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Abstract

With the introduction of control to the process industries, it becomes a requirement to
measure a process variable at a rate suitable for real-time control. However, due to high
costs of on-line analyzers the measurement of the key variable is either unavailable or has
long analysis cycle time. To cope with these trends, inferential modeling that extracts
the relationships between known and unknown variables has been proposed. This includes
methods based on visualizing the physical principles of the system ( known as First Prin-
ciples Modeling (FPM)) and data driven approach (such as partial least squares (PLS),
group method of data handling (GMDH), artificial neural networks (ANNs) and model on
demand (MOD)). Since most industrial plants exhibit a certain degree of non-linearity, usu-
ally a nonlinear model which captures the underlying behavior of the process, is required.
Recent studies indicate that only an appropriate input/output data can validly identify the
nonlinear process model.

In this thesis, the use of chemical engineering principles in characterization of the in-
dustrial chemical processes is explored. Utilizing the black box methodologies, these tools
have been used for applications related to process modeling and soft sensor estimation when
exact knowledge of the system is unavailable. In certain situations, these methods have pro-
vided a robust alternative to the complex physical modeling approach. Besides describing
the theory, the applications of these techniques have also been investigated.

A number of issues in experimental design including designing an appropriate input
sequence are studied. Extensive simulations and experiments are used to establish the
superiority of multi level uniformly distributed input signal over other popular excitation
signals.

The model on demand approach has been employed in identification of the pilot scale
CSTR reactor. The domain of applicability of this approach has been extended to a mult;

rate system. The simulations and laboratory experiments are included wherever appropri-

ate.
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Chapter 1

Introduction

Extracting the relationship between measured and unmeasured process variables (usually
known as soft sensor development) has been the subject of system identification and process
control for many years. One important technique for building these relationships is the use
of physical principles including energy, momentum and mass balances. This tool referred as
first principles modeling (FPM), has been applied successfully in different chemical systems.
However, the first principles approach is based on a foundation of exact information and
thorough understanding of the process which frequently requires a high amount of time and
exploratory study and comes at a high cost. Although a failure to providing the complete
process information does not invalidate this approach, usually lack or missing information
provides an uncertainty and inaccuracy in the developed model. This problem is particularly
significant when we deal with complex nonlinear systems.

To deal with the problem of inferring relationships between input and output data when
very little a priori knowledge is available, the use of black box tools is proposed. There
is a rich and well-established theory for black-box modeling of linear systems (see e.g.
Ljung (1987) [34]; Soderstrom and Stoica (1989) [48]). It was not until the last few years
that modeling and identification of nonlinear systems attracted wide interest in the control
community. However, nonlinear modeling has been studied for a long time in the Statistics
community, where it is known under the label non-parametric regression. This area is quite
rich and numerous methods exist [27]. From an application point of view, these methods
provide a good prediction when an appropriate model structure which best describes the
behavior of the system, is available. One possible solution in choosing the structure of the
model is the application of black box tools in combination with first principles technique.
This usually outperforms the conventional models. Partial least squares or PLS regression

is one of the applied tools which has been found to be more valuable in numerous situations




when the algorithm is amalgamated with the physical process information. There are various
search techniques, on the other hand, which organize the model structure automatically
when the mechanistic equation or any other first principles information of the process is
completely unavailable. Typical examples of those tools are group method of data handling
(GMDH) and Genetic Algorithms (GAs). Artificial neural networks (ANNs) offers another
set of nonlinear identification tools which have attracted a lot of interest in the last two
decades and is independent of the knowledge of the process. However, the primary complaint
about this approach is that there is no explicit model structure available.

All these algorithms known as global techniques compress all available information into
a compact model. Therefore, these methods become less attractive to deal with, when the
number of data points increases and the associated optimization problem becomes more
complex. Another alternative tool in nonlinear system identification, which overcomes
this problem, is a nonparametric estimation called as model on demand (MOD). In MOD
estimation all observations are stored on a database and the models are built “on demand”
as the actual need arises [8]. This technique uses only relevant and a small portion of data
to predict the key variable and determine a model as needed.

When dealing with nonlinear system identification, a number of issues concerning the
experimental design and type of excitation signal should be considered. In past years,
significant advances have been achieved in the field of experimental design for input sig-
nals, which deals with the identification of a linear system. However, there are still many
unsolved problems with respect to nonlinear processes. There are various types of input
sequences which have been applied in the development of a nonlinear model such as random
binary signal 'RBS’, M-level sequences and constant switching pace signal [6]. However, the

exposition of the type of input signals in nonlinear system identification is not exhaustive

and requires further study.

1.1 Scope and organization of this thesis

This work is intended to serve as a study of nonlinear system identification in the field of
chemical engineering. It involves the following specific objectives presented in sequential

chapters:

e 1. Application of first principles approach to chemical engineering processes:
Here specific attention is given to the industrial case study at Syncrude Canada Ltd.,

in which some physical principles such as mass balance and flash calculation have




been employed.

2. Application of black box techniques in soft sensor development:

Employing some statistical and mathematical tools in exploring the relationship of
the time series data is a common alternative when a priori knowledge of the system is
unavailable. Focusing on the same industrial application, the feasibility of the various
applied tools namely partial least square (PLS) regression, group method of data
handling (GMDH) and neural networks (NNs) are investigated.

3. Issues of experimental design in identification of a nonlinear system:

As explained before, the problem of design of excitation signal has to be tackled before
a robust model can be arrived upon. There exists some open problem in the literature
on this issue and this requires further study. In this work, the formulation of the
excitation signal proposed in [44] is modified and a new input sequence is proposed.

This input is able to capture the underlying behavior of the nonlinear CSTR reactor.

4. Model on demand approach and its application to a multi rate system:

The initial thrust of this work is to review the nonparametric estimation of the nonlin-
ear CSTR system on basis of observed data and model on demand (MOD) approach.
Compared to global methods the advantage of MOD technique is that the modeling
is optimized locally and therefore the prediction performance increases significantly.
The domain of applicability of this approach has been extended to a multi rate system.

The simulation results illustrate the effectiveness and feasibility of the algorithm.



Chapter 2

Inferential Modeling of a
Maultivariable Process using First
Principles of Chemical Engineering

Abstract

In this chapter the issue of the first-principles based approach in system modeling, namely
stating first principles balance equations of a chemical process, is discussed. The theoretical
aspects and required knowledge of building a physical model are illustrated through an
industrial case study. The ultimate goal is to estimate and develop an inferential model
for the Fluid Coker top distillation point and enhance the performance of existing advance
controller at Syncrude Canada Ltd. through this application.

However, due to a number of uncertainties and assumptions in the derivation, we do not
intend to develop a very “accurate” first-principles based model. Instead, we try to exploit
all available process information to search for an approximate model structure. The model

parameters from this structure are then optimized to obtain a hybrid inferential model.



2.1 Introduction

In general, the measurement of key process variables at a rate suitable for real-time control is
a problem in many industrial processes. Due to the high installation and maintenance cost of
equipment, measurements are often unavailable. Even when appropriate instrumentation
is available, on-line measurement is often restricted by long analysis cycle times. This
often leads to the monitoring of key process variables through the use of off-line laboratory
analysis and result in the process deviating from desired operating conditions with long
disturbance recovery times, leading to unsatisfactory variability and a reduction in profit.
Efforts towards alleviating these problems have included the development of inferential
estimators. There are many variables measured on-line at relatively fast sample rates. These
variables are indirectly related to the key 'difficult to measure’ variables. Consequently,
when an accurate inferential model is used on-line as a soft-sensor, the control performance
can be improved due to the higher sampling rate.

One preferred methodology that may be adopted when building an inferential model
is the ‘bottom up’ approach, which is based on formulating and solving material and en-
ergy balance on chemical process systems. This approach, usually referred to as the first
principles modeling technique. introduces a fundamental engineering approach to solving
process-related problems such as establishing the relations between known and unknown
process variables. Despite various advantages of this technique in system modeling, stating
the balance equations for mass, energy and momentum might not always lead us to an
accurate and reliable process model. The primary complaint against first principles mod-
eling (FPM) often cited is that applying physical principles in industrial application is not
straightforward and requires a great deal of exploratory study and exact knowledge of the
process. This is seldom available.

Although, a failure to provide the data measurements or any other required information
does not invalidate this approach, the lack of information and measurements lead us to apply
a large number of assumptions and employ various empirical equations and optimization
factors which cause inaccuracy in the developed model.

To examine the discussed issues in inferential modeling using FPM, in the following
section we provide one industrial case study at Syncrude Canada Ltd. to illustrate our
point. This work uses the basic understanding of the process and follows the mass balance
philosophy, Flash calculation and ASTM standard presented in M.Felder et al.,(1989), K.
Sattler et al.,(1995) and the API handbook (1996) [1] respectively. The performance of



FPM inferential model is evaluated by making the comparison between the estimated value
and actual off-line laboratory data from Syncrude Canada Ltd.

2.2 Development of an industrial inferential model

2.2.1 Application of First Principles Technique to the Estimation of Fluid
Coker Top Distillation Point

The FPM technique has been employed to obtain an estimator for the top distillation point

of Combined Gas Oil (CGO) in a Fluid Coker whose sampling interval associated with

offline laboratory procedures is 12 hours. In this application, the Coker top temperature at

which 95% of combined gas oil is distilled, is considered as the key quality variable.

Since the unique topic in all FPM problems is that, given values of some input and output
stream variables calculate values of others, it is necessary to have a complete knowledge of
the process to provide an accurate model. However, due to the complexity of the system
and interrelation of Fluid Coker with other units, we are unable to have a fundamental
and complete understanding of the process. Thus, to construct the physical model for the
Fluid Coker, first we present an illustration of the Coker and other related systems in the
upgrading unit. Using this information, an optimal model for the output variable, 95%
cut point CGO has been developed. The unknown parameters are treated as optimization
factors which are optimized subsequently. Due to reasons that the present model does not
exactly follow the physical law of the process, in the rest of the study we use the name

semi/pseudo first principles technique (SFPM) instead of (FPM).

2.3 Process Description
2.3.1 Fluid Coker

Upgrading of Bitumen to a low sulphur sweet crude oil is the main goal in the upgrading unit.
This can be achieved by thermal cracking the Bitumen in a fluidized coke bed reactor at a
high temperature. Under high temperatures, Bitumen is cracked into lighter hydrocarbon

products and fluid coke. The products from the Fluid Coker are typically:
e Sour Fuel Gas,
e Untreated Naphtha,
e Combined Gas Oil,

o Burner Off-Gas,



e Product Coke, and

e Sour Water

The Fluid Coker consists of three different sections: reactor, burner and scrubber. In
the reactor, Bitumen is dispersed into a fluidized bed of hot coke particles for cracking.
The hydrocarbon vapors produced flow upward through the reactor into the scrubber. In
the scrubber, the reaction products are cooled and the liquid product is recycled from the
scrubber to the reactor for further cracking. The vapors from the scrubber pass through a

Fractionator which produces the following products:

e Sour Fuel Gas

e Untreated Naphtha

e Untreated Combined Gas oil, CGO
e Light Gas Oil, LGO

e Heavy Gas QOil, HGO

2.3.2 Reaction section process

Fluid coking mechanism in the Fluid Coker shows that three reactions occur in the reaction

section:
e The heavy hydrocarbon feed cracks into lighter products,
e Coke forms, and
e The hydrocarbon vapors and coke begin to separate.

The “cracking” that takes place in the reactor refers to a combination of reactions:
1. Cracking and condensation; removing side chains and breaking rings to make lower
molecular weight, lower boiling range, higher hydrogen/carbon (H/C) ratio hydrocarbons
(cracking).
2. polymerization; combination of radical groups giving an increase in molecular weight
and boiling range.
3. Isomerization; Rearrangement within the molecule, no change in molecular weight or

H/C ratio, little or no change in boiling range.



The reaction occurs in a fluid bed of coke under high temperature and is controlled by
the flow of hot coke from the burner. The hydrocarbons, at this stage, either crack and
vaporize or carbonize on the coke particle. The lighter, vaporized and cracked hydrocarbon
travels upward through the dense bed to the dilute phase section of the reactor and the

heavier coke particles move downward toward the stripping section.

2.3.3 Scrubber section Process

The scrubber is an extension of the reaction section and can be divided into three sections:

pool, shed and grid sections. The scrubber has different functions dealing with:
e Cooling the hydrocarbon effluent of the reactor and separating it from entrained coke.

e Separating the hydrocarbon stream according to the boiling point with the lighter

fractions going on into the fractionator while the heavier components are recycled

into the reaction section.

A schematic diagram of the process is shown in figure 2.1.

