriction of the continuous functions {fα} on C(K) satisfy

supα{fα|K} = f |K where supα{fα|K} ∈ C(K).

Proof. We will argue by contradiction. Assume ∃g ∈ C(K) such that supα{fα|K} =

g|K and g|K < f |K . If g|∂K = f |∂K then the function:

g̃(x) =

g(x), x ∈ K

f(x), Otherwise

is such that g̃ ∈ C(Rm), g̃ < f and is an upper bound for {fα} which is a

contradiction.

Assume then that ∃x0 ∈ ∂K such that g(x0) < f(x0). Let ε = f(x0) −
g(x0). Since both g and f are continuous, ∃δ0 > 0 such that ∀x ∈ B(x0, δ0)∩
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K : |f(x)− f(x0)| ≤ ε/4, |g(x)− g(x0)| ≤ ε/4, and therefore, f(x) > g(x).

Since x0 ∈ ∂K, then B(x0, δ0) ∩ Int(K) 6= ∅, therefore, ∃δ1 > 0, x1 ∈
B(x0, δ0) ∩ Int(K) such that B(x1, δ1) ⊂ B(x0, δ0) ∩ Int(K). Notice that

∀x ∈ B(x1, δ1),∀α : f(x) > g(x) > fα(x). Consider the function:

g̃(x) =

g(x)− ‖x−x1‖
δ1

(g(x)− f(x)) x ∈ B(x1, δ1)

f(x), Otherwise

g̃ ∈ C(R), g̃ < f and is an upper bound for {fα} which is a contradiction.

�

Theorem 4.1.12: C(R) possesses the countable sup property.

Proof. Let {fα} ⊂ C(R) be a net such that fα ↑ f ∈ C(R). By Lemma 4.1.11

supα{fα|In} = f |In . By Corollary 4.1.10, there exists a countable sequence

{fnm|In}∞m=1 such that fnm|In ↑ f |In . Since R is a countable union R =⋃∞
n=1 In then we can construct a sequence of functions {fβi}∞i=1 such that

fβi ↑ f as follows: Let fβ1 = f11 . Let fβ2 be such that fβ2 ≥ {f12 , f21 , fβ1}.
Let fβn be such that fβn ≥ {f1n , f2n−1 , f3n−2 , . . . , fn1 , fβn−1}, . . . etc. Clearly,

fβi ↑ f otherwise, there is another continuous function f2 < f such that it is

an upper bound of fβi . However, for every interval In = [−n, n] : fβi|In ↑ fIn
which contradicts that fβi ≤ f2 < f .

�

Corollary 4.1.13: Let {fα} ⊂ C(R) be a net and f ∈ C(R). Then fα
o1−→

f ⇔ fα
mo2−−→ f .

Proof. By Theorem 4.1.12, C(R) possesses the countable sup property. There-

fore, using the main result of [2], order convergence (I) and modified order

convergence (II) are equivalent on C(R). �

Corollary 4.1.14: Let {fα} ⊂ C(R) be a bounded net and f ∈ C(R). Then

fα
o1−→ f ⇔ fα

o2−→ f .

Proof. By Theorem 4.1.12, C(R) possesses the countable sup property. There-

fore, using the main result of [2], order convergence I and modified order
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convergence (II) are equivalent on C(R), but since the net is bounded, then,

modified order convergence (II) is equivalent to order convergence (I). �

Remark:

Corollary 4.1.10 can be extended naturally to C(I1×I2×I3×· · ·×Im) where

∀i ≤ m : Ii = [xi1, xi2] ⊂ R. In addition, Theorem 4.1.12 and Corollaries

4.1.13 and 4.1.14 can be extended naturally to C(Rm) by considering the

compact sets K = In × In × · · · × In = (In)m with In = [−n, n].

4.2 Order Structure for S and Slp

In this section we present three different definitions available in the literature

for order dense subspaces in a vector lattice. Since we are concerned with

C(Rm), the definitions given here, when applicable, will utilize the modified

order convergence (II) in vector lattices as per Definition 4.1.6. We will

then investigate S and Slp with respect to each other and as as subspaces

of C(Rm).

Definition 4.2.1: Toplogically Order Dense: Let A ⊂ E where E is a

vector lattice. A is topologically order dense in E if ∀x ∈ E : ∃{yα} ⊂ A

such that yα
mo2−−→ x.

Definition 4.2.2: Order Dense Minorizing Sublattice: Let A be a sub-

lattice of a vector lattice E. A is an order dense minorizong sublattice in E

if ∀x ∈ E+,∃y ∈ A such that 0 < y ≤ x.

