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Abstract

A theory is presented which can be used to investigate the
dynamic response of arches subjected to cyclic support movement. The
theory assumes that the arch is circular having a constant mass per
unit arch length, the cross-section is constant, damping is small and
the center line of the arch is inextensible. The effects of rotatory
inertia and shear deflections are assumed small, compared with the
effects of flexure, and are neglected. Only deflections in the plane
of the initial curvature of the arch are considered. A closed form
solution is obtained for free vibrations and an eight-term series in
terms of the free modes of vibration is used to evaluate the steady
state solution for forcing frequencies up to the fourth free flexural
mode. Experimental evaluation of the theory is presented on the
basis of radial displacements for arches having pinned-end boundary
conditions. ‘

Results are presented for arches having radius to thickness
ratio from 121.2 to 179.4 and half-opening angles of 97.2 to 119.2 degrees
for forcing frequencies up to the fourth flexur:. mode of free vibration.
For some arches tested, out-of-plane displacements were noted to occur
at frequencies having values approximately sixteen times the value of
the frequency for the first free flexural mode. A discussion of the
parameters that 1nf1uen§e the agreement between the theoretical and the

experimental results is included in the presentation of experimental data.
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Notation

A]] symbols are defined when used, however, a summary of the

more commonly used symbols are listed below.

Ci5
D;(t)

constant

time dependent function for steady state solution
constant in the steady state solution

Young's Modulus

amplitude of support movement

function describing support movement

arch thickness

second moment of area of the cross-section about the centroidal

axis

radius of gyration

mass per unit length of arch

external radial load per unit arch length
external tangential load per unit arch length
radius of curvature

Rayleigh quotient

roots to an auxiliary equation

time coordinate

radial displacement

radial steady state displacement

X



U,(¢) n-th radial mode shape

Up(9) absolute steady state radial displacement
Up/G radial magnification ratio

v(o,t) tangential displacement

vp(¢,t) tangential steady state displacement

Vn(¢) n-th tangential mode shape

VA(¢) absolute steady state tangential displacement

V,/G tangential magnification ratio

/
A
w(o,t) represents either v(¢,t) or u(e,t)
W (4) represents either V_(¢) or U.(¢)

: 2
( )I,( )II, etc. means d§$) . d (2) , etc.

d¢
. 2
(), () means—é—)-dt .-——(vz)-ddt .
Greek Symbols
o one-half the arch opening angle
¢ angular coordinate
A n-th dimensionless frequency (A = “n El )
n n 'E? m
Wy n-th natural frequency
Q frequency of support movement
K curvature (1/R)
n(t) time dependent function

xi



Object and Scope

The purpose of this study was to:
(a) develop and present a theoretical method for evaluating the
.dynamic response of circular arches subjected to cyclic support move-
ment, and
(b) experimentally evaluate the theory.
fo simp]ify the analysis, a circular arch with a constant
cross-section and constant mass per uﬁit length was chosen. Only .
flexural deflections in the plane of the initial curvature of the arch
wére studied. In the theoretical analysis, a closed form solution for
the governing differential equations_was obtained for arches having
various types of boundary conditions.‘_The experimental investigation

was restricted tq arches having pinned ends.
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Chapter [

Introduction and Literature Review

1.1 Introduction

This thesis consists of a review, in Chapter I, of pertinent
previous investigations dealing with deep arches i.e. opening angle
greater than 80 degrees, that have been reported in the literature. On
the basis of this review, the theoretical analysis is summarized in
Chapter II and, where necessary, expanded to meet the objectives of
this investigation. Chapter III contains a d¥scussion of the experi-
mental technique and a description_of the experimental apparatus used.

A comparison between theoretical and experimental results for four

arches, having radius to thickness ratios in the range 121.2 5_%-5_179.4
and one-half opening angles in range 97.2 < a < 119.2 degrees, for pinned-
end boundary conditions is also presented in Chapter III. Chapter IV
contains a summary of the more important observations arising from the
investigations and a 1ist of some associated problems suggested for
further study.

The coordinate system and components of displacement of a
point i the middie surface of the arch are shown in Fig. 1.1-1,

The notation used is:

b arch width
E Young's Modulus

H arch thickness



FIG. 1.1-1 COORDINATE SYSTEM AND COMPENENTS OF DISPLACEMENT

u(o,t)

v(gst)

second moment of area of the cross-section about the
centroidal axis

mass per unit length of arch

radfus of curvature

time.coord1nate

radial displacement measured from the undeformed shape of
the arch

tangential displacement measured from the undeformed shape

of the arch

- one-half the arch opening angle

angular coordinate



1.2 Literature Review
Lamb (1, 1888)

Considering an element of an arch and using a combination of

potential energy techniques and calculus of variations, Lamb obtained

the following équation:

6 4 2 4 W2 oP
EI ,3v dV 3V 'V v 1 R .
( + 2 .+ ) + ( - ) = — (= - P;) 1.2-1
mRY  9¢° 2307 262 oplat’ ote M ‘99 T

where PT(¢.t) and PR(¢.t) are external loads acting in the tangential
and radial directions respectively. 1In .deriving eq. 1.2-1 Lamb assumed
the mid-surface of the arch tb be inextensible which relates u and v

through the equation
u "a—v' . . 102'2

3¢

For the case of free vibration (PR = Pp = 0), Lamb assumed

the tangential displacement as
n=j

Substituting eq. 1.2-3 into 1.2-1, yields .

VI, o IV, (I1q 2y, 22y |

Vn + 2Vn + Vn (1-An) + An Vn 0 1.2-4

where 3 w2 nR’? 1.2-5
n “ EI e-
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and the notation ( )I, ( )II, etc. denotes differentiation with respect
to the angular coordinate ¢. When the assumed solution

6 r
= njé
Vi jzl Coj ©

was substituted into eq. 1.2-4, Lamb obtained

rorort o2 (192 +a2-0 . 1.2-6
Lamb did not obtain a solution to eq. 1.2-6 for the general case, but
he did obtain some results for a shallow arch by noting that one root
of the cubic in rﬁ is nearly equal to unity and approximating the re-
maining roots by rﬁ + 1=+ A, With this approximation, the mode shapes
and the natural frequencies for the lower modes were obtained.

By neglecting the inertia terms and external loads in eq.

1.2-1 Lamb also solved for the deflection of arches under various

static loads acting at the boundaries, ¢ = + a, of the arch.

Den Hartog (2, 1928)

' By use of the Rayleigh quotient, Den Hartog calculated the
lowest natural frequency of circular arches subtending any angle up to
360 degrees, for pinned and clamped ends. For the tangential displace-

ment he assumed a function



v = Ag-(cos % 4 1) sin wt
™ a
and by satisfying inextensibility, the radial displacement was
u = A sin %?-sin wt

for pinned-end boundary conditions. Using the above displacements,
the maximum strain and kinetic energies were equated and the natural
frequency w was obtained. Den Hartog stated that for 30° < o < 135°,

displacements of the form

u =2A[-§&-979-(%)3+%§(-2%)5] sin wt
and veho - (B2 Rt - B8 stnwt

yield smaller and therefore better results for w. Upon checking the
frequency equation Den Hartog obtained by using the polynomial displace-.
ments, an error was noted, and in fact the polynomial solution yields
higher and therefore poorer values for the natural frequency than does
the assumed sinusoidal displacement for all values of a. The equation

Den Hartog obtained was

2 _ 1 o*-78.50° +1585

;I 140.094 a2




whereas the equation should have read

2. 1 at-79.200%n 584
s 7
o 1+0.07769 o

Using an analysis similar to that above, Den Hartog also
evaluated natural frequencies for fixed-end boundary conditions. Den
Hartog investigated extensional arches, noting that for certain R/k
(k = radius of gyration of the cross-section) and o values, the ex-

tensional mode had a lower natural frequency than the inextensional

mode.

Love (3, 1944)

Love used the classical approach to obtain the governing

differential equation for a thin arch by applying conditions of dynamic

equilibrium to an element cut from the arch as shown in Fig. 1.2-1.

FIG. 1.2-1 ELEMENT CUT FROM ARCH



Since Love investigated free vibration, the external loads PR and PT

are zero for this case. The three equations obtained were:

2 .
Q - du -
8¢+N mRa—tz- 0 ].27
N -mR32V=o 1.2-8
3 2l .
and x %’1=Q. 1.2-9

where rotatory inertia and shear deflection effects were assumed to
be negligible compared with the effects of flexure. The bending moment

M and normal force N, expressed in terms of the displacements, are

2
EI ,9u

M=-EL (YU, 1.2-10
Gt

and N % (-g%- u) . 1.2-11

For inextensibility of the center 1ine, the tangential and radial dis-

placements are related by

v _ '
'a—¢' u . ].2-]2

Combining egqs. 1.2-7 through to 1.2-12, Love obtained the equation



El oW oW W 2. W oW
(=% +2—7F+ ) + — - = 0. 1.2-13
mRY 3¢ 207 202 20%ate  ote

where w represents either the tangential displacement v or the radial

displacement u. The solution to eq. 1.2-13 was of the form

W(é.t) = J W (d) cos (w t + @) 1.2-14
el M n
which upon substituting into eq. 1.2-13, resulted in an equation, with
one independent parameter ¢, of the form

2

VI Iv 0 )
+ 20 ‘W, =0 1.2-15

wn n

II 2
+ W (I-An) + A
where Aﬁ is given by eq. 1.2-5. A comparison of eq. 1.2-15, as obtained

by Love, with eq. 1.2-4, as obtained by Lamb, reveals that they are

identical. A solution for wn(¢) was
3
W,(¢) = kZ] (A €OS b + By sin v, ¢)
where " is obtained from
2 2 \2 _ .2 2 _
Pp (Fp=1° = (rp#1) A0 =0 1.2-16

which is identical to eq. 1.2-6 as obtained by Lamb. For a complete

ring rmust be an integer, and there are vibrations with r_ wavelengths

n



to the circumference, ' being any integer greater than unity. The

natural frequencies of vibration for a complete ring are given by

2 fp Tard-n?
w, = .
n le’ rﬁ + 1

1.2-17

Hoppe (4) is credited for obtaining eq. 1.2-17 in 1871,

Love suggests a method for obtair.ing values of ™n which deter-
mine the natural frequencies of vibration for complete rings. however,
no values of rn for arches with specific opening angles and boundary

conditions were recorded.

