

Plenoptic Imaging in Particle Tracking Velocimetry Experiments

by

Jake Hadfield

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

© Jake Hadfield, 2018

ii

Abstract

The aim of this study is to develop a technique capable of performing three-dimensional particle

tracking by using images from a plenoptic (or light field) camera. Use of a plenoptic camera

enables the collection of three-dimensional positional data within a volume, which would normally

require more complex, multi-camera setups. A plenoptic imaging system is simpler to set up, and

can be scaled to micro-scale experiments easily. Calibration of the camera is necessary for

performing particle tracking, and a major contribution of this work has been developing a Matlab

code based on past works to allow for calibration. Two techniques for three-dimensional particle

location were developed over the course of this study. One of these relies upon existing commercial

software for processing the plenoptic images into refocused images and depth maps. As the

commercial software is not specifically aimed at finding particles this approach is inefficient and

hard to customize. A second method was developed to overcome these limitations. This method

has been named the ETC method after its use of epipolar triangular connections, is capable of

extracting 3D particle locations from the raw plenoptic images. Of the two, the refocusing-based

approach was determined to be the more accurate method through the interrogation of a toroid

vortex in water. To investigate the limitations of the ETC approach, an experimental system for

quantifying its uncertainty was developed. A study of a matched-refractive index droplet moving

through a slot was also conducted to test the viability of the technique for performing microscale

experiments. Based on the results of these experiments, hypotheses regarding the limitations of

the ETC approach and recommendations for improving it have been made.

iii

Acknowledgements

I owe a debt of gratitude to Hirad Soltani for the use of a slightly modified version of his rising

droplet rig and all his research into the refractive index matched fluids used. I would also like to

thank Michael Bayans for his 3D-printing expertise which went into the design of both

experiments. Most importantly I’d like to thank my supervisor Dr. David Nobes for all his

expertise and support, without which none of this work would have been possible.

This work was carried out with financial support from the Natural Sciences and Engineering

Research Council (NSERC) of Canada through their Discovery and Collaborative Research and

Development (CRD) programs, the Canadian Foundation for Innovation (CFI), and an industrial

sponsor, RGL Reservoir Management.

iv

Table of Contents

Chapter 1 Introduction ... 1

1.1 Overview of General Fluid Image Velocimetry ... 1

1.2 Overview of Plenoptic Imaging ... 3

1.3 Research Aims.. 6

Chapter 2 Measurement principle of focused plenoptic imaging .. 7

2.1 Design of a focused plenoptic imaging system .. 12

Chapter 3 Particle location methods .. 18

3.1 Two-dimensional particle location method .. 18

3.1.1 Image Preprocessing ... 18

3.1.2 Preliminary particle location ... 20

3.1.3 Sub-pixel particle location .. 20

3.2 Refocusing-based three dimensional location method ... 22

3.3 Raw image 3D particle location ... 26

3.3.1 Micro-lens location ... 27

3.3.2 Image preprocessing ... 28

3.3.3 Particle-image location ... 29

3.3.4 Epipolar grouping ... 30

3.3.5 Epipolar Triangular Connectivity (ETC) grouping... 31

3.3.6 Error-reduction filtering .. 32

3.3.7 3D particle location ... 33

v

3.4 Calibration method ... 34

3.5 Particle selection .. 39

Chapter 4 Particle tracking velocimetry .. 40

4.1 Track initialization ... 41

4.2 Time-resolved tracking .. 43

4.3 Temporal filtering approach ... 44

4.3.1 Track Removal .. 44

4.3.2 Track Linkage ... 45

4.3.3 Track Smoothing ... 47

Chapter 5 Experimental measurement of uncertainty ... 49

5.1 Experimental setup and data acquisition .. 49

5.2 Calibration .. 51

5.3 Data Processing .. 54

5.4 Evaluation... 56

Chapter 6 Application of the ETC Method: The Rising Oil Drop Experiment 67

6.1 Experimental setup and data acquisition .. 67

6.2 Calibration .. 70

6.3 Data Processing .. 74

6.4 Conclusion .. 77

Chapter 7 Comparision of the ReFocus and ETC Methods: The Vortex experiment 78

7.1 Experimental setup and data acquisition .. 78

vi

7.2 Calibration .. 80

7.3 Data Processing .. 84

7.4 Conclusion .. 89

Chapter 8 Conclusions ... 90

References ... 92

 Plenoptic system design code .. 96

 Refocusing code .. 98

 Wrapper function: A_RUN_JH_2f_PTV_Multi .. 99

 Location and Tracking: JH_2f_PTV_Depthdata.. 103

 Particle location function: JH_ParticleFinder .. 105

 Depth location function: JH_AssociateDepthDataV3.. 107

 Physical-space conversion function: JH_PhysConvert .. 109

 ETC method .. 112

 Micro-lens calibration function: micro-lensCal ... 113

 Wrapper function: A_RUN_JH_Plen_PTV ... 123

 Particle location function: JH_rawPlenPF ... 129

 Triangulation function: JH_Plen_GetPt ... 135

 Point rejection function: JH_PlenClean ... 137

 Point filtering function: JH_kbe ... 138

 Calibration codes ... 140

 Refocusing calibration: JH_RayCam_Calibration ... 140

vii

 ETC calibration function: metricCal .. 152

 Model generation function: JH_Generate_Model .. 164

 Particle Tracking Methods .. 172

 Track initialization: DH_track_v3 ... 172

 Track association: JH_MT_Associate .. 179

 Forward-predictive tracking: JH_MT_Fit_Predict... 180

 Track acceleration filtering: JH_MT_TrackBreak ... 183

 Track segment linkage: JH_LinkTracks .. 186

 Track smoothing: JH_SmoothTracks ... 189

 Track length statistics: JH_TrackStats ... 190

 Track rearrangement: JH_resortTracks .. 190

 Track output: JH_TrackToQuiv ... 191

viii

List of Figures

Figure 1 - Optical arrangement of a focused plenoptic imaging system. 8

Figure 2 - Image of diffuse light through a focused plenoptic camera with (a) too small of an

aperture, (b) properly adjusted aperture, and (c) too large of an aperture. 9

Figure 3 – A schematic of the multi-focus lens array orientation in top view showing the hex

packing orientation. The three different lens types are encoded by color. 10

Figure 4 – Cropped multi-focus plenoptic image of a single particle. 4x gain has been applied for

clarity. ... 11

Figure 5 – A schematic of the multi-focus lens array orientation in side view showing different

lens-sensor distances. Lens-sensor distance extended for clarity. Three lens types are encoded by

color. ... 11

Figure 6 - Definition of parameters for determining imaging volume ... 12

Figure 7 - Field of view and depth of field plots for B=0.313 mm .. 16

Figure 8 - Field of view and depth of field plots for B=1.452 mm .. 16

Figure 9 - Field of view and depth of field plots for (a-c) B=0.343 mm and (d-f) B=1.452 mm. (a)

and (d) are plots for f =35 mm, (b) and (e) are plots for f =50 mm and (c) and (f) are plots for f

=85mm. Note that the axes of these plots have been manipulated to focus on the intersection

between the D and the two F plots in each case. .. 17

Figure 10 - Raw (a), boxcar filtered (b), and boxcar+Gauss-filtered (c) sample plenoptic images.

Images have been cropped to 100x100 pixels for clarity. Red arrows identify sample particles

which exist in (a), remain in (b), but are eliminated in (c). .. 19

Figure 11 - Raw image with located particles shown as red crosses .. 21

Figure 12 - A subsection of a raw image of a particle field (a) ‘raw image’, cropped to show micro-

lens images, and associated depth estimations (b) ‘depth image’. ... 22

ix

Figure 13 - Resultant total focus image .. 23

Figure 14 - 2D particle locations overlaid as red crosses on refocused image 24

Figure 15 - Virtual depth map with 2D particle positions overlaid as green circles 25

Figure 16 - Micro-lens location method: averaged white image (a) is used to locate the centres of

the micro-lenses (b). The different coloured markers in (b) represent the three different lens types.

... 28

Figure 17 - Raw (a) and preprocessed (b) images of a single particle on the edge of a single micro-

lens. Micro-lenses shown by colored circles; detected particle centre shown by red cross. 29

Figure 18 - Particle location result for a single point on a calibration target. Lens borders have

been colored for clarity. Located particle centroids shown by red markers. 30

Figure 19 - Demonstration of the ETC criteria for a particle with (a) a small virtual depth and (b)

large virtual depth. Images scaled differently, as demonstrated by axes. 32

Figure 20 - Triangulation of particle position for the low virtual depth (a) and high virtual depth

(b) particles shown in Figure 19. Vectors are colored by micro-lens type. Located points shown as

large circles. .. 34

Figure 21 – A sample calibration image. Individual calibration points have been split into multiple

micro-images... 35

Figure 22 - Optical arrangement of a focused plenoptic imaging system. 36

Figure 23 - Neighborhood tracking algorithm. Particle search radius rT, neighborhood radius rn,

vectors x1 and x2. ... 41

Figure 24 - Application of the acceleration-based track removal algorithm. 44

Figure 25 - Example of ‘gaps’ in a track which should be continuous. .. 45

Figure 26 - Unfiltered points (blue) and filtered path (red) associated with a single, 112-frame long

particle track. (a) shows the track in the x-y plane, and (b) shows the track in the x-z plane. 48

x

Figure 27 - Experimental setup of the fixed-field test .. 50

Figure 28 – Raw plenoptic images of the calibration target placed at the (a) far-field and (b) near-

field of the plenoptic camera. Brightness and contrast have been adjusted to make the dots easily

visible. ... 50

Figure 29 - Histogram of the residuals of the 2D vector norm of the difference between the

measured micro-lens locations and the gridded locations for the flat field tests. 51

Figure 30 – Detected calibration points in red overlaid on blue grid of predicted points in the fixed-

field test. In (a-b), the calibration target is aligned with the camera while in (c-d) the target is

angled relative to the camera. (a) and (c) are in-plane views of the points, and (b) and (d) are

positioned to show the angle of the target. ... 52

Figure 31 - Histograms of flat-field test micro-lens calibration residuals in (a) x, (b) y, and (c) z

directions, overlaid with normal distributions. ... 53

Figure 32 –Tracking results, showing vectors corresponding to 10 movements for each dot on the

target. (a)-(b) show raw tracks for in-plane and out-of-plane motion, respectively. (c)-(d) show the

same tracks after applying the smoothing algorithm. ... 55

Figure 33 – Histograms of the raw measured velocities of the target dots for the in-plane tracking

case. Note that z plot has been scaled differently for this case only, between this and the next figure.

This is made necessary by the massive distribution in the z-movements. 58

Figure 34 – Histograms of the smoothed measured velocities of the target dots for the in-plane

tracking case. The x, y, and z movements are directly comparable with the x and y movements in

the previous figure. ... 59

Figure 35 – Histograms of the raw measured velocities of the target dots for the in-plane tracking

case. Note that z plot has been scaled differently for this case. .. 60

Figure 36 – Histograms of the smoothed measured velocities of the target dots for the in-plane

tracking case. Note that the z plot is scaled the same, but has been shifted horizontally. 61

xi

Figure 37 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of

traverse position for the in-plane case. y-axes are scaled the same. ... 63

Figure 38 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of

traverse position for the in-plane case. y-axes have been scaled differently to show uncertainty.64

Figure 39 – Median and confidence intervals of z-locations of the calibration plate as a function of

the known relative depth locations of the plate. ... 66

Figure 40 – Experimental setup of rising oil drop experiment. .. 68

Figure 41 – Flow channel used for rising droplet experiment. ... 68

Figure 42 – Raw sample image from the oil drop experiment. Oil droplet is given by the red circle.

Refractive index matching makes it all but indistinguishable from the surrounding fluid. 69

Figure 43 - Histogram of the residuals of the 2D vector norm of the difference between the

measured micro-lens locations and the gridded locations for the rising oil drop experiment. 70

Figure 44 – Use of the calibration box. A 6mm deep imaging section behind a small 6x6 mm piece

of acrylic was created by opposing tetrahedral walls (a), allowing ample space for the calibration

target to be placed. Imaging is then conducted through the window (b). 71

Figure 45 – Detected calibration points for the micro-scale calibration in red overlaid on blue grid

of predicted points. In (a-b), the calibration target is aligned with the camera while in (c-d) the

target is angled relative to the camera. (a) and (c) are in-plane views of the points, and (b) and (d)

are positioned to show the angle of the target. .. 72

Figure 46 - Histograms of microscale calibration residuals in (a) x, (b) y, and (c) z directions,

overlaid with normal distributions. ... 73

Figure 47 – Raw velocity vectors resultant from the rising droplet test. (a-c) show the vectors

viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 75

Figure 48 – Smoothed velocity vectors resultant from the rising droplet test. (a-c) show the vectors

viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 76

xii

Figure 49 – Experimental setup of vortex generator. ... 79

Figure 50 – Partial raw sample image from the vortex tank experiment 79

Figure 51 - Histogram of the residuals of the 2D vector norm of the difference between the

measured micro-lens locations and the gridded locations for the vortex tank test. 80

Figure 52 – Detected calibration points in red overlaid on blue grid of predicted points in the vortex

tank test. (a-b) and (c-d) show two sample planes. ... 82

Figure 53 - Histograms of vortex tank micro-lens calibration residuals in (a) x, (b) y, and (c) z

directions, overlaid with normal distributions. ... 83

Figure 54 – Raw velocity vectors of the vortex found using the refocusing method. (a-c) show the

vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 85

Figure 55 – Smoothed velocity vectors of the vortex found using the refocusing method. (a-c)

show the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

... 86

Figure 56 – Raw velocity vectors of the vortex found using the ETC method. (a-c) show the vectors

viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 87

Figure 57 – Smoothed velocity vectors of the vortex found using the ETC method. (a-c) show the

vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 88

xiii

List of Tables

Table 1 - Camera equation substitutions for v = 2 .. 13

Table 2 - Variable list for metric conversion .. 37

Table 3 - List of PTV variables ... 40

Table 4 - Track removal acceleration cases .. 45

Table 5 - Polynomial fitting cases .. 46

Table 6 - Calibration variable results for flat field tests ... 54

Table 7 - Medians and confidence intervals of in-plane displacements from fixed-field test for a

0.5 mm movement in the y-direction .. 56

Table 8 - Medians and confidence intervals of out-of-plane displacements from fixed-field test for

a 0.5 mm movement in the z-direction.. 57

Table 9 - Calibration variable results for micro-scale tests .. 71

Table 10 - Calibration variable results for vortex tank tests: ETC ... 81

1

CHAPTER 1 INTRODUCTION

When studying fluid dynamics, it can be important to consider a full 3D fluid field. Experimental

analysis of fluid dynamics is modernly conducted through imaging-based fluid velocimetry

methods, as in the best case, these can provide full time-resolved, three component, three

dimensional velocity fields [1]. These can be further interrogated to obtain greater insight into the

dynamics of the fluid flow phenomenon under investigation. Developing techniques which can

overcome the challenges associated with imaging a 3D field of fluid is important to further improve

the analysis of fluid dynamics. This thesis describes and analyzes an approach which uses single-

camera plenoptic (also known as light field) imaging to obtain particle-seeded fluid images upon

which time-resolved particle tracking velocimetry is performed. The single-camera nature of the

technique allows it to be applied with equal ease in both macro-scale and micro-scale experiments.

1.1 Overview of General Fluid Image Velocimetry

There are two major classes of techniques used in image-based fluid velocity measurements. These

are particle image velocimetry (PIV) [2] and particle tracking velocimetry (PTV) [3]. Both

techniques involve seeding the fluid with particles of a similar density to the fluid, which trace the

flow of the fluid so that the fluid motion can be inferred. Illumination is generally accomplished

using high-intensity sources such as lasers. The particles are then imaged using a camera system

at a frequency designed to make the movements of the particles between individual frames

appropriate for the processing technique being used. PIV uses a windowed cross-correlation

algorithm which detects local similarities in groups of pixels, producing an estimation of the fluid

velocity in each group [2]. PTV focuses on tracking each individual particle in the image, usually

by considering each particle in the context of nearby particles [3]. PTV has the potential for higher

resolution, since every particle in the volume is considered separately. This comes at the expense

of the consistency of the resolution inherent in the grid of vectors generated by PIV. Application

of time-resolved versions of each of these techniques enables temporal filtering of the data [1],

2

which can help to reduce uncertainty and enable the calculation of higher-order derivatives

describing the fluid motion.

When using either PIV or PTV, it is important to implement a calibration method that will allow

the results to be scaled from image-side, pixel-space to object-side, physical space while

accounting for distortion effects associated with the system optics [4]. Different methods for doing

so are available, but the most common make use of multiple images of known targets [5], [6] to

determine the parameters of the optical system. The results can then be interpreted in the context

of the physical distances involved.

Commonly, three-dimensional data in fluid experiments is obtained through the use of a multi-

camera approach such as tomographic PIV [7]. Tomographic PIV requires that all the cameras are

oriented such that they are all focused exactly on the same imaging volume, which generally

involves the adjustment of nine significant degrees of freedom [7], [8] for each camera used –

three positional, three rotational, two associated with a Scheimpflug adapter, and one for the lens

focus. As a result, orienting all of the cameras correctly can be a time-consuming process that can

be a large source of uncertainty [7], [8]. The angle of the cameras also can result in issues with

refraction through any windows used to view the experiment. Further, the imaging volume in a

tomographic imaging experiment is generally much smaller in the out-of-plane direction than in-

plane [7], [8], which can be restrictive for some experiments. The computational power required

to process tomographic imaging data is also substantial, leading to extended computation times

[8].

It can be especially challenging to collect time-resolved 3D data in microscale experiments.

Orienting the cameras to undertake a tomographic imaging experiment can be difficult if not

impossible where optical access from multiple views is not available or would be at too low an

angle for proper perspective viewing [7], [8]. Many alternative methods for obtaining 3D velocity

data at the microscale have been investigated. One example method uses high-frequency scanning

approaches, which sequentially obtain multiple images at different depths before allowing a larger

time-step for the fluid to move [9]–[11]. The imaging frequency of this technique is reduced by a

factor of the number of scans taken through the volume, which limits the velocity range for which

the method is appropriate. Scattering-based methods [12] are also possible, but these have limited

3

resolution due to how many pixels on the camera sensor must be dedicated to each particle and the

extreme difficulty of handling particle overlap. Other methods have applied specially-designed

stereo microscopes [13], but as a stereo method this is limited to a plane of 3D velocity

measurements rather than a volume.

To summarize, tomographic PIV is the most widely used technique for obtaining 3D velocity

measurements in a volume of fluid. Its major limitations include its small depth of field relative to

its in-plane imaging region, its long processing times, and its complex setup requirements. The

latter of these make it particularly difficult to implement in micro-scale experiments. Other micro-

scale techniques lack the ability to make instantaneous volumetric velocity measurements. A

technique capable of large-volume imaging with easy setup, scalability and faster processing

would be useful to make fluid flow interrogation more straightforward. Plenoptic particle tracking

velocimetry is presented as a potential solution.

1.2 Overview of Plenoptic Imaging

Plenoptic imaging [14], also known as light field imaging [15], is a technique whereby information

about the angular components of light incident to the system is preserved by using multiple

integrated optical systems. This allows three-dimensional data about a scene to be captured. Both

multi-camera [16] and single-camera [14] variants of the technique have been developed. The

multi-camera approach, while effective, has similar logistical issues as those discussed regarding

tomographic imaging, amplified by the larger number of cameras required. This study focuses on

the use of single-camera plenoptic imaging in fluid velocity measurement experiments.

Two parallel branches of single-camera plenoptic imaging technology have been developed. These

can be referred to as ‘standard’ and ‘focused’ plenoptic imaging. The ‘standard’ technique was

developed initially in 1903, first using pinholes [17] instead of lenses [18], [19] to provide multiple

views of an imaging field. The viability of the technique was limited by the inability to interrogate

the images to generate anything particularly useful. The digitization of imaging led to recent

improvements in computer processing of the images [14], [20]–[22], which have made the

technique viable for general imaging by enabling computationally refocused images and depth

data to be generated from plenoptic images. ‘Focused’ plenoptic cameras were developed later

[23] and further improvements of the resolution in the image reconstruction algorithms have been

4

made as well [24]–[26]. The focused technique improves the in-plane spatial resolution of the

camera by sacrificing some of the angular information about incident rays, which leads to reduced

out-of-plane spatial resolution [23]–[26]. The focused plenoptic technique has been further

expanded upon to create ‘multi-focus’ plenoptic cameras [27], which redistribute the depth regions

over which angular information is preserved to improve out-of-plane resolution. Plenoptic cameras

and associated image reconstruction software are now commercially available [28].

In all of these cameras, a micro-lens array is positioned between the main lens and the camera’s

sensor, essentially creating thousands of individual optical systems. The exact position and

features of the array define the type of the plenoptic imaging system. In a ‘standard’ plenoptic

camera, the focal points of the micro-lens array are aligned with the camera sensor [21]. ‘Focused’

plenoptic cameras place the micro-lens array focal point at a different distance relative to the sensor

[25]. ‘Multi-focus’ plenoptic camera have micro-lenses of multiple different focal lengths

organized in a repeating pattern, with each micro-lens type’s focal points placed at different

distances away from the sensor [27]. Standard plenoptic cameras have the advantage of having the

maximum available amount of data about the angle of the incident light rays and thus generally

have better depth-resolution capability [21]. Focused plenoptic cameras sacrifice some depth-

resolution in favor of improved in-plane resolution [25]. Multi-focus plenoptic cameras improve

depth resolution by having each of the different micro-lens types targeted at a different depth range,

expanding the overall imaged depth-of-field while mostly maintaining resolution [27].

In contrast to tomographic imaging, only two degrees of freedom are significant in a single-camera

plenoptic imaging experiment [27]. These are the adjustment of the main lens focus and the

distance of the camera from the experiment. A plenoptic camera also only requires only a single

route of optical access to the region of interest, which can be a significant advantage in mini- and

micro-scale experiments. If adequate processing algorithms for plenoptic fluid velocimetry can be

developed, plenoptic cameras could serve as a simpler alternative to multi-camera tomographic

approaches that could be easily implemented at the microscale. Additionally, the imaging volume

of a plenoptic camera can be adjusted through selection of the main lens focal length and focus

distance, even to the extent that the out-of-plane distance in the imaging volume is similar to the

in-plane distance.

5

Standard plenoptic cameras have been applied to experimental fluid dynamics, using tomographic

reconstruction techniques such as MART to produce 3-dimensional images on which standard

particle imaging velocimetry (PIV) approaches can be applied [29]. The main drawback of this

approach is that it tends to elongate found particles in the out-of-plane direction [30], [31]. This

has been hypothesized to be one of the major sources of error in the out-of-plane velocity

calculation of the technique in studies which have aimed to quantify the resolution of the this

technique [30], [31]. Some particle location, size measurement, and tracking has also been

conducted, and the measurement uncertainty of this technique has been determined [32]. However,

this technique has been aimed at detecting large-scale particles (greater in size than the images

produced by individual micro-lenses) which would limit its resolution in a PTV experiment. A 3D

calibration algorithm has also been developed for this technique [33].

Multi-focus plenoptic cameras have also been employed in PIV and PTV applications using a

commercial software package (RxFlow 3.1, Raytrix GmbH). Fixed-field testing has been

performed to examine the performance of the technique [34], which found higher uncertainties in

out-of-plane measurements relative to in-plane measurements. Little discussion of the exact

methodology undertaken by the commercial package seems to be available. Researchers have

indicated that this approach can only be used for low seeding densities, as the approach’s particle

location method tends to generate ghost particles. Small particle displacements are also required,

since the algorithm employs a nearest-neighbor tracking method [34].

6

1.3 Research Aims

Most multi-focus plenoptic systems are aimed at computationally reconstructing large, continuous

surfaces [27]. The first goal of the presented research was to adapt such a method for locating

particles in a 3D volume. This leads to the second goal of the research, which was to implement a

calibration approach capable of dimensionally scaling the located particles from image-space to

object-space. The third goal was to implement a time-resolved 3D particle tracking method capable

of both tracking and temporally filtering the data. The results of implementing these methods led

to the final goal, which was to develop a new approach capable of locating and tracking particles

in raw multi-focus plenoptic images.

To provide context, Chapter 2 will feature a complete discussion of the methodology involved in

multi-focus plenoptic imaging. The bulk of the contributions made by this work take place in

chapters 3 and 4. Chapter 3 will cover the two methodologies that have been developed to extract

3D particle locations from the plenoptic images, and the calibration method used to scale the results

to physical space. Chapter 4 will discuss the particle tracking approach that has been implemented.

Quantitative and qualitative assessments of the performance of the approaches are undertaken

through their application to three experiments. Chapters 5, 6 and 7 will cover the three experiments

that have been undertaken in this research. In the first, measurements of fixed particle fields,

moved in a known way, were undertaken using one of the particle location approaches. This

enables comparison of the measured results to the known particle motions, which allows an

estimate of the uncertainties associated the approach to be made. The second experiment tests the

performance of this approach at the micro-scale by examining the motion of the fluid within and

around a rising droplet as it passes through the imaging region. The final experiment involves the

interrogation of a ring vortex using both of the methodologies, which is used to compare the

performance of the two methodologies when undertaking macro-scale experiments. Chapter 8 will

summarize and conclude this thesis. Appendices complete the thesis, which include the Matlab

scripts developed to process the plenoptic images and supplementary figures.

7

CHAPTER 2 MEASUREMENT PRINCIPLE OF FOCUSED

PLENOPTIC IMAGING

The focused plenoptic cameras used in this study are a pair of commercial plenoptic cameras (R5;

Raytrix GmbH), that differ based on the positioning, focal length, and lens size of the micro-lens

array. This produces different effective f/numbers for each system. An f/# 2.4 camera is used for

macro-scale imaging and an f/# 26 system is used for micro-scale imaging. These are multi-focus

plenoptic cameras (MFPC), meaning that they are each equipped with micro-lens arrays that have

interlaced lenses of 3 different focal lengths. Information about the micro-lens focal lengths or the

position of the array relative to the sensor has not been released by the manufacturer, and must be

extracted through the calibration approach. The cameras are capable of acquiring 2048 by 2048

pixel images at frame rates up to 180 fps. To fully understand the optical system of these cameras,

the following chapter will discuss the optical properties of a general MFPC system. The bulk of

the understanding of MFPC systems in this section comes from [27], [35], [36].

A schematic of an MFPC camera configuration used for this study is given in Figure 1. Here, the

micro-lens array is mounted at a specific distance B in front of the camera sensor. The term virtual

depth (denoted v) is used to describe an image-space distance as a ratio of B. Physical depth-

locations in image-space can then be described in terms of v∙B. This allows the relative positions

of projected images to be comparable for a given micro-lens array and sensor, regardless of the

main lens’ focal length fL or its imaging distance TL.

8

Figure 1 - Optical arrangement of a single-MLA focused plenoptic imaging system. A single set
of ray-paths for one sample object is shown. Microlens focusing behavior assumed ideal for the

object for simplicity.

In a plenoptic imaging system, the main lens of the camera is used to project an image of an object

into the image-space of the camera. If the main image is formed behind the sensor and micro-lens

array as shown in Figure 1, then the main image is said to be ‘virtual’. More micro-lenses will

view the same point on an object and v will increase as the object being imaged gets closer to the

main lens, with v approaching infinity as the object approaches the main lens’ focal point. It is also

possible to form a real image in front of the micro-lens array with the main lens, in which case the

virtual depths would be considered by this approach to take negative values. This configuration is

not used here because theoretically, its imaging space projected into object-space will be between

some minimum distance and infinity, which reduces the useful virtual depth space and the overall

resolution of the technique.

9

(a) (b) (c)

Figure 2 - Image of diffuse light through a focused plenoptic camera with (a) too small of an
aperture, (b) properly adjusted aperture, and (c) too large of an aperture.

When the projected image of a point source in object space reaches the micro-lens array, the

projection has not yet fully converged and is spread across multiple micro-lenses. Each exposed

micro-lens will collect a portion of the light and focus it on the sensor to form ‘micro-images’, as

shown in the side view schematic in Figure 1. To ensure that the images created by the micro-

lenses do not overlap, it is important to adjust the effective f/# of the optical system to match the

size of the micro-lenses. In most cases, this is simply done through imaging a diffuse white light

source and adjusting the lens aperture until the formed microimages are just touching, as in Figure

2b. In some cases the maximum lens aperture can be too small to allow for this, such that the

microimages have a greater separation, as shown in Figure 2a. This will reduce the overall

resolution of the system, but not prevent it from working entirely. The opposite case shown in

Figure 2c is an example where the aperture would be too large, since the regions illuminated by

each lens overlap. This makes processing impossible since locations on the sensor cannot be

attributed to a single micro-lens.

Up to a specific plane in object space represented by the faded blue arrow in Figure 1, every point

is visible in only 2 micro-lenses. Beyond this point, some points will only be visible in a single

micro-lens. The image-space projection of this location in the optical system is termed the total

covering plane (TCP) [27], which is labeled on Figure 1. The distance between the main lens and

the TCP is defined as BL. For a multi-focus plenoptic camera with 3 micro-lens types arranged in

a hex array as shown in Figure 3, the TCP will always be positioned at a virtual depth of 2 [27].

10

The location of the corresponding plane in object space depends on the focal length and relative

position of the main lens.

Figure 3 – A schematic of the multi-focus lens array orientation in top view showing the hex
packing orientation. The three different lens types are encoded by color.

Theoretically, a plenoptic camera system in this configuration can image any point in its field of

view between the object-space projection of its TCP and its main lens’s focal point. However,

nearer to the camera the object will become too out of focus in the micro-lens images to be

resolved. This is somewhat mitigated here by using a multi-focus plenoptic camera, which

incorporates micro-lenses of different focal lengths to target different ideal depth ranges. This

effect is apparent in the sample raw image shown in Figure 4, which was collected using the f/#-

2.4 camera with an 85 mm main lens and an approximate focus distance of 50 cm. The imaged

particle here is more focused in one lens type than in the other two lens types, as annotated. This

is a subsection of the full image, and spans only 7 micro-lenses where each micro-lens image is ~

25 pixels wide.

11

Figure 4 – Cropped multi-focus plenoptic image of a single particle. 4x gain has been applied for
clarity.

The back of the micro-lens array in this case is on a flat plane [35], [36], and as such the different

width of lens necessary to produce the three focal lengths will result in each set of lenses having

its own distance to the sensor B as measured to the central plane of the lens, as shown in Figure 5.

It is thus necessary to use three separate values for the distance from the sensor to the array (B1,

B2, B3) when processing multi-focus plenoptic images. Objects at corresponding virtual depths

within a specific range, generally between 2 and 7.5 but depending on the micro-lenses’ focal

lengths and positions Bi, can be imaged with limited loss of resolution [27].

Figure 5 – A schematic of the multi-focus lens array orientation in side view showing different
lens-sensor distances. Lens-sensor distance extended for clarity. Three lens types are encoded by

color.

12

2.1 Design of a focused plenoptic imaging system

Figure 6 - Definition of parameters for determining imaging volume

When designing a plenoptic imaging system for use in a fluid imaging experiment, being able to

achieve a desired imaging volume is usually the main concern. This section will assume the use of

a given plenoptic camera with a fixed micro-lens array, and then discuss how to select and position

a main lens for the camera given a desired imaging volume. How the imaging volume projects into

image-space can be simply modeled using the thin lens [37] (1) and pinhole camera (2)

equations. Application of the thin lens equation will be incorrect for many lenses, as most modern

lenses need thick-lens modeling to be properly modeled. However, the thick lens model will only

add a constant to the focus distance [35], so these equations will hold true after some slight

repositioning to account for a thick main lens. The definition of virtual depth (3) is also important

for the design. In the following equations, 𝐷𝑜 represents an object-space point’s distance from the

main lens, 𝐷𝑖 is the distance from the main lens to the image of the point, 𝑦𝑜 is the distance of a

point from the optical axis, 𝑦𝑖 is the distance from the optical axis to the image of the point, f is

the focal length of the main lens, v is the virtual depth, and BL is the distance from the main lens

to the TCP. These can be related by the thin-lens equation as:

13

1

𝐷𝑜
+
1

𝐷𝑖
=
1

𝑓
 (1)

𝑦𝑖𝐷𝑜 = 𝑦𝑜𝐷𝑖 (2)

Note that 𝐷𝑖 can be defined in terms of the parameters of the plenoptic camera, as in (3) where v

is the virtual depth, BL is the distance from the main lens to the TCP, and B is the largest of the

micro-lens-sensor distances Bi. It is important to use the largest Bi to avoid missing part of the

imaging volume near v = 2.

𝐷𝑖 = (𝑣 − 2)𝐵 + 𝐵𝐿 (3)

This approach aims to take the TCP at v = 2 and project it into image space using (1). Then, the

image sensor is projected to that plane using (2). This will give an estimate of the maximum field

of view of the plenoptic camera. This is achieved through the substitutions given in Table 1. Here,

𝑇𝐿 is the focus distance of the lens, 𝐹𝑀𝐴𝑋 represents the desired maximum field of view in the far-

field, and S is the size of the sensor. These are also defined on Figure 6. Note that performing these

substitutions assumes that the sensor is located at v = 2, whereas it is actually located at v = 1. This

is a simplifying assumption which is based on 𝐵𝐿 ≫ 𝐵, which should generally be true. It ensures

that the actual FOV is slightly under-predicted rather than over-predicted, which is useful to ensure

that the desired imaging volume is covered. Not applying this assumption produces a much less

concise system of equations, the code for which is present in Appendix A.

Table 1 - Camera equation substitutions for v = 2

Variable 𝐷𝑜 𝐷𝑖 𝑦𝑜 𝑦𝑖

Substitution 𝑇𝐿 − 𝐵𝐿 𝐵𝐿 𝐹𝑀𝐴𝑋/2 𝑆/2

Performing these substitutions into (1) and (2) and solving for 𝑇𝐿 and 𝐵𝐿 yields:

14

𝑇𝐿 =
𝑓

𝐹𝑀𝐴𝑋 ∙ 𝑆
(𝐹𝑀𝐴𝑋 + 𝑆)

2 (4)

𝐵𝐿 =
𝑓

𝐹𝑀𝐴𝑋
(𝐹𝑀𝐴𝑋 + 𝑆) (5)

These parameters will allow a main lens with a given f to be positioned using 𝑇𝐿 and 𝐵𝐿 such that

the field of view corresponding to v = 2 will be a desired 𝐹𝑀𝐴𝑋.

The next parameter that becomes important is the desired depth of field 𝐷𝐹 within a specified

maximum virtual depth v that results from the selected f. Finding 𝐷𝐹 requires the definitions of

new focus distance and image position Tv and Bv, respectively. Bv is found first from the definition

of virtual depth:

𝐵𝑣 = 𝐵𝐿 + (𝑣 − 2)𝐵 (6)

The thin lens equation (1) can then be applied to get 𝑇𝑣 (7), and then 𝐷𝐹 is calculated from the

difference between the object distances (8).

𝑇𝑣 =
𝐵𝑣
2

𝐵𝑣 − 𝑓
 (7)

𝐷𝐹 = 𝑇𝐿 − 𝑇𝑣 − (𝑣 − 2)𝐵 (8)

The field of view at position 𝑇𝑣 − 𝐵𝑣, 𝐹𝑀𝐼𝑁, can then be calculated from the pinhole camera

equation:

𝐹𝑀𝐼𝑁 =
𝑆(𝑇𝑣 − 𝐵𝑣)

(𝐵𝐿 − 𝐵)
 (9)

Equations (4) - (9) allow the complete definition of the imaging volume of a focused plenoptic

system with a known sensor size S, sensor-MLA distance B, and main lens of focal length f. It is

also possible to determine f given a desired 𝐷𝐹, which can be useful for getting a general idea of

which focal length of lens would be appropriate for a desired system. After applying (4) - (6),

𝑇𝑣 is calculated from the desired 𝐷𝐹 and f is calculated from the thin lens equation:

15

𝑇𝑣 = 𝑇𝐿 − 𝐷𝐹 + (𝑣 − 2)𝐵 (10)

𝑓 = (𝐵𝑣
−1 + (𝑇𝑣 − 𝐵𝑣)

−1)−1 (11)

The expression for f given here is self-referencing; this is done for conciseness. The code to

generate this full formula is present in Appendix A.

