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Abstract 

The aim of this study is to develop a technique capable of performing three-dimensional particle 

tracking by using images from a plenoptic (or light field) camera. Use of a plenoptic camera 

enables the collection of three-dimensional positional data within a volume, which would normally 

require more complex, multi-camera setups. A plenoptic imaging system is simpler to set up, and 

can be scaled to micro-scale experiments easily. Calibration of the camera is necessary for 

performing particle tracking, and a major contribution of this work has been developing a Matlab 

code based on past works to allow for calibration. Two techniques for three-dimensional particle 

location were developed over the course of this study. One of these relies upon existing commercial 

software for processing the plenoptic images into refocused images and depth maps. As the 

commercial software is not specifically aimed at finding particles this approach is inefficient and 

hard to customize. A second method was developed to overcome these limitations. This method 

has been named the ETC method after its use of epipolar triangular connections, is capable of 

extracting 3D particle locations from the raw plenoptic images. Of the two, the refocusing-based 

approach was determined to be the more accurate method through the interrogation of a toroid 

vortex in water. To investigate the limitations of the ETC approach, an experimental system for 

quantifying its uncertainty was developed. A study of a matched-refractive index droplet moving 

through a slot was also conducted to test the viability of the technique for performing microscale 

experiments. Based on the results of these experiments, hypotheses regarding the limitations of 

the ETC approach and recommendations for improving it have been made.  
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CHAPTER 1 INTRODUCTION 

When studying fluid dynamics, it can be important to consider a full 3D fluid field. Experimental 

analysis of fluid dynamics is modernly conducted through imaging-based fluid velocimetry 

methods, as in the best case, these can provide full time-resolved, three component, three 

dimensional velocity fields [1]. These can be further interrogated to obtain greater insight into the 

dynamics of the fluid flow phenomenon under investigation. Developing techniques which can 

overcome the challenges associated with imaging a 3D field of fluid is important to further improve 

the analysis of fluid dynamics. This thesis describes and analyzes an approach which uses single-

camera plenoptic (also known as light field) imaging to obtain particle-seeded fluid images upon 

which time-resolved particle tracking velocimetry is performed. The single-camera nature of the 

technique allows it to be applied with equal ease in both macro-scale and micro-scale experiments. 

1.1 Overview of General Fluid Image Velocimetry 

There are two major classes of techniques used in image-based fluid velocity measurements. These 

are particle image velocimetry (PIV) [2] and particle tracking velocimetry (PTV) [3]. Both 

techniques involve seeding the fluid with particles of a similar density to the fluid, which trace the 

flow of the fluid so that the fluid motion can be inferred. Illumination is generally accomplished 

using high-intensity sources such as lasers. The particles are then imaged using a camera system 

at a frequency designed to make the movements of the particles between individual frames 

appropriate for the processing technique being used. PIV uses a windowed cross-correlation 

algorithm which detects local similarities in groups of pixels, producing an estimation of the fluid 

velocity in each group [2]. PTV focuses on tracking each individual particle in the image, usually 

by considering each particle in the context of nearby particles [3]. PTV has the potential for higher 

resolution, since every particle in the volume is considered separately. This comes at the expense 

of the consistency of the resolution inherent in the grid of vectors generated by PIV. Application 

of time-resolved versions of each of these techniques enables temporal filtering of the data [1], 
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which can help to reduce uncertainty and enable the calculation of higher-order derivatives 

describing the fluid motion.  

When using either PIV or PTV, it is important to implement a calibration method that will allow 

the results to be scaled from image-side, pixel-space to object-side, physical space while 

accounting for distortion effects associated with the system optics [4]. Different methods for doing 

so are available, but the most common make use of multiple images of known targets [5], [6] to 

determine the parameters of the optical system. The results can then be interpreted in the context 

of the physical distances involved. 

Commonly, three-dimensional data in fluid experiments is obtained through the use of a multi-

camera approach such as tomographic PIV [7]. Tomographic PIV requires that all the cameras are 

oriented such that they are all focused exactly on the same imaging volume, which generally 

involves the adjustment of nine significant degrees of freedom [7], [8] for each camera used – 

three positional, three rotational, two associated with a Scheimpflug adapter, and one for the lens 

focus. As a result, orienting all of the cameras correctly can be a time-consuming process that can 

be a large source of uncertainty [7], [8]. The angle of the cameras also can result in issues with 

refraction through any windows used to view the experiment. Further, the imaging volume in a 

tomographic imaging experiment is generally much smaller in the out-of-plane direction than in-

plane [7], [8], which can be restrictive for some experiments. The computational power required 

to process tomographic imaging data is also substantial, leading to extended computation times 

[8]. 

It can be especially challenging to collect time-resolved 3D data in microscale experiments. 

Orienting the cameras to undertake a tomographic imaging experiment can be difficult if not 

impossible where optical access from multiple views is not available or would be at too low an 

angle for proper perspective viewing [7], [8]. Many alternative methods for obtaining 3D velocity 

data at the microscale have been investigated. One example method uses high-frequency scanning 

approaches, which sequentially obtain multiple images at different depths before allowing a larger 

time-step for the fluid to move [9]–[11]. The imaging frequency of this technique is reduced by a 

factor of the number of scans taken through the volume, which limits the velocity range for which 

the method is appropriate. Scattering-based methods [12] are also possible, but these have limited 
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resolution due to how many pixels on the camera sensor must be dedicated to each particle and the 

extreme difficulty of handling particle overlap. Other methods have applied specially-designed 

stereo microscopes [13], but as a stereo method this is limited to a plane of 3D velocity 

measurements rather than a volume. 

To summarize, tomographic PIV is the most widely used technique for obtaining 3D velocity 

measurements in a volume of fluid. Its major limitations include its small depth of field relative to 

its in-plane imaging region, its long processing times, and its complex setup requirements. The 

latter of these make it particularly difficult to implement in micro-scale experiments. Other micro-

scale techniques lack the ability to make instantaneous volumetric velocity measurements. A 

technique capable of large-volume imaging with easy setup, scalability and faster processing 

would be useful to make fluid flow interrogation more straightforward. Plenoptic particle tracking 

velocimetry is presented as a potential solution. 

1.2 Overview of Plenoptic Imaging 

Plenoptic imaging [14], also known as light field imaging [15], is a technique whereby information 

about the angular components of light incident to the system is preserved by using multiple 

integrated optical systems. This allows three-dimensional data about a scene to be captured. Both 

multi-camera [16] and single-camera [14] variants of the technique have been developed. The 

multi-camera approach, while effective, has similar logistical issues as those discussed regarding 

tomographic imaging, amplified by the larger number of cameras required. This study focuses on 

the use of single-camera plenoptic imaging in fluid velocity measurement experiments. 

Two parallel branches of single-camera plenoptic imaging technology have been developed. These 

can be referred to as ‘standard’ and ‘focused’ plenoptic imaging. The ‘standard’ technique was 

developed initially in 1903, first using pinholes [17] instead of lenses [18], [19] to provide multiple 

views of an imaging field. The viability of the technique was limited by the inability to interrogate 

the images to generate anything particularly useful. The digitization of imaging led to recent 

improvements in computer processing of the images [14], [20]–[22], which have made the 

technique viable for general imaging by enabling computationally refocused images and depth 

data to be generated from plenoptic images. ‘Focused’ plenoptic cameras were developed later 

[23] and further improvements of the resolution in the image reconstruction algorithms have been 



4 

 

made as well [24]–[26]. The focused technique improves the in-plane spatial resolution of the 

camera by sacrificing some of the angular information about incident rays, which leads to reduced 

out-of-plane spatial resolution [23]–[26]. The focused plenoptic technique has been further 

expanded upon to create ‘multi-focus’ plenoptic cameras [27], which redistribute the depth regions 

over which angular information is preserved to improve out-of-plane resolution. Plenoptic cameras 

and associated image reconstruction software are now commercially available [28]. 

In all of these cameras, a micro-lens array is positioned between the main lens and the camera’s 

sensor, essentially creating thousands of individual optical systems. The exact position and 

features of the array define the type of the plenoptic imaging system. In a ‘standard’ plenoptic 

camera, the focal points of the micro-lens array are aligned with the camera sensor [21]. ‘Focused’ 

plenoptic cameras place the micro-lens array focal point at a different distance relative to the sensor 

[25]. ‘Multi-focus’ plenoptic camera have micro-lenses of multiple different focal lengths 

organized in a repeating pattern, with each micro-lens type’s focal points placed at different 

distances away from the sensor [27]. Standard plenoptic cameras have the advantage of having the 

maximum available amount of data about the angle of the incident light rays and thus generally 

have better depth-resolution capability [21]. Focused plenoptic cameras sacrifice some depth-

resolution in favor of improved in-plane resolution [25]. Multi-focus plenoptic cameras improve 

depth resolution by having each of the different micro-lens types targeted at a different depth range, 

expanding the overall imaged depth-of-field while mostly maintaining resolution [27]. 

In contrast to tomographic imaging, only two degrees of freedom are significant in a single-camera 

plenoptic imaging experiment [27]. These are the adjustment of the main lens focus and the 

distance of the camera from the experiment. A plenoptic camera also only requires only a single 

route of optical access to the region of interest, which can be a significant advantage in mini- and 

micro-scale experiments. If adequate processing algorithms for plenoptic fluid velocimetry can be 

developed, plenoptic cameras could serve as a simpler alternative to multi-camera tomographic 

approaches that could be easily implemented at the microscale. Additionally, the imaging volume 

of a plenoptic camera can be adjusted through selection of the main lens focal length and focus 

distance, even to the extent that the out-of-plane distance in the imaging volume is similar to the 

in-plane distance. 
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Standard plenoptic cameras have been applied to experimental fluid dynamics, using tomographic 

reconstruction techniques such as MART to produce 3-dimensional images on which standard 

particle imaging velocimetry (PIV) approaches can be applied [29]. The main drawback of this 

approach is that it tends to elongate found particles in the out-of-plane direction [30], [31]. This 

has been hypothesized to be one of the major sources of error in the out-of-plane velocity 

calculation of the technique in studies which have aimed to quantify the resolution of the this 

technique [30], [31]. Some particle location, size measurement, and tracking has also been 

conducted, and the measurement uncertainty of this technique has been determined [32]. However, 

this technique has been aimed at detecting large-scale particles (greater in size than the images 

produced by individual micro-lenses) which would limit its resolution in a PTV experiment. A 3D 

calibration algorithm has also been developed for this technique [33]. 

Multi-focus plenoptic cameras have also been employed in PIV and PTV applications using a 

commercial software package (RxFlow 3.1, Raytrix GmbH). Fixed-field testing has been 

performed to examine the performance of the technique [34], which found higher uncertainties in 

out-of-plane measurements relative to in-plane measurements. Little discussion of the exact 

methodology undertaken by the commercial package seems to be available. Researchers have 

indicated that this approach can only be used for low seeding densities, as the approach’s particle 

location method tends to generate ghost particles. Small particle displacements are also required, 

since the algorithm employs a nearest-neighbor tracking method [34]. 
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1.3 Research Aims 

Most multi-focus plenoptic systems are aimed at computationally reconstructing large, continuous 

surfaces [27]. The first goal of the presented research was to adapt such a method for locating 

particles in a 3D volume. This leads to the second goal of the research, which was to implement a 

calibration approach capable of dimensionally scaling the located particles from image-space to 

object-space. The third goal was to implement a time-resolved 3D particle tracking method capable 

of both tracking and temporally filtering the data. The results of implementing these methods led 

to the final goal, which was to develop a new approach capable of locating and tracking particles 

in raw multi-focus plenoptic images. 

To provide context, Chapter 2 will feature a complete discussion of the methodology involved in 

multi-focus plenoptic imaging. The bulk of the contributions made by this work take place in 

chapters 3 and 4. Chapter 3 will cover the two methodologies that have been developed to extract 

3D particle locations from the plenoptic images, and the calibration method used to scale the results 

to physical space. Chapter 4 will discuss the particle tracking approach that has been implemented. 

Quantitative and qualitative assessments of the performance of the approaches are undertaken 

through their application to three experiments. Chapters 5, 6 and 7 will cover the three experiments 

that have been undertaken in this research. In the first, measurements of fixed particle fields, 

moved in a known way, were undertaken using one of the particle location approaches. This 

enables comparison of the measured results to the known particle motions, which allows an 

estimate of the uncertainties associated the approach to be made. The second experiment tests the 

performance of this approach at the micro-scale by examining the motion of the fluid within and 

around a rising droplet as it passes through the imaging region. The final experiment involves the 

interrogation of a ring vortex using both of the methodologies, which is used to compare the 

performance of the two methodologies when undertaking macro-scale experiments. Chapter 8 will 

summarize and conclude this thesis. Appendices complete the thesis, which include the Matlab 

scripts developed to process the plenoptic images and supplementary figures. 
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CHAPTER 2 MEASUREMENT PRINCIPLE OF FOCUSED 

PLENOPTIC IMAGING 

The focused plenoptic cameras used in this study are a pair of commercial plenoptic cameras (R5; 

Raytrix GmbH), that differ based on the positioning, focal length, and lens size of the micro-lens 

array. This produces different effective f/numbers for each system. An f/# 2.4 camera is used for 

macro-scale imaging and an f/# 26 system is used for micro-scale imaging. These are multi-focus 

plenoptic cameras (MFPC), meaning that they are each equipped with micro-lens arrays that have 

interlaced lenses of 3 different focal lengths. Information about the micro-lens focal lengths or the 

position of the array relative to the sensor has not been released by the manufacturer, and must be 

extracted through the calibration approach. The cameras are capable of acquiring 2048 by 2048 

pixel images at frame rates up to 180 fps. To fully understand the optical system of these cameras, 

the following chapter will discuss the optical properties of a general MFPC system. The bulk of 

the understanding of MFPC systems in this section comes from [27], [35], [36]. 

A schematic of an MFPC camera configuration used for this study is given in Figure 1. Here, the 

micro-lens array is mounted at a specific distance B in front of the camera sensor. The term virtual 

depth (denoted v) is used to describe an image-space distance as a ratio of B. Physical depth-

locations in image-space can then be described in terms of v∙B. This allows the relative positions 

of projected images to be comparable for a given micro-lens array and sensor, regardless of the 

main lens’ focal length fL or its imaging distance TL. 
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Figure 1 - Optical arrangement of a single-MLA focused plenoptic imaging system. A single set 
of ray-paths for one sample object is shown. Microlens focusing behavior assumed ideal for the 

object for simplicity. 

In a plenoptic imaging system, the main lens of the camera is used to project an image of an object 

into the image-space of the camera. If the main image is formed behind the sensor and micro-lens 

array as shown in Figure 1, then the main image is said to be ‘virtual’. More micro-lenses will 

view the same point on an object and v will increase as the object being imaged gets closer to the 

main lens, with v approaching infinity as the object approaches the main lens’ focal point. It is also 

possible to form a real image in front of the micro-lens array with the main lens, in which case the 

virtual depths would be considered by this approach to take negative values. This configuration is 

not used here because theoretically, its imaging space projected into object-space will be between 

some minimum distance and infinity, which reduces the useful virtual depth space and the overall 

resolution of the technique. 
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(a) (b) (c) 

Figure 2 - Image of diffuse light through a focused plenoptic camera with (a) too small of an 
aperture, (b) properly adjusted aperture, and (c) too large of an aperture. 

When the projected image of a point source in object space reaches the micro-lens array, the 

projection has not yet fully converged and is spread across multiple micro-lenses. Each exposed 

micro-lens will collect a portion of the light and focus it on the sensor to form ‘micro-images’, as 

shown in the side view schematic in Figure 1. To ensure that the images created by the micro-

lenses do not overlap, it is important to adjust the effective f/# of the optical system to match the 

size of the micro-lenses. In most cases, this is simply done through imaging a diffuse white light 

source and adjusting the lens aperture until the formed microimages are just touching, as in Figure 

2b. In some cases the maximum lens aperture can be too small to allow for this, such that the 

microimages have a greater separation, as shown in Figure 2a. This will reduce the overall 

resolution of the system, but not prevent it from working entirely. The opposite case shown in 

Figure 2c is an example where the aperture would be too large, since the regions illuminated by 

each lens overlap. This makes processing impossible since locations on the sensor cannot be 

attributed to a single micro-lens. 

Up to a specific plane in object space represented by the faded blue arrow in Figure 1, every point 

is visible in only 2 micro-lenses. Beyond this point, some points will only be visible in a single 

micro-lens. The image-space projection of this location in the optical system is termed the total 

covering plane (TCP) [27], which is labeled on Figure 1. The distance between the main lens and 

the TCP is defined as BL. For a multi-focus plenoptic camera with 3 micro-lens types arranged in 

a hex array as shown in Figure 3, the TCP will always be positioned at a virtual depth of 2 [27]. 
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The location of the corresponding plane in object space depends on the focal length and relative 

position of the main lens. 

 

Figure 3 – A schematic of the multi-focus lens array orientation in top view showing the hex 
packing orientation. The three different lens types are encoded by color.  

Theoretically, a plenoptic camera system in this configuration can image any point in its field of 

view between the object-space projection of its TCP and its main lens’s focal point. However, 

nearer to the camera the object will become too out of focus in the micro-lens images to be 

resolved. This is somewhat mitigated here by using a multi-focus plenoptic camera, which 

incorporates micro-lenses of different focal lengths to target different ideal depth ranges. This 

effect is apparent in the sample raw image shown in Figure 4, which was collected using the f/#-

2.4 camera with an 85 mm main lens and an approximate focus distance of 50 cm. The imaged 

particle here is more focused in one lens type than in the other two lens types, as annotated. This 

is a subsection of the full image, and spans only 7 micro-lenses where each micro-lens image is ~ 

25 pixels wide.  
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Figure 4 – Cropped multi-focus plenoptic image of a single particle. 4x gain has been applied for 
clarity. 

The back of the micro-lens array in this case is on a flat plane [35], [36], and as such the different 

width of lens necessary to produce the three focal lengths will result in each set of lenses having 

its own distance to the sensor B as measured to the central plane of the lens, as shown in Figure 5. 

It is thus necessary to use three separate values for the distance from the sensor to the array (B1, 

B2, B3) when processing multi-focus plenoptic images. Objects at corresponding virtual depths 

within a specific range, generally between 2 and 7.5 but depending on the micro-lenses’ focal 

lengths and positions Bi, can be imaged with limited loss of resolution [27]. 

 

Figure 5 – A schematic of the multi-focus lens array orientation in side view showing different 
lens-sensor distances. Lens-sensor distance extended for clarity. Three lens types are encoded by 

color. 
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2.1 Design of a focused plenoptic imaging system 

 

Figure 6 - Definition of parameters for determining imaging volume 

When designing a plenoptic imaging system for use in a fluid imaging experiment, being able to 

achieve a desired imaging volume is usually the main concern. This section will assume the use of 

a given plenoptic camera with a fixed micro-lens array, and then discuss how to select and position 

a main lens for the camera given a desired imaging volume. How the imaging volume projects into 

image-space can be simply modeled using the thin lens [37] ( 1 ) and pinhole camera ( 2 ) 

equations. Application of the thin lens equation will be incorrect for many lenses, as most modern 

lenses need thick-lens modeling to be properly modeled. However, the thick lens model will only 

add a constant to the focus distance [35], so these equations will hold true after some slight 

repositioning to account for a thick main lens. The definition of virtual depth ( 3 ) is also important 

for the design. In the following equations, 𝐷𝑜 represents an object-space point’s distance from the 

main lens, 𝐷𝑖 is the distance from the main lens to the image of the point, 𝑦𝑜 is the distance of a 

point from the optical axis, 𝑦𝑖 is the distance from the optical axis to the image of the point, f is 

the focal length of the main lens, v is the virtual depth, and BL is the distance from the main lens 

to the TCP. These can be related by the thin-lens equation as: 
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1

𝐷𝑜
+
1

𝐷𝑖
=
1

𝑓
 ( 1 ) 

𝑦𝑖𝐷𝑜 = 𝑦𝑜𝐷𝑖 ( 2 ) 

Note that 𝐷𝑖 can be defined in terms of the parameters of the plenoptic camera, as in ( 3 ) where v 

is the virtual depth, BL is the distance from the main lens to the TCP, and B is the largest of the 

micro-lens-sensor distances Bi. It is important to use the largest Bi to avoid missing part of the 

imaging volume near v = 2. 

𝐷𝑖 = (𝑣 − 2)𝐵 + 𝐵𝐿 ( 3 ) 

This approach aims to take the TCP at v = 2 and project it into image space using ( 1 ). Then, the 

image sensor is projected to that plane using ( 2 ). This will give an estimate of the maximum field 

of view of the plenoptic camera. This is achieved through the substitutions given in Table 1. Here, 

𝑇𝐿 is the focus distance of the lens, 𝐹𝑀𝐴𝑋 represents the desired maximum field of view in the far-

field, and S is the size of the sensor. These are also defined on Figure 6. Note that performing these 

substitutions assumes that the sensor is located at v = 2, whereas it is actually located at v = 1. This 

is a simplifying assumption which is based on 𝐵𝐿 ≫ 𝐵, which should generally be true. It ensures 

that the actual FOV is slightly under-predicted rather than over-predicted, which is useful to ensure 

that the desired imaging volume is covered. Not applying this assumption produces a much less 

concise system of equations, the code for which is present in Appendix A. 

Table 1 - Camera equation substitutions for v = 2 

Variable 𝐷𝑜 𝐷𝑖 𝑦𝑜 𝑦𝑖 

Substitution 𝑇𝐿 − 𝐵𝐿 𝐵𝐿 𝐹𝑀𝐴𝑋/2  𝑆/2 

 

Performing these substitutions into ( 1 ) and ( 2 ) and solving for 𝑇𝐿 and 𝐵𝐿 yields: 
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𝑇𝐿 =
𝑓

𝐹𝑀𝐴𝑋 ∙ 𝑆
(𝐹𝑀𝐴𝑋 + 𝑆)

2 ( 4 ) 

𝐵𝐿 =
𝑓

𝐹𝑀𝐴𝑋
(𝐹𝑀𝐴𝑋 + 𝑆) ( 5 ) 

These parameters will allow a main lens with a given f to be positioned using 𝑇𝐿 and 𝐵𝐿 such that 

the field of view corresponding to v = 2 will be a desired 𝐹𝑀𝐴𝑋.  

The next parameter that becomes important is the desired depth of field 𝐷𝐹 within a specified 

maximum virtual depth v that results from the selected f. Finding 𝐷𝐹 requires the definitions of 

new focus distance and image position Tv and Bv, respectively. Bv is found first from the definition 

of virtual depth: 

𝐵𝑣 = 𝐵𝐿 + (𝑣 − 2)𝐵 ( 6 ) 

The thin lens equation ( 1 ) can then be applied to get 𝑇𝑣 ( 7 ), and then 𝐷𝐹 is calculated from the 

difference between the object distances ( 8 ). 

𝑇𝑣 =
𝐵𝑣
2

𝐵𝑣 − 𝑓
 ( 7 ) 

𝐷𝐹 = 𝑇𝐿 − 𝑇𝑣 − (𝑣 − 2)𝐵 ( 8 ) 

The field of view at position 𝑇𝑣 − 𝐵𝑣,  𝐹𝑀𝐼𝑁, can then be calculated from the pinhole camera 

equation: 

𝐹𝑀𝐼𝑁 =
𝑆(𝑇𝑣 − 𝐵𝑣)

(𝐵𝐿 − 𝐵)
 ( 9 ) 

Equations ( 4 ) - ( 9 ) allow the complete definition of the imaging volume of a focused plenoptic 

system with a known sensor size S, sensor-MLA distance B, and main lens of focal length f. It is 

also possible to determine f given a desired 𝐷𝐹, which can be useful for getting a general idea of 

which focal length of lens would be appropriate for a desired system. After applying ( 4 ) - ( 6 ), 

𝑇𝑣 is calculated from the desired 𝐷𝐹 and f is calculated from the thin lens equation: 
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𝑇𝑣 = 𝑇𝐿 − 𝐷𝐹 + (𝑣 − 2)𝐵 ( 10 ) 

𝑓 = (𝐵𝑣
−1 + (𝑇𝑣 − 𝐵𝑣)

−1)−1 ( 11 ) 

The expression for f given here is self-referencing; this is done for conciseness. The code to 

generate this full formula is present in Appendix A.  

The final consideration in designing the imaging system is the required aperture size. For a micro-

lens array with a manufacturer-specified working f/#, N, the required aperture diameter 𝐷𝐴 is given 

by: 

𝐷𝐴 =
𝐵𝐿 − 2𝐵

𝑁
 

( 12 ) 

The suggested method for determining a suitable lens for a given imaging system is to apply 

equations ( 4 ) - ( 6 ) with ( 10 ) - ( 11 ) to get a predicted focal length, which is then used to select 

an appropriate main lens. Equations ( 4 ) - ( 9 ) and ( 12 ) are then used to fully define the imaging 

volume and required aperture diameter. Within this process it may become apparent that the 

desired imaging volume cannot be achieved due to the system requiring an unavailable focal length 

or diameter of lens. In this case, compromises on the selected in-plane or out-of-plane imaging 

volume will need to be made. 

Given a specific main lens and micro-lens array, it is possible to determine the overall system field 

of view and depth of field as a function of BL. Example plots for B=0.373 and 1.452 mm and f = 

35, 50 and 85mm are given in Figure 7 and Figure 8, respective to B. These values are selected 

based on available cameras and lenses. As an example, if a similar field of view and depth of field 

are desired, the intersection between D and FMAX or FMIN can be considered. This intersection 

point is different for each main lens focal length and micro-lens distance B. To show this clearly, 

the plots have been zoomed to highlight the intersection points in Figure 9. Other ratios between 

the field of view and depth of field will correspond to different points along the x-axis in these 

plots. These plots are useful tools in the preliminary setup of an experiment to determine and define 

the important imaging field characteristics that set the overall range and resolution of the 

experiment. 
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Figure 7 - Field of view and depth of field plots for B=0.313 mm 

 

Figure 8 - Field of view and depth of field plots for B=1.452 mm  
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 9 - Field of view and depth of field plots for (a-c) B=0.343 mm and (d-f) B=1.452 mm. 
(a) and (d) are plots for f =35 mm, (b) and (e) are plots for f =50 mm and (c) and (f) are plots 

for f =85mm. Note that the axes of these plots have been manipulated to focus on the 
intersection between the D and the two F plots in each case. 
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CHAPTER 3 PARTICLE LOCATION METHODS 

Determining the three-dimensional location of particles in physical space from the collected 

imaging data is the first step in tracking particles. Two different methods for doing so have been 

developed as part of this work and both rely on first being able to find the 2D locations of the 

particles in images. This chapter will discuss the 2D particle location method used and the two 

methods developed for extracting the virtual depth of a particle. The plenoptic camera calibration 

algorithm, implemented for the first time in Matlab, that allows the particle data to be mapped 

from pixel and virtual coordinates in image space into physical coordinates in object space that 

uses these particle location methods will also be discussed. 

3.1 Two-dimensional particle location method 

Both of the 3D particle location approaches discussed here rely on being able to locate a particle 

in the projected 2D image to sub-pixel accuracy. Particle location methods have already been 

extensively reviewed by [9]. To summarize that review, particle location methods generally aim 

to find the 2D centroid of individual particles. Early methods used a center-of-area method [38]–

[40] that calculates the centroid of the pixels containing the particle. Fitting methods which include 

Gaussian and polynomial-based methods [41]–[43] have also been attempted. The selected method 

[44] is an intensity-weighted center-of-area method which has been used extensively and is freely 

available as a Matlab open-source code under a GNU GPL [45]. This method was selected for its 

usefulness with tracking small particles with roughly Gaussian intensity distributions, and its ease 

of availability. The main steps in this particle location method are preprocessing, preliminary 

location, and then sub-pixel location, which will each be discussed in turn. 

3.1.1 Image Preprocessing 

The preprocessing approach generates a boxcar kernel based on a specified object size and 

performs 2D convolution on the raw image. This algorithm is representable as given in [44] by: 

𝐴𝑤(𝑥, 𝑦) =
1

(2𝑤 + 1)2
∑ 𝐴(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑤

𝑖,𝑗=−𝑤

 ( 13 ) 
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Here, 𝐴 represents the image, 𝐴𝑤 represents the convolved image, i and j are stepping variables 

for the summation, x and y represent pixel coordinates, and w is a distance in pixels which is set to 

the radius of the largest expected particle. The approach also suggests convolution with a Gaussian 

surface to reduce noise, representable by: 

𝐴𝜆𝑛(𝑥, 𝑦) =

∑ 𝐴(𝑥 + 𝑖, 𝑦 + 𝑗) exp (−
𝑖2 + 𝑗2

4𝜆𝑛2
)𝑤

𝑖,𝑗=−𝑤

[∑ exp (−
𝑖2

4𝜆𝑛2
)𝑤

𝑖=−𝑤 ]
2  ( 14 ) 

Applying this filter requires selecting the noise filtering radius 𝜆𝑛 such that 𝜆𝑛 is much smaller 

than the radius of a particle. The noise reduction of these operations is apparent in the sample 

images given in Figure 10. The structure of the ~25 pixel diameter circles of the micro-lens array 

visible in the background noise of the raw image in Figure 10a is completely eliminated by the 

boxcar convolution, the result of which is shown in Figure 10b. Adding the Gaussian filter (𝜆𝑛 =

1 was used in this case) performs a blurring operation which normalizes the profiles of the particles 

as shown in Figure 10c, but has the risk of merging nearby particles or eliminating small particles, 

as shown by the red arrows in each image. When processing the images herein, only the boxcar 

filter has been used to avoid eliminating small particles. 

   
(a) (b) (c) 

Figure 10 - Raw (a), boxcar filtered (b), and boxcar+Gauss-filtered (c) sample plenoptic 
images. Images have been cropped to 100x100 pixels for clarity. Red arrows identify sample 

particles which exist in (a), remain in (b), but are eliminated in (c).  
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3.1.2 Preliminary particle location 

Preliminary particle location is conducted by applying a manual threshold to the preprocessed 

image to eliminate any remaining background noise, and then looking for local maxima within the 

image. This is accomplished by checking each pixel’s 8-connected neighbors for higher intensity 

values. If multiple local maxima are found that are within the expected radius of a particle w, only 

the brightest is kept. Any local maxima which are within w of the edges of the image are ignored 

as it is expected that these particles would be truncated by the edges of the image. This approach 

is designed to select a pixel that is near to the geometric centre of the particle [44]. 

3.1.3 Sub-pixel particle location 

The pixel-accurate centroids from the preliminary location algorithm are passed to the sub-pixel 

location algorithm, which takes a circular window around each location. The circular window is 

defined by a radius of w’ around each centroid, which is manually set for the entire data set to 

ensure that the entire particle is enclosed. It is important that this radius be slightly larger than the 

particle to prevent the centroid estimation from being skewed by cutting off the edges of the 

particle. Intensity-weighted averaging is then performed to get a sub-pixel measurement of the 

particle centroid’s location using:  

𝑥𝑐 =
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1 ) ∙ 𝑥𝑖
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1 )

 ( 15 ) 

𝑦𝑐 =
∑ 𝐼(𝑥𝑖 , 𝑦𝑖
𝑁
𝑖=1 ) ∙ 𝑦𝑖
∑ 𝐼(𝑥𝑖, 𝑦𝑖
𝑁
𝑖=1 )

 
( 16 ) 
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Applying this operation for the sample images shown with w’ = 3 yields the particle centres shown 

in Figure 11. This approach assumes that the intensity distribution of a particle will be roughly 

Gaussian, with the centre of the particle brightest and the edges dim. When these conditions are 

met, the error in estimation should remain under 0.15 pixels as long as the w’ is larger than but no 

more than twice as large as the target particle [44]. If the distribution deviates from Gaussian, 

higher uncertainty may be expected. Particle overlap can cause deviation to occur. Assuming the 

adjacent particles each form a Gaussian intensity distribution, it is likely that the overlap between 

the Gaussians will result in the centres of the particles being shifted closer together than they 

should be. These issues will be returned to when discussing experimental results. 

 

Figure 11 - Raw image with located particles shown as red crosses 
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3.2 Refocusing-based three dimensional location method 

The initial method for determining the 3D location of particles in the plenoptic images involves 

using a commercial software package (RxLive 2.01, Raytrix GmbH). This software converts a 

plenoptic image into a conventional image by using cross-correlation on small patches of pixels 

along the epipolar lines of the micro-lens images to determine virtual depth. It uses interpolation 

and extrapolation methods to estimate the depth of nearby pixels, and then refocuses the image at 

these calculated depths [27]. Epipolar lines, in this case, are defined as the lines parallel to those 

passing through the centres of the micro-lenses of the same type. Any location which does not 

have an assigned depth is blacked out, resulting in focused images for which the background is 

noiseless. The software is able to generate one separate depth map for each micro-lens type as well 

as one computationally refocused image. A sample raw image, depth map, and refocused image 

are shown in Figure 12 and Figure 13. Note that particles for which fewer micro-images are present 

have been labeled with lower virtual depths, as should be expected from the discussion in Chapter 

2. A custom Matlab code, available in Appendix B, was developed to extract the 3D particle 

locations from these refocused images and depth maps. 

 
(a) (b) 

Figure 12 - A subsection of a raw image of a particle field (a) ‘raw image’, cropped to show 
micro-lens images, and associated depth estimations (b) ‘depth image’. 
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Figure 13 - Resultant total focus image 

To obtain 2D particle location data, the feature-detection algorithm from section 3.1 is applied to 

the refocused images. This results in obtaining a list of 2D particle locations, which have been 

overlaid on the image in Figure 14. 



24 

 

 

Figure 14 - 2D particle locations overlaid as red crosses on refocused image 

Once the 2D locations of the particles have been found, the locations are projected onto the depth 

maps. A radius is taken around each location as shown in Figure 15, and all depth measurements 

within the radius are gathered. If a circle formed in this way does not overlap any of the other 

circles, a median of the gathered depth measurements is taken as the depth of the particle after 

repeated elimination of outlier measurements greater than 2 standard deviations from the median. 

This is performed for each of the 3 depth maps, and a weighted average virtual depth location is 

taken based on the number of non-outlier depth-locations found within the circles of the particle 
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in each map to get the final virtual depth. In cases were circles overlap, the medians of the non-

overlapping regions are considered first and any overlapping regions are passed to the particles 

with the highest virtual depth, which should lie in front. This operation results in the particles being 

defined in image-space in terms of pixels and virtual depth. 

 

Figure 15 - Virtual depth map with 2D particle positions overlaid as green circles 

While this approach has been found to be relatively effective for low-density particle fields, it 

begins to have issues as the density of the field increases. The depth map production algorithm is 

primarily designed for determining the depth of regularly-contoured, uniquely-featured objects 

[27] rather than discrete particles distributed randomly in the imaging volume. Its reliance on 
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cross-correlation means that for higher-density particle fields, it is inevitable that the algorithm 

will try to calculate depths using two different, adjacent particles. The frequency of this failure 

will increase exponentially as the particle density increases. This will then lead to the production 

of ‘ghost’ particles in the refocused images, similar to how tomographic methods can produce 

ghost particles [7], [8]. Even where ghost particles are not generated, the reconstruction algorithm 

is unable to fully reconstruct objects with similar in-plane locations but different out-of-plane 

locations in the refocused images, meaning that it is impossible to discretize overlapping particles 

despite the multiple angles of view provided by the micro-lenses. All of these issues compounded 

result in this method being best used for low-density particle fields, where the chances of particles 

being nearby or overlapped are minimized. Use of the commercial algorithm makes customizing 

the approach for particle fields impossible, so an entirely different approach was developed.  