2.4 Formulating Semi Physical Principles at Scrubber Over-
head

To present a description of the approach, we break the problem into the following steps:
e Flow Calculation of the Products
e Calculating the Molecular Weight of the products
e Defining the Equilibrium Pressure and Temperature at the top of the Scrubber

e Estimating the key variable, 95% cut-point Combined Gas Qil (CGO)

In the following sections the description of each step is presented in more detail. The
variables that are applied for building the SFP based inferential model are listed in each
subsection. As the first assumption, it is assumed that the system is in steady state condition

and all dynamics are negligible.

2.4.1 Flow calculation of the products

As already indicated, since the flow of the products from the scrubber is not directly mea-

sured the mass balance relationship that accounts for changes in the flow of the specified

product is necessary.
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Figure 2.1: Schematic diagram of Fluid Coker

We follow the balance equation around the scrubber, fractionator and other related units
and calculate the flow of Naphtha, Light Gas Oil (LGO), Heavy Gas Oil (HGO) and Steam.

Calculating the flow of product Naphtha

The estimation of flow of Naphtha involves the efluent and rerun Naphtha from/to the
fractionator as follows:

Total flow of Naphtha from the Scrubber =
Effluent Naphtha from the fractionator - Rerun Naphtha to the fractionator

Naphthascys = F90 + F91 — (F72) % conufl — F547 (2.1)

Where,
F90 : Butane liquid product, KBPD
F91 : Naphtha product from frac., KBPD



F72 : Rerun Naphtha to the frac., BPD
F547: Frac. overhead plant 15, KBPD
convfl: conversion factor (0.001)
Naphthagcw: KBPD

Calculating the flow of LGO and HGO

Balance equation for LGO and HGO can be formulated as follows:
Total flow of HGO/LGO from the scrubber =
Efftuent flow of LGO/HGO from the fractionator

HGOgeryy = F63 — F61 + F64 (2.2)

LGOgerup = F61 (2.3)

where,

F63: CGO product from the frac., KBPD

F61: LGO product from the frac., KBPD

F64: Scrubber wash oil (HGO) flow from the frac., KBPD
HGOscrup: KBPD

LGOguwp: KBPD

Calculating the flow of steam

Following balance equation shows the estimation of flow of steam from the scrubber over-
head:
Total flow of steam from the scrubber=

Effluent sour water from the fractionator - inlet steam flow to the fractionator

Steamgcrub = F132  convf2 — (Fc70 + Fc65) * conv f3 (2.4)

where,

F132: Coker sour water to the tankage, GPM
Fc65: Steam to HGO stripper, KPPD

Fc70: Steam to LGO stripper, KPPD

convf2: Conversion factor (8.3454)

convf3: Conversion factor (1000/60)

Steamgeru : ML'I%V

10



Calculating the flow of gas at the scrubber overhead

The flow of gas at the top of the scrubber is calculated based on the Partial Least Square
regression as described in Chapter 3. We use the available historical data for this variable

and treat the scrubber top flow gas as a known parameter in the rest of this study’.

2.4.2 Calculating the molecular weight of the products

In order to calculate the molecular weight of Naphtha or CGO, we require the knowledge of
some physical properties such as specific gravity of hydrocarbons (API) and mean average
boiling point (MABP).

To estimate the MABP, we follow the API handbook (1996) [1] and convert the simulated
ASTM 2887 to ASTM D86 distillation to calculate the volumetric average boiling point
(VABP). The VABP is then converted to MABP.

Having the MABP stated above, the molecular weight can be calculated as follows:

141.5
5= 135 + API (25)

M = 20.486 * [ezp(1.165 * 107 * Tprep — 7.78712% S + 1.1582 + 1072 % Thpep + 5)] - - -

126007 , 4.98308
*Trier  *S (2.6)

where, S is the specific gravity, 60 F/60 F calculated from API and Taser is MABP based
on degrees Rankine.

= TMeR 9
K= 5 (2.7)

K: Watson characterization factor

2.4.3 Defining the equilibrium pressure and temperature at the top of
the scrubber

As mentioned before, liquid and vapor mixtures in the scrubber are in constant contact
and they reach the equilibrium point somewhere at the scrubber overhead. Therefore, the
scrubber acts as a flash operation process where partial separation of the product from the

reactor occurs. To estimate the vapor pressure of combined gas oil, we require the total

pressure of the mixture as well as equilibrium temperature at the scrubber overhead. Since

!See chapter 3 for more information on scrubber top flow gas calculation.
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these variables are not directly measured, we make a number of assumptions to provide a

tractable solution.

To estimate the vapor pressure of combined gas oil, the mole ratio at the scrubber
overhead is required. To estimate the mole ratio of active hydrocarbons in the system, the
flow of each product calculated before, is converted to Lb/min and divided to the molecular

weight. The mole based total flow can be formulated as follows:
Moletotal = Naphthamole + Hgomole + Lgomole + Fuelgasmole + Steammole (2.8)

Due to the simplification and assumptions in flow estimation, we add an optimization

parameter in calculating the mole fraction to reduce inaccuracy and achieve better results

in final model.

CGOmole frac = (Lgomole + Hgomole)/(Moletotal » z(1)) (2.9)

Note that (1) and CGOmole frac are optimization parameter and mole ratio respectively.

Applying the flash calculation, we estimate the vapor pressure of CGO at the top of scrubber

as follows:
™ = P19 - P18 (2.10)
Puaporr—pressure =Tx*x CGOmolefrac * I(2) (211)
Tequilibrium2 = T508 * 1'(3) (212)
where,

n= Total (vapor) pressure of the system

P19: Reactor dilute phase pressure

P18: Reactor scrubber differential pressure

T508: Temperature at the bottom of the shed section

z(2) : Mole fraction of CGO in the liquid phase which is an unknown parameter, treated
as second optimization variable with the constraint 0 < z£(2) < 1

Pyapor—pressure : Calculated vapor pressure of CGO in PSI

z(3) : Optimization parameter

760

14,696) * z(4) (2.13)

p. = ((Pvapor—preasure + 14696) *

p*: Vapor pressure of CGO in mmHg

z(4): Optimization variable

12



2.4.4 Estimating the 95% cut point for combined gas oil (CGO)

Following the API handbook [1], the normal boiling point of pure hydrocarbons and narrow

boiling petroleum fractions can be estimated by the following procedures:

AT =T, — T, = 2.5f(K — 12)logLs
¥ 7= 0002867(T;)
748.1-0.2145(7} )

lng' — 3000.538X —6.76156

— T 43X-0.987672

for X > 0.0022 (P* < 2mmHG)

s __ 2663.120X —5.994296
logp* = 95.76 X —0.972546

for 0.0013 < X < 0.0022 2mmHG < P* < 760mmHG)

logp* = ZIQUESX-6ALI63L ¢5r X < 0.0013 (P* > 760mmHG)

Combining all these equations with respect to T,; /Tp (unknown dependent variables in
our case), we have:

1

T 740.378 log p* — 4796 (2.14)
b= R . 2770.08 . .
quul;‘uﬁbrtum logp - 7equllibl‘ium + 0.20188 logp 0'581326

for P* > 760mmHG

’

T 727.56log p* — 4484.33 (2.15)
b~ —_ 9578 . 2663.129 . ’
1=qutllbr1um gp - 1zqulhbrium + 0.18116 Ing 0'5222

for 2mmHG < P* < 760mmHG

’

T 738.877 log p* — 5058.32 (2.16)
b= n 3000538 . _ ’
ﬁ: logp* — g k22— +0.19952 log p* — 0.58975

for P* < 2mmHG

' logp
_ - 2.17
Ty =T, +25f(k - 12)—=22 (2.17)
where,

Tequitibrium: Absolute equilibrium temperature from previous section
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1; : Normal boiling point, in degrees Rankine
f : Correction factor. For all sub atmospheric vapor pressures and for all substances having
normal boiling points greater than 400 F, f=1. For substances having normal boiling points
less than 200 F, f=0. For super atmospheric vapor pressures of substances having normal
boiling points between 200 F and 400 F, f is given by:

f - Tigger
k : Watson characterization factor.

T} : True boiling point in degrees Rankine
TBP(100) = T; — 459.67 (2.18)

TBP(100) : True boiling point in degrees Fahrenheit

The correction of the assumption that the calculated T} is equal to the true boiling point
TBP(100), is embedded in optimization factor z(5)3. To compare the estimated tempera-
ture with the one obtained from the lab, we use the API handbook and convert the TBP
to lab standard ASTM 2887 and estimate the simulated distillation SD(100).
As stated in the API handbook, it can be assumed that the true boiling point temperature
at 50 volume distilled is equal to the simulated distillation temperature at 50 weight percent
distilled.
To have the relationship between the true boiling point and the cumulative percent volume
of the evaporated product at each temperature, we assume that the distillation curve be-
tween 50 and 100 % is linear. To reduce the inaccuracy of this estimation, an optimization

variable z(5) is added to the calculated slope. It should be noted that simulated distillation
50 (SD(50)) is provided by the laboratory:

_ (8D(1%0) — SD(50)) , 5 (2.19)

Slope 50

Making the linear interpolation between (50 and 100 %), the temperature at the required
cut point can be estimated. To adjust the assumptions made in this calculation, the final

correction factor z(6) is added to the following equation.

Tsa = (Slope x (y — 50) + SD(50)) + z(6) (2.20)
y : volume percent distilled (95% in this approach)
Tea — 32
AL Bt 2.21
T 1.8 ( )

3see equation 19.
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where, T is the calculated distillation point in c° at any cut point above 50%.

2.5 Prediction results of the applied SFPM in estimating the
95% cut point CGO

The proposed calculation for the inferential model has been implemented in MATLAB
environment. Throughout this work, the nonlinear least squares optimization function has
been utilized*. The unknown variables z(1), z(2), £(3), =(4), £(5) and z(6) have been
optimized using 130 data points collected from April to June 2000.

A second set of 120 records collected from July to September 2000, was used for model
validation. Figure 2.2 shows the actual and predicted 95% distillation point of combined

gas oil.

Verification data set

25 T A

95% Cut Point CGO

0 20 40 60 80 100 120
Time

Figure 2.2: Prediction of 95% distillation point combined gas oil. The solid lines are the
output from lab and the dots represent the model predictions.

4This function is defined as “Isqnonlin” in MAT LAB.
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2.6 Conclusion

The technique of applying first principles laws on an industrial system, Fluid Coker has
been explained in this chapter. This technique provides a semi-empirical inferential model
to predict the objective variable, 95% cut point combined gas oil. The results reveal that
this approach requires detailed knowledge about the physics and chemistry of the process.
It is indicated that the development of a realistic model for such a complex system involves
a number of simplifying assumptions, which may be subject to inaccuracies. Consequently,
for such a practical application, it is important to include a number of optimization and
correction factors. By optimizing all unknown variables of the model developed from the
first principles, we obtained a reasonably good prediction of 95% distillation point of CGO.
This technique provides an approximate model structure of the process, which might be
useful for the development of an “optimal” and more “accurate” inferential model using

other non-linear inferential approaches.
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Chapter 3

Comparative Study of Empirical
Multivariate Modeling Techniques
and Industrial Application

3.1 Abstract

This chapter deals with the study of two nonlinear system identification methods, namely
the Partial Least Square regression (PLS) and Artificial Feed-forward Neural Networks
(ANNs). The group method of data handling (GMDH) is presented as another alternative
technique to construct a nonlinear polynomial structure for a complex system when very
little priori knowledge of the process is available.

Applying the PLS algorithm to the industrial case study, presented in the previous
chapter, the inferential model is constructed to estimate the scrubber overhead distillation
point. This technique is also extended to the dynamic estimation of the product flow gas
from the Coker. We evaluate the feasibility and application of NNs and GMDH techniques
by practically implementing these methods on the same case study, predicting the scrubber
overhead distillation point. Comparison of the prediction results demonstrates the potential
capability of all proposed algorithms in estimating the quality variable, 95% distillation

point of combined gas oil.
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3.2 Introduction

The problem we are addressing in this chapter is how to derive mathematical models and
infer relationships between current and past input-output data and future outputs of a
system when very little information about the process is available. This is known as black-
box modeling [27].

In process simulation studies as well as process behavior prediction, good input-output
representation of a process is of paramount importance. In addition, it is required that these
models are interpretable, in the sense that, by analyzing the model there is an understanding
of the process behavior. However, since most industrial plants are often complex, pure black
box models might be unable to describe the process information and therefore have limited
validity and may also contain uncertainty. This problem is particularly significant when one
switches from linear to nonlinear system identification. Choosing the appropriate model
structure which best describes the behavior of the system is the crucial part in nonlinear
input-output modeling. To deal with this problem, it is proposed to use black box tools in
combination with first principles technique. By using the first principles to determine the
model structure and then estimating the unknown parameters from data, a hybrid black-
box/principles model can be constructed. Such a model can outperform a “conventional”
one. This remarks the fact that the combination of the physical and black box models,
usually referred as “gray box technique”, might lead us to a better prediction performance.

