

© Adel Khaled, 2015

Testing and Verification of Service Compositions

by

Adel Khaled

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

ii

Abstract

Service Oriented Architecture (SOA) delivers on the promise of dynamic applications

that are better aligned with business goals. Building SOA systems, whether choreography

or orchestrated, involve the interaction and collaboration of different parties through

service calls. SOA architectural paradigm introduces a set of challenges that make SOA

system verification different from conventional software systems. In this research, we

explore the opportunities in the area of testing and verification of SOA systems built on

top of the two main standards 1) Web Service Choreography Description Language (WS-

CDL) and 2) Web Service Business Process Execution Language (WS-BPEL). In this

regard, we introduce a formal language based on pi-calculus, Chor-calculus, for the

formal modeling and verification of WS-CDL programs. This approach enables the static

verification of choreographies using existing pi-calculus model-checker tools and sets the

ground for enabling the runtime monitoring of choreographies for behavioral correctness.

We validate the calculus for its expressiveness by evaluating the language support for

representing workflow, and service interaction, patterns. We demonstrate the use of the

HAL toolkit to verify the correctness properties of choreographies. On the other hand, we

introduce a set of mutation operators for WS-BPEL and use mutation testing to verify the

behavioral correctness of WS-BPEL programs. The fault models can be employed in

mutation testing to assess the effectiveness of test suites or measure the accuracy of

runtime monitors that are capable of verifying the correctness. We introduce a language

to capture the trace behavior of BPEL programs and describe the fault models. We also

propose a runtime verification system that consumes the specification language and

detects temporal faults.

iii

Preface

Chapter 2 of this thesis has been published as A. Khaled and J. Miller, “Using π-calculus

for Formal Modeling and Verification of WS-CDL Choreographies”, IEEE Transactions

on Service Computing, 2015. Most of the work in Chapter 3 has been published as A.

Khaled, J. Miller, "Fault-Based Mutation Processes for WS-BPEL 2.0 Programs",

International Journal Web Engineering and Technology, Vol. 6, No.2, pp. 141 – 170,

2010.

iv

Table of Contents
Abstract ... ii

Preface.. iii

List of Tables ... vi

List of Figures ... vii

1 Introduction ... 1

2 Using π-calculus for Formal Modeling and Verification of WS-CDL Choreographies

 2

2.1 Introduction .. 3

2.2 WS-CDL Overview .. 5

2.3 Chor-calculus ... 6

2.3.1 Syntax ... 7

2.3.2 Operational Semantics .. 13

2.4 Mapping Chor-calculus to WS-CDL.. 15

2.4.1 Nil Process .. 16

2.4.2 Tau .. 16

2.4.3 Output ... 16

2.5 Evaluation... 22

2.5.1 Workflow Patterns .. 24

2.5.2 Service Interaction Patterns .. 25

2.6 Chor-calculus Demonstration ... 26

2.6.1 Purchase Order Scenario ... 26

2.6.2 Chor-calculus Model ... 27

2.6.3 Verification Process .. 29

2.6.4 Translation to WS-CDL .. 32

2.7 Related Work.. 33

v

2.8 Conclusions .. 34

3 A Workflow Approach to Identifying and Detecting WS-BPEL Temporal Fault

Models... 34

3.1 Introduction .. 35

3.2 Overview .. 36

3.2.1 WS-BPEL ... 36

3.2.2 Mutation Testing ... 37

3.3 Production the Fault Models .. 37

3.3.1 Specification Language ... 37

3.3.2 Workflow Patterns .. 39

3.3.3 Temporal Fault Models ... 41

3.4 BPEL Runtime Verification Platform (RV-BPEL) .. 45

3.4.1 Specification Language Properties ... 45

3.4.2 Verification Process .. 47

3.4.3 Platform Implementation .. 48

3.4.4 RV-BPEL in Action .. 50

3.5 Related Work.. 56

3.6 Conclusion .. 59

4 Conclusion .. 61

References ... 63

Appendix A – Chor-calculus .. 70

Appendix B – BNF of CSPBPEL .. 76

Appendix C – BPEL Mutants ... 80

vi

List of Tables

Table 1: Chor-calculus Syntax .. 9

Table 2: Workunit Behavior ... 12

Table 3: Reduction Rules for Chor-Calculus .. 14

Table 4: Workflow Patterns Supportability where (+) indicates a support of, (-) no

support of and (+/-) indicates a partial support of the pattern... 23

Table 5: Service Interaction Patterns Supportability .. 23

Table 6: Workflow Patterns in Chor-calculus .. 24

Table 7: Interaction Patterns in Chor-calculus.. 25

Table 8: Symbols Mapping To Chor-calculus .. 31

Table 9: CSPBPEL Grammar .. 38

Table 10: Standards Support for Workflow Patterns .. 40

Table 11: Fault Models ... 42

Table 12: Mutants per Test Killing Rate ... 54

Table 13: Mutants per Test Killing Rate ... 56

Table 14: Agents mapping to Chor-calculus .. 70

Table 15: Names mapping to Chor-calculus ... 70

Table 16: Mutants generated in Illustration 1 ... 84

Table 17: Mutants generated in Illustration 2 ... 86

vii

List of Figures

Figure 1: Purchase Order Interaction Sequence .. 27

Figure 2: RV-BPEL Validation Platform. .. 48

Figure 3: Experiment Steps ... 50

Figure 4: RV-BPEL Process to Capture FM1... 52

Figure 5: Purchase Order Process ... 53

Figure 6: Claim Insurance Process ... 55

1 Introduction

Service-Oriented computing encompasses many things, including design paradigms and

principles, design patterns, distinctive architectural models and related concepts,

technologies and frameworks [43]. Service-Oriented computing (SOC) utilizes services

as fundamental elements for developing applications [68]. Service-Oriented Architecture

is an architectural paradigm that promotes building applications from existing services

[8]. SOA aims to enhance the agility and cost-effectiveness of an enterprise while

reducing the burden of IT on the overall organization [43]. A service is the unit of

solution logic upon which SOA systems are composed. Service composition is the

aggregation of one or more services to automate business processes. Web services are the

most widely used form of services.

SOA systems involve multiple parties collaborating to deliver a higher-level business

process. Each party contributes to the process by exposing one or more consumable

services that encapsulate some reusable business logic. Generally speaking, an SOA

program can be described using one of two modeling styles:

 A Global Perspective or commonly known as Choreography describes the

collaboration of the participants from a global perspective. This description is not

biased towards any of the parties and is less centralized. Each participant will

have the same view of the process; the Web Service Collaboration Description

Language (WS-CDL), a W3C standard, is a specification to describe

choreographies [4].

 A Private Perspective or commonly known as Orchestration describes the

collaboration of the participants from the perspective of the service provider. This

description is specific to the participant and is different from that of other

participants in the same process. The Web Services Business Process Execution

Language (WS-BPEL), a W3C standard, defines a model and grammar for

capturing the specifications of a business process from a single perspective. WS-

BPEL is the technology of choice for describing SOA orchestration [3].

2

The success of any software system depends on its functional correctness and reliability.

The importance of software testing and quality delivery has been continuously increasing

over the past years and SOA systems are no exception. However, SOA systems are

composed of system components, services that are owned and controlled by third parties.

Researchers are continuously working to devise new testing techniques to fit within this

architectural model. Testing techniques for SOA systems are either: applied during the

software development phase, where the software system is verified against specifications;

or are monitored at runtime after its release to detect any deviations in the system’s

behavior from expectations. In this research, we focus on testing techniques that are

applied during the software development phase.

This thesis is organized into two main sections. Section 2 introduces a formal language,

Chor-calculus, for the formal modeling and verification of WS-CDL choreographies.

Section 3 discusses a new set of mutation operators for WS-BPEL programs and how to

leverage the operators in mutation testing. Section 4 provides a conclusion.

2 Using π-calculus for Formal Modeling and Verification of WS-

CDL Choreographies

Service-Oriented applications are realized by composing and aggregating existing web

services. Orchestration and Choreography are two interaction models for building SOA

applications and several standards exist to capture and describe such interactions. The

Web Service Choreography Description Language (WS-CDL) is a standard for modeling

choreographies. In this paper, we propose a calculus (Chor-calculus) for formal modeling

of WS-CDL and we use this language for generating WS-CDL programs. This approach

enables the static verification of choreographies using existing pi-calculus model-checker

tools and sets the ground for enabling the runtime monitoring of choreographies for

behavioral correctness. We validate the calculus for its expressiveness by evaluating the

language support for representing workflow, and service interaction, patterns. We

demonstrate the use of the HAL toolkit to verify the correctness properties of

choreographies.

3

2.1 Introduction

Service-Oriented Architecture is an architectural paradigm that promotes building

applications from existing services [1]. SOA aims to enhance the agility and cost-

effectiveness of an enterprise while reducing the burden of IT on the overall organization

[2]. A service is the unit of solution logic upon which SOA systems are composed.

Service composition is the aggregation of one or more services to automate business

processes. Web services are the most widely used form of services. A web service has a

well-defined contract that describes the format of messages and the message exchange

patterns supported by the service.

SOA systems involve multiple parties collaborating to deliver a higher-level business

process. Each party contributes to the process by exposing one or more consumable

services that encapsulate some reusable business logic. Generally speaking, an SOA

program can be described from two perspectives:

1. A Private Perspective, commonly known as Orchestration, describes the

collaboration of the participants from the perspective of a single participant. This

description is specific to the participant and is different from that of another

participant of the same process. The Web Services Business Process Execution

Language (WS-BPEL), a W3C standard, defines a model and grammar for

capturing the specifications of a business process from a single perspective. WS-

BPEL is the technology of choice for describing SOA orchestrations [3].

2. A Global Perspective, commonly known as Choreography, describes the

collaboration of the participants from a global perspective. This description is not

biased towards any of the parties and is less centralized. Each participant will

have the same view of the process; the Web Service Collaboration Description

Language (WS-CDL), a W3C standard, is a language to describe choreographies

[4].

While formal modeling and reasoning about orchestrated systems is given attention in the

literature [5], [6], [7], [8], [9], [10], [11], [12], little has been dedicated towards

formalizing choreographies. In this paper, we focus on choreographies and specifically

4

the WS-CDL standard. One major issue of WS-CDL is the lack of tools to enable design

time, static validation and verification of the correctness properties of choreographies

such as deadlocks and liveness [13]. Although WS-CDL seems to borrow terminology

from pi-calculus such as channel passing (link passing), there is no obvious association to

any existing formal language [13], [14]. To tackle the aforementioned issues, we propose

a formal method for capturing, as far as possible, the intention of the choreography. The

formal language, which we call Chor-calculus, is based on pi-calculus. Our selection of

pi-calculus is because of the language’s simplicity and expressiveness to capture link

mobility (or channels in WS-CDL) and its ability to describe the runtime behavior of

concurrent systems (analogous to WS-CDL). We design and describe Chor-calculus

based on the semantics of WS-CDL. To evaluate the expressiveness and completeness of

the calculus, we analyze the support of the language to express both workflow [15], and

service interaction, patterns [16]. Chor-calculus enables us to reason about the

correctness properties of the choreography; and we provide a demonstration, using the

HAL toolkit (HD-Automata Laboratory) [17], [18], of this reasoning. With the use of

Chor-calculus, the generated WS-CDL code from a formally verified model detects

design flaws as early as possible in the software development life cycle; and thus,

increases the reliability of SOA systems built on top of the code.

The contributions of this work are three-fold:

1. We introduce Chor-calculus, a new formal language based on pi-calculus and the

semantics of WS-CDL.

2. A mapping between Chor-calculus and WS-CDL is provided which allows the

generation of WS-CDL programs from a Chor-calculus specification.

3. We demonstrate the use of the HAL toolkit to assert the correctness properties of

choreographies described in Chor-calculus.

The rest of the paper is organized as follows: the next section briefly describes WS-CDL.

In section 2.3, we present Chor-calculus, a formal language for modeling WS-CDL

choreographies. Section 2.4 describes the mapping between Chor-calculus and WS-CDL.

In section 2.5, we provide an evaluation of Chor-calculus. Section 2.6 introduces an

5

illustrative example to demonstrate how to use Chor-calculus for choreography modeling

and WS-CDL code generation. Finally, sections 2.7 and 2.8 provide an overview of

related literature in the field and a conclusion.

2.2 WS-CDL Overview

WS-CDL is an XML based specification that describes from a global viewpoint the

common and observable collaboration (behavior) of participants in the form of a message

exchange [4]. We can think of a behavior in the context of the web service platform as an

operation on a portType (WSDL 1.1) [19] or interface (WSDL 2.0) [20]. A role type

(roleType element) in WS-CDL enumerates a set of behaviors. A participant

(participantType element) in a choreography adopts one or more roles, and thus a

participant is committed to exhibit all the behaviors identified by the adopted roles. A

relationship (relationshipType element) associates two roles to indicate a legal

collaboration between participants. A channel (channelType element) realizes a point of

collaboration between two participants by specifying when and how information is

exchanged [4]. Channel instances can further be exchanged between participants during

interactions to enable dynamic interaction scenarios (mobile links). Channels impose

restrictions on the type of communication that can happen through the channel such as

the role/behavior of the collaborating participant. Furthermore, they are used to identify

and correlate conversations.

WS-CDL introduces three categories of activities: control-flow, WorkUnit and basic

activities [13]. Under control-flow, there are three types of activities: Sequence, Parallel

and Choice. These activities are composite activities in the sense they enclose other

activities and govern their order of execution. A Sequence activity encapsulates one or

more activities executed in a sequence. A Parallel activity encapsulates one or more

activities executed concurrently. A Choice activity describes the execution of one activity

among a set of activities. A WorkUnit describes the conditional and possibly repeated

execution of the enclosed activity. The following activities fall under the third category

of activities (basic activities): NoAction, Silent, Interaction, Assign and Perform.

NoAction and Silent activities describes a point in the choreography where one role

performs an action behind the scenes that doesn’t affect the choreography. The Perform

6

activity is used to call another choreography to be executed within the context of the

executing choreography. The Interaction activity is the point in the choreography where

information exchange happens between the participants. This can be thought of as a

service invocation that can fall under one of three message exchange patterns: Request-

Only, Respond-Only, or Request-Response. The Assign activity is used to assign one

variable to another within a role. The Assign activity does not support assigning variables

that belong to different roles. Variable assignment across roles requires an explicit

interaction between participants with the designated roles. This is referred to as

interaction-based information alignment.

A WS-CDL definition is included in a Package construct that contains zero or more

choreography definitions. A choreography definition is contained in the Choreography

construct, and is the mechanism to define activities and variables. It is also a unit of

reusability within WS-CDL. A Choreography definition introduces a new scope with its

own variable definitions. Choreographies can be nested by calling other Choreographies.

The calling Choreography is referred to as the Enclosing Choreography while the called

choreography is called the Enclosed Choreography. There are two modes for calling a

choreography: blocking and non-blocking. In the blocking mode, the enclosing

choreography waits for the enclosed choreography to complete before continuing its

execution. In the non-blocking mode, the enclosing choreography doesn’t wait for the

enclosed choreography and might finish before the completion of the enclosed

choreography.

2.3 Chor-calculus

In this section, we introduce and define the syntax and semantics for Chor-calculus. The

main objectives of the calculus are 1) to capture the activities, control flow and message

exchange of WS-CDL choreographies, and 2) to allow formal reasoning about

choreographies. The syntax and operational semantics for Chor-calculus are presented in

sections 2.3.1 and 2.3.2 respectively.

7

2.3.1 Syntax

In this section, we provide an informal description of the calculus syntax shown in Table

1. We assume that there exists an infinite set of names ranged over by lower case letters

𝑥, 𝑦, 𝑧, etc… Processes are ranged over by M, N, P, Q, etc…

 𝛲 | 𝛲′ indicates the normal composition of two processes (𝛲 and 𝛲′ run in

parallel).

 𝑃 ∥ 𝑃′ indicates a sequential composition of two processes. We borrow the

notation from [5] but without the support for synchronization.

 ! 𝑃 is replication that behaves as 𝑃 | ! 𝑃. A non-guarded replication is used to

model a root choreography which is initialized by default [4]. On the other hand, a

guarded P is used to model a choreography that can be performed multiple times

using a WS-CDL perform activity. The guard signifies the name of the

choreography and the names passed represent performed choreography free

variable bindings.

 (𝜐 �̃�)𝑃 binds the names �̃� to process 𝑃.

 If-then-else is the usual choice selection based on the condition matching result.

 𝐺 + 𝐺′ is a guarded choice intended to model a WS-CDL choice activity.

 The input action prefixes are: 𝑥(�̃�). 𝑃 is the usual input and 𝜏 is a silent action and

represents a non-observable behavior. 𝑥𝑡̅̅ ̅⟨�̃�⟩ where 𝑡 ∈ {𝑟𝑞, 𝑟𝑠, 𝑟𝑞𝑟𝑠, 𝑝𝑟, 𝑓𝑛} is

an annotated output [5]. An output with one of the annotations rq, rs or rqrs is

used to indicate the type of interaction pattern (through a WS-CDL interaction

activity) between two services where rq, rs and rqrs correspond to a request, a

response and a request-response respectively. The annotated output pr is used to

model a WS-CDL perform activity and fn to model a WS-CDL finalize activity.

x ̅⟨ ⟩ is used for signaling.

 (𝜐 �̃�){𝑃, 𝑁𝑅,𝐻} models a choreography in WS-CDL which encapsulates a set of

interactions between different participants. We borrow the notation from [5]

8

where it is used to model scope in WS-BPEL. P represents the main activity of

the choreography and is provided by the choreography designer while NR

represents zero or more non-root (nested) choreographies. On the other hand, H is

the handlers’ context for the choreography and is intended to model choreography

exception and finalizer blocks. The syntax and semantics for the choreography is

further discussed in section 2.3.1.3.

 𝑊𝐸(�̂�) and 𝑊𝐹(�̂�) are intended to model exception and finalizer blocks

respectively. The formal definition for both 𝑊𝐸(�̂�) and 𝑊𝐹(�̂�) are provided in

sections 2.3.1.1 and 2.3.1.2 respectively.

 𝑅 and 𝑁𝑅 model root and non-root choreographies respectively. This distinction

is necessary since there are some restrictions on the capabilities and the usage of

root choreographies. The annotated input channel 𝑧𝑐 in 𝑁𝑅, which is semantically

equivalent to the name of the choreography, is used to perform a non-root

choreography. The tuple �̃� represents the variables expected by the performed

choreography.

 A workunit WU expressed as (𝜐 �̃�){𝑃} encapsulates the behavior of the complex

workunit WS-CDL activity, where P represents the main activity of the workunit.

