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ABSTRACT The Unit commitment (UC) problem in power systems has been studied for a long time;
however, many new challenges have emerged in the UC problem with the increasing penetration of
renewable generation which is intermittent and uncertain. Compared with the common uncertainty modeling
methods including stochastic programming and robust optimization, in this paper, we develop a data-driven
distributionally robust chance-constrained (DDRC) UC model. The proposed two-stage UC model focuses
on the commitment decision and dispatch plan in the first stage, and considers the worst-case expected cost
for possible power imbalance or re-dispatch in the second stage. To capture the uncertainty of wind power
distribution, a distance-based ambiguity set is designed which can be constructed in a data-driven manner.
Based on the ambiguity set, the original complicated UC problem is reformulated to a tractable optimization
problemwhich is then solved by the column-and-constraint generation (C&CG) algorithm. The performance
of the the proposed approach is validated by case studies with different test systems including the IEEE 6-
bus test system, modified IEEE 118-bus system and a practical-scale system, especially the value of data in
controlling the conservativeness of the problem.

INDEX TERMS Ambiguity set, chance-constrained unit commitment, data-driven method, distributionally
robust optimization (DRO).

NOMENCLATURE
The main notations used in this paper are listed below for
quick reference.

A. INDICES AND SETS
b/B Index/set of buses.
D/D1 Ambiguity set.
i/I Index/set of generation units.
l/G Index/set of transmission lines.
t/T Index/set of scheduling periods.

B. PARAMETERS
ai, ei, ci Coefficients of fuel cost function for

generator i.
dbt Load demand at bus b at time t .
Fi(.) Fuel cost function of generator i.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tyrone Fernando.

K b
l Flow distribution factor for line l at bus b.

K0 Number of pieces for the piecewise linear
approximation.

Ll Power flow capacity of transmission line l.
pn/p̂n True probability/nominal probability for a

certain scenario.
RDi Shut-down ramp-down rate limit for generator

i.
RU i Start-up ramp-up rate limit for generator i.
RUi/RDi Ramp-up/ramp-down limit for generator i.
SUi/SDi Start-up/shut-down cost of generator i.
T upi /T

dn
i Minimum up-time/down-time for generator i.

wbt (ξ ) Wind power output at bus b at time t for
scenario ξ .

x i/x i Minimum/maximum output of generator i.
δ Power imbalance tolerance level.
ε Risk level in the chance constraint.
π
gen
t Cost coefficient for generator up/down

re-dispatch.
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π lst Cost coefficient for load shedding.
θ Tolerance level in the ambiguity set.
0 Budget of uncertainty in the uncertainty set.

C. VARIABLES
d ls,bt Load shedding of load bus b at time t .
ruit/r

d
it Up/down re-dispatch power at time t for

unit i.
uit/vit Binary start-up/shut-down variable for unit

i at time t .
xit Output of generator i at time t .
yit Binary variable indicating the commitment

status of unit i at time t .
αt , β

n
t , Dual variables for the chance constraint

γ nt , λt reformulation at time t .
ρ+bt , ρ

−

bt Binary variables used to define the
uncertainty set of wind power.

σ 1+
bt , σ

1−
bt , Auxiliary variables to linearize bilinear

σ 2+
btl , σ

2−
btl terms in the second stage problem.

µ1
t , µ

2
it , µ

3
it , Dual variables in the second stage problem.

µ4
it , µ

5
it , µ

6
tl,

µ7
tl

I. INTRODUCTION
As a critical application in power system operation, unit
commitment (UC) problem has been studied for a long time
which aims to reduce system cost and improve reliability
by optimal scheduling of generation units. In recent years,
the deployment and utilization of renewable energy sources,
especially wind energy, has increased significantly in existing
power systems. However, due to the high-level penetration of
intermittent and unpredictable renewable energy, new chal-
lenges about secure and reliable system operation also arise
such as large reserve capacity demand, divergence of Area
Control Error (ACE) and possible power imbalance [1]. Con-
sequently, it is imperative to incorporate associated uncertain-
ties into UC problemswith renewable generation so that more
reliable solutions can be attained.

Although UC problem is usually nonconvex and very dif-
ficult to solve, many efforts have been developed for UC
problems with uncertainties in the past decades. In particular,
the stochastic optimization methods [2] attract the most atten-
tion, which can be typically classified into two categories:
stochastic programming and robust optimization methods.
Stochastic programming is a traditional method to deal with
data uncertainty and was first investigated to solve uncertain
UC problems [3]. For example, in [4], a security-constrained
UC (SCUC) problem with uncertain wind power is studied
and the wind power is assumed to follow normal distribu-
tion. In [5], a stochastic UC model considering the uncertain
load and outages is proposed, and the random variables are
represented by scenarios trees. Generally, it is assumed that
the probability distributions of random variables are known
in stochastic programming methods, and the objective is to

minimize the expected total system cost. However, the exact
probability distribution is usually hard to be known in prac-
tice. In addition, stochastic programming methods suffer
from heavy computational burden as substantial scenarios
are required to comprehensively represent the probability
distribution.

Robust optimization is another popular method to deal with
uncertainties in UC problems. Compared with stochastic pro-
gramming, the true probability distribution is not required in
robust optimization, and the random variables are represented
by some uncertainty sets. A vast number of literature about
robust UC problems has been reported, such as the typical
two-stage robust UC models [6]–[8] which consist of first-
stage commitment decision and second-stage recourse action.
In addition, multistage robust UC models have also been
studied recently by taking into account the non-anticipativity
of dispatch decisions [1], [9]. Compared with stochastic
programming, robust optimization ignores the probabilistic
information and tries to find theminimal cost under theworst-
case scenario within the uncertainty set. Although the solu-
tion is robust against all uncertainty realizations, it may be
over-conservative since the worst-case scenario rarely occurs
in practice.