Definition 4.2.3: Interval Order Dense: Let A ⊂ E where E is a vector

lattice. A is interval order dense in E if ∀x < y ∈ E,∃z ∈ A such that

x < z < y. This definition is motivated by the fact that an order on a

partially ordered set E is termed a ”dense order” if ∀x < y ∈ E : ∃z ∈ E
such that x < z < y.
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Remarks:

• S is not interval order dense in C(R). Consider the functions f1(x) =

sinx and f2(x) = 0.9 sinx. Obviously, it is not possible to fit a piecewise

affine function between the two curves due to the periodic nature of the

functions.

• Slp is not interval order dense in C(R). Consider any two functions

f1 < f2 that are nonlinear and equal on R \ I, where I is a compact

interval and f1|I < f2|I . Then, it is not possible to fit a locally finite

piecewise affine function between the two curves on the portion where

f1 = f2.

Lemma 4.2.4: Interval order dense is a stronger condition than order dense

minorizing sublattice. In other words, let A be a sublattice of a vector lattice

E. Assume A is an interval order dense set, then A is an order dense

minorizing sublattice in E.

Proof. Assume A is an interval order dense set. Therefore, ∀0 < x ∈ E+ :

∃z ∈ A such that 0 < z < x. Therefore, A is an order dense minorizing

sublattice. �

Lemma 4.2.5: (From problem 6: page 66. in [7]): Assume E is an Archimedean

vector lattice. A is a sublattice. A is an order dense minorizing sublattice

in E if and only if ∀x ∈ E+, {y ∈ A|0 < y ≤ x} ↑ x.

Proof. : Assume ∀x ∈ E+, {y ∈ A|0 < y ≤ x} ↑ x. Therefore, ∃y0 ∈ A such

that 0 < y0 ≤ x. Therefore, A is an order dense minorizong sublattice. For

the opposite direction, assume A is an order dense minorizong sublattice in

E. Let C = {y ∈ A|0 < y ≤ x}. Therefore, x ≥ C and C 6= ∅. Assume that

x is not the least upper bound of C, therefore, ∃z < x such that z ≥ C.

Let u = x − z. Note that x > u = x − z > 0. Therefore, ∃v ∈ A such

that 0 < v ≤ u = x − z < x. Therefore, v ∈ C and v ≤ z. Therefore,

v + v ≤ u + z = x. The proof follows by induction. First fix n and assume

nv ≤ x. Therefore, nv ∈ C and nv ≤ z. We also have v ≤ u. Therefore,

v + nv ≤ u + z ≤ x⇒ (1 + n)v ≤ x. Therefore, ∀n : 0 < nv ≤ x and since

E is Archimedean, v = 0 which is a contradiction. �
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Lemma 4.2.6: In Archimedean spaces: Order dense minorizong sublattice is

a stronger condition than topologically order dense. In other words, let A

be a sublattice in an Archimedean vector lattice E. Assume A is an order

dense minorizing sublattice of E, then A is topologically order dense in E.

Proof. Assume A is an order dense minozirong sublattice of E. By Lemma

4.2.5, ∀0 < x ∈ E+ the set C = {z ∈ A|0 < z ≤ x} ↑ x. Therefore,

∃{yα} ⊂ A such that yα
mo2−−→ x. Now let x ∈ E. Therefore, x = x+ − x−.

Therefore, ∃{yα} ⊂ A and ∃{zβ} ⊂ A such that {yα} ↑ x+ and {zβ} ↑ x−.

Therefore, |yα − zβ − x+ + x−| ≤ |yα − x+| + |zβ − x−| ↓ 0, therefore,

yα − zβ
mo2−−→ x.

�

Remark

In general, an order dense minorizong sublattice is not equivalent to a top-

logically order dense sublattice. As a counter example, consider the space

A = C[0, 1] + G where G = {f : [0, 1] → R|{x|f(x) 6= 0} is finite} (G is

the set of real valued functions on [0, 1] with finite support), then C[0, 1] is

a topologically order dense sublattice in A. However, it is not order dense

minorizing since the function

g(t) =

1, t = 1
2

0, Otherwise

is such that g ∈ A+ but ∃ no function f ∈ C[0, 1]+ such that f ≤ g. This last

example shows that, in general, a topologically order dense sublattice is not

necessarily an order dense minorizong sublattice. However, an interesting

question is to check whether a toplogically order dense sublattice in C(Rm) is

necessarily an order dense minorizinong sublattice. While we were not able

to answer this question, here are some results regarding order convergence

and topologically order dense sublattices in C(Rm).

Lemma 4.2.7: Let D ⊂ C(Rm) be a topologically order dense sublattice.