The syntax and semantics for the workunit is further elaborated in section 2.3.1.4.

It is worth noting the design choice of introducing the sequential operator (||) given that

its semantics overlaps with that of an action prefix. The sequential operator is mainly

used to explicitly describe the sequencing of two processes, which is not possible with an

action prefix, and to simplify the translation of Chor-calculus to WS-CDL (specifically

the mapping of || to a sequence activity).

9

Table 1: Chor-calculus Syntax

In the following sub-sections, we provide a formal definition for syntactic elements C,

𝑊𝐸(�̂�), 𝑊𝐹(�̂�) and WU. The definitions are complimentary to the grammar introduced

in Table 1.

2.3.1.1 Exception Block

Given a tuple of processes �̂� = (𝑃1, … , 𝑃𝑛) associated with exception block workunits for

the tuple of faults (�̃�), 𝑊𝐸(�̂�) is defined as:

𝑊𝐸(�̂�) = 𝑖𝑛𝑒𝑏(). (∑ ((𝑥𝑖
ℎ𝑎𝑛𝑑𝑙𝑒(�̃�). 𝑃𝑖) ∥ �̅�𝑒𝑏⟨ ⟩. 0)

𝑖
+ 𝑢𝑛𝑒𝑏())

The tuple of processes are provided by the choreography designer at design time. The

arity of the tuple is equal to the number of exception types being handled. The exception

block is enabled through the channel 𝑖𝑛𝑒𝑏(). The exception block is represented as a

guarded sum that performs 𝑃𝑖 when exception 𝑥𝑖 is detected which is semantically

equivalent to an exception block with multiple guarded workunits. The guard in the

workunit is used to match the triggered fault. After executing 𝑃𝑖, it signals its termination

to the enclosing choreography using the channel �̅�𝑒𝑏. The channel 𝑢𝑛𝑒𝑏 is used to

uninstall the exception block.

10

2.3.1.2 Finalizer Block

Given a tuple of processes �̂� = (𝑃1, … , 𝑃𝑛) that represents the actions for the finalizer

block activities. Let the tuple (�̃�) represent the names for the finalizer blocks, 𝑊𝐹(�̂�) is

defined as:

𝑊𝐹(�̂�) = 𝑖𝑛𝑓𝑏(). (∑ ((𝑥𝑖
𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒(�̃�). 𝑃𝑖) ∥ �̅�𝑓𝑏⟨ ⟩. 0) + 𝑢𝑛𝑓𝑏()

𝑖
)

The choreography designer is responsible for specifying the process for each finalizer

block at design time. The finalizer blocks are enabled using the input channel 𝑖𝑛𝑓𝑏 and

wait for one of the finalization blocks to perform 𝑃𝑖 through the channel 𝑥𝑖
𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒

. The

finalization blocks can also be uninstalled, after installing them, using the channel 𝑢𝑛𝑓𝑏.

This last capability is to accommodate for the case of when the choreography completion

condition is met, but the finalizer is not executed yet.

2.3.1.3 Choreography

The choreography is represented as a multi-hole context where the main activity of the

choreography (P), nested choreographies (NR), exception and finalizer blocks (H) are

provided by the choreography designer. A choreography is defined as follows:

Let 𝑥 ̃ = (𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑒𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐, 𝑥𝑐𝑜𝑚, 𝑡, 𝑜, 𝑞, 𝑐)

(𝜐 �̃�){𝑃, 𝑁𝑅,𝐻} ∷= (𝜐 �̃�)

 𝑃 ∥ 𝑡̅⟨ ⟩. 0
 | 𝑁𝑅
 | 𝐻

 | 𝑖𝑛𝑒𝑏̅̅ ̅̅ ̅⟨ ⟩

 | (𝑐(). (𝑢𝑛𝑒𝑏̅̅ ̅̅ ̅̅ ⟨ ⟩. 𝑖𝑛𝑓𝑏̅̅ ̅̅ ̅⟨ ⟩. 0) + 𝑞(). 0)

 | 𝑦𝑓𝑐(). (𝑢𝑛𝑒𝑏̅̅ ̅̅ ̅̅ ⟨ ⟩. �̅�⟨ ⟩. �̅�⟨ ⟩. 0 | 𝐶𝐶(𝑃1))

 | ((𝑡(). 𝑐̅⟨ ⟩. 𝑦𝑓𝑏(). 0) + 𝑦𝑒𝑏(). 0 + 𝑥𝑐𝑜𝑚(). 𝑦𝑓𝑐̅̅ ̅̅ ⟨ ⟩. 0))

where:

 𝑃 ∥ 𝑡̅⟨ ⟩. 0 represents the normal completion of the choreography’s main activity

followed by an output on channel 𝑡.

11

 𝑁𝑅 represents zero or more local choreographies. 𝑁𝑅, itself, is a multi-hole

context, since it is defined in terms of a choreography. It is the responsibility of

the choreography designer to provide 𝑁𝑅 in accordance with the Non-Root

choreography production rule.

 𝐻 represents choreography exception and finalizer handlers and is a multi-hole

context (refer to 3.1.1 and 3.1.2).

 𝑖𝑛𝑒𝑏̅̅ ̅̅ ̅⟨ ⟩ installs the exception blocks.

 In the case of normal completion of the main activity of the choreography,

𝑐(). (𝑢𝑛𝑒𝑏̅̅ ̅̅ ̅̅ ⟨ ⟩. 𝑖𝑛𝑓𝑏̅̅ ̅̅ ̅⟨ ⟩. 0) uninstalls the exception blocks and installs the finalizer

blocks.

 𝑦𝑓𝑐(). (𝑢𝑛𝑒𝑏̅̅ ̅̅ ̅̅ ⟨ ⟩. �̅�⟨ ⟩. �̅�⟨ ⟩. 0 | 𝐶𝐶(𝑃1)) is executed when the completion condition

is met while the choreography is in the enabled state. The term uninstalls the

exception block, signals the main activity to terminate (using the channel o) and

disables installing the finalizer block. In parallel, 𝐶𝐶(𝑃1) is defined as:

𝐶𝐶(𝑃1) = ∏ 𝑥𝑐𝑜𝑚′̅̅ ̅̅ ̅̅ ⟨ ⟩

𝑥𝑐𝑜𝑚
′ ∈ 𝑆𝑛(𝑃1)

and forces all enclosed choreographies to close through the channels in 𝑆𝑛(𝑃1), where 𝑃1

represents the choreography.

 The summation ((𝑡(). 𝑐̅⟨ ⟩. 𝑦𝑓𝑏(). 0) + 𝑦𝑒𝑏(). 0 + 𝑥𝑐𝑜𝑚(). 𝑦𝑓𝑐̅̅ ̅̅ ⟨ ⟩. 0) plays a

multi-purpose role. (𝑡(). 𝑐̅⟨ ⟩. 𝑦𝑓𝑏(). 0) indicates a Successfully Completed [4]

state, enables the finalizer block and waits for the completion of the finalizer

block execution. Upon receiving the finalizer block signal through channel 𝑦𝑓𝑏,

the choreography is considered in the Closed state [4]. Otherwise if an exception

occurred then it waits for the completion of the execution of the exception block

using the channel 𝑦𝑒𝑏. The choreography moves to the Closed state after the

exception execution is complete. The last term 𝑥𝑐𝑜𝑚(�̃�). 𝑦𝑓𝑐̅̅ ̅̅ ⟨ ⟩. 0 is used to force

closing any enclosed choreographies.

12

2.3.1.4 Workunit

A workunit prescribes the constraints that have to be fulfilled for performing some

activity within a workflow. A workunit has three Boolean properties that control its

behavior: guard, repeat and block. The combination of values for these properties and the

observed behavior of a workunit is summarized in Table 2 (P is the process that

represents the behavior of the main activity inside the workunit, and 𝐴𝑝 ≝ 𝑃 | 𝐴𝑝).

Table 2: Workunit Behavior

The guard and repeat attributes’ evaluation is both data and event driven (the availability

of variables events). We can safely assume that the evaluation of these attributes is purely

event driven, since variables are situated and not local. A situated variable indicates that

the variable information resides at a participant who is assuming a role type in the

choreography. Therefore, the fact that the variable is evaluated to true or false based upon

data is considered an event by itself.

Again, we leverage the hole context to model the behavior of a workunit where the main

activity must be provided by the choreography designer.

Let 𝑥 ̃ = (𝑦𝑟𝑒𝑝𝑒𝑎𝑡 , 𝑦𝑜𝑛𝑐𝑒 , 𝑦𝑛𝑖𝑙) where:

 𝑡𝑟 and 𝑓𝑟 are used to signal true and false for the repeat property respectively, and

 𝑡𝑔 and 𝑓𝑔 are used to signal true and false for the guard property respectively.

13

(𝜐 �̃�){𝑃} ∷= (𝜐 �̃�)

 (𝑧(�̃�). ((𝑦𝑟𝑒𝑝𝑒𝑎𝑡(). 𝑃 | (𝜐 �̃�){𝑃} + 𝑦𝑜𝑛𝑐𝑒(). 𝑃 + 𝑦𝑛𝑖𝑙(). 0)

 | (𝑖𝑓 (𝑦1 = 𝑓𝑎𝑙𝑠𝑒)
 𝑡ℎ𝑒𝑛
 (𝑓𝑔(). 𝑓𝑟(). 𝑦𝑛𝑖𝑙̅̅ ̅̅ ̅〈 〉. 0 + 𝑡𝑔(). 𝑓𝑟(). 𝑦𝑜𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅〈 〉. 0

 + 𝑓𝑔(). 𝑡𝑟(). 𝑦𝑛𝑖𝑙̅̅ ̅̅ ̅〈 〉. 0 + 𝑡𝑔(). 𝑡𝑟(). 𝑦𝑟𝑒𝑝𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉. 0)

 𝑒𝑙𝑠𝑒

 𝑡𝑟(). 𝑦𝑟𝑒𝑝𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉. 0 + 𝑓𝑟(). 𝑦𝑜𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅〈 〉. 0)))

Where:

 The channel z receives a name to indicate whether the workunit blocking behavior

is enabled.

 The term 𝑦𝑟𝑒𝑝𝑒𝑎𝑡(). 𝑃 || (𝜐 �̃�){𝑃} + 𝑦𝑜𝑛𝑐𝑒(). 𝑃 + 𝑦𝑛𝑖𝑙(). 0 represents the

behavior of the workunit which can be either: (1) a repeated execution of P, (2) a

onetime execution of P or (3) it behaves as a nil process and does nothing.

 𝑦1 is used to model the block property.

 𝑓𝑔(). 𝑓𝑟(). 𝑦𝑛𝑖𝑙̅̅ ̅̅ ̅〈 〉. 0 + 𝑡𝑔(). 𝑓𝑟(). 𝑦𝑜𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅〈 〉. 0 + 𝑓𝑔(). 𝑡𝑟(). 𝑦𝑛𝑖𝑙̅̅ ̅̅ ̅〈 〉. 0 +

𝑡𝑔(). 𝑡𝑟(). 𝑦𝑟𝑒𝑝𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉. 0 handles the case when the block property is set to false

and behaves according to the values of the guard and repeat (refer to Table 2)

which are signaled through the channels: 𝑡𝑟, 𝑓𝑟, 𝑡𝑔, and 𝑓𝑔.

The term 𝑡𝑟(). 𝑦𝑟𝑒𝑝𝑒𝑎𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉. 0 + 𝑓𝑟(). 𝑦𝑜𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅〈 〉. 0 handles the case where the block property

is true.

2.3.2 Operational Semantics

The definition of the operational semantics of Chor-calculus is a two-step process 1)

define the structural congruence which is the equivalence relationship between two

processes [21], and 2) specify the reduction rules which identify how processes evolve by

interacting with each other [21].

14

Table 3: Reduction Rules for Chor-Calculus

Definition 1. The set of free names in P, fn(P), is defined as:

1. 𝑓𝑛(𝑃 | 𝛲′) = 𝑓𝑛(𝑃) ∪ 𝑓𝑛(𝛲′)

2. 𝑓𝑛(𝑃 ∥ 𝑃′) = 𝑓𝑛(𝑃) ∪ 𝑓𝑛(𝑃′)

3. 𝑓𝑛(0) = Ø

4. 𝑓𝑛(𝑥(�̃�). 𝑃) = {𝑥} ∪ 𝑓𝑛(𝑃)\{�̃�}

5. 𝑓𝑛(�̅�〈�̃�〉. 𝑃) = {𝑥, �̃�} ∪ 𝑓𝑛(𝑃)

6. 𝑓𝑛(𝑃 + 𝑃′) = 𝑓𝑛(𝑃) ∪ 𝑓𝑛(𝑃′)

7. 𝑓𝑛(! 𝑃) = 𝑓𝑛(𝑃)

The names that are not occurring free in P are referred to as bounded names and denoted

by bn(P).

Definition 2. The structural congruence (≡) is the least congruence closed under the

following rules:

15

1. Changing bounded names using alfa-conversion

2. 𝑃 + 𝑄 ≡ 𝑄 + 𝑃

3. 𝑃 | 0 ≡ 𝑃, 𝑃 | 𝑄 ≡ 𝑄 | 𝑃, 𝑃 | (𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅

4. 𝑃 | (𝜐 𝑥){𝑄} ≡ (𝜐 𝑥)(𝑃 | 𝑄) 𝑥 ∉ 𝑓𝑛(𝑃)

5. 𝑅 | 𝑁𝑅 ≡ 𝑁𝑅 | 𝑅, 𝑁𝑅 | 𝑁𝑅′ ≡ 𝑁𝑅′ | 𝑁𝑅

6. 0 ∥ 𝑃 ≡ 𝑃

7. ! 𝑃 ≡ 𝑃 | ! 𝑃, ! 𝐶 ≡ 𝐶 | ! 𝐶, ! 𝑧𝑐(�̃�). 𝐶 ≡ 𝑧𝑐(�̃�). 𝐶 | ! 𝑧𝑐(�̃�). 𝐶

8. The rules of the form:

𝑃 ≡ 𝑄

𝐶𝑂[𝑃] ≡ 𝐶𝑂[𝑄]

where 𝐶𝑂[.] represents any context of the form 𝑀 | [.], 𝑀 || [.] or [.] || 𝑀.

Definition 3. The reduction rule (

→) is the smallest relationship satisfying the rules

in Table 3 and closed with respect to ≡:

2.4 Mapping Chor-calculus to WS-CDL

In this section, we introduce the mapping from Chor-calculus to WS-CDL. The mapping

will enable the generation of WS-CDL code from the specification captured in Chor-

calculus. Generating WS-CDL from the verified calculus will result in fewer errors in the

WS-CDL artifact. For this purpose, we define the function 𝐹(𝑃𝐶ℎ𝑜𝑟−𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠) = 𝐸𝑤𝑠−𝑐𝑑𝑙

which maps a Chor-calculus process to WS-CDL entities. There are several constraints

imposed by the translation process:

 A system must have one root choreography which is specified in the form of a

non-guarded replication.

 The name of a service operation must be unique across all the ports/interfaces.

 A root choreography must not specify any finalizer blocks [4].

16

 The transformation doesn’t generate the timeout property for an interaction

because it is not supported by the calculus.

2.4.1 Nil Process

The 0 process is mapped to a NoAction activity that does nothing.

𝐹(0) :≔< 𝑛𝑜𝐴𝑐𝑡𝑖𝑜𝑛 />

2.4.2 Tau

The silent action is mapped to the silentAction activity.

𝐹(𝜏) ∷= < 𝑠𝑖𝑙𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛 />

2.4.3 Output

The annotated output is used to signify one of the following operations: request (rq),

request-response (rqrs), perform (pr) and finalize (fn).

2.4.3.1 Request

A request output indicates a one-way interaction between two participants. It is mapped

to an interaction between two participants that has one exchange whose action property is

set to request. To model an exception, we represent it using the exchange of the fault

construct instead of using the receive exchange construct (causeException) attribute.

Such a representation aligns more naturally with the web service messaging pattern

where a fault is generated by sending a fault in the response message.

𝐹(𝑥𝑟𝑞̅̅ ̅̅̅⟨�̂�⟩. 𝑃) ∶≔

< 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑦1"
 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = "𝑥" 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = "𝑓𝑎𝑙𝑠𝑒" >
 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑦𝑝𝑒 = "𝑦2"
 𝑓𝑟𝑜𝑚𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦3" 𝑡𝑜𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦4"/>
 < 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑞𝑢𝑒𝑠𝑡" >

 < 𝑠𝑒𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦5′, ′′, ′′, ′𝑦3′)"/>

 < 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦6′, ′′, ′′, ′𝑦4′)"/>
 </𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 >
</𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 >

𝐹(𝑃)

17

2.4.3.2 Response

An annotated response term is mapped to an interaction with one exchange block that

represents a response from a partner. An optional exchange block can be specified to

represent the communication of a fault from the receiver to the sender.

𝐹(𝑥𝑟𝑠̅̅ ̅̅ ⟨�̂�⟩. 𝑃) ∷=

< 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑦1"
 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = "𝑥" 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = "𝑓𝑎𝑙𝑠𝑒" >
 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑦𝑝𝑒 = "𝑦2"
 𝑓𝑟𝑜𝑚𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦3" 𝑡𝑜𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦4"/>
 < 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑠𝑝𝑜𝑛𝑑" >

 < 𝑠𝑒𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦5′, ′′, ′′, ′𝑦3′)"/>

 < 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦6′, ′′, ′′, ′𝑦4′)"/>
 </𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 >
</𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 >

𝐹(𝑃)

2.4.3.3 Request-Response

An annotated request-response term is mapped to an interaction with two exchange

blocks. The first exchange block represents the request interaction, while the second

block represents the response interaction. An optional exchange block can be specified to

represent the communication of a fault from the receiver to the sender.

18

𝐹(𝑥𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅⟨�̂�⟩. 𝑃) ∷=

< 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑦1"
 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = "𝑥" 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒 = "𝑓𝑎𝑙𝑠𝑒" >
 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑦𝑝𝑒 = "𝑦2"
 𝑓𝑟𝑜𝑚𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦3" 𝑡𝑜𝑅𝑜𝑙𝑒𝑇𝑦𝑝𝑒𝑅𝑒𝑓 = "𝑦4"/>
 < 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑞𝑢𝑒𝑠𝑡" >

 < 𝑠𝑒𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦5′, ′′, ′′, ′𝑦3′)"/>

 < 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦6′, ′′, ′′, ′𝑦4′)"/>
 </𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 >
 < 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 = "𝑟𝑒𝑠𝑝𝑜𝑛𝑑" >

 < 𝑠𝑒𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦7′, ′′, ′′, ′𝑦4′)"/>

 < 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦8′, ′′, ′′, ′𝑦3′)"/>
 </𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 >
 < 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑛𝑎𝑚𝑒 = "𝑓𝑎𝑢𝑙𝑡" >
 …
 </𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 >
</𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 >

𝐹(𝑃)

2.4.3.4 Perform

A perform annotated output is mapped to a WS-CDL perform activity. The activity

enables a specific choreography by specifying the choreography’s name. The channel

name is used as the name of the choreography. The performing choreography can specify

the variables to bind in the performed choreography. A choreography can be performed

in two modes: a blocking mode where the calling activity waits for the performed

choreography to complete; and a non-blocking mode where the calling activity continues

the execution in parallel to the performed choreography.