The purpose of this study is to give an exposition of presently available techniques of
nonlinear modeling. It illustrates the basic principles as well as their application on the
industrial data sets. As the first applied technique, we review the theory of PLS algorithm
and employ this technique on the case study discussed in the previous chapter. We provide
the steady-state model as well as dynamic empirical model for the scrubber overhead dis-
tillation point and the flow of product gas respectively. The structure of the former model
is built upon the first principles of chemical engineering in a way that the variables and
non linearities defined in the PLS model are those derived according to the first principles
model. The accuracy of the prediction in this approach depends on how good is the model
structure and how frequent observation points are collected. Thus having enough data
points as well as a good model structure are the main requirements of this technique.

GMDH is another alternative black box technique discussed in this work. Utilizing the
algorithm on the Coker data set, the structure of the model is searched automatically and
a nonlinear polynomial model is produced which predicts the quality control variable in the
Fluid Coker.

Providing the overview of mathematical theory to explain Feedforward Neural Net-
works, the application of this nonlinear identification tool is discussed next. This technique
is applied on the same industrial data set. However the availability of large number of obser-
vations is the main requirement of this tool while there is no need of explicit model structure.
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3.3 Algorithm description of PLS

In a multivariate system, when we deal with relatively fewer variables, which are not strongly
correlated and have a well-understood relationship to the responses, multiple linear regres-
sion (MLR) can be a good way to turn the data into information. However, if we are faced
with many variables and ill-understood relationships, MLR might be inefficient or inappro-
priate. In such a case, the approach of using empirical latent variable models is a good
alternative to the classical multiple linear regression.

PLS is the generalization of principle component analysis (PCA) in a way that eliminates
redundancies in the data blocks by extracting the latent factors, which account for most
of the variation in the response. PLS has a conceptual similarity to canonical correlation
analysis (CCA) in that the provided model explains the combinations of variables which
are highly correlated [28]. From a practical point of view, PLS algorithm represents the
dimensionality reduction and concentration of the variance of the process in the first few

components. :
In the PLS method, U block of independent variables is related to a Y block of dependent

variables as follows:

Y =UB+E (3.1)

where, E is the error or residual matrix.
The principal component transformations for the matrix U and Y are then given by:

T=UC | (3.2)

y=YD (3.3)

The columns of T and y are called the scores vectors, and the columns of C and D are
called weighting vectors subject to the constraints that C'C = 1,D'D = 1.

The first principle components of U and Y are represented by ¢; and y; respectively (“t; =
Uc ,yn=Yd,"). .

As mentioned before, one goal in PLS is to maximize the covariance between U and Y block
latent variables. Defining the Lagrangian multipliers, Aj, A2, we can express this property

in an objective function as follows:
max covariance (Uc;,Yd,) = max (Uc¢;)'Yd,)

1 1
Jy = (Ue1)'Yd;, - 5?‘1(0'101 -1)- 51\2((1’1‘11 -1) (3.4)

Differentiating equation 3.4 partially with respect to c’l,afl and equating the resulting
equations to zero, we get:
aJ,

—_— = - 3.5
ac,l U'Ydl /\161 ( )
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0Jy

o = Y'Ue; - Aody (3.6)
U’Ydl = /\lcl (37)
Y'Ucl = /\2d1 (3.8)

Solving equation 3.8 with respect to d; and substituting the solution into 3.7, we have:

di = —Y'Ue, (3.9)
A2

U’YY’UCl = Alz\gcl (3.10)

From 3.10, we notice that c; is the corresponding eigenvector of U'YY'U.

To show that the product A; A2 corresponds to the largest eigenvalues of U'YY'U, we look
at the second derivative of the objective function:

From 3.5 and 3.9 we have:

on 1., .,
66’1 = AgUYY Ucl Alcl (3.11)

To maximize the objective function, we make the second derivative of 3.11 with respect to

¢}- Note that the resulting equation should be smaller than zero.

2
% = (A—ZU’YY’U ~A) <0 (3.12)
1

As aresult: U'YY'U < A1 A
In order to define the first component of Y score, y;, we regress Y based on the first score

vector (Uc; ):

Y =(Ua)Z +E; (3.13)
where, ¢, Z = (3.
Applying least square regression, we can estimate the coefficients Z; and 3.
Zi =((Uer)(Uer)) ™ (Uer)'Y (3.14)
Note, t; = Ug¢,,
B =a(tit) 'Y (3.15)
Define, Y; = Ug,,
Y1 =Ue(tit) 1Y = tt‘,lL;IY (3.16)
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Using the fact that did; = 1 we define:

(3.17)

Then,
J
b =) A7 | (3.18)

Y: = t1bd]
Applying the deflation process (model order reduction), we can compute the second elements

of Y and X scores as follows:
Ya=Y-Y

v, = (1 - By (3.19)
2= t)t) '

At this stage, we choose t; in such way that it =0
ta = Usca

tlti
U=(1- e YU (3.20)
1

The procedure of determining other scores and loading vectors is continued until we achieve
the required number of PLS dimensions. Final error matrices E, and E, will be:

t1t] toth tit)
=U-(=—= ——= e + —+ 3.21
E,=U (t'ltlU1+t'2t2U2+ +t;t,U’) (3.21)
E,=U - t\p) —toph — ... — tip}

u't;

where p; = 7 is known as the loading factor.

vt

E,=Y - tlbldll — tgbzdfz — tlbldf (3.22)

For more information about PLS algorithm readers are referred to [17],[28],{24] and [31].

3.4 Industrial case studies

3.4.1 Application of PLS to the estimation of top distillation point in the
Fluid Coker

The focus of this study is the Fluid Coker presented in the previous chapter. As discussed
before, the large sampling intervals and time delays associated with offline laboratory pro-
cedures are the main hindrances to efficient control of the distillation point at the top of

the scrubber.
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It was shown that apart from the time consumed in developing the physical model, lack
of information and measurements in the process made one apply various empirical equations
and assumptions which result in uncertainty in the prediction.

The objective of this application is to build a data based inferential model for the
95% distillation point and to compare the results with the one developed in the previous
chapter. In this application we use the Pseudo First Principles Model (PFPM) to determine
the important variables as well as the structure of the model and then apply partial least
square technique to improve the performance of the model in predicting the controlled

variable 95% distillation point.

Selection of important variables and structure of the models

In table 3.1 all variables along with their tag numbers that are applied in PFPM are listed.
Data on these variables are logged on to the database every 12 hours. In building the PLS
based inferential model, the X block comprises of all listed variables while the Y block has
one variable, the 95% cut point CGO. Due to the large sampling time, the dynamics are
omitted. To select the important variabies, a loadings plot involving the weights attached

Tag-name Description Tag-name Description

F90 Butane liquid Production | F10 Fresh fee to the reactor
FI1 Naphtha Production F5023 VDU bottoms

F72 Rerun Naphtha to theFract | F514 Coker feed+ Resid

F547 Fract overhead Plant 15 | QX909 Scrubber OVHD heat
F63 CGO totankage P19 React. dilute phase press
F61 LGO flow rate P18 React. scrubdiffrl Press
F64 Scrubber wash oil T508 PA EX BTM SHED
F132 | Cocker sour water 08100800.ML | APl gravity of CGO
TI13 Reactor temperature T13*F5023

F8 Bitumen feed to the scrubberF5023*QX909 | NON-LINEAR
F541 Top feed ring P19-P18

F542 Middle feed ring LOG(P19P18) TERMS

F543 Bottom feed ring LOG(P19P18)*

F18 Scrubber pool quench TS508

Table 3.1: Process variables for the Fluid Coker

to the X variables is used. As it is shown in figure 3.1, the variables with small weightings
on the predictions are considered as prime candidates for deletion.
At this stage, some flow rate and pressure variables have been dropped. The remaining 10
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Figure 3.1: Weightings of the first and second PC in variable selection

variables are considered for further analysis. A final PLS model is constructed based on
these important process variables. Three PLS components are sufficient to capture nearly

most of the variation in response variable.
PLS analysis reveals an estimation of 95% cut point CGO, shown in figure 3.2 and 3.3.

3.4.2 PLS model for product flow gas at the scrubber overhead

It was stated in the last chapter that one of the key variables in calculating the mole fraction
of active hydrocarbons used in the pseudo first principles model is the flow of efluent gas
from the scrubber. Two different methods are currently used at upgrading unit of Syncrude
Canada Ltd. to achieve the amount of this variable:

e The mass balance equation which gives reliable and accurate results but depends
on a large number of other process measurements and the model structure is highly

complex.

e The model obtained from ordinary regression analysis which has a very simple struc-

ture but gives very inaccurate results.

At this stage, to overcome this dilemma, we apply the PLS method along with the
process knowledge to search for all important independent variables. To investigate which
variables are highly correlated with the response variable, product flow gas, the weighting
and variable importance plots were inspected. The selected variables are listed in table 3.2.
After dropping the variables which have less contribution to the prediction of this objective
variable, the PLS model is constructed for product flow gas. This model was presented in
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Figure 3.2: Predictions obtained using static PLS based empirical model on the training data
set. The solid lines are the output from lab and the dots represent the model predictions.

chapter 2. Figure 3.5 shows the effectiveness of PLS approach compared to the normal

regression method.

3.4.3 Dynamic version of PLS model for product flow gas at the scrubber
overhead

The approach suggested in this section illustrates the dynamic effects that the static PLS
or the existing physical model cannot describe. In this study, the PLS model is based on
time shifted X block and Y data. The delay range is selected between 0 to 15. In table 3.3
the commutative Y variance (R?Y’) of all models has been summarized.

This analysis shows that the extension of PLS technique to the dynamic model identifi-
cation yields an improved prediction of product flow gas, when both lagged X and Y blocks
are used!.The prediction result is shown in figure 3.6.

3.4.4 Comparison of PLS and PFPM models in estimating the scrubber
top distillation point

The feasibility of identification tool, PLS technique, was examined in the last sections.
The case study on the Syncrude Fluid Coker illustrated the construction of a simple but
efficient inferential model that can be implemented to perform automatic control of the
Coker. Comparing the prediction results from PLS and the pseudo first principles model in
estimating the scrubber overhead distillation point, it can be shown that the PFPM provides

!'Due to the reason that the PFPM, presented in the last chapter, is a static based model it is required
to apply the calculated time invariant product flow gas instead of dynamic one.
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Figure 3.3: Predictions obtained using static PLS based empirical model on the cross vali-
dation data set. The solid lines are the output from lab and the dots represent the model
predictions.

a slightly better estimation while the PLS algorithm predicts the key quality variable in a
simpler model with less variables but the prediction is close enough to PFP based model.
This can be confirmed by comparing the mean square error (MSE) from both approaches:
MSEp;s =175
MSEpppprr = 5.5

As mentioned before, the PLS model could be improved further more if we have more
data points and the priori model structure is more accurately known. The prediction results
from both techniques are highlighted in figure 3.7

3.5 Introduction to the GMDH technique

It was shown in the previous sections that in many types of mathematical and physical
models, to choose the set of polynomial terms, we require the priori knowledge of the system.
However, when very little knowledge of the process is available, various assumptions may
be made which lead us to a model with less reliability. The concept of group method of
data handling or polynomial nets, invented by a Ukrainian cyberneticist, A. G. Ivakhnenko,
provides a powerful architecture to form a polynomial function of all or some of the input
variables without having specific knowledge of the system or massive amounts of data.
The GMDH combines both statistics and Neural Networks to discover a model structure
automatically. The network is implemented with polynomial terms in the links and a genetic
component to decide how many layers need to be built. The result of training at the output
layer can be represented as a polynomial function of all or some of the inputs. Providing a

25



Tag- name Description

Ti3 Reactor temperature

F8 Bitumen feed to the scrubber
F541 Top feed ring

F542 Middle feed ring

F543 Bottom feed ring

F18 Scrubber pool quench

F10 Fresh Bitumen to the reactor
F5023 VDU bottoms to the reactor
F514 Cocker feed Bitumen plus Residual
QX909 Scrubber overhead heat
TI13*F5023 NON-LINEAR TERMS
F5023*QX909

Table 3.2: Process variables for the product flow gas

parsimonious model, the GMDH technique gives an increased insight into the structure of
a complex system and the algorithm “optimally” selects (1) what variables appear in which
equations, (2) the optimum degree of nonlinearity of the resulting model equations and
(3) the structure and degree of interaction among variables. The important feature of the
iterative GMDH algorithm is its ability to identify both linear and non-linear polynomial
models. The traditional algorithm known as the Ivakhnenko polynomial method is briefly
described as follows:

Designating input variables as z = z, T3, ....Tn, we combine each two variables (z;, z;)
by the regression equation

y = A+ Bz; + Cz; + Dz? +E'.1:12~ + Frz;

In other words, the first layer created is made by computing the quadratic regressions of the
input variables and then choosing the best ones. The second layer is created by computing
regressions of the values in the first layer along with the input variables. Again, only the best
are chosen by the algorithm. These are called survivors. This process continues until the
net stops getting better (according to a prespecified selection criterion). This computation
procedure has been described in the simple scheme shown in figure 3.8 2.