Bolotin (5, 1952; 6, 1953; 25, 1956)

Using the basic equations developed by Lamb, Bolotin solved
the stability problem of arches under parametric excitation at the crown
(¢ = 0) of the arch. Lamb's equations were modified to account for the
dynamic load acting at the crown. Bolotin investigated this problem |
experimentally obtaining good agreenent between. theory and experiment,
however, the experimental details were not given. Another aspect of
Bolotin's work (25) involved investigating the dynamic response of

arches and rings subjected to pulsating pressure loads.

Morley (7, 1957)

Morley calculated the natural frequencies and normalized mode

shapes for the first 20 free modes of vibration for a thin elastic arch

subtendfng an angle of 360 degrees having free-end boundary conditions.
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Morley's approach to the cut-ring problem was identical to the method
used by Love to solve for the modal characteristics of a comp]ete ring.
However, since the ring was cut, the roots of eq. 1.2-16 are no longer
integers but are determined by satisfying the free-end boundary condi-
tions. In satisfying the boundary conditions, Morley solved for the
eigenvalues of a matrix from which it was possible to calculate the
natural frequencies. The eigenvectors associated with these eigen-
values determined the mode shapes. Results were not presented for any

other boundary conditions or arch opening angles,

Archer (8, 1959)

In-plane, inextensional vibrations of an arch were studied by
Archer, using the basic equations as derivedAby Love, with the addition
of terms to represent damping effects. This equation can be represented

6 4 2 4 2 3
oV oV oV c oV oV
(Y + 223V, ) + - + £ - =0 1,2-18
mRY 20° 267 02 30%0t? ot M atpel  OF

where ¢ represents the viscous damping coefficient. Archer solved eq.

1.2-18 by using a product solution of the form

v(¢st) = V(¢) T(t) | 1.2-19

which separated eq. 1.2-18 into



1

EL (WIaa vtV vty v By - vty = 0 1.2-20
mR
and
d2T+-c-dT+m2T= 0 1.2-2]
gt?  mdt

Love's approach was used to reduce eq. 1.2-20 to eq. 1.2-17. In a
similar approach to that of Morley, Archer solved for the roots of eq.
1.2-17.

| Archer extended the solution of eq. 1.2-20 to find the transient
response of a semi-circular arch under a small step motion of one support
relative to the other., The particular problem was defined by assuming
one support, say ¢ = o, was initially displaced tangentially by a small
amount R Ay, where Ay defines the change in slope between the deformed
and undeformed state at the support. The end was now allowed to return

to its natural position according to the motion
-at
V(G.t) = R A‘p e 'Y t > 0 . .'.2-22
Equation 1.2-22, represents a time-dependent boundary condition., In

obtaining a solution, Archer employed a method developed by Mind1in and
Goodman (9) for solving problems with time dependent boundary conditions.



12
Eppink and Veletsos (10, 1959; 11, 1960; 12, 1960)

Eppink and Veletsos described a numerical procedure which can
be used for comput1ng the dynamic response of circular arches subjected
to transient forces for both the elastic range of behavior and for the
range approaching failure. The problem was analyzed approx imately by
replacing the continuous arch by a framework consisting_of a series of
rigid bars and flexible joints. Any external loads were assumed to be
concentrated at the joints. The authors evaluated the natural frequencies
and corresponding modes for a two-hinged and for a fixed arch of constant
cross-section. In particular, the authors considered time-dependent
pressure as the external load acting on the arch. This method of analysis
permitted a calculation of the critical pressure load necessary to
buckle the arch. |

This work was extended (11) to include the behavior of arches
in the inelastic range by approximating the cross-sectional area of the
arch by two flanges connected by a thin rigid web. The resistance of
each flange was represented by a bilinear stress-strain diagram.’ The
authors obtained results for a uniform all-around pressure with a time-
depgndént variation represented by a triangle with an initial peak and
for-a triangular moving pressure pulse. The authors also investigated
the effects of load parameters such as duration of pressure pulse,
magnitude of peak pressure compared to the critical buckling pressure
and the velocity of propagation of the pressure front. The effects of
arch parameters, i.e. geometric and physical properties, were also in-

vestigated.
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The previous method of analysis was applied to a two-hinged
arch, of uniform cross-section and mass per unit length, which was
subjected to a pressure uniformly distributed around the arch (12) .
The resulting governing equations were evaluated on a computer using
a step-by-Step method of integration. These results and the results
from the modal method were compared showing good agreement betweén the

two methods.

Volterra and Morell (13, 1960; 14, 1961; 15, 1961; 26, 1967)
Volterra and Morell extended the Rayleigh-Ritz method, used

by Den Hartog, to find the lowest natural frequency of elastic arches -
having the center-1ine in a form of a cyloid, parabola, catenary, as

well as a circle subjected to clamped-end boundary cond itions (13).

This investigation was extended (14) to include vibrations outside the
plane of initial curvature of the arch. A correction to the results pre-
sented in this paper (14) was given in (26). For hinged boundary con-
ditions (15) the lowest natural frequency was determined for arches
vibrating either in the plane or out-of-the plane of the 1n1t1a1';urva-
ture. For in-plane vibrations, they obtained the natural frequency to
be

w? = £ Fa) | 1.2-23
mRy

where
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2
Re} [1 - (DA f'-‘; s1n2Z2 do
Fla) = — R .
[ (R[sin2 %?-+ (%92 (1 + cos %392])d¢
o

For a particular case of a circle, R = RO’ eq. 1.2-23 reduces to

wafz/fnf
which 1s identical to the result obtained by Den Hartog. The function
F(a) can be evaluated for a cycloid, catenary and parabola by sub-
stituting for R the values R =Ry cos ¢, R = Ro/cosz¢ and R = Ro/cos3¢
respectively and perfbrming the necessary integration. These authors
presented results only for arches with maximum opening angles of up to

80 degrees.

Lang, T.E. and Reed, R.E. (16, 1962)

Lang and Reed also presented an approximate method for deter-
mining in-plane and out-of-plane natural frequencies and mode shapes
for arches and complete circular rings with non-uniform stiffness and
mass distribution. The ring was idealized by a series of point masses
connected by massless e]asﬁic arch segments. The transfer matrix
technique was used to obtain a solution. These results were compared
to the closed form solution obtained by Love (3) (Hoppe (4), 1871) for

the natural frequencies for a thin, constant thickness complete ring
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with resulting differences of 0, 1, and 4.1 percent for the second,
fourth and sixth mode respectively, for in-plane flexural vibrations.

For out-of-plane vibrations the differences in the natural frequencies
were 0, 0, 1.5, and 8.9 percent for the second, fourth, sixth and eight
mode respectively. In all cases where differences occurred, the approxi-
mate technique gave lower values for the natural frequencies than those
obtaihed from the closed form solution. The authors attributed the

Tower values to the fact that Hoppe did not take into account the effects

of rotatory inertia.

Nelson (17, 1962)
A modification of the Rayleigh-Ritz technique, as used by Den

Hartog (2), was made by Nelson by introducing Lagrangian multipliers to
take into account the boundary conditions. For the unsymmetrical modes

with pinned-end boundary'conditions. the radial displacement was assumed
to be '

- nm
] n-;,4. A, sin 2&2

which was used together with the inextensibility condition given by
eq. 1,2-2 to evaluate the energy function defined as

where W is the strain energy, T 1s the'reduced kinetic energy'and R is
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the Rayleigh quotient. An extremum of the energy function was then
found with respect to the An's and a constant B which was obtained from
evaluating the tangential displacement V by using eq. 1.2-2, i.e.

(s
V= f Udo + B .
=-Q
Introducing the Lagrangian multiplier y, the energy function was written

as

0 2 oo
Ela z A2 [-I - (mr)Z] - RRmo AZ
5? n=2,4,.. n 2a 2 n-g .4,
2RRmaS A 2 .2 s
- - RRmB® - y[B - 22 o
TI'Z n=; ,4, ;2. T n=;349 n

which was minimized. For a one-term approximation to the resulting
series frequency equation, Nelson expressed the nondimensional frequency

parameter 8, as

mL4

6=R—4-
Elnm

where L = 2Ra, the developed length of the arch. The roots R], Rz, ves
obtained from the minimizing process have the property that R] 3_w$ ’
2
Rzzwz s oo
Nelson referred to the phenomena of "frequency cross-over"
by showing that the arch will shift from a one-node to a three-node mode

of vibration by increasing the arch opening angle. Nelson observed that
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this occurred at an opening angle of about 570 degrees.

Results were presented for arch opening angles beyond 360
degrees. However, in the theory, it was assumed that the arch was vi-
brating in its plane of initial curvature. To satisfy this assumption
it is physically impossible to have an actual arch greater than 360
degrees. Hence, any results presented by Nelson for arch'opening angles
greater than 360 degrees have no physical significance.

