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Abstract

Understanding human immunodeficiency-1 (HIV-1) replication and latency

in different reservoirs is an ongoing challenge in the care of patients with

HIV/AIDS. A mathematical model was created that predicted HIV-1 and

simian immunodeficiency virus (SIV) infection dynamics within the brain dur-

ing effective combination antiretroviral therapy (cART). By developing a two

compartment mathematical approach, a predictive model was generated from

existing empiric data. Based on previous reports quantifying total viral DNA

levels in brain from HIV-1 and SIV infections, estimates of proviral DNA

burden were made, which were fit to a mathematical model predicting viral

accrual in brain macrophages from primary infection. To our knowledge this

is the first mathematical modeling study to quantify HIV-1 and SIV infection

dynamics in the brain. Our modeling study indicates that HIV-1 and SIV

provirus burdens in brain increase slowly over time. Assuming antiretroviral

therapy suppresses HIV-1 infection outside the brain, an effective antiretrovi-

ral therapy could eradicate HIV-1 infection in the brain, albeit over a decade

for patients without neurological complications and over two decades for those

with HAND.
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Chapter 1

Introduction

Combination antiretroviral therapy (cART) has evolved over the past 20 years

such that it is highly effective in suppressing human immunodeficiency virus-1

(HIV-1) replication in blood although recent data suggest that HIV-1 contin-

ues to replicate and replenish during cART in other tissues [1]. cART cannot

eradicate latently infected cells and some organs in the human body are rel-

atively inaccessible to cART. Moreover, some organs exert limited immune

responses resulting in reservoirs of latently or productively infected cells [2].

Viral reservoirs represent a critical problem for the eradication of HIV-1 infec-

tion and the clinical care of HIV/AIDS [3].

The brain is a natural anatomical reservoir for HIV-1 infection [4]. The

brain is devoid of in situ adaptive immune responses and the blood-brain

barrier (BBB) restricts antiretroviral agents from entering the brain [5]. HIV-

1 can reside indefinitely in brain cells and these infected cells support systemic

brain infection [4, 6].

HIV-1 infection can lead to neurological disorders including HIV-associated

neurocognitive disorder (HAND), which occurs in a subset of patients despite
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effective viral suppression in blood accompanied by restoration of CD4+ T

cell levels [7]. HIV-infected patients with HAND may have lower survival

rates compared with HIV-infected patients without neurological disorders [7].

Although there is an increased appreciation and understanding of clinical

aspects of HIV-1 brain infection, the underlying dynamics of viral replication

and latency in the brain remain unclear. While mathematical modeling has

been extensively used to study HIV-1 infection dynamics of cell populations

in the blood (Section 1.A.1) and few modeling studies are related to HIV-1

infection in the central nervous system (CNS) (Section 1.B.1 and 1.B.2), to

our knowledge this is the first mathematical modeling study to quantify HIV-1

and simian immunodeficiency virus (SIV) infection dynamics in the brain.

1.A Lentiviral infections in the blood and vi-

ral reservoirs

The immunodeficiency-associated lentiviruses including HIV-1, SIV, feline im-

munodeficiency virus (FIV), and bovine immunodeficiency virus (BIV) cause

a prototypic disease pattern in the blood [8]. It begins with primary infection

inducing acute disease accompanied by a robust immune response, which is

followed by a long period of subclinical infection. The last phase of the dis-

ease is defined by profound immunosuppression and inflammation leading to

AIDS, culminating in death [2]. The primary target cells for HIV-1 infection

in the blood are CD4+ T cells [9]. HIV-1 infects other cells in the blood in-

cluding cells of the monocyte/macrophage lineage [2]. While CD4+ T cells

have a shortened lifespan after infection [9], monocytes and macrophages are
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long-lived cells regardless of infection status [10, 11]. Target cells that contain

integrated viral DNA but do not produce virus are called latently infected cells

[9]. Latently infected cells have the capability to reinitiate virus replication

and become productively infected cells [2, 9].

Though cART is very successful in suppressing HIV-1 replication in the

blood, certain tissues have limited cART penetration and limited immune re-

sponse and these tissues result in viral reservoirs with latently and productively

infected cells [2]. HIV-1 virus can evade the immune system by residing inside

anatomical viral reservoirs such as the brain [12]. Anatomical viral reservoirs

like the brain present a crucial problem for the eradication of HIV-1 from

infected individuals [5].

1.A.1 HIV-1 mathematical models in the blood

Mathematical models have been used extensively to study HIV-1 infection in

the blood [13, 14, 9]. Two pioneers for using mathematical models to get a

precise mathematical interpretation of HIV-1 blood viral decay data in 1995

were Alan Perelson and Martin Nowak [13, 14, 9]. An overview of previous

HIV-1 mathematical models in the blood are presented in this section (1.A.1).

Basic model of HIV-1 infection in the blood

The earliest mathematical model of HIV-1 infection in the blood was developed

by Alan Perelson and Martin Nowak [13, 14, 9]. It is a nonlinear autonomous

ordinary differential equation (ODE) model with the following three compart-

ments: susceptible CD4+ T cells, x; infected CD4+T cells, y; and free virus

particles, v. It is assumed that the CD4+T cells are produced at a constant

3



rate λ and die at the rate kx per cell. The free virus particles infect the suscep-

tible CD4+T cells at a rate proportional to the product of their populations,

βxv (the simple mass action infection term). The death rate of infected CD4+

T cells is ky per cell, where ky > kx to reflect the shortened lifespan of infected

CD4+ T cells. Free virus particles are produced by infected CD4+ T cells at

the rate p per cell. The death rate of free virus particles is a per virus. The

ODE model is the following:

dx

dt
= λ− kxx− βxv

dy

dt
= βxv − kyy

dv

dt
= py − av.

(1.1)

This model was able to describe the dynamics of acute HIV-1 infection in the

blood but this model does not include factors such as antiretroviral therapy

and latently infected cells [13].

Modeling HIV-1 infection with antiretroviral therapy in the blood

Reverse transcriptase inhibitors prevent the infection of susceptible CD4+ T

cells by stopping the conversion of single-stranded HIV-1 RNA into double-

stranded HIV-1 DNA [9]. The effectiveness of the reverse transcriptase in-

hibitors εRTI is included in the basic model of HIV-1 infection (1.1) [13, 9]:

dx

dt
= λ− kxx− (1− εRTI)βxv

dy

dt
= (1− εRTI)βxv − kyy

dv

dt
= py − av,

(1.2)
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where 0 ≤ εRTI ≤ 1 and εRTI = 1 denotes 100% effectiveness of the reverse

transcriptase inhibitors.

Protease inhibitors prevent infected CD4+ T cells from assembling new

infectious virus particles [9]. The effectiveness of the protease inhibitors εPI is

included in the previous model of HIV-1 infection by splitting the free virus

particles into two different populations [9, 13]: non-infectious viral particles,

vNI , and infectious viral particles, vI . The basic model of HIV-1 infection in the

blood including both reverse transcriptase inhibitors and protease inhibitors

is the following:

dx

dt
= λ− kxx− (1− εRTI)βxv

dy

dt
= (1− εRTI)βxv − kyy

dvNI
dt

= (1− εPI)py − avNI
dvI
dt

= εPIpy − avI ,

(1.3)

where 0 ≤ εRTI ≤ 1 and 0 ≤ εPI ≤ 1. This model was able to describe the dy-

namics of HIV-1 infection in the blood over the first two weeks of antiretroviral

therapy but this model does not include latently infected cells [13].

Modeling HIV-1 infection with latency in the blood

When CD4+ T cells becomes infected, they can become different types of

infected cells [9]. In this model, when CD4+ T cells becomes infected, they will

either become productively infected cells with probability q1, latently infected

cells with probability q2, and defective infected cells (harbor defective provirus)
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with probability q3 [9]. Latently infected CD4+ T cells y2 can be reactivated

to become virus producing CD4+ T cells y1 at rate γ [9]. This adjusts the

antiretroviral therapy model in the blood (1.3) to become the following:

dx

dt
= λ− kxx− (1− εRTI)βxv

dy1
dt

= q1(1− εRTI)βxv − ky1y1 + γy2

dy2
dt

= q2(1− εRTI)βxv − ky2y2 − γy2
dy3
dt

= q3(1− εRTI)βxv − ky3y3
dvNI
dt

= (1− εPI)py1 − avNI
dvI
dt

= εPIpy1 − avI ,

(1.4)

where q1 + q2 + q3 = 1, ky1 � ky2 , ky3 , and a� ky1 � ky2 + γ.

If the reverse transcriptase inhibitors and protease inhibitors are 100%

effective (εRTI = 1 and εPI = 1), then in the model (1.4) the latently infected

CD4+ T cells are responsible for the slower second phase of viral decay in the

blood after the administration of reverse transcriptase inhibitors and protease

inhibitors since a� ky1 � ky2 + γ [9, 15].