3.3 Raw image 3D particle location 

To overcome the limitations of the commercial (RxLive 2.01, Raytrix GmbH) algorithms, a new 

in-house code was conceived and developed to process the raw plenoptic images of particle fields 

to estimate 3D particle location. The relevant Matlab scripts are available in Appendix C. This 

approach draws much inspiration from the original algorithm [27] for its preprocessing, but 

diverges significantly in its feature-determination method as this is designed specifically for 

extracting 3D particle positions. The method has seven major steps, which will each be discussed 

in their own subsection. It proceeds as follows: 

1. Determine the centre of each micro-lens and assign micro-lens types, using a ‘white image’ 

[27]. 

2. Plenoptic image preprocessing [27] 

3. Determine the locations of individual particle-images in the raw plenoptic image 

4. Determine which micro-lens each particle-image is in 

5. Determine which same-type, adjacent micro-lenses contain particles-images along epipolar 

lines, and group all particle-images found to be epipolarly connected 

6. Split the groups into subsets of particle-images that meet the Epipolar Triangular 

Connectivity (ETC) criterion 
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7. For each ETC group, determine the 3D location of the particle in pixel and virtual 

coordinates 

3.3.1 Micro-lens location 

To locate each micro-lens, a white image is obtained with the plenoptic imaging system by placing 

a diffuse light source nearer to the main lens than its focal point. With an exposure time set such 

that the maximum intensity count is just below the maximum of the sensor, many images can be 

acquired, and an average image can be generated to reduce any random noise present. An example 

image in which this has been done is shown Figure 16a. Here, the images produced by each micro-

lens identify the area on the sensor that each lens will project images into. This image is then 

processed with the particle-location algorithm to approximate the centres of each micro-lens 

image, which should correspond to the centres of each micro-lens. Two vectors are then defined. 

A vector from the central micro-lens vertically to the next micro-lens in the same column and a 

vector from the central micro-lens to the nearest lens not in the same column. Each lens is then 

located as a combination of integer multiples of these two vectors. The vectors and the position of 

the central micro-lens are then manipulated by a least-squares fitting algorithm to minimize the 

differences between the found locations and the ones defined by the vectors. This step averages 

out any uncertainty created by inaccuracies in the particle location algorithm. The final grid 

produced by the vectors is then kept for use in the particle-image location algorithm. This grid, 

with micro-lens types coded by color, is overlaid on the original image in Figure 16b. The lens 

types are coded from the knowledge of the repetitive nature of the hexagonal grid shown in Figure 

3. Exact knowledge of the focal lengths of individual lenses is not necessary for the processing 

approach. This must be performed for each unique lens orientation, and it is important to do so for 

each experiment conducted. The efficacy of this method will be discussed alongside the results of 

the experimental data which this method has been used for in Chapters 5-7. 
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(a) (b) 

Figure 16 - Micro-lens location method: averaged white image (a) is used to locate the centres of 
the micro-lenses (b). The different coloured markers in (b) represent the three different lens 

types. 

3.3.2 Image preprocessing 

The image preprocessing approach used assumes that the white image created from the averaging 

approach defines a uniform white light field. Ideally, each micro-lens image would be uniformly 

illuminated by this uniform light field. Typically, a gradient with a brighter center and darker edges 

is observed. This is an effect of the distortions produced by the individual micro-lenses and is more 

pronounced for lenses with a greater curvature and shorter focal length. In Figure 16b, the red-

marked lenses have the shortest focal length and the green lenses have the longest. When observing 

a particle field, particles near to the edge of the lens can have their apparent centres shifted towards 

the centres of the micro-lens from this effect. To correct for this, the particle images are divided 

by the white images, which results in the particle location algorithm comparing the particles’ 

intensities as a ratio of the white image as opposed to comparing the raw intensities. This helps 

correct for the centre-shifting of the intensity gradient. The centre-shifting effect can be observed 

in Figure 17. Here, a particle at the edge of the micro-lens in the raw image (a) has the intensities 

of the pixels on the outer edge of the lens amplified, while the pixels closer to the centre are slightly 

reduced. This has the effect of shifting the sub-pixel centre of the particle away from the centre of 

the lens, closer to where the actual position should be. The shift in this case is from  
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(1739.36, 1746.11) to (1739.73, 1746.80). This helps to highlight a potential source of error, as 

well: if the handling of particles near the edges of the micro-lenses is inadequate, it is likely that 

the 2D centroid-location approach will produce particle centroids closer to the centre of the micro-

lens than the actual centre of the particle. A problem that cannot be corrected using this approach 

is the case where only part of a particle is visible in a lens, that is, the particle is cut off by the 

border of the lens. In this case, a centroid may be found that does not correspond to the particle’s 

actual centre. The found centroid will be closer to the centre of the microlens than the true particle 

centroid. This is a major source of uncertainty in this approach. These particles need to be ignored, 

or they may affect results. The criteria for ignoring them is discussed in section 3.3.6. 

  
(a) (b) 

Figure 17 - Raw (a) and preprocessed (b) images of a single particle on the edge of a single 
micro-lens. Micro-lenses shown by colored circles; detected particle centre shown by red cross. 

3.3.3 Particle-image location 

Particle-image location is performed on the preprocessed images using the algorithm discussed in 

section 3.1. A result for a partial sample image, containing a single particle, is shown in Figure 18. 

This approach, while computationally efficient, can have its accuracy affected when handling 

cases where the radii of two particles overlap. However, because multiple micro-images of a single 

particle are obtained at slightly different angles of view, this issue will frequently only affect a few 

of the micro-lenses and 3D particle location can still proceed. This means that this technique is 

better suited to handling dense particle fields than the initial technique discussed in Section 3.2. 
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Having determined the particle-image locations, the nearest micro-lens centre is determined from 

the list of micro-lens locations and assigned to the particle-image. A single micro-lens can be 

assigned to any number of particles, as each micro-lens may contain multiple particles. 

 

Figure 18 - Particle location result for a single point on a calibration target.  Lens borders have 
been colored for clarity. Located particle centroids shown by red markers. 

3.3.4 Epipolar grouping 

Starting at any particle, the algorithm looks along a line defined by the vector between the micro-

lens the particle is in and one of the nearest 6 micro-lenses of the same type. The epipolar plane 

generated by a given pair of lenses and a given particle imaged by both lenses intersects the camera 

sensor along this line. For simplicity and to be explicit, the line will be referred to as an “epipolar 

line” along the sensor. If a particle-image within the micro-lens is within a specified distance 𝐿𝑒 

of the epipolar line (typically <0.5 pixels), the particle-images are grouped together. The distance 
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𝐿𝑒 is easily calculable through application of the classical minimum point-to-line distance 

equation: 

𝐿𝑒 =

|
�⃑�𝑖 − �⃑�𝑗

�⃑⃑�𝑖 − �⃑⃑�𝑗
|

‖�⃑⃑�𝑖 − �⃑⃑�𝑗‖
 

( 17 ) 

Here, �⃑�𝑖 refers to the location of particle i, �⃑�𝑗 refers to the location of particle 𝑗 in an adjacent lens, 

�⃑⃑�𝑖 is the position of the micro-lens that contains particle 𝑖, and �⃑⃑�𝑗 is the position of the micro-lens 

that contains particle 𝑗. The operators in the numerator and denominator are the determinant and 

2D vector norm, respectively.  If multiple particle-images in the same micro-lens are close to the 

epipolar line, only the particle with the smallest 𝐿𝑒 is kept. This is repeated for each of the 6 micro-

lenses and the whole process is repeated for each found particle-image until no further connected 

particle-images are found. Then, the algorithm continues picking particle-images from the set of 

all ungrouped particles until all particles that can be grouped have been assigned a group. The 

distances 𝐿𝑒 between individual particles and the epipolar lines from adjacent-lens particles and 

these distances represent the error residuals of this step, and are preserved for later use. 

3.3.5 Epipolar Triangular Connectivity (ETC) grouping 

Within each of the epipolar groupings, each particle is checked to see if it has at least 2 neighboring 

particles along different epipolar lines. If so the neighboring particles, if they are also neighbors 

of each other, are checked for epipolar connectivity. If the three particles are all connected, they 

meet the epipolar triangular connectivity (ETC) criterion. Any particle-image for which the ETC 

criterion is not met for any group is removed. This further reduces the potential to produce 

incorrect matchings between particle images, which would lead to errors in location estimation. 

At the end of this process, any ETC groups that share a particle are grouped together. Each of these 

groups should each contain every particle-image location corresponding to a single particle. A 

graphical representation of a sample result of this method is shown in Figure 19a, where the groups 

of particles from Figure 18 which comply with this criterion have been linked together by magenta 

lines. Several particles which do not comply with the criterion are present as well. These are 

typically particles for which the centroid detection method has been unable to find the centroid 

accurately, frequently due to the particle-image being on the edge of a lens such that it is partially 
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occluded. Figure 19b shows the same result for a particle that is much closer to the camera and has 

a higher virtual depth. Note how in Figure 19b, particles haven’t been detected in one of the lens 

types because they are too far out of focus. A key thing to note here is that there are 3 outer particles 

in Figure 19a that have been rejected by the ETC, likely because their centres have been shifted 

due to being near the edge of the lens. Similar rejections are not seen at the higher virtual depth in 

Figure 19b, which may mean that some of the 2D centroid estimates in Figure 19b could be 

erroneous. The centre-shifting effect near the edge of the lens discussed earlier may be consistent 

enough to produce erroneous centroids for which the ETC criterion is still met. 

  
(a) (b) 

Figure 19 - Demonstration of the ETC criteria for a particle with (a) a small virtual depth and (b) 
large virtual depth. Images scaled differently, as demonstrated by axes. 

3.3.6 Error-reduction filtering 

To reduce potential errors in the final 3D location step, any particle-images which have associated 

epipolar connection errors exceeding a certain level relative to the other particle-images in the 

ETC group are eliminated from that group. This involves comparing the relative contribution 𝐿𝑒,𝑟 

of the ETC residuals 𝐿𝑒 using:  

𝐿𝑒,𝑖,𝑟 = 𝑁
𝐿𝑒,𝑖

∑ 𝐿𝑒,𝑗
𝑁
𝑗=1

< 𝜀 ( 18 ) 

Particles with relatively large residuals, larger than the set limit 𝜀, are then removed. This can help 

reduce the uncertainty in the data entering the 3D particle location algorithm, and is an attempt to 
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address the issues that can arise when particles are partially occluded by the edge of a lens. Here, 

𝐿𝑒,𝑖,𝑟 refers to the relative error contribution of particle 𝑖 in a group of 𝑁 particles 𝑗. Particles 𝑖 can 

be eliminated based on if their relative error 𝐿𝑒,𝑖,𝑟 exceeds 𝜀 times the average error in the group. 

Typically, this parameter 𝜀 is set between 1.2 and 2 if it is used. 

3.3.7 3D particle location 

For each of the ETC-grouped particle-image sets, vectors are projected through the centre of each 

particle-image’s micro-lens at a virtual depth of 0 to the particle-image locations on the CCD at a 

virtual depth of 1. The nearest-to-intersection point of the vectors is then determined by a least-

squares fit of the minimum distance from a point to all the lines. The Levenberg-Marquardt method 

[46], [47] is used to perform the least-squares fit. The fitted point is taken as being the 3D location 

of the particle in pixel and virtual coordinates. The residual minimum point-to-line distances 

between the point and each of the vectors are preserved as a way to estimate uncertainty. The 

results of these operations applied to the images in Figure 19 are shown in Figure 20. All lenses 

have been collected into a single image for ease of comparison. Poor agreement in the virtual 

depths of the fitted points can be observed here. As each individual micro-lens-to-sensor distance 

Bi is different, the virtual depths of the located points are expected to be different. Implementation 

of a calibration algorithm capable of finding the distances Bi is thus necessary to align the z-values 

of the points predicted from each lens type in physical space.  

Another key point is that the rejected points from Figure 19a are not present in the triangulation 

shown in Figure 20a, and good agreement can be seen between most of the lines and the detected 

centroids perhaps excluding the rightmost green line. However, in Figure 20b, the two green 

vectors to the back-right of the image can be seen to miss the main intersection point, and if this 

figure were rotated it is likely that other outer green vectors would miss the main intersection as 

well. This is an indication that an incorrect centroid has been found due to edge effects of the 

micro-lenses, and has then been preserved through the ETC method and error filter. For larger 

virtual depths, many particles can be expected to be found near the edges of the micro-lenses. 

Many triangles formed by adjacent incorrectly-located edge cases for high virtual depth particles 

appear to be complying with the ETC resulting in high average errors entering the error filter, 

which prevents the outer centroids from being rejected. It may be possible to improve the handling 
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of particles near the edge of the micro-lenses by developing a custom 2D particle location 

algorithm, or it may be necessary to reject edge-case particles entirely to address this problem. 

 

  
(a) (b) 

Figure 20 - Triangulation of particle position for the low virtual depth (a) and high virtual depth 
(b) particles shown in Figure 19. Vectors are colored by micro-lens type. Located points shown 

as large circles. 

3.4 Calibration method 

The camera calibration method used was originally developed as a standard single- or multi-

camera calibration approach [5] and was more recently adapted for plenoptic cameras in C++ [35], 

[36]. This work re-implements the technique in Matlab. The Matlab scripts are given in Appendix 

D. A calibration target is generated by creating a square grid of equally-spaced dots appropriate 

for the imaging volume. For example, the macroscale experiments conducted involved a target 

field of view of a 60×60×60 mm cube, for which the selected dot spacing is 5.927 mm. In contrast, 

the microscale experiments take place in a 6×6×6 mm cube for which the selected dot spacing was 

0.667 mm. These targets will give 8-10 dots across the field of view, which is adequate for the 

algorithm to numerically perform the calibration. After setting up the camera in the correct 

orientation for the experiment, this calibration target is held in the field of view and imaged at 
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several orientations. A sample plenoptic image of the target is shown in Figure 21. The target in 

this image is angled with the bottom of the target nearer to the camera, and each dot of the target 

appears in multiple micro-lens images. As a result, dots at the bottom of the image are closer to 

the camera and appear in more micro-images than dots at the top. The dots also spread apart 

moving from the top of the image to the bottom, which is a result of the change in magnification 

reducing the in-plane field of view in the near-field of the camera. Other research has indicated 

that 4 images acquired in this way should be sufficient for this type of calibration algorithm if the 

target positions have good coverage of the imaging volume [35], [36]. The target used in this case 

had a lower dot density, so a minimum of 8 calibration images have been used to ensure that the 

imaging volume was well-covered. 

 

Figure 21 – A sample calibration image. Individual calibration points have been split into 
multiple micro-images. 
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Once acquired, each of the calibration images can be processed using either of the 3D location 

algorithms discussed in sections 3.2 and 3.3. The relative 2D positions of the dots are then 

identified by considering the vector distances between them, beginning in the center of the image 

[35], [36]. This approach ignores any centroids that do not align with the grid that could have been 

created by noise in the image. A model for the target is generated for each image from the known 

vector distances between the grid points, containing only the points on the calibration target that 

have been identified in the image. 

To convert from pixel and virtual coordinates to object-side positions, the pixel and virtual 

coordinates are first converted into metric locations in image-space. Then, Brown’s model for 

radial distortion [48] and the Petzval model for field curvature [49] are applied to remove the 2D 

and 3D effects of main lens aberration, respectively. Finally, the thin lens model [37] is applied to 

re-project the points into object space. The locations of the points in object-space are then 

compared to the model target points, which are held in a fixed grid that is positioned by controlling 

the extrinsic positional parameters. Equations ( 19 ) - ( 23 ) are associated with these operations, 

using the variables in Table 2. Figure 1 contains some of the key associated variables, so it has 

been repeated here as Figure 22 for convenience. 

 

Figure 22 - Optical arrangement of a focused plenoptic imaging system. A single set of ray-paths 
for one sample object is shown. Microlens focusing behavior assumed ideal for the object for 

simplicity. 
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Table 2 - Variable list for metric conversion 

x Particle sensor-side in-plane x-position, 
in pixels fL Main lens focal length, in mm 

y Particle sensor-side in-plane y-position, 
in pixels TL 

Main lens focus distance; the physical 
distance from the total covering plane at 

z = 2 to its projected conjugate in 
object-space, in mm 

z Particle sensor-side out-of-plane 
position, in virtual units BL Distance from main lens to the TCP* 

' 

Prime, indicator of a transformation 
applied to one of x, y, or z. Not related 

to the common convention of 
differentials. 

r Radial distance from the centre of 
distortion to each point 

X Particle object-side in-plane x-position, 
in mm x0 x-distortion centre 

Y Particle object-side in-plane y-position, 
in mm y0 y-distortion centre 

Z Particle object-side out-of-plane 
position, in mm k1 Second-order radial distortion 

coefficient 

sp Sensor pixel size, in mm k2 Fourth-order radial distortion 
coefficient 

Rx Sensor pixel count in x direction d1 Second-order radial distortion 
coefficient 

Ry Sensor pixel count in y direction d2 Fourth-order radial distortion 
coefficient 

Bi 
Micro-lens-sensor distance for each 

micro-lens type i dD Radial depth distortion coefficient 
 

BL is calculated here as: 

𝐵𝐿 =
𝑇𝐿
2
× (1 − √1 −

4𝑓𝐿
𝑇𝐿
) ( 19 ) 

The first step is to convert the points from pixel and virtual coordinates to physical coordinates, 

relative to the centre of the main lens: 

𝑥′ = (𝑥 −
1

2
𝑅𝑥) × 𝑠𝑝 ( 20a ) 

𝑦′ = (𝑦 −
1

2
𝑅𝑦) × 𝑠𝑝 ( 20b ) 

𝑧′ = 𝐵𝐿 + (𝑧 − 2) × 𝐵𝑖 ( 20c ) 
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Here, (𝑧 − 2) is used because 𝐵𝐿 is calculated relative to the TCP, so this operation is applying 

the -2 shifts to the virtual depths to make them relative to the TCP. 

Distortions are removed through the application of Brown’s model and another model for Petzval 

field curvature ( 22 ). These are radially dependent, so the distance from the points to the distortion 

centre must also be determined ( 21 ). 

𝑟 = √(𝑥′ − 𝑥0)2 + (𝑦′ − 𝑦0)2 ( 21 ) 

𝑥′′ = 𝑥′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) ( 22a ) 

𝑦′′ = 𝑦′(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4) ( 22b ) 

𝑧′′ = 𝑧′ + (1 + 𝑑𝐷𝑧
′)(1 + 𝑑1𝑟

2 + 𝑑2𝑟
4) ( 22c ) 

Finally, the locations are projected through the main lens using the thin lens equation and simple 

trigonometry: 

𝑍 =
𝑧′′𝑓𝐿
𝑧′′ − 𝑓𝐿

 ( 23a ) 

𝑋 = −𝑥′′
𝑍

𝑧′′
 ( 23b ) 

𝑌 = −𝑦′′
𝑍

𝑧′′
 ( 23c ) 

These operations require known values for the influencing parameters. These parameters, along 

with the parameters which control the position and angle of the target positions, are then iteratively 

modified using the Levenberg-Marquardt method [46], [47] until the sum-of-squares of the 

distances between the calculated and fixed grid points is minimized. As it is expected that the out-

of-plane locations will be less accurately determined than the in-plane locations, the weight of the 

out-of-plane distances is reduced, generally by between 2 and 4 times. This calibration must be 

performed for each new lens configuration, and the results for each of the calibrations performed 

in this study have been included in their respective chapters 5-7. 
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3.5 Particle selection 

A final step after the mapping must be applied for the ETC-based method. Given that three 

different lens types are used with this type of camera, three different estimates of the location of a 

single particle are frequently obtained. This will be the case for the particle in Figure 19a. In Figure 

19b, only two estimates of the particle’s location are obtained because the particle is too dim in 

the other lens sets to be found by the particle location algorithm. In either case it is generally useful 

to select one of these as the ‘best estimate’. Identifying that these are three estimates of a single 

particle is the first step in this process. This is accomplished by using one of the particles as a 

starting point and taking a radius around it, within which the nearest particle from the other two 

lens types will be considered to be the same particle. A larger radius is used in the z-direction than 

the x- or y-directions to ensure that the estimates will be grouped. It is easier to do this after the 

calibration step, as the calibration step will usually reduce the disparity in the measured depth of 

the particles caused by the differences in the MLA location parameters Bi.  

Two methods are proposed for determining which measured location is the “best estimate” of the 

particle position. The per-vector residual of each particle can be calculated by simple division of 

the residuals of the least-squares operation in Section 3.3.7 by the number of vectors, similar to ( 

17 ). The particle with the lowest per-vector residual is then considered the “best estimate”. The 

second method assumes that the 2D location step will be most accurate for the most in-focus 

particle images and that the most in-focus particle images will have the highest average intensity. 

The average intensity for the particle-images of each lens type is calculated, and the particle 

derived from the lens type with the highest average intensity is selected as the “best estimate”.  
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CHAPTER 4 PARTICLE TRACKING VELOCIMETRY 

The particle tracking approach developed for this work draws on several past works, but has been 

specifically adapted and implemented in Matlab for tracking particles resultant from the plenoptic 

images. The Matlab scripts are given in Appendix E. The particle tracking approach initializes the 

particle tracks using a two-frame approach, and continues with forward-predictive tracking after a 

particle is tracked for a few frames. The two-frame approach was previously developed in-house 

by another researcher [9]. Acceleration-based track rejection is then applied to remove spurious 

tracks, followed by a combined forward- and backward-prediction approach that links together 

track segments. Lastly, a temporal filter is applied to smooth the data. The equations involved in 

the particle tracking approach used will make use of the variables defined in Table 3. 

Table 3 - List of PTV variables 
t Time i Current particle index (frame or track) 
n Last particle in set j Secondary particle index 

m Time-indexing variable 𝜓 Particle index for uncertain, potential-
match particles 

l Track length N Neighborhood particle index 

�⃑� Particle location vector P Polynomial-predicted particle label 
(subscripted); or polynomial coefficient 

�⃑� Particle velocity vector 𝐴𝑧 Noise ratio of z data relative to x,y data 

�⃑� Particle acceleration vector 𝐵𝑧 
Noise ratio of z data relative to x,y data, 

adjusted to apply to velocity term 
𝑟𝑁 Neighborhood radius 𝑟𝑇 Two-frame tracking acceptance radius 

𝑟𝑞 Neighborhood particle acceptance 
radius 𝑟𝑝 Velocity-prediction particle position 

acceptance radius 

𝑟𝑣 Track-linkage velocity deviation 
acceptance term 𝑎𝑇 Acceleration threshold 

 

The challenge here is that the particle location algorithm typically has a high uncertainty in 

calculating the out-of-plane position of a particle. Many of the steps in the algorithm account for 

this by allowing for a much higher error range in the out-of-plane direction than the in-plane 

direction. Thus, when a particle is predicted to be within a certain radius by either the initialization 

step or the forward-prediction step, the allowable range of positions will be represented by an 

ellipsoid extended into the out-of-plane direction rather than a sphere. 
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4.1 Track initialization 

Track initialization is achieved by using a two-frame neighborhood tracking approach based on a 

previously developed in-house algorithm [9]. The approach outlined in Figure 23 assumes that, 

within a given region around the tracked particle, all other particles should move at a similar 

velocity. It looks at the second-frame potential matches for a first-frame particle, within a specified 

3-D radius rT (see Figure 23a-b), and projects each of the resulting vectors from the other first-

frame particles within a 3-D neighborhood radius rn (see Figure 23c-d). The particle kept as the 

match for the first-frame particle is the particle for which the most projected vectors point to 

second-frame particles, within a specified trust radius rq. In the example Figure 23, x2 is selected 

as the vector for the central particle. Mathematically, this algorithm can be represented by ( 24 ) 

through ( 28 ). 

 

Figure 23 - Neighborhood tracking algorithm. Particle search radius rT, neighborhood radius rn, 
vectors x1 and x2. 

In neighborhood tracking, neighboring particles �⃑�𝑡,𝑖𝑁 around the central particle �⃑�𝑡,𝑖 are selected 

from the set of all other particles in the same frame �⃑�𝑡,𝑗, j ≠ i: 

�⃑�𝑡,𝑖𝑁 = {�⃑�𝑡,𝑗 ∈ ℝ
3 | (‖�⃑�𝑡,𝑗 − �⃑�𝑡,𝑖‖ < 𝑟𝑛)} ( 24 ) 
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Here, 𝑟𝑁 refers to the radius of the neighborhood that is considered around particle �̅�𝑡,𝑖. All 

potential second-frame particles �⃑�𝑡+1,𝑖𝜓 for the central particle �⃑�𝑡,𝑖 are then found from all possible 

second frame particles �⃑�𝑡+1,𝑗, as well as the vector distances to these points: 

�⃑�𝑡+1,𝑖𝜓 = {�⃑�𝑡+1,𝑗 ∈ ℝ
3 | ‖[�⃑�𝑡+1,𝑗 − �⃑�𝑡,𝑖]‖ < 𝑟T} ( 25 ) 

�⃑�𝑡,𝑖𝜓 = �⃑�𝑡+1,𝑖𝜓 − �⃑�𝑡,𝑖 ( 26 ) 

These vector distances are then applied to the neighborhood particles: 

�⃑�𝑡+1,𝑖𝜓,𝑁 = �⃑�𝑡,𝑖𝑁 + �⃑�𝑡,𝑖𝑢 ( 27 ) 

A maximum deviation radius 𝑟𝑞 is taken around these locations �⃑�𝑡+1,𝑖𝑢,𝑁 and second-frame 

matching particles �⃑�𝑡+1,𝑗 are identified: 

‖�⃑�𝑡+1,𝑖𝜓,𝑁 − �⃑�𝑡+1,𝑗‖ < 𝑟𝑞 ( 28 ) 

The second-frame particle �⃑�𝑡+1,𝑖 with the greatest number of matching neighbors satisfying this 

equation is taken as being the correctly tracked particle. If this algorithm fails, generally due to not 

having enough neighbors for the algorithm to work, nearest-neighbor tracking is employed, 

represented by ( 29 ). Nearest neighbor tracking is implemented by, for each of the particles i in 

the frame at time t, �⃑�𝑡,𝑖, finding a particle in the set of particles j in the frame at time t+1, �⃑�𝑡+1,𝑗 

that satisfies: 

�⃑�𝑡+1,𝑖 = {�⃑�𝑡+1,𝑗  ∈ ℝ
3| min(‖[�⃑�𝑡+1,𝑗 − �⃑�𝑡,𝑖]‖) < 𝑟T} ( 29 ) 

Here, 𝑟T refers to the radius around particle �̅�𝑡,𝑖 within which a particle �̅�𝑡+1,𝑗 is accepted. 

When selecting the neighborhood size, the local spatial velocity gradients must be accounted for. 

Flows with larger velocity gradients will need smaller neighborhoods for this method to be 

successful. This approach is more than adequate for tracking the fixed field, as there are no spatial 

gradients in the velocity field. Particles which are tracked continuously through 4 frames by this 

method are sent into the time-resolved tracking algorithm for tracking in future time-steps. 

These equations describe the classical implementation of the 2-frame tracking algorithm. The 

algorithm has been modified for the plenoptic particle data by weighting of the vector residuals 

using a settable z-error weighting term when looking for a particle using ( 28 ) or ( 29 ). This allows 
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the algorithm to capture particles with higher z-deviations produced by the particle location 

method. 

4.2 Time-resolved tracking 

The time-resolved tracking algorithm collects several of the most recent positions of a continuous 

series of particles and fits three O(t3) polynomial functions x(t), y(t) and z(t), which are then used 

to predict the particle position in the next frame [50]. If a particle is found within a certain specified 

radius of that position, it is attached to the track that predicted it would be there. The number of 

positions used to create the polynomial function is another selected parameter. Typically, up to 10 

positions are used, but this selection needs to be made based on the particle velocity gradients. 

Larger gradients in the particle velocity over these positions can make it difficult for the 

polynomial fitting function to predict particle position accurately. Equations ( 30 )-( 31 ) are 

associated with these operations. 

The forward-predictive tracking algorithm attempts to fit a second-order polynomial to the last n 

particles in each track i (�⃑�𝑡−(𝑛−1),𝑖 through �⃑�𝑡,𝑖), searching the particles �⃑�𝑡+𝑚,𝑗 in frame j at the 

next m time steps (typically m=1,2,3) to find a potential particle �⃑�𝑡+𝑚,𝑗𝜓. Due to the large errors 

in calculating the z-position of the particles inherent in the plenoptic reconstruction, a larger 

tolerance in the z-direction is allowed, accounted for by the term 𝐴𝑧. This is a key feature of the 

particle tracking approach implemented by this work. An overall acceptance region around the 

predicted point is defined by 𝑟𝑝. 

The polynomial is found by least squares fitting. Then, �⃑�𝑡,𝑖𝑃 can be defined in terms of the 

polynomial fit: 

�⃑�𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 ( 30 ) 

To determine if a valid particle is found, a similar matching algorithm to the two-frame tracking 

algorithm is applied: 
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�⃑�𝑡+𝑚,𝑖𝜓 = 

{
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 ( 31 ) 

Forward-predictive tracking is applied first where tracks of l ≥ n exist. On particles for which 

forward-predictive tracking fails, neighborhood tracking is applied next, and nearest-neighbor 

tracking is applied last to capture any remaining particles. This approach attempts to create as 

many particle tracks as possible and as such can result in bad particle tracks being formed. A 

filtering algorithm is applied after these preliminary tracking steps, removing these bad particles 

and completing linkages that the tracking algorithm was unable to. 

4.3 Temporal filtering approach 

Once all frames have been completed, the algorithm looks for accelerations that exceed a specified 

threshold and breaks the tracks at these locations. This helps remove spurious tracks that may have 

been a result of the two-frame tracking algorithm. The algorithm then looks at all the track 

segments and performs an iteration of forward- and backward-predictive tracking, which links 

together tracks based on the positions, velocities, and accelerations of their endpoints through 

further polynomial fitting. Finally, a temporal filter is applied by fitting polynomials over moving 

windows with limits up to 10 particles to either side of a given particle. 

4.3.1 Track Removal 

 

Figure 24 - Application of the acceleration-based track removal algorithm. 

The track removal algorithm attempts to detect and remove track segments where a high 

acceleration is detected. An example of this case is shown in Figure 24. A track of length l is 
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deemed a bad track when a local acceleration along the track is larger than a threshold 𝑎𝑇. For 

each track i, the highest acceleration is determined and compared to the threshold: 

𝑎max = max(𝑎𝑡,𝑖 = ‖�⃑�𝑡+1,𝑖 − 2�⃑�𝑡,𝑖 + �⃑�𝑡−1,𝑖‖) > 𝑎𝑇 , 𝑡 = 2… 𝑙 − 1 ( 32 ) 

There are several conditions for which a bad acceleration can result. Table 4 outlines how the 

algorithm handles each case. 

Table 4 - Track removal acceleration cases 

Case Result 
1. Track is l = 3, acceleration found is bad Points should not be linked, remove track. 

2. Bad acceleration is at t = 2 or t = l-1 Remove first or last point 

3. Bad acceleration is in middle of track,  
2 < t < l-1 

Calculate accelerations on either side of 
bad point. Track is split between bad point 

and second-worst acceleration. 

Iterations of this algorithm are applied until no accelerations exceeding the threshold are present, 

as tracks may need to be split multiple times using case 3, or use of case 3 may produce tracks for 

which cases 1 or 2 apply. 

4.3.2 Track Linkage 

The track linkage algorithm aims to ‘bridge’ the gaps between existing track segments that should 

be a single, continuous track. An example of this type of track data is shown in Figure 25, where 

these gaps are circled. These can be caused where a particle is lost between frames, where the 

acceleration-based rejection improperly broke a track, or where a track wasn’t linked because the 

depth errors were too high for the three primary methods to create a track. 

 

Figure 25 - Example of ‘gaps’ in a track which should be continuous. 

The track linkage algorithm links tracks together by considering the time, position and velocity at 

the endpoint and starting point of nearby tracks. How it does so depends on the length l of the 

earlier track. If the track is too short, there is not enough z information to predict future z positions 

accurately due to the noise inherent in the z-data. Also, tracks of length 2 can’t be fit by a second-
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order polynomial. The algorithm is thus applied with slight variations depending on the length of 

the track, as presented in Table 5. 

Table 5 - Polynomial fitting cases 
Track Length Response Variables 

l=2 First-order polynomial predicts x-y positions 
z-positions averaged 

𝑃2𝑥𝑖
, 𝑃2𝑦𝑖

, 𝑃2𝑧𝑖
, 𝑃1𝑧𝑖

= 0 

2<l<5 
Second-order polynomial predicts x-y 

positions 
z-positions averaged 

𝑃2𝑧𝑖
, 𝑃1𝑧𝑖

= 0 

l≥5 

Second-order polynomial predicts x-y 
positions 

First-order polynomial predicts z-positions 
Only last 5 points used. 

𝑃2𝑧𝑖
= 0 

 

Particle positions �⃑�𝑡,𝑖𝑃 are predicted based on track i using the calculated polynomials: 

�⃑�𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 ( 33 ) 

Calculating the derivative of this polynomial gives a predicted velocity of the points as well: 

�⃑�𝑡,𝑖𝑃 = [

2𝑃2𝑥𝑡 + 𝑃1𝑥
2𝑃2𝑦𝑡 + 𝑃1𝑦
2𝑃2𝑧𝑡 + 𝑃1𝑧

]

𝑡,𝑖

 ( 34 ) 

The matching algorithm from the forward-predictive tracking is applied for other tracks j, but now 

includes velocity information. Again, a position-acceptance region 𝑟𝑝 applies, as does a velocity-

acceptance region 𝑟𝑣: 

�⃑�𝑡+𝑚,𝑖𝜓 = 

{
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𝑣𝑦,𝑡+𝑚,𝑖𝑃 − (𝑦𝑡+𝑚+1,𝑗 − 𝑦𝑡+𝑚,𝑗)

𝐵𝑧 (𝑣𝑧,𝑡+𝑚,𝑖𝑃 − (𝑧𝑡+𝑚+1,𝑗 − 𝑧𝑡+𝑚,𝑗))
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< 𝑟𝑣
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 ( 35 ) 
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Typically, this algorithm is applied for m=1…5 with t defined by the end of the track. The 

algorithm thus has the potential to link track i to adjacent tracks multiple times and this is harnessed 

to increase the confidence of the algorithm. 