Nelson also investigated symmetrical modes and extensional
modes by using the above method of analysis. Graphical results were
presented indicating for what arch parameters_the inextensional theory
yields accurate results and for what parameters the extensional theory

must be used.

Lang (18, 1962; 19, 1963)

Except for Archer's transient solution for an arch when one
support is given a particular displacement, the studies conducted thus
far consisted of finding the natural frequencies and mode shapes for
freely vibrating arches. It appears that Lang was the first to propose
a closed form solution for arches or rings which are excited by time
dependent external forces. A theoretical analysis was applied to both
the extensional and inextensional case. The classical approach was
used to derive the governing differential equations. For the extensional

case, the homogeneous equation obtained was

A2 A2
A (2+—R—2-(')')v:v+ (1 - 22 - By vII
K ®
2

2 xn :
+ >‘n (1 - ﬂ-) Vn =0 1.2-24
)
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where k is the radius of gyration of the cross-section and the terms
Aﬁ/(R/k)2 take into account the effects of stretching of the center line.

For the inextensional case, the complete governing differential

equation obtained was

6 4 2 4
EI4 [3 é + 2 d vV + 8 ZJ + 0V

mRY 3¢ 3% 24 36°at?
2 oP (¢;t)
v _ 1 R
- 3t2 = L 5% - PT(¢,t)] 1.2-25

where PR and PT are external loads per unit arch length in the radial
and tangential direction respectively. Also for the inextensional case,
the radial displacement u and the tangential displacement v are related

by the equation

v _
% U~ | - 1.2-26

Since eq. 1.2-25 is a linear equation, the steady state solution Lahg

proposed was a series in terms of the free modes of vibration, i.e.
vp(.t) = 121 Vi (9) n;(t) 1.2-27

where Vi is the i-th mode of free vibration in the tangential direction
and ni(t) is a function of time, as yet unknown. Substituting eq.

1.2-27 into eq. 1.2-25, multiplying by de¢, and integrating between
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-a and a, the resulting equation is

) o V. 9dP
I 16 + o) [ odvd v vvpat = - [F R - e,
-0 -0
1.2-28

where () means d2( )/dt2 » and ( )I, ( )II;.. . means d( )/d¢,
dz( )/d¢2 » etc. The orthogonality condition for the free modes of

vibration is

Iyl
f (V.Vj + ViVj)d¢ =0 for i# j
-
and for i = j the modes were normalized according to
1 [® 1,1 )
B (vivj + Vivj)d¢ =1, 1.2-29
-a

Because of the orthogonality condition, the i-th and the j-th modes un-
coupled in eq. 1.2-28 and using eq. 1.2-29, the resulting equation for

nj(t) was found to be

“ 2 - -
n; + w4 Dj(t) 1.2-30
[0}
where V. 9P
D.(t) = - =2 m 3¢
J 20,

Lang obtained the steady state solution in integral form but did not
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evaluate it for any particular type of external loads.

Experimental evaluation of the homogeneous solution to eq.
1.2-25 was obtained shéwing good agreement between fheony and experiment
for the natural frequencies and corresponding mode shapes for the first
three symmetric, in-plane modes for a complete ring with a point clamp-
ing, i.e. the ring was essentially an arch with fixed ends and o = 180
degrees. No experimental verification was presented for other arches.

In a later Eeport, Lang (19) tabulated the theoretical di-
mensionless frequency parameters as given by
and the corresponding mode shapes for the first five inQpIane modes
for arches with'opening angles of 180 degrees for various types of

boundary conditions.

Takahashi (20, 1963)
| Lagrange's equation was dsed by Takahashi to obtain the
governing differential equation for the vibration of a circular arch

in its initial plane of curvature. This approach yielded

o I II2 2 1
“‘ﬁi’f I DEWEE) - (v w0, ) - (B v de . 1i2em
-Q

where sinusoidal time functions were assumed and L is the Lagrangian.

2
n

ation was applied to eq. 1.2-31 and upon rearranging the resulting

The value of A~ is given by eq. 1.2-5. The method of calculus of vari-
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equations the following equation was obtained

2 2
A A
Wha 24 ﬁn? Y vl e (1222 —2.(3;' ) vl

k k
2
2 An

+)\n (1 -_R_Z) Vn=0 . 1.2-32

(%)

‘This equation is identical to the equation Lang obtained in his analysis
(eq. 1.2-24). If arch parameters are chosen such that
2 R\2

An << (-'-(-)
i.e. strétching of the mid-surface is negligible, eq. 1.2-32 reduces
to the equation Lamb obtained (eq. 1.2-4). Takahashi's solution in-
dicated that the slenderness ratib, (R/k)z, influences the resonant
frequencies for symmetric modes, however, this ratio has little effect

on the frequencies for unsymmetrical modes. Takahashi also observed

the "frequency cross-over" reported by Nelson (17).

Nelson (21, 1964)

Extending his earlier work (17), Nelson investigated the
frequency cross-over between extensional and inextensional modes for
pinned-end circular arches. Results were presented showing the effects
of the parameter, g = (L/k1r)4 » on the mode of vibration, where L is
the developed length of the arch. These results indicated that for

certain arch opening angles and certain values of g, the arch vibrated
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in the extensiona] mode rather than in the inextensional mode. It was
shown that there was a unique value of the frequency where this cross-
over would occur which Nelson called the cross-over point.

Another aspect of Nelson's investigation involved finding
over what range of a(o. = one-half the arch opening angle) and for what
values of g the inextensional theory can be used to obtain sufficient]y

accurate results.

Antman_and Warner (22, 1965)

Starting with the basic equations as established by Love,
Antman and Warner invgstigéted the stability of vibrating arches; The

governing equations were written as

%E""K'g—zl""KMo"'No'm_a-%:o 1.2-33
ot
and
2 aM 2
M 0 au _
-3:2-+¥--KN-QO+m;2- 102'34

where MO’ N0 and Q0 are the externally applied moment, tangential load
and shear load respectively per unit length of arch, k is the deformed
curvature and ds is an element of arch length. Antman and Warner argued
that if the moment M, normal force N and curvature « were expressed in
terms of the displacements u and v, the term <N in eq. 1.2-34 gave rise
to a nonlinear coupling in displacements. However, if N was regarded

as a known function of s and t, then kN contributed a linear term to
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eq. 1.2-34. Thus, these authors obtained an independent solution for
N from the Tinear equations and substituted this value of N into eq.
1.2-34 which was then examined for stability. For a circular arch of

radius R, the resulting equation was

4 2 2 2 oM

EI ,5'u 3°u N ,9%u 2°u _ N 1 0 .
_..( + )_ (—-+u)+m ==+Qy - 5 =— 1.2-35
R 507 262 R ‘agl at2 R0 R %
where N was obtained from
2 2 .2 oN 2
3 N mR™ 3°N 0 3 u
—_—= 4+ N - =_RQ - R—4+ 2mR ].2_36
392 ER™ 42 0 " sl
for the extensional case and from
2 oN 2
o N = _ - 0 3 u -
8¢2 + N=-R Q0 R 3% + 2mR ;:2 | 1.2-37

for the inextensional case. Although N could be solved from.eq. 1.2-36
or eq. 1.2-37, the authors obtained N by linearizing the governing
differential equations by assuming a constant curvature before and after
deformation and then solving for a steady state value of N using Lang's

(18) approach. Denoting the steady state value of N by
N = N*(¢) cos Qt

and substituting this value of N into eq. 1.2-35 the following equation
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was obtained,

4 2 2
EI ,9'u , 3%u N* 9 u
( + =) - -—égl cos Qt ( +u)+
R 5% a2 R 22
82u
m ;;2-= f(¢) cos it 1.2-38
where a(s)
Mx(o
_ N* 1 0
f(o) = —jé91'+ Q3(¢) "R
and

Qo = Qa(¢) cos Qt , M0 = M6(¢) cos Qt .

The problem was now reduced to finding under what conditions the solu-
tion u to eq. 1.2-38 would remain bounded for all time, t > 0. Since
eq. 1.2-38 was not separable, a Kantorovich's modification of Galerkin's
method to reduce eq. 1.2-38 to a system of coupled Mathieu equations
was employed.

Antman and Warner analyzed the stability of a semi-circular
arch under radial forced end vibrations as shown in Fig. 1.2-2. From
this investigation it was concluded that “secondary resonant frequencies"

were given by
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where j is any integer, i may equal k and Bﬁ is defined as.

B = iiz-(k+1)2 [(k+1)2 - 17 .

P cosQt ‘ P cosQt
fe—————

O
7777777

FIG. 1.2-2 ARCH MODEL USED BY ANTMAN AND WARNER

Popescu (27, 1970)

To investigate the dynamic stability of arches,; Popescu used
an energy method similar to that used by Bolotin to obtain the govern-
ing equation. The arches were assumed to be subjected to a distributed

load q(t) given by the equation

q(t) = Q5 + Q cos qt
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where Qd is the static radial load, Q is the amplitude of the periodically
variable load and 9 is the pulsating frequency. The governing equation
was reduced to a Mathieu equation which was then analyzed for stability.
In obtaining the expression for the kinetic energy, Popescu did notv
account for the tangential displacement of the arch. This resulted
in a higher bound for the frequency of free vibration than that ob-
tained by Den Hartog, Nelson, Eppink and Veletsos, and ‘Bolotin who con-

sidered the tangential displacement.