The third phase of viral decay in the blood after the administration of

treatment occurs when the HIV-1 RNA drops below 50 copies/mL [15]. This

phase is characterized by episodes of viral increase above the limit of detection

[15]. These viral episodes are termed viral blips [15]. In a modified version of

model (1.4), it is hypothesized that these viral blips are caused by the antigenic

stimulation of latently infected CD4+ T cells to activated CD4+ T cells [15].
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Modeling HIV-1 infection with the macrophage population in the

blood

In an early study, the macrophage population was incorporated into a version

of the latently infected HIV-1 model in the blood (1.4) [10]. Here the variable

m is the concentration of susceptible macrophages and m∗ is the concentration

of infected macrophages [10]:

dx

dt
= λ− kxx+ rx

(
1− x+ y1 + y2

Tmax

)
− (βvxxv + βm∗xm∗)

dy1
dt

= γy2 − ky1y1
dy2
dt

= (βvxxv + βm∗xm∗)− ky2y2 − γy2
dv

dt
= Nky1y1 + pm∗ − av − βvxxv

dm

dt
= km(s−m)− βvmmv

dm∗

dt
= βvmmv − km∗m∗.

(1.5)

The new parameters in the model are the following: r, the growth rate of CD4+

T cells; Tmax, the carrying capacity of the total CD4+ T cell population; βvx ,

the HIV-1 transmission rate from free virus to susceptible CD4+ T cells; βm∗ ,

the HIV-1 transmission rate from infected macrophages to susceptible CD4+

T cells; βvm ,, the HIV-1 transmission rate from free virus to macrophages; N ,

the number of free virion produced per actively infected CD4+ T cell; p, the

production of free virus from infected macrophages; s, the rate of production

of susceptible macrophages.

This model (1.5) demonstrated a slower depletion of CD4+ T cells and

7



persistence of HIV-1 infection in the presence of a small number of free virus.

1.B Brain lentiviral reservoir

HIV-1 and SIV can be detected in brain tissue within weeks after primary

infection [16, 17]. Evidence shows HIV-1 and SIV can enter the brain through

trafficking infected macrophages [8, 18, 19]. Three cell types in the brain are

known to be permissive to primate lentivirus infections: astrocytes, perivascu-

lar macrophages and microglia. Brain macrophages, including microglia and

perivascular macrophages, display features of productive HIV-1 and SIV in-

fections [9, 10]. In contrast, infected astrocytes contain viral genome but do

not typically display features of active viral replication in vivo. The brain is

relatively inaccessible to cART [5]. The brain also lacks an adaptive immune

response [12]. HIV-1 has the potential to stay in brain macrophages for the

lifetime of an infected patient and the brain is an important reservoir of HIV-1

[4].

HIV-related neurological disorders occur frequently for HIV-infected pa-

tients including patients on cART [7]. HIV-related neurological disorders ma-

jorly affect the completion of everyday activities and they can cause interfer-

ence in the adherence to cART [20].

The underlying viral dynamics in the brain remain unclear. Cross-sectional

autopsy studies of autopsied brain tissues revealed highly variable HIV-1 RNA

levels in brain but the impact of combination antiretroviral therapy (cART)

on brain viral burden remains uncertain, largely because of the relative inac-

cessibility of prospectively analyzed brain tissues.

A small number of earlier modeling studies are related to HIV-1 infection
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in the CNS. These earlier studies are presented in the following two sections

(Section 1.B.1 and 1.B.2). These earlier studies do not model the brain. Our

new mathematical model quantifies HIV-1 and SIV infection dynamics in the

brain and our model is presented in Chapter 3.

1.B.1 HIV-1 mathematical models related to central

nervous system

Previous mathematical models have attempted to measure the dynamics of

HIV-1 infection by modeling the three compartments of peripheral blood,

lymph nodes, and the central nervous system (CNS) together [21, 22]. The

migration of monocytes from the peripheral blood to the CNS was considered

in the study mathematical model but the progression of the disease within the

CNS was not modeled [21]. Another study created a model including the dy-

namics of uninfected monocytes, infected monocytes, uninfected macrophages,

and infected macrophages in the CNS but the model specification in the CNS

was unclear and the CNS dynamics were not fit to longitudinal CNS data [22].

A previous two compartment mathematical model in the CSF showed a

strong relationship between the neurotoxin quinolinic acid (QUIN) released

from activated macrophages and active CSF HIV infection [23]. The model

included one compartment for QUIN in the plasma and the other compart-

ment for QUIN in the CSF; this model did not include a compartment for

macrophages [23].

Several mathematical models of cell-to-cell spread motivated from the bi-

ology of HIV-1 infection in tissue culture and brain tissue were fit to lymph

node tissue culture data in vivo [24, 25, 26]. These mathematical models are
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primarily two compartment models of cell-to-cell spread with delay [25, 26].

The following is a general model for the cell-to-cell spread of HIV-1 infection

in tissue culture [25]:

dx

dt
= rx

(
1− x+ y

Mx

)
− βxy

dy

dt
= α

[∫ t

−∞
x(u)y(u)F (t− u) du

]
− µy,

(1.6)

where x are the concentration of healthy cells, y are the concentration of

infected cells, r is the effective reproductive rate of healthy cells, Mx is the

effective carrying capacity of the system, β is the infection of healthy cells by

the infected cells,
α

β
is the fraction of cells surviving the incubation period, µ

is the death rate of infected cells, and productively infectious cells at time t

were infected u time units ago with u distributed according to a probability

distribution F (u).

1.B.2 Statistical machine learning methods concerning

HIV-1 infection in central nervous system

Support Vector Machines (SVM) produce nonlinear boundaries for data clas-

sification problems by constructing a linear boundary in a large transformed

version of the feature space [27]. SVM methods have been applied to data

from patients with advanced HIV-infection to determine the most important

features that are associated with the presence of HIV-associated neurological

disorders (HAND) or neuropsychological performance (NP)

[28, 29]. These features were the following: age, education level, duration of

HIV infection, current haemoglobin level, current CD4 T-cell count, current
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plasma log10 HIV RNA, current plasma viral detection, past CNS HIV-related

diseases, cART CNS penetration effectiveness (CPE), depressive complaints,

and duration of current cART [28, 29]. It was noted in the earlier study that

the method of SVM is particularly difficult because the method tries to assess

a neurological condition based on features that usually pertain to background

data or data received from peripheral blood [28].

Statistical machine learning methods are also being considered to design

future treatment schedules for patients [30].

1.C Objective and hypothesis

Objective

Our mathematical modeling study aimed to quantify lentiviral replication dy-

namics in the brain, especially among patients receiving cART. We collected

and analyzed published data on HIV-1 and SIV brain infection from several

studies. In a 2013 study, HIV-infected patient brain specimens from the Na-

tional NeuroAIDS Tissue Consortium (NNTC) were examined for patients

with advanced disease [31]. Published data from four SIV studies examining

macaque brain tissues without cART [32, 33, 34, 35] were also included in our

study. A mathematical model was formulated to describe HIV-1 and SIV infec-

tion dynamics in brain macrophages. The model was calibrated and validated

using published brain data. The model showed HIV-1 and SIV infection in the

brain progress slowly, due in large part to the long lifespan of infected brain

macrophages. Indeed, the protracted turnover of infected brain macrophages

might be an important hindrance in viral eradication [18]. Provided cART

suppresses HIV-1 infection outside of the brain coupled with slow progression

11



of HIV-1 infection in the brain, moderately efficacious cART regimens could

eradicate HIV-1 infection in the brain over years.

Hypothesis

Our hypothesis was that the brain macrophage population maintains HIV-1

infection of the brain and permits a progressive increase in integrated viral

DNA burden that can be eradicated by efficient cART.
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Chapter 2

Data

2.A HIV-1 brain-derived DNA data

When using autopsy data for brain tissue from human cohorts, there is min-

imal knowledge regarding duration of infection for each patient. It is widely

accepted that approximately 10 years from primary infection a patient in the

developed world will develop AIDS if untreated. From published studies of

HIV-1 infection of the brain, we were able to ascertain data corresponding

to two time points: 15 days after primary infection [16] and 10 years from

primary infection [31].

Data used to estimate HIV-1 infected brain macrophages at primary infec-

tion for patients with and without neurological disorders came from a single

patient study showing positive brain HIV-1 DNA detection 15 days after pri-

mary infection [16].

Brain tissue-derived data provided a large data set from HIV/AIDS pa-

tients with advanced disease ( 10 years from primary infection [31]) including

data from patients (n = 35) without neurological disease as determined by the
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NNTC neuropsychological test battery [31]; 73% of these patients were active

on cART within 1 year of death. Brain-derived HIV-1 DNA data were also

available from patients with HAND and/or encephalitis (n = 22); 62% were

receiving cART within 1 year of death [31].

2.B SIV brain-derived DNA data

As each SIV study included brain-derived data corresponding to several time

points, the four SIV studies were combined (32 macaques in total) to create a

single longer time series of untreated SIV-infected brain tissue data (3, 10, 21,

56, and 84 days post-infection) [32, 33, 34, 35]. Data used for quantifying SIV-

infected brain macrophages came from the brain viral DNA of this dataset.