Then, the set A = {x|∀f ∈ D : f(x) = 0} is closed and nowhere dense.
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Proof. A is closed is straightforward from the continuity of the functions in

D since if xn
n→∞−−−→ x where xn ∈ A, then ∀f ∈ D : f(xn) = 0

n→∞−−−→ f(x).

Therefore, f(x) = 0. Therefore, x ∈ A. To show that it is nowhere dense,

we will argue by contradiction. Assume that Int(A) 6= ∅. Therefore, ∃δ > 0

and x ∈ Rm such that B(x, δ) ∈ A. Consider the function:

g(t) =

1− ‖t−x‖
δ
, t ∈ B(x, δ)

0, Otherwise

Then, g is continuous. However, there is no sequence (or net) in A that

would converge in order (modified order converge II) to g since ∀f ∈ D :

|f |B(x,δ) − g|B(x,δ)| = g|B(x,δ). �

Lemma 4.2.8: Let fα ↓ 0 in C(Rm), be such that ∃x ∈ Rm such that

infα fα(x) > 0, then the function g(y) = infα fα(y) is not continuous at

x.

Proof. Since fα ↓ 0, then, ∀h ∈ C(Rm)+ : ∃xh ∈ Rm and β such that fβ(xh) ≤
h(xh). Let ε = g(x). Consider the sequence of functions:

gn(t) =


ε
n

(
1− ‖t−x‖1

n

)
, t ∈ B(x, 1

n
)

0, Otherwise

then, ∀n ∈ N : ∃xn and βn such that fβn(xn) ≤ gn(xn) ≤ ε/n. Therefore,

xn
n→∞−−−→ x, however, g(xn) = infα fα(xn) ≤ fβn(xn)

n→∞−−−→ 0 6= g(x) =

infα fα(x) = ε.

�

Conjectures

• Let B ⊂ C(Rm) be a sublattice. Then, B is order dense minorizing if

and only if B is topologically order dense.

• Let fn ↓ 0 in C(Rm), then the set A = {x ∈ Rm| infn fn(x) > 0} does

not contain an open ball.

Lemma 4.2.9: S is an order dense minorizing sublattice in C(R).
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Proof. Let f ∈ C(R) be such that f > 0. Therefore, ∃x ∈ R such that

f(x) = a > 0. Let ε = a
2
, then ∃δ > 0 such that ∀y with |x− y| ≤ δ we have

f(y) ≥ a
2
. Consider the compact interval K = [x− δ, x+ δ]. Set x1 = x− δ

and x2 = x+ δ. Consider the function

g(h) =


a

2(x−x2)
(h− x2) x ≤ h ≤ x2

a
2(x−x1)

(h− x1) x1 ≤ h ≤ x

0, Otherwise

Then, g ∈ S, g > 0, and g < f . Therefore, S is an order dense minorizing

sublattice in C(R). �

Lemma 4.2.10: S is an order dense minorizing sublattice in C(Rm).

Proof. Let f ∈ C(Rm) be such that f > 0. Therefore, ∃x ∈ Rm such that

f(x) = a > 0. Let ε = a
2
, then ∃δ > 0 such that ∀y ∈ B(x, δ) we have

f(y) ≥ a
2
. Without loss of generality, x = 0. Let {ei}mi=1 be the standard

orthonormal basis set for Rm. Let ∀i ≤ m : fi(y) = a
4

(
1− 4

δ
(ei · y)

)
and

gi(y) = a
4

(
1 + 4

δ
(ei · y)

)
. Consider the function g =

∧
i ((fi ∨ 0) ∧ (gi ∨ 0)).

Let C = {y||yi| ≤ δ
4
}. C ⊂ B(0, δ) and ∀y /∈ C : g(y) = 0 ≤ f(y). Also,

∀y ∈ C : g(y) ≤ a
4
< f(y). Therefore, 0 < g < f and g ∈ S. Therefore, S is

an order dense minorizong sublattice in C(Rm). �

Corollary 4.2.11: S is topologically order dense in C(R).

Proof. This is straight forward by Lemmas 4.2.6 and 4.2.9 and since C(R) is

Archimedean. �

Corollary 4.2.12: S is topologically order dense in C(Rm).

Proof. This is straight forward by Lemmas 4.2.6 and 4.2.10 and since C(Rm)

is Archimedean.

�

Lemma 4.2.9 and Corollary 4.2.11 are implied by Lemma 4.2.10 and

Corollary 4.2.12 but they were presented here since the ideas of the higher
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dimensional space are clearer in the one dimensional case. Also, since S ⊂
Slp, then the results apply to Slp, i.e., Slp is topologically order dense in

C(Rm).