The traditional algorithm of the group method of data handling is explained in more

detail in the following section.

3.6 GMDH algorithm

A more thorough description of the basic Ivekheneko polynomial algorithm is provided in
this section. This method is based on the sorting-out procedure, testing the models and

?Figure obtained from the book “Self- Organizing Method in Modeling, Farlow”
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Figure 3.4: Predictions obtained from static PLS based empirical model on the training
data set. The solid lines are the actual output, product flow gas (FC921), and the dots
represent the model predictions. FC921A represents the existing regression based model.

choosing the best candidates in each generation based on the prespecified criterion.
Having n observations, first we subdivide the data points into two sets, training and testing
observations (figure 3.10) and follow the steps indicated below.

e Step 1. Among all the input variables, we take two at a time, apply the regression
method and construct the quadratic polynomial from the observations yi, z1p, Z14 for
different p,q = 1,...,m over n data points. These new calculated observations will
be stored as new variables in a new array Z. The new calculated variables make a
better prediction of y, compared to the original generation z,, 3, ..., T, and will be
computed in a similar manner in the next layers. To choose which variables should
survive and go to the next generation, we require an objective criterion and this is

the stage that the testing data set plays a key roll.

e Step 2. Defining the root mean square called as regularity criterion (r;), we calculate
this value for each new variable Z and order the column of Z according to increasing

3
TJ . . )
’_2_ = Zi:nltl (yi—zij)
J Z?:nt-{-l v
3There are different criterion applied in different softwares. We have to emphasize that, here, the original

GMDH has been introduced
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Figure 3.5: Predictions obtained from static PLS based empirical model on the cross valida-
tion data set. The solid lines are the actual output, product flow gas, and the dots represent

the model predictions. FC921A represents the existing regression based model.

In the Z column, the elements satisfying r; < R will be selected for the next generation
where R is a number. prespecified by the user. The goodness of fit r; will be summed
over the observations in the testing set. Note that the number of new inputs at each

layer might be less or greater than the original independent variables.

e Step 3. If the smallest value of the goodness of fit (RMIN) in the current generation
is less than RMIN of the previous layer, we repeat step 1 and 2. However, if this value
is larger, the algorithm should be stopped. From figure 3.12, it can be seen that after
four iterations the process should be stopped and the minimum RMIN in the plot

refers to the Ivakhnenko polynomial or final model.

3.7 Application of GMDH in estimating the overhead scrub-

ber distillation point

Using the same input measurements introduced in table 3.1 except the nonlinear terms?, we
perform the group method of data handling to construct an inferential model for the 95%

4Since all these techniques, automaticaily, provide the nonlinear model, there is no need to add the non
linear terms used in PLS model. The polynomial complexity can indeed be found by GMDH technique
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Model R 2 Y

Static PLS model 0.71

Dynamic PLS model 0.67

with time shifted X bloeck

Dynamic PLS model with 0.85

time shifted X and Y block

Table 3.3: Commutative Y variance of static and dynamic PLS models.

distillation point CGO. The results and analysis are summarized in the following section.

3.7.1 GMDH analysis

Initializing the output and input variables and selecting advanced GMDH net architecture,
we specify a third order nonlinear polynomial as the maximal degree of the model.> The
criterion according to which the best models are selected (objective function) is set to the
full complexity prediction squared error (FCPSE) which can be defined in the following

expression:

FCPSE = Norm MSE + CC * var(a) * C/N (3.23)

where, Norm.MSE is the average squared error of the model on the training set, N is the
number of patterns in the pattern file, var(a) is the variance of the actual output variable,
CC is the Criterion Coefficient to change the weight of the over fitting penalty and finally
C is the overall model complexity coefficient, which takes into account the complexity of
each term in the model. Training the 120 observations collected from April to July 1, 2000,
we achieve the model in the nonlinear polynomial form. The performance of this approach
on the testing data set is shown in figure 3.13.

>The algorithm is the same as the original Ivakhnenko method except that the nonlinear regression

equation has the form:
y= A+ Bz +Cz2 + Dz} + Ex3 + Fz122 + Gz3 + Hz3
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Figure 3.6: Predictions obtained using dynamic PLS based empirical model on cross vali-
dation data set of product flow gas. Both X and Y block are time shifted. The solid lines
are the actual output and the dots represent the model predictions.

3.7.2 Comparison of GMDH and PLS approach in predicting scrubber
overhead distillation point

Comparing the prediction result of the Coker case study using GMDH and PLS techniques
(figure 3.14) shows that the GMDH approach provides a better estimation with less mean
square prediction error:
MSFEp;s = 7.4834
MSEcgypy = 6.3663

The GMDH analysis also highlights the advantages of this identification tool in the sence
that the model structure is self organized, a better prediction of output variable is achieved
and the relative contribution of each input to the output variable is presented.

3.8 Introduction to Neural Networks

Artificial Neural networks (ANN) have been applied in solving a wide variety of problems
in science and engineering in the recent years. Among the various applications of ANN
such as interpretation, diagnosis, process monitoring, classification and pattern recognition,
the concept of nonlinear system identification and prediction are the most common use of
neural networks.

The idea of neural networks originated from the human brain, which performs intelligent
operations. Like the brain, neural networks are formed from hundreds or thousands of
simulated neurons connected together in much the same way as the brain’s neurons. Like
people, neural networks learn from experience and do not need formulas or rules. They are
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Figure 3.7: Comparison of PLS and PFPM predictions of scrubber overhead distillation
point. The solid lines are the actual output. The dots and dashes represent the PFPM and
PLS estimations respectively.
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Figure 3.8: Basic scheme of propagations of variables in GMDH approach

trained by repeatedly presenting examples including both inputs and outputs. The network
tries to learn each of the examples in turn, calculating its output based on the provided
inputs. If the network output doesn’t match the target output, it will be corrected by
changing its internal connections. This trial-and-error process continues until the network
reaches the user specified level of accuracy. Once the network is trained and tested, we can
give it new input information, and it will produce a prediction.

We can distinguish neural networks by two different learning algorithms, supervised and
unsupervised NN. In supervised learning, as indicated before, the correct results (target
values, desired outputs) are known and are given to the NN during training so that the NN
can adjust its weights to try match its outputs to the target values. After training, the NN
is tested by giving it only input values, not target values, and seeing how close it estimates
the outputs to the correct target values. In unsupervised learning, the NN is not provided
with the correct results during the training. In other words, unsupervised learning involves
no target values. This learning is used in a wide variety of fields under a wide variety of
names, the most common of which is “cluster analysis”.

Among different types of ANN, two major kinds of network topology are feedforward
and feedback. In a feedforward NN, the connections between units do not form cycles. In a
feedback or recurrent NN, on the other hand, there are cycles in the connections. Feedback
NNs are usually more difficult to train than feedforward NNs.

32



Second generation variable, y
is quadratics in variables of the previous generation

L y=A+Bu+Cv+Du”2+Ev"2+Fuv

First generation variables, U and
are quadratics in xi, xj, xk, xI

| V=A2+B2xk+C2xI+D2xk"2+E2xI"2+Fxixk |

| U=ALBIxi+CIXj*DIXi"2+EIxj2+Fxixj | /\

xk x|

Xi Xj
Initial generation variables are the original input variables

Figure 3.9: Generalization of GMDH algorithm

In the following section, after introducing some fundamentals of NN, we review the basic

architecture of neural networks, back propagation algorithm, in more detail.

3.9 Fundamentals of Neural Networks and Back Propagation
Algorithm

3.9.1 Simple Neurons and Networks

A very simple neural network can be characterized by its architecture or its pattern of
connections between the neurons. A neuron, unit, or node is the basic building block of
an artificial neural network, which has some inputs and outputs. Each neuron is connected
with other units by directed communication links with an associated weight. Each neuron
has also an internal state called its activation function. After each input is weighted by a
factor w;, the activation function f receives the whole sum of weighted inputs. The neuron
sends the output from this nonlinear function as a signal to several other neurons. ANN
is generally built by putting the neurons in layers. Based on the method of determining
the weights on the connections - training or learning algorithm of the network - there
are different architectures of NN. Figure 3.15 shows the simple three layers feedforward
structure. The first layer distributes the inputs to the second layer called the hidden layer.
The last layer is the output layer. Each output unit computes its activation to form the
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Y (output variable) X (Input variables)

Yl x1 x2 xm
o vyl x11 x12 . . . xIlm
Training | ¥y2 x21 x22 . x2m
ynt xnt, | xnt,2 . . . xnt,m
Testing
observations
yn xnl xn2 xnm

Figure 3.10: Input to the GMDH algorithm (one output Y1 and m independent variables).

response of the net for the given input pattern.
The general algorithm of feed-forward neural networks trained by back propagation is

discussed in the following section.

3.9.2 Back Propagation Algorithm

Referring to figure 3.16, the back propagation algorithm on a three layer feedforward net-
work functions as follows:

Setting small random numbers, we initialize the weight values. Each neuron in the
hidden layer receives a signal from the neurons in the previous layer (input layer), and
each of those signals is multiplied by its initialized weight value. The weighted inputs are
summed and passed through a limiting function which scales the output to a fixed range of

values.
Two common activation functions, typically used in ANN are:

e sigmoid function, f)(z) = m
e bipolar sigmoid function, fo(z) = m -1

The output of the limiter is then sent to all of the neurons in the next layer (output layer).
After propagating the signals through the network and reading the output or target value,
we need a method to adjust the weight values. An applied, common learning algorithm
used in solving most problems is back propagation (BP). Providing a learning set of input
and known-correct output, a BP learns what type of behavior is expected and it tries to

adapt the network.
The BP learning process works in small iterative steps: After producing the output based
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Figure 3.11: Construction of the new array Z.

on the initialized weighting values indicated above, this output is compared to the known-
correct output and a mean-squared error signal is calculated. The error value is then
propagated backwards through the network, and small changes are made to the weights in
each layer. The weight changes are calculated to reduce the error signal.

The whole process is repeated from the first step. The cycle is repeated until the overall
error value drops below some pre-determined threshold. At this point we say that the
network has learned the problem “well enough”. Note that the network will never exactly
learn the ideal function, but rather it will asymptotically approach the ideal function.

3.9.3 Neural Network analysis

We apply the standard type of feedforward neural network using the back-propagation
learning algorithm to the nonlinear system Fluid Coker. The training and validation data
set are the same as used in GMDH and PLS techniques. The prediction performance of
neural networks on the training and testing data sets are shown in figures 3.17 and 3.18.

3.9.4 Comparison of prediction result from GMDH and Neural networks
algorithms

In the last two sections we inferred the variable 95% cut point CGO employing GMDH
and NNs. The prediction result obtained from both algorithms is shown in figure 3.19.
Comparison the mean square error shows that NNs provide a close estimation to GMDH.

MSEnNs = 6.8456
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Figure 3.12: Stopping criterion.

3.10 Conclusion

In this work, different identification algorithms for nonlinear systems have been presented.
These tools have been applied on the industrial Fluid Coker to infer the variable 95% cut
point CGO. It was shown that among all black box techniques, Group Method of Data
Handling provides a better estimation while the model structure is self-organized. The
prediction result from PLS technique, on the other hand, revealed that the feasibility of
this approach depends on the availability of the model structure under consideration. If
such kind of prior information is easily at hand, PLS gives a very close estimation to
GMDH. Neural Networks provided reasonably successful prediction, which was very close
to GMDH estimation. However, the main gap between this mathematical tool and the
practical application is that there is no explicit model available and this tool usually requires
more data points.

To evaluate the feasibility of all techniques compared to the Psuedo First Principles
modeling, we compared the prediction error of all these approaches. The presented models
could be ranked based on the prediction result on this case study in an descending order as

follows:
e 1. PFPM
e 2. GMDH
e 3. NNs

e 4. PLS
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Figure 3.13: Prediction of 95% cut point CGO using group method of data handling em-
pirical model on the testing data set. The solid lines are the output from lab and the dots

represent the model predictions.

MODEL FPM PLS GMDH NNs
Model structure is | Unable to Model No explicit
Structure- found upon the search model structure is model
selection physical law structure Searched structure is
automatically | available
Applicable to the Mostly for linear | For both Prediction
system with exact | model but can linear and for both
Application knowledge of the also be used for nonlinear linear and
process nonlinear model | systems nonlinear
(linear/nonlinear) processes
Requires more cost
and time
Exact prediction is | Depends on the Provides a Large
achieved if the availability of good sampling
Prediction priori knowledge of | data points and prediction if |sizeisa
" the process is model structure the model definite
periormance available structure is requirement
restricted to a
polynomial
form

Table 3.4: Comparison of the black box techniques with first principles model
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Figure 3.14: Comparison of GMDH and PLS prediction result in estimating the 95% cut
point CGO. The solid lines and dots are the actual output from lab and the model predic-
tions from GMDH respectively. The dashes represent PLS estimation.
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Figure 3.15: Feedforward neural network with one hidden layer.
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39




95% cut-point CGO

-1.5° * ! *
0 10 20 30 40 50 60 70 80 90

Time

Figure 3.17: Prediction of 95% cut point CGO using feedforward neural networks with back
propagation learning algorithm on the training set of data. The solid lines are the actual
output and the dots represent the model predictions.

