
ODE To Backstepping...

Oh Backstepping, How do I love thee? Let me count the ways.1

You soothe my instabilities,
Despite my singularities.

In the face of disturbing entities,
You adapt to my uncertainties.

I love thee for thine flexibility,
You don’t even need controllability.

Your magnitude of feedback is,
But one of gentle modesty.

You respect my nonlinearities,
And exploit my structural peculiarities.

As I seek escape (in finite time),
You bring me back, with Lyapunov tactics so sublime.

Although you’re oft chastised for expressions complicated,
My fears of numerical differentiation you’ve abated.

I love thee in my states of chaos, rest, or evolution,
That’s right, I love thee in all the meanderings of my solution.

Because of you, invariance my sets will never loose...
Oh Backstepping, to close my loop, there’s no one else I’d rather choose!

— Karla Kvaternik

1What Elizabeth Barrett Browning would surely have written had she read [1]...
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Abstract

The non-local stabilization of nonlinear systems by outputfeedback is a challeng-

ing problem that remains the subject of continuing investigation in control theory.

In this thesis we develop two globally asymptotically stabilizing output feedback

algorithms for multivariable nonlinear systems. Our first result is an extension of

the output feedback method presented in [2] to a class of nonlinear systems whose

dynamics can be written as a collection of subsystems that are dynamically coupled

through output-dependent nonlinear terms. We show that themethod given in [2]

must be modified to accommodate this dynamic coupling by introducing additional

nonlinear damping terms into each control input. Our secondcontribution involves

the application of observer backstepping to systems in a restricted block-triangular

observer form. In this form, the nonlinearities entering each subsystem are allowed

to depend on the output associated with the subsystem, and all upper subsystem

states, including unmeasured ones. The proposed algorithmis demonstrated on a

magnetically levitated ball.
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Chapter 1

Introduction

Aside from its aesthetic pleasures, the study of nonlinear control theory is motivated

by the practical need to make control systems more reliable,more precise, and more

safe. Most real-world dynamical systems towards which we aim the application of

feedback control theory are not inherently linear. Admittedly, one of the simplest

approaches to control design is that on the basis of a system’s linearization, owing to

the well-developed arsenal of tools available for linear designs. For many applica-

tions, combining robust techniques [3] with a linear designon the basis of a model’s

linear approximation may suffice. However, such designs necessarily make use of

less information about the dynamics of the plant, generallyguaranteeing only local

stability1of theclosed-loop(CL) system. In some cases, this design is not only less

effective, but also potentially dangerous. Interestingly, it has been shown that for

some linear time-varying systems nonlinear control outperforms linear control [4]

in some measures of optimality, while for some nonlinear systems the use of lin-

ear feedback reduces the size of the closed-loopregion of attraction(ROA) as the

feedback gains are increased [5].

In the study of nonlinear control theory, we seek to develop feedback control

laws that guarantee global or semi-global stability of a nonlinear system; that is, the

ROA associated with a CL system’s equilibrium should at least take a prescribed

size, if not cover the entire state-space. Aglobally asymptotically stabilizing(GAS)

1In this thesis we are concerned primarily with the problem ofstability, although the foregoing
discussion applies also to problems such as tracking, disturbance rejection and model matching.

1



Section

control law ensures the convergence of CL trajectories regardless of “where” the

system is initialized within the state-space. In semi-global designs, a control gain

is usually increased in order to increase the size of some compact set which is

guaranteed to be contained within the ROA. Although global designs are sometimes

applicable to a smaller class of systems than semi-global designs, they are generally

advantageous in not requiring the use of any high gains that usually accompany

semi-global designs.

One of the most practical and fundamental problems in nonlinear control design

concerns non-local (i.e. global or semi-global) stabilization using only partial state

measurements. A plant’s full state information is usually not available for feedback

as the use of additional sensors may not be economically feasible, or the measure-

ment of some states may even be physically impossible. Devising a control strategy

when the system’s measured variables – i.e. outputs – can be mapped to only a

subset of its state variables, is known as theoutput feedback(OFB) problem. The

OFB problem is particularly challenging for nonlinear plants, and has not been fully

solved. Although incremental progress is being made, thereremain vast classes of

systems for which there are no known non-local OFB control strategies.

In this thesis, we investigate non-local OFB stabilizationalgorithms for mul-

tivariable, continuous-time, finite-dimensional, deterministic dynamical systems

with no uncertainties or disturbance inputs. In particular, we are interested in the

development ofconstructivealgorithms – i.e. those that provide explicit control ex-

pressions that can be physically implemented. For this reason, we make use of some

of the most practical nonlinear design tools, including integrator backstepping, non-

linear damping and differential geometric theory. Different combinations of these

tools have found numerous creative applications in global OFB designs such as ob-

server backstepping [6] and what we will refer to as the MT method [2]. Our focus

in this thesis is to develop multivariable extensions of these two methods, with the

ultimate aim of developing global OFB laws for systems in a block-triangular ob-

server form. In this thesis we document two contributions that we have made in

this direction. Chapter 4 presents an extension of the MT method to a class of mul-

2



Section 1.1: The Output Feedback Problem

tivariable nonlinear systems whose subsystems are dynamically coupled through

output-dependent nonlinearities. In Chapter 3, we apply observer backstepping to

a class of systems in a restricted block-triangular observer form.

Before providing our main results, we present some pertinent background the-

ory and analysis. We begin by giving a precise definition of the OFB problem

and the various circumstances under which it can easily be solved. We then try to

develop an understanding of the difficulties that present themselves in solving the

problem for nonlinear systems by studying the peaking phenomenon and the stabil-

ity of cascade-connected systems. We use concrete exampleswherever possible to

fortify our analysis and express our own insights where appropriate. After investi-

gating some of the challenges posed by this difficult problem, we provide a survey

of the literature detailing some of the progress that has been made on this problem

in various directions.

In the second chapter, we describe the nonlinear design tools and system forms

most frequently encountered in the literature on global OFB. We then provide a

detailed exposition of observer backstepping and the MT method for the design of

GAS OFB algorithms for a class of SISO systems in the output feedback form.

These results are then extended in Chapters 3 and 4, and the thesis is concluded in

Chapter 5.

1.1 The Output Feedback Problem

In the following, we define the OFB problem, and elaborate on some of the chal-

lenges associated with solving it for general nonlinear systems. For simplicity, our

discussion will be based on SISO systems of the form:

ẋ = f (x)+g(x)u

y = h(x)
(1.1)

wherex∈Rn is its state,u∈R its input andy∈R its output. To ensure the existence

of a solution over some time interval, the vector fieldsf and g are assumed to

be at leastC1. Without loss of generality we assume thatf (0) = 0 so that with

3



Section 1.1: The Output Feedback Problem

u = 0 all motion stops atx = 0. If we are interested in regulating the system state

to a nonzero equilibriumxeq 6= 0, we can re-write the system dynamics in a new

set of coordinatesz= x− xeq so that the unforced dynamic ˙z= f (z+ xeq) has an

equilibrium atz= 0.2

Definition 1.1.1. Given system (1.1) withh(0) = 0, thenon-local OFB Stabiliza-

tion Problem is to design a control

ξ̇ = Γ(ξ,y,u), ξ ∈ R
q

u = α(ξ,y), u∈ R

(1.2)

with Γ(0) = 0 andα(0) = 0, such that all trajectories of the closed-loop system

ẋ = f (x)+g(x)α(ξ,h(x))

ξ̇ = Γ(ξ,h(x),α(ξ,h(x)))
(1.3)

initiated insideΩx×Ωξ ⊆ R
n×R

q (containing the origin) converge asymptotically

to (x,ξ) = (0,0). ⊳

If the size of the ROAΩx ×Ωξ associated with the origin can explicitly be

altered through the controlu = α(ξ,h(x)), then the stability of the composite sys-

tem (1.3) is said to besemi-global, while global asymptotic stability (i.e. GAS) is

achieved if the CL region of attraction isΩx×Ωξ = Rn×Rq. The output feedback

control (1.2) isstatic, or memoryless, ifq = 0; otherwise it isdynamic.

Although we are not constrained to relate the dynamic component of (1.2) with

the task of reconstructing the state of the plant, a common approach to OFB con-

trol involves designing an observer, whose state estimatesare then used in lieu of

actual plant states in some stabilizing state feedback. We refer to this approach as

estimated state feedback(ESFB), or thecertainty equivalence(CE) approach. For

linear, time invariant systems with no uncertainties, the global OFB problem is fully

solved in this way, owing to the so-calledseparation principle.

2It is also possible to express the dynamics (1.1) in a new coordinate set which centers any arbi-
trary pointxo to its origin; the origin in the new coordinates will be an equilibrium of the unforced
system if the vector fieldsf andg satisfy f (xo) = −cg(xo) for some constantc. Then we can define
z= x−xo andu = v+c to obtainż= ( f (z+xo)+cg(z+xo))+g(z+xo)v whose drift evaluates to
zero atz= 0.

4



Section 1.1: The Output Feedback Problem

1.1.1 The Linear Separation Principle

To demonstrate, we consider the linear case of the system (1.1):

ẋ = Ax+Bu

y = Cx
(1.4)

with (A,B) stabilizable and(A,C) detectable. By these assumptions, there exists

a vectorK ∈ R
1×n and a vectorL ∈ R

n×1 such that the spectra of(A−BK) and

(A− LC) lie in the open left-half of the complex plane. We construct aclassical

Luenberger observer [7] for (1.4) as

˙̂x = Ax̂+Bu+L(y−Cx̂) (1.5)

and define the estimation error asξ , x− x̂. The error dynamics areglobally expo-

nentially stable(GES) whenL is chosen so that(A−LC) is Hurwitz:

ξ̇ = ẋ− ˙̂x = (A−LC)ξ. (1.6)

If the full state is available for feedback, choosing the control u=−Kx would result

in the plant dynamics ˙x = (A−BK)x that are likewise GES. However, since the

state is unknown, we replace it with its estimate and insteadimplement the control

u = −Kx̂ to obtain the composite CL system

ẋ = Ax−BK(x−ξ)

ξ̇ = (A−LC)ξ (1.7)

which can be written as
[
ẋ
ξ̇

]

=

[
(A−BK) BK

0 (A−LC)

][
x
ξ

]

, A

[
x
ξ

]

. (1.8)

SinceA is block triangular, its eigenvalues are the union of the setof eigenvalues of

the diagonal blocks, which can be made Hurwitz by the proper choice of gainsK

andL. In other words, the combination ofany Kso that(A−BK) is Hurwitz, chosen

independently ofany Lsuch that(A−LC) is Hurwitz yields a Hurwitz composite

system matrix. Given that the origin is the only equilibriumfor (1.8), we conclude

global exponential stability of the composite system (1.8).

5



Section 1.1: The Output Feedback Problem

1.1.2 Local Separation Principle for Nonlinear Systems

It would be convenient if this separation property also heldtrue for nonlinear sys-

tems, since a significant effort has been dedicated to the development of many ele-

gant state feedback and observer design techniques3 for nonlinear systems. It turns

out that locally a separation principle does hold, providedthat f (x)+g(x)u in (1.1)

isC1 in both arguments, observable, and stabilizable by aC1 controlu = α(x). Un-

der these conditions, if the observer errorξ(t) is locally asymptotically stable and

the exact SFB control locally asymptotically stabilizes the plant about its origin,

then it is always possible to initialize the CL system using ESFB sufficiently close

to (x,ξ) = (0,0), so that the ensuing trajectories of the composite system asymptot-

ically converge to the origin [11]. In addition to [11], there are several variations of

the proof of this fact, also usually relying on converse Lyapunov theory, comparison

arguments, and the “theorem of total stability”. For example, one may consult the

proof of Theorem 10.3.1 in [12], or Proposition 4.1 in [13], or Theorem 3.1 in [14].

A simple Lyapunov-based proof is also given in Lemma 13.1 in [15].

Here, we offer a simpler justification of this fact under stronger assumptions,

using Lyapunov’s indirect method. Assume that there existsa state feedback law

u = α(x), α(0) = 0 such that the origin of

ẋ = f (x)+g(x)α(x) (1.9)

is renderedlocally exponentially stable(LES). Such would be the case if (1.1) is

state-feedback linearizable. Then there exists a scalar function φ(x) such that the

nonlinear coordinate change

[z1,z2, . . . ,zn]
T = [φ(x),L f φ(x), . . . ,Ln−1

f φ(x)]T , T(x), T(0) = 0 (1.10)

3A major novelty in nonlinear control theory resulted from the application of differential geome-
try to the identification of coordinate and feedback transformations of nonlinear systems into several
important canonical forms. For instance, state feedback linearization [8] allows a linear eigenstruc-
ture assignment design to be carried out after a preliminarychange of coordinates and linearizing
state feedback. Likewise, the nonlinear observer form was identified in [9], and allows the design
of an observer with a linear error dynamic in a special set of coordinates. The internal structure
of a nonlinear system has been characterized in [10], where the geometric existence conditions and
diffeomorphisms leading to the so-callednormal formare developed. Subsequently, there have been
hundreds of papers published extending and applying the aforementioned work.

6



Section 1.1: The Output Feedback Problem

is a diffeomorphism that locally transforms (1.1) into

ż1 = z2

ż2 = z3

...

żn−1 = zn

żn = Ln
f φ(x)+uLgLn−1

f φ(x)

(1.11)

whereLgLn−1
f φ(x) is bounded away from zero [16], [17]. In (1.10), we have used

L f φ(x) , 〈dφ(x), f (x)〉 to denote the Lie derivative of a scalar functionφ(x) in the

direction of the vector fieldf (x), wheredφ(x) denotes∂φ(x)
∂x . Multiple Lie deriva-

tives are defined asLi
f φ(x) = 〈dLi−1

f φ(x), f (x)〉. Next, choosing

u = α(x) =
−Ln

f φ(x)[−KT(x)]

LgLn−1
f φ(x)

(1.12)

with K ∈ R
1×n renders (1.11):

ż=








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−k1 −k2 · · · −kn








z, Az. (1.13)

Provided the gainK is chosen so thatA’s characteristic polynomialsn + knsn−1 +

· · ·+ k2s+ k1, has roots with negative real parts, (1.13) is locally exponentially

stable. IfLgLn−1
f φ(x) 6= 0, ∀x∈Rn, then in thez-coordinates (1.13) is GES. Clearly,

the linearization of (1.13) aboutz= 0 is Hurwitz. Our objective now is to relate the

linearization of (1.13) aboutz= 0 to that of (1.9) aboutx = T−1(0) = 0. To that

end, we note that

ż= Az= AT(x).

and also

ż=
∂T(x)

∂x
( f (x)+g(x)α(x)).

Equating the two expressions and taking the gradient of bothsides, we obtain that

A
∂T(x)

∂x
=

∂2T(x)
∂x2 ( f (x)+g(x)α(x))+

∂T(x)
∂x

∂
∂x

( f (x)+g(x)α(x)). (1.14)

7
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We denote the Jacobian of( f (x) + g(x)α(x)) asJ(x) , ∂
∂x( f (x) + g(x)α(x)) and

evaluate (1.14) aboutx = 0, noting thatf (0) = 0 andα(0) = 0:

J(0) =
(∂T(x)

∂x

)−1
A

∂T(x)
∂x

∣
∣
∣
∣
x=0

, (1.15)

From (1.15), we see that although the system matrix of the linearization of the CL

system in the original coordinates,J(0), is not necessarily the same as that of the

CL linearizationA in the transformed coordinates, their spectra are identical4. Since

an equilibrium of a nonlinear system is LES if and only if its linearization about

that point is Hurwitz (Theorem 4.15, [15]), we conclude thatthe state feedback

(1.12) renders the origin of (1.1) LES. This fact will becomeuseful in the following

discussion.

Suppose that in addition to being state-feedback linearizable, (1.1) also admits

a transformation into thenonlinear observer form(NOF) [9], and that we are able

to find a diffeomorphismQ : Rn → Rn, x 7→ w so that in the new coordinates the

dynamic (1.1) can be written as:

ẇ = Acw+ γ(y,u)

y = h(Q−1(w)) = Ccw
(1.16)

where

Ac =








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0








, Cc = [1,0, . . . ,0]. (1.17)

Since(Ac,Cc) is observable and the nonlinearity in (1.16) depends on known signals

only, we can design an observer for (1.16) as

˙̂w = Acŵ+ γ(y,u)+L(y− ŵ1), (1.18)

which implies that the dynamic of the errorξ , w− ŵ

ξ̇ = (Ac−LCc)ξ (1.19)

4For simplicity, assume that the eigenvalues ofA are distinct. Then supposeλi is an eigenvalue of
A, andvi its associated eigenvector. Given any nonsingular matrixT of appropriate dimension, define
a vectorµi = T−1vi . ThenATµi = λiTµi , or (T−1AT)µi = λiµi showing thatλi is still an eigenvalue
of the transformed matrix(T−1AT), with eigenvectorµi . Sinceλi is arbitrary, this argument holds
for the entire spectrum ofA, and shows that it is invariant under coordinate transformations
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is GES at the origin when the output injection gainL is chosen so that(Ac−LCc)

is Hurwitz. In the original coordinates, the state estimates generated by (1.18) are

expressed as ˆx= Q−1(ŵ)= Q−1(w−ξ). Therefore, implementing the control (1.12)

with these state estimates results in the composite system dynamic

ẋ = f (x)+g(x)α(Q−1(Q(x)−ξ)) (1.20a)

ξ̇ = (Ac−LCc)ξ. (1.20b)

Since (1.20b) is independent ofx, to show that the linearization of (1.20) about

(0,0) is Hurwitz, it suffices to show that∂ẋ
∂x|(x,ξ)=(0,0) is Hurwitz. To that end, we

apply some basic calculus:

∂ẋ
∂x

|(x,ξ)=(0,0) =
∂
∂x

f (x)|(x,ξ)=(0,0) +

(
∂
∂x

g(x)

)

α(Q−1(Q(x)−ξ))

∣
∣
∣
∣
(x,ξ)=(0,0)

(1.21)

+g(x)
∂α(·)

∂x

∣
∣
∣
∣
(x,ξ)=(0,0)

Since

α(Q−1(Q(x)−ξ))

∣
∣
∣
∣
(x,ξ)=(0,0)

= α(Q−1(Q(x))

∣
∣
∣
∣
x=0

= α(x)|x=0, (1.22)

and by assumptionα(0) = 0, the second term on the right hand side of (1.21) dis-

appears. The third term is:

g(x)
∂α(·)

∂x
= g(x)

[

∂α(s)
∂s

∣
∣
∣
∣
s=(Q−1(Q(x)−ξ)

∂Q−1(p)

∂p

∣
∣
∣
∣
p=Q(x)−ξ

∂(Q(x)−ξ)

∂x

]

. (1.23)

If we evaluate (1.23) atξ = 0 we obtain

g(x)
∂α(Q−1(Q(x)−ξ))

∂x
= g(x)

[
∂α(x)

∂x
∂Q−1(w)

∂w
∂Q(x)

∂x

]

(1.24)

= g(x)
∂α(x)

∂x

since∂Q−1(w)
∂w

∂Q(x)
∂x = I . To see this, we note that sincex= Q−1w, ẋ=

∂Q−1(w)
∂w ẇ. But

sincew = Q(x), ẇ = ∂Q(x)
∂x ẋ. Therefore, ˙x = ∂Q−1(w)

∂w
∂Q(x)

∂x ẋ = I ẋ. In consideration of

(1.22) and (1.24), we evaluate (1.21) at the equilibrium:

∂ẋ
∂x

|(x,ξ)=(0,0) =
∂ f (x)

∂x
|x=0 +g(x)

∂α(x)
∂x

∣
∣
∣
∣
x=0

= J(0) (1.25)

9



Section 1.1: The Output Feedback Problem

which is shown to be Hurwitz in (1.15). The linearization of the composite CL

system (1.20)
[ ∂ẋ

∂x
∂ẋ
∂ξ

∂ξ̇
∂x

∂ξ̇
∂ξ

]
∣
∣
∣
(x,ξ)=(0,0)

=

[
J(0) ∗

0 (Ac−LCc)

]

(1.26)

shows that (1.20) is LES at the origin, and that using state-feedback linearization

techniques to design a stabilizing SFB control, in combination with a separately de-

signed linear error dynamic observer always results in the local exponential stability

of the origin.

1.1.3 Failure of Certainty Equivalence for Nonlinear Systems

One may wonder whether, and to what extent this certainty equivalence approach

would hold non-locally for general nonlinear systems. Unfortunately, there is no

nonlinear analog of the linear separation principle. We illustrate this fact using a

counterexample provided in [18], expanding it here.

Example 1.1.1(Failure of CE). Consider the system

ẋ1 = −x1 +x2
2

ẋ2 = −x2 +x1x2
2 +u (1.27)

y = x2.

Given access to the full state, we note that cancelling the nonlinearity in the ˙x2-

equation using the controlu=−x1x2
2 renders(x1,x2)= (0,0) GAS. This can be seen

using the Lyapunov function candidateV(x) = 1
2(x2

1 +x2
2)+ 1

4x4
2, whose derivative

along the CL solutions of (1.27) is

V̇(x) = x1(−x1 +x2
2)+x2(−x2)+x3

2(−x2)

= −(1− 1
4)x2

1−x2
2−

1
4x2

1 +x1x2
2− (x2

2)
2

= −3
4x2

1−x2
2− (1

2x1−x2
2)

2

≤−3
4x2

1−x2
2. (1.28)

Global asymptotic stability of(x1,x2) = (0,0) then follows from Theorem A.0.1.

10
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We notice also that sincex2 is measured and the first subsystem is stable when

x2 = 0, the following observer

˙̂x1 = −x̂1 +x2
2, (1.29)

with the estimation error defined asξ = x1− x̂1, gives the error dynamic

ξ̇ = −ξ (1.30)

which is GES atξ = 0. If instead ofx1 we use its estimate ˆx1 in the previous control

law, we obtain the two coupled dynamic equations

ẋ2 = −x2 +x1x2
2− (x1−ξ)x2

2

= −x2 +ξx2
2 (1.31a)

ξ̇ = −ξ (1.31b)

which evolve independently of the ˙x1 subsystem. To examine the behaviour of

(1.31), we proceed to solve it. First, the solution to the error dynamic equation is

ξ(t) = e−tξ(0). We substitute this solution into (1.31b) to obtain

ẋ2 = −x2 +e−tξ(0)x2
2. (1.32)

Since the “disturbance” terme−tξ(0)x2
2 decays exponentially, it may seem that the

linear stable component of this equation would eventually dominate the motion,

bringingx2 back to the origin. We introduce the change of coordinatesz= T(x2) =

1
x2

. Then

ż=
dT(x2)

dx2
ẋ2◦T−1(z)

= −1
x2

2
(−x2 +e−tξ(0)x2

2)
∣
∣
x2=

1
z

= z−e−tξ(0). (1.33)

Taking z to the left hand side and multiplying (1.33) by the integrating factore−t

we obtain:

e−t ż−e−tz
︸ ︷︷ ︸

=
d
dt (e

−tz)

= −e−2tξ(0) (1.34)

11
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which can be integrated fromt to 0 on both sides:

e−tz(t)−z(0) = −ξ(0)

Z t

0
e−2τdτ

=⇒ z(t) = et(z(0)+ ξ(0)
2 (e−2t −1)

)

=⇒ x2(t) =
2

2 1
x2(0) +ξ(0)(e−t −et)

=
2x2(0)

et [2−x2(0)ξ(0)]+e−tx2(0)ξ(0)
(1.35)

From the denominator of (1.35), we see that for all “local” initial conditions{x2(0)∈

R, ξ(0)∈R :−∞ < x2(0)ξ(0)< 2}, the states of the system (1.31) converge to zero,

but all trajectories initiated outside this set escape to infinity at time

tesc=
1
2

ln

(
x2(0)ξ(0)

x2(0)ξ(0)−2

)

. (1.36)

Even though the observer estimate in this example convergesexponentially fast to

the actual statex1, this exponentially decaying estimation error causes a disturbance

significant enough to destabilize the CL system for some initial conditions.⊳

The above example demonstrates that we cannot expect to find aseparation

principle for nonlinear systems which is as powerful and generic as that for linear

systems. Specifically, global OFB designs for nonlinear systems cannot be as sim-

ple as combining any convergent observer with any GAS SFB controller under the

CE assumption.

One may object to this example, since the ad-hoc construction of this particular

observer gives us no opportunity to control its convergencerate, which is dependent

on the stability of the linear component in the ˙x1 equation. However, assuming that

by whatever means a reduced order observer is available for (1.27) so that its error

decays at a rateξ(t) = e−ktξ(0), where the parameterk can be adjusted, we observe

from equation (1.32) that for any such gaink > 0 its solution

x2(t) =
(k+1)x2(0)

et [k+1−x2(0)ξ(0)]+e−ktx2(0)ξ(0)
(1.37)

12
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still has a finite escape time for some initial conditions. Infact, even observers that

converge in finite time (such as [19]) may not avoid this problem since the esti-

mation error may reach magnitudes sufficiently large to destabilize the CL system

during the error convergence interval [20].

The lack of a generic separation principle for nonlinear systems is a specific

instance of a more general problem: our inability to predictthe input-output be-

haviour of a nonlinear system on the basis of its internal stability. Regarding the

observer error as an input to the plant under ESFB, we see thatwhen this input

is zeroed, the internal response of the CL plant (i.e. response to initial conditions

only) is GAS. However, the presence of the multiplicative nonlinearityx2
2 amplifies

even a bounded, decaying input in a way that causes instability. For linear systems,

internal stability (i.e. stability of the zero input response) implies, and is implied

by input-output stability (i.e. stability of zero-state response), but for nonlinear

systems this is not the case.

Even though Example 1.1.1 shows that in general ESFB cannot guarantee non-

local stability, there are conditions under which non-local stability is achievable

using ESFB for nonlinear systems.

1.2 Stability of Cascade-Connected Systems

From the previous examples, we note that the interconnection of the plant, con-

troller and observer can equivalently be studied within themore general framework

of cascade connected systems such as:

ẋ = f (x,ξ) (1.38a)

ξ̇ = g(ξ), (1.38b)

shown in Figure 1.1. We assume that (1.38b), analogous to theobserver error, is

GAS atξ = 0, and that (1.38a) withξ = 0, analogous to the closed-loop plant under

exact state feedback ˙x = f (x,0), is GAS atx = 0. We are interested in whether

there are conditions under which this cascade connection isglobally stable. Such

13



Section 1.2: Stability of Cascade-Connected Systems

Figure 1.1: Cascade connected subsystems

conditions may offer insight into the limitations of using ESFB to formulate OFB

control laws.

The stability of cascaded nonlinear systems has been extensively studied in the

literature – for example, in [14], [21], [22] among others. The most prominent

result concerning the global stability of (1.38) involves the notion ofinput to state

stability (ISS) [23] . If subsystem (1.38a) possesses this property with respect to

the signalξ, then the basic implication is that the magnitude of the statex(t) will be

bounded for all bounded inputsξ(t) and any initial conditionsx(0). Clearly, system

(1.27) in Example 1.1.1 does not posses this property.

We briefly summarize the meaning and some of the implicationsof ISS by pre-

senting a few key results related specifically to (1.38), andour previous discussions.

Our discussion here is based on the presentation given in Chapter 4 in [15], and Sec-

tion 10.4 in [12].

Definition 1.2.1 (ISS). System (1.38a) is ISS with respect to its inputξ(t) if there

exists a classKL function β(·, ·) and a classK function γ(·) such that for all

boundedξ(·) and allx(0) ∈ Rn, the state satisfies the bound

‖x(t)‖ ≤ β(‖x(0)‖, t)+ γ(‖ξ(t)‖L∞), ∀ t ≥ 0 (1.39)

⊳

In this definition, aK-class functionγ(|r|) is aC1 function that strictly increases

with increasingr, with γ(0) = 0. γ belongs to the classK∞ if it is also radially

unbounded. AKL-class functionβ(|r|, t) is a function which, for any fixedt is a

classK function, and for any fixedr = ro is decreasing – i.e. limt→∞ β(|ro|, t) = 0.

TheL∞ norm of a signalξ(t) is defined as‖ξ(t)‖L∞ = supt≥0‖ξ(t)‖ and exists for

all bounded signals.
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The important result involving ISS is the following:

Theorem 1.2.1(Corollary 10.5.3, [12]). If system(1.38a)is ISS with respect toξ

as its input, and the system(1.38b)is GAS, then the equilibrium(x,ξ) = (0,0) of

the composite system(1.38)is GAS.

The way to establish that a system is ISS is to produce a so-called “ISS-Lyapunov

function”, which fully characterizes input-to-state stability in the sense that it is

both necessary and sufficient for it. A functionV : Rn → R+ is an ISS-Lyapunov

function for (1.38a) if it is bounded by two classK∞ functions

α1(‖x‖) ≤V(x) ≤ α2(‖x‖), ∀x∈ R
n (1.40)

and its time derivative satisfies

∂V(x)
∂x

f (x,ξ) ≤−α3(‖x‖), ∀x∈ R
n, when‖x‖ ≥ α4(‖ξ‖), (1.41)

whereα3(·)∈K∞ andα4(·)∈K. A system (1.38a) is ISS if and only if there exists

an ISS-Lyapunov function for it (Theorem 10.4.1, [12]).

Condition (1.41) may be difficult to check. Alternatively, that same functionV

is an ISS-Lyapunov function for (1.38) if and only if (1.40) holds, and there exists a

classK∞ functionσ such that the time derivative ofV along the solutions of (1.38a)

satisfies (Lemma 10.4.2, [12]):

∂V(x)
∂x

f (x,ξ) ≤−α3(‖x‖)+σ(‖ξ‖) (1.42)

To concretely see how a Lyapunov function satisfying (1.40)and (1.42) guaran-

tees (1.39), suppose

ẋ = −x3 +x2ξ. (1.43)

Just as in Example 1.1.1, the “disturbance” inputξ is amplified by a quadratic non-

linearity. However in this case, no boundedξ can destabilize (1.43) owing to the

presence of the stronger−x3 term. To show this, we first demonstrate that the func-
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tionV = 1
2x2 is an ISS-Lyapunov function. Its time derivative is:

V̇ = −x4 +x3ξ(t)

= −3
4x4 +x2[− 1

4x2 +xξ(t)−ξ(t)2+ξ(t)2]

= −3
4x4−x2(1

2x−ξ(t)
)2

+x2ξ(t)2

≤−3
4x4 +x2ξ(t)2 (1.44)

= −1
2x4−

(
1
2x2−ξ(t)2)2

+ξ(t)4

≤−1
2x4 +ξ(t)4. (1.45)

Since (1.45) matches the form (1.42), we conclude that ˙x = −x3 +x2ξ is ISS with

respect toξ. To see why an ISS-Lyapunov function is sufficient to obtain abound

such as (1.39), we will examine the solution to the differential inequality (1.44),

which can be written:

V̇ ≤−3V2+2Vξ(t)2. (1.46)

Instead of solving (1.46), we will solve the equality

ẇ = −3w2 +2wξ(t)2 (1.47)

and then apply the comparison principle (Lemma 3.4 [15]) to obtain a bound on

V(t), and hencex(t), in terms of‖x(0)‖ and‖ξ(t)‖L∞. To solve (1.47), we first

employ a similar change of variable as before, in order to transform this nonlinear

DE into a linear one. Letz= 1
w. Then

ż= 3−2zξ(t)2. (1.48)

This DE can be solved using the integrating factore2
R

ξ(t)2dt, resulting in:

z(t) = e−2
R

ξ(t)2dt[e2(
R

ξ(t)2dt)|t=0z(0)+3
Z t

0
e2(

R

ξ(q)2dq)|q=τdτ
]
. (1.49)

Recalling thatw(t) = 1
z(t) and thatV(t) = 1

2x(t)2 ≤ w(t) by the comparison princi-

ple, we obtain:

1
2x(t)2 ≤

x(0)2e2
R

ξ(t)2dt

e2(
R

ξ(t)2dt)|t=0 +3x(0)2
R t

0 e2(
R

ξ(q)2dq)|q=τdτ
(1.50)
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The first thing to notice in (1.50), is that the denominator can never vanish and that

all terms in both numerator and denominator are non-negative for all ξ(t) and all

initial conditionsx(0) andξ(0). Therefore the solutionx(t) exists for allt ≥ 0 – i.e.

has no finite escape time. To establish thatx(t) is bounded and converges according

to (1.39), we examine the behaviour of the bound (1.50) when:1) ξ(t) ≡ 0, and 2)

ξ(t) ≡ M , ‖ξ(t)‖L∞.

