ODE To Backstepping...

Oh Backstepping, How do | love thee? Let me count the ways.
You soothe my instabilities,
Despite my singularities.
In the face of disturbing entities,
You adapt to my uncertainties.
| love thee for thine flexibility,
You don’t even need controllability.
Your magnitude of feedback is,
But one of gentle modesty.
You respect my nonlinearities,
And exploit my structural peculiarities.
As | seek escape (in finite time),
You bring me back, with Lyapunov tactics so sublime.
Although you're oft chastised for expressions complicated
My fears of numerical differentiation you've abated.
| love thee in my states of chaos, rest, or evolution,
That’s right, | love thee in all the meanderings of my solatio
Because of you, invariance my sets will never loose...
Oh Backstepping, to close my loop, there’s no one else ltderathoose!

— Karla Kvaternik

lWwhat Elizabeth Barrett Browning would surely have writterdtshe read [1]...
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Abstract

The non-local stabilization of nonlinear systems by oufpetiback is a challeng-
ing problem that remains the subject of continuing invedtan in control theory.
In this thesis we develop two globally asymptotically skiabig output feedback
algorithms for multivariable nonlinear systems. Our fiesult is an extension of
the output feedback method presented in [2] to a class oimaan systems whose
dynamics can be written as a collection of subsystems tkatyaramically coupled
through output-dependent nonlinear terms. We show thamigthod given in [2]
must be modified to accommodate this dynamic coupling bgpdhtcing additional
nonlinear damping terms into each control input. Our se@amdribution involves
the application of observer backstepping to systems intdctesl block-triangular
observer form. In this form, the nonlinearities enteringheaubsystem are allowed
to depend on the output associated with the subsystem, angpEr subsystem
states, including unmeasured ones. The proposed algoistlemonstrated on a

magnetically levitated ball.
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Chapter 1

Introduction

Aside from its aesthetic pleasures, the study of nonlineatrol theory is motivated
by the practical need to make control systems more reliaidee precise, and more
safe. Most real-world dynamical systems towards which wethie application of
feedback control theory are not inherently linear. Adndityeone of the simplest
approaches to control design is that on the basis of a system@arization, owing to
the well-developed arsenal of tools available for lineasigles. For many applica-
tions, combining robust techniques [3] with a linear degigrthe basis of a model’s
linear approximation may suffice. However, such designesearily make use of
less information about the dynamics of the plant, generallgranteeing only local
stability'of theclosed-loopg(CL) system. In some cases, this design is not only less
effective, but also potentially dangerous. Interestinglhpas been shown that for
some linear time-varying systems nonlinear control odiguers linear control [4]
in some measures of optimality, while for some nonlineatesys the use of lin-
ear feedback reduces the size of the closed-legn of attraction(ROA) as the
feedback gains are increased [5].

In the study of nonlinear control theory, we seek to devebsgalback control
laws that guarantee global or semi-global stability of alim@ar system; that is, the
ROA associated with a CL system’s equilibrium should attléalse a prescribed

size, if not cover the entire state-spaceglébally asymptotically stabilizin¢GAS)

LIn this thesis we are concerned primarily with the problenstability, although the foregoing
discussion applies also to problems such as tracking,riestee rejection and model matching.
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control law ensures the convergence of CL trajectoriesrdégss of “where” the
system is initialized within the state-space. In semi-glatesigns, a control gain
is usually increased in order to increase the size of somepaotrset which is
guaranteed to be contained within the ROA. Although glolesighs are sometimes
applicable to a smaller class of systems than semi-glolsedds, they are generally
advantageous in not requiring the use of any high gains thadlly accompany
semi-global designs.

One of the most practical and fundamental problems in nealisontrol design
concerns non-local (i.e. global or semi-global) stabil@ausing only partial state
measurements. A plant’s full state information is usuadiyawvailable for feedback
as the use of additional sensors may not be economicallipfeasr the measure-
ment of some states may even be physically impossible. Devascontrol strategy
when the system’s measured variables — i.e. outputs — canapeead to only a
subset of its state variables, is known as dlgput feedbackOFB) problem. The
OFB problem is particularly challenging for nonlinear gkrand has not been fully
solved. Although incremental progress is being made, tteamain vast classes of
systems for which there are no known non-local OFB contratsgies.

In this thesis, we investigate non-local OFB stabilizatadgorithms for mul-
tivariable, continuous-time, finite-dimensional, detamistic dynamical systems
with no uncertainties or disturbance inputs. In particweas are interested in the
development ofonstructivealgorithms —i.e. those that provide explicit control ex-
pressions that can be physically implemented. For thi®reage make use of some
of the most practical nonlinear design tools, includinggrator backstepping, non-
linear damping and differential geometric theory. Diffreombinations of these
tools have found numerous creative applications in gloh& @esigns such as ob-
server backstepping [6] and what we will refer to as the MThodt[2]. Our focus
in this thesis is to develop multivariable extensions osthievo methods, with the
ultimate aim of developing global OFB laws for systems in @chkttriangular ob-
server form. In this thesis we document two contributioret the have made in

this direction. Chapter 4 presents an extension of the Mhatketo a class of mul-
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tivariable nonlinear systems whose subsystems are dya#iyneoupled through
output-dependent nonlinearities. In Chapter 3, we appsenler backstepping to
a class of systems in a restricted block-triangular obsdove.

Before providing our main results, we present some pertihaokground the-
ory and analysis. We begin by giving a precise definition & @FB problem
and the various circumstances under which it can easily bedoWe then try to
develop an understanding of the difficulties that preseattelves in solving the
problem for nonlinear systems by studying the peaking pimamon and the stabil-
ity of cascade-connected systems. We use concrete exawipdesver possible to
fortify our analysis and express our own insights where ayppate. After investi-
gating some of the challenges posed by this difficult probemprovide a survey
of the literature detailing some of the progress that has begde on this problem
in various directions.

In the second chapter, we describe the nonlinear desigs amal system forms
most frequently encountered in the literature on global ORB then provide a
detailed exposition of observer backstepping and the MThatktor the design of
GAS OFB algorithms for a class of SISO systems in the outpedidack form.
These results are then extended in Chapters 3 and 4, ancesigs iconcluded in
Chapter 5.

1.1 The Output Feedback Problem

In the following, we define the OFB problem, and elaborate @nes of the chal-
lenges associated with solving it for general nonlineatesys. For simplicity, our
discussion will be based on SISO systems of the form:

x= f(x)+g(x)u

y="h(x)

wherex € R"is its statep € R its input andy € R its output. To ensure the existence

(1.1)

of a solution over some time interval, the vector fielideind g are assumed to

be at leasC!. Without loss of generality we assume tHgD) = 0 so that with
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u = 0 all motion stops ax = 0. If we are interested in regulating the system state
to a nonzero equilibriuneq # 0, we can re-write the system dynamics in a new
set of coordinateg = X — Xeq SO that the unforced dynamic= f(z+ xeq) has an

equilibrium atz= 0.2
Definition 1.1.1. Given system (1.1) with(0) = 0, thenon-local OFB Stabiliza-

tion Problem is to design a control

E=T(Eyu), EcRrY
u=af(g,y), ueR

(1.2)

with ' (0) = 0 anda (0) = O, such that all trajectories of the closed-loop system
x=f(x)+9(x)a(&,h(x)
& =T (8,h(x),a(&,h(x)

initiated insideQy x Q; C R" x RY (containing the origin) converge asymptotically
to (x,§) = (0,0). <

(1.3)

If the size of the ROAQy x Qg associated with the origin can explicitly be
altered through the control= a(&,h(x)), then the stability of the composite sys-
tem (1.3) is said to beemi-global while global asymptotic stability (i.e. GAS) is
achieved if the CL region of attraction @ x Q; = R" x R9. The output feedback
control (1.2) isstatic or memoryless, iff = 0; otherwise it idynamic

Although we are not constrained to relate the dynamic corapboof (1.2) with
the task of reconstructing the state of the plant, a commenoagh to OFB con-
trol involves designing an observer, whose state estinaatethen used in lieu of
actual plant states in some stabilizing state feedback. éfée to this approach as
estimated state feedba(&SFB), or thecertainty equivalencéCE) approach. For
linear, time invariant systems with no uncertainties, tlodgl OFB problem is fully

solved in this way, owing to the so-calledparation principle

2ltis also possible to express the dynamics (1.1) in a newdioate set which centers any arbi-
trary pointx, to its origin; the origin in the new coordinates will be an gitpuium of the unforced
system if the vector field§ andg satisfy f (xo) = —cg(xo) for some constart. Then we can define
Z=X—Xp andu = v+ cto obtainZ= (f(z+ Xo) + €9(z+ Xo)) + 9(z+ X)v whose drift evaluates to
zero az=0.
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1.1.1 The Linear Separation Principle

To demonstrate, we consider the linear case of the systdm (1.

X = Ax+Bu
(1.4)
y =Cx

with (A, B) stabilizable andA,C) detectable. By these assumptions, there exists
a vectork € R™" and a vectot. € R™1 such that the spectra ¢A — BK) and
(A—LC) lie in the open left-half of the complex plane. We construciassical

Luenberger observer [7] for (1.4) as
% = AR+ Bu+L(y—CX) (1.5)

and define the estimation error&$: x — X. The error dynamics armglobally expo-
nentially stablg GES) wherL is chosen so thdA — LC) is Hurwitz:

£ =Xx—%X=(A—LC)E. (1.6)

If the full state is available for feedback, choosing thetoolru = —Kx would result
in the plant dynamicg = (A — BK)x that are likewise GES. However, since the
state is unknown, we replace it with its estimate and instegdement the control
u= —KXto obtain the composite CL system

Xx=Ax—BK(x—¢§)

§=(A—-LC)E (1.7)

which can be written as

=150 o] ] <l 1.8

SinceA is block triangular, its eigenvalues are the union of the§etgenvalues of
the diagonal blocks, which can be made Hurwitz by the properce of gainK

andL. In other words, the combination ahy Kso that A— BK) is Hurwitz, chosen
independently ofiny L such that A— LC) is Hurwitz yields a Hurwitz composite
system matrix. Given that the origin is the only equilibrifon (1.8), we conclude

global exponential stability of the composite system (1.8)

5
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1.1.2 Local Separation Principle for Nonlinear Systems

It would be convenient if this separation property also helé for nonlinear sys-
tems, since a significant effort has been dedicated to thelal@wment of many ele-
gant state feedback and observer design technidaesonlinear systems. It turns
out that locally a separation principle does hold, provitted f (x) + g(X)uin (1.1)
isC! in both arguments, observable, and stabilizable 6y eontrolu = a(x). Un-
der these conditions, if the observer erégr) is locally asymptotically stable and
the exact SFB control locally asymptotically stabilizes fflant about its origin,
then it is always possible to initialize the CL system usir&-B sufficiently close
to (x,&) = (0,0), so that the ensuing trajectories of the composite systgmpatot-
ically converge to the origin [11]. In addition to [11], tleeare several variations of
the proof of this fact, also usually relying on converse Lyaqv theory, comparison
arguments, and the “theorem of total stability”. For exampine may consult the
proof of Theorem 10.3.1in [12], or Proposition 4.1 in [13],Tdeorem 3.1 in [14].
A simple Lyapunov-based proof is also given in Lemma 13.115].

Here, we offer a simpler justification of this fact under sfyer assumptions,
using Lyapunov’s indirect method. Assume that there exisitate feedback law

u=a(x), a(0) = 0 such that the origin of
x= f(x) +9(X)a(x) (1.9)

is renderedocally exponentially stabl@LES). Such would be the case if (1.1) is
state-feedback linearizable. Then there exists a scatatifuin @(x) such that the

nonlinear coordinate change

21,22, .,z = [O(X), L @(x), ..., LT L@(x)]T £ T(x), T(0) =0 (1.10)

3A major novelty in nonlinear control theory resulted frone tpplication of differential geome-
try to the identification of coordinate and feedback transfations of nonlinear systems into several
important canonical forms. For instance, state feedbaealization [8] allows a linear eigenstruc-
ture assignment design to be carried out after a prelimiobaange of coordinates and linearizing
state feedback. Likewise, the nonlinear observer form wastified in [9], and allows the design
of an observer with a linear error dynamic in a special setaofrdinates. The internal structure
of a nonlinear system has been characterized in [10], whergeometric existence conditions and
diffeomorphisms leading to the so-calledrmal formare developed. Subsequently, there have been
hundreds of papers published extending and applying thremntioned work.
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is a diffeomorphism that locally transforms (1.1) into

n=2z

=123
(1.11)

Zh1=1

Zn = LO(x) + uLgL? o(x)
WhereLger‘*lcp(x) is bounded away from zero [16], [17]. In (1.10), we have used
Lr@(x) = (do(x), f(x)) to denote the Lie derivative of a scalar functigix) in the

direction of the vector field (x), whered@(x) denotes‘%. Multiple Lie deriva-
tives are defined ds; @(x) = (d Lif‘lcp(x), f(x)). Next, choosing

—L7@()[-KT(x)]

U=a(x) = 1.12
with K € R™" renders (1.11):
o 1 .- 0
g— | 0 T T z2A2 (1.13)
o 0 ... 1
kg —ko e —kg

Provided the gaitK is chosen so tha’s characteristic polynomial® + kn,s"1 +
---+ kos+ ki1, has roots with negative real parts, (1.13) is locally exqially
stable. IfLgLT @(x) # 0, ¥x € R, then in thez-coordinates (1.13) is GES. Clearly,
the linearization of (1.13) abouat= 0 is Hurwitz. Our objective now is to relate the
linearization of (1.13) about = O to that of (1.9) aboux = T—%(0) = 0. To that
end, we note that
z=Az=AT(x).

and also

2= 1% (19 + g9a )
Equating the two expressions and taking the gradient of sidtks, we obtain that

2
AaTaiX) -2 aTX(zX) (f(x) +9(x)a(x)) + aTaE:Q %( f(X)+g(x)ax).  (1.14)
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A

We denote the Jacobian ¢f (x) +g(x)a(x)) asJ(x) £ Z(f(x) +g(x)a(x)) and
evaluate (1.14) abowut= 0, noting thatf (0) = 0 anda(0) = 0:

3(0) = (agix))_lAagf(x) . (1.15)

From (1.15), we see that although the system matrix of thealization of the CL

system in the original coordinate®(0), is not necessarily the same as that of the
CL linearizationA in the transformed coordinates, their spectra are iddftiSnce
an equilibrium of a nonlinear system is LES if and only if itsdarization about
that point is Hurwitz (Theorem 4.15, [15]), we conclude tha state feedback
(1.12) renders the origin of (1.1) LES. This fact will becouseful in the following
discussion.

Suppose that in addition to being state-feedback linelalez#1.1) also admits
a transformation into theonlinear observer forffNOF) [9], and that we are able
to find a diffeomorphisn@Q : R" — R", x — w so that in the new coordinates the
dynamic (1.1) can be written as:

) (1.16)
y=h(Q ~(w)) =Cw
where
o1 .---0
=" T C:.=[1,0,...,0]. (1.17)
00 .- 1
00 .---0

Since(Ac,C.) is observable and the nonlinearity in (1.16) depends on kreignals

only, we can design an observer for (1.16) as

which implies that the dynamic of the erfd& w— W

£ = (Ac—LCo)E (1.19)

4For simplicity, assume that the eigenvaluedaire distinct. Then suppoaeis an eigenvalue of
A, andy; its associated eigenvector. Given any nonsingular matakappropriate dimension, define
avectorn = T~ 1v;. ThenATy = ATy, or (TLAT)W = Al showing thad; is still an eigenvalue
of the transformed matrikT ~1AT), with eigenvectog. Since); is arbitrary, this argument holds
for the entire spectrum &, and shows that it is invariant under coordinate transfdiona
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is GES at the origin when the output injection gaiis chosen so thatA: — LCc)
is Hurwitz. In the original coordinates, the state estirmaenerated by (1.18) are

expressed as= Q1 (W) = Q 1(w—&). Therefore, implementing the control (1.12)

with these state estimates results in the composite systaanuc

x= f(x) +9(x)a(Q QX —¥&)) (1.20a)
£ = (Ac—LCo)E. (1.20b)

Since (1.20b) is independent gf to show that the linearization of (1.20) about
(0,0) is Hurwitz, it suffices to show th%kx@):(@@ is Hurwitz. To that end, we
apply some basic calculus:

OX 0 0
o600, = 5109l + (500 ) a(@ 200 )

(x£)=(0,0)
(1.21)
oa(-)
+9(x)
0% |(x&)=(00)

Since

a(Q Q) —¢& =a(Q HQX)| = a(X)|x=0. (1.22)
(X,E):(QO) x=0

and by assumption(0) = 0, the second term on the right hand side of (1.21) dis-

appears. The third term is:

000281 — gix) ["’“—@

QX —¢)
™ = . ] (1.23)

s=@iQu-5 9P
If we evaluate (1.23) & = 0 we obtain

9a(Q Q) —¢)) _ da(x) 9Q* (w) 9Q(x)
) ox =9 ox ow ox (1.24)
B 00(( X)
smceaQa (W) %f() =1. To see this, we note that since- Q 1w, x = aQ ( 9Q W)y, Byt
sincew = Q(x), w aQ( 99X % Thereforex = aQ ( )aQ( 9% — 1%, In conS|derat|on of
(1.22) and (1.24), we evaluate (1.21) at the equnlbrlum.
ox of(x) 00 (X) _3(0) (1.25)

&kxg):(om: 3 x=0+9(X) X | o
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which is shown to be Hurwitz in (1.15). The linearization betcomposite CL
system (1.20) o

x o o (1.26)
& =00 [ 0 (A—LC) '

shows that (1.20) is LES at the origin, and that using steg¢elback linearization

techniques to design a stabilizing SFB control, in comlamatvith a separately de-
signed linear error dynamic observer always results indbal lexponential stability

of the origin.

1.1.3 Failure of Certainty Equivalence for Nonlinear Systens

One may wonder whether, and to what extent this certaintyvalgnce approach
would hold non-locally for general nonlinear systems. Unifoately, there is no
nonlinear analog of the linear separation principle. Wasitlate this fact using a

counterexample provided in [18], expanding it here.

Example 1.1.1(Failure of CE) Consider the system

X]_ = —X1 -I-X%
X = —X2 +X1X5 +U (1.27)

y=X.

Given access to the full state, we note that cancelling th@imearity in thexp-
equation using the contral= —x; %3 rendergxy, xz) = (0,0) GAS. This can be seen
using the Lyapunov function candidatéx) = %(X%—FX%) + %x‘z‘ whose derivative

along the CL solutions of (1.27) is

V(%) = xa(—X1+35) +X2(—X2) +)X3(— )
118 R PR 087
= %X% X5 — (3x1—3)°
< —3x2—x3. (1.28)

Global asymptotic stability ofx1,x2) = (0,0) then follows from Theorem A.0.1.

10
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We notice also that since is measured and the first subsystem is stable when

x2 = 0, the following observer
K1 = —R1+ X3, (1.29)
with the estimation error defined §s= x; — X1, gives the error dynamic

E=—¢ (1.30)

which is GES ag = 0. If instead ofx; we use its estimate in the previous control

law, we obtain the two coupled dynamic equations

Xo = —Xo + xlxg —(x1— E)x%
= _x2+Ex% (1.31a)
E=-¢ (1.31b)

which evolve independently of the subsystem. To examine the behaviour of
(1.31), we proceed to solve it. First, the solution to th@edynamic equation is
&(t) = e t&€(0). We substitute this solution into (1.31b) to obtain

%o = —Xx2 +€ 'E(0)x3. (1.32)

Since the “disturbance” terrer‘E(O)x% decays exponentially, it may seem that the
linear stable component of this equation would eventuatignechate the motion,
bringingx, back to the origin. We introduce the change of coordinate§ (xo) =

X—lz. Then

=z—e '§(0). (1.33)

Taking z to the left hand side and multiplying (1.33) by the integrgtfactore™

we obtain:

elz—e'z=—e2£(0) (1.34)

d
=gi(e'2)

11



Section 1.1: The Output Feedback Problem

which can be integrated froto 0 on both sides:

t

etz(t) — 2(0) = —&(0) / e 2dr

0

—  Zt) =€ (2(0)+ (e 2 —1))
2
2505y T £(0) (et —€)
2X2(0)

=~ 2 %(0)E0)] + & X (0)E(0) (1.33)

= X(t)=

From the denominator of (1.35), we see that for all “locaitiai conditions{x,(0) €
R, &(0) e R: —o0 < x2(0)&(0) < 2}, the states of the system (1.31) converge to zero,
but all trajectories initiated outside this set escape fioiiy at time

tose— %In <%) . (1.36)
Even though the observer estimate in this example conversgasnentially fast to
the actual statey, this exponentially decaying estimation error causestardiance

significant enough to destabilize the CL system for som&irgbnditions.<i

The above example demonstrates that we cannot expect to Begaaation
principle for nonlinear systems which is as powerful andegenas that for linear
systems. Specifically, global OFB designs for nonlineatesyis cannot be as sim-
ple as combining any convergent observer with any GAS SFRralber under the
CE assumption.

One may object to this example, since the ad-hoc construofithis particular
observer gives us no opportunity to control its convergeats which is dependent
on the stability of the linear component in tkeequation. However, assuming that
by whatever means a reduced order observer is availablé fr)(so that its error
decays at a ratg(t) = e '€ (0), where the parameté&rcan be adjusted, we observe
from equation (1.32) that for any such g&in- O its solution

(k+1)x2(0)

é[k+1—x2(0)&(0)] + e Kix,(0)E(0) (1.37)

Xz(t) =

12



Section 1.2: Stability of Cascade-Connected Systems

still has a finite escape time for some initial conditionsfdct, even observers that
converge in finite time (such as [19]) may not avoid this peoblsince the esti-
mation error may reach magnitudes sufficiently large toatekze the CL system
during the error convergence interval [20].

The lack of a generic separation principle for nonlinearteys is a specific
instance of a more general problem: our inability to prethet input-output be-
haviour of a nonlinear system on the basis of its interndiktya. Regarding the
observer error as an input to the plant under ESFB, we seentnatt this input
is zeroed, the internal response of the CL plant (i.e. respon initial conditions
only) is GAS. However, the presence of the multiplicativelmearityxg amplifies
even a bounded, decaying input in a way that causes insyabitir linear systems,
internal stability (i.e. stability of the zero input resge) implies, and is implied
by input-output stability (i.e. stability of zero-statespmnse), but for nonlinear
systems this is not the case.

Even though Example 1.1.1 shows that in general ESFB camuawagtee non-
local stability, there are conditions under which non-logtability is achievable

using ESFB for nonlinear systems.

1.2 Stability of Cascade-Connected Systems

From the previous examples, we note that the interconmectighe plant, con-
troller and observer can equivalently be studied withinrttege general framework

of cascade connected systems such as:

x=f(x,&) (1.38a)

£=9(%), (1.38b)
shown in Figure 1.1. We assume that (1.38b), analogous tolikerver error, is
GAS at§ =0, and that (1.38a) with = 0, analogous to the closed-loop plant under

exact state feedback= f(x,0), is GAS atx = 0. We are interested in whether

there are conditions under which this cascade connectigloimlly stable. Such

13



Section 1.2: Stability of Cascade-Connected Systems

=g %= f(x,8)

Figure 1.1: Cascade connected subsystems

conditions may offer insight into the limitations of usin@EB to formulate OFB
control laws.

The stability of cascaded nonlinear systems has been extgnstudied in the
literature — for example, in [14], [21], [22] among othersheTmost prominent
result concerning the global stability of (1.38) involves inotion ofinput to state
stability (1ISS) [23] . If subsystem (1.38a) possesses this propetty respect to
the signak, then the basic implication is that the magnitude of theestdy will be
bounded for all bounded inpu&$t) and any initial conditiong(0). Clearly, system
(2.27) in Example 1.1.1 does not posses this property.

We briefly summarize the meaning and some of the implicatidhSS by pre-
senting a few key results related specifically to (1.38),@andorevious discussions.
Our discussion here is based on the presentation given ipt€hain [15], and Sec-
tion 10.4 in [12].

Definition 1.2.1(ISS). System (1.38a) is ISS with respect to its inft) if there
exists a classKL function 3(-,-) and a classK function y(-) such that for all
bounded(-) and allx(0) € R", the state satisfies the bound

X1 < BAXO)[1,t) +v(lE®)[|e..), YE=0 (1.39)

In this definition, ak-class functiory(|r|) is aC? function that strictly increases
with increasingr, with y(0) = 0. y belongs to the clas¥., if it is also radially
unbounded. AKL-class functior3(|r|,t) is a function which, for any fixetlis a
classX function, and for any fixed = r, is decreasing — i.e. lim.» B3(|ro|,t) = 0.
The L., norm of a signak (t) is defined ag&(t)|| ., = SUR-|/&(t)|| and exists for

all bounded signals.

14



Section 1.2: Stability of Cascade-Connected Systems
The important result involving ISS is the following:

Theorem 1.2.1(Corollary 10.5.3, [12]) If system(1.38a)is ISS with respect t§
as its input, and the systefth.38b)is GAS, then the equilibriurfx,§) = (0,0) of
the composite systefh.38)is GAS.

The way to establish that a system is ISS is to produce a $ed¢#6S-Lyapunov
function”, which fully characterizes input-to-state gtay in the sense that it is
both necessary and sufficient for it. A functivh R" — R is an ISS-Lyapunov

function for (1.38a) if it is bounded by two cla8&, functions
a([[X) <V(x) < az(||x]), vxeR" (1.40)

and its time derivative satisfies

oV (x)
0X

f(x&) < —as(|[x]]), vxeR", when||x|| = as([|€]]), (1.41)

whereas(-) € Ko andaa(-) € K. A system (1.38a) is ISS if and only if there exists
an ISS-Lyapunov function for it (Theorem 10.4.1, [12]).

Condition (1.41) may be difficult to check. Alternativeliat same functiol
is an ISS-Lyapunov function for (1.38) if and only if (1.4@)Its, and there exists a
classK. functiono such that the time derivative bfalong the solutions of (1.38a)
satisfies (Lemma 10.4.2, [12]):

aV (x)
0x

f(x,&) < —as(|[x]]) +o(llE]l) (1.42)

To concretely see how a Lyapunov function satisfying (1at@) (1.42) guaran-
tees (1.39), suppose
X=X+ x%€. (1.43)

Just as in Example 1.1.1, the “disturbance” inpig amplified by a quadratic non-
linearity. However in this case, no boundéadan destabilize (1.43) owing to the

presence of the strongeix® term. To show this, we first demonstrate that the func-
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Section 1.2: Stability of Cascade-Connected Systems
tionV = %xz is an ISS-Lyapunov function. Its time derivative is:
—><4+x3£(t)
x4+x [~ b+ x€(t) — ()2 +&(1)?]
—2(3x— &)+ ()
&(t

——x4+x )2 (1.44)
=LA (L)) )
—zX4+E(t) ~ (1.45)

Since (1.45) matches the form (1.42), we conclude xhat—x3 + x?€ is 1SS with
respect t&. To see why an ISS-Lyapunov function is sufficient to obtaboand
such as (1.39), we will examine the solution to the diffei@ribequality (1.44),
which can be written:

V < —3V24H2VE(L)2 (1.46)

Instead of solving (1.46), we will solve the equality
W= —3w? + 2wE (t)? (1.47)

and then apply the comparison principle (Lemma 3.4 [15])dtam a bound on
V(t), and hence(t), in terms of||x(0)|| and ||§(t)||c,. To solve (1.47), we first
employ a similar change of variable as before, in order tostfiam this nonlinear

DE into a linear one. Let= . Then
7=3—27(1)2 (1.48)
This DE can be solved using the integrating faefét’dt, resulting in:
2(t) — & 2 B [ 005(0) 4 3 /0 ' U E@ o). (1.49)

Recalling thatw(t) = Tlt) and thatv (t) = 3x(t)? < w(t) by the comparison princi-
ple, we obtain:

_ x(0)2e2/ &()*t
= 2UE00-0 ¢ 3x(0)2 [T 2 E@ dalaqy

(1.50)
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The first thing to notice in (1.50), is that the denominatar naver vanish and that
all terms in both numerator and denominator are non-negétivall &(t) and all
initial conditionsx(0) andg(0). Therefore the solutior(t) exists for allt > 0 —i.e.
has no finite escape time. To establish tt{&it is bounded and converges according
to (1.39), we examine the behaviour of the bound (1.50) whgg(t) = 0, and 2)
Et) =M= ()] c..-

1. Wherg(t) = 0, the indefinite integraf & (t)°dt evaluates to some constant
c1 ande® cancels from numerator and denominator in (1.50), leaving

x(0)?
< 7 1.51
~ 1+ 3x(0)% (1.51)
which converges to zero dstends to infinity. We therefore associate
% with the X £-class functio(||x(0)]|,t) in (1.39), sincey(0) =
0.