1) Blocking Mode

19

𝐹(𝑥𝑝𝑟̅̅ ̅̅̅⟨�̃�⟩. 𝑃) ∷=

< 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑁𝑎𝑚𝑒 = "𝑥"
 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑑 = "𝑦1" 𝒃𝒍𝒐𝒄𝒌 = "𝒕𝒓𝒖𝒆" >
< 𝑏𝑖𝑛𝑑 𝑛𝑎𝑚𝑒 = "𝑛1" >

 < 𝑡ℎ𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦2′, ′′, ′′)"
 𝑟𝑜𝑙𝑒𝑇𝑦𝑝𝑒 = "𝑦3" />

< 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦4′, ′′, ′′)"
 𝑟𝑜𝑙𝑒𝑇𝑦𝑝𝑒 = "𝑦5" />
</𝑏𝑖𝑛𝑑 >
</𝑝𝑒𝑟𝑓𝑜𝑟𝑚 >

𝐹(𝑃)

2) Non-Blocking Mode

𝐹(𝑥𝑝𝑟̅̅ ̅̅̅⟨�̃�⟩. 0 | 𝑃) ∷=

< 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑁𝑎𝑚𝑒 = "𝑥"
 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑑 = "𝑦1" 𝒃𝒍𝒐𝒄𝒌 = "𝒇𝒂𝒍𝒔𝒆" >
 < 𝑏𝑖𝑛𝑑 𝑛𝑎𝑚𝑒 = "𝑛1" >

 < 𝑡ℎ𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦2′, ′′, ′′)"
 𝑟𝑜𝑙𝑒𝑇𝑦𝑝𝑒 = "𝑦3" />

 < 𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = "𝑐𝑑𝑙: 𝑔𝑒𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(′𝑦4′, ′′, ′′)"
 𝑟𝑜𝑙𝑒𝑇𝑦𝑝𝑒 = "𝑦5" />
 </𝑏𝑖𝑛𝑑 >
</𝑝𝑒𝑟𝑓𝑜𝑟𝑚 >

𝐹(𝑃)

2.4.3.5 Finalize

A finalize annotated output signals a choreography to execute one of the finalizer blocks.

The name of the channel is used to identify the finalizer block to execute.

𝐹(𝑥𝑓𝑛̅̅ ̅̅ ̅⟨�̃�⟩. 𝑃) ∷=

< 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑁𝑎𝑚𝑒 = "𝑦1"
 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑒𝐼𝑑 = "𝑦2" 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝑁𝑎𝑚𝑒 = "𝑥" />

2.4.3.6 Parallel

The parallel operator is mapped to the WS-CDL ordering structure activity Parallel.

𝐹(𝑃 | 𝑄) ∷= < 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 > 𝐹(𝑃)𝐹(𝑄) </𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 >

2.4.3.7 Sequence

The sequence operation || is mapped to the WS-CDL ordering structure activity sequence.

20

𝐹(𝑃 || 𝑄) ∷= < 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 > 𝐹(𝑃)𝐹(𝑄) </𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 >

2.4.3.8 Guarded Choice

The guarded choice is mapped to the WS-CDL ordering structure activity choice.

𝐹(𝐺 + 𝐺′) ∷= < 𝑐ℎ𝑜𝑖𝑐𝑒 > 𝐹(𝐺)𝐹(𝐺′) </𝑐ℎ𝑜𝑖𝑐𝑒 >

2.4.3.9 Workunit

A workunit term is mapped to the WS-CDL workunit activity.

𝐹((𝜐 �̃�){𝑃}) ∷=

< 𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 𝑛𝑎𝑚𝑒 = "𝑁𝐶𝑁𝑎𝑚𝑒"
 𝑔𝑢𝑎𝑟𝑑 = "𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛"
 𝑟𝑒𝑝𝑒𝑎𝑡 = "𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛"

 𝐹(𝑃)
</𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 >

 𝑏𝑙𝑜𝑐𝑘 = "𝑦1" >

2.4.3.10 Exception Block

An exception block is translated to a set of WS-CDL workunits with each workunit

handling a specific type of exception. The workunit must have the block property set to

false, and the repeat attribute must not be specified. A workunit with a missing guard is

intended to handle all exceptions.

𝐹 (𝑊𝐸𝐵(�̂�)) ∷=

< 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐵𝑙𝑜𝑐𝑘 >
 < 𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 𝑔𝑢𝑎𝑟𝑑 = "cdl:hasExceptionOccurred('𝑥1')"
 𝑏𝑙𝑜𝑐𝑘 = "𝑓𝑎𝑙𝑠𝑒" >

 𝐹(𝐴1)

 </𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 >
 < 𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 𝑔𝑢𝑎𝑟𝑑 = "…" 𝑏𝑙𝑜𝑐𝑘 = "𝑓𝑎𝑙𝑠𝑒" > ⋯ </𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 >
 < 𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 𝑏𝑙𝑜𝑐𝑘 = "𝑓𝑎𝑙𝑠𝑒" >

 𝐹(𝐴𝑛)

 </𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡 >
</𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐵𝑙𝑜𝑐𝑘 >

2.4.3.11 Finalizer Blocks

Each occurrence of a finalizer block in the summation is translated to a WS-CDL

finalizerBlock entity.

21

𝐹 (𝑊𝐹𝐵(�̂�)) ∷=

< 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 𝑛𝑎𝑚𝑒 = "x1" >

 𝐹(𝐴1)

</𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 >
< 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 𝑛𝑎𝑚𝑒 = "… " > ⋯ </𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 >
< 𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 𝑛𝑎𝑚𝑒 = "𝑥𝑛" >

 𝐹(𝐴𝑛)

</𝑓𝑖𝑛𝑎𝑙𝑖𝑧𝑒𝑟𝐵𝑙𝑜𝑐𝑘 >

2.4.3.12 Choreography

The translation differentiates the occurrences of root and non-root choreographies.

Mainly, a root choreography is mapped to a WS-CDL package with one choreography

definition marked as a root. On the other hand, a non-root choreography is mapped to a

choreography definition whose root property is set to false.

1) Root-Choreography

𝐹(𝑅) = (! ((𝜐 �̃�){𝑃, 𝑁𝑅,𝐻})) ∷=

< 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑛𝑎𝑚𝑒 = "𝑁𝐶𝑁𝑎𝑚𝑒"
 𝑡𝑎𝑟𝑔𝑒𝑡𝑁𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 = "𝑢𝑟𝑖"
 𝑥𝑚𝑙𝑛𝑠 = "ℎ𝑡𝑡𝑝://𝑤𝑤𝑤.𝑤3. 𝑜𝑟𝑔/2005/10/𝑐𝑑𝑙" >
 < 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒/>
 < 𝑡𝑜𝑘𝑒𝑛 />
 < 𝑡𝑜𝑘𝑒𝑛𝐿𝑜𝑐𝑎𝑡𝑜𝑟 />
 < 𝑟𝑜𝑙𝑒𝑇𝑦𝑝𝑒 />
 < 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑇𝑦𝑝𝑒 />
 < 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑇𝑦𝑝𝑒 />
 < 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑇𝑦𝑝𝑒 />
 < 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 𝑟𝑜𝑜𝑡 = "𝑡𝑟𝑢𝑒" >

 𝐹(𝑁𝑅)

 𝐹(𝑃)

 𝐹 (𝑊𝐸𝐵(�̂�))

 </𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 >
</𝑝𝑎𝑐𝑘𝑎𝑔𝑒 >

2) Non-Root Choreography

22

𝐹(𝑁𝑅) = 𝐹 (! (𝑧(�̃�). ((𝜐 �̃�){𝑃, 𝑁𝑅,𝐻}))) ∷=

< 𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 𝑛𝑎𝑚𝑒 = "𝑧" 𝑟𝑜𝑜𝑡 = "𝑓𝑎𝑙𝑠𝑒" >
 𝐹(𝑁𝑅)

 𝐹(𝑃)

 𝐹 (𝑊𝐸𝐵(�̂�))

 𝐹 (𝑊𝐹𝐵(�̂�))

</𝑐ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 >

2.5 Evaluation

In [22], the authors investigate WS-CDL expressiveness to model two categories of

patterns:

1. Workflow patterns which capture recurrent control-flow dependencies in business

processes.

2. Service interaction patterns which capture recurrent compositions of interaction

patterns.

We leverage the work from [22] to evaluate the expressiveness and comprehensiveness of

Chor-calculus. Principally, we assess the language in term of its capabilities to model the

two collections of patterns supported by WS-CDL. Table 4 and Table 5 taken from [22]

list the patterns supported by both WS-CDL and Chor-calculus.

23

Table 4: Workflow Patterns Supportability where (+) indicates a support of, (-) no support of and (+/-) indicates

a partial support of the pattern.

We have selected some of the more advanced patterns; and describe how they can be

modeled using Chor-calculus to illustrate the analysis. The full list of Chor-calculus

pattern implementations are shown in Table 5 & Table 6.

Table 5: Service Interaction Patterns Supportability

24

Table 6: Workflow Patterns in Chor-calculus

2.5.1 Workflow Patterns

2.5.1.1 Synchronization

The authors in [22] propose using arbitrary workunits with variables to implement the

synchronization pattern in WS-CDL. The Chor-calculus for the synchronization example

in [22] is:

Let 𝑧 ̃ = {𝑤, 𝑢}

(𝑣 �̃�)((𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝐵𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈 〉 ∥ �̅�(𝑡𝑟𝑢𝑒) ∥ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝐶𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈 〉

∥ 𝑢(𝑚). (𝜐 �̃�){𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝐴𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈 〉})

| (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝐵𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈 〉 ∥ 𝑤(𝑛). (𝜐 �̃�){𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝐷𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈 〉}

∥ �̅�(𝑡𝑟𝑢𝑒))

2.5.1.2 MI without synchronization

The MI without synchronization pattern can be realized by having a non-blocking

perform activity inside a workunit with a repeat condition. The perform activity will

perform multiple instances of the same choreography concurrently:

25

𝑧̅〈𝑡𝑟𝑢𝑒〉. 𝑡�̅�〈 〉. 0

|(𝑣 �̃�){(𝑏𝑢𝑦𝑒𝑟𝑆𝑒𝑙𝑙𝑒𝑟𝐶ℎ𝑜𝑟𝑝𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟨�̃�⟩. 0 | 𝑃)}

| ! 𝑏𝑢𝑦𝑒𝑟𝑆𝑒𝑙𝑙𝑒𝑟𝐶ℎ𝑜𝑟(�̃�). 𝐶

where (𝑣 �̃�){(𝑏𝑢𝑦𝑒𝑟𝑆𝑒𝑙𝑙𝑒𝑟𝐶ℎ𝑜𝑟𝑝𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟨�̃�⟩. 0 | 𝑃)} represents the workunit that performs the

choreography buyerSellerChor.

2.5.1.3 MI with a priori design time knowledge

The pattern executes a specific activity n times where n is a constant specified at design

time. The pattern can be encoded in Chor-calculus using a work unit that is invoked n

times. In the example below, the workunit represented by (𝑣 𝑥){𝑃} is invoked three times

(3 consecutive occurrences of 𝑧̅〈𝑓𝑎𝑙𝑠𝑒〉. 𝑡�̅�〈 〉):

𝑧̅〈𝑓𝑎𝑙𝑠𝑒〉. 𝑡�̅�〈 〉. 𝑧̅〈𝑓𝑎𝑙𝑠𝑒〉. 𝑡�̅�〈 〉. 𝑧̅〈𝑓𝑎𝑙𝑠𝑒〉. 𝑡�̅�〈 〉. 0 | (𝑣 𝑥){𝑃}

Table 7: Interaction Patterns in Chor-calculus

2.5.2 Service Interaction Patterns

2.5.2.1 Racing Incoming Message

According to [22], a party is expected to receive one among a set of messages which can

be expressed in WS-CDL using a choice with multiple interactions operation with the

same recipient. The Chor-calculus for this interaction pattern is:

𝑥1𝑟𝑞̅̅ ̅̅ ̅̅ 〈�̃�〉 + 𝑥2𝑟𝑞̅̅ ̅̅ ̅̅ 〈�̃�〉 + 𝑥3𝑟𝑞̅̅ ̅̅ ̅̅ 〈�̃�〉

26

where u1, v1 and w1 are channels to the same recipient.

2.5.2.2 Request with Referral

According to [22], participant A communicates with participant B and requests that any

follow up responses be sent to one or more parties other than A. This is supported in WS-

CDL using channel passing and is expressed as follows:

𝑥𝑟𝑞̅̅ ̅̅̅〈�̃�〉 where �̃� is the channel passed during the interaction.

2.5.2.3 Contingent Request

According to [22], in a contingent request pattern, a party X makes a request to party Y,

and if a response is not received in a timely fashion, a new request is issued to another

party Z and so on. This pattern is not supported by Chor-calculus because it depends on

timeouts which is not covered by this version of our calculus.

2.6 Chor-calculus Demonstration

In this section, we illustrate how to model a choreography using Chor-calculus. We first

introduce a purchase order scenario and describe the steps in the business process to

realize the choreography. Next, we present the calculus for the choreography and provide

the translation to WS-CDL code. Finally we demonstrate how to use the HAL toolkit to

verify the correctness of the calculus.

2.6.1 Purchase Order Scenario

The purchase order scenario involves three parties that collaborate together to realize the

purchase and procurement of certain merchandise. The parties are: buyer, seller and

shipper. The following sequence diagram shows the ordering of interactions among the

partners:

27

Figure 1: Purchase Order Interaction Sequence

The choreography is initiated when the buyer submits a purchase order request

(purchaseOrderRequest message). The seller processes the request and responds with an

acknowledgement (purchaseOrderResponse message). Following that, the seller initiates

the “Shipment Choreography” which takes care of shipping the order to the buyer. The

choreography is performed when a shipOrderRequest message is sent from the seller to

the buyer. Along with that request, the seller sends additional information on how to

further communicate with the buyer (Request with Referral pattern). Once the shipment

order is processed, the shipper responds to the buyer with shipment details

(shipmentConfirmationResponse message) which concludes the choreography. The buyer

throws an exception in the case of the shipper sending invalid shipment details (e.g.

invalid reference number or a missing item in the delivered order). The exception is

handled in the root choreography which sends a notification from the buyer to the seller.

In the context of WS-CDL, the purchase order is made up of two choreographies 1) the

root choreography which takes care of placing the purchase order with the seller, and 2) a

shipment choreography which takes care of shipping the order. The shipment

choreography is an enclosed choreography and is performed by the root choreography.

2.6.2 Chor-calculus Model

Referring to the purchase order example introduced in the previous section, the model

using Chor-calculus is:

28

𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟 = ! 𝑃𝐶

𝑃𝐶 = (𝑣 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑐, 𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐, 𝑥𝑐𝑜𝑚)

{𝑃, 𝑁𝑅,𝐻}

𝑃 = 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈�̃�〉. 0 ∥ 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑝𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈�̃�〉. 0

�̃� =

{𝑏𝑢𝑦𝑒𝑟2𝑆𝑒𝑙𝑙𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑏𝑢𝑦𝑒𝑟2𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝,
 𝐵𝑢𝑦𝑒𝑟𝑅𝑜𝑙𝑒, 𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑜𝑙𝑒, 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡,
 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,

 𝑝𝑢𝑟𝑐𝑎ℎ𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑡𝑜𝑏𝑢𝑦𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙}

�̃� =

{𝑏𝑢𝑦𝑒𝑟1, 𝐵𝑢𝑦𝑒𝑟𝑅𝑜𝑙𝑒, 𝑡𝑜𝐵𝑢𝑦𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙,

 𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑜𝑙𝑒, 𝑡𝑜𝐵𝑢𝑦𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙}

𝑁𝑅 = ! 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑐(�̃�). 𝑄𝐶

𝑄𝐶 = ((𝑣 𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐 , 𝑥𝑐𝑜𝑚){𝑄, 𝑁𝑅1, 𝐻1})

�̃� = {𝑡𝑜𝐵𝑢𝑦𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙}

𝐻 = 𝑊𝐸
′(𝐴𝑒�̂�) | 𝑊𝐹

′(𝐴𝑓�̂�)

𝑊𝐸
′(𝐴𝑒�̂�) =

 𝑖𝑛𝑒𝑏(). ((𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟
ℎ𝑎𝑛𝑑𝑙𝑒(𝑜𝑟𝑑𝑒𝑟𝐷𝑒𝑡𝑎𝑖𝑙𝑠). 𝑅 ∥ �̅�𝑒𝑏⟨ ⟩. 0)

 + 𝑢𝑛𝑒𝑏())

𝑅 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟𝑟𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈�̃�〉. 0

�̃� =

{𝑏𝑢𝑦𝑒𝑟2𝑆𝑒𝑙𝑙𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑏𝑢𝑦𝑒𝑟2𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝,
 𝐵𝑢𝑦𝑒𝑟𝑅𝑜𝑙𝑒, 𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑜𝑙𝑒, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛,

 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}

𝑊𝐹
′(𝐴𝑓�̂�) = 𝑖𝑛𝑓𝑏(). 𝑢𝑛̅̅̅̅ 𝑓𝑏⟨ ⟩. 0

𝑄 = 𝑠ℎ𝑖𝑝𝑂𝑟𝑑𝑒𝑟𝑟𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈�̃�〉. 0 ∥ 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈�̃�〉. 0

29

�̃� =

{𝑠𝑒𝑙𝑙𝑒𝑟2𝑆ℎ𝑖𝑝𝑝𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑠𝑒𝑙𝑙𝑒𝑟2𝑆ℎ𝑖𝑝𝑝𝑒𝑟𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝,
 𝑆𝑒𝑙𝑙𝑒𝑟𝑅𝑜𝑙𝑒, 𝑆ℎ𝑖𝑝𝑝𝑒𝑟𝑅𝑜𝑙𝑒, 𝑠ℎ𝑖𝑝𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡,