The final consideration in designing the imaging system is the required aperture size. For a micro-

lens array with a manufacturer-specified working f/#, N, the required aperture diameter 𝐷𝐴 is given

by:

𝐷𝐴 =
𝐵𝐿 − 2𝐵

𝑁

(12)

The suggested method for determining a suitable lens for a given imaging system is to apply

equations (4) - (6) with (10) - (11) to get a predicted focal length, which is then used to select

an appropriate main lens. Equations (4) - (9) and (12) are then used to fully define the imaging

volume and required aperture diameter. Within this process it may become apparent that the

desired imaging volume cannot be achieved due to the system requiring an unavailable focal length

or diameter of lens. In this case, compromises on the selected in-plane or out-of-plane imaging

volume will need to be made.

Given a specific main lens and micro-lens array, it is possible to determine the overall system field

of view and depth of field as a function of BL. Example plots for B=0.373 and 1.452 mm and f =

35, 50 and 85mm are given in Figure 7 and Figure 8, respective to B. These values are selected

based on available cameras and lenses. As an example, if a similar field of view and depth of field

are desired, the intersection between D and FMAX or FMIN can be considered. This intersection

point is different for each main lens focal length and micro-lens distance B. To show this clearly,

the plots have been zoomed to highlight the intersection points in Figure 9. Other ratios between

the field of view and depth of field will correspond to different points along the x-axis in these

plots. These plots are useful tools in the preliminary setup of an experiment to determine and define

the important imaging field characteristics that set the overall range and resolution of the

experiment.

16

Figure 7 - Field of view and depth of field plots for B=0.313 mm

Figure 8 - Field of view and depth of field plots for B=1.452 mm

17

(a) (d)

(b) (e)

(c) (f)

Figure 9 - Field of view and depth of field plots for (a-c) B=0.343 mm and (d-f) B=1.452 mm.
(a) and (d) are plots for f =35 mm, (b) and (e) are plots for f =50 mm and (c) and (f) are plots

for f =85mm. Note that the axes of these plots have been manipulated to focus on the
intersection between the D and the two F plots in each case.

18

CHAPTER 3 PARTICLE LOCATION METHODS

Determining the three-dimensional location of particles in physical space from the collected

imaging data is the first step in tracking particles. Two different methods for doing so have been

developed as part of this work and both rely on first being able to find the 2D locations of the

particles in images. This chapter will discuss the 2D particle location method used and the two

methods developed for extracting the virtual depth of a particle. The plenoptic camera calibration

algorithm, implemented for the first time in Matlab, that allows the particle data to be mapped

from pixel and virtual coordinates in image space into physical coordinates in object space that

uses these particle location methods will also be discussed.

3.1 Two-dimensional particle location method

Both of the 3D particle location approaches discussed here rely on being able to locate a particle

in the projected 2D image to sub-pixel accuracy. Particle location methods have already been

extensively reviewed by [9]. To summarize that review, particle location methods generally aim

to find the 2D centroid of individual particles. Early methods used a center-of-area method [38]–

[40] that calculates the centroid of the pixels containing the particle. Fitting methods which include

Gaussian and polynomial-based methods [41]–[43] have also been attempted. The selected method

[44] is an intensity-weighted center-of-area method which has been used extensively and is freely

available as a Matlab open-source code under a GNU GPL [45]. This method was selected for its

usefulness with tracking small particles with roughly Gaussian intensity distributions, and its ease

of availability. The main steps in this particle location method are preprocessing, preliminary

location, and then sub-pixel location, which will each be discussed in turn.

3.1.1 Image Preprocessing

The preprocessing approach generates a boxcar kernel based on a specified object size and

performs 2D convolution on the raw image. This algorithm is representable as given in [44] by:

𝐴𝑤(𝑥, 𝑦) =
1

(2𝑤 + 1)2
∑ 𝐴(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑤

𝑖,𝑗=−𝑤

 (13)

19

Here, 𝐴 represents the image, 𝐴𝑤 represents the convolved image, i and j are stepping variables

for the summation, x and y represent pixel coordinates, and w is a distance in pixels which is set to

the radius of the largest expected particle. The approach also suggests convolution with a Gaussian

surface to reduce noise, representable by:

𝐴𝜆𝑛(𝑥, 𝑦) =

∑ 𝐴(𝑥 + 𝑖, 𝑦 + 𝑗) exp (−
𝑖2 + 𝑗2

4𝜆𝑛2
)𝑤

𝑖,𝑗=−𝑤

[∑ exp (−
𝑖2

4𝜆𝑛2
)𝑤

𝑖=−𝑤]
2 (14)

Applying this filter requires selecting the noise filtering radius 𝜆𝑛 such that 𝜆𝑛 is much smaller

than the radius of a particle. The noise reduction of these operations is apparent in the sample

images given in Figure 10. The structure of the ~25 pixel diameter circles of the micro-lens array

visible in the background noise of the raw image in Figure 10a is completely eliminated by the

boxcar convolution, the result of which is shown in Figure 10b. Adding the Gaussian filter (𝜆𝑛 =

1 was used in this case) performs a blurring operation which normalizes the profiles of the particles

as shown in Figure 10c, but has the risk of merging nearby particles or eliminating small particles,

as shown by the red arrows in each image. When processing the images herein, only the boxcar

filter has been used to avoid eliminating small particles.

(a) (b) (c)

Figure 10 - Raw (a), boxcar filtered (b), and boxcar+Gauss-filtered (c) sample plenoptic
images. Images have been cropped to 100x100 pixels for clarity. Red arrows identify sample

particles which exist in (a), remain in (b), but are eliminated in (c).

20

3.1.2 Preliminary particle location

Preliminary particle location is conducted by applying a manual threshold to the preprocessed

image to eliminate any remaining background noise, and then looking for local maxima within the

image. This is accomplished by checking each pixel’s 8-connected neighbors for higher intensity

values. If multiple local maxima are found that are within the expected radius of a particle w, only

the brightest is kept. Any local maxima which are within w of the edges of the image are ignored

as it is expected that these particles would be truncated by the edges of the image. This approach

is designed to select a pixel that is near to the geometric centre of the particle [44].

3.1.3 Sub-pixel particle location

The pixel-accurate centroids from the preliminary location algorithm are passed to the sub-pixel

location algorithm, which takes a circular window around each location. The circular window is

defined by a radius of w’ around each centroid, which is manually set for the entire data set to

ensure that the entire particle is enclosed. It is important that this radius be slightly larger than the

particle to prevent the centroid estimation from being skewed by cutting off the edges of the

particle. Intensity-weighted averaging is then performed to get a sub-pixel measurement of the

particle centroid’s location using:

𝑥𝑐 =
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1) ∙ 𝑥𝑖
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1)

 (15)

𝑦𝑐 =
∑ 𝐼(𝑥𝑖 , 𝑦𝑖
𝑁
𝑖=1) ∙ 𝑦𝑖
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1)

(16)

21

Applying this operation for the sample images shown with w’ = 3 yields the particle centres shown

in Figure 11. This approach assumes that the intensity distribution of a particle will be roughly

Gaussian, with the centre of the particle brightest and the edges dim. When these conditions are

met, the error in estimation should remain under 0.15 pixels as long as the w’ is larger than but no

more than twice as large as the target particle [44]. If the distribution deviates from Gaussian,

higher uncertainty may be expected. Particle overlap can cause deviation to occur. Assuming the

adjacent particles each form a Gaussian intensity distribution, it is likely that the overlap between

the Gaussians will result in the centres of the particles being shifted closer together than they

should be. These issues will be returned to when discussing experimental results.

Figure 11 - Raw image with located particles shown as red crosses

22

3.2 Refocusing-based three dimensional location method

The initial method for determining the 3D location of particles in the plenoptic images involves

using a commercial software package (RxLive 2.01, Raytrix GmbH). This software converts a

plenoptic image into a conventional image by using cross-correlation on small patches of pixels

along the epipolar lines of the micro-lens images to determine virtual depth. It uses interpolation

and extrapolation methods to estimate the depth of nearby pixels, and then refocuses the image at

these calculated depths [27]. Epipolar lines, in this case, are defined as the lines parallel to those

passing through the centres of the micro-lenses of the same type. Any location which does not

have an assigned depth is blacked out, resulting in focused images for which the background is

noiseless. The software is able to generate one separate depth map for each micro-lens type as well

as one computationally refocused image. A sample raw image, depth map, and refocused image

are shown in Figure 12 and Figure 13. Note that particles for which fewer micro-images are present

have been labeled with lower virtual depths, as should be expected from the discussion in Chapter

2. A custom Matlab code, available in Appendix B, was developed to extract the 3D particle

locations from these refocused images and depth maps.

(a) (b)

Figure 12 - A subsection of a raw image of a particle field (a) ‘raw image’, cropped to show
micro-lens images, and associated depth estimations (b) ‘depth image’.

23

Figure 13 - Resultant total focus image

To obtain 2D particle location data, the feature-detection algorithm from section 3.1 is applied to

the refocused images. This results in obtaining a list of 2D particle locations, which have been

overlaid on the image in Figure 14.

24

Figure 14 - 2D particle locations overlaid as red crosses on refocused image

Once the 2D locations of the particles have been found, the locations are projected onto the depth

maps. A radius is taken around each location as shown in Figure 15, and all depth measurements

within the radius are gathered. If a circle formed in this way does not overlap any of the other

circles, a median of the gathered depth measurements is taken as the depth of the particle after

repeated elimination of outlier measurements greater than 2 standard deviations from the median.

This is performed for each of the 3 depth maps, and a weighted average virtual depth location is

taken based on the number of non-outlier depth-locations found within the circles of the particle

25

in each map to get the final virtual depth. In cases were circles overlap, the medians of the non-

overlapping regions are considered first and any overlapping regions are passed to the particles

with the highest virtual depth, which should lie in front. This operation results in the particles being

defined in image-space in terms of pixels and virtual depth.

Figure 15 - Virtual depth map with 2D particle positions overlaid as green circles

While this approach has been found to be relatively effective for low-density particle fields, it

begins to have issues as the density of the field increases. The depth map production algorithm is

primarily designed for determining the depth of regularly-contoured, uniquely-featured objects

[27] rather than discrete particles distributed randomly in the imaging volume. Its reliance on

26

cross-correlation means that for higher-density particle fields, it is inevitable that the algorithm

will try to calculate depths using two different, adjacent particles. The frequency of this failure

will increase exponentially as the particle density increases. This will then lead to the production

of ‘ghost’ particles in the refocused images, similar to how tomographic methods can produce

ghost particles [7], [8]. Even where ghost particles are not generated, the reconstruction algorithm

is unable to fully reconstruct objects with similar in-plane locations but different out-of-plane

locations in the refocused images, meaning that it is impossible to discretize overlapping particles

despite the multiple angles of view provided by the micro-lenses. All of these issues compounded

result in this method being best used for low-density particle fields, where the chances of particles

being nearby or overlapped are minimized. Use of the commercial algorithm makes customizing

the approach for particle fields impossible, so an entirely different approach was developed.

3.3 Raw image 3D particle location

To overcome the limitations of the commercial (RxLive 2.01, Raytrix GmbH) algorithms, a new

in-house code was conceived and developed to process the raw plenoptic images of particle fields

to estimate 3D particle location. The relevant Matlab scripts are available in Appendix C. This

approach draws much inspiration from the original algorithm [27] for its preprocessing, but

diverges significantly in its feature-determination method as this is designed specifically for

extracting 3D particle positions. The method has seven major steps, which will each be discussed

in their own subsection. It proceeds as follows:

1. Determine the centre of each micro-lens and assign micro-lens types, using a ‘white image’

[27].

2. Plenoptic image preprocessing [27]

3. Determine the locations of individual particle-images in the raw plenoptic image

4. Determine which micro-lens each particle-image is in

5. Determine which same-type, adjacent micro-lenses contain particles-images along epipolar

lines, and group all particle-images found to be epipolarly connected

6. Split the groups into subsets of particle-images that meet the Epipolar Triangular

Connectivity (ETC) criterion

27

7. For each ETC group, determine the 3D location of the particle in pixel and virtual

coordinates

3.3.1 Micro-lens location

To locate each micro-lens, a white image is obtained with the plenoptic imaging system by placing

a diffuse light source nearer to the main lens than its focal point. With an exposure time set such

that the maximum intensity count is just below the maximum of the sensor, many images can be

acquired, and an average image can be generated to reduce any random noise present. An example

image in which this has been done is shown Figure 16a. Here, the images produced by each micro-

lens identify the area on the sensor that each lens will project images into. This image is then

processed with the particle-location algorithm to approximate the centres of each micro-lens

image, which should correspond to the centres of each micro-lens. Two vectors are then defined.

A vector from the central micro-lens vertically to the next micro-lens in the same column and a

vector from the central micro-lens to the nearest lens not in the same column. Each lens is then

located as a combination of integer multiples of these two vectors. The vectors and the position of

the central micro-lens are then manipulated by a least-squares fitting algorithm to minimize the

differences between the found locations and the ones defined by the vectors. This step averages

out any uncertainty created by inaccuracies in the particle location algorithm. The final grid

produced by the vectors is then kept for use in the particle-image location algorithm. This grid,

with micro-lens types coded by color, is overlaid on the original image in Figure 16b. The lens

types are coded from the knowledge of the repetitive nature of the hexagonal grid shown in Figure

3. Exact knowledge of the focal lengths of individual lenses is not necessary for the processing

approach. This must be performed for each unique lens orientation, and it is important to do so for

each experiment conducted. The efficacy of this method will be discussed alongside the results of

the experimental data which this method has been used for in Chapters 5-7.

28

(a) (b)

Figure 16 - Micro-lens location method: averaged white image (a) is used to locate the centres of
the micro-lenses (b). The different coloured markers in (b) represent the three different lens

types.

3.3.2 Image preprocessing

The image preprocessing approach used assumes that the white image created from the averaging

approach defines a uniform white light field. Ideally, each micro-lens image would be uniformly

illuminated by this uniform light field. Typically, a gradient with a brighter center and darker edges

is observed. This is an effect of the distortions produced by the individual micro-lenses and is more

pronounced for lenses with a greater curvature and shorter focal length. In Figure 16b, the red-

marked lenses have the shortest focal length and the green lenses have the longest. When observing

a particle field, particles near to the edge of the lens can have their apparent centres shifted towards

the centres of the micro-lens from this effect. To correct for this, the particle images are divided

by the white images, which results in the particle location algorithm comparing the particles’

intensities as a ratio of the white image as opposed to comparing the raw intensities. This helps

correct for the centre-shifting of the intensity gradient. The centre-shifting effect can be observed

in Figure 17. Here, a particle at the edge of the micro-lens in the raw image (a) has the intensities

of the pixels on the outer edge of the lens amplified, while the pixels closer to the centre are slightly

reduced. This has the effect of shifting the sub-pixel centre of the particle away from the centre of

the lens, closer to where the actual position should be. The shift in this case is from

29

(1739.36, 1746.11) to (1739.73, 1746.80). This helps to highlight a potential source of error, as

well: if the handling of particles near the edges of the micro-lenses is inadequate, it is likely that

the 2D centroid-location approach will produce particle centroids closer to the centre of the micro-

lens than the actual centre of the particle. A problem that cannot be corrected using this approach

is the case where only part of a particle is visible in a lens, that is, the particle is cut off by the

border of the lens. In this case, a centroid may be found that does not correspond to the particle’s

actual centre. The found centroid will be closer to the centre of the microlens than the true particle

centroid. This is a major source of uncertainty in this approach. These particles need to be ignored,

or they may affect results. The criteria for ignoring them is discussed in section 3.3.6.

(a) (b)

Figure 17 - Raw (a) and preprocessed (b) images of a single particle on the edge of a single
micro-lens. Micro-lenses shown by colored circles; detected particle centre shown by red cross.

3.3.3 Particle-image location

Particle-image location is performed on the preprocessed images using the algorithm discussed in

section 3.1. A result for a partial sample image, containing a single particle, is shown in Figure 18.

This approach, while computationally efficient, can have its accuracy affected when handling

cases where the radii of two particles overlap. However, because multiple micro-images of a single

particle are obtained at slightly different angles of view, this issue will frequently only affect a few

of the micro-lenses and 3D particle location can still proceed. This means that this technique is

better suited to handling dense particle fields than the initial technique discussed in Section 3.2.

30

Having determined the particle-image locations, the nearest micro-lens centre is determined from

the list of micro-lens locations and assigned to the particle-image. A single micro-lens can be

assigned to any number of particles, as each micro-lens may contain multiple particles.

Figure 18 - Particle location result for a single point on a calibration target. Lens borders have
been colored for clarity. Located particle centroids shown by red markers.

3.3.4 Epipolar grouping

Starting at any particle, the algorithm looks along a line defined by the vector between the micro-

lens the particle is in and one of the nearest 6 micro-lenses of the same type. The epipolar plane

generated by a given pair of lenses and a given particle imaged by both lenses intersects the camera

sensor along this line. For simplicity and to be explicit, the line will be referred to as an “epipolar

line” along the sensor. If a particle-image within the micro-lens is within a specified distance 𝐿𝑒

of the epipolar line (typically <0.5 pixels), the particle-images are grouped together. The distance

31

𝐿𝑒 is easily calculable through application of the classical minimum point-to-line distance

equation:

𝐿𝑒 =

|
𝑥⃑𝑖 − 𝑥⃑𝑗

𝐸⃑⃑𝑖 − 𝐸⃑⃑𝑗
|

‖𝐸⃑⃑𝑖 − 𝐸⃑⃑𝑗‖

(17)

Here, 𝑥⃑𝑖 refers to the location of particle i, 𝑥⃑𝑗 refers to the location of particle 𝑗 in an adjacent lens,

𝐸⃑⃑𝑖 is the position of the micro-lens that contains particle 𝑖, and 𝐸⃑⃑𝑗 is the position of the micro-lens

that contains particle 𝑗. The operators in the numerator and denominator are the determinant and

2D vector norm, respectively. If multiple particle-images in the same micro-lens are close to the

epipolar line, only the particle with the smallest 𝐿𝑒 is kept. This is repeated for each of the 6 micro-

lenses and the whole process is repeated for each found particle-image until no further connected

particle-images are found. Then, the algorithm continues picking particle-images from the set of

all ungrouped particles until all particles that can be grouped have been assigned a group. The

distances 𝐿𝑒 between individual particles and the epipolar lines from adjacent-lens particles and

these distances represent the error residuals of this step, and are preserved for later use.

3.3.5 Epipolar Triangular Connectivity (ETC) grouping

Within each of the epipolar groupings, each particle is checked to see if it has at least 2 neighboring

particles along different epipolar lines. If so the neighboring particles, if they are also neighbors

of each other, are checked for epipolar connectivity. If the three particles are all connected, they

meet the epipolar triangular connectivity (ETC) criterion. Any particle-image for which the ETC

criterion is not met for any group is removed. This further reduces the potential to produce

incorrect matchings between particle images, which would lead to errors in location estimation.

At the end of this process, any ETC groups that share a particle are grouped together. Each of these

groups should each contain every particle-image location corresponding to a single particle. A

graphical representation of a sample result of this method is shown in Figure 19a, where the groups

of particles from Figure 18 which comply with this criterion have been linked together by magenta

lines. Several particles which do not comply with the criterion are present as well. These are

typically particles for which the centroid detection method has been unable to find the centroid

accurately, frequently due to the particle-image being on the edge of a lens such that it is partially

32

occluded. Figure 19b shows the same result for a particle that is much closer to the camera and has

a higher virtual depth. Note how in Figure 19b, particles haven’t been detected in one of the lens

types because they are too far out of focus. A key thing to note here is that there are 3 outer particles

in Figure 19a that have been rejected by the ETC, likely because their centres have been shifted

due to being near the edge of the lens. Similar rejections are not seen at the higher virtual depth in

Figure 19b, which may mean that some of the 2D centroid estimates in Figure 19b could be

erroneous. The centre-shifting effect near the edge of the lens discussed earlier may be consistent

enough to produce erroneous centroids for which the ETC criterion is still met.

(a) (b)

Figure 19 - Demonstration of the ETC criteria for a particle with (a) a small virtual depth and (b)
large virtual depth. Images scaled differently, as demonstrated by axes.

3.3.6 Error-reduction filtering

To reduce potential errors in the final 3D location step, any particle-images which have associated

epipolar connection errors exceeding a certain level relative to the other particle-images in the

ETC group are eliminated from that group. This involves comparing the relative contribution 𝐿𝑒,𝑟

of the ETC residuals 𝐿𝑒 using:

𝐿𝑒,𝑖,𝑟 = 𝑁
𝐿𝑒,𝑖

∑ 𝐿𝑒,𝑗
𝑁
𝑗=1

< 𝜀 (18)

Particles with relatively large residuals, larger than the set limit 𝜀, are then removed. This can help

reduce the uncertainty in the data entering the 3D particle location algorithm, and is an attempt to

33

address the issues that can arise when particles are partially occluded by the edge of a lens. Here,

𝐿𝑒,𝑖,𝑟 refers to the relative error contribution of particle 𝑖 in a group of 𝑁 particles 𝑗. Particles 𝑖 can

be eliminated based on if their relative error 𝐿𝑒,𝑖,𝑟 exceeds 𝜀 times the average error in the group.

Typically, this parameter 𝜀 is set between 1.2 and 2 if it is used.

3.3.7 3D particle location

For each of the ETC-grouped particle-image sets, vectors are projected through the centre of each

particle-image’s micro-lens at a virtual depth of 0 to the particle-image locations on the CCD at a

virtual depth of 1. The nearest-to-intersection point of the vectors is then determined by a least-

squares fit of the minimum distance from a point to all the lines. The Levenberg-Marquardt method

[46], [47] is used to perform the least-squares fit. The fitted point is taken as being the 3D location

of the particle in pixel and virtual coordinates. The residual minimum point-to-line distances

between the point and each of the vectors are preserved as a way to estimate uncertainty. The

results of these operations applied to the images in Figure 19 are shown in Figure 20. All lenses

have been collected into a single image for ease of comparison. Poor agreement in the virtual

depths of the fitted points can be observed here. As each individual micro-lens-to-sensor distance

Bi is different, the virtual depths of the located points are expected to be different. Implementation

of a calibration algorithm capable of finding the distances Bi is thus necessary to align the z-values

of the points predicted from each lens type in physical space.

Another key point is that the rejected points from Figure 19a are not present in the triangulation

shown in Figure 20a, and good agreement can be seen between most of the lines and the detected

centroids perhaps excluding the rightmost green line. However, in Figure 20b, the two green

vectors to the back-right of the image can be seen to miss the main intersection point, and if this

figure were rotated it is likely that other outer green vectors would miss the main intersection as

well. This is an indication that an incorrect centroid has been found due to edge effects of the

micro-lenses, and has then been preserved through the ETC method and error filter. For larger

virtual depths, many particles can be expected to be found near the edges of the micro-lenses.

Many triangles formed by adjacent incorrectly-located edge cases for high virtual depth particles

appear to be complying with the ETC resulting in high average errors entering the error filter,

which prevents the outer centroids from being rejected. It may be possible to improve the handling

34

of particles near the edge of the micro-lenses by developing a custom 2D particle location

algorithm, or it may be necessary to reject edge-case particles entirely to address this problem.

(a) (b)

Figure 20 - Triangulation of particle position for the low virtual depth (a) and high virtual depth
(b) particles shown in Figure 19. Vectors are colored by micro-lens type. Located points shown

as large circles.

3.4 Calibration method

The camera calibration method used was originally developed as a standard single- or multi-

camera calibration approach [5] and was more recently adapted for plenoptic cameras in C++ [35],

[36]. This work re-implements the technique in Matlab. The Matlab scripts are given in Appendix

D. A calibration target is generated by creating a square grid of equally-spaced dots appropriate

for the imaging volume. For example, the macroscale experiments conducted involved a target

field of view of a 60×60×60 mm cube, for which the selected dot spacing is 5.927 mm. In contrast,

the microscale experiments take place in a 6×6×6 mm cube for which the selected dot spacing was

0.667 mm. These targets will give 8-10 dots across the field of view, which is adequate for the

algorithm to numerically perform the calibration. After setting up the camera in the correct

orientation for the experiment, this calibration target is held in the field of view and imaged at

35

several orientations. A sample plenoptic image of the target is shown in Figure 21. The target in

this image is angled with the bottom of the target nearer to the camera, and each dot of the target

appears in multiple micro-lens images. As a result, dots at the bottom of the image are closer to

the camera and appear in more micro-images than dots at the top. The dots also spread apart

moving from the top of the image to the bottom, which is a result of the change in magnification

reducing the in-plane field of view in the near-field of the camera. Other research has indicated

that 4 images acquired in this way should be sufficient for this type of calibration algorithm if the

target positions have good coverage of the imaging volume [35], [36]. The target used in this case

had a lower dot density, so a minimum of 8 calibration images have been used to ensure that the

imaging volume was well-covered.

Figure 21 – A sample calibration image. Individual calibration points have been split into
multiple micro-images.

36

Once acquired, each of the calibration images can be processed using either of the 3D location

algorithms discussed in sections 3.2 and 3.3. The relative 2D positions of the dots are then

identified by considering the vector distances between them, beginning in the center of the image

[35], [36]. This approach ignores any centroids that do not align with the grid that could have been

created by noise in the image. A model for the target is generated for each image from the known

vector distances between the grid points, containing only the points on the calibration target that

have been identified in the image.

To convert from pixel and virtual coordinates to object-side positions, the pixel and virtual

coordinates are first converted into metric locations in image-space. Then, Brown’s model for

radial distortion [48] and the Petzval model for field curvature [49] are applied to remove the 2D

and 3D effects of main lens aberration, respectively. Finally, the thin lens model [37] is applied to

re-project the points into object space. The locations of the points in object-space are then

compared to the model target points, which are held in a fixed grid that is positioned by controlling

the extrinsic positional parameters. Equations (19) - (23) are associated with these operations,

using the variables in Table 2. Figure 1 contains some of the key associated variables, so it has

been repeated here as Figure 22 for convenience.

Figure 22 - Optical arrangement of a focused plenoptic imaging system. A single set of ray-paths
for one sample object is shown. Microlens focusing behavior assumed ideal for the object for

simplicity.

37

Table 2 - Variable list for metric conversion

x Particle sensor-side in-plane x-position,
in pixels fL Main lens focal length, in mm

y Particle sensor-side in-plane y-position,
in pixels TL

Main lens focus distance; the physical
distance from the total covering plane at

z = 2 to its projected conjugate in
object-space, in mm

z Particle sensor-side out-of-plane
position, in virtual units BL Distance from main lens to the TCP*

'

Prime, indicator of a transformation
applied to one of x, y, or z. Not related

to the common convention of
differentials.

r Radial distance from the centre of
distortion to each point

X Particle object-side in-plane x-position,
in mm x0 x-distortion centre

Y Particle object-side in-plane y-position,
in mm y0 y-distortion centre

Z Particle object-side out-of-plane
position, in mm k1 Second-order radial distortion

coefficient

sp Sensor pixel size, in mm k2 Fourth-order radial distortion
coefficient

Rx Sensor pixel count in x direction d1 Second-order radial distortion
coefficient

Ry Sensor pixel count in y direction d2 Fourth-order radial distortion
coefficient

Bi
Micro-lens-sensor distance for each

micro-lens type i dD Radial depth distortion coefficient

BL is calculated here as:

𝐵𝐿 =
𝑇𝐿
2
× (1 − √1 −

4𝑓𝐿
𝑇𝐿
) (19)

The first step is to convert the points from pixel and virtual coordinates to physical coordinates,

relative to the centre of the main lens:

𝑥′ = (𝑥 −
1

2
𝑅𝑥) × 𝑠𝑝 (20a)

𝑦′ = (𝑦 −
1

2
𝑅𝑦) × 𝑠𝑝 (20b)

𝑧′ = 𝐵𝐿 + (𝑧 − 2) × 𝐵𝑖 (20c)

38

Here, (𝑧 − 2) is used because 𝐵𝐿 is calculated relative to the TCP, so this operation is applying

the -2 shifts to the virtual depths to make them relative to the TCP.

Distortions are removed through the application of Brown’s model and another model for Petzval

field curvature (22). These are radially dependent, so the distance from the points to the distortion

centre must also be determined (21).

𝑟 = √(𝑥′ − 𝑥0)2 + (𝑦′ − 𝑦0)2 (21)

𝑥′′ = 𝑥′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) (22a)

𝑦′′ = 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) (22b)

𝑧′′ = 𝑧′ + (1 + 𝑑𝐷𝑧
′)(1 + 𝑑1𝑟

2 + 𝑑2𝑟
4) (22c)

Finally, the locations are projected through the main lens using the thin lens equation and simple

trigonometry:

𝑍 =
𝑧′′𝑓𝐿
𝑧′′ − 𝑓𝐿

 (23a)

𝑋 = −𝑥′′
𝑍

𝑧′′
 (23b)

𝑌 = −𝑦′′
𝑍

𝑧′′
 (23c)

These operations require known values for the influencing parameters. These parameters, along

with the parameters which control the position and angle of the target positions, are then iteratively

modified using the Levenberg-Marquardt method [46], [47] until the sum-of-squares of the

distances between the calculated and fixed grid points is minimized. As it is expected that the out-

of-plane locations will be less accurately determined than the in-plane locations, the weight of the

out-of-plane distances is reduced, generally by between 2 and 4 times. This calibration must be

performed for each new lens configuration, and the results for each of the calibrations performed

in this study have been included in their respective chapters 5-7.

39

3.5 Particle selection

A final step after the mapping must be applied for the ETC-based method. Given that three

different lens types are used with this type of camera, three different estimates of the location of a

single particle are frequently obtained. This will be the case for the particle in Figure 19a. In Figure

19b, only two estimates of the particle’s location are obtained because the particle is too dim in

the other lens sets to be found by the particle location algorithm. In either case it is generally useful

to select one of these as the ‘best estimate’. Identifying that these are three estimates of a single

particle is the first step in this process. This is accomplished by using one of the particles as a

starting point and taking a radius around it, within which the nearest particle from the other two

lens types will be considered to be the same particle. A larger radius is used in the z-direction than

the x- or y-directions to ensure that the estimates will be grouped. It is easier to do this after the

calibration step, as the calibration step will usually reduce the disparity in the measured depth of

the particles caused by the differences in the MLA location parameters Bi.

Two methods are proposed for determining which measured location is the “best estimate” of the

particle position. The per-vector residual of each particle can be calculated by simple division of

the residuals of the least-squares operation in Section 3.3.7 by the number of vectors, similar to (

17). The particle with the lowest per-vector residual is then considered the “best estimate”. The

second method assumes that the 2D location step will be most accurate for the most in-focus

particle images and that the most in-focus particle images will have the highest average intensity.

The average intensity for the particle-images of each lens type is calculated, and the particle

derived from the lens type with the highest average intensity is selected as the “best estimate”.

40

CHAPTER 4 PARTICLE TRACKING VELOCIMETRY

The particle tracking approach developed for this work draws on several past works, but has been

specifically adapted and implemented in Matlab for tracking particles resultant from the plenoptic

images. The Matlab scripts are given in Appendix E. The particle tracking approach initializes the

particle tracks using a two-frame approach, and continues with forward-predictive tracking after a

particle is tracked for a few frames. The two-frame approach was previously developed in-house

by another researcher [9]. Acceleration-based track rejection is then applied to remove spurious

tracks, followed by a combined forward- and backward-prediction approach that links together

track segments. Lastly, a temporal filter is applied to smooth the data. The equations involved in

the particle tracking approach used will make use of the variables defined in Table 3.

Table 3 - List of PTV variables
t Time i Current particle index (frame or track)
n Last particle in set j Secondary particle index

m Time-indexing variable 𝜓 Particle index for uncertain, potential-
match particles

l Track length N Neighborhood particle index

𝑥⃑ Particle location vector P Polynomial-predicted particle label
(subscripted); or polynomial coefficient

𝑣⃑ Particle velocity vector 𝐴𝑧 Noise ratio of z data relative to x,y data

𝑎⃑ Particle acceleration vector 𝐵𝑧
Noise ratio of z data relative to x,y data,

adjusted to apply to velocity term
𝑟𝑁 Neighborhood radius 𝑟𝑇 Two-frame tracking acceptance radius

𝑟𝑞 Neighborhood particle acceptance
radius 𝑟𝑝 Velocity-prediction particle position

acceptance radius

𝑟𝑣 Track-linkage velocity deviation
acceptance term 𝑎𝑇 Acceleration threshold

The challenge here is that the particle location algorithm typically has a high uncertainty in

calculating the out-of-plane position of a particle. Many of the steps in the algorithm account for

this by allowing for a much higher error range in the out-of-plane direction than the in-plane

direction. Thus, when a particle is predicted to be within a certain radius by either the initialization

step or the forward-prediction step, the allowable range of positions will be represented by an

ellipsoid extended into the out-of-plane direction rather than a sphere.

41

4.1 Track initialization

Track initialization is achieved by using a two-frame neighborhood tracking approach based on a

previously developed in-house algorithm [9]. The approach outlined in Figure 23 assumes that,

within a given region around the tracked particle, all other particles should move at a similar

velocity. It looks at the second-frame potential matches for a first-frame particle, within a specified

3-D radius rT (see Figure 23a-b), and projects each of the resulting vectors from the other first-

frame particles within a 3-D neighborhood radius rn (see Figure 23c-d). The particle kept as the

match for the first-frame particle is the particle for which the most projected vectors point to

second-frame particles, within a specified trust radius rq. In the example Figure 23, x2 is selected

as the vector for the central particle. Mathematically, this algorithm can be represented by (24)

through (28).

Figure 23 - Neighborhood tracking algorithm. Particle search radius rT, neighborhood radius rn,
vectors x1 and x2.

In neighborhood tracking, neighboring particles 𝑥⃑𝑡,𝑖𝑁 around the central particle 𝑥⃑𝑡,𝑖 are selected

from the set of all other particles in the same frame 𝑥⃑𝑡,𝑗, j ≠ i:

𝑥⃑𝑡,𝑖𝑁 = {𝑥⃑𝑡,𝑗 ∈ ℝ
3 | (‖𝑥⃑𝑡,𝑗 − 𝑥⃑𝑡,𝑖‖ < 𝑟𝑛)} (24)

42

Here, 𝑟𝑁 refers to the radius of the neighborhood that is considered around particle 𝑥̅𝑡,𝑖. All

potential second-frame particles 𝑥⃑𝑡+1,𝑖𝜓 for the central particle 𝑥⃑𝑡,𝑖 are then found from all possible

second frame particles 𝑥⃑𝑡+1,𝑗, as well as the vector distances to these points:

𝑥⃑𝑡+1,𝑖𝜓 = {𝑥⃑𝑡+1,𝑗 ∈ ℝ
3 | ‖[𝑥⃑𝑡+1,𝑗 − 𝑥⃑𝑡,𝑖]‖ < 𝑟T} (25)

𝑣⃑𝑡,𝑖𝜓 = 𝑥⃑𝑡+1,𝑖𝜓 − 𝑥⃑𝑡,𝑖 (26)

These vector distances are then applied to the neighborhood particles:

𝑥⃑𝑡+1,𝑖𝜓,𝑁 = 𝑥⃑𝑡,𝑖𝑁 + 𝑣⃑𝑡,𝑖𝑢 (27)

A maximum deviation radius 𝑟𝑞 is taken around these locations 𝑥⃑𝑡+1,𝑖𝑢,𝑁 and second-frame

matching particles 𝑥⃑𝑡+1,𝑗 are identified:

‖𝑥⃑𝑡+1,𝑖𝜓,𝑁 − 𝑥⃑𝑡+1,𝑗‖ < 𝑟𝑞 (28)

The second-frame particle 𝑥⃑𝑡+1,𝑖 with the greatest number of matching neighbors satisfying this

equation is taken as being the correctly tracked particle. If this algorithm fails, generally due to not

having enough neighbors for the algorithm to work, nearest-neighbor tracking is employed,

represented by (29). Nearest neighbor tracking is implemented by, for each of the particles i in

the frame at time t, 𝑥⃑𝑡,𝑖, finding a particle in the set of particles j in the frame at time t+1, 𝑥⃑𝑡+1,𝑗

that satisfies:

𝑥⃑𝑡+1,𝑖 = {𝑥⃑𝑡+1,𝑗 ∈ ℝ
3| min(‖[𝑥⃑𝑡+1,𝑗 − 𝑥⃑𝑡,𝑖]‖) < 𝑟T} (29)

Here, 𝑟T refers to the radius around particle 𝑥̅𝑡,𝑖 within which a particle 𝑥̅𝑡+1,𝑗 is accepted.