1. Whenξ(t)≡ 0, the indefinite integral
R

ξ(t)2dt evaluates to some constant

c1 ande2c1 cancels from numerator and denominator in (1.50), leaving

1
2x(t)2 ≤

x(0)2

1+3x(0)2t
(1.51)

which converges to zero ast tends to infinity. We therefore associate
√

2x(0)2

1+3x(0)2t
with theKL-class functionβ(‖x(0)‖, t) in (1.39), sinceγ(0) =

0.

2. Whenξ(t) is replaced with its supremumM in (1.50), we obtain

1
2x(t)2 ≤

x(0)2e2M2t

1+3x(0)2
R t

0 e2M2τdτ

=
2M2x(0)2e2M2t

2M2+3x(0)2e2M2t −3x(0)2
(1.52)

which, ast tends to infinity becomes:

lim
t→∞

1
2x(t)2 ≤ lim

t→∞

2M2x(0)2e2M2t

2M2+3x(0)2e2M2t −3x(0)2
=

2
3

M2. (1.53)

We therefore associate
√

2M2/3 with the classK gain functionγ(M) in

(1.39), since limt→∞ β(‖x(0)‖, t) = 0.

Although the characterization of the ISS property represents a significant ad-

vancement in relating the I/O behaviour of a nonlinear system with its internal be-

haviour, there are two difficulties with it. First, it is onlyan analysis tool and may

not help us actually design stable cascades in the observer-controller context. Sec-

ond, there is no systematic way of finding an ISS-Lyapunov function for a general
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nonlinear system; it may be impossible to find such a functioneven for an ISS sys-

tem. We quote a result intended to help establish ISS withoutresorting to a search

for an ISS-Lyapunov function:

Theorem 1.2.2(Lemma 4.6, [15]). If the C1 vector field f(x,ξ) in (1.38a)is glob-

ally Lipschitz in x andξ, and the unforced systeṁx = f (x,0) is GES at x= 0, then

(1.38a)is ISS with respect toξ.

Certainly, checking whetherf (x,ξ) is globally Lipschitz is easier than search-

ing for an ISS-Lyapunov function. However, both requirements of this theorem are

extremely restrictive. To require that the growth of a nonlinear system’s velocity

vector be linearly bounded severely reduces the variety of admissible nonlineari-

ties. Designing a SFB controller for a general nonlinear system so that its origin

is GES may also not be an easy task; for instance, if the plant admits a coordinate

change in which a SFB control can be designed such that in those coordinates the

system is GES (i.e. as the control (1.12) did for system (1.11)), a nonlinear change

of coordinates generally does not preserve the states’ convergence rates. In other

words, in the original coordinates we can expect GAS, but notnecessarily GES.

Although the linear CL system under ESFB (1.8) certainly qualifies as ISS under

the above theorem, possibly not many nonlinear systems do.

From (1.51), it is clear that ISS implies internal stability, and from Example

1.1.1, it is evident that internal stability does not imply ISS. Therefore, ISS is a

much stronger property than internal stability and is sufficient to guarantee I/O sta-

bility. However, ISS is not necessary for I/O stability, possibly leaving room to

weaken conditions such as those of Theorem 1.2.2.

There are in fact several results that attempt to identify a more “minimal” set of

conditions under which the cascade interconnection (1.38)is globally stable. For

example, let us re-write (1.38) as

ẋ = f (x,0)+ [ f (x,ξ)− f (x,0)] , F(x)+ψ(x,ξ) (1.54a)

ξ̇ = g(ξ), (1.54b)

Then, by Proposition 4.11 in [13] the composite system is GASat (x,ξ) = (0,0)
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if (1.54b) is GAS atξ = 0, ẋ = F(x) is GES atx = 0 and the interconnection term

ψ(x,ξ) is linearly bounded as

‖ψ(x,ξ)‖ ≤ γ1(‖ξ‖)‖x‖+ γ2(‖ξ‖). (1.55)

for some classK functionsγ1 andγ2. In this case the growth restriction is imposed

only on the interconnecting termψ(x,ξ) as opposed to the entiref (x,ξ) in Theorem

1.2.2. It is also possible to achieve GAS of the composite system by requiring

(1.54b) to be GES at the origin (which is plausible, as for example in (1.20b)) and

ẋ = F(x) to be only GAS, while the interconnecting nonlinearity is still required

to satisfy (1.55). In addition, the Lyapunov function associated with ẋ = F(x) is

then required to satisfy a polynomial growth bound (Theorem4.7 and Proposition

4.8, [13]). These conditions are still not much weaker than those of Theorem 1.2.2.

It appears that most attempts to weaken the ISS requirement do so at the expense

of limiting the nonlinear growth rate of the upper subsystem. However this restric-

tion can be considerably weakened if we instead consider semi-global stabilization

of the cascade (1.54). For example, recalling equation (1.37):

x2(t) =
(k+1)x2(0)

et [k+1−x2(0)ξ(0)]+e−ktx2(0)ξ(0)
(1.56)

which is the solution of ˙x2 =−x2+x2
2ξ(0)e−kt, we notice that the the set{(x(0),ξ(0)) :

−∞ < x(0)ξ(0) < (k+1)}, contained within the ROA, can be arbitrarily expanded

by increasing the gaink, showing that non-local stabilization is possible in the ab-

sence of the ISS property, and in the absence of any growth restrictions on the

interconnecting nonlinearity (i.e.x2
2 is not globally Lipschitz). From this example,

it would seem that even though global stabilization may not be possible with ESFB,

we may achieve an arbitrarily large ROA for a composite CL system, simply by in-

creasing the convergence rate of the observer. Evidently insome circumstances this

strategy may work; however, in [24] and [22] this idea is shown to fail in general

due to the so-called “peaking phenomenon”. In the sequel, wewill examine more

closely the essential reason for the failure of this idea. For stable linear systems,

peaking refers to a transitory increase in the magnitude of some states before they

decay.
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1.2.1 The Peaking Phenomenon

In order to further understand the mechanisms that encumberthe nonlinear separa-

tion principle, we now examine some aspects of the work in [22]. In this paper, the

authors study a “partially linear” cascade such as

ẋ = F(x)+ψ(x,ξ) (1.57a)

ξ̇ = Aξ+Bu, (1.57b)

and investigate various conditions on both subsystems under which the cascade can

be globally or semi-globally stabilized by partial state feedback. Such system struc-

tures may arise as special cases of systems that have been partially state-feedback

linearized [25], or I/O state-feedback linearized [26]. Itis found in [22] that if

peaking states enter the interconnection termψ, then the cascade (1.57) cannot be

semi-globally stabilized by a feedback of the formu = α(ξ).

In terms of the nonlinear separation principle, we are more interested in systems

of the form

ẋ = F(x)+ψ(x,ξ) (1.58a)

ξ̇ = Aξ. (1.58b)

where the input has already been assigned, andξ represents the state estimation er-

ror, resulting from alinear error dynamic(LED) observer. Therefore in the sequel,

we translate some of the pertinent ideas in [22] to the present context by investi-

gating the possibility of achieving a semi-global nonlinear separation principle that

relies on any globally asymptotically stabilizing SFB control using state estimates

generated by a LED observer.

For the sake of concreteness, we choose to demonstrate our analysis by means of

an example. In the literature, the effects of peaking are often illustrated by examples

involving some sort of high-gain design which assigns repeated stable eigenvalues

to the linear component (1.57b) or (1.58b) of a cascade – see for instance Example

1.1 in [22], or Example 4.29 in [13], or the example on page 614in [15]. The fre-

quency with which one encounters this kind of example almostgives the impression
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that the difficulties caused by peaking result only from designs involving repeated

eigenvalues, which is false. For this reason, we choose to analyze the following

cascade system:

ẋ = −kx+ξix
2 (1.59)





ξ̇1

ξ̇2

ξ̇3



=





−L1 1 0
−L2 0 1
−L3 0 0









ξ1

ξ2

ξ3



, Aξ (1.60)

where (1.60) could be the error dynamic of a LED observer, and(1.59) could be one

of the states in the CL plant under ESFB, withk an adjustable control parameter.

Our objective is to analyze how and when peaking occurs in linear systems,

and why it destroys the possibility of even semi-global stabilization. To that end,

we will examine the response of (1.59) to eachξi(t) as the gainsL are increased.

Throughout the discussion, we hope to clarify how the so-called “peaking expo-

nents” [22] quantify peaking behaviour in the various states of a linear system, and

can be used to predict whether a cascade such as (1.59)-(1.60) can be semi-globally

stabilized under minimal assumptions on the individual subsystems.

We assume that the gainsLi are chosen so that the spectrum ofA is

σ(A) = {λ ∈ C : |A−λI |= 0} = {−λ1,−λ2,−λ3},

where theλi are distinct and strictly positive. We begin by decoupling the subsys-

tem (1.60) usin the change of coordinatesz= P−1ξ, where we take

P =





λ1 λ2 λ3

λ1λ2+λ3λ1 λ1λ2+λ2λ3 λ2λ3+λ3λ1

λ1λ2λ3 λ1λ2λ3 λ1λ2λ3



 . (1.61)

Then

ż= (P−1AP)z=





−λ1 0 0
0 −λ2 0
0 0 −λ3



z, Dz, (1.62)

whose solution is

z(t) =





e−λ1t 0 0
0 e−λ2t 0
0 0 e−λ3t



z(0) , φ(t)z(0). (1.63)
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In the original coordinates the solution to (1.60) is

ξ(t) = Pφ(t)P−1ξ(0). (1.64)

the expressions for the elements ofPφ(t)P−1 could be rather complicated, and we

omit to write them here. In order to see the effects of peaking, it actually suffices to

examine the response of (1.64) to only one of the initial conditions. For simplicity,

we arbitrarily choose(ξ1(0),ξ2(0),ξ3(0)) = (1,0,0) and instead write the response

in terms of the three exponentials governing the motion:





ξ1(t)
ξ2(t)
ξ3(t)



= 1
(λ1−λ2)(λ1−λ3)





λ2
1 −λ2

2 λ2
3

λ2
1(λ2+λ3) −λ2

2(λ1+λ3) λ2
3(λ2+λ1)

λ2
1λ2λ3 −λ2

2λ1λ3 λ2
3λ1λ2









e−λ1t

e−λ2t

e−λ3t





, 1
(λ1−λ2)(λ1−λ3)





c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3









e−λ1t

e−λ2t

e−λ3t



 (1.65)

We are now ready to analyze the behaviour of (1.59) wheni is 1, 2 and 3. The dy-

namic (1.59) is familiar by now, and from Example 1.1.1 we know that its solution

looks like:

x(t) =
x(0)e−kt

1+x(0)Ri(t)
, (1.66)

where we define

Ri(t) , −

Z t

0
e−kτξi(τ)dτ. (1.67)

The expressionRi(t) is important because it relates directly to the ROA of the cas-

cade. From (1.65), we can express eachξi(t) as

ξi(t) = 1
(λ1−λ2)(λ1−λ3)

3

∑
j=1

ci, je
−λ jt (1.68)

and therefore

Ri(t) =
3

∑
j=1

−ci, j

(λ1−λ2)(λ1−λ3)

Z t

0
e−kτe−λ jτdτ

=
3

∑
j=1

ci, j(e−(k+λ j )t −1)

(λ1−λ2)(λ1−λ3)(k+λ j)
(1.69)
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Before discussing the significance of the expression (1.69), we first provide a graph-

ical analysis of the behaviour of bothRi(t) andξi(t), i ∈ {1,2,3}, when the conver-

gence rate of theξ-subsystem is increased. We introduce a gain factorγ by which

we amplify all eigenvalues ofA simultaneously. In the figures that follow, we take

(λ1,λ2,λ3) = (1,0.5,1.5). (1.70)

and amplify them byγ = 1, γ = 5 andγ = 10.
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Figure 1.2: State Peaking with Increasingγ. As γ is increased, the third stateξ3(t)
exhibits the greatest peaking effect, while the stateξ1(t) experiences no peaking at
all.

Figures 1.2 and 1.3 show how each of theξi respond when the convergence

rate is increased. While all states converge faster asγ is increased, the peaking

behaviour of some states becomes more pronounced. From Figure 1.3 it is apparent

that the peak in stateξ3 experiences the greatest increase withγ while the stateξ1

experiences virtually no transitory increase in magnitudewith an increase inγ.

In Figure 1.4 we look for the maximum magnitude ofRi(t) over time, as this

quantity determines the set of initial conditionsx(0) for which (1.66) does not es-
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Figure 1.3: A Comparison of State Behaviours for Increasingγ.
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Figure 1.4: The Behaviour of the termRi(t) asγ is varied.

cape to infinity in finite time. For notational convenience, we define

R∗
i , max

t
|Ri(t)|. (1.71)
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If Ri(t) is a positive quantity for all time, then the set of initial conditionsx(0) ∈

(−1/R∗
i ,∞) guarantee convergence of(x(t),ξ(t)) to the origin. Likewise, ifRi(t) is

a negative quantity for all time, then the same set isx(0) ∈ (−∞,1/R∗
i ). Therefore,

the set of admissible initial condition can concisely be expressed as:

Ω =

{

x(0) : −sgn(Ri(t > 0))x(0) <
1
R∗

i

}

(1.72)

If ξ1 is driving the nonlinear subsystem (1.59), then we note fromthe corre-

sponding plot ofR1(t) that increasing the gainγ increases the size ofΩ sinceR∗
1

decreases. Ifξ2 is drives the nonlinear subsystem, we notice thatR∗
2 increases withγ

to R∗
2 ≈ 1.1 whenγ = 10. This value does not change significantly whenγ is further

increased – i.e. forγ = 30, we still observeR∗
2 ≈ 1.1. On the other hand,R∗

3 shows

an increasing trend with increasingγ. In fact, whenγ = 30, we observeR∗
3 ≈ 6.5.

This fact indicates that if the stateξ3 drives the nonlinear subsystem (1.59), then in-

creasing the convergence rate of theξ-subsystem actuallydecreasesthe size of the

setΩ, which is related to the size of the composite ROA. We note that “peaking”

in the termsRi(t) correlates to that of the associated stateξi(t), which illustrates

how the peaking phenomenon can obstruct the possibility of non-local stabilization

of a partially linear cascade. These observations are consistent with the following

theorem, which we rephrase here in the context of cascades such as (1.58):

Theorem 1.2.3(Theorem 4.41, [13]). Assume A is Hurwitz, and that its spectrum

can be arbitrarily assigned. Also assume thatẋ= F(x) is GAS at x= 0. If only non-

peaking components of the stateξ enter the interconnection termψ(x,ξ), then semi-

global asymptotic stability of the cascade(1.58)is achievable via the eigenstructure

assignment for A.

To complete our analysis, we make some interesting observations linking our

graphical arguments and the structure of equation (1.69) tothe notion ofpeak-

ing exponentsdiscussed in [22]. We consider all Hurwitz matrices in the observer
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canonical form

A =








−L1 1 · · · 0
...

...
. . .

...
−Lq−1 0 · · · 1
−Lq 0 · · · 0








and definea, mini{Re(λi) : −λi ∈ σ(A)}. Then, the solution tȯξ = Aξ is bounded

by ‖ξ(t)‖ ≤ κ‖ξ(0)‖e−at. It is noted in [22] that in linear systems peaking occurs

because in general it is not possible to choose the gainsLi to makea larger without

also makingκ larger – i.e.κ = κ(a). According to [22], any given linear combi-

nation of statesy = Cξ will have associated with it a peaking exponentπ, so that

it is bounded by‖y(t)‖ ≤ aπ‖ξ(0)‖e−at. It is interesting to associate this fact with

the following observation. If all eigenvalues ofA are multiplied simultaneously by

a gainγ in our previous example, then in consideration of (1.68) and(1.65), the

solution of (1.60) can be re-written as:

ξi(t) = γi+1

γ2(λ1−λ2)(λ1−λ3)

3

∑
j=1

ci, je
−γλ j t , (1.73)

which offers clear insight into the peaking behaviour of thethree states. Fori =

1, the stateξ1(t) does not get amplified asγ is increased, sinceγ cancels from

numerator and denominator in (1.73). In effect, we may say that ξ1(t) responds

with a peaking exponent of zero – i.e. although the convergence rate ofξ1 increases

with an increasedγ, ξ1(t) itself is amplified byγπ = γ0. On the other hand, by

this interpretation the peaking exponents associated withξ2 and ξ3 are 1 and 2,

respectively.5 For peaking exponentsπ > 0, the associated signals exhibit peaking,

and prevent semi-global stability of cascades such as (1.58) if they are present in

the interconnection termψ(x,ξ) [13].

The example cascade (1.59)-(1.60) is intended to draw an analogy with a CL

plant under ESFB, using state estimates generated by a LED observer. In general,

a SFB control law relies on all state estmates, implying thatall states of the error

5Actually, this can also be intuited by observing that the canonical formA is “almost” a chain of
integrators. Therefore, if the stateξ1 converges at a rate ofξ1(t) ≈ e−at, then the stateξ2 is roughly
its time derivative, and will converge atξ2(t)≈−ae−at, and so on as we progress through the chain.
This observation implies that higher-indexed states in this chain will have higher associated peaking
exponents, exhibiting greater peaking behaviour [27].
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dynamic are present in the coupling termψ(x,ξ). Then from the preceding analysis,

it is clear that we cannot even expect to have a “pseudo-separation principle” for

nonlinear systems involving a LED observer and any non-locally asymptotically

stabilizing SFB control.

1.3 Nonlinear Separation

The preceding discussion makes clear that non-local OFB design for nonlinear sys-

tems must take into consideration the I/O behaviour of the plant if it is to consist of a

dynamic component. Any such design cannot ignore the interconnection properties

of the plant to dynamic components such as observers, as is done in the classical

separation design. Therefore, we must broaden our notion of“separation”, and

hence our perspective on the possible approaches in addressing the non-local OFB

problem for nonlinear systems.

Since the observer-plus-SFB-control paradigm seems natural to OFB design, we

must clarify exactly what we mean by the word “separation” inthe nonlinear case.

We broadly categorize all separation approaches to the OFB problem as those that

loosely associate the role of the dynamic component of the OFB with the estimation

of the plant’s state, with the intention of using these estimates in a (possibly modi-

fied) SFB control. Then, the wordseparationrefers to some degree of anticipated

design freedom in terms of choosingu= α(ξ,y) andξ̇ = Γ(ξ,y,u) in (1.2) indepen-

dently of one another. With this clarification, we offer the following categorization

of possible approaches to the non-local OFB problem:6

1. Separation: Designu = α(x) so that ˙x = f (x)+ g(x)α(x) is non-locally

asymptotically stable. Then, independently design a system ξ̇ = Γ(ξ,y),

whose function is associated with generating an estimate ˆx of the true state

x. Implementu = α(x̂).

6in Remark 10 of [20], a similar categorization is given, but the context is different. Freeman
interprets the dynamic component strictly as an observer, and the controller is static and belonging
to a specific class of controllers. Furthermore the interestin [20] is whether one can make a general
statement on the possibility of global asymptotic stabilization within any of the four nonlinear sep-
aration categories, whereas our interest is in classifyingthe various available solutions and possible
approaches to the problem.
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2. Controller Separation: Design anyu = α(x) so that ˙x = f (x)+g(x)α(x)

is non-locally asymptotically stable. Then, design a system ξ̇ = Γ(ξ,y) so

that the coupled system

ẋ = f (x)+g(x)α(ξ)

ξ̇ = Γ(ξ,h(x))

is non-locally asymptotically stable.

3. Observer Separation: Design ξ̇ = Γ(ξ,y) whose function is associated

with generating an estimate ˆx of the true statex. Then designu = α(x̂,y)

in such a way that the coupled system is non-locally asymptotically stable.

4. Non-Separation Approach: Designu = α(ξ,y) and ξ̇ = Γ(ξ,y) interde-

pendently so that the composite system (1.3) is non-locallyasymptotically

stable.

Observer and Controller separation suggest the possibility of modifying the con-

trol design or observer design (respectively) in order to compensate for the dynamic

coupling between thėξ subsystem and the plant, while leaving freedom in the de-

sign of the observer or controller (respectively). We will see in the literature survey

that follows, that many existing solutions to the OFB problem fall within one of

these four categories.

1.4 Literature Review

We divide the following literature survey according to whether the design is semi-

global or global. This is a natural categorization which recognizes the different set

of tools and system restrictions (with some overlap) usually applied in either design.

At the end, we give an overview of literature dealing specifically with multivariable

OFB results.
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1.4.1 Semi-Global OFB

Research into semi-global OFB designs became popular afterthe publication of

[28], where a restrictive class of “fully linearizable” systems is considered – i.e.

systems that are simultaneously linearizable by state feedback from input to output

(IOL) and from input to state (SFBL)7 and can therefore be expressed as

ẋ = Acx+Bc(φ1(x)+φ2(x)u)

y = Ccx

whereAc has 1’s on the superdiagonal and zeros elsewhere,Bc = [0, . . . ,0,1]T , Cc =

[1,0, . . . ,0], andφ1(x) andφ2(x) are some nonlinearities, withφ2(x) nonsingular for

all x. First, the authors design a globally asymptotically stabilizing state feedback

controlleru(x) = (φ20(x))−1(−φ10(x) + α(x)), whereα(x) is any control capable

of compensating for the inexact cancellation of the nonlinearitiesφ1(x) andφ2(x)

by their nominal valuesφ10(x) andφ20(x)8. Then, they design ahigh-gain(HG)

observer much like the one originally introduced in [29], and analyze the effects

of implementing the ESFBu(x̂). Aside from the modeling uncertainty (which they

assume is compensated for in the controlu(x)), they identify a second disturbance

term resulting from inexact cancellation of the nonlinearities due to the use of the

state estimate ˆx instead of the true statex in u(x). Although the HG observer has

excellent disturbance rejection properties with respect to this second disturbance

as its gain is increased, the inevitable presence of peakingin the observer states is

shown to have a destabilizing effect on the composite system. The authors solve this

problem simply by saturating the controlu(x̂) and show that this technique enables

semi-global stability, with the observer gain affecting the size of the CL ROA. This

design is an example of controller separation, as freedom isgiven in the design of

u(x).

An important result that followed was given in [30], and elaborated further in

[31] and [32]. As the title suggests, in [30] the authors demonstrate that if a given

7Please see Theorem 4.2.2 and Theorem 2.2.1 (respectively) in [16] for sufficient conditions and
associated transformations.

8They give a concrete example of a Lyapunov redesign SFB that accomplishes this.
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smooth nonlinear system is globally asymptotically stabilizable by exact SFB and

is uniformly completely observable(UCO),9 then it can be semi-globally stabilized

by OFB. In this paper Teel and Praly append a number of integrators to the input

side of the system to avoid using input derivatives, and workwith this augmented

plant:

ẋ = f (x,u0)

u̇0 = u1

...

u̇nu = v

Sinceẋ = f (x,u) is assumed stabilizable byu, there exists a state feedback control

law v = α(x,u0, . . . ,unu) that globally asymptotically stabilizes the augmented sys-

tem (this can be done by backstepping, for instance). Then, similarly to equation

9The notion of UCO (also referred to as “uniform observability”) was first introduced in [33]
for nonlinear systems. The essential implication of complete observability is that theoretically it
is possible to extract full state information at an instant of time given exact information about the
input u(t), the outputy(t), and a sufficient number of their derivatives at that time. Ifthe preceding
statement is true for any time instant, then the observability is said to be uniform. For the system
(1.1), there are two equivalent characterizations of UCO systems:

1. the system is diffeomorphic to [29]:

ẋi = xi+1 +gi(x1, . . . ,xi)u, 1≤ i ≤ (n−1)

ẋn = φ(x)+gn(x)u,
(1.74)

2. there exists a unique smooth functionψ(·) such that (Section 9.6, [17]):

x(t) = ψ(y, ẏ, . . . ,y(n−1),u, u̇, . . . ,u(n−2)). (1.75)

The second characterization can be seen as follows. Definey , [y, ẏ, . . . ,y(n−1)]T and u ,

[u, u̇, . . . ,u(n−2)]T . Then, taking successive derivatives of the output resultsin y = Φ(x,u), with
Φ(0,0) = 0 wheny = h(x) is zero atx = 0. By definition, a UCO system has

rank

[
∂Φ(x,u)

∂x

]

= n, ∀ x∈ R
n, ∀ u∈ R

n−1 (1.76)

which, by the Implicit Function Theorem implies (1.75). Effectively, (1.76) means that
there is no inputu that can destroy “observability” – i.e. falsify the equality (1.76). We
note two facts: first, it can easily be shown that the usual observability condition requiring
span{dh(x),dLf h(x), . . . ,dLn−1

f h(x)} = Rn is necessary for (1.76) to hold whenu ≡ 0. Second,
(1.76) allways holds for linear systems, for any input – i.e.plain “observability” is equivalent to
UCO for linear systems.

30



Section 1.4: Literature Review

(1.75), they express the state asx(t) = φ(y, ẏ, . . . ,y(ny),u0,u1, . . . ,unu) whereui is the

state of the(i + 1)th integrator after the plant input, and design a HG observerto

estimate theny derivatives of the output needed for the knowledge ofx(t). Finally,

they implementv = α(φ(ŷ, ˙̂y, . . . , ŷ(ny),u0,u1, . . . ,unu),u0,u1, . . . ,unu), applying the

same saturation technique used in [28] in order to prevent the destabilizing effects

of peaking. The dynamic component of this OFB law consists ofthenu appended

integrator dynamics, and thenyth order HG observer. If for a given nonlinear sys-

tem the functionφ(·) can easily be found, then this method is constructive. The

existence of such a function is guaranteed by the Implicit Function Theorem, pro-

vided the system is UCO; however finding an explicit expression for φ(·) may be

difficult. Therefore, this result is generally regarded as an existence result, rather

than a practical result.

In [34] Khalil improves his previous result [28] by broadening the class of sys-

tems to which the techniques in [28] are applicable, and incorporating some of the

techniques introduced in [31] into his design and analysis.He extends the analysis

in [31] to demonstrate that if a semi-globally asymptotically stabilizing exact SFB

exists for a nonlinear system belonging to a certain class, then ESFB “recovers”

the performance of the exact SFB controller, in the sense that as the HG observer

gain is increased, the trajectories and the ROA of the CL system under ESFB ap-

proach those of the CL system under exact SFB. Although the set of systems he

considers is not as broad as the set of all stabilizable UCO systems, his result is

fully constructive and easily implemented.

The results in [34] and [31] are furthered in [35] and [36], which likely represent

the current state of the art in semi-global OFB stabilization of nonlinear systems.

Although there are many extensions available, the aforementioned papers cover

the main ideas, generally used in most other papers on semi-global OFB. For ex-

ample, in [37], the authors consider a multi-input, single output system that is not

affine in the controlu, and whose model ( ˙x = f (x)+ g(x,u), y = h(x), x∈ Rn) is

not necessarily valid over all ofRn. They identify a set of conditions that guaran-

tee that such a system is transformable to the form (1.74) so that a HG observer
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can be designed. The conditions they provide are very similar to those guarantee-

ing the existence of a NOF, and they point out that for systemsnot affine in the

control, transformability into (1.74) is stronger than UCO. Then, assuming there

exits a semi-globally stabilizing exact SFBu = α(x), they design annth order HG

observer on the basis of the model’s Lipschitz extension andexplicitly provide a

dynamic OFB in terms ofα(x̂).

One may argue that given the unrestrictive set of conditionssufficient for the ex-

istence of semi-global OFB relative to the ISS or growth-rate restrictions that allow

global nonlinear OFB designs, it appears that semi-global designs are more practi-

cal and more worthy of research attention. However, in all ofthe above references

the key ingredient is a HG observer whose use in physical applications has serious

practical limitations. The use of high gains is usually associated with “differenti-

ation”, and hence the amplification of noise. Global designsgenerally dispense of

this difficulty, and in that sense are more elegant. Furthermore, the designer does

not have to worry about sizes of compact sets of initial conditions for which the

system states are guaranteed to converge. The development of global OFB designs

is deemed important, since a designer should have such tradeoffs at her disposal.

1.4.2 Global OFB

The global OFB problem is significantly more difficult than the semi-global OFB

problem, especially if we wish to relax the growth restrictions usually imposed on

the system’s nonlinearities. From Example 1.1.1 and our discussion in Section 1.2,

it is natural to expect that global OFB stabilization of nonlinear systems requires a

more stringent set of restrictions on the dynamic structureof (1.1) than semi-global

OFB stabilization. Indeed, Mazenc et al have shown in [38] byseveral counterex-

amples that even if a system is globally asymptotically stabilizable by exact SFB

and satisfies a strong observability condition such as UCO, it may not be globally

stabilizable by any OFB. They have shown that for an entire class of nonlinear
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systems diffeomorphic to the following form10

η̇ = Γ(η,z1, . . . ,z
r−1)

żi = zi+1, 1≤ i ≤ (r −1)

żr = zn
r + f1(η,z1, . . . ,zr−1)+g1(η,z1, . . . ,zr−1)u

y = h(z) = z1

(1.77)

there is no globally stabilizing OFB when

n≥
r

r −1
,

regardless of the stability properties of theη-subsystem. The obstacle identified in

[38] is a so-called “unboundedness unobservability” (UU) property, which implies

that even though (1.77) may be observable and stabilizable,it may have some states

that escape to infinity in finite time without being “noticed”through the outputy.

In other words, even if those states are observable throughy, the fact that they are

escaping to infinity in finite time may not be observable.

Though there appear to be some theoretical limitations on what is possible for

global OFB designs, the complete set of systems for which global OFB is possible,

and conversely the set of systems for which global OFB is not possible, have not

been fully characterized. The set of systems for which we know how to design

globally stabilizing OFB laws is likely not the largest suchset. We proceed to give

an overview of the key contributions to the global OFB problem.

One of the earlier investigations of a global separation principle is provided by

Tsinias in [39] and [40]. In [40], Sontag’s ISS condition forthe global stability of

cascades is applied and extended to ESFB for a class of generalized bilinear systems

of the form

ẋ = f (x,u)+uBx

y = Cx.

10This is a special case of the normal form introduced in [10]. The normal form plays an important
role in global OFB designs for nonlinear systems and will be discussed in the next chapter. Some
variant of the normal form is usually a starting point for global OFB designs.
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where the norm of the rate of change off with respect tox is assumed to be bounded

for all x andu. For this class of systems, Tsinias translates the ISS condition into a

concise set of algebraic conditions, which, if satisfied, guarantee the global asymp-

totic stability of the composite system consisting of an observer and the CL plant

under ESFB.

A more general result also relying on the concept of ISS is given in [41] for a

class of SISO systems of the form

η̇ = Γ(η,z1)

żi = zi+1+ fi(η,z1)+gi(z1), 1≤ i ≤ (r −1)

żr = u+ fr(η,z1)+gr(z1)

y = z1,

(1.78)

where in particular it is important to note thatη is allowed to enter the chain of

integrators nonlinearly. Under the relatively strong assumptions that the inverse

systemη̇ = Γ(η,y) (i.e. the zero dynamics) are ISS with respect toy and that the

nonlinearityφ(η,y) , [ f1(η,y), . . . , fr(η,y)]T satisfies a small-gain condition, the

system (1.78) can be globally asymptotically stabilized byan rth order dynamic

OFB. The construction of the OFB law is similar to that in [6],relying on a SFB

designfor an observer for (1.78). However, the final expressions depend on a gain

function similar to the one in (1.39) whose existence is posited by the assumption

that theη-subsystem is ISS. Since such a function is generally difficult to find, this

paper presents more of an existence result than a practical result.

Another generalization is presented in [42] to systems similar to (1.78):

η̇ = Γ(η,z1)

żi = zi+1+gi(η,z1, . . .zi), 1≤ i ≤ (r −1)

żr = u+gr(η,z1, . . . ,zr)

y = z1,

(1.79)

where theη-subsystem is assumed to be locally exponentially stable and ISS with

respect toy. However, the nonlinearitiesgi are required to satisfy the following
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rather restrictive assumption:
∣
∣
∣
∣

∂gi

∂η

∣
∣
∣
∣
+

i

∑
j=1

∣
∣
∣
∣

∂gi

∂zj

∣
∣
∣
∣
≤ Mi(x,y) (1.80)

for some continuous functionMi which is strictly positive everywhere. Under this

assumption, Tsinias shows that there exists a dynamic OFB that globally asymptot-

ically stabilizes the origin of (1.79).