 𝑠ℎ𝑖𝑝𝑂𝑟𝑑𝑒𝑟𝑅𝑒𝑞𝑢𝑒𝑠𝑡}

�̃� =

{𝑡𝑜𝐵𝑢𝑦𝑒𝑟𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑏𝑢𝑦𝑒𝑟𝑇𝑜𝑆ℎ𝑖𝑝𝑝𝑒𝑟𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝,
 𝑆ℎ𝑖𝑝𝑝𝑒𝑟𝑅𝑜𝑙𝑒, 𝐵𝑢𝑦𝑒𝑟𝑅𝑜𝑙𝑒, 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒,

 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒}

𝑁𝑅1 = 0

𝐻1 = 𝑊𝐸
′′(𝐴𝑒�̂�) | 𝑊𝐹

′′(𝐴𝑓�̂�)

𝑊𝐸
′′(𝐴𝑒�̂�) = 𝑖𝑛𝑒𝑏(). 𝑢𝑛𝑒𝑏(). 0

𝑊𝐹
′′(𝐴𝑓�̂�) = 𝑖𝑛𝑓𝑏(). 𝑢𝑛̅̅̅̅ 𝑓𝑏⟨ ⟩. 0

2.6.3 Verification Process

In this section, we demonstrate the use of the HAL toolkit to reason about the correctness

of the behavior of choreographies specified in Chor-calculus. First, the choreography is

written using Chor-calculus and then translated to HAL compatible syntax. The

transformation is syntactic and does not interfere in the verification process. Further

program are listed under Appendix A – Chor-calculus section. The resultant pi-calculus

for the purchase order is as follows:

Purchase Order Choreography

define PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) | H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb)

|

NR(scpr,sorq,scrs,x,y) | ineb!z.nil | (c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) | (t?(z).c!z.yfb?(z).nil + yeb?(z).nil +

xcom?(z).yfc!z.nil))

define P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) =

(z)(porqrs!x.scpr!y.t!z.PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io))

30

define WEB_PC(iorh,iorq,io,yeb,ineb,uneb) = ineb?(z). iorh?(z).iorq!io.yeb!z.nil +

uneb?(z).nil

define WFB_PC(infb,unfb) = infb?(z).unfb!z.nil

define H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) =

WEB_PC(iorh,iorq,io,yeb,ineb,uneb) | WFB_PC(infb,unfb)

Shipment Choreography

define QC(scpr,sorq,scrs,x,y) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

Q(scpr,sorq,scrs,x,y,t) | H1(ineb,uneb,infb,unfb,yeb) | ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) | yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define Q(scpr,sorq,scrs,x,y,t) = (z)(sorq!x.scrs!y.t!z.NR(scpr,sorq,scrs,x,y))

define WEB_QC(ineb,uneb,yeb) = ineb?(z).yeb!z.nil + uneb?(z).nil

define WFB_QC(infb,unfb) = infb?(z).unfb!z.nil

define H1(ineb,uneb,infb,unfb,yeb) = WEB_QC(ineb,uneb,yeb) | WFB_QC(infb,unfb)

define NR(scpr,sorq,scrs,x,y) = scpr?(z).QC(scpr,sorq,scrs,x,y)

build PC

Table 8 lists the mappings between pi-calculus and Chor-calculus symbols.

31

Table 8: Symbols Mapping To Chor-calculus

The desired properties for the calculus are expressed as pi-logic formulas. Finally, the

calculus and formulas are loaded into the HAL toolkit to validate that the calculus

satisfies the formulas. Issues detected by the toolkit are then fixed by the designer and the

verification process is restarted. Referring to the purchase order example, the capability

to always perform the nested shipment choreography is expressed in pi-logic as:

P1 = AG(EF<scpr?z>true)

The property of always receiving a shipment confirmation when performing the purchase

order root choreography is expressed as:

P2 = AG([porqrs!x]EF<scrs!y>true)

The HAL toolkit asserts that the purchase order Chor-calculus1 indeed exhibits the two

properties (refer to po.pi and formulas.pl). Furthermore, mutations are introduced to the

purchase order to demonstrate the effectiveness of the verification process in detecting

bugs such as:

32

M1: the capability scrs!y which signifies sending a shipment confirmation response is

deleted. In the case the property P2 is not met and HAL validation fails (refer to po-

m1.pi).

M2: the capability scpr!y which signifies the performance of the nested shipment

choreography is deleted. Again the property P2 is not met, since the shipment

confirmation interaction will never happen (refer to po-m2.pi).

M3: the deliberate reordering of capabilities porqrs!x and scpr!y is detected through HAL

validation since P2 property is not met (refer to po-m2.pi).

There are a few considerations regarding the transformation from Chor-calculus to pi-

calculus. Since HAL does not support replication, recursion is used instead. The

sequential operator is implemented using action prefixing and synchronization between

agents.

A known limitation to HAL is its ability to model check pi-calculus processes up to a

certain level of complexity. Such processes are characterized by having finite numbers of

states, and thus referred to as finitary processes. The infinite state problem or state

explosion is more prominent in complex processes [23], [24]. State explosion is detected

when verifying Chor-calculus processes with two or more levels of choreography nesting.

While HAL is able to model check Chor-calculus processes with one level of nesting, this

is not the case for deeper nesting. We argue that most choreographies exhibit one level of

choreography nesting; and thus, the viability of using HAL for automated verification of

the majority of Chor-calculus processes.

2.6.4 Translation to WS-CDL

We have developed a Java application that transforms1 Chor-calculus to WS-CDL code.

The parser for the tool is generated using Antlr v4 [25], [26], a popular language

recognition tool. Antlr generates the parser from an existing BNF grammar. The grammar

definition is a slightly modified version of the Chor-calculus grammar to make it editor

friendly (e.g. editors do not support subscripts, superscripts, etc…). The modification to

1 Available from http://www.steam.ualberta.ca/main/research_areas/chor_calculus.rar

33

the grammar does not interfere with the semantics of the Chor-calculus grammar and is

purely syntactic. The application leverages the visitor pattern that traverses the parse tree

generated by the parser and maps Chor-calculus tokens to WS-CDL constructs.

2.7 Related Work

Several formal methods in the literature are proposed to reason about both web service

orchestrations and choreographies. The authors in [27] use pi-calculus to model the

behavior of services to determine the degree of service compatibility in a choreography.

The calculus in [27] is limited and is designed to model only primitive web service

message exchange patterns and does not accommodate more advanced choreography

scenarios. In [28], the authors provide a calculus for the Web service choreography

interface (WSCI) and use it to reason about the compatibility of two or more services.

Adaptors are generated if incompatibility is detected which are used to mediate between

mismatched services. However WS-CDL supersedes WSCI which is a much less popular

standard. Event-B is proposed in [14] to model the WS-CDL package through a set of

transformation rules that generates Event-B models from an existing WS-CDL package.

Compared to Chor-calculus, [14] does not handle nested choreographies and variable

scoping, and thus does not demonstrate the feasibility of generating WS-CDL from a B-

Event model. A specialized formal language called CDL is introduced in [29]. Unlike

Chor-calculus, CDL doesn’t cover many of the core features of WS-CDL such as

channels, exceptions, finalizers and nested choreographies. A notable contribution is

presented in [30] which introduces two paradigms for describing communication

behaviors based on a formal calculi based on session-types. One of the paradigms is

based on the idea of a global message flow which seems to be inspired by WS-CDL.

While it originated from WS-CDL, no explicit mapping to WS-CDL is provided. In the

area of error handling, the authors in [31] introduce a formal semantics for choreography

exceptions as an extension to global calculus. In the context of global calculus,

exceptions are treated as a form of transferring the execution to a different choreography.

Related to choreographies, the authors in [32] describe interaction-oriented (IOC) and

process-oriented (POC) as two approaches for describing choreographies and provide a

formalization of equivalence between the two using a process algebra. In the same

direction, the authors [33] introduce a new approach called the bipolar approach to

34

address design issues in service oriented systems by exploiting the synergy between

chereopgraphy and orchestration languages. Such synergy is explored in terms of

mathematical relations by using SOCK, a process algebra inspired by WS-BPEL.

2.8 Conclusions

In this paper, we present Chor-calculus, a new formal language based on pi-calculus and

the semantics of WS-CDL. A mapping between Chor-Calculus and WS-CDL is provided

which allows the generation of WS-CDL programs from a Chor-calculus specification.

We evaluate the expressiveness of the language by modeling both the workflow, and

interaction service, patterns, supported by WS-CDL. A tool is developed that generates

WS-CDL programs from a Chor-calculus specification. Furthermore, we demonstrate the

use of the HAL toolkit to verify the correctness properties of Chor-calculus

choreographies.

One of the main objectives of WS-CDL is to be used along with other orchestrated

systems such as WS-BPEL applications. We envisage using Chor-calculus with other

calculi-based formal methods to investigate the compatibility of interacting services. For

example, Chor-calculus can be used along with BP-calculus [5] and [27] to determine the

behavioral service compatibility of existing systems.

3 A Workflow Approach to Identifying and Detecting WS-BPEL

Temporal Fault Models

While there is considerable research on the monitoring of BPEL systems, limited effort

has been dedicated to identifying faults manifested in such applications. In this paper, we

identify temporal faults that might manifest themselves in BPEL programs. The fault

models can be employed in mutation testing to assess the effectiveness of test suites or

measure the accuracy of runtime monitors that are capable of verifying the correctness.

We introduce a language to capture the trace behavior of BPEL programs and describe

the fault models. We also propose a runtime verification system that consumes the

specification language and detects temporal faults.

35

3.1 Introduction

The Business Process Execution Language (BPEL) is a standardized language for

describing workflows composed of web services. BPEL leverages several web standards

such as WSDL and SOAP. Increasing the reliability and stability of BPEL systems

through testing and monitoring continues to be an active research area [34], [35], [36],

[37], [38], [39]. Most of the literature in the area of monitoring of BPEL systems focuses

either on the correctness of BPEL programs (e.g. pre-conditions and post-conditions are

satisfied) or the compliance to predefined Service Level Agreements (SLAs). However,

limited research exists on practical engineering approaches to the production of such

systems especially in the area of classifying and identifying faults that might exist in

BPEL systems.

In this paper, we identify temporal faults as one type of fault affecting BPEL programs.

In the context of this paper, a temporal fault is any fault that leads to the out-of-order

execution of activities. By identifying the temporal fault models in BPEL programs, we

are effectively identifying the temporal mutants that can be inadvertently introduced to

BPEL programs. Hence, based upon this identification, mutation testing can be utilized

to assess the effectiveness of potential test suites. Moreover by utilizing the fault models,

we can assess the accuracy and effectiveness of BPEL runtime monitors in detecting

temporal faults. To identify the fault models, we follow a disciplined approach by

analyzing well-known workflow patterns to derive the fault models. We introduce

CSPBPEL to describe the fault models, a notation derived from Communicating Sequential

Processes (CSP) [40], [41], [42], as a formal language for describing patterns of

interaction in concurrent systems. We use CSPBPEL to capture the specifications of the

derived fault models and the trace specification of BPEL programs. Furthermore, we

introduce a new platform for the runtime verification of BPEL programs (RV-BPEL).

Specifically, RV-BPEL undertakes runtime monitoring for the purpose of temporal fault

detection. RV-BPEL main responsibility is to verify that the actual execution order of

activities satisfies the expected behavior specified via the trace specification.

The contribution of this paper is two-fold. Firstly, it seeks to identify and provide a

formal definition of a class of fault models, temporal faults, which can arise in BPEL

36

systems; and secondly, it produces a platform for the runtime verification of BPEL

programs, specifically with regard to the detection of temporal faults.

The remainder of the paper is structured as follows: In the next section, we provide an

overview about mutation testing and WS-BPEL. In section 3.3, we describe how we

utilize a restricted set of CSP to describe BPEL processes. Moreover, the section

describes the set of fault models inferred from workflow patterns. In Section 3.4, we

propose a platform for runtime verification of BPEL programs to detect temporal faults.

Section 3.5 describes research related to this paper; and finally, Section 3.6 presents the

conclusions from the work.

3.2 Overview

In this section we provide a brief overview of WS-BPEL and mutation testing.

3.2.1 WS-BPEL

Service Oriented Architecture (SOA) is an architectural concept that promotes building

and delivering software applications from smaller granular software units manifested as

services [42], [44]. Web services are the best realization of building applications as

services. Composing applications from autonomous web services involves the action of

invoking web services in a certain temporal sequence. To describe this composition,

BEA, IBM, Microsoft and other major software vendors have introduced the Web

Services Business Process Execution Language (WS-BPEL). The most recent public

release of its specification can be found in [45].

BPEL is an XML based language. It defines a model and grammar for describing the

behavior of business processes based upon interactions between Web services [46].

BPEL defines several types of basic activities including but not limited to invoking Web

service operations, receiving and replying to requests, and assigning data to messages.

These basic activities can be combined into structured activities using sequencing,

concurrency, conditional and repetition constructs, and selective communication

mechanisms. In many ways, a BPEL system can be thought of as a set of distributed and

interacting processes.

37

3.2.2 Mutation Testing

Mutation testing is a fault-based testing technique [47] and is used to measure the

effectiveness of a test set in terms of its ability to detect faults [48]. A fault is small

perturbation which is introduced into a program [49]. The concept of introducing a fault

into a process is referred to fault injection. The perturbations are created by applying

mutation operators which are syntactic changes to the program. In general, in order to

avoid interaction effects between faults, one fault at a time is injected into the process.

Test sets are then applied to the program to detect the variation in test results. A fault is

killed when the runtime monitoring detects the fault [59]; a “dead” fault implies that the

defect has been detected by the runtime monitoring system. In the context of this

research, we use mutation testing to measure the effectiveness of our proposed

monitoring engine in terms of its ability to detect temporal faults.

3.3 Production the Fault Models

The steps for producing the fault models are: (1) a subset of CSP is used to describe

formally the specifications of fault models. And, (2) we identify fault models, which are

defined as unexpected deviations from an expected execution flow. To rationalize this

description, we utilize an existing description of the types of execution flow-types that

are present in BPEL systems [51]. Hence, the task of describing fault models is simplified

to defining fault patterns applicable to each execution flow pattern.

3.3.1 Specification Language

A formal specification language for describing temporal faults is necessary for several

reasons. BPEL inherits its constructs from XLANG and WSFL which introduces

construct redundancy. Under BPEL, for example the same concurrency behavior can be

expressed using two different constructs. Moreover, a higher level specification language

is required to abstract the underlying details of BPEL, generalize and formalize our

temporal faults description to expand their applicability to other workflow technologies.

Finally, a specification language is needed to describe the trace specification of a BPEL

program which is consumed by the runtime monitoring system which is introduced later

in this paper. We utilize CSP [41] and [42], a process algebra for describing patterns of

interaction in concurrent systems, to describe our fault models. Process algebras

38

including CSP have been utilized to formally model BPEL and Web Service

Choreography Description Language (WS-CDL) programs [52], [37] and [34]. To

describe temporal aspects of BPEL systems, a subset of CSP notations is sufficient to

produce a minimal specification. For this purpose, we introduce CSPBPEL, an adaptation

of CSP to make it fully compatible with describing BPEL systems. CSPBPEL focuses on

the trace behavior of BPEL process and abstracts the details of BPEL implementations.

CSP CSPBPEL

Process Execution Trace

Event Event.Start → Event.End

STOP STOP

SKIP SKIP

Sequence Operator (→) Sequence Operator (→)

Interleaving (⦀) Parallel (∥)
Choice IF <exp> THEN Process ELSE Process

Recursion WHILE <exp> Process

Table 9 is a shortlist of the language constructs taken from CSP and mapped to CSPBPEL

notation. Refer to [40] for the complete specifications of CSP.

CSP CSPBPEL

Process Execution Trace

Event Event.Start → Event.End

STOP STOP

SKIP SKIP

Sequence Operator (→) Sequence Operator (→)
Interleaving (⦀) Parallel (∥)

Choice IF <exp> THEN Process ELSE Process

Recursion WHILE <exp> Process
Table 9: CSPBPEL Grammar

While some mappings between CSP and CSPBPEL constructs are one-to-one however few

are not and require further clarification:

 Event: a CSP Event is translated to a start and end event pair. Breaking down an

event to start and end allows us to track the start and end of the activity execution

(e.g. invoke activity) in a BPEL program; and therefore, enabling the comparison

of sequencing of events in a BPEL process from a temporal perspective.

 Choice: choice in CSP is driven by events; that is the selection of branch is based

on the occurrence of some event. In general this is not the case in BPEL where

39

branch selection is based on logical expressions. The result of a logical expression

evaluation mostly depends on process data state.

 Recursion: formally, recursion in CSP is defined as 𝑋 = 𝐹(𝑋) where 𝐹(𝑋) is a

guarded expression containing the process X. Given that repetitive behavior in

BPEL is further guarded by a logical expression, we refine the recursion definition

to become 𝑋 = 𝐼𝐹 〈𝑒𝑥𝑝〉 𝑇𝐻𝐸𝑁 𝐹(𝑋) 𝐸𝐿𝑆𝐸 𝑆𝐾𝐼𝑃. As short, we rewrite the

expression as 𝑊𝐻𝐼𝐿𝐸〈𝑒𝑥𝑝〉 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 where 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 represents the prefix part of

𝐹(𝑋). Both expressions are semantically equivalent and lead to the same repetitive

behavior under same conditions that is the same process data state.

3.3.2 Workflow Patterns

A workflow pattern is an abstract definition and representation of recurring business

processes having similar traits and characteristics. A workflow pattern is abstract in the

sense that it does not provide actual implementation of the pattern through predefined

notations but rather provides a guideline. The realization of a workflow pattern varies

from one modeling language to another given that the language provides the proper

constructs to support it. [51] presents an analysis of workflow patterns supported by

BPEL. We use the patterns supported by BPEL as a starting point to investigate how

faults can manifest themselves within each workflow pattern.

Pattern Standard

 BPEL XLANG WSFL

Sequence + + +

Parallel Split + + +

Synchronization + + +

Exclusive Choice + + +

Simple Merge + + +

Multi Choice + - +

Synchronization Merge + - +

Multi Merge - - -

Discriminator - - -

Arbitrary Cycles - - -

Implicit Termination + - +

MI without Synchronization + + +

MI with Priori Design Time + + +

40

Knowledge

MI with Priori Runtime

Knowledge

- - -

MI without a Priori Runtime

Knowledge

- - -

Deferred Choice + + -

Interleaved Parallel Routing +/- - -

Milestone - - -

Cancel Activity + + +

Cancel Case + + +

Table 10 summarizes the list of patterns analyzed by Wohed (2002). A '+' refers to direct

support (i.e. there is a construct in the language which directly supports the pattern) while

'-' refers to no direct support. A partial support of a pattern is indicated by '+/-'.