2. Wheng(t) is replaced with its supremuM in (1.50), we obtain

2:2M%t
e X0
1+ 3x(0)? [ eMTdt
2M2 2:2M?t
- X(0) e: (1.52)
2M?2 + 3x(0)2e2M% — 3x(0)2
which, ast tends to infinity becomes:
. . 2M?2x(0)2e2M™ 2
lim 1x(t)? < lim = M2 1.53
t—o0 2 ( ) T t—oo 2|V|2 —|—3X(0)2€2M2t _ 3X(0)2 3 ( )

We therefore associatg’2M?/3 with the classK gain functiony(M) in
(1.39), since lin.. B(||x(0)||,t) = 0.

Although the characterization of the ISS property represarsignificant ad-
vancement in relating the I/O behaviour of a nonlinear sysiath its internal be-
haviour, there are two difficulties with it. First, it is on&n analysis tool and may
not help us actually design stable cascades in the obseowémller context. Sec-

ond, there is no systematic way of finding an ISS-Lyapunoxtion for a general
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nonlinear system; it may be impossible to find such a funatien for an ISS sys-
tem. We quote a result intended to help establish ISS witresdrting to a search

for an ISS-Lyapunov function:

Theorem 1.2.2(Lemma 4.6, [15]) If the C! vector field {x,&) in (1.38a)is glob-
ally Lipschitz in x and, and the unforced systexn= f(x,0) is GES at x= 0, then
(1.38a)is ISS with respect té.

Certainly, checking whethefr(x, &) is globally Lipschitz is easier than search-
ing for an ISS-Lyapunov function. However, both requiretsest this theorem are
extremely restrictive. To require that the growth of a noeéir system’s velocity
vector be linearly bounded severely reduces the varietydofissible nonlineari-
ties. Designing a SFB controller for a general nonlineatesyisso that its origin
is GES may also not be an easy task; for instance, if the ptinita a coordinate
change in which a SFB control can be designed such that ire tbmsrdinates the
system is GES (i.e. as the control (1.12) did for system (). &lnonlinear change
of coordinates generally does not preserve the statesecgerce rates. In other
words, in the original coordinates we can expect GAS, butneaessarily GES.
Although the linear CL system under ESFB (1.8) certainlylijea as ISS under
the above theorem, possibly not many nonlinear systems do.

From (1.51), it is clear that ISS implies internal stabjlignd from Example
1.1.1, it is evident that internal stability does not imp§3. Therefore, ISS is a
much stronger property than internal stability and is sigfitto guarantee I/O sta-
bility. However, ISS is not necessary for 1/0O stability, pisy leaving room to
weaken conditions such as those of Theorem 1.2.2.

There are in fact several results that attempt to identifyoeeriminimal” set of
conditions under which the cascade interconnection (lis3globally stable. For

example, let us re-write (1.38) as

x= f(x,0)+[f(x&) — f(x,0)] 2 F(X)+W(x,&) (1.54a)
£=9(&), (1.54b)

Then, by Proposition 4.11 in [13] the composite system is GA&, &) = (0,0)

18



Section 1.2: Stability of Cascade-Connected Systems

if (1.54b) is GAS a€ = 0,x = F(x) is GES atx = 0 and the interconnection term

W(x, &) is linearly bounded as

WO ) < ya(llElD X[ +v2(lI&1)- (1.55)

for some clas& functionsy; andy.. In this case the growth restriction is imposed
only on the interconnecting tergx, &) as opposed to the entiféx, &) in Theorem
1.2.2. It is also possible to achieve GAS of the compositéesydy requiring
(1.54b) to be GES at the origin (which is plausible, as fomegke in (1.20b)) and
x = F(x) to be only GAS, while the interconnecting nonlinearity isl sequired
to satisfy (1.55). In addition, the Lyapunov function asated withx = F(x) is
then required to satisfy a polynomial growth bound (Theo#dermand Proposition
4.8, [13]). These conditions are still not much weaker ttersé of Theorem 1.2.2.
It appears that most attempts to weaken the ISS requirernesat at the expense
of limiting the nonlinear growth rate of the upper subsystétawever this restric-
tion can be considerably weakened if we instead considerglainal stabilization

of the cascade (1.54). For example, recalling equatior7j1.3

(k+1)x2(0)
elk+1-x2(0)&(0)] + e ¥%(0)€(0)

which is the solution of; = —x +X3& (0)e~, we notice that the the stx(0),&(0)) :

Xz(t) =

(1.56)

—o0 < X(0)&(0) < (k+ 1)}, contained within the ROA, can be arbitrarily expanded
by increasing the gaik, showing that non-local stabilization is possible in the ab
sence of the ISS property, and in the absence of any growthctess on the
interconnecting nonlinearity (i.e<% is not globally Lipschitz). From this example,
it would seem that even though global stabilization may regb@ssible with ESFB,
we may achieve an arbitrarily large ROA for a composite Clteays simply by in-
creasing the convergence rate of the observer. Evidenslgrnme circumstances this
strategy may work; however, in [24] and [22] this idea is shdw fail in general
due to the so-called “peaking phenomenon”. In the sequelyiVexamine more
closely the essential reason for the failure of this idear $table linear systems,
peaking refers to a transitory increase in the magnitudewiesstates before they

decay.
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1.2.1 The Peaking Phenomenon

In order to further understand the mechanisms that encuthberonlinear separa-
tion principle, we now examine some aspects of the work if. [R2this paper, the

authors study a “partially linear” cascade such as

X=F(X)+y(x§) (1.57a)
§ = AZ+Bu, (1.57b)

and investigate various conditions on both subsystemsruvitieh the cascade can
be globally or semi-globally stabilized by partial statedback. Such system struc-
tures may arise as special cases of systems that have beaiypstate-feedback
linearized [25], or I/O state-feedback linearized [26].idtfound in [22] that if
peaking states enter the interconnection tegrnthen the cascade (1.57) cannot be
semi-globally stabilized by a feedback of the foas- a(¢).

In terms of the nonlinear separation principle, we are muerésted in systems

of the form

X=F(X)+P(x,§) (1.58a)
§ = AL (1.58b)

where the input has already been assigned amegresents the state estimation er-
ror, resulting from dinear error dynamigLED) observer. Therefore in the sequel,
we translate some of the pertinent ideas in [22] to the ptesamtext by investi-
gating the possibility of achieving a semi-global nonling@paration principle that
relies on any globally asymptotically stabilizing SFB amhiusing state estimates
generated by a LED observer.

For the sake of concreteness, we choose to demonstratealysiaiiby means of
an example. In the literature, the effects of peaking arndftustrated by examples
involving some sort of high-gain design which assigns regmbatable eigenvalues
to the linear component (1.57b) or (1.58b) of a cascade —oséedtance Example
1.1in [22], or Example 4.29 in [13], or the example on page B145]. The fre-

guency with which one encounters this kind of example almgvsis the impression
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that the difficulties caused by peaking result only from gesiinvolving repeated
eigenvalues, which is false. For this reason, we chooseadtyza the following

cascade system:

X = —kx+ &x? (1.59)

:51 —L;1 1 0] [&
&2 =|—L2 0 1| [&| £AF (1.60)
&3 —Ls 0 0] &3

where (1.60) could be the error dynamic of a LED observer(&rk®) could be one
of the states in the CL plant under ESFB, wktn adjustable control parameter.

Our objective is to analyze how and when peaking occurs ialirsystems,
and why it destroys the possibility of even semi-global gitzdtion. To that end,
we will examine the response of (1.59) to edgtt) as the gaind are increased.
Throughout the discussion, we hope to clarify how the steddipeaking expo-
nents” [22] quantify peaking behaviour in the various statea linear system, and
can be used to predict whether a cascade such as (1.59)-€ar6be semi-globally
stabilized under minimal assumptions on the individuakysbems.

We assume that the gaibhsare chosen so that the spectrumfaé
o(A)={AeC : |[A=ANl|=0} ={—-A1,—A2,—A3},

where the\; are distinct and strictly positive. We begin by decouplihg subsys-
tem (1.60) usin the change of coordinates P~1€, where we take

A Ao A3
P= [ AA2+A3A1 AtA2+A2A3 AoA3+A3A1] . (1.61)
A1A2A3 A1A2A3 A1A2A3
Then
-A 0 0
z=(PAPzZ=| 0 -\, 0 |z2Dgz (1.62)
0 0 —A3

whose solution is

[e"lt 0 0

0 e o0 ]z(O)A(p(t)z(O). (1.63)
0 0 e
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In the original coordinates the solution to (1.60) is
§(t) = Po(t)P~'E(0). (1.64)

the expressions for the elementsRui(t)P~ could be rather complicated, and we
omit to write them here. In order to see the effects of peaktragtually suffices to
examine the response of (1.64) to only one of the initial domas. For simplicity,
we arbitrarily choos€€1(0),&2(0),&3(0)) = (1,0,0) and instead write the response

in terms of the three exponentials governing the motion:

E1(t) Y Y A3 e Mt
&) = W]O\l—)%‘) )\%(7\24‘)\3) —7\5()\14—7\3) A%(}\Z‘l‘)\l) et
&3(t) AA2A3 —A3A1As Ny gt

lI>

. [c11 C12 Ci3 e Mt
I — Aot
iAo (—hg |21 C22 C23 (€ (1.65)
[C31 C32 C33| [e e

We are now ready to analyze the behaviour of (1.59) wheri, 2 and 3. The dy-

namic (1.59) is familiar by now, and from Example 1.1.1 wewribat its solution

looks like: .
_ X0
X(t) = T XOR (1) (1.66)
where we define
t
R(t) = —/0 e Mg (T)dt. (1.67)

The expressioR(t) is important because it relates directly to the ROA of the cas

cade. From (1.65), we can express e&¢h) as

3
&it) = ()\1—?\2)1()\1—?\3) Z Civjei)\jt (1.68)
=

and therefore
3
—Gi,j / KT AT
e “e Midt
le A1—A2)(A1—A3)
Clj( —(k+Aj)t _ 1)
)\1—}\2 }\1—)\3)(k—|—)\)

3

=2

:l

(1.69)
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Before discussing the significance of the expression (1vé®jirst provide a graph-
ical analysis of the behaviour of boR(t) andg;(t), i € {1,2,3}, when the conver-
gence rate of thé-subsystem is increased. We introduce a gain factyr which

we amplify all eigenvalues ok simultaneously. In the figures that follow, we take
(A1,A2,A3) = (1,0.5,1.5). (1.70)
and amplify them by = 1,y=5 andy = 10.

State Peaking for Various Gains

0 05 1 15 2 25
Time

15 2 25
Time

Figure 1.2: State Peaking with IncreasingAs y is increased, the third stag(t)
exhibits the greatest peaking effect, while the s&até) experiences no peaking at
all.

Figures 1.2 and 1.3 show how each of theespond when the convergence
rate is increased. While all states converge fastey iasincreased, the peaking
behaviour of some states becomes more pronounced. FromeRidilit is apparent
that the peak in stat&; experiences the greatest increase witbhile the state;
experiences virtually no transitory increase in magnitwih an increase in.

In Figure 1.4 we look for the maximum magnitudeRft) over time, as this

quantity determines the set of initial conditiox®) for which (1.66) does not es-
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State Value Comparisons for Various Gains
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Figure 1.3: A Comparison of State Behaviours for Increaging

Values of Expressions R i(t) for Various Gains

Time

Figure 1.4: The Behaviour of the tefiR(t) asy is varied.

cape to infinity in finite time. For notational convenience, define

R = mtax|Ri(t)\. (1.71)
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If Ri(t) is a positive quantity for all time, then the set of initialnztitionsx(0) €
(—1/R, ) guarantee convergence@dt),&(t)) to the origin. Likewise, iRi(t) is
a negative quantity for all time, then the same se&t@® € (—«,1/R’). Therefore,
the set of admissible initial condition can concisely beregped as:
Q= {x(O) : —sgnRi(t > 0))x(0) < %} (1.72)

If &1 is driving the nonlinear subsystem (1.59), then we note ftbencorre-
sponding plot ofR((t) that increasing the gaipincreases the size @ sinceR;
decreases. K> is drives the nonlinear subsystem, we notice Ridhcreases witly
to R; ~ 1.1 wheny = 10. This value does not change significantly wiénfurther
increased —i.e. foy = 30, we still observéR; ~ 1.1. On the other handR; shows
an increasing trend with increasiyg In fact, wheny = 30, we observ&} ~ 6.5.
This fact indicates that if the stagg drives the nonlinear subsystem (1.59), then in-
creasing the convergence rate of §asubsystem actuallgecreaseshe size of the
setQ, which is related to the size of the composite ROA. We noté ‘theaking”
in the termsRi(t) correlates to that of the associated s&t¢), which illustrates
how the peaking phenomenon can obstruct the possibilitpoflacal stabilization
of a partially linear cascade. These observations are stemsiwith the following

theorem, which we rephrase here in the context of cascadbsasy(1.58):

Theorem 1.2.3(Theorem 4.41, [13])Assume A is Hurwitz, and that its spectrum
can be arbitrarily assigned. Also assume that F (x) is GAS at x= 0. If only non-
peaking components of the stgtenter the interconnection tergn(x, &), then semi-
global asymptotic stability of the cascafe58)is achievable via the eigenstructure

assignment for A.

To complete our analysis, we make some interesting obsengalinking our
graphical arguments and the structure of equation (1.6%heonotion ofpeak-

ing exponentsliscussed in [22]. We consider all Hurwitz matrices in theexer
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canonical form

Ly 1 - 0
A— | T
gy O - 1
Ly 0 - 0

and definea =2 min{Re(Aj) : —Aj € a(A)}. Then, the solution t§ = AZ is bounded
by [|&(t)|| < k|[&(0)||le . Itis noted in [22] that in linear systems peaking occurs
because in general it is not possible to choose the gaittsmakea larger without
also makingk larger —i.e.k = K(a). According to [22], any given linear combi-
nation of statey = C& will have associated with it a peaking exponentso that
it is bounded by||y(t)|| < a™|&(0)||e . It is interesting to associate this fact with
the following observation. If all eigenvalues Afare multiplied simultaneously by
a gainy in our previous example, then in consideration of (1.68) @n@5), the
solution of (1.60) can be re-written as:
i 3
&) = o iy AZ TR Z ci,je it (1.73)

which offers clear insight into the peaking behaviour of theee states. Fdr=
1, the stateg;(t) does not get amplified agis increased, sincg cancels from
numerator and denominator in (1.73). In effect, we may say&(t) responds
with a peaking exponent of zero —i.e. although the convergeate ok 1 increases
with an increaseq, &1(t) itself is amplified byy™ = y°. On the other hand, by
this interpretation the peaking exponents associated &yithnd &3 are 1 and 2,
respectively’. For peaking exponents> 0, the associated signals exhibit peaking,
and prevent semi-global stability of cascades such as)(if. B8y are present in
the interconnection termp(x, &) [13].

The example cascade (1.59)-(1.60) is intended to draw ado@nwaith a CL
plant under ESFB, using state estimates generated by a LE&\adr. In general,

a SFB control law relies on all state estmates, implying #tlastates of the error

SActually, this can also be intuited by observing that thearacal formA is “almost” a chain of
integrators. Therefore, if the stafg converges at a rate §f(t) ~ e &, then the staté&; is roughly
its time derivative, and will converge & (t) ~ —ae &, and so on as we progress through the chain.
This observation implies that higher-indexed states is ¢hain will have higher associated peaking
exponents, exhibiting greater peaking behaviour [27].
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dynamic are present in the coupling tedrtx, ). Then from the preceding analysis,
it is clear that we cannot even expect to have a “pseudo-sepamprinciple” for
nonlinear systems involving a LED observer and any nonHyp@symptotically

stabilizing SFB control.

1.3 Nonlinear Separation

The preceding discussion makes clear that non-local OFgmés nonlinear sys-
tems must take into consideration the I/O behaviour of thatpf it is to consist of a
dynamic component. Any such design cannot ignore the ioterection properties
of the plant to dynamic components such as observers, asiesiddhe classical
separation design. Therefore, we must broaden our notidsegfaration”, and
hence our perspective on the possible approaches in andyélss non-local OFB
problem for nonlinear systems.

Since the observer-plus-SFB-control paradigm seemsalatu®©FB design, we
must clarify exactly what we mean by the word “separationthi@ nonlinear case.
We broadly categorize all separation approaches to the Qéfdem as those that
loosely associate the role of the dynamic component of th Wikh the estimation
of the plant’s state, with the intention of using these eates in a (possibly modi-
fied) SFB control. Then, the worgkparationrefers to some degree of anticipated
design freedom in terms of choosing- a(&,y) andE =T (&,y,u)in (1.2) indepen-
dently of one another. With this clarification, we offer tlidwing categorization

of possible approaches to the non-local OFB probfem:
1. Separation Designu = a(x) so thatx'= f(x) + g(x)a(x) is non-locally
asymptotically stable. Then, independently design a By§t& r(&,y),
whose function is associated with generating an estimaftéhe true state

X. Implementu = a(X).

6in Remark 10 of [20], a similar categorization is given, ke tontext is different. Freeman
interprets the dynamic component strictly as an obserwertlae controller is static and belonging
to a specific class of controllers. Furthermore the intaref0] is whether one can make a general
statement on the possibility of global asymptotic stabtian within any of the four nonlinear sep-
aration categories, whereas our interest is in classifgiegrarious available solutions and possible
approaches to the problem.
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2. Controller SeparationDesign anyu = a(x) so thatx'= f(x) + g(x)a(x)
is non-locally asymptotically stable. Then, design a smsﬁ'e: r(&,y)so

that the coupled system

x=f(x) +9(x)a(g)

is non-locally asymptotically stable.

3. Observer SeparationDesigné = I'(&,y) whose function is associated
with generating an estimateof the true state. Then designu = a(X,y)

in such a way that the coupled system is non-locally asynuatibt stable.

4. Non-Separation ApproactDesignu = a(¢,y) andé =TI (&,y) interde-
pendently so that the composite system (1.3) is non-loealjynptotically

stable.

Observer and Controller separation suggest the posgibilihodifying the con-
trol design or observer design (respectively) in order togensate for the dynamic
coupling between thé subsystem and the plant, while leaving freedom in the de-
sign of the observer or controller (respectively). We wélésn the literature survey
that follows, that many existing solutions to the OFB probltall within one of

these four categories.

1.4 Literature Review

We divide the following literature survey according to winat the design is semi-
global or global. This is a natural categorization whichogatizes the different set
of tools and system restrictions (with some overlap) ugugdplied in either design.
At the end, we give an overview of literature dealing speaifjcwith multivariable
OFB results.
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1.4.1 Semi-Global OFB

Research into semi-global OFB designs became popular taéepublication of
[28], where a restrictive class of “fully linearizable” $gms is considered — i.e.
systems that are simultaneously linearizable by statéofegidfrom input to output

(I0L) and from input to state (SFBE)and can therefore be expressed as

X = Acx+ Be(@1(X) + @2(X)u)
y = CeX

whereA: has 1's on the superdiagonal and zeros elsewBgre,[0, .. ., 0, 1]T, Ce=
[1,0,...,0], andg(X) andgy(X) are some nonlinearities, witpp(Xx) nonsingular for
all x. First, the authors design a globally asymptotically siabig state feedback
controlleru(x) = (qo(x)) ~*(—@10(X) + a(x)), wherea(x) is any control capable
of compensating for the inexact cancellation of the nomliitees @1 (x) and @(X)
by their nominal valuegyo(x) and @o(x)®. Then, they design high-gain (HG)
observer much like the one originally introduced in [29]damalyze the effects
of implementing the ESFB(X). Aside from the modeling uncertainty (which they
assume is compensated for in the conti@{)), they identify a second disturbance
term resulting from inexact cancellation of the nonlingasi due to the use of the
state estimat& ihstead of the true statein u(x). Although the HG observer has
excellent disturbance rejection properties with respedhis second disturbance
as its gain is increased, the inevitable presence of peakitige observer states is
shown to have a destabilizing effect on the composite systémauthors solve this
problem simply by saturating the contigX) and show that this technique enables
semi-global stability, with the observer gain affecting gize of the CL ROA. This
design is an example of controller separation, as freedagivé in the design of
u(x).

An important result that followed was given in [30], and eledted further in
[31] and [32]. As the title suggests, in [30] the authors destiate that if a given

"Please see Theorem 4.2.2 and Theorem 2.2.1 (respectivghg]ifor sufficient conditions and
associated transformations.
8They give a concrete example of a Lyapunov redesign SFB ttaiaplishes this.

29



Section 1.4: Literature Review

smooth nonlinear system is globally asymptotically staable by exact SFB and
is uniformly completely observab{&)CO)? then it can be semi-globally stabilized
by OFB. In this paper Teel and Praly append a number of integr#o the input

side of the system to avoid using input derivatives, and wath this augmented

plant:
x = f(x,up)
Up = Up
Unu =V

Sincex'= f(x,u) is assumed stabilizable ly there exists a state feedback control
law v = a(x, uo,...,Un,) that globally asymptotically stabilizes the augmented sys
tem (this can be done by backstepping, for instance). Themlasly to equation

9The notion of UCO (also referred to as “uniform observagi)itvas first introduced in [33]
for nonlinear systems. The essential implication of congptEbservability is that theoretically it
is possible to extract full state information at an instaintime given exact information about the
inputu(t), the outputy(t), and a sufficient number of their derivatives at that timehé preceding
statement is true for any time instant, then the obsentgliglisaid to be uniform. For the system
(1.1), there are two equivalent characterizations of UCSe3ys:

1. the system is diffeomorphic to [29]:

Xi =Xit1+0i(Xe,. .., %), 1<i<(n-1)

: 1.74
o = @) + (X (.74

2. there exists a unique smooth functipf) such that (Section 9.6, [17]):
X(t) = LIJ(y7y7 A 7y(n71)’ u’ u7 M u(niz)) (1-75)

The second characterization can be seen as follows. Dgfifely,y,....y"" Y]T andu £
[u,u,...,u™21T. Then, taking successive derivatives of the output resals= ®(x,T), with
®(0,0) = 0 wheny = h(x) is zero atx = 0. By definition, a UCO system has

rank[acb(x’ u)
0X

} =n, VxeR" voeR"™! (1.76)

which, by the Implicit Function Theorem implies (1.75). &dfively, (1.76) means that
there is no inputu that can destroy “observability” — i.e. falsify the equalifl.76). We

note two facts: first, it can easily be shown that the usuakwofadbility condition requiring

spar{dh(x),deh(x),...,dL’f‘*lh(x)} = R" is necessary for (1.76) to hold when= 0. Second,

(1.76) allways holds for linear systems, for any input — ipdain “observability” is equivalent to
UCO for linear systems.
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(1.75), they express the stateds = @(y,V,...,y"™), uo, Uz, .. ., un,) Whereu; is the
state of the(i 4+ 1)th integrator after the plant input, and design a HG obsexver
estimate theny, derivatives of the output needed for the knowledgg(of. Finally,
they implemenv = a(@(¥,Y,...,9™), ug, Uy, .., Un,),Uo, U1, ..., Un,), applying the
same saturation technique used in [28] in order to preventléstabilizing effects
of peaking. The dynamic component of this OFB law consistheh, appended
integrator dynamics, and thgth order HG observer. If for a given nonlinear sys-
tem the functiong(-) can easily be found, then this method is constructive. The
existence of such a function is guaranteed by the Implicitdion Theorem, pro-
vided the system is UCO; however finding an explicit exp@ss$or ¢(-) may be
difficult. Therefore, this result is generally regarded asagistence result, rather
than a practical result.

In [34] Khalil improves his previous result [28] by broadegithe class of sys-
tems to which the techniques in [28] are applicable, andrpm@ting some of the
techniques introduced in [31] into his design and analydesextends the analysis
in [31] to demonstrate that if a semi-globally asymptoticatabilizing exact SFB
exists for a nonlinear system belonging to a certain clds) ESFB “recovers”
the performance of the exact SFB controller, in the sendeaththe HG observer
gain is increased, the trajectories and the ROA of the CLesysinder ESFB ap-
proach those of the CL system under exact SFB. Although thefss/stems he
considers is not as broad as the set of all stabilizable UG®eB)s, his result is
fully constructive and easily implemented.

The results in [34] and [31] are furthered in [35] and [36],ievhlikely represent
the current state of the art in semi-global OFB stabilizabbnonlinear systems.

Although there are many extensions available, the aforéoreed papers cover
the main ideas, generally used in most other papers on deimgOFB. For ex-
ample, in [37], the authors consider a multi-input, singlépait system that is not
affine in the control, and whose modek(= f(x) +g(x,u), y = h(x), xe R") is
not necessarily valid over all &". They identify a set of conditions that guaran-

tee that such a system is transformable to the form (1.74haoat HG observer
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can be designed. The conditions they provide are very gditdlthose guarantee-
ing the existence of a NOF, and they point out that for systeatsaffine in the
control, transformability into (1.74) is stronger than UCIlhen, assuming there
exits a semi-globally stabilizing exact SkB= a(x), they design amth order HG
observer on the basis of the model’s Lipschitz extensionexqdicitly provide a
dynamic OFB in terms ofi(X).

One may argue that given the unrestrictive set of conditsiffcient for the ex-
istence of semi-global OFB relative to the ISS or growtle rasstrictions that allow
global nonlinear OFB designs, it appears that semi-gloésiigihs are more practi-
cal and more worthy of research attention. However, in athefabove references
the key ingredient is a HG observer whose use in physicalegifns has serious
practical limitations. The use of high gains is usually assed with “differenti-
ation”, and hence the amplification of noise. Global desmgrserally dispense of
this difficulty, and in that sense are more elegant. Furtleemthe designer does
not have to worry about sizes of compact sets of initial coons for which the
system states are guaranteed to converge. The developfrigobal OFB designs

is deemed important, since a designer should have sucloffa@de her disposal.

1.4.2 Global OFB

The global OFB problem is significantly more difficult tharetiemi-global OFB
problem, especially if we wish to relax the growth restoos usually imposed on
the system'’s nonlinearities. From Example 1.1.1 and owudision in Section 1.2,
it is natural to expect that global OFB stabilization of noahr systems requires a
more stringent set of restrictions on the dynamic struabfi(é.1) than semi-global
OFB stabilization. Indeed, Mazenc et al have shown in [38%&yeral counterex-
amples that even if a system is globally asymptotically itale by exact SFB
and satisfies a strong observability condition such as UC@ay not be globally

stabilizable by any OFB. They have shown that for an enties<lof nonlinear
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systems diffeomorphic to the following foAh

n=rn.z,....z 4

Z =171, 1<i<(r-1)
| (1.77)
z=7+ftn,z,...,z-1)+00,z,...,z_1)u

y=h(z)=27
there is no globally stabilizing OFB when

n>
T
regardless of the stability properties of tipesubsystem. The obstacle identified in
[38] is a so-called “unboundedness unobservability” (Utaerty, which implies
that even though (1.77) may be observable and stabilizabhay have some states
that escape to infinity in finite time without being “noticetiirough the outpuy.
In other words, even if those states are observable thrgutie fact that they are
escaping to infinity in finite time may not be observable.