Under slightly stronger structural conditions, it is possible to develop fully con-

structive global OFB laws for minimum phase systems whose nonlinearities depend

on the output only, without imposing any growth restrictions on such nonlinearities.

This has been demonstrated primarily in [6], [43] and [2] which will be discussed

in detail in the next chapter. The system structures considered in these papers are

all variants of thenormal form(NF), or a subclass of the normal form known as the

output feedback form(OFBF). We postpone a detailed discussion of these system

forms until Section 2.2. For the systems studied in these papers it is not necessary to

assume any sort of “small gain” property for the nonlinearities or any ISS condition

on the zero dynamics, although as pointed out in [41], such assumptions are often

made implicit by the system structure.

In the category of controller separation, Arcak, Praly and Kotkotović have con-

tributed [44], [45] and [46]. In [44] an OFB design is given onthe basis of a “circle-

criterion observer”, designed for the following multivariable system structure:

ẋ = Ax+Gγ(Hx)+ρ(y,u)

y = Cx
(1.81)

where each element of the nonlinearityγ(·) is assumed to be a nondecreasing func-

tion of a linear combination of the state. Owing to this special plant structure, a

linear matrix inequality can be set up to solve for a set of twogain vectors used in

the observer design. The OFB design they propose treats the observer error as a

disturbance, and introduces terms that allow the plant-observer interconnection to

satisfy a small gain criterion similar to the one introducedin [47]. An interesting

property of circle-criterion observers is that their errorconvergence rate is depen-

dent on the magnitude of the plant state. This fact is exploited in [45] where Praly
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and Arcak develop a set of sufficient conditions guaranteeing GAS of a CE design.

Their assumptions include the standard stabilizability assumption, and a specialized

detectability assumption in the sense that the observer’s convergence rate should be

dependent on the plant state. A circle-criterion observer design is further refined

in [46] for the purpose of OFB design.

An interesting result is given Tan et al in [48] in which a global stabilization and

tracking OFB is proposed for a system of the form

ẋ1 = x2+φ1(y)

ẋi = xi+1+φi(y)+ γi(y)x2, 1≤ i ≤ (r −1)

ẋr+ j = xr+ j+1+φ j(y)+ γ j(y)x2+gr+ jσ(y)u, 0≤ j ≤ (n−1− r)

ẋn = φn(y)+ γn(y)x2 +gnσ(y)u

y = x1

(1.82)

where theφ(·) andγ(·) are smooth nonlinearities,σ(·) is bounded away from zero,

and the coefficientsgi , r ≤ i ≤ n form a Hurwitz vector(please see Section 2.2).

This system form slightly generalizes the OFBF, in that it allows the unmeasuredx2

to appear affinely in all equations after the first. The appearance ofx2 implies that

the form (1.82) no longer directly admits a LED observer design as the OFBF does.

Nevertheless, their design is based on an observer backstepping technique [6]. The

clever trick used here is a nonlinear transformation of the form ξi = x2−wi(x1)

which results inξ̇-dynamic that is linear and stable inξ, driven by nonlinearities

which are exclusively functions of the outputy, thus admitting an observer design

which cancels the nonlinearities by an appropriate output injection term; in this

way, the technique is strongly reminiscent of Marino and Tomei’s Filtered Trans-

formations(FTs)11, and suggests that FTs may find other creative applications in

the future.

A series of papers influenced in part by the result in Tan et al is [49], [50]

11Please see section 2.4.1, and [2] for more details.
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and [51]. In [49] the following system is studied:

η̇ = A(y,u)η+B(u,y)

ẏ = ψ0(y,u)+ψ1(y,u)η

ρ = h(y,η)

(1.83)

whereη ∈ Rn, the outputy∈ RP, the inputu∈ Rm, andρ(y,η) is a “performance

variable” which is to be regulated to zero by dynamic OFB while all other state vari-

ables remain bounded. System (1.83) is more general than theNF or the OFBF stud-

ied in [43], [6] or [2] in that it does not necessarily have stable zero dynamics, nor is

it necessarily affine in the controlu. However, the system must satisfy two main as-

sumptions. One, there must exist SFBu = α(η,y) which regulatesρ(y,η) to zero,

keeps all other variables bounded, and renders the CL systemglobally “bounded

input bounded state” (BIBS) with respect to any inputd, whenu = α(y,η +d(t)).

Second, there must exist a functionβ(y) so that the system

ż=

(

A(y,u)−
∂β(y)

∂y
ψ1(y,u)

)

z (1.84)

is stable for anyyandu. Furthermore,z(t) is required to be such that limt→∞ α(y,η+

z(t)) = α(y,η) (which does not necessitate limt→∞ z(t) = 0). Analogously to Tan et

al [48], theż-subsystem is not an observer, but a dynamic equation governing the

behaviour of an auxiliary variable defined asz, Mη̂−η +β(y) whereM is some

invertible matrix and̂η is the state of the dynamical component of the OFB:

˙̂η = w

u = α(y,Mη̂+β(y))
(1.85)

with w a new control signal whose expression is chosen to make ˙z take the form

(1.84). Here,β(y) is analogous to thewi(x1) in Tan et al.

It is also interesting to note that the dynamic component˙̂η is not designed for

the purpose of reconstructing the stateη so its state is not required to converge to

the latter. In effect, such a design does not really belong toa separation category;

the objective is to estimate asymptotically the requiredcontrol u= α(y,η), not to

estimate the stateη and then use it in a CE design.
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In [50] and [51] these results are extended to systems of the form (1.83) with

the unmeasuredη variables entering the equations nonlinearly. Although these re-

sults are quite novel and interesting, the method is demonstrated ad-hoc on a few

physical and mathematical examples; no systematic method or even guidelines for

constructing a functionβ(y) are provided in terms of the system functionsA(y,u)

andψ1(y,u).

A recent paper that provides a higher-level analysis of existing observer sepa-

ration methods is [52]. Therein the authors examine some of the above-mentioned

global OFB methods which apply specifically to systems in thestrict normal form

(SNF)12 and try to classify them according to certain properties of the observer.

Other recent directions in the OFB problem include the removal of the restric-

tive minimum-phase condition required in many of the methods noted above, as

well as considering the problem in a stochastic setting, or in the presence of un-

certain parameters. Some work in this direction includes [53], [54], [55], [56]. It

is worth noting that most global OFB methods rely on the technique of backstep-

ping, which is applicable to systems in thestrict feedback form(SFF). Historically,

this technique has augmented, and in some cases generalizedglobal nonlinear de-

signs based on passivity methods. Passivity methods rely ona very specific set

of structural restrictions; namely, the system must have relative degree one, and

be minimum phase [13]. Backstepping has removed the “relative degree one” re-

quirement. There is an analogous method known as “forwarding” for systems in

feedforward formand it is found to be useful in global OFB methods seeking to

remove the minimum-phase requirement incumbent in passivity methods. For ex-

ample, forwarding is used in [57] to remove the minimum-phase requirement often

seen global OFB methods.

1.4.3 Multivariable OFB

Although some of the aforementioned work has natural extensions to the more re-

alistic multivariable case, for several methods such extensions are not obvious. For

12Please see Section 2.2
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this reason, we list a few references dealing specifically with MIMO OFB designs.

A direct extension of Teel and Praly’s semi-global existence result [30] is given

in [58], where a slightly simpler proof is also provided. Khalil’s semi-global re-

sult [34] is developed within a multivariable setting. According to the authors, the

global result in [43] is easy to extend to the MIMO case (although the extension is

not given in that paper). An extension to [6] is possible on the basis of the MIMO

strict normal form identified in [59].

Other MIMO OFB methods are obtained by neural networks [60],or by sliding

mode control [61]. In [62], the authors consider a MIMO system whose state-

dependent nonlinearity is globally Lipschitz bounded, andthey develop a very sim-

ple linear HG observer and a linear HG controller, showing that the combination

yields global asymptotic stability if the gains are selected sufficiently high.

The more challenging multivariable adaptive output feedback problem is ad-

dressed in papers such as [63], [64] and [65]. Because the authors consider the

adaptive problem, the structural restrictions on their systems are often more severe;

for example, in [65], in addition to requiring the number of inputs to be equal to the

number of outputs, the MIMO system these authors consider also must consist of

subsystems with identical dimensions and relative degree.Another similar result is

given in [66] where a HG observer is used.

1.5 Thesis Objectives

From the preceding literature review, it is evident that thestudy of non-local OFB

for nonlinear systems is not complete. Many of the availableresults are applicable

to very specific, and often restrictive system structures. Furthermore, many seminal

results referenced here are still only at their “theoretical infancy” stage – that is,

they are theoretical existence results which are not constructive or cannot be easily

implemented.

In terms of globally stabilizing OFB, we know that the well-known ISS and Lip-

schitz growth restrictions are stronger than necessary. The search for a more “min-

imal” set of sufficient conditions guaranteeing the existence of global OFB (akin
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to Teel and Praly’s existence result [30]) is still open. Once we get closer to a full

characterization of such conditions, there will still be the task of “activating”13 such

existence theories or analytical tools into explicit, constructive engineering control

designs. Therefore, a well-motivated effort would be in oneof two directions:

1. the development of new tools and constructive nonlinear design tech-

niques (such as backstepping) or,

2. the expansion of the classes of systems to which existing tools can be

applied to design OFB laws,

or some combination thereof.

Another observation that can be made from this literature survey is that many

global results rely in some sense on a globally convergent observer, or a system

structure that admits the design of an observer. Such is the case with the OFBF

and results such as (but not exclusively) [6], [43] and [2]. This fact suggests that

different observer forms might well serve as platforms for the development of new

OFB algorithms using existing tools.

Multivariable systems sometimes exhibit certain structural flexibilities with no

analogue in their SISO counterparts. For instance, such is the case in nonlinear ob-

server design, where several different generalizations ofthe SISO LED observer are

possible to the MIMO case [68], [69]; in particular, some less obvious extensions

allow for the presence of unmeasured states in some error subsystems while still

guaranteeing asymptotic convergence of the whole [70]. In some cases it may be

possible to exploit the additional freedoms offered by the multivariable nature of a

system for the development of new OFB laws.

The objective of the work we present in this thesis is to develop and analyze a

preliminary set of MIMO global OFB designs on the basis of theblock triangular

observer form(BTOF) introduced in [70]. To that end, we explore the possibility

of applying some of the techniques presented by Marino and Tomei in [2]. As an

initial step in this direction, we develop MIMO extension ofMarino and Tomei’s

13Kokotović used this terminology in the interesting article [67].
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global SISO OFB method14, which is published in [71] and recapitulated in Chapter

3. In Chapter 4 we present an application of observer backstepping to a subset of

systems equivalent to the BTOF, where the output dependencyis triangular [72].

Finally, we present an OFB algorithm on the basis the BTOF, using tools from [2]

and [1]. Along the way, we hope to provide a clear exposition of the most relevant

tools currently used in most constructive OFB designs.

In the next chapter we provide the preliminary background used to develop our

results.

14From now on, we refer to Marino and Tomei’s global SISO OFB method as the MT method.
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Preliminary Background

This chapter will focus primarily on global output feedbackresults based on the

work of Kanellakopoulos, Kokotović and Morse in [6], and Marino and Tomei

in [2], as these results will later be extended to a broader class of systems. Prior to

detailing the work in these two papers, we introduce what is probably the most im-

portant tool in constructive nonlinear control: integrator backstepping. This simple

design technique has been widely used in many creative ways and is worth review-

ing. We then present and analyze some of the basic system forms that enabled

the designs in [6] and [2], and finally give a thorough exposition of the relevant

techniques developed in the two papers.

2.1 A Basic Tool: Integrator Backstepping

The historical origin of the technique known asbacksteppingis not clear; report-

edly it has been used implicitly by researchers as early as 1966 [73]. However, its

most interesting applications have been collected and formalized in [1] (and [13]),

which are most frequently cited as sources for background onbackstepping. Back-

stepping is most well known for being an iterative method of constructing explicit

expressions for smooth, globally-stabilizing control laws for a relatively unrestric-

tive class of systems whose nonlinearities are not requiredto satisfy any growth

rate bounds. The most general class of systems to which backstepping applies is

the class of systems inpure feedback form[1], however a more practical form to
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consider is the subset class of systems instrict feedback form(SFF):

ΣSFF :







η̇ = Γ(η,x1)

ẋ1 = f1(η,x1)+g1(η,x1)x2

ẋ2 = f2(η,x1,x2)+g2(η,x1,x2)x3

...

ẋr−1 = fr−1(η,x1, . . . ,xr−1)+gr−1(η,x1, . . . ,xr−1)xr

ẋr = fr(η,x1, . . . ,xr)+gr(η,x1, . . . ,xr)u

(2.1)

whereη ∈ R
m, xi ∈ R, i ∈ {1, . . . , r}, and the functionsΓ, fi andgi are assumed

to be smooth withfi(0) = 0. The functionsgi(·) are assumed to be bounded away

from zero for all valuations of their arguments and it is further assumed that there

exists a smooth functionα(η), with α(0) = 0, so that

η̇ = Γ(η,α(η))) (2.2)

is GAS atη = 0. With those assumptions we have:

Lemma 2.1.1.For systemΣSFF, there exists a smooth, globally asymptotically sta-

bilizing state feedback u= ϑ(η,x).

The complete formal proof is inductive, and unnecessary here. To demonstrate

all of the “mechanics” of backstepping, it suffices to consider the special case where

r = 21:

η̇ = Γ(η,x1)

ẋ1 = f1(η,x1)+g1(η,x1)x2

ẋ2 = f2(η,x1,x2)+g2(η,x1,x2)u.

(2.3)

This system is shown in Figure 2.1 which shows why this form isreferred to as the

“strict feedback” form.

Ideally we would likex1 = α(η) since by assumption, theη-subsystem would

then be GAS. To that end, we introduce an error variable

w1 , x1−α(η)

1Here we will show a combination of concepts presented in Lemmas 9.2.1 and 9.2.2 in [17], and
Section 2.3.1 in [1]. A slightly different presentation is also given in the proof of Theorem 2.5.1
in [16]. We provide our own interpretations where appropriate.
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Figure 2.1: A system in strict-feedback form. All states are“fed back” towards the
input; each state is driven by only lower-indexed states andthe input enters only the
last state.

which we wish to regulate to zero. The dynamic behaviour of this new variable is

described by

ẇ1 = f1(η,x1)+g1(η,x1)x2−
∂α(η)

∂η
Γ(η,w1+α(η)). (2.4)

Therefore in the new coordinates, the system (2.3) can be written as:

η̇ = Γ(η,w1)+Γ(η,α(η))

ẇ1 = f1(η,w1 +α(η))+g1(η,w1+α(η))x2−
∂α(η)

∂η
Γ(η,w1+α(η))

ẋ2 = f2(η,w1 +α(η),x2)+g2(η,w1+α(η),x2)u,

(2.5)

where

Γ(η,w1) , Γ(η,w1+α(η))−Γ(η,α(η)). (2.6)

Before constructing the feedbacku = ϑ(η,x1) for this system, it is helpful to de-

compose the functionΓ(η,w1) as

Γ(η,w1) = γ(η,w1)w1. (2.7)

This decomposition is always possible sinceΓ(·) is at leastC1 (becauseΓ(·) is

assumed to be smooth) and by construction,Γ(η,0) ≡ 0. As a consequence of

those two facts, we can apply the following trick to construct γ(η,x1); express

Γ(η,w1) =
Z 1

0

∂Γ(η,sw1)

∂s
ds (tautology)

=
Z 1

0

(
∂Γ(η,z)
(1/w1)∂z

)∣
∣
∣
∣
z=sw1

ds (change of differentiation variable)

, w1γ(η,w1) (2.8)
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The first iteration of backstepping begins by introducing another coordinate

shift

w2 , x2−α1(η,w1). (2.9)

Our intention is to design the smooth functionα1(η,w1), with α1(0,0) = 0, so that

the subsystem consisting of the(η,w1) dynamics

η̇ = Γ(η,α(η))+w1γ(η,w1)

ẇ1 = f1(η,w1+α(η))+g1(η,w1+α(η))[w2+α1]

−
∂α(η)

∂η
Γ(η,w1+α(η)).

(2.10)

is GAS at(η,w1) = (0,0) whenw2 ≡ 0. To simplify our expressions, we first assign

α1 =
1

g1(η,x1)

(

− f1(η,x1)+
∂α(η)

∂η
Γ(η,w1+α(η))+v

)

(2.11)

wherev is to be determined, and re-write (2.10) as

η̇ = Γ(η,α(η))+ γ(η,w1)w1

ẇ1 = v+g1(η,w1+α(η))w2.
(2.12)

In this form it is easy to see that withw2 ≡ 0, (2.12) can be globally asymptotically

stabilized byv. Since the systeṁη = Γ(η,α(η)) is assumed to be GAS atη = 0, the

Converse Lyapunov Theorem A.0.2 guarantees the existence of a smooth, proper,

positive definite functionV(η), and a continuous positive definite functionW(η)

such that
∂V(η)

∂η
Γ(η,α(η)) ≤−W(η). (2.13)

We then consider the candidate Lyapunov functionV1(η,w1) = V(η) + 1
2w2

1 and

find its gradient along the solution of (2.12):

V̇1 ≤−W(η)+
∂V(η)

∂η
γ(η,w1)w1+w1v+w1g1(η,w1+α(η))w2. (2.14)

Because of the common factorw1 in the middle two terms,̇V1 can be rendered

negative definite (whenw2 ≡ 0) by choosing

v = −c1w1−
∂V(η)

∂η
γ(η,w1). (2.15)
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We emphasize the importance of the second term in this expression; it is the means

by which backstepping is able to ensure the internal stability of theinterconnection

of theη andw1 subsystems.

The variablex2 in equation (2.10) is known as avirtual controland

α1(η,w1) =
1

g1(η,w1+α(η))

(

− f1(η,w1+α(η))+
∂α(η)

∂η
Γ(η,w1+α(η))

−c1w1−
∂V(η)

∂η
γ(η,w1)

)

(2.16)

is its associatedstabilizing function. We note that this expression for the stabilizing

function is not unique; our only objective in its design is torenderV̇1 negative

definite when the error variablew2 = x2−α1(η,w1) = 0. This observation may

sometimes help us avoid the cancellation of nonlinearitiesthat are actually helpful

to the stability of subsystem (2.10).

In the second iteration of the backstepping algorithm, we wish to regulatew2

to zero using the actual controlu. Noting thatẇ2 = ẋ2− α̇1(η,w1) we re-write the

original system dynamic (2.3) as:

η̇ = Γ(η,α(η))+w1γ(η,w1)

ẇ1 = −c1w1−
∂V(η)

∂η
γ(η,w1)+g1(η,w1 +α(η))w2

ẇ2 =

[

f2(η,x1,x2)+g2(η,x1,x2)u−
∂α1

∂η
η̇−

∂α1

∂w1
ẇ1

]

x1=w1+α(η)
x2=w2+α1(η,w1)

.

(2.17)

From here, we repeat the procedure by forcing the new function V2(η,w1,w2) =

V1(η,w1)+ 1
2w2

2 to be a Lyapunov function for the system (2.17). Taking into ac-

count (2.14), its derivative along the trajectories of (2.17) is:

V̇2 ≤−W(η)−c1w2
1 +w2

[

w1g1+ f2 +g2u−
∂α1

∂η
η̇−

∂α1

∂w1
ẇ1

]

. (2.18)

where we drop all function arguments from notation for simplicity. Letting

u =
1
g2

(

−w1g1− f2 +
∂α1

∂η
η̇+

∂α1

∂w1
ẇ1−c2w2

)

, (2.19)

we obtain

V̇2 ≤−W(η)−c1w2
1−c2w2

2, (2.20)
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and the CL system

η̇ = Γ(η,α(η))+w1γ(η,w1)

ẇ1 = −c1w1−
∂V(η)

∂η
γ(η,w1)+g1(η,w1 +α(η))w2

ẇ2 = −c2w2−w1g1(η,w1 +α(η)).

(2.21)

By Theorem A.0.1 this CL system is GAS at(η,w1,w2) = (η,x1 − α(η),x2 −

α1(η,w1)) = (0,0,0), provided that the constantsc1 andc2 are chosen greater than

zero. From (2.16) we see thatα1(0,0) = 0, and by assumptionα(0) = 0. Therefore,

lim
t→∞

(η,w1,w2) = (0,0,0) =⇒ lim
t→∞

(η,x1,x2) = (0,0,0) (2.22)

and we conclude that the CL system in the original coordinates is GAS at the origin

under the SFB law (2.16) and (2.19).

Several remarks are in order:

Remark 2.1.1. We note that the transformation(η,x1,x2) 7→ (η,w1,w2) is a glob-

ally defined change of coordinates since the Jacobian




dη
dw1

dw2



=





I 0 0
∗ 1 0
∗ ∗ 1



 (2.23)

is nonsingular for allη ∈ Rm and [x1,x2]
T ∈ R2. Therefore (2.17) represents the

same motion as equation (2.3) – i.e. we do not have to worry about “lost dynamics”

in this new representation.

In fact, the backstepping procedure may be interpreted as the iterative search

for a new set of (globally defined) coordinates in which the system dynamic admits

a quadratic Lyapunov function. In essence, at every iteration we define a coordi-

nate shiftwi = xi −αi−1(η,w1, . . . ,wi−1), designing all the stabilizing functions and

finally the controlu such that the transformed, CL system acquires a “skew-plus-

diagonal” symmetry. To see this, consider the CL system (2.21), except assume that

η ∈ R
0 so that we have:

ẇ1 = −c1w1 +g1(w1)w2

ẇ2 = −c2w2−w1g1(w1),
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or, [
ẇ1

ẇ2

]

=

[
−c1 g1(w1)

−g1(w1) −c2

][
w1

w2

]

. (2.24)

An interesting converse of this fact is that any system whosestructure exhibits this

kind of symmetry can be shown to be asymptotically stable at the origin by means

of a quadratic Lyapunov function.⊳

Remark 2.1.2. From our study of cascade-connected systems, we know that the

interconnection term (i.e.ψ(x,ξ) in equation (1.54)) plays an important role in

determining what is possible in terms of achieving the internal stability of two

connected subsystems. At every iteration, backstepping introduces coupling terms

that specifically ensure the internal stability of the interconnection of two subsys-

tems – the one-dimensionalxi-subsystem receiving the interconnection term, and an

(m+ i−1) dimensional subsystem for which the design is already complete. In the

above example, the two coupling terms that accomplished theinternal stability of

the whole are− γ(η,w1)
g1

∂V(η)
∂η in the first iteration, and−g1

g2
w1 in the second iteration.

⊳

Remark 2.1.3(The importance of triangularity). One may wonder why a system

must have a triangular structure likeΣSFF in order to admit a backstepping design.

To investigate, suppose we have

ẋ1 = φ1(x1)+x2 +u

ẋ2 = u
(2.25)

which is not in a strict feedback form sinceu appears in the ˙x1 equation. If we

attempt to proceed with the usual backstepping design, we find that the stabilizing

function associated with the virtual controlx2 must cancelu in the first equation.

Therefore, the error variablew , x2−α(x1,u) has the dynamics

ẇ = u−
∂α
∂x1

(φ1(x1)+w+α(x1,u)+u)−
∂α
∂u

u̇. (2.26)

The presence of ˙u in theẇ equation implies that in order to design a globally asymp-

totically stabilizing SFB control law by backstepping, we would have to solve a

differential equation inu which may not be possible in general.⊳
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Remark 2.1.4. Even though we have advertised backstepping as a very practi-

cal, constructive method, equation (2.16) is dependent on the knowledge of some

function V(η) which is simply assumed into existence by virtue of the fact that

η̇ = Γ(η,α(η)) is GAS atη = 0. Depending on the nature ofΓ(η,x1), searching

for a Lyapunov functionV(η) may be futile, even if anα(η) is known.

However, if in (2.3)η̇ = Γη + x1γ(η,x1) with Γ ∈ Rm×m Hurwitz, then the

expression (2.16) (and hence (2.19)) can be easily calculated with α(η) ≡ 0 and

V(η) = ηTPη whereP is the unique solution of the Lyapunov equationΓTP+PΓ =

−I . The positive definite, symmetric matrixP is guaranteed to exist sinceΓ is Hur-

witz. This fact will become relevant in the discussion on Marino and Tomei’s OFB

method.⊳

With this understanding of backstepping, we are ready to examine several sys-

tem forms that are very frequently encountered in the nonlinear OFB literature.

These system forms also play an important role in our own results.

2.2 Important System Forms

The most ubiquitous system forms in the nonlinear OFB literature are thenor-

mal form (NF) and thestrict normal form(SNF), both originally identified by

coordinate-free differential geometric conditions in [10].

2.2.1 The Normal Form

Nonliner SISO systems of the form

ẋ = f (x)+g(x)u

y = h(x)
(2.27)
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with x∈ R
n that have a well-defined relative degree2 r in some neighbourhoodUo

of the origin, are locally diffeomorphic to the form

ΣNF :







η̇ = Γ(η,ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇r−1 = ξr

ξ̇r = (Lr
f h(x)+uLgLr−1

f h(x))◦T−1(η,ξ)

y = ξ1

(2.29)

by a change of coordinates of the form

[
η
ξ

]

=















φ1(x)
...

φm(x)
h(x)

L f h(x)
...

Lr−1
f h(x)















, T(x). (2.30)

The functionsφi(x) can be chosen arbitrarily, as long as the Jacobian∂T(x)
∂x is non-

singular for allx in Uo. Such functions are guaranteed to exist, and can further be

chosen so that theη subsystem is independent ofu – i.e. chooseφi so that their

exact one-forms annihilate the input vectorg:

〈dφi(x),g(x)〉 = 0, i ∈ {1, . . . ,m}

(Proposition 4.1.3 [17]). The systemΣNF is globally minimum phaseif the zero

dynamics(ZD) η̇ = Γ(η,0) are GAS atη = 0. The zero dynamics describe the

2Relative degree for SISO systems is defined as an integerr such that

LgLi
f h(x) = 0, ∀x∈Uo ⊆ R

n, 0≤ i ≤ (r −2)

LgLr−1
f h(x) 6= 0, ∀x∈Uo ⊆ R

n.
(2.28)

If Uo = Rn and the vector fieldsf (x)−
Lr

f h(x)

LgLr−1
f h(x)

g(x) and 1
LgLr−1

f h(x)
g(x) are complete, then there

exists a globally valid change of coordinates into the normal form. The relative degree is the number
of times the signaly must be differentiated before the signalu appears.
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motion of the system when its output and all itsr derivatives are identically zero.

Often the subsysteṁη = Γ(η,ξ) is also referred to as the “zero dynamics”, although

this is technically incorrect.

2.2.2 The Strict Normal Form

A special case of the NF is the strict normal form (SNF), in which the zero dynamics

are driven by only the outputy = ξ1, and not its derivatives. A sufficient geomet-

ric condition for the existence of the SNF (in addition to requiring a well-defined

relative degree) is that each of the distributions

Gi , span{g(x),adf g(x), . . . ,adi
f g(x)}= R

i+1, ∀ x∈Uo, 0≤ i ≤ (r−1) (2.31)

and are involutive. To check the involutivity of a distribution it suffices to check that

the Lie bracket of any two of its spanning vector fields belongs to the distribution –

i.e. Gi is involutive if

[adk
f g(x),ad j

f g(x)] , χk, j(x) ∈ Gi , ∀ k, j ∈ {0,1, . . . , i} (2.32)

or, if there existi +1 functionsc j(x) such that

χk, j(x) =
i

∑
j=0

c j(x)ad j
f g(x), ∀ k, j ∈ {0,1, . . . , i} (2.33)

In that case, we choose the functionsηi = φi(x), i ∈ {1, . . . ,m} such that not only do

their exact one-forms annihilate the input vectorg, but also all the other vector fields

in the distributionGr−1. This choice will guarantee that the change of coordinates

[ηT ,ξT ]T = T(x), defined as in (2.30), transforms (2.27) into the SNF:

ΣSNF :







η̇ = Γ(η,ξ1)

ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇r−1 = ξr

ξ̇r = (Lr
f h(x)+uLgLr−1

f h(x))◦T−1(η,ξ)

y = ξ1

(2.34)
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We based this assertion on Theorem 2.4.3 in [16], which actually concerns partial

linearization of systems into triangular form by SFB – i.e. no output is considered.

We now justify this assertion. In the first part of the proof ofthis theorem, the

existence of some smooth functionψ(x), with ψ(0) = 0 which solves the linear

partial differential equations

〈dψ(x),Gr−2〉 = 0

〈dψ(x),adr−1
f g(x)〉 = ϕ(x) 6= 0

(2.35)

is posited owing to Frobenius’s Theorem3 and the assumed involutivity and constant

rank of the distributionGr−2 in Uo. We denote

Q(x) = [ψ(x),L f ψ(x), . . . ,Lr−1
f ψ(x)]T .

Then, the linear independence inUo of the one-forms

{dψ(x),dLf ψ(x), . . . ,dLr−1
f ψ(x)} (2.36)

is ascertained via the matrix

N(x) ,
∂Q(x)

∂x
[g(x),adf g(x), . . . ,adr−1

f g(x)]

=









〈dψ,g〉 · · · 〈dψ,adr−1
f g〉

〈dLf ψ,g〉 · · · 〈dLf ψ,adr−1
f g〉

...
. . .

...

〈dLr−1
f ψ,g〉 · · · 〈dLr−1

f ψ,adr−1
f g〉









=








0 · · · 0 ϕ
0 · · · ϕ ∗
... . .

. ...
...

ϕ · · · ∗ ∗








(2.37)

which is clearly nonsingular sinceϕ 6= 0. Since the distributionGr−1 is assumed

to have constant rankr, for N(x) to remain full rank the matrix∂Q(x)
∂x must also

be full rank inUo, and therefore the one-forms (2.36) must be linearly indepen-

dent in Uo. The third equality in (2.37) is demonstrated in Theorem A.3.1 in

3Please see Theorem A.4.3 in [16].
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[16], and involves the use of (2.35) and the repeated application of Leibniz’s Rule:

L[ f ,g]h(x) = L f Lgh(x)−LgL f h(x).

In the second part of the proof, the assumed involutivity andconstant rank of the

distributionGr−1 is used to demonstrate that the functionsηi = φi(x), i ∈ {1, . . . ,m}

(whose existence is likewise guaranteed by Frobenius’s Theorem), if chosen such

that

〈dφ(x),Gr−1〉 = 0, (2.38)

guarantee that the transformedη subsystem is independent ofξ j , j ∈ {2, . . . , r}.

In the case of system (2.27) where the outputy = h(x) is defined, and we have

further assumed that its associated relative degree is well-defined, we see that the

indexr in their theorem is identified with the relative degree in ourdiscussion and

therefore the first part of their proof is superfluous for our purposes. That is, if we

identify the functionψ(x) with h(x), then by the assumption that the relative degree

is well defined we can independently assert that

rank(span{dh(x), . . . ,dLr−1
f h(x)}) = r

for all x ∈ Uo (as in the proof of Lemma 4.1.1 in [16], for example). However,

the second part of their proof provides an explicit means of calculating the trans-

formationηi = φi(x), i ∈ {1, . . . ,m} so that the ZD subsystem is driven only by

y = ξ1 = h(x) – i.e. we can solve (2.38). In summary, for the system (2.27),the set

of conditions:

• The relative degreer is well defined:

LgLi
f h(x) = 0, ∀x∈Uo ⊆ R

n, 0≤ i ≤ (r −2)

LgLr−1
f h(x) 6= 0, ∀x∈Uo ⊆ R

n.
(2.39)

• Each of the distributions

Gi , span{g(x),adf g(x), . . . ,adi
f g(x)}, 0≤ i ≤ (r −1) (2.40)

has constant rank(i +1) and is involutive for allx in Uo,
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is more than what is required to guarantee the existence of the SNF. To transform

system (2.27) into the SNF, we apply the change of coordinates (2.30), with the

functionsφi(x) i ∈ {1, . . . ,m} chosen so that∂T(x)
∂x is full rank for all x in Uo and so

that〈dφi(x),Gr−1〉 = 0.