Another approach to show that S is topologically order dense in C(K)

where K ⊂ Rm relies on the Stone-Weierstrass approximation theorem and

is presented here as well.

Lemma 4.2.13: Real functions on compact sets can be uniformly approx-

imated with piecewise affine functions. In other words, let K ⊂ Rm be

compact, S is uniformly dense in C(K).

Proof. g ≡ 1 ∈ S. Let a 6= b ∈ K. Let f(x) = (a − b) · x be an affine

function defined on K. f(a) − f(b) = (a − b) · (a − b) 6= 0. Therefore, S

separates points in K. Using the lattice version of the Stone-Weierstrass

approximation theorem (see Theorem 11.3 page 88 in [4]), S is uniformly

dense in C(K). �

Lemma 4.2.14: Let K ⊂ Rm, K is compact. Then, S is topologically order

dense in C(K).

Proof. By Lemma 4.2.13, S is uniformly dense in C(K), therefore, ∀f ∈
C(K) : ∃fn ∈ S such that fn → f using the sup norm. By passing to a

subsequence, ∀x ∈ K : |fm(x) − f(x)| ≤ 1
m

. Let g ≡ 1 ∈ S. Therefore,

|fm − f | ≤ 1
m
g. Let hm = 1

m
g. Clearly, hm ↓ 0, therefore, fm

mo2−−→ f . �

Remarks:

One cannot uniformly approximate continuous (bounded or not) functions

in C(R) using piecewise affine functions. For example, consider the func-

tion f ∈ C(R) : f(x) = sinx. Because piecewise affine functions have

finite number of components, f(x) cannot be uniformly approximated us-

ing piecewise affine functions. However, we will show that locally piece-

wise affine functions can approximate any function in C(R) which is also

a different approach to show that Slp is topologically order dense in C(R).

Note that the classical Stone-Weierstrass theorem cannot be used for C(R)
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or for Cb(R) = {f ∈ C(R)|f is bounded}. Clearly, S separates points in

R and contains the unit function, yet it cannot approximate the function

f(x) = sinx, i.e., it is not uniformly dense in the Banach space Cb(R).

Lemma 4.2.15: Functions in C(R) can be uniformly approximated by func-

tions in Slp. In other words, ∀ε, ∀f ∈ C(R) : ∃g ∈ Slp such that sup |f−g| ≤
ε.

Proof. Let f ∈ C(R). Fix ε > 0. Consider In = [n − 1, n] ∈ R, n ∈ Z. Since

f is continuous and In is compact, therefore, ∃δn such that ∀x ∈ In : ∀y ∈
[x−δn, x+δn] : |f(y)−f(x)| < ε

2
. Let Mn = d 1

δn
e, x0 = n−1, xi = x0 + i

Mn
,

1 ≤ i ≤Mn. Define the function gn : In → R:

gn(x) =
f(xi+1)(xi+1 − x)

(xi+1 − xi)
+
f(xi)(x− xi)
(xi+1 − xi)

, xi ≤ x ≤ xi+1

Clearly, gn is a piecewise affine function with a finite number of components

and sup |(f − gn)|In | ≤ ε. Let g :
⋃∞
n=−∞ In → R such that g(x) = gn(x)

whenever x ∈ In. Since, ∀n : gn(n) = gn+1(n) and gn−1(n− 1) = gn(n− 1).

Therefore, the function g is well defined and is continuous. Also, clearly for

every compact set C that is the union of at most finite number of connected

components we have g : C → R is piecewise affine, therefore, using Lemma

3.2.2, g ∈ Slp and sup |f − g| ≤ ε. �

Lemma 4.2.16: Slp is topologically order dense in C(R).

Proof. Let f ∈ C(R). By Lemma 4.2.15, ∀m ∈ N : ∃fm ∈ Slp such that

∀x ∈ R : |fm(x) − f(x)| ≤ 1
m

. Let g ≡ 1 ∈ Slp. Therefore, |fm − f | ≤ 1
m
g.

Let hm = 1
m
g. Clearly, hm ↓ 0, therefore, fm

mo2−−→ f .

Alternatively, Corollary 4.2.11 can be used to prove the lemma. Since

S ⊂ Slp and using Corollary 4.2.11, then, Slp is topologically order dense

in C(R). �

In the following part, we will attempt to describe Slp as the order closure

of a class of sets termed: ”locally finite” in S.