1.3 Closure to Chapter I

The basic equation governing free vibrations of 1nexten§1b1e-
arches had been obtained by Lamb 1n 1888. Since that time, numerous
approximate techniques were employed to obtain responses of deep arches.
For examp]e; Den Hartog used the Raylefgh quotient to obtain the charac-
teristics of the first mode for both the extensional and inextensional
case; Bolotin investigated the effects of parametric excitation and
the effects of pulsating pressure loads on arches using the Galerkin
method; Eppink and Veletsos obtained the dynamic response of arches
excited by dynamic pressure loads by rep]acihg the continuous arch with
a framework of rigid bars and flexible joints; Nelson used fhe Rayleigh-
Ritz method in conjunction with Lagrangian multipliers to calculate
the characteristics of the free modes of vibration; Volterra and Mdre11
extended the Rayleigh-Ritz method to include arches with center-lines
other than circular; and Lang and Reed used the transfer matrix technique
to solve for the free vibration characteristics. |

Other investigators such as Archer, Morley, Love, Hoppe and
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Takahashi solved the governing equation for arches or rings for free
vibrations in closed form. Antman and Warner considered some nonlinear
terms in the governing equations énd performed a stability analysis for
arches. It appears that Lang was the first investigator to derive the
orthogonality condition for the free modes of vibration for an arch.
Lang proposed a steady state solution as a series in terms of the free
modes of vibration. This steady state solution was stated in integral
form and was not evaluated for any type of loading.
| Very little éxperimenta] data is available to evaluate the
abcve approximate and closed form solutions. Lang conducted experi-
mental tests on complete rings only, obtaining good agreement between
theory and experiment for the natural frequencies and mode shapes.
Hoﬁever, no experimental evaluation was provided for the steady state
solution.

| On the basis of the literature review, it is evidentAthat an
extension to the presently existing theory is necessary in order to
provide a solution for the dynamic response of arches subjected to
cyclic support movement. The theoretical analysis to the above problem

is presented in Chapter II.
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Chapter II
Theory

2.1 Derivation of the Governing Differential Equations
The goverhing differential equation used in this analysis
will be derived by considering the equilibrium of an arch element.
Lang's (18) approach for obtaining the steady state solution will be
modified to account for the inertial loads caused by support movement.
A steady state solution for symmetrical and unsymmetrical support move-
ment Qi]] be proposed. The coordinate system usgd is shown in Fig.
1.1-1.
. The assumptions used in the theory are:

1. The material is perfectly elastic and obgys Hooke's Law;

2. The displacements u(¢,t) and v(¢,t) measure deformation
~ only, i.e. rigid body motion is not accounted for by u and v.

3. The mass per unit arch length m, thickness H, and width b
are constant along the arch circumference.

4. Displacements out-of-the plane of initial arch curvature
are not considered. |

5. Although the existence of damping is acknowledged, it is
assumed that its effects on the steady state solution is negligible.

6. The arch vibrates with no extension of the center line

2

i.e. (R/K)Z >> A2
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7. The undeformed shape of the arch is circular with radius R.

8. Radial displacements u are small such that R + u = R.
9. Rotatory inertia and shear deformation effects are small
compared with the effects of flexure.
10. Second order terms are negligib]e when compared to first
order terms.
By applying dynamic equilibrium to an element of an arch

shown in Fig. 1.2-1, the three governing equations are:

3,y - g 20U .
3¢+N mR?fRPR 0,” 2.1-1
N _ mR32V+RP-0 2.1-2
) ;2' T ’ y
and 1 oM
3
k56" Q 2.1-3

where PT(¢,t) and PR(¢,t) represent the external load per unit arch
length acting in the tangential and radial directions respectively.
Combining eq. 2.1-1, 2.1-2 and 2.1-3 together with eq. 1.2-10 and
1.2-11 yields

oP

3 _
El 2°u 2 u u o u TV 1 R

(24 4 p U, By, - =l (=R_p). 2.1-2
Ry 307 263 99 " 3p3t2 a2 M ‘00 T

The condition of inextensibility as given by eq. 1.2-12 separates eq.
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2.1-4 into

6 4 2 4 2 aP
EI v 'y, 97V 'V ov _1 R
(—= 5+ 2 + ) + - === (7= - Pr) 2.1-5
R 295 ag¥ a2  a6Pet? ag2 M 30 T FT
and
2
El (86u +2 2%y azu) + oty _ 32u =1 3Pp - aPT) 2.1-6
mR4r 3 gt 2 2..2 2 m 2 EY) :
4) ad 1) 9¢ 3t ot ¢

It will be shown that'eq. 2.1-6 reduces to the governing
equation of a straight beam in the 1imit as R + w. Rewriting eq. 2.1-6
using an element of arch length ds as the independent variable where
Rd¢ = ds, yields

a4u

1
PO e e Ll s

s

EI (36U

== +
m o8

Q
- J%J_,

2.1-7

—
Q! W
w] o
-
g

- l.( PR -
m> e

|

&

A

Taking the 1imit of eq. 2.1-7 as R + » and integrating the resulting

equation twice with respect to ds yields

4 2

EI 3'u o~u 1 .
— + —_— 2.]_8
M 3s Z at2 m P

where the integration time functions are omitted. Equation 2.1-8 is

the governing equation for the flexural response of a straight beam.
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2.2 Solution to the Homogeneous Equation

The homogeneous equation can be written as

6 4 2 4
g+28w+a_w)+_32w aw=0 2.2-1

" st

EI (8
mR4ﬁ 9
where w(¢,t) represents either v(¢,t) or u(é,t). Assuming a solution

of fhe form
w(g,t) = 21 Wo(o) T (t) 2.2-2
n= .

separates eq. 2.2-1 into

v 2

I IV 2, Il =
wn + 24" + (]-An) ”n + An.wn =0 2.2-3
and ‘
2 _ | .

Tn + w, Tn =0, _ 2.2-4

where .
2 _ 2 mR’ , .

.An = w ET 2.2-5

and

- OF 2 () et

The solution to eq. 2.2-4 is
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1wnt
Tn = Ah e . 2.2-6

Since eq. 2.2-3 is an ordinary differential equation with constant

coefficients a solution of the form

6
yc.eM 2.2-7

RO

can be assumed. Substituting eq. 2.2-7 into eq. 2.2-3 yields an
auxiliary equation

6 4 2 2 2 _
fa*2r,+rp (I-An) +A,=0. 2.2-8

Equation 2.2-8 1s a cubic equation in rﬁ and applying the standard
algebraic solution for cubic equations (Sokolnikoff (23)) a solution for

rﬁ is obtained. By considering the discriminant of the cubic equation,

it was found that for O < Aﬁ < 0.113, the solution to eq. 2.2-3 can be

expressed as

W (¢) = Cyq cos vi0 + C,p sin v]¢.+ Ch3 €OS Vo

+ Cn4 sin Voo + cns cos vy + cn6 sin Vgt 2.2-9

where ™(1,2) = i_iv] » Tn(3,4) = * iv, and "n(5,6) ~ i_iv3
and the rn(j)'s, J=1,2, ...6 are the roots of eq. 2.2-8. Similarly
for 0.113 < A2 < 17.64 the solution is
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Hn(¢) = Cpy €05 wi¢ + C , sin V19 + €3 cOS V6 cosh g

+ C.y cos V¢ sinh Hot +'cn5 sin v2¢ cosh uyp + Chs sjn Vo0 sinh o

2.2-10

where ™n(1,2) * v, "n(3,4) = £ ¥y * iv, and "n(5,6) ° i_u21+ iv, .

For Aﬁ > 17.64 the solution is

W,(¢) = Ca1 €O V1é + C 5 sin V19 ¥ C 5 cosh Hi¢

+ cn4 sinh u]¢ + Cns cosh u2¢ + Cn6 sinh'u2¢ 2.2-N

where 1 5y = i_iv] * Tn(3,4) LBy and v ooy =4y, . The
constants an » J = 1,2,...6 are determined from the boundary conditions.
Equations 2.2-9, 2.2-10 and 2.2-11 are the solutions to the homogeneous
eq. 2.2-3 where wn(¢) represents eijther Vn(¢) or Un(¢) depending whether
the tangential or radial mode shapes are considered. Before a particu-
lar solution to eq. 2.1-5 and 2.1-6 canvbe evaluated, the orthogonality

condition for the free modes of vibrations must be found.

2.3 Orthogonality Condition

To evaluate the orthogonality condition, consider eq. 2.2-3

where Hn(¢) is replaced by Vn(¢)

VI
n

2

IV 2 II -
v +2vn +(1-An) vn AV, =0 2.3-1



Multiplying eq. 2.3-1 through by V do and integrating between the

limits of -a to a yields

, III, III II,I1 I,I -
- fa (Vrl Vo -2 Vn Vm + Van) d¢

34

2 Il :
- An Ia (VnVm + Van).d¢ 2.3-2

where
- v IV, 1 I11,,I1 III
B] = [vnvm - Vn Vm + Vn Vm + 2 Vn Vm

11,1 2, oI, 1+ ¢
=2 Ve + (1) Vv

The constant B.l can be evaluated after the boundary conditions at
¢ = + o are specified. Another equation similar tp eq. 2.3-2 can be

obtained by interchanging subscripts m and n. This yields

o
) - f (v TR -2 VELID Iyl gy

(o]

2 1,1 | :
- A [ VoV, + v vn) dé 2.3-3

=0

where
_ ryV Iv,,1I 111,11 111
82 = [van - Vm Vn + Vm Vn + 2 Vm Vn

vilvE 4 (- A viy ]

Subtracting eq. 2.3-3 from eq. 2.3-2 yields
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17 B = O - ) fa (Vi + VVo) do. 2.3-4

When pinned-end, clamped-end or free-end boundary conditioﬁs
are applied and B] and B2 are evaluated, it is found that the left-
hand side of eq. 2.3-4 is identicallyzero. Equation 2.3-4 can be

written as

(Am - A ) f ! I +VV,) de=0. 2.3-5

-a

Hence, for m # n ,

o
[ (v:v; tVV)d=0, = . 2.3-6
-0

and for m = h, the eigenvectors are normalized such .that

g%-f (VaVo + V.V ) do = 1 2.3-7
-Q

Using the‘orthogonal condition a§ given by eq. 2.3-6 and the
normalization given by eq. 2.3-7, the steady state solution to eq. 2.1-5

and 2.1-6 can be evaluated.