To address the shortcomings of stochastic programming
and robust optimization methods, an alternative method, dis-
tributionally robust optimization (DRO), has attracted much
attention recently [10]. The DRO method aims at optimizing
an uncertain problem under the worst-case distribution from
a so-called ambiguity set. The ambiguity set is a family of
probability distributions which share some certain statistical
information. Since partial distribution information is utilized
in DRO method, the conservativeness of the solution from
this method is between robust optimization and stochastic
programming. In recent years, the DRO method has been
widely applied to solve power system optimization problems,
especially themoment-basedDROmethod [11]. For instance,
in [12], a moment-based DRO model is proposed for UC
problem, and linear decision rule is used to reformulate and
solve the intractable problem. In [13], DRO approach is
used to solve the contingency-constraint UC problem and the
ambiguity set of contingency probability distributions is con-
structed based on available moment information. Similarly,
the moment-based DRO method is used for co-optimization
of energy and reserve dispatch in [14], and the problem is
reformulated to a tractable semidefinite programming (SDP)
problem.

Moment-based DRO method only considers moment
information such as expectation and variance. However,
the actual distribution contains more information than
moments. In practice, a number of historical data of random
variable are usually available from which we can obtain more
valuable distribution information, e.g., an estimated distribu-
tion by data fitting. Therefore, distance-based or data-driven
DRO methods have been investigated in some very recent
studies [15]. In [16], a distance-based DRO model is studied
for UC problem, and the ambiguity set is constructed based on
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Kullback-Leibler (KL) divergence. Data-driven DROmethod
is also reported for UC problem [17] where the confidence
band of cumulative distribution function (CDF) is used to
construct the ambiguity set. Similarly, L1 norm and L∞ norm
are used to construct confidence sets in a data-driven man-
ner for stochastic UC problem [18], [19]. With the same
confidence sets, a new duality-free decomposition method
is proposed to solve the distributionally robust UC problem
in [20]. Wasserstein metric based DRO method has also
been studied for UC problem [21], [22] which constructs the
ambiguity set based on Wasserstein ball. In addition, data-
driven DRO method is also studied for reserve and energy
scheduling problem [23] which considers the Wasserstein
distance. According to abundant related works, DRO based
optimization problems are usually very complicated and even
intractable, and different ambiguity set construction methods
lead to various problem reformulation methods.

Considering the advantage of distance-based DRO meth-
ods and the availability of historical wind power data,
we study a data-driven distributionally robust chance-
constrained (DDRC) UC problem under uncertainty in this
work. The studied UC problem here is formulated as a two-
stage model. In the first stage, with a chance constraint
restricting the probability of power imbalance, the commit-
ment decision and a base-case dispatch plan are determined,
and in the second stage, we try to find the operational risk
or expected re-dispatch cost caused by load curtailment or
wind power spillage under the worst-case wind power distri-
bution. Note that the proposed model is different from the
common two-stage model which determines the first-stage
commitment decision and second-stage recourse actions. In a
traditional two-stage UC model, the valuable information
is the commitment decisions, and the critical problem is
how to obtain the recourse action with uncertainties [24].
Compared with the common UC model, the proposed model
which considers the re-dispatch and load shedding decisions
in the second stage can enhance the deployment of flexible
resources such as fast-response generators and adjustable
load demands.

Although a few works studied a similar two-stage
model [1], [19], they adopted various uncertainty modeling
methods. Compared with the popular stochastic program-
ming or robust methods in previous literature, DRO method
is studied in this work, and the uncertainty of wind power
distribution is captured by a distance-based ambiguity set,
more specifically, a set with the form of L1 norm which can
be constructed from historical data. Based on the ambiguity
set, the proposed complex DDRC UC problem can be refor-
mulated into a tractable optimization problem, thus solved
by some existing decomposition algorithms such as the
column-and-constraint generation (C&CG) algorithm. Com-
pared with [19], an improved second-stage model is studied
to include both system and nodal uncertainty in this work, and
we adopt a new ambiguity set to model the uncertainty which
also leads to different derivation. Although the data-driven
ambiguity set is also studied in [18], several differences can

be identified in this work by comparison. In the two-stage
model of this paper, we consider both the commitment deci-
sion and base-case dispatch plan in the first stage and a chance
constraint is introduced to restrict the possible power imbal-
ance, while in [18], only commitment decision is considered
in the first stage and the power balance constraint is used. For
solution method, we propose a new problem reformulation
method to deal with the worst-case expectation. In addition,
our reformulation method of the second-stage objective can
better show the value of data in controlling the conservatism
of the problem. Correspondingly, the contributions of this
work are summarized as follows:
1) We propose a data-driven distributionally robust

chance-constrained two-stage UC model in this work
which determines the commitment decision and base-
case dispatch plan in the first stage and minimizes the
re-dispatch cost due to possible power imbalance in
the second stage. Specifically, a chance constraint is
used to restrain the power imbalance in the first stage,
and the re-dispatch cost resulted from load curtail-
ment or wind power spillage is considered in the sec-
ond stage. This is a new model by combining the
new DRO technique and two-stage chance-constrained
model compared with those in previous literature.

2) A new problem reformulation method is proposed with
the studied distance-based ambiguity set. Particularly,
based on the proposed ambiguity set, the original com-
plicated UC problem is reformulated into a tractable
two-stage optimization problem which can be solved
in a decomposition framework, i.e., the second-stage
objective function is transformed into a convex combi-
nation of conditional value-at-risk (CVaR) and worst-
case cost.

3) According to the available historical wind power data
size, the constructed ambiguity set can be adjusted, thus
the conservativeness of the solution can also be altered
accordingly. In addition, the new reformulation method
helps explicitly reveal the value of additional data in
reducing the conservatism of the problem, and we can
flexibly acquire the corresponding stochastic problem
and robust problem.