Proposition 9.1.1 in [17] gives the more minimal condition which is both suf-

ficient and necessary for a system to be equivalent to the SNF by a coordinate and

feedback transformation. This condition requires that thevector fields

τi , (−1)i−1adf̃ g̃(x), 1≤ i ≤ r

where

f̃ = f (x)−Lr
f h(x)g̃(x) and g̃(x) =

1

LgLr−1
f h(x)

,

must commute; that is,[τ j ,τi ] = 0, ∀ i, j ∈ {1, . . . , r}. The proof of this theorem

relies on a more abstract set of mathematical concepts, and the explicit means of

calculating the transformationηi = φi(x) is not stated. However, we note that when

r = n, either set of conditions identify the class of systems which are equivalent by

state and feedback transformation to a controllable and observable linear system.

Indeed then, both the controllability condition

span{g(x),adf g(x), . . . ,adn−1
f g(x)} = R

n, ∀x∈Uo (2.41)

and the observability condition

span{dh(x),dLf h(x), . . . ,dLn−1
f h(x)} = R

n, ∀x∈Uo (2.42)

are implied by either set of conditions.

2.2.3 The Output Feedback Form

Another important special case of the NF is theoutput feedback form(OFBF),

which is actually a subset of the class of systems in SNF. Systems of the form

(2.27) that satisfy the following differential geometric conditions (Theorem 6.3.1

in [16]):
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1. The one-forms

{dh(x),dLf h(x), . . . ,dLn−1
f h(x)} (2.43)

are linearly independent,

2. The vector fieldsadi
− f ρ(x), i ∈ {0,1, . . . ,(n− 1)} commute with each

other – i.e. [adi
− f ρ(x),ad j

− f ρ(x)] = 0, ∀i, j ∈ {0,1, . . . ,(n−1)}, where

thestarting vectorρ(x) is the vector that uniquely solves the equations







〈dh(x),ρ(x)〉
〈dLf h(x),ρ(x)〉

...

〈dLn−1
f h(x),ρ(x)〉








=








0
0
...
1








(2.44)

3. The input vectorg(x) satisfies:

[g(x),adk
f ρ(x)] = 0, 0≤ k≤ (n−2) (2.45)

4. There exists a smooth functionσ : R → R, andn− r + 1 real numbers

(dr ,dr+1, . . . ,dn) such that the input vector takes the form

g = σ◦h ·
n−r+1

∑
j=1

dn− j+1ad j−1
− f ρ (2.46)

and the real numbers(dr ,dr+1, . . . ,dn) are required to be such that the

polynomial

drs
n−r +dr+1sn−r−1+ · · ·+dn−1s+dn (2.47)

has roots with strictly negative real parts.

are state equivalent to the OFBF:

ΣOFBF :

{

ζ̇ = Acζ+ψ(y)+σ(y)du

y = Ccζ = ζ1
(2.48)

where theσ(y) 6= 0, ∀y, the matrix

Ac =








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0








(2.49)
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andd is theHurwitz vector:

d =















0
...
0
dr

dr+1
...

dn















(2.50)

in the sense of (2.47). The nonlinearityψ(y) is smooth withψ(0) = 0, if f (x)

andg(x) are smooth andf (0) = 0. The system (2.27) is globally diffeomorphic

to ΣOFBF if these four conditions hold globally, and in addition the vector fields

adi
f ρ(x), i ∈ {1, . . . ,(n−1)} are complete.

The first three conditions are identical to those required for a system to be dif-

feomorphic to the nonlinear observer form. In fact, we note thatΣOFBF is a special

case of the NOF, admitting the design of a LED observer. The first condition en-

sures that the drift component of the system is observable. Conditions 1 and 2

together are shown4 to be equivalent to the existence of a local diffeomorphism

ζ = T(x), T(0) = 0 that transforms the drift component of (2.27)

ẋ = f (x)

y = h(x)
(2.52)

into

ζ̇ = Acζ+ψ(y)

y = Ccζ = ζ1.
(2.53)

4Please see Theorem 5.2.1 in [16]. Actually, in the proof of this theorem, the authors transform
the drift component of (2.27) into the following form, whichis not quite what we want:

ζ̇ = Aoζ+ ψ(y)

y = Coζ = ζn
(2.51)

whereAo has ones on the sub-diagonal and zeros elsewhere. In the sequel, we show how the same
conditions 1 and 2 can transform the unforced component of (2.43) into (2.53). Please note that we
have changed equation (2.54) accordingly.
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in which coordinates the vector fieldsadi−1
− f ρ(x) are “rectified” into the unit vectors5

∂T(x)
∂x

adi
− f ρ(x)◦T−1(ζ) =

∂
∂ζn−i

, 0≤ i ≤ n−1, (2.54)

The unit vector representation of the vector fieldsadi
− f ρ(x) in new coordinates is

a consequence of our assumption that they commute, the fact that they are linearly

independent6 for all x, and the application of the Simultaneous Rectification The-

orem (for example, see Theorem A.4.5 in [16]). The third condition ensures that

the input vector in the transformed coordinates depends only on y = ζ1; that is,
∂T(x)

∂x g(x) ◦T−1(ζ) = β(y), for some smooth functionβ(y). Finally, due to (2.54),

the fourth condition implies that this transformed input vectorβ(y) takes the special

structureσ(y)d, with d as in (2.50).

Albeit being rather restrictive, these conditions are satisfied by several phys-

ical systems, including7 a single-link flexible robot and a third order model of a

synchronous generator.

Since we will be working extensively with this system form, we are interested

in how exactly to construct a transformation intoΣOFBF. The key to finding such

a transformation lies in the statement of the Simultaneous Rectification Theorem

itself. From equation (2.54), we can write

∂T(x)
∂x

[adn−1
− f ρ(x),adn−2

− f ρ(x), . . . ,ad− f ρ(x),ρ(x)]◦T−1(ζ) = I . (2.56)

Since the right-hand side of this equation is a constant, we do not care whether we

work in thex or ζ coordinates. Therefore, to find the transformationζ = T(x), we

5The notation ∂
∂ζi

signifies a unit vector in theζi direction. For example, a vector field such as

F(x) = [ f1(x), f2(x)]T can be written asF(x) = f1(x) ∂
∂x1

+ f2(x) ∂
∂x2

.
6The linear independence of the vector fieldsad j

− f ρ can be shown using an argument similar to
that in equation (2.37), except that

N(x) =






dh
...

dLn−1
f h




 [ρ, . . . ,adn−1

− f ρ] (2.55)

is shown to be nonsingular for allx by virtue of the definition of the starting vectorρ in (2.44) and
Theorem A.3.1 in [16]. Then, the linear independence of the vector fieldsad j

− f ρ follows from the

assumption that the one-forms{dh, . . . ,dLn−1
f h} are linearly independent, as per condition 1.

7Please see Section 6.5 in [16] for more details and other examples.
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must solve the followingn PDEs for then unknown components ofT(x):

∂T(x)
∂x

[adn−1
− f ρ(x),adn−2

− f ρ(x), . . . ,ad− f ρ(x),ρ(x)] = I . (2.57)

To see why the transformationT(x), which rectifies the vector fields[adn−1
f ρ(x), . . . ,ρ(x)],

would also bring the original system (2.27) into the OFBF, wefirst note that

∂T(x)
∂x

adi
f ρ(x)◦T−1(ζ) ≡ adi

f ∗ρ
∗(ζ) (2.58)

where

ρ∗(ζ) =
∂T(x)

∂x
ρ(x)◦T−1(ζ)

and f ∗ = f ∗(ζ) is similarly obtained. Fori = 0, this fact is obvious from the pre-

ceding equation. Fori = 1, we write:

adf ∗ρ∗(ζ) =

(
∂

∂ζ
ρ∗(ζ)

)

f ∗(ζ)−

(
∂

∂ζ
f ∗(ζ)

)

ρ∗(ζ)

=

(
∂

∂ζ
∂T(x)

∂x
ρ(T−1(ζ))

)
∂T(x)

∂x
f (T−1(ζ))

−

(
∂
∂ζ

∂T(x)
∂x

f (T−1(ζ))

)
∂T(x)

∂x
ρ(T−1(ζ))

=

(
∂T(x)

∂x
∂ρ(x)

∂x
∂T−1(ζ)

∂ζ

)
∂T(x)

∂x
f (T−1(ζ))

−

(
∂T(x)

∂x
∂ f (x)

∂x
∂T−1(ζ)

∂ζ

)
∂T(x)

∂x
ρ(T−1(ζ))

Then, as in Subsection 1.1.2, we note that∂T−1(ζ)
∂ζ

∂T(x)
∂x = I and therefore write

adf ∗ρ∗(ζ) =
∂T(x)

∂x

(
∂ρ(x)

∂x
f (x)−

∂ f (x)
∂x

ρ(x)

)

◦T−1(ζ),

which is the same as the left-hand side of equation (2.58) fori = 1. The same

argument can be applied for alli > 1 owing to the recursive definition of repeated

Lie brackets. With (2.58), we can now re-write (2.56) as

[adn−1
− f ∗ρ∗(ζ),adn−2

− f ∗ρ∗(ζ), . . . ,ad− f ∗ρ∗(ζ),ρ∗(ζ)] = [e1,e2, . . . ,en] (2.59)

whereei is a column vector with all zero elements except theith, which is 1. We

then examine theith column. By the definition of a Lie bracket,

adn−i
− f ∗ρ

∗(ζ) = [− f ∗(ζ),adn−i−1
− f ∗ ρ∗(ζ)], 1≤ i ≤ (n−1) (2.60)
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and by (2.59),

adn−i
− f ∗ρ

∗(ζ) = [− f ∗(ζ),ei+1]

=
∂ f ∗(ζ)

∂ζ
ei+1−

∂ei+1

∂ζ
f ∗(ζ)

︸ ︷︷ ︸

=0

. (2.61)

Again by (2.59), we obtain:

∂ f ∗(ζ)

∂ζ
ei+1 = ei , 1≤ i ≤ (n−1) (2.62)

which indicates that the drift component in transformed coordinates must have the

following state dependencies:

∂ f ∗k (ζ)

∂ζ j
=

{

1, j = k+1

0, j ∈ {2,3, . . . ,n}−{(k+1)},
(2.63)

meanwhile nothing can be said in general aboutf ∗’s dependency ony = ζ1 from

(2.62). Therefore, we conclude that in the new coordinates,the drift component of

(2.27) takes the forṁζ = f ∗(ζ), with:

ζ̇1 = ζ2+ψ1(y)

ζ̇2 = ζ3+ψ2(y)

...

ζ̇n = ψn(y),

(2.64)

which is what we wanted to show. To see how the input vectorg(x) and output

function h(x) transform, one may follow the remainder of the proof of Theorem

5.2.1 in [16].

Now that we have discussed the geometric conditions that identify the class of

systems diffeomorphic toΣOFBF, we provide an analysis of some of its important

properties.
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2.2.3.1 The Internal Structure ofΣOFBF

For convenience, we re-write (2.48) here:

ΣOFBF :







ζ̇1 = ζ2 +ψ1(y)

ζ̇2 = ζ3 +ψ2(y)
...

ζ̇r−1 = ζr +ψr−1(y)

ζ̇r = ζr+1 +ψr(y)+drσ(y)u
...

ζ̇n−1 = ζn +ψn−1(y)+dn−1σ(y)u

ζ̇n = ψn(y)+dnσ(y)u

y = ζ1

(2.65)

or

ζ̇ = Acζ+ψ(y)+du, F(ζ)+du

y = ζ1,
(2.66)

where for notational convenience we have absorbed the scalar function σ(y) into

the controlu – i.e. letu = 1
σ(y)v, then re-notatev back tou.

The first thing to notice about this system form is that it has aglobally well-

defined relative degree which can be discerned from the inputvectord. The number

r in this case corresponds to the relative degree ofΣOFBF sincey = ζ1, ψ(·) is a

function ofζ1 only and the linear component constitutes a chain of integrators. In

that case the number of timesy has to be time-differentiated beforeu appears is

equal to one plus the number of leading zeros in the input vector. Alternatively, this

fact can be verified using the definition of relative degree, as in (2.39). Since a well-

defined relative degree is the only pre-requisite for a system to be diffeomorphic

to the NF, we conclude thatΣOFBF can be transformed intoΣNF using a change

of coordinates of the form (2.30). We also notice thatΣOFBF satisfies the second

condition, equation (2.40) in Subsection 2.2.2, which together with a well-defined

relative degree is sufficient to guarantee that it can also betransformed to the SNF.
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To justify this claim, we consider the Lie bracketsadi
Fd, 0≤ i ≤ (r −1):

adFd = [F,d] =
∂d
∂ζ

F −
∂F(ζ)

∂ζ
d = −Acd−






ψ′
1(y) 0 · · · 0
...

...
. . .

...
ψ′

n(y) 0 · · · 0






︸ ︷︷ ︸

,µ(ζ1)

d (2.67)

= −Acd+0 (2.68)

since the firstr −1 elements ofd are zero. Then

ad2
Fd = [F,adFd] =

∂adFd
∂ζ

F −
∂F(ζ)

∂ζ
adFd

= −(Ac +µ(ζ1))(−Acd)

= A2
cd (2.69)

Clearly, this pattern continues for all subsequent Lie brackets:

ad j
Fd = A j

cd, 0≤ j ≤ (r −1) (2.70)

since even whenj = r −1, the term

µ(ζ1)A
r−2
c d =






ψ′
1(y) 0 · · · 0
...

...
. . .

...
ψ′

n(y) 0 · · · 0






















0
dr

dr+1
...

dn

0
...
0

















= 0. (2.71)

Noting that the matrix

G , [d,Acd, . . . ,Ar−1
c d] =



















0 0 · · · 0 dr

0 0 · · · dr dr+1
...

... . .
. ...

...

0 dr . .
.

∗ ∗

dr dr+1 . .
.

∗ ∗
...

... . .
. ...

...
dn−1 dn · · · 0 0
dn 0 · · · 0 0



















(2.72)
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has rankr, it is clear that the distributions

Gi = span{d,adFd, . . . ,adi
Fd}, i ∈ {1,2, . . . ,(r −1)} (2.73)

each have constant ranki +1. These distributions are also all involutive, since the

Lie bracket of any two consant vectors is identically zero, and zero belongs to any

distribution.

Therefore, according to our discussion in Subsection 2.2.2, every system which

is diffeomorphic toΣOFBF is also transformable to the SNF, which shows that the

class of systems that are state equivalent to the OFBF is a subset of the class of

systems that are state equivalent to the SNF.

In order to examine the stability of the zero dynamics ofΣOFBF we need to

transform it into either the NF or the SNF. To that end, define the change of coordi-

nates

ξ1 = y = ζ1

ξ2 = ẏ = LFζ1 = ζ2+ψ1(ζ1) , ζ2 +θ1(ζ1)

ξ3 = ÿ = L2
Fζ1 = 〈[ψ′

1(ζ1),1,0, . . . ,0],F〉 = ψ′
1(ζ1)(ζ2+ψ1(ζ1))+ζ3+ψ2(ζ1)
︸ ︷︷ ︸

,ζ3+θ2(ζ1,ζ2)

ξ4 = ˙̇ẏ = L3
Fζ1 , ζ4+θ3(ζ1,ζ2,ζ3)

...

ξr−1 = y(r−2) = Lr−2
F ζ1 , ζr−1+θr−2(ζ1, . . . ,ζr−2)

ξr = y(r−1) = Lr−1
F ζ1 , ζr +θr−1(ζ1, . . . ,ζr−1)

(2.74)

naming it

ξ = T1(ζ1, . . . ,ζr). (2.75)

Because of this definition, theξ-dynamic has the following structure:

ξ̇i = ξi+1, 1≤ i ≤ r −1

ξ̇r = Lr
Fζ1 +uLdLr−1

F ζ1

(2.76)

Furthermore, by Theorem 2.4.3 in [16], it is guaranteed thatwe can find another

m= n− r functionsφ j(ζ) such that[φ1(ζ), . . . ,φm(ζ),T1(ζ)T ]T forms a global dif-

feomorphism, and all the inner products〈dφ j ,Gr−1〉 are equal to zero. In fact, these
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remainingm functions can be defined as linear combinations of the stateζ, so that

η = T2ζ, T2 ∈ R
m×n

and

T2G = 0m×r . (2.77)

Instead of finding a general expression forT2 in terms ofd so that (2.77) is satis-

fied, we opt for the simpler task of finding aT2 so that only the input vectord is

annihilated instead of the entire distributionGr−1. In that case we will obtain the

normal form instead of the SNF; however, we wish to examine the stability of the

zero dynamics ofΣOFBF – a property that is invariant under state transformation,

and hence will be identical whether we transformΣOFBF into NF or SNF.

In order to satisfy the requirement that
[

η
ξ

]

= T(ζ) ,

[
T2ζ

T1(ζ)

]

(2.78)

have an inverse mapping defined everywhere, we will chooseT2 so that

∂T(ζ)

∂ζ
=


















1 0 · · · 0 0 0 0 · · · 0
∗ 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

∗ ∗ · · · ∗ 1 0 0 · · · 0
0 0 · · · 0 a1 1 0 · · · 0

0 0 · · · 0 a2 0 1 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 am 0 0 · · · 1


















.

Then, forT2d = 0, we choose

ai =
−di+r

dr

so that

T2 : ηi =
−di+r

dr
ζr +ζr+i , 1≤ i ≤ m. (2.79)
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Considering the structure ofΣOFBF in (2.65), with this transformation we obtain:

η̇i =
−di+r

dr

(
ζr+1 +ψr(ζ1)+dru

)
+
(
ζr+i+1+ψr+i(ζ1)+dr+iu

)

=
−di+r

dr

(

η1+
dr+1

dr
ζr

)

+

(

ηi+1+
−di+r+1

dr
ζr

)

+ψr+i(ζ1)−
di+r

dr
ψr(ζ1)

=
−di+r

dr
η1+ηi+1 +biζr + γi(ζ1) (2.80)

where we have substituted forζr+1 and ζr+i+1 from (2.79), and introduced the

constantbi and functionγi(y) for notational brevity. As desired, thėη equation is

independent ofu; from (2.80) it is evident thatu is cancelled exactly because of

our choice ofai in T2. However, sinceT2 was not designed to annihilate any of the

other vectorsad j
Fd, j ∈ {1, . . . ,(r −1)}, theη-dynamic is driven by all theξ-states

throughζr . This can be seen from our definition of theξ-coordinates in (2.74); an

inverse transformation can easily be established owing to the triangular structure of

ξ = T1(ζ). In fact, we can obtain the inverse transformation

ζ1 = ξ1

ζi = ξi −θi−1(ξ1, . . . ,ξi−1), 2≤ i ≤ r,
(2.81)

and therefore

η̇i =
−di+r

dr
η1+ηi+1 +biξr −biθi−1(ξ1, . . . ,ξi−1)+ γi(y). (2.82)

In consideration of (2.76) and (2.80), the complete system dynamic in transformed

coordinates takes the form:

η̇ = Γη+Γξ(ξ1, . . . ,ξr)

ξ̇ = Acξ+Bc(L
r
Fζ1 +uLdLr−1

F ζ1)◦T−1(η,ξ)

y = ξ1

(2.83)

where

Γ =












−dr+1
dr

1 0 · · · 0
−dr+2

dr
0 1 · · · 0

...
...

...
. . .

...
−dn−1

dr
0 0 · · · 1

−dn
dr

0 0 · · · 0












, (2.84)

64



Section 2.2: Important System Forms

Bc = [0, . . . ,0,1]T , Ac is anr × r matrix with ones on the superdiagonal and zeros

elsewhere, andΓξ(ξ) is a smooth function withΓξ(0) = 0 (this fact is a consequence

of our definitions of the functionsθi in (2.74), which are smooth and zero at zero

since the original nonlinearityψ(y) is assumed to be smooth and zero at zero). With

y constrained to zero, all of its derivatives are also zero, and we are left with the zero

dynamics:

η̇ = Γη

which are GAS atη = 0 owing to the canonical structure ofΓ, and the fact that the

vectord was assumed to be Hurwitz in the sense of (2.47). Therefore, systems that

are diffeomorphic toΣOFBF are globally minimum phase, and are state equivalent to

systems in the SNF. Figure 2.2 shows a Venn diagram depictingthe class inclusions

of the aforementioned system forms.

Figure 2.2: Set inclusion relationships between the various system forms important
in nonlinear OFB design. The set inclusions are based on state equivalence.

It is interesting to note that all systems that belong to the same equivalence

class asΣSFF discussed in Section 2.1, are also diffeomorphic to systemsin the

SNF (equation (2.1)) by the following change of coordinates:
[

η∗

ξ

]

= T(η,x) =

[
T2(η,x)
T1(η,x)

]

(2.85)

whereT2(η,x) = η andT1(η,x) = T1(x) = [x1, ẋ1, . . . ,x
(r−1)
1 ]T . Therefore, the class

of systems in SFF (with an output defined asy = x1) is included in the class of

systems in the SNF. On the other hand, the SNF is a special caseof the SFF and
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therefore the set inclusion works the other way as well. We therefore conclude that

the class of systems that are diffeomorphic to the SNF is identical to those that are

diffeomorphic to the SFF.

The two global OFB designs that are of interest in this thesisboth rely on the

properties of the OFBF. Having discussed these properties,we next describe the

OFB methods presented in [6] and [2]. Extensions of these methods are provided

in subsequent chapters.

2.3 Observer Backstepping

In this section we describe the globally stabilizing OFB design method ofobserver

backsteppingpresented by Kanellakopoulos et al in [6]. In addition to making use

of our understanding of backstepping and the properties of the OFBF, we introduce

the concept ofnonlinear damping, which is an important design technique that

accompanies backstepping in global partial SFB designs. The basic idea in this

method is to design a globally exponentially convergent observer for a system in

OFBF, and then design a backstepping-based control law for the observer instead

of the plant. Then, nonlinear damping is used to strengthen this controller, directly

accounting for the observer error which is treated as a disturbance.

We note that our presentation and analysis of the method given in [6] is different

and significantly elaborated relative to what what is provided in either [6] or [1].

Also, in [6] this result is stated in terms of tracking, whichincludes stabilization as

a special case. For simplicity we choose to discuss stabilization here, and remark

that the extension to tracking is not difficult; in extendingthis method to systems in

a restricted block triangular observer form in Chapter 4, wedemonstrate a tracking

design on a MAGLEV system.

This OFB design method is most concretely illustrated by means of a low-
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dimensional example; all of its key features are demonstrable on the OFBF system

Σ :







ẋ1 = x2 +ψ1(y)

ẋ2 = x3 +ψ2(y)+d2u

ẋ3 = x4 +ψ3(y)+d3u

ẋ4 = ψ4(y)+d4u

y = x1

(2.86)

from which it will be clear that the same strategies apply in general to any sys-

tem in the OFBF. Here we assume that the nonlinearityΨ(y) = [ψ1(y), . . . ,ψ4(y)]T

is smooth withΨ(0) = 0 andd = [0,d2,d3,d4]
T is a Hurwitz vector; that is, the

polynomiald2s2 + d3s+ d4 has roots with negative real parts. This system has a

globally well-defined relative degreer = 2 with respect toy= x1 and its(n−r = 2)-

dimensional zero dynamics are GES according to our discussion in Subsection

2.2.3.1. The design begins with the construction of an observer for Σ:

Σ̂ :







˙̂x1 = x̂2+ψ1(y)+L1(y− x̂1)
˙̂x2 = x̂3+ψ2(y)+d2u+L2(y− x̂1)
˙̂x3 = x̂4+ψ3(y)+d3u+L3(y− x̂1)
˙̂x4 = ψ4(y)+d4u+L4(y− x̂1)

, (2.87)

whose error dynamic is GES:

Σ̃ :







˙̃x1 = −L1x̃1 + x̃2

˙̃x2 = −L2x̃1 + x̃3

˙̃x3 = −L3x̃1 + x̃4

˙̃x4 = −L4x̃1

, (2.88)

when x̃i , xi − x̂i and the output injection gainL = [L1, . . . ,L4]
T is chosen so that

the polynomials3 +L1s2+L2s+L3 is Hurwitz. Expressing̃Σ as:

Σ̃ : ˙̃x = (Ac−LCc)x̃, (2.89)

we re-write the composite dynamic consisting ofΣ andΣ̂ as

Σc :







ẋ1 = x̂2+ x̃2 +ψ1(y)
˙̂x2 = x̂3+ψ2(y)+d2u+L2(y− x̂1)
˙̂x3 = x̂4+ψ3(y)+d3u+L3(y− x̂1)
˙̂x4 = ψ4(y)+d4u+L4(y− x̂1)

˙̃x = (Ac−LCc)x̃

y = x1

(2.90)
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where we have replaced the dynamics of all unmeasured plant states with their

estimates. To be sure thatΣc fully represents theΣ-Σ̂ dynamics, we note that the

transformation














x1

x̂2

x̂3

x̂4

x̃1

x̃2

x̃3

x̃4















=















1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1





























x1

x2

x3

x4

x̂1

x̂2

x̂3

x̂4















(2.91)

is nonsingular. Therefore, any controller that stabilizesΣc will also stabilize our

original plant-observer interconnection.

Instead of following exactly the proof given in Section 3 of [6], here we first

introduce one more transformation forΣc which will allow us to show more directly

how the stability of the overall CL system relies on the properties of the OFBF. Our

transformation involves 





x1

x̂2

x̂3

x̂4






7→







x1

x̂2

η1

η2







(2.92)

with

η1 =
−d3

d2
x̂2+ x̂3

η2 =
−d4

d2
x̂2+ x̂4

which is very similar to the transformationT2 in (2.79). With this (nonsingular)

change of coordinates,Σc takes the form

Σ∗ :







η̇ = Γη+ γ(y)+B1x̃1 +B2x̂2

ẋ1 = x̂2+ x̃2 +ψ1(y)
˙̂x2 = η1+ d3

d2
x̂2+ψ2(y)+d2u+L2x̃1

˙̃x = (Ac−LCc)x̃

y = x1

(2.93)

whereB1 = [b1,1,b1,2]
T , andB2 = [b2,1,0]T , the constants

b1,1 = L3−
d3L2
d2

, b1,2 = L4−
d4L2
d2

, b2,1 = d4
d2
−

d2
3

d2
2
,
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the functionγ(y) = [γ1(y),γ2(y)]T , where

γ1(y) = ψ3(y)−
d3
d2

ψ2(y), γ2(y) = ψ4(y)−
d4
d2

ψ2(y),

and

Γ =

[
−d3
d2

1
−d4
d2

0

]

.

The systemΣ∗ is the starting form for the backstepping design, and it possesses

several important features. First, the linear systemη̇ = Γη is GAS atη = 0. There-

fore, when the “disturbance” inputsγ(y), x̃1 andx̂2 are bounded, the stateη is also

bounded. Furthermore, from its solution we can conclude that if each of these dis-

turbance inputs is decaying, thenη itself converges to zero. We will formalize this

statement later. The disturbance ˜x1 decays to zero because of our choice of observer

gains. Sinceγ(y) is a smooth function withγ(0) = 0, it also decays asy → 0. It

therefore remains to design the inputu = α(x1, x̂2,η) so that the(x1, x̂2)-subsystem

is also asymptotically stabilized at zero.

To that end, we proceed with the backstepping procedure as detailed in Section

2.1, considering the following as a candidate Lyapunov function:

V1 = 1
2x2

1 +Ve

where

Ve = x̃TPx̃

is the Lyapunov function associated with the observer errorsubsystem, withP being

the unique, symmetric, positive definite matrix solution ofthe Lyapunov equation

(Ac−LCc)
TP+P(Ac−LCc) = −κI

for someκ > 0. The derivative ofVe alongx̃(t) is

V̇e = ˙̃xTPx̃+ x̃TP ˙̃x

= [(Ac−LCc)x̃]
TPx̃+ x̃TP[(Ac−LCc)x̃]

= x̃T [(Ac−LCc)
TP+P(Ac−LCc)]x̃

= −κx̃T x̃

= −κ‖x̃‖2. (2.94)
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Then, the time derivative ofV1 is

V̇1 = −κ‖x̃‖2+x1(x̂2 + x̃2+ψ1(y)). (2.95)

We must choose a virtual control and design its associated stabilizing function so

that V̇1 is rendered negative definite. The natural choice for a virtual control is

the known state ˆx2. However, the difficulty in choosing its stabilizing function is

that the signal ˜x2 is unknown, and therefore cannot be cancelled. The way around

this difficulty is to apply the very simple, and beautiful nonlinear design technique

known asnonlinear damping. To demonstrate, we definew2 , x̂2−α1 and let

α1(x1) = −ψ1(y)−c1x1−δ1x1. (2.96)

where the constantδ1 is known as adamping coefficient. ThenV̇1 becomes

V̇1 = −(κ− 1
4δ1

)‖x̃‖2− 1
4δ1

‖x̃‖2+x1x̃2−δ1x2
1−c1x2

1 +x1w2.

Sincex1x̃2 ≤ |x1||x̃2| ≤ |x1|‖x̃‖, we have that

V̇1 ≤−(κ− 1
4δ1

)‖x̃‖2− 1
4δ1

‖x̃‖2+ |x1|‖x̃‖−δ1|x1|
2

︸ ︷︷ ︸

complete the square

−c1x2
1+x1w2

= −(κ− 1
4δ1

)‖x̃‖2−δ1

(
‖x̃‖
2δ1

−|x1|

)2

−c1x2
1 +x1w2. (2.97)

Thus we see that whenw2 ≡ 0, V̇1 is is made negative definite by the last term in

(2.96), without cancelling the unknown signal ˜x2.

In the next iteration we proceed as usual, with the intentionof regulatingw2

to zero. We therefore consider the time derivative of the newLyapunov function

candidateV2 = V1+ 1
2w2:

V̇2 = −(κ− 1
4δ1

)‖x̃‖2 + τ1+w2[x1+ ˙̂x2− α̇1(x1)]

= −(κ− 1
4δ1

)‖x̃‖2 + τ1+w2

[

x1+η1 + d3
d2

x̂2+ψ2(y)+d2u

+L2x̃1−
∂α1

∂x1
(x̂2+ψ1(y))−

∂α1

∂x1
x̃2

]

(2.98)
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where we have defined the negative definite term

τ1 , −δ1

(
‖x̃‖
2δ1

−|x1|

)2

−c1x2
1 (2.99)

to simplify the notation. We note that both ˜x1 and η1 are known to us, and we

therefore assign

u =
1
d2

(

−c2w2−x1−η1−
d3
d2

x̂2−ψ2(y)−L2x̃1

+
∂α1

∂x1
(x̂2+ψ1(y))−δ2

(
∂α1

∂x1

)2

w2

)

(2.100)

to obtain

V̇2 = −(κ− 1
4δ1

− 1
4δ2

)‖x̃‖2+ τ1−c2w2
2

− 1
4δ2

‖x̃‖2−

(
∂α1

∂x1
w2

)

x̃2−δ2

(
∂α1

∂x1
w2

)2

︸ ︷︷ ︸

complete the square

≤−(κ− 1
4δ1

− 1
4δ2

)‖x̃‖2+ τ1 + τ2 (2.101)

where

τ2 , −c2w2
2−δ2

(
‖x̃‖
2δ2

+
∣
∣
∂α1

∂x1
w2
∣
∣

)2

. (2.102)

Then, in consideration of our definition of the termsτ1 and τ2, we conclude by

Theorem A.0.1 that the closed-loop system
[

ẋ1

ẇ2

]

=

[
−c1 1
−1 −c2

][
x1

w2

]

+

[

1
∂α1(x1)

∂x1

]

x̃2−

[

δ1 0

0 δ2
(∂α1(x1)

∂x1

)2

][
x1

w2

]

˙̃x = (Ac−LCc)x̃

(2.103)

is rendered GAS at its origin by the control law (2.100) and (2.96) provided the

control coefficientsc1, c2 and the damping coefficientsδ1, δ2 are chosen positive,

and

κ > 1
4δ1

+ 1
4δ2

.