2.4 Steady State Solution

The steady state solution to eq. 2.1-5 can be assumed to be

Vp(¢st) = jzl VJ(¢) nj(t) - 2.4-1
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where Vj is the j-th free mode of vibration and n; is a function as yet

undetermined. Substituting eq. 2.4-1 into eq. 2.1-5 yields

v EI VI 1A § S §
L B (v + 2y, + V50D my + Ay (V47-V5)]

aP
_ 1 R
“wl - P 2.4-2
Using eq. 2.3-1, eq. 2.4-2 can be reduced to
% aP
I1 . 2 1 R
2 [(vj - Vj)(nj + wjnj)] S - m (W - PT) . 2.4-3

J=1
Multiplying eq. 2.4-3 thfough by Vk dQ and integrating between the
limits of -a to o yields
. 2 I =
jZ] [(nJ + wjnj) j (vjvk + vjvk) d¢]
-a
[+ ]
vV, P _
- ] = (2 - Pp) do 2.4-4
-Q
Applying the orthogonality condition as given by eq. 2.3-6 uncouples

eq. 2.4-4 and then using the normalization as given by eq. 2.3-7, eq.

2.4-4 can be'written as

fip + wﬁnk = D, (t) $2.4-5
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where

v, op
I = (g2 - Py) do . 2.4-6

.
Dk(t) " 20 m

-0

The ‘solution to eq. 2.4-5 can be expressed in integral form as

n(t) = C;I sin w t + CLZ cos wt
¢ .
+ Tn]:f Dk('r) sin wk(t-'r_)_dt 2.{-7
o
where cL] and CLZ are determined from the initial conditions of thg
arch.

The steady state solution for the tangential displacements is
obtained by substituting eq. 2.4-7 into eq. 2.4-1. The steady state
solution for the radial displacements can be obtaineq in a manner similar
to that above, however, it can be done more simply by using thesin-
extensibility condition as given by eq. 1.2-12.

Stea@y state solutions are presented for two types of support
movement. The motions will be defined by "symmetrically excited arches"
for the one case and "unsymmetrically excited arches" for the second

case.

2.5 Solution for Symmetrical Excitation

The term “symmetrical excitation" is.taken to mean that both
supports A‘and B, in Fig. 2.5-1, are vibrating in-bhase and in the plane
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of the initial curvature of the arch. Both supports have displacements

whose direction is parallel to the line ¢ = 0.

0

¢

FIG. 2.5-1 MODEL FOR SYMMETRICAL EXCITATION

Let the function describing the support movement be denoted by g(t) where
g(t) is twice continuously differentiable. Under this type of excitation

the external forces PT and PR are

Pr = - mg(t) sin ¢ 2.5-1
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and

Pr = - m §(t) cos ¢. | . 2.5-2

Substituting eq. 2.5-1 and 2.5-2 into eq. 2.4-6 and from eq. 2.4-7 the

solution for nk(t)'is

t
n(t) = - = [ 0 g(x) sin w(t-0) @ 2.5-3
k) |
where . o
D, = é-f v (¢) sin ¢ do 2.5-4
-a .

and the initial conditions can be disregarded since some damping is
present in an actual arch which will eliminate any initial effects

leaving only the steady state terms.. If g(t) is assumed to be
go(t) = G sin at , T 2.5-5

the solution for nk(t) becomes

6 % b, |
nk(t) = 5> sin Qt . 2.5-6
wk - Q
Substituting eq. 2.5-6 into eq. 2.4-1, the steady state solution for

the tangential displacement becomes

2

o 02D, V. | -
%E= ) 97'1_1?7,51." ot 2.5-7

J=1 (wj - Q
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and using eq. 1.2-12, the radial displacement is

2 a | |
u o O D. U, :
= ———-1—%— sin at 2.5-8

where the subscript'p means steady state solution.
The terms vp/G'and up/G are referred to as magnificiation

ratios in the tangential and radial directions respectively.

2.6 So]ution'for Unsymmetrical Excitation

With reference to Fig. 2.6-1, l"unsymmetlr'ic:al excitation" is
taken to mean that support A is stationary and support B is vibrating
in the plane of the initial arch curvature. The displacement of B is |

along a line parallel to the Tine ¢ = 0 .

$=0

FIG. 2.6-1 MODEL FOR UNSYMMETRICAL EXCITATION
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Assume the function describing the support movement is given by g(t)
where g(t) is twice continuously differentiable. Let E(t) define the
_ rotation of the arch about support A due to the.movement of support B.
Point P is an arbitrarily chosen point on the circdmferenee of the
arch. If the amplitude of g(t) is small compared with the distance BB,

the rotation of the arch is given by

- alt)
&(t) —

or by
£(t) = it B 2.6-1
since AB = 2R sin a. The distence AP can be expressed as
AP = 2R sin § (¢+a) . 262

hence, the displacement of point P (represented by z in Fig. 2.6-1) is

given by
z(¢,t) = AP &(t) . _ 2.6-3
The external forces PT and PR are given by

Pr = - m AP sin (6+¢) & 2.6-4



and

= - m AP cos (o+¢) E

©
|

where 6 = % (a-¢) .
Substituting for AP, 6 and £ 1in eq. 2.6-4 and 2.6-5 yields
Pr = - 5o [1 - cos (¢+0)]

and

PR = - ZTsTng Sin (t)

Substituting eq. 2.6-6 and 2.6-7 into eq. 2.4-6, yields

a .
D, (t) = - zg%ﬁf v [1 - 2 cos (¢+a)ldo,

-

and from eq. 2.4-7 nk(t) becomes

nk(t) = Cp sin wkt + ¢y, cOs mkt

t

. .
-‘a}-f g(t) Dk sin wk(t-r) dt

ko

where o

DL = 33;%755 I Vk [1 -2 cos (¢+a)] do

-0

42

2:6-5

2.6-6

2.6-7

2.6-8

2.6-9
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Substituting the assumed sinusoidal function for g(t) as given by eq.
2.5-5 into eq. 2.6-8, nk(t) can be written as ‘

6 %, |
nk(t) = m sin Qt . .2.6-10
' k

" where the initial conditions are disregarded due to the presence of
some damping in a physical arch. When eq. 2.6-10 is substituted into

eq. 2.4-1, the steady state solution for the tangential displacement is
v_(6,t) : ? 0, V,(¢) 1 , ]i,
'ILTF"' = --1r1-—12-—- sin Qt .6~

and using eq. 1.2-12, the steady state solution for the radial dis-

‘placement is

2 ]
.t oo D; U
EE£§——1 = -21 -?—?1——gé§l sin qt , ' 2.6-12°
J= wj - .

where the subscript p denotes the steady state solution. Similarly as
was defined for the symmetrical case, the terms up/G and vp/G are
referred to as magnification ratios in the radial and. tangential di-

- rections respectively.

2.7 Computer Evaluation of Theoretical Solutions

The theoretical solutions were evaluated, only for pinned-end
boundary conditions, using a digital computer. The boundary conditions

were applied to the homogeneous solution as given by eq. 2.2-9, 2.2-10
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or by 2.2-11 and the constants an, n = mode number énd j=1,2,...86,
were evaluated. The pinned-end boundary conditions, i.e. u=0, v = 0
and M= 0 at ¢ = + a , are homogeneous and application of these to eﬁ.
2.2-9, 2.2-10 or 2.2-11 results in six homogeneous algebraic equations.
In order that a non-trivial solution for this set of equations exist, _
the determinant of the éoefficients, which contains the natural frequency
parameter A =0 R2 M/ET , must be zero. Since it was a difficult
task to obtain an exact solution for An by expanding and solving thé.
six by six determinant, an iterative procedure was used. The brocedure
was started by assuming a value for A, Which made the determinant
negative and assuming another Ay which made the determinant positive.

An intermediate value for An Was then calculated and the determinant
evaluated again. This<procedure was-continued until the determinant |
was zero or until the value of A, was iterated to 16 significant
figures (capacity of the computer). It was not known before hand to
.which mode the particular value of An would correspond; however, the
mode was identified when the mode shape was evaluated. 1In the iterative
process, it was possible to have the resulting determinant approach
zero for the lower modes, however for the higher modes a small change
in the value of An (i.e. a change in’the 16th significant figure)
produced large changes in the value of the determinant. For example,
for an arch having o = 100°, a change by one in the 16th significanf
figure for Ag caused the value of the determinant to change from = 10]0

to = - ]010. However, for the same arch it was possible to iterate for
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Ay such that the value of the determinant was = 10713, The value of
the determinant was not zero for the higher modes, but because of the
large oscillations in the value of the determinant for small changes
in A,, it was decided that the iterative method evaluated the A 's with
sufficient accuracy.