Definition 4.2.17: Locally Finite Set of Functions: Let F ⊂ C(Rm). F

is termed a locally finite set of functions if ∀A ⊂ Rm where A is compact,
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the set EA = {f ∈ F |∃x ∈ A : f(x) 6= 0} is finite. If F is a sequence,

then F is termed a locally finite sequence of functions. Clearly, any subset

of a locally finite set of functions is another locally finite set of functions.

Additionally, if F ⊂ C(Rm) is a locally finite set of functions, then F∨, F∧

and consequently F∨∧ are all locally finite sets of functions.

Lemma 4.2.18: Let F ⊂ C(Rm) be a locally finite set of functions. Then,

fa = supF and fb = inf F are well defined and fa, fb ∈ C(Rm).

Proof. Assume F is at least countably infinite, otherwise the statement is

trivial. Let A,B ⊂ Rm be compact. Since EA is finite, then ∃g, h ∈ F such

that g(A) = 0 and h(B) = 0. Let fA =
(∨

f∈EA f |A
)
∨ 0 ∈ C(A). Similarly

fB ∈ C(B). In addition, the function

fAB(x) =

fA(x) x ∈ A

fB(x) x ∈ B

is continuous since if x ∈ A ∩ B, then fA(x) = fB(x). Since Rm can

be expressed as Rm =
⋃∞
i=1Ai where Ai is compact, then, the function

g : Rm → R such that ∀i, ∀x ∈ Ai : g(x) = fAi(x) is well defined and

continuous. In addition, ∀i, ∀x ∈ Ai : fa(x) = g(x). Therefore, fa(x) ∈
C(Rm). The same applies to fb. �

Lemma 4.2.19: Let F ⊂ S ⊂ C(Rm) be a locally finite set of functions.

Then, fa = supF and fb = inf F are such that fa, fb ∈ Slp.

Proof. By Lemma 4.2.18, fa and fb are continuous function. Since on any

compact set, fa and fb agree with a finite number of affine functions, then

using Lemma 3.2.2, fa and fb ∈ Slp. �

Lemma 4.2.20: Given a hyperplane H1 = {x|a1 · x + b1 = 0} where a1 ∈
Rm, b1 ∈ R and an affine function f1(x) = v1 · x + t1, v1 ∈ Rm and t1 ∈ R.

Then, an affine function f(x) = v ·x+ t, with v ∈ Rm and t ∈ R is such that

f |H1 = f1|H1 if and only if ∃α ∈ R such that v = v1 − αa1 and t = t1 − αb1.

In that case f is uniquely determined by α.
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Proof. One direction is straightforward. If ∃α ∈ R such that v = v1−αa1 and

t = t1 − αb1. Therefore, ∀x ∈ H1 : f(x) − f1(x) = (v − v1) · x + t − t1 =

−α(a1 · x+ b1) = 0. Therefore, f |H1 = f1|H1 .

For the opposite direction: assume that f |H1 = f1|H1 . Therefore, ∀x ∈ H1 :

(v−v1)·x+t−t1 = 0. We will argue by contradiction, i.e., assume that v−v1

and a1 are not linearly dependent. Let the orthogonal project of v − v1 on

a1 by αa1, therefore, ∃α ∈ R and u ∈ Rm, u 6= 0 such that v − v1 = αa1 + u

and u ·αa1 = 0 6= (v−v1) ·u. Since a1 ·(x+u)+b1 = a1 ·x+b1 = 0, therefore

x + u ∈ H1. However, (v − v1) · (x + u) + t − t1 = (v − v1) · u 6= 0 which

contradicts that f |H1 = f1|H1 . Therefore,∃α ∈ R such that v = v1 − αa1.

Showing that t = t1 − αb1 is straightforward.

�

Lemma 4.2.21: Given two hyperplanes H1 = {x|a1·x+b1 = 0} 6= H2 = {x|a2·
x + b2 = 0} where a1, a2 ∈ Rm and b1, b2 ∈ R. Given two affine functions

f1(x) = v1 · x+ t1, v1 ∈ Rm, t1 ∈ R and f2(x) = v2 · x+ t2, v2 ∈ Rm, b2 ∈ R.

Then, there exists an affine function f(x) = v · x+ t such that f |H1 = f1|H1

and f |H2 = f2|H2 if and only if ∃α1, α2 ∈ R such that v1 − v2 = α1a1 + α2a2

and t1 − t2 = α1b1 + α2b2. In this case v = v1 − α1a1 = v2 + α2a2 and

t = t1 − α1b1 = t2 + α2b2. In addition, α1 and α2 are unique.

Proof. One direction is straightforward. Let f(x) = v · x + t be as described.