The remainder of this paper is organized as follows. The
proposed DDRC UC problem as well as the ambiguity set
is mathematically described in Section II. Section III pro-
poses the solution methodology for the UC problem which
includes problem reformulation method and the introduction
of C&CG solution algorithm. In Section IV, we conduct case
studies based on the IEEE 6-bus test system and modified
IEEE 118-bus system and a practical-scale 319-bus system to
validate the effectiveness of the proposed approach. Finally,
the conclusions are drawn in Section V.

II. PROBLEM FORMULATION
In this section, we first formulate the DDRC two-stage UC
problem which includes various constraints and objective
function. The ambiguity set and its construction are then
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introduced to capture the uncertain distribution of renewable
generation (i.e., wind power).

A. UC MATHEMATICAL MODEL
Two-stage UC models are widely studied in previous liter-
ature, and most of them focus on commitment decision in
the first stage and optimal recourse in the second stage. For
example, two-stage robust UC problems are studied in [25],
[26], and two-stage UC problems considering distributional
uncertainty are investigated in [13], [27]. In these works,
the here-and-now decision variables are usually commitment
decision and wait-and-see decision variables are recourse
action. By contrast, we develop a new DDRC two-stage UC
model in this work which considers the traditional UC model
with a chance constraint in the first stage and attains the best
corrective actions by minimizing the expected re-dispatch
cost in the second stage. In addition, two-stage energy and
reserve dispatch problems are also widely studied [28] [29]
which considers the base-case dispatch plan in the first stage
and re-dispatch in the second stage, while UC decisions are
not covered in these works. From this aspect, the proposed
UC model can be regarded as a combination of traditional
two-stage UC problem with the energy and reserve dispatch
problem, and it is solved with the newDROmethod instead of
the previous stochastic or robust optimization methods. The
detailed formulation of the proposed model is as follows:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit )]

+max
P∈D

EP[Q(y, u, v, x, ξ )] (1)

s.t. − yi(t−1) + yit − yih ≤ 0,

∀t ∈ T , ∀i ∈ I, 1 ≤ h− (t − 1) ≤ T upi (2)

yi(t−1) − yit + yih ≤ 1,

∀t ∈ T , ∀i ∈ I, 1 ≤ h− (t − 1) ≤ T dni (3)

− yi(t−1) + yit − uit ≤ 0, ∀t ∈ T , ∀i ∈ I (4)

yi(t−1) − yit − vit ≤ 0, ∀t ∈ T , ∀i ∈ I (5)

yit , uit , vit ∈ {0, 1}, ∀t ∈ T , ∀i ∈ I (6)

x iyit ≤ xit ≤ x iyit , ∀t ∈ T , ∀i ∈ I (7)

xit − xi(t−1) ≤ RU iuit + RUiyi(t−1), ∀t ∈ T , ∀i ∈ I
(8)

xi(t−1) − xit ≤ RDivit + RDiyit , ∀t ∈ T , ∀i ∈ I (9)

− Ll ≤
∑
b∈B

K b
l (

∑
i

xbit + w
b
t (ξ )− d

b
t ) ≤ Ll,

∀t ∈ T , l ∈ G (10)

Pr(−δ ≤
∑
i

xit +
∑
b

wbt (ξ )−
∑
b

dbt ≤ δ)

≥ 1− ε, ∀t ∈ T (11)

where the objective function in (1) contains the start-up
cost, shut-down cost, fuel cost and worst-case expected
penalty cost. Constraints (2) and (3) represent the minimum
up-time and minimum down-time constraints, respectively.
Constraints (4) and (5) restrict the start-up and shut-down

operation, respectively. Constraint (6) lists the binary vari-
ables representing the generators’ statuses of on/off, start-
up and shut-down. Constraint (7) represents the generation
capacity limits. Constraints (8) and (9) enforce the ramp-up
and ramp-down rates, respectively. Constraint (10) denotes
the power transmission line capacity limits which is from
DC power flow model. Note that the variable xbit represents
the output of the ith generator located at bus b at time t .
Constraint (11) defines the chance constraint for possible
power imbalance, and the small violation probability should
be less than a predefined risk level.

After determining the commitment decision and base-case
dispatch plan, the system operators conduct re-dispatch strat-
egy by considering all uncertainty realizations in the second
stage. Discrete scenarios are often used to replace the continu-
ous distribution to solve the difficult numerical computation.
In this work, we assume that the uncertain parameter ξ has
a finite support, i.e., there are a finite number of realizations
(e.g., scenarios ξ1, ξ2, . . . ξN ) for the uncertain wind power
output [18]. However, the true probability distribution is
unknown here and is described by the ambiguity set.

In formulation (1), the operational risk for the second stage
problem is considered which also represents the expected
penalty cost or re-dispatch cost [23]. This cost is caused by
load curtailment or over-generation of the system with the
reveal of uncertain wind power. Note that wind power curtail-
ment is not considered since finite scenarios are assumed in
this work as mentioned above. In other words, we need to re-
adjust the generation or consider load shedding with possible
worst-case wind power in the second stage. Additionally,
we should note that both system-level and nodal-level uncer-
tainty modeling should be investigated to identify the real
worst case. Specifically, we have the following formulation
for the second stage problem:

Q(y, u, v, x, ξ )

= min
∑
t

[πgent

∑
i

(ruit + r
d
it )+ π

ls
t

∑
b

d ls,bt ] (12)

s.t.
∑
i

(ruit − r
d
it )+

∑
b

d ls,bt =

∑
b

dbt −
∑
i

xit

−

∑
b

wbt (ξ ), ∀t ∈ T , ∀i ∈ I (13)

xit + ruit ≤ x iyit , ∀t ∈ T , i ∈ I (14)
xit − rdit ≥ x iyit , ∀t ∈ T , i ∈ I (15)
0 ≤ ruit ≤ RUi, ∀t ∈ T , i ∈ I (16)
0 ≤ rdit ≤ RDi, ∀t ∈ T , i ∈ I (17)∑
b∈B