Pattern Standard

 BPEL XLANG WSFL

Sequence + + +

Parallel Split + + +

Synchronization + + +

Exclusive Choice + + +

Simple Merge + + +

Multi Choice + - +

Synchronization Merge + - +

Multi Merge - - -

Discriminator - - -

Arbitrary Cycles - - -

Implicit Termination + - +

MI without Synchronization + + +

MI with Priori Design Time

Knowledge

+ + +

MI with Priori Runtime

Knowledge

- - -

MI without a Priori Runtime

Knowledge

- - -

Deferred Choice + + -

Interleaved Parallel Routing +/- - -

Milestone - - -

Cancel Activity + + +

Cancel Case + + +
Table 10: Standards Support for Workflow Patterns

We only consider workflow patterns that are supported by BPEL. Therefore, we

eliminate patterns that are either not supported or indirectly supported by BPEL. A closer

look to table II shows that BPEL supports a pattern if it is supported by either XLANG or

WSFL standard. This is due to the fact that BPEL constructs are a hybrid of XLANG and

41

WSFL constructs. A clear implication of this is that although our work specifically

addresses BPEL, adapting the work to cover XLANG and WSFL is straightforward.

3.3.3 Temporal Fault Models

Table 11 lists the temporal fault models for workflow patterns supported by BPEL. Both

the workflow patterns and fault models are described in CSPBPEL.

Pattern\Fault Model CSPBPEL

Sequence activityAactivityBSKIP

FM1 Sequence to Parallel (activityASKIP) ∥ (activityBSKIP)

FM2 Unexpected Termination activityASTOP or activityAactivityBSTOP or

STOP

FM3 Switch Activities activityBactivityASKIP

FM4 Deadlock Mutant activityAactivityBSKIP ∥ activityBactivityASKIP

Parallel Split (activityASKIP) ∥ (activityBSKIP)

FM5 Parallel to Sequence activityAactivityBSKIP or

activityBactivityASKIP

FM6 Unexpected Termination activityASTOP or activityBSTOP or STOP

Synchronization (activityA1SKIP) ∥ (activityA2SKIP) activityB

FM7 Synchronization to

Sequence

activityA1activityA2activityBSKIP

FM8 Synchronization to

Parallel

(activityA1SKIP) ∥ (activityA2SKIP) ∥
(activityBSKIP)

FM9 Extra Single Condition (activityA1SKIP) ∥ (activityA2SKIP)

IF(C1){activityBSKIP}

FM10 Extra OR Condition (activityA1SKIP) ∥ (activityA2SKIP) IF(C1 | C2)

{activityBSKIP}

FM11 Extra AND Condition (activityA1SKIP) ∥ (activityA2SKIP) IF(C1 & C2)

{activityBSKIP}

Exclusive Choice activityA1 IF (C1) {activityA2SKIP} ELSE

{activityA3SKIP}

FM12 Conditional Branches

Switch

activityA1 IF (C1) {activityA3SKIP} ELSE

{activityA2SKIP}

FM13 Exclusive Choice to

Parallel

activityA1(activityA2SKIP) ∥ (activityA3SKIP)

Simple Merge IF (C1) {activityA1SKIP} ELSE {IF (C2)

{activityA2SKIP}}

FM14 Switch Condition IF (C1) {activityA2SKIP} ELSE

{IF (C2) {activityA1SKIP}}

42

FM15 Invalid Condition IF (C1*) {activityA1SKIP} ELSE {IF (C2*)

{activityA2SKIP}}

Multi-Choice activityA1(IF (C1){activityA2SKIP} ∥ IF

(C2){activityA3SKIP})

FM16 Switch Condition activityA1 (IF (C2){activityA2SKIP} ∥ IF

(C1){activityA3SKIP})

FM17 Multi-Choice to Simple

Merge

activityA1 (IF (C1){activityA2SKIP} ∥ IF

(C2*){activityA3SKIP})

FM18 Multi-Choice to Parallel activityA1 ((activityA2SKIP) ∥ (activityA3SKIP))

Synchronization Merge (IF (C1){activityA1SKIP} ∥ IF

(C2){activityA2SKIP})

IF(C1 | C2) {activityCSKIP}ELSE{SKIP}

FM19 Synchronization with

Extra AND Condition

(IF (C1){activityA1SKIP} ∥ IF

(C2){activityA2SKIP})

IF(C1 & C2) activityCSKIP}ELSE{SKIP}

Deferred Choice WHILE(BPEL_WAIT_Name < P3DT10H)

{IF(BPEL_Message == M1){activityA SKIP}

ELSE { IF(BPEL_Message == M2){acitivytBSKIP}}

IF(BPEL_WAIT_Name >= P3DT10H) {activityC SKIP}

FM20 Missing Alarm WHILE(true) {IF(BPEL_Message == M1){activityA

SKIP }

ELSE { IF(BPEL_Message= M2){acitivytB SKIP }}

Cancel Activity activityB.StartIF(BPEL_Fault == true){

IF((BPEL_FaultName == ”Fault1”) & (BPEL_FaultVar

==

”Var1”)){activityASTOP}ELSE{activityB.EndSKIP}}

FM21 Incorrect Fault

Matching

IF(BPEL_Fault == true){IF((BPEL_FaultName ==

”Fault2”) & (BPEL_FaultVar == ”Var2”))

{activityASTOP}ELSE{activityB.EndSKIP}}

Cancel Case Process→STOP

FM22 Unexpected Termination Process*→STOP

Table 11: Fault Models

Following is a brief description for each of the fault models:

Sequence to Parallel (FM1): Two activities that are required to execute in sequence are

instead executed in parallel. This type of fault is caused by incorrectly using a flow

activity instead of a sequence activity.

Unexpected Termination (FM2): At most one activity is executed. This type of fault is

caused by the failure of an activity or inadvertently introducing a terminate activity.

Switch Activities (FM3): Activities are executed out-of-order. This fault is generated by

misplacing activityA after activityB.

43

Deadlock Mutant (FM4): Two executing activities are waiting for each other to

complete. E.g. a sequence activity with a link construct used incorrectly introducing a

deadlock.

Parallel to Sequence (FM5): Two activities that are supposed to execute concurrently

actually execute in sequence. This type of fault is caused by misusing a sequence activity

instead of a flow activity.

Unexpected Termination (FM6): At most one activity is executed. This fault model is

similar to FM2.

Synchronization to Sequence (FM7): Two activities required to execute in parallel

execute in sequence. This fault is caused by omitting the Parallel activity between

activityA and activityB.

Synchronization to Parallel (FM8): This fault model indicates that all three activities

execute in parallel. This failure may be caused by placing all the activities in the flow

activity.

Extra Single Condition (FM9): In this fault model, an extra condition is applied to the

execution of activityB after the process reaches the synchronization point. ActivityB is

supposed to execute unconditionally.

Extra OR Condition (FM10): In this fault model, two extra conditions are applied to the

execution of activityB after the process reaches the synchronization point. The two

conditions have an OR relationship. The cause for this fault model is an extra transition

condition is applied to each activity and the relationship between the conditions is set to

OR.

Extra AND Condition (FM11): This fault model is quite similar to FM10. The only

difference is that in this fault model the relationship between conditions is AND rather

than OR.

Conditional Branches Switch (FM12): In this fault mode, activityA3 executes when

condition C1 is true, while it is expected to run when condition C1 is false. Analogously,

44

activityA2 executes when condition C1 is false, while it is expected to run when

condition C1 is true. This fault model is caused by incorrectly reversing the link names or

transition conditions between two source elements of activityA1.

Exclusive Choice to Parallel (FM13): In this fault model, the conditions used to

determine the selection of branch activities are missed. After activityA1 executes, the

other two activities are executed in parallel. The cause for this fault model is that the

transition conditions in both source elements are not provided.

Switch Condition (FM14): Reversing activities activityA1 and activityA2 causes this

fault model. In this fault mode, activityA2 executes instead of activityA1 when condition

C1 is met.

Invalid Condition (FM15): This fault occurs when the conditions for the activities,

activityA1 and activityA2, are modified incorrectly. Under certain circumstances, the

execution trace of the activities for a faulty process doesn’t change and therefore the fault

is not detected.

Switch Condition (FM16): This fault model is quite similar to FM12. Both are

concerned with switching the conditions between two activities.

Multi-Choice to Simple Merge (FM17): In this fault model, the condition applied to

activityA3 is modified so that conditions C1 and C3 cannot be true at the same time.

Since the conditions cannot be true at the same time, activityA2 and activityA3 won’t

execute at the same time.

Multi-Choice to Parallel (FM18): This fault model is quite similar to FM13. Both

concurrent activities are missing their conditions for conditional activities.

Synchronization Merge with Extra AND Condition (FM19): In this fault model, if the

relationship between the conditions C1 and C2 for activityC changes from OR to AND,

activityC will not execute until both conditions C1 and C2 are satisfied.

Missing Alarm (FM20): The BPEL process is missing an alarm and will be idle forever

waiting for an expected message that is dropped.

45

Incorrect Fault Matching (FM21): The fault model occurs when specifying either an

invalid fault type or invalid variable name in a fault handler.

Unexpected Termination (FM22): A termination happens unexpectedly. An instance of

a BPEL process execution stops when a termination activity is encountered.

3.4 BPEL Runtime Verification Platform (RV-BPEL)

A runtime monitoring system is a software system that observes the behavior of another

software system and determines its consistency with a given specification. Monitoring is

concerned with actual transitions between states and not the possible transitions. It takes

an executing software system and a specification of the software properties and validates

that the execution meets the properties. Generally speaking, there are two types of

properties: safety and temporal. Some examples of safety properties but not limited to:

invariants, sequence of events definitions, and resource allocation. On the other hand,

temporal properties include timing, progress and bounded liveness [53]. Sometimes the

distinction between the two categories of properties is not clear. For example, a property

of a system "Event A occurs within 10 seconds” can be classified as both safety and

temporal properties.

In this section we introduce a platform for runtime monitoring and verification of BPEL

programs (RV-BPEL) for the purpose of detecting temporal faults. We further analyze

the efficiency of the platform in discovering temporal faults by putting it under test based

on the classification of temporal fault models and their representation using the notational

set.

3.4.1 Specification Language Properties

The runtime monitoring system checks various safety and temporal properties. Hence, we

investigate and identify the properties that are to be covered by our specification

language [50]. The safety properties we consider are: deadlock free, invariants, properties

that define a sequence of events, properties that check values of variables and properties

that deal with resource allocation.

46

3.4.1.1 Property of Deadlock Free

The very basic safety property of a BPEL process is the property of deadlock free mainly

because of its impact on other properties. If for any reason a deadlock occurs, the process

is blocked and no further properties in the process are exercised. Most existing model-

checking methods for verifying BPEL processes check the property of deadlock free.

Although all BPEL processes require this property, we do not need to specify it through

the specification language explicitly. The reason for this decision is that deadlock free is

a common property for all instances of a process rather than a property for a specific

instance and it is not valuable to repeatedly specify this property for every process.

Therefore, we treat the property as an implicit one within a specification. It means every

specification of properties specifies a deadlock free property, although it is not declared

explicitly. If the execution of a BPEL process satisfies the property specification, then it

has the property of deadlock free.

3.4.1.2 Invariants and Check Values of Variables Properties

An invariant is an expression whose value does not change during the program execution.

In general, in object oriented programming there are two types of invariants: class

invariants and loop invariants. A class invariant is an invariant used to constrain objects

of a class. Methods of the class should preserve the invariant. The class invariant

constrains the state stored in the object. Although BPEL does not have the concept of

class, however we can easily map this concept to process invariant. Therefore, we think

of class invariants as process invariants, which are used to constrain states in an instance

of business process. Again in object oriented programming, there is the concept of a loop

invariant to constrain the properties of loops. BPEL has a loop structure that is subject to

loop invariant properties. When we take a close look at both invariants, process and loop,

we find that they both are Boolean expressions built from other variables in the BPEL

program. Therefore, we combine both invariants and check values of variables properties

into one property.

3.4.1.3 Defining a Sequence of Events Properties

In the context of BPEL, the properties for defining a sequence of events refers to the

properties for defining a sequence of activity events. We use activity events to represent

47

all the events in BPEL since it is a fundamental construct. We believe that this property is

very critical for BPEL processes. Other domains, such as Java, have emphasized this

importance [54], [55]. More importantly, one of the major goals of BPEL is to describe

the order of execution of activities, which eventually defines the business process logic

[56]. That being said, we conclude that the execution order of activities is crucial in

BPEL programs. Therefore, the concept of execution order of activities can be translated

into an ordered set of activity events, and the order or sequence of the activity events is

critical to the runtime monitoring of BPEL.

Based on the analysis of properties in the context of BPEL, we conclude that our runtime

monitoring system should provide the facilities to explicitly define properties that check

the value of variables and that define a sequence of events. When we take a closer look at

these properties, we find out that in many cases the sequencing of events is determined by

the value of variables. Therefore when verifying the sequencing of events it is also

important to account for the values of variables. For example, the transitionCondtion

attribute of the source element for a link construct is a logical expression constructed

from other BPEL process variables. The evaluation of the expression eventually controls

whether the target element of the link is executed. Similarly, the condition attribute for a

<while> activity, which is also a logical expression composed of process variables,

determines whether the <while> activity is exited.

3.4.2 Verification Process

RV-BPEL’s main responsibility is to verify that the actual execution order of activities

satisfies the expected behavior specified via the trace specification. The overall

verification process performed by the monitoring system is depicted in Figure 2.

48

Figure 2: RV-BPEL Validation Platform.

The verification process is comprised of three main steps:

1. A BPEL trace specification definition: the dynamic behavior of a BPEL program

is defined in CSPBPEL. Given that the trace specification must describe the

expected behavior of the system, it is built upon the requirements themselves.

2. Program Instrumentation: the monitoring system injects instrumentation code into

the BPEL program using the trace specification generated in step 1. The purpose

of instrumentation code is to collect process related runtime data.

3. Trace verification: performed by a specialized subsystem referred to as the Trace

Verification Subsystem, the subsystem parses the BPEL trace specification to

identify the expected temporal order of activities. The expected temporal order is

then compared to the actual temporal order to identify abnormalities.

3.4.3 Platform Implementation

The RV-BPEL implementation implements the process defined in the previous section.

We leverage JavaCC [57], a compiler-compiler, to automatically generate a compiler

from the CSPBPEL grammar. JavaCC is a powerful tool that provides a set of capabilities

such as tree building via a tool called JJTree, actions, debugging and others. JavaCC

49

enables us to embed actions in the grammar to enable insertion of the monitoring code

while parsing.

JavaCC supports bnf_production that has some discrepancies with the classical BNF

notation. Nevertheless, bnf_production is very similar to BNF. The main difference

between bnf_production and standard BNF is that you can embed actions in

bnf_production. For example, a BNF specification is:

ProcessParallelExpression::= ProcessPrefixExpression (

<TRACE_PARALLEL_OPERATOR> ProcessPrefixExpression)*

is translated into the following bnf_production code:

void ProcessParallelExpression():

{}

{(ProcessChoiceExpression() (<TRACE_PARALLEL_OPERATOR>

ProcessChoiceExpression())*) }

The system is fed the original BPEL file injecting the monitoring code from which a

DOM object is constructed. Once the code is augmented with instrumentation symbols,

the modified code is executed using ActiveBPEL, our choice for BPEL engine. The

BPEL engine is extensible by providing mechanisms to add custom functionalities to the

engine and therefore extending the behavior of the engine. These custom functionalities

are in the form of methods that are plugged into the engine and are callable by the

monitoring system from within the BPEL program.

Time recording is a determining factor in identifying the temporal order of activity

execution within a BPEL program. BPEL lacks mechanisms to record the execution time

for activities hindering the retrieval of certain information such as the start and the end of

an activity execution. To accommodate for this limitation, part of the instrumentation

code is responsible for recording start and end timestamps for each activity execution.

This is realized by injecting an assign activity right before the activity construct which

captures the value of a system timestamp. Similarly, we inject an assign activity right

after the activity construct.

50

3.4.4 RV-BPEL in Action

In this section, we provide two examples to demonstrate the operation of the monitoring

system. In an attempt to illustrate the definitions in Section 3, the examples utilize several

workflow patterns. The BPEL processes were executed under the supervision of the

runtime monitoring system to demonstrate its fault detection effectiveness. The next

flowchart (Figure 3) describes the different steps in the experiment.

Figure 3: Experiment Steps

Following is a description of each step:

1. Define the trace specification of the experimental process: The expected trace

behavior of the experimental process is generated as a trace specification in the

form of CSPBPEL. The trace specification is used to control the instrumentation of

the BPEL program. Furthermore, it is translated into a series of events; later these

events are compared with the actual events recorded during execution to

determine if there is an error in the execution.

2. Analyze the trace specification and identify the workflow patterns: The trace

specification is parsed to identify the different workflow patterns. The purpose of

this step is to determine the applicable fault models that can be injected into the

BPEL program.

3. Inject a temporal fault into the BPEL program: Applicable faults are derived from

the specifications listed in Section 3. Each fault is injected into the process one at

51

a time producing a fault program. Since each workflow pattern has one or more

fault models; this step is repeated for each fault model.

4. Add instrumentation code to the faulty process: The trace specification is written

to a text file which is used as an input to the instrumentation system. Using the

trace specification and faulty processes, the instrumentation system injects the

instrumentation test code into each faulty process. After completing the

instrumentation phase, the filename of the faulty process is not changed.

5. Deploy and execute faulty process: After completing the instrumentation, the

faulty process is deployed into the BPEL engine. A client program is used to

invoke the execution of the instrumented faulty process.

6. Analyze and evaluate the result of execution: During the execution of the faulty

process, the test results are written into log files by the trace verification system.

The test results are then analyzed to evaluate the “effectiveness” of the proposed

BPEL runtime monitoring system. The effectiveness of the runtime monitoring

system is proportional to the number of detected faults.

Figure 4 illustrates the steps executed by RV-BPEL to identify temporal faults of type

FM1. This fault is caused by mistakenly changing the relationship between the two

activities, Activity A and Activity B from sequential to a concurrent relationship.

52

Activity A

start event

Activity A

end event

Activity B

end event

Activity B

start event

Load trace

specification

Activity A start

event received?

Event doesn’t match

specifications.

Report exception.

no

Activity A end

event received?

Activity B end

event received?

Activity B start

event received?

no

yes

no

yes

yes

no

Process match trace

specifications

Expected order of events for

two activities A & B ordered in a

sequence

Trace verification of the process

depicted in the left flowchart

Figure 4: RV-BPEL Process to Capture FM1

The figure depicts two flowcharts: the one to the left is the expected order of events for a

sequence pattern while the one to the right describes the steps taken by RV-BPEL to

verify the runtime trace match the actual trace specification. Any violation to the trace

specification is captured and logged by the monitoring system.