It was imperative to combine SIV studies where the macaques were the same

species and each received the same strain and route of SIV infection. Three SIV

studies used the same species of pigtailed macaques and were infected with the

same viruses and input titers (SIV/DeltaB670/SIV/17E-Fr) [32, 33, 34, 35].

One SIV study used rhesus macaques; these macaques were infected with either

SIVmac239 or SIVmac251 [35]. This latter study was included since it offered

relevant data from the earliest time point (3 days post-infection).

2.C Biological data assumptions

The human brain contains an estimated 171 billion cells and approximately

84.6 billion glial cells [36]. A comprehensive study of the cellular composition of

the grey matter of the human cerebral cortex indicated that microglia amount

to only 5% of glial cells in grey matter [37]. From these analyses, the estimated
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number of microglia in the human brain is 4.23 billion cells. Combining men

and women, the approximate weight of a human brain is 1267 grams [38]. The

projected number of microglia per gram of brain tissue is 3.34 million cells per

gram. The number of susceptible brain macrophages was assumed to equal

the total number of microglia. Each HIV- or SIV-infected brain macrophage

can be assumed to contain a single copy of integrated viral DNA. Per gram

of brain tissue, macaques have approximately the same number of susceptible

brain macrophages as humans [36].

2.D Data conversion

The HIV-1 and SIV studies measuring viral DNA in brain tissues used dif-

ferent units for measuring viral DNA. Since each HIV- or SIV-infected brain

macrophage is assumed to contain a single copy of integrated viral DNA, by

converting total viral DNA to integrated viral DNA, we obtained the number

of infected brain macrophages per gram of brain tissue. The conversion of the

data is displayed in Table 2.1.

The HIV-1 brain viral DNA was measured in units of log10 HIV DNA

copies + 200 per gram of brain tissue, where 200 represents the approximate

threshold concentration of the assay from human brain specimens [31]. These

data were converted to HIV DNA copies per gram of brain tissue by exponen-

tiation. The ratio of integrated proviral DNA to total viral DNA is 1:86 [39]

and this ratio was used to infer the number of integrated HIV DNA copies per

gram of brain tissue.

For the four SIV studies, the SIV brain viral DNA was measured in two dif-

ferent units [32, 33, 34, 35]: log10 SIV DNA copy equivalents per 2 microgram

15



of total DNA and log10 SIV DNA copy equivalents per 10,000 cells.

For the former unit, this data was converted to SIV DNA copy equivalents

per 2 microgram of total DNA by exponentiation. Using the conversion that

each gram of brain tissue contains 4 micrograms of total host genomic DNA

[40], the data was transformed to SIV DNA copy equivalents per gram of brain

tissue. By using the ratio of integrated proviral DNA to total viral DNA (1:86)

[39], the SIV DNA copy equivalents per gram of brain tissue were converted

to integrated SIV DNA per gram of brain tissue.

For the latter unit, this data was converted to SIV DNA copy equivalents

per 10,000 cells by exponentiation. Using the conversion that 150 000 cellular

genomes contains 1 microgram of host genomic DNA [41], the data was trans-

formed to SIV DNA copy equivalents per 1 microgram of host genomic DNA.

By using the conversion that each gram of brain tissue contains 4 micrograms

of host genomic DNA [40] and the ratio of integrated proviral DNA to total

viral DNA (1:86) [39], the SIV DNA copy equivalents per 1 microgram of host

genomic DNA was converted to integrated SIV DNA per gram of brain tissue.
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Virus Neurological
disorders

Estimated
years
infected

Mean vi-
ral DNA
copies/g

Estimated
mean in-
tegrated
viral DNA
copies/g

Estimated mean
infected brain
macrophages/g

Ref

HIV-1 - 0.04 9− 172α 0.1− 2α 0.1− 2α [16]
HIV-1 No ≥ 10 1.95×103 23 23 [31]
HIV-1 Yes ≥ 10 9.88×104 1149 1149 [31]
SIV - 0.008 0 0 0 [35]
SIV - 0.008 0 0 0 [35]
SIV - 0.027 1.41×103 16 16 [33]
SIV - 0.058 1.24×103 14 14β [33]
SIV - 0.058 6.22×103 72 72β [34]
SIV 17% with en-

cephalitis
0.153 1.90×103 22 22 [33]

SIV 83% with en-
cephalitis

0.230 3.22×104 375 375 [32]

Table 2.1: Conversion of HIV-1 and SIV DNA to the estimated
mean number of infected brain macrophages per gram of brain
tissue at different times from primary infection.

αThis study detected proviral DNA in the brain by PCR. The number of viral
DNA copies was not reported. It is assumed that the level of positive detection
was approximately 100 copies Viral DNA per gram. The range of 9-172 copies
Viral DNA per gram was chosen as the data from this study.
βThe six observations from each of these studies were combined and averaged
giving 43 as the mean infected brain macrophages per gram at 0.058 years infected.
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Chapter 3

The HIV-1 brain macrophage

infection model

3.A Formulation of mathematical model

Experimental evidence shows HIV-1 and SIV can enter the brain through

trafficking infected macrophages [8, 18, 19]. Three cell types in the brain are

known to be susceptible to primate lentivirus infections: astrocytes, perivascu-

lar macrophages and microglia. Brain macrophages, including microglia and

perivascular macrophages, display features of productive HIV-1 and SIV infec-

tions in the brain [9, 10]. Although astrocytes contain viral genome, astrocytes

were not considered in this study because astrocytes have a limited infection

and produce little or no virus in vivo [42].

A dynamic model was developed to quantify HIV-1 and SIV infection dy-

namics of brain macrophages. The brain macrophage population is divided

into two compartments: susceptible brain macrophages, x, and infected brain

macrophages, y. The infected brain macrophage population includes produc-
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tively and latently infected brain macrophages. Given the limited viral RNA

and DNA data it was necessary to combine productively and latently infected

brain macrophages into a single population. HIV-1 and SIV infections of brain

macrophages are assumed to spread principally through direct cell-to-cell in-

teraction [18, 20]. Susceptible and infected brain macrophages are assumed to

have homogeneous mixing and the brain macrophage population was assumed

to be uniform throughout the brain. We followed an established method of

modeling direct transmission between two populations by using the rate βxy

as the number of new infections per unit time, where β is called the transmis-

sion coefficient. Without the presence of infection in the model, the number of

susceptible brain macrophages converges to the equilibrium value of
λ

k
, where

λ is the production rate of susceptible brain macrophages and k is the natural

death rate for brain macrophages. Susceptible and infected brain macrophages

were presumed to have the same death rate k because our group’s earlier stud-

ies did not observe increased cellular death in HIV-infected versus uninfected

brain macrophages [43]. In the HIV-1 dataset from the NNTC cohort, most

patients were receiving cART within a year of death. We considered the per-

centage of cART effectiveness ε× 100%, where 0 ≤ ε ≤ 1. The parameter ε is

set to zero when there is no treatment.

The model is described by the set of nonlinear autonomous ordinary dif-

ferential equations (ODEs):

dx

dt
= λ− kx− (1− ε)βxy = λ− kx− βεxy = h(x, y)

dy

dt
= (1− ε)βxy − ky = βεxy − ky = g(x, y),

(3.1)

where βε = (1− ε)β. Given the initial conditions of the number of susceptible
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brain macrophages x0 and the number of infected brain macrophages y0 at the

time of initial infection, this model produces a temporal pattern of infected

brain macrophage burden. Time units in this model are in years. Population

units are the number of cells per gram of brain tissue.

Compared to mathematical models for HIV-1 infection in the plasma [9,

10], our model has a different transmission term. In the plasma and peripheral

nervous system (PNS) infections occur by viral entry of host cell. In the brain,

infections occur largely by direct cell-to-cell contact. For the same reason,

unlike blood-based models for HIV-1 infection, our model does not include a

compartment for free virus. Models with direct cell-to-cell transmission were

used to describe the viral dynamics of HTLV-1 infection of CD4 T cells [9,

44, 45] whose lifespan is much shorter than brain macrophages. Mathematical

models of HIV-1 infection of long-lived cells like macrophages were studied in

[9] using virus-cell interaction as the mode of transmission.

3.B Vector differential equation form

The nonlinear autonomous ODE system (3.1) can be written as a vector dif-

ferential equation:

x′ = f(x), (3.2)

where x = 〈x, y〉 and f = 〈h(x, y), g(x, y)〉, with the vector of initial conditions

x0 = 〈x0, y0〉.

The initial value problem (IVP) that we would like to solve is the following:
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Let E be an open set in R2. Assume that f ∈ C(E → R2). Find a solution of

the ODE model (3.1) in R2 which satisfies the initial condition, x0,

x′ = f(x)

x(t0) = x0.

(3.3)

3.C Existence and uniqueness

In this section, we show that the initial value problem for the ODE model

(3.3) has a unique solution given the vector of initial conditions x(t0) = x0 for

some maximal interval of existence t ∈ (ω−, ω+).