4.3.3 Track Smoothing 

Track smoothing is performed as a final step. This is a key feature of this tracking algorithm, 

implemented to reduce the level of noise inherent in the particle location measurements. Tracks of 

l ≥ 5 from the linkage algorithm have the smoothing algorithm applied and any smaller tracks are 

too small to smooth and are eliminated. The smoothing algorithm looks at each time-step within 

the track and this can include time-steps for which a particle was not found, but for which a gap 

was bridged with the linking algorithm. The smoothing algorithm fits a second-order polynomial 

to all time-steps t in the track using all valid points within m time-steps �⃑�𝑡−𝑚,𝑖. . �⃑�𝑡+𝑚,𝑖 in the track, 

determining the position of the point at t using the polynomials: 

�⃑�𝑡,𝑖𝑃 = [

𝑃2𝑥𝑡
2 + 𝑃1𝑥𝑡 + 𝑃0𝑥

𝑃2𝑦𝑡
2 + 𝑃1𝑦𝑡 + 𝑃0𝑦

𝑃2𝑧𝑡
2 + 𝑃1𝑧𝑡 + 𝑃0𝑧

]

𝑡,𝑖

 ( 36 ) 

The velocity and acceleration of the point can also be determined by taking the derivatives of the 

polynomials: 

�⃑�𝑡,𝑖𝑃 = [

2𝑃2𝑥𝑡 + 𝑃1𝑥
2𝑃2𝑦𝑡 + 𝑃1𝑦
2𝑃2𝑧𝑡 + 𝑃1𝑧

]

𝑡,𝑖

 ( 37 ) 

�⃑�𝑡,𝑖𝑃 = [

2𝑃2𝑥
2𝑃2𝑦
2𝑃2𝑧

]

𝑡,𝑖

 ( 38 ) 

This algorithm temporally filters the path taken by a single particle, which can effectively average 

the errors associated with the position of the particle. This is especially important in the out-of-

plane direction. An example of this algorithm applied to a single track is shown in Figure 26. This 

figure shows that the tracking performance is stronger in-plane than out-of-plane due to the lower 

level of uncertainty in determining the particle position. 
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(a) 

 

(b) 

Figure 26 - Unfiltered points (blue) and filtered path (red) associated with a single, 112-frame 
long particle track. (a) shows the track in the x-y plane, and (b) shows the track in the x-z 

plane. 
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CHAPTER 5 EXPERIMENTAL MEASUREMENT OF UNCERTAINTY 

In order to analyze the ETC technique’s performance when being used to track particles, an 

experiment was designed and performed that aimed to evaluate the performance of the technique 

when observing known, constant velocities. The following will discuss the design of this 

experiment and the results of applying the ETC technique. This allowed an experimental 

evaluation of the uncertainty associated with the technique’s use in the optical configuration of the 

experiment to be conducted. 

5.1 Experimental setup and data acquisition 

The focused plenoptic camera used in this study was a commercially available f/# 2.4 camera (R5, 

Raytrix GmbH) with an 85 mm main lens. This is a multi-focus plenoptic camera (MFPC); the 

micro-lens array has lenses of 3 different focal lengths. It is capable of acquiring 2048 by 2048 

pixel images at frame rates up to 180 fps. The camera was used to image a calibration target with 

white dots on a black background in a grid as shown in Figure 27. The dots were spaced apart 

5.927 mm and have a diameter-to-spacing ratio of 1/20. These dimensions were selected to ensure 

that 100 dots were visible at the far-field range of the camera, 64 dots were visible at the near-field 

range, and that the size of the dots was appropriate for the particle location algorithm through all 

ranges of depth. The target was generated using a 1200 DPI laser printer (M401dne, HP), then 

laminated, glued to a piece of flat glass, and fixed to a motorized traverse (500 mm BiSlide, 

Velmax Inc.). The traverse allows for controlled movements in steps as small as 5 micron. 

Data is then generated by moving the traverse parallel to the camera for 100 steps of 0.5mm, 

followed by a 0.1 mm displacement towards the camera, followed by 99 further iterations of the 

same process. The traverse is held fixed at each position and an image of the target is taken. This 

generated a total of 10,200 data points which can be processed to either measure the in-plane 

displacements at each depth location, or to measure the out-of-plane displacements independently. 

101 time-series containing 101 images can be constructed for both the in-plane and out-of-plane 

motion cases, for a total of 202 data sets. At least 64 dots should always be visible on the calibration 

target, which ensures that over 6,000 observations can be made at each depth. 
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Figure 27 - Experimental setup of the fixed-field test 

A pair of raw sample images of the target taken with the plenoptic camera are given in Figure 28. 

These have been cropped to show only the 3 central dots in the image for clarity. As expected, the 

near-field image contains fewer, but larger, sub-images of each dot when compared to the far field 

image. 

  
(a) (b) 

Figure 28 – Raw plenoptic images of the calibration target placed at the (a) far-field and (b) 
near-field of the plenoptic camera. Brightness and contrast have been adjusted to make the 

dots easily visible. 
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5.2 Calibration 

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram 

of the residuals resultant from the least-squares determination of the micro-lens location vectors 

yields Figure 29. Percentile-based statistical analysis indicates that 95% of the data exhibit a 

residual of less than 0.133 pixels. The resultant vectors that define the positions of neighboring 

same-type lenses in this case are (40.28, -0.003) and (20.14, 34.88). 

 

Figure 29 - Histogram of the residuals of the 2D vector norm of the difference between the 
measured micro-lens locations and the gridded locations for the flat field tests. 

The physical-space calibration is performed as described in Section 3.4, using the ETC method 

described in Section 3.3 to find the target dots. The resultant calibration variables are given in 

Table 6. Figure 30 shows the detected points in red overlaid with the predictive calibration points 

in blue, for two different images of the target. The target in (a-b) was parallel to the imaging field 

of the camera, while the target in (c-d) was at an angle relative to the imaging field of the camera. 

Excellent agreement between the x and y positions is observed with 95% of the residuals in  

(-0.18, 0.18) and (-0.17, 0.16) mm, respectively. The z residuals are much higher, with 95% of the 

residuals in (-0.77, 0.80) mm which is indicative of the higher uncertainty associated with finding 

the out-of-plane locations relative to the in-plane locations. This is highlighted further in the 

histograms with overlaid normal distributions as shown in Figure 31.  
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(a) (b) 

 

 

(c) (d) 

Figure 30 – Detected calibration points in red overlaid on blue grid of predicted points in the 
fixed-field test. In (a-b), the calibration target is aligned with the camera while in (c-d) the 

target is angled relative to the camera. (a) and (c) are in-plane views of the points, and (b) and 
(d) are positioned to show the angle of the target. 
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(a) 

 
(b) 

 
(c) 

Figure 31 - Histograms of flat-field test micro-lens calibration residuals in (a) x, (b) y, and (c) z 
directions, overlaid with normal distributions. 
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Table 6 - Calibration variable results for flat field tests 
TL 624.82 mm k1 5.54e-5 
B1 0.334 mm k2 5.83e-7 
B2 0.336 mm d1 4.81e-6 
B3 0.347 mm d2 1.52e-9 
x0 2.91 mm dD 3.88 
y0 1.54 mm 

5.3 Data Processing 

The processing methods discussed in Sections 3.3 and 4 are applied, producing particle tracks for 

each of the 202 time-series. Samples of the resultant raw particle tracks are shown in Figure 32a-

b, and the particle tracks after smoothing are shown in Figure 32c-d. These figures show the vector 

displacements of the dots through 5 consecutive frames. The level of noise in the out-of-plane 

direction is apparent in Figure 32a, where the target was moved parallel to the camera, through the 

simple observation that the tracks produced have significant random deviations in the z-direction 

when only y-directional motion was expected. Moving the particles directly towards the camera as 

in Figure 32b produces a fairly consistent lack of movement in the x and y directions, but some 

level of random variation in the z-direction where consistent motion would be expected. 

Application of the smoothing algorithm appears to have significantly reduced the random 

variations, with smooth tracks being observed in both Figure 32c and d. These images also appear 

to indicate that the approach is more prone to errors near the edges of the image, as evidenced by 

a vector that deviates sharply in the z-direction in the smoothed set, observable in Figure 32c near 

(20,20). This is likely caused by there being fewer micro-lenses available to image the particle 

near the edge of the sensor. Curvature of the paths near the edge of the field of view is also notable, 

which is likely a result of there being no more tracks beyond the edge of the field of view combined 

with these edge effects producing poor estimations that are influencing the fitted tracks. 
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(a) (b) 

  
(c) (d) 

Figure 32 –Tracking results, showing vectors corresponding to 10 movements for each dot on 
the target. (a)-(b) show raw tracks for in-plane and out-of-plane motion, respectively. (c)-(d) 

show the same tracks after applying the smoothing algorithm. 
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5.4 Evaluation 

To reinforce some of the visual observations that can be made regarding the plots of the particle 

tracks, histograms were plotted for the overall data set. The first pair, given in Figure 33 and Figure 

34, show the histograms for sequential 0.5 mm in-plane y-directional movements of the traverse 

before and after smoothing. The next pair in Figure 35 and Figure 36 show the plots for sequential 

0.5 mm out-of-plane z-directional movements of the traverse. Table 7 gives the median and 95% 

confidence intervals for the measured values. In all cases, outlier removal has been conducted 

using the generalized extreme Studentized deviate test [51] in order to remove any spurious data 

points generated by incorrect found point locations and subsequent track generation. 

Table 7 - Medians and confidence intervals of in-plane displacements from fixed-field test for 
a 0.5 mm movement in the y-direction 

[mm] Unsmoothed Smoothed 

Direction Median 95% Confidence Median 95% Confidence 

x 3.11e-3 (-0.181, 0.186) 3.31e-3 (-9.21e-3,1.60e-2 ) 

y 0.464 (0.287, 0.640) 0.464 (0.450, 0.481) 

z 1.93e-3 (-4.47,4.48) 1.00e-2 (-0.332, 0.354) 

Table 7 allows for the first conclusions to be drawn on the effectiveness of the calibration. A 

displacement of 0.5 mm in the y-direction is expected based on the known motion of the traverse, 

but instead a median displacement of 0.464 mm is observed. It is most likely that this is an 

indication that the calibration method is imperfect, such that all in-plane distances have been 

under-predicted by the model. Another key observation is that the smoothing algorithm has 

reduced the confidence intervals by more than an order of magnitude in all directions. This is an 

indicator of the effectiveness of the smoothing approach at cleaning up the noise in the raw tracking 

results. Applying the smoothing method has allowed the straight tracks to be determined to within 

0.017 mm in-plane (0.034% of the horizontal FOV), and to within 0.34 mm (0.68% of the 

horizontal FOV) out-of-plane. These statistics also quantify the disparity in the uncertainty of the 

technique in-plane compared to out-of-plane, with the out-of-plane uncertainty being roughly 20 

times larger.  
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Table 8 shows similar results for the out-of-plane tracking when the calibration target is moved in 

the z-direction. Similar near order-of-magnitude reductions in uncertainty from the smoothing. 

However, these reductions are less substantial than for the in-plane case. The smoothing algorithm 

is thus expected to work best when at least some in-plane component of velocity is present. Again, 

the median z-displacement of 0.347 mm under-predicts the expected out-of-plane displacement of 

0.5 mm. Together, these errors indicate that the calibration method has likely under-predicted the 

focus distance TL. 

Table 8 - Medians and confidence intervals of out-of-plane displacements from fixed-field test 
for a 0.5 mm movement in the z-direction 

[mm] Unsmoothed Smoothed 

Direction Median Confidence Median Confidence 

x 4.90e-3 (-0.132, 0.136) 4.74e-3 (-1.13e-2,2.17e-2) 

y -4.40e-3 (-0.137, 0.126) -5.01e-3 (-2.03e-2,1.24e-2) 

z -0.281 (-4.28, 3.49) -0.347 (-0.721,0.131) 
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(a) 

 
(b) 

 
(c) 

Figure 33 – Histograms of the raw measured velocities of the target dots for the in-plane 
tracking case. Note that z plot has been scaled differently for this case only, between this and 

the next figure. This is made necessary by the massive distribution in the z-movements. 
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(a) 

 
(b) 

 
(c) 

Figure 34 – Histograms of the smoothed measured velocities of the target dots for the in-plane 
tracking case. The x, y, and z movements are directly comparable with the x and y movements 

in the previous figure. 
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(a) 

 
(b) 

 
(c) 

Figure 35 – Histograms of the raw measured velocities of the target dots for the in-plane 
tracking case. Note that z plot has been scaled differently for this case. 
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(a) 

 
(b) 

 
(c) 

Figure 36 – Histograms of the smoothed measured velocities of the target dots for the in-plane 
tracking case. Note that the z plot is scaled the same, but has been shifted horizontally. 
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An immediately apparent feature of the plots is that the distributions are non-normal. This is made 

obvious by the red lines showing a normal distribution with the same mean and standard deviation 

of the data not sharing the same trend as the histogram bars. Instead, the data has in all cases a 

larger central peak and wider tails than a standard normal distribution. This type of data could be 

consistent with two overlapping standard normal distributions, one with a lower standard deviation 

to create the large central peak, and one with a high standard deviation to create the wide tails. 

This indicates that there is some statistically significant portion of the data for which the technique 

is performing poorly in comparison to the rest of the data. Another observation that can be made 

is that the uncertainty is substantially reduced by the smoothing method. 

To determine the portion of the data for which the technique is performing poorly, 90% confidence 

intervals were generated for each of the individual data sets of the in-plane tracking case. These 

90% intervals were selected as opposed to the 95% intervals used in all other cases in this 

document to reduce any bias generated by the outliers that are not eliminated when using this 

method. These intervals are shown in Figure 37 and Figure 38 as a function of the z-distance the 

traverse moved from its starting point. Figure 37 features the data points all plotted with similar y-

axes, for direct comparison, while Figure 38 shows each set of points on its own axis to allow for 

comparison within each set. One set of three data points is plotted in each of these plots for each 

of the 101 data sets that were collected at decreasing distances to the camera and therefore 

increasing virtual depths. The red dots represent a median displacement, while the blue dots 

represent the upper and lower bounds for a 90% confidence interval for the displacement. As each 

in-plane data set was collected at a different z-location of the traverse, plotting in this way allows 

the displacements and their associated uncertainties to be compared as a function of the average 

depth of each data set.  
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RAW SMOOTHED 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 37 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of 
traverse position for the in-plane case. y-axes are scaled the same. 
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RAW SMOOTHED 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Figure 38 – Plots of the raw (a-c) and smoothed (d-f) measured displacements as a function of 
traverse position for the in-plane case. y-axes have been scaled differently to show uncertainty. 
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The main observation to be made here is that there is a large increase in the uncertainty of this 

method after the target reaches a certain z-location, ~35mm from its starting point. This is 

consistent with the reduction in resolution after a certain virtual depth discussed in [27]. Another 

interesting point is that the median y-displacements are a weak function of the traverse position. 

This is an indication that the calibration is imperfect, which warrants further investigation. 

To investigate further, the results of this method are considered from purely a particle- location 

standpoint. The median z-locations of each data set within the plane were taken and plotted against 

the depth-steps of the traverse in Figure 39. Theoretically, this relationship should be exactly 1:1 

linear, forming a 45° angle with the x and y axes if the calibration method has worked perfectly. 

This is not the case as the actual linear trend drops more steeply. This indicates that the calibration 

method has under-predicted the focus distance TL. This is consistent with the earlier observation 

that the median measured in-plane displacements were smaller than the expected in-plane 

displacements, and the weak function of z-position exhibited by the y-displacements. 

The volatility of the depths in Figure 39 between about 16 and 26 mm on the x-axis is likely caused 

by the intensity-selection algorithm from Section 3.5 having a difficult time of deciding which lens 

is the correct lens to use, compounded with the Bi values from the calibration not causing the 

virtual depths to re-project properly. This produces three different linear behaviors, all interlaced 

in the same plot. It is possible that a better calibration could align these by predicting the Bi values 

correctly. The poorly predicted Bi values are directly related to the under-prediction of TL observed 

previously. This is consistent with the three different linear progressions observed between 

traverse positions 0-16, 27-33, and 34-50. The large increase in variance observed in Figure 38 is 

consistent with the transition to the progression of the 34-50 range in Figure 39. The calculated 

median depth at the start of this range is 464.6 mm, which corresponds to a virtual depth between 

9.35 and 9.64, depending on which lens type is used. 
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Figure 39 – Median and confidence intervals of z-locations of the calibration plate as a 
function of the known relative depth locations of the plate. 

The main success of this section has been the smoothing method implemented, which managed to 

reduce the uncertainty in the displacements of the tracked particles by more than an order of 

magnitude. Other results indicate that the ETC method from Sections 3.3 and 3.5 produces higher 

variances in all particle location data after the targeted particles pass beyond a virtual depth of 

9.35. Care should be taken to avoid exceeding this limit in future experiments when using the R5 

f/# 2.4 camera. A key point to note here is that this can be algorithmically enforced by disallowing 

particles that are found beyond a certain virtual depth within the location step. The other conclusion 

that has been reached is that the calibration method has not been able to perfectly predict the optical 

system’s parameters, mostly related to an under-prediction of TL. It is possible that this is also 

related to the high uncertainties associated with finding the depth-locations of individual points on 

the target, which is likely caused by uncertainties in the 2D particle location method. This 

experiment was not undertaken for the refocusing method discussed in Section 3.2, as preliminary 

investigations [52], [53] had indicated that this technique had a high uncertainty. In retrospect, this 

uncertainty may be comparable to that observed with the ETC technique. Returning to the 

refocusing technique and repeating this experiment to allow for a direct comparison is a 

recommended follow-up to this investigation. 



67 

 

CHAPTER 6 APPLICATION OF THE ETC METHOD: THE RISING 

OIL DROP EXPERIMENT 

In order to test the approach in a scenario in which a typical tomographic imaging setup would be 

unviable, a micro-scale flow scenario was desired. The flow of oil droplets through micro-scale 

slots is of particular interest to the sponsoring company (RGL Reservoir Management) and has 

been under study by other researchers using two-dimensional techniques. Expanding the 

knowledge of these flows to include three-dimensional flow patterns may be useful, as the 

surrounding fluid is capable of flowing in front of or behind the droplet relative to the camera. An 

experiment suited to the plenoptic camera was thus developed for study. 

6.1 Experimental setup and data acquisition 

The rising oil drop experiment is conducted by filling an acrylic flow channel with glycerol and 

then introducing a droplet of vegetable oil into the bottom of the channel using a glass syringe, as 

shown in Figure 40. The oil droplet, being less dense than the glycerol, will then float up through 

the channel. These two fluids have similar refractive indices, so the refraction at the interface 

between the two is minimal. The flow section observed by the camera, shown in Figure 41, has a 

6×6 mm cross section. The camera used in this case is the f/# 26 (R5, Raytrix GmbH) with a 105 

mm main lens. A sample image obtained as the droplet passed in front of the camera is shown in 

Figure 42. Due to the collection method, which precluded the use of commercial software (RxLive, 

Raytrix GmbH) the data collected is specific to the ETC method. Illumination is achieved through 

forward-scattering a diffuse LED light source (H528S, Amaran) of 40-micron particles 

(Dynoseeds TS 40, Microbeads®) uniformly distributed in the two fluids. Here, the individual 

particle-images are visible and a circle has been overlaid to show the oil droplet. The edges of the 

oil droplet are otherwise indistinguishable due to the refractive index matching of the two fluids. 

This also eliminates refraction through the droplet, allowing the inner flow structures of the droplet 

to be seen. In this case, due to the low velocities and high viscosities involved, little to no motion 

within the droplet is expected within the imaged range of motion. 
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Figure 40 – Experimental setup of rising oil drop experiment. 

 

Figure 41 – Flow channel used for rising droplet experiment. 
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Figure 42 – Raw sample image from the oil drop experiment. Oil droplet is given by the red 
circle. Refractive index matching makes it all but indistinguishable from the surrounding fluid. 
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6.2 Calibration 

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram 

of the residuals resultant from the least-squares determination of the micro-lens location vectors 

yields Figure 43. Percentile-based statistical analysis indicates that 95% of the data exhibit a 

residual of less than 0.38 pixels. The resultant vectors that define the positions of neighboring 

same-type lenses in this case are (0.011, 40.73) and (35.26, 20.35). These are similar to the results 

from the other camera in Chapters 5 and 6, with slight differences that can be attributed to the 

differences in the micro-lens locations between the two plenoptic cameras and the quality of the 

obtained white images. 

 

Figure 43 - Histogram of the residuals of the 2D vector norm of the difference between the 
measured micro-lens locations and the gridded locations for the rising oil drop experiment. 

To perform the metric calibration, a target was created from a 5 cm square of paper upon which a 

layer of black ink was laid down using a laser printer (M401dne, HP). A laser cutter (VLS3.60, 

VersaLaser®) was then used to remove the ink to create dots as small as the focal point of the laser 

beam, separated by 0.677 mm. This target was laminated and glued to a piece of acrylic. To place 

the target within the imaging volume, a ‘calibration box’ (see Figure 44) was designed with the 

same mounting configuration and front window position as the flow channel, but with ample space 

to fit the target. This box is designed to have a 6x6 mm frontal acrylic window with the same 

optical properties as the flow channel, and a mount identical to the flow channel to allow for simple 

positioning. The target can be placed inside at any angle up to 30° relative to the camera. The 

calibration box was filled with glycerol to ensure it had the same optical properties as the flow 

channel, and calibration images were obtained. The process described in section 3.4 was 

implemented using these calibration images. 
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(a) (b) 

Figure 44 – Use of the calibration box. A 6mm deep imaging section behind a small 6x6 mm 
piece of acrylic was created by opposing tetrahedral walls (a), allowing ample space for the 

calibration target to be placed. Imaging is then conducted through the window (b). 

The resultant calibration variables are given in Table 9. Figure 45 shows the detected points in red 

overlaid with the predictive calibration points in blue. The target in (a-b) was parallel to the 

imaging field of the camera, while the target in (c-d) was at an angle relative to the imaging field 

of the camera. The x and y positions are observed to have 95% of the residuals in (-0.040, 0.043) 

and (-0.043, 0.044) mm, respectively. Contrary to the previous macroscale calibration, the z 

residuals are similar, with 95% of the residuals in (-0.043, 0.038) mm. Relative to the overall field 

of view, the in-plane residuals of this calibration are ~3 times as large as the in-plane residuals for 

the flat-field experiment, but the out-of-plane residuals are comparatively about half as large. This 

is an effect of the virtual depth range being less spread out in this case than in the previous case; 

the overall field of view here is 6×6×2 mm, a 3:1 ratio of in-plane to out-of-plane range compared 

to the 1:1 ratio in the previous experiment. The full depth of the channel could not be imaged, but 

the resolution within the available range is higher. Histograms with overlaid normal distributions 

for the residuals of the calibration points are given in Figure 46. 

Table 9 - Calibration variable results for micro-scale tests 
TL 485.69 mm k1 5.94e-5 
B1 2.02 mm k2 -1.72e-6 
B2 2.00 mm d1 1.60e-4 
B3 1.98 mm d2 5.64e-5 
x0 -1.15e-3 mm dD 1.82e-3 
y0 5.09e-4 mm 
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(a) (b) 

 

 

(c) (d) 

Figure 45 – Detected calibration points for the micro-scale calibration in red overlaid on blue 
grid of predicted points. In (a-b), the calibration target is aligned with the camera while in (c-d) 
the target is angled relative to the camera. (a) and (c) are in-plane views of the points, and (b) 

and (d) are positioned to show the angle of the target. 
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(a) 

  
(b) 

 
(c) 

Figure 46 - Histograms of microscale calibration residuals in (a) x, (b) y, and (c) z directions, 
overlaid with normal distributions. 
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6.3 Data Processing 

The ETC approach from Sections 3.3 and 3.5 was applied to the collected data. The resultant 

particle tracks are shown in Figure 47 and Figure 48. In this series of figures the oil droplet has the 

largest vectors, while the glycerol flowing around the oil can be seen to recirculate around the 

droplet as it rises, moving from right to left (gravity in +x direction). Walls are present just outside 

of the field of view, and the droplet is closer to the –y side of the channel leading to lower velocities 

in that region. In the z direction, only about the back 1/3 of the droplet is visible as the depth-of-

field does not cover the whole 6mm depth of the channel. The recirculation regions behind and to 

either side of the droplet are most clearly visible in the smoothed-vector images. The vectors in 

these images can be difficult to make sense of in stationary images. An alternate method of display 

which cycles through groups of frames to show the motion of all particles in three dimensions is 

preferred. 

Observing Figure 47, it is clear that a significant level of noise is present in the measured out-of-

plane motion, producing spurious vectors and making longer tracks vary randomly in the z-

direction. This is consistent with the results from Chapter 5. Again, these random variations are a 

direct result of the level of uncertainty in the determination of the z-locations of the particles. This 

is likely to stem from the 2D particle locations in the micro-lenses. The smoothing method, as 

applied in Figure 48, greatly reduces the noise but the tracks are still affected. Both figures make 

it apparent that the in-plane performance of the technique is generally strong and able to 

reconstruct the expected motion of the flow field to produce coherent particle tracks. The 

recirculation regions to either side of the droplet are reasonably reconstructed in-plane, although 

the out-of-plane motion is only partially captured. 

 

  



75 

 

  
(a): frame 70 (d) : frame 70 

  
(b) : frame 100 (e) : frame 100 

  
(c) : frame 130 (f) : frame 130 

Figure 47 – Raw velocity vectors resultant from the rising droplet test. (a-c) show the vectors 
viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 
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(a): frame 70 (d) frame 70 

  
(b) frame 100 (e) frame 100 

  
(c) frame 130 (f) frame 130 

Figure 48 – Smoothed velocity vectors resultant from the rising droplet test. (a-c) show the 
vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 
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6.4 Conclusion 

Based on the results of the oil droplet experiment, the ETC method is capable of performing in-

plane tracking reasonably well at the microscale. The high level of uncertainty in the depth-

location algorithm has affected performance in the out-of-plane direction, producing spurious 

tracks that are mostly, but not entirely, removed by the smoothing method. The uncertainty in the 

depth locations found by this method is likely produced through amplification of the uncertainty 

in the 2D location method by the triangulation approach. This indicates that the error filtering 

discussed in section 3.3.6 was insufficient in removing incorrect 2D centroids, or that the 2D 

centroid method has too much associated uncertainty to allow for the triangulation method to be 

effective. The present hypothesis is that the edges of the micro-lenses partially cut off the particle-

images, shifting the 2D centroids in a consistent way that the error filtering method ignores. 

Improving the 2D particle location method may be necessary to improve the ETC approach.  
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CHAPTER 7 COMPARISION OF THE REFOCUS AND ETC 

METHODS: THE VORTEX EXPERIMENT 

To investigate and compare the performance of both the ETC technique and the refocusing method, 

a reasonably well-known, simple three-dimensional fluid flow was desired. Ring vortices, also 

known as toroidal vortices, were selected for their simplicity and three-dimensional nature with 

reasonable axial symmetry. A full discussion of the formation and behavior of toroidal vortices 

can be found in [54]. The expected flow in a ring vortex is a central core surrounded by a vortex 

that is axially symmetric about the core. 

7.1 Experimental setup and data acquisition 

The experimental setup used for the vortex experiment is shown in Figure 49. The f/# 2.4 (R5, 

Raytrix GmbH) camera was used with an 85 mm main lens to perform a fluid flow experiment 

involving the imaging of a simple toroidal vortex. The vortex was generated by forcing fluid from 

a 25mm syringe, cut off to act as a simple piston-cylinder periodically driving fluid into a 

stationary reservoir. The motion of the syringe was controlled using a slider-crank assembly 

connected to a computer controlled stepper motor (CPM-MCVC-34415-RN, Teknic Inc.). The 

fluid was seeded with 0.5-0.6 mm polystyrene spheres. Pure sodium chloride was added to make 

the particles neutrally buoyant. Illumination was achieved by using a laser (LRS-0532-PF, 

Laserglow Tech.) which was diffused into a volume-illuminating beam using a series of spherical 

lenses and mirrors. The camera lens was manipulated to achieve a roughly cubic 60×60×60 mm 

imaging volume. A sample raw image collected using this setup is shown in Figure 50. A key point 

to note here is that, compared to the previous study in Chapter 6, the particle-images here are 

significantly larger (~twice the radius). 
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Figure 49 – Experimental setup of vortex generator. 

 

Figure 50 – Partial raw sample image from the vortex tank experiment 
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7.2 Calibration 

The micro-lens location approach discussed in Section 3.3.1 was applied first. Taking a histogram 

of the residuals resultant from the least-squares determination of the micro-lens location vectors 

yields Figure 51. Percentile-based statistical analysis indicates that 95% of the data exhibit a 

residual of less than 0.145 pixels. The resultant vectors that define the positions of neighboring 

same-type lenses in this case are (40.28, -0.003) and (20.14, 34.88). Note that the vectors are 

identical to the test from Chapter 5, which is as expected because this is the same camera as in that 

test. 

 

Figure 51 - Histogram of the residuals of the 2D vector norm of the difference between the 
measured micro-lens locations and the gridded locations for the vortex tank test. 

The calibration from section 3.4 in this case was performed within the water tank prior to seeding 

the water with particles. This was to preserve the refractive behavior of the glass-water interface 

such that it would be captured by the calibration. The resultant calibration variables for the ETC 

approach are given in Table 10. Figure 52 shows the detected points in red overlaid with the 

predictive calibration points in blue. Here, Figure 52(a-b) are the resultant images for one position 

of the calibration target, viewed in the x-y plane and from a viewpoint which shows the angle at 
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which the target has been placed. (c-d) are similar, but for an alternate target position. Excellent 

agreement between the x and y positions is observed with 95% of the residuals in (-0.27, 0.26) and 

(-0.26, 0.25) mm, respectively. These are marginally worse than in the first test, likely due to the 

air-glass and glass-water interface of the tank not being fully accounted for by the calibration 

method. The z residuals are again much higher, with 95% of the residuals in (-1.64, 1.48) mm 

which is indicative of the higher uncertainty associated with finding the out-of-plane locations 

relative to the in-plane locations. Corresponding histograms are given in Figure 53. 

Table 10 - Calibration variable results for vortex tank tests 

TL 983.30 mm k1 1.16e-5 
B1 0.388 mm k2 -8.20e-8 
B2 0.397 mm d1 1.19e-5 
B3 0.407 mm d2 7.78e-8 
x0 -9.22 mm dD 0.423 
y0 -1.07 mm 
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(a) (b) 

  
(c) (d) 

Figure 52 – Detected calibration points in red overlaid on blue grid of predicted points in the 
vortex tank test. (a-b) and (c-d) show two sample planes. 
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(a) 

 
(b) 

 
(c) 

Figure 53 - Histograms of vortex tank micro-lens calibration residuals in (a) x, (b) y, and (c) z 
directions, overlaid with normal distributions. 
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7.3 Data Processing 

Both the refocusing based approach from Section 3.2 and the ETC approach from Sections 3.3 and 

3.5 have been applied to a single sample data set collected in this experiment, using the same 

calibration approach. Sample results for the refocusing approach are shown in Figure 54 (raw) and 

Figure 55 (smoothed), and sample results for the ETC approach are shown in Figure 56 (raw) and 

Figure 57 (smoothed). The progression of the tracks through 10 frames as shown in each image 

gives a sense of the acceleration of each particle. 

The vortex can be seen to progress from left to right in these series of images in Figure 54 to Figure 

57. Some noisy elements where tracks have been made incorrectly are also present, particularily 

in the out-of-plane track sets. The smoothing approach is at least partially successful in eliminating 

these and does manage to start reconstructing the upper (+z) and lower (-z) portions of the vortex 

in Figure 55. The in-plane flow is especially well-reconstructed by the smoothing approach and 

even somewhat by the basic tracking approach, with the two counter-rotating vorticies clearly 

visible in all in-plane images. Comparing the sets of figures, the refocusing appraoch has been 

better able to reconstruct the vortex than the ETC approach. In Figure 55 the refocusing approach 

has, after smoothing, been able to partially reconstruct the out-of-plane vortices above and below 

the core of the toroid. The same cannot be said of the smoothed ETC approach in Figure 57, as too 

much out-of-plane noise is still present to be able to observe the vortices. The smoothing method 

has also been forced to eliminate more vectors in the ETC, leading to a reduced number of tracks 

that is apparent even when comparing the in-plane figures of each data set. 

The limitations of the ETC approach’s 2D particle location algorithm is likely the main problem. 

Here, the algorithm may be lacking when trying to accurately find the 2D positions of particles 

near the edges of the micro-lens-images. The inability of the ETC or the filtering approach to 

ignore these particles due to the consistency with which the edge-shifting occurs may also be an 

issue. Together, the subsequent amplification of these errors by the triangulation approach would 

lead to poor out of-plane location of the particles. The cross-correlation approach used to make the 

depth maps and refocused images appears to be more effective at producing good depth estimates, 

at least for the relatively large particle size used in this case. 



85 

 

  
(a): frame 50 (d) : frame 50 

  
(b) : frame 100 (e) : frame 100 

  
(c) : frame 150 (f) : frame 150 

Figure 54 – Raw velocity vectors of the vortex found using the refocusing method. (a-c) show 
the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 
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(a): frame 50 (d) frame 50 

  
(b) frame 100 (e) frame 100 

  
(c) frame 150 (f) frame 150 

Figure 55 – Smoothed velocity vectors of the vortex found using the refocusing method. (a-c) 
show the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 



87 

 

  
(a): frame 50 (d) : frame 50 

  
(b) : frame 100 (e) : frame 100 

  
(c) : frame 150 (f) : frame 150 

Figure 56 – Raw velocity vectors of the vortex found using the ETC method. (a-c) show the 
vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 
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(a): frame 50 (d) frame 50 

  
(b) frame 100 (e) frame 100 

  
(c) frame 150 (f) frame 150 

Figure 57 – Smoothed velocity vectors of the vortex found using the ETC method. (a-c) show 
the vectors viewed in the x-y plane, and (d-f) show the vectors viewed from the x-z plane. 
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7.4 Conclusion 

The main conclusion that can be drawn from this study is that based on qualitative observations, 

the refocusing method was better able to reconstruct the toroidal vortex than the ETC method. The 

ETC method likely had difficulties associated with its ability to correctly determine the virtual 

depths of individual particles, particularly because the particles were relatively large in this case 

which could exacerbate occlusion effects near the edges of the micro-lenses. This was likely 

further influenced by the relatively large particle-image size. As discussed in Chapters 5 and 6, the 

issues with the out-of-plane particle-location ability of the ETC method are likely to stem from the 

2D particle-location method and the failure of the filtering approach from Section 3.3.6.   
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CHAPTER 8 CONCLUSIONS 

To review, the first goal of this study was to develop a method capable of adapting existing 

commercially available software used for processing multi-focus plenoptic images to locate 

particles. This has been achieved using a developed Matlab code capable of processing the outputs 

of the commercial software and extracting the particle locations in pixel and virtual space. The 

second goal was to implement a calibration algorithm capable of converting the pixel and virtual 

locations to physical space. An existing multi-focus plenoptic camera calibration algorithm was 

adapted and implemented for the first time in Matlab. The third goal was to perform time-resolved 

three-dimensional particle tracking on the found particles. A customized approach specifically 

designed to address the shortfalls of the particle location algorithm was adapted from existing 

particle tracking algorithms and implemented in Matlab. The final goal was to develop a custom 

particle-location approach capable of extracting 3D particle locations from raw plenoptic images. 

The bulk of this goal has been completed. The developed ETC method is capable of extracting 3D 

particle locations, but results have indicated that its performance has been hindered by the 2D raw-

image particle location algorithm used. 

The results from Chapter 5 indicated that use of the R5 f/# 2.4 with the ETC method produced a 

significant increase in track variance after a virtual depth of ~9.35. These results also indicated 

that the calibration algorithm implemented can under-predict the lens focus distance TL, producing 

an incorrect scaling in the depth values and reduced in-plane observed motion. The major success 

of Chapter 5 was the performance of the smoothing algorithm, which reduced the variance of 

measured displacements by more than an order of magnitude in all directions and cases. The main 

area of work remaining in this section would be to repeat the experiment in such a way that the 

refocusing method could be tested and the results could be compared to confirm which method is 

more effective. 

The results from Chapter 6 showed that the plenoptic camera and ETC particle-location approach 

combined with the particle tracking and smoothing methods are capable of generating 3D particle 

tracks at the microscale. The tracks had good in-plane agreement with the expected flow field. The 

tracking in the out-of-plane direction was reasonable to the extent that some flow structures could 

be resolved, but was greatly affected by the level of uncertainty in the depth location approach. 
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The results from Chapter 7 indicated that when tracking macro-scale vortices, the refocusing 

method performed better than the ETC method. The refocusing method was able to correctly 

generate some of the out-of-plane structures expected to be present in the toroidal vortex studied. 