K b
l (

∑
i

xbit + w
b
t (ξ )− d

b
t +1p

b
t ) ≤ Ll,

∀t ∈ T , l ∈ G (18)∑
b∈B

K b
l (

∑
i

xbit + w
b
t (ξ )− d

b
t +1p

b
t ) ≥ −Ll,

∀t ∈ T , l ∈ G (19)
1pbt =

∑
i

(ruit − r
d
it )+ d

ls,b
t , d ls,bt ≥ 0, ∀ t ∈ T

(20)
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where the objective function in (12) includes the possi-
ble re-dispatch cost of generators and load shedding cost.
Constraint (13) denotes the system power balance with
re-dispatch action. The re-dispatch amount of each unit
should be limited by the available generator capacity as
given in (14)-(15) and the corresponding ramp rate given
in (16)-(17). The set of constraints (18) and (19) show
the transmission line flow considering the adjusted dispatch
action as given in (20). Note that the re-dispatch variables
in (20) correspond to the generator units in (19) and the sym-
bol b is omitted here for consistency. In addition, we assume
that all generators can flexibly adjust their output in the
re-dispatch process with corresponding ramping rate in this
work [1].

In the objective function, the fuel cost function of genera-
tion units Fi(xit ) is typically a non-decreasing quadratic func-
tion. For practical and computational purposes, the quadratic
fuel cost function is usually approximated by a piece-wise
linear function. In this work, we use the following piece-wise
linear model for fuel cost calculation [30], [31]:

0 ≤ x̂kit ≤ 1x
k
i yit , ∀k = 1, . . . ,K0 (21a)

1xki =
x i − x i
K0

(21b)

xki,ini = (k − 1)1xki + x i (21c)

xki,fin = 1x
k
i + x

k
i,ini (21d)

Ck
i,ini = ai(xki,ini)

2
+ eixki,ini + ci (21e)

Ck
i,fin = ai(xki,fin)

2
+ eixki,fin + ci (21f)

ski =
Ck
i,fin − C

k
i,ini

1xki
(21g)

xit = x iyit +
∑
k

x̂kit (21h)

Fi(xit ) = ai(x i)
2
+ eix i + ciyit +

∑
k

ski x̂
k
it (21i)

where new variable x̂kit is introduced, and its relationship with
the decision variable xit is described in (21h). In addition, K0
is the number of pieces, and ski is the slope of each linear
piece. The coefficients ai, ei and ci are dependent on the
physical characteristic of the generators.

B. AMBIGUITY SET CONSTRUCTION
As discussed above, the true probability distribution of wind
power is unknown and ambiguous in practice. However,
we can get partial information about the true distribution from
available historical data and construct the ambiguity sets to
capture the uncertainty of distribution. In this work, we focus
on a distance-based ambiguity set which has the following
form:

D = {P ∈ P : dist(P,P0) ≤ θ} (22)

where P is the set of all possible distributions, P0 and θ
are the nominal distribution and divergence tolerance level,
respectively. The dist() function denotes a distance measure

between two distributions, such as the KL divergence [16].
Since discrete distribution for wind power is considered in
this study, we adopt the L1-norm distance to construct the
ambiguity set. In addition, the nominal distribution derived
from historical data tends to converge to the true distribution
under L1-norm as the data size increases [18]. Consequently,
the ambiguity set used in this work, denoted by D1, can be
expressed as follows:

D1 = {p ∈ [0, 1]N :
N∑
n=1

|pn − p̂n| ≤ θ,
N∑
n=1

pn = 1} (23)

where pn and p̂n are the true probability and nominal probabil-
ity respectively corresponding to index n, andN is the number
of scenarios. Note that the ambiguity set D1 is a specific set
compared with the general formD, and the true probability in
this set is unknown which can be described with the nominal
probability estimated from historical data.

To construct the set D1, a critical step is the determination
of nominal distribution and tolerance level. For the nominal
or reference distribution, we can derive it with nonparamet-
ric estimation method in a data-driven manner. Specifically,
assuming that there are A historical data samples available
in total, we can estimate the reference distribution with a
histogram. For example, according to the number of scenar-
ios, we can construct a histogram with N bins. Count the
number of data samples in each bin, say, A1, A2, . . . ,AN and
A =

∑N
n=1 An, then we can use the frequency An/A in each

bin as the nominal probability p̂n. For simplicity, we denote
the nominal distribution as P0 = (p̂1, p̂2, . . . , p̂N ). Note
that the nominal distribution from the histogram is only an
estimation of the true distribution and it may be obtained from
other methods.

Based on the size of available historical data, we can
also define proper tolerance level (i.e., θ ) to construct effec-
tive ambiguity set. Following the above histogram approach,
we can determine the tolerance level according to the Propo-
sition 8 in [32] as follows:

θ =

√
χ2
N−1,1−α̃/A (24)

where 1 − α̃ is the confidence level that the data-driven
ambiguity setD1 with nominal distribution P0 and θ contains
the unknown real distribution. From (24), we can find that
the value of θ is mainly determined by the confidence level
and historical data size. Since the value of θ decreases as the
size of historical data increases, the true distribution becomes
much closer to the reference distribution. When the data size
goes to infinity, θ will be zero. In addition, since

∑N
n=1 |p

n
−

p̂n| ≤
∑N

n=1(p
n
+ p̂n) = 2, we can obtain the θ value limit

which should fall into [0,2] interval. The effect of θ value will
be further analyzed in the numerical experiments.