Definition (Lipschitz condition): Let E be an open subset of Rn. Assume

that f ∈ C(E → Rn). The function f satisfies the Lipschitz condition with

respect to x if there exists constant K such that

|f(t,x1)− f(t,x2)|≤ K|x1 − x2| (3.4)

for all (t,x1), (t,x2) ∈ E, where |·| is any norm in Rn.

The functions h(x, y) and g(x, y) in the ODE model (3.1) are continuous

and differentiable functions for all |t|< ∞, |x|< ∞, and |y|< ∞. Therefore,

the function f is continuously differentiable for all |t|< ∞ and |x|< ∞ and

this implies that the function f is globally Lipschitz continuous over R2.
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Theorem 3.1 (Existence-Uniqueness Theorem): Let E be an open subset of

Rn containing x0. Assume that f ∈ C(E → Rn) and f satisfies Lipschitz

condition in E with respect to x. Then there exists an a > 0 such that the

initial value problem

x′ = f(x)

x(t0) = x0

(3.5)

has a unique solution φ(t) on the interval t ∈ [t0 − a, t0 + a].

Theorem 3.2 (Maximal interval of existence): Let E be an open subset of Rn.

Assume that f ∈ C(E → Rn) and f satisfies Lipschitz condition in E with

respect to x. Then for each point x0 ∈ E, there exists a maximal interval

(ω−, ω+) on which the initial value problem (3.5) has a unique solution, φ(t).

Since the function f in the ODE model (3.1) is continuously differentiable

for all |t|< ∞ and |x|< ∞, then by theorem 3.1 there exists an a > 0 such

that the initial value problem (3.3) has a unique solution φ(t) on the interval

t ∈ [t0 − a, t0 + a]. Furthermore, by theorem 3.2, a solution φ(t) can be

extended to its maximal interval of existence (ω−, ω+). If a solution φ(t) stays

in a compact subset of E during its maximal interval of existence, then it exists

for t ∈ (−∞,∞).
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3.D Well-posedness

The ODE model (3.1) is considered well-posed if nonnegative initial conditions,

x0 and y0, lead to nonnegative solutions, x(t) ≥ 0 and y(t) ≥ 0 for t ≥ 0 - that

is, the positive quadrant of R2

R2
+ = {(x, y) ∈ R2|x ≥ 0, y ≥ 0} (3.6)

is positively invariant with respect to (3.1).

To verify the positive invariance of R2
+ by showing that the direction of the

vector field 〈λ− kx− (1− ε)βxy, (1− ε)βxy− ky〉 of (3.1) is either tangent to

the coordinate or pointing into the interior of R2
+.

When x = 0,

dx

dt

∣∣∣∣
x=0

= λ > 0 and
dy

dt

∣∣∣∣
x=0

= −ky ≤ 0.

Therefore, the vector field 〈λ,−ky〉 points into the interior of R2
+.

When y = 0,

dx

dt

∣∣∣∣
y=0

= λ− kx and
dy

dt

∣∣∣∣
y=0

= 0.

Since
dy

dt

∣∣∣∣
y=0

= 0, the vector field 〈λ− kx, 0〉 is tangent to the line y = 0.

Also, this implies that solutions starting on the line y = 0 remain on the line.

The line y = 0 is invariant.

Consequently, all solutions starting in R2
+ remain in R2

+ for t > 0.
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3.E Feasible region

Let

G =

{
(x, y) ∈ R2

+|x ≤
λ

k
, x+ y ≤ λ

k

}
. (3.7)

Theorem 3.3 shows that all solutions of the model (3.1) are bounded in the

positively invariant set G. The set G is a feasible region for (3.1).

Theorem 3.3 (Feasible Region): The set G defines a bounded feasible region

for the ODE model (3.1).

Proof. From the ODE model (3.1),

dx

dt
= λ− kx− βεxy ≤ λ− kx ⇒ lim supt→∞(x(t)) ≤ λ

k
.

By adding the two equations in the ODE model (3.1), we receive

dx

dt
+
dy

dt
= λ− kx− ky = λ− k(x+ y)

⇒

lim supt→∞(x(t) + y(t)) =
λ

k
.

Now, to show all solutions starting in G for the ODE (3.1) remain in G

for t > 0. Since all solutions of the ODE system (3.1) starting in R2
+ remain

in R2
+ for t > 0, we need to show that when x =

λ

k
and when y =

λ

k
− x all
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solutions remain in G for t > 0.

When x =
λ

k
,

dx

dt

∣∣∣∣
x=
λ

k

= λ− k
(
λ

k

)
= 0 and

dy

dt

∣∣∣∣
x=
λ

k

= βε
λ

k
− ky.

Since
dx

dt

∣∣∣∣
x=
λ

k

= 0, the vector field

〈
0, βε

λ

k
− ky

〉
is tangent to the line

x =
λ

k
. Also, this implies that solutions starting on the line x =

λ

k
remain on

the line. The line x =
λ

k
is invariant.

Now, when y =
λ

k
− x, the vector field is given by

λ− kx− βεxλk + βεx
2

βεx
λ

k
− βεx2 − λ+ kx

 =

(
λ− kx− βεx

λ

k
+ βεx

2

) 1

−1

 .
This vector has slope -1 and it is parallel with the line y =

λ

k
−x. Therefore,

this vector field is tangent to the line y =
λ

k
− x. This implies that solutions

starting on the line y =
λ

k
− x remain on the line. The line y =

λ

k
− x is

invariant.

Thus, we can consider a feasible regionG =

{
(x, y) ∈ R2

+|x ≤
λ

k
, x+ y ≤ λ

k

}
.

The region G is positively invariant with respect to the model (3.1) and the

model is well-posed.

25



By theorem 3.3, the ω-limit sets of any initial point in R2
+ are contained in

the closure of G, G. When the limiting behavior of the solutions to the ODE

model (3.1) are studied, it is sufficient to only consider solutions in the feasible

region G.

3.F Basic and Control Reproduction Number

In a fully susceptible brain macrophage population without treatment, the

average number of newly infected brain macrophages caused by a single in-

fected brain macrophage during its infectious lifetime is given by the basic

reproduction number, R0:

R0 =
βλ

k2
(3.8)

In a fully susceptible brain macrophage population with the presence of

cART, the average number of newly infected brain macrophages caused by a

single infected brain macrophage during its infectious lifetime is given by the

control reproduction number, Rε:

Rε = (1− ε)βλ
k2

=
βελ

k2
= (1− ε)R0 (3.9)

where βε = (1 − ε)β. The parameter ε represents the effectiveness of cART.

The parameter ε is set to zero when there is no treatment.
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The control reproduction number, Rε, will be derived by considering the

local stability of the disease-free equilibrium point P 0 in section 3.H.

3.G Equilibrium points

Theorem 3.4 (Existence of equilibria): 1. If Rε ≤ 1, then the disease-free

equilibrium P 0 is the only equilibrium in the feasible region G.

2. If Rε > 1, then there exist two equilibria in the feasible region G: the

disease-free equilibrium P 0 and the endemic equilibrium P ∗.

Proof. Equilibrium points occur when the ODE system (3.1) is set to 0:

dx

dt
= λ− kx− (1− ε)βxy = λ− kx− βεxy = 0

dy

dt
= (1− ε)βxy − ky = βεxy − ky = 0

⇒

λ− kx− βεxy = 0 and y(βεx− k) = 0.

This implies that either y = 0 or x =
k

βε
.

When y = 0, we receive the disease-free equilibrium point

P 0(x0, y0) =

(
λ

k
, 0

)
.
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When x =
k

βε
, we receive the endemic equilibrium point

P ∗(x∗, y∗) =

(
k

βε
,
λ

k
− k

βε

)
.

If Rε ≤ 1, then y∗ =
λ

k
− k

βε
≤ 0. Therefore, when Rε ≤ 1, the only

equilibrium in the feasible region G is the disease-free equilibrium P 0.

If Rε > 1, then y∗ =
λ

k
− k

βε
> 0. Therefore, when Rε ≤ 1, there exist

two equilibria in the feasible region G: the disease-free equilibrium P 0 and the

endemic equilibrium P ∗.

3.H Local stability

The local behavior of the nonlinear ODE system (3.1) near a hyperbolic equilib-

rium point x0 is topologically equivalent to the local behavior of the following

linear system [46]:

x′ = J(x0)x (3.10)

where J is the Jacobian matrix of the ODE system (3.1) and

J(x, y) =

∂h∂x(x, y) ∂h
∂y

(x, y)

∂g
∂x

(x, y) ∂g
∂y

(x, y)

 =

−k − βεy −βεx
βεy βεx− k

 . (3.11)
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Definition (Hyperbolic equilibrium point, [46]): An equilibrium point x0 is

called a hyperbolic equilibrium point of the nonlinear autonomous ODE sys-

tem (3.2) if none of the eigenvalues of the matrix J(x0) have zero real part.

Definition (Types of equilibrium points, [46]): An equilibrium point x0 of

(3.2) is called a sink if all of the eigenvalues of the matrix J(x0) have negative

real part; it is called a source if all eigenvalues of the matrix J(x0) have

positive real part; and it is called a saddle if it is a hyperbolic equilibrium

point and the matrix J(x0) has at least one eigenvalue with a positive real

part and at least one with a negative real part.