3.4.4.1 Example I

For this experiment, we utilize the Purchase Order Process presented in [45]. Upon

receiving the purchase order from a customer, the process initiates three tasks

concurrently: calculating the final price for the order, selecting a shipper, and scheduling

the production and shipment for the order (refer to Figure 5). While some of the

processing can proceed concurrently, there are control and data dependencies between the

three tasks (depicted as solid lines). In particular, the shipping price is required to finalize

the price calculation, and the shipping date is required for the complete fulfillment

schedule. When the three tasks are completed, invoice processing can proceed and the

invoice is sent to the customer.

53

Decide on Shipper

Get Shipping Quote

from Shipper 1
Get Shipping Quote

from Shipper 2

Quote 1 Price <=

Quote 2 Price?

Select Shipper 1 Select Shipper 2

Receive

Purchase Order

Initiate Price

Calculation

Complete Price

Calculation

Decide on Shipper

Arrange Logistics

Initiate Production

Scheduling

Complete Production

Scheduling

Invoice Processing

Figure 5: Purchase Order Process

LISTING 1. Trace Specification

receivePurchaseOrder (((quoteShipper1 SKIP) ∥ (quoteShipper2

SKIP)) IF(shipperInfo1.price <= shipperInfo2.price) {useShipper1} ELSE

{useShipeer2} ((checkBalance SKIP) ∥ (checkCredit SKIP))

IF(totalCharge.number < totalCredit.number)

{payWithCredit } ELSE IF(totalCharge.number<totalBalance.number)

{payWithBalance } ELSE {errorPay } ArrangeLogistics SKIP) ∥
(InitiatePirceCalculation CompletePriceCalculation SKIP) ∥
(InitiateProducationScheduling CompleleteProductionScheduling

SKIP)) (IF(po.needPaperInvoce == ”yes”) {sendPaperInvoice SKIP}) ∥ (
IF(po.needElectronicInvoice == ”yes”) {sendElectronicInvoice SKIP})

replyPurchaseOrder STOP

The first step in the experiment is defining the trace specification for the process (refer to

Listing 1). The next step is identifying the workflow patterns for the purpose of designing

and introducing the faults. The workflow patterns implemented in the process are:

Sequence, Parallel Split, Synchronization, Simple Merge and Multi-Choice and

Synchronizing Merge (Figure 5). Accordingly, the following faults are introduced as

mutants to the process: FM1, FM2, FM3, FM4, FM5, FM6, FM8, FM9, FM10, FM11,

FM14, FM15 and FM16. For each fault model, we generate one fault according to the

mutation process defined in Section 3. Moreover, we further generated five independent

faults using frequently used mutant operators for general programming languages. The

mutant operators are “Mathematics operators exchanged”, “Variable by variable

replacement”, “Increment/decrement variables/constants” and “Output missing” [58].

The details of the mutants are shown in Table 1 - Appendix C – BPEL Mutants. The main

purpose of the second set of mutants is to crosscheck that the system does not returns

54

false positives or inappropriately terminate in the presence of defects that are not of a

temporal nature. In total eighteen mutants are generated. Four test cases are created

manually in the form of .NET console applications that interact with the BPEL process.

The test cases provide 100% path coverage and exercise all possible scenarios as dictated

by the requirements. Subsequently, we executed the test cases against the faulty BPEL

processes. Table IV summarizes the results - the number of faults killed by each test case.

As a result of executing the test cases, all of the temporal faults were killed and one

general mutant was killed by serendipity. Since 100% of the temporal faults were killed

we conclude that RV-BPEL performs well in uncovering defects of temporal nature.

Test Case # Kills of Temporal

Mutants

Kills of Generic

Mutants

#1 10 0

#2 10 1

#3 8 1

#4 10 0

Table 12: Mutants per Test Killing Rate

3.4.4.2 Example II

Experiment II demonstrates the fault models for workflow patterns that are not covered

by experiment I. Further, wherever possible, experiment II uses different variations of

implementations of the workflow patterns available in experiment I. In this scenario, we

developed an auto insurance claim processing application (Figure 6). Upon receiving the

claim for a car accident, the process calculates the total expense of the accident, including

the auto repairing expense and the victim’s medical expense. Depending on the total

expense and the police report of the accident, the process invokes the appropriate external

Web service to calculate the new insurance rate. Next, the payment is made through

direct deposit or a mailing check. Finally, a report is sent back to the client. The trace

specification is shown in Listing 2.

55

Receive Insurance

Claim Request

Retrieve Account

Information

Calculate Repair

Expenses

Calculate Medical

Expenses

Get Police Report

Refund

Set New

Insurance Rate

Set New Insurance Rate

Total Expenes

> 1000

Set New

Insurance Rate 1

Set New

Insurance Rate 2

NoYes

Refund

Direct Deposit

New Insurance

Rate 1

New Insurance

Rate 2

Yes No

Figure 6: Claim Insurance Process

LISTING 2. Auto Insurance Claim Process Trace Specification

ReceiveInsuranceClaim retrieveAccountInfo ((hospitalExpense SKIP)

‖ (repairExpense SKIP)) getPoliceReport readPoliceReport ((

IF(claim.totalExpense>1000){ newInsuranceRate1 SKIP }) ‖
(IF((claim.totalExpense <= 1000) & (claim.totalExpense > 200))

{newInsuranceRate2 SKIP }))

 ((IF(claim.directDeposite == “yes”) {directDeposit SKIP }) ‖
(IF(claim.directDeposite != ”yes”) {mailCheck SKIP })) STOP

The workflow patterns covered by this experiment are Sequence, Synchronization,

Simple Merge, Exclusive Choice, Deferred Choice and Cancel Activity (depicted in

Figure 5). In total, we generated 10 faults based on the fault models for the identified

workflow patterns. The fault models are: FM1, FM2, FM4, FM6, FM7, FM11, FM12,

FM13, FM17 and FM18. In addition, we generated 5 further “generic” faults. The details

of all the faults are given in Table 2 - Appendix C – BPEL Mutants.

Table 13: Mutants per Test Killing RateTable 13 lists the results - the number of faults

detected by each test case. Again, all of the workflow faults were killed and this time 2 of

the 5 generic mutants were also killed by serendipity. Again RV-BPEL was successful in

achieving 100% coverage of temporal faults. Similar to experiment I, the system failed to

catch most of the common programming faults (only 40%).

Test Case # Kills of Temporal # Kills of Generic

56

Mutants Mutants

#1 9 1

#2 12 1

#3 8 1

#4 7 1

Table 13: Mutants per Test Killing Rate

3.5 Related Work

The testing and verification of BPEL systems is an ongoing research area. Several

approaches have been proposed to test and increase the stability of such systems. [59]

introduce BP-calculus, a process algebra based on pi-calculus, for the formal modeling

and generation of WS-BPEL programs. The calculus is used to perform formal

verification using formulae expressed in pi-logic and the HAL (HD-Automata

Laboratory) Toolkit. A mapping from BP-calculus to WS-BPEL is provided for the

automated generation of WS-BPEL code from its calculus. Compared to CSPBPEL, BP-

Calculus is more complex grammar and its verification is less practical for larger BPEL

systems due to the state space explosion problem. [60] introduces a method to verify

business processes with SPIN. In this method, the BPEL specification is firstly translated

into an intermediate representation Guarded Automata. The automata are then translated

into PROMELA. Because the guards in the guarded automata are expressed as XPath

expressions, this enables the verification of the XML data manipulation properties.

Furthermore, it proposes the concept of synchronization to tackle one inherent limitation

of SPIN which can only achieve partial verification by fixing the size of communication

channels in PROMELA. While the work addresses the verification of temporal

properties, however it does not investigate the nature of temporal faults contrary to our

work. [61] explains how to use activity diagrams to capture the execution flow of a BPEL

program. The resultant UML activity model is transformed to PROMELA based on a set

of mapping rules. The paper does not provide any details about the type of faults that can

be investigated. Test case generation based on CP-net is proposed by [62] to test

concurrency aspects of BPEL programs. The approach relies on translating BPEL

program into CP-net model followed by the generation and execution of test cases. The

authors claim that the resultant CP-net model tackles state space explosion and results in

the generation of fewer test cases. While the paper emphasizes the reduction in number of

57

generated test cases, however it fails to demonstrate the effectiveness of the generated

test cases and the nature of targeted faults.

So far, all approaches discussed are based on model checking. Because model checking is

based on formal methods, they all share one characteristic, they are not easy to

understand and use by the average practitioner. Moreover, the large size of the explicit

representation of the state space of most systems severely limits the size of systems that

can be model checked. Although state reduction techniques have been proposed to reduce

the state space explosion, fully describing and verifying a system is still extremely

difficult. In addition, model checking conducts static checks of a business process, which

may not fully considered the value and timing characteristics of the process. The massive

number of runtime interactions that connect various components is what makes web

application reliability a challenging task. Similarly, for business processes composed of

various Web services, the runtime interactions between web services are critical to the

reliability of the business process. Hence we cannot ignore those significant factors and it

is clearly of valuable to investigate verifying these business processes from the

perspective of run time monitoring.

Closely related to our work, [63], [36] introduce a set of mutation operators for WS-

BPEL programs and the means to minimize the computational cost of mutation testing.

The former uses genetic algorithm (GA) and describes a framework for generating and

reducing the mutants to a minimal set. The latter introduce a set of metrics for evaluating

objectively the quality of a set of mutants with respect to a test suite. The metrics are used

to reduce the number of mutants and thus reducing the overall cost associated with

mutation testing. While their work is similar to ours with respect to using mutation

testing to test WS-BPEL, however we believe the set of mutation operators of temporal

nature is not comprehensive. For example, the work ignores faults related to

synchronization and presents only one fault related to sequence out of the four faults

presented in our work. Moreover, their approach to identify mutants is not methodical

and the steps to apply mutants on BPEL programs are not specified. We follow a more

rigorous and comprehensive approach to identifying temporal faults by analyzing known

workflow patterns. In addition, the authors neither provide a formal description of the

58

mutants nor describe the production rules to introduce mutants into BPEL systems.

Whereas this paper proposes a formal specification to describe the faults, and the

production rules required to inject mutants into BPEL systems. This enables the

automation of detecting workflow patterns and fault injection. Another work in the area

of mutation testing and BPEL is that of [64]. The work explores the applicability of the

mutant operators for BPEL programs introduced by [63]. Mainly the authors investigate

the operators in the context of weak mutation testing. They further evaluate the

effectiveness of the operators in a complementary work where they introduce WeMuTe, a

weak mutation testing tool for WS-BPEL. The work fails to describe the programs and

the operators used in the experiments to test each program. Therefore, no conclusions can

be drawn regarding the effectiveness of the mutants in evaluation the comprehensiveness

of the test suite. Our empirical analysis involves providing a formal description of the

programs used in the experiments and analyzes the applicable faults based on the

detected workflow patterns. To alleviate the complexity of applying formal methods to

reason about BPEL programs, [35] apply dynamic invariant generation to extract

properties from actual executions of BPEL programs. The authors indicate that one

possible usage of this approach is to detect bugs in compositions and improve test suites

and hence can be used along to our approach.

In the area of runtime monitoring of BPEL systems, [65] presents an approach to support

dynamic monitoring of WS-BPEL processes as a mechanism to assess and ensure the

quality of running processes. The work proposes using monitoring rules that are weaved

dynamically into the process to control the execution of WS-BPEL processes. The

monitoring system adopts a proxy based approach to support dynamic selection of

monitoring rules at runtime. A user-oriented language is defined to integrate data

acquisition and analysis into monitoring rules. We believe that our fault models can be

used in mutation testing to verify the effectiveness of the proposed monitoring system.

Similarly, [66] introduce VieDAME a system which allows monitoring of BPEL

processes and binding to web services at runtime to ensure certain Quality of Service

(QoS) attributes. The system uses various replacement strategies to identify substitute

services that are either syntactically or semantically equivalent. Aspect Oriented is

employed to intercept SOAP messages and allow services to be exchanged during

59

runtime. By using VieDAME and RV-BPEL side-by-side, we can address both functional

and non-functional aspects of BPEL program and thus providing a holistic monitoring

solution. Another contribution in the area of BPEL reliability is [67], which proposes

self-supervising BPEL processes that are capable of assessing their behavior and reacting

accordingly by taking recovery actions if necessary. For this purpose, the authors suggest

two XML based language, WSCoL (Web Service Constraint Language) to express

assertions and WSRel (Web Service Recovery Language) to express recovery actions.

The proposed approach does not address issues of temporal nature and focuses on

assessing preconditions and expectations based on process state.

3.6 Conclusion

The testing and verification of BPEL systems is given considerable attention in the

literature. Contrary to that, very limited research exists in the area of classification and

identification of BPEL faults. To-date, no methodical approach is proposed for the

identification of BPEL faults and more specifically temporal faults. The only work

related to identifying BPEL mutation operators is that of [30]. However the list of

mutation operators of temporal nature is far from complete. Moreover, their approach to

identifying mutation operators is less methodical and a formal description of mutation

operators is not provided. The lack of formal description hinders the automation of fault

injection.

In this paper, we identify and categorize temporal faults in BPEL programs. We follow a

methodical and disciplined approach in identifying temporal faults by analyzing well-

known workflow patterns to derive the fault models. In total, we analyzed eleven

workflow models and derived all major temporal defect types that are derivable from

these fundamental definitions. We utilize a minimal set of CSP notations, CSPBPEL, to

build the vocabulary needed to capture the specifications of BPEL programs. This

minimal vocabulary simplifies the formal description of trace specifications.

Furthermore, we have built a runtime verification platform for BPEL environments and

demonstrated its effectiveness to detect and identify temporal faults. Specifically, our

system is able to non-intrusively instrument and monitor the execution trace of BPEL

systems and detect faults of temporal nature.

60

This research is a major step towards producing a comprehensive list of temporal fault

models. Understanding the type of faults in BPEL programs advances the field of BPEL

runtime monitoring and therefore contributes towards stabilizing such family of systems.

Furthermore, the fault models can be used in mutation testing, a fault-testing technique to

assess the effectiveness of test suites for the purpose of test optimization and cost

reduction. Although our work specifically addresses BPEL, however the fault models are

equally applicable to other workflow languages. The source code for RV-BPEL and the

examples used in the experiments is available for download2. Future work includes

identifying and classifying other fault models.

2 http://www.steam.ualberta.ca/main/research_areas/temporalfaults.rar

61

4 Conclusion

In this research we advance the field of testing and verification of composite systems that

are built on top of WS-CDL and WS-BPLE.

As for WS-CDL, we present Chor-calculus, a new formal language based on pi-calculus

and the semantics of WS-CDL. A mapping between Chor-Calculus and WS-CDL is

provided which allows the generation of WS-CDL programs from a Chor-calculus

specification. A tool is developed that generates WS-CDL programs from a Chor-

calculus specification. Furthermore, we demonstrate the use of the HAL toolkit to verify

the correctness properties of Chor-calculus choreographies. One of the main objectives of

WS-CDL is to be used along with other orchestrated systems such as WS-BPEL

applications. We envisage using Chor-calculus with other calculi-based formal methods

to investigate the compatibility of interacting services. For example, Chor-calculus can be

used along with BP-calculus [5] and [27] to determine the behavioral service

compatibility of existing systems.

As for WS-BPEL, we identify and categorize temporal faults in BPEL programs. We

follow a methodical and disciplined approach in identifying temporal faults by analyzing

well-known workflow patterns to derive the fault models. In total, we analyzed eleven

workflow models and derived all major temporal defect types that are derivable from

these fundamental definitions. We utilize a minimal set of CSP notations, CSPBPEL, to

build the vocabulary needed to capture the specifications of BPEL programs. This

minimal vocabulary simplifies the formal description of trace specifications.

Furthermore, we have built a runtime verification platform for BPEL environments and

demonstrated its effectiveness to detect and identify temporal faults. Specifically, our

system is able to non-intrusively instrument and monitor the execution trace of BPEL

systems and detect faults of temporal nature.

This research is a major step towards enhancing testing techniques of service

compositions. The contribution helps in understanding and identifying faults that

manifest in service composition programs by offering new means for writing effective

test suites against WS-CDL and WS-BPEL programs. Moreover, the work for WS-BPEL

62

advances the field of BPEL runtime monitoring and therefore contributes towards

stabilizing such family of systems.

63

References

[1] W. Tsai, “Service-oriented system engineering: a new paradigm”, In IEEE

International Workshop on Service-Oriented Systems Engineering (SOSE) 2005, pp.

3-6, Oct. 2005.

[2] T. Erl, SOA Design Patterns. Prentice Hall, Upper Saddle River, NJ, pp. 35-36, 2009.

[3] Oasis, “Web Services Business Process Execution Language Version 2.0”,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[4] N. Kavantzas, D. Burdett, G. Ritzinger, Y. Lafon, “Web Services Choreography

Description Language Version 1.0”, http://www.w3.org/TR/ws-cdl-10. 2005.

[5] F. Abouzaid, J. Mullins, “A Calculus for Generation, Verification and Refinement of

BPEL Specifications”, Electronic Notes in Theoratical Computer Science, pp. 43-65,

2008.

[6] M. Mazzara, R. Lucchi, “A Pi-calculus Based Semantics for WS-BPEL. Journal of

Logic and Algebraic Programming”, Journal of Logic and Algebraic Programming

70(1), pp. 96–118, 2006.

[7] M. ter. Beek, A. Bucchiarone, S. Gnesi, Web Service Composition Approaches:

From Industrial Standards to Formal Methods. Second International Conference on

Internet and Web Applications and Services (ICIW '07), Mauritius, May 2007.

[8] F. Abouzaid, M. Mazzara, J. Mullins, N. Qamar, “Towards a Formal Analysis of

Dynamic Reconfiguration in WS-BPEL”, Intelligent Decision Technologies, vol. 7,

pp. 213-224, 2013.

[9] N. Lohmannn, “A Feature-Complete Petri Net Semantics for WS-BPEL 2.0”, Web

Services and Formal Methods, Lecture Notes in Computer Science, vol. 4937, pp. 77-

91, 2008.

[10] M. Bravetti, M. Núñez, and G. Zavattaro, “Web Services and Formal Methods”,

Proceedngs of Third International Workshop, WS-FM 2006, vol. 4184, Vienna,

Austria, Sept. 2006.