III. SOLUTION METHODOLOGY
In this section, we introduce the solution methodology which
first reformulates the original UC problem including trans-
formation of the chance constraints and objective function.
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With the proposed reformulation technique, the original com-
plexUC problem becomes tractable, and the conservativeness
can be controlled flexibly in a data-driven manner. Then,
based on the problem structure, a decomposition algorithm
(i.e., C&CG algorithm) is introduced to solve the problem.

A. PROBLEM REFORMULATION
To solve the UC problem, we need to focus on two critical
points in the problem formulation. One is the data-driven
chance constraint for power imbalance, and the other is the
two-level objective function. Since the distribution of wind
power is ambiguous and defined within a distance-based
ambiguity set, worst-case distribution should be considered
to ensure the chance constraint. In other words, the chance
constraint in (11) can be recast as follows:

min
P∈D1

Pr(−δ ≤
∑
i

xit +
∑
b

wbt (ξ )−
∑
b

dbt ≤ δ)

≥ 1− ε, ∀t ∈ T . (25)

Based on the studied discrete distribution, the above
inequality can be further reformulated as [19]

min
P∈D1

N∑
n=1

pnt · I[−δ,δ](
∑
i

xit +
∑
b

wbt (ξ
n)−

∑
b

dbt )

≥ 1− ε, ∀t ∈ T (26)

where I[−δ,δ](
∑

i xit +
∑

b w
b
t (ξ

n) −
∑

b d
b
t ) represents an

indicator function. It equals 1 if−δ ≤
∑

i xit +
∑

b w
b
t (ξ

n)−∑
b d

b
t ≤ δ, otherwise it is 0. Note that similar idea can

also be used to deal with robust chance constraint with other
distance based ambiguity set such as the KL divergence
based set and CVaR method may be investigated to derive
a conservative constraint [33].

To simplify the notation, we can introduce binary variables
znt to replace the indicator function, i.e., z

n
t = I[−δ,δ](.). Then,

the above constraint (26) can be reformulated using big-M
method as follows:

−δ − (1− znt )M ≤
∑
i

xit +
∑
b

wbt (ξ )−
∑
b

dbt

≤ δ + (1− znt )M , ∀t ∈ T , ∀n (27)

min
pnt

N∑
n=1

pnt z
n
t ≥ 1− ε (28)

N∑
n=1

|pnt − p̂
n
t | ≤ θ (29)

N∑
n=1

pnt = 1, ∀t ∈ T , ∀n (30)

pnt ≥ 0, ∀t ∈ T , ∀n (31)

where constraints (29)-(31) are derived from the predefined
ambiguity set D1. For constraint (29), we can introduce an
auxiliary variable qnt to eliminate the absolute operation,

i.e., let qnt = |p
n
t −p̂

n
t |, which leads to the following equivalent

formulas [18]:

N∑
n=1

qnt ≤ θ (32)

qnt ≥ pnt − p̂
n
t (33)

qnt ≥ p̂nt − p
n
t . (34)

Considering the minimization operation in constraint (28),
we can try to transform the minimization into maximization
by duality theory which helps remove the operation in the
inequality. Based on the constraints (32)-(34), (30)-(31) and
the minimization objective, the dual results can be deduced
as follows:

max
αt ,β

n
t ,γ

n
t ,λt
− αtθ +

N∑
n=1

(−βnt p̂
n
t + γ

n
t p̂

n
t )+ λt (35)

−βnt + γ
n
t + λt ≤ z

n
t , ∀t ∈ T , ∀n (36)

−αt + β
n
t + γ

n
t ≤ 0, ∀t ∈ T , ∀n (37)

αt , β
n
t , γ

n
t ≥ 0, λt unrestricted, ∀t ∈ T , ∀n

(38)

where αt , βnt , γ
n
t and λt are corresponding dual variables.

Then the constraints (28)-(31) can be replaced with the
following constraints:

−αtθ+

N∑
n=1

(−βnt p̂
n
t +γ

n
t p̂

n
t )+ λt ≥ 1− ε, ∀t ∈ T (39)

Constraints (36)− (38). (40)

In addition to the data-driven chance constraint, the objec-
tive function in the proposed UC model also involves the
uncertain distribution which hinders the optimization of the
problem. To reformulate the objective function, we need
to focus on the second-level objective, i.e., the worst-case
expected penalty cost max

P∈D1
EP[Q(x, ξ )]. Note that x is used to

represent the decision vector for notation brevity. According
to Theorem 1 in [32], we can get an equivalent reformulation
with the ambiguity set D1 as follows:

max
P∈D1

EP[Q(x, ξ )]

= (1−
θ

2
)CVaRP0θ/2[Q(x, ξ )]+

θ

2
max
ξ

Q(x, ξ ) (41)

where CVaRP0θ/2[Q(x, ξ )] denotes the conditional value-at-
risk of Q(x, ξ ) with respect to the nominal distribution P0
with confidence level θ/2. In addition, the CVaR is defined
as below [34]:

CVaRP0θ/2 = min
φ
φ +

1
1− θ/2

EP0 [Q(x, ξ )− φ]
+ (42)

where φ is a new free variable and [Q(x, ξ ) − φ]+ =
max {Q(x, ξ )− φ, 0}.
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By substituting the CVaR, the worst-case expectation
objective can be further written as follows:

max
P∈D1

EP[Q(x, ξ )] = min
φ
{(1− θ/2)φ + EP0 [Q(x, ξ )− φ]

+
}

+
θ

2
max
ξ

Q(x, ξ ). (43)

In the above formulation, EP0 [.]
+ can be obtained based

on the estimated nominal distribution P0. For max
ξ

Q(x, ξ ),

it is actually a max-min function. Thus, the final reformu-
lated objective function including the commitment cost has
a min-max-min form. Then the reformulated problem can be
regarded as a common two-stage robust problem which can
be solved by a decomposition algorithm.