Though there appear to be some theoretical limitations aat vghpossible for
global OFB designs, the complete set of systems for whicbadl@FB is possible,
and conversely the set of systems for which global OFB is natible, have not
been fully characterized. The set of systems for which weakhow to design
globally stabilizing OFB laws is likely not the largest susd#t. We proceed to give
an overview of the key contributions to the global OFB praofle

One of the earlier investigations of a global separationgipie is provided by
Tsinias in [39] and [40]. In [40], Sontag’s ISS condition tbe global stability of
cascades is applied and extended to ESFB for a class of gjeadiailinear systems

of the form

x = f(x,u) +uBx

y=Cx

10This is a special case of the normal form introduced in [10f Mormal form plays an important
role in global OFB designs for nonlinear systems and will lsewkssed in the next chapter. Some
variant of the normal form is usually a starting point forlggd OFB designs.

33



Section 1.4: Literature Review

where the norm of the rate of changefafith respect tox is assumed to be bounded
for all x andu. For this class of systems, Tsinias translates the ISS tiondinto a
concise set of algebraic conditions, which, if satisfiedirgntee the global asymp-
totic stability of the composite system consisting of anestaer and the CL plant
under ESFB.

A more general result also relying on the concept of ISS ismiv [41] for a

class of SISO systems of the form

n=r(n,z
Z =71+ fiin,z1) +0i(z), 1<i<(r—-1)

(1.78)
z =u+fr(n,z1) +or(z2)

y=424,
where in particular it is important to note thatis allowed to enter the chain of
integrators nonlinearly. Under the relatively strong asgtions that the inverse
systemn = (n,y) (i.e. the zero dynamics) are ISS with respecy tnd that the
nonlinearityg(n,y) £ [f1(n,y),..., fr(n,y)]" satisfies a small-gain condition, the
system (1.78) can be globally asymptotically stabilizedabyth order dynamic
OFB. The construction of the OFB law is similar to that in [6]ying on a SFB
designfor an observer for (1.78). However, the final expressions ditpera gain
function similar to the one in (1.39) whose existence is fgolsby the assumption
that then-subsystem is ISS. Since such a function is generally diffiodind, this
paper presents more of an existence result than a pracmat.r
Another generalization is presented in [42] to systemslaimo (1.78):
n="r(n,z)
Z=2:1+0i(N,2,...2z), 1<i<(r-1)
(1.79)
z=u+o(n,z,...,%)
y=1,
where then-subsystem is assumed to be locally exponentially staldd &8 with

respect toy. However, the nonlinearitieg are required to satisfy the following
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rather restrictive assumption:

‘69. !
= 1

Mi(X,y) (1.80)

azJ

for some continuous functioll; which is strictly positive everywhere. Under this
assumption, Tsinias shows that there exists a dynamic O&Rjtbbally asymptot-
ically stabilizes the origin of (1.79).

Under slightly stronger structural conditions, it is pasito develop fully con-
structive global OFB laws for minimum phase systems whosdéimearities depend
on the output only, without imposing any growth restricéam such nonlinearities.
This has been demonstrated primarily in [6], [43] and [2] ethwill be discussed
in detail in the next chapter. The system structures consitie these papers are
all variants of thenormal form(NF), or a subclass of the normal form known as the
output feedback forfOFBF). We postpone a detailed discussion of these system
forms until Section 2.2. For the systems studied in thesengapis not necessary to
assume any sort of “small gain” property for the nonlineasibr any ISS condition
on the zero dynamics, although as pointed out in [41], susbraptions are often
made implicit by the system structure.

In the category of controller separation, Arcak, Praly amdkigtovic have con-
tributed [44], [45] and [46]. In [44] an OFB design is giventhie basis of a “circle-

criterion observer”, designed for the following multivabie system structure:

X = Ax+ Gy(HX) +p(y, u)
(1.81)

y=Cx
where each element of the nonlineasty) is assumed to be a nondecreasing func-
tion of a linear combination of the state. Owing to this spepiant structure, a
linear matrix inequality can be set up to solve for a set of §am vectors used in
the observer design. The OFB design they propose treatsbger\er error as a
disturbance, and introduces terms that allow the planéwes interconnection to
satisfy a small gain criterion similar to the one introdu@ed47]. An interesting
property of circle-criterion observers is that their erconvergence rate is depen-

dent on the magnitude of the plant state. This fact is exgadaiit [45] where Praly
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and Arcak develop a set of sufficient conditions guarantg@AS of a CE design.
Their assumptions include the standard stabilizabilispagption, and a specialized
detectability assumption in the sense that the observenigargence rate should be
dependent on the plant state. A circle-criterion obseresigh is further refined
in [46] for the purpose of OFB design.

An interesting result is given Tan et al in [48] in which a ghbbtabilization and

tracking OFB is proposed for a system of the form

X1= X2+ @u(y)
X=Xt @Y) V(Y 1<i<(r—1)
Xt =X+j+1+ @i (Y) +Yj(Y)Xe +Gr+jo(y)u, 0<j<(n—1-r) (1.82)

Xn = Gn(Y) 4 Yn(y)X2 +gno(y)u

y=>X1
where thep(-) andy(-) are smooth nonlinearitiesy-) is bounded away from zero,
and the coefficientg;, r <i < n form aHurwitz vector(please see Section 2.2).
This system form slightly generalizes the OFBF, in thatld\as the unmeasureg
to appear affinely in all equations after the first. The apgeae ofx, implies that
the form (1.82) no longer directly admits a LED observer gesis the OFBF does.
Nevertheless, their design is based on an observer bapksggechnique [6]. The
clever trick used here is a nonlinear transformation of thenf&§; = x> — wi(x1)
which results inE-dynamic that is linear and stable & driven by nonlinearities
which are exclusively functions of the outpytthus admitting an observer design
which cancels the nonlinearities by an appropriate outpction term; in this
way, the technique is strongly reminiscent of Marino and &osrFiltered Trans-
formations(FTs)!, and suggests that FTs may find other creative applications i
the future.

A series of papers influenced in part by the result in Tan et &49], [50]

11please see section 2.4.1, and [2] for more details.
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and [51]. In [49] the following system is studied:
N =A(y,un+B(uy)
y=Wo(y,u) + Y1(y,u)n (1.83)
p=nh(y,n)

wheren € R", the outputy € RP, the inputu € R™, andp(y,n) is a “performance
variable” which is to be regulated to zero by dynamic OFB whil other state vari-
ables remain bounded. System (1.83) is more general thiRlbethe OFBF stud-
ied in [43], [6] or [2] in that it does not necessarily havedgezero dynamics, nor is

it necessarily affine in the contral However, the system must satisfy two main as-
sumptions. One, there must exist SBEB- a(n,y) which regulate®(y,n) to zero,
keeps all other variables bounded, and renders the CL sygtamally “bounded
input bounded state” (BIBS) with respect to any indutvhenu = a(y,n +d(t)).
Second, there must exist a functipfy) so that the system

oB(y)
ay

- (A(y, - BW u>) ; (1.84)

is stable for any andu. Furthermorez(t) is required to be such that lim. o (y,n+
z(t)) = a(y,n) (which does not necessitate lim, z(t) = 0). Analogously to Tan et
al [48], theZsubsystem is not an observer, but a dynamic equation giogetime
behaviour of an auxiliary variable defined 28 Mfj —n + B(y) whereM is some
invertible matrix andj is the state of the dynamical component of the OFB:
A=w
(1.85)
u=a(y,Mn+p(y))
with w a new control signal whose expression is chosen to radkke the form
(1.84). Heref(y) is analogous to thei(x;) in Tan et al.

It is also interesting to note that the dynamic componﬁeiﬁ not designed for
the purpose of reconstructing the stgtso its state is not required to converge to
the latter. In effect, such a design does not really belormydeparation category;
the objective is to estimate asymptotically the requitedtrol u= a(y,n), not to

estimate the statg and then use it in a CE design.
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In [50] and [51] these results are extended to systems ofdime 1.83) with
the unmeasureq variables entering the equations nonlinearly. Althougtsére-
sults are quite novel and interesting, the method is dematest ad-hoc on a few
physical and mathematical examples; no systematic methedem guidelines for
constructing a functiof(y) are provided in terms of the system functiohy, u)
and(y,u).

A recent paper that provides a higher-level analysis oftexjobserver sepa-
ration methods is [52]. Therein the authors examine somieeébove-mentioned
global OFB methods which apply specifically to systems ingtneet normal form
(SNF)*2 and try to classify them according to certain propertiehefdbserver.

Other recent directions in the OFB problem include the remho¥the restric-
tive minimum-phase condition required in many of the methadted above, as
well as considering the problem in a stochastic settingndhe presence of un-
certain parameters. Some work in this direction includ&g, [4], [55], [56]. It
is worth noting that most global OFB methods rely on the tépin of backstep-
ping, which is applicable to systems in thigict feedback forn¢SFF). Historically,
this technique has augmented, and in some cases genegllibad nonlinear de-
signs based on passivity methods. Passivity methods rely wry specific set
of structural restrictions; namely, the system must haletive degree one, and
be minimum phase [13]. Backstepping has removed the “velategree one” re-
quirement. There is an analogous method known as “forwgidor systems in
feedforward formand it is found to be useful in global OFB methods seeking to
remove the minimum-phase requirement incumbent in pagsivethods. For ex-
ample, forwarding is used in [57] to remove the minimum-ghasjuirement often

seen global OFB methods.

1.4.3 Multivariable OFB

Although some of the aforementioned work has natural exdesgo the more re-

alistic multivariable case, for several methods such esiters are not obvious. For

12please see Section 2.2
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this reason, we list a few references dealing specificaltit MIMO OFB designs.

A direct extension of Teel and Praly’s semi-global existeresult [30] is given
in [58], where a slightly simpler proof is also provided. HKilig semi-global re-
sult [34] is developed within a multivariable setting. Acdimg to the authors, the
global result in [43] is easy to extend to the MIMO case (aligiothe extension is
not given in that paper). An extension to [6] is possible anmlthsis of the MIMO
strict normal form identified in [59].

Other MIMO OFB methods are obtained by neural networks [60hy sliding
mode control [61]. In [62], the authors consider a MIMO systehose state-
dependent nonlinearity is globally Lipschitz bounded, drey develop a very sim-
ple linear HG observer and a linear HG controller, showirgg the combination
yields global asymptotic stability if the gains are selddafficiently high.

The more challenging multivariable adaptive output fee#baroblem is ad-
dressed in papers such as [63], [64] and [65]. Because ti@mutonsider the
adaptive problem, the structural restrictions on theitesys are often more severe;
for example, in [65], in addition to requiring the number mputs to be equal to the
number of outputs, the MIMO system these authors considerralist consist of
subsystems with identical dimensions and relative degkeether similar result is

given in [66] where a HG observer is used.

1.5 Thesis Objectives

From the preceding literature review, it is evident thatshely of non-local OFB
for nonlinear systems is not complete. Many of the availagéeilts are applicable
to very specific, and often restrictive system structuresthiermore, many seminal
results referenced here are still only at their “theoré¢tickancy” stage — that is,
they are theoretical existence results which are not coctste or cannot be easily
implemented.

In terms of globally stabilizing OFB, we know that the weltdwn ISS and Lip-
schitz growth restrictions are stronger than necessamy.s€arch for a more “min-

imal” set of sufficient conditions guaranteeing the existenf global OFB (akin
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to Teel and Praly’s existence result [30]) is still open. ©®me get closer to a full
characterization of such conditions, there will still be task of “activating®® such
existence theories or analytical tools into explicit, domgtive engineering control

designs. Therefore, a well-motivated effort would be in oh&vo directions:

1. the development of new tools and constructive nonlinemigih tech-

niques (such as backstepping) or,

2. the expansion of the classes of systems to which existiolg tan be

applied to design OFB laws,

or some combination thereof.

Another observation that can be made from this literatureesuis that many
global results rely in some sense on a globally converges¢mier, or a system
structure that admits the design of an observer. Such isabke with the OFBF
and results such as (but not exclusively) [6], [43] and [2hisTfact suggests that
different observer forms might well serve as platforms fa tlevelopment of new
OFB algorithms using existing tools.

Multivariable systems sometimes exhibit certain struadttlexibilities with no
analogue in their SISO counterparts. For instance, sut¢teisdse in nonlinear ob-
server design, where several different generalizatiotisso61SO LED observer are
possible to the MIMO case [68], [69]; in particular, somesledvious extensions
allow for the presence of unmeasured states in some errgysigms while still
guaranteeing asymptotic convergence of the whole [70].onescases it may be
possible to exploit the additional freedoms offered by thétivariable nature of a
system for the development of new OFB laws.

The objective of the work we present in this thesis is to dgveind analyze a
preliminary set of MIMO global OFB designs on the basis of ek triangular
observer form(BTOF) introduced in [70]. To that end, we explore the podisjb
of applying some of the techniques presented by Marino amgef [2]. As an

initial step in this direction, we develop MIMO extensionMfrino and Tomei’s

13K okotovit used this terminology in the interesting asif67].
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global SISO OFB methdd, which is published in [71] and recapitulated in Chapter
3. In Chapter 4 we present an application of observer baostg to a subset of
systems equivalent to the BTOF, where the output dependsrtaangular [72].
Finally, we present an OFB algorithm on the basis the BTOlRgu®ols from [2]
and [1]. Along the way, we hope to provide a clear expositibthe most relevant
tools currently used in most constructive OFB designs.

In the next chapter we provide the preliminary backgrouretius develop our

results.

14From now on, we refer to Marino and Tomei’s global SISO OFBhndtas the MT method.
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Chapter 2

Preliminary Background

This chapter will focus primarily on global output feedba@sults based on the
work of Kanellakopoulos, Kokotovic and Morse in [6], and e and Tomei
in [2], as these results will later be extended to a broadesscbf systems. Prior to
detailing the work in these two papers, we introduce whatadably the most im-
portant tool in constructive nonlinear control: integrdtackstepping. This simple
design technique has been widely used in many creative waysavorth review-
ing. We then present and analyze some of the basic systens fibvath enabled
the designs in [6] and [2], and finally give a thorough exposibof the relevant

techniques developed in the two papers.

2.1 A Basic Tool: Integrator Backstepping

The historical origin of the technique known laacksteppings not clear; report-
edly it has been used implicitly by researchers as early 66 [B8]. However, its
most interesting applications have been collected anddlzed in [1] (and [13]),

which are most frequently cited as sources for backgrounabokstepping. Back-
stepping is most well known for being an iterative methodafstructing explicit

expressions for smooth, globally-stabilizing control $fer a relatively unrestric-
tive class of systems whose nonlinearities are not requoeshtisfy any growth
rate bounds. The most general class of systems to which tepaghsg applies is

the class of systems joure feedback fornil], however a more practical form to
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Section 2.1: A Basic Tool: Integrator Backstepping

consider is the subset class of systemstiitt feedback fornSFF):

( n=T(n,x)
X1 = f1(n,x1) +091(N,X1)%2

X2 = fa(n,%1,X%2) +092(N,X1,%2)X3
ZSFF: . (2.1)

X-1= fro1(N,Xe, . % —1) + Gr—1(N, X1, X —1)Xr
\ Xl’: fr(ﬂ,X]_,...,Xr)+gr(r],X]_,...,Xr>U

wheren € R™, x; e R, i € {1,...,r}, and the function§, fj andg; are assumed
to be smooth withfj(0) = 0. The functionsy;(-) are assumed to be bounded away
from zero for all valuations of their arguments and it is lfiert assumed that there

exists a smooth functioa(n ), with a(0) = 0, so that

n="r(n,a))) (2.2)
is GAS atn = 0. With those assumptions we have:

Lemma 2.1.1.For systenksgr, there exists a smooth, globally asymptotically sta-
bilizing state feedback & 3 (n,X).

The complete formal proof is inductive, and unnecessarg.hEs demonstrate
all of the “mechanics” of backstepping, it suffices to comesitthe special case where
r=2%

n="r(n,x)
X1 = f1(n,x1) +01(n, x1)%2 (2.3)
X2 = f2(Nn,X1,%2) +02(N, X1, X2)u.
This system is shown in Figure 2.1 which shows why this formeferred to as the
“strict feedback” form.
Ideally we would likex; = a(n) since by assumption, thgsubsystem would

then be GAS. To that end, we introduce an error variable

Wy éXl—U(ﬂ)

'Here we will show a combination of concepts presented in Lamén2.1 and 9.2.2 in [17], and
Section 2.3.1 in [1]. A slightly different presentation is@given in the proof of Theorem 2.5.1
in [16]. We provide our own interpretations where appraoeria
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u—»82» x2+81 x1+1“ n
?r ol =/

> S
i 3

Figure 2.1: A system in strict-feedback form. All states ‘deel back” towards the
input; each state is driven by only lower-indexed statesthadhput enters only the
last state.

which we wish to regulate to zero. The dynamic behaviour f tlew variable is

described by

Wy = fl(n,xl>+91(n,xl>><z—ao(;—gwr(n,wwa(n))- (2.4)

Therefore in the new coordinates, the system (2.3) can litewias:

n=r(n,wy)+rn,an))

i = fnws-+a(n) +nws-+aim)e - SV +a) - @5)
X2 = fa(n,wi+0a(n),x2) +92(n, w1 +am),x)u,
where
r(n,wi) 2T (n,wi+an))—rn,am)). (2.6)

Before constructing the feedbaadk= 9 (n,x;) for this system, it is helpful to de-

compose the functioh(n,w;) as
T (n,wi1) = y(n,wy)w. (2.7)

This decomposition is always possible sirfog) is at leastC! (becausd () is
assumed to be smooth) and by constructiofm,0) = 0. As a consequence of

those two facts, we can apply the following trick to constigq, x1); express

L A=
F(n,wi) = /0 wcjs (tautology)
L Am
:/ <ar(r],2)) ds (change of differentiation variable)
o \(L/wy)oz z=sw
2 way(n,ws) (2.8)
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Section 2.1: A Basic Tool: Integrator Backstepping

The first iteration of backstepping begins by introducingther coordinate
shift

W2 = Xp — 01 (1, Wa). (2.9)

Our intention is to design the smooth function(n, ws), with a1(0,0) = 0, so that

the subsystem consisting of tbg, wy) dynamics

n=rn,am))-+wy(n,w)

Wi = fi(n,wa+a(n)) +ga(n,wi+a(n))wa +ai (2.10)
oa
- 280 (. + ).
is GAS at(n,w;) = (0,0) whenw, = 0. To simplify our expressions, we first assign
1 oa(n) )
O = —fi(n,x1) + ——T(n,w1+a +V 2.11
1= g (0 + 25V o) 241)

wherev is to be determined, and re-write (2.10) as

n=rn,am))-+ymn,wywi
W1 = V+0g1(n,wi+a(n))ws.

(2.12)

In this form it is easy to see that witky, = 0, (2.12) can be globally asymptotically
stabilized by. Since the system=T(n,a(n)) is assumed to be GAS at= 0, the
Converse Lyapunov Theorem A.0.2 guarantees the existdra&smooth, proper,
positive definite functiotV (n), and a continuous positive definite functisfin)
such that

ovV(n)

Tr(n,a(n» < -W(n). (2.13)

We then consider the candidate Lyapunov func¥atmn,ws) =V (n) + 3w? and
find its gradient along the solution of (2.12):

Vi < —W(N) 4+ ——=y(N, W1 )Wy + WiV + Wi ga (1, Wy + o (1) )wa. (2.14)

Because of the common factes in the middle two termsy; can be rendered

negative definite (whew, = 0) by choosing

ov
V= —CiWi — %V(H,Wﬁ- (2.15)
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We emphasize the importance of the second term in this esiprest is the means
by which backstepping is able to ensure the internal stghufitheinterconnection
of then andw; subsystems.

The variablex, in equation (2.10) is known asvétual controland

aa(nws) = o (o) + 250 0w a)
— C1Wy — a\g—;n)y(n,wlo (2.16)

is its associatedtabilizing function We note that this expression for the stabilizing
function is not unique; our only objective in its design isremderV; negative
definite when the error variabl®, = x, — a1(n,wy) = 0. This observation may
sometimes help us avoid the cancellation of nonlinearthasare actually helpful
to the stability of subsystem (2.10).

In the second iteration of the backstepping algorithm, wehwo regulatev,
to zero using the actual contral Noting thatw, = x2 — a1(n,wy) we re-write the

original system dynamic (2.3) as:

n="r(n,a(n))+wyn,wi)

) ov
Wy = —C1W1—%V(H,Wﬁ-’-gl(ﬂawl-l-a(ﬂ))wz (2.17)
_— 60(1. 60(1 .
Wy = | f2(N, X1, X2) 4+ d2(N, X1, X2)U — e a—vvlwl} Xa=wi+a(n)
Xo=Wo+01(N,W1)

From here, we repeat the procedure by forcing the new fum&ton, wy, wy) =
Vi(n,wy) + %W% to be a Lyapunov function for the system (2.17). Taking irte a

count (2.14), its derivative along the trajectories of {3.i:

Vo < —W(N) — W5 +Wo [ngl-l- f2+gzu—%inlr'] —giwiwl}- (2.18)
where we drop all function arguments from notation for siicipl. Letting
U:g—lz(—ngl— f2+%ﬁ+giv\éwl—czwz>, (2.19)
we obtain
Vo < —W(n) — C1W2 — Cow3, (2.20)
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and the CL system

n=rn,am))-+wy(n,w)

Wy = —clwl—a\g—?)v(n,Wngl(n,WHa(n))Wz (2.21)
Wy = —CoW — Wi g1 (N, w1 +a(n)).
By Theorem A.0.1 this CL system is GAS &f,wi,w2) = (n,X1 —a(n),Xz —
a1(n,wy)) = (0,0,0), provided that the constants andc, are chosen greater than

zero. From (2.16) we see that(0,0) = 0, and by assumptiom(0) = 0. Therefore,
tlirgo(rIle?WZ) = (07 0, O) = tlirgo(rIleaXZ) = (07 0, O) (222)

and we conclude that the CL system in the original coordsist&AS at the origin
under the SFB law (2.16) and (2.19).

Several remarks are in order:

Remark 2.1.1. We note that the transformatign, x1,X2) — (n,w,w») is a glob-

ally defined change of coordinates since the Jacobian

-]

is nonsingular for all € R™ and [x1,x]" € R?. Therefore (2.17) represents the

| 0 0
« 1 0 (2.23)
ko ok

same motion as equation (2.3) —i.e. we do not have to worrytdbmst dynamics”
in this new representation.

In fact, the backstepping procedure may be interpreted egdhative search
for a new set of (globally defined) coordinates in which thetegn dynamic admits
a quadratic Lyapunov function. In essence, at every itmatie define a coordi-
nate shifw, = x —a;_1(n,w,...,w;_1), designing all the stabilizing functions and
finally the controlu such that the transformed, CL system acquires a “skew-plus-
diagonal” symmetry. To see this, consider the CL systenil{2except assume that

n € R? so that we have:

Wi = —C1Wq + g1 (Wp)Wo

Wo = —Cowp — Wi g1 (Wy),
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or,

{wl] :[ —c1 gl(Wl)} {Wl} (2.24)

7 —gi(w1) —C2 | W2
An interesting converse of this fact is that any system wistsecture exhibits this
kind of symmetry can be shown to be asymptotically stablaebtigin by means

of a quadratic Lyapunov functior.

Remark 2.1.2. From our study of cascade-connected systems, we know that th
interconnection term (i.eW(x,§) in equation (1.54)) plays an important role in
determining what is possible in terms of achieving the maéistability of two
connected subsystems. At every iteration, backsteppingduaces coupling terms
that specifically ensure the internal stability of the internection of two subsys-
tems — the one-dimensionglsubsystem receiving the interconnection term, and an
(m+i—1) dimensional subsystem for which the design is already cetapin the
above example, the two coupling terms that accomplishedhteenal stability of

the whole ar&%a\g—g‘) in the first iteration, and- %Wl in the second iteration.

<

Remark 2.1.3(The importance of triangularityOne may wonder why a system
must have a triangular structure likggg in order to admit a backstepping design.

To investigate, suppose we have

X1 = @u(X1) +X2+Uu
(2.25)
X2 =u
which is not in a strict feedback form sinceappears in the; equation. If we
attempt to proceed with the usual backstepping design, wetliat the stabilizing
function associated with the virtual contrgl must cancel in the first equation.

Therefore, the error variable = x, — a(x1, u) has the dynamics

Ja oa .
w_u—a—xl(cpl(xl)+w+a(xl,U)+U)—mu. (2.26)

The presence afin thew equation implies that in order to design a globally asymp-
totically stabilizing SFB control law by backstepping, wewd have to solve a

differential equation iru which may not be possible in general.
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Remark 2.1.4. Even though we have advertised backstepping as a very practi
cal, constructive method, equation (2.16) is dependenherkhowledge of some
functionV(n) which is simply assumed into existence by virtue of the faett t
n=Tr(n,a(n)) is GAS atn = 0. Depending on the nature b6fn,x;), searching

for a Lyapunov functiortY (n) may be futile, even if an(n) is known.

However, if in (2.3)n = I'n +x1y(n,x1) with I € R™™ Hurwitz, then the
expression (2.16) (and hence (2.19)) can be easily cagmilatth a(n) = 0 and
V(n) =n'Pn whereP is the unique solution of the Lyapunov equatiohP+ Pl =
—I. The positive definite, symmetric matrixis guaranteed to exist sin€es Hur-
witz. This fact will become relevant in the discussion on Marand Tomei's OFB

method.«

With this understanding of backstepping, we are ready tongxa several sys-
tem forms that are very frequently encountered in the nealirOFB literature.

These system forms also play an important role in our owntsesu

2.2 Important System Forms

The most ubiquitous system forms in the nonlinear OFB liteeaare thenor-
mal form (NF) and thestrict normal form(SNF), both originally identified by

coordinate-free differential geometric conditions inJ.10

2.2.1 The Normal Form

Nonliner SISO systems of the form

(2.27)
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with x € R" that have a well-defined relative degtedn some neighbourhodd,

of the origin, are locally diffeomorphic to the form

(- N=r(n¢)
G =8
& =&
2NF - (2.29)
G1=&
& = (L¥h(x) +uLgL} "h()) o T~1(n,E)
y==&

by a change of coordinates of the form

[ @(X) ]
Pm(X)
{g] —| h® |2TX. (2.30)
Lih(x)
L7 2hoo)

The functiongg (x) can be chosen arbitrarily, as long as the JacoB%ﬁ iS non-
singular for allx in Uy. Such functions are guaranteed to exist, and can further be
chosen so that the subsystem is independent of- i.e. chooseap so that their

exact one-forms annihilate the input vectpr

(d@(x),9(x)) =0, ie{l,...,m}

(Proposition 4.1.3 [17]). The systekyr is globally minimum phaséf the zero
dynamics(ZD) n = I'(n,0) are GAS am = 0. The zero dynamics describe the

2Relative degree for SISO systems is defined as an integerh that

LeLih(x) =0,  ¥x€U, CR", 0<i< (r—2)

2.28
LoLi th(x) #0,  ¥xe€ U, CR™ (2.28)
— N : Lth(¥) 1
If Up = R" and the vector field$ (x) — mg(x) and mg(x) are complete, then there

exists a globally valid change of coordinates into the ndforan. The relative degree is the number
of times the signay must be differentiated before the sigua@ppears.
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motion of the system when its output and allritderivatives are identically zero.
Often the subsystem=1T(n, &) is also referred to as the “zero dynamics”, although

this is technically incorrect.