A direct consequence of the fact that the system (2.103) is GAS at its origin and

that it evolves independently of theη-subsystem inΣ∗, is that its states are bounded

by someKL∞ functionβ(·, ·) as:

‖χ(t)‖ ≤ β(‖χ(0)‖, t) (2.104)
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where we have defined

χ ,





x1

w2

x̃



 ∈ R
r+n=6

Recalling the expression for theη-dynamics inΣ∗ (equation (2.93)), we write:

η̇ = Γη+ γ(x1)+B1x̃1+B2(w2+α1(x1))

= Γη+ γ(x1)+B2α1(x1)
︸ ︷︷ ︸

let=ϕ(x1)

+[0,B1,B2]





x1

w2

x̃1



 . (2.105)

We note thatϕ(x1) is smooth and zero at zero, since bothγ(x1) and α1(x1) are

smooth and zero at zero. This observation has two consequences: first, for any

boundedx1, ‖ϕ(x1)‖ is bounded. Second,

lim
x1→0

ϕ(x1) = ϕ(0) = 0.

Then, by the global asymptotic stability of (2.103), we havethatx1 is bounded and

x1(t) → 0 ast → ∞, and therefore there exists anotherKL∞-class functionβ1(·, ·)

such that

‖ϕ(x1(t))‖ ≤ β1(r, t)

where

r , ‖ϕ(‖x1(t)‖L∞)‖.

Also, we note that

∥
∥
∥
∥
[0,B1,B2]





x1

w2

x̃1





∥
∥
∥
∥
≤ ‖[0,B1,B2]‖

∥
∥
∥
∥





x1

w2

x̃1





∥
∥
∥
∥
≤ b‖χ‖ ≤ bβ(‖χ(0)‖, t)

for someb > 0. Then, to show thatη → 0 ast → ∞, we solve the differential

equation (2.105) using the usual matrix exponential integrating factor:

η(t) = eΓtη(0)+
Z t

0
eΓ(t−τ)(γ(x1)+B1x̃1+B2(w2 +α1(x1))

)
dτ. (2.106)

Taking the norm of both sides and appealing to the triangle inequality, we obtain

‖η(t)‖ ≤ ‖eΓt‖‖η(0)‖+

Z t

0
‖eΓ(t−τ)‖‖

(
γ(x1)+B1x̃1 +B2(w2+α1(x1))

)
‖dτ.

(2.107)
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Then, noting that‖eΓt‖ ≤ ke−at for some constantsk > 0 anda > 0, we can write:

‖η(t)‖ ≤ ke−at‖η(0)‖+

Z t

0
ke−a(t−τ)

(

β1(r,τ)+β(‖χ(0)‖,τ)
)

dτ. (2.108)

The first term clearly converges to zero exponentially. To show that the entire sec-

ond term also decays to zero as time advances, we examine the following (notation-

ally simpler) quantity

I(t) ,

Z t

0
e−a(t−τ)β2(s,τ)dτ

whereβ2(s, t) is any classKL∞ function. If we can show thatI(t) → 0 ast → ∞,

then it becomes clear that the second term in (2.108) also decays as time advances.

By splitting the integral, we obtain

I(t) = e−at
[

Z t

t/2
eaτβ2(s,τ)dτ+

Z t/2

0
eaτβ2(s,τ)dτ

]

≤ e−at
[

Z t

t/2
eaτ
(

sup
t/2≤τ≤t

β2(s,τ)
)

︸ ︷︷ ︸

=β2(s,
t
2)

dτ+
Z t/2

0
eaτ
(

sup
0≤τ≤t/2

β2(s,τ)
)

︸ ︷︷ ︸

=β2(s,0)

dτ
]

,

(2.109)

since, by definition,β2(·, ·) > 0 for all its arguments and it decreases ast → ∞ for

any fixeds. Then,

I(t)≤

[

e−atβ2(s,
t
2)

(
eat −eat/2

a

)

+e−atβ2(s,0)

(
eat/2−1

a

)]

=
β2(s, t

2)

a
︸ ︷︷ ︸

decaying

(
1−e−

at
2
)
+

β2(s,0)

a

(
e−

at
2 −e−at)

︸ ︷︷ ︸

decaying

(2.110)

and we conclude that

lim
t→∞

I(t) = 0.

It is not difficult to see that similar arguments would lead tothe conclusion that the

second term in (2.108) also converges to zero ast tends to infinity.

We have therefore shown by (2.108) that for all bounded, convergingx1, w2 =

x̂2−α1(x1) and x̃, the state of theη-subsystem also globally asymptotically con-
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Section 2.3: Observer Backstepping

verges toη = 0. We can thus conclude that the composite CL system

Σ∗
CL







η̇ = Γη+ γ(y)+B1x̃1 +B2(w2 +α1(x1)

ẋ1 = −c1x1+w2 + x̃2−δ1x1

ẇ2 = −x1−c2w2+ ∂α1(x1)
∂x1

x̃2−δ2
(∂α1(x1)

∂x1

)2
w2

˙̃x = (Ac−LCc)x̃

α1(x1) = −ψ1(y)−c1x1−δ1x1

y = x1

(2.111)

is GAS at the origin.

Remark 2.3.1. For any system diffeomorphic toΣOFBF with a relative degreer

and dimensionn, the controller is designed in the same way; a full order observer is

implemented, and thenr iterations of backstepping are performed on the dynamics

of the(x1, x̂2, . . . , x̂r) states, while nonlinear damping is used to account for the ob-

servation error. In the preceding example, ifn > r > 2, then the expression (2.100)

would be assigned instead to the next stabilizing functionα2, and the error variable

w3 , x̂3−α2 would be defined. It is easy to see that since each of the subsequent

virtual controls – i.e. ˆx2, x̂3,. . . , x̂r−1 – appear linearly in the formΣc, each itera-

tion follows in a manner identical to what we have illustrated here, until finally the

actual controlu appears in therth iteration. The closed-loop system consisting of

thoser “backstepped” states and the remainingn− r states is guaranteed to be GAS

at the origin.⊳

Remark 2.3.2. Throughout the entire procedure, regardless of the dimension n or

relative degreer, the only unknown signal appearing in the starting formΣ∗ is x̃2,

which it furthermore enters affinely. At each iteration the stabilizing functions pick

up the following signal dependencies:

α1 = α1(x1)

α2 = α2(x1,w2, x̃1)

...

αi = αi(x1,w2, . . . ,wi , x̃1)

...
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Section 2.3: Observer Backstepping

and therefore at every iteration(i > 1), the quadratic Lyapunov function derivative

contains terms of the form

V̇i+1 = ...+wi+1ẇi+1

= ...+wi+1
(

˙̂xi+1−
∂αi
∂x1

ẋ1−
i

∑
j=2

∂αi
∂w j

ẇ j −
∂αi
∂x̃1

˙̃x1
)
.

It is important to note that the latter(i +1) terms all contain anaffinedependency

on x̃2, which implies that a coefficientCi(x1,w2, . . . ,wi) can be extracted so that

V̇i+1 = ...+wi+1
(

˙̂xi+1−Ki(x1,w2, . . . ,wi)−Ci(x1,w2, . . . ,wi)x̃2
)
.

Therefore it is possible to once again apply nonlinear damping via the(i +1)th sta-

bilizing function by introducing a term of the formδiC(·)2wi+1, while cancelling

the fully known termKi(x1,w2, . . . ,wi). This observation may be useful in imple-

menting symbolic math algorithms that calculate the final control expressions for

higher order systems.

We also remark that in general, nonlinear damping can only beapplied to dis-

turbances that enter the system equations affinely, which iswhy many global OFB

stabilization solutions still require the system to be either affine or “linear in the

unmeasured states” [43].⊳

Remark 2.3.3. Our preceding discussions may give the impression that backstep-

ping procedures are fixed and always yield the same outcome interms of controller

structure, for a given set of system equations. On the contrary, backstepping is more

of a technique than a pre-defined design, contrasting with control designs by feed-

back linearization for instance. As an example of this flexibility, we note that at each

iteration it is possible to separate the coefficientCi(x1,w2, . . . ,wi) that multiplies ˜x2

(cf. Remark 2.3.2) into several smaller terms in different ways. In other words,

for any given set of system equations several solutions are possible. One may find

that implementing two damping terms likeδi,1Ci,1(·)
2wi+1+δi,2Ci,2(·)

2wi+1 instead

of δiCi(·)
2wi+1 = δi(Ci,1(·)+Ci,2(·))

2wi+1 results in a reduced control effort, or a

simpler control expression.⊳
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It is important to notice that even though the OFBF appears tobe a rather restric-

tive system form, the nonlinearitiesΨ(y) are not growth-restricted in any way. In

this way, the method of observer backstepping represents a powerful advancement

in nonlinear control.

The observer backstepping method applied to the OFBF is constructive, but it

requires a full order observer in order to be implemented. From a practical point of

view, the order of the dynamic component of any controller should be kept minimal

to reduce the computational burden. In the next section, we present an alternative

global OFB method for systems in OFBF due to [2], which requires a dynamic

component of order(r −1).

2.4 The MT Method

Observer backstepping is clearly an observer separation method, in which the con-

troller is designed to compensate for the effects of the observer error. The method

given by Marino and Tomei in [2] is interesting because it is not a separation

method; that is, the role of the dynamic component of their control law is not re-

lated to the task of state estimation. Instead, its main purpose is to help transform

the system into a set of coordinates in which it “appears” to have relative degree

one (with respect to a new input) with stable, linear zero dynamics. This method is

also fully constructive and relies on the properties of the OFBF. The key tools used

are backstepping, andfiltered transformations.

The original idea for the method was given in [2], where it wasdescribed within

an adaptive control context, and a cleaner version is provided in Chapter 6 of [16].

An alternative, and beautifully systematic analysis of theMT method is also pro-

vided in Section 11.3 of [12]. Here, we give a much more detailed exposition than

provided in either [16], [12] or in the original papers [2]. We regard as part of

our contribution this more thourough, but simplified presentation that attempts to

clarify the method and its motivations, and more closely adheres to the standard

backstepping framework that one would recognize from [1].
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Section 2.4: The MT Method

We start by examining the OFBF, with inputv and relative degreer = 1:

ẋi = xi+1+ψi(y)+diσ(y)v, 1≤ i ≤ (n−1)

ẋn = ψn(y)+dnσ(y)v

y = x1

, (2.112)

where the nonlinearitiesψ j(y), 1≤ j ≤ n are assumed to be smooth everywhere and

zero at zero, the input vectord = [d1, . . . ,dn]
T is assumed to be Hurwitz as usual,

and the scalar functionσ(y) is nonsingular everywhere. We assignv = 1
d1σ(y)u and

define

di ,
di

d1

so thatd1 is normalized to 1 and we can write more simply:

Σ :







ẋi = xi+1 +ψi(y)+diu, 1≤ i ≤ (n−1)

ẋn = ψn(y)+dnu

y = x1

, (2.113)

or

Σ :

{

ẋ = Acx+Ψ(y)+du

y = x1
(2.114)

whered = [1,d2, . . . ,dn]
T is Hurwitz sinced is assumed Hurwitz. For this system,

we can design a static, globally asymptotically stabilizing OFB law. To see this, we

first apply the following linear change of coordinates:

[
η
y

]

=










−d2 1 0 · · · 0
−d3 0 1 · · · 0

...
...

...
. . .

...
−dn 0 0 · · · 1

1 0 0 · · · 0










x , Tx (2.115)

whereη ∈ Rn−1 and the outputy is as before. In consideration of our definition of

di , we note that this transformation is identical to the one discussed in Subsection

2.2.3.1 (cf. equation (2.79)). In fact, the purpose of (2.115) is to obtain the normal

form for Σ, with theη-subsystem corresponding to the zero-dynamics. However,

sinceΣ’s relative degree isr = 1, the chain of integrators in its normal form consists

of only one state –y itself. Therefore, transformingΣ into the NF is by default the
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same as transforming it to the SNF; this fact is taken advantage of throughout MT’s

method.

Proceeding with the transformation, we obtain:
[

η̇
ẏ

]

= (TAcT
−1)

[
η
y

]

+TΨ(y)+Tdu (2.116)

where

(TAcT
−1) =












−d2 1 0 · · · 0 d3−d2d2

−d3 0 1 · · · 0 d4−d2d3
...

...
...

. . .
...

...
−dn−1 0 0 · · · 1 dn−d2dn−1

−dn 0 0 · · · 0 −d2dn

1 0 0 · · · 0 d2












(2.117)

and

Td =










d2−d2d1

d3−d3d1
...

dn−dnd1

d1










=










0
0
...
0
1










(2.118)

since we have maded1 ≡ 1. The product (2.118) is to be expected, sinceT was

designed to annihilate the presence ofu in the zero-dynamics subsystem. Also of

interest is the transformed nonlinearity, which can be expressed as:

TΨ(y) =








ψ2(y)−d2ψ1(y)
ψ3(y)−d3ψ1(y)

...
ψn(y)−dnψ1(y)








=








φ2(y)−d2φ1(y)
φ3(y)−d3φ1(y)

...
φn(y)−dnφ1(y)








y , Φ(y)y (2.119)

where we have factored eachψi(y) as ψi(y) = yφi(y), 1 ≤ i ≤ n. The functions

ψi(y) can always be factored this way owing to our assumptions thatψi(y) ∈ C∞

everywhere, and thatψ(0) = 0. These assumptions guarantee8 that the functions

8This construction is similar to the one discussed in Section2.1 (cf. equation (2.8)). For interest’s
sake we mention that in the case of single variable scalar functionψ(y) there is an alternative proof of
the fact that the factorizationψ(y) = yφ(y) (with φ(y) ∈C0) is always possible whenφ(y) ∈C1, and
ψ(0) = 0. The proof is again by construction. First we note that ifψ(y) isC1 everywhere, thenψ′(y)

exists and is continuous everywhere. Intuitively, we wouldlike to let φ(y) = ψ(y)
y ; unfortunately at

y = 0 this may lead to an indefinite form. However, by L’Hospital’s rule, we have that

lim
y→0

ψ(y)
y

= lim
y→0

ψ′(y)
1

= ψ′(0) (2.120)
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φi(y) can always be constructed as:

φi(y) =
Z 1

0

dψi(ζ)

dζ

∣
∣
∣
∣
ζ=sy

ds. (2.121)

Theη-dynamic is then written as:

η̇ = Γη+By+Φ(y)y (2.122)

whereΓ is the Hurwitz matrix

Γ =










−d2 1 0 · · · 0
−d3 0 1 · · · 0

...
...

...
. . .

...
−dn−1 0 0 · · · 1
−dn 0 0 · · · 0










, (2.123)

which is identical to (2.84), and the constant vectorB is

B =










d3−d2d2

d4−d2d3
...

dn−d2dn−1

−d2dn










. (2.124)

Letting

γ(y) , B+Φ(y)

we write the transformed system as:

Σ∗ :

{

η̇ = Γη+ γ(y)y
ẏ = η1 +d2y+ψ1(y)+u.

(2.125)

We now make some observations concerning the form (2.125). Unlike in observer

backstepping, no observer has been constructed here, and therefore the states of the

and therefore by defining

φ(y) =

{
ψ(y)

y , y 6= 0

ψ′(0), y = 0

we ensure that it is continuous, sincelimy→y∗φ(y) = y∗, for all y∗ ∈ R.
Alternatively, we may impose a stronger requirement onψ(y). If ψ(y) is analytic everywhere and

is zero at zero, then there exists a Taylor series that converges toψ(y) everywhere. Sinceψ(0) = 0,
the constant term in this series is zero. We can therefore factor ay out of each term in the series, and
collect all terms in the new factored series into another functionφ(y).
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η-subsystem are unknown and cannot be cancelled byu. However, we notice that

if γ(y)y≡ 0, then the only coupling between theη andy subsystems is through the

stateη1. Further, since the unmeasuredη1 enters ˙y linearly and theη subsystem

is exponentially convergent, we could apply nonlinear damping to compensate for

its effect on they-subsystem. In that case we would only have to worry about

stabilizing they-subsystem, taking into account the effect of the “disturbance” η1.

However, sincey drives theη-subsystem throughγ(y)y, this dynamic coupling must

also be accounted for. Fortunately, it is possible to do so owing to our factorization

of TΨ(y) in (2.119). To demonstrate, we propose the Lyapunov function candidate

V = ηTQη+ 1
2y2

whereQ = QT > 0 is the unique solution of the Lyapunov equation

ΓTQ+QΓ = −κI

for some real numberκ > 0. We then find the derivative ofV along the solutions of

Σ∗:

V̇ = η̇TQη+ηTQη̇+yẏ

=
(
Γη+ γ(y)y

)T
Qη+ηTQ

(
Γη+ γ(y)y

)
+yẏ

= ηT(ΓTQ+QΓ
)
η+2ηTQγ(y)y+yẏ (2.126)

where we have used the fact that

yγ(y)TQη ≡ ηTQγ(y)y

due to the symmetry ofQ. Continuing with (2.126), we obtain

V̇ = −κηTη+y
[
2ηTQγ(y)+η1+d2y+ψ1(y)+u

]
, (2.127)

which can be rendered negative definite by choosing

u = −ψ1(y)−d2y−δy−β(Qγ(y))T(Qγ(y))y−cy (2.128)
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whereδ andβ are damping coefficients to be chosen positive, andc is a control

coefficient, also to be chosen positive. In that caseV̇ becomes

V̇ ≤−(κ− 1
4δ −

1
β)ηTη−1

β ηTη+2ηT(Qγ(y)y)−β(Qγ(y)y)T(Qγ(y)y)
︸ ︷︷ ︸

complete the square

− 1
4δ‖η‖2+ |y|‖η‖−δy2−cy2 (2.129)

= −(κ− 1
4δ −

1
β)ηTη−β

(

1
βη−Qγ(y)y

)T(
1
βη−Qγ(y)y

)

−δ
(
‖η‖
2δ

−|y|

)2

−cy2

≤−(κ− 1
4δ −

1
β)ηTη−cy2 (2.130)

which shows that the CL system (2.125) and (2.128) is GAS at(η,y) = (0,0) by

Theorem A.0.1.

The true ingenuity in MT’s method reveals itself for the caser > 1, where a

dynamic component is used to obtain a system structure that is similar toΣ for the

r = 1 case.

2.4.1 The Relative Degreer > 1 Case

We once again consider the OFBF system

Σ :

{

ẋ = Acx+Ψ(y)+du

y = x1
(2.131)

where without loss of generality we assume that the Hurwitz input vector is nor-

malized with respect todr – i.e. d = [0, . . . ,0,1,dr+1, . . . ,dn]
T . We now introduce

the linear system










ξ̇1

ξ̇2
...

ξ̇r−2

ξ̇r−1











=










−λ1 1 · · · 0
0 −λ2 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −λr−1



















ξ1

ξ2
...

ξr−2

ξr−1










+










0
0
...
0
1










u, (2.132)

or

ξ̇ = Λξ+Bu, (2.133)

81



Section 2.4: The MT Method

where we choose the numbersλi > 0, 1≤ i ≤ (r −1). We claim that the following

dynamic change of coordinates:

z= x−Dξ, (2.134)

whereD ∈ Rn×(r−1) is to be determined, can transformΣ into the coupled system

ż= Acz+Ψ(y)+gξ1

ξ̇ = Λξ+Bu

y = z1

, (2.135)

where the vectorg= [1,g2, . . . ,gn]
T is Hurwitz. We will prove this claim in Subsec-

tion 2.4.1.1. For the time being, assume that we indeed have (2.135). In that case,

if we regardξ1 as an input, then thez-subsystem resembles exactlyΣ with relative

degreer = 1, a case we know how to solve as per our foregoing discussion.Con-

tinuing in exactly the same way as for ther = 1 case, we transform thez-subsystem

using the linear transformation (2.115) (withdi ’s replaced bygi ’s, for 2≤ i ≤ n) to

obtain the starting form:

Σ∗ :







η̇ = Γη+ γ(y)y
ẏ = η1 +g2y+ψ1(y)+ξ1

ξ̇ = Λξ+Bu

, (2.136)

whereΓ is a Hurwitz matrix as before, and the stateξ1 takes the place ofu. The

solution to the OFB problem is now all but complete. It remains only to point

out that theξ-subsystem is in a SFF and hence admits a backstepping design. To

proceed, we would consider the Lyapunov function candidateV1 = ηTQη + 1
2y2

as before. This time, we would useξ1 as the virtual control and define the error

variablew2 , ξ1+α1(y), where the expression in equation (2.128) is now assigned

to α1(y). In the next iteration we would take the derivative ofV2 = V1+ 1
2w2

2:

V̇2 ≤−(κ− 1
4δ)ηTη−cy2 +w2y+w2[−λ1ξ1+ξ2−

∂α1(y)
∂y ẏ]

and chooseξ2 as the next virtual control. Its associated stabilizing function must

cancel the third term iṅV2, which is the usual “leftover” term from the previous co-

ordinate shift, as well as apply nonlinear damping to the affineη term that appears
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throughẏ. One can see that the remainder of the iterations proceed in asimilar man-

ner, according to our previous discussions of backsteppingand nonlinear damping.

In therth iteration, the actual controlu appears and is selected similarly to yield a

GAS CL system. Figure 2.3 shows the CL system under this OFB law.

Figure 2.3: The closed-loop system implementing Marino andTomei’s globally
stabilizing OFB law.

For a greater level of computational detail the reader is referred to Chapter 3,

where the extension of this method to MIMO systems is provided along with a

more formal inductive proof. A special case of the proof provided therein includes

this SISO formulation. Here, we are more eager to explain filtered transformations,

which lie at the heart of this clever method.

In the sequel, we give a significantly more extensive and detailed analysis of

the filtered transformation than is provided in any of [16], [2] or [12]. We hope that

our insights are helpful in making the MT method easier to understand and possibly

adapt in new applications.

2.4.1.1 The Filtered Transformation

The linear system (2.132) is referred to as the filter, and ultimately becomes incor-

porated as the dynamic component of the OFB law. The associated transformation

(2.134) is known as afilter transformation(FT), a vehicle that takes a system in

OFBF of any relative degree, and makes it look like a system with relative degree

one. The FT

z= x−Dξ

83



Section 2.4: The MT Method

can be viewed as a time-varying coordinate shift, and its design is motivated as

follows.

ż= Ac[z+Dξ]+Ψ(y)+du−D[Λξ+Bu]

= Acz+Ψ(y)+ [AcD−DΛ]ξ+[d−DB]u. (2.137)

Comparing (2.137) with our desired form

ż= Acz+Ψ(y)+gξ1

in (2.135), we see that the matrixD must satisfy the following conditions

AcD−DΛ = gC (2.138)

d−DB = 0 (2.139)

where we defineC= [1,0, . . . ,0]1×(r−1) so thatCξ = ξ1. SinceB= [0, . . . ,0,1]T1×(r−1),

(2.139) implies that the(r −1)th column ofD must equal the original input vec-

tor d. We first notice that (2.138) looks very much like a Sylvesterequation, with

Ac andΛ being two square matrices with no two eigenvalues in common,andD

the matrix to be solved for. It differs from a standard Sylvester equation in that

D is not square, and that (2.139) imposes an additional restriction on its solution.

Nevertheless, a unique solution does exist forD, and can be obtained recursively

by analyzing (2.138) on a column-by-column basis. To that end, we denote the

columns ofD as

D = [d[2],d[3], . . .,d[r −1],d[r]]. (2.140)

By this notation and by condition (2.139), we have that

d[r] ≡ d,

the original input vector in (2.131). It is also helpful to expressΛ as

Λ =










−λ1 0 · · · 0 0
0 −λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −λr−2 0
0 0 · · · 0 −λr−1










+










0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0










, Λ+Acξ
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and to note that post-multiplyingD by Acξ shifts all of D’s columns to the right.

Therefore (2.138) can be re-written as

[
Acd[2],Acd[3], . . . ,Acd[r]

]
−
[
−λ1d[2],−λ2d[3], . . . ,−λr−1d[r]

]

−
[
0,d[2], . . . ,d[r −1]

]
=
[
g,0, . . . ,0

]
, (2.141)

or, column-by-column we have

(Ac +λ1I)d[2] = g (2.142a)

(Ac +λiI)d[i +1] = d[i], 2≤ i ≤ (r −1). (2.142b)

Recalling thatd[r] = d is known, we can use (2.142) to solve recursively for the

columns of the matrixD. Denoting

d[1] , g

we express this recursive solution as:

d[r] = d

d[i −1] = (Ac +λi−1I)d[i], r ≥ i ≥ 2
(2.143)

which is clearly a unique solution.

To show thatg = d[1] is a Hurwitz vector, we re-arrange equation (2.142) to

obtain

(Ac+λ1I)(Ac+λ2I) · · ·(Ac+λr−2I)(Ac+λr−1I)d[r] = g, (2.144)

and note that the matrix

M , (Ac +λ1I)(Ac+λ2I) · · ·(Ac +λr−2I)(Ac+λr−1I)

= Ar−1
c +a1Ar−2

c +a2Ar−3
c + . . .+ar−2Ac +ar−1I (2.145)

forms the following pattern

M =













ar−1 ar−2 · · · a1 1 0 · · · 0 0
0 ar−1 · · · a1 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 · · · 0 0 0 · · · ar−1 ar−2

0 0 · · · 0 0 0 · · · 0 ar−1













(2.146)
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where theai are clearly the coefficients of the polynomial

r−1

∏
i=1

(s+λi) = sr−1+a1sr−2+ . . .+ar−2s+ar−1s

which is Hurwitz if and only if the filter is stable. Then, since M is a triangular

Toeplitz matrix with polynomial coefficients on its diagonals, the equation

Md = g (2.147)

(i.e. equation (2.144)) can be interpreted as the numericalcomputation of the fol-

lowing polynomial product:

g1sn+ . . .+gn−1s+gn =
r−1

∏
i=1

(s+λi)
[
sn−r +dr+1sn−r−1 + . . .+dn−1s+dn

]
.

(2.148)

To justify this statement, we remark that polynomial multiplication is equivalent to

the convolution of their two respective coefficient vectors, and the convolution of

two vectors can be expressed as a multiplication between a Toeplitz matrix such as

M above, and a vector. To illustrate, suppose we have two polynomials

a(s) = s2+a1s+a2

and

b(s) = s3+b1s2 +b2s+b3.

Then,

a(s)b(s) = s5+(a1+b1)s
4+(a2+a1b1+b2)s

3+(a2b1 +a1b2+b3)s
2

+(a2b2+a1b3)s+(a3b3).

The coefficients of this product can be computed from








a2 a1 1 0 0
0 a2 a1 1 0
0 0 a2 a1 1
0 0 0 a2 a1

0 0 0 0 a2

















0
1
b1

b2

b3









=









b3 b2 b1 1 0
0 b3 b2 b1 1
0 0 b3 b2 b1

0 0 0 b3 b2

0 0 0 0 b3

















0
0
1
a1

a2









=









a1+b1

a2+a1b1+b2

a2b1+a1b2+b3

a2b2+a1b3

a2b3
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We can now see why the stability of the zero dynamics is important to this

design. To recapitulate, once the FTz= x−Dξ has been applied, we obtain the

system dynamic (2.135) which now resembles a relative degree one system when

ξ1 is regarded as its input. Then, applying the linear transformation

T =










−g2 1 0 · · · 0
−g3 0 1 · · · 0

...
...

...
. . .

...
−gn 0 0 · · · 1

1 0 0 · · · 0










(2.149)

to thez-subsystem results in the starting form

Σ∗ :







η̇ = Γη+ γ(y)y
ẏ = η1 +g2y+ψ1(y)+ξ1

ξ̇ = Λξ+Bu

,

where the matrix

Γ =










−g2 1 0 · · · 0
−g3 0 1 · · · 0

...
...

...
. . .

...
−gn−1 0 0 · · · 1
−gn 0 0 · · · 0










(2.150)

is Hurwitz if, and only if its characteristic polynomial

|Γ−sI| = g1sn+ . . .+gn−1s+gn (2.151)

has roots with negative real parts. FromΣ∗, the method proceeds as described in

Section 2.4 and hence relies on the stability of theη̇ = Γη system. On the other

hand, we observe from (2.148) that the polynomialg1sn+ . . .+gn−1s+gn has roots

with negative real parts if and only if the filter matrixΛ is Hurwitz, and the original

input vectord is Hurwitz. From the properties of the OFBF described in Section

2.2.3.1, we know that the zero dynamics ofΣOFBF are stable if, and only ifd is a

Hurwitz vector. Therefore, the minimum phase assumption isjust as critical for this

method as it is for observer backstepping.

Remark 2.4.1. It is well known that the relative degree or the stability of the zero

dynamics cannot be changed by SFB or static changes of coordinates. The FT
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(2.134) also does not change a system’s relative degree, a fact which is clear from

the structure ofΣ∗; the signaly andu are still separated by exactlyr integrators.

From (2.148) it is also clear that the stability of the zero dynamics cannot be altered

by the FT. However, the dynamics of theη subsystem no longer represent the zero

dynamics of the original systemΣOFBF; they are now the zero dynamics ofΣOFBF

augmented by the filter.⊳

2.5 Summary

The two global OFB design methods we described in this chapter are applicable to a

rather restrictive class of nonlinear systems – those diffeomorphic toΣOFBF. How-

ever, these methods posses two important virtues. First, they are able to deal with

systems whose nonlinearities are not restricted in any way in terms of growth rate

or structure. Even more importantly, both methods are fullyconstructive, giving

the designer a means of systematically obtaining an explicit expression for a glob-

ally asymptotically stabilizing dynamic controller. Muchof the currently available

nonlinear control theory offers only analytical tools or theoretical existence results

that, although bearing significant importance in the advancement of the field, are of-

ten difficult to translate into constructive design methodologies. Appart from being

early examples of constructive nonlinear control, these two methods are also valu-

able because they demonstrate the use of several generaltechniques– not just fixed

designs – such as integrator backstepping, nonlinear damping and filtered transfor-

mations. The application of such techniques may be extendedto other scenarios. In

the next chapter we explore one such extension to a class of multivariable nonlinear

systems.
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Chapter 3

Extension of the MT Method to
Multivariable Systems

This chapter is based largely on [71].

3.1 Introduction

The design of globally stabilizing output feedback (OFB) for nonlinear systems is

an important control problem that is actively being studied. The objective is to

develop a systematic design of a static or dynamic control expression dependent on

known (measured or generated) signals only, such that in closed-loop, a dynamic

system of interest is globally stabilized. It has been an equally important objective

to broaden the class of systems to which such methods are applicable.

Important work in papers such as [22], [74], [38], [11], [39][75] and the ref-

erences therein has elaborated the central issues involvedin designing output feed-

back controllers for nonlinear systems. Unlike for linear systems, fundamental ob-

stacles such as the peaking phenomenon and the absence of a generic separation

principle make nonlinear output feedback design a challenging problem.

Although our understanding has significantly progressed inthe last few decades,

there are still very few systematic, constructive solutions to the problem. Of the

constructive solutions that do exist, the main approaches include a local result in

[76], the semi-global approach originated in [28] and further developed in [31],

[37], [34], and global approaches including observer backstepping [1], [6], and the
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adaptive OFB method presented in [2].

Even though from a practical point of view dynamic models generally do not

emulate the behaviour of a physical system globally, globalOFB stabilization is still

of interest. Semi-global formulations, albeit generally less restrictive than global

formulations, usually require that certain gains be “sufficiently high” in correspon-

dence to a desired size of the region of attraction associated with a closed-loop

equilibrium. Global formulations have no such requirements, but usually impose

restrictive conditions identifying the class of systems towhich they apply. For this

reason, our interest is in extending the class of systems that are globally stabilizable

by OFB using the method presented in [2].

The results in both [76] and [34] are directly applicable to MIMO systems; how-

ever, a MIMO generalization of the OFB scheme presented in [2] cannot be found

in the literature. Our objective in this chapter is to provide such an extension. Our

approach can be regarded as an alternative to the ones taken in [64], [61] and [60].

Using [2] as our starting point, our method inherits the key benefits of MT’s method

– namely, we impose no growth restrictions on the model’s nonlinearities, and the

dynamic order of our OFB is strictly less than that of the plant. The class of systems

we consider is similar to the SISO output feedback form, but we allow dynamic cou-

pling between the subsystems through the output-dependentnonlinearity. Our main

contribution is the modification of the SISO algorithm presented in [2], so that it

can accommodate the dynamic coupling between subsystems inthe MIMO case.

Specifically, the problem can be solved within the backstepping framework if ad-

ditional nonlinear damping terms are included at every iteration to account for this

coupling.

This chapter is organized as follows: in Section 3.2 we formulate the problem to

be solved and provide the solution in Section 3.3. We illustrate the presented theory

on a mathematical example in Section 3.4 and provide a summary in Section 3.6.
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3.1.1 Notation

For most quantities, the first subscript identifies the subsystem number while the

second identifies the index within that subsystem. If only one subscript is used then

the reference is to the subsystem. For all virtual controlsαi, j the first subscript

refers to the subsystem number and the second to the iteration number. Subscripts

on Lyapunov functions indicate iteration number.