Then, ∀x ∈ H1 : f(x) = (v1−α1a1) ·x+ t1−α1b1 = f1(x)−α1(a1 ·x+ b1) =

f1(x). Similarly, ∀x ∈ H2 : f(x) = (v2 + α2a2) · x + t2 + α2b2 = f2(x) +

α2(a2 · x+ b2) = f2(x).

For the opposite direction, assume that there exists an affine function

f(x) = v ·x+ t such that f |H1 = f1|H1 and f |H2 = f2|H2 . By Lemma 4.2.20

∃α1, α2 ∈ R such that v = (v1 − α1a1) = (v2 + α2a2) and t = t1 − α1b1 =

t2 + α2b2. Therefore, we reach the following equation that dictates the pos-

sible values for α1 and α2 so that the two conditions f |H1 = f1|H1 and

f |H2 = f2|H2 are simultaniously satisfied:

(
v1 − v2

t1 − t2

)
=

(
a1 a2

b1 b2

)(
α1

α2

)
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If the underlying space is one dimensional (m = 1), and since H1 6= H2,

therefore, a1b2 − a2b1 6= 0 which means that there is a unique solution for

α1 and α2. Therefore, we can always find f , α1, and α2 that satisfy the

lemma. When m > 1, then the above equation is an overconstrained system

of equations (m+ 1 equations) with only two unknowns and if there are two

constants α1 and α2 satisfying the m+ 1 equations, then, they are unique.

�

Lemma 4.2.22: Let f ∈ S+ ⊂ C(Rm) with components {fi}ni=1, then, ∀ε >
0 : ∃k ∈ S such that f |K = k|K , f |Rm\K > k|Rm\K and k|Rm\(K±ε[0,1]m) ≡ 0

where K = [0, 1]m.

Figure 4.1: f, k ∈ S+ ⊂ C(R) satisfying Lemma 4.2.22

Proof. Figure 4.1 shows the construction for m = 1. Let {Kj}Jj=1 be the

finite number of cells generated by the components of f . ∀j ≤ J : Kj is

open and convex. Let Lj = Kj ∩ Int(K). Therefore, Lj is open and convex.

Fix j such that Lj 6= ∅. ∂Lj is formed by a finite set of hyperplanes (either

the hyperplanes generated by {fi}ni=1 or the boundaries of K) associated

with a finite number of neighbouring cells. By Lemma 2.2.14, ∃i ≤ n

such that f |Lj ≡ fi|Lj . Assume fi(x) = vi · x + ti, vi ∈ Rm, bi ∈ R. Let

h = maxx∈Lj{f(x)}. h is well defined since f is continous and Lj is compact.

Let hj ≡ fi−4h, i.e., hj(x) = vi ·x+ ti−4h. Let Ej = {Ki|Ki∩Lj 6= ∅}. Ej
is finite. Let {Hi = {x|ai · x+ bi = 0}}li=1 be the hyperplanes that form the

boundaries of Lj such that ∀i : Lj ⊂ {x|ai ·x+ bi < 0}. Let Ljε be a slightly

larger cell whose boundaries are the hyperplanes {Hiε = {x|ai · x + bi −
ε‖ai‖ = 0}}li=1 where ε is chosen such that the following three conditions

are satisfied Ljε∩
⋃
Kk /∈Ej Kk = ∅, hj|Ljε < 0, and ε < 1

2
. Since the number of
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cells is finite, then, ε > 0. Consider H1 = {x|a1 ·x+b1 = 0, a1 ∈ Rm, b1 ∈ R}.
Claim: dist(H1, H1ε) = ε. Proof: Let x1 ∈ H1. Let u ∈ Rm be such that x1+

u ∈ H1ε. Therefore: a1 ·(x1 +u)+b1−ε‖a1‖ = a1 ·u−ε‖a1‖ = 0. Therefore,

‖u‖ ≥ ε. Picking u = ε a1
‖a1‖ shows that infx2∈H1ε

{‖x1 − x2‖} = ε. By

applying Lemma 4.2.21 ∃g1 ∈ A such that g1|H1 = fi|H1 and g1|H1ε
= hj|H1ε

and in this case g1(x) = (vi− δa1) · x+ (ti− δb1) where δ = 4h
ε‖a1‖ . Similarly,

we can construct g2, g3, · · · , gl for the l hyperplanes that are boundaries of

Lj. Let ĝj = fi ∧ g1 ∧ g2 ∧ · · · ∧ gl. Claim 1: f |Lj ≡ ĝj|Lj . Proof: By

construction: ∀k ≤ l : fi|Hk ≡ gk|Hk and fi|Hkε > hj|Hkε ≡ gk|Hkε , therefore,

gK |Lj > fi|Lj and ĝj|Lj = fi|Lj = f |Lj . Claim 2: ĝj|Ljε\Lj < f |Ljε\Lj .
Proof: Let x ∈ Ljε \ Lj. Therefore, x ∈ Kk for some Kk ∈ Ej with