B. C&CG DECOMPOSITION ALGORITHM
As discussed above, the reformulated problem is a two-stage
optimization problem that can be solved in a decomposition
framework. In this study, we investigate the C&CG algorithm
[35] to solve the problem which creates a master problem
and subproblem. Given a unit commitment decision and base-
case dispatch plan, the worst-case uncertainty is captured in
the subproblem. Meanwhile, new variables and constraints
are generated in the subproblem and fed back to the master
problem. The algorithm iterates until all uncertainties can be
guarded against.

Combining (1) and (43), we can acquire the following
objective function:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit )]+ (1− θ/2)φ

+EP0 [Q(x, ξ )− φ]
+
+
θ

2
max
ξ

min
ruit ,r

d
it ,d

ls,b
t

∑
t

[
π
gen
t

∑
i

(ruit + r
d
it )+ π

ls
t

∑
b

d ls,bt

]
. (44)

Based on this objective, we can decompose the reformulated
problem with the related constraints, and the master prob-
lem (MP) is as follows:

min
∑
t

∑
i

[SUiuit + SDivit + Fi(xit )]+ (1− θ/2)φ

+EP0 [Q(x, ξ )− φ]
+
+ η

s.t. Constraints (2)− (9), (21) and (27),
Constraints (10), (13)− (20), ∀n,
Constraints (36)− (39), Optimality cuts,

where η represents the optimal value of subproblem and
the optimality cuts are derived from subproblem. Note that
the CVaR or EP0 [·]

+ term in the objective function can be
solved as a scenario-based stochastic optimization problem
[28]. Moreover, all the constraints involved in MP are linear
with continuous or integer variables. Therefore, the MP is a
mixed integer linear programming (MILP) problem that can
be solved by off-the-shelf solvers.

To formulate the subproblem (SP), we first dualize the
second-stage problem with constraints (13)-(20) to eliminate

the inner minimization in (44). For the second stage problem,
we need to find the worst-case scenario in the finite support
set of uncertain parameter ξ . Actually, the finite support set in
this work can be extended to be the common interval uncer-
tainty set, and the worst-case scenario is usually the extreme
point of this convex set. Thus, we can define the following
adjustable uncertainty set for the second stage problem:

U =
{
wt (ξ ) = w̄bt + ŵ

b+
t ρ+bt − ŵ

b−
t ρ−bt , ρ

+

bt + ρ
−

bt ≤ 1,[ ∑
b

∑
t

(ρ+bt + ρ
−

bt )
]
/0max ≤ 0, (ρ

+

bt , ρ
−

bt ) ∈ {0, 1}
}

(45)

where w̄bt is the forecasted mean value of wind power, ŵb+t
and ŵb−t are the corresponding deviation from the upper
bound and lower bound in the finite support set, ρ+bt and ρ

−

bt
are auxiliary binary variables. In addition, the normalized
budget of uncertainty 0 is used here [1]. Note that 0 is set
to 1 in the proposed DDRC UC model to find the worst case
scenario of the second stage problem. Then the subproblem
can be written as below:

fsp = (θ/2) max
∑
t

{
µ1
t (

∑
b

dbt −
∑
i

xit −
∑
b

w̄bt )

+

∑
b

ŵb+t σ 1+
bt +

∑
b

ŵb−t σ 1−
bt +

∑
i

µ2
it (−x iyit + xit )

+

∑
i

µ3
it (x iyit − xit )+

∑
i

(−µ4
itRUi − µ

5
itRDi)

+

∑
l

µ6
tl(−Ll + L

0
tl)+

∑
l

µ7
tl(−Ll − L

0
tl)

+

∑
l

∑
b

ŵb+t σ 2+
btl +

∑
l

∑
b

ŵb−t σ 2−
btl

}
(46)

µ1
t − µ

2
it − µ

4
it+

∑
l

K b
l (−µ

6
tl+µ

7
tl) ≤ π

gen
t , ∀t, ∀i

(47)

−µ1
t − µ

3
it − µ

5
it+

∑
l

K b
l (µ

6
tl − µ

7
tl)≤π

gen
t , ∀t, ∀i

(48)

µ1
t +

∑
l

K b
l (−µ

6
tl + µ

7
tl) ≤ π

ls
t , ∀t, ∀i (49)

σ 1+
bt ≤ Mρ

+

bt , σ
1+
bt ≤ −µ

1
t +M (1− ρ+bt ) (50)

σ 1−
bt ≤ Mρ

−

bt , σ
1−
bt ≤ µ

1
t +M (1− ρ−bt ) (51)

σ 2+
btl ≤ Mρ

+

bt , σ
2+
btl ≤ (µ6

tl − µ
7
tl)K

b
l +M (1− ρ+bt )

(52)

σ 2−
btl ≤ Mρ

−

bt , σ
2−
btl ≤ (−µ6

tl + µ
7
tl)K

b
l +M (1− ρ−bt )

(53)

ρ+bt + ρ
−

bt ≤ 1, (ρ+bt , ρ
−

bt ) ∈ {0, 1}, ∀t, ∀b (54)∑
b

∑
t

(ρ+bt + ρ
−

bt )/0max ≤ 0 (55)

(µ2
it , µ

3
it , µ

4
it , µ

5
it , µ

6
tl, µ

7
tl) ≥ 0 (56)

L0tl =
∑
b

K b
l (

∑
i

xbit + w̄
b
t − d

b
t ) (57)
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where (46) is the dual objective function and (47)-(57) are
corresponding constraints.