3.2 Problem Statement

In this chapter we solve the problem of global asymptotic stabilization by output

feedback for the follwing class of MIMO nonlinear systems:

ẋ = blkdiag(Ac1,Ac2, . . . ,Acm)x+Ψ(y)+
m

∑
i=1

Diui

y = blkdiag(Cc1,Cc2, . . . ,Ccm)x

, (3.1)

wherex=(xT
1 , . . . ,xT

m)T ∈Rn, xi ∈Rki , y= (y1, . . . ,ym)T ∈Rm, u=(u1, . . . ,um)T ∈

Rm, and the matrices

Aci =








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0








(ki×ki)

, Cci = [1,0, . . . ,0](1×ki),

DT
i = [01×k1

... · · ·
... 01×ki−1

... di
... 01×ki+1

... · · ·
... 01×km]

with

di = [0,0, . . . ,0,di,ρi ,di,ρi+1,di,ρi+2, . . . ,di,ki ], for 1≤ i ≤ m.

The nonlinearityΨ(y) = [ψ1(y)T , . . . ,ψm(y)T ]T , whereψi(y) = [ψi,1(y), . . . ,ψi,ki(y)]
T .

We assume that (3.1) has an equilibrium at the origin whenui ≡ 0, 1≤ i ≤ m and

that the functionsψi, j(y) areC∞. An important consequence of these two usual

assumptions is that eachψi, j(y) can be expressed as

ψi, j(y) =
m

∑
k=1

φi, j ,k(y)yk, (3.2)
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with φi, j ,k(y) alsoC∞. To see this, supposem = 2 and we have a scalar func-

tion ψ(y1,y2) which is smooth everywhere in both arguments and is such that

ψ(0,0) = 0. We use a constructive argument similar to the one given forsingle-

variable functions in Section 2.1 to demonstrate that (3.2)is always attainable. First,

we define

ψ2(y1,y2) , ψ(y1,y2)−ψ(y1,0)

which implies thatψ2(y1,0) = 0 and can therefore be expressed as

ψ2(y1,y2) =

Z 1

0

∂ψ2(y1,sy2)

∂s
ds.

Then, by changing the variable of differentiation toζ = sy2, we can write

Z 1

0

∂ψ2(y1,sy2)

∂s
ds= y2

(
Z 1

0

(
∂ψ2(y1,ζ)

∂ζ

)∣
∣
∣
∣
ζ=sy2

ds

)

, y2φ2(y1,y2).

Similarly, define

ψ1(y1,y2) = ψ(y1,0)−ψ(0,0).

Since we assumed thatψ(0,0) = 0, we have thatψ1(0,y2) = 0 and therefore by a

similar argument, we can define

φ1(y1,y2) ,

Z 1

0

(
∂ψ1(ζ,y2)

∂ζ

)∣
∣
∣
∣
ζ=sy1

ds

so that finally

ψ(y1,y2) = y1φ1(y1,y2)+y2φ2(y1,y2).

From this simplified argument, it is clear that the factorization (3.2) is possible in

general, provided theψi, j(y) are at least continuously differentiable, and zero at

zero.

We define the numberρi as the number of integrations separatingyi from its

associated inputui . This number does not necessarily correspond to the traditional

definition of “relative degree” associated with theith output, since differentiating

the signalyi fewer thanρi times may in fact result in the appearance of someu j , j 6=

i.
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The ki ’s can be regarded as the observability indices uniquely associated with

the system. In that case, the differential geometric conditions characterizing the

drift portion of (3.1) are the same as those characterizing the multi-output Nonlinear

Observer Form (NOF) [68]. In the general NOF the input vectors are free to be

functions of all the outputs whereas we restrict their structure to take the special

form of theDi . Eachdi is assumed to be a knownHurwitz vectorin the sense that

the roots of the polynomial

di,ρis
n−ρi + . . .+di,ki−1s+di,ki

have negative real parts. Whenm= 1 the system (3.1) is in the well-known OFBF,

and the restriction on the structure of the input vectors implies that there exists state

coordinates in which the zero, or tracking dynamics of (3.1)are linear and stable,

as shown in Section 2.2.3.1.

The dynamic coupling between the subsystems is entirely dueto the dependence

of each nonlinearityψi, j on outputs associated with all other subsystems. This

coupling makes the OFB design more difficult in the MIMO case.In the sequel, we

demonstrate that the MIMO design is still possible, owing tothe special structure

of the input vectorsDi .

3.3 Main Result

Theorem 3.3.1.For any multivariate nonlinear system diffeomorphic to theform

(3.1), there exists a globally asymptotically stabilizingcontrol law dependent on

known signals only, whose dynamic order does not exceed∑m
i=1(ρi −1).

For clarity, we provide some preliminary discussion beforepresenting the proof.

Prior to constructing the control law it is necessary to carry out two transformations

on each subsystem in (3.1).

STEP 1: Filter Transformation For each subsystem in (3.1), we apply the

following Filter Transformation according to its numberρi . For theith subsystem,

93



Section 3.3: Main Result

let

zi = xi −
ρi

∑
j=2

di[ j]ξi, j−1, (3.3)

where the constant vectorsdi [ j] are iteratively defined as:

di[ρi ] , di

di[ j −1] = Aci di [ j]+λi, j−1di [ j], ρi ≥ j ≥ 2,
(3.4)

and theξi, j are the states of them filters with dynamics:

ξ̇i , Λiξi +biui, 1≤ i ≤ m, (3.5)

where

Λi =










−λi,1 1 · · · 0
0 −λi,2 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −λi,ρi−1










(3.6)

andbi = [0, . . . ,0,1]T . We remark that ifρi = 1 for anyi ∈ {1, . . . ,m}, then no FT

is applied to this subsystem. For stability, theλi, j must be chosen positive, and can

be tuned to adjust the closed-loop system performance. In the z coordinates the

extended system is:

Σzi :







żi = Aci zi +ψi(y)+di [1]ξi,1

ξ̇i = Λiξi +biui

yi = Cci zi

(3.7)

for 1 ≤ i ≤ m. It is important to note that the final vectordi [1] defined by (3.4) is

Hurwitz, and takes the form

di[1] = [1,di,2[1], . . . ,di,ki [1]]T ,

as discussed in Section 2.4.1.1.

STEP 2: Linear Transformation To each subsystem we apply the linear trans-

formation

[ηT
i ,yi ]

T = Tizi
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where

Ti =










−di,2[1] 1 0 . . . 0
−di,3[1] 0 1 . . . 0

...
...

...
. . .

...
−di,ki [1] 0 0 . . . 1

1 0 0 . . . 0










, (3.8)

which results in the following dynamics:

Σηi ,yi :







η̇i = Γiηi + γi(y)

ẏi = ηi,1+di,2[1]yi +ψi,1(y)+ξi,1

ξ̇i = Λiξi +biui

, (3.9)

for all 1≤ i ≤ m. Here,ηi ∈ Rki−1, ξi ∈ Rρi−1, the matrix

Γi =










−di,2[1] 1 0 . . . 0
−di,3[1] 0 1 . . . 0

...
...

...
. . .

...
−di,ki−1[1] 0 0 . . . 1
−di,ki [1] 0 0 . . . 0










,

and

[
γi(y)

ψi,1(y)

]

= Tiψi(y) = Ti






∑m
k=1ykφi,1,k

...

∑m
k=1ykφi,ki ,k




,

m

∑
k=1

[
Φi,k(y)

φi,ki,k(y)

]

yk (3.10)

where we have used (3.2) to expressψi(y), we have denoted

Φi,k(y) ,






φi,1,k(y)
...

φi,ki−1,k(y)




 ,

and theφi, j ,k represent appropriate linear combinations of theφi, j ,k.

The system in (3.9) has three structural features that enable the OFB design.

Taking into consideration the fact that thedi [1] are Hurwitz vectors, we see that the

linear component of theηi dynamic is exponentially stable. The second important

feature is that the filter stateξi,1 appears only in the ˙yi equation, which is due to

the fact thatTidi [1] = [0, . . . ,0,1]T. Subsystems whoseρi = 1 do not require a filter

transformation; in that case the linear transformation is applied directly and in (3.9)

ui appears instead ofξi,1 in theẏi equation. We observe that since the filter dynamic
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is in strict feedback form, the(yi ,ξi) subsystem of (3.9) is amenable to backstepping

provided that a functionα1 (of known signals only) can be found, such that ifξi1 =

α1 the ẏi subsystem is stabilized. The third structural feature of importance is the

ψi(y)’s dependence on the outputsy alone; this dependence enables us to influence

theηi dynamic ensuring the stability of the overall interconnection of theηi, yi , and

ξi subsystems.

It should be noted that even though theηi dynamic is ISS with respect toψi(y),

a backstepping design on the(yi ,ξi) subsystem alone cannot guarantee the stability

of the composite system due to the presence of the unknownηi,1 term in each ˙yi

equation. This inconvenience can be overcome by applying (3.2) and the idea of

nonlinear damping. In the following, we demonstrate the design.

STEP 3: Backstepping Algorithm Up to this point our development follows

closely that in [2]. From here, the design demands several new considerations to be

made in order to accommodate the coupled MIMO structure in (3.1).

Iteration 1: For the MIMO formulation, the presentation is clearest if we ap-

ply the backstepping procedure to each system in “parallel”– i.e. complete each

iteration for every subsystem before the next iteration. Webegin by proposing the

positive definite, proper Lyapunov function candidate

V1 =
m

∑
i=1

(ηT
i Qiηi +

1
2y2

i ) (3.11)

whereQi = QT
i > 0 is guaranteed to uniquely solve the Lyapunov equation

ΓT
i Qi +QiΓi = −κi I , 1≤ i ≤ m,

for someκi > 0, since eachΓi is Hurwitz. The derivative ofV1 along the solutions

of all (ηi ,yi) subsystems (3.9) is:

V̇1 =
m

∑
i=1

[
−κiηT

i ηi +2ηT
i Qiγi(y)

+yi(ηi,1+di,2[1]yi +ψi,1(y)+χi,1)
]

(3.12)

Here we must account for the possibility that one or more of them subsystems has

ρ = 1, in which case their inputs appear in the associated ˙y equations. To that end,
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we have introduced the variableχi,1 in (3.12), which we define in general for the

rth iteration as:

χi,r ,

{
ui , i ∈ Pr

ξi,r , i ∈ (M−P∗
r )

, (3.13)

whereP∗
r , (Pr ∪Pr−1∪· · ·∪P1) andPr is defined as the index subset at therth it-

eration identifying precisely those subsystems with number ρ equal to that iteration

number:

Pr ⊆ M : (i ∈ Pr) ⇔ (ρi = r)

M = {1,2, . . . ,m} (3.14)

As the design iterations progress, some subsystems’ designs will reach completion

before others; the foregoing notation will help us most easily and succinctly express

this “parallel” design process. For an example clarifying the usage of this notation,

please see the forthcoming Remark 3.3.4.

In consideration of (3.10), we re-write (3.12) as

V̇1 =
m

∑
i=1

−κiηT
i ηi +

m

∑
i=1

(
m

∑
k=1

2ηT
i QiΦi,k(y)yk

)

+
m

∑
i=1

yi(ηi,1+di,2[1]yi +ψi,1(y)+χi,1),

. (3.15)

Re-naming the summation indices fromi to k in the first and last terms and collect-

ing terms inyk, we then re-write (3.15) as

V̇1 =
m

∑
k=1

[

−κkηT
k ηk +yk

( m

∑
i=1

2ηT
i QiΦi,k(y)+ηk,1

+dk,2[1]yk +ψk,1(y)+χk,1

)
]

. (3.16)

We now define a stabilizing function for thekth subsystem asαk,1 : Rm → R:

αk,1(y) = −ψk,1(y)−dk,2[1]yk−ck,1yk−δk,1yk

−
m

∑
i=1

βk,i(QiΦi,k)
T(QiΦi,k)yk, (3.17)

97



Section 3.3: Main Result

and remark thatα(0) = 0. To the subsystems withρk = 1, k ∈ P1, we assignuk =

αk,1(y), while for the remaining subsystems we introduce the coordinate change

wk,1 = ξk,1−αk,1(y), k∈ (M−P1). ThenV̇1 becomes:

V̇1 ≤
m

∑
k=1

[

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

)
ηT

k ηk−ck,1y2
k

−
( 1

4δk,1
‖ηk‖

2−|yk|‖ηk‖+δk,1y2
k

)

−
m

∑
i=1

( 1
βk,i

ηT
i ηi

−2ηT
i QiΦi,kyk +

(
βk,i(QiΦi,k)

T(QiΦi,k)y
2
k

))
]

+ ∑
k∈(M−P1)

ykwk,1, (3.18)

where we have split off the negative definite termηT
k ηk and used the fact that

η2
k,1 ≤ ηT

k ηk = ‖ηk‖
2, ∀ηk ∈ R

kk−1,

and the vacuously true fact that

m

∑
k=1

m

∑
i=1

1
βi,k

ηT
k ηk =

m

∑
k=1

m

∑
i=1

1
βk,i

ηT
i ηi .

In introducing the last two terms in (3.17) we applied the notion of nonlinear damp-

ing [1]. These terms now allow us to dominate the affine cross terms involving the

unknownηk in (3.18) by “completing the square”, and generating a negative def-

inite quadratic term, instead of cancelling. The damping coefficientsβk,i > 0 and

δk,1 > 0 can be adjusted to affect the performance of the closed-loop system.

One difference between the MIMO and the SISO formulation is the form of

αk,1 in (3.17). Here we must includem damping termsβk,i(QiΦi,k)
T(QiΦi,k)yk to

account for the nonlinearities’ dependence on all outputs.In effect, the control input

to every subsystem must provide terms that help stabilize all other subsystems, due

to the general dynamic coupling between them.
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We proceed by re-writing (3.18) to obtain

V̇1 ≤
m

∑
k=1

[

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

)
ηT

k ηk−ck,1y2
k

−
m

∑
i=1

βk,i

( 1
βk,i

ηk−Qiγi

)T( 1
βk,i

ηk−Qiγi

)

−δk,1

(‖ηk‖

2δk,1
−|yk|

)2
]

+ ∑
k∈(M−P1)

ykwk,1. (3.19)

For convenience, we define the negative definite term

τ1 ,
m

∑
k=1

[

−
m

∑
i=1

βk,i

( 1
βk,i

ηk−Qiγi

)T( 1
βk,i

ηk−Qiγi

)

−ck,1y2
k−δk,1

(‖ηk‖

2δk,1
−yk

)2
]

, (3.20)

so that

V̇1 = τ1+
m

∑
k=1

[

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
4βk,i

)
ηT

k ηk

]

+ ∑
k∈(M−P1)

ykwk,1. (3.21)

Since (3.21) is rendered negative definite whenwk,1 ≡ 0, our next concern is the

regulation ofwk,1.

Iteration 2: We consider the new Lyapunov function candidate

V2 = V1+ 1
2 ∑

k∈(M−P1)

w2
k,1,

whose time derivative along the solutions of the(ηi,yi ,wq,1), (1 ≤ i ≤ m), q ∈
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(M−P1) subsystem is

V̇2 = τ1+
m

∑
k=1

[

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

)
ηT

k ηk

]

+ ∑
k∈(M−P1)

wk,1[yk + ẇk,1]

= τ1+
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

)
ηT

k ηk

+ ∑
k∈(M−P1)

wk,1

[

yk +(−λk,1ξk,1+χk,2)

−
m

∑
l=1

∂αk,1

∂yl

(
ηl ,1+dl ,2[1]yl +ψl ,1(y)+χl ,1

)]

, (3.22)

whereχk,2 is defined according to (3.13) withr = 2. This time we design a stabi-

lizing functionαk,2 for χk,2 as:

αk,2(y,ξq,1) = λk,1ξk,1−ck,2wk,1−
m

∑
l=1

(

δl ,2

(∂αk,1

∂yl

)2
wk,1

)

+
m

∑
l=1

∂αk,1

∂yl
(dl ,2[1]yl +ψl ,1(y)+χl ,1)−yk, (3.23)

for q ∈ (M −P1), and remark that it depends on known signals only. We assign

this expression to alluk, k∈ P2 and the new coordinate shiftwk,2 = ξk,2−αk,2, k∈

(M−P∗
2) to obtain

V̇2 ≤ τ1+
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βk,i

−
|M−P1|

4δk,2

)
ηT

k ηk

+ ∑
k∈(M−P1)

[

−ck,2w2
k,1−

m

∑
l=1

‖ηl‖
2

4δl ,2
−

∣
∣
∣
∣
wk,1

m

∑
l=1

∂αk,1

∂yl

∣
∣
∣
∣
‖ηl‖

−
m

∑
l=1

δl ,2

(∂αk,1

∂yl

)2
w2

k,1

]

+ ∑
k∈(M−P∗

2)

wk,1wk,2, (3.24)

where|M−P1| denotes the cardinality of the setM−P1 (i.e. |M−P1| is the num-

ber of subsystems that haveρ > 1, and have therefore not yet had an expression

assigned to their associated inputu). To obtain the term

∑
k∈(M−P1)

m

∑
l=1

‖ηl‖
2

4δl ,2
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in (4.21) (second line), we have added and subtracted|M−P1|ηT
k ηk/4δk2, and used

the trivial fact that

m

∑
k=1

|M−P1|

4δk,2
ηT

k ηk =
m

∑
k=1

∑
l∈(M−P1)

1
4δk2

ηT
k ηk

= ∑
k∈(M−P1)

m

∑
l=1

1
4δl ,2

ηT
l ηl . (3.25)

Completing the square we re-write (4.21):

V̇2 ≤ τ1+
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
|M−P1|

4δk,2

)
ηT

k ηk

+ ∑
k∈(M−P1)

[

−
m

∑
l=1

δl ,2

(‖ηl‖

2δl ,2
+
∣
∣
∂αk,1

∂yl
wk,1

∣
∣

)2

−ck,2w2
k,1

]

+ ∑
k∈(M−P∗

2)

wk,1wk,2. (3.26)

For convenience, we define the negative definite termτr , pertaining to therth itera-

tion, for all r ≥ 2:

τr , − ∑
k∈(M−Pr−1)

(

ck,rw
2
k,r−1

+
m

∑
l=1

δl ,r

( 1
2δl ,r

ηl ,1+
∂αk,r−1

∂yl
wk,r−1

)2
)

, (3.27)

and observe that

V̇2 ≤
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
|M−P1|

4δk,2

)
ηT

k ηk

+ τ1 + τ2+ ∑
k∈(M−P∗

2)

wk,1wk,2 (3.28)

is negative definite whenwk,2 ≡ 0. Again, the expression forαk,2 is different from

the SISO case wherem= 1. Additional damping terms were included in order to

compensate forαk,1’s dependence on all output components.

From now on the algorithm proceeds in exactly the same way as it did starting

at the second iteration; we introduce a new Lyapunov function candidateV3 = V2+

1
2 ∑k∈(M−P∗

2) w2
k,2. Owing to the strict-feedback structure of the filter, the derivative

of V3 produces an affineξk,3 for k ∈ (M−P∗
3) anduk for k∈ P3. We then forceV̇3
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to be negative definite by choosingαk,3 appropriately and assigning its expression

to all uk, k∈ P3 or ξk,3 = wk,3 +αk,3, k∈ (M−P∗
3).

It is important to note that in the second iteration the stabilizing functionαk,2(y,ξq,1)

has a dependence only on the outputs and the first filter statesbelonging to all sub-

systemsq∈ (M−P1) because of the second last term in (3.23). To clarify, we note

that the appearance of the variableχl ,1 in that term implies thatαk,2 also has depen-

dence on theuk, k∈ P1 which in turn depend only ony. Owing toαk,2’s filter state

dependence,̇V3 necessarily contains terms of the form∑q∈(M−P1)
∂αk,2
∂ξq,1

(λq,1ξq,1 +

χq,2). Since these terms are comprised of known signals only, theycan be can-

celled directly byαk,3 which thus picks up a dependence on the second filter states

of all subsystemsq ∈ (M −P∗
2), as well asuk, k ∈ P2 which have the same func-

tional dependence asαk,2. We therefore observe that in therth iteration(r > 1), the

stabilizing function associated with thekth subsystem in general has the following

functional dependence:

αk,r = αk,r(yi,ξq, j), k∈ (M−P∗
r−1)

1≤ i ≤ m,

q∈ M = {1, . . . ,m},

1≤ j ≤ min{(ρq−1),(r −1)}. (3.29)

We point out that (3.29) correctly indicates that for subsystems withρq = 1, there

are no filter states and thereforeαk,r is independent of any suchξq, j . Sinceαk,r is

assigned touk, k ∈ Pr , (3.29) implies that the controluk, k ∈ Pr must effectively

cancel all previously assigneduk, k∈ P∗
r−1. This cancellation presents no difficulty,

as these previously assigned control expressions depend exclusively on known sig-

nals, and never on one another or yet-unassigned control variables. Therefore, in

the MIMO case with output-dependent coupling it is still possible to find explicit

expressions for theuk, k∈ M without having to solve a system of equations1 in the

uk. This fact is a consequence of our choice of input vectors in (3.1) as well as the

strict-feedback structure of the filters.
1See for example the ad hoc MIMO OFB design for an induction motor presented in Section 7.2

in [1].
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The Backstepping Algorithm continues for

N = max
k∈M

(ρk)

iterations, after which the set(M−P∗
N) is empty since thekth subsystem’s filter has

exactlyρk−1 states, and exactlyρk iterations are required to complete its design.

We now show that it is possible to choose expressions for inputs and stabilizing

functions at every such iteration, regardless of the systemdimensionn or the num-

berρk associated with each subsystem.

Lemma 3.3.1. Define the set of functionsVr = Vr−1 + 1
2 ∑k∈(M−P∗

r−1)
w2

k,r−1 for

2 ≤ r ≤ N, with V1 given in (3.11). Then, for every iterationr, 2 ≤ r ≤ N of the

Backstepping Algorithm there exist stabilizing functionsαk,r , k∈ (M−P∗
r−1) ren-

dering

V̇r ≤
r

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
r−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+ ∑
k∈(M−P∗

r )

wk,r−1wk,r , (3.30)

once the coordinate changewk,r = ξk,r − αk,r , k ∈ (M − P∗
r ) is defined oruk =

αk,r , k∈ Pr is assigned.

Proof. We begin by considering therth iteration.

Iteration r: Suppose there exists a stabilizing functionαk,r−1 and an associated

coordinate changewk,r−1 = ξk,r−1−αk,r−1 such that the expression forV̇r−1 has the

following final form, identical to (3.28) whenr = 3:

V̇r−1 ≤
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
r−2

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+
r−1

∑
q=1

τq+ ∑
k∈(M−P∗

r−1)

wk,r−2wk,r−1 (3.31)

whereτ1 is defined in (3.20) andτq as in (3.27). We proceed as usual and propose

the subsequent Lyapunov function candidate

Vr = Vr−1+ 1
2 ∑

k∈(M−P∗
r−1)

w2
k,r−1
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whose time derivative is

V̇r =
r−1

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
r−2

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+ ∑
k∈(M−P∗

r−1)

wk,r−1[wk,r−2+ ẇk,r−1]

=
r−1

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
r−2

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+ ∑
k∈(M−P∗

r−1)

(

wk,r−1

[

wk,r−2 +
(

−λk,r−1ξk,r−1+χk,r

)

−
( m

∑
l=1

∂αk,r−1

∂yl
(ηl1+dl2[1]yl +ψl1(y)+χl1)+Sr

)]
)

, (3.32)

whereχk,r is defined as in (3.13), and we have shortened the notation further by

introducing the termSr which we define as

Sr ,

min{(ρq−1),(r−2)}

∑
j=1

( m

∑
q=1

∂αk,r−1

∂ξq, j
ξ̇q, j

)

. (3.33)

Sr represents the time derivative ofαk,r−1 along the trajectories of all relevant filter

states, given in (3.29). This term is much simpler in the SISOcase. Here, (3.33)

shows how the stabilizing functions themselves couple the dynamics of the closed-

loop system in the MIMO case.

We observe that just as before, we are in a position to choose astabilizing func-

tion αk,r for χk,r in (3.32) as

αk,r = λk,r−1ξk,r−1−wk,r−2−ck,rwk,r−1

+
m

∑
l=1

∂αk,r−1

∂yl
(dl2[1]yl +ψl ,1(y)+χl ,1)

−
m

∑
l=1

δl ,r

(∂αk,r−1

∂yl

)2
wk,r +Sr , (3.34)

so that it depends on known signals only. Again, we assignuk = αk,r for k ∈ Pr ,

while for k ∈ (M −P∗
r ) we define a new coordinate shiftwk,r = ξk,r −αk,r . We
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therefore obtain:

V̇r ≤
r−1

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
r−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

− ∑
k∈(M−P∗

r−1)

m

∑
l=1

‖ηl‖
2

4δl ,r
+ ∑

k∈(M−P∗
r−1)

(

−ck,rw
2
k,r−1

−
m

∑
l=1

∣
∣
∣
∣
wk,r−1

∂αk,r−1

∂yl

∣
∣‖ηl‖−

m

∑
l=1

δl ,r

(∂αk,r−1

∂yl

)2
w2

k,r

)

∑
k∈(M−P∗

r )

wk,r−1wk,r . (3.35)

Applying completion of squares we write out the expressionsin more detail and

obtain:

V̇r ≤
r−1

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
r−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+ ∑
k∈(M−P∗

r−1)

(

−ck,rw
2
k,r−1−

m

∑
l=1

δlr

[‖ηl‖
2

4δ2
lr

−

∣
∣
∣
∣
wk,r−1

∂αk,r−1

∂yl

∣
∣
∣
∣

‖ηl‖

δlr
−
(∂αk,r−1

∂yl
wk,r

)2]
)

≤
r−1

∑
q=1

τq+
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
r−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+ ∑
k∈(M−P∗

r )

wk,r−1wk,r + ∑
k∈(M−P∗

r−1)

(

−ck,rw
2
k,r−1

−
m

∑
l=1

δlr

(‖ηl‖

2δlr
+
∣
∣
∂αk,r−1

∂yl
wk,r
∣
∣

)2
)

. (3.36)

Definingτr as in (3.27), we can write

V̇r ≤
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
r−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+
r

∑
q=1

τq+ ∑
k∈(M−P∗

r )

wk,r−1wk,r , (3.37)

which has the desired form (3.30).

Taking (3.28) as the base step and (3.31) as our hypothesis, the Lemma is proven

by (3.37) and the principle of induction.�
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The Backstepping Algorithm terminates when we reach theNth iteration at

which the index set(M − P∗
N) is empty. In that case the last term in (3.37) is

zero, and we are left with a quadratic negative definite Lyapunov function derivative

along the trajectories of all closed-loop system states. Wenow ready to state the

proof for Theorem 1:

Proof. (of Theorem 1)From Lemma 1we conclude the existence of stabilizing

functionsαk,r as in (3.29). Therefore withinN iterations of the Backstepping Algo-

rithm it is possible to assign expressions to alluk, 1≤ k≤ m as:

uk = αk,ρk(y,ξq,1, . . . ,ξq,min{ρk−1,ρq−1}) (3.38)

for all 1 ≤ k ≤ m and 1≤ q ≤ m. A byproduct of the design is the iterative con-

struction of a quadratic Lyapunov function

V =
m

∑
k=1

(ηT
k Pkηk + 1

2y2
k)+ 1

2

N

∑
r=1

(

∑
k∈(M−P∗

r )

w2
k,r

)

whose time derivative is

V̇N ≤
m

∑
k=1

−
(
κk−

1
4δk1

−
m

∑
i=1

1
βi,k

−
N−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

+
N

∑
q=1

τq. (3.39)

Taking into consideration our definition forτr in (3.27) andτ1 in (3.20), we neglect

the negative definite “cross terms” in these definitions and therefore express (3.39)

as:

V̇N ≤
m

∑
k=1

−

[

(
κk−

1
4δk,1

−
m

∑
i=1

1
βi,k

−
N−1

∑
j=1

|M−P∗
j |

4δk, j+1

)
ηT

k ηk

−ck,1y2
k +

ρk

∑
q=2

−ck,qw2
k,q−1

]

≤
m

∑
k=1

(

−κkηT
k ηk−ck,1y2

k +
ρk

∑
q=2

−ck,qw2
k,q−1

)

, (3.40)

where

κk , κk−
1

4δk,1
−

m

∑
i=1

1
βi,k

−
N−1

∑
j=1

|M−P∗
j |

4δk, j+1
. (3.41)
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We stipulate that the coefficientsck, j , 1≤ j ≤ ρk be chosen positive, and the coef-

ficientsλ,β,δ be chosen such thatκk > 0, 1≤ k≤ m. In that case the origin of the

closed-loop system in(η,y,w) coordinates is globally exponentially stable. In the

original coordinates (3.1), the system is at least globallyasymptotically stable.�

Remark 3.3.1. It is always possible to choose the coefficientsδ andβ so thatκk > 0

since they are independent ofλ. The magnitude ofκk can be influenced by tuning

the filter’s eigenvaluesλ, which affectQi in (3.11).⊳

Remark 3.3.2. Unlike in [2], here we have included the damping coefficientsδ

andβ in order to point out the possible performance tradeoffs in this design. For

pedagogical purposes, we have attempted to cast our presentation in a form that

more closely adheres to the familiar backstepping framework presented in [1].⊳

Remark 3.3.3. We note that the dynamic order of the OFB law is equal to the

number of filter states associated with all the subsystems – i.e. ∑m
k=1(ρk−1). It is

interesting to note that in the best case it is possible to have a globally asymptoti-

cally stabilizing OFB law which is static, whenρk = 1, 1≤ k≤ m. ⊳

Remark 3.3.4.The notation and indexing in this chapter are admittedly difficult. In

an attempt to clarify the usage and efficacy of this notation,we consider an example.

Suppose a MIMO nonlinear system (3.1), withm= 4 inputs and outputs, has been

transformed into subsystems of the form

η̇1 = Γ1η1 + γ1(y), η̇2 = Γ2η2+ γ2(y), η̇3 = Γ3η3+ γ3(y)
ẏ1 = η11+d12[1]y1 ẏ2 = η21+d22[1]y2 ẏ3 = η31+d32[1]y3

+ψ11(y)+ξ11 +ψ21(y)+ξ21 +ψ31(y)+ξ31

ξ̇11 = −λ11ξ11+ξ12, ξ̇21 = −λ21ξ21+ξ22, ξ̇31 = −λ31ξ31+ξ32

ξ̇12 = −λ12ξ12+u1, ξ̇22 = −λ22ξ22+ξ23, ξ̇32 = −λ32ξ32+u3

ξ̇23 = −λ23ξ23+u2

and

η̇4 = Γ4η4 + γ4(y)

ẏ4 = η41+d42[1]y4+ψ41(y)+u4
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so that we have

ρ1 = 3, ρ2 = 4, ρ3 = 3, ρ4 = 1

The index subsets are
P1 = {4}, P∗

1 = {4}
P2 = { /0}, P∗

2 = {4}
P3 = {1,3}, P∗

3 = {1,3,4}
P4 = {2}, P∗

4 = {1,2,3,4} ≡ M

.

For this system we require four iterations, and the stabilizing function associated

with thekth subsystem has the following variable dependencies:

αk,1 = αk,1(y1, . . . ,y4), ∀k∈ M
αk,2 = αk,2(y1, . . . ,y4,ξ11,ξ21,ξ31), ∀k∈ (M−P∗

1)
αk,3 = αk,3(y1, . . . ,y4,ξ11,ξ21,ξ31,ξ12,ξ22,ξ32), ∀k∈ (M−P∗

2)
αk,4 = αk,4(y1, . . . ,y4,ξ11,ξ21,ξ31,ξ12,ξ22,ξ32,ξ23), ∀k∈ (M−P∗

3)

,

and we assign

u1 = α13(·)

u2 = α24(·)

u3 = α33(·)

u4 = α41(·)

⊳

3.4 Mathematical Example

We illustrate the application of the theory presented in this chapter using the fol-

lowing mathematical example.