In both methods, but more notable in the ETC method, out-of-plane noise generated from incorrect 

particle tracks was present. The smoothing method was able to eliminate only some of this noise. 

The results of this investigation indicate that the uncertainty associated with the out-of-plane 

components found by the ETC 3D particle location method is too high when compared the 

refocusing method, which results in noisy particle tracks. This may mean that the uncertainties 

associated with the 2D particle centroid location method used are too high and are being amplified 

by the triangulation method used to find the 3D particle locations. This could be of particular 

significance near the edges of the micro-lens images, where the 2D centroids are affected by the 

cutoff of the particle-images.  

The major next step in improving upon this work is derived from the new understanding of the 

issues and problems associated with the developed ETC approach that have become apparent 

through the conducted studies. This step involves modifying the ETC algorithm to compare the 

locations of particles based on cross-correlation of the particle-images rather than directly 

comparing discrete 2D particle centroids, enabling comparison of particles in adjacent micro-lens-

images. This could make the ETC method better able to locate particles that are partially cut off 

by the edges of the micro-lens images in the 2D raw plenoptic images, and therefore better able to 

reconstruct their positions in 3D. 
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 PLENOPTIC SYSTEM DESIGN CODE 

The code included here was used to generate the plots of imaging range as a function of image 

distance in Figure 7 through Figure 9. It is easily adapted for any lens focal length (f) or sensor 

size (S) by changing the function-evaluation input parameters within. 

% method for solving a plenoptic system given inputs: 

% MLB - micro-lens-sensor distance (maximum) 

% selV - maximum desired virtual depth 

% outputs plots for 35, 50, 85 mm lenses 

% for more information, see Matlab solve, subs, and eval methods 

clear 

close all 

 

MLB=1.452; 

selV=7.5; 

 

syms f Bl B v Bv Tv Tl Fmax D Fmin S positive 

 

e1= 1./(Bl)+1./(Tl-Bl) == 1./f; 

e6=S./(2.*(Bl-B))==Fmax./(2.*(Tl-Bl)); 

e7=Bl+(v-2).*B==Bv; 

e8=1./Bv+1./(Tv-Bv)==1./f; 

e9=(Tl-Bl)-(Tv-Bv)==D; 

e10=S./2./(Bl-B)==Fmin./2./(Tv-Bv); 

soln=solve([e1,e6,e7,e8,e9,e10],[Tl,Tv,Bv,Fmax,Fmin,D]); 

 

solsub50.Bl=[55:.25:180]; 

solsub50.Fmax=eval(subs(soln.Fmax,{f S Bl B},{50 2048*5.5e-3 solsub50.Bl MLB})); 

solsub50.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV})); 

solsub50.D=eval(subs(soln.D,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV})); 

solsub50.Tl=eval(subs(soln.Tl,{f S Bl B v},{50 2048*5.5e-3 solsub50.Bl MLB selV})); 

 

solsub35.Bl=[38:.25:180]; 

solsub35.Fmax=eval(subs(soln.Fmax,{f S Bl B},{35 2048*5.5e-3 solsub35.Bl MLB})); 

solsub35.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV})); 

solsub35.D=eval(subs(soln.D,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV})); 

solsub35.Tl=eval(subs(soln.Tl,{f S Bl B v},{35 2048*5.5e-3 solsub35.Bl MLB selV})); 

 

solsub85.Bl=[94:.25:180]; 

solsub85.Fmax=eval(subs(soln.Fmax,{f S Bl B},{85 2048*5.5e-3 solsub85.Bl MLB})); 

solsub85.Fmin=eval(subs(soln.Fmin,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV})); 

solsub85.D=eval(subs(soln.D,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV})); 

solsub85.Tl=eval(subs(soln.Tl,{f S Bl B v},{85 2048*5.5e-3 solsub85.Bl MLB selV})); 

 

figure 

plot(solsub50.Bl,solsub50.Fmax,'--r',solsub50.Bl,solsub50.Fmin,'--b',solsub50.Bl,solsub50.D,'--

k') 

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12) 
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xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12) 

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12) 

xlim([70 90]) 

set(gca,'FontName','Times New Roman') 

set(gca,'fontsize',12) 

 

figure 

plot(solsub35.Bl,solsub35.Fmax,'-r',solsub35.Bl,solsub35.Fmin,'-b',solsub35.Bl,solsub35.D,'-k') 

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12) 

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12) 

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12) 

xlim([45 65]) 

set(gca,'FontName','Times New Roman') 

set(gca,'fontsize',12) 

 

figure 

plot(solsub85.Bl,solsub85.Fmax,'-.r',solsub85.Bl,solsub85.Fmin,'-.b',solsub85.Bl,solsub85.D,'-

.k') 

legend({'{\itF}_{MAX}','{\itF}_{MIN}','\itD'},'FontName','Times New Roman','FontSize',12) 

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12) 

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12) 

xlim([130 150]) 

set(gca,'FontName','Times New Roman') 

set(gca,'fontsize',12) 

 

figure 

plot(solsub35.Bl,solsub35.Fmax,'-r',solsub35.Bl,solsub35.Fmin,'-b',solsub35.Bl,solsub35.D,'-

k',solsub50.Bl,solsub50.Fmax,'--r',solsub50.Bl,solsub50.Fmin,'--b',solsub50.Bl,solsub50.D,'--

k',solsub85.Bl,solsub85.Fmax,'-.r',solsub85.Bl,solsub85.Fmin,'-.b',solsub85.Bl,solsub85.D,'-.k') 

legend({'{\itf}=35 mm {\itF}_{MAX}','{\itf}=35 mm {\itF}_{MIN}','{\itf}=35 mm \itD','{\itf}=50 mm 

{\itF}_{MAX}','{\itf}=50 mm {\itF}_{MIN}','{\itf}=50 mm \itD','{\itf}=85 mm 

{\itF}_{MAX}','{\itf}=85 mm {\itF}_{MIN}','{\itf}=85 mm \itD'},'FontName','Times New 

Roman','FontSize',12) 

xlabel('Lens-MLA distance [mm]','FontName','Times New Roman','FontSize',12) 

ylabel('Distance [mm]','FontName','Times New Roman','FontSize',12) 

ylim([0 150]) 

set(gca,'FontName','Times New Roman') 

set(gca,'fontsize',12) 

xlim([35,180]) 

Published with MATLAB® R2017b 
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 REFOCUSING CODE 

The Matlab codes for the refocusing method are included here. The functions bpass, pkfnd, and 

cntrd are available from [45]. All other functions are available in Matlab libraries, or have been 

included here. The structure of the code is given in the chart below. The red and green blocks are 

the tracking and tracking auxiliary methods common between this code and the ETC code. These 

will be included in Appendix E. The required inputs for this code are the refocused images and 

depth maps from the commercial software package. Also needed is a completed optical system 

calibration, the code for which is given in Appendix D. 

 

Figure B1 – Flow chart of the refocusing code 
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 Wrapper function: A_RUN_JH_2f_PTV_Multi 

The following code serves as a ‘wrapper’, running all other functions in the refocusing code in 

loops as needed, while ensuring that all inputs and outputs reach the correct locations, and also 

saving the results. It is set up to allow the inputs to be included either in the first section of the 

code, or in the function when called. 

function A_RUN_JH_2f_PTV_Multi(Iloc,imNos,imFmt,path,CalLoc,smoothstrength,settings,display) 

if nargin < 7 || length(settings)~=11 

    % Default Settings 

    % centroid detection (units of pixels) 

    inversion = 0; 

    pkthresh = 20; 

    psize = 9; % should be odd 

    noisescale = 3; 

    noisethresh = 0; 

 

    % depth detection (for later) 

    drt = 8; % required number of depth estimations to keep a point 

 

    % particle tracking (units of mm) 

    search = 2; 

    neighbor = 20; 

    quasi = .3; 

    zdt = 0.05; 

 

    % particle prediction 

    range = 1; 

    fp=5; 

 

    % Track Rejection 

    art = 2; % acceleration rejection threshold in mm/frame^2 

    zaf = .05; % z-amplification factor, used to reduce z-direction components 

 

    % linkage 

    lzdt=0.05; 

 

    % Track Smoothing 

    % number of frames to use on either side of particle when smoothing 

    % (depends on movement/frame >> more movement, less smoothing). 

    % Generally want at least 5 and not more than 20. 

    smoothstrength=16; 

 

    settings = [pkthresh psize noisescale noisethresh inversion drt search neighbor quasi range 

zdt]; 

 

    display = 0; 

else 
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    pkthresh = settings(1); 

    psize = settings(2); 

    noisescale = settings(3); 

    noisethresh = settings(4); 

    inversion = settings(5); 

    drt = settings(6); 

    search = settings(7); 

    neighbor = settings(8); 

    quasi = settings(9); 

    range = settings(10); 

    zdt = settings(11); 

end 

 

close all 

 

% initializations 

minx=0; 

miny=0; 

minz=0; 

maxx=0; 

maxy=0; 

maxz=0; 

nlostpts=0; 

 

% control to skip initial tracking 

 

% DEFAULT CALIBRATION 

if nargin < 5 

    CalLoc = 'X:\01_Current_Students\Jake Hadfield\Coding\Matlab\Calibration 

Code\Calibration_170529.mat'; 

end 

 

% LOAD IMAGES 

if nargin < 4 

    path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\FixedField_172905\O1X\'; 

end 

if nargin < 3 

    Iloc = 'Image'; 

    imNos = 1024:1088; 

    imFmt = '.tiff'; 

    savedate= '1706001'; 

end 

newtracks=1; % Need to run particle-location code 

if newtracks==1 

 

% RUN ALGORITHMS 

fprintf(['Running first image pair. Completion time will be estimated soon. Current time is: ' 

datestr(now) '\n']); 

tic; 

for i=1:length(imNos)-1 

    if i==2 

        tic; 
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    end 

    Iloc1 = [Iloc '_' num2str(imNos(i),'%04i')]; 

    Iloc2 = [Iloc '_' num2str(imNos(i+1),'%04i')]; 

    if i == 1 

        [alltracks,polyhold,p1,mp,ps] = 

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display); 

        plist=[ps ones(length(ps),1)]; 

    else 

        [alltracks,polyhold,p1,mp] = 

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display,alltracks,i,polyhold,p1,mp); 

    end 

    tt=toc; 

    if i>1 

        fprintf(['Estimated completion is around ' datestr(now+tt/(i-1)*(length(imNos)-1-

i)/84600) '\n']); 

    else 

        fprintf(['Estimated completion is around ' datestr(now+tt/1.8*(length(imNos)-2)/84600) 

'\n']); 

    end 

    [lp1,~]=size(p1); 

    plist=[plist; [p1 ones(lp1,1)*(i+1)]]; 

end 

 

fprintf(['Actual completion time was: ' datestr(now) '\n']); 

 

% eliminate remaining predicted points 

alltracks(alltracks(:,6)==0,:)=[]; 

save([path 'PList_' savedate '_' Iloc '.mat'],'plist') 

save([path 'AllTracks_' savedate '_' Iloc '.mat'],'alltracks') 

else 

    load([path 'AllTracks_170324_' Iloc '.mat']) 

    mp=[]; 

end 

% get track stats 

JH_TrackStats(alltracks) 

 

% denoise tracks 

lostpts=double.empty(0,5); 

while ~isempty(nlostpts) 

    [filttracks,nlostpts,~]=JH_MT_TrackBreak(alltracks,art,zaf); 

    alltracks=filttracks; 

    lostpts=[lostpts;nlostpts]; 

end 

nmp=lostpts(:,[1:3,5]); 

save([path 'BreakTracks_' savedate '_' Iloc '.mat'],'filttracks') 

% resort tracks 

[filttracks,misspts]=JH_resortTracks(filttracks); 

 

% get track stats 

JH_TrackStats(filttracks) 

 

mp=sortrows([mp;nmp;misspts],4); 
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save([path 'FilTracks_' savedate '_' Iloc '.mat'],'filttracks') 

save([path 'MissPts_' savedate '_' Iloc '.mat'],'mp') 

 

linkcount=1; 

while linkcount~=0 

% link tracks 

[linktracks,linkcount]=JH_LinkTracks(filttracks,range,lzdt,fp); 

filttracks=linktracks; 

% resort tracks 

[linktracks,~]=JH_resortTracks(linktracks); 

end 

% get track stats 

JH_TrackStats(linktracks) 

 

% find longest linked track 

long=1; 

lc=1; 

for i=1:max(linktracks(:,4)) 

    nlc=sum(linktracks(:,4)==i); 

    if nlc>lc 

        long=i; 

        lc=nlc; 

    end 

end 

 

link=linktracks(linktracks(:,4)==long,:); 

 

% smoothing algorithm 

smoothtracks = JH_SmoothTracks(linktracks,smoothstrength); 

 

smooth=smoothtracks(smoothtracks(:,4)==long,:); 

 

% get track stats 

JH_TrackStats(smoothtracks) 

 

% % find domain limits 

% minx=min(alltracks(:,1)); 

% miny=min(alltracks(:,2)); 

% minz=min(alltracks(:,3)); 

% maxx=max(alltracks(:,1)); 

% maxy=max(alltracks(:,2)); 

% maxz=max(alltracks(:,3)); 

% % save data 

% save([path 'Limits_170111_' Iloc '.mat'],'minx','miny','minz','maxx','maxy','maxz') 

save([path 'LinkTracks_' savedate '_' Iloc '.mat'],'linktracks') 

save([path 'SmoothTracks_' savedate '_' Iloc '.mat'],'smoothtracks') 

save([path 'SLink_' savedate '_' Iloc '.mat'],'link') 

save([path 'SSmooth_' savedate '_' Iloc '.mat'],'smooth') 

JH_TrackToQuiv(path,['AllTracks_' savedate '_' Iloc '.mat']); 

JH_TrackToQuiv(path,['SmoothTracks_' savedate '_' Iloc '.mat']); 
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 Location and Tracking: JH_2f_PTV_Depthdata 

The following code is run for each image in the series. It is responsible for 3D location of the 

particles, and then the initial tracking after the particles in each frame have been located. 

function [alltracks,polyhold,p2,mp,ps] = 

JH_2f_PTV_Depthdata(Iloc1,Iloc2,imFmt,path,CalLoc,settings,display,alltracks,i,polyhold,p1,mp) 

if nargin < 8 

    alltracks = []; 

end 

if nargin < 9 

    i = 1; 

end 

if nargin < 10 

    polyhold.pno=[]; 

    polyhold.polyx=[]; 

    polyhold.polyy=[]; 

    polyhold.polyz=[]; 

    polyhold.mux=[]; 

    polyhold.muy=[]; 

    polyhold.muz=[]; 

end 

if nargin < 12 

    mp=[]; 

end 

if nargin < 6 || length(settings)~=11 

    % Default Settings 

    % centroid detection (units of pixels) 

    inversion = 0; 

    pkthresh = 50; 

    psize = 9; % should be odd 

    noisescale = 0; 

    noisethresh = 20; 

 

    % depth detection (for later) 

    drt = 4; % required number of depth estimations to keep a point 

 

    % particle tracking (units of mm) 

    search = .5; 

    neighbor = 3; 

    quasi = 0.2; 

 

    % particle prediction 

    range = 0.2; 

else 

    pkthresh = settings(1); 

    psize = settings(2); 

http://www.mathworks.com/products/matlab
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    noisescale = settings(3); 

    noisethresh = settings(4); 

    inversion = settings(5); 

    drt = settings(6); 

    search = settings(7); 

    neighbor = settings(8); 

    quasi = settings(9); 

    range = settings(10); 

    zdt = settings(11); 

end 

 

close all 

 

% DEFAULT CALIBRATION 

if nargin < 5 

    CalLoc = '\\nobes-nas01\NobesGroup\01_Current_Students\jhadfiel\Coding\Matlab\Calibration 

Code\Calibration_T1'; 

end 

 

% LOAD IMAGES 

if nargin < 4 

    path = 'C:\Users\jhadfiel\Desktop\TestImages\ParticleArc\Recirculation\'; 

end 

if nargin < 3 

    Iloc1 = 'SmallTube_80fps_3_0100'; 

    Iloc2 = 'SmallTube_80fps_3_0101'; 

    imFmt = '.tiff'; 

end 

 

% FIND PARTICLES 

p2=JH_ParticleFinder(Iloc2,imFmt,path,CalLoc,[pkthresh,psize,noisescale,noisethresh,inversion,drt

],display); 

if nargin < 11 

    

p1=JH_ParticleFinder(Iloc1,imFmt,path,CalLoc,[pkthresh,psize,noisescale,noisethresh,inversion,drt

],display); 

end 

 

ps=p1; 

 

if display == 2 

    figure 

    scatter3(p1(:,1),p1(:,2),p1(:,3),.5,'b'); 

    hold on 

    scatter3(p2(:,1),p2(:,2),p2(:,3),.5,'r'); 

    uiwait(gcf) 

end 

 

% TRACK 

if i>=3 

    fprintf('Attempting forward-predictive tracking on %i frame %i and %i frame %i 

particles...\n',sum(~isnan(p2(:,3))),i,sum(~isnan(p2(:,3))),i+1); 
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    [p1,p2,alltracks,polyhold]=JH_MT_Fit_Predict(p1,p2,alltracks,i,range,zdt,polyhold,search); 

end 

 

%fprintf('Comparing %i particles in frame 1 to %i particles in frame 

2\n',sum(~isnan(p1(:,3))),sum(~isnan(p2(:,3)))); 

 

fprintf('Attempting two-frame tracking on remaining %i frame %i and %i frame %i 

particles...\n',sum(~isnan(p1(:,3))),i,sum(~isnan(p2(:,3))),i+1); 

 

tracks = DH_track_v3(p1,p2,search,neighbor,quasi,zdt); 

 

if ~isempty(tracks) 

    nmp=p2(~ismember(p2,tracks(:,1:3),'rows'),:); 

    [lnmp,~]=size(nmp); 

    mp=[mp;nmp ones(lnmp,1)*i]; 

    alltracks=JH_MT_Associate(tracks,alltracks,i); 

end 

Published with MATLAB® R2015b 

 Particle location function: JH_ParticleFinder 

The following code locates each particle in 3D based on input refocused images and depth maps. 

function particles=JH_ParticleFinder(imID,imFmt,path,CalLoc,settings,display) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Finds particles in 3D from light field focused image + depth data. 

% Expects one focused image and 3 depth images. 

% Inputs: 

% imID - Image file name (eg, Image_0001) 

% imFmt - Image file extension (eg, .png) 

% path - Image file location 

% CalLoc - Calibration file location 

% Display - how much display to do (integer, 0 to 2) 

% Outputs: 

% particles - 3D particle field, in the same units as the calibration file 

 

% Settings 

if length(settings)~=6 

    % centroid detection properties, in pixels 

    pkthresh = 30; % minimum acceptable peak threshold 

    psize = 31; % should be odd, slightly larger than particles' pixel size 

    noisescale = 5; % noise scale filter 

    noisethresh = 10; % low-pass filter 

    inversion = 1; % wether or not to invert image 

 

    % depth detection values, in pixels 

    drt = 7; % required number of depth estimations to keep a point 

else 

http://www.mathworks.com/products/matlab
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    pkthresh = settings(1); 

    psize = settings(2); 

    noisescale = settings(3); 

    noisethresh = settings(4); 

    inversion = settings(5); 

    drt = settings(6); 

end 

 

% load calibration 

load(CalLoc,'allvars') 

caldata = allvars(1:12); 

 

% Get image in memory 

focIm = imread([path imID '_Focus_Depth'  imFmt]); 

% invert if required 

if inversion 

    focIm=double(255-focIm); 

end 

 

%fprintf('Performing 2d centroid location...\n') 

% 2D Centroid Location 

% FILTER IMAGE 

% IMAGE : Threshold : size of particle (longer) 

binIm = bpass(focIm,noisescale,psize*2,noisethresh); 

 

% FIND PARTICLES 

% IMAGE : Image Threshold : size of particle (longer) 

pk = pkfnd(binIm,pkthresh,psize); 

 

% Do again to sub-pixel 

cnt = cntrd(double(focIm),pk,psize); 

 

if display == 2 

    figure(1) 

    imshow(focIm) 

    hold on 

    scatter(cnt(:,1),cnt(:,2),'+r'); 

    hold off 

    drawnow 

end 

 

%fprintf('Adding 3d location data...\n'); 

% 3D Centroid Location 

% Add in the depth data 

for j=1:3 

    switch j 

        case 1 

            depthIm = imread([path imID '_Depth_Far' imFmt]); 

        case 2 

            depthIm = imread([path imID '_Depth_Mid' imFmt]); 

        case 3 

            depthIm = imread([path imID '_Depth_Near' imFmt]); 
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    end 

    [cntz(:,j),count(:,j),overs(j)]=JH_AssociateDepthDataV3(cnt,depthIm,1.25*psize,drt,display >= 

2,j+1); 

    %fprintf('Depth calculation %i complete.\n',j); 

end 

%fprintf('3D centroid location complete, with %i overlaps detected.\n',sum(overs)/3); 

 

cnts = [cnt(:,1:2),cntz(:,:)]; 

 

if display >2 

    figure 

    scatter3(cnts(:,1),cnts(:,2),cnts(:,3),0.5); 

    uiwait(gcf) 

end 

 

%fprintf('Performing metric conversion...\n') 

% Metric Conversion 

particles = JH_PhysConvert(cnts,caldata,count); 

Published with MATLAB® R2015b 

 Depth location function: JH_AssociateDepthDataV3 

The following code extracts the depth information for each 2D particle location found in the 

refocused images from the depth maps, and associates the extracted depth with each 2D location. 

function [cntz,count,overs]=JH_AssociateDepthDataV3(cnt,dm,prad,drt,vis,fig) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Associates virtual depths with 2D image centroids for a calibration 

% target. Deals with overlapping particles. 

% Inputs: 

% cnt    - centroids from cntrd in (x,y,I,rg) format 

% dm     - image of depth map. Must be same size as full focus image 

% psize  - approximate size of a dot 

% border - border around the dot that will contain all depth values for 

%          that dot 

% 

% Outputs: 

% cnt    - centroids from cntrd in (x,y,z,I,rg,) format 

 

%masking stuff 

xx=repmat(1:1:length(dm),length(dm),1); 

yy=repmat(1:1:length(dm),length(dm),1)'; 

 

% First depth map 

% plot for testing 

if vis == 1 

    figure(fig) 

    vdeptharray=reshape(typecast(reshape(uint32(dm),[],1),'single'),1024,1024); 

http://www.mathworks.com/products/matlab
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    imshow(vdeptharray) 

    colormap jet 

    % min(min(vdeptharray(vdeptharray>0))) is a bit bigger than the 

    % theoretical min of 2 

    caxis([2 8]); 

    cm=colormap; 

    cm(1,:)=[0 0 0]; 

    colormap(cm); 

    colorbar 

    hold on 

    drawnow 

end 

% add a column to cnt to store depths 

cnt(:,5)=cnt(:,4); 

cnt(:,4)=cnt(:,3); 

cnt(:,3)=0; 

cntz=zeros(length(cnt),1); 

count = zeros(length(cnt),1); 

overs = 0; 

%pp=parpool('local',4); 

for i=1:length(cnt) 

%     str=sprintf('Performing depth calculation on particle %i of %i',i,length(cnt)); 

%     if i>2 

%         [char(8)*ones(1,lStr+10),str] 

%     elseif i==2 

%         [char(8)*ones(1,lStr+9),str] 

%     else 

%         disp(str) 

%     end 

%     lStr = length(str); 

    % get distance to other centroids 

 

    if vis == 1 

        figure(fig) 

        d = prad*2; 

        px = cnt(i,1)-prad; 

        py = cnt(i,2)-prad; 

        rectangle('Position',[px py d d],'Curvature',[1,1],'EdgeColor','g'); 

        drawnow 

    end 

 

    % grab subset of depth map values from around centroid 

    subset = dm(sqrt((xx-cnt(i,1)).^2+(yy-cnt(i,2)).^2)<=prad); 

    % re-orient into single column of nonzero values 

    alldepths=subset(subset>0); 

    % convert to virtual depth 

    vdepths = typecast(uint32(alldepths),'single'); 

    vdepths = vdepths(vdepths>2); 

    % get standard deviation 

    vdsd=std(vdepths); 

    vdm=median(vdepths); 

    % run a loop to eliminate outliers 
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    outliers=1; 

    while outliers 

        nvdepths=vdepths(abs(vdepths-vdm)<vdsd*2); 

        if length(nvdepths)==length(vdepths) 

            vdepths=nvdepths; 

            outliers=0; 

        else 

            vdm=median(nvdepths); 

            vdsd=std(nvdepths); 

            vdepths=nvdepths; 

        end 

    end 

    count(i)=length(vdepths); 

    if count(i)>drt 

%         if vdm<=8 

            cntz(i)=vdm; 

%         else 

%             cntz(i)=NaN; 

%         end 

    else 

        cntz(i)=NaN; 

    end 

end 

%delete(pp) 

Published with MATLAB® R2015b 

 Physical-space conversion function: JH_PhysConvert 

The following code converts particle locations from pixel and virtual coordinates in image space 

to metric coordinates in physical space based on the calibration. 

function mpoints = JH_PhysConvert(impoints,caldata,count) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Scales the pixel+virtual space n-by-5 array impoints into a physical space 

% n-by-3 array mpoints, using the parameters set by caldata which should be 

% in [fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD] form 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% constants 

spix = 5.5e-3;% pixel size [mm/pix] 

Rx = 1024; % image (sensor?) resolution x [pix] 

Ry = 1024; % iamge (sensor?) resolution y [pix] 

 

% shift caldata into variables 

% main lens variables 

fL = 85; 

tL = caldata(1); 
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% micro-lens variables 

b1= caldata(2); 

b2= caldata(3); 

b3= caldata(4); 

 

% distortion variables 

x0 = caldata(5); % distortion offset x from corner [pix] relative to image centre 

y0 = caldata(6); % distortion offset y from corner [pix] relative to image centre 

k1 = caldata(7); % radial distortion coeff 1 

k2 = caldata(8); % radial distortion coeff 2 

d1 = caldata(9); % depth distortion coeff 1 

d2 = caldata(10); % depth distortion coeff 2 

dD = caldata(11); % depth-dependant depth distortion coeff 

 

% % distortion due to cylinder 

% yc0 = caldata(13); 

% kc1 = caldata(14); 

% kc2 = caldata(15); 

% dc1 = caldata(16); 

% dc2 = caldata(17); 

% dcD = caldata(18); 

 

% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

Gp = tL-bL; 

 

% Physical Conversion 

% convert virtual depths and pixel locations to metric 

    zdata=bL+bsxfun(@times,impoints(:,3:5)-2,[b1,b2,b3]); 

    metric=[bsxfun(@times,-(impoints(:,1)-Rx/2)*2*spix,bsxfun(@rdivide,zdata,bL)),... 

        bsxfun(@times,-(impoints(:,2)-Ry/2)*2*spix,bsxfun(@rdivide,zdata,bL)),... 

        zdata]; 

    % compute r for each point 

    r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,[1,4]),[x0,y0])).^2,2)); 

    r(:,2) = sqrt(sum(abs(bsxfun(@minus,metric(:,[2,5]),[x0,y0])).^2,2)); 

    r(:,3) = sqrt(sum(abs(bsxfun(@minus,metric(:,[3,6]),[x0,y0])).^2,2)); 

    % undistort metric-depth points 

    undist=[metric(:,1).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,2).*(1+k1*r(:,2).^2+k2*r(:,2).^4),... 

        metric(:,3).*(1+k1*r(:,3).^2+k2*r(:,3).^4),... 

        metric(:,4).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,5).*(1+k1*r(:,2).^2+k2*r(:,2).^4),... 

        metric(:,6).*(1+k1*r(:,3).^2+k2*r(:,3).^4),... 

        metric(:,7:9)+(1+dD*metric(:,7:9)).*(d1*r(:,1:3).^2+d2*r(:,1:3).^4)]; 

    % project points to physical space 

    zdata=undist(:,7:9)*fL./(undist(:,7:9)-fL); 

    phys=[undist(:,1:3)./undist(:,7:9).*zdata,... 

        undist(:,4:6)./undist(:,7:9).*zdata,... 

        zdata]; 

 

% Depth Selection 

% we now have 3 depths and 3 (x,y) locations for each particle...only want 1 
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% so, do a weighted average of these based on how good the initial virtual 

% depth measurement was 

 

% determine the weights, based on the original number of depth estimations 

w1=count(:,1); 

w2=count(:,2); 

w3=count(:,3); 

 

% determine the nan locations 

nnan1=~isnan(phys(:,7)); 

nnan2=~isnan(phys(:,8)); 

nnan3=~isnan(phys(:,9)); 

 

% set nans to zero 

phys(~nnan1,7)=0; 

phys(~nnan2,8)=0; 

phys(~nnan3,9)=0; 

 

% do the weigthed average, not including nan weight 

mpoints = 

[(phys(:,1).*w1.*nnan1+phys(:,2).*nnan2.*w2+phys(:,3).*nnan3.*w3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3

) 

(phys(:,4).*w1.*nnan1+phys(:,5).*w2.*nnan2+phys(:,6).*w3.*nnan3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3) 

(phys(:,7).*nnan1.*w1+phys(:,8).*nnan2.*w2+phys(:,9).*w3.*nnan3)./(w1.*nnan1+w2.*nnan2+w3.*nnan3)

]; 

mpoints(mpoints==0)=NaN; 

Published with MATLAB® R2015b 
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 ETC METHOD 

The Matlab codes for the ETC method are included here. The functions bpass, pkfnd, and cntrd 

are available from [45]. All other functions are available in Matlab libraries, or have been included 

here. The structure of the code is given in the chart below. Before running these codes, a micro-

lens calibration must first be performed, the code for which is included in this appendix. The red 

and green blocks are the tracking and tracking auxiliary methods common between this code and 

the refocusing code. These will be included in Appendix E. The required inputs for this code are 

raw plenoptic images. Also needed is a completed optical system calibration, the code for which 

is given in Appendix D. The JH_PhysConvert method has already been presented in Appendix B 

and will not be included again. 

 

Figure C1 – Flow chart of the ETC code 
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 Micro-lens calibration function: micro-lensCal 

The method for the micro-lens calibration is included here. It requires only the input of a white 

image, or a group of white images if an average white image is desired. 

function [lensCents,adjlist,typelist,ev,mask]=micro-lensCal(varargin) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Generates a model of the ideal micro-lens centres, given a few 

% input parameters, and associates input centroids. first two columns of 

% impoints contain [a,b] matrix of valid target points, last two contain 

% original centroid locations. 

% Inputs: 

% cnts       - Detected centroids of grid points, in (x,y,z) form [pix] 

% radratio   - Tolerance for expected point location, max 0.5, recommended 

%              0.1 or less; depends on target image quality and noise level 

% maxmiss    - Number of points 

% thresh     - Threshold, the value used as a cutoff when binarizing the 

% image to estimate the circle centroids. MUST result in disconnection 

% between ALL circles. 

% Outputs: 

% lensCents  - array of [a,b] positions indicating the pixel locations of 

%              each lens centre, sorted from leftmost to rightmost 

% adjlist    - an nx6 connectivity list for each of the lenses, storing the 

%              indicies of adjacent lenses of the SAME TYPE 

% lgroups    - 3 cells containing the sets of all connected lenses 

% ev         - epipolar vectors for system 

% mask       - A mask that can be used to isolate micro-lens data 

% 

% Warnings: Code will produce warnings identifying points that deviated 

% significantly from the expected location, based on the axis generated. 