In the objective function, there are some bilinear terms due
to the introduction of dual variables which are given below:

−

∑
b

ŵb+t µ1
t ρ
+

bt +
∑
b

ŵb−t µ1
t ρ
−

bt (58)∑
l

∑
b

ŵb+t ρ+bt (µ
6
tl − µ

7
tl)K

b
l

−

∑
l

∑
b

ŵb−t ρ−bt (µ
6
tl − µ

7
tl)K

b
l . (59)

These bilinear terms have been linearized using big-M tech-
nique which introduces the auxiliary variables σ 1+

bt , σ 1−
bt and

σ 2+
btl , σ

2−
btl along with corresponding constraints (50)-(53).

Then we can solve the MP and SP iteratively until the algo-
rithm terminates. Specifically, if fsp ≤ η, the algorithm
terminates and the optimal decisions are obtained, otherwise,
the following cut is fed back to the MP for next iteration:

η ≥ (θ/2)
∑
t

[
π
gen
t

∑
i

(ruit + r
d
it )+ π

ls
t

∑
b

d ls,bt

]
. (60)

More details about the algorithm can be found in related
references [19], [23], [35].

IV. NUMERICAL RESULTS
To validate the performance of the proposed approach, case
studies based on IEEE test systems and a practical sys-
tem are conducted in this section. First, the IEEE 6-bus
test system with a wind farm is studied to illustrate the
effectiveness of the proposed model and approach. Then a
modified IEEE 118-bus test system is investigated for the
scalability and potential practical application of the proposed
approach. In addition, we also study a practical 319-bus
system with a large number of uncertainty sources to further
verify the scalability of the proposed approach. Related sim-
ulation experiments are implemented in MATLAB environ-
ment with YALMIP toolbox [36] and GUROBI solver on a
desktop which has an an Intel Core i7-6700 CPU 3.40 GHz
and 8 GB of RAM.

A. IEEE 6-BUS TEST SYSTEM
The studied IEEE 6-bus test system is illustrated in Fig. 1.
Detailed parameters about this system can be found in [37].
In addition, a wind farm is connected to the system at bus
4 which is the source of uncertainty. For wind power data,
we can generate the historical data from a certain assumed
distribution such as the multivariate normal distribution [18].
In this work, the forecasted mean wind power is acquired
from the IESO website [38] which is properly scaled and
shown in Fig. 2, and the variance is 0.3 of the mean. Then the
historical data can be generated by Monte Carlo simulation.
Note that the historical data can be directly collected in prac-
tice. In addition, the number of bins is set to be 5, K0 = 5 for
the piecewise linear fuel cost function, the penalty re-dispatch
and load shedding cost coefficient πgent and π lst are 50 $/MW
and 100 $/MW, respectively, and the time horizon is 24 hours.

FIGURE 1. Structure of IEEE 6-bus test system.

FIGURE 2. Mean wind power output.

1) INFLUENCE OF HISTORICAL DATA SIZE
For the proposed data-drivenUC problem, we first investigate
the influence of historical data size. With different data size,
different nominal distributions and thus the ambiguity sets
can be generated. In this case, we set the confidence level
in the ambiguity set to be 1 − α̃ = 95% and let the data
size A vary from 50 to 5000. The corresponding results
including total system cost and tolerance level θ are sum-
marized in Table 1. From this table, we can see that θ value
decreases with the increment of historical data which means
that the ambiguity set D1 shrinks and the problem becomes
less conservative. Thus, the total system cost decreases with
the rise of data size as shown in the table. This result verifies
the importance of data for reducing the uncertainty, i.e., more
information can be attained with more data available. Actu-
ally, θ will become 0 and the set D1 degrades to a singleton
(i.e., the nominal distribution) as the data size goes to infinity.
In addition, the average time for the simulation experiment is
about 13.27s.

2) INFLUENCE OF CONFIDENCE LEVEL IN AMBIGUITY SET
To construct the ambiguity set in a data-driven manner,
we also need to pay attention to the effects of confidence level
(1− α̃) in addition to the data size. In this section, we fix the
data size to be 1000 and study the variation of total system
cost with different confidence level ranging from 0.6 to 0.95.
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TABLE 1. Influence of data size on system cost.

TABLE 2. Influence of confidence level on system cost.

Similarly, the corresponding system cost and the θ values are
reported in Table 2. As can be seen from this table, θ becomes
larger as the confidence level increases which also results
in a larger ambiguity set. A larger ambiguity set can cover
the true distribution with a higher chance, and this reliability
is achieved by increasing the total cost, i.e., the problem
becomes more conservative.

3) COMPARISON WITH OTHER METHODS
One of the significant advantages of the proposed data-driven
solutionmethodology is that the conservativeness of the prob-
lem can be adjusted depending on the amount of available
data. As discussed above, the data size has an effect on the
θ value which determines the ambiguity set and conserva-
tiveness. With the proposed problem reformulation method,
we can easily compare the proposed distributionally robust
UC problem with the common stochatic UC (SUC) problem
and Robust UC (RUC) problem by adjusting the θ value.
From (41), we can derive that the worst-case expected cost
becomes the worst-case cost when θ is set to be 2 or CVaR
when θ is 0 which converges to the expectation [32]. In other
words, the corresponding two-stage SUC or RUC problem
can be obtained by setting θ to be 0 or 2, and they are used
for comparison purpose here. In addition, adjustable robust
optimization is also a popular method in solving UC prob-
lems with uncertainties [1], [7]. Therefore, we also consider
the adjustable robust UC (ARUC) problem as a benchmark
model here. Note that the ARUC model in this work is
derived from adjusting the normalized budget of uncertainty
0 in (45), i.e., 0 is set to 0.2, 0.5 and 0.8, respectively.
Thus, the ARUC here is actually a data-driven model con-
sidering the distributional uncertainty. Taking A = 1000 as
an example, we can compare the proposed distributionally
robust UC (DRUC) problem with SUC, RUC and ARUC
problem, and the result is shown in Fig. 3. Note that the results
of SUC can be regarded as optimal with known probability