The following theorem guarantees that any sink of (3.2) is uniformly asymp-

totically stable.

Theorem 3.5: Suppose

1. f(x0) = 0

2. The equilibrium point x0 is a sink.

Then the equilibrium point x0 of the nonlinear autonomous ODE system

(3.2) is uniformly asymptotically stable.

Definition: The equilibrium point x0 is unstable if it is not stable.

Proposition 3.1 (Local stability of P 0): 1. When Rε < 1, the disease-free

equilibrium point P 0(x0, y0) =

(
λ

k
, 0

)
is locally asymptotically stable in

the feasible region G.

2. When Rε > 1, the disease-free equilibrium point P 0(x0, y0) =

(
λ

k
, 0

)
is an

unstable saddle point in the feasible region G and repels into the interior

of the feasible region G.
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Proof. To study the local stability of the disease-free equilibrium point P 0,

the point P 0 is plugged into the Jacobian matrix (3.11)

J(P 0) =

∂f∂x(P 0) ∂f
∂y

(P 0)

∂g
∂x

(P 0) ∂g
∂y

(P 0)

 =

−k −βελk
0 βε

λ

k
− k

 (3.12)

.

Since the matrix (3.12) is upper triangular, the eigenvalues of the matrix

(3.12) are θ1 = −k and θ2 = βε
λ

k
− k. The eigenvalue θ1 < 0 since k > 0.

The disease-free equilibrium point P 0 is locally asymptotically stable if the

eigenvalue θ2 < 0.

If θ2 < 0, then βε
λ

k
− k < 0 ⇒ βελ < k2 ⇒ βελ

k2
< 1.

Let Rε =
βελ

k2
. (Note: This is a derivation of the control reproduction

number, Rε, by considering the local stability of the disease-free equilibrium

point P 0.)

If Rε < 1, the disease-free equilibrium point P 0 is locally asymptotically

stable.

If Rε > 1, the disease-free equilibrium point P 0 is a saddle point and un-

stable.

When Rε = 1, θ2 = 0 and the disease-free equilibrium P 0 is no longer a

hyperbolic equilibrium. The method of linearization in not applicable when

the equilibrium is not hyperbolic and the case of Rε = 1 will be covered using
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the method of Lyapunov function in section 3.I.

The Routh-Hurwitz criteria will be used to prove the conditions for the

local stability of the endemic equilibrium P ∗ (proposition 3.2).

Definition (Hurwitz matrix, [47]): Consider the real polynomial

P (s) = ans
n + an−1s

n−1 + · · ·+ a0. (3.13)

Consider the square n× n Hurwitz matrix

H =



an−1 an−3 an−5 . . . 0

an an−2 an−4 . . . 0

0 an−1 an−3 . . . 0

0 an an−2 . . . 0

0 0 an−1 . . . 0

...
...

...
...

0 0 0 . . . a0



. (3.14)

Definition (Hurwitz determinants, [47]): Let D1, . . . , Dn be the determinants

of the principal minors of H (3.14).

Theorem 3.6 (Necessary and sufficient Routh-Hurwitz criteria, [48]): If an >

0, then every zero of the real polynomial P (s) (3.13) has negative real part

if and only if the Hurwitz determinants Dk are all positive for k = 1, . . . , n.
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Corollary 3.6.1 (Routh-Hurwitz criteria for polynomials of degree 2): If a2 >

0, then every zero of the real polynomial P (s) (3.13) of degree 2 has negative

real part if and only if a1 > 0 and a0 > 0.

Proof. Assume a2 > 0. Consider the real polynomial

P (s) = a2s
2 + a1s+ a0.

Consider the square 2× 2 Hurwitz matrix

H =

a1 0

a2 a0

 .
By theorem 3.6, every zero of the polynomial P (s) has negative real part if

and only if the Hurwitz determinants D1 and D2 are both positive. So, every

zero of the polynomial P (s) has negative real part if and only if D1 = a1 > 0

and D2 = a1a0 > 0. Therefore, every zero of the polynomial P (s) has negative

real part if and only if a1 > 0 and a0 > 0.

Now, the characteristic polynomial for determining the eigenvalues of a 2×2

Jacobian matrix (3.11) at an equilibrium point x0 is given by the following

equation: det(J(x0)−λI) = 0⇐⇒ λ2−tr(J(x0))+det(J(x0)) = 0. Therefore,

by corollary 3.6.1, every zero of the characteristic polynomial of degree 2 has

negative real part if and only if tr(J(x0)) < 0 and det(J(x0)) > 0.
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Proposition 3.2 (Local stability of P ∗): 1. When Rε < 1, the endemic equi-

librium point P ∗(x∗, y∗) = (
k

βε
,
λ

k
− k

βε
) is an unstable equilibrium point in

R2 outside of R2
+.

2. When Rε > 1, the endemic equilibrium point P ∗(x∗, y∗) is locally asymp-

totically stable in the feasible region G.

Proof. To study the local stability of the endemic equilibrium point P ∗, the

point P ∗ is plugged into the Jacobian matrix (3.11)

J(P ∗) =

∂f∂x(P ∗) ∂f
∂y

(P ∗)

∂g
∂x

(P ∗) ∂g
∂y

(P ∗)

 =

−k − βεy∗ −βεx∗
βεy
∗ βεx

∗ − k

 . (3.15)

By the Routh-Hurwitz criteria, all eigenvalues of a 2 × 2 matrix A have

negative real parts if and only if tr(A) < 0 and det(A) > 0. Now,

tr(J(P ∗)) = −k − βεy∗ + βεx
∗ − k

= −βε
(
λ

k
− k

βε

)
+ βε

(
k

βε

)
− 2k

=
−βελ
k

.

(3.16)

Since 0 ≤ ε ≤ 1, β > 0, λ > 0, and k > 0, then tr(J(P ∗)) < 0.
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So,

det(J(P ∗)) = (−k − βεy∗)(βεx∗ − k)− (−βεx∗)(βεy∗)

= −kβεx∗ + k2 + βεy
∗k

= βεy
∗k

= βελ− k2

= k2(Rε − 1)

(3.17)

If Rε > 1, then det(J(P ∗)) > 0. Since tr(J(P ∗)) < 0 and det(J(P ∗)) > 0,

P ∗ is locally asymptotically stable in the feasible region G.

If Rε < 1, then det(J(P ∗)) < 0. Since tr(J(P ∗)) < 0 and det(J(P ∗)) < 0,

P ∗ is unstable in R2 outside of R2
+.

3.I Global stability

To prove the global stability of P 0 and P ∗ we will use Bendixson’s criteria,

Dulac’s criteria, and the Poincaré-Bendixson Theorem.

Theorem 3.7 (Bendixson’s criteria, [46]): Let E ⊂ R2 be a simply connected

region. If

div(f(x)) < 0 (3.18)

(or > 0) for all x ∈ E, then (3.2) has no closed orbit lying entirely in E.
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Theorem 3.8 (Dulac’s criteria, [46]): Let E ⊂ R2 be a simply connected

region. If there exists a scaler function α(x) such that

div(α(x)f(x)) < 0 (3.19)

(or > 0) for all x ∈ E, then (3.2) has no closed orbit lying entirely in E.

Theorem 3.9 (Poincaré-Bendixson Theorem): Assume that R2. Let γ be a

nonempty compact limit set of (3.2). If γ contains no equilibria, then γ is

a periodic orbit.

Theorem 3.10 (Global stability of P 0 and P ∗): 1. If Rε ≤ 1, then the disease-

free equilibrium P 0 is the only equilibrium in the feasible region G and it is

globally stable in this region.

2. If Rε > 1, then the disease-free equilibrium P 0 is unstable and the endemic

equilibrium P ∗ is globally stable in the interior of the feasible region G.

Proof. Consider the Lyapunov function

L(x, y) = y. (3.20)

Then

L∗ =
dL

dt
=
dy

dt

= βεxy − ky

= y(βεx− k)

=
k2y

λ
(Rεx−

λ

k
).
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Assume that Rε ≤ 1. Then

L∗ ≤ k2y

λ
(x− λ

k
) ≤ 0,

provided that Rε ≤ 1 and since 0 ≤ x ≤ λ

k
.

Let

γ = {(x, y) ∈ G|dL
dt

= 0}. (3.21)

A point is in the set γ if and only if y = 0 or Rε = 1 and x =
λ

k
.

By LaSalle’s Invariance Principle, all limit points of solutions belong to the

largest invariant set in γ.

If Rε = 1 and x =
λ

k
, then necessarily we have x =

λ

k
and y = 0.

If y = 0, any solution of the model will stay in the set where y = 0 and

dx

dt
= λ− kx, and consequently x(t) =

λ

k
+ Ce−kt → λ

k
as t→∞, where C is

a constant.

In both these cases the only compact invariant set in the set γ is {P 0}.

Therefore, all solutions in G converge to P 0.
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Assume that Rε > 1. Then

L∗ > 0 for all points (x, y) ∈ G and P 0 is an unstable, saddle equilibrium

and repels into the interior of the feasible region G.