2.2.2 The Strict Normal Form

A special case of the NF is the strict normal form (SNF), inahithe zero dynamics
are driven by only the outpyt= &1, and not its derivatives. A sufficient geomet-
ric condition for the existence of the SNF (in addition tougong a well-defined

relative degree) is that each of the distributions
Gi £ spa{g(x),adtg(x), ...,adig(x)} =R'**, ¥xeUp, 0<i<(r—1) (2.31)

and are involutive. To check the involutivity of a distribart it suffices to check that
the Lie bracket of any two of its spanning vector fields bebtagthe distribution —

i.e. Gj is involutive if
ladfg(x),adlg(x)] £ xkj(X) €Gi, Yk je{0,1,...,i} (2.32)

or, if there exist + 1 functionscj(x) such that
i .
Xkj(X) = Z)cj (x)adlg(x), vk, je{0,1,...,i} (2.33)
]:
In that case, we choose the functions= @ (x), i € {1,...,m} such that not only do
their exact one-forms annihilate the input vedpput also all the other vector fields

in the distributionG;_1. This choice will guarantee that the change of coordinates
NT,&T]T = T(x), defined as in (2.30), transforms (2.27) into the SNF:

(- n=rn,&)
G =5
g =8
ZSNF: : (2.34)
E 1=§
& = (L¥h(x) +ulgL} *h(9) o T4 (n,8)
[ y=%&
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We based this assertion on Theorem 2.4.3 in [16], which Hgtoancerns partial
linearization of systems into triangular form by SFB — i.e.aqutput is considered.
We now justify this assertion. In the first part of the prooftbis theorem, the
existence of some smooth functigr{x), with {(0) = 0 which solves the linear

partial differential equations

(dy(x),Gr-2) =0

(2.35)
(dw(x),ad;g(x) = d(x) #0

is posited owing to Frobenius’s Theordand the assumed involutivity and constant

rank of the distributiorG,_» in U,. We denote
Q(X) = [W(X), L1w(x),..., LT W)l
Then, the linear independencelg of the one-forms

{dw(x),dLew(x),...,dL (X)) (2.36)

is ascertained via the matrix

NG 2 28 509, adrg(x).....adk2g(x)
[ (dy.g) - (dy,adg)
| dLwg) - (dLgwadiig)
(dUf g - (dUy Ty adig)
0 --- 0 ¢
=|. . ¢ : (2.37)
& - ok x

which is clearly nonsingular sinae # 0. Since the distributio, 1 is assumed
to have constant rank for N(x) to remain full rank the matri% must also
be full rank inUy, and therefore the one-forms (2.36) must be linearly indepe

dent inUs. The third equality in (2.37) is demonstrated in Theorem.A.®

3Please see Theorem A.4.3in [16].
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[16], and involves the use of (2.35) and the repeated agicaf Leibniz's Rule:
Lir,gh(X) = LtLgh(x) — LgLth(x).

In the second part of the proof, the assumed involutivity@mstant rank of the
distributionG; _1 is used to demonstrate that the functions- @ (x), i € {1,...,m}
(whose existence is likewise guaranteed by Frobenius'®iEne), if chosen such
that

(d@(x),Gy_1) =0, (2.38)

guarantee that the transformgaubsystem is independent&f, j € {2,...,r}.

In the case of system (2.27) where the outpath(x) is defined, and we have
further assumed that its associated relative degree isdeéhed, we see that the
indexr in their theorem is identified with the relative degree in digcussion and
therefore the first part of their proof is superfluous for ourgmses. That is, if we
identify the functiony(x) with h(x), then by the assumption that the relative degree

is well defined we can independently assert that
rank'spar{dh(x),...,dLY*h(x)}) =r

for all x € Uy (as in the proof of Lemma 4.1.1 in [16], for example). However
the second part of their proof provides an explicit meansatdwdating the trans-
formationn; = @(x), i € {1,...,m} so that the ZD subsystem is driven only by
y=2&1 = h(x) —i.e. we can solve (2.38). In summary, for the system (21Pé)set
of conditions:
e The relative degreeis well defined:
LoLih(x) =0,  W¥X€Up, CR", 0<i<(r—2)

(2.39)
LeLY th(x) #0,  ¥xe€ U, CR".

e Each of the distributions
Gi £ spar{g(x),adg(x),...,adig(x)}, 0<i<(r—1)  (2.40)

has constant rank + 1) and is involutive for alk in Uy,
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is more than what is required to guarantee the existenceeddMF. To transform
system (2.27) into the SNF, we apply the change of coordinge30), with the
functions@(x) i € {1,...,m} chosen so tha‘-%% is full rank for allx in Uy and so
that (d@ (x),Gr—_1) = 0.

Proposition 9.1.1 in [17] gives the more minimal conditiohieh is both suf-
ficient and necessary for a system to be equivalent to the §NFcbordinate and

feedback transformation. This condition requires thatvieor fields

T2 (-1 tadrg(x), 1<i<r
where

F=100-Lihg0)  and g0 = =g
f

must commute; that igtj, 7] =0, Vi, j € {1,...,r}. The proof of this theorem
relies on a more abstract set of mathematical concepts,henexplicit means of
calculating the transformatian = @ (X) is not stated. However, we note that when
r = n, either set of conditions identify the class of systems Wiaiee equivalent by
state and feedback transformation to a controllable andrgable linear system.

Indeed then, both the controllability condition
spar{g(x),adsg(x),...,adf 1g(x)} = R", V¥xe€ U, (2.41)
and the observability condition
spar{dh(x),dL¢h(x),...,dLTth(x)} = R", V¥x €U, (2.42)
are implied by either set of conditions.

2.2.3 The Output Feedback Form

Another important special case of the NF is thatput feedback fornfOFBF),
which is actually a subset of the class of systems in SNF.e8ystof the form
(2.27) that satisfy the following differential geometriorditions (Theorem 6.3.1
in [16]):
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1. The one-forms
{dh(x),dL¢h(x),...,dLh(x)} (2.43)

are linearly independent,

2. The vector fieldsad ;p(x), i € {0,1,...,(n— 1)} commute with each
other —i.e. [adep(x),adifp(x)] =0, Vi, je{01,...,(n—1)}, where

the starting vectorp(x) is the vector that uniquely solves the equations

(dh(x),p(x)) 0
(dLth(x),p(x)) 0
: = . (2.44)
@ th(x).p())] |1
3. The input vectog(x) satisfies:
[9(x),adsp(x)] =0, 0<k<(n—2) (2.45)

4. There exists a smooth functian: R — R, andn—r + 1 real numbers
(dr,dr+1,...,dn) such that the input vector takes the form

n—r+1 .
g=0oh- Y drjiiad'p (2.46)
=1

and the real number&,,d;1,...,d,) are required to be such that the
polynomial
d " +d 18 1S+ dn (2.47)

has roots with strictly negative real parts.

are state equivalent to the OFBF:

{ =AZ+W(y)+a(y)du
> : 2.48
OFBF{ _ci—1 (2.48)
where theo(y) # 0, Vy, the matrix

01--0
Ac= |0+ (2.49)

00 -1
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andd is theHurwitz vector

d=| d (2.50)

dn
in the sense of (2.47). The nonlineariyy) is smooth with(0) = 0, if f(x)
andg(x) are smooth and (0) = 0. The system (2.27) is globally diffeomorphic
to Zorgr if these four conditions hold globally, and in addition thector fields
adip(x), i € {1,...,(n—1)} are complete.

The first three conditions are identical to those requiredfsystem to be dif-
feomorphic to the nonlinear observer form. In fact, we nbtd ¥orpr is a special
case of the NOF, admitting the design of a LED observer. Tlsé dwndition en-
sures that the drift component of the system is observablendifions 1 and 2
together are shovinto be equivalent to the existence of a local diffeomorphism

{=T(x), T(0) =0 that transforms the drift component of (2.27)

x= f(x)
(2.52)
y=nh(x)
into
L=AL+Y(y)
(2.53)
y=Ccl =(.

4Please see Theorem 5.2.1 in [16]. Actually, in the proof &f theorem, the authors transform
the drift component of (2.27) into the following form, whichnot quite what we want:

{=AL+y(y) (2.51)
y= COZ - Zn

whereA, has ones on the sub-diagonal and zeros elsewhere. In thel seigshow how the same
conditions 1 and 2 can transform the unforced component.d8janto (2.53). Please note that we
have changed equation (2.54) accordingly.
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in which coordinates the vector fieldslijflp(x) are “rectified” into the unit vectoPs

ag—f(x)ad‘_fp(x) 0T 1)

0
aZn—i ,

The unit vector representation of the vector fighdh ;p(x) in new coordinates is

0<i<n—-1, (2.54)

a consequence of our assumption that they commute, thenftdiey are linearly
independeritfor all x, and the application of the Simultaneous Rectification The-
orem (for example, see Theorem A.4.5 in [16]). The third ¢towl ensures that
the input vector in the transformed coordinates dependg amly = {1; that is,
aTa—E(X)g(x) o T~1(2) = B(y), for some smooth functiofi(y). Finally, due to (2.54),
the fourth condition implies that this transformed inputtee 3(y) takes the special
structureo(y)d, with d as in (2.50).

Albeit being rather restrictive, these conditions aressiil by several phys-
ical systems, includinga single-link flexible robot and a third order model of a
synchronous generator.

Since we will be working extensively with this system forme are interested
in how exactly to construct a transformation irigrgr. The key to finding such
a transformation lies in the statement of the Simultanecegtifcation Theorem
itself. From equation (2.54), we can write

0T (x)
ox

Since the right-hand side of this equation is a constant,aveod care whether we

[ad"'p(x),ad"?p(x),...,ad_;p(X),p(x)] o T-H(Q) = 1. (2.56)

work in thex or { coordinates. Therefore, to find the transformat{oa T (x), we

5The notationa% signifies a unit vector in thé; direction. For example, a vector field such as
F(x) = [f1(x), f2(x)]T can be written a& (x) = fl(x)aixl + fz(x)&.

5The linear independence of the vector fiedxdiéfp can be shown using an argument similar to
that in equation (2.37), except that

dh
N =1| & |lp...,ad"'p] (2.55)
dL}h

is shown to be nonsingular for alby virtue of the definition of the starting vectprin (2.44) and
Theorem A.3.1in [16]. Then, the linear independence of thetor fieldsadifp follows from the

assumption that the one-fornidh, ..., dL’f‘*lh} are linearly independent, as per condition 1.
"Please see Section 6.5 in [16] for more details and other pbeam
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Section 2.2: Important System Forms

must solve the followingn PDESs for then unknown components df(x):

a-g—f()() [ad™*p(x),ad":%p(x),...,ad_tp(x),p(X)] = 1. (2.57)

To see why the transformatidi(x), which rectifies the vector fieldad?*p(x), ..., p(x)],
would also bring the original system (2.27) into the OFBFfinst note that

aT(x)

5 adip(oT () =ad.p"(Q) (2.58)

where
0@ = T 00T )

and f* = f*({) is similarly obtained. For = 0, this fact is obvious from the pre-

ceding equation. Far= 1, we write:
0
adr0'(0) = (500 F @~ (7@ )@

~ (5 7o) ) i T )

0( 0x
B ( 0 9T (X) aT(x)

o f ) ) TE e 1)

_ (9T(x) 0p(x) 9T 1)\ T (X) . —
_< ox ox Al ) 0X fT@)
aT(x)9f(x) 0T 2(Q)\ aT(X)

_( x ox oL ) ax P(T Q)

Then, as in Subsection 1.1.2, we note t?q%tzl(i)ag—go = | and therefore write

(B0 - 250 ) o TR0

which is the same as the left-hand side of equation (2.58) ferl. The same

ad<p*(Q)

argument can be applied for alt> 1 owing to the recursive definition of repeated

Lie brackets. With (2.58), we can now re-write (2.56) as

[ad™ 1p*(2),ad"%p*(2),...,ad_1-p*(Q),p*(Q)] = [e1,&,...,€n]  (2.59)

whereg is a column vector with all zero elements except itie which is 1. We

then examine thah column. By the definition of a Lie bracket,

ad(Lp*(Q) = [~ t*(0),ad™ p*(Q)], 1<i<(n-1) (2.60)
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and by (2.59),

ad"\p" () = [~ (), &14]
_ 0 (Q) 0841 .
=% 61— o Q). (2.61)
=0
Again by (2.59), we obtain:
P ¥ea=a,  1sic(n-D (2.62)

which indicates that the drift component in transformedrdotates must have the
following state dependencies:

Q) 1, j=k+1
Fq 0, je{23..n—{(k+1)},

(2.63)

meanwhile nothing can be said in general abbits dependency oy = {1 from
(2.62). Therefore, we conclude that in the new coordinakesdrift component of
(2.27) takes the formg = *(2), with:

G =L+ Pa(y)

L2 =L+ al(y)
(2.64)

Zn = Lpn()’)a

which is what we wanted to show. To see how the input vegtgf and output
function h(x) transform, one may follow the remainder of the proof of Tiesor
5.2.1in[16].

Now that we have discussed the geometric conditions thatifgehe class of
systems diffeomorphic tiorgr, We provide an analysis of some of its important

properties.
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2.2.3.1 The Internal Structure of Zorgr

For convenience, we re-write (2.48) here:

( :Zl =+ Ya(y)
(o= {3+ 2(y)

Zr—_l = +Yr-1(y)
2OFBF (= (1 +Pr(y) +dra(y)u (2.65)

anl =Cn+WPn-1(y) +dn_10(y)u
{n = Wn(y) +dno(y)u
\ y= Zl

or
2= AZ+Y(y) +du2 F(Q) +du
y={1,

(2.66)

where for notational convenience we have absorbed therdealetion o(y) into
1

the controlu—i.e. letu = oy then re-notate back tou.

The first thing to notice about this system form is that it hagabally well-
defined relative degree which can be discerned from the wgmtord. The number
r in this case corresponds to the relative degreEaisr sincey = {3, Y(-) is a
function of {; only and the linear component constitutes a chain of integsaln
that case the number of timgshas to be time-differentiated befoueappears is
equal to one plus the number of leading zeros in the inpubveatternatively, this
fact can be verified using the definition of relative degreeng2.39). Since a well-
defined relative degree is the only pre-requisite for a sydte be diffeomorphic
to the NF, we conclude th&lprgr can be transformed intAyg using a change
of coordinates of the form (2.30). We also notice thatgr satisfies the second
condition, equation (2.40) in Subsection 2.2.2, which tbgewith a well-defined

relative degree is sufficient to guarantee that it can aldodmsformed to the SNF.
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To justify this claim, we consider the Lie bracketd-d, 0 <i < (r —1):

Pi(y) 0 -+ O
ad,:d:[F,d]:@ —aF—(Z)d:—ACd— : T | (2.67)
Lnly) 0 -~ O]
ék;&l)
= —Ad+0 (2.68)

since the first — 1 elements ol are zero. Then

dackd . oF (0)

ad?d = [F,aded] = % 3 aded
= — (Ac+H(C1)) (—Acd)
= A (2.69)

Clearly, this pattern continues for all subsequent Lie ket
adld=Ald, 0<j<(r—1) (2.70)

since even whefp=r — 1, the term

wily) 0 -~ 0
MCOAL2d=| @ = . || 4 | =0 (2.71)
ny) 0 - 0]] 0o

Noting that the matrix
"0 0 0 d 7
0 0 dr drpa
G2[dAd,. . Alg=| O & o= (2.72)
dr dr+1 * *
dnfl dn O 0
e 0 0O 0 |
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Section 2.2: Important System Forms

has rank, it is clear that the distributions
Gi =spaf{d,aded,...,add}, ie{1,2,...,(r—1)} (2.73)

each have constant rank-1. These distributions are also all involutive, since the
Lie bracket of any two consant vectors is identically zerad aero belongs to any
distribution.

Therefore, according to our discussion in Subsection 2e¥&ry system which
is diffeomorphic tozorgr is also transformable to the SNF, which shows that the
class of systems that are state equivalent to the OFBF is sesobthe class of
systems that are state equivalent to the SNF.

In order to examine the stability of the zero dynamicsetgr we need to
transform it into either the NF or the SNF. To that end, defireechange of coordi-
nates

L1=y=0

So=y=Lrl1 =L+ P1(l1) £ L +61(0a)

g3 =y =LE{1= ([W1(22),1,0.....00,F) = W1 (2) Q2+ W1(l1)) + L3+ Ya(la)
é13+9\2r(11712)

Ea=V=LU20U+03(01,02,03)

& =YD =122 1+6 28, ., G 2)
&=y V= LE 2+ 6, 1(Ly, ., G 1)

(2.74)
naming it
E=Ti(Ca,...,C). (2.75)
Because of this definition, tfedynamic has the following structure:
& =&, 1<i<r-1
(2.76)

& = LEQ +ulalfy '
Furthermore, by Theorem 2.4.3 in [16], it is guaranteed #matcan find another
m= n—r functionsg;(2) such thaf@(2),...,@m({), T1(Q)T]T forms a global dif-

feomorphism, and all the inner productip;, G, 1) are equal to zero. In fact, these
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remainingmfunctions can be defined as linear combinations of the giate that
n =Tz, T, e R™"

and
ToG = Opxr- (2.77)

Instead of finding a general expression Terin terms ofd so that (2.77) is satis-
fied, we opt for the simpler task of findingTa so that only the input vectat is
annihilated instead of the entire distributi@p_1. In that case we will obtain the
normal form instead of the SNF; however, we wish to examimestibility of the
zero dynamics oEprgr — a property that is invariant under state transformation,
and hence will be identical whether we transfargrgg into NF or SNF.

In order to satisfy the requirement that

ool e

have an inverse mapping defined everywhere, we will chdgse that

Then, forTod = 0, we choose

. —itr
a = a
so that
—di .
To: ni= d—IHZr +Cr i, 1<i<m (2.79)
r
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Considering the structure @brpr in (2.65), with this transformation we obtain:
s —di+r
ni = o
—d; d —d; di
= s N1+ r+1Zr +{Ni+1+ I—H+1Zr +Pr4i(a) — ﬂlﬁ((l)
dr dr dr dr

_ —di+r
or

(Zr+1 +r (Qa) + drU) + (Zr+i+1 +Wryi (1) + dr+iU)

N1+ Nir1+bid +vi(Qa) (2.80)

where we have substituted fdf,; and ;i1 from (2.79), and introduced the
constanty; and functiony;(y) for notational brevity. As desired, thgequation is
independent ofi; from (2.80) it is evident thati is cancelled exactly because of
our choice ofg; in T,. However, sincd, was not designed to annihilate any of the
other vectorsadéd, je{1,...,(r—121)}, then-dynamic is driven by all th&-states
throughd;. This can be seen from our definition of theoordinates in (2.74); an
inverse transformation can easily be established owinlggdrtangular structure of

& = T1(Q). In fact, we can obtain the inverse transformation
(1=¢&
_ ' (2.81)
Gi=& —6i-1(81,....&i-1),  2<i<r,
and therefore

—di+r
dr

ni = N1+ Nit1+0bi& —biBi_1(&1,...,&i—1) +Vi(y). (2.82)

In consideration of (2.76) and (2.80), the complete systgnanhic in transformed

coordinates takes the form:
Nn=rn+Tg@...,&)
€ = AcE +Bo(LE-2a + ULgLi "82) o T (. €) (2.83)
y=2&1

where

2

-

N
o
[
o

r=1 : A (2.84)

\
o
N
o o -
o o
[ —
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Bc=[0,...,0,1]7, A is anr x r matrix with ones on the superdiagonal and zeros
elsewhere, anl; (§) is a smooth function with s (0) = O (this fact is a consequence
of our definitions of the function8; in (2.74), which are smooth and zero at zero
since the original nonlinearity(y) is assumed to be smooth and zero at zero). With
y constrained to zero, all of its derivatives are also zerd vemare left with the zero
dynamics:

n=rn
which are GAS at] = 0 owing to the canonical structure bf and the fact that the
vectord was assumed to be Hurwitz in the sense of (2.47). Therefgsegrss that
are diffeomorphic t&orgr are globally minimum phase, and are state equivalent to
systems in the SNF. Figure 2.2 shows a Venn diagram depitttenglass inclusions

of the aforementioned system forms.

Controllable Systems

uUCo
Systems

NOF

Figure 2.2: Set inclusion relationships between the vargystem forms important
in nonlinear OFB design. The set inclusions are based oa stptivalence.

It is interesting to note that all systems that belong to thmes equivalence
class asspf discussed in Section 2.1, are also diffeomorphic to sysiantise
SNF (equation (2.1)) by the following change of coordinates

{H =Tx) = Hﬁﬂﬁﬂ (2.85)

whereT,(n,x) =n andTy(n,X) = T1(X) = [X1, X1, - - .,x(lr_l)]T. Therefore, the class
of systems in SFF (with an output definedyas x1) is included in the class of
systems in the SNF. On the other hand, the SNF is a speciabtdakse SFF and
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Section 2.3: Observer Backstepping

therefore the set inclusion works the other way as well. Videgttore conclude that
the class of systems that are diffeomorphic to the SNF igticirto those that are
diffeomorphic to the SFF.

The two global OFB designs that are of interest in this thbetb rely on the
properties of the OFBF. Having discussed these propesiiesyext describe the
OFB methods presented in [6] and [2]. Extensions of theséodstare provided

in subsequent chapters.

2.3 Observer Backstepping

In this section we describe the globally stabilizing OFBigesnethod ofobserver
backsteppingresented by Kanellakopoulos et al in [6]. In addition to mglkuse
of our understanding of backstepping and the propertielseoDBF, we introduce
the concept ohonlinear damping which is an important design technique that
accompanies backstepping in global partial SFB design® BEsic idea in this
method is to design a globally exponentially convergeneoles for a system in
OFBF, and then design a backstepping-based control lavhéobserver instead
of the plant. Then, nonlinear damping is used to strengthisrcontroller, directly
accounting for the observer error which is treated as arthiahce.

We note that our presentation and analysis of the method giMé] is different
and significantly elaborated relative to what what is predidn either [6] or [1].
Also, in [6] this result is stated in terms of tracking, whidcludes stabilization as
a special case. For simplicity we choose to discuss stabiz here, and remark
that the extension to tracking is not difficult; in extendthgs method to systemsin
a restricted block triangular observer form in Chapter 4gemonstrate a tracking
design on a MAGLEV system.

This OFB design method is most concretely illustrated by meeaf a low-
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dimensional example; all of its key features are demonkmatthe OFBF system

(%1 =X + Wa(Y)
X2 = X3+ Y2(y) + dou

Y 1< X3 = Xa+ P3(y) + dau (2.86)
Xa = Ya(y) + dau
Y=xX

from which it will be clear that the same strategies apply émgral to any sys-
tem in the OFBF. Here we assume that the nonline&ifity) = [W1(y), ..., Wa(y)]"

is smooth withW(0) = 0 andd = [0,dy,d3,d4]" is a Hurwitz vector; that is, the
polynomial dos? + dzss+ ds has roots with negative real parts. This system has a
globally well-defined relative degree= 2 with respect ty = x; and its(n—r = 2)-
dimensional zero dynamics are GES according to our dismugsi Subsection
2.2.3.1. The design begins with the construction of an olesdor X:

>:“<1 = X2+ W1 (y) +La(y — %)
o)X=+ a(y) +dou+Lo(y —%1)

$.02= a (2.87)
X3 = X4+ W3(y) + dau + La(y — %)
X4 = Wa(y) +dau+La(y —Xq)
whose error dynamic is GES:
1= —L1% + %
| %= Lok X
R A (2.88)
X3 = —Ls3X1+X
Rq = —La¥Xg

whenx; £ x; — % and the output injection gaibh = [L]_,...,L4]T is chosen so that

the polynomiak?® + L% + Los+ Lz is Hurwitz. Expressing as:
S f£=(Ac—LC)%, (2.89)

we re-write the composite dynamic consistingcodind?. as

(>:<1 =X+ X+ Yi(y)
Ko = X3+ W2(y) +dau+ La(y — %)
X3 = X4+ P3(y) + dau+ La(y —X1)

2014 4 . 2.90
X4 = Pa(y) +dau+La(y —%1) (2:99)
K= (Ac—LCc)X
y=»XxX1
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Section 2.3: Observer Backstepping

where we have replaced the dynamics of all unmeasured platesswith their
estimates. To be sure thg fully represents th&-5 dynamics, we note that the

transformation

X1 10000 0 0 O [x
% 00000 1 0 O (X
X3 0000 0 O 1 Of|Xs
% _100000 0 0 1) |x (2.91)
X1 1000-10 0 0] X
0 0100 0-10 0] (%
X3 00100 0-10]|%
%] |[0001 0 0O 0 -1] [X]

—

is nonsingular. Therefore, any controller that stabiliZgswill also stabilize our
original plant-observer interconnection.

Instead of following exactly the proof given in Section 3 6f,[here we first
introduce one more transformation ¢ which will allow us to show more directly
how the stability of the overall CL system relies on the prtips of the OFBF. Our

transformation involves

X1 X1
d R R (2.92)
X3 Ni
X4 N2
with
—d3z,
r]l—d—X2+X3
b
—da,
nz—d—X2+X4
7

which is very similar to the transformatiof in (2.79). With this (nonsingular)

change of coordinate&. takes the form

{ -

N =TN+Yy(y) +BiX +BxX

Xy =X+ X2+ Pi(y)

514 R = N1+ PRo+ Wa(y) + dau+ L%y (2.93)
%= (Ac—LCo)K

y=x1

whereBy = [by 1,b1 2|7, andB, = [b21,0]", the constants

dsl daL do
br1=L3—=2  bia=Lls—"F2, b2,1=d—‘2‘—d—§,
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Section 2.3: Observer Backstepping

the functiony(y) = [y(y),y2(y)]", where

VA(Y) = Wa(y) — FWa(y),  Ya(y) = Wa(y) — §wa(y),

!
r:[_dg4 ]
=0

The system>* is the starting form for the backstepping design, and it pesss

and

several important features. First, the linear sysfeml'n is GAS atn = 0. There-
fore, when the “disturbance” inpuygy), X; andx, are bounded, the statgis also
bounded. Furthermore, from its solution we can concludeitieach of these dis-
turbance inputs is decaying, thgnitself converges to zero. We will formalize this
statement later. The disturbangedécays to zero because of our choice of observer
gains. Sincey(y) is a smooth function witly(0) = 0, it also decays ag — 0. It
therefore remains to design the input a(x1, X2, n) so that thgxs, Xp)-subsystem
is also asymptotically stabilized at zero.

To that end, we proceed with the backstepping proceduretadetkin Section

2.1, considering the following as a candidate Lyapunov fionc

where

is the Lyapunov function associated with the observer eubsystem, witl? being
the unique, symmetric, positive definite matrix solutioriteé Lyapunov equation

(Ac —LCe)"P+P(Ac — LC;) = —kI
for somek > 0. The derivative o¥ alongX{t) is

Ve = X' PR+ X" PX

= [(Ac — LCo)X|" PR+ K" P[(Ac — LCc)X

— K [(Ac— LC) TP+ P(Ac — LGo)I%

= kX' X

— —k||%||%. (2.94)
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Then, the time derivative of; is
Vi = =K% + 31 (%o + Ko + W1 (y)).- (2.95)

We must choose a virtual control and design its associagdallizing function so
thatV; is rendered negative definite. The natural choice for a afrbontrol is
the known statey” However, the difficulty in choosing its stabilizing funati is
that the signaky’is unknown, and therefore cannot be cancelled. The way droun
this difficulty is to apply the very simple, and beautiful hioear design technique

known asnonlinear dampingTo demonstrate, we define £ %, — a1 and let
a1(x1) = —Pa(y) — CiXg — 01xa. (2.96)
where the constar; is known as alamping coefficienfThenV, becomes
Vi = —(K = 25) K17 = 28 IKI[° +xa% — 8¢ — c13§ +xaws.
SincexiXe < [x1|[%o] < |x1|||X||, we have that

' 2112 2112 o 2 2
V1 < = (K= g5 ) IR11% =g, K112 + [xal K] = Bafxa|* —caxg + xawe

complet;the square
ez s (IR f 2
=—(K—=75)[IX[* =31 2—61_|X1| — C1X] + X1 Wa. (2.97)

Thus we see that whem, = 0, V; is is made negative definite by the last term in
(2.96), without cancelling the unknown signal ~
In the next iteration we proceed as usual, with the intentibregulatingw,
to zero. We therefore consider the time derivative of the hgapunov function
candidate/, = Vi + wy:
Vo = —(K = 25) K12+ Ta 4 Wa X1 + %2 — G1.(x0)]
=—(K 4% )||X||2+T1+W2[X1+r]1+ d3X2+LU2( y) +dau

. 007 . o0olq
+L2X1—6—X11(X2+llJ1(Y)) a—lx} (2.98)
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where we have defined the negative definite term

2
12— (H | —|x1 |) — X (2.99)

to simplify the notation. We note that boi#s &ndns are known to us, and we

therefore assign

1 , ;
U:d—2<—CZW2—Xl—r]1—g—ZX2—qJ2<y)_|—2X1

day 001 2
+a—xl(xz+llJ1(y)) 62( 6x1) Wz) (2.100)
to obtain
Vo = —(K— g8 — 25 )% + 11 — cow}
~ 0(11 - aal 2
_4%2”)(”2— <6—X1W2) X2_62<0—X1W2)
completgthe square
< (k- — &) 7P+ 1+ (2.101)
where
2
23— 5, (”X” \ }) . (2.102)

Then, in consideration of our definition of the terrqsand T, we conclude by

Theorem A.0.1 that the closed-loop system

5(1 I 1 X1
R R
X= (Ac—LC¢)X

is rendered GAS at its origin by the control law (2.100) an®§2 provided the

1 N o1 0 [Xl }
0 X2 — 3 2
Ty) 0 &(%2)%| |wo| (2.103)

control coefficientsy, ¢, and the damping coefficiends, & are chosen positive,
and

K> 23+ 75
A direct consequence of the fact that the system (2.103) iS @#its origin and
that it evolves independently of timesubsystem iix*, is that its states are bounded
by someX L., functionf3(-,-) as

IXOI < BAX(O)],1) (2.104)
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X1
X é WARS RI’-H’]:G

X

where we have defined

Recalling the expression for tmedynamics in=* (equation (2.93)), we write:

N =rn+y(xy) + BiXi + Ba(wa + a1(xq))

X1
=N +Y(xa) + B201(x1) +(0, By, Bz {Vp} : (2.105)
let—h(xq) X1

We note thatp(x1) is smooth and zero at zero, since bgtky) anda1(x1) are
smooth and zero at zero. This observation has two consegsteficst, for any
boundedk,, ||§(x1)]| is bounded. Second,

lim ¢(x1) = ¢(0) = 0.