FIGURE 3. Comparison with other methods for 6-bus system.

distribution of wind power. From this figure, it can be seen
that the conservativeness of the proposed UC problem is
between those of SUC and RUC, which also validates the
flexibility of the data-driven method in controlling the con-
servativeness. In addition, the ARUC problem, with a lower
cost, is less conservative than the DRUC problem since it
is derived based on DRUC model, and the conservatism of
ARUC model decreases as the parameter 0 becomes smaller.
To better show the benefits of the proposed approach,

we implemented an out-of-sample assessment of the com-
mitment and base-case dispatch decisions obtained from dif-
ferent models mentioned above. Out-of-sample assessment
is widely used to compare the performance of the solution
in related references [13], [17]. More specifically, we first
solved the first-stage UC problem and obtained the cor-
responding decisions. Then, we fixed the first-stage deci-
sions, and the second-stage re-dispatch problem was solved
with 300 randomly generated scenarios from the ambiguity
set [28]. By calculating the average second-stage cost, we can
compare the out-of-sample performance of different models.
The boxplot result of the second-stage simulated cost is given
in Fig. 4. As shown in this figure, the proposed DRUC model
has the lowest average (median) second-stage cost which
represents better performance. For the RUCmodel, the higher
cost is caused by the great down re-dispatch and there is
almost no load shedding for this case. Note that the second-
stage cost is related to the cost coefficients, and the difference
may become more significant by setting a larger penalty cost
coefficients.

B. IEEE 118-BUS TEST SYSTEM
In this section, a case study with the modified 118-bus test
system [39] is conducted to verify the scalability and poten-
tial application of the proposed approach for large systems.
In this case, three wind farms are connected to the system at
buses 10, 30 and 50. With the same parameter settings and
analysis method, we can obtain the corresponding simulation
results as given in Table 3, 4 and Fig. 5, respectively. From
these results, similar conclusions can be attained which are
omitted here. Additionally, the out-of-sample assessment for
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FIGURE 4. Out-of-sample assessment result for 6-bus system.

TABLE 3. Influence of data size for 118-bus system.

TABLE 4. Influence of confidence level for 118-bus system.

this system is also carried out, and the boxplot result is
shown in Fig. 6. From this figure, we can also see the benefit
of the proposed approach by comparing the average cost.
This proves the effectiveness of the proposed approach for
large-scale systems. In addition, the average time for the
experiment with this system is about 1147.63s which is also
acceptable in practice.

C. PRACTICAL-SCALE POWER SYSTEM
To further evaluate the performance of the proposed approach
in a practical-scale power system, a real-world provincial
319-bus system located in Northeast China is studied in this
section [40]. There are 65 units and 431 branches in this
system, and the detailed data can be found in [16], [40].
In order to model a large number of uncertainty sources,
10 wind farms are considered here which are assumed to
share the same support set for wind power data. For sim-
plicity, we only conducted the performance comparison of
different models with this practical system, and the influence
of the data size and confidence level in the ambiguity set

FIGURE 5. Comparison with other methods for 118-bus system.

FIGURE 6. Out-of-sample assessment result for 118-bus system.

FIGURE 7. Comparison with other methods for 319-bus system.

is omitted. The corresponding experiment results are shown
in Fig. 7 and Fig. 8. As can be seen from these results, the cost
comparison has a similar trend with those in previous case
studies. Therefore, we can acquire similar conclusions for this
practical-scale power system which shows the scalability of
the proposed approach. In addition, due to the scale increase
of this practical system, the resulting model is also a large-
scale complex model with many variables and constraints,
and the average time for this experiment is about 5754.52s.
Actually, this simulation time is used to obtain the day-
ahead commitment and base-case dispatch plan, and for the
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FIGURE 8. Out-of-sample assessment result for 319-bus system.

second-stage problem or real-time re-dispatch, the average
simulation time is only about 3.77s, which is quite fast in
practice. Consequently, the proposed approach is applicable
for large-scale practical system. In addition, it is also worth
studying the proposed method with larger test systems for
future research where faster algorithms may be investigated
to deal with the long computation time.

V. CONCLUSION
In this work, a two-stage data-driven distributionally robust
chance-constrained unit commitment problem is studied
which determines the commitment decision and basic dis-
patch plan in the first stage, and considers the worst-case
expected power imbalance or re-dispatch cost in the second
stage. The chance constraint is used to restrain the possible
energy imbalance. Different from the moment-based ambi-
guity set, we constructed a distance-based ambiguity set to
capture the uncertainty of wind power distribution, and this
set can be derived in a data-driven environment. Numeri-
cal results show that the system cost decreases with more
available historical data, for example, the cost decreases from
$4.9131× 104 with data size 50 to $4.6850× 104 with data
size 5000 for IEEE 6-bus test system, and that the conserva-
tiveness of the problem can be controlled by tuning the data
size and confidence level in the ambiguity set. In addition,
the effectiveness and flexibility of the proposed data-driven
approach is also verified by the comparisonwith SUC, ARUC
and RUC problems, for example, the total cost of the pro-
posed DRUC problem with data size 1000 is $4.7231 × 104

for IEEE 6-bus test system which is between the cost of SUC
problem ($4.6478×104) and RUC problem ($4.8870×104).

Although two-stage UC models are the most com-
mon structure in existing literature, the extended models,
i.e., multi-stage UC models have also begun to attract public
attention recently. For example, the multi-stage robust UC
problem has been investigated in some works [1], [9] which
takes the non-anticipativity of uncertainty into account and
applies the affine policies to solve the problem. Consequently,
a potential research topic based on this work is themulti-stage

UC problem considering distributional uncertainty. The cor-
responding solution methodology for multi-stage distribu-
tionally robust UC model is also worth studying in the future.
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