64

[11] N. Dragoni and M. Mazzara, “A Formal Semantics for the WS-BPEL Recovery

Framework: The pi-Calculus Way”. In WS-FM, vol. 6194, pp. 92-109, Springer,

2010.

[12] M. Mazzara, “Towards Abstractions for Web Services Composition”, PhD

dissertation, Dept. of Computer Science, University of Bologna, Bologna, Italy, 2006.

[13] A. Barros, M. Dumas, P. Oaks, “A Critical Overview of the Web Services

Choreography Description Language”, BPTrends Newsletter,

http://news.bptrends.com/publicationfiles/03-05 WP WS-CDL Barros et al.pdf. 2005.

[14] H. Ahn Le, N. Thuan Truong, “Modeling and Verifying WS-CDL Using Event-

B”, Context-Aware Systems and Applications, Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering, vol.

109, pp. 290-299, 2013.

[15] Wil M. P. van der Aalst, A.H. M. ter Hofstede, B. Kiepuszewski, A.P. Barros,

“Workflow Patterns. Distributed and Parallel Databases”, 14(1):5–51, 2003.

[16] A. Barros, M. Dumas, A. ter Hofstede, “Service Interaction Patterns”, In

Proceedings 3rd International Conference on Business Process Management (BPM

2005), pp. 302–318, Nancy, France, 2005.

[17] G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore and G. Ristori, “An

Automata Based Verification Environment for Mobile Processes”, Proceedings of the

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’97), vol. 1217, pp. 275–289, 1997.

[18] G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, “A Model-Checking Verification

Environment for Mobile Processes”, ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 12, no. 4, pp. 440-473, Oct 2003,

doi:10.1145/990010.990013.

[19] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services

Description Language (WSDL) 1.1”, http://www.w3.org/TR/wsdl, March 2001.

65

[20] R. Chinnici, J. Moreau, A. Ryman, S. Weerawarana, “Web Services Description

Language (WSDL) Version 2.0 Part 1: Core Language”,

http://www.w3.org/TR/wsdl20/, 2007.

[21] R. Milner, Communicating and Mobile Systems: The Pi-Calculus, Cambridge,

UK:Cambridge University Press , 1999.

[22] G. Decker, H. Overdick, J. M. Zana, “On the Suitability of WS-CDL for

Choreography Modeling”, Proceedings of Methoden, Konzepte und Technologien für

die Entwicklung von dienstebasierten Informationssystemen, Hamburg, Germany,

Oct 2006.

[23] S. Rajamani and J. Rehof, “A Behavioral Module System for the Pi-Calculus”,

Lecture Notes in Computer Science vo. 2126, pp. 375-394, 2001.

[24] P. Wong and J. Gibbons, "A Process-Algebraic Approach to Workflow

Specification and Refinement", Lectures Notes in Computer Science vo. 4829, pp.

51-65, 2007.

[25] T. Parr, “ANother Tool for Language Recognition”, http://www.antlr.org/, 2013.

[26] T. Parr, The Definitive Antlr 4 Reference, Dalas-Texas Raleigh, North

Carolina:Pragmatic Bookshelf, 2nd edition, Jan. 2013.

[27] S. Deng, Z. Wu, M. Zhou, Y. Li, J. Wu, “Modeling Service Compatibility with

Pi-calculus for Choreography”, Lecture Notes in Computer Science vo. 4215, pp. 26-

39, 2006.

[28] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo, “Formalizing Web Services

Choreographies”, Electronic Notes in Theoretical Computer Science, v. 105, pp. 73–

94, 2004.

[29] H. Yang, X. Zhao, Z. Qiu, G. Pu, S. Wang, “A Formal Model for Web Service

Choreography Description Language (WS-CDL)”, IEEE International Conference on

Web Services (ICWS’06), pp. 893–894, 2006.

66

[30] M. Carbone, K. Honda, and N. Yoshida, “Structured Communication-Centred

Programming for Web Services”, Proceedings of ESOP’07, vol. 4421, pp. 2–17,

Springer-Verlag, 2007.

[31] M. Carbone, “Session-based Choreography with Exceptions”, Electronic Notes

Theoratical Computer Science, vol. 241, pp. 35-55, 2009.

[32] I. Lanese, C. Guidi, F Montesi, G. Zavattaro, "Bridging the Gap between

Interaction-and Process-Oriented Choreographies", IEEE International Conference

on Software Engineering and Formal Methods (SEFM'08), IEEE Computer Society,

pp. 323-332, 2008.

[33] C. Guidi, "Formalizing languages for Service Oriented Computing", PhD

dissertation, Dept. of Computer Science, University of Bologna, Bologna, Italy, 2007.

[34] G. Campos, N. Rosa, and L. Ferreira Pires. A Survey of Formalization

Approaches to Service Composition. In Proceedings of the 2014 IEEE International

Conference on Services Computing, Anchorage, AK, 179 – 186, 2014.

[35] M. Palomo-Duarte, A. García-Domínguez and I. Medina-Bulo. Automatic

dynamic generation of likely invariants for WS-BPEL compositions. Expert Systems

with Applications, v. 41, pp. 5041-5055, Sept. 2014.

[36] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. Domínguez-Jiménez and

A. García-Domínguez. Quality metrics for mutation testing with applications to WS-

BPEL compositions. Software Testing, Verification and Reliability, Wiley Online

Library, 2014.

[37] M. Khaxar and S. Jalili. WSCMon: runtime monitoring of web service

orchestration based on refinement checking. Service Oriented Computing

Applications, Vol. 6. Springer-Verlag, 33-49, 2012.

[38] F. Belli, A. Endo, M. Linschulte, and A. Simao. A holistic approach to model-

based testing of Web service compositions. Software: Practice and Experience, Vol.

44. Wiley Online Library, 201-234, 2014.

67

[39] A. Kocbek and M. Juric. Towards a Reusable Fault Handling in WS-BPEL, Int. J.

Soft. Eng. Knowl. Eng, Vol. 24. World Scientific, 243-267, 2104.

[40] C.A.R Hoare. Communicating Sequential Processes, Retrieved February, 7, 2009,

from http://www.usingcsp.com/cspbook.pdf.

[41] C.A.R Hoare. Communicating Sequential Processes, Communications of ACM,

Vol. 21, 666-677, 1978.

[42] S.D. Brookes, C.A.R Hoare, and B. Roscoe. A Theory of Communicating

Sequential Processes, Journal of the ACM, Vol. 31, 560-599, 1984.

[43] T. Earl. SOA Design Patterns, Prentice Hall, Boston, MA, USA, 2009.

[44] E. Newcomer and G. Lomow. Understanding SOA with Web Services, Addison

Wesley, Boston, Massachusetts, USA, 2004.

[45] OASIS. Retrieved January 4, 2014, from http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[46] P. Sarang and M. Juric. Business Process Execution Language for Web Services,

Pack Publishing Ltd., 32 Lincoln Road Olton Birmingham, B27 6PA, UK, 2006.

[47] R. Lipton and R. DeMillo Hints on Test Data Selection: Help for the Practicing

Programmer. IEEE Computer, Vol. 11, 34-41, 1978.

[48] Y. Jia and M. Harman. An Analysis and Survey of the Development of Mutation

Testing, IEEE Transactions on Software Engineering, Vol. 37, 649-678, 2001.

[49] M. Roper. Software Testing. McGraw Hill International Software Quality

Assurance, 87-88, 1994.

[50] J. Offutt. A Practical System for Mutation Testing: Help for the Common

Programmer, Proceedings of 12th International Conference on Testing Computer

Software, Washington, DC, 99-109, 1995.

68

[51] P. Wohed, W. M.P. van der Aalst, M. Dumas, and A. H.M. ter Hofstede. Pattern

Based Analysis of BPEL4WS, QUT Technical Report, FIT-TR-2002-04, Queensland

University of Technology, Brisbane, Australia, 2002.

[52] W.L. Yeung. Mapping WS-CDL and BPEL into CSP for Behavioral Specification

and Verification of Web Services, Proceedings of the 4th European Conference on

Web Services (ECOWS’06), IEEE Computer Society, 297-305, 2006.

[53] N. Delgado, A. Gates, and S. Roach. A Taxonomy and Catalog of Runtime

Software-Fault Monitoring Tools, IEEE Transactions on Software Engineering, Vol.

30, 859-872, 2004.

[54] M. Brorkens and M. Moller. Runtime Checking the Dynamic of Java Programs,

Proceedings of the IFIP 14th International Conference on Testing of Communicating

Systems, Berlin, Germany, 39-48, 2002.

[55] M. Moller. Specifying and Checking Java Using CSP, In Workshop on Formal

Techniques for Java-like Programs-FTfJP, Technical Report NIII-R0204, Computing

Science Department, University of Nijmegen, 1-9, 2002.

[56] C. Peltz. Retrieved May 24, 2014, from http://xml.coverpages.org/HP-

WSOrchestration.pdf.

[57] JavaCC. Java Compiler Compiler. Retrieved April, 12, 2014 from

http://javacc.java.net.

[58] S. do Rocio, S. de souza, J. Maldonado, S. Pinto, F. Fabbri, and W. de Souza.

Mutation Testing Applied to Estelle Specifications, Software Quality Journal, Vol. 8,

285-301, 1999.

[59] F. Abouzaid and J Mullins. A Calculus for Generation, Verification and

Refinement of BPEL Specifications, Electronic Notes in Theoretical Computer

Science, 43-65, 2008.

69

[60] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services,

Proceedings of the 13th International Conference on World Wide Web, New York,

NY, USA, 2004, 621-630, 2004.

[61] H. Cao, S. Ying, and D. Du. Towards Model-Based Verification of BPEL with

Model Checking, Proceedings of the 6th IEEE International Conference on

Computer and Information Technology, Seoul, Korea, Sept. 190-194, 2006.

[62] Y. Wang and N. Yang. Test Case Generation of Web Service Composition based

on CP-nets, Journal of Software, March 2014, v.9, pp. 589-595, 2014.

[63] J. Domınguez-Jimenez, A. Estero-Botaro, and I. Medina-Bulo. A Framework for

Mutant Genetic Generation for WS-BPEL, Proceedings of the 35th Conference on

Current Trends in Theory and Practice of Computer Science, Spindleruv Mlyn,

Czech Republic, Vol. 5404, 229-240, 2009.

[64] P. Boonyakulsrirung and T. Suwannasart. A Weak Mutation Testing framework

for WS-BPEL, Proceedings of the 8th International Joint Conference on Computer

Science and Software Engineering (JCSSE), Thailand, 313-318, 2011.

[65] L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS-BPEL Processes.

Proceedings of the 3rd International Conference of Service-Oriented Computing

(ICSOC’05), Amsterdam, 269-282, 2005.

[66] O. Moser, F. Rosenberg and S. Dustdar. Non-Intrusive Monitoring and Service

Adaptation for WS-BPEL, Proceedings of the 17th International Conference on

World Wide Web, New York, USA, 815-824, 2008.

[67] L. Baresi and S. Guinea. Self-Supervising BPEL Processes. IEEE Transactions on

Software Engineering, 247-263, 2011.

[68] M.P. Papazoglou, D. Georgakopoulos. Service-Oriented Computing,

Communications of the ACM, Vol. 46, no. 10, 25-2, 2003

70

Appendix A – Chor-calculus

Agent Chor-calculus

PC 𝑃𝐶 = ((𝑣 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑐 , 𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐 , 𝑥𝑐𝑜𝑚){𝑃, 𝑁𝑅,𝐻})

P 𝑃 = 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑟𝑞𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈�̃�〉. 0 ∥ 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑝𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈�̃�〉. 0

NR 𝑁𝑅 = (! 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑐(�̃�) . ((𝑣 𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐 , 𝑥𝑐𝑜𝑚){𝑄, 𝑁𝑅1, 𝐻1}))

H 𝐻 = 𝑊𝐸𝐵
′ (𝐴𝑒�̂�) | 𝑊𝐹𝐵

′ (𝐴𝑓�̂�)

WEB_P

C
𝑊𝐸𝐵
′ (𝐴𝑒�̂�) = 𝑖𝑛𝑒𝑏(). ((𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟

ℎ𝑎𝑛𝑑𝑙𝑒(𝑜𝑟𝑑𝑒𝑟𝐷𝑒𝑡𝑎𝑖𝑙𝑠). 𝑅 ∥ �̅�𝑒𝑏⟨ ⟩. 0) + 𝑢𝑛𝑒𝑏())

WFB_P

C

𝑊𝐹𝐵
′ (𝐴𝑓�̂�) = 𝑖𝑛𝑓𝑏(). 𝑢𝑛̅̅̅̅ 𝑓𝑏⟨ ⟩. 0

QC (𝑣 𝑖𝑛𝑒𝑏 , 𝑢𝑛𝑒𝑏 , 𝑖𝑛𝑓𝑏 , 𝑢𝑛𝑓𝑏 , 𝑦𝑓𝑏 , 𝑦𝑓𝑐 , 𝑥𝑐𝑜𝑚){𝑄, 𝑁𝑅1, 𝐻1}

Q 𝑄 = 𝑠ℎ𝑖𝑝𝑂𝑟𝑑𝑒𝑟𝑟𝑞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈�̃�〉. 0 ∥ 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑟𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈�̃�〉. 0

H1 𝐻1 = 𝑊𝐸𝐵
′′ (𝐴𝑒�̂�) | 𝑊𝐹𝐵

′′ (𝐴𝑓�̂�)

WEB_Q

C

𝑊𝐸𝐵
′′ (𝐴𝑒�̂�) = 𝑖𝑛𝑒𝑏(). 𝑢𝑛𝑒𝑏(). 0

WFB_Q

C

𝑊𝐹𝐵
′′ (𝐴𝑓�̂�) = 𝑖𝑛𝑓𝑏(). 𝑢𝑛̅̅̅̅ 𝑓𝑏⟨ ⟩. 0

E 𝐏𝐮𝐫𝐜𝐡𝐚𝐬𝐞𝐎𝐫𝐝𝐞𝐫
= ! ((𝐯 𝐬𝐡𝐢𝐩𝐦𝐞𝐧𝐭𝐂𝐡𝐨𝐫𝐞𝐨𝐠𝐫𝐚𝐩𝐡𝐲𝐜, 𝐢𝐧𝐞𝐛, 𝐮𝐧𝐞𝐛, 𝐢𝐧𝐟𝐛, 𝐮𝐧𝐟𝐛, 𝐲𝐟𝐛, 𝐲𝐟𝐜, 𝐱𝐜𝐨𝐦){𝐏, 𝐍𝐑,𝐇})

Table 14: Agents mapping to Chor-calculus

Name Chor-calculus

porqrs 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝑟𝑞𝑟𝑠

scpr 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑝𝑟, 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶ℎ𝑜𝑟𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑐

sorq 𝑠ℎ𝑖𝑝𝑂𝑟𝑑𝑒𝑟𝑟𝑞

scrs 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑟𝑠

iorq 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟𝑟𝑞

iorh 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑂𝑟𝑑𝑒𝑟ℎ𝑎𝑛𝑑𝑙𝑒

Table 15: Names mapping to Chor-calculus

71

<po.pi>

Purchase Order Choreography

define PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) |

H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) |

NR(scpr,sorq,scrs,x,y) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) =

(z)(porqrs!x.scpr!y.t!z.PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io))

define WEB_PC(iorh,iorq,io,yeb,ineb,uneb) = ineb?(z).iorh?(z).iorq!io.yeb!z.nil +

uneb?(z).nil

define WFB_PC(infb,unfb) = infb?(z).unfb!z.nil

define H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) = WEB_PC(iorh,iorq,io,yeb,ineb,uneb) |

WFB_PC(infb,unfb)

Shipment Choreography

define QC(scpr,sorq,scrs,x,y) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

Q(scpr,sorq,scrs,x,y,t) |

H1(ineb,uneb,infb,unfb,yeb) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

72

define Q(scpr,sorq,scrs,x,y,t) = (z)(sorq!x.scrs!y.t!z.NR(scpr,sorq,scrs,x,y))

define WEB_QC(ineb,uneb,yeb) = ineb?(z).yeb!z.nil + uneb?(z).nil

define WFB_QC(infb,unfb) = infb?(z).unfb!z.nil

define H1(ineb,uneb,infb,unfb,yeb) = WEB_QC(ineb,uneb,yeb) | WFB_QC(infb,unfb)

define NR(scpr,sorq,scrs,x,y) = scpr?(z).QC(scpr,sorq,scrs,x,y)

build PC

<formulas.pl>

define P1 = AG(EF<scpr?z>true)

define P2 = AG([porqrs!x]EF<scrs!y>true)

define P3 = EF<scpr!y>true

define P4 = EF<scrs!y>true

<po-m1.pi>

define PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) |

H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) |

NR(scpr,sorq,scrs,x,y) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) =

(z)(porqrs!x.scpr!y.t!z.PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io))

73

define WEB_PC(iorh,iorq,io,yeb,ineb,uneb) = ineb?(z).iorh?(z).iorq!io.yeb!z.nil +

uneb?(z).nil

define WFB_PC(infb,unfb) = infb?(z).unfb!z.nil

define H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) = WEB_PC(iorh,iorq,io,yeb,ineb,uneb) |

WFB_PC(infb,unfb)

Shipment Choreography

define QC(scpr,sorq,scrs,x,y) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

Q(scpr,sorq,scrs,x,y,t) |

H1(ineb,uneb,infb,unfb,yeb) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define Q(scpr,sorq,scrs,x,y,t) = (z)(sorq!x.t!z.NR(scpr,sorq,scrs,x,y))

define WEB_QC(ineb,uneb,yeb) = ineb?(z).yeb!z.nil + uneb?(z).nil

define WFB_QC(infb,unfb) = infb?(z).unfb!z.nil

define H1(ineb,uneb,infb,unfb,yeb) = WEB_QC(ineb,uneb,yeb) | WFB_QC(infb,unfb)

define NR(scpr,sorq,scrs,x,y) = scpr?(z).QC(scpr,sorq,scrs,x,y)

build PC

<po-m2.pi>

Purchase Order Choreography

define PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) |

74

H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) |

NR(scpr,sorq,scrs,x,y) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) =

(z)(porqrs!x.t!z.PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io))

define WEB_PC(iorh,iorq,io,yeb,ineb,uneb) = ineb?(z).iorh?(z).iorq!io.yeb!z.nil +

uneb?(z).nil

define WFB_PC(infb,unfb) = infb?(z).unfb!z.nil

define H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) = WEB_PC(iorh,iorq,io,yeb,ineb,uneb) |

WFB_PC(infb,unfb)

Shipment Choreography

define QC(scpr,sorq,scrs,x,y) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