To aid in selecting the initial values of A for the iterative
process for arches with various o values, a plot, Fig. 2.7- 1, was made
of A versus a for the first nine modes of free vibrations for pinned-
end boundary conditions. A similar plot for fixed-end boundany condi-
tions is shown in Fig. 2.7-2. _

A comparison can be made of the values of An obtained by the
Present theory and those obtained by Den Hartog (é), Eppink and
Veletsos (10) and Nelson (17,21) who used approximate methods. As
mentioned previously, an error was noted.in the formula Den Hartog
derived for A when displacements in the form of a polynomial were as-
sumed. In Table 2.7-1, results are presented for A] as obtained using .
the present theory, using Den Hartog's tabulated values, using the"
sinusoidal displacements and the equation derived by Den Hartog, and
using the polynomial displacements‘assumed by Den‘Hartog and the cor-
rected formula (i.e. A o= 1/62[(a* +79.20 o2 + 1584)/(1 + 0.07769 o2)]1/2
for Ay- As expected, the values Den Hartog obtained using the Rayleigh
quotient are higher or equal to the values given by ‘the present theory.

Eppink and Veletsos presented values only for one arch which
had o = 43.6 degrees. Results were presented when the arch was approxi-

mated by different number of bars. On the basis of this data, arches
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approximated by less bars gave lower values for the natural frequencies
than those approximated by a larger number of bars, which indicates
thét this method yields lower bounds for the naturail frequency. On the
basis of a 20 bar approximation, the values for An, n=1,2,...9 and
the values obtained from the present theory are shown in Table 2.7-2

for an arch with o = 43.6 degrees.

*Eppink &
Veletsos®s | 14.8 | 36.4] 65.8 | 103.1 | 150.9 |205.1 269.6 [340.1 | 420.6
Results

Present
Theory 14.8( 34.6| 65.8102.9 [ 151.0 | 205.1 270.4 (341.5 | 423.8

* Results for a 20-bar approximation

TABLE 2.7-2 COMPARISON WITH EPPINK AND VELETSOS'S RESULTS

From Table 2.7-2, Eppink and Veletsos obtained the same or
lower values for An in all cases except when n = 2 and n = 4. No ex-
planation, other than round off error, can be given for this;

A comparison with the values Nelson calculated for the first
four modes is shown in Table 2.7-3. It should be noted that Nelson's
values were obtained from a graph and may not be accurate to the number
of significant figures listed. As expected, Nelson obtained larger

values for the An's using the Rayleigh-Ritz technique in conjunction
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with Lagrangian multipliers than those obtained from the closed form

solution.
o,Deg
A *1 0 45 90 135 180
A N | o[ 13.8 2.27 0.474 0
1 T || 13.764 2.267 0.474 0
A N | ]| 32.5 6.93 2.39 0.901
2 T || 32.404 6.923 2.366 0.901
A N |~ 62.0 14.1 5.44 2.46
3 T || 61.673 | 13.978 5.349 2.447
A N | o] 97.8 23.3 9.32 4.61
4 T | | 96.446 | 22.820 9.267 4.597

*N - Nelson's values, obtained from graph
T - Values obtained from present theory

TABLE 2.7-3 COMPARISON WITH NELSON'S RESULTS

Since the agreement between the values of * for‘the present
theory and those of previous investigators is favourable, it can be as-
sumed that the iterative method used in eQa]uating An is sufficiently
accurate. After the values of A, were evaluated, an's were calculated
using the "least squares method". For example, suppose the original
system of equations were defined by
6
§= an Aij (An) =0, 2.7-1

J,1=1
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where n equals the mode number and the Aij's are constants which are
eva]uated when A 's are known. Dividing eq. 2.7-1 by C nk ¥0,1 <kz<é6,
results in five unknown ratios and 6 nonhomogeneous equations which

are inconsistent sinqe the exact value of A, 1s not known. The re-

sulting equation is

6
n : =
j ) [qi- Ay () + Ay ()1 =0 2.7-2
J#k

Equation 2.7-2 was reduced to five equations by defining a new function

6 C 2
J#k

and then minimizing € with respect to each of the five ratios an/an.
The ratios were then evaluated by solving simultaneously the resulting
five equations. Equation 2.3-7 was used to solve f&r an.

When the An's, Un's and Vn‘s were known, thé steady state
solution for radial displacements, as given by eq. 2.5-8 for symmetrical
excitation, and by eq. 2.6-12 for unsymmetrical excitation was evalu-
ated. For pinned-end boundary conditions, it was observed that if
steady state solutions were required near the fourth mode it was suffi-
cient to use eight terms in the series to obtain an accuracy to three
significant figures. Better accuracy was obtained for forcing frequencies

below the fourth natural frequency when an eight term series was used.



52
2.8 Closure to Chapter II

A theory has been presented which can be used to evaluate the
dynamic response of thin circular arches subjected to inertial loads
caused by cyclic support movement. The arch was assumed to be inex-
tensible, radial &isp]acements were small such that R + u = R, effects
of damping on the steady state solution were assumed to be negligible,
displacements were due to flexural effects only and the displacements
were in the initial Plane of the arch curvature. The orthogonality
condition for the free modes of vibration was found which was used in
the evaluation of the steady state solution. Stegdy state solutions
were evaluated for both symmetrical and unsymmetrical excitations. For
forcing frequencies near the fourth mode, an eight-term series in tefms
of the free modes of vibration, yielded the steady state solution
accurate to three significant figures.

Since experimental resuits will only be presented for pinned-
end arches, the theory has been evaluated in detai] for these boundary
conditions. Details of the experimental procedure are given in Chapter

III.
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Chapter III

Experimental Procedure

3.1 Description of Testing Equipment and Arches

The arches were excited by an Unhbltz-bickie, Model No. 160
Electrodynamic Shaker Table, capable of‘genérating a maximum force of
225 pounds. The magnitude of the sinusoidal displacement and the fre-
quency of excitation were controlled by a Briel & Kjaer Model No.‘11019
Automatic Vibration Exciter Control. With this equipment any desire&
frequency and displacement could be obtained, within the limitations
of the apparatus. The frequency was measured by a General Radio Model
No. 1150-AP Digital Frequency Meter having an accuracy of plus or minus
one count. During testing, the frequency was recorded continuous]y'on
a General Radio Data Printer Model No. 1137-A in order to determine
whether drifting of the frequency occurred during a test. Thé amp1i tude
of displacement for the support and that of the arches were measured
by micrometer probes, shown in Fig. 3.1-1. The probes wére fitted with
spring loaded tips to reduce any disturbances that might be induced
when contact was nade'with the arch or support. The probe measurihg
the radial arch displacement was mounted on a movable arm permitting
the rotation of the probe into any desired position. A simple electrical
circuit was used to indicate when the probe made contact with the arch.

A photographic view of the testing equipment is shown in Fig. 3.1-2.



FIG. 3.1-1 MICROMETER PROBES

FIG. 3.1-2 GENERAL VIEW OF TESTING EQUIPMENT
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FIG. 3.1-1 MICROMETER PROBES

FIG. 3.1-2 GENERAL VIEW OF TESTING EQUIPMENT
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The arches were rolled from strips cut from 6061-T6 aluminum
sheets having a modulus of elasticity of 107 psi. The arches were bolted
to oné-half inch diameter steel shafts with bearing supports and in
order to reduce the weight of the model, were mounted on a 3" x 1-1/2" x
1/4" aluminum channel. To reduce the effects of support flexure, thé
length of the supporting channel was chosen to be 11-inches.

To locate the points of zero diﬁp]acement on the arch, a
Chadwick-Helmuth Model No. 126A'Stroboscope synchronized with the support
displacement and equ1pped with a Chadwick-Helmuth Slip -Sync Model No.

105 AR Automatic Phase Shift was used.

3.2 Testing Procedure

Any arbitrary point on the arch has both radial and tangential
displacements which are related by eq. 1.2-2. Because of thfs rélation-
ship, experimental evaluation of only one displacement was consjdered.
Since radial displacements were easier to measure the theory is evalu-
ated on this basis. |

It was decided to use pinned-end supports for the experimental
tests because previous experience with vibrating cantilever beams
indicated that fixed-end conditions were difficult to atta1n [see Rae
(24)].

To determine the accuracy of the micrometer measuring probe,

a test was conducted comparing displacements as measured by the probe
against those measured by a Gaertner Cathetometer which is an optical
measuring device. The comparison is shown in Fig. 3.2-1. In view of

the small difference, the micrometer probe was chosen as a reliable
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means for measuring deflections. The precision of the probes was found
to be approximately + 0.005 inches.

In order to determine what arch parameters would yield the
most reliable experimental data, a seriés of arches with various R/H
and o values was tested. The arch behavior was observed under both
symmetrical and unsymmetrical excitation. It was concluded that arches
with a = 140 degrees and 43 < R/H < 128 were very susceptible to dis-
turbances induced by the measuring probe. When arches with o < 90
degrees and R/H =~ 130 were tested, they were very stiff and it was
impossible to obtain a measurable displacement response at frequencie;
other than the first resonant frequency. Because of the force limitation
of the shaker table and because of the resolution of the displacement
measurement, it was found that the best operating range of the shaker
table for these tests was between 5 and 125 H,. On this basis, it was
decided to build arches which had the first resonant frequency above
SHz and at least the second below 125 Hz.‘ With these frequency limitations,
a forced response could then be obtained for frequencies up to the
second mode, although for some arches a forced response was obtained
for frequancies up to the fourth mode. To meet the above limitations,
it was decided the best range of arches to test was 90° < o < 125° which
required the radius to be 5.01 < R < 6.00 since the distance between
supports was fixed at 10.02 inches for all tests. The condition of

2 was satisfied if thicknesses of 0.032

inextensibility i.e. (R/k)2 >> A,
and 0.042 inches and a width of one inch were used.