Example 3.4.1(Multivariable OFB). Consider the following system in the form

(3.1), withm= 2 subsystems, the numbers(ρ1,ρ2) = (3,1), and(k1,k2) = (3,1):






ẋ11

ẋ12

ẋ13

ẋ21







=







0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0













x11

x12

x13

x21







+







φ1,1,1(y)
φ1,2,1(y)
φ1,3,1(y)
φ2,1,1(y)







y1+







φ1,1,2(y)
φ1,2,2(y)
φ1,3,2(y)
φ2,1,2(y)







y2

︸ ︷︷ ︸

=Ψ(y)=[ψ11(y),ψ12(y),ψ13(y),ψ21(y)]T

+







0 0
0 0
1 0
0 1







[
u1

u2

]

y =

[
y1

y2

]

=

[
x11

x21

]

. (3.42)
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Since the second subsystem hasρ2 = 1, we do not need to construct a filter for it.

However, the first subsystem requires a second-order filter
[

ξ̇11

ξ̇12

]

=

[
−λ11 1

0 −λ12

][
ξ11

ξ12

]

+

[
0
1

]

u1 (3.43)

and the filtered transformation

z1 = x1−d1[2]ξ11−d1[3]ξ12 (3.44)

with

d1[3] =





0
0
1



 , d1[2] =





0
1

λ12



 , d1[1] =





1
λ11+λ12

λ11λ12



 ,

designed according to (3.3) and (3.4). It is apparent thatd1[1] is a Hurwitz vector,

since

s2+(λ11+λ12)s+(λ11λ12) = (s+λ11)(s+λ12)

andλ1, j j = 1,2 are assumed to be chosen positive. With some algebra, we can

work out that the(x1,ξ1) dynamic in the(z1,ξ1) coordinates is represented by

ż1 = Ac1z1 +ψ1(y)+d1[1]ξ11

ξ̇11 = −λ11ξ11+ξ12

ξ̇12 = −λ12ξ12+u1,

and that applying the linear transformation

T1 =





−d12[1] 1 0
−d13[1] 0 1

1 0 0



=





−(λ11+λ12) 1 0
−(λ11λ12) 0 1

1 0 0



 (3.45)

to thez1 subsystem allows us to write the entire system dynamic as

η̇1 = Γη1 + γ1(y)y1 + γ1(y)y2

ẏ1 = η11+d12[1]y1+ψ11(y)+ξ11

(3.46a)

ξ̇11 = −λ11ξ11+ξ12

ξ̇12 = −λ12ξ12+u1

(3.46b)

ẏ2 = ψ21(y)+u2 (3.46c)
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where we denote

η1 =

[
η11

η12

]

, Γ =

[
−(λ11+λ12) 1
−(λ11λ12) 0

]

,

and

γ1(y) =

[
φ1,2,1(y)−d12[1]φ1,1,1(y)+d13[1]−d12[1]2

φ1,3,1(y)−d13[1]φ1,1,1(y)−d13[1]d12[1]

]

,

γ2(y) =

[
φ1,2,2(y)−d12[1]φ1,1,2(y)
φ1,3,2(y)−d13[1]φ1,1,2(y)

]

.

From (3.46), it is tempting to examine (3.46c) and immediately select

u2 = −ψ21(y)−cy2 (3.47)

for somec > 0. However, such a choice cannot guarantee that the subsystem

(3.46a)-(3.46b) can be stabilized usingu1. We demonstrate by carrying out our

“parallel design” for the first two of theN = 3 iterations of backstepping that are

required to complete the design.

Iteration 1: As usual, let

V1 = ηT
1 Qη1+ 1

2y2
1+ 1

2y2
2

whereQ = QT > 0 uniquely solves2 the Lyapunov equation

ΓTQ+QΓ = −κI , κ ∈ R
+.

Then,

V̇1 = −κ‖η1‖
2+2ηT

1 Qγ1(y)y1+2ηT
1 Qγ2(y)y2

+y1
[
η11+d12[1]y1+ψ11(y)+ξ11

]
+y2

[
ψ21(y)+u2

]
(3.48)

From this expression it becomes clear how and why the design for the SISO case

must be altered if general dynamic coupling between the subsystems is allowed via

2In fact, we have

Q =

[
q1 q2

q2 q3

]

,

with q1 = κ(1+d13[1])
2d12[1] , q2 = −κ

2 and q3 = κ
2

(
1+d13[1]

d12[1]d13[1] +
d12[1]
d13[1]

)

.
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the outputs. If it were possible to factor the nonlinearityψ1(y) as

ψ1(y) =





ψ11(y)
ψ12(y)
ψ13(y)



=





φ11(y)
φ12(y)
φ13(y)



y1

for some smooth functionsφ1, j(y), j = 1,2,3, then we could indeed chooseu2 as

in (3.47). However, in general we cannot expect such a factorization to be possible,

as we have assumed that eachψi, j(y), 1 ≤ i ≤ m, 1 ≤ j ≤ ki is allowed to have a

general dependency on all system outputsy1, . . . ,ym. One situation in which such

a factorization is impossible is whenψ1 = ψ1(y2). In that case, we can still solve

the problem according to our method by introducing a dampingterm insideu2,

designed to dominate the cross-term betweeny2 and the unknownη1. Specifically,

if we choose

α11(y) = −ψ11(y)−d12[1]y1−δ11y1−c11y1−β11
(
Qγ1(y)

)T(
Qγ1(y)

)
y1

α21(y) = −ψ21(y)−c21y2−β21
(
Qγ2
)T(

Qγ2
)
y2, (3.49)

define the error variablew11 , ξ11−α11(y), and assignu2 = α21(y), thenV̇1 be-

comes:

V̇1 ≤−
(
κ− 1

4δ11
− 1

β11
− 1

β21

)
‖η1‖

2−c11y
2
1−c21y

2
2−δ11

(
‖η1‖

2δ11
−|y1|

)2

−β11
( 1

β11
η1−Qγ1(y)y1

)T( 1
β11

η1−Qγ1(y)y1
)
+y1w11

, −
(
κ− 1

4δ11
− 1

β11
− 1

β21

)
‖η1‖

2+ τ1+y1w11

whereτ1 is clearly negative definite.

Iteration 2: Again, proceeding as usual we introduce the new candidate Lya-

punov functionV2 = V1+ 1
2w2

11 whose time derivative is

V̇2 ≤−
(
κ− 1

4δ11
− 1

β11
− 1

β21

)
‖η1‖

2 + τ1+w11
[
y1+ ξ̇11−

∂α11(y)
∂y1

ẏ1−
∂α11(y)

∂y2
ẏ2
]

(3.50)

= −
(
κ− 1

4δ11
− 1

β11
− 1

β21

)
‖η1‖

2 + τ1+w11
[
y1−λ11ξ11+ξ12

− ∂α11(y)
∂y1

(η11+d12[1]y1+ψ11(y)+ξ11)−
∂α11(y)

∂y2
(ψ21(y)+α21(y))

]

(3.51)
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from which it is clear that we selectξ12 as the next virtual control. The design

for the second subsystem is complete within one iteration, and the stabilizing func-

tion α12(y,ξ11) must cancel all known terms including∂α11(y)
∂y2

(ψ21(y)+α21(y)) and

damp the unknown term∂α11(y)
∂y1

η11. We mention this because we mean to illustrate

the fact that controls associated with subsystems having a higher numberρ ulti-

mately must cancel (i.e. pick up a dependency) on control expressions designed

in previous iterations. Such cancellation presents no difficulty as these previously

designed controls in turn depend on known signals only. Thus, our sequential de-

sign is made possible because of our restriction on the inputvectorsDi in (3.1);

specifically, in this example suppose we allowed the input matrix to take the form

[D1,D2] =







0 0
0 0
1 0
a 1







for somea 6= 0. Then, within the first iteration the controlu1 appears prematurely

in (3.48) and must be cancelled byu2. However,u1 has not yet been assigned

at this iteration, and henceu2 = α21(y,u1). In the next iteration the stabilizing

functionα12 = α12(y,ξ11,u1) would cancel the term∂α11(y)
∂y2

(ψ21(y)+α21(y,u1)) so

that eventually the controlu1 must be selected to depend on terms containing ˙u1

andü1. In other words we would have to solve an ODE inu1 in order to find the

complete OFB law. For this reason, we restrict all off-diagonal blocks of the input

matrix [D1, . . . ,Dm] to be zero3.

From (3.50) it is easy to discern the form ofα12 and the final iteration proceeds

in a similar fashion. The complete control law for this system is:

u1 = α13(y,ξ11,ξ12) (3.52a)

u2 = α21(y) (3.52b)

3This restriction can be loosened to allow all lower-triangular blocks to depend on functions of
y, as long as a block-strict feedback structure is imposed on the entire system, including the input
matrix.
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where

α11(y) = −ψ11(y)−d12[1]y1−δ11y1−c11y1 (3.53a)

−β11
(
Qγ1(y)

)T(
Qγ1(y)

)
y1

α21(y) = −ψ21(y)−c21y2−β21
(
Qγ2
)T(

Qγ2
)
y2 (3.53b)

α12(y,ξ11) = λ11ξ11−y1−c12w11+
∂α11(y)

∂y2
(ψ21(y)+α21(y)) (3.53c)

−δ12

(
∂α11(y)

∂y1

)2

w11+
∂α11(y)

∂y1
(d12[1]y1+ψ11(y)+ξ11)

α13(y,ξ11,ξ12) = λ12ξ12−w11−c13w12−δ13

(
∂α12(y,ξ11)

∂y1

)2

w12 (3.53d)

+
∂α12(y,ξ11)

∂y1
(d12[1]y1+ψ11(y)+ξ11)

+
∂α12(y,ξ11)

∂y2
(ψ21(y)+α21(y))+

∂α12(y,ξ11)

∂ξ11
(−λ11ξ11+ξ12)

To demonstrate the efficacy of our method, we calculated the expressions (3.53)

using symbolic math software when the system’s nonlinearities are chosen as

Ψ(y) =







ψ11(y)
ψ12(y)
ψ13(y)
ψ21(y)







=







y2
2

y2
2+y1y2 +y2

1
y2

1 +y2
2

y3
1







. (3.54)

None of these nonlinearities are Lipschitz and some do not allow the output vari-

able of their associated subsystem to be factored out – for example, the second

subsystem is driven by onlyy1. We chose to factorΨ(y) as

Ψ(y) =







φ1,1,1(y)
φ1,2,1(y)
φ1,3,1(y)
φ2,1,1(y)







y1+







φ1,1,2(y)
φ1,2,2(y)
φ1,3,2(y)
φ2,1,2(y)







y2 =







0
y1 +y2

y1

y2
1







y1 +







y2

y2

y2

0







y2 (3.55)

and emphasize that this is not a unique choice. We thus highlight another difference

between the SISO and MIMO case – in the SISO case, this factorization is usually

unique, as there is only one variable to factor. However, in the MIMO case, the

designer has more flexibility in her choice of factorizations, some of which may

lead to simpler control expressions or reduced control effort.
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The calculated control expressions are lengthy, and will not be given here. In-

stead we show the results of simulating equations (3.42)-(3.52) using ode45 in

MATLAB with the following parameters:










x11(0)
x12(0)
x13(0)
x21(0)
ξ11(0)
ξ12(0)











=











10
−16

4
6
0
0











,





λ11

λ12

κ



=





3
1
6



 ,









δ11

δ12

δ13

β11

β21









=









1
0.01
0.001
0.01
0.01









,







c11

c12

c13

c21







=







2
2
2
1







In Figure 3.1 we show the behaviour of the CL system states, while Figures 3.2 and

3.3 show how the filter states evolve and the magnitudes of thecontrol inputs.
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Figure 3.1: Behaviour of the closed-loop system.

The choice of simulation parameters was arbitrary, and the plots are not meant

to show efficient control; rather, we are only concerned withthe functionality of our

algorithm. However, our design allows many degrees of freedom in altering the CL

system performance by tuning the control and damping coefficients.⊳
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Figure 3.2: Behaviour of the filter states.
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Figure 3.3: The control inputs.

3.5 Internal System Structure

In this section we investigate the internal structure of thesystem form (3.1), which

has some curious features.
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3.5.1 Vector Relative Degree

In Section 3.2, we mentioned that the numberρi does not necessarily correspond

to the relative degreer i associated with theith output. To illustrate, we once again

consider the fourth order system (3.42) in Example 3.4.1. First we recall that for a

MIMO nonlinear system of the form

ẋ = f (x)+G(x)u

y = H(x)
(3.56)

wherex∈ Rn, u∈ Rm, y∈ Rm and

G(x) = [g1(x), . . . ,gm(x)], H(x) =






y1
...

ym




=






h1(x)
...

hm(x)




 , (3.57)

thevector relative degree(VRD)

r = {r1, . . . , rm}

is said to exist and be well-defined4 at a pointxo if

Lg j L
k
f hi(x) = 0, 1≤ j, i ≤ m

0≤ k < r i −1
, (3.58)

for all x in a neighbourhood ofxo, and thedecoupling matrix:

A(x) =









Lg1L
r1−1
f h1(x) Lg2Lr1−1

f h1(x) · · · LgmLr1−1
f h1(x)

Lg1L
r2−1
f h2(x) Lg2Lr2−1

f h2(x) · · · LgmLr2−1
f h2(x)

...
...

. . .
...

Lg1Lrm−1
f hm(x) Lg2L

rm−1
f hm(x) · · · LgmLrm−1

f hm(x)









(3.59)

is nonsingular atxo. The numberr i associated with theith output represents the

number of timesyi must be time-differentiated beforeany uj , j ∈ {1, . . . ,m} ap-

pears. To apply this definition we examine one output at a time. Considering the

outputyi , it is necessary for theith row ofA(x)

[Lg1L
k−1
f hi(x),Lg2L

k−1
f hi(x), · · · ,LgmLk−1

f hi(x)]

4Please see Section 5.1 in [17].
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to be nonzero in order to haveA(xo) nonsingular. However by (3.58), we expect

each of the entries in the above row-vector to be zero for allk = 0,1. . . ,(r i −2).

Whenk= r i −1, then at least one of the entries in this row vector becomes nonzero.

The most computationally efficient way to apply this definition in order to discern

a system’s VRD is to consider one output at a time, and computeeach of the entries

of this row vector for increasingk until a nonzero entry appears. At least one entry

must be nonzero for allx in a neighbourhood ofxo otherwise the VRD is not well

defined.

We proceed in this way to identify the numbersr for the system (3.42) in Exam-

ple 3.4.1. For this system we obtain(r1, r2) = (2,1), which is not the same as the

pair of numbers(ρ1,ρ2) = (3,1) that dictate the dynamic order of our OFB design.

Also interesting is that the decoupling matrix

A(x) =

[
Lg1L f h1(x) Lg2L f h1(x)
Lg1h2(x) Lg2h2(x)

]

=

[

0 ∂ψ11(x11,x21)
∂x21

0 1

]

(3.60)

is singular for allx which implies that the VRD is not defined for this system.

The fact thatρ 6= r necessarily is interesting for several reasons. First, in the

SISO version of (3.1) (which is the OFBF), the numberρ is identical to the relative

degreer which is inherently well-defined. Therefore, a well-definedrelative degree

is necessaryin order for a SISO system to admit an OFB design by the MT method.

For MIMO systems, this is clearly not the case as we have demonstrated in Example

3.4.1. Furthermore, many OFB methods for SISO systems implicitly rely on the

existence of a well-defined relative degree, as they are based on some variant of

the normal form. For MIMO systems, a well-defined relative degree has many

similar implications as that for SISO systems; for instance, if r exists and is well

defined for (3.56), then there exists a diffeomorphism that transforms (3.56) to a

MIMO normal form [59] from where the system can be I/O linearized by SFB, and

the problem ofnoninteracting control5 can then be solved. One would therefore

5Please see Section 5.3 in [17]. The problem of noninteracting control is to design a state feed-
back that decouples the I/O behaviour of the individual subsystems and is analogous to I/O SFB
linearization for SISO systems. If such a feedback exists, then it is possible to regulate the behaviour
of each outputyi individually through them inputs.
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expect that the existence of a well-defined VRD would also play an important role

in OFB designs for MIMO systems. Contrary to this expectation, our example

shows how the multivariable structure of a system may in itself provide design

flexibilities not enjoyed by SISO systems. In particular, itis interesting to note

that the global MIMO OFB problem is solvable for the form (3.1) even when the

problem of noninteracting control is not solvable by staticstate feedback6.

3.5.2 Stability of the Zero Dynamics

Fortunately, the existence of a well-defined relative degree is not necessary for the

stability analysis of a system’s zero dynamics. We carry outsuch an analysis for

the sake of completeness and to help further characterize the system (3.1).

It is useful to revisit the definition of “zero dynamics” (ZD). These are the dy-

namics of an unforced system ˙x = F(x), comprising the largest subset of the set of

all its trajectories, with the property thaty≡ 0. Since we generally assume that all

the solutions of ˙x = F(x) depend continuously on the initial conditions, searching

for such a set is equivalent to identifying the largest set ofinitial conditions from

which the system evolves withy = 0. It is well known that the stability properties

of the (ZD) are invariant under static or dynamic state feedback. Therefore, the task

of analyzing the ZD stability of a forced system such as (3.1)can be accomplished

by first finding an invertible change of state coordinates anda (full) state feedback

u = θ(x) such that in the new coordinates the unforced system clearlyreveals the

largest set of initial conditions for which the system’s output is identically zero. As

discussed in greater detail in Section 2.2, for SISO systemslike

ẋ = f (x)+g(x)u

y = h(x)
(3.61)

with a well-defined relative degreer, a transformation of the form

zj = L j−1
f h(x), 1≤ j ≤ r

η = φ(x)

6A well-defined vector relative degree is sufficient and necessary for the problem of noninteract-
ing control to be solvable by static state-feedback (Proposition 5.3.1 [17]).
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brings the system dynamic into the normal form

η̇ = Γ(η,z)

żj = zj+1

żr = Lr
f h(x)+uLgLr−1

f h(x)

y = z1.

(3.62)

Then, with the SFB

u = (LgLr−1
f h(x))−1(−Lr

f h(x)) (3.63)

(3.62) shows that for any initial conditions in the set

{(η(0),z(0))∈ R
n−r ×R

r | z(0) ≡ 0}, (3.64)

the trajectories of (3.62) evolve in such a way thaty≡ 0, ∀ t ≥ 0, with η = Γ(η,0)

being the ZD of (3.61).

Since the VRD is not necessarily defined for systems of the form (3.1), we

cannot apply the analogous change of coordinates (cf. Lemma4.6.1 in [16]):

zi, j = L j−1
f hi(x), 1≤ i ≤ m, 1≤ j ≤ r i

η j = φ j(x), 1≤ j ≤ n−
m

∑
i=1

r i
(3.65)

to obtain the multivariable NF that reveals the ZD. To ascertain the form of the

ZD, we could apply the so-called “zero dynamics algorithm” described in Chapter

6 in [17]. However, this algorithm is rather involved and we opt for a simpler ap-

proach that takes advantage of the structure of system (3.1). We proceed as follows.

Without loss of generality, assume that

ρ1 = max{ρ1, . . . ,ρm}.

Define the number

si , ρ1−ρi.

Then, appendsi integrators to the input associated with theith subsystem(1≤ i ≤
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m) to obtain the extended system:

ẋi, j = xi, j+1+ψi, j(y), 1≤ j ≤ (ρi −1)

ẋi, j = xi, j+1+ψi, j(y)+di, jζi,1, ρi ≤ j ≤ (n−1)

ẋi,ki = ψi,n(y)+di,kiζi,1

ζ̇i, j = ζi, j+1, 1≤ j ≤ (si −1)

ζ̇i,si = vi

yi = xi,1

(3.66)

Our technique is a variant on thedynamic extensionalgorithm given in Section 5.4

of [17], in that we “delay” the appearance of certain inputs in all output derivatives.

The variablesζi, j are the states of the appended integrators, withζi,1 = ui andvi the

input to the last integrator appended to theith subsystem. Augmenting the system

in this way allows us to define a diffeomorphism and state feedback (applied to

the new inputs) that transforms this extended system into a form where its zero

dynamics become apparent. We note that no (static or dynamic) state feedback can

affect the stability of a system’s ZD, and therefore if the extended system’s ZD are

stable, then so are those of the original system.

We then claim that the change of coordinates (for 1≤ i ≤ m)

zi, j = L j−1
f hi(x), 1≤ j ≤ ρ1

ηi, j =
−dρi+ j

dρi
xi,ρi +xi,ρi+ j

(3.67)

where the vector fieldf (x) = [ f T
1 , . . . , f T

m]T is defined so that the system dynamic

(3.66) can be written as












ẋi,1
...

ẋi,ki

ζ̇i,1
...

ζ̇i,si













= fi(x)+givi (3.68)

with

gi = [0, . . . ,0,1]T1×ρ1
,
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forms a diffeomorphism that transforms (3.66) into a MIMO normal form where a

state feedback and a set of initial conditions can be found sothat the zero dynamics

are shown to take the form

η̇ = blkdiag(Γ1, . . . ,Γm)η (3.69)

where the HurwitzΓi ∈ R(ki−ρi)×(ki−ρi).

We justify this claim by illustrating the procedure on a system similar to (3.42)

studied in Example 3.4.1. We add an extra state to the first subsystem to ensure

that the zero dynamics are not trivial as they are for system (3.42). The system we

consider is

ẋ11 = x12+ψ11(y)

ẋ12 = x13+ψ12(y)

ẋ13 = x14+ψ13(y)+u1

ẋ14 = ψ14(y)+au1, a > 0

ẋ21 = ψ21(y)+u2

y = [x11,x21]
T ,

(3.70)

which can be shown to have a singular decoupling matrix, identical to the one for

system (3.42). Sinces2 = ρ1−ρ2 = 2, we re-write (3.70) as

ẋ11 = x12+ψ11(y)

ẋ12 = x13+ψ12(y)

ẋ13 = x14+ψ13(y)+u1

ẋ14 = ψ14(y)+au1, a > 0

ẋ21 = ψ21(y)+ζ21

ζ̇21 = ζ22

ζ̇22 = v2

(3.71)

appending two integrators to the second input. We note thaty2 now must be dif-

ferentiatedρ1 times before the new inputv2 appears. We define the change of
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coordinates

z11 = y1 = x11

z12 = ẏ1 = x12+ψ11

z13 = ÿ1 = (x13+ψ12)+ ∂ψ11
∂y1

(x12+ψ11)+ ∂ψ11
∂y2

(ψ21+ζ21)

, x13+θ13(y1,y2,x12,ζ21)

η = −ax13+x14

z21 = y2 = x21

z22 = ẏ2 = ψ21+ζ21

z23 = ÿ2 = ∂ψ21
∂y1

(x12+ψ11)+ ∂ψ11
∂y2

(ψ21+ζ21)+ζ22

, ζ22+θ23(y1,y2,x12,ζ21)

(3.72)

whose Jacobian is clearly nonsingular for allx. In the new coordinates, we have

η̇ = −aη−a2[z13+θ13(z11,z21,(z12−ψ11),(z22−ψ21))
]

+
(
ψ14−aψ13

)

ż11 = z12

ż12 = z13

ż13 = x14+ψ13+u1+ θ̇13(y1,y2,x12,ζ21)

ż21 = z22

ż22 = z23

ż23 = v2 + θ̇23(y1,y2,x12,ζ21)

(3.73)

We notice here that the expressions forθ̇i,3(·), i = 1,2 do not produce a depen-

dency on eitheru1 or v2. Therefore, thez1 andz2 subsystems can be decoupled by

choosing

u1 = −ψ13−x14− θ̇13(y1,y2,x12,ζ21)

v2 = −θ̇23(y1,y2,x12,ζ21).
(3.74)

Secondly, by their definitions, theθi,3(·), i = 1,2 vanish when their arguments are

zero, and if we initialize (3.73)-(3.74) on the set

{(η(0),z(0))∈ R
1×R

6 | z(0) ≡ 0}, (3.75)
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we see that the outputy remains zero for all time, and the zero dynamics

η̇ = −aη

are GES.

3.6 Summary

In this chapter we provided an extension to the globally asymptotically stabilizing

output feedback design method presented in [2], to MIMO nonlinear systems. The

efficacy of our method is demonstrated via simulation on a mathematical example.

We have shown that if the structure of the input vectors in thestarting form is

restricted as in (3.1), the nonlinear output-coupling between the subsystems poses

no difficulty in formulating a globally stabilizing OFB. In the MIMO case, it is

necessary to include additional nonlinear damping terms tocompensate for this

dynamic coupling.
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Chapter 4

Application of Observer
Backstepping to Systems in a
Restricted BTOF

This chapter is based largely on [72].

4.1 Introduction

In this chapter we investigate an application of observer backstepping to a class

of nonlinear, multivariable systems in a restricted BTOF (block-triangular observer

form). The BTOF was introduced in [70] where the differential geometric condi-

tions fully characterizing this class of systems are derived. The BTOF observer

is a generalization of the linear error dynamic observer designed on the basis of

the NOF (nonlinear observer form) [68]. We note that the basic result in [6], and

its extension to MIMO systems is obtained using an observer based on the OFBF,

which is a restricted subset of systems in NOF. The contribution in this chapter is

to demonstrate a similar design using an observer that does not have a linear error

dynamic.

We illustrate our method on a model of a physical system, the MAGLEV, con-

sisting of a magnetically levitated ball, and show how the design can easily be made

robust with respect to variations in the electromagnet’s coil resistance. Two addi-

tional benefits of the design are that it does not rely on the use of high-gains in order

to guarantee boundedness or convergence of solutions on anycompact set, and it
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Section 4.2: The BTOF Observer

does not impose growth restrictions on the system’s nonlinearities.

We first present the BTOF, designing an exponentially convergent observer for

this class of systems. In the next section we consider a subset of systems in BTOF

and present our main result. We then carry out the design on the MAGLEV. In the

conclusion, we note several observations on the practicability of recursive methods

such as the one presented here.

4.2 The BTOF Observer

In this chapter we consider the following class of systems, where theith subsystem

can be written as:

ΣBTOFi :







ẋi, j = xi, j+1+ γi, j(x〈i−1〉,y〈m〉)

ẋi,λi
= γi,λi

(x〈i−1〉,y〈m〉)+biσ(y)u

yi = Cixi = xi,1

(4.1)

for 1≤ i ≤ m and 1≤ j ≤ λi −1. In (4.1),x∈ Rn, n = ∑m
i=1λi , xi ∈ Rλi , y∈ Rm,

u ∈ R andbi = 0 for 1≤ i ≤ m−1, while bm 6= 0, andσ(y) is a smooth function

bounded away from zero. We denote

x〈i−1〉 = (x1,2, . . . ,x1,λ1
, . . . ,xi−1,2, . . . ,xi−1,λi−1

)

and

y〈i〉 = (y1, . . . ,yi).

Each numberλi could be chosen as the observability index associated with the ith

output but in general it is not necessarily uniquely defined.We require the functions

γi to be smooth, to satisfyγi(0) = 0, 1 ≤ i ≤ m, and to be globally Lipschitz in

x〈i−1〉, uniformly in y. Alternatively, we could weaken this assumption and require

theγi to be Lipschitz inx〈i−1〉 on some compact and connected setΩ, uniformly in

y. The necessary and sufficient conditions characterizing the structure of the drift

component of (4.1) are derived in [70]. Whereas in [70] each nonlinearityγi can

depend on all subsystem outputs, here we consider a subset ofthe class of systems

equivalent to the BTOF by requiring the following assumption:
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A 4.2.1.

γi, j =

{

γi, j(x〈i−1〉,y〈i〉) for j < λi

Bi(y〈i〉)+Ci(y〈i〉)φi(yi+1) for j = λi

for 1≤ i ≤ m−1, where Ci , Bi andφi are smooth functions, with Ci and the deriva-

tive φ′i(·) being bounded away from zero on some operating regionΩ ⊆ Rn.

Assumption A4.2.1 enforces a strict feedback form on the BTOF, linking the

subsystems in a way that allows us to carry out a backsteppingdesign. We refer to

the BTOF satisfying A4.2.1 as the RBTOF (restricted BTOF). According to [70],

an observer for systems in RBTOF can be constructed as

Σ̂RBTOFi :

{
˙̂xi, j = x̂i, j+1+ γi, j(x̂〈i−1〉,y〈i〉)+Li, j x̃i,1

˙̂xi,λi
= γi,λi

(x̂〈i−1〉,y〈i+1〉)+biσ(y)u+Li,λ1
x̃i,1

(4.2)

for 1≤ j ≤ λi, 1≤ i ≤ m−1, with x̃i,1 = xi,1− x̂i,1. Themth subsystem is written

similarly, except that allγm, j ’s are allowed to depend on all system outputsy〈m〉. If

the observer gainsLi, j are chosen such that the polynomialssλi +Li,1sλi−1 + . . .+

Li,λi−1s+Li,λi
are Hurwitz, then the dynamics of the error ˜x = x− x̂ are

Σ̃RBTOFi :

{

˙̃xi, j = x̃i, j+1+△γi, j −Li, j x̃i,1

˙̃xi,λi
= △γi,λi

−Li,λ1
x̃i,1

(4.3)

where△γi, j , γi, j(x〈i−1〉,y〈i〉)− γi, j(x̂〈i−1〉,y〈i〉), 1≤ j ≤ m−1 (with△γi,λi
defined

similarly), which is shown in [70] to converge exponentially to its origin. This

fact can be intuited by observing that for the first subsystem, △γ1 ≡ 0 and the

x̃1-dynamic is linear and stable. In the second subsystem the linear stable error

dynamic is perturbed by the disturbance△γ2 whose norm, by assumption, is less

than or equal to a linear term in‖x̃1‖. From the convergence of the first subsystem’s

error, the magnitude of this disturbance decays exponentially to zero, and the entire

Σ̃RBTOF can be shown to converge by induction.

In our main result, we make use of the observer (4.2) to construct a globally

stabilizing output feedback law.
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4.3 Main Result

Theorem 4.3.1.For any system globally diffeomorphic to the form(4.1), satisfying

assumption A4.2.1, there exists a stabilizing control law based on known signals

only. If theγi, j satisfy

‖γi, j(x〈i−1〉,y〈i〉)− γi, j(0,y〈i〉)‖ ≤ Ki, j‖x〈i−1〉‖

on Ω = Rνi−1, νi−1 = ∑i−1
l=1λl , then the control law globally stabilizes the system.

Proof. We first re-write the composite system consisting ofΣRBTOFand its observer

Σ̂RBTOF dividing each into its subsystem components for clarity:







Σ1 :







ẋ1,1 = x̂1,2 + x̃1,2 + γ1,1(y1)
˙̂x1, j = x̂1, j+1+ γ1, j(y1)+L1, j x̃1,1

˙̂x1,λ1
= γ1,λ1

(y1,y2)+L1,λ1
x̃1,1

Σi :







ẋi,1 = x̂i,2+ x̃i,2 + γi,1(x̂〈i−1〉 + x̃〈i−1〉,y〈i〉)
˙̂xi, j = x̂i, j+1+ γi, j(x̂〈i−1〉,y〈i〉)+Li, j x̃i,1

˙̂xi,λi
= Bi(y〈i〉)+Ci(y〈i〉)φi(yi+1)+Li,λi

x̃i,1

Σm :







ẋm,1 = x̂m,2+ x̃m,2+ γm,1(x̂〈m−1〉 + x̃〈m−1〉,y〈m〉)
˙̂xm, j = x̂m, j+1+ γm, j(x̂〈m−1〉,y〈m〉)+Lm, j x̃m,1

˙̂xm,λm
= γm,λm

(x̂〈m−1〉,y〈m〉)+bmσ(y)u+Lm,λm
x̃m,1

Σ̃ :







˙̃x1,k = x̃1,k+1−L1,kx̃1,1

˙̃x1,λ1
= −L1,λ1

x̃1,1

˙̃xl ,k = x̃i,k+1 +△γi,k−Li,kx̃i,1

˙̃xl ,λl
= △γl ,λl

−Ll ,λl
x̃l ,1

(4.4)

for 2≤ i ≤m−1, 2≤ j ≤ λi−1, 1≤ k≤ λi−1 and 2≤ l ≤m. Replacing all unmea-

sured states with their estimates in this way is equivalent to applying the following

non-singular linear transformation to theith subsystem in(x, x̂) coordinates:

[xi,1, x̂i,2, . . . , x̂i,λi
, x̃T

i ]T =

[
T1 T2

I −I

][
xi

x̂i

]

(4.5)

where

[T1]i, j =

{

1 if i = j = 1

0 otherwise
and [T2]i, j =

{

1 if i = j > 1

0 otherwise.