Kk ∩ ∂Ljε 6= ∅. Let C = Kk ∩ Ljε. Since ĝj|∂Ljε < 0 therefore, ĝj|C <

fk|C = f |C where fk is the affine function associated with the neighbouring

cell Kk. Claim 3: ĝj|Rm\Ljε < 0. Proof: This is straightforward from the

fact that ∀y ∈ Rm \ Ljε : ∃i ≤ l such that y ∈ {x|ai · x + bi − ε‖ai‖ > 0}
and ∃x1 ∈ Hi, x2 ∈ Hiε, α > 0 such that y − x2 = α(x2 − x1). Assume

gi(x) = vg · x + bg. We also have, gi(x2) − gi(x1) = vg · (x2 − x1) < 0.

Therefore, gi(y) − gi(x2) = vg · (y − x2) = αvg · (x2 − x1) < 0. Therefore,

gi(y) < 0. Therefore, ĝj|Rm\Ljε < 0. From the three claims above we have:

0 ∨ ĝj ≤ f ∨ 0 = f where 0 ∨ ĝj is equal to 0 outside of Ljε. Repeating this

construction for every j such that Lj 6= ∅ and setting k =
(∨

j,Lj 6=∅ ĝj

)
∨0 we

have: f |K = k|K , f |Rm\K > k|Rm\K and ∃εk such that k|Rm\(K±εk[0,1]m) = 0.

�

Theorem 4.2.23: ∀f ∈ S+
lp ⊂ C(Rm) : f = supi{fi} where {fi}∞i=1 is a locally

finite sequence of functions in S.

Proof. Consider the set K = [0, 1]m. By Lemma 4.2.22, there exists k ∈ S
such that f |K = k|K , f |Rm\K > k|Rm\K and ∃εk as small as possible and

k|Rm\(K±εk[0,1]m) = 0.

We can now divide Rm into the countable union of translates of K such

that Rm =
⋃∞
i=1Ki where Ki = K + vi is a translate of K and vi =

{n1, n2, · · · , nm} ∈ Rm and ∀j ≤ m : nj ∈ Z. For each compact set Ki

we can find the function ki such that ki is equal to f on Ki and equals to
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0 outside an ε neighbourhood of Ki. Therefore, {ki}∞i=1 is a locally finite

sequence of functions in S and f = supi{ki}. �

Corollary 4.2.24: ∀f ∈ Slp ⊂ C(Rm) : f = supi{f+
i } − supj{f−j } where

{f+
i }∞i=1 and {f−j }∞j=1 are two locally finite sequence of functions in S.

Proof. This is straightforward by applying Theorem 4.2.23 to f = f+ −
f−. �

Theorem 4.2.25: Slp uniformly approximate functions in C(Rm). In other

words, ∀ε > 0, ∀f ∈ C(Rm) : ∃g ∈ Slp such that sup |f − g| ≤ ε.

Proof. Assume first that f ∈ C(Rm)+. Fix ε > 0. Consider K = [0, 1]m. Con-

sider f |K ⊂ C(K). By Lemma 4.2.13, ∃fK ∈ S such that ∀x ∈ K : |fK(x)−
f(x)| ≤ ε

4
. Note that by Lemma 3.1.4 fK can be naturally extended to Rm.

By Lemma 4.2.22 ∃fKδ ∈ S such that fK |K = fKδ|K , fK |Rm\K > fKδ|Rm\K
and fKδ|Rm\(K±δ[0,1]m) ≡ 0 where δ can be chosen as small as possible. In this

case δ is chosen as small as possible such that the variation of the function

f to be approximated close to the boundary of K is smaller than ε
4
. I.e.,

∀x ∈ ∂K,∀y ∈ {x} ± δ ∗ [0, 1]m : |f(x) − f(y)| ≤ ε
4
. This is guaranteed by

the fact that ∂K±δ ∗ [0, 1]m is a compact set and f is continuous. This con-

struction can be repeated for a translate of K say H = K + {1, 0, 0, · · · , 0},
therefore, ∃fH ∈ S, fHδ ∈ S as above. We claim that the function g =

fHδ ∨ fKδ is such that ∀x ∈ K ∪ H : |f(x) − g(x)| ≤ ε
2

(See Figure

4.2). Clearly, ∀x ∈ (K \ (H ± δ ∗ [0, 1]m)) : g(x) = fKδ(x) and therefore,

|f(x) − g(x)| ≤ ε
4
. Similarly, ∀x ∈ (H \ (K ± δ ∗ [0, 1]m)) : g(x) = fHδ(x)