Now, to show that when Rε > 1, the endemic equilibrium P ∗ is glob-

ally stable in the interior of the feasible region G. Use the Dulac multiplier

α(x, y) =
1

y
. Then

∂

∂x
(αh(x, y)) +

∂

∂y
(αg(x, y)) =

∂(
h

y
)

∂x
+

∂(
g

y
)

∂y
= −k

y
− βε < 0 (3.22)

for all points (x, y) in the interior of G. Therefore, no periodic solutions can

exist. By the Poincare-Bendixson Theorem, all solutions with initial condition

in the interior of the feasible region G must have P ∗ as an ω-limit point. Since

P ∗ is locally asymptotically stable, solutions that get close to P ∗ must converge

to P ∗ and all ω-limit sets in the interior of G are equal to the singleton {P ∗}.

Therefore, P ∗ is globally stable in the interior of the feasible region G when

Rε > 1.
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Chapter 4

Numerical fitting

Brain macrophage death rate k was estimated directly from the cellular lifes-

pan. The equilibrium population
λ

k
of susceptible brain macrophages was

fitted to the per gram amount of the brain microphages to obtain estimation

of influx λ of susceptible brain macrophages (Table 4.1).

The transmission coefficient with cART regimen effectiveness ε, βε, and

the initial population, y0, of infected brain macrophages at initial infection,

cannot be estimated directly from the available data. These were assessed by

fitting the model predictions to the estimated per-gram numbers of infected

brain macrophages at the time points in Table 2.1.

The method of Bayesian inference was implemented for the model fitting

and is described in the following sections.

4.A Bayesian inference

HIV-1 DNA has been detected by PCR in the brain 15 days after exposure to

the virus [16]. Based on the data in [16], we inferred that the range of mean
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Symbol Parameter Estimate Unit Ref

x0 Equilibrium number
of susceptible brain
macrophages

3.34×106 per g [36, 37, 38]

λ Influx of susceptible
brain macrophages

6.68×106 per year [37]

k Death rate of brain
macrophages

2 per year [10]

Table 4.1: Parameters estimated from literature for both humans
and macaques.

integrated viral DNA copies per gram is 0.1-2 with a uniform distribution

at the initial HIV-1 brain infection, namely, y0 ∼ U(0.1, 2). For SIV infected

macaques, a simple linear regression model was fit to all SIV data to determine

the range for the initial population, y0, of SIV infected brain macrophages. The

intercept from the regression has a 95% confidence interval of (-17.92, 90.19)

and a uniform distribution was chosen for y0, namely, y0 ∼ U(0, 90.19).

The parameter for cART regimen effectiveness in brain, ε, was set to zero

during the model fitting for the untreated SIV-infected macaque data. The

parameter for cART regimen effectiveness in brain, ε, cannot be estimated

from the literature for cART-treated HIV-infected patients. During the model

fitting for the cART-treated HIV-infected patient data the parameter ε was set

to ε where ε represented some unknown value in the possible range 0-1. This

allowed the model fitting to form parameter estimates for the three different

cohorts (Table 2.1): cART-treated HIV-infected patients without neurologi-

cal disorders, cART-treated HIV-infected patients with neurological disorders,

and untreated SIV-infected macaques.

Bayesian inference is used to fit the ODE model to the estimated number

of infected brain macrophages at the time points in Table 2.1.
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The ODE model was solved numerically by using the MATLAB function

ode45 [49]. The function ode45 is based on an explicit Runge-Kutta (4,5) for-

mula. The fitting was completed using a Markov Chain Monte Carlo (MCMC)

sampling program from the MATLAB Central File Exchange [50]. The MCMC

program sampled from the natural logarithm of the following unnormalized

posterior distribution, π(θ|D):

π(θ|D) = L(θ|D)× P (θ) (4.1)

where θ is a vector of the unknowns β and y0, D = {(t1, d1), . . . , (tn, dn)}

is the observed data from Table 2.1, L(θ|D) is the likelihood function, and

P (θ) = P (β) × P (y0) is the prior distribution with βε ∼ U(a, b), y0 ∼ U(c,

d), and a, b, c, d are constants.

4.A.1 Non-homogeneous Poisson Process

The number of events during a time interval of length t is a Poisson random

variable with parameter µt. The expected number of events during any such

time interval is then µt. The expected number of events during a unit interval

of time is µ.

We assume that the infected brain macrophages are distributed randomly

and uniformly throughout the brain with an average of µ(θ, t) per unit gram

of brain tissue, where µ(θ, t) = y(θ, t) is the solution to the ODE
dy

dt
in the

ODE model (3.1) fitted to the observed data in Table 2.1.

This is a non-homogeneous Poisson Process because the rate of occurrence

µ is not constant over time [51].
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Using this assumption of a non-homogeneous Poisson Process, the likeli-

hood function is the following:

L(θ|D) =
n∏
i=1

µ(θ, ti)
die−µ(θ,ti)

di!
, (4.2)

where µ(θ, ti) = y(θ, ti) is the numerical solution to the ODE
dy

dt
in the ODE

model (3.1) at ti fitted to the observed data in Table 2.1.

The likelihood function is the probability of the n observed counts d1, . . . , dn

each independently Poisson distributed with means µ(θ, t1), . . . , µ(θ, tn).

4.A.2 Bayesian approach to ODE model fitting with

Gaussian noise

This section introduces a method to fit an ODE model that assumes Gaussian

noise instead of the Poisson distribution assumption. This fitting method

assumes that the observed data d1, . . . , dn deviate from the solution to the

ODE model µ(θ, t) = x(θ, t) by additive errors r that are independent and

identically distributed Normal random variables with mean zero and variance

σ2:

di = x(θ, ti) + r, (4.3)

where r ∼ N(0, σ2).
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The likelihood function is then given by the following equation:

L(θ|D) =
n∏
i=1

1√
2πσ

e
−

(di − x(θ, ti))
2

2σ2 . (4.4)

This likelihood function is commonly used for the Bayesian analysis of

standard regression models with Gaussian noise [52] but this likelihood func-

tion has also been successfully used for the Bayesian analysis of mathematical

models [53].

The variance σ2 of the errors can be estimated by the variance of the

observed data, by the variance of the errors for a regression fit to the observed

data, or by the variance of the errors between a representative continuous

curve and the observed data [53].

Furthermore, suppose there are m independent data sets that give infor-

mation about the same vector of parameters θ and for each jth data set there

is a specific ODE model solution µj(θ, t) = xj(θ, t) to fit to the jth data set.

In this situation, the ODE model fitting with Gaussian noise would appear as

the following: for 1 ≤ j ≤ m,

di = xj(θ, ti) + rj, (4.5)

where rj ∼ N(0, σ2
j ) and 1 ≤ i ≤ nj.

If m independent data sets give information about the same vector of pa-

rameters θ, then the overall likelihood L(θ|D1, . . . , Dm) of the combined m

independent data sets is obtained by multiplying the m likelihood functions

L(θ|D1), . . . , L(θ|Dm) of θ together [54]:
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L(θ|D1, . . . , Dm) = L(θ|D1)· . . . ·L(θ|Dm). (4.6)

Using the likelihood function given by the Gaussian noise (4.4), if m inde-

pendent data sets give information about the same vector of parameters θ and

for each jth data set there is a specific ODE model solution µj(θ, t) = xj(θ, t)

to fit to the jth data set, then the overall likelihood L(θ|D1, . . . , Dm) is given

by the following equation:

L(θ|D1, . . . , Dm) =
m∏
j=1

nj∏
i=1

(
1√
2π

)m
1

σj
e
−

(di − xj(θ, ti))2

2σ2
j . (4.7)

Considering the same situation as above except combining m correlated

data sets that give information about the same vector of parameters θ, then

the overall likelihood L(θ|D1, . . . , Dm) is given by the following equation [55]:

L(θ|D1, . . . , Dm) =

(
1√
2π

)m
1√

det(C)
e
−

1

2
(y)TC−1(y)

, (4.8)

where y = (y1, · · · ,yn)T , yji = di − xj(θ, ti) for i ∈ {1, . . . , nj}, and C =

{〈yw,yk〉} with the auto- or cross-correlation between the vectors yw and yk

given by 〈yw,yk〉. This likelihood equation (4.8) gives each data set equal

weight [55].

In future studies, the likelihood function (4.8) could be used to fit a more

complex ODE model to several different data sets during HIV and SIV infec-

tion in the brain.
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4.B Markov Chain Monte Carlo sampler

When fitting the ODE model (3.1) to the untreated SIV-infected macaques

data and the cART-treated HIV-infected patients without neurological dis-

orders data, 4 chains with a total number of samples of 880,000 were used.

Every 10th sample was thinned from each chain and a burn in of 2,000 sam-

ples was removed from each chain. This left 20,000 actual samples for each

chain returned from the MCMC method. The samples from each chain were

consolidated giving a total of 80,000 samples.