% These will occur more frequently with highly distorted views. Should 

% check these points manually to confirm centroid location was good. If a 

% lot of these show up, there may be issues near the centre of the image. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

warn = 0; 

% robust input handling 

if nargin == 0 

    varargin={1 '' '' ''}; 

end 

if ~isa(varargin{1},'string') 

    imLoc='X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\2017_03_01\17_03_01_09L50HD\WhitIm.tiff'; 

else 

    imLoc=varargin{1}; 

end 

if ~isa(varargin{2},'double') 

    radratio = 0.1; % default 

else 

    radratio = varargin{2}; 

end 
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if ~isa(varargin{3},'double') 

    maxmiss = 2; % default 

else 

    maxmiss = round(varargin{3}); 

    if maxmiss <= 0 

        error('Improper inputs, maxmiss must be a positive integer.'); 

        return; 

    end 

end 

if ~isa(varargin{4},'double') 

    thresh = 160; % default 

    load('X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-Sep-

2017.mat'); 

else 

    thresh = varargin{4}; 

    if thresh <= 0 

        error('Improper inputs, thresh must be a positive integer.'); 

        return; 

    end 

    imlist=dir([imLoc '\*.png']); 

    whitAve=imread([imLoc imlist(1).name]); 

    while 1 

        imshow(im2bw(whitAve,thresh/255)); 

        button=questdlg('Are all circles disconnected?'); 

        if strcmp(button,'Yes') 

            break; 

        elseif strcmp(button,'Cancel') 

            lensCents=[]; 

            return; 

        else 

            thresh=str2double(inputdlg('New threshold:')); 

        end 

    end 

    imlist=dir([imLoc '\*.png']); 

    for i=1:length(imlist) 

        im(:,:,i)=imread([imLoc imlist(i).name]); 

    end 

    whitAve=mean(im,3)/255; 

end 

oops = 0; 

 

global ipoints 

 

 

% roughly find micro-lens centres via thresholding and region detection 

bwim=im2bw(whitAve,thresh/255); 

imshow(bwim) 

props=regionprops(bwim,'centroid'); 

cnts=cat(1, props.Centroid); 

 

% cnts=pkfnd(image,0,20); 
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%remove cnts of lenses on border of image 

 

cnts(~((cnts(:,1)>10) .* (cnts(:,1)<2038) .* (cnts(:,2)>10) .* (cnts(:,2)<2038)),:)=[]; 

 

% try to do a better job finding centroids using cntrd 

cnts=cntrd(double(whitAve),round(cnts),25); 

 

imshow(whitAve) 

hold on 

scatter(cnts(:,1),cnts(:,2),'or') 

hold off 

 

% Find target axes 

% find [x,y] epicentre of centroids 

epi= sum(cnts(:,1:2))/length(cnts); 

 

% put [x,y] centroids into a k-d tree 

tree = KDTreeSearcher(cnts(:,1:2)); 

 

% figure out which centroid is closest to the epicentre 

ind = knnsearch(tree,epi); 

 

% set that point to be the origin 

ipoints = [0 0 cnts(ind,1:2)]; 

% set lens type for first point 

typelist=1; 

 

% find next 6 nearest points to origin 

ind = knnsearch(tree, cnts(ind,1:2), 'K', 7); % single row 

 

% find opposing points 

vecs = 2*bsxfun(@minus,cnts(ind,1:2),cnts(ind(1),1:2)); 

% toss out zeros (origin) 

vecs(vecs(:,1)==vecs(:,2),:)=[]; 

indop = knnsearch(tree,bsxfun(@minus,cnts(ind(2:7),1:2),vecs)); % single column 

% get opposites list, remove duplicates and origin 

ops = [ind(2:7)' indop]; 

ops = unique(sort(ops,2),'rows'); 

% ops should be a 3x2 array with the indicies of points that oppose each other across the origin 

check = size(ops); 

if check(1)~=3 || check(2) ~=2 

    oops = 2; 

    ipoints = 0; 

    return 

end 

 

% determine vector lengths between points in ops 

vecs = cnts(ops(:,2),1:2)-cnts(ops(:,1),1:2); 

 

% figure out which axes are good 

p=zeros(1,7); 

tries=[]; 
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while all(sort(ind)~=sort(p)) 

    % most upward pointing vector becomes major axis direction 

    majorAxis=vecs(abs(vecs(:,2))==max(abs(vecs(:,2))),:)/2; 

    if majorAxis(:,2)<0 

        majorAxis=-majorAxis; 

    end 

    % vector pointed most up and right becomes minor axis direction 

    minorAxis=vecs((vecs(:,1)>0) & (vecs(:,2)<0) & ~(abs(vecs(:,2))==max(abs(vecs(:,2)))),:)/2; 

    if isempty(minorAxis) 

        minorAxis=-vecs(vecs(:,1)<0 .* vecs(:,2)<0 .* 

~(abs(vecs(:,2))==max(abs(vecs(:,2)))),:)/2; 

    end 

    % make sure all 6 closest points to origin can be identified by single 

    % combinations of the minor and major axis 

    % origin always good 

    p(1) = ind(1); 

    % on minor 

    p(2) = knnsearch(tree, cnts(ind(1),1:2)+minorAxis); 

    p(3) = knnsearch(tree, cnts(ind(1),1:2)-minorAxis); 

    % on major 

    p(4) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis); 

    p(5) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis); 

    % last 

    p(6) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis+minorAxis); 

    p(7) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis-minorAxis); 

    % try other axes if it didn't work 

    if tries==2 

        % didn't get 6 good points around origin 

        oops = 1; 

        ipoints = 0; 

        return 

    end 

    tries=2; 

end 

 

% we now should have good major and minor axes 

missflags = []; 

% Determine coordinates of points in image along minor axis 

p=1; 

tlist=[1 2 3]; 

for runs=1:2 

    % set up point finding inital loop variables 

    findingpoints = 1; 

    % which direction we're going 

    switch runs 

        case 1 

            vector = minorAxis; 

            c=1; 

        case 2 

            vector = -minorAxis; 

            c=-1; 

    end 
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    loc = cnts(ind(1),1:2); 

    misses = 0; 

    i=1; 

    while findingpoints == 1; 

        idx = rangesearch(tree,loc+vector,radratio*norm(vector)); 

        % did we find a point? 

        if isempty(idx{1}) || length(idx)>1 

            % if we didn't find one, we should keep going in case only a 

            % few points are missing/blocked, but we need to flag the point 

            % so we don't put it in the model target 

            switch runs 

                case 1 

                    missflags = [missflags;i,0]; 

                case 2 

                    missflags = [missflags;-i,0]; 

            end 

            loc = loc+vector; 

            misses = misses + 1; 

            switch runs 

                case 1 

                    ipoints = [ipoints;[i,0,loc]]; 

                    if typelist(end)==3 

                        typelist(end+1)=1; 

                    else 

                        typelist(end+1)=typelist(end)+1; 

                    end 

                case 2 

                    ipoints = [ipoints;[-i,0,loc]]; 

                    if p 

                        stag=length(typelist); 

                        typelist(end+1)=3; 

                    elseif typelist(end)==1 

                        typelist(end+1)=3; 

                    else 

                        typelist(end+1)=typelist(end)-1; 

                    end 

                    p=0; 

            end 

        else 

            vector = bsxfun(@minus,cnts(idx{1},1:2),loc); 

            % compare with minor axis 

            if norm(vector-c*minorAxis)>(radratio*norm(minorAxis)) && warn; 

                switch runs 

                    case 1 

                        warning('Point (%i,%i) produced a vector 

%1.2d*minorAxis.',i,0,norm(vector-c*minorAxis)/norm(minorAxis)) 

                    case 2 

                        warning('Point (%i,%i) produced a vector %1.2d*minorAxis.',-

i,0,norm(vector-c*minorAxis)/norm(minorAxis)) 

                end 

            end 

            loc = cnts(idx{1},1:2); 
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            misses = 0; 

            switch runs 

                case 1 

                    ipoints = [ipoints;[i,0,loc]]; 

                    if typelist(end)==3 

                        typelist(end+1)=1; 

                    else 

                        typelist(end+1)=typelist(end)+1; 

                    end 

                case 2 

                    ipoints = [ipoints;[-i,0,loc]]; 

                    if p 

                        stag=length(typelist); 

                        typelist(end+1)=3; 

                    elseif typelist(end)==1 

                        typelist(end+1)=3; 

                    else 

                        typelist(end+1)=typelist(end)-1; 

                    end 

                    p=0; 

            end 

        end 

        i=i+1; 

        % if we missed too many points, we probably hit the edge 

        if misses == maxmiss 

            findingpoints = 0; 

        end 

    end 

end 

 

% Determine locations of all points 

% should have a line of points along the minor axis. Now, move in the major 

% axis direction 

[hits,~]=size(ipoints); 

for j=1:hits 

    for runs = 1:2 

        % set up point finding inital loop variables 

        findingpoints = 1; 

        % which direction we're going 

        switch runs 

            case 1 

                vector = majorAxis; 

                c=1; 

            case 2 

                vector = -majorAxis; 

                c=-1; 

        end 

        loc = ipoints(j,3:4); 

        if runs==1; 

            ntype=typelist(j)+1; 

            if ntype==4; ntype=1; end 

        else 



119 

 

            ntype=typelist(j)-1; 

            if ntype==0; ntype=3; end 

        end 

        p=1; 

        misses = 0; 

        i=1; 

        while findingpoints == 1; 

            idx = rangesearch(tree, loc+vector,radratio*norm(vector)); 

            % did we find a point? 

            if isempty(idx{1}) || length(idx)>1 

                % if we didn't find one, we should keep going in case only a 

                % few points are missing/blocked, but we need to flag the point 

                % so we don't put it in the model target 

                switch runs 

                    case 1 

                        missflags = [missflags;ipoints(j,1),i]; 

                    case 2 

                        missflags = [missflags;ipoints(j,1),-i]; 

                end 

                loc = loc+vector; 

                misses = misses + 1; 

                switch runs 

                    case 1 

                        ipoints = [ipoints;ipoints(j,1),i,loc]; 

                        if p 

                            typelist(end+1)=ntype; 

                            p=0; 

                            q=1; 

                        elseif q 

                            typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)])); 

                            q=0; 

                        elseif typelist(end)==3 

                            typelist(end+1)=1; 

                        else 

                            typelist(end+1)=typelist(end)+1; 

                        end 

                    case 2 

                        ipoints = [ipoints;ipoints(j,1),-i,loc]; 

                        if p 

                            typelist(end+1)=ntype; 

                            p=0; 

                            q=1; 

                        elseif q 

                            typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)])); 

                            q=0; 

                        elseif typelist(end)==1 

                            typelist(end+1)=3; 

                        else 

                            typelist(end+1)=typelist(end)-1; 

                        end 

                end 

            else 
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                vector = bsxfun(@minus,cnts(idx{1},1:2),loc); 

                % compare with major axis. Throws more warnings than 

                % necessary, but good info. 

                if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn; 

                    switch runs 

                        case 1 

                            warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',ipoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                        case 2 

                            warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',ipoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                    end 

                end 

                loc = cnts(idx{1},1:2); 

                misses = 0; 

                switch runs 

                    case 1 

                        ipoints = [ipoints;ipoints(j,1),i,loc]; 

                        if p 

                            typelist(end+1)=ntype; 

                            p=0; 

                            q=1; 

                        elseif q 

                            typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)])); 

                            q=0; 

                        elseif typelist(end)==3 

                            typelist(end+1)=1; 

                        else 

                            typelist(end+1)=typelist(end)+1; 

                        end 

                    case 2 

                        ipoints = [ipoints;ipoints(j,1),-i,loc]; 

                        if p 

                            typelist(end+1)=ntype; 

                            p=0; 

                            q=1; 

                        elseif q 

                            typelist(end+1)=tlist(~ismember(tlist,[ntype typelist(j)])); 

                            q=0; 

                        elseif typelist(end)==1 

                            typelist(end+1)=3; 

                        else 

                            typelist(end+1)=typelist(end)-1; 

                        end 

                end 

            end 

 

            i=i+1; 

            % if we missed too many points, we probably hit the edge 

            if misses == maxmiss 

                findingpoints = 0; 

            end 



121 

 

        end 

    end 

end 

 

% should have a full grid of points in ipoints, including misses. Now need 

% to eliminate misses. 

[~,crossed,~]=intersect(ipoints(:,1:2),missflags,'rows'); 

ipoints(crossed,:)=[]; 

typelist(crossed)=[]; 

 

% Model generation has been completed 

 

% find ideal array centre and vectors 

 

% initialize from origin, major and minor axes 

x0=ipoints(1,3); 

y0=ipoints(1,4); 

v1x=minorAxis(1); 

v1y=minorAxis(2); 

v2x=majorAxis(1); 

v2y=majorAxis(2); 

 

initops=optimoptions('lsqnonlin','Algorithm','levenberg-marquardt','InitDamping',1000,'TolX',1e-

9,'MaxFunEvals',100000,'MaxIter',10000,'Display','none'); 

[result,resnorm,resids]=lsqnonlin(@optimfun,[x0,y0,v1x,v1y,v2x,v2y],[],[],initops); 

 

x0=result(1); 

y0=result(2); 

v1x=result(3); 

v1y=result(4); 

v2x=result(5); 

v2y=result(6); 

lensCents=bsxfun(@plus,ipoints(:,1)*[v1x,v1y]+ipoints(:,2)*[v2x,v2y],[x0,y0]); 

 

imshow(whitAve(1:500,1:500)) 

hold on 

scatter(lensCents(typelist==1,1),lensCents(typelist==1,2),'or') 

scatter(lensCents(typelist==2,1),lensCents(typelist==2,2),'og') 

scatter(lensCents(typelist==3,1),lensCents(typelist==3,2),'ob') 

scatter(lensCents(typelist==1,1),lensCents(typelist==1,2),'.r') 

scatter(lensCents(typelist==2,1),lensCents(typelist==2,2),'.g') 

scatter(lensCents(typelist==3,1),lensCents(typelist==3,2),'.b') 

hold off 

 

mrs=mean(resids) 

strs=std(resids) 

prc95=prctile(resids,95) 

figure 

histogram(resids); 

xlabel('Deviation [pix]','FontSize',14,'FontName','Times New Roman') 

ylabel('Count','FontSize',14,'FontName','Times New Roman') 

set(gca,'FontSize',14,'FontName','Times New Roman') 



122 

 

 

 

% sort micro-lenses from left to right 

isort=sortrows([lensCents typelist'],1); 

lensCents=isort(:,1:2); 

typelist=isort(:,3); 

 

% create epipolar vectors for lens system 

ev1=[v1x v1y]-[v2x v2y]; 

ev2=-[v1x v1y]+[v2x v2y]; 

ev3=-2*[v1x v1y]-[v2x v2y]; 

ev4=2*[v1x v1y]+[v2x v2y]; 

ev5=-[v1x v1y]-2*[v2x v2y]; 

ev6=[v1x v1y]+2*[v2x v2y]; 

ev=[ev1;ev2;ev3;ev4;ev5;ev6]; 

 

% create adjacency index list for micro-lenses; opposed pairs 1-2, 3-4, 5-6 

adjlist=zeros(length(lensCents),6); 

for i=1:length(lensCents) 

    c1=find(ismembertol(lensCents,lensCents(i,:)+ev(1,:),0.001,'ByRows',1)); 

    c2=find(ismembertol(lensCents,lensCents(i,:)+ev(2,:),0.001,'ByRows',1)); 

    c3=find(ismembertol(lensCents,lensCents(i,:)+ev(3,:),0.001,'ByRows',1)); 

    c4=find(ismembertol(lensCents,lensCents(i,:)+ev(4,:),0.001,'ByRows',1)); 

    c5=find(ismembertol(lensCents,lensCents(i,:)+ev(5,:),0.001,'ByRows',1)); 

    c6=find(ismembertol(lensCents,lensCents(i,:)+ev(6,:),0.001,'ByRows',1)); 

    for j=1:6 

        if isempty(eval(['c' num2str(j)])) 

            evalc(['c' num2str(j) '=' num2str(NaN)]); 

        end 

    end 

    adjlist(i,:)=[c1 c2 c3 c4 c5 c6]; 

end 

% save everything 

sloc=strfind(imLoc,'\'); 

save([imLoc(1:sloc(end)),'MLCal_171116'],'lensCents','adjlist','typelist','ev') 

 

function resid=optimfun(vars) 

global ipoints 

x0=vars(1); 

y0=vars(2); 

v1x=vars(3); 

v1y=vars(4); 

v2x=vars(5); 

v2y=vars(6); 

lensCents=bsxfun(@plus,(ipoints(:,1)*[v1x,v1y]+ipoints(:,2)*[v2x,v2y]),[x0,y0]); 

resid=sum((lensCents-ipoints(:,3:4)).^2,2); 

Published with MATLAB® R2015b 
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 Wrapper function: A_RUN_JH_Plen_PTV 

The following code serves as a ‘wrapper’, running all other functions in the ETC code in loops as 

needed, while ensuring that all inputs and outputs reach the correct locations, and also saving the 

results. It is set up to allow the inputs to be included either in the first section of the code, or in 

the function when called. 

function A_RUN_JH_Plen_PTV(Iroot,imNos,imFmt,path,mlCalLoc,whitIm,CalLoc,settings,display) 

if nargin<9;display=0;end 

if nargin < 8 || length(settings)~=11 

    % Default Settings 

 

    % Plenoptic Location 

    invert=0; % wether or not to invert by subtracting the white image 

    cleanup=60; % Divide by the given white image, with this minimum value 

    lnoise=0; % Always should be zero, from what I've seen 

    psize=5; % Particle size in pixels in raw images 

    thresh=0; % cutoff threshold 

    peak=.02*255; % peak threshold 

    epitol=.5; % pixel distance for max distance from particle to epipolar line 

    plotar=50; % aspect ratio of virtual depth for 3D plots 

    validrange=[2,12]; % valid range of virtual depths 

    bestest = 1; % controls if you want to pull out only the most-focused micro-lens type for 

each particle 

    xyrt=.1; % tolerance for determining if particles in xy are close enough to be the same 

    zrt=2; % tolerance for determining if particles in z are close enough to be the same 

 

    % particle tracking (units of mm) 

    search = 1.2; 

    neighbor = 3; 

    quasi = .3; 

    zdt = 0.4; 

 

    % particle prediction 

    range = 1; 

    fp=5; 

 

    % Track Rejection 

    art = 2; % acceleration rejection threshold in mm/frame^2 

    zaf = .4; % z-amplification factor, used to reduce z-direction components 

 

    % linkage 

    lzdt=0.4; 

 

    % Track Smoothing 

    % number of frames to use on either side of particle when smoothing 

    % (depends on movement/frame >> more movement, less smoothing). 

    % Generally want at least 5 and not more than 20. 
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    smoothstrength=10; 

 

    plocsettings = [invert cleanup lnoise psize thresh peak epitol plotar validrange display]; 

else 

    invert=settings(1); % wether or not to invert by subtracting the white image 

    cleanup=settings(2); % Divide by the given white image, with this minimum value 

    lnoise=settings(3); % Always should be zero, from what I've seen 

    psize=settings(4); % Particle size in pixels in raw images 

    thresh=settings(5); % cutoff threshold 

    peak=settings(6); % peak threshold 

    epitol=settings(7); % pixel distance for max distance from particle to epipolar line 

    plotar=settings(8); % aspect ratio of virtual depth for 3D plots 

    validrange=settings(9:10); % valid range of virtual depths 

    bestest = settings(11); % controls if you want to pull out only the most-focused micro-lens 

type for each particle 

    xyrt=settings(12); % tolerance for determining if particles in xy are close enough to be the 

same 

    zrt=settings(13); % tolerance for determining if particles in z are close enough to be the 

same 

    search = settings(14); 

    neighbor = settings(15); 

    quasi = settings(16); 

    range = settings(17); 

    fp=settings(18); 

    art = settings(19); 

    zaf = settings(20); 

    lzdt=settings(21); 

    smoothstrength=settings(22); 

 

    plocsettings = [invert cleanup lnoise psize thresh peak epitol maxz plotar validrange 

display]; 

end 

 

% DEFAULT CALIBRATION 

% if nargin < 7 

%     CalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\CoreData_170810\WaterCal_170809\Calibration_11-Aug-2017.mat'; 

% end 

% if nargin < 6 

%     whitIm = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-

Sep-2017.mat'; 

% end 

% if nargin < 5 

%     mlCalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\WhitIms\MLCal_170911.mat'; 

% end 

% %% LOAD IMAGES 

% if nargin < 4 

%     path = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\CoreData_170810\CoreView_6\'; 

% end 

% if nargin < 3 
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%     Iroot = 'CoreView_6_Raytrix'; 

%     imNos = 150:250; 

%     imFmt = '.png'; 

% end 

if nargin < 7 

    CalLoc = 'X:\01_Current_Students\Jake Hadfield\Coding\Matlab\Calibration 

Code\Calibration_test.mat'; 

end 

if nargin < 6 

    whitIm = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\2017_03_01\17_03_01_09L50HD\WhitAve_16-Nov-2017.mat'; 

end 

if nargin < 5 

    mlCalLoc = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\2017_03_01\17_03_01_09L50HD\MLCal_171116.mat'; 

end 

% LOAD IMAGES 

if nargin < 4 

    path = 'X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\2017_03_01\17_03_01_09L50HD\Raw\'; 

end 

if nargin < 3 

    Iroot = 'Image'; 

    imNos = 1:172; 

    imFmt = '.tiff'; 

end 

savedate=datestr(datetime('today')); 

 

newdata=1; % Need to run particle-location code 

if newdata 

 

% RUN ALGORITHMS 

 

% load calibration 

load(CalLoc,'allvars') 

caldata=[allvars(1:11) allvars(end)]; 

 

% Particle Location 

ppoints=cell(1,length(imNos)); 

points=cell(1,length(imNos)); 

ltypes=cell(1,length(imNos)); 

resnorms=cell(1,length(imNos)); 

residvecs=cell(1,length(imNos)); 

pgroups=cell(1,length(imNos)); 

pstats=cell(1,length(imNos)); 

irejects=cell(1,length(imNos)); 

rrejects=cell(1,length(imNos)); 

% mmpoints=cell(length(imNos),3); 

plist=[]; 

fprintf(['Finding particles. Completion time will be estimated soon. Current time is: ' 

datestr(now) '\n']); 

ctime=now; 
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tic; 

for i=1:length(imNos) 

    imName = [Iroot '_' num2str(imNos(i),'%04i') imFmt]; 

    % find particles 

    

[ppoints{i},ltypes{i},resnorms{i},residvecs{i},pstats{i},~,~,pgroups{i},~,~,~]=JH_rawPlenPF(path,

imName,[Iroot '_PixPoints'],mlCalLoc,whitIm,CalLoc,plocsettings); 

 

    % convert to physical space 

    for j=1:3 

        mmpoints{i,j} = JH_PhysConvert(ppoints{i}(ltypes{i}==j,:),[caldata(1) caldata(j+1) 

caldata(5:end)]); 

    end 

    points{i}=[mmpoints{i,1};mmpoints{i,2};mmpoints{i,3}]; 

 

    

%points{i}=[ppoints{i}(ltypes{i}==1,:);ppoints{i}(ltypes{i}==2,:);ppoints{i}(ltypes{i}==3,:)]; 

 

    % keep best estimates only 

    if bestest 

        

[irejects{i},rrejects{i}]=JH_kbe(points{i},[resnorms{i}(ltypes{i}==1,:);resnorms{i}(ltypes{i}==2,

:);resnorms{i}(ltypes{i}==3,:)],pstats{i},[pgroups{i}(ltypes{i}==1,:);pgroups{i}(ltypes{i}==2,:);

pgroups{i}(ltypes{i}==3,:)],xyrt,zrt); 

    end 

    rrcrit=1; 

    ircrit=0; 

    if rrcrit==1 

        points{i}(rrejects{i},:)=[]; 

    elseif ircrit==1 

        points{i}(rrejects{i},:)=[]; 

    end 

    plist=[plist;[points{i} ones(length(points{i}),1)*i]]; 

    tt=toc; 

    fprintf(['Particle location should be done around ' datestr(ctime+tt/i*(length(imNos))/84600) 

'\n']); 

end 

save([path 'PList_' savedate '_' Iroot '.mat'],'plist') 

save([path 'Points_' savedate '_' Iroot '.mat'],'points') 

 

else 

load([path 'PList_' savedate '_' Iroot '.mat'],'plist') 

load([path 'Points_' savedate '_' Iroot '.mat'],'points') 

end 

 

newtrack=1; 

if newtrack 

alltracks=[]; 

polyhold.pno=[]; 

polyhold.polyx=[]; 

polyhold.polyy=[]; 

polyhold.polyz=[]; 
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polyhold.mux=[]; 

polyhold.muy=[]; 

polyhold.muz=[]; 

mp=[]; 

ctime=now; 

tic; 

for i=1:length(imNos)-1 

    if i>=3 

        fprintf('Attempting forward-predictive tracking on %i frame %i and %i frame %i 

particles...\n',length(points{i}),i,length(points{i+1}),i+1); 

        

[rp1,rp2,alltracks,polyhold]=JH_MT_Fit_Predict(points{i},points{i+1},alltracks,i,range,zdt,polyho

ld,search); 

        fprintf('Attempting two-frame tracking on remaining %i frame %i and %i frame %i 

particles...\n',length(rp1),i,length(rp2),i+1); 

        tracks = DH_track_v3(rp1,rp2,search,neighbor,quasi,zdt); 

        if ~isempty(tracks) 

            nmp=rp2(~ismember(rp2,tracks(:,1:3),'rows'),:); 

            [lnmp,~]=size(nmp); 

            mp=[mp;nmp ones(lnmp,1)*i]; 

            alltracks=JH_MT_Associate(tracks,alltracks,i); 

        end 

    else 

        fprintf('Attempting two-frame tracking on %i frame %i and %i frame %i 

particles...\n',length(points{i}),i,length(points{i+1}),i+1); 

        tracks = DH_track_v3(points{i},points{i+1},search,neighbor,quasi,zdt); 

        if ~isempty(tracks) 

            nmp=points{i+1}(~ismember(points{i+1},tracks(:,1:3),'rows'),:); 

            [lnmp,~]=size(nmp); 

            mp=[mp;nmp ones(lnmp,1)*i]; 

            alltracks=JH_MT_Associate(tracks,alltracks,i); 

        end 

    end 

    tt=toc; 

    fprintf(['Particle tracking should be done around ' datestr(ctime+tt/i*(length(imNos))/84600) 

'\n']); 

end 

% eliminate remaining predicted points 

alltracks(alltracks(:,6)==0,:)=[]; 

save([path 'AllTracks_' savedate '_' Iroot '.mat'],'alltracks') 

end 

 

 

% get track stats 

JH_TrackStats(alltracks) 

 

% denoise tracks 

lostpts=double.empty(0,5); 

nlostpts=0; 

while ~isempty(nlostpts) 

    [filttracks,nlostpts,~]=JH_MT_TrackBreak(alltracks,art,zaf); 

    alltracks=filttracks; 
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    lostpts=[lostpts;nlostpts]; 

end 

nmp=lostpts(:,[1:3,5]); 

save([path 'BreakTracks_' savedate '_' Iroot '.mat'],'filttracks') 

% resort tracks 

[filttracks,misspts]=JH_resortTracks(filttracks); 

 

% get track stats 

JH_TrackStats(filttracks) 

 

mp=sortrows([mp;nmp;misspts],4); 

 

save([path 'FilTracks_' savedate '_' Iroot '.mat'],'filttracks') 

save([path 'MissPts_' savedate '_' Iroot '.mat'],'mp') 

 

linkcount=1; 

while linkcount~=0 

% link tracks 

[linktracks,linkcount]=JH_LinkTracks(filttracks,range,lzdt,fp); 

filttracks=linktracks; 

% resort tracks 

[linktracks,~]=JH_resortTracks(linktracks); 

end 

% get track stats 

JH_TrackStats(linktracks) 

 

% find longest linked track 

long=1; 

lc=1; 

tl=0; 

for i=1:max(linktracks(:,4)) 

    nlc=sum(linktracks(:,4)==i); 

    if nlc>lc 

        long=i; 

        lc=nlc; 

    elseif nlc==lc 

        trak=linktracks(linktracks(:,4)==1,:); 

        ntl=sum(sqrt(sum(diff(trak(:,1:2)).^2,2))); 

        if ntl>tl 

            long=i; 

            tl=ntl; 

        end 

    end 

end 

 

link=linktracks(linktracks(:,4)==long,:); 

 

% smoothing algorithm 

smoothtracks = JH_SmoothTracks(linktracks,smoothstrength); 

 

smooth=smoothtracks(smoothtracks(:,4)==long,:); 
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% get track stats 

JH_TrackStats(smoothtracks) 

 

% % find domain limits 

% minx=min(alltracks(:,1)); 

% miny=min(alltracks(:,2)); 

% minz=min(alltracks(:,3)); 

% maxx=max(alltracks(:,1)); 

% maxy=max(alltracks(:,2)); 

% maxz=max(alltracks(:,3)); 

% % save data 

% save([path 'Limits_170111_' Iloc '.mat'],'minx','miny','minz','maxx','maxy','maxz') 

save([path 'LinkTracks_' savedate '_' Iroot '.mat'],'linktracks') 

save([path 'SmoothTracks_' savedate '_' Iroot '.mat'],'smoothtracks') 

save([path 'SLink_' savedate '_' Iroot '.mat'],'link') 

save([path 'SSmooth_' savedate '_' Iroot '.mat'],'smooth') 

JH_TrackToQuiv(path,['AllTracks_' savedate '_' Iroot '.mat']); 

JH_TrackToQuiv(path,['SmoothTracks_' savedate '_' Iroot '.mat']); 

Published with MATLAB® R2015b 

 Particle location function: JH_rawPlenPF 

The following function locates the particles in the raw plenoptic images and applies the ETC 

criterion, then applies triangulation to get the 3D locations. 

function 

[points,ltypes,resnorms,residvecs,pstats,pcd,plocs,pgroups,lensCents,pli,typelist]=JH_rawPlenPF(p

ath,imName,saveName,calLoc,whitIm,mlCalLoc,settings) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Finds particles in a raw plenoptic image, organizing them by grouping 

% together the multiple micro-image particle locations 

% Inputs: imLoc-    The location of the image to be processed 

%       lensCents-  The location of the lens centroids from micro-lensCal 

%       settings-   Processing settings for the particle-location 

%                   algorithms 

% Outputs: ploc3D-   A nx3 array containing the [x,y] location of each 

%                   particle; the third column contains the particle number 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

close all 

% defaults if missing inputs 

if nargin < 7 

    invert=0; % wether or not to invert by subtracting the white image 

    cleanup=0; % Divide by the given white image, with this minimum value 

    lnoise=0; % Always should be zero, from what I've seen 

    psize=3; % Particle size in pixels in raw images 

    thresh=0; % cutoff threshold 

    peak=20; % peak threshold 

    epitol=.5; % pixel distance for max distance from particle to epipolar line 

http://www.mathworks.com/products/matlab
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    plotar=50; % aspect ratio of virtual depth for 3D plots 

    validrange=[2,16]; % valid range of virtual depths 

    display=1; 

else 

    invert=settings(1); % wether or not to invert by subtracting the white image 

    cleanup=settings(2); % Divide by the given white image, with this minimum value 

    lnoise=settings(3); % Always should be zero, from what I've seen 

    psize=settings(4); % Particle size in pixels in raw images 

    thresh=settings(5); % cutoff threshold 

    peak=settings(6); % peak threshold 

    epitol=settings(7); % pixel distance for max distance from particle to epipolar line 

    plotar=settings(8); % aspect ratio of virtual depth for 3D plots 

    validrange=settings(9:10); % valid range of virtual depths 

    display=settings(11); % input 1 to display stuff 

end 

if nargin <6 

    mlCalLoc=''; 

end 

if nargin <5 

    whitIm='X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitAve_28-Jul-2017.mat'; 

end 

if nargin < 4 

    load('X:\01_Current_Students\Jake Hadfield\LightField Test Images\17_06_21\MLCal.mat') 

else 

    load(calLoc) 

end 

if nargin < 3 

    path='X:\01_Current_Students\Jake Hadfield\LightField Test Images\FF_170712\Helix40\'; 

    imName='Image_Raw_0065.png'; 

    saveName='Image_Points'; 

end 

 

% Load in image, run bpass, pkfnd and cntrd to get particle locations 

if invert 

    load(whitIm) 

    whitAveG=whitAve; 

    im=im2double(imread([path,imName])); 

    image=whitAve-im/max(max(im))*1; 

    image(image<0)=0; 

elseif cleanup 

    load(whitIm) 

    whitAve=im2double(whitAve); 

    image=imread([path,imName]); 

    if size(image,3)==3 

        image=rgb2gray(image); 

        image=image(1:2048,1:2048); 

    end 

    image=im2double(image)./(((whitAve-min(min(whitAve)))./(max(max(whitAve))-

min(min(whitAve))).*(1-cleanup/255)+cleanup/255)); 

    image=image./max(max(image)); 

else 

    image=im2double(imread([path,imName])); 
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end 

bpim=bpass(image,lnoise,psize,thresh); 

plocs=cntrd(bpim,pkfnd(bpim,peak/255,psize+2),psize); 

if display==1 

    imshow(1.5*image) 

    hold on 

    plot(plocs(:,1),plocs(:,2),'+r','markers',15,'linewidth',2) 

    drawnow 

%     pl1=[lensCents(typelist==1,1)-12,lensCents(typelist==1,2)-

12,23*ones(sum(typelist==1),1),23*ones(sum(typelist==1),1)]; 

%     pl2=[lensCents(typelist==2,1)-12,lensCents(typelist==2,2)-

12,23*ones(sum(typelist==2),1),23*ones(sum(typelist==2),1)]; 

%     pl3=[lensCents(typelist==3,1)-12,lensCents(typelist==3,2)-

12,23*ones(sum(typelist==3),1),23*ones(sum(typelist==3),1)]; 

%     for i=1:length(pl1) 

%         rectangle('position',pl1(i,:),'curvature',[1 1],'EdgeColor','r','linewidth',2) 

%     end 

%     for i=1:length(pl2) 

%         rectangle('position',pl2(i,:),'curvature',[1 1],'EdgeColor','g','linewidth',2) 

%     end 

%     for i=1:length(pl3) 

%         rectangle('position',pl3(i,:),'curvature',[1 1],'EdgeColor','c','linewidth',2) 

%     end 

    xlabel('{\itx} [pix]','FontName','Times New Roman','FontSize',20) 

    ylabel('{\ity} [pix]','FontName','Times New Roman','FontSize',20) 

    set(gca,'outerposition',[0 0 1 1],'fontname','Times New Roman','fontsize',20) 

%     ylim([1725.8 1749+23*3]) 

%     xlim([1704 1810]) 

end 

 

pstats=plocs(:,3:4); 

plocs=plocs(:,1:2); 

 

% determine which micro-lens each particle is in (closest lens centre) 

[pll,~]=size(plocs); 

pcd=zeros(pll,1); 

pli=zeros(pll,1); 

% should map pixels to lenses ahead of time!!!! faster 

for i=1:pll 

    [pcd(i),pli(i,:)]=min(sqrt(sum(bsxfun(@minus,lensCents,plocs(i,:)).^2,2))); 

end 

 

% if not calibrating, modify particle location based on calibration 

% if ~strcmp(mlCalLoc,'') 

%     load(mlCalLoc); 

%     mlVars=allvars(12:18); 

%     plocs=JH_Plen_mlCorrect(plocs,lensCents,pli,typelist,pcd,mlVars); 

% end 

 

% scan through particle list, number similar particles 

pcount=length(plocs); 

plist=1:pcount; 
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pgroups=cell(1,1); 

ped=cell(pcount,1); 

pgepd=cell(1,1); 

pparray=cell(pcount,1); 

% for each particle, identify epipolar connections 

for cpart=plist 

    clens=pli(cpart); 

    % look at adjacent lenses 

    adjlenses=adjlist(clens,:); 

    adjset=[]; 

    for lens=adjlenses 

        % what particles are in each adjacent micro-lens? 

        pnew=find(pli==lens); 

        if ~isempty(pnew) 

            adjset=[adjset;lens*ones(length(pnew),1),pnew]; 

        end 

    end 

    % can skip the rest if there are no particles in adjacent lenses 

    if isempty(adjset) 

        continue 

    end 

 

    % which particles are along an epipolar line from the parent 

    % particle? 

    for p=adjset(:,2)' 

        lens = adjset(adjset(:,2)==p,1); 

        lcheck=(lens==adjlenses)'; 

        if any(lcheck) 

            epid=ptl(plocs(p,:),plocs(cpart,:),ev(lcheck,:)); 

            if epid<epitol 

                % add particle to potential array 

                pparray{cpart,:}=[pparray{cpart,:},p]; 

                ped{cpart,:}=[ped{cpart,:},epid]; 

            end 

        end 

    end 

end 

% want to find triangular epipolar connections between particles 

triangles=[]; 

tepd=[]; 

for p=1:size(pparray,1) 

    lens=pli(p); 

    for j=pparray{p} 

        o2=[]; 

        cl=ismember(pparray{p},pparray{j}); 

        t3=pparray{p}(cl); 

        el=~ismember(pli(t3),lens); 

        t3=t3(el); 

        if ~isempty(t3) 

            ntri=[ones(length(t3),1)*[p j],t3']; 

            triangles=[triangles;ntri]; 

            for k=ntri' 
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                o2=[o2;ped{j}(k(3)==pparray{j}),ped{p}(k(3)==pparray{p}),ped{p}(j==pparray{p})]; 

            end 

            tepd=[tepd;o2]; 

        end 

    end 

end 

[triangles,ind]=sort(triangles,2); 

ltp=length(tepd); 

temp=tepd'; 

tepd=temp(ind+[[0:3:3*ltp-3]',[0:3:3*ltp-3]',[0:3:3*ltp-3]']); 

[triangles,ia]=unique(triangles,'rows'); 

tepd=tepd(ia,:); 

 

% plot triangles 

if display==1 

    for i=1:size(triangles,1) 

        line([plocs(triangles(i,1),1) 

plocs(triangles(i,2),1)],[plocs(triangles(i,1),2),plocs(triangles(i,2),2)],'Color','m'); 

        line([plocs(triangles(i,2),1) 

plocs(triangles(i,3),1)],[plocs(triangles(i,2),2),plocs(triangles(i,3),2)],'Color','m'); 

        line([plocs(triangles(i,1),1) 

plocs(triangles(i,3),1)],[plocs(triangles(i,1),2),plocs(triangles(i,3),2)],'Color','m'); 

    end 

    drawnow 

    hold off 

end 

 

% with triangular connections established, separate sets using connectivity 

group=1; 

vparts=triangles(1,:); 

ovparts=[]; 

epdstack=tepd(1,:); 

while ~isempty(triangles) 

    acond=any(ismember(triangles,vparts),2); 

    nvparts=triangles(acond,:); 

    nepd=tepd(acond,:); 

    vparts=[vparts;nvparts]; 

    epdstack=[epdstack;nepd]; 

    [vparts,ulocs]=unique(vparts,'rows'); 

    epdstack=epdstack(ulocs,:); 

    if size(vparts,1)==size(ovparts,1) 

        pgroups{group,1}=vparts; 

        pgepd{group,1}=epdstack; 

        if size(pgroups{group,1},2)>1 

            pgroups{group,1}=pgroups{group,1}'; 

            pgepd{group,1}=pgepd{group,1}'; 

        end 

        group=group+1; 

        bcond=~ismember(triangles,vparts,'rows'); 

        triangles=triangles(bcond,:); 

        tepd=tepd(bcond,:); 

        if ~isempty(triangles) 
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            vparts=triangles(1,:); 

            epdstack=tepd(1,:); 

            ovparts=[]; 

        end 

    else 

        ovparts=vparts; 

    end 

end 

 

% adjust particle locations in connected sets to improve epipolar 

% connectivity 

 

for i=1:group-1 

%     % look for particle images that have only been captured once 

%     [~,ia,~]=unique(pgroups{i}); 

%     pgsolo=pgroups{i}(~ismember(pgroups{i},pgroups{i}(~ismember(1:numel(pgroups{i}),ia)))); 

% 

%     % these locations are 'safe' to manipulate to improve the epipolar 

%     % connections, because they're on the edge of the groups. Only want 

%     % to manipulate if their opposed epipolar line 

%     % is better than both the connected epipolar lines. 