127



Section 4.3: Main Result

First, we notice that the nonlinearities in the first subsystemΣ1 consist of known

signals only, and can be directly cancelled. Thus, the backstepping procedure for

Σ1 is straightforward for the firstλ1−1 iterations.

Second, since the error subsystem in (4.4) is exponentiallyconvergent, through

the Converse Lyapunov Theorem A.0.2 we infer the existence of a positive definite,

proper functionVe : Rn → R+, with a time derivative

∂Ve(x̃)
∂x̃

˙̃x≤−κ‖x̃‖2, κ > 0 (4.6)

whereκ is related to the convergence rate of the observer error, andcan be increased

by increasing the observer gainsLi, j .

Consider the following sequence of definitions for the stabilizing functions and

associated coordinate shifts:

α1,1 = −c1,1x1,1− γ1,1(y1)−d1,1x1,1 (4.7)

w1, j , x̂1, j −α1, j−1, 2≤ j ≤ λ1 (4.8)

α1,2 = −x1,1−c1,2w1,2− γ1,2(y1)−L1,2x̃1,1

−d1,2

(∂α1,1

∂x1,1

)2
w1,2 +

∂α1,1

∂x1,1
(x̂1,2+ γ1,1(y1)) (4.9)

α1,k = −w1,k−1−c1,kw1,k− γ1,k(y1)−L1,kx̃1,1

−d1,k

(∂α1,k−1

∂x1,1
+

∂α1,k−1

∂x̃1,1

)2
w1, j +

k−1

∑
q=2

∂α1,k−1

∂x̂1,q

˙̂x1,q

+
∂α1,k−1

∂x1,1
(x̂1,2+ γ1,1(y1))−

∂α1,k−1

∂x̃1,1
L1,1x̃1,1 (4.10)

for 3≤ k≤ λ1−1. Thec1, j > 0 (andc1,1) are control coefficients and thed1, j > 0

(andd1,1) are the damping coefficients as in [1].

If we define

V1,λ1−1 = Ve+ 1
2x2

1,1 + 1
2

λ1−1

∑
k=2

w2
1,k

(whereVe is as in (4.6)), it can be verified that (4.7) to (4.10) lead to

V̇1,λ1−1 ≤−
(

κ−
λ1−1

∑
k=1

1
4d1,k

)

‖x̃‖2+
λ1−1

∑
k=1

τ1,k +w1,λ1−1w1,λ1
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with

τ1,1 , −c1,1x2
1,1−d1,1

( ‖x̃‖
2d1,1

−‖x1,1‖
)2

and fork > 1,

τ1,k , −c1,kw
2
1,k−d1,k

( ‖x̃‖
2d1,k

−
∥
∥
(∂α1,k−1

∂x1,1
+

∂α1,k−1

∂x̃1,1

)
w1,k

∥
∥
)2

.

The expressions for the stabilizing functions (4.7) to (4.10) were derived using

the techniques presented in Sections 2.1 and 2.3. Our designmethod for the RBTOF

deviates from these techniques starting with the next iteration – i.e. the transition to

the second subsystem – which is what we now show. Assumption A4.2.1 allows us

to expressγ1,λ1
(y1,y2) as

γ1,λ1
(y1,y2) = B1(y1)+C1(y1)φ1(y2),

and we define

w2,1 , φ1(y2)−α1,λ1
.

We propose the next Lyapunov function candidateV1,λ1
= V1,λ1−1 + 1

2w2
1,λ1

, and

choose

α1,λ1
=

1
C1(y1)

[
−B1(y1)−w1,λ1−1−c1,λ1

w1,λ1

−d1,λ1

(∂α1,λ1−1

∂x1,1
+

∂α1,λ1−1

∂x̃1,1

)2
w1,λ1

−
∂α1,λ1−1

∂x̃1,1
L1,1x̃1,1

+
λ1−1

∑
k=2

∂α1,λ1−1

∂x̂1,k

˙̂x1,k +
∂α1,λ1−1

∂x1,1
(x̂1,2+ γ1,1(y1))

]

to obtain

V̇1,λ1
≤−

(

κ−
λ1

∑
k=1

1
4d1,k

)

‖x̃‖2+
λ1

∑
k=1

τ1,k +C1(y1)w2,1w1,λ1

which is also different from the previous iterations because of the appearance of

C1(y1).

The design for the first subsystem is thus complete. The design for subsystems

Σi , 2≤ i ≤ m−1 is different because we must account for the unknown observer
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errors in theγi, j , which cannot be cancelled as they were in the design for the first

subsystem. This fact can be seen from the time derivative of

V2,1 = V1,λ1
+ 1

2w2
2,1,

which is

V̇2,1 ≤−
(

κ−
λ1

∑
k=1

1
4d1,k

)

‖x̃‖2+
λ1

∑
k=1

τ1,k +w2,1

[

C1(y1)w1,λ1

+φ′1(y2)
(
x̂2,2 + x̃2,2 + γ2,1(y1,y2,x〈1〉)

)
−

∂α1,λ1

∂x1,1
x̃1,2

−
∂α1,λ1

∂x1,1
(x̂1,2+ γ1,2(y1))−

λ1

∑
k=2

∂α1,λ1

∂x̂1,k

˙̂x1,k−
∂α1,λ1

∂x̃1,1
˙̃x1,1

]

.

This time we definew2,2 , x̂2,2−α2,1 and since we cannot cancel the nonlinearity

γ2,1, we choose for the stabilizing function the expression

α2,1 = −γ̂2,1−δ2,1φ′1(K2,1+1)2w2,1 +
1
φ′1

[

−C1w1,λ1

−d2,1

(∂α1,λ1

∂x1,1
+

∂α1,λ1

∂x̃1,1

)2
w2,1 +

∂α1,λ1

∂x1,1
(x̂1,2+ γ1,2)

+
λ1

∑
k=2

∂α1,λ1

∂x̂1,k

˙̂x1,k−
∂α1,λ1

∂x̃1,1
L1,1x̃1,1−c2,1w2,1

]

(4.11)

where γ̂2,1 denotesγ2,1(y1,y2, x̂〈1〉) and we have dropped all function arguments

from notation. In (4.11), the numberK2,1 represents the Lipschitz constant bound-

ing the growth of the nonlinearityγ2,1. In the following, we use the assumption

that

‖γ2,1(y1,y2, x̂〈1〉)− γ2,1(y1,y2, x̂〈1〉 + x̃〈1〉)‖ ≤ K2,1‖x̃‖, (4.12)

for all x̂∈ Ω. With (4.11) we obtain

V̇2,1 ≤−
(

κ−
λ1

∑
k=1

1
4d1,k

−
1

4d2,1

)

‖x̃‖2 +
λ1

∑
k=1

τ1,k−c2,1w2
2,1

−d2,1

( ‖x̃‖
2d2,1

−
∥
∥
∥

(∂α1,λ1

∂x1,1
+

∂α1,λ1

∂x̃1,1

)

w2,1

∥
∥
∥

)2
+w2,1φ′1w2,2

+w2,1φ′1x̃2,2 +w2,1φ′1
(
γ2,1− γ̂2,1

)
−δ2,1(φ′1w2,1)

2(K2,1+1)2.
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Using (4.12), we note that

w2,1φ′1
(
γ2,1− γ̂2,1

)
≤ ‖w2,1φ′1‖ ·K2,1 · ‖x̃‖

and re-write the last three terms inV̇2,1:

V̇2,1 ≤−
(

κ−
λ1

∑
k=1

1
4d1,k

−
1

4d2,1
−

1
4δ2,1

)

‖x̃‖2+
λ1

∑
k=1

τ1,k

−d2,1

( ‖x̃‖
2d2,1

−
∥
∥
∥

(∂α1,λ1

∂x1,1
+

∂α1,λ1

∂x̃1,1

)

w2,1

∥
∥
∥

)2

+w2,1φ′1w2,2−c2,1w2
2,1

−
‖x̃‖2

4δ2,1
+‖w2,1φ′1‖‖x̃‖(K2,1+1)−δ2,1‖w2,1φ′1‖

2(K2,1+1)2

By completion of squares, the last line can be re-written as:

−δ2,1
( ‖x̃‖2

2δ2,1
− (K2,1+1)‖w2,1φ′1‖

)2

and we see that withw2,2 ≡ 0, V̇2,1 becomes negative definite. Owing to notational

complexity, we forgo presenting the remainder of the formalinductive proof, which

proceeds without significant variation from this point onwards. The only deviation

from the observer backstepping algorithm described in Section 2.3 exists in the last

two iterations just shown.�

Remark 4.3.1. For simplicity, we have chosen to present the stabilizationresult

here. Re-formulating the problem in terms of tracking the output y1 = x1,1 can

easily be done as in [1] by introducing the tracking error variablew1,1 , x1,1− yr

for some smooth, known reference signalyr . This will be demonstrated in the

example that follows.⊳

Remark 4.3.2. If we had allowed for multiple inputs – i.e.bi 6= 0, for all 1≤ i ≤m,

then the proof actually becomes simpler. We would no longer need assumption

A4.2.1 and could replace it with the requirement that eachγi, j = γi, j(x〈i−1〉,y〈i〉), 1≤

j ≤ λi. ⊳
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4.4 A Physical Example

The MAGLEV is an example of a system in RBTOF, for which an output feedback

control can be designed using Theorem 4.3.1.

4.4.1 The MAGLEV Model

We briefly derive a model for the magnetically levitated ballshown in Figure 1. The

Figure 4.1: Magnetically levitated ball (MAGLEV)

coil creates a magnetic forceFm upward on the steel ball of massm. Gravitational

force mg acts in the opposite direction toFm. The forceFm is the spatial rate of

change of the energyW in the magnetic field of coil:Fm = ∂W
∂y , wherey denotes

the ball’s position. Assuming the electromagnet’s core does not saturate during

operation, the energyW = L(y)i2/2 wherei is the current in the coil and the coil

inductanceL(y) is a function of the ball’s position. Hence, we have

Fm(y, i) =
∂W(i,y)

∂y
=

i2

2
L′(y) (4.13)

whereL′(y) = dL
dy(y). The dynamics governing the mechanical subsystem are

ÿ = g+
i2

2m
dL(y)

dy
. (4.14)

Following [77] we take the approximation

L(y) = α+
β

y+κ
(4.15)
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whereα,β,κ are positive constants. The electrical subsystem is modeled using

Kirchhoff’s voltage law. We obtain

u(t) = i(t)R+
d
dt

L(y(t))i(t),

whereR is the coil resistance andu is the control input voltage applied to the coil.

Hence, we obtain
di
dt

= −i
R

L(y)
−

i
L(y)

dL(y)
dy

ẏ+
1

L(y)
u. (4.16)

Choosing the state variablesx1 = y+ κ, x2 = ẏ andx3 = i, the dynamics for the

MAGLEV are

ẋ1 = x2

ẋ2 = g+L′(y)
x2

3

2m

ẋ3 =
1

L(y)

(
−Rx3−L′(y)x2x3 +u

)
.

(4.17)

Prior to applying our result in Section 4.3, we make some observations concern-

ing (4.17). We first note that if the ball’s positionx1 and the currentx3 are measured,

then the MAGLEV is in BTOF with(x1,x2) forming the first subsystem state and

x3 the second (i.e.(λ1,λ2) = (2,1)). We see that (4.17) furthermore satisfies A4.2.1

with B1 = g, C1 = L′(y)/2m andφ1 = x2
3. The derivativeφ′(x3) > 0 for x3 > 0. We

also note that the model itself has a singularity atx1 = 0 and so we assume the sys-

tem state evolves onΩ = {(x1,x2,x3) : x1 > 0,x3 > 0}. Since (4.17) is in RBTOF,

Theorem 4.3.1 can be applied.

4.4.2 Control Design

First we require an observer to estimate the ball’s velocityx2. Following (4.2), we

design the observer as

˙̂x1 = x̂2+L1,1(x1− x̂1)

˙̂x2 = g+L′(y)
x2

3

2m
+L1,2(x1− x̂1)

˙̂x3 =
1

L(y)

(
−Rx3−L′(y)x̂2x3 +u

)
+L2,1(x3− x̂3).

(4.18)
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In consideration of Remark 4.3.1, we formulate a tracking controller for the MA-

GLEV, a special case of which includes set-point regulation. We define the tracking

error variablew1 , x1− yr and re-write the composite system (omitting the error

dynamics, which are known to converge exponentially) as in (4.4):

ẇ1 = x̂2+ x̃2− ẏr

˙̂x2 = g+L′(y)
x2

3

2m
+L1,2x̃1

ẋ3 =
1

L(y)

(
− (R+△)x3−L′(y)(x̂2+ x̃2)x3 +u

)
.

(4.19)

In (4.19) we have included an uncertainty term△ to account for unknown changes

in the coil’s resistance, possibly due to a temperature increase which is to be ex-

pected as the system runs for an extended period of time. We note that the signals

x̃2 and△ are unknown and cannot be directly cancelled; we apply nonlinear damp-

ing to account for their effect.

The design proceeds by choosing the known signal ˆx2 as the first virtual control

and defining the coordinate shiftw2 , x̂2−α1. Choosing

α1(x1,yr) = −c1w1−d1w1 + ẏr ,

the Lyapunov function candidateV1 = Ve+ 1
2w2

1 becomes:

V̇1 = −κ‖x̃‖2−c1w2
1−d1w2

1 +w1x̃2+w1w2

≤−
(

κ−
1

4d1

)

‖x̃‖2−c1w2
1−d1

(‖x̃‖
2d1

+w1

)2
+w1w2

, −
(

κ−
1

4d1

)

‖x̃‖2+ τ1 +w1w2

whereVe is as in (4.6) and we have defined the negative definite termτ1 for nota-

tional convenience. The second iteration becomes more interesting sincex3 does

not enter the˙̂x2 equation affinely. If the next coordinate shift is chosen asw3 =

x3−α2, then upon substituting for(x3)
2 = (w3+α2)

2, we would find it difficult to

designα2 so that the second subsystem is stabilized. We therefore employ assump-

tion A4.2.1 which, for systems in RBTOF, makes possible the use of a function

of x3 as a virtual control. We note that the requirementφ′(·) 6= 0 ensures that the

134



Section 4.4: A Physical Example

complete coordinate shift (defined iteratively)w = x−α is a diffeomorphism on

Ω. Further, ifw3 , φ(x3)−α2, then a term involving 1/φ′(·) necessarily becomes

incorporated into the control law.

Since A4.2.1 is satisfied for the MAGLEV, we proceed by defining w3 , x2
3−α2

and examine the time derivative of the Lyapunov function candidateV2 =V1+ 1
2w2

2:

V̇2 ≤−
(

κ−
1

4d1

)

‖x̃‖2+ τ1 +w2

[

w1 +

(

g+
L′(y)
2m

(w3+α2)

+L1,2x̃1

)

−
∂α1

∂x1
(x̂2+ x̃2− ẏr)−

∂α1

∂yr
ẏr

]

(4.20)

wherex̃2 again appears through the ˙x1 equation. Noting that the error term ˜x1 is a

known signal, we assign

α2 = (2m/L′(y))
(
−g−w1−c2w2−L1,2x̃1+

∂α1

∂x1
(x̂2− ẏr)−d2

(∂α1

∂x1

)2
w2+

∂α1

∂x1
ẏr
)

to obtain

V̇2 ≤−
(

κ−
1

4d1
−

1
4d2

)

‖x̃‖2+ τ1−c2w2
2 +

L′(y)
2

w2w3

−
1

4d2
‖x̃‖2− x̃2

∂α1

∂x1
w2−d2

(∂α1

∂x1
w2
)2

. (4.21)

Replacing ˜x2
∂α1
∂x1

w2 with the larger‖x̃‖‖∂α1
∂x1

w2‖ term and completing the square with

the last three terms in (4.21) we have

V̇2 ≤−
(

κ−
1

4d1
−

1
4d2

)

‖x̃‖2+ τ1+
L′(y)

2
w2w3

−d2

(‖x̃‖
2d2

−
∥
∥
∥

∂α1

∂x1
w2

∥
∥
∥

)2
−c2w2

2

, −
(

κ−
1

4d1
−

1
4d2

)

‖x̃‖2+ τ1+
L′(y)

2
w2w3 + τ2, (4.22)

where the negative definite termτ2 is introduced to simplify notation.

In the third and final iteration we design the controlu. The time derivative of

V3 = V2+ 1
2w2

3 along the trajectories of the(x1, x̂2,x3, x̃) system is

V̇3 ≤−
(

κ−
1

4d1
−

1
4d2

)

‖x̃‖2+ τ1+ τ2 +w3

[L′(y)
2

w2

+2x3

( 1
L(y)

(
− (R+△)x3−L′(y)(x̂2+ x̃2)x3+u

))

−
∂α2

∂x1
ẋ1−

∂α2

∂yr
ẏr −

∂α2

∂ẏr
ÿr −

∂α2

∂ÿr
˙̇ẏ r −

∂α2

∂x̃1
˙̃x1−

∂α2

∂x̂2

˙̂x2

]

. (4.23)
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We now make a number of observations about (4.23).

• Considering (4.19), the unknown signal ˜x2 enters (4.23) through ˙x1, ˙̂x2

and the shown time derivative ofx2
3. It also appears in thẽ̇x1 equation

since˙̃x1 = −L1,1x̃1+ x̃2, as in (4.3).

• Unlike in the proof of Theorem 4.3.1, here we are fortunate tohave

γ1,2(y1,y2,x2) be affine in ˜x2, with its coefficient

C(y1,y2) ,
2L′(y)x2

3

L(y)

consisting of known signals only. In this case, we apply nonlinear damp-

ing by introducing a term such as

L(y)
2x3

(
−d4C(y1,y2)

2w3
)

into the controlu (which can be simplified).

• Sincew3 , x2
3−α2, its derivative ˙w3 = 2x3ẋ3− α̇2, where the controlu

appears in ˙x3. We now see why, in general, we expect thatu would contain

a 1/φ′ term.

• It is important to keep track of the signal dependencies thatthe stabilizing

functionsαi pick up at every iteration, so that they can be accounted for

in subsequent stabilizing functions.

Without expanding the complicated expression forV̇3, we give the expression foru:

u = Rx3−d3
2x3

3

L(y)
w3+L′(y)x̂2x3−d4(L

′(y)x3)
2 2x3

L(y)
w3

+
L(y)
2x3

[−L′(y)
2

w2+
∂α2

∂x1
x̂2−d5

(∂α2

∂x1

)2
w3+

∂α2

∂yr
ẏr

+
∂α2

∂ẏr
ÿr +

∂α2

∂ÿr
˙̇ẏ r −

∂α2

∂x̃1
L1,1x̃1−d6

(∂α2

∂x̃1

)2
w3

+
∂α2

∂x̂2
(g+ 1

2L′(y)x2
3+L1,2x̃1)−c3w3

]

(4.24)
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where each of the terms involving a damping coefficientdi , 1≤ i ≤ 6, applies non-

linear damping to the unknown signals. Together with the expressions chosen for

the virtual controlsα1 andα2, (4.24) can be shown to yield the time derivative of

the Lyapunov functionV3 = Ve+ 1
2(w2

1 +w2
2 +w2

3) negative definite and proper:

V̇3 ≤−
(
κ−

1
4

6

∑
i=1

1
di

)
‖x̃‖2 + τ1+ τ2−c3w2

3 + τ3,

where

τ3 , −d3

(‖x̃‖
2d3

−
∥
∥
∥

2x3

L(y)
w3

∥
∥
∥

)2
−d5

(‖x̃‖
2d5

−
∥
∥
∥

∂α2

∂x1
w3

∥
∥
∥

)2

−d4

(‖x̃‖
2d4

−
∥
∥
∥

2L′(y)x2
3

L(y)
w3

∥
∥
∥

)2
−d6

(‖x̃‖
2d6

−
∥
∥
∥

∂α2

∂x̃1
w3

∥
∥
∥

)2
.

Remark 4.4.1. In this example, the dynamic order of the feedback law could have

been reduced by using a second-order linear error dynamic observer to reconstruct

the ball’s velocity using the first subsystem alone. However, in this chapter our

objective was to demonstrate an output feedback design on the basis of the RBTOF,

which is more general than the NOF or its multi-variable version. ⊳

4.4.2.1 A Semi-Global Formulation

We continue with the control design for the MAGLEV. For simplicity, in the fol-

lowing let us consider the non-robust case△≡ 0, re-notate

ẋ3 =
1

L(y1)
(−Ry2−L′(y1)x1,2y2)+

1
L(y1)

u

= γ2,1(y1,y2,x1,2)+
1

L(y1)
u.

and neglect for the moment the surrounding terms in (4.23). According to the proof

of Theorem 4.3.1, we could have chosen

u = L(y)(−γ2,1(y1,y2, x̂2)+u∗)

(whereu∗ is some auxiliary control variable that can be used to cancelor damp the

surrounding terms in (4.23)) instead of applying nonlineardamping to the ˜x2 term
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which happens to appear affinely inγ2,1. In that case,

ẋ3 = γ(y1,y2, x̂2+ x̃2)− γ(y1,y2, x̂2)+u∗

≤ ‖γ(y1,y2, x̂2 + x̃2)− γ(y1,y2, x̂2)‖+u∗

=
∥
∥
∥
−L′(y)x3

L(y)
x̃2

∥
∥
∥+u∗

≤ K‖x̃2‖+u∗

with K being an estimate of the upper bound of the magnitude of the nonlinearity
−L′(y)x3

L(y) on some compact setΩ∗ – i.e.

K = max
x∈Ω∗

∥
∥
∥
−L′(y)x3

L(y)

∥
∥
∥= max

x∈Ω∗

∥
∥
∥

βx3

αx2
1 +βx1

∥
∥
∥.

The norm is maximized when the currentx3 is largest and the ball positionx1 is

smallest within some setΩ∗. Thus, sinceγ2,1 is locally Lipschitz inx2, we could

implement a semi-global control by replacing the term associated withd4 in (4.24)

with the term

−d4K2 2x3

L(y)
w3.

The numberd4K2 then becomes a control parameter that can be adjusted to increase

the size of the regionΩ∗ in closed-loop.

It is important to note that if the nonlinearitiesγi, j(x̂〈i−1〉,y) are only locally

Lipschitz inx̂〈i−1〉, the design of the BTOF observer must be modified by saturating

these states beyond a compact setΩ. Then, if the system’s state does not leaveΩ,

the observer error is guaranteed to be GES at its origin (Lemma 1, [70]). Specifi-

cally, the observer must be redesigned as

Σ̂RBTOFi :

{
˙̂xi, j = x̂i, j+1+ γi, j(sat(x̂〈i−1〉),y〈i〉)+Li, j x̃i,1

˙̂xi,λi
= γi,λi

(sat(x̂〈i−1〉),y〈i+1〉)+biσ(y)u+Li,λ1
x̃i,1

(4.25)

for 1 ≤ j ≤ λi , 1≤ i ≤ m−1 (themth subsystem being written similarly), where

sat(·) is an element-wise saturation function:

sat(x〈 j〉) ,

{

x〈 j〉, x〈 j〉 ∈ Ω
x〈 j〉, otherwise
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whereΩ denotes a compact subset ofR
j , ∂Ω its boundary, and

x〈 j〉 = {x〈 j〉 ∈ ∂Ω}.

Saturating the estimated states in this way allows us to employ aLipschitz extension

technique which guarantees that

|γi, j(sat(x〈i−1〉),y〈i〉)− γi, j(sat(x̂〈i−1〉),y〈i〉)| ≤ M(y〈i〉)‖x− x̂‖

for some bounded functionM(y〈i〉), and therefore makes it possible to prove the

exponential convergence of the observer’s error in BTOF coordinates.

Although this semi-global formulation may be the only alternative for some sys-

tems, it should be avoided if possible;K may be a very conservative estimate of the

size of this nonlinearity under normal operating conditions, while under some other

conditions the state may leaveΩ∗, after which time the damping term involvingK

would not be strong enough to guarantee the boundedness of solutions.

4.4.3 Simulation

We simulated the MAGLEV system (4.17) using the tracking controller (4.24) as

the feedback. In the following simulation, we used the initial conditions

(x1(0),x2(0),x3(0)) = (0.004 m,0 m/s,1 A),

with

(x̂1(0), x̂2(0), x̂3(0)) = (0.014 m,0.04 m/s,0.2 A)

to introduce a realistic observer error. We chose the observer gains so that

(s2+L1,1s+L1,2)(s+L2,1) = (s+1+ j)(s+1− j)(s+1.5).
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The nominal values of the parameters for the system are:

α = 0.4 H,

β = 90×10−6 m2/A2,

m= 0.068 kg,

R= 11 Ω

κ = 3.4 mm.

In all simulations we used the control coefficientsc1 = c2 = c3 = 4. We introduced

an uncertainty of 2Ω into the resistance in the model, and applied two versions

of the controller: one implementing nonlinear damping to compensate for both

observer error and the resistance uncertainty withdi = 1, 1 ≤ i ≤ 6, and the other

with damping coefficients set to zero.

Figures 4.2 and 4.3 show the behaviour of the plant and observer states in

closed-loop, as well as tracking error when the damping coefficients aredi = 1, 1≤

i ≤ 6.

In Figure 4.2 shows that the current in the coil is nonzero forall 0≤ t ≤ 10 s,

even though its estimate evaluates to zero at approximately.5 s (and also in the

brief transitory period at the immediate start of the simulation). This behaviour is

acceptable, since the boundedness of the feedback (4.24) requires only|x3| > 0.

When the damping coefficients are all set to zero, the system is unstable for the

set of aforementioned initial conditions, and no simulation can be obtained. For

this reason, we include Figure 4.4 which was obtained by initializing the observer’s

estimate of the ball’s velocity at ˆx2 = 0.02 m/s as opposed to ˆx2 = 0.04 m/s used

previously. In that case, the closed-loop behaviour of the ball’s positionx1 remains

bounded, but the tracking behaviour is clearly deteriorated by comparison to that

of x1 when the damping coefficients are non-zero. We include Figure 4.4 as an

interesting demonstration of the performance benefits gained by taking direct ac-

count of the observer error in the control design, which is a central idea in observer

backstepping.
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Figure 4.2: Simulation of the closed-loop system (4.17), (4.18) and (4.24), showing
the behaviour of all three plant and observer states when nonzero damping coeffi-
cients are employed.
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Figure 4.3: The closed-loop tracking erroryr −x1.

Primarily, the simulations shown in this section are intended to demonstrate

the functionality of our proposed algorithm, and to reinforce the design procedure.

For that reason, no effort was made to optimize our choice of control or damping
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Figure 4.4: Simulation of the closed-loop system (4.17), (4.18) and (4.24), showing
the position statex1 with and without damping, and its estimate with damping.

coefficients to improve the system’s closed-loop performance.

The MAGLEV model (4.17) itself may not be the best physical example on

which to test the performance of our method since it possesses several features that

make control design difficult. First, the model has a singularity at x1 = 0, and the

“interconnecting term”x2
3, which we have used as a virtual control in the second

design iteration is nonlinear with a derivative that approaches zero asx3 → 0. We

are therefore forced to impose the cumbersomeassumptionthat the system state

evolves on the setΩ = {(x1,x2,x3) : x1 > 0, |x3|> 0}. In fact, we acknowledge that

there may be some initial conditions and timet∗ > 0 for whichx3(t∗) = 0 in which

case we expect the control signal to become unbounded.

4.5 Summary

In this chapter we have developed an output feedback algorithm for systems in

RBTOF which is a strict-feedback form of the BTOF introducedin [70]. The

method uses the idea of observer backstepping. Since it is based on a BTOF, the ap-

proach can allow for a more general class of admissible systems relative to existing
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work. The design was implemented in simulation on the model of a magnetically

levitated ball.

Recursive control design methods such as backstepping havecreated many pos-

sibilities for theoretical advances in the problem of output feedback for nonlinear

systems. However, several difficulties remain, including complex and difficult to

implement expressions for the control and a lack of systematic methods for choos-

ing values for the damping coefficients. These two aspects are areas of potential

future work.
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Chapter 5

Concluding Remarks

In this thesis we studied the problem of non-local stabilization of nonlinear systems

by output feedback. Nonlinear systems exhibit a rich variety of behaviours and the

set of analysis and design tools available is much more limited than that for linear

systems. For this reason, the nonlinear non-local output feedback problem is chal-

lenging, and has no general solution. The most significant difficulty in the control

design for nonlinear systems stems from the fact that their internal stability is gen-

erally not indicative of their input-output behaviour. In many existing approaches to

the output feedback problem, the lack of full state measurement necessitates the use

of an additional dynamic component – usually an observer – whose states become

incorporated into the feedback. If non-local asymptotic (i.e. internal) stability of

the interconnection of such dynamic components with the plant is to be achieved,

the output feedback law must be designed to account for the nature of the intercon-

nection; it must take into consideration the input-output behaviour of the plant.

The set of systems for which constructive, globally stabilizing output feedback

designs are known is likely not the largest set of systems forwhich such designs are

possible. Integrator backstepping, nonlinear damping, and differential geometric

techniques are among the few crucial mathematical tools employed in constructive

designs. Therefore broadly speaking, two research directions that remain important

in nonlinear control theory involve the development of new constructive design

techniques, and the identification of new system forms that admit output feedback
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designs using existing techniques.

We have presented two contributions in this thesis. The firstis an extension

of Marino and Tomei’s globally stabilizing output feedbacklaw for single-input,

single-output systems in the output feedback form, to multivariable nonlinear sys-

tems whose dynamics can be written in a subsystem form, with dynamic coupling

between the subsystems via an output-dependent nonlinearity. We have shown that

the global output feedback problem for this class of systemsis solvable, provided

additional nonlinear damping terms are included in each input to account for the

dynamic coupling between the subsystems. Our second resultinvolves the appli-

cation of observer backstepping to multivariable nonlinear systems in a restricted

block-triangular observer form. This result is applied to adynamic model of a

magnetically levitated ball.

Future work in the direction of this thesis may involve:

• Casting the multivariable output feedback result presented in Chapter 3

into an adaptive framework, considering the case where the elements of

the input vector are not necessarily known. It is also possible to incorpo-

rate robust design techniques into this method.

• Finding a systematic means of choosing an optimal value for the damping

coefficients in observer backstepping designs.

• Extending the result in Chapter 3 to systems in the block-triangular ob-

server form.
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Appendix A

Some Useful Theorems

Theorem A.0.1(Lyapunov’s Direct Method). ( [15] Chapter 4, or [17] Appendix
B)

Given a systeṁx = f (x) with x∈ Rn, let V : Rn → R+ be a C1 function with
V(0) = 0, and W: Rn → R+ be a C0 function with W(0) = 0. If

∂V(x)
∂x

f (x) < −W(x),

then x= 0 is an asymptotically stable equilibrium ofẋ = f (x). If additionally V(x)
is radially unbounded1and w(x) is positive definite, then x= 0 is globally asymp-
totically stable.

Theorem A.0.2(Converse Lyapunov Theorem). ( [15] Theorem 4.17)
Let x= 0 be an asymptotically stable equilibrium point of the systemẋ = f (x),

where f(x) ∈ C1, x∈ R
n, with RA its associated region of attraction. Then there

exists a positive definite function V(x) ∈C∞ and a positive definite function W(x) ∈
C0, defined for all x∈ RA, and satisfying:

∂V(x)
∂x

f (x) ≤−W(x), ∀x∈ RA (A.1)

and
x→ ∂RA =⇒ V(x) → ∞, (A.2)

where∂RA denotes the boundary of the region RA. If RA = Rn, then V(x) is radially
unbounded.

If x = 0 is an exponentially stable equilibrium point of this system, then the

1V is radially unbounded ifV(x) → ∞ when‖x‖ → ∞. We could instead stipulate thatV(x) be
proper, in which case for anya∈ R+, the set{x∈ Rn : 0≤V(x) ≤ a} is compact.
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functions V(·) and W(·) satisfy ( [15], Theorem 4.14):

c1‖x‖2 ≤V(x) ≤ c2‖x‖2

∂V(x)
∂x

f (x) ≤−c3‖x‖2

∥
∥
∥
∥

∂V(x)
∂x

∥
∥
∥
∥
≤ c4‖x‖

(A.3)

for some positive constants ci , i ∈ {1,2,3,4}.
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