When selecting the neighborhood size, the local spatial velocity gradients must be accounted for.

Flows with larger velocity gradients will need smaller neighborhoods for this method to be

successful. This approach is more than adequate for tracking the fixed field, as there are no spatial

gradients in the velocity field. Particles which are tracked continuously through 4 frames by this

method are sent into the time-resolved tracking algorithm for tracking in future time-steps.

These equations describe the classical implementation of the 2-frame tracking algorithm. The

algorithm has been modified for the plenoptic particle data by weighting of the vector residuals

using a settable z-error weighting term when looking for a particle using (28) or (29). This allows

43

the algorithm to capture particles with higher z-deviations produced by the particle location

method.

4.2 Time-resolved tracking

The time-resolved tracking algorithm collects several of the most recent positions of a continuous

series of particles and fits three O(t3) polynomial functions x(t), y(t) and z(t), which are then used

to predict the particle position in the next frame [50]. If a particle is found within a certain specified

radius of that position, it is attached to the track that predicted it would be there. The number of

positions used to create the polynomial function is another selected parameter. Typically, up to 10

positions are used, but this selection needs to be made based on the particle velocity gradients.

Larger gradients in the particle velocity over these positions can make it difficult for the

polynomial fitting function to predict particle position accurately. Equations (30)-(31) are

associated with these operations.

The forward-predictive tracking algorithm attempts to fit a second-order polynomial to the last n

particles in each track i (𝑥⃑𝑡−(𝑛−1),𝑖 through 𝑥⃑𝑡,𝑖), searching the particles 𝑥⃑𝑡+𝑚,𝑗 in frame j at the

next m time steps (typically m=1,2,3) to find a potential particle 𝑥⃑𝑡+𝑚,𝑗𝜓. Due to the large errors

in calculating the z-position of the particles inherent in the plenoptic reconstruction, a larger

tolerance in the z-direction is allowed, accounted for by the term 𝐴𝑧. This is a key feature of the

particle tracking approach implemented by this work. An overall acceptance region around the

predicted point is defined by 𝑟𝑝.

The polynomial is found by least squares fitting. Then, 𝑥⃑𝑡,𝑖𝑃 can be defined in terms of the

polynomial fit:

𝑥⃑𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 (30)

To determine if a valid particle is found, a similar matching algorithm to the two-frame tracking

algorithm is applied:

44

𝑥⃑𝑡+𝑚,𝑖𝜓 =

{

𝑥⃑𝑡+𝑚,𝑖𝑃 ∈ ℝ
3
|
|min

(

‖
‖

(𝑥𝑡+𝑚,𝑖𝑃 − 𝑥𝑡,𝑖)

(𝑦𝑡+𝑚,𝑖𝑃 − 𝑦𝑡,𝑖)

𝐴𝑧(𝑧𝑡+𝑚,𝑖𝑃 − 𝑧𝑡,𝑖)

‖
‖

)

< 𝑟𝑝

}

 (31)

Forward-predictive tracking is applied first where tracks of l ≥ n exist. On particles for which

forward-predictive tracking fails, neighborhood tracking is applied next, and nearest-neighbor

tracking is applied last to capture any remaining particles. This approach attempts to create as

many particle tracks as possible and as such can result in bad particle tracks being formed. A

filtering algorithm is applied after these preliminary tracking steps, removing these bad particles

and completing linkages that the tracking algorithm was unable to.

4.3 Temporal filtering approach

Once all frames have been completed, the algorithm looks for accelerations that exceed a specified

threshold and breaks the tracks at these locations. This helps remove spurious tracks that may have

been a result of the two-frame tracking algorithm. The algorithm then looks at all the track

segments and performs an iteration of forward- and backward-predictive tracking, which links

together tracks based on the positions, velocities, and accelerations of their endpoints through

further polynomial fitting. Finally, a temporal filter is applied by fitting polynomials over moving

windows with limits up to 10 particles to either side of a given particle.

4.3.1 Track Removal

Figure 24 - Application of the acceleration-based track removal algorithm.

The track removal algorithm attempts to detect and remove track segments where a high

acceleration is detected. An example of this case is shown in Figure 24. A track of length l is

45

deemed a bad track when a local acceleration along the track is larger than a threshold 𝑎𝑇. For

each track i, the highest acceleration is determined and compared to the threshold:

𝑎max = max(𝑎𝑡,𝑖 = ‖𝑥⃑𝑡+1,𝑖 − 2𝑥⃑𝑡,𝑖 + 𝑥⃑𝑡−1,𝑖‖) > 𝑎𝑇 , 𝑡 = 2… 𝑙 − 1 (32)

There are several conditions for which a bad acceleration can result. Table 4 outlines how the

algorithm handles each case.

Table 4 - Track removal acceleration cases

Case Result
1. Track is l = 3, acceleration found is bad Points should not be linked, remove track.

2. Bad acceleration is at t = 2 or t = l-1 Remove first or last point

3. Bad acceleration is in middle of track,
2 < t < l-1

Calculate accelerations on either side of
bad point. Track is split between bad point

and second-worst acceleration.

Iterations of this algorithm are applied until no accelerations exceeding the threshold are present,

as tracks may need to be split multiple times using case 3, or use of case 3 may produce tracks for

which cases 1 or 2 apply.

4.3.2 Track Linkage

The track linkage algorithm aims to ‘bridge’ the gaps between existing track segments that should

be a single, continuous track. An example of this type of track data is shown in Figure 25, where

these gaps are circled. These can be caused where a particle is lost between frames, where the

acceleration-based rejection improperly broke a track, or where a track wasn’t linked because the

depth errors were too high for the three primary methods to create a track.

Figure 25 - Example of ‘gaps’ in a track which should be continuous.

The track linkage algorithm links tracks together by considering the time, position and velocity at

the endpoint and starting point of nearby tracks. How it does so depends on the length l of the

earlier track. If the track is too short, there is not enough z information to predict future z positions

accurately due to the noise inherent in the z-data. Also, tracks of length 2 can’t be fit by a second-

46

order polynomial. The algorithm is thus applied with slight variations depending on the length of

the track, as presented in Table 5.

Table 5 - Polynomial fitting cases
Track Length Response Variables

l=2 First-order polynomial predicts x-y positions
z-positions averaged

𝑃2𝑥𝑖
, 𝑃2𝑦𝑖

, 𝑃2𝑧𝑖
, 𝑃1𝑧𝑖

= 0

2<l<5
Second-order polynomial predicts x-y

positions
z-positions averaged

𝑃2𝑧𝑖
, 𝑃1𝑧𝑖

= 0

l≥5

Second-order polynomial predicts x-y
positions

First-order polynomial predicts z-positions
Only last 5 points used.

𝑃2𝑧𝑖
= 0

Particle positions 𝑥⃑𝑡,𝑖𝑃 are predicted based on track i using the calculated polynomials:

𝑥⃑𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 (33)

Calculating the derivative of this polynomial gives a predicted velocity of the points as well:

𝑣⃑𝑡,𝑖𝑃 = [

2𝑃2𝑥𝑡 + 𝑃1𝑥
2𝑃2𝑦𝑡 + 𝑃1𝑦
2𝑃2𝑧𝑡 + 𝑃1𝑧

]

𝑡,𝑖

 (34)

The matching algorithm from the forward-predictive tracking is applied for other tracks j, but now

includes velocity information. Again, a position-acceptance region 𝑟𝑝 applies, as does a velocity-

acceptance region 𝑟𝑣:

𝑥⃑𝑡+𝑚,𝑖𝜓 =

{

𝑥⃑𝑡+𝑚,𝑖𝑃 ∈ ℝ
3

|

|

| min

(

‖
‖

(𝑥𝑡+𝑚,𝑖𝑃 − 𝑥𝑡,𝑗)

(𝑦𝑡+𝑚,𝑖𝑃 − 𝑦𝑡,𝑗)

𝐴𝑧(𝑧𝑡+𝑚,𝑖𝑃 − 𝑧𝑡,𝑗)

‖
‖

)

< 𝑟𝑝

min

(

‖‖

𝑣𝑥,𝑡+𝑚,𝑖𝑃 − (𝑥𝑡+𝑚+1,𝑗 − 𝑥𝑡+𝑚,𝑗)

𝑣𝑦,𝑡+𝑚,𝑖𝑃 − (𝑦𝑡+𝑚+1,𝑗 − 𝑦𝑡+𝑚,𝑗)

𝐵𝑧 (𝑣𝑧,𝑡+𝑚,𝑖𝑃 − (𝑧𝑡+𝑚+1,𝑗 − 𝑧𝑡+𝑚,𝑗))

‖‖

)

< 𝑟𝑣

}

 (35)

47

Typically, this algorithm is applied for m=1…5 with t defined by the end of the track. The

algorithm thus has the potential to link track i to adjacent tracks multiple times and this is harnessed

to increase the confidence of the algorithm.

4.3.3 Track Smoothing

Track smoothing is performed as a final step. This is a key feature of this tracking algorithm,

implemented to reduce the level of noise inherent in the particle location measurements. Tracks of

l ≥ 5 from the linkage algorithm have the smoothing algorithm applied and any smaller tracks are

too small to smooth and are eliminated. The smoothing algorithm looks at each time-step within

the track and this can include time-steps for which a particle was not found, but for which a gap

was bridged with the linking algorithm. The smoothing algorithm fits a second-order polynomial

to all time-steps t in the track using all valid points within m time-steps 𝑥⃑𝑡−𝑚,𝑖. . 𝑥⃑𝑡+𝑚,𝑖 in the track,

determining the position of the point at t using the polynomials:

𝑥⃑𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 (36)

The velocity and acceleration of the point can also be determined by taking the derivatives of the

polynomials:

𝑣⃑𝑡,𝑖𝑃 = [

2𝑃2𝑥𝑡 + 𝑃1𝑥
2𝑃2𝑦𝑡 + 𝑃1𝑦
2𝑃2𝑧𝑡 + 𝑃1𝑧

]

𝑡,𝑖

 (37)

𝑎⃑𝑡,𝑖𝑃 = [

2𝑃2𝑥
2𝑃2𝑦
2𝑃2𝑧

]

𝑡,𝑖

 (38)

This algorithm temporally filters the path taken by a single particle, which can effectively average

the errors associated with the position of the particle. This is especially important in the out-of-

plane direction. An example of this algorithm applied to a single track is shown in Figure 26. This

figure shows that the tracking performance is stronger in-plane than out-of-plane due to the lower

level of uncertainty in determining the particle position.

48

(a)

(b)

Figure 26 - Unfiltered points (blue) and filtered path (red) associated with a single, 112-frame
long particle track. (a) shows the track in the x-y plane, and (b) shows the track in the x-z

plane.

49

CHAPTER 5 EXPERIMENTAL MEASUREMENT OF UNCERTAINTY

In order to analyze the ETC technique’s performance when being used to track particles, an

experiment was designed and performed that aimed to evaluate the performance of the technique

when observing known, constant velocities. The following will discuss the design of this

experiment and the results of applying the ETC technique. This allowed an experimental

evaluation of the uncertainty associated with the technique’s use in the optical configuration of the

experiment to be conducted.

5.1 Experimental setup and data acquisition

The focused plenoptic camera used in this study was a commercially available f/# 2.4 camera (R5,

Raytrix GmbH) with an 85 mm main lens. This is a multi-focus plenoptic camera (MFPC); the

micro-lens array has lenses of 3 different focal lengths. It is capable of acquiring 2048 by 2048

pixel images at frame rates up to 180 fps. The camera was used to image a calibration target with

white dots on a black background in a grid as shown in Figure 27. The dots were spaced apart

5.927 mm and have a diameter-to-spacing ratio of 1/20. These dimensions were selected to ensure

that 100 dots were visible at the far-field range of the camera, 64 dots were visible at the near-field

range, and that the size of the dots was appropriate for the particle location algorithm through all

ranges of depth. The target was generated using a 1200 DPI laser printer (M401dne, HP), then

laminated, glued to a piece of flat glass, and fixed to a motorized traverse (500 mm BiSlide,

Velmax Inc.). The traverse allows for controlled movements in steps as small as 5 micron.

Data is then generated by moving the traverse parallel to the camera for 100 steps of 0.5mm,

followed by a 0.1 mm displacement towards the camera, followed by 99 further iterations of the

same process. The traverse is held fixed at each position and an image of the target is taken. This

generated a total of 10,200 data points which can be processed to either measure the in-plane

displacements at each depth location, or to measure the out-of-plane displacements independently.

101 time-series containing 101 images can be constructed for both the in-plane and out-of-plane

motion cases, for a total of 202 data sets. At least 64 dots should always be visible on the calibration

target, which ensures that over 6,000 observations can be made at each depth.

50

Figure 27 - Experimental setup of the fixed-field test

A pair of raw sample images of the target taken with the plenoptic camera are given in Figure 28.

These have been cropped to show only the 3 central dots in the image for clarity. As expected, the

near-field image contains fewer, but larger, sub-images of each dot when compared to the far field

image.

(a) (b)

Figure 28 – Raw plenoptic images of the calibration target placed at the (a) far-field and (b)
near-field of the plenoptic camera. Brightness and contrast have been adjusted to make the

dots easily visible.

51

5.2 Calibration

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram

of the residuals resultant from the least-squares determination of the micro-lens location vectors

yields Figure 29. Percentile-based statistical analysis indicates that 95% of the data exhibit a

residual of less than 0.133 pixels. The resultant vectors that define the positions of neighboring

same-type lenses in this case are (40.28, -0.003) and (20.14, 34.88).

Figure 29 - Histogram of the residuals of the 2D vector norm of the difference between the
measured micro-lens locations and the gridded locations for the flat field tests.

The physical-space calibration is performed as described in Section 3.4, using the ETC method

described in Section 3.3 to find the target dots. The resultant calibration variables are given in

Table 6. Figure 30 shows the detected points in red overlaid with the predictive calibration points

in blue, for two different images of the target. The target in (a-b) was parallel to the imaging field

of the camera, while the target in (c-d) was at an angle relative to the imaging field of the camera.

Excellent agreement between the x and y positions is observed with 95% of the residuals in

(-0.18, 0.18) and (-0.17, 0.16) mm, respectively. The z residuals are much higher, with 95% of the

residuals in (-0.77, 0.80) mm which is indicative of the higher uncertainty associated with finding

the out-of-plane locations relative to the in-plane locations. This is highlighted further in the

histograms with overlaid normal distributions as shown in Figure 31.

52

(a) (b)

(c) (d)

Figure 30 – Detected calibration points in red overlaid on blue grid of predicted points in the
fixed-field test. In (a-b), the calibration target is aligned with the camera while in (c-d) the

target is angled relative to the camera. (a) and (c) are in-plane views of the points, and (b) and
(d) are positioned to show the angle of the target.

53

(a)

(b)

(c)

Figure 31 - Histograms of flat-field test micro-lens calibration residuals in (a) x, (b) y, and (c) z
directions, overlaid with normal distributions.

54

Table 6 - Calibration variable results for flat field tests
TL 624.82 mm k1 5.54e-5
B1 0.334 mm k2 5.83e-7
B2 0.336 mm d1 4.81e-6
B3 0.347 mm d2 1.52e-9
x0 2.91 mm dD 3.88
y0 1.54 mm

5.3 Data Processing

The processing methods discussed in Sections 3.3 and 4 are applied, producing particle tracks for

each of the 202 time-series. Samples of the resultant raw particle tracks are shown in Figure 32a-

b, and the particle tracks after smoothing are shown in Figure 32c-d. These figures show the vector

displacements of the dots through 5 consecutive frames. The level of noise in the out-of-plane

direction is apparent in Figure 32a, where the target was moved parallel to the camera, through the

simple observation that the tracks produced have significant random deviations in the z-direction

when only y-directional motion was expected. Moving the particles directly towards the camera as

in Figure 32b produces a fairly consistent lack of movement in the x and y directions, but some

level of random variation in the z-direction where consistent motion would be expected.

Application of the smoothing algorithm appears to have significantly reduced the random

variations, with smooth tracks being observed in both Figure 32c and d. These images also appear

to indicate that the approach is more prone to errors near the edges of the image, as evidenced by

a vector that deviates sharply in the z-direction in the smoothed set, observable in Figure 32c near

(20,20). This is likely caused by there being fewer micro-lenses available to image the particle

near the edge of the sensor. Curvature of the paths near the edge of the field of view is also notable,

which is likely a result of there being no more tracks beyond the edge of the field of view combined

with these edge effects producing poor estimations that are influencing the fitted tracks.

55

(a) (b)

(c) (d)

Figure 32 –Tracking results, showing vectors corresponding to 10 movements for each dot on
the target. (a)-(b) show raw tracks for in-plane and out-of-plane motion, respectively. (c)-(d)

show the same tracks after applying the smoothing algorithm.

56

5.4 Evaluation

To reinforce some of the visual observations that can be made regarding the plots of the particle

tracks, histograms were plotted for the overall data set. The first pair, given in Figure 33 and Figure

34, show the histograms for sequential 0.5 mm in-plane y-directional movements of the traverse

before and after smoothing. The next pair in Figure 35 and Figure 36 show the plots for sequential

0.5 mm out-of-plane z-directional movements of the traverse. Table 7 gives the median and 95%

confidence intervals for the measured values. In all cases, outlier removal has been conducted

using the generalized extreme Studentized deviate test [51] in order to remove any spurious data

points generated by incorrect found point locations and subsequent track generation.

Table 7 - Medians and confidence intervals of in-plane displacements from fixed-field test for
a 0.5 mm movement in the y-direction

[mm] Unsmoothed Smoothed

Direction Median 95% Confidence Median 95% Confidence

x 3.11e-3 (-0.181, 0.186) 3.31e-3 (-9.21e-3,1.60e-2)

y 0.464 (0.287, 0.640) 0.464 (0.450, 0.481)

z 1.93e-3 (-4.47,4.48) 1.00e-2 (-0.332, 0.354)

Table 7 allows for the first conclusions to be drawn on the effectiveness of the calibration. A

displacement of 0.5 mm in the y-direction is expected based on the known motion of the traverse,

but instead a median displacement of 0.464 mm is observed. It is most likely that this is an

indication that the calibration method is imperfect, such that all in-plane distances have been

under-predicted by the model. Another key observation is that the smoothing algorithm has

reduced the confidence intervals by more than an order of magnitude in all directions. This is an

indicator of the effectiveness of the smoothing approach at cleaning up the noise in the raw tracking

results. Applying the smoothing method has allowed the straight tracks to be determined to within

0.017 mm in-plane (0.034% of the horizontal FOV), and to within 0.34 mm (0.68% of the

horizontal FOV) out-of-plane. These statistics also quantify the disparity in the uncertainty of the

technique in-plane compared to out-of-plane, with the out-of-plane uncertainty being roughly 20

times larger.

57

Table 8 shows similar results for the out-of-plane tracking when the calibration target is moved in

the z-direction. Similar near order-of-magnitude reductions in uncertainty from the smoothing.

However, these reductions are less substantial than for the in-plane case. The smoothing algorithm

is thus expected to work best when at least some in-plane component of velocity is present. Again,

the median z-displacement of 0.347 mm under-predicts the expected out-of-plane displacement of

0.5 mm. Together, these errors indicate that the calibration method has likely under-predicted the

focus distance TL.

Table 8 - Medians and confidence intervals of out-of-plane displacements from fixed-field test
for a 0.5 mm movement in the z-direction

[mm] Unsmoothed Smoothed

Direction Median Confidence Median Confidence

x 4.90e-3 (-0.132, 0.136) 4.74e-3 (-1.13e-2,2.17e-2)

y -4.40e-3 (-0.137, 0.126) -5.01e-3 (-2.03e-2,1.24e-2)

z -0.281 (-4.28, 3.49) -0.347 (-0.721,0.131)

58

(a)

(b)

(c)

Figure 33 – Histograms of the raw measured velocities of the target dots for the in-plane
tracking case. Note that z plot has been scaled differently for this case only, between this and

the next figure. This is made necessary by the massive distribution in the z-movements.

59

(a)

(b)

(c)

Figure 34 – Histograms of the smoothed measured velocities of the target dots for the in-plane
tracking case. The x, y, and z movements are directly comparable with the x and y movements

in the previous figure.

60

(a)

(b)

(c)

Figure 35 – Histograms of the raw measured velocities of the target dots for the in-plane
tracking case. Note that z plot has been scaled differently for this case.

61

(a)

(b)

(c)

Figure 36 – Histograms of the smoothed measured velocities of the target dots for the in-plane
tracking case. Note that the z plot is scaled the same, but has been shifted horizontally.

62

An immediately apparent feature of the plots is that the distributions are non-normal. This is made

obvious by the red lines showing a normal distribution with the same mean and standard deviation

of the data not sharing the same trend as the histogram bars. Instead, the data has in all cases a

larger central peak and wider tails than a standard normal distribution. This type of data could be

consistent with two overlapping standard normal distributions, one with a lower standard deviation

to create the large central peak, and one with a high standard deviation to create the wide tails.

This indicates that there is some statistically significant portion of the data for which the technique

is performing poorly in comparison to the rest of the data. Another observation that can be made

is that the uncertainty is substantially reduced by the smoothing method.

To determine the portion of the data for which the technique is performing poorly, 90% confidence

intervals were generated for each of the individual data sets of the in-plane tracking case. These

90% intervals were selected as opposed to the 95% intervals used in all other cases in this

document to reduce any bias generated by the outliers that are not eliminated when using this

method. These intervals are shown in Figure 37 and Figure 38 as a function of the z-distance the

traverse moved from its starting point. Figure 37 features the data points all plotted with similar y-

axes, for direct comparison, while Figure 38 shows each set of points on its own axis to allow for

comparison within each set. One set of three data points is plotted in each of these plots for each

of the 101 data sets that were collected at decreasing distances to the camera and therefore

increasing virtual depths. The red dots represent a median displacement, while the blue dots

represent the upper and lower bounds for a 90% confidence interval for the displacement. As each

in-plane data set was collected at a different z-location of the traverse, plotting in this way allows

the displacements and their associated uncertainties to be compared as a function of the average

depth of each data set.

63

RAW SMOOTHED

(a) (d)

(b) (e)

(c) (f)

Figure 37 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of
traverse position for the in-plane case. y-axes are scaled the same.

64

RAW SMOOTHED

(a) (d)

(b) (e)

(c) (f)

Figure 38 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of
traverse position for the in-plane case. y-axes have been scaled differently to show uncertainty.

65

The main observation to be made here is that there is a large increase in the uncertainty of this

method after the target reaches a certain z-location, ~35mm from its starting point. This is

consistent with the reduction in resolution after a certain virtual depth discussed in [27]. Another

interesting point is that the median y-displacements are a weak function of the traverse position.

This is an indication that the calibration is imperfect, which warrants further investigation.

To investigate further, the results of this method are considered from purely a particle- location

standpoint. The median z-locations of each data set within the plane were taken and plotted against

the depth-steps of the traverse in Figure 39. Theoretically, this relationship should be exactly 1:1

linear, forming a 45° angle with the x and y axes if the calibration method has worked perfectly.

This is not the case as the actual linear trend drops more steeply. This indicates that the calibration

method has under-predicted the focus distance TL. This is consistent with the earlier observation

that the median measured in-plane displacements were smaller than the expected in-plane

displacements, and the weak function of z-position exhibited by the y-displacements.

The volatility of the depths in Figure 39 between about 16 and 26 mm on the x-axis is likely caused

by the intensity-selection algorithm from Section 3.5 having a difficult time of deciding which lens

is the correct lens to use, compounded with the Bi values from the calibration not causing the

virtual depths to re-project properly. This produces three different linear behaviors, all interlaced

in the same plot. It is possible that a better calibration could align these by predicting the Bi values

correctly. The poorly predicted Bi values are directly related to the under-prediction of TL observed

previously. This is consistent with the three different linear progressions observed between

traverse positions 0-16, 27-33, and 34-50. The large increase in variance observed in Figure 38 is

consistent with the transition to the progression of the 34-50 range in Figure 39. The calculated

median depth at the start of this range is 464.6 mm, which corresponds to a virtual depth between

9.35 and 9.64, depending on which lens type is used.

66

Figure 39 – Median and confidence intervals of z-locations of the calibration plate as a
function of the known relative depth locations of the plate.

The main success of this section has been the smoothing method implemented, which managed to

reduce the uncertainty in the displacements of the tracked particles by more than an order of

magnitude. Other results indicate that the ETC method from Sections 3.3 and 3.5 produces higher

variances in all particle location data after the targeted particles pass beyond a virtual depth of

9.35. Care should be taken to avoid exceeding this limit in future experiments when using the R5

f/# 2.4 camera. A key point to note here is that this can be algorithmically enforced by disallowing

particles that are found beyond a certain virtual depth within the location step. The other conclusion

that has been reached is that the calibration method has not been able to perfectly predict the optical

system’s parameters, mostly related to an under-prediction of TL. It is possible that this is also

related to the high uncertainties associated with finding the depth-locations of individual points on

the target, which is likely caused by uncertainties in the 2D particle location method. This

experiment was not undertaken for the refocusing method discussed in Section 3.2, as preliminary

investigations [52], [53] had indicated that this technique had a high uncertainty. In retrospect, this

uncertainty may be comparable to that observed with the ETC technique. Returning to the

refocusing technique and repeating this experiment to allow for a direct comparison is a

recommended follow-up to this investigation.

67

CHAPTER 6 APPLICATION OF THE ETC METHOD: THE RISING

OIL DROP EXPERIMENT

In order to test the approach in a scenario in which a typical tomographic imaging setup would be

unviable, a micro-scale flow scenario was desired. The flow of oil droplets through micro-scale

slots is of particular interest to the sponsoring company (RGL Reservoir Management) and has

been under study by other researchers using two-dimensional techniques. Expanding the

knowledge of these flows to include three-dimensional flow patterns may be useful, as the

surrounding fluid is capable of flowing in front of or behind the droplet relative to the camera. An

experiment suited to the plenoptic camera was thus developed for study.

6.1 Experimental setup and data acquisition

The rising oil drop experiment is conducted by filling an acrylic flow channel with glycerol and

then introducing a droplet of vegetable oil into the bottom of the channel using a glass syringe, as

shown in Figure 40. The oil droplet, being less dense than the glycerol, will then float up through

the channel. These two fluids have similar refractive indices, so the refraction at the interface

between the two is minimal. The flow section observed by the camera, shown in Figure 41, has a

6×6 mm cross section. The camera used in this case is the f/# 26 (R5, Raytrix GmbH) with a 105

mm main lens. A sample image obtained as the droplet passed in front of the camera is shown in

Figure 42. Due to the collection method, which precluded the use of commercial software (RxLive,

Raytrix GmbH) the data collected is specific to the ETC method. Illumination is achieved through

forward-scattering a diffuse LED light source (H528S, Amaran) of 40-micron particles

(Dynoseeds TS 40, Microbeads®) uniformly distributed in the two fluids. Here, the individual

particle-images are visible and a circle has been overlaid to show the oil droplet. The edges of the

oil droplet are otherwise indistinguishable due to the refractive index matching of the two fluids.

This also eliminates refraction through the droplet, allowing the inner flow structures of the droplet

to be seen. In this case, due to the low velocities and high viscosities involved, little to no motion

within the droplet is expected within the imaged range of motion.

68

Figure 40 – Experimental setup of rising oil drop experiment.

Figure 41 – Flow channel used for rising droplet experiment.

69

Figure 42 – Raw sample image from the oil drop experiment. Oil droplet is given by the red
circle. Refractive index matching makes it all but indistinguishable from the surrounding fluid.

70

6.2 Calibration

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram

of the residuals resultant from the least-squares determination of the micro-lens location vectors

yields Figure 43. Percentile-based statistical analysis indicates that 95% of the data exhibit a

residual of less than 0.38 pixels. The resultant vectors that define the positions of neighboring

same-type lenses in this case are (0.011, 40.73) and (35.26, 20.35). These are similar to the results

from the other camera in Chapters 5 and 6, with slight differences that can be attributed to the

differences in the micro-lens locations between the two plenoptic cameras and the quality of the

obtained white images.

Figure 43 - Histogram of the residuals of the 2D vector norm of the difference between the
measured micro-lens locations and the gridded locations for the rising oil drop experiment.

To perform the metric calibration, a target was created from a 5 cm square of paper upon which a

layer of black ink was laid down using a laser printer (M401dne, HP). A laser cutter (VLS3.60,

VersaLaser®) was then used to remove the ink to create dots as small as the focal point of the laser

beam, separated by 0.677 mm. This target was laminated and glued to a piece of acrylic. To place

the target within the imaging volume, a ‘calibration box’ (see Figure 44) was designed with the

same mounting configuration and front window position as the flow channel, but with ample space

to fit the target. This box is designed to have a 6x6 mm frontal acrylic window with the same

optical properties as the flow channel, and a mount identical to the flow channel to allow for simple

positioning. The target can be placed inside at any angle up to 30° relative to the camera. The

calibration box was filled with glycerol to ensure it had the same optical properties as the flow

channel, and calibration images were obtained. The process described in section 3.4 was

implemented using these calibration images.

71

(a) (b)

Figure 44 – Use of the calibration box. A 6mm deep imaging section behind a small 6x6 mm
piece of acrylic was created by opposing tetrahedral walls (a), allowing ample space for the

calibration target to be placed. Imaging is then conducted through the window (b).

The resultant calibration variables are given in Table 9. Figure 45 shows the detected points in red

overlaid with the predictive calibration points in blue. The target in (a-b) was parallel to the

imaging field of the camera, while the target in (c-d) was at an angle relative to the imaging field

of the camera. The x and y positions are observed to have 95% of the residuals in (-0.040, 0.043)

and (-0.043, 0.044) mm, respectively. Contrary to the previous macroscale calibration, the z

residuals are similar, with 95% of the residuals in (-0.043, 0.038) mm. Relative to the overall field

of view, the in-plane residuals of this calibration are ~3 times as large as the in-plane residuals for

the flat-field experiment, but the out-of-plane residuals are comparatively about half as large. This

is an effect of the virtual depth range being less spread out in this case than in the previous case;

the overall field of view here is 6×6×2 mm, a 3:1 ratio of in-plane to out-of-plane range compared

to the 1:1 ratio in the previous experiment. The full depth of the channel could not be imaged, but

the resolution within the available range is higher. Histograms with overlaid normal distributions

for the residuals of the calibration points are given in Figure 46.

Table 9 - Calibration variable results for micro-scale tests
TL 485.69 mm k1 5.94e-5
B1 2.02 mm k2 -1.72e-6
B2 2.00 mm d1 1.60e-4
B3 1.98 mm d2 5.64e-5
x0 -1.15e-3 mm dD 1.82e-3
y0 5.09e-4 mm

72

(a) (b)

(c) (d)

Figure 45 – Detected calibration points for the micro-scale calibration in red overlaid on blue
grid of predicted points. In (a-b), the calibration target is aligned with the camera while in (c-d)
the target is angled relative to the camera. (a) and (c) are in-plane views of the points, and (b)

and (d) are positioned to show the angle of the target.

73

(a)

(b)

(c)

Figure 46 - Histograms of microscale calibration residuals in (a) x, (b) y, and (c) z directions,
overlaid with normal distributions.

74

6.3 Data Processing

The ETC approach from Sections 3.3 and 3.5 was applied to the collected data. The resultant

particle tracks are shown in Figure 47 and Figure 48. In this series of figures the oil droplet has the

largest vectors, while the glycerol flowing around the oil can be seen to recirculate around the

droplet as it rises, moving from right to left (gravity in +x direction). Walls are present just outside

of the field of view, and the droplet is closer to the –y side of the channel leading to lower velocities

in that region. In the z direction, only about the back 1/3 of the droplet is visible as the depth-of-

field does not cover the whole 6mm depth of the channel. The recirculation regions behind and to

either side of the droplet are most clearly visible in the smoothed-vector images. The vectors in

these images can be difficult to make sense of in stationary images. An alternate method of display

which cycles through groups of frames to show the motion of all particles in three dimensions is

preferred.

Observing Figure 47, it is clear that a significant level of noise is present in the measured out-of-

plane motion, producing spurious vectors and making longer tracks vary randomly in the z-

direction. This is consistent with the results from Chapter 5. Again, these random variations are a

direct result of the level of uncertainty in the determination of the z-locations of the particles. This

is likely to stem from the 2D particle locations in the micro-lenses. The smoothing method, as

applied in Figure 48, greatly reduces the noise but the tracks are still affected. Both figures make

it apparent that the in-plane performance of the technique is generally strong and able to

reconstruct the expected motion of the flow field to produce coherent particle tracks. The

recirculation regions to either side of the droplet are reasonably reconstructed in-plane, although

the out-of-plane motion is only partially captured.

75

(a): frame 70 (d) : frame 70

(b) : frame 100 (e) : frame 100

(c) : frame 130 (f) : frame 130

Figure 47 – Raw velocity vectors resultant from the rising droplet test. (a-c) show the vectors
viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

76

(a): frame 70 (d) frame 70

(b) frame 100 (e) frame 100

(c) frame 130 (f) frame 130

Figure 48 – Smoothed velocity vectors resultant from the rising droplet test. (a-c) show the
vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

77

6.4 Conclusion

Based on the results of the oil droplet experiment, the ETC method is capable of performing in-

plane tracking reasonably well at the microscale. The high level of uncertainty in the depth-

location algorithm has affected performance in the out-of-plane direction, producing spurious

tracks that are mostly, but not entirely, removed by the smoothing method. The uncertainty in the

depth locations found by this method is likely produced through amplification of the uncertainty

in the 2D location method by the triangulation approach. This indicates that the error filtering

discussed in section 3.3.6 was insufficient in removing incorrect 2D centroids, or that the 2D

centroid method has too much associated uncertainty to allow for the triangulation method to be

effective. The present hypothesis is that the edges of the micro-lenses partially cut off the particle-

images, shifting the 2D centroids in a consistent way that the error filtering method ignores.

Improving the 2D particle location method may be necessary to improve the ETC approach.

78

CHAPTER 7 COMPARISION OF THE REFOCUS AND ETC

METHODS: THE VORTEX EXPERIMENT

To investigate and compare the performance of both the ETC technique and the refocusing method,

a reasonably well-known, simple three-dimensional fluid flow was desired. Ring vortices, also

known as toroidal vortices, were selected for their simplicity and three-dimensional nature with

reasonable axial symmetry. A full discussion of the formation and behavior of toroidal vortices

can be found in [54]. The expected flow in a ring vortex is a central core surrounded by a vortex

that is axially symmetric about the core.

7.1 Experimental setup and data acquisition

The experimental setup used for the vortex experiment is shown in Figure 49. The f/# 2.4 (R5,

Raytrix GmbH) camera was used with an 85 mm main lens to perform a fluid flow experiment

involving the imaging of a simple toroidal vortex. The vortex was generated by forcing fluid from

a 25mm syringe, cut off to act as a simple piston-cylinder periodically driving fluid into a

stationary reservoir. The motion of the syringe was controlled using a slider-crank assembly

connected to a computer controlled stepper motor (CPM-MCVC-34415-RN, Teknic Inc.). The

fluid was seeded with 0.5-0.6 mm polystyrene spheres. Pure sodium chloride was added to make

the particles neutrally buoyant. Illumination was achieved by using a laser (LRS-0532-PF,

Laserglow Tech.) which was diffused into a volume-illuminating beam using a series of spherical

lenses and mirrors. The camera lens was manipulated to achieve a roughly cubic 60×60×60 mm

imaging volume. A sample raw image collected using this setup is shown in Figure 50. A key point

to note here is that, compared to the previous study in Chapter 6, the particle-images here are

significantly larger (~twice the radius).