Q(scpr,sorq,scrs,x,y,t) |

H1(ineb,uneb,infb,unfb,yeb) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define Q(scpr,sorq,scrs,x,y,t) = (z)(sorq!x.scrs!y.t!z.NR(scpr,sorq,scrs,x,y))

define WEB_QC(ineb,uneb,yeb) = ineb?(z).yeb!z.nil + uneb?(z).nil

define WFB_QC(infb,unfb) = infb?(z).unfb!z.nil

define H1(ineb,uneb,infb,unfb,yeb) = WEB_QC(ineb,uneb,yeb) | WFB_QC(infb,unfb)

75

define NR(scpr,sorq,scrs,x,y) = scpr?(z).QC(scpr,sorq,scrs,x,y)

build PC

<po-m3.pi>

Purchase Order Choreography

define PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) |

H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) |

NR(scpr,sorq,scrs,x,y) |

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define P(porqrs,scpr,sorq,scrs,x,y,t,iorh,iorq,io) = (z)(

scpr!y.porqrs!x.t!z.PC(porqrs,scpr,sorq,scrs,x,y,iorh,iorq,io))

define WEB_PC(iorh,iorq,io,yeb,ineb,uneb) = ineb?(z).iorh?(z).iorq!io.yeb!z.nil +

uneb?(z).nil

define WFB_PC(infb,unfb) = infb?(z).unfb!z.nil

define H(iorh,iorq,io,yeb,ineb,uneb,infb,unfb) = WEB_PC(iorh,iorq,io,yeb,ineb,uneb) |

WFB_PC(infb,unfb)

Shipment Choreography

define QC(scpr,sorq,scrs,x,y) =

(z)(ineb)(uneb)(infb)(unfb)(c)(yfc)(yeb)(yfb)(o)(q)(xcom)(t)(

Q(scpr,sorq,scrs,x,y,t) |

H1(ineb,uneb,infb,unfb,yeb) |

76

ineb!z.nil |

(c?(z).uneb!z.infb!z.nil + q?(z).nil) |

yfc?(z).(uneb!z.o!z.q!z.nil | xcom!z.nil) |

(t?(z).c!z.yfb?(z).nil + yeb?(z).nil + xcom?(z).yfc!z.nil))

define Q(scpr,sorq,scrs,x,y,t) = (z)(sorq!x.scrs!y.t!z.NR(scpr,sorq,scrs,x,y))

define WEB_QC(ineb,uneb,yeb) = ineb?(z).yeb!z.nil + uneb?(z).nil

define WFB_QC(infb,unfb) = infb?(z).unfb!z.nil

define H1(ineb,uneb,infb,unfb,yeb) = WEB_QC(ineb,uneb,yeb) | WFB_QC(infb,unfb)

define NR(scpr,sorq,scrs,x,y) = scpr?(z).QC(scpr,sorq,scrs,x,y)

build PC

Appendix B – BNF of CSPBPEL

<DEFAULT>

TOKEN:

{

 < TRACE_PARALLEL_OPERATOR: "||" >

 | < TRACE_CHOICE_OPERATOR: "[]" >

 | < TRACE_DEADLOCK_OPERATOR: "STOP" >

 | < TRACE_PREFIX_OPERATOR: "->" >

 | < TRACE_TERMINATION_OPERATOR: "TERM" >

 | < TRACE_CALL_OPERATOR:"CALL" >

 | < TRACE_IF_OPERATOR: "IF">

 | < TRACE_ELSE_OPERATOR: "ELSE">

 | < TRACE_WHILE_OPERATOR: "WHILE">

 | < BPELTRACE: "trace" >

}

/* SEPARATORS */

<DEFAULT>

TOKEN:

{

 < LPAREN: "(" >

| < RPAREN: ")" >

| < LBRACE: "{" >

| < RBRACE: "}" >

| < LBRACKET: "[" >

77

| < RBRACKET: "]" >

| < COMMA: "," >

| < DOT: "." >

}

/* OPERATORS */

<DEFAULT>

TOKEN:

{

 < ASSIGN: "=" >

| < GT: ">" >

| < LT: "<" >

| < BANG: "!" >

| < HOOK: "?" >

| < COLON: ":" >

| < PLUS: "+" >

| < TILDE: "~" >

| < EQ: "==" >

| < LE: "<=" >

| < GE: ">=" >

| < NE: "!=" >

| < MINUS: "-" >

| < STAR: "*" >

| < SLASH: "/" >

| < SC_OR: "|" >

| < SC_AND: "&" >

| < XOR: "^" >

| < REM: "%" >

| < AT: "@">

}

TOKEN:

{

 <INT:"int">

| <CHAR: "char">

| <DOUBLE:"double">

| <BOOLEAN: "boolean">

| <NULL: "null">

}

/* LITERALS */

TOKEN:

{

 < INTEGER_LITERAL:

 ["1"-"9"] (["0"-"9"])* (["l","L"])? // DECIMAL LITERAL

 | "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ (["l","L"])? //HEX LITERAL >

78

| < STRING_LITERAL:

 "\""

 ((~["\"","\\","\n","\r"])

 | ("\\" ["n","t","b","r","f","\\","'","\""])

)*

 "\"" >

|<DURATION: "DU_”<STRING_LITERAL> >

|<DEADLINE: “DE_”<STRING_LITERAL> >

}

TOKEN:

{

 < IDENTIFIER: (["a"-"z"] | ["A"-"Z"]) (["a"-"z"] | ["A"-"Z"] | ["0"-"9"])* >

| <EVENT_IDENT: <IDENTIFIER>"."<IDENTIFIER>>

| <TRACE_DEADLOACK_OPERATOR: "BPEL_Dead">

| <BPEL_WAIT_NAME> : “BPEL_Wait_Name”>

| <BPEL_WAITING_TIME> : <DURATION>| <DEADLINE>

| <BPEL_MESSAGE_NAME: “BPEL_Message_Name”>

| <BPEL_FAULT_NAME : “BPEL_Fault_Name”>

| <BPEL_VAR : <IDENTIFIER> >

| <BPEL_FAULT_VAR> : “BPEL_Falut_Var”>

}

TraceAssertion ::= (AssertionLabel)? TraceAssertionDeclaration

AssertionLabel ::= "[" <IDENTIFIER> "]"

TraceAssertionDeclaration ::= <BPELTRACE> <LPAREN> (TraceConstant)*

(ProcessDeclaration)* <RPAREN>

TraceConstant ::= FieldDeclaration

FieldDeclaration ::= (Type) VariableDeclarator ("," VariableDeclarator)* ";"

Type ::= (PrimitiveType) ("[" "]")*

PrimitiveType ::= <INT>| <CHAR> | <BOOLEAN> | <DOUBLE>

VariableDeclarator ::= VariableDeclaratorId ("=" VariableInitializer)?

VariableDeclaratorId ::= <IDENTIFIER> ("[" "]")*

VariableInitializer ::= (ArrayInitializer | Expression)

ArrayInitializer ::= "{" (VariableInitializer ("," VariableInitializer)*)? (",")?

"}"

Expression ::= ConditionalExpression (AssignmentOperator Expression)?

AssignmentOperator ::= ("=" | "+=" | "-=")

ConditionalExpression ::= ConditionalAndExpression ("||"

ConditionalAndExpression)*

ConditionalAndExpression ::= EqualityExpression ("&&" EqualityExpression)*

EqualityExpression ::= InstanceOfExpression (("= =" | "!=")

InstanceOfExpression)*

InstanceOfExpression ::= AdditiveExpression (("<" | ">" | "<=" | ">=")

AdditiveExpression)*

79

AdditiveExpression ::= MultiplicativeExpression (("+" | "-")

MultiplicativeExpression)*

MultiplicativeExpression ::= UnaryExpression (("*" | "/" | "%")

UnaryExpression)*

UnaryExpression ::= (PreIncrementExpression | PreDecrementExpression |

PrimaryExpression)

PreIncrementExpression ::= "++" PrimaryExpression

PreDecrementExpression ::= "--" PrimaryExpression

PrimaryExpression :: = (Literal | <IDENTIFIER> | "(" Expression ")")

Literal ::= <INTEGER_LITERAL> | <STRING_LITERAL> | <BOOLEAN> | <NULL>

ProcessDeclaration ::= ((ProcessDeclarator <LBRACE> (FieldDeclaration)*

ProcessExpression <RBRACE>) | (FieldDeclaration)* ProcessExpression)

ProcessDeclarator ::= <IDENTIFIER> FormalParameters

FormalParameters ::= "(" (FormalParameter("," FormalParameter)*)? ")"

FormalParameter ::= Type(VariableDeclaratorId)

ProcessExpression ::= ProcessParallelExpression

ProcessParallelExpression ::= ProcessPrefixExpression (

<TRACE_PARALLEL_OPERATOR> ProcessPrefixExpression)*

 ProcessPrefixExpression ::= (ProcessPrimaryExpression) (

<TRACE_PREFIX_OPERATOR> (ProcessPrimaryExpression))*

ProcessPrimaryExpression ::= (<EVENT_IDENT> |BasicProcess |

ProcessIfElseExpression | ProcessWhileExpression | (<LPAREN> ProcessExpression

<RPAREN>))

BasicProcess ::= (<TRACE_DEADLOCK_OPERATOR> |

<TRACE_TERMINATION_OPERATOR>)

ProcessIfElseExpression ::= <TRACE_IF_OPERATOR> <LPAREN>

Expression <RPAREN> <LBRACE> ProcessExpression <RBRACE>

<TRACE_ELSE_OPERATOR> <LBRACE> ProcessExpression <RBRACE>

ProcessWhileExpression ::= <TRACE_WHILE_OPERATOR> <LPAREN>

Expression <RPAREN> <LBRACE> ProcessExpression <RBRACE>

Arguments ::= "(" (ArgumentList)? ")"

ArgumentList ::= Expression ("," Expression)

80

Appendix C – BPEL Mutants

The lines of code preceded with “//” represents the original code fragments that is replaced with

new code to generate one or more mutants. The new code is the one missing the “//”.

No. Mutants Description Fault Model

1 //<sequence>

<flow>

Sequential to

Parallel (FM1)

//</sequence>

</flow>

2 //<invoke partnerLink="scheduling" name

="InitiateProductionScheduling"

// portType="sch:scheduling"

operation="requestProductionScheduling"

// inputVariable="PO"

outputVariable="productionSchedule"/>

<invoke partnerLink="scheduling" name

="CompleteProductionScheduling"

 portType="sch:scheduling"

operation="sendShippingSchedule"

inputVariable="shippingSchedule" outputVariable

="finalSchedule"> <target linkName="ship-to-scheduling"/>

Switch

Activity (FM3)

//<invoke partnerLink="scheduling" name

="CompleteProductionScheduling"

// portType="sch:scheduling"

operation="sendShippingSchedule"

// inputVariable="shippingSchedule" outputVariable

="finalSchedule">

// <target linkName="ship-to-scheduling"/>

<invoke partnerLink="scheduling" name

81

="InitiateProductionScheduling"

 portType="sch:scheduling"

operation="requestProductionScheduling"

 inputVariable="PO"

outputVariable="productionSchedule"/>

3 //</links>

<link name="shipper1First"/></links>

Parallel to

Sequential

(FM5)
//<source linkName="quoteShipper1"/>

<source linkName="quoteShipper1"/><source

linkName="shipper1First"/>

//<source linkName="quoteShipper2"/>

<source linkName="quoteShipper2"/><target

linkName="shipper1First"/>

4 //</invoke>

</invoke><terminate/>

Unexpected

Terminate

(FM2)

5 //</links>

<link name="start-scheduling"/></links>

Deadlock

(FM4)

//</invoke>

<target linkName=”start-scheduling”/></invoke>

//</invoke>

<source linkName=”start-scheduling”/></invoke>

6 //<source linkName="quoteShipper2"/>

<target linkName=”quoteShipper1”/> <source

linkName=”quoteShipper2”/>

Synchronizati

on to

Sequence

(FM6)

//<target linkName="quoteShipper1"/>

//joinCondition="quoteShipper1 AND quoteShipper2"

82

7 //<source linkName="quoteShipper1"/>

<source linkName="quoteShipper1" transitionCondition=

"bpws:getVariableData(‘shippingInfo1’, 'price')<200"/>

Extra Single

Condition

(FM8)

8 //<source linkName="quoteShipper1"/>

 <source linkName="quoteShipper1" transitionCondition=

 "bpws:getVariableData(‘shippingInfo1’,

'price')<200"/>

Extra And

Conditions

(FM9)

//<source linkName="quoteShipper2"/>

 <source linkName="quoteShipper2" transitionCondition=

 "bpws:getVariableData(‘shippingInfo2’,

'price')<200"/>

9 //<source linkName="quoteShipper1"/>

<source linkName="quoteShipper1" transitionCondition=

 "bpws:getVariableData(‘shippingInfo1’,

'price')<200"/>

Extra OR

Conditions

(FM10)

//<source linkName="quoteShipper2"/>

<source linkName="quoteShipper2" transitionCondition=

 "bpws:getVariableData(‘shippingInfo2’,

'price')<200"/>

// joinCondition="quoteShipper1 AND quoteShipper2"

 joinCondition="quoteShipper1 OR quoteShipper2"

10 // <case

condition="bpws:getVariableData('shippingInfo1','price') <=

// bpws:getVariableData('shippingInfo2','price')>

<case condition="bpws:getVariableData('shippingInfo1','price')

> bpws:getVariableData('shippingInfo2','price')>

Switch

Condition

(FM11)

11 //transitionCondition="bpws:getVariableData('PO',"needElectro

nicInvoice") = 'yes'" transitionCondition="

bpws:getVariableData('PO',’needElectronicInvoice’) = 'yes'”

AND bpws:getVariableData('PO',’needPaperInvoice’) = 'no'"

Multi-Choice

to Simple

Merge (FM14)

83

12 //transitionCondition="bpws:getVariableData('PO',"needPaperIn

voice")= 'Yes'"

Multi-Choice

to Parallel

(FM15)

//transitionCondition="bpws:getVariableData('PO',"needElectro

nicInvoice") = 'Yes'"

13 // joinCondition="sendPaper-invoice OR sendEmail-invoice"

 joinCondition="sendPaper-invoice AND sendEmail-invoice"

Synchronizing

Merge to

Synchronizati

on with AND

conditions

(FM16)

14 // <from expression="bpws:getVariableData('po','price') +

// bpws:getVariableData('shippingInfo','price')"/>

<from expression="bpws:getVariableData('po','price') -

bpws:getVariableData('shippingInfo','price')"/>

Mathematics

operator

exchanged

15 // outputVariable="shippingInfo2”

 outputVariable="shippingInfo1"

Variable by

Variable

replacement

16 // <from expression="bpws:getVariableData('po','price') +

// bpws:getVariableData('shippingInfo','price')"/>

<from expression="bpws:getVariableData('po','price') +

 bpws:getVariableData('shippingInfo','price')+ 100"/>

Increment

Variables

17 // <from expression="bpws:getVariableData('po','price') +

// bpws:getVariableData('shippingInfo','price')"/>

<from expression="bpws:getVariableData('po','price') +

 bpws:getVariableData('shippingInfo','price')- 100"/>

Decrement

Variables

18 //<case

condition="bpws:getVariableData('totalCharge','number') <=

//bpws:getVariableData('credit','number')>

<case condition="bpws:getVariableData('totalCharge','number')

<= 100

Variable by

constant

replacement

84

Table 16: Mutants generated in Illustration 1

No. Mutants Description Fault Model

19 //<source linkName="policeReport"/> Sequential to

Parallel(FM1)
//<target linkName="policeReport"/>

20 //</invoke>

</invoke><terminate/>

Unexpected Terminate

(FM2)

21 //</links>

<link name="policeReport"/> </links>

Deadlock (FM4)

//</invoke>

<target linkName=”extra-link”/></invoke>

//</assign>

<source linkName=”extra-link”/></assign>

22 //</flow> Synchronization to Parallel

(FM7) //</assign>

 </assign></flow>

23 //<flow>

 <sequence>

Synchronization to

Sequence (FM6)

//</flow>

 </sequence>

24 //transitionCondition="bpws:getVariableData('claim','

directDeposit'')= 'yes'

transitionCondition="bpws:getVariableData('claim','di

rectDeposit'')!= 'yes'

Switch Condition (FM11)

//transitionCondition="bpws:getVariableData('claim','

directDeposit'')=! 'yes'

transitionCondition="bpws:getVariableData('claim','di

85

rectDeposit'')= 'yes'

25 //transitionCondition="bpws:getVariableData('claim','

directDeposit'')= 'yes'

Exclusive Choice to

Parallel (FM12)

//transitionCondition="bpws:getVariableData('claim','

directDeposit'')!= 'yes'

26 //

trnaiditionCondition="bpws:getVariableData('claim','t

otalExpense')<1000 AND

//

bpws:getVariableData('claim','totalExpense')>200"/>

bpws:getVariableData('policeReport','liability')!='Full'

Simple Merge to Multi-

Choice (FM13)

27 // <onAlarm for="'PT02M'">

// <throw faultName="lns:Timeout"

faultVariable="Fault" />

// </onAlarm>

Missing Alarm(FM17)

28 //<catch faultName="lns:InfoNotAvaliable"

faultVariable="Fault">

<catch faultName="lns:Timeout"

faultVariable="Fault">

Incorrect Fault

Matching(FM18)

29 //<from

expression="bpws:getVariableData('medExpense','cou

nt')+

//bpws:getVariableData('repairExpense','count')"/>

<from

expression="bpws:getVariableData('medExpense','cou

nt') -

bpws:getVariableData('repairExpense','count')"/>

Mathematics operator

exchanged

30 //<from

expression="bpws:getVariableData('medExpense','cou

nt')+

Variable by Variable

replacement

86

//bpws:getVariableData('repairExpense','count')"/>

<from

expression="bpws:getVariableData('repairExpense','c

ount') +

bpws:getVariableData('repairExpense','count')"/>

31 //<source linkName="majorAccident"

//transitionCondition="bpws:getVariableData('claim','t

otalExpense')>1000"/>

<source linkName="majorAccident"

transitionCondition="bpws:getVariableData('claim','to

talExpense')>10000"/>

Increment constants

32 //<source linkName="majorAccident"

//transitionCondition="bpws:getVariableData('claim','t

otalExpense')>1000"/>

<source linkName="majorAccident"

transitionCondition="bpws:getVariableData('claim','to

talExpense')>100"/>

Decrement constants

33 //<from

expression="bpws:getVariableData('medExpense','cou

nt')+

//bpws:getVariableData('repairExpense','count')"/>

<from

expression="bpws:getVariableData('medExpense','cou

nt') +500”/>

Variable by constant

replacement

Table 17: Mutants generated in Illustration 2