%     ignorep=[]; 

%     for p=pgsolo' 

%         % eliminate locations from the group if they're a major source of 

%         % error 

%         tritag=pgepd{i}(p==pgroups{i})==min(pgepd{i}); 

%         if any(tritag) 

%             if pgepd{i}(p==pgroups{i})/sum((pgepd{i}(:,sum(p==pgroups{i})==1)))<0.1 

%                 % point is a big source of error, tag to be ignored. 

%                 ignorep=[ignorep;p]; 

%             end 

%         end 

%     end 

%     if ~isempty(ignorep) 

%         pgroups{i}(ismember(pgroups{i},ignorep))=[]; 

%     end 

    pgroups{i}=unique(pgroups{i}); 

end 

 

% having separated the sets, now ready to perform 3D particle location 

[points,ltypes,resnorms,residvecs]=JH_Plen_GetPt(plocs,pgroups,pgepd,lensCents,pli,pcd,typelist,d

isplay); 

 

% remove all data for points with a depth outside the valid range 

[points,ltypes,resnorms,residvecs]=JH_PlenClean(points,ltypes,resnorms,residvecs,validrange); 

 

if display==1 

    set1=ltypes==1; 

    set2=ltypes==2; 

    set3=ltypes==3; 

    scatter3(points(set1,1),points(set1,2),points(set1,3),200,'or') 

    scatter3(points(set2,1),points(set2,2),points(set2,3),200,'og') 
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    scatter3(points(set3,1),points(set3,2),points(set3,3),200,'ob') 

    xlim([-10,2060]) 

    ylim([-10,2060]) 

    zlim([0,validrange(2)]) 

    axis ij 

    daspect([1,1,1/plotar]) 

    hold off 

%     ylim([1725.8 1749+23*3]) 

%     xlim([1704 1810]) 

%     zlim([0 4.5]) 

    xlabel('{\itx} [pix]','FontName','Times New Roman','FontSize',20) 

    ylabel('{\ity} [pix]','FontName','Times New Roman','FontSize',20) 

    zlabel('{\itz} [pix]','FontName','Times New Roman','FontSize',20) 

    set(gca,'outerposition',[0 0 1 1],'fontname','Times New Roman','fontsize',20) 

    grid on 

end 

 

fprintf('%i points found, with an average residual of %d, SD %d, max 

%d\n',size(points,1),mean(resnorms),std(resnorms),max(resnorms)) 

if ~isempty(saveName) 

    save([path,saveName],'points','ltypes','resnorms','residvecs','pgroups','pstats') 

end 

end 

 

function d=ptl(p, pc, v) 

d=abs(det([p-pc;v]))/norm(v); 

end 

Published with MATLAB® R2015b 

 Triangulation function: JH_Plen_GetPt 

The following code performs the triangulation method conducted based on the ETC groups. 

function [points,ltypes,resnorms, 

residvecs]=JH_Plen_GetPt(plocs,pgroups,pgepd,lensCents,pli,pcd,typelist,display) 

global pcdsend 

global setvecs 

global disvecs 

% global pgepdsend 

% global iccount 

gcount=size(pgroups,1); 

points=zeros(gcount,3); 

resnorms=zeros(gcount,1); 

residvecs=cell(gcount,1); 

ltypes=zeros(gcount,1); 

if display==1 

    figure(2) 

    hold on 

http://www.mathworks.com/products/matlab
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end 

for pset=1:gcount 

    % create a vector from the centre of each particle's micro-lens to the 

    % particle, in 3D. Value of the z-component is -1, so results will be in 

    % virtual depth units. Vectors are in [x1,x2,y1,y2,z1,z2] format 

%     [pgroups{pset,1},ia,ic]=unique(pgroups{pset,1}); 

    

setvecs=[plocs(pgroups{pset,1},1),plocs(pgroups{pset,1},2),ones(length(pgroups{pset,1}),1),... 

        

lensCents(pli(pgroups{pset,1}),1),lensCents(pli(pgroups{pset,1}),2),zeros(length(pgroups{pset,1})

,1)]; 

    pcdsend=pcd(pgroups{pset,1}); 

    % apply lens types to points 

    ltypes(pset)=typelist(pli(pgroups{pset,1}(1))); 

    % create an initial point 

    pinit=[mean(setvecs(:,1:2),1),4]; 

    % use least-squares optimization to minimize the distance from the 

    % point to all the lines by moving the point 

    initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-9,'TolX',1e-

9,'MaxFunEvals',100000,'MaxIter',10000,'Display','none'); 

    [points(pset,:),~]=lsqnonlin(@optimfun,pinit,[],[],initops); 

    % plot stuff 

    if display==1 

        for i =1:size(setvecs,1) 

            switch ltypes(pset) 

                case 1 

                    col='r'; 

                case 2 

                    col='g'; 

                case 3 

                    col='b'; 

            end 

            line([setvecs(i,4) setvecs(i,4)+(1+points(pset,3))*(setvecs(i,1)-

setvecs(i,4))],[setvecs(i,5) setvecs(i,5)+(1+points(pset,3))*(setvecs(i,2)-

setvecs(i,5))],[setvecs(i,6) setvecs(i,6)+(1+points(pset,3))*(setvecs(i,3)-

setvecs(i,6))],'Color',col); 

        end 

    end 

    residvecs{pset,1}=disvecs; 

    resnorms(pset)=sum(sqrt(sum(residvecs{pset,1}.^2,2))); 

end 

end 

 

function resid=optimfun(point) 

% calculate vector distances from point to all lines 

global setvecs 

global disvecs 

% global pcdsend 

% global pgepdsend 

% global iccount 

svs=size(setvecs,1); 
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disvecs=ones(svs,3); 

ndv=ones(svs,3); 

for i =1:size(setvecs,1) 

    disvecs(i,:)=setvecs(i,4:6)+dot(-setvecs(i,4:6)+point,(-setvecs(i,4:6)+setvecs(i,1:3))/norm(-

setvecs(i,4:6)+setvecs(i,1:3)))*(-setvecs(i,4:6)+setvecs(i,1:3))/norm(-

setvecs(i,4:6)+setvecs(i,1:3))-point; 

    ndv(i,:)=disvecs(i,:);%./(pgepdsend(i)/iccount(i)/sum(pgepdsend)); % normalizes based on how 

good the epipolar triangles are 

end 

resid=sqrt(ndv(:,1:3).^2)/size(ndv,1); 

end 

 

function d=ptl(p, pc, v) 

d=abs(det([p-pc;v]))/norm(v); 

end 

Published with MATLAB® R2015b 

 Point rejection function: JH_PlenClean 

This code performs some basic filtering to remove particles that are out of the virtual depth range 

or are too close to the edge of the image to have been reliably located 

function 

[points,ltypes,resnorms,residvecs]=JH_PlenClean(points,ltypes,resnorms,residvecs,validrange) 

if ~isempty(validrange) 

    ltypes(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[]; 

    resnorms(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[]; 

    residvecs(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[]; 

    points(points(:,3)<validrange(1)|points(:,3)>validrange(2),:)=[]; 

end 

 

% remove all points that are too close (within 1 micro-lens distance) to the 

% edge 

 

ltypes(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[]; 

resnorms(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[]; 

residvecs(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[]; 

points(points(:,1)<25|points(:,1)>2024|points(:,2)<25|points(:,2)>2024,:)=[]; 

Published with MATLAB® R2015b 
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 Point filtering function: JH_kbe 

The following code aims to determine which particle locations produced by different micro-lenses 

correspond to the same particle, and passes back the rejected locations based on intensity and 

triangulation residuals. 

function [irejects,rrejects]=JH_kbe(points,resnorms,pstats,pgroups,xyrt,zrt) 

spcell={}; 

irejects=[]; 

rrejects=[]; 

% first look for particles with similar (x,y,z) locations 

for i=1:size(points,1) 

    

spts=ismembertol(points(:,1:2),points(i,1:2),xyrt,'DataScale',1,'ByRows',1)&ismembertol(points(:,

3),points(i,3),zrt,'DataScale',1,'ByRows',1); 

    spts(i,:)=0; 

    added=0; 

    if any(spts) 

        npts=[i;find(spts)]; 

        if isempty(spcell) 

            spcell{length(spcell)+1,1}=npts; 

        else 

            for j=1:size(spcell,1) 

                if ismember(spcell{j},npts) 

                    spcell{j}=unique([spcell{j};npts]); 

                    added=1; 

                    break; 

                end 

            end 

            if ~added 

                spcell{length(spcell)+1,1}=npts; 

            end 

        end 

    end 

end 

 

% grab the initial particle numbers for each member of each spcell, 

% return to the particle stats to get intensity data. Add worst 

% intensities to the intensity reject array. Also, look at residuals 

% for each particle 

for j=1:length(spcell) 

    bpimean=zeros(size(spcell{j})); 

    bprmean=zeros(size(spcell{j})); 

    for k=1:size(spcell{j}) 

        try 

        bpimean(k)=mean(pstats(pgroups{spcell{j}(k)})); 

        catch 

            pause 

        end 
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        bprmean(k)=mean(resnorms(spcell{j}(k))); 

    end 

    [~,bpii]=max(bpimean); 

    [~,bpri]=min(bprmean); 

    irejects=[irejects;spcell{j}(1:end~=bpii)]; 

    rrejects=[rrejects;spcell{j}(1:end~=bpri)]; 

end 

irejects=sort(unique(irejects)); 

rrejects=sort(unique(rrejects)); 

Published with MATLAB® R2015b 
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 CALIBRATION CODES 

The calibration code relies on using either of the two particle location methods to find the pixel 

and virtual coordinates of the target points for each lens type, and a separate version with similar 

structure is included here for each location method. 

 Refocusing calibration: JH_RayCam_Calibration 

The following code is the calibration method applied with the refocusing method: 

function JH_RayCam_Calibration 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calibrates a camera using Matlab's calibration software and a few other 

% things 

% Inputs: 

% calimages - Raytrix-generated total focus images to be used for 

% calibration 

% depthmaps - Raytrix-generated depth maps, one per cal image 

% drt       - depth reject threshold, depth map needs more calculated 

%             points than this per grid point, or grid point is rejected 

% spacing   - centre-to-centre distance between adjacent cal grid points 

% Based on Christian Heinze's 2014 masters thesis 

newrun = 1; 

runs = 1; 

clear global 

tic 

global impoints; 

global modelpoints; 

global iters 

iters=0; 

global noIms 

global pass 

 

% IMAGE LOCATIONS 

% file path to images 

path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\2017_02_24_Cal\'; 

% Shared tag, before _Focus_Depth or _Depth 

imID = 'Image'; 

% List of image numbers in a 1 by n array 

imNos = [1:8]; 

noIms = length(imNos); 

% file format 

fmt = '.tiff'; 

 

% convert image numbers to n strings 

imStr = repmat('0000',noIms,1); 

for i=1:noIms 

    imStr(i,:)=num2str(imNos(i),'%04i'); 
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end 

 

% Default Settings 

% centroid detection properties, in pixels 

pkthresh = 30; 

dotpix = 49; % should be odd, slightly larger than dot on target 

noisescale = 3; 

noisethresh = 10; 

 

% depth detection values, in pixels 

drt = 10; % required number of depth estimations to keep a point 

dfrt = 0.3; % depth fit rejection threshold, virtual depth units 

 

% model generation stuff 

radratio = 0.1; 

 

% target model values, in mm 

dotsize = 4.953/3; 

dotspacing = 4.953; 

 

% Iterative solver initial parameter values 

 

% Camera Constants 

global Rx 

global Ry 

global spix 

 

spix = 5.5e-3;% pixel size [mm/pix] 

Rx = 1024; % image (sensor?) resolution x [pix] 

Ry = 1024; % image (sensor?) resolution y [pix] 

 

% Calibration Variables 

try 

    load('nope','allvars') 

    % main lens variables 

    fL = allvars(end); % focal length of main lens [mm] 

    tL = allvars(1); % focus distance [mm] 

 

    % micro-lens variables 

    b1= allvars(2); % MLA-CCD distance [mm], far field lenses 

    b2= allvars(3); % MLA-CCD distance [mm], mid field lenses 

    b3= allvars(4); % MLA-CCD distance [mm], near field lenses 

 

    % distortion variables 

    x0 = allvars(5); % distortion offset x from corner [pix] relative to image centre 

    y0 = allvars(6); % distortion offset y from corner [pix] relative to image centre 

    k1 = allvars(7); % radial distortion coeff 1 

    k2 = allvars(8); % radial distortion coeff 2 

    d1 = allvars(9); % depth distortion coeff 1 

    d2 = allvars(10); % depth distortion coeff 2 

    dD = allvars(11); % depth-dependant depth distortion coeff 

catch 
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    % main lens variables 

    fL = 85; % focal length of main lens [mm] 

    tL = 750; % focus distance [mm] 

 

    % micro-lens variables 

    b1= 0.3; % MLA-CCD distance [mm], far field lenses 

    b2= 0.3; % MLA-CCD distance [mm], mid field lenses 

    b3= 0.3; % MLA-CCD distance [mm], near field lenses 

 

    % distortion variables 

    x0 = 0; % distortion offset x from corner [pix] relative to image centre 

    y0 = 0; % distortion offset y from corner [pix] relative to image centre 

    k1 = 0; % radial distortion coeff 1 

    k2 = 0; % radial distortion coeff 2 

    d1 = 0; % depth distortion coeff 1 

    d2 = 0; % depth distortion coeff 2 

    dD = 0; % depth-dependant depth distortion coeff 

end 

 

% Extrinsics 

% Translations 

Tx = 0; 

Ty = 0; 

Tz = tL; 

 

% Quaternion Rotation 

Q1 = 0; 

Q2 = 0; 

Q3 = 0; 

Q4 = 1; 

 

global defaults 

defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4]; 

 

% POINT DETECTION LOOP 

% set up figures 

cnts=cell(noIms,1); 

for i=1:noIms 

    cntz=[]; 

    % load calibration image, invert 

    calIm = 255-imread([path imID '_' imStr(i,:) '_Focus_Depth'  fmt]); 

 

    % FILTER IMAGE 

    % IMAGE : Threshold : size of particle (longer) 

    calIm = bpass(calIm,noisescale,dotpix,noisethresh); 

 

    % FIND PARTICLES 

    % IMAGE : Image Threshold : size of particle (longer) 

    pk = pkfnd(calIm,pkthresh,dotpix); 

 

    % Do again to sub-pixel 

    cnt = cntrd(calIm,pk,dotpix); 
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    %Plot detected centroids 

%         figure 

%         imagesc(calIm) 

%         axis equal 

%         colormap gray 

%         hold on 

%         plot(cnt(:,1),cnt(:,2),'r+','MarkerSize',20) 

%         hold off 

%         uiwait(gcf) 

    % 

    % Should probably filter based on dot size, but cntrd can't right now. 

    % Could also filter by intensity. 

 

    % Add in the depth data 

    for j=1:3 

        switch j 

            case 1 

                depthIm = imread([path imID '_' imStr(i,:) '_Depth_Far' fmt]); 

            case 2 

                depthIm = imread([path imID '_' imStr(i,:) '_Depth_Mid' fmt]); 

            case 3 

                depthIm = imread([path imID '_' imStr(i,:) '_Depth_Near' fmt]); 

        end 

        cntz(:,j)=JH_AssociateDepthData_V3(cnt,depthIm,dotpix*dotspacing/dotsize/3,drt,0); 

    end 

    farnans=sum(isnan(cntz(:,1))); 

    midnans=sum(isnan(cntz(:,2))); 

    nearnans=sum(isnan(cntz(:,3))); 

    fprintf('%i far, %i mid and %i near depths had too few estimations in image 

%i\n',farnans,midnans,nearnans,i) 

    % filter out bad depths 

    cntfar=[cnt(:,1:2) cntz(:,1)]; 

    cntmid=[cnt(:,1:2) cntz(:,2)]; 

    cntnear=[cnt(:,1:2) cntz(:,3)]; 

    cntfar(isnan(cntfar(:,3)),:)=[]; 

    cntmid(isnan(cntmid(:,3)),:)=[]; 

    cntnear(isnan(cntnear(:,3)),:)=[]; 

    badfar=depthfilter(cntfar,dfrt); 

    badmid=depthfilter(cntmid,dfrt); 

    badnear=depthfilter(cntnear,dfrt); 

    cnts{i}=[cnt(:,1:2) cntz]; 

    cnts{i}(badfar,3)=NaN; 

    cnts{i}(badmid,4)=NaN; 

    cnts{i}(badnear,5)=NaN; 

    fprintf('%i far, %i mid and %i near depths rejected by fit criteria in image 

%i\n',length(badfar),length(badmid),length(badnear),i) 

%     figure(1) 

%     scatter3(cntfar(:,1),cntfar(:,2),cntfar(:,3),'ro') 

%     hold on 

%     scatter3(cntfar(badfar,1),cntfar(badfar,2),cntfar(badfar,3),'k+') 

%     hold off 
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%     figure(2) 

%     scatter3(cntmid(:,1),cntmid(:,2),cntmid(:,3),'go') 

%     hold on 

%     scatter3(cntmid(badmid,1),cntmid(badmid,2),cntmid(badmid,3),'k+') 

%     hold off 

%     figure(3) 

%     scatter3(cntnear(:,1),cntnear(:,2),cntnear(:,3),'bo') 

%     hold on 

%     scatter3(cntnear(badnear,1),cntnear(badnear,2),cntnear(badnear,3),'k+') 

%     hold off 

%     drawnow 

%     uiwait(gcf) 

%     close all 

end 

% now we have all the centroids in pixel and virtual depth space 

 

% GENERATE TARGET MODEL 

impoints = cell(noIms,1); 

modelpoints = cell(noIms,1); 

for i=1:noIms 

    [impoints{i},error] = JH_Generate_Model(cnts{i}(:,1:5), radratio, 2); 

    switch error 

        case 1 

            fprintf('Image no. %i failed axis check. Grid may be on too much of an angle, or 

centroid detection properties may be wrong.\n',i) 

            return 

        case 2 

            fprintf('Image no. %i had issues at the centre of the grid. Check centroid list & 

detection properites.\n',i) 

            return 

    end 

    [height,~]=size(impoints{i}); 

    modelpoints{i} = [impoints{i}(:,1:2) impoints{i}(:,1:2)*dotspacing zeros(height,1)]; % 

locations of model points, in mm 

    % make an array of extrinsic parameters (for later) 

end 

 

% figure 

% imagesc(calIm) 

% colormap gray 

% axis equal 

% hold on 

% plot(impoints{i}(:,3),impoints{i}(:,4),'r+','MarkerSize',20) 

% hold off 

 

% ITERATIVE SOLVER 

global phys 

global trans 

for run = 1:runs 

    % solve for the depth-specific parameters 

    if run == 1 

        extrinsics = []; 
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        for i=1:noIms 

            extrinsics=[extrinsics,[Tx,Ty,Tz,Q1,Q2,Q3,Q4]]; 

        end 

    else 

        vbles = num2cell(defaults); 

        [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=vbles{2:12}; 

        b1=rand 

        b2=b1; 

        b3=b1; 

        extrinsics = allvars(12:end-1); 

        fL = allvars(end); 

        defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4]; 

    end 

    initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-

6,'MaxFunEvals',1000*length(extrinsics+4),'MaxIter',1000,'Display','none'); 

    result=lsqnonlin(@initialize,[tL,extrinsics],[],[],initops); 

    tL=result(1); 

    extrinsic=result(2:end); 

    pass = tL; 

 

    % solve for the b's 

    result=lsqnonlin(@initialize2,[extrinsic,b1,b2,b3],[],[],initops); 

    % variable assignment for in-plane distortion solver 

    b1=result(end-2); 

    b2=result(end-1); 

    b3=result(end); 

    % variable re-assignments 

    extrinsic=result(1:end-3); 

    intrins = [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]; 

    allvars = [intrins extrinsic fL]; 

    pass = [tL,b1,b2,b3]; 

 

    % solve for the in-plane distortion variables 

    intops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',1000,'TolFun',1e-

6,'MaxFunEvals',1000*length(allvars),'MaxIter',1000,'Display','none'); 

    [allvars,totresid,resids,~,~]=lsqnonlin(@intrinfun,allvars,[],[],intops); 

    allvars(1:11) 

    totresid 

    normres=sqrt(sum(resids.^2,2)); 

    prc95=prctile(normres,95) 

    prc2_1=prctile(resids(:,1),2.5) 

    prc98_1=prctile(resids(:,1),97.5) 

    prc2_2=prctile(resids(:,2),2.5) 

    prc98_2=prctile(resids(:,2),97.5) 

    prc2_3=prctile(resids(:,3),2.5) 

    prc98_3=prctile(resids(:,3),97.5) 

 

    % save result if it's better than the old one 

    if newrun == 0 

        try 
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            old=load(['Calibration_170529']); 

        catch 

            newrun = 1; 

            old.totresid = 1; 

        end 

    else 

        old.totresid = 1; 

    end 

    if (old.totresid>totresid || newrun) && imag(allvars(1))==0 

        save(['Calibration_test'],'allvars','totresid'); 

        newrun=0; 

        % kill the loop if nothing is changing 

%         if abs(old.totresid-totresid)<10^-6 

%             fprintf('Precision limit reached!\n'); 

%             break; 

%         end 

    else 

        %allvars=old.allvars; 

        %fprintf('Got worse...\n'); 

        %break; 

    end 

    % toc 

end 

 

% result plots 

for i=1:noIms 

    k=0; 

    for j=0:2 

        k=k+1; 

        figure(k) 

        hold on 

        scatter3(phys{i}(:,3+3*j),phys{i}(:,4+3*j),phys{i}(:,5+3*j),'or'); 

        scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b'); 

        axis tight 

        axis equal 

        hold off 

    end 

end 

figure 

histogram(normres); 

xlabel('Residual [mm]','FontSize',14,'FontName','Times New Roman') 

ylabel('Count','FontSize',14,'FontName','Times New Roman') 

set(gca,'FontSize',14,'FontName','Times New Roman') 

figure 

histfit(resids(:,1)); 

xlabel('{\itx} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

ylabel('Count','FontSize',14,'FontName','Times New Roman') 

set(gca,'FontSize',14,'FontName','Times New Roman') 

figure 

histfit(resids(:,2)); 

xlabel('{\ity} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

ylabel('Count','FontSize',14,'FontName','Times New Roman') 
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set(gca,'FontSize',14,'FontName','Times New Roman') 

figure 

histfit(resids(:,3)); 

xlabel('{\itz} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

ylabel('Count','FontSize',14,'FontName','Times New Roman') 

set(gca,'FontSize',14,'FontName','Times New Roman') 

drawnow 

 

end 

 

function initres = initialize(vars) 

% Try to get some of the initial parameters right by ignoring distortion 

global defaults 

global impoints 

global noIms 

global spix 

global Rx 

global Ry 

global phys 

global i 

 

% main lens variables 

fL = defaults(1); 

tL = vars(1); 

 

% micro-lens variables 

b1= defaults(3); 

b2= defaults(4); 

b3= defaults(5); 

 

% distortion variables 

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre 

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre 

k1 = defaults(8); % radial distortion coeff 1 

k2 = defaults(9); % radial distortion coeff 2 

d1 = defaults(10); % depth distortion coeff 1 

d2 = defaults(11); % depth distortion coeff 2 

dD = defaults(12); % depth-dependant depth distortion coeff 

 

% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

Gp = tL-bL; 

 

initres=[0,0,0,0,0,0,0,0,0]; 

r=cell(noIms,1); 

metric=cell(noIms,1); 

undist=cell(noIms,1); 

phys = cell(noIms,1); 

 

for i=1:noIms 

    % Extrinsics 

    % Translations 
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    Tx = vars(2+(i-1)*7); 

    Ty = vars(3+(i-1)*7); 

    Tz = vars(4+(i-1)*7); 

 

    % Quaternion Rotation 

    Q1 = vars(5+(i-1)*7); 

    Q2 = vars(6+(i-1)*7); 

    Q3 = vars(7+(i-1)*7); 

    Q4 = vars(8+(i-1)*7); 

 

    % send to depth conversion algorithm 

    

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL); 

    % perform extrinsic shifts, find residuals 

    exres = extrinfun([Tx,Ty,Tz,Q1,Q2,Q3,Q4]); 

    % Add to total residuals 

    initres = [initres;exres]; 

end % for 

end 

 

function intres = initialize2(extrins) 

% CCD constants 

global spix 

global Rx 

global Ry 

global defaults 

% globals 

global impoints; 

global phys; 

global i; 

global noIms 

global pass 

 

% shift intrins into variables 

% main lens variables 

fL = defaults(1); 

tL = pass; 

 

% micro-lens variables 

b1= abs(extrins(end-2)); 

b2= abs(extrins(end-1)); 

b3= abs(extrins(end)); 

 

% distortion variables 

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre 

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre 

k1 = defaults(8); % radial distortion coeff 1 

k2 = defaults(9); % radial distortion coeff 2 

d1 = defaults(10); % depth distortion coeff 1 

d2 = defaults(11); % depth distortion coeff 2 

dD = defaults(12); % depth-dependant depth distortion coeff 
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% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

Gp = tL-bL; 

 

intres=[]; 

r=cell(noIms,1); 

metric=cell(noIms,1); 

undist=cell(noIms,1); 

phys = cell(noIms,1); 

 

for i=1:noIms 

    % get extrinsic parameters 

    extr=extrins(1+(i-1)*7:7+(i-1)*7); 

    % send to depth conversion algorithm 

    

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL); 

    % move modelpoints array into position, calculate residual 

    exres=extrinfun(extr); 

    % Add to total residuals 

    intres = [intres;exres]; 

end % for 

end % function 

 

function intres = intrinfun(intrins) 

% CCD constants 

global spix 

global Rx 

global Ry 

global defaults 

% globals 

global impoints; 

global phys; 

global i; 

global noIms 

global pass 

 

% shift intrins into variables 

fL=defaults(1); 

intr=num2cell(intrins); 

[tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=intr{1:11}; 

% ps = num2cell(pass); 

% [tL,b1,b2,b3]=ps{:}; 

 

b1=abs(b1); 

b2=abs(b2); 

b3=abs(b3); 

 

% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

Gp = tL-bL; 



150 

 

 

intres=[0,0,0,0,0,0,0,0,0]; 

r=cell(noIms,1); 

metric=cell(noIms,1); 

undist=cell(noIms,1); 

phys = cell(noIms,1); 

 

for i=1:noIms 

    % get extrinsic parameters 

    extrins=intrins(12+(i-1)*7:18+(i-1)*7); 

    % send to depth conversion algorithm 

    

[metric{i},r{i},undist{i},phys{i}]=depthconv(impoints{i},b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2

,dD,fL); 

    % move modelpoints array into position, calculate residual 

    exres=extrinfun(extrins); 

    % Add to total residuals 

    intres = [intres;exres]; 

end % for 

end % function 

 

function exres = extrinfun(extrins) 

global phys; 

global modelpoints; 

global i; 

global trans; 

 

extr = num2cell(extrins); 

[Tx,Ty,Tz,Q1,Q2,Q3,Q4]=extr{:}; 

 

% set up translation variable 

trans{i}(:,1:2)=modelpoints{i}(:,1:2); 

 

% Convert quaternions to rotation matrix 

mat = zeros(3); 

n = Q4 * Q4 + Q1 * Q1 + Q2 * Q2 + Q3 * Q3; 

if n == 0 

    s=0; 

else 

    s=2 / n; 

end 

xx      = Q1 * Q1 * s; 

xy      = Q1 * Q2 * s; 

xz      = Q1 * Q3 * s; 

xw      = Q1 * Q4 * s; 

yy      = Q2 * Q2 * s; 

yz      = Q2 * Q3 * s; 

yw      = Q2 * Q4 * s; 

zz      = Q3 * Q3 * s; 

zw      = Q3 * Q4 * s; 

mat(1,1)  = 1 - ( yy + zz ); 

mat(2,1)  =     ( xy - zw ); 
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mat(3,1)  =     ( xz + yw ); 

mat(1,2)  =     ( xy + zw ); 

mat(2,2)  = 1 - ( xx + zz ); 

mat(3,2)  =     ( yz - xw ); 

mat(1,3)  =     ( xz - yw ); 

mat(2,3)  =     ( yz + xw ); 

mat(3,3) = 1 -  ( xx + yy ); 

 

% apply quaternion rotation to each model point 

trans{i}(:,3:5) = (mat'*modelpoints{i}(:,3:5)')'; 

 

% apply translation to each model point 

trans{i}(:,3:5)=bsxfun(@plus,trans{i}(:,3:5),[Tx,Ty,Tz]); 

 

% calculate residuals for each impoint, excluding NaN depths 

resids=[phys{i}(:,3:5)-trans{i}(:,3:5),phys{i}(:,6:8)-trans{i}(:,3:5),phys{i}(:,9:11)-

trans{i}(:,3:5)]; 

% eliminate NaN results 

resids(isnan(resids(:,3)),1:3)=0; 

resids(isnan(resids(:,6)),4:6)=0; 

resids(isnan(resids(:,9)),7:9)=0; 

% % combine all residuals into a single vector 

% exres = reshape(resids,1,[]); 

% if any(imag(exres)~=0) 

%     warning('Regression method tested an imaginary value.') 

% end 

exres=[resids(:,1:3),resids(:,4:6),resids(:,7:9)]; 

end 

 

function 

[metric,r,undist,phys]=depthconv(impoints,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL) 

% convert virtual depths and pixel locations to metric 

    zdata=bL+bsxfun(@times,impoints(:,5:7)-2,[b1,b2,b3]); 

    metric=[impoints(:,1:2),... 

        bsxfun(@times,-(impoints(:,3)-Rx/2)*2*spix,bsxfun(@rdivide,zdata,bL)),... 

        bsxfun(@times,-(impoints(:,4)-Ry/2)*2*spix,bsxfun(@rdivide,zdata,bL)),... 

        zdata]; 

    % compute r for each point 

    r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,[3,6]),[x0,y0])).^2,2)); 

    r(:,2) = sqrt(sum(abs(bsxfun(@minus,metric(:,[4,7]),[x0,y0])).^2,2)); 

    r(:,3) = sqrt(sum(abs(bsxfun(@minus,metric(:,[5,8]),[x0,y0])).^2,2)); 

    % undistort metric-depth points 

    undist=[metric(:,1:2),... 

        metric(:,3).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,4).*(1+k1*r(:,2).^2+k2*r(:,2).^4),... 

        metric(:,5).*(1+k1*r(:,3).^2+k2*r(:,3).^4),... 

        metric(:,6).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,7).*(1+k1*r(:,2).^2+k2*r(:,2).^4),... 

        metric(:,8).*(1+k1*r(:,3).^2+k2*r(:,3).^4),... 

        metric(:,9:11)+(1+dD*metric(:,9:11)).*(d1*r(:,1:3).^2+d2*r(:,1:3).^4)]; 

    % project points to physical space 

    zdata=undist(:,9:11)*fL./(undist(:,9:11)-fL); 
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    phys=[undist(:,1:2),... 

        undist(:,3:5)./undist(:,9:11).*zdata,... 

        undist(:,6:8)./undist(:,9:11).*zdata,... 

        zdata]; 

    % reposition some stuff 

    phys=[phys(:,1:3),phys(:,6),phys(:,9),... 

        phys(:,4),phys(:,7),phys(:,10),... 

        phys(:,5),phys(:,8),phys(:,11)]; 

    % we now have phys in (a,b,x1,y1,z1,x2,y2,z2,x3,y3,z3) form. This 

    % should correspond directly to our modelpoints array 

end 

Published with MATLAB® R2015b 

 ETC calibration function: metricCal 

The following code is the calibration method applied with the ETC method: 

function metricCal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calibrates a Raytrix camera 

% Based on Christian Heinze's 2014 masters thesis 

newrun = 1; 

runs = 1; 

clear global 

tic 

global impoints; 

global modelpoints; 

global iters 

iters=0; 

global noIms 

global pass 

global zred 

global mlHold 

global from 

 

% IMAGE LOCATIONS 

% file path to white image 

whitIm='X:\01_Current_Students\Jake Hadfield\LightField Test Images\WhitIms\WhitAve_11-Sep-

2017.mat'; 

% file path to micro-lens locations 

lensCalLoc='X:\01_Current_Students\Jake Hadfield\LightField Test 

Images\WhitIms\MLCal_170911.mat'; 

% file path to images 

path = 'X:\01_Current_Students\Jake Hadfield\LightField Test Images\WaterCal_170809\'; 

% Shared tag 

imID = 'Image'; 

% List of image numbers in a 1 by n array 

%[4,6:9,11:27,29:31,34:43 

http://www.mathworks.com/products/matlab
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%[389:390,405:406,410,411,413,414,417] 

imNos = [15 17 21 25 26 27 28]; 

noIms = length(imNos); 

% file format 

fmt = '.png'; 

 

% Dot Detection Settings 

invert=1; % wether or not to invert by subtracting the white image 

cleanup=225; % wether or not to normalize the image by dividing by the white image 

lnoise=0; % Always should be zero, from what I've seen. see bpass for more. 

psize=7; % Particle size in pixels in raw images 

thresh=0; % cutoff threshold 

peak=50; % peak threshold 

epitol=.5; % pixel distance for max distance from particle to epipolar line 

plotar=50; % aspect ratio of virtual depth for 3D plots 

validrange=[2,12]; % valid range of virtual depths 

display=0; 

settings=[invert cleanup lnoise psize thresh peak epitol plotar validrange display]; 

 

% Target Model Generation Settings 

% model generation stuff 

radratio = 0.1; 

 

% target model values, in mm 

dotspacing = 5.726666666666666666666667; 

 

% error modifier 

zred=3; 

 

% Iterative solver initial parameter values 

 

% Camera Constants 

global Rx 

global Ry 

global spix 

 

spix = 5.5e-3;% pixel size [mm/pix] 

Rx = 2048; % image (sensor?) resolution x [pix] 

Ry = 2048; % image (sensor?) resolution y [pix] 

 

% Calibration Variables 

try 

    load('nope','allvars') 

    % main lens variables 

    fL = allvars(end); % focal length of main lens [mm] 

    tL = allvars(1)-fL*4; % focus distance [mm] 

 

    % micro-lens variables 

    b1= allvars(2); % MLA-CCD distance [mm], far field lenses 

    b2= allvars(3); % MLA-CCD distance [mm], mid field lenses 

    b3= allvars(4); % MLA-CCD distance [mm], near field lenses 
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    % distortion variables 

    x0 = allvars(5); % distortion offset x from corner [pix] relative to image centre 

    y0 = allvars(6); % distortion offset y from corner [pix] relative to image centre 

    k1 = allvars(7); % radial distortion coeff 1 

    k2 = allvars(8); % radial distortion coeff 2 

    d1 = allvars(9); % depth distortion coeff 1 

    d2 = allvars(10); % depth distortion coeff 2 

    dD = allvars(11); % depth-dependant depth distortion coeff 

 

    % ML distortion by type 

    mlvars=allvars(12:17); 

catch 

    % main lens variables 

    fL = 85; % focal length of main lens [mm] 

    tL = 800; % focus distance [mm] 

 

    % micro-lens variables 

    b1= .35; % MLA-CCD distance [mm], far field lenses 

    b2= .35; % MLA-CCD distance [mm], mid field lenses 

    b3= .35; % MLA-CCD distance [mm], near field lenses 

 

    % distortion variables 

    x0 = 0; % distortion offset x from corner [pix] relative to image centre 

    y0 = 0; % distortion offset y from corner [pix] relative to image centre 

    k1 = 0; % radial distortion coeff 1 

    k2 = 0; % radial distortion coeff 2 

    d1 = 0; % depth distortion coeff 1 

    d2 = 0; % depth distortion coeff 2 

    dD = 0; % depth-dependant depth distortion coeff 

 

    % ML distortion by type 

    mlvars= [0 0 0 0 0 0]; 

end 

 

% Extrinsics 

% Translations 

Tx = 0; 

Ty = 0; 

Tz = abs(tL)+4*fL; 

 

% Quaternion Rotation 

Q1 = 0; 

Q2 = 0; 

Q3 = 0; 

Q4 = 1; 

 

global defaults 

defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4]; 

 

% POINT DETECTION LOOP 

% set up figures 

points=cell(noIms,1); 
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ltypes=cell(noIms,1); 

pgroups=cell(noIms,1); 

for i=1:noIms 

    imName=[imID '_Raw_' num2str(imNos(i),'%04i') fmt]; 

    

[points{i},ltypes{i},~,~,~,pcd{i},plocs{i},pgroups{i},lensCents,pli{i},typelist]=JH_rawPlenPF(pat

h,imName,[],lensCalLoc,whitIm,'',settings); 

end 

% now we have all the centroids in pixel and virtual depth space 

 

% GENERATE TARGET MODEL 

impoints = cell(noIms*3,1); 

from=cell(noIms*3,1); 

modelpoints = cell(noIms*3,1); 

skips=[]; 

for i=1:noIms 

    for j=1:3 

        [impoints{(i-1)*3+j},error,from{(i-1)*3+j}] = 

JH_Generate_Model(points{i}(ltypes{i}==j,:), radratio, 2); 

        switch error 

            case 1 

                fprintf('Image no. %i - %i failed axis check. Grid may be on too much of an 

angle, or centroid detection properties may be wrong.\n',i,j) 

                skips=[skips;(i-1)*3+j]; 

            case 2 

                fprintf('Image no. %i - %i had issues at the centre of the grid. Check centroid 

list & detection properites.\n',i,j) 

                skips=[skips;(i-1)*3+j]; 

            case 3 

                fprintf('Image no. %i - %i had too few points. Check centroid list & detection 

properites.\n',i,j) 

                skips=[skips;(i-1)*3+j]; 

        end 

    end 

    % readjust to align grid centres, if possible. 