79

Figure 49 – Experimental setup of vortex generator.

Figure 50 – Partial raw sample image from the vortex tank experiment

80

7.2 Calibration

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram

of the residuals resultant from the least-squares determination of the micro-lens location vectors

yields Figure 51. Percentile-based statistical analysis indicates that 95% of the data exhibit a

residual of less than 0.145 pixels. The resultant vectors that define the positions of neighboring

same-type lenses in this case are (40.28, -0.003) and (20.14, 34.88). Note that the vectors are

identical to the test from Chapter 5, which is as expected because this is the same camera as in that

test.

Figure 51 - Histogram of the residuals of the 2D vector norm of the difference between the
measured micro-lens locations and the gridded locations for the vortex tank test.

The calibration from section 3.4 in this case was performed within the water tank prior to seeding

the water with particles. This was to preserve the refractive behavior of the glass-water interface

such that it would be captured by the calibration. The resultant calibration variables for the ETC

approach are given in Table 10. Figure 52 shows the detected points in red overlaid with the

predictive calibration points in blue. Here, Figure 52(a-b) are the resultant images for one position

of the calibration target, viewed in the x-y plane and from a viewpoint which shows the angle at

81

which the target has been placed. (c-d) are similar, but for an alternate target position. Excellent

agreement between the x and y positions is observed with 95% of the residuals in (-0.27, 0.26) and

(-0.26, 0.25) mm, respectively. These are marginally worse than in the first test, likely due to the

air-glass and glass-water interface of the tank not being fully accounted for by the calibration

method. The z residuals are again much higher, with 95% of the residuals in (-1.64, 1.48) mm

which is indicative of the higher uncertainty associated with finding the out-of-plane locations

relative to the in-plane locations. Corresponding histograms are given in Figure 53.

Table 10 - Calibration variable results for vortex tank tests

TL 983.30 mm k1 1.16e-5
B1 0.388 mm k2 -8.20e-8
B2 0.397 mm d1 1.19e-5
B3 0.407 mm d2 7.78e-8
x0 -9.22 mm dD 0.423
y0 -1.07 mm

82

(a) (b)

(c) (d)

Figure 52 – Detected calibration points in red overlaid on blue grid of predicted points in the
vortex tank test. (a-b) and (c-d) show two sample planes.

83

(a)

(b)

(c)

Figure 53 - Histograms of vortex tank micro-lens calibration residuals in (a) x, (b) y, and (c) z
directions, overlaid with normal distributions.

84

7.3 Data Processing

Both the refocusing based approach from Section 3.2 and the ETC approach from Sections 3.3 and

3.5 have been applied to a single sample data set collected in this experiment, using the same

calibration approach. Sample results for the refocusing approach are shown in Figure 54 (raw) and

Figure 55 (smoothed), and sample results for the ETC approach are shown in Figure 56 (raw) and

Figure 57 (smoothed). The progression of the tracks through 10 frames as shown in each image

gives a sense of the acceleration of each particle.

The vortex can be seen to progress from left to right in these series of images in Figure 54 to Figure

57. Some noisy elements where tracks have been made incorrectly are also present, particularily

in the out-of-plane track sets. The smoothing approach is at least partially successful in eliminating

these and does manage to start reconstructing the upper (+z) and lower (-z) portions of the vortex

in Figure 55. The in-plane flow is especially well-reconstructed by the smoothing approach and

even somewhat by the basic tracking approach, with the two counter-rotating vorticies clearly

visible in all in-plane images. Comparing the sets of figures, the refocusing appraoch has been

better able to reconstruct the vortex than the ETC approach. In Figure 55 the refocusing approach

has, after smoothing, been able to partially reconstruct the out-of-plane vortices above and below

the core of the toroid. The same cannot be said of the smoothed ETC approach in Figure 57, as too

much out-of-plane noise is still present to be able to observe the vortices. The smoothing method

has also been forced to eliminate more vectors in the ETC, leading to a reduced number of tracks

that is apparent even when comparing the in-plane figures of each data set.

The limitations of the ETC approach’s 2D particle location algorithm is likely the main problem.

Here, the algorithm may be lacking when trying to accurately find the 2D positions of particles

near the edges of the micro-lens-images. The inability of the ETC or the filtering approach to

ignore these particles due to the consistency with which the edge-shifting occurs may also be an

issue. Together, the subsequent amplification of these errors by the triangulation approach would

lead to poor out of-plane location of the particles. The cross-correlation approach used to make the

depth maps and refocused images appears to be more effective at producing good depth estimates,

at least for the relatively large particle size used in this case.

85

(a): frame 50 (d) : frame 50

(b) : frame 100 (e) : frame 100

(c) : frame 150 (f) : frame 150

Figure 54 – Raw velocity vectors of the vortex found using the refocusing method. (a-c) show
the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

86

(a): frame 50 (d) frame 50

(b) frame 100 (e) frame 100

(c) frame 150 (f) frame 150

Figure 55 – Smoothed velocity vectors of the vortex found using the refocusing method. (a-c)
show the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

87

(a): frame 50 (d) : frame 50

(b) : frame 100 (e) : frame 100

(c) : frame 150 (f) : frame 150

Figure 56 – Raw velocity vectors of the vortex found using the ETC method. (a-c) show the
vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

88

(a): frame 50 (d) frame 50

(b) frame 100 (e) frame 100

(c) frame 150 (f) frame 150

Figure 57 – Smoothed velocity vectors of the vortex found using the ETC method. (a-c) show
the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane.

89

7.4 Conclusion

The main conclusion that can be drawn from this study is that based on qualitative observations,

the refocusing method was better able to reconstruct the toroidal vortex than the ETC method. The

ETC method likely had difficulties associated with its ability to correctly determine the virtual

depths of individual particles, particularly because the particles were relatively large in this case

which could exacerbate occlusion effects near the edges of the micro-lenses. This was likely

further influenced by the relatively large particle-image size. As discussed in Chapters 5 and 6, the

issues with the out-of-plane particle-location ability of the ETC method are likely to stem from the

2D particle-location method and the failure of the filtering approach from Section 3.3.6.

90

CHAPTER 8 CONCLUSIONS

To review, the first goal of this study was to develop a method capable of adapting existing

commercially available software used for processing multi-focus plenoptic images to locate

particles. This has been achieved using a developed Matlab code capable of processing the outputs

of the commercial software and extracting the particle locations in pixel and virtual space. The

second goal was to implement a calibration algorithm capable of converting the pixel and virtual

locations to physical space. An existing multi-focus plenoptic camera calibration algorithm was

adapted and implemented for the first time in Matlab. The third goal was to perform time-resolved

three-dimensional particle tracking on the found particles. A customized approach specifically

designed to address the shortfalls of the particle location algorithm was adapted from existing

particle tracking algorithms and implemented in Matlab. The final goal was to develop a custom

particle-location approach capable of extracting 3D particle locations from raw plenoptic images.

The bulk of this goal has been completed. The developed ETC method is capable of extracting 3D

particle locations, but results have indicated that its performance has been hindered by the 2D raw-

image particle location algorithm used.

The results from Chapter 5 indicated that use of the R5 f/# 2.4 with the ETC method produced a

significant increase in track variance after a virtual depth of ~9.35. These results also indicated

that the calibration algorithm implemented can under-predict the lens focus distance TL, producing

an incorrect scaling in the depth values and reduced in-plane observed motion. The major success

of Chapter 5 was the performance of the smoothing algorithm, which reduced the variance of

measured displacements by more than an order of magnitude in all directions and cases. The main

area of work remaining in this section would be to repeat the experiment in such a way that the

refocusing method could be tested and the results could be compared to confirm which method is

more effective.

The results from Chapter 6 showed that the plenoptic camera and ETC particle-location approach

combined with the particle tracking and smoothing methods are capable of generating 3D particle

tracks at the microscale. The tracks had good in-plane agreement with the expected flow field. The

tracking in the out-of-plane direction was reasonable to the extent that some flow structures could

be resolved, but was greatly affected by the level of uncertainty in the depth location approach.

91

The results from Chapter 7 indicated that when tracking macro-scale vortices, the refocusing

method performed better than the ETC method. The refocusing method was able to correctly

generate some of the out-of-plane structures expected to be present in the toroidal vortex studied.

In both methods, but more notable in the ETC method, out-of-plane noise generated from incorrect

particle tracks was present. The smoothing method was able to eliminate only some of this noise.

The results of this investigation indicate that the uncertainty associated with the out-of-plane

components found by the ETC 3D particle location method is too high when compared the

refocusing method, which results in noisy particle tracks. This may mean that the uncertainties

associated with the 2D particle centroid location method used are too high and are being amplified

by the triangulation method used to find the 3D particle locations. This could be of particular

significance near the edges of the micro-lens images, where the 2D centroids are affected by the

cutoff of the particle-images.

The major next step in improving upon this work is derived from the new understanding of the

issues and problems associated with the developed ETC approach that have become apparent

through the conducted studies. This step involves modifying the ETC algorithm to compare the

locations of particles based on cross-correlation of the particle-images rather than directly

comparing discrete 2D particle centroids, enabling comparison of particles in adjacent micro-lens-

images. This could make the ETC method better able to locate particles that are partially cut off

by the edges of the micro-lens images in the 2D raw plenoptic images, and therefore better able to

reconstruct their positions in 3D.

92

REFERENCES

[1] D. Schanz, S. Gesemann, and A. Schröder, “Shake-The-Box: Lagrangian particle tracking at high

particle image densities,” Exp. Fluids, vol. 57, no. 5, p. 70, 2016.

[2] C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Exp. Fluids, vol. 10, no. 4, pp.

181–193, Jan. 1991.

[3] H. G. Maas, A. Gruen, and D. Papantoniou, “Particle tracking velocimetry in 3-dimensional flows.

1. Photogrammetric determination of partacle coordinates,” Exp. Fluids, vol. 15, no. 2, pp. 133–146,

1993.

[4] S. M. Soloff, R. J. Adrian, and Z.-C. Liu, “Distortion compensation for generalized stereoscopic

particle image velocimetry,” Meas. Sci. Technol., vol. 8, no. 12, pp. 1441–1454, 1997.

[5] R. Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision

Metrology Using Off-the-shelf TV Cameras and Lenses,” IEEE J. Robot. Autom., vol. RA-3, no. 4,

1987.

[6] Z. Zhang, “A Flexible New Technique for Camera Calibration (Technical Report),” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000.

[7] G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image

velocimetry,” Exp. Fluids, vol. 41, no. 6, pp. 933–947, 2006.

[8] F. Scarano, “Tomographic PIV: principles and practice,” Meas. Sci. Technol., vol. 24, no. 1, p.

12001, 2013.

[9] D. Homeniuk, “Development and Testing of Macro and Micro Three-Dimensional Particle Tracking

Systems,” University of Alberta, 2009.

[10] H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, “Three-dimensional measurement and

visualization of internal flow of a moving droplet using confocal micro-PIV,” Lab Chip, vol. 7, no.

3, pp. 338–346, 2007.

[11] R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, “Confocal micro-PIV measurements of three-

dimensional profiles of cell suspension flow in a square microchannel,” Meas. Sci. Technol., vol.

17, no. 4, pp. 797–808, 2006.

[12] B. Ovryn, “Three-dimensional forward scattering particle image velocimetry applied to a

microscopic field-of-view,” Exp. Fluids, vol. 29, no. SUPPL. 1, 2000.

[13] M. R. Bown, J. M. MacInnes, R. W. K. Allen, and W. B. J. Zimmerman, “Three-dimensional, three-

component velocity measurements using stereoscopic micro-PIV and PTV,” Meas. Sci. Technol.,

vol. 17, no. 8, pp. 2175–2185, 2006.

[14] E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 14, no. 2, pp. 99–106, 1992.

[15] M. Levoy and P. Hanrahan, “Light field rendering,” Proc. 23rd Annu. Conf. Comput. Graph.

Interact. Tech. - SIGGRAPH ’96, pp. 31–42, 1996.

93

[16] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and

M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph., vol. 24,

no. 3, p. 765, 2005.

[17] F. Ives, “US patent 725,567,” 1903.

[18] G. Lippmann, “Epreuves reversibles, photographies integrales,” Acad. des Sci., no. 446451, 1908.

[19] H. E. Ives, “A camera for making parallax panoramagrams,” J. Opt. Soc. Am., no. 17, pp. 435–39,

1928.

[20] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” SIGGRAPH

2000, no. 297306, 2000.

[21] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography

with a Hand-held Plenoptic Camera,” Stanford Tech Rep., vol. 2, 2005.

[22] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans.

Graph., vol. 3, no. 25, p. 924937, 2006.

[23] A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International

Conference on Computational Photography (ICCP), 2009.

[24] T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International

Conference on Computational Photography (ICCP), 2009, pp. 1–9.

[25] T. Georgiev, “New results on the Plenoptic 2.0 camera,” in 2009 Conference Record of the Forty-

Third Asilomar Conference on Signals, Systems and Computers, 2009, pp. 1243–1247.

[26] T. Georgiev, G. Chunev, and A. Lumsdaine, “Superresolution with the focused plenoptic camera,”

in Proceedings of SPIE - The International Society for Optical Engineering, 2011, vol. 7873, p.

78730X–78730X–13.

[27] C. Perwaß, L. Wietzke, and R. Gmbh, “Single Lens 3D-Camera with Extended Depth-of-Field,”

Proc. SPIE 8291, Hum. Vis. Electron. Imaging XVII, vol. 49, no. 431, 2012.

[28] Raytrix GmbH, “Raytrix 3D Light Field Camera Technology,” 2017. .

[29] T. W. Fahringer, K. P. Lynch, and B. S. Thurow, “Volumetric particle image velocimetry with a

single plenoptic camera,” Meas. Sci. Technol., vol. 26, no. 11, p. 115201, Nov. 2015.

[30] E. A. Deem, D. Agentis, F. Nicolas, L. N. Cattafesta, T. Fahringer, and B. Thurow, “A Canonical

Experiment Comparing Tomographic and Plenoptic PIV,” 10th Pacific Symp. Flow Visulaization

Image Process., no. April 2016, pp. 15–18, 2015.

[31] E. A. Deem, Y. Zhang, L. N. Cattafesta, T. W. Fahringer, and B. S. Thurow, “On the resolution of

plenoptic PIV,” Meas. Sci. Technol., vol. 27, no. 8, p. 84003, 2016.

[32] E. M. Hall, D. R. GUildenbecher, and B. S. Thurow, “Uncertainty characterization of particle

location from refocused plenoptic images,” Opt. Express, vol. 25, no. 18, pp. 21801–21814, 2017.

[33] E. M. Hall, T. W. Fahringer, B. S. Thurow, and D. R. Guildenbecher, “Volumetric calibration of a

plenoptic camera,” in 55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics

94

and Astronautics, 2017.

[34] H. Chen and V. Sick, “Three-Dimensional Three-Component Air Flow Visualization in a Steady-

State Engine Flow Bench Using a Plenoptic Camera,” SAE Int. J. Engines, 2017.

[35] C. Heinze, “Design and test of a calibration method for the calculation of metrical range values for

3D light field cameras,” Fachhochschule Westküste - University of Applied Sciences, 2014.

[36] O. Johannsen, C. Heinze, B. Goldluecke, and C. Perwaß, “On the Calibration of Focused Plenoptic

Cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications: Dagstuhl

2012 Seminar on Time-of-Flight Imaging and GCPR 2013 Workshop on Imaging New Modalities,

2013, pp. 302–317.

[37] E. Halley, “An Instance of the Excellence of the Modern Algebra, in the Resolution of the Problem

of Finding the Foci of Optick Glasses Uniuersally. By E. Halley, S. R. S.,” Philos. Trans., vol. 17,

pp. 960–969, 1693.

[38] M. Moroni, J. H. Cushman, and A. Cenedese, “A 3D-PTV two-projection study of pre-asymptotic

dispersion in porous media which are heterogeneous on the bench scale,” Int. J. Eng. Sci., vol. 41,

no. 3–5, pp. 337–370, 2003.

[39] Y. A. Hassan and R. E. Canaan, “Full-field bubbly flow velocity measurements using a multiframe

particle tracking technique,” Exp. Fluids, vol. 12, no. 1–2, pp. 49–60, 1991.

[40] R. G. Racca and J. M. Dewey, “A method for automatic particle tracking in a three-dimensional

flow field,” Exp. Fluids, vol. 6, no. 1, pp. 25–32, 1988.

[41] H. Nobach and M. Honkanen, “Two-dimensional Gaussian regression for sub-pixel displacement

estimation in particle image velocimetry or particle position estimation in particle tracking

velocimetry,” Exp. Fluids, vol. 38, no. 4, pp. 511–515, 2005.

[42] S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated

background: Polynomial fitting with Gaussian weight,” Phys. Biol., vol. 4, no. 3, pp. 220–227, 2007.

[43] B. Spinewine, H. Capart, M. Larcher, and Y. Zech, “Three-dimensional Voronoi Imaging Methods

For The Measurement Of Near-wall Particulate Flows,” Exp. Fluids, vol. 34, no. 2, pp. 227–241,

2003.

[44] J. Crocker and D. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid

Interface Sci., vol. 179, no. 1, pp. 298–310, 1996.

[45] D. Blair and E. Dufresne, “The Matlab Particle Tracking Code Repository,” 2007. [Online].

Available: http://site.physics.georgetown.edu/matlab/.

[46] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,” Q.

Appl. Math., no. 2, pp. 164–168, 1944.

[47] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM J.

Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[48] D. C. Brown, “Decentering distortion of lenses,” Photom. Eng., vol. 32, no. 3, pp. 444–462, 1966.

[49] M. Reidl, “Optical design fundementals for infrared systems,” SPIE Opt. Eng. Press, 2001.

95

[50] B. Lüthi, A. Tsinober, and W. Kinzelbach, “Lagrangian measurement of vorticity dynamics in

turbulent flow,” J. Fluid Mech., vol. 528, no. 2005, pp. 87–118, 2005.

[51] B. Rosner, “Percentage Points for a Generalized ESD Many-Outlier Procedure,” Technometrics,

vol. 25, no. 2, pp. 165–172, May 1983.

[52] J. Hadfield and D. S. Nobes, “Calibration of Plenoptic 2.0 Cameras and use in 3DPTV

Investigations,” in Proceedings of the 18th Annual Symposium on Application of Laser and Imaging

Techniques to Fluid Mechanics, 2016, pp. 3241–3252.

[53] J. Hadfield and D. S. Nobes, “Implementation of Focused Plenoptic Time-Resolved 3D-PTV in the

Analysis of a Vortex Flow,” in Second Thermal and Fluids Engineering Conference, 2017.

[54] A. Glezer, “The formation of vortex rings,” Phys. Fluids, vol. 31, no. 12, p. 3532, 1988.

96

 PLENOPTIC SYSTEM DESIGN CODE

The code included here was used to generate the plots of imaging range as a function of image

distance in Figure 7 through Figure 9. It is easily adapted for any lens focal length (f) or sensor

size (S) by changing the function-evaluation input parameters within.

% method for solving a plenoptic system given inputs:

% MLB - micro-lens-sensor distance (maximum)

% selV - maximum desired virtual depth

% outputs plots for 35, 50, 85 mm lenses

% for more information, see Matlab solve, subs, and eval methods

clear

close all

MLB=1.452;

selV=7.5;

syms f Bl B v Bv Tv Tl Fmax D Fmin S positive

e1= 1./(Bl)+1./(Tl-Bl) == 1./f;

e6=S./(2.*(Bl-B))==Fmax./(2.*(Tl-Bl));

e7=Bl+(v-2).*B==Bv;

e8=1./Bv+1./(Tv-Bv)==1./f;

e9=(Tl-Bl)-(Tv-Bv)==D;

e10=S./2./(Bl-B)==Fmin./2./(Tv-Bv);

soln=solve([e1,e6,e7,e8,e9,e10],[Tl,Tv,Bv,Fmax,Fmin,D]);

solsub50.Bl=[55:.25:180];

solsub50.Fmax=eval(subs(soln.Fmax,{f S Bl B},{50 2048*5.5e-3 solsub50.Bl MLB}));

solsub50.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV}));

solsub50.D=eval(subs(soln.D,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV}));

solsub50.Tl=eval(subs(soln.Tl,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV}));

solsub35.Bl=[38:.25:180];

solsub35.Fmax=eval(subs(soln.Fmax,{f S Bl B},{35 2048*5.5e-3 solsub35.Bl MLB}));

solsub35.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV}));

solsub35.D=eval(subs(soln.D,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV}));

solsub35.Tl=eval(subs(soln.Tl,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV}));

solsub85.Bl=[94:.25:180];

solsub85.Fmax=eval(subs(soln.Fmax,{f S Bl B},{85 2048*5.5e-3 solsub85.Bl MLB}));

solsub85.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV}));

solsub85.D=eval(subs(soln.D,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV}));

solsub85.Tl=eval(subs(soln.Tl,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV}));

figure

plot(solsub50.Bl,solsub50.Fmax,'--r',solsub50.Bl,solsub50.Fmin,'--b',solsub50.Bl,solsub50.D,'--

k')

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12)

97

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12)

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12)

xlim([70 90])

set(gca,'FontName','Times New Roman')

set(gca,'fontsize',12)

figure

plot(solsub35.Bl,solsub35.Fmax,'-r',solsub35.Bl,solsub35.Fmin,'-b',solsub35.Bl,solsub35.D,'-k')

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12)

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12)

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12)

xlim([45 65])

set(gca,'FontName','Times New Roman')

set(gca,'fontsize',12)

figure

plot(solsub85.Bl,solsub85.Fmax,'-.r',solsub85.Bl,solsub85.Fmin,'-.b',solsub85.Bl,solsub85.D,'-

.k')

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12)

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12)

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12)

xlim([130 150])

set(gca,'FontName','Times New Roman')

set(gca,'fontsize',12)

figure

plot(solsub35.Bl,solsub35.Fmax,'-r',solsub35.Bl,solsub35.Fmin,'-b',solsub35.Bl,solsub35.D,'-

k',solsub50.Bl,solsub50.Fmax,'--r',solsub50.Bl,solsub50.Fmin,'--b',solsub50.Bl,solsub50.D,'--

k',solsub85.Bl,solsub85.Fmax,'-.r',solsub85.Bl,solsub85.Fmin,'-.b',solsub85.Bl,solsub85.D,'-.k')

legend({'{\itf}=35 mm {\itF}_{MAX}','{\itf}=35 mm {\itF}_{MIN}','{\itf}=35 mm \itD','{\itf}=50 mm

{\itF}_{MAX}','{\itf}=50 mm {\itF}_{MIN}','{\itf}=50 mm \itD','{\itf}=85 mm

{\itF}_{MAX}','{\itf}=85 mm {\itF}_{MIN}','{\itf}=85 mm \itD'},'FontName','Times New

Roman','FontSize',12)

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12)

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12)

ylim([0 150])

set(gca,'FontName','Times New Roman')

set(gca,'fontsize',12)

xlim([35,180])

Published with MATLAB® R2017b

http://www.mathworks.com/products/matlab

98

 REFOCUSING CODE

The Matlab codes for the refocusing method are included here. The functions bpass, pkfnd, and

cntrd are available from [45]. All other functions are available in Matlab libraries, or have been

included here. The structure of the code is given in the chart below. The red and green blocks are

the tracking and tracking auxiliary methods common between this code and the ETC code. These

will be included in Appendix E. The required inputs for this code are the refocused images and

depth maps from the commercial software package. Also needed is a completed optical system

calibration, the code for which is given in Appendix D.

Figure B1 – Flow chart of the refocusing code

99

 Wrapper function: A_RUN_JH_2f_PTV_Multi

The following code serves as a ‘wrapper’, running all other functions in the refocusing code in

loops as needed, while ensuring that all inputs and outputs reach the correct locations, and also

saving the results. It is set up to allow the inputs to be included either in the first section of the

code, or in the function when called.

function A_RUN_JH_2f_PTV_Multi(Iloc,imNos,imFmt,path,CalLoc,smoothstrength,settings,display)

if nargin < 7 || length(settings)~=11

 % Default Settings

 % centroid detection (units of pixels)

 inversion = 0;

 pkthresh = 20;

 psize = 9; % should be odd

 noisescale = 3;

 noisethresh = 0;

 % depth detection (for later)

 drt = 8; % required number of depth estimations to keep a point

 % particle tracking (units of mm)

 search = 2;

 neighbor = 20;

 quasi = .3;

 zdt = 0.05;

 % particle prediction

 range = 1;

 fp=5;

 % Track Rejection

 art = 2; % acceleration rejection threshold in mm/frame^2

 zaf = .05; % z-amplification factor, used to reduce z-direction components

 % linkage

 lzdt=0.05;

 % Track Smoothing

 % number of frames to use on either side of particle when smoothing

 % (depends on movement/frame >> more movement, less smoothing).

 % Generally want at least 5 and not more than 20.

 smoothstrength=16;

 settings = [pkthresh psize noisescale noisethresh inversion drt search neighbor quasi range

zdt];

 display = 0;

else

100

 pkthresh = settings(1);

 psize = settings(2);

 noisescale = settings(3);

 noisethresh = settings(4);

 inversion = settings(5);

 drt = settings(6);

 search = settings(7);

 neighbor = settings(8);

 quasi = settings(9);

 range = settings(10);

 zdt = settings(11);

end

close all

% initializations

minx=0;

miny=0;

minz=0;

maxx=0;

maxy=0;

maxz=0;

nlostpts=0;

% control to skip initial tracking

% DEFAULT CALIBRATION

if nargin < 5

 CalLoc = 'X:\01_Current_Students\Jake Hadfield\Coding\Matlab\Calibration

Code\Calibration_170529.mat';

end

% LOAD IMAGES

if nargin < 4

 path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\FixedField_172905\O1X\';

end

if nargin < 3

 Iloc = 'Image';

 imNos = 1024:1088;

 imFmt = '.tiff';

 savedate= '1706001';

end

newtracks=1; % Need to run particle-location code

if newtracks==1

% RUN ALGORITHMS

fprintf(['Running first image pair. Completion time will be estimated soon. Current time is: '

datestr(now) '\n']);

tic;

for i=1:length(imNos)-1

 if i==2

 tic;

101

 end

 Iloc1 = [Iloc '_' num2str(imNos(i),'%04i')];

 Iloc2 = [Iloc '_' num2str(imNos(i+1),'%04i')];

 if i == 1

 [alltracks,polyhold,p1,mp,ps] =

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display);

 plist=[ps ones(length(ps),1)];

 else

 [alltracks,polyhold,p1,mp] =

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display,alltracks,i,polyhold,p1,mp);

 end

 tt=toc;

 if i>1

 fprintf(['Estimated completion is around ' datestr(now+tt/(i-1)*(length(imNos)-1-

i)/84600) '\n']);

 else

 fprintf(['Estimated completion is around ' datestr(now+tt/1.8*(length(imNos)-2)/84600)

'\n']);

 end

 [lp1,~]=size(p1);

 plist=[plist; [p1 ones(lp1,1)*(i+1)]];

end

fprintf(['Actual completion time was: ' datestr(now) '\n']);

% eliminate remaining predicted points

alltracks(alltracks(:,6)==0,:)=[];

save([path 'PList_' savedate '_' Iloc '.mat'],'plist')

save([path 'AllTracks_' savedate '_' Iloc '.mat'],'alltracks')

else

 load([path 'AllTracks_170324_' Iloc '.mat'])

 mp=[];

end

% get track stats

JH_TrackStats(alltracks)

% denoise tracks

lostpts=double.empty(0,5);

while ~isempty(nlostpts)

 [filttracks,nlostpts,~]=JH_MT_TrackBreak(alltracks,art,zaf);

 alltracks=filttracks;

 lostpts=[lostpts;nlostpts];

end

nmp=lostpts(:,[1:3,5]);

save([path 'BreakTracks_' savedate '_' Iloc '.mat'],'filttracks')

% resort tracks

[filttracks,misspts]=JH_resortTracks(filttracks);

% get track stats

JH_TrackStats(filttracks)

mp=sortrows([mp;nmp;misspts],4);

102

save([path 'FilTracks_' savedate '_' Iloc '.mat'],'filttracks')

save([path 'MissPts_' savedate '_' Iloc '.mat'],'mp')

linkcount=1;

while linkcount~=0

% link tracks

[linktracks,linkcount]=JH_LinkTracks(filttracks,range,lzdt,fp);

filttracks=linktracks;

% resort tracks

[linktracks,~]=JH_resortTracks(linktracks);

end

% get track stats

JH_TrackStats(linktracks)

% find longest linked track

long=1;

lc=1;

for i=1:max(linktracks(:,4))

 nlc=sum(linktracks(:,4)==i);

 if nlc>lc

 long=i;

 lc=nlc;

 end

end

link=linktracks(linktracks(:,4)==long,:);

% smoothing algorithm

smoothtracks = JH_SmoothTracks(linktracks,smoothstrength);

smooth=smoothtracks(smoothtracks(:,4)==long,:);

% get track stats

JH_TrackStats(smoothtracks)

% % find domain limits

% minx=min(alltracks(:,1));

% miny=min(alltracks(:,2));

% minz=min(alltracks(:,3));

% maxx=max(alltracks(:,1));

% maxy=max(alltracks(:,2));

% maxz=max(alltracks(:,3));

% % save data

% save([path 'Limits_170111_' Iloc '.mat'],'minx','miny','minz','maxx','maxy','maxz')

save([path 'LinkTracks_' savedate '_' Iloc '.mat'],'linktracks')

save([path 'SmoothTracks_' savedate '_' Iloc '.mat'],'smoothtracks')

save([path 'SLink_' savedate '_' Iloc '.mat'],'link')

save([path 'SSmooth_' savedate '_' Iloc '.mat'],'smooth')

JH_TrackToQuiv(path,['AllTracks_' savedate '_' Iloc '.mat']);

JH_TrackToQuiv(path,['SmoothTracks_' savedate '_' Iloc '.mat']);

103

Published with MATLAB® R2015b

 Location and Tracking: JH_2f_PTV_Depthdata

The following code is run for each image in the series. It is responsible for 3D location of the

particles, and then the initial tracking after the particles in each frame have been located.

function [alltracks,polyhold,p2,mp,ps] =

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display,alltracks,i,polyhold,p1,mp)

if nargin < 8

 alltracks = [];

end

if nargin < 9

 i = 1;

end

if nargin < 10

 polyhold.pno=[];

 polyhold.polyx=[];

 polyhold.polyy=[];

 polyhold.polyz=[];

 polyhold.mux=[];

 polyhold.muy=[];

 polyhold.muz=[];

end

if nargin < 12

 mp=[];

end

if nargin < 6 || length(settings)~=11

 % Default Settings

 % centroid detection (units of pixels)

 inversion = 0;

 pkthresh = 50;

 psize = 9; % should be odd

 noisescale = 0;

 noisethresh = 20;

 % depth detection (for later)

 drt = 4; % required number of depth estimations to keep a point

 % particle tracking (units of mm)

 search = .5;

 neighbor = 3;

 quasi = 0.2;

 % particle prediction

 range = 0.2;

else

 pkthresh = settings(1);

 psize = settings(2);

http://www.mathworks.com/products/matlab

104

 noisescale = settings(3);

 noisethresh = settings(4);

 inversion = settings(5);

 drt = settings(6);

 search = settings(7);

 neighbor = settings(8);

 quasi = settings(9);

 range = settings(10);

 zdt = settings(11);

end

close all

% DEFAULT CALIBRATION

if nargin < 5

 CalLoc = '\\nobes-nas01\NobesGroup\01_Current_Students\jhadfiel\Coding\Matlab\Calibration

Code\Calibration_T1';

end

% LOAD IMAGES

if nargin < 4

 path = 'C:\Users\jhadfiel\Desktop\TestImages\ParticleArc\Recirculation\';

end

if nargin < 3

 Iloc1 = 'SmallTube_80fps_3_0100';

 Iloc2 = 'SmallTube_80fps_3_0101';

 imFmt = '.tiff';

end

% FIND PARTICLES

p2=JH_ParticleFinder(Iloc2,imFmt,path,CalLoc,[pkthresh,psize,noisescale,noisethresh,inversion,drt

],display);

if nargin < 11

p1=JH_ParticleFinder(Iloc1,imFmt,path,CalLoc,[pkthresh,psize,noisescale,noisethresh,inversion,drt

],display);

end

ps=p1;

if display == 2

 figure

 scatter3(p1(:,1),p1(:,2),p1(:,3),.5,'b');

 hold on

 scatter3(p2(:,1),p2(:,2),p2(:,3),.5,'r');

 uiwait(gcf)

end

% TRACK

if i>=3

 fprintf('Attempting forward-predictive tracking on %i frame %i and %i frame %i

particles...\n',sum(~isnan(p2(:,3))),i,sum(~isnan(p2(:,3))),i+1);

105

 [p1,p2,alltracks,polyhold]=JH_MT_Fit_Predict(p1,p2,alltracks,i,range,zdt,polyhold,search);

end

%fprintf('Comparing %i particles in frame 1 to %i particles in frame

2\n',sum(~isnan(p1(:,3))),sum(~isnan(p2(:,3))));

fprintf('Attempting two-frame tracking on remaining %i frame %i and %i frame %i

particles...\n',sum(~isnan(p1(:,3))),i,sum(~isnan(p2(:,3))),i+1);

tracks = DH_track_v3(p1,p2,search,neighbor,quasi,zdt);

if ~isempty(tracks)

 nmp=p2(~ismember(p2,tracks(:,1:3),'rows'),:);

 [lnmp,~]=size(nmp);

 mp=[mp;nmp ones(lnmp,1)*i];

 alltracks=JH_MT_Associate(tracks,alltracks,i);

end

Published with MATLAB® R2015b

 Particle location function: JH_ParticleFinder

The following code locates each particle in 3D based on input refocused images and depth maps.

function particles=JH_ParticleFinder(imID,imFmt,path,CalLoc,settings,display)

%%%

% Finds particles in 3D from light field focused image + depth data.

% Expects one focused image and 3 depth images.

% Inputs:

% imID - Image file name (eg, Image_0001)

% imFmt - Image file extension (eg, .png)

% path - Image file location

% CalLoc - Calibration file location

% Display - how much display to do (integer, 0 to 2)

% Outputs:

% particles - 3D particle field, in the same units as the calibration file

% Settings

if length(settings)~=6

 % centroid detection properties, in pixels

 pkthresh = 30; % minimum acceptable peak threshold

 psize = 31; % should be odd, slightly larger than particles' pixel size

 noisescale = 5; % noise scale filter

 noisethresh = 10; % low-pass filter

 inversion = 1; % wether or not to invert image

 % depth detection values, in pixels

 drt = 7; % required number of depth estimations to keep a point

else

http://www.mathworks.com/products/matlab

106

 pkthresh = settings(1);

 psize = settings(2);

 noisescale = settings(3);

 noisethresh = settings(4);

 inversion = settings(5);

 drt = settings(6);

end

% load calibration

load(CalLoc,'allvars')

caldata = allvars(1:12);

% Get image in memory

focIm = imread([path imID '_Focus_Depth' imFmt]);

% invert if required

if inversion

 focIm=double(255-focIm);

end

%fprintf('Performing 2d centroid location...\n')

% 2D Centroid Location

% FILTER IMAGE

% IMAGE : Threshold : size of particle (longer)

binIm = bpass(focIm,noisescale,psize*2,noisethresh);

% FIND PARTICLES

% IMAGE : Image Threshold : size of particle (longer)

pk = pkfnd(binIm,pkthresh,psize);

% Do again to sub-pixel

cnt = cntrd(double(focIm),pk,psize);

if display == 2

 figure(1)

 imshow(focIm)

 hold on

 scatter(cnt(:,1),cnt(:,2),'+r');

 hold off

 drawnow

end

%fprintf('Adding 3d location data...\n');

% 3D Centroid Location

% Add in the depth data

for j=1:3

 switch j

 case 1

 depthIm = imread([path imID '_Depth_Far' imFmt]);

 case 2

 depthIm = imread([path imID '_Depth_Mid' imFmt]);

 case 3

 depthIm = imread([path imID '_Depth_Near' imFmt]);

107

 end

 [cntz(:,j),count(:,j),overs(j)]=JH_AssociateDepthDataV3(cnt,depthIm,1.25*psize,drt,display >=

2,j+1);

 %fprintf('Depth calculation %i complete.\n',j);

end

%fprintf('3D centroid location complete, with %i overlaps detected.\n',sum(overs)/3);

cnts = [cnt(:,1:2),cntz(:,:)];

if display >2

 figure

 scatter3(cnts(:,1),cnts(:,2),cnts(:,3),0.5);

 uiwait(gcf)

end

%fprintf('Performing metric conversion...\n')

% Metric Conversion

particles = JH_PhysConvert(cnts,caldata,count);

Published with MATLAB® R2015b

 Depth location function: JH_AssociateDepthDataV3

The following code extracts the depth information for each 2D particle location found in the

refocused images from the depth maps, and associates the extracted depth with each 2D location.

function [cntz,count,overs]=JH_AssociateDepthDataV3(cnt,dm,prad,drt,vis,fig)

%%%

% Associates virtual depths with 2D image centroids for a calibration

% target. Deals with overlapping particles.