When fitting the ODE model (3.1) to the cART-treated HIV-infected pa-

tients with neurological disorders data, a greater number of samples were

needed to reach convergence of the MCMC sampling and 4 chains with a

total number of samples of 1,760,000 were used.

Convergence to the posterior distribution

A sequence of random variables Xn converges to the distribution of X∞

if their distribution functions Fn(x) = P (Xn ≤ x) converge weakly to F ,

the distribution of X∞. [56]. The samples from the MCMC provide a sample

path. It is important to diagnose if this sample path produces a sample from

the target posterior distribution - that is, the sample path converges to the

target posterior distribution. From the plot of the sample path, it is critical to

find that the sample path has arrived at a stationary process and the sample

path covers the domain of the target posterior distribution.

The pooled sample path for each estimated parameter are displayed in

Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6. Each sample path shows that the pooled

samples are oscillating very fast and displays no apparent trend indicating

44



that the sample path has arrived at a stationary process. By observing the

unnormalized posterior distribution for each estimated parameter in section

4.C.1, it is seen that the sample path covers the domain of the target posterior

distribution.

A formalized test of the convergence of the MCMC sampling to the esti-

mated posterior distribution for each parameter was determined by using a

general univariate comparison method [57]. The general univariate compar-

ison method uses the distance of the empirical 100(1 − α)% interval for the

pooled samples, S, and divides this distance by the average of the distances of

the empirical 100(1− α)% interval for each of the n chains, si, to receive the

potential scale reduction factor, r [57]:

r =
S∑n
i=1

si
n

. (4.9)

For the general univariate comparison method the empirical 95% interval

was used. The potential scale reduction factor, r, was close to 1 for all the

estimated parameters and this indicates that the MCMC sampling converged

to the estimated posterior distribution for each parameter (Table 4.2).

Datasets Ratio, r, for β Ratio, r, for y0

HIV-1 without neuro-
logical disorders

1.0002 0.9996

HIV-1 with neurologi-
cal disorders

0.9969 0.9976

SIV untreated 0.9990 0.9986

Table 4.2: Potential scale reduction factor, r, for the model fit to
three datasets.
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Figure 4.1: Chains convergent for HIV model parameter β for
cART-treated patients without neurological disorders
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Figure 4.2: Chains convergent for HIV model parameter y0 for
cART-treated patients without neurological disorders
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Figure 4.3: Chains convergent for HIV model parameter β for
cART-treated patients with neurological disorders
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Figure 4.4: Chains convergent for HIV model parameter y0 for
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Figure 4.5: Chains convergent for SIV model parameter β for
untreated macaques
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Figure 4.6: Chains convergent for SIV model parameter y0 for
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4.C Numerical Results

4.C.1 Parameter estimates

The fitted parameter estimates for βε and y0 are located in Table 4.3.

Datasets Symbol Parameter Distribution Estimate (95%
Credible Interval)

Unit

HIV-1
without
neuro-
logical
disorders

y0 Initial number of
infected brain
macrophages

U(0.1, 2) 0.1-2 per g

βε Transmission
coefficient

U(10−8, 10−6) 6.72-7.60×10−7 per year

HIV-1
with
neuro-
logical
disorders

y0 Initial number of
infected brain
macrophages

U(0.1, 2) 0.1-2 per g

βε Transmission
coefficient

U(10−8, 10−5) 7.89-8.78×10−7 per year

SIV
untreated

y0 Initial number of
infected brain
macrophages

U(0, 90.19) 5.45 (4.20, 6.99) per g

β0 Transmission
coefficient

U(10−8, 10−4) 5.98×10−6

(5.62×10−6,
6.35×10−6)

per year

Table 4.3: Fitted parameter estimates and assumed distributions
for the model fit to three datasets.

The unnormalized posterior distribution for each estimated parameter are

displayed in Figures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12.

In Figures 4.7, 4.8, 4.9, 4.10, it is seen that the unnormalized posterior dis-

tributions for the estimated parameters are flat for the data corresponding to

cART-treated HIV-1 infected patients without neurological disorders and with

neurological disorders. This occurs because the model is fit to only one data

point at 10 years from primary infection for the two datasets (Table 2.1). In

Figures 4.8 and 4.10, it is observed that the range from 0.1-2 is equally likely for
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y0 because there is only one data point at 10 years from primary infection and

the prior of y0 is U(0.1, 2). The prior for βε is U(10−8, 10−5). Given the single

data point at 10 years from primary infection and y0 ∼ U(0.1, 2), it is seen in

Figures 4.7 and 4.9 that the range of βε is equally likely and restricted between

6.72-7.60×10−7 for cART-treated patients without neurological disorders and

7.89-8.78×10−7 for cART-treated patients with neurological disorders.

In Figures 4.11 and 4.12, the unnormalized posterior distributions for the

estimated parameters are symmetric and unimodal for the data corresponding

to untreated SIV-infected macaques. This happens because the model is fit to

multiple data points for the dataset (Table 2.1). In Figure 4.11, it is seen that

the unnormalized posterior distribution for βε has a most likely point estimate

of 5.98×10−6 and has a 95% Bayesian credible interval of 5.62-6.35×10−6. In

Figure 4.12, it is observed that the unnormalized posterior distribution for

y0 has a most likely point estimate of 5.45 and has a 95% Bayesian credible

interval of 4.20-6.99.

4.C.2 HIV-infected brain macrophage burden

For cART-treated HIV/AIDS patients without neurological disorders, it would

require 37-95 years to reach the set point of 3.64-7.08×105 infected brain

macrophages per gram (brain tissue). In contrast, among cART-treated HIV/AIDS

patients with comorbid neurological disorders (HAND or HIVE), 20-37 years

would be necessary to establish the set point of 0.805-1.06×106 infected brain

macrophages per gram (brain tissue). The HIV-1 infected brain macrophage

burden for patients without neurological disorders and with neurological dis-

orders is displayed in Fig. 4.13 (A) and 1(B), respectively.
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Figure 4.7: Posterior for HIV model parameter β for cART-treated
patients without neurological disorders
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Figure 4.8: Posterior for HIV model parameter y0 for
cART-treated patients without neurological disorders
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Figure 4.9: Posterior for HIV model parameter β for cART-treated
patients with neurological disorders
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Figure 4.10: Posterior for HIV model parameter y0 for
cART-treated patients with neurological disorders
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Figure 4.11: Posterior for SIV model parameter β for untreated
macaques
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Figure 4.12: Posterior for SIV model parameter y0 for untreated
macaques
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4.C.3 SIV-infected brain macrophage burden

For untreated SIV-infected macaques, it would require approximately 1.5 years

to meet the set point of 3.00×106 infected brain macrophages per gram (brain

tissue). SIV-infected brain macrophage burden for untreated macaques is

shown in Fig. 4.13 (C).

4.C.4 Comparison of transmission rates

The estimated values of the transmission coefficient βε in Table 4.3 were used

to compare the viral transmission rates in brain for the three study cohorts.

The HIV-1 transmission rate was 1.04-1.31 times higher for cART-treated

HIV-infected patients with neurological disorders compared to those without

neurological disorders. The transmission rate for SIV infection among un-

treated macaques was 6.40-9.45 times faster compared to cART-treated HIV-1

patients. When compared to the transmission coefficient for HIV-1 infection

in the plasma in the literature [58], we found that the HIV-1 transmission rate

among CD4+ T cells was 2.2-3.9 log10 fold higher than HIV-1 infection among

brain macrophages. These findings suggest the progression of HIV-1 infection

in the brain was slower in comparison to HIV-1 infection in the plasma [58].

4.C.5 Minimum cART improvement to inhibit replica-

tion

For untreated SIV-infected macaques the estimated baseline R0 value was 9.38-

10.60. In the literature, the R0 value for untreated SIV-infected macaques in

the plasma has a range of 2-68 [59]. For the infection to decline in the brain

for untreated SIV-infected macaques it is necessary to have ε > 0. To inhibit

60



0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200
(A)

Years

In
fe

cte
d 

br
ain

 m
ac

ro
ph

ag
es

 / 
gr

am

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200
(B)

Years

In
fe

cte
d 

br
ain

 m
ac

ro
ph

ag
es

 / 
gr

am

0 0.05 0.1 0.15 0.2
0

100

200

300

(C)

Years

In
fe

cte
d 

br
ain

 m
ac

ro
ph

ag
es

 / 
gr

am

Figure 4.13: Infected brain macrophage burden.

(A) cART-treated HIV-infected patients without neurological disorders. (B)
cART-treated HIV-infected patients with neurological disorders. (C) SIV-infected
(untreated) macaques. Curves lying in the blue region represent the most likely
model solutions for the mean given the data point(s) in red.
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replication in the brain for untreated SIV-infected macaques, we require that

Rε < 1 and the minimum cART effectiveness ε was estimated to be 89.35-

90.57%.