    [~,ind]=max([length(impoints{(i-1)*3+1}),length(impoints{(i-1)*3+2}),length(impoints{(i-

1)*3+3})]); 

    try 

        loc=impoints{(i-1)*3+ind}(1,3:4); 

    catch 

        continue 

    end 

    adjind=1:3; 

    adjind(adjind==ind)=[]; 

    varl=1; 

    pos=zeros(3,1); 

    tag=0; 

    while tag ~=2 

        tag=0; 

        pos(ind)=varl; 

        for j=adjind 

            if ~isempty(impoints{(i-1)*3+j}) 
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                [dist,pos(j)]=min(sum(bsxfun(@minus,impoints{(i-1)*3+j}(:,3:4),loc).^2,2).^0.5); 

                if dist<1 

                    tag=tag+1; 

                end 

            else 

                tag=tag+1; 

            end 

        end 

        if tag==2 

            for j=1:3 

                if ~isempty(impoints{(i-1)*3+j}) 

                    % adjust grid origin and generate modelpoints 

                    impoints{(i-1)*3+j}(:,1:2)=bsxfun(@minus,impoints{(i-

1)*3+j}(:,1:2),impoints{(i-1)*3+j}(pos(j),1:2)); 

                    modelpoints{(i-1)*3+j} = [impoints{(i-1)*3+j}(:,1:2) impoints{(i-

1)*3+j}(:,1:2)*dotspacing zeros(size(impoints{(i-1)*3+j},1),1)]; % locations of model points, in 

mm 

                end 

            end 

        else 

            % didn't share centrepoint, try the next one 

            varl=varl+1; 

            try 

                loc=impoints{(i-1)*3+ind}(varl,3:4); 

            catch 

                % couldn't align grid, empty smallest member of impoints 

                % and retry with just 2 (or use only 1 if that's all we 

                % have) 

                [~,small]=min([length(impoints{(i-1)*3+1}),length(impoints{(i-

1)*3+2}),length(impoints{(i-1)*3+3})]); 

                if ~isempty(impoints{(i-1)*3+small}) 

                    impoints{(i-1)*3+small}=[]; 

                else 

                    ls=[length(impoints{(i-1)*3+1}),length(impoints{(i-

1)*3+2}),length(impoints{(i-1)*3+3})]; 

                    [~,small]=find(ls==min(ls(ls>0))); 

                    impoints{(i-1)*3+small}=[]; 

                end 

                varl=1; 

                try 

                    loc=impoints{(i-1)*3+ind}(varl,3:4); 

                catch 

                    continue 

                end 

            end 

        end 

    end 

end 

impoints(skips)=cell(1,1); 

modelpoints(skips)=cell(1,1); 

% figure 

% imagesc(calIm) 
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% colormap gray 

% axis equal 

% hold on 

% plot(impoints{i}(:,3),impoints{i}(:,4),'r+','MarkerSize',20) 

% hold off 

 

% ITERATIVE SOLVER 

global phys 

global trans 

for run = 1:runs 

    % solve for the depth-specific parameters 

    if run == 1 

        extrinsics = []; 

        for i=1:noIms 

            extrinsics=[extrinsics,[Tx,Ty,Tz,Q1,Q2,Q3,Q4]]; 

        end 

    else 

        vbles = num2cell(defaults); 

        [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=vbles{2:12}; 

        b1=rand 

        b2=b1; 

        b3=b1; 

        extrinsics = allvars(12:end-1); 

        fL = allvars(end); 

        defaults=[fL,tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD,Tx,Ty,Tz,Q1,Q2,Q3,Q4]; 

    end 

    initops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',10,'TolFun',1e-

6,'MaxFunEvals',1000*length(extrinsics+4),'MaxIter',1000,'Display','none'); 

    result=lsqnonlin(@initialize,[tL,extrinsics],[],[],initops); 

    tL=result(1); 

    extrinsic=result(2:end); 

 

    intrins = [tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]; 

    allvars = [intrins extrinsic fL]; 

 

    % solve for the in-plane distortion variables 

    intops=optimoptions('lsqnonlin','Algorithm','levenberg-

marquardt','InitDamping',10,'TolFun',1e-

6,'MaxFunEvals',1000*length(allvars),'MaxIter',1000,'Display','none'); 

    [allvars,totresid,resids,~,~]=lsqnonlin(@intrinfun,allvars,[],[],intops); 

 

    % solve for micro-lens distortions 

%     pass = allvars; 

%     mlHold = {plocs,pgroups,lensCents,pli,typelist,pcd}; 

%     [mlvars,totresid,resids,~,~]=lsqnonlin(@mlfun,mlvars,[],[],initops); 

    allvars=[allvars(1:11) mlvars allvars(11:end)]; 

    allvars(1)=allvars(end)*4+abs(allvars(1)); 

    allvars(1:17) 

 

    normres=sqrt(sum(resids.^2,2)); 

    prc95=prctile(normres,95) 
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    prc2_1=prctile(resids(:,1),2.5) 

    prc98_1=prctile(resids(:,1),97.5) 

    prc2_2=prctile(resids(:,2),2.5) 

    prc98_2=prctile(resids(:,2),97.5) 

    prc2_3=prctile(resids(:,3),2.5) 

    prc98_3=prctile(resids(:,3),97.5) 

 

    figure 

    histogram(normres); 

    xlabel('Residual [mm]','FontSize',14,'FontName','Times New Roman') 

    ylabel('Count','FontSize',14,'FontName','Times New Roman') 

    set(gca,'FontSize',14,'FontName','Times New Roman') 

    figure 

    histfit(resids(:,1)); 

    xlabel('{\itx} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

    ylabel('Count','FontSize',14,'FontName','Times New Roman') 

    set(gca,'FontSize',14,'FontName','Times New Roman') 

    figure 

    histfit(resids(:,2)); 

    xlabel('{\ity} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

    ylabel('Count','FontSize',14,'FontName','Times New Roman') 

    set(gca,'FontSize',14,'FontName','Times New Roman') 

    figure 

    histfit(resids(:,3)); 

    xlabel('{\itz} Residual [mm]','FontSize',14,'FontName','Times New Roman') 

    ylabel('Count','FontSize',14,'FontName','Times New Roman') 

    set(gca,'FontSize',14,'FontName','Times New Roman') 

 

    % output residuals 

    tpoints=0; 

    for m=1:length(modelpoints) 

        tpoints=sum([tpoints length(modelpoints{m})]); 

    end 

    avresid=sum(sqrt(sum([resids(:,1:2) resids(:,3)*zred].^2,2)))/length(resids) 

 

    % save result if it's better than the old one 

    if newrun == 0 

        try 

            old=load(['Calibration_170529']); 

        catch 

            newrun = 1; 

            old.totresid = 1; 

        end 

    else 

        old.totresid = 1; 

    end 

    if (old.totresid>totresid || newrun) && imag(allvars(1))==0 

        save(['Calibration_' datestr(datetime('today'))],'allvars','totresid'); 

        newrun=0; 

        % kill the loop if nothing is changing 

%         if abs(old.totresid-totresid)<10^-6 

%             fprintf('Precision limit reached!\n'); 



159 

 

%             break; 

%         end 

    else 

        %allvars=old.allvars; 

        %fprintf('Got worse...\n'); 

        %break; 

    end 

    % toc 

end 

 

% result plots 

for i=1:length(phys) 

    figure 

    if ~isempty(phys{i}) 

        hold on 

        scatter3(phys{i}(:,3),phys{i}(:,4),phys{i}(:,5),'or'); 

        scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b'); 

        axis tight 

        axis equal 

        hold off 

        xlabel('{\itx} [mm]','FontSize',14,'FontName','Times New Roman') 

        ylabel('{\ity} [mm]','FontSize',14,'FontName','Times New Roman') 

        zlabel('{\itz} [mm]','FontSize',14,'FontName','Times New Roman') 

        set(gca,'FontSize',14,'FontName','Times New Roman') 

    end 

end 

figure 

hold on 

for i=1:length(phys) 

    if ~isempty(phys{i}) 

        scatter3(phys{i}(:,3),phys{i}(:,4),phys{i}(:,5),'or'); 

        scatter3(trans{i}(:,3),trans{i}(:,4),trans{i}(:,5),'.b'); 

        axis tight 

        axis equal 

    end 

end 

xlabel('{\itx} [mm]','FontSize',14,'FontName','Times New Roman') 

ylabel('{\ity} [mm]','FontSize',14,'FontName','Times New Roman') 

zlabel('{\itz} [mm]','FontSize',14,'FontName','Times New Roman') 

set(gca,'FontSize',14,'FontName','Times New Roman') 

drawnow 

 

end 

 

function initres = initialize(vars) 

% Try to get some of the initial parameters right by ignoring distortion 

global defaults 

global impoints 

global noIms 

global spix 

global Rx 

global Ry 
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global phys 

global i 

global j 

 

% main lens variables 

fL = defaults(1); 

tL = vars(1); 

tL=abs(tL)+4*fL; 

 

% micro-lens variables 

b1= defaults(3); 

b2= defaults(4); 

b3= defaults(5); 

 

% distortion variables 

x0 = defaults(6); % distortion offset x from corner [pix] relative to image centre 

y0 = defaults(7); % distortion offset y from corner [pix] relative to image centre 

k1 = defaults(8); % radial distortion coeff 1 

k2 = defaults(9); % radial distortion coeff 2 

d1 = defaults(10); % depth distortion coeff 1 

d2 = defaults(11); % depth distortion coeff 2 

dD = defaults(12); % depth-dependant depth distortion coeff 

 

% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

 

initres=[]; 

r=cell(noIms,1); 

metric=cell(noIms,1); 

undist=cell(noIms,1); 

phys = cell(noIms,1); 

for i=1:noIms 

    for j=1:3 

    % Extrinsics 

    % Translations 

    Tx = vars(2+(i-1)*7); 

    Ty = vars(3+(i-1)*7); 

    Tz = vars(4+(i-1)*7); 

 

    % Quaternion Rotation 

    Q1 = vars(5+(i-1)*7); 

    Q2 = vars(6+(i-1)*7); 

    Q3 = vars(7+(i-1)*7); 

    Q4 = vars(8+(i-1)*7); 

        % send to depth conversion algorithm 

    if ~isempty(impoints{(i-1)*3+j}) 

        [metric{(i-1)*3+j},r{(i-1)*3+j},undist{(i-1)*3+j},phys{(i-1)*3+j}]=depthconv(impoints{(i-

1)*3+j},j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL); 

        % perform extrinsic shifts, find residuals 

        exres = extrinfun([Tx,Ty,Tz,Q1,Q2,Q3,Q4]); 

        % Add to total residuals 

        initres = [initres;exres]; 
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    end 

    end 

end % for 

end 

 

function intres = intrinfun(intrins) 

% CCD constants 

global spix 

global Rx 

global Ry 

global defaults 

% globals 

global impoints; 

global phys; 

global i; 

global j 

global noIms 

 

% shift intrins into variables 

fL=intrins(end); 

intr=num2cell(intrins); 

[tL,b1,b2,b3,x0,y0,k1,k2,d1,d2,dD]=intr{1:11}; 

tL=abs(tL)+4*fL; 

% ps = num2cell(pass); 

% [tL,b1,b2,b3]=ps{:}; 

 

b1=abs(b1); 

b2=abs(b2); 

b3=abs(b3); 

 

% lens modeling parameters 

bL = tL/2*(1-sqrt(1-4*fL/tL)); 

intres=[]; 

r=cell(noIms,1); 

metric=cell(noIms,1); 

undist=cell(noIms,1); 

phys = cell(noIms,1); 

 

for i=1:noIms 

    for j=1:3 

    % get extrinsic parameters 

    extrins=intrins(12+(i-1)*7:18+(i-1)*7); 

    % send to depth conversion algorithm 

    if ~isempty(impoints{(i-1)*3+j}) 

        [metric{(i-1)*3+j},r{(i-1)*3+j},undist{(i-1)*3+j},phys{(i-1)*3+j}]=depthconv(impoints{(i-

1)*3+j},j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL); 

        % move modelpoints array into position, calculate residual 

        exres=extrinfun(extrins); 

        % Add to total residuals 

        intres = [intres;exres]; 

    end 

    end 
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end % for 

end % function 

 

function exres = extrinfun(extrins) 

global phys; 

global modelpoints; 

global i; 

global j 

global trans; 

global zred; 

 

extr = num2cell(extrins); 

[Tx,Ty,Tz,Q1,Q2,Q3,Q4]=extr{:}; 

 

% set up translation variable 

trans{(i-1)*3+j}(:,1:2)=modelpoints{(i-1)*3+j}(:,1:2); 

 

% Convert quaternions to rotation matrix 

mat = zeros(3); 

n = Q4 * Q4 + Q1 * Q1 + Q2 * Q2 + Q3 * Q3; 

if n == 0 

    s=0; 

else 

    s=2 / n; 

end 

xx      = Q1 * Q1 * s; 

xy      = Q1 * Q2 * s; 

xz      = Q1 * Q3 * s; 

xw      = Q1 * Q4 * s; 

yy      = Q2 * Q2 * s; 

yz      = Q2 * Q3 * s; 

yw      = Q2 * Q4 * s; 

zz      = Q3 * Q3 * s; 

zw      = Q3 * Q4 * s; 

mat(1,1)  = 1 - ( yy + zz ); 

mat(2,1)  =     ( xy - zw ); 

mat(3,1)  =     ( xz + yw ); 

mat(1,2)  =     ( xy + zw ); 

mat(2,2)  = 1 - ( xx + zz ); 

mat(3,2)  =     ( yz - xw ); 

mat(1,3)  =     ( xz - yw ); 

mat(2,3)  =     ( yz + xw ); 

mat(3,3) = 1 -  ( xx + yy ); 

 

% apply quaternion rotation to each model point 

trans{(i-1)*3+j}(:,3:5) = (mat'*modelpoints{(i-1)*3+j}(:,3:5)')'; 

 

% apply translation to each model point 

trans{(i-1)*3+j}(:,3:5)=bsxfun(@plus,trans{(i-1)*3+j}(:,3:5),[Tx,Ty,Tz]); 

 

% calculate residuals for each impoint, excluding NaN depths 

resids=phys{(i-1)*3+j}(:,3:5)-trans{(i-1)*3+j}(:,3:5); 
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% eliminate NaN results 

resids(isnan(resids(:,3)),:)=[]; 

% combine all residuals into a single vector 

exres = [resids(:,1:2) resids(:,3)/zred]; 

% if any(imag(exres)~=0) 

%     warning('Regression method tested an imaginary value.') 

% end 

end 

 

function 

[metric,r,undist,phys]=depthconv(impoints,j,b1,b2,b3,bL,Rx,Ry,spix,x0,y0,k1,k2,d1,d2,dD,fL) 

switch j 

    case 1 

        b=b1; 

    case 2 

        b=b2; 

    case 3 

        b=b3; 

end 

% convert virtual depths and pixel locations to metric 

    zdata=bL+bsxfun(@times,impoints(:,5)-2,b); 

    metric=[impoints(:,1:2),... 

        (impoints(:,3)-Rx/2)*spix,... 

        (impoints(:,4)-Ry/2)*spix,... 

        zdata]; 

    % compute r for each point 

    r(:,1) = sqrt(sum(abs(bsxfun(@minus,metric(:,3:4),[x0,y0])).^2,2)); 

    % undistort metric-depth points 

    undist=[metric(:,1:2),... 

        metric(:,3).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,4).*(1+k1*r(:,1).^2+k2*r(:,1).^4),... 

        metric(:,5)+(1+dD*metric(:,5)).*(d1*r(:,1).^2+d2*r(:,1).^4)]; 

    % project points to physical space 

    zdata=undist(:,5)*fL./(undist(:,5)-fL); 

    phys=[undist(:,1:2),... 

        -undist(:,3)./undist(:,5).*zdata,... 

        -undist(:,4)./undist(:,5).*zdata,... 

        zdata]; 

    % we now have phys in (a,b,x,y,z) form. This 

    % should correspond directly to our modelpoints array 

end 

 

% function resids=mlfun(mlVars) 

% global pass 

% global mlHold 

% global impoints 

% global from 

% 

% plocs=mlHold{1}; 

% pgroups=mlHold{2}; 

% lensCents=mlHold{3}; 

% pli=mlHold{4}; 
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% typelist=mlHold{5}; 

% pcd=mlHold{6}; 

% 

% 

% % modify raw particle locations 

% nplocs=JH_Plen_mlCorrect(plocs,lensCents,pli,typelist,pcd,mlVars); 

% 

% 

% for i = 1:length(nplocs) 

%     % solve for new 3D particle locations 

%     [points,~,~]=JH_Plen_GetPt(nplocs{i},pgroups{i},lensCents,pli{i},pcd{i},typelist,0); 

% 

%     % replace values in model array 

%     for j=1:size(impoints{i},1) 

%         impoints{i}(j,3:5)=points(from{i}(j),:); 

%     end 

% end 

% 

% % convert to physical position and calculate residual 

% resids = intrinfun(pass); 

% end 

Published with MATLAB® R2015b 

 Model generation function: JH_Generate_Model 

The target model function has been isolated in the ETC code, accomplished using the following 

code: 

function [impoints, error, from] = JH_Generate_Model(cnts,varargin) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Generates a model of a calibration target with points corresponding to 

% input parameters, and associates input centroids. first two columns of 

% impoints contain [a,b] matrix of valid target points, last three contain 

% centroid locations. 

% Inputs: 

% cnts       - Detected centroids of grid points, in (x,y,z) form [pix] 

% radratio   - Tolerance for expected point location, max 0.05, recommended 

%              0.01 or less; depends on target image quality and noise level 

% maxmiss    - Number of points 

% Outputs: 

% impoints - array of [a,b,x,y,z] locations containing: 

%              a - relative x position of the point in the array along minor axis [int] 

%              b - relative y position of the point in the array along major axis [int] 

%        [x,y,z] - centroid of point [pix] 

 

% error    - variable for identifying errors 

% 

% Warnings: Code will produce warnings identifying points that deviated 

http://www.mathworks.com/products/matlab
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% significantly from the expected location, based on the axis generated. 

% These will occur more frequently with highly distorted views. Should 

% check these points manually to confirm centroid location was good. If a 

% lot of these show up, there may be issues near the centre of the image. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

warn = 0; 

from=[]; 

% robust input handling 

if ~isa(varargin{1},'double') 

    radratio = 0.1; % default 

else 

    radratio = varargin{1}; 

end 

if ~isa(varargin{2},'int') 

    maxmiss = 2; % default 

else 

    maxmiss = varargin{2}; 

end 

if isempty(cnts) 

    impoints=[]; 

    error=3; 

    from=[]; 

    return; 

end 

error = 0; 

% figure 

% scatter3(cnts(:,1),cnts(:,2),cnts(:,3)) 

% Find target axes 

% find [x,y] epicentre of centroids 

epi= sum(cnts(:,1:2),1)/size(cnts,1); 

 

% put [x,y] centroids into a k-d tree 

tree = KDTreeSearcher(cnts(:,1:2)); 

okay=0; 

flip=0; 

while ~okay 

    % figure out which centroid(s) is closest to the epicentre 

    ind = knnsearch(tree,epi); 

 

    % set that point to be the origin 

    impoints = [0 0 cnts(ind,1:3)]; 

 

    % find next 8 nearest points to origin 

    ind = knnsearch(tree, cnts(ind,1:2), 'K', 9); % single row 

 

    % find opposing points 

    try 

    vecs = 2*bsxfun(@minus,cnts(ind,1:2),cnts(ind(1),1:2)); 

    catch 

        pause 

    end 

    % toss out zeros (origin) 
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    vecs(vecs(:,1)==vecs(:,2),:)=[]; 

    try 

        indop = knnsearch(tree,bsxfun(@minus,cnts(ind(2:9),1:2),vecs)); % single column 

    catch 

        error=3; 

        return; 

    end 

    % get opposites list, remove duplicates and origin 

    ops = [ind(2:9)' indop]; 

    ops = unique(sort(ops,2),'rows'); 

    % ops should be a 4x2 array with the indicies of points that oppose each other accross the 

origin 

    check = size(ops); 

    if check(1)~=4 || check(2) ~=2 

        if epi<2048 

            epio=epi; 

            epi=epi+[100,0]; 

        else 

            epi=[10,epi(2)]; 

            flip=1; 

        end 

        if flip && epi(1)>epio(1) 

            error = 2; 

            impoints = []; 

            return 

        end 

    else 

        okay=1; 

    end 

end 

 

% determine vector lengths between points in ops 

vecs = cnts(ops(:,2),1:2)-cnts(ops(:,1),1:2); 

vlengths = sqrt(sum(abs(vecs).^2,2)); 

[~, vind] = sort(vlengths); 

 

% figure out which axes are good 

p=zeros(1,9); 

try1=1; 

try2=2; 

tries = 1; 

while all(sort(ind)~=sort(p)) 

    % shortest vector becomes minor axis direction 

    minorAxis=vecs(vind(try1),:)/2; 

    % next shortest vector becomes major axis direction 

    majorAxis=vecs(vind(try2),:)/2; 

    % make sure all 8 closest points to origin can be identified by single 

    % combinations of the minor and major axis 

    % origin always good 

    p(1) = ind(1); 

    % on minor 

    p(2) = knnsearch(tree, cnts(ind(1),1:2)+minorAxis); 
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    p(3) = knnsearch(tree, cnts(ind(1),1:2)-minorAxis); 

    % on major 

    p(4) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis); 

    p(5) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis); 

    % diagonals 

    p(6) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis+minorAxis); 

    p(7) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis+minorAxis); 

    p(8) = knnsearch(tree, cnts(ind(1),1:2)+majorAxis-minorAxis); 

    p(9) = knnsearch(tree, cnts(ind(1),1:2)-majorAxis-minorAxis); 

    % try other axes if it didn't work 

    if tries == 1 

        try1=2; 

        try2=3; 

    elseif tries == 2 

        try1=1; 

        try2=3; 

    else 

        % didn't get 8 good points around origin 

        error = 1; 

        impoints = 0; 

        return 

    end 

end 

 

% we now should have good major and minor axes 

missflags = []; 

% Determine coordinates of points in image along minor axis 

for runs=1:2 

    % set up point finding inital loop variables 

    findingpoints = 1; 

    % which direction we're going 

    switch runs 

        case 1 

            vector = minorAxis; 

            c=1; 

        case 2 

            vector = -minorAxis; 

            c=-1; 

    end 

    loc = cnts(ind(1),1:2); 

    misses = 0; 

    i=1; 

    while findingpoints == 1; 

        idx = rangesearch(tree,loc+vector,radratio*norm(vector)); 

        % did we find a point? 

        if isempty(idx{1}) || length(idx{1})>1 

            % if we didn't find one, we should keep going in case only a 

            % few points are missing/blocked, but we need to flag the point 

            % so we don't put it in the model target 

            switch runs 

                case 1 

                    missflags = [missflags;i,0]; 
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                case 2 

                    missflags = [missflags;-i,0]; 

            end 

            loc = loc+vector; 

            misses = misses + 1; 

            switch runs 

                case 1 

                    impoints = [impoints;[i,0,loc,NaN]]; 

                case 2 

                    impoints = [impoints;[-i,0,loc,NaN]]; 

            end 

        else 

            vector = bsxfun(@minus,cnts(idx{1},1:2),loc); 

            % compare with minor axis 

            try 

            if norm(vector-c*minorAxis)>(radratio*norm(minorAxis)) && warn 

                switch runs 

                    case 1 

                        warning('Point (%i,%i) produced a vector 

%1.2d*minorAxis.',i,0,norm(vector-c*minorAxis)/norm(minorAxis)) 

                    case 2 

                        warning('Point (%i,%i) produced a vector %1.2d*minorAxis.',-

i,0,norm(vector-c*minorAxis)/norm(minorAxis)) 

                end 

            end 

            catch 

                error('Detected multiple points where only 1 should be present. Increase epitol 

and/or decrease peak threshold.'); 

            end 

            loc = cnts(idx{1},1:2); 

            misses = 0; 

            switch runs 

                case 1 

                    impoints = [impoints;[i,0,loc,cnts(idx{1},3)]]; 

                case 2 

                    impoints = [impoints;[-i,0,loc,cnts(idx{1},3)]]; 

            end 

        end 

        i=i+1; 

        % if we missed too many points, we probably hit the edge 

        if misses == maxmiss 

            findingpoints = 0; 

        end 

    end 

end 

 

% Determine locations of all points 

% should have a line of points along the minor axis. Now, move in the major 

% axis direction 

[hits,~]=size(impoints); 

for j=1:hits 

    for runs = 1:2 
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        % set up point finding inital loop variables 

        findingpoints = 1; 

        % which direction we're going 

        switch runs 

            case 1 

                vector = majorAxis; 

                c=1; 

            case 2 

                vector = -majorAxis; 

                c=-1; 

        end 

        loc = impoints(j,3:4); 

        misses = 0; 

        i=1; 

        while findingpoints == 1; 

            idx = rangesearch(tree, loc+vector,radratio*norm(vector)); 

            % did we find a point? 

            if isempty(idx{1}) || length(idx)>1 

                % if we didn't find one, we should keep going in case only a 

                % few points are missing/blocked, but we need to flag the point 

                % so we don't put it in the model target 

                switch runs 

                    case 1 

                        missflags = [missflags;impoints(j,1),i]; 

                    case 2 

                        missflags = [missflags;impoints(j,1),-i]; 

                end 

                loc = loc+vector; 

                misses = misses + 1; 

                switch runs 

                    case 1 

                        impoints = [impoints;impoints(j,1),i,loc,NaN,]; 

                    case 2 

                        impoints = [impoints;impoints(j,1),-i,loc,NaN,]; 

                end 

            elseif length(idx{1})>1 

                for p=length(idx{1}) 

                    vector = bsxfun(@minus,cnts(idx{1}(p),1:2),loc); 

                    % compare with major axis. Throws more warnings than 

                    % necessary, but good info. 

                    if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn; 

                        switch runs 

                            case 1 

                                warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',impoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                            case 2 

                                warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',impoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                        end 

                    end 

                    loc = cnts(idx{1}(p),1:2); 

                    misses = 0; 
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                    switch runs 

                        case 1 

                            impoints = [impoints;impoints(j,1),i,loc,cnts(idx{1}(p),3)]; 

                        case 2 

                            impoints = [impoints;impoints(j,1),-i,loc,cnts(idx{1}(p),3)]; 

                    end 

                end 

            else 

                vector = bsxfun(@minus,cnts(idx{1},1:2),loc); 

                % compare with major axis. Throws more warnings than 

                % necessary, but good info. 

                if norm(vector-c*majorAxis)>(radratio*norm(majorAxis)) && warn; 

                    switch runs 

                        case 1 

                            warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',impoints(j,1),i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                        case 2 

                            warning('Point (%i,%i) produced a vector 

%1.2d*majorAxis.',impoints(j,1),-i,norm(vector-c*majorAxis)/norm(majorAxis)) 

                    end 

                end 

                loc = cnts(idx{1},1:2); 

                misses = 0; 

                switch runs 

                    case 1 

                        impoints = [impoints;impoints(j,1),i,loc,cnts(idx{1},3)]; 

                    case 2 

                        impoints = [impoints;impoints(j,1),-i,loc,cnts(idx{1},3)]; 

                end 

            end 

 

            i=i+1; 

            % if we missed too many points, we probably hit the edge 

            if misses == maxmiss 

                findingpoints = 0; 

            end 

        end 

    end 

end 

 

% should have a full grid of points in impoints, including misses. Now need 

% to eliminate misses. 

[~,crossed,~]=intersect(impoints(:,1:2),missflags,'rows'); 

impoints(crossed,:)=[]; 

 

% perform iterative planar fitting and remove outliers 

fitz=fit([impoints(:,3),impoints(:,4)],impoints(:,5),'poly22'); 

 

fdata = feval(fitz,[impoints(:,3),impoints(:,4)]); 

I = abs(fdata - impoints(:,5)) > 1*std(impoints(:,5)); 

 

display=0; 
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if display==1 

    figure 

    plot(fitz,[impoints(:,3),impoints(:,4)],impoints(:,5)) 

    fitzelim= fit([impoints(~I,3),impoints(~I,4)],impoints(~I,5),'poly22'); 

    figure 

    plot(fitzelim,[impoints(~I,3),impoints(~I,4)],impoints(~I,5)) 

    hold on 

    scatter3(impoints(I,3),impoints(I,4),impoints(I,5),'*m') 

    hold off 

end 

 

% remove outliers from impoints 

impoints(I,:)=[]; 

% And we're done! 

 

% now, where did all the impoints come from in cnts? 

from=zeros(size(impoints,1),1); 

for i=1:length(impoints) 

    [~,from(i)]=ismember(impoints(i,3:5),cnts,'rows'); 

end 

Published with MATLAB® R2015b 
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 PARTICLE TRACKING METHODS 

The particle tracking methods are used by both the refocusing and ETC methods. These codes are 

implemented after the particles in at least two frames have been located and require an outer loop 

to manage properly as they only deal with the existing tracks and the last two particle sets in the 

series. 

 Track initialization: DH_track_v3 

The following code is responsible for the two-frame track initialization. This code was written 

initially by [9], but a slight modification has been made to make it suitable for the particle locations 

produced from the plenoptic images. 

function tracks = DH_track_v3(xyz_a,xyz_b,search,neighbor,quasi,zdt) 

 

%A script to track particles through two time frames and three dimensions. 

%It follows the general technique of Baek and Lee's 1996 paper, extended 

%out to three dimensions. 

% 

%Inputs: xyz_a, in the form of [x  y  z] 

%           where (x,y,z) is the three-dimensional coordinates of particles 

%           in time frame 'a' 

% 

%        xyz_b, in the form of [x  y  z] 

%           where (x,y,z) is the three-dimensional coordinates of particles 

%           in time frame 'b' 

% 

%        search, an integer 

%           This variable defines the maximum displacement that should be 

%           seen by a single particle in any given direction 

% 

%        neighbor, an integer 

%           This variable defines the neighborhood radius, inside of which 

%           other particles will be found and may be assumed to displace 

%           themselves similarly to the particle to be tracked 

% 

%        quasi, an integer 

%           This variable defines the maximum amount of variability in any 

%           group's movement, ie random-type error.  If a group of 10 

%           particles uniformly displaces 3 units in the x-direction, except 

%           for one which displaces 3.5 units, this variable will account 

%           for that, and allow a match. 

% 

%        zdw, a double 

%           This variable defines the reliability of the particle location 

%           algorithm in the out-of-plane direction relative to the 
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%           in-plane direction. When performing nearest-neighbor tracking 

%           or using the quasi radius, this weight is applied to reduce the 

%           algorithm's reliance on out-of-plane location data 

%Output: tracks, in the form of [x y z] 

%           The particle number and time frame values have been removed 

%           from previous versions to allow a continuous list to be 

%           created.  Now, with multiple image sets, the list can be added 

%           onto itself, and plotted last.  It is assumed that the first 

%           row is a particle in time frame 'a', and the second row is it's 

%           matching particle in time frame 'b'.  Row three is once again 

%           from time frame 'a', and row four is row three's matching 

%           particle from time frame 'b', and so on. 

%           Any particles that are not tracked to a second frame are 

%           removed from the list. 

% 

%On choosing parameter values: 

%   -Both the search and neighborhood radii should be large enough to 

%   contain approximately 5 particles inside of them.  Having less will 

%   make the algorithm fall over more often, and having more will greatly 

%   slow down the process.  At the same time, they should be small compared 

%   to the motion of the flow - having two directions of flow or a large 

%   curvature in one radius is a bad idea. 

%   -The quasi-rigidity radius should be chosen small compared to the other 

%   radii, and the smaller the quasi radius, the more rigid the flow must 

%   be in order to track particles.  Having this radius too large will 

%   allow too many fluke particles to have an influence on the correct 

%   match. 

%   -The neighborhood radii's size is strictly defined by the system flow 

%   geometry.  If a linear flow exists, a large neighborhood radius can be 

%   large, because most particles will flow in a consistent direction.  If 

%   a sharp circular geometry exists, the neighborhood radius should be 

%   very close to the search radius, if not less than the search radius. 