% Inputs:

% cnt - centroids from cntrd in (x,y,I,rg) format

% dm - image of depth map. Must be same size as full focus image

% psize - approximate size of a dot

% border - border around the dot that will contain all depth values for

% that dot

%

% Outputs:

% cnt - centroids from cntrd in (x,y,z,I,rg,) format

%masking stuff

xx=repmat(1:1:length(dm),length(dm),1);

yy=repmat(1:1:length(dm),length(dm),1)';

% First depth map

% plot for testing

if vis == 1

 figure(fig)

 vdeptharray=reshape(typecast(reshape(uint32(dm),[],1),'single'),1024,1024);

http://www.mathworks.com/products/matlab

108

 imshow(vdeptharray)

 colormap jet

 % min(min(vdeptharray(vdeptharray>0))) is a bit bigger than the

 % theoretical min of 2

 caxis([2 8]);

 cm=colormap;

 cm(1,:)=[0 0 0];

 colormap(cm);

 colorbar

 hold on

 drawnow

end

% add a column to cnt to store depths

cnt(:,5)=cnt(:,4);

cnt(:,4)=cnt(:,3);

cnt(:,3)=0;

cntz=zeros(length(cnt),1);

count = zeros(length(cnt),1);

overs = 0;

%pp=parpool('local',4);

for i=1:length(cnt)

% str=sprintf('Performing depth calculation on particle %i of %i',i,length(cnt));

% if i>2

% [char(8)*ones(1,lStr+10),str]

% elseif i==2

% [char(8)*ones(1,lStr+9),str]

% else

% disp(str)

% end

% lStr = length(str);

 % get distance to other centroids

 if vis == 1

 figure(fig)

 d = prad*2;

 px = cnt(i,1)-prad;

 py = cnt(i,2)-prad;

 rectangle('Position',[px py d d],'Curvature',[1,1],'EdgeColor','g');

 drawnow

 end

 % grab subset of depth map values from around centroid

 subset = dm(sqrt((xx-cnt(i,1)).^2+(yy-cnt(i,2)).^2)<=prad);

 % re-orient into single column of nonzero values

 alldepths=subset(subset>0);

 % convert to virtual depth

 vdepths = typecast(uint32(alldepths),'single');

 vdepths = vdepths(vdepths>2);

 % get standard deviation

 vdsd=std(vdepths);

 vdm=median(vdepths);

 % run a loop to eliminate outliers

109

 outliers=1;

 while outliers

 nvdepths=vdepths(abs(vdepths-vdm)<vdsd*2);

 if length(nvdepths)==length(vdepths)

 vdepths=nvdepths;

 outliers=0;

 else

 vdm=median(nvdepths);

 vdsd=std(nvdepths);

 vdepths=nvdepths;

 end

 end

 count(i)=length(vdepths);

 if count(i)>drt

% if vdm<=8

 cntz(i)=vdm;

% else

% cntz(i)=NaN;

% end

 else

 cntz(i)=NaN;

 end

end

%delete(pp)

Published with MATLAB® R2015b

 Physical-space conversion function: JH_PhysConvert

The following code converts particle locations from pixel and virtual coordinates in image space

to metric coordinates in physical space based on the calibration.

function mpoints = JH_PhysConvert(impoints,caldata,count)

%%%

% Scales the pixel+virtual space n-by-5 array impoints into a physical space

% n-by-3 array mpoints, using the parameters set by caldata which should be

% in [fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD] form

%%%

% constants

spix = 5.5e-3;% pixel size [mm/pix]

Rx = 1024; % image (sensor?) resolution x [pix]

Ry = 1024; % iamge (sensor?) resolution y [pix]

% shift caldata into variables

% main lens variables

fL = 85;

tL = caldata(1);

http://www.mathworks.com/products/matlab

110

% micro-lens variables

b1= caldata(2);

b2= caldata(3);

b3= caldata(4);

% distortion variables

x0 = caldata(5); % distortion offset x from corner [pix] relative to image centre

y0 = caldata(6); % distortion offset y from corner [pix] relative to image centre

k1 = caldata(7); % radial distortion coeff 1

k2 = caldata(8); % radial distortion coeff 2

d1 = caldata(9); % depth distortion coeff 1

d2 = caldata(10); % depth distortion coeff 2

dD = caldata(11); % depth-dependant depth distortion coeff

% % distortion due to cylinder

% yc0 = caldata(13);

% kc1 = caldata(14);

% kc2 = caldata(15);

% dc1 = caldata(16);

% dc2 = caldata(17);

% dcD = caldata(18);

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

Gp = tL-bL;

% Physical Conversion

% convert virtual depths and pixel locations to metric

 zdata=bL+bsxfun(@times,impoints(:,3:5)-2,[b1,b2,b3]);

 metric=[bsxfun(@times,-(impoints(:,1)-Rx/2)*2*spix,bsxfun(@rdivide,zdata,bL)),...

 bsxfun(@times,-(impoints(:,2)-Ry/2)*2*spix,bsxfun(@rdivide,zdata,bL)),...

 zdata];

 % compute r for each point

 r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,[1,4]),[x0,y0])).^2,2));

 r(:,2) = sqrt(sum(abs(bsxfun(@minus,metric(:,[2,5]),[x0,y0])).^2,2));

 r(:,3) = sqrt(sum(abs(bsxfun(@minus,metric(:,[3,6]),[x0,y0])).^2,2));

 % undistort metric-depth points

 undist=[metric(:,1).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,2).*(1+k1*r(:,2).^2+k2*r(:,2).^4),...

 metric(:,3).*(1+k1*r(:,3).^2+k2*r(:,3).^4),...

 metric(:,4).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,5).*(1+k1*r(:,2).^2+k2*r(:,2).^4),...

 metric(:,6).*(1+k1*r(:,3).^2+k2*r(:,3).^4),...

 metric(:,7:9)+(1+dD*metric(:,7:9)).*(d1*r(:,1:3).^2+d2*r(:,1:3).^4)];

 % project points to physical space

 zdata=undist(:,7:9)*fL./(undist(:,7:9)-fL);

 phys=[undist(:,1:3)./undist(:,7:9).*zdata,...

 undist(:,4:6)./undist(:,7:9).*zdata,...

 zdata];

% Depth Selection

% we now have 3 depths and 3 (x,y) locations for each particle...only want 1

111

% so, do a weighted average of these based on how good the initial virtual

% depth measurement was

% determine the weights, based on the original number of depth estimations

w1=count(:,1);

w2=count(:,2);

w3=count(:,3);

% determine the nan locations

nnan1=~isnan(phys(:,7));

nnan2=~isnan(phys(:,8));

nnan3=~isnan(phys(:,9));

% set nans to zero

phys(~nnan1,7)=0;

phys(~nnan2,8)=0;

phys(~nnan3,9)=0;

% do the weigthed average, not including nan weight

mpoints =

[(phys(:,1).*w1.*nnan1+phys(:,2).*nnan2.*w2+phys(:,3).*nnan3.*w3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3

)

(phys(:,4).*w1.*nnan1+phys(:,5).*w2.*nnan2+phys(:,6).*w3.*nnan3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3)

(phys(:,7).*nnan1.*w1+phys(:,8).*nnan2.*w2+phys(:,9).*w3.*nnan3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3)

];

mpoints(mpoints==0)=NaN;

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab

112

 ETC METHOD

The Matlab codes for the ETC method are included here. The functions bpass, pkfnd, and cntrd

are available from [45]. All other functions are available in Matlab libraries, or have been included

here. The structure of the code is given in the chart below. Before running these codes, a micro-

lens calibration must first be performed, the code for which is included in this appendix. The red

and green blocks are the tracking and tracking auxiliary methods common between this code and

the refocusing code. These will be included in Appendix E. The required inputs for this code are

raw plenoptic images. Also needed is a completed optical system calibration, the code for which

is given in Appendix D. The JH_PhysConvert method has already been presented in Appendix B

and will not be included again.

Figure C1 – Flow chart of the ETC code

113

 Micro-lens calibration function: micro-lensCal

The method for the micro-lens calibration is included here. It requires only the input of a white

image, or a group of white images if an average white image is desired.

function [lensCents,adjlist,typelist,ev,mask]=micro-lensCal(varargin)

%%%

% Generates a model of the ideal micro-lens centres, given a few

% input parameters, and associates input centroids. first two columns of

% impoints contain [a,b] matrix of valid target points, last two contain

% original centroid locations.

% Inputs:

% cnts - Detected centroids of grid points, in (x,y,z) form [pix]

% radratio - Tolerance for expected point location, max 0.5, recommended

% 0.1 or less; depends on target image quality and noise level

% maxmiss - Number of points

% thresh - Threshold, the value used as a cutoff when binarizing the

% image to estimate the circle centroids. MUST result in disconnection

% between ALL circles.

% Outputs:

% lensCents - array of [a,b] positions indicating the pixel locations of

% each lens centre, sorted from leftmost to rightmost

% adjlist - an nx6 connectivity list for each of the lenses, storing the

% indicies of adjacent lenses of the SAME TYPE

% lgroups - 3 cells containing the sets of all connected lenses

% ev - epipolar vectors for system

% mask - A mask that can be used to isolate micro-lens data

%

% Warnings: Code will produce warnings identifying points that deviated

% significantly from the expected location, based on the axis generated.

% These will occur more frequently with highly distorted views. Should

% check these points manually to confirm centroid location was good. If a

% lot of these show up, there may be issues near the centre of the image.

%%%

warn = 0;

% robust input handling

if nargin == 0

 varargin={1 '' '' ''};

end

if ~isa(varargin{1},'string')

 imLoc='X:\01_Current_Students\Jake Hadfield\LightField Test

Images\2017_03_01\17_03_01_09L50HD\WhitIm.tiff';

else

 imLoc=varargin{1};

end

if ~isa(varargin{2},'double')

 radratio = 0.1; % default

else

 radratio = varargin{2};

end

114

if ~isa(varargin{3},'double')

 maxmiss = 2; % default

else

 maxmiss = round(varargin{3});

 if maxmiss <= 0

 error('Improper inputs, maxmiss must be a positive integer.');

 return;

 end

end

if ~isa(varargin{4},'double')

 thresh = 160; % default

 load('X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-Sep-

2017.mat');

else

 thresh = varargin{4};

 if thresh <= 0

 error('Improper inputs, thresh must be a positive integer.');

 return;

 end

 imlist=dir([imLoc '*.png']);

 whitAve=imread([imLoc imlist(1).name]);

 while 1

 imshow(im2bw(whitAve,thresh/255));

 button=questdlg('Are all circles disconnected?');

 if strcmp(button,'Yes')

 break;

 elseif strcmp(button,'Cancel')

 lensCents=[];

 return;

 else

 thresh=str2double(inputdlg('New threshold:'));

 end

 end

 imlist=dir([imLoc '*.png']);

 for i=1:length(imlist)

 im(:,:,i)=imread([imLoc imlist(i).name]);

 end

 whitAve=mean(im,3)/255;

end

oops = 0;

global ipoints

% roughly find micro-lens centres via thresholding and region detection

bwim=im2bw(whitAve,thresh/255);

imshow(bwim)

props=regionprops(bwim,'centroid');

cnts=cat(1, props.Centroid);

% cnts=pkfnd(image,0,20);

115

%remove cnts of lenses on border of image

cnts(~((cnts(:,1)>10) .* (cnts(:,1)<2038) .* (cnts(:,2)>10) .* (cnts(:,2)<2038)),:)=[];

% try to do a better job finding centroids using cntrd

cnts=cntrd(double(whitAve),round(cnts),25);

imshow(whitAve)

hold on

scatter(cnts(:,1),cnts(:,2),'or')

hold off

% Find target axes

% find [x,y] epicentre of centroids

epi= sum(cnts(:,1:2))/length(cnts);

% put [x,y] centroids into a k-d tree

tree = KDTreeSearcher(cnts(:,1:2));

% figure out which centroid is closest to the epicentre

ind = knnsearch(tree,epi);

% set that point to be the origin

ipoints = [0 0 cnts(ind,1:2)];

% set lens type for first point

typelist=1;

% find next 6 nearest points to origin

ind = knnsearch(tree, cnts(ind,1:2), 'K', 7); % single row

% find opposing points

vecs = 2*bsxfun(@minus,cnts(ind,1:2),cnts(ind(1),1:2));

% toss out zeros (origin)

vecs(vecs(:,1)==vecs(:,2),:)=[];

indop = knnsearch(tree,bsxfun(@minus,cnts(ind(2:7),1:2),vecs)); % single column

% get opposites list, remove duplicates and origin

ops = [ind(2:7)' indop];

ops = unique(sort(ops,2),'rows');

% ops should be a 3x2 array with the indicies of points that oppose each other across the origin

check = size(ops);

if check(1)~=3 || check(2) ~=2

 oops = 2;

 ipoints = 0;

 return

end

% determine vector lengths between points in ops

vecs = cnts(ops(:,2),1:2)-cnts(ops(:,1),1:2);

% figure out which axes are good

p=zeros(1,7);

tries=[];

116

while all(sort(ind)~=sort(p))

 % most upward pointing vector becomes major axis direction

 majorAxis=vecs(abs(vecs(:,2))==max(abs(vecs(:,2))),:)/2;

 if majorAxis(:,2)<0

 majorAxis=-majorAxis;

 end

 % vector pointed most up and right becomes minor axis direction

 minorAxis=vecs((vecs(:,1)>0) & (vecs(:,2)<0) & ~(abs(vecs(:,2))==max(abs(vecs(:,2)))),:)/2;

 if isempty(minorAxis)

 minorAxis=-vecs(vecs(:,1)<0 .* vecs(:,2)<0 .*

~(abs(vecs(:,2))==max(abs(vecs(:,2)))),:)/2;

 end

 % make sure all 6 closest points to origin can be identified by single

 % combinations of the minor and major axis

 % origin always good

 p(1) = ind(1);

 % on minor

 p(2) = knnsearch(tree, cnts(ind(1),1:2)+minorAxis);

 p(3) = knnsearch(tree, cnts(ind(1),1:2)-minorAxis);

 % on major

 p(4) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis);

 p(5) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis);

 % last

 p(6) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis+minorAxis);

 p(7) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis-minorAxis);

 % try other axes if it didn't work

 if tries==2

 % didn't get 6 good points around origin

 oops = 1;

 ipoints = 0;

 return

 end

 tries=2;

end

% we now should have good major and minor axes

missflags = [];

% Determine coordinates of points in image along minor axis

p=1;

tlist=[1 2 3];

for runs=1:2

 % set up point finding inital loop variables

 findingpoints = 1;

 % which direction we're going

 switch runs

 case 1

 vector = minorAxis;

 c=1;

 case 2

 vector = -minorAxis;

 c=-1;

 end

117

 loc = cnts(ind(1),1:2);

 misses = 0;

 i=1;

 while findingpoints == 1;

 idx = rangesearch(tree,loc+vector,radratio*norm(vector));

 % did we find a point?

 if isempty(idx{1}) || length(idx)>1

 % if we didn't find one, we should keep going in case only a

 % few points are missing/blocked, but we need to flag the point

 % so we don't put it in the model target

 switch runs

 case 1

 missflags = [missflags;i,0];

 case 2

 missflags = [missflags;-i,0];

 end

 loc = loc+vector;

 misses = misses + 1;

 switch runs

 case 1

 ipoints = [ipoints;[i,0,loc]];

 if typelist(end)==3

 typelist(end+1)=1;

 else

 typelist(end+1)=typelist(end)+1;

 end

 case 2

 ipoints = [ipoints;[-i,0,loc]];

 if p

 stag=length(typelist);

 typelist(end+1)=3;

 elseif typelist(end)==1

 typelist(end+1)=3;

 else

 typelist(end+1)=typelist(end)-1;

 end

 p=0;

 end

 else

 vector = bsxfun(@minus,cnts(idx{1},1:2),loc);

 % compare with minor axis

 if norm(vector-c*minorAxis)>(radratio*norm(minorAxis)) && warn;

 switch runs

 case 1

 warning('Point (%i,%i) produced a vector

%1.2d*minorAxis.',i,0,norm(vector-c*minorAxis)/norm(minorAxis))

 case 2

 warning('Point (%i,%i) produced a vector %1.2d*minorAxis.',-

i,0,norm(vector-c*minorAxis)/norm(minorAxis))

 end

 end

 loc = cnts(idx{1},1:2);

118

 misses = 0;

 switch runs

 case 1

 ipoints = [ipoints;[i,0,loc]];

 if typelist(end)==3

 typelist(end+1)=1;

 else

 typelist(end+1)=typelist(end)+1;

 end

 case 2

 ipoints = [ipoints;[-i,0,loc]];

 if p

 stag=length(typelist);

 typelist(end+1)=3;

 elseif typelist(end)==1

 typelist(end+1)=3;

 else

 typelist(end+1)=typelist(end)-1;

 end

 p=0;

 end

 end

 i=i+1;

 % if we missed too many points, we probably hit the edge

 if misses == maxmiss

 findingpoints = 0;

 end

 end

end

% Determine locations of all points

% should have a line of points along the minor axis. Now, move in the major

% axis direction

[hits,~]=size(ipoints);

for j=1:hits

 for runs = 1:2

 % set up point finding inital loop variables

 findingpoints = 1;

 % which direction we're going

 switch runs

 case 1

 vector = majorAxis;

 c=1;

 case 2

 vector = -majorAxis;

 c=-1;

 end

 loc = ipoints(j,3:4);

 if runs==1;

 ntype=typelist(j)+1;

 if ntype==4; ntype=1; end

 else

119

 ntype=typelist(j)-1;

 if ntype==0; ntype=3; end

 end

 p=1;

 misses = 0;

 i=1;

 while findingpoints == 1;

 idx = rangesearch(tree, loc+vector,radratio*norm(vector));

 % did we find a point?

 if isempty(idx{1}) || length(idx)>1

 % if we didn't find one, we should keep going in case only a

 % few points are missing/blocked, but we need to flag the point

 % so we don't put it in the model target

 switch runs

 case 1

 missflags = [missflags;ipoints(j,1),i];

 case 2

 missflags = [missflags;ipoints(j,1),-i];

 end

 loc = loc+vector;

 misses = misses + 1;

 switch runs

 case 1

 ipoints = [ipoints;ipoints(j,1),i,loc];

 if p

 typelist(end+1)=ntype;

 p=0;

 q=1;

 elseif q

 typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)]));

 q=0;

 elseif typelist(end)==3

 typelist(end+1)=1;

 else

 typelist(end+1)=typelist(end)+1;

 end

 case 2

 ipoints = [ipoints;ipoints(j,1),-i,loc];

 if p

 typelist(end+1)=ntype;

 p=0;

 q=1;

 elseif q

 typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)]));

 q=0;

 elseif typelist(end)==1

 typelist(end+1)=3;

 else

 typelist(end+1)=typelist(end)-1;

 end

 end

 else

120

 vector = bsxfun(@minus,cnts(idx{1},1:2),loc);

 % compare with major axis. Throws more warnings than

 % necessary, but good info.

 if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn;

 switch runs

 case 1

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',ipoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis))

 case 2

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',ipoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis))

 end

 end

 loc = cnts(idx{1},1:2);

 misses = 0;

 switch runs

 case 1

 ipoints = [ipoints;ipoints(j,1),i,loc];

 if p

 typelist(end+1)=ntype;

 p=0;

 q=1;

 elseif q

 typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)]));

 q=0;

 elseif typelist(end)==3

 typelist(end+1)=1;

 else

 typelist(end+1)=typelist(end)+1;

 end

 case 2

 ipoints = [ipoints;ipoints(j,1),-i,loc];

 if p

 typelist(end+1)=ntype;

 p=0;

 q=1;

 elseif q

 typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)]));

 q=0;

 elseif typelist(end)==1

 typelist(end+1)=3;

 else

 typelist(end+1)=typelist(end)-1;

 end

 end

 end

 i=i+1;

 % if we missed too many points, we probably hit the edge

 if misses == maxmiss

 findingpoints = 0;

 end

121

 end

 end

end

% should have a full grid of points in ipoints, including misses. Now need

% to eliminate misses.

[~,crossed,~]=intersect(ipoints(:,1:2),missflags,'rows');

ipoints(crossed,:)=[];

typelist(crossed)=[];

% Model generation has been completed

% find ideal array centre and vectors

% initialize from origin, major and minor axes

x0=ipoints(1,3);

y0=ipoints(1,4);

v1x=minorAxis(1);

v1y=minorAxis(2);

v2x=majorAxis(1);

v2y=majorAxis(2);

initops=optimoptions('lsqnonlin','Algorithm','levenberg-marquardt','InitDamping',1000,'TolX',1e-

9,'MaxFunEvals',100000,'MaxIter',10000,'Display','none');

[result,resnorm,resids]=lsqnonlin(@optimfun,[x0,y0,v1x,v1y,v2x,v2y],[],[],initops);

x0=result(1);

y0=result(2);

v1x=result(3);

v1y=result(4);

v2x=result(5);

v2y=result(6);

lensCents=bsxfun(@plus,ipoints(:,1)*[v1x,v1y]+ipoints(:,2)*[v2x,v2y],[x0,y0]);

imshow(whitAve(1:500,1:500))

hold on

scatter(lensCents(typelist==1,1),lensCents(typelist==1,2),'or')

scatter(lensCents(typelist==2,1),lensCents(typelist==2,2),'og')

scatter(lensCents(typelist==3,1),lensCents(typelist==3,2),'ob')

scatter(lensCents(typelist==1,1),lensCents(typelist==1,2),'.r')

scatter(lensCents(typelist==2,1),lensCents(typelist==2,2),'.g')

scatter(lensCents(typelist==3,1),lensCents(typelist==3,2),'.b')

hold off

mrs=mean(resids)

strs=std(resids)

prc95=prctile(resids,95)

figure

histogram(resids);

xlabel('Deviation [pix]','FontSize',14,'FontName','Times New Roman')

ylabel('Count','FontSize',14,'FontName','Times New Roman')

set(gca,'FontSize',14,'FontName','Times New Roman')

122

% sort micro-lenses from left to right

isort=sortrows([lensCents typelist'],1);

lensCents=isort(:,1:2);

typelist=isort(:,3);

% create epipolar vectors for lens system

ev1=[v1x v1y]-[v2x v2y];

ev2=-[v1x v1y]+[v2x v2y];

ev3=-2*[v1x v1y]-[v2x v2y];

ev4=2*[v1x v1y]+[v2x v2y];

ev5=-[v1x v1y]-2*[v2x v2y];

ev6=[v1x v1y]+2*[v2x v2y];

ev=[ev1;ev2;ev3;ev4;ev5;ev6];

% create adjacency index list for micro-lenses; opposed pairs 1-2, 3-4, 5-6

adjlist=zeros(length(lensCents),6);

for i=1:length(lensCents)

 c1=find(ismembertol(lensCents,lensCents(i,:)+ev(1,:),0.001,'ByRows',1));

 c2=find(ismembertol(lensCents,lensCents(i,:)+ev(2,:),0.001,'ByRows',1));

 c3=find(ismembertol(lensCents,lensCents(i,:)+ev(3,:),0.001,'ByRows',1));

 c4=find(ismembertol(lensCents,lensCents(i,:)+ev(4,:),0.001,'ByRows',1));

 c5=find(ismembertol(lensCents,lensCents(i,:)+ev(5,:),0.001,'ByRows',1));

 c6=find(ismembertol(lensCents,lensCents(i,:)+ev(6,:),0.001,'ByRows',1));

 for j=1:6

 if isempty(eval(['c' num2str(j)]))

 evalc(['c' num2str(j) '=' num2str(NaN)]);

 end

 end

 adjlist(i,:)=[c1 c2 c3 c4 c5 c6];

end

% save everything

sloc=strfind(imLoc,'\');

save([imLoc(1:sloc(end)),'MLCal_171116'],'lensCents','adjlist','typelist','ev')

function resid=optimfun(vars)

global ipoints

x0=vars(1);

y0=vars(2);

v1x=vars(3);

v1y=vars(4);

v2x=vars(5);

v2y=vars(6);

lensCents=bsxfun(@plus,(ipoints(:,1)*[v1x,v1y]+ipoints(:,2)*[v2x,v2y]),[x0,y0]);

resid=sum((lensCents-ipoints(:,3:4)).^2,2);

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab

123

 Wrapper function: A_RUN_JH_Plen_PTV

The following code serves as a ‘wrapper’, running all other functions in the ETC code in loops as

needed, while ensuring that all inputs and outputs reach the correct locations, and also saving the

results. It is set up to allow the inputs to be included either in the first section of the code, or in

the function when called.

function A_RUN_JH_Plen_PTV(Iroot,imNos,imFmt,path,mlCalLoc,whitIm,CalLoc,settings,display)

if nargin<9;display=0;end

if nargin < 8 || length(settings)~=11

 % Default Settings

 % Plenoptic Location

 invert=0; % wether or not to invert by subtracting the white image

 cleanup=60; % Divide by the given white image, with this minimum value

 lnoise=0; % Always should be zero, from what I've seen

 psize=5; % Particle size in pixels in raw images

 thresh=0; % cutoff threshold

 peak=.02*255; % peak threshold

 epitol=.5; % pixel distance for max distance from particle to epipolar line

 plotar=50; % aspect ratio of virtual depth for 3D plots

 validrange=[2,12]; % valid range of virtual depths

 bestest = 1; % controls if you want to pull out only the most-focused micro-lens type for

each particle

 xyrt=.1; % tolerance for determining if particles in xy are close enough to be the same

 zrt=2; % tolerance for determining if particles in z are close enough to be the same

 % particle tracking (units of mm)

 search = 1.2;

 neighbor = 3;

 quasi = .3;

 zdt = 0.4;

 % particle prediction

 range = 1;

 fp=5;

 % Track Rejection

 art = 2; % acceleration rejection threshold in mm/frame^2

 zaf = .4; % z-amplification factor, used to reduce z-direction components

 % linkage

 lzdt=0.4;

 % Track Smoothing

 % number of frames to use on either side of particle when smoothing

 % (depends on movement/frame >> more movement, less smoothing).

 % Generally want at least 5 and not more than 20.

124

 smoothstrength=10;

 plocsettings = [invert cleanup lnoise psize thresh peak epitol plotar validrange display];

else

 invert=settings(1); % wether or not to invert by subtracting the white image

 cleanup=settings(2); % Divide by the given white image, with this minimum value

 lnoise=settings(3); % Always should be zero, from what I've seen

 psize=settings(4); % Particle size in pixels in raw images

 thresh=settings(5); % cutoff threshold

 peak=settings(6); % peak threshold

 epitol=settings(7); % pixel distance for max distance from particle to epipolar line

 plotar=settings(8); % aspect ratio of virtual depth for 3D plots

 validrange=settings(9:10); % valid range of virtual depths

 bestest = settings(11); % controls if you want to pull out only the most-focused micro-lens

type for each particle

 xyrt=settings(12); % tolerance for determining if particles in xy are close enough to be the

same

 zrt=settings(13); % tolerance for determining if particles in z are close enough to be the

same

 search = settings(14);

 neighbor = settings(15);

 quasi = settings(16);

 range = settings(17);

 fp=settings(18);

 art = settings(19);

 zaf = settings(20);

 lzdt=settings(21);

 smoothstrength=settings(22);

 plocsettings = [invert cleanup lnoise psize thresh peak epitol maxz plotar validrange

display];

end

% DEFAULT CALIBRATION

% if nargin < 7

% CalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\CoreData_170810\WaterCal_170809\Calibration_11-Aug-2017.mat';

% end

% if nargin < 6

% whitIm = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-

Sep-2017.mat';

% end

% if nargin < 5

% mlCalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\WhitIms\MLCal_170911.mat';

% end

% %% LOAD IMAGES

% if nargin < 4

% path = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\CoreData_170810\CoreView_6\';

% end

% if nargin < 3

125

% Iroot = 'CoreView_6_Raytrix';

% imNos = 150:250;

% imFmt = '.png';

% end

if nargin < 7

 CalLoc = 'X:\01_Current_Students\Jake Hadfield\Coding\Matlab\Calibration

Code\Calibration_test.mat';

end

if nargin < 6

 whitIm = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\2017_03_01\17_03_01_09L50HD\WhitAve_16-Nov-2017.mat';

end

if nargin < 5

 mlCalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\2017_03_01\17_03_01_09L50HD\MLCal_171116.mat';

end

% LOAD IMAGES

if nargin < 4

 path = 'X:\01_Current_Students\Jake Hadfield\LightField Test

Images\2017_03_01\17_03_01_09L50HD\Raw\';

end

if nargin < 3

 Iroot = 'Image';

 imNos = 1:172;

 imFmt = '.tiff';

end

savedate=datestr(datetime('today'));

newdata=1; % Need to run particle-location code

if newdata

% RUN ALGORITHMS

% load calibration

load(CalLoc,'allvars')

caldata=[allvars(1:11) allvars(end)];

% Particle Location

ppoints=cell(1,length(imNos));

points=cell(1,length(imNos));

ltypes=cell(1,length(imNos));

resnorms=cell(1,length(imNos));

residvecs=cell(1,length(imNos));

pgroups=cell(1,length(imNos));

pstats=cell(1,length(imNos));

irejects=cell(1,length(imNos));

rrejects=cell(1,length(imNos));

% mmpoints=cell(length(imNos),3);

plist=[];

fprintf(['Finding particles. Completion time will be estimated soon. Current time is: '

datestr(now) '\n']);

ctime=now;

126

tic;

for i=1:length(imNos)

 imName = [Iroot '_' num2str(imNos(i),'%04i') imFmt];

 % find particles

[ppoints{i},ltypes{i},resnorms{i},residvecs{i},pstats{i},~,~,pgroups{i},~,~,~]=JH_rawPlenPF(path,

imName,[Iroot '_PixPoints'],mlCalLoc,whitIm,CalLoc,plocsettings);

 % convert to physical space

 for j=1:3

 mmpoints{i,j} = JH_PhysConvert(ppoints{i}(ltypes{i}==j,:),[caldata(1) caldata(j+1)

caldata(5:end)]);

 end

 points{i}=[mmpoints{i,1};mmpoints{i,2};mmpoints{i,3}];

%points{i}=[ppoints{i}(ltypes{i}==1,:);ppoints{i}(ltypes{i}==2,:);ppoints{i}(ltypes{i}==3,:)];

 % keep best estimates only

 if bestest

[irejects{i},rrejects{i}]=JH_kbe(points{i},[resnorms{i}(ltypes{i}==1,:);resnorms{i}(ltypes{i}==2,

:);resnorms{i}(ltypes{i}==3,:)],pstats{i},[pgroups{i}(ltypes{i}==1,:);pgroups{i}(ltypes{i}==2,:);

pgroups{i}(ltypes{i}==3,:)],xyrt,zrt);

 end

 rrcrit=1;

 ircrit=0;

 if rrcrit==1

 points{i}(rrejects{i},:)=[];

 elseif ircrit==1

 points{i}(rrejects{i},:)=[];

 end

 plist=[plist;[points{i} ones(length(points{i}),1)*i]];

 tt=toc;

 fprintf(['Particle location should be done around ' datestr(ctime+tt/i*(length(imNos))/84600)

'\n']);

end

save([path 'PList_' savedate '_' Iroot '.mat'],'plist')

save([path 'Points_' savedate '_' Iroot '.mat'],'points')

else

load([path 'PList_' savedate '_' Iroot '.mat'],'plist')

load([path 'Points_' savedate '_' Iroot '.mat'],'points')

end

newtrack=1;

if newtrack

alltracks=[];

polyhold.pno=[];

polyhold.polyx=[];

polyhold.polyy=[];

polyhold.polyz=[];

127

polyhold.mux=[];

polyhold.muy=[];

polyhold.muz=[];

mp=[];

ctime=now;

tic;

for i=1:length(imNos)-1

 if i>=3

 fprintf('Attempting forward-predictive tracking on %i frame %i and %i frame %i

particles...\n',length(points{i}),i,length(points{i+1}),i+1);

[rp1,rp2,alltracks,polyhold]=JH_MT_Fit_Predict(points{i},points{i+1},alltracks,i,range,zdt,polyho

ld,search);

 fprintf('Attempting two-frame tracking on remaining %i frame %i and %i frame %i

particles...\n',length(rp1),i,length(rp2),i+1);

 tracks = DH_track_v3(rp1,rp2,search,neighbor,quasi,zdt);

 if ~isempty(tracks)

 nmp=rp2(~ismember(rp2,tracks(:,1:3),'rows'),:);

 [lnmp,~]=size(nmp);

 mp=[mp;nmp ones(lnmp,1)*i];

 alltracks=JH_MT_Associate(tracks,alltracks,i);

 end

 else

 fprintf('Attempting two-frame tracking on %i frame %i and %i frame %i

particles...\n',length(points{i}),i,length(points{i+1}),i+1);

 tracks = DH_track_v3(points{i},points{i+1},search,neighbor,quasi,zdt);

 if ~isempty(tracks)

 nmp=points{i+1}(~ismember(points{i+1},tracks(:,1:3),'rows'),:);

 [lnmp,~]=size(nmp);

 mp=[mp;nmp ones(lnmp,1)*i];

 alltracks=JH_MT_Associate(tracks,alltracks,i);

 end

 end

 tt=toc;

 fprintf(['Particle tracking should be done around ' datestr(ctime+tt/i*(length(imNos))/84600)

'\n']);

end

% eliminate remaining predicted points

alltracks(alltracks(:,6)==0,:)=[];

save([path 'AllTracks_' savedate '_' Iroot '.mat'],'alltracks')

end

% get track stats

JH_TrackStats(alltracks)

% denoise tracks

lostpts=double.empty(0,5);

nlostpts=0;

while ~isempty(nlostpts)

 [filttracks,nlostpts,~]=JH_MT_TrackBreak(alltracks,art,zaf);

 alltracks=filttracks;

128

 lostpts=[lostpts;nlostpts];

end

nmp=lostpts(:,[1:3,5]);

save([path 'BreakTracks_' savedate '_' Iroot '.mat'],'filttracks')

% resort tracks

[filttracks,misspts]=JH_resortTracks(filttracks);

% get track stats

JH_TrackStats(filttracks)

mp=sortrows([mp;nmp;misspts],4);

save([path 'FilTracks_' savedate '_' Iroot '.mat'],'filttracks')

save([path 'MissPts_' savedate '_' Iroot '.mat'],'mp')

linkcount=1;

while linkcount~=0

% link tracks

[linktracks,linkcount]=JH_LinkTracks(filttracks,range,lzdt,fp);

filttracks=linktracks;