X1—>0
Then, by the global asymptotic stability of (2.103), we h#watx; is bounded and
x1(t) — 0 ast — o, and therefore there exists anothiéf ..-class functiorfs (-, )

such that
1o (Xa(t)[| < Ba(r,t)
where

r=[o(xat)le.)l-

Also, we note that

0122 [vxvlz] | <1082l {vxvlz] | <bixi < bB(IX(@)1.0
X1 X1

for someb > 0. Then, to show thatf — 0 ast — o, we solve the differential

equation (2.105) using the usual matrix exponential irgtgg factor:
r ' r
n(t) = €n(0)+ /O & (0 (y(xq) + Byft + Bo(Wo + aa(x1)))dT. (2.106)
Taking the norm of both sides and appealing to the triangiquiality, we obtain

1
In@® < [l 10| +/O 1€ DN (vOxa) + Bafa + Ba(wa + as(xa))) || dT.
(2.107)
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Then, noting thafje’!|| < ke~ for some constants> 0 anda > 0, we can write:

Il < ke %)+ [ ke 2 (Buir0) + KO0 o, (@.108)

The first term clearly converges to zero exponentially. Tawsthat the entire sec-
ond term also decays to zero as time advances, we examiraltveihg (notation-
ally simpler) quantity

I(t) 2 /O Lealt-Tp (s T)dt

whereB,(s,t) is any classKL., function. If we can show thdt(t) — 0 ast — oo,
then it becomes clear that the second term in (2.108) alsaydexs time advances.

By splitting the integral, we obtain

I(t)=e ™ {/t/tzeaTBg(s,t)dt+/Ot/2eaT[32(s,T)dT}

t t/2
ge‘at{/ e"’“( sup Bz(s,r)) dT+/ e"’“( sup Bz(S,T)) dr],
t/2 t/2<T<t 0 0<t<t/2

7 -

' '

—Ba(s.5) =B2(s.0)
(2.109)

since, by definitionp,(-,-) > 0 for all its arguments and it decreaseg as o for

any fixeds. Then,

(1) < {eatﬁz(s,%) (eat_Teat/Z) +e B,(s,0) <eat/2_ 1)}

a
_ Pels 2) (1- e‘a?t) + P2(s.0) (e‘%t —e ) (2.110)
a A —
N——— .
decaying decaying
and we conclude that
limI(t)=0.

t—oo

It is not difficult to see that similar arguments would leadie conclusion that the
second term in (2.108) also converges to zerbtaads to infinity.
We have therefore shown by (2.108) that for all bounded, emingx;, wo =

Xp —01(x1) andX the state of the-subsystem also globally asymptotically con-
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Section 2.3: Observer Backstepping

verges ta = 0. We can thus conclude that the composite CL system

(N =TN+Y(y) +Bify + Ba(wz 401 (x1)
X1 = —C1Xg +Wo + X2 — d1X1
sp, We = DXt 90) 75 — 8p(2%00) ) (2.111)
X = (Ac—LC¢)X
a1(x1) = —Wa(y) — Coxe — 31X
y=X1

is GAS at the origin.

Remark 2.3.1. For any system diffeomorphic tborgr with a relative degree
and dimensiom, the controller is designed in the same way; a full order plesas
implemented, and theniterations of backstepping are performed on the dynamics
of the(x1,%o,...,% ) states, while nonlinear damping is used to account for the ob
servation error. In the preceding examplay it r > 2, then the expression (2.100)
would be assigned instead to the next stabilizing funatigrand the error variable
Wz £ %3 — 0> would be defined. It is easy to see that since each of the subseq
virtual controls — i.e.xg, X3,..., % _1 — appear linearly in the fori., each itera-
tion follows in a manner identical to what we have illustchtesre, until finally the
actual controlu appears in theth iteration. The closed-loop system consisting of
thoser “backstepped” states and the remainmgr states is guaranteed to be GAS

at the origin.<

Remark 2.3.2. Throughout the entire procedure, regardless of the diroamsor
relative degree, the only unknown signal appearing in the starting f&ms Xo,
which it furthermore enters affinely. At each iteration tkefdlizing functions pick

up the following signal dependencies:
ap=01(xy)

O2 = O2(X1, W2, X1)

aj = Oj(X1,Wo, ..., W;,%q)
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Section 2.3: Observer Backstepping

and therefore at every iteratigh> 1), the quadratic Lyapunov function derivative

contains terms of the form
Vi1 = ... +Wip1Wis1

=W (R — axlxl_Zaa'Wl w).

It is important to note that the lattér+ 1) terms all contain aaffinedependency

on Xz, which implies that a coefficier@;(x1,ws, ..., w;) can be extracted so that
Vi+1 =... +Wi+l();€i+1 —K; (Xl,Wz, R ,Wi) — Ci(Xl,Wz, e ,Wi))?z).

Therefore it is possible to once again apply nonlinear dampia the(i + 1)th sta-
bilizing function by introducing a term of the for@C(-)wi, 1, while cancelling
the fully known termK;(xg,wo,...,w;). This observation may be useful in imple-
menting symbolic math algorithms that calculate the finadted expressions for
higher order systems.

We also remark that in general, nonlinear damping can onlgdpéied to dis-
turbances that enter the system equations affinely, whiatnysmany global OFB
stabilization solutions still require the system to be @ithffine or “linear in the

unmeasured states” [43].

Remark 2.3.3. Our preceding discussions may give the impression thatdbegk
ping procedures are fixed and always yield the same outcoieents of controller
structure, for a given set of system equations. On the acgnbvackstepping is more
of a technique than a pre-defined design, contrasting wittrabdesigns by feed-
back linearization for instance. As an example of this fléiyhwe note that at each
iteration it is possible to separate the coeffici@iiky, wo, . .., w;) that multipliesd
(cf. Remark 2.3.2) into several smaller terms in differeatys: In other words,
for any given set of system equations several solutions@ssilple. One may find
that implementing two damping terms |i5§1Ci71('>2Wi+1+6i72Ci72(')2Wi+1 instead
of §Gi(-)°Wi 1 = & Cia(r) -|—Ci72(-))2wi+1 results in a reduced control effort, or a

simpler control expressioRr.
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Section 2.4: The MT Method

Itis important to notice that even though the OFBF appedos trather restric-
tive system form, the nonlinearitiég(y) are not growth-restricted in any way. In
this way, the method of observer backstepping represerasvarful advancement
in nonlinear control.

The observer backstepping method applied to the OFBF igreantise, but it
requires a full order observer in order to be implementednta practical point of
view, the order of the dynamic component of any controllensti be kept minimal
to reduce the computational burden. In the next section, senmt an alternative
global OFB method for systems in OFBF due to [2], which regmiia dynamic
component of ordefr — 1).

2.4 The MT Method

Observer backstepping is clearly an observer separatidimoahein which the con-
troller is designed to compensate for the effects of the mieserror. The method
given by Marino and Tomei in [2] is interesting because it && B separation
method; that is, the role of the dynamic component of theitid law is not re-
lated to the task of state estimation. Instead, its maingeeps to help transform
the system into a set of coordinates in which it “appears”aeehrelative degree
one (with respect to a new input) with stable, linear zeroagyits. This method is
also fully constructive and relies on the properties of th&6. The key tools used
are backstepping, arfiltered transformations

The original idea for the method was given in [2], where it Wascribed within
an adaptive control context, and a cleaner version is peavid Chapter 6 of [16].
An alternative, and beautifully systematic analysis of Mie method is also pro-
vided in Section 11.3 of [12]. Here, we give a much more detbdxposition than
provided in either [16], [12] or in the original papers [2]. eWWegard as part of
our contribution this more thourough, but simplified praaéinon that attempts to
clarify the method and its motivations, and more closelyeaidf to the standard

backstepping framework that one would recognize from [1].

76



Section 2.4: The MT Method

We start by examining the OFBF, with inputind relative degree= 1.
% =X+ +gi(y) +dio(y),  1<i<(n-1)
X0 = Wn(y) +dno(y)v , (2.112)
y=X1
where the nonlinearitie;(y), 1 < j < nare assumed to be smooth everywhere and

zero at zero, the input vectdr= [dy,...,dy]" is assumed to be Hurwitz as usual,

and the scalar functioa(y) is nonsingular everywhere. We assigs lel(y)u and
define _
o G
d = a,

so thatd; is normalized to 1 and we can write more simply:
X = Xi+1+ Wi(y) +diu, 1<i<(n-1)
21 ¢ X = Wn(y)+dnu , (2.113)
y=X1
or

X=AX+W¥ du
5. ) X=AXHl)+ (2.114)
y=X1
whered = [1,dp,...,dq]" is Hurwitz sinced is assumed Hurwitz. For this system,
we can design a static, globally asymptotically stabilig@®FB law. To see this, we

first apply the following linear change of coordinates:

—d, 1 0 - O
—d3 01 --- 0
mz Con X2 Tx (2.115)
4, 00 --- 1
|1 00 - 0

wheren € R"1 and the outpuy is as before. In consideration of our definition of
di, we note that this transformation is identical to the onewlsed in Subsection
2.2.3.1 (cf. equation (2.79)). In fact, the purpose of (8)1i% to obtain the normal
form for Z, with the n-subsystem corresponding to the zero-dynamics. However,
sinceX’s relative degree is= 1, the chain of integrators in its normal form consists

of only one state -y itself. Therefore, transforming into the NF is by default the
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Section 2.4: The MT Method

same as transforming it to the SNF; this fact is taken adgadhthroughout MT'’s
method.

Proceeding with the transformation, we obtain:

lg}:(TAI5[3]+TwQO+Tdu (2.116)
where _ .
—d>, 1 0 --- 0 d3—dydo
—d3 0 1 --- 0 ds—dyds
TATH=| = : (2.117)
—dnfl O O s 1 dn — dzdnfl
1 000 d
and ) } .
do — dody 0
ds —dsd; 0
Td=| : |=]|: (2.118)
dn - dnd]_ O
| d | [1]

since we have madé; = 1. The product (2.118) is to be expected, sificevas
designed to annihilate the presenceuofh the zero-dynamics subsystem. Also of
interest is the transformed nonlinearity, which can be esgped as:

Wa(y) — da(y) P2(y) — do@u(y)
Wa(y) — da@(y) @3(y) — d3@u(y)

TW(y) = yE o(y)y (2.119)

Wn(y) — dna(y) @h(Y) — da@r(y)
where we have factored eadh(y) asWi(y) = ya(y), 1 <i <n. The functions
Wi(y) can always be factored this way owing to our assumptionsyihg € C*

everywhere, and thap(0) = 0. These assumptions guaraftéieat the functions

8This construction is similar to the one discussed in Se@iar{cf. equation (2.8)). For interest’s
sake we mention thatin the case of single variable scalatifomp(y) there is an alternative proof of
the fact that the factorizatiap(y) = y@(y) (with @(y) € C°) is always possible whep(y) € C!, and
W(0) = 0. The proofis again by construction. First we note that(if) is C* everywhere, the/(y)
exists and is continuous everywhere. Intuitively, we wdiktd to let g(y) = @; unfortunately at
y = 0 this may lead to an indefinite form. However, by L'Hosp#alile, we have that

Wy Wy
J/'LTE)T_ME) 1 =Y'(0) (2.120)
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@ (y) can always be constructed as:

A dwi(Q)
@y = /0 d—z)z_syds (2.121)

Then-dynamic is then written as:
n="rn+By+d(y)y (2.122)

whererl is the Hurwitz matrix

L
o O
w N
or
=)
o o

= ; Do, (2.123)
~dy.; O O -
| —dn 0 0 -~ O

H .

which is identical to (2.84), and the constant ve®as

[ d3—dad; ]|
dq — dod3
B= : (2.124)
dn - d2dnfl
—dzdn
Letting
¥(y) £ B+(y)
we write the transformed system as:
.
s+ J 1=INHEVY)Y (2.125)
y = N1+ day+da(y) +u.

We now make some observations concerning the form (2.1258keéJin observer

backstepping, no observer has been constructed here,enefaite the states of the

and therefore by defining

oY) = {@ y#0

W(0), y=0
we ensure that it is continuous, sina®ay_.y-@(y) = y*, for all y* € R.
Alternatively, we may impose a stronger requirementidy). If W(y) is analytic everywhere and
is zero at zero, then there exists a Taylor series that cgaseoy(y) everywhere. Sincegs(0) = 0,

the constant term in this series is zero. We can therefoterfag out of each term in the series, and
collect all terms in the new factored series into anothection ¢(y).
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n-subsystem are unknown and cannot be cancelled byowever, we notice that

if y(y)y = 0, then the only coupling between theandy subsystems is through the
staten;. Further, since the unmeasungd entersy linearly and then subsystem

is exponentially convergent, we could apply nonlinear dizigppo compensate for

its effect on they-subsystem. In that case we would only have to worry about
stabilizing they-subsystem, taking into account the effect of the “distodegn;.
However, since drives then-subsystem througf(y)y, this dynamic coupling must
also be accounted for. Fortunately, it is possible to do soa@to our factorization

of TW(y) in (2.119). To demonstrate, we propose the Lyapunov funaamdidate
V=nTQn+3y’

whereQ = Q' > 0is the unique solution of the Lyapunov equation
rMQ+Qr = —«l

for some real numbae¢ > 0. We then find the derivative &f along the solutions of
2"

V=nTQn+nTQn+yy
= (M +yy)y) ' n+nTQ(MN+v(y)y) +w
=n" (F"Q+Qr)n+2n"Qy(y)y+w (2.126)

where we have used the fact that

wy) Qn=n"Qv(y)y

due to the symmetry d@. Continuing with (2.126), we obtain

V =—kn"n+y[2nTQy(y) + N1+ day+ Pa(y) +ul, (2.127)

which can be rendered negative definite by choosing

u= —a(y) — doy — 8y — B(Qv(Y) " (Qy(y))y — cy (2.128)
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whered and 3 are damping coefficients to be chosen positive, amsla control

coefficient, also to be chosen positive. In that dddeecomes

V< —(k=g— 5N n-gn"n+21"(Qvy)y) — BQvy)Y) (Qv(y)Y)

7

complete the square

—asInlZ+1yllin]| —&* —cy? (2.129)
.
:—(K—%—%)HTH—B<%H—QV(Y)V> (%n—Qv(Wy)
2
~5( G 1) oy
<—(K—zg—gN'n—cy (2.130)

which shows that the CL system (2.125) and (2.128) is GA8at) = (0,0) by
Theorem A.0.1.

The true ingenuity in MT’s method reveals itself for the case 1, where a
dynamic component is used to obtain a system structuregtsamilar toZ for the

r =1 case.

2.4.1 The Relative Degree > 1 Case

We once again consider the OFBF system

V. (2.131)

5. {)’(:Acx+LP(y)+du
where without loss of generality we assume that the Hurwput vector is nor-
malized with respect td; —i.e.d = [0,...,0,1,dr11,...,dn]T. We now introduce

the linear system

(& ] A 1 - 0 ([&T1 [0
&2 0 A2 - 0 &2 0
= P : S+, (2.132)
& 2 o 0 - 1 & 2| |0
&1 LO 0 o A [&a] |1
or
& = A& +Bu, (2.133)
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where we choose the numbeis> 0, 1 <i < (r —1). We claim that the following

dynamic change of coordinates:
z=x—Dg, (2.134)

whereD € R™ (1) js to be determined, can transfohinto the coupled system
z=Acz+W(y) + 081
& = AE+Bu , (2.135)
y=24
where the vectog = [1,dp, ..., dn]" is Hurwitz. We will prove this claim in Subsec-
tion 2.4.1.1. For the time being, assume that we indeed #a¥8%). In that case,
if we regard¢s as an input, then thesubsystem resembles exadyvith relative
degreer = 1, a case we know how to solve as per our foregoing discuss§lon:
tinuing in exactly the same way as for the- 1 case, we transform ttzeesubsystem
using the linear transformation (2.115) (wdls replaced byg;’s, for 2 <i < n) to

obtain the starting form:

n=rn+vylyy
P }'/: N1+ 02y+Pa(y) +&1, (2.136)
& =AN{+Bu

whererl is a Hurwitz matrix as before, and the stdtetakes the place af. The
solution to the OFB problem is now all but complete. It rensagmly to point

out that theg-subsystem is in a SFF and hence admits a backstepping ddgign
proceed, we would consider the Lyapunov function candiate n' Qn + %yz

as before. This time, we would uge as the virtual control and define the error
variablew, £ &; +a1(y), where the expression in equation (2.128) is now assigned
to a1(y). In the next iteration we would take the derivativeef=V; + %w%

V2 < —(K— 75)N" N — CY? +Way +Wo[—A1&1+ &2 — aaa;éy))"]

and choosé as the next virtual control. Its associated stabilizingction must
cancel the third term iN», which is the usual “leftover” term from the previous co-

ordinate shift, as well as apply nonlinear damping to theafjiterm that appears
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throughy. One can see that the remainder of the iterations proceesimnilar man-
ner, according to our previous discussions of backstepgmagnonlinear damping.
In therth iteration, the actual control appears and is selected similarly to yield a
GAS CL system. Figure 2.3 shows the CL system under this O®B la

) X =[(x) +gx)u —l

E=AE+Bu > u—0,(y5) W

Figure 2.3: The closed-loop system implementing Marino &ochei’s globally
stabilizing OFB law.

For a greater level of computational detail the reader isrrefl to Chapter 3,
where the extension of this method to MIMO systems is pravid®ng with a
more formal inductive proof. A special case of the proof jed therein includes
this SISO formulation. Here, we are more eager to explairél transformations,
which lie at the heart of this clever method.

In the sequel, we give a significantly more extensive andildetanalysis of
the filtered transformation than is provided in any of [1&],¢r [12]. We hope that
our insights are helpful in making the MT method easier toansthnd and possibly

adapt in new applications.

2.4.1.1 The Filtered Transformation

The linear system (2.132) is referred to as the filter, arichatiely becomes incor-
porated as the dynamic component of the OFB law. The assddia@nsformation
(2.134) is known as é&lter transformation(FT), a vehicle that takes a system in
OFBF of any relative degree, and makes it look like a systeth relative degree
one. The FT

z=X—D¢
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can be viewed as a time-varying coordinate shift, and itsgdeis motivated as

follows.

z=Ac[z+DE] +W(y) +du—D[AE +BU|
— Acz+W(y) + [A:D — DAJE + [d — DBu. (2.137)

Comparing (2.137) with our desired form

z=Acz+W(y)+09&1
in (2.135), we see that the matiixmust satisfy the following conditions

AD —DA =gC (2.138)
d—DB=0 (2.139)

where we defin€ = 1,0, ...,0];, (_1) SO thalCg = &;. SinceB=0,...,0, 1]Ix(r71),
(2.139) implies that thér — 1)th column ofD must equal the original input vec-
tor d. We first notice that (2.138) looks very much like a Sylvestguation, with
Ac and A being two square matrices with no two eigenvalues in comraadD
the matrix to be solved for. It differs from a standard Syteegquation in that
D is not square, and that (2.139) imposes an additional céstrion its solution.
Nevertheless, a unique solution does existprand can be obtained recursively
by analyzing (2.138) on a column-by-column basis. To that, eve denote the
columns ofD as

D = [d[2],d[3],....d[r — 1],d]r]]. (2.140)

By this notation and by condition (2.139), we have that

the original input vector in (2.131). It is also helpful topegssA\ as

[\ O - 0 0 [0 1 .- 0 O
0 —Ax - 0 0 00-.--00
A= 0  EE  ] BAEA
0 0 - —A2 0 00 01
0 0 -~ 0 A1 |00O 00
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and to note that post-multiplyin® by Ac, shifts all of D’s columns to the right.

Therefore (2.138) can be re-written as
Ad[2),Acd[3],..... Ad[r] — [~ A1d[2], ~A2d[3], ..., ~Ar_1d[F]]
—[0,d[2],....d[r—1]] = [9,0,...,0], (2.141)
or, column-by-column we have
(Ac+A11)d[2] =g (2.142a)
(Ac+ADd[i+1]=d[i], 2<i<(r—1). (2.142b)
Recalling thatd[r] = d is known, we can use (2.142) to solve recursively for the
columns of the matri0. Denoting
d1]=g
we express this recursive solution as:
dir] =d
di—1] = (Ac+Ai—1h)dfi], r>i>2

which is clearly a unique solution.

(2.143)

To show thatg = d[1] is a Hurwitz vector, we re-arrange equation (2.142) to

obtain

(Act A1) (Ac+A2l) - (Ac+Ar—2l ) (Ac+Ar—al)d[r] =g, (2.144)
and note that the matrix
M 2 (Ac+ A1l (Ac+ A2l ) -+ (Ac+Ar—2l ) (Ac+Ar1l)
= AT aAL P+ Pt e oAt aral (2.145)

forms the following pattern

(a1 &2 - & 1 O 0 0
0 a1 - a 1 0 0 0
M=| - (2.146)
0 0 0 0 0 d_1 -2
| 0 0 0 0 O 0 a 1]
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where theg; are clearly the coefficients of the polynomial
r—1
|'!(s+)\i) =g tad %+ .. +a_o5+a_1S
i=

which is Hurwitz if and only if the filter is stable. Then, saM is a triangular

Toeplitz matrix with polynomial coefficients on its diagdsiadhe equation
Md=g (2.147)

(i.e. equation (2.144)) can be interpreted as the numesaralputation of the fol-
lowing polynomial product:

r—1
018" +...+0n-1S+0n = 'l_l(s+ Ai) [Snir + dr+13n7r71 +...+dh_15+ dn] .

- (2.148)
To justify this statement, we remark that polynomial muitigtion is equivalent to
the convolution of their two respective coefficient vectasd the convolution of
two vectors can be expressed as a multiplication betweemplifomatrix such as

M above, and a vector. To illustrate, suppose we have two potjals
a(s) = +ajs+ap

and
b(s) = >+ by + bps+ b.

Then,

a(s)b(s) = S + (a1 + by )s* + (ap + arby + bp)S3 + (azhy + arhy + b3)&?

+ (a2b2 + a1b3)5+ (agbg).

The coefficients of this product can be computed from

a a 1 0 O 0 bs bo by 1 O 0 a1+ by

0 a2a a2 1 O 1 O bg by by 1 0 a+aiby+by
0 0 a a4 1 bil=10 0 bz by b; 1| = |agbi+aiby+bs
0 0 0 a a by O O O bz b a1 aoby +ajbs

0O 0 O 0 ay |bs O 0O 0 O b3l |a aobs
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We can now see why the stability of the zero dynamics is ingmarto this
design. To recapitulate, once the EE x— D& has been applied, we obtain the
system dynamic (2.135) which now resembles a relative degne system when

&1 is regarded as its input. Then, applying the linear tramsé&tion

[—g2 1 0 --- O]
T=1|: = - (2.149)
| 1 00 - 0
to thez-subsystem results in the starting form
n="rn+yky)y
20 Y =N+ Gy +Wi(y) + &,
& =N{+Bu
where the matrix ) )
-0 1 0 --- 0
—03 01 .---0
= : oo (2.150)
—0On_1 OO0 -.--- 1
| O 0 0 --- O]
is Hurwitz if, and only if its characteristic polynomial
IF—sl|=018"+...+0n-1S+0n (2.151)

has roots with negative real parts. Frah the method proceeds as described in
Section 2.4 and hence relies on the stability of ihe 'n system. On the other
hand, we observe from (2.148) that the polynomgia' +. .. +0gn_1S+0n has roots
with negative real parts if and only if the filter matvixis Hurwitz, and the original
input vectord is Hurwitz. From the properties of the OFBF described in Bact
2.2.3.1, we know that the zero dynamicsefrgr are stable if, and only ifl is a
Hurwitz vector. Therefore, the minimum phase assumptigumsisas critical for this

method as it is for observer backstepping.

Remark 2.4.1. It is well known that the relative degree or the stability loé zero

dynamics cannot be changed by SFB or static changes of cabedi The FT

87



Section 2.5: Summary

(2.134) also does not change a system'’s relative degreet wiféch is clear from
the structure ot*; the signaly andu are still separated by exacttyintegrators.
From (2.148) it is also clear that the stability of the zeroawyics cannot be altered
by the FT. However, the dynamics of thesubsystem no longer represent the zero
dynamics of the original syste@prgr; they are now the zero dynamics Ddrpr

augmented by the filter

2.5 Summary

The two global OFB design methods we described in this chapeeapplicable to a
rather restrictive class of nonlinear systems — thoseattfi@ phic toZorgr. How-
ever, these methods posses two important virtues. Fiesg,dhe able to deal with
systems whose nonlinearities are not restricted in any wagrms of growth rate
or structure. Even more importantly, both methods are fodgstructive, giving
the designer a means of systematically obtaining an exphkgression for a glob-
ally asymptotically stabilizing dynamic controller. Mucdiithe currently available
nonlinear control theory offers only analytical tools oedtinetical existence results
that, although bearing significant importance in the adgarent of the field, are of-
ten difficult to translate into constructive design methHodas. Appart from being
early examples of constructive nonlinear control, thesernvethods are also valu-
able because they demonstrate the use of several gésaralques- not just fixed
designs — such as integrator backstepping, nonlinear aenapid filtered transfor-
mations. The application of such techniques may be extetudetther scenarios. In
the next chapter we explore one such extension to a classlovaniable nonlinear

systems.
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Chapter 3

Extension of the MT Method to
Multivariable Systems

This chapter is based largely on [71].

3.1 Introduction

The design of globally stabilizing output feedback (OFB) fionlinear systems is
an important control problem that is actively being studiéithe objective is to
develop a systematic design of a static or dynamic contqmession dependent on
known (measured or generated) signals only, such that sedkoop, a dynamic
system of interest is globally stabilized. It has been aradgimportant objective
to broaden the class of systems to which such methods areaippl

Important work in papers such as [22], [74], [38], [11], [39b] and the ref-
erences therein has elaborated the central issues invioldesigning output feed-
back controllers for nonlinear systems. Unlike for linegstems, fundamental ob-
stacles such as the peaking phenomenon and the absence redra geparation
principle make nonlinear output feedback design a chaihgngroblem.