40



| o, [} 7\ e,
: * [} * 1 v
R nd ALY a4 i\
i iiii ! ! [ P i
bt o/ iiiisl ! igh i Fa
£s | ihA kil ft ! | ail Vii
B i ] '
o A 1A
2 £
£ P¥l
-5t i ]
]
1 §
| H
-1 '
r .
|
-1.5° : : .
0 20 40 60 80 100 120
Time

Figure 3.18: Prediction of 95% cut point CGO using feedforward neural networks with back
propagation learning algorithm on the testing set of data. The solid lines are the actual

output and the dots represent the model predictions.
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Figure 3.19: Prediction of 95% cut point CGO using NNs and GMDH. The solid lines are
the actual output, the dots represent the model predictions from GMDH and the dashes
are the estimation from NNs.
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Chapter 4

Issues in Experimental Design for
Nonlinear System Identification

4.1 Abstract

The objective of this chapter is to study the practical aspects of nonlinear system identifi-
cation including the design of input signals capturing the underlying dynamical behavior of
the NARMAX model. We demonstrate the feasibility of developing a nonlinear model using
GMDH, nonlinear regression and Genetic Algorithms through experiments on a CSTR pilot
scale reactor. The practical goal is to provide a nonlinear inferential model to analyze the

concentration of the key component in a second order chemical reaction.

4.2 Introduction

Analysis of the input/output behavior of a physical system and constructing a model, which
captures the key underlying dynamics of the process, is the first step in controlling a system.

Since most industrial plants are complex and exhibit a certain degree of nonlinearity.
usually, the global behavior of the system over the whole operating range can be described
by nonlinear models rather than by linear ones that are only able to approximate the system
around a given operating point. A popular and general class of nonlinear models, discussed
in this chapter, is the one corresponding to the so-called NARMAX (Nonlinear Autoregres-
sive Moving Average models with eXogenous inputs) which consists of nonlinearity in both
input and output. Various nonlinear models have been discussed in detail by Haber and
Unbehauen (1990).

When little process information is available and the structure of the model is not given
a priori, developing a “robust” nonlinear model usually requires two phases:

e Structural identification in which the general form of the equations that govern the
unknown dynamics are determined. The structure identification is usually organized
according to the classes of nonlinear dynamical models and to the kind of experiment
performed on the unknown process(23].
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e Parameter estimation in which coefficient values that match the model are found.

Designing an input sequence has particular significance in the development of a non-
linear model and identification of both parameters and structure of the system. Only an
appropriate frequency rich input excitation can expose the underlying dynamics of the sys-
tem. Among the different types of the excitation signals, one of the most widely used is the
pseudo-random binary sequence (PRBS). However, due to the bi-level of the 'RBS’ signal
in general, they may not be desirable for nonlinear systems. Characterizing the 'RBS’ input
signal as u(k) = +a where a is the amplitude of the binary signal shows that the negative
terms may be eliminated from the series if any term of the model has an even power. A
detailed review of the theory and application of RBS signal is provided in Godfrey (1996).
Three and five level sequences are other types of input signals used in the identification of
nonlinear systems. In (Barker et al., 1972) these signalé are considered for identification
of the Volterra kernels. A review of the three level sequences is presented in (Barker and
Davy, 1978).

In this chapter. after providing a short description of a pilot scale CSTR reactor, the
practical issues of the identification of a nonlinear system are investigated. We compare
different classes of input signals including sum of sine waves and uniformly distributed
multi-level sequences through both simulations and experiments and propose a modified
multilevel signal. Other important issues in designing the input signals, namely, frequency
and amplitude of the excitation signals are also addressed in this work.

For the continuous stirred tank reactor, the physical model has been developed in the
continuous time domain. The general nonlinear discrete time model shows that a NARMAX
model describes the dynamical behavior of the physical system.

A very powerful identification tool, Group Method of Data Handling, has been discussed
in the previous chapter. This technique combines the two phases of system identification
and provides a useful algorithm for modeling complex nonlinear systems that have a large
number of variables and parameters but a relatively small amount of collected data(25|.
We apply this approach to identify the parameters as well as model structure of the CSTR
reactor.

Regression analysis is applied as another tool to identify the model parameters, assum-
ing the structure of the model follows the mechanistic equation. The performance of the
identified models is discussed in detail in each section.

4.3 Pilot Scale Continuous Stirred Tank Reactor

The process studied in this chapter is a CSTR reactor designed to demonstrate the mecha-
nism of a chemical reaction. Reaction is monitored by conductivity probe as the conductivity
of the reacting solution changes with conversion of the reactants. This provides a convenient
method for monitoring the progress of the reaction instead of using the inaccurate process
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of titration.
The reaction chosen is an equi-molar, overall second order chemical reaction between

ethyl acetate and sodium hydroxide:
NaOH + H3COOC3Hs - CH3COONa + C2HsOH
SodiumHydrozide + Ethyl Acetate — SodiumAcetate + EthylAlcohol

By an overflow tube the volume of the reactor is fixed at 1.75 L. To maintain the
reaction at a precise temperature, an on/off local controller is used. Heating the water
passing through the coils wind, the temperature is held steady at the desired set point. The
concentrations of the reactants are both held at 0.1mol/L. The reactants are attached to
the separate pulsating pumps feed into the reactor. The schematic diagram of the CSTR

reactor is shown in figure 4.1.

OPTO22 Brain Board

S

Conductivity Stirrer

1

CSTR vesssl .____m_ [ ——=
lPumpl Ilpum|}n.._ '3““{@‘}/[7_._\‘3\

NAOH + H,COOGH;—-» CH,COONA+ CH,OH

Figure 4.1: Schematic diagram of CSTR reactor

For identification purpose, the conductivity of the product in the reactor at time t, A,
is considered as the output variable of interest. The flow rates of the reagents, Sodium
Hydroxide (F,) and Ethyl Acetate (Fp) are the manipulated and disturbance variables
limited by the maximum and minimum speeds of the pumps for a range of 0-80 mL/min.
Assuming the solution in the reactor is well mixed, the speed of the agitator is set at its
maximum value, 175 rpm. The CSTR apparatus is controlled remotely using an OPTO022
brain board for D/A and A/D outputs and inputs in LABVIEW. The configuration of the
reactor and OPTO22 is set up with 3 output channels, pump speeds on the two feed pumps
and agitator speed, and one input channel, conductivity of the solution.

To achieve an initial understanding of the dynamics of the system, we develop the
mechanistic equation based on the physical laws relating to the system. The overall mass

balance can be stated as follows:
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Accumulation = Input — Output + Generation
Using the balance equation for the reactant a in the reactor with volume V!, we have:

dVa) _ F.ag— Fa; - Vk.d? (4.1)

dt

Conversion of the continuous-time differential equation to the discrete time domain with
the sampling rate T, shows that the system has nonlinearity in a cross term of input-output

and a square term in the output variable a;.
ai(t) = frFa(t — 1) + Bear(t — 1) + Bsax(t ~ 1)(Fa(t — 1) + Fy(t — 1)) + Baal(t — 1) (4.2)

It should be mentioned that the degree of conversion of the reagents affects the conductivity
of the reactor contents. Thus, the conductivity recorded by the data logger is proportional to
the concentration and can be used to infer the concentration of Sodium Hydroxide/Sodium
acetate and therefore the amount of conversion. As such, the physical model for conductivity
follows the equation 4.2 and has the same structure as the balance equation.

A(t) = 21 Fa(t — 1) + 20A(t — 1) + 23A(t — 1)(Falt — 1) + Fo(t — 1)) + zaA2(t — 1) (4.3)

To determine the model for the output variable A in the presence of various types of dis-
turbances and to review the effect of different input sequences on the identification of the
system, we require a number of experiments under consistent conditions which cannot be
easily achieved by experiments on a real system. Due to this reason, the general under-
standing of the design of the input signals is first verified using the data collected from
the simulated process based on the physical model 4.1. Then, we identify the model using
GMDH, Linear Regression and GAs tools. Once the simulation yields satisfactory results,
the designed input sequence will be applied to the pilot-scale reactor.

4.4 Designing the Input Signal

The first important issue in process identification is to choose an appropriate input exci-
tation signal, which is dependent on the different classes of the models. It is known that
a linear time-invariant system with n unknown parameters can be identified by using an
input which is a linear combination of sinusoids with § distinct frequency components (e.g.
Dasgupta et al. 1991), [44]. Another standard signal noted by Leontaritis and Billings
(1987) is binary sequences, which are typically useful for identification of linear systems.
However, there is little formal theory for input sequence design for nonlinear systems espe-
cially for the general class, NARMAX models, described by billings and Voon as follows [2]:
y(k)=F(y(k-1),y(k-2), ..., y(k-p),
u(k),u(k-1),...,u(k-q),
!See the Nomenclature list in appendix A
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e(k-1),e(k-2),...,e(k-r)) +e(k)
where, F(.) is a nonlinear function indicating that both input u(k) and output sequence
y(k) are nonlinear and e(k) is a “Gaussian white noise” sequence.

It is clear that applying binary signals may cause loss of information and identifiability
for nonlinear systems. The inverse repeat of these signals might eliminate the negative
terms from the series if the system contains an even order nonlinearity. Leontaritis and
Billings (1987) suggest the use of an input sequence which is uniformly distributed and has
an amplitude constraint might be an appropriate signal for the identification of a nonlinear
system. Pottmann, et.al. (1993) use the equivalent signal on a PH neutralization process
with a geometric reason as follows:

They interpret the identification of nonlinear systems with y(k — 1), ...,y(k — m),u(k —
1),..,u (k - n) independent variables as an approximation problem in R**™. Only the
surface which is well fitted to the available data in R"™*™ will describe the dynamical
behavior of the system. To achieve this goal, the data points should be well distributed in
the domain of R"**™ corresponding to the normal operating conditions of the process [44]. A
surface which is based on the uniform distribution of the data points switching between the
maximum and minimum values yields an accurate description of the process(5]. Such a signal
follows the recommendation of Leontaritis and Billings, for the case of amplitude constraint
on the input signal. However, the considerable valve movement during experimentation is
one drawback of using pure random signals. Due to this reason, Pottmann, Unbehauen and
Seborg (1993) suggest applying only small input variations over different operating points
of the process.

Through extensive simulation studies it is shown that the above strategy in designing
the input signal gives promising results for identification of a NARMAX model obtained
from a CSTR pilot scale reactor. The experimental and simulation results of using different
excitation signals are discussed in more detail in the following section.

4.5 Illustrative Example In Issues of Excitation of the Input
Sequence

The frequency for which the signal should switch values is one important parameter in
designing the input sequences, delivering the most useful information in the dynamical
behavior of the system. To achieve an initial understanding of the frequency of the designed
input for the CSTR reactor, the response of the step input has been studied. It shows that
the system needs about 1000s to reach the 63% of the final steady state value. Therefore,
the behavior of the dynamical system is relatively slow and the designed input should change
with a compatible rate.

The calculation of the frequency of designed signal is better illustrated using a Bode
diagram shown in figure 4.2. As it is shown, 70.7% of the maximum amplitude of the
excitation signal gives an approximate bandwidth of the process. To ensure that the entire
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Figure 4.2: Illustration of frequency calculation using a Bode diagram

band spectrum of interest is included in the designed input sequence, a constant K > 1
is used to scale the calculated bandwidth. Using the notation of Nyquist frequency of
MATLAB, the desired frequency of the excitation signal can be calculated as follows:

f=K5L (4.4)

T

where T, is the sampling time, 7 is the time constant (found from the step test indicated
before) and K is a constant term with a typical range of 2 — 3. This information is entered
into the idinput command in MATLAB to design the input signal.

Using this information as an approximate guideline for the nonlinear CSTR process,
we perform following experiments and simulation around different operating points of the

process.

4.5.1 Experiment I: Applying Sum of Sine Waves as an Input

A data set containing 2200 input-output samples with the sampling period 10s were gen-
erated from the pilot-scale reactor. The system was considered as the SISO system with
the flow rate of Sodium Hydroxide as the input (F,) and the conductivity as the output
variable (A). The lower and upper limits of the excitation signal were set between 10 and
40mL/min. Applying GMDH tool, a linear polynomial model is found. The results of this

identification are summarized in table 4.1 :

Identified model using GMDH tool:

A(t) = —.1327 + A(t — 1) + 0.009 * Fy(t — 1) (4.5)
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Input Signal Sum of sine wave

Amplitude of 10-40 MI/min
excitation signal

Sampling time 10
Best formula Y=3.3E-003+X2+9.E-003*X1

(GMDH)
Legends

X1=2.*(Fa(t-1)-13.75)/31.6-1.
X2=2%(At-D .11.06)/3.17-1.
Y=2.+ A4 _11.06)/3.17-1.