% resort tracks

[linktracks,~]=JH_resortTracks(linktracks);

end

% get track stats

JH_TrackStats(linktracks)

% find longest linked track

long=1;

lc=1;

tl=0;

for i=1:max(linktracks(:,4))

 nlc=sum(linktracks(:,4)==i);

 if nlc>lc

 long=i;

 lc=nlc;

 elseif nlc==lc

 trak=linktracks(linktracks(:,4)==1,:);

 ntl=sum(sqrt(sum(diff(trak(:,1:2)).^2,2)));

 if ntl>tl

 long=i;

 tl=ntl;

 end

 end

end

link=linktracks(linktracks(:,4)==long,:);

% smoothing algorithm

smoothtracks = JH_SmoothTracks(linktracks,smoothstrength);

smooth=smoothtracks(smoothtracks(:,4)==long,:);

129

% get track stats

JH_TrackStats(smoothtracks)

% % find domain limits

% minx=min(alltracks(:,1));

% miny=min(alltracks(:,2));

% minz=min(alltracks(:,3));

% maxx=max(alltracks(:,1));

% maxy=max(alltracks(:,2));

% maxz=max(alltracks(:,3));

% % save data

% save([path 'Limits_170111_' Iloc '.mat'],'minx','miny','minz','maxx','maxy','maxz')

save([path 'LinkTracks_' savedate '_' Iroot '.mat'],'linktracks')

save([path 'SmoothTracks_' savedate '_' Iroot '.mat'],'smoothtracks')

save([path 'SLink_' savedate '_' Iroot '.mat'],'link')

save([path 'SSmooth_' savedate '_' Iroot '.mat'],'smooth')

JH_TrackToQuiv(path,['AllTracks_' savedate '_' Iroot '.mat']);

JH_TrackToQuiv(path,['SmoothTracks_' savedate '_' Iroot '.mat']);

Published with MATLAB® R2015b

 Particle location function: JH_rawPlenPF

The following function locates the particles in the raw plenoptic images and applies the ETC

criterion, then applies triangulation to get the 3D locations.

function

[points,ltypes,resnorms,residvecs,pstats,pcd,plocs,pgroups,lensCents,pli,typelist]=JH_rawPlenPF(p

ath,imName,saveName,calLoc,whitIm,mlCalLoc,settings)

%%%

% Finds particles in a raw plenoptic image, organizing them by grouping

% together the multiple micro-image particle locations

% Inputs: imLoc- The location of the image to be processed

% lensCents- The location of the lens centroids from micro-lensCal

% settings- Processing settings for the particle-location

% algorithms

% Outputs: ploc3D- A nx3 array containing the [x,y] location of each

% particle; the third column contains the particle number

%%%

close all

% defaults if missing inputs

if nargin < 7

 invert=0; % wether or not to invert by subtracting the white image

 cleanup=0; % Divide by the given white image, with this minimum value

 lnoise=0; % Always should be zero, from what I've seen

 psize=3; % Particle size in pixels in raw images

 thresh=0; % cutoff threshold

 peak=20; % peak threshold

 epitol=.5; % pixel distance for max distance from particle to epipolar line

http://www.mathworks.com/products/matlab

130

 plotar=50; % aspect ratio of virtual depth for 3D plots

 validrange=[2,16]; % valid range of virtual depths

 display=1;

else

 invert=settings(1); % wether or not to invert by subtracting the white image

 cleanup=settings(2); % Divide by the given white image, with this minimum value

 lnoise=settings(3); % Always should be zero, from what I've seen

 psize=settings(4); % Particle size in pixels in raw images

 thresh=settings(5); % cutoff threshold

 peak=settings(6); % peak threshold

 epitol=settings(7); % pixel distance for max distance from particle to epipolar line

 plotar=settings(8); % aspect ratio of virtual depth for 3D plots

 validrange=settings(9:10); % valid range of virtual depths

 display=settings(11); % input 1 to display stuff

end

if nargin <6

 mlCalLoc='';

end

if nargin <5

 whitIm='X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitAve_28-Jul-2017.mat';

end

if nargin < 4

 load('X:\01_Current_Students\Jake Hadfield\LightField Test Images\17_06_21\MLCal.mat')

else

 load(calLoc)

end

if nargin < 3

 path='X:\01_Current_Students\Jake Hadfield\LightField Test Images\FF_170712\Helix40\';

 imName='Image_Raw_0065.png';

 saveName='Image_Points';

end

% Load in image, run bpass, pkfnd and cntrd to get particle locations

if invert

 load(whitIm)

 whitAveG=whitAve;

 im=im2double(imread([path,imName]));

 image=whitAve-im/max(max(im))*1;

 image(image<0)=0;

elseif cleanup

 load(whitIm)

 whitAve=im2double(whitAve);

 image=imread([path,imName]);

 if size(image,3)==3

 image=rgb2gray(image);

 image=image(1:2048,1:2048);

 end

 image=im2double(image)./(((whitAve-min(min(whitAve)))./(max(max(whitAve))-

min(min(whitAve))).*(1-cleanup/255)+cleanup/255));

 image=image./max(max(image));

else

 image=im2double(imread([path,imName]));

131

end

bpim=bpass(image,lnoise,psize,thresh);

plocs=cntrd(bpim,pkfnd(bpim,peak/255,psize+2),psize);

if display==1

 imshow(1.5*image)

 hold on

 plot(plocs(:,1),plocs(:,2),'+r','markers',15,'linewidth',2)

 drawnow

% pl1=[lensCents(typelist==1,1)-12,lensCents(typelist==1,2)-

12,23*ones(sum(typelist==1),1),23*ones(sum(typelist==1),1)];

% pl2=[lensCents(typelist==2,1)-12,lensCents(typelist==2,2)-

12,23*ones(sum(typelist==2),1),23*ones(sum(typelist==2),1)];

% pl3=[lensCents(typelist==3,1)-12,lensCents(typelist==3,2)-

12,23*ones(sum(typelist==3),1),23*ones(sum(typelist==3),1)];

% for i=1:length(pl1)

% rectangle('position',pl1(i,:),'curvature',[1 1],'EdgeColor','r','linewidth',2)

% end

% for i=1:length(pl2)

% rectangle('position',pl2(i,:),'curvature',[1 1],'EdgeColor','g','linewidth',2)

% end

% for i=1:length(pl3)

% rectangle('position',pl3(i,:),'curvature',[1 1],'EdgeColor','c','linewidth',2)

% end

 xlabel('{\itx} [pix]','FontName','Times New Roman','FontSize',20)

 ylabel('{\ity} [pix]','FontName','Times New Roman','FontSize',20)

 set(gca,'outerposition',[0 0 1 1],'fontname','Times New Roman','fontsize',20)

% ylim([1725.8 1749+23*3])

% xlim([1704 1810])

end

pstats=plocs(:,3:4);

plocs=plocs(:,1:2);

% determine which micro-lens each particle is in (closest lens centre)

[pll,~]=size(plocs);

pcd=zeros(pll,1);

pli=zeros(pll,1);

% should map pixels to lenses ahead of time!!!! faster

for i=1:pll

 [pcd(i),pli(i,:)]=min(sqrt(sum(bsxfun(@minus,lensCents,plocs(i,:)).^2,2)));

end

% if not calibrating, modify particle location based on calibration

% if ~strcmp(mlCalLoc,'')

% load(mlCalLoc);

% mlVars=allvars(12:18);

% plocs=JH_Plen_mlCorrect(plocs,lensCents,pli,typelist,pcd,mlVars);

% end

% scan through particle list, number similar particles

pcount=length(plocs);

plist=1:pcount;

132

pgroups=cell(1,1);

ped=cell(pcount,1);

pgepd=cell(1,1);

pparray=cell(pcount,1);

% for each particle, identify epipolar connections

for cpart=plist

 clens=pli(cpart);

 % look at adjacent lenses

 adjlenses=adjlist(clens,:);

 adjset=[];

 for lens=adjlenses

 % what particles are in each adjacent micro-lens?

 pnew=find(pli==lens);

 if ~isempty(pnew)

 adjset=[adjset;lens*ones(length(pnew),1),pnew];

 end

 end

 % can skip the rest if there are no particles in adjacent lenses

 if isempty(adjset)

 continue

 end

 % which particles are along an epipolar line from the parent

 % particle?

 for p=adjset(:,2)'

 lens = adjset(adjset(:,2)==p,1);

 lcheck=(lens==adjlenses)';

 if any(lcheck)

 epid=ptl(plocs(p,:),plocs(cpart,:),ev(lcheck,:));

 if epid<epitol

 % add particle to potential array

 pparray{cpart,:}=[pparray{cpart,:},p];

 ped{cpart,:}=[ped{cpart,:},epid];

 end

 end

 end

end

% want to find triangular epipolar connections between particles

triangles=[];

tepd=[];

for p=1:size(pparray,1)

 lens=pli(p);

 for j=pparray{p}

 o2=[];

 cl=ismember(pparray{p},pparray{j});

 t3=pparray{p}(cl);

 el=~ismember(pli(t3),lens);

 t3=t3(el);

 if ~isempty(t3)

 ntri=[ones(length(t3),1)*[p j],t3'];

 triangles=[triangles;ntri];

 for k=ntri'

133

 o2=[o2;ped{j}(k(3)==pparray{j}),ped{p}(k(3)==pparray{p}),ped{p}(j==pparray{p})];

 end

 tepd=[tepd;o2];

 end

 end

end

[triangles,ind]=sort(triangles,2);

ltp=length(tepd);

temp=tepd';

tepd=temp(ind+[[0:3:3*ltp-3]',[0:3:3*ltp-3]',[0:3:3*ltp-3]']);

[triangles,ia]=unique(triangles,'rows');

tepd=tepd(ia,:);

% plot triangles

if display==1

 for i=1:size(triangles,1)

 line([plocs(triangles(i,1),1)

plocs(triangles(i,2),1)],[plocs(triangles(i,1),2),plocs(triangles(i,2),2)],'Color','m');

 line([plocs(triangles(i,2),1)

plocs(triangles(i,3),1)],[plocs(triangles(i,2),2),plocs(triangles(i,3),2)],'Color','m');

 line([plocs(triangles(i,1),1)

plocs(triangles(i,3),1)],[plocs(triangles(i,1),2),plocs(triangles(i,3),2)],'Color','m');

 end

 drawnow

 hold off

end

% with triangular connections established, separate sets using connectivity

group=1;

vparts=triangles(1,:);

ovparts=[];

epdstack=tepd(1,:);

while ~isempty(triangles)

 acond=any(ismember(triangles,vparts),2);

 nvparts=triangles(acond,:);

 nepd=tepd(acond,:);

 vparts=[vparts;nvparts];

 epdstack=[epdstack;nepd];

 [vparts,ulocs]=unique(vparts,'rows');

 epdstack=epdstack(ulocs,:);

 if size(vparts,1)==size(ovparts,1)

 pgroups{group,1}=vparts;

 pgepd{group,1}=epdstack;

 if size(pgroups{group,1},2)>1

 pgroups{group,1}=pgroups{group,1}';

 pgepd{group,1}=pgepd{group,1}';

 end

 group=group+1;

 bcond=~ismember(triangles,vparts,'rows');

 triangles=triangles(bcond,:);

 tepd=tepd(bcond,:);

 if ~isempty(triangles)

134

 vparts=triangles(1,:);

 epdstack=tepd(1,:);

 ovparts=[];

 end

 else

 ovparts=vparts;

 end

end

% adjust particle locations in connected sets to improve epipolar

% connectivity

for i=1:group-1

% % look for particle images that have only been captured once

% [~,ia,~]=unique(pgroups{i});

% pgsolo=pgroups{i}(~ismember(pgroups{i},pgroups{i}(~ismember(1:numel(pgroups{i}),ia))));

%

% % these locations are 'safe' to manipulate to improve the epipolar

% % connections, because they're on the edge of the groups. Only want

% % to manipulate if their opposed epipolar line

% % is better than both the connected epipolar lines.

% ignorep=[];

% for p=pgsolo'

% % eliminate locations from the group if they're a major source of

% % error

% tritag=pgepd{i}(p==pgroups{i})==min(pgepd{i});

% if any(tritag)

% if pgepd{i}(p==pgroups{i})/sum((pgepd{i}(:,sum(p==pgroups{i})==1)))<0.1

% % point is a big source of error, tag to be ignored.

% ignorep=[ignorep;p];

% end

% end

% end

% if ~isempty(ignorep)

% pgroups{i}(ismember(pgroups{i},ignorep))=[];

% end

 pgroups{i}=unique(pgroups{i});

end

% having separated the sets, now ready to perform 3D particle location

[points,ltypes,resnorms,residvecs]=JH_Plen_GetPt(plocs,pgroups,pgepd,lensCents,pli,pcd,typelist,d

isplay);

% remove all data for points with a depth outside the valid range

[points,ltypes,resnorms,residvecs]=JH_PlenClean(points,ltypes,resnorms,residvecs,validrange);

if display==1

 set1=ltypes==1;

 set2=ltypes==2;

 set3=ltypes==3;

 scatter3(points(set1,1),points(set1,2),points(set1,3),200,'or')

 scatter3(points(set2,1),points(set2,2),points(set2,3),200,'og')

135

 scatter3(points(set3,1),points(set3,2),points(set3,3),200,'ob')

 xlim([-10,2060])

 ylim([-10,2060])

 zlim([0,validrange(2)])

 axis ij

 daspect([1,1,1/plotar])

 hold off

% ylim([1725.8 1749+23*3])

% xlim([1704 1810])

% zlim([0 4.5])

 xlabel('{\itx} [pix]','FontName','Times New Roman','FontSize',20)

 ylabel('{\ity} [pix]','FontName','Times New Roman','FontSize',20)

 zlabel('{\itz} [pix]','FontName','Times New Roman','FontSize',20)

 set(gca,'outerposition',[0 0 1 1],'fontname','Times New Roman','fontsize',20)

 grid on

end

fprintf('%i points found, with an average residual of %d, SD %d, max

%d\n',size(points,1),mean(resnorms),std(resnorms),max(resnorms))

if ~isempty(saveName)

 save([path,saveName],'points','ltypes','resnorms','residvecs','pgroups','pstats')

end

end

function d=ptl(p, pc, v)

d=abs(det([p-pc;v]))/norm(v);

end

Published with MATLAB® R2015b

 Triangulation function: JH_Plen_GetPt

The following code performs the triangulation method conducted based on the ETC groups.

function [points,ltypes,resnorms,

residvecs]=JH_Plen_GetPt(plocs,pgroups,pgepd,lensCents,pli,pcd,typelist,display)

global pcdsend

global setvecs

global disvecs

% global pgepdsend

% global iccount

gcount=size(pgroups,1);

points=zeros(gcount,3);

resnorms=zeros(gcount,1);

residvecs=cell(gcount,1);

ltypes=zeros(gcount,1);

if display==1

 figure(2)

 hold on

http://www.mathworks.com/products/matlab

136

end

for pset=1:gcount

 % create a vector from the centre of each particle's micro-lens to the

 % particle, in 3D. Value of the z-component is -1, so results will be in

 % virtual depth units. Vectors are in [x1,x2,y1,y2,z1,z2] format

% [pgroups{pset,1},ia,ic]=unique(pgroups{pset,1});

setvecs=[plocs(pgroups{pset,1},1),plocs(pgroups{pset,1},2),ones(length(pgroups{pset,1}),1),...

lensCents(pli(pgroups{pset,1}),1),lensCents(pli(pgroups{pset,1}),2),zeros(length(pgroups{pset,1})

,1)];

 pcdsend=pcd(pgroups{pset,1});

 % apply lens types to points

 ltypes(pset)=typelist(pli(pgroups{pset,1}(1)));

 % create an initial point

 pinit=[mean(setvecs(:,1:2),1),4];

 % use least-squares optimization to minimize the distance from the

 % point to all the lines by moving the point

 initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-9,'TolX',1e-

9,'MaxFunEvals',100000,'MaxIter',10000,'Display','none');

 [points(pset,:),~]=lsqnonlin(@optimfun,pinit,[],[],initops);

 % plot stuff

 if display==1

 for i =1:size(setvecs,1)

 switch ltypes(pset)

 case 1

 col='r';

 case 2

 col='g';

 case 3

 col='b';

 end

 line([setvecs(i,4) setvecs(i,4)+(1+points(pset,3))*(setvecs(i,1)-

setvecs(i,4))],[setvecs(i,5) setvecs(i,5)+(1+points(pset,3))*(setvecs(i,2)-

setvecs(i,5))],[setvecs(i,6) setvecs(i,6)+(1+points(pset,3))*(setvecs(i,3)-

setvecs(i,6))],'Color',col);

 end

 end

 residvecs{pset,1}=disvecs;

 resnorms(pset)=sum(sqrt(sum(residvecs{pset,1}.^2,2)));

end

end

function resid=optimfun(point)

% calculate vector distances from point to all lines

global setvecs

global disvecs

% global pcdsend

% global pgepdsend

% global iccount

svs=size(setvecs,1);

137

disvecs=ones(svs,3);

ndv=ones(svs,3);

for i =1:size(setvecs,1)

 disvecs(i,:)=setvecs(i,4:6)+dot(-setvecs(i,4:6)+point,(-setvecs(i,4:6)+setvecs(i,1:3))/norm(-

setvecs(i,4:6)+setvecs(i,1:3)))*(-setvecs(i,4:6)+setvecs(i,1:3))/norm(-

setvecs(i,4:6)+setvecs(i,1:3))-point;

 ndv(i,:)=disvecs(i,:);%./(pgepdsend(i)/iccount(i)/sum(pgepdsend)); % normalizes based on how

good the epipolar triangles are

end

resid=sqrt(ndv(:,1:3).^2)/size(ndv,1);

end

function d=ptl(p, pc, v)

d=abs(det([p-pc;v]))/norm(v);

end

Published with MATLAB® R2015b

 Point rejection function: JH_PlenClean

This code performs some basic filtering to remove particles that are out of the virtual depth range

or are too close to the edge of the image to have been reliably located

function

[points,ltypes,resnorms,residvecs]=JH_PlenClean(points,ltypes,resnorms,residvecs,validrange)

if ~isempty(validrange)

 ltypes(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[];

 resnorms(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[];

 residvecs(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[];

 points(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[];

end

% remove all points that are too close (within 1 micro-lens distance) to the

% edge

ltypes(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[];

resnorms(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[];

residvecs(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[];

points(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[];

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab

138

 Point filtering function: JH_kbe

The following code aims to determine which particle locations produced by different micro-lenses

correspond to the same particle, and passes back the rejected locations based on intensity and

triangulation residuals.

function [irejects,rrejects]=JH_kbe(points,resnorms,pstats,pgroups,xyrt,zrt)

spcell={};

irejects=[];

rrejects=[];

% first look for particles with similar (x,y,z) locations

for i=1:size(points,1)

spts=ismembertol(points(:,1:2),points(i,1:2),xyrt,'DataScale',1,'ByRows',1)&ismembertol(points(:,

3),points(i,3),zrt,'DataScale',1,'ByRows',1);

 spts(i,:)=0;

 added=0;

 if any(spts)

 npts=[i;find(spts)];

 if isempty(spcell)

 spcell{length(spcell)+1,1}=npts;

 else

 for j=1:size(spcell,1)

 if ismember(spcell{j},npts)

 spcell{j}=unique([spcell{j};npts]);

 added=1;

 break;

 end

 end

 if ~added

 spcell{length(spcell)+1,1}=npts;

 end

 end

 end

end

% grab the initial particle numbers for each member of each spcell,

% return to the particle stats to get intensity data. Add worst

% intensities to the intensity reject array. Also, look at residuals

% for each particle

for j=1:length(spcell)

 bpimean=zeros(size(spcell{j}));

 bprmean=zeros(size(spcell{j}));

 for k=1:size(spcell{j})

 try

 bpimean(k)=mean(pstats(pgroups{spcell{j}(k)}));

 catch

 pause

 end

139

 bprmean(k)=mean(resnorms(spcell{j}(k)));

 end

 [~,bpii]=max(bpimean);

 [~,bpri]=min(bprmean);

 irejects=[irejects;spcell{j}(1:end~=bpii)];

 rrejects=[rrejects;spcell{j}(1:end~=bpri)];

end

irejects=sort(unique(irejects));

rrejects=sort(unique(rrejects));

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab

140

 CALIBRATION CODES

The calibration code relies on using either of the two particle location methods to find the pixel

and virtual coordinates of the target points for each lens type, and a separate version with similar

structure is included here for each location method.

 Refocusing calibration: JH_RayCam_Calibration

The following code is the calibration method applied with the refocusing method:

function JH_RayCam_Calibration

%%%

% Calibrates a camera using Matlab's calibration software and a few other

% things

% Inputs:

% calimages - Raytrix-generated total focus images to be used for

% calibration

% depthmaps - Raytrix-generated depth maps, one per cal image

% drt - depth reject threshold, depth map needs more calculated

% points than this per grid point, or grid point is rejected

% spacing - centre-to-centre distance between adjacent cal grid points

% Based on Christian Heinze's 2014 masters thesis

newrun = 1;

runs = 1;

clear global

tic

global impoints;

global modelpoints;

global iters

iters=0;

global noIms

global pass

% IMAGE LOCATIONS

% file path to images

path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\2017_02_24_Cal\';

% Shared tag, before _Focus_Depth or _Depth

imID = 'Image';

% List of image numbers in a 1 by n array

imNos = [1:8];

noIms = length(imNos);

% file format

fmt = '.tiff';

% convert image numbers to n strings

imStr = repmat('0000',noIms,1);

for i=1:noIms

 imStr(i,:)=num2str(imNos(i),'%04i');

141

end

% Default Settings

% centroid detection properties, in pixels

pkthresh = 30;

dotpix = 49; % should be odd, slightly larger than dot on target

noisescale = 3;

noisethresh = 10;

% depth detection values, in pixels

drt = 10; % required number of depth estimations to keep a point

dfrt = 0.3; % depth fit rejection threshold, virtual depth units

% model generation stuff

radratio = 0.1;

% target model values, in mm

dotsize = 4.953/3;

dotspacing = 4.953;

% Iterative solver initial parameter values

% Camera Constants

global Rx

global Ry

global spix

spix = 5.5e-3;% pixel size [mm/pix]

Rx = 1024; % image (sensor?) resolution x [pix]

Ry = 1024; % image (sensor?) resolution y [pix]

% Calibration Variables

try

 load('nope','allvars')

 % main lens variables

 fL = allvars(end); % focal length of main lens [mm]

 tL = allvars(1); % focus distance [mm]

 % micro-lens variables

 b1= allvars(2); % MLA-CCD distance [mm], far field lenses

 b2= allvars(3); % MLA-CCD distance [mm], mid field lenses

 b3= allvars(4); % MLA-CCD distance [mm], near field lenses

 % distortion variables

 x0 = allvars(5); % distortion offset x from corner [pix] relative to image centre

 y0 = allvars(6); % distortion offset y from corner [pix] relative to image centre

 k1 = allvars(7); % radial distortion coeff 1

 k2 = allvars(8); % radial distortion coeff 2

 d1 = allvars(9); % depth distortion coeff 1

 d2 = allvars(10); % depth distortion coeff 2

 dD = allvars(11); % depth-dependant depth distortion coeff

catch

142

 % main lens variables

 fL = 85; % focal length of main lens [mm]

 tL = 750; % focus distance [mm]

 % micro-lens variables

 b1= 0.3; % MLA-CCD distance [mm], far field lenses

 b2= 0.3; % MLA-CCD distance [mm], mid field lenses

 b3= 0.3; % MLA-CCD distance [mm], near field lenses

 % distortion variables

 x0 = 0; % distortion offset x from corner [pix] relative to image centre

 y0 = 0; % distortion offset y from corner [pix] relative to image centre

 k1 = 0; % radial distortion coeff 1

 k2 = 0; % radial distortion coeff 2

 d1 = 0; % depth distortion coeff 1

 d2 = 0; % depth distortion coeff 2

 dD = 0; % depth-dependant depth distortion coeff

end

% Extrinsics

% Translations

Tx = 0;

Ty = 0;

Tz = tL;

% Quaternion Rotation

Q1 = 0;

Q2 = 0;

Q3 = 0;

Q4 = 1;

global defaults

defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4];

% POINT DETECTION LOOP

% set up figures

cnts=cell(noIms,1);

for i=1:noIms

 cntz=[];

 % load calibration image, invert

 calIm = 255-imread([path imID '_' imStr(i,:) '_Focus_Depth' fmt]);

 % FILTER IMAGE

 % IMAGE : Threshold : size of particle (longer)

 calIm = bpass(calIm,noisescale,dotpix,noisethresh);

 % FIND PARTICLES

 % IMAGE : Image Threshold : size of particle (longer)

 pk = pkfnd(calIm,pkthresh,dotpix);

 % Do again to sub-pixel

 cnt = cntrd(calIm,pk,dotpix);

143

 %Plot detected centroids

% figure

% imagesc(calIm)

% axis equal

% colormap gray

% hold on

% plot(cnt(:,1),cnt(:,2),'r+','MarkerSize',20)

% hold off

% uiwait(gcf)

 %

 % Should probably filter based on dot size, but cntrd can't right now.

 % Could also filter by intensity.

 % Add in the depth data

 for j=1:3

 switch j

 case 1

 depthIm = imread([path imID '_' imStr(i,:) '_Depth_Far' fmt]);

 case 2

 depthIm = imread([path imID '_' imStr(i,:) '_Depth_Mid' fmt]);

 case 3

 depthIm = imread([path imID '_' imStr(i,:) '_Depth_Near' fmt]);

 end

 cntz(:,j)=JH_AssociateDepthData_V3(cnt,depthIm,dotpix*dotspacing/dotsize/3,drt,0);

 end

 farnans=sum(isnan(cntz(:,1)));

 midnans=sum(isnan(cntz(:,2)));

 nearnans=sum(isnan(cntz(:,3)));

 fprintf('%i far, %i mid and %i near depths had too few estimations in image

%i\n',farnans,midnans,nearnans,i)

 % filter out bad depths

 cntfar=[cnt(:,1:2) cntz(:,1)];

 cntmid=[cnt(:,1:2) cntz(:,2)];

 cntnear=[cnt(:,1:2) cntz(:,3)];

 cntfar(isnan(cntfar(:,3)),:)=[];

 cntmid(isnan(cntmid(:,3)),:)=[];

 cntnear(isnan(cntnear(:,3)),:)=[];

 badfar=depthfilter(cntfar,dfrt);

 badmid=depthfilter(cntmid,dfrt);

 badnear=depthfilter(cntnear,dfrt);

 cnts{i}=[cnt(:,1:2) cntz];

 cnts{i}(badfar,3)=NaN;

 cnts{i}(badmid,4)=NaN;

 cnts{i}(badnear,5)=NaN;

 fprintf('%i far, %i mid and %i near depths rejected by fit criteria in image

%i\n',length(badfar),length(badmid),length(badnear),i)

% figure(1)

% scatter3(cntfar(:,1),cntfar(:,2),cntfar(:,3),'ro')

% hold on

% scatter3(cntfar(badfar,1),cntfar(badfar,2),cntfar(badfar,3),'k+')

% hold off

144

% figure(2)

% scatter3(cntmid(:,1),cntmid(:,2),cntmid(:,3),'go')

% hold on

% scatter3(cntmid(badmid,1),cntmid(badmid,2),cntmid(badmid,3),'k+')

% hold off

% figure(3)

% scatter3(cntnear(:,1),cntnear(:,2),cntnear(:,3),'bo')

% hold on

% scatter3(cntnear(badnear,1),cntnear(badnear,2),cntnear(badnear,3),'k+')

% hold off

% drawnow

% uiwait(gcf)

% close all

end

% now we have all the centroids in pixel and virtual depth space

% GENERATE TARGET MODEL

impoints = cell(noIms,1);

modelpoints = cell(noIms,1);

for i=1:noIms

 [impoints{i},error] = JH_Generate_Model(cnts{i}(:,1:5), radratio, 2);

 switch error

 case 1

 fprintf('Image no. %i failed axis check. Grid may be on too much of an angle, or

centroid detection properties may be wrong.\n',i)

 return

 case 2

 fprintf('Image no. %i had issues at the centre of the grid. Check centroid list &

detection properites.\n',i)

 return

 end

 [height,~]=size(impoints{i});

 modelpoints{i} = [impoints{i}(:,1:2) impoints{i}(:,1:2)*dotspacing zeros(height,1)]; %

locations of model points, in mm

 % make an array of extrinsic parameters (for later)

end

% figure

% imagesc(calIm)

% colormap gray

% axis equal

% hold on

% plot(impoints{i}(:,3),impoints{i}(:,4),'r+','MarkerSize',20)

% hold off

% ITERATIVE SOLVER

global phys

global trans

for run = 1:runs

 % solve for the depth-specific parameters

 if run == 1

 extrinsics = [];

145

 for i=1:noIms

 extrinsics=[extrinsics,[Tx,Ty,Tz,Q1,Q2,Q3,Q4]];

 end

 else

 vbles = num2cell(defaults);

 [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=vbles{2:12};

 b1=rand

 b2=b1;

 b3=b1;

 extrinsics = allvars(12:end-1);

 fL = allvars(end);

 defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4];

 end

 initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-

6,'MaxFunEvals',1000*length(extrinsics+4),'MaxIter',1000,'Display','none');

 result=lsqnonlin(@initialize,[tL,extrinsics],[],[],initops);

 tL=result(1);

 extrinsic=result(2:end);

 pass = tL;

 % solve for the b's

 result=lsqnonlin(@initialize2,[extrinsic,b1,b2,b3],[],[],initops);

 % variable assignment for in-plane distortion solver

 b1=result(end-2);

 b2=result(end-1);

 b3=result(end);

 % variable re-assignments

 extrinsic=result(1:end-3);

 intrins = [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD];

 allvars = [intrins extrinsic fL];

 pass = [tL,b1,b2,b3];

 % solve for the in-plane distortion variables

 intops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-

6,'MaxFunEvals',1000*length(allvars),'MaxIter',1000,'Display','none');

 [allvars,totresid,resids,~,~]=lsqnonlin(@intrinfun,allvars,[],[],intops);

 allvars(1:11)

 totresid

 normres=sqrt(sum(resids.^2,2));

 prc95=prctile(normres,95)

 prc2_1=prctile(resids(:,1),2.5)

 prc98_1=prctile(resids(:,1),97.5)

 prc2_2=prctile(resids(:,2),2.5)

 prc98_2=prctile(resids(:,2),97.5)

 prc2_3=prctile(resids(:,3),2.5)

 prc98_3=prctile(resids(:,3),97.5)

 % save result if it's better than the old one

 if newrun == 0

 try

146

 old=load(['Calibration_170529']);

 catch

 newrun = 1;

 old.totresid = 1;

 end

 else

 old.totresid = 1;

 end

 if (old.totresid>totresid || newrun) && imag(allvars(1))==0

 save(['Calibration_test'],'allvars','totresid');

 newrun=0;

 % kill the loop if nothing is changing

% if abs(old.totresid-totresid)<10^-6

% fprintf('Precision limit reached!\n');

% break;

% end

 else

 %allvars=old.allvars;

 %fprintf('Got worse...\n');

 %break;

 end

 % toc

end

% result plots

for i=1:noIms

 k=0;

 for j=0:2

 k=k+1;

 figure(k)

 hold on

 scatter3(phys{i}(:,3+3*j),phys{i}(:,4+3*j),phys{i}(:,5+3*j),'or');

 scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b');

 axis tight

 axis equal

 hold off

 end

end

figure

histogram(normres);

xlabel('Residual [mm]','FontSize',14,'FontName','Times New Roman')

ylabel('Count','FontSize',14,'FontName','Times New Roman')

set(gca,'FontSize',14,'FontName','Times New Roman')

figure

histfit(resids(:,1));

xlabel('{\itx} Residual [mm]','FontSize',14,'FontName','Times New Roman')

ylabel('Count','FontSize',14,'FontName','Times New Roman')

set(gca,'FontSize',14,'FontName','Times New Roman')

figure

histfit(resids(:,2));

xlabel('{\ity} Residual [mm]','FontSize',14,'FontName','Times New Roman')

ylabel('Count','FontSize',14,'FontName','Times New Roman')

147

set(gca,'FontSize',14,'FontName','Times New Roman')

figure

histfit(resids(:,3));

xlabel('{\itz} Residual [mm]','FontSize',14,'FontName','Times New Roman')

ylabel('Count','FontSize',14,'FontName','Times New Roman')

set(gca,'FontSize',14,'FontName','Times New Roman')

drawnow

end

function initres = initialize(vars)

% Try to get some of the initial parameters right by ignoring distortion

global defaults

global impoints

global noIms

global spix

global Rx

global Ry

global phys

global i

% main lens variables

fL = defaults(1);

tL = vars(1);

% micro-lens variables

b1= defaults(3);

b2= defaults(4);

b3= defaults(5);

% distortion variables

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre

k1 = defaults(8); % radial distortion coeff 1

k2 = defaults(9); % radial distortion coeff 2

d1 = defaults(10); % depth distortion coeff 1

d2 = defaults(11); % depth distortion coeff 2

dD = defaults(12); % depth-dependant depth distortion coeff

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

Gp = tL-bL;

initres=[0,0,0,0,0,0,0,0,0];

r=cell(noIms,1);

metric=cell(noIms,1);

undist=cell(noIms,1);

phys = cell(noIms,1);

for i=1:noIms

 % Extrinsics

 % Translations

148

 Tx = vars(2+(i-1)*7);

 Ty = vars(3+(i-1)*7);

 Tz = vars(4+(i-1)*7);

 % Quaternion Rotation

 Q1 = vars(5+(i-1)*7);

 Q2 = vars(6+(i-1)*7);

 Q3 = vars(7+(i-1)*7);

 Q4 = vars(8+(i-1)*7);

 % send to depth conversion algorithm

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL);

 % perform extrinsic shifts, find residuals

 exres = extrinfun([Tx,Ty,Tz,Q1,Q2,Q3,Q4]);

 % Add to total residuals

 initres = [initres;exres];

end % for

end

function intres = initialize2(extrins)

% CCD constants

global spix

global Rx

global Ry

global defaults

% globals

global impoints;

global phys;

global i;

global noIms

global pass

% shift intrins into variables

% main lens variables

fL = defaults(1);

tL = pass;

% micro-lens variables

b1= abs(extrins(end-2));

b2= abs(extrins(end-1));

b3= abs(extrins(end));

% distortion variables

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre

k1 = defaults(8); % radial distortion coeff 1

k2 = defaults(9); % radial distortion coeff 2

d1 = defaults(10); % depth distortion coeff 1

d2 = defaults(11); % depth distortion coeff 2

dD = defaults(12); % depth-dependant depth distortion coeff

149

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

Gp = tL-bL;

intres=[];

r=cell(noIms,1);

metric=cell(noIms,1);

undist=cell(noIms,1);

phys = cell(noIms,1);

for i=1:noIms

 % get extrinsic parameters

 extr=extrins(1+(i-1)*7:7+(i-1)*7);

 % send to depth conversion algorithm

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL);

 % move modelpoints array into position, calculate residual

 exres=extrinfun(extr);

 % Add to total residuals

 intres = [intres;exres];

end % for

end % function

function intres = intrinfun(intrins)

% CCD constants

global spix

global Rx

global Ry

global defaults

% globals

global impoints;

global phys;

global i;

global noIms

global pass

% shift intrins into variables

fL=defaults(1);

intr=num2cell(intrins);

[tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=intr{1:11};

% ps = num2cell(pass);

% [tL,b1,b2,b3]=ps{:};

b1=abs(b1);

b2=abs(b2);

b3=abs(b3);

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

Gp = tL-bL;

150

intres=[0,0,0,0,0,0,0,0,0];

r=cell(noIms,1);

metric=cell(noIms,1);

undist=cell(noIms,1);

phys = cell(noIms,1);

for i=1:noIms

 % get extrinsic parameters

 extrins=intrins(12+(i-1)*7:18+(i-1)*7);

 % send to depth conversion algorithm

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL);

 % move modelpoints array into position, calculate residual

 exres=extrinfun(extrins);

 % Add to total residuals

 intres = [intres;exres];

end % for

end % function

function exres = extrinfun(extrins)

global phys;

global modelpoints;

global i;

global trans;

extr = num2cell(extrins);

[Tx,Ty,Tz,Q1,Q2,Q3,Q4]=extr{:};

% set up translation variable

trans{i}(:,1:2)=modelpoints{i}(:,1:2);

% Convert quaternions to rotation matrix

mat = zeros(3);

n = Q4 * Q4 + Q1 * Q1 + Q2 * Q2 + Q3 * Q3;

if n == 0

 s=0;

else

 s=2 / n;

end

xx = Q1 * Q1 * s;

xy = Q1 * Q2 * s;

xz = Q1 * Q3 * s;

xw = Q1 * Q4 * s;

yy = Q2 * Q2 * s;

yz = Q2 * Q3 * s;

yw = Q2 * Q4 * s;

zz = Q3 * Q3 * s;

zw = Q3 * Q4 * s;

mat(1,1) = 1 - (yy + zz);

mat(2,1) = (xy - zw);

151

mat(3,1) = (xz + yw);

mat(1,2) = (xy + zw);

mat(2,2) = 1 - (xx + zz);

mat(3,2) = (yz - xw);

mat(1,3) = (xz - yw);

mat(2,3) = (yz + xw);

mat(3,3) = 1 - (xx + yy);

% apply quaternion rotation to each model point

trans{i}(:,3:5) = (mat'*modelpoints{i}(:,3:5)')';

% apply translation to each model point

trans{i}(:,3:5)=bsxfun(@plus,trans{i}(:,3:5),[Tx,Ty,Tz]);

% calculate residuals for each impoint, excluding NaN depths

resids=[phys{i}(:,3:5)-trans{i}(:,3:5),phys{i}(:,6:8)-trans{i}(:,3:5),phys{i}(:,9:11)-

trans{i}(:,3:5)];

% eliminate NaN results

resids(isnan(resids(:,3)),1:3)=0;

resids(isnan(resids(:,6)),4:6)=0;

resids(isnan(resids(:,9)),7:9)=0;

% % combine all residuals into a single vector

% exres = reshape(resids,1,[]);

% if any(imag(exres)~=0)

% warning('Regression method tested an imaginary value.')