It was also observed that arches having large variations in
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radius had experimental values cgnsiderab]y higher than those predicted
by theory. Because of the higher experimental values, this would
indicate that some unknown parameter is highly sensitive at this fre-
quency and is exciting'the arch amplitude beyond the theoretical value.
The best circul#r arches were obtained by using a Di-Arco, No. 2A
precision three-roll roller. The arches were checked by tracing the
arch outline on paper and then drawing in the best-fit radius. Measure-
ments were taken and a radius, R 1_%-H. was assigned. The theoretical
solutions were based on the radius (R + %-H) which most closely matched
the theoretical and experimental values of the reSonant frequency for
the first four modes. Any arch having a radius variation greater than‘
one-half the thickness was rejeéted. Thé values of'a for the arches
were calculated on the basis of the best-fit radius and by using the
distance between the arch supports of 10.02 inches. .

As noted in Chapter 1I, under the assumptions used in the
development of the theory, some damping is present in the system, how-
ever, it was assumed to be small and was neglected in the théoretical
analysis. To reduce the effects of damping in the experimental tests,
arches were excited at frequencies sufficiently far from resonant
conditions since the effect of damping is most pronounced at resonant
conditions. To meet this condition, it was decided to excite arches
at frequencies such that the maximum magnificiation ratio (U/G) was
kept below the value of four. '

To check the effects of damping in the system, one LVDT
(linear variablé differential transformer) probe was attached to the

crown of the arch and another LVDT probe was attached to the support.
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Under symmetrical excitation (to ensure no tdngentia] dispiacenent at
the crown) a simultaneous trace of the output from the two LVDT's was
recorded, using a Brush Oscillograph Model No. 13-5335-00, at various
frequencies. As shown in Fig. 3.2-2, the two outpufs are nearly in-
phase or 180 degrees out-of-phase. On the basis of these phase angles,
it was concluded that damping was small and could be omitted from the
theoretical analysis. Although a frequency trace was obtained only for
one point on the arch, other points were assumed to behave similarly.

By comparing displacements obtained from taking readings on
the outside and inside circumference of the arch, a check was made on
the zero shift of the static position of the arch. Since the differences
in the readings were in the range of the precision of the micrometer
probe, it was decided that sufficiently reliable results would be ob-
tained by taking readings on the outside circumference only.

Since the arch vibrated about its static position, the
amplitudes of the radial displacements were obtained by taking the
difference in the readings between the dynamic and static reading.

For example, consider an arbitrary point P, shown by the static position
A in Fig. 3.2-3, for which a reading was taken. Point P is moving con-
tinuously and reaches its maximum displacement when P is at P! in
position B, for which a dynamic reading was taken. The difference in
the two readings is UA’ where UA }epresents the absolute radial dis-
placement. In order to eliminate the error € which would occur if both

the static and dynamic réadings were taken with the probe at the same
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angular position, it was necessary to move the probe to position P' when

taking the dynamic reading. Generally, the tangential displacement for
P was less than 0.15 inches, giving a maximum angular difference in

the two positions of less than two degrees for an arch with a five-
inch radius. Experimental data was taken at two-inch intervals along
the outside circumference.

For each frequency a series of four readings, each with a
different support displacement, was taken for each position on the
arch. The support displacements were divided into four equally spaced
increments between the two extremes used for the particular test. An
average value of absolute arch displacement divided by the support dis-
placement (i.e. UA/G) was calculated from the four readings for each

position.

Probe position for
dynamic reading

Probe position for
static reading

FIG. 3.2-3 POSITION OF MICROMETER PROBE DURING TEST
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When arches were excited near abresonant frequency, it was
observed that the amplitude of the arch displacement was highly sensitive
to slight variations in the forcing frequency. (This is another indi-
cation that damping was small.) If UA/G < 4, the forcing frequency
would be sufficient]y removed from the resonant frequency yet be close
enough to the resonant mode ensuring a measurable arch amp1i tude.
Generally, the maximum value of UA/G was kept between one and two.

It was .also observed for some arches excited beyond the fourth resonant
frequency, out-of-plane modes were excited. These out;of-plane vi-
brations occurred at frequencies approximately sixteen‘times the fre-
quency of the first flexufal mode which agrees with the observations
made by Volterra and Morell (15). These out-of-plane vibrations are
excited because of the difficulty in aligning the plane of displace-

ment with the plane of the arch.

3.3 Presentation of‘Theoretical and Experimental Results

Results are presented for four arches with R/H values of
121.2, 133.3, 157.8 and 179.4 and o values of 100.2, 116.5, 97.2 and
119.2 degrees respectively. For each arch, the first four mode shapes
are presented, followed by the results for symmetrical excitatfon,.and
then by the results for unsymmetfical excitation. For both symmetrical
and unsymmetrical excitations, results are presented for four different
forcing frequencies.

Since damping was small, the experimental resonant frequencies

were determined by adjusting the forcing frequency until maximum de-
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flections occurred in the arch. This frequency could be obtained
within + 0.3 H,. To obtain the mode shapes of free vibration, the
arch amplitudes were measured as the arch vibrated at the resonant
frequency. Figure 3.3-1 shows a photographic view of the fir;t four
modes for various positions.of the arch as it moved through its cycle.
At resonant conditions, a support displacement of less than 0.005
inches was sufficient to have arch amplitudes in the order of 0.2 inches
giving a magnification factor with values greater than 40. Since it
was possible to obtain large magnification ratios at resonant frequencies,
tﬁis indicated that at a resonant frequency, the arch was essentially
under the condition of free vibration. Hence, under these conditions,
sufficienfly accurate mode shapes could be measured. For the unsymmetrical
modes, the experimental data was normalized such that the largesf ex-
perimental displacement coincided with the displacement on the theoretical
curve for the same point. For the symmetrical modes, the experimental]
data was normalized with respect to the point at ¢ = 0.

The theoretical solution as given by eq. 2.5-8 for symmetrical'
excitation and by eq. 2.6-12 for unsymmetric§1 excitation yields the
radial displacement due to arch deformation only, i.e. the effect of
support movement on the arch displacement is not considered. 4Tﬁe experi-
mental values are absolute displacements which requires a modification
of the theoretical solution to account for the support movement before
a comparison between theory and experiment can be made. The modified

theoretical solution is
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2
U © Q°DiU.(¢) -
'EA =[] —Z-J—-Lz—+ cos ¢] sin Qt 3.3-1

j.] u)j - Q
for symmetrical excitation, and

[- -3

?= jz'lm_z—i-lz_ sna]S'in Qt - 3.3-2

for unsymmetrical excitation, where UA denotes absolute radial dispiace-
ment and G is the amplitude of support displacement.
A comparison between theory and experiment for the mode shapes

and forced excitations is shown in Fig. 3.3-2 through to 3.3-13.

3.4 Discussion of Theoretical and Experimental Results

A summary is given in Table 3.4-1 comparing the theoretical
and experimental values for the resonant frequencies together with'the
percentage difference. It can be seen that good agreement was obtained.
The experimental values of the reéonant frequencies are gehera]ly higher
than the theoretical ones for modes one and two and lower fbr modes
three and four. A possible cause for this is friction acting at the
bearing supports forcing the experimental values to be higher at the
lower modes. However, at the higher modes, it is possible that the in-
ertia of the support shafts overcomes the frictionai effects resulting
in lower experimental values than those predicted by theory. Good
agreement between theory and experiment for all mode shapes was ob-

tained.



de
arch 1 2 3 4
23.7 78.6 162.1 267.7
L’}= 121.2 24.1 78.4 157.0 250.3
+1.7 - 0.3 - 3.1 - 6.5
11.3  43.8 93.8 ©  158.3
ﬁ-= 133.3 11.8  44.3 94.0 - 154.5
+4.8  +1.1 + 0.2 - 2.4
20.3 65.7 134.3 221.2
‘|§= 157.8 21.2  67.4 131.5 206.7
+55 +2.6 - 21 - 6.6
7.4 29.9 64.4 109.1
R = 179.4 7.8 30.4 64.4 106.3|
+5.4 +1.7 0 - 2.6

*T Theoretical Frequency, Hz
E Experimental Frequency, Hz

D Percent Difference

TABLE 3.4-1 COMPARISON OF THEORETICAL AND
EXPERIMENTAL RESONANT FREQUENCIES
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For purposes of discussion, a position with the largest dis- s
placement was chosen for each arch at each frequency tested and a
summary of. those points is shown in Table 3.4-2 for symmetrical excitation
and in Table 3.4-3 for unsymmetrical excitation. It is not intehded to
mean that this position is representative of the remaining positions
on the arch, but rather as a position having the most precise experi-
mental value.
For forced frequencies, good agreement between theory and experi-

ment was obtained for all tests except for four frequencies as shown
in Fig. 3.3-6 at 53.0 and 80.2 Hz. Fig. 3.3-7 at 51.9 H, and Fig. 3.3-12
at 43.0 Hz' It is possible to account for a maximum error of 20 per-
cent by considering the precision of the micrometer probes, errors in
measuring the arch radii and errors due to varfations in forcing fre-
quencies. Since at the forcing frequencies indicated above, the dif-
ference in amplitude between theory and experiment was greater than
20 percent, this error 1s not due to experimental error alone. As
noted previously, arch displacements were very sensitive to variations
in radius at certain frequencies and these sensitivities were more pro-
nounced for arches with larger o values. This agrees with the results
shown in Table 3.4-2 and 3.4-3. The particular arches tested were not
perfectly circular, hence it is possible that the four frequencies
yielding poor agreement were in the frequency range where the arch
sensitivities were the greatest. Agreement, within experimenta] error,