% 

%Written by Darren Homeniuk, October 22, 2007 

% 

%Inspiration for process given by paper written by S.J. Baek and S.J. Lee, 

%entitled "A new two-frame particle tracking algorithm using match 

%probability", 1996 

 

% Jake Hadfield 2016/17: Added zdt/zdw for plenoptic tracking 

 

% Test Variables 

zdw = zdt;              %z-displacement weighting; see input variables 

 

%initial declarations 

 

in_search = [];         %structure for positions of particles in frame 'b' 

                        %that are close enough to match the particle 

                        %to be tracked 

 

in_neighbor = [];       %structure for positions of particles in frame 'a' 

                        %that are close enough to follow the same 
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                        %motion as the particle to be tracked 

 

a = 1;                  %index to the final "tracks" array 

 

displacement = [];      %multi-use structure 

 

nn_track = 0;           %number of times nearest neighbor was used 

 

pos_search = xyz_b;     %possible search particles.  Neighbors get pulled 

                        %from the xyz_a array.  Potential trajectories get 

                        %pulled from this array.  After being matched, a 

                        %particle will be eliminated from pos_search, so it 

                        %doesn't get matched again. 

 

tracks = []; 

 

len_frame_a = size(xyz_a,1); 

len_frame_b = size(xyz_b,1); 

len_positions_search = len_frame_b; 

 

%look through frame 'a' to determine particle matches 

i = 1; 

%FOR PARTICLE 'i' 

while i <= len_frame_a 

    % FIRST TRY PREDICTIVE TRACKING 

 

 

        %FIND NEIGHBORS OF PARTICLE 

        for j = 1:len_frame_a 

            dist1 = sqrt( (xyz_a(i,1)-xyz_a(j,1))^2 + (xyz_a(i,2)-xyz_a(j,2))^2 ... 

                + (xyz_a(i,3)-xyz_a(j,3))^2 ); 

            if dist1 < neighbor && i ~= j 

                %if a neighbor, put x,y,z coords into array 

                in_neighbor = [in_neighbor; xyz_a(j,1) xyz_a(j,2) xyz_a(j,3)]; 

            end 

        end 

        [num_neighbor,~] = size(in_neighbor); 

 

        if(num_neighbor > 0) 

            %HAVE NEIGHBORS - PERFORM ADVANCED TRACKING 

 

            %FIND FRAME 'b' PARTICLES INSIDE SEARCH RADIUS 

            num_search = 0; 

            for j = 1 : len_positions_search 

 

                %calculate distance between particle being tracked in frame 'a' 

                %and every particle in frame 'b' 

                xd = xyz_a(i,1)-pos_search(j,1); 

                yd = xyz_a(i,2)-pos_search(j,2); 

                zd = xyz_a(i,3)-pos_search(j,3); 

                dist1 = sqrt( (xd)^2 + (yd)^2 + (zd*zdw)^2 ); 
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                %if the distance between frame 'a' and 'b' particles is 

                %less than the search radius, it is a potential match 

%                 if dist1 < search && xyz_b(j,3) > min_h 

                if dist1 < search 

 

                    %place particle in array - used later if it is a match 

                    in_search = [in_search; ... 

                        pos_search(j,1) pos_search(j,2) pos_search(j,3)]; 

 

                    %find distance to particle being tracked from this particle 

                    displacement = [displacement; xd yd zd]; 

 

                    %increment number of search particles 

                    num_search = num_search + 1; 

                end 

            end 

 

            if(num_search > 0) 

 

                %HAVE SEARCH PARTICLES - PARTICLE HAS SOME POTENTIAL MATCH 

 

                %number of times particle found in quasi-rigidity radius 

                count = zeros(num_search,1); 

 

                %distance from centre of quasi-rigidity radius to where 

                %particle actually is found - may be used later 

                distance = zeros(num_search,1); 

 

                for j = 1 : num_search 

                    for k = 1 : num_neighbor 

                        l = 1; flag = 0; 

                        while l <= len_frame_b && flag == 0 

 

                            %-> in_neighbor(k,:) is the k-th neighbor of the 

                            %particle to be tracked 

 

                            %-> displacement(j,:) is the displacement measured 

                            %between the j-th potential match 

 

                            %-> xyz_b(l,:) the set of frame 'b' particles 

                            %that should appear somewhere around the calculated 

                            %position, if the track tested is correct 

 

                            %this basically checks the distance between where 

                            %you would expect the particle to be (if it is a 

                            %correct tracking direction/magnitude) against 

                            %where particles actually appear in the second 

                            %frame 

                            xdist = in_neighbor(k,1)-displacement(j,1)-xyz_b(l,1); 

                            ydist = in_neighbor(k,2)-displacement(j,2)-xyz_b(l,2); 

                            zdist = in_neighbor(k,3)-displacement(j,3)-xyz_b(l,3); 
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                            dist1 = sqrt( (xdist)^2 + (ydist)^2 + (zdist*zdw)^2 ); 

 

                            if(dist1 < quasi) 

                            %if a particle appears inside quasi-rigidity radius, 

                            %then this displacement is more likely correct 

 

                                %increment correct count 

                                count(j) = count(j) + 1; 

 

                                %add onto distance measure 

                                distance(j) = distance(j) + dist1; 

 

                                %match found - stop checking particles, 

                                %check next neighbor 

                                flag = 1; 

 

                            end 

 

                            l = l + 1; 

                        end 

                    end 

                end 

 

                %find displacement with most correct counts 

                [maximum,index] = max(count); 

 

                if maximum ~= 0 

 

                    %IF HAVE PARTICLES INSIDE QUASI-RIGIDITY RADIUS 

                    ind = find(count == maximum); 

                    [sz_ind,~] = size(ind); 

 

                    if(sz_ind > 1 && maximum ~= 0) 

 

                        %if displacements have equal number of correct matches 

                        %compute distance from calculated placement to actual 

                        %location of particle; choose the lowest value as correct 

                        index = ind(1); 

                        for j = 2 : size(ind) 

                            if(distance(index) > distance(ind(j))) 

                                index = ind(j); 

                            end 

                        end 

                    end 

 

                    %this displacement is the "correct" track 

                    tracks(a,:) = xyz_a(i,:); 

    %                 xyz_a(i,:) = []; len_frame_a = len_frame_a - 1; 

                    i = i + 1; 

                    a = a + 1; 

 

                    %note: assumption here is that the x-position will be 
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                    %rather unique.  The z-position is very non-unique, while 

                    %the x-y locations are.  If however, two exact x-positions 

                    %exist, trouble will be created by this! 

                    tracks(a,:) = in_search(index,:); 

                    ind1 = find(in_search(index,1) == pos_search(:,1),1,'first'); 

                    pos_search(ind1,:) = []; 

                    len_positions_search = len_positions_search - 1; 

    %                 ind1 = find(in_search(index,1) == xyz_b(:,1),1,'first'); 

    %                 xyz_b(ind1,:) = []; len_frame_b = len_frame_b - 1; 

 

 

                    %sample plotting part 2 

%                     quiver3(tracks(a-1,1),tracks(a-1,2),tracks(a-1,3),... 

%                         tracks(a,1)-tracks(a-1,1),... 

%                         tracks(a,2)-tracks(a-1,2),... 

%                         tracks(a,3)-tracks(a-1,3),'r'); 

 

                    a = a + 1; 

 

                else 

 

                    %NO PARTICLES INSIDE QUASI-RIGIDITY RADIUS - ELIMINATE 

                    %PARTICLE 

    %                 xyz_a(i,:) = []; 

    %                 len_frame_a = len_frame_a - 1; 

                    i = i + 1; 

                end 

 

            else 

 

                %NO PARTICLES INSIDE OF SEARCH RADIUS - MATCH TO PARTICLE HAS 

                %DISAPPEARED AND/OR DROPPED OFF THE FACE OF THE EARTH - 

                %ELIMINATE PARTICLE 

    %             xyz_a(i,:) = []; 

    %             len_frame_a = len_frame_a - 1; 

                i = i + 1; 

            end 

        else 

 

            %NO NEIGHBORS - NEAREST NEIGHBOR (WITHIN SEARCH RADIUS) KICKS IN 

            b = 1; 

            for k = 1 : len_positions_search 

                displacement(b) = sqrt( (xyz_a(i,1)-pos_search(k,1))^2 + ... 

                    (xyz_a(i,2)-pos_search(k,2))^2 + ... 

                    ((xyz_a(i,3)-pos_search(k,3))*zdw)^2 ); 

                b = b + 1; 

            end 

            [minimum,index] = min(displacement); 

            if(minimum < search) 

 

                %HAVE PARTICLE INSIDE OF SEARCH RADIUS - DETERMINE SMALLEST 

                %DISTANCE, AND MATCH TO THAT ONE 
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                nn_track = nn_track + 1; 

                tracks(a,:) = xyz_a(i,:); 

                i = i + 1; 

    %             xyz_a(i,:) = []; len_frame_a = len_frame_a - 1; 

                a = a + 1; 

                tracks(a,:) = pos_search(index,:); 

                pos_search(index,:) = []; 

                len_positions_search = len_positions_search - 1; 

    %             xyz_b(index,:) = []; len_frame_b = len_frame_b - 1; 

                a = a + 1; 

            else 

 

                %NO PARTICLES INSIDE OF SEARCH RADIUS - ELIMINATE PARTICLE 

                i = i + 1; 

    %             xyz_a(i,:) = []; 

    %             len_frame_a = len_frame_a - 1; 

            end 

        end 

 

        %DONE MATCHING FOR THIS PARTICLE 

        in_search = []; %clear data structures 

        in_neighbor = []; 

        displacement = []; 

 

 

%     else 

%         below_min = below_min + 1; 

%         i = i + 1; 

%     end 

end 

 

if ~isempty(tracks) 

    [proper_length, dump] = size(tracks); 

%     i = 1; num = proper_length; 

% 

%     %if trajectory is less than 1 um, delete it, as it will only take up 

%     %room and space in the plot 

%     while i <= num 

%         x = (tracks(i,1) - tracks(i+1,1))^2; 

%         y = (tracks(i,2) - tracks(i+1,2))^2; 

%         z = (tracks(i,3) - tracks(i+1,3))^2; 

%         if sqrt(x+y+z) < 1 

%             tracks(i,:) = []; tracks(i,:) = []; 

%             num = num - 2; 

%         else 

%             i = i + 2; 

%         end 

%     end 

 

    %final displays 

%     [mess,err] = sprintf... 

%         ('%d particles have been tracked successfully...',proper_length/2); 
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%     disp(mess); 

%     [mess,err] = sprintf... 

%         ('%d particle(s) have been tracked using nearest neighbor!',nn_track); 

%     disp(mess); 

%     [mess,err] = sprintf... 

%         ('%d particle(s) were on the bottom of the tank',below_min); 

%     disp(mess); 

%     elim = proper_length/2 - num/2; 

%     [mess,err] = sprintf('%d tracks were too short and were hence eliminated',elim); 

%     disp(mess); 

else 

    disp('No tracks reported here!?!'); 

end 

Published with MATLAB® R2015b 

 Track association: JH_MT_Associate 

The following code is responsible for associating tracks produced by the two-frame tracking 

algorithm that have similar endpoints. 

function alltracks=JH_MT_Associate(tracks,alltracks,currframe) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Keeps track of which particles in a series of particle tracks are the 

% same 

% tracks - 2 frame tracking results 

% alltracks - multi tracking results, with columns 4 and 5 incorporating 

% particle number and position number, respectively. Column 6 is binary, 

% representing wether particle is true (1) or predicted (0). If this input 

% is left blank, initialization protocal will be performed. 

% firstframe - number of first frame in tracks. May be left blank on first 

% pass. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

if nargin < 3 || currframe==1 

    % first pass, initialize alltracks variable 

    alltracks = tracks; 

    for i = 1:length(tracks)/2 

        alltracks(1+(i-1)*2,4)=i; % particle number 

        alltracks(2+(i-1)*2,4)=i; % particle number 

        alltracks(1+(i-1)*2,5)=1; % frame number 

        alltracks(2+(i-1)*2,5)=2; % frame number 

        alltracks(1+(i-1)*2,6)=1; % true particles only 

        alltracks(2+(i-1)*2,6)=1; % true particles only 

    end 

else 

    % subsequent passes, look at first position for matches in last 

    % alltracks pass 

    trackcount = max(alltracks(:,4)); 
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    % separate out only the previous frame's tracked particles 

    trackedLast = alltracks(alltracks(:,5)==currframe,:); 

    % loop through new tracked particles 

    new = 0; 

    [ltracks,~]=size(tracks); 

    for i = 1:2:ltracks 

        % see if this particle was tracked successfully last time 

        prevTrack = ismember(trackedLast(:,1:3),tracks(i,:),'rows'); 

        if any(prevTrack) 

            % was tracked last time, keep old particle number and don't 

            % re-add current particle 

            alltracks=[alltracks;[tracks(i+1,:),trackedLast(prevTrack,4),currframe+1,1]]; 

            % remove predicted point, if present 

            

alltracks(ismember(alltracks(:,4:6),[trackedLast(prevTrack,4),currframe+1,0],'rows'),:)=[]; 

        else 

            % particle is new, assign new particle number and add particle for both frames 

            new=new+1; 

            

alltracks=[alltracks;[tracks(i,:),trackcount+new,currframe,1];[tracks(i+1,:),trackcount+new,currf

rame+1,1]]; 

        end 

    end 

    % sort the final list by particle and by frame 

    alltracks = sortrows(alltracks,[4,5]); 

end 

Published with MATLAB® R2015b 

 Forward-predictive tracking: JH_MT_Fit_Predict 

The following code is responsible for the forward-predictive tracking approach. 

function 

[p1,p2,alltracks,polyhold]=JH_MT_Fit_Predict(p1,p2,alltracks,frame,range,zdt,polyhold,search) 

% Predicts future points from tracks' current points using polynomial 

% least-squares fitting of the last n points of a track. 

 

% set n, number of previous particles to include 

na=5; 

% set ap, maximum number of predicted particles allowed 

ap=3; 

 

%     estimate particle domain 

%     minx=min([alltracks(:,1),p1(:,1),p2(:,1)]); 

%     miny=min([alltracks(:,2),p1(:,1),p2(:,1)]); 

%     minz=min([alltracks(:,3),p1(:,1),p2(:,1)]); 

%     maxx=max([alltracks(:,1),p1(:,1),p2(:,1)]); 

%     maxy=max([alltracks(:,2),p1(:,1),p2(:,1)]); 
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%     maxz=max([alltracks(:,3),p1(:,1),p2(:,1)]); 

 

% figure out which particles were tracked last frame; 

% pull out only long-enough tracks from alltracks 

pNos = []; 

for pN=[alltracks(alltracks(:,5)==frame,4)]'; 

    if sum(alltracks(:,4)==pN)>=3 

        pNos = [pNos,pN]; 

    end 

end 

ltracks=alltracks(ismember(alltracks(:,4),pNos),:); 

% Predict next particle location from each track 

trackcount=0; 

predcount=0; 

for i=pNos 

    pp=0; 

    % fit polynomials to the particle positions 

    ctracks = ltracks(ltracks(:,4)==i,:); 

    [sct,~]=size(ctracks); 

    pct=sum(ctracks(end-ap+1:end,6)); 

    if sct<na 

        % track is short, but may still be useful 

        if sct>=3 

            n=sct; 

        else 

            % track too short, skip this loop iteration 

            continue 

        end 

    else 

        n=na; 

    end 

    if pct==0 

        % too many predicted particles with nothing found, remove predicted 

        % particles from alltracks and skip iteration 

        alltracks(ismember(alltracks,ctracks(end-ap+1:end,:),'rows'),:)=[]; 

        continue 

    end 

    ctracks = ctracks(end-n+1:end,:); 

    nt=ctracks(end,5)+1; 

    if ctracks(end,6)==0 

        % working with predicted point, use previous polynomials 

        try 

        pp=1; 

        loc=find(polyhold.pno==i); 

        polyx = polyhold.polyx(min(loc),:); 

        polyy = polyhold.polyy(min(loc),:); 

        polyz = polyhold.polyz(min(loc),:); 

        mux = polyhold.mux(:,min(loc)); 

        muy = polyhold.muy(:,min(loc)); 

        muz = polyhold.muz(:,min(loc)); 

        catch 

            error('something screwed up') 
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        end 

    else 

        % need new polynomial 

        [polyx,~,mux]=polyfit(ctracks(:,5),ctracks(:,1),2); 

        [polyy,~,muy]=polyfit(ctracks(:,5),ctracks(:,2),2); 

        [polyz,~,muz]=polyfit(ctracks(:,5),ctracks(:,3),2); 

    end 

 

    % predict next location 

    try 

        predict=[polyval(polyx,nt,[],mux),polyval(polyy,nt,[],muy),polyval(polyz,nt,[],muz)]; 

    catch 

        error('No mux, muy or muz.') 

    end 

 

    % determine if there's a match in p2 

    displacement = sqrt(sum(bsxfun(@times,(bsxfun(@minus,p2,predict).^2),[1,1,zdt]),2)); 

    [minimum,index] = min(displacement); 

 

    % check to make sure match doesn't exceed allowed displacement 

    if sqrt(sum(bsxfun(@times,(p2(index,:)-ctracks(end,1:3)).^2,[1,1,zdt])))<(search+range) 

        if(minimum < range) %*(ap-pct+1) 

            % found a particle, put it in the ptracks array as a real particle 

            alltracks=[alltracks;p2(index,:),i,nt,1]; 

 

            % remove p1 and p2 from their lists 

            p1(ismember(p1,ctracks(end,1:3),'rows'),:)=[]; 

            p2(index,:)=[]; 

 

            trackcount = trackcount+1; 

        else 

            % put the predicted point in as a predicted particle 

            alltracks=[alltracks;predict,i,nt,0]; 

            predcount = predcount+1; 

            % check if this is a new predicted particle 

            if pp==0 

                % hold on to the polynomials, associate with particle number 

                polyhold.pno=[polyhold.pno,i]; 

                polyhold.polyx=[polyhold.polyx;polyx]; 

                polyhold.polyy=[polyhold.polyy;polyy]; 

                polyhold.polyz=[polyhold.polyz;polyz]; 

                polyhold.mux=[polyhold.mux,mux]; 

                polyhold.muy=[polyhold.mux,muy]; 

                polyhold.muz=[polyhold.mux,muz]; 

            end 

        end 

    else 

        % prediction was probably bad, send to 2f algorithm 

        predcount=predcount+1; 

    end 

end 

fprintf('%3i particles tracked using forward prediction!\n', trackcount); 
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fprintf('%3i predicted particles not found.\n', predcount); 

% resort alltracks 

alltracks = sortrows(alltracks,[4,5]); 

Published with MATLAB® R2015b 

 Track acceleration filtering: JH_MT_TrackBreak 

The following code is responsible for the acceleration-based filter that removes bad tracks. 

function [filttracks,lostpts,acamags]=JH_MT_TrackBreak(intracks,art,zaf) 

% Performs denoising operation on particle tracks by removing bad vectors 

% from individual tracks 

 

% enable acceptance of location string or full alltracks array 

if isa(intracks,'char') 

    load(intracks); 

else 

    alltracks = intracks; 

end 

 

% operation 

% look at each particle track individually 

tcount=max(alltracks(:,4)); 

ntidx=1; 

lpidx=1; 

filttracks = []; 

lostpts = []; 

warn=0; 

tsf=0; 

acamags=[]; 

%try 

for i = 1:tcount 

%     [lps,~]=size(lostpts); 

%     [fts,~]=size(unique(filttracks,'rows')); 

%     if lps+fts~=tsf 

%         missing=tsf-(lps+fts) 

%     end 

    % pull out one track 

    ctracks = alltracks(alltracks(:,4)==i,:); 

    [trows,~]=size(ctracks); 

    tsf=tsf+trows; 

    % calculate track velocity at each point 

    cvels = [ctracks(2:end,1:3)-ctracks(1:end-1,1:3) ctracks(1:end-1,4:6)]; 

    % calculate track acceleration if possible 

    if trows>2 

        caccs=[cvels(2:end,1:3)-cvels(1:end-1,1:3) ctracks(2:end-1,4:6)]; 

        % calculate magnitude of acceleration, include zaf 

        camag=sqrt(caccs(:,1).^2+caccs(:,2).^2+zaf.*caccs(:,3).^2); 
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        acamags=[acamags;camag]; 

        % find pointlist of excessive accelerations 

        exacc=find(camag>art); 

        if isempty(exacc) 

            filttracks = [filttracks; ctracks(:,1:3) ntidx*ones(trows,1) ctracks(:,5:6)]; 

            ntidx=ntidx+1; 

            continue; 

        end 

        % acceleration warning criteria 

%         warn = warn+length(exacc)/trows-0.25; 

%         if warn > 25 

%             warning('Many accelerations are exceeding the art, suggest higher threshold.') 

%             warn=0; 

%         end 

%         if warn < 0 

%             warn = 0; 

%         end 

        % break up ctracks at that (those) point(s) to remove bad links 

        if trows == 3 

            % points shouldn't be joined at all, send them to the lostpts array 

            lostpts = [lostpts; ctracks(:,1:3) lpidx*ones(trows,1) ctracks(:,5:6)]; 

            lpidx = lpidx+1; 

            continue; 

        end 

        % longer tracks: need to handle multiple bad accelerations at 

        % different points along the track 

        splits=diff(exacc)==1; 

        groups = length(exacc)-sum(splits); 

        if groups > 1 

            spllocs1=[1,exacc(find(splits==0))'+2]; 

            spllocs2=[exacc(find(splits==0)+1)',trows+1]; 

            ff1=1; 

            ff2=2; 

        else 

            spllocs1=1; 

            spllocs2=trows+1; 

            ff1=0; 

            ff2=0; 

        end 

        % now have all the track-groups 

        for j=1:groups 

            if groups==1 

                ff1=0; 

                ff2=0; 

                ff3=1; 

            elseif j<groups 

                ff1=1; 

                ff2=1; 

                ff3=1; 

            else 

                ff1=0; 

                ff2=0; 
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                ff3=0; 

            end 

            csett = ctracks(spllocs1(j):spllocs2(j)-1+ff1,:); 

            csetam = camag(spllocs1(j)-1+ff3:spllocs2(j)-3+ff2); 

            % exaccs are all together or there's only one 

            waval=max(csetam); 

            wacc=find(csetam==waval); 

            % make sure we aren't at the ends of the track 

            try 

                catvar=0; 

                csetam(wacc-1); 

                catvar=1; 

                csetam(wacc+1); 

            catch 

                if catvar == 0 

                    % first point is garbage 

                    lostpts = [lostpts; csett(1,1:3) lpidx*ones(1,1) csett(1,5:6)]; 

                    csett = csett(2:end,:); 

                    lpidx=lpidx+1; 

                    inc=0; 

                else 

                    % last point is garbage 

                    lostpts = [lostpts; csett(end,1:3) lpidx*ones(1,1) csett(end,5:6)]; 

                    csett = csett(1:end-1,:); 

                    lpidx=lpidx+1; 

                    inc=1; 

                end 

                [csl,~]=size(csett); 

                filttracks = [filttracks; csett(:,1:3) ntidx*ones(csl,1) csett(:,5:6)]; 

                continue; 

            end 

            % weren't at ends, figure out which track point belongs to 

            if csetam(wacc-1)>csetam(wacc+1) 

                % acceleration is worse before the point, point is included after 

                filttracks = [filttracks; csett(1:wacc,1:3) ntidx*ones(length(1:wacc),1) 

csett(1:wacc,5:6)]; 

                ntidx=ntidx+1; 

                filttracks = [filttracks; csett(wacc+1:end,1:3) 

ntidx*ones(length(csett(wacc+1:end,1)),1) csett(wacc+1:end,5:6)]; 

            else 

                % acceleration is worse after the point, point is included before 

                filttracks = [filttracks; csett(1:wacc+1,1:3) ntidx*ones(length(1:wacc+1),1) 

csett(1:wacc+1,5:6)]; 

                ntidx=ntidx+1; 

                filttracks = [filttracks; csett(wacc+2:end,1:3) 

ntidx*ones(length(csett(wacc+2:end,1)),1) csett(wacc+2:end,5:6)]; 

            end 

        end 

        ntidx=ntidx+1; 

    else 

        filttracks = [filttracks; ctracks(:,1:3) ntidx*ones(trows,1) ctracks(:,5:6)]; 

        ntidx=ntidx+1; 
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    end 

    % double-check that we added more than one point 

    if sum(filttracks(:,4)==ntidx-1)==1 

        lostpts=[lostpts;filttracks(end,:)]; 

        filttracks=filttracks(1:end-1,:); 

    end 

end 

filttracks = unique(filttracks,'rows'); 

try 

    lostpts = lostpts(~ismember(lostpts(:,[1:3,5]),filttracks(:,[1:3,5]),'rows'),:); 

catch 

    lostpts = []; 

end 

%collect similar track numbers 

filttracks = sortrows(filttracks,[4,5]); 

%catch 

%    error() 

%end 

end 
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 Track segment linkage: JH_LinkTracks 

The following code is responsible for the forward- and backward- fitting method that links together 

track segments. 

function [alltracks,linkcount]=JH_LinkTracks(alltracks,range,zdt,fp) 

% Backward-looking tracking trying to further link together tracked 

% particles once tracking has been completed. 

 

% look at each individual track 

endtrack=max(alltracks(:,4)); 

endframe=max(alltracks(:,5)); 

 

selt=[]; 

linkcount=0; 

% for all tracks 

for i=endtrack:-1:1 

    %fprintf('Working on track %4i of %4i.\n',endtrack-i+1,endtrack) 

    if ~isempty(selt) 

        fprintf('Track %4i linked to track %4i!\n',i,selt) 

    end 

    if i==423 

        mfasdf=1; 

    end 

    selt = []; 

    % Grab the track, find its size, select the method 

    ptrack=alltracks(alltracks(:,4)==i,:); 
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    [tlength,~]=size(ptrack); 

    if tlength==0 

        continue; 

    end 

    if tlength==2 

        % only have 2 frames, predict with velocity only in x,y. Maybe 

        % just take average z for next frames. 

        [polyx,~,mux]=polyfit(ptrack(:,5),ptrack(:,1),1); 

        [polyy,~,muy]=polyfit(ptrack(:,5),ptrack(:,2),1); 

        [polyz,~,muz]=polyfit(ptrack(:,5),ptrack(:,3),0); 

    elseif tlength<5 

        % don't have enough frames for z-acceleration, only use 

        % average z-velocity for prediction. x and y still try to get 

        % accelerations. 

        [polyx,~,mux]=polyfit(ptrack(:,5),ptrack(:,1),2); 

        [polyy,~,muy]=polyfit(ptrack(:,5),ptrack(:,2),2); 

        [polyz,~,muz]=polyfit(ptrack(:,5),ptrack(:,3),0); 

    else 

        % can use polynomial fits for all 3 directions, but only want last 

        % few tracks 

        [polyx,~,mux]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,1),2); 

        [polyy,~,muy]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,2),2); 

        [polyz,~,muz]=polyfit(ptrack(end-4:end,5),ptrack(end-4:end,3),1); 

    end 

    % get frame at end of track 

    ftime=ptrack(end,5); 

    % find expected locations and velocities 

    c=1; 

    ftimes=(ftime+1):ftime+fp; 

    ftimes=ftimes(ftimes<endframe); 

    if isempty(ftimes) 

        continue; 

    end 

    for j=ftimes 

        ppoint(c,:)=[polyval(polyx,j,[],mux),polyval(polyy,j,[],muy),polyval(polyz,j,[],muz),j]; 

        differx=polyder(polyx); 

        differy=polyder(polyy); 

        differz=polyder(polyz); 

        vpoint(c,:)=[polyval(differx,(j-mux(1))/mux(2).^2),polyval(differy,(j-

muy(1))/muy(2).^2),polyval(differz,(j-muz(1))/muz(2).^2),j]; 

        prange(c)=range*c^(1/8); 

        vrange(c)=range; 

        c=c+1; 

    end 

    % scan for candidate tracks 

    tlist = []; 

    % check position/time conditions of all members of alltracks 

    tcond=ismember(alltracks(:,5),ftimes); 

    xcond=(alltracks(:,1)<=max([ppoint(1,1)+prange(1),ppoint(1,1)-

prange(1),ppoint(end,1)+prange(end),ppoint(end,1)-

prange(end)])).*(alltracks(:,1)>=min([ppoint(1,1)+prange(1),ppoint(1,1)-

prange(1),ppoint(end,1)+prange(end),ppoint(end,1)-prange(end)])); 
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    ycond=(alltracks(:,2)<=max([ppoint(1,2)+prange(1),ppoint(1,2)-

prange(1),ppoint(end,2)+prange(end),ppoint(end,2)-

prange(end)])).*(alltracks(:,2)>=min([ppoint(1,2)+prange(1),ppoint(1,2)-

prange(1),ppoint(end,2)+prange(end),ppoint(end,2)-prange(end)])); 

    %zcond=(alltracks(:,3)<=max([ppoint(1,3)+prange(1),ppoint(1,3)-

prange(1),ppoint(end,3)+prange(end),ppoint(end,3)-

prange(end)])).*(alltracks(:,3)>=min([ppoint(1,3)+prange(1),ppoint(1,3)-

prange(1),ppoint(end,3)+prange(end),ppoint(end,3)-prange(end)])); 

    allcond=logical(tcond.*xcond.*ycond); 

    if isempty(allcond) 

        continue; 

    end 

    for k=(alltracks(allcond,4))' 

        ctrack=alltracks(alltracks(:,4)==k,:); 

        [ctl,~]=size(ctrack); 

        if ctl<2 

            continue; 

        end 

        % get stats 

        for j=1:c-1 

            sframe=ctrack(1,5); 

            if sframe>max(ftimes) 

                % all other tracks must start after valid ftimes 

                break; 

            end 

            if all(sframe ~= ftimes) 

                continue; 

            end 

            pdiff=sqrt(sum(bsxfun(@times,(ctrack(1,1:3)-ppoint(j,1:3)).^2,[1,1,zdt]))); 

            if pdiff > prange(j) 

                continue; 

            end 

            vdiff=sqrt(sum(bsxfun(@times,(ctrack(2,1:3)-ctrack(1,1:3)-

vpoint(j,1:3)).^2,[1,1,zdt]))); 

            if vdiff < vrange(j) 

                % link may be correct, put track number into tlist 

                tlist=[tlist;k,pdiff,vdiff]; 

            end 

        end 

    end 

    if isempty(tlist) 

        continue; 

    end 

    % select the best track out of the candidate tracks 

    [stl,~]=size(tlist); 

    if stl==1 

        % find the track number in alltracks, replace with initial track 

        % number 

        alltracks(alltracks(:,4)==tlist(1),4)=i; 

    else 

        % find the best match 

        % best match will have the most similar velocity 
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        [~,mvd]=min(tlist(:,3)); 

        alltracks(alltracks(:,4)==tlist(mvd,1),4)=i; 

    end 

    linkcount=linkcount+1; 

end 
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 Track smoothing: JH_SmoothTracks 

The following code is responsible for the polynomial temporal smoothing method. 

function smoothtracks = JH_SmoothTracks(alltracks,fp) 

% for each track 

tcount=max(alltracks(:,4)); 

smoothtracks=[]; 

for i=1:tcount 

    % grab current track 

    ctrack = alltracks(alltracks(:,4)==i,:); 

    [sct,~]=size(ctrack); 

    % ignore if too short 

    if sct<5 

        continue; 

    end 

    % find start and end frame 

    sf = ctrack(1,5); 

    ef = ctrack(end,5); 

    % for all frames in between 

    for j=sf:ef 

        % generate a fit curve 

        fitrange=(j-fp):(j+fp); 

        fitpts=ctrack(ismember(ctrack(:,5),fitrange),[1:3,5]); 

        [polyx,~,mux]=polyfit(fitpts(:,4),fitpts(:,1),3); 

        [polyy,~,muy]=polyfit(fitpts(:,4),fitpts(:,2),3); 

        [polyz,~,muz]=polyfit(fitpts(:,4),fitpts(:,3),3); 

        differx=polyder(polyx); 

        differy=polyder(polyy); 

        differz=polyder(polyz); 

        % evaluate the fit curve at the time 

        fitpoint=[polyval(polyx,j,[],mux) polyval(polyy,j,[],muy) polyval(polyz,j,[],muz) 

ctrack(1,4) j polyval(differx,(j-mux(1))/mux(2).^2)*180 polyval(differy,(j-muy(1))/muy(2).^2)*180 

polyval(differz,(j-muz(1))/muz(2).^2)*180]; 

        smoothtracks=[smoothtracks;fitpoint]; 

    end 

    if ~isempty(ctrack) 

        clc 

        fprintf('Track %4i of %4i completed, with %3i points generated.\n',i,tcount,ef-sf+1); 

    end 
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end 

end 
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 Track length statistics: JH_TrackStats 

The following auxiliary code generates histograms for the tracking data, based on track length 

function JH_TrackStats(alltracks) 

if nargin==0 

    

load('C:\Users\jhadfiel\Desktop\2016_12_05_Vortex\Processed\180fps\FilTracks_170106_2_Image.mat')

; 

    alltracks=filttracks2; 

end 

% Track Length Distribution 

ltracks=zeros(1,max(alltracks(:,4))); 

for i=1:max(alltracks(:,4)) 

 ctracks = alltracks(alltracks(:,4)==i,:); 

    [ltracks(i),~]=size(ctracks); 

end 

figure 

histogram(ltracks,1:max(ltracks)) 

end 
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 Track rearrangement: JH_resortTracks 

The following auxiliary code rearranges the tracks such that all the other algorithms can work with 

the tracks correctly. 

function [newtracks,misspts] = JH_resortTracks(alltracks) 

frames = max(alltracks(:,5)); 

newtracks=alltracks; 

misspts=[]; 

ntl=1; 

for i = 1:frames 

    % find this i as track numbers 

    tlist=alltracks(alltracks(:,5)==i,4); 

    for j=tlist' 

        tlocs=alltracks(:,4)==j; 

        ctracks=alltracks(tlocs,:); 

        alltracks=alltracks(~tlocs,:); 

        [sct,~]=size(ctracks); 
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        if sct>1 

            newtracks(ntl:ntl+sct-1,:)=ctracks; 

            ntl=ntl+sct; 

        else 

            misspts=[misspts;ctracks]; 

        end 

    end 

end 
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 Track output: JH_TrackToQuiv 

The following auxiliary code outputs tracks in a format expected by the plotting code. 

function JH_TrackToQuiv(path,TrackName) 

if nargin~=2 

    [TrackName,path]=uigetfile('*.mat'); 

end 

tracks=importdata([path,TrackName]); 

 

quivarray=zeros(length(tracks)-max(tracks(:,4)),7); 

lasti=0; 

for j=1:max(tracks(:,4)) 

    track=tracks(tracks(:,4)==j,:); 

    if isempty(track) 

        continue 

    end 

    [s,~] = size(track);     %grab height of full matrix 

 

    X = zeros(s-1,1); Y = zeros(s-1,1); Z = zeros(s-1,1); F = zeros(s-1,1); %initialize starting 

points as null for quiver use 

    U = zeros(s-1,1); V = zeros(s-1,1); W = zeros(s-1,1); %initialize vector lengths as null for 

quiver use 

 

    for i=1:s-1 

        %grab all x,y,z (starting coordinates) 

        X(i) = track(i,1); 

        Y(i) = track(i,2); 

        Z(i) = track(i,3); 

        %grab time 

        F(i) = track(i,5); 

        %get vectors 

        U(i) = (track(i+1,1) - X(i)); 

        V(i) = (track(i+1,2) - Y(i)); 

        W(i) = (track(i+1,3) - Z(i)); 

    end 

    quivarray(lasti+1:lasti+i,:)=[X,Y,Z,U,V,W,F]; 

    lasti=lasti+i; 
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end 

save([path TrackName(1:end-4) '_quiv.mat'],'quivarray') 
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