Linear . A()=09806*A(t-1D+0.0107*F,(t-1)*A@¢-1)
Regression

Table 4.1: Summary of identification results for the CSTR reactor

Identified model using linear regression:

A(t) = 0.9806 * A(t — 1) +0.0107 + Fo(t — 1) * A(t — 1) (4.6)

Equations 4.5 and 4.6 show the inadequacy of the identified models to characterize the
real nonlinear behavior of the system. Possible reasons to the deviation of the identified

models from mechanistic equation can be summarized as follows:

e The input sequence is not frequency rich enough to provide an adequate model of the
process. Therefore, special consideration needs to be given for designing the input

signal for nonlinear CSTR system.

e The upper and lower input variations may not be large enough to approximate the

global nonlinear behavior of the system.
e Due to the fast sampling rate, the disturbance effect is significant.

e The approximate time constant and slow response of the system show that the data
should switch the upper and lower bound with a slow frequency. An input signal
with a relatively fast frequency makes the signal change its value before getting the
appropriate response in the previous instant.

The above discussed issues are examined in the following simulation and experiments.

4.5.2 Simulation I: Applying Multi-Level Input Signal

Following the fact that only an appropriate excitation signal can expose the real dynam-
ical behavior of the system, we apply the strategy presented in [44] and divide the whole
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operating range of NaoH flow rate into small intervals and create two sets of four-level
uniformly distributed signals known as low-level sequence changing the value at 60, 63, 66
and 69 mL/min and high-level signal switching at 70, 73, 76 and 80 mL/min . According
to the frequency information generated from the step test, we produce an RBS sequence
between -1 to 1. Then the value —1 is uniformally randomly subdivided into the four low-
level values, and the value 1 is uniformally randomly subdivided into the four high-level
values. An eight level signal is produced. This signal is uniformly distributed and change
its magnitude between 60 to 80 mL/min.

Creating Two sets of M-level Uniformly Distributed

Signal
/ \ \\
( Low Level Seqynce\ High Level Sequence)
LC‘hanging from 60 to 69 mL/min I rChanging from 70 to 80 mL/miL]

, N
( | Producing an RBS sequence between —1 and | | \,\‘
: |

osessereseResseane

......... T
! Negative Valuc'; bs Positive Valu;""_: //
\\ \ '-..,“...“:} ....................................... \J/

~ / / N

Transformed to a random number Transformed to a random number
chosen from low level sequence chosen from high level sequence

Figure 4.3: Modified Uniformly Distributed M-level Sequence
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Figure 4.4: Process data for the SISO identification. The uniformly distributed multi-level
input signal changes its value between maximum and minimum rate, 60-80 mL/min

The training data sets obtained from simulation with the sampling interval 100s are
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Input Signal 8 level uniformly distributed signal
Amplitude of |60-80 MVmin

excitation

signal

Sampling time | 100

Best formula a,(t)=04125*F, (1-1)+ 0.565%a(s- 1)+ 0.00652

(GMDH)

llilencarssion a,(1) = 05406 * F_(1-1)+ 09484 *a(i-1)
gre -0.1892 *a(t-1)*F,(1-1)-02494 *a3(1~1)

(LR)

Standard F, (1~ 1):8.4464¢ - 004

deviation of the af:-l):o.oonz

identified F(-D*A¢-1):00012

coeff b)’ LR a’(1-1):0.0013

Table 4.2: Summary of simulation results for the CSTR reactor, using an eight level uni-
formly distributed signal

shown in figure 4.4. Table 4.2 summarizes the identification result. The comparison of the
actual and predicted output is presented in figure 4.5.

Identified model using GMDH tool

a1(t) = 0.4125 x F,(t — 1) + 0.565 * a, (¢ — 1) + 0.00652 4.7)

Identified model using Linear Regression

ai(t) =0.54+ Fo(t — 1) +0.95xa1(t — 1) — 0.19 % Fy(t — 1) *ay(t — 1) = 0.25 x a (¢t — 1)
(4.8)

The simulation result shows that applying a larger magnitude of the excitation signal
and operating the experiment in a higher flow rate of NaoH increases the nonlinearity of
the system. Furthermore, employing an information rich data increases the accuracy of the
identified model and leads us to a polynomial close to the mechanistic model.

Combination of balance equation and Linear Regression provides an adequate model,
which gives considerably good estimate for the concentration of the sodium Hydroxide.
Comparison of physical and GMDH identified models shows that the lagged linear input
and output variables are selected as prime candidates to predict the concentration of NaoH.
Due to this reason, this technique is not capable of identifying the nonlinear terms when
their contributions are not considerably significant.

One fact that comes to light from the last simulation is the selection of the sampling
rate. As it will be shown in the following section, designing the input signal based on 50s
sampling rate shows that the identified model is highly correlated to the lagged output
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Figure 4.5: Prediction results obtained from Linear regression and GMDH tool using an
8-level uniformly distributed input signal. The solid lines are the simulated output from
the CSTR and the dots represent the model prediction.

variable and since this variable plays a relatively important role in predicting the output
variable, both LR and GMDH algorithms identify the model in which the corresponding
coefficient to the lagged output variable is a dominant term and the rest coefficients are
relatively small.

As it is shown in figure 4.6, increasing the sampling time to 200s on the other hand,
causes loss of information and provides a poor estimation of output variable which deviates

from the actual data. The results are shown in table 4.3 and 4.4.

" Normalized Data  Sampling time

" Lagged-feed 50 0.3088 0243
Lagged-feed error /7" 1.7868e-004
Lagged-oupt 4 To9988 L13
Lagged-output  # T 2.5672¢-004
error :

+ Cross-term /" -0.0980 NA

| Crosstermemor  /  26350e-004

‘ Square-term /i -0.1685 NA

| Square-term error b_}/_ T 2.9971e-004

Constant term " NA -0.00294

Table 4.3: Summary of simulation results for the CSTR reactor, changing the sampling
time to 50 s.
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" Normalized Sampling time "Lincar regression ~ GMDH |

Dm - - . - . - - . . - - - mma o
Lagged-feed 200 0.6128 0.596
Lagged-feed error Y, 0.2385
" Lagged-output " 13133 " 0287
Lagged-output " 0.2730
O OT e e
; Cross-term 14 -0.0207 NA
Cross term error /" 0.3449
* Square-term ] N -0.7856 NA
Squaretermerror /03034 I
- Consi;m-(erm 7 NA 0.025

Table 4.4: Summary of simulation results for the CSTR reactor, changing the sampling
time to 100 s.

4.5.3 Experiment II: Applying Multi-level Input Sequence to the Real
Process

Following the simulation results indicated above, we choose the recommended input signal
with the sampling interval approximately equal to 7/10 or 100s and perform the actual
identification experiment. Figure 4.7 shows the input-output data after reaching the steady
state. The comparison of the data obtained from simulation and real experiment is shown
in figure 4.8.

Assuming no fundamental process knowledge is presented, empirical modeling technique,
GMDH, is employed to identify the parameters and model structure. As it is shown in table
4.5, this technique is able to identify all linear and non-linear terms presented in the balance
equation, i.e. all nonlinear terms are statistically significant. However, the dominant term
in the constructed model is the output lagged variable. This result is consistent with the
previous simulation results.

Combining the process knowledge and black box technique “Linear Regression”, a Semi-
Empirical model is provided and final equation describing the dynamical behavior of the
CSTR reactor is obtained 2.

Identified “LR” Semi-Empirical Model Based on the Normalized Data

A(t) =089 % A(t —1) +0.092% Fo(t — 1) = 0.12 F(t — 1) * A(t — 1) + 0.16 * A(t — 1)*
(4.9)
Figure 4.7 shows the estimated values of conductivity versus actual data using the model

4.9, presented above.
2The identified model shown in table 4.6 is based on the normalized data.
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Figure 4.6: Prediction results obtained from Linear regression using the sampling interval
equal to 200 s. The solid lines are the output from the simulation and the dash line

represents the model prediction.

The cross validation run shown in figure 4.8 indicates that the proposed model captures
the dynamics of the system reasonably well. It should be mentioned that the cross validation
data is obtained from a different identification experiment. The operating points at this
run, are set at Fg,, Fps = 10 mL/min and the temperature of the reactor is kept constant
at 30°.

The final dynamical model for the pilot scale CSTR reactor can be presented as follows:

Non-linear Polynomial Model for CSTR System Based on Normalized Data

A(t) =089 A(t— 1) +0.002 % Fy(t — 1) — 0.12 % Fy(t — 1) x A(t — 1) + 0.16 x A(t — 1)?
(4.10)

Non-linear Polynomial Model for CSTR System Based on the Actual Data

A(t) = 6.6 + 0.8962 * (A(t — 1) — 6.59) + 0.0074 * (F,(t — 1) — 69.3)
—0.0168 % (Fy(t — 1) —69.3) « (A(t — 1) — 6.59) + 0.2716 + (A(t — 1) — 6.59)>  (4.11)
4.6 Estimation of Conductivity in the Continuous Stirred
Tank Reactor, Performing Genetic Algorithm

As mentioned earlier, the objective of this case study is to provide the dynamical model
to estimate the amount of conductivity in the CSTR reactor using measurements of inlet
flow. We employ Genetic Algorithms (GAs) as another identification tool to estimate the
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Figure 4.8: Comparison of simulation and real experimental data. Solid line presents the
actual data and the dash lines show the data obtained from simulation.

process model of the CSTR reactor assuming the mechanistic equation is unavailable. The
theory and algorithm of GA approach is discussed in detail in appendix B. The GA software
applied in this study is provided by Zi-Jiang Yang at the Kyushu Institute of technology,
Japan (2001).

Applying the same input-output data set obtained from experiment II and initializing
the GA software (see appendixB) the process model is identified as follows:

Identified model using GAs:

y(t) = 0.998109 * y(t — 1) + 0.00548206 * u(t — 1)u(t — 1) — 0.00352523 (4.12)

The estimation result of conductivity applied on the cross validation data set is shown in

figure 4.9
One of the distinct advantages of the proposed method is that without making a priori
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Variable Symbol Nominal Value
Tank volume \4 1.795 dm~3
Reactor T 22¢°
temperature
NaoH conc. in feed | Du 0.1 mol/dm~3
vessel
ethylacetate conc. b p 0.1 mol/dm~3
in feed vessel
Volume feed rate of F 60 dm"3/s

Id
ethylacetate
operating point Fo, . F. 60 dm~*3/s
Sampling period as 100 s
Agitation speed - 175 rpm

Table 4.5: Nominal conditions for process variables.

Input Signal 8 level uniformly distributed signal
Amplitude of |60-80 MI/min

excitation

signal

Sampling time | 100

Best formula a,(f) = 0.013328 * [, (1- 1)+ 1.0136 *a(s- 1)
(GMDH) -.00172 *a( - D*F,(1- 1)+ 0.0005 *a%(s- 1) -.00238
llilent:::;sion a, (1) = 00924 * /) (1-1)+ 08%2 *a(s-1)
(Llf) -0.1253 *a(r-1)*F (1-1)+ 01628 *a’(r-1)
Standard F,(1-1):0.0162

deviation of the at-1:00186

identified F(t-1)*A(s- 1):0.0259

coeff. by LR a’(r-1):0.0238

Table 4.6: Summary of identification results for the CSTR reactor, using an eight level
uniformly distributed signal.

assumptions about the actual model, the structure and complexity of the model is evolved
automatically.

Comparing equation 4.11 and 4.12 on the other hand, reveals that LR based model is a
better understood model which can be explained by physical law of the process. Similar to
GMDH technique, Genetic Algorithm provides an empirical model in which the estimated
conductivity at the present time is highly correlated to the value of previous instant and the
coefficient corresponding to the lagged output variable has significant effect in predicting
the conductivity in the reactor.

The lack of sensitivity of the GA-based model to changes in various inputs shows that
there are some limitations in the provided code. This follows the investigation of Zi-Jiang
Yang (2001) that when dealing with simple non-linear systems, there is no significant ad-
vantage of the provided GA code compared to the conventional methods. It should be
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Figure 4.7: Prediction results obtained from experimental data. The solid line is the nor-
malized actual output and the dots represent the estimated values from equation 4.9.

emphasized that the provided GA code is not a commercial software and is just for basic

investigation.

4.7 Conclusion

In this chapter, the issues of experimental design to the development of nonlinear inferential
models of chemical systems are discussed. As an example of a nonlinear process, a pilot
scale continuous stirred tank reactor, has been used to highlight the important identification
issues related to the design of input sequence.