% end

exres=[resids(:,1:3),resids(:,4:6),resids(:,7:9)];

end

function

[metric,r,undist,phys]=depthconv(impoints,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL)

% convert virtual depths and pixel locations to metric

 zdata=bL+bsxfun(@times,impoints(:,5:7)-2,[b1,b2,b3]);

 metric=[impoints(:,1:2),...

 bsxfun(@times,-(impoints(:,3)-Rx/2)*2*spix,bsxfun(@rdivide,zdata,bL)),...

 bsxfun(@times,-(impoints(:,4)-Ry/2)*2*spix,bsxfun(@rdivide,zdata,bL)),...

 zdata];

 % compute r for each point

 r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,[3,6]),[x0,y0])).^2,2));

 r(:,2) = sqrt(sum(abs(bsxfun(@minus,metric(:,[4,7]),[x0,y0])).^2,2));

 r(:,3) = sqrt(sum(abs(bsxfun(@minus,metric(:,[5,8]),[x0,y0])).^2,2));

 % undistort metric-depth points

 undist=[metric(:,1:2),...

 metric(:,3).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,4).*(1+k1*r(:,2).^2+k2*r(:,2).^4),...

 metric(:,5).*(1+k1*r(:,3).^2+k2*r(:,3).^4),...

 metric(:,6).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,7).*(1+k1*r(:,2).^2+k2*r(:,2).^4),...

 metric(:,8).*(1+k1*r(:,3).^2+k2*r(:,3).^4),...

 metric(:,9:11)+(1+dD*metric(:,9:11)).*(d1*r(:,1:3).^2+d2*r(:,1:3).^4)];

 % project points to physical space

 zdata=undist(:,9:11)*fL./(undist(:,9:11)-fL);

152

 phys=[undist(:,1:2),...

 undist(:,3:5)./undist(:,9:11).*zdata,...

 undist(:,6:8)./undist(:,9:11).*zdata,...

 zdata];

 % reposition some stuff

 phys=[phys(:,1:3),phys(:,6),phys(:,9),...

 phys(:,4),phys(:,7),phys(:,10),...

 phys(:,5),phys(:,8),phys(:,11)];

 % we now have phys in (a,b,x1,y1,z1,x2,y2,z2,x3,y3,z3) form. This

 % should correspond directly to our modelpoints array

end

Published with MATLAB® R2015b

 ETC calibration function: metricCal

The following code is the calibration method applied with the ETC method:

function metricCal

%%%

% Calibrates a Raytrix camera

% Based on Christian Heinze's 2014 masters thesis

newrun = 1;

runs = 1;

clear global

tic

global impoints;

global modelpoints;

global iters

iters=0;

global noIms

global pass

global zred

global mlHold

global from

% IMAGE LOCATIONS

% file path to white image

whitIm='X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-Sep-

2017.mat';

% file path to micro-lens locations

lensCalLoc='X:\01_Current_Students\Jake Hadfield\LightField Test

Images\WhitIms\MLCal_170911.mat';

% file path to images

path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\WaterCal_170809\';

% Shared tag

imID = 'Image';

% List of image numbers in a 1 by n array

%[4,6:9,11:27,29:31,34:43

http://www.mathworks.com/products/matlab

153

%[389:390,405:406,410,411,413,414,417]

imNos = [15 17 21 25 26 27 28];

noIms = length(imNos);

% file format

fmt = '.png';

% Dot Detection Settings

invert=1; % wether or not to invert by subtracting the white image

cleanup=225; % wether or not to normalize the image by dividing by the white image

lnoise=0; % Always should be zero, from what I've seen. see bpass for more.

psize=7; % Particle size in pixels in raw images

thresh=0; % cutoff threshold

peak=50; % peak threshold

epitol=.5; % pixel distance for max distance from particle to epipolar line

plotar=50; % aspect ratio of virtual depth for 3D plots

validrange=[2,12]; % valid range of virtual depths

display=0;

settings=[invert cleanup lnoise psize thresh peak epitol plotar validrange display];

% Target Model Generation Settings

% model generation stuff

radratio = 0.1;

% target model values, in mm

dotspacing = 5.726666666666666666666667;

% error modifier

zred=3;

% Iterative solver initial parameter values

% Camera Constants

global Rx

global Ry

global spix

spix = 5.5e-3;% pixel size [mm/pix]

Rx = 2048; % image (sensor?) resolution x [pix]

Ry = 2048; % image (sensor?) resolution y [pix]

% Calibration Variables

try

 load('nope','allvars')

 % main lens variables

 fL = allvars(end); % focal length of main lens [mm]

 tL = allvars(1)-fL*4; % focus distance [mm]

 % micro-lens variables

 b1= allvars(2); % MLA-CCD distance [mm], far field lenses

 b2= allvars(3); % MLA-CCD distance [mm], mid field lenses

 b3= allvars(4); % MLA-CCD distance [mm], near field lenses

154

 % distortion variables

 x0 = allvars(5); % distortion offset x from corner [pix] relative to image centre

 y0 = allvars(6); % distortion offset y from corner [pix] relative to image centre

 k1 = allvars(7); % radial distortion coeff 1

 k2 = allvars(8); % radial distortion coeff 2

 d1 = allvars(9); % depth distortion coeff 1

 d2 = allvars(10); % depth distortion coeff 2

 dD = allvars(11); % depth-dependant depth distortion coeff

 % ML distortion by type

 mlvars=allvars(12:17);

catch

 % main lens variables

 fL = 85; % focal length of main lens [mm]

 tL = 800; % focus distance [mm]

 % micro-lens variables

 b1= .35; % MLA-CCD distance [mm], far field lenses

 b2= .35; % MLA-CCD distance [mm], mid field lenses

 b3= .35; % MLA-CCD distance [mm], near field lenses

 % distortion variables

 x0 = 0; % distortion offset x from corner [pix] relative to image centre

 y0 = 0; % distortion offset y from corner [pix] relative to image centre

 k1 = 0; % radial distortion coeff 1

 k2 = 0; % radial distortion coeff 2

 d1 = 0; % depth distortion coeff 1

 d2 = 0; % depth distortion coeff 2

 dD = 0; % depth-dependant depth distortion coeff

 % ML distortion by type

 mlvars= [0 0 0 0 0 0];

end

% Extrinsics

% Translations

Tx = 0;

Ty = 0;

Tz = abs(tL)+4*fL;

% Quaternion Rotation

Q1 = 0;

Q2 = 0;

Q3 = 0;

Q4 = 1;

global defaults

defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4];

% POINT DETECTION LOOP

% set up figures

points=cell(noIms,1);

155

ltypes=cell(noIms,1);

pgroups=cell(noIms,1);

for i=1:noIms

 imName=[imID '_Raw_' num2str(imNos(i),'%04i') fmt];

[points{i},ltypes{i},~,~,~,pcd{i},plocs{i},pgroups{i},lensCents,pli{i},typelist]=JH_rawPlenPF(pat

h,imName,[],lensCalLoc,whitIm,'',settings);

end

% now we have all the centroids in pixel and virtual depth space

% GENERATE TARGET MODEL

impoints = cell(noIms*3,1);

from=cell(noIms*3,1);

modelpoints = cell(noIms*3,1);

skips=[];

for i=1:noIms

 for j=1:3

 [impoints{(i-1)*3+j},error,from{(i-1)*3+j}] =

JH_Generate_Model(points{i}(ltypes{i}==j,:), radratio, 2);

 switch error

 case 1

 fprintf('Image no. %i - %i failed axis check. Grid may be on too much of an

angle, or centroid detection properties may be wrong.\n',i,j)

 skips=[skips;(i-1)*3+j];

 case 2

 fprintf('Image no. %i - %i had issues at the centre of the grid. Check centroid

list & detection properites.\n',i,j)

 skips=[skips;(i-1)*3+j];

 case 3

 fprintf('Image no. %i - %i had too few points. Check centroid list & detection

properites.\n',i,j)

 skips=[skips;(i-1)*3+j];

 end

 end

 % readjust to align grid centres, if possible.

 [~,ind]=max([length(impoints{(i-1)*3+1}),length(impoints{(i-1)*3+2}),length(impoints{(i-

1)*3+3})]);

 try

 loc=impoints{(i-1)*3+ind}(1,3:4);

 catch

 continue

 end

 adjind=1:3;

 adjind(adjind==ind)=[];

 varl=1;

 pos=zeros(3,1);

 tag=0;

 while tag ~=2

 tag=0;

 pos(ind)=varl;

 for j=adjind

 if ~isempty(impoints{(i-1)*3+j})

156

 [dist,pos(j)]=min(sum(bsxfun(@minus,impoints{(i-1)*3+j}(:,3:4),loc).^2,2).^0.5);

 if dist<1

 tag=tag+1;

 end

 else

 tag=tag+1;

 end

 end

 if tag==2

 for j=1:3

 if ~isempty(impoints{(i-1)*3+j})

 % adjust grid origin and generate modelpoints

 impoints{(i-1)*3+j}(:,1:2)=bsxfun(@minus,impoints{(i-

1)*3+j}(:,1:2),impoints{(i-1)*3+j}(pos(j),1:2));

 modelpoints{(i-1)*3+j} = [impoints{(i-1)*3+j}(:,1:2) impoints{(i-

1)*3+j}(:,1:2)*dotspacing zeros(size(impoints{(i-1)*3+j},1),1)]; % locations of model points, in

mm

 end

 end

 else

 % didn't share centrepoint, try the next one

 varl=varl+1;

 try

 loc=impoints{(i-1)*3+ind}(varl,3:4);

 catch

 % couldn't align grid, empty smallest member of impoints

 % and retry with just 2 (or use only 1 if that's all we

 % have)

 [~,small]=min([length(impoints{(i-1)*3+1}),length(impoints{(i-

1)*3+2}),length(impoints{(i-1)*3+3})]);

 if ~isempty(impoints{(i-1)*3+small})

 impoints{(i-1)*3+small}=[];

 else

 ls=[length(impoints{(i-1)*3+1}),length(impoints{(i-

1)*3+2}),length(impoints{(i-1)*3+3})];

 [~,small]=find(ls==min(ls(ls>0)));

 impoints{(i-1)*3+small}=[];

 end

 varl=1;

 try

 loc=impoints{(i-1)*3+ind}(varl,3:4);

 catch

 continue

 end

 end

 end

 end

end

impoints(skips)=cell(1,1);

modelpoints(skips)=cell(1,1);

% figure

% imagesc(calIm)

157

% colormap gray

% axis equal

% hold on

% plot(impoints{i}(:,3),impoints{i}(:,4),'r+','MarkerSize',20)

% hold off

% ITERATIVE SOLVER

global phys

global trans

for run = 1:runs

 % solve for the depth-specific parameters

 if run == 1

 extrinsics = [];

 for i=1:noIms

 extrinsics=[extrinsics,[Tx,Ty,Tz,Q1,Q2,Q3,Q4]];

 end

 else

 vbles = num2cell(defaults);

 [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=vbles{2:12};

 b1=rand

 b2=b1;

 b3=b1;

 extrinsics = allvars(12:end-1);

 fL = allvars(end);

 defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4];

 end

 initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',10,'TolFun',1e-

6,'MaxFunEvals',1000*length(extrinsics+4),'MaxIter',1000,'Display','none');

 result=lsqnonlin(@initialize,[tL,extrinsics],[],[],initops);

 tL=result(1);

 extrinsic=result(2:end);

 intrins = [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD];

 allvars = [intrins extrinsic fL];

 % solve for the in-plane distortion variables

 intops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',10,'TolFun',1e-

6,'MaxFunEvals',1000*length(allvars),'MaxIter',1000,'Display','none');

 [allvars,totresid,resids,~,~]=lsqnonlin(@intrinfun,allvars,[],[],intops);

 % solve for micro-lens distortions

% pass = allvars;

% mlHold = {plocs,pgroups,lensCents,pli,typelist,pcd};

% [mlvars,totresid,resids,~,~]=lsqnonlin(@mlfun,mlvars,[],[],initops);

 allvars=[allvars(1:11) mlvars allvars(11:end)];

 allvars(1)=allvars(end)*4+abs(allvars(1));

 allvars(1:17)

 normres=sqrt(sum(resids.^2,2));

 prc95=prctile(normres,95)

158

 prc2_1=prctile(resids(:,1),2.5)

 prc98_1=prctile(resids(:,1),97.5)

 prc2_2=prctile(resids(:,2),2.5)

 prc98_2=prctile(resids(:,2),97.5)

 prc2_3=prctile(resids(:,3),2.5)

 prc98_3=prctile(resids(:,3),97.5)

 figure

 histogram(normres);

 xlabel('Residual [mm]','FontSize',14,'FontName','Times New Roman')

 ylabel('Count','FontSize',14,'FontName','Times New Roman')

 set(gca,'FontSize',14,'FontName','Times New Roman')

 figure

 histfit(resids(:,1));

 xlabel('{\itx} Residual [mm]','FontSize',14,'FontName','Times New Roman')

 ylabel('Count','FontSize',14,'FontName','Times New Roman')

 set(gca,'FontSize',14,'FontName','Times New Roman')

 figure

 histfit(resids(:,2));

 xlabel('{\ity} Residual [mm]','FontSize',14,'FontName','Times New Roman')

 ylabel('Count','FontSize',14,'FontName','Times New Roman')

 set(gca,'FontSize',14,'FontName','Times New Roman')

 figure

 histfit(resids(:,3));

 xlabel('{\itz} Residual [mm]','FontSize',14,'FontName','Times New Roman')

 ylabel('Count','FontSize',14,'FontName','Times New Roman')

 set(gca,'FontSize',14,'FontName','Times New Roman')

 % output residuals

 tpoints=0;

 for m=1:length(modelpoints)

 tpoints=sum([tpoints length(modelpoints{m})]);

 end

 avresid=sum(sqrt(sum([resids(:,1:2) resids(:,3)*zred].^2,2)))/length(resids)

 % save result if it's better than the old one

 if newrun == 0

 try

 old=load(['Calibration_170529']);

 catch

 newrun = 1;

 old.totresid = 1;

 end

 else

 old.totresid = 1;

 end

 if (old.totresid>totresid || newrun) && imag(allvars(1))==0

 save(['Calibration_' datestr(datetime('today'))],'allvars','totresid');

 newrun=0;

 % kill the loop if nothing is changing

% if abs(old.totresid-totresid)<10^-6

% fprintf('Precision limit reached!\n');

159

% break;

% end

 else

 %allvars=old.allvars;

 %fprintf('Got worse...\n');

 %break;

 end

 % toc

end

% result plots

for i=1:length(phys)

 figure

 if ~isempty(phys{i})

 hold on

 scatter3(phys{i}(:,3),phys{i}(:,4),phys{i}(:,5),'or');

 scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b');

 axis tight

 axis equal

 hold off

 xlabel('{\itx} [mm]','FontSize',14,'FontName','Times New Roman')

 ylabel('{\ity} [mm]','FontSize',14,'FontName','Times New Roman')

 zlabel('{\itz} [mm]','FontSize',14,'FontName','Times New Roman')

 set(gca,'FontSize',14,'FontName','Times New Roman')

 end

end

figure

hold on

for i=1:length(phys)

 if ~isempty(phys{i})

 scatter3(phys{i}(:,3),phys{i}(:,4),phys{i}(:,5),'or');

 scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b');

 axis tight

 axis equal

 end

end

xlabel('{\itx} [mm]','FontSize',14,'FontName','Times New Roman')

ylabel('{\ity} [mm]','FontSize',14,'FontName','Times New Roman')

zlabel('{\itz} [mm]','FontSize',14,'FontName','Times New Roman')

set(gca,'FontSize',14,'FontName','Times New Roman')

drawnow

end

function initres = initialize(vars)

% Try to get some of the initial parameters right by ignoring distortion

global defaults

global impoints

global noIms

global spix

global Rx

global Ry

160

global phys

global i

global j

% main lens variables

fL = defaults(1);

tL = vars(1);

tL=abs(tL)+4*fL;

% micro-lens variables

b1= defaults(3);

b2= defaults(4);

b3= defaults(5);

% distortion variables

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre

k1 = defaults(8); % radial distortion coeff 1

k2 = defaults(9); % radial distortion coeff 2

d1 = defaults(10); % depth distortion coeff 1

d2 = defaults(11); % depth distortion coeff 2

dD = defaults(12); % depth-dependant depth distortion coeff

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

initres=[];

r=cell(noIms,1);

metric=cell(noIms,1);

undist=cell(noIms,1);

phys = cell(noIms,1);

for i=1:noIms

 for j=1:3

 % Extrinsics

 % Translations

 Tx = vars(2+(i-1)*7);

 Ty = vars(3+(i-1)*7);

 Tz = vars(4+(i-1)*7);

 % Quaternion Rotation

 Q1 = vars(5+(i-1)*7);

 Q2 = vars(6+(i-1)*7);

 Q3 = vars(7+(i-1)*7);

 Q4 = vars(8+(i-1)*7);

 % send to depth conversion algorithm

 if ~isempty(impoints{(i-1)*3+j})

 [metric{(i-1)*3+j},r{(i-1)*3+j},undist{(i-1)*3+j},phys{(i-1)*3+j}]=depthconv(impoints{(i-

1)*3+j},j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL);

 % perform extrinsic shifts, find residuals

 exres = extrinfun([Tx,Ty,Tz,Q1,Q2,Q3,Q4]);

 % Add to total residuals

 initres = [initres;exres];

161

 end

 end

end % for

end

function intres = intrinfun(intrins)

% CCD constants

global spix

global Rx

global Ry

global defaults

% globals

global impoints;

global phys;

global i;

global j

global noIms

% shift intrins into variables

fL=intrins(end);

intr=num2cell(intrins);

[tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=intr{1:11};

tL=abs(tL)+4*fL;

% ps = num2cell(pass);

% [tL,b1,b2,b3]=ps{:};

b1=abs(b1);

b2=abs(b2);

b3=abs(b3);

% lens modeling parameters

bL = tL/2*(1-sqrt(1-4*fL/tL));

intres=[];

r=cell(noIms,1);

metric=cell(noIms,1);

undist=cell(noIms,1);

phys = cell(noIms,1);

for i=1:noIms

 for j=1:3

 % get extrinsic parameters

 extrins=intrins(12+(i-1)*7:18+(i-1)*7);

 % send to depth conversion algorithm

 if ~isempty(impoints{(i-1)*3+j})

 [metric{(i-1)*3+j},r{(i-1)*3+j},undist{(i-1)*3+j},phys{(i-1)*3+j}]=depthconv(impoints{(i-

1)*3+j},j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL);

 % move modelpoints array into position, calculate residual

 exres=extrinfun(extrins);

 % Add to total residuals

 intres = [intres;exres];

 end

 end

162

end % for

end % function

function exres = extrinfun(extrins)

global phys;

global modelpoints;

global i;

global j

global trans;

global zred;

extr = num2cell(extrins);

[Tx,Ty,Tz,Q1,Q2,Q3,Q4]=extr{:};

% set up translation variable

trans{(i-1)*3+j}(:,1:2)=modelpoints{(i-1)*3+j}(:,1:2);

% Convert quaternions to rotation matrix

mat = zeros(3);

n = Q4 * Q4 + Q1 * Q1 + Q2 * Q2 + Q3 * Q3;

if n == 0

 s=0;

else

 s=2 / n;

end

xx = Q1 * Q1 * s;

xy = Q1 * Q2 * s;

xz = Q1 * Q3 * s;

xw = Q1 * Q4 * s;

yy = Q2 * Q2 * s;

yz = Q2 * Q3 * s;

yw = Q2 * Q4 * s;

zz = Q3 * Q3 * s;

zw = Q3 * Q4 * s;

mat(1,1) = 1 - (yy + zz);

mat(2,1) = (xy - zw);

mat(3,1) = (xz + yw);

mat(1,2) = (xy + zw);

mat(2,2) = 1 - (xx + zz);

mat(3,2) = (yz - xw);

mat(1,3) = (xz - yw);

mat(2,3) = (yz + xw);

mat(3,3) = 1 - (xx + yy);

% apply quaternion rotation to each model point

trans{(i-1)*3+j}(:,3:5) = (mat'*modelpoints{(i-1)*3+j}(:,3:5)')';

% apply translation to each model point

trans{(i-1)*3+j}(:,3:5)=bsxfun(@plus,trans{(i-1)*3+j}(:,3:5),[Tx,Ty,Tz]);

% calculate residuals for each impoint, excluding NaN depths

resids=phys{(i-1)*3+j}(:,3:5)-trans{(i-1)*3+j}(:,3:5);

163

% eliminate NaN results

resids(isnan(resids(:,3)),:)=[];

% combine all residuals into a single vector

exres = [resids(:,1:2) resids(:,3)/zred];

% if any(imag(exres)~=0)

% warning('Regression method tested an imaginary value.')

% end

end

function

[metric,r,undist,phys]=depthconv(impoints,j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL)

switch j

 case 1

 b=b1;

 case 2

 b=b2;

 case 3

 b=b3;

end

% convert virtual depths and pixel locations to metric

 zdata=bL+bsxfun(@times,impoints(:,5)-2,b);

 metric=[impoints(:,1:2),...

 (impoints(:,3)-Rx/2)*spix,...

 (impoints(:,4)-Ry/2)*spix,...

 zdata];

 % compute r for each point

 r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,3:4),[x0,y0])).^2,2));

 % undistort metric-depth points

 undist=[metric(:,1:2),...

 metric(:,3).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,4).*(1+k1*r(:,1).^2+k2*r(:,1).^4),...

 metric(:,5)+(1+dD*metric(:,5)).*(d1*r(:,1).^2+d2*r(:,1).^4)];

 % project points to physical space

 zdata=undist(:,5)*fL./(undist(:,5)-fL);

 phys=[undist(:,1:2),...

 -undist(:,3)./undist(:,5).*zdata,...

 -undist(:,4)./undist(:,5).*zdata,...

 zdata];

 % we now have phys in (a,b,x,y,z) form. This

 % should correspond directly to our modelpoints array

end

% function resids=mlfun(mlVars)

% global pass

% global mlHold

% global impoints

% global from

%

% plocs=mlHold{1};

% pgroups=mlHold{2};

% lensCents=mlHold{3};

% pli=mlHold{4};

164

% typelist=mlHold{5};

% pcd=mlHold{6};

%

%

% % modify raw particle locations

% nplocs=JH_Plen_mlCorrect(plocs,lensCents,pli,typelist,pcd,mlVars);

%

%

% for i = 1:length(nplocs)

% % solve for new 3D particle locations

% [points,~,~]=JH_Plen_GetPt(nplocs{i},pgroups{i},lensCents,pli{i},pcd{i},typelist,0);

%

% % replace values in model array

% for j=1:size(impoints{i},1)

% impoints{i}(j,3:5)=points(from{i}(j),:);

% end

% end

%

% % convert to physical position and calculate residual

% resids = intrinfun(pass);

% end

Published with MATLAB® R2015b

 Model generation function: JH_Generate_Model

The target model function has been isolated in the ETC code, accomplished using the following

code:

function [impoints, error, from] = JH_Generate_Model(cnts,varargin)

%%%

% Generates a model of a calibration target with points corresponding to

% input parameters, and associates input centroids. first two columns of

% impoints contain [a,b] matrix of valid target points, last three contain

% centroid locations.

% Inputs:

% cnts - Detected centroids of grid points, in (x,y,z) form [pix]

% radratio - Tolerance for expected point location, max 0.05, recommended

% 0.01 or less; depends on target image quality and noise level

% maxmiss - Number of points

% Outputs:

% impoints - array of [a,b,x,y,z] locations containing:

% a - relative x position of the point in the array along minor axis [int]

% b - relative y position of the point in the array along major axis [int]

% [x,y,z] - centroid of point [pix]

% error - variable for identifying errors

%

% Warnings: Code will produce warnings identifying points that deviated

http://www.mathworks.com/products/matlab

165

% significantly from the expected location, based on the axis generated.

% These will occur more frequently with highly distorted views. Should

% check these points manually to confirm centroid location was good. If a

% lot of these show up, there may be issues near the centre of the image.

%%%

warn = 0;

from=[];

% robust input handling

if ~isa(varargin{1},'double')

 radratio = 0.1; % default

else

 radratio = varargin{1};

end

if ~isa(varargin{2},'int')

 maxmiss = 2; % default

else

 maxmiss = varargin{2};

end

if isempty(cnts)

 impoints=[];

 error=3;

 from=[];

 return;

end

error = 0;

% figure

% scatter3(cnts(:,1),cnts(:,2),cnts(:,3))

% Find target axes

% find [x,y] epicentre of centroids

epi= sum(cnts(:,1:2),1)/size(cnts,1);

% put [x,y] centroids into a k-d tree

tree = KDTreeSearcher(cnts(:,1:2));

okay=0;

flip=0;

while ~okay

 % figure out which centroid(s) is closest to the epicentre

 ind = knnsearch(tree,epi);

 % set that point to be the origin

 impoints = [0 0 cnts(ind,1:3)];

 % find next 8 nearest points to origin

 ind = knnsearch(tree, cnts(ind,1:2), 'K', 9); % single row

 % find opposing points

 try

 vecs = 2*bsxfun(@minus,cnts(ind,1:2),cnts(ind(1),1:2));

 catch

 pause

 end

 % toss out zeros (origin)

166

 vecs(vecs(:,1)==vecs(:,2),:)=[];

 try

 indop = knnsearch(tree,bsxfun(@minus,cnts(ind(2:9),1:2),vecs)); % single column

 catch

 error=3;

 return;

 end

 % get opposites list, remove duplicates and origin

 ops = [ind(2:9)' indop];

 ops = unique(sort(ops,2),'rows');

 % ops should be a 4x2 array with the indicies of points that oppose each other accross the

origin

 check = size(ops);

 if check(1)~=4 || check(2) ~=2

 if epi<2048

 epio=epi;

 epi=epi+[100,0];

 else

 epi=[10,epi(2)];

 flip=1;

 end

 if flip && epi(1)>epio(1)

 error = 2;

 impoints = [];

 return

 end

 else

 okay=1;

 end

end

% determine vector lengths between points in ops

vecs = cnts(ops(:,2),1:2)-cnts(ops(:,1),1:2);

vlengths = sqrt(sum(abs(vecs).^2,2));

[~, vind] = sort(vlengths);

% figure out which axes are good

p=zeros(1,9);

try1=1;

try2=2;

tries = 1;

while all(sort(ind)~=sort(p))

 % shortest vector becomes minor axis direction

 minorAxis=vecs(vind(try1),:)/2;

 % next shortest vector becomes major axis direction

 majorAxis=vecs(vind(try2),:)/2;

 % make sure all 8 closest points to origin can be identified by single

 % combinations of the minor and major axis

 % origin always good

 p(1) = ind(1);

 % on minor

 p(2) = knnsearch(tree, cnts(ind(1),1:2)+minorAxis);

167

 p(3) = knnsearch(tree, cnts(ind(1),1:2)-minorAxis);

 % on major

 p(4) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis);

 p(5) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis);

 % diagonals

 p(6) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis+minorAxis);

 p(7) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis+minorAxis);

 p(8) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis-minorAxis);

 p(9) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis-minorAxis);

 % try other axes if it didn't work

 if tries == 1

 try1=2;

 try2=3;

 elseif tries == 2

 try1=1;

 try2=3;

 else

 % didn't get 8 good points around origin

 error = 1;

 impoints = 0;

 return

 end

end

% we now should have good major and minor axes

missflags = [];

% Determine coordinates of points in image along minor axis

for runs=1:2

 % set up point finding inital loop variables

 findingpoints = 1;

 % which direction we're going

 switch runs

 case 1

 vector = minorAxis;

 c=1;

 case 2

 vector = -minorAxis;

 c=-1;

 end

 loc = cnts(ind(1),1:2);

 misses = 0;

 i=1;

 while findingpoints == 1;

 idx = rangesearch(tree,loc+vector,radratio*norm(vector));

 % did we find a point?

 if isempty(idx{1}) || length(idx{1})>1

 % if we didn't find one, we should keep going in case only a

 % few points are missing/blocked, but we need to flag the point

 % so we don't put it in the model target

 switch runs

 case 1

 missflags = [missflags;i,0];

168

 case 2

 missflags = [missflags;-i,0];

 end

 loc = loc+vector;

 misses = misses + 1;

 switch runs

 case 1

 impoints = [impoints;[i,0,loc,NaN]];

 case 2

 impoints = [impoints;[-i,0,loc,NaN]];

 end

 else

 vector = bsxfun(@minus,cnts(idx{1},1:2),loc);

 % compare with minor axis

 try

 if norm(vector-c*minorAxis)>(radratio*norm(minorAxis)) && warn

 switch runs

 case 1

 warning('Point (%i,%i) produced a vector

%1.2d*minorAxis.',i,0,norm(vector-c*minorAxis)/norm(minorAxis))

 case 2

 warning('Point (%i,%i) produced a vector %1.2d*minorAxis.',-

i,0,norm(vector-c*minorAxis)/norm(minorAxis))

 end

 end

 catch

 error('Detected multiple points where only 1 should be present. Increase epitol

and/or decrease peak threshold.');

 end

 loc = cnts(idx{1},1:2);

 misses = 0;

 switch runs

 case 1

 impoints = [impoints;[i,0,loc,cnts(idx{1},3)]];

 case 2

 impoints = [impoints;[-i,0,loc,cnts(idx{1},3)]];

 end

 end

 i=i+1;

 % if we missed too many points, we probably hit the edge

 if misses == maxmiss

 findingpoints = 0;

 end

 end

end

% Determine locations of all points

% should have a line of points along the minor axis. Now, move in the major

% axis direction

[hits,~]=size(impoints);

for j=1:hits

 for runs = 1:2

169

 % set up point finding inital loop variables

 findingpoints = 1;

 % which direction we're going

 switch runs

 case 1

 vector = majorAxis;

 c=1;

 case 2

 vector = -majorAxis;

 c=-1;

 end

 loc = impoints(j,3:4);

 misses = 0;

 i=1;

 while findingpoints == 1;

 idx = rangesearch(tree, loc+vector,radratio*norm(vector));

 % did we find a point?

 if isempty(idx{1}) || length(idx)>1

 % if we didn't find one, we should keep going in case only a

 % few points are missing/blocked, but we need to flag the point

 % so we don't put it in the model target

 switch runs

 case 1

 missflags = [missflags;impoints(j,1),i];

 case 2

 missflags = [missflags;impoints(j,1),-i];

 end

 loc = loc+vector;

 misses = misses + 1;

 switch runs

 case 1

 impoints = [impoints;impoints(j,1),i,loc,NaN,];

 case 2

 impoints = [impoints;impoints(j,1),-i,loc,NaN,];

 end

 elseif length(idx{1})>1

 for p=length(idx{1})

 vector = bsxfun(@minus,cnts(idx{1}(p),1:2),loc);

 % compare with major axis. Throws more warnings than

 % necessary, but good info.

 if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn;

 switch runs

 case 1

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',impoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis))

 case 2

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',impoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis))

 end

 end

 loc = cnts(idx{1}(p),1:2);

 misses = 0;

170

 switch runs

 case 1

 impoints = [impoints;impoints(j,1),i,loc,cnts(idx{1}(p),3)];

 case 2

 impoints = [impoints;impoints(j,1),-i,loc,cnts(idx{1}(p),3)];

 end

 end

 else

 vector = bsxfun(@minus,cnts(idx{1},1:2),loc);

 % compare with major axis. Throws more warnings than

 % necessary, but good info.

 if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn;

 switch runs

 case 1

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',impoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis))

 case 2

 warning('Point (%i,%i) produced a vector

%1.2d*majorAxis.',impoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis))

 end

 end

 loc = cnts(idx{1},1:2);

 misses = 0;

 switch runs

 case 1

 impoints = [impoints;impoints(j,1),i,loc,cnts(idx{1},3)];

 case 2

 impoints = [impoints;impoints(j,1),-i,loc,cnts(idx{1},3)];

 end

 end

 i=i+1;

 % if we missed too many points, we probably hit the edge

 if misses == maxmiss

 findingpoints = 0;

 end

 end

 end

end

% should have a full grid of points in impoints, including misses. Now need

% to eliminate misses.

[~,crossed,~]=intersect(impoints(:,1:2),missflags,'rows');

impoints(crossed,:)=[];

% perform iterative planar fitting and remove outliers

fitz=fit([impoints(:,3),impoints(:,4)],impoints(:,5),'poly22');

fdata = feval(fitz,[impoints(:,3),impoints(:,4)]);

I = abs(fdata - impoints(:,5)) > 1*std(impoints(:,5));

display=0;

171

if display==1

 figure

 plot(fitz,[impoints(:,3),impoints(:,4)],impoints(:,5))

 fitzelim= fit([impoints(~I,3),impoints(~I,4)],impoints(~I,5),'poly22');

 figure

 plot(fitzelim,[impoints(~I,3),impoints(~I,4)],impoints(~I,5))

 hold on

 scatter3(impoints(I,3),impoints(I,4),impoints(I,5),'*m')

 hold off

end

% remove outliers from impoints

impoints(I,:)=[];

% And we're done!

% now, where did all the impoints come from in cnts?

from=zeros(size(impoints,1),1);

for i=1:length(impoints)

 [~,from(i)]=ismember(impoints(i,3:5),cnts,'rows');

end

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab

172

 PARTICLE TRACKING METHODS

The particle tracking methods are used by both the refocusing and ETC methods. These codes are

implemented after the particles in at least two frames have been located and require an outer loop

to manage properly as they only deal with the existing tracks and the last two particle sets in the

series.

 Track initialization: DH_track_v3

The following code is responsible for the two-frame track initialization. This code was written

initially by [9], but a slight modification has been made to make it suitable for the particle locations

produced from the plenoptic images.

function tracks = DH_track_v3(xyz_a,xyz_b,search,neighbor,quasi,zdt)

%A script to track particles through two time frames and three dimensions.