Although our understanding has significantly progressélanast few decades,
there are still very few systematic, constructive soluiom the problem. Of the
constructive solutions that do exist, the main approachelside a local result in
[76], the semi-global approach originated in [28] and fartkdeveloped in [31],
[37], [34], and global approaches including observer begksing [1], [6], and the
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adaptive OFB method presented in [2].

Even though from a practical point of view dynamic modelsegatly do not
emulate the behaviour of a physical system globally, gl@iFeB stabilization is still
of interest. Semi-global formulations, albeit genera#gd restrictive than global
formulations, usually require that certain gains be “sidfitly high” in correspon-
dence to a desired size of the region of attraction assaciaith a closed-loop
equilibrium. Global formulations have no such requirersebut usually impose
restrictive conditions identifying the class of systemsvtach they apply. For this
reason, our interest is in extending the class of systemsataalobally stabilizable
by OFB using the method presented in [2].

The results in both [76] and [34] are directly applicable tbMD systems; how-
ever, a MIMO generalization of the OFB scheme presented]ing@not be found
in the literature. Our objective in this chapter is to praevglch an extension. Our
approach can be regarded as an alternative to the ones tal@4,i[61] and [60].
Using [2] as our starting point, our method inherits the kegéfits of MT’s method
— namely, we impose no growth restrictions on the model'dinearities, and the
dynamic order of our OFB is strictly less than that of the pldime class of systems
we consider is similar to the SISO output feedback form, ialow dynamic cou-
pling between the subsystems through the output-dependahhearity. Our main
contribution is the modification of the SISO algorithm pretsel in [2], so that it
can accommodate the dynamic coupling between subsystethe MIMO case.
Specifically, the problem can be solved within the backstepframework if ad-
ditional nonlinear damping terms are included at everyatten to account for this
coupling.

This chapter is organized as follows: in Section 3.2 we fdatathe problem to
be solved and provide the solution in Section 3.3. We ilatstthe presented theory

on a mathematical example in Section 3.4 and provide a suynm&ection 3.6.
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Section 3.2: Problem Statement
3.1.1 Notation

For most quantities, the first subscript identifies the sstesy number while the
second identifies the index within that subsystem. If onlg sabscript is used then
the reference is to the subsystem. For all virtual contoglsthe first subscript

refers to the subsystem number and the second to the iteratimber. Subscripts

on Lyapunov functions indicate iteration number.

3.2 Problem Statement

In this chapter we solve the problem of global asymptotibittation by output

feedback for the follwing class of MIMO nonlinear systems:

x = blkdiag(Ac,, Ac,, - - - s Acy) X+ P(Y) + Zl Diui
y = blkdiagCg,,Ce,, . . .,C¢,,)X

(3.1)

wherex= (x],..., x))T €R", x € RN y=(y1,....,ym)T €RM, u=(uy,...,um)" €
RM, and the matrices

01 .- 0
o , . = 170,...,0 )y
A Do s Co =1 J (1K)
0 0 - Of oy
DIT — [Olel Olei—l d| Olei+l Olem]

with
di = [O,O,~--,O,di,pi,di,pi+1,di,pi+2,-~-,di,ki], for 1<i<m.

The nonlinearity(y) = [Wi(y)T, ..., Wm(y)"]", wheredi(y) = [Wia(y), ..., Wik ()]
We assume that (3.1) has an equilibrium at the origin whhen O, 1 <i <mand

that the functions); j(y) areC”. An important consequence of these two usual

assumptions is that eadh j(y) can be expressed as

3

Wiiy) = @ kY)Y (3.2)
=
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with c_gJ’k(y) alsoC”. To see this, supposa = 2 and we have a scalar func-
tion W(y1,y2) which is smooth everywhere in both arguments and is such that
W(0,0) = 0. We use a constructive argument similar to the one givesifayle-
variable functions in Section 2.1 to demonstrate that (3.2)ways attainable. First,

we define
Ty(y1.Y2) = Y(y1,Y2) — W(y1,0)

which implies thaii,(y1,0) = 0 and can therefore be expressed as

19 7
Pa(y1.y2) :/0 7%%/15 %) g

Then, by changing the variable of differentiation(te- sy, we can write

19 , 1709 , A
/0 stz y2 (/0 <%) ’Z:Syzd3> = Y2@2(Y1,Y2)-

Similarly, define
P1(y1,y2) = W(y1,0) — W(0,0).

Since we assumed thgi{0,0) = 0, we have thaf, (0,y2) = 0 and therefore by a
similar argument, we can define
L 70g,(C YZ))‘
A 1\5
Y2) = — e ds
P1(y1.Y2) /0 ( P -
so that finally

W(y1,Y2) = Yi@i(y1,Y2) + Yo@2 (Y1, Y2).

From this simplified argument, it is clear that the factaiiza (3.2) is possible in
general, provided they; j(y) are at least continuously differentiable, and zero at
zero.

We define the numbes; as the number of integrations separatipgrom its
associated inpufi. This number does not necessarily correspond to the toaditi
definition of “relative degree” associated with ttie output, since differentiating
the signaly; fewer tharp; times may in fact result in the appearance of somg #
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Thek’s can be regarded as the observability indices uniquelycated with
the system. In that case, the differential geometric cambtcharacterizing the
drift portion of (3.1) are the same as those characteritiagrtulti-output Nonlinear
Observer Form (NOF) [68]. In the general NOF the input vectre free to be
functions of all the outputs whereas we restrict their trrecto take the special
form of theD;. Eachd; is assumed to be a knowturwitz vectorin the sense that

the roots of the polynomial
diypisnfpi 4+ ...+ di7ki—15+ di k.

have negative real parts. Whem= 1 the system (3.1) is in the well-known OFBF,
and the restriction on the structure of the input vectordiesghat there exists state
coordinates in which the zero, or tracking dynamics of (2®)linear and stable,
as shown in Section 2.2.3.1.

The dynamic coupling between the subsystems is entirelyadine dependence
of each nonlinearityy; ; on outputs associated with all other subsystems. This
coupling makes the OFB design more difficult in the MIMO cdsethe sequel, we
demonstrate that the MIMO design is still possible, owinghte special structure

of the input vector®;.

3.3 Main Result

Theorem 3.3.1.For any multivariate nonlinear system diffeomorphic to tben
(3.1), there exists a globally asymptotically stabilizicgntrol law dependent on

known signals only, whose dynamic order does not exggee(p; — 1).

For clarity, we provide some preliminary discussion befmesenting the proof.
Prior to constructing the control law it is necessary toyaurt two transformations
on each subsystem in (3.1).

STEP 1: Filter Transformation For each subsystem in (3.1), we apply the

following Filter Transformation according to its numlggr For theith subsystem,
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let N
zZ=x—Y di[jl&ij-1, (3.3)
2,
where the constant vectadld j| are iteratively defined as:
di[pi] = d
. . . . (3.4)
dilj — 1 =Agdi[j] + A j—1di[j], pi>]>2,
and theg; j are the states of thafilters with dynamics:
&§LNE+bu, 1<i<m (3.5)
where _ .
A1 1 - 0
0 A2 - 0
N=| o (3.6)
0 o .. 1
| 0 0 - —Aip-1]

andb; = [0,...,0,1]T. We remark that ip; = 1 for anyi € {1,...,m}, then no FT
is applied to this subsystem. For stability, hg must be chosen positive, and can
be tuned to adjust the closed-loop system performance. elz toordinates the
extended system is:

Z = Aazi+Wi(y) +di[1&i1

Zz 04 & = Ni&i+ b (3.7)

Vi= Cqz

for 1 <i <m. Itis important to note that the final vectdi{1] defined by (3.4) is

Hurwitz, and takes the form
di[l] = [1,di2[1],...,dik [1]T,

as discussed in Section 2.4.1.1.
STEP 2: Linear Transformation To each subsystem we apply the linear trans-

formation

nf.yil" =Tz
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where i )
—di21 1 0 ... O
—dizgl] 01 ... 0
T = : Do, (3.8)
—dix[ 0 0 ... 1
1 0 0 .. 0
which results in the following dynamics:
Ni= Tini+Yi(y)
Ty -4 Vi = Nia+di2l1)yi +Wialy) + &g, (3.9)
& = Ni&i +biu

forall 1 <i<m. Here,n ¢ RK—1 & ¢ RPi—1 the matrix

[ —di2f1] 10 .. 0
—digfl]] 01 .. 0

and

Y1 Y@ 1k o
Ll}f?&)} =Tigi(y) =T : ey [‘Du?k(Y)J Vi (3.10)
7 i1 Yk i k 7

where we have used (3.2) to exprgséy), we have denoted

@,1k(Y)
®ix(y) £ : ,
@ k-1k(Y)
and theg ; x represent appropriate linear combinations ofc_ppﬁ.

The system in (3.9) has three structural features that ertabl OFB design.
Taking into consideration the fact that th¢l| are Hurwitz vectors, we see that the
linear component of thg; dynamic is exponentially stable. The second important
feature is that the filter statg ; appears only in thg; equation, which is due to
the fact thaffidi[1] = [0,...,0,1]T. Subsystems whog® = 1 do not require a filter
transformation; in that case the linear transformatiompdiad directly and in (3.9)

u; appears instead @f 1 in they; equation. We observe that since the filter dynamic
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is in strict feedback form, th@;, &;) subsystem of (3.9) is amenable to backstepping
provided that a function1 (of known signals only) can be found, such tha;if=

o1 they; subsystem is stabilized. The third structural feature gfantance is the
Wi(y)’s dependence on the outpytalone; this dependence enables us to influence
then; dynamic ensuring the stability of the overall interconmacof then;, y;, and

& subsystems.

It should be noted that even though thedynamic is ISS with respect t;(y),

a backstepping design on th, ;) subsystem alone cannot guarantee the stability
of the composite system due to the presence of the unkmpwiterm in eachy;
equation. This inconvenience can be overcome by applyir®®) éhd the idea of
nonlinear dampingln the following, we demonstrate the design.

STEP 3: Backstepping Algorithm Up to this point our development follows
closely that in [2]. From here, the design demands sevevatoesiderations to be
made in order to accommodate the coupled MIMO structure.ib)(3

Iteration 1 For the MIMO formulation, the presentation is clearest & ap-
ply the backstepping procedure to each system in “paraHelé. complete each
iteration for every subsystem before the next iteration.b&gin by proposing the

positive definite, proper Lyapunov function candidate

m

Vi= _Zi(niTQir]i +3%) (3.11)
1=
whereQ; = QiT > 0 is guaranteed to uniquely solve the Lyapunov equation

Qi +Qirli = —«il, 1<i<m,

for somek; > 0, since eaclh; is Hurwitz. The derivative of; along the solutions

of all (n,yi) subsystems (3.9) is:

Vi= 3 [ xinii+2ni Qw()

+Yi(Ni,2 + di 2[1]yi + Wi 1(Y) +Xi,2)] (3.12)

Here we must account for the possibility that one or more eftlsubsystems has

p =1, in which case their inputs appear in the associgteguations. To that end,
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we have introduced the variabjg: in (3.12), which we define in general for the

rth iteration as:

XKir=\ &, ieM—P)"
whereP; £ (RUPR_1U---UPy) andP; is defined as the index subset at thieit-
eration identifying precisely those subsystems with nunplejual to that iteration

number:

RCM:(ieR)<(pi=r)
M={12....m (3.14)

As the design iterations progress, some subsystems’ desigjmeach completion
before others; the foregoing notation will help us mostlgasid succinctly express
this “parallel” design process. For an example clarifying tisage of this notation,
please see the forthcoming Remark 3.3.4.

In consideration of (3.10), we re-write (3.12) as

m

Vi= Z—Kmfm + i <k§ 2niTQa¢i,k(y)yk>
i= i= =1

. (3.15)
+ .Zyi (Ni.2+ di2[1)yi + Wiay) +Xi.2),

Re-naming the summation indices froro k in the first and last terms and collect-

ing terms inyy, we then re-write (3.15) as

) m m
Vi= 3% [— Kkn-l!nk‘f'Yk( ZinliTQiCDi,k(Y) + Nk
1 =
+ di 2[ 1)y + P 1(Y) + Xk,l) : (3.16)
We now define a stabilizing function for tleh subsystem asy 1 : R™ — R:
Ak, 1(Y) = —Wk1(Y) — dk 2[] Yk — Ck 1Yk — Ok, 1Yk
m
- ZlBkJ(Qi‘DLk)T(Qi(Di,k)yk, (3.17)
i=
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and remark that((0) = 0. To the subsystems withy = 1, k € P;, we assigrug =
ak1(y), while for the remaining subsystems we introduce the coatéi change

Wi1 = &1 — 0k 1(Y), k€ (M —Py). ThenV; becomes:

V1<Z[ KK—W—ZBI r]kr]k Ckly2
2
—(munkn ~ il + 8cay) Z(

B |n| Ni

— 207 QP kyk + (Bri (QiPi )T (Q q’i,k))’ﬁ))]

+ ) YWk, (3.18)
ke (M—Py)

where we have split off the negative definite temﬁnk and used the fact that

Ngy <mine=[nl>, Ve R,

and the vacuously true fact that

225 2 25

In introducing the last two terms in (3.17) we applied thaamobf nonlinear damp-
ing [1]. These terms now allow us to dominate the affine cresss involving the
unknownny in (3.18) by “completing the square”, and generating a negatef-
inite quadratic term, instead of cancelling. The dampineffacientspy; > 0 and
&1 > 0 can be adjusted to affect the performance of the closgadgstem.

One difference between the MIMO and the SISO formulatiorhes form of
ak 1 in (3.17). Here we must include damping term:fik?i(QiCDi?k)T(QidJi?k)yk to
account for the nonlinearities’ dependence on all outgatsffect, the control input
to every subsystem must provide terms that help stabillzglzr subsystems, due

to the general dynamic coupling between them.
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We proceed by re-writing (3.18) to obtain

Ski[ k—ﬁkl le3| MK Nk — Ce 1Y
__iﬁk,i<mnk_Qiyi) <l3 Iﬂk—QN)
()]

For convenience, we define the negative definite term

= ki [— _:iﬁk,i (%nk— QiVi)T <§ﬂk - QM)

Z YW 1.- (3.19)
kG(M*Pl)

2
~ G~ (e - yk)], (3.20
so that
Vit S | = (ke ot T
1=T1 k; K 151 i;AkaJ Nk Nk
Y YWl (3.21)
kG(M*Pl)

Since (3.21) is rendered negative definite whwga = 0, our next concern is the
regulation ofw 1.

Iteration 2 We consider the new Lyapunov function candidate

V2:V1—|—% Z V\Iﬁl,
ke(M—Py)

whose time derivative along the solutions of tg,yi,wg1), (1 <i<m), qe

99



Section 3.3: Main Result

(M — Py) subsystem is

m
Vo=T11+ AN L
2=11 Zl Kk 46k1 ZiBI nknk]
+ Z Wi 1[Yk + Wi 1]
ke(M—Py)
' kZl “ 401 21[3' k ‘
+ Z Wi 1 [yk + (= Ak 2€k1+ Xk2)
ke(M—Py)
M da
-3 a;l N1+ 22y +Waly) +X1a) | (3.22)

wherex 2 is defined according to (3.13) with= 2. This time we design a stabi-

lizing functionay » for Xy » as:

il 0ak 12
=A — — O o —=
Ak 2(Y:€q,1) = Ak 18k 1 — Ck2Wic 1 l;( |,2< 3y ) Wk,l)

2 dak 1
-I-Z (i 2[2)yr + Wi 2 (Y) +X1,1) — Yks (3.23)

for g€ (M —Py), and remark that it depends on known signals only. We assign
this expression to all,, k € P> and the new coordinate shifi o = k2 — Qi 2, K €
(M —P5) to obtain

. m 1 M1 M-P
Vo <1 -y -
2= 1+k; . W1 GHBki W2 n

-
k Nk

§ T da
W, - [l ' dic 1
+k€(MZPl)[ Ck,2 Z L 4B, Wk,llgl , [l
0
~ Zm( le) Wi+ Y wawe, (3.24)

ke(M—P3)

where|M — Py| denotes the cardinality of the dét— Py (i.e. |[M — Py| is the num-
ber of subsystems that hape> 1, and have therefore not yet had an expression

assigned to their associated inpiit To obtain the term

< [Inill?
2 : 2 49,2
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in (4.21) (second line), we have added and subtradted P1|n] nk/4d., and used

the trivial fact that

g M BT = § > Nk Nk
kk = 1k
m 1 T
= > Yz (3.25)
ke(M—Pp)1=1 79,2
Completing the square we re-write (4.21)
il 1 21 [M-P
Vo<t14+ S —(kp———— § — —
? ! kzl ( “ 46k,1 Bi 46k2 )nknk
i HHH| 00k
+ — 6|72 ‘ k1 ‘
ke(MZPl) |Zl <26I ,2 oy )
- Ck72WE,1} ) WiaWke (3.26)
ke(M—Pj)

For convenience, we define the negative definite tgrrpertaining to theth itera-

tion, for allr > 2:

il 1 00 r_1 2
+Z5|,r<25|7rr]|,1+ y Wk,rfl) , (3.27)

m 1 ™1 M=P 1
V<Y (Ko = Y
k; ( W1 HBik A2 )M
+Ti+To+ Z Wk71Wk,2 (3.28)
ke(M—Pj)

is negative definite whew, > = 0. Again, the expression fary , is different from
the SISO case whema = 1. Additional damping terms were included in order to
compensate fomy 1's dependence on all output components.

From now on the algorithm proceeds in exactly the same walydid starting
at the second iteration; we introduce a new Lyapunov funateindidatd/s =V, +
%ZKG(M_F@ vvﬁz. Owing to the strict-feedback structure of the filter, the\dgive

of V3 produces an affing 3 for k € (M —P3) andu for k € P;s. We then force/s
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to be negative definite by choosing z appropriately and assigning its expression
to allug, k€ P3oréys =wgcz+0k3, ke (M—P;).

Itis important to note that in the second iteration the dizhg functionay 2(y, &q1)
has a dependence only on the outputs and the first filter $tatesging to all sub-
systemg € (M — Py) because of the second last term in (3.23). To clarify, we note
that the appearance of the varialg in that term implies thadi > also has depen-
dence on they, k € Py which in turn depend only op. Owing tooy »’s filter state
dependencé\lg necessarily contains terms of the fo@e(M_pl) gg—(':f(}\qyliqyl +
Xg2). Since these terms are comprised of known signals only, theybe can-
celled directly by 3 which thus picks up a dependence on the second filter states
of all subsystems| € (M —P;), as well asyy, k € P, which have the same func-
tional dependence as . We therefore observe that in thih iteration(r > 1), the
stabilizing function associated with théh subsystem in general has the following

functional dependence:

Okr = Okr(Yi,€qj), ke (M—Py)
1<i<m,
geM={1,....m},
1<j<min{(pg—1),(r—1)}. (3.29)

We point out that (3.29) correctly indicates that for subsys withpg = 1, there
are no filter states and therefang, is independent of any sudy,j. Sinceay, is
assigned tak, k € P, (3.29) implies that the contraly, k € B, must effectively
cancel all previously assigneg, k € P"_;. This cancellation presents no difficulty,
as these previously assigned control expressions depehdeely on known sig-
nals, and never on one another or yet-unassigned contiables. Therefore, in
the MIMO case with output-dependent coupling it is still e to find explicit
expressions for they, k € M without having to solve a system of equatibirsthe
Ux. This fact is a consequence of our choice of input vector8.ih)(@as well as the

strict-feedback structure of the filters.

1See for example the ad hoc MIMO OFB design for an inductiorompttesented in Section 7.2
in [1].

102



Section 3.3: Main Result

The Backstepping Algorithm continues for

N = rkg?ﬂX(po

iterations, after which the séM — FY)) is empty since th&th subsystem’s filter has
exactlypyx — 1 states, and exactly iterations are required to complete its design.
We now show that it is possible to choose expressions forténand stabilizing
functions at every such iteration, regardless of the sysliemensiom or the num-

berpy associated with each subsystem.

Lemma 3.3.1. Define the set of function®; = V,_1 + % Ske(M—P* ) Wﬁkl for
2 <r <N, with Vy given in (3.11). Then, for every iteratian2 < r < N of the
Backstepping Algorithm there exist stabilizing functians;, k€ (M —P"_;) ren-

dering
A - 1 1 'c 1\M Py
Vi <) Tg+ ) —(Kk— 5 —
|’ qu q Z]_ ( “ 40y, Z\Blk =1 46k]+1 >r] ik
+ Z Wicr—1Wi r, (3.30)
ke(M—Py)

once the coordinate chang&, = &x, — Okr, K € (M — F) is defined oru, =

ar, k€ P is assigned.

Proof. We begin by considering theh iteration.
Iteration r: Suppose there exists a stabilizing functe) —; and an associated
coordinate changeir—1 = &k r—1 — Ok r—1 Such that the expression fgr_, has the

following final form, identical to (3.28) when= 3:

V- m r 2 ||\/| pj*|) -
-1 Kk = 7x— — Nk Nk
' k; 45k1 Z\& = 1 431«
r—1
+ Z Tg+ Z Wi r—2Wikr—1 (3.31)

g=1 ke(M=PF_,)
wheret, is defined in (3.20) ant, as in (3.27). We proceed as usual and propose

the subsequent Lyapunov function candidate

Vr :Vr_l—i-% Z \Nﬁ,rfl
ke(M—P"_,)
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whose time derivative is

v r m 1 m 1 r2||\/|_pj*|) -
=5 1q+ Kk————— § — — K
r q; ! k; 1 & Bik j; 40y j+1 A

+ Z Wk,rfl[Wk,er‘f‘V.Vk,rfl]
ke(M-P_,)
r— m 1 m 1 r— Z\M p*‘
=) Tg+ Kk——— Nk Nk
qzl q k; 401 Bi k Z 46k j+1 ) k

+ Z (Wk7r—1 [Wk7r—2+ <—)\k7r—1ak7r—1+Xk7r>

ke(M—P"_,)

aakr

(3%

wherex, is defined as in (3.13), and we have shortened the notatidimefuby

(M1 + di2[1yi + Wia(y) + Xi1) +S)}> . (332

introducing the terng which we define as

min{(pg—1),(r—2)}

A aakl’ 1.
2 z z 3.33
3 = < 08q,j al ) (3:33)

S represents the time derivative®f,_, along the trajectories of all relevant filter
states, given in (3.29). This term is much simpler in the St3&e. Here, (3.33)
shows how the stabilizing functions themselves couple fimadhics of the closed-
loop system in the MIMO case.

We observe that just as before, we are in a position to chostbdizing func-

tion oy for Xk in (3.32) as

Oficr = Akr—18kr—1 — Wir—2 — Cir Wi r—1

M 9o —
+y S ol + )00

-3 5. ( %

so that it depends on known signals only. Again, we asgiga oy for k € B,

aukr 1\2

) Wir + S, (3.34)

while for k € (M — Pf) we define a new coordinate shifi, = &, — ax,. We
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therefore obtain:

\_/ _ r— m 1 1 l’ 1 ‘M P*‘)
< ) Ig+ Kk — —=— — Nk Nk
' qzl q k; 45k1 Z\BI k= 1 45k1+1
Z [Imi]?
— Z Z 46 + Z —Ck7r\Nﬁ7r71
ke(M—Pr_)I=1 TOLT ke(M—P7 )

m oa oa 2
_Z Wir—1 kr 1“| ||_Zalr< kI 1) VVEr)
=1

Wicr—1Wir - (3.35)
ke(M—Py)

Applying completion of squares we write out the expressionsiore detail and

obtain:
. r—1 m rl‘M p*‘
Vi < Tg+ k———
r qzl q Zl 46k1 Z\Blk ]z 46k]+1

vy (_Ckr 2 zé[nmu
ke(M—P'_,)

Oor—1|[lmil /00— 2
oyi | O ( oy Wk’r> }
r—1 m 1 m 1 r— 1||\/| p*|
< 1Y —(Kg— o —
> quTq kZl (Kk 46kl Bi K Z 46k]+1 )n Nk

<_ Ck,rwﬁ,rfl
1)

— [Wir—1

+ Z Wi r —1Wi r +
ke(M—P¥) ke(M—P*

r—

m
nil] 00kr—1 2
_Izlé.r(zélrﬂ 5 w.q})). (3.36)

Definingt, as in (3.27), we can write

1 m 1 rl||\/| p*|

m
i<y —(kk— o= S = —
r _kZ]_ ( k 46k1 pa Bi,k J:l 46k,j+l )n nk
r
+ ) Tg+t Y Wir—aWie, (3.37)
g=1 ke(M—P;)

which has the desired form (3.30).
Taking (3.28) as the base step and (3.31) as our hypothesisetmnma is proven
by (3.37) and the principle of inductiolll
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The Backstepping Algorithm terminates when we reach Nitie iteration at
which the index setM — FY,) is empty. In that case the last term in (3.37) is
zero, and we are left with a quadratic negative definite Lyapdunction derivative
along the trajectories of all closed-loop system states.ndve ready to state the

proof for Theorem 1:

Proof. (of Theorem 1}rom Lemma lwe conclude the existence of stabilizing
functionsoyr as in (3.29). Therefore withiN iterations of the Backstepping Algo-

rithm it is possible to assign expressions tougll1 < k < mas:

Uk = Ok py (V,€q,1;-- -5 Eq7min{pk—17pq—1}) (3.38)

forall 1<k <mand 1< g <m. A byproduct of the design is the iterative con-

struction of a quadratic Lyapunov function

m N
V= z<nmnk+%yﬁ>+%z( o,
K=1 r=1 \ke(M—P;)
whose time derivative is

L 1 1 N l|M P

W < — (K —

N_kZ]_ ( “ 46k1 ZjLBIk =1 46k]+1 )nknk

+ Z g (3.39)

=1

Taking into consideration our definition foy in (3.27) andr; in (3.20), we neglect

the negative definite “cross terms” in these definitions &edefore express (3.39)

as:
W<S 5 M= P*|
<3y - Kk——— K
N k; 4'6k1 ZlBlk Z 46k1+1 n L
0=
m T Pk
<> (—ﬁknk Nk — Ci 1Yk + Zz—ck,qWﬁq_l), (3.40)
k=1 g=
where
£ S 1|M il (3.41)
K = K . )
ST 46k1 ZB. 46k7,+1
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Section 3.3: Main Result

We stipulate that the coefficientgj, 1 < j < px be chosen positive, and the coef-
ficientsA, 3,0 be chosen such thaj > 0, 1 <k < m. In that case the origin of the
closed-loop system ifn,y,w) coordinates is globally exponentially stable. In the

original coordinates (3.1), the system is at least glokadlymptotically stablell

Remark 3.3.1.1tis always possible to choose the coefficiedh&ndf so thak, >0
since they are independentxf The magnitude oky can be influenced by tuning

the filter’s eigenvalues, which affectQ; in (3.11).<

Remark 3.3.2. Unlike in [2], here we have included the damping coefficietts
andf in order to point out the possible performance tradeoffsia tlesign. For
pedagogical purposes, we have attempted to cast our paéisenin a form that

more closely adheres to the familiar backstepping framkwogsented in [1]«

Remark 3.3.3. We note that the dynamic order of the OFB law is equal to the
number of filter states associated with all the subsystemes ST, (px — 1). Itis
interesting to note that in the best case it is possible te laaglobally asymptoti-

cally stabilizing OFB law which is static, whgg =1, 1 <k<m. «

Remark 3.3.4. The notation and indexing in this chapter are admittedffyadikt. In
an attempt to clarify the usage and efficacy of this notati@n¢onsider an example.
Suppose a MIMO nonlinear system (3.1), with= 4 inputs and outputs, has been
transformed into subsystems of the form
Ni=T1+yi(y),  N2=Tan2+Y2(y),  Nz3=T3Nz+Vys(Y)
yr=nNu1+di2[llyr  Yo=n21+d2[lly2 Y3 =nz1+d32[l]ys
o AHluly) & Flaly)+&r 0 HWs(y) +é&a
§11=—A11€11+8&12, &o1=—A21&21+&22, &31= —A31&31+&32

§12= A€ot U1, &= —A2€22+8&23, &32=—A32832+U3
§23 = —A23823+ U2

and

Na = ana+ya(y)
Ya = Na1+ dao[1]ys+ Wa1(y) + Us
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Section 3.4: Mathematical Example
so that we have

p1:37 p2:47 p3:37 p4:1

The index subsets are

PL= {4}, P =14}

P, = {0}, P, =14}

Py ={1,3}, P; = {1,3,4}

Py = {2}, P; ={1,234}=M

For this system we require four iterations, and the stabdizunction associated
with thekth subsystem has the following variable dependencies:

k1 = Ok 1(Y1,---,Ya), vke M

Ok2 = Ok 2(Y1,- -, Y4, €11, €21, &31), vke (M—P))
O3 = Ok 3(YL, - -, Y4, €11, 821, €31, €12, €22,€32), vke (M—P3)’
Ok 4 = Ok a(Y1,---,Ya,€11,€21,€31,€12,€22,€32,€23), Vke (M —P3)

and we assign

up = aa3(")
Uz = 0l24(")
Uz = a33(")
Ug = Qlg1(-)

3.4 Mathematical Example
We illustrate the application of the theory presented is tthapter using the fol-
lowing mathematical example.