Designing an appropriate multi-level sequence and combining the knowledge of the
CSTR process with Linear Regression (LR) algorithm, we are able to present a non-linear
semi empirical dynamic model close enough to the mechanistic equation. It is shown that
applying a pure “black box” technique such as Group Method of Data Handling provides
a model, which might not be sufficient for describing the process information. However,
this technique might be useful enough for prediction purpose when due to the poor under-
standing of the complex physicochemical processes, detailed first principles based model is
unavailable.

Reviewing the application of Genetic Algorithm, Symbolic Regression has been applied
as an alternative search technique in identifying the model structure when little information
of the process is available. Final results revealed that LR based model gives a better
estimation of the key quality variable compared to the GA and GMDH models.
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Figure 4.8: Prediction results obtained from experimental data. The solid line is the nor-
malized actual output and the dash lines represent the estimated values from equation 4.9
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Figure 4.9: Prediction results obtained from the non-linear model provided by the Genetic
Algorithm. The solid lines are the output from the CSTR and the dash lines represent the

model prediction.
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Chapter 5

Data Driven Model-on-Demand
Approach

5.1 Abstract

In this chapter, the concept of data driven approach, model-on-demand (MOD), is intro-
duced as another alternative solution to identify the nonlinear system, CSTR reactor. This
technique provides a nonparametric estimation of nonlinear regression functions on the basis
of availability of large datasets as the need arises. Reviewing the theory behind the MOD
approach, we demonstrate the application of this identification tool on the CSTR reactor.
The idea of MOD is expanded to the multi rate system to obtain the estimation of the
output variable assuming that the input output data have different sampling rates.
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5.2 Introduction

As discussed in previous chapters, one important issue in non-linear inferential modeling is
identifying the model structure of the process. It was indicated that the global techniques
such as nonlinear regression and neural network compress all available information into a
compact model. Therefore, these methods become less attractive to deal with, when number
of data points increases and the associated optimization problem becomes more complex.

The data driven approach, Model-on-Demand (MOD), is an alternative tool in system
identification, which provides a nonparametric estimation of nonlinear functions on basis
of available “large” datasets. In MOD estimation all observations are stored on a database
and the models are built “on demand” as the actual need arises[?]. This technique uses
only relevant and a small portion of data in the neighborhood of the new input to predict
the key variable and determine a model as needed.

Adapting the number of data and assigning the relative weighting to the data points
of interest, the variance/bias tradeoff is optimized locally and therefore the performance of
model estimation will be improved. Another advantage of MOD cited in[?] is that unlike
global modeling, there is no problem with adding new observation to the data set and this
is due to the reason that there will be no estimation until a query time. Data sorting
complexity and availability of large data sets as a necessary requirement, however, are the
main drawbacks of this tool.

In this study, the theory behind model on demand is first studied. The application
of this approach on the CSTR reactor is presented next. After comparing the prediction
results using different techniques and different scenarios, we expand the idea of MOD to a
simple multi rate system to obtain an estimation of the output variable assuming that the
input-output data have different sampling rates. Finally, we discuss the results of the case
study, taking into account the effort required to develop global models versus the MOD

predictor.

5.3 Theory

The problem of identifying a nonlinear dynamical system described by
z(t) = f(a(t))
y(t) = z(t) + e(t)

where e(t) and ¢(t) are measurement noise and the regression vector respectively, has been
solved traditionally using the global modeling methods such as nonlinear regression analysis.
Another standard and traditional approach referred as gain scheduling (3] is to linearize the
system at a discrete number of operational points parameterized by the scheduling variables
and compute the linear model or controller for each of these operational points. The method
we are addressing in this work is suggested by A. Stenman (1999) [50] . The idea is to store
all past data in a database and compute a new estimate  for each new ¢(t). To achieve
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this goal, the relevant data belonging to a small neighborhood around the defined operating
point z is retrieved from the dataset and a weighted linear regression is performed on that
subset with the assumption that f(@(t)) is linear locally around ¢(t).

The question arises at this point is what to be defined as relevant data, nearest neighbor
estimator and weight selection. Following sections discuss how these key parameters are

defined in the MOD approach.

5.3.1 Selecting the Weights and Distance Function

In weighted local modeling, the data subsets close to the target value are usually referred to
as neighboring classes. Depending on the distance between each subset and the target value,
each class has different contribution in key variable estimation. One important feature that
distinguishes the local modeling from its global counterpart is that incorporating a weighting
in the criterion gives less value to the irrelevant points, which are far from the objective
class. Among different techniques in choosing the appropriate weighting factors, the local
polynomial technique has been employed!.

It is assumed that the weights are implicitly specified by a multivariable kernel function
defined as follows:

1

_-— iy, _
_IHIK(H (Xi — z)) (5.1)

wi(z) = Kn(Xi — z)
where H is the bandwidth. Reformulating the above equation, the weighting scheme can
be decomposed into two separate mappings; one that maps the local data to distances.

d(Xi,z) = || Xi — z||m (5.2)

where, ||.|[ar denotes a scaled vector norm, and another that maps the scaled distances to
weights,

wi(z) = k(202 (53)
Where, z is the target value and K(.) is a kernel function with following properties:
JK(u)du=1, [uK(u)Jdu =0
Depending on the practical and theoretical considerations, a wide range of kernel func-
tions is applicable. The common kernels used in this work are Gaussian kernel k(u) =
(v2r)~lezp(—u?/2) and tri cube kernel K(u) = 2(1 — (| u |)®)3,, where (.)+ denotes the
positive part. It turns out that the local polynomial regression depends on the distance
function d(X;, z) through the weighting w;(z) and therefore, the choice of distance function
is an important design issue in local model estimation.
In general there are different types of distance functions depending on how much the
regressors are stretched or shrunk. As shown in equation 5.2 , the choice of the element

!For other possible approach in choosing an appropriate smoothing weights see [50]
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M will change the shape and the orientation of the neighborhood, which might affect the
accuracy of the prediction. Among commonly used choices in the context of local modeling
(4], we use the Euclidean distance function with M as identity matrix, defined as follows:

d(Xi,z) = | X; — z|| = V(Xi — z)'(X; — 2) (5.4)

5.3.2 Bandwidth

Another important issue in MOD approach is bandwidth estimation. Choosing a small
bandwidth makes the polynomial fitting mainly dependent on the data points close to the
target value r and therefore produce a noisy estimation. A large bandwidth, on the other
hand, results an estimate which is very close to global linear fitting.

In practical application, the available data set is an important source in estimating an
appropriate bandwidth. This is usually referred to as (data-driven)bandwidth.

The two broad methods for selecting the bandwidth are introduced in [35] and [50] as
follows:

Classical Methods:Using the classical tools applied in parametric modeling for mini-
mizing the mean square error “MSE". Cross validation, AIC, FPE and Mallows C}, are such
typical examples.

Plug-in Methods: Estimating the unknown quantities from the data and “plugging
in” to compute an asymptotically optimal bandwidth(50].

In this study, we choose the first approach, classical technique, as a way of getting the

acceptable bandwidth.

5.3.3 Classical Methods, Variance/Bias Balance

The classical method is based on the quality of the estimator as a function of the bandwidth
parameter and optimizing this measure with respect to the bandwidth. Therefore, to assess
the performance of the local fit, a criterion is required. Depending on the application,
different criteria can be employed. For the sake of simplicity, we use the localized final

prediction error criterion defined as follows:

FPE(z,K) = Tieq. (nywi(z)(Y: — m(Xi, k))? 8 2tr(Wi) + atr((XT Wi Xk) U XTWEXL))
’ tr(Wi) 2r(Wi) — atr((XT Wi X))~ H(XTWEXk))
(5.5)

where, the first part of the above equation is equivalent to the mean square error and the
variance penalty (a > 2) is an arbitrary penalty applied on the variance term of the criterion
when the small neighborhood is chosen. This reduces the possibility of finding false feature
in local estimation. Parameters X and W denote the design and weight matrix respectively.

The presented localized goodness-of-fit estimates the quality of the fit for a given neigh-
borhood size k. This estimation is applied on different k and depending on the lowest cost
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for a given goodness-of-fit measure, which provides a balance between bias and variance er-
ror, the optimal k is chosen automatically. For other possible criteria the reader is referred

to [50].
5.3.4 Model-on-demand Algorithm

The general algorithm of the MOD estimator based on local regression is summarized in
this section. Providing the historical observations (Y;, X ,-)Ni=1, an estimation point z, type
of kernel and distance function and goodness-of-fit measure, the predicted value m(z) and
its variance will be estimated by following the procedures indicated below:

e Sorting the available data in ascending order according to the distance from z

e Performing weighted regression fit at a very small bandwidth ko, close to the smallest
bandwidth for which a well defined estimate is obtained.

o Increasing the bandwidth exponentially according to

hi = cp.hi1
where C, > 1. As suggested by Loader (1997)(36], this coefficient can be calculated
as follows:

Ch=1+ 07:2

This procedure is repeated until a goodness-of-fit cost fails at a low significance level
or a maximum neighborhood size k., is exceeded [50].

o Selecting the K,p based on the lowest cost of goodness-of-fit.

e Choosing the corresponding recorded parameter vector 3 at kopt to estimate the target

object m(x)

5.4 Illustrative Examples of MOD Algorithm

The proposed modeling strategy has been successfully applied to the pilot scale CSTR
reactor presented in the last chapter. To prove the feasibility of this approach, we apply

different scenarios covered in the following sections.

5.4.1 Identifying the simulated CSTR system using a linear model

Using the 8-level excitation signal and simulating the system, a training set of data for 1000
observations has been produced. Neglecting the nonlinear term in CSTR system, a global
linear model was constructed based on linear regression technique. The prediction result is
tested on another 500 simulated data points. Using the same training and testing data sets,
a robust and reliable prediction was obtained using the MOD algorithm. The estimations
of NAOH conductivity using global regression and local fit is compared in figure 5.1. As it
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is shown, the local fit estimation is very close to the actual data. Note that the local fit is

based on a linear model.
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Figure 5.1: Prediction results of NAOH conductivity obtained from global linear regression
and MOD tool . The solid lines are the simulated output from the CSTR; the global

regression is shown with dashes and the dots represent the MOD based prediction.

5.4.2 Evaluating MOD robustness using contrived nonlinear model struc-
ture

To examine the robustness and reliability of the MOD technique, it is assumed that the exact

model structure is unknown and the model consists of the linear and cross term of lagged

input output variables. Employing the global regression and weighted local fit on the same
set of data, a poor estimation is obtained by global modeling while the estimated product

conductivity based on MOD fit is almost identical to the actual data. The prediction result

of both techniques is shown in figure 5.2.

5.4.3 MOD prediction performance in the presence of disturbances

Applying the band limited white noise on the previous set of data, we evaluate the perfor-
mance of the model on demand approach by comparing the global regression and local fit
following the last two scenarios. Figure 5.3 and 5.4 show the estimation results of the noisy

data using linear and contrived nonlinear model structure respectively.
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Figure 5.2: Prediction results of NAOH conductivity obtained from global regression and
MOD tool using a false model structure . The solid lines are the simulated output from the
CSTR; the global regression is shown with dashes and the dots represent the MOD based

prediction.

It is shown that the MOD estimator does provide a better prediction compared to global

regression.

5.4.4 Comparison of prediction performance of CSTR system using ANNs,
GMDH and MOD technique

Employing the nonlinear identification tool ANNs, on the same training and testing data
set including band limited white noise, another estimation for the NAOH conductivity is
obtained.

To compare the performance of the candidate nonlinear black box techniques, GMDH,
MOD and ANNS, all prediction results are plotted in figure 5.5. As presented in this figure,
the GMDH and MOD provide closer estimation to the actual data compared to the one
obtained from ANNs.

5.4.5 Evaluation of MOD technique using experimental data

Performing the local fit on the ezperimental data set presented earlier, the effectiveness of
proposed identification algorithm is evaluated. The data obtained from conducted experi-
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Figure 5.3: Prediction results of NAOH conductivity from global linear regression and
MOD tool applied on the noisy data set . The solid lines are the simulated output from the
CSTR: the global regression is shown with dashes and the dots represent the MOD based

prediction.

ments are shown in figures 4.7 and 4.8. The first set of data are used for model identification

while the second set treated as testing data set.

As shown in figure 5.6 the predicted response using the MOD algorithm is able to fit
the actual set of data well. The presented simulation and experimental results show the
distinct feature of model-on-demand approach and its ability to predict the process output

very effectively while being robust to the disturbances.

5.5 Multi-rate system

This section extends the application of model-on-demand methodology to the systems in
which the quality control and measured variable are sampled at a different rate.