%It follows the general technique of Baek and Lee's 1996 paper, extended

%out to three dimensions.

%

%Inputs: xyz_a, in the form of [x y z]

% where (x,y,z) is the three-dimensional coordinates of particles

% in time frame 'a'

%

% xyz_b, in the form of [x y z]

% where (x,y,z) is the three-dimensional coordinates of particles

% in time frame 'b'

%

% search, an integer

% This variable defines the maximum displacement that should be

% seen by a single particle in any given direction

%

% neighbor, an integer

% This variable defines the neighborhood radius, inside of which

% other particles will be found and may be assumed to displace

% themselves similarly to the particle to be tracked

%

% quasi, an integer

% This variable defines the maximum amount of variability in any

% group's movement, ie random-type error. If a group of 10

% particles uniformly displaces 3 units in the x-direction, except

% for one which displaces 3.5 units, this variable will account

% for that, and allow a match.

%

% zdw, a double

% This variable defines the reliability of the particle location

% algorithm in the out-of-plane direction relative to the

173

% in-plane direction. When performing nearest-neighbor tracking

% or using the quasi radius, this weight is applied to reduce the

% algorithm's reliance on out-of-plane location data

%Output: tracks, in the form of [x y z]

% The particle number and time frame values have been removed

% from previous versions to allow a continuous list to be

% created. Now, with multiple image sets, the list can be added

% onto itself, and plotted last. It is assumed that the first

% row is a particle in time frame 'a', and the second row is it's

% matching particle in time frame 'b'. Row three is once again

% from time frame 'a', and row four is row three's matching

% particle from time frame 'b', and so on.

% Any particles that are not tracked to a second frame are

% removed from the list.

%

%On choosing parameter values:

% -Both the search and neighborhood radii should be large enough to

% contain approximately 5 particles inside of them. Having less will

% make the algorithm fall over more often, and having more will greatly

% slow down the process. At the same time, they should be small compared

% to the motion of the flow - having two directions of flow or a large

% curvature in one radius is a bad idea.

% -The quasi-rigidity radius should be chosen small compared to the other

% radii, and the smaller the quasi radius, the more rigid the flow must

% be in order to track particles. Having this radius too large will

% allow too many fluke particles to have an influence on the correct

% match.

% -The neighborhood radii's size is strictly defined by the system flow

% geometry. If a linear flow exists, a large neighborhood radius can be

% large, because most particles will flow in a consistent direction. If

% a sharp circular geometry exists, the neighborhood radius should be

% very close to the search radius, if not less than the search radius.

%

%Written by Darren Homeniuk, October 22, 2007

%

%Inspiration for process given by paper written by S.J. Baek and S.J. Lee,

%entitled "A new two-frame particle tracking algorithm using match

%probability", 1996

% Jake Hadfield 2016/17: Added zdt/zdw for plenoptic tracking

% Test Variables

zdw = zdt; %z-displacement weighting; see input variables

%initial declarations

in_search = []; %structure for positions of particles in frame 'b'

 %that are close enough to match the particle

 %to be tracked

in_neighbor = []; %structure for positions of particles in frame 'a'

 %that are close enough to follow the same

174

 %motion as the particle to be tracked

a = 1; %index to the final "tracks" array

displacement = []; %multi-use structure

nn_track = 0; %number of times nearest neighbor was used

pos_search = xyz_b; %possible search particles. Neighbors get pulled

 %from the xyz_a array. Potential trajectories get

 %pulled from this array. After being matched, a

 %particle will be eliminated from pos_search, so it

 %doesn't get matched again.

tracks = [];

len_frame_a = size(xyz_a,1);

len_frame_b = size(xyz_b,1);

len_positions_search = len_frame_b;

%look through frame 'a' to determine particle matches

i = 1;

%FOR PARTICLE 'i'

while i <= len_frame_a

 % FIRST TRY PREDICTIVE TRACKING

 %FIND NEIGHBORS OF PARTICLE

 for j = 1:len_frame_a

 dist1 = sqrt((xyz_a(i,1)-xyz_a(j,1))^2 + (xyz_a(i,2)-xyz_a(j,2))^2 ...

 + (xyz_a(i,3)-xyz_a(j,3))^2);

 if dist1 < neighbor && i ~= j

 %if a neighbor, put x,y,z coords into array

 in_neighbor = [in_neighbor; xyz_a(j,1) xyz_a(j,2) xyz_a(j,3)];

 end

 end

 [num_neighbor,~] = size(in_neighbor);

 if(num_neighbor > 0)

 %HAVE NEIGHBORS - PERFORM ADVANCED TRACKING

 %FIND FRAME 'b' PARTICLES INSIDE SEARCH RADIUS

 num_search = 0;

 for j = 1 : len_positions_search

 %calculate distance between particle being tracked in frame 'a'

 %and every particle in frame 'b'

 xd = xyz_a(i,1)-pos_search(j,1);

 yd = xyz_a(i,2)-pos_search(j,2);

 zd = xyz_a(i,3)-pos_search(j,3);

 dist1 = sqrt((xd)^2 + (yd)^2 + (zd*zdw)^2);

175

 %if the distance between frame 'a' and 'b' particles is

 %less than the search radius, it is a potential match

% if dist1 < search && xyz_b(j,3) > min_h

 if dist1 < search

 %place particle in array - used later if it is a match

 in_search = [in_search; ...

 pos_search(j,1) pos_search(j,2) pos_search(j,3)];

 %find distance to particle being tracked from this particle

 displacement = [displacement; xd yd zd];

 %increment number of search particles

 num_search = num_search + 1;

 end

 end

 if(num_search > 0)

 %HAVE SEARCH PARTICLES - PARTICLE HAS SOME POTENTIAL MATCH

 %number of times particle found in quasi-rigidity radius

 count = zeros(num_search,1);

 %distance from centre of quasi-rigidity radius to where

 %particle actually is found - may be used later

 distance = zeros(num_search,1);

 for j = 1 : num_search

 for k = 1 : num_neighbor

 l = 1; flag = 0;

 while l <= len_frame_b && flag == 0

 %-> in_neighbor(k,:) is the k-th neighbor of the

 %particle to be tracked

 %-> displacement(j,:) is the displacement measured

 %between the j-th potential match

 %-> xyz_b(l,:) the set of frame 'b' particles

 %that should appear somewhere around the calculated

 %position, if the track tested is correct

 %this basically checks the distance between where

 %you would expect the particle to be (if it is a

 %correct tracking direction/magnitude) against

 %where particles actually appear in the second

 %frame

 xdist = in_neighbor(k,1)-displacement(j,1)-xyz_b(l,1);

 ydist = in_neighbor(k,2)-displacement(j,2)-xyz_b(l,2);

 zdist = in_neighbor(k,3)-displacement(j,3)-xyz_b(l,3);

176

 dist1 = sqrt((xdist)^2 + (ydist)^2 + (zdist*zdw)^2);

 if(dist1 < quasi)

 %if a particle appears inside quasi-rigidity radius,

 %then this displacement is more likely correct

 %increment correct count

 count(j) = count(j) + 1;

 %add onto distance measure

 distance(j) = distance(j) + dist1;

 %match found - stop checking particles,

 %check next neighbor

 flag = 1;

 end

 l = l + 1;

 end

 end

 end

 %find displacement with most correct counts

 [maximum,index] = max(count);

 if maximum ~= 0

 %IF HAVE PARTICLES INSIDE QUASI-RIGIDITY RADIUS

 ind = find(count == maximum);

 [sz_ind,~] = size(ind);

 if(sz_ind > 1 && maximum ~= 0)

 %if displacements have equal number of correct matches

 %compute distance from calculated placement to actual

 %location of particle; choose the lowest value as correct

 index = ind(1);

 for j = 2 : size(ind)

 if(distance(index) > distance(ind(j)))

 index = ind(j);

 end

 end

 end

 %this displacement is the "correct" track

 tracks(a,:) = xyz_a(i,:);

 % xyz_a(i,:) = []; len_frame_a = len_frame_a - 1;

 i = i + 1;

 a = a + 1;

 %note: assumption here is that the x-position will be

177

 %rather unique. The z-position is very non-unique, while

 %the x-y locations are. If however, two exact x-positions

 %exist, trouble will be created by this!

 tracks(a,:) = in_search(index,:);

 ind1 = find(in_search(index,1) == pos_search(:,1),1,'first');

 pos_search(ind1,:) = [];

 len_positions_search = len_positions_search - 1;

 % ind1 = find(in_search(index,1) == xyz_b(:,1),1,'first');

 % xyz_b(ind1,:) = []; len_frame_b = len_frame_b - 1;

 %sample plotting part 2

% quiver3(tracks(a-1,1),tracks(a-1,2),tracks(a-1,3),...

% tracks(a,1)-tracks(a-1,1),...

% tracks(a,2)-tracks(a-1,2),...

% tracks(a,3)-tracks(a-1,3),'r');

 a = a + 1;

 else

 %NO PARTICLES INSIDE QUASI-RIGIDITY RADIUS - ELIMINATE

 %PARTICLE

 % xyz_a(i,:) = [];

 % len_frame_a = len_frame_a - 1;

 i = i + 1;

 end

 else

 %NO PARTICLES INSIDE OF SEARCH RADIUS - MATCH TO PARTICLE HAS

 %DISAPPEARED AND/OR DROPPED OFF THE FACE OF THE EARTH -

 %ELIMINATE PARTICLE

 % xyz_a(i,:) = [];

 % len_frame_a = len_frame_a - 1;

 i = i + 1;

 end

 else

 %NO NEIGHBORS - NEAREST NEIGHBOR (WITHIN SEARCH RADIUS) KICKS IN

 b = 1;

 for k = 1 : len_positions_search

 displacement(b) = sqrt((xyz_a(i,1)-pos_search(k,1))^2 + ...

 (xyz_a(i,2)-pos_search(k,2))^2 + ...

 ((xyz_a(i,3)-pos_search(k,3))*zdw)^2);

 b = b + 1;

 end

 [minimum,index] = min(displacement);

 if(minimum < search)

 %HAVE PARTICLE INSIDE OF SEARCH RADIUS - DETERMINE SMALLEST

 %DISTANCE, AND MATCH TO THAT ONE

178

 nn_track = nn_track + 1;

 tracks(a,:) = xyz_a(i,:);

 i = i + 1;

 % xyz_a(i,:) = []; len_frame_a = len_frame_a - 1;

 a = a + 1;

 tracks(a,:) = pos_search(index,:);

 pos_search(index,:) = [];

 len_positions_search = len_positions_search - 1;

 % xyz_b(index,:) = []; len_frame_b = len_frame_b - 1;

 a = a + 1;

 else

 %NO PARTICLES INSIDE OF SEARCH RADIUS - ELIMINATE PARTICLE

 i = i + 1;

 % xyz_a(i,:) = [];

 % len_frame_a = len_frame_a - 1;

 end

 end

 %DONE MATCHING FOR THIS PARTICLE

 in_search = []; %clear data structures

 in_neighbor = [];

 displacement = [];

% else

% below_min = below_min + 1;

% i = i + 1;

% end

end

if ~isempty(tracks)

 [proper_length, dump] = size(tracks);

% i = 1; num = proper_length;

%

% %if trajectory is less than 1 um, delete it, as it will only take up

% %room and space in the plot

% while i <= num

% x = (tracks(i,1) - tracks(i+1,1))^2;

% y = (tracks(i,2) - tracks(i+1,2))^2;

% z = (tracks(i,3) - tracks(i+1,3))^2;

% if sqrt(x+y+z) < 1

% tracks(i,:) = []; tracks(i,:) = [];

% num = num - 2;

% else

% i = i + 2;

% end

% end

 %final displays

% [mess,err] = sprintf...

% ('%d particles have been tracked successfully...',proper_length/2);

179

% disp(mess);

% [mess,err] = sprintf...

% ('%d particle(s) have been tracked using nearest neighbor!',nn_track);

% disp(mess);

% [mess,err] = sprintf...

% ('%d particle(s) were on the bottom of the tank',below_min);

% disp(mess);

% elim = proper_length/2 - num/2;

% [mess,err] = sprintf('%d tracks were too short and were hence eliminated',elim);

% disp(mess);

else

 disp('No tracks reported here!?!');

end

Published with MATLAB® R2015b

 Track association: JH_MT_Associate

The following code is responsible for associating tracks produced by the two-frame tracking

algorithm that have similar endpoints.

function alltracks=JH_MT_Associate(tracks,alltracks,currframe)

%%%

% Keeps track of which particles in a series of particle tracks are the

% same

% tracks - 2 frame tracking results

% alltracks - multi tracking results, with columns 4 and 5 incorporating

% particle number and position number, respectively. Column 6 is binary,

% representing wether particle is true (1) or predicted (0). If this input

% is left blank, initialization protocal will be performed.

% firstframe - number of first frame in tracks. May be left blank on first

% pass.

%%%

if nargin < 3 || currframe==1

 % first pass, initialize alltracks variable

 alltracks = tracks;

 for i = 1:length(tracks)/2

 alltracks(1+(i-1)*2,4)=i; % particle number

 alltracks(2+(i-1)*2,4)=i; % particle number

 alltracks(1+(i-1)*2,5)=1; % frame number

 alltracks(2+(i-1)*2,5)=2; % frame number

 alltracks(1+(i-1)*2,6)=1; % true particles only

 alltracks(2+(i-1)*2,6)=1; % true particles only

 end

else

 % subsequent passes, look at first position for matches in last

 % alltracks pass

 trackcount = max(alltracks(:,4));

http://www.mathworks.com/products/matlab

180

 % separate out only the previous frame's tracked particles

 trackedLast = alltracks(alltracks(:,5)==currframe,:);

 % loop through new tracked particles

 new = 0;

 [ltracks,~]=size(tracks);

 for i = 1:2:ltracks

 % see if this particle was tracked successfully last time

 prevTrack = ismember(trackedLast(:,1:3),tracks(i,:),'rows');

 if any(prevTrack)

 % was tracked last time, keep old particle number and don't

 % re-add current particle

 alltracks=[alltracks;[tracks(i+1,:),trackedLast(prevTrack,4),currframe+1,1]];

 % remove predicted point, if present

alltracks(ismember(alltracks(:,4:6),[trackedLast(prevTrack,4),currframe+1,0],'rows'),:)=[];

 else

 % particle is new, assign new particle number and add particle for both frames

 new=new+1;

alltracks=[alltracks;[tracks(i,:),trackcount+new,currframe,1];[tracks(i+1,:),trackcount+new,currf

rame+1,1]];

 end

 end

 % sort the final list by particle and by frame

 alltracks = sortrows(alltracks,[4,5]);

end

Published with MATLAB® R2015b

 Forward-predictive tracking: JH_MT_Fit_Predict

The following code is responsible for the forward-predictive tracking approach.

function

[p1,p2,alltracks,polyhold]=JH_MT_Fit_Predict(p1,p2,alltracks,frame,range,zdt,polyhold,search)

% Predicts future points from tracks' current points using polynomial

% least-squares fitting of the last n points of a track.

% set n, number of previous particles to include

na=5;

% set ap, maximum number of predicted particles allowed

ap=3;

% estimate particle domain

% minx=min([alltracks(:,1),p1(:,1),p2(:,1)]);

% miny=min([alltracks(:,2),p1(:,1),p2(:,1)]);

% minz=min([alltracks(:,3),p1(:,1),p2(:,1)]);

% maxx=max([alltracks(:,1),p1(:,1),p2(:,1)]);

% maxy=max([alltracks(:,2),p1(:,1),p2(:,1)]);

http://www.mathworks.com/products/matlab

181

% maxz=max([alltracks(:,3),p1(:,1),p2(:,1)]);

% figure out which particles were tracked last frame;

% pull out only long-enough tracks from alltracks

pNos = [];

for pN=[alltracks(alltracks(:,5)==frame,4)]';

 if sum(alltracks(:,4)==pN)>=3

 pNos = [pNos,pN];

 end

end

ltracks=alltracks(ismember(alltracks(:,4),pNos),:);

% Predict next particle location from each track

trackcount=0;

predcount=0;

for i=pNos

 pp=0;

 % fit polynomials to the particle positions

 ctracks = ltracks(ltracks(:,4)==i,:);

 [sct,~]=size(ctracks);

 pct=sum(ctracks(end-ap+1:end,6));

 if sct<na

 % track is short, but may still be useful

 if sct>=3

 n=sct;

 else

 % track too short, skip this loop iteration

 continue

 end

 else

 n=na;

 end

 if pct==0

 % too many predicted particles with nothing found, remove predicted

 % particles from alltracks and skip iteration

 alltracks(ismember(alltracks,ctracks(end-ap+1:end,:),'rows'),:)=[];

 continue

 end

 ctracks = ctracks(end-n+1:end,:);

 nt=ctracks(end,5)+1;

 if ctracks(end,6)==0

 % working with predicted point, use previous polynomials

 try

 pp=1;

 loc=find(polyhold.pno==i);

 polyx = polyhold.polyx(min(loc),:);

 polyy = polyhold.polyy(min(loc),:);

 polyz = polyhold.polyz(min(loc),:);

 mux = polyhold.mux(:,min(loc));

 muy = polyhold.muy(:,min(loc));

 muz = polyhold.muz(:,min(loc));

 catch

 error('something screwed up')

182

 end

 else

 % need new polynomial

 [polyx,~,mux]=polyfit(ctracks(:,5),ctracks(:,1),2);

 [polyy,~,muy]=polyfit(ctracks(:,5),ctracks(:,2),2);

 [polyz,~,muz]=polyfit(ctracks(:,5),ctracks(:,3),2);

 end

 % predict next location

 try

 predict=[polyval(polyx,nt,[],mux),polyval(polyy,nt,[],muy),polyval(polyz,nt,[],muz)];

 catch

 error('No mux, muy or muz.')

 end

 % determine if there's a match in p2

 displacement = sqrt(sum(bsxfun(@times,(bsxfun(@minus,p2,predict).^2),[1,1,zdt]),2));

 [minimum,index] = min(displacement);

 % check to make sure match doesn't exceed allowed displacement

 if sqrt(sum(bsxfun(@times,(p2(index,:)-ctracks(end,1:3)).^2,[1,1,zdt])))<(search+range)

 if(minimum < range) %*(ap-pct+1)

 % found a particle, put it in the ptracks array as a real particle

 alltracks=[alltracks;p2(index,:),i,nt,1];

 % remove p1 and p2 from their lists

 p1(ismember(p1,ctracks(end,1:3),'rows'),:)=[];

 p2(index,:)=[];

 trackcount = trackcount+1;

 else

 % put the predicted point in as a predicted particle

 alltracks=[alltracks;predict,i,nt,0];

 predcount = predcount+1;

 % check if this is a new predicted particle

 if pp==0

 % hold on to the polynomials, associate with particle number

 polyhold.pno=[polyhold.pno,i];

 polyhold.polyx=[polyhold.polyx;polyx];

 polyhold.polyy=[polyhold.polyy;polyy];

 polyhold.polyz=[polyhold.polyz;polyz];

 polyhold.mux=[polyhold.mux,mux];

 polyhold.muy=[polyhold.mux,muy];

 polyhold.muz=[polyhold.mux,muz];

 end

 end

 else

 % prediction was probably bad, send to 2f algorithm

 predcount=predcount+1;

 end

end

fprintf('%3i particles tracked using forward prediction!\n', trackcount);

183

fprintf('%3i predicted particles not found.\n', predcount);

% resort alltracks

alltracks = sortrows(alltracks,[4,5]);

Published with MATLAB® R2015b

 Track acceleration filtering: JH_MT_TrackBreak

The following code is responsible for the acceleration-based filter that removes bad tracks.

function [filttracks,lostpts,acamags]=JH_MT_TrackBreak(intracks,art,zaf)

% Performs denoising operation on particle tracks by removing bad vectors

% from individual tracks

% enable acceptance of location string or full alltracks array

if isa(intracks,'char')

 load(intracks);

else

 alltracks = intracks;

end

% operation

% look at each particle track individually

tcount=max(alltracks(:,4));

ntidx=1;

lpidx=1;

filttracks = [];

lostpts = [];

warn=0;

tsf=0;

acamags=[];

%try

for i = 1:tcount

% [lps,~]=size(lostpts);

% [fts,~]=size(unique(filttracks,'rows'));

% if lps+fts~=tsf

% missing=tsf-(lps+fts)

% end

 % pull out one track

 ctracks = alltracks(alltracks(:,4)==i,:);

 [trows,~]=size(ctracks);

 tsf=tsf+trows;

 % calculate track velocity at each point

 cvels = [ctracks(2:end,1:3)-ctracks(1:end-1,1:3) ctracks(1:end-1,4:6)];

 % calculate track acceleration if possible

 if trows>2

 caccs=[cvels(2:end,1:3)-cvels(1:end-1,1:3) ctracks(2:end-1,4:6)];

 % calculate magnitude of acceleration, include zaf

 camag=sqrt(caccs(:,1).^2+caccs(:,2).^2+zaf.*caccs(:,3).^2);

http://www.mathworks.com/products/matlab

184

 acamags=[acamags;camag];

 % find pointlist of excessive accelerations

 exacc=find(camag>art);

 if isempty(exacc)

 filttracks = [filttracks; ctracks(:,1:3) ntidx*ones(trows,1) ctracks(:,5:6)];

 ntidx=ntidx+1;

 continue;

 end

 % acceleration warning criteria

% warn = warn+length(exacc)/trows-0.25;

% if warn > 25

% warning('Many accelerations are exceeding the art, suggest higher threshold.')

% warn=0;

% end

% if warn < 0

% warn = 0;

% end

 % break up ctracks at that (those) point(s) to remove bad links

 if trows == 3

 % points shouldn't be joined at all, send them to the lostpts array

 lostpts = [lostpts; ctracks(:,1:3) lpidx*ones(trows,1) ctracks(:,5:6)];

 lpidx = lpidx+1;

 continue;

 end

 % longer tracks: need to handle multiple bad accelerations at

 % different points along the track

 splits=diff(exacc)==1;

 groups = length(exacc)-sum(splits);

 if groups > 1

 spllocs1=[1,exacc(find(splits==0))'+2];

 spllocs2=[exacc(find(splits==0)+1)',trows+1];

 ff1=1;

 ff2=2;

 else

 spllocs1=1;

 spllocs2=trows+1;

 ff1=0;

 ff2=0;

 end

 % now have all the track-groups

 for j=1:groups

 if groups==1

 ff1=0;

 ff2=0;

 ff3=1;

 elseif j<groups

 ff1=1;

 ff2=1;

 ff3=1;

 else

 ff1=0;

 ff2=0;

185

 ff3=0;

 end

 csett = ctracks(spllocs1(j):spllocs2(j)-1+ff1,:);

 csetam = camag(spllocs1(j)-1+ff3:spllocs2(j)-3+ff2);

 % exaccs are all together or there's only one

 waval=max(csetam);

 wacc=find(csetam==waval);

 % make sure we aren't at the ends of the track

 try

 catvar=0;

 csetam(wacc-1);

 catvar=1;

 csetam(wacc+1);

 catch

 if catvar == 0

 % first point is garbage

 lostpts = [lostpts; csett(1,1:3) lpidx*ones(1,1) csett(1,5:6)];

 csett = csett(2:end,:);

 lpidx=lpidx+1;

 inc=0;

 else

 % last point is garbage

 lostpts = [lostpts; csett(end,1:3) lpidx*ones(1,1) csett(end,5:6)];

 csett = csett(1:end-1,:);

 lpidx=lpidx+1;

 inc=1;

 end

 [csl,~]=size(csett);

 filttracks = [filttracks; csett(:,1:3) ntidx*ones(csl,1) csett(:,5:6)];

 continue;

 end

 % weren't at ends, figure out which track point belongs to

 if csetam(wacc-1)>csetam(wacc+1)

 % acceleration is worse before the point, point is included after

 filttracks = [filttracks; csett(1:wacc,1:3) ntidx*ones(length(1:wacc),1)

csett(1:wacc,5:6)];

 ntidx=ntidx+1;

 filttracks = [filttracks; csett(wacc+1:end,1:3)

ntidx*ones(length(csett(wacc+1:end,1)),1) csett(wacc+1:end,5:6)];

 else

 % acceleration is worse after the point, point is included before

 filttracks = [filttracks; csett(1:wacc+1,1:3) ntidx*ones(length(1:wacc+1),1)

csett(1:wacc+1,5:6)];

 ntidx=ntidx+1;

 filttracks = [filttracks; csett(wacc+2:end,1:3)

ntidx*ones(length(csett(wacc+2:end,1)),1) csett(wacc+2:end,5:6)];

 end

 end

 ntidx=ntidx+1;

 else

 filttracks = [filttracks; ctracks(:,1:3) ntidx*ones(trows,1) ctracks(:,5:6)];

 ntidx=ntidx+1;

186

 end

 % double-check that we added more than one point

 if sum(filttracks(:,4)==ntidx-1)==1

 lostpts=[lostpts;filttracks(end,:)];

 filttracks=filttracks(1:end-1,:);

 end

end

filttracks = unique(filttracks,'rows');

try

 lostpts = lostpts(~ismember(lostpts(:,[1:3,5]),filttracks(:,[1:3,5]),'rows'),:);

catch

 lostpts = [];

end

%collect similar track numbers

filttracks = sortrows(filttracks,[4,5]);

%catch

% error()

%end

end

Published with MATLAB® R2015b

 Track segment linkage: JH_LinkTracks

The following code is responsible for the forward- and backward- fitting method that links together

track segments.

function [alltracks,linkcount]=JH_LinkTracks(alltracks,range,zdt,fp)

% Backward-looking tracking trying to further link together tracked

% particles once tracking has been completed.

% look at each individual track

endtrack=max(alltracks(:,4));

endframe=max(alltracks(:,5));

selt=[];

linkcount=0;

% for all tracks

for i=endtrack:-1:1

 %fprintf('Working on track %4i of %4i.\n',endtrack-i+1,endtrack)

 if ~isempty(selt)

 fprintf('Track %4i linked to track %4i!\n',i,selt)

 end

 if i==423

 mfasdf=1;

 end

 selt = [];

 % Grab the track, find its size, select the method

 ptrack=alltracks(alltracks(:,4)==i,:);

http://www.mathworks.com/products/matlab

187

 [tlength,~]=size(ptrack);

 if tlength==0

 continue;

 end

 if tlength==2

 % only have 2 frames, predict with velocity only in x,y. Maybe

 % just take average z for next frames.

 [polyx,~,mux]=polyfit(ptrack(:,5),ptrack(:,1),1);

 [polyy,~,muy]=polyfit(ptrack(:,5),ptrack(:,2),1);

 [polyz,~,muz]=polyfit(ptrack(:,5),ptrack(:,3),0);

 elseif tlength<5

 % don't have enough frames for z-acceleration, only use

 % average z-velocity for prediction. x and y still try to get

 % accelerations.

 [polyx,~,mux]=polyfit(ptrack(:,5),ptrack(:,1),2);

 [polyy,~,muy]=polyfit(ptrack(:,5),ptrack(:,2),2);

 [polyz,~,muz]=polyfit(ptrack(:,5),ptrack(:,3),0);

 else

 % can use polynomial fits for all 3 directions, but only want last

 % few tracks

 [polyx,~,mux]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,1),2);

 [polyy,~,muy]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,2),2);

 [polyz,~,muz]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,3),1);

 end

 % get frame at end of track

 ftime=ptrack(end,5);

 % find expected locations and velocities

 c=1;

 ftimes=(ftime+1):ftime+fp;

 ftimes=ftimes(ftimes<endframe);

 if isempty(ftimes)

 continue;

 end

 for j=ftimes

 ppoint(c,:)=[polyval(polyx,j,[],mux),polyval(polyy,j,[],muy),polyval(polyz,j,[],muz),j];

 differx=polyder(polyx);

 differy=polyder(polyy);

 differz=polyder(polyz);

 vpoint(c,:)=[polyval(differx,(j-mux(1))/mux(2).^2),polyval(differy,(j-

muy(1))/muy(2).^2),polyval(differz,(j-muz(1))/muz(2).^2),j];

 prange(c)=range*c^(1/8);

 vrange(c)=range;

 c=c+1;

 end

 % scan for candidate tracks

 tlist = [];

 % check position/time conditions of all members of alltracks

 tcond=ismember(alltracks(:,5),ftimes);

 xcond=(alltracks(:,1)<=max([ppoint(1,1)+prange(1),ppoint(1,1)-

prange(1),ppoint(end,1)+prange(end),ppoint(end,1)-

prange(end)])).*(alltracks(:,1)>=min([ppoint(1,1)+prange(1),ppoint(1,1)-

prange(1),ppoint(end,1)+prange(end),ppoint(end,1)-prange(end)]));

188

 ycond=(alltracks(:,2)<=max([ppoint(1,2)+prange(1),ppoint(1,2)-

prange(1),ppoint(end,2)+prange(end),ppoint(end,2)-

prange(end)])).*(alltracks(:,2)>=min([ppoint(1,2)+prange(1),ppoint(1,2)-

prange(1),ppoint(end,2)+prange(end),ppoint(end,2)-prange(end)]));

 %zcond=(alltracks(:,3)<=max([ppoint(1,3)+prange(1),ppoint(1,3)-

prange(1),ppoint(end,3)+prange(end),ppoint(end,3)-

prange(end)])).*(alltracks(:,3)>=min([ppoint(1,3)+prange(1),ppoint(1,3)-

prange(1),ppoint(end,3)+prange(end),ppoint(end,3)-prange(end)]));

 allcond=logical(tcond.*xcond.*ycond);

 if isempty(allcond)

 continue;

 end

 for k=(alltracks(allcond,4))'

 ctrack=alltracks(alltracks(:,4)==k,:);

 [ctl,~]=size(ctrack);

 if ctl<2

 continue;

 end

 % get stats

 for j=1:c-1

 sframe=ctrack(1,5);

 if sframe>max(ftimes)

 % all other tracks must start after valid ftimes

 break;

 end

 if all(sframe ~= ftimes)

 continue;

 end

 pdiff=sqrt(sum(bsxfun(@times,(ctrack(1,1:3)-ppoint(j,1:3)).^2,[1,1,zdt])));

 if pdiff > prange(j)

 continue;

 end

 vdiff=sqrt(sum(bsxfun(@times,(ctrack(2,1:3)-ctrack(1,1:3)-

vpoint(j,1:3)).^2,[1,1,zdt])));

 if vdiff < vrange(j)

 % link may be correct, put track number into tlist

 tlist=[tlist;k,pdiff,vdiff];

 end

 end

 end

 if isempty(tlist)

 continue;

 end

 % select the best track out of the candidate tracks

 [stl,~]=size(tlist);

 if stl==1

 % find the track number in alltracks, replace with initial track

 % number

 alltracks(alltracks(:,4)==tlist(1),4)=i;

 else

 % find the best match

 % best match will have the most similar velocity

189

 [~,mvd]=min(tlist(:,3));

 alltracks(alltracks(:,4)==tlist(mvd,1),4)=i;

 end

 linkcount=linkcount+1;

end

Published with MATLAB® R2015b

 Track smoothing: JH_SmoothTracks

The following code is responsible for the polynomial temporal smoothing method.

function smoothtracks = JH_SmoothTracks(alltracks,fp)

% for each track

tcount=max(alltracks(:,4));

smoothtracks=[];

for i=1:tcount

 % grab current track

 ctrack = alltracks(alltracks(:,4)==i,:);

 [sct,~]=size(ctrack);

 % ignore if too short

 if sct<5

 continue;

 end

 % find start and end frame

 sf = ctrack(1,5);

 ef = ctrack(end,5);

 % for all frames in between

 for j=sf:ef

 % generate a fit curve

 fitrange=(j-fp):(j+fp);

 fitpts=ctrack(ismember(ctrack(:,5),fitrange),[1:3,5]);

 [polyx,~,mux]=polyfit(fitpts(:,4),fitpts(:,1),3);

 [polyy,~,muy]=polyfit(fitpts(:,4),fitpts(:,2),3);

 [polyz,~,muz]=polyfit(fitpts(:,4),fitpts(:,3),3);

 differx=polyder(polyx);

 differy=polyder(polyy);

 differz=polyder(polyz);

 % evaluate the fit curve at the time

 fitpoint=[polyval(polyx,j,[],mux) polyval(polyy,j,[],muy) polyval(polyz,j,[],muz)

ctrack(1,4) j polyval(differx,(j-mux(1))/mux(2).^2)*180 polyval(differy,(j-muy(1))/muy(2).^2)*180

polyval(differz,(j-muz(1))/muz(2).^2)*180];

 smoothtracks=[smoothtracks;fitpoint];

 end

 if ~isempty(ctrack)

 clc

 fprintf('Track %4i of %4i completed, with %3i points generated.\n',i,tcount,ef-sf+1);

 end

http://www.mathworks.com/products/matlab

190

end

end

Published with MATLAB® R2015b

 Track length statistics: JH_TrackStats

The following auxiliary code generates histograms for the tracking data, based on track length

function JH_TrackStats(alltracks)

if nargin==0

load('C:\Users\jhadfiel\Desktop\2016_12_05_Vortex\Processed\180fps\FilTracks_170106_2_Image.mat')

;

 alltracks=filttracks2;

end

% Track Length Distribution

ltracks=zeros(1,max(alltracks(:,4)));

for i=1:max(alltracks(:,4))

 ctracks = alltracks(alltracks(:,4)==i,:);

 [ltracks(i),~]=size(ctracks);

end

figure

histogram(ltracks,1:max(ltracks))

end

Published with MATLAB® R2015b

 Track rearrangement: JH_resortTracks

The following auxiliary code rearranges the tracks such that all the other algorithms can work with

the tracks correctly.

function [newtracks,misspts] = JH_resortTracks(alltracks)

frames = max(alltracks(:,5));

newtracks=alltracks;

misspts=[];

ntl=1;

for i = 1:frames

 % find this i as track numbers

 tlist=alltracks(alltracks(:,5)==i,4);

 for j=tlist'

 tlocs=alltracks(:,4)==j;

 ctracks=alltracks(tlocs,:);

 alltracks=alltracks(~tlocs,:);

 [sct,~]=size(ctracks);

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab

191

 if sct>1

 newtracks(ntl:ntl+sct-1,:)=ctracks;

 ntl=ntl+sct;

 else

 misspts=[misspts;ctracks];

 end

 end

end

Published with MATLAB® R2015b

 Track output: JH_TrackToQuiv

The following auxiliary code outputs tracks in a format expected by the plotting code.

function JH_TrackToQuiv(path,TrackName)

if nargin~=2

 [TrackName,path]=uigetfile('*.mat');

end

tracks=importdata([path,TrackName]);

quivarray=zeros(length(tracks)-max(tracks(:,4)),7);

lasti=0;

for j=1:max(tracks(:,4))

 track=tracks(tracks(:,4)==j,:);

 if isempty(track)

 continue

 end

 [s,~] = size(track); %grab height of full matrix

 X = zeros(s-1,1); Y = zeros(s-1,1); Z = zeros(s-1,1); F = zeros(s-1,1); %initialize starting

points as null for quiver use

 U = zeros(s-1,1); V = zeros(s-1,1); W = zeros(s-1,1); %initialize vector lengths as null for

quiver use

 for i=1:s-1

 %grab all x,y,z (starting coordinates)

 X(i) = track(i,1);

 Y(i) = track(i,2);

 Z(i) = track(i,3);

 %grab time

 F(i) = track(i,5);

 %get vectors

 U(i) = (track(i+1,1) - X(i));

 V(i) = (track(i+1,2) - Y(i));

 W(i) = (track(i+1,3) - Z(i));

 end

 quivarray(lasti+1:lasti+i,:)=[X,Y,Z,U,V,W,F];

 lasti=lasti+i;

http://www.mathworks.com/products/matlab

192

end

save([path TrackName(1:end-4) '_quiv.mat'],'quivarray')

Published with MATLAB® R2015b

http://www.mathworks.com/products/matlab