For cART-treated patients without neurological disorders the estimated

baseline Rε value was 1.12-1.27. The estimated baseline value of Rε was 1.32-

1.47 for cART-treated patients with neurological disorders. In comparison,

the R0 value for untreated HIV-1 infection in the plasma has median 8.0 and

interquartile range 4.9-11 [60]. In the literature, a cART effectiveness of 0.85

would suppress the viral load in the plasma to undetectable levels after a few

months of treatment [15]. Using a cART effectiveness of 0.85 [15] and the R0

value for untreated HIV-1 infection in the plasma with range 4.9-11 [60], the

value of R0.85 for treated HIV-1 infection in the plasma would be in the range

0.74-1.65. The estimated value of Rε in the brain for cART-treated patients

was found to range from 1.12-1.47 and lies in the range 0.74-1.65.

To inhibit replication in the brain, the minimum improvement in cART

effectiveness from the estimated baseline was determined to be 10.71-21.26%

for patients without neurological disorders, and 24.24-31.97% for patients with

neurological disorders.

4.C.6 50% improvement cART late presenter

Provided cART suppresses HIV-1 infection outside the brain, and with a 50%

improvement in cART efficiency from the estimated baseline in the brain, it

would require 9-11 years to reduce the level of infected brain macrophages to

approximately 0.001 per gram for a late diagnosed patient without neurological

disorders, and it would require 20-26 years for the same reduction for a late
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diagnosed patient with neurological disorders (Fig. 4.14 (A) and 4.14 (B)

respectively).
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Figure 4.14: HIV-1 infected brain macrophage burden with cART.

Assuming a 50% improved efficiency in cART. (A) Late presenting patients
without neurological disorders and (B) late presenting patients with neurological
disorders will show differing durations to the time of eradication. Curves lying in
the blue region represent the most likely model solutions for the mean.
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Chapter 5

Discussion and conclusions

5.A Discussion

We focused on brain viral DNA as a marker of infected cells in contrast to brain

viral RNA. Brain viral RNA levels varied widely over time [32, 31, 33, 34, 35].

Brain viral DNA levels displayed less variability and were determined to be a

stable indicator of infection. We used the study of a single HIV-infected patient

to gain insight into the state of brain infection during the eclipse phase; 15

days after iatrogenic HIV-1 infection, HIV-1 was detected in the brain [16]. We

also relied on data from a study examining human brain specimens from the

NNTC; these data provided findings from patients with advanced disease [31].

This latter study reported that brain viral RNA was higher in patients with

neurological disorders, HAND and HIVE, than patients without neurological

disorders and that brain viral RNA and DNA levels were correlated with worse

neuropsychological performance [31]. A study not included in our research was

a paper examining the brain viral DNA and brain viral RNA of 15 patients [61].

In this study, there was no significant difference in brain viral DNA between
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patients with and without neurological disorders [61]. This result is later

contradicted by a study examining a larger sample size of 195 patients [31]. A

paper also not included in our research examined the brain viral DNA levels

of 17 HIV-1 infected asymptomatic patients and 16 HIV-1 infected patients

with AIDS [62]. This paper found that the brain viral DNA levels of AIDS

patients were found to be higher than those HIV-1 infected asymptomatic

patients [62]. This paper was not included in our study due to the small

sample of patients [62]. Lastly, another study not included in our research

examined brain viral RNA and DNA levels of 21 patients with 9 patients having

neurological disorders [63]. This study found that the mean of the viral load

was larger for patients with neurological disorders than those patients without

neurological disorders but this did not reach the appropriate statistical level

[63]. The larger sample size of 195 patients in the later study determines

that the RNA and DNA viral load is significantly larger for patients with

neurological disorders than patients without neurological disorders [31].

In blood-derived lymphocytes, the average ratio of integrated proviral DNA

to total viral DNA is 1:86 [39]. We used this ratio as an estimate for the average

ratio of integrated proviral DNA to total viral DNA in brain macrophages. An

earlier study found the ratio of integrated proviral DNA to total viral DNA in

brain tissues from HIV-1 encephalitis cases ranged from 1:6 to 1:81 [64]. The

average ratio in blood and the ratio in brain tissues from HIV-1 encephalitis

patients are the same order of magnitude. In the present study, changing

this ratio of integrated proviral DNA to total viral DNA would affect the

estimated mean integrated viral DNA copies per gram of brain tissue used

to fit the mathematical model. In the extreme case of 1:6 being the ratio

of integrated proviral DNA to total viral DNA, there was an estimated 8-
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12% difference between the new transmission coefficient and the transmission

coefficient estimated under the ratio assumption of 1:86.

Brain tissue measurements from a HIV-1 infected patient are very rarely

available before death. Two major limitations in using autopsy data for brain

tissue from human cohorts are minimal knowledge regarding durations of infec-

tion and antiretroviral therapy for each patient. An estimate for the duration

of infection for each patient in the autopsy data assumes each patient has

AIDS and died at least 10 years after primary infection whether or not a pa-

tient is active on antiretroviral therapy within 1 year of death. An issue not

addressed herein is viral burden in CSF; many studies have reported on HIV-1

RNA levels in CSF, albeit free virus particles [65]. CSF as an indicator of viral

dynamics within brain has substantial challenges because the relative paucity

of cells in CSF compounded by the predominance of lymphocytes in CSF,

presumably derived from blood, making it a questionable surrogate indicator

of brain virus-related events. However, it would be valuable to have a better

understanding of brain-CSF correlations in viral replication and latency in the

future management of patients receiving cART.

The obstacles described in obtaining accurate estimates of the durations

of infection and antiretroviral therapy for individual patients necessitates the

use of SIV studies where the durations of infection and antiretroviral therapy

for each macaque are known. Most of our SIV data comes from the same

animal model [32, 33, 34]. Thus, the present SIV results may be specific

to this animal model. We used published experimental data from four SIV

studies that examined macaque brains at different times post-infection (p.i.)

[32, 33, 34, 35]. The earliest SIV study used in the present analyses showed

that total viral DNA was not detected in the brain at 3 days p.i. but viral
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DNA was detected on all subsequent time points (7, 14, 21, 50 days p.i.) [35].

Another SIV study found that brain viral DNA levels remained at constant

levels from the acute phase through the asymptomatic period [33]. A further

SIV study demonstrated that cART was capable of reducing brain viral RNA

to undetectable levels but had little impact on brain viral DNA levels after

acute infection [32]. The last included SIV study reported that cART greatly

reduced viral RNA levels, but exerted little effect on viral DNA levels at 21

days p.i. [34]. The current mathematical investigations indicated that the

mathematical model adequately fits the experimental in vivo SIV data. This

modeling strategy could be applied to SIV datasets from other animal models,

yielding insights into the viral progression rate in brain macrophages from

primary infection.

A 0.85 cART effectiveness would suppress the viral load in the plasma to

undetectable levels after a few months of treatment [15]. If cART effectiveness

was 0.85 within the brain (ε = 0.85), the R0 value in the brain for untreated

patients would be in the range 7.47-9.80, similar to the R0 range for untreated

HIV-1 infection in the plasma 4.9-11. Yet the blood-brain barrier restricts some

antiretroviral agents from entering the brain [5] and a 0.85 cART effectiveness

in the brain would most likely be too large a value. If cART effectiveness was

less than 0.85 (ε < 0.85), the small value of Rε in the brain for cART-treated

patients 1.12-1.47 might be due to a slower progression of HIV-1 infection in

the brain in comparison to HIV-1 infection in the plasma.

Because of the limited data available for HIV-1 and SIV brain infection it

was necessary to use a simple mathematical model that restricted the number

of model parameters needed to fit the empiric data. Although microglia and

trafficking macrophages might behave differently, these cell populations were
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treated as the single cell population of brain macrophages. Although astro-

cytes constitute a large proportion of cells in the human brain, astrocytes were

not considered in this study because astrocytes have a limited infection and

produce little or no virus [42]. Different anatomical areas within the brain

contain variable levels of HIV-1 and SIV infected cells during disease progres-

sion [66]. In this model it is assumed that the infected brain macrophage

population is distributed homogeneously across the entire brain; moreover, an

infected brain macrophage might be productively or latently infected. The

model does not make this distinction for infected brain macrophages. Despite

these simplifications our model provides an estimate of the HIV-infected brain

macrophage burden from primary infection and the necessary improvements

in current cART regimens needed to curtail and eventually eliminate HIV-1

infection from the brain.

5.B Conclusions and further directions

To our knowledge this is the first mathematical modeling study to quantify

HIV-1 and SIV infection dynamics in the brain. Our modeling study indicates

that HIV-1 and SIV provirus burdens in brain increase slowly over time. As-

suming antiretroviral therapy suppresses HIV-1 infection outside the brain, an

effective antiretroviral therapy could eradicate HIV-1 infection in the brain,

albeit over a decade for patients without neurological complications and over

two decades for those with HAND.

Future studies are warranted to model both productively and latently in-

fected brain macrophages using the viral DNA and viral RNA data. This

approach would allow a more accurate estimation of cART effectiveness. The
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application of HIV-infected humanized mice with and without cART might

facilitate this effort [67]. Creating a model to quantify viral infection in spe-

cific areas of the brain over time would also be informative, as it would permit

determination of which regions of the brain display the largest viral burden

over the course of infection and how cART might be optimized to ensure rapid

eradication of virus from the brain.
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