Example 3.4.1(Multivariable OFB) Consider the following system in the form
(3.1), withm = 2 subsystems, the numbés, p2) = (3,1), and(ks, ko) = (3,1):

X11 01 0 O [x11 (p17171(y) @17172()/) 00
12| [0 0 1 Of [x12 @P121(Y) @122(y) 00 {Ul}
13 ~ [0 0 0 0f x| " P131(y) e @132(y) Y2411 0] |u
X21 0 0 0 O X1 ®.1.1(y) @.1.2(y) 01
—W(y)=[W11(y) oY) Wra(y) Wr ()]
Y1 X11
y {YJ {ij ( )
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Section 3.4: Mathematical Example

Since the second subsystem Ipas= 1, we do not need to construct a filter for it.

However, the first subsystem requires a second-order filter

311 =AM 1 £11 0
['512} N [ 0 —?\12} |ﬁlz} * M H (3.43)

and the filtered transformation

73 = X1 —d1[2)&11 — d1[3]&12 (3.44)
with
0 0 1
di[3]= (0], di[2l=| 1|, di[l]= |A11+A12],
1 )\12 )\11}\12

designed according to (3.3) and (3.4). It is apparentdifdi is a Hurwitz vector,
since

S+ (A1+A12)s+ (A11A12) = (S+A11)(S+A12)
andAyj j = 1,2 are assumed to be chosen positive. With some algebra, we can

work out that thgx;, &1) dynamic in the(z1,&1) coordinates is represented by

721 =Aqzn +Pa(y) +d1[1)€11
E11= —M1€11+ &1

&12 = —A12812+ Uy,

and that applying the linear transformation

—dipfl] 1 0 —~(A11+A12) 1 0
Ti=|—dig[l] 0 1| =| —(AuAz) O 1 (3.45)
1 00 1 00
to thez; subsystem allows us to write the entire system dynamic as
N1 =TN1+va(Y)y1+va(y)y2
_ (3.46a)
y1 = N1+ di2(1]y1 + P1a(y) + €11
&11=—A11€11+&12
: (3.46b)
{12 = —A12812+ Uy
Y2 = Wa1(y) + Uz (3.46¢)
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Section 3.4: Mathematical Example

where we denote

N = [nll} o= [—(7\11-1-)\12) 1] 7

N12 —(Ahz) 0
and
_ [@r24(y) — di2[Ler1.1(y) + dsfL] — diz[1)2
Vl(Y)—{ qfllsl(y) p tha[l ]cplllll(y) di3[1 ]dlzT] }’
_ [@22(y) —dio[2pr12(y)
Nl s wriced|

From (3.46), it is tempting to examine (3.46c¢) and immedyedelect

U = —L|.121(y) —CY (3.47)

for somec > 0. However, such a choice cannot guarantee that the subsyste
(3.46a)-(3.46b) can be stabilized using We demonstrate by carrying out our
“parallel design” for the first two of th&l = 3 iterations of backstepping that are
required to complete the design.

Iteration 1: As usual, let
Vi=niQni+3y;+3y3
whereQ = Q' > 0 uniquely solvesthe Lyapunov equation
MQ+Qr=—«kl, keR™.
Then,

Vi = —k |1/ +2n1 Qy1(y)y1 + 201 Qy2(y)y2
+y1[N11+ dio[1)y1 + Paa(y) + &11] + Y2 [War(y) + o] (3.48)

From this expression it becomes clear how and why the desigihé SISO case

must be altered if general dynamic coupling between theystasis is allowed via

2|n fact, we have

0 Q2
Q= Lh Q3] ’
i 1i-dyg[l] — 1+dy3]1 dyoL
with g ="G%E, =3 and g=}% (dlzmésl[s[]l] + dﬁﬁ)'
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Section 3.4: Mathematical Example

the outputs. If it were possible to factor the nonlineadityy) as

W11(y) P11(y)
Pa(y) = [wlz(w ®2(Y) | V1
W13(y) P13(Y)

for some smooth functiongy j(y), j = 1,2,3, then we could indeed choosg as
in (3.47). However, in general we cannot expect such a faetioon to be possible,
as we have assumed that eagh(y), 1 <i <m, 1 < j <k is allowed to have a
general dependency on all system outputs..,ym. One situation in which such
a factorization is impossible is whepy = W1(y2). In that case, we can still solve
the problem according to our method by introducing a dampéng insideu,,
designed to dominate the cross-term betweeand the unknowm . Specifically,

if we choose

a11(y) = —Wa(y) — diz2[1]ys — S1ay1 — cray1 — Bra(Qva(y)) ' (Qua(y))ya
021(y) = —W21(y) — Cory2 — le(Q\/z)T (Qv2)yo, (3.49)

define the error variablei; = £11 — a11(y), and assigni, = a21(y), thenV; be-
comes:

' 1 2 nall

Vi< = (K= z5= = g — gy ) INall® = caayf — co1y3 — 311 (25 —Iy1 \)

—Bua(gN1— Qyi(y)y1)" (N1 — Qua(Y)ya) +yaw

2
2 — (K= 25— o — ) Il + T+ yaws

wheret; is clearly negative definite.
Iteration 2: Again, proceeding as usual we introduce the new candidae Ly

punov functiorV, = V1 + %W{l whose time derivative is

Vo < — (K= z& — g — g ) Inwl2 4+ Ta -+ waa [yr + Eag — 20y, — Sy
(3.50)
=—(k— 4;%11 — ﬁ — i) INa)|?+ 11+ Wi [yr — AM1&11+E12
aaal;l( 2810 (013 + dy2[1]ys + Waa(y) + E11) — aaal;z (Wa1(y) +021(y))]
(3.51)

111



Section 3.4: Mathematical Example

from which it is clear that we seleét» as the next virtual control. The design
for the second subsystem is complete within one iteratiod the stabilizing func-
tion a12(y, &11) must cancel all known terms includir@%(”(tpm(y) +021(y)) and
damp the unknown terr@a%lyl—l(”ml. We mention this because we mean to illustrate
the fact that controls associated with subsystems havingteehnumberp ulti-
mately must cancel (i.e. pick up a dependency) on controtesgions designed
in previous iterations. Such cancellation presents nocdifff as these previously
designed controls in turn depend on known signals only. Toussequential de-
sign is made possible because of our restriction on the imgetorsD; in (3.1);

specifically, in this example suppose we allowed the inputisto take the form

[D17 DZ] =

for somea # 0. Then, within the first iteration the contro] appears prematurely
in (3.48) and must be cancelled loy. However,u; has not yet been assigned
at this iteration, and henag = a»1(y,u1). In the next iteration the stabilizing
functiona2 = a12(Y, &11, u1) would cancel the terrﬂ%ﬁ”(%l(y) +021(Y,u1)) SO
that eventually the contral; must be selected to depend on terms containing
anduj. In other words we would have to solve an ODEuinin order to find the
complete OFB law. For this reason, we restrict all off-diagidlocks of the input
matrix Dy, ..., Dy to be zerd.

From (3.50) it is easy to discern the formaof, and the final iteration proceeds

in a similar fashion. The complete control law for this sysie:

U = 013(Y,&11,€12) (3.52a)
Uz = a21(Y) (3.52b)

3This restriction can be loosened to allow all lower-trialagiblocks to depend on functions of
y, as long as a block-strict feedback structure is imposedherehtire system, including the input
matrix.
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where
ar1(y) = —P11(y) — dio[1]yr — d11y1 — C11y1 (3.53a)
~Bre(Qn1(y) " (Qr)¥1
a21(y) = —W21(y) — Cory2 — le(Q\/z)T (Qy2)y2 (3.53b)
a12(y,&§11) = A11811— Y1 — CioWi1 + aagjz(y) (Wa1(y) + 021(y)) (3.53¢)
2
—012 (00(61;1(y)> W11+ %;17;(” (d12[1)y1 + W11(y) + &11)
2
a13(Y, €11, €12) = A12€12 — W11 — C13W12 — 013 (%})”flﬁ) wp  (3.53d)
+%§ZEH) (d12[1)y1 + W11(y) + &11)
_,_M (W21(y) +a21(y)) + Oat12(¥, &11) (—A11€11+&12)
oy 0&11

To demonstrate the efficacy of our method, we calculated xpeessions (3.53)

using symbolic math software when the system’s nonliniearédre chosen as

qulEY; 2 v .

Wa(y)| Y5 +Yy2+

Yy = w13(y) = |72 y%_'_y% 1l. (3.54)
P21(y) %

None of these nonlinearities are Lipschitz and some do hatwahe output vari-
able of their associated subsystem to be factored out — fampbe, the second

subsystem is driven by only. We chose to factow(y) as

Pr11(Y) P1,12(Y) 0 y2
@1.21(y) @1.22(Y) y1i+Y2 Y2
wiy) — |92 L | @2 _ 4 3.55
) @31(y) i @132(Y) y2 Al N Y2 y2 ( )
@2,1.1(Y) @212(Y) v 0

and emphasize that this is not a unique choice. We thus gigtdnother difference
between the SISO and MIMO case — in the SISO case, this faatam is usually
unique, as there is only one variable to factor. HoweverhenMIMO case, the
designer has more flexibility in her choice of factorizaipsome of which may

lead to simpler control expressions or reduced controteffo
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The calculated control expressions are lengthy, and wilbeogiven here. In-
stead we show the results of simulating equations (3.48R2§3using ode45 in

MATLAB with the following parameters:

X1;|_(0) [ 10 ] 5 1

X12(0 ~16 11 c 2
xﬁog p A1 3 312 0.01 Ci; 5
%21(0) =1 6 | A2| = (1], 013 = |0.001] , c =15
21 K 6 B11 0.01 13

€11(0) 0 B 0.01 C21 1
€120 | 0 | 21 '

In Figure 3.1 we show the behaviour of the CL system stateieWigures 3.2 and

3.3 show how the filter states evolve and the magnitudes afdaht&ol inputs.

Closed-Loop System States
T

20 T T
g ’-\/_
x or
—20 | | | | | ]
0 1 2 3 4 5 6 7
100 T T T T T T
S ok
S W
~100 | | | | | |
0 1 2 3 4 5 6 7
500 T T T T T T
xﬂ 0 \/¥
-500 L | 1 | | 1
0 1 2 3 4 5 6 7
10 T T T T T T
N
x ° \ |
| . |

Time

Figure 3.1: Behaviour of the closed-loop system.

The choice of simulation parameters was arbitrary, and libts pre not meant
to show efficient control; rather, we are only concerned wWithfunctionality of our
algorithm. However, our design allows many degrees of fseeth altering the CL

system performance by tuning the control and damping casftis. <
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Filter States

500

~
]
v 0

-500 1 1 1 1 1 1

Time

Figure 3.2: Behaviour of the filter states.

« 10° Control Inputs
1 T T
ok
t/r!
=]
af J
—2 1 1 1 1 1 1
0 1 2 3 4 5 6 7
500
ok
£, -5001 8
N
=]
-1000 |- 1
-1500 L L L L 1 1
0 1 2 3 4 5 6 7
Time

Figure 3.3: The control inputs.
3.5 Internal System Structure

In this section we investigate the internal structure ofsygtem form (3.1), which

has some curious features.
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Section 3.5: Internal System Structure
3.5.1 Vector Relative Degree

In Section 3.2, we mentioned that the numpgedoes not necessarily correspond
to the relative degreg associated with thgh output. To illustrate, we once again
consider the fourth order system (3.42) in Example 3.4.6st Mie recall that for a

MIMO nonlinear system of the form

x = f(x) +G(x)u

(3.56)
y=H(x)
wherex e R",ue R™, ye RMand
Y1 ha(X)
G(x) = [91(X), ..., Im(X)], HX)=|:|= : , (3.57)
Ym hm(X)
thevector relative degre@/RD)
r={re,...,fm}
is said to exist and be well-definedt a pointx, if
Lo LXhi(x) =0, 1<j,i<m
o , (3.58)
0<k<ri—1
for all xin a neighbourhood of,, and thedecoupling matrix
Lo, L0 Lol () - Ly (o
Lo, L "ha(X) Lg,L? "ha(x) -+ Lg L? "ha(x)
A(X): O1-f . g2 -f . . Om™=f . (3.59)
L, L thm(¥) Lol thm(x) -+ Lg, L™ thim(X)

is nonsingular ak,. The numberr; associated with th&h output represents the
number of times;; must be time-differentiated befosny u, j € {1,...,m} ap-
pears. To apply this definition we examine one output at a.ti@ensidering the

outputy;, it is necessary for thigh row of A(x)

[Lgy L hi(x), L, LY i (%), -, LgyLf hi(x)]

4Please see Section 5.1 in [17].
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to be nonzero in order to hav&X,) nonsingular. However by (3.58), we expect
each of the entries in the above row-vector to be zero fok all0,1..., (ri — 2).
Whenk = rj — 1, then at least one of the entries in this row vector becororzaro.
The most computationally efficient way to apply this defonitin order to discern

a system’s VRD is to consider one output at a time, and congadk of the entries
of this row vector for increasing until a nonzero entry appears. At least one entry
must be nonzero for akt in a neighbourhood of, otherwise the VRD is not well
defined.

We proceed in this way to identify the number®r the system (3.42) in Exam-
ple 3.4.1. For this system we obt&in,r2) = (2,1), which is not the same as the
pair of numbergp1,p2) = (3,1) that dictate the dynamic order of our OFB design.
Also interesting is that the decoupling matrix

OW11(X11,%21)
o= [T o] = o Y] e
is singular for allx which implies that the VRD is not defined for this system.

The fact thatp # r necessarily is interesting for several reasons. Firsthén t
SISO version of (3.1) (which is the OFBF), the numpes identical to the relative
degrea which is inherently well-defined. Therefore, a well-defimethtive degree
is necessaryn order for a SISO system to admit an OFB design by the MT ntktho
For MIMO systems, this is clearly not the case as we have dstraied in Example
3.4.1. Furthermore, many OFB methods for SISO systems aitiplrely on the
existence of a well-defined relative degree, as they aredbasesome variant of
the normal form. For MIMO systems, a well-defined relativgrée has many
similar implications as that for SISO systems; for instante exists and is well
defined for (3.56), then there exists a diffeomorphism thetdforms (3.56) to a
MIMO normal form [59] from where the system can be 1/O linead by SFB, and

the problem ofoninteracting control can then be solved. One would therefore

SPlease see Section 5.3 in [17]. The problem of nonintergctimtrol is to design a state feed-
back that decouples the 1/0 behaviour of the individual gstesns and is analogous to /O SFB
linearization for SISO systems. If such a feedback exis&) tt is possible to regulate the behaviour
of each outpuy; individually through theminputs.
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expect that the existence of a well-defined VRD would alsg plaimportant role
in OFB designs for MIMO systems. Contrary to this expectgtiour example
shows how the multivariable structure of a system may infigg@vide design
flexibilities not enjoyed by SISO systems. In particularisiinteresting to note
that the global MIMO OFB problem is solvable for the form (Belven when the

problem of noninteracting control is not solvable by statate feedback

3.5.2 Stability of the Zero Dynamics

Fortunately, the existence of a well-defined relative degsenot necessary for the
stability analysis of a system’s zero dynamics. We carrysach an analysis for
the sake of completeness and to help further characterzgydtem (3.1).

It is useful to revisit the definition of “zero dynamics” (ZDJhese are the dy-
namics of an unforced systexn=F (x), comprising the largest subset of the set of
all its trajectories, with the property that= 0. Since we generally assume that all
the solutions ok = F(x) depend continuously on the initial conditions, searching
for such a set is equivalent to identifying the largest sanibfal conditions from
which the system evolves with= 0. It is well known that the stability properties
of the (ZD) are invariant under static or dynamic state fee#b Therefore, the task
of analyzing the ZD stability of a forced system such as (8ak) be accomplished
by first finding an invertible change of state coordinatesafill) state feedback
u = 6(x) such that in the new coordinates the unforced system cleawbals the
largest set of initial conditions for which the system’spuitis identically zero. As

discussed in greater detail in Section 2.2, for SISO systi#@s
x=f(x)+g(x)u
y="h(x)

with a well-defined relative degreea transformation of the form

(3.61)

zj = Ljf_lh(x), 1<j<r

n = @Xx)

6A well-defined vector relative degree is sufficient and nsagsfor the problem of noninteract-
ing control to be solvable by static state-feedback (Pribpos5.3.1 [17]).
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brings the system dynamic into the normal form

n=r(n,z
Zj =7j11
(3.62)
z = Lth(x) +uLgL} h(x)
Y=2.
Then, with the SFB
u= (Ll h(x)) " (—LFh(x) (3.63)
(3.62) shows that for any initial conditions in the set
{(n(0),2(0)) e R™ " xR" | 2(0) = O}, (3.64)

the trajectories of (3.62) evolve in such a way that 0, vVt > 0, withn =1 (n,0)
being the ZD of (3.61).
Since the VRD is not necessarily defined for systems of then f(8.1), we

cannot apply the analogous change of coordinates (cf. Leménain [16]):
m (3.65)

to obtain the multivariable NF that reveals the ZD. To asierthe form of the
ZD, we could apply the so-called “zero dynamics algorithre5cribed in Chapter
6 in [17]. However, this algorithm is rather involved and wa éor a simpler ap-
proach that takes advantage of the structure of system {#d proceed as follows.

Without loss of generality, assume that

p1=max{p1,...,Pm}-

Define the number
S = p1—pi.

Then, append; integrators to the input associated with tHesubsystenfl <i <
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m) to obtain the extended system:
X=X jr1+WPijy), 1<ji<(pi—1)
Xij =X j+1+ Wij(y)+di ;i1 pi<j<(n—-1)
Xk = Win(y) +dikGi1

, ' (3.66)
Gi=0j+1, 1<j<(s—1)

Zi,s =V

Yi=X1

Our technique is a variant on tldgnamic extensioalgorithm given in Section 5.4
of [17], in that we “delay” the appearance of certain inpuatali output derivatives.
The variableg; ; are the states of the appended integrators, gyith= u; andv; the
input to the last integrator appended to ttiesubsystem. Augmenting the system
in this way allows us to define a diffeomorphism and state baekl (applied to
the new inputs) that transforms this extended system intrra fwhere its zero
dynamics become apparent. We note that no (static or dynamaie feedback can
affect the stability of a system’s ZD, and therefore if théeexied system’s ZD are
stable, then so are those of the original system.

We then claim that the change of coordinates (fet iLl< m)

z =L} hi(x), 1<j<p1
(3.67)

—Coj+j
d li Xi,pi +Xipi+]

Ni,j =

P

where the vector field (x) = [f],..., f1]T is defined so that the system dynamic

(3.66) can be written as

Xi1

Xi ki

Zf,l = fi(X) +givi (3.68)

_ZLS_
with
gi=0,...,0,1]1,,.
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forms a diffeomorphism that transforms (3.66) into a MIMQmal form where a
state feedback and a set of initial conditions can be fouridadhe zero dynamics

are shown to take the form
n = blkdiagr'y,...,Mm)Nn (3.69)

where the Hurwitd; € RKki—pi)x(ki—pi),

We justify this claim by illustrating the procedure on a gystsimilar to (3.42)
studied in Example 3.4.1. We add an extra state to the firsystdm to ensure
that the zero dynamics are not trivial as they are for sys@dR]. The system we

consider is
X11 = X12+ Y11(y)
X12 = X13+ Y12(Y)
X13 = X14+ P13(y) + U
(3.70)
X14 = P14(y) +auy, a>0
X1 = Y1 (y) + U2
y = [X11, %21,
which can be shown to have a singular decoupling matrix,tideinto the one for
system (3.42). Sinc® = p1 — p2 = 2, we re-write (3.70) as
X11 = X12+ P11(y)
X12 = X13+ Y12(Y)
X13 = X14+ P13(y) + U
X14 = P14(y) +auy, a>0 (3.71)
%21 = W21(Y) + {21
L1 =022
222 =W2
appending two integrators to the second input. We noteythabw must be dif-

ferentiatedp; times before the new inpub appears. We define the change of
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coordinates
Z11=Y1=X11
Z12=y1=X12+ Y11
213="Y1= (X13+W12) + 65’;11 (X12+W11) + 5‘;,;1 (W21 +C21)
£ x13+ 613(y1, Y2, X12,{21)
N = —ax3+ X4 (3.72)
221=Y2=X21
Z=Y2= Y21+ (21
3 =Yo = 5’;211 (X12+P11) + 5‘;,;1 (W21 +C21) + Q22
= {22+ 623(y1, Y2, %12, {21)
whose Jacobian is clearly nonsingular fonalln the new coordinates, we have

N = —an —a° (2134 013(z11, 21, (212 — W11), (22— W21))]
+ (W14 —aysa)

211=212
212 =213
. . (3.73)
213 =X14+ W13+ U1 + 013(Y1, Y2, X12,{21)
21 =2
22 = 23
233 = Vo + 023(y1, Y2, X12, {21)
We notice here that the expressions 5&@@(-), i = 1,2 do not produce a depen-

dency on eitheuy or vo. Therefore, the; andz, subsystems can be decoupled by

choosing
Uy = — Y13 — Xaa — B13(y1, Y2, X12, (1)
_ (3.74)
V2 = —023(y1, Y2, %12, C21)-
Secondly, by their definitions, th& 3(-), i = 1,2 vanish when their arguments are
zero, and if we initialize (3.73)-(3.74) on the set
{(n(0),2(0)) € R* x R®| z0) = 0}, (3.75)
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Section 3.6: Summary

we see that the outpytremains zero for all time, and the zero dynamics
n=—an

are GES.

3.6 Summary

In this chapter we provided an extension to the globally gspiically stabilizing
output feedback design method presented in [2], to MIMO ime@r systems. The
efficacy of our method is demonstrated via simulation on eheragtical example.
We have shown that if the structure of the input vectors indtagting form is
restricted as in (3.1), the nonlinear output-coupling lestwthe subsystems poses
no difficulty in formulating a globally stabilizing OFB. Irhe MIMO case, it is
necessary to include additional nonlinear damping termsotapensate for this
dynamic coupling.
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Chapter 4

Application of Observer
Backstepping to Systems in a
Restricted BTOF

This chapter is based largely on [72].

4.1 Introduction

In this chapter we investigate an application of observek$i@pping to a class
of nonlinear, multivariable systems in a restricted BTOBk-triangular observer
form). The BTOF was introduced in [70] where the differehtjaometric condi-
tions fully characterizing this class of systems are dekivéhe BTOF observer
is a generalization of the linear error dynamic observerghesl on the basis of
the NOF (nonlinear observer form) [68]. We note that the bassult in [6], and
its extension to MIMO systems is obtained using an obseraset on the OFBF,
which is a restricted subset of systems in NOF. The conighun this chapter is
to demonstrate a similar design using an observer that dutdsane a linear error
dynamic.

We illustrate our method on a model of a physical system, tA&NEV, con-
sisting of a magnetically levitated ball, and show how theigie can easily be made
robust with respect to variations in the electromagnetikresistance. Two addi-
tional benefits of the design are that it does not rely on tkeeofikigh-gains in order

to guarantee boundedness or convergence of solutions ocoamyact set, and it
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Section 4.2: The BTOF Observer

does not impose growth restrictions on the system’s noailities.

We first present the BTOF, designing an exponentially cayesmtrobserver for
this class of systems. In the next section we consider a sabsgstems in BTOF
and present our main result. We then carry out the designeM&GLEV. In the
conclusion, we note several observations on the praclityabi recursive methods

such as the one presented here.

4.2 The BTOF Observer

In this chapter we consider the following class of systentene theth subsystem

can be written as:

2BTOR - 4 XA = Yia (Xi—1),Ym)) +hio(y)u (4.1)
Yi =CiXi = Xi1
forl<i<mand 1< j<A—1. In(41),xcR", n=5M A, x c RN, ycR™
ue R andb; =0 for 1<i<m-1, whileby, # 0, ando(y) is a smooth function

bounded away from zero. We denote

X(i*l) = (X1,27 s ,Xl,)\]_? cey Xim1250 e ,Xifl,)\i,l)

and
Yiy = (y17 . ,yi)'

Each numbeA; could be chosen as the observability index associated ettt
output but in general it is not necessarily uniquely defindd.require the functions
yi to be smooth, to satisfy;(0) =0, 1 <i < m, and to be globally Lipschitz in
X(i—1), uniformly iny. Alternatively, we could weaken this assumption and resjuir
they; to be Lipschitz inx;_;, on some compact and connected@etiniformly in

y. The necessary and sufficient conditions characteriziagtiucture of the drift
component of (4.1) are derived in [70]. Whereas in [70] eachlinearityy; can
depend on all subsystem outputs, here we consider a sultbet dfss of systems

equivalent to the BTOF by requiring the following assumptio
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Section 4.2: The BTOF Observer

A4.2.1.
Vio= {Wj(x<i—1>,)’<i>) for J <A
’ Bi(yay) +Ci(yiy)@(Yier) for j=A
for 1 <i<m-1, where G, B; andq are smooth functions, with;@nd the deriva-

tive @(-) being bounded away from zero on some operating reignRR".

Assumption A4.2.1 enforces a strict feedback form on the BTiidking the
subsystems in a way that allows us to carry out a backstepi@sign. We refer to
the BTOF satisfying A4.2.1 as the RBTOF (restricted BTOR)cérding to [70],

an observer for systems in RBTOF can be constructed as

X (4.2)

s R = R+ Ry Yay) + L%
RBTOF : . 5
i = Yin (Ri—1), Yiirn)) Hbio(y)u+Li K1

for 1 <j <A, 1<i<m-—1, withX ;=X 1—X 1. Themth subsystem is written
similarly, except that afm j's are allowed to depend on all system outputs. If
the observer gaink; j are chosen such that the polynomiglis+ Lj 1SNt + ... +

Li »,—1S+ L, are Hurwitz, then the dynamics of the erso=% — X are

(4.3)

~

5 K =Rt A - L%
RBTOF - ~
Xin = Oy —LingKin

whereAy; j £ vi j(Xi—1).Yiy) — Yi.j (Ri—1).Yiy), 1< J <m—1 (with Ay; , defined
similarly), which is shown in [70] to converge exponentialb its origin. This
fact can be intuited by observing that for the first subsystéiy = 0 and the
X1-dynamic is linear and stable. In the second subsystem niearlistable error
dynamic is perturbed by the disturbante, whose norm, by assumption, is less
than or equal to a linear term jjX;||. From the convergence of the first subsystem’s
error, the magnitude of this disturbance decays exporirtezero, and the entire
SrBTOECan be shown to converge by induction.

In our main result, we make use of the observer (4.2) to cocistr globally

stabilizing output feedback law.
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Section 4.3: Main Result

4.3 Main Result

Theorem 4.3.1.For any system globally diffeomorphic to the fof4nl), satisfying
assumption A4.2.1, there exists a stabilizing control laagdd on known signals

only. If they; j satisfy

1,5 %=1y, Vi) = Yi,i (O Vi) | < Ki j Iy
onQ =RVi-1 v, 1= z:j}q, then the control law globally stabilizes the system.