We consider the pilot scale CSTR reactor as a “linear” multi rate system with the
input sampling rate of every time unit and output sampling rate of every two units. The
general parametric model for one, two and three step ahead prediction of the system can
be presented in equations 5.6, 5.7 and 5.8 as follows:

y(t +1) = ay(t) + Bu(t) (5.6)
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Figure 5.4: Prediction results of NAOH conductivity from global regression and MOD tool
using a false model structure applied on the noisy set of data. The solid lines are the
simulated output from the CSTR; the global regression is shown with dashes and the dots
represent the MOD based prediction.

y(t+2) =ay(t+ 1)+ Bu(t+1) (5.7)

y(t +3) = ay(t +2) + Bu(t + 2) (5.8)

The information of y(t+1) and y(t + 3) is available while the observations for the y(t+2)
is unknown. In this study, the ratio between output/input data is 2 (M = 2). The objective
is to estimate the unknown parameters a and 3 and build a model for output variable based
on each unit sampling time. To achieve this goal, we substitute 5.7 in 5.8 and obtain the
following equation in which all available data is used.

y(t+3) = a®y(t + 1) + aBu(t + 1) + Bu(t + 2) (5.9)

Equation 5.9 can be solved using the ordinary regression technique. Having two unknown
variables and three available equations, the parameters a and 8 are optimized using the
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Black box technique Mean Square Error
GMDH 5.6005

Neural Networks 8.4960

Global linear regression 12.4608
Model-On-Demand 6.01

Table 5.1: Comparison of mean square error (MSE) of different algorithms applied to data
set with band limited white noise

non-linear least square estimation. The result can be easily extended for an arbitrary M.
However, the complexity is increased quickly with the increase of output/input sampling
ratio. An alternative approach to the modeling of the multi rate system is to transfer
the SISO system into MIMO system using the lifting technique as discussed in Chen and
Francis.

The technique introduced in this work is identical for both global and local modeling
except that in the local estimation this procedure is repeated for every single data point
and therefore the estimated parameters a and 3 are different for each observation.

Subsequent analysis of CSTR simulations will demonstrate that applying the presented
multi rate sampling strategy along with the model on demand approach for parameter
estimation, significant improvements in prediction performance can be engendered.

5.6 Simulated examples using multi rate operations

Given the set of data presented in first subsection of 5.4.1, we first follow equation 5.9
and perform global regression to estimate the parameters a, a@ and 8. Optimizing the
parameters a and 3, the two step ahead prediction components can be computed using
equation 5.7. These procedures provide a prediction based on global linear regression.
Incorporating the feature of MOD local estimation into the multi rate strategy and re-
peating the same procedures, a better estimation for each new observation can be obtained.
The result of both local and global estimation combined with multi rate algorithm is shown

in figure 5.7.
Performing the same methodology to the data points including band limited white noise,
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Figure 5.5: Prediction results of NAOH conductivity from GMDH, MOD and ANNs tool
applied on the noisy set of data. The solid lines are the simulated output from the CSTR;
the GMDH and MOD are shown with dashes and the dots respectively. The square sign

represents ANNSs.

we obtain the prediction results which are shown in figure 5.8.
The results from these simulations reveal that the model on demand approach is the

promising candidate in predicting the multi rate systems.

5.7 Conclusion

We have studied the problem of system modeling using data stored in a database. A model-
on-demand approach is used to estimate the process model of the CSTR reactor. The MOD
predictor is formed locally around the current working point such that the pointwise error
is minimized and therefore, a good bias/variance tradeoff is achieved.

The application of MOD algorithm is expanded to the multi rate systems in which the
input data is sampled faster than the output signal. The simulation results illustrated the

effectiveness and feasibility of the algorithm.
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Figure 5.6: Prediction results of NAOH conductivity from MOD tool applied on the exper-
imental set of data. The solid lines are the output from the pilot scale CSTR reactor. The
solid lines are the actual output from the CSTR and the dots represent the MOD based

prediction.

Table 5.2: Comparison of mean square error (MSE) of the discussed scenarios

70

Model structure MSE Global | MSE local
Linear model without disturbance 1.3087 0.2769
False nonlinear model without disturbance 44.6171 4.2009
Linear model on the “Experimental” data set 0.6180 0.1160
Linear model with band limited white noise 12.4608 7.6660
False nonlinear model with band limited white noise 23.3917 6.8762
Linear model without disturbance on the Multi rate system 0.9196 0.2831
Linear model with band limited white noise on the Multi rate system 9.3816 8.3564
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Figure 5.7: Prediction results of NAOH conductivity obtained from global linear regression
and MOD tool applied on the multi rate system . The solid lines are the simulated output
from the CSTR; the global regression is shown with dashes and the dots represent the MOD

based prediction.
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Figure 5.8: Prediction resuits of NAOH conductivity from global linear regression and
MOD tool applied on the noisy data set. The data is obtained from the simulated multi
rate system . The solid lines are the simulated output from the CSTR; the global regression
is shown with dashes and the dots represent the MOD based prediction.

72



Chapter 6

Conclusions

This thesis has explored the applications of first principles laws, multivariate statistical and
mathematical tools as well as issues in experimental design for identification of industrial
and pilot-scale processes.

The industrial case study, a Fluid Coker, has been considered in Chapters 1 and 2 in
order to visualize the use of presented tools for real application. The semi-empirical based
model obtained in Chapter 1 has yielded a reasonably good prediction of top distillation
point of the Coker at Syncrude Canada Ltd. To enhance the prediction performance, differ-
ent identification algorithms including partial least square (PLS) regression, group method
of data handling (GMDH) and artificial neural networks (ANNs) have been presented in
Chapter 2. The identified nonlinear components from Chapter 1 were used as compensating
elements in the design of the PLS based modeling. It is shown that the feasibility of the
PLS approach depends on the availability of the model structure under consideration. To
identify the optimal model under the condition that a priori information of the process
is not easily at hand, GMDH tool has been applied on the same input/output data. The
results have indicated that the GMDH tool provides a better estimation while the model
structure is self-organized. Neural networks have also provided reasonably successful pre-
diction, however, no explicit model is available by this tool. In Chapter 3, the issues of
experimental design in the development of nonlinear inferential models of chemical systems
were discussed. By designing an appropriate multi-level sequence and performing linear
regression (LR), GMDH and genetic algorithms (GAs), a final LR based model has been
provided for the nonlinear pilot scale CSTR reactor. The model on demand (MOD) ap-
proach was described in Chapter 4. This tool has been applied on the pilot scale CSTR
reactor presented in Chapter 3. It has been shown here that the MOD method is much
more reliable compared to other global methods. The MOD technique was also extended
to the domain of the simple multi rate system.
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6.1

Contribution of this thesis

The key contributions of this study can be listed as follows:

e One industrial case study involving first principles and black box modeling is presented

6.2

to demonstrate the utility of these techniques for inferential model development.

Superiority of the first principles modeling (FPM) over pure black box techniques was

established via extensive comparison and study.

Constructing a hybrid PLS/first principles model, it has been shown that such a model

can outperform the conventional one.

An identification tool, group method of data handling, has been proposed when the
mechanistic equation is unavailable.

A uniformly distributed M-level signal has been proposed to the identification of
a nonlinear system. Theoretical developments were supported by simulation and

experimental studies.

Some practical extensions were made to the model on demand strategy. A new algo-
rithm were suggested in conjunction with the MOD approach to handle the problem
of system modeling when the input data are sampled faster than the output signal.

Recommendation for future work

As mentioned earlier, there have been considerable issues in the identification of non-
linear systems in the literature, which have not been completed and require further
study. As an example, additional improvements in nonlinear inferential modeling can
be expected if better ways of design of experiments are incorporated.

Investigation of the performance of the MOD approach on the model predictive con-

troller may be a potential research direction.

It may also be interesting to apply MOD to a more general multi rate system using

the lifting technique.
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Appendix A

Nomenclature List

F: Total volume feed rate (dm3/s)

F,: Volume feed rate of sodium hydroxide (dm?3/s)

F: Volume feed rate of ethyl acetate (dm3/s)

V: Volume of reactor (dm3)

ag: Sodium hydroxide conc. in mixed feeds (mol/dm3)

a1: Sodium hydroxide conc. in reactor at time t (mol/dm3)

k: Specific rate constant
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Appendix B

Introduction to Genetic
Algorithms

Being a part of evolutionary computing, genetic algorithm (GA) is a rapidly growing tech-
nique in a variety of engineering fields and different application areas like optimization and
system modeling. GA is the study of artificial systems that has the characteristic of natural
living systems. This algorithm is based on the fact that those least suited to the current
environment die, while the best live on, to produce the next generation. In the same en-
vironment, the best of each generation increase its fitness over successive generations until
an optimum solution is achieved.

Genetic algorithms operate on populations of strings!, with the string coded to represent
some underlying parameter sets. Reproduction, crossover and mutation are applied to suc-
cessive string populations to create new string populations. These operators involve random
number generation, string copying, and partial string exchanging.

To review the genetic algorithm and the function of its operators in more detail, we discuss
one of the application of this technique, developing an inferential process model using sym-
bolic regression. Like GMDH, symbolic regression determines the appropriate structure and
complexity of the model as well as the best set of parameters. This approach is discussed

in more detail in the following sections.

B.1 Performing Symbolic Regression, an Application of Ge-
netic Algorithm

Regression is a techniques used quite frequently to interpret time series relationship. It
consists of finding the coefficients of a prefized function such that the resulting function
best fits the data points. However, the problem arises when finding good coefficients is
impossible and the function, which performs the best result, is unknown.

The strings of an artificial genetic system are analogous to chromosomes in the natural and biological
systems. The chromosomes are composed to genes, which are identical to feature, character or detector in
GAs. Like the position of a gene in the chromosome, its locus, features may be located on different positions
of the string.
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A tree structured genetic algorithm is one of the applied methodologies which, unlike
conventional regression, determines the structure and hence the complexity of the model.
The term “symbolic” stresses the fact that we are not interested in finding optimum para-
meters (numbers) but optimum functions (expressions, symbolic representations).

In order to use GA to solve symbolic regression problems, we follow the procedures

indicated below:

e After initializing and generating the first population of solutions to the numeric pre-
diction problem, the next step in genetic algorithm is coding parameters. In order not
to restrict the domain of the search and apply this technique to the general problems,
tree coding is applied to represent the algebraic expressions.

Assuming the output variable y should be predicted by three inputs z,, z» and z3
the tree structure of the initialized population, E‘—;—z’l, (z3 + z3) * (z; — x3) can be
presented as figure B.1. For a detail discussion of tree structure see Tenenbaum and

Augenstein (1981).
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Figure B.1: Representation of numeric expressions using tree structures. (Parent Popula-
tion)

e To evaluate the fitness of each individual tree and to measure the capability of each
member in predicting the target value, we assign a fitness functions to each tree.
One example of the fitness function introduced in the majority of literatures is the
minimum value of the error function between the actual and predicted solutions.

e Initializing the parent population and assessing the fitness of each member, we apply
the genetic operators, reproduction, crossover and mutation. From this stage, the
evolution of the process can be started. Note that the choice of each operator is

probabilistic.

e Crossover is randomly selection of a crossover point (link between nodes) in each
parent and swapping the sub-trees laying below the crossover points. Selecting a
crossover point is equivalent to selecting a random sub-expression.

81



Crossover
Poi ':%/ \

Parents » Offspring

Figure B.2: Example of crossover operation.

e Mutation is randomly selection of a mutation point in a tree and substituting the
sub-tree laying below such a point with a randomly generated sub-tree:

Mutauon

«— Point
; Randomly generated
sub-tree

— Mutation
/ Point
p i@
'
/\/ A [ x2 ] L2 ]

Figure B.3: Example of Mutation operation.

e Applying the genetic operators, we measure the fitness function of each new offspring
to make the decision which members of the population should die. This cycle is then
repeated until the maximum numbers of generations or other pre specified convergence

criteria are reached.

These procedures identify the structure of the nonlinear model. Using any optimiza-
tion method we are able to find the coefficients of the model at the same time and
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reach the optimal solution. Reviewing the implementation aspects of tree structured
symbolic regression, we might notice that there are several user specified parameters
such as population size, the number of generation, crossover and mutation probabil-
ity, available operators (+, -, *,...) and their probability and finally the weighting
variable of the fitness of each tree to prevent over fitting of the data and penalizing
the formation of a large tree.

The general genetic algorithm can be summarized in figure B.4:

- Represented as an array of individual, each contains decoded parameters, artificial chromosome,
objective function, auxiliary information;

Nextjeneration

Ty pa— X TN
7 +>{Reproductior] o
Copy.ing i"diyid'{al 5“’"‘8? based on the - : Taking two parent strings, generating two child
higher objective function values : strings; selecting a crossing site between 1 and |

the last cross site at random

+{_Mutation ]
I ¥ L1 "l
ot T

Flipping each gene, in the given chromosome
with a predefined probability rate

False |

Receiving req

Figure B.4: Basic algorithm of the evolutionary computation, genetic algorithm in a flow
chart scheme.
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