and therefore, |f(x) − g(x)| ≤ ε
4
. Consider x ∈ K ∩ (H ± δ ∗ [0, 1]m). If

g(x) = fKδ(x) then |f(x) − g(x)| ≤ ε
4
. However, if g(x) = fHδ(x) then

∃x1 ∈ ∂K ∩ ∂H such that x ∈ {x1} ± δ[0, 1]m and by the construction in

Lemma 4.2.22 g(x) ≤ fHδ(x1). Therefore, fKδ(x) ≤ g(x) ≤ fHδ(x1) ⇒
f(x)− ε/4 ≤ fKδ(x) ≤ g(x) ≤ fHδ(x1) ≤ f(x1) + ε

4
≤ f(x) + ε

4
+ ε

4
. There-

fore, |f(x)−g(x)| ≤ ε
2
. By assuming that Rm is equal to the countable union

of translates of K, i.e., Rm =
⋃∞
i=1Ki where Ki = K + vi is a translate of

K and vi = {n1, n2, · · · , nm} ∈ Rm and ∀j ≤ m : nj ∈ Z. For each compact

set Ki we can find the function fKi such that fKi ∈ S and uniformly ap-

proximates f on Ki. In addition, fKi equals to 0 outside a δ neighbourhood
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of Ki. Therefore, {fKi}∞i=1 is a locally finite sequence of functions in S and

g = supi{fKi} ∈ Slp. In addition, g uniformly approximates f on every Ki.

Figure 4.2: Construction of fKδ, fHδ and g = fKδ ∨ fHδ ⊂ C(R)

Let f ∈ C(Rm) then f = f+−f−. Therefore, ∃g+, g− ∈ S+
lp, g = g+−g− ∈

Slp such that ∀x ∈ Rm : |f+(x)− g+(x)| ≤ ε/2 and |f−(x)− g−(x)| ≤ ε/2,

therefore, |f(x)− g(x)| ≤ |f+(x)− g+(x)|+ |f−(x)− g−(x)| ≤ ε. �
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Chapter 5

Conclusion

In this thesis, we extended the concept of piecewise affine functions with fi-

nite components in C(Rm) by introducing the set of locally piecewise affine

functions which could possibly have infinite components. We discussed the

relationship between the two sets under the umbrella of order theory.

Our first original contribution was the definition of piecewise affine func-

tions on arbitrary subsets of Rm and the extension lemma (Lemma 3.1.4).

In that lemma we proved that a piecewise affine function on a closed and

convex set in Rm can be naturally extended to a piecewise affine function

on the whole space. We also introduced a conjecture that such an extension

can also be achieved for any open, connected, bounded set whose closure is

equal to the union of its its boundary and its interior.

Our second original contribution was the definition of locally piecewise

affine functions and showing that this set of functions as a subset of C(Rm)

is a vector lattice (Lemma 3.2.3). We also showed that the properties of

the set S of piecewise affine functions can be naturally extended to the set

Slp of locally piecewise affine functions.

Our third original contribution was the comparison of the various defini-

tions of order convergence in C(Rm). We first showed that C(Rm) possesses

the countable sup property which enabled us to show that for bounded

nets, the two main defintions of order convergence in the literature coincide

(Theorem 4.1.12 and the following corollaries and remark).
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Our fourth original contribution was the study of S and Slp as sublattices

of C(Rm). We first introduced three different definitions for order dense

subsets of vector lattices (Definitions 4.2.1, 4.2.2, and 4.2.3). We showed

that in Archimedean vector lattices an order dense minorizing sublattice is

a stronger condition than a topologically order dense sublattice (Lemma

4.2.6). We introduced the conjecture that in C(Rm), order dense minoriz-

ing sublattices are equivalent to topologically order dense sublattices. We

then showed that both S and subsequently Slp are order dense minorizing

sublattices in C(Rm).

Our fifth contribution was the study of the relationship betwen S and Slp

by introducing the definition of locally finite sets of functions (Definition

4.2.17). Then we showed that any locally finite set of functions in S has

a supremum and an infimum both of which are in Slp (Lemma 4.2.18).

In addition, we showed that any function in Slp can be expressed as the

difference of the supremums of two locally finite sequence of functions in S.

Our final result was to show that Slp uniformly approximates functions

in C(Rm). While the result was straight forward when m = 1 (Lemma

4.2.15), we utilized the definition of locally finite sets of functions to show

the result for the general case (Theorem 4.2.25).
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