Proof. We first re-write the composite system consistingeétorand its observer
iRBTOF dividing each into its subsystem components for clarity:

; ‘. A ~
X11=X12+X12+VY11(Y1)

Zit S Rj=RajeatyLjlyr) +Lajfia
(XA, = Yin, (Y1,¥2) + Loy, Ken

X|1—X|2-I-X|2+V1( (-1 T Xi-1):Yay)

% ><ij=Xi j+1+ Vi (K1) Yaiy) + Li %Ki
X = Bi(Yay) +Ci(Yiy) @ (Yiva) +Lip%Kia
Xm1—Xm2+Xm2+Vm1( m-1) T Xm-1):Y(m) (4.4)

2! )fm,J Xm,j+1+Ymj(Xm-1),Y(m)) + Lm j¥m1
Ram = YmAm(Xm-1): Y(m)) +BmO(Y)U+ L, X1
(K1k = Kkr1— LokKee

5. >:~<1,A1 = —Lia X1
Xk = Kikr1+ AVik— LikXi1
\ (X = AV —LiaXa

for2<i<m-—1,2<j<Ai—1,1<k<Aj—1and 2<| <m. Replacing all unmea-
sured states with their estimates in this way is equivateapplying the following

non-singular linear transformation to thte subsystem irix,X) coordinates:

\ "o 1 T i
%.1,%i.2, - Kip KT = [,1 _ﬂ [2} (4.5)

where

1 fi=j=1 1 ifi=j>1
[Tl]u:{ =% and [Tz]i,jz{ I

0 otherwise 0 otherwise
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Section 4.3: Main Result

First, we notice that the nonlinearities in the first subsysi; consist of known
signals only, and can be directly cancelled. Thus, the llapking procedure for
> is straightforward for the firsk; — 1 iterations.

Second, since the error subsystem in (4.4) is exponentiaityergent, through
the Converse Lyapunov Theorem A.0.2 we infer the existehagoositive definite,
proper functionVe : R" — R, with a time derivative

OVe(X)
0X

wherex is related to the convergence rate of the observer errocambe increased

%< —k|%||% k>0 (4.6)

by increasing the observer gails;.
Consider the following sequence of definitions for the dtzibg functions and

associated coordinate shifts:
O11=—CpiX1,1—VY11(y1) —di1X11 (4.7)

Wi 2R j—0rj1, 2<j<M\ (4.8)

2 o1,
—dio <—> Wy 2 + 4 (X1,2+VY11(y1)) (4.9)
1,1 0X1,1

Ok = —Wpk—1— CpLrkWk — Yik(Y1) — LixXe1

4 (00(1,k1 50(1,k1>2 . k1 aal,kfl);(
Lk 6X171 a)~(171 L 6)2170, La
0agk-1 ., 0d1k-1,
’ X ————L11X 4.10
%01 (X2 +V11(y1)) aRy LR (4.10)

g

for 3<k<A1—1. Thecyj > 0 (andcy,1) are control coefficients and thig ; > 0
(anddy 1) are the damping coefficients as in [1].
If we define

M-l
12 1
Vin-1=Vet+35X11+3 Zz Wik
k=

(whereVe is as in (4.6)), it can be verified that (4.7) to (4.10) lead to

_ M-l g , A1
Viy. 1 < —(K— —) X T Wi x, _1W
1A -1 kZl 4dy ¢ [1X]]<+ k; 1Lk Wi —1W1

128
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with
A 2 X 2
T11= —CoaX{1—dia(s——[|X11
) ) 1,1 3 <2d171 H ) H)
and fork > 1,
N ||X|| 001 k1 a0(1.|<4 2
T2 —c Ww?, —d — =
1k 1.kW1 k 1k 201 H axll 0511 ) kH)

The expressions for the stabilizing functions (4.7) to @ \ere derived using
the techniques presented in Sections 2.1 and 2.3. Our desitjod for the RBTOF
deviates from these techniques starting with the nexttitera- i.e. the transition to

the second subsystem — which is what we now show. Assump#a Aallows us

to expressa , (V1,Y2) as
VLM(YLYZ) = Bl(yl) +C1(y1)q}l<y2)7

and we define
Wo1 £ @i(y2) —Ogp,

We propose the next Lyapunov function candidd{g, = Vi,,_1+ %Wﬁ A, and

choose
1
T Ci(y1) [—Ba(y2) —Wap, -1 —CoayWan,
d (6(117)\1_1 a(117)\1—1>2 001 |_
1M1 0X1,1 0%X1,1 1 axl,l 1,1%11
M-1o0g,, 1 aa
5 171'\ 17)\171 R
= X %
i kZz 0X1 k Lkt X1 1 (R12+y11(y1))]
to obtain

] Mg A1
Vi < —(K— —) K2 T C Wo (W
1A < k; Zrx 1]l +kZl 1k +C1(y1)W2,1W1 5,

which is also different from the previous iterations be@aatthe appearance of

Ca(yr)-
The design for the first subsystem is thus complete. The désrigubsystems

2, 2<i<m-1is different because we must account for the unknown observ
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errors in they; j, which cannot be cancelled as they were in the design for iiste fi

subsystem. This fact can be seen from the time derivative of
Vo1 =V, + %W%,l,

which is

] Mg A
Voq < —(K— —) NP+ Tox+ W [C W
b1 < k; 20 K] k; 1k+Wa,1|Ci(yr)Wyp,

- - 001 5,
+ @ (y2) (R22+ %22+ Y2,1(Y1. Y2, X(1) ) — ﬁxl,z
aal)\]_ A )\1 aal,)\l A aal)\]_ A
s (X172+V172(Y1))—k22 SRk XLk~ 3¢ XL]

This time we definav, » e X2 2 — 02 1 and since we cannot cancel the nonlinearity

Y2,1, we choose for the stabilizing function the expression

O21= Y21~ 821¢ (Ko +1)%Wa 1 + Cawi

al-

01 s
—’11(X172 +V1,2)

oa . oa
L } (4.11)

R VI
+ ——X1k— =z—L11X1,1 — C21W2 1
Z ko 0% T o

wherey, 1 denotesyz1(y1,Y2,%1y) and we have dropped all function arguments
from notation. In (4.11), the numbé&® ; represents the Lipschitz constant bound-

ing the growth of the nonlinearity, 1. In the following, we use the assumption
that

1Y2,1(Y1, Y2, %(1y) — Y2,1(Y1, Y2, X1y + X)) || < Kzl K], (4.12)
for all X € Q. With (4.11) we obtain

Vo1 < —<K— Z M—WZJHXHZ-F Zle—Cle2

(e

FWo 1 @R 2+ Wo 1@ (Y21 — 2.1) — Sp 1 (@wo1) (Ko 1 + 1)2.
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Using (4.12), we note that

W21 (V21— ¥2.1) < w216 [l - Kaa - [IK]
and re-write the last three terms\'}’ﬁl:

: Mo 1 1
Veas=(K= 3 a2 7, )||x||2+zr1k

0 0
sy (G G )
+ W2 1 (W2 2 — 02,1VV§,1

1I%112
T 43,

+ w21 @[] (Ko.1 +1) — S |21 [ (Ko +1)?

By completion of squares, the last line can be re-written as:
2
“&1(55 -~ (Koa+ 1) w164 )

and we see that withv, , = 0, \'/271 becomes negative definite. Owing to notational
complexity, we forgo presenting the remainder of the formddictive proof, which
proceeds without significant variation from this point omél& The only deviation
from the observer backstepping algorithm described ini@e&t 3 exists in the last

two iterations just showr.]

Remark 4.3.1. For simplicity, we have chosen to present the stabilizatesult
here. Re-formulating the problem in terms of tracking thépatly; = X1 can
easily be done as in [1] by introducing the tracking errofakelew; 1 = X11 — Yr
for some smooth, known reference sigyal This will be demonstrated in the

example that followss«

Remark 4.3.2.If we had allowed for multiple inputs —i.dy £ 0, forall 1 <i <m,
then the proof actually becomes simpler. We would no longednassumption
A4.2.1 and could replace it with the requirement that eagh=vi j(X;i_1y,Yi)), 1 <
j<Ai.<
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4.4 A Physical Example

The MAGLEYV is an example of a system in RBTOF, for which an otifeedback

control can be designed using Theorem 4.3.1.

4.41 The MAGLEV Model

We briefly derive a model for the magnetically levitated Ishlbwn in Figure 1. The

iron core

coil

Figure 4.1: Magnetically levitated ball (MAGLEV)

coil creates a magnetic forég, upward on the steel ball of mass Gravitational
force mg acts in the opposite direction t§,. The forceF, is the spatial rate of
change of the energy/ in the magnetic field of coilFy, = 5My wherey denotes
the ball’'s position. Assuming the electromagnet’s coresdoet saturate during
operation, the energy = L(y)i%/2 wherei is the current in the coil and the coil

inductance.(y) is a function of the ball’s position. Hence, we have

o
Fnlei) = S = SL) 419

wherel'(y) = %(y). The dynamics governing the mechanical subsystem are

Y=g+——-". (4.14)

Following [77] we take the approximation

- B
L(y) = o+ VK (4.15)
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wherea, 3,k are positive constants. The electrical subsystem is mddeleng
Kirchhoff’s voltage law. We obtain

) = iR+ L)),

whereRis the coil resistance andis the control input voltage applied to the coil.

Hence, we obtain
di . R i dL(y). 1
— =1 — + u. 4.16
dt L(y) L(y) dy Y L(y) (4.16)

Choosing the state variablegs = y+ K, X =y andxz = i, the dynamics for the
MAGLEYV are

X1 = Xp

. 1o %

X2 =g+L(y)5 - (4.17)
.1 ,

X3 = @(—R@—L (Y)XoX3 + U).

Prior to applying our result in Section 4.3, we make some ofas®ns concern-
ing (4.17). We first note that if the ball’s positiap and the currents are measured,
then the MAGLEV is in BTOF with(xz,x2) forming the first subsystem state and
x3 the second (i.e(A1,A2) = (2,1)). We see that (4.17) furthermore satisfies A4.2.1
with By = g, C1 = L'(y)/2mand@, = x3. The derivativeg (xz) > 0 for x3 > 0. We
also note that the model itself has a singularity;at 0 and so we assume the sys-
tem state evolves oR = {(X1,X2,X3) : X1 > 0,x3 > 0}. Since (4.17) is in RBTOF,
Theorem 4.3.1 can be applied.

4.4.2 Control Design

First we require an observer to estimate the ball’'s velacityFollowing (4.2), we

design the observer as

%1 =S+ L11(x1— %)
A / X% ~
Xo=g+L (y)fn +L12(X1—%1) (4.18)

X3 = ﬁ(— Rxs — L' (y)%oX3 + U) + L2 1 (X3 — %3).
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In consideration of Remark 4.3.1, we formulate a trackingtialer for the MA-
GLEV, a special case of which includes set-point regulatitfa define the tracking
error variablew; £ x; —y; and re-write the composite system (omitting the error
dynamics, which are known to converge exponentially) ad ih)(
Wy =X+ —Yr
%o =g+ L’(y)x—% +L12%
m : (4.19)

o = ﬁ(—<R+A>xS—L’<y><ﬁz+xz>xS+u).

In (4.19) we have included an uncertainty tefxto account for unknown changes
in the coil’s resistance, possibly due to a temperaturesas® which is to be ex-
pected as the system runs for an extended period of time. Yeetimat the signals
Xo andA are unknown and cannot be directly cancelled; we apply nealidamp-
ing to account for their effect.

The design proceeds by choosing the known signakthe first virtual control

and defining the coordinate shifb £ %> — a1. Choosing

a1(X1,Yyr) = —C1wy — diwy + Vi,
the Lyapunov function candidatg = Ve + %Wf becomes:

\71 = —K||)?||2 — 01W% — dl\/\l%—l—Wl)?z—l—Wle

< _(K— 4—;) ||>~<||2—clwf—dl<% +W1>2+W1W2

1
2 (k=) |IR]I? + 11 4+ Wi
< 4d1)” |+ T2 +wawg

whereVg is as in (4.6) and we have defined the negative definite tgrfar nota-
tional convenience. The second iteration becomes moreestirg sincexg does
not enter thek, equation affinely. If the next coordinate shift is chosermgs=

X3 — O, then upon substituting fdixz)? = (W3 + 02)2, we would find it difficult to
designa so that the second subsystem is stabilized. We thereforogragsump-
tion A4.2.1 which, for systems in RBTOF, makes possible the of a function

of x3 as a virtual control. We note that the requiremeift) # O ensures that the
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complete coordinate shift (defined iteratively)= x — a is a diffeomorphism on
Q. Further, ifws £ @(x3) — 02, then a term involving A¢/(-) necessarily becomes
incorporated into the control law.

Since A4.2.1 is satisfied for the MAGLEYV, we proceed by definia = x% —a

and examine the time derivative of the Lyapunov functiordodateV, = V1 + %W%

: 1 <12 L'(y)
< — _
Vo < (K 40|1>||x|| +T1+W2[Wl+(g+ 5 (W3 +02)
- 60(1 N - i
L = - 4.2
- 1,le) oxe (Ro+%o—yr) — 3, yr] (4.20)

wherex; again appears through the equation. Noting that the error tema iS a

known signal, we assign

. 001,. . daq. 2 001
_ / e _ R
o2 = (2m/L'(y)) (—g—wi —CoWo — L1 %1 + % (X2 —Vr) dg(axl) Wo + 0 —Vr)
to obtain
1 1N g2 ‘(y)
< —(k— _ _
Vo < — (k= g — ) IKI2 T - cowd + =L
1 .2 001 da; 2
"4 K] —Xz—a Wz—dz(—axl Wo)“. (4.21)

Replamng@%‘)’(le with the larged|X]||| ao‘1W2H term and completing the square with

the last three terms in (4.21) we have

Vo<~ (K g g JIRIZ 4Tt
2
e, [ ve]) "o
é—(K %—%)Hf(”z—i—'{lﬁ-L/éy>W2W3+T2, (4.22)

where the negative definite termpis introduced to simplify notation.
In the third and final iteration we design the contwolThe time derivative of

V3=V + %W% along the trajectories of thex, X2, X3, X) system is

. 1 1\, 0 L'(y)
< -
V3 < — (K ad,  4d, >||x|| +T1+T2+W3[ 5 W2
1
25— (= (R+A)xg— L’ Xo + X
+ XS(L(y)( (R+A)x3 (y)(xz-i—xz)xs-i-u))
adz . 002 . 60(2 . 60(2... adz - 002 X
_ _ — — — — ) 4.2
e awy Ty aw  % } (4.23)
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We now make a number of observations about (4.23).

e Considering (4.19), the unknown signal énters (4.23) througRy, %o
and the shown time derivative 01§ It also appears in th& equation

sinceXy = —L11% + %o, as in (4.3).

e Unlike in the proof of Theorem 4.3.1, here we are fortunatdhawe

y1.2(Y1,Y2,X%2) be affine inxz, with its coefficient

! 2
Clyny2) = ZLL?;;XS

consisting of known signals only. In this case, we apply m@ar damp-

ing by introducing a term such as

%(—d&()’l,)/z)zws)

into the controlu (which can be simplified).
e Sincew; £ x% — Oy, its derivativews = 2x3x3 — 0, where the controli

appears irxg. We now see why, in general, we expect thatould contain
al/q term.

e Itis important to keep track of the signal dependenciesttiestabilizing
functionsa; pick up at every iteration, so that they can be accounted for

in subsequent stabilizing functions.

Without expanding the complicated expressiorMgrwe give the expression for

23 ) 2x
U= Rx— dgﬁ)f)W3 + L' (y)%oxz — dg(L’ (y)x3)2T;’)w3
L(y) r—L'(y) day 00z, 2 002 .
T 2 Mot g 2 UG )Wt
das ..  0ds dao . d02 ., 2
e Rk VA L —de (=2
+ P Yr + i r R 1,1X1 de( a)N(l) W3
day 1y 7 o2 o
3% (9+35L°(y)x5+L12%) — 03W3} (4.24)
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where each of the terms involving a damping coefficintl <i < 6, applies non-
linear damping to the unknown signals. Together with theesgions chosen for
the virtual controlsa, anday, (4.24) can be shown to yield the time derivative of

the Lyapunov functioVs = Ve + 3 (W2 + w3 +w3) negative definite and proper:

V3§ K—_Zd ||X||2+T1+T2—03W2+T3,
|

where

o o g, [y mal) s g~ mel)

-4z, - HZLLiyfsWsH) (50~ [ael)

Remark 4.4.1. In this example, the dynamic order of the feedback law coalteh
been reduced by using a second-order linear error dynars&reér to reconstruct
the ball’s velocity using the first subsystem alone. Howgirethis chapter our
objective was to demonstrate an output feedback desigredvetis of the RBTOF,

which is more general than the NOF or its multi-variable \@rs«

4.4.2.1 A Semi-Global Formulation

We continue with the control design for the MAGLEV. For singfily, in the fol-

lowing let us consider the non-robust case= 0, re-notate

o L o 1
Xs_'—(Yl)( Ry L(3/1))(1’23/2)+L(y1>u

iu
L(yr)

and neglect for the moment the surrounding terms in (4.28¢0Ading to the proof

=V2,1(Y1,Y2,X1,2) +

of Theorem 4.3.1, we could have chosen

u=L(Y)(—=Y2,1(y1,y2,%2) +U")

(whereu* is some auxiliary control variable that can be used to camcéamp the

surrounding terms in (4.23)) instead of applying nonling@mping to the; term
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which happens to appear affinelyys;. In that case,

X3 = Y(Y1,Y2, %2+ %2) — Y(y1, Y2, %2) + U*

< |IV(Y1, Y2, % +%2) — Y(Y1,Y2,%2) || + U*

<K% 4+ u*

with K being an estimate of the upper bound of the magnitude of thénsarity

% on some compact s&* —i.e.
y)
K — max —L’(Y)Xe,H _ Bxs H
xeQ* 1l L(y) xeQ Il ax2 + Bxq I

The norm is maximized when the curremtis largest and the ball positioq is
smallest within some sé&*. Thus, sincey, 1 is locally Lipschitz inx,, we could
implement a semi-global control by replacing the term aisged withdy in (4.24)
with the term

—d4K22—X3W3.

L(y)

The numbed;K? then becomes a control parameter that can be adjusted éaser
the size of the regio* in closed-loop.

It is important to note that if the nonlinearitigs;(X;_1),y) are onlylocally
Lipschitz inX;;_1), the design of the BTOF observer must be modified by satgratin
these states beyond a compact@efThen, if the system’s state does not le&@e
the observer error is guaranteed to be GES at its origin (Lerhnji70]). Specifi-

cally, the observer must be redesigned as

(4.25)

A

X = Yin (SatXi—g)), Yirn)) Hhio(y)u+Lix, %1

for1 < j <A, 1<i<m-1 (themth subsystem being written similarly), where

s _{).A(Lj =X j+1+Wij(satXi—1)),Yiy) +Li iK1
RBTOF :

sa(-) is an element-wise saturation function:

salx) & 4 X X €8
Sl Xj), Otherwise
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Section 4.4: A Physical Example
whereQ denotes a compact subsefff, dQ its boundary, and
X(j) = {X(j) € 0Q}
Saturating the estimated states in this way allows us to@gllipschitz extension
technique which guarantees that
Vi j (salXii—1y),Y(i)) — Vij (satXi—ny ), Yy )| < MYy X —X]

for some bounded functiokl(y;), and therefore makes it possible to prove the
exponential convergence of the observer’s error in BTOFdioates.

Although this semi-global formulation may be the only altsiive for some sys-
tems, it should be avoided if possibke;may be a very conservative estimate of the
size of this nonlinearity under normal operating condisiomhile under some other
conditions the state may leag¥, after which time the damping term involving

would not be strong enough to guarantee the boundedneshkitbas.

4.4.3 Simulation

We simulated the MAGLEV system (4.17) using the trackingtoaler (4.24) as

the feedback. In the following simulation, we used the @hitionditions
(x1(0),%2(0),x3(0)) = (0.004 mO m/s1 A),

with
(X1(0),%2(0),%3(0)) = (0.014 m0.04 m/s0.2 A)

to introduce a realistic observer error. We chose the obsgains so that

(4 L11s+L12)(s+Lo1) = (s+1+j)(s+1—j)(s+15).
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Section 4.4: A Physical Example

The nominal values of the parameters for the system are:
a=0.4H,
B=90x 10"% m?/AZ,

m=0.068 kg
R=11Q
K=34mm

In all simulations we used the control coefficienis= ¢, = ¢z = 4. We introduced
an uncertainty of 22 into the resistance in the model, and applied two versions
of the controller: one implementing nonlinear damping tonpensate for both
observer error and the resistance uncertainty dita 1, 1 <i < 6, and the other
with damping coefficients set to zero.

Figures 4.2 and 4.3 show the behaviour of the plant and obsatates in
closed-loop, as well as tracking error when the dampingfiooefits aredi =1, 1 <
i <6.

In Figure 4.2 shows that the current in the coil is nonzercatbd <t < 10 s,
even though its estimate evaluates to zero at approximdey(and also in the
brief transitory period at the immediate start of the sirtiatg. This behaviour is
acceptable, since the boundedness of the feedback (4d@d)yes only|xs| > O.

When the damping coefficients are all set to zero, the systemstable for the
set of aforementioned initial conditions, and no simulattan be obtained. For
this reason, we include Figure 4.4 which was obtained bialiding the observer’s
estimate of the ball’'s velocity at = 0.02 m/s as opposed t@ = 0.04 m/s used
previously. In that case, the closed-loop behaviour of #ikstpositionx; remains
bounded, but the tracking behaviour is clearly deteriardtg comparison to that
of X1 when the damping coefficients are non-zero. We include Eigu4 as an
interesting demonstration of the performance benefitseghby taking direct ac-
count of the observer error in the control design, which isrtmal idea in observer

backstepping.
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Section 4.4: A Physical Example

Plant and Observer States
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Figure 4.2: Simulation of the closed-loop system (4.171&%and (4.24), showing
the behaviour of all three plant and observer states whemanordamping coeffi-
cients are employed.

- Position Tracking Error
10 T T T T T T

Error [m]

) i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
Time [s]

Figure 4.3: The closed-loop tracking erger— x;.

Primarily, the simulations shown in this section are ineshdo demonstrate
the functionality of our proposed algorithm, and to reig®the design procedure.

For that reason, no effort was made to optimize our choiceonfrol or damping
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X, Tracking
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Figure 4.4: Simulation of the closed-loop system (4.171&%and (4.24), showing
the position statg; with and without damping, and its estimate with damping.

coefficients to improve the system’s closed-loop perforcean

The MAGLEV model (4.17) itself may not be the best physicareple on
which to test the performance of our method since it possesseeral features that
make control design difficult. First, the model has a singtylat x; = 0, and the
“interconnecting term’x3, which we have used as a virtual control in the second
design iteration is nonlinear with a derivative that apptes zero ags — 0. We
are therefore forced to impose the cumbers@ssumptiorthat the system state
evolves on the sd® = {(x1,X2,X3) : X1 > 0, |x3| > 0}. In fact, we acknowledge that
there may be some initial conditions and titfie> O for whichxz(t*) = 0 in which

case we expect the control signal to become unbounded.

4.5 Summary

In this chapter we have developed an output feedback ahgoribr systems in
RBTOF which is a strict-feedback form of the BTOF introduaed70]. The
method uses the idea of observer backstepping. Since s&lwmn a BTOF, the ap-

proach can allow for a more general class of admissible sysstelative to existing
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Section 4.5: Summary

work. The design was implemented in simulation on the motlal magnetically
levitated ball.

Recursive control design methods such as backsteppingcheated many pos-
sibilities for theoretical advances in the problem of outimedback for nonlinear
systems. However, several difficulties remain, includioghplex and difficult to
implement expressions for the control and a lack of systemagthods for choos-
ing values for the damping coefficients. These two aspeetsuaas of potential

future work.
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Chapter 5

Concluding Remarks

In this thesis we studied the problem of non-local stahtilraof nonlinear systems
by output feedback. Nonlinear systems exhibit a rich vaétehaviours and the
set of analysis and design tools available is much morediftihan that for linear
systems. For this reason, the nonlinear non-local outmalifack problem is chal-
lenging, and has no general solution. The most significdfitulty in the control
design for nonlinear systems stems from the fact that thegrmal stability is gen-
erally not indicative of their input-output behaviour. Irany existing approaches to
the output feedback problem, the lack of full state measargmecessitates the use
of an additional dynamic component — usually an observer eselstates become
incorporated into the feedback. If non-local asymptotie.(iinternal) stability of
the interconnection of such dynamic components with thatptato be achieved,
the output feedback law must be designed to account for tlueenaf the intercon-
nection; it must take into consideration the input-outpehdviour of the plant.

The set of systems for which constructive, globally stabilj output feedback
designs are known is likely not the largest set of system&Ffiach such designs are
possible. Integrator backstepping, nonlinear damping, differential geometric
techniques are among the few crucial mathematical toold@mg in constructive
designs. Therefore broadly speaking, two research diresthat remain important
in nonlinear control theory involve the development of nemnstructive design

techniques, and the identification of new system forms ttatioutput feedback
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designs using existing techniques.

We have presented two contributions in this thesis. The iBrsin extension
of Marino and Tomei’s globally stabilizing output feedbdekv for single-input,
single-output systems in the output feedback form, to watitable nonlinear sys-
tems whose dynamics can be written in a subsystem form, withric coupling
between the subsystems via an output-dependent nontineé&e have shown that
the global output feedback problem for this class of systisnsslvable, provided
additional nonlinear damping terms are included in eachtitg account for the
dynamic coupling between the subsystems. Our second iegalves the appli-
cation of observer backstepping to multivariable nonlirgetems in a restricted
block-triangular observer form. This result is applied toyamamic model of a
magnetically levitated ball.

Future work in the direction of this thesis may involve:

e Casting the multivariable output feedback result presemeChapter 3
into an adaptive framework, considering the case whereldmeants of
the input vector are not necessarily known. It is also pdssdincorpo-

rate robust design techniques into this method.

¢ Finding a systematic means of choosing an optimal valuéntsdamping

coefficients in observer backstepping designs.

e Extending the result in Chapter 3 to systems in the blo@dagular ob-

server form.
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Appendix A

Some Useful Theorems

Theorem A.0.1(Lyapunov’s Direct Method). ([15] Chapter 4, or [17] Appendix
B)

Given a system = f(x) with xe R", let V: R" — R+ be a C function with
V(0) =0, and W: R" — R* be a @ function with W0) = 0. If

oV (x)
P f(xX) < —W(x),

then x= 0 is an asymptotically stable equilibrium »f= f(x). If additionally V(x)
is radially unboundetand w(x) is positive definite, then 0 is globally asymp-
totically stable.
Theorem A.0.2(Converse Lyapunov Theoren). ([15] Theorem 4.17)

Let x= 0 be an asymptotically stable equilibrium point of the syskemf(x),

where f(x) € Ct, x € R", with R its associated region of attraction. Then there
exists a positive definite functior(X) € C* and a positive definite function W) €

CO, defined for all xc Ra, and satisfying:

a\gi") F(X) < —W(X), VYXxERa (A1)
d
" X — 0Ra = V(X) — oo, (A.2)

wheredRa denotes the boundary of the regiog.Rf Ry = R", then (x) is radially
unbounded.
If x = 0 is an exponentially stable equilibrium point of this systehen the

v is radially unbounded ¥/ (x) — o when||x|| — . We could instead stipulate thd{x) be
proper, in which case for ang € R*, the set{x € R": 0 <V(x) < a} is compact.
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functions () and W(-) satisfy ( [15], Theorem 4.14):

e X% < V(%) < caX||?
oV (x)

f(x) < —cal|x||? (A.3)
H aV (X)

< Cgl|X
e e

for some positive constants ¢ € {1,2,3,4}.
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