was obtained for the reﬁaining 28 forcing frequencies presented._
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Forcing
Freq. _
Arch * Q Q Q Q
Parameters 1 2 3 4
1 20.1 58.1 85.7 100.2
R/H = 121.2] 2 0 0 _ 0 - 67.5
a = 100.2° | 3 | 0.140-0.066 0.085-0.040 0.049-0.020 0.055-0.026
R = 5,09" 4 | 0.144-0.067 0.160-0.075 0.156-0.072 | 0.087-0.044 .
H=0.042 |5 1.0% 0.8% 6.3% 3.5%
6 <5% <5% - 12% <5%
1 27.7 **53.0 **80,2 143.3
R/H =133.3| 2 0 81.9 - 61.4 - 40.9
a =116.5° {3 | 0.130-0.040 0.084-0.040 0.086-0.040 0.025-0.011
R = 5.60" 4 | 0.201-0.064 0.163-0.083 0.101-0.047 0.068-0.031
H=0.042" | 5 2.4% 3.2% 0.5% 3.8%
6 10% 42% 25% 10%
1 19.8 35.4 52.1 85.0
R/H = 157.8| 2 0 0 0 -~ 68.1
o= 97.2° 3 |]0.138-0.050 0.099-0.030 0.106-0.040 0.079-0.035
R = 5.,05" 4 |0.145-0.054 0.130-0.039 0.217-0.089 0.120-0.059
H=0,032" |5 1.6% 1.5% 4.7% 5.4%
6 <5% <5% <5% <5%
1 22.9 **43.,0 80.0 122.5
R/H=179.4| 2 0 -79.9 59.9 0
a=119.2° |3 |0.097-0.025 0.112-0.026 0.083-0.020 0.038-0.014
R =5.74" 4 ]0.212-0.055 0.145-0.037 0.107-0.026 0.070-0.027
H = 0.032 5 1.0% 5.4% 0.8% 5.1%
6 20% 60% 8% 17%
*1 Q, Forcing Frequency, Hz
2 ¢, Angular Position of Point Considered, Degrees
3 G, Range of Support Displacement used in Test, Inches .
4 UA’ Range of Measured Absolute Radial Displacements for the Point,
Inches
5

Max imum variation of UA/G From Average
6 Difference Between Theory and Experiment for the Point

** Large Difference Between Theory and Experiment

TABLE 3.4-2 SUMMARY OF RESULTS FOR SYMMETRICAL EXCITATION
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** Large Difference Between Theory and Experiment

rorcing
req.
Arch * Q Q Q [9)
Parameters 1 2 3 4
1 18.7 34.9 66.7 92.0
R/H =121.21 2 - 45,0 45,0 0 67 .5
o = 100.2° |3 | 0.123-0.050 0.152-0.030 0.101-0.040 0.080-0.034
R = 5,09" 4 | 0.115-0.043 0.148-0.034 0.144-0.055 0.095-0.047
H = 0.042" | 5 4.8% 11.1 3.0% 7.7%
6 10% <5% <5% <5%
1 30.1 **51.9 84,7 109.3
R/H = 133.3] 2 20.5 61.4 40.9 81.9
a=116.5° [ 3 | 0.111-0.050 0.105-0.041 0.084-0.040 0.055-0.029
R = 5,60" 4 | 0.109-0.049 0.128-0.055 0.135-0.063 0.063-0.038
H= 0,042 5 0.6% 5.1% : 1.2%2 8.4%
6 <5% 18% 9% <5%
1 28.0 54.6 77.3 123.2
R/H = 157.8( 2 45.4 0 68.1 22.7.
a= 97,2° 3 | 0.135-0.060 0.114-0.045 0.098-0.040 0.043-0.025
R = 5,05" 4 |1 0.153-0.073 0.132-0.052 0.114-0.054 0.064-0.035
H = 0.032 5 4.0% 1.1% 8.2% 2.8%
6 10% 12% <5% <5%
1 20.0 39.8 70.1 91.9
R/H = 179.4] 2 20.0 59.9 - 39.9 - 39.9
o = 119.2° | 3 | 0.122-0.050 0.112-0.050 0.082-0.035 0.079-0.035]
R=5,74" 4 1 0.116-0.050 0.107-0.051 0.144-0.070 0.093-0.039
H = 0.032 5 2.9% 3.7% 5.7% 5.4%
6 <5% 8% <5% 15%
*l Q, Forcing Frequency, I-lz ,
2 ¢, Angular Position of Point Considered, Degrees
"3 G, Range of Support Displacement Used in Test, Inches
4 Uy» Range of Measured Absolute Radial Displacement for the Point
Inches
5 Maximum Variation of Up/G From Average
6 Difference Between Theory and Experiment for the Point

TABLE 3.4-3 SUMMARY OF RESULTS FOR UNSYMMETRICAL EXCITATION




82
Other arches in the range 121.2 5_§55 179.4 and 97.2°< a <

119.2°were also tested, however the results haye not been presented as the
agreement between theory and experiment was equally as good as those
presented here. It was believed that the four arches chosen for dis-
cussion adequately indicated the effects of changing arch parameters

(i.e. R/H and q).

3.5 C(Closure to Chapter III

Experimental verification has been provided for the theory
predicting the dynamic response of circular thin elastic arches under
inplane flexural deformations. Although only arches with simply sup-
ported boundary conditions having 121.2 5_&-5_179.4. 97.2°< a < 119.2°
and thicknesses of 0,032 and 0.042 inches were tested, the theory should
be valid for arches having other arch parameters and boundary conditions.
Considerable care would be required 1in making the test arches for a >
125° 1f reliable results are to be obtained. To test arches with o <
90? a shaker table with a force output of greater than 225 1bs. would
be required. -

Generally, better agreement between theory and experiment was
obtained for unsymmetrical than for symmetrical excitations. This can
possibly be explained by noting that only one arch support is vibrating
under unsymmetrical excitations which in turn perturbs any sensitivities
present in the arch one-half the amount that they would be perturbed
under symmetrical excitations.

By comparing results for arches with various a and R/H values,
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it can be concluded that the degree of agreement between theory and
experiment is governed predominantly by the value of o and to a much
lesser extent by the value of R/H.

It was calculated theoretically and shown experimentally
that under symmetrical excitations, it is impossible to excite unsym-
metrical modes. However, under unsymmetrical excitations it is possible
to excite symmetrical modes. This can be explained by noting that un-
synmetrical displacements are obtained by superimposing a symmetrical
displacement plus a rotation.

Although out-of-plane modes were not_studied. they were noted
to occur at frequencies having values approximately 16 times the fre-
quency of the first flexural mode. This agrees with the observations

of Volterra and Morell (15).
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Chapter 1V

Closure

4.1 Summary
This investigation was concerned with the development of a

theory which could be used to investigate the dynamic response of a
thin elastic arch subjected to cyclic support movement. Only flexural
deflections in the plane of the initial curvature of the arch were in-
vestigated. The arch wés assumed to be circular having a constant
mass and cross-section and the center line was as§umed to be inexten-
sible. A closed form solution was obtained.fbr the ‘homogeneous part
of the differential equation. The steady state solution was assumed
as a series in terms of the free modeé of vibration. Since the hatural
frequencies were spaced sufficiently far apart, it was found that an
eight-term series gave accurate results up to three significant figures
for arches excited near the fourth mode. Better accuracy was obtain-
ed for excitations below the fourth mode. The theory presented is
applicable to arches having a number of different boundary conditions
such as pinned-end, fixed-end, free-end or any combination of these.
Experimental evaluation of the theory was presented on the
basis of pinned-end boundary conditions. Results were presented for

four arches having values of 121.2 < R/H < 179.4 and 97.2 < o < 119.2
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degrees. Two thicknesses of 0.032 and 0.042 inches and a width of one
inch were used. Other arches were tested in the above range of R/H
and o obtaining equally good results, however, the results were not
included in this report as the four arches Presented cover the range
of R/H and o tested sufficiently.

During the experimental stage of the investigation, it was
discovered that arches had to be circular within one-half their thick-
ness before reliable test results were obtained. For arches not per-.
fectly circular, the experimental amplitudes were much greater than the
theoretical, indicating that some Parameter was highly sensitive in
arches having a large variation in radius. As a result, the arches
did not respond according to theory where the assumptien of circular
arches was used. Due to the capacity of the shaker table, arches with
a < 90 degrees were too stiff and could not be tested. It was found
that arches with ¢ > 125 degrees were too Susceptible to any perturba-
tions and were not tested for this range either. On the basis of the
series of tests conducted, it was noted that the value of one-half the
opening angle predominantly governed the degree of agreement between
theory and experiment. The agreement was governed to a much lesser
extent by the value of the radius to thickness ratio. On some arches
tested, the first out-of-plane mode was noted to occur at a frequency
approximately sixteen times the frequency of the first flexural mode

which agrees with the observations made by Volterra and Morell (15).
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4.2 Problems for Further Study

As a result of this investigation, other problems requiring
further study are:

1. Determine what effects concentrated masses attached to the
arch have on the magnification ratio.

2. Extend the present theory to include other arch shapes such
as a parabola, cycloid, or a catenary.

3. Investigate the dynamic response of arches for large radial
displacements i.e. R+u#R. |

4. Perform experiments to test the inextensional theory.

5. Investigate the out-of-plane vibrations caused by parametric
excitations (i.e. when plane of initial curvature of the arch and the
plane of the support displacements do not coincide, parametric excitation
will occur).

6. Investigate further, what effect variations in the radius

has on the magnification ratio.
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